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Abstract. In this paper we study the solution of the second order fractional differential equation of the form

F(x,y,y(α),y(2α)) = 0, in case either x is missing or in case y is missing.
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1. Introduction

There are many definitions available in the literature for fractional derivatives. The main ones

are the Riemann Liouville definition and the Caputo definition, see [7] .

(i) Riemann - Liouville Definition. For α ∈ [n−1,n), the α derivative of f is

Dα
a ( f )(t) =

1
Γ(n−α)

dn

dtn

t∫
a

f (x)

(t− x)α−n+1 dx.
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(ii) Caputo Definition. For α ∈ [n−1,n), the α derivative of f is

Dα
a ( f )(t) =

1
Γ(n−α)

t∫
a

f (n)(x)

(t− x)α−n+1 dx.

Such definitions have many setbacks such as

(i) The Riemann-Liouville derivative does not satisfy Dα
a (1) = 0 (Dα

a (1) = 0 for the Caputo

derivative), if α is not a natural number.

(ii) All fractional derivatives do not satisfy the known formula of the derivative of the product

of two functions:

Dα
a ( f g) = f Dα

a (g)+gDα

a ( f ).

(iii) All fractional derivatives do not satisfy the known formula of the derivative of the quotient

of two functions:

Dα
a ( f/g) =

gDα
a ( f )− f Dα

a (g)
g2 .

(iv) All fractional derivatives do not satisfy the chain rule:

Dα
a ( f ◦g)(t) = f (α)(g(t))g(α)(t).

(v) All fractional derivatives do not satisfy: DαDβ f = Dα+β f , in general.

(vi) All fractional derivatives, specially Caputo definition, assumes that the function f is dif-

ferentiable.

We refer the reader to [7] for more results on Caputo and Riemann - Liouville Definitions.

Recently, the authors in [ 5 ], gave a new definition of fractional derivative which is a natural

extension to the usual first derivative. So many papers since then were written, and many

equations were solved using such definition. We refer to [1-6] and references there in for recent

results on conformable fractional derivative. The definition goes as follows:

Given a function f : [0,∞)−→ R. Then for all t > 0, α ∈ (0,1), let

Tα( f )(t) = lim
ε→0

f (t + εt1−α)− f (t)
ε

,

Tα is called the conformable fractional derivative of f of order α.

Let f (α)(t) stands for Tα( f )(t).



REDUCTION OF ORDER OF FRACTIONAL DIFFERENTIAL EQUATIONS 685

If f is α−differentiable in some (0,b), b > 0, and lim
t→0+

f (α)(t) exists, then define

f (α)(0) = lim
t→0+

f (α)(t).

According to this definition, we have the following properties, see [ 5],

1. Tα(1) = 0,

2. Tα(t p) = pt p−α for all p ∈ R,

3. Tα(sinat) = at1−α cosat, a ∈ R,

4. Tα(cosat) =−at1−α sinat, a ∈ R

5. Tα(eat) = at1−αeat , a ∈ R.

Further, many functions behave as in the usual derivative. Here are some formulas:

Tα(
1
α

tα) = 1

Tα(e
1
α

tα

) = e
1
α

tα

,

Tα(sin 1
α

tα) = cos( 1
α

tα),

Tα(cos 1
α

tα) =−sin( 1
α

tα).

2. Main Result

Consider a second order fractional differential equation of the form:

(1) F(x,y,y(α),y(2α)) = 0 ,

where y(α) is the α− conformable derivative of y with respect to x and α ∈ (0,1], and y(2α) =

DαDαy. Often, equation is not a standard equation in the sense it is not of any type that we can

handle.

The object of this paper is to try to solve equation (1) in case either x is missing or y is

missing using what we will call fractional reduction of order.

There are two cases to be considered:

(i) F(x,y(α),y(2α)) = 0 , y is missing
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(ii) F(y,y(α),y(2α)) = 0 , x is missing

Case(i): y is missing

In this case put y(α) = u. Consequently, we get y(2α) = u(α). This reduces the order of the

equation from 2α to order α, which is much easier to handle.

Examples:

1- y(2α) − (y(α))2 = 1 .

This equation is not a linear equation. However, here y is missing. So put y(α) = u and

consequently, y(2α) = u(α). The equation becomes

u(α) = u2 +1

which is a separable differential equation that can be solved as follows:

Since u(α) = x1−α du
dx

, [3 ], the equation u(α) = u2 +1 can be written as:

x1−α du
dx

= 1+u2

Thus tan−1(u) = 1
α

xα + a. Consequently, u = tan
( 1

α
xα +a

)
. Replacing u by y(α) and then

substituting y(α) by x(1−α) dy
dx and integrating we get:

y =− ln
∣∣∣∣cos(

1
α

xα +a)
∣∣∣∣+b , a, b are constants .

2- 4xα−1(cosx)y(2α)− (sinx)(y(α))2 = 4sinx

Here y is missing. Hence put y(α) = u. Then y(2α) = u(α). The equation becomes

4xα−1(cosx)u(α)− (sinx)u2−4sinx = 0

which is a separable differential equation:

1
u2 +4

du =
sinx
cosx

dx ,

which can be solved to get

u = 2tan2
(
c1− ln |cosx|

)
.

Replacing u by y(α) and then substituting y(α) by x(1−α) dy
dx , we get:

y =
∫

2xα−1 tan2
(
c1− ln |cosx|

)
dx
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Case (ii): x is missing ,

In this case we put y(α) = u. Then y(2α) = Dα
x u = x1−α Dyu Dxy = y(α) Dyu = uDyu, where

Dα
x u represents the fractional derivative of u with respect to x. Similarly for y.

This reduces the equation to a new equation of lower order in u and y.

Example: Consider y y(2α) + ( yα)2 = 0 .

Put y(α) = u . So y(2α) = y(α) du
dy

Hence

yy(α)du
dy

+u2 = yu
du
dy

+u2 = 0.

Solving this equation to get:

yu = b. Thus yy(α) = b,

This is again a separable equation in the form ydy = bxα−1 dx. Solving that equation to get:

y2 =
2b
α

xα + c , b , c are constants
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