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Abstract. In this paper, we provide approximate solution to linear time-fractional Kline-Gordon equations (FKGEs) with 

initial conditions by using the residual power series (RPS) method. The proposed technique relies on generalized Taylor 

formula under Caputo sense aiming at extracting a supportive analytical solution in convergent series form. Graphical results 

show the geometric behaviors to the approximate solutions at different values of fraction order 𝛾. The numerical analysis 

detects that the RPS technique is an efficient, simple and powerful tool to determine the solutions of the time-fractional 

KGE. 
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1. Introduction 

In the present study, we consider the following Klein–Gordon equation with time-fractional model 

𝐷𝛾𝜌(𝑥, 𝑡) =
𝜕2

𝜕𝑥2
𝜌(𝑥, 𝑡) + 𝜆𝜌(𝑥, 𝑡) + 𝜇𝜌2(𝑥, 𝑡) + 𝜎𝜌3(𝑥, 𝑡), 0 < 𝛾 ≤ 1,  (1) 

subject to the initial condition 

𝜌(𝑥, 0) = 𝜌0(𝑥).  (2) 

where 𝜆, 𝜇 and 𝜎 are constants, 𝛾 is a parameter describe the order of the time-Caputo fractional derivative, 𝜌(𝑥, 𝑡) is an 

unknown analytical function to be determined, and 𝜌0(𝑥) is known analytical function. In case 𝛾 = 1, we get the classical 

Klein–Gordon equation. 

      The Klein–Gordon equation is considered one of the basic nonlinear equations that have been gained a much of attention 

where are used to describe relativistic electrons and the spineless pion as well as in discussing several phenomena appearing 

in classical quantum and relativistic mechanics, which plays an important role in many mathematical applications including 

optics and solid-state problems [1,2]. The Fractional Klein-Gordon equations (FKGEs) arise in various areas, although 

investigations on the numerical methods for these equations are scarce [3-6]. 

      The basic target of this study is to present a novel treatment technique to solve FKGEs subject to fit initial condition 

based on fractional RPS method. This method is developed and applied successfully in [7]. The RPS is characterized as an 

applicable and easy technique to create power series solutions for strongly linear and nonlinear equations without being 

linearized, discretized or exposed to perturbation [8-15]. 

      The present study is arranged as follow. Some main notations, definitions, and preliminary results are given in Section 2. 

Fractional RPS scheme for FKGE model is presented in Section 3. Illustrative example is given in Section 4. Finally, 

conclusions are drawn in Section 5. 

 

2. Preliminaries 

In this section, we recall some the main definitions and the basic results related to factional calculus and the fractional power 

series representations [16-21]. 

Definition 2.1 [17] For 𝛾 > 0, and  𝑚 is the smallest integer that exceeds 𝛾, the fractional derivative  

𝐷𝛾𝜌(𝑥, 𝑡) = {

1

𝛤(𝑚−𝛾)
∫

𝜕𝑚𝜌(𝑥,𝜀)

𝜕𝜀𝑚 (𝑡 − 𝜀)𝑚−𝛾−1𝑑𝜁,   𝑚 − 1 < 𝛾 < 𝑚
𝑡

0

𝜕𝑚𝜌(𝑥,𝜀)

𝜕𝜀𝑚                                  ,    𝛾 = 𝑚 ∈ ℕ            
.    
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is referred to as the Caputo time-fractional derivative operator of order 𝛾. 

Definition 2.2 [15] A fractional power series (FPS) representation at 𝑡 = 𝑡0 has the form 

∑ 𝜌𝑚(𝑥)(𝑡 − 𝑡0) 𝑚𝛾

∞

𝑚=0

= 𝜌0(𝑥) + 𝜌1(𝑥)(𝑡 − 𝑡0)𝛾 + 𝜌2(𝑥)(𝑡 − 𝑡0)2𝛾 + ⋯, 
 

where 0 ≤ 𝑛 − 1 < 𝛾 ≤ 𝑛 and 𝑡 ≥ 𝑡0 is called multiple fractional power series (MFPS) about  𝑡0. 

Remark 2.1 [15] Suppose that 𝜌(𝑥, 𝑡) has the MFPS representation at 𝑡0 as follows 

𝜌(𝑥, 𝑡) = ∑ 𝜌𝑚(𝑥)(𝑡 − 𝑡0)𝑚𝛾

∞

𝑚=0

 .           

Then, if 𝜌(𝑥, 𝑡) ∈ 𝐼 × 𝐶[𝑡0, 𝑡0 + 𝑅), and 𝐷𝑚𝛾𝜌(𝑥, 𝑡) ∈ 𝐼 × 𝐶(𝑡0, 𝑡0 + 𝑅),  for  𝑚 = 0,1,2, …, the coefficients 𝜌𝑚(𝑥) will be 

given as 𝜌𝑚(𝑥) =
𝐷𝑚𝛾𝜌(𝑥,𝑡0)

𝛤(𝑚𝛾+1)
 such that 𝐷𝑚𝛾 = 𝐷𝛾 ∙ 𝐷𝛾 ∙ … ∙ 𝐷𝛾 (𝑚-times). 

 

3. Fractional RPS method of KGE model  

The current section is devoted to show the methodology of fractional RPS technique for obtaining multiple FPS solution for 

time-fractional KGEs (1) and (2) through substituting the expansion of multiple FPS among the truncated residual functions. 

To perform that, let the solution for Eqs. (1) and (2) has a multiple FPS at 𝑡0 = 0 as follows: 

𝜌(𝑥, 𝑡) = ∑ 𝜌𝑛(𝑥)

∞

𝑛=0

𝑡𝑛𝛾, 0 < 𝛾 ≤ 1, 𝑡 ≥ 0 , 𝑥 ∈ ℝ.        (3) 

Since 𝜌(𝑥, 0) = 𝜌0(𝑥), the series solution can be written as: 

𝜌(𝑥, 𝑡) = 𝜌0(𝑥) + ∑ 𝜌𝑛(𝑥)

∞

𝑛=1

𝑡𝑛𝛾.        (4) 

Thereafter, we suppose that 𝜌𝑗(𝑥, 𝑡) indicate the 𝑗th-approximate solution of  𝜌(𝑥, 𝑡) such that 

𝜌𝑗(𝑥, 𝑡) = 𝜌0(𝑥) + ∑ 𝜌𝑛(𝑥)

𝑗

𝑛=1

𝑡𝑛𝛾 .        (5) 

According to applying the fractional RPS algorithm, the residual function is defined by 

𝑅𝑒𝑠𝜌(𝑥, 𝑡) = 𝐷𝛾𝜌(𝑥, 𝑡) −
𝜕2

𝜕𝑥2
𝜌(𝑥, 𝑡) − 𝜆𝜌(𝑥, 𝑡) − 𝜇𝜌2(𝑥, 𝑡) − 𝜎𝜌3(𝑥, 𝑡), 

        

and the 𝑗th-residual function  𝑅𝑒𝑠𝜌
𝑗
 for 𝑗 = 1,2,3, …, is defined as  

𝑅𝑒𝑠𝜌
𝑗(𝑥, 𝑡) = 𝐷𝛾𝜌𝑗(𝑥, 𝑡) −

𝜕2

𝜕𝑥2 𝜌𝑗(𝑥, 𝑡) − 𝜆𝜌𝑗(𝑥, 𝑡) − 𝜇𝜌𝑗
2(𝑥, 𝑡) − 𝜎𝜌𝑗

3(𝑥, 𝑡).       (6) 

As described in [7-13], 𝑅𝑒𝑠𝜌(𝑥, 𝑡) = 0  and lim
𝑗→∞

𝑅𝑒𝑠𝜌
𝑗(𝑥, 𝑡) = 0 for each 𝑥 ∈ ℝ and  𝑡 > 0. Thus, 𝐷𝑖𝛾𝑅𝑒𝑠𝜌(𝑥, 𝑡) = 0. Also, 

𝐷(𝑖−1)𝛾𝑅𝑒𝑠𝜌(𝑥, 0) = 𝐷(𝑖−1)𝛾𝑅𝑒𝑠𝜌
𝑗
(𝑥, 0) for each 𝑖 = 1,2, … , 𝑗. This fact is considered the essential rule in the fractional RPS 

scheme.  

In view of that, to determine the unknown coefficients 𝜌𝑛(𝑥) of Eq. (5) for 𝑛 = 1,2,3, … , 𝑗. Perform the next manner; 

write the 𝑗th-approximate solution of 𝜌(𝑥, 𝑡) into 𝑅𝑒𝑠𝜌
𝑗
(𝑥, 𝑡) in Eq. (6), then compute 𝐷(𝑗−1)𝛾𝑅𝑒𝑠𝜌

𝑗
(𝑥, 𝑡), thereafter solve the 

resulting fractional equation at 𝑡 = 0, that is,  𝐷(𝑗−1)𝛾𝑅𝑒𝑠𝜌
𝑗
(𝑥, 0) = 0. For other numerical methods, see [22-27]. 

 

4. Illustrative Example 

The target of the present section is to show the efficiency and applicability of the fractional RPS technique by applying it to 

the following fractional linear Klein–Gordon equation [28]  

𝐷𝛾𝜌(𝑥, 𝑡) =
𝜕2

𝜕𝑥2
𝜌(𝑥, 𝑡) + 𝜌(𝑥, 𝑡), 0 < 𝛾 ≤ 1, 𝑡 ≥ 0, 𝑥 ∈ ℝ, 

      (7) 
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  with the initial condition  

𝜌(𝑥, 0) = 1 + sin (𝑥).       (8) 

which has exact solution 𝜌(𝑥, 𝑡) = sin 𝑥 + 𝑒𝑡 at  𝛾 = 1. 

Based on the last description of fractional RPS scheme, starting with initial condition 𝜌0(𝑥) = 𝜌(𝑥, 0) = 1 + sin (𝑥) to 

get the 𝑗th-approximate solution 𝜌𝑗(𝑥, 𝑡) for Eq. (7) as follows 

𝜌𝑗(𝑥, 𝑡) = 1 + sin(𝑥) + ∑ 𝜌𝑛(𝑥)

𝑗

𝑛=1

𝑡𝑛𝛾 .       (9) 

According to Eq. (6), the 𝑗th-residual function is given by 

𝑅𝑒𝑠𝜌
𝑗(𝑥, 𝑡) = 𝐷𝛾𝜌𝑗(𝑥, 𝑡) −

𝜕2

𝜕𝑥2 𝜌𝑗(𝑥, 𝑡) + 𝜌𝑗(𝑥, 𝑡).       (10) 

Now, to obtain the first unknown coefficient, 𝜌1(𝑥), we substitute 𝜌1(𝑥, 𝑡) = 1 + sin(𝑥) + 𝜌1(𝑥)𝑡𝛾 into 𝑅𝑒𝑠𝜌
1(𝑥, 𝑡) of 

Eq. (10) such that 

𝑅𝑒𝑠𝜌
1(𝑥, 𝑡) = 𝐷𝛾𝜌1(𝑥, 𝑡) −

𝜕2

𝜕𝑥2
𝜌1(𝑥, 𝑡) + 𝜌1(𝑥, 𝑡) 

                = 𝛤(𝛾 + 1)𝜌1(𝑥) − (− sin(𝑥) + 𝜌1
′′(𝑥)𝑡𝛾) + (1 + sin(𝑥) + 𝜌1(𝑥)𝑡𝛾). 

      (11) 

By using the fact 𝐷(𝑗−1)𝛾𝑅𝑒𝑠𝜌
𝑗
(𝑥, 0) = 0, for 𝑗 = 1, the first coefficient is  𝜌1(𝑥) =

1

𝛤(𝛾+1)
. 

Next, to determine the second unknown coefficient, 𝜌2(𝑥), use the 2nd residual function 

𝑅𝑒𝑠𝜌
2(𝑥, 𝑡) = 𝐷𝛾𝜌2(𝑥, 𝑡) −

𝜕2

𝜕𝑥2
𝜌2(𝑥, 𝑡) + 𝜌2(𝑥, 𝑡) 

                = 𝛤(𝛾 + 1)𝜌1(𝑥) +
𝛤(2𝛾+1)

𝛤(𝛾+1)
𝜌2(𝑥)𝑡𝛾 − (− sin(𝑥) + 𝜌1

′′(𝑥)𝑡𝛾 + 𝜌2
′′(𝑥)𝑡2𝛾) + (1 + sin(𝑥) +

𝜌1(𝑥)𝑡𝛾 + 𝜌2(𝑥)𝑡2𝛾), 

 (12) 

and consider the fact  𝐷𝛾𝑅𝑒𝑠𝜌
2(𝑥, 0) = 0 to get that 𝜌2(𝑥) =

1

𝛤(2𝛾+1)
. 

For 𝑗 = 3, Using the same manner to obtain the 3rd unknown coefficient, 𝜌3(𝑥), in multiple FPS such as 𝜌3(𝑥) =
1

𝛤(3𝛾+1)
. 

Consequently, the solution 𝜌(𝑥, 𝑡) is given as 

𝜌(𝑥, 𝑡)  = 1 + sin(𝑥) +
𝑡𝛾

𝛤(𝛾 + 1)
+

𝑡2𝛾

𝛤(2𝛾 + 1)
+

𝑡3𝛾

𝛤(3𝛾 + 1)
+ ⋯ +

𝑡𝑗𝛾

𝛤(𝑗𝛾 + 1)
+ ⋯ 

                 = sin(𝑥) + ∑
𝑡𝑗𝛾

𝛤(𝑗𝛾+1)
∞
𝑗=0 = sin(𝑥) + 𝐸𝛾(𝑡𝛾) . 

                                            

(4.7) 

where 𝐸𝛼(𝑡) = ∑
𝑡𝑚

Γ(𝛼𝑚+1)
∞
𝑚=0  is the Mittag-Leffler Function. 

Next, the FPS approximation solution, 𝜌3(𝑥, 𝑡), has been studied in 3𝐷-space at the different values of 𝛾 for each 𝑥 ∈

[−4,4] and 𝑡 ∈ [0,1]. Fig.1 shows schema of 𝜌3(𝑥, 𝑡) when 𝛾 = {0.25,0.5,1}, and exact solution 𝜌(𝑥, 𝑡) for each 𝑥 ∈

[−4,4] and 𝑡 ∈ [0,1]. 
 

       
(a) (b) 

𝑡 

𝑥 
𝑥 

𝜌3 𝜌3 

𝑡 
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Fig.1: The surface plot of the 3rd FPS approximation and exact solution (a) 𝛾 = 0.25,  (b) 𝛾 = 0.5, (c) 𝛾 = 1 (d) Exact solution.  

 

5. Conclusions 

In the present study, we have extended the application of the RPS algorithm to obtain the approximate solutions of time-

fractional KGEs with the initial condition. The proposed method is utilized directly without being linearized, discretized or 

exposed to perturbation.  Illustrative example is presented to show the effectiveness and ability of the proposed approach. 

Graphical results have revealed the validity and reliability of this technique with a great potential in scientific applications. 

The RPS method is considered a valuable tool, effective and straightforward to predict and construct numeric-analytic 

solutions of many problems related to fractional partial differential equations.   
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