
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/329375167

A Proposed Forward Clause Slicing Application

Article in TELKOMNIKA Indonesian Journal of Electrical Engineering · January 2019

DOI: 10.11591/ijeecs.v13.i1.pp1-6

CITATIONS

3
READS

115

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Class room face recognitjon system View project

Computer vision View project

Khalil Awad

Al-Zaytoonah University of Jordan

4 PUBLICATIONS 3 CITATIONS

SEE PROFILE

Mohammad Abdallah

Al-Zaytoonah University of Jordan

22 PUBLICATIONS 47 CITATIONS

SEE PROFILE

Abdelfatah A Tamimi

Al-Zaytoonah University of Jordan

48 PUBLICATIONS 219 CITATIONS

SEE PROFILE

Amir Ngah

Universiti Malaysia Terengganu

14 PUBLICATIONS 21 CITATIONS

SEE PROFILE

All content following this page was uploaded by Khalil Awad on 02 March 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/329375167_A_Proposed_Forward_Clause_Slicing_Application?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/329375167_A_Proposed_Forward_Clause_Slicing_Application?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Class-room-face-recognitjon-system?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Computer-vision-6?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khalil_Awad?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khalil_Awad?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Al-Zaytoonah_University_of_Jordan?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khalil_Awad?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Abdallah2?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Abdallah2?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Al-Zaytoonah_University_of_Jordan?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad_Abdallah2?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdelfatah_Tamimi?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdelfatah_Tamimi?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Al-Zaytoonah_University_of_Jordan?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abdelfatah_Tamimi?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Amir_Ngah?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Amir_Ngah?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universiti_Malaysia_Terengganu?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Amir_Ngah?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Khalil_Awad?enrichId=rgreq-e805f6be8ba6c3e710e6795ce6e7258e-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM3NTE2NztBUzo3MzIxMjEzNzA5ODg1NDVAMTU1MTU2Mjc0NTIwOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Indonesian Journal of Electrical Engineering and Computer Science

Vol. 13, No. 1, January 2019, pp. 401-407

ISSN: 2502-4752, DOI: http://doi.org/10.11591/ijeecs.v13.i1 401

Journal homepage: http://iaescore.com/journals/index.php/ijeecs

A Proposed Forward Clause Slicing Application

Khalil Awad1, Mohammad Abdallah 2, Abdelfatah Tamimi3, Amir Ngah4, Hanadi Tamimi5

1, 2, 3 Faculty of Science and Information Technology, Al-Zaytoonah University of Jordan, Amman, Jordan
4School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, Malaysia

5EYEVIDO GmbH, Koblenz, Rhineland-Palatinate, Germany

Article Info ABSTRACT

Article history:

Received: August 26, 2018

Revised: 20 November 2018

Accepted: 29 November 2018

 The Clause slicing technique is static slicing techniques which also

have forward and backward slicing methods. The Clause slice criteria

are the clause and the clause number. In this paper, we have discussed

the Clauser tool the forward clause slicing tool introduce some

improvements to it. The Clauser mechanism divides the program code

statement into clauses, depending on clause slicing rules, identifies the

variables and built-in functions, then slices the clauses regarding the

slice criterion that was entered by the user. Comparing to other static

slicing techniques the clause slicing is more accurate and precise

because it considers all the code in micro-level, where it focuses on

every syntax in the code. The Clauser still needs to be enhanced to

slice more code features.

Keywords:

Forward Slicing

Clause Slicing

Program Slicing

Program Analysis

Clauser
Copyright © 2018 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Khalil Awad,

Faculty of Science and Information Technology,

Al-Zaytoonah University of Jordan,

Queen Alia airport road, Amman, Jordan.

Email: Khalil.awad@zuj.edu.jo

1. INTRODUCTION

Program slicing was introduced in 1979 by Weiser [1] as “a method used for abstracting from computer

programs.” Regarding the formula; in Program P, the program slice has criteria which are represented as <s,

v>, where s is the statement number and v is the variable. With respecting of slicing criteria, the slice includes

only those statements of P needed to capture the behavior of v at s [2].

Clause slicing was introduced in 2012 by Abdallah [3] as a static slicing technique, the clause slicing is

concentrating on the code syntax of the program, as part of program robustness measurement technique.

The Clauser was built to identify the clauses that can be sliced into the program, give them a number, and

allow the user to choose one of them to be sliced and return the formed slice. So far, it only slices the variables

and built-in functions. But, in the plan, we are intended to make it slice every single clause in the code.

The clause slicing considers most of the code syntax words as a potential slicing criterion, which makes it

more useful in testing and measuring the program quality.

This research paper has improved the clause slicing tool that introduced in previous works. The clause slicing

for function and variables are not automatically done. Therefore, a new level of Clauser was developed and

applied.

This paper is divided into five sections; section 2 will explore related program slicing and tools that

applied them. In section 3, the Clauser model will be described in details showing how it works regarding the

http://doi.org/10.11591/ijeecs.v13.i1

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 10, No. 1, April 2018 : xx – xx

402

clause chosen rules. Section 4 introduces a case study and the evaluation of Clauser. The conclusions and future

work in section 5.

2. RELATED WORK

Static slicing means that the code syntax will be reserved after slicing. In other words, all possible

executions of the program are taking into account [4, 5].

Static slicing is built by assign a point of interest and delete all irrelative statements to this point [6-

8]. A point of interest is the statement to be sliced; it is signed by the variable and line number (V, L). Which

called slicing criteria [9, 10].

The static slicing can be executable or non-executable [10]. Executable slice means the code that

produced after the slicing operation (the slice) can be compiled and run as a program.

Weiser [1, 7, 8, 11] introduced the program slicing which is known later as Executable Backward

Static Slicing. It is Executable because the slice produced as an executable program. Backward Slicing is

computed by gathering statements and control predicts by way of a backward traversal of the programs starting

at the slicing criteria [10]. Backward slicing contains the statements of the program which affect the criteria

slice, and it answers the question “what program components might affect a selected computation?” [5]

Another form of static slicing is Forward Slicing. Forward Slicing traverse data and control

dependence edges in the forward direction and answers the question “what program components might be

affected by a selected computation?” [5].

Forward slice captures the effect of its slicing criteria on the rest of the program, and it is considered

a kind of flow effect analysis [4, 12]. It contains the set of statements and control predicts that were affected

by the computation of the slicing criterion. The Slicing criteria are the same as in backward slicing (V, L) [9,

10, 13-16].

Forward Slicing usually does not produce an executable slice, unlike the backward slicing. Because

the challenge caused by Forward Slicing is defining the semantics captured by a forward slice [6, 10, 17].

A decomposition slicing is a slice used to decompose the program into different components.

Decomposition slicing is a union of certain slices taken at certain line numbers on a given variable [8, 18].

Decomposition slicing has two parts: The slice, which is the slice criteria, and the complement. The

slice “captures all relevant computations involving a given variable” [18], where decomposition slice depends

on the variable name only and does not depends on statement number. The complement is the rest of the

program code; it also can be considered as a slice that corresponds to the rest of slicing criteria [18].

There are also many other programs slicing techniques. However, in this research we only interested

in forward and backward static slicing techniques.

Program slicing is widely used for many purposes: debugging [8], maintenance [18], testing [19],

detecting dead code [20, 21], measuring program robustness [22-24] and quality[25, 26] and many other

applications [26, 27]. Therefore, Researchers have tried applying their ideas of using program slicing and

advanced tools. Tools of program slicing are developed to slice different programming languages [28]. As we

focused in this research on C language slicing, we only listed some slicing tools for C language: CSurf, frama-

C, and Wisconsin Program-Slicing.

CodeSurfer [29] is part of CodeSonar technology, GrammaTech's, the development company, aims

to automate a source-code analysis tool that finds bugs. CodeSurfer is a program-understanding tool that makes

a manual review of code easier and faster. CodeSonar is an automated bug finder that generates a report of

defects in the code.

Many programs understanding tools interpret code loosely. In contrast, CodeSurfer does a precise

analysis. Program constructs, including pre-processor directives, macros, and C++ templates, are analyzed

correctly. CodeSurfer calculates a variety of representations that can be explored through the graphical user

interface or accessed through the optional programming API [29].

Frama-C [30] is a code analysis tool which is used for programs written in C programming language

only. It supports static slicing techniques; Forward and backward slicing. It also provides a dependency

analysis.

Frama-C comes with plugins such as Slicing and Value analysis. Frama-C allows these plugins to

collaborate. It also enables the users to insert and run their plugins and connect them with other plugins in

Frama-C. However, it still needs to be improved to support other types of slicing such as dynamic slicing.

There is also a program slicing tool called Wisconsin Program-Slicing tool [31]. It can do a Forward

Slicing, backward slicing, and chopping. Also, it consists a package for building and manipulating control-

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A Proposed Forward Clause Slicing Application (Khalil Awad)

403

flow graphs and program dependence graphs. The Wisconsin Program-Slicing tool is only developed and tested

on Sun OS 5.5.1 which make it a less known than previous tools [31].

The srcML [31, 32] program is a command line application for the conversion source code to srcML,

an interface for the exploration, analysis, and manipulation of source code in this form, and the conversion of

srcML back to source code. The current parsing technologies support C/C++, C#, and Java [16, 33, 34].

Figure 1. The Proposed Forward Clause Slicing model

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 10, No. 1, April 2018 : xx – xx

404

3. CLAUSER: THE PROPOSED APPLICATION

Clause slicing was introduced in [3, 35] as a slicing technique that interest in a part of the statement

that may affect the rest of the slice. The main purpose of Clause slicing was mainly to enhance the software

robustness measurement of C programs.

The Clause slicing is a special type of static slicing technique; it is reserved syntax technique. Clause

Slicing has the same types of static slicing. It can be forward clause slicing, backward clause slicing, or

decomposition clause slicing. In this paper, only the forward clause slice will be discussed.

A Clause is defined as the minimum piece of code that can be sliced [3]. Some clauses that are not

sliceable, i.e., #include, and break that called the un-sliceable clauses.

The slicing criteria for the Clause slicing are <C, n>, where C is the Clause, and n is the Clause

Number. The Clause slicing (Cn) is all clauses in the program that depends on clause slicing criteria <C, n>.

The first step in the Clause slicing technique is the Clause numbering. It is different than the statement

numbering, where not every statement is a clause and vice versa. Therefore, the clauses must be defined

depending on some rules that identified in [3, 35]. Then depending on the slicing criteria that identified

previously, the slicing will be applied, and the Clause slice will be produced as shown in figure 1.

In figure 1, the Forward Clause slicing model is presented. In the first stage, Preparing Form, two lists

are created once the Clauser runs: Sliceable; which will be used to store all the sliceable clauses in the target

code (the code to be sliced), and Index; which will be used store the all variable clause numbers.

Moving to the stage two, Clause Numbering, where it starts with reading the target code, it must be

stored in a text file. Then the clauses will be separated using the rules [3, 35] into keywords, variables, numbers

…etc. Then the model starts the following procedure:

List for the location for each index

For each item in the source code

#include numbering it and write it to a new file

Return numbering it and write it to a new file

Functions (main, scanf, printf, sqrt) numbering it and write it to a new file

Digital write it to a new file

Special character write it to a new file

Otherwise, the item will be Variables

Check if the variable exists in variable list numbering it and write it to a new file

If not exists

Add a new variable to variable List

Store its number into variable indices list

Numbering it

Write it to a new file

 The third stage, Clause Slicing, starts using the data that was collected previously in stage two.

 The Clause Slicing procedure is executed by the user. Where the user is responsible for selecting the

slicing criteria (the variable to be sliced and the clause number where to start slicing), then Fetch the selected

variable from the start point to the end of the program. If the clauses are sliceable, regarding the rules in [2,

24], then it will be printed to the output files. Otherwise, it will be skipped and not shown in it.

4. EVALUATION

In the previous work [35] the Clauser was introduced as the first tool that applies the Clause slicing

technique. It was in the early stages of development. It was not a user friendly tool, where the user has to

choose the variable and its number before slicing, and if the user wants to see another slice, he or she has to

rerun the program and select the new slicing criteria. The main contribution of the new version of Clauser that

introduced Function slicing, where now the user can slice variables and the built-in functions such as scanf and

printf.

Moreover, it is more user-friendly. Where the user can select the variable and its index number to see

its slice. The user then can change the slicing criteria without reloading the program file, which reduces the

execution time and improves the usability.

In addition, the Clauser in the first version was producing two text file, one after the clause numbering

that contains clauses and their numbers and the second text file that contains the slicing results. In the new

version the Clauser shows the programmed with clause numbered to the user, and on another screen, it shows

the results of slicing depending on the chosen slicing criteria.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A Proposed Forward Clause Slicing Application (Khalil Awad)

405

In the earlier Clauser version, the Clauser only numbered the variables, and the developer has to have

renumbered the code taking into account the special words. But in this version, all types of words in the code

are numbered. However, in the two version on Clauser, it still slices the variables.

Comparing to another C programs slicing tools such as frama-C and CSurf. The new version of

Clauser, in addition to the previous feature, can slice part of the program, with no need to compile or run the

program. Moreover, Clauser can number the code even if there are no variables, with the ability to skip the

comments. Therefore, it can give an accurate number of clauses in the program.

Clauser as the only slicing tool that runs the clause slicing techniques that makes it useful to be part

of measuring the program robustness. So, using Clauser will make the program robustness measuring is fully

automated. In addition, the Clauser can be used to measure the quality of the code regarding some standard

criteria such as MISRA C [3] that consider every single word in the code syntax. Or can be used to identify the

dead code easily.

The Clauser has an advantage that the developer can only number the code without the need to slice

it, which can be useful for further practice such as code analysis.

For now, our tool can slice variables in all different positions it could occur at, such as in an

initialization statement, as a parameter in a function, in an assignment statement as in the use or the definition

condition. In addition, to the built-in functions such as scanf and printf. Thus, the Clauser tool still needs more

work to be able to slice more language features.

5. CONCLUSION

Clause slicing is a static slicing technique that was introduced as a slicing technique for part of the

code statement or line. The Clauser is the tool that slices a C program using Clause Slicing techniques. Clauser

mechanism depends on the Clause Slicing rules of clause slicing ability and numbering. Then, it allows the

user to choose the clause or the function to be sliced, then Clauser applies the clause slicing technique and

returns the slice of it.

The Clauser can be used to number the code clauses that can be useful in applying rules on these

clauses coding standards such as MISRA C. It also helps to analyze the code which has further in code

maintenance, regression testing and debugging.

Clauser still needs to be upgraded to apply to all C program features. Now, it only slices the variables

and built-in functions. In the future work, the Clauser will be developed to slice all clauses in a C program.

REFERENCES
[1] M. Weiser, "Program slices: formal, psychological, and practical investigations of an automatic

program abstraction method," PhD, The University of Michigan, Michigan, 1979.

[2] D. Binkley and K. Gallagher, "Program Slicing," in Advances in Computers. vol. Volume 43, V. Z.

Marvin, Ed., ed: Elsevier, 1996, pp. 1-50.

[3] M. Abdallah, "A Weighted Grid for Measuring Program Robustness," PhD, Computer Science,

Durham University, 2012.

[4] X. Baowen, Q. Ju, Z. Xiaofang, W. Zhongqiang, and C. Lin, "A brief survey of program slicing," vol.

30, pp. 1-36, 2005.

[5] K. Gallagher and D. Binkley, "Program slicing," in Frontiers of Software Maintenance, 2008. FoSM

2008., 2008, pp. 58-67.

[6] S. Mitra, D. Kim, and M. Fong, "Program Slicing," 2007.

[7] M. Weiser, "Programmers use slices when debugging," Communications of the ACM, vol. 25, pp.

446-452, 1982.

[8] M. Weiser, "Program Slicing," IEEE Transactions on Software Engineering, vol. 10, pp. 352-357,

1984.

[9] M. Harman and R. Hierons, "An Overview of program slicing," software focus, vol. 2, pp. 85-92,

2001.

[10] F. Tip, "A survay of Program Slicing Techniques," JOurnal of Programming Languages, vol. 3, pp.

121-189, 1995.

[11] M. Weiser, "Program slicing," presented at the Proceedings of the 5th international conference on

Software engineering, San Diego, California, United States, 1981.

[12] B. Sue, "Computing ripple effect for software maintenance," Journal of Software Maintenance, vol.

13, p. 263, 2001.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 10, No. 1, April 2018 : xx – xx

406

[13] A. d. Lucia, "Program Slicing: Methods and Applications," presented at the IEEE International

Workshop on Source Code Analysis and Manipulation, 2001.

[14] S. Horwitz, T. Reps, and D. Binkley, "Interprocedural slicing using dependence graphs," ACM

Transaction of Program Language Systms, vol. 12, pp. 26–60, 1990.

[15] H. Mumtaz, M. Alshayeb, S. Mahmood, and M. Niazi, "An empirical study to improve software

security through the application of code refactoring," Information and Software Technology, vol. 96,

pp. 112-125, 2018/04/01/ 2018.

[16] B. Alokush, M. Abdallah, M. Alrifaee, and M. Salah, "A Proposed Java Static Slicing Approach,"

Indonesian Journal of Electrical Engineering and Computer Science, vol. 11, pp. 308-317, 2018.

[17] D. Binkley, S. Danicic, T. Gyimóthy, and M. Harman, "Theoretical foundations of dynamic program

slicing," Theoretical Computer Science, vol. 360, pp. 23 – 41, 2006.

[18] K. Gallagher and J. R. Lyle, "Using program slicing in software maintenance," Software Engineering,

IEEE Transactions on, vol. 17, pp. 751-761, 1991.

[19] A. Ngah, M. Munro, and M. Abdallah, "An Overview of Regrission Testing," Journal of

Telecommunication, Electronic and Computer Engineering (JTEC), vol. 9, pp. 45-49, 2017.

[20] X. Wang, Y. Zhang, L. Zhao, and X. Chen, "Dead Code Detection Method Based on Program Slicing,"

in 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge

Discovery (CyberC), 2017, pp. 155-158.

[21] N. AlAbwaini, A. Alda`aje, T. Jaber, M. Abdallah, and A. Tamimi, "Using Program Slicing to Detect

the Dead Code," presented at the 2018 8th International Conference on Computer Science and

Information Technology (CSIT), Amman, 2018.

[22] A. Abdalla, M. Abdallah, and M. Salah, "ABrief PROGRAM ROBUSTNESS SURVEY,"

International Journal of Software Engineering & Applications, vol. 8, pp. 1-10, 2017.

[23] M. Abdallah, M. Munro, and K. Gallagher, "Certifying software robustness using program slicing,"

in 2010 IEEE International Conference on Software Maintenance, Timisoara, Romania, 2010, pp. 1-

2.

[24] M. Abdallah, M. Munro, and K. Gallagher, "A Static Robustness Grid Using MISRA C2 Language

Rules," presented at the The Sixth International Conference on Software Engineering Advances,

Barcelona, Spain, 2011.

[25] K. S. Patnaik and P. Jha, "Proposed Metrics for Process Capability Analysis in Improving Software

Quality: An Empirical Study," International Journal of Software Engineering and Technology

(IJSET), vol. 1, pp. 152-164, 2016.

[26] M. M. A. Abdallah and M. Alrifaee, "Towards a new framework of program quality measurement

based on programming language standards," International Journal of Engineering & Technology, vol.

7, pp. 1-3, 2018.

[27] A. D. Lucia, "Program slicing: methods and applications," in Proceedings First IEEE International

Workshop on Source Code Analysis and Manipulation, 2001, pp. 142-149.

[28] T. Hoffner, "Evaluation and comparison of program slicing tools," Department of Computer and

Information Science, Linkping University, Sweden1995.

[29] GrammaTech. (2009, 12/1/2018). CodeSurfer. Available:

http://www.grammatech.com/products/codesurfer/overview.html

[30] P. Baudin, F. Bobot, R. Bonichon, L. Correnson, P. Cuoq, Z. Dargaye, et al., "Frama-C," Frama-C 16

- Sulfur ed: Informations légales et droit de diffusion, 2007.

[31] M.-C. Lee and T. Chang, "Software Measurement and Software Metrics in Software Quality,"

International Journal of Software Engineering and Its Applications, vol. 7, pp. 15-34, 2013.

[32] C. D. Newman, T. Sage, M. L. Collard, H. W. Alomari, and J. I. Maletic, "srcSlice: A Tool for

Efficient Static Forward Slicing," in 2016 IEEE/ACM 38th International Conference on Software

Engineering Companion (ICSE-C), 2016, pp. 621-624.

[33] M. Abdallah, B. Alokush, M. Alrefaee, M. Salah, R. Bader, and K. Awad, "JavaBST: Java backward

slicing tool," in 2017 8th International Conference on Information Technology (ICIT), 2017, pp. 614-

618.

[34] A. Ngah and S. A. Selamat, "Using Object to Slice Java Program," Journal of Engineering and

Applied Sciences, vol. 13, pp. 1320-1325, 2018.

[35] M. Abdallah and H. Tamimi, "Clauser : Clause Slicing Tool for C Programs," International Journal

of Software Engineering and Its Applications, vol. 10, pp. 49-56, 03/31 2016.

http://www.grammatech.com/products/codesurfer/overview.html

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A Proposed Forward Clause Slicing Application (Khalil Awad)

407

BIOGRAPHIES OF AUTHORS

Khalil Awad is a lecturer at the Department of Software Engineering in Faculty of Science and

Information Technology at the Al-Zaytoonah University of Jordan. He received his BSc in

Computer Science from Al-Zaytoonah University, Amman, Jordan in 2003 and His MSc in

Computer Science from AlBalqa Applied University, As Salt, Jordan in 2007. His research

interests are Program Analysis, AI, and web development.

Mohammad Abdallah is an Assistant Professor at the Department of Software Engineering in

Faculty of Science and Information Technology at the Al-Zaytoonah University of Jordan. He

received his BSc in Computer Science from Al-Zaytoonah University, Amman, Jordan in 2007

and His MSc in Software Engineering from Bradford University, Bradford, the UK in 2008 and

Ph.D. in Software Engineering from Durham University, Durham, the UK in 2012. His research

interests are Program Analysis, Software Quality, and Software Testing.

Abdelfatah Tamimi is a Professor at the Department of Software Engineering in Faculty of Science

and Information Technology at the Al-Zaytoonah University of Jordan. Prof. Abdelfatah is

currently the Dean of at the Faculty of Science and Information Technology at the Al-Zaytoonah

University of Jordan. He received his BSc in Math from Jordan University, Amman, Jordan and

His MSc and Ph.D. in Computer Science from City of New York University, New York, the USA

in 1996.

Amir Ngah is an Assistant Professor at the Department of Computer Science at the Al-Zaytoonah

University of Jordan. He received his BSc in Computer Science from Universiti Teknologi

Malaysia, Johor, Malaysia and His MSc in Software Engineering from Universiti Putra Malaysia,

Selangor, Malaysia and Ph.D. in Software Engineering from Durham University, Durham, the UK

in 2012. His research interests are Program Analysis and Software Testing.

Hanadi Tamimi is a Software Developer in EYEVIDO GmbH in Koblenz, Germany. She received

her BSc in Computer Science from Jordan University, Amman, Jordan in 2014. MSc in Web

Science from Koblenz-Landau, Koblenz, Germany in 2017. She works in Several companies in

Jordan and Germany. Her research interests are Web development and Eye tracking systems.

View publication statsView publication stats

https://www.researchgate.net/publication/329375167

