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Abstract—An effective numerical method depends on the 

fractional power series is applied to solve a class of boundary 

value problems associated with obstacle, unilateral, and 

contact problems of fractional order 𝟐𝜶, 𝟎 < 𝜶 ≤ 𝟏. The 

fractional derivative is considered in the Caputo sense. This 

method constructs a convergent sequence of approximate 

solutions for the obstacle problem. A numerical example is 

given to illustrate the higher accuracy of this technique.  
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I. INTRODUCTION  

The theory of variational inequalities is a powerful tool in the 
study of obstacle and unilateral problems that arise in 
mathematical and engineering sciences. It is effective in 
studying fluid flow through porous media, elasticity, 
transportation, and economics equilibrium, see [1-3]. For 
example, in [2], Kikuchi and Oden have shown that the 
equilibrium problems for elastic objects touching a rigid base 
can be handled in the context of the theory of variational 
inequality problem (VIP). The obstacle model is essential in 
the development of the VIPs theory that arises in a variety of 
pure and differential applied sciences. Because of their 
importance, various numerical methods have been developed 
and applied to find approximate solutions of the second order 
obstacle problems. Some of these methods are, the finite 
difference method, spline method, and collocation method 
[4-8].  

In the last few decades, fractional calculus attracted the 

attention of many researchers for its considerable 

importance in many applications in fluid dynamics, 

viscoelasticity, optical technology, entropy theory and 

engineering. Many mathematicians provide a brief history, 

theoretical developments, and applications of factional 

calculus, see [9-13].  Therefore, most of the initial and 

boundary value problems (BVPs) of integer order were 

generalized to fractional order and various methods were 

modified to solve them.  

The basic motivation of this paper is to solve the 

following generalized obstacle system of fractional order 𝛼: 

 𝐷𝑎
2𝛼𝑢(𝑥) =

{
 
 

 
 
𝑓(𝑥) ,                                 

𝑔(𝑥)𝑢(𝑥) + 𝑓(𝑥) + 𝑟,   

𝑓(𝑥) ,                                

𝑎 ≤ 𝑥 < 𝑐,

𝑐 ≤ 𝑥 < 𝑑,

𝑑 ≤ 𝑥 ≤ 𝑏,

 (1) 

subject to the boundary conditions 
𝑢(𝑎) = 𝜇1 ,   𝑢(𝑏) =  𝜇2,   (2) 

where 0 < 𝛼 ≤ 1,  𝐷𝑎
2𝛼 is the Caputo-fractional derivative, 

𝜇1, 𝜇2 ∈ ℝ, the parameter 𝑟 is real finite constant, 𝑔(𝑥) is an 

analytical continuous function on [𝑐, 𝑑], 𝑓(𝑥)is a continuous 

on [𝑎, 𝑏], the function 𝑢(𝑥) is unknown smooth function to 

be determined such that 𝑢(𝑖)(𝑥), 𝑖 = 0,1, are continuous 

functions at the points 𝑐 and 𝑑 in [𝑎, 𝑏]. 

        The BVP in (1) and (2) is the generalized fractional 

form of the second order obstacle problem which results if 

we put 𝛼 = 1. Many techniques were applied to solve (1) 

and (2) in the integer order case. Some of these techniques 

are; the collocation method [4], second and fourth order 

finite difference and spline methods [5], quadratic and cubic 

spline methods, parametric cubic spline method, using 

quadratic non-polynomial splines, and cubic non-polynomial 

splines [6-8].  

In this paper, we present numerical solution for the 
fractional obstacle problem (1) and (2) via fractional residual 
power series method (RPSM). This solution is given in the 
form of rapid convergent series with easily computable 
components. The residual power series method was first 
proposed in 2013 by the Jordanian mathematician Omar Abu 
Arqub [14] to solve fuzzy differential equations.  After that, 
it has been successfully applied to different types of 
problems. For instance, Lane-Emden equation, higher-order 
regular differential equations, nonlinear fractional KdV-
Burgers equation, and nonlinear time-fractional dispersive 
PDEs [15-19]. This method ensures the convergence of the 
approximate series solution because it depends on 
minimizing residual errors. For more details, see [20-23]. 

This paper is organized in five sections including the 
introduction, which appear as follows. In Section II, some 



fundamental concepts of fractional calculus and the power 
series method are given. In Section III, a description the 
FRPSM is introduced by applying it to solve the fractional 
obstacle BVP in (1) and (2). The numerical example is 
presented in Section IV. This article ends in Section V with 
some conclusions. 

II.  FUNDAMENTAL CONCEPTS 

In this section, main concepts, definitions and results about 
the fractional calculus and power series in Caputo sense are 
given briefly. For more details, we refer to [24-33]. 

Definition 1. The Riemann-Liouville fractional integral of 

order 𝛼 > 0 over the interval [𝑎, 𝑏] for a function g is 

defined by (𝐽𝑎+
𝛼 𝑔)(𝑥) =

1

𝛤(𝛼)
∫

𝑔(𝑧)

(𝑥−𝑧)1−𝛼
 𝑑𝑧

𝑥

𝑎
, 𝑥 > 𝑎. For 

𝛼 = 0,  Ja+
α  is the identity operator. 

Definition 2. The Caputo fractional derivative of order 𝛼 >

0 is defined by 𝐷𝑎
𝛼𝑔(𝑥) =

1

𝛤(𝑛−𝛼)
∫

𝑔(𝑛)(𝑧)

(𝑥−𝑧)𝛼−𝑛+1
𝑑𝑧

𝑥

𝑎
, 𝑥 > 𝑎,

𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ ℕ. 

Definition 3. A power series expansion of the form 
∑ 𝑐𝑚(𝑥 − 𝑎)

𝑚𝛼∞
𝑚=0 , 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ ℕ, is called 

fractional power series about 𝑥 = 𝑎. 

Theorem 1. Suppose that 𝑓 has a fractional power series 
representation at 𝑥 = 𝑎 of the form 

 𝑢(𝑥) = ∑ 𝑐𝑚(𝑥 − 𝑎)
𝑚𝛼∞

𝑚=0 ; 𝑎 ≤ 𝑥 < 𝑎 + 𝑅, 

and if 𝐷𝑎
𝑚𝛼𝑢(𝑥),𝑚 = 0,1,2, … are continuous on (𝑎, 𝑎 + 𝑅), 

then 𝑐𝑚 =
𝐷𝑎
𝑚𝛼𝑢(𝑎)

𝛤(1+𝑚𝛼)
 . 

 III. RPSM FOR SOLVING FRACTIONAL OBSTACLE SYSTEM 

 

The fractional RPS technique can be applied for the obstacle 

problem (1) and (2) to obtain the approximate solution 𝑢𝑛(𝑥) 
as follows: we consider three cases depending on the 

corresponding intervals. These cases are: 
 

• Case I: The RPS solution, 𝑢1(𝑥), on [𝑎, 𝑐] can be 

obtained using the following procedure: 

Let 𝐷𝑎
2𝛼𝑢1(𝑥) = 𝑓(𝑥) on [𝑎, 𝑐] and let the solution 

𝑢1(𝑥) has the FPS expansion about the initial point 𝑎 

such as 

𝑢1(𝑥) = ∑𝑐𝑛(𝑥 − 𝑎)
𝑛𝛼

∞

𝑛=0

,  
(3) 

 

and the 𝑘-th truncated series 

𝑢1,𝑘(𝑥) = ∑𝑐𝑛(𝑥 − 𝑎)
𝑛𝛼

𝑘

𝑛=0

.   
(4) 

Since 𝑢1(𝑥) satisfy the initial condition 𝑢1(𝑎) =
𝜇1 = 𝑐0, then 𝑢1,𝑘(𝑥) can be rewritten as 

 

𝑢1,𝑘(𝑥) = 𝜇1 + 𝑐1(𝑥 − 𝑎)
𝛼

+∑𝑐𝑛(𝑥 − 𝑎)
𝑛𝛼

𝑘

𝑛=2

. 

(5) 

According the RPS method, the 𝑘th-residual error 

function, 𝑅𝑒𝑠𝑢1
𝑘 (𝑥), can be defined by 

 

𝑅𝑒𝑠𝑢1
𝑘 (𝑥) = 𝐷𝑎

2𝛼𝑢1,𝑘(𝑥) − 𝑓(𝑥), (6) 

where the residual error function, 𝑅𝑒𝑠𝑢1(𝑥), can be 

given as follows 

𝑅𝑒𝑠𝑢1(𝑥) = 𝑙𝑖𝑚
𝑘→∞

𝑅𝑒𝑠𝑢1
𝑘 (𝑥). 

 

Consequently, we need to minimize 𝑅𝑒𝑠𝑢1
𝑘 (𝑥) 

and utilize the relation 𝐷𝑎
(𝑘−2)𝛼

𝑅𝑒𝑠𝑢1
𝑘 (𝑥)|

𝑥=𝑎
=

0 , 𝑘 = 2,3, …, to determine the unknown coefficients 

𝑐𝑛 , 𝑛 = 2,3, … , 𝑘, of (5). In this point, the value of 

𝑐1 = 𝐴 will be determined later by using the 

continuity conditions of Eq. (1). 
 

Now, to illustrate the main steps of the RPS 

algorithm in finding the unknown coefficients 𝑐𝑛 , 𝑛 =
2,3, … , 𝑘, let 𝑘 = 2 and substitute the approximation 

 𝑢1,2(𝑥) = 𝜇1 + 𝐴(𝑥 − 𝑎)
𝛼 + 𝑐2(𝑥 − 𝑎)

2𝛼  

into the kth-residual error function, 𝑅𝑒𝑠𝑢1
2 (𝑥), such 

that 

𝑅𝑒𝑠𝑢1
2 (𝑥) = 𝐷𝑎

2𝛼𝑢1,2(𝑥) − 𝑓(𝑥)

= 𝐷𝑎
2𝛼(𝜇1 + 𝐴(𝑥 − 𝑎)

𝛼

+ 𝑐2(𝑥 − 𝑎)
2𝛼) − 𝑓(𝑥)

= 𝑐2𝛤(2𝛼 + 1) − 𝑓(𝑥), 
 

and then by the fact 𝐷𝑎
(𝑘−2)𝛼

𝑅𝑒𝑠𝑢1
𝑘 (𝑥)|

𝑥=𝑎
= 0 , 𝑘 =

2, we get 𝑐2𝛤(2𝛼 + 1) − 𝑓(𝑎) = 0, that is, 𝑐2 =
𝑓(𝑎)

𝛤(2𝛼+1)
.  

 

Therefore,  

𝑢1,2(𝑥) = 𝜇1 + 𝐴(𝑥 − 𝑎)
𝛼 +

𝑓(𝑎)

𝛤(2𝛼 + 1)
(𝑥 − 𝑎)2𝛼 . 

 

Likewise, to find the unknown coefficient 𝑐3, 

substitute the third truncatedseries  

𝑢1,3(𝑥) = 𝜇1 + 𝐴(𝑥 − 𝑎)
𝛼 +

𝑓(𝑎)

𝛤(2𝛼 + 1)
(𝑥 − 𝑎)2𝛼

+ 𝑐3(𝑥 − 𝑎)
3𝛼 

 

into 𝑅𝑒𝑠𝑢1
3 (𝑥) such that 

 

 𝑅𝑒𝑠𝑢1
3 (𝑥) = 𝐷𝑎

2𝛼𝑢1,3(𝑥) − 𝑓(𝑥) = 𝐷𝑎
2𝛼 (𝜇1 +

𝐴(𝑥 − 𝑎)𝛼 +
𝑓(𝑎)

𝛤(2𝛼+1)
(𝑥 − 𝑎)2𝛼 + 𝑐3(𝑥 − 𝑎)

3𝛼) −

𝑓(𝑥) = 𝑓(𝑎) + 𝑐3
𝛤(3𝛼+1)

𝛤(𝛼+1)
(𝑥 − 𝑎)𝛼 − 𝑓(𝑥), 

 

and then by using 𝐷𝑎
𝛼𝑅𝑒𝑠𝑢1

3 (𝑥)|
𝑥=𝑎

= 0, we obtain 

𝑐3𝛤(3𝛼 + 1) − 𝐷𝑎
𝛼𝑓(𝑎) = 0, that is, 𝑐3 =

𝐷𝑎
𝛼𝑓(𝑎)

𝛤(3𝛼+1)
.  

 

Therefore,  

𝑢1,3(𝑥) = 𝜇1 + 𝐴(𝑥 − 𝑎)
𝛼 +

𝑓(𝑎)

𝛤(2𝛼 + 1)
(𝑥 − 𝑎)2𝛼

+
𝐷𝑎
𝛼𝑓(𝑎)

𝛤(3𝛼 + 1)
(𝑥 − 𝑎)3𝛼 . 

 

Now, to find the unknown coefficient 𝑐4, 

substitute the fourth truncated series 𝑢1,4(𝑥) = 𝜇1 +

𝐴(𝑥 − 𝑎)𝛼 +
𝑓(𝑎)

𝛤(2𝛼+1)
(𝑥 − 𝑎)2𝛼 +

𝐷𝑎
𝛼𝑓(𝑎)

𝛤(3𝛼+1)
(𝑥 −

𝑎)3𝛼 + 𝑐4(𝑥 − 𝑎)
4𝛼 into 𝑅𝑒𝑠𝑢1

4 (𝑥) such that 
 

𝑅𝑒𝑠𝑢1
4 (𝑥) = 𝐷𝑎

2𝛼𝑢1,4(𝑥) − 𝑓(𝑥) = 𝐷𝑎
2𝛼 (𝜇1 +

𝐴(𝑥 − 𝑎)𝛼 +
𝑓(𝑎)

𝛤(2𝛼+1)
(𝑥 − 𝑎)2𝛼 +

             
𝐷𝑎
𝛼𝑓(𝑎)

𝛤(3𝛼+1)
(𝑥 − 𝑎)3𝛼 + 𝑐4(𝑥 − 𝑎)

4𝛼) − 𝑓(𝑥)  



= 𝑓(𝑎) +
𝐷𝑎
𝛼𝑓(𝑎)

𝛤(𝛼 + 1)
(𝑥 − 𝑎)𝛼

+ 𝑐4
𝛤(4𝛼 + 1)

𝛤(2𝛼 + 1)
(𝑥 − 𝑎)2𝛼 − 𝑓(𝑥), 

 

 

and then by using 𝐷𝑎
2𝛼𝑅𝑒𝑠𝑢1

4 (𝑥)|
𝑥=𝑎

= 0, we obtain 

𝑐4𝛤(4𝛼 + 1) − 𝐷𝑎
2𝛼𝑓(𝑎) = 0, that is, 𝑐4 =

𝐷𝑎
2𝛼𝑓(𝑎)

𝛤(4𝛼+1)
. 

Therefore, the fourth RPS-approximation is given by 
 

𝑢1,4(𝑥) = 𝜇1 + 𝐴(𝑥 − 𝑎)
𝛼

+∑
𝐷𝑎
(𝑛−2)𝛼

𝑓(𝑎)

𝛤(𝑛𝛼 + 1)
(𝑥 − 𝑎)𝑛𝛼

4

𝑛=2

 
(7) 

• Case II: The RPS solution, 𝑢2(𝑥), on [𝑐, 𝑑] can be 

presented as follows: 

Let 𝐷𝑎
2𝛼𝑢2(𝑥) = 𝑔(𝑥)𝑢2(𝑥) + 𝑓(𝑥) + 𝑟 on [𝑐, 𝑑] and 

let the solution 𝑢2(𝑥) has the 𝑘-th truncated series 

expansion about the initial point 𝑐 such that 

𝑢2,𝑘(𝑥) = ∑𝑐𝑛(𝑥 − 𝑐)
𝑛𝛼

𝑘

𝑛=0

. (8) 

Since there is no condition at the initial point 𝑐,
𝑢2,𝑘(𝑥) can be written as 

𝑢2,𝑘(𝑥) = 𝑐0 + 𝑐1(𝑥 − 𝑐)
𝛼

+∑𝑐𝑛(𝑥 − 𝑐)
𝑛𝛼

𝑘

𝑛=2

. 
(9) 

According the RPS method, the kth-residual 

error function, 𝑅𝑒𝑠𝑢2
𝑘 (𝑥), can be defined by 

 

𝑅𝑒𝑠𝑢2
𝑘 (𝑥) = 𝐷𝑎

2𝛼𝑢2,𝑘(𝑥) − 𝑔(𝑥)𝑢2,𝑘(𝑥)

− 𝑓(𝑥) − 𝑟. 
(10) 

 

Consequently, to obtain the unknown 

coefficients 𝑐𝑛, 𝑛 = 2,3, … , 𝑘, of Eq. (9), we need to 

minimize 𝑅𝑒𝑠𝑢2
𝑘 (𝑥) and utilize the relation 

𝐷𝑎
(𝑘−2)𝛼

𝑅𝑒𝑠𝑢2
𝑘 (𝑥)|

𝑥=𝑐
= 0 , 𝑘 = 2,3, …. In this point, 

the values of 𝑐0 = 𝐵 and 𝑐1 = 𝐶 will be determined 

later by using the continuity conditions of Eq. (1).  
 

Now, to apply the RPS algorithm in finding the 

coefficient 𝑐2, substitute 𝑢2,2(𝑥) = 𝐵 + 𝐶(𝑥 − 𝑐)𝛼 +

𝑐2(𝑥 − 𝑐)
2𝛼 into 𝑅𝑒𝑠𝑢2

2 (𝑥) such that 
 
 

𝑅𝑒𝑠𝑢2
2 (𝑥) = 𝐷𝑎

2𝛼𝑢2,2(𝑥) − 𝑔(𝑥)𝑢2,2(𝑥) − 𝑓(𝑥) − 𝑟

= 𝐷𝑎
2𝛼(𝐵 + 𝐶(𝑥 − 𝑐)𝛼

+ 𝑐2(𝑥 − 𝑐)
2𝛼)

− 𝑔(𝑥)(𝐵 + 𝐶(𝑥 − 𝑐)𝛼

+ 𝑐2(𝑥 − 𝑐)
2𝛼) − 𝑓(𝑥) − 𝑟

= 𝑏2𝛤(2𝛼 + 1)

− 𝑔(𝑥)(𝐵 + 𝐶(𝑥 − 𝑐)𝛼

+ 𝑐2(𝑥 − 𝑐)
2𝛼) − 𝑓(𝑥) − 𝑟, 

 

and then by using 𝑅𝑒𝑠𝑢2
2 (𝑥)|

𝑥=𝑐
= 0, we obtain 

𝑐2𝛤(2𝛼 + 1) − 𝐵𝑔(𝑐) − 𝑓(𝑐) − 𝑟 = 0, that is, 𝑐2 =
𝐵𝑔(𝑐)+𝑓(𝑐)+𝑟

𝛤(2𝛼+1)
. Therefore, the second approximation is 

 

𝑢2,2(𝑥) = 𝐵 + 𝐶(𝑥 − 𝑐)
𝛼

+
𝐵𝑔(𝑐) + 𝑓(𝑐) + 𝑟

𝛤(2𝛼 + 1)
(𝑥 − 𝑐)2𝛼 . 

Again, the third approximation has the form 

𝑢2,3(𝑥) = 𝐵 + 𝐶(𝑥 − 𝑐)
𝛼 +

𝐵𝑔(𝑐) + 𝑓(𝑐) + 𝑟

𝛤(2𝛼 + 1)
(𝑥 − 𝑐)2𝛼

+ 𝑐3(𝑥 − 𝑐)
3𝛼 . 

Thus, to obtain the value of 𝑐3, substitute 𝑢2,3(𝑥) into 

𝑅𝑒𝑠𝑢2
3 (𝑥) such that 

𝑅𝑒𝑠𝑢2
3 (𝑥) = 𝐷𝑎

2𝛼𝑢2,3(𝑥) − 𝑔(𝑥)𝑢2,3(𝑥) − 𝑓(𝑥) − 𝑟 

= 𝐷𝑎
2𝛼 (𝐵 + 𝐶(𝑥 − 𝑐)𝛼 +

𝐵𝑔(𝑐) + 𝑓(𝑐) + 𝑟

𝛤(2𝛼 + 1)
(𝑥 − 𝑐)2𝛼

+ 𝑐3(𝑥 − 𝑐)
3𝛼)

− 𝑔(𝑥) (𝐵 + 𝐶(𝑥 − 𝑐)𝛼

+
𝐵𝑔(𝑐) + 𝑓(𝑐) + 𝑟

𝛤(2𝛼 + 1)
(𝑥 − 𝑐)2𝛼

+ 𝑐3(𝑥 − 𝑐)
3𝛼) − 𝑓(𝑥) − 𝑟 

= (𝐵𝑔(𝑐) + 𝑓(𝑐) + 𝑟) + 𝑐3
𝛤(3𝛼 + 1)

𝛤(𝛼 + 1)
(𝑥 − 𝑐)𝛼

− 𝑔(𝑥) (𝐵 + 𝐶(𝑥 − 𝑐)𝛼

+
𝐵𝑔(𝑐) + 𝑓(𝑐) + 𝑟

𝛤(2𝛼 + 1)
(𝑥 − 𝑐)2𝛼

+ 𝑐3(𝑥 − 𝑐)
3𝛼) − 𝑓(𝑥) − 𝑟, 

and then by using 𝐷𝑎
𝛼𝑅𝑒𝑠𝑢2

3 (𝑥)|
𝑥=𝑐

= 0, we obtain 

𝑐3𝛤(3𝛼 + 1) − 𝐵𝐷𝑎
𝛼𝑔(𝑐) − 𝐶𝐷𝑎

𝛼(𝑔(𝑥)(𝑥 − 𝑐)𝛼)|𝑥=𝑐 −
𝐵𝑔(𝑐)+𝑓(𝑐)+𝑟

𝛤(2𝛼+1)
𝐷𝑎
𝛼(𝑔(𝑥)(𝑥 − 𝑐)2𝛼)|𝑥=𝑐 − 𝑐3𝐷𝑎

𝛼(𝑔(𝑥)(𝑥 −

𝑐)3𝛼)|𝑥=𝑐 − 𝐷𝑎
𝛼𝑓(𝑐) = 0, that is, 𝑐3 =

𝜓(𝑐)

𝛤(3𝛼+1)
, 𝜓(𝑐) =

𝐵𝐷𝑎
𝛼𝑔(𝑐) + 𝐶𝐷𝑎

𝛼(𝑔(𝑥)(𝑥 − 𝑐)𝛼)|𝑥=𝑐 + 𝐷𝑎
𝛼𝑓(𝑐). Therefore, 

𝑢2,3(𝑥) = 𝐵 + 𝐶(𝑥 − 𝑐)
𝛼 +

𝐵𝑔(𝑐)+𝑓(𝑐)+𝑟

𝛤(2𝛼+1)
(𝑥 − 𝑐)2𝛼 +

𝜓(𝑐)

𝛤(3𝛼+1)
(𝑥 − 𝑐)3𝛼. Similarly, the fourth approximation 

𝑢2,4(𝑥) can be obtained. 

• Case III: The RPS solution, 𝑢3(𝑥), on [𝑑, 𝑏] can be 

presented as follows: 

Let 𝐷𝑎
2𝛼𝑢3(𝑥) = 𝑓(𝑥) on [𝑐, 𝑑] and let the 

solution, 𝑢3(𝑥), has the 𝑘-th truncated series 

expansion at b in the form 

𝑢3,𝑘(𝑥) = ∑𝑐𝑛(𝑥 − 𝑏)
𝑛𝛼

𝑘

𝑛=0

. (11) 

Since 𝑢3(𝑥) satisfy the condition 𝑢3(𝑏) = 𝜇2 =
𝑎0. Thus, 𝑢3,𝑘(𝑥) can be written as 

 

𝑢3,𝑘(𝑥) = 𝜇2 + 𝑐1(𝑥 − 𝑏)
𝛼

+∑𝑐𝑛(𝑥 − 𝑏)
𝑛𝛼

𝑘

𝑛=2

. 
(12) 

According the RPS method, the 𝑘th-residual 

error function, 𝑅𝑒𝑠𝑢3
𝑘 (𝑥), can be defined by 



𝑅𝑒𝑠𝑢3
𝑘 (𝑥) = 𝐷𝑎

2𝛼𝑢3,𝑘(𝑥) − 𝑓(𝑥). (13) 

However, to obtain the unknown coefficients 𝑐𝑛, 𝑛 =

2,3, … , 𝑘, of Eq. (12), we need to minimize 𝑅𝑒𝑠𝑢3
𝑘 (𝑥) and 

utilize the relation 𝐷𝑎
(𝑘−2)𝛼

𝑅𝑒𝑠𝑢3
𝑘 (𝑥)|

𝑥=𝑏
= 0 , 𝑘 = 2,3, …. In 

this point, the value of 𝑐1 = 𝐷 will be determined later by 

using the continuity conditions of Eq. (1). Thus, to apply the 

FRPS algorithm in finding the coefficients 𝑎2, substitute 

𝑢3,2(𝑥) = 𝜇2 + 𝐷(𝑥 − 𝑏)
𝛼 + 𝑐2(𝑥 − 𝑏)

2𝛼 into 𝑅𝑒𝑠𝑢3
2 (𝑥) 

such that 

𝑅𝑒𝑠𝑢3
2 (𝑥) = 𝐷𝑎

2𝛼𝑢3,2(𝑥) − 𝑓(𝑥)

= 𝐷𝑎
2𝛼(𝜇2 + 𝐷(𝑥 − 𝑏)

𝛼 + 𝑐2(𝑥 − 𝑏)
2𝛼)

− 𝑓(𝑥) = 𝑐2𝛤(2𝛼 + 1) − 𝑓(𝑥), 

and then by using 𝑅𝑒𝑠𝑢3
2 (𝑥)|

𝑥=𝑏
= 0,we obtain 𝑐2𝛤(2𝛼 +

1) − 𝑓(𝑏) = 0, that is, 𝑐2 =
𝑓(𝑏)

𝛤(2𝛼+1)
. Therefore, the second 

approximation is 

𝑢3,2(𝑥) = 𝜇2 + 𝐷(𝑥 − 𝑏)
𝛼 +

𝑓(𝑏)

𝛤(2𝛼 + 1)
(𝑥 − 𝑏)2𝛼 . 

In the same style, substitute the third truncated series 

𝑢3,3(𝑥) = 𝜇2 + 𝐷(𝑥 − 𝑏)
𝛼 +

𝑓(𝑏)

𝛤(2𝛼+1)
(𝑥 − 𝑏)2𝛼 +

𝑐3(𝑥 − 𝑏)
3𝛼 into 𝑅𝑒𝑠𝑢3

3 (𝑥) such that 

𝑅𝑒𝑠𝑢3
3 (𝑥) = 𝐷𝑎

2𝛼𝑢1,3(𝑥) − 𝑓(𝑥)

= 𝐷𝑎
2𝛼 (𝜇2 + 𝐷(𝑥 − 𝑏)

𝛼

+
𝑓(𝑏)

𝛤(2𝛼 + 1)
(𝑥 − 𝑏)2𝛼 + 𝑐3(𝑥 − 𝑏)

3𝛼)

− 𝑓(𝑥)

= 𝑓(𝑏) + 𝑐3
𝛤(3𝛼 + 1)

𝛤(𝛼 + 1)
(𝑥 − 𝑏)𝛼 − 𝑓(𝑥), 

and then by using 𝐷𝑎
𝛼𝑅𝑒𝑠𝑢3

3 (𝑥)|
𝑥=𝑏

= 0, we obtain 

𝑐3𝛤(3𝛼 + 1) − 𝐷𝑎
𝛼𝑓(𝑏) = 0, that is, 𝑐3 =

𝐷𝑎
𝛼𝑓(𝑏)

𝛤(3𝛼+1)
. 

Therefore, 𝑢3,3(𝑥) = 𝜇2 + 𝐷(𝑥 − 𝑏)
𝛼 +

𝑓(𝑏)

𝛤(2𝛼+1)
(𝑥 −

𝑏)2𝛼 +
𝐷𝑎
𝛼𝑓(𝑏)

𝛤(3𝛼+1)
(𝑥 − 𝑏)3𝛼. Hence, the fourth RPS-

approximation on [𝑑, 𝑏] is given by 

𝑢3,4(𝑥) = 𝜇2 + 𝐷(𝑥 − 𝑏)
𝛼

+∑
𝐷𝑎
(𝑛−2)𝛼

𝑓(𝑏)

𝛤(𝑛𝛼 + 1)
(𝑥 − 𝑏)𝑛𝛼

4

𝑛=2

. 
(14) 

Moreover, the same routine can be repeated until an 
arbitrary order k, so the unknown coefficients cn, n =
4,5,6, … , k, can be obtained. Furthermore, the values of the 
parameters 𝐴, 𝐵, 𝐶, and 𝐷 can be found by utilizing the 
continuity conditions of Eq. (1) as well as solving the 
obtained system of algebraic equations, 

𝑢1,𝑘(𝑐) = 𝑢2,𝑘(𝑐), 𝑢2,𝑘(𝑑) = 𝑢3,𝑘(𝑑), 

𝐷𝑎
𝛼𝑢1,𝑘(𝑐) = 𝐷𝑎

𝛼𝑢2,𝑘(𝑐), 𝐷𝑎
𝛼𝑢2,𝑘(𝑑) = 𝐷𝑎

𝛼𝑢3,𝑘(𝑑), 
(15) 

Therefore, the kth approximate solution on [𝑎, 𝑏] can be 
finally given by 

𝑢𝑘(𝑥) = {

𝑢1,𝑘(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑐,

𝑢2,𝑘(𝑥), 𝑐 ≤ 𝑥 ≤ 𝑑,

𝑢3,𝑘(𝑥), 𝑑 ≤ 𝑥 ≤ 𝑏.

 (16) 

Hence, the 𝑘th RPS-approximate solution is completely 
constructed for the BVPs (1) and (2). 

VI.  NUMERICAL RESULTS 

Consider the fractional obstacle system of differential 

equation (1) when 𝑓 (𝑥) = 0. So, the obstacle problem can 

be written by  

(𝐷0
2𝛼𝑢)(𝑥) = {

0 ,        𝑥 ∈ [0,
𝜋

4
] ∪ [

3𝜋

4
, 𝜋]

𝑢(𝑥) − 1 ,        𝑥 ∈ [
𝜋

4
 ,
3𝜋

4
]
, 𝛼 ∈ (0,1],                                   

                              𝑢(0) = 𝑢(𝜋) = 0. 

For 𝛼 = 1, the exact solution is 

𝑢(𝑥) =

{
  
 

  
 

4𝑥

𝜋+4coth(
𝜋

4
)
,                              𝑥 ∈ [0,

𝜋

4
]

1 −
4 cosh(

𝜋

2
−𝑥)

𝜋 sinh(
𝜋

4
)+4cosh(

𝜋

4
)
,        𝑥 ∈ [

𝜋

4
 ,
3𝜋

4
]

4(𝜋−𝑥)

𝜋+4coth(
𝜋

4
)  
,                            𝑥 ∈ [

3𝜋

4
, 𝜋]

. 

 

To achieve our goal, divide the interval [0, 𝜋] into 𝑛 

equal subintervals utilizing the standard grid points 𝑥𝑖 =

𝑖ℎ, 𝑖 = 0, , … ,5, 𝑥0 = 0, 𝑥𝑛 = 𝜋, and the step size ℎ = 𝜋/5. 

Using the RPS algorithm, a numerical comparison of the 

obtained results with the exact solution at some selected grid 

points and the 8th-RPS solution of fractional-order 𝛼 = 1 are 

shown in Table I. While Figure 1 allocates of 2D plots 

associated with the 8th-RPS solution for different values of 𝛼 

with step size ℎ = 0.01, and 𝛼 ∈ [0.85,1]. 
 

TABLE I: NUMERICAL RESULTS AND ABSOLUTE ERROR 

𝒙𝒊 
8th-RPS solution for 𝜶 = 𝟏 

Exact Approximation Absolute Error 
𝜋

5
 0.271967952 0.2719679543 1.49519 × 10−12 

2𝜋

5
 0.476916995 0.4769169953 2.59801 × 10−12 

3𝜋

5
 0.476916995 0.4769169686 2.67096 × 10−8 

4𝜋

5
 0.271967954 0.2719679543 5.04818 × 10−13 

 

 

Fig. 1. 2D plots of RPS-solutions for different values of 𝛼. 



V.  CONCLUSIONS 
 

In this paper, we apply the fractional RPS method to solve a 

system of fractional order BVPs associated with obstacle, 

unilateral, and contact problems, and the approximate 

solution is obtained with a high degree of accuracy. Our 

method depends on minimizing the residual error, so we can 

ensure the convergence of the approximate solution series to 

the exact solution. The numerical results show that the 

present method is an accurate and reliable analytical 

technique for such systems.  
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