
Using Clause Slicing as Program Robustness

Measurement Technique

Mohammad M. Abdallah and Ayman M. Abdalla

Faculty of Science and IT

Al-Zaytoonah University of Jordan

Amman, Jordan

m.abdallah@zuj.edu.jo, ayman@zuj.edu.jo

Abstract—The program slicing technique is an abstracting

technique that focuses on the program code. Clause Slicing is the

type of program slicing that focuses only on the code clauses,

which allows the quality assurance to measure program

robustness by measuring every code clause against the

programing language standards. The proposed model gives a

new way for measuring the robustness quality factor using

program clause slicing.

Keywords—Program slicing, Clause slicing, Robustness,

Quality, Measurement.

I. INTRODUCTION

Program slicing was introduced in 1979 by Weiser [1] as “a
method used for abstracting from computer programs.”
Regarding the formula; in Program P, the program slice has
criteria which are represented as <s, v>, where s is the
statement number and v is the variable. With respect to slicing
criteria, the slice includes only those statements of P needed to
capture the behavior of v at s [2].

Clause slicing was introduced in 2012 by Abdallah [3] as a
static slicing technique. Clause slicing is concentrating on the
code syntax of the program. It is also a syntax preservation
technique where the code does not change after slicing.

Clause slicing considers most of the code syntax words as
potential slicing criteria, which makes it more useful in testing
and measuring program quality.

This research paper is focused on the technique of how the
clause slicing technique can be used as a quality measurement
technique to measure the software robustness quality. Clause
slicing as static technique focuses on each code sentence and
sub-sentence. It can be very useful in testing the code ability to
run robustly and to predict how the code could fail or crash by
highlighting the weak points.

This paper will have the following structure: Section II will
address the work related to this research. Section III will
address the proposed robustness measurement model.
Conclusion and future directions will be given in Section IV.

II. RELATED WORK

In this section, the main program slicing techniques are
addressed and compared in terms of use to help determine the
proper slicing technique for measuring program robustness,
which is also defined and discussed in the following sections.

A. Program Slicing

Program slicing was first introduced in 1979 by Weiser as
an abstraction for the program without introducing any
changes to the code syntax [1]. Static slicing means that the
code syntax will be reserved after slicing. In other words, all
possible executions of the program are taken into account [4,
5]. The term “static slicing” has been used frequently in recent
years.

Program static slicing has a slice criterion (C) which is the
Variable of interest (V) and its code line number (N) and
presented as C (V, N). In Program slicing in general, only the
code that is directly or indirectly related to the slicing criteria is
captured and abstracted as a Program Slice. In further
researches, many types of static slicing and other slicing types
have been developed and introduced such as backward and
forward slicing [6], decomposition slicing [7], clause slicing
[8, 9], conditional [10] and Decomposition slicing. One of the
static slicing techniques is the analysis method based only on
the name of the variable without considering the variable line
number or variable input values. This is the same as merging
both the forward and backward slicing techniques [7]. A few
more static slicing techniques were described in [11]. There are
other types of slicing, such as dynamic slicing [12], which
introduce the variable value to the slicing criteria and can be
presented as (V, N, Input). Other slicing techniques have been
developed by [4, 13].

Program slicing has been applied to improve program
debugging [14], Software Maintenance [7], Regression testing
[15, 16], Software robustness [3, 8, 17-19] and Software
quality [20]. It has been applied to different programming
languages such as C, C++, and Java [9, 21, 22].

According to [11, 23], the slicing program divides the
program into several slices. These slices are characterized
based on their dependency, where each slice contains all the
statements that affect or are affected by the variable in the
slicing criterion. This criterion consists of the effective variable
and the statement it contains. This is based on the slice
containing all statements that affect the value of the variable.

Static slicing can be executable or non-executable [24]. An
executable slice means the code produced after the slicing
operation (the slice) can be compiled and run as a program.

Weiser [1, 6, 14, 25] introduced program slicing which
became known later as Executable Backward Static Slicing. It

is Executable because the slice produced is an executable
program which can be debugged and run as a usual program.
Backward Slicing is computed by gathering statements and
control predicts by way of a backward traversal of the program
starting at the slicing criteria [24]. Backward slicing contains
the statements of the program which affect the criteria slice,
and it answers the question “what program components might
affect a selected computation?” [5]

Another form of static slicing is Forward Slicing. Forward
Slicing performs traversal of data and control dependence
edges in the forward direction and answers the question “what
program components might be affected by a selected
computation?” [5].

A Forward slice captures the effect of its slicing criteria on
the rest of the program, and it is considered a kind of flow
effect analysis [4, 26]. It contains the set of statements and
control predicts that were affected by the computation of the
slicing criterion. The Slicing criteria are the same as in
backward slicing (V, L) [21, 24, 27-30].

Forward Slicing usually does not produce an executable
slice, unlike backward slicing, because the challenge addressed
by Forward Slicing is defining the semantics captured by a
forward slice [24, 31, 32].

Decomposition slicing is a slice used to decompose the
program into different components. It is the union of certain
slices taken at certain line numbers on a given variable [6, 7].
Decomposition slicing has two parts: The slice, which is the
slice criteria, and the complement. The slice “captures all
relevant computations involving a given variable” [7], where a
decomposition slice depends on the variable name only and
does not depend on statement number. The complement is the
rest of the program code; it also can be considered as a slice
that corresponds to the rest of the slicing criteria [7].

Clause slicing was introduced in [3, 33] as a slicing
technique interested in a part of the statement that may affect
the rest of the slice. The main purpose of Clause slicing is to
enhance the software robustness measurement of C programs.

Clause slicing is a special type of static slicing techniques;
it is a reserved syntax technique. Clause Slicing has the same
types of static slicing; backward, forward and decomposition.
In this paper, only the forward clause slice will be discussed.

A Clause is defined as the minimum piece of code that can
be sliced [33, 34]. Some clauses are not sliceable, such as
#include and break, so they are called the un-sliceable clauses.
Clauses are different form the code statements and the code
line. The Clauses can be a part of the code line or statement.
For example, the printf statement can be divided into three
clauses. There are some rules on how to slice the code into
clauses, as what was introduced in [8].

Program slicing is widely used for many purposes:
debugging [6], maintenance [7], testing [16, 35], detecting
dead code [36], measuring program robustness [17, 18, 37] and
quality [38-40] and many other applications [13, 38, 41, 42].
Therefore, researchers have tried applying different ideas of
using program slicing and advanced tools. Tools of program
slicing were developed to slice different programming
languages [43]. This research paper is focused on C language
slicing, so it only lists some slicing tools for C language:
CSurf, frama-C, and Wisconsin Program-Slicing.

CodeSurfer [44] is a program-understanding tool that
makes a manual review of code easier and faster. It also has
CodeSonar, which finds bugs and generates reports
automatically. Another code analysis tool is called Frama-C
[45]. Frama-C is used only for programs written in the C
programming language. It supports static slicing techniques;
Forward and backward slicing. It also provides dependency
analysis. There is also a program slicing tool called Wisconsin
Program-Slicing tool [46]. It can do a Forward Slicing,
backward slicing, and chopping. It consists of a package for
building and manipulating control-flow graphs and program
dependence graphs. The srcML [46, 47] program is a
command line application for the conversion source code to
srcML. It is an interface for the exploration, analysis, and
manipulation of source code in this form, and the conversion of
srcML back to source code. The current parsing technologies
support C/C++, C#, and Java [21, 22, 41].

B. Program Robustness

Critical programs must be robust to avoid the problems that
could be caused by failures [48]. The C language standards
were introduced to avoid code misinterpretation, misuse, or
misunderstanding. The IEEE presented the ISO/IEC
9899:1999 standard [49], which was later used by MISRA to
produce MISRA C1 and C2. This, in turn, led to Jones
producing “The New C Standard: An Economic and Cultural
Commentary” [48]. The LDRA company uses MISRA C rules,
in addition to 800 rules it created, to assess programs. Other C
standards such as “C programming language coding guideline”
[50] are less frequently used.

Measuring the application of a language standard to a
program is one technique of program robustness measurement.
Several techniques were used to measure program robustness.
Software measurement could mean estimating the cost,
determining the quality, or predicting the maintainability [51].
Arup and Daniel [52] presented features, such as portability, to
evaluate some existing benchmarks of Unix systems. As a
result, they built a hierarchy-structured benchmark to identify
robustness issues that were not detected before. Behdis and
Shokat [53] introduced a theoretical foundation for robust
matrices that reduce the uncertainty in distributed system. Arne
et al. [54] used some robustness criteria such as input date rate
and CPU clock rate to create multi-dimensional robustness
matrices, and then use them to measure the robustness of the
system.

A robustness hierarchy [17] is a relative scale to find the
robustness characteristics that need to be added to programs. It
is a technique used to build a robust program. The hierarchy
starts with a non-robust program as the first step and then adds
robust features before reaching a robust program in the highest
level of the hierarchy.

III. THE PROPOSED MODEL

This section addresses the Robustness Grid. The
Robustness Grid measures software Robustness using program
clause slicing in addition to the program language standards.
The Robustness Grid needs to examine the features of
programming languages in order to produce a relative scale for
functions, methods, and the entire program. The Robustness
Grid will show the Robustness Degree in details for a selected
program. The Robustness Grid Measurement is the process by
which relative numbers are assigned to the Robustness Degree
of a C program in a way that describes them according to

Programming language standards and their language features
weight, which is specified using the clause slicing. Figure 1
shows the Robustness Grid building process.

Figure 1. Robustness Grid Process

 As seen in Figure 1, the Robustness Grid starts with
reading and running the code to make sure that it runs correctly
and has no compiling problems. The Robustness Grid is a
quality measurement, which means that the code must compile
and run correctly before being measured.

 In the second step, the code is sliced using Clause Slicing
techniques. A tool that can be used is called Clauser [33, 55].
The results of this process will be a group of clauses. These
clauses will be measured using the programming language
standards in step three. In addition, the size of each slice will
determine the weight of it. The result will be how much the
clauses are following the language standards and how much
effect they have on the program robustness factor.

IV. CONCLUSION AND FUTURE WORK

The proposed model is quite useful and can be handy to
measure the Robustness factor degree of any program written

in any programming language. However, the proposed model
is still immature and needs more work to convert it into an
automated tool that can be relied on. In addition, considerable
work is needed to determine how to choose the programming
language standards, and which rules of these standards must be
chosen.

The proposed model can be upgraded and extended to add
more features such as: choosing which slicing techniques to be
applied, which programming language to be chosen and which
standards of this language to be selected.

REFERENCES

[1] M. Weiser, "Program slices: formal, psychological, and practical
investigations of an automatic program abstraction method," PhD, The
University of Michigan, Michigan, 1979.

[2] D. Binkley and K. Gallagher, "Program Slicing," in Advances in
Computers. vol. Volume 43, V. Z. Marvin, Ed., ed: Elsevier, 1996, pp.
1-50.

[3] M. Abdallah, "A Weighted Grid for Measuring Program Robustness,"
PhD, Computer Science, Durham University, 2012.

[4] X. Baowen, Q. Ju, Z. Xiaofang, W. Zhongqiang, and C. Lin, "A brief
survey of program slicing," vol. 30, pp. 1-36, 2005.

[5] K. Gallagher and D. Binkley, "Program slicing," in Frontiers of
Software Maintenance, 2008. FoSM 2008., 2008, pp. 58-67.

[6] M. Weiser, "Program Slicing," IEEE Transactions on Software
Engineering, vol. 10, pp. 352-357, 1984.

[7] K. Gallagher and J. R. Lyle, "Using program slicing in software
maintenance," Software Engineering, IEEE Transactions on, vol. 17, pp.
751-761, 1991.

[8] M. Abdallah, "A Weighted Grid for Measuring Program Robustness,"
Doctor of Philosophy, Computer Science Durham University,
http://etheses.dur.ac.uk, 2012.

[9] M. Abdallah and H. Tamimi, "Clauser : Clause Slicing Tool for C
Programs," International Journal of Software Engineering and Its
Applications, vol. 10, pp. 49-56, 03/31 2016.

[10] G. Canfora, A. Cimitile, and A. De Lucia, "Conditioned program
slicing," Information and Software Technology, vol. 40, pp. 595-607,
1998.

[11] A. Ngah and S. A. Selamat, "A Brief Survey of Program Slicing," in
International Symposium on Research in Innovation and Sustainability
2014 (ISoRIS ’14), Malacca, Malaysia, 2014, pp. 1467-1470.

[12] B. Korel and J. Laski, "Dynamic program slicing," Information
Processing Letters, vol. 29, pp. 155-163, 1988.

[13] A. Ngah and S. A. Selamat, "A BRIEF SURVEY OF PROGRAM
SLICING," Science International, vol. 26, 2014.

[14] M. Weiser, "Programmers use slices when debugging,"
Communications of the ACM, vol. 25, pp. 446-452, 1982.

[15] N. Amir and G. Keith, "Regression test selection by exclusion using
decomposition slicing," presented at the Proceedings of the doctoral
symposium for ESEC/FSE on Doctoral symposium, Amsterdam, The
Netherlands, 2009.

[16] A. Ngah, M. Munro, and M. Abdallah, "An Overview of Regrission
Testing," Journal of Telecommunication, Electronic and Computer
Engineering (JTEC), vol. 9, pp. 45-49, 2017.

[17] M. Abdallah, M. Munro, and K. Gallagher, "Certifying software
robustness using program slicing," in 2010 IEEE International
Conference on Software Maintenance, 2010, pp. 1-2.

[18] A. Abdalla, M. Abdallah, and M. Salah, "ABrief PROGRAM
ROBUSTNESS SURVEY," International Journal of Software
Engineering & Applications, vol. 8, pp. 1-10, 2017.

[19] K. Gallagher and N. Fulton, "Using Program Slicing to Estimate
Software Robustness," in Proceedings of the International Systems
Software Assurance Conference, 1999.

[20] M. Abdallah and M. Alrifaee, "Towards a new framework of program
quality measurement based on programming language standards," 2018,
vol. 7, p. 3, 2018-03-08 2018.

[21] B. Alokush, M. Abdallah, M. Alrifaee, and M. Salah, "A Proposed Java
Static Slicing Approach," Indonesian Journal of Electrical Engineering
and Computer Science, vol. 11, pp. 308-317, 2018.

http://etheses.dur.ac.uk/

[22] M. Abdallah, B. Alokush, M. Alrefaee, M. Salah, R. Bader, and K.
Awad, "JavaBST: Java backward slicing tool," in 2017 8th International
Conference on Information Technology (ICIT), 2017, pp. 614-618.

[23] J. T. Lalchandani and R. Mall, "Regression testing based-on slicing of
component-based software architectures," presented at the Proceedings
of the 1st India software engineering conference, Hyderabad, India,
2008.

[24] F. Tip, "A survay of Program Slicing Techniques," JOurnal of
Programming Languages, vol. 3, pp. 121-189, 1995.

[25] M. Weiser, "Program slicing," presented at the Proceedings of the 5th
international conference on Software engineering, San Diego,
California, United States, 1981.

[26] B. Sue, "Computing ripple effect for software maintenance," Journal of
Software Maintenance, vol. 13, p. 263, 2001.

[27] A. d. Lucia, "Program Slicing: Methods and Applications," presented at
the IEEE International Workshop on Source Code Analysis and
Manipulation, 2001.

[28] S. Horwitz, T. Reps, and D. Binkley, "Interprocedural slicing using
dependence graphs," ACM Transaction of Program Language Systms,
vol. 12, pp. 26–60, 1990.

[29] M. Harman and R. Hierons, "An Overview of program slicing,"
software focus, vol. 2, pp. 85-92, 2001.

[30] H. Mumtaz, M. Alshayeb, S. Mahmood, and M. Niazi, "An empirical
study to improve software security through the application of code
refactoring," Information and Software Technology, vol. 96, pp. 112-
125, 2018/04/01/ 2018.

[31] D. Binkley, S. Danicic, T. Gyimóthy, and M. Harman, "Theoretical
foundations of dynamic program slicing," Theoretical Computer
Science, vol. 360, pp. 23 – 41, 2006.

[32] S. Mitra, D. Kim, and M. Fong, "Program Slicing," 2007.

[33] M. Abdallah and H. A. Tamimi, "Clauser: Clause Slicing Tool for C
Programs," International Journal of Software Engineering and Its
Applications, vol. 10, pp. 49-56, 2016.

[34] M. Abdallah, "A Weighted Grid for Measuring Program Robustness,"
Durham University, 2012.

[35] A. Ngah, M. Munro, Z. Abdullah, M. A. Jalil, and M. Abdallah,
"Regression Test Selection Model: A Comparison between ReTSE and
Pythia," TELKOMNIKA (Telecommunication Computing Electronics
and Control), vol. 17, 2018.

[36] N. AlAbwaini, A. Aldaàje, T. Jaber, M. Abdallah, and A. Tamimi,
"Using Program Slicing to Detect the Dead Code," in 2018 8th
International Conference on Computer Science and Information
Technology (CSIT), 2018, pp. 230-233.

[37] M. Abdallah, M. Munro, and K. Gallagher, "A Static Robustness Grid
Using MISRA C2 Language Rules," presented at the The Sixth
International Conference on Software Engineering Advances,
Barcelona, Spain, 2011.

[38] M. Abdallah and M. M. Al-rifaee, "Towards a new framework of
program quality measurement based on programming language
standards," International Journal of Engineering & Technology, vol. 7,
pp. 1-3, 2018.

[39] K. S. Patnaik and P. Jha, "Proposed Metrics for Process Capability
Analysis in Improving Software Quality: An Empirical Study,"
International Journal of Software Engineering and Technology (IJSET),
vol. 1, pp. 152-164, 2016.

[40] M. Abdallah and M. Al-rifaee, "Java Standards: A Comparative Study,"
International Journal of Computer Science and Software Engineering,
vol. 6, p. 146, 2017.

[41] A. Ngah and S. A. Selamat, "Using Object to Slice Java Program,"
Journal of Engineering and Applied Sciences, vol. 13, pp. 1320-1325,
2018.

[42] S. A. Selamat and A. Ngah, "Slicing for Java Program: A Preliminary
Study," Journal of Telecommunication, Electronic and Computer
Engineering (JTEC), vol. 9, pp. 147-151, 2017.

[43] T. Hoffner, "Evaluation and comparison of program slicing tools,"
Department of Computer and Information Science, Linkping University,
Sweden1995.

[44] GrammaTech. (2009, 12/1/2018). CodeSurfer. Available:
http://www.grammatech.com/products/codesurfer/overview.html

[45] P. Baudin, F. Bobot, R. Bonichon, L. Correnson, P. Cuoq, Z. Dargaye,
et al., "Frama-C," Frama-C 16 - Sulfur ed: Informations légales et droit
de diffusion, 2007.

[46] M.-C. Lee and T. Chang, "Software Measurement and Software Metrics
in Software Quality," International Journal of Software Engineering and
Its Applications, vol. 7, pp. 15-34, 2013.

[47] C. D. Newman, T. Sage, M. L. Collard, H. W. Alomari, and J. I.
Maletic, "srcSlice: A Tool for Efficient Static Forward Slicing," in 2016
IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C), 2016, pp. 621-624.

[48] D. M. Jones, The New C Standard: A Cultural and Economic
Commentary, 1st edition ed.: Addison-Wesley Professional, 2003.

[49] International Standard ISO/IEC 9899, 1999.

[50] E. Laroche. (1998, 22/12). C programming language coding guidelines.

[51] N. E. Fenton and S. L. Pfleeger, Software Metrics, A Rigorous and
Practical Approach, 2 ed.: PWS Publishing Company, 1997.

[52] A. Mukherjee and D. P. Siewiorek, "Measuring Software Dependability
by Robustness Benchmarking," IEEE Transactions of Software
Engineering, vol. 23, pp. 94-148, 1994.

[53] B. Eslamnour and S. Ali, "Measuring robustness of computing systems,"
Simulation Modelling Practice and Theory, vol. 17, pp. 1457-1467,
2009.

[54] H. Arne, R. Razvan, and E. Rolf, "Methods for multi-dimensional
robustness optimization in complex embedded systems," presented at
the Proceedings of the 7th ACM & IEEE international conference on
Embedded software, Salzburg, Austria, 2007.

[55] K. Awad, M. Abdallah, A. Tamimi, A. Ngah, and H. Tamimi, "A
Proposed Forward Clause Slicing Application," Indonesian Journal of
Electrical Engineering and Computer Science, vol. 13, 2019.

http://www.grammatech.com/products/codesurfer/overview.html

