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Abstract
In this paper, an algorithm for computing a poly-

nomial control and a polynomial Lyapunov function in
the simplicial Bernstein form is developed. This en-
sures asymptotic stability of the designed feedback sys-
tem. To this end, we provide certificates of positivity
for polynomials in the simplicial Bernstein form. Sub-
sequently, the state space is partitioned into simplices.
On each simplex, we simultaneously compute Lyapunov
and control functions. With this control, the equilibrium
is asymptotically stable.

Keywords: Bernstein polynomial, inclusion iso-
tonicity, certificates of positivity, control design, stabil-
ity.

1. Introduction

We consider the stability verification of polynomi-
als with coefficients depending polynomially on param-
eters varying in a union of simplices. A fundamental
problem in computer-aided design is the efficient com-
putation of solutions of a system of nonlinear polyno-
mial equations on bounded domains. This computation
provides the theoretical foundation for analysis and de-
sign of polynomial control systems, i.e., control systems
with polynomial vector fields. Bounding of the solu-
tion set of systems of polynomial equations provides
general certificates of positivity over a given domain.
Computing such bounds for the range (minimum and
maximum) of values of a polynomial over intervals has
received a good deal of attention in the past [1–4]. Sher-
brooke and Patrikalakis [5] have developed a method
for solving systems in high dimensions within an n-
dimensional rectangular domain, relying on the repre-
sentation of polynomials in the tensor product Bern-
stein basis. A method for solving systems within an
n-dimensional simplex, which relies on the represen-
tation of polynomials in the barycentric Bernstein ba-

sis is given in [6]. The range of polynomial functions
is bounded by the smallest and the largest (enclosure
bound) Bernstein coefficients over a simplex. An ef-
ficient algorithm for computing Bernstein coefficients
of arbitrary polynomials has been proposed in [7]. The
inclusion isotonicity of the related tensorial enclosure
function over boxes has been shown in [8–10]. This
property, in the simplicial case, states that the enclosure
bound over a subsimplex is contained within the enclo-
sure bound over the whole simplex. In this paper, we
show that the inclusion isotonicity in the simplicial case
is also obtained if the barycentric subdivision strategy is
applied for simplices. This improves the certificates of
positivity, where the stability of the designed feedback
system has been translated to certificates of positivity.

On the other hand, computing a Lyapunov function
of polynomial vector fields has also attracted the inter-
est of many researchers in the past [11–15]. The way to
compute a Lyapunov function for a polynomial system
is to provide a certificate of positivity. A certificate of
positivity [16] in the Bernstein basis always exists if a
polynomial is positive, and the degree of the Bernstein
form is sufficiently large or the cells in the state-space
partition are sufficiently small. The inclusion isotonic-
ity property improved the certificate of positivity under
subdivision. Specifically, we apply the barycentric sub-
division strategy to provide a local certificate of posi-
tivity for a Lyapunov function in the Bernstein basis.
Subsequently, we provide an algorithm that estimates a
polynomial control and a polynomial Lyapunov func-
tion in a finite number of computations of enclosure
bounds.

The organization of our paper is as follows: In the
next section, we briefly recall the simplicial polynomial
Bernstein form and its basic properties. In Section 3,
the inclusion isotonicity of the barycentric polynomial
Bernstein form is shown. The simplicial Lyapunov sta-
bility is addressed in Section 4. Finally, Section 5 com-
prises conclusions.



2. Bernstein Expansion

For completeness of the exposition, we introduce
some notation and essential background about the sim-
plicial Bernstein basis. Throughout the paper, V =
[σ0, . . . ,σn] will denote a non-degenerate simplex of
Rn, i.e., the points σ0, . . . ,σn are affinely independent.
Let λ0, . . . ,λn be the associated barycentric coordinates
of V . In other words, they are linear polynomials
of R[X ] = R[X1, . . . ,Xn] such that ∑

n
i=0 λi(x) = 1 and

∀x ∈ Rn, x = λ0(x)σ0 + · · ·+λn(x)σn. The realization
|V | of the simplex V is the subset of Rn defined as the
convex hull of the points σ0, ...,σn. Without loss of
generality, we can assume that V is the standard sim-
plex ∆ = [e0,e1, . . . ,en], where (e1, . . . ,en) denotes the
canonical basis of Rn, and e0 =(0, ...,0) the origin. This
is not a restriction since any simplex V in Rn can be
mapped affinely upon ∆.

Specifically, if x = (x1, ...,xn)∈ ∆, then λ0, ...,λn =
(1−∑

n
i=1 xi,x1, ...,xn). We refer to the multi-index α =

(α0, . . . ,αn) ∈ Nn+1 and |α|= α0 + · · ·+αn. For β̂ =

(β1, ...,βn), α̂ = (α1, ...,αn) with β̂ ≤ α̂ (component-
wise), we define(

α̂

β̂

)
:=

(
α1

β1

)
...

(
αn

βn

)
.

If k is a natural number such that |β̂ | ≤ k, we use
the notation

(k
β̂

)
:= k!

β1!...βn!(k−|β̂ |)!
. The Bernstein poly-

nomials of degree k with respect to ∆ are the polynomi-
als (B(k)

α )|α|=k, where

B(k)
α (λ ) =

(
k
α

)
λ

α . (1)

For x ∈Rn its multi-powers are xβ̂ := ∏
n
i=1 xβi

i . Let
f be a polynomial function of degree l,

f (x) = ∑
|β̂ |≤l

a
β̂

xβ̂ , (2)

f can be uniquely expresses for l ≤ k as

f (x) = ∑
|α|=k

bα( f ,k,∆)B(k)
α , (3)

where bα( f ,k,∆) are called the Bernstein coefficients
of f of degree k with respect to ∆ given as

bα( f ,k,∆) = ∑
β̂≤α̂

(
α̂

β̂

)(k
β̂

)a
β̂
. (4)

The grid points of degree k associated to ∆ are the
points

σα(k,∆) =
α0e0 + · · ·+αnen

k
∈ Rn (|α|= k), (5)

whereas, the control points associated to f are

(σα(k,∆), bα( f ,k,∆)) ∈ Rn+1 (|α|= k).

The set of control points of f forms its control net of
degree k.

3. Inclusion Isotonicity

The key to finding a Lyapunov function for a poly-
nomial system is to find a certificate of positivity, where
the inclusion isotonicity, defined below, allows local
certificates of positivity under subdivision. In this sec-
tion, we prove that the barycentric Bernstein form is in-
clusion isotone, a property which is of fundamental im-
portance in interval computations [17, Section 1.4]. We
define the set of real intervals I(R). An interval func-
tion F : I(R)n −→ I(R) is called inclusion isotone, if,
for all X ,Y ∈ I(R)n, X ⊆ Y implies F(X)⊆ F(Y ).

The graph of a polynomial f over ∆ is contained
in the convex hull of its associated control points. This
implies the range enclosing property [2]

min
|α|=k

bα( f ,k,∆)≤ f (x)≤ max
|α|=k

bα( f ,k,∆), x ∈ ∆. (6)

It follows that the interval (enclosure bound)

B( f ,k,∆) := [minbα( f ,k,∆),maxbα( f ,k,∆)]

encloses the range of f of degree l ≤ k over ∆. As-
sume that W = (w0, ...,wn) is a subsimplex extracted
from ∆ by the barycentric subdivision. We prove that
B( f ,k,W ) is contained in B( f ,k,∆). We apply the
barycentric subdivision strategy [6], which is a particu-
lar way of dividing ∆ at a point into subsimplices.

We aim at computing the Bernstein coefficients
over W as convex combinations of the Bernstein coeffi-
cients over ∆. In order to do so, we compute the Bern-
stein coefficients in a particular coordinate direction, r
say, since the de Casteljau algorithm [18] computes the
coefficients in all coordinate directions. The barycentric
subdivision strategy supposes subdivision at an edge or
a non-edge point with respect to |∆|.

If we subdivide ∆ at an edge point wr ∈ Rn, then
∆ will be subdivided into two subsimplices constructed
from ∆ at λi(wr),λi+1(wr), and we call them the con-
structed subsimplices. Otherwise (non-edge point), ∆

can be subdivided into ≤ n+ 1 (constructed) subsim-
plices, Figure 1. It is sufficient to show that the inclu-
sion isotonicity holds if we compute the coefficients in
rth coordinate direction, 0 < λr(wr) < 1, with respect
to the constructed simplices.

Let for some r ∈ {0, ...,n}, 0 < λr(wr) < 1, then
for all i, i 6= r, we have 1 > λi(wr) ≥ 0. The following



algorithm computes the Bernstein coefficients in rth
coordinate direction to extract a new subsimplex W ,
where the barycentric subdivision is applied.

Algorithm 1: Bernstein coefficients over sub-
simplices

Input : Simplices W [wr ] and ∆ with W [wr ]

contained in ∆, and the Bernstein
coefficients on ∆.

Output: The Bernstein coefficients on W [wr ] as
convex combination of the ones on ∆ .

1 Initialization: ∀|α|= k, b(0)α := bα( f ,k,∆).
2 Choose: r ∈ {0, ...,n}, r 6= i0, 1 > λr(wr)> 0.
3 for d = 1, ...,k do
4 for |α|= k−d do
5 if λr +λi0 = 1 then

b(d)α = λrb
(d−1)
α+er +(1−λr)b

(d−1)
α+er+1

6 else

b(d)α = λ0b(d−1)
α+e0

+ ...+λrb
(d−1)
α+er + ...+λnb(d−1)

α+en

7 end if
8 end for
9 end for

10 return bα( f ,k,W [wr ]) = b(αr)

α [r]

(|α|= k, α
[r] := (α0, ...,αr−1,0,αr+1, ...,αn)).

Theorem 3.1. Let W be a subsimplex of ∆, which is
extracted by the barycentric subdivision strategy. Then

Bα( f ,k,W )⊆ Bα( f ,k,∆).

Proof. Let W [wr ] be the constructed subsimplex
from ∆ at λr(wr), by subdivision at wr, r ∈ {0, ...,n}.
We proceed to extract a subsimplex W into rth coordi-
nate direction and return to Algorithm 1 at all wr (full
algorithm). Let (for simplicity) r = 0, then we extract
at λ0(w0)

W [w0] = [w0,e1, ...,en].

By Algorithm 1, the Bernstein coefficients on W [w0] are
convex combinations of the coefficients on ∆.

Repeatedly splitting at the remaining wr, r =
1, ...,n, with respect to the constructed simplices, then
we will have finally at wn, the Bernstein coefficients on

W [wn] = [w0, ...,wn]

as convex combinations of the coefficients on W [wn−1],
which completes the proof. �

Figure 1. Subsimplices are constructed by
subdivision steps at edge points (colored red)
and a non edge point (colored blue).

Corollary 1. The union of enclosure bounds of f over
W [i], i = 0, ...,n, is contained in B( f ,k,∆).

Example 3.1. The polynomial f = 5x2 − 2x + 1 is
positive on the simplex ∆ = [−1,1] but b( f ,2,∆) =
(8,−4,4). However, by the first binary splitting
of ∆, the certificate of positivity of f follows since
b( f ,2, [−1,0]) = (8,2,1) and b( f ,2, [0,1]) = (1,0,4).

The following lemma computes the (Complexity)
number of Bernstein coefficients and the computation
steps needed to perform one call to Algorithm 1, see [6].

Lemma 3.2. Let η denotes the number of barycentric
coordinates associated to ∆, 2≤ η ≤ n+1. The number
of multiplication steps needed to perform one call to
Algorithm 1 at w ∈ Rn with respect to ∆ is

η(k+n)!
(k−1)!(n+1)!

.

Proof. The number of Bernstein coefficients de-
scribing an n-dimensions simplicial Bernstein polyno-
mial of degree k is:

S(k,n) :=
(

k+n
n

)
=

(k+n)!
k!n!

.

Therefore the total number of the calculated Bernstein
coefficients in one call to Algorithm 1 is

D(t,n) :=
k−1

∑
t=0

S(t,n) =
(

k+n
k−1

)
=

(k+n)!
(k−1)!(n+1)!

,

from which the statement follows. �

4. Lyapunov Stability Analysis

In this section, we devise an algorithm for control
synthesis. We suppose that all vector fields are polyno-
mials defined on a union of simplices, ∆ = W [0] ∪ ...∪



W [n]. To this end, we use the representation of the given
control system in the (barycentric) Bernstein basis. The
affine control system is given by

ẋ = Fu(x) := p(x)+g(x)u(x), (7)

where the vector field Fu : Rn −→ Rn is defined by the
drift p :Rn−→Rn and u :Rn−→Rm is the control with
the input matrix function g : Rn −→ Rn×m.

We will represent all polynomials in the Bernstein
form. We follow the definition of asymptotic and stabil-
ity and call v satisfying the conditions of Definition 4.1
a Lyapunov function for Fu.

Definition 4.1. Let x0 be an equilibrium point for (7)
and let A ⊆ Rn be a collection of simplices containing
the interior point x0. Let v : A −→ R be a continuously
differentiable function such that v(x0) = 0,

v(x)> 0, ∀x ∈ A\{x0},

LFu(v)(x) =
∂v
∂x

(x)Fu(x)< 0, ∀x ∈ A\{x0},

where L denotes the Lie derivative. Then v will be
called a Lyapunov function for Fu.

Specifically, if there exist a Lyapunov function for
Fu, then x0 is an asymptoticly stable equilibrium of the
system Fu.

Remark 4.1. By application of the first interior subdi-
vision step of ∆ at x0, we will have ∆ =W [0]∪ ...∪W [n],
such that from Section 3, for all i ∈ {0, ...,n},

c f := min
|α|=k

bα( f ,k,∆)≤ min
|α|=k

bα( f ,k,W [i])≤ f (x)

≤max
|α|=k

bα( f ,k,W [i])≤max
|α|=k

bα( f ,k,∆)=: c f , ∀x∈W [i].

Suppose the candidate Lyapunov function v is a
positive polynomial expressed in the power form (2) of
degree l, where v(x0) = 0. Without loss of generality,
we assume that x0 = e0.

Remark 4.2. By the Bernstein theorem (cf. Remark
4.1), there exists k ≥ l such that bα(v,k,W [i]) are posi-
tive for all |α|= k if and only if v of degree l is positive.

4.1. Controller Bounding Functions

We provide a subdivision strategy of a simplex to
compute a pair (u,v) of polynomial functions such that
v is a Lyapunov function for Fu. If there exists such
a pair (u,v), we will briefly say that there exists a sta-
bilizing control. Specifically, the enclosure bounds of
initial control and a candidate Lyapunov function are

recursively shrinked until the bounds for Bernstein co-
efficients of u and v are computed.

The number of Bernstein coefficients of any
n−dimensional polynomial is N :=

(k+n
k

)
. The Bern-

stein form of v of degree l ≤ k over W ∈ {W [0], ...,W [n]}
is given as

v = ∑
|α|=k

bα(v,k,W )B(k)
α ,

where bα(v,k,∆) = 0 if |α̂| = 0, α0 = k. Therefore, as
given by Farouki and Rajan [19]

v′i :=
∂v
∂xi

(x) = ∑
|α|=k

bα(v,k,W )
∂B(k)

α

∂xi
(x)

= ∑
|α|=k−1

k(bα+ei −bα)B
(k−1)
α (x), (8)

from which the Bernstein coefficients of v′i are linear
combinations of the coefficients of v.

Define a sub-bound of any [b,b] by [bε1
,bε2 ], where

bε1
= b+(b−b)ε1, 0≤ ε1 ≤ 1, (9)

and
bε2 = b− (b−b)ε2, 0≤ ε2 ≤ 1. (10)

Define L[b,b] = [bε1
,b] and R[b,b] = [b,bε2 ]. Denote

by H∗ the set of all finite strings of compositions of el-
ements of H = {L,R}. For example, the string LR ∈H∗

is the composition L◦R[b,b] = [bε1
,bε2 ].

Theorem 4.1. Let {bα ,
N· · ·,bα} ⊂ R+ and b j,b j ∈ R,

j = 1, ...,m, be real numbers. Suppose there exist a
stabilizing polynomial control function. Then, for any
0 ≤ ε1,ε2 ≤ 0, there exit strings Sα ,Tj ∈ H∗, |α| = k,
j ∈ {1, ...,m}, and a pair (u,v) such that v is a Lya-
punov function for Fu results Bernstein coefficients of v
and u bounded as

bα(v,k,W ) ∈ Sα [0,bα ] and bα(u j,k,W ) ∈ Tj[b j,b j].

Proof. Let {bα ,
N· · ·,bα} ⊂ R+ and b j,b j ∈ R,

j = 1, ...,m. Suppose bα(v,k,W ) = bα for all |α| = k,
α0 6= k, and bα(v,k,W ) = 0 for α0 = k. Let (case 1)
bα(u j,k,W ) = b j for all |α| = k, and we denote this
control by u j(x). The polynomial LFu(v)(x) can be re-
arranged as

LFu(v)(x) =
n

∑
i=1

v′i(x)pi(x)+u1(x)
n

∑
i=1

v′i(x)gi1(x)+ ...

+um(x)
n

∑
i=1

v′i(x)gim(x). (11)



Hence, we can compute (by Remark 4.1)

E1 :=
n

∑
i=1

cv′i pi +
n

∑
i=1

cv′igi1u1 + ...+
m

∑
i=1

cv′igimum . (12)

Now, we let (case 2) bα(u j,k,W ) = b j for all |α|=
k, and we denote this control by u(x). Then compute
the upper bound

E2 :=
n

∑
i=1

cv′i pi +
n

∑
i=1

cv′igi1u1 + ...+
m

∑
i=1

cv′igimum . (13)

Let E1 and E2 are negative, then by Remark 4.1, we can
estimate (in case 1)

LFu(v)(x)≤ E1, ∀x ∈W −{e0}, (14)

and (in case 2) LFu(v)(x) ≤ E2, and (u,v) have Bern-
stein coefficients within [0,bα ]

N and [b j,b j], j =

1, ...,m, ε1 = ε2 = 0. Otherwise, suppose E2 is non-
negative. Here, we let H∗ be the set of all finite strings
of compositions of elements of H = {L,R}. We give the
proof in case H = R, the proof of the other cases analo-
gous. So, we apply the shrinking method (10) to [0,bα ]
and [b j,b j], for a fixed ε2, and compute Rα [0,bα ] and
R j[b j,b j], see Figure 2. This ensures the negativity of
a new E∗2 with Rα [0,bα ] and R j[b j,b j]. Finally, by (14)
and Remark 4.1, the Bernstein coefficients of (u,v) are
contained within the shrinked bounds. �

Figure 2. Srinking Bounds of u (colored green)
and v (colored blue).

Example 4.1. Let

ẋ1 =−x3
1, ẋ2 =−x1− x2

2 +u

be of degree l = 3 over V = W [0] ∪W [1] ∪W [2] ∪
W [3], where W [0] = (e0,(−1,−1),(1,−1)), W [1] =
(e0,(1,−1),(1,1)), W [2] = (e0,(1,1),(−1,1)) and
W [3] = (e0,(−1,1),(−1,−1)). In order to compute
v(x) and u(x), we let by an arbitrary way [0,bα ]

N =
[0,4]× [0,6]8× [0,3], and [b,b] = [−8,50]. It is suffi-
cient to suppose bα(v, l,V ) = bα , ∀|α|= l, α0 6= l. Fur-
thermore, we suppose bα(v, l,V ) = 0 if α0 = l. Let u′(x)

be in the Bernstein form with coefficients equal 50, and
note that

E2 = cv′1 ẋ1 + c−v′2x1 + c−v′2x2
2 + c−v′2u′

is positive with the given bounds (E1 is negative). We
shrink the bounds [−8,50] from the right endpoint (us-
ing (10)) to be [−8,bε2 ], ε2 = 1/10. As above, we let
u(x) be in the Bernstein form with coefficients equal
bε2 . Therefore, we have

E∗2 = cv′1 ẋ1 + c−v′2x1 + c−v′2x2
2 + c−v′2u < 0.

Eventually, we have ∂v
∂x (x)Fu(v)(x)≤ E∗2,∀x ∈V \{e0},

from which the Bernstein coefficients of (u(x),v(x)) are
belong to the shrinked bounds.

4.2. Algorithm for Controller Synthesis

In this section, we address the question if we can
compute a pair (u,v) within enclosure bounds so that
LFu(v) is negative (cf. Theorem 4.1). Otherwise, there
is no feasible solution in these bounds. To this end, we
provide an algorithm that decides and finds bounds that
estimate (u(x),v(x)) over ∆ =W [0]∪ ...∪W [n]. Let

LFu(v)(x) =
∂v
∂x

(x)(p(x)+g(x)u(x))

= v′(x)p(x)+ v′(x)g(x)u(x),

where u :Rn −→Rm is the control polynomial function.
Then for k ≤ l and W ∈ {W [0], ...,W [n]}, we have

Algorithm 2: Computing of controller

Input : b j,b j ∈ R, j = 1, ...,m (b < b),

{bα ,
N· · ·,bα} ⊂ R+, and strings

Sα ,Tj ∈ H∗, with 0≤ ε1,ε2 ≤ 1 .
Output: Tj[b j,b j] and Sα [0,bα ].

1 Compute: (By application of (12) and (13) to
(11) with u and u) E1 and E2.

2 if E1 and E2 < 0
3 then LFu(v)(x)< 0
4 else if E1 ≥ 0
5 then compute L j[b j,b j] and Lα [0,bα ]

6 else if E2 ≥ 0
7 then compute R j[b j,b j] and Rα [0,bα ]

8 otherwise (E1 and E2 ≥ 0) there is no solution
in [b j,b j] and [0,bα ]

N

9 end if
10 end if
11 end if



LFu(v) = ∑
|α|=k

bα(LFu(v),k,W )B(k)
α ,

where bα(LFu(v),k,W ) :Rn −→R. In Algorithm 2, we
test if [0,bα ], [b,b] are the enclosure bounds of the pair
(u,v). Finally, we guarantee that LFu(v)(x) < 0 for all
x ∈W by degree elevation or subdivision of ∆, see [16].

4.3. Subdivision of bounds

In this section, we provide a subdivision strategy
for the picked bounds of the Lyapunov and control func-
tions in Theorem 4.1. The polynomial LFu(v)(x) (simi-
larly LFu(v)(x)) can be rearranged as (11). Let Gi(x) :=
v′i(x)pi(x) and L j(x) := u j(x)∑

n
i=1 v′i(x)gi j(x), j ∈

{1, ...,m}. Assume the bounds [0,bα ]
N and [b j,b j] in

Algorithm 2 contain (u,v) but E1 ≥ 0, ∑
m
j=1 cL j ≥

−∑
n
i=0 cGi . Then, we will pick the set of bounds

{[b1,b1], ..., [bs,bs]} from {[b1,b1], ..., [bm,bm]} that
satisfy

s

∑
r=1

cLr <−
n

∑
i=0

cGi . (15)

For some [b j0 ,b j0 ], j0 ∈ {1, ...,m}, j0 6= r, we have
cL j0 + ∑

s
r=1 cLr ≥ −∑

n
i=0 cGi . To this end, we need

to shrink some of {[b j0 ,b j0 ], [b1,b1], ..., [bs,bs]}. Ap-
ply the procedure for all j = 1, ...,m, we conclude that
∑

m
j=1 cL j <−∑

n
i=0 cGi .

5. Conclusions

We investigated certificates of positivity in the
simplicial Bernstein basis by degree elevation and sub-
division. By the Barycentric subdivision strategy, we
proved that the barycentric Bernstein form is inclusion
isotone. This property improved the local certificate of
positivity under subdivision. Finally, the control design
algorithm was developed that computes Lyapunov and
control functions in the Bernstein form.
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