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Abstract 
In this article, we establish a relationship between finding the 
eigenvalues of a class of certain tridiagonal matrices and finding the 
zeros of certain twinned polynomials. Then, based on this study, we 
determine the exact number of real eigenvalues that such matrices          
can have and give conditions for the existence of such a number of 
real eigenvalues. Our findings were evidenced by solving numerically 
some examples using Matlab. 

1. Introduction 
Let mT  be the mm  tridiagonal matrix of the form 
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where a and b are real numbers with .0ab  Since mT  and its transpose 
have the same set of eigenvalues, according to the well-known cycle theorem 
due to Gerschgorin (see, e.g., [3], Theorem 9.1, p. 500), each eigenvalue  of 

mT  must belong to one of the circles 
.1,2,1,1  ab  

In [5], the author has obtained the result 
 .,2max ba   

It has been shown in [8] that 
 .,max1 ba  

The authors in [8] have dealt with such a tridiagonal matrix because its 
eigenvalues match with the zeros of a certain Fibonacci-like polynomial. We 
refer to [1] where the author has discussed upper bounds for the eigenvalues 
of mT  but for the more general case where a and b may be complex 
numbers. 

In this paper, we study the eigenvalue problem for the matrix mT  where 
we investigate the relationship between the eigenvalues of mT  and the zeros 
of a certain monic polynomial which will be appearing in the next section 
and be denoted by  .rP  So, the main task in this work aims at locating the 
zeros of  .rP  Then, based on our study, we are able to specify the exact 
number of real eigenvalues that mT  can have and give conditions for the 
existence of such a number. 

We would like to note that some ordinary algebra used will be omitted 
here for the sake of brevity. Finally, we solve numerically some examples 
and present some graphs using Matlab in order to illustrate our ideas. 

2. Properties of the Eigenvalues of mT  
In this section, we establish a relation between the eigenvalues of mT  
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and the zeros of a twinned polynomial so that we will be able to conclude 
some basic properties of the eigenvalues of .mT  

First, we need to consider the eigenvalue problem for the matrix .mT  
Writing out the eigenvalue problem 

,mT  
where  is an eigenvalue of mT  and   0...,,1  tmzzZ  is a corresponding 
eigenvector, we obtain that  and Z satisfy the following recurrence relation 
(1) with the artificial initial condition (2) and the two boundary conditions 
(3) and (4): 

,...,,1,11 mjzzz jjj    (1) 
,10 z  (2) 

,121 zbzaz   (3) 
.1 mm zz   (4) 

The general solution to the recurrence relation (1) is 
,21 jjj rrz   (5) 

where 1r  and 2r  are the roots of the characteristic equation 
,012  rr  (6) 

which are 
   .421,421 2221  rr  

It can be easily shown that the following relations hold: 
121 rr  and .21  rr  (7) 
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Using the artificial initial condition (2) in the explicit formula (5), we 

obtain ,1    so, (5) can be rewritten as 
  .1 21 jjj rrz   (8) 

Using the explicit formula (8) with 1j  and the relation (6), we get 
   .12111  rzr  (9) 

Applying the recurrence relation (1) with 1j  implies 
.1 12 zz   (10) 

Multiplying (10) by b and adding the boundary condition (3) yields 
   .11 babz   (11) 

Now, multiplying (9) by   ab  1  and (11) by ,1r  then adding 
imply 

     .011 121  brrab  (12) 
Using the two relations (6) and (7) implies 

.11
2

22
1

21 r
r

r
r   (13) 

Substituting in (12) implies 

     0111 12111
21 


 


  brrarbr

r  

which implies 
       .0111 121121  brrarbr  (14) 

If we apply the explicit solution (8) in the boundary condition (4), then 
we obtain 

    ,1111 11 


   mmmm rrrr  (15) 
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where we let r to stand for .1r  With some ordinary algebra, (15) can be 
simplified into 

    .01 12  mr  (16) 
Remark 1. Note that we must have   112  mr  otherwise, ,01   so, 

ir   and therefore, according to relation (14), i2  are not eigenvalues      
of .mT  

So, (16) yields 
  121  mr  and   .1

1
12  mr  

Using the above two relations in (14) implies 
           01111 1222  mm rbrarbr  

which can be written as 
            .0111 22212   arrbrbrarr mmm  (17) 

We can split (17) according to the parity of m as 
      0111 221222   arrbrbarrrP mmm  (18) 

when m is even and 
      0111 221222   arrbrbarrrP mmm  (19) 

when m is odd. 
Remark 2. Note that the polynomial  rP  in (18) is semi-palindromic 

and in (19) is semi-antipalindromic. (A polynomial    n
j

jjwawp
0

 is 
called palindromic when jnj aa   and antipalindromic when 

.)jnj aa   
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Remark 3. Now,  can be found by solving for r in (18) or (19), then 

using the relation (13). 
In the following lemmas, we investigate some basic properties of the 

zeros of  rP  when m is even. It can be easily verified that the same also 
applies when m is odd. 

Lemma 1. If r is a zero of  ,rP  then r
1  is also a zero of  .rP  

Proof. It can be easily verified that 
  .01    0  rPrP   

Lemma 2. All zeros of  rP  are simple. 
Proof. Suppose that r is a multiple zero of  .rP  Then r satisfies 

      0111 221222   arrbrbarrrP mmm  (20) 
and 

      mm armrmrP 212 1222    
    .01212 12   arbrbm m  (21) 

If we multiply (20) by ,22 m  multiply (21) by r and subtract, then we 
obtain 

        .22121212 22  mrmarbmbarr m  (22) 
Solving for mr2  in (22), then substituting mr2  in (20) imply 

,0234  cerfrercr  (23) 
where 

 ,12  bmc  
      ,12112  mbmae  
       .2222122 22  mmbmaf  
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So, r is a zero of the polynomial in (23) which is a palindromic 

polynomial, so is ,1
r  since it is a zero of  rP  with same multiplicity as 

that of r but as it can be easily verified that r
1  is not a zero of the 

palindromic polynomial in (23). Hence, the assertion holds.  
Lemma 3. All eigenvalues of mT  are distinct. 
Proof. Other than the two roots i  of  ,rP  the complex root of  rP  

can be divided into quadriples ,1,,1,   rrrr  where the pair   rr 1,  
gives a complex eigenvalue  through the relation (13) and the other pair 

 1,   rr  gives the conjugate eigenvalue   of .mT  The real zeros of  rP  

can be divided into pairs   rr 1,  which leads to the same real eigenvalue  
of .mT  Since, by Lemma 2, all of these 2m zeros of  rP  are simple, all the 
corresponding eigenvalues of mT  are distinct.  

3. Existence of Real Eigenvalues 
In the following main result, we use Descartes’ rule of signs (see, e.g., 

[2]) to determine the exact number of real zeros of the polynomial  rP           
and hence to determine the exact number of real eigenvalues of .mT  The rule 
tells us that the number of positive real zeroes in a polynomial  xQ  is the 
same or less than by an even number as the number of changes in the sign of 
the coefficients. The number of negative real zeroes of  xQ  is the same as 
the number of changes in sign of the coefficients of the terms of  xQ  or 
less than this by an even number. 

Theorem 1. mT  has either exactly two or no real eigenvalues when m is 
even and has exactly one or three real eigenvalues when m is odd. 
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Proof. When m is even, we have, as can be easily seen in (18), exactly 

two changes of signs. So, by Descartes’ rule of sign, the number of positive 
zeros of  rP  must be either 0, or 2 and the number of negative zeros must 
follow to be either 0 or 2 (in fact, the negative real zeros are the negatives of 
the reciprocals of the positive real zeros, see Lemma 1). Similarly, when m is 
odd, we have, as can be easily seen in (19), exactly three changes of signs, 
so, the number of positive zeros of  rP  must be either 1 or 3 and the 
number of negative zeros of  rP  must be correspondingly 1 or 3. 

Hence, according to the correspondence between the zeros of  rP  and 
the eigenvalues of mT  (see the proof of Lemma 3), the assertion in this 
theorem holds.  

Remark 4. In fact, when m is odd, the existence of a real zero of  rP  
can be established by noting that in (19),   010 P  and   021  aP  
when 0a  or 02)1(  aP  when .0a  

As we have mentioned in the introduction, one of the aims in this article 
is to investigate the conditions on a and b to have a certain number of real 
eigenvalues. Here, we investigate the case when m is even leaving the case 
when m is odd for the interested reader. 

Remark 5. It can be easily seen in (18) and (19) that 
     .,,1,, rbaPrbaP m   

So, it suffices to consider the case .0a  
Lemma 4. If m is even and ,0b  then mT  has exactly two real 

eigenvalues. 
Proof. Since in (18),   010 P  and   ,021  bP   rP  has 

exactly two pairs   rr 1,  of real zeros and, correspondingly, mT  will have 
exactly two real eigenvalues.  
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Now, we are left with the case m even and .0b  Recall that in Remark 

5, we have decided that it suffices to consider only the case .0a  
In (18),  rP  can be written as 

     ,212 rQrQrrP m   (24) 
where 

   121  barrrQ  and     .11 22  arrbrQ  (25) 
We first consider the case .1b  Note that the discriminant for                

both  rQ1  and  rQ2  is .442  ba  If ,0  then, since   01Q  
  01  b  and   ,0102 Q  then   rrP  ,0  and therefore  rP  

has no real zero. 
If ,0  then 1Q  and 2Q  have the two repeated real zeros 2

a  and 

  ,12  b
a  respectively, and since the two differ in sign,  rP  has no real 

zero in this case too. If ,0  then 1Q  and 2Q  have the two pairs of real 
zeros 

,2,2 21  aa  

    ,12,12 21    b
a

b
a  

respectively. 
Note that, since ,a  we must have both of 1  and 2  negative and 

both of 1  and 2  positive. Now, if ,1 1   then   ,0    1 1  xQx         
so the negativity of  xQx m 12  will exceed the positivity of  xQ2  for 
sufficiently large m and then   ,0rP  so,  rP  will have a real zero. Or if 

,12   then 10  xx  and   ,02 xQ  so the negativity of  xQ2            
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will exceed the positivity of  xQx m 12  for sufficiently large m and then 
  ,0rP  so,  rP  will have a real zero. With some ordinary algebra, which 

has been omitted here for the sake of brevity, we arrive at the condition that 
2a  or .ba   

In case ,1b  then 1Q  will have the two zeros, 0 and ,a  and 2Q  will 
be linear and has the single zero .1

a  This leads to the condition ba   for 
 rP  to have a real zero for a sufficiently large m. 

We remain with the case .01  b  Here, 0  and , a  so 1Q  
will have the two zeros 0 1   and . 02   Similarly, 2Q  will have the 
two zeros 0 1   and . 02   With the same kind of analysis done above, 
we arrive at the condition ba   for  rP  to have a real zero for a 
sufficiently large m. 

Now, we are in a position to state our second main result. 
Theorem 2. For all sufficiently large even m, mT  has exactly two real 

eigenvalues if and only if one of the following conditions holds: 
  (i) ,0b  
 (ii) 01  b  and ,ba   
(iii) 1b  and 0  and  .2 baora   

Otherwise, mT  will have no real eigenvalues.  

4. Numerical Evidence 
As mentioned in the introduction, numerical experiments have been 

carried out using Matlab. First, we have computed the eigenvalues of mT  
directly when ,6m  3a  and ,8b  then we obtained the eigenvalues 
of mT  as follows: 
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1.285663172214663  2.490713065658173i, 
1.285663172214663 + 2.490713065658173i, 
0.145225125471461  0.607364515842368i, 
0.145225125471461 + 0.607364515842368i, 
0.069111702313877  1.614389459303184i, 
0.069111702313877 + 1.614389459303184i. 

Afterwards, we have computed the eigenvalues of mT  indirectly by first 
finding the zeros of  ,rP  then using the relation (13) to find the eigenvalues 
of mT  to be as follows: 

1.285663172214663 + 2.490713065658173i, 
1.285663172214663  2.490713065658173i, 
0.069111702313876 + 1.614389459303185i, 
0.069111702313876  1.614389459303185i, 
0.145225125471460 + 0.607364515842368i, 
0.145225125471460  0.607364515842368i. 

Note that the two sets of eigenvalues obtained are the same. Also, note 
that we have no real eigenvalues in this case, since the discriminant   

.0442  ba  
The following four figures show graphs of the zeros of  rP  and the 

corresponding eigenvalues of .mT  Note that the complex zeros (±i excluded) 
of  ,rP  plotted by , indeed form quadriples ,1,,1,   rrrr  each 
corresponding to a pair of conjugate eigenvalues of mT  and the real zero of 
 ,rP  in case they exist, plotted by ◦, indeed form pairs   rr 1,  with each 

pair corresponding to a real eigenvalue of .mT  
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Figure 1. Roots of  rP  and corresponding eigenvalues of ,mT  ,6m  

.8,3  ba  

    
Figure 2. Roots of  rP  and corresponding eigenvalues of ,mT  ,6m  

.1,2  ba  

    
Figure 3. Roots of  rP  and corresponding eigenvalues of ,mT  ,7m  

.2,3  ba  
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Figure 4. Roots of  rP  and corresponding eigenvalues of ,mT  ,7m  

.5,2  ba  
Finally, we considered seven examples that cover seven possible cases 

for the values of a and b where we consider the case m even. We computed 
the zeros of  rP  and then the corresponding eigenvalues of mT  via relation 
(14). We present our results in Table 1. For the sake of consistency, in all the 
examples, we have taken the size of m to be 20. In the first column of the 
table, we give the case, in the second column, we give the values of a and b 
used that agree with the case, and in the third column, we state the result 
whether there exist exactly two real eigenvalues or there are no real 
eigenvalues. We give only the two real eigenvalues in case of their existence, 
since it is not convenient to list all of the complex zeros. 

Table 1 
Case Values of a and b Existence of real eigenvalues 

0b  5.1,8.0  ba  41904.0,53857.1 21   
01  b  and ba   5.0,8.0  ba  08257.0,38701.0 21   
01  b  and ba   5.0,48.0  ba  No real eigenvalues 

1b  and 0  and 
2a  and ba   5.3,48.3  ba  20637.0,06091.2 21   
1b  and 0  and 
2a  and ba   5.1,8.1  ba  12563.0,77033.0 21   
1b  and 0  and 
2a  and ba   5.1,48.1  ba  No real eigenvalues 

1b  and 0  5.3,8.2  ba  No real eigenvalues 
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As can be seen in the above figures and table, the computational results 

agree with our theoretical findings. 
5. Conclusion 

In this article, we have established a relation between the problem of 
finding all eigenvalues of a certain tridiagonal real matrix, ,mT  and the 
problem of finding all zeros of a twined polynomial,  .rP  Also, we have 
investigated the existence of real eigenvalues of ,mT  where we have proved 
the existence of exactly two real eigenvalues or no real eigenvalue when m is 
even and exactly one or three real eigenvalues when m is odd. Also, we have 
investigated the conditions on a and b for mT  to have either exactly two real 
eigenvalues or no real eigenvalue in case m is even. Our findings have been 
evidenced by solving some examples using Matlab. We leave it for the 
interested reader to look for the conditions on a and b for mT  to have either 
exactly one real eigenvalue or three real eigenvalues for the case m is odd. It 
is worth mentioning that in [8] the authors have investigated the conditions 
on a and b for mT  to have real eigenvalues but when a and b are integers by 
using a different approach and without deciding the exact number of real 
eigenvalues that one can have. We think that  rP  being of even grade and a 
twined polynomial deserves further investigation to build a more efficient 
numerical algorithm where a symmetric division process may be employed 
to compute all zeros of  rP  and hence to find all eigenvalues of mT  (see, 
e.g., [4] and [6]). The sparsity of  rP  as well should be taken into account. 
In [7], the author suggests an algorithm to deal with sparse polynomials. We 
also think that this idea of establishing a relation between the problem of 
finding all eigenvalues of a tridiagonal matrix and finding all zeros of a 
twined polynomial can be used to find all eigenvalues of other types of 
tridiagonal matrices. 
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