
2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)

978-1-5386-7942-5/19/$31.00 ©2019 IEEE

Implementing the Unique Existential Quantifier in

Digital Logic Design

1st Nesreen A. Hamad

Department of Computer Science. Faculty of Science and

Information Technology

Al-Zaytoonah University of Jordan

Amman, Jordan

nesreen.hamad@zuj.edu.jo

 2nd Maher A. Nabulsi

Department of Computer Science. Faculty of Science and

Information Technology

Al-Zaytoonah University of Jordan

Amman, Jordan

nabusli@zuj.edu.jo

Abstract— Nowadays, digital circuits are widely applied in

different equipment such as computers, cell phones, digital

watches, etc. As a result, new approaches to implement digital

circuits are needed. Applying predicate logic is one way for

achieving that. In particular, quantification (which is a

commonly studied topic in predicate logic) can be used in the

translation of a given logical statement which would assist in

designing digital circuits. As a result, this paper proposes a

new approach to implement the unique existential quantifier in

digital circuits.

Keywords—Predicate Logic, Quantifiers, Digital logic

implementation, Decoder circuit, Data Bus, Multiplexer

I. INTRODUCTION

Digital Logic is considered the backbone of electronic
systems such as robotics, computers, cell phones and other
electronic applications. Indeed, logic plays a significant role
in the design, programming, and use of computers. In digital
logic, one of the main goals is to design digital circuits with
less cost and less power usage [1],[2]. Applying discrete
mathematics would assist in achieving this goal and would
help in finding other alternatives in designing digital circuits.
In particular, digital circuits may be represented with logical
formulas by using propositional logic and its extension
“predicate logic” [3]. Along with designing digital circuits,
predicate logic is used for reasoning about programs,
dynamic systems and used in building artificial intelligence
reasoning systems [4].

The correspondence between digital logic circuits and
propositional logic has been known for a long time. Such a
relation can be summarized in Table I.

TABLE I. DIGITAL LOGIC CIRCUITS AND PROPOSITIONAL LOGIC

CORRESPONDENCE

Propositional Logic Digital design

Propositional connective

( ,  , ¬)

Logic gate

(and, or , not)

Formula Circuit

Truth value Voltage level

In propositional logic, the term “proposition” is defined
as an assertion that is either true or false. On the other hand,
a predicate is defined as an assertion that contains a finite
number of variables and becomes a proposition when
specific values are substituted for the variables from the

domain of the predicate (set of all values that may be
substituted in place of the variable) or when these variables
are bound using quantifiers [5]. Quantification is a concept
that specifies the quantity of cases in the domain that
satisfies an open formula [6]. There are three forms of

quantification: the universal quantifier (), the existential

quantifier () and the unique existential quantifier ().
The meaning of each quantifier is as follows:

 x P(x) means: " for all values of x, the predicate
P(x) is true ".

 x P(x) means: " for some values of x (at least one
value), the predicate P(x) is true " .

 x P(x) means: " for one and only one value of x,
the predicate P(x) is true ".

The implementation of the universal, existential and
unique existential quantifiers in digital logic design based on
their meanings is as follows:

Let U represents the universe of discourse of the
predicate P (x), or in another word the domain of the
predicate. For example, if U = { 1, 2, 3 }, then:

 x P (x) is true if [P (1) ˄ P (2) ˄ P (3)] is true,
this can be implemented with multiple-input AND-
gate [7] as shown in Fig. 1.

Fig. 1. Multiple-input AND-gate.

 x P (x) is true if [P (1) ˅ P (2) ˅ P (3)] is true,
this can be implemented with multiple-input OR-
gate [7] as shown in Fig. 2.

Fig. 2. Multiple-input OR-gate.

2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)

465

 x P (x) is true if [[P (1) ˄ ¬ P (2) ˄ ¬ P (3)]

 ˅ [¬ P (1) ˄ P (2) ˄ ¬ P (3)]

 ˅ [¬ P (1) ˄ ¬ P (2) ˄ P (3)]]

is true, this can be implemented with two-level AND-OR
gates as shown in Fig. 3.

Fig. 3. Two-level AND-OR gates.

Where in the above figures: x, y and z represent P (1),
P (2) and P (3) respectively, and x′, y′ and z′ represent
¬ P (1), ¬ P (2) and ¬ P (3) respectively.

An application for x p(x) is presented in [8], where the

relation between the x p(x) and the X-OR was presented
and had shown that the unique existential quantifier is equal
to the X-OR only when the number of elements in the
universe is two, which can be used to implement a one-
selecting variant of a transition system. However, they are
not equal when the number of elements in the universe is
more than two.

In this paper, another alternative for implementing the
unique existential quantifier with two and more variables in

the predicate (x y P (x ,y), x y z P (x, y, z), etc.) is
presented which can be applicable and beneficial for other
applications.

The rest of this paper is organized as follows: Section II
presents our proposed method. The drawn conclusions and
the planned future work are discussed in Section III.

II. METHODOLOGY

In this section, some definitions that are related to our

work are presented. Then, our proposed implementations of

x y P (x, y) and x y z P (x, y, z) are discussed.

Definition 1. A (n * 2
n
) decoder is a circuit with n inputs,

and 2
n
 outputs, where only one output is active at any given

time [1].

Definition 2. A (2
n
 * 1) Multiplexer (MUX) is a circuit

with 2
n
 inputs and a single output, where n is the number of

selection lines (S0,S1,S2,…, Sn), that select which input to
send to the output [1].

Definition 3. A data bus is a communication system that is
used to transfer data between registers in a multiple-register
configuration. It can be constructed with MUXs or with
three-state buffers [1].

A. Implementing  x  y P (x, y)

In predicate logic, a domain (universe of discourse) must
be chosen for each predicate. Thus, in this paper, the domain
that is chosen is the set of 0 and 1, as these two numbers
represent the binary digits of the computer.

Firstly, in order to understand how the proposition:

xy P(x, y) is implemented, we should find its
equivalence when U = {0, 1} as follows:

Formula 1.

x y P (x , y) ⇔

[P (0 , 0) ˄ ¬ P (0 , 1) ˄ ¬ P (1 , 0) ˄ ¬ P (1 , 1)]

˅ [¬ P (0 , 0) ˄ P (0 , 1) ˄ ¬ P (1 , 0) ˄ ¬ P (1 , 1)]

˅ [¬ P (0 , 0) ˄ ¬ P (0 , 1) ˄ P (1 , 0) ˄ ¬ P (1 , 1)]

˅ [¬ P (0 , 0) ˄ ¬ P (0 , 1) ˄ ¬ P (1 , 0) ˄ P (1 , 1)]

The equivalence in Formula 1 means that for only one
value of x and only one value of y, P(x, y) is true. When this
is satisfied, only one bracket on the right-hand side of the
equivalence will be true and all other brackets will be false.
The OR (˅) between all the brackets will result in a true
value for the proposition.

On the other hand, to implement x y P (x , y) in the
digital circuits , a 2 * 4 decoder is used, which is a circuit
with 2 inputs (x , y) and 4 outputs (D0 , D1 , D2 , D3), where
only one output is active at any given time , which is similar

to the meaning of x y P (x , y) (only one value of x and
one value of y satisfy the proposition). As a result,

x y P (x, y) is implemented by a 2 * 4 decoder. The
truth table of a 2 * 4 decoder is presented in Table II.

TABLE II. THE TRUTH TABLE OF A 2 * 4 DECODER

From Table II, D0 = x' y', D1 = x' y, D2 = x y', D3 = x y,
where x' is the negation of x and y' is the negation of y. The
circuit of a 2 * 4 decoder is presented in Fig. 4.

Fig. 4. 2* 4 decoder’s circuit.

D3 D2 D1 D0 Y X

0

0

0

1

0

0

1

0

0

1

0

0

1

0

0

0

 0

1

0

1

0

0

1

1

2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)

466

As a result, D0, D1, D2, D3 correspond to P(0,0), P(0,1),

P(1,0), P(1,1) respectively, which means that x y P (x, y)
is implemented in a 2*4 decoder circuit.

 Another implementation for x y P (x, y) can be done
using a data bus with 4 * 1 MUXs, which have two selection
lines (S1, S0), and 4 registers (RA, RB, RC, RD) that are the
inputs to the MUXs. Only one register must be selected to
the bus lines, while the other registers must be inhibited from
the bus lines depending on the values of the selection lines,
this is the same as unique existential quantifier where only
one value of x and only one value of y satisfy the
proposition. The truth table for the suggested data bus is

shown in Table III and its circuit with four registers each of
four bits is presented in Fig. 5, where RA, RB, RC, RD
correspond to P(0,0), P(0,1), P(1,0), P(1,1) respectively.

TABLE III. THE TRUTH TABLE OF A DATA BUS WITH 4 * 1 MUXS

Fig. 5. Data bus with 4 * 1 MUXs.

B. Implementing  x  y z P (x, y, z)

Firstly, in order to understand how the proposition

xyz P(x, y) is implemented, we should find its
equivalence when U = {0,1} as follows:

Formula 2.

x y z P (x , y , z) ⇔

[P (0,0,0) ˄ ¬P (0,0 ,1) ˄ ¬P (0,1,0) ˄ ¬P (0,1,1) ˄

¬P (1, 0,0) ˄ ¬P (1,0,1) ˄ ¬P (1, 1 , 0) ˄ ¬P (1,1,1)]

˅

[¬ P (0,0,0) ˄ P (0,0,1) ˄ ¬P (0,1,0) ˄ ¬P (0 ,1,1) ˄

 ¬P (1,0 , 0) ˄ ¬P (1,0,1) ˄ ¬P (1, 1,0) ˄ ¬P (1,1,1)]

˅

[¬ P (0,0,0) ˄ ¬P (0,0,1) ˄ P (0,1,0) ˄ ¬P (0,1 ,1) ˄

 ¬P (1 ,0 , 0) ˄ ¬P (1,0,1) ˄ ¬P (1,1, 0) ˄¬P (1,1,1)]

˅

[¬P (0,0,0) ˄ ¬P (0,0,1) ˄ ¬P (0,1,0) ˄ P (0,1,1) ˄

¬ P (1,0,0) ˄ ¬P (1,0,1) ˄ ¬P (1,1,0) ˄ ¬P (1,1,1)]

˅

[¬P (0,0,0) ˄ ¬P (0,0,1) ˄ ¬P (0,1,0) ˄ ¬P (0,1,1) ˄ P (1,0,0)
˄ ¬P (1,0,1) ˄ ¬ P (1,1,0) ˄ ¬P (1,1,1)]

˅

[¬P (0,0,0) ˄ ¬P (0,0,1) ˄ ¬P (0,1,0) ˄¬P (0,1,1) ˄ ¬P (1,0,0)
˄ P (1,0,1) ˄ ¬P (1,1,0) ˄ ¬P (1,1,1)]

˅

[¬P (0,0, 0) ˄ ¬P (0,0,1) ˄ ¬P (0,1,0) ˄¬P (0,1,1) ˄¬P (1,0,0)
˄ ¬P (1,0,1) ˄ P (1,1,0) ˄ ¬P (1,1,1)]

˅

[¬P (0,0,0) ˄ ¬P (0,0,1) ˄ ¬P (0,1,0) ˄ ¬P(0,1,1) ˄

¬P (1,0,0) ˄ ¬ P (1,0,1) ˄ ¬P (1,1,0) ˄ P (1,1,1)]

The equivalence in Formula 2 means that for only one
value of x, only one value of y and only one value of z,
P(x, y, z) is true. When this is satisfied, only one bracket will
be true and all other brackets will be false. The (˅) between
all the brackets will result in a true value for the proposition.

RD RC RB RA S0 S1

0
0
0
1

0
0
1
0

0
1
0
0

1
0
0
0

 0
1
0
1

0
0
1
1

2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)

467

To implement xyz P (x, y, z) in the digital circuits,
a 3 * 8 decoder is used for the implementation, which is a
circuit with 3 inputs (x, y, z) and 8 outputs (D0, D1, D2, D3,
D4, D5, D6, D7). Only one output is active at any given time

which is similar to the meaning of x yz P (x, z, y)
(only one value of x, one value of y and one value of z

satisfy the proposition). As a result, x y z P (x , y, z)
is implemented by a 3 * 8 decoder. The truth table of a 3* 8
decoder is presented in Table IV, where D0, D1, …, D7
correspond P(0,0,0), P(0,0 ,1), …, P(1,1,1) respectively.
The circuit for a 3*8 decoder is not illustrated, because it is
based on the same idea as in a 2*4 decoder.

TABLE IV. THE TRUTH TABLE OF A 3 * 8 DECODER

D7 D6 D5 D4 D3 D2 D1 D0 Z Y X

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

It can also be implemented using a data bus with 8 * 1
MUXs, which have three selection lines (S2 , S1, S0), and 8
registers (RA, RB, RC, RD, RE, RF, RG, RH). Only one
register must be selected to the bus lines at any given time,
this is the same as unique existential quantifier where only
one value of x, only one value of y and only one value of z
satisfy the proposition. The truth table for the suggested bus
is presented in Table V, where RA, RB, …, RH correspond
to P(0,0,0), P(0,0,1), …, P(1,1,1) respectively. The circuit
for the data bus with 8*1 MUXs is not illustrated, because it
is based on the same idea as in the data bus with 4*1 MUXs.

TABLE V. THE TRUTH TABLE OF A DATA BUS WITH 8 * 1 MUXS

RH RG RF RE RD RC RB RA S0 S1 S2

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

III. CONCLUSION AND FUTURE WORKS

In this paper, an implementation of the unique existential
quantifier in some digital circuits was presented. It was

shown that x y P (x, y) is implemented by a 2 * 4
decoder and in a data bus with 4 * 1 MUXs. Furthermore,

x y z P (x, y, z) is implemented by a 3 * 8 decoder
and in a data bus with 8 * 1 MUXs. As a result, we can
conclude that the unique existential quantifier with n
variables can be implemented by a (n * 2

n
) decoder and in

a data bus with (2
n
 * 1) MUXs. In future, we will

investigate other new applications for the quantifiers.

REFERENCES

[1] M. Mano, C. Kime and T. Martin, Logic and Computer Design

Fundamentals, Global Edition, 5th ed. NOIDA: Pearson Education
Limited, 2016.

[2] J. Gibson, Electronic logic circuits, 3rd ed. Abingdon, Oxon:
Routledge, 2011.

[3] T. Jenkyns and B. Stephenson, Fundamentals of Discrete Math for
Computer Science: A Problem-Solving Primer, 2nd ed. Cham:
Springer International Publishing, 2018.

[4] C. Hall and J. O'Donnell, Discrete mathematics using a computer,
2nd ed. London: Springer-verlag, 2013.

[5] M. Nabulsi and N. Hamad, “Proofs of Implications Involving
Quantifiers Distribution Over Logical Operators”, Journal of
Theoretical and Applied Information Technology, vol. 95, no. 12, pp.
2824 -2829, 2017.

[6] K. H. Rosen, Discrete mathematics and its applications, 7th ed. New
York: McGraw-Hill, 2012

[7] M. Nabulsi, “Some Propositions, Quantified Assertions and their uses
in Computer Hardware Design”, An-Najah University Journal for
Research - A, vol. 14, pp. 157 – 168, 2000.

[8] M. Nabulsi and A. Abdalla, " The relationship between Exclusive- or
and the Unique Existential Quantifier ", Journal of Computer Science,
vol. 4, no. 9, pp. 741 – 743, 2008.

2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)

468

