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Preface

This book is dedicated to the many students we have taught over the years,
whose thought-provoking questions led us to rethink what we had learned as
graduate students. For all such questioning minds, we offer the research efforts
of scholars around the world who have come to the conclusion that uncertainty
can be decomposed into a risk component and a reward component; that all
uncertainty is not bad.

Risk has to do with those returns that cause one to not accomplish their goal,
which is the downside of any investment. How to conceptualize downside risk
has a strong theoretical foundation that has been evolving for the past 40 years.
However, a better concept is of little value to the practitioner unless it is possible
to obtain reasonable estimates of downside risk. Developing powerful estimation
procedures is the domain of applied statistics, which has also been undergoing
major improvements during this time frame.

Part 1 of this book deals with applications of downside risk, which is the
primary concern of the knowledgeable practitioner. Part 2 examines the theory
that supports the applications. You will notice some differences of opinion
among the authors with respect to both theory and its application.

The differences are generally due to the assumptions of the authors. Theories
are a thing of beauty to their creators and their devotees. But the assumptions
underlying any theory cannot perfectly fit the complexity of the real world,
and applying any theory requires yet another set of assumptions to twist and
bend the theory into a working model. We believe that quantitative models
should not be the decision-maker, they should merely provide helpful insights
to decision-makers.

APPLICATIONS

The first chapter is an overview of the research conducted at the Pension
Research Institute (PRI) in San Francisco, California, USA. References are
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made to chapters by other authors that either enlarge on the findings at PRI, or
offer opposing views.

The second chapter, by Robert van der Meer, deals with developing goals for
large defined benefit plans at Fortis Group in The Netherlands. The next chapter,
by Sally Atwater, who developed the financial planning software at Checkfree
Inc., proposes a new paradigm for establishing goals for defined contribution
plans, such as the burgeoning 401(k) market in the US. Sally offers new insights
for financial planners and consultants to 401(k) plans.

Chapter 4 by Hal Forsey explains how to use the latest developments in
statistical methodology to obtain more reliable estimates of downside risk. Hal
also wrote the source code for the Forsey–Sortino model on the CD enclosed
with this book.

Chapter 5 by Brian Rom and Kathleen Ferguson illustrates the importance of
skewness in the calculation of downside risk. Brian developed the first commer-
cial version of an asset allocation model developed at PRI in the early 1980s.

Chapter 6 examines alternative risk measures that are gaining popularity.
Joseph Messina, chairman of the Finance Department at San Francisco State
University, evaluates the Information Ratio and Value at Risk measures in light
of the concept of downside deviations. Joseph points out both the strengths and
weaknesses of these alternative performance standards.

The final chapter in the applications part presents the case for measuring
downside risk on a relative basis. Neil Riddles was responsible for performance
measurement at the venerable Templeton funds. Neil is currently Chief Oper-
ating Officer at Hansberger Global Advisors. While PRI takes the contrary view
expressed in Chapter 2 by van der Meer, we think Neil presents his arguments
well, and this perspective should be heard.

THEORY

The theory part begins with a chapter by Leslie Balzer, a Senior Portfolio
Manager with State Street Global Advisors in Australia, and a former academic.
He develops a set of properties for an ideal risk measure and then uses them
to present a probing review of most of the commonly used or proposed risk
measures. Les confronts the confusion of ‘uncertainty’ with ‘risk’ by developing
a unified theory, which separates upside and downside utility relative to the
benchmark. Benchmark relative downside risk measures emerge naturally from
the theory, complemented by novel concepts such as ‘upside utility leakage’.

In Chapter 9, Stephen Satchell expands the class of asset pricing models
based on lower-partial moments and presents a unifying structure for these
models. Stephen derives some new results on the equilibrium choice of a target
return, and uncovers a representative agent in downside risk models.
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Next, Auke Plantinga and Sebastiaan de Groot relate prospect theory, value
functions, and risk adjusted returns to utility theory. They examine the Sharpe
ratio, Sortino ratio, Fouse index and upside-potential (U-P) ratio to point out
similarities and dissimilarities.

Our colleague in Brazil, Gustavo de Athayde, offers an algorithm in
Chapter 11 to calculate downside risk.

Finally, Robert Clarkson proposes what he believes to be a new theory for
portfolio management. This may be the most controversial chapter in the book.
While we may not share all of Robert’s views, we welcome new ideas that
make us think anew about the problem of assessing the risk-return trade off in
portfolio management.

A tutorial for installing and running the Forsey–Sortino model is provided in
the Appendix. This tutorial walks the reader through each step of the installation
and demonstrates how to use the model. The CD provided with this book offers
two different views of how to measure downside risk in practice. The program,
written by Hal Forsey in Visual Basic, presents the view of PRI. The Excel
spreadsheet by Neil Riddles presents the view of the money manager.

It is our sincere hope that this book will provide you with information that
will allow you to make better decisions. It will not eliminate uncertainty, but it
should allow you to manage uncertainty with greater skill and professionalism.

Frank A. Sortino
Stephen E. Satchell

P.S.: The woman petting the rhino is Karen Sortino, and the unaltered picture
on the following page was taken on safari in Kenya.
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Just because you got away with it doesn’t mean you didn’t take any risk
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Chapter 1

From alpha to omega
FRANK A. SORTINO

SUMMARY

This chapter is intended to provide a brief history of the research
carried out at the Pension Research Institute (PRI) and some import-
ant developments surrounding it. According to Karl Borch (1969),
the first person to propose a mean-risk efficient ranking procedure
was a British actuary named Tetens in 1789. However, it was Harry
Markowitz (1952) who first formalized this relationship in his articles on
portfolio theory. This was the beginning of the theoretical foundation,
commonly referred to as Modern Portfolio Theory (MPT). MPT caused
a schism amongst academics in the United States that exists to this
day. As a result, Finance Departments in the School of Business in
most US universities stress the mean-variance (M-V) framework of
Markowitz, while economists, statisticians and mathematicians offer
competing theories. I have singled out a few of the conflicting views
I think are particularly relevant for the practitioner.

1.1 MODERN PORTFOLIO THEORY (MPT)

MPT has come to be viewed as a combination of the work for which Harry
Markowitz and Bill Sharpe received the Nobel Prize in 1990. It is a theory
that explains how all assets should be priced in equilibrium, so that, on a risk-
adjusted basis, all returns are equal. The implicit goal is to beat the market
portfolio, and of course, in equilibrium, one cannot beat the market. It would
be hard to overestimate the importance of this body of work. Before Markowitz,
there was no attempt to quantify risk. The M-V framework was an excellent
beginning, but that was almost 40 years ago. This book identifies some of the
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−3s −2s −1s 0

68.26%

+1s +2s +3s

95.44%
99.74%

Figure 1.1 The normal distribution

advancements that have been made and how to implement them in portfolio
management.

Jensen (1968) was the first to calculate the return the manager earned in
excess of the market. He regressed the returns of the manager against the returns
of the market to calculate the intercept, which he called alpha. Sharpe (1981)
proposed measuring the performance of managers in terms of both the excess
return they earned relative to a benchmark, and the standard error of the excess
return. This has come to be called the ‘information ratio’. The excess return
in the numerator of the information ratio is also called alpha by most consult-
ants (see Messina’s contribution in Chapter 6 for a detailed critique of the
information ratio).

MPT assumes investors make their decisions based solely on the first and
second moments of a probability distribution, i.e. the mean and the variance,
and that uncertainty always has the same shape, a bell-shaped curve. Whether
markets are at a peak or a trough, low returns are just as likely as high returns,
i.e. the distribution is symmetric (see Figure 1.1). Of course, there isn’t any
knowing what the true shape of uncertainty is, but we know what it isn’t, and it
isn’t symmetric. Since all you can lose is all your money, the distribution cannot
go to minus infinity. In the long run, it has to be truncated on the downside,
and therefore, positively skewed.

1.2 STOCHASTIC DOMINANCE RULES

This was an important development in the evolution of risk measurement that
most practitioners find tedious and boring. So, I am going to replace mathemat-
ical rigour with pictures that capture the essence of these rules. I urge those who
want a complete and rigorous development of risk measures to read Chapter 8
by Leslie Balzer.

Hadar and Russell (1969) were the first to offer a competing theory to M-V.
They claimed that expected utility theory is a function of all the moments
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of the probability distribution. Therefore, rules for ranking distributions under
conditions of uncertainty that involve only two moments, are valid only for a
limited class of utility functions, or for special distributions. They proposed two
rules for determining when one distribution dominates another, which are more
powerful than the M-V method. The stochastic dominance rules hold for all
distributions and require less restrictive assumptions about the investor’s utility
function.

First degree stochastic dominance states that all investors viewing assets A
and C in Figure 1.2 would choose C over A, regardless of the degree of risk
aversion, because one could always do better with C than with A. In an M-V
framework there would not be a clear choice because asset A has less variance
than asset C. M-V is blind to the fact that all of the variance in A is lower
than C.

Second order stochastic dominance states that all risk-averse investors who
must earn the rate of return indicated by the line marked MAR in Figure 1.3,1

would prefer investing in C rather than A. As noted elsewhere in the book, MAR
stands for the minimal acceptable return. Again, M-V rules could not make this
distinction.

Hanock and Levy (1969) applied the rules of stochastic dominance to rectan-
gular distributions to show that variance may not adequately capture the concept

10

0 5 10

20

Asset A

Asset C

R

R

30

Figure 1.2 C dominates A by first degree stochastic dominance
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C

A

MAR

Figure 1.3 C dominates A by second degree stochastic dominance

of risk, no matter what the degree of risk aversion. They conclude that the iden-
tification of risk with variance is clearly unsound, and that more dispersion may
be desirable if it is accompanied by an upward shift in the location of the distri-
bution or by positive asymmetry. Rom and Ferguson provide some empirical
evidence to support this in Chapter 5.

These are, of course, extreme examples, and one could argue that these exam-
ples do not take into consideration investor’s preferences. Most performance
measures do not incorporate utility theory, but that will be discussed in detail
in Chapter 10 by Plantinga and de Groot. The larger question is whether or not
these factors really matter in the real world. We will examine some empirical
results later in this chapter. But for now, let’s simplify the real world with an
example that allows you to see the importance of asymmetry and downside risk.
Figure 1.4 shows statistics for three assets from a mean-variance optimizer.

The S&P 500 has an expected return of 17% and a standard deviation
of 19.9%. This implies the distribution is symmetric. The second asset is a
diversified portfolio of stocks plus a put option (S + P) that truncates the distri-
bution and causes it to be asymmetric, or positively skewed. S + P has a higher
expected return than the S&P 500 but after the cost of the put it has the same
mean and standard deviation as the S&P 500. Figure 1.5 shows us what these
distributions would look like.

Clearly, S + P is a better choice than the S&P 500. The third asset is treasury
bills. A mean-variance optimizer produced the results shown in Figure 1.6.

The optimizer allocated 53% to T-bills and split the other half equally
between S + P and the S&P 500 for the first efficient portfolio with an expected

Asset Mean
Standard
deviation

Low 10th
percentile

High 10th
percentile Skewness

S&P 500 17% 19.9% −8.5% 42.5% 1
S + P 17% 19.9% 0 40% 2.47
T-bills 4% 0.8% 3% 5% 1

Figure 1.4 Optimizer inputs
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return higher than the MAR. Notice this is almost half way up the efficient
frontier. Why? The large allocation to cash is because M-V optimizers love
assets with tight distributions, even if they all but guarantee failure to achieve
the investor’s MAR.

The split between the S + P and S&P 500 is because M-V optimizers are
blind to skewness. The optimizer thinks the S + P and S&P 500 are the same
because they both have the same mean and standard deviation. Yes, this is a
straw man. But if a mean-variance optimizer won’t give you the right answer
when you know what the right answer is . . . how reliable is it in a complex,
realistic situation, when nobody knows what the right answer is? The output
from a mean downside risk optimizer PRI designed for Brian Rom at Invest-
tech produced the correct answer (see Figure 1.7): that is, if there was such an
asset as S + P, everyone should prefer it to the others shown in Figure 1.6.

One hundred per cent is allocated to the S + P. It is true that the M-V optim-
izer eventually reaches the same solution. Figure 1.8 shows how assets come
into solution. The lowest point on the efficient frontier is 100% to T-bills, even
though that would guarantee failure to achieve the MAR. The optimizer quickly
diversifies until at some point the allocation to S + P begins to accelerate. The
highest risk portfolio is 100% to S + P, and that choice would require a utility
function that was tangent at the extreme end of the efficient frontier.

Expected return 17.0
Downside risk   5.1
Sortino ([ER-MAR]/DR)   1.36
HP skew 2.47 marg. risk −0.0
Downside probability 45.3
Av. downside deviation   6.58
HP standard deviation 19.9
Asset
class
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17.0
4.0

0
100
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100

0
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Figure 1.7 Mean-downside risk optimizer output
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Robicheck (1970) was the first researcher I am aware of who related risk
with failure to accomplish an investor’s goal, acknowledging that all investors
are not trying to beat the market. Unfortunately, he only considered the proba-
bility of failing to accomplish the goal, not the magnitude of regret that would
accompany returns that fall further and further below the MAR.

Peter Fishburn (1977) was one of the first to capture the magnitude effect. His
path-breaking paper is the cornerstone of the research at the Pension Research
Institute. It should be read by all serious researchers on the subject of downside
risk. Fishburn shows how the rigour of stochastic dominance can be married
to MPT in a unifying mean downside framework called the α-t model (see
Equation 1.1). While Markowitz and Sharpe attempted to solve the invest-
ment problem for all investors simultaneously, Fishburn developed a framework
suitable for the individual investor.∫ t

−∞
(t − X)α df (X)α > 0 (1.1)

where F(x) = the cumulative probability distribution of x

t = the target rate of return
α = a proxy for the investor’s degree of risk aversion

When I first began publishing research on applications of downside risk I
also used t and referred to the investor’s target rate of return. Unfortunately, I
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found that pension managers frequently thought they should set an arbitrarily
high target rate of return so that their managers would strive to get a high rate
of return for them. They failed to associate the target with their goal of funding
their pension plan. Consequently, I started using the term ‘minimal acceptable
return’ (MAR) and stressed this was the return that must be earned at minimum
to accomplish the goal of funding the plan within cost constraints.

Fishburn called this risk measure a ‘probability weighted function of devi-
ations below a specified target return’. Others have referred to it as the lower
partial moment (Bawa, 1977). I have called it downside risk. There are a number
of other downside risk measures, some of which are examined by Messina in
Chapter 6, but when the term downside risk is used in this chapter without
qualification, it will refer to Equation 1.1.

When Fishburn’s α has the value of 2 it is called below target variance. I
chose to let α only take on the value of 2, because it was difficult enough to
explain why one should square the differences below some MAR instead of the
mean; let alone, discuss why the exponent could also be less than or greater
than 2. Also, I found a lot of resistance to the use of squared differences. People
wanted the risk measure to be in percent, not squared percent. So I took the
square root of the squared differences, as shown in Equation 1.2.

Because the formulation for a continuous distribution is confusing to many
practitioners, I used the discrete version of Fishburn’s α − t model shown in
Figure 1.2 to explain the calculation of downside risk.[

mar∑
−∞

(R − MAR)2Pr

]1/2

(1.2)

This may give the impression that all returns above the MAR are ignored.
This was not Fishburn’s intention. It is intended to be a probability weighted
function of deviations below the MAR. Which means we should be concerned
with the probability of falling below the MAR as well as how far the return
falls below the MAR. Therefore, we need to know how many observations were
above and below the MAR. Observations above the MAR are recognized but
their value is not. This is more easily understood in the continuous form shown
in Equation 1.1. Fishburn’s formulation would be read as: integrate over all
returns in the continuous distribution, square all returns below the MAR and
weight them by the probability of their occurrence. Both the probability and
the magnitude are captured in one number.

Markowitz also discussed a measure of downside risk he called semi-variance.
Many people have misinterpreted semi-variance to mean risk should only be
measured as squared deviations below the mean (the bottom half of a symmetric
distribution). Markowitz made it clear that the mean is just one of many possible
points from which to measure risk. Markowitz did point out that when the
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A

MAR

B

C

Figure 1.9 Relative rankings

location point from which risk is measured is the mean, and the distribution
is normal, variance and semi-variance give the same rankings. This has erro-
neously been construed to mean that standard deviation and downside risk
always give the same information.

Even if the assets have exactly the same symmetric distribution, but the MAR
is not the mean (see Figure 1.9), the rankings will be the same with variance and
downside risk, but the perception of relative risk will be quite different. If assets
A, B and C in Figure 1.9 were ranked by M-V rules, B would be preferred to
A because B has a higher mean expected return for the same risk. Similarly
C would be preferred to B and A. If ranked by mean downside risk rules, B
would also be ranked higher than A because the expected return is higher and
the downside risk is lower. Asset C has the least risk and the highest expected
return. If assets A, B and C were mutual funds, I am sure fund manager C
would want credit for both lower risk and higher return.

Of course, when the MAR is not the mean and the distributions are not
identically symmetric, rankings can be very different with standard deviation
than with downside risk. What is more, downside risk will always provide the
more correct ranking, if the estimates are reliable.

1.3 BETTER ESTIMATES OF RISK

It is one thing to have a more correct concept of risk, it is quite another to obtain
reliable estimates empirically. In the early 1990s I began to grow concerned
about the way I was calculating downside risk. As the market soared upward,
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estimates of downside risk for mutual funds I tracked for Pensions and Invest-
ments magazine got smaller. I was bootstrapping five years of monthly returns
to generate 2000 years of annual returns. Standard deviation was also shrinking
from its average of over 20% to a mere 5%. I became concerned that investors
would obtain estimates that risk was very small . . . just before a crash in the
market. While theory assumes the underlying distribution is stable, the way risk
was estimated by everyone at that time provided very unstable estimates.

The cause of the problem is twofold: looking at too short an interval of time,
and looking only at what did happen instead of what could have happened. The
bootstrap procedure developed by Bradley Effron (Effron and Tibshirani, 1993)
addresses the latter part of the problem, but only a longer interval of time can
correct for the former. What is needed is 20 years or more of monthly returns,
yet, many portfolio managers have only been in existence for a few years. A
detailed description of the bootstrap procedure and how it is used to generate a
more reliable distribution of returns is offered by Hal Forsey in Chapter 4.

A solution to the short time interval is offered by a procedure called ‘returns
based style analysis’ proposed by Bill Sharpe of Stanford University (1992).
This statistical procedure attempts to replicate the style of an active manager
with a set of passive indexes called a style benchmark, e.g. a large cap growth
index, large cap value index, small cap growth index, small cap value index
and cash. Sharpe has shown that a style benchmark accounts for over 90% of
the variance in returns for most stocks. Research at PRI confirms this, not only
for US mutual funds, but for mutual funds in Europe and South Africa as well.

1.3.1 The omega return

This raised another problem. How to measure a manager’s ability to out-perform
a style benchmark on a risk-adjusted basis? The solution chosen in Sortino,
Miller and Messina (1997) was to create a risk-adjusted return for the manager
and then subtract the risk-adjusted return of the benchmark. We called this
the omega excess return. The idea of using a utility function to calculate a
manager’s risk-adjusted return was suggested to me by Bill Fouse at Mellon
Capital Management. This is an extension of that idea.

Equation 1.3 provides an example of how the omega return is calculated.
The manager’s return for the period was 35%. To obtain a risk-adjusted return
in the manner of a utility function, we must subtract the downside variance of
the manager’s style benchmark (0.0231). We assume the average risk-averse
investor requires 3 units of return to take on one unit of risk. Without any
further adjustments, this would be a straightforward adaptation of the Fouse
Index to style analysis.

However, if an active manager could get a higher return than the style bench-
mark, why couldn’t the manager also take less risk? In an effort to accommodate
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this possibility of taking more or less risk than the style benchmark, I introduce a
style beta (the downside risk of the manager divided by the downside risk of the
style benchmark). The style beta of 1.25 indicates the manager systematically
took 25% more downside risk than the benchmark.

The style beta times the downside variance of the manager’s style benchmark
is called the style-adjusted downside risk, or SAD risk.

Omega = R − A[styleβ(DVARstyle)]
= 0.35 − 3[1.25(0.0231)]
= 0.35 − 0.0866
= 26.34% (1.3)

The omega return is found by subtracting three times the SAD risk from the
realized return of 35%. It is a risk-adjusted return that is easily interpreted: the
manager earned 26.34% on a risk-adjusted basis.

The fact that it requires some mathematical expertise to calculate the down-
side variance and the style beta should not deter investors from using it. One
doesn’t have to know how to build an airplane in order to fly a large jet plane;
and one doesn’t have to be a pilot in order to travel by air to far-off places.
Computer models can make the omega calculations in a nanosecond, and many
consultants know how to use the models.

Subtracting the omega return for the manager’s style benchmark from the
omega return of the manager yields the omega excess return. Suppose the omega
return for the manager’s style benchmark was 20%. The omega excess would
be 6.34%, which is the value added by the manager’s skill.

1.3.2 Behavioural finance

Recent research in the behavioral finance area claims that investors do not
seek the highest return for a given level of risk, as portfolio theory assumes.
According to Hersh Shefrin (1999) investors seek upside potential with down-
side protection. Olsen (1998) says, ‘investors desire consistency of return and
therefore choose decision processes that preserve appropriate future financial
flexibility’. Rather than maximize the expected return, they want to maximize
a ‘satisfying’ strategy.

Sebastiaan de Groot (1998) studied one hundred wealthy investors to deter-
mine if they made decisions in a manner consistent with expected utility theory
or behavioural finance theory. He found that approximately half the questions
were answered in a manner consistent with utility theory and the other questions
were answered in a manner consistent with behavioural finance. But most of
these investors said they wanted ‘wealth growth that is as stable as possible
where a trade-off between risk and return has been made’. De Groot also
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Fund 1 Upside Fund 2 Upside

Year 1 11 3 4 0

Year 2 10 2 6 0

Year 3 10 2 9 1

Year 4 10 2 14 6

Year 5 11 3 6 0

Year 6 11 3 7 0

Year 7 11 3 11 3

Year 8 7 0 10 2

Year 9 7 0 14 6

Year 10 8 0 15 7

Mean 9.6 9.6

Potential 1.8 18/10 2.5 25/10

Probability 70% 60%

Figure 1.10 Upside potential for MAR = 8%

made some interesting observations on the relationship between utility functions
proposed by Harry Markowitz and those proposed by Sortino and van der Meer.2

Plantinga and de Groot will elaborate on how downside risk relates to utility
theory and behavioral finance in Chapter 10.

The example in Figure 1.10 illustrates how upside potential should be calcu-
lated and how it differs from the mean, or average return.

Both fund 1 and 2 have an average return of 9.6%, but fund 1 had returns
above the MAR 70% of the time while fund 2 was only above the MAR 60%
of the time. But how often the funds were above the MAR does not tell the
whole story. Fund 1 never exceeded the MAR by more than 3%, while fund 2
exceeded the MAR by twice that amount on a number of occasions.

In keeping with the formula for downside risk, upside potential should take
into consideration both frequency and magnitude. Therefore, the sum of the
excess returns are divided by 10 instead of 7. Dividing by 7 would provide an
average excess return, which would capture magnitude, but not probability of
exceeding the MAR.3 Upside potential combines both probability and magni-
tude into one statistic. Technically, upside potential is the probability weighted
function of returns in excess of the MAR. It is not the average return above the
MAR, e.g. (11 + 10 + 10 + 10 + +11 + 11 + 11)/7 for fund 1, and it is not the
average excess return above the MAR (18/7). It is another statistic that captures
the potential for exceeding the minimal acceptable return (MAR) necessary to
accomplish your goal.

As shown in Figure 1.10, fund 2 has the potential to do 2.5% more than the
MAR of 8%, while fund 1’s upside potential was only 1.8%. The formula for
upside potential is similar to the formula for downside risk, with two exceptions:
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we are concerned with returns above the MAR instead of below, and we take
the simple differences instead of squaring the differences (see the numerator of
Equation 1.4).

A risk/return tradeoff that incorporates the concept of upside potential is
shown in Figure 1.9. The numerator of the U-P ratio is the probability weighted
function of returns above the MAR and can be thought of as the potential for
success. The denominator is downside risk as calculated in Sortino and van der
Meer (1991) and can be thought of as the risk of failure.

+∞∑
mar

(R − MAR)1Pr[
mar∑
−∞

(R − MAR)2Pr

]1/2 (1.4)

As with the downside risk calculation, estimates should be obtained from a
continuous probability distribution generated with the bootstrap procedure (see
Appendix in Chapter 4 for equations).

Figure 1.11 shows how 2000 annual returns that could have happened were
generated from 20 years of monthly returns. Unlike Figure 1.1, this picture
of uncertainty is not symmetric. It is positively skewed. All the returns are
uncertain, but only those below the MAR contribute to risk. The better one can
describe uncertainty, the better one can manage it.

To obtain more accurate estimates of risk and return, a three parameter
lognormal distribution was used to fit a curve to the discreet distribution so that
integral calculus could be used to estimate downside risk and upside poten-
tial from a continuous distribution. Many people confuse the third moment,
skewness, with the concept of a third parameter that allows one to shift the distri-
bution to include negative returns and/or flip it to allow for negative skewness.

MAR

Potential

Risk

m

Uncertainty

Reward

Figure 1.11
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The theoretical foundation for a three parameter lognormal distribution was
developed by Aitchison and Brown at Cambridge University. But it was Larry
Siegal, now with the Ford Foundation, who first brought this concept to my
attention. For more details see Chapter 4 by Hal Forsey.

1.3.3 Absolute versus relative performance

Should the MAR for both equity and fixed income components be the same,
or should performance for equity managers be measured relative to an equity
index, and performance for bond managers measured relative to a fixed income
index? Peter Bernstein (2000) made a plea for returns to be measured in terms
of what the manager is ‘contributing in excess of the required return’, instead
of measuring returns relative to a benchmark like the S&P 500.

In ‘The Dutch Triangle’ (Sortino, van der Meer and Plantinga, 1999) we
also make a case for measuring risk relative to the required return, which we
call the MAR. However, it is more popular to measure performance of bond
managers relative to a bond index and equity managers relative to an equity
index. The argument in favour of this popular view is presented by Neil Riddles
with Templeton funds in Chapter 7 and Les Balzer in Chapter 8.

Figure 1.12 shows the distribution for a bond index, an equity index and a
bond manager who earns a constant return. The MAR is represented by a broken
line. Suppose one decided to measure the performance of equity managers

10.0%

Index

m

Bond
Equity index

Manager

17.0%

m

m

MAR

Bond

Figure 1.12 Relative versus absolute rankings
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relative to the mean of the equity index, and bond managers relative to the
mean of the bond index. If the bond manager invested only in government
notes and earned a constant return represented by the spiked line, the downside
risk for the manager measured relative to the mean of the bond index is zero.
It is also true that the standard deviation of returns for the manager is zero,
and that government notes have no default risk. All three measures confirm
the riskless nature of the strategy pursued by the manager. But, what about
the risk of not accomplishing the goal? Only by measuring risk relative to the
return necessary to fund the plan within their cost constraints (the MAR) would
management be aware of the investment risk that was incurred.

I am not suggesting bond managers be compared with equity managers. The
performance of a bond manager should be compared with an appropriate bond
index and/or other bond portfolio managers, but risk and return for all indexes
and all managers should be measured relative to the MAR of the investor’s
total portfolio. Using the same MAR for all managers keeps everyone focused
on the return necessary to accomplish the goal of the pension plan and clearly
identifies the returns from each manager that will contribute to the risk of not
achieving the client’s goal.

Of course, this does not take into consideration the covariance relationship
between stocks and bonds. Neither does the Sharpe ratio or the information ratio.
Covariance is an important aspect of asset allocation, but is not commonly used
for performance measurement.

1.4 EMPIRICAL RESEARCH RESULTS

There was very little interest in using downside risk until Robert van der Meer,
who was then at Shell Pension Funds in the Netherlands, started to use it. This
decision was the result of extensive tests conducted by van der Meer and his
staff while he and I taught a class at his alma mater, Erasmus University in
Rotterdam. Some of this research was published in a joint article by Robert and
myself in the Journal of Portfolio Management, Summer 1991.

There were two important findings in this paper. (1) T-bills, or their European
equivalent, are not riskless assets. In fact, they guarantee failure to accomplish
financial goals for most investors. (2) Using downside risk produced better
results than a mean-variance optimizer or a naı̈ve strategy that maintained a
60/40 mix of stocks to bonds. This was in keeping with the theoretical findings
of the late Vijay Bawa (1977).

1.4.1 Tests of style analysis

If style analysis is a powerful tool for explaining the returns generating mech-
anism for equity portfolios, why couldn’t it be used to explain how much risk
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Fund Name R-Sqd 90
day

SV-
Dutch

SG-
Dutch

LV-
Dutch

LG-
Dutch

UK France Germany Japan Pac X USA

93 0 17 21 25 20 0 3 0 0 4 11

Holland

ABN-Amro

92 7 3 24 27 19 0 0 0 2 6 12

ING 94 4 23 22 20 17 0 4 5 0 2 3

AXA 83 12 9 5 18 39 11 0 0 0 5 0

EOE 95 0 19 37 8 27 0 0 0 4 5 0

Orange 66 22 20 0 0 43 0 9 0 2 0 4

Figure 1.13 Sharpe’s style analysis: The Netherlands style analysis

Fund Name R2 Cash Bond Large Cap Mid Cap MSCI
NIB Prime 90% 0 0 23% 50% 16%
BOE Equity 87% 0 9% 40% 46% 0
Sage Fund 95% 1% 13% 62% 9% 8%
GuardBank Growth 96% 0 22% 78% 0 0
Standard BK 91% 0 24% 54% 20% 2%
FedSure Growth 90% 0 3% 36% 34% 20%
Marriott Growth 92% 0 15% 49% 35% 0
RMB Equity 90% 0 12% 54% 34% 0
Met. Gen. Equity 84% 0 8% 48% 44% 0
SanLam General 92% 0 5% 61% 29% 1%
Investek Equity 90% 0 3% 49% 47% 0

11%
5%
8%
0
1%
7%
2%
0
0
3%
1%

Small

Figure 1.14 Sharpe’s style analysis: South Africa style analysis

is involved in a particular style of portfolio management? We decided to test
this notion at PRI by using Sharpe’s style analyser to construct a benchmark
of passive indexes for each mutual fund. We then bootstrapped the returns for
each fund’s benchmark and calculated the downside risk for each fund from
that distribution. The result was a much more stable estimate of downside risk.

Some have questioned the application of Sharpe’s style analysis to non-US
markets, particularly, small or emerging markets. Figures 1.13 and 1.14 indicate
otherwise.

Passive Dutch indexes explained over 90% of the variance in returns for all
but the Orange funds. Professor Roger Otten at Maastricht University said that
might have been improved by including a micro cap index.

The passive indexes for South Africa were selected by Etienne de Waal at
Momentum Advisory Services, Centurion, South Africa. Style analysis also
explained approximately 90% of the returns for most funds.

1.4.2 Tests of omega excess

An unpublished study done by Bernardo Kuan of DAL Investment Company
indicated Omega excess was a risk-adjusted return that seemed to have strong
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Figure 1.15 Predictive power of the Omega excess: omega excess return 1981–1996

predictive power. Kuan’s study (see Figure 1.15) showed managers with the
highest omega excess in period one, were also in the top quartile in the following
period almost 70% of the time. Those managers were least likely to fall in
the fourth quartile. The opposite was true for the worst performing managers
(back row).

1.4.3 An ex ante test of the U-P ratio

In January of 2000, the U-P ratio was used to rank mutual funds for Pensions
and Investments magazine. From the funds in the top half of the rankings,
the omega excess was used to select the top funds. The subsequent market
decline from 10 March to 31 May provided an excellent opportunity to test
the efficacy of these performance measures to provide upside potential with
downside protection. The performance of the three funds identified in the P&I
report were compared with the three funds with the highest return the previous
year. The results are shown in Figure 1.16. The three funds chosen with the
U-P ratio and omega excess were up an average of 13% while the funds with
the highest return the previous year were down an average of 37%.

A second, more severe decline in the stock market occurred in September
of 2000, with the results shown in Figure 1.17. The three funds chosen with
the U-P ratio and omega excess were up slightly on average (0.4%). While the
funds with the highest returns the previous year were down an average of −44%.
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Figure 1.16 Application of upside potential and omega excess: gain/loss 10 March to 31
May 2000
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Figure 1.17 Second stock market decline: gain/loss 1 September to 30 November 2000

We also tested this paradigm on various styles to see if it could identify top
performers from poor performers in each style category. The results are shown
in Figure 1.18. The top ranked U-P funds did better in all three style categories,
and on average, did approximately four times better than the bottom ranked
funds. The results are particularly striking for the small cap category where the
highest ranked fund was down only 1% while the lowest ranked fund was off
31%. Of course, past performance is no guarantee of future performance. But
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Figure 1.18 Style rankings: gain/loss 1 September to 30 November 2000

how long can organizations reporting performance continue to ignore the U-P
ratio and the omega excess?

1.5 THE INTERNET APPLICATION

With the advent of the Internet, many investors are seeking help in managing
their self-directed retirement plans. It was Bill Sharpe’s launch of Financial
Engines.com that first called my attention to the possibility of providing very
sophisticated technology to help ordinary investors. My vision of how this could
be accomplished is a two-stage process.

The first stage is to find those fund managers whose style has the highest
upside potential relative to its downside risk. It begins by ranking all mutual
funds available to the 401(k) investor by the upside potential ratio. Up to 6
mutual funds in each style category are chosen for asset allocation consideration.

Figure 1.19 shows a listing of mutual funds ranked by U-P ratio. Wells Fargo
Diversified Equity has the highest U-P ratio, but it has a negative omega excess
return, so it is rejected. The first fund with a positive omega excess is T. Rowe
Price Growth Stock fund.

The second stage is to allocate resources to each asset category in accor-
dance with some predetermined asset allocation strategy that is appropriate for
investors with a particular MAR. Figure 1.20 shows such an allocation strategy.
The bar chart at the bottom indicates the diversification across style categories
(19% large cap growth . . . 4% T-bills). Each bar in the graph can be thought
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Fund name Select
R-

Squared U-P ratio Omega excess

Wells Fargo Diversified Equity 0.99 1.4 −0.80%
Fidelity Adv Grth Opp/T 0.93 1.38 −9.70%
BGI Masterworks S&P 500 0.99 1.36 −0.90%
One Group Equity Index 0.99 1.36 −1.00%
T Rowe Price Growth Stock X 0.98 1.36 3.10%
Amer Cnt Income & Gr/Inv 0.98 1.36 −1.20%
Vanguard Growth & Income X 0.96 1.35 0.30%
Fidelity Spartan US Eq Indx 0.99 1.35 −0.70%
Dreyfus Basic S&P 0.99 1.35 −0.80%
Vanguard 500 Index X 0.99 1.35 −0.50%
T Rowe Price Blue Chip Gr X 0.98 1.34 0.10%
Cap Research AMCAP X 0.92 1.33 8.00%
Fidelity Magellan Fund 0.97 1.31 −0.90%
American Century Select X 0.96 1.3 0.20%
Wells Fargo Large Growth 0.94 1.3 −2.70%
AXP Stock 0.97 1.29 −6.90%
MFS Research Fund/A 0.97 1.29 −2.40%
Fidelity 0.95 1.28 −0.10%
MFS Emerging Growth 0.68 1.26 −11.60%
Vanguard U.S. Growth 0.96 1.26 −3.40%
Fidelity Advisor Equity Growth 0.89 1.26 −5.00%
AIM Value Fund/A 0.92 1.25 −1.30%
Putnam Investors 0.94 1.25 −3.30%
AXP New Dimensions 0.98 1.25 −1.00%
Kemper Growth 0.92 1.25 −8.40%
Fidelity Blue Chip Growth 0.99 1.24 −1.90%
Mainstay Capital Appreciation 0.95 1.23 −2.90%
Amer Cnt Ultra/Inv 0.92 1.23 −4.80%
Amer Cnt Growth/Inv 0.94 1.21 3.20%
Fidelity Contrafund 0.91 1.2 0.40%
Janus Inv Twenty 0.79 1.2 14.70%
Janus Inv Janus 0.9 1.19 6.90%
Fidelity Capital Appreciation 0.93 1.18 1.30%
MFS Mass Inv Growth Stock/A 0.96 1.16 11.30%
Dreyfus Founders Growth 0.92 1.16 −5.40%
Cap Res New Economy 0.93 1.13 12.00%
Putnam Voyager/A 0.95 1.1 7.00%

AIM Constellation Fund/A 0.92 1.1 −2.70%
Cap ResGrowth Fund of America 0.93 1.09 16.20%

Putnam New Opportunity/A 0.9 1.06 12.00%
Fidelity OTC Portfolio 0.86 1.03 11.50%
Fidelity Retirement Growth 0.87 1.01 9.30%

Janus Mercury 0.83 1.1 26.50%?

Fidelity Aggressive Growth 0.84 1.07 23.60%?

Figure 1.19 Ranking by U-P ratio

of as a bucket to be filled with combinations of mutual funds and indexes that
will maximize the omega excess return for the portfolio.

If I would have allowed all funds ranked by U-P ratio to be considered
for solution in the asset allocation, Janus Mercury would have replaced some
of the AMCAP and New Economy allocation and there would have been no
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Figure 1.20 Allocation by omega excess

point in ranking by U-P ratio. The rationale for this two-stage process is that
the distribution generated by 25 years of data on the manager’s style is more
stable than the distribution generated by three years of manager data. Therefore,
information about the upside potential of the manager’s style relative to its
downside risk should determine the ranking in stage 1. In stage 2, allocate
money to managers who can beat their top-ranked style benchmark, i.e. have a
positive omega excess. To the extent that the buckets cannot be filled, allocate
money to the style index, e.g. 16.7% is allocated to the EAFE because only
2.3% of the required 19% could be allocated to active management.

The 401(k) participant doesn’t have to know that the allocation shown at
the top of Figure 1.20 involved bootstrapping data generated by a style ana-
lyser, fitting a three parameter lognormal distribution to the data, using integral
calculus to calculate each fund’s upside potential and downside risk, and using
linear programming to allocate funds based on their omega excess return. All
it takes is a couple of clicks on a web page. An updated list of the websites
that offer this methodology is available at www.sortino.com.

1.6 CONCLUSION

The three most important questions to answer when attempting to manage a
portfolio of securities are:
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(1) What is the goal, i.e. what are you trying to accomplish?
(2) What rate of return do you have to realize at minimum in order to

accomplish the goal? This will determine the risk and return character-
istics of every investment opportunity.

(3) What diversified portfolio provides the best risk/return tradeoff relative
to my MAR?

For any performance measure to be oriented toward an investor’s goal, risk
and return must be measured relative to the MAR that will achieve that goal.
Similarly, asset allocation should focus on those portfolios that provide the
highest upside potential for a given level of risk of falling below the MAR.

Therefore, I believe the single most important step in developing a successful
investment strategy is to identify the appropriate MAR. This requires a finan-
cial planner or financial planning software, as described in Chapter 3 by Sally
Atwater.

NOTES

1. For ease of understanding, the probability density function is shown instead of
the cumulative.

2. De Groot used a generalized value function: (x − k)α if x ≥ k,−λ(k − x)α if
x < k. He then shows how this is different than the piecewise linear value func-
tion presented by Markowitz (1991), who assumed k = 0 and that losses do not
become more important when they are further away from k. De Groot shows that
tests of prospect theory assumed λ = 0.88, whereas Sortino and van der Meer
(1991) assumed λ = 3.

3. I am grateful to Jared Shope and Mike Wilkinson at LCG for helping me to
clarify this point.
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Chapter 2

The Dutch view: developing a strategic
benchmark in an ALM framework

ROBERT VAN DER MEER

SUMMARY

A critical factor in management and control of the investment
process is the determination of appropriate benchmarks. This chapter
discusses how benchmarks for investments by pension funds can
be established. Practical evidence is taken from the Dutch pension
fund industry. The approach relies on asset liability simulation and
market valuation of plan assets and liabilities and their correlation. In
the framework of a pension fund, benchmarks are a result of policy
decisions with respect to:

• the desired level of premium contributions
• the security of the future indexing of benefits
• the financial risk to the plan sponsor and the beneficiaries.

In order to evaluate alternatives, it is essential to obtain a correct
understanding of the economic cost of alternatives.

2.1 ASSET ALLOCATION OF DUTCH PENSION FUNDS

Since the 1980s there has been a consistent trend in portfolio allocation. The
average proportion of equities in a typical Dutch pension portfolio has risen from
5% in 1980 to more than 30% in 2000. It is expected that this international
trend will continue. This is primarily the result of the recognition that equities
produce higher average results in the long run and that pension funds, because
of their long-term planning horizon, are able to sustain the increased level of
investment risk which is revealed in a higher volatility.
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Some argue that this is related to the improved quality of the investment
decisions made by the individual pension funds. However, one should be aware
that one can only fully appreciate the quality of policy decisions after proper
recognition of the differences among the individual pension funds. These differ-
ences apply to two aspects of pension fund investment policy. First of all,
investment decisions are based not only on the expected rate of return, but also
on the risk of investment returns as well. Unless pension funds are identical,
the risks of alternative asset portfolios will differ as the result of interactions
between the assets and liabilities. For not every pension fund has an identical
liability structure. Secondly, even when the risks and returns of the portfolios are
identical across pension funds, the risk tolerance may vary. The risk tolerance
primarily follows as the outcome of an internal decision process that involves
all of the funds’ stakeholders. These stakeholders are the plan’s sponsor(s), the
plan’s participants, both active and retired, and the plan’s supervisory bodies.

With respect to the asset allocation, it is remarkable that especially the alloca-
tions to fixed income investment instruments in Holland range from a minimum
of 25% to a maximum of 100%. The combined effect of asset allocation and the
particular characteristics of the pension funds, including their appetite for risk,
lead to dramatic differences in the investment portfolio. These differences have
a strong hold on the portfolio allocations and are therefore of great importance
in the determination of the relevant performance measurement.

Similar to earlier studies, a major part of performance is explained by the
portfolio allocation decision. However, in general the asset allocation decision
is complex. It not only involves the tradeoff between the various investment
categories, it also involves the interaction with pension liabilities. Moreover,
the asset allocation involves the allocation and balancing of risks and returns
among several of the pension fund’s interest groups.

2.2 PENSION FUND ASSET LIABILITY MANAGEMENT

With respect to the pension plan there is flexibility in the vesting and indexing of
benefits. Dutch pension funds typically aim to compensate beneficiaries fully for
the effects of inflation on their pensions. There can, however, be restrictions as
to the level of indexing. With respect to premium policy, alternative contribution
schemes exist that primarily affect the timing and level of regular contributions,
conditional on the solvency of the pension fund. When the fund is confronted
with a solvency shortfall, additional premium contributions are mandated by
the fund’s regulators. If the fund reduces the average level of premium contri-
butions by assuming that the investment production increases by a more active
investment policy, then the so-called pension risk increases. Indeed, for the
participants the risk increases because there is a corresponding risk of insol-
vency. To the plan sponsor, increases in risk result because the possibility of
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mandatory premium contributions increases as well. As a consequence, the
sponsors face higher contribution rate volatility. These are just examples of the
relationships between the different policy aspects that are involved in pension
fund risks. Therefore in order to evaluate these decisions, a comprehensive ana-
lysis of the effects to the various interest groups is required. This is where an
asset liability management (ALM) analysis may support the decision-making
process. The objective of an ALM analysis is to identify the risk and return
tradeoffs to the various interest groups in relation to their constraints. It should
indicate whether a satisfactory mix of policy decisions, which deals with the
level and volatility of premium contributions, the indexing of future benefits
and the funding level or solvency of the pension fund, can be accomplished.
Of course, the interests of the different stakeholders can be of a more or less
conflicting nature.

Further, the analysis is complex due to the fact that it involves multiple
periods with many uncertain outcomes. Even though the conditions of each
pension fund are unique, some important determinants can be indicated. First
of all, the nature of the pension contract is important. Pension fund liabilities are
characterized by the actuarial and accounting conventions involving the level
and vesting of liabilities and the future indexing of benefits. Further, pension
fund liabilities are characterized by the number of participants per category, the
maturity of the workforce and demographic trends. Secondly, the characteris-
tics of the plan’s sponsor are of importance. Depending on the percentage of
premium to be paid by the sponsor versus the wage-level, a different view on
risk and return may exist. As a result, the tolerance with respect to premium, i.e.
contribution volatility, will vary per fund. Of notable relevance to the plan’s
participants, and to a lesser extent to the fund’s regulators, is the financial
strength of the sponsor.

2.3 THE DUTCH TRIANGLE

Even though the conditions of each pension fund are unique, there are similar-
ities with respect to the main issues. Pension fund liabilities are characterized
by the actuarial and accounting conventions involving the level and vesting of
liabilities and the future indexing of benefits. Further, pension fund liabilities are
characterized by the number of participants, the maturity of the workforce, and
the plan sponsor’s policy with respect to hiring new employees and demographic
trends. The characteristics of the pension plan’s sponsor are also important.
Depending on the percentage premium to be paid by the plan sponsor versus
the wage level, there may be different views on risk and return. Tolerance with
respect to contribution volatility will vary accordingly. Of particular relevance
to the plan’s participants, and to a lesser extent to the fund’s regulators, is
the financial strength of the plan sponsor. Default risk affects tolerance of the
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parties with respect to the timing and volatility of contributions as well. To
manage this process the following three-tiered management structure has been
proposed by Sortino, van der Meer and Plantinga (1999):

• the strategic level, where policy determines the information needed at all
levels

• the tactical level, where policy is implemented and actions are concerned
with risk-return tradeoffs

• the operational level, where the execution of buy and sell orders takes
place.

The three levels are shown in Figure 2.1.
Dutch pension funds typically aim to compensate beneficiaries fully for the

effects of inflation on their pensions, although there may be restrictions related
to the maximum level of indexing or to the solvency of the fund. With respect
to premium policy, alternative contribution schemes exist that primarily affect
the timing and level of regular contributions, conditioned on the solvency of the
pension funds. When a fund is confronted with a solvency shortfall, the fund’s
regulators mandate additional premium contributions.

2.3.1 The strategic level

The allocation of risk and return across the fund’s stakeholders are critically
affected by volatility of premium contributions, indexing of future benefits, and
funding level or solvency of the pension fund. If the plan sponsor reduces
the average level of premium contributions by pursuing a more aggressive
investment policy, risk increases. To the participants, increases in risk result
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because there is a correspondingly higher probability of insolvency. To the plan
sponsor, increases in risk result because the possibility of mandatory premium
contributions increases as well. As a consequence, the sponsors face higher
contribution rate volatility. The main threat to all stakeholders is a shortfall
relative to the minimum funding requirements, either now or in future time
periods. For the plan sponsor this calls for additional premium contributions.
For the plan participants, this allows for the possibility of lower future benefits.
It is therefore suggested to use downside risk measures with respect to these
shortfalls. Since several future periods are involved, the traditional downside
risk measure in Sortino and van der Meer (1991) is extended to the discounted
downside risk described in van der Meer and Smink (1998).

To evaluate these policy decisions, a comprehensive approach that identifies
the impact on the various interest groups is required. An asset liability manage-
ment (ALM) analysis is admirably suited to the task. It will identify those asset
allocations across asset categories that best accommodate the various decisions
dealing with the level and volatility of premium contributions, the indexing of
future benefits, and the funding level or solvency of the pension fund.

The strategic mix of assets in the ALM study will have an expected return,
which is a valuable estimate of the return that must be earned at a minimum
in order to accomplish the policy goals of the plan. This is referred to as the
minimal acceptable return (MAR).

The MAR is what links the decisions of top level management at the strategic
level to the management decisions at the tactical level and the operational level.
It is also the MAR that serves as the point from which risk is measured for
both performance measurement and asset allocation, thus linking performance
measurement with asset allocation. It is this crucial link that distinguishes the
Dutch Triangle from more traditional approaches for pension fund management.
This structure shapes the policy statements as follows:

(1) The goal is to fund the pension plan within the constraints identified in
the ALM study.

(2) The investment objective is to maximize the expected return above the
MAR, subject to the risk of falling below the MAR.

Notice that the objective supports the goal, in that, if the object is achieved,
the goal will be accomplished. The rate of return that separates success from
failure to accomplish the goal is the MAR. Only returns equal to or greater
than the MAR assure success. The goal is not to make money. Making money
is how one accomplishes the goal. The MAR identifies how much money is
needed at a minimum. Unless the MAR is established at the strategic level,
there is a danger that it will either be absent from the performance measurement
and asset allocation decisions, or it will be misspecified. Without a directive
from above, those responsible for implementing policy usually look outside
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the organization for advice on what tools to use for performance measurement
and asset allocation. If the MAR decision gets pushed down to the operational
level, the consultants or portfolio managers may select a substitute for the
MAR that presents their results in the most favourable light, but has little or
nothing to do with the return necessary to accomplish the stated goal of the
pension plan.

2.3.2 The tactical level

At the tactical level, management is concerned with implementation of policy.
Actions are concerned with risk-return tradeoffs with respect to performance
measurement and asset allocation. The task is to determine what combination
of active managers and passive indexes to hold in portfolio. It is the responsi-
bility of the chief investment officer of the pension fund to obtain the tools for
accomplishing this task in a manner that is consistent with established policy.
This process begins with performance measurement relative to the MAR.

Should the MAR for both equities and fixed income portfolios be the mean
of the benchmark identified in the ALM study, or should equity managers be
measured relative to the equity component, and bond managers measured rela-
tive to the fixed income component? I believe the performance of all managers
should be measured relative to the strategic MAR identified in the ALM frame-
work shown below. (For details on this reasoning see Figure 1.12 in Chapter 1
by Sortino.)

The link between performance measurement and tactical asset allocation is
the mean of the strategic benchmark, which is the MAR. In the first stage of
tactical asset allocation, an efficient frontier consisting solely of passive indexes
is generated. The benchmark establishes that segment of the efficient frontier
that is most often relevant for implementing policy decisions (see Figure 2.2).
This segment lies between the efficient portfolio that has the highest return
for the same risk as the strategic benchmark (vertical arrow), and the efficient
portfolio that has the least risk for the same return as the strategic benchmark
(horizontal arrow).

For active managers to replace passive indexes, they would have to lie beyond
the passive efficient frontier, i.e. they would have to add value. One procedure
for accomplishing this is to calculate alphas for managers to see if they provide
a higher return for the same level of risk. This procedure results in a different
mix of styles for each portfolio on the efficient frontier in the first stage of the
optimization process. A linear programming model is used to keep the style mix
constant. Each vertical line that extends above the efficient frontier represents
a combination of active managers and passive indexes that have the same style
mix as the point on the original frontier, but have a higher return.
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2.3.3 The operational level

To make the tactical decisions operational, active and passive management firms
must now be hired in accordance with the results gathered at the tactical level.
Funds are transferred to each manager and purchases of securities are made.
Each manager should be informed as to the risk-return procedures that will be
used to evaluate their management style and their future performance. The active
managers should understand that their goal is the same as the plan sponsor’s
which is the same as that of the participants: to maximize consistency and
magnitude of returns above the MAR. They incur risk of failing to accomplish
the client’s goal if they fall below the MAR.

2.4 MEASURING ALM RISK

Clearly, risk measurement depends on the perspective of the particular interest
group. Plan participants are primarily interested in the expected level of real
benefits, whereas to the plan sponsor the level of contributions and the present
value of contributions may be of a higher concern. Moreover, the perception of
risk involves preferences that can be highly individual. Several aspects of the
risk involved should be considered.

Once we have established the nature of the pension plan and its premium and
investment policy, the main threat to all stakeholders is a shortfall relative to
the minimum funding requirements, either now or in future time periods. For
the plan participants, this calls for additional premium contributions. For the
plan participants, this also involves the risk of lower future benefits. This calls
for the use of downside risk measures. In particular the measurement of:
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• shortfall probability – indicating the probability that shortfalls in solvency
may occur in a particular period;

• risk capital – indicating the expected cash value of the shortfalls in the
period under consideration, similar to Merton and Perold (1993); and

• discounted downside risk – indicating the discounted volatility of the
present value of the shortfalls are the important elements.

As the fund’s solvency over time is the major issue, discounted downside risk
is employed (see Sortino and van der Meer, 1991). In all cases the present (cash)
value for various periods and scenarios according to an option-pricing technique
has to be determined (see Merton and Perold, 1993). The use of present values
enables the comparison of the effects of different sets of policy parameters.
Alternative policy assumptions produce different results with respect to contri-
bution rates, real level of benefits and funding risks. The costs of alternative
pension schemes with different indexing clauses and different contribution rates
has to be evaluated.

2.5 CASE STUDY: PENSION FUND XYZ

The foregoing will be illustrated by a case study, based on practical experi-
ence in a Dutch pension industry environment. Characteristic for this firm is
its relatively young and dynamic workforce. As a result, the turnover rate of
employees is rather high. The firm XYZ regards its pension benefits as an
important ingredient in its overall employee benefits package. On the one hand,
the objective of pension fund XYZ is to secure the value of future benefits to a
maximum extent. The level of indexing of contributions and benefits, however,
is, to a considerable extent, at the discretion of the XYZ company. On the
other hand, the company seeks to stabilize its premium contribution rate by
assuming a dynamically calculated premium level reflecting the expectations
for the coming 30 years (the analysis in this study starts in 1996).

As an illustration of the evolution of the fund over time, the development
of the technical provisions is shown in Figure 2.3, assuming no growth in the
number of employees. Despite the zero growth, the population of employees
changes and the number of former employees increases rapidly.1

Since the population is rather young on average, the actual number of pension-
ers increases only slowly until the year 2025. Of course the main part of the
provisions are those corresponding to the regular retirement pensions of the
employees. The next part corresponds to the reserves held for the partners’
pensions. The reserve held for additional and temporary pensions (which is not
shown) accounts for the next largest part. The reserves of former employees
are included in reserved values. Given the strong growth in this number, the
turnover rate of employees has an important effect on the total value of the
liabilities.
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2.5.1 Shortfall probability

Let us now take a look at the risk and returns of the pension fund XYZ. The
probability of attaining a particular shortfall or surplus level ten years from now
should be analysed. An annually rebalanced asset mix, including 70% long-term
government bonds and 30% equities, is considered. As can be observed from
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Figure 2.4, the probability of a shortfall in the year 2005 is about 30%. This
includes all levels of shortfalls ranging from minus NLG 300 million to zero
and assumes that possible previous shortfalls have been funded. If the entire
probability distribution is known, the shortfall probabilities corresponding to
certain pre-specified target levels can easily be determined.

For instance, the probability of a shortfall in excess of NLG 200 million is
less than 5%, under the policy assumptions made. If the fund’s management
feels that a shortfall over NLG 200 million is unacceptable, then strategies can
be designed to avoid this possibility.

In section 2.4 above, reference is made to the expected present value of
shortfalls as ‘risk capital’, and to the scenario-weighted volatility of the present
shortfalls as ‘discounted downside risk’. The probability distribution of the
shortfalls is non-symmetric as a result of the interactions between several policy
and plan characteristics. This increases the relevance of downside risk measures.

2.5.2 Level of indexing

As was mentioned at the start of this case study, the level of guaranteed indexing
is one of the determinants. By limiting the level of indexing, the costs of pension
liabilities can be reduced. However, limiting the level of indexing also affects
the future level of benefits and thereby determines the quality of the pension
scheme to the participants. Consider how a cap on the indexing of future benefits
affects their relative purchasing power: by capping indexing, i.e. indexing occurs
if the inflation rate is below the cap; whereas, in case of an inflation rate higher
than the cap, the level of indexing equals that of the cap rate. For very low levels
on the index cap, the purchasing power of the benefits declines rapidly with
the length of time under consideration (see Figure 2.5). For instance, the thick
line in this figure shows that after 15 years (in 2010) the average purchasing
power value will be 63% in terms if its current counterpart, when the cap on
inflation equals 0% and no indexing occurs. By increasing the level of the cap,
the average purchasing power of the benefits rises, until the cap is sufficiently
high to ensure that inflation will not rise above the cap rate. Clearly, the level of
indexing is one important aspect in the design of the pension plan that critically
affects the quality of the plan to the participants.

The three-dimensional Figure 2.5 shows that by putting together the 1996
purchasing power of premiums (see vertical axes) and the level of inflation-
resistance (see horizontal axes with index cap at 15%), the time-related conse-
quences of the index policy can be analysed. The next step is to relate the index
cap to the two other important determinants of the pension policy, i.e. premium
contributions as a percentage of wages and the discounted downside risk (see
section 2.4). Thus the important dimensions of pension fund risk can be joined.
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2.5.3 Coherent determinants of the pension fund policy

In Figure 2.6, the mentioned dimensions are shown in their relative coherence.
The time dimension that is visible in Figure 2.5 is implicit in Figure 2.6. This
has been incorporated in the discounted downside risk by means of the real
value determination of the relevant shortfalls.2 The discounted downside risk,
shown on the horizontal field, is thus a crucial determinant. If for instance we
look at the vertical ‘rear wall’ of the figure (i.e. for a given index cap of 10%),
the declining line at the back of the projected surface indicates that the premium
contributions decline when the discounted downside risk increases. This decline
is even stronger at a lower level of the index cap.

The connection between premium contributions and index cap for a given
level of discounted downside risk can be made. As was to be expected, a
reduction of the index cap causes a decline in premium contributions (shown
in the ‘grid’ by means of lines that move from the back downwards to the
front). Thus a graphical depiction of a kind of risk universe for the case study
of pension fund XYZ can be achieved.

Of course, the shape of the risk universe depends on the investment policy
and the involved risks. In this respect, each point in the downside risk universe,
i.e. each point of the curved surface, hides an optimum investment portfolio.
In order to determine the surface for this specific situation the minimum risk
strategy based on (annually rebalanced) portfolios of investment in two asset
categories, i.e. fixed income and equities has to be considered. Thereby risk is
measured by the previously defined discounted downside risk measure, based on
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the projection period covering the next 15 years. Low risk portfolios obviously
include a high proportion of fixed income.

Figure 2.6 illustrates that the average required contribution rate can be
reduced by assuming an additional risk. Moving to the right-hand side of the
universe, the level of discounted downside risk increases by adopting alternative
investment strategies for a particular level of the index cap. In other words, by
changing the level of the discounted downside risk determinant, the strategic
asset allocation will change. From the bell-shaped line on the right-hand side of
the universe, one can deduce that the risk increases non-proportionally as the
contribution level decreases, as an increase in the index cap also corresponds
to an increasing risk.

2.6 ALM AT THE LEVEL OF THE PLAN SPONSOR

Until now, only limited attention has been addressed to the solvency aspect of
the fund in relation to the solvency of the fund’s sponsor. In the case of the
imaginary pension fund XYZ, this in the corporation XYZ. It has been argued
by interest groups representing the fund retirees, that part of the gains should be
kept within the funds in terms of a lower contribution level, in order to secure
the level of future indexing against termination of premium payments by the
sponsor as a result of financial distress.

There are four alternative conditions the fund may be in. When both the
fund and the fund’s sponsor are solvent, there are no problems. When the fund
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is insolvent, whereas the sponsor is solvent, additional payments by the fund’s
sponsor are demanded by the fund’s regulator. Although this can be undesirable
to the sponsor, the payments can be met since the sponsor is solvent. When the
fund is solvent whereas the sponsor is not, indexing of the fund is secured as yet
by the solvency of the fund. In general, however, this situation will frequently
result in a fourth possibility, where both the fund and the sponsor are insolvent.
The risk involved in this situation is called default risk.

The reason for this transition is that the solvability of the fund, as measured
by the regulators, is generally based on current benefits, not on indexed benefits.
Therefore, what plan participants typically stand to lose is the level of indexing.
Additional ALM risks due to aggressive portfolio strategies generally result in
asymmetric risk to the plan participants. Where the main gains in terms of lower
premium contributions accrue to the sponsor, the risk in terms of losing indexing
primarily accrue to the participants (in this argumentation the default risk is
partly based on the meaning of the definition of the solvability of the fund).

To analyse the effect of credit risk in future premium contributions, the
universe indicating the relation between indexing, premium contributions and
investment policy, has to be redrawn. The universe is therefore limited by
taking into account the present value of the pension liabilities, adjusted to the
default risk.

Of course this default risk-adjusted present value depends on the particular
term structure of the solvency pressure for the sponsor during the period consid-
ered. By determining the universe in this way, it links directly to the present
value of the liabilities. Here, one should think of the present value as a best
estimate of the market value of the liabilities. Figure 2.7 shows that for the
case study, the universe is limited (compared to the universe of Figure 2.6).
By assuming more ALM risk the present value declines, albeit at a slower rate,
than the average contribution rate; the decline in present value corresponds with
a small increase in the level of indexing.

2.7 DETERMINATION OF THE STRATEGIC INVESTMENT PORTFOLIO

The final element in the analysis of the pension fund universe concerns the actual
determination of the strategic investment portfolio. As already indicated, each
point on the risk universe represents a particular strategic portfolio mix. There-
fore, one can analyse any point of the universe in relation to the corresponding
strategic investment portfolio. See for instance the dot ‘P’ in Figure 2.7. The
(annually rebalanced) portfolio that is represented by this dot consists of 15% in
equities and 85% in fixed income. This investment policy results in a minimal
discounted risk of NLG 34 million, a contribution level of 13% premium (as a
percentage of salaries) and a 3% cap on indexing.
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2.8 CONCLUSION

The importance of the asset allocation decision to the investment performance of
pension funds has been demonstrated. Decisions regarding the strategic invest-
ment portfolio indeed warrant close attention. It is, however, inappropriate to
base these decisions solely on the risk and return characteristics of the individual
asset classes, the so-called asset-only framework. In determining the optimum
asset allocation for pension funds a comprehensive analysis of risks and returns
is required for all parties involved. Such an analysis, however, is complicated
by the fact that several periods have to be considered and have to include the
effects of this uncertainty in the results. A set of criteria based on the downside
risk concept has to be defined that enables analysis of the pension fund while
allowing for adjustments for deviations in shortfalls in timing and scenario.
The relationships that exist between the nature of the pension plan, the premium
policy and the investment policy have been illustrated by a case study. In this so-
called asset liability framework these three determinants are closely connected.
It is of major importance to determine an optimal balance between these deter-
minants. Thus the so-called strategic benchmark is generated, a guideline for
the investment activities and thus a standard for performance measurement in
an asset liability framework. By integrating the various elements of an pension
fund policy into a coherent structure, an optimum blueprint for the investment
policy and liability policy can be determined. This blueprint should provide a
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cost effective balance to the interests of both the plan sponsor and the plan
participants.

NOTES

1. The probability distribution for the future inflation rates depends on the current
state of the economy and requires sophisticated modelling based on all available
information. Assumptions are: average inflation of 3%, a return on cash of 1%, a
return on longer maturity bonds of 2% and a return on equities of 6%. Historical
volatilities on Dutch market returns and inflation (1949–96) are used.

2. See section 2.5 where reference is made to the corresponding method of Merton
and Perold (1993).
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Chapter 3

The consultant/financial planner’s view: a
new paradigm for advising individual

accounts
SALLY ATWATER

SUMMARY

In this chapter two paradigms are identified for the implementation
of financial services by consultants to defined benefit (DB) plans on
the one hand, and financial planners for individuals on the other. The
investment consultant paradigm focuses on who will manage the
money, while the financial planning paradigm focuses on the client’s
lifestyle goal. The blending of these two paradigms will likely be the
result of the explosive growth of capital into 401(k) type plans.

3.1 THE INVESTMENT CONSULTANT PARADIGM

The investment consulting business developed in the late 1960s and early 1970s
to meet the demands of plan sponsors of defined benefit (DB) plans. Plan
sponsors hired consultants to assist them in meeting the fiduciary responsibilities
mandated by ERISA, enacted in 1974. Their foremost need was to hire external
money managers. An external focus on performance evaluation grew out of the
competitive strategy of employing the best portfolio managers in the market
place. Actuaries were hired to deal with the liabilities and consultants were hired
to deal with the assets; hence the term asset manager became interchangeable
with portfolio manager.

Implementation in the investment consulting arena has generally been with
separate accounts. Because the large account sizes could meet the required high
minimums for separate account management, competition for clients drove this
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implementation. The selection of an asset manager from hundreds, and later
thousands of qualified managers, required quantitative tools for data gathering
of qualitative and quantitative data on separate account managers. A side benefit
is that the due diligence process for manager selection and monitoring became
well defined.

The early quantitative models developed in the academic community in the
1950s measured how individual managers performed relative to the market.
Soon, standard deviation, beta and expected return became an essential part
of the consultant’s tool kit of financial services. Performance relative to the
market became the standard, and beating the market return on a risk-adjusted
basis became the goal.

Since the late 1970s, measuring performance relative to a peer group has
gained in popularity. In this peer group analysis, a manager’s investment style
is measured by the returns relative to style indexes over time. Since 1992,
one of the primary performance measurement tools for accomplishing this has
been returns-based style analysis, developed by William F. Sharpe (1992). Prior
to that, style analysis was based only on the actual securities in the portfolio
and their average fundamental characteristics such as the price to book and
price to earnings ratios. Consultants can now provide answers to these ques-
tions: Is the manager really taking on more risk? Is he/she managing within
the investment parameters stated? Are we comparing this manager to the right
universe?

Beginning in the mid-1980s, many of the principles that had been used
for institutional consulting were applied to the management of smaller indi-
vidual investor portfolios. Initially these portfolios had minimum sizes of at
least $1 million. But, with the introduction of the ‘wrap’ programmes, access
to the separate account managers was reduced to accounts with as little as
$100 000 per manager. Today, the estimated average ‘wrap’ account is around
$300 000 – it may, in fact, be as low as $200 000 – and there are well over
1 million accounts in the United States, mostly managing individual investor
assets in separate accounts.

The focus of performance measurement remains primarily market oriented.
How is a manager doing relative to an index or blended index? Or how is a
manager doing relative to other managers out there in the market place? Asset
managers have learned how to get on the consultants’ recommended list – beat
the market. However, if they can’t beat the market, then at least they aim to
beat the others who didn’t beat the market.

Figure 3.1 summarizes the investment consultant paradigm.

(1) Analyse the current investments.
(2) Design the optimal portfolio, asset allocation based on time horizon,

expected return, and risk tolerance.
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Analyse current
investments

Asset allocation

Write investment
policy

Implementation

Monitoring

• Time horizon
• Expected return
• Risk tolerance

• Relative to
market

• Relative to peers
• Relative to stated

style

Separate accounts

Figure 3.1 The investment consultant paradigm

(3) Write the investment policy. The investment policy is a written state-
ment that includes the time horizon, the risk tolerance defined, the asset
allocation implemented, and the benchmarks to which performance will
be compared.

(4) Implementation is generally with separate accounts.
(5) In the monitoring process, the manager’s performance is measured rela-

tive to the market, the peers, and the manager’s stated style.
(6) The focus of the old paradigm is on who manages the money.

3.2 THE FINANCIAL PLANNING PARADIGM

Now consider the contrast between the institutional investment consultant and
the financial planner. Financial planners focus on the individual client rather
than on market activities external to the institution. They spend considerably
more effort identifying personal goals and doing needs analysis relative to those
goals. Financial planning models focus on achieving the client’s desired lifestyle
or financial goals as the basis of the plan, as opposed to seeking only higher
returns relative to the market or among their peers in the profession. Consider-
able attention is given to understanding the impact of financial choices on an
individual’s income tax situation and on the individual’s desired time frame and
tradeoffs for certain financial goals. It seems that financial planners are broader
in their scope of services that they provide to their clients, and that they focus
on individuals rather than accounts. Financial planners are primarily concerned
with how the investment performance impacts the individual’s financial goals.

Historically, financial planners have implemented investment strategies with
mutual funds. The availability of mutual funds and the lower minimums allow
clients to diversify even with small portfolios. The ability to report across fund
families in the 1980s drove even greater attraction to mutual funds. Because
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mutual funds companies advertise heavily and have been promoted in the financial
services arena, clients read and hear about them, and understand mutual funds.

The comprehensive approach in financial planning has always included
strategic income tax analysis. Planners often work with a client’s CPA to
provide detailed tax advice. Many planners target high net worth clients with
value-added services. However, the market is rapidly moving to middle income
families to advise them on their individual retirement accounts and/or 401(k)
plans.

Performance measurement in the financial planning market has been driven
by client expectations. Many planners spend their time trying to prevent their
clients from chasing returns, buying when the market is high and selling when
it is low, and helping them to understand financial concepts, e.g. the risk–return
tradeoff, diversification and long-term investing versus short-term volatility. The
quarterly brokerage statements, along with basic portfolio accounting reports,
are the typical performance measurement tools.

Because financial planners must focus on the client’s goals and needs for
the future, the financial planning analysis is forecast oriented. The initial and
key element of a financial plan is a detailed forecast of the client’s financial
future, given certain assumed investment strategies and actions on the part of
the client. This drives detailed forecasting models, calculations of the capital
requirement to meet the goal, as well as detailed taxation analysis for short-term
investing and value-added services. Financial planning disciplines are goal and
needs oriented: retirement, education funding for the children, life insurance
planning, estate planning.

Traditional financial planning forecast models use an estimated growth rate
for assets with little or no incorporation of risk analysis into the model. The
steps in the traditional retirement models are:

(1) Project the gross income needs for the period of analysis (i.e. retirement
years).

(2) Discount each of these annual needs using present value formulas to
the date the need will begin (i.e. retirement date).

(3) Forecast the valuation of the current assets and future investing program
to the same date (i.e. retirement date). This forecast is based on expected
return.

(4) Subtract the ‘expected’ value of the assets from the discounted gross
needs to get a shortfall or surplus.

(5) Adjust the variables to reach the discounted needs goal.

The variables that are usually adjusted to reach a calculated surplus or $0
shortfall in financial planning are: return, amount of future investing, years to
retirement, and lifestyle goal. When adjustments are proposed, they are typically
addressed in this order.
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Create financial plan

Design optimal
portfolio

Investment policy

Implementation

Monitoring

Mutual funds

Client expectations
Relative to goal?

Time horizon

Required return

Gather financial data
Detailed goals analysis
Detailed financial forecast

Figure 3.2 The financial planning paradigm

The implied variable in this methodology is risk. Let’s say the following
variables are fixed: cash flow available for investing, years to retirement, years
of retirement, and the lifestyle goal based on client input. The return is then
adjusted to solve for the desired surplus, and the implied variable is risk.

Figure 3.2 summarizes the financial planning paradigm.
The differences in the paradigms can be summarized as follows:

Investment Consultant Financial Planner

• Risk tolerance drives
investment policy and
lifestyle limits are the
implied variable

• Lifestyle goal drives
required return and risk
tolerance is the implied
variable

• Measure performance of the
manager and/or the
portfolio against market and
peers

• Measure performance of the
client portfolio against
client expectations

• In-depth risk analysis • In-depth goals and needs
analysis

• Sophisticated performance
measurement with narrow
focus

• Detailed forecasting with
taxation and broad focus

The investment consulting paradigm focuses on who will manage the money.
The financial planning paradigm focuses on what is the client’s lifestyle goal.
In the investment planning process, risk tolerance drives investment policy,
and lifestyle limits are the implied variable. We measure manager performance
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against a benchmark to determine if our implementation maximizes return, given
risk. In the planning process, we set the lifestyle goal, which drives the required
return. Risk is the implied variable. Measurement is against the return the client
needs to earn at minimum in order to accomplish the goal.

3.3 NEW PARADIGM

Three factors are driving demand for a new paradigm. The exponential growth
in 401(k) plans should cause asset managers and consultants to focus on the
plan participant, who now controls the money. Using the same paradigm that
applied to the external focus of DB plans is no longer applicable. Instead of
having one client who is trying to meet fiduciary standards for the management
of one pension fund, consultants will have to provide a customized service to
thousands of clients on a regular basis.

Secondly, the move toward compensation based on fees focuses the financial
consultant on asset gathering. The financial plan is the ideal instrument for
gathering information about all of a client’s assets and the financial planning
process is the ideal way to provide value-added service and become the ‘trusted
advisor’ of the client, rather than simply the investment consultant or broker.

Additionally, the far-reaching potential of interactive Internet communication
lends itself to this demand for ‘mass-customization’ and value-added services
beyond completion of a transaction.

The ideal process for the investor would be to take the best from both worlds
and create a process that relates the financial goals analysis with the investment
planning process, and measure progress toward that goal. The key elements
required for implementation of this new paradigm are as follows:

• Defined, efficient data gathering process
• Forecast model that incorporates asset depletion, impact of tax deferred

assets, and risk into the valuation of the goal
• Risk analysis around the goal valuation
• Determination of the return required to meet the goal valuation
• Risk analysis around that required return
• Goal relative performance measurement along with peer and market rela-

tive measurement

The first of these elements is a defined data gathering process that incorpor-
ates the needs of the financial plan with the needs of investment performance
measurement. Once this data gathering is defined and incorporated into the
financial advisor’s process, the potential for mining this data is enormous.

In addition to a combined data gathering process, there are some analysis
concepts surfacing that the process might use to its advantage. Management
of an individual retirement account requires recognizing the uncertainty in the
assets, the liabilities and the goal itself. The uncertainty associated with the
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accumulation of assets is obvious, and has been studied for years. Analytical
tools are available to quantify this risk, and continuing research by the invest-
ment consulting industry is making those tools better and better.

As illustrated in Figure 3.3, there is also great uncertainty associated with
the liability stream to be paid out after retirement.

Inflation, changes in interest rates, and other financial and economic factors
are going to affect the actual future income stream dramatically. Most of the
current simulation models ignore risk during retirement, and do not capture the
volatility associated with the available income stream during retirement.

In addition to ignoring or making gross assumptions about the uncertainty
associated with the retirement period, current models also ignore the interde-
pendencies and changing valuation of the goal, relative to the accumulation
and depletion periods. The accepted models assume that the amount of money
needed to retire can be calculated independent of the accumulation and depletion
of assets. However, in reality, the tax nature and amount of each of the assets
impacts the valuation of the goal. The amount required at retirement is depen-
dent upon the type and amount of assets you have at retirement, which drives
depletion order and timing of taxation during retirement. Therefore, a model that
calculates the ‘capital required’ at retirement based on assumed gross income
need during retirement ignores major fluctuations in relative taxes associated
with depletion of different types of assets. Current models do not incorporate

Outflow: Liability Stream

Inflow: Asset Income Stream

Uncertainty

Future

Figure 3.3 Simulation model uncertainties
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the risk through the depletion period, nor do they recognize that the amount
needed is completely dependent upon the amount of deferred taxes and the
timing of the payment of those deferred taxes.

The uncertainty of what cash flows will be needed after retirement prob-
ably increases as the uncertainty associated with the future value of the assets
decreases, and the uncertainty associated with how much of which type of tax-
deferred asset will be available. We need a model that would give us some
insight as to what these distributions might look like in each period. What
happens in period 2 is not independent of what happens in period 1. In addi-
tion to analysing the risk that the individual will accumulate a given amount
of money by a certain date, we must analyse the risk that the given amount of
money is in fact the amount needed.

It would seem that a forecast that could simulate the uncertainty in both assets
and liabilities would be preferable to the standard models currently in use. The
models currently on the market calculate the value required at a date to meet
a discounted value of assumed before tax need. Some models even simulate a
probability distribution around this calculated valuation of need at retirement
date. However, this is not the same as the probability that the goal will be met.
It is the probability that a given amount of assets will grow to a given amount
by a certain date, given the underlying correlations of the model are correct.

There are other practical issues that must be addressed. First, to be valid,
simulation requires the correlation equations for the underlying factors. The
variables and factors in a financial plan are numerous, complex, interrelated and
driven by the economy, the investment environment and other external factors.
Correlation of these variables requires significant research and data that is not
generally available. Second, in order to be useful, the number of factors should
be large enough to matter. If the simulation is done varying only investment
return, for example, it is probably not much more useful than a single point
estimate using expected returns.

The models that include risk analysis only include it on the accumulation or
asset side of the model. They ignore variable taxation during asset depletion,
and some do not have the research that validates the underlying correlations
between factors. Additional research is required to create a model and a process
that meets the needs of the current defined contribution and deferred taxation
environment, and meets the demands of the client of the new century – a client
that demands customized advice based on his or her personal financial goals.

3.4 CONCLUSION

Is there a way to put the best aspects of the financial planning model and
the investment consultant model together into one process model to meet the
demands of the new paradigm? Can we use financial planning techniques to
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improve the investment consulting process? Can we use sophisticated invest-
ment consulting analysis to improve the financial planning process? Is there a
way to link portfolio performance to the goal as well as to the market and the
investment policy?

The answer to all of these questions is, not yet, but soon. The drive toward a
financial planning model in the investment community has already begun. The
recognition of the need for inclusion of risk in the financial planning forecast
model has already begun. Perhaps the next step will be the widespread adoption
and industry validation of a new forecasting model for financial planning that
incorporates the depletion side of the picture. What if the academic institutions
teaching financial planning recognized the shortcoming of the current capital
needs model in a tax deferred instrument environment and developed an iterative
depletion model?

Or perhaps the investment consulting community will adopt ‘goal relative
performance measurement.’ What if performance of each manager is measured
relative to every other manager in the market with respect to the goals of
the client, and risk is defined as failure to accomplish the goal? Performance
measures proposed by Sortino in Chapter 1 using downside risk may be on
target for this analysis.

We currently have the financial planning forecast model, that includes deple-
tion, developed and in place. We also have all of the elements for the new
paradigm. The building blocks that we at CheckFree believe are important are
shown in Figure 3.4. This is the new paradigm that we will follow to implement
the ideas discussed above.

Web
M-Vest

Detailed goals
and needs
analysis

Set investing,
timeframe,
lifestyle goal

M-Plan

M-Vest, M-Search
M-Plan
Downside Risk
Simulation

M-Plan

Asset
allocation

Performance
Measurement

Detailed risk
analysis

Solve for
required return

Implementation

Financial
planning
forecast

M-Plan
Simulation M-Plan

M-Search•  M-Watch
•  APL
•  Link to M-Plan

Figure 3.4 The new paradigm
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Chapter 4

The mathematician’s view: modelling
uncertainty with the three parameter

lognormal
HAL FORSEY

SUMMARY

This chapter describes the technical underpinnings to Chapter 1
by Sortino. To facilitate the broader use of the quantitative proce-
dures developed at the Pension Research Institute, we are providing
this detailed description of these procedures, a computer program
for making the calculations, and the source code to enable finan-
cial institutions to incorporate the methodology into their existing
software, subject to an agreement to recognize the source of the
programs.

4.1 ESTIMATING NEXT YEAR’S UNCERTAINTY

Figure 4.1 contains the last three years of monthly returns from a fund you
are considering buying. You think that these returns are representative of what
could happen in any given month. What is the best way to estimate the range
of returns that could happen next year and calculate appropriate risk and return
measures for this fund?

The worst year that actually occurred was the second year. Since returns
compound it is natural to consider (1.0076)(1.0101)(0.8761) · · · (0.9485) − 1 =
0.043465 or 4.3465% as the worst we might expect in the future. But it is
clear that the worst return that might happen in the future could be quite
different from 4.3%. Why limit ourselves to what did happen to predict what
could happen. Why not take into consideration what could have happened.
One way to accomplish this is called the bootstrap procedure proposed by
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5.52, 1.62, −7.47, 5.6, −7.69, −1.02, 0.87, 4.57, 6.42, 3.08, 0.79, −0.49
0.76, 1.01, −12.4, −3.07, 10.42, 5.12, 3.95, −0.3, 4.17, −2.36, 4.05, −5.15
2.97, 3.9, 0.37, 1.01, 3.75, 3.47, 8.98, −6.35, 2.69, 3.88, −5.26, −2.44

1.01, −7.69  −7.69

Historical worst year = + 4.35% what did happen

Bootstrap worst year = − 60% what could happen

Figure 4.1 The bootstrap procedure

Efron and Tibshirani (1993) at Stanford University. Let’s assume that next
year’s return is made by compounding a random sample of 12 of the monthly
returns from Figure 4.1. Our first random draw might be 1.01%, drawn from
the fourth month of the third year (see arrow). The first draw is replaced
and a second return is randomly selected, in this case, −7.69%. Notice this
same return is again selected for the last month of one year that could have
happened.

It is easy to program a computer to make lots of these random samples and
organize the results in a histogram (see Figure 4.2) of 2500 of these random
samples of 12 monthly returns. The returns range from −60% to 80%, with
most falling around 12.7%.

The assumption that returns are uncorrelated may seem naive, but is supported
by the efficient markets theorem and empirical research (Kendall, 1953; Malkiel,
1985). While there is some evidence that sequential prices tend to follow a
submartingale, the correlation between every other return (e.g. 1 and 3) tends
toward zero. Therefore, the bootstrapped returns are very likely uncorrelated.

Figure 4.2 Bootstrap returns from Figure 4.1: histogram of 2500 annual returns
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4.2 DESCRIBING THE HISTOGRAM WITH THE LOGNORMAL CURVE

Since the histogram gives a close approximation to all 2500 return values, we
can approximate any useful statistic about the sample from the histogram. For
example, we can calculate the mean, the standard deviation and any other useful
measure of risk and return. The only information missing is the order in which
the returns were generated. Since this histogram contains 100 bars it takes 102
numbers (the lowest value, the width of a bar, and the 100 heights) to define the
histogram. This is quite a saving from the original 2500 returns, without any real
loss of information. But we can accomplish even more with only three numbers.
The basic idea is to approximate the histogram with a curve described by an
equation defined with three numbers or, more technically, three parameters. As
we will explain later, we will be able to compute the desired statistics about
the risk and rewards of an asset from just these three parameters. To understand
the nature of the curve-fitting procedure, look at the graphs in Figure 4.3.

The histogram on the left is a smoothed version of the histogram in Figure 4.2.
The smoothed version was obtained by averaging bars, so it is a histogram of
moving averages. We do this to bring out the underlying regularity of the returns.
It is apparent that this regularity can be described with a curve. As you can see
from the middle graph, we have found a curve that does a good job. The curve
is not a normal curve, although it looks similar to one. If you look carefully
you will notice our curve is a little skewed to the right. The normal curve is
always symmetrical.

The normal curve often does a good job in describing data when each data
point can be considered as the sum of terms. In our problem, each year’s return
was constructed as a product of monthly returns, not as a sum. So, although a
normal curve might fit reasonably well, the fact that we have a product leads us
to look at another curve. Statisticians have provided us with a good candidate,
the lognormal (Aitchinson and Brown, 1957). Remember, logarithms translate
a product into a sum. So the basic idea is simple. If data points are constructed
as a product then their logarithms will often follow fairly closely a normal
distribution. Rather than working with logarithms of data, we can do some

6.2% 12.7% 31.5% 6.2% 12.7% 31.5%

Figure 4.3 Fitting the three parameter lognormal: smoothed histogram, smoothed histogram
with lognormal curve and the lognormal curve
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mathematics and translate the normal curve to another curve, the lognormal,
which describes the data directly. Here we use a three parameter version of the
lognormal for our curve, not the basic two parameter lognormal. This allows
us a great deal more flexibility. As you see, it fits quite well in our example.
We have found that it gives an excellent fit to bootstrapped data in all but the
most extreme situations.

4.3 SOME DETAILS OF THE THREE PARAMETER LOGNORMAL

The formulas for the lognormal are not pretty. They are generally described
in terms of the parameters for the underlying normal. So, with the logarithmic
translations, they can get a bit involved. The basic formulas are collected in the
Appendix to this chapter. Also in the Appendix is information about computer
code for doing these calculations. So we will not concern ourselves here with
these technical details. What we will do is describe the essentials.

First, what are the three parameters? There is some choice in selecting the
parameters. We made these selections so that the meanings of the parameters
would be easily understood in terms of the annual returns. The parameters are
the mean, the standard deviation and the extreme value of the annual returns.
You are probably already familiar with the mean and standard deviation. The
mean is a measure of the central tendency and the standard deviation a measure
of the spread of the curve. These two parameters are enough to describe a
normal and the standard lognormal. But the three parameter version of the
lognormal uses another parameter. A lognormal curve has either a largest value
or a smallest value (see Figure 4.4). This third parameter, the extreme value,
allows us to shift and flip the distribution.

The next step is to express all the basic formulas in terms of our parameters.
The mathematical derivation of these formulas is not important for understanding
their use and so will not be given here. However the important final formulas are
collected in the Appendix. Now we must find a way of estimating the parameters
from a sample. We choose to solve this problem by using the sample mean and

5.0% 10.0% 15.0% 5.0% 10.0% 15.0% 9.0% 10.0% 11.0%

Figure 4.4 The third parameter. Notice that the first curve has a minimum at about 0%, the middle
curve has a maximum at about 20%, and the third curve is a normal curve and theoretically has no
maximum or minimum
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sample standard deviation to estimate the mean and standard deviation of the
underlying lognormal. Our estimate of the extreme value was selected on the
basis of simulations. These simulations showed that only a rough estimate of the
extreme value is required to obtain a reasonable lognormal fit. We estimate it as
follows. First, calculate the minimum and the maximum of the sample and take the
one closest to the mean. The extreme value is obtained from this value by moving it
four standard deviations further from the mean. For example, if the mean, standard
deviation, minimum, and maximum of a sample are 12%, 8%, −15%, and 70%,
respectively, then the extreme value is (−15%) − (7)(8%) = −71%, since the
minimum is closer to the mean than the maximum.

4.4 MEASUREMENTS BASED ON THE MAR

The minimum acceptable return, or MAR, is described in Frank Sortino’s
chapter ‘From alpha to omega’ (Chapter 1). We describe here four measure-
ments based on the MAR. They are:

• Upside probability: the probability that a return exceeds the MAR.
• Downside deviation: a measure similar to the standard deviation but

measures only deviations below the MAR.
• Upside potential: the probable return in excess of the MAR.
• Upside potential ratio: the ratio of upside potential to downside deviation.

Each of these measurements requires that the uncertainty of investment returns
be described with a probability distribution like the lognormal. The formal defi-
nitions are given in the Appendix. The statistics in Figure 4.5 can be quickly
calculated with the software described below.

The first two examples in Figure 4.5 differ only in extreme values. One is
a maximum and the other a minimum. Please notice how different these two
examples are even though they have the same mean and standard deviation.
These differences cannot be captured by the normal curve. The third example
is similar to the first but with a higher MAR. (Please refer to Chapter 1 for
further discussion.)

Parameters and Statistics Example 1 Example 2 Example 3
Mean 12% 12% 12%
Standard deviation 22% 22% 22%
Extreme value −50% 74% −50%
MAR 7.5% 7.5% 13.5%
Upside probability 51.9% 74% 40.4%
Downside deviation 10.5% 15.5% 14.3%
Upside potential 10.6% 11.2% 7.8%
Upside potential ratio 1.01 0.73 0.55

Figure 4.5



56 Managing Downside Risk in Financial Markets

4.5 FITTING PORTFOLIOS WITH THE LOGNORMAL

Portfolios are made up of assets. Ultimately we are concerned with the return
and risk of our portfolio, not with the return and risk of the individual assets.
We have modelled the returns of assets with the lognormal. Can we make use of
these models to fit a lognormal to a portfolio? From our choice of parameters, it
is fairly clear how to proceed. We can calculate both the mean and the standard
deviation of the returns of a portfolio from the means and standard deviations of
the assets comprising the portfolio. All we need are some basic formulas from
portfolio theory provided in every textbook in finance (e.g. Bodie, Kane and
Marcus, 1993). Our problem then reduces to finding a reasonable estimate of
the extreme value. Again, we used simulation and found that, if the minimum
for the portfolio is taken to be the weighted combination of the minimum of
the assets, and similarly for the maximum, we get an estimate for the extreme
value using the same method as for individual assets.

It is an important fact that the lognormal approaches the normal as the
extreme value moves further from the mean. The above estimation method for
the extreme value will often result in a lognormal fit to a portfolio that is close
to normal. This is reasonable since the returns of a portfolio are a weighted sum
of the returns of its constituent assets, and therefore might be expected to be
close to a normal distribution. Figure 4.6 shows how the lognormal approaches
the normal as the extreme value moves further from the mean.

4.6 EXTENSION USING SCENARIOS

We know that next year’s returns are dependent on economic and market forces
that are changing. What can be done to include these changing conditions into
our model? We briefly describe one approach, based on market scenarios. The
idea is to divide past returns into a handful of groups based on the market
scenario existing when they were generated. We then use our bootstrap approach
to fit a lognormal curve to each asset for each scenario. Finally, we obtain a
probability model for next year’s return by using a mixture of these lognormal
models with weights chosen according to our beliefs about next year’s scenario.

16.0% 23.0% 30.0% 16.0% 23.0% 30.0% 16.0% 23.0% 30.0%

Figure 4.6 Lognormal graphs with identical mean and standard deviation. The extreme values
are 2, 9 and 16 standard deviations below the mean. Note that the graphs approach a normal curve
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4.7 DESCRIPTION OF LOGNORMAL SOFTWARE

Included with this book is a CD containing the Visual Basic source code I
wrote for a program that will allow you to become familiar with the relationship
between the shape of the lognormal curve and the three parameters. You will
also be able to test with your own data the bootstrap and the lognormal fit.
Included on the software is the computation of many of the risk–return measures
defined in terms of the minimum acceptable return described by Frank Sortino
in Chapter 1. Only purchasers of this book are authorized to use this source
code for commercial purposes.

APPENDIX: BASIC MATHEMATICAL FORMULAS FOR THE THREE
PARAMETER LOGNORMAL

The three basic parameters estimated from the sample

Mean = sample mean
SD = sample standard deviation

τ = extreme value computed as described above

Some auxiliary parameters

Dif = |Mean − τ |

σ = ln

((
SD

Dif

)2

+ 1

)
μ = ln(Dif) − σ 2

α = 1

(
√

2π · σ)

β = − 1

(2σ 2)

Formula for the lognormal curve f(x)

If the extreme value is a minimum and x is greater than the extreme value then

f (x) = α

x − τ
· exp(β · (ln(x − τ) − μ))

If the extreme value is a maximum and x is less than the extreme value then

f (x) = α

τ − x
· exp(β · (ln(τ − x) − μ))
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Formula for the lognormal cumulative distribution function F(x)

If the extreme value is a minimum and x is greater than the extreme value then

F(x) = 1 − erfc(ln(x − τ) − μ)

2
√

2 · σ
If the extreme value is a maximum and x is less than the extreme value then

F(x) = 1 − erfc(ln(τ − x) − μ)

2
√

2 · σ
Note erfc is the complementary error function.

Statistics based on the MAR

Upside probability = 1 − F(MAR)

Downside deviation =
√∫ MAR

−∞
(MAR − x)2f (x) dx

Upside potential =
∫ ∞

MAR
(x − MAR)f (x) dx

Upside potential ratio = Upside Potential

Downside Deviation

Note Analytic expressions for these statistics are given in the software
included with this book.
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A software developer’s view: using
Post-Modern Portfolio Theory to improve
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The Spaulding Group, NY, USA.

SUMMARY

Originally used to improve portfolio optimization and asset allocation,
Post-Modern Portfolio Theory (PMPT) is increasingly being applied
to measuring the investment performance of portfolios, investment
managers and mutual funds. This chapter offers a primer on PMPT,
with particular emphasis on performance measurement. Relevant
research studies and performance-related case studies are presented
together with a response to some of the criticisms and misconcep-
tions that have arisen with regard to these techniques.

5.1 POST-MODERN PORTFOLIO THEORY

The foundations of traditional Modern Portfolio Theory (MPT), the standard
for much of the portfolio analysis of the past four decades, are standard devi-
ation and normal distribution. These two measures have a major limitation in
common – they are symmetrical. Using standard deviation implies that better-
than-expected returns are just as risky as those returns that are worse than expected.
Furthermore, using the normal distribution to model the pattern of investment
returns makes managers with more upside than downside returns appear more
risky than they really are, and vice-versa for portfolios with more downside
returns. The result is that using traditional MPT techniques for measuring invest-
ment performance frequently obscures important performance information.

It has long been recognized that investors typically do not view as risky those
returns above the minimum they must earn in order to achieve their investment
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objectives. They believe that risk has to do with the bad outcomes (i.e. returns
below a required target), not the good outcomes (i.e. returns in excess of the
target) and that losses weigh more heavily than gains. This view has been
noted by researchers in finance, economics and psychology for many years.1

Noteworthy among these are Sharpe (1964):

Under certain conditions, the mean-variance approach can be shown
to lead to unsatisfactory predictions of behavior. Markowitz suggests
that models based on semi-variance would be preferable; in light of the
formidable computational problems, however, he bases his analysis on the
variance and standard deviation.

and Kaplan (1997):

The appeal of below-target semi-variance2 as a risk measure is that it
looks only at the dispersion of bad outcomes. Variance (and therefore also
standard deviation) looks instead at the dispersion of all outcomes, whether
good or bad.

In 1987, Frank A. Sortino, director of the Pension Research Institute at San
Francisco State University, developed the practical mathematical algorithms of
PMPT that are in use today. These methods provide a framework that recognizes
investors’ preferences for upside over downside volatility. At the same time,
a more robust model for the pattern of investment returns, the three-parameter
lognormal distribution, was introduced.

5.1.1 The tools of PMPT

5.1.1.1 Downside risk
Downside risk is measured by target semi-deviation (the square root of target
semi-variance) and is termed downside deviation. It is expressed in percentages
and therefore allows for rankings in the same way as standard deviation.

A familiar way to view downside risk is the annualized standard deviation
of returns below the target. Another is the square root of the probability-
weighted squared below-target returns. The squaring of the below-target returns
has the effect of penalizing failures at an exponential rate. This is consistent
with observations made on the behaviour of individual decision-making under
uncertainty.3

There are two formulas for downside risk.
The continuous form:√∫ t

−∞
(t − r)2f (r) dr
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where,

t is the annual target return,
r is the random variable representing the return for the

distribution of annual returns f (r),
f (r) is a normal or three-parameter lognormal distribution.

The discrete form:

3.464∗
√

E(t − r)2

n

where

3.464 is the square root of 12, the factor used to annualize the
monthly downside risk,

E is the mathematical expectations operator;
t is the monthly target return,
r is the random variable representing monthly return,
n is the total number of monthly returns observed.

Although more difficult to calculate, the continuous form is preferable for
the following reasons.

(1) The continuous form permits all calculations to be made using annual
returns, the natural way for investors to specify their investment goals.
The discrete form requires monthly returns for there to be sufficient
data points to make a meaningful calculation, which in turn requires
converting the annual target into a monthly target. This significantly
affects the amount of risk that is identified. For example, a goal of
earning 1% each and every month results in greater risk than a goal of
earning 12% each and every year.

(2) A second reason for preferring the continuous form to the discrete form
has been proposed by Sortino (1997):

Before we make an investment, we don’t know what the outcome
will be . . . After the investment is made, and we want to measure
its performance, all we know is what the outcome was, not what
it could have been. To cope with this uncertainty, we assume that
a reasonable estimate of the range of possible returns, as well as
the probabilities associated with those returns can be estimated
. . . In statistical terms, the shape of [this] uncertainty is called a
probability distribution.

In other words, looking at just the discrete monthly values does
not tell the whole story. Instead, these values need to be used to
help identify a distribution of all the values that could have been
earned. From this distribution, we then can measure the risk that
was taken.
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Using the observed points to create a distribution is a staple of conven-
tional performance measurement. For example, monthly returns are used to
calculate a fund’s mean and standard deviation. Using these values and the
properties of the normal distribution, we can make statements such as the like-
lihood of losing money (even though no negative returns may actually have
been observed), or the range within which two-thirds of all returns lie (even
though the returns identified in this way do not necessarily have to have actually
occurred). Our ability to make these statements comes from the process of
assuming the continuous form of the normal distribution and certain of its
well-known properties.

In PMPT an analogous process is followed:

(1) observe the monthly returns,
(2) fit a distribution4 that permits asymmetry to the observations,
(3) annualize the monthly returns, making sure the shape characteristics of

the distribution are retained,
(4) apply integral calculus to the resultant distribution to calculate the appro-

priate statistics.

Figure 5.1 highlights the fact that downside risk is a relative risk measure,
dependent upon the investor’s investment goal which is specified as the target
rate of return.

5.1.1.2 Downside frequency and average downside deviation. . . how
often and by how much?

Just as standard deviation uses the properties of the normal distribution to
calculate probabilities and ranges of returns, the properties of PMPT can be
used to provide additional insights in interpreting performance results. From the
continuous form, two components of downside risk can be calculated: downside
frequency and average downside deviation.

Downside frequency measures the frequency with which the returns have
fallen below a target. Average downside deviation is the average shortfall below
the target – in those instances in which the target was not achieved . With these,
we can measure the frequency and magnitude of the failure. This information
can provide useful insights as to the source of the risk.

Table 5.1 illustrates this for a 9% target. The Russell 2000 shows a substan-
tially lower failure rate (as measured by downside frequency) than EAFE, but
the average shortfall (as measured by the average downside deviation) is higher.
Overall, the Russell 2000 is the riskier of the two (as measured by downside
deviation) because of the exponential weighting of the average downside devi-
ation in the downside deviation calculation. A similar pattern is seen when
comparing the S&P and Lehman indexes. Of course, different results will be
found when using different targets and time periods.
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Figure 5.1 Downside risk for varying targets based on monthly returns, 1992–96

Table 5.1 PMPT statisticsa for 9.0% target for five years, 1992–96

Downside Downside Average downside
Index deviation (%) frequency (%) deviation (%)

90-day T-bill 4.64 100.00 4.63
Lehman aggregate 6.85 49.67 5.38
S&P 500 7.37 21.42 9.95
MSCI EAFE 10.36 55.98 11.54
Russell 2000 12.15 24.15 14.95

aCare must be taken with these statistics, since using them independently of each other
can lead to erroneous conclusions. For an excellent review of this topic, see Balzer
(1994).

5.1.1.3 Sortino ratio
The Sortino ratio measures returns adjusted for the target and downside risk. It
is defined as:

r − t

d
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where

r = the annualized rate of return,
t = the target return,
d = downside risk.

This ratio replaces the traditional Sharpe ratio as a means for ranking
investment results. Table 5.2 shows risk-adjusted performance for several major
indexes using both Sortino and Sharpe ratios. Notice how the Lehman aggregate
and MSCI EAFE compare – the Lehman ranks higher using the Sharpe ratio
whereas EAFE ranks higher using the Sortino ratio. In many cases, manager or
index rankings will be different, depending on the risk-adjusted measure used.
This is illustrated in more detail later in this chapter.

5.1.1.4 Volatility skewness
Volatility skewness is the ratio of a distribution’s upside variance to its down-
side variance, where the variances are measured relative to the mean. If the
distribution is symmetrical, it has a skewness of 1.00. Values greater than 1.00
indicate positive skewness and values less than 1.00 indicate negative skewness.

Table 5.3 shows the skewness and variance components of several major
indexes. Only the T-bill index has approximately equal upside and downside
variance – all the others are significantly positively or negatively skewed.

Skewness does not appear to be related to the overall market environment.
One might expect that bull markets produce positive skewness and bear markets
negative skewness. For the period analysed in Table 5.3, the S&P 500 returned
in excess of 15% per year; yet it is significantly negatively skewed. The shape
of this index is confirmed by the statistical skewness.

Figure 5.2 shows the actual distribution of the S&P 500 for this period
compared to its normal approximation. The significant negative skewness is
clearly evident.

Table 5.2 Risk-adjusted ratios for five years,
1992–96

Sortino Sharpe
Index ratio∗ ratio

90-day T-bill −1.00 0.00
Lehman aggregate −0.29 0.63
MSCI EAFE −0.05 0.30
Russell 2000 0.55 0.93
S&P 500 0.84 1.25

∗Based on monthly returns vs. 9.0% annual
target.
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Table 5.3 Skewness statistics for five years, 1992–96

% of total variance % of total variance
Volatility from returns above from returns below Statistical

Index skewness the mean the mean skewness∗

Lehman aggregate 0.48 32.35 67.65 −0.18
Russell 2000 0.59 37.19 62.81 0.59
S&P 500 0.63 38.63 61.37 −0.28
90-day T-bill 0.93 48.26 51.74 −0.01
MSCI EAFE 1.21 54.67 45.33 0.13

∗This is the usual statistical measure of skewness (the third moment of the distribution). Zero
skewness represents symmetry while positive and negative values indicate positive and negative
skewness, respectively.
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Figure 5.2 Distribution of S&P 500 lognormal fit to monthly returns, 1992–96

Figure 5.3 shows the results of a more comprehensive statistical analysis on
return distributions.

We tested the hypothesis that the normal distribution is an accurate repre-
sentation of the distributions of several major asset classes over a wide range
of time periods.5 The results, summarized in Figure 5.3, are dramatic. Overall,
returns for the five indexes are not normally distributed more than 60% of the
time. The frequency of non-normality ranged from 45.5% for EAFE to 85.7%
for the Russell 2000. This finding has significant implications for investors using
standard deviation to measure the riskiness of their portfolios.
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5.2 PMPT IN PRACTICE

The tools of PMPT have many practical applications in performance measure-
ment today. Used together, they can help investors understand how performance
results were achieved and whether there was compensation for the level of risk
taken. The following case studies demonstrate two different approaches to using
PMPT for performance measurement.

5.2.1 Ranking managers by risk-adjusted return

The Sortino and Sharpe ratios both measure risk-adjusted performance. They
differ in the selection of reference return (target and risk-free rate, respectively),
and risk measure (downside deviation and standard deviation, respectively). The
following example illustrates how the rankings of investment managers can be
affected by the choice of the risk-adjusted measure.

Thirty equity managers were randomly selected from the Bankers Trust/
Independent Consultants Consortium database.6 The managers were ranked
according to Sortino and Sharpe ratios for the ten-year period through 1995.
The average changes in rankings for each manager are shown in Figure 5.4.

The ranking changes due to the selection of both risk-adjusted measure and
target returns are clearly significant. In fact, we found in some cases individual
firms tended to rank better or worse depending on the target selected, suggesting
that some firms are better suited for certain investment assignments than others.
This is particularly important for practitioners. Furthermore, using the Sortino
ratio in this way is an effective screening mechanism to help identify managers
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Figure 5.4 Effect of manager rankings due to use of Sortino vs. Sharpe ratio (30 manager
sample: annual returns, 1986–95)

who should be further evaluated for a particular assignment. It can also be used
to complement a style analysis being used for manager screening.

5.2.2 Comparing two managers

Additional analysis using downside frequency, average downside deviation and
skewness can provide further insights into the characteristics of the managers,
as illustrated in the following example. We have already shown that standard
deviation can distort investment performance and lead to erroneous conclusions.
This example illustrates this point as well: risk and return statistics for the five
years 1991 through 1995 for two actual managers are shown in Table 5.4.

Traditional MPT analysis shows that the managers have identical Sharpe
ratios, indicating that each has provided the same level of return per unit of
volatility. PMPT analysis shows a very different picture, with Manager A’s
Sortino ratio more than 10 times that of Manager B. On this basis, A is clearly
preferred to B. How can we explain these differences? The answer lies in the

Table 5.4 Comparative statistics for MPT and PMPT performance analyses

Manager A Manager B Better manager

Return 19.3% 16.6% A
MPT analysis
Standard deviation 10.5% 9.0% B
Sharpe ratio 1.84 1.84 Same
PMPT analysis (10% target)
Downside risk 2.1% 17.4% A
Sortino ratio 4.43 0.38 A
Volatility skewness 1.41 0.41 A
Upside volatility 58.4% 41.6% A
Downside volatility 29.1% 70.9% A
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Figure 5.5 Distribution of returns for Managers A and B

shapes of the two distributions, which are shown in Figure 5.5. Manager B’s
distribution is negatively skewed. This is indicated by its tail extending more
to the left than the right, illustrating a preponderance of downside (i.e. ‘bad’)
volatility. In contrast, A’s distribution is positively skewed, which is indicated
by its tail extending more to the right than the left. This illustrates this manager’s
large upside (i.e. ‘good’) volatility. These two managers’ performance records
are clearly not similar, although they are indistinguishable from each other when
viewed from a Sharpe ratio perspective!

The volatility skewness figures in Table 5.4 confirm this analysis: Manager
A has significant positive skewness, while B has significant negative skewness,
relative to a symmetrical distribution (1.00). Additional insights come from the
upside and downside volatility values: Manager A has twice as much volatility
from upside returns than downside returns; Manager B, on the other hand, has
significantly more downside returns than upside returns.

This example shows how the PMPT analysis can be used to lift the veil
of obscurity on each manager’s true investment performance. In general, the
Sharpe ratio can be safely used if the distributions are known to be close to
normal and the goal is close to the risk-free rate. In all other circumstances the
Sortino ratio will provide a more accurate result.

5.3 CRITICISMS AND MISCONCEPTIONS

5.3.1 Upside ignored

Some critics of downside risk claim that eliminating the upside returns from
the risk calculation is incorrect since strongly positive returns somehow imply
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the inevitability of correspondingly strong negative returns. ‘There is no free
lunch in investing’, and ‘eventually, the Piper must be paid’, are typical remarks
in this vein. This criticism is anecdotal and is unsupported by any published
research.

Since the mean of the distribution captures the upside returns, nothing is lost
by concentrating on downside returns exclusively for the risk calculation. Any
calculation of risk-adjusted returns, such as the Sortino ratio, will automatically
consider the upside.

5.3.2 Difficulty in choosing a single target

The downside risk calculation requires a target return to be specified. But for
those investors with multiple targets, which is the correct one? Sortino (1997)
provides an eloquent response,

Investors should make a concerted effort to find out what they are trying to
accomplish before they invest. Then, figure out what they have to earn at
minimum in order to accomplish their goals. This will probably be different
from what they can expect to earn (called the mean). This is just as true
for 401(k) investors as it is for defined benefit pension sponsors.

The goal is not to make money or earn a designated rate of return.
Making money is how one accomplishes the goal, it is not the goal itself.
If a 401(k) participant identifies the goal to be retirement at age 65, then a
financial planner can determine the rate of return this investor must earn
at minimum in order to accomplish this goal. If this same investor says,
‘My goal is to beat inflation,’ it might lead to investment in money market
funds that could guarantee failure to earn a rate of return sufficient to
retire at any age.

Similarly, the goal to beat the S&P 500 may lead to asset allocations
and manager selections that incur more risk than necessary to retire at age
65. In short, the greatest benefit of downside risk is that it is goal-oriented
and unique to the target chosen.

For investors with specific financial goals, a target chosen this way becomes
a natural link between financial and investment policies. For a defined-benefit
fund, for example, possible targets include the rate required to ensure that
contributions do not exceed some specified dollar amount, or to maintain the
funding ratio above a required level. Liability matching for defined benefit and
insurance general accounts is another natural application of the downside risk
approach. In these cases, the duration of the organization’s liabilities is matched
to a bond index with similar duration.7
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Given the definition of the target return, it is incorrect to select a target less
than the return that could be earned with certainty for the given time period.
This precludes the use of very low targets, such as zero. As a practical matter,
the yield-to maturity on zero-coupon or stripped Treasury bonds with maturity
equivalent to the time period provides useful ‘floors’ to the target. These assets
become the ‘local’ risk-free assets. Note that adjustments to the rates on zero
coupon bonds should be made to account for default and credit risks. A better
choice, however, are the stripped Treasury bond indexes offered by Ryan Labs.
These maintain the same characteristics as T-bills which are used as the risk-free
rate in traditional analysis.

5.3.2.1 The small-sample problem
Some critics claim that downside risk does not accurately capture the risk of
assets when there are few observed returns below the target. Citing the perform-
ance of the 1980–89 Japanese stock market, in which there were no years
with negative returns, they conclude that there was no downside risk.8 This
conclusion is based on a fundamental misunderstanding of how downside risk is
calculated. The correct technique is to use the continuous form of the downside
risk calculation, using the 120 monthly returns, not, as the authors did, merely
observe that none of the ten annual returns was negative and then conclude that
there was no downside risk.

When downside risk is calculated in the correct manner, it actually captures
the risk of this market better than the traditional mean-standard deviation anal-
ysis. For example, the PMPT analysis shows that the downside risk for the
Japanese stock market for the period 1980–89 was 4.8%, which is significantly
different from zero. It also shows a higher downside frequency (11.8% using
PMPT vs. 8.6% using MPT). Among the reasons for the difference in downside
frequency values is the fact that Japanese stocks were negatively skewed for
the period 1980–89.9

5.3.3 Focus on downside implies conservatism

In actual fact, the opposite is sometimes true. Cash, for example, is a risky
investment for anyone with a target of, say, 10% – a fact that is recognized by
downside risk.

5.3.4 Downside risk and standard deviation give the same results if the
distributions are symmetrical

This is incorrect in those cases in which there is a symmetrical distribution, but
the target used to calculate the downside risk is not equal to the mean. As the
target moves further from the mean, the differences between the downside risk
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and one-half the standard deviation grow larger and larger. In understanding this
characteristic of PMPT, it is important to bear in mind that downside deviation
is itself an inherently asymmetrical risk measure, independent of the symmetry
of the return distribution. Any asymmetry in the distribution merely serves to
accentuate the differences attributable to the risk measure itself.

5.3.5 Downside risk forces the choice of a distribution

As previously stated, it is necessary to fit some distribution to the observed
return-data points in order to accurately calculate downside risk and related
statistics. However, this is no different from the traditional method used in
MPT analysis in which the normal distribution is assumed in order to infer
probabilities of loss, etc. from the observed data points.

5.4 CONCLUSION

Widely used for many years in portfolio optimization and asset allocation,
PMPT is now being recognized for its applications to performance measurement.
Investment practitioners can more accurately evaluate the true performance of
investment managers, mutual funds, and other portfolios, without the restrictions
imposed by MPT. The tools of PMPT are commercially available and can be
easily incorporated into existing performance measurement programs. PMPT
also widens the areas of use to incorporate asymmetric distributions such as
futures, options, hedge funds and other derivative strategies.

NOTES

1. For a comprehensive survey of the early literature, see R. Libby and P. Fishburn
(1979).

2. The semi-variance and target semi-variance terms in these quotes are what are
more commonly known as downside risk.

3. Fishburn (1977). See also Harlow (1991).
4. The three-parameter lognormal distribution recommended for use in downside risk

calculations permits both positive and negative skewness in return distributions.
This is a more robust measure of portfolio returns than the normal distribution,
which requires that the upside and downside tails of the distribution be identical.

5. Details of the full study are available in an unpublished report from the authors.
6. We are grateful to Madison Consulting Group, New York, NY for providing us

with this information.
7. Often, standard bond indexes with known durations are used for this purpose.

A refinement of this approach is to construct a custom liability index. These
are available from firms such as Ryan Labs, New York, NY and investment
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banks. Leibowitz, Kogelman and Bader of Salomon Brothers have written at
length on shortfall and surplus optimization, which is a logical extension of these
ideas.

8. This example first appeared in Kaplan and Siegel (1994).
9. These results are more fully discussed in Rom and Ferguson (1994).
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Chapter 6

An evaluation of value at risk and the
information ratio (for investors concerned

with downside risk)
JOSEPH MESSINA

SUMMARY

This chapter evaluates two popular alternatives to the use of down-
side risk in portfolio management. Messina (1995) demonstrates that
on both a theoretical basis and an empirical basis, VaR and the
information ratio (IR) have serious weaknesses for investors who can
identify some return that must be earned at minimum (MAR) in order
to accomplish their goal. This affects asset allocation results as well
as performance rankings. While both VaR and the IR fit nicely into
the mean-variance framework, VaR is shown to be inappropriate
for risk-averse investors and the information ratio is shown to be
misleading for investors who define risk as failure to achieve a partic-
ular MAR. In comparison to a downside risk approach, the dramatic
difference in both performance measurement and asset allocation,
provide powerful results that should give those using and promoting
VaR an IR pause for thought.

6.1 VALUE AT RISK (VaR)

In this section we consider value at risk (VaR). This risk management tool has
gained wide usage in many areas of the financial services industry. VaR is not
without its critics. In a recent article in the Financial Analysts Journal Tanya
Beder (1995) discusses many problems in the application of VaR. In this chapter
we discuss VaR from a conceptual point of view and examine the question of
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whether VaR defines risk in a manner that is consistent with the risk preferences
of investors.

The basis for describing and analysing risk in modern finance is the Von
Neumann–Morgenstern Axioms (VN–M). The MPT model of Markowitz
(1959), the single factor CAPM model of Sharpe (1964), Ross’ APT model
(1976), the multiple factor style models of Sharpe (1992) and Fama and French
(1995), Sortino’s mean MAR model (Sortino and van der Meer, 1991), and
the mean-risk models of Fishburn (1977), are all consistent with VN–M risk
aversion. Within this same framework we will analyse VaR risk.

6.1.1 VaR and mean-variance MPT

In this section we compare VaR to other common measures of risk used with
the mean-variance MPT (MV–MPT) model.

6.1.1.1 Two asset example
Let us assume we are allocating funds between two asset classes which we will
label stocks and bonds. Our economic group has provided us with the following
data based on the monthly returns of the Vanguard intermediate term bond fund
and the Vanguard S&P index fund from March 1979 to July 1999.

E(RB) = 6%, std. dev. (RB) = 17%, CORR(RB, RS) = 0.1
E(RS) = 22%, std. dev. (RS) = 47%

We define portfolio returns in the usual manner:

Rp = xBRB + xSRS, xB + xS = 1.0
xB = fraction of funds invested in bonds
xS = fraction of funds invested in common stock

E(Rp) = xBE(Rp) + xSE(RS)

σ 2
p = x2

Bσ 2
B + x2

Sσ
2
S + 2xBxSσB,S

σp =
√

σ 2
p

Using these equations we generate columns 1 through 4 in Figure 6.1. Columns 3
and 4 (the means and standard deviations) are plotted in Figure 6.2 titled Oppor-
tunity Set.

6.1.2 Representing risk by the standard deviation

We can see from Figure 6.1 that risk is minimized at approximately 90% of
our money in bonds and 10% in common stock. It is important to note that this



76 Managing Downside Risk in Financial Markets

1.00

0.90
0.80
0.70

0.60

0.50
0.40

0.30
0.20
0.10
0.00

Rp = rate of return on the portfolio

E(Rp) = expected rate of return on the portfolio

Std. dev. (Rp) = standard deviation of the rate of return on the portfolio

ZSCORE = [MAR−E(Rp)]/Std. dev. (Rp)

MAR = minimum acceptable rate of return

BPROB = below MAR probability

VaR = value at risk = |E(Rp)−1.65 Std. dev. (Rp)|, VaR assumes 5% chance of Rp < VaR

*Minimum risk standard deviation portfolio

**Minimum risk VaR portfolio

***Minimum risk BPROB portfolio

Fraction of
bonds

1

0.00

0.10
0.20
0.30

0.40

0.50
0.60

0.70
0.80
0.90
1.00

Fraction of
stock

2

17.00

16.45*
17.29
19.34

22.27

25.78
29.66

33.79
38.09
42.50
47.00

Std. dev.
(Rp)

3

6.00

7.60
9.20

10.80

12.40

14.00
15.60

17.20
18.80
20.40
22.00

4

Asset allocations for bonds and stocks

−0.1765

−0.2797
−0.3586
−0.4033

−0.4221

−0.4267
−0.4248

−0.4202
−0.4148
−0.4094
−0.4043

E(Rp)

5

0.4300

0.3899
0.3599
0.3433

0.3365

0.3348***
0.3355

0.3372
0.3391
0.3411
0.3430

ZSCORE

6

22.05

19.54
19.33**
21.11

24.34

28.53
33.34

38.56
44.05
49.73
55.55

BPROB VaR

7

Figure 6.1 Asset allocations for bonds and stocks
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Figure 6.2 Graph of 11 mean-standard deviation portfolios in Figure 6.1 (risk = standard
deviation of Rp)
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is based on our definition of risk, which is defined as the standard deviation
of portfolio returns. The standard deviation can be interpreted as the expected
size of deviations from the mean return. This implies that on average over
time the average return of this portfolio will be 6.7% per period, but the actual
returns will vary about this average. In fact, the size of the deviations should
average out to approximately 16.45% per period. Since most of this variation is
due to price variability, the person who perceives risk in this manner must be
concerned about the average size of fluctuations in the value of his/her portfolio
regardless of whether the fluctuations are up or down. It also means that the
individual believes security market returns can be well approximated by either
normal or lognormal distributions. For some securities this is true, but for others
it is a poor assumption.

6.1.3 Representing risk by the value at risk concept (VaR)

Another definition of risk is called VaR. VaR is defined as the value of Rp

such that

Probability (Rp < VaR) = α = alpha
α = a parameter determined by the investor’s aversion to risk.

Since alpha is usually set in the range of 1–5%, this type of risk aversion
is probably most appropriate for investors that are primarily concerned about
near catastrophic events that will cause extremely bad portfolio returns. In our
example we assumed normal distributions of returns and set alpha equal to 5%,
a number commonly used in practice.

The assumption of normal distributions makes the VaR very easy to calculate.
We first compute the standard normal deviate:

z = [VaR − E(Rp)]

σρ

at α = 5%, z = 1.65 VaR = E(Rp) − 1.65σρ

In our example we use the absolute value of VaR to make it easier to visually
compare the VaR graph to the mean-standard deviation graph. The VaR graph
is shown in Figure 6.3.

It is apparent from column 7 of Figure 6.1 that risk is minimized by the
allocation of 80% in bonds and 20% in common stock which is different from
the allocation that minimized portfolio fluctuations. This is because we define
risk in a different manner.
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Figure 6.3 Opportunity set: risk = VaR. VaR assumes probability (Rp < VaR) = 5 %

6.1.4 Representing risk by the probability of failing to achieve a
minimum acceptable rate of return (MAR)

Another interpretation of risk is concern about achieving a return on the port-
folio that is especially important to the investor. Failure to achieve this MAR
can usually be associated with various negative economic consequences. An
example would be style managers who fail to meet or exceed the return of the
style indices that serve as benchmarks for their style. Another example is the
pension fund manager who fails to achieve the actuarial rate of return neces-
sary to fully fund his defined benefit pension plan. Many retired investors are
concerned about keeping up with the inflation rate. In each of these examples
it would make sense to define risk as

Risk = probability(Rp < MAR) = BPROB

where the MAR might be the expected benchmark, the actuarial rate of return,
or the expected inflation rate. In our example we chose an expected inflation
rate of 3% as our MAR. It can be seen from the data in column 6 that the
minimum risk portfolio is 50% in bonds and 50% in stock. This is a very
different allocation from the others because we are basing our decision on a very
different perception of risk. In the example we assumed normal distributions,
but this is not necessary for MAR models. MAR models have the advantage
that they can model some aspects of the volatility that concerns investors who
use standard deviation to represent risk, and they can also model the type of
catastrophic risk that concerns investors who use VaR to represent risk. The
BPROB graph is shown in Figure 6.4.
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Figure 6.4 Opportunity set: risk = probability(Rp < MAR). MAR = 3 % (expected inflation
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Figure 6.5 Empirical distribution of bond returns

6.1.5 When returns are not normal

Figures 6.5 and 6.6 show the empirical distributions for the bond and stock data
used in the previous examples. Clearly the data is not normal. Mean-standard
models cannot deal with this phenomenon because the standard deviation is
not a good representative parameter for volatility when data is not normal or
lognormal. VaR can still be used because one can empirically determine at what
point in the data set

probability(Rp < VaR) = α
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Figure 6.6 Empirical distribution of common stock returns

Unfortunately, VaR is still concerned primarily with catastrophic events so its
ability to adequately represent risk preferences of investors is severely limited.

BPROB can also be used without relying on normality assumptions and has
the added advantage that it represents risk preferences in a more general manner
appropriate for many investment situations.

6.1.6 Conclusion

We have compared three measures of risk: VaR, variance and below MAR
probability. Each measure of risk implies a portfolio strategy that is optimal
for that measure of risk, but may not be optimal for other measures of risk.
For instance, implementing a portfolio strategy to protect against VaR-type risk
may do a good job against catastrophic risks, but may expose the portfolio to
volatility risk or have a high probability of not meeting a particular MAR.

6.2 THE INFORMATION RATIO

This section concerns the information ratio (IR). Assuming a single factor linear
return space for portfolio P , the IR for a portfolio P is defined as the excess
return of the portfolio over the benchmark for portfolio P divided by the stan-
dard deviation of the excess return minus the benchmark. In equation terms it
has the following form:

Single factor linear return space.

RPt = RFt + [RBt − RFt ]β + εt

E(RP ) = RF + [E(RB) − E(RF )]β
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RPt = return on portfolio P at date t

RFt = return on hypothetical risk-free asset at date t

RBt = return on the benchmark portfolio B at date t

β = the beta for the factor represented by benchmark portfolio B

εt = specific risk for portfolio P

The Information Ratio (IR) for portfolio P is defined as

IRP = [E(RP ) − E(RB)]

std. dev. [RP − RB ]

There is a considerable literature on the IR discussing it from the perspective
of an ex ante portfolio and/or security selection measure and as an ex post
portfolio performance (active management) evaluation measure. We will provide
a brief, selected survey of this literature from both the ex ante and ex post points
of view.

6.2.1 IR and expected utility (EU)

In his 1989 article, Grinold discusses the ex ante value of the IR. He points out
that if an investor has mean-variance preferences of the form

EU(RP , σ 2
P ) = RP − RAσ 2

P

EU(RP , σ 2
P ) = preference function

RP = portfolio expected excess return
RA = risk aversion parameter
σ 2

P = portfolio variance of excess return

then the investor will always prefer the portfolio with the highest possible IR. In
other words, ranking portfolios by IRs is consistent with choosing the portfolio
with the highest expected utility.

We will demonstrate Grinold’s method of analysis with an example.

Definition of terms
RPt − RFt = α + [RBt − RFt ]β + εt

E(RP ) − RF = E(α) + [E(RB) − E(RF )]β
RPt = return on portfolio P at date t

RFt = return on hypotetical risk-free asset at date t

RBt = return on the benchmark portfolio B at date t

β = the beta for the factor represented by benchmark
portfolio B

α = the excess return due to value added by active
management

εt = specific risk for portfolio P



82 Managing Downside Risk in Financial Markets

It is assumed the decision-maker is concerned with maximizing the added
value from active management represented by the portfolio’s alpha.

Preferences are expressed as

EU = E(α) − RAσ 2
α

E = expectation operator
RA = decision-maker’s risk-aversion parameter
σ 2

α = variance of the portfolio’s alpha

The information ratio is defined as

IR = E(α) std. dev. (α)

We can divide the analysis into two steps. First we group portfolios according
to their information ratios. This is shown in Figure 6.7 by the three curves
labelled IR1, IR2 and IR3. In this example every portfolio on curve IR1 has an
information ratio of 0.2, every portfolio on curve IR2 has an information ratio
of 0.4, and every portfolio on curve IR3 has an information ratio of 0.67. We
see that as the IR gets larger the curves move up away from the origin.

The second step is to plot the decision-maker’s preferences. We rearrange
the EU function so it can be plotted on the same graph as the IR curves.

If EU = E(α) − RAσ 2
α then rearranging the terms we obtain

E(α) = EU + RAσ 2
α
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This is a straight line equation. EU is the intercept and RA, the risk-aversion
parameter, is the slope.

To maximize EU we find the highest possible intercept. To do this we move
the straight line representing the preference function upward in a parallel manner
until it is tangent to one of the IR curves. The optimal portfolio will always be
on the uppermost IR curve. This implies that higher IRs are always preferable to
lower IRs. To complete our analysis let us assume a RA coefficient of 0.0335.
This produces a tangent on the highest IR curve at E(α) = 6.67% and a standard
deviation of 10%.

To see what effect the decision-maker’s risk aversion has on the optimal
decision we will change the value of the risk-aversion coefficient from 0.0335
to 0.20. This lower value implies the decision-maker is less risk-averse. The
revised optimal solution is graphed in Figure 6.8. The tangent point is now
at E(α) = 11.22% and a standard deviation of 16.75%, a higher risk, higher
return portfolio which is consistent with less risk aversion.

6.2.2 IR and statistical significance of ex post performance

Grinold and Kahn (1992) discuss the relation between IRs and ex post perform-
ance. Using a simple active management strategy they demonstrate that the
portfolios with the highest active management value added also have the highest
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IRs. They estimate the average active value added by the portfolio’s alpha (α).
This is summarized in equation form below.

Alpha is estimated as the intercept term and beta is estimated as the slope
term in the simple linear regression

RPt − RFt = α + β(RBt − RFt )

Grinold and Kahn also explain the relationship among the average alpha, the
IR, and the t statistic. The average alpha is the difference between the average
active excess portfolio return (RP − RF ), and the passive excess return portfolio
(RB − RF )β. Testing for a non-zero alpha is a simple t-test for the difference
in these two average returns. That is, we test the following hypothesis:

H0: α = 0
H1: α �= 0

where we define μ1 and μ2 as

μ1 = E(RP ) − RF

μ2 = [E(RB) − RF ]β

The IR is defined as

(μ1 − μ2)

std. dev. [(μ1 − μ2)]

which is very similar to the statistical definition of the t-statistic. The exact
relationship is

IR = t-statistic√
T

where T = number of periods of observations.
Therefore, testing for a high ex post IR is equivalent to performing a t-test to

see if the active management return, the difference between the total return and
the passive return, is significantly different from zero. In other words, the IR
may be considered a sufficient statistic for determining if the active management
return is statistically significant.

For example, assume we measure the performance an active portfolio manager
over a 5-year period by regressing the manger’s returns against the appropriate
benchmark. Assume the regression produces a positive alpha and an ex post IR
for this manager of 0.89. This IR of 0.89 is equivalent to a t-statistic of 2.0, i.e.
(2.0/

√
5.0 = 0.89) This would imply there is a 95% probability that the positive

alpha we measured was due to active management skill rather than luck.
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6.2.3 Relationship between the IR and the Sharpe ratio

Sharpe (1994) examines the relation of the generalized Sharpe ratio (SR) to
expected utility analysis and the t-statistic.

SR = E(RP ) − E(RB)

std. dev. [E(RP ) − E(RB)]

Defined in this manner, the generalized Sharpe ratio is identical to the IR.
Although Sharpe uses a different analytical approach than Grinold and Grinold

and Kahn to get his results, he also demonstrated the extent to which the SR is
consistent with maximizing expected utility and that the SR is equivalent to the
(t-statistic)/

√
T .

6.2.4 Conclusion

To conclude, the IR ratio is consistent with the Von Neumann–Morgenstern
axioms for rational decision-making and the decision rule of maximizing
expected utility. Investments with higher IRs are also the investments that are
more preferred by investors with mean variance preferences. The IR is also
consistent with classical statistical hypothesis testing. Ex post portfolios with
the highest IRs are also the portfolios that have αs that are significantly different
from zero.

6.3 MINIMUM ACCEPTABLE RETURN (MAR)

Although the IR has merit, it may not be useful as a decision-making criterion
if it is measured in terms of the mean and standard deviation of returns.

Harry Markowitz, the ‘father’ of Modern Portfolio Theory, noted in his seminal
work in the 1950s that semi-variance may be a better measure of risk than variance
(Markowitz, 1959).

In a 1973 paper, psychologist John Payne noted that standard deviation
accounts for very little of people’s perception of risk. The most relevant factors
were downside frequency and the magnitude of the possible loss.

There are situations in which an investor’s primary concern is earning a
return in excess of a particular minimum acceptable return (MAR). For instance,
some investors want to protect their purchasing power so they have an MAR
equal to the inflation rate. Other investors want to protect the value of their
principal so they want to earn a positive rate of return which implies an MAR
of zero. Pension fund mangers with defined benefit plans want to earn at least the
actuarial rate of return required for their plan. These are examples where returns
below the MAR are risky, but returns above the MAR are highly desirable,
thus describing risk in terms of portfolio mean and variance would lead to
sub-optimal decisions.



86 Managing Downside Risk in Financial Markets

In the following sections we will discuss how to modify an analysis so it can
be used to analyse the risks and returns of investors and other decision makers
whose preferences are based on an MAR.

6.3.1 Defining risk and preferences in an MAR framework

6.3.1.1 MAR risk
The two most common forms of MAR preferences are mean-below MAR vari-
ance (M-BVAR) and mean-below MAR probability (M-BPROB).

MAR risk is defined in terms of below MAR variance (BVAR), below MAR
standard deviation (BTSD) and below MAR probability (BPROB).

BVARi =
∫ MAR

−∞
(Ri − MAR)2p(Ri) dRi, if Ri ≤ MAR

BVARi = 0, if Ri > MAR

BPROBi =
∫ MAR

−∞
p(R) dR

6.3.1.2 MAR preferences
Following Fishburn (1977), we assume preferences are of the form M-BVAR
or M-BPROB and can be represented by the following preference functions
consistent with the VN–M axioms of rational behaviour:

M-BVAR preferences:
EU = E(R) − RA ∗ BVAR
EU = E(R) − RA ∗ σ 2

BMAR

M-BPROB preferences:
EU = E(R) − RA ∗ BPROB
RA = risk-aversion coefficient
∗ indicates ordinary multiplication operator.

6.3.2 Making portfolio decisions in an MAR framework

Assume a pension fund sponsor has a portfolio with net asset value of $A
and the portfolio is managed by managers with styles like those defined in
Sharpe (1992). The objective is to allocate funds among N managers based on
preferences of the sponsor. To keep the analysis simple we will assume there
are two asset classes, stock and bonds, and two money managers.

The sponsors preferences are represented by

M-VAR preferences:
EU = E(R) − RAVaR ∗ VaR
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M-BPROB preferences:
EU = E(R) − RABPROB ∗ BPROB
RA = risk aversion coefficient.
∗ indicates ordinary multiplication operator.

We employ two different preference systems so we can demonstrate how
different preferences lead to different optimal decisions. We use the same data
employed for the example in section 6.1.

6.3.2.1 Two asset example
Let us assume we are allocating funds between two asset classes, which we will
label stocks and bonds. Our economic group has provided us with the following
data based on the monthly returns of the Vanguard intermediate term bond fund
and the Vanguard S&P index fund from March 1979 to July 1999. We will
use this historical data as a basis for our forecast of the future and assume the
sponsor bases his MAR on the expected inflation rate. Risk is measured as the
probability of not exceeding the inflation rate.

E(RB) = 6%, std. dev.(RB) = 17%, CORR(RB,RS) = 0.1
E(RS) = 22%, std. dev.(RS) = 47%

We define portfolio returns in the usual manner:

Rp = xBRB + xSRS, xB + xS = 1.0
xB = fraction of funds invested in bonds
xS = fraction of funds invested in common stock

E(Rp) = xBE(Rp) + xSE(RS)

σ 2
p = x2

Bσ 2
B + x2

Sσ
2
S + 2xBxSσB,S

σp =
√

σ 2
p

The analysis of our asset allocation decision is shown in Figure 6.9. Columns 1
and 2 indicate the allocations of funds between stock and bonds. Column 3 shows
the expected portfolio return that is expected from each allocation. Column 4
shows the risk level of each allocation if risk is measured by the standard deviation
of returns. Columns 6, 8 and 10 show the risk of each allocation if risk is measured
by the probability of failing to meet or exceed the appropriate MAR.

First we will assume the sponsor has mean-variance (mean-standard deviation)
preferences. In order to minimize risk the sponsor should choose the portfolio
with the smallest standard deviation. This implies allocating 90% of the funds to
bonds and 10% to stock.

However, if we assume the sponsor has mean-BPROB preferences different
allocations are required to minimize risk. We see from column 6 that an
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allocation of 50% in bonds and 50% in stock is required if the inflation forecast
is 3%. Column 8 indicates that an allocation of 40% in bonds and 60% in
stocks is necessary if the inflation forecast is 4% and column 10 indicates the
sponsor should allocate 20% to bonds and 80% to stock if the expected inflation
rate (i.e. MAR) is 5%. The sponsor’s view of what constitutes risk has a very
profound influence on the asset allocation decision.

Note that the mean-variance view of risk is not responsive to the expected
inflation rate. Regardless of the MAR the same 10%, 90% allocation is implied.
One implication of this example is that choosing managers based on a method
like the IR that compares the managers return to a benchmark portfolio would
be totally inappropriate for a fund that wanted to exceed a particular MAR.

6.3.3 Evaluating performance in an MAR framework

When decision-makers have MAR preferences, either M-BVAR or M-BPROB,
the standard mean-variance methods may not be appropriate. Empirical evidence
indicates this may be especially true for aggressive equity managers. In a paper
presented to the national INFORMS meeting, Messina (1995) analysed the
performance of approximately 2000 mutual funds using both a mean-variance
methodology and a mean-BVAR methodology. Higher growth funds earned
significantly higher rankings using M-BVAR methodology while lower growth
funds earned significantly higher rankings using M-VAR methodology.

The data base for the study was MorningStar Mutual Funds OnDisc which
contained approximately 6500 mutual funds with monthly data from 1976 to
1995. For the study we used 1998 funds with at least 5 years of monthly
rates of return. We ranked the 1998 funds in descending order based on 5-year
annualized rate of return. We then divided the funds into four groups.

Group 1: Fund1 – Fund500

Group 2: Fund501 – Fund1000

Group 3: Fund1001 – Fund1500

Group 4: Fund1501 – Fund1998

Fund1 had the highest and Fund1998 had the lowest 5-year annualized rate of
return.

We then did tests to compare excess returns on a fund by fund comparison.

6.3.3.1 Performance method 1 (PM1): excess return using the
information ratio (Sharpe ratio)

IR for fund i

IRi = Ai − RF

σi
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Ai = the average monthly return for fund i

Ai =
t=60∑
t=1

Rt/60

σ 2
i =

t=60∑
t=1

(Rt − Ai)
2/59, σi =

√
σ 2

i

6.3.3.2 Performance method 2 (PM2): excess return using the M-BVAR
index

Index for fund i

Indexi = Ai − MAR

BSTDi

Ai = the average monthly return for fund i

Ai =
t=60∑
t=1

Rt/60

BVAR2
i =

t=60∑
t=1

{Max[0], (Rt − MAR)}2/59,

BSTDi =
√

BVAR2
i

US Treasury Bond was used as the MAR in this study.
Results based on 5-year annualized rate of returns from 1990 to 1994 are

summarized in Figure 6.10. The data show that the higher growth funds (funds
1–500) have significantly higher index scores on a risk-adjusted basis than the
lower growth funds. We see that the comparative advantage of measuring perfor-
mance using a below MAR method decreases as the growth rates decrease. One
way to explain this result is that the higher growth funds have more volatility
than the lower growth funds, but much of the volatility is above the MAR,
not below the MAR. Using the standard deviation as a measure of volatility
penalizes the higher growth funds more than the lower growth funds.

6.3.4 Conclusion

We see that from both an ex ante decision-making point of view and an ex post
performance evaluation point of view the traditional IR index is not useful for
individuals or institutions that define risk as the failure to achieve a particular
MAR. This is true regardless of whether the preference system is based on
below MAR probability or below MAR variance.
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Funds 1−500
Funds 501−1000
Funds 1001−1500
Funds 1501−1998

315***
236 tie
119

85

185

Number of funds that had
greater excess returns based
on the M-BSTD index

Number of funds that had 
greater excess returns based
on the IR (Sharpe) index

264 tie
381***
413***

***Implies statistical significance at the 10% level.

Figure 6.10 Comparison of excess rates of return: M-STD vs. M-BSTD
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Chapter 7

A portfolio manager’s view of
downside risk

NEIL RIDDLES

Risk is one of those subjects on which there is widespread agreement on the
surface but little agreement on the details. I find clients agree that they do not
like risk, but often disagree on just how much risk is involved in a particular
investment.

The most widely used measure of investment risk, standard deviation, assumes
all investors agree on the degree of risk in every investment. This ‘one size fits
all’ view of risk does not capture the broad diversity of opinions I witness
regularly among our clients. Not only do our clients have different goals but
the difference in ages and amount of wealth also dictate different perceptions
of the degree of risk in a given investment.

I believe downside risk can accommodate this diversity in risk perception.
Downside risk, as the name implies, measures risk below some point. If an
investor is only worried about losing money, then that point would be zero.
In other words, the possibility of negative returns would be viewed as risky.
If an investor needs to earn a 7% return in order to meet their goal, then any
return under 7% would be unacceptable (risky). This investment return ‘floor’,
which serves as the dividing line between good and bad outcomes, is called the
minimum acceptable return or MAR.

While standard deviation interprets any difference from the average return,
above or below, as bad, most investors’ views of risk are towards the downside
only. That is, investors only worry about their returns being below some point. In
addition to a more intuitive definition of risk, the major advantage to downside
risk over standard deviation is that it accommodates different views of risk.

Institutional investors often view investment risk as the possibility of under-
performing the benchmark. Retail investors often view risk in absolute terms as
the risk of not accomplishing their goal. By using downside risk, each investor
can ‘customize’ the risk calculation using a unique MAR. In the above exam-
ples the institutional investor would use the benchmark rate as the minimum
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Figure 7.1 Changing the minimum acceptable return

acceptable return, while the retail investor would want to know the risk of falling
below 7%. Since standard deviation can only measure how tightly distributed
returns are around a mean it cannot be customized for the individual investor.

The following example will illustrate the importance of this unique ability
of downside risk to accommodate a wide range of risk perceptions. Figure 7.1
shows the range of returns of an investment from minus 100% to plus 100%.
It illustrates how two investors might view the same asset quite differently in
terms of risk, due to different goals that require different MARs. Investor A
needs an investment that returns 10% annually in order to maintain her standard
of living as a retired person. Returns below 10% incur the risk of not being
able to maintain her lifestyle. Investor B wants a good return but does not want
to incur any losses. The additional area between lines A and B represent the
additional risk perceived by investor A, as opposed to investor B.

Another limitation to standard deviation as a measurement of investment risk
lies with the underlying data. Most investors will recall the ‘normal distribu-
tion’ from their introduction to statistics course. This nicely proportioned ‘bell
shaped’ curve is what underlies all of the assumptions about standard deviation.
If the underlying data is not normally distributed then the standard deviation is
likely to give misleading results.

A number of studies have demonstrated that investment returns are not
normally distributed. If the returns are not normally distributed then investors
using standard deviation are likely to reach the wrong conclusions.

7.1 CALCULATION

As mentioned above, the distribution of investment returns is often non-normal.
The most accepted way of calculating downside risk begins with a standard
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lognormal curve and adjusts it for three parameters. Basically, one starts with
a lognormal curve and then stretches and compresses it for a closer fit to the
actual distribution. This ‘custom fit’ gives a better indication of the true shape
of the distribution.

A further enhancement to the calculation is available in systems that use
bootstrapping routines. Bootstrapping is a technique that tries to increase the
explanatory power of a limited amount of data. Bootstrapping in this case selects
12 months at random and links them together to form a one-year return. This
process is repeated thousands of times resulting in a distribution with many
observations instead of just a few.

An underlying assumption to bootstrapping is that the data is independent.
That is, one period’s return has no connection to another period’s return. Empir-
ical evidence suggests that sequential returns are not entirely independent, but
the correlation between a return and that of a return two periods later is approx-
imately zero. If the returns revert to the mean (tend to change direction) or trend
(tend to stay in the same direction) then the returns are not independent and
you cannot validly mix and match returns to form additional years.

For example, let’s assume that markets always reversed direction or ‘bounced
back’ after sharp moves. In that case, the bootstrapping procedure may string
together 12 sharp downturns resulting in a one-year return which would never
happen because returns always reverse direction. If returns follow a random
walk then bootstrapping should capture that returns generating mechanism.

One must weigh the additional explanatory power gained by the increased
number of observations against the error introduced because returns are not
entirely independent. In spite of its possible drawbacks, many practitioners
prefer to bootstrap data because they believe it is able to capture returns that
could happen, but never did happen, therefore providing a more complete picture
of the nature of uncertainty.

An often-cited example of bootstrapping’s effectiveness is the Japanese
market during the 1980s. From 1980 to 1990 there were no years in which the
market was down. Based just on this limited amount of data it appears that the
Japanese stock market had no risk during that period. However, bootstrapping
the monthly data produced a distribution that clearly indicated the potential for
negative annual returns. This riskiness showed itself in the early 1990s as the
Japanese equity market suffered marked declines. Looking at the bootstrapped
data might have alerted an investor that a sharp correction was possible.

7.2 THE DOWNSIDE RISK STATISTICS

Downside risk calculations provide the user with more information than just
a downside deviation number. The additional statistics provide insight into the
causes of the risk:
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• Downside frequency tells the user how often the returns violated the MAR
(minimum acceptable return). This is important because in order to assess
the likelihood of a bad outcome you need to know how often one occurred.

• Average downside deviation indicates the average size of the unacceptable
returns. This statistic helps an investor judge the severity of the average
‘bad’ return. An investment that lost money twice as often as a second
investment may still be preferable if it tended to lose far less than the
second investment.

• Downside magnitude is the return at the 99th percentile on the down-
side. This is a worst-case scenario. An investment may lose money only
occasionally, may average small losses when they do occur, and yet may
prove unacceptable if the potential exists for huge losses.

• All of these statistics are combined into the downside risk statistic. It
includes the size and the frequency of unacceptable returns. Downside
risk can be thought of as the equivalent to the standard deviation.

• One method of ranking investments is by their risk-adjusted returns.
For downside risk, the accepted risk-adjusted return is the Sortino ratio,
named after Frank Sortino at San Francisco’s Pension Research Institute.
It is the annualized return of the manager minus the MAR, divided by
the downside risk. Similar to the Sharpe ratio (which uses standard devi-
ation), the Sortino ratio measures how many units of return were received
per unit of risk experienced.

Table 7.1 provides an example of some downside risk statistics calculated
on a portfolio and benchmark. It is important to note that these statistics were
calculated with an MAR of zero. That is, any negative return was seen as bad.

In this case the actively managed portfolio underperformed the benchmark
by an annualized 70 basis points (15.6–14.9%). The portfolio and the bench-
mark look similar on a risk-adjusted basis when using standard deviation as the
measure of risk. The efficiency ratio (return/standard deviation) of the portfolio
is 1.1 compared to the benchmark’s 0.9.

Table 7.1 Downside risk statistics: [Sixteen years of monthly returns]

Int’l MSCI
equity EAFE
port. index

Annualized return 14.9% 15.6%
Efficiency ratio (ROR/St. Dev.) 1.1× 0.9×
Standard deviation 13.3% 17.7%

Sortino ratio @ 0.0% goal (ROR/DD) 10.9× 2.2×
Downside deviation @ 0.0% goal 1.4% 7.2%
Downside frequency @ 0.0% goal 10.7% 19.6%
Average downside deviation @ 0.0% goal 3.3% 12.2%
Downside magnitude @ 99th p’ctile 7.1% 33.5%
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Figure 7.2 Downside risk example: return distributions

The Sortino ratio, which is the return divided by downside risk, is demon-
strably higher for the portfolio than the benchmark. An inspection of the other
statistics explains what happened. Downside frequency tells us that the portfolio
lost money half as often as the benchmark (10.7% of the time vs. 19.6%). The
average downside deviation indicates that when the portfolio did suffer a loss,
the loss was much smaller than the average loss suffered by the index (3.3%
vs. 12.2%).

An investor who is not willing to suffer losses would be better off in the active
portfolio than with an index investment. On the other hand, a pension fund or
other long-term investor might be more concerned with underperforming the
benchmark than with the possibility of losses. In that case an investment in an
index fund might be more acceptable.

Figure 7.2 graphically shows the return distributions of the active portfolio
and the index. The index curve extends further into negative territory. The active
portfolio’s curve, while shifted a little lower than the index’s curve, has much
less of the curve in negative territory. It is also easy to imagine that if the MAR
were shifted to about 10 then the risk of the portfolio would rise proportionately
more than the index because the active portfolio’s curve is so sharply peaked.

7.3 RISK RELATIVE TO A BENCHMARK

There are drawbacks to downside risk as it is often calculated. Many investors
define risk as underperforming a benchmark. Most downside risk software
handles this by allowing the investor to input the benchmark’s return as the
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MAR. This does not accurately reflect the investor’s view of risk. By using the
annualized index return as the minimum acceptable return one is assuming that
the index went up by exactly that amount every year. In fact, the benchmark
return may have been quite volatile during the period.

For example, if the index were up 10% over the period measured, then using
that as the MAR would label any portfolio return of less than 10% as bad. In
fact, an investor concerned with performance relative to the index would look
upon an 8% return as quite good in a year when the benchmark was down −3%
(see Figure 7.3).

Figure 7.3 shows a bootstrapped distribution of returns for an active portfolio.
The minimum acceptable return is 7.8%, the benchmark’s return over the period.
The downside risk is calculated at 14.9% over this period.

During the period measured, the portfolio outperformed the index five out of
the eight years. However, when the index’s annualized return over the entire
period is compared to the portfolio’s return each year then the portfolio is seen
as underperforming in five out of eight years. In one year the portfolio return
is 0.4% and the benchmark lost –8.4%. Investors who are concerned with risk
relative to the benchmark would consider this a successful year. Instead, using
the index’s annualized return as the MAR indicates the portfolio underperformed
by –7.4% that year.

Figure 7.4 depicts the distribution of the active returns (portfolio return minus
the benchmark return) for the same portfolio and time period. Any return
below zero indicates the portfolio underperformed the benchmark. Calculating
downside risk in this manner results in a downside risk statistic of 7.3%, consid-
erably lower than the other method’s 14.9% statistic. This calculation leads to
a different conclusion that is a more realistic measure of risk for benchmark-
sensitive investors.

Downside risk
14.9%

−48.0% 90th P′ctile MAR = 7.8% 72.1% 10th P′ctile

Figure 7.3 Risk of portfolio with index return as MAR
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Downside risk
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Figure 7.4 Risk of active return portfolio ROR – index ROR

While this is a non-standard way to calculate downside risk, I believe it
is a superior method for those investors who are primarily concerned with
underperforming a benchmark. For investors who have an actual set rate they
need out of their investments or for investors who define risk as the possibility
of loss, MAR adequately captures their risk preferences. For investors who
are concerned with performance relative to a benchmark, then determining the
downside risk of the active returns is preferable.

7.4 CONCLUSION

When discussing downside risk, the question of why it was not adopted earlier
arises. Part of the reason may be the more complex calculation required. Today,
computing power and memory are relatively cheap commodities. Desktop soft-
ware is readily available, which will calculate downside risk. There is even
freeware on the Internet at www.sortino.com.

If software is readily available and most investors agree that it more closely
parallels actual risk preferences, why isn’t this risk measurement more widely
used? The likely answer is inertia. Investors do not accept new statistical
methodologies rapidly. We tend to use that which we are comfortable with.
Investors have a healthy scepticism for new statistics. For most investors down-
side risk is a new concept.

Another reason for the slow acceptance of downside risk is that investors
are already using standard deviation. James Gleick, in his book Faster, quotes
the old saw that ‘A man with a watch knows what time it is, a man with two
watches is never sure’. Investors may be reluctant to adopt another statistic
that could give conflicting results. I believe investors should embrace any valid
new statistic that can provide additional insight into the risk profile of potential
investments.



100 Managing Downside Risk in Financial Markets

Downside risk is gaining acceptance in the financial community. Among the
reasons for this is that defining risk as a return below some point is consistent
with many investor’s view of risk. A methodology that determines the downside
risk of the portfolio’s active return has advantages for investments where success
is determined relative to a benchmark.

A word of caution, however, to those who are inclined to adopt the statistic
unquestioningly. As outlined above, there are a number of ways to calculate
downside risk and they are likely to yield very different results. It is essen-
tial that those interpreting downside risk statistics understand the calculation
methodology. Also, downside risk statistics calculated using different MARs
are not comparable.
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Chapter 8

Investment risk: a unified approach to
upside and downside returns

LESLIE A. BALZER

SUMMARY

The aim of this chapter is to increase the reader’s understanding
of the essential nature of investment risk and of the strengths and
weaknesses of various risk measures.

The literature on investment risk is vast. The topic has attracted
interest from academics and practitioners alike, and continues to do
so – at an accelerating rate. This latter phenomenon is at least partially
due to the increasing use of financial instruments with asymmetric
pay-offs and to non-linear trading or portfolio management strategies.
Such assets and strategies both encourage and produce essentially
asymmetric investment return distributions, which in turn highlight the
intrinsic shortcomings of using variance or standard deviation as the
only measure of investment risk. Investors and their advisers further
reinforce the trend by selecting and rewarding not only managers
who produce high returns, but also those who produce asymmetric
distributions of value-added above benchmark with enhanced upside
and curtailed downside.

By the end of this chapter, it should have become clear that there
is no single universally applicable risk measure and that, as Balzer
(1990, 1994) pointed out, ‘Risk, like beauty, is in the eye of the
beholder.’ Furthermore, the psychological literature indicates that
not only do investors behave irrationally and inconsistently over time,
but that they often form their own idiosyncratic risk measures while
they are reviewing the data. No single predetermined measure can
handle such a situation.

Continued on page 104
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Continued from page 103

This chapter reviews most of the commonly used or proposed risk
measures, points out their strengths and weaknesses, and eventually
develops a unified theory of the utility of upside and downside returns
relative to the investor’s benchmark(s). The unified theory provides
a coherent, powerful and elegant framework for real investment
decisions in portfolio management.

8.1 NATURE OF INVESTMENT RISK

We begin by developing some properties of an ideal measure of investment
risk. In the following sections, we then discuss probability based measures, the
psychology of risk, methods of comparing probability distributions, moment
based measures and the non-linearity of risk. From these discussions, it will
become clear that any realistic measure of investment risk should be:

• Asymmetric
• Relative to one or more variable benchmark(s)
• Investor-specific
• Multidimensional
• Complete (in a specific sense)
• Numerically positive, and
• Non-linear

It will be seen that the underlying phenomena of risk perception demand that
any ideal risk measure should capture all of these properties.

8.1.1 Asymmetry of risk

Consider an investment, ‘A’ which produces the hypothetical time series of
returns shown graphically in Figure 8.1. The investment return is drawn from a
normal distribution with a mean of 10% pa and a standard deviation of 5% pa.
A small amount of serial correlation1 is also present. Consider now, the higher
volatility ‘Investment B’ shown in Figure 8.2, which is identical to ‘A’ except
that the standard deviation is twice that of ‘A’, namely 10% pa. Which is the
more risky? Intuitively, most investors would consider ‘B’ to be more ‘risky’
than ‘A’. The key question, however, is ‘Why?’

The comparison is made easier in Figure 8.3, which shows ‘A’ and ‘B’ on the
one graph. Do the upside extremes of ‘B’ (above say 20%) feel ‘risky’? Most
people would not think so. Do the downside extremes of ‘B’ seem in someway
related to ‘risk’ and contribute to the feeling that ‘B’ is more ‘risky’ than ‘A’?
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Most people would say ‘Yes’. What can we conclude from this? Whilst the
examples are simple and the discussion brief, it is clear that our intuition tells
us that risk is an asymmetric phenomenon related to downside, and that an
intuitive and realistic risk measure should also be asymmetric – it should treat
upside and downside differently. This is the first feature of investment risk.

8.1.2 Relativity of risk

Consider again investments ‘A’ and ‘B’, but this time as shown in Figure 8.4.
Note in particular the shaded areas. Intuitively, these shaded areas seem to be
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related to the portions of the performance histories which lead most people
to form a qualitative judgement that ‘B’ is more risky than ‘A’. The shaded
areas correspond to those periods in which the return from ‘B’ is less than that
from ‘A’. Furthermore, the areas of most concern to many people are probably
those where ‘B’ is less than zero – in other words, negative returns and the
loss of capital. Again, the examples are simple and the argument brief, but it
is clear that any intuitively satisfying measure of risk is related to relative and
not absolute performance. Risk is related to doing worse than some alternative
investment or reference standard – a benchmark.

Later in the chapter we shall compare investments by using the probability
distributions of their returns. The conclusions there will also be seen to support
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the intuition that risk is relative. This then is our second feature of invest-
ment risk.

8.1.3 To what might risk be relative?

Balzer (1990) and others have proposed that investment risk might be measured
by the probability of the investment return falling below a specified risk bench-
mark. That risk benchmark might itself be a random variable, such as the
inflation rate or the return from an alternative investment.

Risk benchmarks are not unique. We now proceed to consider a number of
possible risk benchmarks.

8.1.3.1 Liabilities
In the case of a defined benefit superannuation or pension fund, the importance
of meeting the liabilities is obvious. Yet Arthur and Randall (1990), comment:

. . . scant, if any, attention is paid to how assets relate to the liabilities
that they are held to meet; yet these liabilities are the sole rationale for
accumulating the assets in the first place.

In these circumstances, an obvious choice for a risk benchmark is some value
or variable which represents those liabilities. In the absence of such a figure or
variable, a proxy must be found. The remainder of this section presents a non-
exhaustive list of possible choices for a proxy, where the liabilities or objectives
are not available in an appropriate quantitative form.

8.1.3.2 Negative returns
Those who have traded volatile leveraged instruments know the gut-wrenching
feeling of being long in a falling market or short in a rising market. This is
an example of risk at a very basic level. The possibility of losing capital, i.e.
negative returns is all too vivid. Here, the risk benchmark could simply be zero
return.

8.1.3.3 Real returns
Another investor in retirement might be concerned about not keeping pace with
inflation and hence be concerned about negative real returns. In this case the
risk benchmark becomes the inflation rate, or possibly inflation plus some safety
margin.

8.1.3.4 Risk free rate of return
Alternatively, a fund manager might be concerned about falling below the risk
free rate of return, which the investor could have achieved without hiring the
manager.
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8.1.3.5 Median or bottom quartile returns
The same manager might also be concerned about how often he or she falls into
the bottom quartile in the performance surveys. On the other hand, the investor
or fund advisor might be concerned if the manager frequently falls below the
median manager.

8.1.3.6 Below budgeted return
In a bank treasury, senior management might be concerned when its dealing
room profit falls more than say 15% below budgeted profit.

8.1.3.7 Sector index returns
For a sector fund, or its manager, the risk benchmark might relate to an appro-
priate sector index or some margin above it.

8.1.3.8 Return from an alternative investment
In yet another situation, members of a defined contribution fund might have
a different view of risk. The risk of fund manager under-performance is
passed straight through to their retirement or exit benefits. They are usually
not impressed when their fund achieves a rate less than some readily available
alternative investment, for example a building society deposit, cash management
trust or money market fund.

8.1.3.9 Change in average weekly earnings
In the minds of the trustees of a defined benefit fund, however, the primary risk
is that of the investment performance not being sufficient to meet the liabilities
arising from the defined benefits. Actuaries often quote a rule of thumb that the
investment returns should not fall below the change in average weekly earnings
plus a margin of 1–2% pa. The later then becomes yet another risk benchmark
for such funds.

8.1.3.10 A list
In summary then, a non-exhaustive list of possible benchmarks includes, or is
implied by, the following undesirable events:

• Not meeting liabilities
• Not meeting objectives (if quantified)
• Negative returns
• Negative real returns
• Less than the risk-free rate of return
• Lower quartile or below median returns (relative to an appropriate universe

of investment managers)
• Less than budgeted return, or a specified margin below budget
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• Less than an appropriate market or cross-market index
• Returns below readily available alternative investments, such as cash

management trusts, building societies, money market accounts, etc.
• Returns below the growth in average weekly earnings plus a margin.

8.1.3.11 Risk benchmarks versus performance benchmarks
Some of the risk benchmarks implied by these examples could also be viewed
as performance benchmarks. Falling below them, however, is not simply disap-
pointing, but is demonstrably undesirable. They relate to the genuine concerns
of the fund sponsors, members, trustees and managers. Hence they are clearly
and directly relevant to risk. Some risk benchmarks might make quite good
performance benchmarks under appropriate conditions. There is absolutely no
reason, however, for them not making equally good risk benchmarks. In fact
there is some logical consistency in the performance and risk benchmarks being
identical.

8.1.4 Risk is investor-specific

From the preceding discussion, it is clear that risk is related to doing worse
than some risk benchmark. This supports the earlier claim that risk is a relative
rather than an absolute concept. It is also clear that different investors have
different risk benchmarks, since those risk benchmarks are related to, or are
proxies for, the liabilities or objectives of the investor. Risk is investor-specific.

8.1.5 Multidimensionality of risk

Not only do different investors have different risk benchmarks, the same investor
is likely to have multiple objectives and hence multiple risk benchmarks. Risk
is thus clearly multidimensional.

8.1.6 Completeness, positivity and non-linearity

Having now justified the first four of the desirable features of an investment risk
measure, we now turn to the last three, namely completeness, positivity and non-
linearity. The easiest way to introduce and to establish the need for completeness
and non-linearity is to show why various measures are unsatisfactory. Hence
attention now turns to the examination of various measures. Positivity will be
seen later to be only a convenient convention.

8.2 PROBABILITY-BASED RISK MEASURES

8.2.1 Probability of shortfall

Over the years, Balzer (1990) and others have proposed that investment risk
might be measured by the probability of the return falling short of a specific
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risk benchmark. Markowitz (1959), Fishburn (1977), Sortino and Price (1994)
and others, have argued that risk should be measured relative to some fixed
target or minimal acceptable return (MAR). From the earlier discussion on risk
benchmarks, however, it is clear that this concept needs to be extended. It
should also be clear that the risk benchmark will usually be a random variable
rather than a constant.

A probability of shortfall measure of investment risk is specified:

Risk = Prob{R < B} (8.1)

where

Prob{·} = Probability of the event occurring;
R = R(t) = Return from the investment; and
B = B(t) = An appropriate risk benchmark.

Earlier, two investments, ‘A’ and ‘B’, which had the same mean but different
standard deviations, were considered. Figure 8.4 showed the returns from those
investments, with the addition of some areas which had been shaded grey. Intu-
itively, the shaded areas seemed to be related to the portions of the performance
histories, which lead most people to form a qualitative judgement that ‘B’ is
more risky than ‘A’. Another way of comparing investments ‘A’ and ‘B’ is to
look at their probability distributions. The probability density functions, from
which the returns from ‘A’ and ‘B’ are drawn, are shown in Figure 8.5.

Clearly, investment ‘B’ has more downside than ‘A’, but note also the shaded
area. Everywhere in the shaded area, investment ‘B’ has a higher probability
of producing a lower return than investment ‘A’ does. Superficially, probability
of shortfall looks like an interesting risk measure. While it is an interesting
statistic associated with risk, it is not sufficient. It is not complete.
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8.2.2 Incompleteness of probability of shortfall

Assume that an investor, who is concerned about losing capital relative to an
important benchmark, is confronted with two hypothetical investment possibil-
ities, ‘E’ and ‘F’, the stylized probability density functions of which are shown
in Figure 8.6. Both have an expected return of zero relative to the benchmark,
and both are symmetric about zero relative return. Both have a probability of
shortfall of 50%, but are they equally risky?

The risk measure specified in equation (8.1) gives the probability that an
undesirable event, a ‘shortfall below benchmark’ will occur. If the investor’s
only risk measure is the probability of shortfall, then he or she will be indif-
ferent between the two alternatives ‘E’ and ‘F’. From Figure 8.6, the shortfalls
(i.e. negative returns relative to benchmark) for investment ‘E’ are limited to
10% below benchmark, whereas those for ‘F’ can range down to 20% below.
Furthermore, everywhere in the area shaded grey in Figure 8.6 represents a
point, where the probability of shortfall is greater for ‘F’ than it is for ‘E’.
Most investors would rate ‘F’ more risky than ‘E’. The problem with using
probability of shortfall as the only risk measure is that it does not address the
issue of how severe the undesirable event might be. Hence, the probability of an
adverse event, while of considerable interest and a useful piece of risk-related
information, is insufficient and incomplete as a risk measure.

8.2.3 Maximum shortfall

We have just seen that the probability of falling short of the risk benchmark
answered the question, ‘How often?’, but not the question, ‘How badly?’.
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One response to this problem might be to define risk as the magnitude of
the maximum (worst) shortfall:

Risk = Max
{ |R − B| , R < B

0, R ≥ B

}
(8.2)

where

Max{·} = Maximum value of {·}
| · | denotes absolute value.

An obvious shortcoming of this measure of risk is that it says nothing about
the size of the typical shortfall. Two investments might have the same worst
outcome, but one might have many large losses and the other have very few.

Consider another hypothetical investment ‘G’, which has a uniform distribu-
tion between benchmark relative returns of −20% and +20%. If an investor
had to choose between ‘F’ and ‘G’, which would they choose? As shown in
Figure 8.7, both investments have a 50% probability of a shortfall and equal
maximum losses. Are they equally risky? Most people would consider that ‘G’
is more risky than ‘F’. Everywhere within the area shaded grey, ‘G’ has a higher
probability of having the larger shortfall.

Information about the end point of the lower tail of a more realistic prob-
ability distribution for an investment says little about the distribution overall.
Furthermore, estimation of statistics relating to the tails of a distribution from
empirical data is a very ill-conditioned problem. Hence, maximum shortfall is
both an incomplete and a numerically ill-conditioned risk measure.
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8.2.4 Completeness of a risk measure

The discussion involving the last two sections clearly demonstrates that complete-
ness is an essential feature of any risk measure, especially if it is to be used as
the only measure of risk.

8.2.5 Value at risk

Value at risk (VaR) has become popular in recent years. There is no doubt that
it provides useful information. For example, an organization using it knows
how much money is at risk in an open position held overnight. The problem,
however, is that the ‘value at risk’ is only the amount which is at risk with
a particular probability. It says nothing about how much is at risk at twice
that probability or, possibly more importantly, at half that probability. It is
clearly incomplete. It only tells part of the risk story. A far more useful set of
information would be the complete cumulative probability distribution of how
much is at risk at every level of probability.

8.2.6 Numerical positivity

Whilst properties of risk measures are under discussion, a clarification of a
sign convention is useful. Maximum shortfall might be defined by replacing the
Max function in equation (8.2) with Min, and by removing the absolute value
operator. This would lead to negative numerical values for risk. Risk, however,
is usually defined such that the definition results in a positive number. This is a
convenient convention for portfolio construction, where portfolio return is maxi-
mized subject to a penalty on undesirable features such as risk. The convention
is that penalties are measured as positive quantities and preceded by a nega-
tive sign. This situation has probably arisen for two reasons. First, in scientific
optimization, quadratic penalties are very common. Hence if one starts with a
negative numerical value, once it is squared, it becomes positive and has to be
subtracted. Secondly, the most common ‘risk measure’ in investment practice,
namely standard deviation, is positive.

As an aside, it should be noted that contrary to common (but incorrect) usage,
variance itself is not a risk measure. Variance is used in portfolio construction
because it results from applying a quadratic penalty to a particular choice of risk
measure, namely standard deviation. (See later for a more detailed discussion.)

‘Numerically positive’ is a desirable, but not essential, feature of a risk
measure.

8.2.7 Expected shortfall

Returning to probability-based risk measures, both probability of shortfall and
maximum shortfall were seen to be incomplete. An obvious response to this is
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to consider expected (average) shortfall, since all shortfalls are included in its
calculation.

Risk = Average shortfall

= E{|R − B|, for all R − B < 0} (8.3)

where

E{·} = Expected value of {·}
The expected shortfalls for investments ‘E’, ‘F’ and ‘G’ are:

E 3.3%
F 6.7%
G 10.0%

These numerical values certainly rank investments ‘E’, ‘F’ and ‘G’ in the intu-
itively correct order of ‘riskiness’. They capture the feeling that ‘G’ is more
risky than ‘F’, and that ‘F’ is more risky than ‘E’. Furthermore, the magnitudes
are also intuitively reasonable.

Figure 8.8 shows the superimposed probability density functions for these
three hypothetical investments. Geometrically, expected shortfall can be inter-
preted as the horizontal distance from the zero point on the horizontal (return
minus risk benchmark) axis to the centroid of the downside (below-benchmark)
areas.

As a risk measure, expected shortfall clearly captures the whole of the
downside portion of the relative probability density function and is complete.
Unfortunately, the major difficulty with expected shortfall is that it is a linear

−20 −10 Benchmark

G

F

E

E  3.3

P
ro

ba
bi

lit
y

F  6.7
G  10.0

Expected
shortfall

Investments  E′,  F′ and  G′

Return relative to benchmark (%)

+10 +20

× 10 × 6.7 × 3.3

′ ′ ′

Figure 8.8



Investment risk: a unified approach to upside and downside returns 115

measure of downside risk. We shall see in the next section, however, that most
investors do not have a linear response to risk.

8.2.8 Non-linearity of risk

How many of us insure our pets? How many of us insure our homes? Why? In
asking these questions at investment conferences in Europe, North America and
in Australia, only one person has admitted insuring their dog, and no one has
admitted not insuring their home. Why is this so? Consider a dog, which cost
$1000. It is an expert fence climber, has no road sense, loves chasing buses and
trucks, and is the most stolen breed in the country. Its probability of loss is 50%
and the expected loss is $500. Consider now a home, which cost $500 000. It is
better behaved than the dog, but is not far from a bush fire area. Its probability
of loss is 0.1% and hence the expected loss is $500. Both home and dog have
the same expected loss, and are possibly equally loved. Yet almost everybody
insures their home and hardly anybody insures their dog. Why?

Consider two investments, which both have the same expected shortfall. In
one case, however, this arises from a high probability of many small shortfalls,
and in the other, a low probability of a very large shortfall. An investor who
employs expected shortfall as their only risk measure will be indifferent between
the two investments. Such an attitude, however, is not common. Most investors
perceive a low probability of a large loss to be far more risky than a high
probability of a small loss, even when the expected losses are the same.

This is confirmed by the results of a survey by Olsen (1997) of 630 profes-
sional portfolio managers and 740 experienced individual investors. Forty per
cent of the experienced individuals rated ‘A large loss’ as the most important
characteristic of investment risk. The professional portfolio managers, being
much more benchmark aware, were almost equally divided between ‘Below
target returns’ and ‘A large loss’ as the most important characteristic.

Clearly we must conclude that risk is non-linear. Measures that capture this
non-linear attitude to risk are covered later. The list of features of an ideal risk
measure, which appeared earlier, is now complete (for current purposes2).

8.3 PSYCHOLOGY OF RISK

At this stage it is extremely important to appreciate one aspect of the psycholog-
ical perception of risk.3 For anyone searching for a single universally applicable
risk measure, the most devastating perceptional phenomena are summarized
succinctly by Tversky and Thaler (1990):

First, people do not possess a set of pre-defined preferences for every
contingency. Rather, preferences are constructed in the process of making
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a choice or judgement. Second, the context and procedures involved in
making choices or judgements influence the preferences . . . In practical
terms, this implies that behaviour is likely to vary across situations that
economists consider identical.

This means that no single predetermined risk measure, no matter how intuitively
and apparently correct it is, will suffice in all situations.

How can we handle these psychological realities of investment risk, which
at first glance seem pathologically intractable? First, we must acknowledge that
risk, like beauty, is in the eye of the beholder. Hence risk must be measured rela-
tive to one or more risk benchmarks, which represent the investor’s objectives
or liabilities. Secondly, where possible and practicable, the investor should be
presented with the complete probability distribution of expected returns relative
to the risk benchmark(s). Such distributions explicitly and implicitly provide all
of the relevant statistical information available about an individual investment.

For other aspects related to the psychology of investment risk, Begg (1992)
reviews the literature for an actuarial audience in a very readable manner.
Another interesting partial review relating to the irrationality of investors is
provided by Clark-Murphy (1997)

8.4 COMPARING PROBABILITY DISTRIBUTIONS

One solution to the psychological problems discussed above is to provide the
complete probability distribution to the decision-maker. Provision of the prob-
ability distribution of investment returns relative to the risk benchmark allows
the probability of any particular relative return (or group of relative returns),
any moment of the distribution, such as the mean, standard deviation, skewness,
kurtosis, any other statistics, like the median, mode, inter-quartile range, and
many other features to be determined.

Various probability-based measures of risk were described earlier and their
strengths and weaknesses discussed. In later sections, various moments will be
discussed. Are there, however, methods for comparing complete distributions of
two alternative investments? There are, but before discussing two of them, we
shall address the question of whether to compare probability density functions
or cumulative probability distribution functions.

8.4.1 Density or distribution?

Consider the histograms shown in Figure 8.9 for 500 samples from probability
density functions for the returns from two hypothetical investments ‘X’ and
‘Y’. It is difficult to see by eye how the two differ and which is the more desir-
able investment. The same underlying data are shown as sample cumulative
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probability distributions in Figure 8.10. It is now quite clear how the two invest-
ments differ. The following criteria for comparing distributions are presented
in terms of cumulative probability distribution functions.

8.4.2 First order stochastic dominance

Consider the same two investments ‘X’ and ‘Y’, with cumulative probability
distribution functions, Px(R) and Py(R), as shown in Figure 8.10. If, for any
return, R1,

Px(R1) ≤ Py(R1), for all values of R1 (8.4)

then ‘X’ is said to first order stochastically dominate ‘Y’. Geometrically, this
is equivalent to the cumulative distribution function Px(R) always lying below
(or touching) that for Py(R) but never crossing it. Hence ‘X’ always has a
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lower probability of poor returns than ‘Y’. Under the simple assumption that
investors prefer more to less, then ‘X’ becomes the preferred investment.

Unfortunately, in many if not most practical situations of interest, the cumula-
tive distribution functions cross and neither investment stochastically dominates
the other using a first order criterion. A real example of such a situation,
involving the median large diversified fund and the median capital guaran-
teed fund in Australia over a particular period, is given in Figure 8.11. In such
cases, the approach fails to discriminate between the two investments.

While discussing first order stochastic dominance, Promislow (1989) states:

When choosing between two possible investments, where one has a higher
expected return but also carries more [intuitive] ‘risk’ . . . it is usually the
case that neither distribution dominates.

8.4.3 Second order stochastic dominance

Second order stochastic dominance can be considered for situations like that
shown in Figure 8.11. Starting at the lowest returns (left-hand side), calculate
cumulatively

Area under Py(R) − Area under Px(R)

If it is always positive, or at least non-negative, for any level of return, then
‘X’ is said to second order stochastically dominate ‘Y’. If investors both prefer
more to less and are risk-averse, it can be shown (see for example Elton and
Gruber, 1987) that rational investors will prefer an investment which second
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order stochastically dominates another. In this case, ‘risk aversion’ is defined to
mean that each increment of higher return is less valuable to the investor than
the last.

Whilst superficially promising, unfortunately this approach can also be less
than helpful. Figure 8.12 shows the net area between the cumulative probability
distribution functions shown in Figure 8.11. As the levels of return increase
from their most negative values through to the crossover point near 15% pa in
Figure 8.11, the second order stochastic dominance of the capital guaranteed
fund over the market linked fund is pronounced. Once past the crossover point,
however, the decline is equally steep, leading to only a minor level of dominance
if the whole distribution is considered.

For a defined benefit fund with low reserves, which cannot stand any signifi-
cant losses of capital, the enormous protection against downside risk inherent in
the capital guaranteed fund is grossly underestimated by second order stochastic
dominance. In fact, if the mean return for the capital guaranteed fund had been
slightly lower, the guaranteed fund would have failed to dominate the fund
without the guarantee.

Promislow (1989) comments:

the concept of dominance cannot help us to solve the problem that we are
all too frequently faced with, namely, how to choose from two possibilities,
when one has a higher return but also carries more risk.

Furthermore, he adds:

It is possible to have a set [of investment allocations] that is theoreti-
cally efficient with respect to [second order stochastic] dominance but that
contains risks that no reasonable decision-maker is likely to want.
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As can be seen from Figure 8.12, the net area concept involved in second
order stochastic dominance sheds light on the comparative risk, but its successful
use is not simple.

8.5 CONVENTIONAL MOMENT-BASED MEASURES OF INVESTMENT
RISK

In many situations a single number, which represents the level of risk associated
with a financial asset, is required. Given the shortcomings of the probability-
based measures considered previously, attention now turns to moment-based
measures.

8.5.1 Moments of a probability distribution

To avoid confusion in the ensuing discussion, it is important to clarify precisely
what is meant by some commonly used, but not necessarily properly understood,
statistical terms.

Statistical moments measure various features of the probability distribution
of a random variable. These moments can be measured relative to any value, a,
of the random variable. The two most common values are the mean and zero.
Consider a random return, R. The kth moment, μk

a(R), of R about (relative to)
a value a is defined as

μk
a(R) = E{(R − a)k} (8.5)

where

a = value about which the moment is taken,

(i.e. deviations are measured from a),

E{·} = Expected value of {·}
For the later sections of this chapter, it is important to note that many of
our moments will be taken about zero and not about the mean as is more
common.

For convenience, we shall drop the ‘(R)’ from the moment notation in equa-
tion (8.5), when is it clear which random variable is involved. When we deal
with upside and downside separately, it will be reintroduced to avoid any
possible ambiguity.

Moments can be related to the population or to a sample. Statistically speaking,
the ‘population’ is the set of all possible values of the random variable, whereas a
‘sample’ refers to some selection of realized values from that population. Greek
letters, such as the μ in equation (8.5), are often used to denote a parameter based
on the population, with non-Greek equivalents, such as m, used for a statistic
based on a sample.
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The first moment about zero, μ1
0, is the mean, often denoted simply by μ.

The mean is the statistically expected value or, more simply, the average value
of the random variable.

The second moment about the mean , μ2
μ, is the variance and is usually

denoted by σ 2, where the superscript ‘2’ denotes the square of σ . The stan-
dard deviation, σ , is a measure of the width of the probability distribution
(strictly the probability density function). As such it is a measure of uncertainty
in the random variable – typically the uncertainty of the return in investment
applications.

The third moment about the mean, μ3
μ, is related to the skewness of the proba-

bility density function. A skewed probability density function is not symmetric
about its mean value. For example, a positively skewed distribution has an
extended tail on the right (the higher return side), whereas a negatively skewed
distribution has a long tail on the left (the lower return side).

The coefficient of skewness, s, is a normalized version of μ3
μ, defined as

s = μ3
μ/σ 3 = E{[(R − μ)/σ ]3} (8.6)

Other measures of skewness include

(μ − Mode)/σ

and the robust non-parametric measure

(Q3 − 2 × Median − Q1)/(Q3 − Q1)

where Q1 and Q3 are the first and third quartile boundaries within the appro-
priate sample. For a normal (Gaussian) distribution, the coefficient of skewness
is zero because the distribution is symmetric.

Even though many finance practitioners think of kurtosis, the fourth moment
about the mean, μ4

μ, as a measure of the thickness of the tails, it is primarily
a measure of the peakedness of the probability density function near the mode,
the most frequent value. The coefficient of kurtosis, k, is defined as a normalized
and modified version of the fourth moment of the distribution:

k = E{[(R − μ)/σ ]4} − 3 (8.7)

The coefficient of kurtosis is zero for a normal distribution,4 which is termed
mesokurtic. A distribution that is less peaked has a negative coefficient of
kurtosis and is termed platykurtic. It also has ‘thinner’ tails. A distribution
that is more peaked has a positive coefficient of kurtosis, is termed leptokurtic
and has ‘fatter’ tails. Many financial distributions are fat tailed and leptokurtic.

The kth moment of the population about the mean is sometimes denoted
by μk . The practice is not followed here, because too much ambiguity would
result.
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A normal (Gaussian) distribution is completely specified by its mean and
variance, since the distribution has only two parameters, μ and σ , which specify
its location on the horizontal axis and its breadth.

8.5.2 Standard deviation measures uncertainty not risk

Perhaps the greatest disservice done to standard deviation in the finance liter-
ature has been to call it the measure of investment risk. There is no doubt
that it is a measure of uncertainty , but uncertainty is not necessarily risk. It is
uncertain whether you might win $1 million in a lottery, but that uncertainty is
hardly risk.

In the portfolio construction context, even the father of Modern Portfolio
Theory, Markowitz (1959) has commented, ‘Analyses based on S [semi-vari-
ance] tend to produce better portfolios than those based on V [variance]’. His
main reason for proceeding with variance, however, seems to have been the
lack of adequate computing power in the 1950s.

8.5.3 Problems with standard deviation as a risk measure

Standard deviation is a statistical measure of variability. When applied to invest-
ment returns, it is a measure of the volatility of those returns. Quite obviously,
other things being equal, most investors will prefer less volatile returns to more
volatile returns. Other things, however, are not usually equal and these are
precisely the conditions under which the deficiencies of standard deviation as a
risk measure begin to surface.

Consider again investment ‘A’ shown in Figure 8.1. If standard deviation
of return is used as a measure of investment risk, then because the standard
deviation of ‘B’ is higher than that of ‘A’, investment ‘B’ would be classed as
more risky than ‘A’. This conclusion coincides with our intuition.

In Figure 8.13, a third investment ‘C’, which has the same standard deviation
as ‘B’ but a higher mean, is introduced. The standard deviation of ‘C’ is twice
that of ‘A’. Hence using standard deviation as the risk measure would lead
to the conclusion that ‘C’ is more risky than ‘A’. Intuitively, however, most
investors would consider ‘A’ to be more risky than ‘C’ – exactly the opposite
conclusion.

Another practical difficulty with standard deviation as a risk measure can
be illustrated by considering investment ‘D’, as shown in Figure 8.14, which
has the same standard deviation as both investments ‘B’ and ‘C’. Since the
standard deviations of ‘C’ and ‘D’ are equal, using standard deviation as the
risk measure leads to the conclusion that ‘C’ and ‘D’ are equally risky. Most
investors would be very uncomfortable with such an assertion. Most investors
would feel very strongly that ‘D’ is far more risky than ‘C’.
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In summary, the preceding examples indicate that using standard deviation
of return as a stand alone measure of investment risk can lead to:

• intuitively reasonable results when the means are equal, or close to equal;
• rankings of investment risks which are sometimes the reverse of investors’

intuitive rankings; and
• equal numerical risk rankings for investments which have very different

levels of intuitive risk.
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8.5.4 Discussion of problems with standard deviation

8.5.4.1 Equal influence of positive and negative deviations
Calculation of the standard deviation of return begins with deviations from
the mean return. Above-average returns lead to positive deviations and below-
average returns to negative deviations. The deviations are then squared which
produces all positive values. The average of the squared deviations is then deter-
mined. Finally, the square root is taken to restore the dimensions and units of the
measure to those of the original time series. As a consequence of the squaring
operation, positive and negative deviations from the mean contribute equally to
standard deviation. Thus, if standard deviation is used as a risk measure, over-
performance relative to the mean is penalized just as much as under-performance.
Most investors find such a feature counter-intuitive in a risk measure.

8.5.4.2 Options, non-linear trading strategies and non-normal
distributions

If a large number of factors influence the outcome of a random process in a
linear manner, the probability distribution for that process will tend towards
a normal (Gaussian) distribution.5 We saw earlier that a normal distribution is
completely described or specified by its first two moments, namely the mean and
standard deviation. In the presence of non-linearities, such as options and non-
linear trading and portfolio management strategies, however, investment return
distributions can become markedly distorted away from a normal distribution.
In such cases, higher order moments are required to describe and specify the
distribution.

Bookstaber and Clarke (1985) present examples where:

If one used standard deviation or variance as a proxy for risk, it would
appear that covered call writing is preferable [for risk reduction] to buying
puts

and where:

buying puts [for risk reduction] is inferior to the stock-only portfolio.

Most investors would consider such propositions ludicrous. Bookstaber and
Clarke then draw the obvious conclusion that:

Variance is not a suitable proxy for risk in these cases because option
strategies reduce variance asymmetrically.

Clearly, the presence of non-linear instruments or strategies, which distort the
return distribution, render standard deviation an even less meaningful measure
of investment risk than we might otherwise have concluded.
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8.5.4.3 Non-stationarity
Stationarity simply means that the probability distribution does not change with
time. Hence the mean, standard deviation and any other descriptive measures
of the distribution are constant over time. If the investment return process is
essentially non-stationary, which many market participants believe, then the
process will not be ergodic. Its ensemble statistics at a point in time will not be
the same as its time series statistics. Hence any standard deviation calculated
along a sample time series in the conventional manner will not be the same
as the true ensemble standard deviation at a fixed point in time. The sample
standard deviation will then be unsatisfactory as a measure of uncertainty, let
alone as a risk measure. It should also be realized that non-stationarity creates
the same problem for all of the risk measures discussed in this chapter.

8.5.5 Utility function basis for variance as a risk measure

How did the use of variance or standard deviation as a risk measure come
about? The theory of utility functions is often claimed to lead to variance, and
hence standard deviation, as the natural measure of investment risk. It will be
seen later, however, that utility theory can be used to arrive at an infinite set of
downside risk and upside utility leakage measures, simply by formulating the
problem differently.

Expected utility is a generalization of expected value and is thought to have
been developed over 200 years ago by Nikolaus Bernoulli when working on the
St Petersburg Paradox. Consider an unspecified function, U(R), which purports
to represent the usefulness or utility of the time-varying investment return R(t)

to some particular investor.6 If the utility function is expanded about the mean
value, μ, of the return using a Taylor series expansion

U(R) = U(μ) + U ′(μ)(R − μ)

+ U ′′(μ)(R − μ)2/2 (8.8)

+ Higher order terms

where

U ′ denotes dU/dR, the first derivative U with respect to R, and

U ′′ the second derivative.

Taking expected values in equation (8.8) and using σ 2 to denote the variance
of the return, R, leads to the expected value of the utility function

E{U(R)} = U(μ) + U ′′(μ)σ 2/2
+ E{Higher order terms} (8.9)

since E{μ} = μ and E{R − μ} = 0.
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If the returns are normally distributed, then the odd Higher order terms are
zero. Neglecting the even ones leads to

E{U(R)} ≈ U(μ) + U ′′(μ)σ 2/2 (8.10)

If investors are concerned only about the expected (i.e. average) utility, then it
is claimed that they need only be concerned with the mean and the variance of
the investment return. Since variability of return can provide some discomfort
for an investor (as seen for Investment ‘B’ earlier) and has some connection
with intuitive risk, variance is said to be the natural risk measure. But we saw
that variance or standard deviation can lead to intuitively unreasonable results.
Wherein lies the problem?

8.5.5.1 Accuracy in region of interest
Most students of mathematics are fully aware that a truncated Taylor series
expansion is only approximately true in the neighbourhood of the point about
which the expansion is taken – the mean return μ in this case. It is not in the
neighbourhood of the mean, however, where the risk-related concerns of most
investors lie. Earlier, we saw that investors are most concerned about downside
returns. Furthermore, they are more concerned about those downside returns
that are most painful and hence well away from the mean. Thus investors
are most concerned about a region of returns where the truncated expansion
in equation (8.10) is known to be potentially – possibly highly – inaccurate.
Interpreting equation (8.10) to imply that variance is the only, or even the best,
measure of risk could be expected to lead to difficulties. To gain accuracy further
into the downside region of interest requires retention of the higher order terms
which have been discarded. Even for normal distributions, the even order terms
are non-zero.

8.5.5.2 Non-linear instruments and strategies
In portfolios with non-linear instruments, such as options or non-linear trading
strategies, return distributions are known to have highly non-normal distribu-
tions. In such situations, the discarded higher order terms are non-zero and
their neglect could be expected to lead to potentially erroneous results. Using
standard deviation as the only risk measure does just this.

8.5.5.3 Decreasing marginal utility
For increasing variance to reduce utility, equation (8.10) implies that U ′′(R)

must be strictly negative, i.e. the utility curve must be concave downwards.
Decreasing marginal utility must prevail for all returns. Balzer (1994) claimed
that requiring marginal utility to be strictly decreasing presents some difficulties.
Balzer quotes Knott (1991), Alexander and Francis (1986) and others as pointing
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out that it implies that ‘wealthier investors prefer to take less financial risk (in
absolute terms) than poorer investors’. Balzer (1994) adds that the corollary,
that poorer investors are prepared to take higher risks than wealthier investors,
is totally untenable.

There is an important non sequitur here. The decreasing marginal utility
required for U ′′(R) to be negative is along an individual’s own utility curve.
Decreasing marginal utility is not required across different individuals with
different wealth levels. As we shall see later, decreasing marginal utility for an
individual is a realistic assumption.

8.5.5.4 Jump discontinuities
In addition, equations (8.8), (8.9) and (8.10) all require that the utility function
be at least twice differentiable. There is some uncertainty, however, that the
first derivative even exists at all points, let alone the second or higher ones.
Lipman (1989) argues, inter alia , that utility functions are both multivariate
and discontinuous. He claims that utility functions suffer finite jumps at actual
or perceived psychological benchmarks, such as zero returns or the minimum
return required to meet a fund’s liabilities. He argues that for many investors,
a transition from positive to negative returns leads to a step reduction in utility
rather than a smooth quadratic change. Similarly, failing to meet liabilities
usually precipitates regulatory sanctions, which cause a similar sudden step
reduction in utility of return. Finite values for the first, second and higher order
derivatives do not exist at such points of discontinuity, rendering the Taylor
series expansion in equation (8.8) not just unhelpful, but non-existent.

8.5.5.5 Benchmark relativity
A final difficulty with equation (8.10) is that it takes no account of the risk
benchmarks which, as we saw earlier, act as important proxies for the liabilities
or objectives of the investor.

8.5.5.6 Conclusion
It is clear that measures justified on the basis of the above use of the Taylor
series expansion, which is only accurate for near average returns, and on utility
functions, which are multiply differentiable, cannot be expected to be robust nor
applicable over a wide range of returns, especially those on the far downside.

In a later section we shall see that by starting with benchmark relative returns,
separating upside returns from downside, by using separate Maclaurin series
expansions for the upside and downside, and by retaining more of the higher
order terms, all of the above problems are overcome. This approach leads
directly to a rich set of intuitively reasonable and mathematically justifiable
measures of downside risk and upside utility leakage.
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8.5.6 Skewness as a risk measure

Positive skewness in investment returns implies some curtailment of the down-
side. As such it is a feature that risk-averse investors would look favourably
upon. The latter does not imply, however, that skewness makes a good invest-
ment risk measure. Equation (8.6) shows that the coefficient of skewness is
affected by returns that are greater than the average return. Consequently,
it is possible to have investments with similar skewness but quite different
downside behaviour. Measures which only involve the downside are to be
preferred.

8.5.7 Fourth moment – kurtosis

If two investments have similar means and are symmetric, then risk-averse
investors will prefer negative kurtosis due to the less frequent occurrence of
extremely negative results. When the mean returns are dissimilar, kurtosis as a
risk measure suffers from the same problems as standard deviation.

8.5.8 Variance, skewness and kurtosis relative to benchmark

It was noted earlier that the kth moment of a distribution could be taken rela-
tive to any particular value, a, of the random variable – see equation (8.5).
In financial applications, the second, third and fourth moments are typically
calculated relative to the mean value. They could be taken, however, relative to
some constant target return τ [per cent pa], related to the investor’s liabilities
or objectives. Sortino and Price (1994) and others have termed this value the
minimum acceptable return, MAR. Thus τ would replace μ in equations (8.5),
(8.6), (8.7) and in the calculation of standard deviation, σ . This would lead to
a relative standard deviation, relative skewness and relative kurtosis.

If risk benchmarks similar to those discussed earlier, such as the inflation
rate, etc. are introduced, then the constant parameter τ should be replaced
by the random variable B(t). The necessary calculations can then proceed
in at least two ways. First, if the joint probability distribution p(R, B) of
R and B is known, or is to be assumed, then it can be used directly in
forming the expectations in equations (8.5), (8.6) and (8.7). Alternatively, espe-
cially if empirical distributions are to be employed, the simplest approach is to
construct a time series of benchmark-relative returns r(t) = R(t) − B(t) and
then to carry out the calculations using p(r) = p(R − B) in a one-dimensional
framework.7

While these relative measures explicitly acknowledge the existence of a
benchmark representing the liabilities or objectives of the investor, they still
suffer from the same problems as the original non-relative measures.
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8.6 RELATIVE LOWER PARTIAL MOMENTS

8.6.1 Definition of RLPMs

From arguments similar to those regarding probability-based measures appearing
earlier in this chapter, Balzer (1994) concluded:

It is clear that investors are primarily concerned with downside risk rela-
tive to one or more proxies for their liabilities and objectives, i.e. relative
to their personally relevant risk benchmarks. Hence we should concentrate
on moments related to the downside tails of the return distributions relative
to potentially random, rather than simply static, benchmarks.

Markowitz (1959) considered returns relative to a fixed target return. Bawa
(1975), Fishburn (1977), Harlow (1991) and others considered a group of lower
partial moments (LPMs) relative to such a fixed target return. Balzer (1994)
then went on to make a conceptual extension of this work by generalizing the
constant ‘target return τ ’ to a random benchmark return, B(t), which varies
over time. To emphasize the difference, Balzer modified the formulation and
defined a class of benchmark relative lower partial moments

RLPMn = E
{ |(R − B)n| , R − B < 0

0, R − B ≥ 0

}
(8.11)

The concept of a relative lower partial moment captures a number of intuitively
appealing investment risk measures.

The resulting class of RLPMs provide an elegant set of interesting information
regarding returns which fall short of the benchmark.

RLPM0 is the probability of shortfall
RLPM1 is the expected shortfall
RLPM2 is the relative lower partial variance
RLPM3 is related to the relative lower partial skewness
RLPM4 is related to the relative lower partial kurtosis

8.6.2 Inclusion of zeros

In calculating the RLPMs, it is very important to replace positive relative returns
with zeros as indicated in equation (8.11) and then to include them when calcu-
lating the average values. For example, in the case of RLPM0, without the
zeros, the probability of shortfall will always be 100%, which of course is
totally misleading. Also, without the zeros, the upside and downside variances
do not add up to the total variance. See later for further details.
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8.6.3 Expected shortfall

There is an important difference between the expected shortfall calculated
according to equation (8.3) and RLPM1 obtained from equation (8.11) with
n = 1. Equation (8.3) finds the average of only the shortfalls. Whereas the
RLPM1 based expected shortfall will be a smaller number because of the addi-
tional zeros included in the average. Both are of interest and are equally valid,
but just different, ways of looking at the benchmark relative returns.

8.6.4 Relative semi-variance

RLPM2 is particularly interesting. Several names can be given to it. In the
RLPM framework it is the relative lower partial variance of the return relative
to the risk benchmark. In Markowitz-like terminology, it is the relative semi-
variance.

As an investment risk measure, relative semi-variance avoids the problems
of all the probability- and moment-based measures considered thus far. It is
clearly both an asymmetric and a relative measure, which penalizes returns
below the risk benchmark, but avoids penalizing over-performance. Conse-
quently, it will give meaningful results in portfolios with options and non-linear
trading strategies. Because multiple benchmarks can be used, it is potentially
multidimensional. Unlike all but one (expected shortfall) of the probability-
based measures considered earlier, it is complete, since its calculation includes
all shortfalls. Expected shortfall was shown to suffer from an implicit linear
penalty on shortfalls. Relative semi-variance, by squaring the relative downside
deviations, penalizes larger shortfalls (below the risk benchmark) more than
smaller ones. This captures an essential non-linear feature of observed investor
behaviour – that most investors perceive infrequent large losses or shortfalls far
more risky than more frequent smaller losses or shortfalls.

The use of semi-variance and relative semi-variance for performance measure-
ment and asset allocation are the subject of ongoing research. Suffice it here
to remember Markowitz’s (1959) comment noted earlier that semi-variance
tends to produce better portfolios than those based on variance. Similar results
favouring semi-variance in asset allocation have been obtained by many others.
Dolan (1991), Harlow (1991) and Cariño and Fan (1993) get similarly good
results in asset allocation after introducing a constant target rate of return rele-
vant to the investor. The use of relative semi-variance goes one step further
by introducing a time varying risk benchmark, which serves as a proxy for
the investor’s liabilities or objectives. By calculating semi-variance relative to
the investor’s own investor-specific risk benchmark, the results can only be
improved.
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8.6.5 RLPM3

RLPM3 is obviously related to relative lower partial skewness or relative semi-
skewness, in a similar way to the relationship of the normal third moment to
the normal coefficient of skewness – see equation (8.6). RLPM3 does not suffer
from the problem of returns above the risk benchmark being included. Being
a one-sided measure, it differs from relative semi-variance only in the power
to which the downside deviation is raised. In effect it puts a cubic penalty
on deviations below the benchmark return, in place of the quadratic penalty
in variance. Hence its behaviour should be similar to relative semi-variance,
except that it will ‘dislike’ larger shortfalls even more strongly.

8.6.6 Relative lower partial kurtosis

RLPM4 is related to relative lower partial kurtosis or relative semi-kurtosis. It
penalizes large downside deviations even more strongly than the lower order
moments by applying a quartic power to them.

8.6.7 RLPM conclusions

The RLPMs provide a powerful group of risk measures, which can be used
for performance measurement and for portfolio construction. Although they
are intuitively very appealing, they can be criticized for not having a theoret-
ical basis for their use as the natural way of measuring investment risk. The
following section addresses this shortcoming.

8.7 UTILITY AND PARTIAL MOMENTS

Balzer (1994) and others appeal to investors’ intuition, investment experience
and logic to justify the use of downside risk measures. In the following sections,
a mathematical derivation, which leads naturally to downside risk measures, is
developed. In the process of this development, a unified theory of measures of
upside and downside utility is achieved.

8.7.1 Separation of upside and downside utility

We begin by considering returns relative to a benchmark, B(t), which is a
random variable. Define the benchmark relative return, r(t)

r(t) = R(t) − B(t) (8.12)

Because we are particularly interested in downside returns, we pursue the simple
device of separating the time series of relative returns into two series, one for
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‘upside’ and one for ‘downside’

r(t) = u(t) + d(t) (8.13)

where

u(t) =
{

r(t), r(t) ≥ 0
0, r(t) < 0

}
(8.14)

and

d(t) =
{

0, r(t) > 0
r(t), r(t) ≤ 0

}
(8.15)

The variable u(t) obviously represents upside returns. It contains all of the
positive values of the relative return, where the investment outperforms the
benchmark, together with zeros for those instances where the investment return
falls short of the benchmark. Similarly, the variable d(t) represents the down-
side returns. It contains all of the negative values of the relative return, where
the investment falls short of the benchmark, together with zeros for those returns
where the investment outperforms the benchmark. Note that the downside series,
d(t), carries the actual negative values of the relative return and not just the
magnitudes. The rare occasions upon which the investment return and the bench-
mark return are exactly equal produce zeros in both time series.

Consider an unspecified function, U(r), which represents (to the limited
extent that any simple univariate function can) the usefulness or utility8 of the
investment returns r(t) relative to a particular investor’s benchmark. Because
the upside and downside time series are disjoint (with the exception of zero),
linearly additive and orthogonal, the utility of the relative return time series is
simply the sum of the utilities of the separate upside and downside time series.
In this situation, utility is essentially a distributive operator and

U(r) = U(u) + U(d) (8.16)

We next expand each of the upside and downside utility functions using sepa-
rate Maclaurin series expansions about zero benchmark relative return. This is a
particularly attractive point, about which to develop the expansions, as it marks
the division between out-performing and under-performing the benchmark.

The upside utility about u = 0 becomes

U(u) = U(0) + U ′(0)u + U ′′(0)u2/2! + U ′′′(0)u3/3! + · · · (8.17)

where U ′ denotes dU/du, the first derivative of U with respect to u, U ′′ the
second derivative, U ′′′ the third, etc.

We now turn to downside utility. It was noted earlier that, because of the
psychological idiosyncrasies exhibited by investors, a small negative return is
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likely to be significantly more undesirable than a small positive return (of the
same magnitude) is desirable. To allow for the possibility of a jump discontinuity
at zero, we modify the problem formulation slightly, but very significantly, by
expanding the downside utility function about a point infinitesimally below
zero. This feature is very powerful. It allows all or any of the derivatives of
the utility function to be discontinuous at zero. Hence the utility function can
have a downward jump discontinuity at zero, or the slope can kink, or both, if
desired. Furthermore, the curvature, the rate of change of curvature, etc. can all
be discontinuous across zero.

Expanding the downside utility function about a point, 0−, infinitesimally
below zero,

U(d) = U(0−) + U ′(0−)d + U ′′(0−)d2/2! + U ′′′(0−)d3/3! + · · · (8.18)

Taking the expected values of equations (8.17) and (8.18) leads to the expec-
ted (i.e. average) upside utility:

E{U(u)} = U(0) + U ′(0)E{u} + U ′′(0)E{u2}/2!

+ U ′′′(0)E{u3}/3! + · · · (8.19)

and to the expected downside utility

E{U(d)} = U(0−) + U ′(0−)E{d} + U ′′(0−)E{d2}/2!

+ U ′′′(0−)E{d3}/3! + · · · (8.20)

Combing the expected upside and downside utilities according to the expected
values of equation (8.16) gives the complete expected utility of the benchmark
relative return:

E{U(r)} = U(0) + U(0−) + U ′(0)E{u} + U ′(0−)E{d}
+ U ′′(0)E{u2}/2! + U ′′(0−)E{d2}/2!

+ U ′′′(0)E{u3}/3! + U ′′′(0−)E{d3}/3!

+ Uiv(0)E{u4}/4! + Uiv(0−)E{d4}/4!

+ Higher order terms (8.21)

8.7.2 Zeroth order utility

The first term in equation (8.21), U(0), is the utility of zero relative return – the
utility of meeting but not exceeding the benchmark. Since this is essentially
a neutral result, U(0) can be set to zero, without any loss of generality for
comparing investments or for portfolio construction

U(0) = 0 (8.22)
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The second term U(0−) represents the disutility of falling short of the bench-
mark by even a very small amount. It reflects the reality that, illogically or
otherwise, many trustees, plan sponsors and individual investors dislike even
the smallest amount of negative return. If U(0) is zero, then U(0−) is the
magnitude of the sudden drop in the utility function when the returns fall short
of the benchmark and the relative return becomes negative. Clearly, it will not
be positive.

U(0−) = Downward jump in utility at zero r(t)

≤ 0 (8.23)

If one believes that the effect is not present for the investor(s) of interest, then
it can be set to zero, otherwise it will assume a negative value.

8.7.3 First order utility

The third and fourth terms in equation (8.21), namely U ′(0)E{u} and U ′(0−)

E{d}, capture the utility of the average upside E{u} and average downside E{d}.
Mathematically, U ′(R) represents the marginal utility of return. Geometri-

cally, it is the slope of the utility curve at a particular return, r . If the investor
prefers more to less, then U ′(r) is positive and so are both U ′(0) and U ′(0−).
Furthermore, it is not unreasonable to assume that they are equal. Why? When
optimizing the risk/return characteristics of a portfolio, it is normal to maxi-
mize the expected return subject to some penalty on risk. The expected return
is simply the sum of the upside and downside returns

E{r} = E{u} + E{d} (8.24)

In the optimization, the weighting placed on the return is unity and the investor’s
risk aversion is incorporated by the weighting placed on the risk term(s). Given
these two observations, it is clearly reasonable to make the upside and downside
marginal utilities equal to each other, and equal to unity

U ′(0) = U ′(0−) = 1 (8.25)

8.7.4 Second order upside utility

The fifth term in equation (8.21), U ′′(0)E{u2}, represents the rate of change
of upside marginal utility of return, weighted by the upside variance measured
about zero.

The many practitioners and theoreticians who have argued for the replacement
of variance with downside semi-variance in portfolio construction are implicitly
arguing that this term is irrelevant to the investor. This is equivalent to arguing
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that U ′′(0)E{u2} = 0. Now, since E{u2} is non-zero, U ′′(0) must be zero. If
U ′′(0) is zero, so must all the higher derivatives of U(0). Combining this with
equations (8.17), (8.22) and (8.25), the upside utility function would collapse
to an upwardly sloping straight line

U(u) = u

The use of downside semi-variance in place of variance is equivalent to assum-
ing no decrease in the marginal utility of return as the upside return increases.

Balzer (1994) was well aware of this implication, but believed it to be a true
description of actual investor behavior. Later in 1994, however, discussions
with the late and eminent psychologist Amos Tversky, at Stanford University,
indicated that the empirical evidence was, as Tversky put it, ‘overwhelmingly in
favour of decreasing marginal utility of [upside] return’. Whilst we might think
that we do not behave this way, objective observation of our actual behaviour
indicates that we do.

The mathematical consequences of decreasing marginal utility of upside
return are that U ′′(u) and hence U ′′(0) are non-zero and negative. Mathemati-
cally

U ′′(0) < 0

We shall see in the following section that the marginal utility of downside
returns is also decreasing. The rapidly decreasing steepness of the utility curve
as we move away from larger negative returns compared with the far more
gentle decrease in steepness of the curve as we move towards larger upside
returns implies that

U ′′(d) < U ′′(u) < 0 (8.26)

Thus the rate of change of the marginal contribution to upside return is decrea-
sing, but decreasing at a lesser rate than for downside returns. At zero bench-
mark relative return, the rates might be and probably will be equal, hence

U ′′(0−) ≤ U ′′(0) < 0 (8.27)

8.7.5 Second order downside utility

The sixth term in equation (8.21), U ′′(0−)E{d2}, represents the rate of change
of marginal utility of downside return, weighted by the downside variance
measured about zero. Decreasing marginal utility also applies to downside
returns. This is consistent with the utility curve being steeper at very large
downside returns than it is at smaller ones. Hence the rate of change of marginal
utility is negative

U ′′(0−) < 0 (8.28)
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Since E{d2} is always positive due to the squaring of negative values of d , the
contribution to total utility is negative

U ′′(0−)E{d2} < 0 (8.29)

This term reduces utility by applying a quadratic penalty to downside returns
and is clearly risk-related. Furthermore, E{d2} can be interpreted as relating to
the amount of risk and U ′′(0−) as relating to the investor’s aversion to this
particular measure of risk. It is important to note that we have not said that
E{d2} is the only measure of risk. Other measures will emerge.

Is E{d2} related to risk? Yes, clearly so! Is it a risk measure? No! There
is a widespread misconception that, when variance is used in mean-variance
portfolio construction, it is the measure of risk. It is not. The risk measure is
in fact standard deviation and variance is the result of applying a quadratic
penalty to it via the objective function used in the optimization process.

The application of quadratic penalties in optimization problems is widespread
throughout science and engineering. It is done for several reasons, including
the removal of negative signs so that positive and negative deviations from the
optimal solution do not cancel each other out. Far more important, however,
is the concept of applying penalties to features that are considered undesirable
in the optimal solution. Large values of the undesirable features are usually
considered to be far worse than smaller values. Hence a quadratic penalty which
penalizes large values very much more than small ones is usually employed.
Furthermore, in many optimization problems with quadratic penalties, analytical
solutions can be found,9 thus avoiding often massive, time-intensive and ill-
conditioned numerical procedures.

It also makes sense for the measure of a feature of return, namely risk,
to be dimensionally homogeneous with return itself. Return is measured as
a proportion or percentage per unit time, expressed dimensionally as [T−1],
whereas variance of return is measured in those units squared, i.e. (percentage
per unit time)2, which is dimensionally [T−2]. Using variance as the risk measure
is dimensionally inconsistent.

The utility function in equation (8.21) is essentially the investor’s objective
function and can be used to find the investor’s optimal portfolio. Consequently,
the conceptually correct interpretation of E{d2} is that it is a quadratic penalty
applied to downside returns and that the correct risk measure is its square root,√

E{d2}. Various names and notation are possible for this quantity. Probably the
most common scientific or engineering designation would be RMS (Root Mean
Square) downside, designated dRMS. Conventionally, the RMS value is taken to
be the positive square root. Using the μk

a notation introduced in equation (8.5),

the second order downside risk measure would be denoted
√

μ2
0(d), which,

while avoiding any possible ambiguity, is somewhat cumbersome. Attempting
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to use the relative lower partial moment notation becomes equally cumbersome,√
RLPM2

0, and is too unwieldy to verbalize.
Another possibility is to use σ0(d), where the zero subscript denotes measure-

ment of deviations about zero. This is also unambiguous and reasonably compact.
It could be verbalized as ‘downside semi-standard deviation’, but this verbal
descriptor is ambiguous, because it might be interpreted incorrectly as being
calculated about either the mean relative return, or even the mean downside
return, and not about zero.

In the sequel, the term RMS downside and the symbol dRMS will be used
both for compactness and for the avoidance of any possible ambiguity. Using
this notation, the term U ′′(0−)E{d2} in equation (8.21) becomes U ′′(0−)dRMS

2,
which clearly indicates a quadratic penalty with negative weighting, U ′′(0−),
on the RMS downside risk measure, dRMS.

8.7.6 Second order ‘upside utility leakage’

Using the RMS notation, the second order upside utility term in equation (8.21),
namely U ′′(0)E{u2}, can be rewritten as U ′′(0)uRMS

2. Since U ′′(0) is negative,
there is clearly a quadratic reduction in utility for very high upside returns.
Should the RMS upside, uRMS, then be thought of as ‘upside risk’? No! The
reduction in utility arises from our psychological devaluation of the contribution
of very high returns to upside utility. It does not arise from a classification
as something that is ‘risky’, or even ‘unpleasant’. The phenomenon is better
thought of as upside utility leakage, quantified by U ′′(0)uRMS

2. One might even
think of U ′′(0) as a devaluation operator acting on the RMS upside squared.
We shall simply refer to it as a sensitivity to upside utility leakage.

8.7.7 Third order upside utility

The third order upside utility term in equation (8.21) is U ′′′(0)E{u3}. For consis-
tency with the RMS notation, we define RMC upside to denote the cube-Root
Mean Cube upside

uRMC = 3
√

E{u3}
The third order upside utility term can then be written as U ′′′(0)uRMC

3.
The nature and properties of the weighting, U ′′′(0), placed on the RMC upside

are interesting. U ′′′(0) is obviously the rate of change of the marginal upside
utility, but this interpretation sheds little light on its properties or on the values
it might assume.

The term uRMC
3, however, is identical to μ3

0(u) and is hence directly related
to upside skewness measured about zero. Since uRMC

3 is positive, a positive
value for U ′′′(u) would lead to a positive third order contribution to upside
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utility. This is consistent with anecdotal evidence suggesting that most investors
view positive skewness as a desirable feature in a return distribution. It seems
reasonable to assume that U ′′′(u) is positive.

U ′′′(u) > 0 (8.30)

8.7.8 Third order downside utility

The third order downside utility term in equation (8.21) is U ′′′(0−)E{d3}. In a
similar manner to the upside, we define RMC downside to denote the cube-Root
Mean Cube downside

dRMC = 3
√

E{d3} (8.31)

The third order downside utility term then becomes

U ′′′(0−)dRMC
3

Again, the quantity dRMC
3 is identical to μ3

0(d) and is directly related to
downside skewness measured about zero. The research of Olsen (1997) and
others has shown that investors particularly dislike very large downside returns,
so a positive skewness in returns below benchmark should be desirable. Hence
U ′′′(0−) should be positive

U ′′′(0−) > 0 (8.32)

Since the downside returns are negative by definition, so is the expected
value of the cubed downside returns. Its cube root is thus also negative. With
U ′′′(0−) positive, the third order downside utility term is then clearly negative.

In the same way that the second order downside utility was seen to be a
quadratic penalty on downside returns, the third order term is clearly a cubic
penalty on returns that fall short of the benchmark. Thus RMC downside, dRMC,
is not only another risk measure, but one which satisfies all of the desirable
features listed earlier, except for positivity. The latter is of no great consequence,
as positivity was seen to be a matter of convention rather than substance. The
weighting placed on the cubic penalty is U ′′′(0−).

Later, it will be shown that both U ′′′(0) and U ′′′(0−) are positive for the
logarithmic utility function, which is consistent with equations (8.30) and (8.32).

8.7.9 Fourth order upside utility

The fourth order upside utility term in equation (8.21) is Uiv(0)E{u4}. Again for
consistency with the RMS notation, define RMQ upside to denote the positive
fourth-Root Mean Quartic upside

uRMQ = 4
√

E{u4} (8.33)

The fourth order upside utility term can then be written as Uiv(0)uRMQ
4.
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The quantity uRMC
4 is identical to μ4

0(u) and is directly related to upside
kurtosis measured about zero.

The nature and properties of the weighting, Uiv(0), placed on the RMQ
upside, are interesting. A positive weighting on uRMC

4 in the utility function
could produce unpleasant consequences. The fourth power would lead to very
large returns contributing enormously to upside utility. In portfolio construction
applications, this could easily lead to the selection of stocks with rare and
perhaps very uncertain large returns. Most portfolio managers, however, prefer
frequent small to moderate upside contributions. They typically dislike and
actively avoid infrequent very large ones. The risks of not being overweight at
exactly the right time are just too great.

Another important behavioural consideration arises from performance
measurement. When unusually large returns drop out of rolling 12 and 36
month performance figures, the latter suffer quite dramatic falls. Large falls
arising for whatever reason are usually disliked by superannuation and pension
fund members and are not received well by fund administrators or their advisers.
Fund managers, in turn, dislike such events because their clients do.

These attitudes imply that Uiv(u) is negative for large returns.
It was noted above that uRMC

4 is directly related to upside kurtosis. Positive
upside kurtosis not only means fatter upside tails, but also a more pronounced peak
near the mode – ‘narrower shoulders’. This in turn means fewer small positive
returns. But part of the fund manager aversion to infrequent very large returns is a
liking, other things being equal, for frequent smaller returns. Hence the weighting
factor Uiv(u) is likely to be negative for smaller as well as larger returns.

All of these considerations imply that Uiv(u) should be negative.

Uiv(0) < 0 (8.34)

This is another instance of upside utility leakage, but at a higher order.
Later, the logarithmic utility function will be seen to have a negative fourth

derivative.

8.7.10 Fourth order downside utility

The fourth order downside utility term in equation (8.21) is Uiv(0−)E{d4}. In
the now familiar manner, we define RMQ downside to denote the positive
fourth-Root Mean Quartic downside

dRMQ = 4
√

E{d4} (8.35)

The fourth order downside utility term then becomes

Uiv(0−)dRMQ
4

The quantity dRMQ
4 is identical to μ4

0(d) and is directly related to downside
kurtosis measured about zero. As noted earlier, investors particularly dislike
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very large downside returns, so the fourth order downside contribution to utility
will clearly be negative. Since dRMQ

4 is positive, the fourth derivative of utility
must be negative

Uiv(0−) < 0 (8.36)

The fourth order term is a quartic penalty on returns, which fall short of the
benchmark. Thus RMQ downside, dRMQ, is yet another risk measure, which
satisfies all of the desirable properties listed earlier.

Later it will be shown that Uiv(0−) is negative for the logarithmic utility
function and hence satisfies equations (8.34) and (8.36).

8.7.11 Higher order terms

The higher order terms in equation (8.21) involve quintic and higher powers on
upside and downside returns relative to the benchmark.

On the upside, if the corresponding derivative is positive, this will lead ceteris
paribus to portfolios skewed further and further towards the stocks with more
returns in the upside tails of the relative return distribution. Portfolios could be
expected to become more and more concentrated in fewer and fewer stocks.
Given fund managers’ negative attitude to returns highly dependent on a small
number of very big winners, the higher derivatives are likely to be negative or
close to zero.

On the downside, higher order penalties on returns below benchmark will
express more extreme risk aversion. In addition, portfolios could be expected
to become narrower and more concentrated in the stocks that have fewer returns
in the downside tails of the relative return distribution. This is one of the results
found by Nawrocki (1992) in his research into using individual lower partial
moments in portfolio construction.

The higher order terms also become increasingly negligible quite rapidly
for two reasons. First, within the range of convergence of the power series
in equations (8.17)–(8.21), both u and d have magnitudes that are less than
one, otherwise the power series do not converge. Raising u and d to higher
and higher powers will lead to smaller and smaller quantities. Secondly, each
term is divided by the factorial of same number as the power. These divisors
increase very rapidly −120, 720, 5040, . . . for the quintic, etc. terms. Later,
an analysis of approximating the logarithmic utility function will show the
decreasing significance of the higher order terms.

8.7.12 Utility, downside risk and upside utility leakage

The utility of the return relative to benchmark can now be summarized in the
RMS style notation developed in the preceding sections.
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Equation (8.21), which gives the expected utility, can now be restated as

E{U(r)} = E{r}
+U(0−)+U ′′(0−)dRMS

2/2!+U ′′′(0−)dRMC
3/3!+Uiv(0−)dRMQ

4/4!
+U ′′(0)uRMS

2/2!+U ′′′(0)uRMC
3/3!+Uiv(0)uRMQ

4/4!
+Higher Order Terms

(8.37)

Equation (8.37) provides a powerful and fascinating insight into the nature
of the trade-off between investment risk and return. The first line confirms that
expected return is a major component of the expected utility of an investment.
The second line, however, immediately reduces that utility by a number of
penalties on downside risk measures. The third line then reduces it further by
what is termed, in this work, upside utility leakage. The final line acknowledges
that, strictly speaking, there are an infinite number of measures of downside risk
and upside utility leakage, as indicated by the higher order terms. These higher
order terms could reasonably be expected to be negligible in most applications.10

The downside risk terms are very intuitive. The first, U(0−), was seen in
equation (8.23) to be negative and to represent the downward jump in utility
encountered as soon as the investment return falls below the benchmark.
It is essentially the disutility of a negative sign in the relative return. The
second term, U ′′(0−)dRMS

2/2!, is a quadratic penalty on the RMS downside
risk measure, dRMS. The weight, U ′′(0−)/2!, placed on this penalty is the
second order risk aversion parameter, which is negative. The third term,
U ′′′(0−)dRMC

3/3!, is a cubic penalty placed on the RMC downside risk measure,
dRMC. The weight, U ′′′(0−)/3!, placed on it is the third order risk aversion
parameter. Unlike the even order downside risk measures, dRMS and dRMQ, the
odd order dRMC is negative. Hence the weight on it was seen to be positive.
The fourth risk term, Uiv(0−)dRMQ

4/4!, is a quartic penalty placed on the RMQ
downside risk measure, dRMQ. The weight, Uiv(0−)/4!, placed on it is the fourth
order risk aversion parameter, which is negative.

The upside utility leakage terms capture investors’ devaluation of upside
returns. There are likely to be at least two psychological phenomena at work
here. The first is probably a general steadily decreasing marginal utility of
upside return – a sort of ‘Why bother? Is the effort really worth it?’ effect.
The second is a more clear-cut unease about infrequent very large returns – an
unease about depending on a few big wins to keep the average return up.

The first upside utility leakage term, U ′′(0)uRMS
2/2!, is a quadratic penalty

on the RMS upside leakage measure, uRMS. The weight, U ′′(0)/2!, placed on
this is the second order leakage sensitivity, which is negative. Perhaps it captures
most of the gentle and diffuse diminishing returns to upside utility. The second
term, U ′′′(0)uRMC

3/3!, is a cubic penalty placed on the RMC upside utility
leakage measure, uRMC. The weight placed on it, U ′′′(0)/3!, is the third order
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leakage sensitivity , which is probably (anomalously) positive to reflect investor
preference for mild positive skewness. The third term, Uiv(0)uRMQ

4/4!, is a
quartic penalty placed on the RMQ upside utility leakage measure, uRMQ. The
weight, Uiv(0)/4!, placed on it is the fourth order leakage sensitivity, which is
almost certainly negative to capture investor unease about depending on a few
infrequent very large returns to obtain adequate average returns.

These utility leakage effects could be expected to be much more gentle than
the vigorously expressed dislike, bordering on fear at times, of large losses
of capital. These statements are consistent with the Olsen (1997) behavioural
research and also with the shape of the often used logarithmic utility function
analysed later.

The sensitivities to upside and downside are not equal. Hence the use of
double-sided moments incorporating both upside and downside in one measure
are not a realistic representation of investor preferences and behaviour.

8.7.13 Special cases: mean–variance, mean–semi-variance and
mean–RLPMs

Equation (8.37) is a particularly elegant summary of the risk/return behaviour of
most investors. It is also a generalization of several of the most widely accepted
theories and contains them as special cases. This is a highly desirable situation.

8.7.13.1 Relative mean–RLPM portfolio construction
If we assume that there is no special psychological aversion to a negative sign
appearing in front of the benchmark relative return, i.e. there is no downward
jump in utility at r = 0, then

U(0−) = 0 (8.38)

If, contrary to the psychological research, it is assumed that the marginal utility
of upside return does not decrease (or increase), then

U ′′(0) = U ′′′(0) = Uiv(0) = · · · = 0 (8.39)

and if the terms of order higher than four are neglected

Higher order terms = 0 (8.40)

then under all of these assumptions equation (8.37) reduces to

E{U(r)}= E{r} + U ′′(0−)dRMS
2/2! + U ′′′(0−)dRMC

3/3!
+Uiv(0−)dRMQ

4/4!
(8.41)

If equation (8.41) is used as the objective function for portfolio optimization,
the optimal portfolio will have maximal return relative to the benchmark after
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the relative lower partial variance, skewness and kurtosis, all calculated using
deviations from zero benchmark relative return, have been penalized.

8.7.13.2 Relative mean–relative semi-variance portfolio construction
The behavioural research of Olsen (1997) and others indicates that investors are
very averse to deep downside returns –very large shortfalls below benchmark.
This risk aversion is probably not captured by a quadratic downside penalty
alone, and needs both cubic and quartic penalties to capture it. (See later analysis
of logarithmic utility function and its approximation by a power series.) If,
however, one ignores this evidence and not only makes the above assumptions
in equations (8.38), (8.39) and (8.40), but also assumes that the cubic and quartic
penalties in equation (8.37) can be neglected

U ′′′(0−) = Uiv(0−) = 0 (8.42)

then equations (8.37) and (8.41) further reduce to

E{U(r)}= E{r} + U ′′(0−)dRMS
2/2! (8.43)

This is a relative mean–relative semi-variance objective function, where the
semi-variance is measured using deviations from zero benchmark relative return.
Thus the optimal portfolio will have a maximal return relative to the benchmark
after the downside semi-variance (measured about zero relative return) has been
penalized.

8.7.13.3 Mean–semi-variance portfolio construction
In this chapter, the importance of measuring returns relative to a benchmark,
which acts as a proxy for the investor’s liabilities or objectives, has been empha-
sized. If, however, those liabilities or objectives are ignored entirely, the relative
return collapses down to the total return. Ignoring the benchmark is mathemat-
ically equivalent to setting it identically equal to zero

B(t) ≡ 0 (8.44)

so that the benchmark relative return becomes the total return

r(t) = R(t) − B(t) = R(t) (8.45)

and the first term on the right-hand side of equation (8.43) becomes

E{r} = E{R} (8.46)

In the second term, the second order risk aversion parameter becomes

U ′′(r = 0−) = U ′′(R = 0−) (8.47)
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and the variable d(t) now contains the downside values of the total return R(t)

from the investment. The RMS downside squared then becomes

dRMS
2 = E{d2} = [μ2

0(d)]2 = [σ0(d)]2 = σ0(d)2 (8.48)

where the σ notation has been used for greater transparency. In words, σ0(d)

is the standard deviation, measured about zero total return, of the downside
total return series, which, as in equation (8.15), is padded with zeros when the
investment return R(t) is positive.

With all of the preceding assumptions and the additional assumption of bench-
mark irrelevance, equations (8.37) and (8.43) reduce to

E{U(R)}= E{R} − λdσ0(d)2 (8.49)

where the modified risk aversion parameter λd is

λd = −U ′′(R = 0−)/2! (8.50)

This is a mean–semi-variance objective function, where the semi-variance
of the downside total investment return is measured using deviations from zero
total return. Thus the optimal portfolio will have a maximal return after the
downside semi-variance (about zero total return) has been penalized.

8.7.13.4 Mean–variance portfolio construction
The array of simplifying assumptions made in the preceding subsections is
substantial. Many features, which are either confirmed by behavioural or other
research, or are believed strongly by intelligent and experienced practitioners
to exist, have been assumed away. If one of these assumptions is reinstated,
a mean–variance utility function will be seen to emerge as a special case of
equation (8.37).

In equation (8.39), the sensitivity to second order upside utility leakage,
U ′′(0), was assumed to be zero. If this assumption is reversed and the phenome-
non of diminishing marginal upside utility reinstated, but all of the other simpli-
fying assumptions retained, then

E{U(R)} = E{R} + U ′′(R = 0−)dRMS
2/2! + U ′′(R = 0)uRMS

2/2!

If it is further assumed that the second derivative of the utility function is
continuous and smooth at zero total investment return, then

U ′′(R = 0−) = U ′′(R = 0) = U ′′(0) [say] (8.51)

and

E{U(R)} = E{R} + U ′′(0)(dRMS
2 + uRMS

2)/2! (8.52)
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From equations (8.13), (8.14) and (8.15), it is fairly simple to show alge-
braically that

rRMS
2 = uRMS

2 + dRMS
2 (8.53a)

or

σ0(r)
2 = σ0(u)2 + σ0(d)2 (8.53b)

or

V ar0(r) = V ar0(u) + V ar0(d) (8.53c)

where V ar0(·) denotes the variance measured about zero and not about the
mean.

Under these circumstances, equation (8.52) reduces to

E{U(R)} = E{R} + U ′′(0)rRMS
2/2!

But since the benchmark has been ignored

rRMS = RRMS (8.54)

and

E{U(R)}= E{R} − λσ0(R)2 (8.55)

where the risk aversion parameter is

λ = −U ′′(0)/2! (8.56)

and where σ0(R) denotes the standard deviation of the total return R(t) measured
about zero. It is not equal to the normal standard deviation σ(R), which is
measured about the mean value of R(t).

σ0(R) �= σ(R) (8.57)

This is a very interesting result. Maximizing the utility function in equa-
tion (8.55) is a mean–variance optimization – but not quite the traditional one.
It will result in a portfolio with maximal total return after a quadratic penalty
has been applied to the double-sided variance measured about zero. It is a form
which Markowitz investigated (see Levy and Markowitz, 1979), but it is not the
one which has subsequently become popular. Originally, Markowitz concluded
that taking the Taylor series expansion about the mean total return was a better
approximation of several utility functions than taking it about zero total return.
This is not surprising since more of the returns will be in this region than
near any other point. Equation (8.37), however, deals with benchmark relative
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returns. If Markowitz had been working with benchmark relative returns, he
might very well have found that an expansion about zero benchmark relative
return was the more accurate.

8.7.14 Conclusion

The unified theory of the utility of upside and downside benchmark relative
returns expressed in equation (8.37) is both powerful and elegantly simple.
It captures many features of investor preferences, which are not captured by
previous models and paradigms.

8.8 LOGARITHMIC UTILITY

8.8.1 Asymmetric treatment of upside and downside returns

There is an interesting asymmetry between positive and negative percentage
returns, whereby a +x% return is not equal and opposite in its effect on terminal
wealth to a −x% return. For example, assume that an investor has $100 and
that over two consecutive periods, the returns are −50% and +50%. At the
end of the two periods, the investor has only $75. If the chronological order
of the returns is reversed, the result is unchanged. Clearly a +50% return does
not cancel out a −50% return. It takes +100% to do so. The natural log of the
return relative, ln(1 + r), however, does behave symmetrically:

−50% ⇒ ln(1 − 0.5) = −0.693

+100% ⇒ ln(1 + 1.0) = +0.693

Using a logarithmic utility function, ln(1 + r), −50% and +100% are seen to
be equivalent in terms of their effect on terminal wealth.11 Thus the logarithmic
utility function treats upside and downside returns differently, but treats their
effects on terminal wealth equally.

8.8.2 Motivation

We shall use the logarithmic utility function to explore two issues. The first is to
gain a feel for realistic magnitudes for the downside risk aversion parameters
and upside utility leakage sensitivities in equation (8.37). The second is to
explore how quickly, or otherwise, the higher order terms become negligible.

8.8.3 Indicative magnitudes for parameters

Consider the logarithmic utility function

U(r) = ln(1 + r), for −1 < r (8.58)
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Note that this choice of U(r) is not defined for relative returns less than or
equal to −100%. Hence (1 + r) will always be positive here.

The first four derivatives of the utility function are

U ′(r) = 1

1 + r
= +ve (8.59)

U ′′(r) = −1(1 + r)−2 = −1

(1 + r)2 = −ve (8.60)

U ′′′(r) = 2(1 + r)−3 = 2

(1 + r)3 = +ve (8.61)

Uiv(r) = −6(1 + r)−4 = −6

(1 + r)4 = −ve (8.62)

Values for the risk aversion parameters and the utility leakage sensitivities
are shown in Table 8.1.

First, let us consider the parameter values for zero benchmark relative return,
r = 0. Since the utility curve is continuous at zero, there is no downward jump
at zero and the ‘disutility of a negative sign’ is zero.

U(0−) = 0 (8.63)

which is consistent with equation (8.23).
From equations (8.59)–(8.62), it is clear that all derivatives are continuous

at zero and that

Ui(0−) = Ui(0), for all i

The marginal utility of zero relative return (i.e. benchmark return) is unity

U ′(0−) = U ′(0) = 1 (8.64)

which is consistent with equation (8.25).
The second order risk aversion parameter and utility leakage sensitivity are

negative

U ′′(0−)/2! = U ′′(0)/2! = −0.5 (8.65)

which is consistent with equation (8.27).

Table 8.1 Parameter values for logarithmic utility function

Relative return −50% −25% 0% +25% +50%

r −0.50 −0.25 0 +0.25 +0.50
U(r) −0.69 −0.29 0 0.22 0.41
U ′(r) 2.00 1.33 1.00 0.80 0.67
U ′′(r)/2! −2.00 −0.89 −0.50 −0.32 −0.22
U ′′′(r)/3! 2.67 0.79 0.33 0.17 0.10
Uiv(r)/4! −4.00 −0.79 −0.25 −0.10 −0.05
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The third order risk aversion and utility leakage sensitivity are equal and
positive

U ′′′(0−)/3! = U ′′′(0)/3! = +0.33 (8.66)

which is consistent with equations (8.30) and (8.32).
The fourth order risk aversion and leakage sensitivity are negative

Uiv(0−)/4! = Uiv(0)/4! = −0.25 (8.67)

which is consistent with equations (8.34) and (8.36).
Hence the signs of the parameters are consistent with earlier arguments.

The magnitudes of these coefficients decrease as their order increases, which
is consistent with the higher order terms contributing less to the total utility.
It is also consistent with the convergence of the series expansions used in
equations (8.17) and (8.18).

The behaviour of the magnitudes as one moves across the rows is also inter-
esting. In Table 8.1, the row for the first derivative indicates that the utility
curve is steepest for deep downside returns, which is entirely consistent intu-
ition and the behavioural research. It becomes less steep as relative returns
become less negative and flatter as they move positive. The row for the second
derivative shows a progression from larger negative to a smaller negative values
is consistent with decreasing marginal utility and equation (8.26).

The progression of the second, third and fourth derivatives (from left to right
across the bottom three rows in Table 8.1) from larger to smaller magnitudes is
consistent with downside risk aversion being a more powerful phenomenon and
upside utility leakage being a much weaker phenomenon.

8.8.4 Importance of higher order terms

The above results can also be used to test how many terms in equation (8.37)
are required to obtain a reasonable approximation to a known and realistic utility
function, namely the logarithmic utility function currently under analysis. We
begin by substituting the numerical values from equations (8.63)–(8.67) into
equation (8.37).

In Figure 8.15, the actual logarithmic utility function is shown by the thick
black line. The crudest possible approximation to it involves only the first term
on the right-hand side of equation (8.37)

E{U(r)} ≈ E{r} (8.68)

In Figure 8.15, this is shown by the thin dotted straight line. This is the base
case with no downside risk aversion or upside utility leakage.
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Figure 8.15 Logarithmic utility function

The next level of approximation is gained by adding the second order terms,
which leads to

E{U(r)} ≈ E{r}
+ U(0−) + U ′′(0−)dRMS

2/2! + U ′′(0)uRMS
2/2! (8.69)

This is shown in Figure 8.15 by the thin solid line. For negative relative returns,
the gap between the dotted line of equation (8.68) and this line is due entirely to
the second order downside risk aversion arising from the quadratic penalty on
the RMS downside, dRMS. This is what downside semi-variance would capture,
provided that the deviations were measured about zero relative return and not
about the mean total, or relative, return. For deep downside returns, it is clear
that this risk measure and penalty only capture about half of what is specified
by the logarithmic utility function! For returns closer to benchmark, there is
little difference on the scale of this graph.

For large positive relative returns, the second order upside leakage penalty
very significantly overestimates the decrease in marginal utility as returns rise.
This indicates that precisely the same thing will happen if simple variance is
used as the risk measure.
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The next level of approximation is gained by adding in the third order terms,
which leads to

E{U(r)} = E{r}
+ U(0−) + U ′′(0−)dRMS

2/2! + U ′′′(0−)dRMC
3/3!

+ U ′′(0)uRMS
2/2! + U ′′′(0)uRMC

3/3! (8.70)

which is portrayed by the thick dotted line in Figure 8.15. This captures more of
the aversion to downside returns inherent in the logarithmic utility function, but
is still well short of the very significant logarithmic aversion to deep downside
returns. On the upside, however, the cubic penalty on RMC upside causes
an underestimate of the upside utility leakage, driving it from the level of
equation (8.69) closer to but above the logarithmic utility line.

The final level of approximation to be considered here is to add the fourth
order terms which leads to

E{U(r)} = E{r}
+ U(0−) + U ′′(0−)dRMS

2/2! + U ′′′(0−)dRMC
3/3! + Uiv(0−)dRMQ

4/4!

+ U ′′(0)uRMS
2/2! + U ′′′(0)uRMC

3/3! + Uiv(0)uRMQ
4/4! (8.71)

and the thick dashed line in Figure 8.15. On the deep downside, there is again
a noticeable improvement in capturing the extreme aversion to deep downside
returns – returns far below the benchmark returns. But it still falls short of the
logarithmic disutility of such returns. On the upside, utility leakage is again
over-estimated at high returns, but less so than for the simpler approximations.

On the downside, the convergence associated with increasing the number of
terms is monotonic. On the upside, however, the convergence is oscillatory.

From this indicative analysis, we can conclude that the higher order terms
are important in capturing realistic levels of downside risk aversion and upside
utility leakage at returns well away from benchmark returns.

For returns closer to benchmark, it might be concluded that the higher order
terms are not so important. There are, however, three obvious dangers in this line
of thinking. First, the scale of Figure 8.15 does not highlight the discrepancies,
which are present at smaller returns. Secondly, small changes in utility might
not necessarily be associated with small differences in the composition of the
optimal portfolio. This is certainly true of mean-variance optimized portfolios.
Thirdly, in the region of zero benchmark relative return, Figure 8.15 appears to
suggest that the higher order terms are irrelevant.

The same visual feature also appears to suggest that none of the risk measures
is relevant near the benchmark. Why? The simplest approximation, which is the
thin dotted line representing equation (8.68), involves only the expected return
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and no risk measures whatsoever. Yet the difference between the thin dotted
line and the original logarithmic utility function also appears to be negligible
near zero. Such simplistic logic, based on the appearance of Figure 8.15 alone,
would lead us to assume that we could proceed to construct an optimal portfolio
without using any risk measure. Without any externally imposed constraints,
however, this would result in a totally undiversified portfolio holding only one
stock, namely the stock with the highest expected return. Few would find such
a ‘portfolio’ acceptable. The simplistic visual logic is flawed.

It is prudent to assume that risk measures of order higher than two do add
worthwhile information to portfolio construction, even with returns closer to
benchmark.

8.9 PORTFOLIO CONSTRUCTION

It is not the purpose of this chapter to explore the effects of downside risk
aversion and upside utility leakage on the results of the portfolio construction
process. Much work has been done on using downside risk measures of various
orders. See for example Nawrocki (1992), where the separate effects of indi-
vidual downside risk measures of various order, integral and fractional, are
examined. What is of greater interest, however, is the effect of using all of the
downside risk measures in concert with each other, and in combination with
the various upside utility leakage measures. This is a potentially rich field for
investigation.

Numerical algorithms for portfolio construction are beyond the scope of this
chapter. One interesting piece of work, however, is worth mentioning. Jackson
(1996) successfully used genetic algorithms to construct portfolios using down-
side risk measures. Balzer (1993) implies that genetic algorithms are particularly
useful for dealing with difficult non-linear optimization problems with a mixture
of higher order soft penalties and hard constraints, as are likely to occur in the
type of portfolio construction arising out of this chapter. Provided that suffi-
cient genetic diversity is present in the initial population, global rather than
local optima are virtually assured.

8.10 EFFICIENT ESTIMATION

The estimation of separate downside and upside moments is non-trivial. The
matter is too extensive to address here, except to remark on one aspect. A
recurring criticism of downside risk measures is that the estimation of downside
statistics is usually based on a relatively small number of downside observations
(relative to the number of upside plus downside observations combined). Hence
it is less efficient and less accurate than the estimation of double-sided statistics.
One way of avoiding this problem is to fit an analytical distribution to the whole
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data set and then to calculate the upside and downside statistics from the full
distribution.

The question then becomes, ‘Which distribution?’ The author was fortu-
nate enough to be invited to attend the Econometric and Financial Times
Series Workshop, which formed part of the six month Nonlinear and Nonsta-
tionary Signal Processing Research Programme at the Isaac Newton Institute
of Mathematical Sciences in Cambridge, UK (1998).12 There was a surprising
consensus among the leading academics present that the type of fat-tailed distri-
butions found in financial markets are best modelled by a normal (Gaussian)
distribution for the bulk of the sample, plus a generalized Pareto distribution for
the additional fatness in the tails. Such a parametric approach, if well executed,
should increase the efficiency of estimating the required upper and lower partial
moments significantly.

8.11 META-RISKS

There are many risks which investors, fund managers, fund trustees, plan spon-
sors and other financial market participants face. This chapter only attempts to
deal with one aspect of investment risk. Gray (2000), however, tackles a wider
range of less quantifiable risk in an erudite and interesting manner. He defines
meta-risks as risks ‘born out of the complex interactions between the behaviour
patterns of individuals and those of organizations’. He looks, inter alia, at the
risks of moral hazard, hubris, insufficient quantitative analysis, inappropriate
quantitative analysis, excessive quantitative analysis, liquidity risk, data mining,
unchallenged or insufficiently challenged views, complexity, agency risk, and
the managing of meta-risks. He concludes that ‘a dialectic of risk may be the
ultimate form of risk management’. Such a dialectic of the utility of upside and
downside benchmark relative returns would be equally valuable.

8.12 CONCLUSION

In this chapter we have attempted to provide a wide-ranging review of the most
commonly used or proposed measures of portfolio investment risk.

Realistic risk measures should be asymmetric and be measured relative to one
or more benchmarks, which are investor-specific. Risk is multidimensional, and
risk measures should be both complete and non-linear. Probability of shortfall
and maximum shortfall are incomplete. Expected shortfall is complete, but is
only linear and hence inadequate. Consideration of the psychological aspects
of investment risk reveals that real investors are economically irrational and,
worse still, they often construct the bases for their preferences while making
their judgement. One solution is to provide the decision-maker with as much
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information as possible, preferably the complete cumulative probability distribu-
tion function of returns relative to the investor’s benchmark(s). First and second
order stochastic dominance purport to help in comparing such distributions, but
both are of rather limited usefulness.

Conventional double-sided moments of the benchmark relative returns are
better than those of total returns, but still not adequate. The major problem
with using variance as a risk measure is that it penalizes upside as well as
downside returns. It is a measure of uncertainty, but upside uncertainty is not
usually classed as risky. Relative lower partial moments are each individu-
ally important and informative, but the development of a unified theory of the
utility of upside and downside returns relative to benchmark indicates that all
upside and downside moments are theoretically involved in measuring utility.
RMS (Root Mean Square), RMC (cube-Root Mean Cube) and RMQ (fourth-
Root Mean Quartic) downside and upside all meet the requirements for valid
measures of downside risk and upside utility leakage, respectively. Quadratic,
cubic and quartic penalties on each of these measures all contribute to defining
utility by penalizing aspects of investment performance which are important to
real investors.

Several methods of portfolio construction are simply special cases of the
unified theory encapsulated in the rich and elegant formulation of expected
upside and downside utility summarized in equation (8.37).

Analysis of the logarithmic utility function shows that the effects of upside
utility leakage can be expected to be much smaller than those of downside
risk. Furthermore, third and fourth order measures are likely to be needed to
fully capture investor preferences adequately. Quintic and higher order terms
are probably negligible.

There is much research to be done – a dialectic of upside and downside utility
would be very valuable.

NOTES

1. The process used is lagged white noise with an autocorrelation of 0.2 at lag one
and zero for higher order lags.

2. No doubt there are many other properties, features and phenomena associated
with risk, but those developed here are sufficient for current purposes.

3. The author would like to express his gratitude to the late and eminent Amos
Tversky, Professor of Psychology at Stanford University, for the time which he
so graciously made available from a very busy schedule to discuss the importance
of psychological perception to the measurement of investment risk.

4. Even though the coefficient of kurtosis is zero for a normal distribution, the
fourth moment, μ4

μ, is not.
5. This is a consequence of the Central Limit Theorem of statistics and is easily

verified by numerical examples.
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6. The psychological research referred to earlier casts doubt on the extent to which
any pre-specification of risk, and hence utility, can be achieved, especially with
a univariate function.

7. The ‘half’ surface for R < B in the three dimensional [R,B, p(R,B)] space is
thus reduced to a ‘half’ curve for X − R < 0 in the two dimensional
[R − B,p(R − B)] plane.

8. We assume that the investor’s situation is such that the returns, with which we
are concerned here, do not change the investor’s total wealth to the point where
any wealth effect becomes significant.

9. For example, in the so-called ‘LQG problem’ of modern control theory, the
dynamical system to be controlled is modelled by a set of linear differential
or difference equations describing its state, quadratic penalties are applied to
deviations from the desired state, and the disturbances to the system and the
noise in measurements made on it are modelled as Gaussian processes. Perhaps
surprisingly to many readers, and in spite of the need to solve time-varying non-
linear matrix differential or difference equations, an optimal control strategy can
be found analytically with ‘relative’ ease.

10. As with all power series expansions, the Maclaurin series expansion is only
convergent within a certain range of values of the variable. In the present case, it
is convergent for returns relative to benchmark within the range −1 < r < +1,
where the decimal return ‘1’ represents 100%. In the unlikely event that this
restriction proves to be limiting, the problem can be rescaled.

11. A related way of handling the situation is to use continuously compounding
returns. Here the equivalent continuously compounding returns are −69.3% and
+69.3%.

12. See References for details.
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Chapter 9

Lower partial-moment capital asset pricing
models: a re-examination

STEPHEN E. SATCHELL

9.1 INTRODUCTION

The use of downside risk in asset pricing models has been available as a tool for
financial economists since the papers of Markowitz (1959), Bawa and Linden-
berg (1977) and Hogan and Warren (1974). These models have become known
as lower partial-moment capital asset pricing models (LMCAPM) as opposed
to mean-variance capital asset pricing models (MVCAPM). Specification of
such models requires a choice of target rate, below which ‘risk’ is involved,
the above-mentioned authors choosing the riskless rate. Later work by Harlow
and Rao (HR) (1989) extended these models to an arbitrary target rate. Further
ad hoc extensions not based on equilibrium considerations were advocated by
Homaifar and Graddy (HM) (1990). The HM models were criticized by Chow
and Denning (CD) (1994) for providing excess returns for the riskless asset.
Further criticisms by CD centre on the belief that there were strong distribu-
tional assumptions implicit in the work of BL and MR. It is true that HR and BL
only proved distribution-free results for n = 1, i.e. mean-based models. Proofs
for n > 1 require making additional convexity assumptions for efficient sets
or making distributional assumptions. The distributional assumption made was
that the return distributions belong to the location-scale (LS) family which was
assumed in proofs by HR. CD correctly point out that under the LS family the
LMCAPM beta is equal to the MVCAPM beta or, to be precise, the mean-
scale capital asset pricing beta. They also assert, on the basis of this, that the
LMCAPM theory is redundant since, in the cases where it is valid, it gives
the same (population) beta as the MVCAPM and hence we should use the
MVCAPM. If this argument is correct, the whole idea of carrying out econo-
metric work to see if there is a difference between the two models seems utterly
misguided. Recent work, see Eftekhari and Satchell (1996), has attempted to
measure the difference on the betas empirically in emerging markets where the
data are probably not generated by the LS family.
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The purpose of this chapter is to challenge this view of equivalence. We do
this by applying some theoretical results of Fishburn (1977). This gives us an
expected utility function which is consistent with a LMCAPM and does away
with the need for distributional assumptions. We show, as a consequence, the
validity of the BL and HR models, for all distributions such that the appro-
priate expectations exist, thereby extending results out of the LS family. This
is necessary for establishing models which theoretically can produce different
LMCAPM betas from MVCAPM betas. It may be argued that all we have done
is replace a dubious assumption about the convexity of an efficient set by an
equally dubious assumption about the existence of a representative agent. We
present results in this chapter that establish two fund money separation which
is a prerequisite for the construction of a representative agent. We use these to
present a representative agent. Examination of the representative agent’s port-
folio suggests that target rates should lie between zero and the riskless rate.
This finding strengthens the claims of the HR model rather than the BL model.
We present the models and notation in section 9.2 and the theory in section 9.3,
conclusions follow in section 9.4.

9.2 MODELS AND NOTATION

In this section we shall concentrate on defining the multitude of models discussed
in section 9.1. We assume there are N risky assets, the market, and a riskless asset.
We assume throughout that the rates of return of a typical risky asset is ỹ, the
market is x̃, and the riskless asset is r . For most of the chapter we can consider
bivariate relationships involving x̃ and ỹ. We define the means and the covariance
matrix of (x̃, ỹ)′ as

E(x̃) = μx, E(ỹ) = μy, (9.1)

and

cov
(

x̃

ỹ

)
=
[

σ 2
x , ρσxσy

σ 2
y

]
= 


The CAPM relationships discussed in section 9.1 are of the form

(μy − r) = β(μx − r) (9.2)

where β varies depending upon the theory. Under the Sharpe-Lintner MVCAPM,

βMV = cov(x̃, ỹ)

var(x̃)
= ρσy

σx

(9.3)

The BL and HW LMCAPM model for target rate τ = r has β defined as

βLM = E[(r − ỹ)(r − x̃)n−1�]

E[(r − x̃)n�]
, n = 1, 2 (9.4)
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where

� = 1 if x̃ < τ (τ = r in this case)

= 0 otherwise.

We note here that to establish equation (9.4) for n = 2 requires some auxiliary
assumptions about the convexity of certain sets (see Bawa and Lindenberg,
1977, n. 6). The HR extension for arbitrary τ has

βLM = E[(r − y)(τ − x̃)n−1�]

E[(r − x̃)(τ − x̃)n−1�]
, n = 1, 2 (9.5)

Also, Proposition 1 of Harlow and Rao (1989) explicitly assumes that distri-
butions belong to the LS family, thus equation (9.5) is only established in the
special case that βLM = βMV ; we also remark that Chow and Denning (1994)
make this point very well.

Finally, the HG non-equilibrium based extension has, for arbitrary τ ,

βLM = E[(τ − ỹ)(τ − x̃)n−1�]

E[(τ − x̃)n�]
, n = 1, 2 (9.6)

Again, Chow and Denning (1994) have shown that this implies a risk premium
for the riskless asset! For this reason, we shall not consider equation (9.6)
again. The conclusion of this section is that legitimate questions can be raised
as to the scope and validity of proofs establishing equations (9.4) and (9.5)
under conditions more general than n = 1, and τ = r or where βLM does not
automatically equal βMV .

9.3 THEORY

We shall now present our assumptions with discussion.

(1) There exists a representative agent whose decision rule (μ(f ), φ(f ))

is such that she prefers, for given φ(f ), a portfolio with higher μ(f )

and for given μ(f ) she prefers a portfolio with lower φ(f ), where
μ(f ) is the expected value of the portfolio with probability density
function (pdf), f and φ(f ) is the value E(φ(η − W̃ )) where φ is some
differentiable convex function, W̃ is the risky future wealth and E is
taken with respect to f , the pdf of W̃ .

(2) We assume that the class of risky investments are those such that μ(f )

and φ(f ) are finite for all f .
(3) We assume that the preferences of the representative agent are consistent

with expected utility.

We present our generalized CAPM model for such a representative agent
investor. That such a representative agent exists is certainly true in the case
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where there are N identical agents. General assumptions under which we can
prove existence are a separate matter that awaits later discussion. We note that
we want our representative agent to have preferences that depend only on the
aggregate wealth and not on, say, the distribution of wealth.

Proposition 1
If we assume (1), (2) and (3) then the generalized CAPM will be

μy − r = cov(yi, φ
′(η − W̃ )�)

cov(W̃ , φ′(η − W̃ )�)
(μx − r)

and � is an indicator variable, � = 1 if W̃ ≤ η

and � = 0 if W̃ > η

(where W̃ is final period wealth).

Proof From Fishburn (theorem 2, 1977), and (1), the representative agent
must have an expected utility function of the form.

U(W̃) = W̃ if W̃ > η (9.7)

= W̃ − λφ(η − W̃) if W̃ ≤ η

if she also satisfies (3).
If we know the utility function of the representative agent we can apply stan-

dard equilibrium arguments, see e.g. Huang and Litzenburger (1988), Chapter 6,
to show that

μy − r = cov(yi, U
′(W̃ ))

cov(W̃ , U ′(W̃ ))
(μx − r)

It is assumed by Huang and Litzenburger that U is increasing, strictly concave
and differentiable everywhere. These conditions are not necessary and sufficient
however as they can be relaxed in certain cases; for example, if there are
restrictions on the W̃ distribution.

We shall rewrite U(W̃) as

U(W̃) = W̃ − λφ(τ − W̃ )�

which is valid for all W̃ .
Then

U ′(W̃ ) = 1 + λφ′(η − W̃ )�

then

cov(ỹi , 1 + λφ′(η − W̃ )�) = λ cov(ỹi , φ
′(η − W̃ )�)
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and

cov(W̃i, 1 + λφ′(η − W̃ )�) = λ cov(W̃i, φ
′(η − W̃ )�)

so result follows.
What we have proven so far is valid for all differentiable convex functions

φ, we now specialize to consider the special use of Fishburn’s (s, t) functions,
i.e. φ(η − W̃ ) = (η − W̃ )n for n a positive number.

Corollary 1.1
If φ(η − W̃ ) = (η − W̃ )n and n a positive number then

μy − r = cov(ỹi , (η − W̃ )n−1�)

cov(W̃i, (η − W̃ )n−1�)
(μx − r)

Proof This follows immediately since φ′(τ − W̃ ) = n(η − W̃ )n−1 and the
−n’s cancel.

If we wish to work with the market portfolio x̃, then noting that W̃ =
W0(1 + x̃), and define �′ to be the same binary variable defined for x̃, setting
W0 = 1, without loss of generality, we can replace (η − W̃ ) by ((η − 1) − x̃).
We define τ = η − 1, then the relationship between � and �′ is that prob(x̃ <

τ) = prob(1 + x̃ < η), so that � and �′ are equivalent binary variables.
We have Corollary 1.2 which converts wealth into returns.

Corollary 1.2
If we wish to measure our CAPM in returns and if we set W0 (initial wealth)
to 1, then

(μy − r) = cov(ỹi , (τ − x̃)n−1�)

cov(x̃i , (τ − x̃)n−1�)
(μx − r) (9.8)

The immediate question we wish to ask is whether we can use Proposition 1 to
validate the LMCAPMs of BL and HR.

This will follow immediately; we set out the arguments in Proposition 2.

Proposition 2
If φ(η − W̃) = (η − W̃ )n for n = 1 and n = 2 and W0 = 1 and (1), (2) and
(3) hold, then the models of HR and BL are valid for the representative agent
economy given by (1) and (3) and the class of distributions given by (2).

Proof For n = 1 and arbitrary τ , we need to show that

μy − r =
(

E[(r − ỹ)�]

E[(r − x̃)�]

)
(μx − r) (9.9)
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and for n = 2 and arbitrary τ , we need to show that

μy − r =
(

E[(r − ỹ)(τ − x̃)�]

E[(r − x̃)(τ − x̃)�]

)
(μx − r) (9.10)

where we assume by Proposition 1, for n = 1,

μy − r = cov(r − ỹ, �)

cov(r − x̃, �)
(μx − r) (9.11)

and

(μy − r) = cov(r − x̃, (τ − x̃)�)

cov(r − x̃, (τ − x̃)�)
(μx − r) for n = 2

Now, by definition,

cov(r − ỹ, �) = E((r − ỹ)�) − E(r − ỹ)E(�) (9.12)

and

cov(r − x̃, �) = E((r − x̃)�) − E(r − x̃)E(�)

then equation (9.9) will be implied by equation (9.12) since

(μy − r) =
(

a + b

c + d

)
(μx − r)

then

(μy − r)(c + d) = (a + b)(μx − r)

and

(μy − r) =
(a

c

)
(μx − r)

if

(μy − r)d = b(μx − r)

We see that the above gives us,

−(μ − r)E(r − x̃)E(�) = −E(r − y)E(�)(μx − r) (9.13)

and the above holds. An identical argument follows for n = 2 the LHS of
equation (9.13) being now

− (μy − r)E[(r − x̃)]E[(r − x̃)�] Q.E.D.

We can trivially extend Proposition 2 to cover all positive n. This validates
the unproven formula for HR when n is any value other than n = 1 or 2.
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Corollary 2.1
Under the assumption of Proposition 2, the HR model where

BLM = E[(r − ỹ)(τ − x̃)n−1�]

E[(r − x̃)(τ − x̃)n−1�]

is valid for all positive n.
We now address the issue as to circumstances when a representative agent

exists. To do this we shall attempt to find situations under which two-fund
money separation occurs.

We define our utility function for investor k as

Uk(z) = λkz − 1

n + 1
(ηk − z)n+1 for z ≤ ηk (9.14)

= λkz for z > ηk

where there are N risky assets and K investors, and where λk = θ(1 − τk/r)n.
In preparation for our next proposition, we define the following terms,

let Pk,τk = Prob

(
N∑

i=0

wikz̃i > τk

)

where wik is the weight of the ith asset in the portfolio of the kth investor.
We present our proposition for two-fund money separation. In Proposition 3,
we initially make the overly restrictive assumption that initial wealth is equal.
However, in Proposition 4 we relax this.

Proposition 3
Two-fund money separation occurs if the kth investor’s utility function satisfies
equation (9.14) and all investors have equal wealth and long positions in the
risky fund.

Proof In our proof, we adapt an argument in Ingersoll (1987). The optimal
portfolio weights of investor k satisfy

E

(
U ′

k

(
N∑

i=0

wikz̃k

)
(z̃ − r)

)
= k k = l, . . . , K (9.15)

Since the riskless asset is one fund, the other fund needs to be a linear combi-
nation of the zi’s such that wik/wjk (i,j#0) is the same for all k. From equa-
tion (9.15) and the form of Uk given by (9.14), converted into returns, we see
that, for τk = ηk − 1,
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λkE(zi − r) + (1 − Pkj τk
)E

×
[(

τk −
N∑

i=0

wikz̃i

)n

(zi − r)

∣∣∣∣∣
N∑

i=0

wikz̃i < τk

]
= 0,

i = 1, N

k = 1, K (9.16)

Initially, we shall assume that τk = 0∀k. Then the above equation becomes,

λkE(zi − r) + (1 − Pkj 0)E

×
[(

−
N∑

i=0

wikz̃i

)n

(zi − r)

∣∣∣∣∣
N∑

i=0

wikz̃i < τk

]
= 0,

k = 1, K

1, k = 1, N (9.17)

and where λk = θ(1 − 0/r)n = θ .
We see that the solution of (9.17), w∗, is independent of k since λk does not

depend on k, nor does Pk,0. We now turn to the general case where τk �= 0.
We suppose that the investor places 1 − βk of her wealth in the riskless asset
and βk in an optimal portfolio which includes the riskless asset. We define the
weights of the new portfolio as α̃k where α̃k = (α0, α1, . . . , αNk

) and e
˜
′α̃ = 1,

the optimal portfolio is just the optimal solution of the previous problem, w∗
i

where wik = wi∀k as shown. We see that

α0k = (1 − βk) + βkw0 (9.18)

and

αik = βkwi, i = 1, . . . , N

We now set βk = 1 − τk/r . If we substitute into equation (9.16), we see that,
W̃k = 1 +∑

αikz̃i ,

⇒ λkE(z̃i − r) + (1 − Pk,τk)
(

1 − τk

r

)n

× E
((

−
∑

wiz̃i

)n

(z̃i − r)/(W̃k < ηk)
)

= 0

where we have substituted βk =
(

1 − τk
r

)
, but

N∑
i=1

wikz̃i < τk ⇒ (1 − βk)r + βk

N∑
i=0

wiz̃i < τk

⇒ τk + βk

N∑
i=0

wiz̃ < τk
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or

βk

N∑
i=0

wiz̃ < 0

Thus, we see that (9.16) becomes, since βk > 0 by assumption.

E(zi − r) + (1 − Pk0)E
(
−
(∑

wikz̃i

)n

(z̃i − r)/
wikz̃i < 0
)

= 0

Since this solution is independent of k as before, two-fund separation is proved
Q.E.D.

We next present a corollary to Proposition 3. Let W0k be the initial wealth
of investor k.

Corollary 3.1
If we allow W0k to vary over k, so that initial wealth differs, we see that
the result still holds except that we use ηk, the wealth trigger level, where
ηk = W0k(1 + τk) and

λk = W0k

(
1 − τk

r

)n

(9.19)

Proof The proof is identical to Proposition 3 and is omitted.

Thus, we can find TFMS for investors with different wealth levels and
different triggers, i.e. with the same n and different λk . We can now calculate
total demand for asset i, di , where

di =
k∑

k=1

W0kwi

(
1 − τk

r

)

= wiWm − wi

r

k∑
k=1

W0kτk

(9.20)

using the results in Corollary 3.1, and Wm = ∑k
k=1 W0k .

From equations (9.19) and (9.20)

d0 =
∑

W0k(1 − βk) +
∑

W0kβkw0

= (1 − w0)
∑ W0kτk

r
+ w0Wm

(9.21)

For an equilibrium to require that d0 = 0 so that cash is in zero net supply,

w0 =
∑

W0kτk∑
W0k − rWm

and
∑

W0kτk �= rWm
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If ηk = (1 + r)W0k , for all k, a commonly chosen threshold, so that all investors
guarantee themselves at least the cash rate, then, from (9.21), d0 = Wm and all
investors invest all their wealth in bonds, no one holds the other fund; this is
hardly an equilibrium situation seen in modern equity markets.

In general, individual behaviour is determined by the relationship between
ηk and r . We outline two cases below, for W0k = 1,

(1) ηk = 1 + r, βk = 0 and the investor holds all her wealth in the riskless
asset. In this case the condition for the validity of Corollary 3.1 implies
that λk = 0 and the investor decision rule depends only on risk, not on
expected return.

(2) 0 < ηk < (1 + r), βk > 0 and the investor is long both funds. This has
the reasonable property that the ‘riskless’ asset is assigned zero risk by
the representative agent and indeed all agents, see equation (9.7).

If we were to set ηk equal to 1 plus the expected return of the market, it
would, in this context, not be compatible with holding the market long which
is what asset managers typically do.

We are now in a position to describe the representative agent. As is standard
in this literature, we shall assume that bonds are in zero net supply. Aggregate
(market) demand for a wealth distribution [W0k, k = 1, . . . , K] will be given
by (9.17).

We have thus far identified the aggregate demand and the presence of TFMS.
We shall complete our argument by showing that the aggregate demand is the
solution of a Fishburn Utility function as in (9.7). Have we lost anything in
our formulation? It is clear that a securities market equilibrium, such as ours,
need not be Pareto-optimal when markets are incomplete. It is also true, that if
the equilibrium is Pareto-optimal, then we can construct a representative agent
although not one, in general whose demands are independent of the wealth
distribution. It is not known to the author, if given a representative agent, we
must have a Pareto-optimal allocation. It does not seem reasonable to make the
extra assumption that markets are complete as that imposes restrictions on the
asset distributions, something we are trying to avoid. We could assume pareto-
optimality but again that might be rather restrictive. We shall simply construct
our representative agent without endowing the equilibrium with any normative
properties.

Proposition 4
Our representative agent with initial wealth Wm, has the following Fishburn

Utility Function given by (9.7), where Wm >

W0kτk

r the total wealth of society
is greater than the sum of the discounted target returns and the social target rate

is τm = Wm − 
W0kτk

Wmr
so our demands place (1 − τm) in (w∗) and τm in bonds
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so that net demand for bonds is zero, the portfolio w∗ is the portfolio defined
by (9.17).

Proof Most of the proof has already been derived. We have shown that

w0 =
∑

W0kτk∑
W0kτk − rWm

→ Wm =
m∑

i=1

di

di = wi

⎛⎝Wm −
∑

W0kτk

r

⎞⎠, i = 1, N

d0 = (1 − w0)

⎛⎝∑W0kτk

r

⎞⎠+ w0Wm

Define our portfolio weights as

d∗
i = wi(1 − τm)

d∗
0 = w0 + (1 − w0)τm

= w∗(1 − τm) + τm

⎛⎜⎜⎝
1
0
...

0

⎞⎟⎟⎠
The result follows because w∗ is the solution of a utility function of the Fishburn
form as in Proposition 3.

Remark 1
It is clear from Proposition 4 that in terms of a representative agent, a target
rate set at r , as in the BL equilibrium, implies that in aggregate all wealth is
held in the riskless asset and equity is in zero net supply. The appropriate target
rate to use for both asset classes to be in positive net supply is for a rate lying
between 0 and r .

Remark 2
Proposition 4 retains the property that the representative agent has a utility
function independent of the wealth distribution except for the societal target
rate which will be influenced by distributional changes. In particular, a shift of
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wealth from low target rate (low risk) investors to high target rate (high risk)
investors will raise the social target and make society more risk-averse.

9.4 CONCLUSION

It is well known that the MVCAPM is valid under various distributional assump-
tions (see Ingersoll, 1987) or, alternatively, under quadratic utility for the
representative agent. Our results can be seen in a similar light and show that the
LMCAPM is valid for any representative agent whose decision rules are based
on means of expected utility and for all distributions with finite expectations
of the parameters mentioned above. We also address the issue as to whether it
is possible to have such a representative agent. Aggregation can be achieved
within the class of Fishburn (1977) utility functions. What we have shown is
that TFMS applies, under rather restrictive circumstances, and thus, if a repre-
sentative investor exists, she will hold the two funds, i.e. cash and the market.
We also demonstrate the existence of the representative investor. We find that
equilibrium target rates should be below the riskless rate and above zero if all
asset classes are in positive net supply. If we take the societal target rate to be
a proxy for society’s overall attitude to risk, where a higher rate implies higher
sensitivity to risk, we find that transfers of wealth from low target to high target
investors raises the social target, indeed, this is the only impact of wealth redis-
tribution within our model. This TFMS result can be seen as an extension of
Cass and Stiglitz’s (1970) famous result on the validity of two-fund separation
within the HARA class of utility functions, except that now our utility functions
are not necessarily in U2, the class of twice-differentiable utility function with
first derivatives positive and second derivatives negative. Furthermore, since
our condition for aggregation requires that λk depend on W0k , they are rather
unusual utility functions (for other examples of these see Ingersoll, 1987: equa-
tion 15b). Finally, our aggregation result holds for the class of Fishburn power
utility functions, except for the impacting of the wealth distribution on the social
target.

Overall, the result certainly ‘frees up’ the LMCAPM and allows us to set up
meaningful statistical tests that will determine if downside moments measure
investor risk more accurately than variance. Such tests already exist (see Harlow
and Rao, 1989 and Eftekhari and Satchell, 1996), and this chapter gives a
theoretical rationale for carrying out these procedures.
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Chapter 10

Preference functions and risk-adjusted
performance measures

AUKE PLANTINGA AND SEBASTIAAN DE GROOT

SUMMARY

Both private and institutional investors delegate a considerable part of
the management of their asset portfolios to external fund managers.
Consequently, investors face the problem of selecting the best from
a large set of potential portfolio managers. This selection process
involves the evaluation of the return distribution generated by the
portfolio manager. An important aspect of this evaluation is the risk
attitude of the investor. There are at least two general approaches
for the evaluation of the attractiveness of return distribution. The
first approach is to choose a preference model, such as a utility
function, and use the expected value of this preference model as the
decision criterion. This approach allows the user to model explic-
itly the risk preferences of the investor. The second approach is
to use a risk-adjusted performance measure to select the port-
folio manager with the highest score. Usually, with this approach
it is not possible to explicitly model the risk preferences of the
investor.

The objective of this chapter is to study the relation between
risk preference functions and risk-adjusted performance measures.
More specifically, we want to determine the preference functions
that best correspond to the risk-adjusted performance measures
included in our study. Preference functions and risk-adjusted per-
formance measures can be parameterized in an infinite number of
ways. In order to prevent the need to investigate an endless number
of combinations, we limit our study to three functional specifications

Continued on page 170
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Continued from page 169

of preference functions and to five risk-adjusted performance
measures.

We consider the quadratic utility function, since this function is
often used to motivate the use of mean-variance analysis. Further-
more, we investigate the Fishburn utility function and the prospect
theory value function, which both use the concept of a reference
point. These preference functions motivate the choice of perform-
ance measures in this study. The first measure is the Sharpe ratio,
which is a performance measure associated with mean-variance
analysis. The other measures are the Sortino ratio, the Fouse index
and the upside potential ratio. Like Fishburn’s utility function and
the prospect theory value function, the measures are based on a
reference rate.

The objective of this chapter can be of great interest for practical
applications of performance measures. For instance, it is reason-
able to expect that risk-adjusted performance measures based on a
reference rate correspond to the preference functions using a refer-
ence rate. However, our analysis does not confirm this expectation.
We show that the accuracy of a risk-adjusted performance measure
in representing the risk preferences of an individual depends on a
general notion of risk aversion and less on the form of the preference
function. For example, a ranking of risky investment opportunities
based on the Sharpe ratio can be represented quite well with a
quadratic utility function, a Fishburn utility function, or a prospect
theory value function as long as the level of risk aversion of the
investor is sufficiently low.

In particular we conclude that the Sharpe ratio and the Sortino ratio
correspond to the behaviour of investors with a relatively low level
of risk aversion. On the other hand, the Fouse index and the upside
potential ratio correspond to the behaviour of investors with a high
level of risk aversion.

The outline of our study is the following. First we discuss the
different functional specifications of the preference function. Second-
ly, we introduce the risk-adjusted performance measures considered
in our study. Thirdly, we discuss the data used in our study, which
consists of a sample of returns from 105 Dutch mutual funds for
the period 1993–99. Finally, we analyse the relationship between the
preference functions and the risk-adjusted performance measures,
followed by our conclusions.
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10.1 PREFERENCE FUNCTIONS

The classical way to model preferences in financial theory is by means of a
utility function. A utility function generally represents the relation between the
utility or value attached by an individual to the level of wealth. The shape of
the utility function reveals the risk attitude of the individual. Concave utility
functions are representative for individuals with risk aversion, linear utility func-
tions are representative for a risk-neutral attitude, and convex utility functions
are representative for a risk-seeking attitude.

Consider three individuals with different attitudes towards risk. Individual
I is risk-averse, individual II is risk-neutral and individual III is risk-seeking.
Each individual has to choose between two investment opportunities, a risky
investment opportunity and a riskless investment opportunity (see Table 10.1).

The expected value of the risky alternative is equal to the expected value of
the riskless alternative. Therefore, from the perspective of individual II, both
alternatives are equally attractive since they have the same expected value and
risk does not matter to this individual. Individual I will choose the riskless
alternative since both alternatives have the same expected value and risk is
valued negatively by a risk-averse individual. Individual I is only willing to
participate in the risky alternative if its expected value sufficiently exceeds the
expected value of the riskless alternative. Individual III will choose the risky
alternative since both alternatives have the same expected value and risk is
valued positively by a risk-seeking individual. Individual III is only willing to
participate in the riskless alternative if the expected value of the risky alternative
is sufficiently below the expected value of the riskless alternative.

The preferences of individuals I, II and III might be represented by the utility
functions as in Figure 10.1 below.

Due to the popularity of modern portfolio theory as developed by Markowitz
(1952), it is often assumed that investors’ preferences can be represented by a
quadratic utility function of the following form:

U(x) = x − kx2 (10.1)

where x is wealth level and k > 0.
There is considerable doubt that a quadratic utility function really describes

the preferences of investors, the main reason being that this function implies

Table 10.1

Risky alternative Riskless alternative

Probability Outcome Outcome

50% 0.5 2.5
50% 4.5 2.5
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Figure 10.1 Three different utility functions

that the marginal utility of an extra unit of wealth actually decreases utility
at a sufficiently high level of wealth. Although diminishing utility may be a
reasonable assumption for some consumption goods, in general it is believed
that this is not a realistic assumption for wealth. The quadratic utility function
also implies increasing absolute and relative risk aversion.1 This means that
with increasing wealth, an investor tends to invest less in risky assets, both in
absolute and in relative terms. This contradicts empirical studies by Blume and
Friend (1975) and Cohn et al. (1975). While Blume and Friend find evidence
that investors’ behaviour displays constant relative risk aversion, Cohn et al.
find evidence that investors show decreasing relative risk aversion. However,
despite critique, quadratic utility functions remain popular as their use results
in analytically tractable solutions to mean-variance optimization problems.

Another drawback of the quadratic utility function is that there is evidence
that the preferences of individuals cannot be characterized by one global degree
of risk aversion.2 For example, Kahneman and Tversky (1979) showed that the
degree of risk aversion of an individual might depend on the level of future
wealth relative to the level of current wealth or another reference point. For
values of future wealth below the current level, investors are likely to show
risk-seeking behaviour and for values above the current level investors are
likely to show risk aversion.

If, depending on the level of an outcome relative to a certain reference point,
risk attitudes change from risk-averse to risk-seeking and back, then the prefer-
ence function displays the property of sign dependence. The following model
proposed by Fishburn (1977) has this property, with as reference point a target
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Figure 10.2 Fishburn utility function

level of wealth:

u(x) =
{

x x ≥ t

x − k(t − x)a x < t
(10.2)

where x is the end of period wealth level, t is the target wealth level, k is a
positive constant >1 displaying empirically observed loss aversion,3 and a is a
positive constant displaying the degree of risk aversion (if a > 1). In Figure 10.2
we present an example of a Fishburn utility function, with k = 1, a = 2 and
t = 5.

The prospect theory value function, as developed by Kahneman and Tversky
(1979) and Tversky and Kahneman (1992), also uses the idea of sign depend-
ence. However, for the prospect theory value function, the reference point,
i.e. the wealth level at which the risk attitude changes, is the current wealth
level. Tversky and Kahneman’s three-parameter expression for their preference
function is:

v(�x) =
{

�xα �x ≥ 0
−k(−�x)β �x < 0

(10.3)

where �x is the change in wealth level relative to the current wealth level, the
parameter k captures loss aversion α > 0 is a constant displaying risk attitudes
in the so-called domain of gains, and β > 0 is a constant displaying risk attitudes
in the so-called domain of losses.4 Based on an empirical study, Tversky and
Kahneman (1992) estimated the parameters as follows: α = β = 0.88 and k =
2.25. Figure 10.3 presents the prospect theory value function with Tversky and
Kahneman’s parameter estimates.
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Figure 10.3 Prospect theory value function

The main difference between the prospect theory value function of Tversky
and Kahneman (1992) and the utility function of Fishburn (1977) is that Fish-
burn assumes risk neutrality above the reference point, where Tversky and
Kahneman’s parameter estimate α = 0.88 implies assumed risk aversion. Below
the reference point, Fishburn assumes that investors are risk-averse (i.e. α > 1),
whereas Tversky and Kahneman assume risk-seeking behaviour in the domain
of losses (i.e. 0 < β < 1). This is consistent with the parameter estimate β =
0.88.

The prospect theory value function of Tversky and Kahneman allows different
risk attitudes in different domains of the function. If an investor has to choose
between two alternatives with only negative outcomes, the investor will choose
the alternative with the highest risk – given that the expected value of the
outcomes is the same. As an example, Table 10.2 presents two alternatives,
both with exclusively negative outcomes. Both alternatives have an expected
value of –70% and the alternatives only differ with respect to the volatility of
the outcomes. Alternative 2 shows a larger spread between the maximum and the
minimum outcome, which implies that this alternative has the highest volatility.
Using the parameters provided by Tversky and Kahneman the expected prospect
theory (PT) value of both alternatives can be calculated, which results in a
value of –1.642 for Alternative 1 and –1.637 for Alternative 2. This implies
that Alternative 2 is preferred over Alternative 1, which is consistent with
risk-seeking behaviour.

In the domain of gains, a prospect theory investor displays risk aversion. This
implies that such an investor who has to choose between two alternatives with
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Table 10.2 Two alternatives with negative outcomes

Outcome Probability PT value

Alternative 1
E[R] = −70% R = −80% 50% −1.849
σ [R] = 10% R = −60% 50% −1.435

Alternative 2
E[R] = −70% R = −90% 50% −2.051
σ [R] = 10% R = −50% 50% −1.223

exclusively positive outcomes and same expected value of the outcomes will
prefer the alternative with the lowest volatility among its outcomes.

The interesting question remains what will happen to prospect theory investors
if they have to choose between alternatives with outcomes both in the domain
of gains and the domain of losses. The answer is that it depends on the
shape of the distribution of outcomes. However, for most distributions with
a positive expected value of the outcomes, the behaviour of a prospect theory
investor is likely to be consistent with the behaviour of a purely risk-averse
investor. For example, consider the two alternatives in Table 10.3. Both alter-
natives have an expected return equal to 0%. However, Alternative 3 has a
smaller standard deviation than Alternative 4. The expected prospect theory
value of Alternative 3 equals –0.340 and the expected prospect theory value
of Alternative 4 equals –0.399, which means that a prospect theory investor
prefers Alternative 3 above Alternative 4. So even though the alternatives
are evaluated with a function that allows both risk-averse and risk-seeking
behaviour, the overall result is consistent with preferences based on a tradi-
tional utility function displaying risk aversion. This result can be attributed
to the loss-aversion condition k > 1, i.e. losses loom larger than gains or the
negative value contribution of a loss exceeds the positive value of an equiva-
lent gain.

Table 10.3 Two alternatives with both positive and negative
outcomes

Outcome Probability PT value

Alternative 3
E[R] = 0% R = −50% 50% −1.223
σ [R] = 50% R = +50% 50% +0.543

Alternative 4
E[R] = 0% R = −60% 50% −1.435
σ [R] = 60% R = +60% 50% +0.638
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10.2 RISK-ADJUSTED PERFORMANCE MEASURES

In this section we discuss several risk-adjusted performance measures. Both
risk-adjusted performance measures and preference functions can be used to
rank risky investment alternatives. While preference functions explicitly model
the risk attitudes of individuals, performance measures are calculated without
detailed knowledge of risk attitudes. Consequently, a ranking of investment
opportunities based on a preference function of one individual may differ
completely from the ranking of the same investment opportunities by another
individual with a different risk attitude. In other words, the concept of a pref-
erence function implies subjective rankings. In contrast, a ranking based on a
performance measure is often calculated without any knowledge of the prefer-
ence functions of the individuals that intend to use this ranking. Risk-adjusted
performance measures combine a return and a risk measure into one overall
measure. Usually, the adjustment for risk is achieved by either a division of the
return measure by the risk measure or by subtracting the risk measure from the
return measure.

The most popular risk-adjusted performance measures have been derived
from the Capital Asset Pricing Model (CAPM). Within the context of the
CAPM, the subjective balance between risk and return for an individual is
reflected in the mix between the portfolio of risky assets and the riskless asset,
while the portfolio of risky assets is the same for all individuals. This is the
so-called two-fund separation theorem.

The Capital Asset Pricing Model can be considered as the equilibrium version
of the modern portfolio of Markowitz (1991). Equivalent to Markowitz’s port-
folio theory, investors make decisions based on the means and variances of
securities. In the simple version of CAPM, it is also assumed that investors can
invest and borrow at a constant riskless interest rate. There are two assumptions
that can independently justify the use of the mean-variance model. Either one
has to assume that returns are normally distributed, which implies that the return
distribution can be characterized solely in terms of mean and variance or one
has to assume that investors have quadratic utility functions (see for example
Huang and Litzenberger, 1988).

A well-known performance measure is the Sharpe (1966) ratio. The Sharpe
ratio is related to the CAPM, as it can be used to construct the optimal portfolio
of risky assets. If riskless lending and borrowing is possible and allowed, then
the portfolio of risky assets can be obtained as the solution of a maximization
problem, where the objective is to maximize the Sharpe ratio.5

The Sharpe ratio of portfolio p is calculated as follows:

Sp = E[rp] − rf

σp

(10.4)
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Table 10.4

Fund E[R] − rf σ S

A 6% 10% +0.6
B 6% 20% +0.3
C −2% −20% −0.1
D −2% 10% −0.2

where E is the expectation operator, Rp is the return on portfolio p, rf is the
return on the riskless asset and σp is the standard deviation of portfolio p. An
important motivation for the use of the Sharpe ratio is the claimed consistency
of this ratio with the preference function of a mean-variance investor.

An interesting property of investors that maximize the Sharpe ratio is that
their risk attitude shifts from risk aversion for investments with an expected
return exceeding the riskless rate to risk preference for investments with an
expected return below the riskless rate. Table 10.4 gives a clear illustration of
this property.

While portfolios A and B have the same expected return, portfolio A has less
risk than portfolio B. Therefore, an investor characterized by risk aversion will
prefer portfolio A with the lower variance over portfolio B. The same must be
true for portfolios C and D. Both portfolios have the same expected return, but
portfolio D has less risk than portfolio C. So a risk-averse investor will prefer
portfolio D over C. However, the Sharpe ratio of portfolio C is larger than the
Sharpe ratio of portfolio D. Therefore, an investor using the Sharpe ratio as a
decision criterion shows risk-seeking behaviour for portfolios with E[Rp] < rf .
Overall, the behaviour of this investor is similar to the prospect theory value
function investor.

This result seems to be inconsistent with the CAPM assumption of risk-
averse investors. Apparently, using the objective of maximizing the Sharpe
ratio is not equivalent to using the objective of maximizing the expected value
of a quadratic utility function as implied by the CAPM. Of course, it is possible
to argue that the investor will choose only the best fund and that in general the
best fund will have an expected return that is larger than the riskless rate. In
addition to this ad hoc explanation, we discuss two alternative explanations for
the apparent inconsistency.

The first explanation is that CAPM implies that investors only buy efficient
portfolios. The funds presented in our example are not efficient portfolios. The
investor maximizes the Sharpe ratio of his entire portfolio, which does not
mean that each individual’s securities should have a positive or high Sharpe
ratios. If the interpretation of CAPM as equilibrium model holds, then investors
should hold a positive fraction of all the securities in the universe, even if some
securities have small or negative Sharpe ratios. So the funds C and D in our
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example are most likely to be individual funds or undiversified investment
portfolios.

A second explanation is that we mixed up the economic interpretation of
expected return with the calculation of the average return. It is common to use
a historical time series of return as a proxy for a future return distribution. In
order to do this it is necessary to assume that the return distribution is stationary.
Apart from the possibility that the assumption of stationary returns is incorrect,
it is possible that due to the small sample size a portfolio with an expected
return above the risk-free has an average sample return below the risk-free rate.

In the spirit of the second explanation the Shape ratio can be interpreted
as a t-statistic to test the hypothesis that return of the portfolio is larger than
zero. If an investor considers to invest in a particular portfolio of risky asset as
an alternative for a riskless asset, then the Sharpe ratio gives an indication of
the likelihood that the portfolio will out-perform the riskless asset. This would
justify the choice for the portfolio with the highest Sharpe ratio as it provides
the biggest probability of outperforming the riskless asset. It would also justify
the ranking of portfolio C over D as portfolio C, owing to its larger standard
deviation, has a bigger probability of obtaining a return above the riskless asset.

Although these explanations may resolve the inconsistencies, the fact still
remains that in practical applications, an investor using the Sharpe ratio can
exhibit risk-seeking behaviour if confronted exclusively with portfolios that
have an expected return exceeding the riskless return. The Sharpe ratio shares
this property with other risk-adjusted performance measures that are based on
the ratio of a return measure and a risk measure, such as the Treynor ratio and
the information ratio. Therefore, we conclude that a maximization of a risk-
adjusted performance measure is not necessarily equivalent to a maximization
of a preference function. In general, evaluating a return distribution based on a
preference function yields a different ranking than a one-parameter performance
measure.

In addition to the Sharpe ratio, a large number of other performance measures
have been developed from the CAPM and modern portfolio theory. Most of
these alternative measures involve the specification of a benchmark portfolio
to calculate the outcome of the performance measure. The most well known
examples are the information ratio, Jensen’s alpha and the Treynor ratio. These
measures evaluate the performance of an investment portfolio relative to a
benchmark and, therefore, evaluate only a part of the wealth accumulation of
the investor. Since the preference functions are expressed in term of final wealth
and absolute performance, we excluded measures based on relative performance
from this chapter.

The primary focus of this chapter is on performance measures that are based
on downside deviation, an alternative risk measure that focuses on potential
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losses as opposed to a general variability measure, such as standard deviation.
Like the Fishburn utility function and the prospect theory value function, down-
side deviation is calculated relative to a reference rate. Downside deviation is
defined as:6

δ =
√√√√ 1

T

T∑
t=1

ι−(Rp,t − Rmar)
2 (10.5)

where Rp,t refers to return of the portfolio in period t , T is the total number
of periods, Rmar is the minimal acceptable rate of return and ι− is a dummy
variable, with ι− = 1 if Rp,t ≤ Rmar and ι− = 0 if Rp,t > Rmar. Downside devi-
ation is different from standard deviation in two ways. First, standard deviation
is measured relative to the endogenous mean of the return distribution while
downside risk is measured relative to an exogenous reference point, the minimal
acceptable rate of return. This reference point can be interpreted in many ways.
For example, the minimal acceptable rate of return could be the lowest return
possible before any losses will show up in the accounting system, or the minimal
return required to avoid bankruptcy. Secondly, standard deviation measures all
deviations from the mean return, while downside deviation only measures devi-
ations below the reference point.

Downside deviation is applied in several risk-adjusted performance measures,
such as the Sortino ratio, the Fouse index and the upside potential ratio. The
best known of these measures is the Sortino ratio, which is defined as:

Sort = Rp − Rmar

δ
(10.6)

The Sortino ratio is the equivalent of the Sharpe ratio in mean-downside
deviation space. Like the Sharpe ratio, it inherits the property of reversing risk
attitudes from risk aversion to risk preference if the mean return of the portfolio
falls below the minimal acceptable rate of return.

A second risk-adjusted performance measure based on downside deviation is
the Fouse index. The Fouse index is calculated as follows:

FI = E[Rp] − Aδ2 (10.7)

where A is a measure of risk aversion. The Fouse index is not a ratio, and
therefore it does not display the reversal of risk attitude. The Fouse index differs
from other risk-adjusted performance measures as it incorporates a parameter
that reflects the risk attitudes of the investor.

Sortino, van der Meer and Plantinga (1999) proposed the so-called ‘upside
potential ratio’ (UPR). The upside potential ratio measures the upside potential
relative to the downside variance. As the numerator of this ratio is always larger
than or equal to zero, the upside potential ratio does not share the property of
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reversing the risk attitude. The upside potential ratio is defined as follows.

UPR =

T∑
t=1

ι+pt(Rt − Rmar)

T∑
t=1

ι−pt(Rt − Rmar)
2

(10.8)

with ι− = 1 if Rp,t ≤ Rmar, ι− = 0 if Rp,t > Rmar, ι+ = 1 if Rt > Rmar and
ι+ = 0 if Rt ≤ Rmar.

The upside potential ratio is strongly related to the Fishburn utility function.
Like the Fishburn utility function, the UPR measures deviations relative to a
target return. Furthermore, returns below the target return are weighted quadrat-
ically, whereas returns above the target return are weighted linearly. However,
there are differences between the two performance measures as well. The upside
potential ratio does not involve a risk-aversion parameter and it is calculated as
a ratio.

10.3 DATA

In order to study the relationship between risk-adjusted performance measures
and different choice models, we used a sample of 105 Dutch mutual funds.
The data are obtained from Standard & Poor’s Micropal database for the
Netherlands. We derived monthly returns from the database, including both
price changes and dividend payments. The data refers to the period starting at
March 1993 and ending at March 1999. In Table 10.5 we present some general
characteristics of the sample of mutual funds.

Our sample contains a variety of funds, ranging from money market funds
to internationally diversified equity and mix funds. From Table 10.5 it can be
observed that the interest-bearing funds such as money market and bond funds
have on average the lowest standard deviation of returns. As can be expected,
regional equity funds that specialize in a particular geographical region have

Table 10.5 Characteristics of mutual funds in the sample

Fund category Number of Market value of funds E[r] σ [r]
funds (million Euro)

Asset allocation 18 5 028 0.92% 3.57%
International equity 9 7 023 1.63% 4.74%
Regional equity 27 7 736 1.41% 6.59%
Interest bearing 39 16 601 0.49% 1.24%
Real estate 12 1 681 1.33% 5.93%

Total 105 38 069 0.99% 3.85%
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the highest standard deviation, as they do not profit from diversification over
regions or asset categories. The next riskiest category is real estate, followed
by internationally diversified funds and asset allocation funds.

The advantage of using a wide range of different mutual funds is that it allows
us to elaborate on the different risk attitudes of investors. Highly risk-averse
investors are expected to focus more on interest-bearing funds and diversified
equity funds, whereas less risk-averse investors might focus on specialized funds
such as regional equity and real estate. A different risk attitude will most likely
result in a different ranking of the funds.

10.4 CONSISTENCY OF RISK-ADJUSTED PERFORMANCE
MEASURES AND PREFERENCE FUNCTIONS

The objective of this study is to compare two approaches for evaluating the
attractiveness of an investment opportunity to an individual investor. The first
approach is based on the use of preference functions and the second approach
is based on the use of risk-adjusted performance measures. In our discussion of
risk-adjusted performance measures, we noticed that some of these measures
are inconsistent with global risk aversion.

We compare the rankings based on risk-adjusted performance measures with
the rankings based on the three different preference functions. However, first we
want to show that a single functional form of a preference function can facilitate
very different rankings due to differences in the risk-aversion parameter.

For our sample of 105 mutual funds, we calculated the ranking of the mutual
funds based on the quadratic utility function specified in equation (10.1) using
different values of the risk-aversion parameter k.7 We calculated the rank
correlation coefficient between the rankings of the mutual fund based on all
combinations of the different risk-aversion parameters. The outcomes of this
analysis are presented in Table 10.6. This table shows that for big differences
between the risk-aversion coefficient, the correlation between the rankings can
even become negative.

Table 10.6 Cross-correlation between the rankings
of investor with quadratic utility functions based on
different levels of risk aversion

a\a 0.5 1 5 25

0.5 1 0.966 0.489 −0.361
1 1 0.622 −0.201
5 1 0.423
25 1
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10.4.1 Consistency between quadratic utility functions and
performance measures

In order to see whether a ranking based on the Sharpe ratio corresponds with
a ranking based on a quadratic utility function, we calculate rank correlation
coefficients. From Table 10.6 we concluded that risk aversion of the investor
has an important impact on the rank correlation. Therefore, we calculated the
correlation between the ranking based on the Sharpe ratio and quadratic utility
functions with different coefficients of risk aversion. The results can be found
in Figure 10.4. The risk-free rate used to calculate the Sharpe ratio is equal to
the monthly interbank offered rate for deposits with a maturity of 1 month. The
maximum correlation between the rankings is obtained for a utility function with
a risk aversion coefficient equal to 4, resulting in a rank-correlation coefficient
equal to 0.845. It is interesting to note that the maximum correlation is part of
an interval starting at a risk-aversion coefficient equal to 1 and ending at 4.5, for
which the correlation coefficient exceeds 0.80. Surprisingly, the ranking based
on the Sharpe ratio cannot be replicated with the ranking based on any of the
quadratic utility functions. Nevertheless, the conclusion seems justified that the
Sharpe ratio is a valid criterion for investors maximizing a utility function with
a risk-aversion coefficient in the specified interval.

Figure 10.4 also presents the rank-correlation coefficient between the quadra-
tic utility function and the other performance measures, as well as a ranking
solely based on the mean return of the mutual funds. We choose the minimal
acceptable rate of return for the Sortino ratio, the Fouse index and the upside
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Figure 10.4 Correlation between rankings based on quadratic utility functions and performance
measures
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potential ratio equal to the riskless rate, in order to get results comparable with
the outcomes for the Sharpe ratio.

The Sortino ratio (0.2 initial correlation) displays a pattern of behaviour that
is similar to that of the Sharpe ratio, even though it is based on a different
risk measure. For low levels of the risk-aversion parameter k, the correlation is
low but positive, for intermediate values of k (between 0 and 5) the correlation
is approximately 80% and for high levels of risk aversion the correlation is
falling slowly. Apparently, an investor maximizing quadratic utility who would
be willing to use the Sharpe ratio could also use the Sortino ratio.

By definition the ranking based on mean return only has a perfect correlation
with a ‘quadratic’ utility function at a level of risk aversion equal to zero, since
a quadratic utility function becomes linear when the risk aversion parameter
equals zero. At a negative level of risk aversion (i.e. k < 0), correlation is
very high. At a sufficiently high level of risk aversion the correlation becomes
negative. This should not be surprising if one is willing to assume that high
return levels are associated with high risk levels.

The upside potential ratio and the Fouse index behave in a similar fashion.
At negative levels of risk aversion, the ranking based on the quadratic utility
function selects the high risk funds whereas the rankings based on the upside
potential ratio (UPR) and the Fouse index tend to select funds with low risk.
Consequently, the rank correlation is negative for negative levels of risk aver-
sion. At high levels of risk aversion (k > 6), the UPR and the Fouse index tend
to correlate better with the utility function than the Sharpe and the Sortino ratio.

10.4.2 Consistency between the prospect theory value function and
risk-adjusted performance measures

In the next experiment we calculated the rank correlation coefficients between
the risk-adjusted performance measures and different prospect theory value
functions. The prospect theory value function is characterized by three param-
eters. We choose to vary with the parameter k, which is the parameter that
balances the relative value of gains against losses. In general, the higher the
value of k, the more risk averse the investor is in terms of losses. We varied k

from a value of 0 to a value of 5. The results of our experiments are presented
in Figure 10.5.

In general, the results are similar to the results of the experiments based on
the utility function. At low levels of risk aversion, the rankings based on the
Sharpe and Sortino ratio have a better correspondence with the value func-
tion and at higher levels of risk aversion the UP ratio and the Fouse index
perform better. For k = 2.25, the value Kahneman and Tversky found in their
experimental study, the rankings based on Sharpe and Sortino ratios perform
slightly better than the UP ratio and the Fouse index. If the parameters found
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Figure 10.5 Correlation between rankings based on prospect theory value functions and
risk-adjusted performance measures

by Kahneman and Tversky are considered to be representative for the average
investor, then the conclusion is that the investor with more than average risk
aversion should consult a ranking based on the UP ratio or the Fouse index.
Vice versa, the investor with less than average risk aversion should consult the
Sharpe or Sortino ratios.

The last experiments consider the relation with the Fishburn utility function.
Again, we varied the coefficient k, one of the main determinants of the risk
aversion of the individual. In order to be consistent with the quadratic utility
function, the coefficient a was set at a value equal to 2. The outcomes of the
analysis are presented in Figure 10.6.

As can be seen, the general impact on the performance of the risk-adjusted
measures is similar as with the two kinds of preference functions. In comparison
with the quadratic utility function with similar characteristics, the UP ratio and
the Fouse index start to dominate the Sharpe and Sortino ratios at lower levels
of the coefficient k.

10.5 CONCLUSION

The main objective of this study was to investigate how well the preferences of
investors with different kinds of preference functions could be replicated with
risk-adjusted performance measures. We used three different kinds of preference
functions; namely the quadratic utility function, the Fishburn utility function and
the prospect theory value function. For a universe of Dutch mutual funds, we
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Figure 10.6 Correlation between rankings based on Fishburn utility function and risk-adjusted
performance measures

calculated the rank correlation coefficients between the outcomes of the prefer-
ence functions and a selected set of performance measures. Our main conclusion
is that the degree of correspondence in ranking between the preference func-
tion and the performance measure depends on the level of risk aversion of the
investor. None of the risk-adjusted performance measures resulted in a ranking
identical to any of the rankings generated by the preference functions. However,
independent of the type of preference function, we conclude that for lower levels
of risk aversion the Sharpe and Sortino ratio can be used as a good approxima-
tion of the preferences of an individual. For higher levels of risk aversion, the
UP ratio and the Fouse index are more appropriate.
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NOTES

1. See Arrow (1965) and Pratt (1964).
2. Actually, this is a drawback for many utility functions, not just the quadratic

utility function.
3. Loss aversion is the notion that losses loom larger than gains (see Tversky and

Kahneman, 1991).
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4. In this specification of the value function, it is assumed that the reference point
is equal to the current wealth level. A generalization of the prospect theory value
function is (De Groot, 1998):

v(x; t) =
{

(x − t)α ,

−k(t − x)β

where t is the reference point and k is the loss aversion parameter.
5. See for example, Benninga (1997).
6. See Sortino and van der Meer (1991).
7. The rankings of the mutual funds based on different levels of risk aversion for

the quadratic utility function are presented in Appendix 10.1.

REFERENCES

Arrow, K.J. (1965) Aspects of the theory of risk-bearing, reprinted in: Essays in the
Theory of Risk-Bearing, Markham Publishing Co. (1971).

Benninga, Simon Z. (1997) Financial Modeling, Cambridge, MA: MIT Press.
Blume, Marshall and Friend, Irwin (1975) The asset structure of individual portfolios

and some implications for utility functions, Journal of Finance, 10(2).
Cohn, Richard, Lewellen, Wilbur, Lease, Ronald and Schlarbaum, Gary (1975) Indi-

vidual investor risk aversion and investment portfolio composition, Journal of
Finance, 10(2).

De Groot, Sebastiaan (1998) Behavioural Aspects of Decision Models in Asset Manage-
ment, The Netherlands: Labyrint Publication.

Fishburn, Peter C. (1977) Mean-risk analysis with risk associated with below-target
returns, American Economic Review, 67(2).

Huang, Chi-fu and Litzenberger, Robert H. (1988) Foundations for Financial Eco-
nomics, New York: North-Holland.

Kahneman, D. and Tversky, A. (1979) Prospect theory: an analysis of decision under
risk, Econometrica, pp. 167–73.

Markowitz, H. (1952) Portfolio selection, Journal of Finance, 7(1).
Markowitz, H. (1991) Portfolio Selection: Efficient Diversification of Investments, 2nd

edn, Oxford: Blackwell.
Pratt, J. (1964) Risk aversion in the small and in the large, Econometrica, Jan.–April.
Sharpe, William F. (1966) Mutual fund performance, Journal of Business, 1(2).
Sortino, Frank A. and van der Meer, Robert (1991) Downside risk, Journal of Portfolio

Management, Summer.
Sortino, Frank A., van der Meer, Robert and Plantinga, Auke (1999) The Dutch

Triangle, Journal of Portfolio Management, 26(1), Fall.
Tversky, A. and Kahneman, D. (1991) Loss aversion in riskless choice: a reference-

dependent model, Quarterly Journal of Economics, pp. 1039–61.
Tversky, A. and Kahneman, D. (1992) Advances in prospect theory: cumulative repre-

sentation of uncertainty, Journal of Risk and Uncertainty, pp. 297–323.



Preference functions and risk-adjusted performance measures 187

APPENDIX 10.1 COMPLETE RANKING OF MUTUAL FUNDS BASED
ON QUADRATIC UTILITY FUNCTIONS WITH DIFFERENT RISK
AVERSION PARAMETERS

Fund name a = 0.5 a = 1 a = 5 a = 25

ABN AMRO
Aandelen Fonds

0.0148 (21) 0.0137 (18) 0.0048 (37) −0.0396 (59)

ABN AMRO All
In Fund

0.0087 (45) 0.0085 (40) 0.0068 (8) −0.0017 (36)

ABN AMRO
America Fund

0.017 (10) 0.0158 (9) 0.006 (19) −0.0432 (68)

ABN AMRO
Europe Fund

0.0169 (11) 0.0156 (10) 0.0054 (29) −0.0457 (73)

ABN AMRO
Far East Fund

0.0065 (58) 0.0048 (67) −0.0087 (88) −0.0766 (89)

ABN AMRO
Liquid
Groeifonds

0.002 (93) 0.002 (90) 0.002 (73) 0.0019 (15)

ABN AMRO
Netherlands
Fund

0.0188 (4) 0.0174 (4) 0.0057 (24) −0.0529 (81)

ABN AMRO
Oblig
Groeifonds

0.0041 (78) 0.0041 (73) 0.0036 (58) 0.0014 (24)

ABN AMRO
Obligatie Fonds

0.0065 (58) 0.0064 (54) 0.0059 (21) 0.0031 (3)

ABN AMRO
Rente Dividend
Fonds

0.0042 (76) 0.0042 (72) 0.004 (49) 0.0033 (2)

ABN AMRO
Trans Europe
Fund

0.0182 (7) 0.0169 (6) 0.0067 (10) −0.0444 (69)

AEGON
Aandelenfonds

0.0136 (25) 0.0123 (23) 0.0021 (72) −0.0489 (78)

AEX Index Fund 0.0191 (3) 0.0176 (3) 0.0054 (29) −0.0556 (84)

AH Vaste
Klanten Fonds

0.0138 (24) 0.0133 (22) 0.0092 (1) −0.0108 (47)
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APPENDIX (continued)

Fund name a = 0.5 a = 1 a = 5 a = 25

Alrenta 0.0065 (58) 0.0063 (56) 0.0048 (37) −0.0024 (38)

Amvabel 0.0033 (85) 0.0024 (88) −0.005 (87) −0.042 (66)
Andere Beleg-
gingsfonds
Het

0.0077 (51) 0.0075 (45) 0.0055 (27) −0.0041 (42)

Asian Tigers
Fund

0.003 (88) −0.0003 (98) −0.0264 (96) −0.1567 (95)

AXA Aandelen
Nederland

0.0172 (9) 0.016 (8) 0.0064 (12) −0.0416 (65)

AXA Actief
Beheer

0.012 (32) 0.0116 (28) 0.0086 (2) −0.0063 (44)

Bary Netto
Rentefonds De

0.0019 (94) 0.0019 (93) 0.0019 (75) 0.0018 (16)

Beleggingsfonds
Voor Medici

0.0121 (30) 0.0114 (29) 0.0066 (11) −0.0178 (52)

Columbia
Securities

0.0141 (23) 0.0123 (23) −0.0024 (83) −0.0757 (88)

Delta Lloyd
Donau Fonds

0.0089 (44) 0.0028 (84) −0.0461 (100) −0.2907 (100)

Delta Lloyd
Mix Fonds

0.0087 (45) 0.0084 (41) 0.0062 (17) −0.0048 (43)

Delta Lloyd
Rente Fonds

0.0077 (51) 0.0075 (45) 0.0064 (12) 0.0008 (29)

Engels–
Hollandse
Beleggings Tr

0.0182 (7) 0.008 (43) −0.0737 (103) −0.4824 (103)

European
Assets Trust

0.0112 (36) 0.0073 (48) −0.0243 (94) −0.1823 (96)

European City
Estates

0.0012 (101) −0.001 (100) −0.0183 (93) −0.1047 (93)

Finles Collectief
Beheer Fds

0.011 (37) 0.0105 (34) 0.0064 (12) −0.0144 (49)

First Mexico
Income Fund

0.0103 (40) 0.0055 (61) −0.0334 (98) −0.2277 (98)
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APPENDIX (continued)

Fund name a = 0.5 a = 1 a = 5 a = 25

Fortis Amerika
Fds small caps

0.0072 (53) 0.0059 (59) −0.0047 (86) −0.0578 (85)

Fortis Azie Fonds 0.0001 (102) −0.0041 (102) −0.0377 (99) −0.2053 (97)

Fortis Europa Fds
Small Caps

0.0116 (34) 0.0105 (34) 0.002 (73) −0.0406 (64)

Fortis OBAM 0.0169 (11) 0.0155 (13) 0.0046 (40) −0.0501 (79)

Fortis Obligatie
Dividend Fond

0.0055 (66) 0.0054 (63) 0.0047 (39) 0.0008 (29)

Friesland
Dividend Fonds

0.0059 (65) 0.0058 (60) 0.0053 (32) 0.0029 (4)

Friesland
Rentegroei Fonds

0.0042 (76) 0.0041 (73) 0.0039 (51) 0.0028 (6)

Generale Bank
Oblig Dividfds

0.0054 (69) 0.0052 (65) 0.004 (49) −0.0018 (37)

Generale Bank
Oblig Waardefds

0.0037 (82) 0.0036 (79) 0.003 (63) −0.0003 (35)

GIM Global
Convertible
Fund

0.0078 (50) 0.0073 (48) 0.0035 (59) −0.0155 (50)

GIM Real
Estate Equity
Fund

0.0043 (75) 0.0034 (81) −0.0039 (85) −0.0404 (63)

Holland Europe
Fund

0.0168 (13) 0.0156 (10) 0.0058 (22) −0.0431 (67)

Holland Fund 0.016 (17) 0.0149 (16) 0.0057 (24) −0.0402 (61)

Holland Obligatie
Fonds

0.0066 (57) 0.0065 (53) 0.0056 (26) 0.0009 (28)

Holland Pacific
Fund

0.0014 (100) −0.0003 (98) −0.0141 (91) −0.0832 (91)

Holland Selectie
Fonds

0.0126 (26) 0.0121 (25) 0.0083 (4) −0.0108 (47)

ING Bank Dutch
Fund

0.0192 (2) 0.0178 (2) 0.0071 (6) −0.0463 (75)
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APPENDIX (continued)

Fund name a = 0.5 a = 1 a = 5 a = 25

ING Bank
Geldmarkt
Fonds

0.0019 (94) 0.0019 (93) 0.0019 (75) 0.0017 (20)

ING Bank
Global
Fund

0.0155 (18) 0.0142 (17) 0.0044 (43) −0.0451 (70)

ING Bank
Obligatie
Fonds

0.0068 (55) 0.0066 (52) 0.0055 (27) −0.0001 (33)

ING Bank
Rentegroei
Fonds

0.0047 (71) 0.0046 (68) 0.0041 (48) 0.0016 (21)

ING Bank
Spaardividend
Fonds

0.0028 (89) 0.0028 (84) 0.0027 (65) 0.0025 (9)

Intereffekt
Japanese
Warrants

−0.0111 (104) −0.0264 (104) −0.1491 (104) −0.7622 (104)

IS Himalayan
Fund

0.0104 (39) 0.0039 (76) −0.0484 (101) −0.3097 (101)

J.I. Emerging
Markets
Bond Fd

0.0036 (84) 0.002 (90) −0.0112 (90) −0.0771 (90)

J.I.
International
Bond Fund

0.0065 (58) 0.0063 (56) 0.0046 (40) −0.0039 (41)

Japan Fund 0.0016 (98) −0.004 (101) −0.0494 (102) −0.2761 (99)

Liquirent 0.0019 (94) 0.0019 (93) 0.0019 (75) 0.0018 (16)

Lombard
Odier EMS
Plus Rente

0.0099 (43) 0.0097 (37) 0.0081 (5) 0.0001 (31)

MeesPierson
Euro Liq
Fonds

0.0019 (94) 0.0019 (93) 0.0019 (75) 0.0018 (16)
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APPENDIX (continued)

Fund name a = 0.5 a = 1 a = 5 a = 25

MeesPierson
Oblig Groei
Fonds

0.0033 (85) 0.0032 (82) 0.0029 (64) 0.0013 (25)

Mondibel 0.0053 (70) 0.0052 (65) 0.0043 (45) 0.0001 (31)

Obligatie
Beleggingspool

0.0065 (58) 0.0064 (54) 0.0058 (22) 0.0029 (4)

Ohra Aandelen
Fonds

0.0185 (5) 0.0172 (5) 0.0062 (17) −0.0486 (77)

Ohra Liquiditeiten
Groeifonds

0.0023 (92) 0.0023 (89) 0.0023 (70) 0.002 (13)

Ohra Obligatie
Dividendfonds

0.0068 (55) 0.0067 (50) 0.006 (19) 0.0025 (9)

Ohra Obligatie
Groeifonds

0.0046 (72) 0.0046 (68) 0.0042 (46) 0.0026 (8)

Ohra Total Fonds 0.0123 (28) 0.0118 (26) 0.0084 (3) −0.0087 (46)

Opbouwfonds
Voor Medici

0.015 (19) 0.0137 (18) 0.0037 (55) −0.0462 (74)

Optimix 0.0106 (38) 0.0099 (36) 0.0042 (46) −0.024 (54)

Orange Fund 0.0168 (13) 0.0156 (10) 0.0064 (12) −0.0398 (60)

Postbank
Aandelenfonds

0.0146 (22) 0.0136 (21) 0.0051 (35) −0.0371 (58)

Postbank
Beleggingsfonds

0.0085 (47) 0.0082 (42) 0.0063 (16) −0.0034 (40)

Postbank Vermo-
gensgroeifonds

0.0031 (87) 0.003 (83) 0.0027 (65) 0.0011 (26)

Rentalent 0.0044 (73) 0.0043 (71) 0.0038 (53) 0.0011 (26)

RG Aandelen
Mixfund

0.0101 (41) 0.0096 (38) 0.0054 (29) −0.0155 (50)

RG America Fund 0.0183 (6) 0.0167 (7) 0.0032 (62) −0.0638 (86)

RG Divirente
Fund

0.0041 (78) 0.004 (75) 0.0037 (55) 0.0023 (11)

RG Europe Fund 0.0165 (16) 0.0152 (14) 0.0046 (40) −0.0482 (76)
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APPENDIX (continued)

Fund name a = 0.5 a = 1 a = 5 a = 25

RG Florente
Fund

0.0028 (89) 0.0028 (84) 0.0027 (65) 0.0021 (12)

RG Obligatie
Mixfund

0.0061 (64) 0.006 (58) 0.0049 (36) −0.0002 (34)

RG Pacific
Fund

0.004 (80) 0.002 (90) −0.0146 (92) −0.0972 (92)

RG Rente
Mixfund

0.0044 (73) 0.0044 (70) 0.0039 (51) 0.0018 (16)

Rolinco 0.0119 (33) 0.0106 (32) 0.0002 (80) −0.0518 (80)

Rorento 0.0069 (54) 0.0067 (50) 0.0052 (33) −0.0026 (39)

Sarakreek −0.0112 (105) −0.0268 (105) −0.1515 (105) −0.7752 (105)

Schroder
European
Property Fd

0.0125 (27) 0.0118 (26) 0.0068 (8) −0.0185 (53)

SNS Obligatie
Dividendfonds

0.0055 (66) 0.0055 (61) 0.0052 (33) 0.0037 (1)

SNS Obligatie
Groeifonds

0.0039 (81) 0.0039 (76) 0.0037 (55) 0.0028 (6)

Stewart
Holding (WP)

0.0167 (15) 0.0152 (14) 0.0034 (60) −0.0555 (82)

TG Netto
Geldmarket
Fonds

0.0016 (98) 0.0016 (97) 0.0015 (79) 0.0015 (22)

Tokyo Pacific
Holdings

−0.0041 (103) −0.0064 (103) −0.0245 (95) −0.1154 (94)

Uni-Invest 0.0121 (30) 0.0107 (31) −0.0003 (82) −0.0555 (82)

Van Lanschot
Global
Equity Fd

0.015 (19) 0.0137 (18) 0.0038 (53) −0.0456 (71)

VastNed
Offices/
Industrials

0.0114 (35) 0.0106 (32) 0.0044 (43) −0.0267 (56)

VastNed Retail 0.0082 (49) 0.0075 (45) 0.0022 (71) −0.0246 (55)
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APPENDIX (continued)

Fund name a = 0.5 a = 1 a = 5 a = 25

VHS Onroerend
Goed Mij

0.0393 (1) 0.0315 (1) −0.0308 (97) −0.3425 (102)

VIB 0.0064 (63) 0.0054 (63) −0.0031 (84) −0.0456 (71)

VPV
HollandHaven

0.0122 (29) 0.0111 (30) 0.0025 (68) −0.0403 (62)

VPV
International
Geldmkt Fds

0.0026 (91) 0.0026 (87) 0.0025 (68) 0.002 (13)

VSB Mix Fund 0.01 (42) 0.0096 (38) 0.0069 (7) −0.0069 (45)

VSB Obligatie
Groeifonds

0.0037 (82) 0.0036 (79) 0.0033 (61) 0.0015 (22)

Wereldhave 0.0085 (47) 0.0076 (44) 0.0002 (80) −0.0365 (57)

World Property
Fund

0.0055 (66) 0.0039 (76) −0.009 (89) −0.0734 (87)



Chapter 11

Building a mean-downside risk
portfolio frontier
GUSTAVO M. DE ATHAYDE

11.1 INTRODUCTION

The dissatisfaction with the traditional notion of variance as the measure of risk
is becoming a common feature of financial markets all over the world. The main
argument against the use of variance is that it makes no distinction between
gains and losses. In fact, in Markowitz’s original work (1952) he argues for
other measures of risk. Two ways are suggested. The first would be to include
higher moments. This has been approached by a few authors, like Ingersoll
(1975), Kraus and Litzenberger (1976), among others. However the complete
formal characterization of the portfolio frontier with higher moments has not
been done since Athayde and Flôres (1999). In this chapter the portfolio set
with higher moments and all of its features are presented.

The second way that Markowitz proposed was to use what he called semi-
variance. That is the sum of the squares of negative deviations from the mean,
divided by the total number of observations:

1

n

n∑
i=1

[Min(ri − μ, 0)]2 (11.1)

The great advantage of the use of semi-variance over variance is that it does
not include positive gains, so what is considered as risk takes into account
only negative deviations. However, one may be led to the wrong conclusion
that minimizing downside means minimizing only negative deviations. This
common mistake becomes even clearer if the distributions we are dealing are
symmetric, like the normal curve. In this case minimizing variance and semi-
variance will lead to the same problem. The only case that justifies the use of
semi-variance is when the presence of skewness is observed.

That leads us back to the problem of adding moments. Although the approach
to use higher moments is far more complete than the use of semi-variance, the
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popularity of the latter is larger, maybe because it measures risk in one number,
while the use of variance, skewness and possibly kurtosis would give us three
different values to capture risk. In terms of portfolio frontier, we will be dealing
only with two dimensions, rather than three or four, and make the analysis
simpler (although not so efficient if compared to the multi-dimensioned three
or four moment portfolio frontier).

Finding the portfolios with minimum semi-variance is not an easy task. This
is due to the fact that we don’t have a fixed number to represent the downside
risk of an asset. For instance, if we have acquired a single asset, then its semi-
variance will be given by negative deviations, while if we short sell this asset,
then we will have to deal with positive deviations (because now the risk is
for the asset to go up). Thus what will be used to construct its semi-variance
depends on whether we are short or long.

The problem becomes even more complex when we’re dealing with more than
one asset. Suppose we have a given portfolio P0. To compute the semi-variance
of this portfolio we have to take into consideration only the observations that
were negative deviations. If we change a little the weights of this portfolio,
creating a new portfolio P1, some observations in which the former portfolio
was negative might become positive, and vice-versa. Thus they will have to be
included or excluded from the downside risk of portfolio P1. Therefore the set
of observations that will be taken into account when building the semi-variance
of this portfolio will be function of the portfolio weights, making the problem
more difficult to handle that in the case of minimizing variance.

For instance, we have two assets, with zero mean. On one day, one has a
return of 1%, and the other of −1%. If the weight of the first asset is more
(less) than 1/2, the portfolio’s return will be positive (negative), and therefore
excluded (included) in the semi-variance of the portfolio.

The definition of semi-variance becomes even more complicated in terms of
the cross product. By semi-covariance, which of the following terms are we
referring to?

1

n

n∑
i=1

[Min(ri
a − μa, 0)][Min(ri

b − μb, 0)]

1

n

n∑
i=1

[Min(ri
a − μa, 0)](ri

b − μb)

1

n

n∑
i=1

(ri
a − μa)[Min(rb

i − μb, 0)]

1

n

n∑
i=1

Min[(ri
a − μa)(r

i
b − μb), 0]
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Even if we pick any of the definitions above, it should be clear that there is
no such thing as a well-behaved positive definite semi-variance matrix, that
we can pre and post multiply by the vector of weights of any portfolio and
get its respective semi-variance. Therefore the minimization problem becomes
much more complicated, because the set of observations that will be taken into
account is endogenous to the weights of the portfolio in question.

Nevertheless, one common approach used in the market is to approximate
what would be a semi-variance matrix by:⎡⎢⎢⎢⎢⎢⎣

σ11
∗

σ11
0 . . . 0

0 σ22
∗

σ22

. . .
...

...
. . .

. . . 0
0 . . . 0 σkk

∗
σkk

⎤⎥⎥⎥⎥⎥⎦
1/2⎡⎢⎢⎣

σ11 σ12 . . . σ1k

σ21 σ22 . . . σ2k

...
...

. . .
...

σk1 σk2 . . . σkk

⎤⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎣
σ11

∗
σ11

0 . . . 0

0 σ22
∗

σ22

. . .
...

...
. . .

. . . 0
0 . . . 0 σkk

∗
σkk

⎤⎥⎥⎥⎥⎥⎦
1/2

where σii
∗ is the semi-variance of asset i.

This formula gives us a symmetric positive definite matrix. The semi-
variances will be on this matrix diagonal. It is feasible to find a portfolio that pre
and post multiplies this matrix that gives us the minimum value of this function,
which is not the minimum semi-variance. Depending on the correlations and
other characteristics of the assets in question these minima can differ by an
enormous amount.

Before we go on, we must define downside risk (DSR). The latter is a gener-
alization of semi-variance:

downside risk ⇒ 1

n

n∑
i=1

[Min(ri − μ, 0)]k (11.2)

Where k is any power you can choose (when k = 1, it should be considered
the absolute value of the term in brackets), and μ is a chosen benchmark (not
necessarily the mean).

11.2 THE MEAN-DSR PORTFOLIO FRONTIER: THE BIVARIATE CASE

Let us assume that we have two risky assets, a and b, and we want to find
the optimal portfolio that gives us the minimum downside risk. To start, let us
consider the case where k = 2 (if the benchmark is the mean of the portfolio,
than we will be dealing with semi-variance).
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Consider one observation t0 of these two assets. The portfolio return will be
given by:

rp = wr0
a + (1 − w)r0

b

The value of w at time t0 that makes the portfolio return equal to the benchmark
μ is given by:

w0 = μ − r0
b

r0
a − r0

b

(11.3)

If we had only this observation, assuming that r0
a > r0

b , the DSR of this portfolio
will be given by:

DSR(w) = [w(r0
a − r0

b ) − (μ − r0
b )]2, if w < w0; and 0 otherwise

DSR′(w) = 2[w(r0
a − r0

b ) − (μ − r0
b )](r0

a − r0
b ) < 0, if w < w0;

and 0 otherwise

DSR′′(w) = 2(r0
a − r0

b )2 > 0, if w < w0; and 0 otherwise

The function is illustrated in Figure 11.1.
Consider now another observation, t1. Suppose that r1

a > r1
b , and that w1 <

w0. If we take only this observation in consideration, its DSR will be given by
Figure 11.2, just like in the former case.

When we will be computing the DSR of our portfolio with these two obser-
vations, we will be adding these two semi-parabolas, so that the new curve will
be like Figure 11.3.

The new DSR will be given by:

DSR(w) =
1∑

i=0

[w(ri
a − ri

b) − (μ − ri
b)]

2, if w < w1

[w(r0
a − r0

b ) − (μ − r0
b )]2, if w1 < w < w0

0, otherwise

w0

DSR

w

Figure 11.1

DSR

w1 w0

w

Figure 11.2
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w1 w0

DSR

w

Figure 11.3

The first derivative is given by:

DSR′(w) = 2
1∑

i=0

[w(ri
a − ri

b) − (μ − ri
b)](r

i
a − ri

b) < 0, if w < w1

2[w(r0
a − r0

b ) − (μ − r0
b )](r0

a − r0
b ) < 0, if w1 < w < w0

0, otherwise

The concavity is given by:

DSR′′(w) = 2
1∑

i=0

(ri
a − ri

b)
2 > 0, if w < w1

2(r0
a − r0

b )2 > 0, if w1 < w < w0

0, otherwise

As can be seen from above, the function is monotonically decreasing with
respect to w. The most important aspect however is that once we cross the
point w1 the concavity changes, and we start to deal with a new parabola. The
convexity decreases with w. For some specific regions the convexity is fixed,
until a new parabola is formed as we cross one of the critical points w0 or w1.
If we keep adding more and more observations in which ra > rb, the curve will
become steeper and steeper as we decrease w.

Consider now the situation in which we only have observations in which
ra < rb. The curve will look exactly like the former, but increasing with w,
becoming steeper and steeper, as we will be adding more and more semi-
parabolas, like Figure 11.4.

DSR

w

Figure 11.4
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DSR

w

Figure 11.5

DSR

E(rp)

Figure 11.6

When we include all of observations, those that in which ra > rb and ra < rb,
the whole DSR will be a curve, as in Figure 11.5.

The expected return of the portfolio will be given by:

E(rp) = wE(ra) + (1 − w)E(rb) ⇐�⇒ w = E(rp) − E(rb)

E(ra) − E(rb)

Thus, since we have a linear relation between w and E(rp), we may conclude
that the shape of the set DSR × E(rp) will be like Figure 11.6.

As has been shown, this curve is made on segments of parabolas, each
one becoming steeper and steeper as we move toward the extremes, in either
direction. The more observations we have, the more parabolas will appear and
the smaller the segment of each will become. The changes in the convexity,
when we move from one parabola to another, will become more frequent and
smoother. In the limit case, where we will have an infinite number of obser-
vations, each of these parabolas will degenerate to a single point, creating a
continuous smooth changing in the convexity of the curve.

11.3 THE ALGORITHM

Suppose we want to find the portfolio weights that give us the minimum DSR
(the vertex of the curve above). We start with a portfolio w0 (which is not
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necessarily the same as the one in equation (11.3) above), and calculate its
downside risk. We select only the set of observations S0 that contains negative
deviations. Consider the following curve given by:

σ 2
0 =

∑
i∈S0

(ri − μ)2, where ri = wri
a + (1 − w)ri

b (11.4)

It should be clear from the last section that for a small neighbourhood of w0, the
set of days with negative deviations remain the same as S0, without adding or
taking out any observation, remaining on the same parabola. When w becomes
very different from w0, some days will enter and some will go away when we
compute the downside risk of w (because we have moved to another segment
of a different parabola in the DSR curve). In this case the curve that describes
the downside risk and σ 2

0 will become more and more different. However for
small changes on w, if the set of negative deviations is still given by S0, the
two curves will coincide.

The second step is to find a portfolio w1 that minimizes σ 2
0 . Note that this

problem is analogous to minimizing variance, implying that this curve is a
convex well-behaved function whose minimum is easily obtained. In this case
it will be given by:

w1 =

∑
i∈S0

(ri
a − ri

b)(μ − ri
b)∑

i∈S0

(ri
a − ri

b)
2

Once we find w1, we compute its DSR, creating a new set of observations S1,
that have only negative deviations of w1 with respect to the benchmark μ. In
the neighbourhood of w1, the DSR will coincide with the following parabola:

σ 2
1 =

∑
i∈S1

(ri − μ)2, where ri = wri
a + (1 − w)ri

b (11.5)

We will then minimize (11.5) with respect to w. The solution is given by:

w2 =

∑
i∈S1

(ri
a − ri

b)(μ − ri
b)∑

i∈S1

(ri
a − ri

b)
2

(11.6)

From w2 we will separate the new set of observations with negative deviations
S2, construct a new parabola that take into consideration only the observations
in S2, minimize it with respect to w, finding w3, that will give us a new set
S3, and so on. The algorithm will stop when St = St+1, which will be the
unique minimum DSR. Once we found the minimum for that specific set of
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observations, it will not be necessary to change the set of observations. We will
have achieved our objective.

Consider the example in Figure 11.3. We have three possible situations:

(1) If we had started with w ≥ w0, the DSR would be null, so we would
stop right there.

(2) If we had started with w1 ≥ w > w0, we would have the parabola given
by [w(r0

a − r0
b ) − (μ − r0

b )]2. The minimum point would be given by
w0. The DSR on this point is zero. The next step would be given by
the case above.

(3) If we had started with w < w1, we would have the parabola given
by
∑1

i=0

[
w(ri

a − ri
b) − (μ − ri

b)
]2

. The minimum point would be given
by somewhere in between w1 and w0. The next step would be given by
the case above.

In order to extend the last example – which was very trivial – consider
Figure 11.7, in which we have three parabolas, each one representing a segment
of the DSR, which is given by the thick black line. It is easy to see that no matter
which parabola we pick from the start, if we follow the proposed algorithm,
we will end up in P3. The minimum of this parabola is also the minimum of
DSR, guaranteeing the convergence.

For instance, if our initial guess of w is very low, we will select the observa-
tions in such a way that we will start at P1. Once we find the w that minimizes
this parabola, we will select a new set of observations that are negative, ending
up with a new parabola P3. Again, we will find the portfolio w that minimizes
this parabola. However, after this portfolio is found, the new set of observations
whose deviations are negative is the same as before, so we will remain at P3,
and the minimum DSR (which coincides with the minimum of P3) is achieved.

The same goes for the case in which our initial guess of w is high. In this
situation, we would have started at P3 and on the next iteration, be driven to P3.

P2 P1 P3

w

Figure 11.7
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If we have started on P3, only one iteration would be necessary to achieve
the minimum.

11.4 THE MULTIVARIATE CASE

The procedure for the multivariate case is analogous to the former. Let’s say
we have n assets. We will start with a given portfolio, w0. Then we select the
set S0 of observations in which this portfolio w0 had negative deviations. Then
we construct the following positive semi-definite matrix:

[M0] =
∑
i∈S0

⎡⎢⎢⎢⎢⎣
ri
a

ri
b

...

ri
n

⎤⎥⎥⎥⎥⎦ [ ri
a ri

b · · · ri
n ]

where ri
j means the excess return (actual return minus the benchmark) of asset

j on date i.
The next step is to find the portfolio w1 that solves the following problem:

Min[w]′[M0][w]s.t.[w]′[1] = 1,

where [1] is a vector of 1s.
The solution to the problem will be given by:

[w1] = [M0]−1[1]

[1]′[M0]−1[1]

If [M0] is non-invertible, this means that we will have few observations, and
that will be possible to find a portfolio that will give us a null DSR. This is not
an interesting case: it does not mean there is no DSR, it only means that the
sample in question is poor, leaving us with few degrees of freedom.

With the new portfolio w1 we will collect the set of observations S1 that
contains only negative excess returns of portfolio w1. We will now form a new
positive semi-definite matrix [M1]:

[M1] =
∑
i∈S1

⎡⎢⎢⎢⎢⎣
ri
a

ri
b

...

ri
n

⎤⎥⎥⎥⎥⎦ [ ri
a ri

b · · · ri
n ]

The next step is to find the portfolio w2 that solves the following problem:

Min[w]′[M1][w]s.t.[w]′[1] = 1
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The solution to the problem will be given by:

[w2] = [M1]−1[1]

[1]′[M1]−1[1]

From then on, we will form a new matrix [M2] collecting only the negative
observations of portfolio w2.

The iterations will stop when the matrix [MT ] will be the same as [MT +1].
The solution will be given by:

[wT ] = [MT ]−1[1]

[1]′[MT ]−1[1]

This portfolio will give us the minimum DSR. In terms of the portfolio fron-
tier, this will represent the vertex of the curve. In order to build the portfolio
frontier, we will have to find some other points on the efficient set. Since we
are interested in points with a higher expected return than the vertex, we shall
fix an expected return a bit higher than the minimum downside risk portfolio
above. So the new recursive minimization procedure will be given by:

Min[w]′[M][w]s.t.[w]′[1] = 1 and [w]′[e] = E(rp)

where [e] is the vector of expected returns.
Like in the former case, we will start with a given portfolio, select only its

negative deviations, construct a new matrix M0 with these observations, make
the minimization above, and find a new portfolio. Again, select its negative
observations, construct a matrix M1, repeat the minimization with M1, find a
new portfolio, select its negative deviations, and so on. After we have achieved
the convergence, after T iterations, the minimum downside risk portfolio with
expected return given by E(rp) is given by:

[wp] = AE(rp) − B

AC − B2 [MT ]−1[e] + C − BE(rp)

AC − B2 [MT ]−1[1] (11.7)

where

A = [1]′[MT ]−1[1], B = [e]′[MT ]−1[1], C = [e]′[MT ]−1[e]

It should be noted that for small changes in the expected return, the matrix we will
end up with remains unchanged. Pre-multiplying equation (11.7) by [wp]′[MT ]:

σp2
∗ = A(E(rp))2 − 2BE(rp) + C

AC − B2

The equation above shows us that while the final matrix does not change,
downside risk will be a parabola on the expected return, just like in the bivariate
case. However, if we change the expected return a lot, we will end up with a
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new matrix, and therefore a new parabola. Thus, like in the bivariate case,
the portfolio frontier will be described as a sequence of segments of different
parabolas.

This result is expected because since the portfolio frontier is a convex combi-
nation of several bivariate cases, each one is like Figure 11.6. One interesting
aspect is that the more assets are used, the smoother will be the portfolio frontier
in question, creating a similar effect as if we were adding more observations.

Since this algorithm is a series of standard minimization procedures, adding
linear constraints, like not exceeding a given amount of a given asset, or not
allowing short sales, are still valid. For these minimizations of quadratic func-
tions subject to linear constraint, any simple algorithm, like Newton–Raphson’s
can be used.

To construct the portfolio frontier then, we shall start with the simplest
problem: Minimize downside risk. From that point, we will get the vertex
of the curve, and the other points of the portfolio frontier will be constructed
using the procedure above, each time with a higher expected return. The only
recommendation is that we should use the minimum downside risk portfolio as
a warm start for the next point (the one with a higher expected return). After
this point is achieved, after all the iterations suggested above, this portfolio
should be used as a warm start for the next point, with an even higher expected
return, and so on.

Since the matrix [MT ] will differ for frontier portfolios with very different
expected returns, we will not have the traditional two-fund separation property.
Looking at equation (11.7), it would only happen if we had a fixed matrix [MT ],
like in the variance case. However, since it will change as we move along for
higher expected returns, this property will be violated. We will have only a
local two-fund separation (while the matrix does not change). As we add more
assets, or more observations, this matrix will be changing more frequently, until
in the limit case, we will have a given matrix (and a ‘collapsed’ parabola) for
every point in the frontier.

11.5 ASSET PRICING

In this section, we will provide a new version of the CAPM, which had already
been derived by Bawa and Lindenberg (1977). The only difference is that we
will make use of the properties of the frontier shown in the last sections to
construct the formula.

Consider a portfolio z that has a zero cross-DSR with a frontier portfolio p:

1

n

n∑
i=1

[Min(ri
p − μ, 0)](ri

z − μ) = 0
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If we pre multiply equation (11.7) by [z]′[MT ], we will have:

0 = AE(rp) − B

AC − B2 E(rz) + C − BE(rp)

AC − B2

Substituting in equation (11.7) it becomes:

[wp] = AE(rp) − B

AC − B2 [MT ]−1([e] − E(rz)[1]) (11.8)

If we pre multiply the equation above by [p]′[MT ], we will have:

σp2
∗ = AE(rp) − B

AC − B2 (E(rp) − E(rz))

Consider now a given portfolio i. If we pre multiply equation (11.8) by [i]′[MT ],
we will have:

σip
∗ = AE(rp) − B

AC − B2 (E(ri) −E(rz)), where σip
∗ =

∑
j∈ST

(r
j

i − μ)(rj
p − μ)

Comparing the two equations above, we will see that:

E(ri) − E(rz) = σip
∗

σpp
∗ (E(rp) − E(rz)) (11.9)

This means that any asset or portfolio i can be expressed as this version of
the CAPM for any portfolio p of the portfolio frontier. The only difficulty in
transforming it into a CAPM is that we do not have the two-fund separation
property to guarantee that the market portfolio is an efficient portfolio.

Let us consider now the case where we also have a riskless asset, so that our
problem now becomes:

Min[w]′[M][w]s.t.E(rp) − ([w]′[e] + (1 − [w]′[1])rf )

After all the iterations, the solution will be given by:

[wp] = E(rp)

[d]′[MT ]−1[d]
[MT ]−1[d], where [d] = [e] − [1]rf (11.10)

If we pre multiply the equation above by [p]′[MT ], we will have:

σpp
∗ = E(rp)

[d]′[MT ]−1[d]
(E(rp) − E(rz))

Consider now a given portfolio i. If we pre multiply equation (11.10) by
[i]′[MT ], we will have:

σip
∗ = E(rp)

[d]′[MT ]−1[d]
(E(ri) − E(rz))
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Comparing the two equations above, we will see that:

E(ri) − E(rf ) = σip
∗

σpp
∗ (E(rp) − E(rf )) (11.11)

As in the former case, we will not have a fixed coefficient because the final
matrix is endogenous to the expected return desired. This will make the so-
called Capital Market Line convex in our case. Bawa and Lindenberg (1977)
have also shown this property for the continuous case. They have also shown
that when the target is in fact the risk-free return rf , then two-fund separation
will be obtained.

11.6 A NON-PARAMETRIC APPROACH

In this section we will make use of a more sophisticated estimation of DSR, in
which we estimate the density of the returns using kernels. A kernel estimation
of one point can be seen as a weighted average of the observations, in which
the weight given to each observation decreases with its distance from the point
in question. A kernel estimation of some return rt of a given asset or portfolio
is given by:

r̂t =

∑
i

riK

(
ri − rt

h

)
∑

i

K

(
ri − rt

h

) (11.12)

where K(x) is a function that decreases with x. The term h is chosen in order to
penalize the distance between rt and r . It is not hard to see that the estimations
r̂t will tend to be smoother than the original series rt .

The new estimation of the DSR is given by:

DSR ⇒ 1

T

T∑
t=1

[Min(r̂t − μ, 0)]n (11.13)

Let’s work now on the classic case where n = 2. Again, we will begin in the
bivariate case. In the latter the DSR curve had some segments in which there
was a constant concavity, because they belonged to the same parabola. In our
new case, this will not occur. Even if we set a new portfolio w1 that is very
close to w0, although the set of observations that are positive and negative
might remain the same, there will be slight change in the concavity, due to the
changes in the kernel weights. In other words, the kernel estimation will make
the concavity of curve change continuously and provide us with a smoother
estimate of the portfolio frontier, instead of those abrupt changes in concavities
followed by regions of constant concavities.
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DSR

W

DSR(K )

Figure 11.8

Figure 11.8 illustrates this aspect. DSR is the curve constructed with the first
method proposed, while DSR(K) is the kernel estimation. It can be seen that the
kernel estimation resembles what would be the curve when we have an infinite
number of observations. It would also be expected that the kernel estimation
curve would tend to be a little below the first one, because we are dealing
with smoother estimation of returns, and consequently offsetting a little some
extremes effects.

How does the algorithm work in this case? Just like in the previous sections,
we will start with some portfolio w0, then we will make a non-parametric
estimation of all the returns r̂ t

0 of this new portfolio:

r̂ t
0 =

∑
i

r i
0K

(
ri

0 − rt

h

)
T∑

t=1

K

(
ri

0 − rt

h

) (11.14)

For the estimation of the returns of each single asset, we shall follow the
same procedure, but we will use the same (kernel) weights of the portfolio w0:

r̂ t
a =

∑
i

r i
aK

(
ri

0 − rt

h

)
T∑

t=1

K

(
ri

0 − rt

h

) , r̂ t
b =

∑
i

r i
bK

(
ri

0 − rt

h

)
T∑

t=1

K

(
ri

0 − rt

h

) (11.15)

Consider S0 to be the set of the estimated excess returns of w0 that were
negative. The first minimization will be given by:

Min
∑
t∈S0

(r̂ t − μ)2, where r̂ t = wr̂ t
a + (1 − w)r̂ t

b
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Let’s call the portfolio that solves this problem w1. The next step will be the
non-parametric estimation of the returns of this portfolio:

r̂ t
1 =

∑
i

r i
1K

(
ri

1 − rt

h

)
T∑

t=1

K

(
ri

1 − rt

h

)

And then, the new estimations of the returns of each single asset:

r̂ t
a =

∑
i

r i
aK

(
ri

1 − rt

h

)
T∑

t=1

K

(
ri
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h

) , r̂ t
b =

∑
i

r i
bK

(
ri

1 − rt

h

)
T∑

t=1

K

(
ri

1 − rt

h
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Consider S1 to be the set of the estimated excess returns of w1 that were
negative. The second minimization will be given by:

Min
∑
t∈S1

(r̂ t − μ)2, where r̂ t = wr̂ t
a + (1 − w)r̂ t

b with r̂ t
a and r̂ t

b

given by equation (11.16)

From then on, we will follow the same procedure. In contrast to the previous
case, in which we would stop the algorithm when Sp = Sp+1. In this case, we
should continue the iterations because even with the same set of observations
selected, the kernel estimations will differ for every new portfolio found. Never-
theless, it should be noted that the changes in the portfolio, and consequently
on DSR, will be smaller for each iteration. Thus, we should set a convergence
limit in which, if the changes in the portfolio are smaller than the limit, we will
stop the iterations.

For the multivariate case, we will start with a portfolio w0, then we will
make a non-parametric estimation of the returns r̂ t

0 of this new portfolio, just
like in the former case:

r̂ t
0 =

∑
i

r i
0K

(
ri

0 − rt

h

)
∑

i

K

(
ri

0 − rt

h

)

Following that, we will make estimations of the returns of each single asset j

on date t :
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r̂ t
j =

∑
i

r i
j K

(
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0 − rt

h

)
∑
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(
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0 − rt

h

)

From that, we will select the dates when the estimated returns of portfolio w0

had negative excess returns. Let’s call this set of observations S0. Then we shall
construct the following positive semi-definite matrix:

[M̂0] =
∑
i∈S0

⎡⎢⎢⎢⎢⎣
r̂ i
a

r̂ i
b

...

r̂ i
z

⎤⎥⎥⎥⎥⎦ [ r̂ i
a r̂ i

b · · · r̂ i
z ]

The first task will be to find a portfolio w1 that solves the following problem:

Min[w]′[M̂0][w]s.t.[w]′[1] = 1

The solution will be given by:

[w1] = [M̂0]−1[1]

[1]′[M̂0]−1[1]

Then, we will make a non-parametric estimation of the returns r̂ t
1 of this new

portfolio:

r̂ t
1 =

∑
i

r i
1K

(
ri

1 − rt

h

)
∑

i

K

(
ri

1 − rt

h

)

Following that, the new estimations of the returns of each single asset j on
date t will be given by:

r̂ t
j =

∑
i

r i
j K

(
ri

1 − rt

h

)
∑

i

K

(
ri

1 − rt

h

)
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From that, we will construct a new positive definite matrix, taking into considera-
tion only the observations in which r̂ t

1 < μ. Let’s call this set of observations S1:

[M̂1] =
∑
i∈S1

⎡⎢⎢⎢⎢⎣
r̂ i
a

r̂ i
b

...

r̂ i
z

⎤⎥⎥⎥⎥⎦ [ r̂ i
a r̂ i

b . . . r̂ i
z ]

The second task will be to find a portfolio, w2, that solves the following
problem:

Min[w]′[M̂1][w]s.t.[w]′[1] = 1

The solution will be given by:

[w2] = [M̂1]−1[1]

[1]′[M̂1]−1[1]

Then we will make a non-parametric estimation of the returns r̂ t
2 of this new

portfolio, and follow the same procedure as before. The iterations should stop
when the changes in the portfolio become neglectable, or simply smaller than
a pre-established limit.

In order to construct a portfolio frontier, we shall use the same procedure as
in the former sections, but making use of estimated returns of the assets. The
problem becomes computationally more complex, since for every iteration, we
will have new estimations of returns for every asset, due to the changes in the
kernel weights, for every time we alter the portfolio. As already mentioned, the
portfolio frontier will be a smoother curve than the former case.

One may ask why shouldn’t we make a non-parametric estimation of the
whole joint, multivariate distribution of all the assets and construct the portfolios
from there, instead of all this series of univariate non-parametric estimations?
A proper answer is given by the so-called ‘curse of dimensionality’. The latter
shows that the more dimensions we add to a multivariate non-parametric esti-
mation, the less efficient our estimators will become. Therefore, it is more
recommended to form a portfolio and make the non-parametric estimation of
its returns rather than estimating the whole joint distribution of all the assets
returns and form a portfolio.

As far as asset pricing is concerned, the results are the same as before. The
only difference is that in the non-parametric methodology, σip

∗ and σpp
∗ are

calculated using r̂t instead of rt .
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11.7 CONCLUSION

In this chapter we have provided an algorithm to minimize portfolios DSR.
Properties of the portfolio frontier, such as convexity, were demonstrated. Asset
pricing relations were also derived, with and without a risk-free asset. Finally,
a non-parametric approach was presented to calculate DSR, as well as an algo-
rithm to optimize it, and construct a non-parametric portfolio frontier.
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Chapter 12

FARM: a financial actuarial risk model
ROBERT S. CLARKSON

12.1 INTRODUCTION

12.1.1 Objectives

The primary objective of this chapter is to construct a measure of financial
risk that can explain real world behaviour and lead to the attainment of better
standards of financial risk management by individuals, financial institutions and
government institutions.

The secondary objective is to provide solid foundations on which to build an
actuarial theory of finance.

12.1.2 Actuarial approaches to risk

Actuaries first came to prominence as financial experts through their ability
to measure and manage mortality risk in the life assurance and pension fund
contexts. The foundation work for this expertise was the empirical investigation
set out in Halley (1693), which describes the construction of the first ‘scientific’
life table.

Some actuaries then applied their mathematical and practical skills to general
insurance, and in the process developed a new ‘risk theory’ covering loss func-
tions and the probability of ruin.

The actuarial profession responded to the upsurge in interest in financial
risk during the 1980s by setting up AFIR (Actuarial Approach for Finan-
cial Risk) as the finance section of the International Actuarial Association.
However, although AFIR has now been in existence, and running international
colloquia, for more than ten years, no dominant single approach to finan-
cial risk has emerged. Instead, colloquium papers have typically reflected a
wide spectrum of approaches to risk, with papers following the risk method-
ologies of financial economics tending to become more frequent over recent
years.
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12.1.3 Expected utility

The expected utility approach pioneered by Bernoulli (1738, 1954) and later
developed along rigorous mathematical lines by von Neumann and Morgenstern
(1944) is one of the cornerstones of present day economic science and is perhaps
the most widely used theoretical framework for human choice under conditions
of uncertainty and risk.

Utility theory has been severely criticized by many eminent economists and
its predictions are in many well-documented cases markedly inconsistent with
observed real world behaviour.

12.1.4 Neural mechanics of physical risk

The starting point in the derivation of the Financial Actuarial Risk Model
(FARM) is the recognition that in the assessment of risk of any type the human
mind acts as an analogue computer rather than as a digital computer, with the
strength of the risk perception neural response being determined almost instan-
taneously at a subconscious level rather than as a time-consuming quantitative
computation. A corollary is that the neural mechanics of financial risk, where
the unwanted outcomes are financial distress or financial ruin at the personal
or corporate level, will be identical to the neural mechanics of physical risk,
where the unwanted outcomes are injury or death.

It should be possible to translate how the human mind assesses and manages
physical risk and then to translate this into a model of financial risk.

12.1.5 Structure of the chapter

If FARM is to have any claim to generality, it should be consistent with the
broad conceptual guidelines suggested by eminent economists and be able to
account for real world behaviour that is anomalous in the context of alterna-
tive approaches. Accordingly, section 12.2 discusses perceptive observations
by various eminent economists and also a number of instances of ‘anomalous’
behaviour.

The construction of the new and more general theory of risk falls into two
parts. Section 12.3 follows the approach first suggested in outline in Clarkson
(1989) and describes the construction of a theory of financial risk that represents
an extension of the framework described in Clarkson (1989, 1990).

Three levels of application of the FARM are then described. Section 12.5
discusses elementary applications including the resolution of paradoxes relating
to behaviour that is clearly anomalous within the paradigm of financial econo-
mics. Section 12.6 applies the FARM to the ‘equities versus bonds’ debate,
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and section 12.7 discusses some wider implications of the FARM as a guide to
prudent financial behaviour.

12.2 ANOMALIES AND INCONSISTENCIES

12.2.1 Observations by Adam Smith

In his Wealth of Nations, Smith (1776, 1976) observes how the ‘absurd presump-
tion in their own good fortune’ on the part of most people leads to behaviour
that is blatantly inconsistent with the ‘rational behaviour’ cornerstone of present
day economics:

The chance of gain is by every man more or less overvalued, and the
chance of loss is by most men under-valued.

Smith cites the popularity of lotteries, where the expected payout is always
well below the price of a ticket, as a classic example of the overvaluation of
gains. It is salutary to note that in January 1999 the Chairman of the US Federal
Reserve used the phrase ‘lottery mentality’ in connection with his ‘irrational
exuberance’ warning that the aggregate market capitalization of Internet-related
stocks was vastly in excess of what could be justified by the likely aggregate
future profits of the industry. Also, in the first week of January 2000, when
major stock markets experienced sharp setbacks after the ‘new millennium’
euphoria of December 1999, the Governor of the Bank of England warned that
it was very easy for stock markets to become seriously overvalued.

As his flagship example of how most people undervalue risk as a result of
‘thoughtless rashness and presumptuous contempt’, Smith cites the failure of
many people to insure against serious wealth-destroying hazards such as fire and
shipwreck, even although appropriate insurance cover is often readily available
at reasonable cost. He also refers to a ‘nice calculation’ on a probabilistic basis
whereby risk may be reduced to an acceptable level through what would today
be called self-insurance:

When a great company, or even a great merchant, has twenty or thirty
ships at sea, they may, as it were, insure one another. The premium saved
upon them all may more than compensate such losses as they are likely to
meet with in the common course of chances.

This provides our first pointer towards a new measure of risk, namely that risk
cannot be eliminated completely but must be brought down below some small
value that is deemed acceptable.

Smith begins his discussion of the determinants of wages and profit by
observing that the theoretical state of equilibrium that would result from every
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man’s self-interest to ‘seek the advantageous and to shun the disadvantageous’
does not in fact occur, largely because of factors that exist only ‘in the ima-
ginations of men’. This is perhaps the first documented evidence of what might
today be called ‘systematic irrationality’.

In the context of commodity prices (of which stock market prices are perhaps
the most important present day examples), Smith observes that, rather than
always being close to what he called their ‘natural’ (or equilibrium) value, the
observed market prices often differ markedly from these ‘natural’ prices:

The natural price, therefore, is, as it were, the central price, to which the
prices of all commodities are continually gravitating. Different accidents
may sometimes keep them suspended a good deal above it, and some-
times force them down even somewhat below it. But whatever may be the
obstacles which hinder them from settling in this centre of repose and
continuance, they are constantly tending towards it.

Smith discusses the annual prices of corn, the most important commodity several
hundred years ago, to illustrate the general behaviour of commodity prices. It is
instructive to note that his numerical approach of using 10-year moving averages
as reference values is identical in principle to the Mean Absolute Deviation
analysis of stock market prices described in Plymen and Prevett (1972) and
Clarkson (1978, 1981).

12.2.2 Observations by John Maynard Keynes

In his much earlier Treatise on Probability, Keynes (1921) suggests various
ways in which to achieve better understanding of how the human mind perceives
probability and risk. In particular, he is strongly distrustful of the marginal utility
of wealth approach that Daniel Bernoulli (1738, 1954) relied upon to ‘solve’
the famous St Petersburg Paradox, and observes that what might be called tacit
knowledge, especially regarding Peter’s ability to pay Paul and the enormous
risk of Paul incurring a serious loss, leads to considerable ‘psychological doubt’
which makes a purely mathematical approach difficult:

We are unwilling to be Paul, partly because we do not believe Peter will pay
us if we have good fortune in the tossing, partly because we do not know
what we should do with so much money or sand or hydrogen if we won it,
and partly because we do not think it would be a rational act to risk an
infinitely larger one, whose attainment is infinitely unlikely. When we have
made the proper hypotheses and have eliminated these areas of psycholog-
ical doubt, the theoretical dispersal of what element of paradox remains
must be brought about, I think, by a development of the theory of risk.
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Keynes discusses instances of where the human mind appears to ignore the
risk when it is below some very small value, and cites an interesting observation
by the French philosopher Buffon (1777):

I am thinking of such arguments as Buffon’s when he names 1/10,000 as
the limit, beyond which probability is negligible, on the grounds that, being
the chance that a man of 56 taken at random will die within a day, it is
practically disregarded by a man of 56 who knows his health to be good.

12.2.3 Observations by von Neumann and Morgenstern

In von Neumann and Morgenstern (1944), the foundation work of modern utility
theory, it is assumed that human choice under conditions of uncertainty and
risk is based on ‘rational behaviour’ as defined by a set of seemingly innocuous
utility axioms. Even the authors themselves had serious doubts about the validity
of certain of the axioms, particularly (3:C:b), but they concluded that this axiom
was ‘plausible and legitimate, unless a much more refined system of psychology
is used than the one now available for the purposes of economics’.

The authors also observed that ‘the common individual, whose behaviour one
wants to describe, does not measure his utilities exactly but rather conducts his
economic activities in a sphere of considerable haziness’. Despite this admission
that ‘rational behaviour’ as defined by their utility axioms was more likely to be
the exception rather than the rule in the real world, they expressed their belief
that at some future date the benefits of their utility approach might be significant:

Once a fuller understanding of economic behaviour has been achieved
with the aid of a theory which makes use of this instrument, the life of the
individual might be materially affected.

Many eminent economists of the day, such as Friedman, Malinvaud, Samuel-
son and Savage, were highly critical of the von Neumann and Morgenstern
utility axioms.

12.2.4 Observations by Maurice Allais

By far the most powerful attack on the highly mathematical approach of utility
theory was from Allais (1953), who argues that there is no single-valued func-
tion (such as a value of expected utility) which can provide an accurate guide
as to how deliberative choices are made by ‘reasonable’ men. He accordingly
concludes that the expected utility maxim cannot be regarded as the criterion
of rational behaviour.

The now famous ‘Allais Paradox’ is a counterexample Allais used to
support his rejection of the expected utility maxim. When given the choice
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between receiving £1 m with certainty or of receiving nil, £1 m and £5 m with
probabilities of 0.01, 0.89 and 0.1 respectively, most subjects choose the former,
but when given the choice between receiving nil or £1 m with probabilities of
0.89 and 0.11 respectively or of receiving nil or £5 m with probabilities of
0.9 and 0.1 respectively, most of the same subjects choose the latter. Such
a combination of choices is inconsistent with any expected utility function.
Reference will be made at the end of this section to the following similar
but less contrived choice. A businessman has sought your actuarial advice as
to whether or not he should put his entire working capital of £1 m at risk
for a business opportunity which will lead either to a profit of £80 000 with
probability 0.95 or to a loss of all £1 m of his working capital with probability
0.05, giving an expected profit of £26 000.

In his Nobel Lecture, given on 9 December 1988, Allais (1989) suggests
that his paradox demonstrates what he calls ‘the preference for security in the
neighbourhood of certainty’.

Allais (1954) draws attention to the very serious dangers of building an appar-
ently rigorous mathematical theory on simplifying assumptions that have no real
world relevance, and accordingly he suggests that only those who have exten-
sive practical experience gained over a period of many years should attempt to
formulate economic models.

12.2.5 Observations by William Sharpe

Sharpe (1970) investigates utility theory as a plausible framework for the imple-
mentation of the Markowitz (1959, 1991) mean-variance approach to portfolio
selection, and observes that, of the various possible utility curves that have
been proposed, ‘Only one is completely consistent with choices based solely
on expected return and standard deviation of return: the assumption that utility
is a quadratic function of wealth.’ However, on investigating the implications
of using a quadratic utility function, he discovers some serious inconsistencies
and draws the following conclusions:

In some instances, investors will be concerned with more than the expected
return and standard deviation of return. In such cases a quadratic utility
curve will imperfectly approximate an investor’s actual utility curve. If
portfolios with radically different prospects are considered by an investor,
too much reality may be omitted if his decision is assumed to depend only
on expected return and standard deviation of return.

Despite these serious inconsistencies, Sharpe suggests that the use of a utility
curve may still be justified if it is assumed that investors choose amongst
portfolios of roughly similar risk. However, in many suggested applications
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of utility theory, such as whether or not to insure against the risk of a serious
financial loss, the risk levels of the scenarios being compared differ enormously.

12.2.6 Attempted generalizations of expected utility

Until the late 1970s, most economists believed that agents were rational and
that expected utility provided a highly satisfactory framework for human choice
under conditions of uncertainty and risk. However, by the early 1980s the volu-
minous experimental evidence of axiom violations that had been published over
the previous decade, particularly by Kahneman and Tversky (1979) and Grether
and Plott (1979), forced economic theorists to attempt to build more complex
new theories that could give a better explanation of real world behaviour. Anand
(1993), Machina (1987) and Quiggin (1993) have been especially prolific in first
of all documenting axiom violations (particularly in the areas of ‘independence’
and ‘transitivity’) and then suggesting more and more complex generalized
axiomatic approaches.

12.2.7 Absence of an unambiguous basic measure of risk

In virtually all branches of science where a mathematical approach is attempted,
an unambiguous basic measure of key attributes is a necessary condition for the
subsequent successful development of a body of theory which can accurately
describe real world behaviour. In particular, we need to be able to make unam-
biguous statements along the lines of ‘the value in the case of A is twice the
value in the case of B’.

No such unambiguous basic measure exists for financial risk. In particular,
standard deviation of return and variance of return are both used as a measure.
However, if the standard deviation in the case of A is twice that for B, the
variance for A is four times that for B. The probability of ruin is also used as
a measure of risk, but there is no obvious link between this ‘non-parametric’
measure and a ‘parametric’ measure such as variance. Furthermore, the Risk
Assessment and Management for Projects (RAMP) methodology, which has
been put forward jointly by the UK actuarial profession and the Institution of
Civil Engineers as a basic framework for practical risk management, does not
incorporate an explicit numerical measure of risk.

12.2.8 Behavioural finance

Over the past decade or so, numerous economists and psychologists have estab-
lished a new branch of economic science, namely behavioural finance, which
studies behavioural patterns that might be regarded as ‘systematic irrationality’
under mainstream theories of finance where ‘rational behaviour’ is an essential
cornerstone.
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The four most familiar behavioural finance traits are ‘framing and coding’,
where observed behaviour differs depending on how the relevant information is
presented to the subject, ‘over-confidence’, as first diagnosed by Adam Smith,
‘over-reaction bias’, which would explain the ‘excess volatility’ documented by
Shiller (1989) and others, and ‘myopic loss aversion’, where subjects choose
high risk courses of action despite the availability of convincing evidence as to
the existence of more profitable courses of action that also involve lower risk.

12.2.9 Myopic loss aversion

Any financial disadvantage resulting from the first three of these four behavioural
traits could be mitigated to a considerable extent by the availability of more
detailed information, presented in as impartial a manner as possible. Myopic loss
aversion, however, is a much more deeply ingrained wealth-destroying behaviour
trait. A classic physical risk example is a refusal to fly for either business or
pleasure purposes, despite the existence of vast amounts of statistical evidence
showing that going by car is vastly more risky, in terms of deaths per passenger
mile, than flying with a recognized airline.

The classic financial risk example is a preference on the part of many
investors for long-term investment in bonds rather than equities, despite very
strong evidence that the likelihood of equities outperforming bonds increases
to near certainty as the investment horizon increases. This equities versus bond
question is discussed in detail in section 12.6.

12.2.10 The Tversky paradox

Tversky (1990) questions the absolutely fundamental assumption that individ-
uals are ‘risk-averse’ in the generally accepted sense of preferring, for a given
expected value, the choice which involves the lowest uncertainty of return,
as measured, for example, by the standard deviation or variance of return.
If investors have the choice between a gain with certainty of £85 000, or an
85% chance of gaining £100 000 and a 15% chance of gaining nothing, most
will choose the former, certain, outcome which is inconsistent with standard
theory.

Suppose now that investors have a choice between losing £85 000 with
certainty, or an 85% chance of losing £100 000 and a 15% chance of losing
nothing. Most people will ‘gamble’ and choose the latter, which is inconsistent
with standard theory.

12.2.11 A ‘risk equals uncertainty’ paradox

An insurance company with assets at present of 100 requires assets at some
future date of 110 or more to achieve what it regards as a satisfactory return on
capital, and will be insolvent if assets have a value of 105 or less at that future
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date. The company can invest either in asset class A which will give 105 with
certainty, or in asset class B which will give 110 or 115 with equal probability.

The paradox here is that textbooks on stochastic calculus as applied to finance,
such as Lamberton and Lapeyre (1996), define asset class A as the ‘risk-free’
asset and asset class B as ‘risky’, in that it involves an uncertain outcome.
Common sense shows that it is asset class A that is (pathologically!) risky,
whereas asset class B is risk-free in that the criterion of a satisfactory return on
capital is achieved with certainty.

12.2.12 The other St Petersburg paradox

Bernoulli (1738, 1954) applies the logarithmic utility approach that he used to
‘solve’ the St Petersburg Paradox to the case of a merchant shipping goods
from St Petersburg to Amsterdam. He can sell his cargo for 10 000 ducats if
the ship arrives safely, but there is a probability of 0.05 that the ship and cargo
are lost at sea, with the requisite insurance cover being available for a premium
of 800 ducats, which the merchant regards as outrageously high. Bernoulli asks
what other wealth the merchant should possess for it to be rational for him to
choose not to insure. Bernoulli obtains the answer of 5843 ducats, and is very
pleased with his approach:

Though a person who is fairly judicious by natural instinct might have real-
ized and spontaneously applied much of what I have here explained, hardly
anyone believed it possible to define these problems with the precision
we have employed in our examples. Since all our propositions harmonize
perfectly with experience it would be wrong to neglect them as abstractions
resting on precarious hypotheses.

Taking one ducat as being equivalent to £100, this example is identical to
that in section 12.2.4, namely whether or not a businessman should put his
entire working capital at risk for a business opportunity which will lead either
to a profit of £80 000 with probability 0.95 or to a loss of all £1 m of his
working capital with probability 0.05, giving an expected profit of £26 000. Even
with other wealth of around £600 000, the equivalent of Bernoulli’s computa-
tion, most actuaries would strongly discourage the businessman from taking
up the opportunity. The obvious corollary is that Bernoulli’s logarithmic utility
approach must after all be based on ‘precarious hypotheses’.

12.3 PHYSICAL RISK IN SPORTS

12.3.1 Severity of consequences of an adverse occurrence

Consider the consequences of a serious hang-gliding accident, such as equip-
ment failure, as a function of the height above ground at which the accident
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Figure 12.1

occurs. From a height of only a few feet, this might result in no injury or nothing
worse than a sprained ankle, but from several hundred feet or more death would
be almost certain. If we use the same range as for probability to represent the
‘loss function’, we have 0 for no injury, 1 for death, and the general pattern
shown in Figure 12.1 with w(x) increasing with the severity of injury in the
intermediate zone between no injury and death.

Suppose now that we classify the intermediate injuries into five broad cate-
gories – minor injury, moderate injury, serious injury, very serious injury and
permanent incapacity. The human mind not surprisingly perceives the negative
consequences of imminent death as being effectively infinite, with the result
that lesser degrees of physical damage are ‘discounted’ at a very high rate.
Accordingly, we can, as a first guess, calibrate the severity function w(s) by
using a factor of 10 between each reference point from minor injury up to death,
giving the values shown below.

Severity Consequence w(s)

0 No injury 0
1 Minor injury 0.00001
2 Moderate injury 0.0001
3 Serious injury 0.001
4 Very serious injury 0.01
5 Permanent incapacity 0.1
6 Death 1

12.3.2 Equivalent probability of death

We can now, for example, say that for a given probability of death the perception
of risk within the human mind is equivalent to that for serious injury when
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the associated probability is one thousand times as high. The function w(s)
introduces a measure of equivalence between widely differing outcomes, namely
death and varying degrees of injury, that could not previously be combined
mathematically to produce an overall value for risk.

In ski mountaineering, a very risky sport, there are two dominant adverse
occurrences, namely a bad fall and an avalanche. For each of these, we can
first of all estimate the probability of an adverse occurrence taking place and
then, given that it does in fact take place, estimate the probabilities (which will
clearly sum to 1) for each outcome from no injury up to death. In an obvious
notation we can now obtain the value of risk as:

R = p(n)p(n, s)w(s)

where p(1) and p(2) are the respective probabilities of a bad fall and avalanche
and p(2, 6) is, for example, the probability that an avalanche, if it occurs, will
lead to death. The generalization to a larger number of adverse occurrences
is obvious. This measure of risk R can be called, for obvious reasons, the
‘equivalent probability of death’, with the minimum value of 0 corresponding
to no possibility of injury or death and the maximum value of 1 corresponding
to imminent death with certainty.

12.3.3 Estimation procedures

The Poisson distribution is ideal for representing the severity function, with the
value of 0 corresponding to no injury, 1 corresponding to minor injury, and so
on up to 6 or higher corresponding to death. Since the mean of the Poisson
distribution is equal to the variance, only one parameter has to be estimated for
each adverse occurrence.

The following values of the probability of an adverse occurrence (for typical
daily participation), of the associated Poisson parameter, and of the resulting
values of risk are set out in Clarkson (1989), and are based not on comprehensive
empirical data but on a combination of personal observation and ‘intelligent
guesswork’.

Sport Adverse Daily rate Poisson Daily
occurrence parameter risk × 106

Wind-surfing Falling off board 5 0.01 0.5
Ski-ing Bad fall 2 0.1 3.1
Rapid river canoeing Capsize in rapids 1 in 5 0.5 13.8

Bad fall 2 0.2
Ski-mountaineering

{ }
106.4

Avalanche 1 in 1000 3
Hang-gliding Fall to ground 1 in 5000 7 142.6
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12.3.4 Royal society (1992) risk study

An investigation into fatality rates in sports as part of a wider study of risk by the
Royal Society of London covers two of the five sports for which risk values are
estimated above. The corresponding values, after appropriate standardization,
are shown below.

Sport Clarkson (1989) Royal Society (1993)
Daily risk × 106 Deaths per day × 106

3.5 USA, 1967–68
Ski-ing 3.1

{
6.5 France, 1974–76
100–325 USA, 1978

Hang-gliding 142.6
{

375 UK, 1977–79

The close agreement in the case of the USA experience is quite remarkable,
given the totally different methodologies used. The higher values for ski-ing in
France and for hang-gliding in the UK are not surprising, but space does not
permit a fuller discussion here.

12.3.5 Personal threshold of maximum acceptable risk

Different individuals have different tolerances of the level of physical risk in
sports. We can first of all observe that for each individual there is a personal
threshold of acceptable risk and then, given that ski-mountaineering is towards
the top end of the risk spectrum, take 0.0001 per day as an ‘upper guideline’
value, possibly around the 90th percentile, for the maximum acceptable limit.

Many individuals regard skiing, where avalanches and collisions with trees or
other skiers have given rise to many highly publicized fatalities in recent years,
as ‘far too risky’. In the light of the estimated risk values in sections 12.3.3
and 12.3.4, the seemingly very low value of 0.000001 per day, equivalent to a
chance of one in a million of being killed, can be taken as a plausible ‘lower
guideline’ value, corresponding perhaps to the 10th percentile.

12.3.6 Indifference curves and axioms of choice

There is clearly a risk, however small, in all day-to-day activities. But most
people are prepared to fly on normal passenger aircraft for business or holiday
purposes, and virtually everyone is prepared to travel by car, without giving
any thought to the physical risk involved. Such travel decisions are thus made
solely on the basis of other criteria such as cost, convenience and reliability. This
accords with the observation by Buffon (1777) that the human mind ignores risk
completely when its perceived value is very small. In potentially risky sports it
is therefore reasonable to assume that very low levels of perceived risk will be
ignored completely.
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Suppose now that for every available sporting activity we can make a quan-
titative estimate E of ‘expected enjoyment’ in addition to our ‘equivalent
probability of risk’ estimate R. Then the above discussion suggests that the
situation can be portrayed by patterns of indifference curves in the E–R diagram
of the type shown in Figure 12.2.

Above R0, the indifference ‘curves’ are essentially horizontal lines, while
below R0 they are asymptotic to vertical lines for very low risk, have continuous
and decreasing gradient as risk increases, and are asymptotic to the horizontal
line R = R0 as risk increases towards R0.

The four simple rules required to determine preference and optimality can
be illustrated by the points A, B, C, D, E and F in Figure 12.2. If at least one
point has a risk value below R0, the preferred point is A, the one to the right
of the most indifference curves, whereas B and C, lying on the same indiffer-
ence curve, are equally preferable. Otherwise, both D and E, lying below more
indifference lines, are preferred to F, whereas – regarding the ‘horizontal’ indif-
ference lines as having infinitesimally small negative gradient – D is preferred
to E.

It is obvious that transitivity is preserved under these preference and opti-
mality rules, even although the situation is two-dimensional rather than one-
dimensional as in the case of expected utility.

12.3.7 Summary of the quantification of physical risk

(1) Identify all possible adverse occurrences than can lead to injury or death.
(2) For each adverse occurrence, identify the probabilities p(n) and p(n, s)

as defined in section 12.3.2.
(3) Identify the appropriate severity weighting function w(s) as defined in

section 12.3.1.
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(4) Calculate the values of risk as defined in section 12.3.2.
(5) Calculate the values of expected enjoyment.
(6) Identify the value of R0, the maximum acceptable value of risk, and

appropriate indifference curves for values of risk below R0.
(7) Use the preference rules in section 12.3.6 to identify the activity that is

optimal on risk/expected enjoyment considerations.

12.3.8 The reality of physical risk

Explicit quantitative evaluation along the lines summarized in section 12.3.7 is
impracticable; the required probability distributions cannot be determined with
any precision, and the effective values of w(s) and R0 are determined at a
subconscious level in response to innate self-protection mechanisms (such as a
fear of heights) or to previous practical experience. Accordingly, the quantifi-
cation of physical risk is put forward as an assumption of how the human mind
should perceive risk and determine optimality.

Most of the examples below are very brief summaries of some of those
discussed in Clarkson (1999).

12.3.9 Over-confidence

Although nearly all participants in potentially risky sports accept their ‘beginner’
status when they first take part and only tackle more difficult challenges after
they have acquired – generally under expert tuition and supervision – an under-
standing of the basic skills, it is only human nature that some individuals will
be over-confident about their abilities and accordingly underestimate the true
level of risk.

An unfortunate example of this has been the alarmingly high number of fatalities
on Scottish mountains in recent years as a result of what has been called the
‘Surrey syndrome’. Whereas those living not far distant will simply stay at home
if the weather conditions are likely, especially in winter, to make climbing unduly
dangerous, those who have come a considerable distance will, on account of the
time and expense they have devoted to their planned climbs, be much less likely
to abandon their plans in the face of adverse weather forecasts.

12.3.10 Innate failsafe behaviour

Many people, when encountering a sport for the first time, will say to themselves
‘this looks great fun, but it is too risky for me!’ However, after observation over
a sufficiently long period and assuming that no accidents have occurred, they
will often adopt the quite different mental attitude that the inherent level of risk
is sufficiently low for them to be able to participate without undue worry.

This in many ways answers the question discussed in section 12.2.2, namely
how much further information should we seek out before pursuing a particular
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course of action. The above answer is to participate only after we have obtained
sufficient information for us to be confident that the inherent level of risk is
acceptably small.

12.3.11 Over-reaction bias

An actuary whom the author met at the 1994 FARM International Colloquium
in the United States had booked, and paid for, an introductory hang-gliding
flight. But when he returned for his lesson a few days later he found that, of
the three instructors at the company, one had a leg in plaster and another had
an arm in a sling, both as a result of hang-gliding accidents in the previous two
days. He immediately asked for, and was given, a full refund for the lesson that
he now perceived as being foolhardily dangerous.

Such a change of mind is entirely reasonable, even although the accident
experience might not – on purely statistical arguments – be inconsistent at a
given confidence level with previous average rates. Just as with Einstein’s
General Theory of Relativity for physical behaviour, human behaviour is not
‘absolute’ but is very much dependent on ‘locality’, in this case recent personal
experience.

12.3.12 Temporary insanity

Identify the appropriate severity weighting function w(s) as defined in
section 12.3.1.

For most people, the joys of sailing soon outweigh the serious discomfort of
occasional bouts of seasickness. However, on an overnight yacht race in which
the author participated one crew member became so ill and mentally disturbed
through seasickness that he attempted to jump overboard to bring an end to his
suffering and had to be tied down in the cockpit for his own safety until the
gale force winds abated. The following morning he had returned to a normal
frame of mind, and he later bought his own yacht.

Seasickness is the result of the human mind shutting down certain physical
functions in response to being overwhelmed by contradictory signals from the
delicate fluid canal balance system within the inner ear. A useful palliative
measure is to help the mind to restore an effective sense of perspective by
focusing on the horizon. In acute cases, however, all power of rational thought
is lost and temporary insanity results.

12.4 TRANSLATION INTO FINANCIAL RISK

12.4.1 Severity of consequences of an adverse occurrence

For an insurance company, the ‘loss function’ for hang-gliding portrayed in
Figure 12.1 translates into the loss function in Figure 12.3, with the horizontal
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axis x being ‘assets less liabilities’, and the vertical axis again being risk on a
scale of 0 to 1.

Below L1, the outcome is ‘insolvency’ and the risk value is 1. From L0

to L1, the outcome is ‘unsatisfactory’ and risk follows a smooth curve w(x).
Above L0, the outcome is ‘satisfactory’ and risk is zero.

For portfolio investment, assuming short positions are not permissible, L1

corresponds to a portfolio value of nil, while L0 corresponds to the point above
which the outcome is deemed to be ‘satisfactory’.

12.4.2 Equivalent probability of financial ruin

Assuming that we know p(x), the probability density function of outcome x,
the financial risk R(x) translates into:

R(x) = p(x) dx + w(x)p(x) dx

where the first and second terms correspond respectively to ‘non-parametric
risk’ (the probability of financial ruin) and ‘parametric risk’. On this formu-
lation, the risk measure R(x) can, for obvious reasons, be interpreted as ‘the
equivalent probability of financial ruin’.

This framework unifies two existing approaches to risk that are useful in
differing application areas. In ‘catastrophe’ general insurance the ‘risk of ruin’
component dominates and the parametric component can for most practical
purposes be ignored. In portfolio investment, on the other hand, the parametric
component dominates. In very high risk investment areas, where short positions
may arise, both components may be important.

12.4.3 Formulating the equivalence function

Identify the appropriate severity weighting function w(s) as defined in
section 12.3.1.

For portfolio investment, the consequences of losing a given proportion of
investment value are far more than twice as serious as losing half that proportion.
We can therefore infer that the ‘parametric’ function w(x) is concave upwards.
A highly convenient formulation for w(x) is a power (greater than one) of the
proportionate shortfall below L0 towards L1. Taking this power as two is not
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only eminently plausible in that the severity of the consequences quadruples
as the shortfall doubles but is also broadly consistent with vast tranches of the
financial economics literature in that variance of return and semi-variance can
then be regarded as special cases when L0 is equal to the mean return.

12.4.4 Thresholds of maximum and minimum risk

In the case of a financial company the threshold of maximum risk for which
the value of risk attains its maximum value of 1 can normally be taken as the
value of financial outcome below which insolvency results. For an individual,
the threshold below which bankruptcy results will normally be appropriate.

For the threshold L0 above which risk is zero it will normally be appropriate
to use either the current value of wealth or net assets, or the minimum future
value that is deemed to be satisfactory. Where, however, a higher value is
available with certainty under one of the available choices, then this higher value
should be used. For instance, if the choice for an individual with negligible
current wealth is between receiving £1 m with certainty and receiving either
nil or £3 m with equal probability, £1 m is the appropriate value for L0. This
means that L0 and hence the value of risk is not absolute but may depend on
the available choices.

12.4.5 Maximum level of acceptable risk

We can use the uncertain outcome under the first half of the Allais Paradox to
begin the calibration. The probability of 0.01 of receiving nothing as against
being able to receive £1 m with certainty involves a risk of 0.01 which can,
on the basis of the experiments carried out by Allais, be taken as being in
excess of the risk that nearly all ‘reasonable’ individuals would accept. This
suggests 0.005 as a plausible guess as to an ‘upper guideline’ value that might
correspond to the 90th percentile.

A probability of ruin of 0.001, one in a thousand, is generally regarded as a
very prudent risk of ruin criterion. This suggest 0.001 as a plausible guess as to
a ‘lower guideline’ value that might correspond to around the 10th percentile.

12.4.6 Indifference curves and axioms of choice

Replacing ‘expected enjoyment’ by ‘expected return’, section 12.3.6 translates
into the indifference curves and axioms of choice framework in the context of
financial risk.

12.4.7 Over-confidence

The essentially short term neural response mechanism of the perception of risk,
combined with the relatively long time scales of episodes of economic and stock
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market behaviour, suggests that in the face of apparently attractive investment
opportunities far too little weight will be paid to historical evidence of similar
scenarios that led to serious losses. Accordingly, over-confidence through an
underestimation of the true level of risk is likely to be a not uncommon feature
of stock market behaviour at a collective level. Classic examples are the ‘nifty
fifty’ boom in US growth stocks during the 1960s, the Poseidon nickel boom
of 1969, and the meteoric rise in Japanese equities in the late 1980s.

12.4.8 ‘Lack of confidence’ and ‘myopic loss aversion’

As with unfamiliar risky sports, most people have an innate awareness that
certain financial or investment opportunities may be ‘too risky’ for them until
they have investigated the risks in sufficient detail. To begin with such a refusal
to participate might be described as understandable and laudable ‘lack of confi-
dence’. However, once more background information is available, the relatively
short-term neural response mechanism for the perception of risk can be expected
to attach too little weight to relevant long-term data. This leads to ‘myopic loss
aversion’, the classic example of which is a refusal to contemplate long-term
investment in equities even although all the UK and US data show that the
probability of equities outperforming bonds increases to near certainty as the
investment horizon increases.

12.4.9 Over-reaction bias

The human trait of trying to find causes for events, particularly those involving
adverse consequences, means that financial reporting tends to give undue prom-
inence to negative background factors when stock market prices have been
falling. Accordingly, the neural response nature of the perception of risk will
tend to amplify the recent trend, particularly when it is downwards.

12.4.10 Temporary financial insanity

The obvious financial risk parallel to the sea-sick yacht crew member who tried
to jump overboard is the ‘flight to liquidity’ that occurs at the bottom of a bear
market, when some investors try to sell at any price, no matter how far below
any realistic long term value, to escape from the mental anguish of a seemingly
endless series of price falls.

12.5 APPLICATIONS

12.5.1 The Allais Paradox

Assume, as is implicit, that any other wealth of the subjects can be ignored.
Then for the first pair of choices, A and B, say, £1 m is available with certainty
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if A is chosen and thus L0 is £1 m, and the obvious choice for L1 is nil. Clearly
the value of risk is nil for choice A. For choice B, the only shortfall below £1 m
is the outcome of nil, which corresponds to L1 with probability 0.01; the value
of risk is thus 0.01 × 1, i.e. 0.01. Since this value is greater than the higher
guideline value for maximum acceptable risk, namely 0.005, A is chosen in
preference to B, agreeing with the choice of most subjects.

For the second pair of choices, C and D, say, no value higher than nil is
available with certainty, and hence L0 is nil, and the value of risk is zero for
both C and D. Since D has by far the higher expected value, namely £0.445 m
as against £0.1 m D is chosen is preference to C, again agreeing with the choice
of most subjects.

A subject with enormous existing wealth, such as £1 bn, would perceive
the risk in B to be negligible and would accordingly choose B on account of
the higher expected value, namely £1.39 m as against £1 m. It is interesting to
calculate what other wealth a subject should possess for the risk under choice
B to be equal to either the lower or the upper guideline value of maximum
acceptable risk. For other wealth W (in millions of pounds), L0 is now 1+W ,
L1 is still nil, and the proportionate shortfall is 1/(1+W ) if nil occurs under
choice B.

Using the square of the proportionate shortfall as the parametric risk function,
we have:

0.01(1/1 + W)2 = R0

which gives W = 2.16 when R0 = 0.001 and W = 0.41 when R0 = 0.005.
These values of £2.16 m and £0.41 m for subjects with low and high risk
tolerances respectively seem eminently sensible. Accordingly, a subject with
existing wealth comfortably in excess of the appropriate minimum value would
be expected to choose B in preference to A.

This extension of the Allais Paradox corresponds exactly to the thought exper-
iment at the beginning of Bernoulli (1738, 1954), namely the deduction that, if
a very poor man had somehow obtained a lottery ticket that would pay either
20 000 ducats or nil with equal probability, he would be unwise not to sell it for
9000 ducats, whereas a very rich man would be unwise not to buy it for 9000
ducats. The corresponding values of existing wealth for maximum acceptable
risk are 195 000 ducats when R0 = 0.001 and 81 000 ducats when R0 = 0.005;
again these values seem eminently reasonable.

12.5.2 The Tversky Paradox

Assume, as is implicit, that the level of existing wealth is less than £85 000, so
that a loss of either £85 000 or £100 000 leads to financial ruin. Then a loss of
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£85 000 with certainty has 1 as the risk value, whereas the alternative, namely
either a loss of £100 000 with probability 0.85 or a loss of nil with probability
0.15 has 0.85 as the value of risk, taking L0 as the value of existing wealth.
Since both values of risk are vastly in excess of any acceptable level, the latter
will be chosen as having the lower, though still dangerously high, value of risk.
This is in accord with Tversky’s experiments.

It can easily be shown that, no matter how high the level of existing wealth,
the value of risk is always lower on the latter, uncertain, scenario. Since the
expected value is the same in both cases, the uncertain scenario would always
be chosen by FARM.

12.5.3 A ‘risk equals uncertainty’ paradox

In the paradox described in section 12.2.11, L0 = 110 and L1 = 106. Invest-
ment in asset class A, which gives 105 with certainty, has a risk value of 1,
whereas investment in asset class B has a risk value of nil and also a higher
expected value, namely 112.5. Investment in asset class B, which involves the
uncertain scenario, is the blindingly obvious choice under the FARM.

An immediate corollary is that any so-called ‘theorem’ relating to financial
risk that has been derived using stochastic calculus is likely to be dangerously
unsound, since in the abstract world of stochastic calculus asset class A would
in the case of the present example be the ‘risk-free’ asset.

12.5.4 The other St Petersburg Paradox

With W as the level of other wealth over and above the 10 000 ducats expected
from the safe arrival of the ship at Amsterdam, the choice is between W +
10 000 with certainty if insurance is taken out, or W + 10 800 with probability
0.95 and W + 800 with probability 0.05 if insurance is not taken out. Taking
L0 = W + 10 000 and L1 as nil, and using the square of the proportionate
shortfall as the parametric risk measure, we obtain W = 55 054 for R0 = 0.001
and W = 19 093 for R0 = 0.005. Hence the value of other assets must be in
excess of 55 054 ducats or 19 093 ducats for a merchant with low or high
risk tolerance respectively before the option of not insuring the ship can be
contemplated.

Since the corresponding minimum wealth value of 5843 ducats that Bernoulli
derives using his logarithmic utility function is very significantly lower than
even the value of 19 093 ducats using the higher guideline value of acceptable
risk under the FARM, it is difficult to avoid the conclusion that the use of
a logarithmic utility function in financial risk investigations may often lead
to dangerously unsound conclusions, in this case an equivalent probability of
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financial ruin of 0.020, four times the suggested upper guideline of maximum
acceptable risk.

12.5.5 Comparing profiles of financial outcomes

On the present management strategy, strategy A, the financial outcome of an
insurance company follows a normal distribution with mean 5 and variance 2.
The value of 2, around two standard deviations below the mean, is seen as
the minimum satisfactory outturn and hence is equivalent to L0. L1 is zero,
since insolvency will occur for an outcome lower than this. The management
of the company wish to investigate, subject to an over-riding requirement of the
risk of insolvency not exceeding 0.001, the merits of adopting an alternative
management strategy, strategy B, where the financial outcome corresponds to
a normal distribution with mean 6 and variance 2.5.

Using the square of the proportionate shortfall as the measure of parametric
risk, the values of risk are as below:

Strategy Probability of ruin Parametric risk Total risk

A 0.0002 0.0018 0.0020
B 0.0001 0.0005 0.0006

Strategy B is accordingly chosen in preference to strategy A, since the expected
value is higher, the value of total risk is very significantly lower, and the
insolvency risk constraint is satisfied very comfortably.

This example has been chosen to correspond to Example 1.1 of the actuarial
risk textbook (Bowers et al., 1986), where an exponential utility function is
used to ‘prove’ that the distribution N (5, 2) has a higher value of expected
utility than the distribution N (6, 2.5), and hence is preferable, the heuristic
justification being that the more diffuse nature of the distribution N (6, 2.5) is
a highly adverse factor.

To investigate this further example of an expected utility approach giving the
opposite result to that obtained using the new ‘equivalent probability of ruin’
theory, consider what might be called a ‘pseudo-utility’ function u(x) defined
as follows:

u(x) = x x ≥ L0

x − λw(x) L1 < x < L0

x − λ x ≤ L1

with w(x) having the properties of a parametric risk weighting function as
described in section 12.4, L0 and L1 being the thresholds of zero and maximum
risk respectively, and λ being a constant. Then if p(x) is the probability density
function of the financial outcome x, we can express the integral U (x) of
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‘expected pseudo-utility’ as:

U(x) =
∫ ∝

−∝
u(x)(px) dx =

∫ ∝

−∝
xp(x) dx − λ

∫ L1

−∝
p(x) dx

+
∫ L0

L1

w(x)p(x) dx = E(x) − R(x)

where E(x) is the expected value of x, and R(x) is the value of risk under the
FARM approach.

Since this expression appears to correspond, with λ interpreted as a Lagrange
multiplier, to the utility theory solution where the indifference curves in the
E – R diagram are straight lines with constant positive gradient, it might appear
at first sight that expected utility could give the same results as the FARM,
at least as a good first approximation. This is not the case, for two reasons.
Firstly, under the FARM the indifference curves in the E – R diagram do not
have constant positive gradient. Below the threshold of maximum acceptable
risk they are asymptotic to vertical straight lines for very low values of risk,
with the gradient decreasing to zero as risk increases towards the threshold of
maximum acceptable risk. Above this threshold they are essentially horizontal
straight lines. Second, the shape of the ‘pseudo-utility’ function is rectilinear,
with the same positive gradient, both below L1 and above L0, as shown in
Figure 12.4, whereas all standard utility curves have continuous gradient and
convexity and hence, outside the range L1 to L0, follow the general shapes

Pseudo-
utility

L1 L0 x

Figure 12.4
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shown by the dotted curved lines. The FARM can thus predict that standard
utility functions will often lead to unsound conclusions, with in particular an
exponential utility function – which tends to minus infinity very rapidly as x

decreases – attaching a pathologically high weighting to minuscule levels of
downside risk that are of no real world significance.

12.5.6 Risk assessment and management for projects (RAMP)

The RAMP initiative, a joint undertaking of the Faculty and Institute of Actu-
aries and of the Institution of Civil Engineers, is a formal framework for risk
management in which all reasonably practicable scenarios by which risk can
be eliminated or reduced or transferred are investigated before coming to a
reasoned choice as to which scenario best meets the risk and return requirements
of the sponsor.

The FARM encapsulates this seeking out of additional information (in
accordance with the extension of Bernoulli’s second maxim as discussed
in section 12.2.2) and can also be used as a structured framework for the
identification of the optimal solution once further necessary information has
been elucidated.

12.5.7 Application of RAMP to the Allais Paradox

Having been offered the choice between A, namely receiving £1 m with cer-
tainty, and B, namely receiving nil, £1 m or £5 m with probabilities 0.01, 0.89
and 0.1 respectively, we can investigate the possibility of transferring the risk
inherent in B through insurance. Suppose that for £15 000, 50% above the
‘pure’ premium, we can obtain insurance of £1 m for the 0.01 probability of
receiving nil under B. Then B, with the associated insurance, gives £985 000
with probability 0.9 and £4 985 000 with probability 0.1. Taking, as before, L0

as £1 m and L1 as nil, the value of risk under B as modified by insurance is
0.0152 × 0.9, i.e. 0.0002, assuming that the measure of parametric risk is the
square of the proportionate shortfall.

Since this risk value is very significantly below the lower guideline value
of maximum risk, namely 0.001, and the expected value is much higher than
for A, namely £1.385 m as against £1 m, most subjects might now prefer B (as
modified by the addition of insurance) to A.

12.5.8 A new resolution of the St Petersburg Paradox

An inherent feature of FARM is that individuals will take into account ‘tacit
knowledge’, i.e. knowledge acquired either first hand through practical
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experience or second hand through education or reading, and held at an essen-
tially subconscious level, when assessing choices amongst different scenarios.
In the case of the St Petersburg Paradox, the legend of the wise man who
asked his king for one grain of rice for the first square of a chess board,
two grains for the second square, four grains for the third square, and so on,
comes readily to mind. The king thought that such a reward for services well
rendered was trivial in the extreme, whereas the weight of rice for all 64
squares of the chess board was of the order of many thousands of millions
of tons.

Suppose that Paul knows that Peter has certified wealth of at least 16 ducats.
Then if Peter has to pay Paul up to 16 ducats, we can expect him to pay
this with certainty. But if he has to pay 32 ducats, 64 ducats, 128 ducats, and
so on, plausible probabilities of Paul receiving payment might be 0.5, 0.25,
0.125, and so on, reducing by a factor of two each time, in which case Paul’s
expectation is 1

2 + 1
2 + 1

2 + 1
2 + 1

2 + 1
4 + 1

8 + 1
16 + . . . , which is 3 ducats rather

than being infinite. Similarly, if Peter has certified wealth of at least 128 ducats
or 1024 ducats, realistic appraisals of Paul’s expectation would be 4.5 ducats
and 6 ducats respectively. If, however, the role of Peter is played by a soundly
financed company or by a government agency (e.g. a national lottery) payment
can be assumed to be made with certainty, but for obvious prudential reasons
there will be a limit, possibly very high, to the amount that can be paid out. It is
interesting to note that a highly popular television game show in the UK offers
cash prizes that increase by around a factor of two up to £1 m for correct answers
to general knowledge questions. If we take one ducat as being equivalent to
£100 and assume a maximum payout of £100 × 1015, i.e. £3.28 m, then the
expected value of the payout (ignoring diminishing marginal utility of wealth)
is £800. Since houses, yachts, classic cars and other expensive items can readily
be bought by a winner of the maximum prize regardless of his or her previous
level of wealth, diminishing marginal utility of wealth is unlikely to be of any
significant importance until perhaps £1 m is reached, so that allowance for this
effect will reduce the expectation only slightly, possibly to an equivalent of
around £750.

Consider now the maximum price that Paul should pay, on risk considerations
alone, to enter this constrained version of the St Petersburg Paradox, where the
possible payouts are £100, £200, £400, and so on up to £3.28 m. For values of
£1000, £10 000 and £100 000 as Paul’s existing wealth (these correspond to the
values of 10 100 and 1000 ducats used by Bernoulli) the maximum amount is
shown in the table below for both the lower and the higher guideline value of
maximum acceptable risk. The amounts in brackets are those in excess of the
upper limit of £750 obtained above. Also shown are the values of Paul’s expec-
tation (if he already owns the entitlement to the gamble) and of the purchase
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price he should pay (if he does not already own it) using the logarithmic utility
approach pioneered by Bernoulli.

Maximum under FARM Logarithmic utility
Paul’s wealth Low risk High risk Expectation Purchase price

(£) (£) (£) (£) (£)
1 000 145 200 304 285

10 000 495 (920) 438 430
100 000 (3450) (7420) 588 551

Two important conclusions can be drawn. First, the acute counterparty risk
when Peter is an individual and the limited liability ‘cap’ that will apply other-
wise ensure that in real life the expectation is so modest that declining marginal
utility of wealth is of little significance. Second, when Paul’s wealth is at the
lowest of the three levels investigated, Bernoulli’s logarithmic utility ‘solution’
leads to a dangerously high level of risk on the new ‘equivalent probability of
financial ruin’ basis, namely 0.019, which is almost four times the suggested
higher guideline value of 0.005 for the maximum acceptable level of risk.

12.6 THE ‘EQUITIES’ VERSUS GILTS DEBATE

12.6.1 Testing the conventional wisdom

It is generally accepted, by many actuaries as well as by nearly all financial
economists, that equity investment, while having a higher expected return than
fixed-interest investment, involves a higher level of risk. The FARM allows this
conventional wisdom to be tested.

Since the principal aim of long-term investment is to maintain or exceed the
purchasing power of money, we can take for UK investments the threshold of
zero risk as the change in the Retail Price Index (RPI) over the period. Taking
the threshold of maximum risk as an end-period investment value of nil, the
risk value is then the square of the proportionate shortfall (if any) of the total
return below the return on the RPI. For instance, if investment of 100 gave
an end period value of 114 whereas the RPI increased 20% over the period,
the proportionate shortfall is 0.05 and the risk value is the square of this, i.e.
0.0025.

12.6.2 The UK experience from 1918 to 1998

The most comprehensive data source for UK investment returns is the annual
Barclays Capital (formerly BZW) Equity-Gilt Study. Using these data for total
returns after reinvestment of gross dividends, average risk values were calcu-
lated for UK equities and conventional long-dated gilts (British Government
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Table 12.1 UK equities and gilts from 1918 to 1998

Duration in (years) Risk 1974 contribution
Equities Gilts Equities (%) Gilts (%)

1 0.0104 0.0052 40.6 19.9
2 0.0126 0.0106 53.0 20.4
3 0.0143 0.0139 44.6 20.9
4 0.0145 0.0162 32.7 12.2
5 0.0155 0.0189 35.7 11.9
6 0.0142 0.0231 46.5 11.0
7 0.0125 0.0278 37.1 11.4
8 0.0095 0.0313 29.8 10.2
9 0.0071 0.0350 48.0 9.1

10 0.0076 0.0391 39.6 8.2
15 0.0032 0.0571 100.0 7.0
20 0 0.0767 – 7.7

securities) for all available durations (from 1918 to 1998) of 1 to 10 years
and 15 and 20 years. In the case of equities, a very prominent feature is the
contribution to the total risk that arises from the period ending December 1974,
which represented the bottom of a very severe bear market. The average risk
values and the 1974 percentage contributions are shown in Table 12.1.

The (geometric) average real (i.e. inflation-adjusted) rates of total return from
1918 to 1998 are 8.0% pa for equities and 2.4% for gilts.

For equities, risk increases up to a maximum of 5 years and then decreases to
around 50% of this maximum at 10 years and to around 20% of this maximum
at 15 years. The risk at 20 years is zero, indicating that at this duration the real
total return was never negative. For gilts, risk increases steadily with duration,
being below the equity value at 1 and 2 years, virtually identical to it at 3
years, and higher than it at all longer durations. At 10 years the risk on gilts is
more than five times that on equities, and at 15 years it is almost twenty times
that on equities. A remarkable feature of the risk on gilts is that the values at
10, 15 and 20 years are almost exactly two, three and four times the value at
5 years, mirroring the linear increase with time exhibited by the variance of a
pure diffusion process.

12.6.3 Unconventional wisdom

These results lead to the unconventional conclusion that equities are less risky
than gilts for investment horizons of four years or longer. Given also the higher
average returns, equities are accordingly the vastly superior asset class to invest-
ment horizons of four years or longer.

It is often recommended that, if an individual invests mainly in equities while
in paid employment, he or she should switch into the supposedly ‘less risky’
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asset class of fixed interest bonds on retirement. Unless there were significant
fixed liabilities (such as having to repay a mortgage) within the first few years
of retirement, any such recommendation would – on the basis of the above
results – represent bad advice.

12.6.4 The academic literature

As a result of a prevalence of the simplistic ‘risk equals uncertainty of return’
teaching of financial economics and the indisputably higher variability of equity
returns, the academic literature is pervaded with articles which foster the notion
that equities are riskier than bonds, even when the investment horizon is fairly
long. An excellent article setting out the opposite viewpoint is Thaler and
Williamson (1994) in the twentieth anniversary issue of the Journal of Port-
folio Management. Using data from the Ibbotson Associates Yearbook, it is
shown that the likelihood of US equities outperforming bonds increases to near
certainty as the investment horizon increases.

The article by Nobel Laureate Paul Samuelson (1994), in the same issue
of the Journal of Portfolio Management, attempts to dismiss as ‘unscientific’
articles such as those of Thaler and Williamson (1994) which use empirical
data to justify the message of ‘buy and hold equities for sure-thing long-term
performance’. In an end-note, Samuelson makes the comment:

No-one can prove to me that I am too risk-averse. Long-run risk (in equi-
ties) is not ignorable.

In the context of the risk results set out above for UK equities and bonds
and the virtually identical risk results that could be derived for US equities and
bonds, continued adherence by academics to the notion that long-term risk on
equity investment is significant would amount to a classic instance of ‘myopic
loss aversion’ in a scientific context.

12.7 WIDER CAPITAL MARKET IMPLICATIONS

12.7.1 The hurst exponent and mean absolute deviation analysis

Harold Edwin Hurst (1880–1978) spent almost his entire working career as a
hydrologist in Egypt struggling with the problem of reservoir control. As Peters
(1991) observes:

An ideal reservoir would never overflow; a policy would be put in place to
discharge a certain amount of water each year. However, if the influx from
the river were too low, then the reservoir level would become dangerously
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low. The problem was: What policy of discharges could be set, such that
the reservoir never overflowed or emptied?

Hurst (1955) describes how the range of the reservoir level fluctuated around
its average level; if successive influxes were random (i.e. statistically inde-
pendent) this range – as with standard deviation in the Black–Scholes option
pricing model – would increase over time in line with the square root of time.
Hurst obtained a dimensionless statistical exponent by dividing the range by
the standard deviation of the observations, and hence his approach is generally
referred to as rescaled range (R/S) analysis. By taking logarithms, we obtain
the Hurst exponent H from the equation:

H log(N) = log
(

R

S

)
+ constant

where N is the number of observations and R/S is the rescaled range. In practice
the best way to obtain an estimate of H is to find the gradient of the log/log plot
of R/S against N . In strict contrast to the ‘statistical mechanics’ independence
value of 0.5 for H , Hurst found not only that for almost all rivers the exponent
was well in excess of 0.5 (0.9 for the Nile!) but also that for a vast range
of other quite distinct natural phenomena, from temperatures to sunspots, the
estimates of H clustered very closely around the value of 0.71, indicating the
existence of a powerful ‘long-term memory’ causal dependence.

The ‘over-reaction bias’ effect predicted in section 12.4.9 from the corre-
sponding behaviour in potentially risky sports can be expected to generate a
powerful ‘long-term memory’ effect. Share prices which have been driven by
‘over-reaction bias’ to extreme values either above or below what Adam Smith
would call their ‘natural values’ will tend to revert towards these ‘natural values’
rather than follow an essentially random progression from the extreme values,
thereby giving rise to a Hurst exponent significantly in excess of 0.5.

Peters (1991) and others have shown that equity market indices and the price
series of individual equity shares do indeed exhibit Hurst exponents well in
excess of 0.5, with typical values of around 0.7. Such behaviour is anomalous
in the context of the mainstream ‘rational behaviour’ teachings of financial
economics but is a prediction of the new general theory of risk and the associated
underlying patterns of real world investor behaviour.

In the Mean Absolute Deviation analysis approach described in Plymen and
Prevett (1972) and Clarkson and Plymen (1988), the multiplier value of 1.6
that was found to work best for equity price series in practice is significantly
lower than the theoretical value of 2 implied by statistical independence. There
is a strong (and obviously numerically inverse) correspondence to the Hurst
exponent being significantly in excess of 0.5. Furthermore, if we regard ‘over-
reaction bias’ as a ‘momentum’ effect superimposed on a mean-reverting ‘value’
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effect, the resultant equity price dynamics would approximate to a sine wave,
the optimal Mean Absolute Deviation multiplier value of which is 1.57, in very
close agreement with the empirically obtained value of 1.6.

12.7.2 Pension fund investment strategy

There are very strong parallels between reservoir control and pension scheme
funding, where the investment return corresponds to the influx of water from
unpredictable levels of rainfall within the catchment area, while the differ-
ence between payments to beneficiaries and contributions from employer and
employees corresponds to the controlled level of discharge of water from the
dam. The pension funding problem is to find a reasonably stable strategy that
does not lead either to excess surplus (the dam overflowing) or to financial
or regulatory insolvency (the reservoir emptying). Assuming that there are
no significant short-term liabilities, and ignoring for the moment any relevant
solvency regulations, the investment horizon is very long and it is blindingly
obvious from the risk and return results set out in section 12.6.2 that, if equities
and long-dated fixed interest stocks are the only two available asset classes,
then the ‘natural’ investment strategy is 100% equities.

A Hurst exponent of around 0.7 for equities means that, just as Hurst found for
reservoir control, financial control policies which use only means and standard
deviations estimated from past data will seriously understate the extremes of
investment value that will occur. Accordingly, mean-variance analysis could
give dangerously unsound results.

Another formalized mathematical approach which could give rise to highly
unsatisfactory results is utility theory. Well-intentioned attempts to encapsulate
a balance between funding level and insolvency risk using a standard type
of utility function may, for the reasons set out in section 12.5.5, magnify the
insolvency risk out of all proportion and force the sponsor into an unnecessarily
low equity exposure and, accordingly, an unnecessarily high funding rate.

The crucial difference between FARM, which suggests 100% equities as
the ‘natural’ investment strategy, and the financial economics approach, which
suggests 100% fixed interest as the ‘matched’ position, corresponds very closely
to the two different world views in the ‘risk equals uncertainty of return’ paradox
described in sections 12.2.11 and 12.5.3. In the pension fund investment strategy
context, this paradox can be translated into the following question that the
scheme actuary might ask the chief executive of the sponsoring company:

Which would you prefer: 100% investment in fixed interest, which means
that in theory the actuarial liability and the asset value are highly corre-
lated over the short term, or – for a significantly lower funding rate which
will translate into immediate and continuing higher profits and earnings
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per share for your company – 100% investment in equities, which involves
higher asset value volatility that does not in any way threaten the long-term
solvency of your scheme?

12.7.3 Solvency regulations

It is natural for governments and regulatory bodies to try to put in place rules
intended to reduce the financial risk to which members of the public are exposed.
However, FARM recognizes that, on occasions such as during 1974, investors
will act ‘irrationally’ and drive equity share prices to unrealistically low values
that do not in any way affect the satisfactory long term returns that will be
achieved. If the basic solvency test for an insurance company or pension fund
relates purely to market values with equities being classed as ‘more risky’ than
bonds or cash, a strong decline in equity prices, once established, could become
self-feeding in the same way as resulted from margin calls in the Wall Street
Crash of 1929. The well-intentional rules would be potentially destabilizing and
could vastly increase the inherent level of financial risk.

12.7.4 Stochastic investment models

The risk values described in section 12.6.2, as corroborated by a Hurst expo-
nent significantly in excess of 0.5, show that the statistical behaviour of equity
prices over periods of up to five years cannot be used to extrapolate equity price
behaviour into the indefinite future. In particular, the value of risk as measured
against an appropriate benchmark (such as an increase in line with either price or
salary inflation) will, as a result of the ‘long-term memory’ effect that is consis-
tent with behavioural finance conclusions, increase to a maximum at around four
or five years and then decrease steadily thereafter. However, the most widely
used stochastic investment models within the actuarial profession, and in partic-
ular the Wilkie (1984, 1986, 1995) model, follow an autoregressive approach
that takes no account whatsoever of this crucial ‘long-term memory’ effect.
Within such models, the risk on equity investment, as measured on the ‘equiv-
alent probability of financial ruin’ basis of the FARM, will increase steadily
with duration rather than reflecting the real world behaviour of decreasing from
around five years onwards. This distortion will lead to a very significant over-
estimation of the long-term risk of equity investment, and accordingly to the
recommendation of unnecessarily low levels of equity investment.

The absence of statistical independence between successive annual equity
returns will, mainly as a result of ‘over-reaction bias’, often cause estimates of
expected returns on the basis of recent history to be either far too high or far
too low. The oil industry analogy just over two decades ago comes readily to
mind: in the aftermath of the two very traumatic ‘oil shocks’, the projection
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models used by some major oil companies did not allow for the possibility of
future oil prices falling below the then current value of 40 dollars per barrel.

12.8 CONCLUSION

In Clarkson (1996) it is suggested that a new and essentially actuarial theory
of finance might before long offer a better scientific framework for prudent
financial management than the general teachings and methodologies of what
has become known as financial economics. Since the management of risk is
absolutely central to prudent financial behaviour, the FARM framework set out
in this chapter will hopefully be a step in that direction.
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Appendix

The Forsey–Sortino model tutorial

This tutorial will walk the reader through the steps to install the Forsey–Sortino
model on the reader’s computer and demonstrate how to use the model to
calculate upside potential and downside risk in accordance with procedures
established at the Pension Research Institute. We are concerned that the way
some people are calculating upside potential and downside risk may substan-
tially under-estimate risk, and over-estimate upside potential. Therefore, we ask
that any output from this model acknowledge that upside potential and downside
risk were calculated with the Forsey–Sortino model.

The demonstration program will help the user gain an understanding of
the three parameter lognormal curve and related statistics described in this
book. In the US the publisher may be contacted at 800 366 2665 or e-mail:
orders@bhusa.com. In the UK call 01865 888180 or e-mail bh.orders@
repp.co.uk.

We strongly recommend you read the book before using this program. Use
of this model from any source other than the CD accompanying the book is
strictly prohibited. Copies from the original CD may be put on any number of
computers in an office that has a copy of the book available to users in that
office. Our concern is that people may use the model without understanding
what they are doing.

INSTALLATION

If you want to follow the default settings for installation, skip to paragraph 2.

1. To install the F–S model in a directory of your choosing, create the
directory now, e.g. create a directory on your C:\ drive and name it ‘Downside’.
Put the CD in your computer and the program should start. If it does not, go to
‘My Computer’ on your desktop and access the CD drive. Double click on the
folder named Downside and double click on the setup icon (blue computer).
At the Welcome screen click OK. Click on ‘Change Directory’. Scroll down to
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Downside and click. (The window should look like C:\Downside.) Click OK.
At the lognormal setup screen click on the computer icon (called a button).
The program will install, then click OK.

2. To follow the default installation, put the CD in your computer and the
program should start. If it does not, go to ‘My Computer’ on your desktop
and access the CD drive. Double click on the folder named Forsey–Sortino
and double click on the setup icon (blue computer). At the Welcome screen
click OK. At the lognormal setup screen click on the computer icon (called a
button). The program will install in your program directory in a folder named
‘LogNormal’. Click OK.

3. Go to the directory where you installed Forsey–Sortino model and double
click on the gold Downside icon. Figure A.1 will appear.

4. If you see the ‘Load Fund’ button go to the next paragraph. If you do
not see the Load Fund button, your screen settings are too low. Double click
the My Computer icon on your desktop screen. Double click the control panel.
Double click on Display and click on Settings. Move the setting to the right
until 1024 × 768 appears in the window. Save settings and reboot. Go to the
Downside directory and click on the Forsey–Sortino icon.

5. Press the ‘Load Fund’ button. Monthly fund data from the ln.txt text
file will load and be shown in the window on the right (see Figure A.2).

6. These are the monthly returns currently on the sample text file. The user
can edit this file to add or delete funds with any text editor or spreadsheet

Figure A.1
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Figure A.2

program in TEXT format (not .exl). Be sure to save the file in text format. All
of the returns are in one column (see Figure A.3).

7. The format of the data in this file (Figure A.3) is the name of the fund
(e.g. R1GRO) followed by monthly returns as percents with −999 indicating
the end of the fund’s data. Each name and return is on its own line. This is
repeated until all desired funds are included. All data files must be of the same

R1GRO
–5.412

6.64
7.217
4.002
8.844

–5.853
4.921

–3.697
4.247
1.12
2.99
7.522
3.99
1.38

R1GRO
–2.84

6.126
–0.66

–15.008
7.68
8.04
7.607
9.02
5.87

–4.57
5.27
0.13

–3.07
7

R1GRO
–3.18

1.63
–2.1
7.55
5.39

10.4
–4.69

4.89
7.16

–4.76
–5.04

–3.596

–999
R1VAL

Figure A.3
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length. Be sure to save edited files as text files. The program will not read a
spreadsheet in Excel format.

BOOTSTRAP

8. After a fund’s return data is loaded, the bootstrap option becomes available.
Press ‘Boot’ to perform a bootstrap that generates 2500 random annual returns
by sampling from the fund’s monthly return data. The results are shown in
Figure A.4.

9. To view the results of the bootstrap graphically, click the circle in front
of ‘Histogram’, as shown in Figure A.5. The histogram contains a hundred
bars with heights representing the number of annual returns falling in the corre-
sponding region. There is a great deal of random fluctuations in these returns.

10. Click on ‘Smooth’ to see the empirical fit shown in Figure A.6. A
histogram of averages based on five adjoining bars is displayed by the Smooth
function.

11. Click on ‘Lognormal’ to fit and graph a three parameter lognormal
curve, as described in Chapter 4 by Hal Forsey.

12. The mean for R1GRO is 29.2%. The standard deviation is 24.6%. The
extreme value is −208%, meaning the distribution is anchored at −208% and
allowed to skew to the right. One standard deviation to the left is 4.5%, and to
the right is 53.8%.

Figure A.4
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Figure A.5

Figure A.6
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Figure A.7

13. Click on the graph at approximately the point of your MAR as shown
by the vertical arrow in Figure A.8.

14. When a lognormal graph is displayed, the user can define an MAR by
using the mouse to put the cursor over the MAR and clicking. The arrow in
Figure A.8 is pointed at 8.4%, which is also shown in the window to the right
of the graph. Additional statistics include the upside potential, downside risk
and the probability of doing better than the MAR (P > MAR).

15. A displayed graph can be copied to the clipboard by clicking the ‘Copy
Graph to Clipboard’ button.

USER-DEFINED LOGNORMAL

16. Click the User’s Defined Lognormal option to define a lognormal model
by editing the default mean, standard deviation, or extreme value.

17. The default mean is 23%. Put your cursor on the mean and replace 23
with 18. Click on the ‘Edit Parameters’ bar and the graph will shift. Change
the standard deviation to 15, and the extreme value to −25. Click on ‘Edit
Parameters’. One standard deviation to the left is now 3% and to the right is
33%. Click on the graph to mark the MAR and the statistics for that distribution
will be shown in the right window.
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Figure A.8

Figure A.9
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18. Click on ‘Load Fund’ and the R1VAL returns appear in the right
window. Click on Histogram, Smooth, etc. to generate the statistics for the
large value index.

Exit. Click this option to exit the program.

The Excel spreadsheet provided on this disk is a program developed by Neil
Riddles and can be accessed by double clicking on the icon. There is no tutorial,
but sample data are provided to demonstrate how the program works. Users must
provide their own data.

Please do not contact PRI, the authors, or the publisher for assistance if
you have difficulty with any of the programs on this disk. There is no
charge for these products and none of the parties has the facilities or staff
to provide personal assistance. We have made numerous checks to ensure
the programs worked before packaging.



Index

Active returns, 83–4, 98–9
Actuarial Approach for Financial Risk

(AFIR), 212
Actuaries, 212, 234

for defined benefit plans, 41
see also Faculty and Institute of

Actuaries
Adverse occurrences, estimating severity

of, 220–1, 224, 226–7
AFIR (Actuarial Approach for Financial

Risk), 212
Air travel, perceived risk in, 219
Allais, Maurice, 216–17
Allais Paradox, 216–17, 229–30, 234
Allocation, asset, see Asset allocation
ALM, see Asset liability management

(ALM)
Alpha, 4, 10, 77, 84, 178
Alternative investments as a benchmark,

108
Asset allocation, 24, 75–8, 86–9

Dutch pension funds, 26–7, 39
Internet application, 21–3

Asset liability management (ALM),
26–40

pension fund liability management,
27–8

plan sponsor level, 37–8
risk, measuring, 32–3

Asset managers, selecting, 41–2
see also Managers

Asset-only framework, 39
Asset pricing:

lower partial-moment models, 156–68
new model for, 204–6

see also Capital Asset Pricing Model
(CAPM)

Assets, risky and risk free, 220
in Capital Asset Pricing Model

(CAPM), 176
and the Sharpe ratio, 176–7, 178

Asymmetry, 6–8
of returns, 103, 146
of risk, 104–5, 152
see also Skewness; Symmetry

Auxiliary parameters for three parameter
lognormals, 57

Average downside deviation, 62–3, 96
comparing managers with, 67–8
see also Downside deviation

Average weekly earnings as a benchmark,
108

Axioms of choice, 223–4, 228
see also Utility axioms

Balzer, L.A., 103, 107, 126–7, 129, 131,
135, 151

Banks, benchmarks for, 108
Barclays Capital Equity-Gilt Study,

236–7
Bear markets:

flight to liquidity in, 229
self-feeding, 241
and skewness, 64

Behaviour:
failsafe, innate, 225–7
financial, 214–20
rational, 216, 239
real world, 213, 218
research into, 142, 143
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Behavioural finance, 13–16, 218–19
Below budgeted return, 108
Below MAR probability (BPROB), 78–9,

80, 86, 90
see also Mean-below MAR probability

(M-BPROB)
Below MAR standard deviation (BTSD),

86
Below MAR variance (BVAR), 86, 90

see also Mean-below MAR variance
(M-BVAR)

Below-target returns, 60
Below-target semi-variance2, 60
Below target variance, 10
Benchmark relativity, 80–1, 127
Benchmarks, 106, 107–9

higher order terms, importance of,
150–1

and institutional investors’ views, 93–4
investor-specific, 152
and partial moments, 129, 131, 132,

134, 143
and performance measures, 178
risk relative to, 97–9
strategic, in ALM framework, 26–40
variance, skewness and kurtosis

relative to, 128
Bernoulli, Daniel, 213, 215, 220, 230,

231–2, 236
Beta, 156, 157–8

see also Style beta
Bivariate case, mean-DSR portfolio

frontier, 196–202, 206–8
Black-Scholes option pricing model, 239
Bond managers, measuring performance

of, 16–17, 31
Bonds:

compared to equities, 219, 229, 238
empirical distributions for, 79–80
proportion of investments in, 75–8,

86–9
in retirement, 237–8

Bootstrapping, 12, 51–2, 53–4, 95
in the Forsey-Sortino model tutorial,

248–50
Bottom quartile returns as a benchmark,

108
BPROB (Below MAR probability), 78–9,

80, 86, 90

see also Mean-below MAR probability
(M-BPROB)

BTSD (Below MAR standard deviation),
86

Buffon, J., 216, 223
Bull markets, skewness and, 64
BVAR (Below MAR variance), 86, 90

see also Mean-below MAR variance
(M-BVAR)

Capital:
loss of, 106, 107
risk capital, 33, 35
see also Principal

Capital Asset Pricing Model (CAPM),
157, 158–60

lower partial-moment capital asset pricing
models (LMCAPM), 156–68

and Markowitz portfolio theory, 176
mean-variance capital asset pricing

models (MVCAPM), 156, 167
new version of, 204–6
performance measures developed from,

178
CAPM, see Capital Asset Pricing Model

(CAPM)
Capping indexing, 35–6
Catastrophic events, 77, 78, 80

see also Ruin
Clients, diversity of, 93
Coefficient of kurtosis, 121
Coefficient of skewness, 121
Coherent determinants of pension fund

policy, 36–7
Commodity prices, 215
Completeness of risk measures, 54,

110–11, 112, 113, 114
relative semi-variance, 130

Confidence:
lack of confidence, 229
over-confidence, 214, 219, 225, 228–9

Conservatism, downside focus implies, 70
Consultants, investment, 41–3, 45
Continuous formula for downside risk,

60–2, 70
Contributions:

defined contribution funds, benchmarks
for, 108
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premium contributions (Dutch pension
funds), 27–8, 29–30, 36, 37–8

Conventional moment-based measures,
120–8

Covariance of stocks and bonds, 17
Cubic penalties, 138, 141–2, 150, 153
Cumulative probability distributions,

116–18, 152
lognormal cumulative distribution

function, 58
Customizing risk calculations, 93–4

see also Mass-customization

Data gathering, 46
DB, see Defined benefit (DB) plans/funds
Death, equivalent probability of, 221–2
Decreasing marginal utility, 126–7

of downside returns, 135–6
of upside returns, 134–5, 141, 142, 144

in logarithmic functions, 149
Default risk, 38
Defined benefit (DB) plans/funds, 41

benchmarks for, 108
liabilities in, 107
targets for, 69
using MAR, 78, 85

Defined contribution funds, benchmarks
for, 108

Demographic trends and pension plans,
28

Discounted downside risk, 33, 35, 36–7
Distributional assumptions, 156, 157
Distributions, see Probability distributions
Dominance, see Stochastic dominance

models
Downside deviation, 60, 71, 179

lognormal formulas based on, 55, 58
performance measures based on,

178–80
see also Average downside deviation

Downside frequency, 62–3, 96, 97
comparing managers with, 67–8
relevance to investors, 85

Downside kurtosis, 139
Downside magnitude, 96
Downside marginal utility, 134

decreasing, 135–6
Downside returns, 153

and asymmetry, 104–5, 146
PMPT models, 60
variance is inaccurate for, 126

Downside risk (DSR), 9–21, 60–2
in asset pricing models, 156
calculating, 94–5

software and tutorial for, 245
continuous formula versus discrete,

60–2
definition, 10–11, 196
discounted, 33, 35, 36–7
for goal relative performance

measurement, 49
for Internet advice, 21–3
and MAR, in portfolio management,

24
mean-downside risk portfolio frontier,

194–211
bivariate case, 196–202, 206–8
multivariate case, 202–4, 208–10
non-parametric approach,

206–10
for pension plan shortfalls, 30–1,

32–3, 39
portfolio manager’s view, 93–100
slow adoption of, 99–100
and standard deviation compared,

symmetrical distributions, 70–1
statistics from, 95–7
and utility functions, 140–2, 234

Downside semi-variance, 143, 144,
149

Downside utility, unified theory of, 104,
131–51

fourth order, 139–40
second order, 135–7
special cases, 142–6
third order, 138

Downside variance, 64, 135–6
DSR, see Downside risk (DSR)
Dutch mutual funds, 180–5, 187–93
Dutch pension funds, ALM-frameworks

for, 26–40
Dutch triangle, 28–32
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Efficiency ratio, 96
Equities:

exhibit Hurst exponents, 239–40
long term view and risk, 236–8,

239–41
in pension funds, 26–7, 240–1
reluctance to invest in, 219, 229, 238
see also Stock market; Stocks

Equity funds, comparisons with, 180, 181
Equity managers, measuring performance

of, 16–17, 31
Equivalence functions, formulating,

227–8
Equivalent probability of death, 221–2
Equivalent probability of ruin, 227,

231–2, 241
ERISA, 41
Estimation, 151–2, 222
EU, see Expected utility (EU)
Excess return, 4

in information ratio, 80–1, 89–90
using the M-BVAR index, 90

Excess volatility, 219
Expected enjoyment, quantifying, 224,

228
Expected return:

mean-DSR portfolio frontier
bivariate case, 199
the multivariate case, 203

in the Sharpe ratio, 178
Expected shortfall, 113–15, 130, 152

RLPM1 as, 129, 130
Expected utility (EU), 4–5, 125–6, 213

attempted generalizations, 218
comparing to FARM approach, 232–4
from utility function optimization,

140–2
and IR, 81–3
and the Sharpe ratio, 85
see also Utility theory

Ex post performance, IR for, 83–4
Extreme value of annual returns, 54–5,

56
formulas for, 57–8

Faculty and Institute of Actuaries, 234
Failsafe behaviour, innate, 225–7
FARM (financial actuarial risk model),

212–44

Financial actuarial risk model (FARM),
212–44

Financial behaviour, anomalies and
inconsistencies in, 214–20

see also Behaviour
Financial outcomes, comparing two,

232–4
Financial planners, a new paradigm for,

41–50
Financial planning paradigm, 43–6
Financial risk, 212–14

models of, 226–9
applications, 229–36

see also Risk
Financial ruin, 218, 227, 228, 230–2, 241
First moment, 4, 121

see also Mean
First order stochastic dominance, 5,

117–18, 152
First order utility, 134
Fishburn, Peter, 9, 10, 157, 159, 160,

172–3, 174
Fishburn utility function, 170, 172–3,

174, 180, 184–5
Fixed interest investments, 236

in pension fund investment strategies,
240–1

see also Bonds; Gilts; Interest-bearing
funds; T-bills

Forecasting, 44, 49
Formulas for three parameter lognormal,

57–8
Forsey-Sortino model tutorial, 245–52
401(k) plans, 41, 44, 46, 69
Fourth moment, 121, 128

see also Kurtosis
Fourth order downside utility, 139–40
Fourth order leakage sensitivity, 148
Fourth order risk aversion, 148
Fourth order terms, 138–40, 148, 153

logarithmic utility leakage, 150
Fourth order upside utility, 138–9
Fouse index, 12, 170, 179

rankings, 182, 183–4, 185
Fouse, W., 12
Framing and coding (behavioural finance

trait), 219
Fund managers, benchmarks for, 107–8

see also Managers
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Gain, overestimating, 214
see also Upside returns

Gaussian distributions, see Normal
distributions

Gilts (British Government securities),
236–8

Goals:
for 401(k) plan investors, 69
analyses of, in investment planning,

43, 44, 45, 46, 49
and downside risk, 24, 62, 94
see also Target rate of return

Hang-gliding, risk in, 220–1, 222, 223
Higher moments, 194–5
Higher order terms, 140, 141, 142

importance of, 148–51, 153
High growth funds, 90

see also Returns
High returns, psychological devaluation

of, 137
see also Returns

Histograms:
bootstrapping produces, 52
describing, with lognormal curves,

53–4
Human mind, 213, 225

see also Behaviour; Insanity,
temporary; Perception of risk;
Psychology of risk

Hurst exponents, 238–40
Hurst, Harold Edwin, 238, 239

Independence, data, in bootstrapping, 52,
95

Indexing, 27, 28, 29, 34–5
and sponsor’s solvency, 37–8

Indifference curves, 223–4, 228, 232
Individual accounts, a new paradigm for,

41–50
Inflation:

beating, as a goal, 69
compensation for, in Dutch pension

plans, 27, 29

keeping up with, 78, 85, 87–9, 107
see also Indexing

Information ratio (IR), 4, 80–5
for excess return, 89–90
misleading nature of, 74
as a performance measure, 178

Information, risk assessment with,
219–20, 225–6, 234

Injuries, perceived probability of,
220–2

Innate failsafe behaviour, 225–7
Insanity, temporary, 226, 229
Insolvency risk, 232

see also Solvency
Installing demonstration program,

245–8
Institutional investors, risk and, 93–4
Institution of Civil Engineers, 234
Insurance:

actuaries in, 212
failure to take up, 214
risk of ruin component, 227
solvency of companies, 241
transferring risk through, 234

Interest-bearing funds, comparisons with,
180, 181

see also Bonds; Fixed interest
investments; Gilts; T-bills

International Actuarial Association, 212
Internet, 21–3

downside risk freeware available on,
99

for mass-customization, 46
Internet-related stocks, 214
Investment, alternative, 108
Investment consultants, 41–3, 45
Investment performance, see Performance

measures
Investment policy, 43
Investment portfolio, determination of,

38–9
see also Portfolios

Investment risk, 103–55
conventional moment-based measures,

120–8
nature of risk, 104–15
see also Risk

Investment strategy, pension funds,
29–31, 38–9, 240–1
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Investors:
institutional investors, and risk, 93–4
investor-specific risk, 109, 130, 152
retail investors, 93–4

Investor-specific risk, 109, 130, 152
IR, see Information ratio (IR)
Irrationality, systemic, 215, 218–19

see also Rational behaviour

Japanese stock market, 70, 95
Jensen, Michael C., 4, 178
Jump discontinuities, 127, 133, 142,

147

Kernel estimations, 206, 207
Keynes, John Maynard, 215–16
Kurtosis, 121, 128

downside kurtosis, 139
relative lower partial, 129, 131
upside kurtosis, 139

Lack of confidence, 229
see also Over-confidence

Leakage, see Upside utility leakage
Leptokurtic distributions, 121
Liabilities:

after retirement, uncertainty in,
47–8

as a benchmark, 107
matching, 69, 71(note 7)
see also Asset liability management

(ALM)
Lifestyle goals, financial planners focus

on, 43, 44, 45
see also Goals

Linear utility functions, 171, 172
LMCAPM (Lower partial-moment capital

asset pricing models), 156–68
Location-scale (LS) family, 156
Logarithmic utility functions, 146–51,

153
Bernoulli uses, 220, 231–2, 236

Lognormal cumulative distribution
function, 58

see also Cumulative probability
distributions

Lognormals:
describing histograms with, 53–4
fitting portfolios with, 56

in the Forsey-Sortino model tutorial,
250–2

software, 57
three parameter, 15–16, 51–8, 60–1,

95, 245, 248–50
Long-term memory causal dependence,

239, 241
Loss, underestimating, 214

see also Downside returns
Lotteries, 214
Lower partial-moment capital asset

pricing models (LMCAPM),
156–68

Lower partial moments, 10
relative (RLPMs), 129–31
see also Downside risk

LS family, see Location-scale (LS) family

Maclaurin series expansion, 132,
154(note 10)

Magnitude, downside, 96
Magnitude of loss, 85

maximum shortfall for, 111–12
and risk perception, 115

Management structure, three-tiered, for
pension plans, 29–32

Managers:
asset managers, selecting, 41–2
comparing and ranking, 66–8
fund managers, benchmarks for, 107–8
measuring performance

against MAR, 31–2
bond and equity, 16–17, 31

portfolio managers, 93–100, 169
MAR, see Minimal acceptable return
Marginal utility, 126–7, 172, 215

downside, 134
decreasing, 135–6

upside, 134
decreasing, 134–5, 141, 142, 144,

149
Market orientation of performance

measures, 42
Markowitz, Harry, 3, 9, 10–11, 145–6

and quadratic utility functions, 171–2
suggested other risk measures, 85, 122,

130, 194
MAR preferences, 86
MAR risk, 86
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Mass-customization, 46
see also Customizing risk calculations

Maximum acceptable risk, 223, 228,
231–2, 233, 234

and existing wealth, 230
in long term investment, 236

Maximum shortfall, 111–12, 152
M-BPROB (Mean-below MAR

probability), 86, 87–9
M-BVAR (Mean-below MAR variance),

86, 89–90, 91
Mean, 4, 121

and three parameter lognormals, 54–5,
56

see also Mean-variance
framework/model (M-V)

Mean Absolute Deviation analysis,
239–40

Mean-below MAR probability
(M-BPROB), 86, 87–9

Mean-below MAR variance (M-BVAR),
86, 89–90, 91

Mean-BVAR (Mean-below MAR
variance), 86, 89–90, 91

Mean-downside risk portfolio frontier,
194–211

bivariate case, 196–202, 206–8
multivariate case, 202–4, 208–10

Mean-relative semi-variance portfolio
construction, 143–4

Mean-variance capital asset pricing
models (MVCAPM), 156, 167

Mean-variance framework/model (M-V),
3–8

assumptions, 176
evaluation of mutual funds with,

89–90, 91
fund allocation, and inflation, 87–9
for pension fund strategies, unsound

results from, 240
portfolio construction, 144–6
and quadratic utility functions, 170,

172, 176
semi-variance measures, 10–11
and utility theory, 217–18
and value at risk (VaR), 75

Mean-variance portfolio construction,
144–6

Median returns as a benchmark, 108

Mesokurtic distributions, 121
Meta-risks, 152
Mind, see Human mind
Minimal acceptable return (MAR), 5, 10,

24, 85–91
in the demonstration software, 250–1
downside deviation uses, 179
for Dutch pension plans, 30–1
evaluating performance with, 89–91
failure to achieve, as risk, 74
formulas based on, 58
and investors’ needs, 93
lognormals, measurements based on,

55, 58
making decisions in, 86–9
in risk representation, 78–9

Minimum risk, thresholds of, 228
Modern portfolio theory (MPT), 3–4, 59,

171, 176
Moments, 4, 120–8

higher moments, 194–5
partial moments, 131–46

lower partial-moment capital asset
pricing models, 156–68

lower partial moments, 10
relative lower partial moments

(RLPMs), 129–31, 153
special cases, 142–6
see also Downside risk (DSR)

Morgenstern, O., 213, 216
MPT (Modern portfolio theory), 3–4, 59,

171, 176
Multidimensionality of risk, 109, 130,

152
Multivariate case, 202–4, 208–10
Mutual funds:

evaluation of, 89–90, 91
financial planners use, 43–4
for measure comparisons, 180–5
ranking of, 19–23, 187–93

M-VAR preferences, 86
MVCAPM (Mean-variance capital asset

pricing models), 156, 167
M-V framework, see Mean-variance

framework/model (M-V)
Myopic loss aversion, 219, 229, 238

Natural price/values, 215, 239
Negative deviations, influence of, 124
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Negative returns, 70, 106, 107
bootstrapping shows potential for, 95
create jump discontinuities, 132–3, 134
and utility functions, 134
see also Downside returns

Negative skew, 121
Netherlands:

mutual funds, 180–5, 187–93
pension funds, ALM framework for,

26–40
Neural mechanics of physical risk, 213

see also Human mind
Non-linear instruments, 126
Non-linearity:

of risk, 115, 152
of risk measures, relative

semi-variance, 130
of trading strategies, 124, 126

Non-normal distributions, 124
analysis of returns for major asset

classes, 65–6
empirical distributions of bonds and

stocks, 79–80
Non-parametric approach, 206–10
Non-stationarity, 125
Normal distributions, 4, 53, 121, 122

analysis of returns for major asset
classes, 65–6

for financial market distributions, 152
and mean-variance model, 176
measuring risk with, 75–8
in Modern Portfolio Theory, 4, 59
not suitable for investment returns, 94
Sharpe ratio used for, 68
see also Mean-variance

framework/model (M-V)
Numerical positivity for risk measures,

113

Oil industry analogy, 241–2
Olsen, R.A., 13, 142, 143
Omega excess, 12–13, 18–19

for self-directed retirement plans, 21–3
Operational level of pension plan

management, 29, 32
Options, 124, 126
Over-confidence, 214, 219, 225, 228–9
Over-estimating upside potential, 245

Over-reaction bias, 219, 226, 229, 239,
241

Overvaluation of gains, 214

Parabolas for downside risk, 197–202,
203–4

Parameters:
risk aversion parameters, see Risk

aversion parameters
for three parameter lognormals, 57
see also Three parameter lognormals

Pareto distribution, 152
Pareto-optimal allocation, 165
Partial moments, 131–46

lower partial-moment capital asset
pricing models, 156–68

lower partial moments, 10
relative lower partial moments

(RLPMs), 129–31, 153
special cases, 142–6

Participants, plan, 27, 28
age and mobility of, 33
and risk, 29–30, 32

Peer group analysis, 42
Penalties, 136

in utility function optimization, 136,
137, 138, 140, 141–2, 153
ignoring, 143
logarithmic utility function, 149, 150

Pension funds:
case study, 33–7
developing benchmarks for

(Netherlands), 26–40
investment strategy, 240–1
see also Defined benefit (DB)

plans/funds; 401(k) plans;
Retirement plans

Pension Research Institute, 3, 9, 60,
245

Perception of risk, 59–60, 85, 93–4,
115

Performance benchmarks, 109
Performance measures:

absolute versus relative, 16–17
bond and equity, 16–17, 31
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Performance measures: (continued )
financial planners, 44, 45, 46
investment consultants, 42, 45–6

goal relative, 49
peer group analysis, 42
Post-Modern Portfolio Theory for,

59–73
and quadratic utility functions, 182–3
risk-adjusted, 176–80, 183–4

and preference functions, 169–70,
181–3

and prospect theory value function,
183–4

rolling, very large returns disturb, 139
see also Fouse index; Sharpe ratio;

Sortino ratio; Upside potential ratio
Performance method 1 (PM1), 89–90
Performance method 2 (PM2), 90
Performance surveys and benchmarks,

108
Personal threshold of maximum

acceptable risk, 223
Physical risk, 213, 219, 220–6
Platykurtic distributions, 121
PM1 (Performance method 1), 89–90
PM2 (Performance method 2), 90
PMPT, see Post-Modern Portfolio Theory

(PMPT)
Poisson distributions, 222
Populations, moments refer to, 120
Portfolio construction, 151, 153

mean-relative semi-variance, 143–4
mean-variance, 144–6
problems with very high upside

returns, 139
relative mean-relative semi-variance,

143
relative mean-RLPM, 142–3

Portfolio frontier, mean-downside risk,
194–211

Portfolio managers, 93–100, 169
Portfolios:

fitting to a lognormal, 56
semi-variance, 195–6
strategic investment portfolio

determination, 38–9
Portfolio theory:

modern (MPT), 3–4, 59, 171, 176
post-modern (PMPT), 59–73

Positive deviations, influence of, 124
Positive numbers for risk measures, 113
Positive skew, 121, 137–8
Post-Modern Portfolio Theory (PMPT),

59–73
in practice, 66–8
tools of, 60–6

Preference functions, 171–5
and risk-adjusted performance

measures, 169–70, 178, 181–93
see also Fishburn utility function;

Prospect theory value function;
Quadratic utility functions; Utility
functions

Preference rules, 224, 225
Premium contributions (Dutch pension

funds), 27–8, 29–30, 36, 37–8
Principal, zero MAR protects, 85

see also Capital
Probability-based risk measures, 109–15
Probability density functions, 110, 111,

114, 116–17
Probability distributions, 110

comparing, 116–20
cumulative, 58, 116–18, 152
moments of, 120–2
see also Lognormals; Normal

distributions; Poisson distributions
Probability of ruin, 218, 228
Probability of shortfall, 109–11, 129, 152

pension funds, 33, 34–5
Probability weighted function of

deviations below a specified target
return, 10

see also Downside risk
Prospect theory value function, 173–5

compared to Sharpe ratio, 177, 184–5
and risk-adjusted performance

measures, 183–4
uses reference points, 170

Psychology of risk, 103, 115–16, 152
see also Human mind

Purchasing power, 35–6

Quadratic penalties, 136
in utility function optimization, 136,

137, 141, 153
logarithmic utility function, 149
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Quadratic utility functions, 170, 171–2,
176

and performance measures, 182–3
rankings based on, 181, 184–5,

187–93
Sharpe proposes, 217

Quartic penalties, 140, 141, 153
Quartile boundaries, 121

RA, see Risk aversion parameters (RA)
RAMP (Risk assessment and

management for projects), 234
Ranking:

downside risk for, 11, 60
of mutual funds, 19–23, 181–5,

187–93
performance measures for, 176
preference functions for, 176
risk-adjusted returns for, 66–7
Sortino ratio for, 64

Rational behaviour, 216, 239
see also Irrationality

Reality of physical risk, 225
Real returns, 107
Real world behaviour:

building explanations of, 218
utility theory inconsistent with, 213

Real world relevance, 6
utility theory lacks, 217, 234

Reference points:
downside deviation uses, 179
preference functions, 170, 172–3, 174

Reference rate, 170
Regulations, solvency, 241

see also Supervisory bodies
Relative lower partial kurtosis, 129, 131
Relative lower partial moments (RLPMs),

129–31, 153
Relative lower partial skewness, 129
Relative lower partial variance (RLPM2),

129, 130
Relative mean-relative semi-variance

portfolio construction, 143
Relative mean-RLPM portfolio

construction, 142–3
Relative semi-variance (RLPM2), 130
Relativity of risk, 105–9
Representative agents, 157, 158–9, 160,

162, 165–7

Rescaled range (R/S) analysis, 239
Reservoir control, 238–9, 240
Retail investors, 93–4
Retail Price Index (RPI), 236
Retirement:

liabilities in, 47–8
types of investment in, 237–8

Retirement plans:
individual accounts, 46–8
self-directed, Internet help for, 21–3
see also Defined benefit (DB)

plans/funds; 401(k) plans; Pension
funds

Returns:
asymmetry in, 103, 146
below-target returns, 60
for benchmarks, 107–8

below budgeted return, 108
bottom quartile returns, 108
median returns, 108
real returns, 107
risk free rate of return, 107
sector index return, 108

distributions, 169
downside returns, see Downside

returns
estimating next year’s, 51–2, 56
excess return, 4, 80–1, 89–90
expected return, 178, 199, 203
extreme value of, 54–5, 56, 57–8
high returns, psychological devaluation

of, 137
independence of, and bootstrapping,

52, 95
minimal, see Minimal acceptable

return (MAR)
negative returns, 70, 95, 106, 107,

132–3, 134
omega excess return, 12–13, 18–19,

21–3
risk-adjusted returns, 12–13, 66–7,

96
in style analysis, 12
target rate of return, see Target rate of

return
upside returns, see Upside returns
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Risk, 104–15
actuarial approaches, 212
and asset liability management, 27–8,

32–3, 36–8
asymmetry of, 104–5
downside risk, see Downside risk

(DSR)
and equities, 26–7, 236–8
FARM (financial actuarial risk model),

212–44
in financial planning paradigm, 45, 46
financial risk, 212–14, 226–36
ignoring low, 216, 223
in investment planning process, 45
investment risk, 103–55
investor-specific, 109, 130, 152
maximum acceptable risk, 223, 228,

230, 231–2, 233, 234, 236
multidimensionality of, 109, 152
non-linearity of, 115, 152
physical, 213, 219, 220–6
post-retirement, 47–8, 49
psychology of, 103, 115–16, 152
relative to benchmark, 97–9
relativity of, 105–9
stakeholders’ perspectives, Dutch

pension plans, 29–30
standard deviation for, 75–7
style-adjusted downside risk (SAD), 13
undervaluing, 214
value of risk, 222, 225, 229–30, 231,

232, 233, 234, 236
value at risk (VaR), 74–80, 113

Risk-adjusted performance measures,
176–80, 183–4

downside deviation applied in, 179–80
and preference functions, 169–70,

181–93
consistency of, 181–4

and prospect theory value function,
183–4

Risk-adjusted returns, 12–13, 66–7, 96
see also Returns

Risk assessment and management for
projects (RAMP), 234

Risk attitudes, 169
and preference functions, 171, 172–5,

181
and risk-adjusted performance ratios,

179–80
Sharpe ratio, 177–8

Risk aversion, 134, 136, 141, 143, 219
and Fishburn utility function, 184
and preference for second order

stochastic dominance, 118–19
and prospect theory value function,

183–4
and quadratic utility function rankings,

182–3
and risk-adjusted performance

measures, 170, 182–4, 185
and utility functions, 171–2, 173, 174,

175
and value at risk, 74, 77

Risk aversion parameters (RA), 143–4,
146–8

and IR, 83
and rankings, 181, 182, 183, 187–93

Risk benchmarks, 109
Risk capital, 33, 35
Risk equals uncertainty paradox, 219–20,

231, 238, 240
Risk free rate of return, 107
Riskless rate, 156, 157
Riskless/risk-free assets:

in Capital Asset Pricing Model
(CAPM), 176

compared to risky assets, 220
and the Sharpe ratio, 178

Risk measures:
absence of, 218
completeness of, 54, 110–11, 112,

113, 114, 130
probability-based, 109–15
problems, 124–5

with standard deviation, 122–3
with variance, 113, 124, 136

properties of, 152–3
skewness as, 128
utility function basis for, 125–7,

136–7, 138, 140
Risk perception, 59–60, 85, 93–4, 115
Risk preference functions, see Preference

functions
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Risk study, Royal Society’s, 223
Risky assets:

in Capital Asset Pricing Model
(CAPM), 176

compared to risk-free assets, 220
and the Sharpe ratio, 176–7, 178

RLPM0, 129
see also Probability of shortfall

RLPM1, 129, 130
see also Expected shortfall

RLPM2, 129, 130
RLPM3, 129, 131
RLPM4, 129

see also Relative lower partial kurtosis
RLPMs (Relative lower partial moments),

129–31, 153
RMC downside (dRMC), 138, 141, 153
RMC upside (uRMC), 137, 141–2, 150,

153
RMQ downside (dRMQ), 139–40, 141,

153
RMQ upside (uRMQ), 138–9, 142, 153
RMS downside (dRMS), 136–7, 141, 149,

153
RMS upside (uRMS), 137, 141, 153
RMS values, 136
Root Mean Square (RMS) values, 136
Royal Society of London, risk study by,

223
Ruin, 218, 227, 228, 230–2, 241

see also Catastrophic events

SAD risk (style-adjusted downside risk),
13

St Petersburg Paradox, 215, 234–6
other paradox, 220, 231–2

Samples, moments refer to, 120
Scenarios, market, 56
Second moment, 4, 121

see also Variance
Second order downside risk aversion, 149
Second order downside utility, 135–7
Second order risk aversion parameters,

147
Second order stochastic dominance, 5,

118–20, 152
Second order terms, 134, 135–7, 147,

149
Second order upside leakage penalty, 149

Second order upside utility, 134
Second order upside utility leakage, 137
Second order utility leakage sensitivity,

147
Sector index return, 108
Self-directed retirement plans, Internet

help for, 21–3
see also Retirement plans

Semi-variance2, below-target, 60
Semi-variance, 10–11, 60, 194, 196

downside semi-variance, 143, 144, 149
Markowitz on, 85, 122, 130, 194
problems with, 194

for portfolios, 195–6
relative (RLPM2), 130
see also Mean-relative semi-variance

portfolio construction; Relative
mean-relative semi-variance
portfolio construction

Severity of consequences of an adverse
occurrence, 220–1, 224, 226–7

Severity functions, 221–2, 224, 226–8
Sharpe ratio (SR):

for excess return, 89–90
ignores downside volatility, 66–7
and IR, 85
rankings, 185

compared to Fishburn utility
function, 184

compared to prospect theory value
function, 183–4

compared to quadratic utility
function rankings, 182

compared to Sortino ratio, 64, 66–7
to construct a portfolio of risky assets,

176–7
and t-statistic, 85, 178

Sharpe, William, 3, 4, 9, 12, 21, 60, 85,
217–18

Shortfall:
average downside deviation shows, 62
expected, 113–15, 129, 130, 152
maximum, 111–12, 152
probability of, see Probability of

shortfall
Sign convention for risk measures, 113
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Skewness, 6–8, 121
comparing managers with, 67–8
lognormal curves for, 53–4
relative lower partial skewness, 129
relative to benchmark, 128
as a risk measure, 128
in utility functions, 137–8
volatility skewness, 63–4, 68
see also Asymmetry

Ski-ing, risk in, 222, 223
Small-sample problem, 70
Smith, Adam, 214–15, 239
Software:

Forsey-Sortino model tutorial for, 57,
245–52

free, on the Internet for downside risk,
99

Solvency:
of pension funds, and contributions,

27, 29
of pension plan sponsors, 37–8
see also Insolvency risk

Solvency regulations, 241
see also Supervisory bodies

Sortino, F., 12, 60, 61, 69
Sortino ratio, 63–4, 170, 179

for a portfolio and benchmark
compared, 97

rankings, 185
compared to Fishburn utility

function, 184
compared to prospect theory value

function, 183–4
compared to quadratic utility

function rankings, 182
compared to Sharpe ratio, 66–7

represents risk-adjusted returns, 96
shows downside volatility, 66–7

Special cases of the unified utility theory,
142–6, 153

Sponsors, plan, 27–8
financial strength of, 28, 37–8
and funding choices, 240–1
risks to, 29–30, 32
use investment consultants, 41

Sports, physical risk in, 220–6
SR, see Sharpe ratio (SR)
Stakeholders, pension fund, 27, 29–30,

32

Standard deviation:
and downside deviation compared, 179
and downside risk compared,

symmetrical distributions, 70–1
and efficiency ratio, 96
in information ratio definition, 80–1
as a measure of uncertainty, not risk,

122
in Modern Portfolio Theory, 59
as a parameter of three parameter

lognormals, 54–5
in portfolio fitting, lognormals, 56
problems with, 67, 75–7, 93, 122–3

asymmetrical returns, 103
as a risk measure, 122–3, 218

Statistical significance of active
management, 83–4

Statistics, downside risk, 95–7
Stochastic dominance models, 4–11, 152

fail in the risk equals uncertainty
paradox, 231

first order, 5, 117–18, 152
over estimate equity risk, 241–2
second order, 5, 117–18, 152

Stock markets:
1974 price fall, 237, 241
flight to liquidity, 229
Internet-related stocks, 214
Japanese stock market, 70, 95
natural values/prices, 215, 239
over-confidence in, 228–9
overvaluation, 214
see also Bear markets; Bull markets

Stocks:
empirical distributions for, 79–80
proportion of investments in, 75–8,

86–9
see also Equities

Strategic benchmarks for Dutch pension
funds, 26–40

Strategic investment portfolio,
determination of, 38–9

Strategic level, 29–31
Strategy, investment, 29–31, 38–9,

240–1
Stripped Treasury bond indexes, 70
Style-adjusted downside risk (SAD risk),

13
Style analysis, 17–18, 20, 67
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Style benchmark, 12
Style beta, 13

see also Beta
Supervisory bodies, pension plan, 27, 38
Symmetry:

of distributions, 4, 70–1
implies good outcomes are risky, 59
in volatility skewness definition, 64
see also Asymmetry

Systemic irrationality, 215, 218–19

Tacit knowledge, 215, 234–5
Tactical level of pension plan

management, 29, 31–2
Target rate of return, 9–10, 62, 156, 157

difficulty in choosing, 69–70
for downside risk and standard

deviation compared, 70–1
and rankings, 66
social, 165–7
see also Goals

Tax, 43, 44, 47–8
Taylor series expansions, 125, 127, 145
T-bills, 17, 70
Temporary insanity, 226, 229
TFMS, see Two-fund money separation

(TFMS)
Third moment, 15, 121

see also Skewness
Third order risk aversion, 148
Third order terms, 137–8, 148, 149–50,

153
Third order upside utility, 137–8
Third order utility leakage sensitivity, 148
Three parameter lognormals, 15–16,

51–8, 60–1, 95
demonstration program for, 245,

248–50
formulas for, 57–8

Thresholds, 223, 228
Time:

indexing, and discounted downside
risk, 35–7

and non-stationarity, 125
and relative semi-variance, 130
in risk estimation, 12

Treynor ratio, 178
T-statistic, 84

and the Sharpe ratio, 85, 178

Tutorial, Forsey-Sortino model, 245–52
Tversky, Amos, 115–16, 135
Tversky paradox, 219, 230–1
Two-fund money separation (TFMS),

157, 162–5, 167, 176
in new asset pricing model, 205–6
and portfolio frontiers, 204

Uncertainty:
estimating next year’s, 51–2
in individual retirement account

management, 46–8
modelling with three parameter

lognormals, 51–8
risk equals uncertainty paradox,

219–20, 231, 238, 240
standard deviation measures, 122
variance measures, 153

Under-estimating risk in downside risk
calculations, 245

Undervaluing risk, 214
Unified theory of the utility of upside and

downside returns, 104, 131–46, 153
special cases, 142–6

UPR, see Upside potential ratio
UP ratio, see Upside potential ratio
U-P ratio, see Upside potential ratio
Upside kurtosis, 139
Upside marginal utility, 134

decreasing, 134–5, 141, 142, 144, 149
rate of change of, 134–5, 137

Upside moments, estimation of, 151–2
Upside potential, 14–15

lognormal formulas, 55, 58
maximising, 24
software and tutorial for, 245

Upside potential ratio (UPR), 15, 55, 58,
170, 179–80

ex ante test of, 19–21
rankings, 185

compared to Fishburn utility
function, 184

compared to prospect theory value
function, 183–4

compared to quadratic utility
function rankings, 182
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Upside potential ratio (UPR), (continued)
rankings, (continued)

for self-directed retirement plans,
21–3

Upside probability, 55, 58
Upside returns:

asymmetry of, 104–5, 146
ignoring, 68–9
Modern Portfolio Theory penalises, 59
very high, 137, 139, 140, 141

Upside utility leakage, 140–2, 153
higher order, 139
logarithmic functions, 147–8, 150
second order, 137

Upside utility, unified theory of, 104,
131–51, 153

fourth order, 138–9
second order, 134
third order, 137–8

Upside variance, 64, 134–5
User-defined lognormal in the

Forsey-Sortino model tutorial,
250–2

Utility axioms, 216, 218
see also Axioms of choice

Utility functions:
Allais rejects, 216–17
Fishburn, see Fishburn utility function
independence of wealth distribution,

165–7
logarithmic, 146–51, 153

Bernoulli used, 220, 231–2, 236
and lower partial moment, using upside

and downside utility, 132–46
and lower-partial moment capital asset

pricing models, theory of, 158–67
modelling preferences with, 171, 172
quadratic, see Quadratic utility

functions
for risk-adjusted return, 12
and two-fund money separation,

162–4
and variance as a risk measure, 125–7

Utility leakage sensitivities, 147–8
Utility, partial moments and, 131–46

special cases, 142–6
see also Expected utility; Marginal

utility

Utility theory, 216, 217–18
inconsistent with real world behaviour,

213
and investors’ decisions, 13–14
for pension fund strategies, unsound

results from, 240–1
see also Expected utility (EU)

Value of risk, 222, 225, 231, 232, 233
in the Allais Paradox, 229–30, 234
in long term investment, 236

Value at risk (VaR), 74–80, 113
and mean-variance MPT, 75
representing risk with, 77–8

VaR, see Value at risk (VaR)
Variance, 4, 121

downside variance, 64, 135–6
problem with, 5–6, 60, 85, 103,

152–3, 194
relative lower partial variance

(RLPM2), 129
relative to benchmark, 128
as a risk measure, 113, 124, 136,

218
upside variance, 64, 134–5
utility function basis for, 125–7
see also Mean-variance

framework/model (M-V)
VN-M (von Neumann-Morgenstern

Axioms), 75, 85
Volatility, mean-variance penalizes, 90
Volatility skewness, 63–4, 68

see also Skewness
von Neumann, J.R., 213, 216
von Neumann-Morgenstern Axioms

(VN-M), 75, 85

Wall Street Crash, 241
Wealth:

existing, 220, 230–1
marginal utility of, 172, 215
target level of, 172–3

Wrap programmes, 42

Zero-coupon bonds, 70
Zero MAR, 85
Zero returns, 107, 133, 147
Zeroth order utility, 133–4
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