

## جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology



" عراقة وجودة" "Tradition and Quality"

| QF01/0408-4.0E | Course Plan for Bachelor program - Study Plan Development and Updating Procedures/<br>Department of Mathematics |
|----------------|-----------------------------------------------------------------------------------------------------------------|
|                |                                                                                                                 |

| Study plan<br>No. | 2021/2022                            | Univers                         | ity Specializatior                        | I                                          | Bache                                  | lor of Mat                | hematics                        |
|-------------------|--------------------------------------|---------------------------------|-------------------------------------------|--------------------------------------------|----------------------------------------|---------------------------|---------------------------------|
| Course No.        | 0101374                              | Course                          | name                                      |                                            | Partia<br>Equat                        | l Differenti<br>ions      | al                              |
| Credit<br>Hours   | 3                                    | Prerequi                        | Prerequisite/ Co-requisite                |                                            | Ordinary Differential<br>Equations (1) |                           |                                 |
| Course<br>type    | MANDATORYUNUNIVERSITYELREQUIREMENTRE | VERSITY<br>CCTIVE<br>QUIREMENTS | □ FACULTY<br>MANDATORY<br>REQUIREME<br>NT | □ Support<br>course family<br>requirements | ~                                      | Mandatory<br>requirements | <b>Elective</b><br>requirements |
| Teaching<br>style | □ Full online learning               | ~                               | Blended learnin                           | g                                          |                                        | Traditional               | learning                        |
| Teaching<br>model | □ 1 Synchronous: 1<br>asynchronous   | ~                               | 1 face to face : 1 a                      | synchronous                                |                                        | 2 Tradition               | al                              |

Faculty member and study divisions' information (to be filled in each semester by the subject instructor)

| Name            | Academic rank | Office No. | Phone No.          | E-n               | nail              |
|-----------------|---------------|------------|--------------------|-------------------|-------------------|
|                 |               |            |                    |                   |                   |
|                 |               |            |                    |                   |                   |
| Division number | Time          | Place      | Number of students | Teaching<br>style | Approved<br>model |
| 1               |               |            |                    | Blended           |                   |
|                 |               |            |                    |                   |                   |

#### **Brief description**

Partial differential equations of the first-order, Nonlinear pde's of the first-order, Linear pde's with constant coefficients, Linear pde's with variable coefficients, wave, heat, and Laplace equations.

#### Learning resources

| Learning resources      |                                                                                |  |  |  |
|-------------------------|--------------------------------------------------------------------------------|--|--|--|
| Course book             | "Elements of Partial Differential Equations", By: Ian Sneddon, 2006, Dover     |  |  |  |
| information             | Publications, inc.                                                             |  |  |  |
| (Title, author, date of |                                                                                |  |  |  |
| issue, publisher etc)   |                                                                                |  |  |  |
| Supportive learning     | 1. "Introduction to Partial Differential Equations with Applications", By E.C. |  |  |  |
| resources               | Zachmanoglou, and D.W. Thoe, 1976, Dover Publications.                         |  |  |  |
| (Books, databases,      | 2. Differential Equations with Applications and Historical Notes". By: G.      |  |  |  |
| applications others)    | Simmons, 2nd Edition, 1991.                                                    |  |  |  |
| approximite, curres)    | 3. Partial Differential Equations, Prasad, Phoolan, 2010, ISBN: 8122430684.    |  |  |  |
|                         | 4. Ordinary & Partial Differential Equation, M D Raisinghania, S. Chand,       |  |  |  |
|                         | 2006S.I. Grossman, 3 <sup>ed</sup> Edition, 1987                               |  |  |  |
| Supporting websites     | 1. http://mathworld.wolfram.com/PartialDifferentialEquation.html               |  |  |  |
|                         | 2. http://ocw.mit.edu/courses/mathematics/                                     |  |  |  |
|                         | 3. http://ocw.mit.edu/courses/mathematics/                                     |  |  |  |
| The physical            | ✓ Class □ labs ✓ Virtual educational □ Others                                  |  |  |  |
| environment for         | room platform                                                                  |  |  |  |
| teaching                |                                                                                |  |  |  |
| Necessary equipment     |                                                                                |  |  |  |



جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology



" عراقة وجودة" "Tradition and Quality"

| QF01/0408-4.0E        | Course Plan for Bachelor program - Study Plan Development and Updating Procedures/<br>Department of Mathematics |
|-----------------------|-----------------------------------------------------------------------------------------------------------------|
|                       |                                                                                                                 |
| and software          |                                                                                                                 |
| Supporting people     |                                                                                                                 |
| with special needs    |                                                                                                                 |
| For technical support |                                                                                                                 |

## Course learning outcomes (S = Skills, C = Competences K = Knowledge,)

| No.        | Course learning outcomes                                                                                               | The associated program<br>learning output code |
|------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|            | Knowledge                                                                                                              |                                                |
| K1         | Describe real-world systems using PDEs.                                                                                | MK1                                            |
| K2         | Use knowledge of partial differential equations (PDEs), modelling, the                                                 | MK2                                            |
|            | general structure of solutions, and analytic and numerical methods for                                                 |                                                |
|            | solutions.                                                                                                             |                                                |
| К3         | classify PDEs, apply analytical methods, and physically interpret the solutions                                        | MK2                                            |
|            | Skills                                                                                                                 |                                                |
| <b>S1</b>  | Solve first order PDEs using the method of characteristics                                                             | MS1                                            |
| S2         | Formulate physical problems as PDEs using conservation laws                                                            | MS1                                            |
| <b>S</b> 3 | Interpret solutions in a physical context, such as identifying travelling waves, standing waves, and shock waves.      | MS2                                            |
| S4         | Demonstrate accurate and efficient use of Fourier analysis techniques<br>and their applications in the theory of PDE's | MS1                                            |
|            | Competences                                                                                                            |                                                |
| C1         | Solve linear second order PDEs using canonical variables for initial-                                                  | MC1                                            |
|            | value problems, Separation of Variables and Fourier series for                                                         |                                                |
|            | boundary value problems.                                                                                               |                                                |
| C2         | Demonstrate capacity to model physical phenomena using PDE's (in                                                       | MC1                                            |
|            | particular using the heat and wave equations).                                                                         |                                                |
| C3         | Apply a range of techniques to find solutions of standard Partial                                                      | MC2                                            |
|            | Differential Equations (PDE)                                                                                           |                                                |

#### Mechanisms for direct evaluation of learning outcomes

| Type of assessment /<br>learning style | Fully electronic learning | Blended learning | Traditional<br>Learning<br>(Theory Learning) | Traditional<br>Learning (Practical<br>Learning) |
|----------------------------------------|---------------------------|------------------|----------------------------------------------|-------------------------------------------------|
| Midterm exam                           | 30%                       | 30%              | 40%                                          | 30%                                             |
| Participation / practical applications | 0                         | 0                | 10%                                          | 30%                                             |
| Asynchronous interactive activities    | 30%                       | 20%              | 0                                            | 0                                               |
| Final exam                             | 40%                       | 50%              | 50%                                          | 40%                                             |

# Schedule of simultaneous / face-to-face encounters and their topics

| Week | Subject                                                            | learning style | Reference |
|------|--------------------------------------------------------------------|----------------|-----------|
| 1    | Review of the first order ode's. Def. of (pde's, order, solution). | Lecture        | 1 – 23    |



# جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan

## كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology



" عراقة وجودة" "Tradition and Quality"

| QF01/0408-4.0E Course Plan for Bachelor program - Study Plan Development and Upd Department of Mathematics |                                 |                                                                                                                                                  | ent and Updating | Procedures/ |
|------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
|                                                                                                            | Def. of                         | quasilinear, almost linear, and linear pde's.                                                                                                    |                  |             |
| 2                                                                                                          | Origin of Cauchy                | of first order pde's.<br>s problem of first order equations                                                                                      | Lecture          | 24 - 34     |
| 3                                                                                                          | The ger<br>Lagrang<br>order po  | neral solution of the first order pde's.<br>ge's method for finding the general solution of the first-<br>le's of the form f $z_x + g z_y = h$ . | Lecture          | 35 - 44     |
| 4                                                                                                          | Integral<br>Surface             | surfaces passing through a given curve.<br>s orthogonal to a given system of surfaces                                                            | Lecture          | 44 - 56     |
| 5                                                                                                          | One an<br>Types of              | d two parameter systems.<br>of solutions of nonlinear pde's of the first-order.                                                                  | Lecture          | 57 – 111    |
| 6                                                                                                          | Charpit<br>the form             | 's method for solving first order nonlinear pde's of $n f (x, y, z, p, q) = 0.$                                                                  | Lecture          | 57 – 111    |
| 7                                                                                                          | Solving                         | special types of first order nonlinear equations.                                                                                                | Lecture          | 57 – 111    |
| 8                                                                                                          | Second<br>Fundan                | order partial differential equations.<br>nental types of second order pde's. <b>Mid Exam 30%</b>                                                 | Lecture          | 112 – 123   |
| 9                                                                                                          | Basic th                        | neory of linear pde's with constant coefficients.                                                                                                | Lecture          | 124 - 130   |
| 10                                                                                                         | Comple<br>f (D <sub>x</sub> , D | mentary functions for $f(D_x, D_y) = 0$ when the operator<br>y) is reducible or irreducible.                                                     | Lecture          | 130 - 132   |
| 11                                                                                                         | Short n<br>eqn. of              | hethods for obtaining the particular integral of the the form f ( $D_x$ , $D_y$ ) z = g (x, y)                                                   | Lecture          | 132 – 136   |
| 12                                                                                                         | Solving<br>variable             | special types of pde's of second - order with coefficients.                                                                                      | Lecture          | 137 – 142   |
| 13                                                                                                         | Laplace<br>variable             | method for transforming second order pde's with coefficients to canonical forms.                                                                 | Lecture          | 143 – 152   |
| 14                                                                                                         | Derivin<br>their so             | g wave, heat, and Laplace equations and finding<br>lutions by using separation of variable method.                                               | Lecture          | 153 – 166   |
| 15                                                                                                         | Derivin<br>their so             | g wave, heat, and Laplace equations and finding<br>lutions by using separation of variable method.                                               | Lecture          | 153 – 166   |
| 16                                                                                                         | Final E                         | xam 40%                                                                                                                                          |                  |             |

## Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

| Week | Task / activity | Reference                            | Expected results             |
|------|-----------------|--------------------------------------|------------------------------|
| 1    | Background      | Ordinary Differential Equations      | Self-reading and Discussion  |
| 2    | Video 1 Solving | E-learning                           | Discussion in the class      |
|      | exercises       |                                      |                              |
| 3    | Home work1:     | (Lecture notes and Ref.1)            | Submit a pdf or word sheet   |
| 4    | Quiz 1          | On the subjects studied on the first | Submitting on the E-learning |
|      |                 | three weeks                          |                              |
| 5    | Assignment 1:   | Internet sources and the other       | Presentation                 |
|      |                 | Supportive learning resources        |                              |
| 6    | Video 2         | Solving exercises                    | Discussion in the class      |
| 7    | Home work       | (Lecture notes and Ref.1)            | Submit a pdf or word sheet   |



# جامعة الزيتونة الأردنية Al-Zaytoonah University of Jordan كلية العلوم وتكنولوجيا المعلومات Faculty of Science and information Technology



" عراقة وجودة" "Tradition and Quality"

| QF01/0408-4.0E Course Pla |                              |         | an for Bachelor program - Study Plan Develo<br>Department of Mathema | opment and Updating Procedures/<br>atics |
|---------------------------|------------------------------|---------|----------------------------------------------------------------------|------------------------------------------|
| 8                         | Assignment 2:                |         | Internet sources and the other<br>Supportive learning resources      | Submitted with the mid exam              |
| 9                         | Self-rea                     | ding    | Ordinary Differential Equations                                      | Talk                                     |
| 10                        | Video3                       |         | E-learning                                                           | Discussion in the class                  |
| 11                        | Home w                       | vork 3: | (Lecture notes and Ref.1)                                            | Submit a pdf or word sheet               |
| 12                        | Self-reading                 |         | Power Series                                                         | Talk                                     |
| 13                        | Quiz 2                       |         | On the subjects studied on the subject studied after midexam         | Submitting on the E-learning             |
| 14                        | Presentation of the subject: |         | Internet sources and the reference book                              | Video                                    |
| 15                        | Video 4 Revision of          |         | E-learning                                                           | Video                                    |
|                           | all the course               |         |                                                                      |                                          |
| 16                        | Final E                      | xam     | -                                                                    |                                          |