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Abstract

In this article, we study the zeros of a class of bivariate Fibonacci
polynomials and investigate their relationship with the eigenvalues of
a certain tridiagonal matrix. Then, based on this study, we give a full
description of the zeros of such polynomials.

1. Introduction

In [1] and [2], the author defined the bivariate Fibonacci polynomials and
gave some properties of these polynomials. In [3], Catalani defined the
generalized bivariate Fibonacci polynomial. Also, in [4], the authors have
defined various types of bivariate Fibonacci polynomials. We would like to
refer the interested reader to [5-7] and [8], where the authors have
investigated some fundamental properties of bivariate Fibonacci
polynomials.

In this paper, we consider the bivariate Fibonacci polynomials defined as

In(X ¥) = Xgn_1(X, ¥) + YGn_2(X, ¥), Go(X% ¥) =% 91(x, y)=Vy. (1)
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If x=y =1, then the resulting sequence is the Fibonacci numbers.
Applying the recurrence relation (1) to obtain the exact form of g,(x, y) for

n = 2, 3 and 4 as follows:

92(x, y) = 2yx,
2 2 7y
g3(X, ¥) = 2x7y + y© =2yl 1 :
= X
2
X -y 0
da(x, y) = 2x3y +3xy2 =2y|1 X -y,
0 1 X
2

where | A| denotes the determinant of the matrix A.

For a complex number y = 0, let T,(y) be the m x m tridiagonal matrix

0 y 0 - 0

-1 0 vy :
Tm(y) = O ._1 .O 01,

0 - 0 —% 0

then from the recurrence relation (1) and using induction, it can be easily
shown that for n > 2,

-y 0 0
-y
gn(x y)=2y|0 1 x e O o ayd g ~Ta(y),
ol T Ty
0 0 % X

where 1,,_; is the (n —1)x(n —1) identity matrix. Since| xl,,_; — Th_1(Yy)|

can be considered as the characteristic polynomial of T,_;(y), one can easily
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see that for n > 2, the set of zeros of g,(x, y) is
{(x, 0)|]x e C}U{(x, y)|y # 0 and x is an eigenvalue of T,_1(y)}, (2)

where C denotes the set of all complex numbers.

In this paper, we study the eigenvalue problem for the matrix Ty, (y),
where we investigate the relationship between the eigenvalues of T,(y) and

the zeros of a certain monic polynomial which will be appearing in the next
section and be denoted by p(w). So, the main task in this work aims at

locating the zeros of p(w). Then, based on our study, we are able to give a

complete description of the zeros of the Fibonacci polynomials g, (X, y).
2. Main Results

First, we need to consider the eigenvalue problem for the matrix Ty, (y).
Writing out the eigenvalue problem

Tn(y)Z =x2Z,

where x is an eigenvalue of Ty(y) and Z =[z, .., zn]' 20 is a

corresponding eigenvector, we obtain that x and Z satisfy the following
recurrence relation (3) with boundary conditions (4) and (5):

—Zj 1 +YZjip=xzj, j=1.,m-1 3)

g = 0, (4)
1

% Im-1 = Xem- (®)

The general solution to the recurrence relation (3) is
Zj = ocrlj +Br2j, i=1..,m,

where r; and r, are the roots of the characteristic equation
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yr2 -xr—-1=0,

which are
n = Ziy(x +x% + 4y), 1, = 2—1y(x—\/x2 +4y).

Using the boundary condition (4), we obtain o = —, which gives
zj = a() -r)), j=1..m
It can be easily shown that the following relations hold:
1
nr =-— 6
12 y (6)
and
X
R+ =—. 7
1t =y )
Using the boundary condition (5), we obtain
1 _ _
~ 5o =) = xa(" "), ®)

Since Z # 0 we must have o # 0. Eliminating o then using identities (6) and
(7) to eliminate r, and x one can verify that equation (8) is equivalent to

—fy+2

(ry)" = (©)

—2r12y +1 .
So, one can solve for r; in terms of y through the identity (9), then solve for

x in terms of y through the identity (7). Let w = —r12y. Then equation (9) can
be written as

m_ W+2
2w+l

(10)

Thus solving (9) for r; in terms of y requires finding the zeros of the
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polynomial

m+1

p(w) = 2w™ L W™ —w -2,

n

Note that p(w) is anti-palindromic. (A polynomial p(w) = Zajwj is
j=0

called palindromic when a; =a,_;j and anti-palindromic when a;j =
—an_j.)

In the following lemmas, we investigate some basic properties of the
zeros of p(w).

Lemma 1. (i) w =1 is a simple root of p(w).

(ii) If m is odd, then w = —1 is a simple root of p(w).
(iii) If w is a root, then % is also a root.

Proof. It can be easily verified that
(i) p(1)=0 and p'(2) = 0.

(ii) If mis odd, then p(-1) = 0 and p'(-1) = O.

1

(iii) p(w)=0= p(w) =0. O
Lemma 2. p(w) has all its roots on the unit circle.

Proof. Let w = a + ib be a root of p(w) and let ¢? = | 2w +1[2. Then
from (10) and by direct calculation, we have

|2m :|W|2+4a+4:C2—3|W|2+3:1_3(|W|2—1)
5 .

02 02 C

| w

O

One can see that this equation is satisfied if and only if | w| =1.

Lemma 3. All roots of p(w) are simple.
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Proof. Suppose that w = e isa multiple root of p(w), then w satisfies
p(w) = 2w™ s w™ —w-2=0 (11)

and
p'(w)=2(m+Dw™ + mw™ 1 —1=0. (12)

If we multiply (11) by m + 1, multiply (12) by w and subtract, then we obtain
w" = mw + 2(m +1).
Substitute in (11) to obtain
2mw? + (5m + 3)w + 2m = 0.

The discriminant of this equation in the variable w is greater than zero, so the
unimodular root is real. Therefore w = +1 but from Lemma 1, we have +1
are simple roots. Hence the assertion holds. O

As we have mentioned earlier, we aim at locating the roots of the
polynomial p(w). In the next theorem and the following three remarks we

investigate the location of the zeros of p(w).

0

Theorem 1. A complex number w = e'® is a zero of p(w) if and only if

0 is a solution to the equation
. 0 . 0
f(0) = sin(m —1)§ + 2sin(m + 1)§ = 0. (13)

Proof. We shall group the complex roots of p(w) according to the parity

of m. In case m = 2k, then, by Lemma 1, p(w) has 1 as one of its roots. Let

q(w) = % =2wWm + 3w+ + W™y 42

and let

up =wl + =,
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Then uj = 2cos jO and

k-1

W_kq(w) =2u +3+ SZuj.
=1

Thus, w = e'® isa complex root of p(w) if and only if

k-1
4cosko +3+3) 2cos jo = 0.
j=1

Using the identity

n
1 sin(2n + 1t/2
2 Z:: cos jt = - 2sint/2

we can rewrite (14) as

sin(2k —1)6/2 _

which can be easily shown to be equivalent to

cos kesing+ 3sin kO cosg =0.

239

(14)

(15)

(16)

Using the identity sinacosb = %[sin(a —b) +sin(a + b)], one can verify

that (16) is equivalent to (13).

In case m = 2k +1 is odd, then, by Lemma 1, p(w) has +1 as two of

its roots.

Let

q(w)— (W) TiwmZiow™ 3 r w2

Let u; =w! +ij. Then uj = 2cos jO and
w
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k k-1
2+2 Z uj + Zuj if k is even,
j=2 j=1

W_kq(W) _ I(j_elven i IE)dd (17)
1+ Y vj+2) vy if kis odd
=2 =1
jeven jodd
LS

k 2
2+4) cos jo— ZZ cos(2j —1)6 if k is even,

j=1 j=1
- J kJ+1 (18)

k 2
1+ ZZcos jo + 22005(2] -1)6 if k is odd.
j=1 j=1

sin 2nt

n
Using identity (15) and the identity > cos(2j —1)t = Seint in (17)

j=1
and (18), one can verify that w‘kq(w) = 0 is equivalent to (13). Hence, the
statement of the theorem holds. O

Remark 1. Observe that in (13) when m = 2k is even, f(6)>0

whenever sin(m + 1)% =1 and f(0)<0 whenever sin(m+ 1)% = -1.
Therefore, equation (13) has a root between every consecutive pairs of values

of 6 e (0, w] with sin(2k + 1)% = +1. There are precisely k +1 values of 6

2j-1_ . .
1™ j =1, ..., k+1. This renders

the k roots of equation (13) and hence the k zeros of p(w) on the upper half

for which sin(2k + 1)% = 41, namely

of the unit circle. Taking complex conjugates yields another k zeros of p(w)
and with the root 1 always present, we have all of the m +1 = 2k +1 roots

of p(w).

Similarly, when m = 2k +1 is odd, we observe that equation (13) has a
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root between every consecutive pairs of values of 6 e (0, n) with

sin(m + 1)% =sin(k +1)0 = £1 which are precisely k +1 values, namely

n, j =1, ..., k +1. This renders the k zeros of p(w) on the upper

half of the unit circle. Taking complex conjugates yields another k zeros of
p(w) and with the two roots + 1, we have all of the m +1 = 2k + 2 roots of

p(w).

Remark 2. Note the fact that the roots of p(w) are interlaced between
angles which are equally spaced, not only confirms that all the roots of p(w)

are simple but also gives some restriction on the distribution of the roots of
p(w). In particular, one can say that they are uniformly distributed on the

unit circle.
Remark 3. One can see that equation (13) can be expressed as
Un_2(t) + 2Up(t) = 0,
where t = cos(6/2) and U ,, is the Chebyshev polynomial of the second kind.

The interlacing of the roots of the polynomials {U,,} can then be
employed to conclude that the roots of p(w) indeed are simple and are

uniformly distributed on the unit circle. We leave the details for the
interested reader.

We conclude the paper with a full description of the zeros of g, (X, y) as
given in the following theorem.

Theorem 2. The set of all zeros of g (X, y) is

{(x, 0)|x e CYU{(x, y)|y # 0 and x = +2i./y cost}, (19)
where t takes the values of all the solutions of the equation

sin(n — 2)t + 2sinnt = 0. (20)
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Proof. For each zero w = e'® of p(w), one can solve for x via the relation

W= —r12y and the two relations (6) and (7) to obtain the eigenvalues of

T1(y) as x = £2i\/y cosg. Setting t = 9 one can see that the form (19)

2 2’
is equivalent to the form (2) of the set of all solutions of g,(x, y). Finally,
the condition (20) on t is obtained by substituting m = n —1 in (13). O
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