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Preface

Because of the complexity of most real-world problems, it has been neces-
sary for researchers and practitioners, when applying mathematical
approaches, to reduce the complexity of the problem by either simplifying
the problem or constraining it by making numerous assumptions. As a
result, the solutions obtained from the modified model may differ signifi-
cantly from an acceptable real practical solution to the original problem. To
reduce the discrepancies between solutions obtained from a mathematical
model approach and a realistic solution to the problem, one needs to apply
appropriate modelling techniques and efficient solution approaches. As can
be observed in most operations research, management science, and opti-
mization books, journal articles, and conference proceedings papers, a
tremendous amount of effort has been applied to the development of
solution approaches over the past half a century. However, the appropri-
ateness of particular modelling approaches to certain categories of problems
and the modelling techniques used have received very little attention.

Mathematical modelling is an art. It is a discipline in its own right, but it is
not as widely appreciated by problem-solving and decision-making practi-
tioners as it should be. Although some modelling techniques are introduced
in many operations research, management science, and optimization books,
they have not been systematically covered in these texts nor applied in
detail to real-world problem situations. This book provides an opportunity
to discern the importance of modelling, come to grips with a wide range of
modelling techniques, and illustrate the important influence of modelling on
the decision-making process. This book also demonstrates the use of available
software packages in solving optimization models without going into diffi-
cult mathematical details and complex solution methodologies. In addition,
the book discusses the practical issues of modelling and problem solving.

This book emphasizes the modelling aspects of optimization problems.
Different modelling techniques are presented in a very simple way illus-
trated by various examples. The formulation and modelling of a number of
well-known theoretical and practical problems are provided and analyzed.
Solution approaches are briefly discussed. The use of optimization packages
is demonstrated in the solution of various mathematical models and an
interpretation of some of these solutions is provided. The practical aspects
and difficulties of problem solving and solution implementation are pre-
sented. In addition, a number of practical problems are studied.

The book is based on the authors’ extensive teaching and consulting
experiences in decision making and problem solving. Some of the material
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presented in the book has been compiled from teaching notes prepared in
the 1980s and 1990s, and every effort has been made to identify the sources
of this material. Any unintentional omission will be rectified in possible
future editions of the book, if brought to the attention of the authors.

What Is Different in This Book?

In general, the emphasis of the current book is on modelling techniques
rather than solution algorithms. Most books in the field address the solution
aspects of mathematical models with very little coverage of the modelling
approaches. The specific features of this book include the following:

. Describes the importance of modelling and demonstrates the
appropriateness of mathematical modelling to the decision-making
process.

. Deals with a wide range of model-building techniques that can be
applied to problems ranging from simple and small to complex
and large. The alternative modelling approaches for certain prob-
lem areas are also introduced.

. Discusses briefly the existing solution approaches and the appro-
priate use of software packages in solving optimization models
without going into difficult mathematical details and complex
solution methodologies.

. Presents different data-collection and data-preparation methods.
The influence of data availability on mathematical modelling and
problem solution is also discussed.

. Provides the modelling of a number of well-known theoretical
problems and several interesting real-world problems. A brief
review of some practical problems, with their modelling and
solution approaches, is presented.

. Discusses the difficulties and practical issues of modelling, prob-
lem solving, and implementation of solutions.

The book would work as a single source for a variety of modelling techniques,
classic theoretical and practical problems, and data collection and input-
preparation methods, use of different optimization softwares, and practical
issues for modelling, model solving, and implementation.

Benefits for the Potential Reader

Readers may benefit from the wide range of modelling techniques pre-
sented in the book, from the illustrations of the usage of various computer
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packages in solving developed models without going through complex
solution methodologies, and from the lessons learnt by the authors through
their own experiences relating to practical problem-solving and implemen-
tation difficulties. The specific benefits of the book are as follows:

. Provides a useful source for a wide range of modelling techniques.
To the best of our knowledge, no other book covers modelling in
as systematic a way and with similar detail.

. Presents different modelling techniques in a comprehensive way
illustrated by various examples.

. Provides the formulation and modelling approaches of a number
of well-known theoretical and practical problems frequently men-
tioned in the literature.

. Discusses existing solution approaches briefly. The application of
optimization packages to solving mathematical models is demon-
strated and suggested interpretations of solutions are provided.

. Presents the data-collection and data-preparation methods for
model solving and discusses their relevant issues.

. Presents practical aspects and difficulties of problem solving. In
addition, a number of case problems are provided.

Organization

The table of contents for Optimization Modelling: A Practical Introduction is
laid out in a fairly traditional format; however, topics may be covered in a
variety of ways. The book is divided into four sections as follows:

Section I: Introduction to Optimization and Modelling

Section II: Modelling Techniques

Section III: Model Solving

Section IV: Practical Problems

Section I contains three chapters (Chapters 1 through 3). Chapter 1 provides
a general introduction to modelling and optimization. Chapter 2 describes
the process of optimization and discusses its components. In Chapter 3, an
introduction to mathematical modelling of optimization problems is given.

Section II contains five chapters (Chapters 4 through 8). Chapters 4 and 5
cover various modelling techniques frequently used in practice. Chapters 6
and 7 present a number of well-known problems frequently mentioned in
the literature and that have arisen in practice. Chapter 8 discusses the
alternative formulations of real-world problems.

Sarker/Optimization Modelling: A Practical Approach 43102_C000 Final Proof page xxvii 1.9.2007 11:49am Compositor Name: BMani

xxvii



Section III contains four chapters (Chapters 9 through 12). Chapter 9
provides an overview of existing optimization techniques and of
using optimization software. Chapter 10 discusses the data-collection and
data-preparation methods. Chapter 11 presents the problem solutions
and discusses practical issues in problem solving. Few basic optimization
algorithms are demonstrated in Chapter 12.

Section IV contains three chapters (Chapters 13 through 15). Chapters 13
and 14 provide full-scale mathematical models for a number of real-world
problems. Chapter 15 provides the solutions of some of the models
presented in earlier chapters.

For the Instructor

To use this book as a text, instructors should cover the material in Chapters
1 through 5 and Chapters 9 through 11 first. Then they can choose material
from the remainder of the book based on their personal preferences.

An instructor’s manual, prepared by the authors, containing PowerPoint
slides and solutions to all the text problems, will be available from the
publisher.
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1
Introduction

1.1 General Introduction

A model is an abstraction or mathematical representation of a problem of
interest and is an essential part of the process of solving that problem
optimally. However, it is difficult, and sometimes impossible, to develop a
mathematical model that addresses all aspects of the problem and its plan-
ning environment, since most real-world problems are too complex and
involved. As a result, researchers and practitioners attempt to formulate
either a simplified version of the problem or make numerous assumptions
and approximations. As the modelling approach provides solutions to the
simplified or approximated problem, there may exist a significant discrep-
ancy between those solutions and the subjectively expected realistic solution
to the original problem. This discrepancy may lead to an inappropriate
decision being made if the decision is made based solely on the solutions of
the simplified model. This may happen in many practical decision-making
or design processes. As can be seen in most books, journal articles, and
conference proceedings on optimization, a tremendous effort has been put
into the development of solution approaches over the past half-a-century.
However, the appropriateness of modelling and appropriate techniques
have received little attention. In fact, mathematical modelling may be con-
sidered an art that has its own domain and has not been generally explored
by problem-solving practitioners. So, instead of solution techniques, the
emphasis of this book is on the modelling aspects such as

. Importance of modelling in the decision-making process

. Modelling techniques

. Influence of modelling in decision making

. Linking of the mathematical model to the other components of a
decision-making process

In this introductory chapter, we present a brief history of optimization,
the nature of the optimization problem, the nature of the mathematical
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model used in optimization problem-solving approaches, the basic concept
of optimization, and the classification of optimization problems. The general
structure of the book is also discussed.

1.2 History of Optimization

Optimization techniques have been available for more than a century. In
the beginning, differential calculus was the basic tool applied for finding
maxima or minima of functions, which arose in many practical situations
and theoretical problems. There is a clear evidence of the use of mathemat-
ical models and optimization techniques at the turn of the twentieth century
such as (1) in 1900, when H.L. Gantt used charts to efficiently schedule jobs
on machines, which are known as Gantt charts today; (2) in 1915, when
F.W. Harris derived the mathematical formulation for the most economic
quantity of an item to order from a vendor, which is the well-known
economic order quantity in inventory management today; and (3) in 1917,
when A.K. Erlang derived the mathematical formula for analyzing prob-
lems encountered by callers to an automated telephone switchboard, which
has led to the present queuing=waiting line analysis.

During World War II, the British government organized civilian scientific
groups to assist field commanders in solving complex, strategic, and tactical
problems. The purpose was to maximize their war effort with the limited
resources they had. The success of the British groups leads the United States
to institute similar efforts in 1942, although a small-scale project dated back to
1937 has been reported. The British scientific community described the acti-
vities the groups conducted as ‘‘operational research’’ whereas in the United
States it was termed ‘‘operations research.’’ Following the successes of those
activities, operations research has been recognized and established as a
separate discipline within the academic arena. It must be mentioned here
that optimization is considered a subset of operations research discipline.

After World War II, a dramatic development and refinement of oper-
ations research techniques occurred with a corresponding expansion from
singularly addressing military problems to problems encountered in almost
all areas of public and private industry as well as in government services.
The managers and decision makers realized that the savings incurred from
applying operations research approaches to solving problems were very
significant because even a cent saved per unit on a large production run
could total up to millions of dollars.

In 1947, George B. Dantzig developed the simplex algorithm for solving
linear programming problems, which established him as one of the fore-
fathers of the discipline. Linear programming is one of the basic techniques
used in optimization. Dantzig has since stated that ‘‘The tremendous power
of the simplex method is a constant surprise to me.’’ The systematic develop-
ment of practical computing algorithms for addressing linear programming
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problems began in 1952 at the Rand Corporation in Santa Monica, United
States, under the direction of Dantzig. He worked intensively on this project
until late 1956, by which time great progress had been made on first-
generation computers. However, the importance of linear programming
methods was described, in 1980, by computer scientist Laszlo Lovasz* who
wrote ‘‘If one collected statistics about which mathematical problem is
using up most of the computer time in the world, then . . . the answer
would probably be linear programming.’’ Also that year, Eugene Lawler*
of Berkeley wrote ‘‘Linear programming is used to allocate resources, plan
production, schedule workers, plan investment portfolios and formulate
marketing (and military) strategies. The versatility and economic impact of
linear programming in today’s industrial world is truly awesome.’’

In addition to many other conventional optimization techniques devel-
oped over the past half-a-century (as will be discussed later), the recent
development of modern heuristic techniques such as simulated annealing,
tabu search, genetic algorithms, neural computing, fuzzy logic, and ant
colony optimization are providing practitioners with some sophisticated
tools to address more complex situations.

1.3 Optimization Problems

Problems that seek to maximize or minimize a mathematical function of a
number of variables, subject to certain constraints, form a unique class of
problems, which may be called optimization problems. Many real-world
and theoretical problems can be modelled in this general framework.

A common term optimize is usually used to replace the terms maximize
or minimize. The mathematical function that is to be optimized is known as
the objective function, containing usually several variables. An objective
function can be a function of a single variable for some practical problems;
however, a single variable function may not challenge from an optimization
point of view. Optimization problems may involve more than one objective
function and are known as multi-objective optimization problems.

Depending on the nature of the problem, the variables in the model may
be real or integer (pure integer or binary integer) or a mix of both. The
optimization problem could be either constrained or unconstrained. In the
constraint part of a mathematical model, the left-hand side of the constraint
function (or a single variable) is separated from the right-hand-side value
by one of the three signs: (1) equal to (¼ ), (2) less than or equal to (�), or
(3) greater than or equal to (�).

In this book, we mainly discuss deterministic modelling. The functions,
either objective or constraints, may be from either the linear or nonlinear
domain. As per the function properties, they could follow any pattern such

* Quotations taken from Freund (1994) SIAM News as referenced later.
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as continuous or noncontinuous, differentiable or nondifferentiable, convex
or nonconvex, or unimodal or multimodal. These properties are discussed
later under the problem classification.

1.4 Mathematical Model

A general structure of a mathematical model (also known as a mathematical
programming model) can be represented as follows:

Find x to

Maximize f (x)

Subject to gi(x) � gbi, i ¼ 1, . . . , m

hj(x) ¼ hbj, j ¼ 1, . . . , p

x � 0

Model (1:1)

where the objective function f is a function of a single variable x, and the
constraint functions gi and hi are general functions of the variable (otherwise
expressed as an unknown, decision variable or sometimes as a parameter)
x « Rn. The right-hand sides, gbi and hbj, are usually the known constants for
deterministic problems. The non-negativity constraint, x � 0, is necessary
for many practical problems (since many variables cannot be negative) and
for many solution approaches (assumption by default). The above standard
model may vary as follows: (1) contains upper and lower bounds of x
instead of a non-negativity constraint, (2) contains upper and lower bounds
of x instead of any other constraint, and (3) the above standard model,
with or without (1) and (2), with multiple variables.

Let us assume x represents a set of variables, where x ¼ (x1, x2, . . . , xn),
then the above model can be rewritten for multiple variables as follows:

Maximize f (x)

Subject to gi(x) � gbi, i ¼ 1, . . . , m

hj(x) ¼ hbj, j ¼ 1, . . . , p

x � 0

Model (1:2)

1.4.1 Characteristics and Assumptions

The general characteristics of a mathematical model can be described as
follows:

. A limited quantity of resources (usually represented by the right-
hand side of a constraint equation) is described by a parameter.

. The resources are used for some activity (usually represented by a
decision variable) such as to produce something or to provide
some service.
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. There are a number of alternative ways in which the resources can
be used.

. Each activity in which the resources are used yields a return in
terms of the stated goal (contribution to the objective function).

. The allocation of resources is usually restricted by several limita-
tions (known as constraints).

Suppose gi(x) and f (x) in Model 1.2 are linear functions and they can be
represented as follows:

f (x) ¼ c1x1 þ c2x2 þ � � � þ cnxn

and

g1(x) ¼ a11x1 þ a12x2 þ � � � þ a1nxn � gb1

g2(x) ¼ a21x1 þ a22x2 þ � � � þ a2nxn � gb2

:

:

Model (1:3)

In the constraint, g1(x), a11 is the resource required from gb1 for each unit of
activity x1, a12 is the resource required from gb1 for each unit of activity x2,
and so on. In the objective function, f (x), c1 is the return per unit of activity
x1, c2 for activity x2, and so on. Here, ci and ain are known as the coefficients
of the objective function and the constraint functions, respectively.

The general assumptions for formulating a mathematical model can be
outlined as follows:

. Returns from different allocations of resources can be measured by
a common unit (such as dollars, kilograms, or utility) and can be
compared.

. Resources are to be used in the most economical manner.

. All data are known with certainty for deterministic problems (note
that this book mainly considers deterministic cases).

. Decision variables are either real or integer or a mix of both.

. Function type is general (that means not restricted to any particular
type).

Example 1.1: A simple example
A small retail shop receives the supply of units of one particular product,
directly from either a manufacturer or a supplier, and sells them to indivi-
dual customers in an open market. The demand for the items is approxi-
mately constant over time. It is convenient for the retailer to order the items
in a batch at regular time intervals and store them in the shop=warehouse,
until they are sold. The retailer faces the basic questions of how many items
should be ordered in each order and how often?
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Suppose x is the quantity (amount) of the items (or batch size) to be
ordered each time. There are some costs involved with the ordering, storing,
and administrative activities. To keep the example simple, it will be dis-
cussed very briefly. The annual demand, D, can be calculated as the demand
rate is known and constant. The number of orders (n) required per year is
therefore equal to D=x. There is a fixed cost associated with each order,
F $=order, which is independent of the quantity to be ordered. As x
decreases, n as well as the total ordering cost (TOC) per year increases.
With the increase of x, the cost of the total inventory holding (TIC) increases
almost linearly. Suppose h is the inventory holding cost ($) per unit per year.
Let us now write down the cost equation for the problem:

TOC per year ¼ D

x
F (1:1)

TIC per year ¼ x

2
h (1:2)

where x=2 represents the average inventory per year or per any cycle of the
ordering process. If we assume p as the unit item price, the total purchase
cost (TPC)¼Dp.

So, the total cost of the system (TCS) is equal to

TCS ¼ TPCþ TOCþ TIC

¼ DpþD

x
Fþ x

2
h (1:3)

Generally speaking, the order size (x) should be the one for which TCS is
minimum. The mathematical model of the problem can then be written as

Minimize TCS ¼ DpþD

x
Fþ x

2
h

Subject to Model (1.4)

lb � x � ub

The constraint indicates that x should be within the lower bound (lb) and
the upper bound (ub) set by the retailer. Depending on the type of problem,
x can be either real or integer.

1.5 Concept of Optimization

The basic concept of optimization is to find the best possible solution (point
or alternative) to a given model=problem. To find it, one should examine all
alternatives and prove that the one selected is indeed the best. In the above
example, it is to find the value of x that minimizes TCS while satisfying
the upper and lower bounds=constraints. For a better understanding of the
optimization task, let us analyze TOC, TIC, and TCS in regard to x. We can
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exclude TPC as it is independent of x and it would not affect the optimiza-
tion process. So the revised optimization model is the following:

Minimize TCS ¼ D

x
Fþ x

2
h

Subject to Model (1.5)

lb � x � ub

For ease of analysis, we need an instance of the problem. Informally, in an
instance we are given the ‘‘input data’’ and should have enough informa-
tion to obtain a solution; a problem is a collection of instances, usually all
generated in a similar way.

Suppose for a given instance of the problem, D¼ 100 units, F¼ 4 $=order,
h¼ 8 $=unit=year, lb¼ 1, and ub¼ 15, then the TCS for the problem instance
can be calculated as

TCS ¼ D

x
Fþ x

2
h

¼ 100� 4

x
þ 8

2
x

¼ 400

x
þ 4x (1:4)

The range of x is 1–15, which contains an infinite number of alternative
values (for real x). If x is an integer, there exist only 15 alternative numbers.
For the integer case, it is not difficult to find all 15 TCS function values by
simple calculation as shown in Table 1.1.

TABLE 1.1

TOC, TIC, TCS versus x for a Given Problem Instance

x (Amounts) TOC5400
x TIC54x TCS ($)5TOC 1 TIC

1 400.00 4.00 404.00
2 200.00 8.00 208.00
3 133.33 12.00 145.33
4 100.00 16.00 116.00
5 80.00 20.00 100.00
6 66.67 24.00 90.67
7 57.14 28.00 85.14
8 50.00 32.00 82.00
9 44.44 36.00 80.44

10 40.00 40.00 80.00

11 36.36 44.00 80.36
12 33.33 48.00 81.33
13 30.77 52.00 82.77
14 28.57 56.00 84.57
15 26.67 60.00 86.67
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From Table 1.1, it is clear that TCS¼ $80.00 is the optimal system cost with
a corresponding value of x¼ 10 units. In fact, this is the optimal solution for
the given problem instance. That means, the retailers should order 10 items
each time they require a resupply. This problem is easy and simple in regard
to finding the optimal solution. Interestingly, it is not possible to find the
optimal solutions for all models=problems by using an enumeration method
as above because of a possible large number of alternative solutions involved.

To apply the optimization techniques=algorithms, which find the optimal
solutions by analyzing only a subset of all possible alternative solutions, we
need some knowledge regarding the function properties. The plot of TOC,
TIC, and TCS against the continuous variable x (from 6 to 15) is shown in
Figure 1.1 to get a feeling of the function behavior. As we can see, TIC is
linearly increasing, TOC is decreasing, and TCS (which is a sum of TIC and
TOC) first decreases and then increases as x increases.

We are more interested in TCS and the point of the function where TCS is
a minimum. A more detailed plot of TCS against x is shown in Figure 1.2.

From the plot, it is easy to see that the function TCS is smooth, continuous,
and convex with one clear minimum at x¼ 10, which represents the optimal
solution of the problem instance. It is impossible to visualize a function with
more than two variables. In that case, we are fully dependent on the
mathematical properties of the function and its analysis. The function TCS
is differentiable for real x. After differentiating the function TCS with
respect to x, we get

d(TCS)

dx
¼ �D

x2
Fþ h

2
¼ � 400

x2
þ 4 (1:5)

Mathematically,
d(TCS)

dx is known as the gradient of the function TCS. If we
calculate the gradients of TCS at points x¼ 8, 10, and 12, we get
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FIGURE 1.1
Plot of TOC, TIC, TCS versus x for the given problem instance.
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for x ¼ 8,
d(TCS)

dx
¼ � 400

82
þ 4 ¼ �2:25

for x ¼ 10,
d(TCS)

dx
¼ � 400

102
þ 4 ¼ 0

for x ¼ 12,
d(TCS)

dx
¼ � 400

122
þ 4 ¼ þ1:22 (1:6)

It can be seen here that the gradient is zero at the optimum (minimum)
point, negative when x is lower than the optimum value, and positive
when x is greater than the optimum value. That means if we like to
find an optimum point we must search for a point on the function with
zero gradient.

1.6 Classification of Optimization Problems

The general optimization problems can be classified as shown in Figure 1.3.
We have discussed the objective classification (single or multiple) and the

objective type (maximization or minimization) in an earlier section. In case
of multiple objectives, the objectives usually contradict each other. If they do
not, the multiple objectives can be converted into a single-objective problem.
The problem classification (in the next page) indicates whether the problem
contains constraints or not. Some people believe that there are no uncon-
strained optimization problems in the real world, as these all will have
either constraint functions or variable bounds (upper or lower) or both.
The study of unconstrained problems is very important since many opti-
mization algorithms solve constrained problems by converting them into an
unconstrained or a sequence of unconstrained problems. In addition, sev-
eral unconstrained optimization techniques can be extended in a natural
way to provide and motivate solution procedures for constrained problems.
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FIGURE 1.2
Plot of TCS versus x for the given problem instance.
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We have already discussed the variable classification as real, integer, or
mixed integer. However, many practitioners recognize them as continuous,
integer, discrete, or mixed. In problems with continuous (real) variables, we
are generally looking for a set of real numbers. The optimization problem
with integer or discrete variables is termed a combinatorial problem. In
combinatorial problems, we are looking for an object from a finite or infinite
set—typically an integer, set, permutation, or graph. These two kinds of
problems generally have quite different flavors, the methods for solving
them have become quite divergent.

The function classification mainly deals with functions’ mathematical
properties, which are very important from the solution approach point of
view. The objective or constraint functions may be either linear, nonlinear,
or both. If all the functions are linear in a given model, we call it a linear
programming model or linear model. If one or more of the functions of a
model involve nonlinearity, we call it a nonlinear model. The solution
approaches of nonlinear models are quite different and more complex
than those of linear models. An unconstrained problem with a single linear
objective function does not raise any interest from an optimization point of
view. However, unconstrained nonlinear optimization problems attract
many interesting research studies and applications.

Convexity is considered as an important property in classical optimiza-
tion as many optimization techniques=algorithms are developed based on
the assumption that the function is convex. In optimization, the solution
approaches can be divided into two major groups: (i) those with derivatives

Level 1: General
problem 

Level 3: Problem
classification 

Level 4: Variable
classification

Level 5: Function
classification 

Level 2: Objective
classification 

Differentiable
or

nondifferentiable 

Convex
or

nonconvex

Linear
or

nonlinear

Problem

Unconstrained Constrained 

Continuous Integer/discrete

Single objective Multiple objectives

Mixed 

FIGURE 1.3
Classification of optimization problems.
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and (ii) those without derivatives (=derivative free). Differentiability of the
function is necessary when using derivative-based techniques. Differenti-
ability is closely related to the continuity of functions. For continuity, differ-
entiability and convexity properties of functions, consult any first year
mathematics book. A brief description is also available in works by Hillier
and Lieberman (2001) and Bazaraa et al. (1990).

As an example, the function properties of a single-objective constrained
problem with continuous variables could be nonlinear, convex, and differential
(see Figure 1.3). In addition to the above general classification, the optimization
problem domain also considers function properties such as unimodal versus
multimodal, static versus dynamic, and constraint properties such as soft versus
hard constraints. A function with only one peak (=optimum solution) is known
as a unimodal function whereas a function with more than one peak (either local
or global optima) is recognized as a multimodal function. If a function changes
over time, it is known as a dynamic function. In this book, we restrict
ourselves to static functions with a minor variation. The constraints that must
be satisfied, in the final solution, are known as hard constraints. Soft constraints
are those constraints that can be violated with a certain penalty or under
certain conditions. These constraints are discussed in detail in a later chapter.

1.7 Organization of the Book

The book is divided into four sections as follows:

Section I: Introduction to Optimization and Modelling

Section II: Modelling Techniques

Section III: Model Solving

Section IV: Practical Problems

Section I contains three chapters (Chapters 1 through 3). Chapter 1 pro-
vides a general introduction to modelling and optimization, a brief history
of optimization, concept of optimization, the basic structure of mathematical
model, and a general classification of optimization problems. Chapter 2
describes the process of optimization and discusses its components and
the role of optimization within that process. In Chapter 3, we provide an
introduction to mathematical modelling for optimization problems. This
chapter discusses the basic components of a mathematical model and pro-
vides simple modelling examples. It also introduces various types of models
such as linear programming, integer programming, multi-objective opti-
mization, goal programming, and nonlinear programming.

Section II contains five chapters (Chapters 4 through 8). Chapter 4 covers
a number of simple modelling techniques frequently used in practice. In this
chapter, we also introduce the use of subscripts in variables and provide
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several examples to demonstrate the simple modelling techniques as well as
the use of subscripts. In Chapter 5, we discuss simple integer and non-
linear modelling techniques frequently used by modellers. In addition, a
few other modelling techniques are presented. A number of examples are
provided to demonstrate the use of integer and nonlinear variables in
modelling practical problems. In Chapter 6, we introduce the use of the
summation sign when expressing a number of variables together and the use
of the subset sign to separate certain variables—which should make the
model even more compact specifically when we are dealing with large-scale
modelling. We also present a number of well-known problems frequently
mentioned in the literature and that have arisen in practice. In Chapter 7,
we present a few more well-known problems frequently mentioned in the
literature. The mathematical models of these problems are analyzed and
their practical applications are briefly discussed with reference to the litera-
ture. Chapter 8 discusses the alternative formulations of real-world prob-
lems based on the assumptions and decision process. Two different
alternative models are presented with examples of practical problems.

Section III contains four chapters (Chapters 9 through 12). Chapter 9
provides an overview of existing conventional optimization techniques,
heuristic techniques, and optimization software. A number of appendices
instructing the use of well-known optimization software are also provided.
Chapter 10 discusses the data requirement for the models, data collection
methods, and data preparation as required by the software packages and
solution approaches. Chapter 11 presents the solutions of models and the
outputs provided by different software packages, and discusses practical
issues faced by users when dealing with optimization models and software
packages. A number of examples to demonstrate these issues are provided.
As indicated earlier, the purpose of this book is to cover the basic modelling
techniques and to demonstrate the use of software packages when solving
optimization models. However, to give a feeling about how the optimiza-
tion packages solve the complex models, we present and analyze a few basic
optimization algorithms in Chapter 12.

Section IV contains three chapters (Chapters 13 through 15). Chapter 13
provides full-scale mathematical models for a number of linear programming-
based real-world problems. Chapter 14 presents few more complex practical
optimization models. Chapter 15 provides the solutions of some of the
models presented in Chapters 13 and 14, and discusses a number of practical
issues in solving those models.

Exercises

1. Jenny will run an ice cream stand in the coming week-long multicultural
event. She believes the fixed cost per day of running the stand is $60. Her
best guess is that she can sell up to 250 ice creams per day at $1.50 per ice
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cream. The cost of each ice cream is $0.85. Find an expression for the
daily profit, and hence find the break-even point (no profit–no loss
point)?

2. The total cost of producing x items per day is (45x þ 27) dollars, and the
price per item at which each may be sold is (60 ] 0.5x) dollars. Find an
expression for the daily profit, and hence find the maximum possible
profit?

3. A stone is thrown upward so that at any time x (in second) after throw-
ing, the height of the stone is y¼ 100 þ 10x ] 5x2 (in meter). Find the
maximum height reached?

4. A manufacturer finds that the cost C(x)¼ 2x2
] 8x þ 15, where x is the

number of machines operating. Find how many machines should one
operate to minimize the total cost of production. What is the optimal cost
of production?

5. A string 72 cm long is to be cut into two pieces. One piece is used to form
a circle and the other a square. What should be the perimeter of the
square in order to minimize the sum of two areas?

6. Find the maximum or minimum values of the following quadratic func-
tions, and the values of x for which they occur:

(i) f (x) ¼ x2 � 4xþ 7

(ii) f (x) ¼ 3� 8x� x2
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2
The Process of Optimization

2.1 Introduction

A key step in many decision-making and design processes is the optimiza-
tion phase, which itself contains several stages. The purpose of the opti-
mization process is to help determine realistic and practical outcomes of
management decision-making and design processes. So, it is appropriate at
this point to provide an overview of the optimization process.

In this chapter, we discuss the general structure of the decision-making
process, giving a brief description of its components and the role of opti-
mization within that process.

2.2 Decision Process

The decision-making process may be initiated whenever an individual or
group becomes concerned about some issues or matters they have encoun-
tered. In addressing this concern, the individual may be able to transpose
that concern into a problem that demands a solution. The problem solvers
then have basically two avenues open to them, either the qualitative approach
or the quantitative approach. Using only a qualitative approach, the problem
solver, when making a decision, relies on personal judgment or past experi-
ence acquired in dealings with similar problems in the past. In some cases
this approach may be adequate; however, there are many situations where a
quantitative approach to the problem provides a better structured and
logical path through the decision-making process.

Decision makers apply the quantitative approach when they feel that
the problem facing them can be solved by applying techniques that have
already been developed and applied to similar problems, when the problem
is recurrent, or when the problem is very complex involving many variables.

Quantitative analysis skills are usually acquired through the study of
mathematical tools, both pure and applied, and practical on-the-job experi-
ence. Optimization techniques are applied to real-life systems that have
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perceived complex management problems. The premise of decision making
is that there are several different ways to address a problem and that
the best way may not be obvious or necessarily unique. The process of
finding the best (optimal) way is called optimization. Most analysts break
a decision-making process down into six major steps or phases:

1. Identifying and clarifying the problem

2. Defining the problem

3. Formulating and constructing a mathematical model

4. Obtaining a solution to the model

5. Testing the model, evaluating the solution, and carrying out
sensitivity analysis

6. Implementing and maintaining the solution

Some analysts, however, combine some of the six stages above to fewer
stages, whereas others expand the six phases into seven or more phases, in
order to facilitate the process. In the above decision-making process, steps
2–5 represent the optimization process. No one phase or step can be said to
be the most critical element in the process, although if the problem has not
been correctly identified, the analysis will produce erroneous results.

The steps of the decision-making process are shown in Figure 2.1.
A study may start by proceeding through the phases in a sequential

order; however, it is rare for an analyst to get the first two stages absolutely
correct, and therefore they need to revisit the first two stages during
the model-development stage and later stages for further clarification and
definition. In most situations, it may be necessary to also apply this recur-
sive approach to other stages by revisiting previous phases to modify the
outcome or solution of the present phase. Because of this iterative nature of
most decision-making processes, they do not necessarily have to finish in
the same order. In fact, several phases may be ongoing simultaneously until
the project reaches completion.

To be able to identify a successful formulation of the problem, the analyst
and sponsor need to consider all phases of the project. This is because the
interrelationships between various aspects of the problem may suggest a
form of model, which in turn may dictate what data is needed for problem
formulation, testing, and implementation. After the initial consideration of
the problem and the development of a model, it may be necessary to modify
the model so that the results can easily be implemented. Following the
implementation and testing of the solution, it may be necessary to go right
back and reformulate the problem to achieve a better solution.

Sometimes, the analysis of the process is accompanied by a feasibility
study that addresses issues such as technical, economical, and operational
factors. The feasibility study should inform the sponsors of the analysis
what techniques are available for the solution of the problem, whether the
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cost of the analysis is realistic, and whether the probability of a successful
implementation of the results is high or low. We briefly describe the phases
of the decision-making process below.

2.3 Problem Identification and Clarification

The first step in the process is to develop a clear understanding of the
problem, usually by carrying out a detailed observation of the real-world
system. Through the observation of various symptoms, a problem becomes
apparent, although it is not always clear what the problem is. In many cases,
managers are those who become aware of the existence of the problem through
having misgivings or concerns. They may develop concerns over the activities
and operations of their work unit or project. The work unit may not be
achieving all the goals and objectives set for it, staff may not be performing
to their full capacity, staff may be disillusioned and unhappy, or the project
may not be meeting its deadlines or milestones. It is this dissatisfaction or
concern that could be a symptom of a serious underlying problem.

Problem identification
and clarification 

Problem definition 

Model development 

Solving the model
(solution)

Evaluating solution and
sensitivity analysis 

Implementation 

Validation

Validation

FIGURE 2.1
The decision-making process.
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In order to establish the existence of a problem and to bring a structured
approach to addressing it

. There must be an individual or a group of individuals who
through their concerns perceive that they have a problem that
merits a solution that achieves some objectives.

. There must be a number of alternative ways of achieving the
objectives and there must be some doubt in the decision maker’s
mind as to which alternative is best in terms of achieving those
objectives.

. There is a relevant environment within which the concerns have
arisen and have led to the perception that there exists a problem to
be solved.

Consider the following example. During the last 5 years, a major wholesale-
distributing company (ADC), distributing certain products in a state capital
city in Australia, has captured about 35% of the market share. Senior
management of the company did not make any major changes to their
operational policies during that 5 year period. They have been maintaining
a constant number of employees and were using similar resources each year.
The company has been experiencing incrementally increasing profits each
year without major management influences. As there were no new competi-
tors in the market and the other competitors had not challenged them, the
management had automatically assumed that they were doing pretty well.

However, one of their competitors has recently announced price dis-
counts and another is preparing to do so. The management of ADC has
become concerned about the news and has anticipated that they may lose
some of their customers. It seems that ADC management is facing a prob-
lem, which may show the symptoms of customer loss. So a customer loss
problem has been identified by management.

2.4 Problem Definition

It is sometimes difficult to distinguish between symptoms and problems
as real-world problems are complicated by many interrelated factors. By defin-
ing the problem, we mean recognizing that a problem (or an opportunity)
exists, determining its magnitude, defining it precisely, and noting what
the symptoms are. Sometimes, what is described as a problem may only be
a symptom. The problem definition phase is the phase where a clear and
concise statement of the problem has to be derived from the observations
carried out in the problem identification and clarification stage. This clear
problem definition must define the objective, the measures of effectiveness
(MoE) to be used to compare alternatives, stakeholder interests, assumptions,
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restrictions and limitations, and possible available information on resources
and parameters involved with the problem. Experience has shown that bad
problem definition has been a major cause of failure of analysts arriving at
realistic solutions to their organizations’ problems, thereby failing to serve
their organizations well.

The analysts and manager may find that a large proportion of the time
spent in a study is directed toward identifying the real problem. It is this
phase of the approach that is most important and usually the most difficult.
It is necessary to identify the underlying causes of the problem, so that an
accurate definition of the problem can be established.

The formulation of a problem may often require several attempts or
refinements. The process of formulation starts with a tentative formulation
followed by a procession of progressive reformulations and refinements
as the project proceeds and the team members gain deeper insights into
the problem.

Consider the situation of ADC discussed in the previous section. Appar-
ently, ADC identified that they either had to match the discount offer or do
nothing. For matching the discount offer, ADC would need to collect data
and carry out further analysis of the impact of offering discounts. A quick
analysis shows that ADC would not survive offering an equivalent level of
discount as their competitors, due to their operating costs being higher than
the expected revenue for the same level of market share. However, if they
do not offer similar discounts, they will be out of business within a short
period. What should ADC do now? Suppose ADC wants to stay in the
business. Can you think of any other option that may help ADC to survive?

Under the current situation, consider the concern (based on new infor-
mation derived from the analysis) that operating costs are higher than the
expected revenue. If we assume that the revenue will remain constant, then
the only option available is to reduce the operating costs. So ADC’s objective
could be the minimization of operating costs. ADC performs two different
operations: (1) receives the supply of goods and stores them in the ware-
house and (2) distributes=delivers the supplies to customers via a fleet of
vehicles. Now it seems that the possible problems are (1) the efficient use of
the vehicles and (2) the efficiency of the storage=inventory system. In other
words, minimization of operating costs through efficient utilization of
storage space and vehicles. Now, one can probe further into the concerns
to determine the assumptions, unknown parameters and constraints, and
collect the necessary information.

2.5 Development of a Mathematical Model

Once we have defined the problem to be analyzed, the next step is to
develop a mathematical model. The mathematical model is a mathema-
tical representation of the real system or object and is able to present the
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important features of the system in a form that is easy to interpret. The
mathematical model is the experimental test bed on which one can test new
decision alternatives’ impact on the existing system without disturbing the
real system. Initially, model building may be qualitative in nature, involving a
rather informal descriptive approach. From this informal qualitative model, a
formal quantitative model can be developed. Mathematical models are devel-
oped to represent specific attributes of interest of a real-life system and they
usually do not include features that are not relevant to the problem at hand.

There exist three major types of models: iconic, analog, and symbolic or
mathematical models. An iconic model is basically a realistic scale model of
the system, such as a scale model of an aircraft for use in a wind tunnel. An
analog model utilizes one physical property to represent another physical
property, such as using a damped electronic circuit to investigate a mech-
anical hydraulic suspension system. A symbolic or mathematical model
uses a set of mathematical symbols and functional relationships to represent
some physical situation. The major kinds of models of interest to optimiza-
tion are the symbolic or mathematical models that allow manipulation
of the entity modelled. The purpose of a model is to explain, predict, or
control the behavior of the entity modelled.

There are four broad categories of mathematical models available to the
analyst. The first category of model is the descriptive model, which allows the
analyst to represent some physical situation in a visual mode. Simulation
models and queuing models belong to this category. A simple type of
descriptive model is the influence diagram. The second category of model
is the normative or optimization model, also called the prescriptive model.
Most of the techniques, such as linear programming, transportation algo-
rithms, and project management techniques fall into this category. These
types of models endeavor to optimize some objective function subject to
certain limitations. The third type of model used in operations research is the
heuristic model. Heuristic models that basically employ rules of thumb or
intuitive rules, typically guided by common sense. Heuristic models pro-
vide good solutions, but not necessarily optimal. The fourth type of model is
the predictive model, which has been developed so that estimates of future
trends can be made, for example, in areas such as manpower planning and
financial planning. This category includes models of regression and time
series analysis.

In the case where all the functional relationships and parameters are
known with certainty, one is able to develop a deterministic model, whereas
stochastic models address those situations where there is uncertainty
involved; data is usually described in terms of probability distributions.

Models, when developed, should follow certain guidelines such as those
described below:

Simple: Models should be kept as simple as possible so that they can
be described in terms that can be understood by nonspecialists,
who often do not have a scientific background.
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Robust: Models should be developed so that they are general enough
to give valid answers over a wide range of input values.

Adaptive: If a model is developed to represent the real world, which
is a very dynamic system, then the model must be sufficiently
adaptive to be able to incorporate those rapid changes, which
may be experienced in the present or future worlds.

Complete: As models are to represent the total problem and its
environment, the model should address all aspects of the problem
and not just some components of the problem.

User friendly: The user must be able to change inputs easily and to
obtain answers quickly without having to rely on expert support.

In a mathematical model, the properties of the objects under consider-
ation usually take the form of decision variables whose optimal values will
be determined by the model. Starting values for the model are usually
chosen by the decision maker from a specified set of values known to
provide a feasible solution to the problem. Those variables that are beyond
the control of the decision maker are represented as random variables, or by
parameters and constants. The objective function or measure of effective-
ness expresses the contribution each decision variable makes toward the
decision maker’s objectives. Constraints are represented by relationships
between the variables, which may be in the form of functions, equations,
or inequalities.

A general purpose model is a mathematical model that can be used to
solve a whole category of problems that satisfies certain assumptions as to
the form of the decision variables, and includes the nature of the functional
relationships between them. It is a special purpose model if its structure is
specific to a unique problem.

With most general purpose models, one may associate one or more
specialized techniques for finding the optimal solution, such as linear pro-
gramming, goal programming, or critical path method. For this reason,
general purpose models are often referred to as techniques. Many problems
can be solved by several techniques, each offering certain advantages. The
expert analyst should be aware of these advantages and can thus determine
the technique that is more appropriate for the problem at hand.

In order for a model to identify the preferred solution, it is necessary for
the model to differentiate between the different alternatives in their ability
to meet the objective of the decision.

2.5.1 Measure of Effectiveness

A quantitative measure, used to compare the effectiveness of alternatives
in achieving the objective, is called a measure of effectiveness. A measure
of effectiveness is some scale that can be used to compare the performance
of alternative solutions to the problem being studied. The measure of
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effectiveness, in order to be a suitable scale, has to relate in a direct way to
the objectives of the study. An initial choice of a measure of effectiveness
should have occurred during the problem-formulation stage, when the
objectives of the study were being defined. Investigating measures of effect-
iveness used previously in similarly related studies provides a good starting
point in determining appropriate measures of effectiveness for the current
study. In some problems, the measure of effectiveness may be expressed as
an objective function, which can be in the form of a mathematical relationship
between decision variables and cost coefficients.

The Military Operations Research Society has developed a four-level
hierarchy of measures from high-level force effectiveness to low-level rudi-
mentary measures of physical entities to address a wide variety of complexity
in objectives of studies. The four levels proposed are the following:

. Measures of policy effectiveness (MoPE), which focus on policy
and societal outcomes

. Measures of force effectiveness (MoFE), which focus on how a
force performs its mission or the degree to which it meets its
objectives

. Measures of C2 (command and control) effectiveness (MoCE),
which focus on the impact of C2 systems within the operational
context

. Measures of performance (MoP), which focus on internal system
structures, characteristics, and behavior

The analyst is often interested, when carrying out quantitative analysis, in
measures that can be used to express the response or performance of the
system in terms of the decision maker’s objectives, or those measures that are
needed to verify if constraints imposed on the decision choices are satisfied.
The objectives and constraints thus determine measures of performance or
low-level measures of effectiveness that are relevant for evaluating alterna-
tive courses of action. There is often a one-to-one correspondence between
objectives and measures of performance. There can also be instances where
no suitable set of performance measures can be defined to evaluate the
performance.

Measures of performance can be aggregated to form measures of effec-
tiveness that evaluate the response of the system, in terms of each of the
decision maker’s objectives, to different courses of action. For a single
objective, the measure of effectiveness to be optimized is usually referred
to as the objective function. The objective function may be expressed in
numerical form as a function of decision variables and parameters. How-
ever, it is not essential that the function be of a numerical form. A function
may be designed to use any one of the four scales: nominal, rank or ordinal,
relative or interval value, and absolute value or ratio. A better–worse,
success–failure, or nonnumerical ranking of each alternative action may
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often suffice to identify the best decision. If only a single objective is to
be met then the measures of effectiveness may be expressed as a single
value, whereas in the case of multiple objectives a complex array or matrix
of values may be required. The measure of effectiveness may be more
conveniently expressed in analytical terms as a functional relationship of
the decision variables, if the number of alternative courses of action is very
large or even infinite.

In cases where decision makers wish to achieve multiple objectives, they
may encounter conflict between the objectives. One possible way of over-
coming conflicts is to prioritize the objectives and solve the problem with
respect to the most important objective while setting minimal perfor-
mance targets (goals) on all other objectives. Indeed, one could reduce all
the objectives into goals (goal programming approach). In the case where
objectives can be measured in comparable units, then one may be able to
aggregate all the objectives into some common measure, such as costs and
returns, or into units of the most important objective. An aggregate of
objectives may show how much the variation in one objective’s values is
worth in terms of other objectives’ values. When analyzing the optimal
solution, the analyst has to examine carefully how changes in these objectives,
which reflect alternative policy decisions, affect the solution. Sometimes, the
various objectives can be expressed in the form of goals to be achieved as
near as possible. If the objectives are highly conflicting, it may not be possible
to reach each goal exactly. A mathematical technique derived to cater for such
problems is the goal programming technique.

2.6 Deriving a Solution

Once the problem has been formulated and a mathematical model deve-
loped to investigate the problem then a solution has to be found using the
model. Usually, the optimal solution to a model is found by following a
sequence of mathematical evaluations. A starting solution, which is usually
a feasible solution to the problem, starts the sequence of mathematical
operations to derive a new and ideally better-suited solution. This sequence
of operations starting from an initial solution as input to the model and the
generation of an improved solution as an output is called an iteration. The
improved output solution is then resubmitted to the model as a new input,
and the process is repeated until certain conditions—referred to as stopping
rules—are satisfied, indicating that an optimal solution has been reached
with some predetermined desired degree of accuracy. For some problems,
there may not exist feasible or bounded solutions.

Initially, the analyst will use the model to carry out a dry run using
data that has not necessarily been collected for the specific study, but is
representative enough to validate the model’s or algorithm’s behavior.
These dry runs will show whether the assumptions made were adequate,
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whether the model=algorithm provides the necessary in-depth detail required
for the study, and whether the model provides the answers required.

For an algorithm to be a practical solution method, each iteration should
lead to an improved solution, converging to the optimal solution in a finite
number of steps.

After being satisfied that the model is performing correctly, one then
applies data, which has been collected specifically for the problem at
hand, to the model to obtain primary (baseline) results. This stage is some-
times called a wet run. These results should demonstrate to the sponsor that
the model developed is an adequate description of the problem and will be
able to provide useful and usable results.

2.7 Sensitivity Analysis

One important phase of a study is the sensitivity analysis phase. It
is important to understand how the optimal solution depends on the
input data. Carrying out a sensitivity analysis allows one to determine
the accuracy required of the input data and also to identify those decision
variables that have the most significant impact on the solution. Sensitivity
analysis also allows the analyst to see how sensitive the choice of the
preferred option is to changes in the assumptions and changes in the data.
By carrying out sensitivity analysis, one is able to determine how robust the
preferred option is, and how much the input data needs to change for an
alternate option to become the preferred option.

In carrying out sensitivity analysis, the analyst modifies the assumptions
or data to promote the discarded options at the expense of the previously
determined optimal option. The amount of modification of the assumptions
or of the data is a measure of robustness of the model. If the original solution
still remains optimal under these conditions, then the solution is very robust.

2.8 Testing the Solution

The reason for undertaking a quantitative investigation of a system is to
improve the performance of the system. The decision maker will need to be
convinced that the proposed solution performs better than the present
alternative before deciding on whether to implement the derived solution
or keep the status quo. By giving presentations and making demonstrations
of the possible improvements that can be achieved by implementing the
derived solution may help the analyst substantially in convincing the deci-
sion maker to implement the proposed changes. When the analysts test the
solution, they normally want to be certain that the decision rules derived
from the optimal solution will perform as anticipated and also to be able to
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stipulate what the expected net benefits of implementing the solution will
be. A solution should be tested against previous behavior and also against
future behavior. In a military environment, the solution in many cases may
be tested in field exercises, for either a short period or over extended
periods. When testing the proposed solution, it must be validated against
observations of actual performance, it must be independent of how the
optimal solution was derived, the data used should be representative of
future behavior, covering the entire range of behaviors likely to be observed
in the future, and the tests should be carried out over a sufficiently long
period to ensure that the model is robust over time.

2.9 Implementation

The final phase of an operations research project is the implementation of
the solution. In order to help the decision makers introduce and use the
optimal outputs from the study, it may be necessary for the analyst to
convert the mathematical findings into a set of easily understood operating
procedures or decision rules. It may also be necessary to educate the decision
makers in the proper application of the findings and help them introduce the
changes required to take them from the present situation to the new desired
mode of operations, and support them in establishing control mechanisms to
maintain and update the solution. The analysts jointly with the decision
makers must continually monitor the performance until the new mode of
operation becomes routine. In many cases, it is often not possible to imple-
ment all the recommendations resulting from a study. In those cases, it is
more appropriate to talk about the degree of implementation achieved. The
analyst must be fully involved in the implementation to ensure that most of
the potential benefits that have been identified in the study’s outcomes are
implemented. In most cases, the analyst will have to fine-tune the model and
solution to totally satisfy the decision maker. The analysts’ participation in the
implementation phase is important if the analyst is to be able to identify and
incorporate future refinements into the model.

There are three major factors that can cause problems in the implemen-
tation of the findings. First, the degree of change required to move from the
present situation to the proposed new situation can have an impact on
the acceptance of the proposed solution. If this change is major, then that
may deter the decision makers from introducing it. Second, the ability of
the users using the solution, such as the personalities of the users, their
motivation and pride in the job, their ages and backgrounds, level of
education, and the impact of activities on their jobs, can influence the degree
of acceptance of the proposed changes. Third, the changes may disrupt the
present allocation of support or power of stakeholders, such as the support
given to the solution by higher echelons in the hierarchy and organizational
implications of the solution, and those changes that may be perceived
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as threatening to employees or customers may create resistance to the
proposed changes.

Generally, analysts focus their attention to the first factor, as analysts
often believe that problems only involve technical issues. There has been a
tendency in the past to neglect the human factor aspects of the situation,
which are qualitative in nature, and therefore are not conducive to quanti-
tative treatment. As these factors are very difficult to incorporate into the
analysis, they are often ignored. However, ignoring these factors will only
lead to a solution that is unusable, because not all factors of the problem
have been considered.

To enhance the probability of implementing the solution, it is necessary
for the sponsor to have ownership of the solution. If the communication
between the analysts and sponsors has been open and contact kept to a
maximum, the sponsors will feel that they have contributed significantly
to the project and will feel a strong feeling of ownership, guaranteeing
the implementation and continued use of the solution. The analyst must
establish contact with the sponsor at the beginning of the project and
maintain it throughout the duration of the project. It is no use trying to
convince the sponsor of the merits of the solution at the implementation
stage, if the sponsor has not been heavily involved in the whole process.

Given that the present-day environment in which most organizations
operate is very dynamic and is constantly undergoing change, it is necessary
to monitor whether the solution remains optimal. Management needs to put
in place procedures that will monitor quantitative and qualitative changes
in the environment, and processes that will enable corrective action to be
taken when such changes become significant. A change is considered signi-
ficant if the cost of making the adjustment is less than the benefits achieved
from making the adjustment.

Even after the solution has been implemented, the analysts need to
remain involved. The solution needs to be continually checked to ensure
that the actual performance of the solution does not deteriorate after a
while. Also, the actual benefits gained need to be compared to those that
were identified in the first two stages of the process. If major differences
are observed then reasons for those differences need to be examined and
adjustments made. Also, those people involved in the implementation
must have the appropriate training and if they do not, then further
training may have to be provided to give them the required skills. Only
then can the success of the project be judged.

2.10 Summary

Resolving a decision maker’s concerns through the identification and formu-
lation of the underlying problem, developing a modelling test bed, selecting
the optimal solution, analyzing the solution, and implementing the preferred
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alternative has been shown in this chapter as a logical and structured
approach. Although it has been suggested that the stages of identification
and formulation of the problem are vital for the successful analysis and
implementation of the problem, the choice of modelling technique is also
a very important stage. Analysts must ensure that they choose the right
mathematical approach for the problem at hand. Modelling approaches are
addressed in the next few chapters.

Exercises

1. The elevator users of a multistoried building have complained about the
delay in getting an elevator. Being the property manager, how do you
define the problem in order to solve it? In other words, what is your
problem precisely which you intend to solve?

The problem definition may vary from person to person for such a
situation. If you cannot define the problem appropriately it is unlikely
that it will be solved. For example, the problem may be thought as

a. Minimizing the waiting time by using better and efficient elevator,
which would require an expensive reengineering of the elevator
system.

b. Minimizing the people movement by studying the reasons for
frequent elevator usage and reduce them by taking appropriate action.
For example, having laundry in each floor instead of a common laundry
at the basement.

c. Minimizing or eliminating the complaints using simple but innova-
tive means such as putting mirrors on the walls around the lobby of
the building. This would not change the waiting time of the elevators
and people movement, but will change the perception, because
people become occupied with another activity. So the complaints
will disappear.

d. You may add another option.

Most people would choose the first one as the problem definition (mini-
mizing waiting time) and suggest an expensive reengineering as the
solution. Which one you would choose and why?

2. A manufacturing company produces several products in its shopfloor
and sells them directly to their customers, through its retail section.
Although the production capacity is fixed and known, the demand of
each product varies from period to period. As a result, few products are
experiencing shortages during some periods whereas some other pro-
ducts are having excess stocks. The retail manager knows that the overall
performance of the company can be improved by applying optimization
techniques. The company is currently performing very well financially.
The top management is neither familiar with optimization techniques

Sarker/Optimization Modelling: A Practical Approach 43102_C002 Final Proof page 29 22.8.2007 11:30pm Compositor Name: JGanesan

The Process of Optimization 29



nor intended to make any changes in its current production schedule. As
the retail manager, how would you convenience the top management to
study the current system using optimization techniques?

3. Consider Problem 2 in Exercises. As you are a key personnel in the retail
team, after your repeated requests, suppose the top management has
agreed to do the study. Although the study shows significant improve-
ment in company’s performance, the top management has no idea how
this result was obtained. As a consequence, the top management is
hesitant to implement the resulting production schedule. What would
you do now?

4. In most major airports, it is always a complaint that it takes too long to
get the arriving baggage. Being a key member of the airport baggage-
handling team, how would you define the problem in order to solve
it? In other words, what is your problem precisely which you intend
to solve?
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3
Introduction to Modelling

3.1 Introduction

Mathematical model is the name given to a family of tools designed to help
solve managerial, planning, and design problems in which the decision
maker must allocate scarce (or limited) resources among various activities
to optimize a measurable goal. The basic characteristics of a problem that
can be solved through mathematical modelling and the assumptions
required to develop a mathematical model have already been discussed in
Chapter 1. A number of different categories of mathematical models have
been established in the literature based on the classification tree presented
in Chapter 1, for example, linear programming, integer programming, goal
programming, and nonlinear programming. The details of these techniques
will be discussed later.

The use of mathematical models, especially linear programming, is so
common today that optimization software can be found in just about any
organization equipped with a computer. However, this has led in some cases
to the use of inappropriate modelling techniques, because of the availability
of specific software to uninformed users, resulting in an inappropriate
problem solution, thereby presenting the decision maker with an unrealistic
decision alternative. In some cases, such a bad or wrong decision alternative
could be disastrous.

In this chapter, we discuss the different components of a mathematical
model, introduce various types of mathematical models, and formulate
mathematical models for several simple problems.

3.2 Components of a Mathematical Model

Mathematical models consist of three major components: decision variables
(unknowns of the model), an objective function (which needs to be opti-
mized), and constraints (restrictions or limitations of the model). These
components are briefly discussed below.
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3.2.1 Decision Variables

The decision variables depend upon the type of problem considered. For
example, the decision variables can be the quantities of the resources to be
allocated, the number of units to be produced, or both. The decision maker
searches for the value set of these unknown variables that will provide an
optimal solution to the problem. The decision variables are usually denoted by
x1, x2, . . . or x, y, and z. However, model developers are free to define the names
of variables. Although some software products restrict the length of variable
names, others allow any length of alphabetic or alphanumeric characters. Some-
times, it is useful to define meaningful names for variables. Shorter names are
usually preferred as (1) using shorter names reduces the probability of making
mistakes in writing and typing and (2) the model looks more compact.

3.2.2 Objective Function

The objective function represents the goal=objective of the problem in terms
of decision variables. The decision maker endeavors to either maximize or
minimize this function, such as to either maximize the total profit or mini-
mize the total cost of production when producing or selling certain products.
Data such as profit (for maximization) or cost (for minimization) per unit
product are parameters required in association with the decision variables to
form the objective function. These parameters are known as coefficients
(profit or cost) of the objective function.

3.2.3 Constraints

The constraints are known as restrictions or limitations of the problem.
A constraint has two components, usually a function and a constant, related
by either an equality or inequality sign. For a resource constraint, the function
represents the total resource required in terms of the decision variables and the
constant specifies the total resource availability. Data such as the resources
required per unit product are required to form the constraint functions. These
data are known as coefficients associated with the constraints or technological
coefficients. Note that most optimization software products adhere to the
convention of having the variable expression on the left-hand side (LHS) of
the constraint equation and a constant on the equation’s right-hand side (RHS).

3.3 Simple Examples

Let us consider five small but simplified examples which will be analyzed
and formulated as mathematical models later.

Example 3.1: A product-mix problem
A furniture manufacturer produces tables and chairs. The process involves
machining, sanding, and assembling the pieces to make the tables and
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chairs. It takes 5 h to machine the pieces for a table, 4 h to sand the pieces,
and 3 h to assemble a table. A chair requires 2 h to machine the pieces, 3 h to
sand the pieces, and 4 h to assemble a chair. There are 270 h available for
machining the pieces, 250 h for sanding the pieces, and 200 h for assembling.
If the profit for a table is $100 and for a chair $60, how many tables and
chairs should the manufacturer produce in order to maximize the overall
profit? What if there is an additional requirement to produce four chairs for
each table?

Example 3.2: A diet problem
A sports dietician is planning a food menu consisting of three major food
stuffs A, B, and C. Each gram of A contains 3 units of protein, 2 units of
carbohydrates, and 4 units of fat. Each gram of B contains 1, 3, and 2 units of
protein, carbohydrates, and fat, respectively; and each gram of C contains 3,
1, and 4 units of protein, carbohydrates, and fat, respectively. The dietician
wants the meal to provide at least 440 units of fat, at least 150 units of
carbohydrates, and at least 320 units of protein. If 1 kg of A costs $15.60, 1 kg
of B costs $18.90, and 1 kg of C costs $12.70, how many grams of each
foodstuff should be served to minimize the cost of the meal and yet satisfy
the dietician’s requirements?

Example 3.3: A vehicle mix problem
A commanding officer (CO) has been tasked to move the battalion out
into the field for a major exercise. The CO has been informed that only a
maximum of 100 vehicles is allowed, each to be used for a single round
trip. There are two types of vehicles available to the CO, a Mack vehicle
that can carry 24 m3 and a Mercedes vehicle that can carry 16 m3. The Mack
vehicle is estimated to use 50 L of fuel on a round trip, whereas the
Mercedes vehicle will only use 25 L of fuel per round trip. The battalion
has a total of 4000 L of fuel available. The vehicles will require maintenance
after each round trip; each Mack vehicle requires 3 h and each Mercedes 9 h.
The maintenance squadron has 720 h available. To move a maximum
amount of cubic meters, what mix of Mack and Mercedes vehicles should
the CO choose?

Example 3.4: A curtain material trim loss problem
A curtain manufacturer receives three orders for curtain material with
widths and lengths as follows:

Order Number Width (m) Length (Number of Rolls)

1 2.5 30
2 3.8 50
3 4.9 10
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Rolls of curtain material are produced in two standard widths, 5 and 10 m.
These can be cut to the sizes specified by the order. There is no practical
length limitation as rolls can be joined together. Determine the production
plan that minimizes the curtain material trim loss.

Example 3.5: A usage=supply problem
A conference organizer has to cater for lunches for the 5 days of a confe-
rence. The organizer is faced with the problem of deciding on the daily
supply of clean serviettes. The organizer knows that the number of confe-
rence attendees requiring lunch for the 5 days are 130, 220, 180, 120, and 100.
The alternatives are

. to buy new serviettes at 25¢ a piece, or

. to send used serviettes to the laundry where they can receive
either a 48 h service at 10¢ a serviette, or a 24 h service at 15¢ a
serviette.

If this conference is a once-off activity with respect to the provision
of serviettes, how should the organiser provide serviettes to minimize the
total cost?

3.4 Analyzing a Problem

Not all problems are amenable to a mathematical modelling approach, in
that a mathematical model may not be able to represent the problem real-
istically or the solution approach would be computationally expensive.
Consider Example 3.1. Is this problem suitable to be solved using math-
ematical modelling? To answer this question, we need to examine whether
the problem meets the basic characteristics of mathematical modelling as
discussed in Chapter 1.

The problem requires three different activities: machining, sanding, and
assembly. These three activities are required to produce two products:
tables and chairs. The resources to be shared for these activities are limited
as indicated previously to 270 h of machining, 250 h of sanding the pieces,
and 200 h in the assembly department. The amount of a given resource
required by one unit of a product could be different from that of another
product. In Example 3.1, it takes 5 h to machine the pieces for a table, 4 h to
sand the pieces, and 3 h to assemble a table. A chair requires 2 h to machine
the pieces, 3 h to sand the pieces, and 4 h to assemble a chair. So, there are
many alternative ways of sharing these three resources to produce the
proposed two products, for example, producing 5 chairs and 2 tables, 10
chairs and 5 tables, 10 chairs and 10 tables, and so on. Each product pro-
duced would earn a profit—the profit for a table is $100 and for a chair $60.
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Finally, no violation of the above resource limitations is allowed. That
means the problem meets all the general characteristics of a mathematical
modelling approach. So, we will be able to develop all three components
required for a formal mathematical model of the above problem.

Although we have no intention of solving the problem in this chapter, we
would like to elaborate on the alternate options of resource use.

Suppose,

xT¼ the number of tables to be produced

xC¼ the number of chairs to be produced

The total resources required were calculated using the following equa-
tions. The details of the equations can be found in the next section.

Total machining hours required ¼ 5xT þ 2xC (3:1)

Total sanding hours required ¼ 4xT þ 3xC (3:2)

Total assembly hours required ¼ 3xT þ 4xC (3:3)

As one can see in Table 3.1, it is possible to share the resources in many
different ways. However, the alternative k violates the machining hour
limitation. That means this alternative does not represent a feasible solution.

3.4.1 A Nonmathematical Programming Problem

Let us consider a different example. In a drive-through McDonalds restaur-
ant, the cars arrive at an average rate of l per hour and the staff can serve at
an average rate of m customers per hour. The arrival and service rates are

TABLE 3.1

Alternative Resource Usage

Alternative

Number

Number of

Tables (xT)

Number of

Chairs (xC)

Machining

(Limit: 270)

Sanding

(Limit: 250)

Assembling

(Limit: 200)

1 1 1 7 7 7
2 1 2 9 10 11
3 2 2 14 14 14
: : : : : :
: 10 10 70 70 70
: 11 10 75 74 93
: : : : : :
: 50 10 270 230 190
k 50 11 272 233 194
: : : : : :
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usually stochastic (probabilistic) and the customers are served on the basis
of a first-in first-out (FIFO) rule. The service times required by different
customers may be different but are fixed for the individual customer. If
l�m, the customers will wait for long periods in the queue, which is a
negative indicator for customer satisfaction. However, for m� l, the staff
utilization rate will be low leading to higher service costs. What is the exact
issue facing McDonalds? It could be that they need (1) to minimize the
customer waiting time (for better customer satisfaction), (2) to minimize
the service cost (saving costs), or (3) to minimize both waiting time and
service cost (a compromise solution).

Let us examine whether the problem meets the general characteristics of
a mathematical modelling approach. The staff can be treated as resources
that provide (produce) services. The number of staff is usually limited;
however, more staff could be hired if necessary. Once the number of staff
is fixed, there is no flexibility in the usage of those resources, thereby
removing possible decision alternatives. That means, under the current
situation, the problem cannot be solved appropriately using mathematical
modelling. However, if we decide to determine the optimum number of
staff required, then we may have to analyze a limited number of decision
alternatives by varying the resource usages, which can be analyzed easily
(even by hand calculation) without modelling. In addition, we need to rely
on nonmathematical programming approaches such as simulation or queu-
ing analysis to determine the average waiting time for a given number of
staff. So, this is not an interesting problem from the mathematical modelling
point of view.

3.5 Modelling a Simple Problem

Consider the product-mix problem as stated in Example 3.1. Sometimes, it is
convenient in modelling if the problem is summarized in tabular form. The
tabular summary of Example 3.1 is as follows:

Per Unit Product

Resource=Item Table Chair

Resource

Availability (h)

Machining 5 2 270
Sanding 4 3 250
Assembly 3 4 200
Profit per unit ($) 100 60

In modelling the problem, we need to define the variables and develop the
mathematical functions associated with the objective and the constraints.
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3.5.1 Defining the Variables

The decision variables in this case are

T¼ the number of tables to be produced

C¼ the number of chairs to be produced

T and C are the unknown (decision) variables of the problem, which we
would like to determine. Alternatively, one can define the variables as x1

and x2, or x and y, instead of T and C.

3.5.2 Objective Function

As indicated in the problem, the objective is to maximize the profit from the
selling of produced tables and chairs. The objective function can be deve-
loped as follows:

Profit from any product¼ (the profit per unit) 3 (the number of
units).

Total profit from tables¼ 100T

Total profit from chairs¼ 60C

Total profit from tables and chairs¼ 100T þ 60C

So, the objective function is

Maximize Z ¼ 100T þ 60C (3:4)

The letter Z represents the objective function and the word Maximize or
Max indicates that the objective function is to be maximized.

3.5.3 Constraints

There are three constraints in this problem: the hours available for the
machining, sanding, and assembly facilities.

Limitation for the machining stage: There are 270 machining hours avail-
able in the machining facility. Each unit of table requires 5 machining hours,
whereas each unit of chair requires 2 machining hours. So the total amount
of machining hours required can be calculated as follows:

Total machining hours required by any product¼ (the machining
hour per unit) 3 (the number of units).

Total machining hours required by tables¼ 5T

Total machining hours required by chairs¼ 2C

Total machining hours required by tables and chairs¼ 5T þ 2C

So, the machining constraint is
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5T þ 2C � 270 (3:5)

The LHS of the constraint indicates the total machining hour requirement,
while the RHS represents the availability of machining hours. The less than
or equal to sign (between the LHS and RHS) indicates that the total require-
ment must not exceed the total availability.

Limitation for the sanding stage: There are 250 sanding hours available in
the sanding facility. Each unit of table requires 4 sanding hours, whereas
each unit of chair requires only 3 sanding hours. So the sanding constraint
can be written as

4T þ 3C � 250 (3:6)

Limitation for the assembly: There are 200 h available for assembly in the
assembly shop. Each unit of table requires 3 h to assemble it, whereas each
unit of chair requires 4 h to be assembled. So the assembling constraint can
be written as

3T þ 4C � 200 (3:7)

Nonnegativity conditions: Finally, both T and C must be nonnegative (zero
or positive) as we cannot produce any negative quantity of products in
reality. As indicated earlier, many software packages require this condition
to solve the model. So the nonnegativity constraints of the problem are

T � 0 and C � 0 (3:8)

The final form of the mathematical model is therefore

Maximize Z ¼ 100T þ 60C

Subject to

5T þ 2C � 270 Machining

4T þ 3C � 250 Sanding

3T þ 4C � 200 Assembly

T � 0 and C � 0 Nonnegativity

Model (3:1)

The model indicates that Z is to be maximized subject to three constraints
such as machining, sanding, and assembly. The sign 2 is sometimes used
instead of ‘‘subject to.’’ In solving the above model, we mean to determine
the numerical values of T and C, which maximizes the objective function
while not violating the constraints.

Suppose the definitions of T and C were given. We are sure that you
would come up with the same mathematical model for the above problem
given the same information. However, can you make up a story of the
underlying problem from the above mathematical model? You know
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the model is a mathematical representation of the problem. One should note
here that the mathematical model of a problem is not unique. It is fully
dependent on the decision variables considered and the assumptions made.
Sometimes you may feel that you need additional variables, for example, a
variable for determining the total machining hours required or the unused
machining hours. You may agree that these additional variables can be
calculated easily from the machining constraint if T and C are known.
That means you can avoid such variables in order to keep the model
compact. It is expected that a mathematical model will be developed with
a minimum number of variables and constraints since the computational
complexity is a function of the number of variables and constraints used in
the model.

3.6 Linear Programming Model

In the above model, the variables were assumed real (any number to be
greater than or equal to zero), and the objective function and all three
constraint functions were developed as linear functions. This type of
model is known as a linear programming model or linear programming or
linear program (LP) in the optimization literature. The general linear pro-
gramming model can be described as follows:

Given a set of m linear inequalities or equations in n variables, we wish
to find the nonnegative values of these variables, which will satisfy the
constraints and maximize or minimize some linear function of variables.

The basic assumptions of linear programming are

. Certainty: The values of the parameters (data) are known and are
constant.

. Proportionality: Any function (objective or constraint) is propor-
tional to the level of the activity (with consistent unit of measure).

. Additivity: The total activity is the sum of all individual activities.

. Divisibility: The decision variables could be either real or integer.

. Nonnegativity: Only positive values of variables are allowed.

3.7 More Mathematical Models

In this section, we will revisit Example 3.1 and develop mathematical
models for Examples 3.2 and 3.3.

In the last sentence of Example 3.1, it was indicated that there was a
requirement to produce four chairs for each table.
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This is an additional constraint, which will ensure that for every table
produced there will be four chairs available. This condition can be
expressed mathematically as follows:

T ¼ C=4 (3:9)

To check the condition, one can assume that T¼ 5 tables produced, then the
above expression gives us that C¼ 20 chairs. Note that this is an equality
type constraint. Since most optimization software packages require the
variables to be in the LHS and constants in the RHS of the constraint, we
rearrange the above condition as follows:

4T � C ¼ 0 (3:10)

So the revised mathematical model is

Maximize Z ¼ 100T þ 60C

Subject to

5T þ 2C � 270 Machining

4T þ 3C � 250 Sanding

3T þ 4C � 200 Assembly

4T � C ¼ 0 Additional

T � 0 and C � 0 Nonnegativity

Model (3:2)

We can summarize the problem in Example 3.2 as follows:

Foodstuff

Item A B C Requirements

Fat 4 2 4 440þ
Carbohydrates 2 3 1 150þ
Protein 3 1 3 320þ
Cost ($=kg) 15.60 18.90 12.70

We will formulate this problem without showing the detailed calculations
as we did in Example 3.1.

Defining variables:

x¼ quantity of foodstuff A in kg

y¼ quantity of foodstuff B in kg

z¼ quantity of foodstuff C in kg
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Objective function:
This is to minimize (as opposed to maximize in Example 3.1) the total cost,
which is 15.60x þ 18.90y þ 12.70z. So the objective function is

Minimize Z ¼ 15:60xþ 18:90yþ 12:70z (3:11)

Constraints:
There are three constraints in this problem: limitations (minimum require-
ments) on fat, carbohydrates, and protein. All the constraints would be of a
greater than equal to type as they must be greater than the given lower
limits. So the constraints can be written as

Fat limit: 4xþ 2yþ 4z � 440 (3:12)

Carbohydrate limit: 2xþ 3yþ 1z � 150 (3:13)

Protein limit: 3xþ 1yþ 3z � 320 (3:14)

So the complete linear programming formulation is

Minimize Z ¼ 15:60xþ 18:90yþ 12:70z

Subject to

4xþ 2yþ 4z � 440 Fat limit

2xþ 3yþ 1z � 150 Carbohydrate limit

3xþ 1yþ 3z � 320 Protein limit

x, y, z � 0

Model (3:3)

The problem in Example 3.3 is straightforward and similar to the above two
examples. The summary of the problem is shown below:

Number of

Macks

Number of

Mercedes Availability=Limitation

Fuel (L) 50 25 4000
Maintenance (h) 3 9 720
Load carried (m3) 24 16 —
Maximum number of

vehicles allowed
— — 100

Defining variables:

x1¼number of Mack vehicles to be used

x2¼number of Mercedes vehicles to be used

Objective function:
Maximize the volume transported.

Sarker/Optimization Modelling: A Practical Approach 43102_C003 Final Proof page 41 22.8.2007 11:31pm Compositor Name: JGanesan

Introduction to Modelling 41



Maximize Z ¼ 24x1 þ 16x2 (3:15)

Constraints:

Fuel limit: 50x1 þ 25x2 � 4000 (3:16)

Maintenance hour limit: 3x1 þ 9x2 � 720 (3:17)

Number limit on vehicles: x1 þ x2 � 100 (3:18)

So the overall linear programming model is

Maximize Z ¼ 24x1 þ 16x2

Subject to

50x1 þ 25x2 � 4000 Fuel limit

3x1 þ 9x2 � 720 Maintenance hour limit

x1 þ x2 � 100 Number limit on vehicles

x1, x2 � 0

Model (3:4)

3.8 Integer Programming

Integer programming (IP) is an extension of the general linear programming
problem. The decision variables of an optimal solution to a general linear
programming problem may take on either nonnegative fractional values or
integer values. Unfortunately, fractional values are neither practical nor
very meaningful in certain types of business, manufacturing, or defense
problems. For example, two-thirds of a tank or half an aircraft cannot be
bought or used in reality. One can assume integer programming as being a
linear program with indivisibility requirements. There are three types of
integer programming models:

. Integer: Where all the decision variables are integers.

. Binary integer: Where all the decision variable values are binary
(either zero or one) only. There are some situations, where vari-
ables can assume only one of two values (e.g., yes or no) that can
be designated as zero and one.

. Mixed integer or mixed integer linear: Linear programs with some
integer and some real decision variables.

Recall Examples 3.1 and 3.3 and their linear programming models. The
solutions to these models may provide fractional values for the decision
variables such as 3.6 tables, 14.2 chairs, 51.3 Mack vehicles, and 49.7
Mercedes vehicles. The fractional values are not meaningful for such items
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in practice. Note that fractional values are not an issue for Example 3.2.
To avoid fractional values, we need to define the variables as integer. We will
rewrite the model of Example 3.1 here with an integer declaration.

Maximize Z ¼ 100T þ 60C

Subject to

5T þ 2C � 270 Machining

4T þ 3C � 250 Sanding

3T þ 4C � 200 Assembly

T and C � 0 and integer

Model (3:5)

The above model can be called an integer program. If you remove the
integrality condition, this reverts to a linear program.

Example 3.6: A capital budgeting problem
Local councils and organizations frequently face situations where they have
to select one or more projects (investment opportunities) from a number of
competing projects. Consider the following list of projects. If $30 million is
available, which projects should be selected?

Project Number Project Cost ($ million) Expected Utility

1 After-school program 6 18
2 Road security 18 16
3 Crime reduction 10 12
4 Road extension 9 25
5 Child care facility 4 14

The problem is to maximize the total expected utility not exceeding the
budget limitation. Here, the decision needs to determine whether a project
should be chosen or not. So using binary variables would be a suitable
approach to make the yes=no decision.

Defining variables:

x1 ¼ 1 if project 1 is selected
0 otherwise

�

x2 ¼ 1 if project 2 is selected
0 otherwise

�

x3 ¼ 1 if project 3 is selected
0 otherwise

�
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x4 ¼ 1 if project 4 is selected
0 otherwise

�

x5 ¼ 1 if project 5 is selected
0 otherwise

�

The integer programming model is

Maximize Z ¼ 18x1 þ 16x2 þ 12x3 þ 25x4 þ 14x5

Subject to

6x1 þ 18x2 þ 10x3 þ 9x4 þ 4x5 � 30

x1, x2, x3, x4, x5 are either 1 or 0

Model (3:6)

Example 3.7: A knapsack problem
Four items are considered for loading onto a small military aircraft, of
carrying capacity 12 tonnes, involved in relief operations. The weights and
volumes of the items are given below:

Item Weight (tonnes) Volume (m3)

I-A 3 20
I-B 5 30
I-C 4 25
I-D 2 18

Which items should be loaded onto the aircraft to maximize the volume of
the items transported?

Variables:

xA ¼ 1 if item I-A is selected
0 otherwise

�

xB ¼ 1 if item I-B is selected
0 otherwise

�

xC ¼ 1 if item I-C is selected
0 otherwise

�

xD ¼ 1 if item I-D is selected
0 otherwise

�

The integer programming model is
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Maximize Z ¼ 20xA þ 30xB þ 25xC þ 18xD

Subject to

3xA þ 5xB þ 4xC þ 2xD � 12

xA, xB, xC, xD are either 1 or 0

Model (3:7)

3.9 Multi-Objective Problem

So far, we have discussed optimization problems with only one objective or
goal in mind. Nowadays, having only one objective or goal to achieve is not
enough to survive in a dynamic (continuously changing) business environ-
ment, there are usually many competing goals. In addition, it is usually
difficult to obtain an explicit statement of what the organization’s goals are.
As a result, managers usually want to attain several simultaneous objectives
or goals, some of which may conflict with each other. Consider a profit-
making firm. In addition to making money, the company wants to grow, to
develop its products and its employees, to provide job security for its
workers, and to serve the community. Here, the goal of serving the com-
munity means spending money on different community programs, which
contradicts with the goal of making money.

Example 3.8: A production planning problem
The manufacturing unit of a large company has received a production order
of 300 units that must be supplied within a week. Two production lines
are available, each for 25 h during the week. Production line A can produce
5 units per hour. Using production line B, it takes 15 min to produce each
unit. Line A costs $8 per hour to operate, and line B costs $11 per hour.
Overtime is available; up to 30 h for line A at $10 per hour and up to 30 h for
line B at $12 per hour. The company wants to develop a production plan (1)
by minimizing the overall production cost and (2) at the same time, by
maximizing the utilization of the regular working hours.

The tabular summary of the problem is as follows:

Units per Hour Total Hours $=Unit

Time Line A Line B Line A Line B Line A Line B

Regular 5 4 25 30 8 11
Overtime 5 4 25 30 10 12

Defining variables:

XAR ¼units produced in line A during regular hours

XBR ¼units produced in line B using regular hours
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XAO¼units produced in line A during overtime

XBO ¼units produced in line B using overtime

Objective function 1: minimizing the total cost

Minimize Z1 ¼ 8XAR þ 11XBR þ 10XAO þ 12XBO (3:19)

Objective function 2: maximizing the utilization of the regular working hours

Maximize Z2 ¼ XAR=5þ XBR=4 (3:20)

The following are the constraints:

1. Production requirements

XAR þ XBR þ XAO þ XBO ¼ 300 (3:21)

2. Regular hour limitation

XAR=5 � 25 (3:22)

XBR=4 � 25 (3:23)

3. Overtime hour limitation

XAO=5 � 30 (3:24)

XBO=4 � 30 (3:25)

4. Nonnegativity constraint

XAR, XBR, XAO, XBO � 0 (3:26)

So a mathematical model with two objectives is

Minimize Z1 ¼ 8XAR þ 11XBR þ 10XAO þ 12XBO

Maximize Z2 ¼ XAR=5þ XBR=4

Subject to

XAR þ XBR þ XAO þ XBO ¼ 300

XAR=5 � 25

XBR=4 � 25

XAO=5 � 30

XBO=4 � 30

XAR, XBR, XAO, XBO � 0

Model (3:8)

Sarker/Optimization Modelling: A Practical Approach 43102_C003 Final Proof page 46 22.8.2007 11:31pm Compositor Name: JGanesan

46 Optimization Modelling: A Practical Approach



3.9.1 Objective versus Goal

In mathematical modelling, an objective is treated differently from a goal.
An objective is represented by a function, which is to be either maximized or
minimized. As an example, consider the objective function of Example 3.1
(Equation 3.4):

Maximize Z ¼ 100T þ 60C

A goal indicates a target value for a function. If we define a target for profit,
say $2500, then we mean the function 100T þ 60C should be as close to
$2500, while still meeting all the constraints. However, in goal program-
ming, the goal constraints are used to represent each of the goals to be met.
That means multiple goals can be handled by one model. As opposed to the
constraints in linear programming and integer programming, the goal con-
straints can be violated with certain penalties set by the decision makers.
That is why, goal constraints are also known as soft constraints.

Example 3.9: A goal programming problem
Consider Example 3.8. Suppose the company has set a target of $TPC for
the overall production cost as part of its annual budget and a target for the
utilization of the regular working hours (equal to 75% of the sum of avail-
able regular working hours). Here, although the company expects to achieve
the target values some variations may be allowed under certain conditions.

3.10 Goal Programming

The above problem can be formulated as a goal programming model. Goal
programming can be either a linear, integer, or nonlinear model. For ease of
understanding, we will refer to it as linear goal programming in this section.
The components of any goal programming are

1. Decision variables: same as linear programming

2. Deviational=goal variables: new but important for goal program-
ming (discussed below)

3. System constraints: identical to linear programming constraints
with no deviations allowed

4. Goal constraints: target values to be achieved, but deviations are
allowed (also known as soft constraints)

5. Objective function: minimize the weighted sum of the undesirable
deviations
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In goal programming, a specific numeric goal is established for each goal
function (constraint), and then a solution is derived that minimizes the
(weighted) sum of deviations of these goal functions from their respective
goals. There are three types of goals in goal programming as described below:

. A lower, one-sided goal sets a lower limit that we do not want to
fall under (but exceeding the limit is fine).

. An upper, one-sided goal sets an upper limit that we do not want
to exceed (but falling under the limit is fine).

. A two-sided goal sets a specific target range that we do not want to
fall outside.

For Example 3.9, the decision variables (component 1) and the system
constraints (component 3) are the same as for Example 3.8. The deviational
variables (component 2) can be defined as follows:

For the overall production cost goal

dþ1 ¼Overachievement deviational variable (if required more than
the production cost target value)

d�1 ¼Underachievement deviational variable (if achieved under the
production cost target value)

For the regular working hour goal

dþ2 ¼Overachievement deviational variable (if exceeded the target
working hours)

d�2 ¼Underachievement deviational variable (if achieved under the
target working hours)

Now the goal constraints (component 4) can be derived. The production
cost goal is an upper, one-sided goal that the company does not want to
exceed. Also, the total number of regular working hours is a lower, one-
sided goal that the company does not want to fall under.

The overall production cost function

Z1 ¼ 8XAR þ 11XBR þ 10XAO þ 12XBO (3:27)

can be rewritten as goal constraint

8XAR þ 11XBR þ 10XAO þ 12XBO þ d�1 � dþ1 ¼ TPC (3:28)

As a requirement of the formulation, both d�1 and dþ1 are greater than or
equal to zero and at least one of them must be equal to zero. Note that it is
necessary to write d�1 with positive sign and dþ1 with negative sign in the
goal constraint.
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Similarly, the regular hour function

Z2 ¼ XAR=5þ XBR=4 (3:29)

can be rewritten as goal constraint

XAR=5þ XBR=4þ d�2 � dþ2 ¼ SFPTRH (3:30)

where SFPTRH¼ 75% of total regular hours.
Both d�2 and dþ2 are greater than or equal to zero and at least one of them

must be equal to zero.
The objective function (component 5) of the goal programming is always

to minimize the weighted sum of the undesirable deviations. In the produc-
tion cost goal constraint, the overachievement factor (i.e., dþ1 ) is undesirable.
The underachievement factor (i.e., d�2 ) is undesirable for the available work-
ing hour goal constraint. We want to minimize the sum of these two
variables. However, one can set the weight to reflect the importance of
one variable as compared to the other. So the goal programming objective
function can be written as follows:

Minimize Z ¼ w1dþ1 þ w2d�2 (3:31)

So the overall goal programming model becomes

Minimize Z ¼ w1dþ1 þ w2d�2
Subject to

XAR þ XBR þ XAO þ XBO ¼ 300

8XAR þ 11XBR þ 10XAO þ 12XBO þ d�1 � dþ1 ¼ TPC

XAR=5þ XBR=4þ d�2 � dþ2 ¼ SFPTRH

XAR=5 � 25

XBR=4 � 25

XAO=5 � 30

XBO=4 � 30

XAR, XBR, XAO, XBO, d�1 , dþ1 , d�2 , dþ2 � 0

Model (3:9)

Note that the goal programming model may not produce optimal solutions;
however, it produces workable but satisfactory solutions.

3.11 Nonlinear Programming

Consider the inventory batch sizing example provided in Chapter 1. From
Figures 1.1 and 1.2, it is clear that the function is nonlinear as the cost
function value decreases until the order quantity reaches the optimum

Sarker/Optimization Modelling: A Practical Approach 43102_C003 Final Proof page 49 22.8.2007 11:31pm Compositor Name: JGanesan

Introduction to Modelling 49



ordering point and then increases with the increase in ordering quantity.
Such a problem is known as a nonlinear problem. A nonlinear programming
model is similar to a linear programming model with one exception; it
contains nonlinear terms either in the objective function or in the constraint
equations or both. If a model contains all linear terms except one, it is still
recognized as nonlinear model.

Example 3.10: A location problem
A New South Wales based radio channel provides radio services in most
southern Australian cities and towns. The channel is planning to expand its
service to four northern and western cities. To provide a good quality service,
the channel needs to establish a new transmission tower, which will transmit
radio frequency to the preexisting smaller towers in those cities. The new
tower to be constructed can cover areas within a radius of K km. Thus, the
new tower must be located within K km of each of those existing towers. The
problem is to determine the tower location that minimizes the total distance
from the new tower to each of the existing towers.

The location of each city can be calculated using two dimensional coordi-
nates (x, y) from a given reference point as follows:

City x y

1 10 45
2 15 25
3 20 10
4 55 20

Defining the variables:
We need to determine the location of the new tower. So, the coordinates of
the new tower would represent the decision variables as follows:

X¼distance of the new tower with respect to the X-axis

Y¼distance of the new tower with respect to the Y-axis

Objective function:
The objective is to minimize the total distance from the new tower to each of
the existing towers.

Minimize Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(10� X)2 þ (45� Y)2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(15� X)2 þ (25� Y)2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(20� X)2 þ (10� Y)2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(55� X)2 þ (20� Y)2
q

(3:32)
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The first term in the objective function calculates the distance from the tower
in city 1 to the location of the new tower. The remaining three terms perform
similar calculations for the towers in cities 2, 3, and 4.

Constraints:
The new tower must be built within a distance of K km from the exist-
ing towers. That means, the distance from the new tower to any of the
existing towers cannot exceed K km.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(10� X)2 þ (45� Y)2
q

� K (3:33)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(15� X)2 þ (25� Y)2
q

� K (3:34)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(20� X)2 þ (10� Y)2
q

� K (3:35)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(55� X)2 þ (20� Y)2
q

� K (3:36)

So the complete mathematical model is as follows:

Minimize Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(10� X)2 þ (45� Y)2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(15� X)2 þ (25� Y)2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(20� X)2 þ (10� Y)2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(55� X)2 þ (20� Y)2
q

Subject to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(10� X)2 þ (45� Y)2
q

� K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(15� X)2 þ (25� Y)2
q

� K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(20� X)2 þ (10� Y)2
q

� K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(55� X)2 þ (20� Y)2
q

� K

X, Y � 0

Model (3:10)

Note that the objective function and all the constraints are nonlinear, and K
must be known.

Sarker/Optimization Modelling: A Practical Approach 43102_C003 Final Proof page 51 22.8.2007 11:31pm Compositor Name: JGanesan

Introduction to Modelling 51



3.12 Summary

In this chapter, we have covered the basic concepts of mathematical mod-
elling and the different types of mathematical models with a number of
simple examples. Developing the mathematical formulation of these simple
models was straightforward. However, in many cases the process is not that
straightforward, one needs some mathematical agility to derive the math-
ematical formulation. The following chapter will discuss some of the not
so straightforward approaches required when deriving the mathematical
formulation.

Exercises

1. A furniture manufacturer employs 6 skilled and 11 semiskilled workers
and produces two products: study table and computer table. A study
table requires 2 h of a skilled worker and 2 h of an unskilled worker.
A computer table requires 2 h of a skilled worker and 5 h of an unskilled
worker. As per the industrial laws, no one is allowed to work for more
than 38 h a week. The manufacturer can sell as many tables as he can
produce. If the profit for a study table is $100 and for a computer table
$160, how many study and computer tables should the manufacturer
produce in a week in order to maximize the overall profit? Formulate a
linear programming model.

2. Consider Problem 1 in Exercises. Suppose that the demands of the
study and computer tables are at least 40 and 45, respectively, and the
manufacturer pays $900 and $600 per week for each skilled and
unskilled worker, respectively. If the manufacturer intends to fulfill
the demand in full, what objective function would you suggest to the
manufacturer’s production planning problem? Justify your suggestion
and formulate the problem as a linear programming model.

3. Consider Problems 1 and 2 in Exercises. Suppose the manufacturer is
interested in maximizing his overall profit rather than fulfilling the
demand. What objective function would you suggest to the manufac-
turer’s production planning problem? Justify your suggestion and for-
mulate the problem as a linear programming model.

4. A marketing manager wishes to allocate his annual advertising budget
of $1.5 million in three media: television (TV), radio, and daily news-
paper. The unit cost of an advertisement in TV is $10,000, in radio
$5,000, and in newspaper $3,000. The company advertises in one TV
channel, one radio station, and one newspaper only. The number of
advertisements in each media must be at least 20. The expected effective
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audience for each advertisement for TV is 30,000, for radio 18,000, and
for newspaper 10,000. Develop a mathematical model.

5. A farmer in Queensland owns 100 acres of land and is planning to grow
wheat and potato. Each acre cultivated with wheat yields a $400 profit,
requires four workers, and 3 tonnes of fertilizer; each acre with potato
yields $550 profit, requires three workers, and 5 tonnes of fertilizer. The
farmer can hire up to 300 workers and manage 400 tonnes of fertilizer.
Formulate a mathematical programming model that would maximize the
total profit.

6. A food production and retail chain is considering several projects that
have varying capital requirements over the next 3 years. The projects
are (1) possible plant expansion, (2) possible warehouse expansion, (3)
possible addition of a transport unit, and (4) possible purchase of new
machinery. The estimated net present value for each project, the invest-
ment requirements, and the available capital over the next 3 years are
shown below. All figures are in million dollars.

Project

Plant Warehouse Transport Machinery

Capital

Available

Year 1 (IR) 0.30 0.15 0.10 0.15 0.60
Year 2 (IR) 0.25 0.20 0.06 0.12 0.65
Year 3 (IR) 0.20 0.15 0.08 0.10 0.40
Present value 1.0 0.60 0.30 0.50

Which projects the company should choose in order to maximize the
total net present value?

7. The central intelligence branch is considering the relocation of several
intelligence units in Canberra to obtain better information from several
new high-crime areas. The locations under consideration together with
the areas that can be covered from these locations are given below:

Potential Locations

for Units Areas Covered

L1 A, C, F
L2 B, D, G
L3 D, E, G
L4 A, C, E, F
L5 C, E, G
L6 B, D, F

Formulate an integer programming model that could be used to find the
minimum number of locations necessary to cover all the specified areas.
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8. Eastern Aviation Company organizes summer charter flights from Sydney
to Auckland for students. The company uses three types of aircraft whose
operating cost and capacities are given below:

Aircraft

Type

Capacity

(Passenger)

Cost per

Flight ($)

Maximum Number

of Flights

Air Crew

Required

A1 120 25,000 20 6
A2 180 35,000 12 14
A3 280 45,000 5 20

The company can spare only 200 crews for the entire mission. A total
of 4,000 students signed up for the summer trip, each paying $450.
Considering all students must be flown, find how many flights of each
type should be used in order to maximize profit. Formulate a math-
ematical programming model.

9. CPS Investment Services must develop an investment portfolio for a
new customer. Initially, the new customer would like to restrict port-
folio to three stocks as shown below:

Stock Price per Share ($) Estimated Annual Return (%)

ACT cable 50 6
CTR retail 35 10
PCL petroleum 120 8

The customer wants to invest $80,000 and established two investment
goals.

Goal 1: Obtain an annual return of at least 9%.

Goal 2: Limit the investment in CTR retail, the riskier investment,
to no more than 50% of the total investment.

Formulate a goal programming model for the CPS investment
problem.

10. Consider Problem 4 in Exercises. Now suppose the marketing manager
established three goals for the advertising campaign as follows:

Goal 1: Reach at least 3 million audiences.

Goal 2: The number of TV advertisements should be at least 30%
of the total number of advertisements.

Goal 3: The cost of advertisements should be within the budget.

Formulate a goal programming model for this problem.
11. After a major bushfire in 2003, the local government is planning to

establish a new fire station to cover four major town centers, under
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frequent fire threat, located in Town-1 (10, 20), Town-5 (50, 20), Town-8
(40, 40), and Town-14 (70, 60). Town-1 averages 20 fires per year; Town-
5, 30 fires; Town-8, 40 fires; and Town-14, 25 fires. The local government
wants to build the fire station in a location that minimizes the average
distance that a fire engine must travel to respond to a fire. Develop a
mathematical model to determine the location of the fire station.

12. An entertaining company is planning to spend $20,000 on advertising.
It costs $5,000 per minute to advertise on TV and $3,000 per minute
to advertise on radio. If the company buys x min of TV advertising and
y min of radio advertising, its revenue in thousands of dollars can be
expressed as ]2x2

] y2 þ xy þ 9x þ 4y. Formulate a mathematical model
to maximize the company’s revenue.
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Section II

Modelling Techniques
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4
Simple Modelling Techniques I

4.1 Introduction

After introducing the concept of a mathematical model in simple terms
in Chapter 3, we would like to discuss some basic modelling techniques
frequently used in practice. In this chapter, we also introduce how to use
subscripts in variables to make the mathematical model formulation com-
pact. A number of examples are provided to demonstrate the simple
modelling techniques as well as the use of subscripts.

This chapter is organized as follows. First, we introduce the use of sub-
scripts in variables. In Section 4.3, we discuss a number of simple modelling
techniques. The techniques include additional work requirement in formu-
lation, variables as fraction of other variables, maintaining certain ratios
among different variables, one constraint is a fraction of another constraint,
maxi–min or mini–max objective function, multi-period problem, infeasible
to satisfactory solutions, transportation problem, assignment problem, net-
work flow problem, and project management problem.

4.2 Use of Subscripts in Variables

To demonstrate the use of subscripts in variables, let us consider Example 3.6.
The problem formulation of Example 3.6 is reproduced here for convenience.

Variables:

x1 ¼ 1 if project 1 is selected
0 otherwise

�

x2 ¼ 1 if project 2 is selected
0 otherwise

�

x3 ¼ 1 if project 3 is selected
0 otherwise

�
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x4 ¼ 1 if project 4 is selected
0 otherwise

�

x5 ¼ 1 if project 5 is selected
0 otherwise

�

The integer programming model is

Maximize Z ¼ 18x1 þ 16x2 þ 12x3 þ 25x4 þ 14x5

Subject to

6x1 þ 18x2 þ 10x3 þ 9x4 þ 4x5 � 30

x1, x2, x3, x4, x5 are either 1 or 0

Model (4:1)

Instead of defining each variable at a time, we can define them together
using subscripts as follows:

xi ¼ 1 if project i is selected
0 otherwise

�

for all i

By ‘‘for all i,’’ here we mean i¼ 1, 2, 3, 4, and 5. Usually we use the notation
8 instead of writing ‘‘for all.’’ So one can rewrite the variable definition to

xi ¼ 1 if project i is selected
0 otherwise

�

8i

So the integer programming model becomes

Maximize Z ¼ 18x1 þ 16x2 þ 12x3 þ 25x4 þ 14x5

Subject to

6x1 þ 18x2 þ 10x3 þ 9x4 þ 4x5 � 30

xi either 1 or 0 8i

Model (4:2)

This model can be compacted further by using a summation sign, which
will be discussed in the next chapter.

4.3 Simple Modelling Techniques

As we have seen in Chapter 3, it is not difficult to define the variables and
develop the objective function and constraints once the problem has been
defined properly and adequate descriptions are provided. However, this is
usually not the case for real-world problems. In some problems, additional
work may be required to define the variables and develop the functions.
In many cases, some simple but interesting tricks need to be applied to
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formulate the constraints. The nature of the additional work and the tricks
usually used in practice are discussed with illuminating examples in this
section.

4.3.1 Additional Work Requirement in the Formulation

Let us now formulate the problems described as Examples 3.4 and 3.5 using the
concept of defining the variables with subscripts. These examples require some
additional work to define the variables and set up the constraint functions.

Example 4.1: A curtain material trim loss problem
Consider Example 3.4 here. The problem summary is given below:

Order Number Width (m) Length (in Terms of Number of Rolls)

1 2.5 30
2 3.8 50
3 4.9 10

Two standard widths are available: 5 and 10 m.
Objective is to minimize curtain material trim loss.

This problem looks simple but it is a bit harder than the linear programming
(LP) problems we have formulated so far. This requires more thought and
some additional work to define the variables and to set up the objective
function and constraints.

Defining the variables:
The variables can be defined using subscripts of notation such as i, where i
has a range of values (i¼ 1, 2, . . . , n).

X1i ¼ number of rolls produced from a 5 m width roll of orders
combination i

X2i ¼ number of rolls produced from a 10 m width roll of orders
combination i

The 5 m width roll can be cut in three different ways and the 10 m width roll
can be cut in six different ways to produce 2.5, 3.8, and 4.9 m width
rolls. The variables are explained below to provide a better understanding.

Using a 5 m width roll, you can produce

. two 2.5 m width rolls with no trim loss (X11),

. one 3.8 m width roll with 1.2 m trim loss (X12), or

. one 4.9 m width roll with 0.1 m trim loss (X13).

Using a 10 m width roll, you can produce

. four 2.5 m width rolls with no trim loss (X21),

. two 2.5 m and one 3.8 m width rolls with 1.2 m trim loss (X22),

. two 2.5 m and one 4.9 m width rolls with 0.1 m trim loss (X23),
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. two 3.8 m width rolls with 2.4 m trim loss (X24),

. one 3.8 m and one 4.9 m width rolls with 1.3 m trim loss (X25), or

. two 4.9 m width rolls with 0.2 m trim loss (X26).

One, therefore, needs nine variables to model this problem. The different cut
combinations with their trim losses are also shown in the following table.
This table would make the modelling task easier.

Width

Required#
Decision Variable

Required

RollsX11 X12 X13 X21 X22 X23 X24 X25 X26

2.5 2 0 0 4 2 2 0 0 0 30
3.8 0 1 0 0 1 0 2 1 0 50
4.9 0 0 1 0 0 1 0 1 2 10
Trim�!
Loss 0 1.2 0.1 0 1.2 0.1 2.4 1.3 0.2

Objective function:
The objective is to minimize the total trim loss. The trim loss involved with
each decision variable is shown in the bottom row. So the objective function
can be expressed as

Minimize Z ¼ 1:2X12 þ 0:1X13 þ 1:2X22 þ 0:1X23 þ 2:4X24 þ 1:3X25 þ 0:2X26

(4:1)

Constraints:
There are three constraints: requirements of curtains with (1) 2.5 m width,
(2) 3.8 m width, and (3) 4.9 m width. The number of rolls with 2.5 m
width, which can be produced from one unit of each decision variable, is
shown in the first row in the table. The figures for 3.8 and 4.9 m are given
in the second and third rows, respectively. From these figures, we can
calculate the possible number of rolls produced in each type.

2.5 m rolls: 2X11 þ 4X21 þ 2X22 þ 2X23

3.8 m rolls: X12 þ X22 þ 2X24 þ X25

4.9 m rolls: X13 þ X23 þ X25 þ 2X26

Then the LP formulation is

Minimize Z ¼ 1:2X12 þ 0:1X13 þ 1:2X22 þ 0:1X23 þ 2:4X24 þ 1:3X25 þ 0:2X26

2
2X11 þ 4X21 þ 2X22 þ 2X23 ¼ 30

X12 þ X22 þ 2X24 þ X25 ¼ 50

X13 þ X23 þ X25 þ 2X26 ¼ 10

X11, X12, X13, X21, X22, X23, X24, X25, 2X26 � 0

Model (4:3)
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After solving the model, we can easily find the number of 5 and 10 m rolls
required to fulfill the customer’s demand with a minimum possible trim loss.

Number of 5 m rolls required ¼ X11 þ X12 þ X13 (4:2)

Number of 10 m rolls required ¼ X21 þ X22 þ X23 þ X24 þ X25 þ X26 (4:3)

Example 4.2: The conference organizer problem
Consider Example 3.5. The problem is to manage serviettes for a 5 day
conference’s lunches at minimum possible cost. This problem requires
some additional work in defining the variables and setting up the objective
and constraint functions. In this problem, the options of using serviettes in
any 1 day are

. Buy new serviettes

. Receive used serviettes from cleaning

. 24 h cleaning and=or

. 48 h cleaning

. Send used serviettes for cleaning

. 24 h cleaning and=or

. 48 h cleaning

. Store used serviettes—do not send for cleaning now

Assume that there is no serviette in stock at the beginning of day 1.

Decision variables:

xi¼number of serviettes bought on ith day

yi¼number of serviettes at end of ith day sent for 24 h cleaning

zi¼number of serviettes at end of ith day sent for 48 h cleaning

vi¼number of used serviettes not sent for cleaning at end of ith day

At the beginning of the day, the fresh serviettes available for use are

Day Buy

From 24 h

Cleaning

From 48 h

Cleaning

Required for

the Day

1 x1 — — 130
2 x2 — — 220
3 x3 y1 — 180
4 x4 y2 z1 120
5 x5 y3 z2 100
Cost 25 15 10
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The used serviettes sent for 24 h cleaning at the end of day 1 will be available
for use on day 3 as they would return at the end of day 2. Similarly, the used
serviettes sent for 48 h cleaning at the end of day 1 will be available for use
on day 4 as they would return at the end of day 3.

At the end of the day, the used serviettes available for cleaning are

Day

For 24 h

Cleaning

For 48 h

Cleaning

Used—Not Sent

for Cleaning

Available at the End

of the Day

1 y1 z1 v1 130
2 y2 z2 v2 220 þ v1

3 y3 z3 v3 180 þ v2

4 y4 z4 v4 120 þ v3

5 y5 z5 v5 100 þ v4

From the above two tables, we can easily formulate an LP model

Objective function:

Minimize cost ¼ 25(x1 þ x2 þ x3 þ x4 þ x5)þ 15(y1 þ y2 þ y3 þ y4 þ y5)

þ 10(z1 þ z2 þ z3 þ z4 þ z5) (4:4)

Constraints:
Beginning of the day constraints:

Day 1: x1 ¼ 130 (4:5)

Day 2: x2 ¼ 220 (4:6)

Day 3: x3 þ y1 ¼ 180 (4:7)

Day 4: x4 þ y2 þ z1 ¼ 120 (4:8)

Day 5: x5 þ y3 þ z2 ¼ 100 (4:9)

End of the day constraints:

Day 1: y1 þ z1 þ v1 ¼ 130 (4:10)

Day 2: y2 þ z2 þ v2 ¼ 220þ v1 (4:11)

Day 3: y3 þ z3 þ v3 ¼ 180þ v2 (4:12)

Day 4: y4 þ z4 þ v4 ¼ 120þ v3 (4:13)

Day 5: y5 þ z5 þ v5 ¼ 100þ v4 (4:14)

Nonnegativity constraint:

xi, yi, zi, vi � 0 for all i

4.3.2 Variables as Fractions of Other Variables

Sometimes in practice, a certain condition may imply that the value of one
or more variables must be within a certain percentage (fraction) range of the
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sum of the values of some or all other variables. Further in the chapter,
examples are provided with such a condition and their mathematical model
formulations are discussed.

Example 4.3: A financial management problem
ABC Credit Union offers five types of loans. The titles of these loans, with
their respective yearly interest rates charged to customers, are presented in
the table below:

Loan ID Type of Loan Interest Charged (%)

1 Industrial=commercial loans 9.00
2 Home extensions 8.00
3 First time home loans 6.50
4 Home loans–supplemented 7.50
5 Personal loans 10.00

The credit union has $50 million available for these loans. ABC’s objective is
to maximize the yield on investment in loans. The credit union maintains
the following policies for their loan investments:

1. Home extension loan investments cannot be greater than 25% of
first time home loan investments.

2. Industrial loan investments must be less than or equal to home
loan–supplemented investments.

3. The credit union invests at least 70% of the funds in home loans
(first time and supplemented).

4. For technical reasons, there must be at least $3 invested in first time
home loans for every dollar invested in home loans–supplemented.

Decision variables:
Xi¼Dollars invested in loan ID i (i¼ 1, . . . , 5)

Objective function:

Maximize Z ¼ 0:09X1 þ 0:08X2 þ 0:065X3 þ 0:075X4 þ 0:10X5 (4:15)

Constraints:

1. Total available funds for lending is $50 millions:

X1 þ X2 þ X3 þ X4 þ X5 � 50 (4:16)

2. Home extensions loans cannot be higher than 25% of first time home
loans:

X2 � 0:25X3 (4:17)
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3. Industrial loans must be smaller than or equal to home loans–
supplemented:

X1 � X4 (4:18)

4. The credit union invests at least 70% of the funds in home loans
(first time and supplemented):

X3 þ X4 � 0:7(X1 þ X2 þ X3 þ X4 þ X5) (4:19)

5. For technical reasons, there must be at least $3 invested in first time
home loans for every dollar invested in home loans–supplemented:

X3 � 3X4 (4:20)

6. Nonnegativity constraint: Xi � 0 8i
After rearranging the variables, one obtains the following formu-
lation:

Maximize Z ¼ 0:09X1 þ 0:08X2 þ 0:065X3 þ 0:075X4 þ 0:10X5

2

X1 þ X2 þ X3 þ X4 þ X5 � 50 Availability of funds

X2 � 0:25X3 � 0 Policy 1

X1 � X4 � 0 Policy 2

�0:7X1 � 0:7X2 þ 0:3X3 þ 0:3X4 � 0:7X5 � 0 Policy 3

X3 � 3X4 � 0 Policy 4

Xi � 0 8i

Model (4:4)

Example 4.4: An oil blending problem
A multinational oil supplier produces two grades of gasoline, U (unleaded)
and L (leaded), which it sells for $1.10 and $1.00 per liter, respectively. The
refinery can buy three different types of refined oil, from three different
sources, with the following constituents and prices:

Refined
Constituents

Oil A B C Price=L

1 0.70 0.20 0.10 $0.60
2 0.25 0.25 0.50 $0.50
3 0.60 0.10 0.30 $0.45

The U grade gasoline must have at least 50% of constituent A and not more
than 35% of constituent C. The L grade gasoline must not have more than
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30% of constituent C. Determine how the refined oils should be mixed so as
to maximize the profit.

Decision variables:
Xij¼ amount used of refined oil i (i¼ 1, 2, 3) in producing the gasoline grade
j ( j¼U, L)

Objective function:

The total amount of grade U gasoline produced¼X1U þ X2U þ X3U

The total amount of grade L gasoline produced¼X1L þ X2L þ X3L

The total amount of refined oil 1 used¼X1U þ X1L

The total amount of refined oil 2 used¼X2U þ X2L

The total amount of refined oil 3 used¼X3U þ X3L

Total profit¼ (total revenue from the gasoline grades U and L) ]

(the total cost of refined oils 1, 2, and 3 used in pro-
duction of the gasoline grades U and L)

The objective is to maximize the profit:

Maximize Z ¼ 1:10(X1U þ X2U þ X3U)þ 1:00(X1L þ X2L þ X3L)

� 0:60(X1U þ X1L)� 0:50(X2U þ X2L)� 0:45(X3U þ X3L)

(4:21)

After simplification, one obtains

Maximize Z ¼ 0:50X1U þ 0:60X2U þ 0:65X3U þ 0:40X1L þ 0:50X2L þ 0:55X3L

(4:22)

Constraints:

1. Grade U gasoline must contain at least 50% of constituent A.

The total amount of grade U gasoline produced¼X1Uþ X2Uþ X3U

The total amount of constituent A in the refined oils 1, 2, and 3 used
in the production of grade U gasoline¼ 0:70X1U þ 0:25X2U þ 0:60X3U

So the constraint is

0:70X1U þ 0:25X2U þ 0:60X3U � 0:5(X1U þ X2U þ X3U) (4:23)

After simplification, the constraint becomes

0:20X1U � 0:25X2U þ 0:10X3U � 0 (4:24)

2. Grade U gasoline must not contain more than 35% of con-
stituent C.
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The total amount of grade U gasoline produced¼X1Uþ X2Uþ X3U

The total amount of constituent C in the refined oils 1, 2, and 3
used in the production of grade U gasoline¼ 0.10X1U þ 0.50X2U þ
0.30X3U

So the constraint is

0:10X1U þ 0:50X2U þ 0:30X3U � 0:35(X1U þ X2U þ X3U) (4:25)

After simplification, the constraint becomes

�0:25X1U þ 0:15X2U � 0:05X3U � 0 (4:26)

3. Grade L gasoline must not contain more than 30% of con-
stituent C.

The total amount of grade L gasoline produced¼X1L þ X2L þ X3L

The total amount of constituent C in the refined oils 1, 2, and 3
used in the production of grade U gasoline¼ 0.10X1L þ 0.50X2L þ
0.30X3L

So the constraint is

0:10X1L þ 0:50X2L þ 0:30X3L � 0:30(X1L þ X2L þ X3L) (4:27)

After simplification, the constraint becomes

�0:20X1L þ 0:20X2L � 0 (4:28)

The final overall LP model is

Maximize Z ¼ 0:50X1U þ 0:60X2U þ 0:65X3U þ 0:40X1L

þ 0:50X2L þ 0:55X3L

2
� 0:20X1U � 0:25X2U þ 0:10X3U � 0 At least 50% of A in U

� 0:25X1U þ 0:15X2U � 0:05X3U � 0 Not more than 35% of C in U

� 0:20X1L þ 0:20X2L � 0 Not more than 30% of C in L

Xij � 0 8i, j Model (4:5)

4.3.3 Maintaining Certain Ratios among Different Variables

In Example 4.3, the constraints given by Equations 4.17, 4.18, and 4.20
indicate that one variable must be less than or equal to (or greater than or
equal to) n times that of another variable, where n > 0. There are also many
practical situations where the quantities of different products (or items)
must be of specific ratios to one another. For example, in a sales department,
products A, B, and C could be required in a ratio of 2:3:4. An example of
modelling such a situation will be provided here.
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Example 4.5: A product mix problem
ABC International Manufacturing Company produces and markets three
products P1, P2, and P3. Time to manufacture product P1 is twice that for P2
and thrice that for P3 and the products are to be produced in the ratio of
3:4:5. The raw material requirements for each product and the availability
of the raw materials are given in the following table. If the whole labor force
is engaged in only producing product P1, time will permit 1600 units of P1
to be produced. There is a demand for at least 185, 250, and 200 units of
products P1, P2, and P3 to be produced and the profit earned per unit is $50,
$40, and $70, respectively. Find the quantities of P1, P2, and P3 to be
produced?

Requirements per Unit of Product (kg)
Total

Availability (kg)Raw Materials P1 P2 P3

R1 6 4 9 5000
R2 3 7 6 6000

Decision variables:
X1, X2, X3 denote the number of units of products P1, P2, and P3 to be
manufactured.

Objective function:
The objective is to maximize the profit.

Maximize Z ¼ 50X1 þ 40X2 þ 70X3 (4:29)

Constraints:

1. Raw material limitations:

For raw material 1: 6X1 þ 4X2 þ 9X3 � 5000 (4:30)

For raw material 2: 3X1 þ 7X2 þ 6X3 � 6000 (4:31)

2. Capacity constraint: As product P2 requires one-half and product P3
requires one-third of the time required by product P1, the constraint
on the number of units manufactured can be expressed as below:

Assume each product P1 takes t amount of time, so

tX1 þ ðt=2ÞX2 þ ðt=3ÞX3 � 1600t,

which can be rewritten as

X1 þ ð1=2ÞX2 þ ð1=3ÞX3 � 1600 (4:32)

Sarker/Optimization Modelling: A Practical Approach 43102_C004 Final Proof page 69 22.8.2007 11:32pm Compositor Name: JGanesan

Simple Modelling Techniques I 69



3. Market demand constraints:

For product P1: X1 � 185 (4:33)

For product P2: X2 � 250 (4:34)

For product P3: X3 � 200 (4:35)

4. Product ratio constraints: Since the products P1, P2, and P3 are to
be produced in the ratio 3:4:5, X1:X2:X3¼ 3:4:5 or

X1

3
¼ X2

4
¼ X3

5

or
X1

3
¼ X2

4
and

X2

4
¼ X3

5

or 4X1 � 3X2 ¼ 0 and 5X2 � 4X3 ¼ 0

The corresponding constraints are

4X1 � 3X2 ¼ 0 (4:36)

5X2 � 4X3 ¼ 0 (4:37)

So the final LP model becomes

Maximize Z ¼ 50X1 þ 40X2 þ 70X3

2

6X1 þ 4X2 þ 9X3 � 5000 Raw material 1 availability

3X1 þ 7X2 þ 6X3 � 6000 Raw material 2 availability

X1 þ ð1=2ÞX2 þ ð1=3ÞX3 � 1600 Production capacity

X1 � 185 Demand constraint for product P1

X2 � 250 Demand constraint for product P2

X3 � 200 Demand constraint for product P3

4X1 � 3X2 ¼ 0 Ratio constraint 1

X2 � 4X3 ¼ 0 Ratio constraint 2

X1, X2, X3 � 0 Nonnegativity Model (4:6)

4.3.4 One Constraint Is a Fraction of Another Constraint

In Examples 4.3 through 4.5, we discussed some relationships that may be
found between different variables or groups of variables. In some cases,
similar relationships may be necessary for the constraint functions. For
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example, a balanced (or uniform) work load among different sections of an
organization may be required. See the following examples.

Example 4.6: A crop mix problem
Northern Queensland Agriculture Incorporated (NQAI) operates three agri-
cultural farms with similar soil and weather conditions. Each farm has a
limited amount of usable land and limited amount of water for irrigation.
The data for usable land and available water are given below:

Farm

Land Available

(Acres)

Water Available

(Acre Feet)

1. Lakefield 500 1600
2. Blackbull 600 2000
3. Buchanan 400 1000

NQAI is considering three crops for cultivation, which differ greatly in their
expected profit per unit area and in their usage of water. Furthermore, the
total area that can be used for each of the crops is limited by the amount of
appropriate harvesting equipments and personnel available.

Crop

Maximum

Acreage

Water Consumption

in Acre Feet per Acre

Expected Profit

per Acre ($)

Wheat 600 5 450
Potato 700 4 350
Canola 300 3 150

In order to maintain a balance work load among the farms, it is the policy of
NQAI that the percentage of usable area cultivated must be equal at each
farm. However, the individual farm is free to choose any combination of
crops to be cultivated in its land. NQAI wishes to find how much of each
crop should be produced at each farm to maximize the expected profit.
Formulate the problem as an LP model.

Decision variables:
Let Xij (i¼ 1, 2, 3 for farm in Lakefield, Blackbull, and Buchanan; j¼A, B, C
for crop wheat, potato, and canola) represent the number of acres of ith farm
to be allotted to the jth crop.

Objective function:

Total area used for wheat by all three farms¼X1A þ X2A þ X3A

Total area used for potato by all three farms¼X1B þ X2B þ X3B

Total area used for canola by all three farms¼X1C þ X2C þ X3C
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The objective is to maximize the total profit

Maximize Z ¼ 450(X1A þ X2A þ X3A)þ 350(X1B þ X2B þ X3B)

þ 150(X1C þ X2C þ X3C) (4:38)

Constraints:

1. Requirements of water in acre feet at each farm:

Farm Lakefield: 5X1A þ 4X1B þ 3X1C � 1600 (4:39)

Farm Blackbull: 5X2A þ 4X2B þ 3X2C � 2000 (4:40)

Farm Buchanan: 5X3A þ 4X3B þ 3X3C � 1000 (4:41)

2. Availability of usable acreage at each farm:

Farm Lakefield: X1A þ X1B þ X1C � 500 (4:42)

Farm Blackbull: X2A þ X2B þ X2C � 600 (4:43)

Farm Buchanan: X3A þ X3B þ X3C � 400 (4:44)

3. Usage of acreage for each crop due to equipment limitations:

For wheat: X1A þ X2A þ X3A � 600 (4:45)

For potato: X1B þ X2B þ X3B � 700 (4:46)

For canola: X1C þ X2C þ X3C � 300 (4:47)

4. To ensure the percentage of usable acreage is same at each farm:

X1A þ X1B þ X1C

500

� �

100 ¼ X2A þ X2B þ X2C

600

� �

100

¼ X3A þ X3B þ X3C

400

� �

100

or 6(X1A þ X1B þ X1C) ¼ 5(X2A þ X2B þ X2C)

and 4(X2A þ X2B þ X2C) ¼ 6(X3A þ X3B þ X3C)

or

6(X1A þ X1B þ X1C)� 5(X2A þ X2B þ X2C) ¼ 0 (4:48)

and

4(X2A þ X2B þ X2C)� 6(X3A þ X3B þ X3C) ¼ 0 (4:49)
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So the final model becomes

Maximize Z ¼ 450(X1A þX2A þX3A)þ 350(X1B þX2B þX3B)

þ 150(X1C þX2C þX3C)

2
5X1A þ 4X1B þ 3X1C � 1600 Water availability in Lakefield

5X2A þ 4X2B þ 3X2C � 2000 Water availability in Blackbull

5X3A þ 4X3B þ 3X3C � 1000 Water availability in Buchanan

X1A þX1B þX1C � 500 Land availability in Lakefield

X2A þX2B þX2C � 600 Land availability in Blackbull

X3A þX3B þX3C � 400 Land availability in Buchanan

X1A þX2A þX3A � 600 Equipment restriction for wheat

X1B þX2B þX3B � 700 Equipment restriction for potato

X1C þX2C þX3C � 300 Equipment restriction for canola

6 (X1A þX1B þX1C)� 5 (X2A þX2B þX2C) ¼ 0 Uniform loading

4 (X2A þX2B þX2C)� 6 (X3A þX3B þX3C) ¼ 0 Uniform loading

Xij � 0, i ¼ 1, 2, 3; j ¼ A, B, C Nonnegativity
Model (4:7)

Example 4.7: A manufacturing planning problem
A small machine shop has one drilling and five milling machines, which are
to be used to produce a finished product consisting of two parts, P1 and P2.
The productivity of each machine for the two parts is given below:

Production Time (Minutes per Piece)

Part Profit ($ per Piece) Drilling Milling

P1 4 3 20
P2 5 5 15

It is desired to maintain a balanced loading on all machines such that no
machine runs for more than 30 min per day longer than any other machine
(assume that the milling load is split evenly among all five milling
machines). Formulate a linear program to divide the work time of each
machine to maximize the profit assuming an 8 h working day.

Decision variables:
Let Xi¼number of part i (i¼ 1 and 2 for P1 and P2 respectively) produced
per day

Objective function:
The objective is to maximize the profit.

Maximize Z ¼ 4X1 þ 5X2 (4:50)
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Constraints:

1. Loading constraint:

The load on each milling machine (in minutes)¼ (20X1þ15X2)=
5¼ 4X1 þ 3X2.

The load on the drilling machine (in minutes)¼ 3X1 þ 5X2.
Thus, the time restriction (in minutes) on each milling machine is

4X1 þ 3X2 � 8� 60 ¼ 480 or

4X1 þ 3X2 � 480 (4:51)

Similarly, for the drilling machine:

3X1 þ 5X2 � 480 (4:52)

2. Machine balancing constraint:

The machine balance constraint can be represented by

j(4X1 þ 3X2)� (3X1 þ 5X2)j � 30 or jX1 � 2X2j � 30

This is a nonlinear constraint. The meaning of this constraint is if
X1 � 2X2, then (X1 ] 2X2) would be a positive quantity that is
expected to be less than or equal to 30, and if 2X2 � X1, then (2X2 ]

X1) would be positive that is expected to be less than or equal to 30.
This constraint can be replaced by the following linear

constraints:

X1 � 2X2 � X3 (4:53)

2X2 � X1 � X3 (4:54)

where X3 represents the positive difference.

X3 � 30 (4:55)

So the LP model is

Maximize Z ¼ 4X1 þ 5X2

2
4X1 þ 3X2 � 480 Milling machine

3X1 þ 5X2 � 480 Drilling machine

X1 � 2X2 � X3 � 0 Load balancing Model (4:8)

2X2 � X1 � X3 � 0 Load balancing

X3 � 30 Load balancing

X1, X2, X3 � 0 Nonnegativity
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4.3.5 Maxi–Min or Mini–Max Objective Function

In many situations, one would like to minimize (or maximize) the maximum
(or minimum) value of two or more variables or constraint functions. Two
examples are provided below to show how to handle such conditions.

Example 4.8: A manufacturing planning problem
Consider Example 4.7 with a different objective. Formulate a linear program
to divide the work time of each machine to obtain the maximum number of
completed assemblies assuming an 8 h working day.

The number of completed assemblies cannot exceed the smaller value of
part 1 and part 2 produced. Thus, the objective function is to maximize
Z¼minimum (X1, X2). This is again a nonlinear function. However, another
trick can be applied to represent it as a linear function.

Let Y¼minimum of (X1, X2), where Y represents the number of com-
pleted assemblies.

This means that

X1 � Y or X1 � Y � 0 (4:56)

X2 � Y or X2 � Y � 0 (4:57)

and the objective is to

Maximize Z ¼ Y (4:58)

Thus, the modified LP formulation becomes

Maximize Z ¼ Y

2
4X1 þ 3X2 � 480 Milling machine

3X1 þ 5X2 � 480 Drilling machine

X1 � 2X2 � X3 � 0 Load balancing

2X2 � X1 � X3 � 0 Load balancing

X3 � 30 Load balancing

X1 � Y � 0 Minimum production

X2 � Y � 0 Minimum production

X1, X2, X3, Y � 0 Nonnegativity

Model (4:9)

Example 4.9: A production planning problem
Melbourne East Spares Manufacturer produces a specialized product.
Each unit of the product consists of five units of component C1 and four
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units of component C2. These two components (C1 and C2) require two
different raw materials (R1 and R2) coming from outside sources. The
availability of raw materials R1 and R2 is 120 and 240 units, respectively.
The components can be produced using three different processes. Each
process is capable of producing both components in a single production
run (like a batch production mode). However, the number of components
produced varies from process to process. The raw materials required per
production run and the number of units for each component produced is
given in the following table:

Input per Production

Run (Units)

Output per Production

Run (Units)

Process

Raw

Material R1

Raw

Material R2 Part C1 Part C2

1 7 5 6 4
2 4 7 5 8
3 2 9 7 3

Determine the number of production runs for each process so as to maxi-
mize the total number of completed units of the final product.

Decision variables:
Let Xi represent the number of production runs for process i (i¼ 1, 2, and 3).

Objective function:
The objective is to maximize the total number of units of the final product.

The total number of units of component C1 produced by different
methods is 6X1 þ 5X2 þ 7X3 and for component C2 is 4X1 þ 8X2 þ 3X3.

Since each unit of the final product requires five units of component C1
and four units of component C2, it is evident that the maximum number of
units of the final product cannot exceed the smaller value of

6X1 þ 5X2 þ 7X3

5
and

4X1 þ 8X2 þ 3X3

4

Thus the objective is to maximize Z, where

Z ¼Min
6X1 þ 5X2 þ 7X3

5
,

4X1 þ 8X2 þ 3X3

4

� �

(4:59)

The above formulation violates the LP properties since the objective func-
tion is not linear. However, it can be easily reformulated into a linear
function.
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Let Y ¼Min
6X1 þ 5X2 þ 7X3

5
,

4X1 þ 8X2 þ 3X3

4

� �

It follows that
6X1 þ 5X2 þ 7X3

5
� Y and

4X1 þ 8X2 þ 3X3

4
� Y

That is 6X1 þ 5X2 þ 7X3 � 5Y � 0

and 4X1 þ 8X2 þ 3X3 � 4Y � 0.

These two inequalities will be used as constraints and the objective
will be to maximize Y.

Constraints:
The only other constraints required are for raw material availability:

Raw material R1: 7X1 þ 4X2 þ 2X3 � 120 (4:60)

Raw material R2: 5X1 þ 7X2 þ 9X3 � 240 (4:61)

Hence the final LP model becomes

Maximize Y

2
6X1 þ 5X2 þ 7X3 � 5Y � 0 Maxi---min constraint

4X1 þ 8X2 þ 3X3 � 4Y � 0 Maxi---min constraint

7X1 þ 4X2 þ 2X3 � 120 Raw material R1 Model (4:10)

5X1 þ 7X2 þ 9X3 � 240 Raw material R2

X1, X2, X3 � 0 Nonnegativity

4.3.6 Multi-Period Modelling

Many planning problems involve multi-period scenarios. Multi-period
planning takes into account many time periods into the future. In such
cases, the mathematical model is used to solve the planning process in the
individual time periods as well as linking the planning process from one
period to the next. Multi-period modelling is very useful when the model
parameters such as demand, production level, price, and other factors
fluctuate from one period to the other.

Example 4.10: A multi-period production planning problem
North Sydney Production Limited (NSPL) produces exhaust control
valves to meet customer demands. The customers place their orders in
advance and the demand per week is not constant. However, the company
has a fixed production capacity of 1000 valves per week. The total demand
of exhaust control valves over the next 4 weeks is given below:
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Week (i) Demand (Di Units)

1 800
2 700
3 1200
4 1100

The unit production cost is $50. The company is allowed to carry over any
extra production, they make in a given week, to sell in a future week.
However, it costs $5 per unit per week for storage, handling, and insurance,
commonly called inventory holding cost. The setup cost is assumed to be
negligible. Formulate the problem to determine a production plan at mini-
mum possible cost.

Assumptions:

. Products are either delivered to the customers or stored at the end
of the week.

. There is no inventory at the beginning of the production and the
final inventory must be zero.

Decision variables:

Xi¼number of units produced in week i (i¼ 1, 2, 3, and 4)

Ii ¼number of units in the inventory at the end of week i

Objective function:
The objective is to minimize the production plus inventory holding costs.

Minimize Z ¼ 50(X1 þ X2 þ X3 þ X4)þ 5(I1 þ I2 þ I3 þ I4) (4:62)

Constraints:

1. Production capacity

In any week, the production cannot exceed the available capacity.

Xi � 1000 for all i (4:63)

2. Meeting demand

The production in a week plus the items (inventory) carried from
the previous week must be equal to the demand in that week plus
items stored for future weeks.

Xi þ Ii�1 ¼ Di þ Ii for all i

or Xi þ Ii�1 � Ii ¼ Di for all i

also I0 ¼ I4 ¼ 0

Sarker/Optimization Modelling: A Practical Approach 43102_C004 Final Proof page 78 22.8.2007 11:32pm Compositor Name: JGanesan

78 Optimization Modelling: A Practical Approach



Here, the inventory variables Ii link one week to the next. The model is
flexible enough to allow inventory to be carried over from one week to any
future week via the intermediate weeks. The model will suggest the mini-
mum possible inventory to carry over from one week to future weeks since
the objective is to minimize the total cost.

The final LP model is

Minimize Z ¼ 50(X1 þ X2 þ X3 þ X4)þ 5(I1 þ I2 þ I3 þ I4)

2
X1 � 1000

X2 � 1000 Capacity constraints

X3 � 1000

X4 � 1000 Model (4:11)

X1 � I1 ¼ 800

X2 þ I1 � I2 ¼ 700 Demand and linkage constraints

X3 þ I2 � I3 ¼ 1200

X4 þ I3 ¼ 1100

Xi, Ii � 0 8i Nonnegativity

4.3.7 Transforming Infeasible Solutions to Satisfactory Solutions

A mathematical programming model can be infeasible for many reasons
such as wrong formulation, wrong data, or inconsistent=infeasible con-
straints. By carefully checking or debugging the model, one can, in many
cases, rectify the model and remove any inconsistencies existing in the con-
straints. However, if the constraints are infeasible, it is impossible to obtain a
feasible solution to the problem. The problem of infeasibility is addressed
below using an example.

Example 4.11: A product mix problem
Consider the following LP problem that maximizes the profit generated
from producing four products subject to constraints involving available
cash, working capital, and three technological constraints as follows.

Decision variables:
xi¼ quantity produced of product i (i¼ 1, 2, 3, and 4).

Objective function:

Maximize Z ¼ 112x1 þ 162x2 þ 192x3 þ 89x4 (4:64)

Subject to
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Technological constraints:

x1 þ x2 þ x3 þ 0:333x4 � 100 Technological 1 (4:65)

x2 þ x3 þ 0:143x4 � 100 Technological 2 (4:66)

x3 þ x4 � 150 Technological 3 (4:67)

Other constraints:

168x1 þ 288x2 þ 288x3 þ 391x4 � 67,000 Available cash (4:68)

150x1 þ 80x2 þ 86x3 þ 70x4 � 16,000 Working capital (4:69)

xi � 0 for all i (4:70)

The solution to the above LP model is

x1 ¼ 21:44, x2 ¼ 28:55, x3 ¼ 0, x4 ¼ 150, and Z ¼ $20,948

Later, it is realized that the available cash requirement should have been
increased from $67,000 to $72,000. That change makes the model infeasible
as there is now no feasible solution space. So the LP approach is not
appropriate any more for this problem. It is clear that the model has become
infeasible because of the available cash constraint. Instead of reducing the
RHS of that constraint just to obtain a feasible solution, a preferred option
might be to develop a negotiated production plan to meet the financial plan.
In such a situation, goal programming (GP) is an appropriate approach to
find the satisfactory solutions.

Formulating the GP model:
The technological constraints are kept unchanged (due to other pro-
duction limitations), so they are same as LP shown in Equations 4.65
through 4.67.

Goal constraints (changeable constraints):

1. Available cash (assuming cash is the most important or pre-
ferred goal):
168x1 þ 288x2 þ 288x3 þ 391x4 � 67,000 becomes

168x1 þ 288x2 þ 288x3 þ 391x4 þ d�1 � dþ1 ¼ 72,000 (4:71)

d�1 and dþ1 are the underachievement and overachievement factors
(deviational variables) for available cash, respectively.

Other goal constraints (in the order of importance)

Sarker/Optimization Modelling: A Practical Approach 43102_C004 Final Proof page 80 22.8.2007 11:32pm Compositor Name: JGanesan

80 Optimization Modelling: A Practical Approach



2. Working capital:
150x1 þ 80x2 þ 86x3 þ 70x4 � 16,000 becomes

150x1 þ 80x2 þ 86x3 þ 70x4 þ d�2 � dþ2 ¼ 16,000 (4:72)

d�2 and dþ2 are the underachievement and overachievement factors
for working capital, respectively.

3. Profit—Objective function in LP:

112x1 þ 162x2 þ 192x3 þ 89x4 þ d�3 � dþ3 ¼ 23,000 (4:73)

d�3 and dþ3 are the underachievement and overachievement factors
for the profit target, respectively. The profit target of $23,000 is
assumed because it is slightly higher than the LP solution.

GP objective function:
The objective is to minimize the weighted sum of all undesirable
deviations:

Minimize Z ¼ w1d�1 þ w2d�2 þ w3d�3 (4:74)

Here, d�1, d�2 , and d�3 are the undesirable deviations from available
cash, working capital, and profit target, respectively. The terms w1,
w2, and w3 are the weights for first, second, and third goals,
respectively, where w1 > w2 > w3.

The final GP model is

Minimize Z ¼ w1d�1 þ w2d�2 þ w3d�3
Subject to

x1 þ x2 þ x3 þ 0:333x4 � 100

x2 þ x3 þ 0:143x4 � 100

x3 þ x4 � 150 Model (4:12)

168x1 þ 288x2 þ 288x3 þ 391x4 þ d�1 � dþ1 ¼ 72,000

150x1 þ 80x2 þ 86x3 þ 70x4 þ d�2 � dþ2 ¼ 16,000

112x1 þ 162x2 þ 192x3 þ 89x4 þ d�3 � dþ3 ¼ 23,000

xi, d�i , dþi � 0 8i

4.3.8 Single to Multiple Objectives

Goal programming forms a single objective optimization model where the
objective is to minimize the sum of all undesirable deviations. In the above
example (Example 4.11), a negotiated production plan was perceived in
order to meet the financial plan—that meant a compromise between profit,
available cash, and working capital. In other words, the objective was to
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indirectly maximize the profit, available cash, and working capital. Such a
problem can be modelled as a multi-objective optimization model.

Example 4.12: A multi-objective product-mix problem
Consider Example 4.11. Formulate the problem as a multi-objective opti-
mization model considering all the goals as objectives. Note that we expect
the profit, available cash, and working capital as high as possible.

The following are the three objective functions (instead of goal constraints):

1. For available cash:

Maximize Z1 ¼ 168x1 þ 288x2 þ 288x3 þ 391x4 (4:75)

2. For working capital:

Maximize Z2 ¼ 150x1 þ 80x2 þ 86x3 þ 70x4 (4:76)

3. For profit, which was the original LP’s objective:

Maximize Z3 ¼ 112x1 þ 162x2 þ 192x3 þ 89x4 (4:77)

The multi-objective LP model becomes

Maximize Z1 ¼ 168x1 þ 288x2 þ 288x3 þ 391x4

Maximize Z2 ¼ 150x1 þ 80x2 þ 86x3 þ 70x4

Maximize Z3 ¼ 112x1 þ 162x2 þ 192x3 þ 89x4

Subject to Model (4:13)

x1 þ x2 þ x3 þ 0:333x4 � 100

x2 þ x3 þ 0:143x4 � 100

x3 þ x4 � 150

xi � 0 8i

4.4 Special Types of Linear Programming

There are a number of problems that are recognized as special types of the
LP problem such as transportation, assignment, transshipment, and other
network flow problems. All network flow problems can be represented as a
network—a collection of nodes connected by arcs. The nodes usually rep-
resent the locations and the arcs (lines) connecting the nodes, indicate
the valid paths, routes, or connections. When the lines connecting the
nodes in a network are arrows that indicate a direction, such arcs in the
network are called directed arcs. In this section, we will introduce several
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simple network flow problems, as special types of LP, their structures and
modelling approaches.

4.4.1 Transportation Problem

The transportation problem deals with the transportation of goods at mini-
mum cost, from several sources to a number of different destinations. In
this type of problem, the goods are only allowed to be directly transported
from source to destination. That means, no transshipments are allowed
between sources or between destinations. The capacities (always limited)
of the sources, the demands of the destinations, and the unit transportation
costs from each source to each and every destination are known. This is a
specially structured problem and any variation to this description would
not allow such a problem to be recognized as a transportation problem.

The problem, here, is to determine how many units should be shipped
from each source to each destination so that all demands are satisfied at the
minimum total shipping cost.

Example 4.13: A transportation problem
Austral Steel Company has two re-rolling plants, in locations P1 and P2 with
supply capacities of 100 and 120 tonnes rod (of fixed diameter) per day,
respectively. Austral has three distribution centers at locations DC1, DC2,
and DC3. The distribution centers need, if possible, 80, 120, and 60 tonnes
of rod each day, respectively, to meet their distribution demands. The
shipping costs ($=tonne) from each plant to each distribution center are
given below:

From=to DC1 DC2 DC3

Plant-P1 1 2 3
Plant-P2 4 1 5

Formulate the problem as a mathematical model.
The above transportation problem can be explained by using a network as

shown in Figure 4.1.
The arrows indicate the existing paths and directions of flow.
The problem can also be explained in a tabular form.
In Table 4.1
Rows 2 and 3 are associated with the sources of supply. Each source is

represented by a row.
Columns 2, 3, and 4 are associated with the destinations. Each destination

is represented by a column.
Column 5 (rows 2 and 3) represent the capacities of the sources.
Row 4 (columns 2, 3, and 4) represent the demands of the destination points.
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Each cell contains the transportation cost associated with the transport
from source to destination (top right-hand corner), for example cell (P1–
DC1) represents the transportation cost of $1 for transporting one unit from
source P1 to destination DC1.

Lower right-hand corner cell shows the total supply and total demand
involved in this problem.

Defining variables:
Xij¼ quantity to be shipped from source i (i¼ 1 for P1 and 2 for P2) to
destination j ( j¼ 1 for DC1, 2 for DC2, and 3 for DC3).

The transportation table with the decision variables is shown in Table 4.2.

Objective function:
The objective is to minimize the overall shipping costs. It is simply the sum
of all variables (as written in the cells in Table 4.2) multiplied by their
corresponding unit costs.

TABLE 4.1

Tabular Representation of Transportation Problem

To
DC1 DC2 DC3 Supply

From

P1 1 2 3 100
Cell P1–DC1 Cell P1–DC2 Cell P1–DC3

P2 4 1 5 120
Cell P2–DC1 Cell P2–DC2 Cell P2–DC3

Demand 80 120 60 220
260

Demand

80

120

60

DC1

DC2

DC3

Source
Destination

Capacity

100

120

Plant
P1

Plant
P2

FIGURE 4.1
A transportation problem.
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Minimize Z ¼ 1X11 þ 2X12 þ 3X13 þ 4X21 þ 1X22 þ 5X23 (4:78)

Constraints:
Only supply and demand constraints are involved in transportation prob-
lems. There are three possible relationships between total supply and total
demand in transportation problems.

. Total supply < total demand: total demand cannot be satisfied by
the available supply. Here, supply constraints are equalities (¼)
but demand constraints are less than or equal to (�) inequalities.

. Total supply¼ total demand: total demand can be satisfied from the
available supply. All the constraints are in the equalities (¼) form.

. Total supply > total demand: there will be an excess supply. The
demand constraints are equalities but the supply constraints are
less than or equal to (�) inequalities.

In our example, total demand (¼ 260) is greater than total supply (¼ 220).
So the supply and demand constraints will be of equalities and less than
or equal to inequalities, respectively.

Supply constraints: The total supply from a plant to all destinations must
be equal to its capacity.

Plant P1: X11 þ X12 þ X13 ¼ 100 (4:79)

Plant P2: X21 þ X22 þ X23 ¼ 120 (4:80)

Demand constraints: The total supply received by a destination from all
sources must be less than or equal to its requirements.

Destination DC1: X11 þ X21 � 80 (4:81)

Destination DC2: X12 þ X22 � 120 (4:82)

Destination DC3: X13 þ X23 � 60 (4:83)

TABLE 4.2

Tabular Representation with Decision Variables

To
DC1 DC2 DC3 Supply

From

P1 1 2 3 100
X11 X12 X13

P2 4 1 5 120
X21 X22 X23

Demand 80 120 60 220
260
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The overall model is

Minimize Z ¼ 1X11 þ 2X12 þ 3X13 þ 4X21 þ 1X22 þ 5X23

Subject to

X11 þ X12 þ X13 ¼ 100 Supply constraint for P1

X21 þ X22 þ X23 ¼ 120 Supply constraint for P2 Model (4:14)

X11 þ X21 � 80 Demand constraint for DC1

X12 þ X22 � 120 Demand constraint for DC2

X13 þ X23 � 60 Demand constraint for DC3

Xij � 0 8i, j

Discussion question: What will happen if we put the ‘‘�’’ sign in place of the
‘‘¼ ’’ in supply constraints?

In the model, the coefficient of each variable in the constraint is exactly one,
and each variable exists exactly in two places—once in the supply constraints
and once in the demand constraints. Although the above model can be solved
as an LP model, the special structure of the model aids itself to the development
of a more efficient solution approach for solving transportation problems.

4.4.2 Assignment Problem

This is a special class of transportation problem where the decision maker
wants to assign a number of tasks to a number of individuals on a one-to-
one basis so that no individual gets more than one task and no one task gets
more than one individual assigned to it. The overall cost for an assignment
problem requires to be minimized. The assignment problem can be repres-
ented as an equivalent transportation problem assuming that

. Each task is a source

. Each individual is a destination

. There is a supply of exactly one unit in each source

. There is a demand of exactly one unit in each destination

. The cost of transportation is equal to the cost of the assignment

Example 4.14: An assignment problem
A local government’s public service unit wants to assign three health service
teams to three remote rural locations, one team to each location. Each team
is supposed to travel from the unit office to the assigned location on a daily
basis. Because of isolation of these locations from the service unit office, the
transportation costs and time windows for service differ from location to
location. These differences are reflected as the cost per service hour as
shown below. The problem is to find the assignment that minimizes the
total cost for a given hours of service in each location.
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Service Team Location (L1) Location (L2) Location (L3)

S1 25 20 30
S2 20 15 35
S3 18 19 28

Table 4.3 gives the tabular format of the problem.

Defining variables:
Xij¼ assignment of the ith (i¼ 1, 2, and 3) service team (or source) allocated
to the jth ( j¼ 1, 2, and 3) location (or destination).

Alternatively, we can define the binary variables as follows:

Xij ¼ 1 if ith service team is assigned to jth location
0 otherwise

�

8i, j

Objective function:
The objective is to minimize the overall assignment cost.

Minimize Z ¼ 25X11 þ 20X12 þ 30X13 þ 20X21 þ 15X22

þ 35X23 þ 18X31 þ 19X32 þ 28X33 (4:84)

Constraints:
There are two types of constraints similar to transportation problems.

Supply=service team constraint: One service team will be assigned to one
of the three locations.

Service team 1: X11 þ X12 þ X13 ¼ 1 (4:85)

Service team 2: X21 þ X22 þ X23 ¼ 1 (4:86)

Service team 3: X31 þ X32 þ X33 ¼ 1 (4:87)

Demand=location constraint: One location will receive only one of the three
service teams.

TABLE 4.3

Tabular Representation of an Assignment Problem

Location
L1 L2 L3 Supply

Service Team

S1 25 20 30 1

S2 20 15 35 1

S3 18 19 28 1

Demand 1 1 1 3¼ 3
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Location 1: X11 þ X21 þ X31 ¼ 1 (4:88)

Location 2: X12 þ X22 þ X32 ¼ 1 (4:89)

Location 3: X13 þ X23 þ X33 ¼ 1 (4:90)

The overall model is

Minimize Z ¼ 25X11 þ 20X12 þ 30X13 þ 20X21 þ 15X22

þ 35X23 þ 18X31 þ 19X32 þ 28X33

Subject to

X11 þ X12 þ X13 ¼ 1 Service team 1

X21 þ X22 þ X23 ¼ 1 Service team 2

X31 þ X32 þ X33 ¼ 1 Service team 3

X11 þ X21 þ X31 ¼ 1 Location 1

X12 þ X22 þ X32 ¼ 1 Location 2

X13 þ X23 þ X33 ¼ 1 Location 3

Xij � 0 (or Xij 2 0, 1) 8i, j

Model (4:15)

In addition to the special characteristics associated with transportation
problems, all the right-hand sides are exactly 1 in assignment problems.
The problem can be treated either as a linear program or an integer
program. However, it is usually preferable to recognize assignment prob-
lems as linear programs because of the availability of efficient solution
approaches for linear programs. Interestingly, there exists a very efficient
algorithm for assignment problem, which is discussed later.

4.4.3 Transshipment Problem

Transshipment problems are known as generalized versions of transport-
ation problems where shipments are allowed from a source to any destin-
ation via intermediate nodes if it saves on transportation costs. As you will
see, most of the other types of network flow problems can all be viewed as
simple variations to the transshipment problem. In fact, once you under-
stand how to formulate the transshipment problem, the other problem types
will be easy to model. In the transshipment problem, any node can act as
one of the following:

. Supply node

. Demand node

. Transshipment (or intermediate) node

. Supply plus transshipment node

. Demand plus transshipment node
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It is unusual for a node to act as both supply and demand node. If this is the
case for a node, for some reason, the net supply=demand will be calculated
separately and one then defines the type of node accordingly.

Example 4.15: A network flow problem
Consider a network flow problem illustrated in the Figure 4.2. There are six
towns=cities in the mid-southern part of New South Wales: (1) Wagga
Wagga, (2) Yass, (3) Cooma, (4) Canberra, (5) Goulburn, and (6) Batemans
Bay. For a given product, the net supply or demand for each node in the
network is indicated by a positive or negative number next to each node.
Positive numbers represent the demand at a given node, and the negative
numbers represent the supply available at the node. The transportation
cost per unit is given on each arc. Develop a mathematical model that
would minimize the overall transportation cost.

In this problem (Figure 4.2), Goulburn (node 5) is a supply node,
Batemans Bay (node 6) is a demand node and all other nodes are trans-
shipment nodes. Transshipment nodes can both send to and receive from
other nodes in the network. In addition, a transshipment node may have
its own supply or demand. For example, Wagga Wagga (node 1) has a
demand of 100 units, would receive goods from node 5, and deliver goods
to node 2.

Defining variables:
Xij¼ the number of items shipped (or flowing) from node i to node j

Note that not all variables exist in this network. The variables that exist
here are: X12, X24, X42, X34, X43, X36, X51, X54, and X56. In network flow

$45

$110

$120

$45
$50

$35

$40

$30

$100

−300
+80

+70

+150

−200

+100

1

3

4

6

5

2

FIGURE 4.2
A transshipment problem.
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problems, the number of variables in the LP model is equal to the number
of arcs (one variable for each arc) in the network.

Objective function:
The objective is to minimize the overall transportation cost.

Minimize Z ¼ 30X12 þ 40X24 þ 35X42 þ 50X34 þ 45X43 þ 120X36

þ 100X51 þ 45X54 þ 110X56 (4:91)

Constraints:
The number of constraints in the LP model is equal to the number of nodes
(one constraint for each node) in the network. In formulating the constraints
for cost minimization network flow problems, the following flow balance
rules are applied:

Condition Flow Balance Rule at Each Node

Total supply¼ total demand Inflow ] outflow¼ supply or demand
Total supply > total demand Inflow ] outflow � supply or demand
Total supply < total demand Inflow ] outflow � supply or demand

It should be noted that if the total supply in a network flow problem is less
than the total demand, then it will be impossible to satisfy all demands. In
our problem, the total supply is (300 þ 200) 500 and the total demand is
(100 þ 150 þ 70 þ 80) 400. That means, we will create a constraint at each
node of the following form:

Inflow� outflow � supply or demand

For example, consider node 1 (Wagga Wagga). The inflow to this node is X51

and the outflow from the node is X12 and the demand is 100 units. Accord-
ing to the flow balance rule, the constraint for node 1 is

Node 1: X51 � X12 � þ100 (4:92)

The constraint for node 5 (Goulburn), where no arcs flow into this node, can
be written as follows:

Node 5:�X51 � X54 � X56 � �200 (4:93)

Constraints for the remaining nodes:

Node 2: X12 þ X42 � X24 � þ150 (4:94)

Node 3: X43 � X34 � X36 � �300 (4:95)
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Node 4: X24 þ X34 þ X54 � X42 � X43 � þ70 (4:96)

Node 6: X56 þ X36 � þ80 (4:97)

So the overall LP model is

Minimize Z ¼ 30X12 þ 40X24 þ 35X42 þ 50X34 þ 45X43

þ 120X36 þ 100X51 þ 45X54 þ 110X56

Subject to

X51 � X12 � þ100 Node 1

X12 þ X42 � X24 � þ150 Node 2

X43 � X34 � X36 � �300 Node 3

X24 þ X34 þ X54 � X42 � X43 � þ70 Node 4

� X51 � X54 � X56 � �200 Node 5

X56 þ X36 � þ80 Node 6

Xij � 0 8i, j

Model (4:16)

As many optimization software products require the right-hand side of the
constraint equations to be positive, we rewrite the form of the constraint
equation for nodes 3 and 5 as follows. Note that this is not a problem for the
latest version of a number of software products.

So the modified LP model is

Minimize Z ¼ 30X12 þ 40X24 þ 35X42 þ 50X34 þ 45X43

þ 120X36 þ 100X51 þ 45X54 þ 110X56

Subject to

X51 � X12 � 100 Node 1

X12 þ X42 � X24 � 150 Node 2

� X43 þ X34 þ X36 � 300 Node 3

X24 þ X34 þ X54 � X42 � X43 � 70 Node 4

X51 þ X54 þ X56 � 200 Node 5

X56 þ X36 � 80 Node 6

Xij � 0 8i, j

Model (4:17)

4.4.4 Project Management Problem

A project is a well-defined sequence of events with a beginning and an end,
directed toward achieving a defined goal, and is conducted by people
satisfying time, cost, resource, and quality parameters. Managerial projects
involving complex and interrelated activities can easily be modelled as
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networks. A systematic analysis of project networks enables the manager to
plan, monitor, and allocate resources so that objectives can be attained
efficiently and on schedule. The project duration and other characteristic
factors of projects are calculated using a network technique. Once the
project has been represented by a network, the project management prob-
lem can be formulated as an LP model.

A project network is a logical and chronological set of activities
and events, graphically illustrating the relationships among the various
activities and events of the project. The project network can be drawn either
as an activity-on-arc (AOA) or an activity-on-node (AON) network. In the
AOA network, the arcs represent the activities, the arrow indicates
the direction of flow thereby maintaining the precedence relationships,
and the nodes represent the events (point in time). In the AON diagram,
the nodes represent the activities and the arrows=arcs maintain the prece-
dence relationships. In this section, we will discuss only the AOA networks
for project management.

A single AOA is represented as shown in Figure 4.3. The line (arrow, arc)
from node 1 to node 2 represents the activity X. Nodes 1 and 2, which
represent events, must satisfy the time constraint that t2 > t1 (where t1 and
t2 are the starting times for event 1 and 2, respectively). If the activity
duration for X is Xd, then t1 þ Xd � t2.

Let us consider a precedence requirement that activities B, C, and D can
be conducted simultaneously, but none can start until activity A has been
completed. This precedence requirement can be represented as Figure 4.4.

Assume that

TA¼ starting time of activity 1–2 or A

TB¼ starting time of activity 2–3 or B

TC¼ starting time of activity 2–4 or C

TD¼ starting time of activity 2–5 or D

and

XA¼ activity time of activity A

FIGURE 4.3
An activity-on-arc. Activity X

1 2

FIGURE 4.4
Example of precedence con-
straint 1.

Activity C

Activity D

Activity B

Activity A
1 2

5

4

3
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The finishing time of activity A, which is TA þ XA, must be less than or
equal to the starting times of B, C, and D. That means

TA þ XA � TB (4:98)

TA þ XA � TC (4:99)

TA þ XA � TD (4:100)

Another precedence constraint could be represented by having activities
A and B starting simultaneously but C can only start after both A and B have
finished. See the diagram in Figure 4.5 above.

Assume that

TA¼ starting time of activity 1–3 or A

TB ¼ starting time of activity 2–3 or B

TC¼ starting time of activity 3–4 or C

and

XA¼ activity time of activity A

XB ¼ activity time of activity B

The finishing times for activities A and B are TA þ XA and TB þ XB,
respectively. These two completion times must be less than or equal to the
starting time of C. That means

TA þ XA � TC (4:101)

TB þ XB � TC (4:102)

Consider four activities A, B, C, and D. A and B can start simultaneously,
C can start after A is completed but D must wait for both A and B to finish.
The corresponding network diagram is shown in Figure 4.6.

Activity C

Activity B

Activity A1

2

43

FIGURE 4.5
Example of precedence constraint 2.

Activity C

Dummy activity

Activity DActivity B

Activity A
1 2 5

43 6 FIGURE 4.6
Example of precedence constraint 3.
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The activity 2–3 is a dummy activity, which requires zero time and zero
resources. The only function of the dummy activity is to designate a precedence
relationship. Graphically, such activities are always shown as broken lines.

Assume that

TA¼ starting time of activity 1–2 or A

TB ¼ starting time of activity 3–4 or B

TC¼ starting time of activity 2–5 or C

TD¼ starting time of activity 4–6 or D

and

XA ¼ activity time of activity A

XB ¼ activity time of activity B

XDummy¼ activity time of the dummy activity

The finishing times for activity A and B are TA þ XA and TB þ XB. The
corresponding constraints are

For activity C: TA þ XA � TC (4:103)

For activity D: TA þ XA þ XDummy � TD (4:104)

and TB þ XB � TD (4:105)

Now consider six activities A, B, C, D, E, and F. E can start after A and C
are completed but F must wait until A, B, C, and D are completed. The
corresponding network diagram is as Figure 4.7.

Assume that

TA¼ starting time of activity 1–3 or A

TB ¼ starting time of activity 1–4 or B

TC¼ starting time of activity 2–3 or C

TD¼ starting time of activity 2–4 or D

TE ¼ starting time of activity 3–5 or E

TF ¼ starting time of activity 4–5 or F

FIGURE 4.7
Example of precedence constraint 4.

E

F

A

B

C

D

1 3

5

42
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and

XA ¼ activity time of activity A

XB ¼ activity time of activity B

XC ¼ activity time of activity C

XD ¼ activity time of activity D

XDummy¼ activity time of dummy activity

The corresponding constraints are

For activity E: TA þ XA � TE (4:106)

and

TC þ XC � TE (4:107)

For activity F: TA þ XA þ XDummy � TF (4:108)

TC þ XC þ XDummy � TF (4:109)

TB þ XB � TF (4:110)

and

TD þ XD � TF (4:111)

The project completion time in any project is defined as the time required to
complete all the activities of the project. If the project network has several
alternative paths from the first activity (or node) to the last activity (or
node), the completion time for the longest path is the project duration. The
longest path is also known as the critical path as any delay in this path will
increase the completion time of the whole project.

Example 4.16: A simple project management problem
Consider a small renovation project with the following activities:

Activity Description Duration Preceding Activities

a Paper work and drafting 3 None
b Manpower planning 4 a
b Material planning 4 a
d Transporting materials 2 c
e Site preparation 4 a
f Work Planning 6 c
g Hiring equipment 3 d, b
h Plan evaluation 1 e
i Renovation work 12 f, g
j Inspection and certification 2 i, h
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The network of the above project can be drawn as Figure 4.8.
The activities other than on the longest path have flexibility in starting

times as they can be started either at their earliest possible or latest possible
time. By definition, the earliest possible start time for an activity to occur is
immediately after all the preceding activities have been completed. The
latest start time is the time that allows an activity to occur without causing
a delay in the project-completion time. The LP model, for determining
project duration, is usually developed considering one of the above two
start times.

Defining variables:
Considering the earliest start times

Tk¼ earliest start time of activity k (k¼ a, b, . . . , j, where a, b, . . . , j represents
all the activities).

Defining project data:
tk¼ activity time of activity k (k¼ a, b, . . . , j).

Objective function:
The objective is to minimize the overall project completion time. It can be
achieved by minimizing the sum of the earliest start times of all activities.

Minimize Z ¼ Ta þ Tb þ Tc þ . . .þ Tj
(4:112)

Constraints:
The constraints represent only the precedence constraints.

At node 2:

Tb � Ta þ ta (4:113)

Tc � Ta þ ta (4:114)

Te � Ta þ ta (4:115)

1 764

3

2

5

8

c

a b

e h

g i j

d f

FIGURE 4.8
A project network.
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At node 3:

Td � Tc þ tc (4:116)

Tf � Tc þ tc (4:117)

At node 4:

Tg � Tb þ tb (4:118)

Tg � Td þ td (4:119)

At node 5:

Te � Th þ th (4:120)

At node 6:

Ti � Tf þ tf (4:121)

Ti � Tg þ tg (4:122)

At node 7:

Tj � Ti þ ti (4:123)

Tj � Th þ th (4:124)

Ti � 0 for all activities (4:125)

After organizing the variables in the left-hand side of the constraints and the
constants in the right-hand side, the final model becomes

Minimize Z ¼ Ta þ Tb þ Tc þ . . .þ Tj

Subject to

Tb � Ta � ta

Tc � Ta � ta

Te � Ta � ta

Td � Tc � tc

Tf � Tc � tc

Tg � Tb � tb

Tg � Td � td

Te � Th � th

Ti � Tf � tf

Ti � Tg � tg

Tj � Ti � ti

Tj � Th � th

Ti � 0 for all activities

Model (4:18)

After solving the model, the value of Tjþ tj would provide the project duration.
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4.5 Summary

In this chapter, we have introduced how one can use subscripts in variables
to make the mathematical model formulation more concise. A number of
examples have been provided to demonstrate the simple modelling tech-
niques as well as the use of subscripts. The interested readers may find more
examples in the books listed in the bibliography section of the chapter. In
the next chapter, we will provide more modelling techniques involving
integer and nonlinear variables. We will continue to present more examples
using integer and nonlinear variables.

Exercises

1. The commanding officer (CO) plans to move a part of his battalion to
another location. There are two types of vehicle available to him, a Ford
vehicle that can carry 25 m3 plus 5 personnel, and a Holden vehicle that
can carry 15 m3 plus 10 personnel. For security reason, all vehicles must
move together and they will be used for a single trip. The required
materials to be taken to the new location are organized in unit pallet
load of 2 m3. The CO requires transporting of a total of 60 pallet loads
and 40 personnel. There are a maximum of 30 Ford and 40 Holden
vehicles available. Each Ford vehicle is estimated to use 50 L of fuel per
trip, whereas the Holden vehicle will only use 30 L. If the CO wants to
move all the required materials and personnel at minimum fuel use,
what mix of Ford and Holden vehicles should the CO choose? Formu-
late the problem as an LP model.

2. CPS Investment Services must develop an investment portfolio for a
new client. CPS is considering six investment plans of three different
types for this client. The investment plans with their expected yield are
given below:

Investment Plan Estimated Annual Return (%)

A1 6
A2 5
B1 7
B2 8
C1 10
C2 9

The client is interested to invest $80,000. To minimize the risk in
investment, it is the CPS’s policy that at least 40% of the entire amount
be invested in units of type A and not more than 35% in type B or type
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C plan. Formulate the problem as an LP model in order to maximize
the total return.

3. A transport company requires the following number of drivers for its
trucks during 24 h.

Time Period Number Required

00–04 h 6
04–08 h 10
08–12 h 20
12–16 h 14
16–20 h 20
20–24 h 10

A driver may join for duty at midnight, 04, 08, 12, 16, and 20 h, and
work for either 4 or 8 h long shift. To ensure smooth operation, at least
half the drivers must be employed for 8 h shift in a 24 h cycle. Formu-
late the problem to find the number of drivers start at the beginning of
each time period for both 4 and 8 h shift by minimizing the total
number of driver–hours to be employed.

4. A paint company produces three grades of paints—inner paint, ceiling
paint, and wall paint. The production process is run on a three shift
basis. The limited resources with their requirements in each paint
production and availability are shown below:

Resource Requirement

Inner

Paint

Ceiling

Paint

Wall

Paint

Availability

per Month

Special additive (kg=L) 0.25 0.15 0.65 550 tonnes
Processing (kL=shift) 3.0 4.0 6.0 90 shifts
Packaging (kL=shift) 10.0 10.0 10.0 75 shifts

There are no limitations on other resources. The demands and profits
of these products are estimated as follows:

Inner Paint Ceiling Paint Wall Paint

Demand per month (kL) 150 350 550
Profit ($=kL) 5000 4000 3000

As per the contract signed, a minimum of 250 kL per month of wall
paint must be delivered to Home Mart. If the company is unable to
meet the market demand from its monthly production, it is the com-
pany policy that the percentage of demand unmet must be same for all
paints. Formulate an LP model for determining the monthly production
plan in order to maximize the overall profit.
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5. FFB fresh fruit business in Young, NSW, mixes three fruits—apples,
peaches, and nectarines to make three different types of baskets for local
market. Each basket contains approximately 5 kg fruits. The content of
three types of baskets is specified as follows:

Basket Type Apple Peach Nectarine

1 At least 30% At most 20% Rest
2 Rest At most 40% At least 20%
3 At least 20% Rest At most 30%

FFB purchases apple at a cost of $1.00=kg, peach $1.50=kg, and
nectarine $1.80=kg, and sells type-1 basket at $2.25=kg, type-2 basket
$3.00=kg, and type-3 basket $2.60=kg. The daily supply of fruit is
limited to 60 kg of apples, 70 kg of peaches, and 50 kg of nectarines.
FFB is able to sell all the fruit baskets they prepare for a given day.
Formulate an LP model to determine how the fruit be mixed in order to
maximize the profit.

6. A popular product is produced at three plants and is required to ship to
three warehouses. The supply from each plant, the delivery required
in each warehouse, and the unit transportation cost from each plant to
each warehouse is shown below:

Warehouse

Plant WH1 WH2 WH3 Plant Capacity

PL1 20 15 25 400
PL2 10 12 8 500
PL3 14 20 12 200
Warehouse demand 300 200 600

Develop an LP model for minimizing the transportation cost while
not violating the supply and demand constraints.

7. A supply chain network of Gordon Company consists of three plants, two
warehouses, and four customer centers. Plant capacities and shipping
costs ($) from each plant to each warehouse are given below:

Warehouse

Plant WH1 WH2 Capacity

PL1 5 8 500
PL2 9 6 400
PL3 6 7 300
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Customer demand and shipping costs ($) per unit from each warehouse
to each customer centers are shown below:

Customer Center

Warehouse CC1 CC2 CC3 CC4

WH1 7 5 9 5
WH2 4 7 8 9
Demand 200 300 400 300

Develop an LP model for minimizing the transportation cost while
not violating the supply, demand, and flow balance constraints.

8. Refer to Problem 7 in Exercises. Suppose that shipments between two
warehouses are permitted at $3 per unit and direct shipment can be
made from plant 2 to customer center 3 at a cost of $10 per unit.
Formulate an LP model for this problem.

9. Refer to Problem 8 in Exercises. Suppose that shipment between ware-
house 1 and customer center 4 cannot be made due to poor road
condition. Revise the LP model developed for Problem 7 in Exercises
to reflect this change.

10. A manufacturing firm has two drilling and four milling machines,
which are to be used to produce a finish product consisting of two
parts, P1 and P2. These parts can also be sold separately. The producti-
vity of each machine for the two parts is given below:

Production Time (Minutes per Piece)

Part Profit ($ per Piece) Drilling Milling

P1 10 8 15
P2 12 5 12

It is desired to maintain a balanced loading on all machines such
that no machine (by type) runs for more than 30 min per day longer
than any other machine (assume that the load is split evenly among
all machines of a given type). Formulate an LP model to divide the
work time of each machine to maximize the profit assuming an 8 h
working day.

11. Consider Problem 10 in Exercises with a different objective. Formu-
late an LP model to divide the work time of each machine to obtain
the maximum number of completed assemblies assuming an 8 h
working day.

Sarker/Optimization Modelling: A Practical Approach 43102_C004 Final Proof page 101 22.8.2007 11:32pm Compositor Name: JGanesan

Simple Modelling Techniques I 101



12. SunTech Electronics produces DVD recorders in their city plant. The
estimated demand for the product for next four periods is 3,000, 8,000,
5,000, and 2,000. At the beginning of period 1, SunTech has 50 workers.
SunTech spends $1,500 to hire a worker and $5,000 to fire a worker.
Workers are paid $12,000 per period. A newly hired worker can make
up to 50 recorders per period, whereas a previously hired worker can
make up to 80 recorders per period. Each DVD recorder is sold for $295.
It costs $15 to hold a DVD recorder in inventory for a period. Assume
that workers are hired and fired at the beginning of each period and the
products produced in any period are available to meet demand of that
period. Inventory at the beginning of period 1 is 500. Assume that
demand is lost if it cannot be met from either current stock or produc-
tion of current period. Develop a mathematical model for determining
the worker level in each period in order to maximize SunTech’s profit.
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5
Simple Modelling Techniques II

5.1 Introduction

In Chapter 4, we have introduced linear programming–based basic model-
ling techniques. In practice, many problems require integer (includes bin-
ary) and nonlinear variables for appropriately modelling the problems. In
this chapter, we would like to discuss simple integer and nonlinear model-
ling techniques frequently used by the modellers. In addition, few other
modelling techniques are presented. A number of examples will be pro-
vided to demonstrate the use of integer and nonlinear variables in model-
ling practical problems.

This chapter is organized as follows. After introduction of the chapter, we
discuss a number of simple modelling techniques such as precedence con-
straints, either–or constraints, K out of N constraints, yes=no decision, func-
tions with N possible values, mutually exclusive alternatives and contingent
decision, linking constraints, piecewise linear function, approximating non-
linear functions, deterministic models with probability terms, alternative
objective functions, constrained to unconstrained problem, simplifying
cross product of binary variables, fractional programming, unrestricted
variables, regression model, stochastic programming, and constraint pro-
gramming.

5.2 Precedence Constraints

In manufacturing planning and in project planning, the jobs, tasks, or
activities must be performed in a certain order or sequence. The order of
the jobs may be either prefixed or needs to be determined. For the case of a
prefixed order, which may be due to technical reasons, it is important to
find the starting and finishing times of each job. For the latter case, one is
required to determine not only the starting and finishing times but also the
order (=sequence) of the jobs.
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Example 5.1: A job sequencing problem
Suppose, there are two tasks A and B for a given job, and task B cannot be
started until task A is finished. In technical terms, task A is to precede task
B. Formulate a precedence constraint for these two tasks.

Note that the precedence constraint concept has been used in project
management in Section 4.4.4. We present another example here for conveni-
ence of explaining other modelling techniques in job sequencing.

Variables and parameters:
Let XA and XB be the starting times of tasks A and B, respectively, and dA is
the duration of performing task A.

Constraint:
The resulting precedence constraint is

XA þ dA � XB (5:1)

5.3 Either–or Constraints

Assume dB is the duration of performing task B mentioned in Example 5.1.
In that example, if one was asked to determine the sequence of tasks, then
either XA þ dA � XB or XB þ dB � XA would exist (not both of them)
depending, respectively, on whether A precedes B or B precedes A in the
optimal solution. That means, one of the two constraints must hold.

Example 5.2: Sequencing with an either–or decision
Formulate the sequencing constraints for the above conditions.

Variables:
The presence of either–or constraints poses a problem since the model is no
longer of the linear programming (LP) format (i.e., the either–or constraint
creates a nonconvex solution space). This difficulty is overcome by introdu-
cing the binary variables YAB defined by

YAB ¼
1 if task A preceeds task B
0 if task B preceeds task A

�

Constraint:
A transformation of the either–or constraints, discussed above, is required
as follows:

XA þ dA � XB þM(1� YAB) (5:2)

XB þ dB � XA þMYAB (5:3)
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Here, M is a sufficiently large number. If YAB¼ 1 (i.e., task A precedes task B)
in the optimal solution, the above two constraints can be written as follows:

XA þ dA � XB Active constraint (5:4)

XB þ dB � XA þM Redundant (5:5)

The second constraint is redundant because the right-hand side is very big
compared to the left-hand side. The redundant constraint has no effect on
the optimum solution.

If YAB¼ 0 (i.e., task B precedes task A) in the optimal solution, then the
second constraint becomes active and the first constraint redundant.

5.4 K out of N Constraints Must Hold

Consider the case where a model includes a set of N constraints such that
only K of these constraints must hold (where K < N). In the optimization
process, it is to choose the combination of K constraints that permits the
objective function to reach its best possible value. The (N–K) constraints not
chosen are, practically, eliminated from the problem, although feasible
solutions might coincidentally still satisfy some of them. This is a general
case for either–or constraints where we consider K¼ 1 and N¼ 2.

Example 5.3: A problem with three mutually exclusive constraints
Consider the following problem with three mutually exclusive constraints
where K¼ 1 and N¼ 3.

Maximize Z ¼ 4x1 þ 7x2

Subject to only one of the following constraint:

2x1 þ x2 � 6,000

or 3x1 þ 7x2 � 13,000

or 5x1 þ 6x2 � 12,500

x1, x2 � 0

Model (5:1)

In order to incorporate the condition of only one of the above constraints,
one defines an auxiliary variable

yi ¼ 1 if constraint i is chosen
0 otherwise

�
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Hence the equivalent integer programming model becomes

Maximize Z ¼ 4x1 þ 7x2

Subject to

2x1 þ x2 � 6,000þM(1� y1)

3x1 þ 7x2 � 13,000þM(1� y2)

5x1 þ 6x2 � 12,500þM(1� y3)

y1 þ y2 þ y3 ¼ 1

x1, x2 � 0

and yi ¼ 0, 1 for all i

Model (5:2)

M is a very large number to ensure that the other two constraints become
redundant. The constraint ( y1 þ y2 þ y3 ¼ 1) ensures that only one con-
straint will be active. If y1¼ 1, then constraint 1 is active and constraints
2 and 3 are redundant because y2¼ y3¼ 0.

This model can be formulated in a slightly different way by reversing the
definition of the auxiliary variable:

yi ¼ 0 if constraint i is chosen
1 otherwise

�

The alternative integer programming model becomes

Maximize Z ¼ 4x1 þ 7x2

Subject to

2x1 þ x2 � 6,000þMy1

3x1 þ 7x2 � 13,000þMy2

5x1 þ 6x2 � 12,500þMy3

y1 þ y2 þ y3 ¼ 2

x1, x2 � 0

and yi ¼ 0, 1 for all i

Model (5:3)

M is a very large number to ensure that the other two constraints become
redundant. The constraint ( y1 þ y2 þ y3 ¼ 2) ensures that two out of three
constraints will be redundant. If y1¼ 0, then constraint 1 is active and
constraints 2 and 3 are redundant as y2¼ y3¼ 1.

5.5 Yes-or-No Decisions

There exist many decision-making problems that involve a number of
interrelated yes-or-no decisions. In such decisions, the only two possible
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choices are either yes or no. For example, should we undertake a par-
ticular project? Should we hire a particular person? Should we make a
particular investment? Should we purchase a particular aircraft? Should
we locate a facility in a given site? We can represent such qualitative
decisions (yes=no) by decision variables that are restricted to just two
values, for example zero and one. Such variables are known as binary
variables (or 0–1 variables). These variables are defined as follows:

xi ¼ 1 if decision i is yes
0 if decision i is no

�

8i

Although examples of such decision variables have already been given in
Examples 3.6 and 3.7, we will provide yet another example that involves not
only yes-or-no decisions but also a secondary decision such as the size of a
capacity expansion plan.

Example 5.4: A capacity planning problem
A retail chain is considering whether to expand a distribution center or not.
If so, the level of the expansion should be at least 3000 units but not more
than 8000 units. The expansion incurs a high initial cost and the cost of
expansion follows a nonlinear cost function. Disregarding all other infor-
mation, formulate the expansion decision constraints only.

Decision variables:

X¼ the amount of expansion to be made

y ¼ 1 if the decision for expansion is yes
0 if the decision for expansion is no

�

We will ignore the objective function for the time being and will discuss
it later.

Constraints:
If the decision for the expansion is yes, then it should be at least 3000 units
but not more than 8000, that is

X � 3000

X � 8000

To incorporate the yes=no decision with the above constraints, we rewrite
them as follows:

X � 3000y (5:6)

X � 8000y (5:7)
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or

X � 3000y � 0 (5:8)

X � 8000y � 0 (5:9)

where y¼ either 0 or 1.
If y¼ 1, as per the above two inequalities X can be any value between 3000

and 8000. However, if y¼ 0, then X must be exactly equal to zero.
Note that this constraint may not work unless it is properly linked with

other constraints and=or the objective function.

5.6 Functions with N Possible Values

Consider the situation where a given constraint or function is required to
choose one of N different discrete values. For example,

f (x1, x2, . . . , xn) ¼ b1 or b2
. . . bn (5:10)

The equivalent form of this function is

f (x1, x2, . . . , xn) ¼ b1y1 þ b2y2 þ b3y3 þ . . .þ bnyn (5:11)

where y1 þ y2 þ y3 þ . . .þ yn ¼ 1 (5:12)

and yi is binary for i¼ 1, 2, . . . , n.
Note that this constraint may not work unless it is properly linked with

other constraints and=or the objective function.

Example 5.5: A production planning problem
Consider Example 4.8. The available time on the milling machines is 480
min. In order to share the milling machine with another product, manage-
ment now wants to impose the restriction that the milling time used must be
either 250 or 300 or 350 min.

So the milling machine constraint is

4X1 þ 3X2 ¼ 250 or 300 or 350 (5:13)

Let us define three binary variables y1, y2, and y3 for the right-hand side
values of 250, 300, and 350, respectively, where

yi ¼ 1 if right-hand side i is chosen
0 otherwise

�

(i ¼ 1, 2, 3)
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So the equivalent constraints are

4X1 þ 3X2 ¼ 250y1 þ 300y2 þ 350y3

or 4X1 þ 3X2 � 250y1 � 300y2 � 350y3 ¼ 0 (5:14)

y1 þ y2 þ y3 ¼ 1 (5:15)

and y1, y2, and y3 are binary.
Note that this constraint may not work unless it is properly linked with

other constraints and=or the objective function.

5.7 Mutually Exclusive Alternatives and Contingent

Decisions

In mathematical modelling, there are situations where the mutually exclu-
sive alternatives and contingent decisions are considered. The mutually
exclusive alternatives could be either at the variable level or at the con-
straint level. The Examples 5.2 and 5.3, in fact, represent the examples
of mutually exclusive alternative constraints. In this section, one example
on mutually exclusive decision variables along with contingent decisions
is provided.

Example 5.6: A location problem
Southern Production International has decided to expand their production
capacity by building a new plant in one of three major cities in Australia. It
is also considering of building a new distribution center in whichever city
selected for the new plant. However, a new distribution center may not
be built if it is not profitable. The return (in net present value term) and
the investment required for each of these alternatives are shown in the
following table:

Decision

Number Facility and Location

Return

(million $)

Investment

Required (million $)

1 Plant in Melbourne 8 18
2 Plant in Adelaide 6 16
3 Plant in Sydney 9 14
4 Distribution center in Melbourne 5 11
5 Distribution center in Adelaide 4 8
6 Distribution center in Sydney 6 7

The company has $36 million for the proposed expansion plan. The
objective is to find the feasible combination of alternatives that maximizes
the total net present value.
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Decision variables:

xi ¼ 1 if decision i is yes
0 if decision i is no

�

(i ¼ 1, 2, 3, 4, 5, 6):

Objective function:
The objective is to maximize the total return

Maximize Z ¼ 8x1 þ 6x2 þ 9x3 þ 5x4 þ 4x5 þ 6x6 (5:16)

Constraints:

1. Investment constraint: The company has only $36 million to invest

18x1 þ 16x2 þ 14x3 þ 11x4 þ 8x5 þ 7x6 � 36 (5:17)

2. Mutually exclusive alternative 1: The company wants to build only
one new plant

x1 þ x2 þ x3 ¼ 1 (5:18)

3. Mutually exclusive alternative 2: The company wants to build at
best one new distribution center

x4 þ x5 þ x6 � 1 (5:19)

4. Contingent decision constraint: The company would consider
building a distribution center in a city only if the new plant is
also built there. This contingency is taken into account by the
following constraints:

x4 � x1 � 0 Melbourne (5:20)

x5 � x2 � 0 Adelaide (5:21)

x6 � x3 � 0 Sydney (5:22)

In the optimal solution, if x4¼ 0 then x1 is either equal to zero or
one. That indicates a plant may or may not be built in Melbourne;
however, no distribution center will be built there. If x4¼ 1 then x1

must be equal to one, which means both plant and distribution
center would be built in Melbourne. The similar condition is true
for x5 and x2, and x6 and x3.
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The complete binary integer programming model is

Maximize Z ¼ 8x1 þ 6x2 þ 9x3 þ 5x4 þ 4x5 þ 6x6

2

18x1 þ 16x2 þ 14x3 þ 11x4 þ 8x5 þ 7x6 � 36

x1 þ x2 þ x3 ¼ 1

x4 þ x5 þ x6 � 1 Model (5:4)

x4 � x1 � 0

x5 � x2 � 0

x6 � x3 � 0

xi either 0 or 1 for all i

5.8 Linking Constraints with the Objective Function

The use of binary variables has made mathematical modelling simpler in
many practical situations and has also made the development of models for
some difficult cases possible. A fixed-charge problem (which involves a
combination of fixed and variable costs) is one of the well-known examples
where binary variables play a key role in modelling. However, it requires
careful linkage of the constraints with the objective function so that the logic
of introducing binary variables works properly. As you may recall, we
ignored the development of the objective function of Example 5.4 as such
complexity had not been addressed earlier.

Example 5.7: A fixed-charge problem
PQR Corporation is planning to produce at least 800 exhaust control valves,
for a particular model of vehicle, using their three production lines. The
production lines with the setup costs, unit processing costs, and capacities
are given below. Determine the production lines to use in order to minimize
the total cost.

Production

Line

Setup

Cost ($)

Unit Processing

Cost ($)

Maximum

Capacity

PL-A 750 20 400
PL-B 150 55 700
PL-C 420 35 600

The setup cost is one-off fixed cost per line and it is an expense only when
the line is used. The unit processing cost is a variable cost where the total
variable cost for a line is equal to the number of product produced in that
line multiplied by the unit processing cost.
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Decision variables:

xi¼ the quantities to be produced on production line i (i¼A, B, and C)

yi¼ 1 if line i is used
0 otherwise

�

(i ¼ A, B, C)

Constraints:

1. Demand constraint: The company must produce at least 800 ex-
haust control valves.

xA þ xB þ xC � 800 (5:23)

2. Capacity constraints: Each line should produce less than its capacity.

Line A: xA � 400 (5:24)

Line B: xB � 700 (5:25)

Line C: xC � 600 (5:26)

Objective function:
There are two types of costs: fixed and variable. The fixed cost is incurred if
the line is used and it is independent of the quantity produced. However,
the variable cost is charged per unit production.

Total variable cost ¼ 20xA þ 55xB þ 35xC (5:27)

Total fixed cost ¼ 750yA þ 150yB þ 420yC (5:28)

So the objective function is

Minimize Z ¼ 750yA þ 150yB þ 420yC þ 20xA þ 55xB þ 35xC (5:29)

Something is missing in the model. What is it?
The binary variables are only present in the objective function. All the

constraints are technically correct. As per the objective function, the fixed
cost of a line selected for production could be zero as our objective is to
minimize the total cost. However, there is no condition in the above equations
that stipulates that if a production line is selected for production then the fixed
cost must be added along with the variable cost. How does one impose such
a linkage? One simple way is to modify the capacity constraints as follows:

Line A: xA � 400yA (5:30)

Line B: xB � 700yB (5:31)

Line C: xC � 600yC (5:32)
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One can now check to see whether this works logically or not. If yA¼ 1 in the
optimal solution (i.e., we select production line A for production), the fixed
plus variable cost components in the objective function for line A are (750 þ
20xA). The capacity constraint for line A, in effect, is (xA � 400). If yA¼ 0 in
the optimal solution (i.e., line A is not selected for production), the fixed
plus variable cost components in the objective function for line A is only
(20xA). However, the capacity constraint for line A ensures that xA¼ 0 which
follows that the total cost component for line A is zero. So the logic is
working. Now you can check for the production lines B and C.

So the final mixed integer LP model becomes

Minimize Z ¼ 750yA þ 150yB þ 420yC þ 20xA þ 55xB þ 35xC

xA þ xB þ xC � 800 Requirements

xA � 400yA � 0 Production capacity of line A

xB � 700yB � 0 Production capacity of line B

xC � 600yC � 0 Production capacity of line C

xi � 0 for all i

yi ¼ either 0 or 1 for all i

Model (5:5)

5.9 Piecewise Linear Functions

Many real-world problems involve continuous functions that are piecewise
linear. Examples of piecewise linear functions occur when there are increas-
ing or decreasing returns to scale, marginal costs, etc. Consider a piecewise
profit curve with three line segments as shown in the Figure 5.1. Binary
variables are usually used to model such a piecewise linear curve.

Example 5.8: A piecewise linear function
An objective function can be expressed as

f ( y) ¼
5y, if 0 � y � 4

y, if 4 � y � 10
3y, if 10 � y � 15

8
<

:
(5:33)

Disregarding all other information of the problem, formulate the above
function as an LP model.

From the above function, the slopes of three line segments can be written
as S1¼ 5, S2¼ 1, and S3¼ 3. Other data: u1¼ 4, u1 þ u2¼ 10, and u1 þ u2 þ
u3¼ 15.
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Let us introduce three variables x1, x2, and x3 so that each of these
variables is linear and set (see Figure 5.2)

y ¼ x1 þ x2 þ x3 (5:34)

S3

S2

S1

0 u1 u1 + u2 u1 + u2 + u3 Level of activity y 

Profit f (y)

FIGURE 5.1
A piecewise linear function.

S3

S2

S1

x1 x2 x3

0 u1 u1 + u2 u1 + u2 + u3 Level of activity y 

Profit f (y)

FIGURE 5.2
A piecewise linear function with defined variables.
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where

0 � x1 � 4,

0 � x2 � 6, and

0 � x3 � 5:

Then using the slopes S1¼ 5, S2¼ 1, and S3¼ 3, the objective function f( y)
can be written as: f( y)¼ 5x1 þ x2 þ 3x3 with the special restriction that

x2 ¼ 0, if x1 < 4

x3 ¼ 0, if x2 < 6

Let us now introduce two binary variables to represent the above two
restrictions in the mathematical model:

z1 ¼ 0 if x1 < 4
1 if x1 = 4

�

z2 ¼
0 if x2 < 6
1 if x2 = 6

�

To ensure that the proper conditional constraints hold, we write the
constraints as follows:

y ¼ x1 þ x2 þ x3 (5:35)

4z1 � x1 � 4 (5:36)

6z2 � x2 � 6z1 (5:37)

0 � x3 � 5z2 (5:38)

z1, z2 2 0, 1

If z1¼ 0, then z2¼ 0, to maintain the feasibility of the constraint imposed
upon x2, the three boundary constraints reduce to 0 � x1 � 4, x2¼ 0, and
x3¼ 0.

If z1¼ 1 and z2¼ 0, then x1¼ 4, 0 � x2 � 6, and x3¼ 0.
Finally, if z1¼ 1 and z2¼ 1, then x1¼ 4, x2¼ 6, and 0 � x3 � 5.
The same general technique can be applied to piecewise linear curves

with any number of segments. The general constraint imposed upon the
variable xi for the ith segment will read: Lizi � xi � Lizi–1, where Li is the
length of the segment.
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5.10 Nonlinear to Approximate Functions

One of the most useful applications of the piecewise linear representation is
the approximation of nonlinear functions.

Consider a concave (nonlinear) profit function f(y), as shown in Figure 5.3,
which occurs quite frequently in practice. It is convenient to approximate
such a function by using a sequence of connected piecewise linear functions.

Suppose the function is divided into three segments to apply linear
approximation. One introduces three variables x1, x2, and x3 as shown in
the Figure 5.4 and set

y ¼ x1 þ x2 þ x3 (5:39)

where

0 � x1 � u1,

0 � x2 � u2, and

0 � x3 � u3:

Note that the accuracy of the approximation can be improved by increasing
the number of line segments, which indeed increases the number of vari-
ables and constraints.

Using the slopes S1, S2, and S3, the objective function f(y) can be written as
f(y)¼ S1x1 þ S2x2 þ S3x3 with the special restrictions that

x2 ¼ 0 if x1 < u1

x3 ¼ 0 if x2 < u2

FIGURE 5.3
A nonlinear function. Level of activity y

P
ro

fit
 f 

( y
 )
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Now one can introduce two binary variables to represent the above two
restrictions in the mathematical model:

Z1 ¼
0 if x1 < u1

1 if x1 = u1

�

Z2 ¼ 0 if x2 < u2

1 if x2 = u2

�

To ensure that the proper conditional constraints hold, we write the
constraints as follows:

y ¼ x1 þ x2 þ x3 (5:40)

u1z1 � x1 � u1 (5:41)

u2z2 � x2 � u2z1 (5:42)

0 � x3 � u3z2 (5:43)

z1, z2 2 0, 1

Example 5.9: Approximating a nonlinear function
A nonlinear profit function can be divided into three parts to approximate
three line segments. The points of the proposed intersections of the line

S3

S2

S1

x1 x2 x3

0 u1 u1 + u2 u1 + u2 + u3

P3

P2

P1

Level of activity y 

Profit f ( y )

Actual profit function

Approximation 

FIGURE 5.4
Piecewise linear approximation.
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segments are given as: ( f( y), y)¼ (20, 4), (26, 10), and (41, 15). Formulate an
equivalent but approximate LP model of the function.

From the data, we can write that P1¼ 20, P2¼ 26, P3¼ 41, u1¼ 4,
u1 þ u2¼ 10, and u1þ u2þ u3¼ 15.

The slopes of the proposed line segments can be calculated as follows:

S1 ¼
P1 � P0

y1 � y0
¼ 20� 0

4� 0
¼ 5 (5:44)

S2 ¼
P2 � P1

y2 � y1
¼ 26� 20

10� 4
¼ 1 (5:45)

S3 ¼
P3 � P2

y3 � y2
¼ 41� 26

15� 10
¼ 3 (5:46)

That means, S1¼ 5, S2¼ 1, and S3¼ 3. Now one can proceed modelling the
profit function using the procedure discussed above.

We introduce two binary variables to represent the above two restrictions
in the mathematical model:

z1 ¼
0 if x1 < 4
1 if x1 ¼ 4

�

z2 ¼
0 if x2 < 6
1 if x2 ¼ 6

�

So the overall model will be

Maximize f (y) ¼ 5x1 þ x2 þ 3x3

Subject to

y ¼ x1 þ x2 þ x3

4z1 � x1 � 4

6z2 � x2 � 6z1

0 � x3 � 5z2

x1, x2, x3 � 0

z1, z2 2 0, 1

Model (5:6)

5.11 Deterministic Models with Probability Terms

In modelling stochastic situations, probability and probability distribu-
tions play an important role. However, it is not a common practice to use
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probability or probability distributions in conjunction with deterministic
modelling. In deterministic mathematical modelling, probabilities of occur-
rence usually take the form of a parameter. In such cases, the model is
designed either (1) to maximize (or minimize) the probability or expected
value of an occurrence or to (2) satisfy certain conditions using probability
or expected-value terms. An example of such a problem together with its
mathematical model is discussed below.

Example 5.10: A war planning problem
The Eastern Command receives orders to interrupt the enemy long-
range missile production. The enemy has four key factories located in
different cities, and certain successful interdictions could effectively halt
the production of deadly missiles. The fuel supply is limited to 30,000 L
for this particular mission. Any bomber aircraft sent to any particular
city must have at least enough fuel for the round trip plus 100 L for
safety reason.

The number of bomber aircraft available to the commander and their
specific details are as follows:

Bomber Type Description km=L Number Available

B B2 Precision 2 30
F F-117 Regular 3 25

Information about the location of the factories and their probability of
hitting by a B2 or an F-117 bomber aircraft is given below:

Factory

Distance from

Base (km)

Probability of Destruction by

B2 Bomber F-117 Bomber

1 350 0.15 0.10
2 400 0.30 0.15
3 450 0.25 0.12
4 550 0.35 0.20

How many of each type of bomber aircraft should be dispatched and how
should they be allocated across the four targets to maximize the probability
of success?

Decision variables:
Xij¼ the number of bomber type i (i¼B and F) that will be sent to
location=factory j ( j¼ 1, 2, 3, and 4).
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Objective function:
The objective is to maximize the probability of success in destroying the
factories, or expressed in other words to minimize the probability of failing
to destroy the factories.

The probability of succeeding to destroy plant 1 by one B2 bomber is 0.15.
The probability, therefore, of not succeeding (failing) to destroy plant 1 by
one B2 bomber is (1 ] 0.15 ¼ ) 0.85. The probability of not succeeding to
destroy plant 1 by XB1 number of B2 bombers is (0.85)XB1. Therefore, the
probability of succeeding to destroy plant 1 by XB1 B2 bombers is 1 ] (0.85)XB1.
The probability of failure and success for all other assignments can be found
in a similar way. The objective then is to maximize the success of destroy-
ing all factories or in other words to minimize the failure of the overall
mission. This can be expressed as an objective function where the failure of
destroying all factories is to be minimized.

Minimize Z ¼ (0:85)XB1 � (0:70)XB2 � (0:75)XB3 � (0:65)XB4

� (0:90)XF1 � (0:85)XF2 � (0:88)XF3 � (0:80)XF4 (5:47)

So the objective function is nonlinear.

Constraints:

1. Fuel supply limitation

Fuel required (liters) for each trip of XB1 ¼ 2
350

2
þ 100 ¼ 450

Fuel required (liters) for each trip of XB2¼ 500

Fuel required (liters) for each trip of XB3¼ 550

Fuel required (liters) for each trip of XB4¼ 650

Fuel required (liters) for each trip of XF1 ¼ 2
350

2
þ 100 ¼ 333:33

Fuel required (liters) for each trip of XF2¼ 366.67

Fuel required (liters) for each trip of XF3¼ 400

Fuel required (liters) for each trip of XF4¼ 466.67

The fuel supply constraint is

450XB1 þ 500XB2 þ 550XB3 þ 650XB4 þ 333:33XF1 þ 366:67XF2

þ 400XF3 þ 466:67XF4 � 30,000 (5:48)

2. Constraint for the number of aircraft

Type B: XB1 þ XB2 þ XB3 þ XB4 � 30 (5:49)

Type F: XF1 þ XF2 þ XF3 þ XF4 � 25 (5:50)
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The final nonlinear model is therefore

Minimize Z ¼ (0:85)XB1 � (0:70)XB2 � (0:75)XB3 � (0:65)XB4

� (0:90)XF1 � (0:85)XF2 � (0:88)XF3 � (0:80)XF4

2 Model (5:7)

450XB1 þ 500XB2 þ 550XB3 þ 650XB4 þ 333:33XF1

þ 366:67XF2 þ 400XF3 þ 466:67XF4 � 30,000

XB1 þ XB2 þ XB3 þ XB4 � 30

XF1 þ XF2 þ XF3 þ XF4 � 25

Xij � 0 for all i and j:

5.12 Alternate Objective Functions

We have previously seen how a nonlinear objective function can be approxi-
mated by a number of piecewise linear functions to solve a model using the
integer LP approach. There are cases, however, where nonlinear objective
functions can be converted into equivalent linear forms. Such conversions
make models easier in terms of solution approaches.

Example 5.11: A war planning problem with a nonlinear objective
Consider the problem in Example 5.10. As formulated, the objective func-
tion of the problem is nonlinear. Convert the nonlinear objective function
into an equivalent linear form.

As per Example 5.10, the objective function is

Minimize Z ¼ (0:85)XB1 � (0:70)XB2 � (0:75)XB3 � (0:65)XB4 � (0:90)XF1

� (0:85)XF2 � (0:88)XF3 � (0:80)XF4 (5:51)

Minimizing Z is equivalent to minimizing log Z, and log Z is linear.

Minimize log Z ¼ XB1( log 0:85)þ XB2( log 0:70)þ XB3( log 0:75)

þ XB4( log 0:65)þ XF1( log 0:90)þ XF2( log 0:85)

þ XF3( log 0:88)þ XF4( log 0:80) (5:52)

or

Minimize log Z ¼ �(0:071XB1 þ 0:155XB2 þ 0:125XB3 þ 0:187XB4

þ 0:046XF1 þ 0:071XF2 þ 0:056XF3 þ 0:097XF4) (5:53)
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This is clearly a linear function.
We can transpose the function into a maximization problem as follows:

Maximize� log Z ¼ log
1

Z

� �

¼ (0:071XB1þ 0:155XB2 þ 0:125XB3 þ 0:187XB4

þ 0:046XF1þ 0:071XF2þ 0:056XF3þ 0:097XF4)

(5:54)

Example 5.12: A joint inventory batch-sizing problem
In a joint inventory optimum batch-sizing problem, the following nonlinear
function had to be minimized (Sarker and Khan, 2001):

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Dp Ap þ
Ai

Xi

� �
Dp

Pp
(Hp þ ri Hi)þHi ri(Xi � 1)

� �s

(5:55)

Xi’s are the only variables in the function. Find an alternative function that
would be easier to solve.

In this problem, Z can be minimized through minimization of Z2. That is,

Minimize Z2 ¼ 2Dp Ap þ
Ai

Xi

� �
Dp

Pp
(Hp þ riHi)þHiri(Xi � 1)

� �

¼ 2Dp Ap

Dp

Pp
(Hp þ riHi)�Hiri

� �

þ AiHiri

� �

þ 2Dp
Ai

Xi

Dp

Pp
(Hp þ riHi)�Hiri

� �

þ ApHiriXi

� �

(5:56)

The constant components have no affect on the optimization of this func-
tion. Removing the constant components of the function, we can rewrite the
Equation 5.56 so that it becomes an equivalently unconstrained optimization
model as follows:

Minimize Y ¼ Ai

Xi

Dp

Pp
(Hp þ riHi)�Hiri

� �

þ ApHiriXi (5:57)

Although the above function is still nonlinear, it is not difficult to solve such
simple nonlinear function.

5.13 Constrained to Unconstrained Problem

Nonlinear constrained problems are frequently converted to equivalent
unconstrained problems to make solving and analyzing problems more
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convenient. One of the popular methods of conversion is the penalty
method. The penalty method is briefly described below.

Consider a constrained mathematical model as follows:

Minimize f (x)

Subject to

g(x) � 0

h(x) ¼ 0

x 2 X

Model (5:8)

where g (or gi(x)) is a vector function with components g1, . . . , gm, and h (or
hi(x)) is a vector function with components h1, . . . , hk. Here f, g1, . . . , gm,
h1, . . . , hk are functions on Rn (n-dimensional real-number space) and X is
a nonempty set in Rn.

The constrained model can be transformed into an unconstrained model
as follows:

Minimize fp(x) ¼ f (x)þ ma(x)

Subject to x 2 X
Model (5:9)

where
m > 0 is a large number
a(x) is the penalty function

For a minimization problem, the new unconstrained function, fp(x), is the
simple sum of the usual (un-penalized) objective function, f(x), and a pen-
alty function, ma(x). Here, m is a given penalty parameter. Higher value of m

means higher weight for the penalty. A suitable penalty function incurs a
positive penalty for infeasible points and does not incur a penalty for
feasible points. The penalty function a is usually of the form

a(x) ¼
Xm

i¼1

�
maximum [0, gi(x)]

	p þ
Xl

i¼1

jhi(x)jp (5:58)

where p is a positive integer.

Example 5.13: A constrained nonlinear model
Transform the following constrained model into an unconstrained model:

Minimize Z ¼ (x1 � 3)4 þ (x1 � 3x2)2

Subject to

3x2
1 � x2 � 30

x2
1 � 3x2 ¼ 0

Model (5:10)
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The expression for a1(x) and a2(x) are derived as follows:
For constraint 1 (a less than equal to constraint) in Model 5.10, a positive

value of the expression (3x2
1 � x2 � 30) indicates a constraint violation.

Therefore, the expression for a1(x) with p¼ 2 is

a1(x) ¼ maximum of 0, 3x2
1 � x2 � 30


 �� � 	2
(5:59)

For constraint 2 (an equal to constraint), any value (positive or negative)
other than zero for the left-hand side of the constraint, (x2

1 � 3x2), indicates a
constraint violation. To derive the expression for a2(x), we need to deal with
the absolute value of such constraint. So the expression is

a2(x) ¼ maximum of 0, jx2
1 � 3x2j


 �� � 	2
(5:60)

The equivalent unconstrained model is

Minimize Zp ¼ (x1 � 3)4 þ (x1 � 3x2)2 þ m1a1(x)þ m2a2(x)

a1(x) ¼ maximum of 0, 3x2
1 � x2 � 30


 �� � 	2

where

a2(x) ¼ maximum of 0, jx2
1 � 3x2j


 �� � 	2

Model (5:11)

In the above Model 5.11, m1 and m2 are the penalty parameters (set by the
modeller) for constraints 1 and 2, respectively, and the value of p is assumed
to be 2.

5.14 Simplifying Cross Product of Binary Variables

In mathematical modelling, the cross product of two or more binary vari-
ables introduces a polynomial term. To make the model simpler, such a
polynomial term can be replaced by a continuous, rather than integer, linear
variable with few additional constraints. To demonstrate the methodology,
we consider the following example:

Maximize Z ¼ X1X2

Subject to some constraints

Both X1 and X2 are binary

Model (5:12)

As shown by Glover and Woolsey (1974), we replace the product term,
X1X2, by a single continuous variable Y. This substitution requires the
following additional constraints:
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Y� X1 � 0 (5:61)

Y� X2 � 0 (5:62)

X1 þ X2 � Y � 1 (5:63)

0 � Y � 1 (5:64)

If we assume Y is a binary, the result will be same.
The revised objective function is

Maximize Z ¼ Y (5:65)

We now check whether the above method works or not.

Value of

Case X1 X2 Y X1 X2

1 0 0 0 0
2 1 1 1 1
3 1 0 0 0
4 0 1 0 0

As per the first two constraints given by Equations 5.61 and 5.62, the
possible value for Y is shown in column 4, which also satisfies the last two
constraints (Equations 5.63 and 5.64). In all cases, the value of Y is equal to
the value of (X1X2). An example with application of this method will be
provided in a later chapter.

Let us now consider another problem with higher degree function as the
following model:

Maximize Z ¼ (X1X2)p

Subject to some constraints

Both X1 and X2 are binary

Model (5:13)

Since both X1 and X2 are binary, the function (X1X2)p can be replaced by
(X1X2), for any positive value of p, without affecting the value of the function.
One can now simplify the cross product, (X1X2), in a similar manner dis-
cussed above. The cross product of more than two variables can also be
handled using the same concept (for more details see Watters, 1967; Glover
and Woolsey, 1974).
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5.15 Fractional Programming

In some practical problems, the objective function is expressed as the ratio of
two functions. This is the case when we like to maximize the performance or
productivity of a system where the performance or productivity is deter-
mined as the ratio of output to input. Examples of such problems include
machine utilization (output to capacity), productivity of organization
(output to human-hours), and rate of return on investment (profit to
capital used).

Assume for a given system, we have the following two functions:

Input function: f1(x) ¼ a0 þ ax (5:66)

Output function: f2(x) ¼ b0 þ bx (5:67)

Here, a and b are row vectors, x is a column vector, and a0 and b0 are scalars.
So the productivity can be expressed as the ratio of these two functions as

follow:

Productivity: f (x) ¼ f2(x)

f1(x)
¼ b0 þ bx

a0 þ ax
(5:68)

A mathematical programming model with an objective function of this type
(as Equation 5.68) is known as fractional programming. For ease of explan-
ation, let us have a set of constraints: Cx � d and x � 0 for the above
fractional program. As both f1(x) and f2(x) are linear in Equation 5.68, the
objective function can be transformed to an equivalent linear form. To do so,
we assume

y ¼ x

a0 þ ax
(5:69)

and

p ¼ 1

a0 þ ax
(5:70)

From Equations 5.69 and 5.70, x¼ y=p or px¼ y. Similarly, from Equation
5.70, pa0 þ pax¼ 1 or pa0 þ ay¼ 1. Substituting y and p in Equation 5.68 and
in the constraints, we get

Maximize Z ¼ b0pþ by

Subject to

Cy� dp � 0

ayþ a0p ¼ 1

y � 0, p � 0

Model (5:14)
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This is clearly an LP model. The fractional programming technique is
demonstrated with an example below.

Example 5.14: Productivity maximization
A manufacturing industry produces two products: product-1 and product-2.
The total sales revenue and total cost of the products can be expressed by
the following functions:

Cost function: f1(x) ¼ 40þ 10x1 þ 15x2 (5:71)

Revenue function: f2(x) ¼ 20þ 16x1 þ 28x2 (5:72)

Where x1 and x2 are the number of products produced for product-1 and
product-2, respectively.

The industry has the following technological constraints related to the
products to be produced:

Constraint 1: 2x1 þ 5x2 � 180 (5:73)

Constraint 2: 4x1 þ 3x2 � 150 (5:74)

and

x1, x2 � 0

The objective of the problem is to maximize the productivity of producing
two products while satisfying the technological constraints. Transform the
problem to an equivalent LP problem.

LP formulation: The objective of the problem can be written as

Objective function: f (x) ¼ f2(x)

f1(x)
¼ 20þ 16x1 þ 28x2

40þ 10x1 þ 15x2
(5:75)

We now assume

y1 ¼
x1

40þ 10x1 þ 15x2
(5:76)

y2 ¼
x2

40þ 10x1 þ 15x2
(5:77)

p ¼ 1

40þ 10x1 þ 15x2
(5:78)

From Equations 5.76 through 5.78 we can write

x1 ¼ y1=p, (5:79)

x2 ¼ y2=p, and (5:80)

40pþ 10x1pþ 15x2p ¼ 1 (5:81)
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Substituting x1 and x2, as of Equations 5.79 and 5.80, in Equation 5.81 we
can write

40pþ 10y1 þ 15y2 ¼ 1 (5:82)

Objective function: f (x) ¼ 20pþ 16x1pþ 28x2p

¼ 20pþ 16y1 þ 28y2 (5:83)

The technological constraints:

Constraint 1: 2x1 þ 5x2 � 180 or

2y1 þ 5y2 � 180p or

2y1 þ 5y2 � 180p � 0 (5:84)

Constraint 2: 4x1 þ 3x2 � 150 or

4y1 þ 3y2 � 150p or

4y1 þ 3y2 � 150p � 0 (5:85)

So the equivalent LP model will be

Maximize Z ¼ 16y1 þ 28y2 þ 20p

Subject to

2y1 þ 5y2 � 180p � 0

4y1 þ 3y2 � 150p � 0

10y1 þ 15y2 þ 40p ¼ 1

y1, y2, p � 0

Model (5:15)

5.16 Unrestricted Variables

Most traditional optimization techniques assume that all variables are non-
negative. However, there are situations in practice where the values of
variables can be either positive, zero, or negative. For example, the tempera-
ture is a variable for certain decisions. The money can be expressed as either
positive, zero, or negative value where positive value indicates profit and
negative value means loss. These variables are usually defined as variables
with unrestricted in sign or free variables. To handle such variables in
mathematical modelling, each variable is usually replaced by two new vari-
ables where the values of the new variables are greater than or equal to zero.
To demonstrate the procedure, let us consider the following example:
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Minimize Z ¼ 3X1 þ 2X2 þ 2X3 þ X4

Subject to

X1 þ 4X2 þ X3 � 7

2X1 þ X2 þ X4 � 10

X1, X2, X3 � 0 and X4 unrestricted in sign

Model (5:16)

Since X4 is unrestricted in sign, we replace it by X04 � X004 where both X04 and
X004 � 0. So the revised formulation is as follows:

Minimize Z ¼ 3X1 þ 2X2 þ 2X3 þ X04 � X004
Subject to

X1 þ 4X2 þ X3 � 7

2X1 þ X2 þ X04 � X004 � 10

X1, X2, X3, X04, X004 � 0

Model (5:17)

After solving the model, the value of X4 will be calculated from X4 ¼
X04 � X004 .

5.17 Changing Constraint and Objective Type

As seen in the last section, any unrestricted variable can be replaced by two
nonnegative variables. If necessary, inequality constraints can be converted
to equality constraints and equality constraints to inequality constraints.
The maximization (=minimization) objective function can be changed
to minimization (=maximization) objective function by applying simple
modelling tricks. In this section, we will provide examples of changing
constraint and objective type.

5.17.1 From � to ¼ Constraints

Consider a less than equal to constraint as follows:

X

i

a1ixi � b1 (5:86)

This constraint can be converted to equal to constraint by simply adding a
variable in the left-hand side of the constraint. The new variable is known as
slack variable.

X

i

a1ixi þ S1 ¼ b1 (5:87)
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5.17.2 From � to ¼ Constraints

Now consider a greater than equal to constraint.

X

i

a2ixi � b2 (5:88)

This constraint can be converted to equal to constraint by simply subtracting
a variable from the left-hand side of the constraint. The new variable is
known as surplus variable.

X

i

a2ixi � S2 ¼ b2 (5:89)

5.17.3 From � to � Constraints

Consider the greater than equal to constraint (Equation 5.88). It can be
written as an equivalent less than equal to constraint by simply multiplying
both sides with a minus sign. As some software and methodology do not
allow negative right-hand sides, we move them to the left-hand side.

�
X

i

a2ixi � �b2 or (5:90)

�
X

i

a2ixi þ b2 � 0 (5:91)

5.17.4 From � to � Constraints

The less than equal to constraint can also be converted to an equivalent
greater than equal to constraint. See the example with constraint (Equation
5.86) below:

�
X

i

a1ixi � �b1 or (5:92)

�
X

i

a1ixi þ b1 � 0 (5:93)

5.17.5 From ¼ Constraint to � and � Constraints

Any equality constraint can be converted to two inequality constraints
where one is less than equal to constraint and the other is greater than
equal to constraint. Consider the following equal to constraint:
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X

i

a3ixi ¼ b3 (5:94)

This can be written as

X

i

a3ixi � b3 and
X

i

a3ixi � b3 (5:95)

The above Equations are only true when Equation 5.94 is true.

5.17.6 Changing Objective Type

A maximization (=minimization) objective function can be converted to an
equivalent minimization (=maximization) function by changing the sign of
the function. For example, the maximization objective function (Equation
5.96) is equivalent to minimization objective function (Equation 5.97).

Maximize Z1 ¼
X

i

rixi (5:96)

Minimize Z2 ¼ �
X

i

rixi (5:97)

Example 5.15: Changing constraints and objective type
Change the following model to maximization objective with less than equal
to constraints form.

Minimize Z1 ¼ 5x1 þ 4x2 � 2x3

Subject to

2x1 þ 2x2 þ 3x3 ¼ 16

4x1 þ 3x2 þ 2x3 � 15

x1, x2, x3 � 0

Model (5:18)

The model can be written as

Maximize Z2 ¼ �5x1 � 4x2 þ 2x3

Subject to

2x1 þ 2x2 þ 3x3 � 16 2x1 þ 2x2 þ 3x3 � 16

2x1 þ 2x2 þ 3x3 � 16 or � 2x1 � 2x2 � 3x3 � �16 Model (5:19)

4x1 þ 3x2 þ 2x3 � 15 � 4x1 � 3x2 � 2x3 � �15

x1, x2, x3 � 0 x1, x2, x3 � 0
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The final form of the model is

Maximize Z2 ¼ �5x1 � 4x2 þ 2x3

Subject to

2x1 þ 2x2 þ 3x3 � 16

�2x1 � 2x2 � 3x3 þ 16 � 0

�4x1 � 3x2 � 2x3 þ 15 � 0

x1, x2, x3 � 0

Model (5:20)

5.18 Conditional Constraints

In some situations, the conditional relationships may exist between two or
more constraints. For example, the conditional relationship in the following
equation:

X

i

a1ixi > b1 (5:98)

implies that

X

i

a2ixi � b2

As shown by Castillo et al. (2002), this conditional constraint is not satisfied
only when

X

i

a1ixi > b1 and
X

i

a2ixi > b2 (5:99)

So the equivalent alternative set of constraints for Equation 5.98 can be
written as following:

X

i

a1ixi � b1 and
X

i

a2ixi � b2 (5:100)

These constraints (Equation 5.100) can be expressed in the model as follows:

X

i

a1ixi � b1 þM(1� y1)

X

i

a2ixi � b2 þM(1� y2) (5:101)

y1 þ y2 � 1

y1, y2 2 {0, 1} and M is a big number
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5.19 Dual Formulation

For every maximization LP problem, we can formulate an associated mini-
mization problem, and vice versa. In fact, these LP problems exist in pairs.
In this case, the original problem is called the primal, and the complemen-
tary problem is termed as dual. The dual problem is considered as an
important part of LP problem analysis. In this section, we will show how
the dual problem is formulated from the primal version.

A primal (=dual) model is suitable for dual (=primal) formulation, if it
contains one of the two forms: (1) maximization with � constraints or (2)
minimization with � constraints. If a primal model deviates from such
structures, it must be transformed into one of these standard formats before
dual formulation. In formulating a dual model, we define one new variable
(known as dual variable) for each constraint of the primal model. Then the
dual model corresponds to the primal model as follows:

Primal Model Dual Model

Maximize Z¼ cx Minimize W¼ub

Subject to Subject to
Ax � b uA � c

and x � 0 and u � 0

Here, x is a decision variable vector in the primal problem and u is a dual
variable vector in the dual problem. A, c, and b are the constraint coefficient
matrix, objective function coefficient row vector, and constraint right-hand
side column vector of the primal problem, respectively.

Example 5.16: Dual formulation-1
Consider a maximization problem with less than equal to constraints. We
recognize this problem as primal.

Maximize Z ¼ 5x1 þ 4x2 þ 2x3

Subject to

2x1 þ 2x2 þ 3x3 � 16

4x1 þ 3x2 þ 2x3 � 15

x1, x2, x3 � 0

Model (5:21)
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For each constraint in the primal, we assume one decision variable in the
dual as shown below:

Dual Variables

Max Z ¼ 5x1 þ 4x2 þ 2x3

Subject to

2x1 þ 2x2 þ 3x3 � 16

4x1 þ 3x2 þ 2x3 � 15u2

x1, x2, x3 � 0

u1

u2

The corresponding dual formulation is

Minimize W ¼ 16u1 þ 15u2

Subject to

2u1 þ 4u2 � 5

2u1 þ 3u2 � 4

3u1 þ 2u2 � 2

u1, u2 � 0

Model (5:22)

If we develop a dual of the above dual model by assuming the dual
variables x1, x2, and x3 for Model 5.22, it will produce Model 5.21. That
indicates dual of the dual is a primal.

Example 5.17: Dual formulation-2
Find the dual of the problem in Example 5.15. For convenience, we repro-
duce the model here as Model 5.23.

Min Z ¼ 5x1 þ 4x2 � 2x3

Subject to

2x1 þ 2x2 þ 3x3 ¼ 16

4x1 þ 3x2 þ 2x3 � 15

x1, x2, x3 � 0

Model (5:23)

This model can be transformed to dual using two different approaches. The
first approach is to convert the equality constraint to two inequality con-
straints and then formulate the dual model. The equality constraint is
converted as follows:

2x1 þ 2x2 þ 3x3 ¼ 16 (5:102)
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2x1 þ 2x2 þ 3x3 � 16 and 2x1 þ 2x2 þ 3x3 � 16 (5:103)

�2x1 � 2x2 � 3x3 � �16 and 2x1 þ 2x2 þ 3x3 � 16 (5:104)

The equivalent model for Model 5.23 is

Minimize Z ¼ 5x1 þ 4x2 � 2x3

Subject to

�2x1 � 2x2 � 3x3 � �16

2x1 þ 2x2 þ 3x3 � 16

4x1 þ 3x2 þ 2x3 � 15

x1, x2, x3 � 0

Model (5:24)

We assume the dual variables u01, u001, and u2 for the constraints 1, 2, and 3 of
Model 5.24, respectively. Now the corresponding dual formulation is

Maximize W ¼ �16u01 þ 16u001 þ 15u2,

Subject to

�2u01 þ 2u001 þ 4u2 � 5

�2u01 þ 2u001 þ 3u2 � 4

�3u01 þ 3u001 þ 2u2 � �2

u01, u001, u2 � 0

Model (5:25)

The second approach is to keep the equality constraint as it is and to define
its corresponding dual variable as unrestricted (free) variable. We assume u1

and u2 to be the dual variables for the Model 5.23. So the corresponding dual
formulation is

Maximize W ¼ 16u1 þ 15u2

Subject to

2u1 þ 4u2 � 5

2u1 þ 3u2 � 4

3u1 þ 2u2 � �4

u1 unrestriced in sign and u2 � 0

Model (5:26)

Both the Models 5.25 and 5.26 are dual formulation of Model 5.23. So these
two models should be either same or equivalent in some way. If we assume
u1 ¼ (u001 � u01), then the two models are equivalent but with different vari-
able definitions.

Note that the constraint in a dual will be with equal to sign if a primal
variable is unrestricted in sign.
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5.20 Regression Model

In many occasions, the decision makers require to establish a functional
relationship between dependent variable and one or more independent
variables. The process starts with a set of known data points. Assume we
have n independent variables (xi) and one dependent variable ( y). To
develop a relationship between y and xi, suppose we have m data points,
which can be represented as yj, and xij, where i¼ 1 – n and j¼ 1 – m. A simple
relationship that can be developed is

yj ¼ b0 þ b1x1j þ b2x2j þ . . .þ bnxnj þ «j (5:105)

Here b0, b1, b2, . . . , bn are the model parameters and «j is the error term. In the
above function, the parameters (b0, b1, b2, . . . , bn) are unknown. Let us now
rewrite the function (Equation 5.105) as the following, where ŷyj is the
estimated value of the right-hand side of Equation 5.105.

ŷyj ¼ b0 þ b1x1j þ b2x2j þ . . .þ bnxnj (5:106)

For a given set of the parameter values, we can find the value of ŷyj and the
error for each data item, which is (yj � ŷyj). This term can be written as

(yj � ŷyj) ¼ yj � (b0 þ b1x1j þ b2x2j þ . . .þ bnxnj) (5:107)

In finding the appropriate values of the parameters, we treat the parameters
as variables (unknowns) and use the data points for yj and xij as parameters.
We then apply optimization process to find the values of b0, b1, b2, . . . , and bn

by minimizing the sum of either absolute errors or square errors. The
corresponding mathematical model with sum of square errors is as follows:

Minimize Z ¼
X

j

yj � b0 þ b1x1j þ b2x2j þ . . .þ bnxnj


 �� 2
Model (5:27)

The variables here are unrestricted in sign as they can be either positive,
zero, or negative.

This is an unconstrained nonlinear optimization model. However, the
resulting relationship will be linear as shown in Equation 5.106.

Example 5.18: Sales prediction
A retailer chain is interested to develop a relationship between its sales and
the amount of money it spends on advertisement for a given product. The
data for six previous instances are given below. Develop a mathematical
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model that will help to determine the relationship between sales and adver-
tising costs.

Observation

Advertising Costs

($1000)

Sales Volume

($1000)

1 45 105
2 48 108
3 60 122
4 55 120
5 68 135
6 62 121

The mathematical model for the prediction problem is

Minimize Z ¼
X

j

yj � b0 þ b1xj


 �� 2
or

Minimize Z ¼ (105� b0 � 45b1)2 þ (108� b0 � 48b1)2 Model (5:28)

þ (122� b0 � 60b1)2 þ (120� b0 � 55b1)2

þ (135� b0 � 68b1)2 þ (121� b0 � 62b1)2

Both b0 and b1 are unrestricted in sign.

5.21 Stochastic Programming

The models discussed so far are deterministic in nature. The parameters in
such models are known with certainty. However, real-world problems
almost invariably include some unknown or uncertain parameters. The math-
ematical models of such problems are known as stochastic programming
models. Stochastic programming models are similar to deterministic models
in style but they require probability distributions to generate=estimate data.
The purpose here is to find solution that is feasible for all (or almost all) the
possible data instances and maximizes the expectation of some functions of
the decision and random variables. As our focus in this book is mainly
on deterministic modelling, we would not provide further details on sto-
chastic programming. However, interested readers may find details of
stochastic programming in the books by Birge and Louveaux (1997), Kall
and Mayer (2006), and Kall and Wallace (1995).

5.22 Constraint Programming

The constraint programming is a special case of mathematical programming
models where the purpose is to satisfy a set of constraints only. That means
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the model does not require an objective function like other mathematical
programming models discussed earlier. To demonstrate the concept of
constraint programming, let us revisit some of the examples of this book.

. Example 3.2: Finding the quantity of foodstuff A, B, and C that will
satisfy the constraints (Equations 3.12 through 3.14) only. This is
the case where a certain mix of foodstuff is crucial but the cost of
food is not a concern. In other words, we are looking for a feasible
solution only.

. Example 3.6: Identify the projects that would satisfy the budget
constraint. Note that it can be done in a number of different ways.
We are interested for one of such feasible solutions.

. Example 3.10: Finding a location for the new tower satisfying the
distance constraints.

The practical constraint programming problems are not as simple as the
above examples (see Section 7.5.1). In some problems, a feasible solution
may not exist. In such cases, our purpose is to find a solution with a
minimum constraint violation. Note that these cases can be formulated as
traditional mathematical programming models where the objective function
represents the constraint violation. Interested readers can find more on con-
straint programming in Apt (2003) and Abdennadher and Frühwirth (2003).

5.23 Summary

In this chapter, we have introduced a number of simple modelling tech-
niques and demonstrated their use using numerical examples. The interested
readers may find more examples in the books listed in the bibliography
section of the chapter. In the next chapter, we further refine the mathematical
models into a more concise form by using the summation sign and the subset
sign to separate certain variables. We will continue to present a number of
applications to demonstrate the generalization of specific models.

Exercises

1. Royal Australian Navy (RAN) is considering three types of attack aircraft
to equip its carriers: a supersonic type, a subsonic type, and a boost glide
type. The effectiveness of any aircraft to the fleet is determined by the
expected military value of targets the aircraft can destroy during military
engagements of a certain length. These have been estimated for the three
types mentioned as follows:
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Type Expected Value of Target Destroyed

Supersonic 32
Subsonic 26
Boost glide 27

The numbers of aircraft that could be accommodated, if the entire deck
is allocated to one specific type, are 60 supersonic, 120 subsonic, or 160
boost glide, or any other linear combination of these type. The personnel
requirements and monthly maintenance costs are given below:

Type Personnel per Aircraft Maintenance Cost per Aircraft ($)

Supersonic 16 6000
Subsonic 14 4000
Boost glide 18 7000

A carrier has facilities for 1,400 personnel, and the navy’s monthly
maintenance budget for aircraft is $600,000 per carrier.

The problem is to find how many of each of the three types of aircraft
should be purchased per carrier in order to maximize the value of the
attack capability of a carrier. Formulate the problem as an integer pro-
gramming model.

2. Consider a budget allocation problem where $30 million is available for a
number of projects listed below. The investment required in each project
along with the expected return in terms of utility is also given.

Project

Number Project

Cost

($ million)

Expected

Utility

1 After-school program 6 18
2 Road security 18 16
3 Crime reduction 10 12
4 Road extension 9 25
5 Child care facility 4 14

(i) The problem is to find which projects should be financed in order
to maximize the total expected utility not exceeding the budget
limitation.

(ii) Now suppose there are additional conditions in selecting the
projects. Write the constraints for these conditions.

. Any two of the first four projects must be undertaken.

. Projects 1 and 3 must be taken simultaneously or not taken at all.
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. Project-1 will be undertaken only if project-3 is undertaken but
project-3 is not conditional on project-1 (that means, you can
have project-3 without project-1, but you cannot have project-1
unless project-3 is undertaken).

3. A certain paint can be produced using four different production processes.
The processing cost of each liter in any of the four available processes, the
maximum capacity of each process, and the setup costs are given below:

Process Setup Cost ($) Processing Cost ($=L) Capacity (L)

P1 5,000 0.60 20,000
P2 6,000 0.50 15,000
P3 10,000 0.40 40,000
P4 6,000 0.30 25,000

Assume that a daily demand of 45,000 L must be fulfilled. Formulate
the problem as an integer programming model to determine the daily
production schedule in order to minimize total costs.

4. Consider the following mathematical programming model:

Maximize Z ¼ 3x1 � 2x2 þ 4x3

Subject to

x1 þ 2x2 þ 4x3 � 22

2x1 þ 3x2 � x3 � 20

3x1 þ x2 þ 3x3 � 18

2x1 � x2 þ 3x3 � 17

Use integer programming techniques to express the following:

. At least three of the constraints must hold

. No more than any single constraint must hold

. No more than any two constraints must hold

5. A local power company is considering increasing its generating capacity
to meet expected demand over the next 5 years. Currently, the company has
a generating capacity of 600 MW. As per the demand forecast, the mini-
mum generating capacities required over the next 5 years are as follows:

Year

1 2 3 4 5

Minimum capacity (MW) 670 760 890 1020 1180
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The company can increase its transmission capacity by purchasing five
different types of generators: 20, 50, 80, 100, and 120 MW. The costs of
acquiring, installing, and operating each of the five types of generators
are summarized below:

Generator Type (MW)

Acquiring and

Installation Cost=Unita Operating Cost=Unit=Yeara

20 5.0 2.0
50 10.0 4.0
80 13.0 6.0

100 17.0 8.0
120 22.0 10.0

aIn million dollars.

Any number of generators (of any type) can be added in any year.
However, once a generator is added, it must be operated in the future
years as required. Formulate a mathematical programming model to
determine the least cost expansion plan, for 5 years, while fulfilling all
yearly demand.

6. The manager of City Carpet has just received an order for carpets for a
new office block. The order is for 1500 m of carpet 2 m wide, 6000 m of
carpet 3 m wide, and 3000 m of carpet 4 m wide. The manager can
manage two kinds of carpet rolls, which he needs to cut to fill this
order. One type of roll is 6 m wide and 30 m long, and the second is 8 m
wide and 30 m long. It costs $1500 per roll for the first type and $2000 per
roll for the second type. City Carpet needs to determine how many of the
two types of carpet rolls to buy and how they should be cut. Formulate
the problem as an integer programming model in order to minimize the
cost of carpets.

7. The city council is interested in locating two ambulances, in a newly
developed housing zone, to maximize the number of residents that can
be reached within 5 min in emergency situations. The housing zone is
divided into six regions, and the average times required (in minutes) to
travel from one region to the next are summarized as follows:

To Region

From Region 1 2 3 4 5 6

1 0 2 3 6 8 10
2 2 0 6 4 7 6
3 3 6 0 3 4 8
4 6 4 3 0 2 2
5 8 7 3 3 0 3
6 10 6 8 2 3 0
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The population in regions 1, 2, 3, 4, 5, and 6 are estimated to be 20,000,
60,000, 45,000, 55,000, 36,000, and 48,000, respectively. The question is
which two regions should be chosen for the ambulances. Formulate an
integer linear programming model for the problem.

8. An engineering company produces two products A and B. Each unit of
product A requires 1 h of engineering service and 5 h of machining time.
One unit of B requires 2 h of engineering service and 8 h of machining
time. There are 110 h of engineering and 400 h of machining time
available. The cost of production is a step function as follows:

Product Production (Units) Unit Cost ($)

A 0–50 12
50–100 9

B 0–40 8
40–100 5

The selling price for product A and B is $14 and $15, respectively.
Formulate an integer programming model to maximize the total profit.
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6
Modelling Large-Scale and Well-Known
Problems I

6.1 Introduction

In Chapter 4, we introduced the use of subscripts in variable notation to
make the model more mathematically compact. In this chapter, we intro-
duce the use of the summation sign when expressing a number of variables
together and the use of the subset sign to separate certain variables, which
should make the model even more compact specifically when we are deal-
ing with large-scale modelling. We also present a number of well-known
problems frequently mentioned in the literature and that have arisen in
practice. A number of practical applications of these problems are briefly
discussed with reference to the literature.

The chapter is organized as follows. After introducing summation sign
and subset sign, we have introduced models of different problems such as
shortest path, maximum flow, multi-commodity flow, capital budgeting,
bin packing, cutting stock, facility location, facility layout, production plan-
ning and scheduling, and airlift.

6.2 Use of the Summation (S) Sign

To demonstrate the use of the summation sign, let us reproduce the trans-
portation model as formulated in Example 4.13.

Defining variables:
Xij¼ quantity to be shipped from source i (i¼ 1 for P1 and 2 for P2) to
destination j ( j¼ 1 for DC1, 2 for DC2, and 3 for DC3)

Objective function:
The objective is to minimize the overall shipping costs. It is simply the sum
of all variables multiplied by their corresponding unit costs.

Minimize Z ¼ 1X11 þ 2X12 þ 3X13 þ 4X21 þ 1X22 þ 5X23 (6:1)
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Constraints:
Supply constraints: The total supply from a plant to all destinations must be
equal to its capacity.

Plant P1: X11 þ X12 þ X13 ¼ 100 (6:2)

Plant P2: X21 þ X22 þ X23 ¼ 120 (6:3)

Demand constraints: The total supply received by a destination from all
sources must be less than or equal to its requirements.

Destination DC1: X11 þ X21 � 80 (6:4)

Destination DC2: X12 þ X22 � 120 (6:5)

Destination DC3: X13 þ X23 � 60 (6:6)

Let us now assume the parameters are as follows:

Cij¼ cost ($) of shipping a unit from source i to destination j

Si ¼ supply (in units) at source i

Dj ¼demand (in units) at destination j

Using summation sign, the objective function and the constraints can now
be written as

Minimize Z ¼
X

i

X

j

CijXij 8i, j (6:7)

Supply constraints: The total supply from a plant to all destinations must
be equal to its capacity.

X

j

Xij ¼ Si 8i (6:8)

Demand constraints: The total supply received by a destination from all
sources must be less than or equal to its requirements.

X

i

Xij � Dj 8j (6:9)

The parameters required as input for the model of Example 4.13 are as
follows:

C11¼ 1, C12¼ 2, C13¼ 3, C21¼ 4, C22¼ 1, C23¼ 5

S1 ¼ 100, S3¼ 120

D1 ¼ 80, D2¼ 120, D3¼ 60.
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So the overall transportation model can be formulated as follows:

Minimize Z ¼
X

i

X

j

CijXij

Subject to
X

j

Xij ¼ Si 8i

X

i

Xij � Di 8i

Xij � 0 8i, j

Model (6:1)

The above formulation is valid whether there are a few sources and destin-
ations or there are a large number of sources and destinations as long as one
can represent the data matrices separately.

During the model formulation, one does not need to use all the data as the
data requirements can be finalized after the model development. However,
sometimes data may dictate the model structure, which is discussed in a
later chapter. At the modelling stage, one should concentrate on the logic
and practical issues of modelling. In addition, for a large-scale problem,
writing the model and incorporating all the data will be tedious. Interest-
ingly, most large-scale software packages allow the data to be entered
separately, which makes the overall task easier.

If the number of sources and destinations are known, one can easily calcu-
late the number of variables and constraints from the model. For example, if
there are I sources and J destinations, there will be I 3 J variables and I þ J
constraints (I supply constraints and J demand constraints) in the model.

Using the above notation, the assignment model (discussed in Chapter 4)
can be written as

Minimize Z ¼
X

i

X

j

CijXij

Subject to
X

j

Xij ¼ 1 8i

X

i

Xij � 1 8j

Xij � 0 (or Xij 2 0, 1) 8i, j

Model (6:2)

6.3 Use of the Subset (2) Sign

In the above transportation model, we assumed that there were connections
from all the sources to all the destinations. In many practical situations, this
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is not the case. For example, if there is no connection from source 1 to
destination 3, the model can be written in a simpler form as follows:

Minimize Z ¼ X11 þ 2X12 þ 3X13 þ 4X21 þ X22 þ 5X23

Subject to

X11 þ X12 ¼ S1 Supply constraint 1

X21þX22 þ X23 ¼ S2 Supply constraint 2

X11 þ X21 � D1 Demand constraint 1

X12 þ X22 � D2 Demand constraint 2

X23 � D3 Demand constraint 3

Xij � 0 8i, j

Model (6:3)

However, how would one handle this situation using the compact form of the
model? At the modelling stage, one can easily define a subset of destinations
(or sources) for each source (or destination) where the connections exist.

Assume that A is a set of directed arcs (i, j) that exist in the transpor-
tation network. Involving the directed arcs, the transportation model can be
revised as follows:

Minimize Z ¼
X

(i, j)2A

CijXij

Subject to
X

{j:(i, j)2A}

Xij ¼ Si 8i Supply constraints

X

{i:(i, j)2A}

Xij � Dj 8j Demand constraints

Xij � 0 8i, j

Model (6:4)

In the objective function, one sums over all existing arcs A. In the supply
constraint, one sums over j only for the existing arcs (i, j). Similarly, in the
supply constraint, one sums over i but only for the existing arcs (i, j). In our
list, the existing arcs (i, j) are (1, 1), (1, 2), (2, 1), (2, 2), and (2, 3).

It would be a tedious job to write down all the constraints for a large-scale
general network flow problem as illustrated in Example 4.15. The modelling of
such problems could be made more convenient by using the subset concept.

The flow balance constraint at each node is
Inflow to node i ] outflow from node i � supply or demand at i (bi).
or

X

{j:(j, i)2A}

Xji �
X

{j:(i, j)2A}

Xij � bi 8i 2 N (6:10)

N is the set of nodes.
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The revised model then becomes

Minimize Z ¼
X

(i, j)2A

CijXij

Subject to
X

{j:(j, i)2A}

Xji �
X

{j:(i, j)2A}

Xij � bi 8i 2 N

Xij � 0 8(i, j) 2 A

Model (6:5)

The above mathematical model will always be the same, irrespective of the
number of nodes and arcs in a network flow problem, unless additional or
side constraints are imposed.

There are a number of well-known practical optimization problems
that are frequently referred to in both the theoretical and application
domains. Some of these problems with their general mathematical models
are discussed in the next few sections.

6.4 Network Flow Problems

Network flow problems are well known for their application to a variety of
problem areas. A number of network flow problems are discussed and their
formulations are presented below.

6.4.1 Shortest Path Problem

The shortest path problem is considered to be the simplest type of network
flow problem. In this type of problem, one seeks to find a path of minimum
cost (or length) from a specified source node to another specified sink (or
destination) node, assuming that each arc on the network has an associated
cost (or length). In this problem, we assume there is only one source node
and only one sink node.

Parameters:

N ¼number of nodes

A ¼ set of existing arcs (i, j)

Cij¼ arc length (or arc cost) associated with each arc (i, j)

i ¼ s for source node

i ¼ d for sink or destination node

Variables:
xij¼ the flow from node i to node j (it is assumed that the arcs are directed)
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Objective function:
The objective is to minimize the flow cost (or length) from the source to the sink.

Minimize Z ¼
X

(i, j)2A

Cijxij (6:11)

Constraint:
The total inflow to a node i minus the total outflow from that node must be
equal to its supply or demand. It is assumed that there will be only one unit
available at the source for supply and only one unit of demand at the sink node.

X

{j:(j, i)2A}

xji �
X

{j:(i, j)2A}

xij ¼
�1 if i = s
0 if i 6¼ s or d 8i 2 N
1 if i = d

(

(6:12)

Note that, as discussed in Chapter 4, positive numbers represent the demand
at the destination=sink node, zero represent the transshipment nodes, and the
negative numbers represent the supply available at the supply=source node.

The final linear programming (LP) model is therefore

Minimize Z ¼
X

(i, j)2A

Cijxij

Subject to

X

{j:(j, i)2A}

xji �
X

{j, (i, j)2A}

xij ¼
�1 if i = s

0 if i 6¼ s or d 8i 2 N

1 if i = d

8
<

:

xij � 0 8(i, j) 2 A

Model (6:6)

The shortest path problems arise frequently in practice. The problem can be
viewed as finding the shortest paths (1) from one node to another
given node, (2) one node to all other nodes, or (3) from every node to
every other node. The model provided above is for case (1). In addition
to the basic problem types described in (2) and (3), the shortest path problem
may include additional constraints such as constraints on path reliability,
capacity, and resources required. A number of direct applications of short-
est path problems can be found in Ahuja et al. (1993). Erkut and Ingolfsson
(2005) developed a shortest-path-based model for hazardous materials
transportation. Pattanamekar et al. (2003) considered travel time uncertainty
in modelling shortest path problems. Sung et al. (2000) formulated a mathe-
matical model of the shortest path problem on time-dependent networks,
where the travel time of each link depends on the time interval.

6.4.2 Maximum Flow Problem

The maximum flow problem seeks a solution that identifies the maximum
amount of flow that can occur from a specified source node to another
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specified sink node assuming each arc on the network has a limited flow
capacity.

Parameters:

N ¼number of nodes

A ¼ set of existing arcs (i, j)

Uij¼upper bound of flow (arc capacity) in each arc (i, j)

i ¼ s source node (only one)

i ¼ d sink or destination node (only one)

Variables:

xij is the flow from node i to node j (assuming that the arcs are
directed)

f is the total flow from the source to the sink

Objective function:
The objective is to maximize the total flow from the source to the sink
through the network.

Maximize Z ¼ f (6:13)

Constraints:

1. Flow balance: The total inflow to a node i minus the total outflow
from that node must be equal to its supply or demand. It is
assumed that there will be a minimum of f units available at the
source for supply. f is a variable here.

X

{j:(j, i)2A}

xji �
X

{j:(i, j)2A}

xij ¼
�f if i = s
0 if i 6¼ s or d 8i 2 N
f if i = d

(

(6:14)

Note that, as discussed in Chapter 4, positive numbers represent
the demand at the destination=sink node, zero represents the
transshipment nodes, and negative numbers represent the supply
available at the supply=source node.

2. Arc capacity: The total flow through any arc should not exceed its
capacity.

xij � Uij 8(i, j) 2 A (6:15)

The final LP model for the maximal flow problem becomes
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Maximize Z ¼ f

Subject to

X

{j:(j, i)2A}

xji �
X

{j:(i, j)2A}

xij ¼
�f if i = s

0 if i 6¼ s or d 8i 2 N

f if i = d

8
<

:

xij � Uij 8(i, j) 2 A Model (6:7)

xij � 0 8(i, j) 2 A

f � 0

6.4.3 Multi-Commodity Flow Problem

Multi-commodity flow problems arise when several commodities use the
same underlying network. Different commodities may have different origins
and destinations, and the commodities have separate mass balance constraints
at each node. However, the sharing of the common arc capacities binds the
different commodities together. The problem is to allocate the capacity of each
arc to the individual commodities in a way that minimizes overall flow costs.

Parameters:

N ¼number of nodes

A ¼ set of existing arcs (i, j)

K ¼number of commodities

Cijk¼unit cost for commodity k in arc (i, j)

Uij ¼ capacity of arc (i, j)

Bik ¼ the demand or supply for commodity k in node i

Variables:
xijk is the quantity transported of commodity k from node i to node j.

Objective function:
The objective is to minimize the sum of all commodity flow costs.

Minimize Z ¼
X

k

X

(i, j)2A

Cijkxijk (6:16)

Constraints:
Flow balance: For each commodity, the total inflow to a node i minus the total
outflow from that node must be equal to its supply or demand. It is assumed
that the total supply for each commodity is equal to its demand.

X

{j:(j, i)2A}

xjik �
X

{j:(i, j)2A}

xijk ¼ Bik 8i 2 N, k 2 K (6:17)
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Note that, as discussed in Chapter 4, positive numbers represent the demand
at the destination=sink node, zero represent the transshipment nodes, and
the negative numbers represent the supply available at the supply=source
node. So the right hand side Bik can be positive, zero, or negative.

Arc capacity:
The total flow of all commodities through any arc should not exceed its
capacity.

X

k

xijk � Uij 8(i, j) 2 A (6:18)

The final LP model for multi-commodity flow problem becomes

Minimize Z ¼
X

k

X

(i, j)2A

Cijkxijk

Subject to
X

{j:(j, i)2A}

xjik �
X

{j:(i, j)2A}

xijk ¼ Bik 8i 2 N, k 2 K

X

k

xijk � Uij 8(i, j) 2 A

xijk � 0 8(i, j) 2 A, k 2 K

Model (6:8)

For more on multi-commodity flow problems, see Gabrel et al. (1999),
Leighton et al. (1995), Ahuja et al. (1993), and Bazaraa et al. (1990). Gabrel
et al. (1999) studied multi-commodity network optimization problems
using general discontinuous step-increasing cost functions. This class
of problems includes the so-called single-facility and multiple-facility
capacitated network loading problems as special cases. They reported com-
putational experiments for networks containing up to 20 nodes, 37 links, and
cost functions with an average six steps per link. Hadjiat et al. (2000)
studied the minimum linear cost multi-commodity flow problem where
the given traffic demand is satisfied through routes having less than a
given maximum number of edges. Their model has been tested on some
real-world instances given by the national French telecommunication oper-
ator (France Telecom).

Castro and Nabona (1996) presented an approach for solving the multi-
commodity network flow problem with a linear or nonlinear objective
function by considering additional linear side constraints that link arcs of
the same or different commodities. Several tests were reported using
random problems obtained from different network generators and real
problems arising from the fields of long- and short-term hydrothermal
scheduling of electricity generation and traffic assignment, with sizes of
up to 150,000 variables and 45,000 constraints.
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6.5 Knapsack Problem

The knapsack problem is to decide what should be put in a knapsack given a
weight limitation on how much can be carried. The term ‘‘knapsack prob-
lem’’ invokes the image of the backpacker who is constrained by a fixed-size
knapsack and so must fill it only with the most useful or essential items.
However, any problem that matches a similar analogy from any other prob-
lem area is also recognized as a knapsack problem, for example, the capital
budgeting problem. The knapsack problems are represented by integer
programming models. A simple formulation for a capital budgeting problem
is discussed below as an example of general knapsack model. Two examples
on knapsack problems are already provided in Examples 3.6 and 3.7.

6.5.1 Capital Budgeting Problem

The problem is to decide which projects to fund given a strict limitation on
capital availability. The return for each project is calculated in terms of net
present value and the objective of the problem is to maximize the sum of
returns from the selected projects subject to capital constraint.

Parameters:

N ¼ the number of projects under consideration

NPi¼ the net present value of project i

ci ¼ the capital required to fund project i

B ¼ the capital (or budget) available for all projects

Variables:

xi ¼ 1 if project i is funded
0 otherwise

�

Objective function:
The objective is to maximize the sum of the net present value of the selected
projects.

Maximize Z ¼
XN

i¼1

NPixi (6:19)

Constraint:
The projects must be funded from within the available capital.

XN

i¼1

cixi � B (6:20)
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The final capital budgeting model becomes

Maximize Z ¼
XN

i¼1

NPixi

Subject to

XN

i¼1

cixi � B

xi 2 0, 1f g 8i

Model (6:9)

For more on the modelling of capital budgeting problems see Weingartner
(1963). Hall et al. (1992) developed a mathematical model for a project
funding decision facing a U.S. Cancer Institute and Chan et al. (2005)
studied a defense modernization acquisition decision problem using a
multi-criteria optimization model. This model explicitly considers the
diverse functions of the organization. In particular, the synergism among
the functions is modelled as a multiplicative value function. The model
highlights how technology acquisitions can be affected as the priorities of
each organizational function changes.

6.5.2 Bin Packing Problem

When there are multiple knapsacks, the problem is probably better thought
of as a bin packing problem. In this type of problem, the aim is to
determine how to put the most objects in the least number of fixed-space
bins. There are many variants of bin packing problems, such as one-, two-,
and three-dimensional, linear, pack by volume, pack by weight, minimize
volume, maximize value, and fixed-shape objects (Martello and Toth, 1990).
Practical examples include how best to fit boxes into trucks (or shipping
containers or storage bins) to minimize the number of trucks (or containers
or bins) needed to ship everything. A mathematical model for a multiple
container packing problem is presented below.

Parameters:

M ¼number of containers (index i)

N ¼number of items (index j)

Wj¼weight of item j

Vj ¼ value of item j

Ci ¼ capacity of container i (weight)

Variables:

xij ¼ 1 if item j is assigned to container i
0 otherwise

�
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Objective function:
The objective is to maximize the total value of all assigned items.

Maximize Z ¼
XM

i¼1

XN

j¼1

Vjxij (6:21)

Constraints:
Item assignment: Each item is assigned to no more than one container.

XM

i¼1

xij � 1 8j (6:22)

Container capacity: The total weight of all items assigned to a container
must not exceed its capacity.

XN

j¼1

Wjxij � Ci 8i (6:23)

The final mathematical model becomes

Maximize Z ¼
XM

i¼1

XN

j¼1

Vjxij

Subject to

XM

i¼1

xij � 1 8j

XN

j¼1

Wjxij � Ci 8i

xij 2 {0, 1} 8i, j

Model (6:10)

A slightly different approach to the one-dimensional bin packing problem,
which is similar to the cutting stock model presented in Section 6.5.3, can be
found in Elhedhli (2005). Lodi et al. (2002) studied two-dimensional packing
problems. They considered problems in which the aim was to allocate a set
of rectangular items to larger rectangular standardized units by minimizing
the waste. In two-dimensional bin packing problems these units are finite
rectangles, and the objective is to pack all the items into the minimum
number of units, while in two-dimensional strip packing problems a single
standardized unit of given width is used, and the objective is to pack all the
items within the minimum height. For three-dimensional problems, see
Chien and Wu (1998, 1999). They presented new procedures for loading
different-sized boxes into a freight container of known dimensions so as to
minimize the waste of container space.

Sarker/Optimization Modelling: A Practical Approach 43102_C006 Final Proof page 156 22.8.2007 11:34pm Compositor Name: JGanesan

156 Optimization Modelling: A Practical Approach



6.5.3 Cutting Stock Problem

The cutting stock problem is very much similar to bin packing problems from
the optimization modelling point of view. For example, find the best arrange-
ment of different shapes out of a larger rectangular entity to minimize waste
or the number of rectangles. This problem arises often in manufacturing. For
instance, deciding how to cut pieces of cloth for pants from a roll of material or
punching shapes from sheet metal. A mathematical model for a simple two-
dimensional cutting stock problem, to minimize the number of rolls to be used
to cut out all the items, is presented below as of Valerio de Carvalho (2002).

Parameters:

K ¼ the known upper bound on the number of rolls needed (index k)

N ¼ the number of clients (index i)

Bi ¼ the number of items required by client i

Wi ¼ the width of items required by client i

TW¼ the total width of each roll

Variables:

xik the number of times item i is cut out of roll k

yk ¼ 1 if roll k is used
0 otherwise

�

Objective function:
The objective is to minimize the number of rolls to be used to cut out all the
items.

Minimize Z ¼
XK

k¼1

yk (6:24)

Constraints:
Requirements: The number of items cut of a given width must be greater
than or equal to the demand.

XK

k¼1

xik � Bi 8i (6:25)

Width limitation: The total width of the items cut from a roll must be less
than or equal to the width of the roll.

XN

i¼1

Wixik � TWyk 8k (6:26)
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So the final cutting stock model becomes

Minimize Z ¼
XK

k¼1

yk

Subject to

XK

k¼1

xik � Bi 8i

XN

i¼1

Wixik � TWyk � 0 8k

xik � 0 and integer 8i, k

yk 2 {0, 1} 8k

Model (6:11)

The relevant literature on cutting stock problems is briefly outlined here.
Valerio de Carvalho (2002) has reviewed several LP formulations for the
one-dimensional cutting stock and bin packing problems. Correia et al.
(2004) describe a real-world industrial problem of production planning
and cutting optimization of reels and sheets, occurring at a Portuguese
paper mill. It focuses on a particular module of the global problem, which
is concerned with the determination of the width combinations of the items
involved in the planning process. The main goal consists of satisfying an
order set of reels and sheets that must be cut from master reels. The width
combination process will determine the quantity=weight of the master reels
to be produced and their cutting patterns, in order to minimize waste, while
satisfying production orders.

Johnston and Sadinlija (2004) developed a mathematical model that
resolves the nonlinearity in the one-dimensional cutting stock problem,
between pattern variables and pattern run lengths, by using 0–1 variables.
The model does not require prespecification of cutting patterns. It includes
practical constraints such as pattern cardinality, minimum run length, and
sequence-related constraints.

Degraeve et al. (2002) developed an integer programming model for
solving the layout problem in the fashion industry. Before cutting, several
layers of cloth are put on a cutting table and several templates, indicating
how to cut out all material for a specific size, are fixed on top of the stack.
The problem consists of finding good combinations of templates and the
associated height of the stack of cloth to satisfy demand while minimizing
total excess production.

Schilling and Georgiadis (2002) presented a mathematical programming
model for the problem of determining the optimal manner in which several
product rolls of given sizes are to be cut out of raw rolls of one or more
standard types. The objective is to perform this task so as to maximize the
profit, taking into account the revenue from the sales, the costs of the original
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rolls, the costs of changing the cutting pattern, and the costs of disposal of
the trim.

Morabito and Garcia (1998) proposed a two-phase integer programming
model for the cutting stock problems of a hardboard industry. Rönnqvist
(1995) reported a problem of how to cut wood products with different
quality requirements from wooden boards, which in turn consist of a
number of different qualities. A major difficulty was the existence of distinct
time limits since the cross cutting of the boards was performed as a real-time
process. The mathematical model derived for the problem included a set
packing problem that accurately described the real-world problem of a
Swedish company.

6.6 Facility Location and Layout

Facility location and layout are very important factors for efficient
operation of manufacturing systems, chemical plants, and many other
service organizations. In this section, we present simple but representative
formulations and discuss the relevant literature.

6.6.1 Facility Location Problem

The mathematical modelling of facility siting has attracted the interest of
many researchers for over four decades. Investigators have modelled loca-
tion problems for both the private sector (e.g., industrial plants, banks, retail
facilities, warehouses, shopping centers, recreation centers, etc.) and the
public sector (e.g., ambulances, clinics, schools, etc.). Each model has differ-
ences and similarities relative to each other, but the peculiarities of each
problem provide the basis for the hundreds of investigations.

These problems concern the location of facilities to serve clients econo-
mically. We are given a set N of potential facility locations and a set of
clients i. A facility placed at location j costs Fj. Each client has a demand for a
certain type of goods, and the total cost of satisfying the demand of client i
from a facility at j is Cij. The problem is to choose a subset of locations at
which to place facilities and then to assign the clients to these facilities so as
to minimize the total cost.

Parameters:

N ¼ the number of customers

M ¼ the number of potential sites

Cij¼ the total cost of satisfying demand for customer i from site j

Fj ¼ the cost of installation of facility j
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Variables:

yij the fraction of demand of client i that is satisfied from a facility at j

xj ¼ 1 if a facility is placed at j
0 otherwise

�

Objective function:
The objective is to minimize the sum of costs for the installation and the
satisfaction of demand.

Minimize Z ¼
XM

j¼1

Fjxj þ
XN

i¼1

XM

j¼1

Cijyij (6:27)

Constraints:
Demand constraint: The customers’ demands must be fulfilled.

XM

j¼1

yij ¼ 1 8i (6:28)

Facility constraint: A client i cannot be served from site j unless a facility is
placed at j.

yij � xj � 0 8i, j (6:29)

The above model is for a uncapacitated problem as it considers that a facility
can serve any number of clients. Now, let us assume that a facility located
at j has a capacity of Uj (capacitated problem) and the ith client has a
demand of Di. For this situation, we need to change the definition of Cij

and yij as follows:

Cij unit shipment cost for customer i supplying from site j

yij the quantity of goods for client i that would be satisfied from a
facility at j

The corresponding constraints for the capacitated problem are
Demand constraint: The customers’ demands must be fulfilled.

XM

j¼1

yij ¼ Di 8i (6:30)

Facility constraint: A client i cannot be served from site j unless a facility is
placed at j and the total supply from a site j to all customers must be less
than or equal to its capacity.
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XN

i¼1

yij �Ujxj � 0 8j (6:31)

The final capacitated facility location model becomes

Minimize Z ¼
XM

j¼1

Fjxj þ
XN

i¼1

XM

j¼1

Cijyij

Subject to

XM

j¼1

yij ¼ Di 8i

XN

i¼1

yij �Ujxj � 0 8j

yij � 0 8i, j

xj 2 {0, 1} 8j

Model (6:12)

In the above model, if we remove the binary variables xj (variables for
identifying facility locations) and facility installation cost Fj, it is similar to
the transportation model discussed in Chapter 4.

ReVelle and Eiselt (2005) have reviewed many facets of the facility loca-
tion field through reference to both seminal works and current reviews.
Other specific models are discussed below.

Eben-Chaime et al. (2002) have studied a capacitated location–allocation
problem and developed an appropriate mathematical model. McGarvey and
Cavalier (2005) have examined a competitive facility location problem occur-
ring in two dimensions. They have developed a new gravity-based utility
model in which the capacity of a facility serves as its measure of attractiveness.
Gue (2003) has developed a multi-period, facility location and material flow
model, and has shown how to configure the land-based distribution system
over time to support a given battle plan with minimum inventory. Drezner
et al. (2002) and Drezner (1998) have studied a multiple competitive facilities
location problem in which a franchise of several facilities is to be located in a
trade area where competing facilities already exist. The objective of their
model is to maximize the market share captured by the franchise as a whole.

6.6.2 Facility Layout Problem

Consider a warehouse layout problem. In a warehouse, the operating
staff must decide where to locate the different items of goods they receive
and later where to deliver the items of goods to. Suppose that a company
is using a warehouse for storing n items. The warehouse has only one
loading and unloading dock. The warehouse stores items on pallets. For
any item i, the cost of movement per year, between the dock and the storage
region, is dependent on the distance traveled by a forklift and the average
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number of pallet loads received and delivered per year. The warehouse
layout problem is to determine the regions for storing each of the n items
that will minimize the total transportation cost between the items and
the dock.

For the convenience of modelling, the warehouse floor area is divided
into m square grids of equal size, numbered from 1 to m. Each grid-square
can accommodate only one pallet.

Parameters:

Gi¼ the total number of grid-squares required to store item i (as an
item may require more than one grid-square)

Fi ¼ the average number of pallet loads, for item i, received and
delivered in a year

Dj¼ the distance between the dock and the center of grid-square j

Pi ¼ the cost per pallet per unit distance incurred in transporting item
i between the dock and its storage region

We assume that the total number of grid-squares required by all items is
less than or equal to m, that is,

Xn

i¼1

Fi � m (6:32)

The transportation cost per pallet load for item i between the dock and the
grid-square location j is Dj 3 Pi. The average number of pallet loads per grid
for item i¼ Fi=Gi. So the average cost of locating a pallet of item i in a given
year¼Cij¼ (Fi=Gi) 3 Dj 3 Pi.

Decision variables:

xij ¼ 1 if item i is stored in grid-square j
0 otherwise

�

Objective function:
The objective is to minimize the total cost locating all the items in the
warehouse.

Minimize Z ¼
Xn

i¼1

Xm

j¼1

Cijxij (6:33)

Constraints:

1. The number of placed pallets for item i must be equal to the
number of grid-squares required.
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Xm

j¼1

xij ¼ Gi 8i (6:34)

2. Each grid-square can, at most, contain one pallet.

Xn

i¼1

xij ¼ 1 8j (6:35)

So the overall model becomes

Minimize Z ¼
Xn

i¼1

Xm

j¼1

Cijxij

Subject to

Xm

j¼1

xij ¼ Gi 8i

Xn

i¼1

xij ¼ 1 8j

xij 2 {0, 1} 8i, j

Model (6:13)

Facility layout is considered an important planning and design issue for
many facilities and organizations, such as conventional machine-shops,
chemical processing plants, flexible manufacturing systems (FMSs), ware-
houses, hospitals, and shopping malls. Malmborg and Krishnakumar
(1989) determined the optimal warehouse layout based on a mathematical
model for the case of aisle-capture and multi-command order picking cycles.

Potts and Whitehead (2001) solved combined scheduling and machine
layout problems in an FMS using the mathematical modelling approach. In
the model, for a known set of products, the primary objective was to
maximize the throughput and the secondary objective was to minimize
the movement of work between machines.

Mak et al. (1998) developed a mathematical model to examine the
machine layout and the pattern of material flow for the typical job shop
and flow shop manufacturing environments. The analysis also considered
various practical aspects, such as the constraints of restricted areas and
reserved machinery locations, and also the irregularity of the shapes of
manufacturing plants.

Georgiadis et al. (1999) presented a mathematical model to address
the problem of allocating items of equipment in a given two- or three-
dimensional space. The problem was formulated as a mixed-integer linear
programming (MILP) model where equipment of various sizes and geo-
metries were taken into account.
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The dynamic plant layout problem (DPLP) deals with the design of multi-
period layout plans. The dynamic problem involves selecting a static layout
for each period and then deciding on whether to change to a different layout
in the next period. For more detail on DPLP, see Balakrishnan et al. (2003)
and Baykasoglu and Gindy (2001).

6.7 Production Planning and Scheduling

The problem is to determine a production schedule for N products over T
periods. This problem is also known as the multi-product lot sizing=scheduling
problem. Demand for each product must be met in each period and no
stockouts are allowed. There is a marginal cost of production and there is
a marginal inventory holding cost for items held at the end of each period.
There is also a fixed setup cost for each product if the production level in a
period is greater than zero. All the products share a common but limited
machine capacity and other resources.

Parameters:

T ¼number of periods

N ¼number of products

Dit ¼demand for product i in period t

Fit ¼ fixed cost associated with the production of product i in period t

Hit ¼unit inventory holding cost of product i at the end of period t

Cit ¼unit production cost of product i in period t

Pt ¼production capacity available in period t

PCi¼production capacity consumed by each unit of product i

Variables:

xit units of product i produced in period t

yit ¼ 1 for nonzero production of product i in period t
0 otherwise

�

Iit units of product i held as inventory at the end of period t

Objective function:
The objective is to minimize the sum of production, setup, and inventory
holding costs.

Minimize Z ¼
XN

i¼1

XT

t¼1

(Citxit þ Fityit þHitIit) (6:36)
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Constraints:
Capacity constraint: The total production in each period t must not exceed
the available production capacity.

XN

i¼1

PCixit � Pt 8t (6:37)

Demand constraint: The demand of each product i in each period t must
be met from the production of the current period plus the inventory carried
over from the previous period minus the inventory to be carried over for the
next period.

Ii, t�1 þ xit � Iit ¼ Dit 8i, t (6:38)

Fixed charge or setup cost forcing constraint: It ensures yit to be nonzero if
xit is nonzero. In other words, the constraint links production with setup
that is xit with yit.

xit �Mityit 8i, t (6:39)

where Mits are chosen as very big numbers—also known as the ‘‘Big M’’ in
operations research and optimization literature. Alternatively, we can use Pt

in place of Mit.
The final production scheduling model is

Minimize Z ¼
XN

i¼1

XT

t¼1

(Citxit þ Fityit þHitIit)

Subject to

XN

i¼1

PCixit � Pt 8t

Ii, t�1 þ xit � Iit ¼ Dit 8i, t

xit �Mityit 8i, t

xit, Iit � 0 8i, t

yit 2 {0, 1} 8i, t

Model (6:14)

6.7.1 Relevant Literature

Lot sizing is one of the most important and also one of the most difficult
problems in production planning. Karimi et al. (2003) have studied single-
level lot sizing problems and their variants. They have introduced factors
affecting the formulation and the complexity of production planning prob-
lems, and discussed different variants of lot sizing and scheduling problems
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(LSSPs). Gnoni et al. (2003) have dealt with LSSPs of a multi-site manufac-
turing system with capacity constraints and uncertain multi-product and
multi-period demand. Wolsey (1997) has presented a survey that covers a
number of topics such as handling of changeovers, both sequence independ-
ent and sequence dependent, in production planning and machine sequen-
cing, within the realm of the question of how to model time.

de Matta and Miller (2004) have studied a problem of coordinating the
short-term production and inter-facility transportation scheduling decisions
between a plant that produces intermediate products and a finishing
plant, which processes the intermediate products into finished goods. The
goal was to develop a better understanding of the general relationships
between production and transportation scheduling decisions, in particular,
how changes in plant capacity and costs affect the coordination of scheduling
decisions as well as the choice of transportation modes and carriers. They
have formulated the problem as a mixed-integer programming model.

Wu and Chang (2004) have attempted to assess an optimal production-
planning program in response to varying environmental costs in an uncertain
environment. The optimal production strategy concerning the numerous
screenings of possible production alternatives of dyeing cloth in a textile-
dyeing firm in terms of market demand, resource availability, and impact of
environmental costs was treated as an integral part of the multi-criteria
decision-making framework based on the gray compromise programming
approach. It covered not only the regular part of production costs and the
direct income from product sales but also the emission=effluent charges and
water resource fees reflecting part of the goals for internalization of external
costs in a sustainable society.

Yan et al. (2004) have explored the hierarchical production planning (HPP)
problem of flexible automated workshops (FAWs), each of which had a
number of FMSs. The objective was to decompose medium-term production
plans into short-term production plans (to be executed by FMSs in the FAW)
so as to minimize cost on the condition that demands have just been met.

Göthe-Lundgren et al. (2002) have developed a production-planning and
scheduling model for an oil refinery company. The production process
consists of one distillation unit and two hydrotreatment units. In the
process, crude oil is transformed into bitumen and naphthenic special oils.
The aim of the scheduling is to decide the mode of operation to use in each
processing unit at each point in time, in order to satisfy the demand while
minimizing the production cost and taking storage capacities into account.
Ortı́z-Gómez et al. (2002) have described three mixed-integer multi-period
optimization models of varying complexity for the oil production planning
of wells of an oil reservoir.

Tang et al. (2000) presented a model for hot rolling production scheduling.
The project was part of a large-scale effort to upgrade production and oper-
ations management systems of major iron and steel companies in China. Hot
rolling production involves sequence-dependent setup costs. They proposed
a parallel strategy to model the scheduling problem and solve it using a new
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modified genetic algorithm. Combining the model and the human–machine
interactive method, a scheduling system was developed. The result of one
year’s running in Shanghai Baoshan Iron & Steel Complex showed 20%
improvement over the previous manual-based system.

6.8 Logistics and Transportation

The logistics and transportation problems involve efficient transportation of
goods under different conditions and environments. The basic transport-
ation problem has been discussed in Chapter 4. The mathematical model of
an airlift problem and the relevant literature on logistics are discussed in
this section.

6.8.1 Airlift Problem

Suppose a number of transport aircraft, each of limited capacity, have been
assigned a task of airlifting materials, from a number of locations, and
delivering them to different zones in a prespecified region. For technical
reasons and for a better distribution of the airlifted loads among the aircraft,
a maximum allowable load from a location for each aircraft is given. The
problem is to determine the airlift operation plan satisfying the demand at
various zones at minimum cost.

Parameters:

N ¼number of aircraft available (index k)

M ¼number of source locations (index i)

P ¼number of zones receiving airlifted materials (index j)

Lk ¼ load capacity of aircraft k

Si ¼ quantity available for transportation from location i

Dj ¼ the tonnage of materials required by zone j

Cijk¼unit cost of transporting from location i to zone j by aircraft k

Uik ¼maximum allowable load that can be transported from location
i by aircraft k in a given period.

Variables:
xijk ¼ the number of trips required by aircraft k from location i to zone j

Objective function:
The objective is to minimize the overall airlift cost.

Minimize Z ¼
XM

i¼1

XP

j¼1

XN

k¼1

Cijkxijk (6:40)
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Constraints:
Demand constraint: The demand of each zone must be satisfied.

XM

i¼1

XN

k¼1

xijkLk � Dj 8j (6:41)

Supply constraint: The transportation from a location to all zones must be
less than or equal to its available supply.

XP

j¼1

XN

k¼1

xijkLk � Si 8i (6:42)

Load constraint: The total load to be transported from a location, by an
aircraft, to all zones must be less than or equal to the allowable load limit. This
limit can also be set based on environmental and operational conditions.

XP

j¼1

xijkLk � Uik 8i, k (6:43)

The final LP model becomes

Minimize Z ¼
XM

i¼1

XP

j¼1

XN

k¼1

Cijkxijk

Subject to

XM

i¼1

XN

k¼1

xijkLk � Dj 8j

XP

j¼1

XN

k¼1

xijkLk � Sj 8i

XP

j¼1

xijkLk � Uik 8i, k

xijk � 0 8i, j, k

Model (6:15)

6.8.2 Relevant Literature

Ocean transportation is a major logistics activity in the global chemical
supply chain industry. Often, the logistics cost can be as high as 20% of
the purchasing cost. Efficient routing and scheduling of multi-parcel chem-
ical tankers to reduce logistics expenditure is important for both the
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chemical and shipping industries. Jetlund and Karimi (2004) considered the
maximum-profit scheduling of a fleet of multi-parcel tankers engaged in
shipping bulk liquid chemicals. They presented a MILP formulation using
variable-length slots. The formulation is generally applicable to all kinds of
carriers engaged in the transportation of multiple commodities, and to
transportation systems, where frequent schedule updates or a short-term
planning horizon is required. They illustrated their approach on a real
industrial case study involving 10 tankers, 36 ports, and 79 cargos. Their
approach showed an increase of 32.7% in profits compared with the plan
actually used by a major chemical shipping company.

Troncoso and Garrido (2005) presented a mathematical model applied to
the problem of production and logistics in the forest industry. Specifically, a
dynamic model of mixed-integer programming was formulated to solve
three common problems in the forest sector: forest production, forest facilities
location, and forest freight distribution. The implemented mathematical
model allowed the strategic selection of the optimal location and size of a
forest facility, in addition to the identification of the production levels and
freight flows that will be generated in the considered planning horizon.
A practical application of the model was carried out, validating its utility in
the location of a sawmill.

A mathematical model for a multi-region distribution problem that
addresses the operational benefits of serving a global market using a net-
work of dedicated multimodal cargo facilities (DMCFs) has been introduced
by Warsing et al. (2001). The model allows an explicit evaluation of the
comparative value of using a dedicated air cargo–based multimodal distri-
bution facility in an established network of supply and demand points as
opposed to more traditional methods for interregional shipments. Their
model is a large-scale, nonlinear programming model to evaluate the corres-
ponding logistics costs, incorporating the congestion effects of aircraft
loading=unloading on dock-to-dock lead times in the network.

The Dead Sea Works Ltd. extracts more than 2 million tonnes of potassium
a year from the Dead Sea and ships it by surface and marine transportation to
markets around the world. Product mix and market distribution changes
have made it necessary to redesign the surface logistics system. This
system consists of four sites with a total of more than 300,000 tonnes of
roofed storage capacity. The problem was to suggest changes in the storage
capacity of each product at each of the sites. Rabinowitz and Mehrez (2001)
have designed a model that expresses the expected annual loss for the firm
and have solved it under potential market scenarios and management and
technological constraints. The annual net benefit from implementing the
proposed solution is expected to be $1.7 million.

The Air Force’s ability to deploy, employ, and sustain operations in for-
ward operating locations is a key to mission success. An integral part of this
new strategy involving forward operating locations is equipment preposi-
tioning, to include vehicles, aircraft support, consumable inventory, and
munitions. Proper prepositioning strategies provide a means to deploy forces
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rapidly without resorting to an increased overseas presence. Johnstone et al.
(2004) developed a mathematical model to aid decision makers that deter-
mined a strategy for positioning and configuring prepositioned assets. Their
research places particular emphasis on the strategic, global prepositioning of
the afloat prepositioning fleet (APF), the configuration of these ships with
respect to precision guided weaponry, the development of a transportation
plan in response to modelled contingencies, and a port selection and distribu-
tion strategy once the APF ship is tasked to support a contingency. In addition
to the APF assets, the model considers U.S.-based supply points used to
augment on-hand and APF-provided munitions assets. The primary objective
is to minimize the overall response time involved with offloading these ships
and transporting their cargo (the munitions) to the intended point of use.

6.9 Summary

In this chapter, we have introduced the use of the summation sign and
subset sign in mathematical modelling. The use of summation and subset
signs together with subscripts in variable, already introduced in previous
chapter, would make any model mathematically real compact. We have
presented a number of well-known problems frequently mentioned in the
literature and that have arisen in practice. The types of problems considered
were network flow problem, knapsack problem, facility location and layout
problem, and production planning problems. The mathematical models for
some of these problems were discussed and a brief review on their practical
applications was presented.

Exercises

1. Consider the shortest path model (Model 6.6) as shown below:

Minimize Z ¼
X

(i, j)2A

Cijxij

Subject to

X

{j:(j, i)2A}

xji �
X

{j:(i, j)2A}

xij ¼
�1 if i = s

0 if i 6¼ s or d 8i 2 N

1 if i = d

8
<

:

xij � 0 8(i, j) 2 A

If more than one destination node exists, what changes does one need to
make to the above model?
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2. Consider the maximal flow model (Model 6.7) as shown below:

Maximize Z ¼ f

Subject to

X

{j:(j, i)2A}

xji �
X

{j:(i, j)2A}

xij ¼
�f if i = s

0 if i 6¼ s or d 8i 2 N

f if i = d

8
><

>:

xij � Uij 8(i, j) 2 A

xij � 0 8(i, j) 2 A

If more than one destination node exists, what changes need to be made
to the above model?

3. Consider the multi-commodity flow model (Model 6.8) as shown below:

Minimize Z ¼
X

k

X

(i, j)2A

Cijkxijk

Subject to
X

{j:(j, i)2A}

xjik �
X

{j:(i, j)2A}

xijk ¼ Bik 8i 2 N, k 2 K

X

k

xijk � Uij 8(i, j) 2 A

xijk � 0 8(i, j) 2 A, k 2 K

If certain arcs have unlimited capacity, and if the arc capacity is
different for different commodities, what changes need to be made in
the above model?

4. Consider the cutting stock problem as presented in Model 6.11. Compare
this model with the trim loss problem discussed in the previous chapter.

5. Consider the capacitated facility location model (Model 6.12) as shown
below:

Minimize Z ¼
XM

j¼1

Fjxj þ
XN

i¼1

XM

j¼1

Cijyij

Subject to

XM

j¼1

yij ¼ Di 8i

XN

i¼1

yij �Ujxj � 0 8j

yij � 0 8i, j

xj 2 {0, 1} 8j
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If we want to limit the number of locations to one or two, what changes
would the above model require?

6. Consider the facility layout model (Model 6.13) as shown below:

Minimize Z ¼
Xn

i¼1

Xm

j¼1

Cijxij

Subject to

Xm

j¼1

xij ¼ Gi 8i

Xn

i¼1

xij ¼ 1 8j

xij 2 {0, 1} 8i, j

If the warehouse has more than one dock, what changes would the above
model require?

7. Consider the facility layout model (Model 6.14) as shown below:

Minimize Z ¼
XN

i¼1

XT

t¼1

(Citxit þ Fityit þHitIit)

Subject to

XN

i¼1

PCixit � Pt 8t

Ii, t�1 þ xit � Iit ¼ Dit 8i, t

xit �Mityit 8i, t

xit, Iit � 0 8i, t

yit 2 {0, 1} 8i, t

How do the constraints of the above model differ from the fixed-charge
problem discussed in the previous chapter? Can we combine constraints
(1) and (3) in this model? Why or why not?

References

Ahuja, R., Magnanti, T., and Orlin, J., Network Flows: Theory, Algorithms and Applica-
tions, Prentice Hall, Englewood Cliffs, NJ, 1993.

Balakrishnan, J., Cheng, C.H., Conway, D.G., and Lau, C.M., A hybrid genetic
algorithm for the dynamic plant layout problem, International Journal of Produc-
tion Economics, 86, 107, 2003.

Sarker/Optimization Modelling: A Practical Approach 43102_C006 Final Proof page 172 22.8.2007 11:34pm Compositor Name: JGanesan

172 Optimization Modelling: A Practical Approach



Baykasoglu, A. and Gindy, N.N.Z., A simulated annealing algorithm for dynamic
layout problem, Computers and Operations Research, 28, 1403, 2001.

Bazaraa, M., Jarvis, J., and Sherali, H., Linear Programming and Network Flows, John
Wiley & Sons, New York, 1990.

Castro, J. and Nabona, N., An implementation of linear and nonlinear multi-
commodity network flows, European Journal of Operational Research, 92, 37,
1996.

Chan, Y., DiSalvo, J.P., and Garrambone, M.W., A goal-seeking approach to capital
budgeting, Socio-Economic Planning Sciences, 39, 165, 2005.

Chien, C. and Wu, W., A recursive computational procedure for container loading,
Computers and Industrial Engineering, 35, 319, 1998.

Chien, C. and Wu, W., A framework of modularized heuristics for determining the
container loading patterns, Computers and Industrial Engineering, 37, 339, 1999.

Correia, M., Oliveira, J., and Ferreira, J., Reel and sheet cutting at a paper mill,
Computers and Operations Research, 31, 1223, 2004.

Degraeve, Z., Gochet, W., and Jans, R., Alternative formulations for a layout problem
in the fashion industry, European Journal of Operational Research, 143, 80, 2002.

de Matta, R. and Miller, T., Production and inter-facility transportation scheduling
for a process industry, European Journal of Operational Research, 158, 72, 2004.

Drezner, T., Location of multiple retail facilities with limited budget constraints—in
continuous space, Journal of Retailing and Consumer Services, 5, 173, 1998.

Drezner, T., Drezner, Z., and Salhi, S., Solving the multiple competitive facilities
location problem, European Journal of Operational Research, 142, 38, 2002.

Eben-Chaime, M., Mehrez, A., and Markovich, G., Capacitated location–allocation
problems on a line, Computers and Operations Research, 29, 459, 2002.

Elhedhli, S., Ranking lower bounds for the bin packing problem, European Journal of
Operational Research, 160, 34, 2005.

Erkut, E. and Ingolfsson, A., Transport risk models for hazardous materials: Rev-
isited, Operations Research Letters, 33, 81, 2005.

Gabrel, V., Knippel, A., and Minoux, M., Exact solution of multicommodity network
optimization problems with general step cost functions, Operations Research
Letters, 25, 15, 1999.

Georgiadis, M.C., Schilling, G., Rotstein, G.E., and Macchietto, S., A general math-
ematical programming approach for process plant layout, Computers and Chem-
ical Engineering, 23, 823, 1999.

Gnoni, M.G., Iavagnilio, R., Mossa, G., Mummolo, G., and Di Leva, A., Production
planning of a multi-site manufacturing system by hybrid modelling: A case
study from the automotive industry, International Journal of Production Economics,
85, 251, 2003.
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7
Modelling Well-Known Problems II

7.1 Introduction

In this chapter, we introduce few more well-known problems frequently
mentioned in the literature and that have arisen in practice. The mathema-
tical models of these problems are analyzed and their practical applications
are briefly discussed with reference to the literature.

The problems considered in this chapter are the job and machine sched-
uling, generalized assignment problem (GAP), traveling salesman problem
(TSP), vehicle routing problem (VRP), staff rostering, crew scheduling, and
timetabling problem.

7.2 Job and Machine Scheduling

Suppose there are n jobs and m machines. Each job must be processed on
all machines in a given order. A machine can only process one job at a
time, and once a job is started on any machine it must be processed to
completion. The objective is to minimize the sum of the completion times of
all the jobs.

Parameters:

n ¼ the number of jobs

m ¼ the number of machines

Pij ¼ the processing time of job j on machine i

j(r)¼ the order of machines=operations for job j (for example, job j
must be processed on machine 2 first (r¼ 1, i¼ 2), and then
machine 4 (r¼ 2, i¼ 4), and so on). For any job j, r¼m means
the last operation of the job
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Variables:

tij ¼ the start time of job j on machine i

xijk ¼
1 if job j preceeds job k on machine i
0 otherwise (i.e., if job k preceeds job j on machine i )

�

Objective function:
The objective is to minimize the sum of the completion times of all the jobs.

Minimize Z ¼
Xn

j¼1

tj(m), j (7:1)

Note that j(m) is the last operation of job j, which corresponds to a given
machine i.

Constraints:
Order of operations: the (rþ 1)th operation on any job j cannot start until the
rth operation has been completed.

tj(rþ1), j � tj(r), j þ Pj(r), j for r ¼ 1, 2, . . . , m� 1 and 8j (7:2)

Note that each j(r) corresponds to a given machine i.
Precedence constraint: on any machine i, either job j precedes job k or job k

precedes job j.

tik � tij þ Pij, if xijk ¼ 1 (7:3)

tij � tik þ Pik, if xijk ¼ 0 (7:4)

It is obvious that only one of the above two constraints must hold. Given an
upper bound U on (tij ] tik þ Pij) for all i, j, and k, the above two constraints
can be rewritten as follows:

tij � tik � �Pij þU(1� xijk) 8i, j, k (7:5)

tik � tij � �Pik þUxijk 8i, j, k (7:6)

The final scheduling model is

Minimize Z ¼
Xn

j¼1

tj(m), j

Subject to

tj(rþ1), j � tj(r), j þ Pj(r), j for r ¼ 1, 2, . . . , m� 1 and 8j
tij � tik � �Pij þU(1� xijk) 8i, j, k

tik � tij � �Pik þUxijk 8i, j, k Model (7:1)

tij � 0 8i, j

xijk 2 {0, 1} 8i, j, k
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7.2.1 Relevant Literature

The job and machine scheduling problem can be divided into (1) processing
identical jobs either on single or parallel machines—single and parallel
machine scheduling, (2) processing identical jobs on a number of machines
organized as a flow-shop layout, or (3) processing different jobs on a
number of machines organized as a job-shop layout. Some models on
different job and machine scheduling situations are discussed below.

Pan (2003) has considered a scheduling problem in which n jobs with
distinct deadlines are to be scheduled on a single machine. The objective
was to find a feasible job sequence that minimized the total weighted
completion time. Favorable numerical results were also reported on an
extensive set of problem instances of 20–120 jobs. Yang et al. (2003) consid-
ered the problem of scheduling n independent jobs on two identical parallel
machines, with a limit on the number of jobs that can be assigned to each
single machine, so as to minimize the total weighted completion time of the
jobs. Zhu and Heady (2000) developed a mixed integer programming
formulation for minimizing job earliness and tardiness in a multi-machine
scheduling problem. Their formulation allowed setup times to depend on
the job-to-job sequence, processing times to depend on the job–machine
combination, due dates and cost penalties to vary for each job, and machine
characteristics to be nonuniform.

Liao (1995) considered a permutation flow shop where one or more proces-
sors were flexible. Two integer programming models were developed: one for
the case where the job sequence was given and the other was for the case
where the job sequence was to be determined. Bertel and Billaut (2004)
developed an integer linear programming (ILP) model for a scheduling
problem that came from industry. The workshop was a hybrid flow shop
with recirculation and the problem was to perform jobs between a release
date and a due date, in order to minimize the weighted number of tardy jobs.

Huq et al. (2004) described the development of a mixed-integer linear
programming model for a flow shop with multiprocessor workstations. The
primary objective of the model was to minimize the make span through lot-
streaming. A secondary objective was to determine workforce size and
schedule. A constant daily workload was assumed. The model was simple
enough to be understood and be implemented by managers and supervisors
using readily available spreadsheet programs. An actual process, at a local
insurance company handling a moderate daily level of document and
payment processing, was used as a case study. The results of the case
study yielded an improvement in the make span of the current process.
The model provided to be a useful tool in the document processing indus-
try, and is generic enough to be applied to other multiprocessor flow shops.

Job-shop scheduling problems are acknowledged to be one of the hardest
combinatorial optimization problems. Mascis and Pacciarelli (2002) have
studied the job-shop scheduling problem with blocking and no-wait con-
straints. A blocking constraint models the absence of storage capacity
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between machines, whereas a no-wait constraint occurs when two consecu-
tive operations in a job must be processed without any interruption.

7.3 Assignment and Routing

The GAP and the well-known TSP are discussed in this section. The capaci-
tated routing problem, which is a combination of assignment and TSP, is
also described in this section.

7.3.1 Generalized Assignment Problem

The GAP consists of finding a minimal cost (or maximal profit) assignment
of n tasks over m capacity-constrained servers, whereby each task has to be
processed by only one server.

Parameters:

n ¼number of tasks

m ¼number of servers

Cij¼ cost of assigning task i to server j

bj ¼units of resource available to server j

aij ¼units of resource required to perform task i by server j

Variables:

xij ¼ 1 if task i is assigned to server j
0 otherwise

�

The integer linear programming model for the problem is

Minimize Z ¼
Xn

i¼1

Xm

j¼1

Cijxij

Subject to

Xm

j¼1

xij ¼ 1, i ¼ 1, . . . , n Model (7:2)

Xn

i¼1

aijxij � bj, j ¼ 1, . . . , m

xij 2 {0, 1}, i ¼ 1, . . . , n, j ¼ 1, . . . , m
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As one can see in the above model, the limits of variable subscripts, the ranges
of summation signs, and the binary variables are represented in a slightly
different way than has been used so far. This is done so that one is exposed to
a slightly different formulation that is also used by some practitioners. One
may prefer to express the objective function and constraints as follows.

The objective of the problem is to minimize the total assignment cost. The
first constraint ensures that each task will be assigned to one server. The second
constraint expresses the fact that the total resources required for all the jobs
assigned to a server do not exceed the server’s available capacity. This model is
different from the assignment model discussed in the previous chapters.

One important application of this model is to assign customers=goods to
trucks=ships=trains=cargo aircraft. Amini and Racer (1995) studied the GAP
and developed a hybrid heuristic for solving the GAP.

The multilevel generalized assignment problem (MGAP) differs from the
classical GAP in that servers can perform tasks at more than one efficiency
level. Important manufacturing problems, such as lot sizing, can be formu-
lated as MGAPs; however, the large number of variables in the related 0–1
integer program makes the use of commercial optimization packages
impractical. Laguna et al. (1995) presented a heuristic approach to the solu-
tion of the MGAP, which consists of a novel application of tabu search (TS).

7.3.2 Traveling Salesperson Problem

The TSP is one of the most well-known optimization problems in the
literature. It has attracted the attention of many researchers over the last
half a century because of its simple problem description but simultaneously
its associated difficulty in obtaining an optimal solution efficiently. The
problem can be described as follows: a salesperson, starting from a base,
intends to visit each of several cities exactly once and return to the base
ensuring a minimum total traveling distance (or cost). There are many ways
to formulate the traveling salesperson problem. We present here a simple
model based on a network flow problem approach.

Parameters:

n ¼number of cities=locations=customers to visit. Note that it does
not include the base, which is indexed by i¼ 0

Cij¼ cost=distance of traveling from city i to city j

A ¼ a set of arcs (i, j) that exist. Note that by (i, j) we mean only the
existing arcs from node i to node j

Variables:

xij ¼ 1 if the salesperson travels from city i to city j
0 otherwise

�

yij ¼ flow from node i to node j (will be discussed later)
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Let us assume that the salesperson has n units available at node 0 (source
node) and that person must deliver 1 unit to each of the other nodes=cities.
Then the model is

Objective function:
The objective is to minimize total travel cost.

Minimize Z ¼
X

(i, j)2A

Cijxij (7:7)

Constraints:
The salesperson must visit each city i.

Xn

i¼0
i 6¼j

xij ¼ 1, j ¼ 0, . . . , n (7:8)

After visiting city j, the salesperson must leave for another city i.

Xn

j¼0
i 6¼j

xij ¼ 1, i ¼ 0, . . . , n (7:9)

These two constraints are not sufficient to define the tours since they can be
satisfied by subtours. For example, for the 6 cities problem (n¼ 5),
x01¼ x12¼ x20¼ x34¼ x45¼ x53¼ 1 satisfies the above two constraints but
does not correspond to a tour. See the details of the constraints below:

For the constraint given by Equation 7.8:

If j¼ 0, x10 þ x20 þ x30 þ x40 þ x50¼ 1; satisfies as x20¼ 1

If j¼ 1, x01 þ x21 þ x31 þ x41 þ x51¼ 1; satisfies as x01¼ 1

If j¼ 2, x02 þ x12 þ x32 þ x42 þ x52¼ 1; satisfies as x12¼ 1

If j¼ 3, x03 þ x13 þ x23 þ x43 þ x53¼ 1; satisfies as x53¼ 1

If j¼ 4, x04 þ x14 þ x24 þ x34 þ x54¼ 1; satisfies as x34¼ 1

If j¼ 5, x05 þ x15 þ x25 þ x35 þ x45¼ 1; satisfies as x45¼ 1

For the constraint given by Equation 7.9:

If i¼ 0, x01 þ x02 þ x03 þ x04 þ x05¼ 1; satisfies as x01¼ 1

If i¼ 1, x10 þ x12 þ x13 þ x14 þ x15¼ 1; satisfies as x12¼ 1

If i¼ 2, x20 þ x21 þ x23 þ x24 þ x25¼ 1; satisfies as x20¼ 1

If i¼ 3, x30 þ x31 þ x32 þ x34 þ x35¼ 1; satisfies as x34¼ 1

If i¼ 4, x40 þ x41 þ x42 þ x43 þ x45¼ 1; satisfies as x45¼ 1

If i¼ 5, x50 þ x51 þ x52 þ x53 þ x54¼ 1; satisfies as x53¼ 1
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Figure 7.1 above shows the corresponding solution and the formation
of subtours.

So the model needs additional constraints to eliminate the subtours. For
the additional constraints, let us introduce a node–arc incidence matrix (or
simply an incidence matrix). The incidence matrix represents the network as
an n 3 m matrix N, which contains one row for each node of the network
and one column for each arc. The column corresponding to arc (i, j) has only
two nonzero elements: it has aþ 1 in the row corresponding to node i and
a ] 1 in the row corresponding to node j. A simple example of an incidence
matrix is given below (Figure 7.2).

The node–arc incidence matrix of the above network:

Arcs
(1,2) (2,3) (2,4) (3,1) (4,3)

Nodes

1
2
3
4

þ1 0 0 �1 0
�1 þ1 þ1 0 0

0 �1 0 þ1 �1
0 0 �1 0 þ1

2

6
6
4

3

7
7
5

In this matrix, each column has exactly one þ1 and one ]1. The number of
þ1’s in a row equals the number of outgoing arcs from the corresponding
node and the number of ]1’s in the row equals the number of incoming arcs
to that node. Each column of Nij matrix corresponds to the flow variable yij

(representing the flow in arc (i, j)). Then the flow balance constraint for each
node is given by

Xn

j¼0
i6¼j

Nijyij ¼ b, i ¼ 0, . . . , n (7:10)

1 2

0

54

3

FIGURE 7.1
An example of subtours in TSP.

1

2 4

3

FIGURE 7.2
An example for incidence matrix.
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The constraint expresses that the inflow (]1 3 yij) to a node minus the
outflow from the node (þ1 3 yij) must be equal to the demand of that node
(b, which is 1 as per our definition). Alternatively, one can write this con-
straint as a simple flow balance equation as discussed in multi-commodity
flow problem in an earlier chapter. This constraint ensures that all the nodes
are connected since we need to send one unit of flow from node 0 to every
other node via the existing arcs. However, there must be a link between
the binary variables xij and the flow variables yij so that if xij¼ 1 then yij > 0,
which is

yij � nxij 8(i, j) 2 A (7:11)

where n is the maximum unit of supply carried by any arc.
So the final TSP model is

Minimize Z ¼
X

(i, j)2A

Cijxij

Subject to

Xn

i¼0
i 6¼j

xij ¼ 1, j ¼ 0, . . . , n

Xn

j¼0
i 6¼j

xij ¼ 1, i ¼ 0, . . . , n

Xn

j¼0
i 6¼j

Nijyij ¼ b, i ¼ 0, . . . , n

yij � nxij 8(i, j) 2 A

yij � 0 8(i, j) 2 A

xij 2 {0, 1} 8(i, j) 2 A

Model (7:3)

Note that the use of incident matrix is not space efficient as it contains too
many zero coefficients. A better representation of network data is discussed
in a later section.

7.3.3 Relevant Literature on Traveling Salesperson Problem

Order picking in conventional warehouse environments involves determin-
ing a sequence in which to visit the unique locations where each part in the
order is stored, and therefore can often be modelled as a TSP. With com-
puter tracking of inventories, parts may now be stored in multiple locations,
simplifying the replenishment of inventory and eliminating the need to
reserve space for each item. In such an environment, order picking requires
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choosing a subset of the locations that store an item to collect the required
quantity. Thus, both the assignment of inventory to an order and the
associated sequence in which the selected locations are visited affect the
cost of satisfying an order. Daniels et al. (1998) formulated a model for
simultaneously determining the assignment and sequencing decisions,
and compared it with the previous models for order picking.

Fagerholt and Christiansen (2000) studied a TSP with allocation, time
window, and precedence constraints (TSP-ATWPC). The TSP-ATWPC
occurs as a subproblem involving optimally sequencing a given set of port
visits in a real bulk ship scheduling problem, which is a combined multi-
ship pick up and delivery problem with time windows and multi-allocation
problem. Each ship in the fleet is equipped with a flexible cargo hold that
can be partitioned into several smaller holds in a given number of ways,
thus allowing multiple products to be carried simultaneously by the same
ship. The allocation constraints of the TSP-ATWPC ensure that the partition
of the ship’s flexible cargo hold and the allocation of cargoes to the smaller
holds are feasible throughout the visiting sequence.

Calvo and Cordone (2003) introduced the overnight security service
problem. The model obtained was a single-objective mixed-integer pro-
gramming problem. It is NP-hard in the strong sense, and exact approaches
are not practicable when solving real-life instances. Thus, the model was
solved heuristically, through a decomposition into two subproblems. The
former was a capacitated clustering problem, the latter a multiple-traveling
salesperson problem with time windows.

The time-dependent traveling salesperson problem (TDTSP) is a generali-
zation of the classical TSP, where the cost of any given arc is dependent of its
position in the tour. The TDTSP can model several real-world applications
(e.g., one-machine sequencing). Gouveia and Voß (1995) presented a classi-
fication of formulations for the TDTSP. This framework included both new
and old formulations. All previous literature on the TSP assumed that the
sites to be visited are stationary. Motivated by practical applications, Helvig
et al. (2003) introduced a time-dependent generalization of TSP, which we
call moving-target TSP, where a pursuer must intercept in minimum time a
set of targets that move with constant velocities.

7.3.4 Vehicle Routing Problem

The VRP is a generic model that practitioners encounter in many planning
and decision processes. For example, the delivery of products=goods,
garbage collection, the collection of money from vending machines, etc. In
reality, the TSP discussed above is a special case of the VRP. A simple VRP
can be described as follows:

. A fleet of M capacitated vehicles located in a depot (i¼ 1).

. A set of customer sites (of size N ] 1), each having a demand Dj

(j¼ 2, . . . , N).
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. A cost Cij of traveling from location i to location j.

. The problem is to find a set of routes for delivering=picking up
goods to=from the customer sites at minimum possible cost.

For simplicity, assume that the vehicle fleet is homogeneous and that each
vehicle has a capacity of U units.

Variables:

xkij ¼ 1 if the vehicle k travels on the arc i to j
0 otherwise

�

yij ¼ 1 if any vehicle travels on the arc (i, j )
0 otherwise

�

Objective function:
The objective is to minimize the total cost of delivery.

Minimize Z ¼
XK

k¼1

X

(i, j)2A

Cijxkij (7:12)

Constraints:
Starting from depot (node 1), a vehicle must visit a customer i.

Xn

i¼1

yij ¼ 1, j ¼ 2, 3, . . . , n (7:13)

After visiting a customer i, the vehicle must leave for another customer j.

Xn

j¼1

yij ¼ 1, i ¼ 2, 3, . . . , n (7:14)

The number of vehicles going from node 1 to all nodes j must be equal to the
total number K.

Xn

j¼1

y1j ¼ K (7:15)

The number of vehicles returning to node 1, from all nodes i, must be equal
to the total number K.

Xn

i¼1

yi1 ¼ K (7:16)

Each vehicle must carry less than or equal to its capacity.

Xn

i¼2

Xn

j¼1

Djxkij � U, k ¼ 1, 2, . . . , K (7:17)
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There must be a link between xkij and yij variables. Each node, except the
depot, can only be served once by only one vehicle.

XK

k¼1

xkij ¼ yij 8i, j (7:18)

The solution must not contain any cycle using the nodes 2, 3, . . . , n (i.e., not
contain any subtours on these nodes).

X

(i, j)2SxS
i 6¼j

yij � Sj j � 1 for all subsets S of {2, 3, . . . , n} (7:19)

where S is any nonempty proper subset of the cities 2, 3, . . . , n and jSj is the size
of S. If all the cities are present in a given subset then jSj ¼ n for that subset.

As per the above explanation, it is clear that this constraint eliminates
subtours, i.e., tours that do not start and finish at the depot, and it is added
for every possible subset of customers, not including the depot.

So the final VRP model is

Minimize Z ¼
XK

k¼1

X

(i, j)2A

Cijxkij

Subject to

Xn

i¼1

yij ¼ 1, j ¼ 2, 3, . . . , n

Xn

j¼1

yij ¼ 1, i ¼ 2, 3, . . . , n

Xn

j¼1

y1j ¼ K

Xn

i¼1

yi1 ¼ K

Xn

i¼1

Xn

j¼2

Djxkij � U, k ¼ 1, 2, . . . , K

XK

k¼1

xkij ¼ yij 8i, j

X

(i, j)2SxS

i 6¼j

yij � Sj j � 1, for all subsets S of {2, 3, . . . , n}

xkij ¼ 0 or 1 8(i, j) 2 A and 8k
yij ¼ 0 or 1 8(i, j) 2 A

Model (7:4)
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Constraint (Equation 7.19) can be used in TSP model instead of flow con-
straint or incidence matrix discussed earlier, but for all subsets S, jSj ¼ n.

The VRP may include additional constraints such as the maximum visit-
ing allowance, the total travel time, and the delivery time window.

7.3.5 Relevant Literature on Vehicle Routing Problem

The VRP has been widely studied in the literature, mainly because of the
real-world logistics and transportation problems related to it. Toth and Vigo
(2002) reviewed the models and the exact algorithms based on the branch-
and-bound approach proposed in recent years for the solution of the basic
version of the VRP, where only the vehicle capacity constraints are consid-
ered. Ruiz et al. (2004) proposed a two-stage exact approach for solving a
real problem. In the first stage, all the feasible routes are generated by means
of an implicit enumeration algorithm; thereafter, an integer programming
model is designed to select in the second stage the optimum routes from the
set of feasible routes. The integer model uses a number of 0–1 variables
ranging from 2,000 to 15,000 and arrives at optimum solutions in an average
time of 60 s (for instances up to 60 clients). The developed system was tested
with a set of real instances and, in a worst-case scenario (up to 60 clients),
the routes obtained ranged from a 7% to 12% reduction in the distance
traveled and from a 9% to 11% reduction in operational costs.

Teixeira et al. (2004) conducted a study of planning vehicle routes for the
collection of urban recyclable waste. The aim was to create collection routes
for every day of the month, to be repeated every month, minimizing the
operation cost. Two important features of the problem were the planning of
a relatively long period of time and the separate collection of three types
of waste. The collection operation was modelled in accordance to the prac-
tice of the company that manages the collection system. Preliminary results
suggest that significant economies in collection costs are possible.

The Aeromedical Airlift Wing of the U.S. Air Force is responsible for the
transportation of military personnel in need of specialized medical treatment
to and from various military hospitals. Over 8 million active and retired
personnel, spouses, and dependents benefit from the system. The system
operates under a variety of regulations to ensure timely service and safe
operation of the aircraft. Ruland (1999) presented a model of the system to
assist the route planners in generating solutions minimizing patient incon-
venience. This was achieved by assigning patients to sequences of aircraft
while minimizing layovers.

Xiong et al. (1998) used the VRP with time windows (VRPTW) to analyze
and model the rolling batch planning problem. Kim and Kim (1999) consi-
dered a multi-period vehicle scheduling problem (MPVSP) in a transporta-
tion system where a fleet of homogeneous vehicles delivers products of a
single type from a central depot to multiple (N) retailers. The objective of the
MPVSP is to minimize transportation costs for product delivery and invent-
ory holding costs at retailers over the planning horizon.
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Wasner and Zäpfel (2004) described why the optimal design of depot and
hub transportation networks for parcel service providers makes it necessary
to develop a generalized hub location and vehicle routing model (VRM).
Analogous problems occur for postal, parcel, and piece goods service
providers. A generalized hub location and VRM was developed, which
encompassed the determination of the number and locations of hubs and
depots and their assigned service areas as well as the routes between the
demand points and consolidation points (depots, hubs). The applicability of
the model was demonstrated through an Austrian case study. The devel-
oped model involved several million binary variables as well as continuous
variables and millions of constraints.

7.4 Staff Rostering and Scheduling

Staff scheduling and rostering has become increasingly important tasks as
businesses become more service oriented and cost conscious in a global
environment. Optimized staff schedules can provide enormous benefits,
but require carefully implemented decision support systems if an organiza-
tion is to meet customer demands in a cost-effective manner while satisfying
requirements such as flexible workplace agreements, shift equity, staff
preferences, and part-time work. In addition, each industry sector has its
own set of issues and must be viewed in its own right.

7.4.1 Staff Scheduling: A Weekly Problem

Many businesses run one shift (9 a.m. to 5 p.m.) a day, 7 days a week. The
number of employees required may vary from one day to the next. All
the employees work 5 days a week with two consecutive days off. Employees
who agree to work on Saturday and=or Sunday, as part of their 5 day-a-week
work, will receive a higher wage for those days. The problem is to determine
the number of employees required to meet the different daily manpower
requirements while minimizing the overall scheduling cost.

For convenient modelling, we define a person–roster type as follows:

Roster Type Working Days Days Off

1 Tuesday to Saturday Sunday and Monday
2 Wednesday to Sunday Monday and Tuesday
3 Thursday to Monday Tuesday and Wednesday
4 Friday to Tuesday Wednesday and Thursday
5 Saturday to Wednesday Thursday and Friday
6 Sunday to Thursday Friday and Saturday
7 Monday to Friday Saturday and Sunday
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Parameters:

N ¼ the total number of roster type (in our case seven)

Mj¼ the set of roster types that will allow working on a day j

Rj ¼ the number of employees required on each day j

Ci ¼weekly cost per employee assigned to roster type i

Variables:
xi¼ the number of employees assigned to roster type i

Objective function:
The objective is to minimize the total assignment cost.

Minimize Z ¼
XN

i¼1

Cixi (7:20)

Constraints:
The number of employees working on any one day must be greater than or
equal to the requirements of that day.

X

i2Mj

xi � Rj 8j (7:21)

To understand the above constraint, you need to analyze the set Mj. Suppose
j¼ 1 means Monday. Then the roster-type working on Monday can be found
from the following table:

Roster Type Working Days Working on Monday?

1 Tuesday to Saturday No
2 Wednesday to Sunday No
3 Thursday to Monday Yes
4 Friday to Tuesday Yes
5 Saturday to Wednesday Yes
6 Sunday to Thursday Yes
7 Monday to Friday Yes

That indicates the set Mj contains the roster type i¼ 3, 4, 5, 6, and 7. So the
corresponding constraint for the day j¼ 1 will be

x3 þ x4 þ x5 þ x6 þ x7 � R1 (7:22)

So the final integer programming model becomes
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Minimize Z ¼
XN

i¼1

Cixi

Subject to
X

i2Mj

xi � Rj 8j

xi � 0 and integer 8i

Model (7:5)

7.4.2 Daily Rostering Problem

This problem is an extension of the employee scheduling problem presented
in Section 7.4.1. Many businesses run 24 h a day, 7 days a week. The number
of employees required may vary from one hour to the next. The employees
are assigned to either an 8- or 4-h shift. The possible shift-starting times for
8 h shifts are 6 a.m., 2 p.m., and 10 p.m.; and for 4 h shifts are 6 a.m., 10 a.m.,
2 p.m., and 6 p.m. Anyone who works on the night shift will receive a higher
pay for that shift. The problem is to determine how many employees to
assign to each of the shifts fulfilling the hourly manpower requirements at
minimum possible cost.

In this problem, the shift can be defined as follows:

Shift Number Starting Time Duration (h)

1 6 a.m. 8
2 2 p.m. 8
3 10 p.m. 8
4 6 a.m. 4
5 10 a.m. 4
6 2 p.m. 4
7 6 p.m. 4

Parameters:

N ¼ the total number of shifts (in our case 7)

Mj¼ the set of shifts that will work during hour j

Rj ¼ the number of employees required for each hour j

Ci ¼wage per employee assigned to shift i

Variables:
xi¼ the number of employees assigned to shift i

Objective function:
The objective is to minimize the total assignment cost.

Minimize Z ¼
XN

i¼1

Cixi (7:23)
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Constraints:
The number of employees working in any hour must be greater than or
equal to the manpower requirements for that hour.

X

i2Mj

xi � Rj 8j (7:24)

So the final integer programming model becomes

Minimize Z ¼
XN

i¼1

Cixi

Subject to
X

i2Mj

xi � Rj 8j

xi � 0 and integer 8i

Model (7:6)

Note that both the models (Models 7.5 and 7.6) are designed to determine
the number of employees required to be managed for a given period, and
their purpose is not to identify individual employees and their assignment.

7.4.3 Relevant Literature on General Staff Scheduling

There are many computer software packages for solving staff scheduling
problems, ranging from spreadsheet implementations of manual processes
through to mathematical models using efficient optimal or heuristic algo-
rithms. Ernst et al. (2004) have reviewed rostering problems in specific
application areas and the associated models that have been reported in the
literature.

Hospitals need to repeatedly produce duty rosters for its nursing staff.
Appropriate and considerate scheduling of nurses can have an impact on
the quality of health care, the recruitment of nurses, the development of
budgets, and other nursing functions. The nurse rostering problem (NRP)
has been the subject of many academic studies. Cheang et al. (2003) pre-
sented a brief overview, in the form of a bibliographic survey, of the models
and methodologies available to solve the NRP.

Bard et al. (2003) presented a full-scale model of the tour scheduling
problem as it arises in the U.S. Postal Service, and to examine several
scenarios aimed at reducing the size of the workforce. The problem was
formulated as a pure integer linear program and was solved using CPLEX.

The objective of project scheduling is to determine start dates and the
labor resources to be assigned to each activity in order to complete a project
on time. By adjusting start dates within available slack times and altering
labor levels, the daily labor-demand profile can be changed. The objective of
personnel scheduling is to determine how many of each feasible workday
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tour are required to satisfy a given labor-demand profile while minimizing
labor costs and overheads. Integrating these two problems permits the
simultaneous determination of start dates, labor levels, and tours for a
minimum-cost and on-time schedule. Bailey et al. (1995) developed single-
and multiple-resource optimization models for this integrated problem.

Mattfeld and Kopfer (2003) have described terminal operations for the
vehicle transshipment hub in Bremerhaven and have derived an integral
decision model for manpower planning and inventory control. One can
propose a hierarchical separation of the integral model into submodels
and can develop heuristics to solve the arising subproblems.

7.4.4 Crew Planning=Scheduling Problem

Airline schedule planning consists of four major planning subproblems:
flight schedule, fleet assignment, aircraft maintenance planning, and crew
planning. Crew planning is a common problem in all airline industries. The
problem is to assign crews to flights. In this problem, the flight requirements
are determined first. For example, flight QA102 from Canberra to Mel-
bourne must be staffed every morning. A second example could be to
determine what flights a flight crew can take during a tour. For example,
a tour might be flight QA153 from Sydney to Brisbane, flight QA278
from Brisbane to Melbourne, and flight QA945 from Melbourne to Sydney.
A tour depends upon the time and the flights that are to be taken, airline
regulations, basing, etc. Once a large set of tours has been generated,
a mathematical model is used to find a subset of tours, which cover the
flight requirements.

Parameters:

N ¼number of tours generated

Tij ¼ 1 if tour j includes flight i
0 otherwise

�

Cj ¼ cost of tour j

Variables:

xj ¼ 1 if tour j is used
0 otherwise

�

Objective function:
The objective is to minimize the total assignment cost. However, one may
express the objective function as maximization of utility value instead of cost.

Minimize Z ¼
XN

j¼1

Cjxj (7:25)
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Constraints:
The crews must be assigned to each flight.

XN

j¼1

Tijxj ¼ 1 8i (7:26)

The final crew scheduling model becomes

Minimize Z ¼
XN

j¼1

Cjxj

Subject to

XN

j¼1

Tijxj ¼ 1 8i

xj 2 {0, 1} 8j

Model (7:7)

The aircrew rostering problem entails the assignment of crew members to
planned rotations. Airline companies have the monthly task of constructing
personalized monthly schedules (rosters). Yan et al. (2002) developed eight
scheduling models to minimize crew costs and to plan the proper individual
pairings using real constraints for a Taiwanese airline. These models are
formulated as integer linear programs, where column-generation-based algo-
rithms were developed to solve them. A case study regarding the operation of
a major Taiwanese airline is presented. Dawid et al. (2001) introduced an
efficient adaptation of the branch-and-bound technique that solves real-
world rostering problems for airline crews. They computed a sample monthly
schedule on the basis of a medium-sized European airline’s real data.

7.5 Scheduling and Timetabling Problem

Timetabling problems arise in many businesses and organizations such as
public transport (bus, tram, train, passenger ship, airplane, and other)
scheduling, equipment scheduling, and course and examination timetabling
in schools, colleges, universities, and other academic and training institu-
tions. In this section, a simple course timetabling model is presented and the
relevant literature on other timetabling problems is discussed.

7.5.1 School Timetabling Problem

In this section, we provide a simple school timetabling model where it is
required to allocate classrooms and teaching hours for different courses for
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each week in a given semester or term. The parameters and decision vari-
ables of the model are defined as follows:

Parameters:

Nc ¼number of courses (index c)

Nr ¼number of classrooms (index r)

Nh ¼number of teaching hours available in a week (index h)

Nl ¼number of courses taught by lecturer l

NHc¼number of teaching hours required for course c in a week

Sc ¼ set of courses to be taught

Sl ¼ set of courses taught by lecturer l

Sy ¼ set of courses belonging to school level=year y

Decision variables:

xcrhd ¼ 1 if course c is assigned to room r at hour h in day d
0 otherwise

�

Constraints:
All lecturers must teach a number of hours equal to all their courses
required in a week.

X

c2Sl

X

r

X

h

X

d

xcrhd ¼
X

c2Sl

NHcNl 8 l (7:27)

Every lecturer teaches at most one course every hour.

X

c2Sl

X

r

xcrhd � 1 8h, l, d (7:28)

Every course c is taught exactly NHc hours in a week.

X

r

X

h

X

d

xcrhd ¼ NHc 8c (7:29)

In every room–hour combination, on a given day, at most one course is taught.

X

c

xcrhd � 1 8r, h, d (7:30)

This will remove the possibility of assigning a course in two different rooms
at the same time.

At every hour, at most one course of any school level or year is taught so
that any student of a given school year has no clash in the courses.
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X

c2Sy

X

r

xcrhd � 1 8h, d (7:31)

The timetabling problem is basically to find a solution that satisfies the
constraints (Equations 7.27 through 7.31), if there exists one. So, it is a
constraint programming problem. If there is no feasible solution, then the
problem can be solved as an optimization problem where the objective
would be to minimize the constraint violations. An alternative timetabling
problem, as optimization model, is also presented below.

7.5.2 University Timetabling

The university timetabling problems deal with the scheduling of regular
teaching program. Two different but very much related scheduling prob-
lems arise in this context. One is to schedule classes and the other is to
schedule examinations in the most efficient way. As of Dimopoulou and
Miliotis (2001), another timetabling model is presented below.

Parameters:

I ¼ set of all subject groups (index i)

J ¼ set of time groups (index j)

L ¼ set of classroom groups (index l)

M ¼ set of subject groups in conflict (index m)

Rl ¼ subset of subject groups that can be allocated to classroom group l

Tm¼ subset of subject groups in conflict; the mth row of the conflict
matrix

Al ¼number of classrooms of type l

Si ¼number of courses in subject group i

Cij ¼ a desirability coefficient of assigning subject groups i to time
groups j

Decision variables:

xij ¼ 1 if subject group i is assigned to time group j
0 otherwise

�

Objective function:
The objective is to maximize the sum of all desirability coefficients of
assigning subject groups i to time groups j. If all the coefficients Cij are 0,
then a feasible solution is produced—of course if one exists.

Maximize Z ¼
X

i

X

j

Cijxij (7:32)
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Constraints:
Assign each subject group i with Si courses to exactly Si time groups. This
takes care of the fact that the subjects in a subject group that are in conflict
are assigned to different time groups, and thus the number of conflict con-
straints is reduced.

X

j2J

xij ¼ Si 8i 2 I (7:33)

The assignment must be done with the available classrooms.

X

i2Rl

xij � Al 8j 2 J 8l 2 L (7:34)

Assign at most one subject group of the set of subject groups in conflict to a
time group (so that for each time group at most one of the subject groups in
conflict is assigned).

X

i2Tm

xij � 1 8j 2 J 8m 2M (7:35)

The final course timetabling model becomes

Maximize Z ¼
X

i

X

j

Cijxij

Subject to
X

j2J

xij ¼ Si 8i 2 I

X

i2Rl

xij � Al 8j 2 J 8l 2 L

X

i2Tm

xij � 1 8j 2 J 8m 2M

xij 2 {0, 1} 8i 2 I j 2 J

Model (7:8)

For further information on subject groups, time groups, conflict matrix, etc.,
the readers may consult Dimopoulou and Miliotis (2001).

7.5.3 Relevant Literature

In bus transit operations planning process, the important components are
network route design, setting timetables, scheduling vehicles, assignment of
drivers, and maintenance scheduling. Haghani and Shafahi (2002) presented a
mathematical model to design daily inspection and maintenance schedules
for the buses that are due for inspection so as to minimize the interruptions in
the daily bus operating schedule, and maximize the utilization of the main-
tenance facilities. They provided results of an actual 181-bus transit operation.
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The setting of timetables and bus routing=scheduling are essential to an
intercity bus carrier’s profitability, its level of service, and its competitive
capability in the market. Yan and Chen (2002) developed a model that
will help Taiwanese intercity bus carriers in timetable setting and bus
routing=scheduling. The model employs multiple time–space networks
that can formulate bus movements and passenger flows and manage the
interrelationships between passenger trip demands and bus trip supplies to
produce the best timetables and bus routes=schedules. Mathematically, the
model is formulated as a mixed integer multiple commodity network
flow problem.

Higgins et al. (1996) described the development and use of a model
designed to optimize train schedules on single-line rail corridors. The
model has been developed with two major applications in mind: as a
decision support tool for train dispatchers to schedule trains in real time
in an optimal way and as a planning tool to evaluate the impact of timetable
changes, as well as railroad infrastructure changes. The model was deve-
loped based on a real-life problem and has been described in their paper.

Ghoseiri et al. (2004) developed a multi-objective optimization model for
the passenger train–scheduling problem on a railroad network, which
includes single and multiple tracks, as well as multiple platforms with
different train capacities. In this study, lowering the fuel consumption cost
was the measure of satisfaction of the railway company and shortening the
total passenger-time was regarded as the passenger satisfaction criterion.

Claessens et al. (1998) considered the problem of cost optimal railway line
allocation for passenger trains for the Dutch railway system. A mathematical
programming model was developed, which minimized the operating costs
subject to service constraints and capacity requirements. The model opti-
mized on lines, line types, routes, frequencies, and train lengths. First, the
line allocation model was formulated as an integer nonlinear programming
model. The model was then transformed into an integer linear program-
ming model with binary decision variables. The model was solved and
applied to a subnetwork of the Dutch railway system for which it showed
a substantial cost reduction.

The multi-depot vehicle scheduling problem with time windows
(MDVSPTW) consists of scheduling a fleet of vehicles to cover a set of
tasks at minimum cost. Each task is restricted to begin within a prescribed
time interval and vehicles are supplied by different depots. Desaulniers et al.
(1998) formulated the problem as an integer nonlinear multi-commodity
network flow model with time variables. This paper considers costs on exact
waiting times between two consecutive tasks instead of minimal waiting
times. This new and more realistic cost structure gives rise to a nonlinear
objective function in the model.

Integer programming has always been used formulating the university
timetabling problem. Daskalaki and Birbas (2005) presented a two-stage
relaxation procedure that solves efficiently the integer programming formu-
lation of a university timetabling problem. The relaxation is performed in
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the first stage and addresses the constraints that warrant consecutiveness in
multi-period sessions of certain courses. These constraints, which are com-
putationally heavier than the others, are recovered during the second stage
and a number of subproblems, one for each day of the week, are solved for
local optima.

Bish (2003) addressed a container terminal loading and unloading con-
tainers to and from a set of ships, and storing the containers in the terminal
yard. Each ship is served by multiple quay cranes, which load and unload
containers to and from ships. Containers are moved between the ships and
the yard using a fleet of vehicles, each with unit capacity. The problem is (1) to
determine a storage location for each unloaded container, (2) to dispatch
vehicles to containers, and (3) to schedule the loading and unloading oper-
ations on the cranes, so as to minimize the maximum time it takes to serve a
given set of ships.

7.6 Summary

In Chapter 6, we introduced a number of well-known problems frequently
mentioned in the literature and that have arisen in practice. In this chapter, we
have introduced a few more problems of such type. The mathematical models
for some of these problems were presented and their practical applications
were briefly reviewed. The problems considered in this chapter are also well
known for their complexity in solving. These include the traveling salesper-
son, vehicle routing, rostering, crew scheduling, and timetabling problems.

Exercises

1. Consider the generalized assignment model (Model 7.2) as shown below:

Minimize Z ¼
Xn

i¼1

Xm

j¼1

Cijxij

Subject to

Xm

j¼1

xij ¼ 1, i ¼ 1, . . . , n

Xn

i¼1

aijxij � bj, j ¼ 1, . . . , m

xij 2 {0, 1}, i ¼ 1, . . . , n, j ¼ 1, . . . , m

How does this model differ from the assignment model?
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2. Consider the TSP model (Model 7.3) as shown below:

Minimize Z ¼
X

(i, j)2A

Cijxij

Subject to

Xn

i¼0
i 6¼j

xij ¼ 1, j ¼ 0, . . . , n

Xn

j¼0
i 6¼j

xij ¼ 1, i ¼ 0, . . . , n

Xn

j¼0
i 6¼j

Nijyij ¼ b, i ¼ 0, . . . , n

yij � nxij 8(i, j) 2 A

yij � 0 8(i, j) 2 A

xij 2 {0, 1} 8(i, j) 2 A

If we treat the problem as a network flow problem, as discussed earlier,
why are the flow balance constraints alone not enough for TSP?

3. Consider the VRP model (Model 7.4). By relaxing the constraints
(Equations 7.17 through 7.19), can we use this formulation for an assign-
ment problem and for a knapsack problem but for each vehicle k?

4. Consider the staff scheduling problem (Model 7.5) as shown below:

Minimize Z ¼
XN

i¼1

Cixi

Subject to
X

i2Mj

xi � Rj 8j

xi � 0 and integer 8i

Can you replace inequality by equality constraints above (Equation
7.21)—why or why not? If there is more than one shift, what changes
does the above model require?
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5. Consider the staff scheduling problem (Model 7.6) as shown below:

Minimize Z ¼
XN

i¼1

Cixi

Subject to
X

i2Mj

xi � Rj 8j

xi � 0 and integer 8i

What are the differences between the models for the daily rostering
problem and the employee scheduling problem (Section 7.4.1)? How to
manage the assignment of individual employees after solving Model 7.5
or Model 7.6?
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8
Alternative Modelling

8.1 Introduction

Real-world problems are usually large and complex. It is not always feasible
to include all aspects of reality in the model of a problem. In most cases, we
deal with a simplified version of the problem that contains only some aspects
of reality. Thus, a problem can be modelled in a number of different ways
depending on the portion of reality to be included or excluded. In other
words, there may be alternative mathematical models for many real-world
problems. So the choice of the most appropriate model needs to be analyzed.

The alternative models are developed either as a monolithic model struc-
ture under different assumptions and conditions or as a hierarchical model
structure. The monolithic approach allows the decision makers to choose a
set of assumptions which would make not only the problem simple from a
mathematical modelling point of view but also would provide an acceptable
approximate solution for a realistic decision-making activity. The hierarch-
ical model, instead of being a full-scale model, provides the advantages of
dealing with a number of smaller-sized subproblems and timely inform-
ation flows. In this chapter, we describe these two alternative modelling
approaches with appropriate examples and analysis.

8.2 Modelling under Different Assumptions

To demonstrate the alternative modelling approaches under different
assumptions, let us consider two simple examples: (1) a simple coal blend-
ing problem and (2) a simple crop planning problem.

8.2.1 A Coal Blending Problem

A simple coal blending problem can be briefly described as follows:
Coals are extracted from mines and upgraded for customers. Each

category of raw coal has its own typical quality specifications in terms of
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percentage of ash, sulfur and moisture, and British Thermal Unit (BTU)
content per pound. The BTU content per pound expresses the heating
value of coal. The customers specify their required quality parameters for
their ordered coal. A coal company usually operates more than one mine.
Preparation and blending are the two main coal-upgrading and -processing
activities. To keep the problem simple, we consider only a blending process
for the upgrade. Production and demand vary from period to period due to
technical reasons and the marketing environment. The problem is to deter-
mine the coal-mix that maximizes the revenue while satisfying the quality
required and the demand on time.

The management has to make one assumption in respect to the raw coal
category and also one assumption in respect to the blended coal category
when modelling the problem. The possible assumptions that can be made
regarding inventories of raw coal and blended coal may state that

1. no inventory of raw coal to be carried over,

2. no inventory of blended coal to be carried over,

3. inventory of raw coal to be carried over from one period to
the next,

4. inventory of blended coal to be carried over from one period to the
next,

5. inventory of raw coal to be carried over from one period to the
next few periods,

6. inventory of blended coal to be carried over from one period to the
next few periods,

7. inventory of raw coal to be carried over from one period to any or
all future periods within the planning horizon, and

8. inventory of blended coal to be carried over from one period to
any or all future periods within the planning horizon.

Based on the above assumptions and conditions, the alternative models that
can be developed are shown in Table 8.1.

These assumptions will dictate the nature of the functions, the number of
variables, the number of constraints, and the optimal solutions obtained.
These models also differ in practical issues such as their capability of
handling fluctuating situations, the computational time required for solving
the models, and the number of coal storages required. By a fluctuating
situation, we mean a variable planning environment.

As the coal extraction, upgrading, and marketing are continuous
processes, the multi-period models would be better representations of
the problem. Model 1 (Table 8.1) would provide a collection of T single-
period models (where T is the number of periods considered under
the entire planning horizon). To demonstrate the alternative modelling
approach, let us formulate two simple models (Models 2 and 3 as defined
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in Table 8.1). To keep the model simple, let us assume that only one blended
product would be produced in any one period.

8.2.2 First Alternative Blending Model

Let us consider Model 2 first. This model does not consider any blended coal
inventory, but the inventory of raw coal can be carried over to the next period
only. The inventory of raw coal will be fully consumed as input to the next
period.

Parameters:

T number of periods in the planning horizon (index t)

I number of sources for input or raw coal (index i)

J number of quality parameters considered (index j)

PBC price of blended coal ($ per 1000 BTU content)

CRCit cost of raw coal from source i in period t ($ per tonne)

Hi raw coal inventory holding cost per tonne per period ($) for
source i

BTIit BTU content of raw coal from source i in period t

Qijt other quality characteristics j (such as ash, sulfur, moisture,
etc.) of raw coal from source i in period t

UQj upper bound of required quality characteristics j of blended
product

DUBt upper limit of demand in terms of BTU content in period t

DLBt lower limit of demand in terms of BTU content in period t

LBTU lower limit of BTU per tonne of blended product produced

Decision variables:

Xt the amount of blended product (tonnes) produced in period t

BTt total BTU supplied to customers in period t

TABLE 8.1

Assumptions and Conditions of Alternative Models

Model Inventory Assumptions Model Inventory Assumptions

1 1 þ 2 9 4 þ 5
2 2 þ 3 10 3 þ 8
3 1 þ 4 11 4 þ 6
4 1 þ 6 12 5 þ 8
5 2 þ 5 13 6 þ 7
6 1 þ 8 14 5 þ 6
7 2 þ 7 15 7 þ 8
8 3 þ 6 — Any other
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Yit the amount of raw coal (tonnes) from source i, in a period t, used

Iit the inventory of raw coal i carried over from period t to t þ 1

The demand and revenue of the blended coal are calculated based on (BTt),
the total BTU supplied.

Objective function:
The objective is to maximize the overall profit which is the total revenue
minus the total cost of raw coal and the inventory holding cost.

Maximize Z ¼
X

t

PBC(BTt)�
X

t

X

i

CRCitYit �
X

t

X

i

Hi(Iit) (8:1)

Constraints:
Mass balance: in any period, the total raw coal plus the inventory carried
over from the previous period minus the inventory carried over to the next
period must be equal to the total blended product produced.

X

i

(Yit þ Ii(t�1) � Iit) ¼ Xt 8t (8:2)

Total BTU produced: the total BTU produced can easily be calculated from
the mass balance constraint as follows:

X

i

(BTIitYit þ BTIi(t�1)Ii(t�1) � BTIitIit) ¼ BTt 8t (8:3)

Lower limit of BTU content per tonne: the BTU content per tonne of
blended product must be greater than or equal to the specified lower
limit.

X

i

(BTIitYit þ BTIi(t�1)Ii(t�1) � BTIitIit) � LBTU (BTt) 8t (8:4)

Requirements of quality parameters: all other quality parameters must
satisfy the upper limit quality requirements.

X

i

(QijtYit þQij(t�1)Ii(t�1) �QijtIit) � UQjXt 8j, t (8:5)

Demand: the total BTU supplied must be within the upper and lower
bounds of total BTU demanded.

DLBt � BTt � DUBt 8t (8:6)

And nonnegativity constraints.
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8.2.3 Second Alternative Blending Model

Model 3 does not consider an inventory of raw coal, but the inventory of
blended coal can be carried over from one period to the next only. The inven-
tory of blended coal will be an input to the blending process in the next period.

Parameters:

The parameters are the same as for Model 2 except the holding cost of the
blended product needs to be defined instead of for raw coal.

H inventoryholdingcostper1000BTUcontentofblendedcoalperperiod($)

Decision variables:

Xt, Yit are the same as for Model 2. Other variables are defined as
follows:

BTt the BTU content per tonne of blended product in period t

QBjt quality parameter j for blended coal in period t

It the inventory of blended product carried over from period t to
t þ 1

The demand and revenue of the blended coal are calculated based on (BTt),
the total BTU supplied.

Objective function:
The objective is to maximize the overall profit, which is the revenue minus
the total cost of raw coal minus the inventory holding cost.

Maximize Z ¼
X

t

PBC(BTtXt)�
X

t

X

i

CRCitYit �
X

t

H(BTtIt) (8:7)

Constraints:
Mass balance: in any period, the total raw coal plus the inventory carried
over from the previous period minus the inventory carried over to the next
period must be equal to the total blended product produced.

X

i

Yit þ It�1 � It ¼ Xt 8t (8:8)

Total BTU produced: the total BTU produced can easily be calculated from
the mass balance constraint as follows:

X

i

BTIitYit þ BTt�1It�1 � BTtIt ¼ BTtXt 8t (8:9)

Other quality parameters: other quality parameters can also be calculated
from the mass balance constraint as follows:

X

i

QijtYit þQBj(t�1)It�1 �QBjtIt ¼ QBjtXt 8j, t (8:10)
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BTU content requirements: the BTU content per tonne of blended product
must be greater than or equal to the specified lower limit.

X

i

BTIitYit þ BTt�1It�1 � LBTU(It þ Xt) 8t (8:11)

Quality requirements: the blended coal produced is either supplied to the
customers or carried over to the next period to use as input to the process.
These two coal categories must satisfy the upper limit of quality requirements.

X

i

QijtYit þQBj(t�1)It�1 � UQj(It þ Xt) 8j, t (8:12)

Demand: the total BTU supplied must be within the upper and lower
bounds of total BTU demanded.

DLBt � BTtXt � DUBt 8t (8:13)

And nonnegativity constraints.

8.2.4 Comparing the Two Simple Alternative Models

Let us compare the above two models in terms of the number of variables,
number of constraints, function properties, and practical issues.

The first model (Model 2) is a linear programming model whereas the
second one (Model 3) is a nonlinear model as there are product terms of two
variables, which appear in a number of places. The number of variables
contained in these models can be calculated as shown in Table 8.2. The
number of constraints included in these two models can be calculated as
shown in Table 8.3. For a given number of planning periods, inputs, and
quality parameters, the actual number of variables and constraints can be
calculated as shown in Table 8.4.

TABLE 8.2

Variables in Two Alternative Models

Alternative Model 1 Alternative Model 2

Variables

Number of

Variables Variables

Number of

Variables

Xt T Xt T

BTt T Yit I 3 T

Yit I 3 T BTt T
Iit I 3 T QBjt J 3 T

It T

Total 2T(1 þ I) Total T(3 þ I þ J)
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Model 2 requires a number of storage areas equal to the number of inputs I,
whereas the Model 3 requires only one storage area for the blended product.
Although, the number of variables and constraints between the two models
are not significantly different, the nonlinear model is computationally very
expensive. However, the second model requires only one storage space to
maintain which is convenient from the practical point of view. Although all
the models (Models 1–15) are dealing with the same problem, the problem
size will be enormous with Models 14 and 15. The final decision of choosing
a model is dependent on the solutions provided (objective function values),
computational complexity, practical issues, and management’s preference.
More details on alternative modelling for coal blending will be covered in a
later chapter.

8.2.5 A Crop Planning Problem

A simple crop planning problem can be described as follows.
An agricultural farm has limited areas of land which can be divided into a

number of regions. The farm cultivates a number of crops to meet a certain

TABLE 8.3

Constraints in Two Alternative Models

Alternative Model 1 Alternative Model 2

Constraint

Number of

Constraints Constraint

Number of

Constraints

8.2 T 8.8 T

8.3 T 8.9 T

8.4 T 8.10 J 3 T
8.5 J 3 T 8.11 T

8.6 T 8.12 J 3 T

8.13 T

Total T(4 þ J ) Total T(4 þ 2J )

TABLE 8.4

Parameters in Two Alternative Models

Alternative Model 1 Alternative Model 2

Values of Variables Constraints Variables Constraints

T, I, J 2T(1 1 I) T(4 1 J) T(3 1 I 1 J) T(4 1 2J)

4, 3, 3 32 28 36 40
4, 5, 3 48 28 44 40
6, 3, 3 48 42 54 60
6, 5, 3 72 42 66 60
12, 3, 3 96 84 108 120
12, 5, 3 144 84 132 120
12, 10, 3 264 84 192 120
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portion of the national demand. Different regions require different amounts
of input (such as seed, fertilizer, water, insecticide, equipment, man power,
etc.) for crop cultivation and they produce at different yield rates. The
problem is to determine an appropriate crop-mix for maximizing the profit
while not violating any of the constraints such as land limitation, budget,
and demand.

The management of the farm may make the following assumptions:

1. All regions are suitable for all crops considered for cultivation.

2. Any number of products can be produced in any region (however,
it is convenient if only one crop is cultivated in one region).

3. Profit maximization is the farm’s primary goal.

4. Working capital minimization may be considered as a second goal.

8.2.6 Crop Planning Model 1

Let us formulate the model by considering assumptions 1–3.

Parameters:

I the number of crops to be cultivated (index i)

J the number of regions of the farm (index j)

K the number of inputs required for crop cultivation (index k)

Aijk the amount of input k required per unit land for crop i culti-
vated in region j

Cijk cost ($) of unit input k required for crop i cultivated in region j

Yij yield rate of crop i if cultivated in region j

Lj the area of land in region j

Pi price of crop i in the market

UDi the upper bound of demand for crop i

LDi the lower bound of demand for crop i

TB the total budget available

Variables:
Xij the area of land used in region j for producing crop i

Objective function:
The objective is to maximize the total profit from crop production (total
revenue minus total cost).

Maximize Z ¼
X

i

X

j

PiYijXij �
X

i

X

j

X

k

CijkAijkXij (8:14)
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Constraints:
Land limitation: the total land used for different crops in a region must be
less than or equal to the available land in that region.

X

i

Xij � Lj 8j (8:15)

Working capital: the total investment for all inputs required in all regions
must be less than or equal to the working capital available.

X

i

X

j

X

k

CijkAijkXij � TB (8:16)

Demand: the production of any crop must be greater than (or equal to) the
minimum level of demand set and less than (or equal to) the upper bound of
demand.

LDi �
X

j

YijXij � UDi 8i (8:17)

And nonnegativity constraints.
Crop planning model 1 is a simple linear programming model.

8.2.7 Crop Planning Model 2

Suppose, we now consider that only one crop will be cultivated in any one
region for the convenience of equipment handling and planning of other
inputs. We further assume that

. once the crop has been decided for a region, the entire region will
be cultivated, and

. number of crops is less than the number of regions (otherwise
the problem would be infeasible with a positive lower bound of
demand).

Parameters:
The parameters are the same as the previous model.

Variables:
We need binary variables, to identify a crop for a region, as follows:

Xij ¼ 1 if crop i is cultivated in region j
0 otherwise

�
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Objective function:
The objective is to maximize the total profit from the crop production (total
revenue minus total cost).

Maximize Z ¼
X

i

X

j

(PiYijLj)Xij �
X

i

X

j

X

k

(CijkAijkLj)Xij (8:18)

Constraints:
Land use: any region must only be planted with one crop. However, one
crop can be cultivated in more than one region.

X

i

Xij ¼ 1 8j (8:19)

Working capital: the total investment for all inputs required in all regions
must be less than or equal to the working capital available.

X

i

X

j

X

k

(CijkAijkLj)Xij � TB (8:20)

Demand: the production of any crop must be greater than (or equal to) the
minimum level of demand set and less than (or equal to) the upper bound of
demand.

LDi �
X

j

(YijLj)Xij � UDi 8i (8:21)

Nonnegativity constraints: binary
This is a mixed integer linear programming model which is computation-

ally expensive. If one now assumes that a single crop will be cultivated in
one region, this does not imply that the entire region may be required. That
means a part of the region could be good enough for satisfying the demand.
One needs another set of variables to determine the areas of land to be used
in each region. The new model is slightly more difficult.

The management may further consider working capital as either a second
objective for simultaneous optimization (multi-objective problem) or as a
second goal of the problem (goal programming problem). In such cases,
more alternative models can be developed. Further crop planning models
will be provided in a later chapter.

8.3 Hierarchical Modelling: An Introduction

As reported in the literature, the hierarchical modelling approach is mainly
applied to multi-period large-scale production planning and scheduling prob-
lems. A hierarchical planning approach (Hax and Meal, 1975, Bitran et al., 1981
and other) partitions a production planning and scheduling problem into
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a hierarchy of subproblems. In any planning period, the subproblems are
solved hierarchically, with the solutions of subproblems from the upper level
of the hierarchy imposing constraints on the lower level subproblems. The
system only implements the decisions for the immediate period.

Both monolithic and hierarchical production planning (HPP) approaches
(Hax and Meal, 1975, Bitran et al., 1981, Hax and Candea, 1984, Saad,
1990) have appeared in the literature. The hierarchical approach has three
advantages over the monolithic approach (Graves, 1982). The first advan-
tage is that it is computationally simpler. The second advantage is that
the hierarchical approach may require less detailed demand data (i.e., the
time-dependent data), in that it needs only aggregate product demand data
over the planning horizon, with detailed product demand data over a much
shorter scheduling horizon. The monolithic approach usually requires
detailed demand data for the entire planning horizon. The third advantage
of the hierarchical approach is the extent to which its hierarchical subpro-
blems correspond to the organizational and decision-making echelons in the
firm=organization; the consequences of this correspondence are increased
interaction between the planning system and the decision makers at each
level, and improved coordination of objectives throughout the organization.
In addition to these points, Dempster et al. (1981) pointed out that a hier-
archical planning approach provides a mechanism for coping with uncer-
tainty in detailed planning. This is due to the fact that much of the data at
the detailed level is uncertain at the time aggregate decisions are made.
A monolithic (detailed and aggregate combined) model determines the
detailed decisions earlier than necessary and hence would be based on
less reliable forecasts of the uncertain data. The hierarchical approach post-
pones the detailed decisions as long as possible so that they can be based on
more timely and hence more accurate data.

Hax and Meal’s HPP frameworks are very specific for manufacturing
industries under various conditions. However, the idea of decomposing the
entire planning problem into several smaller planning problems which are
to be solved hierarchically will be helpful in developing a decision framework
in many productions or service-oriented organizations. In fact, HPP has
found its applicability in a wide range of industries like radiator production
(Sumichrast and Burch, 1985), fiberglass mat production (Leong et al., 1990),
ceramic tile production (Liberatore and Miller, 1985), power generation
(Sumichrast and Burch, 1985), iron and steel production (Lin and Moddie,
1989, Tabucanon and Sasiwong, 1991), motor industry (Tsubone and Suga-
wara, 1987), coal production (Sarker, 2003), and many others.

8.3.1 Hierarchical Modelling in a Manufacturing Context

The basic idea of a hierarchical planning approach is to partition the planning
problem into a number of subproblems, and then appropriately linking
the resulting subproblems. The number of levels in such process is dependent
on the product structure. Hax and Meal (1975) identified three different
levels:
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1. Individual items—these are the final products to be delivered.
A given product may contain a large number of items differing
in nonfunctional characteristics such as color, packaging method,
labels, etc.

2. Families—a family of items that shares a common, usually major,
production setup cost.

3. Types—these are groups of families whose production quantities
are to be determined simultaneously.

These three levels are common in many batch-processing manufacturing
environments. However, the number of levels depends on the product
structure and problem complexity.

The first step in this approach is to allocate available production capacity
among different product types by using an aggregate production planning
model. The planning horizon is usually 1 year in order to take into consi-
deration the demand fluctuation. The second step is to allocate the produc-
tion quantities for each type, among families belonging to that type, by
disaggregating the results of the aggregate model for only the first period.
Finally, the family production allocation is distributed among the individual
items belonging to each family.

The mathematical models for a hierarchical decision process in the con-
text of manufacturing are presented below.

8.3.2 Aggregate Model

Parameters:

I the total number of product types (index i)

T the length of planning horizon (index t)

L the length of production lead time

PCit the unit production cost (excluding labor)

HCit the inventory carrying cost per unit per period

CRt the cost per man-hour

RHt the total availability of hours in period t

PDi,tþL the effective demand for type i during period t þ L

Mi the inverse of the productivity rate for type i in hours=unit

Decision variables:

PXit the number of units to be produced of type i during the
period t

PIi,tþL the number of units of inventory of type i left over at the end
of period t þ L

RTt man-hours used during period t
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Objective function:
The objective is to minimize the sum of the production, inventory holding,
and the labor costs associated.

Minimize Z ¼
X

i

X

t

(PCitPXit þHCi, tþLPIi, tþL)þ
X

t

(CRtRTt) (8:22)

Constraints:
The total production for i in period t plus the inventory carried over from
the previous period minus the inventory carried over for the next period
must be equal to the demand of i in the same period.

PXit � PIi, tþL þ PIi, t�L ¼ PDi, tþL 8i, t (8:23)

In any period, the total production hours must be less than or equal to the
total man-hours used.

X

i

MiPXit � RTt 8t (8:24)

The total man-hours used for production, in any period, must be less than or
equal to the total hours available.

RTt � RHt 8t (8:25)

The final aggregate production planning model becomes

Minimize Z ¼
X

i

X

t

(PCitPXit þHCi, tþLPIi, tþL)þ
X

t

(CRtRTt)

Subject to

PXit � PIi, tþL þ PIi, t�L ¼ PDi, tþL 8i, t
X

i

MiPXit � RTt 8t

RTt � RHt 8t

PXit, PIi, tþL � 0 8i, t

RTt � 0 8t

Model (8:1)

8.3.3 Family Scheduling Model

The prime condition to be fulfilled at the family scheduling level for a logical
disaggregation is the equality between the sum of the different productions
under the families in a product type and the amount obtained from the higher
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level for the product type. This equality condition will guarantee consistent
planning between the aggregate production plan and the family disaggrega-
tion plan. This is usually achieved by determining the production quantities
for each family that minimize the total setup cost among different families.

We now present a family disaggregation model similar to one proposed
by Bitran and Hax (1981).

Parameters:

J0 the families which trigger during the current period (that implies
that the current inventory is not enough to meet the expected
demand)

SCj the setup cost for family j

FDj the forecast demand for family j

XAi the total amount to be allocated among all the families belonging
to type i. XAi has been determined by the aggregate planning
model and corresponds to the optimum value of the variable PXi1

since only the first period result of the aggregate model is to be
implemented

Decision variables:
FYj the number of units of family j to be produced in each run

Objective function:
The objective is to minimize the sum of all setup costs.

Minimize Z ¼
X

j2J0

(SCjFDj)=FYj (8:26)

Constraint:
The sum of productions of the families in a product type must be equal to its
amount dictated by the aggregate model.

X

j2J0

FYj ¼ XAi (8:27)

In addition, the production quantity for each family must be in between its
assigned lower and upper bounds.

8.3.4 Individual Item Scheduling Model

The item disaggregation model, presented below, is similar to Hax and
Candea (1984). They proposed a strictly convex knapsack problem for
each family j.

Parameters:

AIk the available inventory of item k

ISSk the safety stock of item k
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FDkt the forecast demand for item k in period t

K0 the set of indices of all items belonging to family j

YDj the total amount to be allocated for all items belonging to
family j as determined by family disaggregation model

Decision variables:
NIk the number of units to be produced of item k

Objective function:

Minimize Z ¼
X

k2K0

YDj þ
P

k2K0

(AIk � ISSk)

P

k2K0

PLþ1

t¼1

FDkt

� NIk þAIk � ISSk

PLþ1

t¼1

FDkt

2

6
6
6
4

3

7
7
7
5

p

(8:28)

The first term inside the square brackets represents the production run
out time for a family and the second represents the run out time for an item
belonging to that family. The value of p greater than or equal to 2 will force
those quantities to be as close as possible.

Constraint:
The sum of all items produced in a family j must be equal to the number
dictated by the family disaggregation model.

X

k2K0

NIk ¼ YDj (8:29)

The upper and lower bound of an item produced must also be set.
Interested readers may find further information regarding hierarchical

planning model for manufacturing context in Hax and Candea (1984).
The disaggregation model can be based on time only rather than product
structure and time (Sarker, 2003).

8.4 Summary

This chapter has addressed the realism issue since real-world problems are
usually large and complex and it is not always possible to include all aspects
of reality in the model describing a problem. It has been shown that a
problem can be modelled in a number of different ways depending on the
portion of reality to be included or excluded. Having addressed the issue of
how to formulate a mathematical model, we will, in the next chapter, briefly
analyze possible solution approaches for different mathematical models
that have so far discussed in this book.
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Section III

Model Solving
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9
Solution Approaches: An Overview

9.1 Introduction

In this chapter, the solution approaches for the different mathematical
models outlined in this book will be briefly discussed and their relative
advantages and disadvantages analyzed in order that users get an exposure
to these approaches without having to go into the details of all the algo-
rithms. As has been discussed earlier, this book does not intend to cover the
detailed algorithms and their computational aspects.

The solution approaches for solving optimization problems can be
divided into two major groups: (1) the classical optimization techniques
and (2) the modern heuristic techniques. Although the popular techniques
from both groups are discussed, the main emphasis is on the classical
techniques and some of the associated available software. In addition
to the algorithms, we briefly discuss the algorithmic complexity and com-
plexity classes in this chapter.

9.2 Complexity and Complexity Classes

The term ‘‘algorithm’’ is used interchangeably in many circumstances
with the term ‘‘solution approach’’ in optimization. An algorithm is a
step-by-step procedure for solving a problem. In some instances, the effi-
ciency of an algorithm may be judged on its complexity, in other circum-
stances, the problems may be classified in regard to their complexity of
solution, known as complexity classes. We discuss these two interesting
computational aspects in this section.

9.2.1 Complexity of Algorithms

In any algorithm, the operations that are performed include assigning
values to variables, undertaking arithmetic operations (such as addition,
subtraction, multiplication, and division), and carrying out comparisons.
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The total number of operations may vary with problem size, and even for
similar-sized problems; the number can differ from one instance to another.
One way of evaluating the complexity of an algorithm is to count, in the
worst case, the total number of operations performed. The operation count
may be denoted by the big O notation. There are other notations used
such as the big V (big omega) to specify the lower bound on computational
time, and the big u (big theta) to provide both a lower and an upper bound
on an algorithm’s performance.

In the big O notation, the constant terms in the complexity analysis
are ignored and the most dominant terms in computational effort represent
the complexity. For example, if A is an n 3 n matrix, Gaussian elimi-
nation applied to the system Ax¼ b requires n3=3 addition and multi-
plication operations and n2=2 division operations. So the total number
of operations required is (n3=3) þ (n2=2). For a sufficiently large n, the
growth of the second term is insignificant in comparison to the growth of
the first term. Therefore, the first term dominates the second. Hence, the
complexity of Gaussian elimination is O(n3) for the matrix A. The referred
time complexity function measures the upper bound of the rate of growth in
solution time as the problem size increases.

An algorithm is recognized as ‘‘good’’(=of acceptable performance) if its
worst-case complexity is bounded by a polynomial function of the problem’s
parameters. Any such algorithm is said to be a polynomial-time algorithm.
Examples of polynomial-time bounds are O(n2), O(nm), and O(log n).
An algorithm is said to be an exponential-time algorithm if its worst-case
computational time grows as a function that cannot be polynomially
bounded by the input length. Some examples are O(2n), O(n!), and O(nlog n).
The polynomial-time algorithms are always preferred as it is asymptotically
superior to any exponential-time algorithm, even in extreme cases. For
example, n4000 is smaller than n0.1 log n if n is sufficiently large (i.e., n �
2100,000). For more on time complexity, see Chapter 3 of Ahuja et al. (1993)
and Appendix-B of Martin (1999).

9.2.2 Complexity Classes

The complexity of algorithms for solving optimization problems has been
briefly discussed above; however, decision problems may also be classified
into varying sets of comparable complexity, called complexity classes. The
complexity class P is the set of decision problems that can be solved using
a deterministic approach in polynomial time. This class corresponds to a
group of problems that can be effectively solved, even in the worst of
cases, using an intuitive approach or guess. A problem is identified as NP
(nondeterministic polynomial) if its solution (if one exists) can be guessed
and verified in polynomial time; nondeterministic means that no particular
rule is followed to make the guess.

The NP-complete problems are the toughest problems to be encountered
of the NP type, in the sense that they are the ones most likely not to belong
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to the P class. This is because any problem of type NP can be transformed, in
polynomial time, into an instance of a specific NP-complete problem.
For instance, the decision problem version of the traveling salesman prob-
lem is NP-complete. So any instance of any problem in NP can be trans-
formed mechanically into an instance of the traveling salesman problem,
in polynomial time. So, if the traveling salesman problem turned out to be
in P, then P¼NP! The traveling salesman problem is one of many such
NP-complete problems. If any NP-complete problem is in P, then it would
follow that P¼NP. Unfortunately, many important problems have been
shown to be NP-complete and no single expedient algorithmic solution
method for any of them has been derived.

For further reading on complexity classes, consult the interesting mater-
ials available in Chapter 8 of Papadimitriou and Steiglitz (1998).

9.3 Classical Optimization Techniques

In the classical optimization domain, the solution approach for a given
type of model is determined by the problem classification discussed previ-
ously. The solution approaches for nonlinear programming models are
different from linear programming (LP) models. In this section, the solution
approaches to linear, integer, goal, nonlinear, and multi-objective models
from the classical optimization point of view are discussed.

9.3.1 Linear Programming

There are basically three popular approaches to solve LP models. They are
(1) the graphical method, (2) the simplex method and its variants, and (3)
the interior point method. All three methods determine the feasible solution
space of the problem, which can be defined as the space bounded by the
constraints and variable bounds. The optimal point (the best candidate
solution) is then identified from the solution space.

The main purpose of graphical method is to illustrate the concepts of
acceptable solutions and search boundary. The method has a practical value
when solving small problems with two decision variables and only a few
constraints (Turban and Meredith, 1994). The graphical method is demon-
strated in Chapter 12. The simplex method is an algebraic procedure.
Its underlying concepts are geometric that provide a strong intuitive feeling
for how it operates and what makes it an efficient method. The details of
the simplex method can be found in Hillier and Lieberman (2005). The
simplex method will also be demonstrated in Chapter 12 with an example.
The search process in the simplex method evaluates solutions obtained
from corner points (intersections of constraint equations) to determine the
optimal valued corner point via the boundary=surface of the feasible space
(the candidate solution moves between adjacent corner points). In contrast,
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the candidate solution moves through the interior of the feasible space
in the interior point method. The details of the interior point method can
be found in Sierksma (1996). The current capability of computing power
facilitates the simplex and interior point methods in solving very large LP
models without significant difficulty. These two methods are briefly com-
pared below. For further details on the comparison between the two
methods, see the article published by Illes and Terlaky (2002).

The simplex method proceeds from one feasible solution (corner point) to
another until it arrives at an optimal solution. The number of solutions might
be an exponential function of the problem dimension and in the worst case,
the simplex method might visit all those solutions. The total number of arith-
metic operations for each pivot (iteration) is O(mn) and the simplex algorithm

may need to visit up to n
m

� �
¼ n!

m!(n�m)! >
n
m

� �m
vertices, which represents at least

2m whenever n� 2m (for details see Papadimitriou and Steiglitz, 1998). Here, n
is the number of variables and m is the number of constraints. Although the
simplex method is not a polynomial-time algorithm, the most practical prob-
lems require solution efforts approximately equivalent to problems of poly-
nomial time complexity. The interior point method enjoys a polynomial time
worst-case complexity of O(m2n). So far, the best known iteration complexity
bound is O(

ffiffiffi
n
p

L) where L is the bit-length of data. The details of L can be found
in Martin (1999, pp. 231–232). The interior point method found to be efficient in
practice has a weaker, worst-case complexity bound. Thus, there is a gap
between theory and practice in the estimate of complexity.

A basic solution is called primal degenerate if it contains a zero coordinate.
A severe consequence of degeneracy is that the objective value remains the
same in subsequent iterations. This property opens up the possibility for
cycling, i.e., starting from a certain basic solution, the same set of basic
solutions are revisited again and again. Various tools are available to
avoid cycling, such as the lexicographic simplex method or the utmost
simplex least-index rule. Another implication of degeneracy is that multiple
optimal solutions occur. However, all the multiple optimal solutions may
not be identified and there is limited or no control at all over which optimal
solution will be provided by the simplex method. Degeneracy is not an issue
in the interior point method.

The simplex method is very flexible; it allows the implementation of
various heuristics to enhance its performance. Although no polynomial
time version of the simplex method is known and exponential examples
are known for most variants, the method allows the implementation of
various heuristics to enhance practical performance. The interior point
method is specifically efficient for solving very-large-scale problems.
When solving huge problems, possibly involving millions of variables,
and solving highly degenerate problems the interior point method outper-
forms simplex-method-based codes.

Restarting a simplex algorithm (for a modified problem with slightly
changed data) from a previous optimal solution allows quick solution of
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the modified problem. This ability might favor the simplex method when
performing well-structured sensitivity and parametric analysis. However,
sensitivity analysis in the presence of degeneracy is not easy. The interior
point method does not exhibit such efficiency in resolving slightly modified
problems as the simplex method does.

For small LP models, the interior point algorithm requires relatively
extensive calculations and then, after many iterations, it may only obtain
an approximation of the optimal solution. By contrast, the simplex method
requires only a few quick iterations to find the optimal solution. For large-
scale LP models, the interior point method is much more efficient but
provides only an approximate solution.

9.3.2 Integer Programming: The Curse of Dimensionality

It is well known that integer and mixed-integer linear models are difficult to
solve. This is due to the fact that the number of alternative solutions
increases much faster (usually exponentially) than the size of the problem.
That makes the large-scale integer program extremely difficult to solve
using the existing algorithms. Let us consider a few examples to show this
curse of dimensionality.

Consider an assignment problem of optimally matching 10 candidates to
10 jobs (one-to-one basis). The number of feasible combinations of matching
can be calculated as follows:

. Theoretically, there are n!¼ 3,628,800 different combinations
(where n¼ 10).

. If n¼ 11 (a 10% increase in the number of candidates and jobs), the
number of alternative matchings increases by 1,100%, i.e., to
39,916,800.

. If n¼ 12 (a 20% increase), the number of alternative matchings
increases by 13,200%, i.e., to 480,000,000.

Now, consider the well-known traveling salesman problem (TSP) where a
salesman wants to find the least costly (or shortest) route when visiting
clients in n different cities, visiting each city exactly once before returning
home. Although this problem is very simple to state, it becomes extremely
difficult to solve as the number of cities increase.

. In general, for an n city TSP, there are (n ] 1)! possible routes the
salesman can take.

. The Table 9.1 shows the value of (n ] 1)! for several n.

Take an example of a multidimensional 0–1 knapsack problem (Sakawa and
Kato, 2003). As can be seen in Table 9.2, the computational time increases
exponentially as the problem size increases.
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9.3.3 Integer Linear Program: Solution Approaches

It is known that integer programming (IP) is an extension of the general LP
problem. IP borrows many concepts and techniques from LP when devel-
oping solution approaches. The common solution approaches for solving IP
models are complete enumeration, graphical method, rounding the non-
integer solution, branch-and-bound, cutting plane, and branch-and-cut
method.

The complete enumeration approach is inefficient and it would be impos-
sible to apply such a method for large-scale problems. Like LP, the graphical
approach is for only problems consisting of two variables and few con-
straints. The IP problem may be solved using the simplex method by
relaxing the integrality conditions. Then the non-integer solutions can
be rounded off to meet the integer requirements. However, the rounding-
off procedure does not guarantee optimality and it could provide infeasible
solutions.

The cutting plane and the branch-and-bound techniques both rely on
the simplex method by repeatedly solving a series of linear programs.
In the branch-and-bound method, the problem is first solved using the
simplex method by relaxing the integer requirements. If the integer solu-
tions are found, the process does not need to proceed any further. If not,
based on a current non-integer variable, the original problem is branched or

TABLE 9.1

Alternative Solutions in TSP

n (n 2 1)!

3 2
5 24
9 40,320

13 479,001,600
17 20,922,789,888,000
20 121,645,100,408,832,000

TABLE 9.2

Solutions of Multidimensional 0–1 Knapsack Problem

Problem

Instance

Size

(V 3 C )

Computational

Time (Seconds)

1 30 3 10 0.090
2 50 3 20 0.891
3 100 3 30 113.00
4 150 3 40 4440.00
5 200 3 50 11000.00

Note: V, number of variables; C, number of constraints.
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partitioned into mutually exclusive subproblems. Note that in this branch-
ing process, part of the continuous solution space is deleted by introducing
an integer condition on the non-integer variable under consideration. One
then proceeds by solving each of the branched subproblems as LPs using
the simplex method. Once the optimum solution of the feasible solution
subspace satisfies the integrality constraints then it stops. Otherwise the
subproblem must be partitioned further into two subproblems. The branch-
ing of subproblems is continued until all subproblems have been explored.
The branch-and-bound method is demonstrated in Chapter 12.

In the cutting plane method, the problem is first solved using the simplex
method by relaxing the integer requirements. If the integer solutions are
found, the process does not need to proceed any further. If not, then one
must add an additional cut constraint to the problem and solve it using LP
again. The new cut constraint will reduce the feasible space such that
regions not containing any integers are removed. This allows the found
solution to converge toward an integer solution. Additional cut constraints
are generated and the LPs with the added cut constraints are solved until
the optimum integer solution is found. The details of branch-and-bound
and cutting plane algorithms can be found in Nemhauser and Wolsey
(1999). The branch-and-cut approach uses a combination of three tech-
niques: automatic problem preprocessing, the generation of cutting planes,
and clever branch-and-bound techniques. The details of this technique can
be found in Hillier and Lieberman (2005).

From the above discussion, it is clear that both branch-and-bound and
cutting plane methods require applying the simplex method many times to
get the optimal integer solution. As indicated earlier, the simplex method is
not a polynomial-time algorithm. That means, solving a large-scale IP
would be a difficult job using these two methods. However, the good
news is that the efficient warm-start capability of simplex method helps
to solve the subsequent subproblems very quickly. As the interior
point method (IPM) is a polynomial-time algorithm for large-scale LP, you
may think to implement the IPM instead of the simplex method in branch-
and-bound and cutting plane methods for solving large-scale integer
programs. However, the lack of efficient warm-start procedures makes
IPM less efficient when solving IP problems.

The mixed-integer cutting plane algorithm and its finite convergence
require the assumption that the objective function variable must be an
integer. This is an unreasonable assumption, which is unsatisfactory
for computational purposes (for more see Nemhauser and Wolsey, 1999).
Without this assumption, no finite cutting plane algorithm for mixed-
integer LP problems is known. As a consequence, the branch-and-bound
method is generally regarded as being the more effective approach than
the cutting plane method when solving mixed-integer programming
problems of a practical size, and for this reason most of the currently avail-
able commercial IP packages are based on the branch-and-bound method.
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It should be noted, however, that not all IP problems can be solved by
using the branch-and-bound method due to its computational complexity
and the current capability of computer resources.

9.3.4 Special Linear Programming Models

Most network problems fall under the category of specially structured
linear problems, for example, transportation, transshipment, and assignment
type problems. Although almost all specially structured network problems
require integer solutions, the corresponding models can be solved using the
simplex method (well known for continuous solutions). In these problems,
the entries in the constraint matrix are either zero or one. If the right-hand
sides (RHSs) of the constraints are integers, then the simplex method would
provide integer solutions. This is due to the fact that the fractional solutions
are introduced by the matrix operation of the fractional entries in the constraint
matrix of the subsequent iterations. In these problems, there are no fractions
in the constraint matrix. As a result, the time-consuming branch-and-bound
and cutting plane methods are not required for these types of problems.

The specially structured LP models usually have their own specialized
solution approaches, which are much more efficient than the simplex
method, for example, the transportation simplex for transportation prob-
lems, the Hungarian method for assignment problems, and the shortest path
algorithm for shortest path problems. The details of these algorithms can be
found in Turban and Meredith (1994) and Hillier and Lieberman (2005).
Any variation of the special structure, such as adding side-constraints, does
not permit the use of specialized solution approaches. In such cases, the
general methods such as simplex or branch-and-bound should be used.

Many network problems can be represented as special cases of the gen-
eralized network flow problem known as the minimum cost flow problem.
The transportation, assignment, transshipment, maximal flow, shortest
path, and other problems can be derived as special cases of the minimum
cost flow problem. The powerful network simplex method developed for
the minimum cost flow problem can then be used as a single method for all
those special cases. The network simplex method and further details on the
minimum cost flow problem are discussed in Bazaraa et al. (1990).

9.3.5 Goal Programming

The linear goal programming models can be divided into nonpreemptive
and preemptive. In the nonpreemptive goal programming problems, all
the goals are of roughly comparable importance. In the preemptive goal
programming, there is a hierarchy of priority levels for the goals, so that
the goals of primary importance receive first-priority attention, those of
secondary importance receive second-priority attention, and so on. The
nonpreemptive goal programming can be solved using the simplex method
since the coefficients of the objective function are known numerical values.
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The preemptive goal programming models are solved either by using a
sequential or a streamlined method.

In the sequential method, the goal programming problem is solved by
solving a sequence of LP models. In the first stage of the procedure, the only
goals included in the LP are the first-priority goals, and the simplex method
is applied in the usual way. If the resulting optimal solution is unique, the
procedure stops immediately without considering any additional goals.
If Z*¼ 0, the deviation variables must be equal to zero (fully achieved).
These deviation variables are completely deleted when the second-stage
problem is considered. If Z* > 0, the second-stage model simply adds the
second-priority goals to the first-stage model (as if these additional goals
actually were first-priority goals), and it also adds the constraint that the
first-stage objective function equals Z* (which allows one to again delete
the terms involving first-priority goals from the second-stage objective
function). In the streamlined procedure, the goal programming problem
is solved by solving just one LP model. The penalty weights are set as big
M for first-priority level and 1 for second-priority level. The details of goal
programming approaches can be found in Hillier and Lieberman (2005).

9.3.6 Nonlinear Programming

Nonlinear models are classified as unconstrained or constrained models.
The constrained models are further divided into models classified as lin-
early constrained, quadratic, convex, non-convex, separable, geometric, and
fractional programming. Each of the nonlinear models has its own well-
defined set of characteristics and requires very specific solution algorithms.
That means no one algorithm would solve all classes of nonlinear models.
However, many approaches are based on either the concept or the direct
extension of the simplex method.

The unconstrained problem approaches are divided into single vari-
able and multivariable problems with and without using derivatives. The
one-dimensional search is the backbone of many algorithms for solving a
nonlinear programming problem. There are a number of line search pro-
cedures described in the literature, for solving unconstrained problems of
one variable, with or without using derivatives. A line search method using
derivatives assumes differentiability. All the procedures find a sequence
of trial solutions that leads toward an optimal solution. At each iteration,
the current trial solution is used to conduct a systematic search and culmin-
ates by identifying a new improved trial solution. Multidimensional search
can also be performed with or without using derivatives. Examples of
the multidimensional search without using derivatives are the cyclic coord-
inate method, the method of Hooke and Jeeves, and Rosenbrock’s method.
Examples of multidimensional search using derivatives include the steepest
decent method and the method of Newton. In addition, the methods
using conjugate directions are also used in practice. For more details, see
Bertsekas (1995).
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The penalty function method is a well-known general approach for
solving constrained nonlinear optimization problems. The approach
converts the constrained problem into an equivalent unconstrained problem
and then solves the problem using a suitable search algorithm. The con-
straints are placed into the objective function via a penalty parameter in
such a way that the parameter penalizes any violation of the constraints.
The solution to the penalty problem can be made arbitrarily close to the
optimal solution of the original problem by choosing a sufficiently large
penalty parameter (m). However, if we choose a very large m and attempt to
solve the penalty problem, we may get into some computational difficulties
of ill-conditioning (Bazaraa et al., 1990). With a large m, more emphasis is
placed on feasibility, and most procedures for unconstrained optimization
will move quickly toward a feasible point. Even though this point may be far
from optimal, premature termination could occur. As a result of the above
difficulties associated with large penalty parameters, most algorithms use
penalty functions that employ a sequence of increasing penalty-parameter
values. With each new value of the penalty parameter, an optimiza-
tion (search) technique is employed, starting with the optimal solution
corresponding to the previously chosen parameter value. There are many
other exiting algorithms for solving nonlinear models such as barrier func-
tion, gradient projection, reduced gradient, method of Zoutendijk, and the
convex–simplex method. For more details see Bertsekas (1995).

9.3.7 Multi-Objective Models

Many real-world problems involve simultaneous optimization of several
incommensurable and often competing objectives. In such problems, there
are no single optimal solutions, but rather a set of alternative solutions.
These solutions are optimal in the wider sense that no other solutions
in the search space are superior to them when all the objectives are
considered simultaneously. They are known as Pareto-optimal solutions. In
multi-objective optimization, the Pareto type solutions are expected to provide
flexibility for the human decision-maker (Coello, 1999; Coello et al., 2002).

Traditionally, there are several methods described in the OR literature
that can be used when solving multi-objective optimization problems as
mathematical programming models. Most methods formulate a composite
objective function and then repeatedly solve the model to generate a number
of alternate solutions. Such methods include weighting, e-constraint, hybrid,
goal attainment, value function, lexicographic ordering, interactive surrogate
worth trade-off method, Geoffrin–Dyer–Feinberg method, sequential proxy
optimization techniques, Tchebycheff method, step method, reference point
method, satisfying trade-off method, light beam search, and the reference
direction approach.

The weighting method is very simple and a simple linear combination
of the objectives, by varying the weights, generates the trade-off surface.
In the e-constraint method, one of the objective functions is selected to be
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optimized and all other objective functions are converted into constraints
by setting an upper bound to each of them. The hybrid method combines
the weighting method and the e-constraint method. Details of other
methods can be found in Miettinen (1999). From our experience, these
methods solve the class of problems that generate continuous and
monotonically increasing and decreasing Pareto frontiers. However, if the
Pareto frontier is noncontinuous (e.g., a set of discretely spaced continuous
subregions) or nonuniform (higher density of solutions in one region than
in another), it is impossible to find the appropriate Pareto frontier.
In addition, none of the above methods treat all the objectives simultan-
eously, which is a basic requirement in most multi-objective problems.
However, there exists a simplex based method for solving linear multi-
objective models. For details on the method see Eiselt et al. (1987, Part III,
Chapter 2). The appropriate methodologies for simultaneous optimization
are discussed in a later section.

9.4 Heuristic Techniques

The word heuristic, which originated from Greek, means to discover. In
optimization problem-solving, a heuristic is a rule-of-thumb approach
that may not guarantee convergence and optimality. However, in most
cases, they work well and produce solutions of acceptable quality. The use
of a heuristic approach in optimization is not new. However, in the past,
heuristics were developed based on the concept of either conventional
optimization techniques or traditional artificial intelligence techniques.
Nowadays, heuristics are also inspired by biology, physics, neuroscience,
and other disciplines. The field of heuristics is growing very rapidly. Some
of the widely used heuristics are discussed briefly in this section.

9.4.1 Hill Climbing

Hill climbing is the greediest heuristic yet encountered. The idea is
simply not to accept a new solution unless it is better than the best solution
found so far. This represents a pure search intensification without any
chance for search exploration; therefore, the algorithm is more likely to
end up with a local optimum and, therefore, can be very sensitive in regard
to the starting point.

9.4.2 Simulated Annealing

Simulated annealing (SA) is a stochastic search algorithm based on the
concept called ‘‘annealing.’’ Annealing is a heat treatment process. The
process involves heating and cooling. Heating a solid up to a point where
its atoms can move freely and then cooling it down allows the atoms to
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rearrange themselves. The cooling rate is vital in the process. Too fast or too
slow cooling may not facilitate expected crystal formations.

In complex optimization, many conventional techniques usually get
trapped in a local optimum. As a mechanism of escaping a local optimum,
SA accepts a lower-quality solution in an iteration with some probability
depending on a parameter called ‘‘temperature.’’ The algorithm behaves
like a random search at high temperature (using a higher probability) and
like a greedy hill-climbing at low temperature (with a probability close to
zero). In the algorithm, a cooling schedule with an initial temperature must
be defined by the user, which is not an easy task. The SA algorithm grows
exponentially with respect to the size of the problem. The details of the
algorithm can be found in Van Laarhoven and Aarts (1987).

9.4.3 Tabu Search

Tabu search (TS) is an iterative process and it has the capability of escaping
local optima like SA. Similar to SA, the neighborhood length is a critical
parameter in TS. Unlike the conventional hill-climbing approach, TS may
allow lower-quality solutions in any intermediate iteration. TS also forbids
reverse moves to avoid cycling. The forbidden movements are recorded in a
data structure called a tabu list, which is updated in every iteration. Because
of the tabu list, the search is able to escape local optima. However, the
performance of TS is sensitive to the size of the tabu list in many practical
applications. The detailed algorithm can be found in Glover and Laguna
(1997).

TS has been widely and successfully used in combinatorial optimization.
However, its use in continuous search space is not common due to the
difficulties of performing neighborhood movements in continuous search
spaces.

9.4.4 Genetic Algorithms

Genetic algorithms (GAs) are a stochastic search procedure for solving
optimization problems that uses ideas from natural evolution and adapta-
tion. The heuristics discussed so far start from a single initial point or
solution and move to another single solution. However, GAs start with a
randomly generated population (a set of solutions) and then move from one
population to another. This process continues until the stopping criteria are
met. At each iteration, the new population is generated applying various
search operators.

GAs and their general field of evolutionary algorithms (EAs) can be
regarded as a population-based version of generate-and-test search. They
use search operators like crossover and mutation to generate new solutions,
and use evaluation to test which solutions are better. The better solutions are
usually selected (using a selection process) to form the next generation of
solutions. It can be noted here that there is no strict rule to use crossover and
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mutation to generate new solutions in EAs. In principle, one may use any
search procedure to generate new solutions that will increase the probability
of finding a global optimum. This is also true for selection. The details of
GAs and their different parameters and operators can be found in Mitchell
(1998) and Sarker et al. (2003).

EAs have some advantages over the conventional mathematical pro-
gramming techniques. Some of the advantages are highlighted below,
which justify the use of EAs in solving optimization problems.

. Consideration of convexity=concavity and continuity of functions
are not necessary in EAs; however, these attributes of functions are
a real concern in most mathematical programming techniques.

. It is not difficult to implement EAs because they do not require
any rich domain knowledge. However, domain knowledge can be
incorporated into evolutionary computation (EC) techniques.

. EAs are a class of general purpose (domain independent) search
methods that strike a remarkable balance between exploration and
exploitation of the search space. This property helps to improve
the solution by skipping from the local optima, and is particularly
useful when solving multi-modal problems.

. The most favorable point of using EAs is that they provide quick
approximate solutions. In most cases, EAs make a significant
improvement within the first few generations.

. EAs are more suitable for multi-objective optimization, than con-
ventional optimization techniques, because of their capability of
simultaneous optimization of conflicting objective functions and
generation of a number of alternative solutions in a single run.

. Optimization under changing environments (dynamic or nonsta-
tionary or real time) can be handled nicely by EC techniques. EAs
are also good for dealing with noisy objective problems.

9.4.5 Ant Colony Optimization

One approach, using natural system concepts for optimization, is known
as ant colony optimization and is a branch of swarm intelligence. Swarm
intelligence is a field that studies the emergent collective intelligence of
groups of simple agents. In groups of insects, such as ants and bees, that
live in colonies, an individual can only do simple tasks on its own where-
as the colony’s cooperative work is the main reason in determining the
intelligent behavior the colony shows.

When ants travel seek out certain targets, such as food sources, they
deposit a chemical substance on the ground (path) called a pheromone.
Over time, the shortest paths tend to show a higher pheromone growth
rate. All ants prefer to take those paths where there is a larger amount of
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pheromone. This intelligent concept can be used for solving optimization
problems by applying the algorithm known as ant colony optimization. The
details of the algorithm can be found in Dorigo and Sttzle (2004).

9.4.6 Memetic Algorithms

A memetic algorithm uses local search heuristics with a population-based
strategy. The algorithm can be seen as a hybrid population-based algorithm.
Basically, the local search heuristics are combined with crossover operators.
When a local search is combined with GAs (usually known as genetic local
search), the algorithm provides a much better performance than GAs alone
can do. Any constructive heuristics or exact method may be combined with
a population-based algorithm (not necessarily GAs) to develop a memetic
algorithm. These algorithms tend to be very suitable for parallel computers
and distributed computing systems (including heterogeneous systems).

The method is gaining wide acceptance, in particular, in well-known
combinatorial optimization problems where large instances have been
solved to optimality and where other metaheuristics have failed. For further
reading on the topic, see the paper by Moscato and Norman (1992).

9.4.7 Other Heuristics

There are a number of other heuristics such as immune system, particle
swarm optimization, cultural algorithms, and cooperative search. A brief
description of these algorithms can be found in Coello et al. (2002).

9.5 Optimization Software

There are many commercial software packages available in the market for
solving mathematical models. All software packages have the basic com-
ponents as shown in Figure 9.1.

The software package is basically the solver engine, which contains one or
more algorithms for solving a certain class or a number of different classes
of mathematical models, such as the simplex and the interior point algo-
rithms for solving LP models. The following are some of the widely used
software packages:

Input OutputSoftware
package

FIGURE 9.1
Model solving using a software package.
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. LINGO=LINDO

. GAMS

. OptiMax 2000

. CPLEX and XPRESS

. MINOS

. Solver and Premium Solver

. Others

These software packages are briefly described below.

9.5.1 LINGO=LINDO

LINGO (Linear, Integer, Nonlinear, and Global Optimization) is a comprehen-
sive tool designed to make building and solving linear, nonlinear, and IP
models faster, easier, and more efficient. LINGO provides a completely inte-
grated package that includes a powerful language for expressing mathematical
models, a full featured environment for building and editing problems, and a
set of fast built-in solvers.

LINDO provides powerful solvers for linear, nonlinear (convex and non-
convex), quadratic, quadratically constrained, and integer optimization prob-
lems. The use of LINGO and LINDO in solving mathematical problems is
demonstrated in Appendix-9A. The free demo and trial versions for LINGO
and LINDO can be downloaded from the Web site of LINDO Systems Inc.
(http:==www.lindo.com=). The demo=trial versions allow the solution of
models with 300 variables (including up to 30 integers) and 150 constraints.
However, LINGO and LINDO-API allow up to 30 nonlinear variables. The
extended commercial version apparently can handle any number of variables
(of any type) and constraints.

9.5.2 MPL with OptiMax 2000, CPLEX, and XPRESS

OptiMax 2000, CPLEX, and XPRESS are the solver engines. These packages
require additional interfaces called mathematical programming language
(MPL) packages for inputting the model, whereas, the user interface for
inputting the models is an integral part of LINDO=LINGO and GAMS.

Maximal Software (http:==www.maximalsoftware.com=) allows one to
download the free student=trial versions of MPL for Windows and OptiMax
with CPLEX solver. The student=trial versions are limited in size (300
constraints) but are otherwise fully functional versions of the software.
The use of MPL with OptiMax and CPLEX in solving mathematical model
is demonstrated in Appendix-9B.

9.5.3 GAMS

The general algebraic modelling system (GAMS) is a high-level modelling
system for mathematical programming problems. It consists of a language
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compiler and a stable of integrated high-performance solvers. GAMS
is tailored for complex, large-scale modelling applications, and allows
to build large maintainable models that can be adapted quickly to
new situations. The package GAMS is specifically designed for modelling
linear, nonlinear, and mixed-integer optimization problems. Without a valid
GAMS (http:==www.gams.com=) license, the system will operate as a free
demonstration system with the limitations of 300 variables (including up to
50 discrete variables) and 300 constraints. GAMS is further discussed in
Appendix-9C.

9.5.4 Solver and Premium Solver

Solver is an integral part of Microsoft Office Excel. Frontline Systems
(http:==www.solver.com=) developed the Solvers=Optimizers not only in
Microsoft Excel but also in Lotus 1-2-3 and Quattro Pro. The standard Solver
can solve linear, integer, and nonlinear optimization models of up to
200 variables and 200 constraints. The Premium Solver products (additional
Add-Ins) work with Excel Solver models, offer new features such as
Evolutionary Solver, and handle problems of virtually unlimited size. The
use of Excel Solver in solving mathematical model is demonstrated in
Appendix-9D.

9.5.5 Win QSB

Win QSB (quantitative systems for business) is a windows-based decision-
making tool. Win QSB is an educational software tool that allows solving
small-scale decision problems. The size of the optimization problems one
can handle using Win QSB is approximately similar to LINGO, Solver, or
any other student=trial version. The software has neither a commercial
version nor a Web site for free download. The software comes with a book
called Win QSB by Chang (2003). Further details on Win QSB can be found
in Appendix-9E.

9.5.6 MINOS

MINOS (modular incore nonlinear optimization system) is a software pack-
age for solving large-scale optimization problems (linear and nonlinear
programs). With sufficient memory, MINOS can process large LP models
similar to those solved by commercial systems such as CPLEX and OSL.
MINOS can also process models with large numbers of smooth nonlinear
constraints. The functions need not be convex. MINOS is highly effective
for problems with a nonlinear objective function and large numbers of
sparse linear constraints (as well as bounds on the variables). It has an
optional data input capability from MPS files. It can be linked with
GAMS, AMPL, Matlab, and CUTE interfaces. For more details on MINOS,
visit http:==www.ici.ro=camo=nonlin=minos.htm.
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Almost all of these commercial packages (excluding Solver and Win QSB)
have been developed using different computer languages and are available
on a number of different computer platforms. The input requirements and
formats are usually different for different packages, which lead to incon-
venience when using different packages for solving a given mathematical
model. This aspect is discussed in a later chapter. The outputs are also
different from the different packages.

9.6 Summary

We have briefly presented the algorithmic complexity and complexity
classes. A number of well-known classical optimization and modern
heuristic techniques are discussed. A number of widely used classical
optimization-based software packages are described. For ease of implement-
ation, the use of some of these packages is demonstrated in the appendices
of the chapter.
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Appendix-9A LINGO: An Introduction

9A.1 Introduction

LINGO (Linear, Integer, Nonlinear, and Global Optimization) is a mathematical
modelling language designed particularly for formulating and solving a wide
variety of optimization problems, including linear programming, integer pro-
gramming, and nonlinear programming. In this section, we introduce LINGO
modelling language for solving simple mathematical programming models.

The demo versions of LINGO can be downloaded from LINDO=
LINGO Web site. The demo versions are limited in size as indicated in Section
9.5.1 and usually valid for 40 days. However, as per the current policy, the
demo license can be extended (at no cost) repeatedly after expiration date.

Let us start with a simple problem such as in Example 3.1. For ease of
explanation, in this section, we will let the variables TABLE and CHAIR
denote the number of tables and chairs to produce, respectively. The model
with the revised variable definitions is as follows:

Maximize Z ¼ 100 TABLE þ 60 CHAIR

Subject to

5 TABLE þ 2 CHAIR � 270 Machining

4 TABLE þ 3 CHAIR � 250 Sanding

3 TABLE þ 4 CHAIR � 200 Assembly

TABLE � 0 and CHAIR � 0 Nonnegativity

Model (9A:1)

To solve the above model using LINGO, open LINGO and choose New from
the File menu. Now you are ready to enter the above model in LINGO
model window.

9A.2 Inputting Model in LINGO

We tell LINGO we want to maximize an objective function by preceding it
with MAX ¼ . Therefore, our objective function is written on the first line of
our model window as

MAX¼100 * TABLE þ 60 * CHAIR;
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Each line in LINGO is terminated with a semicolon. The semicolon is
necessary without which LINGO will not solve the model.

Enter the constraints just below the objective function as follows:

5 * TABLE þ 2 * CHAIR <¼ 270;

4 * TABLE þ 3 * CHAIR <¼ 250;

3 * TABLE þ 4 * CHAIR <¼ 200;

Since most computers do not have less than or equal to keys (�), LINGO
has adopted the convention of using the two character symbol <¼ to
denote �. As an alternative, you may simply enter < to mean less than
or equal to. In a similar manner, >¼ or > are used to mean greater than or
equal to (�).

After entering the above expressions and entering comments to improve
readability of the model, your model window should look like Figure 9A.1
(also see Figure 9A.4).

An expression may be broken up into as many lines as you want, how-
ever, it must be terminated with a semicolon. As an example, we may use
two lines rather than just one to represent the objective function as follows:

MAX¼100 * TABLE
þ 60 * CHAIR;

In the above model, we have entered some comments to improve its
readability. Comments begin with an exclamation point (!) and end with a
semicolon (;). All text between an exclamation point and terminating semi-
colon are assumed as nonessential for mathematical model hence ignored
by LINGO. Comments can occupy more than one line and can share lines
with other LINGO expressions. For example,

X1¼25*X2 þ X3=3*X4; !A comment at the end of constraint;

X1¼25* !A comment in the middle of a constraint; X2 þ
X3=3*X4;

So far, we have used all uppercase letters for our variable names. How-
ever, LINGO does not distinguish between uppercase and lowercase in

FIGURE 9A.1
Input model.

! The total profit objective function;
MAX = 100 * TABLE + 60 * CHAIR; 

! Machining Constraint;
5 * TABLE + 2 * CHAIR <=  270; 

! Sanding Constraint; 
4 * TABLE + 3 * CHAIR <=  250; 

! Assembling Constraint; 
3 * TABLE + 4 * CHAIR <=  200; 
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variable names. For example, the following variable names would all be
considered equivalent:

TABLE

Table

table

tABLE

LINGO requires variable names begin with an alphabetic character (A–Z)
and subsequent characters may be either alphabetic, numeric (0–9), or the
underscore (_). Names can be given up to 32 characters in length.

9A.3 Solving the Model

The simple model has already been entered and it is now ready to be solved.
To begin solving the model, select the Solve command from the LINGO
menu, or press the Solve button on the toolbar at the top of the main frame
window. LINGO will begin compiling the model that determines the
model’s conformity to all syntax requirements. If the syntax conformity
test fails, LINGO will provide an error message by listing the line of the
model and pointing to the place in the line where it occurred.

9A.3.1 Solver Status Window

If there are no syntax errors during the compilation phase, LINGO will call
the appropriate solver module to begin searching for the optimal solution.
When the solver module starts, it displays a solver status window on your
computer screen similar to the one in Figure 9A.2.

The solver status window is useful for monitoring the progress of the
solver module and the size of the model. The Variables box shows the total
number of variables in the model. The Variables box also displays the
number of integer and nonlinear variables involved in the model.

In variable counts, LINGO does not include any variables for which deter-
mines are fixed in value. For instance, consider the following constraints:

X1¼5;
X1 þ X2¼9;

LINGO determines from the first constraint that X1 is fixed at the value of
5. Using this information in constraint 2, it determines X2 is fixed at a value
of 4. X1 and X2 will then be substituted out of the model and they will not
contribute to the total variable count.

The Constraints box reports the total constraints and the number of
these constraints that are nonlinear. LINGO searches your model for fixed

Sarker/Optimization Modelling: A Practical Approach 43102_C009 Final Proof page 243 1.9.2007 11:53am Compositor Name: BMani

Solution Approaches: An Overview 243



constraints. A constraint is considered fixed if all the variables in
the constraint are fixed. Fixed constraints are substituted out of the model
and do not add to the total constraint count.

The Nonzeros box reports the total nonzero coefficients in the model
and the number of these that appear on nonlinear variables. In a given
constraint, there usually appears only a small subset of the total variables.
So, one can view the total nonzero coefficient count as a tally of the total
number of times variables appear in all the constraints.

The Generator Memory Used box lists the amount of memory LINGO’s
model generator is currently using from its memory allotment. One may
change the size of the generator’s memory allotment using the
LINGOjOptions command. The Elapsed Runtime box shows the total time
used so far to generate and solve the model.

When LINGO finishes solving the model, there will be a new window created
on your screen titled Solution Report containing the details of the solution. The
solution report should appear as Figure 9A.3 (also see Figure 9A.4).

9A.3.2 LINGO Special Features

LINGO’s modelling language lets you express the problem in a natural
manner that is very much similar to standard mathematical notation. Rather
than entering each variable and constraint explicitly, you can express similar

FIGURE 9A.2
LINGO solver status.
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variables and constraints in a compact manner. This leads to models that are
much easier to maintain and scale up. Another convenient feature of LIN-
GO’s modelling language is the data section. The data section allows you to
isolate required data from the formulation. In fact, LINGO can even read data
from a separate file such as spreadsheet, database, or text file. With data
independent of the model, it is much easier to make changes, and there is less
chance of error when you develop larger models. To demonstrate the com-
pactness and convenience of LINGO modelling language, we provide an
example of transportation problem below.

Global optimal solution found.
  Objective value:                 5671.429
  Total solver iterations:         3 

       Variable           Value        Reduced Cost 
         TABLE        48.57143            0.000000
         CHAIR        13.57143            0.000000

          Row    Slack or Surplus       Dual Price
           1        5671.429             1.000000
           2        0.000000             15.71429
           3        15.00000             0.000000
           4        0.000000             7.142857

FIGURE 9A.3
Solution report.

FIGURE 9A.4
Model, solution report, and status windows.
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9A.4 Another Example

Suppose the transportation example provided earlier (in Example 4.13),
Austral Steel Company now has five plants supplying to seven distribution
centers. Since each plant can ship to each distribution center, there are a total
of 35 possible shipping paths, or arcs. We will need a variable for each of
these arcs to represent the amount shipped on the arc. For this problem, the
following data are available:

Plant Capacity Data

Plant Capacity

1 80
2 75
3 45
4 65
5 40

Distribution Center Demand

Center Demand

1 40
2 45
3 35
4 50
5 30
6 40
7 25

Shipping Cost per Tonne ($)

DC1 DC2 DC3 DC4 DC5 DC6 DC7

P1 6 2 6 7 4 2 5
P2 4 9 5 3 8 5 8
P3 5 2 1 9 7 4 3
P4 7 6 7 3 9 2 7
P5 2 3 9 5 7 2 6

9A.4.1 Objective Function

Our objective is to minimize the total shipping costs. We will let the variable
VOLUME_I_J denote the number of tonnes shipped from warehouse I to
vendor J. Then, if we were to explicitly write out our objective function
using scalar variables we would have
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MIN¼6 * VOLUME_1_1 þ 2 * VOLUME_1_2 þ
6 * VOLUME_1_3 þ 7 * VOLUME_1_4 þ
4 * VOLUME_1_5 þ...þ 7 * VOLUME_5_5

þ 2 * VOLUME_5_6 þ 6 * VOLUME_5_7;

We have shown here only 8 out of the 35 terms in the objective. As one can
see, entering such a lengthy formula would be tedious and prone to errors.
You can imagine the length of the objective function where the number of
plants and distribution centers is in the scale of thousands.

As discussed earlier, we can express this long equation in a much more
compact manner as follows:

Minimize Sij COSTij � VOLUMEij

In a similar way, LINGO’s modelling language allows to express the
objective function in a form that is short, easy to type, and easy to under-
stand. The equivalent LINGO statement is

MIN¼@SUM( LINKS(I,J): COST(I,J) * VOLUME(I,J));

In words, this says to minimize the sum of the shipping COST per
tonne times the VOLUME of rod (in tonne) shipped for all LINKS
between the plants and distribution centers. The following table compares
the mathematical notation to the LINGO syntax for the above objective
function.

Mathematical Notation LINGO Syntax

Minimize MIN ¼
SiSj @SUM( LINKS(I,J):

COSTij COST(I,J))
. *
VOLUMEij VOLUME(I,J))

End of equation ;

9A.4.2 Constraints

There are two sets of constraints in this model: the demand constraints and
the capacity constraints. In the first demand constraint for distribution center
1, we need to sum up the shipments from all the plants to distribution
center 1 and set them equal to distribution center 1’s demand of 40 widgets.
Thus, if we were using scalar based notation, we would need to construct
the following:

VOLUME_1_1 þ VOLUME_2_1 þ VOLUME_3_1 þ
VOLUME_4_1 þ VOLUME_5_1¼40;
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You would then need to type six additional demand constraints, in a
similar form, to cover all seven distribution centers. Again, as you can see,
this would be a tedious and error-prone process. However, LINGO model-
ling language can simplify your task. Using mathematical notation, all seven
demand constraints can be expressed in the single statement:

Si VOLUMEij¼DEMANDj, for all j

The corresponding LINGO modelling statement appears as follows:

@FOR (DISTRIBUTION_CENTER(J):

@SUM (PLANT(I): VOLUME(I, J))¼DEMAND(J));

This LINGO statement replaces all seven demand constraints. In simple
words, this says for all DISTRIBUTION CENTERS, the sum of the VOLUME
shipped from each of the PLANTS to a given distribution center must equal
the corresponding DEMAND of the distribution center. As you can see, this
statement closely resembles the mathematical notation above as shown in
the following table:

Mathematical Notation LINGO Syntax

for all j @FOR(DISTRIBUTION_CENTER( J):

Si @SUM( PLANT(I):

VOLUMEij VOLUME(I, J))

¼ ¼
DEMANDj DEMAND(J))

End of equation ;

In standard mathematical notation, the five capacity constraints can be
expressed as follows:

Sj VOLUMEij <¼ CAPi, for all i

The equivalent LINGO statement for all capacity constraints would be

@FOR( PLANT( I):

@SUM(DISTRIBUTION_CENTER ( J):

VOLUME( I, J))<¼ CAPACITY( I));

In simple words, this says, for each member of the set PLANTS, the sum
of the VOLUME shipped to each of the DISTRIBUTION CENTERS from that
plant must be less than or equal to the CAPACITY of the plant.

9A.4.3 Complete LINGO Model

Putting together everything we have done so far yields the following
LINGO model:
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MODEL:

MIN¼@SUM( LINKS( I, J):

COST( I, J) * VOLUME( I, J));

@FOR(DISTRIBUTION_CENTER ( J):

@SUM(PLANT ( I): VOLUME( I, J))

¼DEMAND( J));

@FOR(PLANT ( I):

@SUM(DISTRIBUTION_CENTER ( J): VOLUME( I, J))

<¼ CAPACITY( I));

END

However, we still need to define the data of the model, which are input-
ted in the sets section and the data section.

9A.4.4 Defining the Sets

In modelling some real-life situations, there are typically one or more sets of
related objects. Examples of such things are plants, warehouses, customers,
vehicles, and employees. Usually, if a constraint applies to one member of a
set, then it will apply equally to each other member of the set. This simple
idea is at the core of the LINGO modelling language. LINGO allows defin-
ing the sets of related objects in the sets section. The sets section begins
with the keyword SETS: on a line by itself and ends with ENDSETS on a line
by itself. Once the set members are defined, LINGO has a group of set
looping functions (e.g., @FOR), which apply operations to all members of
a set using a single statement.

In the case of our transportation example, we have constructed the
following three sets:

. Plants

. Distribution centers

. Shipping arcs from each plant to distribution center

The three sets are defined in the model’s sets section as follows:

SETS:

PLANT=P1 P2 P3 P4 P5=: CAPACITY;

DISTRIBUTION_CENTER=DC1 DC2 DC3 DC4 DC5 DC6 DC7=:DEMAND;
LINKS(PLANT, DISTRIBUTION_CENTER): COST, VOLUME;

ENDSETS

The second line indicates that the set PLANT has members P1, P2, P3,
P4, and P5, each with an attribute called CAPACITY. The seven distribu-
tion centers are defined similarly in the third line, each with an attribute
called DEMAND. The final set, titled LINKS, represents the 35 links in the
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transportation network. Each link has a COST and a VOLUME attribute
associated with it. The syntax used to define this set differs from the
previous two. By specifying

LINKS(PLANT, DISTRIBUTION_CENTER)

we are expressing to LINGO the LINKS set is derived from the PLANT and
DISTRIBUTION_CENTER sets. In this case, LINGO generates each ordered
(plant, distribution center) pair. Each of these 35 ordered pairs becomes a
member in the LINKS set. To help clarify this, we list selected members from
the LINKS set below.

Member Index Shipping Arc

1 P1 -> DC1
2 P1 -> DC2
3 P1 -> DC3
. . . . . .
34 P5 -> DC6
35 P5 -> DC7

One can explicitly enter each member arc in the sets section, but LINGO
saved us considerable work by generating the set members for us.

9A.4.5 Inputting the Data

LINGO allows the user to isolate data within the data section of the model.
In our transportation example, we have the following data section:

DATA:

CAPACITY¼80 75 45 65 40;

DEMAND¼40 45 35 50 30 40 25;

COST¼6 2 6 7 4 2 5

4 9 5 3 8 5 8

5 2 1 9 7 4 3

7 6 7 3 9 2 7
2 3 9 5 7 2 6;

ENDDATA

The data section begins with the keyword DATA: on a line by itself
and ends with ENDDATA on a line by itself. Both the CAPACITY attribute
of the set PLANT and DEMAND attribute of the set DISTRIBUTION_
CENTER are initialized in a straightforward manner. The COST attribute
of the two-dimensional set LINKS is a bit tricky. When LINGO initializes
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a multidimensional array in a data section, it increments the outer index
first. Thus, in our example, COST(P1, DC1) is initialized first, followed
by COST(P1, DC2), through to COST(P1, DC7), and then COST(P2, DC1),
and so on.

Putting together the data section, the sets section, the objective, and the
constraints, the complete LINGO model is as follows:

MODEL:

!A 5 Plants 7 Distribution centers Transportation Problem;

!Here, the total demand is less than the total capacity;

SETS:

PLANT=P1 P2 P3 P4 P5=: CAPACITY;

DISTRIBUTION_CENTER=DC1 DC2 DC3 DC4 DC5 DC6 DC7=:DEMAND;
LINKS( PLANT, DISTRIBUTION_CENTER): COST, VOLUME;

ENDSETS

!The objective;

MIN¼@SUM( LINKS( I, J):

COST( I, J) * VOLUME( I, J));

!The demand constraints;

@FOR ( DISTRIBUTION_CENTER(J):

@SUM ( PLANT(I):

VOLUME(I, J))¼DEMAND(J));

!The capacity constraints;

@FOR(PLANT ( I):

@SUM(DISTRIBUTION_CENTER ( J):

VOLUME( I, J)) <¼ CAPACITY(I));

!Here is the data;

DATA:

CAPACITY¼80 75 45 65 40;

DEMAND¼40 45 35 50 30 40 25;

COST¼6 2 6 7 4 2 5

4 9 5 3 8 5 8

5 2 1 9 7 4 3

7 6 7 3 9 2 7

2 3 9 5 7 2 6;

ENDDATA

END

In this example, we have placed the data directly within the model’s data
section. LINGO also has the ability to import data from external sources.
More specifically, a LINGO model can import data from external text and
spreadsheet files. This can be a very useful feature when solving a model in
which data changes frequently.
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9A.5 LINGO Syntax

In the above sections, we have provided two simple examples of solving
mathematical programming models using LINGO. More examples and
LINGO syntax can be found in later chapters. For advanced LINGO syntax
and details on the use of external data sources, one should consult LINGO
user manual (available online). Some of the frequently used LINGO syntax
are given below:

Expression for LINGO Syntax

Binary variable (X is binary) @BIN(X)
Integer variable (X is integer) @GIN(X)
Real value, positive, or negative

(X is unrestricted)
@FREE(X)

Logical operators #NOT#
#NE# . . .

Mathematical functions @ABS(X)
@EXP(X)
@LOG(X)
@SQRT(X)
@SIN(X)

Probability function @PBN(P, N, X)
Interface function @FILE(‘filename’)
Miscellaneous function @IF(logical_condition, true result,

false result)
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Appendix-9B MPL: An Introduction

9B.1 Introduction

MPL (mathematical programming language), a product of Maximal
Software, Inc., for Windows is a modelling system that allows the model
developer to formulate optimization models in an efficient way. MPL is
capable of handling problems with millions of variables and constraints.
MPL works with optimization engines, such as CPLEX and XPRESS, and
many other industrial strength solvers.

The student=trial versions of MPL for Windows and CPLEX can be down-
loaded from Maximal Software site. The student=trial versions can be used
for up to 300 constraints and for limited time only:

9B.2 Use of MPL

To demonstrate the use of MPL, let us consider the following example:

Maximize Z ¼ 100 TABLEþ 60 CHAIR

Subject to

5 TABLEþ 2 CHAIR � 270 Machining

4 TABLEþ 3 CHAIR � 250 Sanding

3 TABLEþ 4 CHAIR � 200 Assembly

TABLE � 0 and CHAIR � 0 Nonnegativity

Model (9B:1)

To model the above problem using MPL, you need to go through the
following steps:

. Start the MPL application.

. Choose New from the File menu to create a new empty model file.

. Choose Save As from the File menu and save the file as Prod-
Plan.mpl.

. Enter the model in MPL language. The model editor in MPL is a
standard text editor, which allows you to enter the model and
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perform various editing operations on the model text. In the model
editor, enter the following model formulation:

TITLE ProductionPlanning;

MAX
Profit¼100 Table1 þ 60 Chair1;

SUBJECT TO

5 Table1 þ 2 Chair1 <¼ 270;

4 Table1 þ 3 Chair1 <¼ 250;

3 Table1 þ 4 Chair1 <¼ 200;

END

It is mandatory to use semicolon, ;, after the objective function and after
each constraint. This allows MPL to separate the constraints. The spacing
used between entries and lines in MPL is not rigid. It is recommended to use
spaces and extra lines to make the model formulation easier to read and
understand.

. When you have finished entering the model, choose Save from the
File menu to save the model.

After you have entered the formulation in the model editor, you can
check the model for syntax errors. If MPL finds a mistake it will report
in the Error Message window showing the erroneous line in the model,
along with a short explanation of the problem. The cursor is automati-
cally positioned at the error in the model file, with the offending word high-
lighted.

. To check the syntax, choose Check Syntax from the Run menu. If
there are no errors found, MPL will respond with a message
stating that the syntax of the model is correct. If there is an error
in the model, MPL will display the Error Message window.

Suppose, in the model editor, the semicolon at the end of the first con-
straint is missing as follows:

SUBJECT TO
5 Table1 þ 2 Chair1 <¼ 270 !note the missing semicolon

4 Table1 þ 3 Chair1 <¼ 250;

3 Table1 þ 4 Chair1 <¼ 200;

If you choose Check Syntax from the Run menu now, MPL will go through the
model and find the missing semicolon when it is parsing the second con-
straint. When you press the OK button you are returned to the model editor.
The cursor will automatically be positioned at the location where MPL found
the error, which in our case is at the ‘‘<¼ ’’ in the second constraint. Now you
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can reenter the semicolon for the first constraint and if you check the syntax
again, MPL will report back with message that the syntax is correct.

The next step is to solve the model ProdPlan.mpl. To solve the model
follow the steps below:

. Choose Solve CPLEX from the Run menu or press the Run Solve
button in the Toolbar.

. When solving the model, the status window appears; providing
you with information about the solution progress.

If everything goes well, MPL will display the message Optimal Solution
Found. After solving the model, MPL automatically creates a standard solu-
tion file containing various elements of the solution to the model. The solution
file is created with the same name as the model file but with the extension .sol.
In our case, the solution file will be named ProdPlan.sol. After you have solved
the model, you can display the solution file in a view window by pressing the
View button at the bottom of the status window.

The first part of the solution file contains various statistics for the model,
such as the filename, date and time the model was solved, the solver used,
the value of the objective function, and the size of the model. The next part
of the solution file contains the solution results.

9B.3 Using Vectors and Indexes in MPL

Indexes define the domains of the model, encapsulate the problem dimen-
sions, and make it easy to quickly adjust the problem size. Vectors are basic-
ally aggregations of elements in the model that share common characteristics
and purpose. Once you have defined the indexes in a model, you can use
them to define vectors that contain the data, variables, and constraints for the
model.

Data Vectors are used when the coefficients or statistics from the problem
come in lists or tables of numerical data. When an index is defined, there
is one value for each value of the index and the data vectors allow you to
group collections of data together in the model. Variable Vectors can
be defined in a similar way as data vectors, to form a collection of variables
defined over a certain index. Constraint Vectors are defined over indexes,
which MPL expands to a collection of simple constraints when generating
the model. A vector constraint can be defined in this way, over a number of
indexes, such as periods and products. Data Constants are used in the model
to aid readability, and make the model easier to maintain. They are assigned
a specific value, but not defined over a specific index.

One of the operations usually done on vectors is to sum or add all
the values for each element of the vector. This is done in MPL by using the
keyword SUM surrounding the vector expression to be added together.
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The expression is prefixed by a list of indexes, over which the sum hinges.
The sum expression contains a single variable vector per term, possibly
multiplied by one or more data vectors. Examples are

SUM(product : Price * Sales);

SUM(product, month : ProdCost * Produce);

9B.4 A Product-Mix Model with Three Variables

Consider a production planning problem with three products, which will
be called P1, P2, and P3. The problem is to distribute production capa-
city between products, and to determine the production level, given the
demand. We have a total of 22 production days available. Other data for
these products are given in the table below:

Parameters Product P1 Product P2 Product P3

Production rate (unit=day) 600 400 500
Demand (unit) 4800 4000 5200
Production cost ($=unit) 70 50 60
Selling price ($=unit) 150 120 130

For these three products we are going to create an index, and then create a
variable vector that represents how much of each of these products need to
be produced.

Let us create MPL formulation for this problem. You should now have an
empty editor window where you can enter your MPL formulation. To enter
the title for the ProdPlanX model, type in the following text in the model
editor:

TITLE

Production_PlanningX;

The first section in an MPL model is usually the INDEX section where you
define the indexes for the model. In the model editor, directly below the title,
add an INDEX section with a definition for the product index as follows:

INDEX
product:¼ (P1, P2, P3);

The next section is usually the DATA section where you define the
Data Vectors and Data Constants for the model. Directly below the index
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definition, add a DATA section with a definition for the data vector S_Price
followed by the index [product] inside brackets:

DATA

S_Price[product] :¼ (150.00, 120.00, 130.00);

Following the declaration, you enter an assignment symbol ‘‘:¼ ’’ and then a
list of numbers containing the prices for each product. Surround the list
with parentheses and separate each number by a space, comma, or both.
There should be a semicolon after each data vector definition to separate it
from the other definitions in the model.

The problem description also listed data for the demand, production cost,
and production rate. To enter this data, add the following definitions to the
DATA section directly below the S_Price data vector:

Demand[product] :¼ (4800, 4000, 5200);

Prod_Cost[product] :¼ (70.00, 50.00, 60.00);

Prod_Rate[product] :¼ (600, 400, 500);

Add the following data constant definition for the production days avail-
able directly below the Prod_Rate data vector:

Prod_Days_Avail :¼ 22;

Usually, the next section will be the VARIABLES section where you
define the variables for the model. We define a vector variable named
Produce over the index product. In the model editor, directly below the
data definitions add the VARIABLES section with a definition for the
Produce vector variable as follows:

VARIABLES

Produce[product] -> Prod;

The name that appears after the ‘‘->’’ (read becomes) sign is an optional
abbreviation of the vector name used to offset the name size limitations of
most LP solvers. This allows you to use long and descriptive names for
variables in your model.

In deriving the objective function, the calculations for total revenue and
total cost can be found separately as macros. In the model editor, directly
below the variable definition, enter the following macrodefinitions in the
MACROS section.

MACROS

Total_Revenue :¼ SUM(product: S_Price * Produce);

Total_Cost :¼ SUM(product: Prod_Cost * Produce);

Sarker/Optimization Modelling: A Practical Approach 43102_C009 Final Proof page 257 1.9.2007 11:53am Compositor Name: BMani

Solution Approaches: An Overview 257



The model part in MPL is where you define the actual objective function and
the constraints for the model. You will be using the macros, defined above, to
create the objective function by referring to the macronames where you need
to use the summations. In the model editor, enter the keyword MODEL to note
the start of the model part, followed by the definition for the objective function:

MODEL

MAX Profit¼Total_Revenue ] Total_Cost;

The formula for the objective function is quite simple, as we are using
macros to contain to actual summations.

Following the objective function you need to define the constraints for the
model in the SUBJECT TO section. In the model editor, add the SUBJECT
TO heading, followed by the production capacity constraint definition:

SUBJECT TO

Prod_Capacity -> PCap:

SUM(product: Produce=Prod_Rate)
<¼ Prod_Days_Avail;

The BOUNDS section is used to define the upper and lower bounds on
the variables in the model. Enter the following upper bound on the Produce
variable in the BOUNDS section.

BOUNDS

Produce <¼ Demand;
END

Please note that in most LP models all variables have an implied lower
bound of zero. These lower bounds are handled automatically by MPL and
do not have to be specified unless they are nonzero.

At the end of the model enter the keyword END to note the end of the
model. After you have finished entering the model, you should save it by
choosing Save from the File menu.

A full listing of the model formulation is shown below:

TITLE

Production_PlanningX;

INDEX

product :¼ (P1, P2, P3);

DATA

S_Price[product] :¼ (150.00, 120.00, 130.00);
Demand[product] :¼ (4800, 4000, 5200);

Prod_Cost[product] :¼ (70.00, 50.00, 60.00);

Prod_Rate[product] :¼ (600, 400, 500);

Prod_Days_Avail :¼ 22;
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VARIABLES

Produce[product] -> Prod;
MACROS

Total_Revenue :¼ SUM(product: S_Price * Produce);

Total_Cost :¼ SUM(product: Prod_Cost * Produce);

MODEL

MAX Profit¼Total_Revenue – Total_Cost;

SUBJECT TO

Prod_Capacity -> PCap:

SUM(product: Produce=Prod_Rate) <¼ Prod_Days_Avail;
BOUNDS

Produce <¼ Demand;

END

For further syntax and examples visit the Web site of Maximal
Software, Inc.
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Appendix-9C GAMS: An Introduction

9C.1 Introduction

The general algebraic modelling system (GAMS) is a modelling approach for
mathematical programming and optimization. It consists of a language compiler
and an integrated high-performance solver. GAMS (http:==www.gams.com=)
is available for use on personal computers, workstations, mainframes, and
supercomputers.

9C.2 An Example

Consider the transportation problem of Appendix-9A. The mathematical
model of the problem can be formulated as follows:

Indices:

i¼plants
j¼distribution centers

Given data:

Si ¼ supply at plant i
Dj ¼demand at distribution center j
Cij¼ shipping cost per unit from plant i to distribution center j

Decision variables:

xij¼ amount to be shipped from plant i to distribution center j

Objective function:

Minimize
X

i

X

j

Cijxij

Constraints:
X

j

xij � Si 8i supply limitation at plant i

X

i

xij � Dj 8j demand at distribution center j

xij � 0 8i, j
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The GAMS model for this problem is shown below:

SETS

I plants=P1, P2, P3, P4, P5 =
J distributioncenters=DC1,DC2,DC3,DC4,DC5,DC6,DC7=;

PARAMETERS

S(I) capacity of plant i

= P1 80

P2 75

P3 45
P4 65

P5 40 =
D(J) demand at distribution center j

= DC1 40

DC2 45

DC3 35

DC4 50

DC5 30
DC6 40

DC7 25 =;
TABLE C(I,J) transport cost per unit

DC1 DC2 DC3 DC4 DC5 DC6 DC7

P1 6 2 6 7 4 2 5

P2 4 9 5 3 8 5 8

P3 5 2 1 9 7 4 3

P4 7 6 7 3 9 2 7
P5 2 3 9 5 7 2 6;

VARIABLES

X(I,J) shipment quantities

Z total transportation costs;

POSITIVE VARIABLE X;

EQUATIONS

COST define objective function

SUPPLY(I) observe supply limit at plant i
DEMAND(J) satisfy demand at distribution center j;

COST .. Z ¼E¼ SUM((I,J), C(I,J)*X(I,J));

SUPPLY(I) .. SUM(J, X(I,J)) ¼L¼ S(I);

DEMAND(J) .. SUM(I, X(I,J)) ¼G¼ D(J);

MODEL TRANSPORTATION =ALL=;
SOLVE TRANSPORT USING LP MINIMIZING Z;

Let us now explain the sections of the above GAMS model with the
syntax used. In the SET section, GAMS specifies indices in a straightforward
way: declare and name the set (here, I and J), and enumerate their elements.

In the PARAMETER section, data are entered as indexed parameters S(I)
and D(J), and values simply are listed. GAMS allows explanatory text
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(shown in lower case) throughout your model, as you develop it. Your
comments are automatically incorporated into the output report, at the
appropriate places.

Data can be entered in convenient table form. In the TABLE section,
GAMS lets you input data in their basic form—transformations are specified
algebraically.

A constant simply can be declared as a SCALAR, and its value specified.
We do not have any scalar in this model. When data values are to be
calculated, you first declare the parameter (i.e., give it a symbol and,
optionally, index it), then give its algebraic formulation. GAMS will auto-
matically make the calculations. For example,

C(I,J)¼F * T(I,J)=1000;

Where
F is a scalar
T(I, J) is parameter.

In the VARIABLES section, decision variables are expressed algebraically,
with their indices specified. From this general form, GAMS generates each
instance of the variable in the domain. Variables are specified as to type:
FREE, POSITIVE, NEGATIVE, BINARY, or INTEGER. The default is FREE.
The objective variable (z, here) is simply declared without an index.

In the EQUATIONS section, objective function and constraint equations
are first declared by giving names to these. Then their general algebraic
formulae are described. GAMS now has enough information (from data
entered and from the algebraic relationships specified in the equations) to
generate each individual constraint statement. An extensive set of tools
enables you to model any expression that can be stated algebraically: arith-
metic, indexing, functions, and exception-handling log (e.g., if-then-else and
such-that constructs). The type of constraint is expressed as follows:

¼E ¼ indicates equal to

¼ L ¼ indicates less than or equal to

¼G¼ indicates greater than or equal to

The model is given a unique name (here, TRANSPORTION), and the
modeller specifies the equations that should be included in this particular
formulation. In this case, we specified ALL, which indicates that all equa-
tions are part of the model. This would be equivalent to MODEL TRANS-
PORTION=COST, SUPPLY, DEMAND=. This equation selection enables
you to formulate different models within a single GAMS input file, based
on the same or different given data.

The solve statement tells GAMS which model to solve, selects the solver
to use (here an LP solver), indicates the direction of the optimization, either
MINIMIZING or MAXIMIZING, and specifies the objective variable.

Sarker/Optimization Modelling: A Practical Approach 43102_C009 Final Proof page 262 1.9.2007 11:53am Compositor Name: BMani

262 Optimization Modelling: A Practical Approach



The full GAMS output report contains many aids for interpreting and
diagnosing your model. You also can modify the output format to suit your
particular purposes. GAMS is capable of generating management-style
reports. In GAMS, data manipulation, model specification, and report writ-
ing are done in one single environment.
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Appendix-9D Excel Solver: An Introduction

9D.1 Introduction

We can solve many mathematical programming models using Excel Solver.
The solver module is an integral part of standard Microsoft Office Excel
product. However, you may need to add in Solver (if it does not exist in the
drop-down menu under Tool) using the function Add-Ins under Tool menu.

Solver is readily available, since MS Office has become an integral part of
our life, and it is very easy to use. However, it has a number of limitations,
which we will discuss later.

9D.2 Solving Linear Programs with Solver

Enter the input data and construct relationships among data elements in a
readable and easy to understand way. When building these information and
relationships, think ahead about the optimization model you will be devel-
oping. Make sure there is a cell in the spreadsheet for each of the following:

. The quantity you wish to optimize (maximize or minimize)

. Every decision variable

. Every quantity that you might want to constrain (include both
sides of the constraints)

If you do not have any particular initial values you want to enter for your
decision variables, you can start by just entering a value of 0 (zero) in each
decision variable cell.

Consider the following LP example:

Maximize Z ¼ 100 TABLE þ 60 CHAIR

Subject to

5 TABLEþ 2 CHAIR � 270 Machining

4 TABLEþ 3 CHAIR � 250 Sanding

3 TABLEþ 4 CHAIR � 200 Assembly

TABLE � 0 and CHAIR � 0 Nonnegativity

Model (9D:1)
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Enter the required information in a plain Excel sheet as Figure 9D.1. The required
functions=equationstorepresent theobjective functionand constraints’ left-hand
side (LHS) in terms of Excel expressions are shown in Figure 9D.2. You may

FIGURE 9D.1
Input data.

FIGURE 9D.2
Input data with the equations=functions.
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organize the layout differently and write the text differently. However, the
functions=equations should be represented correctly in the Excel sheet. For
LP, you should try to always use the SUMPRODUCT function (or SUM) for
the objective function and constraints, instead of simple product and sum
function we used in the example, as this guarantees that the equations will be
linear.

Now select Solver from the drop-down menu under Tool. It will open up
a Solver dialogue box.

9D.2.1 Defining the Target Cell (Objective Function)

To select the cell you wish to optimize, select the Set Target Cell window within
the Solver dialogue box, and then either type the address of the cell or click on
the cell you wish to optimize (see Figure 9D.3). Choose either Max or Min
depending on whether the objective is to maximize or minimize the target cell.

Note:

. The target cell should contain an equation that defines the objective
and depends on the decision variables.

. The target cell must be a single cell (there can only be one objective).

9D.2.2 Identifying the Changing Cells (Decision Variables)

You next tell Excel which cells are decision variables. That means the cells
that Excel is allowed to change when optimizing. Move the cursor to the By
Changing Cells window, and either

. drag the cursor across all cells you wish to treat as decision
variables (see Figure 9D.4), or

. type the addresses of every cell you wish to treat as a decision
variable, separating them by commas.

FIGURE 9D.3
Setting target cell and function type in Solver dialogue box.
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If you wish to use the dragging method, but the decision variables do not
all lie in a connected rectangle in the spreadsheet, you can drag them in one
group at a time by

. dragging the cursor across one group of decision variables,

. putting a comma after that group in the By Changing Cells window,

. dragging the cursor across the next group of decision variables, and
so on.

9D.2.3 Adding Constraints

To begin entering constraints, click on the Add button to the right of the
constraints window. A new dialogue box will appear. The cursor will be in
the Cell Reference window within this dialogue box. Then

. click on the cell that contains the quantity you want to constraint
(constraint LHS), or

. type the cell address that contains the quantity you want to con-
strain as shown below (Figure 9D.5).

FIGURE 9D.4
Setting changing cells.

FIGURE 9D.5
Adding constraint.
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The default inequality that first appears for a constraint is <¼ . To
change this,

. click on the arrow beside the ‘‘<¼ ’’ sign and

. select the inequality (or equality) you wish from the list provided.

Notice that you may also force a decision variable to be an integer or
binary (that is either 0 or 1) using this window. We will use this feature later
in the book.

After setting the inequality, move the cursor to the Constraint window and

. click on the cell you want to use as the constraining value for that
constraint (constraint RHS),

. type the number or the cell reference you want to use as the
constraining value for that constraint, or

. type a number that you want to use as the constraining value.

After you are satisfied with the constraints,

. click the Add button if you want to add another constraint, or

. click the OK button if you want to go back to the original dialogue
box.

After adding constraints, our example problem will be as follows
(Figure 9D.6):

You may define a set of similar constraints (e.g., all <¼ constraints, or all
>¼ constraints) in one step if they are in adjacent rows. Simply select the
range of cells for the set of constraints in both the Cell Reference and
Constraint window. An example of such entry is given below (Figure 9D.7).

FIGURE 9D.6
After setting constraints.
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9D.2.4 Some Important Options

The Solver dialogue box now contains the optimization model, including
the target cell (objective function), changing cells (decision variables), and
constraints.

Once you are satisfied with the optimization model you have set, there is
one more very important step. Click on the Options button in the Solver
dialogue box, and click in both the Assume Linear Model and the Assume
Nonnegative box (see Figure 9D.8).

FIGURE 9D.7
After setting all constraints together.

FIGURE 9D.8
Setting linear model and nonnegativity.
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The Assume Linear Model option tells the Excel Solver that it is a linear
program that is being solved. This speeds the solution process, makes it more
accurate, and enables the more informative sensitivity report. The Assume
Nonnegative box adds nonnegativity constraints to all of the decision
variables.

9D.2.5 The Solution

After setting up the model, and selecting the appropriate options, it is time
to click Solve. When it is done, you will receive one of four messages:

. ‘‘Solver found a solution. All constraints and optimality conditions
are satisfied.’’ This means that Solver has found the optimal solution.

. ‘‘Cell values did not converge.’’ This means that the objective
function can be improved to infinity. You may have forgotten
a constraint (perhaps the nonnegativity constraints) or made a
mistake in a formula.

. ‘‘Solver could not find a feasible solution.’’ This means that Solver
could not find a feasible solution to the constraints you entered.
You may have made a mistake in typing the constraints or in
entering a formula in your spreadsheet.

. ‘‘Conditions for Assume Linear Model not satisfied.’’ You may
have included a formula in your model that is nonlinear. There is
also a slim chance that Solver has made an error. (This bug shows
up occasionally.)

If Solver finds an optimal solution, you have some options (see Figure
9D.9). First, you must choose whether you want Solver to keep the optimal
values in the spreadsheet (you usually want this one) or go back to the
original numbers you typed in. Click the appropriate box to make your
selection. You also need to choose what kind of reports you want. For your
analysis, you will often want to select Sensitivity Report. Once you have
made your selections, click on OK. To view the sensitivity report, click on
the Sensitivity Report tab in the lower-left-hand corner of the window.

As you can see, Solver produces three reports: Answer, Sensitivity, and
Limits. These reports for the example problem are shown in Figures 9D.10
through 9D.12.

As shown in Figure 9D.10, the value of the objective function (target
cell) is $5671.428571. The value of the decision variable (adjustable or
changing cells) in the optimal solution is 48.57142857 Tables and
13.57142875 Chairs. To get integer numbers, you need to declare each of
changing cell integer using constraint setting step discussed earlier. In this
report, Solver also provides constraint LHS values (cell value), constraints’
status, and slack.

The sensitivity report (Figure 9D.11) is divided into two parts. The first
part is for adjustable (changing) cells, which reports final value of variable,

Sarker/Optimization Modelling: A Practical Approach 43102_C009 Final Proof page 270 1.9.2007 11:53am Compositor Name: BMani

270 Optimization Modelling: A Practical Approach



FIGURE 9D.9
Solver results dialogue box.

FIGURE 9D.10
Answer report.

FIGURE 9D.11
Sensitivity report.
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reduced cost, objective coefficient, and allowable increase and allowable
decrease for objective coefficient. The reduced cost is the increase in the
objective function value per unit increase in the value of a zero-valued
variable. The reduced cost is zero here as both the variables are at the
positive level in the optimal solution. The allowable increase and decrease
specify the range of the cost coefficients in the objective function for
which the current solution (value of the variables in the optimal solution)
will not change.

The second part of the sensitivity report is for constraints, which reports
the constraint LHS value, shadow price, RHS value (as data entered), and
allowable increase and decrease. The final value column reports the usage
of the resource (constraint LHS) in the optimal solution. The shadow price is
the change in the value of the objective function per unit increase in the RHS
of the constraint—that is DZ¼ (shadow price) 3 (DRHS). The allowable
increase and decrease define the range of values of the RHS for which
the shadow price is valid and hence for which the new objective function
value can be calculated (Not the range for which the current solution will
not change). The Constraint RHS column indicates the current value of the
RHS of the constraint (the amount of the resource available).

The limits report (Figure 9D.12) is self-explanatory.
For further details on solver use help menu in MS Office Excel and visit

Frontline Systems (http:==www.solver.com=).

FIGURE 9D.12
Limits report.
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Appendix-9E Win QSB: An Introduction

9E.1 Introduction

Win QSB (quantitative systems for business) is a windows-based decision-
making tool. It contains a number of modules covering almost all the basic
techniques of operations research and management science. Although Win
QSB is an educational software tool, it can conveniently be used for solving
small-scale decision problems. The size of the optimization problems one can
handle using Win QSB is approximately similar to LINGO, Solver, or any other
student=trial version. The software has neither a commercial version nor a
Web site for free download. The software comes with a book called Win QSB
by Chang (2003). It is very simple, interactive, and easy to use. In this section,
we briefly demonstrate the use of linear and integer programming module.

9E.2 Problem Solving with Win QSB

Let us consider a simple problem such as in Example 3.1, which was
demonstrated in Appendix 9A as below:

Maximize Z ¼ 100 TABLE þ 60 CHAIR

Subject to

5 TABLE þ 2 CHAIR � 270 Machining

4 TABLE þ 3 CHAIR � 250 Sanding

3 TABLE þ 4 CHAIR � 200 Assembly

TABLE � 0 and CHAIR � 0 Nonnegativity

Model (9A:1)

To solve the above model using Win QSB, first choose Linear and Integer
Programming from Win QSB and then choose New Problem from the FILE
menu. It will open an LP–ILP Problem Specification window as shown in
Figure 9E.1.

Now you are ready to enter the model in Win QSB. After entering the
problem title, number of variables, and number of constraints, if you click
OK, it will bring a matrix style model entry form as given in Figure 9E.2.
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FIGURE 9E.1
LP–ILP problem specification window.

FIGURE 9E.2
LP–ILP model entry matrix.

FIGURE 9E.3
Entering model.
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After editing the names of variables and constraints and entering model
data, we get the input window similar to Figure 9E.3.

Now you choose Solve the Problem from Solve and Analyze menu. It
provides a message that the problem has been solved and optimal solution
is achieved. The solution report is shown in Figure 9E.4.

Further details on the use of Win QSB can be found in Chang (2003).

9E.3 Reference

Chang, Y.–L., Win QSB: Decision Support Software for MS=OM, version 2.0, John
Wiley & Sons, New York, 2003.

FIGURE 9E.4
Win QSB solution report.
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10
Input Preparation and Model Solving

10.1 Introduction

Once a mathematical model has been formulated for a given problem, the next
stage of the decision-making process (as of Figure 2.1, Chapter 2) is to solve the
model. In solving a model, one has to either select an appropriate solution
approach from existing methodologies or develop a new approach. In some
situations, the available solution approach or software package influences the
development of a particular class of model. Otherwise, the model cannot be
solved. A mathematical model usually dictates what data are needed for
solving that model and its implementation. However, the data may not be
available in the right form as required by the model. It is usually necessary
to either prepare the data as required by the model or modify (reformulate)
the model because of unavailability of data. Sometimes, the preprocessing of
some data may simplify the mathematical model to be developed.

Although data preparation is a crucial factor in solving any optimization
model, this topic has not been addressed very well in the literature. In fact,
very little has been reported in the literature about data preparation and
analysis. In this chapter, the basic concept of data preparation is discussed
and some examples of problem solving are demonstrated.

10.2 Data and Data Collection

Data express or represent certain things about events, activities, and objects.
Data can be numeric, alphanumeric, figures, signals, sounds, or images. Data
are recorded and stored for use in the decision-making process. However, an
individual piece of data may not convey any specific meaning.

The model developer must know what data are available or could be
made available that would be used in the developed model for a given
decision-making problem or process. Some of these data are standard
and readily available in most organizations such as historical sales data,
production capacity, and manpower availability. Some data can be made
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available if required such as future demand, price, future availability of
resources, and manpower through estimation or forecasting.

Raw data can be collected manually or by instruments and sensors. Data
are composed using the following methods:

. Time series studies: Time series data usually vary with time such
as product demand and price. Depending on the requirements,
these data are collected at discrete intervals over a long period or
over a known period.

. Company registers: Traditionally, all companies keep records of
certain items on a daily or transactional basis such as inventory
level and material=product purchased. These records are usually
preserved for future use.

. Surveys: Data can be collected from a group of people using
questionnaires, surveys, and interviews, such as from customer sur-
veys of product quality in a shopping center or from telephone
surveys investigating respondents’ behaviors, habits, or preferences.

. Observations: Collecting data using video cameras. For example,
the photographing of every vehicle passing through a red light in a
busy downtown intersection.

. Soliciting information from experts: Collecting data using inter-
views with domain or subject matter experts, for example, estimat-
ing the project duration for a new project.

. Sensors and scanners: Data can also be collected using barcodes or
radio-frequency identification codes, for example, the use of price
tags and security tags.

The data must be collected, preserved, and analyzed to make them useful to
the model and any other decision-making process. The quality of data is
extremely important as the quality determines the usefulness of data as well
as the quality of model solution based on these data. However, the data quality
issue is often overlooked. As a result, there are frequent complaints from
data users, such as the data are not correct, or timely, or that the required data
do not exist. To minimize these complaints the following steps may be taken:

. During data collection, one must ensure that the data are of the
right type, of the right format, and within the specified limits.
Specially developed software packages may be used to check
these problems while conducting data capture.

. Predict the data that may be needed in the future and collect them
in advance.

. Generate new data or estimate them using appropriate techniques.
Data can also be generated by using sampling and representative
statistical distributions, or through simulation.
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10.3 Data Type

The data required by a mathematical model could be one or more of the
following types:

Stationary data: Technical data such as existing machine capacity, storage
capacity, transportation costs and quantities, machine reliability, etc., which
are fixed or constant for a number of future periods, can be termed as
stationary data. Examples of stationary data are given in Table 10.1.

These data could be time varying in many situations. Accounting data
such as cost, revenue, overheads, taxes, insurance, and planning environment
data such as the length of the planning horizon, number of periods, and
length of each period are usually considered as stationary data.

Time-varying data: Data such as future period demand, budget, and price,
which may vary from one period to another can be recognized as time-
varying data. These data could be known at the time of modelling (in
advance) or may be required to be generated or estimated. Examples of
time-varying data are provided in Table 10.2.

Forecasted data: Data such as future market demand, price, and production
volume that must be forecasted for the model are known as forecasted data.
Depending on the data precision requirements, these data may be generated
using models varying from very simple to highly sophisticated forecas-
ting=mathematical techniques. Suppose the demand of a product follows a
simple linear relationship, which can be found from time series data. An
example of forecasting in such a situation is shown below. Suppose a
relationship can be expressed as the following equation:

Yt ¼ aþ bt (10:1)

where
Yt ¼demand forecast for period t
a, b¼model parameters
t ¼period

Most forecasting techniques require historical data as input to generate
future forecasts. Historical data are discussed in the following subsection.

TABLE 10.1

Stationary Demand and Capacity Data

Data

Period

1 2 3 4 5 6 7 . . . 30

Demand (tonnes) 40 40 40 40 40 40 40 . . . 40
Production capacity (tonnes=day) 50 50 50 50 50 50 50 . . . 50
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Due to the shortage of historical data and other necessary information, the
model data may have to be generated from subject matter experts’ opinions
or from trends or expected patterns identified by domain experts.

Historical data: Time series data such as historical sales figures, manpower
usage, and maintenance history are known as historical data. The details of
time series data may be found in Turban and Meredith (1994). These data
must be systematically collected for a reasonable period and then prepared as
per the requirements of the models or forecasting techniques to be used.

Stochastic data: In some cases, data=situations are expressed as either sim-
ple probabilities or as probability distributions. Although probability distri-
butions are not normally used as input to deterministic modelling, they are
an important part of stochastic programming. Probability distributions may
be applied in deterministic modelling when using a number of discrete
points in conjunction with binary variables.

Data from surveys and interviews: Where data are not available, for
example, the demand for a new product or the estimated duration of a
new project, they may be generated from results of conducted surveys or
interviews using domain experts. However, the preparation of question-
naire instruments for surveys and interviews and the abstraction of data
from those surveys and interviews are not always easy, in particular, if the
questions are open ended. Details of how to prepare questionnaires and
compile such data can be found in Neuman (2003).

Text: In the modelling of optimization problems, sometimes we need infor-
mation expressed in plain text, for example, answering questions
or providing opinions such as yes=no responses or as positive=negative
answers. It was seen in Chapter 4 that one can model such situations
using binary variables. Text information involving multiple options and
opinions can also be analyzed using binary and discrete variables.

10.4 Data Preparation

To make better use of available information, it must be collected systema-
tically, preserved in an appropriate form and medium, and prepared in an
appropriate form as per the model or system requirements. The amount of

TABLE 10.2

Time-Varying Demand and Capacity Data

Data

Period

1 2 3 4 5 6 7 . . . 30

Demand (tonnes) 30 20 40 50 15 60 20 . . . 65
Production capacity (tonnes=day) 40 30 50 30 50 40 35 . . . 50
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information to be collected for a given project and the data-collection format
may vary from organization to organization. Although the data-preparation
process may seem very simple, it can be a tedious task as it may involve
huge volumes of information. Before preserving or using data, it is expected
that all data will have been verified with great care.

Data cleaning is an important task when we use collected data for solving
any model or addressing any decision-making process. It is basically a pro-
cess for checking and treating for errors and unusual figures. The errors must
be corrected and the unusual figures need to be considered as to being either
excluded from the data set because of reasons of being irrelevant to the
process or being considered as extreme data and may require some auxiliary
treatment. Note that inappropriate data may lead to misleading solutions.
Data cleaning and preparation is a complex and time-consuming task.

The quality of solutions of any model is highly correlated to the appro-
priate identification of data requirements and the data preparation. To
understand the data-identification and data-preparation processes in solving
optimization problems, consider the following example.

Example 10.1: A simple logistics problem
The South-West Pacific has been hit by an enormous tsunami, which has
devastated several South-West Pacific nations. Australia has been asked to
provide emergency food, clothing, and relief support. The nations seeking
help are Kiribati, Tuvalu, Vanuatu, and Tonga. The Australian Government
is willing to respond to those nations’ requests and provide relief assistance.
How, as a newly recruited coordinator for the relief program would you
start the planning process?

One of the first phases would be to identify the possible sources of
supplies and the carriers to transport the supplies. In many cases, this
information can be found in the respective government departments or
charitable organizations, through their contact officers, Web sites, publica-
tions, and in their libraries or archives. From such previous projects, you are
aware that supplies can be obtained from all capital cities (such as Perth,
Adelaide, Melbourne, Sydney, and Brisbane) situated on the mainland.
Assume in this case that the Australian Government tasks the Royal
Australian Air Force (RAAF) to move the supplies to the devastated nations.
The RAAF after considering what supplies to move, decide on using
Hercules C130 aircraft.

What data do you think you require in order to make an appropriate
delivery plan and how would you obtain that data?

From the initial problem-description, it is clear that there are a number of
sources for supplying the required goods and a number of destinations for
receiving the deliveries of goods. These goods will be transported from the
sources to the destinations based on the availability of goods at each source
and the requirements at each destination. The transport carrier has been
identified and can be considered as ready for transportation. It looks like a
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logistics=transportation type problem. To solve the problem using the
mathematical modelling approach, different types of data would be requi-
red. These are briefly discussed below.

10.4.1 Data Requirements

The requirement of each item, for each of the tsunami-affected nations, is
estimated based on the level of damage and affected population size. The
estimations are performed by the government of the affected nation or
government of the donor country or relief agency. To be on the safe side,
it is usually the trend to overestimate the relief requirements. Suppose, the
number of people affected in one of the trouble nations is n thousands. From
the demographic data, the average number of people in the different age-
groups can easily be determined for those people. Based on the age-groups,
they will require clothing of different sizes and food of different types and
quantities. If we estimate the number of pieces of clothing per person and the
number of days people require food supplies, it is not difficult to calculate
the overall requirements of clothing and food. A simple example for calcu-
lating food required for a given nation is shown below.

Aj¼ fraction of population in each age-group j (where Sj Aj¼ 1)

Fij¼daily average amount of food item i required per person of
age-group j

N ¼ affected population size

D ¼number of days supplies required

The daily food requirements for item i ¼ N
X

j

AjFij (10:2)

The daily food requirements for all items ¼ N
X

i

X

j

AjFij (10:3)

Total food requirements for D days ¼ D � N
X

i

X

j

AjFij (10:4)

That means the final requirement is the sum of all individual requirements.
Initially, the amount of food, clothing, and relief support required, for each
nation, is expressed in weights and volumes. Later, they may be converted
into equivalent Hercules C130 loads. An example of requirements is Kiribati
requires eight Hercules C130 loads of food, five Hercules C130 loads of
clothing, and two Hercules C130 loads of other goods.

Availability: There must be some supplies (food, clothing, and relief support)
available at each source. If there are no supplies at a source, then that source
should not be considered further in the modelling. That information is usually
available and supplied by the government or relief agency. The agencies
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may collect goods from individual donors and buy from open markets to
meet their target supplies. The total availability of supplies (for each item) is
usually higher than the total requirement. However, that constraint is not
necessary as one would supply relief up to the level of his or her ability. An
example of availability is Perth can offer 15 Hercules C130 loads of food, 10
Hercules C130 loads of clothing, and 6 Hercules C130 loads of other goods.
However, these Hercules loads must have detailed age-wise food and cloth-
ing information. Otherwise, an incorrect mix of relief supplies may be deliv-
ered to a given nation. Alternatively, each item may be packaged in boxes and
organized as either pallet loads or requirements of each nation.

Transportation: The movement will be carried out using Hercules C130
aircraft. The number of Hercules C130 aircraft available for this purpose
and their existing locations are important for the proposed transportation
plan. If there are sufficient numbers of Hercules C130s available for this
operation, then one trip by a number of Hercules C130s may be enough to
transport all goods. However, if the Hercules C130 numbers are restricted
due to unavailability of appropriate personnel involved in Hercules C130
operations then there will be a constraint relating to the number of available
aircraft. Another factor is related to the issue of sufficient aircraft fuel being
available for the operation. The speed of Hercules C130 aircraft is also a
factor for transportation time calculations.

Distance: The flight distances from each source to each destination are
required. This information can be gained from the RAAF or there are a
number of sites on the Internet, which provide distances based on longitude
and latitude information. The Hercules C130 aircraft may need to refuel at a
different location before flying on to their South-West Pacific destinations.
This information is very important for refueling facility planning and also
for mathematical modelling.

So what impression does one gain from the above example about data
identification and preparation?

Although all the data are not discussed in detail here, the task is not a simple
one even for a small optimization problem as presented above. It is clear that
the required data are collected from different sources and then compiled as
required by the problem=model. However, the details and amount of data
required depend on the objectives and constraints to be formulated for the
problem. For example, it can be assumed that there is required aircrew for
Hercules C130 aircraft, and loading and unloading equipment that may be
needed for the above project. Details of the requirements and availability
must be sorted out and then set out as constraints in the model.

10.4.2 Data Aggregation

Data aggregation here refers to any data roll-up process, using basic descrip-
tive statistics tools such as averaging and summation, in which information
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can be expressed in a summary form. The individual data items or data sets
are aggregated under the assumption that they are homogeneous across all
the elements=data items (Garrett, 2003; Fadlalla, 2005). However, this is
not true in all cases. That means we may solve a model with inappropriate
data sets. For example, in Example 10.1, the food requirements may be
estimated based on the average food requirements per person. However,
what is the average food requirement per person here? The population is a
mix of different age-groups of unequal numbers. This mix could be different
in different regions. The food items required by different age-groups could be
different. However, data aggregation is still useful and widely used in many
practical situations. This is because of the following facts:

. For decision making at the tactical level, the decision is to be made
based on aggregate data as the manager=decision maker is not
interested in the detailed data. For example, RAAF Hercules C130
people are interested in the number of Hercules loads to be carried
and not of the content of items in each crate.

. Aggregate data provide better decisions where detailed data are
uncertain.

. The use of aggregate data reduces the size of the corresponding
mathematical model, which indeed reduces the computational
effort.

A few examples of data aggregation and problem situations are discussed
below.

Example 10.2: A crop planning problem
Consider the crop planning problem described in Chapter 8. The corres-
ponding mathematical model requires data Aijk, which are the amount of
input k required per unit land for crop i in region j. How does one get access
to these data?

There are several inputs for crop cultivation. The requirement of input k
is never uniform for a crop in the whole region. To take this uniformity
into consideration, one can divide a region into a number of subregions
of equal or different sizes. Although this approach will increase the
model size and complexity, the resulting model would produce better
quality solutions. However, the practice is to find the average data as the
following equation:

Aijk ¼
Total input of k required in the whole region

Total area of the region
(10:5)

The total or subregion-wise detailed input data are available from agricul-
tural departments and the bureau of statistical publications.
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Example 10.3: A multi-period production planning problem
Consider a simple production planning problem where the production capa-
city is fixed in each period; however, the demand varies from one period to
the next (Table 10.3). Suppose the planning horizon is 12 periods long. Can
we use aggregated demand and production data in the planning model?

The answer is ‘‘yes’’ or ‘‘no’’ as it depends on the level of aggregation.
That is whether it is for the entire planning horizon or for individual
periods. This issue is briefly analyzed below.

Suppose, the total production capacity in 12 periods is 600 units and the
total demand is 540 units. Technically, the problem is feasible as the total
capacity is greater than the total demand. To meet the demand, the average
production rate required is 45 units per period. Let us fix this average rate
(45 units per period) as our target production rate for every period. Based on
the average production rate, the production–inventory balance equation
will be as follows:

(Average production required in period t)

þ (Inventory carried from period t� 1)

� (Inventory carried to period tþ 1) ¼ (Demand in period t)

If the demand is to be met in each period separately, the use of the above
equation would result in a shortage in period 2. Work out why this is so? To
remove shortages, the equation must be modified as follows:

(Production in period t)þ (Inventory carried from period t� 1)

� (Inventory carried to period tþ 1) ¼ (Demand in period t)

That shows that aggregated information may not be useful in all cases.
However, the demand in a period here is the sum of all daily demands
within that period. The same is true for total production calculation in a
period. Note that ‘‘the production in period t’’ in the above equation is now
a decision variable, which is less than or equal to the production capacity of
that period.

In the above problem, if required, the length of a period can be reduced
to being a day long. However, this would lead to a substantial number

TABLE 10.3

Time-Varying Demand and Fixed-Capacity Data

Data

Period

1 2 3 4 5 6 7 . . . 12

Demand (units) 30 70 20 60 30 70 20 . . . 60
Production capacity (units=day) 50 50 50 50 50 50 50 . . . 50
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of periods that would increase the model size due to additional period-
dependent variables and constraints. That is why almost all models allow a
certain level of aggregation. The level of aggregation is dependent on many
factors such as the data availability, data quality, imposed constraints,
available solver’s capability, level of decision-making process, developer’s
choice, and the users’ preference.

Example 10.4: A power generation planning problem
A strategic level power generation planning process requires a decision
regarding the installation of new generating plants and the operational
level of existing plants to fulfill the electricity demand on a real-time basis
for a number of years (usually 10 to 20 years planning horizon) by mini-
mizing the sum of capital and operational costs. The depreciation of plants’
value, and maintenance and operational costs vary year to year. In addition,
the inflation and time value of money make the case difficult to solve using
simple sum or average figures for overall cost parameters in the correspond-
ing mathematical model. How should we prepare the cost data for such
a situation?

The simple way to handle this data problem is to convert all cost data using
appropriate discount factors with respect to a given reference point in time.
For example, converting all future values to a present value at the beginning
of the planning period. The following formulae are used for such conversions.

To convert a future amount $F, which is n years ahead, to a present value
(at time t¼ 0) $P with an interest rate T%, we use the relationships given by
the following equation:

P ¼ F

1þ T

100

� �n or F ¼ P 1þ T

100

� �n

(10:6)

The present value of a series of amounts r1, r2, . . . , rn over the next n years at
an interest rate T% can be represented as a present value $P as the following
equations:

P ¼ r1

1þ T

100

� �þ r2

1þ T

100

� �2
þ � � � þ rn

1þ T

100

� �n (10:7)

Alternatively, P ¼
Xn

i¼1

ri

1þ T

100

� �i
(10:8)

T=100 is known as the discount rate and 1=(1þ T=100) as the discount factor.

Sarker/Optimization Modelling: A Practical Approach 43102_C010 Final Proof page 286 23.8.2007 2:53pm Compositor Name: VBalamugundan

286 Optimization Modelling: A Practical Approach



Example 10.5: A hierarchical production planning model
Consider the hierarchical production planning model discussed in Chapter 8.
For convenience of modelling, the items are grouped into families and
families are further grouped into product type. The aggregate model deals
with product type at the upper level, the family disaggregation model
deals with product families at the mid level, and the item disaggregation
model with individual items at the lower level. So, it is obvious that the family
disaggregation model must use data that are consolidated from individual
items and the aggregate model must use data consolidated from indivi-
dual items via families of items. This sort of consolidation of data is necessary
as the model structure is rigid and designed for using such data.

10.5 Data Preprocessing

Preprocessing refers to the elementary operations that can be performed to
improve or simplify the formulation by fixing values, adding additional
information, analyzing existing information, tightening bounds on vari-
ables, and removing redundant constraints. So the preprocessing can be
performed during the model formulation, as an additional task in data
preparation or data refinement, or after formulation but before the solution
approach is applied.

To demonstrate the preprocessing operations during formulation (as an
additional task in data preparation) let us consider a rostering problem.

Example 10.6: A rostering problem
A Canberra-based small business employs six staff to share the workload
fairly. The workplace has a morning and an evening shift of 8 h each
weekday, and a single 10 h shift on Saturdays and Sundays. There are six
staff, who are paid to work 38 h per week. One staff member works during
weekdays only, and only on the morning shift. The remaining staff mem-
bers work on weekends and during the week. However, no one is allowed
to work in two consecutive shifts in a day. At least two staff members are
required on each shift during weekdays and only two over the weekend. On
weekdays, more staff are preferred in the afternoon shift in case of shortage.
Staff must have an equal number of weekend shifts. Prepare a staff roster
satisfying all the conditions and restrictions. The roster can cover as many
weeks as are needed to give a fair distribution of load.

The problem can be modelled as an integer program by defining the
variables as follows:

Xijkl ¼ 1 if staff i works in shift j on day k in week l
0 otherwise

�
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Here i¼ 1 represents the staff member 1, who works only on weekday
morning shifts (i.e., k¼ 1, 5, and j¼ 1). The value k¼ 6 means Saturday
and k¼ 7 Sunday. When k¼ 6 or 7, only j¼ 1 allowed.

The constraints of the problem are as follows:
For each shift there must be at least two staff members available during

weekdays.

X6

i¼1

Xijkl � 2 for all j and l, and k ¼ 1, 5 (10:9)

There must be two staff members available over the weekend.

X6

i¼2

Xijkl ¼ 2 for k ¼ 6 and 7, j ¼ 1 (only); and all l (10:10)

The total load of staff member (i¼ 1) must be equal to an average of 38 h
per week.

XL

l¼1

X5

k¼1

8 Xi¼1, j¼1, k, l ¼ 38L (10:11)

Here, L is the number of weeks considered for the planning period.
The total load of the other five staff members must also be equal to an

average of 38 h per week.

XL

l¼1

X5

k¼1

X2

j¼1

8 Xijkl þ
X6

k¼5

10 Xijkl

0

@

1

A ¼ 38L for i ¼ 2, 6 (10:12)

No one is allowed to work on both shifts on a given weekday.

X2

j¼1

Xijkl � 1 for all l, i ¼ 2, 5, and k ¼ 1, 5 (10:13)

There must be an equal number of weekend shifts for each of the five staff
members.

XL

l¼1

X6

k¼5

Xijkl ¼M for all i ¼ 2, 6 and j ¼ 1 (10:14)

Here, M is the number of weekend shifts attended by each staff member.
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The number of staff members on the second shift j¼ 2 must be greater than
or equal to the number of staff members on the first shift j¼ 1 for weekdays.

X6

i¼1

Xij1kl �
X6

i¼1

Xij2kl for all l, k ¼ 1, 5, and j1 ¼ 1 and j2 ¼ 2 (10:15)

Both L and M are given values.
From the information available from the problem, we can analyze the

following:

. For 5 weekdays, two shifts per day, 8 h per shift, and at least two
staff members per shift, we require at least 5 3 2 3 8 3 2¼ 160
staff-hours.

. Over a weekend, we need 2 3 2 3 10¼ 40 staff-hours.

. In a week, a minimum of 160 þ 40¼ 200 staff-hours.

. The minimum possible number of working hours per staff mem-
ber¼ 200=6¼ 33.33. That means it is feasible to run the business
with six staff members.

. On average six staff members would work 38 3 6¼ 228 h per
week.

. To maintain equal weekend shifts for five staff members, we need
5 week periods so that each works for four weekend shifts.

. Since the shifts are 8 and 10 h long, a 20 weeks planning period is
required in order to have each member working 38 h work per
week on average. So the minimum value of L in the above model
would be 20.

. In a 20 week period, each staff member has 16 weekend shifts.
That means M¼ 16, if we consider L¼ 20.

. Staff member 1 knows that he or she has to work 19 days (morning
shift only) in 4 weeks or 95 days in 20 weeks.

. Staff members 2–6 know that each of them must work 16 weekend
shifts and 75 weekday shifts in a 20 week periods. Each staff
member would work for only 75 þ 16¼ 91 days out of 140. They
are entitled to have 49 days off in a 20 week period.

As the holidays of staff members 2–6 are not evenly spread, management
thinks it is better to offer them flexibility in planning their own holidays. If
they are asked to submit their holiday plans for half (or a certain number) of
the days they are entitled to, then an availability matrix can easily be
generated. In such a case, the rest of the holidays will be determined by the
solution of the model. Otherwise, the problem could be infeasible by having
too many staff members away for certain shifts. Management can organize a
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meeting to fix minor conflicts and avoid infeasibility. In developing the
availability matrix, the number of staff members available in any shift should
not be less than the number required. Thus, it is to ensure feasibility at the
data preparation level. The staff availability matrix can be denoted by Aijkl.
Now, let us revise the model with the new information=preprocessed data.

For each shift there must be at least two staff members available during
weekdays.

X6

i¼1

AijklXijkl � 2 for all j and l, k ¼ 1, 5 (10:16)

There must be exactly two staff members available over the weekend.

X6

i¼2

AijklXijkl ¼ 2 for k ¼ 6 and 7, j ¼ 1, and all l (10:17)

The total load of staff member (i¼ 1) must be equal to an average of 38 h
per week.

XL

l¼1

X5

k¼1

8 Ai¼1, j¼1, k, lXi¼1, j¼1, k, l ¼ 38L (10:18)

The total load of the other five staff members must also be equal to an
average of 38 h per week.

XL

l¼1

X5

k¼1

X2

j¼1

8 AijklXijkl þ
X6

k¼5

10 AijklXijkl

0

@

1

A ¼ 38L for i ¼ 2, 6 (10:19)

No one is allowed to work on both shifts on a given day. This constraint is
no longer required as the staff availability matrix will ensure this condition.

There must be an equal number of weekend shifts for each of the five staff
members.

XL

l¼1

X6

k¼5

AijklXijkl ¼M for all i ¼ 2, 6 and j ¼ 1 (10:20)

The number of staff members on shift j¼ 2 must be greater than or equal to
the number of staff members on shift j¼ 1 for weekdays.

X6

i¼1

AijklXij1kl �
X6

i¼1

AijklXij2kl for all l, k ¼ 1, 5, and j1 ¼ 1 and j2 ¼ 2 (10:21)
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To give an idea about the availability matrix, an arbitrarily generated
sample matrix for 2 weeks is shown in Table 10.4.

The above staff member availability matrix is a simple example of data
preprocessing and the generated data=matrix clearly dictates how to model
the problem. If the data preprocessing is not appropriately designed, the
model solution would be different from the optimal solution. We have seen
similar data preprocessing in Example 4.1 and other examples.

The problem can be complicated by imposing more constraints such as
the following:

. Staff members must have at least 2 days break in succession.

. No one is expected to work more than 7 days in a row.

. The last shift before a break must be a morning or a weekend.

. The first shift after a break must be an evening or a weekend.

These constraints are not straightforward for mathematical modelling.
Appropriately designed further preprocessing of data would reduce the
complexity of modelling using these new constraints.

TABLE 10.4

Sample Staff Availability Matrix Generated

Staff

Week Day Day and Shift 1 2 3 4 5 6

1 1 Monday—shift 1 1 0 1 0 0 0
Monday—shift 2 0 0 0 1 1 1

2 Tuesday—shift 1 1 0 1 0 0 0
Tuesday—shift 2 0 0 0 1 1 1

3 Wednesday—shift 1 1 0 0 1 0 0
Wednesday—shift 2 0 0 0 0 1 1

4 Thursday—shift 1 1 0 0 0 1 0
Thursday—shift 2 0 1 0 0 0 1

5 Friday—shift 1 1 0 0 0 0 1
Friday—shift 2 0 1 1 0 0 0

6 Saturday 0 1 1 1 0 0

7 Sunday 0 1 1 1 0 0

2 8 Monday—shift 1 1 1 1 0 0 0

Monday—shift 2 0 0 0 1 0 1
9 Tuesday—shift 1 1 1 1 0 0 0

Tuesday—shift 2 0 0 0 1 1 1
10 Wednesday—shift 1 1 1 1 0 0 0

Wednesday—shift 2 0 0 0 1 1 1
11 Thursday—shift 1 1 0 1 0 0 0

Thursday—shift 2 0 0 0 1 1 1
12 Friday—shift 1 1 0 0 1 0 0

Friday—shift 2 0 0 0 0 1 1
13 Saturday 0 1 0 0 1 1
14 Sunday 0 1 1 0 0 1

Note: 1 means possible availability and 0 means unavailable.
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The preprocessing operations such as tightening bounds and removing
redundant constraints, which are usually done after the formulation but
before solving the model, are discussed in a later chapter.

10.6 Model-Driven Data versus Data-Driven Model

Consider the hierarchical production planning model discussed in an earlier
chapter. An aggregate production planning model is an essential part of the
hierarchical production planning process. As we know by now, it requires
aggregate data to run this model. That means the model is dictating the data
requirements.

In the above preprocessing example (Example 10.6), we have prepared
the available data to formulate an easier but alternative model. That means,
the data is dictating the formulation of a certain type of model.

10.7 Model Solving

To demonstrate the model-solving process, let us consider a simple product-
mix problem as follows.

Example 10.7: A product mix problem
ABC Corporation produces two models of color television sets designated
as Alfa and Beta. The company is in the market to maximize profit. The
profit realized is $300 from set Alfa and $250 from set Beta. Obviously, the
more sets produced and sold, the better. The trouble is that there are certain
limitations that prevent ABC Corporation from producing and selling thou-
sands of sets daily. The following are the limitations:

. Labor time availability in the production department per day is 40 h.

. Machine time availability per day is 45 h.

. No more than 12 sets of model Alfa can be sold in a day.

ABC’s problem is to determine how many sets of each model to produce
each day so that the total profit is as large as possible.

The variables of the problem can be defined as follows:

x1¼number of sets of model Alfa (or identify as A) to be produced
daily

x2¼number of sets of model Beta (or identify as B) to be produced
daily
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The corresponding linear programming model is

Maximize Z ¼ 300x1 þ 250x2

Subject to

2x1 þ x2 � 40 Labor constraint

x1 þ 3x2 � 45 Machine time constraint

x1 � 12 Market constraint

x1, x2 � 0 Nonnegativity constraint

Model (10:1)

In the following few subsections, we discuss the inputs required by Excel
Solver, LINDO=LINGO, and MPL for the above model and the outputs
provided by these software packages.

10.7.1 Excel Solver

The details of the Solver input preparation and solution generated can be
found in the Appendix-9D. For the above model, the input can be prepared
as Figure 10.1.

The objective function cell and the constraint LHS cells contain equations
that are shown in Figure 10.2.

Model B Model A Objective Value 
Changing cells --> 0 0 0

Coefficients Constraints LHS RHS 
Objective function 300 250 Labor avaliability 0 40 
Constraint - Labor 2 1 Machine time 0 45
Constraint - Machine 1 3 Market restriction 0 12 
Constraint - Market 1 0 

FIGURE 10.1
Solver’s input as viewed in Excel sheet.

Model A Model B 
Objective
Value

Changing cells --> 0 0 
=Sumproduct

(C7:D7,C4:D4)

Coefficients Constraints LHS RHS

Objective function 300 250 
Labor
avaliability 

=Sumproduct
(C8:D8,C4:D4)

40

Constraint - Labor 2 1 Machine time
=Sumproduct 
(C9:D9,C4:D4)

45

Constraint - Machine 1 3 Market 
restriction

=Sumproduct
(C10:D10,C4:D4) 12

Constraint - Market 1 0 

FIGURE 10.2
Solver’s input with Excel equations.
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The required solver parameters are shown in Figure 10.3. In the options to
choose, we have selected linear model and nonnegative variables.

After solving the problem using Solver, the optimum values for the
changing cells, the objective function cell, and the constraint LHS cells are
recorded as shown in Figure 10.4.

As per the solution, the maximum possible profit that can be earned is
$6350. The number of models A and B that must be produced are 12 and 11,
respectively. The answer report generated by Excel solver is presented in
Figure 10.5.

FIGURE 10.3
Input with solver’s parameters.

Model BModel A Objective Value 
Changing cells --> 12 11 6350

Coefficients Constraints LHS RHS 
Objective function 300 250 Labor avaliability 35 40 
Constraint - Labor 2 1 Machine time 45 45
Constraint - Machine 1 3 Market restriction 12 12 
Constraint - Market 1 0 

FIGURE 10.4
Solver summary solution within input box.
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The answer report summarizes the solution to the problem and is fairly
self-explanatory. The first section reports on the original and final (optimal)
values of the objective function (also known as the target cell). The next
section provides the original and final (optimal) values of the decision
variables (also known as adjustable or changing cells). The final section
presents information about the constraints. The Cell Value column shows
the final value (optimal) assumed by each constraint cell (corresponds to
each LHS formula). The Status column indicates which constraints are
binding and which are nonbinding. A constraint is binding (or tight) if it
is satisfied as a strict equality in the optimal solution; otherwise it is nonbind-
ing (or loose). The last column represents the Slack of each constraint. Prac-
tically, slack means unutilized resource. In the solution, the slack indicates the
difference between the LHS and RHS of each constraint. By definition, bind-
ing constraints have zero slack and nonbinding constraints have some
positive level of slack. As provided in the solution above, 5 units of labor
are slack (suggest not to use). Remember that all the constraints in our
example problem were less than or equal to type. The difference between
RHS and LHS for greater than or equal to constraints is known as surplus.

10.7.2 LINGO and MPL

The details of the input requirements of LINGO=LINDO and MPL are
discussed in Appendices 9A and 9B. The input formats required by differ-
ent old versions of LINDO=LINGO may vary slightly. However, they are

Microsoft Excel 11.0 Answer Report 

Worksheet: [Solv-solver-ex1.xls]Sheet1 

Report Created: 18/03/2005 4:06:51 PM 

Target Cell (Max)

Cell Name Original Value Final Value 

$F$4 Changing cells -->  Objective Value 0 6350 

Adjustable Cells

Cell Name Original Value Final Value 

$C$4 Changing cells -->  Model A 0 12 

$D$4 Changing cells -->  Model B 0 11 

Constraints

Cell Name Cell Value Formula Status Slack 

$G$7 Labor avaliability LHS 35 $G$7<=$H$7 Not Binding 5 

0Binding$G$8<=$H$845Machine time LHS$G$8

$G$9 Market restriction LHS 12 $G$9<=$H$9 Binding 0 

FIGURE 10.5
Solver answer report.
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similar for all latest versions. An example of the input requirements for
version 10.0 is shown in Figure 10.6.

The LINGO solver solution status is shown in Figure 10.7.
The solution report provided by LINGO is given in Figure 10.8.
The solution report in Figure 10.8 summarizes the solution provided by

LINGO version 5.0. The first section reports on the parameters involved
with the model such as number of constraints, number of variables, matrix
density, smallest and largest elements in absolute value, type of objective,
and type of constraints. The next section provides the number of iterations
required to solve the problem and the optimal value of the objective func-
tion. The following section provides the optimal values of the decision
variables and their reduced cost. The final section presents information
about the constraints such as slack or surplus and dual price. Note that
Row-1 represents the objective function as a constraint. The terms reduced
cost, surplus variable, and dual price are discussed in the next chapter.

FIGURE 10.6
Sample LINDO=LINGO inputs.

Model:
Max = 300 * x1 + 250 * x2;

!/*subject to*/;
2 * x1 + x2 <= 40;
x1 + 3 * x2 <= 45;
x1 <= 12;
End

FIGURE 10.7
LINGO solver solution status.

Sarker/Optimization Modelling: A Practical Approach 43102_C010 Final Proof page 296 23.8.2007 2:53pm Compositor Name: VBalamugundan

296 Optimization Modelling: A Practical Approach



LINGO 10.0 does not provide first section as part of its usual report.
However, these information can be generated separately.

Although there are differences in format and information content in
Solver and LINGO, the basic information provided are similar in all solution
reports.

The input for MPL can be prepared as in Figure 10.9.
The solution status provided by the solution engine Conopt is

Figure 10.10.
The solution produced by Conopt is provided in Figure 10.11.
The solution report in Figure 10.11 is very similar to Figure 10.8. However,

the dual price is written as a shadow price.

Example 10.8: An integer programming model
Consider the model of Example 10.7. Now consider that the variables are to
be integer and the machine time limitation is 40 h (instead of 45 h).

Rows=      4 Vars=      2 No. integer vars=      0  ( all are linear) 
 Nonzeros=     10 Constraint nonz=     5(     3 are +- 1) Density=0.833
 Smallest and largest elements in abs value=    1.00000        300.000
 No. < :   3 No. =:   0 No. > :   0, Obj=MAX, GUBs <=   1 
 Single cols=    0 

 Global optimal solution found at step:             2 
 Objective value:                            6350.000 

Variable 
X1
X2

Row Slack or Surplus

Value Reduced Cost
12.00000
11.00000

0.0000000
0.0000000

1
2
3
4

6350.000
5.000000
0.0000000
0.0000000

Dual Price
1.000000
0.000000
83.33334
216.6667

FIGURE 10.8
LINGO solutions.

TITLE
    A_Product_Mix_Problem; 

MAX 
    Profit = 300 Model_A + 250 Model_B; 

SUBJECT TO
    2 Model_A + Model_B <= 40; 
    Model_A + 3 Mode_B <= 45; 
    Model_A   <=  12; 
END

FIGURE 10.9
MPL input.
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Maximize Z ¼ 300x1 þ 250x2

Subject to

2x1 þ x2 � 40 Labor constraint

x1 þ 3x2 � 40 Machine time constraint

x1 � 12 Market constraint

x1, x2 � 0 and integer Nonnegativity constraint

Model (10:2)

If you change the RHS value of constraint 2 in the previous Solver inputs, the
optimum solution would be x1¼ 12, x2¼ 9.3333, and Z¼ 5933.3333. However,
the values of x1 and x2 must be integers. In this case, one must set in the
constraint section that they are to be integer as shown in Figure 10.12.

Now the optimum solution is x1¼ 12, x2¼ 9, and Z¼ 5850.

Example 10.9: A nonlinear model
Suppose the objective function of Example 10.8 is now nonlinear as given by
the following equation:

Maximize Z ¼ 300x0:5
1 þ 250x0:9

2 (10:22)

In solving this model, the objective function cell (in Figure 10.12)
must contain the formula¼C7 * (C4^0.5) þ D7 * (D4^0.9). In addition, you

FIGURE 10.10
Solution status provided by Conopt.
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must refrain from choosing Assume Linear Model under options. The add-
itional options required for solving nonlinear programming model such as
estimates, derivatives, and search are briefly discussed below:

Estimates

. Tangent: estimates values using linear extrapolation.

. Quadratic: estimates values using nonlinear=quadratic extrapolation.

MPL Modelling System   -   Copyright (c) 1988-2000, Maximal Software, Inc.
---------------------------------------------------------------------------------------------------------------

MODEL STATISTICS 
Problem name:       A_Product_Mix_Problem 
Filename:           Product-mix-Chap8.mpl 
Date:               March 18, 2005 
Time:               16:39 
Parsing time:       0.00 sec
Solver:             Conopt 

Objective value:    6350.00000000
Iterations:         5 
Solution time:      0.05 sec 
Constraints:        3 
Variables:          2
Nonzeros:           5 
Density:            83% 

SOLUTION RESULT 
Global optimum solution found 

MAX Profit   =       6350.0000

DECISION VARIABLES 
PLAIN VARIABLES

    Variable Name        Activity   Reduced Cost 
    ------------------------------------------------------
     Model_A               12.0000        0.0000
     Model_B               11.0000        0.0000
    ------------------------------------------------------ 

CONSTRAINTS 
PLAIN CONSTRAINTS 

    Constraint Name     Slack    Shadow Price 
    ------------------------------------------------------
     c1                       5.0000      0.0000
     c2                       0.0000      83.3334
     c3                       0.0000      216.6667
    ------------------------------------------------------
END

FIGURE 10.11
Solution provided by Conopt.
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Derivatives:

. Forward: estimates the first derivatives at a point by perturbing
the point once in a forward direction and computes the rise over
the run.

. Central: estimates the first derivatives by perturbing away from a
point in both forward and backward directions and computes the
rise over the run between the two points.

Search:

. Newton: uses Broyden-Fletcher-Goldfarb-Shanno quasi-Newton
method to identify the search directions.

. Conjugate: uses the conjugate gradient method to find the search
direction.

The default options are tangent, forward, and Newton. Using the default
options, the Solver solution for this model is x1¼ 7, x2¼ 11, and
Z¼ 2957.4074.

Example 10.10: A two-stage transportation problem
Consider a two-stage transportation model as follows.

FIGURE 10.12
Solver input with integer restrictions.
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Variables and parameters:

x1ij ¼ quantity transported from source i to transshipment point j

x2jk ¼ quantity transported from transshipment point j to destination k

C1ij ¼unit transportation cost from source i to transshipment point j

C2jk¼unit transportation cost from transshipment point j to destin-
ation k

Si ¼ total supply from source i

CPj ¼ capacity of transshipment point j

Dk ¼demand of destination k

The mathematical model of this problem can be formulated as follows:

Minimize Z ¼
X

i

X

j

C1ijx1ij þ
X

j

X

k

C2jkx2jk

Subject to
X

j

x1ij � Si 8i
X

i

x1ij � CPj 8j
X

j

x2jk � Dk 8k
X

i

x1ij �
X

k

x2jk � 0 8j

x1ij, x2jk � 0 and integer 8i, j, k

Model (10:3)

The objective of this problem is to minimize the overall transshipment costs.
The first, second, and third constraints ensure the supply limitation, trans-
shipment point capacity and demand requirements, respectively. The fourth
or the flow constraint indicates that the total supply (in the second stage)
from a transshipment node j to all the destinations must be less than or equal
to the supply (in the first stage) received by that node j from all sources. This
is a standard integer programming model as the variables x1ij and x2jk are
integer in nature. We assume there exist a number of feasible solutions.

If we consider 8 plants, 4 warehouses, and 8 distribution centers, the
above model requires 64 variables and 24 constraints. It is not easy to
organize the inputs for Excel Solver for such an instance of the problem.
See Figure 10.13 the input requirements of LINGO for this problem.

Now suppose that there are 15 plants, 10 warehouses, and 15 distribution
centers. In this case, the above model requires 300 variables and 50 con-
straints. The current instance contains five times the number of variables
and twice the number of constraints; see Figure 10.14 how much it differs in
terms of input requirements by LINGO. On the other hand, it would be
unmanageable to organize these inputs for Excel Solver.
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MODEL:
!8 PLANTS, 4 WAREHOUSE AND 8 DIST CENTER; 
SETS:
PLANTS/ P1 P2 P3 P4 P5 P6 P7 P8 /: PLANT_CAPACITY; 
WAREHOUSES/ WH1 WH2 WH3 WH4 /: WHOUSE_CAPACITY; 
DISTCENTERS/ DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 /: DC_CAPACITY;
LINKS1 (PLANTS, WAREHOUSES): COST1, VOLUME1; 
LINKS2 (DISTCENTERS, WAREHOUSES): COST2, VOLUME2; 
ENDSETS

!OBJECTIVE FUNCTION;
[OBJ] MIN = PRODUCTION + DISTRIBUTION;
PRODUCTION = @SUM ( LINKS1 (I, J): COST1 (I, J) * VOLUME1 (I,J));
DISTRIBUTION = @SUM (LINKS2 (I, J): COST2 (I,J) * VOLUME2 (I,J)); 

!CONSTRAINTS;
@FOR (WAREHOUSES(J):
 @SUM ( PLANTS(I): VOLUME1(I,J)) <= WHOUSE_CAPACITY(J)); 

@FOR (PLANTS (I): 
 @SUM ( WAREHOUSES (J): VOLUME1(I,J)) <= PLANT_CAPACITY (I));

@FOR (DISTCENTERS(I): 
 @SUM (WAREHOUSES (J): VOLUME2(I,J)) >= DC_CAPACITY(I)); 

@FOR (WAREHOUSES(J): 
 @SUM ( PLANTS (I): VOLUME1(I,J)) - @SUM (DISTCENTERS (I): 
VOLUME2(I,J)) >= 0); 

@FOR (PLANTS(I): 
 @FOR (WAREHOUSES(J): 
  @ GIN(VOLUME1(I,J)))) ; 

@FOR (DISTCENTERS(I): 
 @FOR (WAREHOUSES(J):
  @ GIN(VOLUME2(I,J)))) ; 

!DATA ARE BELOW; 
DATA:
PLANT_CAPACITY = 1500.7 1400 1800.8 2200.6 1200 3200 4200 3800;
WHOUSE_CAPACITY = 4500 3000 5500 6800;
DC_CAPACITY = 2000 3000 1500 1800 2500 3700 4050 750; 

COST1 =      2 3 3 5
 6 4 2 3
 8 6 7 9
 3 5 7 9
 1 12 3 7
 15 2 8 6
 5 7 3 9
 3 2 8 6; 

COST2 =  7 3 5 5
         5 4 12 7
         4 5 2 9
         3 6 4 11
         5 7 6 9
         2 9 8 7
         1 12 10 5
         2 15 3 3;
ENDDATA
END

FIGURE 10.13
LINGO codes for 8–4–8 transportation problem.

Sarker/Optimization Modelling: A Practical Approach 43102_C010 Final Proof page 302 23.8.2007 2:53pm Compositor Name: VBalamugundan

302 Optimization Modelling: A Practical Approach



MODEL:
!15 PLANTS, 10 WAREHOUSE AND 15 DIST CENTER ; 

SETS:
PLANTS/ P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15/:
PLANT_CAPACITY;
WAREHOUSES/ WH1 WH2 WH3 WH4 WH5 WH6 WH7 WH8 WH9 WH10/: WHOUSE_CAPACITY;
DISTCENTERS/ DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 DC11 DC12 DC13 
DC14 DC15/: DC_CAPACITY; 
LINKS1 (PLANTS, WAREHOUSES): COST1, VOLUME1; 
LINKS2 (DISTCENTERS, WAREHOUSES) : COST2, VOLUME2; 
ENDSETS

!OBJECTIVE FUNCTION;
[OBJ] MIN = PRODUCTION + DISTRIBUTION; 
PRODUCTION = @SUM ( LINKS1 (I, J): COST1 (I, J) * VOLUME1 (I,J));
DISTRIBUTION = @SUM (LINKS2 (I, J): COST2 (I,J) * VOLUME2 (I,J));

!CONSTRAINTS;
@FOR (WAREHOUSES(J): 
 @SUM ( PLANTS(I): VOLUME1(I,J)) <= WHOUSE_CAPACITY(J)); 

@FOR (PLANTS (I): 
 @SUM ( WAREHOUSES (J): VOLUME1(I,J)) <= PLANT_CAPACITY (I)); 

@FOR (DISTCENTERS(I): 
 @SUM (WAREHOUSES (J): VOLUME2(I,J)) >= DC_CAPACITY(I)); 

@FOR (WAREHOUSES(J): 
 @SUM ( PLANTS (I): VOLUME1(I,J)) - @SUM (DISTCENTERS (I): 
VOLUME2(I,J)) >= 0); 

@FOR (PLANTS(I): 
 @FOR (WAREHOUSES(J): 
  @ GIN(VOLUME1(I,J)))) ; 

@FOR (DISTCENTERS(I): 
 @FOR (WAREHOUSES(J): 
  @ GIN(VOLUME2(I,J)))) ; 

!DATA ARE BELOW; 
DATA:
PLANT_CAPACITY = 1500.5 1400.5 1800.5 2200 1200 1700 1500 2000 2300
1950 2350 3700 1400 1600 2000; 
WHOUSE_CAPACITY = 3500 2500 4000 2000 3000 4500 4500 1000 2000 2000 ; 
DC_CAPACITY = 2000 2800 700 1400 1200 1600 1400 2100 2400 2050 2500 
3450 1500 1700 1800 ; 

COST1 = 2 3 3 5 7 8 9 2 3 4
 6 4 2 3 9 7 4 5 6 7
 8 6 7 9 3 3 2 1 6 9
 3 5 7 9 10 12 14 12 16 18
 1 12 3 7 7 5 7 5 3 1
 15 2 8 6 2 2 6 2 1 1
 5 7 3 9 8 15 1 2 7 8
 3 2 8 6 12 4 9 1 1 1
 13 12 1 10 5 2 1 3 5 7
 7 3 2 14 1 1 2 14 6 3
 17 2 5 7 9 1 3 5 9 1
 10 5 6 4 3 1 2 3 7 9
 5 6 7 9 3 1 2 5 9 4
 1 5 9 1 1 4 7 14 5 6
 1 3 4 7 9 12 1 11 12   13;

FIGURE 10.14
LINGO codes for 15–10–15 transportation problem.

(continued)
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As one can see, the only difference is in the data and data setting between
the above two instances. If one now considers thousands of plants, ware-
houses, and distribution centers, the objective function and constraints
section would remain the same.

10.8 Summary

One may get the feeling that one needs a significant effort (as discussed in this
chapter) to prepare data for model solving. In fact, that reflects the difference
between addressing textbook problems and real practical problems.

Data collection, data quality, data preservation, and data preparation are
important tasks for optimization problem solving. In this chapter, we
have discussed the data collection and data preparation methodologies
from the point of view of inputs to optimization models. The influence of
data preprocessing on the development of mathematical model has been
analyzed. It is noted here that very little about the data requirement
and preparation has been reported in the optimization literature. The
input requirements for Excel Solver, LINGO=LINDO, and MPL-based
solvers are also discussed with numerical examples. More problem-solving
examples with LINGO can be found in the Appendix of this chapter.

Exercises

1. A small manufacturing company produces two products P1 and P2. Each
product needs to be processed through two departments D1 and D2.
Department D1 has three machines, L1, L2, and L3, while department

COST2 = 7  3  5  5  9  8  2  2  4  5
  5  4 12  7  3  7  5  7  6  7
  4  5  2  9  2  3  3  6 90  9
  3  6  4 11  5  2  4  1  1  3
  5  7  6  9  4  4  7 11 12  2
  2  9  8  7  8  6  8 15 16  1
  1 12 10  5 11  8  9  4  7  5
  2 15  3  3 12  7  1 14  8  7
  3  2  1  4  5  1 10  6  7  9
  7  7  5  6  1  4  5  7  7  3
  8  2  1  5  1  8 13 17  1  4
  9  3  3  7  3  9  1  2  3  4
  2  1 12  3  7  2  1 20  7  7
  3  1  5  3  9  5  3  3  9  3
  5  1  7  3  1  8  7  6  2  1;
ENDDATA
END

FIGURE 10.14 (continued)
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D2 has two machines M1 and M2. Product P1 must be processed on
either machine L1 or L3 in department D1 first and then on either
machine M1 and M2 in department D2. Product P2 can be processed
on either machine L2 or L3 in department D1 and only on machine M1 in
department D2. The time required by each product on each machine is
given below.

Machine

Time for

P1 (Minutes)

Time for

P2 (Minutes)

Time Available

(Minutes=Week) Cost ($)=Week

L1 10 14 3000 1000
L2 — 10 2400 600
L3 8 — 2400 500
M1 12 9 3000 1200
M2 7 — 2400 800

Product P1 requires 1.1 kg of metal, whereas product P2 requires 1.5
kg of metal. The metal cost is $15 per kg. The selling prices for products
P1 and P2 are $45 and $55, respectively.

Formulate the objective function for the problem in order to maximize
the profit (ignore the constraints as this is mainly a data preparation
exercise).

2. Consider the Problem 1 in Exercises. Suppose, there is an ordering cost of
$300 per order of raw materials (metal). The company orders metal once
a week. Write down your revised objective function.

3. Develop Excel Solver and LINGO inputs for the following mathematical
models. Make sure these are free from errors.

(a) Max Z ¼ 24x1 þ 16x2

2
50x1 þ 25x2 � 4000

3x1 þ 9x2 � 720

x1 þ x2 � 100

x1, x2 � 0

(b) Min Z ¼ 1:2X12 þ 0:1X13 þ 1:2X22 þ 0:1X23

þ 3:7X24 þ 1:3X25 þ 0:2X26

2
2X11 þ 4X21 þ 2X22 þ 2X23 þ X24 ¼ 30

X12 þ X22 þ 2X24 þ X25 ¼ 50

X13 þ X23 þ X25 þ 2X26 ¼ 10

X11, X12, X13, X21, X22, X23, X24, X25, 2X26 � 0
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(c) Maximize Z ¼ 50X1 þ 40X2 þ 70X3

2
6X1 þ 4X2 þ 9X3 � 5000

3X1 þ 7X2 þ 6X3 � 6000

X1 þ ð1=2ÞX2 þ ð1=3ÞX3 � 1600

X1 � 150

X2 � 250

X3 � 300

4X1 � 3X2 ¼ 0

5X2 � 4X3 ¼ 0

X1, X2, X3 � 0

(d) Maximize Z ¼ 0:09X1 þ 0:08X2 þ 0:065X3 þ 0:075X4 þ 0:10X5

2
X1 þ X2 þ X3 þ X4 þ X5 � 50

X3 � 0:25X0 � 0

X1 � X4 � 0

� 0:7X1 þ 0:3X2 � 0:7X3 þ 0:3X4 � 0:7X5 � 0

X2 � 3X4 � 0

Xi � 0 8i

(e) Maximize Z ¼ 4X1 þ 5X2

2
4X1 þ 3X2 � 480

3X1 þ 5X2 � 480

X1 � 2X2 � X3 � 0

2X2 � X1 � X3 � 0

X3 � 30

X1, X2, X3 � 0

(f) Maximize Y

2
6X1 þ 5X2 þ 7X3 � 5Y � 0

4X1 þ 8X2 þ 3X3 � 4Y � 0

7X1 þ 4X2 þ 2X3 � 120

5X1 þ 7X2 þ 9X3 � 240

X1, X2, X3 � 0
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(g) Min Z ¼ 750yA þ 150yB þ 420yC þ 20xA þ 55xB þ 35xC

xA þ xB þ xC � 800

xA � 400yA � 0

xB � 700yB � 0

xC � 600yC � 0

xi � 0 for all i

yi ¼ either 0 or 1 for all i

4. Consider the following vehicle mix model:

Min Z ¼
X

i

Ci � Pi

Subject to
X

j

X

t

xijt � Pi 8i

X

i

X

t

CAPi � xijt � Qj 8j

xijt � 0 and integer

where
xijk ¼number of vehicles of type i undertaking task j in period t
Ci ¼ cost of purchasing a vehicle of type i
CAPi¼ capacity of vehicle type i
Qj ¼ capacity required by task j
Pi ¼ the number of vehicle to be purchased of type i

For this exercise, consider 3 vehicle types (heavy, medium, and small), 10
tasks in each period, and 10 periods problem with data as follows:

Vehicle Type

Heavy Medium Small

Cost ($) 250,000 187,500 50,000
Capacity (tonne) 1,000 500 100

The tasks in each period contain 1000, 1000, 1000, 500, 500, 500, 100, 100,
100, and 100 tonnes.

Develop LINGO codes for this model.
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Appendix-10A Additional Problem-Solving
Using LINGO

10A.1 Example 4.6 (Model 4.7)

Maximize Z ¼ 450(X1A þ X2A þ X3A)þ 350(X1B þ X2B þ X3B)

þ 150(X1C þ X2C þ X3C)

2
5X1A þ 4X1B þ 3X1C � 1600

5X2A þ 4X2B þ 3X2C � 2000

5X3A þ 4X3B þ 3X3C � 1000

X1A þ X1B þ X1C � 500

X2A þ X2B þ X2C � 600

X3A þ X3B þ X3C � 400

X1A þ X2A þ X3A� 600

X1B þ X2B þ X3B � 700

X1C þ X2C þ X3C � 300

6(X1A þ X1B þ X1C)� 5(X2A þ X2B þ X2C) ¼ 0

4(X2A þ X2B þ X2C)� 6(X3A þ X3B þ X3C) ¼ 0

Xij � 0, i ¼ 1, 2, 3, j ¼ A, B, C

10A.1.1 LINGO Code

Model:

!Objective function;

Max¼450* (X1A þ X2A þ X3A) þ 350* (X1B þ X2B þ X3B) þ 150*

(X1C þ X2C þ X3C);

!Constraint;
5*X1A þ 4*X1B þ 3*X1C <¼1600;
5*X2A þ 4*X2B þ 3*X2C <¼2000;
5*X3A þ 4*X3B þ 3*X3C <¼1000;
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X1A þ X1B þ X1C <¼500;
X2A þ X2B þ X2C <¼600;
X3A þ X3B þ X3C <¼400;
X1A þ X2A þ X3A <¼600;
X1B þ X2B þ X3B <¼700;
X1C þ X2C þ X3C <¼300;
6* (X1A þ X1B þ X1C) ] 5* (X2A þ X2B þ X2C)¼0;
4* (X2A þ X2B þ X2C) ] 6* (X3A þ X3B þ X3C)¼0;
End

10A.1.2 LINGO Solution

Global optimal solution found.

Objective value: 399772.7

Variable Value Reduced Cost

X1A 236.3636 0.000000

X2A 363.6364 0.000000

X3A 0.000000 153.4091

X1B 104.5455 0.000000

X2B 45.45455 0.000000

X3B 181.8182 0.000000

X1C 0.000000 153.4091

X2C 0.000000 153.4091

X3C 90.90909 0.000000

Row Slack or Surplus Dual Price

1 399772.7 1.000000

2 0.000000 46.59091

3 0.000000 46.59091

4 0.000000 200.0000

5 159.0909 0.000000

6 190.9091 0.000000

7 127.2727 0.000000

8 0.000000 53.40909

9 368.1818 0.000000

10 209.0909 0.000000

11 0.000000 27.27273

12 0.000000 75.00000

10A.2 A Transportation Model

Consider a transportation model as shown below, which is similar to
Example 4.13 (Model 4.14):
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Minimize Z ¼ 1XAR þ 2XAS þ 3XAT þ 4XBR þ 1XBS þ 5XBT

Subject to

XAR þ XAS þ XAT ¼ 100

XBR þ XBS þ XBT ¼ 120

XAR þ XBR � 80

XAS þ XBS � 120

XAT þ XBT � 60

Xij � 0 8i, j

10A.2.1 LINGO in Algebraic Form

Model:
!Objective function;

Min¼1*XAR þ 2*XAS þ 3*XAT þ 4*XBR þ 1*XBS þ 5*XBT;

!Constraint;

XAR þ XAS þ XAT¼100;
XBR þ XBS þ XBT¼120;
XAR þ XBR <¼80;
XAS þ XBS <¼120;
XAT þ XBT <¼60;
End

10A.2.2 LINGO Solution Report

Global optimal solution found.

Objective value: 260.0000

Total solver iterations: 4

Variable Value Reduced Cost

XAR 80.00000 0.000000

XAS 0.000000 0.000000

XAT 20.00000 0.000000

XBR 0.000000 4.000000

XBS 120.0000 0.000000

XBT 0.000000 3.000000

Row Slack or Surplus Dual Price

1 260.0000 ]1.000000

2 0.000000 ]3.000000

3 0.000000 ]2.000000

4 0.000000 2.000000

5 0.000000 1.000000

6 40.00000 0.000000
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An alternative formulation for this problem is shown in Section 6.2 (Model
6.1). LINGO allows the coding of such a compact model as shown below.

10A.2.3 LINGO Codes (Alternative)

MODEL:

!Flexible LINGO coding for the Transportation Problem;

SETS:

!Declaring the sources - we have two sources here and

capacity data are given for each source;

SOURCES =A B=: CAPACITY;
!Declaring the destinations - we have three destinations

here and the demand is given for each destination;
DESTINATIONS =R S T=: DEMAND;

!Identifying the links between each source to each

destination - cost for each link is given and volume is the

variable representing the transportation in the link;

LINKS(SOURCES, DESTINATIONS): COST, VOLUME;

ENDSETS

!Objective function;
MIN¼@SUM(LINKS(I,J):
COST(I,J) * VOLUME(I,J));

!Capacity constraints;

@FOR(SOURCES(I):

@SUM(DESTINATIONS(J): VOLUME(I,J))¼CAPACITY(I));
!Demand constraints;

@FOR(DESTINATIONS(J):

@SUM(SOURCES(I): VOLUME(I,J))<¼ DEMAND(J));
!Here is the data;

DATA:

CAPACITY¼100 120;

DEMAND¼80 120 60;

COST¼1 2 3

4 1 5;

ENDDATA

END

10A.2.4 LINGO Solution Report (Using Alternative Codes)

Global optimal solution found.
Objective value: 260.0000

Total solver iterations: 4
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Variable Value Reduced Cost

CAPACITY(A) 100.0000 0.000000

CAPACITY(B) 120.0000 0.000000

DEMAND(R) 80.00000 0.000000

DEMAND(S) 120.0000 0.000000

DEMAND(T) 60.00000 0.000000

COST(A, R) 1.000000 0.000000

COST(A, S) 2.000000 0.000000

COST(A, T) 3.000000 0.000000

COST(B, R) 4.000000 0.000000

COST(B, S) 1.000000 0.000000

COST(B, T) 5.000000 0.000000

VOLUME(A, R) 80.00000 0.000000

VOLUME(A, S) 0.000000 0.000000

VOLUME(A, T) 20.00000 0.000000

VOLUME(B, R) 0.000000 4.000000

VOLUME(B, S) 120.0000 0.000000

VOLUME(B, T) 0.000000 3.000000

Row Slack or Surplus Dual Price

1 260.0000 ]1.000000

2 0.000000 ]3.000000

3 0.000000 ]2.000000

4 0.000000 2.000000

5 0.000000 1.000000

6 40.00000 0.000000

10A.2.5 A Modified Transportation Model

Suppose there is no link from source A to destination T in the above problem.
This situation can be handled by either putting a big cost on that link or forcing
zero shipment through that link. For the latter one see LINGO codes below:

MODEL:

!Flexible LINGO coding for the Transportation Problem;

SETS:

!Declaring the sources - we have two sources here and
capacity data are given for each source;

SOURCES =A B=: CAPACITY;
!Declaring the destinations - we have three destinations

here and the demand is given for each destination;

DESTINATIONS =R S T=: DEMAND;
!Identifying the links between each source to each

destination - cost for each link is given and volume is the

variable representing the transportation in the link;
LINKS(SOURCES, DESTINATIONS): COST, VOLUME;

ENDSETS
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!Objective function;

MIN¼@SUM(LINKS(I,J):
COST(I,J) * VOLUME(I,J));

!Forcing zero shipment from A to T;

@FOR(SOURCES(I):

@SUM(DESTINATIONS(J)j I #EQ# 1 #AND# J #EQ# 3:

VOLUME(I,J))¼0);
!Capacity constraints;

@FOR(SOURCES(I):

@SUM(DESTINATIONS(J): VOLUME(I,J))¼CAPACITY(I));
!Demand constraints;

@FOR(DESTINATIONS(J):

@SUM(SOURCES(I): VOLUME(I,J)) <¼DEMAND(J));
!Here is the data;

DATA:

CAPACITY¼100 120;

DEMAND¼80 120 60;

COST¼1 2 3
4 1 5;

ENDDATA

END

10A.2.6 LINGO Solution Report (with Restricted Path)

Global optimal solution found.
Objective value: 320.0000

Total solver iterations: 3

Variable Value Reduced Cost

CAPACITY(A) 100.0000 0.000000

CAPACITY(B) 120.0000 0.000000

DEMAND(R) 80.00000 0.000000

DEMAND(S) 120.0000 0.000000

DEMAND(T) 60.00000 0.000000

COST(A, R) 1.000000 0.000000

COST(A, S) 2.000000 0.000000

COST(A, T) 3.000000 0.000000

COST(B, R) 4.000000 0.000000

COST(B, S) 1.000000 0.000000

COST(B, T) 5.000000 0.000000

VOLUME(A, R) 80.00000 0.000000

VOLUME(A, S) 20.00000 0.000000

VOLUME(A, T) 0.000000 0.000000

VOLUME(B, R) 0.000000 4.000000

VOLUME(B, S) 100.0000 0.000000

VOLUME(B, T) 20.00000 0.000000
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Row Slack or Surplus Dual Price

1 320.0000 -1.000000

2 0.000000 3.000000

3 0.000000 0.000000

4 0.000000 -6.000000

5 0.000000 -5.000000

6 0.000000 5.000000

7 0.000000 4.000000

8 40.00000 0.000000

10A.3 Example 4.14 (Model 4.15)

Minimize Z ¼ 25X11 þ 20X12 þ 30X13 þ 20X21 þ 15X22 þ 35X23

þ 18X31 þ 19X32 þ 28X33

Subject to

X11 þ X12 þ X13 ¼ 1

X21 þ X22 þ X23 ¼ 1

X31 þ X32 þ X33 ¼ 1

X11 þ X21 þ X31 ¼ 1

X12 þ X22 þ X32 ¼ 1

X13 þ X23 þ X33 ¼ 1

Xij � 0 (or Xij 2 0, 1) 8i, j

10A.3.1 LINGO in Algebraic Form

Model:

!Objective function;

Min¼25*X11 þ 20*X12 þ 30*X13 þ 20*X21 þ 15*X22 þ 35*X23
þ 18*X31 þ 19*X32 þ 28*X33;

!Constraint;

X11 þ X12 þ X13¼1;
X21 þ X22 þ X23¼1;
X31 þ X32 þ X33¼1;
X11 þ X21 þ X31¼1;
X12 þ X22 þ X32¼1;
X13 þ X23 þ X33¼1;
End
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10A.3.2 LINGO Solution Report

Global optimal solution found.

Objective value: 63.00000

Total solver iterations: 5

Variable Value Reduced Cost

X11 0.000000 5.000000

X12 0.000000 0.000000

X13 1.000000 0.000000

X21 0.000000 5.000000

X22 1.000000 0.000000

X23 0.000000 10.00000

X31 1.000000 0.000000

X32 0.000000 1.000000

X33 0.000000 0.000000

Row Slack or Surplus Dual Price

1 63.00000 ]1.000000

2 0.000000 ]20.00000

3 0.000000 ]15.00000

4 0.000000 ]18.00000

5 0.000000 0.000000

6 0.000000 0.000000

7 0.000000 ]10.00000

10A.3.3 LINGO Codes (Alternative Form)

MODEL:

!Flexible LINGO coding for the Assignment Problem;

SETS:

!Declaring the service team - we have three teams here;

TEAM =S1 S2 S3=;
!Declaring the locations - we have three locations here;
LOCATION =L1 L2 L3=;

!Identifying the assignment links between each service

team to each location - cost for each link is given and

ASSIGN is the variable representing the assignment;

LINKS(TEAM, LOCATION): COST, ASSIGN;

ENDSETS

!Objective function - total cost of assignment;

MIN¼@SUM(LINKS(I,J):
COST(I,J) * ASSIGN(I,J));

!Team assignment constraint - one team will be assigned in

one of three locations;

@FOR(TEAM(I):

@SUM(LOCATION(J): ASSIGN(I,J))¼1);
!Location constraints - each location will receive only one

service team;
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@FOR(LOCATION(J):

@SUM(TEAM(I): ASSIGN(I,J))¼1);
!Here is the data;

DATA:

COST¼25 20 30

20 15 35

18 19 28;

ENDDATA

END

10A.3.4 LINGO Solution Report (for Alternative Codes)

Global optimal solution found.

Objective value: 63.00000

Total solver iterations: 5

Variable Value Reduced Cost

COST(S1, L1) 25.00000 0.000000

COST(S1, L2) 20.00000 0.000000

COST(S1, L3) 30.00000 0.000000

COST(S2, L1) 20.00000 0.000000

COST(S2, L2) 15.00000 0.000000

COST(S2, L3) 35.00000 0.000000

COST(S3, L1) 18.00000 0.000000

COST(S3, L2) 19.00000 0.000000

COST(S3, L3) 28.00000 0.000000

ASSIGN(S1, L1) 0.000000 5.000000

ASSIGN(S1, L2) 0.000000 0.000000

ASSIGN(S1, L3) 1.000000 0.000000

ASSIGN(S2, L1) 0.000000 5.000000

ASSIGN(S2, L2) 1.000000 0.000000

ASSIGN(S2, L3) 0.000000 10.00000

ASSIGN(S3, L1) 1.000000 0.000000

ASSIGN(S3, L2) 0.000000 1.000000

ASSIGN(S3, L3) 0.000000 0.000000

Row Slack or Surplus Dual Price

1 63.00000 ]1.000000

2 0.000000 ]20.00000

3 0.000000 ]15.00000

4 0.000000 ]18.00000

5 0.000000 0.000000

6 0.000000 0.000000

7 0.000000 ]10.00000

Suppose that service team 3 cannot be assigned to location 3 for political
reasons. How can we incorporate this information into the model? We can
either (1) use cost equal to big-M for this assignment or (2) force X33 to be
zero. If we use the former one, LINGO function BIGMVL for big-M would
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not work here (as it must be linked to a constraint) although setting
M¼ 1000 would work nicely.

10A.4 Example 3.6 (Model 4.1)

Max Z ¼ 18x1 þ 16x2 þ 12x3 þ 25x4 þ 14x5

Subject to

6x1 þ 18x2 þ 10x3 þ 9x4 þ 4x5 � 30

xi either 1 or 0 8i

10A.4.1 LINGO in Algebraic Form

Model:

!Objective function;

Max¼18*x1 þ 16*x2 þ 12*x3 þ 25*x4 þ 14*x5;

!Constraint;

6*x1 þ 18*x2 þ 10*x3 þ 9*x4 þ 4*x5 <¼30;
!Binary declaration;
@BIN (x1); @BIN (x2); @BIN (x3); @BIN (x4); @BIN (x5);

End

10A.4.2 LINGO Model Statistics

Rows¼2 Vars¼5 No. integer vars¼5 (all are linear)

Nonzeros¼11 Const nonz¼5(0 are þ ] 1) Density¼0.917
Smallest and largest elements in abs value¼4.00000
30.0000
No. <: 1 No.¼: 0 No. >:0, Obj¼MAX, GUBs <¼1
Single cols¼0

10A.4.3 LINGO Solution

Global optimal solution found.

Objective value: 69.00000

Variable Value Reduced Cost

X1 1.000000 ]18.00000

X2 0.000000 ]16.00000

X3 1.000000 ]12.00000
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X4 1.000000 ]25.00000

X5 1.000000 ]14.00000

Row Slack or Surplus Dual Price

1 69.00000 1.000000

2 1.000000 0.000000

10A.4.4 LINGO Codes (Alternative Form)

Model:

!Defining Sets: project is a set of projects and each
project has a binary variable X, utility and cost;

SETS:

PROJECT: X, UTILITY, COST;

ENDSETS

!Objective function;

Max¼@SUM (PROJECT(I): X(I)*UTILITY(I));

!Constraint;
@SUM (PROJECT(I): X(I)*COST(I)) <¼BUDGET;

!Binary declaration;

@FOR (PROJECT(I): @BIN (X(I)));

DATA:

!Number of project with an identification code;

PROJECT¼P1 P2 P3 P4 P5;

!Utility of each project;

UTILITY¼18 16 12 25 14;

!Cost of each project;

COST¼6 18 10 9 4;
!Budget available;

BUDGET¼30;
ENDDATA

End

10A.4.5 LINGO Solution for Alternative Codes

Global optimal solution found.
Objective value: 69.00000

Variable Value Reduced Cost

BUDGET 30.00000 0.000000

X(P1) 1.000000 ]18.00000

X(P2) 0.000000 ]16.00000

X(P3) 1.000000 ]12.00000
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X(P4) 1.000000 ]25.00000

X(P5) 1.000000 ]14.00000

UTILITY(P1) 18.00000 0.000000

UTILITY(P2) 16.00000 0.000000

UTILITY(P3) 12.00000 0.000000

UTILITY(P4) 25.00000 0.000000

UTILITY(P5) 14.00000 0.000000

COST(P1) 6.000000 0.000000

COST(P2) 18.00000 0.000000

COST(P3) 10.00000 0.000000

COST(P4) 9.000000 0.000000

COST(P5) 4.000000 0.000000

Row Slack or Surplus Dual Price

1 69.00000 1.000000

2 1.000000 0.000000

10A.5 Example 5.3 (Model 5.2)

Maximize Z ¼ 4x1 þ 7x2

Subject to

2x1 þ x2 � 6,000 þM(1� y1)

3x1 þ 7x2 � 13,000þM(1� y2)

5x1 þ 6x2 � 12,500þM(1� y3)

y1 þ y2 þ y3 ¼ 1

x1, x2 � 0

and yi ¼ 0, 1 for all i

10A.5.1 LINGO Codes

Model:

!Objective function;

Max¼4*x1 þ 7*x2;

!Constraint;

!Assuming M¼100,000;
2*x1 þ x2 <¼6000 þ 100000*(1 ] y1);
3*x1 þ 7*x2 <¼13000 þ 100000*(1 ] y2);

5*x1 þ 6*x2 <¼12500 þ 100000*(1 ] y3);

y1 þ y2 þ y3¼1;
!Binary declaration;

@BIN (y1); @BIN (y2); @BIN (y3);

End

Sarker/Optimization Modelling: A Practical Approach 43102_C010 Final Proof page 320 23.8.2007 2:53pm Compositor Name: VBalamugundan

320 Optimization Modelling: A Practical Approach



10A.5.2 LINGO Solution Report

Global optimal solution found.

Objective value: 42000.00

Extended solver steps: 3

Total solver iterations: 15

Variable Value Reduced Cost

X1 0.000000 10.00000

X2 6000.000 0.000000

Y1 1.000000 700000.0

Y2 0.000000 0.000000

Y3 0.000000 0.000000

Row Slack or Surplus Dual Price

1 42000.00 1.000000

2 0.000000 7.000000

3 71000.00 0.000000

4 76500.00 0.000000

5 0.000000 0.000000

10A.5.3 LINGO Alternative Codes

Model:
!Objective function;

Max¼4*x1 þ 7*x2;

!Constraint;

!Using LINGO Big-M value function;

2*x1 þ x2 <¼6000 þ BIGMVL*(1 ] y1);

3*x1 þ 7*x2 <¼13000 þ BIGMVL*(1 ] y2);

5*x1 þ 6*x2 <¼12500 þ BIGMVL*(1 ] y3);

y1 þ y2 þ y3¼1;
!Binary declaration;

@BIN (y1); @BIN (y2); @BIN (y3);

End

10A.5.4 LINGO Solution Report (for Alternative Codes)

Linearization components added:

Constraints: 12

Variables: 3

Global optimal solution found.
Objective value: 42000.00

Extended solver steps: 3

Total solver iterations: 21
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Variable Value Reduced Cost

X1 0.000000 10.00000

X2 6000.000 0.000000

BIGMVL 29000.00 0.000000

Y1 1.000000 700000.0

Y2 0.000000 0.000000

Y3 0.000000 0.000000

Row Slack or Surplus Dual Price

1 42000.00 1.000000

2 0.000000 7.000000

3 0.000000 0.000000

4 5500.000 0.000000

5 0.000000 0.000000

10A.6 Example 5.16

Minimize Z ¼ 3X1 þ 2X2 þ 2X3

Subject to

X1 þ 4X2 þ X3 � 7

2X1 þ X2 þ X4 � 10

X1, X2, X3 � 0

X4 unrestricted in sign

10A.6.1 LINGO Codes

Model:

!Objective function;

Min¼3*X1 þ 2*X2 þ 2*X3;

!Constraint;

X1 þ 4*X2 þ X3 >¼7;
2*X1 þ X2 þ X4 >¼10;
!Declaration for unrestriction in sign;

@FREE (x4);

End

10A.6.2 LINGO Solution Report

Global optimal solution found.

Objective value: 3.500000

Total solver iterations: 0
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Variable Value Reduced Cost

X1 0.000000 2.500000

X2 1.750000 0.000000

X3 0.000000 1.500000

X4 8.250000 0.000000

Row Slack or Surplus Dual Price

1 3.500000 ]1.000000

2 0.000000 ]0.5000000

3 0.000000 0.000000

10A.7 Example 4.11 (Model 4.12)

Minimize Z ¼ P1d�1 þ P2d�2 þ P3d�3
Subject to

x1 þ x2 þ x3 þ 0:333x4 � 100

x2 þ x3 þ 0:143x4 � 100

x3 þ x4 � 150

168x1 þ 288x2 þ 288x3 þ 391x4 þ d�1 � dþ1 ¼ 72,000

150x1 þ 80x2 þ 86x3 þ 70x4 þ d�2 � dþ2 ¼ 16,000

112x1 þ 162x2 þ 192x3 þ 89x4 þ d�3 � dþ3 ¼ 23,000

xi, d�i , dþi � 0 8i

10A.7.1 LINGO Codes

Model:

!Objective function;

!Assuming P1¼1000, P2¼100 and P3¼1;
Min¼1000*DNEG1 þ 100*DNEG2 þ DNEG3;

!Hard constraint;

x1 þ x2 þ x3 þ 0.333*x4 <¼100;
x2 þ x3 þ 0.143*x4 <¼100;
x3 þ x4 <¼150;
!Goal =Soft constraint;
168*x1 þ 288*x2 þ 288*x3 þ 391*x4 þ DNEG1 ] DPOS1¼72000;
150*x1 þ 80*x2 þ 86*x3 þ 70*x4 þ DNEG2 ] DPOS2¼16000;
112*x1 þ 162*x2 þ 192*x3 þ 89*x4 þ DNEG3 ] DPOS3¼23000;
End
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10A.7.2 LINGO Solution Report

Global optimal solution found.

Objective value: 89495.40

Total solver iterations: 7

Variable Value Reduced Cost

DNEG1 0.000000 942.0833

DNEG2 875.1000 0.000000

DNEG3 1985.400 0.000000

X1 8.870000 0.000000

X2 41.18000 0.000000

X3 0.000000 20832.03

X4 150.0000 0.000000

DPOS1 0.000000 57.91667

DPOS2 0.000000 100.0000

DPOS3 0.000000 1.000000

Row Slack or Surplus Dual Price

1 89495.40 ]1.000000

2 0.000000 24842.00

3 37.37000 0.000000

4 0.000000 21462.03

5 0.000000 ]57.91667

6 0.000000 ]100.0000

7 0.000000 ]1.000000

10A.8 Example 5.10 (Model 5.7)

Minimize Z ¼ (0:85)XH1 � (0:70)XH2 � (0:75)XH3 � (0:65)XH4

� (0:90)XM1 � (0:85)XM2 � (0:88)XM3 � (0:80)XM4

2
450XH1 þ 500XH2 þ 550XH3 þ 650XH4 þ 333:33XM1 þ 366:67XM2

þ 400XM3 þ 466:67XM4 � 30,000:

XH1 þ XH2 þ XH3 þ XH4 � 30:

XM1 þ XM2 þ XM3 þ XM4 � 25:

Xij � 0 for all i and j:

10A.8.1 LINGO Codes

Model:

!Objective function;

Min¼085^XH1þ 0.70^XH2þ 0.75^XH3þ 0.65^XH4þ 0.90^XM1
þ 0.85^XM2 þ 0.88^XM3 þ 0.80^XM4;

!Constraint;
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450*XH1 þ 500*XH2 þ 550*XH3 þ 650*XH4 þ 333.33*XM1

þ 366.67*XM2 þ 400*XM3 þ 466.67*XM4 <¼30000;
XH1 þ XH2 þ XH3 þ XH4 <¼30;
XM1 þ XM2 þ XM3 þ XM4 <¼25;
End

10A.8.2 LINGO Solution Report

Local optimal solution found.

Objective value: 2.667184
Total solver iterations: 34

Variable Value Reduced Cost

XH1 0.000000 4.453168

XH2 9.879749 0.000000

XH3 11.50190 0.000000

XH4 8.618351 0.000000

XM1 5.928616 0.000000

XM2 6.510309 0.000000

XM3 6.398812 0.000000

XM4 6.162263 0.000000

Row Slack or Surplus Dual Price

1 2.667184 ]1.000000

2 3333.564 0.000000

3 0.000000 0.1051671E-01

4 0.000000 0.5641561E-01
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11
Output Analysis and Practical Issues

11.1 Introduction

After solving a mathematical model, the next stages of the decision process
(as of Figure 2.1) are to perform a sensitivity analysis and then implement the
solutions. Before implementation, however, the solutions must be analyzed
and interpreted in a nontechnical manner and in nonmathematical terms so
that nonexpert users can understand, accept, and implement the solutions.
Otherwise, the whole effort would be to no avail, which frequently occurs
in practice.

In this chapter, we will discuss the solutions of models and the outputs
provided by different software packages, and some practical issues faced by
the users when dealing with optimization models and software packages.
A number of examples to demonstrate these issues will be provided.

11.2 Solutions and Reports

When model solving, we usually expect to find the values of the decision
variables and the objective function. Depending on the model type, it is
possible to generate much more information, which may assist in arriving
at better decision alternatives. For example, information derived from
sensitivity analysis and parametric programming in linear programming (LP).
In addition to computationally more efficient algorithms, the ability of the
algorithm to perform and report upon associated sensitivity analysis has
made LP the most popular optimization tool. However, due to the discrete
nature of the solution space, sensitivity analysis is not automatic for integer
programming models and limited sensitivity information can be generated
for nonlinear models.

In solving any LP model, Excel Solver provides three report options:
Answer, Sensitivity, and Limits. Any or all of these reports can be
saved after a model has been solved. LINDO=LINGO and MPL=Conopt
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provide one report that contains all the necessary solutions and sensitivity
information.

Consider Example 10.7. Although the solver answer report has
already been presented in Chapter 10, the sensitivity report (Figure 11.2)
together with the answer report (Figure 11.1) is presented here for ease of
explanation.

In the first section of the sensitivity report, reduced costs are provided
together with the allowable increases and decreases in the original objective

Microsoft Excel 11.0 Answer Report

Worksheet: [Solv-solver-ex1.xls]Sheet1 

Report Created: 18/03/2005 4:06:51 PM 

Target Cell (Max) 

Cell Name Original Value

$F$4 Changing cells -->  Objective Value

Adjustable Cells 

Cell Name Original Value

$C$4 Changing cells -->  Model A 0 12 

$D$4 Changing cells -->  Model B 0 11 

Constraints 

Cell Name Cell Value Formula Status Slack 

$G$7 Labor availability LHS 35 $G$7<=$H$7 Not Binding 5 

$G$8 Machine time LHS 45 $G$8<=$H$8 Binding 0 

$G$9 Market restriction LHS 12 $G$9<=$H$9 Binding 0 

Final Value 

Final Value 

6350 0

FIGURE 11.1
Solver answer report.

Microsoft Excel 11.0 Sensitivity Report
Worksheet: [Solv-solver-ex1.xls]Sheet1 
Report Created: 18/03/2005 3:48:14 PM 
Adjustable Cells 

Final Reduced Objective Allowable Allowable 
Cell Name Value Cost Coefficient Increase Decrease
$C$4 Changing cells -->  Model A 12 0 300 1E+30 216.6666667
$D$4 Changing cells -->  Model B 11 0 250 650 250

Constraints 
Final Shadow Constraint Allowable Allowable 

Cell Name Value Price R.H. Side Increase Decrease
$G$7 Labor availability LHS 35 0 40 1E+30 5
$G$8 Machine time LHS 45 83.33333333 45 15 33
$G$9 Market restriction LHS 12 216.6666667 12 3 12

FIGURE 11.2
Solver sensitivity report.
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function coefficients. In the next section, the report presents shadow prices
and the allowable increases and decreases in the original constraints’ right-
hand side (RHS). To understand the sensitivity report, let us define shadow
price and reduced cost.

11.2.1 Shadow Price

The shadow price for a constraint indicates the amount by which
the objective function value changes given a unit increase in the RHS value
of the constraint, assuming all other coefficients remain constant. If a
shadow price is positive (negative), a unit increase in the RHS value of the
associated constraint results in an increase (decrease) in the optimal objective
function value. When a unit is decreased in the RHS value, a positive shadow
price would decrease the optimal objective function value. The shadow price
values apply, provided that the increase or decrease in the RHS value falls
within the allowable increase or allowable decrease limits in the sensitivity
report of each constraint.

For example, the shadow price for the machine time constraint is $83.333.
Therefore, if the number of available machine hours is increased by any
amount in the range 0–15 h, the optimum objective function value changes
(increases) by $83.333 for each additional machine hour. If the number of
available machine hours is decreased by any amount in the range 0–33 h,
the optimum objective function value changes (decreases) by ]$83.333 for
each machine hour decreased. A similar interpretation holds for the other
constraints.

The shadow price for a nonbinding constraint is always zero. For
example, the shadow price for the labor constraint is zero with an allowable
increase of infinity (1Eþ 30 in the report) and allowable decrease of 5 h.
Therefore, if the RHS value for the labor constraint increases by any amount,
the objective function value does not change. This result is not sur-
prising, because the optimal solution to the problem leaves 5 h (slack) of
labor unused. Interestingly, we can reduce the RHS of the labor constraint
by 5 h without affecting the optimal solution. For a given constraint, there
is a relationship between shadow price and slack amount as shown in
Table 11.1.

TABLE 11.1

The Relationship between Shadow Price and Slack
or Surplus Amounts

Shadow Price Slack or Surplus

Condition-1 Zero Nonnegative
Condition-2 Nonzero Zero

Sarker/Optimization Modelling: A Practical Approach 43102_C011 Final Proof page 329 22.8.2007 11:42pm Compositor Name: JGanesan

Output Analysis and Practical Issues 329



The relationship between the shadow price and the objective function
value can be shown as of Table 11.2.

11.2.2 Reduced Cost

By definition, all the variables are assumed nonnegative (xi� 0) as is the case
in this book. The reduced cost for a variable indicates the amount by which
the objective function value changes given a unit increase (from zero) in the
variable value. This is similar to the shadow price concept but for nonnegative
constraints. The reduced cost for each variable is equal to the per-unit amount
the variable contributes to the objective function minus the per-unit value of
the resources it consumes (where the consumed resources are priced at their
shadow price). A reduced cost value is valid only within its allowable
increase and allowable decrease as per the sensitivity report.

In our example, Model-A consumes 2 units of labor hours, 1 unit of
machine hours, and 1 unit of market limitation. The shadow prices for
labor hours, machine hours, and market limitation are $0, $83.333, and
$216.667, respectively. The profit per unit of Model-A is $300. If we increase
the production by one unit of Model-A, the cost of resources (as per shadow
prices)¼ 2 3 $0þ 1 3 $83.333þ 1 3 $216.667¼ $300. So the reduced cost¼
(unit contribution – unit price)¼ $300 ] $300¼ $0. There is a relationship
between the optimal value of the decision variable and the optimal value
of reduced cost (provided by Solver) as shown in Table 11.3.

TABLE 11.2

The Relationship between Shadow Price and Objective Function Value

Right-Hand Side Shadow Price Objective Function Value

Add one unit Positive Increases by the amount of shadow price
Negative Decreases by the amount of shadow price
Zero Remains unchanged

Delete one unit Positive Decreases by the amount of shadow price
Negative Increases by the amount of shadow price
Zero Remains unchanged

TABLE 11.3

Nature of Optimal Reduced Cost Values

Type of

Objective

Optimal Value of

Decision Variable

Optimal Value

of Reduced Cost

Maximization At simple lower bound �
Between lower and upper bounds ¼
At simple upper bound �

Minimization At simple lower bound �
Between lower and upper bounds ¼
At simple upper bound �
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11.3 Sensitivity Analysis

The optimal solution to an LP problem is based on a set of assumptions and
on the forecasting of future data such as prices and market demand. In
a deterministic model, there is no provision to incorporate risk or uncertainty.
Therefore, it is important for the management to know what will happen
to the optimal solution if changes occur in the input data on which the
LP model is based. Because such analysis is done after the optimal solu-
tion is found, this approach is also known as post-optimality analysis. How-
ever, sensitivity analysis is the most common type of post-optimality analysis.

Sensitivity analysis is the investigation of the effect on optimal solutions
related to changes in the model parameters after solving the model under
consideration. If you want to determine the effect of some change in the
model, the simplest approach is to change the model and re-solve it. This
approach is suitable if the model does not take an excessive amount of time
to change or solve. If you are interested in studying the consequences of
changing a number of coefficients one at a time or simultaneously changing
several coefficients in the model, then the sensitivity analysis may be the
only practical approach. Most optimization software (if simplex-based)
provide some sensitivity information after solving an LP model. The infor-
mation is used for sensitivity analysis without re-solving the model for every
change. Sensitivity analysis can help answer a number of practical man-
agerial questions that might arise about the solution to an LP model. In this
section, we would demonstrate sensitivity analysis with some examples.
The parameters that can be changed in any LP model are the coefficients of
the objective function, the constraint RHS values, and the coefficients of the
constraints. In addition, we may introduce a new product or variable after
solving an LP problem. In the following few subsections, we will briefly
discuss these changes.

11.3.1 Changes in the Objective Coefficients

After solving an LP problem you might want to investigate the effect of
objective coefficient changes on the optimal solution as the coefficients may
either have been predicted values or they may vary due to the changing
environment. For example, Model-A sales prices may decrease due to a new
competitor coming into the market with a lower price and a better after-
sales service offer.

In a previous problem, the objective function coefficients for Model-A and
Model-B were set to $300 and $250, respectively. The LP solution suggests
that it is optimal to produce 12 units of Model-A and 11 units of Model-B in
order to maximize the profit. In Table 11.2, the allowable increases and
decreases of the objective function coefficients are provided. For example,
the objective function coefficient associated with Model-B can be increased
by as much as $650 or decreased by $250 without changing the optimal
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solution, assuming all other coefficients remain constant. A similar conclu-
sion can be drawn for Model-A.

11.3.2 Changes in the RHS Values

After solving an LP problem you might want to determine how much better
or worse the solution would be if we had more or less of a given resource
available. For example, one might wonder how much more profit could be
earned if additional machine hours were available.

We must mention here that the RHS values of nonbinding constraints do
not, within their allowable increase and decrease, improve the objective
function value. On the other hand, the RHS values of binding constraints
are very important as they prevent us from further improving (maximizing
or minimizing) the objective function value. We have already learnt that
shadow price information is very useful in determining the level of possible
resource addition.

The machine time and market restriction constraints are binding in our
example. Let us now suppose that the RHS value of the machine time
constraint in our example increases by 9 h (from 45 to 54) due to the addition
of a new machine. Because this increase is within the allowable increase listed
for the machine time constraint in Table 11.2, you might expect that the
optimal objective function value would increase by $83.333 3 9¼ $750.00.
That is, the new objective function value would be ($6350.00þ $750.00¼
$7100.00). After resolving the model using a machine time of 54 h, the new
objective function value turns out to be $7100.00 as expected. However,
the new solution involves producing 12 units of Model-A and 14 units of
Model-B with a profit of $7100.00. The optimal solution is different from the
solution to the original problem because of the additional resources.

As discussed above, an additional 9 h of machine time would increase the
profit by $750.00. A question might then arise as to how much we should be
willing to pay to acquire these additional 9 h of machine time. This is up
to management as the profit is determined on the basis of the cost of regular
machine time. However, to maintain a profit of $6350.00 or more, the manage-
ment can pay up to $750.00 extra to acquire the additional 9 h of machine time.

11.3.3 Changes in the Constraint Coefficients

Using shadow price and reduced cost information, one can analyze how
changes in some constraint coefficients affect the optimal solution to an LP
problem. As discussed earlier, the reduced cost for each variable is equal to
the per-unit profit the product contributes to the overall profit (objective
function value) minus the per-unit value of the resources it consumes. In
that case, the consumed resources are priced at their shadow prices. For
example, the reduced cost for Model-A can be calculated as follows:

Reduced cost of Model-A ¼ $300� 2� $0� 1� $83:333� 1� $216:667 ¼ $0
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In our example, Model-A consumes 2 units of labor hours, 1 unit of
machine hours, and 1 unit of market limitation. The shadow prices for
labor hours, machine hours, and market limitation are $0, $83.333, and
$216.667, respectively. The profit per unit of Model-A is $300.

If the resource requirements for Model-A are increased, due to improved
quality demand, the reduced cost for Model-A would be negative. For
example, the reduced cost would be ]$8.3333 for a 10% increase in machine
time per-unit product as calculated below:

Reduced cost of Model-A ¼ $300� 2� $0� 1:10� $83:333� 1� $216:667
¼ �$8:3333

It indicates that the increased resource requirements would decrease the
profitability of Model-A by $8.3333 per unit. For 12 units of Model-A,
the total decrease in profitability would be 12 3 $8.3333¼ $100.00. So the
new objective value would be $6350 ] $100¼ $6250. Because of the increase
in resource requirements by one product, the new optimal solution will
be different.

11.3.4 Addition of New Product or Variable

Suppose we now consider introducing a new product called Model-C. Each
unit of Model-C requires 1.5 h of labor and 2.5 h of machine time and the
product can be sold to generate a marginal profit of $225. Would the
production of this new model be profitable?

The cost of resources required to produce one unit of Model-C can be
calculated as follows:

Cost of resources for Model-C ¼ 1:5� $0þ 2:5� $83:333þ 0� $216:667
¼ $208:33

The reduced cost for Model-C¼ $225.00 ] $208.33¼þ$16.67. This indicates
that the profitability would be increased by $16.67 for each unit of Model-C
produced. Therefore, the production of Model-C would be profitable. In this
case, the solution we obtained in Tables 11.1 and 11.2 would no longer be
optimal.

11.3.5 Sensitivity Analysis for Integer and Nonlinear Models

As discussed earlier, the sensitivity report is not meaningful for integer
models. However, the answer report for Example 10.8 is reported in
Figure 11.3.

The integer programming answer report is similar to the LP answer
report except it includes integer variables under the constraint section.

Sarker/Optimization Modelling: A Practical Approach 43102_C011 Final Proof page 333 22.8.2007 11:42pm Compositor Name: JGanesan

Output Analysis and Practical Issues 333



The answer report, sensitivity report, and limits report for a problem with
nonlinear objective and linear constraints are presented below (see Figures
11.4 through 11.6). The problem is similar to our Example 10.9 except that
the variables are considered as continuous.

Microsoft Excel 11.0 Answer Report
Worksheet: [Solv-solver-ex2-integer.xls]Sheet1 
Report Created: 12/04/2005 4:28:42 PM 

Target Cell (Max) 

Cell Name
Original
Value Final Value 

$F$4 Changing cells -->  Objective Value 0 5850 

Adjustable Cells 

Cell Name
Original
Value Final Value 

$C$4 Changing cells -->  Model A 0 12 

$D$4 Changing cells -->  Model B 0 9 

Constraints 

Cell Name Cell Value Formula Status Slack
$G$7 Labor availability LHS 33 $G$7<=$H$7 Not Binding 7
$G$8 Machine time LHS 39 $G$8<=$H$8 Not Binding 1
$G$9 Market restriction LHS 12 $G$9<=$H$9 Binding 0
$C$4 Changing cells -->  Model A 12 $C$4=integer Binding 0

$D$4 Changing cells -->  Model B 9 $D$4=integer Binding 0

FIGURE 11.3
Answer report for an integer model.

Microsoft Excel 11.0 Answer Report
Worksheet: [Solv-solver-ex3-nonlinear.xls]Sheet1 
Report Created: 12/04/2005 4:37:32 PM 

Target Cell (Max) 

Cell Name
Original
Value Final Value 

$F$4 Changing cells -->  Objective Value 0 2958.018204 

Adjustable Cells 

Cell Name
Original
Value Final Value 

$C$4 Changing cells -->  Model A 0 6.481746338 
$D$4 Changing cells -->  Model B 0 11.17275122 

Constraints 
Cell Name Cell Value Formula Status Slack 
$G$7 Labor availability LHS 24.1362439 $G$7<=$H$7 Not Binding 15.8637561
$G$8 Machine time LHS 40 $G$8<=$H$8 Binding 0
$G$9 Market restriction LHS 6.481746338 $G$9<=$H$9 Not Binding 5.518253662

FIGURE 11.4
Answer report for a nonlinear model.
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The answer report is similar to the LP answer report.
The sensitivity report provides the variables with their reduced gradients

and the constraints with their Lagrange multipliers. The reduced gradient
approximately represents the reduced cost discussed in LP. Similarly,
the Lagrange multiplier approximately substitutes for the shadow price. In
nonlinear programming, there is no simple way to compute the allowable
increase and allowable decrease over which the reduced gradient and
Lagrange multiplier are valid. However, the reduced gradient and Lagrange
multiplier information can still be used to estimate the approximate impact

Microsoft Excel 11.0 Sensitivity Report

Worksheet: [Solv-solver-ex3-nonlinear.xls]Sheet1

Report Created: 12/04/2005 4:37:32 PM 

Adjustable Cells 

Final 
Value 

Reduced
Gradient Cell Name 

$C$4 Changing cells -->  Model A 6.481746338 0

$D$4 Changing cells -->  Model B 11.17275122 0

Constraints 
Final 
Value 

Lagrange
Multiplier Cell Name 

$G$7 Labor availability LHS 24.1362439 0

$G$8 Machine time LHS 40 58.91762288

$G$9 Market restriction LHS 6.481746338 0

FIGURE 11.5
Sensitivity report for a nonlinear model.

Microsoft Excel 11.0 Limits Report
Worksheet: [Solv-solver-ex3-nonlinear.xls]Limits
Report 1 
Report Created: 12/04/2005
4:37:32 PM 

Target
Name Cell Value 

$F$4 
Changing cells --> 
Objective Value 2958.018204 

Adjustable
Name 

Lower
Limit 

Target 
Result 

Upper 
Limit 

Target 
Result Cell Value 

$C$4 Changing cells --> 
Model A 6.481746338 0 2194.239983 6.481746338 2958.018204

$D$4 Changing cells --> 
Model B 11.17275122 0 763.7782207 11.17275122 2958.018204

FIGURE 11.6
Limits report for a nonlinear model.
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on the objective function for a small change in the value of a given variable
and in a constraint’s RHS, respectively.

11.4 Practical Issues and Tips

A number of practical issues frequently faced by practitioners are discussed
here and some tips are provided to overcome them.

11.4.1 Solutions to Goal Programming Problems

Although goal programming handles multiple objectives as a single compos-
ite objective function, it does not optimize all the objectives simultaneously.
The solutions to goal programming problems are considered as good feasible
compromises and workable solutions rather than true optimal solutions.

11.4.2 Multi-Objective Optimization

Many real world problems involve simultaneous optimization of several
incommensurable and often competing objectives. In such problems, there
is no single optimal solution, but rather a set of alternative solutions. These
solutions are optimal in the wider sense in that no other solutions in the
search space are superior to them when all objectives are simultaneously
considered. These solutions are known as Pareto-optimal solutions. However,
the decision maker usually requires only one solution from the whole set
of solutions for implementation. Theoretically, the solutions in the set are
indifferent (in some sense!), which makes it very difficult to choose one
specific solution.

11.4.3 Reduction of Variables and Constraints

To reduce the size of a model, one must not include unnecessary variables
and constraints; they should be excluded from the model. Reduction in
size means reduction in computational complexity and time. In some cases
where more than one variable is to have the same value in the final
solution, such variables can be represented by one common variable. As
an example, consider the crop planning model of Section 15.4. The vari-
ables for double and triple cropped land can be reduced as demonstrated
in Section 15.4.1.

In many modelling situations, extra constraints may be included to find
additional information from the modelling solution. If this information
could have been derived after the model had been solved, then to reduce
the model size, one should exclude such constraints. Consider the model of
Example 10.7 as presented below again.
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Variables:

x1¼Number of sets of model A to be produced daily

x2¼Number of sets of model B to be produced daily

Linear programming model is

Maximize Z ¼ 300x1 þ 250x2

Subject to

2x1 þ x2 � 40 Labor constraint

x1 þ 3x2 � 45 Machine time constraint

x1 � 12 Market constraint

x1, x2 � 0 Nonnegativity constraint

Model (11:1)

In this model, additional constraints can be incorporated to calculate total
labor and machine hours used as follows:

2x1 þ x2 � L ¼ 0 labor hours calculation (11:1)

x1 þ 3x2 �M ¼ 0 machine hours calculation (11:2)

Where, L and M are the variables to represent the total labor hours and
machine hours used, respectively. However, if the model is solved without
these additional constraints, one can still find the values of L and M using
the Equations 11.1 and 11.2 and model solutions.

By removing redundant constraints one can reduce the problem size, hence
the computational time; however, it is not easy to identify redundant con-
straints when a model involves a large number of constraints and variables.
By removing redundant constraints, however, the feasible solution space is
unaffected. It is expected that if redundant constraints have been identified
then they would be excluded from the model. The issue of identifying
redundant constraints before solving a model is an interesting research topic.

11.4.4 Solutions and Number of Basic Variables

The number of basic variables is equal to the number of functional con-
straints in an LP model’s solution. Suppose you have modelled a problem
that contains 15 variables (each variable represents one product) but 6 key
constraints, then only a maximum of 6 variables will have values different
than zero in the solution. This solution may not sit well with management.
The management will not be convinced to implement your solution as they
are currently producing all 15 products (representing 15 variables) and
making reasonable profits from their sales, and they may be interested to
continue producing all 15 products to keep the company’s market share
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steady and face the competitors. What is wrong with your solution? To
answer this question, see the example in Section 15.2.

11.4.5 Variables with No Restriction in Sign

Many optimization techniques (for example, LP) assume that the values
of variables must be nonnegative, for example, production of cars, man-
power required, or machine hours used. However, there are variables
that can be positive, negative, or both (þve, zero, or ]ve), for example,
temperature (minus, zero, or plus), return on investment (profit, zero, or
loss), or performance measuring scale=indicators. To handle variables
with negative or unrestricted signs, one has to express each variable as a
difference between two nonnegative variables. Suppose, a variable x is
unrestricted in sign, then in a model, x can be replaced by (x0 ] x’’) where
both x0 and x’’ � 0.

x ¼ (x0 � x00) (11:3)

If x0 ¼ 10 and x’’¼ 5 (both positive), then x¼ 5 (positive value).
If x0 ¼ 5 and x’’¼ 10 (both positive), then x¼ ]5 (negative value).
If you want to ensure that x will take either a negative value or zero (no

positive value), then a restriction like x0 � x’’ must be imposed.
It is appropriate to mention here that Excel Solver and some optimization

packages can directly handle variables that are unrestricted in sign.

11.4.6 Negative RHS

It is not unusual to have negative figures in the RHS of a functional
constraint. However, most optimization techniques and software packages
require a positive value or entry for the constraint RHS when inputting the
model. Consider the following constraint:

2x� 3y � �5 (11:4)

Because of the solution approach or some software package requirements,
the constraint must be rewritten as follows:

�2xþ 3y � þ5 (11:5)

It is a convention in the optimization domain to identify a model with (one
or more) negative (]ve) constraint RHS as infeasible although the original
problem is feasible. Some optimization techniques, such as simplex method
of LP, cannot be applied to solve such a model. However, there are also
techniques such as the dual simplex method that will remove such a tech-
nical infeasibility. It is noted that Excel Solver and some optimization
packages can handle negative RHS.
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11.4.7 Scaling Factors in Modelling

It is encouraged to model any problem with similar orders of magnitude. If
the largest number in the model is greater than 1000 times the smallest
number in the model, optimization software packages may encounter prob-
lems when solving the model. As numbers become extremely large or small,
computers often run into storage or representation problems that force them
to use approximations (by rounding) of the actual numbers. This opens the
door for problems to occur in the accuracy of the results and, in some cases,
can prevent the computer from solving the problem at all. So if some
coefficients in the initial model are extremely large or extremely small, it
is recommended to rescale the problem so that all the coefficients are of a
similar magnitude.

For example, consider a financial problem with equations expressing
an interest rate of 9.0% (.09) and budget constraints of $12,850,000. The
difference in magnitude between these numbers is of the order of 109

(1=100th compared to 10,000,000). A difference of 104 or less between the
largest and smallest units would be preferable. In this case, the budget could
be expressed in units of millions of dollars. That is, $12.85 would be used to
represent $12,850,000. This lowers the difference in magnitude between the
numbers of the different units to 104.

Note that Excel Solver attempts to rescale the data automatically before
solving the model. However, it is advisable that all the scaling is done
during model formulation (that is before solving).

11.4.8 Linear vs. Nonlinear Relationships

When possible, one is encouraged to use linear rather than nonlinear rela-
tionships. Some nonlinear expressions can be reformulated in a linear man-
ner. A simple example is a constraint involving the ratio of two variables as
shown in the following equation:

x=y � 20 (11:6)

This constraint is nonlinear because we are dividing by y. To linearize the
constraint, one can multiply both sides by y. The equivalent, linear con-
straint becomes as given in the following equation:

x � 20y or x� 20y � 0 (11:7)

11.4.9 Non-Smooth Relationships

It is appropriate to avoid non-smooth relationships when possible. Models
with non-smooth constraints are generally much more difficult to solve.
Where possible, approximate the non-smooth relationship with smooth
expressions and, perhaps, use integer variables.
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11.4.10 Linear vs. Integer and Nonlinear Models

Compared to linear models, it is usually more difficult to solve integer and
nonlinear models. The solving of such models is usually done by relaxing
the conditions and approximating the functions. Even if the alternative
linear model involves more variables and constraints, it is preferable to
use such models because of their (1) computationally efficient solution
approaches, (2) easily available software packages, and (3) capability of
software packages in generating useful sensitivity reports.

11.4.11 Rounding for Integer Solutions

Relaxation of integer restrictions can drastically reduce the solution time. In
instances involving large numbers of variables, you may find that solving
the model without integer restrictions and then rounding yields acceptable
answers in a fraction of the time required by the integer model. Be fore-
warned, however, that rounding a solution will not necessarily yield a
feasible or an optimal solution.

11.4.12 Improved Initial Solutions

The initial values you provide for the variables in a model can affect the path
your solution approach or software package takes to obtain the optimal
solution. Starting with values close to the optimal solution can noticeably
reduce the solution time. In many situations, you may not know what the
good initial values are. However, when you do know some reasonable ones,
it may be to your benefit to use them as the starting point values.

11.4.13 Variable Bounds

Most LP software packages use a module called upper bounding technique,
which helps to avoid treating variable bounds as constraints. That means it
removes all single variable constraints from the constraint count.

The use of appropriate upper and lower bounds on variables can help
make the solution search as efficient as possible. Using good bounds can
save computational time as the algorithm is restricted to search a smaller
solution space. For example, suppose you know that, even though the
feasible value for a particular variable is between 10 and 200, it is highly
improbable the optimal value is outside the range of 60–80; then in this case,
the use of a lower bound of 60 and an upper bound of 80 could significantly
reduce the solution time.

Bounding can also help keep the solution search clear of mathematically
troublesome areas like undefined regions. For example, if you have a con-
straint with the term 5=x, it may be helpful to add a lower bound on x so it
does not get close to zero.

Consider the network flow problem of Example 4.15 as presented again
below:
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Minimize Z ¼ 30X12 þ 40X24 þ 35X42 þ 50X34 þ 45X43

þ 120X36 þ 100X51 þ 45X54 þ 110X56

Subject to

X51 � X12 � 100

X12 þ X42 � X24 � 150

�X43 þ X34 þ X36 � 300

X24 þ X34 þ X54 � X42 � X43 � 70

X51 þ X54 þ X56 � 200

X56 þ X36 � 80

Xij � 0 8i, j

Model (11:2)

The upper limit of Xij is unlimited because the arcs do not have any capacity
constraints. It is not difficult to find an appropriate bound for each flow
variable. In theory, the tighter bounds mean a smaller feasible solution space.

11.4.14 Management Issues in Solution Implementation

The implementation issues are discussed in Section 2.9. In this section, we
discuss the management issues for solution implementation. In some organi-
zations, senior management appear to be obstacles when implementing new
and sophisticated plans and technologies. This may be for a number of
reasons as discussed below:

. They are unaware of the optimization tools and techniques and
their capability. As a result, they cannot appreciate the new solu-
tions and are afraid of the outcomes. However, without their
acceptance, the solution cannot be implemented.

. Sometimes senior management do not want change if the current
method is workable. Because any failure due to the suggested
change may cause them to possibly lose their jobs. So who will
take the risk?

. Some senior management cannot accept the good work carried out
by junior colleagues as their own capability will be under question
and their position may be under threat. Sometimes they are simply
jealous of talented people. So they would not approve such work
and allow the suggested implementation.

. In some instances senior management do not want to hastily imple-
ment junior colleagues’ suggestions as that may not leave anything
left for demonstrating future improvement. If no improvement can
be shown for a long time, senior level jobs could be under risk.

It is not an easy task to solve the problems discussed above. There is no
known model or solution approach for such problems. However, a few

Sarker/Optimization Modelling: A Practical Approach 43102_C011 Final Proof page 341 22.8.2007 11:42pm Compositor Name: JGanesan

Output Analysis and Practical Issues 341



points can be made, which may help in solving such problems in some
cases. These are as follows:

. Involve senior management at every stage of the decision process.
To encourage their participation or sponsorship, the level of lang-
uage in explaining the terms and processes must be in terms of
their knowledge to ensure their understanding of the approach
and solution technique.

. Seek their advice—by asking questions such as what can be done
and how things can be improved? Allow them to feel that their
participation and contribution to the process is valuable.

. Do not try to educate them directly or force them to do or say
something they do not feel comfortable with at that stage. You
need to make them become aware slowly of the development of
the model and the possible solutions and convince them gradually
of the appropriateness of the solutions.

. Do not try to demonstrate that you are more knowledgeable and
capable than they are as it may backfire. However, on the other
hand, creating a positive impression about your capability is neces-
sary so that they can rely on you and appreciate your contributions.

As you can see, it could be a very long process. Remember that if you cannot
convince them that your solution is the appropriate one then your whole
effort will be discredited and wasted.

11.4.15 Gap between Solutions and Outcomes

Do not forget the assumptions that were made in the modelling and data
preparation phases, the limitations of the solution approaches, and possible
problems that may occur in the implementation phase. These factors may
contribute to a possible gap between the model solution and the company
goals after implementation. So it can be risky unless senior management is
aware of the whole decision process.

11.4.16 Nontechnical Report

As we indicated earlier, the solutions must be interpreted in an easy and
nontechnical form so that the users (usually officers and workers with
different skills and knowledge levels) understand and find them easy for use.
Otherwise, they may oppose any implementation of the derived solution.

11.4.17 Special Cases in LP Models

A number of special cases can arise in LP modelling such as alternative
optimal solutions, redundant constraints, unbounded solutions, and
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infeasibility. The first two conditions do not prevent the solution of an LP
model and are not really problems, although it may indicate that the for-
mulation of the problem is not complete or the problem has not been
correctly identified. However, the last two conditions prevent us from
solving an LP model. In these situations, the optimization software pack-
ages cannot complete the solution of the problem and will indicate whether
the problem is unbounded or infeasible. This may indicate that the problem
has not been correctly identified or defined.

Although it is not unusual to encounter an unbounded solution when
solving an LP model, such a solution indicates that there is something
wrong with the formulation. For example, one or more constraints were
omitted from the formulation, or a constraint was erroneously entered (such
as a less than or equal to constraint being entered as a greater than or equal
to constraint). In such a case, it is recommended that one revisits the
formulation.

Infeasibility can occur in LP models, perhaps due to an error in the
formulation of the model. For example, unintentionally making a ‘‘less
than or equal to’’ constraint to ‘‘a greater than or equal to constraint,’’ or
there might not be a way to satisfy all the constraints in the model. In this
case, constraints will have to be eliminated or loosened in order to obtain a
feasible solution of the model.

11.5 Risk Analysis

Managing risk is a very important duty placed on senior management.
Senior management must assess possible risks that are associated with the
implementation of their decisions. Since operations research is involved in
supporting the decision maker, by providing analysis and model building
in support of the selection of appropriate decision alternatives, it has risk
associated with it. Therefore, it is important that the analyst assists the
decision maker in identifying the risks associated with complex problem
solving and ways of minimizing those risks.

In some respects, the operations researcher does carry out some aspects of
risk assessment when he or she undertakes sensitivity analysis. However,
that is not the whole risk management story. In order to carry out a complete
risk assessment one needs to undertake all of the following stages:

. Context identification

. Risk identification

. Risk analysis

. Risk evaluation

. Monitor and review the risk management issues

. Communicate the issues with stakeholders
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Since the operations researcher, when conducting a study, starts with an
identification and definition of the problem, he or she should have consi-
dered the environment and context within which the problem exists. With
that knowledge he or she should be able to identify the possible risks that
may eventuate from the decision solution or alternative that he or she
arrives at through their study considerations. A sensitivity analysis will
assist in analyzing the impact of those risks and evaluate the consequences
given that the events associated with that risk occur. The operations
researcher must consider carrying out a risk assessment based on their
findings and communicate them to the decision maker, so that the decision
maker can consider these factors when making his or her decision. Sensi-
tivity analysis as discussed in an earlier chapter is therefore an important
aspect of modelling.

Some real problems that have been resolved using optimization tech-
niques have had major impacts on either individuals or organizations and
have had significant risks associated with them.

11.6 Summary

In this chapter, we have discussed the issues of problem solving using
different computer packages and the outputs provided by them. The sensi-
tivity analysis is presented with numerical examples. The practical issues
faced by the users when dealing with optimization models and software
packages are briefly analyzed. The problem that arose in solution imple-
mentation, particularly when dealing with senior management, is briefly
discussed. The risk-associated implementation of solution is also discussed.

Exercises

1. The ABC corporation manufactures two special-sized electrical devices
for ADF: generators and alternators. Both of these products require
wiring and testing during the assembly process. Each generator requires
3 h of wiring and 1 h of testing and can be sold for a profit of $250. Each
alternator requires 1 h of wiring and 2 h of testing and can be sold for a
profit of $180. There are 240 h of wiring time and 160 h of testing time
available in the next production period.

(a) Formulate the problem as a linear programming (LP) model.

(b) Do you think the problem defined is realistic or complete? If not,
what information do you think are missing?

(c) Create a spreadsheet model for the LP developed in part (a).
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(d) If the demand for generator and alternator is limited to 65 and 45,
respectively, what would be the optimal product-mix?

(e) Due to excessive demand of alternators, the management decided
to increase the price (considering the model in (a)). As a result, the
new profit per alternator is $260. Comment on your new optimal
solution.

(f) If the management decide to increase the working hours (either
wiring or testing time, as of model in (a)), which one they should
increase and why?

2. Consider the LP model developed in 1(a) of Exercises.

(a) Solve the model using Solver and create reports on sensitivity and
limits.

(b) Use your solutions in (a) to answer the following:

(i) What range of values can the objective function coefficient for
variable X1 (¼number of generators) assume without chan-
ging the optimal solution?

(ii) Is the optimal solution to this problem unique, or are there
alternate optimal solutions?

(iii) What is the optimal objective function value if X2 (¼number
of alternators) is assumed to be at least 1?

(iv) What is the optimal objective function value if the testing time
changes from 160 to 170?

(v) Is the current solution still optimal if the coefficient for
X2 (¼number of alternators) in the testing time constraint
changes from 2 to 1? Explain.

3. Implement the following LP model in a spreadsheet. Use Solver to solve
the problem and create a sensitivity report. Use this information to
answer the following questions:

Maximize 3X1 þ 2X2

Subject to

2X1 þ 4X2 � 20

3X1 þ 5X2 � 15

X1, X2 � 0

(a) What range of values can the objective function coefficient for
variable X1 assume without changing the optimal solution?

(b) Is the optimal solution to this problem unique, or are there alter-
nate optimal solutions?
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(c) How much does the objective function coefficient for variable X2

have to increase before it enters the optimal solution at a strictly
positive level?

(d) What is the optimal objective function value if X2 equals 1?

(e) What is the optimal objective function value if the RHS value for
the second constraint changes from 15 to 25?

(f) Is the current solution still optimal if the coefficient for X2 in the
second constraint changes from 5 to 1? Explain.
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12
Basic Optimization Techniques

12.1 Introduction

The purpose of this book is to cover the basic modelling techniques of
optimization problem solving, discuss the widely used theoretical optimiza-
tion models and some practical optimization problems, and demonstrate
the use of available software packages for optimization problem solving.
Although the interpretation of solutions and sensitivity analysis are also
provided with sufficient detail, an understanding of the basic optimization
techniques would help to gain more insight about the problem solution
space and the decision to be made. In addition, it will provide greater
confidence of the quality of solutions to be obtained and decision to be
made. With these views in mind, we present a few basic techniques briefly
in this chapter as follows:

. Graphical solution method for linear programming (LP)

. Simplex method for LP

. Branch-and-bound technique for integer programming

12.2 Graphical Method

The graphical method is used to solve optimization models involving two
variables and a few constraints, and the method helps to gain insights about
the feasible solution space, optimality, and the interaction between different
model parameters. The educational software Win QSB, discussed in
Chapter 9, is capable of producing graphical solutions. In this section, we
solve a small LP problem using Win QSB and then discuss how the method
works. To demonstrate the method, let us consider an example.
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Example 12.1: A simple example
Consider Example 3.1 with different right-hand sides (RHSs) for the first
two constraints (RHS1¼ 190 and RHS2¼ 180). Let us here define the deci-
sion variables as follows:

X1¼ the number of tables to be produced

X2¼ the number of chairs to be produced

The corresponding LP model is

Maximize Z ¼ 100X1 þ 60X2

Subject to

5X1 þ 2X2 � 190 Machining

4X1 þ 3X2 � 180 Sanding

3X1 þ 4X2 � 200 Assembly

X1 � 0 and X2 � 0 Nonnegativity

Model (12:1)

The Win QSB input and graphical solution are provided in Figures 12.1
and 12.2, respectively.

As per the solution in Figure 12.2, Z¼ 4200.00, X1¼ 30.00, and X2¼ 20.00.
However, a natural question that would arise is how did Win QSB produce
the solution? To answer this question, the steps involved in the graphical
method are discussed below:

. Graphing the feasible region

. Draw lines for X (horizontal axis) and Y (vertical axis) axes

. We need to only consider the first quadrant because of the
nonnegativity constraints

. X-axis represents one variable and Y-axis the other

. Choose a suitable range and scale for each axis

. Graph the constraints: Draw a straight line for each constraint.
Constraint with an equal to sign is simply an equation of a

FIGURE 12.1
Win QSB input for Model 12.1.
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straight line. For an inequality constraint, first replace the
inequality sign by an equal to sign and draw the straight line.
Then for the inequality constraint, identify the area that is satis-
fied by the constraint.

. Identify the area that is simultaneously satisfied by all the con-
straints of the problem. This area is known as the feasible area=
region.

. Identifying the optimal solution

. Once the feasible solution space is drawn, identify the best
solution point in the feasible region either by using the iso-profit
line approach or analyzing the corner points of the feasible
region. These methods will be demonstrated later.

To understand the method clearly, let us graph the constraints one by one.
We assume that the horizontal axis represents variable X1 and the vertical
axis represents X2. To graph all the constraints, we need up to 66.67 units on
the horizontal axis and 95 on the vertical axis. For the convenience of
scaling, we choose up to 80 on the X-axis and 100 on the Y-axis.

Let us draw the machining constraint first. For the time being, we replace
the inequality sign of the constraint by the equal to sign so that it can be
treated as an equation for a straight line as follows:

5X1 þ 2X2 ¼ 190 (12:1)

FIGURE 12.2
Win QSB graphical solution for Model 12.1.
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If X1¼ 0, then from the equation 2X2¼ 190 or X2¼ 95

If X2¼ 0, then 5X1¼ 190 or X1¼ 38

Draw a straight line joining the points (0, 95) and (38, 0) as shown in
Figure 12.3. Now the constraint (5X1 þ 2X2 � 190) represents the area on the
left-hand side (LHS) of this line drawn. The highlighted triangular area, in
Figure 12.3, is bounded by the machining constraint and two nonnegativity
constraints. This area is recognized as the feasible region=area for the
machining constraint.

We can draw the sanding constraint in a similar way as shown in
Figure 12.4. The highlighted area is the feasible region for both machining
and sanding constraints. In Figure 12.5, the assembly constraint is drawn
and the feasible region, which is satisfied by all the constraints of the model,
is highlighted. One can now compare the feasible region in Figure 12.5 with
the Win QSB solution (shown in Figure 12.2).

Any point taken from the feasible region (as shown in Figure 12.5) would
satisfy all the constraints of the model (Model 12.1). One can test that by
taking points such as (20, 20), (30, 15), and any other point from the feasible
region. The best points in the feasible region would represent the optimal
solution of the model (Model 12.1). However, there are an infinite number of
points in the feasible region. For the convenience of analysis, we have
redrawn a magnified version of the feasible region in Figure 12.6.

To identify the optimal point in the above feasible region, we will dem-
onstrate the iso-profit line approach first. In this approach, we assume a
value for the objective function, which helps to draw a straight line inside
the feasible region. For example, if we assume Z¼ 2400, the corresponding
iso-profit line will be 100X1 þ 60X2¼ 2400 as shown in Figure 12.7.

FIGURE 12.3
Graphing machining constraint.
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Any point taken on this line will have the same Z value of 2400. However,
the values of X1 and X2 will vary depending on the location of the point
chosen. We can now draw other iso-profit lines with higher Z values as
shown in Figure 12.8. In other words, we draw parallel lines to the iso-profit
line already drawn, in the direction of objective function increase, until we
reach the last possible point of the feasible region. The last intersecting point
is the optimal point of the model.
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FIGURE 12.4
Graphing sanding constraint.
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FIGURE 12.5
Graphing assembly constraint.
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The direction of the objective function increase can easily be found using
the gradient of the objective function. For example, as the gradient of our
objective function is (100, 60), the direction of the objective function increase
would be in the direction from (0, 0) to (100, 60). The iso-profit lines drawn
in Figure 12.8 would be perpendicular to the direction of gradient (see
Figure 12.7).

As shown in Figure 12.9, the optimal point is the intersection of the
lines determined by the machining and sanding constraints. So the exact

FIGURE 12.6
Feasible region of the model. 40200
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FIGURE 12.7
Iso-profit line and direction of profit
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coordinate of the optimal point can be found by determining the intersec-
tion of these two boundary lines as follows:

Machining 5X1 þ 2X2 ¼ 190 (12:2)

Sanding 4X1 þ 3X2 ¼ 180 (12:3)

X1
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0 20 40

Iso-profit line 
100X1 + 60X2 = 2400

100X1 + 60X2 = 3000 

100X1 + 60X2 = 3500 

Optimal point

FIGURE 12.8
Finding the location optimal point.
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FIGURE 12.9
Finding optimal point.
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From Equation 12.2

X1 ¼ (190� 2X2)=5 ¼ 38� 0:4X2 (12:4)

Substituting Equation 12.4 in Equation 12.3, we get

4(38� 0:4X2)þ 3X2 ¼ 180

or 152� 1:6X2 þ 3X2 ¼ 180

or 1:4X2 ¼ 28

or X2 ¼ 20 (12:5)

Substituting X2¼ 20 in Equation 12.2, we get

5X1 þ 2(20) ¼ 190

or X1 ¼ 30 (12:6)

For X1¼ 30 and X2¼ 20, the objective function value Z ¼ 100X1 þ 60X2 ¼
100� 30þ 60� 20 ¼ $4200. So, the optimal solution suggests that produ-
cing 30 tables and 20 chairs would generate a profit of $4200.

It is well known that the optimal solution point in LP exists in one (or
more for some cases) of the corner points of the feasible region. Therefore,
the optimal point can be found by simply analyzing the corner points. The
exact coordinates of corner points can be calculated by finding the intersec-
tion of two straight lines forming the corner. The coordinates of the corner
points of the feasible region are shown in Figure 12.10. The corner points are
used to find the best objective function value as shown in Table 12.1.

FIGURE 12.10
Finding optimal point using corner points.
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As per the above corner point analysis, the corner point (30, 20) provides
the maximum possible profit of $4200. This solution is the same as the
iso-profit approach presented earlier.

Example 12.2
Consider Example 3.1 once again with the variable definition as follows:

X1¼number of tables to be produced

X2¼number of chairs to be produced

Maximize Z ¼ 100X1 þ 60X2

Subject to

5X1 þ 2X2 � 270 Machining

4X1 þ 3X2 � 250 Sanding

3X1 þ 4X2 � 200 Assembly

X1 � 0 and X2 � 0 Nonnegativity

Model (12:2)

The feasible region of this model is presented in Figure 12.11. The sanding
constraint is recognized here as a redundant constraint as it has no effect on
the feasible region of the model. The redundant constraints can be excluded
when solving a model.

12.3 Simplex Method

We can solve LP problems, using graphical method, only when there are
two decision variables. Most real-world LP models have more than two
variables. As we discussed in earlier chapters, we solve LP models in this
book using software packages such as LINDO=LINGO, GAMS, Excel
Solver, and Win QSB. One may be interested to know what methodology=
algorithm these software packages implement to solve LP models. As dis-
cussed in the following few sections, the models are solved through a

TABLE 12.1

Corner Points and Their Corresponding Objective Values

Corner Point (X1, X2) Z5100X1 1 60X2 Z Value ($) Remark

(0, 0) 100 3 0 þ 60 3 0 0
(38, 0) 100 3 30 þ 60 3 0 3000
(30, 20) 100 3 30 þ 60 3 20 4200 Maximum
(17.14, 37.14) 100 3 17.14 þ 60 3 37.14 3942.4
(0, 50) 100 3 0 þ 60 3 50 3000
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number of iterations. Excel Solver has an option to provide solution
summary at each iteration. Win QSB also provides iteration details. The
iteration-wise solutions for Example 12.1 using both Win QSB and Excel
Solver are provided in the next few tables. Both software packages require
only two iterations to solve the model. However, three tables for each
software package represent the initial, iteration-1, and iteration-2 solutions.

From Tables 12.2 and 12.3, we get X1¼ 0 and X2¼ 0 with Z¼ 0. This is the
point (0, 0) in Figure 12.10 (graphical solution).

As per Tables 12.4 and 12.5, we get X1¼ 38 and X2¼ 0 with Z¼ 3800 after
iteration 1. This is the point (38, 0) in Figure 12.10 (graphical solution).

As per Tables 12.6 and 12.7, we get X1¼ 30 and X2¼ 20 with Z¼ 4200 after
iteration 2. This is the point (30, 20) in Figure 12.10 (graphical solution). As
indicated by both the software packages, this is the optimal solution. If we
look at the solutions presented in Tables 12.2 through 12.7, as per graphical
solution in Figure 12.10, it started from a corner point (0, 0) and then moved
to an adjacent corner point (38, 0) in iteration 1 when the choices were (0, 50)

TABLE 12.2

Win QSB Initial Solution

FIGURE 12.11
Feasible region for Example 3.1.
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and (38, 0). In iteration 2, it moved from (38, 0) to another corner point (30,
20) and then stopped as it reached the optimal point. The process has not
explored the corner points (17.14, 37.14) and (0, 50) at all.

We know the solutions presented in Tables 12.2 through 12.7 and the
points discussed above will create many questions in your mind. To clarify
some of these questions, we now explain how the software packages come
up with such numbers and solutions in the above tables.

For LP problems with two or more variables, an analytical method known
as the simplex algorithm is widely used. As discussed in the graphical
solution section, we know that the optimal solutions of any LP exist at the
corner points of the feasible solution space. The simplex method is an
iterative method that finds the optimal solution by searching only some of
the corner points. The process usually starts at the origin and then moves to
an adjacent corner point that provides better objective-function value. The
process of moving to adjacent corner points continues until no further
improvement is possible. The basic steps of the algorithm can be expressed
briefly as follows:

Step 1: Standardize the problem into an LP tableau.

Step 2: Generate an initial feasible solution, called a basis.

Step 3: Test the solution for optimality. If not optimal, improve it
(following Step 4); otherwise go to Step 6.

Step 4: Generate an improved solution by identifying the leaving and
entering variables to the basis and updating the tableau.

TABLE 12.3

Excel Solver Initial Solution

TABLE 12.4

Win QSB Iteration 1 Solution
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Step 5: Check for optimality (as in Step 3). If not optimal, repeat Steps
4 and 5. If optimal, go to Step 6.

Step 6: Stop.

The method can be implemented using either a tabular or matrix form.
For ease of understanding and explanation, we will demonstrate the
method using the tabular form. First of all, let us find out how Win QSB
generated the initial solution as of Table 12.2. To do that, recall Model 12.1.

Maximize Z ¼ 100X1 þ 60X2

Subject to

5X1 þ 2X2 � 190 Machining

4X1 þ 3X2 � 180 Sanding

3X1 þ 4X2 � 200 Assembly

X1 � 0 and X2 � 0 Nonnegativity

Model (12:3)

The inequalities in the model (Model 12.3) can be converted to equalities by
adding one extra variable in the LHS of each constraint as follows:

5X1 þ 2X2 þ S1 ¼ 190 (12:7)

4X1 þ 3X2 þ S2 ¼ 180 (12:8)

3X1 þ 4X2 þ S3 ¼ 200 (12:9)

TABLE 12.6

Win QSB Iteration 2 (also final) Solution

TABLE 12.5

Excel-Solver Iteration-1 Solution
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S1, S2, and S3 are known as slack variables. By definition, the slacks are greater
than or equal to zero and have zero contribution to the objective function.
After inclusion of the objective function, the revised model is as follows:

Maximize Z ¼ 100X1 þ 60X2 þ 0S1 þ 0S2 þ 0S3

Subject to

5X1 þ 2X2 þ S1 þ 0S2 þ 0S3 ¼ 190

4X1 þ 3X2 þ 0S1 þ S2 þ 0S3 ¼ 180

3X1 þ 4X2 þ 0S1 þ 0S2 þ S3 ¼ 200

X1, X2, S1, S2, S3 � 0

Model (12:4)

We now present this model in tabular form.
If we exclude column 1, the Table 12.8 is the middle part of the Win QSB

initial solution as presented in Table 12.2. We now add the other columns
and rows as of Table 12.2. However, we will add one extra row (second last
row in Table 12.9) for convenience of explanation and analysis.

We now fill in the first and second columns of Table 12.9. The first column
can be generated in two ways. The first approach is to write down the slack
variables in order of their constraints as shown in Table 12.10.

As you can see in Table 12.10, there is an identity matrix under the slack
variables. The second approach is to identify the entry ‘‘1’’ for each column
of slack variables (that is the columns of the identity matrix) and then write
the slack variable in the corresponding row cell of the first column as shown
in Table 12.10. The middle three cells in second column contain the objective

TABLE 12.7

Excel-Solver Iteration-2 (also Final) Solution

TABLE 12.8

Tabular Representation of Model 12.4

X1 X2 S1 S2 S3

Objective function 100 60 0 0 0 RHS

Constraint 1 5 2 1 0 0 190
Constraint 2 4 3 0 1 0 180
Constraint 3 3 4 0 0 1 200
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function coefficients of the variables written in the first column. In the
present case, they are all zero.

For easy identification of the constraints, we have added a new column
(first one) to Table 12.11. Let us now fill in the bottom two rows in
Table 12.10 or Table 12.9.

To find the value of the bottom cell of column X1, we use the entries in the
constraint rows for C( j) and X1 columns. For each constraint row, we
multiply the cell of C( j) column with the cell of X1 column and then sum
them all. At this stage, their sum is zero. This value is recognized as Z( j) and
it is then subtracted from the coefficient of X1 in the objective function (as
shown in second row under X1), which is the value of the bottom cell in X1

column. That is C( j) ] Z( j)¼ (100 ] 0)¼ 100 here. The detailed calculations
are shown below:

C( j) X1 Multiplication

C1 0 5 0 3 5¼ 0
C2 0 4 0 3 4¼ 0
C3 0 3 0 3 3¼ 0

Z( j)¼ 0 þ 0 þ 0¼ 0
C( j) ] Z( j)¼ (100 ] 0)¼ 100

The value of the bottom cell of column X2 can be found using columns
C( j) and X2 as [60 ] (0 3 2 þ 0 3 3 þ 0 3 4)¼ ] 60. In a similar way, we can

TABLE 12.9

Model 12.4 with Additional Columns and Rows

X1 X2 S1 S2 S3

Basis C( j) 100 60 0 0 0 RHS Ratio
5 2 1 0 0 190
4 3 0 1 0 180
3 4 0 0 1 200

Z( j)
C( j) ] Z( j)

TABLE 12.10

Filling First Column of Table 12.9

X1 X2 S1 S2 S3

Basis C( j) 100 60 0 0 0 RHS Ratio
S1 0 5 2 1 0 0 190
S2 0 4 3 0 1 0 180
S3 0 3 4 0 0 1 200

Z( j)
C( j) ] Z( j)
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find for S1, S2, S3, and RHS columns as presented in Table 12.11. This table
represents the initial feasible solution. The C( j) ] Z( j) row is known as the
simplex criterion (evaluator=net evaluation) row. The C( j) ] Z( j) value
indicates the opportunity cost of not having one unit of the corresponding
value in the solution. However, it may not be found to be meaningful at the
initial solution stage.

The variables under the basis column are known as basic variables. The
values of the basic variables can be read directly from the RHS column.
The variables not in the basis are known as nonbasic variables. The nonbasic
variables have zero values. At this stage, the values of the decision variables
are X1¼ 0 and X2¼ 0.

To start the simplex iteration, we need to identify the entering variable
and the leaving variable in Table 12.11. The entering variable is a nonbasic
variable with the largest C( j) ] Z( j) value that is the largest opportunity cost.
As per Table 12.11, X1 is the entering variable with C( j) ] Z( j)¼ 100. The
column of the entering variable is recognized as the pivot column. To find
the leaving variable, we take the ratio of RHS and entry of pivot column for
each constraint (see the last column of Table 12.12). Table 12.12 is similar to
the Win QSB initial solution presented in Table 12.2.

The leaving variable is the one with the minimum ratio as shown in the
last column of Table 12.12. As the minimum ratio lies with constraint 1 (or
C1), the leaving variable is S1. The row of the leaving variable is recognized

TABLE 12.11

Filling the Bottom Row of Table 12.10

X1 X2 S1 S2 S3

Basis C( j) 100 60 0 0 0 RHS Ratio
C1 S1 0 5 2 1 0 0 190
C2 S2 0 4 3 0 1 0 180
C3 S3 0 3 4 0 0 1 200

Z( j) 0 0 0 0 0 0
C( j) ] Z( j) 100 60 0 0 0

TABLE 12.12

Filling the Last Column of Table 12.11

X1 X2 S1 S2 S3

Basis C( j) 100 60 0 0 0 RHS Ratio
C1 S1 0 5 2 1 0 0 190 38.00

C2 S2 0 4 3 0 1 0 180 45.00
C3 S3 0 3 4 0 0 1 200 66.67

Z( j) 0 0 0 0 0 0
C( j) ] Z( j) 100 60 0 0 0
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as the pivot row. The element at the intersection of the pivot row and the
pivot column is known as the pivot element.

Let us recall the graphical solution in Figure 12.9, which is redrawn here
as Figure 12.12 for ease of explanation. As you can see in Figure 12.12,
the points (38, 0), (45, 0), and (66.67, 0) are the intersection points of the
boundary lines of three constraints with X-axis. The point X1¼ 38 is the only
point that ensures feasibility. That is why we consider the minimum ratio
for selection of the leaving variable.

In the first iteration, we are required to replace the leaving variable S1 in
the basis by the entering variable X1, update the C( j) entry, and convert the
pivot column as a column of the identity matrix where the pivot element
must be one. To change the pivot column, it is necessary to perform a matrix
operation as follows:

. Divide row C1 by 5. The resulting row is shown in Table 12.13.

. Multiply the modified C1 (as shown in Table 12.13) by 4 and
subtract from C2. The resulting C2 row is shown in Table 12.14.

. Multiply the modified C1 (as shown in Table 12.13) by 3 and
subtract from C3. The resulting C3 row is shown in Table 12.15.

The Z( j) and C( j) ] Z( j) rows must now be updated. The Z( j) element under
the X1 column is (100 3 1 þ 0 3 0 þ 0 3 0 ¼ ) 100 and under the X2 column is
(100 3 0.4 þ 0 3 1.4 þ 0 3 2.8 ¼ ) 40. So the corresponding elements for the
C( j) ] Z( j) rows are (100 ] 100¼ ) 0 and (60 ] 40¼ ) 20, respectively are shown
in Table 12.16. Similarly, one can find the elements of the Z( j) and C( j) ] Z( j)
rows under the slack variables and Z( j) for RHS.

FIGURE 12.12
Feasible region.

(38, 0) 

(45, 0) 

(66.67, 0) 

Optimal point

X2
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80
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0
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Machining constraint 
5X1 + 2X2 � 190

Sanding constraint 
4X1 + 3X2 � 180

Assembly constraint 
3X1 + 4X2 � 200 
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TABLE 12.13

First Simplex Iteration—Changing Pivot Row

X1 X2 S1 S2 S3

Basis C( j) 100 60 0 0 0 RHS Ratio
C1 X1 100 1 0.4 0.2 0 0 38

C2 S2 0 4 3 0 1 0 180
C3 S3 0 3 4 0 0 1 200

Z( j) 0 0 0 0 0 0
C( j) ] Z( j) 100 60 0 0 0

TABLE 12.14

First Simplex Iteration—Changing C2 Row

X1 X2 S1 S2 S3

Basis C( j) 100 60 0 0 0 RHS Ratio
C1 X1 100 1 0.4 0.2 0 0 38
C2 S2 0 0 1.4 20.8 1 0 28

C3 S3 0 3 4 0 0 1 200
Z( j) 0 0 0 0 0 0
C( j) ] Z( j) 100 60 0 0 0

TABLE 12.15

First Simplex Iteration—Changing C3 Row

X1 X2 S1 S2 S3

Basis C( j) 100 60 0 0 0 RHS Ratio
C1 X1 100 1 0.4 0.2 0 0 38
C2 S2 0 0 1.4 ]0.8 1 0 28
C3 S3 0 0 2.8 20.6 0 1 86

Z( j) 0 0 0 0 0 0
C( j) ] Z( j) 100 60 0 0 0

TABLE 12.16

First Simplex Iteration—Changing Bottom Two Rows

X1 X2 S1 S2 S3

Basis C( j) 100 60 0 0 0 RHS Ratio
C1 X1 100 1 0.4 0.2 0 0 38
C2 S2 0 0 1.4 ]0.8 1 0 28
C3 S3 0 0 2.8 ]0.6 0 1 86

Z( j) 100 40 20 0 0 3800

C( j) 2 Z( j) 0 20 220 0 0
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After the first iteration, the solution is X1¼ 38 and X2¼ 0 with Z¼ 3800,
and the corresponding simplex tableau looks like Table 12.17. This is a
corner point (38, 0) as per the graphical solution. Is this solution optimum?
No—as there is a positive entry in the C( j) ] Z( j) row. So, one is required to
perform a further iteration. The new entering variable will now be X2, with
the highest C( j) ] Z( j) entry, for the next iteration.

For the second iteration, the new pivot column is highlighted in
Table 12.18 and the ratios are calculated in order to identify the leaving
variable. Table 12.18 is similar to the Win QSB iteration 1 solution as pre-
sented in Table 12.4.

As per the minimum ratio, S2 is the leaving variable. The iteration is
performed as follows:

. Replace S2 by X2 in the basis.

. Update C( j) for C2 (for X2).

. Divide row C2 of Table 12.18 by 1.4. The resulting row is shown in
Table 12.19.

. Multiply the modified C2 (as shown in Table 12.19) by 0.4 and
subtract from C1 of Table 12.18. The resulting C1 row is shown in
Table 12.19.

TABLE 12.17

Simplex Solution after First Iteration

X1 X2 S1 S2 S3

Basis C( j) 100 60 0 0 0 RHS Ratio
C1 X1 100 1 0.4 0.2 0 0 38
C2 S2 0 0 1.4 ]0.8 1 0 28
C3 S3 0 0 2.8 ]0.6 0 1 86

Z( j) 100 40 20 0 0 3800
C( j) ] Z( j) 0 20 ]20 0 0

TABLE 12.18

Simplex Method—Second Iteration

X1 X2 S1 S2 S3

Basis C( j) 100 60 0 0 0 RHS Ratio
C1 X1 100 1 0.4 0.2 0 0 38 95.00
C2 S2 0 0 1.4 20.8 1 0 28 20.00

C3 S3 0 0 2.8 ]0.6 0 1 86 30.71
Z( j) 100 40 20 0 0 3800
C( j) ] Z( j) 0 20 ]20 0 0
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. Multiply the modified C2 (as shown in Table 12.19) by 2.8 and
subtract from C3 of Table 12.18. The resulting C3 row is shown in
Table 12.19.

. Update the Z( j) and C( j) ] Z( j) rows.

The above table is same as the Win QSB solution presented in Table 12.6 and
the solution is optimum because there is no positive entry remaining for
nonbasic variables in the C( j) ] Z( j) row.

We believe it is now clear to the reader how Win QSB and Excel Solver
came up with the optimal solutions for the model solved. However one
must remember that

. a minimization problem must be changed into a maximization
problem when using this approach, and

. any zero and negative ratio must be ignored when identifying
leaving variables.

The above model involves less than equal to (�) constraints only. To handle
equal to (¼ ) and greater than equal to (�) constraints, we need artificial
variables and surplus variables to generate initial feasible solutions. For
examples on solving models with equal to and greater than equal to con-
straints and for further details on the simplex method, see one of the
operations research books listed in the bibliography section.

12.4 Branch-and-Bound Method

The branch-and-bound (B&B) method is widely used for solving integer
programming models. To demonstrate the method here, let us consider

TABLE 12.19

Simplex Solution after Second Iteration

X1 X2 S1 S2 S3

Basis C( j) 100 60 0 0 0 RHS Ratio
C1 X1 100 1 0 0.429 ]0.289 0 30

C2 X2 60 0 1 ]0.571 0.714 0 20

C3 S3 0 0 0 1 ]2.00 1 30

Z( j) 100 60 8.57 14.29 0 4200

C( j) ] Z( j) 0 0 ]8.57 ]14.29 0
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Model 12.1 once again but with different RHS1, say 200 instead of 190. We
identify this model as the following model:

Maximize Z ¼ 100X1 þ 60X2

Subject to

5X1 þ 2X2 � 200 Machining

4X1 þ 3X2 � 180 Sanding

3X1 þ 4X2 � 200 Assembly

X1 � 0 and X2 � 0 Nonnegativity

Model (12:5)

The LP solution using Win QSB, Solver, or LINGO provided X1¼ 34.29,
X2¼ 14.29 with Z¼ 4285.71. Obviously, this solution is not acceptable as the
number of tables and chairs is non-integer. After solving the model as
integer programming as shown in the following model 12.6, we get
X1¼ 33, X2¼ 16 with Z¼ 4260.

Maximize Z ¼ 100X1 þ 60X2

Subject to

5X1 þ 2X2 � 200 Machining

4X1 þ 3X2 � 180 Sanding

3X1 þ 4X2 � 200 Assembly

X1, X2 � 0 and integer Nonnegativity

Model (12:6)

Now we will describe how the software packages found this integer solu-
tion. First, let us present the iteration-wise solutions of both Win QSB and
Excel Solver.

Excel Solver Solution Win QSB Solution

Iteration X1 X2 Z X1 X2 Z

1 40 0 4000 34.29 14.29 4285.71
2 34.29 14.29 4285.71 35 12.5 4250
3 34 0 3400 — — Infeasible
4 34 14.67 4280 35.20 12 4240
5 40 0 4000 36 10 4200
6 35 12.5 4250 35 12 4220
7 34 0 3400 34 14.67 4280
8 34 14 4240 33.75 15 4275
9 33.75 15 4275 — — Infeasible

10 33 15 4200 33 16 4260

11 33 16 4260 34 14 4240
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The B&B algorithm can be described as follows:

. First solve the problem as a continuous problem that is an LP
problem. If the solutions satisfy integrality conditions, then stop.

. Assume that a variable x is required to be an integer, but is found
to be fractional. The portion of the feasible space indicated by
bxc< x <dxe cannot include any feasible integer solutions of x.
Therefore, a feasible integer value of x must satisfy one of the
two conditions: either x � bxc or x � dxe.

. When one applies these two conditions to the continuous LP, the
search space is divided into two mutually exclusive subproblems.

. The original problem has now been branched or divided into two
subproblems.

. One then proceeds by solving each of the subproblems as a con-
tinuous LP problem. Each subproblem contains the original model
plus an additional constraint for the above condition.

. If its optimum solution satisfies the integrality conditions then
stop. Otherwise, each subproblem must be divided further into
two subproblems by introducing an integer condition on one of its
integer variables that currently has a fractional value.

. Repeat the branching of subproblems until either all subproblems
have been explored or stopping criteria have been met. Note that
as feasible integer solutions are found they should be compared
with the current best integer solution, which is then updated if
necessary.

The efficiency of the computations can be considerably enhanced by
introducing the principle of bounding or fathoming. In the case when
the continuous optimum solution of a subproblem yields a worse
objective value than the one associated with the best available integer
solution of the parent problem, it is not necessary to explore that sub-
problem any further, because the integer solution will always be inferior
or equal to the continuous solution. Once a feasible integer solution is
found, its associated objective value can be used as an upper bound (for
minimization) or lower bound (for maximization) to discard inferior
subproblems.

To demonstrate how the software packages solve integer programming
models (using the B&B algorithm) we consider Model 12.6 presented earlier.
This model provides non-integer solutions, X1¼ 34.29, X2¼ 14.29 with
Z¼ 4285.71 when solving the problem as an LP model. Let us now branch
it using variable X1. For X1, there is no integer value between 34 and 35. That
means it will be either less than or equal to 34 or greater than or equal to 35.
So, the following are the subproblems:

Sarker/Optimization Modelling: A Practical Approach 43102_C012 Final Proof page 367 23.8.2007 2:47pm Compositor Name: VBalamugundan

Basic Optimization Techniques 367



Subproblem A

Maximize Z ¼ 100X1 þ 60X2

Subject to

5X1 þ 2X2 � 200

4X1 þ 3X2 � 180

3X1 þ 4X2 � 200

X1 � 35

X1 � 0 and X2 � 0

Model (12:7)

Solution: X1¼ 35, X2¼ 12.50, and Z¼ 4250

Subproblem B

Maximize Z ¼ 100X1 þ 60X2

Subject to

5X1 þ 2X2 � 200

4X1 þ 3X2 � 180

3X1 þ 4X2 � 200

X1 � 34

X1 � 0 and X2 � 0

Model (12:8)

Solution: X1¼ 34, X2¼ 14.67, and Z¼ 4280

These two subproblems associated with the original model are shown in
Figure 12.13 as branching.

FIGURE 12.13
First branching in B&B
approach.

X1 � 34 

Model 12.5
LP

X1 = 34.29
X2 = 14.29
 Z   = 4285.71

SP – A
Model 12.7
X1 = 35
X2 = 12.5
Z   = 4250 

SP – B
Model 12.8
X1 = 34
X2 = 14.67
Z   = 4280

X1 � 35 

Non-integer solution Non-integer solution
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As no subproblem (A and B in Figure 12.13) provided integer solution,
we would further branch them. First, we divide Subproblem A into
Subproblem A1 and Subproblem A2 and the resulting tree is shown in
Figure 12.14.

Subproblem A1

Maximize Z ¼ 100X1 þ 60X2

Subject to

5X1 þ 2X2 � 200

4X1 þ 3X2 � 180

3X1 þ 4X2 � 200

X1 � 35

X2 � 13

X1 � 0 and X2 � 0

Solution: Infeasible

Remarks: A1 cannot be branched as it is infeasible:

Model (12:9)

X 2 � 12 X
 2 � 13 

X1 � 35 X1 � 34 

Model 12.5
LP

SP – A
Model 12.7

SP – B
Model 12.8

No branching

Non-integer solution

SP – A1
Model 12.9

Infeasible

SP – A2
Model 12.10

Non-integer solution

X1 = 34.29
X2 = 14.29
 Z   = 4285.71

X1 = 35.20
X2 = 12
Z   = 4240

X1 = 35
X2 = 12.5
Z   = 4250 

X1 = 34
X2 = 14.67
Z   = 4280

FIGURE 12.14
Second level branching for Subproblem A.
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Subproblem A2

Maximize Z ¼ 100X1 þ 60X2

Subject to

5X1 þ 2X2 � 200

4X1 þ 3X2 � 180

3X1 þ 4X2 � 200

X1 � 35

X2 � 12

X1 � 0 and X2 � 0

Solution: X1 ¼ 35:20, X2 ¼ 12:00, and Z ¼ 4240

Remarks: Can be branched further using X1

Model (12:10)

As the Subproblem A1 is infeasible, it cannot be explored further. The
Subproblem A2 provided non-integer solution. So it will be branched fur-
ther, if necessary. Let us finish second level branching by dividing the
Subproblem B into Subproblems B1 and B2.

Subproblem B1

Maximize Z ¼ 100X1 þ 60X2

Subject to

5X1 þ 2X2 � 200

4X1 þ 3X2 � 180

3X1 þ 4X2 � 200

X1 � 34

X2 � 15

X1 � 0 and X2 � 0

Solution: X1 ¼ 33:75, X2 ¼ 15, and Z ¼ 4275

Remarks: Can be branched further using X1

Model (12:11)

Subproblem B2

Maximize Z ¼ 100X1 þ 60X2

Subject to

5X1 þ 2X2 � 200

4X1 þ 3X2 � 180

3X1 þ 4X2 � 200

X1 � 34

X2 � 14

X1 � 0 and X2 � 0

Solution: X1 ¼ 34, X2 ¼ 14, and Z ¼ 4240

Remarks: Integer solution, no further branching

Model (12:12)
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The Subproblem B1 must be further explored as it provided a non-integer
solution with a Z value greater than 4240 and it is not possible to branch
Subproblem B2 since it provided an integer solution (see Figure 12.15). At
this stage, we will divide Subproblem A2 into Subproblems A2A and A2B
as follows:

Subproblem A2A

Maximize Z ¼ 100X1 þ 60X2

Subject to

5X1 þ 2X2 � 200

4X1 þ 3X2 � 180

3X1 þ 4X2 � 200

X1 � 35

X2 � 12

X1 � 36

X1 � 0 and X2 � 0

Solution: X1 ¼ 36, X2 ¼ 10, and Z ¼ 4200

Remarks: Integer solution, no further branching

Model (12:13)

X1 � 35 

Model 12.5
LP

SP – A
Model 12.7

SP – B
Model 12.8

No branching

SP – A1
Model 12.9

Infeasible

SP – A2
Model 12.10

Non-integer
solution

Non-integer
solution

SP – B1
Model 12.11

SP – B2
Model 12.12

Integer solution
no branching 

X1 = 34.29
X2 = 14.29
 Z   = 4285.71

X1 = 35
X2 = 12.5
Z   = 4250 

X1 = 35.20
X2 = 12 
Z   = 4240 

X1 = 34 
X2 = 14 
Z   = 4240

X1 = 33.75 
X2 = 15 
Z   = 4275

X1 = 34
X2 = 14.67
Z   = 4280

X2 � 13 X2 � 15X2 � 12 X2 � 14

X1 � 34 

FIGURE 12.15
Second level branching for Subproblem B.
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Subproblem A2B

Maximize Z ¼ 100X1 þ 60X2

Subject to

5X1 þ 2X2 � 200

4X1 þ 3X2 � 180

3X1 þ 4X2 � 200

X1 � 35

X2 � 12

X1 � 35

X1 � 0 and X2 � 0

Solution: X1 ¼ 35, X2 ¼ 12, and Z ¼ 4220

Remarks: Integer solution, no further branching

Model (12:14)

Both Subproblems A1A and A2B produced integer solutions. So, they can-
not be further explored (see Figure 12.16). Now we branch Subproblem B1
into Subproblems B1A and B1B as follows:

Subproblem B1A

Maximize Z ¼ 100X1 þ 60X2

Subject to

5X1 þ 2X2 � 200

4X1 þ 3X2 � 180

3X1 þ 4X2 � 200

X1 � 34

X2 � 15

X1 � 34

X1 � 0 and X2 � 0

Solution: Infeasible

Remarks: Cannot be branched further

Model (12:15)
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Subproblem B1B

Maximize Z ¼ 100X1 þ 60X2

Subject to

5X1 þ 2X2 � 200

4X1 þ 3X2 � 180

3X1 þ 4X2 � 200

X1 � 34

X2 � 15

X1 � 33

X1 � 0 and X2 � 0

Solution: X1 ¼ 33, X2 ¼ 16, and Z ¼ 4260

Remarks: Integer solution, no further branching

Model (12:16)

Model 12.5
LP

SP – A
Model 12.7

SP – B 
Model 12.8 

No branching 

SP – A1
Model 12.9

Infeasible

SP – A2
Model 12.10

Non-integer
solution

SP – B1
Model 12.11

SP – B2
Model 12.12

Integer solution
no branching 

Integer solution
no branching 

SP – A1A
Model 12.13

SP – A2B
Model 12.14

Integer solution
no branching 

X1 = 35.20
X2 = 12
Z   = 4240 

X1 = 33.75
X2 = 13
Z   = 4275 

X1 = 34 
X2 = 14
Z   = 4240 

X1 = 34.29
X2 = 14.29 
Z   = 4285.71 

X1 = 35
X2 = 12.5
Z   = 4250 

X1 = 34 
X2 = 14.67
Z   = 4280

X1 � 36
X1 � 35

X2 � 13

X1 � 35 X1 � 34

X2 � 15X2 � 12 X2 � 14

X1 = 35
X2 = 12 
Z   = 4220

X1 = 36 
X2 = 10 
Z   = 4200

FIGURE 12.16
Branching for Subproblem A2.
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Subproblem B1A is infeasible. The solution of Subproblem B1B is the best
integer solution among all the subproblem integer solutions, which is also
same as the Win QSB’s solution (see Figure 12.17).

12.5 Summary

In this chapter, we have described three basic optimization techniques briefly
illustrated by numerical examples. Although the book is not intended to cover
the optimization algorithms in depth, these basic techniques will provide

Model 12.5
LP

SP – A
Model 12.7

SP – B
Model 12.8

SP – A1
Model 12.9

Infeasible

SP – A2
Model 12.10

SP – B1
Model 12.11

SP – B2
Model 12.12

Integer solution
no branching 

No branching 

Integer solution 
no branching 

SP – A1A
Model 12.13

SP – A2B
Model 12.14

Integer solution 
no branching 

No branching 

SP – B1A
Model 12.15

Infeasible

SP – B2B*
Model 12.16

Integer solution
no branching 

X1 = 35.20
X2 = 12 
Z   = 4240 

X1 = 36 
X2 = 10 
Z   = 4200

X1 = 35 
X2 = 12 
Z   = 4220

X1 = 33 
X2 = 16 
Z   = 4260

X1 = 34
X2 = 14 
Z   = 4240 

X1 = 33.75
X2 = 15
Z   = 4275

X1 = 35
X2 = 12.5
Z   = 4250 

X1 = 34 
X2 = 14.67 
Z   = 4280

X1 = 34.29 
X2 = 14.29 
Z   = 4285.71

X2 � 13

X1 � 36

X1 � 35

X1 � 34
X1 � 33

X2 � 12 X2 � 14X2 � 15

X1 � 35 X1 � 34

FIGURE 12.17
Complete branching.
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readers with a view of how the software packages were developed to solve the
optimization problems. As you are aware, most operations research and
optimization books cover solution techniques in depth; so, one can consult
such a book if one is interested in delving more deeply into optimization
algorithmic approaches.

Exercises

1. Solve graphically the following LP models:

(a) Maximize Z ¼ 9X1 þ 3X2

Subject to

2X1 þ 3X2 � 13

2X1 þ X2 � 5

X1, X2 � 0

(b) Maximize Z ¼ 2X1 þ 5X2

Subject to

X1 þ 4X2 � 24

3X1 þ X2 � 21

X1 þ X2 � 9

X1, X2 � 0

(c) Maximize Z ¼ 9X1 þ 10X2

Subject to

11X1 þ 9X2 � 9900

7X1 þ 12X2 � 8400

6X1 þ 16X2 � 9600

X1, X2 � 0

2. Solve the following LP models using simplex method:

(a) Maximize Z ¼ 9X1 þ 3X2

Subject to

2X1 þ 3X2 � 13

2X1 þ X2 � 5

X1, X2 � 0
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(b) Maximize Z ¼ 3X1 þ 4X2

Subject to

2X1 þ 3X2 � 6

X1 þ 2X2 � 20

X1, X2 � 0

(c) Maximize Z ¼ 3X1 þ 2X2 þ 3X3

Subject to

X1 þ 2X2 þ 3X3 � 18

3X1 þ 4X2 þ X3 � 20

X1, X2, X3 � 0

3. Solve the following integer programming models using B&B method.

Hint: Use Excel Solver, LINGO, or any other optimization packages
for solving the initial linear program and the subsequent linear sub-
problems.

(a) Maximize Z ¼ 9X1 þ 3X2

Subject to

2X1 þ 3X2 � 13

2X1 þ X2 � 5

X1, X2 � 0 and integer

(b) Maximize Z ¼ 2X1 þ 5X2

Subject to

X1 þ 4X2 � 24

3X1 þ X2 � 21

X1 þ X2 � 9

X1, X2 � 0 and integer

(c) Maximize Z ¼ 3X1 þ 2X2 þ 3X3

Subject to

X1 þ 2X2 þ 3X3 � 18

3X1 þ 4X2 þ X3 � 20

X1, X2, X3 � 0 and integer
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Section IV

Practical Problems
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13
Models for Practical Problems I

13.1 Introduction

Many mathematical models used for practical optimization problems have
been reported in the literature. The articles describing these models have
been published in different journals, conference proceedings, reports, and
books under different disciplines and organizations. Although it is infea-
sible to compile a compendium of all the models and present them in one or
two chapters, we present a few representative problems and their models
referring to the published materials.

In this chapter, we briefly present a number of practical problems where
optimization models were developed for solving them. The problems dis-
cussed are crop planning, power generation planning, water supply man-
agement, supply chain, coal upgrading and marketing, and general blending.
We also discuss their mathematical models and related issues.

13.2 A Crop Planning Problem

We present here a crop planning problem that is similar to one presented by
Sarker and Quaddus (2002) and Sarker et al. (1997). Assume that a country
grows a wide variety of crops in different seasons, and it has different types of
soils. The yield rate, the cost of crop cultivation, and the return from the crops
are functions of soil characteristics, regional aspects, the crop being pro-
duced, cropping pattern, and method (crop being produced and their
sequence, irrigation, nonirrigation, etc.). We assume that the planning period
is 1 year long. For a single-cropped area, there are a number of alternative
crops (or crop groups) from which the crops to be cultivated may be chosen.
Similarly, there are many different combinations of crops for double-cropped
(two crops in a period) and triple-cropped (three crops in a period) areas.
Different combinations produce different outputs. The utilization of the land
for appropriate crops is the key issue for the crop planning problem. So the
problem is to determine an annual crop production plan that would provide
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the area to be used for different crops while fulfilling the demand, land,
capital, import, and region limitations.

Sarker et al. (1997) formulated the problem as a single-objective linear
program (LP) with an objective of contribution maximization. Later, Sarker
and Quaddus (2002) reformulated this problem as a multi-objective problem
and solved it using the goal programming (GP) technique. In this section,
we discuss both the single- and multi-objective crop planning models.

13.2.1 Linear Programming Model

The problem is formulated here as a linear programming model.* As per
our problem description above, we have a number of alternative crops for
single-cropped areas from which we can cultivate one crop in a year. Simi-
larly, we have many combinations of crops for double- and triple-cropped
areas. From the above considerations, the following variables, coefficients,
and data can be identified and defined:

Parameters:

n1 ¼number of alternative crops for single-cropped areas

n2 ¼number of crop combinations for double-cropped areas

n3 ¼number of crop combinations for triple-cropped areas

N1j ¼ a crop in each j for single-cropped area ( j is an index crop
combination)

N2j ¼ a set of crops (two crops) in each j for double-cropped area

N3j ¼ a set of crops (three crops) in each j for triple-cropped area

YRijk¼ yield rate that is the amount of production per unit area for
crop i of crop combination j in soil type k

CPijk¼ cost of production per unit area for crop i of crop combination
j in soil type k

Bijk ¼ contribution that is the benefit that can be obtained per unit
area of land from crop i of crop combination j in soil type
k¼ (Pi 3 Aijk ] CPijk)

Pi ¼market price of crop i per metric tonne

ICi ¼ contribution from import of crop i (¼market revenue ] import
cost) for crop i

Di ¼ yearly demand of crop i

Lk ¼ available area of soil type k

LTk ¼ land type coefficient for soil type k

* Produced as a slightly modified version of Sarker, R., Talukdar, S., and Haque, A., Appl.

Math. Model., 21, 621, 1997. With permission from Elsevier.
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Ca ¼ capital available, this indicates the total amount of money that
can be invested for cropping

CE ¼ set of crops that can be imported

CL1¼ set of crops having area limitation

CL2¼ set of crops having import limitation

A ¼ area suitable and available for crop when k¼ 1

IL ¼upper limit of total crop import

Variables:

Xijk¼ area of land to be cultivated for crop i of crop combination j in
soil type k

Ii ¼ amount of crop i that should be imported

The LP model for the crop planning problem can then be developed as
follows:

Objective function:
The objective is to maximize the total contribution (from cultivated plus
imported crops) that can be obtained from cropping in a single-crop year.

Maximize Z ¼
Xn1

j¼1

X

i2N1j

Bij(k¼1)Xij(k¼1) þ
Xn2

j¼1

X

i2N2j

Bij(k¼2)Xij(k¼2)

þ
Xn3

j¼1

X

i2N3j

Bij(k¼3)Xij(k¼3) þ
X

i2CE

ICiIi (13:1)

The first, second, third, and fourth terms represent the contribution from
single-crop land, double-crop land, triple-crop land, and imported crop,
respectively. Note that there is only one crop for each j in single-crop
land, two crops in double-crop land, and three crops in triple-crop land.

Constraints:
Demand constraint: The sum of local production and the imported quantity
of crop i in a year must be greater than or equal to the total requirements in
the country.

X

j

X

k

YRijk Xijk þ Ii2CE � Di 8i (13:2)

Soil constraint: The total land used for a given type of soil must be less than
or equal to the total available land of that type.

X

i

X

j

LTk Xijk � Lk 8k (13:3)
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Here, for k¼ 1, 2, and 3, the coefficients (LTk) are 1, 1⁄2, and 1⁄3, respectively. If
a piece of land is used by two crops (in a double-cropped land) one after
another (consecutive production) in a given year, it is assumed equivalent to
the use of half the land for one of these two crops in a year—that is LTk¼ 1⁄2.

This assumption makes the constraint (Equation 13.3) simpler and it is
required only for land constraint.

Capital constraint: The total amount of money that can be spent for crop
production must be less than or equal to the capital available.

X

i

X

j

X

k

CPijk Xijk � Ca (13:4)

Contingent constraint: The area used for any crop under a crop combination
for double- or triple-cropped land must be equal for every crop. For
example, in a double-cropped land, the area used by two crops belonging
to any crop combination must be equal.

X(i12N2j) j(k¼2) � X(i22N2j) j(k¼2) ¼ 0 8j (13:5)

In double-cropped land, for a given crop combination j there are only two
crops i1 and i2, where i1 is the first crop and i2 is the second crop in the
combination. Both crops use the same area of land but one after another. In a
triple-cropped land, the area used by three crops belonging to any crop
combination must be equal.

X(i12N3j) j(k¼3) � X(i22N3j) j(k¼3) ¼ 0 8j (13:6)

X(i22N3j) j(k¼3) � X(i32N3j) j(k¼3) ¼ 0 8j (13:7)

Here, i1 is the first crop, i2 is the second crop, and i3 is the third crop for
combination j.

Area and import bound constraint: Because of soil characteristics and
regional aspects, in some regions, the amount of area to be used for certain
crops is restricted. For example, the unsuitability of certain soils for fruit
cultivation needs to set an area limit for fruit production. Similarly, a
constraint needs to be set for import restrictions as there is an upper limit
on importation of some crops.

Area bound:
X

i2CL1

Xijk � A 8j, k (13:8)

Import bound:
X

i2CL2

Ii � IL (13:9)

Nonnegativity constraint: The decision variables must be greater than or
equal to zero.

Xijk � 0 8i, j, k and

Ii � 0 8i (13:10)
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13.2.2 Goal Programming (GP) Model

In this section, we have attempted to formulate a GP model for the above
problem, as a GP model may represent the problem better. To formulate a
GP model, we need to convert the goals into goal constraints. The following
three goals are considered in this problem where the import reduction is
chosen as the first goal and the capital requirements as the second and the
contribution as the third.

1. Import restriction: minimize the dependency on import of basic
foods like cereal

2. Capital restriction: minimize the investment required for culti-
vation

3. Contribution: maximize the return from cultivated land

The goal constraints of the case problem are

Import goal constraint

X

i2CL2

Ii þ d�1 � dþ1 ¼ IL (13:11)

Capital goal constraint

X

i

X

j

X

k

CPijk Xijk þ d�2 � dþ2 ¼ Ca (13:12)

Contribution goal constraint

Xn1

j¼1

X

i2N1j

Bij(k¼1) Xij(k¼1) þ
Xn2

j¼1

X

i2N2j

Bij(k¼2) Xij(k¼2)

þ
Xn3

j¼1

X

i2N3j

Bij(k¼3) Xij(k¼3) þ
X

i2CE

ICiIi þ d�3 � dþ3 ¼ ECon (13:13)

where
ECon¼ expected contribution per year
d�i and dþi (i¼ 1, 2, and 3) are the underachievement and overachieve-
ment deviations from the goals

In GP, it is required to set a target for each goal. These target values are
used as the right-hand side (RHS) value of the goal constraints. The RHS
values for import goal restrictions and capital goal restrictions would be same
as the corresponding LP value. However, we need to decide=determine a
target for the RHS (defined as ECon) for the contribution goal restriction.

The objective of the goal program is to minimize the weighted sum of
all undesirable deviations. In our case, following are the undesirable
deviations:
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. Excess import than the set target or overachievement of import
expectation dþ1

. Overuse of capital or overachievement of capital availability dþ2

. Less contribution or underachievement of contribution target d�3

So the objective function of the GP is

Minimize Z1 ¼ w1 dþ1 þ w2 dþ2 þ w3 d�3 (13:14)

Where, w1, w2, and w3 are the weights assigned to the undesirable devi-
ations.

So the resulting GP formulation is

Minimize Z1 ¼w1 dþ1 þw2 dþ2 þw3 d�3

Subject to
X

i2CL2

Iiþ d�1 � dþ1 ¼ b

X

i

X

j

X

k

CPijk Xijkþ d�2 � dþ2 ¼Ca

Xn1

j¼1

X

i2N1j

Bij(k¼1)Xij(k¼1)þ
Xn2

j¼1

X

i2N2j

Bij(k¼2)Xij(k¼2)

þ
Xn3

j¼1

X

i2N3j

Bij(k¼3)Xij(k¼3)þ
X

i2CE

ICiIiþ d�3 � dþ3 ¼ ECon Model (13:1)

X

j

X

k

YRijk Xijkþ Ii2CE �Di 8i

X

i

X

j

LTk Xijk � Lk 8k

X(i12N2j)j(k¼2)�X(i22N2j)j(k¼2) ¼ 0 8j

X(i12N3j)j(k¼3)�X(i22N3j)j(k¼3) ¼ 0 8j

X(i22N3j)j(k¼3)�X(i32N3j)j(k¼3) ¼ 0 8j
X

i2CL1

Xijk �A 8j,k

X

i2CL2

Ii � b

Xijk � 0, Ii � 0, dþi � 0, and d�i � 0 8i, j,k
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13.3 Power Generation Planning

A long-term power generation plan considers the operational schedule of
existing power-generating units and the installation schedule of new plants
for meeting electricity demand, for a number of future years, at minimum
possible cost. The electricity demand is described by a load duration curve
(LDC) as is shown in Figure 13.1. The area under the LDC represents the
requirements of electricity production in megawatt-hours. In order to keep
the model simple such as linear, the LDC is approximated by a piecewise-
constant function as shown as a histogram (or step function) in Figure 13.1.
Bar 1 refers to the minimum load, bar 4 to peak load, and two intermediate
bars represent middle-load demand.

In any company=country, a number of different types of technology,
such as steam turbines, gas turbines, hydro, combined cycle and diesel
cycle, are used for electricity generation. These power-generating units
require different inputs, installation costs, and variable costs. In addition,
they have different technical lives and follow different maintenance policies.
The planning problem is to find the operations schedule of existing
units, the new generation units to be installed in future, and the installa-
tion schedule of new units by minimizing the sum of installation and
operating costs for a given number of years while not violating the tech-
nical and financial constraints. An LP model for such a problem is
formulated below.

13.3.1 Linear Programming Model

The parameters and decision variables are defined as follows:

Hours

D
em

an
d

4

1
2

3

0 910 2190 5840 8760

FIGURE 13.1
The load duration curve (LDC).
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Parameters:

CEit ¼ capacity (MW) of existing units type i in period t

TDp ¼duration of load block p in hours

AFit ¼ availability factor for type i in period t

PDpt¼maximum power demand in MW in a load block p in a period t

VCit ¼ variable cost (fuel cost plus other variable ($=MW-h) for plant
type i in period t) for both existing and new

FCit ¼ fixed cost (annual investment cost plus annual operating and
maintenance costs, $=MW-h) for plant type i in period t (for
newly proposed)

Index:

i ¼plant type as discussed above, i¼ 1, I

t ¼ time period, t¼ 1, T

p¼ load duration block, p¼ 1, P, in a given period

Variables:

Xit ¼ capacity required (MW) for new units of type i in period t

CXi ¼maximum capacity (MW) of type i required to install during
the entire planning horizon

OXipt¼ output used (MW) from a new unit type i in load block p and
during period t

OEipt¼ output used (MW) from an existing type i in load block p and
during period t

Objective Function:
The objective is to minimize the total fixed costs plus the variable costs for
the entire planning horizon.

Minimize Z ¼
XP

p¼1

TDp

XI

i¼1

XT

t¼1

VCit(OXipt þOEipt)

þ
XI

i¼1

XT

t¼1

FCitXit (13:15)

The first term represents the variable costs of existing units plus newly
proposed plants. The second term represents the fixed cost of new plants
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to be installed. The fixed cost for the existing plants is ignored here since it
has no influence on the optimization process under consideration.

Constraints:
Capacity constraint: The output of each type of power-generation unit
cannot exceed the total capacity of the existing or planned units of this
type, multiplied by the corresponding availability factor in each load
block of a given year t:

Existing plants: OEipt � AFitCEit for all i, p, and t (13:16)

New plants: OXipt �AFitXit � 0 for all i, p, and t (13:17)

Demand satisfaction: The power demand at each load block, in any period,
must be satisfied from the existing and new plant generation.

XI

i¼1

OXipt þOEipt

� �
� PDpt for all p and t (13:18)

New plant constraint: Once a certain type of plants with a given capacity is
added, that plant will be retained throughout the planning horizon. In
addition, further capacity may be added in a future period. For example,
suppose the model has decided to install a new plant of type i¼ 1 with
50 MW capacity in period 1, it will exist in the system until the technical
life of this unit is expired. To ensure this, the following constraints are
necessary:

Xitþ1 � Xit

or Xitþ1 � Xit � 0 for all i and t (13:19)

Note that the length of the planning horizon, considered in this problem, is
less than the technical life of any new power-generating units available in
the market.

Management preference for new plants: Management may prefer certain
types of technology over others or like to have all the technologies in
certain ratios.

The maximum capacity required from each new type i can be found using
the following constraints:

CXi � Xit for all i and t

or CXi � Xit � 0 for all i and t (13:20)

Then the total capacity required from all new types of plants is
PI

i¼1

CXi:
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Now the management preference constraint can be written as follows:

CXi �Wi

XI

i¼1

CXi for some i0s

or CXi �Wi

XI

i¼1

CXi � 0 for some i0s (13:21)

where Wi is a fraction set by the management to their preferences. For
example, if the management wants 50% of new capacity should be com-
bined cycles (i¼ 4), then set W4¼ 0.50. Note that

P

i

Wi must be equal to 1.0.
The final LP model is

Minimize Z ¼
XP

p¼1

TDp

XI

i¼1

XT

t¼1

VCit OXipt þOEipt

� �
þ
XI

i¼1

XT

t¼1

FCitXit

Subject to

OEipt � AFitCEit, for all i, p, and t

OXipt �AFitXit � 0 for all i, p, and t

XI

i¼1

OXipt þOEipt

� �
� PDpt for all p and t

Xitþ1 � Xit � 0 for all i and t Model (13:2)

CXi � Xit � 0 for all i and t

CXi �Wi

XI

i¼1

CXi � 0 for selected i0s

OXipt, OEipt, Xit, CXi � 0 8i, p, t

Calculation of the number of constraints (considering I¼ 5, P¼ 4,
and T¼ 6):

. Capacity¼ 2 3 I 3 P 3 T¼ 2 3 5 3 4 3 6¼ 240

. Demand satisfaction¼ P 3 T¼ 4 3 6¼ 24

. New plant¼ I 3 T¼ 5 3 6¼ 30

. New plant capacity required¼ I 3 T¼ 5 3 6¼ 30

. Management preference¼ I¼ 5

Total number of constraints¼ 240 þ 24 þ 30 þ 30 þ 5¼ 329.
Total variables required¼ (2 3 I 3 P 3 T) þ (I 3 T) þ I¼ I(1þTþ2PT)
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With I¼ 5, P¼ 4, and T¼ 6, there are 120 OXipt variables, 120 OEipt vari-
ables, 30 Xit variables, and 5 CXi variables, which make a total of 275
variables.

13.3.2 Multi-Objective Optimization Model

Mavrotas et al. (1999) considered a bi-objective model for power generation
planning. The second objective in their model was to minimize the total
amount of SO2 (sulfur dioxide) emissions (in tonnes) produced annually
from the electricity generation sector. These emissions are responsible for
serious impacts on human health and the natural environment. In addition
to SO2, we believe it is important to minimize the total amount of CO2

(carbon dioxide) emissions, which is a major concern for the greenhouse
gas effect. So the above model can be reformulated with three objectives as
follows.

The first objective is to minimize the total fixed costs plus the variable
costs for the entire planning horizon.

Minimize Z1 ¼
XP

p¼1

TDp

XI

i¼1

XT

t¼1

VCit OXipt þOEipt

� �
þ
XI

i¼1

XT

t¼1

FCitXit (13:22)

The second objective is to minimize the total amount of SO2 emissions (in
tonnes) produced, from electricity generation, during the entire planning
horizon.

Minimize Z2 ¼
XT

t¼1

XI

i¼1

ESi

XP

p¼1

TDp OXipt þOEipt

� �
(13:23)

where ESi is the SO2 emission factor for the ith type units (tonne SO2=MW-h)
The third objective is to minimize the total amount of CO2 emissions (in

tonnes) produced, from electricity generation, during the entire planning
horizon.

Minimize Z3 ¼
XT

t¼1

XI

i¼1

ECi

XP

p¼1

TDp(OXipt þOEipt) (13:24)

where ECi is the CO2 emission factor for the ith type units (tonne CO2=
MW-h)

The final form of the multi-objective model is as follows:
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Minimize Z1 ¼
XP

p¼1

TDp

XI

i¼1

XT

t¼1

VCit OXipt þOEipt

� �
þ
XI

i¼1

XT

t¼1

FCitXit

Minimize Z2 ¼
XT

t¼1

XI

i¼1

ESi

XP

p¼1

TDp OXipt þOEipt

� �

Minimize Z3 ¼
XT

t¼1

XI

i¼1

ECi

XP

p¼1

TDp OXipt þOEipt

� �

Subject to

OEipt � AFitCEit for all i, p, and t

OXipt �AFitXit � 0 for all i, p, and t

XI

i¼1

OXipt þOEipt

� �
� PDpt for all p and t

Xitþ1 � Xit � 0 for all i and t Model (13:3)

CXi � Xit � 0 for all i and t

CXi �Wi

XI

i¼1

CXi � 0 for selected i0s

OXipt, OEipt, Xit, CXi � 0 8i, p, t

13.4 A Water Supply Problem

Consider a water supply system in any big city. Suppose there are a number
of sources for water supply such as underground wells, rivers, and rain-
water collected in reservoirs. Besides meeting the total demand for water in
the city, it is extremely important to maintain the water quality for human
consumption as per the World Health Organization (WHO) standards. In
the past, underground water used to be considered as the safest source of
drinking water. Now, the major concern with this water is the high level of
chlorides, nitrates, and arsenic content. As per WHO report in 1996, nitrate
levels above 150 mg=L pose an extreme risk to infants’ health in the form of
blue baby syndrome. In addition, high nitrates may create carcinogenic
effects in adults (Cantor, 1997). Arsenic, widely known as poison, is a
common health hazard to living beings. Inorganic arsenic is a documented
human carcinogen. Although the chlorides are not as harmful as nitrates,
the salinity it causes, makes water unacceptable for drinking. As per WHO
guidelines for drinking water quality (1993), the levels of chlorides, nitrates,
and arsenic should be 250 mg=L, 50 mg=L, and 0.01 mg=L, respectively.
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To reduce the above chemicals in the water supply, to an acceptable
level, one can use sophisticated chemical treatments. However, it would
make the drinking water unaffordable to most citizens due to its high
treatment costs. So it is good neither for the water supply business nor
for general consumers. An alternative is to appropriately mix water from
different sources as the levels of the chemical content vary from one
underground source to other and the surface water is much better in
quality. So it is a problem of optimally mixing the water from different
sources at minimum possible cost while satisfying the demand, supply, and
quality constraints.

We assume that a water supply network has a number of water sources
and several water-treatment (here mixing) facilities. Water is distributed,
from the treatment facilities, to the individual consumers through regional
nodes and storage facilities. We restrict our problem boundary to water
sources and treatment facilities as our main problem is to appropriately
mixing water.

13.4.1 Linear Programming Model

First we formulate the problem as an LP model.

Parameters:

I ¼number of sources (index i)

J ¼number of water treatment facilities (index j)

K ¼number of quality parameters (index k)

Si ¼water supply from source i (liter=period)

Dj ¼water demand from treatment facility j (liter=period)

Cij ¼ supply cost per unit from water source i to treatment facility j

Tj ¼ treatment cost per unit at facility j

Qik ¼ amount of quality parameter k in water from source i
(amount per liter)

Qmaxk¼maximum allowable amount of quality parameter k for
water consumption (amount per liter)

Decision variables:
Xij¼ the amount of water supplied from source i to treatment facility j

Objective function:
The objective is to minimize the total cost of water supply and water
treatment in the facilities.

Minimize Z ¼
X

i

X

j

CijXij þ
X

j

Tj

X

i

Xij (13:25)
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Constraints:
The amount of water supply from each source, at any period, must be less
than or equal to a given amount or capacity.

X

j

Xij � Si 8i (13:26)

The amount of water treated in a facility, at any period, must be greater than
or equal to the demand at that facility.

X

i

Xij � Dj 8j (13:27)

The amount of any quality parameter k in supply water supplied to a facility
j must be less than or equal to the maximum amount allowed for that
indicator.

X

i

QikXij � Q max k

X

i

Xij 8j, k (13:28)

So the final model is

Minimize Z ¼
X

i

X

j

CijXij þ
X

j

Tj

X

i

Xij

Subject to
X

j

Xij � Si 8i

X

i

Xij � Dj 8j
X

i

QikXij �Q max k

X

i

Xij � 0 8j, k

Xij � 0 8i, j

Model (13:4)

Agha (2006) developed a GP model for handling water quality management
problem of the Gaza Strip where the author considered two quality para-
meters—the amount of nitrates and chlorides. In addition to water alloca-
tion plan, he determined the location of reservoirs as a separate case under
the overall water management problem.

13.4.2 Goal Programming Model

The above model can be formulated as a GP model. The objective of the GP
model is to minimize the weighted sum of all undesirable deviations. In
this model, the deviational variables and weight parameters are defined
as follows:
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dþjk ¼ overachievement deviational variables for facility j quality
parameter k

d�jk ¼underachievement deviational variables for facility j quality
parameter k

Wjk¼weights of deviational variables for facility j quality parameter k

The final GP model is

Minimize Z ¼
X

j

X

k

Wjkdþjk

Subject to
X

j

Xij � Si 8i

X

i

Xij � Dj 8j
X

i

QikXij �Q max k

X

i

Xij þ d�jk � dþjk ¼ 0 8j, k

Xij � 0 8i, j

d�jk , dþjk � 0 8j, k

Model (13:5)

13.5 A Supply Chain Problem

In this section, we will model a supply chain problem. The first step of any
supply chain model is to develop a supply chain network representing the
material sources, intermediate processes and storages, destinations, and
flow paths. We consider a supply chain network as shown in Figure 13.2.
In the network, there are a number of plants that supply finished goods to a
number of silos and packaging lines. The silos store the products and
deliver to the commercial customers throughout the year. On the other

Plant 1 

Plant 2 

Plant Z 

Silos

Packaging
lines

Distribution
center

Retailers /
customers

Commercial 
customers

FIGURE 13.2
A sample supply chain network.
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hand, the packaging lines pack the products for household consumption
and subsequently the products are stored in warehouses or distribution
centers. Finally, the packaged products are supplied to the retailers.

For formulating the above supply chain problem, we define the following
nodes from the production facilities to the customers end:

NPF ¼ set of production facilities

NPL ¼ set of packaging lines

NDC¼ set of distribution centers

NSB ¼ set of silos for bulk storages

NCC¼ set of commercial customers require bulk delivery

NRD¼ set of retailers require packaged goods

N ¼ set of all nodes in the network

where, N ¼ NPF [NPL [NDC [NSB [NCC [NRD

The parameters can be defined as follows:

Dij ¼ the distance between nodes i and j

Cij ¼ the cost per unit distance traveled between nodes i and j

SCi ¼ the storage capacity at node i for bulk storage, if i 2 NSB

SDi ¼ the storage capacity at distribution center i, if i 2 NDC

PCi ¼ the production capacity of plant i, if i 2 NPF

PLi ¼ the packaging line capacity of line i, if i 2 NPL

CDi¼ the demand of commercial customer i, if i 2 NCC

RDi¼ the demand of retailer i, if i 2 NRD

The decision variable of the supply chain problem can be defined as

Xij¼ the quantity of goods transported between nodes i and j

The objective of the problem is to minimize the overall transportation cost
between all nodes of the distribution network. We assume that the total cost
between any two nodes is a linear function of the distance between these
two nodes and the cost per unit distance.

Minimize Z ¼
X

i2N

X

j2N

CijDijXij (13:29)

Note that Cij is zero if an arc (i, j) does not exist.

Constraints:
Production capacity: The goods supplied from a plant must be less than or
equal to its production capacity.
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X

j2NPL[NSB

Xij � PCi 8i 2 NPF (13:30)

Packaging capacity: The quantity of goods supplied from all production
facilities to any packaging line must be less than or equal to its packaging
capacity.

X

i2NPF

Xij � PLj 8j 2 NPL (13:31)

Silo capacity: The quantity of goods supplied from all production facilities
to any silo must be less than or equal to its capacity.

X

i2NPF

Xij � SCj 8j 2 NSB (13:32)

Distribution center capacity: The quantity of goods supplied from all pack-
aging lines to any distribution center must be less than or equal to its
capacity.

X

i2NPL

Xij � SDj 8j 2 NDC (13:33)

Demand constraint: The total goods supplied to either commercial cus-
tomers or retailers must be greater than or equal to their demand.

X

i2NSB

Xij � CDj 8j 2 NCC Commercial customers (13:34)

X

i2NDC

Xij � RDj 8j 2 NRD Retailers (13:35)

The flow of goods must be balanced in each intermediate node. The follow-
ing equations represent the flow balance constraints of our supply chain
network.

Plant-silo-customer Path: The amount of goods received by all commer-
cial customers from a silo must equal to the total amount received by the silo
from all production facilities.

X

i2NPF

Xij ¼
X

k2NCC

Xjk j 2 NSB (13:36)

Plant-packaging-distribution center path: The amount of goods received by
all distribution centers from a packaging line must equal to the total amount
received by the packaging line from all production facilities.
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X

i2NPF

Xij ¼
X

k2NDC

Xjk j 2 NPL (13:37)

Packaging-distribution-retailer path: The amount of goods received by all
retailers from a distribution center must equal to the total amount received
by the distribution center from all packaging lines.

X

i2NPL

Xij ¼
X

k2NRD

Xjk j 2 NDC (13:38)

Nonnegativity constraint: Xij � 0
A slightly different supply chain model for a sugar industry can be found

in Ioannou (2005). The company procures beets from farmers and processes
them in their production facilities to produce white sugar in bulk form and a
number of by-products. As the beets are seasonal agricultural products, the
final product is either stored at appropriate silos for distribution to com-
mercial customers throughout the year or transferred to packaging lines for
production of packaged sugar. Packaged sugar is subsequently stored in
warehouses or distribution centers. Finally the packaged sugar is sold to
retailers. Ioannou (2005) considered five production facilities, three pack-
aging lines of two different types and three bulk sugar storage facilities. The
author showed that he is able to save $1 million implementing his model to
the sugar industry in Greece.

13.6 Coal Production and Marketing Plan

In this section, we introduce a real-world coal production and marketing
problem. Coal is extracted from mines and upgraded on the surface for the
end users. The raw coal is known as the run of mine (ROM) in the coal
mining industry. Each coal type has its own typical quality specifications.
Coal quality is measured in terms of percent of ash, sulfur, and moisture,
and BTU (British thermal unit) content per pound. BTU content per pound
expresses the heating value (calorific value) of coal. It is desirable to have
high BTU content and low ash, sulfur, and moisture content. The customers
specify the quality parameters (such as maximum percentage of ash and
sulphur, and minimum BTU=pound) for their coals. We assume a coal
company operates a number of mines. These mines differ greatly in their
cost of production and coal quality. Preparation and blending are the
two coal upgrading and processing facilities. Coal preparation (also
known as washing) is a process of removing physical impurities from coal
content. A coal preparation unit produces high-quality washed coal as well
as low-quality middling product. Blending is a simple mixing process that
allows upgrading the low-quality coals by mixing it with high-quality coals.
The coals are sold either based on the total BTU supplied or total tonnes
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supplied within a given customer specification. The objective of coal pro-
duction and marketing plan is to determine the coal-mix for maximizing the
revenue from the coal sales while satisfying quality, demand, and other
technical constraints.

A single-period LP model for coal production and marketing is presented
below. It is designed to find an optimal strategy of coal blending, washing,
and customer allocation so as to transform the available raw coal into final
coal products within customer market specifications at maximum overall
profit. This model can be used for any number of mines, washed coals,
and blended products (see flow diagram in Figure 13.3). The constraints
considered in this model are ash, sulfur, and calorific value limitations,
production limit, and market requirements.

Variables:

bpjl ¼ tonnes of blended product for customer j made at location l

cmjl ¼ tonnes of raw coal from mine m used for blended product j at
location l

wck ¼ tonnes of washed product k produced

wbkjl ¼ tonnes of washed product k used for blended product j at
location l

mbkjl¼ tonnes of middling product k used for blended product j at
location l

wpkc ¼ tonnes of washed product k sent to customer c

Data:

J ¼number of blended product customers

L(j)¼ set of sites used for blended product for customer j

Mine-1

Mine-2

Mine-n

Wash plant

Blending process

C
u
s
t
o
m
e
r

FIGURE 13.3
Single-period coal production process.
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ac
m, sc

m, Bc
m ¼ ash, sulphur, and BTU=lb analysis for coals from

mine m

aw
k , sw

k , Bw
k ¼ as received ash, sulphur, and BTU=lb analysis for

washed product k

am
k , sm

k , Bm
k ¼ as received ash, sulphur, and BTU=lb analysis for

middling product k

aþj , sþj ¼maximum allowable ash and sulphur analysis for
customer j

B�j ¼minimum allowable BTU=lb analysis for customer j

BTUþj , BTU�j ¼maximum and minimum BTU requirements for cus-
tomer j

SþNS ¼maximum allowable sulphur supplied

NS ¼ set of blended product customers who correspond to
local customers

zj ¼ amount of SO2 per tonne of sulphur supplied to
customer j 2 NS

I ¼number of mines

rc
mk ¼ amount of raw coals from mine m used per tonne of

washed product k

rk
mid ¼ ratio of middling in product k produced

MPþm, MP�m ¼maximum and minimum production from mine m

BCOSTjl ¼ blending cost ($=tonne) for customer j at location l

MPROm ¼mining cost ($=tonne) for mine m

BM
m ¼BTU content (million BTU=tonne) for raw coal from

mine m

BWb
k ¼BTU content (million BTU=tonne) for washed pro-

duct k

BMb
k ¼BTU content (million BTU=tonne) for middlings of

washed product k

PBj ¼price ($=million BTU) offered by the blended cus-
tomer j

PPkc ¼price ($=tonne) offered by customer c for washed
product k

TCBCjl ¼ transportation cost ($=tonne) to blended product cus-
tomer j from blending location l

TCMLml ¼ transportation cost ($=tonne) from mine m to blend-
ing location l

TCMWm ¼ transportation cost ($=tonne) from mine m to the
wash plant

TCWLl ¼ transportation cost ($=tonne) from the wash plant to
blending location l
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TCWCc¼ transportation cost ($=tonne) from the wash plant to
washed customer c

Wk ¼washing cost per tonne in the washing plant

The objective function of the LP model is to maximize profit. The mathe-
matical expression is as follows:

Minimize Z ¼
X

j

X

l

h
�ðBCOSTjl þ TCBCjlÞbpjl

i

þ
X

m

X

j

X

l

h
BM

m PBj � TCMLjl �MPROm

i
cmjl

þ
X

k

h
�Wk �

X

m

amk MCMWm þMPROmð Þ
i
wck

þ
X

k

X

j

X

l

h
BWb

k PBj � TCWLl

i
wbkjl

þ
X

k

X

j

X

l

h
BMb

k PBj � TCWLl

i
mbkjl

þ
X

k

X

c

h
PPkc � TCWCc

i
wpkc (13:39)

The different components of the objective function are explained as follows:

Term 1: blending cost plus transportation costs to blended product
customers

Term 2: revenue for BTU content of raw coals used in blending minus
the mine production costs and transportation costs

Term 3: the washing costs, transportation costs, and mine production
costs for raw coals used in washing plant

Term 4: revenue from washed coals used in blended product minus
the transportation costs

Term 5: revenue from thermal middlings used in blended product
minus the transportation costs

Term 6: revenue from washed coals sold as tonnes minus the trans-
portation costs

The constraints of the model are discussed below.
Mass balance for blended products: The total blended product j produced

in any location l must be equal to the total raw coal received from all mines
plus all wash and middling coals from the wash plant.

�bpjl þ
X

m

cmjl þ
X

k

wbkjl þ
X

k

mbkjl ¼ 0 j ¼ 1, J, l 2 L( j) (13:40)
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Ash limits in blended products: The percentage of ash in any blended
product must be less than or equal to the allowable limit of ash.

�aþj bpjl þ
X

m

ac
mcmjl þ

X

k

aw
k wbkjl þ

X

k

am
k mbkjl � 0 j ¼ 1, J, l 2 L( j)

(13:41)

Sulfur limits in blended products: The percentage of sulfur in any blended
product must be less than or equal to the maximum allowable limit of
sulphur.

�sþj bpjlþ
X

m

sc
mcmjl þ

X

k

sw
k wbkjl þ

X

k

sm
k mbkjl � 0 j ¼ 1, J, l 2 L( j)

(13:42)

Minimum BTU content in blended products: The BTU content per pound in
any blended product must be greater than or equal to the minimum allow-
able limit of BTU content.

�B�j bpjl þ
X

m

Bc
mcmjl þ

X

k

Bw
k wbkjl þ

X

k

Bm
k mbkjl � 0 j ¼ 1, J, l 2 L( j)

(13:43)

Overall BTU supply to customers: The overall BTU supply to any customer
must be between the customer’s specified limit.

BTU�j �
X

l

X

m

Bc
mcmjlþ

X

k

Bw
k wbkjlþ

X

k

Bm
k mbkjl

" #

�BTUþj j¼ 1, J, l2 L( j)

(13:44)

Overall sulfur supplied: To control the environmental pollution, the overall
sulfur supplied to all local customers in a given year must be less than or
equal to a set limit.

X

j2NS

jj

X

l

X

m

sc
mcmjl þ

X

k

sw
k wbkjl þ

X

k

sm
k mbkjl

" #

� SþNS (13:45)

Maximum and minimum mine production: The total raw coal used, from
any mine, in the blending process and wash plant must within the given
production limit.

MP�m �
X

j

X

l

cmjl þ
X

k

rc
mkwck �MPþm i ¼ 1, I (13:46)
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Mass balance in wash plant: The total wash product produced is equal to the
wash product used in the blended process plus the wash product directly
sent to customer. It is assumed that any excess amount of wash products can
be sold in the market with the set price.

wck �
X

j

X

l

wbkjl �
X

c

wpkc ¼ 0 k ¼ 1, K (13:47)

Middlings ratio for washed products: The middling product produced
maintains a certain ratio with the wash product. It is assumed that all the
middling products will be used in blending process.

rmid
k wck �

X

j

X

l

mbkjl ¼ 0 k ¼ 1, K (13:48)

and nonnegativity constraints.

13.6.1 Multi-Objective Problem

The above problem can be formulated as a two-objective model where the
objectives are

. Maximizing profit (current objective)

. Minimizing carbon dioxide emission

The mathematical expression for the second objective can be written as
follows:

Minimize Z2 ¼
X

j

X

l

X

m

CEc
mcmjl þ

X

k

CEw
k wbkjl þ

X

k

CEm
k mbkjl

" #

(13:49)

where CEc
m, CEw

k , and CEm
k represent the amount of carbon dioxide emission

per tonne of raw coals directly used in blending, washed products, and
middlings, respectively, sold in a given year.

13.6.2 Multi-Period Problems

A single-period model can be used for annual or monthly planning, or for
that matter, for any defined period. A single-period annual planning model
is suitable for stable demand and production patterns. This model does not
consider the demand, production, or cost fluctuations from period to period
within the planning horizon. This may create severe problems in oper-
ational implementation for fluctuating cases. In case of monthly planning,
a collection of 12 monthly planning models can be thought of as an annual
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planning model. However, a collection of monthly (single-period) models,
which represents an annual planning process, may become infeasible in the
case of fluctuating demand or production. If solving this model with zero
initial and final inventories in each month leads to a feasible solution, this
model provides a lower bound of the problem. A multi-period model is
usually preferable over a collection of single-period models. A multi-period
model is usually run with a rolling planning horizon, which allows updat-
ing the planning process at the end of every period with the availability of
new information. Furthermore, it shows more savings than a collection of
monthly models under seasonality and gives a better scenario of the plan-
ning process in an unstable planning environment.

A multi-period model allows the carrying of inventory from one period to
another if it is profitable. A multi-period model is a collection of several
single-period problems with some linking constraints from one period to
another. Normally, inventory balance equations serve this purpose.

In the multi-period case, we can assume that the blended product invent-
ory of period t would be an input to the blending process of period tþ 1. As
indicated in Figure 13.4, the raw coals are supplied to the preparation
plant and the blending process. The washed products produced in any period
are sent to the customers and blending process or carried for future use. The
inputs to a blending process in any period are raw coals and washed coals of
that period, and the blended product inventory from the previous period. The
blended product produced is sent to the customers or carried for use as an
input in the next period. It is useful to carry inventory from one period to
another where the demand or production pattern or cost figures are highly
fluctuating. Alternatively, it can be assumed that the inventory of blended
product of period t will be supplied to the customers in period tþ 1. This
model will be less flexible in tackling the fluctuating situations.

In traditional multi-period formulation, the goods produced in any
period t are carried as inventory either to supply customers in period tþ 1
or for further uses as inventory for period tþ 2 and so on (see Figure 13.5).
These goods cannot (or are not allowed to) be used as raw material for the
same kind of products. In case of coal blending, the quality of blended
product is always greater than or equal to its minimum requirements. If
the quality of blended product is very good then its use as an input to the
blending process of the next period would be useful and make the model
flexible. The mathematical models for these two alternative planning pro-
cesses can be found in Sarker (2003) and Sarker and Gunn (1997).

13.7 General Blending Problem

Blending is a common process in many practical situations. All blend-
ing processes are required to meet a number of key quality parameters.
Once the minimum quality parameters are met, the price is usually
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charged based on the amount of the blended product sold. However,
there are situations where the customers accept both better and worse
quality products, in relation to the contract specifications, with a revised
price. In this case, the price is a function of the content of the quality
parameters. That means, higher quality product will be rewarded and
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FIGURE 13.4
A multi-period coal production process. (Produced as a slightly modified version of Sarker, R.
and Gunn, E., Eur. J. Oper. Res., 101, 140, 1997. With permission from Elsevier.)
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lower quality product will be penalized. In this section, we will formulate
two LP models for two situations of general blending problems.

Assumptions:

. A number of inputs, with known quality parameters, will be used
in the process

. Only one blended product will be produced
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FIGURE 13.5
An alternative multi-period coal production process. (Produced as a slightly modified version
of Sarker, R. and Gunn, E., Eur. J. Oper. Res., 101, 140, 1997. With permission from Elsevier.)
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. The contract specifications of the blended product are given

. The price of blended product is known which is set based on the
contract specifications

Parameters:

I1 ¼ set of quality parameters in which higher the parameter better
the quality

I2 ¼ set of quality parameters in which lower the parameter better
the quality

Qij ¼ quality parameter i in input j

CQi¼ acceptable level of quality parameter i as per contract specifi-
cation

Cj ¼unit cost of input j

D ¼demand of blended product

P ¼unit selling price of blended product

Decision variables:
Xj¼ amount of input j used in producing the blended product

Objective Function:
The objective is to maximize the total profit from the blended product sales.

Maximize
X

j

P� Cj

� �
Xj (13:50)

Constraints:
Demand Constraint: the amount of blended product produced must be
greater than or equal to the demand of the product.

X

j

Xj � D (13:51)

Quality Restrictions: the quality level of the blended product must be greater
than or equal to the acceptable level for I1 parameters and less than or equal to
the acceptable level for I2 parameters.

X

j

QijXj � CQi

X

j

Xj 8i 2 I1 and (13:52)

X

j

QijXj � CQi

X

j

Xj 8i 2 I2 (13:53)
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So the first linear programming model:

Maximize
X

j

(P� Cj)Xj

Subject to
X

j

Xj � D

X

j

QijXj � CQi

X

j

Xj 8i 2 I1

X

j

QijXj � CQi

X

j

Xj 8i 2 I2

Xj � 0 8j

Model (13:6)

In the above model, there is no reward or credit for better quality than
the contract specification CQi. For the second model, we assume that a
blended product that has a better quality will attract a higher price. In
addition, a lower quality product can also be sold but at lower price. To
formulate this model, we need the following additional parameters and
decision variables.

Parameters:

RPi¼Reward=penalty for improvement=deterioration of one unit of quality
parameter per unit of blended product produced. Note that the improve-
ment in quality parameter means above the specified level for I1 and below
the specified level for I2, and deterioration means the opposite.

Variables:

Yi¼Total amount of deviation for quality parameter i. It equals quality
parameter improvement (or deterioration) per unit of blended product
multiplied by the amount of blended product produced. This variable is
unrestricted in sign (i.e., can be either positive, zero, or negative). So the
total reward plus penalty would be equal to

P

i

RPiYi.
So the second LP model will be

Maximize
X

j

�
P� Cj

�
Xj þ

X

i

RPi Yi

Subject to
X

j

Xj � D

X

j

QijXj þ Yi ¼ CQi

X

j

Xj 8i 2 I1

X

j

QijXj þ Yi ¼ CQi

X

j

Xj 8i 2 I2

Xj � 0 8j
Yi unrestricted 8i

Model (13:7)
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If the reward rate is different from the penalty rate, we need two variables
representing the over-achievement and under-achievement deviations for
each quality constraint. This is equivalent to replacing the unrestricted
variable with the difference of two non-negative variables discussed in an
earlier chapter. As the objective function of Model 13.7 is of maximization
type, it would require additional constraints to make sure that at best one
deviational variable in each quality constraint is positive.

13.8 Summary

In this chapter, we have introduced a number of LP-based practical pro-
blems and discussed their models referring to the published materials.
These are crop planning, power generation planning, water supply man-
agement, supply chain, coal upgrading and marketing, and general blend-
ing problems. We have also discussed their alternative mathematical
models and related issues. In the next chapter, we present a number of
integer and nonlinear practical problems and their mathematical models.
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14
Models for Practical Problems II

14.1 Introduction

In Chapter 13, we addressed a number of linear programming (LP)-based
practical problems. In this chapter, in addition to one or two LP models, we
briefly present various integer and nonlinear practical problems. The prob-
lems to be discussed are a combat logistics problem, a lot-sizing problem, a
joint lot-sizing and transportation decision problem, a coal bank scheduling
problem, an engineering design problem, a gas-lift optimization problem,
and a multiple shifts planning problem. We also discuss their associated
mathematical models and related issues.

14.2 A Combat Logistics Problem

For strategic reasons, modern war-fighting concepts emphasize small but
highly mobile forces supported over the littoral, rather than from large,
land-based supply points. In this situation, the objective of logistics planners
is to support these forces with as little inventory on land as possible. In this
section, we present a combat logistic model for a given scenario.

Let us consider sea-based combat and support units. Each combat unit is
required to reach a particular set of targets on land. Combat units consume
food, water, ammunition, and fuel. Supply units are free to deploy, move,
and to build up and deplete inventories as necessary to meet the demand of
the combat units. A fleet of vehicles are available (1) to transport combat
units to targets or intermediate points, (2) to move entire supply units, or (3)
to transport supplies between units. Definitely, the choices of vehicle types
are dependent on the physical environments such as sea=water, and land
with or without road connections. The problem is to determine the locations
of supply units and the shipment of each commodity between units fulfill-
ing the demands in each period while minimizing the land-based inventory.

The problem seems to resemble a multi-period, facility location and
multi-commodity flow problem. Gue (2003) models such a situation as a
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network flow problem where the network consists of two types of nodes,
combat and supply nodes. The combat nodes are given in the battle plan
and a possible set of supply locations may be known or considered depend-
ing on the battle field and physical environment. The objective is to mini-
mize the total inventory of land-based support units while maintaining the
sea-based units as the origin of supplies. The solutions required for each
period are (1) the locations of support units, (2) inventories held by the
units, and (3) the amounts shipped between units. We assume that the sea
base is the only node that is common to both supply and combat units. All
other nodes are either combat or supply nodes. In this section, we present a
mathematical model similar to Gue (2003). In modelling the problem, we
use the following notations:

Decision variables:

Xijkt ¼ quantity of commodity k shipped from node i to j in period t

INVikt ¼ inventory of commodity k held at node i in period t

Yijt ¼ 1 if a unit moves from node i to node j in period t
0 otherwise

�

Sets:

I ¼ set of all nodes

Is ¼ set of supply nodes

Ic ¼ set of combat nodes

Isl¼ set of land-based supply nodes

Icl¼ set of land-based combat nodes

Il ¼ set of land-based nodes

Ib ¼ set of beach nodes accessible by watercraft

Ii ¼ set of inland (not beach) nodes

Parameters:

Ws ¼weight of support unit

Wc ¼weight of combat unit

Sij ¼distance from node i to node j

Bit ¼maximum total inventory that can be held at node i in period t

Djkt¼demand of commodity k at node j in period t

N ¼maximum number of support units

La ¼ available airlift in a period (in kg-km)

Ls ¼ available ship-shore lift in a period (in kg-km)
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Tijt¼ indicates the movement of a combat unit from node i to j in
period t

M ¼ a large number

The mathematical model is presented below:

Objective function:
The objective is to minimize the total land-based inventory plus the sum of
weights for all support units.

Minimize Z ¼
X

i2IL

X

k

X

t

INVikt þWs

X

i2Isl

X

j2Isl

X

t

Yijt (14:1)

Constraints:
Material balance constraints: For a land-based combat node, in a given
period t, the commodity k coming from all other nodes plus the inventory
from the previous period must be equal to its supplies to other nodes plus
the inventory carried for the next period plus the demand of that period.

INVikt þ
X

j2I

Xjikt �
X

j2I

Xijkt �Dikt ¼ INVik, tþ1 8i 2 Icl, k, t (14:2)

Similarly, for a land-based supply node, in a given period t, the commodity
k coming from all other nodes plus the inventory from the previous period
must be equal to its supplies to other nodes plus the inventory carried for
the next period plus the demand of that period.

INVikt þ
X

j2Is

Xjikt �
X

j2I

Xijkt ¼ INVik, tþ1 8i 2 Isl, k, t (14:3)

If any supply unit moves to a land-based supply unit in a period t, which is
equivalent to the movement of a land-based supply unit to any supply unit
in period t þ 1. This constraint enforces the continuity of flow for supply
units among nodes.

X

j2Is

Yjit �
X

j2Is

Yij, tþ1 ¼ 0 8i 2 Isl, t (14:4)

It is required to prohibit shipments between the supply units unless the
sending unit is stationary or the sending units are the shipping material that
supports its own movement.

X

k

Xijkt �M(Yiit þ Yijt) � 0 8i 2 Is, j 2 Is, t (14:5)
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It is necessary that a land-based supply unit to be stationary when shipping
to a combat unit.

X

j2Ic

X

k

Xijkt �MYiit � 0 8i 2 Isl, t (14:6)

Linking the unit location and inventory variables by only allowing inven-
tory if a unit occupies a node.

X

k

INVikt �M
X

j2Isl

Yijt � 0 8i 2 Isl, t (14:7)

The total shipping quantity from any land-based supply node must be less
than or equal to its stock.

X

j2Il

Xijk, tþ1 � INVikt � 0 8i 2 Isl, k, t (14:8)

Specifying the maximum lift in a period from ship to shore via air

X

j2Ii

X

k

S0jX0jkt þWc

X

j2Il

X

i2Il

SijTijt � La 8t (14:9)

Specifying the maximum lift in a period from ship to beach location via air
or ship

X

j2Ib

X

k

S0jX0jk1 þWcS0jT0j1 þ
X

j2Il

X

k

S0jX0jk1 þWc

X

i2Il

S0jTij1 � La þ Ls

(14:10)

Imposing a limit on the amount of inventory that combat units can hold.

X

k

INVikt � Bit 8i 2 Icl (14:11)

Nonnegativity constraint and binary restrictions

Xijkt, INVikt � 0 8i, j, k, t

Yijt 2 {0, 1} 8i, j, t (14:12)

The above model is a mixed-integer LP model. For further details on combat
logistics modelling aspects, see Gue (2003) who implemented his model
using GAMS with CPLEX-MIP Solver.
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14.3 A Lot-Sizing Problem

Consider a manufacturing system where a manufacturer uses raw material
to produce a product. In such a case, the raw material’s ordering quantities
are dependent on the batch quantity of the product. As a result, one should
determine the optimum production batch size of a product and the ordering
quantities of associated raw material simultaneously. This may be done by
treating production and purchasing as components of an integrated system,
minimizing the total cost of the system. The problem considered has the
following attributes:

. A finite production-rate environment uses raw materials from
outside suppliers.

. Only the product lot-sizing and its associated raw material supply
quantities are under consideration.

. The supply policy for the product is to deliver an equal quantity at
fixed intervals.

. The raw materials are received in lots.

. The product cannot be delivered until the whole lot is finished and
quality certification is complete.

Here, the objective is to determine the optimum batch size of the pro-
duct and the ordering quantities of raw materials minimizing the overall
system cost. To simplify the model, we consider that a single raw material
purchase provides stock for several production runs. The details of the
process can be found in Sarker and Khan (1999) and it is briefly discussed
below.

Figure 14.1 shows the finished product inventory system. The product is
produced at a constant rate during the production uptime period t. The
delivery of the finished product starts as soon as the level of the accumulated
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FIGURE 14.1
Finished product inventory level. (Reprinted from Sarker, R. and Khan, L., Comput. Ind. Eng., 37,
711, 1999. With permission from Elsevier.)
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finished product inventory reaches the manufacturing batch quantity, Qp.
A fixed quantity of finished product (x) is delivered to the customers at the
end of every L units of time. This forms a staircase pattern during the
production downtime of the cycle. To fulfill the demand on time, there
may be an overlapping of two consecutive finished product inventory cycles.
The duration or amount of overlapping depends on the production rate,
demand rate, and other relevant cost data. The shaded area in Figure 14.1
shows the overlapping of inventory depletion of a finished product invent-
ory cycle with the inventory accumulation of the next cycle. Figure 14.2
presents the raw material inventory level of the system. At the beginning,
the raw material of quantity nrQp is replenished for the purpose of providing
stock for n production runs (here, r is the amount=quantity of raw material
required in producing one unit of a product). The raw material is depleted at
a constant rate during the production uptime of the finished product invent-
ory cycle. The level of raw material inventory remains constant during the
production downtime.

To find an ordering quantity for raw material and a production quantity
for the production run, it is customary to consider the following costs:

. Raw material inventory carrying cost

. Finished goods inventory carrying cost

. Raw material ordering cost

. Manufacturing setup cost

To develop the mathematical model, the following assumptions have been
made:

. The production rate is finite and constant.

. The production capacity is greater than the demand.

. No shortages are permitted.

Qi
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0 T 2T nT

FIGURE 14.2
Raw material inventory. (Reprinted from Sarker, R. and Khan, L., Comput. Ind. Eng., 37, 711,
1999. With permission from Elsevier.)
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. The time horizon is infinite.

. A fixed quantity of the product is delivered after a fixed interval of
time.

The parameters and decision variables used in developing the cost functions
are given below:

Parameters:

Ai ¼ ordering cost of the raw material

Ap ¼ setup cost for a product ($=setup)

r ¼ amount=quantity of raw material required in producing one
unit of a product

Di ¼demand of raw material for the product in a year, Di¼ r Dp

Dp ¼demand rate of a product, units per year

Hi ¼ annual inventory holding cost for raw material, $=unit=year

Hp ¼ annual inventory holding cost for product, $=unit=year

x ¼ shipment quantity to customer at a regular interval (units=
shipment)

L ¼ time between successive shipments ¼ x=Dp

t ¼production uptime in years in a cycle of length T

T ¼ cycle time measured in years¼Qp=Dp, where T > t

Pp ¼production rate, units per year (here, Pp > Dp)

PRi¼price of raw material

Q*
i ¼ optimum ordering quantity of raw material

Decision variables:

Qi ¼ ordering quantity of raw material¼ n r Qp

Qp¼production lot size

m ¼number of full shipments during the cycle time¼T=L¼Qp=x

n ¼number of production run to use one lot of raw material

14.3.1 Finished Product Inventory

Since the product cannot be delivered to the customers until the whole lot is
completed and quality certification is ready, there is a continuous build up
of finished product inventory, at the rate equal to production, during the
production uptime of a given lot (Figure 14.1: line ef). The delivery of the
finished product is permitted during the production downtime of that lot
only. In order to satisfy the demand in time, the production of a new lot may
be started before finishing the delivery of the previous lot.

Sarker/Optimization Modelling: A Practical Approach 43102_C014 Final Proof page 417 1.9.2007 11:44am Compositor Name: BMani

Models for Practical Problems II 417



From Figure 14.1, t¼Qp=Pp and Qp=Dp¼mL
Finished product inventory in a cycle¼Area (efg þ ikj)

Area (ikj) ¼ x(m� 1)Lþ x(m� 2)Lþ . . .þ x 2Lþ x L ¼ x
(m� 1)m

2
L

(14:13)

So, the finished product inventory in a cycle ¼ 1

2
Qptþ x

(m� 1)

2
mL

(14:14)

Hence, the average finished product inventory in a cycle is

¼
1
2 Qp�tþ x(m�1)

2 mL

T

¼ 1

2
Qp

t

T
þ x

m� 1

2

mL

T

¼ 1

2
Qp�

Dp

Pp
þmx

2
� x

2

¼ 1

2
Qp

Dp

Pp
þ 1

� �

� x

2 (14:15)

14.3.2 Raw Material Inventory

The raw material inventory is shown in Figure 14.2. For ease of understand-
ing, it is redrawn for one replenishment cycle with more details in Figure 14.3.

The area of one replenishment cycle of raw material can be divided into
n triangles and (n ] 1) rectangles as shown in Figure 14.3.
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FIGURE 14.3
Raw material inventory system.
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All the triangles have the same area equal to
1

2

Qi

n
t

The total area occupied by n triangles ¼ n
1

2

Qi

n
t

� �

¼ 1

2
Qit (14:16)

The area of rectangles decreases as the cycle number n increases.

The area of the rectangles ¼ (n� 1)

n
QiT,

(n� 2)

n
QiT,

(n� 3)

n
QiT, . . . ,

2

n
QiT,

1

n
QiT (14:17)

The total area occupied by (n ] 1) rectangles

¼ QiT

n
{1þ 2þ 3þ . . .þ (n� 3)þ (n� 2)þ (n� 1)} ¼ (n� 1)

2
QiT (14:18)

So the inventory for raw material in a cycle of nT periods is

1

2
Qitþ

(n� 1)

2
QiT (14:19)

For raw material, the average inventory per cycle

¼

1

2
Qitþ

n� 1

2

� �

QiT

� �

nT

¼ 1

2
rQp

Dp

Pp
þ n� 1

� �

(14:20)

14.3.3 Total Cost Function per Year

The total cost of the system per year is simply the sum of four cost
components as discussed earlier.

Total cost of the system (TC) is

TC ¼
Dp

Qp
Ap þ

1

2
Qp

Dp

Pp
þ 1

� �

� x

2

� �

Hp þ
Di

Qi
Ai

þ 1

2
rQp

Dp

Pp
þ n� 1

� �� �

Hi (14:21)

The first term represents the total manufacturing setup cost in a year. The
second term indicates the total product holding cost in a year. The third and
fourth terms represent the raw material ordering cost and holding cost,
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respectively. After simplification, we can rewrite the total cost equation as
follows:

TC ¼
Dp

Qp
Ap þ

Ai

n

� �

þ
Qp

2
(kk)� x

2
Hp (14:22)

where

kk ¼
Dp

Pp
þ 1

� �

Hp þ rHi
Dp

Pp
þ n� 1

� �

¼ CCþ nrHi

where

CC ¼
Dp

Pp
þ 1

� �

Hp þ rHi
Dp

Pp
� 1

� �

Since, Qp¼mx, then TC can be rearranged as follows:

TC ¼
Dp

mx
Ap þ

Ai

n

� �

þmx

2
(kk)� x

2
Hp (14:23)

TC is a nonlinear function with integer variables m and n. The purpose is
to determine the optimal m and n while minimizing the total cost. In
optimization terms, this is an unconstrained nonlinear optimization
model.

14.4 A Joint Lot-Sizing and Transportation Decision Problem

We consider a single retailer who purchases goods from an outside supplier
and transports them via an external shipper (transport company). The
amount of goods to be purchased by the retailer is usually determined
using an economic replenishment policy (Khan and Sarker, 2002; Sarker
and Newton, 2002), and then the transportation decision is made based on
the quantity purchased. In this sequential decision process, the optimum
purchasing quantity may not guarantee the minimum shipping cost
incurred because of weight-dependent freight rates offered by the transport
company and the limited vehicle capacity.

Motor carrier freight rates are a function of the total weight in a given
shipment. The freight rates, usually form a step function, decrease as the
shipping weight increases as shown in Figure 14.4. This figure shows a
piecewise linear function, for price per unit, for quantities from Q0 to
Qn�1 where p1 > p2 > p3 > . . .> pn�1. The prices for quantities 0 to Q0 and
Qn�1 to Qn are fixed. In other words, the figure shows the price breaks for
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different quantities. For a fixed unit weight, the upper and lower limits of
these quantities can be converted to weights. Throughout this section, we
use these figures as weight breaks. These price breaks (or weight breaks)
reflect the economies of scale that accrue for larger shipping weights and the
additional consolidation costs involved when determining load priorities
for small shipments. Further information on freight rates can be found in
Swenseth and Godfrey (2002) and Baker (1991).

Although some motor carriers provide software for rate lookups, it does
not provide decisions based on simultaneous consideration of the inventory
replenishment and the transportation decision. Suppose the optimal pur-
chasing quantity is Q. Then there are three possible categories of shipping
decisions: (1) shipments that result in true truckload (TL) shipping quan-
tities (i.e., Q¼TL), (2) shipments that are likely to be over-declared as TL
(i.e., Q < TL but declared as TL), and (3) shipments that are not likely to be
over-declared as TL and are therefore shipped at less-than-truckload (LTL)
rates (i.e., Q < TL and declared as Q). Here, the problem is to determine the
optimum purchasing quantities based on annual ordering, holding, and
transportation costs. In the following section, we develop a mathematical
programming model for simultaneous determination of purchasing quan-
tities and the transportation decision.

Parameters:

D ¼ annual requirements (units)

Ch¼ inventory holding cost ($=unit=year)

Co¼ ordering cost ($=order)

w ¼weight per unit

I ¼number of weight breaks in freight rate

Q0 Q1 Q2 Q3 Q4 Qn

Transportation quantity

p1

p2

p3
.
.
pn

P
ric

e 
pe

r 
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FIGURE 14.4
Transportation cost function.
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Tcsti¼ transportation cost per hundred weight for weight break i
(TcstI is fixed and independent of total weight)

Ui ¼upper limit of weight break i

Li ¼ lower limit of weight break i

M ¼ a very big quantity (known as big M)

Mtc ¼minimum transportation charge ($)

TRC ¼ total relevant cost ($)

Decision variables:

Q ¼ ordering quantity (units)

X ¼ quantity declared for transportation in weight (where Q�X)

yi ¼ 1 if the quantity X is in the weight break i
0 otherwise

�

Total ordering cost per year is the number of orders per year multiplied by the
ordering cost per order which is Co D=Q. The total inventory holding cost per
year is equal to the average inventory per cycle multiplied by the inventory
holding cost per unit per year, which can be written as (Q=2)Ch. The total
transportation cost is equal to the shipment size declared multiplied by the
transportation cost and number of shipments per year.

So the total transportation cost per year ¼ D

Q

� �
X

100

� �

�
XI�1

i¼1

yi Tcsti

 !

þ D

Q

� �

yI TcstI (14:24)

The total relevant cost of the system is the sum of ordering cost, inventory
holding cost, and transportation cost which is

TRC ¼ Co
D

Q
þQ

2
Ch þ

D

Q

� �
X

100

� �

�
XI¼1

i¼1

yi Tcsti

 !

þ D

Q

� �

yI TcstI (14:25)

However, the following constraints must be satisfied in solving the total cost
function (Equation 14.25).

The quantity for transportation (X) can be declared as a higher amount
than the quantity purchased (Q) to take the advantage of cost bracket.

Q � X=w (14:26)

The quantity declared (X) must be within the range of each freight rate
range.
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Liyi � X � Ui þM(1� yi) 8i (14:27)

The declared quantity must be under only one weight break.

XI

i¼1

yi ¼ 1 (14:28)

The last constraint confirms the minimum transportation charge require-
ment to hire a truck.

X

100

XI�1

i¼1

yiTcsti þ yITcstI �Mtc (14:29)

The final integer programming model of the problem can be summarized as
follows:

Minimize TRC ¼ Co
D

Q
þQ

2
Ch þ

D

Q
� X

100

� �

�
XI¼1

i¼1

yiTcsti

 !

þ D

Q

� �

yITcstI

Subject to

Q � X=w

Liyi � X � Ui þM(1� yi) 8i
XI

i¼1

yi ¼ 1

X

100

XI�1

i¼1

yiTcsti þ yITcstI �Mtc

X, Q � 0 and integer

yi ¼ 0 or 1 8i Model (14:1)

14.5 Coal Bank Scheduling

Coal banks are used to store coals for aging and for carrying normal
inventory. We assume the production of each coal product in each period
and the customer delivery schedule are known. Now the questions are how
to build the banks in a given floor space and how large should each bank be
and where should they be located. Because of different quality parameters
and aging requirements, we cannot keep all the coals in a single bank. Coals
that are produced with the same quality parameters in a period can be
stored in the same bank. Interestingly, the total storage capacity of any
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floor space decreases with the number of banks on the same area built. For
example, if the available storage space is 2625 3 145 sq. ft., for a 108 angle on
one side for access by trucks and 458 on other side of the banks, and a
height of up to 60 ft., the storage capacity of this bank is about 373,700
tonnes of coal. If the same area is used for two banks (of 1312.5 3 145 sq. ft.
each), then total capacity will be 175,290 3 2¼ 350,580 tonnes. The capacity
is 327,460 tonnes for three banks and 304,340 tonnes for four banks. Bigger
banks maximize the storage capacity utilization on a given space.

Assume, we need banks of different sizes and these banks need to be
stored for different lengths of time. It would seem that the banks should be
built in a cyclic order on a given floor space. In fact, this does not ensure the
best possible utilization of floor space. For further details on bank manage-
ment, see the paper by Sarker and Gunn (1994).

Withdrawal from smaller banks is more difficult than from large banks
because of transport and handling facilities. In managing the storage area,
our purpose is to determine the bank size and its location on a given floor
space. We make the bank as large as possible to maximize capacity per
unit area and to reduce the handling difficulties. Once a bank is built up,
any movement of coal increases the handling cost and operational com-
plexity. As a result, we determine the location of a bank with other banks,
on a given floor space, in such a way that the bank movement is mini-
mum over a given period. In building up a bank, we assume the height
of a bank is limited due to handling facility or amount of coal to be stored
in a bank, and the given area is one linear storage with known length
and width.

In this section, we formulate two mathematical models for the bank
location sequencing=scheduling problem. The first model is a static model
and the second is a dynamic model. In the first model, once a bank is built it
is not allowed to move in any direction until withdrawal. This model
sequences a given number of banks for some periods. The other model
allows movement of the bank at additional cost, if it provides a better
utilization of the entire floor space. This model determines the location of
new banks at the beginning of each week with other existing banks, over a
planning horizon. This is sequencing and scheduling problem. The models
are presented below:

14.5.1 Static Model

The static model* is useful when the bank movement is restricted.
Index:

i¼ bank number (i¼ 1, N)

t¼ time period (t¼ 1, T)

* Reproduced as slightly modified version from Sarker, R. and Gunn, E., Appl. Math. Model.,
18, 672, 1994. With permission from Elsevier.
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Parameters:

Qit¼ amount of coal in bank i at period t

Ai ¼maximum amount of coal to be stored in bank i

L ¼maximum length of floor space

M ¼ a significantly big number

Bi ¼ set of banks that could be adjacent to the bank i

Bi ¼ {j; Qit 3 Qjt > 0 for some t and i 6¼ j}

Variables:

si ¼ starting location of bank i

li ¼ length of bank i

yij ¼ 1 if bank j is built after bank i
0 otherwise

�

Note that we can eliminate half of these variables using yij¼ 1 ] yji. This will
help to solve the problem quickly.

The amount of coal in a bank i is the maximum amount over some time

Ai �Max (Qit, t ¼ 1, T) 8i (14:30)

The amount of coal in a bank can be expressed as a function of the length of
that bank

Ai ¼ f (li) 8i (14:31)

Either bank i will be built after bank j or bank j will be built after bank i.
Exactly one of these two constraints exists.

sj þ lj � si þM yij (14:32)

si þ li � sj þM(1� yij) 8i and j 2 Bi (14:33)

Either bank i or bank j will be built closer to the starting point of the storage
space. This is one linear storage space with given length and width. The
width of each bank is equal to the width of the storage. The starting position
is the lengthwise leftmost position of the available storage space for building
a bank.

The end of a bank must be less than the given length of bank space

0 � si � L� li 8i (14:34)
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and nonnegativity constraints
Two objective functions can be considered for this problem as follows:

. The first objective is to minimize L, where L is a decision variable.
This objective minimizes the total storage space required.

. The second is to maximize
P

i (L� si), where L is a given data. This
objective forces to build every bank as close to the starting point of
the storage space as possible. The volume of a bank is determined
based on its shape and then the quantity in tonnes is calculated by
multiplying by a density factor.

14.5.2 Dynamic Model

For a dynamic model,* we need to redefine some of the parameters and
variables as follows.

sit ¼ starting position of bank i at period t

lit ¼ length of bank i at period t

Bit ¼ set of banks that could be potentially adjacent to the bank i

Bit ¼ {j; Qit �Qjt > 0 for i 6¼ j}

Other parameters and variables are the same as for the static model.
The amount of coal in a bank can be expressed as a function of the length

of that bank.

Qit ¼ f (lit) 8i, t (14:35)

In a period t, either bank i will be built after bank j or bank j will be built
after bank i. Exactly one of these two constraints exists.

sjt þ ljt � sit þM yij (14:36)

sit þ lit � sjt þM(1� yij) j 2 Bi; 8i, t 9 Qit � 0 (14:37)

The end of a bank must be less than the given dimensions of the storage
space

0 � sit � L� lit 8i, t (14:38)

and nonnegativity constraints.

* Reproduced as slightly modified version from Sarker, R. and Gunn, E., Appl. Math. Model.,
18, 672, 1994. With permission from Elsevier.
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The objective is to minimize the total movement of all banks during the
planning horizon.

Max Z ¼
X

i

X

t

xit (14:39)

Where xit is the maximum movement of a bank i from period t ] 1 to period
t. We have added few more constraints to define the variables xit as given
below:

xit � sit � sit�1 8i, t (14:40)

xit � sit�1 � sit 8i, t (14:41)

xit � sit þ lit � sit�1 � lit�1 8i, t (14:42)

xit � sit�1 þ lit�1 � sit � lit 8i, t (14:43)

14.6 A Scaffolding System

Consider a scaffolding system, a simple engineering design problem, con-
sisting of three beams and six ropes as shown in Figure 14.5. Each of the
ropes R1 and R2 can carry a load of L1, each of the middle ropes R3 and R4
can carry a load of L2, and each of the bottom ropes R5 and R6 can carry a
load of L3. Suppose the loads acting on beams 1, 2, and 3 are x1, x2, and x3,
respectively, formulate the problem of finding the maximum load (x1 þ x2 þ
x3) that can be supported by the system.

6l3l

2l 2l

ll 3l

x2
l

x1

R6

R5

R4
R3

Beam 1

Beam 3

Beam 2

R2R1

x3

FIGURE 14.5
A scaffolding system.
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Assume that the weights of the beams 1, 2, and 3 are w1, w2, and w3,
respectively, and the weight of the ropes is negligible.

We assume that the weights of the beams act through their respective
middle points. Let, T1, T2, . . . , T6 denote the tension in ropes R1, R2, . . . , R6,
respectively. For ease of explanation, the beam 3 is separated from the
system and all the forces acted on the beam are shown in Figure 14.6.

As shown in Figure 14.6, T5 and T6 are upward forces and x3 and w3 are
downward forces. In such case, the equations of equilibrium for vertical
forces in each beam and the moments for each beam can be expressed as
follows.

Beam 3:

Forces: T5 þ T6 ¼ x3 þ w3 (14:44)

Moments: x3(3l)þ w3(2l)� T6(4l) ¼ 0 (14:45)

Beam 2:

Forces: T3 þ T4 � T5 ¼ x2 þ w2 (14:46)

Moments: x2(l)þ w2(l)þ T5(l)� T4(2l) ¼ 0 (14:47)

Beam 1:

Forces: T1 þ T2 � T3 � T4 � T6 ¼ x1 þ w1 (14:48)

Moments: x1(3l)þ w1(4:5l)� T2(9l)þ T3(2l)þ T4(4l)þ T6(7l) ¼ 0 (14:49)

The moment is measured as the force multiplied by its distance from a
reference point. For example, the moment of x3 from the left end of beam
3 is x3(3l). From the above equations, the tension in the ropes T1 to T6 can be
represented as follows:

T6 ¼ (3=4)x3 þ (1=2)w3 (14:50)

T5 ¼ (1=4)x3 þ (1=2)w3 (14:51)

T4 ¼ (1=2)x2 þ (1=8)x3 þ (1=2)w2 þ (1=4)w3 (14:52)

FIGURE 14.6
Beam 3 of scaffolding system.
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T3 ¼ (1=2)x2 þ (1=8)x3 þ (1=2)w2 þ (1=4)w3 (14:53)

T2 ¼ (1=3)x1 þ (1=3)x2 þ (2=3)x3 þ (1=2)w1 þ (1=3)w2 þ (5=9)w3 (14:54)

T1 ¼ (2=3)x1 þ (2=3)x2 þ (1=3)x3 þ (1=2)w1 þ (2=3)w2 þ (4=9)w3 (14:55)

The optimization model is

Maximize Z ¼ x1 þ x2 þ x3

Subject to

(2=3)x1 þ (2=3)x2 þ (1=3)x3 þ (1=2)w1 þ (2=3)w2 þ (4=9)w3 � L1 For T1

(1=3)x1 þ (1=3)x2 þ (2=3)x3 þ (1=2)w1 þ (1=3)w2 þ (5=9)w3 � L1 For T2

(1=2)x2 þ (1=8)x3 þ (1=2)w2 þ (1=4)w3 � L2 For T3

(1=2)x2 þ (1=8)x3 þ (1=2)w2 þ (1=4)w3 � L2 For T4

(1=4)x3 þ (1=2)w3 � L3 For T5

(3=4)x3 þ (1=2)w3 � L3 For T6

x1, x2, x3 � 0

Model (14:2)

This is a simple linear programming model with three variables (x1, x2, and
x3) and six constraints. We must mention here that the weights of the beams
(w1, w2, and w3) are parameters (known) of the system.

14.7 A Gas-Lift Optimization Problem

In this section, we consider a crude oil-production system. In the system,
there is a well-known underground oil reservoir and the reservoir has a
number of wells for oil extraction. There are two basic methods of extracting
oil from such reservoirs (Kosmidis et al., 2005): naturally flowing and gas lift.
In the first method, the oil is able to flow naturally to the surface, whereas the
second requires the injection of high-pressure gas to facilitate oil extraction.
The gas lift is considered as the most economic method for artificial lifting of
oil (Aaytollahi et al., 2004; Camponogara and Nakashima, 2006).

In this chapter, we consider the gas lift extraction method. For a given
well, the oil production per day can be expressed as a nonlinear function of
gas injected into the well on that day. The oil production per day increases
with the increase of gas used to certain level and then decreases. That
means an excessive use of gas may increase the gas cost, as well as
production cost, without providing any benefit in terms of oil-production
volume. For a given amount of gas used, the amount of oil extraction
significantly varies from well to well. That means the nonlinear function of
gas usage versus oil extracted varies from well to well. As a result, an
inappropriate gas allocation to different wells, under limited gas availability,

Sarker/Optimization Modelling: A Practical Approach 43102_C014 Final Proof page 429 1.9.2007 11:44am Compositor Name: BMani

Models for Practical Problems II 429



will reduce the overall production and hence profitability from the entire
reservoir. So the gas-lift optimization problem is to allocate a limited amount
of gas to a number wells in a reservoir while maximizing the total oil
production in a day.

As discussed earlier, the oil production per day from a given well is a
function of the gas injected into that well on that particular day. How-
ever, there is no standard function that can be used for determining the
production level for all wells. The practice is to collect production data for a
number of discrete points of gas use for each well and then generate an
approximate function. A sample function for a given well is shown in Figure
14.7. Using these discrete data points, the researchers in the field generate the
corresponding function either as a piecewise linear function (Kosmidis et al.,
2005) or as a quadratic function (Camponogara and Nakashima, 2006).
Although both functions have drawbacks in estimating the production
level accurately, we can use the piecewise linear function as this method is
widely used for such situations and easy to model the optimization
problem. For further details of the data and alternative approach, see Ray
and Sarker (2006).

The mathematical model of the problem is formulated as follows:

N ¼ the number of wells

In ¼ the number of line segments in the function in well n

Gni¼ slope of the function at the line segment i in well n

GL¼ limit of gas usage in all wells per day

Uni¼upper limit of gas use at the individual line segment i in well n

Variables:

Yn ¼ gas used in well n

Xni¼ gas usage segment variable in segment i in well n

Zni ¼
0 if Xni � Uni

1 if Xni = Uni

�
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FIGURE 14.7
A sample oil-production function.
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The relationships between Yn and Xni are as follows:

Yn ¼
X

i

Xni 8n (14:56)

where

0 � Xni � Uni 8n, i (14:57)

In addition, for a given value of Yn (which is in segment i in well n), all Xn(i þ 1)

will be equal to zero and all Xn(i�1) will be at the upper bound. However,
the value of Xni will be greater than zero and less than or equal to upper
bound.

The objective of the problem is to maximize the total daily production.

Maximize Z ¼
X

n

X

i

GniXni (14:58)

Constraints:
Calculating the gas usage level in each well: the total gas used in a well n is
the sum of gas used under all the segments of the piecewise linear function.

Yn ¼
X

i

Xni 8n (14:59)

Suppose the point Yn belongs to the segment in. The values of all segments
(xni) on the left side of segment in must be at the upper bound and the value
of the segment containing Yn point must be greater than or equal to zero and
less than or equal to its upper bound. All other segments must have zero
value. To ensure these conditions, we need the following constraints.

UniZni � Xni � UniZn(i�1) 8n, i (14:60)

Here Zn0¼ 1 and ZnIn
¼ 0. For each well, this constraint sets the point Yn

and ensures that for any i < in, xni ¼ Uni, for i > in, xni ¼ 0 and for i ¼ in,
0 � xni � Uni.

Gas limitation: The total use of gas in all wells on a given day must be less
than or equal to the available gas.

X

n

Yn � GL (14:61)

Nonnegativity constraints:

Xni � 0, Yn � 0, Zni 2 (0, 1) 8n, i (14:62)
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So the overall mathematical model is

Maximize Z ¼
X

n

X

i

GniXni

Subject to

Yn ¼
X

i

Xni 8n

UniZni � Xni � UniZn(i�1) 8n, i
X

n

Yn � GL

Zn0 ¼ 1 and ZInn ¼ 0

Xni � 0, Yn � 0, Zni 2 (0, 1) 8n, i

Model (14:3)

14.8 Multiple Shifts Planning

A local organization is considering a second shift in its manufacturing unit
for some working days to meet the increased demand. However, there are
significant additional costs involved with the opening and closing of a
second shift in any day. Suppose that all the costs, capacities, and demand
data are given. Formulate the shift planning problem.

We define the variables and parameters as follows:

X1t ¼production volume in shift 1 of period t

X2t ¼production volume in shift 2 of period t

It ¼ inventory carried from period t to t þ 1

Yt ¼ 1 second shift operating in period t
0 otherwise

�

H ¼ inventory carrying cost

C1t ¼ first shift production cost per unit in period t

C2t ¼ second shift production cost per unit in period t

COS ¼ cost of opening the second shift

CCS ¼ cost of closing the second shift

CAP1t¼ capacity of first shift in period t

CAP2t¼ capacity of second shift in period t

Dt ¼demand in period t
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The following are the assumptions for the opening and closing of shift:

. A second shift can be opened in a period t, if it was not operated in
period t ] 1.

. A second shift can be closed in period t, if it was operated in
period t ] 1.

Under these assumptions, the cost function for second-shift opening and
closing (SSOC) can be expressed as

f (SSOC) ¼ (COS)Yt þ (CCS)Yt�1 � (COSþ CCS)YtYt�1 (14:63)

Let us analyze the second-shift cost function (Equation 14.63) as it would
generate four different cases as follows.

Case Yt Yt21 f(SSOC) Remarks

1 0 0 0 Neither opening nor closing, and the second shift not
operating in either period t or t]1

2 1 1 0 Neither opening nor closing, but second shift
operating in both period t and t]1

3 1 0 COS Second shift opening (operated) in period t, but not
operated (closing) in period t]1

4 0 1 CCS Second shift closing (or not operated) in period t and
opening (operated) in period t]1

The objective is to minimize the sum of production, inventory holding, and
second-shift opening and closing costs.

Min Z ¼
X

t

[C1tX1t þ C2tX2t þHIt þ (COS)Yt þ (CCS)Yt�1

� (COSþ CCS)YtYt�1] (14:64)

In a given period t, the total production plus the inventory carried from
previous period minus inventory to be carried for the next period must be
equal to the demand of that period.

X1t þ X2t þ It�1 � It ¼ Dt 8t (14:65)

The production in any period for any shift must be less than or equal to the
production capacity in that period.

X1t � CAP1t (14:66)

X2t � CAP2tYt (14:67)
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Finally, nonnegative constraints.

X1t, X2t, It � 0 and integer

Yt binary (14:68)

We assume Lt¼YtYt�1. To simplify the polynomial term in the objective
function, the following additional constraints are required (for further
details on this approach, see Section 5.14 and Glover and Woolsey (1974)).

Lt � Yt � 0

Lt � Yt�1 � 0

Yt þ Yt�1 � Lt � 1

0 � Lt � 1 (14:69)

So the revised formulation:

Minimize Z ¼
X

t

[C1tX1t þ C2tX2t þHIt þ (COS)Yt þ (CCS)Yt�1

� (COSþ CCS)Lt]

Subject to

X1t þ X2t þ It�1 � It ¼ Dt 8t
X1t � CAP1t

X2t � CAP2tYt

Lt � Yt � 0

Lt � Yt�1 � 0

Yt þ Yt�1 � Lt � 1

0 � Lt � 1

X1t, X2t, It � 0 and integer

Yt binary

Model (14:4)

14.9 Summary

In this chapter, we have briefly presented several integer and nonlinear
practical problems that include a combat logistics problem, a lot-sizing
problem, a joint lot-sizing and transportation decision problem, a coal bank
scheduling problem, an engineering design problem, a gas-lift optimization
problem, and a multiple shifts planning problem. The mathematical models
and related issues of these problems have also been discussed.
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15
Solving Practical Problems

15.1 Introduction

In this chapter, we solve a number of practical problems and discuss their
solutions. The mathematical models of most of the problems, to be dis-
cussed here, have already been formulated in earlier chapters. The size
of these problems ranges from small to medium. The following are the
problems discussed in this chapter:

. A sanitary-wares product-mix problem

. A crop planning problem

. A two-stage transportation problem

. A power generation and planning problem

. A gas-lift optimization problem

15.2 A Product Mix Problem

ABC sanitary-wares company produces a number of products using three
existing production lines. The production lines A, B, and C produce 3, 4,
and 6 products, respectively. All the products require the same basic raw
materials but at different amounts per unit. The details of products and
raw materials can be found in Sarker and Haque (1985). There is a limitation
on the supply of raw materials in a given year and the working capital is
also limited. The capacity of each production line is restricted by the
skilled labor hours available which can be calculated easily. Initially, it
was assumed that all products produced in a year can be sold as the prices
are lower than their competitors when compared with their quality. So the
problem is to find an optimal product-mix for the company.
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The mathematical model of the problem is presented below.

Variables:
Xi¼number of units of product i to be produced

Data:

Wi ¼ raw material required for each unit of product i in kg

Pi ¼price of each unit of product i

Ci ¼ variable cost per unit of product i

Li ¼ labor hours required for each unit of product i

RS ¼ total raw material supply

TB ¼ total working capital available

PCj ¼ capacity (labor hours available) of production line j

The objective function was set to maximize a payoff function (Pi – Ci)
rather than profit maximization since the fixed cost component is not
involved in the optimization process.

Maximize Z ¼
X

i

(Pi � Ci)Xi (15:1)

Constraints:
Raw material limitation: the total amount of raw material required by all
products must be less than or equal to the total amount available.

X

i

WiXi � RS (15:2)

Working capital restriction: the total amount of variable costs incurred by all
products must be less than or equal to the total working capital available.

X

i

CiXi � TB (15:3)

Production line capacity: the total number of labor hours required by all
products produced in a line j must be less than or equal to the total number
of labor hours available in that line.

X

i2Sj

LiXi � PCj 8j (15:4)

Where Sj is a set of product produced in production line j
Nonnegativity constraint

Xi � 0 8i (15:5)
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So the overall mathematical model is

Maximize Z ¼
X

i

(Pi � Ci)Xi

Subject to
X

i

WiXi � RS

X

i

CiXi � TB

X

i2Sj

LiXi � PCj 8j

Xi � 0 8i

Model (15:1)

To solve the model, the data Wi, Pi, Ci, Li, RS, TB, and PCj were taken from
Sarker and Haque (1985). The model contains 13 variables and 5 constraints.
The LINGO codes for the model (Figure 15.1) are given below.

After running LINGO, it indicated that the smallest and largest elements in
absolute value in the model are 0.300000 and 15000000, respectively.
So LINGO provided a ** WARNING ** Problem is poorly scaled. The units
of the rows and variables should be changed so that the coefficients cover
a much smaller range. As discussed in an earlier chapter, it may create a

MODEL:
!Sanitarywares product-mix part-1; 

!OBJECTIVE FUNCTION; 
 [OBJ] MAX = 610*X1 + 885*X2 + 300*X3 + 725*X4 + 355*X5 + 80*X6 +
940*X7 + 210*X8 + 235*X9 + 600*X10 + 30*X11 + 20*X12 + 15*X13;

!CONSTRAINTS;

!Raw material;
 11.7*X1 + 17*X2 + 5.8*X3 + 13.95*X4 + 6.8*X5 + 1.5*X6 + 18*X7 +
4*X8 + 4.5*X9 + 11.5*X10 + 0.57*X11 + 0.39*X12 + 0.30*X13 <= 4000000;

!Working capital; 
 94.32*X1 + 140.82*X2 + 47.67*X3 + 115.75*X4 + 56.57*X5 + 
12.47*X6 + 149.07*X7 + 33.17*X8 + 39.22*X9 + 95.32*X10 + 4.79*X11 + 
3.28*X12 + 2.5*X13 <= 15000000; 

!Production line 1; 
 32*X1 + 31*X4 + 15*X5 <= 2442600; 

!Production line 2; 
 45*X2 + 25*X3 + 16*X6 + 17*X7 <= 1486800; 

!Production line 3; 
 11*X8 + 20*X9 + 21*X10 + 15*X11 + 15*X12 + 15*X13 <= 743400; 

END

FIGURE 15.1
LINGO codes for the product mix model.
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computational problem for the optimization algorithms. So it is recommended
to scale the model properly. For this purpose, we define the variables in units of
100s. For such changes, we have divided the right-hand side (RHS) of all the
constraints by 100 and made no changes to the objective function. The revised
LINGO model (Figure 15.2) is presented above.

As can be seen, in the following output (Figure 15.3), LINGO stated that
the smallest and largest elements in absolute value are 0.300000 and 150000,
respectively, and it provided no warning message.

Because of the rescaling of the model, the solution must be read as shown
in column 3 in Table 15.1.

As per the optimal product-mix, the company needs to produce only four
products (X1, X6, X7, and X8) to maximize their payoff function. As per the
solution, the company is using the full capacity of all three production lines
and all of the working capital. The company management thinks it is not a
good idea to produce a subset of the products if the company wants to
increase its market share and grow in the future. Now the question is how to
ensure that all products will appear in the final solution while maximizing
the defined payoff function. By changing the parameters, one can get a
maximum of five products at the positive level for this model as the number
of basic variables is always less than or equal to the number of constraints
when solving the model using a linear programming (LP) methodology.

MODEL:
!Sanitarywares product-mix part-2; 

!OBJECTIVE FUNCTION; 
 [OBJ] MAX = 610*X1 + 885*X2 + 300*X3 + 725*X4 + 355*X5 + 80*X6 +
940*X7 + 210*X8 + 235*X9 + 600*X10 + 30*X11 + 20*X12 + 15*X13;

!CONSTRAINTS;

!Raw material; 
 11.7*X1 + 17*X2 + 5.8*X3 + 13.95*X4 + 6.8*X5 + 1.5*X6 + 18*X7 +
4*X8 + 4.5*X9 + 11.5*X10 + 0.57*X11 + 0.39*X12 + 0.30*X13 <= 40000; 

!Working capital; 
 94.32*X1 + 140.82*X2 + 47.67*X3 + 115.75*X4 + 56.57*X5 + 
12.47*X6 + 149.07*X7 + 33.17*X8 + 39.22*X9 + 95.32*X10 + 4.79*X11 + 
3.28*X12 + 2.5*X13 <= 150000;

!Production line 1; 
 32*X1 + 31*X4 + 15*X5 <= 24426;

!Production line 2; 
 45*X2 + 25*X3 + 16*X6 + 17*X7 <= 14868;

!Production line 3; 
 11*X8 + 20*X9 + 21*X10 + 15*X11 + 15*X12 + 15*X13 <= 7434; 

END

FIGURE 15.2
Rescaled LINGO model.
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Rows=      6 Vars=     13 No. integer vars=      0  ( all are linear)
 Nonzeros=     57 Constraint nonz=    39(     0 are +- 1)
Density=0.679
 Smallest and largest elements in abs value=   0.300000        150000.
 No. < :   5 No. =:   0 No. > :   0, Obj=MAX, GUBs <=   3
 Single cols=    0 
 Global optimal solution found at step:             6
 Objective value:                            958863.7

                        Variable           Value        Reduced Cost
                              X1        763.3125           0.0000000
                              X2       0.0000000            5.691559
                              X3       0.0000000            2.430403
                              X4       0.0000000            19.39549
                              X5       0.0000000            8.728787
                              X6        585.0481           0.0000000
                              X7        323.9547           0.0000000
                              X8        675.8182           0.0000000
                              X9       0.0000000            14.06092
                             X10       0.0000000            2.322620
                             X11       0.0000000            1.779661
                             X12       0.0000000            2.274109
                             X13       0.0000000            2.363957
                             Row    Slack or Surplus      Dual Price
                             OBJ        958863.7            1.000000
                               2        21657.21           0.0000000
                               3       0.0000000            6.295067
                               4       0.0000000           0.5077886
                               5       0.0000000          0.9378178E-01
                               6       0.0000000           0.1084192 

FIGURE 15.3
Output of rescaled model.

TABLE 15.1

LINGO Solutions vs. Actual Solution

Variable

LINGO Output

(in 100 Units)

Actual Solution

(in Units)

Z 958863.7 95886370.0
X1 763.3125 76331.25
X2 00 00
X3 00 00
X4 00 00
X5 00 00
X6 585.0481 58504.81
X7 323.9547 32395.47
X8 675.8182 67581.82
X9 00 00
X10 00 00
X11 00 00
X12 00 00
X13 00 00
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So we need to add new constraints to have more than five products in the
final solution. If there are no other constraints then it is recommended to set
the variable bounds. In this problem, we are using the following constraints.

WiXi �MDi 8i (15:6)

Here, MDi is the minimum level of production for product i in a year set by
the management.

The corresponding LINGO model (Figure 15.4) is as follows.

MODEL:
!Sanitarywares product-mix part-3; 

!OBJECTIVE FUNCTION; 
 [OBJ] MAX = 610*X1 + 885*X2 + 300*X3 + 725*X4 + 355*X5 + 80*X6 +
940*X7 + 210*X8 + 235*X9 + 600*X10 + 30*X11 + 20*X12 + 15*X13;

!CONSTRAINTS;

!Raw material; 
 11.7*X1 + 17*X2 + 5.8*X3 + 13.95*X4 + 6.8*X5 + 1.5*X6 + 18*X7 +
4*X8 + 4.5*X9 + 11.5*X10 + 0.57*X11 + 0.39*X12 + 0.30*X13 <= 40000; 

!Working capital; 
 94.32*X1 + 140.82*X2 + 47.67*X3 + 115.75*X4 + 56.57*X5 + 
12.47*X6 + 149.07*X7 + 33.17*X8 + 39.22*X9 + 95.32*X10 + 4.79*X11 + 
3.28*X12 + 2.5*X13 <= 150000;

!Production line 1; 
 32*X1 + 31*X4 + 15*X5 <= 24426;

!Production line 2; 
 45*X2 + 25*X3 + 16*X6 + 17*X7 <= 14868;

!Production line 3; 
 11*X8 + 20*X9 + 21*X10 + 15*X11 + 15*X12 + 15*X13 <= 7434; 

!Minimum production level; 
 11.7*X1 >= 4294; 
 17*X2 >= 1589; 
 5.8*X3 >= 160; 
 13.95*X4 >= 1166.9; 
 6.8*X5 >= 3178; 
 1.5*X6 >= 623.5; 
 18*X7 >= 337.2; 
 4*X8 >= 125; 
 4.5*X9 >= 38.8; 
 11.5*X10 >= 584.7; 
 0.57*X11 >= 18.20; 
 0.39*X12 >= 10.3; 
 0.30*X13 >= 8.60; 
END

FIGURE 15.4
LINGO codes for the revised model.
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The solution of the full model is shown in Figure 15.5.
Note that the revised model decreases the objective function value. How-

ever, it satisfies management’s other qualitative goals.

15.3 A Two-Stage Transportation Problem

Consider the example of a two-stage transportation problem described in
Chapter 10. As presented in Example 10.10 and Figure 10.14, the LINGO

Rows=     19 Vars=     13 No. integer vars=      0  ( all are linear)
 Nonzeros=     83 Constraint nonz=    52(     0 are +- 1)
Density=0.312
 Smallest and largest elements in abs value=   0.300000        150000.
 No. < :   5 No. =:   0 No. > :  13, Obj=MAX, GUBs <=  13
 Single cols=    0 
 Global optimal solution found at step:            13
 Objective value:                            952054.2

                       Variable           Value        Reduced Cost
                             X1        463.2061           0.0000000
                             X2        93.47059           0.0000000
                             X3        27.58621           0.0000000
                             X4        83.64875           0.0000000
                             X5        467.3529           0.0000000
                             X6        415.6667           0.0000000
                             X7        195.3825           0.0000000
                             X8        374.8743           0.0000000
                             X9        8.622222           0.0000000
                            X10        87.27798           0.0000000
                            X11        31.92983           0.0000000
                            X12        26.41026           0.0000000
                            X13        28.66667           0.0000000
                            Row    Slack or Surplus      Dual Price
                            OBJ        952054.2            1.000000
                              2        21767.11           0.0000000
                              3       0.0000000            6.222475
                              4       0.0000000           0.7217556
                              5       0.0000000           0.7303343
                              6       0.0000000           0.3273192
                              7        1125.511           0.0000000
                              8       0.0000000           -1.418467
                              9       0.0000000           -2.566161
                             10       0.0000000           -1.263504
                             11       0.0000000           -1.151725
                             12       0.0000000           -6.186407
                             13        3179.684           0.0000000
                             14        1374.497           0.0000000
                             15       0.0000000           -3.464854
                             16        418.9967           0.0000000
                             17       0.0000000           -8.272706
                             18       0.0000000           -13.63976
                             19       0.0000000           -18.21992

FIGURE 15.5
Output of the revised model.
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model for a problem with 15 plants, 10 warehouses, and 15 retailers is as
follows. Although the problem is a representative practical problem, the
data in the model do not represent any real scenario. They are chosen
arbitrarily random, for demonstration, by ensuring feasibility of the model
(Figure 15.6).

The model contains 300 integer variables and 50 constraints. The smallest
and largest elements in absolute value are 1.00 and 4500.00, respectively.
The objective function value is 91,300.00. As per LINGO, the solution
summary is given in Tables 15.2 and 15.3.

MODEL:
!15 PLANTS, 10 WAREHOUSE AND 15 DIST CENTER ; 

SETS:
 PLANTS/ P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15/: 
PLANT_CAPACITY;
 WAREHOUSES/ WH1 WH2 WH3 WH4 WH5 WH6 WH7 WH8 WH9 WH10/: 
WHOUSE_CAPACITY;
 DISTCENTERS/ DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 DC11 DC12
DC13 DC14 DC15/: DC_CAPACITY; 
 LINKS1 (PLANTS, WAREHOUSES): COST1, VOLUME1; 
 LINKS2 (DISTCENTERS, WAREHOUSES) : COST2, VOLUME2; 
ENDSETS
!OBJECTIVE FUNCTION; 
 [OBJ] MIN = PRODUCTION + DISTRIBUTION; 
 PRODUCTION = @SUM ( LINKS1 (I, J): COST1 (I, J) * VOLUME1 
(I,J));
 DISTRIBUTION = @SUM (LINKS2 (I, J): COST2 (I,J) * VOLUME2 
(I,J));

!CONSTRAINTS;
 @FOR (WAREHOUSES(J): 
  @SUM ( PLANTS(I): VOLUME1(I,J)) <= WHOUSE_CAPACITY(J)); 
 @FOR (PLANTS (I): 
  @SUM ( WAREHOUSES (J): VOLUME1(I,J)) <= PLANT_CAPACITY 
(I));

 @FOR (DISTCENTERS(I): 
  @SUM (WAREHOUSES (J): VOLUME2(I,J)) >= DC_CAPACITY(I)); 

 @FOR (WAREHOUSES(J): 
  @SUM ( PLANTS (I): VOLUME1(I,J)) - @SUM (DISTCENTERS
(I): VOLUME2(I,J)) >= 0); 

 @FOR (PLANTS(I): 
  @FOR (WAREHOUSES(J): 
   @ GIN(VOLUME1(I,J)))) ; 

 @FOR (DISTCENTERS(I): 
  @FOR (WAREHOUSES(J): 
   @ GIN(VOLUME2(I,J)))) ; 

FIGURE 15.6
LINGO codes for a transportation model.

(continued)
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15.4 A Crop Planning Problem

Consider the crop planning problem presented in Chapter 13. In this
section, we solve an instance of this problem. To solve the problem, we
need to collect and prepare data for the model. The basic data and relevant
information are available in Sarker et al. (1997).

There are more than 100 crops in the country (a South Asian country)
under consideration. The model developed in the previous chapter is an

 15 2 8 6 2 2 6 2 1 1
 5 7 3 9 8 15 1 2 7 8
 3 2 8 6 12 4 9 1 1 1
 13 12 1 10 5 2 1 3 5 7
 7 3 2 14 1 1 2 14 6 3
 17 2 5 7 9 1 3 5 9 1
 10 5 6 4 3 1 2 3 7 9
 5 6 7 9 3 1 2 5 9 4
 1 5 9 1 1 4 7 14 5 6
 1 3 4 7 9 12 1 11 12  13;

COST2 = 7 3 5 5 9 8 2 2 4 5
         5 4 12 7 3 7 5 7 6 7
         4 5 2 9 2 3 3 6 90 9
         3 6 4 11 5 2 4 1 1 3
         5 7 6 9 4 4 7 11 12 2
         2 9 8 7 8 6 8 15 16 1
         1 12 10 5 11 8 9 4 7 5
         2 15 3 3 12 7 1 14 8 7
         3 2 1 4 5 1 10 6 7 9
         7 7 5 6 1 4 5 7 7 3
    8 2 1 5 1 8 13 17 1 4
 9 3 3 7 3 9 1 2 3 4
    2 1 12 3 7 2 1 20 7 7
 3 1 5 3 9 5 3 3 9 3
 5 1 7 3 1 8 7 6 2   1;ENDDATA

END

!DATA ARE BELOW; 
DATA:
 PLANT_CAPACITY = 1500 1400 1800.5 2200 1200 1700 1500 2000 2300
1950 2350 3700 1400 1600 2000; 
 WHOUSE_CAPACITY = 3500 2500 4000 2000 3000 4500 4500 1000 2000 
2000 ; 
 DC_CAPACITY = 2000 2800 700 1400 1200 1600 1400 2100 2400 2050 
2500 3450 1500 1700 1800 ; 

COST1 = 2  3  3  5  7  8  9  2  3  4 
   6  4  2  3  9  7  4  5  6  7 
   8  6  7  9  3  3  2  1  6  9 
   3  5  7  9 10 12 14 12 16 18 
   1 12  3  7  7  5  7  5  3  1 

FIGURE 15.6 (continued)
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aggregate planning model to make high-level planning decisions. Hence all
the crops are divided into 10 major crop groups. According to the present
cropping pattern, the number of crop combinations identified for single-,
double-, and triple-cropped lands is 10, 17, and 6, respectively. Any of the 10
major groups=crops can be produced in a year in the single-cropped area.
There are 17 pairs of crops that can be produced (one after another of the

TABLE 15.2

Transportation Plan from Plants to Warehouses

To Warehouse

From Plant 1 2 3 4 5 6 7 8 9 10

1 1200 300
2 1400
3 800 1000
4 2200
5 1200
6 950 750
7 1500
8 2000
9 2300

10 1950
11 1550 800
12 300 3400
13 1100 300
14 1600
15 100 1900

TABLE 15.3

Transportation Plan from Warehouses to Retailers

From Warehouse

1 2 3 4 5 6 7 8 9 10 To Retailer

1000 1000 1

1850 950 2

700 3

1400 4

600 600 5

850 750 6

1400 7

1250 800 50 8

2400 9

2050 10

2500 11

3450 12

1500 13

100 1600 14

550 600 650 15
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pair) in a year in double-cropped areas while six combinations (three crops
in each group, one after another in a year) in triple-cropped areas. The
details of crop groups and their combinations are discussed below. Further
details such as the individual crops under each crop group can be found in
Sarker et al. (1997).

The production decision variables of the model with their coefficients are
presented in Table 15.4. As indicated by Sarker et al. (1997), the data to
prepare the coefficients were collected from different statistical year books.

TABLE 15.4

Model Parameters

Sl. No.

Variable

Xijk

Aijk Million

Tonnes=Acre

Cijk

Taka=Acre

Return

Taka=Acre

Bijk

Taka=Acre

1 X_1_1_1 0.46 4313 5447 1134
2 X_2_2_1 0.41 3450 3566 116
3 X_3_3_1 0.70 4702 7475 2773
4 X_4_4_1 1.056 7557 9752 2195
5 X_5_5_1 0.75 4518 4809 291
6 X_6_6_1 0.658 5233 4531 ]702
7 X_7_7_1 0.921 2090 10251 8125
8 X_8_8_1 0.935 1355 8445 7090
9 X_9_9_1 9.453 1680 49401 47722

10 X_10_10_1 0.506 12486 29247 16761
11 X_1_1_2 0.46 4313 5447 1134
12 X_3_1_2 0.70 4702 7475 2773
13 X_1_2_2 0.46 4313 5447 1134
14 X_4_2_2 1.056 7557 9752 2195
15 X_1_3_2 0.46 4313 5447 1134
16 X_5_3_2 0.75 4518 4809 291
17 X_1_4_2 0.46 4313 5447 1134
18 X_7_4_2 0.921 2090 10215 8125
19 X_2_5_2 0.41 3450 3566 116
20 X_4_5_2 1.056 7557 9752 2195
21 X_2_6_2 0.41 3450 3566 116
22 X_5_6_2 0.75 4518 4809 291
23 X_2_7_2 0.41 3450 3566 116
24 X_7_7_2 0.921 2090 10215 8125
25 X_3_8_2 0.70 4702 7475 2773
26 X_4_8_2 1.056 7557 9752 2195
27 X_3_9_2 0.70 4702 7475 2773
28 X_5_9_2 0.75 4518 4809 291
29 X_3_10_2 0.70 4702 7475 2773
30 X_6_10_2 0.658 5233 4531 ]702
31 X_3_11_2 0.70 4702 7475 2773
32 X_7_11_2 0.921 2090 10215 8125
33 X_4_12_2 1.056 7557 9752 2195
34 X_6_12_2 0.658 5233 4531 ]702
35 X_4_13_2 1.056 7557 9752 2195

(continued)
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In the above table, taka represents the local currency. In addition to the
above variables, there are six other variables representing the importation
of crops. The LP model of the problem consists of 68 variables and 45
constraints. The RHS data are also available from Sarker et al. (1997). The
corresponding detailed LP model is presented in Appendix-15A.

The country produces jute, kharif crops, fruits and juices, and drugs and
narcotics in excess of their own demand. Importation is restricted for them.
It is permitted only for cereals (rice and wheat) and rabi crops due to their
shortage. This is why, the importation quantity variables, I_1, I_2, I_3, I_4,
I_5, and I_7 are inserted whereas the others omitted.

15.4.1 Constraint and Variable Reduction

The constraints 15–43 state that one variable is equal to another variable. For
example, the constraint 15 indicates that variable X_1_1_2 is equal to variable

TABLE 15.4 (continued)

Model Parameters

Sl. No.

Variable

Xijk

Aijk Million

Tonnes=Acre

Cijk

Taka=Acre

Return

Taka=Acre

Bijk

Taka=Acre

36 X_8_13_2 0.935 1355 8445 7090
37 X_5_14_2 0.75 4518 4809 291
38 X_6_14_2 0.658 5233 4531 ]702
39 X_5_15_2 0.75 4518 4809 291
40 X_8_15_2 0.935 1355 8445 7090
41 X_6_16_2 0.658 5233 4531 ]702
42 X_7_16_2 0.921 2090 10215 8125
43 X_7_17_2 0.921 2090 10215 8125
44 X_8_17_2 0.935 1355 8445 7090
45 X_1_1_3 0.46 4313 5447 1134
46 X_3_1_3 0.70 4702 7475 2773
47 X_4_1_3 1.056 7557 9752 2195
48 X_1_2_3 0.46 4313 5447 1134
49 X_3_2_3 0.70 4702 7475 2773
50 X_5_2_3 0.75 4518 4809 291
51 X_1_3_3 0.46 4313 5447 1134
52 X_3_3_3 0.70 4702 7475 2773
53 X_7_3_3 0.921 2090 10215 8125
54 X_3_4_3 0.70 4702 7475 2773
55 X_4_4_3 1.056 7557 9752 2195
56 X_6_4_3 0.658 5233 4531 ]702
57 X_3_5_3 0.70 4702 7475 2773
58 X_5_5_3 0.75 4518 4809 291
59 X_6_5_3 0.658 5233 4531 ]702
60 X_6_6_3 0.658 5233 4531 ]702
61 X_3_6_3 0.70 4702 7475 2773
62 X_7_6_3 0.921 2090 10215 8125

Source: Reprinted from Sarker, R., Talukdar, S., and Haque, A., Appl. Math. Model., 21, 621, 1997.
With permission.
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X_3_1_2. So this constraint can be omitted by substituting one variable for the
other in the remaining constraints and in the objective function. This way we
can remove all the constraints from 15 to 43. It will also reduce the number of
variables. After applying such a constraint and variable reduction method,
the model consists of 39 variables and 16 constraints. For the convenience of
variable tracking, we present all the variables in Table 15.5. For double-
cropped areas, the variables in the first column will be substituted for the

TABLE 15.5

Variable Definition and Substitution

Variable Definition as per Model Revised Definition Solutions

X_1_1_1 X[1] 117.5200
X_2_2_1 X[2] 217.6824
X_3_3_1 X[3] 253.9847
X_4_4_1 X[4]
X_5_5_1 X[5]
X_6_6_1 X[6]
X_7_7_1 X[7]
X_8_8_1 X[8] 44.6538
X_9_9_1 X[9] 111.4678
X_10_10_1 X[10] 27.3913
X_1_1_2 X_3_1_2 X[11] 171.0008
X_1_2_2 X_4_2_2 X[12]
X_1_3_2 X_5_3_2 X[13]
X_1_4_2 X_7_4_2 X[14]
X_2_5_2 X_4_5_2 X[15]
X_2_6_2 X_5_6_2 X[16]
X_2_7_2 X_7_7_2 X[17]
X_3_8_2 X_4_8_2 X[18] 433.8992
X_3_9_2 X_5_9_2 X[19] 157.4304
X_3_10_2 X_6_10_2 X[20]
X_3_11_2 X_7_11_2 X[21]
X_4_12_2 X_6_12_2 X[22]
X_4_13_2 X_8_13_2 X[23]
X_5_14_2 X_6_14_2 X[24]
X_5_15_2 X_8_15_2 X[25]
X_6_16_2 X_7_16_2 X[26]
X_7_17_2 X_8_17_2 X[27]
X_1_1_3 X_3_1_3 X_4_1_3 X[28] 195.0805
X_1_2_3 X_3_2_3 X_5_2_3 X[29]
X_1_3_3 X_3_3_3 X_7_3_3 X[30]
X_3_4_3 X_4_4_3 X_6_4_3 X[31] 43.6195
X_3_5_3 X_5_5_3 X_6_5_3 X[32]
X_6_6_3 X_3_6_3 X_7_6_3 X[33]
I_1 X[34] 5.0000
I_2 X[35]
I_3 X[36]
I_4 X[37]
I_5 X[38]
I_7 X[39] 407.4360
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second column, and for triple-cropped areas, the variables in the first column
will be substituted for the second and third columns. Alternatively, we may
redefine these variables as shown in column 4.

15.4.2 Scaling the Model

In the above model, the smallest and largest elements are 0.3333 and
1.7Eþ 11, respectively. As we discussed earlier, it will create a computa-
tional problem when solving the model using a software package. To ignore
that difficulty we may redefine the decision variable in 10,000 units.

After solving with LINGO, we provide the summary solutions in
Table 15.5. The fifth column of the table shows solutions of each variable
of the model.

15.4.3 Working with Solutions

The area-used variables are defined in 10,000 units in the revised model. In
Table 15.6, column 4 shows the area used (in 10,000 acres) under different
crop combinations as per the optimum solutions. The total area used (in
million acres) by each crop is summarized in column 5. The total crop
production (in million tonnes) is calculated using the yield rate presented
earlier and they are reported in column 6.

TABLE 15.6

Working with Solutions

[1]

Crop

[2]

Variable

[3]

Land

Type

[4]

Land Used

(in 10,000

Acres)

[5]

Total Land

Used (Million

Acres)

[6]

Total Production

(Million

Tonnes)

Aus rice X_1_1_1 Single 117.5200 4.836 2.225
X_1_1_2 Double 171.0008
X_1_1_3 Triple 195.0805

Amon rice (B) X_2_2_1 Single 217.6824 2.177 0.892
Amon rice (T) X_3_3_1 Single 253.9847 12.55 8.785

X_3_1_2 Double 171.0008
X_3_4_3 Triple 43.6195
X_3_8_2 Double 433.8992
X_3_9_2 Double 157.4304
X_3_1_3 Triple 195.0805

Boro rice X_4_8_2 Double 433.8992 6.73 7.103
X_4_1_3 Triple 195.0805
X_4_4_3 Triple 43.6195

Wheat X_5_9_2 Double 157.4304 1.574 1.181
Jute X_6_4_3 Triple 43.6195 0.436 0.287
Kharif crops X_8_8_1 Single 44.6538 0.447 0.418
Fruits X_9_9_1 Single 111.4678 1.115 10.537
Drugs and narcotics X_10_10_1 Single 27.3913 0.274 0.139
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From the above solutions, one can easily find the total area used under
different types of land. The solutions of import variables are recorded in
Table 15.7.

15.4.4 Multi-Objective Crop Planning Problem

Let us now consider two objectives (contribution maximization and cultiva-
tion cost minimization) for the above crop planning problem. To solve the
two-objective problem, we use the «-constraint method. In this method, one
of the objective functions is selected to be optimized and all other objective
functions are converted into constraints by setting an upper bound to each
of them. The problem to be solved is now of the form:

Minimize fl(x)

Subject to

fj(x) � «j for all j ¼ 1, . . . , k, j 6¼ l

x 2 S

where l 2 {1, . . . , k}

Model (15:2)

So the method is basically solving a single-objective model each time. The
level of «i is altered to generate the entire Pareto-optimal set. We used
LINGO=PC Release 10.0 for solving various problems based on «-constraint
method. For the Pareto frontier shown below, the total profit and the
cultivation costs are expressed in million units of currency. It is clear that
the total profit increases with increase of cultivation costs (Figure 15.7).

TABLE 15.7

Import Summary

Importation of Crop Variables Quantity (Million Tonnes)

Rice I_1 0.05000
Rabi crops I_7 4.0744

15.200

15.600

16.000

16.400

4.000 7.000 10.000 13.000 16.000
Profit

C
os

ts

FIGURE 15.7
Pareto frontier for a bi-objective crop-planning problem.
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15.5 Power Generation Planning Problem

Recall the power generation planning model presented in Chapter 13. The
information=data for the problem are taken from Begum (2004). We consider
five different plants (Table 15.8) and 6 years planning horizon (Table 15.9).
Each period is divided into four demand blocks as shown in Table 15.10.

The existing plant capacities (CEit) are presented in Table 15.11. The
variable costs and fixed costs in different plant types for each period are
given in Tables 15.12 and 15.13, respectively.

15.5.1 Model Validation

In this section, we validate the model by analyzing the solutions and
comparing them with our expected outcomes and conditions. In the
power generation problem, at the beginning of the modelling, one may
think that the capacity constraint can be set as follows:

OXipt þOEipt � AFit(Xit þ CEit) for all i, p, and t (15:7)

It indicates that the output required from each type of power generation
unit cannot exceed the total capacity of the existing units plus the planned
units of this type, multiplied by the corresponding availability factor in each
load block of a given year t. However, the above constraints with p¼ 2, 3,

TABLE 15.8

Plant Type and Technology

Plant Type i Technology

1 Steam turbine
2 Gas turbine
3 Hydro
4 Combined cycle
5 Diesel cycle

TABLE 15.9

Plant Operational Period

Period t Year of Operation

1 2005
2 2006
3 2007
4 2008
5 2009
6 2010
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TABLE 15.10

Time Block Details

Demand

Block, p

Time Block in Hours

of Any Year, t

Duration in

Hours (TDp)

1 0–910 910
2 910–2190 1280
3 2190–5840 3650
4 5840–8760 2920

TABLE 15.11

Existing Plant Capacity

Period, t

Plant Type i Technology 1 2 3 4 5 6

1 Steam turbine 2438 340 210 210 0 0
2 Gas turbine 869 120 0 100 0 0
3 Hydro 230 0 0 0 100 0
4 Combined cycle 180 340 310 0 450 450
5 Diesel cycle 18 0 0 0 0 0

TABLE 15.12

Variable Cost for Different Periods (Value 3 103 Taka=MW-h)

Period

Plant Type i Technology 1 2 3 4 5 6

1 Steam turbine 1.423 1.437 1.452 1.466 1.481 1.496
2 Gas turbine 4.485 4.530 4.575 4.621 4.667 4.714
3 Hydro 0 0 0 0 0 0
4 Combined cycle 0.667 0.674 0.680 0.687 0.694 0.701
5 Diesel 4.177 4.219 4.261 4.304 4.3477 4.390

TABLE 15.13

Fixed Cost Terms (Value 3 103 Taka=MW-h)

Period

Plant Type i Technology 1 2 3 4 5 6

1 Steam
turbine

54.568 60.025 62.576 69.66

2 Gas turbine 33.472 34.013
3 Hydro 533.978 593.978
4 Combined

cycle
2512.93 2889.87 3323.35 4395.13 5054.40

5 Diesel 2912.641
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and 4 would not affect the capacity determination as they would always
have a much lower demand. So this type of constraint can be reduced to
one-fourth, in number of constraints, by redefining it as follows.

OXipt þOEipt � AFit(Xit þ CEit) for p ¼ 1 only, and all i and t (15:8)

The above constraints are technically correct and it may sound a great idea.
After solving the model, you may check to see whether it serves its purpose
properly or not. To report our experience to the readers, we have solved the
model with the above capacity constraints. We have observed that although
the above constraints are satisfied properly, there are a number of occasions
where the outputs of existing plants exceed their available capacity. To
remove this concern, we have included the following constraint which
added 120 new constraints.

OEipt � AFitCEit for all i, p, and t (15:9)

It ensures that the output of any individual existing unit would not
exceed their available capacity in any load block in a given period. These
constraints were able to remove the above concern. However, it is now
exceeding the available capacity of a new plant (type 3), in load block 1
and period 6. So, it is necessary to incorporate the following constraint,
which would add another 120 constraints.

OXipt � AFitXit for all i, p, and t (15:10)

The constraint ensures that the output of any individual new unit would not
exceed their available capacity in any load block in a given period. The
model is now working well with no violation of conditions. However, if
the latter two constraints (Equations 15.9 and 15.10) are satisfied, the earlier
constraint (Equation 15.8) would automatically be satisfied. In other
words, the constraint (Equation 15.8) would now be redundant, which can
be verified by resolving the model. So we have removed the constraint
(Equation 15.8) to provide an efficient solution to the model.

An alternative way of validating the model or solutions is to compare the
solutions with existing practices. In reality, the practitioners usually try both.

The corresponding LP model contains 275 variables and 336 constraints.
LINGO requires 218 iteration to reach the optimum solution with an object-
ive function value of 48.098 million taka. The solutions of the model can be
summarized as shown in Table 15.14.

In the Table 15.14, the values of variable OXipt (for new plant type) and
OEipt (for existing plant type) are taken from the LINGO output. Column 1
indicates plant type, column 2 either new plant or existing plant, column 3
shows load block, and columns 4–9 indicate the periods from 1 to 6. To
explain the results, let us consider row 1 in Table 15.14. It indicates that a
new plant of type 1 (that is a steam turbine type power plant) requires to
generate a power of 1121.97, 1192.09, 974.04, 827.77, 516.85, and 55.00 MW for
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years 1–6, respectively, during the load block 1. The summary of the new
capacity required (Xit) by plant type for a 6 year period is given in Table 15.15.

15.6 Gas-Lift Optimization

Consider the gas-lift optimization model presented in Section 14.7. Repre-
sentative gas used vs. oil production data for a 6 wells practical problem and

TABLE 15.14

Existing and New Capacity Utilization

Period

Plant

Type i

Existing=

New

Load

Block 1 2 3 4 5 6

1 New 1 1121.97 1192.09 974.04 827.77 516.85 55.00
3 New 1 27.50 16.15 1.34 27.50 27.50
4 New 1 354.17 354.17 354.17 354.17 354.17 354.17
5 New 1 2.43
1 Existing 1 2106.43 2417.13 2610.50 2819.34 3044.89 3228.48
2 Existing 1 608.30 741.75 801.09 865.18 934.39 1009.15
3 Existing 1 207.00 23.00
4 Existing 1 153.00 229.50 612.00 918.00 1377.00 2065.50
5 Existing 1 16.20 16.20 16.20 16.20 16.20 16.20
3 New 2 27.50 19.74 17.76
1 Existing 2 2106.43 2417.13 2610.50 2819.34 2699.15 2340.85
2 Existing 2 608.30 565.72 157.38
3 Existing 2 76.62 73.37
4 Existing 2 153.00 229.50 612.00 918.00 1377.00 2065.50
5 Existing 2 16.20 16.20 16.20 16.20
3 New 3 27.50 27.50
1 Existing 3 2106.43 2417.13 2340.40 2273.10 2072.05 1662.95
2 Existing 3 139.74
3 Existing 3 85.48 41.52
4 Existing 3 153.00 229.50 612.00 918.00 1377.00 2065.50
5 Existing 3 16.20 16.20
3 New 4 17.50 27.50
1 Existing 4 1915.65 2005.65 1803.60 1692.90 1427.45 853.55
3 Existing 4 104.00
4 Existing 4 153.00 229.50 612.00 918.00 1377.00 2065.50

TABLE 15.15

Summary of Capacity Required

Plant Type New Capacity (MW)

Steam Turbine 1402.467
Gas Turbine 0.00
Hydro 55.00
Combined Cycle 416.667
Diesel Cycle 2.700
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other data can be found in Buitrago et al. (1996). From those data, the slopes
of line segments in each well can be calculated easily. The LINGO codes for
this model are presented in Figure 15.8.

MODEL:
!There are 6 wells, each has 8 segments in their gas-production function;

SETS:
 WELL: GASWELL, OILPWELL; 
 SEGMENT; 
 WELLSEG (WELL, SEGMENT): LIMIT, SLOPE, X, Y, Z; 
ENDSETS

!Objective function;
MAX = @SUM (WELLSEG(I,J): X(I,J) * SLOPE(I,J)); 

!Total gas used - additional equation to calculate total gas used;
GasUsed = @SUM (WELL(I):
  (@SUM (SEGMENT(J): X(I,J)))); 

!Oil produced in each well - additional equation to find oil produced;
@FOR (WELL(I): 
 OILPWELL(I) = @SUM (SEGMENT(J): X(I,J)* SLOPE(I,J))); 

!Gas used in each well - constraint (14.60);
@FOR (WELL(I):
 GASWELL(I) = @SUM (SEGMENT(J): X(I,J))); 

!Other conditions (14.61) to be satisfied;
@FOR (WELL(I): 
 @FOR (SEGMENT(J)| J #GT# 1:
  (X(I,J)- LIMIT(I,J)*Z(I,J-1))<=0)); 

@FOR (WELL(I): 
 @FOR (SEGMENT(J)| J #EQ# 1:   
  (X(I,J)- LIMIT(I,J))<=0)); 

@FOR (WELL(I): 
 @FOR (SEGMENT(J)| J #GT# 1:   
  (LIMIT(I,J)*Z(I,J) - X(I,J))<=0)); 

!Gas use limitation (14.62);
@SUM (WELL(I): 
 (@SUM (SEGMENT(J): 
  X(I,J)))) <= 12000; 

!Binary declaration of variables;
@FOR (WELL(I): 
 @FOR (SEGMENT(J): 
  @BIN(Z(I,J)))); 

DATA:
 WELL = W1      W2    W3    W4    W5    W6;  
 SEGMENT = S1  S2  S3  S4   S5   S6  S7   S8; 

FIGURE 15.8
LINGO codes for gas-lift optimization model.

(continued)
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For a limit of 12,000 units of gas, the solution of the model suggests
4155.121 units of oil production. The well-wise gas consumption and oil
production can be summarized as shown in Table 15.16.

15.7 Summary

In this chapter, we solved a number of representative practical problems and
discussed their solutions. The problems considered were a sanitary-wares
product-mix problem, a crop planning problem, a two-stage transportation
problem, a power generation and planning problem, and a gas-lift optimi-
zation problem. The data preparation, LINGO codes, model solving difficul-
ties, model validation, and practical model solving issues were also
discussed.

LIMIT = 32.1  61.1  93.5  129.6  173.9  230.9  292.3  358.4
 113.2  90.9  121.1  154  191.8  231.9  280.2  347.6 
 157  131.5  183.4  236.1  295.6  346.4  439.5  530.1 
 141.5  106.4  146  196  242.6  306.8  388.3  455.4 
 32.1  84  127.3  203.4  295.8  400.6  524.1  697.5 
 742.6  400.6  524.1  697.5  888.8  1144.3 1446.5 0;

SLOPE =  6.735 0.936 0.457 0.229 0.124 0.071 0.028 −0.0003
 3.778 1.303 0.760 0.4214 0.223 0.094 0.026 0.005
 3.749 1.395 0.841 0.476 0.259 0.093 0.055 0.009
 2.500 0.874 0.521 0.3193 0.159 0.086 0.045 0.002
 5.0 2.233 1.004 0.594 0.339 0.178 0.085 0.045
 0.0 0.243 0.136 0.064 0.035 0.049 −0.004 −0.001;

ENDDATA
END

FIGURE 15.8 (continued)
.

TABLE 15.16

Summary of Solutions

Well Gas Used Oil Produced

1 1,013.400 391.9329
2 1,183.100 774.8991
3 2,255.800 1,175.803
4 1,527.600 667.8241
5 2,364.800 844.2198
6 3,655.300 300.4421
Total ¼ 12,000.00 4,155.121
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Appendix-15A Crop Planning Linear
Programming Model

Objective function:

Maximize Z¼ 1134 X_1_1_1 þ 116 X_2_2_1 þ 2773 X_3_3_1 þ 2195
X_4_4_1 þ 291 X_5_5_1 ] 702 X_6_6_1 þ 8125 X_7_7_1
þ 7090 X_8_8_1 þ 47722 X_9_9_1 þ 16761 X_10_10_1
þ 1134 X_1_1_2 þ 2773 X_3_1_2 þ 1134 X_1_2_2 þ 2195
X_4_2_2 þ 1134 X_1_3_2 þ 291 X_5_3_2 þ 1134 X_1_4_2
þ 8225 X_7_4_2 þ 116 X_2_5_2 þ 2195 X_4_5_2 þ 116
X_2_6_2 þ 291 X_5_6_2 þ 116 X_2_7_2 þ 8125 X_7_7_2
þ 2773 X_3_8_2 þ 2195 X_4_8_2 þ 2773 X_3_9_2 þ 291
X_5_9_2 þ 2773 X_3_10_2 ] 702 X_6_10_2 þ 2773 X_3_11_2
þ 8125 X_7_11_2 þ 2195 X_4_12_2 ] 702 X_6_12_2 þ 2195
X_4_13_2 þ 7090 X_8_13_2 þ 291 X_5_14_2 ] 702 X_6_14_2
þ 291 X_5_15_2 þ 7090 X_8_15_2 ] 702 X_6_16_2 þ 8125
X_7_16_2 þ 8125 X_7_17_2 þ 7090 X_8_17_2 þ 1134 X_1_1_3
þ 2773 X_3_1_3 þ 2195 X_4_1_3 þ 1134 X_1_2_3 þ 2773
X_3_2_3 þ 291 X_5_2_3 þ 1134 X_1_3_3 þ 2773 X_3_3_3 þ
8125 X_7_3_3 þ 2773 X_3_4_3 þ 2195 X_4_4_3 ] 702 X_6_4_3
þ 2773 X_3_5_3 þ 291 X_5_5_3 ] 702 X_6_5_3 ] 702 X_6_6_3
þ 2773 X_3_6_3 þ 8125 X_7_6_3 ] 5940 I_1 ] 5940 I_2 ] 5940
I_3 ] 5940 I_4 ] 4609 I_5 ] 12341 I_7

Constraints:

(1) þ 0.46 X_1_1_1 þ 0.46 X_1_1_2 þ 0.46 X_1_2_2 þ 0.46 X_1_3_2
þ 0.46 X_1_4_2 þ 0.46 X_1_1_3 þ 0.46 X_1_2_3 þ 0.46 X_1_3_3 þ
I_1 � 2274566

(2) þ 0.41 X_2_2_1 þ 0.41 X_2_5_2 þ 0.41 X_2_6_2 þ 0.41 X_2_7_2
þ I_2 � 892498

(3) þ 0.7 X_3_3_1 þ 0.7 X_3_1_2 þ 0.7 X_3_8_2 þ 0.7 X_3_9_2 þ 0.7
X_3_10_2 þ 0.7 X_3_11_2 þ 0.7 X_3_1_3 þ 0.7 X_3_2_3 þ 0.7
X_3_3_3þ 0.7 X_3_4_3þ 0.7 X_3_5_3þ 0.7 X_3_6_3þ I_3� 8785105

(4) þ 1.056 X_4_4_1 þ 1.056 X_4_2_2 þ 1.056 X_4_5_2 þ 1.056 X_4_8_2
þ 1.056 X_4_12_2 þ 1.056 X_4_13_2 þ 1.056 X_4_1_3 þ 1.056
X_4_4_3 þ I_4 � 7102647

Sarker/Optimization Modelling: A Practical Approach 43102_C015 Final Proof page 459 1.9.2007 11:48am Compositor Name: BMani

459



(5) þ 0.75 X_5_5_1 þ 0.75 X_5_3_2 þ 0.75 X_5_6_2 þ 0.75 X_5_9_2
þ 0.75 X_5_14_2 þ 0.75 X_5_15_2 þ 0.75 X_5_2_3 þ 0.75 X_5_5_3
þ I_5 � 1180728

(6) þ 0.658 X_6_6_1 þ 0.658 X_6_10_2 þ 0.658 X_6_12_2 þ 0.658
X_6_14_2 þ 0.658 X_6_16_2 þ 0.658 X_6_4_3 þ 0.658 X_6_5_3
þ 0.658 X_6_6_3 � 287016

(7) þ 0.921 X_7_7_1 þ 0.921 X_7_4_2 þ 0.921 X_7_7_2 þ 0.921
X_7_11_2 þ 0.921 X_7_16_2 þ 0.921 X_7_17_2 þ 0.921 X_7_3_3
þ 0.921 X_7_6_3 þ I_7 � 4074360

(8) þ 0.935 X_8_8_1 þ 0.935 X_8_13_2 þ 0.935 X_8_15_2 þ 0.935
X_8_17_2 � 417513

(9) þ 9.453 X_9_9_1 � 5942200

(10) þ 0.506 X_10_10_1 � 138600

(11) þ X_1_1_1 þ X_2_2_1 þ X_3_3_1 þ X_4_4_1 þ X_5_5_1 þ X_6_6_1
þ X_7_7_1 þ X_8_8_1 þ X_9_9_1 þ X_10_10_1 � 7727000

(12) 0.5 X_1_1_2 þ 0.5 X_3_1_2 þ 0.5 X_1_2_2 þ 0.5 X_4_2_2 þ 0.5
X_1_3_2 þ 0.5 X_5_3_2 þ 0.5 X_1_4_2 þ 0.5 X_7_4_2 þ 0.5 X_2_5_2
þ 0.5 X_4_5_2 þ 0.5 X_2_6_2 þ 0.5 X_5_6_2 þ 0.5 X_2_7_2 þ 0.5
X_7_7_2 þ 0.5 X_3_8_2 þ 0.5 X_4_8_2 þ 0.5 X_3_9_2 þ 0.5 X_5_9_2
þ 0.5 X_3_10_2 þ 0.5 X_6_10_2 þ 0.5 X_3_11_2 þ 0.5 X_7_11_2
þ 0.5 X_4_12_2 þ 0.5 X_6_12_2 þ 0.5 X_4_13_2 þ 0.5 X_8_13_2
þ 0.5 X_5_14_2 þ 0.5 X_6_14_2 þ 0.5 X_5_15_2 þ 0.5 X_8_15_2
þ 0.5 X_6_16_2 þ 0.5 X_7_16_2 þ 0.5 X_7_17_2 � 9615000

(13) þ 0.333333 X_1_1_3 þ 0.333333 X_3_1_3 þ 0.333333 X_4_1_3
þ 0.333333 X_1_2_3 þ 0.333333 X_3_2_3 þ 0.333333 X_5_2_3
þ 0.333333 X_1_3_3 þ 0.333333 X_3_3_3 þ 0.333333 X_7_3_3
þ 0.333333 X_3_4_3 þ 0.333333 X_4_4_3 þ 0.333333 X_6_4_3
þ 0.333333 X_3_5_3 þ 0.333333 X_5_5_3 þ 0.333333 X_6_5_3
þ 0.333333 X_6_6_3 þ 0.333333 X_3_6_3 þ 0.333333 X_7_6_3
� 2387000

(14) þ 4313 X_1_1_1 þ 3450 X_2_2_1 þ 4702 X_3_3_1 þ 7557 X_4_4_1
þ 4518 X_5_5_1 þ 5233 X_6_6_1 þ 2090 X_7_7_1 þ 1355 X_8_8_1
þ 1680 X_9_9_1 þ 12486 X_10_10_1 þ 4313 X_1_1_2 þ 4702
X_3_1_2 þ 4313 X_1_2_2 þ 7557 X_4_2_2 þ 4313 X_1_3_2 þ 4518
X_5_3_2 þ 4313 X_1_4_2 þ 2090 X_7_4_2 þ 3450 X_2_5_2 þ 7557
X_4_5_2 þ 3450 X_2_6_2 þ 4518 X_5_6_2 þ 3450 X_2_7_2 þ 2090
X_7_7_2 þ 4702 X_3_8_2 þ 7557 X_4_8_2 þ 4702 X_3_9_2 þ 4518
X_5_9_2 þ 4702 X_3_10_2 þ 5233 X_6_10_2 þ 4702 X_3_11_2
þ 2090 X_7_11_2 þ 7557 X_4_12_2 þ 5233 X_6_12_2 þ 7557
X_4_13_2 þ 1355 X_8_13_2 þ 4518 X_5_14_2 þ 5233 X_6_14_2
þ 4518 X_5_15_2 þ 1355 X_8_15_2 þ 5233 X_6_16_2 þ 2090
X_7_16_2 þ 2090 X_7_17_2 þ 1355 X_8_17_2 þ 4313 X_1_1_3
þ 4702 X_3_1_3 þ 7557 X_4_1_3 þ 4313 X_1_2_3 þ 4702 X_3_2_3
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þ 4518 X_5_2_3 þ 4313 X_1_3_3 þ 4702 X_3_3_3 þ 2090 X_7_3_3
þ 4702 X_3_4_3 þ 7557 X_4_4_3 5233 X_6_4_3 þ 4702 X_3_5_3
þ 4518 X_5_5_3 þ 5233 X_6_5_3 þ 5233 X_6_6_3 þ 4702 X_3_6_3
þ 2090 X_7_6_3 � 1.7Eþ 11

(15) X_1_1_2 ] X_3_1_2¼ 0

(16) X_1_2_2 ] X_4_2_2¼ 0

(17) X_1_3_2 ] X_5_3_2¼ 0

(18) X_1_4_2 ] X_7_4_2¼ 0

(19) X_2_5_2 ] X_4_5_2¼ 0

(20) X_2_6_2 ] X_5_6_2¼ 0

(21) X_2_7_2 ] X_7_7_2¼ 0

(22) X_3_8_2 ] X_4_8_2¼ 0

(23) X_3_9_2 ] X_5_9_2¼ 0

(24) X_3_10_2 ] X_6_10_2¼ 0

(25) X_3_11_2 ] X_7_11_2¼ 0

(26) X_4_12_2 ] X_6_12_2¼ 0

(27) X_4_13_2 ] X_8_13_2¼ 0

(28) X_5_14_2 ] X_6_14_2¼ 0

(29) X_5_15_2 ] X_8_15_2¼ 0

(30) X_6_16_2 ] X_7_16_2¼ 0

(31) X_7_17_2 ] X_8_17_2¼ 0

(32) X_1_1_3 ] X_3_1_3¼ 0

(33) X_3_1_3 ] X_4_1_3¼ 0

(34) X_1_2_3 ] X_3_2_3¼ 0

(35) X_3_2_3 ] X_5_2_3¼ 0

(36) X_1_3_3 ] X_3_3_3¼ 0

(37) X_3_3_3 ] X_7_3_3¼ 0

(38) X_3_4_3 ] X_4_4_3¼ 0

(39) X_4_4_3 ] X_6_4_3¼ 0

(40) X_3_5_3 ] X_5_5_3¼ 0

(41) X_5_5_3 ] X_6_5_3¼ 0

(42) X_6_6_3 ] X_3_6_3¼ 0

(43) X_3_6_3 ] X_7_6_3¼ 0

(44) I_1 þ I_2 þ I_3 þ I_4 þ I_5 � 0

(45) X_9_9_1 þ X_10_10_1 � 1969350
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Index

A
Activity on arc network, 92
Activity on node network, 92
Adding constraints in solver, 267
Addition of new variable, 331
Additional problem solving, 309–324
Aggregate model, 216
Airlift problem, 167
Alternate objective function, 121
Alternative modelling, 205
Analog model, 22
Ant colony optimization, 235
AOA network, 92
AON network, 92
Approximating nonlinear function, 117
Assignment and routing, 180
Assignment problem, 86

B
Basic optimization techniques, 347
Basis, 357
Batch sizing problem, 122
Bin packing problem, 155
Binary variables, 107, 124
Binding constraint, 328
Blending model, 207
Branch-and-bound method, 228,

365–374
Branch-and-cut, 228

C
Capacity planning problem, 107
Capital budgeting problem, 43, 154
Changes in constraint coefficient, 332
Changes in objective coefficients, 331
Changes in RHS values, 332
Changing cell, 268
Changing constraint type, 129–131
Changing objective type, 131
Classical optimization techniques, 225

Coal bank scheduling problem, 423
dynamic model, 426
static model, 424

Coal blending problem, 205, 207–210
Coal production and marketing

problem, 398
multi-objective model, 403
multi-period model, 403
single-period model, 399

Combat logistics problem, 411
Company registers, 278
Complexity and complexity classes, 223
Complexity classes, 225
Complexity of algorithms, 223
Conditional constraint, 132
Conference organizer problem, 34,

63–64
Constrained problem, 122, 232
Constrained to unconstrained, 122
Constrained nonlinear model, 123
Constraint and variable reduction, 448
Constraint programming, 137
Constraints, 31, 32
Contingent decision, 109
Convexity, 12
Cooperative search, 236
CPLEX, 237
Crew planning, 193
Crew scheduling, 194
Crop mix problem, 71
Crop planning model, 212–214
Crop planning problem, 211, 284, 381,

445–452
constraint and variable reduction, 448
GP model, 385
LP model, 382
multi-objective model, 451
scaling the model, 450
solution, 445–452
working with solutions, 450

Cross product of variables, 124
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Cultural algorithms, 236
Curtain material trim loss problem,

33, 61–63
Cutting plane, 228
Cutting stock problem, 157

D
Daily rostering problem, 191
Data, 277
Data aggregation, 283

crop planning, 284
hierarchical production planning, 287
power generation planning, 286
production planning, 285

Data collection, 277
Data collection methods, 278
Data from interviews, 280
Data preparation, 280

data requirements, 282
logistics problem, 281

Data preprocessing, 287
Data quality, 278
Data type, 279

data from interviews, 280
forecasted data, 279
historical data, 280
stationary data, 279
stochastic data, 280
survey data, 280
text data, 280
time varying data, 279

Data-driven model, 292
Decision process, 17, 19
Decision variables, 31, 32
Defence application, 119, 121, 167, 411

airlift problem, 167
combat logistics problem, 411
nonlinear war planning

problem, 121
war planning problem, 119

Descriptive model, 22
Deterministic model, 22, 118

with probability terms, 118
Deviational variables, 47
Diet problem, 33, 40–41
Differentiability, 13
Dual formulation, 133
Dummy activity, 93
Dynamic model, 426

E
Economic order quantity, 4
Either–or constraint, 104
Entering variables, 361
Example problem

approximating nonlinear function, 117
assignment problem, 86
batch sizing problem, 122
capacity planning problem, 107
capital budgeting problem, 43
conference organizer problem, 34
constrained nonlinear model, 123
crop mix problem, 71
curtain material trim loss problem, 33
diet problem, 33
dual formulation, 133, 134
facility layout problem, 159, 161
financial management problem, 65
fixed charge problem, 111
goal programming problem, 47
job sequencing problem, 104
knapsack problem, 44
location problem, 50, 109
manufacturing planning problem,

73, 75
multi-objective product mix

problem, 82
multi-period production planning

problem, 77
mutually exclusive constraint, 105
nonlinear war planning problem, 121
network flow problem, 89
oil blending problem, 66
piecewise linear function, 113
product mix problem, 32, 69, 79
production planning problem,

45, 75, 108
productivity maximization, 127
project management problem, 95
sales prediction, 136
sequencing problem, 104
transportation problem, 83
vehicle mix problem, 33
war planning problem, 119

Excel solver, 264
adding constraints, 267
changing cell, 266
important options, 269
solution approaches, 270
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solving LP, 264
target cell, 266

F
Facility layout problem, 159, 161
Facility location, 159
Family scheduling model, 217
Fixed charge problem, 111
Force effectiveness, 24
Forecasted data, 279
Fractional programming, 126
Function approximation, 116
Function with N possible values, 108

G
GAMS, 237, 260
Gantt charts, 4
Gap between solution and outcomes, 342
GAP, 180
Gas-lift optimization problem,

429, 455–457
General blending problem, 404

GP model, 408
LP model, 407

General staff scheduling, 192
Generalized assignment problem, 180
Genetic algorithms, 234
Goal constraint, 47, 80
Goal programming, 47, 80, 81, 336

deviational variables, 47
goal constraint, 47
hierarchy of priority, 231
nonpreemptive, 230
overachievement deviation, 47
preemptive, 230
soft constraint, 47
solution approaches, 230
underachievement deviation, 48
undesirable deviation, 47

GP model, 385, 394, 408
Graphical method of LP, 347

example, 348–355
graphing objective function,

352–353
graphing the feasible region, 348
optimal solution, 354

Graphical method, 225
Graphing objective function, 352–353
Graphing the feasible region, 348

H
Hard constraint, 13
Heuristic model, 22
Heuristic techniques, 233
Hierarchical modelling, 214

aggregate model, 216
family scheduling model, 217
item scheduling model, 218
level of planning, 215–216
product structure, 215–216
sub-problems, 215–216

Hierarchical production planning,
215, 287

Hierarchy of priority, 231
Hill climbing, 233
Historical data, 280
History of optimization, 4
HPP, 215
Hungarian method, 230

I
Iconic model, 22
Immune system, 236
Implementing the solution, 27–28
Important options in solver, 269
Incidence matrix, 183
Infeasible solution, 79
Initial solution, 340, 356
Input preparation, 277
Integer linear program

branch-and-bound, 228
branch-and-cut, 228
cutting plane, 228

Integer programming, 42; see also IP
branch-and-bound method, 365–374
curse of dimensionality, 227

Interior point method, 226
IP, 228; see also Integer programming
Item scheduling model, 218

J
Job and machine scheduling, 177
Job sequencing problem, 104
Joint lot sizing and transportation

problem, 420

K
Knapsack problem, 44, 154
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L
Leaving variable, 361
Lexicographic simplex method, 226
Linear programming, 4, 12; see also

LP model
basic assumptions, 39
graphical method, 225, 347–355
interior point method, 226
simplex method, 226, 355–365
solution approaches, 225
special types, 82

Linear vs. integer model, 340
Linear vs. nonlinear relationships, 339, 340
LINGO=LINDO, 237, 241

additional problem solving, 311–326
example, 246–251
inputting model, 241
solver status window, 243
solving the model, 243
special features, 244
syntax, 252

LINGO example, 302–304, 310, 313
modified transportation model, 313
transportation model, 310
two-stage transportation problem,

302–304
Linking constraint, 111
Location problem, 50, 109
Logistics and transportation, 167
Logistics problem, 281
Lot sizing problem, 415

finished product inventory, 417
raw material inventory, 418
total cost function, 419

LP model, 382, 387, 393, 407

M
Management issues in implementation,

309
Manufacturing planning problem, 73, 75
Mathematical model, 6, 18, 21, 22, 31

components, 31
constraints, 31
decision variables, 31
objective function, 31
subscripts in variables, 59
use of subset sign, 147
use of summation sign, 145

Mathematical programming model, 6

Mathematical properties, 12
convexity, 12
differentiability, 13
multimodal, 13

Maximal flow problem, 150
Maxi-min objective, 75
Measure of effectiveness, 23
Memetic algorithms, 236
Military environment, 26
Mini-max objective, 75
MINOS, 238
Model, 22
Model development, 19, 21
Model solving example

Excel solver, 264
LINGO and MPL, 295
nonlinear model, 298
product mix problem, 292
two-stage transportation problem, 300

Model solving, 277, 292
Model validation, 452
Model-driven data, 292
Modelling simple problem

conference organizer problem, 63–64
curtain material trim loss problem,

61–63
diet problem, 40–41
product mix problem, 36–39
vehicle mix problem, 41–42

Models for practical problem, 381, 411
Modified transportation model, 313
Monolithic model, 215
MPL, 237, 253

product-mix model, 256
use of MPL, 253
using vectors and indexes, 255

Multi-commodity flow problem, 152
Multi-dimensional search, 231
Multimodal, 13
Multi-objective model, 391, 403, 451

Pareto frontier, 233
Pareto-optimal, 232
simultaneous optimization, 233
solution approaches, 232
trade-off surface, 232
weighting method, 232

Multi-objective optimization, 336
Multi-objective problem, 45
Multi-objective product mix problem, 82
Multi-period model, 401
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Multi-period modelling, 77
Multi-period production planning

problem, 77
Multiple objective, 81
Multiple shift planning problem, 432
Mutually exclusive alternative, 109
Mutually exclusive constraint, 105

N
Negative RHS, 336
Network flow problem, 149

maximal flow problem, 150
multi-commodity flow

problem, 152
shortest path problem, 149

Node-arc incidence matrix, 183
Nonbinding constraint, 328, 329
Nonlinear model, 298
Nonlinear programming, 49

constrained, 232
multi-dimensional search, 231
one-dimensional search, 231
penalty function, 232
solution approaches, 231
unconstrained, 231

Nonlinear war planning problem, 121
Nonpreemptive GP, 230
Non-smooth relationships, 339
Nontechnical report, 341
Normative model, 22
Network flow problem, 89
Number of basic variables, 337

O
Objective function, 31, 32
Objective versus goal, 47
Observations, 278
Oil blending problem, 66
One-dimensional search, 231
Operational research, 4
Optimal solution, 353
OptiMax, 237
Optimization model, 22
Optimization problems, 5
Optimization process, 17
Optimization software, 236

CPLEX, 237
GAMS, 237
LINGO=LINDO, 237

MINOS, 238
MPL, 237
Premium solver, 238
Solver, 238
WinQSB, 238
XPRESS, 237

Optimization technique, 4, 10, 17
Optimization, 4, 8
Output analysis, 325
Overachievement deviation, 47

P
Pareto frontier, 233
Pareto optimal, 232
Penalty function, 232
Piecewise linear function, 113
Pivot element, 362
Power generation planning, 286, 387,

452–455
LP model, 387
multi-objective model, 391
model validation, 452
solution, 452-455

Practical issues and tips, 336
gap between solution and

outcomes, 342
goal programming, 336
initial solution, 340
linear vs. integer model, 340
linear vs. nonlinear relationships,

339, 340
management issues in

implementation, 309
multi-objective optimization, 336
negative RHS, 338
non-smooth relationships, 339
nontechnical report, 342
number of basic variables, 337
reduction of constraints, 336
reduction of variables, 336
scaling factor in modelling, 339
special cases in LP models, 342
unrestricted variables, 338
variable bounds, 340

Practical issues, 327
Practical problem

coal bank scheduling, 423
coal production and marketing, 398
combat logistics, 411
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crop planning, 381
general blending, 404
joint lot sizing and transportation, 420
lot sizing, 415
multiple shift planning, 432
power generation, 387
scaffolding system, 427
supply chain, 395
water supply, 392

Practical problem solving, 437
crop planning, 445–452
gas-lift optimization, 455–457
power generation planning, 452–455
product mix, 437–443
two-stage transportation, 443–445

Precedence constraint, 92–95, 103
Precedence relationship, 92–95
Predictive model, 22
Preemptive GP, 230
Premium solver, 238
Prescriptive model, 22
Problem classification, 11–12
Problem definition, 19, 20
Problem identification, 19
Product mix problem, 32, 36–39, 69, 79,

292, 437–443
number of products required, 440,

442–443
scaling problem, 439–441
solution, 437–443

Product structure, 215–216
Production planning, 45, 75, 285
Production planning and scheduling,

164
Production planning problem, 108
Productivity maximization problem, 127
Project, 92
Project management problem, 91, 95

Q
Qualitative approach, 17
Quantitative approach, 17
Queuing, 4

R
Reduced cost, 328
Reduction of constraints, 336
Reduction of variables, 336
Regression model, 136

Risk analysis in modelling, 344
Rostering problem, 287

S
Sales prediction model, 136
Scaffolding system, 427
Scaling factor in modelling, 339
Scaling problem, 439–441, 450
Scanning, 278
Scheduling and timetabling, 194
School timetabling problem, 194
Sensitivity analysis, 19, 26

addition of new variable, 331
changes in constraint coefficient, 332
changes in objective coefficients, 331
changes in RHS values, 332
integer and nonlinear models, 333
linear programming, 331

Sensors, 278
Sequencing problem, 104
Shadow price, 327
Shortest path problem, 149
Simple modelling techniques, 60

additional work required, 61
alternate objective function, 121
changing constraint type,

129–131
changing objective type, 131
conditional constraint, 132
constrained to unconstrained, 122
contingent decision, 109
cross product of variables, 124
dual formulation, 133
either–or constraint, 104
fractional programming, 126
function approximation, 116
function with N possible

values, 108
linking constraint, 111
maintaining certain ratios among

different variables, 68
mutually exclusive alternative, 109
mutually exclusive constraint, 105
one constraint is a fraction of another

constraint, 70
peicewise linear function, 113
precedence constraint, 103
regression model, 136
unrestriced variables, 128
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variables as fraction of other
variables, 64

yes-or-no decision, 106
Simplex algorithm, 4
Simplex method for LP, 4, 226, 355–365

basis, 357
entering variables, 361
example, 346–365
initial solution, 356
leaving variable, 361
pivot element, 362

Simulated annealing, 234
Simultaneous optimization, 233
Single-period model, 397
Slack, 327
Soft constraint, 13, 47
Soliciting, 278
Solution and reports, 325
Solution approaches, 223
Solution, 437–443
Solver, 238, 264
Special cases in LP models, 342
Special types LP, 230

assignment problem, 86
network flow problem, 89
project management problem, 91
transportation problem, 83
transshipment problem, 88

Staff rostering and scheduling, 189
Staff scheduling problem, 189
Static model, 424
Stationary data, 279
Stochastic data, 280
Stochastic model, 22
Stochastic programming, 137
Subscripts in variables, 59
Subset sign, 147
Subtour, 183
Summation sign, 145
Supply chain problem, 395
Surplus, 329
Survey data, 280
Surveys, 278
Swarm optimization, 236
Symbolic model, 22

T
Tabu search, 234
Target cell in solver, 266

Technological constraint, 80
Testing the solution, 26
Text data, 280
Time series study, 278
Time varying data, 279
Trade-off surface, 232
Transportation model, 83, 310
Transportation simplex, 230
Transshipment problem, 88
Travelling salesperson problem, 181
TSP, 181

Subtour in TSP, 183
Two-stage transportation problem, 300,

302–304, 443–445

U
Unconstrained problem, 122, 231
Underachievement deviation, 48
Undesirable deviation, 47
Unimodal, 13
University timetabling, 196
Unrestricted variables, 128, 338

V
Validation, 19
Variable bounds, 340
Variables, 42
Vehicle mix problem, 33, 41–42
Vehicle routing problem, 185
VRP, 185

W
Waiting line, 4
War planning problem, 119
Water supply problem, 392

GP model, 394
LP model, 393

Weighting method, 232
WinQSB, 238, 273
Working with solutions, 450

X
XPRESS, 237

Y
Yes-or-no decision, 106
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