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1. INTRODUCTION 
In fuzzy logic, the basic theory of connective AND ���, 

OR ���, NOT ��� are often modeled as (t-norm �, t-
conorm � and strong negations 	
). The logic connectives 
like conjunction � is interpreted by a triangular norm, 
disjunction � by triangular conorm and negation � by a 
strong negation. see [1], [2] and [3]. 

 Also, the implications are generally performed by 
suitable functions �� ���� � ���� � ����, called 
implication operators, derived from t-norms, t-conorms and 
fuzzy negations.  

For all � and � in ����, the four most usual ways to 
define these implication operators are: see [4]. 

1. ���� �� � ��	���� �� for a given t-conorm � and a 
fuzzy negation 	, called S-Implications; 

2. ���� �� � ����� � ����� ���� �� � �� for a given 
left-continuous t-norm �, called R-Implications; 

3. ���� �� � ��	���� ���� ��  for a given t-norm �, a 
t-conorm � and a fuzzy negation 	, called QL-
Implications; 

4. ���� �� � ����	���� 	��� � �  for a given t-norm �, a t-conorm � and a fuzzy negation 	, that will call 
D-Implication.  

2. PRELIMINARIES 
In this section we will show basic definitions about t-

norms, t-conorms and fuzzy negations. The conjunction � 
in fuzzy logic, it is often modeled as follow: 
Definition 2.1. [5] A function � ! ���� � ���� � ���� is 
a triangular norm (in short, t-norm), if for all �,�,�," ����� the following conditions are satisfied  

(T.1) ���� �� � ���� ��,                   
(T.2) ���� �� � ���� "� if � � � and � � ",  
 (T.3) ���� ���� �� � ������ ��� ��,    
(T.4) ���� �� � �.                        
Besides these properties, some others can be required, 

such as: see [6]. 
(T.5) Continuity: � is continuous in both arguments at 

the same time; 

(T.6) Left-continuity: � is left-continuous in each 
argument; 

(T.7) Idempotency: ���� �� � �, for all � � ����; 
(T.8) Positiveness: if ���� �� � � then either � � � or � � �; 
(T.9) Nilpotency: � is continuous, � � ���� and there 

exists an # � $ such that �%&� � � where �%'� � � 
and �%()*� � �+�� �%(�,.  

Also, disjunction � in fuzzy logic is often modeled as 
follows: 
Definition 2.2. [5] A function � ! ���� � ���� � ���� is 
a triangular conorm (in short, t-conorm), if for all �,�,�," � ���� the following conditions are satisfied  

(S.1) ���� �� � ���� ��,                   
(S.2) ���� �� � ���� "� if � � � and � � ",  
 (S.3) ���� ���� �� � ������ ��� ��,     
(S.4) ���� �� � �.                       
     Additional properties: see [6]. 
(S.5) Continuity: � is continuous in both arguments at 

the same time; 
(S.6) Left-continuity: � is left-continuous in each 

argument; 
(S.7) Idempotency: ���� �� � �, for all � � ����; 
(S.8) Positiveness: if ���� �� � � then either � � � or � � �; 
(S.9) Nilpotency: � is continuous, � � ���� and there 

exists an # � $ such that �-&� � � where �-'� � � 
and �-()*� � �+�� �-(�,.  

Definition 2.3. [7] A function 	 ! ���� � ���� is a 
negation function, iff: 

(1) 	��� � � ,.	��� � �; 
(2) 	��� � 	���, if � / �, 0�� � � ����.  

     A negation function is strict, iff: 
(1) 	��� is continuous; 
(2) 	��� 1 	���, if � 2 �. 0�� � � ����. 

 
 
   A strict negation function is strong or volutive, iff:  	�	��� � �, 0� � ����. 

     A negation function is weak, iff 	 is not strong. 
Example 2.1. [7]  

• The strong negation �	
��� � � 3 ��,  
• Strict negation but not strong �	4��� � � 3 �5�, 
• Weaker negation 6	78��� � 9�.:;.� � ���.:;.� 2 �<=, 

• Strongest negation 6	7>��� � 9�.:;.� 1 ���.:;.� � �<=. 
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Definition 2.4. [8] Let � be a t-norm and � be a t-conorm. 
The functions 	% and 	- from ���� into ���� defined by 	%��� � ����� � ����?���� �� � ��, 0 � � ����, 	-��� � :@;�� � ����?���� �� � ��, 0� � ����, 
are called the natural negation of � and �, respectively.  
     The Law of Excluded Middle (ABC) is one of the well-
known fundamental Boolean laws of classical theory. As 
the ABC, in classical logic, means that �� � � is always 
true, so we have the following definition. see [9]. 
Definition 2.5. [6] Let � be a t-conorm and 	 be a fuzzy 
negation, the pair (�,	) satisfies the ABC if  
                  ��	���� �� � �, � � ����.                  (ABC) 

     Aristotle's law of non-contradiction is defined in 
classical logic as "�� � � is always false". So, its fuzzy 
generalization is defined as follows. see [9]. 
Definition 2.6. [6] Let � be a t-norm and 	 a fuzzy 
negation, the pair (�,	) satisfies the law of contradiction if  
                  ��	���� �� � �, � � ����.                        (1) 

Proposition 2.1. [5] For a t-norm �, t-conorm � and strong 
negation 	 then � is N-dual of  � iff  
             ���� �� � 	���	���� 	�����, 0�� � � ����,     
and � is N-dual of � iff  
       ���� �� � 	 +��	���� 	��� ,, 0�� � � ����.        (2) 
    The standard examples of t-norm are stated in the 
following: �D��� �� � E:@.��� ��,                         (Minimum t-norm) F��� �� � ��,                                          (Product t-norm) 

G��� �� � H�............:;.� � ��.............:;.� � ��.:;.�� � � �����   (Drastic or weak t-norm) 

	��� �� � 9E:@��� ��.:;.� I � / �.........�........:;.� I � 1 �<   (Nilpotent t-norm) A��� �� � EJK�� I � 3 ����,         (Lukasiewicz t-norm) 

L��� �� � M �.:;.� � � � �NON)OPNO .QRSTUV:�T�          (Hamacher t-norm) 

WX��� �� � NOYZ[�N�O�X� � \ � �����<  Dubois-Prade t-norm) 
    The standard examples 	-dual of � (t-conorms) are 
stated in the following: �D��� �� � EJK��� ��,                      (Maximum t-conorm) �]��� �� � � I � 3 ��,       (Probabilistic sum t-conorm) 

�^��� �� � _�........:;.� � ��.......:;.� � ��.QRSTUV:�T�  (Drastic or largest t-conorm) 

 �`��� �� � 9EJK��� ��.:;.� I � 1 ��.................:;.� I � / �� 
           (Nilpotent t-conorm) �a��� �� � E:@�� I �� ��,        (Bounded Sum t-conorm) 

�b��� �� � H .....�.........:;.� � � � �� I � 3 c��� 3 �� .QRSTUV:�T�.. 
�Hamacher t-conorm) 

�7d��� �� � � 3 �� 3 ���� 3 ��EJK�� 3 �� � 3 �� \� � \ � �����< 
                                                     (Dubois-Prade t-
conorm) 

Definition 2.7. [2] 
o � distributes over � if: 
      ���� ���� "� � ������ ��� ���� "� , 0�� �� " � ����. 
o � distributes over � if: 

     ���� ���� "� � ������ ��� ���� "� , 0�� �� " � ����.                  
(3) 

Proposition 2.2. [2] Let � be a t-norm and � a t-conorm. 
(i) � is distributive over � iff � � �D; 

(ii) � is distributive over � iff � � �D; 
(iii) (�,�) is distributive pair iff � � �D and � � �D. 

3. FUZZY IMPLICATIONS 
     Fuzzy implications are play a significant role in many 
fields, being crucial in fuzzy control and approximate 
reasoning see [10].  
     In the following they are four ways to define an 
implication in the Boolean lattice �A����� ��: see [3], [11], 
[12] and [13]. 
(1) � e � f �� � ��                                  (S-Implication) 
(2) � e � f EJK�g � A� � � g � ���         (R-Implication)  
(3) � e � f �� � �� � ���                      (Quantum logic) 
(4) � e � f � � ��� � ����                    (D-Implication) 
where �� � � A.  
Definition 3.1. [7] A function �� ���� � ���� � ���� is 
fuzzy implication if, 0�� �� � � ����, the following 
conditions are satisfied: 
(I1) ������ � ������ � ������ � � and ������ � �. 
(I2) ���� �� / ���� ��.:;.� � �. 
(I3) ���� �� � ���� ��.:;.� � �. 
     The set of all fuzzy implications is denoted by h�. 
     There is also a property that relates fuzzy implications 
and negations: see [6]. 
(I4) Contraposition: ���� �� � ��	���� 	��� , for all �� � � ����. 

The following properties are generalization of fuzzy 
implication from classical logic. 
Definition 3.2. [12] A fuzzy implications � is said to satisfy 
the following most important properties, 0�� �� � � ����. ���� �� � �;    (NP) ���� ���� �� � ���� ���� �� ;    (EP) ���� �� � �;    (IP) ���� �� � � i � � �.      (OP)  
     There are four best-known classes of fuzzy 
implications, ��� 	�, R, QL and D-implication. 
Definition 3.3. [12] A function �� ���� � ���� � ���� is 
called an ��� 	� implication if there exist a fuzzy negation 	 and a t-conorm � such that �-�`��� �� � ��	���� ��, 0�� � � ����. 
Definition 3.4. [12] Let � a left-continuous t-norm. Then, 
the residual implication or R-implication derived from � is 
given by: �%��� �� � ����� � ����� ���� �� � ��, 0�� � � ����. 
Definition 3.5. [10] Let � be a t-norm, � be a t-conorm and 	 be a fuzzy negation. A QL-implication is defined by: �%�-�`��� �� � ��	���� ���� �� , 0�� � � ����. 
     The fourth type of implication, diskant-implication (D-
implication, for short) is the contraposition (I4) of the QL-
implication if 	 is a strong negation  [6].  
     A D-implication is generated from a fuzzy negation, a t-
conorm and a t-norm, getting idea from the equivalency in 
classical binary logic: � e � f � � ��� � ����.for all �� � � ����< 
Definition 3.6. [9] A function �� ���� � ���� � ���� is 
called a D-implication if there exist a t-norm �, a t-conorm �.and a fuzzy negation 	 such that 
              �%�-�`��� �� � ����	���� 	��� � � , 
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for all �� � � ����<                                                           
     A D-implication � generated from a t-conorm �, a fuzzy 
negation 	 and a t-norm � satisfies: 
(1) 0�� �� " � ����� ���� �� / ��"� ��.:;.� � "; 
(2) 0� � ����� ���� �� � �; 
(3) ������ � �; 
(4) 0� � ����� ���� �� � �; 
(5) 0� � ����� 	��� � ���� ��, is a strong fuzzy 

negation 	
. 
Lemma 3.1. [6] Every D-implication satisfies (I1), (I2) and 
(NP). 
Lemma 3.2. [9] If a D-implication �%�-�` � h� or (QL-
implication �%�-�` � h�), then the pair ��� 	� satisfies  
(ABC). 

4. COIMPLICATION 
     Fuzzy coimplications, one of the new connectives used 
in fuzzy logic and fuzzy inference also they are a 
generalization of binary coimplications presented in 
classical logic [14]. In [15], [16] and [17], the concept of 
fuzzy coimplication was introduced as a new approach to 
approximate reasoning of expert systems using the 
equivalence relation for modus ponens of the inference in 
fuzzy expert systems instead of fuzzy implication. The 
algebraic properties of fuzzy ��� 	� co-implications and 
residual coimplications are studied in [17], in order to 
provide a theoretical background for approximate 
reasoning applications. see [18].  
Definition 4.1. [19] A function j� ���� � ���� � ���� is 
a fuzzy co-implication if, 0�� �� � � ����, the following 
conditions are satisfied: 
(J1) j����� � j����� � j����� � � and j����� � �. 
(J2) j��� �� / j��� ��.:;.� � �. 
(J3) j��� �� � j��� ��.:;.� � �.  
     The set of all fuzzy co-implication is denoted by kl 3h�. From the previous definition we can deduce that for 
each fuzzy co-implication j��� �� � j��� �� � �, 0�� � �����. Moreover, j satisfies also the normality condition j��� �� � �. 
     There is also a property that relates fuzzy co-
implications and negations:  
(J4) Contraposition: j��� �� � j�	���� 	��� , for all �� � � ����. 
Remark 4.1. [19] Directly from Definition 4.1. we see that 
each fuzzy co-implication j.satisfies the following left and 
right boundary conditions, respectively:  j.��� �� .� .�, � � . �� ��,                                       (Co-LB) j.��� �� .� .�,  � � . �� ��.                                      (Co-RB) 
     Therefore, j satisfies also the normality condition: j.��� �� .� .�.                                                         (Co-NC) 
Lemma 4.1. [17] If a function j� ���� � ���� � ���� 
satisfies (J1) and (J2) then the function 	m� ���� � ���� 
defined by  	m��� � j��� ��, 0� � ����, 
is a fuzzy negation. 

 The following properties are generalization of fuzzy 
co-implication from classical logic. 
Definition 4.2. [12] A fuzzy co-implications j is said to 
satisfy the following most important properties, 0�� �� � �����. j��� �� � �;                                                       (Co-NP) 

j��� �� � �;                                                       (Co-IP) j��� j��� �� � j��� j��� �� ;                             (Co-EP) j��� �� � � i � / �<                                       (Co-OP) 
     In 2016, Jebril, I. used the idea of the function of fuzzy 
co-implication by introducing the definition of (�,	) and 
residual co-implication. 
Definition 4.3. [17] A function j� ���� � ���� � ���� is 
called a (�,	) co-implication if there exists a t-norm � and 
a fuzzy negation 	 such that 
             j%�`��� �� � ���� 	��� , 0�� � � ����.            (4) 
     Proposition below states how an (�,	) implication gives 
rise to a fuzzy (�,	) co-implication and vice-versa. 
Proposition 4.1. [17] A function j%�` from ����5 into ���� 
is a (�,	) co-implication with strong negation iff  
                   j%�`��� �� � 	 +�-�`��� ��,,                         (5) 
for some �-�` and fuzzy (strong) negation 	. 
     Conversely, .�-�` from ����5 into ���� is an (�,	) 
implication with strong negation iff 
                 �-�`��� �� � 	 +j%�`��� ��,,                            
for some j%�` and fuzzy (strong) negation 	. 
Theorem 4.1. [17] All (�,	) co-implication are fuzzy 
implications satisfy (Co-NP) and (Co-EP). 
Definition 4.4. [17] Let � is the t-conorm of right 
continuous �. Then, the residual co-implication (no-
implication) derived from �, is j-��� �� � :@;�� � ����� ���� �� / ��, 0�� � � ����. 
     Then in 2017, Ghoneim, H. and Jebril, I. studied the 
class of QL-coimplications under certain conditions in 
crisp logic and fuzzy logic in [20].  
Definition 4.5. [20] A function j� ���� � ���� � ���� is 
called a QL-coimplication if there exists a t-norm �, t-
conorm � and a fuzzy negation 	 such that: j%�-�`��� �� � ������ ��� 	��� , 0�� � � ����. 

5. Main Results 
     In this paper we will study the fourth type of fuzzy co-
implications, which is called D-coimplication. Fuzzy co-
implications are extensions of the Boolean co-implication �� p �� meaning that � is not necessary for �  [21]. In 
classical logic, the operator `q' is generated by Boolean 
negation ‘¬’, conjunction ‘�’ and disjunction ‘�’, � q � f ��� � ��� � �<. 
     In the following table 1, we can see the truth table for 
the classical co-implication. 

Table 1 � � � e � �� � �� ��� � ��� � � � q �
0 0 1 1 0 0 
0 1 1 1 1 1 
1 0 0 1 0 0 
1 1 1 0 0 0 

 
5.1 D-coimplication  
     In this section we will introduce the definition of D-
coimplication and some characteristics of D-coimplication. 
Definition 5.1. A function j� ���� � ���� � ���� is called 
a D-coimplication if there exists a t-norm �, a t-conorm �.and fuzzy negation 	.such that  j%�-�`��� �� � ����	���� 	��� � � , for all �� � � ����< 
Lemma 5.1. Every D-coimplication satisfies (J1), (J2), 
(Co-RB) and (Co-NP). 
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Proof. Let j%�-�` be a D-coimplication, so j%�-�` satisfies 
(J1) since: j%�-�`����� � j%�-�`����� � j%�-�`����� � �, 
and j%�-�`����� � ��������� �� � ������ � �.  
     Now, assume that �*� �5� � � ���� and �* � �5. Then, 	��*� / 	��5�. e.��	��*�� 	��� / ��	��5�� 	���  e����	��*�� 	��� � � / ....����	��5�� 	��� � �  e..j%�-�`��*� �� / j%�-�`��5� ��<  
     Hence j%�-�` satisfies (J2). 

Let j%�-�` be a D-coimplication, for all � � ����. j%�-�`��� �� � ����	���� 	��� � � � �, by (T.8). 
     Then j%�-�` satisfies (Co-RB). 
     For any � � ����, j%�-�`��� �� � ����	���� 	��� � � � ������ 	��� � � �  
and ���� 	��� � � (by the ordering on all t-conorms). 
Since ���� �� � �, so j%�-�`��� �� � �. Hence j%�-�` 
satisfies (Co-NP).  
Remark 5.1. Given any D-coimplication j%�-�` it is 
trivially satisfied that j%�-�`��� �� � 	���. Thus, if any D -
coimplication satisfies the (Co-EP) then it also satisfies 
(J4), since  j%�-�`�	���� 	��� � j%�-�`�	���� j%�-�`��� ��  

                          � j%�-�`��� j%�-�`�	���� ��  
                          � j%�-�`��� ��. 

Theorem 5.1. For t-norm.�, t-conorm � and a fuzzy 
negation 	, Then  j%�-�`��� �� � �� 0� � ����� 
if and only if  ����	���� 	��� � � � �� 0� � ����< 
Proof. If j%�-�`��� �� � �� 0� � ����, then  ����	���� 	��� � � � j%�-�`��� �� � �� 0� � ����< 
     Conversely, if ����	���� 	��� � � � �� 0� � ����, 
then  j%�-�`��� �� � .����	���� 	��� � � � �� 0� � ����< 
Theorem 5.2. For a left continuous t-norm �, continuous 
t-conorm � and a continuous fuzzy negation 	, then  j%�-�`��� �� � �� 0� � ����� 
if and only if  	��� � 	%���� 0� � ����< 
Proof. Let � is a left continuous t-norm, �. continuous t-
conorm and a 	 continuous fuzzy negation, by [ [17], 
proposition 5.2.] 	%��� � EJK.�� � ����� ���� �� � ��� 0� � ����<    
     Then j%�-�`r��� �� � ����	%���� 	%��� � � � �< 
     By increasing of �� � and if   	��� � 	%���� then ����	���� 	��� � � � �< 
     Conversely, let j%�-�`��� �� � �� 0� � ����� then ����	���� 	��� � � � �� 0� � ����� 
and if ��	���� 	��� � 	��� � �� � ����� ���� �� � ��� 
then 	��� � EJK�� � ����� ���� �� � �� � 	%���< 
     A relation between fuzzy negations and D-
coimplication is given in the next proposition. 
Proposition 5.1. Let j%�-�` be a D-coimplication, then 	mr�s�t � 	. 
Proof. For any � � ���� we have  	mr�s�t��� � j%�-�`��� �� � ����	����	��� � �  

                 � ����	���� ��� �� � ��	���� �� � 	���. 
 
5.2 Equivalences between D-coimplication and fuzzy 
coimplication classes 
     Now we will study the equivalences between D-
coimplication and fuzzy coimplication classes. 
Proposition 5.2. Let � be a t-norm, � a t-conorm and 	 a 
fuzzy negation. If j%�-�` is a fuzzy co-implication, then the j%�` satisfies (1). 
Proof. If j%�-�` is a fuzzy coimplication, then by Remark 
4.1. it satisfies (Co-LB). Thus j%�-�`��� �� � � if and only 
if ����	���� 	��� � � � �, i.e., ��	���� �� � �, for 
every � � ���� as well as for a j%�-�`, to be a co-
implication. That means the j%�` satisfies (1).  
Theorem 5.3. Let � be a t-norm, � a t-conorm and 	 a 
strong negation. A D-coimplication j%�-�` satisfies (Co-EP) 
if and only if it is also a (�,	) co-implication. 
Proof. u: Let  j%�-�` satisfies (Co-EP), it also satisfies (J4) 
by Remark 5.1. and then by Definition 2.7. and Proposition 
2.2.  for all �� � � ����. j%�-�`��� �� � j%�-�`�	���� 	���   

  � ������ ��� 	���  
  � ����	���� ��� ��	���� ��  
  � ���� ��	���� ��  
  � ���� 	���  
  � j%�`��� ��. v: Let D-coimplication is a (�,	) co-implication 0�� �� � � ����. i.e., j%�-�`��� �� � j%�`��� ��. j%�-�`��� j%�-�`��� �� � j%�` +�� j%�`��� ��, 

                                      �... j%�` +�� j%�`��� ��,, 
from Theorem 4.1. j%�` satisfy (Co-EP). Then  j%�-�`��� j%�-�`��� �� � j%�-�`��� j%�-�`��� �� . 
Proposition 5.3. Let �.be a t-norm, � a t-conorm and 	.a 
strong negation such that the corresponding j%�-�` 
(equivalently the j%�-�`) is a co-implication. The following 
statements are equivalent: 

(i) j%�-�` satisfies the (Co-EP). 
(ii) j%�-�` satisfies the (Co-EP). 

(iii) j%�-�` is a ��� 	� co-implication. 
(iv) j%�-�` is a ��� 	� co-implication. 
(v) There exists a t-norm �* such that ����	���� 	��� � � � �*��� 	��� � 

          .;QU.Jww.�� � � . �� ��.                                              (6)            
Proof. Let us prove only the equivalence among (i), (iii) 
and (v) since the equivalence among (ii), (iv) and (v) 
follows similarly. 

• (i) u (iii) If j%�-�` satisfies (Co-EP), it also satisfies (J4) 
by Remark 5.1 and then, by Theorem 5.3., j%�-�` is a ��� 	� 
co-implication. 

• (iii) u (v) If j%�-�` is a ��� 	� co-implication, there exist a 
t-norm �* and strong negation 	* such that  j%�-�`��� �� � ����	���� 	��� � � � �*��� 	*���  , 
for all �� � � ����< 
     But taking � � � in the above equation we obtain 	��� � 	*��� for all � � ���� and consequently equation 
(6) follows. 

• (v) u (i) If equation (6) is satisfied, j%�-�` is in fact a ��� 	� 
co-implication and so it satisfies (Co-EP). 
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Lemma 5.2. Given a D-coimplication j%�-�`and a (�,	) co-
implication j%�`. If � � �D and j%�` satisfies (1), then j%�-�` � j%�`. 
Proof. By proposition 2.2 (ii),.� � �D iff (�,�) satisfy (3). 
So, for all �� � � ����: j%�-�`��� �� � ����	���� 	��� � �  
                   � � +�� ��	���� 	��� ,              by (T.1) 

                   � � +���� 	��� � ���� 	��� ,     by (3) 
                   � ������ 	��� � �        by (S.4) and (4) 
                   � ����	���  =j%�`��� ��. 
Theorem 5.4. Given a QL-coimplication j%�-�`, a D-
coimplication j%�-�` and a (�,	) co-implication j%�`. If � ��D and j%�` satisfies (1), then j%�-�` � j%�` � j%�-�`. 
Proof. By proposition 2.2 (ii),.� � �D iff (�,�) satisfies 
(3). So, for all �� � � ����: j%�-�`��� �� � ������ ��� 	���  
                   � ��	���� ���� ��                     by (T.1) 
                   � ����	���� ��� ��	���� ��      by (3) 
                   � ���� ��	���� ��      by (S.4) and (S.1) 
                   � ��	���� �� 
                   � ����	���               by (4) 
                   =j%�`��� ��.                                                   (7� 
     Straightforward from Lemmas 5.2. and relationship (7). 
     If we assume that 	 is a fuzzy negation, then we get 
another result relating (�,	)-, QL- and D-coimplications.  
Proposition 5.4. Let.� be a t-norm, � be the t-conorm 
maximum and 	 be a fuzzy negation and given a QL-
coimplication j%�-�`, a D-coimplication j%�-�` and a (�,	) 
co-implication j%�`. If j%�-�` and j%�` satisfy kl 3 h�, then 
the corresponding QL- and D-coimplication coincide and 
are given by: 

j%�-�`��� �� � j%�-�`��� �� � M ��...................:;.� / ����� 	��� � QRSTUV:�T< 
Proof. Let j%�-�`, j%�-�` be a D-coimplication and QL-
coimplication, respectively. 
     Not that when � / � e 	��� � 	���, we have  j%�-�`��� �� � ��EJK�	���� 	��� � �  

            � ��	���� �� � ��  by (Proposition 5.2). 
and  j%�-�`.��� �� � ��EJK��� ��� 	���� � ���� 	��� � �. 
     Similarly, when � 1 �, j%�-�`��� �� � ��EJK�	���� 	��� � � � ��	���� �� 

      � ��EJK��� ��� 	���� � j%�-�`.��� ��. 
Remark 5.2. If 	 is strong negation and � is a t-conorm, 
then ��� 	� co-implication be come �	� �� co-implication 
such that:  
      j`�-��� �� � 	���	���� �� , 0�� � � ����.             (8) 
     The (	� �) co-implication generated by a t-conorm � 
and a fuzzy negation 	 is denoted by j`�-.  
Lemma 5.3. For t-conorm � and a fuzzy strong negation 	, then j`�- � kl 3 h�. 
Proof. Let �� �� � � ����. 
J 1: j`�-����� � j`�-����� � j`�-����� � �, and 
 j`�-����� � 	���	���� �� � 	������� � 	��� � �. 
J 2: Now, assume that � � � e ��	���� �� � ��	���� �� 

                                   e.	���	���� �� / 	���	���� ��  
                                   e j`�-��� �� / j`�-��� ��. 
 J 3: Assume that � � � e 	��� / 	��� 
                                   e ��	���� �� / ��	���� �� 
                                   e 	���	���� �� � 	���	���� ��  
                                   e j`�-��� �� � j`�-��� ��. 
Lemma 5.4. A (	,�) co-implication j`�- satisfies (Co-NP), 
if 	 is a strong negation. 
Proof. Since 	 is a strong negation, j`�-��� �� � 	���	���� �� � 	�	��� � �. 
Theorem 5.5. Given a D-coimplicatiom j%�-�`, a (�,	) co-
implication j%�` and a QL-coimplication j%�-�`. If � � �D, 	 is strong, � is 	-dual of � and j%�` satisfies (1). Then j%�-�` � j%�` � j%�-�` � j`�-. 
Proof. Assume that 	 is a strong negation, for all �� � ����� i j%�`��� �� � j`�-��� ��      i ���� 	��� � 	���	���� ��     by (5) and (8) i ���� 	��� � 	 6� +	���� 	�	��� ,= by (2) 

Then j%�` � j`�- iff � is 	-dual of �.                              (9) 
     Straightforward from (9) and Theorem 5.4. the proof 
has been completed. 
Proposition 5.5. Let 	 be a strong negation and, given a 
D-coimplication j%�-�` and a QL-coimplication j%�-�`. If j%�-�` or j%�-�` satisfies the contraposition (J4), then j%�-�` �j%�-�`.  
Proof. Assume that 	 is a strong negation, 0�� � � ����. 
Let j%�-�` satisfies the contraposition (J4), then  j%�-�`��� �� � j%�-�`�	���� 	��� � ������ ��� 	���  

       � ������ ��� 	��� � j%�-�`��� ��. 
5.3 Examples 
     To confirm what we have studied in this paper, we will 
mention some examples of D-coimplications. 
Example 5.1. For a t-norm �D and t-conorm �D and a 
strong fuzzy negation 	
 then D-coimplication j%x�-x�`y 
given by j%x�-x�`y��� �� � �D��D�	
���� 	
��� � �  
                         � E:@�EJK�� 3 �� � 3 ��� ��. 
 

 �%x�-x�`y��� �� 

 j%x�-x�`y��� �� and �%x�-x�`y��� �� j%x�-x�`y��� �� 
Fig. 5.1. 

Example 5.2. For a t-norm F and t-conorm �] and a strong 
fuzzy negation 	
 then D-coimplication j]�-z�`y given by j]�-z�`y��� �� � F��]�	
���� 	
��� � �  
                         � F�3� 3 ��� �� 
                         � ��� 3 ���. 
Example 5.3. For a t-norm A and t-conorm �a and a strong 
fuzzy negation 	
 then D-coimplication ja�-{�`y given by 
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ja�-{�`y��� �� � A��a�	
���� 	
��� � �   
                      � EJK�E:@�c 3 � 3 �� �� I � 3 ����. 
Example 5.4. For a t-norm �D and t-conorm �` and a 
strong fuzzy negation 	
 then D-coimplication j%x�-t�`y 
given by j%x�-t�`y��� �� � �D��`�	
���� 	
��� � �  

         � �D 69EJK�� 3 �� � 3 ��.:;.� 3 � I � 3 � 1 ��.................................:;.� 3 � I � 3 � / � � �= 

         � E:@ 69EJK�� 3 �� � 3 ��.:;.� I � 2 ��.................................:;.� I � � � � �=. 

Example 5.5. For a t-norm �D and t-conorm �D and a strict 
negation but not strong 	4 then D-coimplication j%x�-x�`| 
given by j%x�-x�`|��� �� � �D��D�	4���� 	4��� � �  
   � E:@�EJK�� 3 �5� � 3 �5�� ��. 
Conclusion  
     In this paper we have introduced the fourth usual model 
of fuzzy co-implication that is D-coimplication then we 
studied the equivalences between D-coimplication and 
fuzzy coimplications classes. Through this paper we noted 
it generally, D-coimplication is defined from non strong 
negations, that means it is not contraposition of QL-
coimplication.   
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