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Abstract
Localization is an important primitive that is utilized in a number of important applications such as location-based mobile
services, augmented reality, and autonomous mobile robotics. While the GPS technology is considered the de facto standard
for outdoor localization, it is known to suffer from significant accuracy limitation in urban areas. In this work, we present a
particle filter–based data fusion technique for localization in urban areas. The proposed localization technique provides more
accurate location estimation results due to its ability to efficiently fuse together information collected from diverse sensor
technologies. The novelty of our proposed approach stems from its ability to fuse data from diverse sources, namely, phase
shift fingerprints collected from Low Power AM Radio (LPAM) towers and inertial measurement sensors. Our simulation
results indicate that the proposed approach can achieve an accuracy of 0.5 m using a limited number of LPAM towers as low
as 5. Also, the proposed approach requires the collection of a low number of LPAM phase shift fingerprints. Our simulations
indicate that 30 fingerprints are enough to provide 0.5 m accuracy in a 100 × 100 m2 deployment.
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1 Introduction

In recent years, several critical national infrastructures (such
as the electric grid, intelligent transportation, water systems)
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are becoming smart in many aspects. The concept of smart
cities is gaining increased importance as a means towards
making services and applications more accessible to
citizens, companies, and organizations. A smart city’s target
is to increase citizens’ quality of life, improve the efficiency,
and the quality of the services provided by governing
entities and businesses provide intelligent responses to
different issues of the rapid urban population growth.

In such applications, the provision of location-based services
is attractive for many reasons. Many smart city applica-
tions can benefit from localization such as localizing forest
fire [1, 2], smart transportation and mobility systems [3],
location-based services in 5G cellular system [4], ambient-
assisted living (AAL) tools and health monitoring applica-
tions [5], elderly care and movement/activity detection [6],
smart buildings [7], and smart waste [8].

Positioning systems rely on many technologies to
facilitate the localization process. Methods like Time Of
Arrival (TOA) [9] and Time Difference Of Arrival (TDOA)
[10] can use characteristics of wireless signals to perform
both indoor and outdoor localization. Sensor data fusion
from multiple sensors with different characteristics can also
be used for position estimation. When the characteristics
of deployed sensors are well known, variations of Kalman
Filters—like the basic Kalman Filter (KF) [11], the
Extended Kalman Filter (EKF) [12], and the Sigma Point
Kalman Filter (SPKF)—can be utilized [13].
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Precise positioning systems are gaining rising popularity as
Location Based Services (LBSs) are becoming part of many
applications such as advertising, emergency situations, and
other applications. The Global Positioning System (GPS)
is able to determine the location of any localization target
without any previous knowledge of its location. However,
GPS location accuracy is still limited to several meters. Fur-
thermore, GPS chip is known to be power hungry which
drains device battery very rapidly. Also, The accuracy of
GPS can decrease to more than 10 meters when insuf-
ficient GPS signal is received among high buildings or
dense tree regions. For these reasons, several technolo-
gies and algorithms were developed in the past decade
for location estimation starting from sensor data fusion to
dead reckoning and simultaneous localization and mapping
(SLAM).

The ready availability of location-related information from
off-the-shelf devices such as RFID and Wi-Fi [14, 15] has
provided a boon to the demand of such applications. In
terms of RFID technology, three different types of infor-
mation are available using off-the-shelf RFID technology,
namely (1) signal phase information, (2) Received Signal
Strength Indicator (RSSI), and (3) proximity information.
Proximity-based methods exploit the ID information of
tracked tags [16, 17] while localization is achieved by mea-
suring the distance between the tag and the antennas in
the phase and the RSSI-based methods [18, 19]. RSSI-
based methods require absolute preliminary calibration and
suffer from coarse accuracy as they are severely affected
by the propagation environment, and the properties of the
tagged object and cannot be represented by a universal
distant-dependent path loss model [20].

In this paper, we present a novel localization approach in
urban areas in which we perform fusion of data collected
from multiple sensor technologies. These technologies
include our Inertial Navigation System (INS), which
comprises a gyroscope, a tri-axial accelerometer, and an
MIT Cricket system [21] with a digital compass used for
gyroscope drift calibration. This INS constantly provides
the distance traveled along with its direction. Particle filters
are then used to fuse the distance obtained from the INS
system with the signal phase shift fingerprints collected
from multiple AM radio towers.

The rest of this paper is organized as follows. We intro-
duce the relevant background and highlighted important
related works in Section 2. Section 3 explains our previous
outdoor localization approach and the problems we encoun-
tered in that approach. In Section 4, we present our novel
localization approach in urban areas, we describe our sim-
ulation setup and assumptions along with results obtained
from simulation experiments in Section 5, and the papers
conclude in Section 6.

2 Background and related work

In this section, we present a background about the
localization technologies used in this paper. In particular,
we provide a brief introduction to Kalman filter and its
extensions and also introduce the particle filter. Thereafter,
we detail the salient aspects of sensor data fusion, Chanel
State Information (CSI), and fingerprinting. We discuss
each technology separately and explain how we employ
them together to perform localization in urban areas.

2.1 Kalman filter, extensions of Kalman filter,
and particle filter

The standard Kalman filter is the optimum estimator when
the state transitions can be described by a linear model and
the system noise is Gaussian. When the state transitions are
non-linear, they can still be linearized through appropriate
approximations such as the Taylor series approximation.
If the system is near-linear and has Gaussian noise, an
EKF is appropriate. But these models are not appropriate
for non-Gaussian distributions, which is the domain of
particle filters (PFs). However, for real-life systems that
do not nicely match a linear approximation, or if the
sensor uncertainty is not Gaussian, a particle filter—a non-
parametric filter—can be called upon to handle models
with arbitrary probability distributions [22]. Particle filters
(PFs) can handle and estimate any kind of a probability
distribution and evidence since it attacks the problem
through multiple individual “particles,” which can be thought
of as a possible state of the model and a sufficiently large
number of particles. PFs work by using random samples
(which are called particles) for the representation of the
probability distribution (instead of using just the mean and
covariance, which is sufficient for describing the Gaussian).

Location estimation is represented by using particles
in a PF. PFs use multiple particles for state distribution
estimation. The distribution of particles depicts the actual
state distribution when the number of particles generated is
increased. However, the computation times increases when
the number of particles increases. On the other hand, KF has
restrictions on system model and uncertainty features in an
application. Yong et al. in [23] conducted a study comparing
between both the PF and KF for robot localization. The
study showed that PF and KF both provide more accurate
localization compared to the methods of trilateration and
triangulation. Furthermore, PF results in a robust and
smoother trajectory estimation compared to KF but requires
more computation time.

Localization of robots in indoor environments is a
common problem in robot community. An accurate robot
location estimation is required for the robot to safely
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navigate in indoor environments. To address this problem,
Xiao et al. utilized an EKF to change the proposal
distribution of the traditional distribution [24]. Additional
resampling is also performed when necessary to solve
the particle degeneracy problem. Furthermore, the particle
divergence is controlled through the application of a
Gaussian smoothing process on the sampled particles. The
experiments conducted in [24] showed that the map-based
PF localization with proposal distribution based on EKF
is effective and avoids the disadvantages of the classical
PF when the overlap of the Probability Density Functions
(PDFs) of the prior and the measurements is small.

Robust and precise localization is considered a mandatory
requirement for modern vehicle access systems. Recently,
systems like ConfortGo and Comfort Access are con-
sidered standards in today’s high-end automobiles. These
systems control the user access to the vehicle by locat-
ing the key fob inside or near the vehicle. Determin-
ing the precise location of the key fob using ultra wide
band (UWB) ranging is still under wide industry inves-
tigation. In [25], Knobloch discussed the challenges of
using UWB ranging techniques for key fob location esti-
mation. The authors investigated the usage of trilatera-
tion and particle filter approaches to address this problem
and proposed using PF to combine the benefit of enabling
non-Gaussian observation error distribution and mapping
of a particle cloud to vehicle zone. The experimental
results in [25] show that the performance of trilateration-
based PF does not provide the required accuracy.

The fourth industrial revolution and modern factories
demand solutions for monitoring the work area and
supporting the assets assembly process. One of the major
tasks in this context is localize and keep track of hand-driven
tools, autonomous robots, and various types of vehicles.
This problem was investigated in the work performed
by Lipka et al. [26]. The authors proposed an approach
that uses microwave-based localization system such as the
2.4 GHz modulated continuous wave radar and utilized the
measurements of the Angle of Arrival (AoA) for 3D velocity
and location estimation. Furthermore, the authors used the
EKF to determine the transponder location from bearing
measurements and to reduce measurements outliers.

2.2 Data fusion for indoor and outdoor localization

Sensor data fusion is used extensively in performing localiza-
tion. The reason for this is that using data from multiple
sensor technologies induces more location accuracy [27].
One of the most popular data fusion techniques is to use
a Kalman Filter. This technique assumed a linear system
model with additive independent white noise and is optimal

estimator for such models. Since most engineering systems
are non-linear rather than linear, the basic Kalman filter
has been extended for non-linear systems with the develop-
ment of techniques such as Extended Kalman Filter (EKF)
[28] and Unscented Kalman Filter (UKF) [29], which are
suitable for almost-linear systems. Techniques such as EKF
adopt techniques from calculus such as the multivariate Tay-
lor series expansion to linearize a model around a working
point. These filters (EKF and UKF) however have a defi-
ciency that they do not integrate distributed map information
for object tracking. This has motivated the development and
the adoption of Particle Filters (PF) [30].

Belakbir et al. [31] fused GPS with ultra wide band
(UWB) sensor data to achieve outdoor localization. Several
UWB sensors were placed on the top of a building while a
mobile unit was moving around the building. The authors
used a system called Location Information Fusion System
(LIFS) to fuse the UWB and GPS sensor data. The authors
of LIFS claim sub-meter location accuracy both indoor and
outdoor.

In another work, Kok et al. [32] used the information
about the Earth’s magnetic field to construct indoor map-
ping. Their approach was to collect periodic measurements
of the magnetic field oscillations and submit these measure-
ments to an offline learning process. MEMS sensors such as
gyroscopes, accelerometers, and magnetometers were used
to obtain the location and the orientation of the mobile
device. The accuracy of their fusion system started with
0.3 m and eventually decreased to about 0.2 m after 42 s as
a result of the application of means to previously obtained
location estimates.

Walters and co-authors in [33] fused Wi-Fi sensor data
with inertial sensor measurements to construct a navigation
system for the blind and visually impaired in health-related
environments based on wearable devices. The idea was to
associate complementary data fusion with redundant fusion
to build an offline database of Wi-Fi and inertial sensor
readings to be compared with test readings obtained from
a mobile device. The results in [33] showed that the raw
readings of RSSI and gyroscope presented high error rates.
On the contrary, these rates were drastically decreased when
fusing RSSI and inertial measurements to 0.38 m.

Kalman filtering was used in [34] to perform data
fusion of relative sensors like robot wheel information with
absolute sensor data sources like GPS and compass. This
data fusion combines the advantages of relative sensors
regarding their local accuracy with the ability of absolute
sensors to confine the global uncertainty. The problem of the
methods used in [34] is the unavoidable saw-tooth pattern,
which could be mitigated by a causal smoothing with the
present sensor configuration.
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2.3 Channel state information

The significant capabilities of the evolving Software
Defined Radio (SDR) systems permit the employment of
AM radio signals in localization in urban areas. Phase shifts
in signals received from locally deployed Low Power AM
(LPAM) radio base stations can be used to estimate the
distance between an AM radio receiver and the radio towers.
Hence, the absolute position of the receiver can be estimated
with a Euclidean coordinate system [35].

Channel state information is broadly used for the
purposes of localization recently. The modification of the
device driver in Network Interface Cards (NIC) like Intel
Wi-Fi Links allows for obtaining channel state information
to be used for localization purposes [36, 37]. The work
in [38] combined both RSSI and phase shifts in UHF-
RFID signals obtained from passive tags installed on room
ceiling using unscented Kalman filter to locate localization
target in indoor environments. The authors presented a
two-stage algorithm to achieve indoor localization. In the
first stage, only RSSI information is used to estimate the
localization target’s location. Phase shift information is used
in the second stage using a dynamic criterion based on the
variance of the location estimates of the tags. The suggested
two-stage algorithm could locate localization target with
one-meter accuracy.

Zhang and co-authors in [39] accomplished indoor
Device-Free Localization by fingerprinting of CSI data to
overcome the multipath problem existing in RSSI-based
indoor localization. They presented an approach called Ailot
that explores novel features available in CSI at the physical
layer. The authors compared their maximum-likelihood
based Ailot approach with the Horus [40] approach. Their
experiments were conducted in a place divided into cells
with the presence of rich multipath. The results presented an
accuracy of 1.5 m and a 50 percent accuracy of 1 m.

The PhaseFi system proposed in [41] employs calibrated
channel state information for indoor localization using
fingerprinting. In the proposed system, signal raw phase
information from multiple subcarriers of the 802.11n
network was initially extracted from a modified NIC driver.
Calibrated phase information was then obtained using linear
transformation of the raw data. The authors then use a three-
stage deep neural network to train the system using the
calibrated data. The computational complexity of the neural
network was reduced using a greedy learning algorithm to
train the weights of the neural network. The experimental
result in [41] shown that their proposed system outperform
three benchmark schemes based on either CSI or RSS in
both scenarios.

In this paper, we perform fingerprinting of phase shifts
between signals obtained from locally deployed LPAM
radio towers to accomplish localization in urban areas.

Furthermore, we utilize particle filter for data fusion of
phase shit fingerprints and our own inertial navigation
system to enhance the localization accuracy.

3 Our previous localization approach

Glenn Ballou in [42] defines phase shift as any change that
occurs in one signal or the difference in phase between two
signals with the same frequency. In this paper, we use Φ to
represent the shift in phase from zero. Phase shift between
two signals is equivalent to the time delay between the two
signals for infinitely long sinusoids. For instance, if the time
signal Ω(t) is shifted by half of its cycle, then it will be
expressed as

Ω(t - 1/2 T ) = C sin (2π f ( t- 1/2 T ) + Φ ) = A sin (2π f
t - π /2 + Φ ) which is equal to Ω (t) shifted by /2 radians.

In our outdoor localization approach in [35], the SDR
system on the localization target assembles phase shifts in
signals received from locally deployed LPAM towers. The
system uses triangulation to estimate the distance between
the localization target and the towers. In a setup of three
towers { T1 , T2, T3}, the distances between the towers and
the localization target {R} are expressed by [35]

D
T1
R = c.tT1

R (1)

D
T2
R = c.tT2

R (2)

D
T3
R = c.tT3

R (3)

where D
Ti

R is the distance between Ti and R, c is the Speed

of Light, and t
Ti

R is the signal propagation time from R to Ti .
The SDR system on the localization target requires at least
three signals to estimate each D

Ti

R according to the following
equations:

D
T1
R − D

T2
R

c
== Φ

T1
T2

(4)

D
T1
R − D

T3
R

c
== Φ

T1
T3

(5)

D
T2
R − D

T3
R

c
== Φ

T2
T3

(6)

where Φ
Ti

Tj
is the observed phase shift between the signals

from Ti and Tj . This is a configuration of three equations
and three unknowns and is solved using Particle Swarm
Optimization (PSO) [43, 44].

The localization region consists of M locally deployed
LPAM towers uniformly distributed over the entire region
as shown in Fig. 1. The phase shifts vector observed at
the localization target’s location is used to estimate the
distances di

R between R and the LPAM towers by using
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Fig. 1 Our localization coordinate system with the LPAM towers

the PSO algorithm to find a solution for the following
constrained optimization problem:

Minimize:

M∑

i=1

M∑

j=i+1

|di
R − d

j
R − c ∗ Φ

Ti

Tj
| ∀ i < j (7)

Such that

di
R − d

j
R = c ∗ Φ

Ti

Tj
∀ i < j i ∈ {1...M}

In our outdoor localization approach in [35], we utilized
the estimated M distances di

R between the localization
target and each LPAM tower to estimate the absolute target
location using the following unconstrained optimization
problem:

Minimize:

M∑

i=1

|di
R − 2

√
(XR − XTi

)2 + (YR − YTi
)2| (8)

where (XR, YR) is the estimated location of the target and
(XT,YTi

) is the location of Ti .
This strategy of finding the real-time location of

the localization target by continuously solving the two
optimization problems in (7) and (8) presented a significant
computational time for the target location estimation. The
reason for this considerable computation time is that each
time the target moves, the phase shifts vector observed by
the SDR system on the target is sent to a processing unit
that estimates the target’s location using PSO, which causes
delays in the location determination process.

4 Proposed localization approach in urban
areas

In this section, we illustrate our proposed approach for
localization in urban areas by describing our phase shift
fingerprinting methodology, our inertial navigation system
(INS) component design, and finally our particle filter–
based data fusion technique.

4.1 Phase shift fingerprinting

In this paper, we propose an approach based on the offline
collection of features called fingerprints. By definition,
fingerprinting relies on collecting sufficient sensor readings
beforehand in order to be matched with live readings
obtained at the localization target location [45]. The location
fingerprinting process is carried out in two stages [27]:

1. Offline stage: In this phase, a configuration of the localiza-
tion region is set up such that vectors of phase shifts in sig-
nals obtained from reachable LPAM towers are surveyed
at certain known locations in the localization region.
These phase shift vectors along with their known coor-
dinates are then stored as location tags in an offline
database to be used later for real-time localization.

2. Online stage: The localization approach uses the phase
shifts collected at the current localization target’s
location and the location tags in the fingerprint database
to estimate the target’s location.

In our indoor localization approach in [27], we utilized
the Received Signal Strength Indicator (RSSI) obtained
from nearby access points to construct the fingerprint
database. These fingerprints are then fused with measure-
ments from our own Inertial Navigation System (INS) that is
based on dead reckoning for location estimation. The main
challenge in this approach was that RSSI measurements
vary significantly at the same location due to multipath and
channel fading in signal propagation.

On the other hand, our localization technique in this
paper uses channel state information such as phase shifts
to perform fingerprinting. Raw phase shifts also suffer
from various sources of error such as Carrier Frequency
Offset (CFO) and Sampling Frequency Offset (SFO) [46].
SFO is generated by the Analogue to Digital Converter
(ADC) on the receiver while CFO is due to the lack of
synchronization between the receiver and transmitter clocks
[47]. To overcome this problem, we adopt the phase shift
sanitization technique proposed in [48] in which a linear
transformation is performed to remove SFO and CFO from
the calibrated phase.
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Table 1 The fingerprint
representation in the database Fingerprint Location

FP1 =
{

1 1 1 1 1 1

Φ
T2
T1

, Φ
T3
T1

, Φ
T4
T1

, Φ
T4
T1

, . . ., Φ
TN

T1
, . . ., Φ

Tj

Ti

}
L1 = (X1,Y1)

FP2 =
{

2 2 2 2 2 2

Φ
T2
T1

, Φ
T3
T1

, Φ
T4
T1

, Φ
T4
T1

, . . ., Φ
TN

T1
, . . ., Φ

Tj

Ti

}
L2 = (X2,Y2)

. . .

FPM =
{

M M M M M M

Φ
T2
T1

, Φ
T3
T1

, Φ
T4
T1

, Φ
T4
T1

, . . ., Φ
TN

T1
, . . ., Φ

Tj

Ti

}
LM = (XM ,YM )

After removing the CFO and SFO from the calibrated
phase, we construct the fingerprint database. The database
contains M vectors of phase shifts between signals received
from the N nearby LPAM towers. Table 1 illustrates the
structure of the location fingerprints database where the kth

row shows the phase shifts surveyed along with their corre-
sponding location. The fingerprint FPK is represented by:

FPK =
{

k k k k k k

Φ
T2
T1

, Φ
T3
T1

, Φ
T4
T1

, Φ
T4
T1

, . . ., Φ
TN

T1
, . . ., Φ

Tj

Ti

}

(9)

where 1 ≤ k ≤ M, 1 ≤ i ≤ N − 1, i < j ≤ N and Φ
Tj

Ti

is the phase shift between the signals of the ith and the j th

LPAM towers. Hence, the FPK vector contains V = N(N−1)
2

phase shift entries collected from the various LPAM towers.
The construction of the offline phase shift fingerprint

database allows for real-time localization. When the SDR
system on the localization target surveys the signals phase
shifts from all nearby LPAM towers, it forms the phase shift
vector:

R=
{

R R R R R R

Φ
T2
T1

, Φ
T3
T1

, Φ
T4
T1

, Φ
T4
T1

, . . ., Φ
TN

T1
, . . ., Φ

Tj

Ti

}
,

which represents the phase shifts in all signals from all
nearby towers at the localization target’s location.

The estimation of the target’s location is then treated as
a classification problem. Priwgharm et al. in [49] used the
Euclidean Distance (EUC) technique to find the distance
DR

k between the kth fingerprint and the localization target
(R) using the following equation:

DR
k =

√√√√∑
(

R

Φ
Tj

Ti

− K

Φ
Tj

Ti

)2

∀ 1 ≤ i ≤ N −1, i < j ≤ N (10)

where N is the number of access points. After finding DR
k

for each fingerprint, each fingerprint is given a weight μK

in the location estimation process such that

μK = 1

DR
k

(11)

The weights for all fingerprints are then added to find the
total weight μ for all fingerprints:

M∑

k=1

μK (12)

The probability that the object is near fingerprint is then
given by

P(FPK |R) = μK

μ
(13)

Based on (14), the estimated location of the localization
target is calculated using the following equation:

LR(X, Y ) =
M∑

i=1

P(FPi |R)LFP
i (X, Y ) (14)

The following algorithm summarizes the location estima-
tion process using phase shifts:

Algorithm 1 EUC( , R).

1. Receive the phase shift vector R from all nearby LPAM
radio towers.

2. Compute the D distance from all M fingerprints in the
database.

3. Find the weight for the k fingerprint.
4. Estimate the X coordi nate for the localization target’s

location using X =
1

*X
5. Estimate the Y coordinate for the localization target’s

location using Y =
1

*Y

4.2 Our Inertial Navigation System

In earlier research [50], we presented a novel technique
for performing Pedestrian Dead Reckoning (PDR) using
various sensor technologies including gyroscopes, tri-axial
accelerometers, and MIT Cricket system [21] for gyroscope
drift calibration. In that work, we have showed how our PDR
approach provides precise directional distances traveled
by user and solves common sensor problems such as
accelerometer bias and gyroscope drift using MIT Crickets.
Furthermore, we enhanced the INS system by adding a
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digital compass to get more precise direction from the INS
system. This system will provide the directional distance
traveled by the localization target. This distance along with
its direction are then fed to the particle filter to be fused with
phase shifts to perform precise localization. Figure 2 shows
the installation of the INS on the feet and more details about
its design and implementation can be found in [50].

4.3 Data fusion using particle filter

The problem in localization based on particle filter resides
in finding the joint posterior P(V1:t | O1:t , I1:t ) about the
trajectory V1:t of the localization target in the localization
region where O1:t are the observations and I1:t are the
measurements obtained from our INS for dead reckoning.

The use of particle filter is a common technique used for
indoor and outdoor localization. Each particle is considered
a pose hypothesis of the current localization target location.
In this work, we implement two versions of the particle
filter. In the first version, we randomly generate particles to
spread all over the localization area. Each particle is then
given a weight based on its distance from the phase shifts
that are close to the phase shifts observed at the target’s
location. Particles are selected based on their weights
and those particles with lower weights are then rejected.
The distribution of the actual target location is mainly
represented by the remaining particles. This version of the
particle filter is called Sampling Importance Resampling
particle filter and is known to keep the diversity of the
particles. This process is summarized in the following steps:

1. Generation Step: a set of N particles
{x1(0), x2(0), ..., xN(0)} are generated according to the
initial Probability Density Function PDF (x(0))

Fig. 2 Installation of Cricket beacon and listener for Pedestrian Dead
Reckoning (PDR)

2. Prediction Step : Given the previous particle
Pi[x(k), y(k)], generate the next iteration particles
according to the following equations:

xi(k + 1) = xi(k) + N(μ, σ) (15)

yi(k + 1) = yi(k) + N(μ, σ) (16)

3. Importance weighting : generate the particle’s weight
wi(k +1) for each particle Xi(k +1) where wi(k +1)is
calculated by:

FPclosest = min(Xi(k + 1), FPk)1 ≤ k ≤ M (17)

where N is the number of location fingerprints, and
FPclosest is the closest fingerprint to the particle Xi(k+
1) in the Euclidean Coordinate system. After finding
the closest fingerprint to the particle Xi(k + 1), the
phase shift distance between that fingerprint and the
observed phase shifts at the localization target location
R

φ
Tj

Ti

according to:

DR
FPclosest =

√√√√∑
(

R

Φ
Tj

Ti

−FPclosest

Φ
Tj

Ti

)2

(18)

1≤ i≤ N-1 , i < j ≤ N , N is the number of access points.
After finding DR

FPclosest for the Xi(k + 1) particle , the
particle’s weight wi(k + 1) is then given by:

wi(k + 1) = 1

DR
FPclosest

(19)

4. Normalization and Resampling Step: A subset of q
particles is then sampled according to their weights to
circumvent the particle degeneracy. This step keeps a
sufficient number of particles to approximate the actual
localization target location distribution.

The dynamics of the second version of the particle filter
are controlled by our INS subsystem in generating the next
pose hypothesis Vt from Vt−1 according to the equations:

xi(k + 1) = xi(k) + dcos� + N(μ, σ) (20)

yi(k + 1) = yi(k) + dsin� + N(μ, σ) (21)

where d and θ are the distance and its direction obtained
from the INS after each step. Figure 3 shows the structure
of our localization approach in urban areas where the
calibrated distance and angle from our INS along with
the phase shifts observed from the SDR system on the
localization target are fed to the particle filter to perform
precise localization.
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Fig. 3 Our localization
techniques using PF

Fig. 4 Our localization simulation framework. The source code of our simulator is available on GitHub through the following URL: https://github.
com/mohammedelbes/OutdoorLocalization-/

https://github.com/mohammedelbes/OutdoorLocalization-/
https://github.com/mohammedelbes/OutdoorLocalization-/
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Fig. 5 Mean location error
versus the number of LPAM
radio towers. The figure shows
that increasing the number of
LPAM in the localization region
greatly affects the mean location
error for the three approaches.
The figure shows that a limited
number of LPAM can achieve a
localization accuracy of about
0.3m

5 Simulation setup and results

As shown in Fig. 4 , the localization area is set up as 100
× 100 m2. The user enters the number of LPAM towers to
be uniformly distributed over the localization area. After the
setting up of LPAM towers, the user enters the number of
fingerprints that are also distributed uniformly over the area
and their values are obtained according to (10). The LPAM
towers are randomly split into noisy and non-noisy towers.
The source of the noise is usually from nearby power lines
or electric motors with a noise factor randomly ranging from
1 to 5 m. Our INS system is assumed to have an accuracy of
about 5 cm on average.

When the simulation starts the localization target starts
moving all over the area with random speeds and directions.
On each simulation step, the simulator generates phase
shifts at the target’s location and these phase shifts are
fed to the particle filter to estimate the target’s location
accordingly. Figure 4 illustrates a snapshot of the actual

target’s location along with the estimated location using
EUC technique explained in Section 4.1 (EUC), the location
estimated using the particle filter without INS guidance
(rawPF) according to (15), (16) and the location estimated
according to (20), (21), where data fusion between INS
measurements and phase shifts using particle filter (PF).

To assist other researchers in replicating and extending
our work, we have publicly released our algorithm and
simulation source code, which can be accessed at https://
github.com/mohammedelbes/OutdoorLocalization-/.

The effectiveness of the proposed localization approach
has been investigated thoroughly by running several simu-
lation experiments in different scenarios. The main goal of
this localization approach is to perform data fusion from
multiple technologies to achieve a minimum localization
error. The data fusion of phase shift measurements and INS
(PFPS+INS) data is compared with the fingerprinting tech-
nique (EUC) and with the particle filter using phase shifts
only (PFPS).

Fig. 6 Mean location error
versus the number of
fingerprints. The localization
accuracy is directly related to
the fingerprinting density in the
urban area. 50 fingerprints in an
area of a football field achieves
an accuracy of 0.3 m

https://github.com/mohammedelbes/OutdoorLocalization-/
https://github.com/mohammedelbes/OutdoorLocalization-/
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Fig. 7 Localization accuracy
CDF. The figure shows that the
probability that the localization
target is within 0.2 m is about
25% for PF+INS and about 5%
for both EUC and PFPS. This
probability increases quickly to
about 95% within the 0.65 m
range for the PFPS+INS and is
about 40% and 60% for EUC
and PFPS respectively

5.1 Effect of increasing the LPAM towers density
on themean location error

The first experiment investigates the effect of increasing
the density of LPAM towers on the mean location error
as shown in Fig. 5. The experiment shows that increasing
the number of LPAM in the localization region greatly
affects the mean location error for the three approaches
mentioned early in this section. Using the EUC approach,
the mean error drops from about 2.5 meters when using
only two LPAM towers to about 0.7 meters when having 20
LPAM radio towers in the localization region. On the other
hand, using particle filter for localization reduces the mean
error from 1.5 m to about 0.63 m for the same number of
LPAM mentioned. The figure shows the great enhancement
achieved in the mean error by using data fusion of phase
shifts and INS data where the mean error drops to about
0.3 m only. The figure also shows that increasing the number
of LPAM towers enhances the mean error to a certain point,
after that, no enhancement is achieved. The optimal number
of LPAM radio towers is shown to be 15 for the setup
localization region.

5.2 Fingerprinting density required to achieve
the acceptable mean location error

Based on the previous experiment which shows that the best
number of LPAM radio towers is 15, this experiment uses
this number of towers to study the density of fingerprinting
that is required to achieve the acceptable mean location
error. Figure 6 shows that increasing the number of
fingerprints in the area enhance the localization precision
for the three approaches. The mean location error drops
from about 6.2, 5, and 4.5 m for EUC, PFPS, and PFPS+INS
respectively when using only 4 fingerprints to about 1.6, 0.6,
and 0.24 m when using 100 fingerprints in the localization
region. The figure also shows that 50 fingerprints are
enough to achieve a mean location error of about 0.3 m
using particle filter for data fusion.

5.3 Cumulative Distribution Function of the location
error

The Cumulative Distribution Function (CDF) of the location
error shown in Fig. 7 illustrates that the PFPS+INS approach
outperforms both EUC and PSPS in terms of location accu-
racy. Based on the previous experiments’ results, a number
of 15 LPAM radio towers and 40 fingerprints spread in the
localization region, the probability that the localization tar-
get within 20 cm was about 25% for PF+INS and about 5%
for both EUC and PFPS. This probability increases quickly
to about 95% within the 65 cm range for the PFPS+INS and
is about 40% and 60% for EUC and PFPS respectively.

6 Conclusion and future work

In this paper, we proposed a novel particle filter based
data fusion technique. The proposed approach fuses phase
shifts measurements collected from nearby Low Power AM
(LPAM) radio base stations and directional distance mea-
surements obtained from our Inertial Navigation System
(INS) subsystem. Our proposed localization technique uses
the advantages of high distance accuracy obtained from the
MIT Cricket system and avoids its line of sight problems
by installing the beacon and listener in a proper way. Our
fusion technique resulted in a significant location accuracy
and we are planning to further enhance the accuracy by fus-
ing data from other sources like ultra wide band (UWB) and
camera images.
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