

" عراقة وجودة" "Tradition and Quality"

OF01/0/08-/ 0F	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Cyber
Q101/0400-4.0E	Security Department

Study plan No.	1	University Specialization	Cybersecurity
Course No.	0125244	Course name	Cryptography
Credit Hours	3	Prerequisite Co-requisite	Principles of Cybersecurity
Course type	□ MANDATORY □ UNIVERSITY UNIVERSITY ELECTIVE REQUIREMENT REQUIREMENTS	□ FACULTY □ Support MANDATORY course family REQUIREMENT requirements	✓ Mandatory □ Elective requirements requirements
Teaching style	□ Full online learning	□ Blended learning	✓ Traditional learning
Teaching model	2Synchronous: 1asynchronous	□ 2 face to face : 1synchronous	✓ 3 Traditional

Faculty member and study divisions information (to be filled in each semester by the subject instructor)

Name	Academic rank	Office No.	Phone No.	E-n	nail
Hani Mahmoud	Assistant Prof.			Hani.mimi	@zuj.edu.jo
Almimi					
Division number	Time	Place	Number of students	Teaching style	Approved model

Brief description

This course gives an introduction to Cryptography and its importance, understanding classical encryption Techniques: Substitution, Transposition and product Ciphers, Examination of conventional encryption algorithms and design principles including transposition and substitution techniques such as DES, understanding of the modern cryptographic techniques such as RSA, Key distribution, digital signature, identification and authentication, and sharing keys. A survey of symmetric encryption, including classical and modern algorithms, are provided. The emphasis is on the two most important algorithms, the Data Encryption Standard (DES) and the Advanced Encryption Standard (AES). This course also covers the most crucial stream encryption algorithm, RC4, and the critical topic of pseudorandom number generation—a survey of public-key algorithms, including RSA (Rivest-Shamir-Adelman).

Learning resources

8	
Course book information	William Stallings, Cryptography and Network Security Principles and Practice 7th-
(Title, author, date of issue,	Edition-
publisher etc)	
Supportive learning	1- Chapman & Hall - Introduction to Modern Cryptography (2021)
resources	2- Sirapat - Authentication and Access Control_ Practical Cryptography Methods and
(Books, databases,	Tools (2021)
periodicals, software,	3- William Easttom - Modern Cryptography Applied Mathematics for Encryption and
applications, others)	Information Security (2021)
Supporting websites	

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Cyber Security Department				
The physical environment for teaching		✓ Class room	□ labs	✓ Virtual educational platform	□ Others
Necessary equipment a	and	Data show			
software		Any Programming language (C++ preferred)			
Supporting people with					
special needs					
For technical support					

Course learning outcomes (S = Skills, C= Competences K= Knowledge,)

No.	Course learning outcomes	The associated program
	Knowledge	icui inig output couc
K1	Knowledge of basic coding terms and concepts	
K2	Know, explain and compare types of encryption algorithms	
K3	Knowledge of methodologies and techniques used to protect data	
K4	Know and explain the main components of encryption systems and	
	distinguish between symmetric and asymmetric encryption algorithms	
	Skills	
S1	Apply probability attack, cryptanalysis attack, and brute force attack to crack the encrypted data.	
S2	Clarify common encryption vulnerabilities and threats	
S3	Implement and Designing encrypting algorithms using programming	
	languages	
S4	Clarify the main concepts in cryptography.	
	Explain the main encryption issues related to information and data	
	protection	
	Competences	
C1	Independently manage tasks related to cryptography	
C2	Work collaboratively and constructively	
C3	Have the ability to lead and entrepreneurially perform a wide range of	
	tasks responsibly	
C4	Make constructive decisions in situations that require self-reliance	
	Learn and innovate independently	

Mechanisms for direct evaluation of learning outcomes

Type of assessment / learning style	Fully electronic learning	Blended learning	Traditional Learning (Theory Learning)	Traditional Learning (Practical Learning)
First exam	0	0	%20	0
Second / midterm	%30	%30	%20	30%
Participation / practical applications	0	0	10	30%

" عراقة وجودة" "Tradition and Quality"

QF01/0408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Cyber Security Department				
Asynchronous interactive activities	%30	%30	0	0	
final exam	%40	%40	%50	40%	

Note: Asynchronous interactive activities are activities, tasks, projects, assignments, research, studies, projects, work within student groups ... etc, which the student carries out on his own, through the virtual platform without a direct encounter with the subject teacher.

Schedule of simultaneous / face-to-face encounters and their topics

Week	Subject	learning style*	Reference **
1/2	Introduction:	lecture	9,14,15,17,
	Computer Security Concepts		20, 22
	Security Cycle		
	Security Services		
	Security Mechanisms		
	A Model for Network Security		
3	Classical Cryptography and	Lectures,	28-49
	Cryptanalysis:	Problem solving	61-78
	Substitution Cipher		
	Transposition Cipher		
	Product Cipher		
4/5	Block Cipher: General View of DES	Lectures	85-112
	Algorithm.	Problem solving	
	Stream cipher.	_	
	Public Key Cryptography:		
	Public Key and Secret Key		
	cryptosystems		
6	Basic concepts in number theory and	Lectures	85-112
	finite fields		
	Finding GCD, Exponentiations, Prime		
	Numbers,		
	Euler's Totient Function, Inverse.		
7	Hash Functions:	Lectures,	313-339
	Secure Hash Algorithm (SHA)	Problem solving	
	First Exam		
8/9	Mathematical hard problems based	Lectures,	287-292
	cryptography	Problem solving	
	(classifications)		
	Public-key exchange (Key		
	Management) :		
	Diffie-Hellman Key Exchange examples		

" عراقة وجودة" "Tradition and Quality"

QF01/0	9408-4.0E	Course Plan for Bachelor program - Study Plan Development and Updating Procedures/ Cyber Security Department		
	Elliptic	curve Key Exchange		
10	Public-	Key Encryption:	Lectures,	253-264
	RSA A	lgorithm	Problem solving	
11	Rabin A	Algorithm	Lectures,	264-292
	ElGama	al Algorithm	Problem solving	
12/13	Digital	Signature Algorithms:	Lectures,	393-400
	RSADS	, Digital Signature Algorithm	Problem solving	
	(DSA)			
	Combin	ing Algorithms		
14	Stegano	ography	Lectures,	52
	_		Problem solving	
			Group project	
15	Revisio	n		
16	Final E	xam		

* Learning styles: Lecture, flipped learning, learning through projects, learning through problem solving, participatory learning ... etc.

** Reference: Pages in a book, database, recorded lecture, content on the e-learning platform, video, website ... etc.

Schedule of asynchronous interactive activities (in the case of e-learning and blended learning)

Week	Task / activity	Reference	Expected results
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			