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Abstract

This paper introduced the calculus of mappings on finite product of spaces, allowing different degrees
of differentiability in the different factors. This enables us to prove an important feature in the infinite-
dimensional Lie theory, the exponential law in generalized setting for locally convex spaces and for
manifolds modelled on locally convex spaces.
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1. Introduction and statement of results

The object of this paper is to introduce and study the differential calculus of mappings on
finite product of locally convex spaces (resp. manifolds modelled on locally convex spaces)
called (C“-maps), where calculus in each folds is based on differentiability in the sense of
Michal and Bastiani (C"-maps), also known as Keller’s C/-maps (see [3,9,16,17,19,20]; cf. [4];
see [14,22] for maps on suitable non-open domains).

Foralli € {1,...,n}. Let E; and F be locally convex spaces, U; be an open subset of E;
and o; € NyU {oo} such that @ = (1, ..., a,). Suppose that bw,- is the directional derivative
in the ith component, we say that a map f: U; x --- x U, — F is C* if the directional
derivative

(Dy, - Dy, )(x)

exists and is continuous function on Uy X - - - X U, X Efl X+ X E,’f" such that 8; € Ny, B; < «;
(see Definition 3.1 for details). To establish context for compact sets and manifolds with
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boundary, we consider C*-maps on non-open locally convex domains (see Definition 3.2). We
topologize the spaces of C“-mapping with the compact-open C*-topology (see Definitions 3.18
and 4.2) that is analogous to the compact-open C”"-topology (as recalled in Definition 2.6).
In order to provide a scheme for handling a variety of problems in infinite dimensional
analysis and geometry arising more from a sort of mapping on finite product of locally convex
spaces or on finite product of mapping spaces than from product of two spaces, this paper
generalizes the main result of [2] which introduced the differential calculus of mappings on
products of two locally convex spaces. We shall be concerned with the Schwarz theorem, the
chain rule, and also the key attribute of C*-theory, the exponential law (Theorem 3.22) which
is utilizable tool in infinite dimensional Lie theory. For instance, establishing regularity in
Milnor’s sense for some classes of Lie groups. The following are some sample of applications:

(a) C*-Theory used in [15] to show that the group of all smooth diffeomorphisms of compact
convex subset with non-empty interior of R” is a C%-regular infinite dimensional Lie
group and also for the results concerning solutions to ordinary differential equations on
compact convex sets.

(b) In [1], it used to construct Lie group structure on mapping spaces of the form CK(M, K),
where M is a non-compact smooth manifold and K is a Lie group.

Recall that a Hausdorff topological space X is called a k-space if a subset of X is closed
whenever its intersection with every compact subset of X is closed (see [18] and [21]). For
example, locally compact spaces, topological manifolds, first-countable spaces and metrizable
topological spaces are k-space. The main result of Section 3 (Theorems 3.20 and 3.22) is the
following exponential law.

Theorem A. For all i € {1,...,n}, let E; and F be locally convex spaces, U; T E;
be a locally convex subset with dense interior, a; € Ny U {oo}. For j € {2,...,n}define
U=Ux--xUj_,V=U;jx---xU,y = (a,...,aj_1) and n = (oj, ..., 0p).
If f1UxV — Fis CY" Then g¥: U — C"V,F), x — y(x,e) is C" for each
g€ CY"(U x V, F), and the map

$: CY"U x V,F)— C’"(U,C"(V,F)), g+>g" (1.1)

is a linear topological embedding. Let X; = {0} if «; = O, otherwise X; = E;. If
UxVXxX|xXyx---xX,isak-space or V is locally compact, then ® is an isomorphism
of topological vector spaces.

See [12] for finite-dimensional vector spaces over a complete ultrametric field. The preced-
ing exponential law (1.1) could also be extended to a finite product of locally convex manifolds
(possibly with boundary, corners or rough boundary). To make this more explicit we remind the
reader (as in [14] and [19]) that an ordinary manifold (without boundary) modelled on a locally
convex space E is a Hausdorff topological space M with an atlas of smoothly compatible
homeomorphisms ¢: Uy — V, from open subsets U, of M onto open subsets Vy, C E. If
each V, is locally convex subsets with dense interior, M is a manifold with rough boundary.
If each V, is a relatively open subset of A;l([O, ocoDN---N A;l([O, oo[), for suitable n € N
and linearly independent Ay, ..., A, € E’ (the space of continuous linear functional on FE),
then M is a manifold with corners. In the case of a manifold with smooth boundary, each
V, is relatively open in a closed hyperplane 1~!([0, oo[), where A € E’. The main results of
Section 4 is the following exponential law (Theorem 4.4).
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Theorem B. Foralli € {1,...,n}, let M; be a smooth manifold (possibly with rough bound-
ary) modelled on locally convex space E;. Let F be a locally convex space and o; € NyU {oo}.
For j €{2,...,n} define M =M x---xMj_|, N.=M;x---xMy,, y:=(a,...,oj_1)
and 1 = («j,...,a,). Then g¥ € CY(M,C"(N, F)) for all g € CY"D(M x N, F), and the
map

$: CY"(M x N,F)— C"(M,C"(N, F)), g~ g" (1.2)

is a linear topological embedding. If E; is metrizable for all i € {1,...,n}, then ® is an
isomorphism of topological vector spaces.

Along the same lines one can also show that Theorem B holds in the following situations:

1. M, ..., M, are finite-dimensional manifolds with smooth boundary, with corners or
without boundary (then N is a locally compact).

2. My, ..., M, are manifolds with smooth boundary, with corners or without boundary and
E x---xE, xX; x---x X, is a k-space.

3. My, ..., M, are manifolds with smooth boundary, with corners or without boundary and

E; and X; are hemicompact k-spaces (recall that a space X is called hemicompact or
k.,,-space if there exists a sequence of compact sets {A, : n € N} in X such that for
any compact subset A of X, A C A, holds for some n (see [8], cf. [13] for locally
ky-spaces)).
Note that C*-maps U; x --- x U, — F can be defined just as well if U; is a Hausdorff
topological space, for all i € {1, ..., n} with ; = 0. In such case, all results hold with obvious
modification. Also, we obtain analogous results if F is a complex locally convex space and E;
is a locally convex space over K; € {R, C}, and all directional derivatives in the ith variable
are considered as derivatives over the ground field K;. The corresponding maps could be called
CE y,-maps.
The proofs of Theorems A, B and 3.22 (and Proposition 2.4) are modelled after the
arguments of chapters (3 and 4) of [1], published as part of [2], with non-trivial modifications.

2. Preliminaries

The letter K always stands for R or C. All vector spaces will be K-vector spaces and all
linear maps will be K-linear, unless the contrary is stated. We write N = {1,2,3,...} and
No=1{0,1,2,...}.

Definition 2.1. Let E;, E; and F be locally convex spaces, U and V open subsets of
E and E, respectively, r,s € No U {oo} and i, j € Ny such that i < r,j < s. For all
xeUyeV,wy,...,w; € Ej,vy,...,v; € Ey, we say that

1. A mapping f: U — F is called a C",! if the iterated directional derivatives

dVf(x,wi, ..., w;) == (Dy; Dy,_, -+ Dy, f)(x)

exist and define continuous maps df: U x Ei — F.If f is C* it is also called
smooth. We abbreviate df = dV f.
2. A mapping f: U x V — F is a C"%-map, if the iterated directional derivative

d(i’j)f(x, Y, Wi, ..., Wiy, U1y enny Uj)
= (Dw;,0) " ** Dawy,00D0,0) * * + Dio,up) ) x, ¥)

exists and d/) f : U x V x E! x E} — F, is a continuous map.

1 For the theory of C”-maps, the reader is referred to [9,14,16,19,20] (cf. also [4])
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Definition 2.2 (Differentials on Non-open Domains).

1. The set U C E; is called locally convex if every x € U has a convex neighbourhood W
inU.

2. Let U C E; be a locally convex subset with dense interior. A mapping f: U — F is
called C" if flye: U° — F is C" and each of the maps d(f|ye): U° x Ei — F
admits a (unique) continuous extension d” f: U x E{ — F.If U CR and f is C', we
obtain a continuous map f’: U — Ey, f'(x) :=df(x)(1).

In particular if f is of class C”, we define recursively

FO@) = (7Y (x)

for i € Ny, such that i <r where f© = f.

3.Let U € E;|,V C E, be locally convex subsets with dense interior. A mapping
f:U XV — FisaC"-map, if flyo,po: U’ xV® — F is C"-map and for
all i, j € No such that i <r, j <s, the map d(i*f)(f|onvo): U'xVOX E! xE] - F
extends to a continuous map d"/) f: U x V x E{ x E; — F.

Remark 2.3 (/9]). If E;, E, and F are locally convex topological spaces, U € E; and V C E,
open subsets and the map f: U x V — F is continuous, then f is C' if and only if the
directional derivatives d f(x, y; hy) == Dy, 0) f(x, ) and dOD f(x, y; ha) == Do py) f(x, y)
exist for all x € U, y € V, hy € E; and h, € E,, and define continuous functions
dPO f(x,y;h) : UxV x E; - Fand d%Df(x,y;hy) : UxV x E, — F. In this
case,

df((x, ), (h1, h2)) = dVO f(x, y, hy) +dOV f(x, y, ha) 2.0.1)
for all (x,y) € U x V and (hy, hy) € E; X Ej.

More generally, using the method of the proof of Rule on Partial Differentials as in [14],
one obtains the following proposition.

Proposition 2.4 (Rule on Partial Differentials). Let E1, . .., E, and F be locally convex spaces,
U; be a locally convex subset with dense interior of E; foralli € {1,...,n}, U := U x---xU,
and f : U; x---x U, — F be a continuous map. Assume that there exist continuous functions
dif : U x---x U, x E; = F such that D,y f(x1,...,Xx,) exists and coincides with
dif(x1, ..., x5, w;) forall i € {1,...,n} and for all (x1,...,x,) € U°, w; € E; and the
corresponding element (w;)* € ({0))~' x E; x {0))"" C E; x --- x E,. Then f is C' and

df((x1, ..., x), (Wi, ..., wy)) = Zd,-f(xl,...,xn, w;). 2.0.2)

i=1

Proof. It is obvious that d; f exists for all i € {1,...,n} if f is C'. Conversely, assume
that d; f exists for all i € {1,...,n}. If we can show that f|,0 is C' and (2.0.2) holds
for fly o, then the right hand side of (2.0.2) provides a continuous extension of d(f|; o) to
Uy x---xU, x(E; x---x E,), whence f is C' and (2.0.2) holds. We may therefore assume
that U; x---x U, isopen in E| x - -- x E,,. Given (x1,...,x,) € Uy x---x U, and w; € E; for
alli € {1, ..., n}, there exists € > 0 such that (xq, ..., x,)+D.w; x: - - xDw, C U; x---xU,,
where D, .= {z € K : |z] < €}. Then (xq, ..., x,)+[0, 1]tw; x---x [0, 1]tw, CU; x---xU,
for each 0 # ¢t € D.. By the Mean Value Theorem (see [14]), we obtain
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1
;(f((xl, v X)Wy, W) — f(X, e, X))

n
1
:Z;f(xl+lw1,---7xj+twj',xj'+1,...,x,,)
Jj=1

n
1 1
— E ;f(xl+tw1,...,xj_1+twj_1,xj,...,xn)—;f(xl...,xn)
j=2

n 1
:Z[) djf(xl+tw1,...,xj_1+twj_1,xj+0twj,xj+1,...,x,,,wj)d0. (2.0.3)
=1

Note that the integrals in (2.0.3) make sense also for ¢+ = O (the integrands are then constants),
and hence define mappings Iy, ..., I,, : D, — F.The map D, x[0, 1] = F, (t,0) — d; f(x1+
twi,...,X; +otw;, Xiy1, ..., Xy, w;) being continuous for all i € {1, ..., n}, the parameter-
dependent integral /; is continuous (see [14]). Hence the right hand side of (2.0.3) converges
as t — 0, with limit 7;(0) 4+ --- + LO0) = di f(x1, ..., Xp, w1) + -+ +dp f (X1, ..., Xn, Wy).
Hence df exists and is given by the right-hand side of (2.0.2) and hence continuous, whence
fisc!. O

Remark 2.5. We shall use the following fundamental facts of C"-maps.
1. d9 f(x,e): E' — F is symmetric i-linear, for each i as in Definition 2.2.
2. fEDU — FisC*'ifand only if fis C' anddf: U x E — Fis C".
3. The compositions of C"-maps are C"-maps.
4. The parameter-dependent integrals Theorem for continuous and differentiable maps (as
recorded in [5, Prop. 3.5]).

Definition 2.6. Let E, F' be locally convex topological vector spaces and U C E a locally
convex subset, r € NoU{oo}. We endow the space of continuous maps from U to F denoted by
C(U, F) with the compact open topology. Furthermore we topologize the space of C”"-maps
from U to F denoted by C"(U, F) with the compact open C"-topology, that is the unique
topology turning

(dD(@Dnysizr: C" (WU, F) > [] CW x E', F), f > @V f)
0<i<r

into a topological embedding (the initial topology with respect to the family of mappings
@V (@))nsi<r)-

3. C*-mappings
Definition 3.1. Let Ey,..., E, and F be locally convex spaces, U; be an open subset of

E; forall i € {l,...,n} and ¢ = (y,...,,) such that ; € Ny U {o0}. A mapping
f U x---xU, - F is called a C*-map, if for all 8; € Ny such that 8; < «; and

B :=(Bi, ..., By the iterated directional derivative
d’ f(x,wi, ... wy) = (D, -+ Dy, [)(x)
where (Ew,- Hx) = (D<w,->g, ---D(wi)Tf)(x), exists for all x = (xy,...,x,) where x; €

Ui, wi == (W), ..., (wi)g) such that (wy);, ..., (w;)s € Ei,
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(Wi, -5 (wi)h € {ON™! x E; x ({0))" € Ey x --- x E, and
dﬁf:U1x~-~xU,,fo31x-~-><Ef"—>F,
(xa Wi, ..y wn) [ (le e Dwnf)(x)
is continuous.

More generally, the following definition allows us to speak about C*-maps on compact
intervals.

Definition 3.2. Let Ey, ..., E, and F be locally convex spaces, U; be a locally convex subset
with dense interior of E; foralli € {1,...,n} and o := (1, ..., @) such that o; € Ny U {c0},
then we say that f : Uy x -+ x Uy — F is a C*-map, if flyo,. 0 U x---xU?— Fis
a C%-map and for all B; € Ny such that 8; < «; and B := (By, ..., Bn), the map

AP (fly0sexp) 1 UD X o X U, Ef x...xEP — F
admits a continuous extension
dﬁfiUl><~-~><U,,><Ef3l x---fo"—>F.

The following lemma provides an alternative formulation of Definitions 3.1 and 3.2.

Lemma 3.3. Foralli € {1,...,n}. Let E; and F be locally convex spaces, U; C E; be
a locally convex subset with dense interior, a; € Nog U {00}. For j € N, 2 < j < n, let
x=G,...,xj_) eV =Ux---xUj_;,y=j,...,x) € V=Ujx---xUy, y =
(@i, ...,aj_) and n = (aj,...,ay). Fixi € {1,...,n}, then f : Uy x---xU, - Fisa
CY"omap if and only if f has the following Properties:

1. Forall x e U, the map f, = f(x,0):V > F, y— fi(y) = f(x1,...,x,) is C".

2. For all y € V and w; = (wj)y,...,(w;)g) € Ef', the map U — F,x
dBi- ‘S”)fx(y, Wi, ..., w,) is C”, where B; € Ny, B < ;.
3. For B := (Bi,...,PBy), the map dPf : U; x --- x U, x Efl x - x EP" &5 F,
(s y, wi, .o wy) >
dPr-=PiD(@Pi=P) £y wi, L w ), wi e, wisr),

is continuous.

Proof. Step 1. If U; C E; is an open subset for all i € {1, ..., n} then the equivalence follows
by the definition of the C*"-map.

The general case. Assume that f is a C?""-map.
Step 2. For all k € {j,...,n}, vi == (vp)y, ..., (Wg) € Ef" with corresponding elements
W -5 (U)f, € {07 x Ex x {O)"* € Ej11 x --- x E, and for all x € U® :=
UY x -+ x U,QA» then

(Dwn e ij)f(x, )’) = D(U")En T D(Uj)fo(y)
exists for all y € V¥ := U;) x +++ x UY, with continuous extension
OV, V), Vjgts e ey Up) B> d O 0BjesBn) f(xy, Vj, Vjgls vy Up)

to V x Efj x .- x EP" — F. Hence fe:V— Fis C". If x € U is arbitrary, y € VO, we
show that D(,,j)»f f+(y) exists and equals d 0010500 £y (vj)1) with (j)-th entry 1. There
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exists R > 0 such that y +#(v;)] € V for all r € R, |t| < R and there exists a relatively open
convex neighbourhood W C U of x in U. Because U is dense, there exists z € U’ N W.
Since W is convex, x + t(z — x) € W for all 7 € [0, 1]. Moreover, since z € W° we have for
all T € (0,11 C U, x +1(z —x) € WO Hence, for t € (0,1], f(x+1(z—x),y)is C"in y,
and thus by the Mean Value Theorem for ¢ 7% 0

1
;(f(x +t(z—x),y+t(p)) — f(x +1(z—x),y))

1
= f dO- 0100 £ 41z — x), y + 0t())}, (v;)}) do.
0

Now let F be a completion of F. By continuity of
h:[0,1] x [-R, R] x [0,1] — F,
(t.1,0) > dO 0100 f(x 42z — x), y + o1}, (0))))

and continuity of the parameter-dependent integral

g: [0,11x[—R, Rl — F, g(z,1) = /1 h(z,t,0)do.
Fix t # 0 in [—R, R], then for all T € (0, 1] 0

gz, 1) = %(f(x + 1z —x),y +1@))) — fx + (2 = x), y)). (3.0.1)
Both sides are continuous in 7, (3.0.1) also holds for t = 0. Hence

1
8(0,1) = ;(f(x, y+ 1)) — fx, y) — g0, 0)

as t — 0. Thus Dy fx(y) exists and is given by

1
g(O, O) — / d(O,...,O,l,O...,O)f(x’ y’ (vj)l)do, — d(o,...,O,l,O...,O)f(x’ y’ (vj)])
0

Fix (v;), and repeating the argument above, then for all y € V the directional derivative
D(uj);g_ cee D(vj)»f fx(y) exists and is given by
J

Dy <+ Dy f0) = d 000000 £, y,v)).

By repeating the argument again, then for all v := (vj, vj41,...,0,) € Efj x -+ x EP" and
y € VO the directional derivative D(Un);g cee D(vj)»f fx(y) exists and is given by

Dasy, -+ Doy o) = A0 Pt f(x,y, ).

For (y,v) e V x Efj X oo X E,"?” the right hand side makes sense and is continuous, then f;
is C". 5
Step 3 Fixing v € Ej’ x -+ x EP", the function

(x, y) — d(O,msO:ﬁ_/’ﬂjH ~~~~~ /Sn)f(x, y, v)

is €0,
Applying Step 2 to the C*?) function (y, x) > d@0Fi-Pivi-Pw) £(x vy v), then

U— F, x > d0-08.8i+l.. B")f(x,y, v)
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is C? for each y € V and for w € Ef' X e X Effll, we get,

4P, ﬁj—l)(d(ﬁjxﬁj+l ~~~~~ ﬁn)f.(y’ V)(x, w) = dﬁf(x, y, w, v),

which is continuous in (x, y, w,v) € U x V x E’lSl x -+ x EP". Hence if f is C?", then (1),
(2) and (3) hold.

Conversely, assume that (1), (2) and (3) hold. By step I, f|yo,yo is Cw" and for
(x,y) e U x V°

dP flyogpo(x, y, w, v) = dPr-Pr=Bi-D(@Bi-Bivt—F) £ (y vy)(x, w). (3.0.2)

By (3), the right hand side of (3.0.2) admits continuous extension to d? f: U x V x E’f I x
.- x EP" - F. Hence the map fisa Cv?. [

The following lemma is a tool to prove the Schwarz theorem for C*-maps.

Lemma 34. Let E,..., E, and F be locally convex spaces, U; be an open subset of
Ei, x; € U foralli € {1,...,n}, x = (x1,...,%x,) and ¢ = (a1, ...,0,_1, 1) such that
o e NgU{oo} If f: Uy x --- x U, — F is a C*-map, then

Dawny; Dy~ Daw, iy S (X) (3.0.3)
exists for all B; € No, B; < a; and for all (w;);, ..., (w;)s, € E; and corresponding elements
W)y, -, (wi)j € {0 x E; x {0 I C E| x -+ x E,, and it coincides with

dPr Pt D fe (i, - (e, s (W) (3.0.4)

Proof. The proof is by induction on n. If n = 1, there is nothing to show. Let n > 2. Now
the proof is by induction on §;. If 8; = 0, holding the first variable fixed, we see that (3.0.3)
exists and coincides with (3.0.4), by the case n — 1. Now assume that 8 > 1. If §; = 0 for
i =2,...,n— 1, the assertion follows from [2, Lemma 3.5]. Assume that at least one of the
Bi > 1fori =2,...,n— 1. By induction, we know that

Dewy; Dy, Pawryy 5+ Dew, oy f ()
exists and coincides with
dP= PPt D (e )y, (g -1 (W2 - (W), (3.0.5)
Define g: Uy x --- x U, — F via
g('x) = D(wl)ZI,I D(wl)ZI,Z e D(wn—l)Tf(x)
= d PP Pt £ )y, (w1 (W21, (W2, - (Wast)g, )

By the preceding, g is differentiable in the nth variable and continuous in ((w,);, x) with

D(w,,)’i‘g(x) (3.0.6)
= d(ﬁl_l‘ﬁz""‘ﬁ"*l’])f(x, (Wi, ..., (wl)ﬁl—l’ ceey (wnfl)ﬁ,H1 » (w)1) (3.0.7)
= Dy Doy 5+ Dew oy Dy £ ). (3.0.8)

Hence g is C*+0D and d®+%Dg(x, (w,)) is given by (3.0.5). Because f is C* and oy > B,
(3.0.7) can be differentiated once more in the first variable, hence also D(wn)»fg(x), with
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d00- 0D g (x, (w1, (wi)g,)

= Dy, Dewny; 8()

= Doy, Dy, Pewny; ()

= dPrPetD £ (s (e, (W)

As this map is continuous, g is C1-00.D,

By [2, Lemma 3.4], also D, D(wl)jg g(x) exists and is given by

Dy, D, g(x) = dPrPrtD £ (e (w)y, o (wasi)g, s (wa)y).

But, by definition of g, D(wn)T D(w]);l glx) = D(w,,)’f D(wl)}}l e D(wn—l)Z,lf(x)~ Hence

Dw,y; Dawnyg, =+ Dewyyz_, S

=dProPtD f e (i (Wast)g, s (). O
Proposition 3.5 (Schwarz’ Theorem for C%-mappings). For all i € {1,...,n}, let E; and
F be locally convex spaces, U; C E; an open subset, x; € U; and o; € Ny U {oo} with
o = = (ay,...,qy). For B; € Ng such that B; < «;, we define B = (ﬂl,.. , By, & =
Zi,, B+ L pi= 3 B WL wh € (0D x E; x ({0)" € Ey x - x E,

with entries we,, ..., w,, in the E;-coordinate. If o € S,, is a permutation of {1, ..., p,} and
f:U x---x U,, — F is a C*-map. Then the iterated directional derivative

(Dug, -+ Du, D1, - ),
exists and coincides with dﬁf(xl, e X, W e, W)

Proof. The case n = 2 having been settled in [2, Proposition 3.6], we may assume that
n > 3 and assume that the assertion holds when n is replaced with n — 1. We prove the
nth case by induction on p,. The case p, = 0 is trivial. If at least one of the B; = 0 for
i = 1,...,n then the assertion follows from the assumption that n has been replaced with
n—1.The case B; > 1, foralli =1,...,n. If o(1) € {1,..., B1}, then by induction for all
x=(x1,...,x)€elU; x---xU,

Dy o+ D W (on )f( x)

= dBr=1hrs ﬂ”)f(x Wiy eves Wo(l)—1s Wo(l)F1s -« Whps - -+ wp").

Because f is C*, we can differentiate once more in the first variable:

Dw;(l) ' w( )f( )
= dﬂf(x, Wi, vy Wo(l)=15 Wa(Dtls - - - s Wops Wa (1)) Weys Weyals + -+ Wpy,)
= dﬂf(x, Wi, Wa, ...y Wp,).
For the final equality we used that, for vg,, ..., v, € Ej,
dP f(x,vi, ... 0,)
= dﬂ] (d(ﬂz ,,,, /Sn)f.(x27 L} xn7 U529 v§2+]7 L} vpn))(xl’ v]a RN vﬁ])
is symmetric in vy, ..., vg, € Ey, as
g(xy) = d PP f (o, Xy ey Vey ety + -5 Upy)

is C*! in x| (see Lemma 3.3).
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Ifo(l) e{é,...,pi} fori € {2,...,n}, then
Dy Dwf;(pn)f )
= dPr BBt Po) £ (x g, W e Wo )ty Wal)d s - -y Wpys - e v s Wy ).
For fixed wg;, ..., w,,, consider the function h: Uy x --- x U, — F,
h(x) = d(o """ O’ﬁ’lil’ﬂi+l""’ﬂ”)f(x, We;s o+ Wo(1)—1> Wo(l)41s -+ Wpjy + v+ s wpn).

By Lemma 3.4, Dy« Dy ---D h(x) exists and coincides with
o(l) 14}

*
w.
§i—1

Dy -+ Dy

i Dw;(l)h(x).

Now, by induction,
Dw;(z) e Dw:(pn)f(x)
= d(ﬁl""’ﬂiil’ﬂi+l """ ﬂ")f(x, Wi, eeey Wejy ovv s Wo()=15 Wo(1)415 + - o5 Wpis o v vy wpn)
= Dw;‘,l cee Dw;i—l h(x).
Let y := (x2, ..., x,) and let ¥ denote
dP2Pr) f (3 Wey s o Wy s Wo(ly—1s Wo (D1 -« + s Wy s Wor(l)s Weiy 1y o s Wp,)-
By the preceding, we can apply, Dw;(]), ie., Dw;(l) e Dw;(p ) f(x) exists and coincides with

Dwz1 oDy

t, Dug o h0)

= dﬂf(x, Wy eees Weis e v s Wo(1)—1s Wo (It ls -+ » Wpoys Wo(l)s Wegqs -+ > Wp,)
= dﬁll/f(xls Wi, .vny wpl)

dﬂllﬂ(xl,wl,.--, wpl)

coincides with d” f(x, wy, ..., w,,). O

Corollary 3.6. Under the assumptions of the preceding proposition, if
f:Uyx---xU,— F

is a C*-map, oy = (A1), - - -, Ae@m) ahd Bs = (Bsq1), .- Bom)). Then g : Uy X -+ X
Usiny = F is C* and

AP g(Xo(1)s - - s Xotnys Vo(l)s « - s Vo(m) = AP (X1, o0y Xny Wi, o vy W),

where w; == wg,, ..., Wp,.
Lemma 3.7. Let Ey, ..., E,, F and H be locally convex spaces, U; be a locally convex subset
with dense interior of E; foralli € {1,...,n} and o = (a1, ..., a,) such that o; € NyU {oo},
if . : F — H is a continuous linear map and f : Uy x --- x U, — F is a C*-map, then Ao f
is C* and dP(L o f) = AodP f for all B; € Ny such that B; < o; and B = (B, ..., Bn)-

Proof. This follows directly from the fact that continuous linear maps and directional
derivatives can be interchanged. [
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Lemma 3.8 (Mappings to Products for C*-maps). Let E\, ..., E, be locally convex spaces,
U; be a locally convex subset with dense interior of E; for all i € {1,...,n}, and (F})jcs
be a family of locally convex spaces with direct product F = ]_[j€ ; Fj and the projections
wj : F — F; onto the components. Let a = (o, ..., a,) such that a; € No U {oo} and
f:Uix---xU, = F beamap. Then f is C% if and only if all of its components f; :=mo f
are C%. In this case

dPf =" f)jes, (3.0.9)
for all B; € Ny such that B; < «; and B = (B1, ..., Bn)

Proof. 7; is continuous linear. Hence if f is C%, then f; = m; o f is C%, by Lemma 3.7,
with d? fi=mjo d? f. Hence (3.0.9) holds. Conversely, assume that each f ;7 is C%. The limit
in products can be formed component-wise, thus for all (xj, ..., x,) € U{’ X - X U,?, w; =
(Wi (w,-)ﬁl.) such that (w;)y, ..., (w,')ﬁi e E;,

dﬁf(xl,...,xn,wl,...,w,,) = (éwl ~~~Dwnf)(x1,...,x,1)
exists and is given by

@ fi (X1, ooy X Wiy e W) jes (3.0.10)
Now (3.0.10) defines a continuous function

Ui x-xUy x El"x .. x Eft — F.
Hence f is C*. [
Lemma 3.9. Let E|,...,E, and F be locally convex spaces, U; be a locally convex
subset with dense interior of E; for all i € {1,...,n} and o = (¢y,...,®,) where o; €

NoUfool,ap > LI f 2 Uy x -+ x U, > Fis COron10° f g OO0 gpg
dO-ODf U x - x Up_y x (U, x Ey) = F is COV 10— thep £ js C

Proof. Let 8 € No, B < a;, w; = ((wy)y, ..., (w;)g) where

(wi)y, ..., (w;)g € E;. Consider also the corresponding elements
W7, - (W), € {OPi—' x E; x (0" € Ey x --- x E,. If B, = 0, for all x =
X1y ooy xy) € UY x - x UY, (le ~-lu)w"71f)(x) exists as f is C@1~%-1:0 and is given
by d#1-Pn—1.0 £(x wy, ..., w,_;) which extends continuously to

U, x~-~xU,,fo31 x-~-><Elel.

If Bu > 0, then D,y f(x) = d©-0D £(x, (w,)) exists because f is C©~0D and because
this function is C@1-%-1.2=1 3]0 the directional derivatives

(Dy, -+ Duy, ()

= (D, 0" i, Picnys, 00+ Dicungond ™"V ), wi)y)
exist and the right hand side extends continuously to

O (WD, s (W)g,) € Up X -+ X Uy X EPY 5o x EP,
Hence f is C*. [
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Lemma 3.10. LetEy,..., E,, Hy,..., H, and F be locally convex spaces, U; C E;, P; C H;
be locally convex subsets with dense interior foralli € {1, ...,n} and o := (ay, ..., o,) where
o € NgU{ool, if f: Uy x---x U, — FisaC%map and ); : H; — E; is a continuous
linear map such that A;(P;) € U, then fo(hy X+ XA)|p x..xp, : P1 X x P, — Fis C°.

Proof. Let 8; € Ny such that 8; < «; and 8 := (B, ..., Bn). For (p1,..., pn) € Pl0 X e X
PO, (wi)y, ..., (w;)p € H; and corresponding elements
(W, -, (wi)h € (0D~ x Hi x ({0})"™F € Hy x --- X H,, we have

D(wn)T(f ° ()"1 XX )\'n))(plv AR ] pn)

1
= }E’)l’(l) ;(f(}hl(pl)’ LR )\-n—l(pn—l)v )Ln(pn + t(wn)l)) - f()vl(Pll LR }‘n(pn)))

1
= lim ;(f(M(Pl), oo dn(pr) + 10 ((Wn)1) — fa(p1), - -5 An(Pn))

= D....0.0wn) ) S )X1(PD, - - s 2a(pPa))

and recursively

Dy -+ Dy (f 0 (i X - X ADNP1s - -+ Pa)
=dP FOa(P1)s -y M (D), M (WD), -, An(Wi)g,))-

the right hand side defines a continuous function of

(Pl,---,Pn,(w1)1,---,(wn)g,,) e Ppx---x P, x Hlﬂ1 X +o0 X H,’,g”. Hence the assertion
follows. [J
Lemma 3.11. Let E,,...,E,, H\,..., H, and F be locally convex spaces, U; be a locally
convex subset with dense interior of E; for all i € {1,...,n}, ¢ = (x1,...,a,) where

o € NgUfoo}, H:=H X ---x Hyand f : Uy x --- x U, x H - F be a map that
satisfies the following conditions:

1. For all x .= (x1,...,Xxn), X; € U;, the map f(x,e): H— F is m-linear;

2. Themap f Uy x---x U, x H— F is C*9,
Then f:U; X -+ xUy_1 x (U, x H) —> Fis C*. Also g : Uy x --- x U;j_; x (U; x H) X
Ui X - xU, = F, (x1,...,Xi—1,(Xi, h), Xix1, ..., xy) > f(x, h) is C%.

Proof. Holding & € H fixed, the map f(e, h) is C* and hence, for a permutation o € S,
of {I,...,n}, we have Usy X -+ X Usiy = F, x = (Xoq1), ..., Xom), h) is C%, where
g = (Uo(1); - - -, Ao(n)), Dy Corollary 3.6. Hence fi : Usy X « -+ X Ugn—1) X (Usmy X H) —
F, filxeq), --.» Xom), h) = f(x, h) satisfying hypotheses analogous to those satisfied by f
(with o) interchanged) and will be a C* if the first assertion holds. Using Corollary 3.6,
this implies that g is C*. Therefore we will prove the first assertion by induction on «,, after
assuming without loss of generality that o; < oo.

The case a, = 0. Then f is C@1~-1.0 by the hypotheses.
Induction step. For (w,), € E,, z= (21, ..-,2m) € H. By hypothesis,

D,....0,(wp),,0).f (x, h) exists and extends continuously on Uy x --- x U, x E, x H — F.
Because f(x,e): H — F is m-linear continuous map, it is C' with

D....00 f(x, h) = Zf(x, i, oo hi—1, Zes Bty -5 o).
k=1
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This formula defines a continuous function U; x --- x U, x E, x H — F. Holding
x1, ..., xp—1) € Uy x --- x U,_; fixed, we deduce by Proposition 2.4 (Rule on Partial
Differentials) that U, x H — F, (x,, h) — f(x, h) is C'-map, with
D(o _____ 0,(wn)1,z)f(x, h) (3011)
= Do..0.umn 0 f G W)+ Y FO R by, 2k B ).
k=1
Because we have just seen that @0V f(x;, ..., x,_1, (x,, h), ((wy),, 2)) exists and is given

by (3.0.11), which extends to a continuous map on U; X - - - x U,_; X (U, x H) x (E, X H), the
map f : Uy x---xU,_1 x(U,xH) = Fis C%+0D Also, f: U;x---xU,_1x(U,xH) > F
is C@1--4-1.0) by the hypothesis.
We claim that d@OD f - Uy x - - xU,_1 x (Uy x Hx E, x H) = F is C@-%-1.en=1 Tf
this is true, then f is C* by Lemma 3.9. To prove the claim, for fixed k € {1, ..., m}, consider
¢:U x---xU,_1 x(U,xHxXxE, xH)— F,
x, hy, Wy, 2) = f, hy, oo b, 2 bt <oy ).
The map
YU x---xU, xH x---xHy 1 x(H, xE, xH)— F,
(x’ hl? ceey hmflv (hms (wn)l» Z)) = f(x’ h17 ceey hm)
is m-linear in (hy, ..., hy_y, (h,, (w,);, 2)). By induction, ¥ is C@\%-1:4=D a5 a map
on Uy x --- x U,y x (U, x H x -+ x H, x E, x H). By Lemma 3.10, also ¢ is
C@ion—1.0=1  Hence each of the final ¥ summands in (3.0.11) is C@1-%—1.2=D jp

(x,hyy ooy by, (hy, (Wy)1, 2)). To take care of the first summands in (3.0.11), observe that
0:Up x---xU, x(HXE,)— F, (x,h,(wy)) = Do,..0,wm,0f(x,h)is (m+ 1)-linear in
the final argument and satisfies hypotheses analogous to those of f, with («q, ..., «,) replaced
by (o, ..., ®,_1, @, — 1). Hence by induction, 6 is C@1:%-1.¢.=1 Consequently, d® %D f

is C@en-1.22=1D (]jke each of the summands in (3.0.11)). O

The following lemma illustrates the relation between C"**)-maps and C%-maps.

Lemma 3.12. Foralli € {1,...,n}, let E;, H;, H, and F be locally convex spaces, U; C
E;,V C Hy and W C H, be locally convex subsets with dense interior and o = (o1, ..., &)
where o; € Ng U {o0}. Assume that U, =V x W C Hy x Hy, = E,. If for all k,l € Ny
withk +1 < a, the map f : Uy X --- x U1 x VX W — F is C@tmtn—1. k) hop
f:U x---xU, - Fis C°

Proof. We may assume that o, < o00. The proof is by induction on «,. For the case
o, = 0, the assertion follows by the definition of the C%-map. For the case o, > 0, let
x = (x1,...,%,) € Uy x--- x U, and (hy, hy), (h', h}) € H x H,. By the Rule on Partial
Differentials (Proposition 2.4),

d(O ..... O,I)f(x’ (h11 hZ)) — d(O,...,O,l,O)f(x’ hl) 4 d(O ..... O,I)f(x’ h2)
Also, for fixed (h1, hy) and differentiations in the x-variables,

Doo.....0., aiypy(@d O f(x, (hy, ha))) (3.0.12)
= Do @O0 f (e, hy) +dO 0D £ (x, ho)). (3.0.13)
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Using Lemma 3.13, we can show that (3.0.13) is C@1> @n-1.K0) a5 9 mapon Uy x---xU,_| X
(V x le) x (W x H22) for k+1 < a,_», hence by induction and again by Lemma 3.13, (3.0.12)
is C@l@n-19=2 on U; x -+ x (U, x E,r). Thus, d®OVf: U x---x U, x E, — F is
C@en—1:@n=1 and by induction f : U; x --- x U, — F is C@1-~%-1.9 Hence, it is C%, by
Lemma 3.13. O

Lemma 3.13. Let Ey, ..., E, and F be locally convex spaces, U; be a locally convex
subset with dense interior of E; for all i € {1,...,n} and « = («y,...,®,) where o; €
NoU{oo}, &, = 1. Then f : Uy x---xU, — F is a C*-map if and only if f is C@1--%-1.0 " f
is CO-00 gnd O 0D £ U % ... x Uy_y x (U, x E,) = F is C@1%—1:0n=1),

Proof. If f is C%, then f is C@ 1.0 and f is CO0D Also 400D f = U} x
-x U, x E, — F is linear in the E,-variable and for all 8; € Ny, 8i < o, B <

o, — 1,(x1,...,x,) € Ul0 X 0 X U,(,), (wi)y, ..., (w;)g, € E; and corresponding elements
WY ), € (10D x E; x ({0 € Ey x - x Ey,

Dy 00 Dyt 0@ O0 Fxr, s 2, 2)

= dPro Pt PN £ ey s s Was)g, 2 (Wit (Wa)g,)

exists and extends continuously in U; x --- x U, X E’fl X oo X Ef". Hence by Lemma 3.11,
d©-0D £ is C@>w@n-1.0n=D The converse has already been established in Lemma 3.9. O

Lemma 3.14. Let E|, ..., E, and F be locally convex spaces, U; be a locally convex subset
with dense interior of E; for alli € {1,...,n} and ay € Ny, ifthe map f : Uy x---xU, —> F
is C@0:0)  then f is C%,

Proof. The proof is by induction on «y. The case ay = 0. If f is CO+9 then f is

continuous and hence C°. The case oy > 1. Assume that Uy, ..., U, are open subset. Then
D,y f(x1, ..., x,) exists and is continuous in
(xt,...,xp,w;) for all x; € U; and all i € {1,...,n}, where w; € E;, (w;)" €

({0} ~! x E; x ({0})"" € E; x --- x E,. Hence by Proposition 2.4 f is C! and

df((xt, ..o X)Wy« ooy we)) = Deyyys f(X15 00y X)) + - -+ Dy f(X1, -0, X)),
(3.0.14)
which is continuous in (xi, ..., X,, Wy, ..., w,). Thus f is C!. In the general case, the right

hand side of (3.0.14) is continuous in (xi,...,X,, wWy,...,w,) € U; x -+ x U, x Ey X
- x E, and extends d(f|U?x---xU,?)~ Hence f is C'. Next note that Dy f(x1, ..., x,) 18

C@=1@0=1_mappings, by Lemma 3.9 and Corollary 3.6. Hence df is C*~!, by induction.
Since f is C! and df is C*~!, then f is C%. O

As an immediate consequence of Lemma 3.14.
Remark 3.15. The map f : U; x --- x U, — F is smooth if and only if it is C(©°%,
Lemma 3.16 (Chain Rule for C*-mappings). For all i € {1,...,n} and all j € {1,..., m;},

let E;, X; ; and F be locally convex spaces, U; C E;, P;; € X; ; be locally convex subsets
with dense interior,
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o = (a1,...,0,) € WNoU{oo})", f : U x---xU, > Fisa C%map and g; :
Piix PiaX---X Py — U is a CVi-map, where y; == (Vi 1, ..., Vim;) € NoU{oo})™, |y;] =
Yii + -+ Vim; < a;. Then the composition

fo(glX"'Xgn):(Pl,lX"'XPl,ml)X"'X(Pn,l X"'XPn,mn)_>Fv
(P15 -5 Pamy) = F&1U(PLD, - -5 8n(Primy))

is a CYt _map.

Proof. Without loss of generality, we may assume that y; < oo for all i € {1,...,n}. The
proof is by induction on |y| = |yi| + -+ + |¥ul- If |[y| = 0, then f o (g X -+ X g,) is
just a composition of continuous maps, which is continuous, hence C 0.0 Now if lyl > 0,
by Corollary 3.6, we may assume that y,, > 0. Again by Corollary 3.6, we may assume that
Yum, > 0.For p = (p1,...,pp) € Py x---x P, and z € X,, ,,, the map d%-0Vg (p,, 2) is
CWn.toYnmp—1:Ynmp =1 by Lemma 3.13. Also, the function

Pn,l X X Pn.m,,—l X Pn,m,, X Xn,mn - Uny
(pn,l’ cees Pnmp—1, (pn,mns Z)) = gn(pn,ls ceos Pnmp—1, pn,m,,)

is C”*, by Lemma 3.11. In particular, the latter is C¥n1>Yn.mu—1:¥umn =1 Thus both components
of

@ Puy X oo X Puy X Xy = Un X Eny (pas 1) = (8n(pn), d® "V gu(py. 2))
are CntoYumn—1-Yimn =D g0 ¢ jg CYntoYomi=t-Ynm=D By [ emma 3.13,

dO-ODf Uy x oo x Uyoy x (Uy x Ey) — F
is C@en—1:en=D \whence a, > 1. Thus, by the preceding, the map

dO 0D (f o (g1 X -+ X guot X @)(P1. -+ Puts (Pns 2)
is CWLo¥n—toVn, Lo Vamn =1 ¥ =1 Hence,

dOOD(f o (g1 x -+ x g))(p.2) = @O0V (g1 x -+ x gn), d "V gu(py. 2))

is CO1Yn=t:VuleYumn—1:¥nmn =1 and by induction, fo(gy X« «-xgy) : (P11 XX Py )X+ X
(PyaXx- X Pyy,) = Fis CYLeo Va1Vl Yamn=1-9)  Hence, by Lemma 3.13, fo(gyXx---Xgy)
isa CY1vi)-map. [

Proposition 3.17. Let E,, ..., E, be finite-dimensional vector spaces and F be a locally
convex space. For all i € {1,...,n}, let U; be a locally compact and locally compact subset
with dense interior of E; and o := (o, ..., ®,) where a; € Nog U {oo}. Then the evaluation
map

e:CUy x - xU,, F)yxUy x---xU, > F, e()), X1, ..., %) = y(X1, ..., %)
is C©°>9),
Proof. Without loss of generality, we may assume that o; < oo for all i € {1,...,n}. The

proof is by induction on || = a1 +- - -+¢,. If ¢ = 0, then ¢ is continuous because U; is locally
compact ([7, Theorem 3.4.3]). Also, in the first argument ¢ is linear. Hence it is C°*%-~9_-map,
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by Lemma 3.11 and Corollary 3.6. If @ # 0, we may assume that «, > 1, Corollary 3.6. For
x €U, wekE, yeCU, x-xU,F)and small r € R\ {0},

1
?(E(V,xl,u-,xn—l,xn +tw) —e(y, X1, ..., X))

1 (0,...,0,1)

= ;(y(xl,...,xn_l,x,, +tw) —yxy,...,x,) > dV Py (X, ., Xy, W)

ast — 0.
Hence d®%Ve(y, x1, ..., x,, w) exists and is given by

dOOVe(y, x1, ... X, w) (3.0.15)

=d" "y, ., w) (3.0.16)

=e1d® "Dy, (x1, . X, w)), (3.0.17)
where g;: C@l-1.=D( % ... x Uy_y x U, X Ep, F)x (U; X ++- X Uy_y x Uy x E) —
F, & x1,...,%-1,2) > (X1, ..., X4_1,2) 18 C (et an=1) by induction.

As (3.0.17) defines a continuous map (in fact a C©1+e-1.4=1)_map) by induction and
Lemma 3.10, using that

C(Uy x -+ x Uy, F) » C@an-tan=D(y, x ... x U,_y x U, X E, F),

V> 0 0,1)y

is continuous linear. Thus, by Lemma 3.13, ¢ is cleo O

Definition 3.18. Let Ey, ..., E, and F be locally convex spaces, U; is a locally convex subset
with dense interior of E; for all i € {1,...,n} and o := («y, ..., a,) where o; € Ny U {o0}.
Given C*(U; x --- x U,, F) the initial topology with respect to the mappings

d?: c*U; x --- x Uy, F) - C(U; x-~-><U,1><E’13l ><~o~fo”,F), y = dPy
for B; € Ny such that §; < o; and B := (B, ..., B.), where the space on the right hand side

is endowed with the compact-open topology.

Lemma 3.19. Foralli € {1,...,n}. Let E; and F be locally convex spaces, U; C E; be
a locally convex subset with dense interior, a = (a1, o2, ..., a,) with a; € Ny U {oo} and
Bi € No with B; < «;. Define U = U; X --- x U, and ¢, = (11, T2, ..., T,) such that
meN, 1, =1,2,..., Bi. Then the sets of the form

W ={f € C°(U.F): d f(K,,) C Pg,)
form a basis of 0-neighbourhoods for C*(U, F). where P, = Py, .., S F are
0-neighbourhoods and K. = K¢, 1, .., CU X E]rl X -+ x EM is compact.
Proof. The space C*(U, F) endowed with the initial topology with respect to the maps
d": C*(U,F)— C(U X E{' X -++ X E[", F)¢o, [ +> d"f.
Therefore the map

v:C'U, F)—> [] CWxE! x---xEF F), fr> @ fngsr <o

Noa7; <a;
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is a topological embedding. Sets of the form

B :={(8c)Npsm=a; € || CW X E[' x - x EP. F): g, (Kg,) S Q)

No>7i<e;

with compacts sets K, € Ux E[' x---x E™ and 0-neighbourhoods Q,, = (Qy, 1.z, € F),
form a basis of 0-neighbourhoods in HNoari <a; CU x Elf1 x ---x E F). Hence the sets
@~ !(W) form a basis of 0-neighbourhoods in C*(U, F). O

Theorem 3.20. For all i € {1,...,n}. Let E; and F be locally convex spaces, U; C E;
be a locally convex subset with dense interior, o; € No U {oo}. For j € N, 2 < j < n, let
x=&,...,xj-)€eU =Ux---xUj_,V=Ujx--xU, y:=(a,...,a;_1) and
n=(j,...,an). If frUXxV — Fis CY" then

1. The map f.: V — F is C".

2. Themap f¥V:U — C"(V,F), x— fyis CV.

3. The mapping ¢: CY"(UxV, F) — CY(U,C"(V, F)), f — f" isa linear topological

embedding.

Proof.

(1) By Lemma 3.3, f,: V— Fis C" forall x e U.

2) As C*®(U;, F) = lim C%(U;, F) (see [14]), we have
<—a;eNy

CY(U,C®(V,F)) = l(gl CY(U,C"(V, F)).
neNgyr—i+1

it suffices to prove the assertion for n € (No)"~/*! (cf. [4, Lemma 10.3]). Without loss of
generality, we may assume that y € (Ng)"~/*!. The proof is by induction on y.

The case y = 0. If n = 0, the assertion follows from [7, Theorem 3.4.1]. If n # 0, The
space C"(V, F) endowed with the initial topology with respect to the maps

for Bi € Np such that 8; < «;. Hence, we only need that dPiBitieb) o VU
C(V x Ef}’ X - X E,’f", F)., is continuous for g; € {0, 1, ..., «;}. Now

is continuous. Consequently, g¥: U — C"(V, F) is continuous.

The case y # 0, using Corollary 3.6, we may assume that? aj_; # 0. Let n = 0 then
fY:U— C(V,F).Letx e U := U x -+ x UJQ_], z€ ({0}))2 x E;_ then x + 1z € U°,
for small r € R U {oc0}; we show that

%(f\/(x + lZ) o f\/(x)) — d(O,...,O,l,O...,O)f(x’ o, Z)

in C(V, F) as t — 0. Therefore, for a compact subset K C V, we need to show that

1
(;(fv(x +12) — Y@k = @000 f(x, 0, 2) |k
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uniformly as ¢+ — 0. Consider a 0-neighbourhood W in F. Without loss of generality, we can
assume that W is closed and absolutely convex. There is ¢ > 0 such that x + B;R(O)z c U"Y.
For y € K and r € R\ {0} such that |¢| < &, we have

1
A,y = (Y 1) = [0 = dO 0100 px 1y 2)

;(f(x +12,) = F(x, ) = dO010-0 p(x g 7y

1
— / ar(O,...,O,1,0...,0)f()C +otz,y, Z) do — d(O,...,O,1,0...,0)f(x7 y, Z)
0

1
— / (d(O,...,O,l,O...,O)f(x +otz,y, Z) _ d(O,...,O,l,O...,O)f(x’ y, Z)) do.
0

The function 1 : B]ER(O) x K x[0,11 = F,(t,y,0) — d®-010-0¢fx 4+ 51z, y,2) —
d©0.1.0-50) £(x 'y 7) is continuous and (0, y, o) = 0 for all (y, o) € K x [0, 1]. Because
K x [0, 1] is compact, by the Wallace Lemma (see [7, 3.2.10]), there exists § € (0, €] such
that 1#(3(2%(0) x K x [0,1]) € W. Hence A(t,y) = fol g(t,y,0)do € W forall y € K
and all + € B}SR(O) \ {0}. Because this holds for all y € K, we see that A(t,e) — 0
uniformly, as required. Thus d©®0D fV(x, z) exists for all x € U°, z € E; x ({0})/72
and is given by d 0D fV(x,z) = d©01.0--0 £(x e z). Now since y = 0, the function
U— C(V,F),x > d©%010-0 £(x e 7)is continuous in all of U; so f" is C©0D on
U, and 4O 0'l)fv()c, z7) = d(o'"”o’l’o""o)f(x, e, 7). Because

he (U x (072 x Ejp) x V= F, ((x,2),y) b dO0100 fx,y, 2)
is C@1-j-2:¢j-1=10) (see Temma 3.13 and Corollary 3.6), by induction
dOOV(fy=h":U x Ej_y > C(V, F)

is C@1--%-2%-1=D Hence fis C”.
Let n # 0, again by Corollary 3.6, we may assume that, «, # 0. Because

C'(V, F) > C(V, F) x Cien-t=0(V x E, F), ¢ > (¢.d"Dg)

is a linear topological embedding with closed image, fV: U — C"(V, F) will be CV if
fY:U — C(V, F)is C” (which holds by induction) and the map

h: U — C(Cl] ..... Dt,l,l,clnfl)(v X Ena F), X = d(o ..... 0,1)(f\/(x))

is C7 (see [14]; cf. [4, Lemma 10.1]). For x € U, y € V and z € ({0})"/ x E,, we
have h(x)(y, z) = dO=OD(fY))(y, 2) = dO-OD(f(x, o))y, 2) = dOOD f(x, y, z), thus
h = d%%Y £y for d®ODf: U x (V x E,) — F. By Lemma 3.13 this function is
C-@jsen-1.an=1) Hence h is C” by induction.

(3) The linearity of @ is clear. For y € V, the point evaluation A: C"(V, F) — F, ¥ — ¥ (y)

. . . j—1
is continuous linear. Hence, for ; € Ny, 8 < a;, x € U and w € E/131 X -+ X Ej’_l s

(d(ﬂlvﬂZv"vﬂj*l)fv)(x, w)(y) = A((d(ﬁl’ﬂz ..... ﬂj—l)f\/)(x, w))
— d(l-‘fl’/~‘32,~~-~,/~‘3j—1)()L 1) fv)(x, w)
= dPrPr-Pi-D( f(e, y)(x, w))
= dPr-PrBi-D f(x y, w),
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using that (4 o £¥)(x) = A(f*(x)) = f(x)(y) = f(x, ). Hence
(d(ﬂl»ﬁZ ~~~~~ ﬁj—l)f\/)(x’ w) = (d(ﬁ1,ﬁ2 »»»»» ﬁj—lvov-u«o)‘f)(_x’ o w).

Hence by Schwarz’ Theorem (Proposition 3.5), for v € Ef/ X 0 X E,‘?”,
dBiBit1ss ﬁn)((d(ﬁlﬁz ,,,, ﬂj’l)fv)(x, w))(y, v) = dPrba..e, ﬁn)f(x’ y, w, v).

® is continuous at 0. Let W be a 0-neighbourhood in C” (U, C"(V, F)). After shrinking W,
without loss of generality

={f € C"(U.C'(V, F)): d f(Kq,) C Pg,)

where ¢, == (11,72, ...,Tj—1), m €N, 1, =1,2,..., B such that 8; € Ny, B; < o, K, ==
KTIJZavaj—l C U x Erl cee X E i 11 is compact and P, = PTI’TZMTFl C C(V,F) is
0-neighbourhood (see Lemma 3. 19) Using Lemma 3.19 again, after shrinking P,, we may

assume that,
P, ={geC"(V,F):d"g(K¢, p) S P, p}

where pr == (T, Tjg1s... ) k € N, Ko o = Koy ey © V X E;j X - x EM s
compact and P, , = Py .., S F is O-neighbourhood shrinking P, further. Then W
is the set of all f € CV(U C”(V F)) such that d°(d" f(x, w))(y, v) € Pgm o for all
(x,w) € K, €U x E] x E} and(y,v)ngmkaVxE x ED. The
projections of U x E1 X - x E JL 11 onto the factors U, E1 ... E Ji 11 are continuous, hence
the images K glm, K gm, ... K ém of K, under these projections are compact. After replaeipg
K, by K. x Ki x---x K, without loss of generality K, = K x K2 x---x K{,.

Likewise, without loss of generality Kepp =K., x K2 x--xK 27+ with compact

sets K!  CVandK2 A CE’ ... K&l CED.
Now if f e C ")(U x V, F) then dre(dsm £V (x, w))(y, v) = d'9 PP f(x,y, w, v). Hence
fY € Wif and only if d» ") f(K! x K! = xKZ x- x K, x K2 ” x---xK’;m;;: ) C
P, 5. This is a basis neighbourhood in C(V DU X Vv, F) (see Lemma .19). Thus &~ 1(W)
is a 0-neighbourhood, whence @ is continuous at 0, and hence @ is continuous.
It is clear that @ is injective. To see that @ is an embedding, it remains to show that ¢(W)
is a 0 -neighbourhood in im(®) for each W in a basis of 0 -neighbourhoods in C»?(U x V, F).

Let W == {f € CY"(U x V) : d"P(K,, ,) S P, ]}, without loss of generality,

; : 1 1 2 J

after increasing Kgmiik’ we may assume K, Lgm o X Kgm o X Lo, e XX Lgm,pk X
2 n—j 1 1 2 J

K;m,pk X X Kglm ‘o with compact sets L & Cc U, K e S cV, Lg PR X L, ©
2 T 2 n—j T —

E' x x E;7) and KZ X oo X K,y CE x Em. Then &(W) = {p €

im(®): d"(d”(p(x, w))(y,v) € P, ) forallx € L e Y E Kg o WE Lg PR ~><L£.m,pk

and v € Kg o XX Kgm‘/;jz, which is a O-neighbourhood in im(®), by Lemma 3.19. [

Lemma 3.21. Let Q be a topological space, for all i € {1,...,n}, let E;, F be

locally convex spaces, 7; € N and f: Q X Eltl X -+ x Em — F be a map such that

fx,wi, .o, Wisy, &, Witg, ..., Wy): El.fi — F is symmetric (t;)-linear for all x € Q and

w; € Ef’ Then f is continuous if and only if for v € E;, g: Q x E; x --- X E, —

F, gx,vi,v,...,0) = f(X,01,...,01,V2, ..., V2, e, Uy, ..., Uy) IS CONLINUOUS.
—_— — ———

T —times T) —times T —times
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Proof. The continuity of g follows directly from the continuity of f. If, conversely, g
is continuous, then the assertion follows by n applications of the Polarization Identity [6,
Theorem A]. [

Theorem 3.22 (Exponential Law for C*-mappings). For all i € {1,...,n}. Let E; and F
be locally convex spaces, U; < E; be a locally convex subset with dense interior, o; €
No U {00} and let X; = {0} if o; = O, otherwise X; = E;. For j € {2,...,n} define
U=Ux---xUj_, V=U;x---xU,, y=(ar,...,aj_1), n = (), ...,a,). Assume
that 'V is locally compact or U x V x X| X Xy X -+ X X, is a k-space. Then

¢: CY"(U x V,F)— C"(U,C"(V, F)), fr> f’
is an isomorphism of topological vector spaces. Moreover, if g: U — C"(V, F) is C?, then

g UxV > F, g'x,y)=gx)y)
is COm,

Proof. It suffices to prove the final assertion. In fact, given g in the space C” (U, C"(V, F)), the
map g” will be C'™ hence g = (g")” = P(g"). Thus & is surjective and by Theorem 3.20
it is an isomorphism of topological vector spaces.

Locally compact condition. Let x = (x1,...,x;—1) € U,y = (yj,...,y») € V and
e: C"V,F)xV — F, (¥, y) = ¥(y). By Proposition 3.17, g"(x, y) = g(x)(y) = e(g(x), y)
is C" Hence g" is C”" by Chain Rule for C*-mappings (Lemma 3.16).

k-space condition. If g: U — C"(V, F)is C?, define g": U xV — F, g"(x, y) = g(x)(y).
For fixed x € U, we have g"(x, ) = g(x) which is C", hence

(D:l)j e D:l)n g/\)(xv y) = d(ﬂj’ﬂj+1 """ ﬂ'l)(g(-x))(ya wja IR wn)
= (dPiPITLP o g) () (v, wy, -y wh)

exists for B € Ny such that ; < «;, y € V0 = UJQ x - x U? and w; € Elﬁ’ Also, for
E0joiny: COTFra PO 5 EP 5 X B F) > F, f > f(row, ... wy),

,,,,,,,

(D, ++ D, 8, ¥) = (E(y;..oiy 0 dPHP+12P0 0 g) ().

For fixed (y, wj, ..., wy), this is the function E(y,w;
By linearity of &(,u;

we obtain the directional derivative

(Duy -+ Dy, ), )
= &y wn)(d(ﬁjaﬂj+le~~~aﬂn)(d(/31’ﬁZ ----- ﬂj—l)g(x’ Wi, wio1)))

.....

= dPi bt P @ PP PO (e wy, L wie D) wy e wa)
= (@ PPt o (@ PP PimD gy (e, wiy o wim ) wis e W)
= (@PiPirbn) o (@ PP DN (e, wiy e wien), (7w we))

forx e U := U{) x---xUY. To see that g" is C"", it therefore suffices to show that the map

h:UxE'lglx~-~fofll
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is continuous for all B; € Ny such that §; < «;. By Lemma 3.21, this follows if we can show
that

fiUXxX x--xXj_ 1 xVxX;x---xX,—>F,

(X, Wi, ..o, Wi, Y, W), o, Wy)
= R, Wi, e, W e, Wiy e, Wi Yy Wy ey, Wy eeoy Wy, e ey, W)
—— —
B1—times Bj—1—times Bj—times Bn—times

is continuous. Now

Bj-1
1//:U><X1x-~-><XJ-,1—>U><E’131 x--~xEjil,
(X, wi, ..., wj—) > (X, W, e, W, Wy e, W2, e, Wi, e, W)
— ———
By —times Bo—times Bj—1—times

is continuous and the map 6: U x X; x --- x X;_| — COV x Y, F), 0 == C%p, F) o
dPi-Pitiobn) o gPr-P2Fj-g o 4 is continuous. By hypothesis U x X; x -+ x X;_1 x V x
Xjx---x X, is a k-space, it follows that 6": U x X; x-- - x X, xVxX;x---xX, > F
is continuous (see [11, Proposition B.15]). Since 6 = f, this implies the continuity of f. [

4. The exponential law for C*-mappings on manifolds

Definition 4.1. For all i € {1,...,n}, let M; be a smooth manifold (possibly with rough
boundary) modelled on a locally convex space, @ = (a1, ..., ;) With o; € Ny U {oo} and
F be a locally convex space. A map f: M} x --- x M, — F is called C* (in particular,
continuous) if fo((,ol_1 X x o) Vo, X == x Vg, — Fis C* for all charts ¢;: Uy, — V,,
of M;. Then in particular f is continuous.

Definition 4.2. In the situation of Definition 4.1, let C*(M, x - - - x M,,, F) be the space of all
C%maps f: M x---xM, — F.Endow C*(M, x---x M,, F) with the initial topology with
respect to the maps C*(Mx---xM,, F) — C*(V, x---xV,, F), f+> fo((pl_l X ~><g0n’1),
for ¢; in the maximal smooth atlas of M;.

Proposition 4.3. For alli € {1,...,n}, let M; be a smooth manifold (possibly with rough
boundary) modelled on locally convex space, a; € NygU{oo} and F be a locally convex space.
Let j €{2,...,n}). Define M .= M; x---xMj_1, N.=M;x---xM,, y:=(@i,...,aj_1)
and 1 = (aj, ..., o). Then

1. f¥ e CY"(M,C"(N, F)) forall f e CYP(M x N, F).

2. The map

&: CY"(M x N,F)— C"(M,C"(N, F)), f+> f"

is a linear topological embedding.

Proof. (1) It is clear that fV(x) = f(x, e) for x € M is a C"-map N — F. It suffices to show
that fo(‘Pfl NEEE x<p;_11): Ug, x---x ijf1 — C'(N, F)is C” for each chart ¢ : U,, — V,,
of M, where k € {1,...,j—1}. Foralll € {j,...,n}, let A be the maximal smooth atlas for
M;. Since the map

W:C'N,F)— [] €W, x -+ x Uy, F), h> (ho (97" x -+ x 9, ))gea,
j<l=n

YIeA,
Jj=l=n
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is a linear topological embedding with closed image (see [14]; cf. [10, 4.7 and Proposi-
tion 4.19(d)]), f¥ o (' x -+ x ¢;!) is C¥ if and only if ¥ o fo (g x -+ x @) is
C7 (see [14]; cf. [4, Lemma 10.2]), which holds if all components are C?. From this the
assertion follows if we can show that

O: Vg X oo x Vo, | = CN(Vy, x o XV, F),

x> [ X x e Do) o (9 x e x g = (Foler ! x - x g )Y)(x)
is CV.But0=(fo(<p1_] ><---><(,0n’1))v Wherefo(gol_1 X - X(pn’l): Vo X oo x Vg, = F
is C’™_ hence 6 is C¥ by Theorem 3.20.
(2) It is clear that @ is an injective linear map. Because ¥ is a linear topological embedding,
also for P = [[yea,. C"(Vy; x --- x V,,, F) the map

J=l=n

CY(M, ): CY¥(M,C"(N, F)) — CY(M, P), fr> Vo f

is a topological embedding [14]. Let 4; be the maximal smooth atlas for M) where k €
{1,...,j — 1}. The map

E:C'M,P)— [] C'(Vy x--xV,, . P),

‘ﬂke'Ak'
I<k<j~1

f (foler! x - x @i gea,

1<k<j—1

is a linear topological embedding. Let

Q=[] [] €W - xVy . C'(Vy; X+ X V,,, F)).

ok €A, @IEA]
I<k=<j-1 j<i=n

Using the isomorphism [ [ gea,, C¥(Vy, X -+ - X Ve, 1> P) = Q we obtain a linear topological
l<k<j—1

embedding
I''=2o0C"(M, ¥): C¥(M,C"(N, F)) > Q,

[ (€7 x - x g F)o folgr! x - x @it grea.

1<i<n
where C”((pj_lx~-~X(p;1, F): C"(N, F) = C"(Vy,; x---xVy,, F), > fo((pj_lx~-~x<p;1).
Also the map

w: CY)(M x N, F) — 1_[ C(%'I)(le X oo X Vo, F),

gieA;,
1<i<n

f (folor! x o x gy Ngea,

1<i<n
is a topological embedding, by Definition 4.2. Thus we obtain the following commutative
diagram.

CY"D(M x N, F) LN CY(M,C"(N, F))
|- Ir
l—[ CYNV, x - x V. F) LN 0

V€A,
1<i<n
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.....

_____ on)vicA;, - By using that open subsets of k-spaces
I<i<n

are k-spaces and because the vertical maps and also the horizontal arrow at the bottom (by
[2, Lemma 4.4] and Theorem 3.20) are topological embeddings, hence the map @ is a
topological embedding. [l

Theorem 4.4. For all i € {1,...,n}, let M; be a smooth manifold (possibly with rough
boundary) modelled on a locally convex space E;, F be a locally convex space and «; €
No U {oo}. Let X; = {0} if oy = O, otherwise X; = E;. For j € {2,...,n} define
M=M x---xXMj_{, N.=M; x---xM,, y:=(,...,aj_1) and n = (aj, ..., o)
Assume that N is locally compact or M x N x X1 X X X --- x X,, is a k-space. Then

$: CY"(M x N,F)— C"(M,C"(N, F)), f+> f" (4.0.1)

is an isomorphism of topological vector spaces. Moreover, a map g: M — C"(N, F) is C? if
and only if

g MxN—F, g"x,y)=gx)y)

is Corm,

Proof. By Proposition 4.3, it suffices to show that @ is surjective.
Let g € CY(M,C"(N, F)) and define f :=g": M x N - F, f(x,y) = g(x)(y). For all
ief{l,...,n},let g : Uy, — V, be charts for M;. Then

fo((pl_l ><~-~><g0;1): Vo X o+ x Vg, > F,
(X1s e xn) > (CM7 X x g F)o g o x o x @i ) (xrs o x)

with C"(w;l X x@ 1 F): Ci(N, F) — C"(Vy; %+ x Vo, F), h > ho(<pj*1 X x b
continuous linear. Hence C"((,oj_1 X xg -l F)og o(gpl_1 X - X (pj__ll): Vo X x Vo, | —
C"(Vy; x -+ x Vg, F) is C7. Therefore, by Theorem 3.22, the map f o ((pl’1 X - x @) s
cm,

Locally compact condition. For all [ € {j,...,n}, from the locally compactness of N it
follows then that the open subset Uy, is locally compact and hence also the V. Therefore,
Theorem 3.22 applies.

k-space condition. V, x -+ XV, x X| X X5 X -+ x X, is homeomorphic to the open subset
Ugy X -+ x Uy, x Xi x Xy x---xX, of the k-space M x N x X x X, x --- x X,, and hence
a k-space. Again, Theorem 3.22 applies. [J

Corollary 4.5. Foralli € I .= {1,...,n}, let M; be a smooth manifold (possibly with
rough boundary) modelled on locally convex space E;, F be a locally convex space and
a; € NgU{oo}. For j € {2,...,n} define M =M x---xM;_1, N.=M; x---xM,, y:=
(@i, ...,oj_1) and n = (aj, ..., o). Assume that (1), (2) or (3) is satisfied:

1. Foralli € I, E; is a metrizable.

2. For alli € I, M; is manifold with corners and E; is a hemicompact k-space.

3. Foralli € {j,...,n}, M; is a finite-dimensional manifold with corners.
Then

®: COP(M x N, F) - C"(M,C"(N, F)), [+ f"
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is an isomorphism of topological vector spaces. Moreover, a map g: M — C"(N, F) is C? if
and only if

g MxN—F, g"x,y)=gx)y)

is Crm,

Proof. Case M; ..., M, are finite-dimensional manifolds with corners. Let M; be of dimension
my for all [ € {j, ..., n}. Then each point of M; has an open neighbourhood homeomorphic to
an open subset V; of [0, oo[ ™. Hence V; is locally compact, thus M; is locally compact. Thus
Theorem 4.4 applies.

Case E; is a metrizable. Then for all i € I, all point x; € M; has an open neighbourhood
U; € M; homeomorphic to subset V; € E;. Since V| x --- x V, is metrizable, it follows that
Uy x---xU, x E; x---x E, is metrizable and hence a k-space. Hence by [2, Lemma 4.7]
M) x---x M, x E; x---x E, is a k-space and Theorem 4.4 applies.

Case E, ..., E, are k,-spaces, M; is a manifold with corners. For all x; € M; there is an
open neighbourhood U; € M; homeomorphic to an open subset V; of finite intersections of
closed half-space in E;. Hence V| x---xV, x E| x- - - X E,, is (relatively) open subset of a closed
subset of (E| x - - - x E,)?. Since the product of hemicompact k-spaces is a hemicompact k-space
(see [13, Proposition 4.2(i)]), and hence a k-space, (E; X - - - X E,)?isa k-space and since open
subset (and also closed subset) of k-spaces is k-space, it follows that V| x---xV, X E; x---X E,
is a k-space. Now [2, Lemma 4.7] shows that M| x --- x M, x E| x --- x E, is a k-space,
and thus Theorem 4.4 applies. [

Remark 4.6. The case of manifold with corners and (E; x --- x E,)? is a k-space is proved
along the same lines as (2) in Corollary 4.5.
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