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Abstract—In This paper we study certain fractional forms of
Abel’s equation:y′ = P (x) +Q1(x)y+Q2(x)y

2 +Q3(x)y
3. We

solve the fractional form of the equation for the cases:
Q2 = 0 or Q3 = 0. Such cases reduce the equation to

Bernoulli fractional differential equation.

Index Terms—Bernoulli Equation, Conformable Fractional
Derivative, Exact Solutions, Abel’s Equation

I. INTRODUCTION

There are many definitions available in the literature for fractional
derivatives. The most known are the Riemann-Liouville definition
and the Caputo definition, see [1], [ 2] and [3], for some applications
refer to [5], [6] and [7]. To mention some:

(i) Riemann-Liouville Definition. For α ∈ [n− 1, n), the α
derivative of f is

Dα
a (f)(t) =

1

Γ(n− α)

dn

dtn

t∫
a

f(x)

(t− x)
α−n+1 dx.

(ii) Caputo Definition. For α ∈ [n− 1, n), the α derivative of f
is

Dα
a (f)(t) =

1

Γ(n− α)

t∫
a

f (n)(x)

(t− x)
α−n+1 dx.

However, the following are the drawbacks of either of the defini-
tions or the other:

(i) The Riemann-Liouville derivative does not satisfy Dα
a (1) = 0,

(D
α
a (1) = 0 for the Caputo derivative), if α is

not a natural number.

(ii) All fractional derivatives do not satisfy the known formula of
the derivative of the product of two functions:

Dα
a (fg) = fD

α
a (g) + gD

α
a (f).

(iii) All fractional derivatives do not satisfy the known formula of
the derivative of the quotient of two functions:

Dα
a (f/g) =

gDα
a (f)− fDα

a (g)

g2
.

(iv) All fractional derivatives do not satisfy the chain rule:

Dα
a (f ◦ g)(t) = f

(α)(
g(t)

)
g
(α)

(t).

(v) All fractional derivatives do not satisfy: DαDβf = Dα+βf ,
in general

(vi) All fractional derivatives, specially Caputo definition, assumes
that the function f is differentiable.

In [4], the authors gave a new definition of fractional derivative
which is a natural extension to the usual first derivative

as follows:
Given a function f : [0,∞) −→ R. Then for all

t > 0, α ∈ (0, 1), let

Tα(f)(t) =lim
ε→0

f(t+ εt
1−α

)− f(t)

ε
,

Tα is called the conformable fractional derivative of f of order α.

Let f (α)(t) stands for Tα(f)(t). Hence

f (α)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
.

If f is α−differentiable in some (0, b), b > 0, and
lim
t→0+

f (α)(t) exists, then we let

f (α)(0) = lim
t→0+

f (α)(t).

The conformable derivative satisfies all the classical properties of
derivative. Further, according to this derivative,



the following statements are true, see[4].

1. Tα(t
p
) = ptp−α for all p ∈ R,

2. Tα(sin 1
α t
α) = cos 1

α t
α ,

3. Tα(cos 1
α t
α) = − sin 1

α t
α ,

4. Tα(e
1
α t
α

) = e
1
α t
α

.

The α−fractional integral of a function f starting from a ≥ 0 is:

Iaα(f)(t) = I
a
1(t

α−1
f) =

∫ t

a

f(x)

x1−α
dx,

where the integral is the usual Riemann improper integral, and
α ∈ (0, 1).For more details on conformable fractional refer to [ 8],
[9] and [10].

In this paper we will study some forms of the Abel’s equation
associated with the Bernoulli equation. Some concrete examples are
given. Throughout this paper we write dαx for dx

x1−α . Ordinary
differential equation is the Abel

′
s differential equation which is of

the form:

y′= P (x) +Q1(x)y +Q2(x)y
2
+Q3(x)y

3
. (1)

II. MAIN RESULTS

Clearly, if P (x) = 0 and Q3(x) = 0, or P (x) = Q2(x) = 0,
then equation (1) is a Bernoulli Equation.

If Q3(x) = 0, then the equation turns out to be the Riccatti
Equation. This gave us the motivation to

study the fractional Bernoulli equation. The general form of the
Bernoulli’s Equation is:

y
′
+P (x)y = Q(x)y

n
. (2)

This can be transformed to a fractional differential equation in
many ways. We will consider only two cases:

Case(i)

y
(α)

yα−1+P (x)y
α

= Q(x)y
nα
, n 6= 1. (3)

Case(ii)

y
(α)

+P (x)y = Q(x)y
nα
, nα 6= 1. (4)

Notice that in both equations (3) and (4), if α = 1,then both
equations reduce to equation (2). The object of this section is to
solve both equations (3) and (4).

Case(i). Solution Of Equation (3). First, divide both sides of the
equation (3) by (y

nα
), to get

yα−nα−1 y
(α)

+P (x)y
(1−n)α

= Q(x),

y(1−n)α−1 y
(α)

+ P (x)y
(1−n)α

= Q(x),

Now, let u = y(1−n)α to get:

u(α)= (1− n)αy
(1−n)α−1

y(α),

Thus equation (3) becomes

u(α)

(1− n)α
+P (x)u = Q(x).

This can be written in the form

u(α)+(1− n)αP (x)u = (1− n)αQ(x). (5)

which is a fractional linear differential equation. If we multiply
equation (5) by

µ(x) = Exp[

∫
(1− n)αP (x)dαx]

we get:

µ(x)u
(α)

+(1− n)αP (x)µ(x)u = (1− n)αQ(x)µ(x),

The general solution is:

u =
1

µ(x)

[
(1− n)α

∫
µ(x)Q(x)d

α
x+ c

]
.

Now replace u by y(1−n)α to get the general solution of the
equation (3)

y =

[
1

µ(x)

[
(1− n)α

∫
µ(x)Q(x)dαx+ c

]] 1
(1−n)α

, n 6= 1

Case(ii). Solution Of Equation (4). Consider equation (4)

y
(α)

+P (x)y = Q(x)y
nα
.

Multiplying both sides of the equation by (
1

ynα
), to get

y−nα y
(α)

+P (x)y
1−nα

= Q(x).

Let u = y1−nα. Then

u(α)= (1− nα)y
−nα

y(α).

Consequently, the equation becomes

u(α)+(1− nα)P (x)u = (1− nα)Q(x).

This is a linear fractional differential equation whose solution is

u(x) =
1

µ(x)

[
(1− nα)

∫
µ(x)Q(x)dαx+ c

]
.

Replacing u by y1−nα we get

y =
1

µ(x)

[
(1− nα)

∫
µ(x)Q(x)dαx+ c

] 1
1−nα

, nα 6= 1.



A. Applications
The following are some specific examples of Bernoulli fractional

differential equations.

Example 1:Consider the Bernoulli fractional differential equation

y−
2
5 y(

1
5 )+

5

3
x

1
5 y

3
5= x

1
5 ,

u = y
3
5⇒ y = u

5
3

y(
1
5 )=

5

3
x1−

1
5 u

2
3 u′,

u′+x−
3
5 u =

3

5
x−

3
5 ,

µ(x) = Exp(

∫
x−

3
5 dx) = e

5
2
x

2
5
,

D(e
5
2
x

2
5
u) =

3

5
x−

3
5 e

5
2
x

2
5
,

u =
3

5
+ce

−5
2
x

2
5
.

Now we use the condition y(0) = 1 to get c = 2
5
. Hence the

required solution of the equation is:

y =

[
3

5
+

2

5
e
−5
2
x

2
5

] 5
3

.

Example 2: Consider the Bernoulli fractional differential equation:

y−
1
4 y(

3
4 )−4

3
y

3
4= y

3
2 , α =

3

4
, n = 2,

y(0) = 1.

Solution:
y−

7
4 y(

3
4 )−4

3
y−

3
4= 1,

Using y(0) = 1 to get c = 7
4
. thus the resulting solution is

y =

[
−3

4
+

7

4
e−

4
3
x

3
4

]− 4
3

.
Example 3: Consider the Bernoulli fractional differential equation

y(
1
2 )−2

5

√
xy = −2

5

√
x sin (x) y

7
2 , α =

1

2
, n = 7,

y(0) = 0.

Solution:

y−
7
2 y(

1
2 )−2

5

√
xy−

5
2= −2

5

√
x sin (x) ,

Where y(0) = 0, c = 1
2
. The general solution of the equation

y(x) =

(
1

2
(sin (x)− cos (x)) +

1

2
e−x

)− 2
5

.

(a) Figure 1 (b) Figure 2

(c) Figure 3 (d) Figure 4

(a) Figure 5 (b) Figure 6

(c) Figure 7 (d) Figure 8

B. Graphs
The sketches bellow illustrate the graphs of the solutions of the

following equations

y
(α)

yα−1+
x−α

α (1− n)y
α=

x

α (1− n)y
nα, (6)

y(1)= 1, n 6= 1.

y
(α)

+
1

(1− nα)y=
1

(1− nα)y
nα, (7)

y(0)= 2
1

1−nα
, nα 6= 1.

Solution: the general solution of the equation (6) is

y(x) =

[
xα+1

α+ 2
+

α+ 1

(α+ 2)x

] 1
α(1−n)

(a) where α = 0.3 with n = 2, n = 6 and n = 10.respectively.

(b) where n = 2, α = 0.1, α = 0.5 and α = 0.95, respectively.
Figures (1), (2) and (3) represent the graphs of the solutions of

equation (6) where α is fixed as α = 0.3 and n was given three
random values to investigate the effect of n on the solution of the
equation when α is fixed. Figure (4) is the consists of the graphs 1,2,
and 3 to compare between equation (6) behaviors when α is fixed
and n changes.

Solution: the general solution of the equation (7) is

y(x) =
[
1 + e−

1
α
xα
] 1

1−nα

,

(a) where α = 0.3, n = 2, n = 6 and n = 10,respectively.



(a) Figure 9 (b) Figure 10

(c) Figure 11 (d) Figure 12

(a) Figure 13 (b) Figure 14

(c) Figure 15 (d) Figure 16

Figures (5), (6) and (7) represent the graphs of the solutions of
equation (6) where n is fixed as n = 2 and α was given three random
values to investigate the effect of α on the solution of the equation
when n is fixed. Figure (8) is the consists of the graphs 5,6, and 7
to compare between equation (6) behaviors when α is fixed and n
changes.

Figures (9), (10) and (11) represent the graphs of the solutions of
equation (7) where α is fixed as α = 0.3 and n was given three
random values to investigate the effect of non the solution of the
equation when αis fixed.

Figure (12) is the consists of the graphs 9,10, and 11 to compare
between equation (7) behaviors when α is fixed and n changes.

(b) where n = 20, α = 0.1, α = 0.5 and α = 0.95 respectively.
Figures (13), (14) and (15) represent the graphs of the

solutions of equation (7) where n is fixed as n = 20 and α
was given three random values to investigate the effect of α on the
solution of the equation when n is fixed. Figure (16) is the consists of
the graphs 13, 14 , and 15 to compare between equation (7) behaviors
when α is fixed and n changes.

III. CONCLUSIONS

This paper produced an exact solution of the fractional Bernoulli
differential equation for certain cases in a simpler and more efficient
method than common methods, by using conformable derivative.
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