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Abstract 

In this article, we study the zeros of a class of bivariate Fibonacci 
polynomials and investigate their relationship with the eigenvalues of 
a certain tridiagonal matrix. Then, based on this study, we give a full 
description of the zeros of such polynomials. 

1. Introduction 

In [1] and [2], the author defined the bivariate Fibonacci polynomials and 
gave some properties of these polynomials. In [3], Catalani defined the 
generalized bivariate Fibonacci polynomial. Also, in [4], the authors have 
defined various types of bivariate Fibonacci polynomials. We would like to 
refer the interested reader to [5-7] and [8], where the authors have 
investigated some fundamental properties of bivariate Fibonacci 
polynomials. 

In this paper, we consider the bivariate Fibonacci polynomials defined as 

( ) ( ) ( ) ( ) ( ) .,,,,,,, 1021 yyxgxyxgyxygyxxgyxg nnn ==+= −−  (1) 
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If ,1== yx  then the resulting sequence is the Fibonacci numbers. 

Applying the recurrence relation (1) to obtain the exact form of ( )yxgn ,  for 

3,2=n  and 4 as follows: 
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where A  denotes the determinant of the matrix A. 

For a complex number ,0≠y  let ( )yTm  be the mm ×  tridiagonal matrix 
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then from the recurrence relation (1) and using induction, it can be easily 
shown that for ,2≥n  
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where 1−nI  is the ( ) ( )11 −×− nn  identity matrix. Since ( )yTxI nn 11 −− −  

can be considered as the characteristic polynomial of ( ),1 yTn−  one can easily 
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see that for ,2≥n  the set of zeros of ( )yxgn ,  is 

( ){ } {( ) 0,0, ≠|∈| yyxCxx U  and x is an eigenvalue of ( )},1 yTn−  (2) 

where C denotes the set of all complex numbers. 

In this paper, we study the eigenvalue problem for the matrix ( ),yTm  

where we investigate the relationship between the eigenvalues of ( )yTm  and 

the zeros of a certain monic polynomial which will be appearing in the next 
section and be denoted by ( ).wp  So, the main task in this work aims at 

locating the zeros of ( ).wp  Then, based on our study, we are able to give a 

complete description of the zeros of the Fibonacci polynomials ( )., yxgn  

2. Main Results 

First, we need to consider the eigenvalue problem for the matrix ( ).yTm   

Writing out the eigenvalue problem 

( ) ,xZZyTm =  

where x is an eigenvalue of ( )yTm  and [ ] 0...,,1 ≠= t
mzzZ  is a 

corresponding eigenvector, we obtain that x and Z satisfy the following 
recurrence relation (3) with boundary conditions (4) and (5): 

,1...,,1,11 −==+− +− mjxzyzz jjj  (3) 

,00 =z  (4) 

.2
1

1 mm xzz =− −  (5) 

The general solution to the recurrence relation (3) is 

,...,,1,21 mjrrz jj
j =β+α=  

where 1r  and 2r  are the roots of the characteristic equation 
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,012 =−− xryr  

which are 

( ) ( ).42
1,42

1 2
2

2
1 yxxyryxxyr +−=++=  

Using the boundary condition (4), we obtain ,β−=α  which gives 

( ) ....,,1,21 mjrrz jj
j =−α=  

It can be easily shown that the following relations hold: 

 yrr 1
21 −=  (6) 

and 

 .21 y
xrr =+  (7) 

Using the boundary condition (5), we obtain 

 ( ) ( ).2
1

21
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2
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1
mmmm rrxrr −α=−α− −−  (8) 

Since 0≠Z  we must have .0≠α  Eliminating α then using identities (6) and 
(7) to eliminate 2r  and x one can verify that equation (8) is equivalent to 
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So, one can solve for 1r  in terms of y through the identity (9), then solve for 

x in terms of y through the identity (7). Let .2
1 yrw −=  Then equation (9) can 

be written as 

 .12
2
+
+= w

wwm  (10) 

Thus solving (9) for 1r  in terms of y requires finding the zeros of the 
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polynomial 

( ) .22 1 −−+= + wwwwp mm  

Note that ( )wp  is anti-palindromic. (A polynomial ( ) ∑
=

=
n

j

j
jwawp

0
 is 

called palindromic when jnj aa −=  and anti-palindromic when =ja  

.)jna −−  

In the following lemmas, we investigate some basic properties of the 
zeros of ( ).wp  

Lemma 1. (i) 1=w  is a simple root of ( ).wp  

 (ii) If m is odd, then 1−=w  is a simple root of ( ).wp  

(iii) If w is a root, then w
1  is also a root. 

Proof. It can be easily verified that 

  (i) ( ) 01 =p  and ( ) .01 ≠′p  

 (ii) If m is odd, then ( ) 01 =−p  and ( ) .01 ≠−′p  

(iii) ( ) .010 =⎟
⎠
⎞⎜

⎝
⎛⇒= wpwp  ~ 

Lemma 2. ( )wp  has all its roots on the unit circle. 

Proof. Let ibaw +=  be a root of ( )wp  and let .12 22 += wc  Then 

from (10) and by direct calculation, we have 
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One can see that this equation is satisfied if and only if .1=w  ~ 

Lemma 3. All roots of ( )wp  are simple. 
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Proof. Suppose that θ= iew  is a multiple root of ( ),wp  then w satisfies 

 ( ) 022 1 =−−+= + wwwwp mm  (11) 

and 

 ( ) ( ) .0112 1 =−++=′ −mm mwwmwp  (12) 

If we multiply (11) by ,1+m  multiply (12) by w and subtract, then we obtain 

( ).12 ++= mmwwm  

Substitute in (11) to obtain 

( ) .02352 2 =+++ mwmmw  

The discriminant of this equation in the variable w is greater than zero, so the 
unimodular root is real. Therefore 1±=w  but from Lemma 1, we have 1±  
are simple roots. Hence the assertion holds. ~ 

As we have mentioned earlier, we aim at locating the roots of the 
polynomial ( ).wp  In the next theorem and the following three remarks we 

investigate the location of the zeros of ( ).wp  

Theorem 1. A complex number θ= iew  is a zero of ( )wp  if and only if 

θ  is a solution to the equation 

 ( ) ( ) ( ) .021sin221sin =θ++θ−=θ mmf  (13) 

Proof. We shall group the complex roots of ( )wp  according to the parity 

of m. In case ,2km =  then, by Lemma 1, ( )wp  has 1 as one of its roots. Let 

( ) ( ) ( ) 2321
1 ++++=
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Then θ= ju j cos2  and 
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Thus, θ= iew  is a complex root of ( )wp  if and only if 
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Using the identity 
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we can rewrite (14) as 

( ) ,02sin2
212sin3cos2 =⎟
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⎞

⎜
⎝
⎛

θ
θ−

+θ
kk  

which can be easily shown to be equivalent to 

 .02cossin32sincos =θθ+θθ kk  (16) 

Using the identity ( ) ( )[ ],sinsin2
1cossin bababa ++−=  one can verify 

that (16) is equivalent to (13). 

In case 12 += km  is odd, then, by Lemma 1, ( )wp  has 1±  as two of 

its roots. 

Let 
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Using identity (15) and the identity ( )∑
=

=−
n

j t
nttj

1 sin2
2sin12cos  in (17) 

and (18), one can verify that ( ) 0=− wqw k  is equivalent to (13). Hence, the 

statement of the theorem holds. ~ 

Remark 1. Observe that in (13) when km 2=  is even, ( ) 0>θf  

whenever ( ) 121sin =θ+m  and ( ) 0<θf  whenever ( ) .121sin −=θ+m  

Therefore, equation (13) has a root between every consecutive pairs of values 

of ( ]π∈θ ,0  with ( ) .1212sin ±=θ+k  There are precisely 1+k  values of θ 

for which ( ) ,1212sin ±=θ+k  namely .1...,,1,12
12 +=π

+
− kjk

j  This renders 

the k roots of equation (13) and hence the k zeros of ( )wp  on the upper half 

of the unit circle. Taking complex conjugates yields another k zeros of ( )wp  

and with the root 1 always present, we have all of the 121 +=+ km  roots 
of ( ).wp  

Similarly, when 12 += km  is odd, we observe that equation (13) has a 
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root between every consecutive pairs of values of ( )π∈θ ,0  with 

( ) ( ) 11sin21sin ±=θ+=θ+ km  which are precisely 1+k  values, namely 

( ) .1...,,1,12
12 +=π

+
− kjk

j  This renders the k zeros of ( )wp  on the upper 

half of the unit circle. Taking complex conjugates yields another k zeros of 
( )wp  and with the two roots ,1±  we have all of the 221 +=+ km  roots of 

( ).wp  

Remark 2. Note the fact that the roots of ( )wp  are interlaced between 

angles which are equally spaced, not only confirms that all the roots of ( )wp  

are simple but also gives some restriction on the distribution of the roots of 
( ).wp  In particular, one can say that they are uniformly distributed on the 

unit circle. 

Remark 3. One can see that equation (13) can be expressed as 

( ) ( ) ,022 =+− tUtU mm  

where ( )2cos θ=t  and mU  is the Chebyshev polynomial of the second kind. 

The interlacing of the roots of the polynomials { }mU  can then be 

employed to conclude that the roots of ( )wp  indeed are simple and are 

uniformly distributed on the unit circle. We leave the details for the 
interested reader. 

We conclude the paper with a full description of the zeros of ( )yxgn ,  as 

given in the following theorem. 

Theorem 2. The set of all zeros of ( )yxgn ,  is 

 ( ){ } {( ) 0,0, ≠|∈| yyxCxx U  and },cos2 tyix ±=  (19) 

where t takes the values of all the solutions of the equation 

 ( ) .0sin22sin =+− nttn  (20) 
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Proof. For each zero θ= iew  of ( ),wp  one can solve for x via the relation 

yrw 2
1−=  and the two relations (6) and (7) to obtain the eigenvalues of 

( )yTn 1−  as .2cos2 θ±= yix  Setting ,2
θ=t  one can see that the form (19) 

is equivalent to the form (2) of the set of all solutions of ( )., yxgn  Finally, 

the condition (20) on t is obtained by substituting 1−= nm  in (13). ~ 
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