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Abstract— Nowadays, digital circuits are widely applied in 

different equipment such as computers, cell phones, digital 

watches, etc. As a result, new approaches to implement digital 

circuits are needed. Applying predicate logic is one way for 

achieving that. In particular, quantification (which is a 

commonly studied topic in predicate logic) can be used in the 

translation of a given logical statement which would assist in 

designing digital circuits. As a result, this paper proposes a 

new approach to implement the unique existential quantifier in 

digital circuits.   
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I. INTRODUCTION  

Digital Logic is considered the backbone of electronic 
systems such as robotics, computers, cell phones and other 
electronic applications. Indeed, logic plays a significant role 
in the design, programming, and use of computers.  In digital 
logic, one of the main goals is to design digital circuits with 
less cost and less power usage [1],[2]. Applying discrete 
mathematics would assist in achieving this goal and would 
help in finding other alternatives in designing digital circuits.  
In particular, digital circuits may be represented with logical 
formulas by using propositional logic and its extension 
“predicate logic” [3]. Along with designing digital circuits, 
predicate logic is used for reasoning about programs, 
dynamic systems and used in building artificial intelligence 
reasoning systems [4]. 

The correspondence between digital logic circuits and 
propositional logic has been known for a long time. Such a 
relation can be summarized in Table I. 

 

TABLE I. DIGITAL LOGIC CIRCUITS AND PROPOSITIONAL LOGIC 

CORRESPONDENCE 

Propositional Logic Digital design 

Propositional connective  

(  ,  ,  ¬  ) 

Logic gate  

( and, or , not) 

Formula Circuit 

Truth value Voltage level 

 

In propositional logic, the term “proposition” is defined 
as an assertion that is either true or false. On the other hand, 
a predicate is defined as an assertion that contains a finite 
number of variables and becomes a proposition when 
specific values are substituted for the variables from the 

domain of the predicate (set of all values that may be 
substituted in place of the variable) or when these variables 
are bound using quantifiers [5]. Quantification is a concept 
that specifies the quantity of cases in the domain that 
satisfies an open formula [6].  There are three forms of 

quantification: the universal quantifier (  ), the existential 

quantifier (  ) and the unique existential quantifier (  ).  
The meaning of each quantifier is as follows: 

 x P( x ) means: " for all values of x, the predicate 
P( x ) is true ".   

 x P( x ) means: " for some values of x (at least one 
value), the predicate P( x ) is true " .  

 x P( x ) means: " for one and only one value of x, 
the predicate P( x ) is true ". 

The implementation of the universal, existential and 
unique existential quantifiers in digital logic design based on 
their meanings is as follows: 

Let U represents the universe of discourse of the 
predicate P (x), or in another word the domain of the 
predicate. For example, if  U = { 1, 2, 3 }, then: 

 x P ( x ) is true if  [ P (1) ˄ P (2) ˄ P (3) ] is true, 
this can be implemented with multiple-input AND-
gate [7] as shown in Fig. 1. 

 

 

Fig. 1.  Multiple-input AND-gate. 

 

 x P ( x )  is true if [ P (1) ˅ P (2) ˅ P (3) ] is true, 
this can be implemented with multiple-input OR-
gate [7] as shown in Fig. 2. 

 

 

Fig. 2.  Multiple-input OR-gate. 
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 x P ( x )   is true if  [ [ P (1) ˄ ¬ P (2)  ˄ ¬ P (3) ] 

                                         ˅ [ ¬ P (1) ˄ P (2)  ˄ ¬ P (3) ]  

                                          ˅ [ ¬ P (1) ˄ ¬ P (2)  ˄  P (3) ] ]    

is true, this can be implemented with two-level AND-OR 
gates as shown in Fig. 3. 

 

 

Fig. 3.  Two-level AND-OR gates. 

 

Where in the above figures: x, y and z represent P (1),     
P (2) and P (3) respectively, and x′, y′ and z′ represent          
¬ P (1), ¬ P (2)  and ¬ P (3) respectively.  

An application for x p(x) is presented in [8], where the 

relation between the  x p(x) and the X-OR was presented 
and had shown that the unique existential quantifier is equal 
to the X-OR only when the number of elements in the 
universe is two, which can be used to implement a one-
selecting variant of a transition system. However, they are 
not equal when the number of elements in the universe is 
more than two.  

In this paper, another alternative for implementing the 
unique existential quantifier with two and more variables in 

the predicate (x y P (x ,y), x y z P (x, y, z), etc. ) is 
presented which can be applicable and beneficial for other 
applications.  

The rest of this paper is organized as follows: Section II 
presents our proposed method. The drawn conclusions and 
the planned future work are discussed in Section III. 

 

II. METHODOLOGY 

 
In this section, some definitions that are related to our 

work are presented. Then, our proposed implementations of 

x y P (x, y) and x y z P (x, y, z) are discussed.  

Definition 1.  A ( n * 2
n
 ) decoder is a circuit with n inputs, 

and 2
n
 outputs, where only one output is active at any given 

time  [1].  

Definition 2.  A ( 2
n
  * 1)  Multiplexer ( MUX ) is a circuit 

with 2
n
 inputs and a single output, where n is the number of 

selection lines ( S0,S1,S2,…, Sn ), that select which input to 
send to the output [1].  

Definition 3. A data bus is a communication system that is 
used to transfer data between registers in a multiple-register 
configuration. It can be constructed with MUXs or with 
three-state buffers [1]. 

A. Implementing  x  y P (x, y) 

In predicate logic, a domain (universe of discourse) must 
be chosen for each predicate. Thus, in this paper, the domain 
that is chosen is the set of 0 and 1, as these two numbers 
represent the binary digits of the computer.   

Firstly, in order to understand how the proposition:       

xy P(x, y) is implemented, we should find its 
equivalence when U = {0, 1} as follows: 

Formula 1. 

x y P (x , y) ⇔ 

[ P ( 0 , 0 ) ˄ ¬ P ( 0 , 1 ) ˄ ¬ P ( 1 , 0 ) ˄ ¬ P ( 1 , 1 ) ]  

˅   [ ¬ P ( 0 , 0 ) ˄  P ( 0 , 1 ) ˄ ¬ P ( 1 , 0 ) ˄ ¬ P ( 1 , 1 ) ] 

˅   [ ¬ P ( 0 , 0 ) ˄  ¬ P ( 0 , 1 ) ˄  P ( 1 , 0 ) ˄ ¬ P ( 1 , 1 ) ] 

˅   [ ¬ P ( 0 , 0 ) ˄  ¬ P ( 0 , 1 ) ˄ ¬ P ( 1 , 0 ) ˄  P ( 1 , 1 ) ] 

 

The equivalence in Formula 1 means that for only one 
value of x and only one value of y, P(x, y) is true. When this 
is satisfied, only one bracket on the right-hand side of the 
equivalence will be true and all other brackets will be false. 
The OR (˅) between all the brackets will result in a true 
value for the proposition.  

On the other hand, to implement x y P (x , y) in the 
digital circuits , a  2 * 4 decoder is used, which  is a circuit 
with 2 inputs (x , y) and 4 outputs ( D0 , D1 , D2 , D3 ), where 
only one output is active at any given time , which is similar 

to the meaning of  x y P (x , y) ( only one value of x and 
one value of y satisfy the proposition).  As a result,            

x y P (x, y) is implemented by a 2 * 4 decoder.  The 
truth table of a 2 * 4 decoder is presented in Table II. 

 

TABLE II. THE TRUTH TABLE OF A 2 * 4 DECODER 

 

 

 

 

 

 

From Table II, D0 = x' y', D1 = x' y, D2 = x y', D3 = x y, 
where x' is the negation of x and y' is the negation of y. The 
circuit of  a 2 * 4 decoder is presented in Fig. 4. 

 

 

Fig. 4.  2* 4 decoder’s circuit. 
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As a result, D0, D1, D2, D3 correspond to P(0,0),  P(0,1), 

P(1,0), P(1,1) respectively, which means that x y P (x, y) 
is implemented in a 2*4 decoder circuit. 

 Another implementation for x y P (x, y) can be done 
using a data bus with 4 * 1 MUXs, which have two selection 
lines (S1, S0), and 4 registers (RA, RB, RC, RD) that are the 
inputs to the MUXs. Only one register must be selected to 
the bus lines, while the other registers must be inhibited from 
the bus lines depending on the values of the selection lines, 
this is the same as unique existential quantifier where only 
one value of x and only one value of y satisfy the 
proposition. The truth table for the suggested data bus is 

shown in Table III and its circuit with four registers each of 
four bits is presented in Fig. 5, where RA, RB, RC, RD  
correspond to  P(0,0), P(0,1), P(1,0), P(1,1) respectively.  

 

TABLE III.  THE TRUTH TABLE OF A DATA BUS WITH 4 * 1 MUXS 

 

 

 

 
Fig. 5.  Data bus with 4 * 1 MUXs. 

 

B. Implementing  x  y z P (x, y, z) 

 
Firstly, in order to understand how the proposition 

xyz P(x, y) is implemented, we should find its 
equivalence when U = {0,1} as follows: 

Formula 2. 

x y z P (x , y , z) ⇔  

[ P ( 0,0,0 ) ˄ ¬P (0,0 ,1) ˄ ¬P (0,1,0) ˄ ¬P (0,1,1) ˄  

¬P (1, 0,0) ˄ ¬P (1,0,1) ˄ ¬P (1, 1 , 0 ) ˄ ¬P (1,1,1) ] 

˅ 

 

[¬ P (0,0,0 ) ˄ P (0,0,1 ) ˄ ¬P (0,1,0 ) ˄ ¬P (0 ,1,1 ) ˄ 

 ¬P ( 1,0 , 0 ) ˄ ¬P (1,0,1 )  ˄ ¬P (1, 1,0 ) ˄ ¬P (1,1,1) ]  

˅ 

[¬ P ( 0,0,0 ) ˄ ¬P (0,0,1) ˄ P (0,1,0 ) ˄ ¬P (0,1 ,1 ) ˄ 

 ¬P (1 ,0 , 0 ) ˄ ¬P (1,0,1 ) ˄ ¬P (1,1, 0 ) ˄¬P (1,1,1 ) ]  

˅ 

[¬P (0,0,0) ˄ ¬P (0,0,1) ˄ ¬P (0,1,0) ˄ P (0,1,1) ˄  

¬ P (1,0,0) ˄ ¬P (1,0,1) ˄ ¬P (1,1,0) ˄ ¬P (1,1,1) ]  

˅ 

[ ¬P (0,0,0) ˄ ¬P (0,0,1) ˄ ¬P (0,1,0) ˄ ¬P (0,1,1) ˄ P (1,0,0) 
˄ ¬P (1,0,1)  ˄ ¬ P (1,1,0 ) ˄ ¬P (1,1,1 ) ]  

˅ 

[¬P (0,0,0) ˄ ¬P (0,0,1) ˄ ¬P (0,1,0) ˄¬P (0,1,1) ˄ ¬P (1,0,0) 
˄ P (1,0,1)  ˄ ¬P (1,1,0 ) ˄ ¬P (1,1,1) ]  

˅ 

[¬P (0,0, 0) ˄ ¬P (0,0,1) ˄ ¬P (0,1,0) ˄¬P (0,1,1) ˄¬P (1,0,0) 
˄ ¬P (1,0,1) ˄ P (1,1,0) ˄ ¬P (1,1,1) ]  

˅ 

[¬P (0,0,0 ) ˄ ¬P (0,0,1) ˄ ¬P (0,1,0 ) ˄ ¬P(0,1,1) ˄  

¬P (1,0,0) ˄  ¬ P (1,0,1)  ˄ ¬P (1,1,0) ˄ P (1,1,1 ) ] 

The equivalence in Formula 2 means that for only one 
value of x, only one value of y and only one value of z,    
P(x, y, z) is true. When this is satisfied, only one bracket will 
be true and all other brackets will be false. The (˅) between 
all the brackets will result in a true value for the proposition.  
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To implement xyz P (x, y, z) in the digital circuits, 
a  3 * 8 decoder is used for the implementation, which  is a 
circuit with 3 inputs (x, y, z) and 8 outputs (D0, D1, D2, D3, 
D4,  D5,  D6, D7). Only one output is active at any given time 

which is similar to the meaning of x yz P (x, z, y)        
( only one value of x, one value of y and one value of z 

satisfy the proposition).  As a result, x y z P (x , y, z) 
is implemented by a 3 * 8 decoder.  The truth table of a 3* 8 
decoder is  presented in Table IV, where D0, D1, …, D7  
correspond  P(0,0,0), P(0,0 ,1), …, P(1,1,1) respectively.  
The circuit for a 3*8 decoder is not illustrated, because it is 
based on the same idea as in a 2*4 decoder.  

 

TABLE IV. THE TRUTH TABLE OF A 3 * 8 DECODER 

D7 D6 D5 D4 D3 D2 D1 D0 Z Y X 
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It can also be implemented using a data bus with 8 * 1 
MUXs, which have three selection lines (  S2 , S1, S0 ), and 8 
registers (RA, RB, RC, RD, RE, RF, RG, RH). Only one 
register must be selected to the bus lines at any given time, 
this is the same as unique existential quantifier where only 
one value of x, only one value of y and only one value of z 
satisfy the proposition. The truth table for the suggested bus 
is presented in Table V, where RA, RB, …, RH  correspond 
to  P(0,0,0), P(0,0,1), …, P(1,1,1) respectively.  The circuit 
for the data bus with 8*1 MUXs is not illustrated, because it 
is based on the same idea as in the data bus with 4*1 MUXs.  

  

TABLE V. THE TRUTH TABLE OF A DATA BUS WITH 8 * 1 MUXS 
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III. CONCLUSION AND FUTURE WORKS 

In this paper, an implementation of the unique existential 
quantifier in some digital circuits was presented. It was 

shown that x y P (x, y) is implemented by a 2 * 4  
decoder and in a data bus with 4 * 1 MUXs.  Furthermore,   

x y z P (x, y, z)  is implemented by a 3 * 8 decoder 
and in a data bus with 8 * 1 MUXs.  As a result, we can 
conclude that the unique existential quantifier with n 
variables can be implemented by a ( n * 2

n
  ) decoder and in 

a data bus with ( 2
n
 * 1  ) MUXs. In future, we will 

investigate other new applications for the quantifiers.      
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