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Abstract 

    Polynomial functions 𝐹 of degree 𝑚 have a form in the Bernstein basis defined over 𝑙 −dimensional 

simplex 𝑊. The Bernstein coefficients exhibit a number of special properties. The function 𝐹 can be 

optimized by the smallest and largest Bernstein coefficients (enclosure bound) over 𝑊. By a proper choice 

of barycentric subdivision steps of 𝑊, we prove the inclusion property of Bernstein enclosure bounds. To 

this end, we provide an algorithm that computes the Bernstein coefficients over subsimplices. These 

coefficients are collected in an 𝑙 −dimensional array in the field of computer aided geometric design such 

a construct is typically classified as a patch. We show that the Bernstein coefficients of 𝐹 over the faces of 

a simplex are coincide with the coefficients contained in the patch. 
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1  Introduction 

This paper considers the computation of bounding functions for multivariate polynomials over simplices. 

Bounding the range of functions is an important issue in many areas of applied mathematics and 

computation like global optimization, computer aided geometric design and robust control. The expansion 

of a (multivariate) polynomial function 𝐹 is given into the so-called simplicial Bernstein basis over a 

simplex (triangles), [2, 3], [5], [15, 16]. The Bernstein expansion is used due to the tightness of the enclosure 

and its rate of convergence properties to the exact range [9]. The expansion was extended to rational 

polynomial functions in [6], [10] and [21]. The Bernstein basis is also used to certify whether a given 

function is positive over a simplex [15]. Our main goal with computing enclosure bounds for polynomials 

is to certify the positivity of polynomials over subsimplices. Certifying the positivity of functions can be 

improved by subdividing the given simplex at a specific point. This can be satisfied if the inclusion property 

of the enclosure bound holds. This property, which is important in optimization and interval computations 

[17, Section 1.4], states that the Bernstein enclosure bound over a subdomian is contained in the enclosure 

bound over the whole domain. Specifically, if the domain is shrunk or subdivided to a smaller subdomain, 

then the Bernstein bound shrinks too. The inclusion property is widely studied in the literature for related 

functions over some domains. The proof of this property for a univariate polynomial over one dimensional 

interval was given in [13]. In [7], a short proof for the tensorial case over a box is given. In [15], Leroy 



investigated a particular case of the property by reparametrization of simplices. The same problem was 

addressed over different domains by other authors, see [1] and [19]. On the other hand of applications, in 

[11, 12], the key to finding a Lyapunov function for a polynomial linear system is to find positivity 

certificates, where the inclusion isotonicity satisfies the local positivity certificates over subsimplices. 

However, computing Bernstein coefficients on the face values of a simplex is the fastest way for computing 

the minimum bound. The face values property for polynomials over boxes was addressed in [8]. In this 

paper, we extend this property to the simplicial case together with proving further important properties of 

the Bernstein basis over a simplex. Subdivision of a simplex is a widely applied scheme, wherein a starting 

domain is subdivided into subsimplices. It follows that the simplicial Bernstein form is inclusion isotone 

and the positivity certificates are local. First, we provide a representation for the Bernstein coefficients and 

the enclosure bound of polynomials over a simplex. Subsequently, we provide a fast algorithm for 

computing the Bernstein coefficients over subsimplices. With this method, we prove that the enclosure 

bound over subsimplices is optimized by the enclosure bound over the whole simplex. Finally, the 

simplicial face values property holds, and number of calculation steps needed for our algorithm depends on 

the degree of 𝐹 and number of dimensions. 

    The organization of this paper is as follows. In the next section, we recall the main basics and 

background of Bernstein expansion. In Section 3, we start our contributions with providing a representation 

for the Bernstein coefficients and the inclusion isotonicity property over a simplex. In Section 4, we prove 

the simplicial face values property. Applications of our algorithm and face values property are given in 

Section 5. Section 6 comprises the future work. Last, conclusions of the main contributions are given in 

Section 7. 

 

2  Background 

In this section, we introduce some notation and necessary material about the simplicial Bernstein basis. Let 

𝑤0, … , 𝑤𝑙 be 𝑙 + 1 points of ℝ𝑙   (𝑙 ≥ 1), the ordered list 𝑊 = [𝑤0, … , 𝑤𝑙] is called simplex of vertices 

𝑤0, … , 𝑤𝑙. Throughout the paper, 𝑊 = [𝑤0, … , 𝑤𝑙] will be denoted as a non-degenerate simplex of ℝ𝑙; viz 

the points 𝑤0, … , 𝑤𝑙 are affinely independent. Let 𝜆0, … , 𝜆𝑙 be the associated barycentric coordinates of 

𝑊 , i.e., the linear polynomials of ℝ[𝑋] = ℝ[𝑋1, … , 𝑋𝑙] such that ∑𝑙𝑖=0 𝜆𝑖(𝑥) = 1, and ∀𝑥 ∈ ℝ𝑙 , 𝑥 =

∑𝑙𝑖=0 𝜆𝑖(𝑥)𝑤𝑖. Define the convex hull |𝑊| of the points 𝑤0, . . . , 𝑤𝑙. We also refer to the multi-index 𝛼 =

(𝛼0, … , 𝛼𝑙) ∈ ℕ
𝑙+1 and |𝛼| = 𝛼0 +⋯+ 𝛼𝑙. 

Without loss of generality, we will often consider the standard simplex Δ = [𝑒0, 𝑒1, … , 𝑒𝑙], where 

(𝑒1, … , 𝑒𝑙) denotes the canonical basis of ℝ𝑙, and 𝑒0 = (0, . . . ,0) the origin. This is not a restriction since 

any simplex 𝑊 in ℝ𝑙 can be mapped linearly upon Δ. Hence, we assume that 𝑊 = Δ. It follows that if 

𝑥 = (𝑥1, . . . , 𝑥𝑙) ∈ Δ, then (𝜆0, . . . , 𝜆𝑙) = (1 − ∑
𝑙
𝑖=1 𝑥𝑖, 𝑥1, . . . , 𝑥𝑙). For �̂�, �̂� ∈ ℕ𝑙 with �̂� ≤ �̂�, we define  

(
�̂�
�̂�
) : =∏

𝑙

𝑖=1

(
𝛼𝑖
𝛽𝑖
). 

If 𝑀 ∈ ℕ so that |�̂�| ≤ 𝑀, we use the notation  

 (
𝑀
�̂�
) : =

𝑀!

𝛽1!...𝛽𝑙!.(𝑀−|�̂�|)!
. 

The Bernstein basis of degree 𝑀 over 𝑊 is defined by (𝑆𝛼
(𝑀)
)|𝛼|=𝑀, where 

 



 𝑆𝛼
(𝑀)
(𝜆) = (

𝑀
𝛼
) 𝜆𝛼. 

 

   For 𝑥 ∈ ℝ𝑙 its multi-powers are 𝑥�̂�: = ∏𝑙𝑖=1 𝑥𝑖
𝛽𝑖. Let a (power form) polynomial function 𝐹 of degree 

𝑚,  

 𝐹(𝑥) = ∑|�̂�|≤𝑚 𝑎�̂�𝑥
�̂� , (1) 

 𝐹 can be expanded in the simplicial Bernstein form of degree 𝑚 ≤ 𝑀 as  

 𝐹(𝑥) = ∑|𝛼|=𝑀 𝐶𝛼(𝐹,𝑀, Δ)𝑆𝛼
(𝑀)
, 

where 𝐶𝛼(𝐹,𝑀, Δ) are called the Bernstein coefficients of 𝐹 of degree 𝑀 over Δ. 

   The grid points of degree 𝑀 associated to 𝑊 are the points  

 𝑤𝛼(𝑀,𝑊) =
𝛼0𝑤0+⋯+𝛼𝑙𝑤𝑙

𝑀
∈ ℝ𝑙  (|𝛼| = 𝑀) 

which leads us to the control points of 𝐹 of degree 𝑀 over 𝑊  

 (𝑤𝛼(𝑀,𝑊), 𝑏𝛼(𝐹,𝑀,𝑊)) ∈   ℝ
𝑙+1  (|𝛼| = 𝑀). (2) 

The control points of 𝐹 form its control net of degree 𝑀. 

 
Figure 1. The curve of a univariate polynomial of degree 6, and the convex hull (shaded) of its control points (marked 

by points) optimizes the curve by the minimum and maximum control points. 

Proposition 2.1. [16, Proposition 2.7] For a polynomial 𝐹 ∈ ℝ𝑚[𝑋]  and 𝑀 ≥ 𝑚 , the following 

properties hold. 

(i) Linear precision: If degree 𝐹 ≤ 1, then  

 𝐶𝛼(𝐹,𝑀,𝑊) = 𝐹(𝑤𝛼(𝑀,𝑊)), ∀|𝛼| = 𝑀; 

(ii) Interpolation at the vertices: If (𝑒0, . . . , 𝑒𝑙) denotes the canonical basis of ℝ𝑙+1, then  

 𝐶𝑀𝑒𝑖 = 𝐹(𝑤𝑖), 0 ≤ 𝑖 ≤ 𝑙; (3) 

(iii) Convex hull property: The graph of 𝐹 over 𝑊 is contained in the convex hull of its associated 

control points, see Figure 1; 

(iv) Range enclosing property:  

 min
|𝛼|=𝑀

𝐶𝛼(𝐹,𝑀,𝑊) ≤ 𝐹(𝑥) ≤ max
|𝛼|=𝑀

𝐶𝛼(𝐹,𝑀,𝑊), ∀𝑥 ∈ 𝑊. (4) 



    Put the enclosure bound 𝐺(𝐹,𝑀,𝑊),  

 𝐺(𝐹,𝑀,𝑊):= [min𝐶𝛼(𝐹,𝑀,𝑊),max𝐶𝛼(𝐹,𝑀,𝑊)]. (5) 

It follows from (𝑖𝑣) in Proposition 2.1 that 𝐺(𝐹,𝑀,𝑊) optimizes 𝐹 over 𝑊, Figure 1. 

 

3  Bounding Values 

Bernstein form refers to the expansion of a polynomial in Bernstein basis, a procedure which can be 

employed in computation and optimization of functions. In the following remark, we provide the simplicial 

Bernstein function of 𝐹 on Δ. 

 

Remark 3.1. For �̂�, �̂� ∈ ℕ𝑙, let 𝐹 be a power form polynomial of degree 𝑚. The Bernstein polynomial 

form of 𝐹 of degree 𝑚 ≤ 𝑀 over 𝛥 is presented by  

 𝐹(𝑥) = ∑|�̂�|+𝛼0=𝑀 𝐶(�̂�,𝛼0)(𝐹,𝑀, 𝛥)𝑆(�̂�,𝛼0)
(𝑀)

(𝑥), (6) 

where  

 𝑆(�̂�,𝛼0)
(𝑀)

(𝑥) = (
   𝑀
�̂�, 𝛼0

) 𝑥�̂�(1 − |𝑥|)𝛼0 , |�̂�| + 𝛼0 = 𝑀 

and  

 𝐶(�̂�,𝛼0)(𝐹,𝑀, 𝛥) = ∑�̂�≤�̂�

(
�̂�
�̂�
)

(
𝑀
�̂�
)
𝑎�̂� . (7) 

 

    The Bernstein coefficients of degree 𝑀 (𝑚 ≤ 𝑀) can be given as linear combinations of Bernstein 

coefficients of degree 𝑚, see [15, Proposition 1.12]. 

    Let (�̂�0, . . . , �̂�𝑙) be points of ℝ𝑙+1, �̂�𝑖 = (0, . . . ,0⏟  
𝑖

, 1, 0, . . . ,0⏟  
𝑙−𝑖

), 𝑖 = 0, . . . , 𝑙. Multiplication of (6) with 

1 = (|𝑥| + 1 − |𝑥|)𝑀+1 and rearranging the output, we get, see [4, Lemma 1.1],  

 𝐹 = ∑|𝛽|=𝑀+1 𝐶𝛽(𝐹,𝑀 + 1, Δ)𝑆𝛽
𝑀+1, 

where  

 𝐶𝛽(𝐹,𝑀 + 1, Δ) =
1

𝑀+1
∑𝑙𝑖=0 𝛽𝑖𝐶𝛽−�̂�𝑖(𝐹,𝑀, Δ). 

Hence, the range of 𝐹 of degree 𝑀 + 1 over Δ can be optimized by  

 𝐺(𝐹,𝑀 + 1, Δ) ⊆ 𝐺(𝐹,𝑀, Δ). (8) 

    Finally, 𝐹(𝑥) in (4) can be tightly optimized by 𝐺(𝐹,𝑀 + 1, Δ).  

 

Remark 3.2 The number of Bernstein coefficients of an 𝑙 −variate polynomial of degree 𝑀 is equal 

(
𝑀 + 𝑙
   𝑀

).  

 

3.1  De Casteljau Algorithm 

The simplicial Bernstein coefficients are found in all coordinate directions by application of De Casteljau 

algorithm. Assume that Δ has been subdivided at a point �̂� ∈ ℝ𝑙, i.e., Δ = 𝑊[1] ∪. . .∪𝑊[𝑙]. Then, the 

following algorithm computes the coefficients over 𝑊[𝑖], 𝑖 ∈ {0, . . . , 𝑙}.  

 

 



Algorithm 3.1. (De Casteljau [14], [18]) 

Input: The standard simplex Δ, the Bernstein coefficients 𝐶𝛼(𝐹,𝑚, Δ) of degree 𝑚, and �̂� ∈ ℝ𝑙. 

Output: The Bernstein coefficients 𝐶𝛼(𝐹,𝑚,𝑊
[𝑖]), forevery  𝑖 ∈ {0, . . . , 𝑙}. 

Initialization: ∀|𝛼| = 𝑚, 𝐶𝛼
(0)
: = 𝐶𝛼(𝐹,𝑚, Δ). 

for 𝑗 = 1, . . . , 𝑚 do 

    for |𝛼| = 𝑚 − 𝑗 do 

 

 𝐶𝛼
(𝑗)
= ∑𝑙𝑖=0 𝜆𝑖(�̂�)𝐶𝛼+�̂�𝑖

(𝑗−1)
 (9) 

 

    end for 

end for 

return 𝐶𝛼(𝐹,𝑚,𝑊
[𝑖]) = 𝐶

𝛼[𝑖]
(𝛼𝑖)    (|𝛼| = 𝑚, 𝑖 = 0, . . . , 𝑙). 

 

 

3.2  Inclusion Property 

Here, we show the inclusion isotonicity property of the simplicial Bernstein form. We apply the barycentric 

subdivision strategy, which is a particular method of subdividing Δ at �̂� ∈ ℝ𝑙 into subsimplices, e.g., 

Figure 2. 

    Let  

 �̂� = ∑𝑙𝑖=0 𝜆𝑖(�̂�)𝑒𝑖. (10) 

Specifically, we aim at computing the Bernstein coefficients over a subsimplex 𝑈 = [�̂�0, . . . , �̂�𝑙], which is 

extracted from Δ  by the barycentric subdivision strategy, as convex combinations of the Bernstein 

coefficients over Δ. In order to do so, we compute the Bernstein coefficients in a particular coordinate 

direction, 𝑟, since the De Casteljau algorithm computes the coefficients in all coordinate directions: Let 

�̂�𝑟, 𝑟 ∈ {0, . . . , 𝑙}, be a non edge point with respect to Δ. Then we set  

 𝑈[�̂�𝑟] = [𝑒0, . . . . , �̂�𝑟, . . . , 𝑒𝑙], (11) 

  

 (𝑒𝑙+1: = 𝑒0, 𝑒−1: = 𝑒𝑙) 
where  

 �̂�𝑟 = 𝜆0(�̂�𝑟)𝑒0+. . . . +𝜆𝑖(�̂�𝑟)𝑒𝑖+. . . +𝜆𝑙(�̂�𝑟)𝑒𝑙 . (12) 

 

Let �̂�𝑟 be an edge point with respect to Δ. Then 

 �̂�𝑟 = 𝜆𝑖(�̂�𝑟)𝑒𝑖 + (1 − 𝜆𝑖(�̂�𝑟))𝑒𝑖+1. (13) 

If we subdivide Δ at an edge point, �̂�𝑟, then Δ will be subdivided into two subsimplices, 𝑈[𝑟], 𝑈[𝑟+1], 

extracted from 𝜆𝑖(�̂�𝑟), 𝜆𝑖+1(�̂�𝑟), and we call them the extracted subsimplices. Otherwise (non-edge point), 

Δ can be subdivided into ≤ 𝑙 + 1 (constructed) subsimplices, e.g., Figure 2. 

    It is sufficient to show that the inclusion isotonicity holds true if we compute the coefficients in 𝑟𝑡ℎ 

coordinate direction, 0 < 𝜆𝑟(�̂�𝑟) < 1, with respect to the extracted simplex. In other words, by subdivision 

at �̂�0 we proceed into 𝜆0, at �̂�1 we proceed into 𝜆1, and so on (need not to be successively). 

Let 𝑟 be integer such that for some 𝑟 ∈ {0, . . . , 𝑙}, 0 < 𝜆𝑟(�̂�𝑟) < 1, and for all 𝑖, 𝑖 ≠ 𝑟, 1 > 𝜆𝑖(�̂�𝑟) ≥ 0. 

The following algorithm computes the Bernstein coefficients in the 𝑟𝑡ℎ coordinate direction to extract a 

new subsimplex 𝑈, where the barycentric subdivision method is applied. 



 

Algorithm 3.2. (Computing of Bernstein coefficients over a subsimplex) 

Given: Simplices 𝑈[�̂�𝑟] is contained in Δ, and the Bernstein coefficients on Δ. 

Wanted: The Bernstein coefficients on 𝑈 as convex combinations of the ones on Δ. 

Ensure: 1 ≥ 𝜆𝑖 ≥ 0, 𝑖 = 0, . . . , 𝑙, with 1 > 𝜆𝑖0 > 0, for some 𝑖0 ∈ {0, . . . . , 𝑙}. 

Initialize: ∀|𝛼| = 𝑚, 𝐶𝛼
(0)
:= 𝐶𝛼(𝐹,𝑚, Δ). 

Choose: 𝑟 ∈ {0, . . . , 𝑙}, 𝑟 ≠ 𝑖0, 1 > 𝜆𝑟(�̂�𝑟) > 0. 

for 𝑑 = 1, . . . , 𝑚 do 

  for |𝛼| = 𝑚 − 𝑑 do 

  if 𝜆𝑟 + 𝜆𝑖0 = 1 then 

 

 𝐶𝛼
(𝑚)
= 𝜆𝑟𝐶𝛼+�̂�𝑟

(𝑚−1)
+ (1 − 𝜆𝑟)𝐶𝛼+�̂�𝑟+1

(𝑚−1)
 

      else  

 𝐶𝛼
(𝑚)
= 𝜆0𝐶𝛼+�̂�0

(𝑚−1)
+. . . +𝜆𝑟𝐶𝛼+�̂�𝑟

(𝑚−1)
+. . . +𝜆𝑙𝐶𝛼+�̂�𝑙

(𝑚−1)
 

        end if 

      end for 

      end for 

      return  

 𝐶𝛼(𝐹,𝑚, 𝑈
[�̂�𝑟]) = 𝐶

𝛼[𝑟]
(𝛼𝑟)  (|𝛼| = 𝑚). 

 

 
Figure 2: Subsimplices are extracted by barycentric subdivision steps at edge and inner points. 

Theorem 3.1. Let 𝑈 be a subsimplex, which is extracted by the barycentric subdivision strategy from 𝛥. 

Then  

 𝐺(𝐹,𝑚,𝑈) ⊆ 𝐺(𝐹,𝑚, 𝛥). 

 

    Proof. Let 𝑈[�̂�𝑟]  be a subsimplex extracted at 𝜆𝑟(�̂�𝑟)  by subdividing at �̂�𝑟 , 𝑟 ∈ {0, . . . , 𝑙} . We 

proceed into 𝑟𝑡ℎ  coordinate direction and return to Algorithm 3.2 for all 𝑟  (full algorithm). Let (for 

simplicity) 𝑟 = 0, then we have  

 𝑈[�̂�0] = [�̂�0, 𝑒1, . . . , 𝑒𝑙] 

be a subsimplex of Δ. By Algorithm 3.2, the Bernstein coefficients on 𝑈[�̂�0] are convex combinations of 

the coefficients on Δ. Repeatedly splitting at the remaining �̂�𝑟, 𝑟 = 1, . . . , 𝑙, with respect to the extracted 

simplices, then we will have finally at �̂�𝑙 the Bernstein coefficients over  

 𝑈 = [�̂�0, . . . , �̂�𝑙] 

are given as convex combinations of the coefficients over 𝑈[�̂�𝑙−1], which completes the proof.  



 

Corollary 1. Denote the union of enclosure bounds over 𝑊[𝑖], 𝑖 = 0, . . . , 𝑙, by 𝐺(𝐹,𝑀,𝑊[𝛥]). For all 

𝑥 ∈ 𝑊[𝛥] and 𝑊[0] ∪. . .∪𝑊[𝑙] ⊆ 𝛥, it follows from Theorem 3.1 that  

 [𝑚𝑖𝑛𝐹(𝑥),𝑚𝑎𝑥𝐹(𝑥)] ⊆ 𝐺(𝐹,𝑀,𝑊[𝛥]) ⊆ 𝐺(𝐹,𝑀, 𝛥). 

 

Example 3.1. Given the polynomial 𝐹 = 5𝑥2 − 2𝑥 + 1 is over 𝑊 = [−1,1], where the ordered list of 

Bernstein coefficients 𝐶(𝐹, 2, [−1,1]) = (8,−4,4) . The enclosure bound is 𝐺(𝐹,𝑀,𝑊) = [−4,8] . 

However, by the first binary splitting of 𝛥, the lists of Bernstein coefficients over each subsimplex are 

𝐶(𝐹, 2, [−1,0]) = (8,2,1) and 𝐶(𝐹, 2, [0,1]) = (1,0,4). Hence the union of enclosure bounds 

𝐺(𝐹,𝑀,𝑊[𝛥]) = [0,8] is contained in 𝐺(𝐹,𝑀,𝑊).  

 

Remark 3.3. From the edge splitting of a simplex, we have just two barycentric coordinates of �̂� with 

respect to 𝛥, ℎ = 2 say. We have at the non edge splitting step ℎ ≤ 𝑙 + 1. 

 

The Complexity (number of Bernstein coefficients and the computation steps) needed to perform one call 

to Algorithm 3.2 is given in the following lemma. 

 

Lemma 3.2. Let 𝐹 of degree 𝑚 be given over 𝛥 and 2 ≤ ℎ ≤ 𝑙 + 1. The number of computation steps 

needed for one call to Algorithm 3.2 at �̂� in 𝛥 is  

 
ℎ(𝑚+𝑙)!

(𝑚−1)!(𝑙+1)!
. 

 

    Proof. The number of Bernstein coefficients of degree 𝑚 over 𝑙-dimensional simplex is  

 𝑅(𝑚, 𝑙):= (
𝑚 + 𝑙
     𝑙

) =
(𝑚+𝑙)!

𝑚!.𝑙!
. 

Note that in one call to Algorithm 3.2 over 𝑙-simplex, we need to compute the Bernstein coefficients of 𝑙 

variables of degrees 0 to 𝑚 − 1. Therefore, the number of calculation steps for Bernstein coefficients is  

 𝐻(𝑗, 𝑙): = ∑𝑚−1𝑗=0 𝑅(𝑗, 𝑙) = (
𝑚 + 𝑙
𝑚 − 1

) =
(𝑚+𝑙)!

(𝑚−1)!(𝑙+1)!
. 

Thus, the needed computation steps are  

 
ℎ(𝑚+𝑙)!

(𝑚−1)!.(𝑙+1)!
.   

 

4  Simplex Face Values 

In this section, we mathematically show that the Bernstein coefficients of a polynomial 𝐹 over the faces 

of a simplex Δ are the same as the coefficients located at the corresponding faces of the (patch) array of 

Bernstein coefficients over Δ. For �̂� ∈ ℕ𝑙, let �̂�[𝑖] = (𝛼1, . . , 𝛼𝑖−1, 𝛼𝑖+1, . . 𝛼𝑙) be a multi-index of ℕ𝑙−1. If 

𝒙′ = (𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥𝑙) is lying on the boundary of Δ then it is contained in a subsimplex of dimension 

𝑙 − 1, Δ′ say. 

 

Lemma 4.1.  Let 𝒙′ = (𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑙) be lying on the boundary of 𝛥, 𝑥𝑖 = 1 − ∑
𝑙
𝑗=1,𝑗≠𝑖 𝑥𝑗. Let 0 <

𝑥𝑗 < 1, for all 𝑗 = 1, . . . , 𝑙. Then the Bernstein coefficients of 𝐹 over the (𝑙 − 1)-dimensional simplex 𝛥′ 

are given by  



 𝐶(�̂�[𝑖],𝑚−|�̂�[𝑖]|)(𝐹,𝑚, Δ
′) = ∑�̂�[𝑖]≤�̂�[𝑖],𝛽𝑖≤𝑚−|�̂�[𝑖]|

(
�̂�[𝑖]

�̂�[𝑖]
)(
𝑚−|�̂�[𝑖]|

 �̂�𝑖
)

(
𝑚
�̂� )

𝑎�̂� . (14) 

  

    Proof. Put (𝒙[𝑖]):= (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑙)  and �̂�[𝑖] = (𝛽1, . . . , 𝛽𝑖−1, 𝛽𝑖+1, . . . , 𝛽𝑙) . Since 𝒙′  is 

lying on the boundary of Δ and 0 < 𝑥𝑗 < 1, for all 𝑗 = 1, . . . , 𝑙, then 𝜆0(𝒙
′) = 0. The Bernstein expansion 

of 𝐹 with respect to Δ′ is given as follows:  

 𝑝(𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑙) = ∑|�̂�|≤𝑚 𝑎�̂�(𝒙
[𝑖])�̂�

[𝑖]
(1 − |(𝒙[𝑖])|)𝛽𝑖(|𝒙′| + 1 − |𝒙′|)𝑚−|�̂�| 

 

 = ∑|�̂�|≤𝑚 ∑|�̂�[𝑖]|≤𝑚−|�̂�| 𝑎�̂� (
𝑚 − |�̂�|

   𝛾[𝑖]
) (𝒙[𝑖])�̂�

[𝑖]+�̂�[𝑖](1 − |(𝒙[𝑖])|)𝑚−|�̂�|−|�̂�
[𝑖]|+𝛽𝑖 

 

 = ∑|�̂�|≤𝑚 ∑|�̂�[𝑖]|≤𝑚−|�̂�| 𝑎�̂� (
𝑚 − |�̂�|

   𝛾[𝑖]
) (𝒙[𝑖])�̂�

[𝑖]+�̂�[𝑖](1 − |(𝒙[𝑖])|)𝑚−|�̂�
[𝑖]|−|�̂�[𝑖]| 

 

 (�̂�[𝑖] + 𝛾[𝑖] =: �̂�[𝑖]) 

 

 = ∑|�̂�|≤𝑚 ∑|�̂�[𝑖]|+𝛼𝑖=𝑚 𝑎�̂� (
               𝑚 − |�̂�|

(�̂�[𝑖] − 𝛽[𝑖]), (𝛼𝑖 − 𝛽𝑖)
) (𝒙[𝑖])�̂�

[𝑖]
(1 − |(𝒙[𝑖])|)𝑚−|�̂�

[𝑖]| 

 

 = ∑|�̂�|≤𝑚 ∑|�̂�[𝑖]|+𝛼𝑖=𝑚 𝑎�̂�

(
�̂�[𝑖]

�̂�[𝑖]
)(
𝛼𝑖
𝛽𝑖
)

(
𝑚
�̂� )

(
     𝑚
�̂�[𝑖], 𝛼𝑖

) (𝒙[𝑖])�̂�
[𝑖]
(1 − |(𝒙[𝑖])|)𝛼𝑖 

 

 = ∑|�̂�[𝑖]|+𝛼𝑖=𝑚 ∑�̂�≤�̂� 𝑎�̂�

(
�̂�[𝑖]

�̂�[𝑖]
)(
𝑚−|�̂�[𝑖]|
     𝛽𝑖

)

(
𝑚
�̂� )

(
     𝑚
�̂�[𝑖], 𝛼𝑖

) (𝒙[𝑖])�̂�
[𝑖]
(1 − |(𝒙[𝑖])|)𝛼𝑖 .   

    We define the patch 𝐻(Δ):= (𝐶𝛼(𝐹,𝑚, Δ))|𝛼|=𝑚 and investigate the face values of the Bernstein form 

over simplices. 

 

Proposition 4.2. Let 𝐹 be an 𝑙-variate polynomial and let 𝐻(𝛥) be the patch of its Bernstein coefficients 

on 𝛥. Then Bernstein coefficients of 𝐹  on 𝑚-dimensional faces of 𝛥 are just the coefficients on the 

respective 𝑚-dimensional faces of 𝐻(𝛥).  

 

    Proof. Let 𝒙′ ∈ ℝ𝑙 be lying on a face of Δ. Then it is lying on a subsimplex of an (𝑙 − 1)-dimensional 

simplex Δ′. Let (𝒙[𝑖]) = (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑙) ∈ ℝ
𝑙−1. If 𝒙′ = (𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑙), 𝑥𝑖 = 0, then the 

polynomial  

 𝐹(𝑥1, . . . ,0, . . . , 𝑥𝑙) = ∑|�̂�|≤𝑚,𝛼𝑖=0 𝑎�̂�(𝒙
[𝑖])𝛼

[𝑖]
 

has Bernstein coefficients  

 𝐶(�̂�,𝛼0)(𝐹,𝑚, Δ
′) = ∑�̂�≤�̂�,𝛽𝑖=0

(
�̂�[𝑖]

�̂�[𝑖]
)

(
𝑚
�̂� )
𝑎�̂� 



coincide with the respective coefficients contained in the part of array 𝐶(�̂�,𝛼0)(𝐹,𝑚, Δ) = ∑�̂�≤�̂�,𝛼𝑖=0

(
�̂�
�̂�
)

(
𝑚
�̂� )
𝑎�̂� 

of the polynomial 𝐹. 

Similarly, if  

 𝒙′ = (𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥𝑙), 𝑥𝑖 = 1 − ∑
𝑙
𝑗=1,𝑗≠𝑖 𝑥𝑗, (15) 

where 𝒙′ = ∑𝑙𝑗=1 𝜆𝑗(𝒙
′)𝑒𝑗 and 𝜆𝑗 ≠ 0, ∀𝑗 = 1, . . . , 𝑙. Then by Lemma 4.1 the polynomial  

 𝐹(𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥𝑙) = ∑|�̂�[𝑖]|≤𝑚,𝛼𝑖≤𝑚−|�̂�[𝑖]| 𝑎�̂�𝑥𝑖
𝛼𝑖(𝒙[𝑖])�̂�

[𝑖]
 

has Bernstein coefficients  

 𝐶(�̂�[𝑖],𝑚−|�̂�[𝑖]|)(𝐹,𝑚, Δ
′) = ∑�̂�[𝑖]≤�̂�[𝑖],𝛽𝑖≤𝑚−|�̂�[𝑖]|

(
𝛼[𝑖]

�̂�[𝑖]
)(
𝑚−|�̂�[𝑖]|
     𝛽𝑖

)

(
𝑚
�̂� )

𝑎�̂� (16) 

coincide with the respective coefficients contained in the part of array  

 𝐶(�̂�,0)(𝐹,𝑚, Δ) = ∑�̂�≤�̂�,|�̂�|=𝑚

(
�̂�
�̂�
)

(
𝑚
�̂� )
𝑎�̂� , with  𝑎�̂� = 0  if  |�̂�| < |�̂�|, 

of the polynomial 𝐹 . As before, start decreasing the dimension of simplices by applying the same 

arguments above to Δ′ in order to investigate all the possible cases and arrive finally to 𝒙′ = 𝑒𝑖0, 𝑖0 ∈

{0, . . . , 𝑙}, which by the interpolation property completes the proof.  

 

5  Applications 

An application of the face values of a box for bounding functions over a union of edges was given in [22]. 

In [8], the approach was used for solving systems of polynomial functions over boxes. An application of 

Proposition 4.2 for the control to facet problem for arbitrary polynomial vector fields on a simplex was 

addressed in [20]. Algorithm 3.2 for computing control (data) points can be used for checking positivity 

and stability of polynomial systems with coefficients depending on polynomial parameters. Specifically, 

our results lean upon positive certificates for polynomials over subsimplices, and stability of complex 

systems derived from control design, dynamics and machine learning. Using the face values property, we 

are then able to compute control points for polynomial systems over a simplex within a finite number of 

parameters. In the case of high polynomial parameters, the new algorithm based on the inclusion isotonicity 

of Bernstein bounds over a simplex is advantageous because of the requested coefficients are optimized 

and the face values property holds. 

 

6  Future Work 

Computation of bounding functions for positivity of a polynomial function is important in analysis and 

computer design. A simple method for this purpose can be considered by using the lower Bernstein 

bounding function of a polynomial function over a given domain. We aspire in our future work to find the 

set of all negative points of 𝐹 over 𝑊. We will apply taking away from the domain all sub-domains 

generated for which a polynomial being negative. Apply for that the computed Bernstein coefficients over 

a simplex and a new subdivision strategy. It may be advantageous to sweep in a particular coordinate 

direction 𝑟 to increase the possibility for finding non positive Bernstein coefficients. Using linear bounding 

functions decreases the domain and calculation steps we need to find non-positive coefficients. Moreover, 

Matlab toolbox for the developed algorithm should be designed. The new method will be implemented in 



such a way that data uncertainties can be taken into account and the enclosure of bounding functions can 

be guaranteed also in the presence of bounding errors appearing in the computations. This should be 

accomplished by the use of interval arithmetic and interval programming languages. 

 

7  Conclusions 

In this paper, the expansion of polynomials into Bernstein basis was applied. We provided an algorithm 

that computes Bernstein coefficients over substracted subsimplices from Δ  in 𝑟𝑡ℎ  direction. This 

algorithm can be used for fast computation of polynomial coefficients over any simplex. We proved the 

inclusion isotonicity of the Bernstein enclosure bounds. A property which is of fundamental important in 

optimization and computation of bounds for functions. To this end, subdividing the given domain was 

applied in 𝑟𝑡ℎ direction. Subsequently, we are able to certify the positivity of polynomials over a specific 

simplex. On the other hand, we have shown that the Bernstein coefficients on the face values of a simplex 

are coincide with the batch of Bernstein coefficients. With this property, computing the Bernstein 

coefficients is reduced to a finite number of face values, and the algorithm (De Casteljau) for computing of 

optimization bounds is developed. Finally, the Bernstein enclosure bound of 𝐹 over a subsimplex 𝑈 is 

optimized by the union of Bernstein enclosure bounds over the whole domain 𝑊. 
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Design, 3(2):83–127, 1986. 

[5] Rida T Farouki. The Bernstein polynomial basis: a centennial retrospective. 

Computer Aided Geometric Design, 29(6):379–419, 2012. 

[6] Jürgen Garloff and Tareq Hamadneh. Convergence and inclusion isotonicity of the 

tensorial rational Bernstein form. In Scientific Computing, Computer Arithmetic, 

and Validated Numerics, pages 171–179. Springer, 2015. 

[7] Jürgen Garloff, C Jansson, and Andrew P Smith. Inclusion isotonicity of convex–

concave extensions for polynomials based on Bernstein expansion. Computing, 

70(2):111–119, 2003. 

[8] Jürgen Garloff and Andrew P Smith. Solution of systems of polynomial equations 



by using Bernstein expansion. In Symbolic Algebraic Methods and Verification 

Methods. Springer, 2001. 

[9] Tareq Hamadneh. Bounding Polynomials and Rational Functions in the Tensorial 

and Simplicial Bernstein Forms. PhD thesis, University of konstanz, 2018. 

[10] Tareq Hamadneh, Nikolaos Athanasopoulos, and Mohammed Ali. Minimization and 

positivity of the tensorial rational Bernstein form. In 2019 IEEE Jordan 

International Joint Conference on Electrical Engineering and Information 

Technology (JEEIT), pages 474–479. IEEE, 2019. 

[11] Tareq Hamadneh and Rafael Wisniewski. Algorithm for Bernstein polynomial 

control design. IFAC-PapersOnLine, 51(16):283–289, 2018. 

[12] Tareq Hamadneh and Rafael Wisniewski. The barycentric Bernstein form for 

control design. In 2018 Annual American Control Conference (ACC), pages 3738–

3743. IEEE, 2018. 

[13] Hoon Hong and Volker Stahl. Bernstein form is inclusion monotone. Computing, 

55(1): 43-53, 1995. 

[14] Richard  Leroy. Certificats de positivité et minimisation polynomiale dans la base de 

Bernstein multivariée. PhD thesis, Université Rennes 1, 2008. 
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