
Int. J. High Performance Systems Architecture, Vol. 8, No. 3, 2019 159

Copyright © 2019 Inderscience Enterprises Ltd.

Multiprocessing scalable string matching algorithm
for network intrusion detection system

Adnan A. Hnaif*, Ali Aldahoud, Mohammad A. Alia,
Issa S. Al’otoum and Duaa Nazzal
Faculty of Science and Information Technology,
Al Zaytoonah University of Jordan,
P.O. Box 130 Amman, 11733, Jordan
Email: adnan_hnaif@zuj.edu.jo
Email: Aldahoud@zuj.edu.jo
Email: dr.m.alia@zuj.edu.jo
Email: issa@zuj.edu.jo
Email: science@zuj.edu.jo
*Corresponding author

Abstract: With high increasing speed of today’s computer networks which affects the
performance of security issues in terms of detection speed, the traditional security tools such as
firewall is insufficient to protect the networks from external threads. Intrusion detection systems
(IDS) are one of the most reliable tools that can be used to monitor all the network traffic to
identify unauthorised usage of computer system networks. In this paper, we have proposed a
scalable string matching algorithm based on network IDS (NIDS) to enhance the speed of NIDS
detection engine, which called multiprocessing scalable string matching algorithm for network
intrusion detection system (MSNIDS). The MSNIDS implemented by using enhanced weighted
exact matching algorithm (EWEMA) in both sequential and parallel processing. The MSNIDS
based on EWEMA can be achieved more than 89% in sequential processing time compared with
WEMA, and 86% in parallel processing time compared with sequential matching processing.

Keywords: string matching algorithms; distributed architecture; parallel processing; network
intrusion detection system; NIDS.

Reference to this paper should be made as follows: Hnaif, A.A., Aldahoud, A., Alia, M.A.,
Al’otoum, I.S. and Nazzal, D. (2019) ‘Multiprocessing scalable string matching algorithm for
network intrusion detection system’, Int. J. High Performance Systems Architecture, Vol. 8,
No. 3, pp.159–168.

Biographical notes: Adnan A. Hnaif is an Associate Professor at the Computer Science
Department, Faculty of Science and Information Technology, Al Zaytoonah University of
Jordan. He received his PhD in Computer Science from the University Sains Malaysia – National
Advanced IPv6 Centre and Excellence (NAV6) in 2010. He received his MSc of Computer
Science from the Department of Computer Science in 2003, and obtained his Bachelor of
Computer Science from the Department of Computer Science in 1999/2000. His researches focus
on the network security, parallel processing and computer algorithms.

Ali Aldahoud is a Full Professor at the Computer Science Department, Faculty of Science and IT,
Al Zaytoonah University of Jordan, senior in IEEE, ACM, MIAENG, and SMASDF. He
received his PhD in Engineering Science, National Technology University of Ukraine 1996. His
researches focus on distributed system (communication), algorithms and E-systems.

Mohammad A. Alia is a Full Professor at the Computer Information Systems Department,
Faculty of Computer Science and Information Technology, Al Zaytoonah University of Jordan.
He received his BSc in Science from the Alzaytoonah University, Jordan in 2000. He obtained
his PhD in Computer Science from the University Science of Malaysia in 2008. During 2000
until 2004, he worked at Al-Zaytoonah University of Jordan as an Instructor of Computer
Sciences and Information Technology. Then, he worked as a Lecturer at Al-Quds University in
Saudi Arabia from 2004 to 2005. Currently he is working as a Faculty Deputy Dean and Chair of
Computer Information Systems Department at Al Zaytoonah University of Jordan. His research
interests are in the field of cryptography, network security, and computer networking.

Issa S. Al’otoum is an Assistant Professor at the Computer Information Systems Department,
Faculty of Computer Science and Information Technology, Al Zaytoonah University of Jordan.
He received his BSc in Electrical and Communications Engineering – Peshawar University 1
Pakistan; and obtained his Master from the University of Jordan, and received his PhD in
Computer Science from the University of Khartoum. His research interests are in E-Gov. and
computer algorithms.

160 A.A. Hnaif et al.

Duaa Nazzal is a Research Assistant at Al Zaytoonah University of Jordan, she obtained her BSc
and Master from the Al Zaytoonah University of Jordan. Her research interests are in network
security, parallel computing and computer algorithms.

1 Introduction
With the development of computer and network
communication technology, computer networks spread
rapidly over the past few years ago. The internet plays an
effective role for information exchange and sharing in our
society. Hence, this raised the possibility of having
malicious users gain illegal access to organisations for the
purpose of stealing the information they are interested in, or
rather, for destroying it by injecting applications
(Malwares). Further, a number of network attacks are
dramatically increasing by the time, ranging from the denial
of services, IP spoofing eavesdropping, man in the middle
attack masquerading, and Malware attacks (Snehal and
Jadhav, 2010).

In fact, detecting malicious activities occurring in
computers or networks can be achieved by using the
intrusion detection system (IDS), which is considered a
security management system that monitors network traffic,
and raises an alert when capturing malicious activities. The
IDS have been widely employed in many organisations to
detect attacks.

On the other hand, firewall is used to prevent an
intrusion within the networks by restricting the access
among them. Nevertheless, it is not used to report or to find
attacks or threats inside the networks. The IDS is
responsible for finding and reporting unwanted entries to
the system. In practice, IDS is required for detecting
malicious traffics that cannot be detected by general
deployed tools as such firewalls.

Figure 1 IDS architecture (see online version for colours)

IDSs are normally formed from four components, namely
the decoder, the pre-processor, the detection engine, and the
alert module (Snehal and Jadhav, 2010). Figure 1 depicts
the real time IDS architecture.

1 the decoder or capture engine: this engine is used to
capture all the incoming packets from the network

2 pre-processor engine: used to prepare the captured
packets for the detection engine

3 detection engine: used to check all the pre-processed
packets against any possible intrusions

4 alert, log, and pass engine: used to generate a suitable
level of alert to the network administrator.

Intrusion detection approaches are categorised into
two types: the signature-based detection (SD) and the
anomaly-based detection (AD).

The SD approach defines a pattern that matches a
particular attack. This approach is extremely efficient in
identifying common attacks or threats. Nonetheless, it is not
easy to keep patterns up-to-date. Besides, this approach is
considered to be ineffective in detecting unknown threats or
attacks (Liaoa et al., 2012).

The AD approach is extremely efficient in finding new
vulnerabilities. In particular, this approach works on the
basis of defining the network behaviour (profile). Next, the
defined profile is compared with monitored events and
activities that can detect significant attacks. The main
disadvantage of this approach is its high dependency on the
profile definition, where not well-defined profiles can lead
to weaken the accuracy in detecting attacks or threats
(Jyothsna et al., 2011).

Many studies have shown that the string pattern
matching is one of the primary performance bottlenecks that
are related to these systems. The key challenge of the
pattern string matching is that its performance requirement
has dramatically increased (for example, from multi-Gbps
to multi-10s of Gbps), and has outpaced the performance of
existing solutions. In particular, if the capacity of the
network intrusion detection system (NIDS) cannot match up
with the speed of the network, a passive NIDS will then
cause to the dropping of packets, and thus, may miss
attacks, whereas a real time NIDS will create a bottleneck
for the network performance. On the other hand, as the
number of potential threats and their associated signatures
are expected to grow, the cost of the pattern matching is
likely to further increase. Consequently, the pattern
matching algorithm needs to be highly efficient. The ability
to detect encountered attacks in an efficient and with a high
speed manner is considered to be one of the most
shortcomings of the IDS.

 Multiprocessing scalable string matching algorithm for network intrusion detection system 161

2 Background and literature reviews
2.1 Background
This section elaborates a comprehensive literature
researches, and discusses the findings from the literature
that is based on the NIDS detection engine domain.

2.2 Literature reviews
Pattern matching engine (PME) is available in each modern
NIDS detection engines. Basically, a set of patterns within
the rule is compared by the pattern matching algorithm with
the payloads of the packets. Pattern matching is intensive
when it is being computed.

It is considered that the string matching can reach a
percentage of 70% to 80% for the NIDS CPU cycles, and is
extremely costly when it is being operated in web firewalls.
This is due to the fact that it is considered to be a critical
building block when payloads are being inspected by
network security applications (Jamshed et al., 2011).

Many pattern matching algorithms are proposed recently
in a context that is based on the network intrusion detection.
Accordingly, in the following subsections, some of the most
famous algorithms that are used in NIDS are discussed in
detail.

2.2.1 Exact string matching algorithms

Boyer-Moore algorithm (BM)
An algorithm that searches through a pattern of a particular
text for the index of the first pattern occurrence is proposed
by Boyer and Moore (1977). In fact, the BM algorithm is
considered to be one of the most common and practical
method to be used for a particular single pattern matching.

In particular, BM is considered to be the best and the
essential algorithm for single pattern matching algorithms
for which the SNORT tool can make use of it. BM is based
on the sliding window concept that is appropriate for pattern
matching algorithms. In order to have the number of
required comparisons in a text of length ‘T’ being reduced,
the BM must be based on shifts that are longer than a single
step. This can be performed based on the shifting process
pertaining to the pattern ‘P’ of the length ‘n’ to the right in
longer steps, particularly, of less than ‘m’ characters. The
time and space complexity is O(m + σ) for the
pre-processing phase and Omn for the searching phase.

Quick search algorithm (QS)
QS is a simplification of the BM algorithm that is
considered to be the easiest and extremely fast for a short
pattern and a large alphabet. The QS algorithm only uses the
bad-character shift table, and pre-processes the pattern ‘P’
by using a modified bad shift array, which is called the
qbad_shift.

The searching phase of the algorithm has a worst case
time complexity of O (mn). In the case of each time, a
shifting distance is maintained as one, whereas the bad

character is found in the last comparison of the P [0] along
to the corresponding text. Next, the algorithm starts the
comparison from right to left after a single attempt where
the window is positioned to the text factor y [j ... j + m-1,
and the length of the shift is at least equal to one.
Accordingly, the character y [j + m] is necessarily involved
in the following attempt. In this algorithm, the shift is based
on the text character immediately, and is followed by the
current alignment instead of the last text character of the
alignment (Sunday, 1990).

2.2.2 Intrusion detection based on packets content
The NIDS deploys the network information searching
technique based on certain rules. The pattern matching is
performed on each packet’s content in order to conduct the
intrusion detection (Wang and Kobayashi, 2006).

Before the results are being displayed, the NIDS rules
analysis must be described to constrain a range of patterns
lengths and payload length, which are being traced to find
the pattern. Aldwairi (2006) illustrates that a percentage of
87% of the rules contain strings to match against the packet
payload or against the packet content. Moreover, Munz
et al. (2007) shows a percentage of 88.6% of all rules are
satisfied by the first 145 bytes of the payload. In fact, this
implies that most of the signatures that are related to the
attacks can be found in the first 145 bytes.

In the following subsections, some of these improved
algorithms, which are based on two processing techniques
are highlighted and are discussed thoroughly. These two
processing techniques comprise: sequential processing and
parallel processing.

Sequential processing
In this subsection, the related works which are based on the
detection engine for the packet content by using exact
matching algorithm are discussed in detail.

Zhang (2009) proposes a new feature pattern matching
algorithm, which first arranges letters in the pattern string
form from a low appearance probability to a high
appearance probability. Next, each is matched one by one
by using existing pattern matching algorithms. This
algorithm first matches the rule heads, and then the option
heads. Finally, it matches the payloads of data packages in
order to find the intrusion.

Friedl (2006) develops an automaton algorithm, which
is a mathematical model for the finite state machine.
In general, there are two types of automata: the
non-deterministic finite automaton (NFA) and the
deterministic finite automaton (DFA). If a state q jumps to
multiple different states with only one input α, or with an
empty input ε existing in the transition, then this automaton
considers the NFA.

In the pattern matching area, the NFA of a string is said
to be easily obtained. Nonetheless, an NFA might contain
multiple active states, while the DFA might only contain a
single active state. Hence, a faster searching speed can be in

162 A.A. Hnaif et al.

the DFA for pattern matching where the entire NFAs can be
possibly converted into DFAs.

Hasan and Rashid (2012) suggest enhancing the BM
Horspool (BMH) algorithm by adding a hashing function
that is called the HBMH in order to reduce the characters
comparison time.

The HBMH algorithm uses the hash function, which
converts the string into numbers. The main benefit of using
the hash function is to reduce the number of character
comparisons that are performed by the BMH algorithm in
each attempt. Thus, it reduces the required comparison time.

Parallel processing
In general, there are two major techniques can distribute a
single job into different processors. These comprise
the multi-processing technique, and the multi-threading
technique. The multi-processing technique uses a ‘fork’ for
creating an additional separate process manually in order to
execute the entire later codes after the creation of the
process, such as running a new particular program. In fact,
the idea of the multi-threading technique is to divide up a
single large task into multiple small tasks, which can be
scheduled to be executed by the operating system.

• Multithreading technique

The supra-linear packet processing is an achievement
that is developed by the (Intel Corporation in 2006)
based on Snort 2.x. The data acquisition component of
the supra-linear is separated, where other components
are duplicated. A packet classification hash module is
added to dispatch the packets into processing threads
where they make use of one and four execution cores.
The data acquisition and the dispatch component is put
in a single thread, and each processing component is a
separated thread itself. Each processing thread executes
the same code in order to go through a flow from a
decoder to an output where each of these processing
threads does not communicate with each other.

The multi snort is a multi-thread Snort, which is
presented by Schuff et al. (2007), and is based on the
Snort 2.6. In comparison with the supra-linear packet
processing, the Multi Snort only executes multiple
instants of the original Snort in a parallel manner.
Besides, it proposes a strategy of a memory sharing. In
addition, Chen et al. (2009) designed a parallel
structure for a high-performance NIDS. A new
structure named the Para-snort contains a data source
module, one or more load balancing module, multiple
processing modules, and an output module.

• Hnaif (2015) proposes a new platform that aims to
enhance the speed of the packet payload detection
engine in the NIDS in sequential and in parallel modes.
The proposed platform NIDS is based on the weighted
exact matching algorithm (WEMA), which can detect
the intruders that are trying to gain access through to
the network by using the packet payload information.

On the other hand, the proposed platform is able to run
on a single core and multi-cores processor in order to
show that the idea could cope up with the traffic arrival
speed and with various bandwidth demands.

• Multiprocessing technology

Al-Mamory (2012) uses a multi-processor technology
with a LAN of computers in order to parallelise the
Snort’s string matching engine. A LAN of nine
computers is used in the evaluation. Three different
string matching algorithms are used (KMP algorithm,
Karp-Rabin algorithm, and BM algorithm) in order to
check the efficiency, and the behaviour of these
algorithms in the distributed multiprocessing
environment. These algorithms have different
behaviours with respect to the length of the pattern.

Li (2005) used a multi-processor technology to
parallelise the AC algorithm. The aim from the
paralleled AC algorithm is to enhance the speed of the
detection engine for NIDS. Their methodology that is
called NIDS PME is based on defragmenting each
captured packet into chunks. The defragmentation
function depends on the available number of processors
as well as the packet payload length, i.e., if the number
of processors = 2 and the length of the packet payload
is 20 characters (text), and then this packet will be
defragmented into two portions. The first portion of
length ten will be sent to the processor number 1, and
the second portion of length ten will be sent to
processor number two, where each processor contains a
copy of the same rule sets. If one of the two processors
has a matching, then the final result will return to the
first processor (main). But if the pattern exists between
the portion number one and portion number two, then
neither processor number one nor processor number
two will have a matching. In this case, the amount of
the false negative will increase. To avoid this problem,
the authors proposed that if one portion ends with the tk
(the last position in the first part), the next portion will
start from tk-patternlength +2. Thus, no possible
occurrence of a pattern will exist between the portions.

3 The proposed (MSNIDS) and methodology
There are many techniques or algorithms of the literature
reviewed that were discussed with the improvements of the
NIDS detection engine, in both sequential and parallel
processing. However, with the increase in the network
speeds, it is important not to only cope-up with a new
technique(s) that performs particular tasks, but to cope-up
with a technique(s) that outperforms the entire previous
methods.

Moreover, the work load of the pattern matching is
considered to almost represent half of the workload of the
SNORT-NIDS detection engine such as Aho-Corasick (AC)
algorithm based on the single thread single processing
algorithm. Therefore, the speed of execution can be

 Multiprocessing scalable string matching algorithm for network intrusion detection system 163

considerably increased if the detection engine process is
accelerated through the parallelisation process.

In this section, the design of the improvement
methodology is presented in order to be applied to exact
string matching algorithm that is used in the SNORT-NIDS
in order to produce speed reductions. The proposed
methodology (MSNIDS) is based on hybrid parallel
techniques using shared and distributed memory
architecture. In particular, different components of the
proposed hybrid parallel techniques are described with their
relevance and components in order to be efficiently used
while building those components. In the following
subsections, the sequential processing is at first discussed.
Besides, how rule sets are generated and applied is
described. Furthermore, the parallel processing with the
number of the proposed improvements are elaborated in
detail.

3.1 Sequential matching processing
The main objective of this scenario is to have the proposed
methodology (MSNIDS) run efficiently, to have it work
with one process as a sequential match, and to have it create
a basic prototype for the enhance WEMA (EWEMA). In
fact, EWEMA composes from two logical sub-phases,
pre-processing and matching sub-phase.

First, the pre-processing sub phase must be conducted
prior to the start of the matching sub-phase. This sub-phase
will run only once (in both sequential and parallel
scenarios), as long as there are no updates available in the
rule sets. Basically, it will create an alphabetical index
matrix of weight ‘W’ of the payload rule set, which defines
about 3,000 rules based on the SNORT-NIDS rule sets.
Each character has its own position in the text ‘T’ (indices).
Once the rule sets are created, it is stored in the L1 cache of
the main core for performing further matching. Finally, the
incoming packets will be stored in the L2 cache in order to
obtain higher speeds for the proposed system.

Second, the matching sub-phase, since the EWEMA is
chosen to be used as a string matching algorithm, the
number of steps must then be conducted in matching
sub-phase, so that it could be possible to find the exact
matching between the incoming packet payload ‘P’, and the
payload rule set ‘R.S’ as follows:

a Create an array list ‘L’ for each incoming packet
payload.

b Determine the minimum character weight of the pattern
‘P’, which refers to the minimum number of
occurrences of each character in the matrix ‘M’. If the
minimum character weight is equal to zero, then stop
the matching process since the pattern ‘P’ does not
exist in the text ‘T’. Otherwise, proceed to step D.

c Determine the index of the first character of the pattern
‘P’ to start the matching from the index of the
minimum character weight that is greater than the index
of the first character. Thus, the number of comparison
will be decreased.

d Create the attempt matching process of the array list ‘L’
by adding the minimum weight character, which is
selected in Step B under the corresponding character
position of the array list ‘L’ (index [i]).

e Compare the next and the previous characters of the
pattern ‘P’, which its indices are: Index [i + 1] and
index [i – 1], with the corresponding characters of the
matrix ‘M’. If both exist, then continue matching with
index [i + 2] and index [i – 2] until the end of the
pattern ‘P’ is reached, or until an exact match is
obtained.

f If a mismatch occurs, and then read the next occurrence
of the minimum character weight of the pattern ‘P’, and
repeats from step D.

Nonetheless, saving the processing time is considered to be
one of its main objectives. Thus, in order to provide an
optimisation for the overall matching process (in both
sequential and parallel scenarios), the best way for saving
time will then not be based on creating an index matrix
weight every time the matching phase starts against every
single row of the rule set, but will rather be based on
creating an index matrix weight for the entire rows in the
rule set once starting up with the pre-processing sub-phase
since no updates are available.

The indexed table of the rule set must only be copied
once to the CPU for the duration of the program. Despite
the fact that the input text is changed and the string
searching kernel runs again, the pointers are only passed in
such a way the pattern indices are stored into the CPU
memory, and not into the actual character. The last step that
is required to be performed prior to the launching of the
CPU kernel is to specify the memory space where the kernel
stores the output of the algorithm that will be running. This
memory space is reserved.

In particular, the data has to be retrieved where it is now
placed in the reserved memory space of the CPU function
that started the kernel in the first place. In order to save the
memory transfer bandwidth, the output of the algorithm is
purely the ID of the pattern that is found, and the location of
the input text that is located. The final operations of the
output are processed by the CPU. In a normal setting, this
data can be processed into a database.

3.2 Parallel matching processing
This section only focuses on the number of parallelism
techniques that are used in the proposed methodology
(MSNIDS). MSNIDS implemented in parallel processing by
using hybrid parallel techniques. The hybrid parallel
architecture was implemented as follows.

Generally, a job can be parallelised by the function
parallelisation, the data parallelisation or the pipelining. If
there are no dependencies held for different jobs, they can
be then processed in parallel manners by the function
parallelisation. A large amount of data, which has the same
processing steps can be processed in a parallel manner by
the data parallelisation. Nevertheless, if a single job is

164 A.A. Hnaif et al.

divided up into multiple sections, and the work loads of
each section are similar, then the pipelining can be used for
the parallelisation process.

For the string matching algorithms that are previously
mentioned, it is easier to see that there are no many
independent functions. Hence, the function parallelisation is
by then considered not to be a good option.

On other hand, the type of parallelisation which is a
result of identical operations being concurrently applied on
different data items is called data parallelism. Since all tasks
perform similar to each other in terms of the computations,
the decomposition of the problem into tasks is usually based
on the data partitioning. In MSNIDS, to distribute the
incoming packets in a multicore environment, the data
parallel model has been used. Mainly, the work performed
in cores, and the packets that is operates in different cores
are different. A simple idea for the parallelisation of the
packets is to divide a set of packets into multiple subsets of
packets in order to be distributed over available cores.

The master-worker model (Buyya, 1999) was used, as it
was confirmed in practice that it is the most appropriate for
string matching on message-passing systems (Cringean et
al., 1988). A node of the computer cluster was designated as
the master while the rest of the nodes were set as workers.
The data set was initially stored in the local storage of the
master and was subsequently exported to the worker nodes.
In order to decrease the execution time, the available
packets must be decomposed and mapped to the available
processes to minimise the overhead which resulting from
the time the processes stay idle due to the uneven
distribution of the load, while the second level conducted by
multicore shared memory architecture. At the first level, the
nodes loaded the packet set to the host memory. At the
second level, the pre-processing sub-phase of EWEMA is
conducted by the master node.

At the third level, the resulted pre-processing array was
copied to the global shared memory of each worker node
and was then bound to the texture cache of the device. At
the fourth level, each node calculated the size of the input
packets chunk based on the size of the cluster. The input
packets chunk was then retrieved to a pinned memory area
of the host and was subsequently set for copying to the
global memory of the device. In practice though, when the
specific functions were used to load data exported from
TCP, a significant performance penalty due to their
line-buffering behaviour.

The worker processes execute in a very simple cycle
where it obtains the message with the packet, processes the
packet, and sends the result to the master worker.
Occasionally, the communication takes place only between
the master and the workers while only it is rarely that the
workers perform communicates with each other.

In addition, the distribution of packets is entirely
performed at the beginning of the computation, which in
turn allows the master to participate in the computation after
each worker is allocated a fraction of the work. The
allocation of packets is performed in a cyclic way.

According to the analysis of the sequential EWEMA in
previous section, the most expensive section of a string
matching algorithm is to examine if the character of the
pattern matches with the character of the rule sets. To avoid
this cost, the matching sub-phase, which contains the
matching process between the characters of the packet and
the rule sets, it will be parallelised using multicore shared
memory technique inside each worker processor which
conducted at the fifth level. The matching phase in the
EWEMA string matching algorithm is carried out using
multicore environments with shared memory architecture.
Figure 2 illustrates the overall system architecture of the
hybrid parallel implementation.

Figure 2 The EWEMA hybrid parallel matching phase
architecture (see online version for colours)

Match

Preparing phase

Dispatcher

Apply a proper action

Process1
Rule set

Packets

Process2
Rule set

Packets

Process3
 Rule set

Packets

Processn
Rule set

Packets

n 2 Core
1

n 2 Core
1

n 2 Core
1

n 2 Core
1

No

Drop the packet Yes

MPI

Threads

As shown by Figure 2, the MSNIDS executed the program
by divided the entire packets into subdivided parts through
fork and join operations, the master thread distributed the
works to the worker threads. The parallel EWEMA start
execution the program in sequential processing conducted
by the master thread until the algorithm reach the matching
sub-phase function, at this moment worker threads
generated for matching sub-phase function. The worker
threads executing the matching sub-phase functions and
return the partial result to the master thread, the master
thread will assemble all the results with the help of join
operation and show the output, this operation performed in
sequential processing, the worker threads will terminate
itself automatically after send the results to the master
thread.

At the sixth and final level, the number of matches that
each node computed was gathered by the master node and
its CPU was used to determine the total amount of matches
of the packet, and the total execution time.

Finally, a hybrid parallelisation technique that is
proposed based on the combination of the advantages of the
shared and the distributed memory parallelisation’s of a
clustering system, which consists of multiple interconnected
multicore computers that are entirely based on a hierarchical
model.

 Multiprocessing scalable string matching algorithm for network intrusion detection system 165

4 Analysis and experimental results
The rule sets of this test are formed by using the SNORT
Rule sets. In practice, it consists of 3,000 unique content
rules, which consists of lengths ranging from 1 to 80 bytes.
For each individual test, a group of trace files are compiled
from the real network traffic that contains various packet
lengths and different packet sizes ranging from 50 packets
to 2,500 packets.

The trace files contain malicious and non-malicious data
that can match on the NIDS rule sets. Based on the two
scenarios, the same trace files are used, so that the results
are comparable.

4.1 Analysis scenarios
This section will describes two scenarios, first scenario
presents the analysis of sequential matching process, and the
second scenario presents the analysis of parallel matching
process consequently.

4.1.1 Analysis of sequential matching process
In the proposed methodology (MSNIDS), the rule contents
are used from the entire rule sets in a rule group in order to
construct one index matrix table called the weighted matrix
‘M’, where ‘M’ is implemented by using a hash table.
Based on this implementation, the rule sets are represented
in the form of a two dimensional array. In this array, each
column represents the corresponding indices of the rule sets
character, where the number of rows is equal to the number
of English language characters. Each cell included in this
table forms a data structure, which contains a number of
integers that represent the indices of that character as shown
in Table 1.

Table 1 The weighted matrix ‘M’

Alpha. char.
Indices of the rule set characters

1 2 3 4 … n

a(14) 1 2 13 20 44
b(9) 3 4 8 18 45
c(3) 29 30 33
d(8) 9 16 21 38 43

Table 1 shows a simple example on how the index matrix
table would look like. For instance, the indices value of the
character ‘c’ are 29, 30, and 33, which identifies where the
character ‘c’ would be found in the rule sets.

The next step after conducting the index table matrix in
a two-dimensional array is to copy the array to the CPU
global memory. An additional array of offsets is constructed
in order to retrieve the correct table for comparison
purposes when a set of packets is received. After that, the
packets are now ready to be transferred to the CPU starting
with the matching processing by using the EWEMA
matching algorithm.

Table 2 Reading the pattern ‘P = gcagagag’ and creating the
array list ‘L’

Position 1 2 3 4 … n

Array list ‘L’ g c a g … g

Once the captured packets enter into the system, the
matching phase can then start. First of all, the minimum
character weight of a pattern ‘P’ is determined, then the
minimum weight character is added into an array list ‘L’
under the corresponding character position of the array list
‘L’ (index [I]) in order to start the first attempt as shown by
Table 2. In order to decrease the number of comparisons
being made for the minimum weight character, the index of
the first character in the pattern ‘P’ is stored in a variable to
start the attempts from the index of the minimum weight
character that is greater than the index of the first character
of the pattern ‘P’. Furthermore, the next and the previous
characters are compared in the pattern ‘P’, where its indices
comprise: index [i + 1] and index [i – 1] if both exist, then
continue matching with index [i + 2], and with index [i – 2]
until reaching the end of the pattern ‘P’, or until obtaining
an exact matching. If a match occurs, then store the index of
the matching patterns, where the pattern is matched in the
rule set. In case of a mismatch, read the next occurrence of
the minimum character weight of the pattern ‘P’.

4.1.2 Analysis of the parallel matching processing
The parallel processing approaches are mainly divided into
two categories

• Auto-parallelisation: sequential programs are
automatically parallelised by using the instruction level
parallelism (ILP) or the parallel enabled compilers.

• The parallel programming approach comprises: the
splitting mechanism of a problem into a set of tasks,
and the development of a distributive mechanism that
maps those tasks into the processors in an efficient
manner. Therefore, it requires more attention from the
programmer, making it more difficult to be coded when
compared with the auto-parallelisation approach.
Consequently, it achieves a higher execution
performance.

The hybrid parallel architecture is implemented as follows:
the master-worker model is used where it is considered the
most appropriate model to be used for the pattern matching
in the distributed memory systems. A node of the computer
cluster is designated as the master, while the rest of the
nodes are set as workers. The data set is initially stored in
the local storage of the master, and is subsequently exported
to the worker nodes.

In the first level, the pre-processing phase of the
EWEMA is sequentially executed by the master node, then
the master distributes the rule set index matrix table to the
host memory of the worker nodes. In the second level, the
resulted pre-processing arrays are copied to the global
memory of the CPUs, and are by then, bounded to the
texture cache of the device. In the third level, the necessary

166 A.A. Hnaif et al.

data structures are sequentially computed from the CPU for
each node in the form of arrays. The reason behind this
computation is to ensure that the CPU receives a set of
packets from the master node. In the early stages of the
implementation, each node uses the standard I/O of the
system. In the fourth level, the searching phase of the
EWEMAs is executed in parallel by the number of threads.
In the fifth and the final levels, the number of matches for
which each node is computed is gathered by the master
node based on the use of the MPI Reduce() function of the
MPI, and its CPU that is used to determine the total amount
of matches of the pattern, or the pattern set in the input
string.

In each worker, the array of packets is collectively
copied by the entire threads of each thread block into to the
shared memory of the device in order to reduce the pressure
over the texture caches. In addition, the threads collectively
make an access into the input string characters, and store
them to the shared memory of the device in order to work
around the coalescing requirements of the global memory.

However, a hybrid parallel program is modelled by
using the data parallel model. Basically, it is considered as a
set ‘d’ of ‘n’ data that is denoted by {d1, ..., dn}. Each data
di, i ∈ [1, n] is potentially a parallel data that is composed
of a set of ‘ni’ segments. Each parallel segment di, j, i ∈ [1,
n], j ∈ [1, ni] may further be composed of bi, j of potential
parallel code blocks, which is denoted by bi, j, k, i ∈ [1, n],
j ∈ [1, ni], k ∈ [1, bi, j].

There is a performance penalty that is involved when
applications that introduce data dependencies are executed
in parallel. A significant latency is introduced during the
launching of the CPU cores, and also when copying the data
between the host and the device memory due to the
bandwidth of the system bus. In order to address some of
these deficiencies, this section presents a hybrid parallel
architecture that combines the distributed memory and the
shared memory that can implement the EWEMA on a
homogeneous cluster of CPU nodes.

The hybrid parallel architecture is implemented as
follows: the master-worker model is used where it is
considered the most appropriate model to be used for the
pattern matching in the distributed memory architecture. A
node of the computer cluster is designated as the master,
while the rest of the nodes are set as workers. The data set is
initially stored in the local storage of the master, and is
subsequently exported to the worker nodes. The space and
time complexity of the EWEMA algorithm are shown in
Table 3.

Table 3 Space and time complexity of the EWEMA algorithm

Scenario Pre-process phase
Searching phase

Best case Worst case

Sequential O (mn) Ω(c) O (LV)
Parallel Ω(c) O (L/Z) or O

(LV/ZV)

where c: constant, L: payload length, V: minimum number
of occurrences and Z number of processors

4.2 Experimental results
The proposed methodology (MSNIDS) is based on the
EWEMA that is tested in a sequential processing, and in a
parallel processing. The results are explained in detail as
follows:

4.2.1 Sequential matching processing
In this section, the actual results are obtained according to
the comparisons that are performed between the
implementations of the WEMA and the EWEMA, which are
presented in order to measure the enhancements that are
performed for the WEMA technique. A range of 50 packets
to 2,500 packets are read from the file. The payload rule sets
have a size of 3,000 rules. In order to evaluate the
effectiveness of the proposed NIDS that is based on the
EWEMA, a comparison is performed with the WEMA.

Figure 3 The comparison result between WEMA and EWEMA
in sequential matching processing (see online version
for colours)

The comparison results are presented in Figure 3. It can be
seen that the performance of the proposed NIDS based on
EWEMA and WEMA, which are very close to the first
200 packets. Thus, the enhancement in some cases is not
implemented (i.e., when the minimum weighted character
has a first index, which is greater than the index of the first
character of the processed packet), which makes the
implementation of both algorithms seem be closer. After
this point, it is obvious that the proposed NIDS, which is
based on the EWEMA, has an advantage in comparison
with the WEMA. In addition, it is clear that the proposed
NIDS based on EWEMA is faster after 900 packets than the
WEMA. The achieved improvement reached a proximate
percentage of 89%.

4.2.2 Parallel matching processing
This section discusses the efficiency of the presented hybrid
parallel processing, which is used for the implementation of
the EWEMA.

 Multiprocessing scalable string matching algorithm for network intrusion detection system 167

Figure 4 EWEMA running on one processor (sequential
processing) vs. parallel processing using two and four
processors (see online version for colours)

Mainly, the pre-processing phase of the algorithm is
sequentially executed by the CPU of the master node. As
depicted from Figure 4 and Figure 5 the searching time of
EWEMA decreases the proportion to the size of the packet
file.

Figure 5 EWEMA running on one processor (sequential
processing) vs. parallel processing using two and four
processors with three cores (see online version
for colours)

As presented in Figure 4, and Figure 5, the searching time
different according to the size of packets. The number of
processors are ranged from 1 to 4 processes with one and 3
cores in each processor. The minimum consumed time can
be conducted by using four processes which decreased the
searching time of 2,500 packets from 232 seconds in one
process to 31 seconds. From the results we can concluded
that, by using parallel processing, our methodology
MSNIDS can achieved more enhancements in term of speed
of NIDS detection engine.

We repeat the same experiment by applying a rule set of
1 MB in size and 3,000 input data into current SNORT, and
PME technique and the proposed EWEMA. The
comparison result between the current SNORT and the
result of the PME technique and the result of the proposed
EWEMA is depicts in Figure 6.

Figure 6 Snort-NIDS vs. PME vs. EWEMA on 3,000 packets
input data (see online version for colours)

As shown in Figure 6, we can note that the EWEMA
platform has obtain the best results between all techniques,
then the PME technique, and the current SNORT obtained
the worst results.

In fact, the aim of using the parallel programming is to
use ‘p’ processors in order to execute a program several
times faster than it being executed on a single processor.
The ratio of the sequential execution time to the parallel
execution time is called the speedup, which measures the
increase in running time due to parallelism. The speedup
can be defined as follows:

speed up = s

p

T
T

 (1)

where Ts denotes to the sequential execution time, and Tp
denotes to the parallel execution time.

The second performance measurement is the efficiency.
The efficiency of the parallel computation measures the
fraction of time for which a processor is usefully utilised,
which is also called the processor utilisation. The efficiency
is the speedup that is divided up by the number of
processors:

speed upefficiency =
P

 (2)

where P denotes to the number of processors.
Finally, the overhead which is the factor that make the

parallel code run slower than the expected, when compared
to the serial code can be identified as:

()To P Tp Ts= ∗ − (3)

where P denotes to the number of processors, Tp denotes to
the parallel execution time, and Ts denotes to the sequential
execution time.

As a result, the overhead that can be achieved in parallel
processing of MSNIDS is a negative value. This implying
that the speedup on ‘p’ processors could exceed ‘p’ and the
reason for this is the super liner speedup. In this case, the
effective computation speed of EWEMA is slower on a
serial processor than on a parallel computer using similar
processors.

168 A.A. Hnaif et al.

5 Conclusions
Several improvements have been created in this paper to
increase the speed of an NIDS detection engine, these
improvements including two scenarios, in sequential and
parallel matching processing.

In sequential scenario, our methodology improved the
WEMA in both preparing and searching phase. The results
showed that EWEMA is faster compared to Boyer-Moore
algorithm at rate between 30%–40%.

On other hand, hybrid parallel techniques were
discussed and used in parallel scenario including multi core
shared memory and multi process distributed memory
techniques.

Evaluation results demonstrate the performance
potential of our hybrid parallel techniques using different
number of packets, and different of packets length. The best
speed up can be achieved by using two processes with three
cores to reach 2.9 speed up. The efficiency and the overhead
also tested and achieved 22 and 30 respectively.

The performance improvement made to the existing
systems which rely on hybrid parallel techniques is roughly
65%, compared with the sequential scenario.

Acknowledgements
We would like to thank Al-Zytoonah University of Jordan –
Faculty of Science and Information Technology for its
support thatenabled us to complete this work.

References
Aldwairi, M. (2006) Hardware-Efficient Pattern Matching

Algorithm and Architectures for Fast Intrusion Detection,
dissertation, Computer Engineering Dept., North Carolina
State University.

Al-Mamory, S.O. (2012) ‘Speed enhancement of snort network
intrusion detection system’, Journal of Babylon University,
Pure and Applied Science, Vol. 20, No. 1, pp.10–19.

Buyya, R. (1999) High Performance Cluster Computing:
Programming and Applications, p.2, Pretice Hall PTR, New
Jersey.

Chen, X., Wu, Y., Xu, L., Xue, Y. and Li, J. (2009) ‘Para-snort: a
multi-thread snort on multi-core IA platform’, Proceedings of
Parallel and Distributed Computing and Systems (PDCS).

Cringean, J.K., Manson, A., Wilett, P. and Wilson, G.A. (1988)
‘Efficiency of text scanning in bibliographic databases using
microprocessor-based, multiprocessor networks’, Journal of
Information Science, Vol. 14, No. 6, pp.335–345.

Friedl, J.E.F. (2006) Mastering Regular Expressions, 3rd ed.,
O’Reilly, Media, Inc. Media, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

Hasan, A.A. and Rashid, N.A. (2012) ‘Hash-Boyer-Moore-
Horspool string matching algorithm for intrusion detection
system’, in Proc. International Conference on Computer
Networks and Communication Systems (CNCS), Vol. 35,
pp.20–25.

Hnaif, A.A. (2015) ‘A new platform NIDS based on WEMA’
International Journal of Information Technology and
Computer Science (IJITCS), Vol. 7, No. 6, p.52.

Jamshed, M.A., Lee, J., Moon, S., Yun, I., Kim, D., Lee, S., Yi, Y.
and Kargus, K.P. (2011) ‘A highly-scalable software-based
intrusion detection system’, in Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), ACM, pp.317–328.

Jyothsna, V., Prasad, V. and Prasad, K. (2011) ‘A review of
anomaly-based intrusion detection systems’, International
Journal of Computer Applications, Vol. 28, No. 7, pp.26–35.

Li, J.Y. (2005) ‘A parallel NIDS pattern matching engine and its
implementation on network processor’, Proceeding of the
2005 International Conference on Security and Management,
pp.375–381, CSREA Press, Las Vegas, USA.

Liaoa, H-J., Lina, C-H.R., Lina, Y-C. and Tunga, K-Y. (2012)
‘Intrusion detection system: a comprehensive review’,
Journal of Network and Computer Applications, Vol. 36,
No. 1, pp.16–24.

Munz, G., Weber, N. and Carle, G. (2007) ‘Signature detection in
sampled packets’, The 2nd Workshop on Monitoring, Attack
Detection and Mitigation, Toulouse, Toulouse, France.

Schuff, D.L., RynChoe, Y. and Pai, V.S. (2007) ‘Conservative vs.
optimistic parallelization of stateful network intrusion
detection’, International Symposium on Performance Analysis
of Systems and software (ISPAS), IEEE International
Symposium, Austin, pp.32–43.

Snehal, B. and Jadhav, P. (2010) ‘Wireless intrusion detection
system’, International Journal of Computer Applications,
Vol. 5, No. 8, pp.9–13.

Sunday, D.M. (1990) ‘A very fast substring search algorithm’,
Communications of the ACM, Vol. 33, No. 8, pp.132–142
[online] http://dx.doi.org/10.1145/79173.79184.

Wang, Y. and Kobayashi, H. (2006) ‘High performance pattern
matching algorithm for network security’, International
Journal of Computer Science and Network Security, Vol. 6,
No. 10, pp.83–87.

Zhang, H. (2009) ‘Design of intrusion detection system based on a
new pattern matching algorithm’, International Conference
on Computer Engineering and Technology (ICCET), IEEE,
Vol. 1, pp.545–548.

