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Abstract. In this paper, we consider surfaces in the 3-dimensional Euclidean

space E3 without parabolic points which are of finite II-type, that is, they

are of finite type, in the sense of B.-Y. Chen, with respect to the second
fundamental form. We study an important family of surfaces, namely, ruled

surfaces in E3. We show that ruled surfaces are of infinite II-type.

1. Introduction

Euclidean immersions of finite type were introduced by B.-Y. Chen about four
decades ago and it has been a topic of active research by many differential geometers
since then. Many results on this subject have been collected in [6]. A submanifold
Mm is said to be of finite type with respect to the first fundamental form I, if the
position vector x of Mm can be written as a finite sum of nonconstant eigenvectors
of the Laplacian ∆I , that is,

x = x0 +

k∑
i=1

xi, (1.1)

where ∆Ixi = λixi, i = 1, ..., k, x0 is a constant vector and λ1, λ2, ..., λk are eigen-
values of ∆I . Moreover, if there are exactly k nonconstant eigenvectors x1, ...,xk

appearing in (1.1) which all belong to different eigenvalues λ1, λ2, ..., λk, then Mm

is said to be of I-type k. However, if λi = 0 for some i = 1, ..., k, then Mm is said
to be of null I-type k , otherwise Mm is said to be of infinite type.

The class of finite type submanifolds in an arbitrary dimensional Euclidean space
is very large, meanwhile very little is known about surfaces of finite type in the
Euclidean 3-space with respect to the first fundamental form. Actually, so far, the
only known surfaces of finite type in the Euclidean 3-space are the minimal surfaces,
the circular cylinders and the spheres. So in [5] B.-Y. Chen mentions the following
problem

Problem 1. Determine all surfaces of finite Chen I-type in E3.

With the aim of getting an answer to this problem, important families of surfaces
were studied by different authors by proving that finite type ruled surfaces [8], finite
type quadrics [9], finite type tubes [7], finite type cyclides of Dupin [10, 11], finite
type cones [12], and finite type spiral surfaces [4] are the only known examples of
surfaces in E3. However, for other classical families of surfaces, such as surfaces of
revolution, translation surfaces as well as helicoidal surfaces, the classification of
its finite type surfaces is not known yet.
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In this area, S. Stamatakis and H. Al-Zoubi restored attention to this theme by
introducing the notion of surfaces of finite type with respect to the second or third
fundamental forms (see [15]). As an extension of the above problem, we raise the
following two questions which seem to be interesting:

Problem 2. Classify all surfaces of finite II-type in E3.

Problem 3. Classify all surfaces of finite III-type in E3.

Therefore, in order to give an answer to the second and third problem, it is
worthwhile investigating the classification of surfaces in the Euclidean space E3 in
terms of finite J-type, (J = II, III) by studying the families of surfaces mentioned
above.

According to problem (2), in [1] H. Al-Zoubi studied finite type tubes with
respect to the second fundamental form and he proved that: All tubes in E3 are of
infinite type. However, for all other classical families of surfaces, the classification
of its finite type surfaces is not known yet.

Concerning problem (3), ruled surfaces and tubes are the only families studied
according to its finite type classification. More specifically, in [3] authors have shown
that all tubes in E3 are of infinite type, while in [2], H. Al-Zoubi and others proved
that: Helicoids are the only ruled surfaces of finite III-type in the 3-dimensional
Euclidean space.

In this paper we will pay attention to surfaces of finite II-type. First, we will
establish a formula for ∆IIx and ∆IIn by using tensors calculations. Further, we
continue our study by proving finite type surfaces for an important class of surfaces,
namely, ruled surfaces in the Euclidean 3-space.

2. Preliminaries

In the three-dimensional Euclidean space E3 let S be a Cr-surface, r ≥ 3, defined
on a region U of R2, by an injective Cr-immersion x = x(u1, u2), whose Gaussian
curvature K never vanishes. We denote by

I = gij du
iduj , II = bij du

iduj , III = eij du
iduj , i, j = 1, 2,

the first, second and third fundamental forms of S respectively. For two sufficiently
differentiable functions f(u1, u2) and g(u1, u2) on S, the first differential parameter
of Beltrami with respect to the fundamental form J = I, II, III is defined by [13]

∇J(f, g) := aijf/ig/j (2.1)

where f/i := ∂f
∂ui , and (aij) denotes the inverse tensor of (gij), (bij) and (eij) for

J = I, II and III respectively. The second differential parameter of Beltrami with
respect to the fundamental form J = I, II, III of S is defined by [13]

4Jf := −aij∇J
i f/j , (2.2)

where ∇J
i is the covariant derivative in the ui direction with respect to the fun-

damental form J and (aij) stands, as in definition (2.1), for the inverse tensor of
(gij), (bij) and (eij) for J = I, II and III respectively.

We first mention the following two relations for later use [15]:

∇II(f,n) + gradIf = 0, (2.3)

∇II(f,x) + gradIIIf = 0, (2.4)
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where gradIf := ∇I(f,x), gradIIIf := ∇III(f,n) and n denotes the Gauss map
of S.

Applying (2.2) for the position vector x of S we have

4IIx = −bij∇II
j x/i. (2.5)

Recalling the equations

∇II
j x/i = −1

2
bkr(∇I

kbij)x/r + bijn,

(see [13], p.128) and inserting these into (2.5), one finds

4IIx =
1

2
bkrbij(∇I

kbij)x/r − bijbijn, (2.6)

By using the Mainardi-Codazzi equations (see [13], p.128)

∇I
kbij −∇I

i bjk = 0, (2.7)

relation (2.6) becomes

4IIx =
1

2
bkrbij∇I

i bjkx/r − 2n. (2.8)

We consider the Christoffel symbols of the second kind with respect to the first,
second and third fundamental form, respectively

Γk
ij :=

1

2
gkr(−gij/r + gir/j + gjr/i),

Πk
ij :=

1

2
bkr(−bij/r + bir/j + bjr/i),

Λk
ij :=

1

2
ekr(−eij/r + eir/j + ejr/i),

and we put

T k
ij := Γk

ij −Πk
ij , (2.9)

T̃ k
ij := Λk

ij −Πk
ij . (2.10)

It is known that (see [13], p.22)

T k
ij := −1

2
bkr∇I

rbij , (2.11)

T̃ k
ij := −1

2
bkr∇III

r bij , (2.12)

and

T̃ k
ij + T k

ij = 0. (2.13)

Using (2.9) and (2.11), relation (2.8) becomes

4IIx = −bkrT j
kjx/r − 2n = −bkr(Γj

kj −Πj
kj)x/r − 2n. (2.14)

For the Christoffel symbols Γj
kj and Πj

kj we have (see [13], p.125)

Γj
ij :=

g/i

2g
, Πj

ij :=
b/i

2b
, (2.15)

where g := det(gij) and b := det(bij). Thus, relation (2.14) becomes

4IIx = −1

2
bkr(

g/k

g
−
b/k

b
)x/r − 2n. (2.16)
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On the other hand, the Gauss curvature K of S is given by

K =
b

g
.

Once, we have
K/k

K
=
b/k

b
−
g/k

g
, (2.17)

it follows that

4IIx =
1

2K
bkrK/kx/r − 2n =

1

2K
∇II(K,x)− 2n. (2.18)

Hence, we obtain, in view of (2.4), the following relation

4IIx = − 1

2K
gradIII(K)− 2n. (2.19)

We focus now our interest to the computation of4IIn. Taking into consideration
the equations ([13], p.128)

∇II
i n/j = −1

2
bkr(∇III

r bij)n/k − eijn,

so that
4IIn = −bij(∇II

i )n/j ,

takes the form

4IIn =
1

2
bkrbij(∇III

r bij)n/k + bijeijn.

On account of
2H = bijg

ij = eijb
ij ,

and (2.12) we obtain

4IIn = −bij T̃ k
ijn/k + 2Hn.

On use of (2.7), (2.11) and (2.13) we have

4IIn = bkrT j
rjn/k + 2Hn. (2.20)

On the other hand using (2.9), (2.11), (2.15) and (2.17) we have

bkrT j
rjn/k = − 1

2K
bkrK/rn/k = − 1

2K
∇II(K,n).

Inserting this in (2.20) we get in view of (2.3)

4IIn =
1

2K
gradI(K) + 2Hn. (2.21)

We now prove the following two relations:

4II(fx) = (4IIf)x+ f4IIx+ 2gradIIIf. (2.22)

4II(fn) = (4IIf)n+ f4IIn+ 2gradIf. (2.23)

For the proof of (2.22) we use (2.2) to obtain

4II(fx) = −bik∇II
k (fx)/i = −bik∇II

k (f/ix+ fx/i)

= −(bik∇II
k f/i)x− bikf/i∇II

k x− bik(∇II
k f)x/i − bikf(∇II

k x/i)

= (4IIf)x+ f4IIx− 2bikf/ix/k

= (4IIf)x+ f4IIx− 2∇II(f,x).

On account of (2.4) we arrive to (2.22).
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We have similarly

4II(fn) = −bik∇II
k (fn)/i = −bik∇II

k (f/in+ fn/i)

= −(bik∇II
k f/i)n− bikf/i∇II

k n− bik(∇II
k f)n/i − bikf(∇II

k n/i)

= (4IIf)n+ f4IIn− 2bikf/in/k

= (4IIf)n+ f4IIn− 2∇II(f,n),

which is (2.23) in view of (2.3).
From (2.19) and (2.21) we obtain the following two results which were proved in

[15]:

Theorem 1. A surface S in E3 is of finite II-type 1 if and only if S is part of a
sphere.

Theorem 2. The Gauss map of a surface S in E3 is of finite II-type 1 if and only
if S is part of a sphere.

Up to now, the only known surfaces of finite II-type in E3 are parts of spheres.
In the next section we focus our attention on the class of ruled surfaces. Our main
result is the following

Theorem 3. All ruled surfaces in the three-dimensional Euclidean space are of
infinite II-type.

3. Proof of Theorem 3

In the three-dimensional Euclidean space E3 let S be a ruled Cr-surface, r ≥ 3, of
nonvanishing Gaussian curvature defined by an injective Cr-immersion x = x(s, t)
on a region U := I × R (I ⊂ R open interval) of R2.1 The surface S can be
expressed in terms of a directrix curve Γ : σ = σ(s) and a unit vector field ρ(s)
pointing along the rulings as follows

S : x(s, t) = σ(s) + tρ(s), s ∈ I, t ∈ R. (3.1)

Moreover, we can take the parameter s to be the arc length along the spherical
curve ρ(s). Then we have

〈σ′,ρ〉 = 0, 〈ρ,ρ〉 = 1, 〈ρ′,ρ′〉 = 1,

where the differentiation with respect to s is denoted by a prime and 〈 , 〉 denotes
the standard scalar product in E3. It is easily verified that the first and the second
fundamental forms of S are given by

I = nds2 + dt2,

II =
m√
n
ds2 +

2A√
n
ds dt,

where

n = 〈σ′,σ′〉+ 2〈σ′,ρ′〉t+ t2,

m = (σ′,ρ,σ′′) + [(σ′,ρ,ρ′′) + (ρ′,ρ,σ′′)] t+ (ρ′,ρ,ρ′′) t2,

A = (σ′,ρ,ρ′) .

1The reader is referred to [14] for definitions and formulae on ruled surfaces.
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If, for simplicity, we put

ζ := 〈σ′,σ′〉, η := 〈σ′,ρ′〉,
µ := (ρ′,ρ,ρ′′) , ν := (σ′,ρ,ρ′′) + (ρ′,ρ,σ′′) , ξ := (σ′,ρ,σ′′) ,

we have
n = t2 + 2η t+ ζ, m = µ t2 + ν t+ ξ.

For the Gauss curvature K of S we find

K = −A
2

n2
.

The second Beltrami differential operator with respect to the second fundamental
form after a long computation is given by [16]

4II = −
√
n

A

(
− 2

∂2

∂s∂t
+
m

A

∂2

∂t2
+
mt

A

∂

∂t

)
, (3.2)

where mt := ∂m
∂t .

Applying (3.2) for the position vector x, it follows:

4IIx = − 1√
n

(
− 2n

A
ρ′ +

nmt

A2
ρ

)
=

1√
n
P1(t) (3.3)

where P1(t) is a vector whose components are polynomials in t of degree less than
or equal 3 with functions in s as coefficients. More precisely, we have

P1(t) =
1

A2

[
2µρt3+

(
(4µη+ν)ρ+2Aρ′

)
t2+

(
(2ζµ+2ην)ρ+4ηAρ′

)
+(ζηρ+2ζAρ′)

]
.

Before we start the proof of our theorem we give the following Lemma which can
be proved by a straightforward computation.

Lemma 1. Let g be a polynomial in t with functions in s as coefficients and
deg(g) = d. Then 4II

(
g
nr

)
= ĝ

nr+3
2

, where ĝ is a polynomial in t with functions in

s as coefficients and deg(ĝ) ≤ d+ 4.

From now on we suppose that S is of finite II − type k. Hence there exist real
numbers c1, c2, · · · , ck such that(

4II
)k+1

x+ c1
(
4II

)k
x+ · · ·+ ck4II x = 0, (3.4)

see [3]. By applying Lemma 1, we conclude that there is an E3-vector-valued
function P k in the variable t with some functions in s as coefficients, such that(

4II
)k
x = P k(t),

where deg(P k) ≤ 4k − 1 and r = 3
2k − 1. Now, if k goes up by one, the degree of

each component of pk goes up at most by 4 while the degree of the denominator
goes up by 3

2k − 1. Therefore, the sum (3.4) can never be zero, unless of course

4II x = P 1 = 0. (3.5)

But then
−2ρ′ +

mt

A
ρ = 0. (3.6)

By taking the derivative of 〈ρ,ρ〉 = 1, we observe that the vectors ρ and ρ′ are
linearly independent. Thus (3.6) cannot be achieved unless ρ is constant, which
implies that K ≡ 0. This is clearly impossible for the surfaces under consideration.
The proof of the theorem is completed.
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