

Copyright © 2019 Tech Science Press CMES, vol.119, no.3, pp.409-425, 2019

CMES. doi:10.32604/cmes.2019.04681 www.techscience.com/cmes

An Automated Approach to Generate Test Cases From Use Case
Description Model

Thamer A. Alrawashed1, *, Ammar Almomani2, Ahmad Althunibat1 and

Abdelfatah Tamimi1

Abstract: Test complexity and test adequacy are frequently raised by software
developers and testing agents. However, there is little research works at this aspect on
specification-based testing at the use case description level. Thus, this research proposes
an automatic test cases generator approach to reduce the test complexity and to enhance
the percentage of test coverage. First, to support the infrastructure for performing
automatic, this proposed approach refines the use cases using use case describing
template and save it in the text file. Then, the saved file is input to the Algorithm of
Control Flow Diagram (ACFD) to convert use case details to a control flow diagram.
After that, the Proposed Tool of Generating Test Paths (PTGTP) is used to generate test
cases from the control flow diagram. Finally, the genetic algorithm associated with
transition coverage is adapted to optimize and evaluate the adequacy of such test cases. A
money withdrawal use case in the ATM system is used as an ongoing case study.
Preliminary results show that the generated test cases achieve high coverage with an
optimal test case. This automatic test case generation approach is effective and efficient.
Therefore, it could promote to use other test case coverage criteria.

Keywords: Software testing, test cases, software specifications, genetic algorithm.

1 Introduction
Software testing is considered an essential activity of the software development process. The
main goal of this activity is to produce high-quality software by executing the software with
a good test case to detect bugs, faults, and failure. However, the process of generating such
test cases is considered as a complex process, because of the effort, time, and the cost of
creating and validating a large number of test cases that require testing software. Other
obstacles faced the software testing, are the accuracy of software, which requires a large
number of test cases and the adequacy of such test cases [Septian, Alianto and Gaol (2001);
Kalaee and Rafe (2016)]. Therefore, effective and efficient testing approaches (e.g.,
automatic approaches) have an essential role in generating test cases to save time, effort, and
cost and to provide more accurate results than manual testing ways that are affected by
human errors in which improving the quality of test data is done.

1 Department of Software Engineering, Alzaytoonah University of Jordan, Airport Street, Amman, Jordan.
2 IT-department, Al-Huson University College, Al-Balqa Applied University, P. O. Box, Salt, Jordan.
* Corresponding Author: Thamer A. Alrawashed. Email: thamer.r@zuj.edu.jo.

mailto:*thamer.r@zuj.edu.jo

410 Copyright © 2019 Tech Science Press CMES, vol.119, no.3, pp.409-425, 2019

Test cases could be generated from the source code (code-based test generation). The test
criterion is applied to the source code to produce test requirements, e.g., if the criterion of
state testing is applied, the test cases must cover each statement in the source code. The
formal and informal specification, which already used to write the source code, is another
source for the test cases generation (specification-based test generation). Interestingly, the
coverage criteria reveal that execution of the test T on the program ‘P’ produces the
observed behavior (actual output), which should later compared with the expected
behavior (expected output). The expected behavior is created based on some knowledge
from the specification [Offutt, Xiong and Liu (1999)]. Substantially, the specification is
used to produce the source code and to conduct software testing.
The significance of the specification-based test is that the test cases could be produced
earlier in the life cycle of software development. Thus, the test is executed before the
software development finishes, allowing the software engineer to find the consistencies
and ambiguities in the software specifications. Therefore, the specifications could be
improved before the source code writing.
The specification-based testing provides many advantages over the code-based testing
including the specifications could be used as a guide to design the software testing,
reducing the cost of software testing so the cost of software development, and helping the
software engineers to discover the problems with the specifications themselves. The
specification-based testing also saves the time and resources, allowing the software
testing to be performed in the earlier stage of the development life cycle [Ribeiro, Pereira,
Rettberg et al. (2018)].
The Unified Modeling Language (UML) is considered the most common specifications
standard for software specifications and design. Therefore, many research works
concentrate on generating test cases from the UML [Ribeiro, Pereira, Rettberg et al.
(2018); Shanthi and MohanKumar (2012); Meziane, Athanasakis and Ananiadou (2008)].
However, the UML is not sufficient to specify the complex and strict software
specification. It offers its components (e.g., use case diagram) as graphical diagrams that
are informal and could variously be explicated, so other textual language needed to
describe such components [Satpathy, Harrison, Snook et al. (2001); Schlauderer and
Overhage (2018); Kaczmarek-Heß and de Kinderen (2017); van Eck, Sidorova and van
der Aalst (2018)]. In this respect, various textual templates have been developed for
software specifications especially to structure the use case description, e.g., use case
description template in the Rational Unified Process (RUP), and Cockburn’s use case
description template [Booch, Jacobson and Rumbaugh (1999); Cockburn (2000); Somé
(2009)]. One of the advantages of these templates that supports the automated generation
of other behavior models for example activity diagram, sequence diagram, statechart, as
well as test cases [Somé (2009)].
Many studies try to generate the test cases from the software specifications [Ribeiro,
Pereira, Rettberg et al. (2018); Khurana, Chhillar and Chhillar (2016); Teixeira and e
Silva (2017); Shanthi and MohanKumar (2012)]. However, there is a lack of studies to
generate the test cases from a formalized model of use cases which is suited to early
requirements phases; to apply the acceptable software test coverage criteria in which the
adequacy and reliability of such test cases are measured; and to provide a fully automated

An Automated Approach to Generate Test Cases 411

and detailed test cases generation approach.
For this end, the primary goal of this research work is to generate test cases from the
software specifications. An immediate goal is to develop a mechanistic procedure to
generate the test cases from use case description model. While the long-term goals are to
develop an automatic tool to generate and optimize test cases from the use case
description model based on the testing coverage criteria (transition coverage criteria) and
a heuristic search algorithm (genetic algorithm). This approach not only provides
software developers and test agents with an effective and efficient test generation
technique but also with an effective regression test technique, since the highest priority
(optimal) test cases are executed earlier in the regression test process than lower priority
test cases. Additionally, the proposed approach will provide researchers with a tool that
could be used in their future works to generate test cases and prioritization autumnally.
The rest of the study is organized as follows: section two presents the related works. In
section three, the proposed approach is addressed. Section four explains the
experimentation and research’s results. Section five presents an evaluation of the
proposed approach. Finally, conclusion and future work are presented in section six.

2 Related work
Contemporary research works had been done to propose tools or techniques to generate
test cases from software specifications based on the UML [Teixeira and e Silva (2017);
Kalaee and Rafe (2016); Khurana, Chhillar and Chhillar (2016); Mohalik, Gadkari,
Yeolekar et al. (2014); Bazi, El Khoury and Srour (2017)].
Tripathy et al. [Tripathy and Mitra (2013)] have proposed an approach to generate test
cases from UML sequence and activity diagrams. Both diagrams are converted to the
sequence graph and activity graph respectively and then the graphs integrated into one
graph known as the system graph. The system graph is converted to the form of test cases
and then traversed by the first depth search algorithm.
Khurana et al. [Khurana, Chhillar and Chhillar (2016)] presented an approach to generate
the test cases from a use case, sequence, and activity diagram. Each diagram was
converted to the graph and then all graphs integrated into a system graph. Similar to the
work of (Abinash) the system graph was mutated to the test cases. Although this study
used the genetic algorithm to optimize generated test cases, the diagrams, which used to
generate the test cases, do not provide enough details like the use case description.
Additionally, the study has not automated the process of test cases generation; and has
not evaluated the proposed approach.
Sarma et al. [Sarma, Kundu and Mall (2007)] proposed an approach to generate the test
cases from the sequence, use case, and sequence diagrams. These diagrams mutated to
the system graph. However, the mutation process was not mentioned and the generated
test cases were not optimized. Teixeira et al. [Teixeira and e Silva (2017)] presented an
automatic approach to generate test cases from an activity diagram. This proposed
approach aims to integrate modeling, coding, and testing stage. One of the weaknesses of
this study, the activity diagram that was used to generate the test cases does not provide
enough details to generate such test cases. The generated test cases also have not been
optimized and evaluated.

412 Copyright © 2019 Tech Science Press CMES, vol.119, no.3, pp.409-425, 2019

Another work presents an approach to generate the test cases from the combination of
state chart and sequence diagrams. To optimize the generated test cases, the authors used
a hybrid bee colony algorithm [Sahoo, Nanda, Mohapatra et al. (2017)]. This study also
does not provide a clear automatic approach to generate test cases and does not offer any
method to evaluate the proposed approach.
All research works have been used in the UML diagrams to generate the test cases. This
comes on the opposite of conclusion that, UML diagrams do not provide enough
information to describe a phenomenon, so the proprietary textual notations used. In this
sense, the textual notations are used to express the control flow and exceptions, which
dependable for all types of white box testing [Riebisch, Philippow and Götze (2002)].
Additionally, as far as, there is no research work provides a fully automatic and evaluated
approach to generate the test cases from UML models or to optimize the test cases that
automatically generated from UML models. Finally, the previous research works
proposed general tools and methods that are not associated with acceptable software test
coverage criteria. Thus, this study proposed an automatic approach to generate and
optimize the test case from the use case description model using the generic algorithm.
This approach is associated with transition coverage criteria, to evaluate the adequacy of
generated test cases.

3 Proposed approach
This section proposes an automatic approach to generate and optimize the test cases from the
model of use case description using a genetic algorithm and transition coverage criteria. This
approach includes four stages including 1) refining use cases 2) automatically converting the
use case description to the control flow diagram 3) automatically generating the test cases
from the control flow 4) optimizing and evaluating the adequacy of generated test cases by
adopting the genetic algorithm to be associated with transition coverage criteria. Fig. 1
presents the proposed approach of this research work.

Figure 1: An approach to generate test cases from the use case description model
(AGTCUCM)

An Automated Approach to Generate Test Cases 413

3.1 Stage 1: refining use cases
The use case is defined as a simplified overview of the required software functionality.
Beyond simplicity, the use cases usually described as a diagram. However, this diagram
helps to give an overview of the use case, but the only secondary in importance to the
textual description [Riebisch, Philippow and Götze (2002)] which provides a little
information of the actual use case. Thus, in order to obtain a deep understanding of such
use cases, they need to be refined textually.
Cockburn [Cockburn (1999)] proposed a well-suited template for textual refining use
cases. This template aims to create a complete description of a use case by involving all
the relevant details including name, goal, actors, pre-conditions, post-conditions,
invariant, main success scenario, variations, extensions, and included use cases. Tab. 1
presents this textual notation.

Table 1: Use case description model

Name use case’s title.
Goal providing the main goal of the use case
Actors stakeholders who perform the use case.
Preconditions the system states to be achieved before the use case could be

performed.
Postconditions the system’s states could be in after “the use case performed.
Invariants the system state that holed when and during the course of the use

case.

Main Success
Scenario

Characterize the use case’s objectives could be met as a set of
action steps. Staring with the step triggering the use case.

Variations An alternate set of action steps differ from extensions steps. It is
such normal parameters for the use case. Variations could be
assigned by reference to the particular step’s number in the
narrative of the main scenario and referring the step with one or
more alternative steps. Unless otherwise expressly stated, the
variations change the questions and continue steps in the main
scenario to the following steps. Nested variations are assigned by
further sub-references.

Extensions Use cases extend to describe how and when the system response to
the exceptional circumstances

Included use cases Describing a set of use cases that are required to show the
behavior of the included use case

Source: [Cockburn (1999)]

The template details are filled in for each use case in software. Such details especially the
details in both sections Main Success Scenario and Extensions are very useful for
defining the details of the test approaches such as test input and observable behavior.
These details will be saved in a text file. To convert the details to the control flow

414 Copyright © 2019 Tech Science Press CMES, vol.119, no.3, pp.409-425, 2019

diagram, the text file will be used as input to the Algorithm of Control Flow Diagram
(ACFD). In order to write a solid main success scenario, a software engineer should
break it down into a set of numbered steps [Cockburn (1999)]. That makes it much easier
to be converted to the control flow.

3.2 Stage 2: automatically converting the use cases to the control flow diagram
The main objective of this stage is to propose an algorithm and its tool to automatically
create the control flow diagram from relevant details of a use case that represented in the
main success scenario and extension sections. These details consist of all scenarios of
such a use case and the dependency of each activity. The proposed algorithm (ACFD)
represents each step (statement) in the scenario with a node (N) and then uses Edges (E)
to connect such nodes to create the control flow diagram as a binary tree. Since each node
considers as a parent of the next node and the current node as a child of the previous node.
The node could have two children if it represents a conditional statement. Each node
comprises a label with textual stereotype represents each step in the use case scenario.
The algorithm assigns a weight value for each edge to be used later in the adapted genetic
algorithm to optimize and prioritize the generated test cases see Fig. 3 and Example 1.
It is worth mentioning that, the scenario steps correspond to the source code statements
such as input, output, and processing statements [Offutt, Xiong and Liu (1999)]. Once the
step consists of a conditional statement, the proposed tool splits the statement (step) into
two or more statements. The first statement involves the condition itself; the second one
involves the statement that runs if a logical expression of the condition is true, and the third
one includes the statement that runs if a logical expression of the condition is false. In this
case, the proposed algorithm creates a parent node with two children nodes. The parent
node represents the condition statement and the children present true and false statements.

Example 1
Suppose that the main success scenario of use case description model includes the
following scenario as numbered bullets 1) Input two integers 2) Calculate the summation
of these integers 3) And then display the result. These bullets are converted to the control
flow as in Fig. 2.

Figure 2: Control Flow Diagram, for a program with a set of nodes N and set of Edges E

An Automated Approach to Generate Test Cases 415

Figure 3: High-level description of the Algorithm of Control Flow Diagram (ACFD), for
a program with a set of Statements S and Conditions C; set of Nodes N; set of Edges E
and Weight W for each edge

3.3 Stage 3: automatically generating test cases from the control flow graph
This stage aims to propose a tool to generate the test paths from the control flow diagram,
where the final set of the test cases result from test paths. The Proposed Tool of
Generating Test Paths (PTGTP) declares a method to distinguish each path in the graph.
This method receives two parameters including the node where the path starts from and
an array list. If this node is not null, it will be added to the array list. Then the method
will be invoked recursively for left and right nodes (children) until reaching the end of a
path it will be stored in an array list of lists (paths) see Fig. 4.

Figure 4: Proposed Tool of Generating Test Paths (PTGTP)

416 Copyright © 2019 Tech Science Press CMES, vol.119, no.3, pp.409-425, 2019

 3.4 Stage 4: optimizing the test cases
The strategy which applied to generate the test paths, influence directly the quality of test
cases. In this respect, the test cases should be adequate to test the software. Thus testing
agents should use adequacy criteria to decide whether the systems have adequately tested
for a specific test criterion [Frankl and Weyuker (1988)]. The adequacy is evaluated
based on coverage that defined by many criteria. These criteria have been categorized
into code-based testing criteria, specification-based testing criteria, and model-based
testing criteria. Definitely, the proposed approach adapts the model-based testing which
is an effective combination between of code-based testing and specification-based testing.
The coverage criteria of this software testing include four levels: the transition coverage
level, the full predicate coverage level, the transition-pair coverage level, and the
complete sequence level. All levels could be used, but do a benefit/cost tradeoff one of
these levels could be applied [Offutt, Xiong and Liu (1999)]. Because of the transition
coverage, level requires a fewer test case than other levels especially the full predicate
coverage level; it adopted in this research. The transition coverage intends to verify all
edges in the control flow graph. Its result is a ratio between the traversed edges and all
edges in the graph. This criterion guarantees that each edge in the graph should traverse
at least one [Malhotra and Garg (2011)].
One of the proposed approach targets is to optimize and prioritize the test cases by
achieving maximum transaction coverage. To do so an evolutionary algorithm (genetic
algorithm) should be associated with the transition coverage’s criteria.
The Genetic Algorithm (GA) is a heuristic search algorithm used to solve various
optimization problems based on the evolutionary ideas of natural selection and genetics
[Malhotra and Garg (2011)]. In terms of inputs change, the genetic algorithms are more
robust than other Artificial intelligence (AI) systems. They also provide significant
benefits in searching large state-space over other optimization techniques [Sumalatha
(2013)]. Genetic algorithm finds optimal solutions by applying various phases namely:
initialization, evaluation, selection, crossover, and mutation.

3.4.1 Initialization phase
In the initialization phase, the initial population of individuals or chromosomes is
generated. The individuals are a set of input variables’ values, which obtained from the
input domain. The size of each depends upon the number and range of the input values.
These initial values of individuals are generated randomly or seeding depending on the
tester knowledge.

3.4.2 Evaluation phase
The fitness value of each individual is calculated in the evaluation phase. The fitness
assesses the goodness of each individual relative to the global optimum solution. The
individuals with high fitness values are more near the optimum solution over these with
fewer fitness values.

3.4.3 Selection phase
Selection phase is replication some individuals from the current population based on their

An Automated Approach to Generate Test Cases 417

fitness values. This means only the best individuals are transmitted from the current
generation to the next generation. The output of this phase is a mating pool that involves
the individuals that mate with together to generate the offspring.

3.4.4 Crossover phase
Crossover phase is the process of a random exchange of genetic material between two.
Individuals that governed by the crossover site. Two individuals are selected from the
mating pool and then mating to obtain the offspring. Consequently, these individuals
exchange their string as determined by the crossover site.

3.4.5 Mutation
Mutation refers to a random change of a bit in an individual, for example, flipping 0 to 1
or vice versa [Malhotra and Garg (2011); Holland and Goldberg (1989)].
In order to connect this stage with the stage three, after running the proposed tool in stage
three and generate the test paths, the Algorithm of Test Paths Optimization (ATPO) Fig.
5 takes all such test paths as the first population. Each test path in this population
represents a chromosome. The fitness value for each chromosome is calculated using Eq.
(1), where the x=number of transitions (number of edges) in each path (chromosome) and
then the probability of each chromosome calculated using Eq. (2). This algorithm also
involves the fitness calculation module which responsible for randomly generating the
initial population of chromosomes, receiving the fitness value (comparing with the sum
of edges in the graph) of each chromosome from the previous module, running crossover
and mutation operations to produce the new population. The steps of this algorithm
repeated until a path that achieves maximum transition coverage is detected.

Figure 5: High level of description of an Algorithm of Test Paths Optimization (ATPO),
for a problem withthe function of fitness calculation F(x); the population of each path x;
the function of probability calculation P(i)

418 Copyright © 2019 Tech Science Press CMES, vol.119, no.3, pp.409-425, 2019

4 Experimentation
4.1 Case studies
In order to demonstrate the feasibility and efficiency of the proposed automatic approach,
three small use cases as case studies have been adapted including: the ATM system
especially money withdrawal use case description used as an ongoing example in this
paper, a file transfer use case in the File Transfer Protocol (FTP) system, and enter
meeting use case in the virtual meeting system [Nebut, Fleurey, Le Traon et al. (2006)].
The file transfer use case includes five sequential steps associated with one exception
step, and the enter meeting use case consists of four sequential steps. Where The main
scenario of the money withdrawal use case consists of approximately thirteen sequential
steps associated with seven exception steps as shown in Tab. 2.

Table 2: Use case description model of ATM withdraw money

Name Withdraw Money
Goal Allow authorized user to withdraw a limited amount of money
Actors Bank customers (ATM Cardholders) and bank staff
Preconditions The bank customer has a valid ATM card; ATM has cash money
Postconditions Receipt printed
Invariants None
Main Success
 Scenario

A bank customer inserts debt cards and enters a PIN
If the PIN is Valid Then
 ATM displays available actions
the customer selects withdraw cash from available actions
 ATM promotes Account
the customer selects an account
ATM promotes amount
the customer enters the desired amount
IF the customer has sufficient funds Then
IF the desired amount is within the allowable limit Then
IF the ATM has sufficient cash Then
money is dispensed
and receipt is printed

Variations None
Extensions 2a. Else ATM displays an error message

9a. ATM prints error message
9b. and asks the customer to re-enter the amount
10a. shows allowable limit
10b. asks the customer to re-enter the cash amount Else

An Automated Approach to Generate Test Cases 419

11a. Else ATM technician is alerted and
11b. ATM displays Error message Else ATM displays an error
message

Included use
 cases

Balance inquiry

The numbered steps of the success main section and extensions section of the previous
template model are saved as a text file to be used later as input to the ACFD. As
explained in stage two of the proposed approach, the tool of ACFD converts the steps
(statements) in the text file into the control flow graph. A node represents each main
scenario and exception step. Later, the edges are used to connect these nodes as a binary
tree (control flow graph). Once the step (statement) has a condition, the tool splits this
statement into three statements the first one for the condition, the second one for the
event that executed if the condition is true and the third one for the event that executed if
the condition is false. Fig. 6 presents the control flow graph of withdrawing money use
case in the ATM system, which automatically results from the proposed tool of ACFD.

Figure 6: control flow graph of withdrawing money use case in the ATM system

Consequently, this control graph of money withdrawal use case’s scenario was used as
input to the Proposed Tool of Generating Test Paths (PTGTP), which outputs the test
paths. After running the PTGTP, five test paths have been generated see Fig. 7.

420 Copyright © 2019 Tech Science Press CMES, vol.119, no.3, pp.409-425, 2019

Figure 7: Generated test paths

In order to optimize and evaluate the adequacy of the test paths, the proposed tool of
Algorithm 2 (ATPO) has been executed with the generated test paths from PTGTP as
inputs. Fig. 8 shows after 21 generations have been generated, the test path number 4
found as an optimized test path (test case). This result reveals that test path number 4 is
the best path to cover maximum transactions in the control flow graph of the money
withdrawal use case.

Figure 8: Optimized test-path

Due to the space constraints, explanation of applying the proposed approach on the
money withdrawal use case is only provided. However, Tab. 3 presents the statistics on
the generated test cases, the optimized test case, and the efficiency of the optimized test
case in term of transition coverage form three case studies.

Table 3: Statistics on the generated test cases

Number Use case Generated test
cases

Index of
optimized test
case

Percentage of
transition
coverage

1 ATM cash
Withrawal 5 4 65%

2 Virtual meeting 1 0 100%

3 File transfer
protocol 2 1 57%

As shown in Tab. 3, five test cases are generated from the money withdrawal uses case.
The optimized one among these test cases is the test case with the index four as also
shown in Fig. 8 since it covers 65% of the transitions in the flow graph of the use case’s
statements, while the number of covered transitions is a very important measure of test
efficiency. This measure is widely applied in industry and scientific research when a
rigorous mapping from requirements to code is mandatory [Nebut, Fleurey, Le Traon et
al. (2006)]. To reach 100% coverage of transition, test agents should use all the test cases.
Regarding the enter meeting use case, one test case has been generated from this use case
and this test case covers 100% of the transitions. Finally, two test cases have been

An Automated Approach to Generate Test Cases 421

generated from file transfer use case and the second test case covers most of the
transitions 57%.
Consequently, the test agents can use this approach to determine the test cases which
required to conduct an adequate test and which one of these test cases has a high impact
on software testing.
Important contributions for the proposed approach from an approach was proposed by Nebut
et al. [Nebut, Fleurey, Le Traon et al. (2006)], where the authors described a complete
testing approach to generate test cases from requirements contracts. Interestingly, the
proposed approach in this paper depends on the graphical notation (use case description
model) which provides adequate details on the software specifications than the contract of
requirements which used in Nebut’s approach. Not only the main statements of the use
case’s specifications but also the exception statements are intensively mentioned in the use
case description model-such a statement represented as main nodes in the graph diagram and
test paths. Thus, the robustness criterion results in the proposed model are encouraged. This
is on the contrary to the Nebut’s approach where the robustness criterion results were
disappointed [Nebut, Fleurey, Le Traon et al. (2006)].
In term of time-consuming the proposed approach more efficient than the Nebut’s
approach. In the proposed approach, the test agents do not need to analyze the
requirements contract as in the Nebut’s approach to determining the use cases, since the
requirement specifications already analyzed by the system analyst. Another contribution
of the proposed approach than Nebut approach is generating not only a set of test cases to
achieve 100% transition coverage, but also providing the test agent with the best test case
that achieves highest transition coverage. Finally, the Nebut’s approach applied the
coverage of regular expressions that lead to a large number of test cases, on the contrary
to this research proposed approach which based on the coverage of transition that leads to
the exact number of the test cases required to cover the transition between the statements
of use cases.

5 Evaluation
5.1 Test coverage
The proposed approach generates the test cases to increase coverage on different types of
software considering the transactions between the nodes that represent the software
specifications. As test paths generated by the proposed approach execute a maximum
number of software specification’s statements by means of the test case covers the
maximum number of transactions of each specification.

5.2 Cyclomatic complexity test
This section discusses the validity of the test paths. The validity of the test paths had been
evaluated by a Cyclomatic complexity. The Cyclomatic complexity is a software metric
used to measure the software complexity [McCabe (1976)]. Thomas developed this
metric and McCabe in 1976 based on a software’s control flow graph, which involves a
set of nodes, and edges, see Eq. (3).
V(G)= E – N + 2 (3)

422 Copyright © 2019 Tech Science Press CMES, vol.119, no.3, pp.409-425, 2019

 Where V(G) is the Cyclomatic complexity; E is the number of edges; and N is the
number of nodes in the control flow diagram.
In the term of software testing, there is a strategy known as basis path testing, uses the
Cyclomatic complexity metric to test each linearly independent path through the control
graph, where the number of test paths equals the software’s Cyclomatic complexity value
[McCabe (1976)]. In this research, by applying such a metric for the generated test paths,
as shown in Fig. 2.
E= 25, N= 22.
V (g) = 25- 22 + 2 = 5
Therefore, the Cyclomatic complexity value is 5 and the number of generated test paths is 5.
This result reveals that the generated test cases from the proposed approach will be
compatible with the complexity of software that will represent the case of this research
(money withdrawal) and the cost and effort required for testing will be less [McCabe (1976)].

6 Conclusion
Although many research, works have been done to propose approaches to generate test cases
from UML models (design models), no research works conducted to generate test cases
from use case description model, which provides many details relevant to the test cases.
Additionally, when they developed approaches-based testing, the previous studies had not
considered the control flow and test adequacy, which are important for any qualified test
approach. Thus, this study proposed a fully automatic test approach to generate time-
efficient test cases from the use case description model for high-confidence software not
only to detect the faults as much as possible in the early stage of software development
but also to examine the validity of software requirements. This proposed approach
considers the use case description of each function, rules of mapping it to the control flow
diagram, rules of generating test cases from this control flow diagram to quickly generate
the test cases with high coverage on different types of complex information systems. The
mapping rules and its tool have been proposed to convert the use case description to the
control flow diagram, where the generating rules and its tool have been proposed to
generate the test cases (test paths) from the control flow diagram. Furthermore, the
researchers adapted the genetic algorithm to optimize and evaluate the adequacy of
generated test cases.
The experiments show that the proposed approach is efficient and effective in providing
the software tester with a near-optimal test case and high test coverage in the early stage
of software development, which cannot be done by contemporary similar studies
[Teixeira and e Silva (2017); Khurana, Chhillar and Chhillar (2016); Mohalik, Gadkari,
Yeolekar et al. (2014)]. Interestingly, several studies have been conducted to generate the
test cases from the software specifications [Binder (2000); Legeard, Peureux and Utting
(2002); Malhotra and Garg (2011); Nebut, Fleurey, Le Traon et al. (2006)]. However,
there are many important points to distinguish this study from such research works. First,
this study generates the test cases from use case formalized model in contrast with other
studies which depend on the formal methods, where the requirements are written in a
formal language [Binder (2000); Legeard, Peureux and Utting (2002); Meziane,

An Automated Approach to Generate Test Cases 423

Athanasakis and Ananiadou (2008)]. Second, the proposed approach in this study is based
on a specific test adequacy criterion in which generating the smallest number of efficient
test cases, where other studies such as Briand and Labiche [Briand and Labiche (2002)]
used regular expressions that lead to a large number of test cases. Third, this study differs
from other research works such as Nebut et al. [Nebut, Fleurey, Le Traon et al. (2006)] by
providing not only a set of test cases to achieve 100% transition coverage, but also
providing the test agent with the best test case that achieve highest transition coverage.
Thus, it could be a promising approach for the testing techniques that use transition
coverage of the control flow graph. The results of the proposed approach are encouraging.
It successfully generates the test cases that can achieve the highest test coverage with a
near-optimal number of test cases. However, further studies could be conducted to
continuous in converting the software specifications (use case description) to code and
measure the statement coverage to extracting the relationship between the transition
coverage and statement coverage criteria. Furthermore, this automatic test cases generation
approach could also be used in the future work with other test coverage criteria.

References
Bazi, G.; El Khoury, J.; Srour F. J. (2017): Integrating data collection optimization
into pavement management systems. Business & Information Systems Engineering, vol.
59, no. 3, pp. 135-146.
Binder, R. (2000): Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley Professional.
Booch, G.; Jacobson, I.; Rumbaugh, J. (1999): The Unified Software Development
Process. Reading Addison Wesley.
Briand, L.; Labiche, Y. (2002): A UML-based approach to system testing. Software and
Systems Modeling, vol. 1, no. 1, pp. 10-42.
Cockburn, A. (1999): Structuring use cases with goals. Journal of Object-Oriented
Programming, vol. 35, no. 40, pp. 56-62.
Cockburn, A. (2000): Writing Effective Use Cases, the Crystal Collection for Software
Professionals. Addison-Wesley Professional Reading.
Frankl, P. G.; Weyuker, E. J. (1988): An applicable family of data flow testing
criteria. IEEE Transactions on Software Engineering, vol. 14, no. 10, pp. 1483-1498.
Holland, J. H.; Goldberg, D. (1989): Genetic Algorithms in Search, Optimization and
Machine Learning. Massachusetts: Addison-Wesley.
Kaczmarek-Heß, M.; de Kinderen, S. (2017): A multilevel model of IT platforms for the
needs of enterprise IT landscape analyses. Business & Information Systems Engineering,
vol. 59, no. 5, pp. 315-329.
Kalaee, A.; Rafe, V. (2016): An optimal solution for test case generation using ROBDD
graph and PSO algorithm. Quality and Reliability Engineering International, vol. 32, no.
7, pp. 2263-2279.

424 Copyright © 2019 Tech Science Press CMES, vol.119, no.3, pp.409-425, 2019

Khurana, N.; Chhillar, R. S.; Chhillar, U. A. (2016): A novel technique for generation
and optimization of test cases using use case, sequence, activity diagram and genetic
algorithm. Journal of Software, vol. 11, no. 3, pp. 242-250.
Legeard, B.; Peureux, F.; Utting, M. (2002): Automated boundary testing from Z and B.
International Symposium of Formal Methods Europe, pp. 21-40.
Malhotra, R.; Garg, M. (2011): An adequacy based test data generation technique using
genetic algorithms. Journal of Information Processing Systems, vol. 7, no. 2, pp. 363-384.
McCabe, T. J. A. (1976): Complexity measure. IEEE Transactions on Software
Engineering, vol. 4, no. 1, pp. 308-320.
Meziane, F.; Athanasakis, N.; Ananiadou, S. (2008): Generating natural language
specifications from UML class diagrams. Requirements Engineering, vol. 13, no. 1, pp.
1-18.
Mohalik, S.; Gadkari, A. A.; Yeolekar, A. (2014): Automatic test case generation from
Simulink/Stateflow models using model checking. Software Testing, Verification, and
Reliability, vol. 24, no. 2, pp. 155-180.
Nebut, C.; Fleurey, F.; Le Traon, Y.; Jezequel, J. M. (2006): Automatic test
generation: a use case driven approach. IEEE Transactions on Software Engineering, vol.
32, no. 3, pp. 140-55.
Offutt, A. J.; Xiong, Y.; Liu, S. (1999): Criteria for generating specification-based tests.
ICECCS'99 Fifth IEEE International Conference on Engineering of Complex Computer
Systems, pp. 119-129.
Ribeiro, F. G. C.; Pereira, C. E.; Rettberg, A.; Soares, M. S. (2018): Model-based
requirements specification of real-time systems with UML, SysML, and MARTE.
Software & Systems Modeling, vol. 17, no. 1, pp. 343-361.
Riebisch, M.; Philippow, I.; Götze, M. (2002): UML-based statistical test case
generation. International Conference on Object-Oriented and Internet-Based
Technologies, Concepts, and Applications for a Networked World, pp. 394-411.
Sahoo, R. K.; Nanda, S. K.; Mohapatra, D. P.; Patra, M. R. (2017): Model driven test
case optimization of UML combinational diagrams using hybrid bee colony algorithm.
International Journal of Intelligent Systems and Applications, vol. 9, no. 6, pp. 43-54.
Sarma, M.; Kundu, D.; Mall, R. (2007): Automatic test case generation from UML
sequence diagram. International Conference on advanced Computing and Communications,
pp. 60-67.
Satpathy, M.; Harrison, R.; Snook, C.; Butler, M. (2001): A comparative study of
formal and informal specifications through an industrial case study. IEEE/IFIP Workshop
on Formal Specification of Computer Based Systems .
Schlauderer, S.; Overhage S. (2018): BoSDL: an approach to describe the business
logic of software services in domain-specific terms. Business & Information Systems
Engineering, vol. 1, no. 21, pp. 393-413.
Septian, I.; Alianto, R. S.; Gaol, F. L. (2001): Automated test case generation from
UML activity diagram and sequence diagram using depth first search algorithm. Procedia
Computer Science, vol. 116, no. 1, pp. 629-637.

An Automated Approach to Generate Test Cases 425

Shanthi, A. V. K.; MohanKumar, G. (2012): A novel approach for automated test path
generation using TABU search algorithm. International Journal of Computer Applications,
vol. 48, no. 13, pp. 28-34.
Somé, S. S. (2009): A meta-model for textual use casedescription. Journal of Object
Technology, vol. 8, no. 7, pp. 87-106.
Sumalatha, V. M. (2013): Object-oriented test case generation technique using genetic
algorithms. International Journal of Computer Applications, vol. 61, no. 20, pp. 20-26.
Teixeira, F. A. D.; e Silva, G. B. (2017): EasyTest: an approach for automatic test cases
generation from UML activity diagrams. Information Technology-New Generations, pp.
411-417.
Tripathy, A.; Mitra, A. (2013): Test case generation using an activity diagram and
sequence diagram. Proceedings of International Conference on Advances in Computing,
pp. 121-129.
van Eck, M. L.; Sidorova, N.; van der Aalst, W. M. (2018): Guided interaction
exploration and performance analysis in artifact-centric process models. IEEE 19th
Conference on Business & Information Systems Engineering, pp. 1-5.

	An Automated Approach to Generate Test Cases From Use Case Description Model
	Thamer A. Alrawashed0F , *, Ammar Almomani2, Ahmad Althunibat1 and
	Abdelfatah Tamimi1

	Abstract: Test complexity and test adequacy are frequently raised by software developers and testing agents. However, there is little research works at this aspect on specification-based testing at the use case description level. Thus, this research p...
	Keywords: Software testing, test cases, software specifications, genetic algorithm.
	1 Introduction

