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During the last century, starting with Reynolds, the theory of
turbulence has been developed as a superposition of flows around
the some mean distribution of the structure, in particular the
statistical theory of turbulence – on the calculation of the evolution
of correlation integrals (see: A.S. Monin. A.M. Yaglom: ‘Statistical
mechanics of liquid’). The classic conclusion of these assumptions
is the energy spectrum in respect of Kolmogorov–Obuchov
frequencies.

Recently, special attention has been paid to large scales.  It has
become clear that,  possibly, there is not universal spectrum of
turbulence, general for all flow conditions.  It is necessary to de-
examine the process of turbulisation of flows, paying special
attention to the large scales.  It has become clear (se: O.M. Belo
tserkovskii, A.M. Oparin: ‘Numerical experiments in turbulence’)
that the controlling role in turbulence is played by large structures.
They contain a large part of the kinetic energy of turbulence,
although the energy itself may represent some percent of the total
energy of the flow.

One of the problems of developing the turbulence theory is the
relationship to the statistical theory of turbulence which was
constructed on the basis of averaging solutions of linearised
hydrodynamic equations and subsequent derivation of equations for
the average characteristics of the flow.  In [148] it was shown that
the nonlinear interactions are important for both the regimes of
turbulent flow and laminar flow.

In this sense, doubts are cast on the very approach based on the
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calculation of the average-out characteristics of the flow from
linearised equations (including correlation integrals from identical
equations).  The effect of viscosity on the structure of the flow has
not been investigated.  No attention has been given to the question
of the extent by which the viscosity may be regarded as a
universal quantity for different flow scales (Canuto [148]).  This
also relates to the Reynolds number Re, although in the statistical
theory of turbulence this number is used as a parameter of the
problem. In the conventional approach, examination of the process
of the growth of instabilities is always regarded as a local process
with expansion in respect of harmonics.  In fact, the process of
formation of large scales is of the non-local type. This can be
indicated by the physical meaning of the Reynolds number.  On
small scales, the dissipative forces prevail over the dynamic forces,
and the structure of the flow depends on these forces and is
described by the Navier–Stokes equations.  On large scales of the
flow, in the case of the structures with L  > L

cr
,  the dynamic

stresses in the shear flow result in the formation of a couple of
forces generating large scales in the turbulent flow.

The problem of formation of the turbulence spectrum is the main
problem.  Since all interactions are important, the examination of
the development of turbulence may be carried out using the
numerical modelling of the process of development of turbulence.
However, i t  is necessary to construct a physical model of the
development of turbulence within which we shall  carry out
numerical modelling.

We propose the following model of development of turbulence.
When the viscosity is not capable of ensuring the profile of the
shear flow, because of the development of the instabilities of the
Rayleigh–Taylor type or Rossby waves, and some other processes,
large scale vortices appear in the flow.  The further development
of the pattern of turbulence is associated with the evolution of large
vortices and generation, by the vortices, of the high-frequency part
of the spectrum.  It is important to mentione that the energy of the
large vortices is obtained from the shear flow. The vortices
themselves do not break up but sometimes merge, reaching the
maximum scale possible in the given problem.  The generation of
small vortices is associated with the interaction of large vortices
with the flow or flow boundary.  Within the framework of this
physical model, we have also carried out the modelling of turbulent
flows.

It  appears to us that the principal problem of the theory of
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turbulence is the generation of large scales.  This generation may
be associated with different hydrodynamic instabilities and inclined
shock waves.  For example, in [152], the formation of large scales
is linked with the Rank–Hilsch effect, leading to the development
of Rossby vortices which in turn result in the development of large
turbulent scales (Lovelace, Colgate, Nelson, 1998).  This group has
also investigated the development of large scales of turbulence
because of the presence of a pressure gradient or entropy in the
gravitation field.

The free shear flow also contains a pressure gradient.
Consequently, the physical meaning of the Reynolds number Re =
VL/ν = ∆VL/ν may be explained in the following context: turbulence
develops if the pressure gradient,  which depends on the speed
gradient on the scale L ,  results in the formation of a couple of
forces that is larger than the tensor of viscous stresses. Other-
wise, the speed distribution of the type of Kutta flow appears. The
Kelvin–Helmholtz instability operates in the same manner,
generating a pair of forces.

Another possible process is the generation of large-scale turbulent
vortices in the vicinity of inclined shock waves, leading to the
formation of the tangential component of the speed.  However,
none of the discussed problems have as yet been solved, although
there are exceptions: solutions are proposed in individual studies
which we shall discuss in greater detail in the following sections of
the book.

It was interesting to note that the Nature itself provides examples
for such a physical model.  Here, it is important to mention the
structure of the Gulfstream flow, the red spot on the Jupiter and
so on, when the large structures live for a very long time, without
breaking out into smaller structures.  In turn, fine formations are
detected around the large structures.

The above considerations represent the problem of turbulence as
a problem of the generation of large scales, with the subsequent
generation of the high-frequency part of the turbulence spectrum.
This formulation of the problem differs greatly from the paradigm
of the pulsations of the flow around the mean distribution. In our
model, the structure of the flow is controlled by the large scales.

At present, one of the important problems of the mechanics of
solids and plasma physics is the modelling of complex transition and
turbulent movements (including for multidimensional problems, taking
into account the compressibility of the medium, in different regimes
of movement in a wide range of the variation the parameters of the
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flow, and so on) using currently available computing methods,
algorithms and applied mathematics approaches. The so-called
transition flows, often encountered in practice, are characterised by
the highly nonstationary nature and nonlinearity of the processes
taking place, by large displacements of the medium, different types
and complicated mechanisms of interaction, energy dissipation. For
example, this includes the gas-dynamic problems such as trans-sonic
and diffraction problems of the flow in the wake behind a moving
solid, the interaction of the blown-in stream with the main flow, etc.
In the mechanics of deformed solids, transition phenomena take
place in, for example, examination of the elastic–viscous–plastic
states.  In plasma physics, these processes are observed in the
numerical modelling of problems of the interaction of powerful laser
radiation with matter, etc.  In a number of cases (flows in a wake
in the presence of a ‘blown in’, the processes taking place during
laser compression of shells, etc), the phenomena are of turbulent
nature.

The main problem of the theory of turbulence – the examination
of general dynamics and the nature of development of turbulence,
i.e. examination of the evolution of large-scale formations and
statistical representation of the turbulent motion with time.  It is
usually assumed that the variation the distribution of the speeds in
space with time is determined by the Navier–Stokes equations.
The development and degeneration of turbulence may be analysed
in principle by two methods:*

– obtaining a general solution of the Navier–Stokes equations for
an arbitrary initial distribution of the speeds in space;

– to derive a unique dynamic equation, describing the variation
of the total distribution of probabilities with time (the problem of
representation of stochastic distribution in the functional space).

Naturally, the main characteristics of the turbulent movements
– ‘structural’ nature of turbulence, nonstationary nature and
nonlinearity of the processes taking place, the possibility of transfer
of ‘groups’ the molecules (molar transfer),  the presence of a
continuous flux of energy in a cascade of vortices, different
mechanisms of interaction for different scales of movement, the
phenomenon of viscous dissipation, etc,  – should be reflected
accurately in the numerical modelling of turbulence.  Generally
speaking, the following three main problems can be formulated:

I – the determination of the main characteristics of the large-

*See, for example, [34, 96, 119]
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scale turbulence without detailed examination of the structure in the
limiting conditions of movement (when Re → ∞);

II – the calculation of the region of transition of the laminar to
turbulent flow (‘breakdown’ of the stable laminar flow at Re

cr
);

III – detailed examination of the the generation of large-scale
turbulent structures and further appearance of chaos in the high-
frequency part of the spectrum.

The development of high-productivity computers (including
parallel computers) and of efficient numerical methods of solving
nonlinear problems of mathematical physics and mechanics has
created suitable conditions for direct numerical modelling of
complicated flows of the liquid and the gas, including the turbulence
phenomena. The numerical experiment, combined with the physical
experiment, opens new possibilities in understanding the phenomena
taking place in the nature, determining the role of various factors
in these phenomena, and also makes it possible to determine more
accurately and completely the boundaries of applicability of the
schemes and mathematical models. Within the framework of the
numerical experiment in a single complex, it is possible to examine
the mathematical formulation of the problem, the optimum method
of solving the problem, and the realisation process. It should be
mentioned that the modelling method must be based on the physically
substantiated processes.  In fact, we examine here some simulation
system describing adequately (to a certain degree) the main
characteristics of the investigated the phenomena. In the process
of calculations, it is possible to improve the accuracy of the initial
formulation of the problem, and the presence of such a ‘feedback’
provides reliable results for comparatively short computing times.

We shall present the results of direct numerical modelling of a
wide spectrum of turbulence problems, carried out on the basis of
complete models without the application of semi-empirical theories.
Special attention is paid here to the examination of separation (in
the general case, turbulent) flows in a wake behind a solid for the
limiting conditions of movement for very high Reynolds Re [1],
attention is given to laminar–turbulent regimes, and also to the
phenomena of transition to chaos for a number of real formulations.
The main aim is to construct discrete non-equilibrium disregarding
models (corresponding to the given class of flow) and the
development of ‘rational’ numerical algorithms available for
application of the current level of development of computing
methods.  This chapter is concerned mainly with the explanation of
the general concept of direct numerical modelling of turbulence,
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developed by O.M. Belotserkovskii over a period of many years
(see, for example [15, 16, 19], etc),  realised by students and
colleagues at the Institute of Automation of Design, The Moscow
Physical–Technical Institute, The Computing Centre of the Russian
Academy of Sciences, etc.  A number of original approaches is
included in this monograph (see also [17, 90]).

2. The problem of examination of the properties of separation
flows in a wake behind a moving solid is associated with the
examination of the free developed shear turbulence. In the
examination of the given type of movement, the investigation of the
average large-scale microstructures and statistical characteristics
of ‘intrinsic’ turbulence is theoretically possible and physically
substantiated.  The central question, formed here, is in our view as
follows: which models – the model of the ideal medium, the
Navier–Stokes equations or on the kinetic level – should be used
in the construction of schemes for investigating separation and
turbulent flows in different motion conditions. The main concept of
our approach is determined by the following considerations.

For a wide range of phenomena of this type with a high
Reynolds number in the low frequency and inertia ranges of
turbulent motion, the effect of molecular viscosity and small
elements of the flow in a large part of the region of perturbations
on the general characteristics of the macrostructures of the
developed flow and on the streamline pattern is practically very
small.  Consequently, it is possible to ignore the effects of molecular
viscosity in the examination of dynamics of large vortices and
examine them on the basis of models of the ideal medium, for
example, the Euler equations (with the possible application of the
methods of ‘rational’ averaging, but without using semi-empirical
models of turbulence).  This includes stream problems of the flows
in an accompanying wake behind the solid, the movement of ship
hulls with stern shear, the formation of front stalling zones in the
flow around blunt solids with streams or needles, directed against
the flow, etc.  At the same time, the properties of the flows in the
boundary layers, narrow mixing layers, in the viscous range of
turbulence, and also in the case of moderate Reynolds numbers and
in the range of the laminar–turbulent transition are determined
basically by molecular diffusion and, in this case, it is necessary to
examine the Navier–Stokes models.  Pulsation movements in
turbulence (for example, in the centre of the wake) are of the
unstable, irregular nature and represent a stochastic process. Here,
we can talk only about the determination of the average
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characteristics of such a movement (moments of different order)
by means of the appropriate statistical processing of the results,
using, for example, kinetic approaches.

The main difficulty in the examination of this class of problems
is the development of a general concept of the construction of
structural numerical models of turbulence.

Special attention will be given to discussing the approaches in
which the free developed turbulent motion for long time periods  is
described using a complete (and closed) system of dynamic
equations for the true values of speed and pressure, and also
statistical methods.  The combined application of these approaches
(based on the examination of the equations of hydrodynamics and
Monte-Carlo statistical methods) makes it possible to understand
more efficiently the structure of turbulence and determine the
rational methods of constructing appropriate mathematical models,
greatly reducing the requirements on the computer resources.

3 .  The numerical realisation of the general concept the
turbulence theory is carried out in different directions (see, for
example, [34, 121], etc):

– integration of the complete nonstationary Navies–Stokes
equations without additional assumptions on the nature of transfer
(finite-difference approaches, spectral Fourier methods*, etc, used
for the comparatively simple problems of convection, diffusion, in
the modelling of the breakdown of the laminar regime, etc);

– the calculation of these models on a coarser net using semi-
empirical variable coefficients of transfer (effective viscosity, etc);

– the solution of the Reynolds or Bussinesq equations for the mean
elements of motion and the Reynolds stresses together with the
approximate transfer equations;

– the application of differential equations for the moments of
different order and with different types of ‘closing’, etc.

The main difficulties, formed in the direct examination of the
free developed turbulent flows in the accompanying wake, streams,

*The spectral method is based on the possibility of approximating any
random function by the sum of non-correlated harmonic functions.  By
averaging the Navier–Stokes equation, we obtain a non-closed system of
equations for the spectral plane which describes, in particular, the time
dependence of the energy content of the vortices with different wave
numbers. Because the mechanism of energy exchange between the vortices
has not as yet been completely explained, different hypotheses are used
to form a closed system.
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are associated with the fact that these flows are characterised by
the scales of excited motion in the range of several orders of
magnitude.  The spectrum of the variation of the wave numbers in
the real turbulent break-away flows reaches 425 orders of
magnitude so that in foreseable future it will not be possible to
construct a general model of turbulence for large Reynolds numbers
without introducing some physical concept of the model.

One of the approaches proposed for the ‘softening’ the problem
is that we should restrict ourselves to the direct examination of the
three-dimensional nonstationary turbulent flow only on scales
exceeding some given dimension h* (where, for example, h*is the
step of the calculation net).  This approach has also physical
substantiation.  For example, the effect of the high-frequency part
on the large scales of the turbulent spectrum is almost negligible.
The problem of the annihilation of the kinetic energy of turbulent
motion for the high-frequency part of the spectrum may be modelled
by the energy sink or by the development of subgrid procedures.
The scales of the vortices (h < h*) for which the direct solution
is not possible, are modelled as subgrid turbulence with the
application of the vortex viscosity or other ‘rational’ approximation
of the transfer processes (Fig. 1.1). This approach is associated
with the hope that the fine-scale structure of turbulence has no
effect on the structure of turbulence.  In turn, fine-scale structures
may be almost universal for different problems (in particular, for
high wave numbers k: k/k

K
 > 10–2, where k

K
 is the wave number,

corresponding to the Kolmogorov scale, and, consequently, the
accurate sultion is not required here).  This shows, in particular,
that the effect of the high-frequency part of the spectrum on large
structures is insignificant and this effect may be ignored or taken
into account only very approximately.  (As an example, we present
Fig. 1.1 from [121] showing the spectrum of energy density E

1
 (k)

of pulsations of the longitudinal components of the speed for

different turbulent flows; ( )2 3 1 4
1 1

0

( ) /E k dk u , E
∞

−′= Φ = Θν∫  is the

dimensionless spectral density, Θ is the local rate of dissipation of
energy per mass unit; ν  is kinematic viscosity, k

K
 = (Θν3)–1/4 is the

Kolmogorov wave number). The structure of the large vortices
containing the part of turbulence which greatly changes in transition
from one flow to another or from one group of the conditions to
another, is investigated directly in this case (in principle, this
concept is also developed below).  Another method of direct
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examination is the approach based on the ‘vortex dynamics’ (or
‘discrete vortices’) in which the turbulent zone is modelled by a set
of many discrete non-viscous vortices with the evolution tracked in
respect of time [31,125]. This approach is very promising because
the perturbation has always a finite amplitude and a finite
wavelength.

4. We are now facing the problem of constructing structural and
appropriate numerical algorithms for the solution of the three
problems described previously. We shall start with the problem of
examination of the large-scale formations at high values of Re. The
procedures of examination of freely developed turbulence, based on

Fig.1.1. Spectra of energy density E(k) of longitudinal component fluctuations
for various flows; Φ = E

1
(Θ /η 3)–1/4, k  is the wave number. (1) Reλ = 2000, a tide

tank, Reδ ~ 10; (2) Reλ = 780, a round jet; (3) Reλ = 170, a tube flow, Reλ = 5 ·
105; (4) Reλ = 130, constant shear flow; (5) Reλ = 380, the wake behind a cylinder;
(6) Reλ = 23, the wake behind a cylinder; (7) Reλ = 540, turbulence downstream
of a honeycomb; (8) Reλ = 72, turbulence downstream of a honeycomb; (9) Reλ =
37, turbulence downstream of a honeycomb; (10) Reλ = 23, boundary layer; yδ =
0.5, Reδ = 3.1·105; (11) Reλ = 28, boundary layer,   yδ = 0.22, Reδ = 5.6·105; (12)
Reλ = 23, yδ = 1.2, Reδ = 3.1·105; (13) Reλ = 850, the same, above water, yδ = 0.6,
Reδ = 4.0·105.
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the Navier–Stokes equations, are closely linked, as is well-known,
with the examination of the solutions of these equations (in
particular, with the appearance of stochasticity) at low molecular
viscosity (we shall not discuss the justification and possibility of this
formulation, see also [89]).  Here, we shall  use the following
hypotheses proposed by Reynolds:

1. At Re > Re
cr
, the laminar motion is unstable;

2. At Re > Re
cr
, the random movements should be described by the Navier–

Stokes equations;
3. This system, or its solutions, should be averaged-out in respect of some

unknown parameters by means of some (also unknown) function;
4. The averaged-out system of equations is not closed (some model of

closure is required).

In this formulation of the problem, the main difficulty in the
modelling of large-scale turbulence is the construction, for the high
supercritical Reynolds numbers, of a nonstationary stable (for
averaged-out characteristics) numerical solution, adequate to the
Navier–Stokes equations. In this case, to ensure the conditions of
approximation and stability of the solution in the calculations, the
step of the grid should be such as to ensure that the error of
approximation of the convective members in the Navier–Stokes
equations is considerably smaller than the difference representations
of the viscosity numbers. The estimates for the modelling equations
show [155] that the approximation to the real solution should be
achieved under the condition Re h < α  << 1, i.e. the calculation of
flows with the molecular mechanism of dissipation for high
(‘turbulent’) values of the Reynolds numbers, and if this can be
carried out, then only on very fine difference grids, comparable,
generally speaking, with the minimal size of pulses.

It should be added that the fraction of molecular viscosity (ν)
in the ‘effective’ turbulent viscosity (ν

t
) ,  formed in turbulent

exchange, is very small (usually ν
t
/ν ≈ 104÷6). In addition to this,

in examination of the problems of turbulence, it is essential to
investigate the three-dimensional (in respect of spatial variables)
nonstationary Navier–Stokes equations. In this case, the solution of
these problems at high Reynolds numbers may be non-unique
(although it  has been confirmed that the nonstationary one-
dimensional and two-dimensional problems for the Navier–Stokes
equations have always a unique solution in the entire time period
t  > 0).  Here, the conditions of formation of turbulence should
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evidently correspond to the conditions of non-uniqueness of the
solutions of the three-dimensional nonstationary Navier–Stokes
equations and, generally speaking, the problems of the relationship
between the Navier–Stokes equations and turbulence remain open
(see, for example, [89], etc).  It  should be mentioned that the
structure of the Navier–Stokes equations leads to large numerical
effects in the numerical modelling of turbulence at high Reynolds
numbers.  In particular, this shows that in direct formulation, the
problem of the detailed examination on the basis of the Navier–
Stokes model of developed large-scale turbulent structures in the
case of very high Reynolds numbers is evidently difficult to carry
out, even when using the most powerful computers.1
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1.  In recent years, special attention has been paid to two directions
in the numerical approaches to examination of turbulence.
According to Orseg [104], these are the models of closure of small-
scale movements, and direct numerical modelling.

In the first of these approaches, proposed by Deardorf [154,
160], the approximation of the processes of transfer of turbulence
is carried out only on the scales of motion which are not resolved
in the explicit form in the numerical approximation of the Navier–
Stokes equations.2 In this case, the small scales are interpreted by
means of statistical approximation in the process of detailed
examination of large scales which on its own is a strong assumption.
The effect of non-resolvable small scales on the resolvable large-
scales is characterised by means of the coefficient of turbulent
viscosity using semi-empirical constants. In fact, in all likelihood,
the transfer of the energy of large-scale structures of turbulence
to heat is associated with the direct degeneration of the high-

1It is natural to assume, as correctly noted by V.V. Struminskii, that the
‘main form of motion of matter – turbulent – should be described by the
laws of mechanics and physics without using additional hypotheses and
assumptions.. .  The equations of mechanics and statistics yielded the
Boltzmann equation, and the Boltzmann equation gave, as shown, the
Navier–Stokes equations describing directly only laminar flows. The main
class of turbulent motions has evidently been lost somewhere, so that it
is necessary to carry out more detailed investigations’ [79,114].
2 As in direct modelling, the large scales are calculated directly.
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frequency part of the spectrum by large structures with subsequent
annihilation of the high-frequency part of the spectrum. The
approach proposed by Smagorinskii [228] has proved to be most
popular. The coefficient of turbulent viscosity ν

t
,  replacing the

coefficient of molecular viscosity, is selected here in the following
form:

For the three-dimensional flow

1/ 22

2
t ( ) ji

j i

vv
c x

x x

 ∂∂ν = ∆ +  ∂ ∂ 

and for the two-dimensional flow

( )
1/ 22

3
t ( ) v

j

c x
x

 ∂′ν = ∆ ∇×  ∂ 

Here ∆x  is the spatial resolution (step) of the grid, and c and c '
are constants equal to approximately 0.1–0.2. These expressions for
ν

t
 are suitable only in the case in which difference approximations

of the first  or second order of accuracy are used for spatial
derivatives [104,228]. It would appear that in this approach we do
not impose any direct restriction on the value of the Reynolds
number, i .e.  we take into account the effect of small-scale
turbulence (this is also the advantage of this approach in
comparison with direct numerical modelling). Actually, this is not
quite the case. The satisfactory accuracy of the closing systems for
the small-scale component is obtained only when the separation of
the flow into small-scale and large-scale components does not have
any significant influence on the evolution of the large-scale
structures.

Thus, it is important the problem of the efficiency of achieving
invariance of the relative distribution of the scales remains
unsolved.1

In addition to this, the methods of taking into account the small-
scale effects have a number of shortcomings: the application of
arbitrary models of transfer for small-scale structures (with semi-
empirical coefficients), and also neglecting all stochastic effects of

1This situation will be referred to as the ‘hypothesis of invariance of
distribution of scales’.
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the fluctuation of the characteristics of this component on the
generation of fluctuation in large-scale formations.

In the case of direct numerical modelling of turbulence on the
basis of the Navier–Stokes equations with a very high Reynolds
number, it is proposed to reduce artificially the Reynolds number to
the value at which this flow can be modelled with sufficient
accuracy in the currently available computers. In fact, it is assumed
that relatively large-scale motions remain unchanged in this case,
although it is clear that in this modelling flow the motions on all
scales cannot change. In fact, the large-scale characteristics of
turbulent flows evidently do not depend on the Reynolds number,
if the boundary and initial conditions are also independent of this
number [82]. There is a strong tendency for large-scale motions in
turbulence to self-regulation resulting in independence of the large-
scale structures on the details of the dissipation mechanism [104].

As confirmed in [104], according to the hypothesis on the
independence of the macrostructure on the Reynolds number, for
the motions with wave numbers k  << l /λ

0
 not only the static

characteristics but also the detailed structure of such a flow are
independent of the Reynolds number2 (here λ

0
 = (ν 3/Θ)1/4≈l/Re3/4

at Re→∞;  λ
0
,  l  are the scales of the small and large vortices,

respectively). Actually, with increase of the Reynolds number, the
small-scale three-dimensional turbulence is set up in such a manner
as to ensure the required rate of dissipation. This situation is
characteristic of the stationary structures of turbulence, if we can
talk generally about stationarity in turbulence.

In this case, the spectrum k2E(k) of the mean quadratic vorticity
spreads into the region of higher and higher values k ,  and its

2 Here, we can consider only the statistical characteristics (see section 6
on the correctness of formulation of the problem.

Fig. 1.2. Schematic illustration of the
variation of the spectrum of energy
dissipation with increase of Re: according
to the hypothesis  on independence on
Re, the scale of motion with the wave
number smaller than the maximum value
on the spectrum k2E(k) (i.e. at l/λ

0
), are

almost completely independent of the
Reynolds number [104].
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behaviour in the zone of low k  (macrostructure) remains almost
constant (Fig. 1.2).

Thus, i t  may be assumed [34,82] that,  regardless of the
multiscale nature of turbulent transfer processes, the large-scale
motion is almost independent of the Reynolds number for the scales
larger than critical (Fig. 1.2). At the same time, for the small scales
self-modelling of the turbulent flow is observed with respect to the
Reynolds number. This means that the mean values of all
quantities, determined by large-scale oscillations of velocity, are
independent of the Reynolds number if Re→∞ (the hypothesis of
the statistical independence of the large- and small-scale motions).
This principle, generally speaking, cannot be applied to the
description of the gradients of gas-dynamic parameters, because the
latter are determined by small-scale fluctuations. This principle has
been justified by experiments [82].

The hypothesis of the statistical independence is used in a large
number of applications because it makes it possible to ‘split’ a large
number of correlations between the macro- and microcharacteristics
of turbulence at Re→∞.

It should be mentioned that the description of only large-scale
oscillations of velocity cannot be close (evolution of these
oscillations is also determined by the rate of generation of the small-
scale component and subsequent viscous dissipation). However, if
we examine the characteristics of oscillations of all scales (in this
case, it is necessary to take into account the effect of molecular
viscosity), then we shall be concerned, generally speaking, with the
analysis of excess information (because the main features of
turbulence are not independent of Re). Another approach, based on
the search for universal relationships between the characteristics
of small-scale and large-scale pulsations, is also possible here. As
indicated by the theory proposed by Kolmogorov and Obukhov [72,
85], these relationships indeed exist if the characteristic scales of
the oscillations, determining the energy of turbulence and its
dissipation, greatly differ. These relationships are also a conseq-
uence of the principle of self-modelling of turbulence in respect of
the Reynolds number for high values of Re [82].

2.  The previously mentioned and, in our view, important
considerations regarding the separation of the scales, may also be
interpreted as follows. On an example of an isotropic turbulent
flow, we shall examine the features of behaviour of the spectral
distribution for the energy of pulsating motion E (k) of the velocity
field. According to the proposal by Kolmogorov ([172], etc), at
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relatively large Reynolds number there should be an intermediate
range of wave numbers (inertia interval) in which the energy is not
produced and is not dissipated, and is only transferred to higher
wave numbers.1 Analysis of the dimensions shows that for the
inertia range2 (Fig. 1.3):

2 /3 5/3( ) ~E k k −Θ
Thus, it may be asserted that the spectral range of energy (I)

and the dissipation range (II) at a high Reynolds number
1/ 22Re /uλ ′= λ ν  greatly differ in respect of frequency (Fig.1.3),

and this also confirms the ‘reality’ of the previously made
hypotheses on the dynamic independence of the large- and small-
scale of structures. We shall discuss this in greater detail in §1,
Chapter 3.

The spectral form of the Karman–Horvath equation has the form:

2( , )
( , ) 2 ( , )

E k t
T k t k E k t

t

∂ = − ν
∂                                                      (1.1)

where 2

0

( )u E k dk
∞

′ = ∫  is the total energy of the pulsating motion,

Fig.1.3. Schematic representation at high Re of the energy spectrum E(k), the energy
dissipation spectrum 2νk2(E) and function T(k) (I is the energy range, II is the
dissipation range, the inertia range is between them) [96].

1According to Karman, a similar process occurs in the boundary layer: here
we have an intermediate equilibrium layer between large-scale vortex
motion (where energy is produced) and the viscous region of dissipation;
analysis of the dimensions gives the well-known logarithmic law for flow
in the boundary layer.
2The problem of the universality of this law remains unsolved
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T(k , t) is the function determining the distribution of energy in
respect of the spectrum. The function T(k,t) describes the variation
of the energy of the ‘spectral component’ of turbulence with wave
number k ,  produced by nonlinear ‘inertia members’ of the
hydrodynamic equations. It is important to note that this change is
reduced to the repartition of energy between the individual spectral
components without any change of the total energy of turbulent
motion as a whole.

The last term of the righthand part of equation (1.1) describes
energy dissipation under the effect of viscosity forces. This shows
that viscosity results in a decrease of the kinetic energy of
perturbations with the wave number k, proportional to the intensity
of these perturbations multiplied by 2νk2. Thus, the energy of long-
wave perturbations (with low values of k) decreases under the
effect of viscosity at a considerably lower rate in comparison with
the energy of short-wave perturbations. This should be so because
of the proportionality of the friction force in relation to the velocity
gradient.

The behaviour of function T(k) (negative value at low k  and
positive at high k) corresponds to the assumption according to
which turbulent mixing should lead to both ‘joining’ of turbulent
perturbations and to the transfer of the energy of large-scale
components of motion to the energy of small-scale vortices which
use their energy already immediately for overcoming ‘viscous
friction’. The fact that viscosity plays a significant role only for the
relatively small-scale components of motion (characterised by high

Fig.1.4.  Spectral  distribution in the
coordinates ϕ  = kE

x
(k)/〈 u '2

x 
〉  and kΛ

x
 in the

flow without rotation (N = 0; 0, ∆,... are
experimental data obtained by the MFTI
for different positions along the radius; lines
of the EVKmodel for different values of
Reλ).
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local velocity gradients), is expressed in the fact that in Fig.1.4 the
maximum of the dissipation spectrum 2νk2E(k) is situated on the
axis of the wave numbers far more to the right than the maximum
of the energy spectrum E(k) [96].

The energy range I (Fig.1.3) is characterised by the concent-
ration of the main fraction (let us say, 80 or 90%) of total energy

0
2

0 0

( ) ( )
k

u E k dk E k dk
∞

′ = ≅∫ ∫                                                   (1.2)

and the main fraction of total dissipation is concentrated in the
dissipation range II:

0

2 2

0

2 ( , ) 2 ( , )
k

k E k t dk k E k t dk
∞ ∞

Θ = ν ≅∫ ∫                              (1.3)

where k
0
 is the intermediate value of the wave number, situated in

the inertia range (behind the energy range and in front of the
dissipation range). Equation (1.1) may be into integrated in respect
of the entire frequency range:

2

2

0

2 ( , ) ,
u

k E k t dk
t

∞′∂
= − ν ≡ −Θ

∂ ∫
because for isotropic turbulence

0

( , ) 0.T k t dk
∞

=∫                                                                          (1.4)

However, if we integrate equation (1.1) in the ranges (0, k
0
) and

(k
0
,∞), then taking into account (1.2) and (1.6), we obtain

0

0
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but taking into account (1.4)

0
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t

∞′∂
≅ = − = −Θ

∂ ∫ ∫                                         (1.5)

Equation (1.5) indicates that the value of the rate of energy
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dissipation Θ is already determined within the energy range (this
was utilised, in particular, in developing semiempirical Prandtl
theory).

We shall  now determine the order of the value of energy
dissipation energy in turbulent motion [85]. This energy is taken from
large-scale motion from where it is gradually transferred to smaller
and smaller scales and until it  dissipates in the viscous range.
Although dissipation is, after all, due to viscosity, the order of Θ
may be determined by means of the quantities characteristic of
large-scale motion. They include density ρ, dimensions l and speed

u∆ (the variation of the mean velocity in the characteristic size of
large-scale vortices l). From these quantities it is possible to produce
only one combination characterised by the same dimensionality as
the mean energy dissipation (in unit time in unit mass):

( )3

~ .
u

l

∆
Θ                                                                               (1.6)

Characterising the properties of the turbulent flow by ‘turbulent
viscosity’,

~ ,t u lν ∆
we obtain

2

~ .t
u

l

∆ Θ ν   
                                                        (1.7)

It should be mentioned that if molecular viscosity ν  determines
the dissipation of energy by the derivatives of the true velocity in
respect of the coordinates, then ν

t
 links the dissociation with the

gradient u l∆  of the mean velocity of motion [85]. These relation-
ships (6, 7) may be used when constructing numerical models.

Thus, the main features of the turbulent flow for high Reynolds
numbers are determined in the energy-containing (non-viscous)
range, i.e., in the range of long-wave perturbations (low values of
k).1 It also should be mentioned that this is the region of integral
scales Λ .

3. It is also interesting to estimate the distribution of the energy
range on the scale of the vortex scale (the data published by
Onufriev).

The energy range 〈u '2〉  in respect of the spectrum is ‘collected’

1Traditional investigations of turbulence are usually l inked with the
viscosity range causing large technical (and principal) difficulties in
numerical examination of large-scale structures.
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mainly in the range from kΛ≈0.1 to kΛ≈10. Using the generalised
Karman model (EVK model) for homogeneous isotropic turbulenxe,
Driscoll and Kennedy [157] obtained approximating relationships for
the integral scales Λ and the Taylor (transverse) microscale λ :

( )

( )

1/ 2 1/ 2 1/ 2 1/ 2

1/ 4 1/ 2

Re 2.47 0.081Re Re 1 0.091Re ,

15 Re .

λ λ λ λ

λ

Λ  = + − → η
λ =
η

                (1.8)

here η  = (ν 3/Θ)1/4 is the Kolmogorov microscale, Re = ΛU /ν ,
Reλ  = Reλ〈 u ' 2〉 1/2/ν .

Equation (1.8) gives: Λ/λ  ≈ 0.1 Reλ. It is now possible to make
the following estimate:

1/ 2 1/ 22 2

Re
~ ~ 1000·0.1 Re 10Re .

Re

U U

u u
λ

λ

Λ ≈ λ ≈
′ ′λ λ                      (1.9)

Consequently, Re ≈ 10Re2
λ and at Re = 107, Reλ = 103:

( )3 4 2/ 10 10 , / 10 ,Λ η≈ ÷ Λ λ ≈

i.e. the size of the longitudinal integral scale λ  is two orders of
magnitude (and more) greater than the size of the Taylor microscale
λ  and more than 3–4 times greater than the Kolmogorov micro-
scale η . Thus, it is sufficient to ‘work’ in the low-frequency and
initial zones of the inertia range of the spectrum. In order to
determine (‘collect’) the required value of the energy 〈 u ' 2〉 ,  in
calculations it is important to have the scales 10–20 times smaller
than Λ. The given estimates (1.9) indicate that in the calculations
on ‘real’ grids we can obtain reliable results (Fig.1.2 shows the
conventional value of the ‘optimum’ calculation range denoted by
h* – the universal part of the spectrum is ‘cut off ’).

We shall now describe the approximate methods of determination
of the longitudinal integral scale of turbulence. Onufriev et al [19,
57,244] carried out the experimental examination of the behaviour
of the energy spectrum in a turbulent flow in a rotating (in relation
to the longitudinal axis) pipe.  Examination showed the relatively
universal behaviour of the spectral distribution, represented in the
dimensionless form, and the fact that the given universal distribution
is similar to the generalised Karman model (EVK model) for
uniform isotropic turbulence.
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This situation (it will be referred to as the Onufriev rule) is
formulated as follows: there is a similarity for the semiempirical
isotropic EVK model of the spectrum: at high values of the
Reynolds number, the maximum of the dimensionless quantity ϕ  for
the unidimensional spectrum (max ϕ  = max[kE

1
(k)/〈u'2〉 ]) is situated

at kΛ≈1. The value of this maximum differs only slightly (within the
range of tens of percent), starting with Reλ>100÷200.

Figures 1.4 and 1.5 show the behaviour of the dependences of
ϕ  for the EVK model (line) and compare them with the
experimental data obtained at the MFTI [57,244] for a developed
turbulent flow in the pipe. On approaching the wall,  the flow
becomes highly nonuniform and the universal nature of the
representation of the spectral distribution is disrupted (the system-
atic deviation in the spectrum may be taken into account, and is not
very significant in the large part of the spectrum). The stipulation
max[kE

1
(k)/ 〈 u ' 2〉 ]) at kΛ � 1 n is also fulfil led for non-isotropic

flows.
Consequently, if this assumption is regarded as the ‘the rule of

determination of the integral scale Λ’, then it is sufficient to use
a relatively narrow range of the scales in the low-frequency range
where we can calculate u'(t), 〈 u ' 2〉 ; in the range of these scales,
there is a unidimensional spectrum E

1
(k) and this is followed by the

determination of Λ.
After approximating the spectral Karman distribution which

includes the low-frequency and inertia range of the spectrum, we
determine (see, for example [119]) the rate of energy dissipation:

Fig.1.5. Spectral distribution in coordinates
ϕ  = kE

x
(k )/ 〈 u ' 2〉  and kλ

x
 in a f low with

rotation (number of revolutions of the outlet
section of the channel N = 8 rev/s, other
notations as in Fig.1.4.)
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Here c
1 � 1.4 is the constant in the three-dimensional spectrum for

the inertia range:1 E(k)=c
1
Θ2/3k–5/3 (Fig.1.3).  Subsequently, from

the relationships for the uniform isotropic flow it is possible to
determine the values of the Taylor λ  and Kolmogorov η  microscales,
and also the value of Reλ [96,119]:

( )

2 2

1/ 43

2

10 / ,

/ ,

Re / .

x

x

u

uλ

 ′λ = ν Θ

 η = ν Θ


′= λ ν


                                                                  (1.11)

Finally, it is also necessary to take into account the effect of the
non-isotropic nature and inhomogeneity of the flow on the values
of the integral scale of the amplitude of spectral distribution,
although in the first approximation this may be ignored.2 Thus, the
calculation of the low-frequency (long-wave) structures is important
in examining turbulence for very high Reynolds numbers, and this
‘large’ structures should not be greatly distorted in the process of
calculations.

Taking into account the previously mentioned assumptions and
hypotheses (on the weak dependence of the large-scale formations
on the nature of dissipation and on the distribution of the energy
and dissipation ranges), it is possible to obtain fully satisfactory
results in the calculation of the dynamics of large vortices using,
in this case, very rough approximations (‘averaging’) subgrid
turbulence (to a certain extent, this is a non-trivial problem in the
given approach).

Taking this into account, we shall examine methods of ‘rational’
numerical determination in the calculation of large-scale turbulent

1In [216], the variance approach was used to calculation constant c equal
to 1.2.
2The authors are grateful to Prof Onufriev for supplying material on this
problem and very useful discussions.
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structures, constructed on the basis of the integral laws of
conservation for the ideal medium.

4 .  Recently, i t  has become more and more evident that the
presence and dynamics of the structures of turbulent flows must be
taken into account when examining these flows. The existence of
the ordered structure in chaotic motion determines the formation of
the regions of intensive concentration of vorticity – vortex tubes
and vortex layers.

We shall  regard the examination of the ‘dynamics of large
vortices’ (DLV) as the main task of examination of large-scale
formations in maximally developed turbulence. In this case, it is
natural to use the concept of the ‘division’ of the flow into large
(‘oversized’) and small (‘undersized) vortices, but we shall attempt
to develop such an approach without introducing semiempirical
models of the closure of subgrid scales. We shall examine initially
two important assumptions used as the basis for the methodology
which we have developed [16,19,27].

As asserted in [85], ‘‘. . .  at  high Reynolds numbers Re, the
Reynolds numbers Re λ of large-scale motions are also high
Reλ~νλλ /v, where νλ is the order of the value of the velocity of the
scale λ ). However, high Reynolds numbers are equivalent to low
viscosities... Consequently, for large-scale motion, being the main
type of motion in any turbulent flow, the viscosity of the fluid is not
important and can be assumed to be equal to zero so this motion
is described by the Euler equation.1 In particular, this shows that
there is no significant dissipation of energy in large-scale motion.

Previously, i t  was shown that for the low-frequency energy
range (where energy is generated), the effect of viscosity is very
small. Similarly, for the inertia range of motion (the scales of the
vortices: l > λ >>λ

0
, where λ

0
 is the internal scale of turbulence:

0
Re 1λ ≈ ), the main process will be the transfer of kinetic energy
in the cascade of vortices with velocity Θ and, in this case, the
breakup of vortices takes place only under the effect of inertia
forces, and viscosity is insignificant (the second Kolmogorov
similarity hypothesis of conservation of the energy flux). This type
of motion is recorded at very high Reynolds numbers, and for the
scales of the vortices λ  >> λ

0
 it is convenient to use the relationship

of local turbulence [72,85,96,119].
In fact, for free turbulence, modelling should be started from the

scales of local turbulence, and the calculations of DLV (ordered

1The applicability of these equations to turbulent flows is determined by
distancers of the order of the distances of the order of λ

0
 [85].
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structures and large-scale motions) can be carried out directly on
the basis of complete dynamic equations for the ideal medium, i.e.
without taking into account the effects of molecular viscosity
(viscosity effects, naturally, play a significant role in the vicinity of
the body).

Finally, we shall discuss the position relating to the problem of
‘rational’ averaging of the subgrid scales. In this case, two
approaches are normally used. In the first of these approaches (as
mentioned previously), we carry out averaging of the equations of
motion in respect of the elementary volumes of the grid (see, for
example [127,154]. etc,) and the effect of turbulence with the
scales λ < h is reflected in the form of Reynolds stresses, requiring
the application of semiempirical closure models.

However, another approach based on the theory of filtration can
also be used [160,187]. At first, we initially introduce a smoothing
operator designed for separating small-scale motion in these cases.
The application of this operator-filter to the equations of motion
makes it possible to determine the effect of stresses, resulting from
small-scale of turbulence, through the mean values in respect of
volume. The approximation of the nonlinear members (of type

i j i ju u u u≠ ,  remaining after fil tration, leads to the non-zero
interaction of the velocities of the so-called Leonard stresses.
Subsequently, any approximate method can be used for calculating
the resultant equations.

As reported in [127], ‘‘the ideal case would be the one in which
the filter excludes all contributions of small-scale motion above the
selected wave number, without changing the mode in the range of
wave numbers smaller than this limiting number. These filters have
not as yet been used in finite-difference approximations...’’.

This property (‘extinction of fine scale pulsations and having
almost no effect on large-scale structures) are typical of the
dissipative finite-difference schemes are based on ‘oriented’
approximations. In this case, it is very efficient to examine, instead
of differential equations of motion, balance equations (in the form
of integral laws of conservation) for the elements of the volume–
the cells of the calculation grid. This method of preliminary ‘integral
smoothing’ of the fine vortices appears to be most natural for the
numerical calculation of large-scale turbulence. The ‘splitting’
scheme, used in organising the computing cycle, should approximate
the mechanism of turbulent transfer.

5. Taking the above considerations into account, we shall note
here the general assumptions regarding the approaches of ‘rational’
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numerical averaging used in the proposed approach (following the
investigations by Tolstykh [28]).

In numerical modelling of large vortex structures of the turbulent
flow using different schemes there are unavoidable errors which can
be divided into two groups: amplitude and phase. Since the accurate
and difference solutions can be represented in the form of
superposition of harmonics with different frequencies and amplitude
(in the form of a series or a Fourier integral),  i t  is natural to
conclude that relatively large structures correspond to ‘long-wave’
and ‘medium-wave’ harmonics, and ‘short-wave’ harmonics corres-
pond to fine structures.

Instead of ‘wave’ exponent eikx, the difference solution (k is the
wave number, the wavelength Λ = 2π/k) contains the representation
e enikx ikhn=  (h is the step of the grid, n is the number of the node).
Because of periodicity, it may be concluded that 0 < kh < 2π. In
this case, the ‘short difference’ waves correspond to α = kh  ≈ π
(at kh = πΛ = 2π/k = 2h, i.e. we have the shortest waves resolved
by the grid). The values kh << 1 correspond to the ‘long’ waves,
i.e. to the waves which we must describe with sufficient accuracy.

We examine the simplest linear analogue of the equation of
transfer of vortices:

0, const.t xu cu c+ = =                                                             (1.12)

The amplitude errors (α
dif 

/α
exact

,  α is the amplitude) and phase
errors (C

dif 
/C

exact
, C in the interfacial velocity) can be written in

the form

dif dif

exact exact

1 ( ), 1 ( ), ,
C

C
d l kh

α = − α = − α α =
α

�

where d is dissipation, l�  is a function characterising the dispers-
ion.

In most cases, all  the schemes give small for ‘long’ waves
(kh << 1) and large errors for short waves (kh ≈ π). In this case,
the dependence characterising the difference between C

dif
 and C

exact

usually has the form shown in Fig.1.6a (solid curve). From the
viewpoint of description of ‘large’ vortices (long and medium waves,
where α = kh is not large) the errors in the description of ‘fine,
structures’ (short waves, α ≈  1) are far from harmless. The point
is that these errors (small-scale perturbations) propagate with some
‘difference’ group velocity Cgr

dif
 which differs even more than C

exact

from the ‘accurate’ value C  of the velocity of propagation of
perturbations (the dotted line in Fig.1.6a).  At kh ≈πCgr

dif
, it may

generally become negative and, consequently, the perturbations,



25

Direct numerical modelling of free turbulence

propagating upwards in the flow, may in certain cases greatly
distort the structure of large vortices.

In a nonlinear case (for example in the case of an Euler
equation), the situation is even worse: it can be shown that the
‘pumping’ of the energy of small-scale perturbations into larger
scales is possible. This sometimes leads in the final analysis to the
scheme nonlinear instability.

The situation in maybe improved (or even ‘saved’) by dissipation
d .  We shall  examine ‘non-dissipative’ (d  = 0) and dissipative
(d  ≠ 0) schemes. The typical dependences for the dissipative
schemes with different accuracy are presented in Fig.1.6b. It
follows from here that the dissipative schemes are characterised by
relatively low dissipation in the range of large scales (kh << 1) and
by high dissipation in the range of small scales (kh ≈ π). However,
dissipation characterises the decay of the amplitude of perturbations.
Thus, the dissipation-stable schemes describe efficiently the large
structures (for example, large vortices) and weaken (or completely
extinguish) the small-scale perturbations which we do not require.

When using the schemes with symmetric approximations, there
is no dissipation and, in addition, there is no mechanism of
weakening harmful (for describing large vortices) ‘short-wave
errors’ (the only hope in this case is filtration, but this is equivalent
to introducing dissipation). In addition, there may be a situation in
which the dissipation for the given scale l of a large vortex is so
high (h/l is too small) that this vortex itself will be extinguished
(‘blurred’) by the scheme. Therefore, the schemes with large
dissipation (for example, the schemes of the first  order of
accuracy) require the accurate selection of the grid (the ratio
h/ l).

Fig.1.6. Examination of the modelling equation: a) C
dif

/C
exact

 dependences characterising
the difference between the ‘difference’ phase velocity and the exact values (solid
curve) and the approximate law of variation of the ‘difference’ group velocity
Cgr

dif
 of development of small-scale perturbations (broken curve); b) typiucal dependence

of the function P(α ), characterising  the dissipation of difference schemes of different
order of accuracy (α  = kh, k is the wave number, h is the step of the grid).

Phase
error

a b
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We shall examine these problems in greater detail. The role of
the dissipative mechanism, present in the difference schemes for
the convective problems, can be examined most efficiently, as
already mentioned, on an example of the transfer equation (1.12).
In the equation, cu

x
 is replaced by the difference approximation

cδ
x
, leaving u

t
 without changes (in order to eliminate the effect of

the method of time discretisation). As any operator, cδ
x
 may be

represented in the form of the sum of the self-conjugated cδ(0)
x
 and

skew-symmetric cδ
x
(1) parts, i.e.

(0) (1) ,x x xc c cδ = δ + δ

where

( ) ( ) ( ) ( )(0) (0) (1) (1), , , , , ,x x x xu v u v u v u vδ = δ δ = − δ

and (*,*) denotes the scalar products of grid functions. At first sight,

it may appear that since c
x

∂
∂

 is the skew-symmetric operator, the

operator cδ
x
 should also be skew-symmetric (i.e. δ

x
(0) = 0).  For

example, it may be assumed that δ
x
 is equal to the normal central

difference δ
x
u

j
=(u

j+1
–u

j–1
)/2h. In particular, these approximations

were also used in early stages (in the sixties) in the solution of
relatively simple problems. However, in many cases, the presence
of regions with steep gradients complicates the application of these
‘natural’ approximations, because the high-frequency ‘parasitic’
(scheme) oscillations, formed in this case, usually prevent obtaining
a stable solution or greatly distort it.

One of the methods of overcoming this difficulty is, as is well
known, the introduction of additional members of the type of
artificial viscosity, carrying out in particular the role of smoothing
filters.  However, the shortcoming of this method is that i t  is
necessary to select filter parameters for a specific problem (or
classes of problems). In some cases, this cannot be carried out
efficiently (in particular, this approach is difficult in spatial and
nonstationary problems).

Another method is the application of schemes in which the
dissipative mechanism (smoothing filters) is present in the operator
itself δ

x
, approximating convective transfer. In this case, the self-

conjugated component of the operator cδ(0)
x
  should be positive (i.e.
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(cδ(0)
x
 u ,  u) > 0).  In fact,  after discretisation in respect of x ,

equation (1.1) may be presented in the following form:

0.x
u

c u
t

∂ + δ =
∂                                                        (1.13)

Multiplying equation (1.30) in the scalar fashion by u, we obtain

( ) ( )2
, , .xu u u c u u

t t

∂ ∂= = − δ
∂ ∂

Since cd
x
(1) is the skew-symmetric operator, i.e. ((δ

x
(1) u,  u) = 0),

then

( )2 (0) , 0.xu c u u
t

∂ = − δ <
∂

This means that the norm of the solution decreases and dissipation
takes place. However, this assertion does not yet indicate which
components of the function (harmonics) attenuate at the highest
rate.  In order to explain this question, we shall assume that the
initial data for (1.30) are presented in the form

( ) ( ),0 exp .u x ikx=

and, in this case, the exact solution of (1.0) has the form
u (x, t) = exp (ik(x–ct)). The solution of (1.13) will be determined
in the form x(x ,  t) = v(t) exp(ikx), x  = jh ,  j  = 0,+1,+2,.. . ,  and,
consequently, we obtain

( ) 0.
v

p iq v
t

∂ + + =
∂

where the actual values of p(k) and q(k) satisfy the relationships:

(0) (1)exp( ) exp( ), exp( ) exp( );x xc ikx p ikx c ikx iq ikxδ = δ =

and in this case, if cδ(0)
x
  < 0, then p > 0.
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Consequently, we obtain

( ) exp( ( ) ) exp ( ( ) ).v t p k t iq k t= − −

The co-multiplier exp (–iq(k)t) is the oscillatory component of
the difference solution, determining the dispersion. The component
exp(–p(k)t) is the coefficient of attenuation of the harmonics with
the wave number k during time t (it may be regarded as a dissip-
ation characteristic). In this case, as the value of p(k) increases,
the rate of attenuation of the harmonics (dependence p(k) for the
dissipative schemes of the different order of accuracy are shown
qualitatively in Fig.1.6b). This shows that in the dissipative schemes
the short waves show a higher rate of attenuation (higher kh), in
particular the ‘non-physical’ scheme oscillations (kh ≈ π). In this
case, as the order of the scheme increases, the size of the region
kh in which the harmonics do not change their amplitude becomes
larger (as in the case of the exact solution).  Thus, the dissipative
schemes of a high order contain a natural filter which ‘transmits’
only the harmonics that describe the physical process and
‘suppress’ small-scale or ‘non-physical’ oscillations of the seesaw
type (Fig.1.6 b).

The schemes with dissipation (with positive operators) use
‘oriented’, i.e. directional (non-centred) differences. By changing
their direction in relation to the sign of c in (1.0) it is possible to
retain the operator cδ

x
 positive also when the sign of c changes.

In addition to the filtration effect, the ‘positiveness’ of the operator
increases the margin of stability of the schemes. This is especially
important in the solution of stationary problems and also when
examining the dynamics of larger vortices in free developed
turbulence.

However, it should be remembered that in a nonstationary case
in the calculation for long times (for example, in weather forecast-
ing), even at low values of k the quantity e–pt may also extinguish
the ‘physical’ harmonics. From this viewpoint, the advantages of the
schemes with high order of accuracy are mainly the fact that this
situation starts at a considerably later stage in comparison with the
schemes of low order (Fig.1.6b).

At the present time, we use only dissipation-stable schemes: the
method of large particles, the flow method, the approximation of
viscosity of the equations, the compact schemes with a high order
of accuracy, and others ([17,19,24] etc).  In this case, the
dissipative nature is achieved by ‘orienting’ the differences in
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accordance with the direction of the flow (‘non-symmetric
schemes) without introducing explicit  members with artificial
viscosity.1 These methods, based on the splitting schemes, make
possible to carry out calculations of complicated spatial-nonstat-
ionary flows in medium-power machines.

6. Thus, here we propose a completely new (in comparison with
[94,104,154,160], etc) method of ‘rational’ averaging, based on
constructing dissipation-stable and divergent-conservative difference
schemes. We shall mention briefly the main assumptions of the
approach which we have developed for calculating the free shear
maximumally developed turbulence and ‘transition’ phenomena.

1. The initial equations in the examination of large-scale coherent
structures are represented by balance relationships – the integral
laws of conservation for the ideal medium.

2. We use the ‘oriented’ difference approximations in averaging
convective members in respect of the volume of the elementary cell
(this also leads to the formation, in the difference equations, of the
dissipative mechanism which, ensuring the stability of the solution,
should reflect in the approximate form, generally speaking, the effect
of small-scale ‘subgrid’ vortices).2

3. By means of the direct calculation of macrostructures to the
‘establishment of the results’ on different approximation grids and
for long periods of time we ‘select’ the energy integral and it is
thus possible (according to the results of a large number of
calculations) to determine the ‘effective’ value of such a dissipative
mechanism, using the principle of ‘the stability of the solution at the
necessary resolution’. In this approach, we satisfy the requirements
of the ‘invariance of separation’ into large and small scales and the
solution is transferred to the steady (‘equilibrium’) regime in the
determination of the non-stationary macrostructures of the flow.

4. In the calculation of the dynamics of large structures, we do
not use the semi-empirical models of subgrid ‘closure’ (the
introduction of the approximate models of ‘effective’ viscosity is

1See, for example, difference representations in the large particle method
(Chapter 2), in the flow method (Chapter 3).

2According to calculations, the characteristics of the large-scale flow
depend only slightly on the structure of the dissipative mechanism. This
is the reason why in DLV calculations, the small-scale high-frequency
turbulence can be extinguished or its effect can be ‘roughly’ taken into
account, of mainly the universal part of the spectrum is positioned ‘below
the grid’ (Fig.1.3.).
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necessary only in the zones of local turbulence or when estimating
the ‘stochastic component’ – the turbulence background).

5. The algorithms developed for this purpose make it possible to
carry out ‘natural’ expansion also to special problems (the
dissipative mechanism forms ‘automatically’ because of the
previously described averaging process and it is not necessary, as
for example in [228], to examine various types of coefficient of
turbulence viscosity for two-dimensional and three-dimensional
flows).

6. Using the proposed method of direct numerical modelling, it
is possible using the ‘smoothed’ equations to determine the spatial-
time structures of the dynamics of large vortices and by statistical
processing of the pulsation-nonstationary regime determine their
average ‘fluctuation’ characteristics: Reynolds stresses and turbulent
energy (the correctness of this process is discussed below).

7. The numerical examination of the nominal-turbulent transition
is carried out on the basis of complete Navier–Stokes equations.

8. ‘The transition to chaos’ (numeral experiment), carried out on
the basis of complete dynamic models, can be carried out only in
the presence of external perturbing forces, ‘intensifying’ the
inherent nonlinear inertia mechanism of the system.

Finally, depending on the type of problem, it is convenient to use
the schemes with a high order of accuracy. In this case, larger and
larger part of the ‘long-wave’ harmonics can be ‘resolved’ and is
not ‘extinguished’ by dissipation. The realisation of this approach
greatly reduces the requirements on computer resources.

This is the principle of the proposed general methodology and its
main difference from the approaches used by other authors for the
direct numerical modelling of turbulence ([94,104,107,125,127,154,
187,228] and others). We shall now explain the proposed approach
in greater detail ([15,16,19] and others, see also studies published
by Babakov, Gushchin, Kon'shin and Yanitskii [128]).
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If in the first years of examination of turbulence, these phenomena
were interpreted as completely stochastic processes (determined by
random distributions of pulsation quantities) then we believe that a
principal change has taken place now in understanding these pheno-
mena. It has been explained that turbulence includes, as an element,
the organised motion of ‘almost’ coherent structures and intensive
studies have started into the problems of the relationship of
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1When discussing the formation of ordered stochastic (organised,
coherent, collective, etc) structures, it should be mentioned that this class
of motion is stochastic both in respect of time and space [46,71].

determined and chaotic elements ([46,71,113,231] and others).
Many experiments and theoretical investigations have shown

(see, for example [71,113,236] and other) that the wide range of
the turbulent flows with transverse shear (both in free flows and
in boundary flow) is characterised by the existence of non-
stationary organised motion of large-scale formations (‘large
vortices’) with slight pulsation–ordered motion of ‘stochastic
structures’1 which are characterised by a highly stable and typical
(for the given problem) spatial–time form (Fig.1.7–1.9, experiments
[236]). The internal zone of these flows, for example, for stream
problems, is of the turbulent (stochastic) nature and consists of non-
ordered small-scale pulsations with a relatively high intensity, but
with an approximately homogeneous structure2 (see [71,113,
119,236]). Figures 1.7–1.9 show photographs characterising the
types of all the structures for various types of turbulent flows.3

For example, in the free shear flows (accompanying wakes,
streams) examination showed (according to Townsend [113]) a dual
(‘alternating’) structure of turbulence. The main zone of the
turbulent fluid is characterised by a relatively small scale and is
homogeneous. The external system of stable ‘slow’ (non-turbulent)
large vortices is superimposed on the main zone, and the external
system transfers completely the turbulent liquid from one part of the
flow to another (Fig.1.10). Thus, the ordered structures are
characteristic and form the natural basis of shear motion.4

In accordance with [46], we shall  classify these turbulent
structures:

– dynamic structures exist in the vicinity of the point of transition
from the laminar to turbulent flow and are characterised by the
bifurcation origin (structural stochasticity: ‘chaos forms from
order’);

– quasi-equilibrium structures form in regions with developed
turbulence, when random motion is so extensive that the system is

2Cantwell [71] accepts that in a number of cases (for example, in flat mixing
layers), ‘‘even very small-scale motions may be highly ordered’’.
3 Fig.1.9 shows the small influence of molecular effects on the large-scale
structure of the wake (in both cases, the structure of the wake is approximately
the same, although Reynolds numbers differ greatly).
4New results of studies by Russian  scientists in the theory of structural
turbulence have been published in [46].
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closely to thermodynamic equilibrium (the structural nature of this
stochastic movement: formation of order from chaos’);

– the flow structures occupy an intermediate area between the
first two structures.

In free shear turbulent motions – streams, wakes, mixing layers
– ordered large-scale formations are detected at any large Reynolds
number. The structures of this type are also characterised by the
two-dimensional (or quasi-two-dimensional) form [46]. The intensity,
scale and form of this low-frequency ordered motion are quasi-
determined (i.e. individual) for the given type of flow, and they can

a

Fig.1.7. Different types of ordered turbulent structures (experiments in [236]):
a) turbulent boundary layer; b) mixing layer (top – nitrogen, bottom – helium–
argon mixture); c) supersonic jet (slow motion photography).

c

b

a
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be described efficiently using hydrodynamics equations (and not
statistical approaches).  The dimensions of large vortices are
comparable with the characteristic size of the flow and are
considerably greater than the scales of vortices forming the natural
turbulent motion ([71,113]). At the same time, the turbulence in the
core of the wake is characterised by a completely sufficient degree
of local isotropy (in relation to the intensity of pulsations of velocity

Fig.1.8. Different types of ordered turbulent structures: a wake behind a circular
cylinder (experiments in [236]): a) M∞ = 0.64, Re = 1.35 · 106; b) M∞ = 0.80,
c) M∞ = 0.90; d) M∞ = 0.95; e) M∞ = 0.98.

a

b c

d e



34

Turbulence: New Approaches

Fig.1.9. Different types of ordered turbulent structures (experiments in [236]):
a) a wake behind an inclined sheet (α  = 45°, Re = 4300); b) a wake of oil discharged
from a tanker which ran aground (α  = 45°, Re = 107). ‘‘In the last two cases the
structures of the wake are surprisingly identical’’ [236].

in different directions and, consequently, in relation to the energy
characteristics [119]).

In numerical investigations, it is important to model accurately
the transfer processes. There are three types of energy pheno-
mena, characteristic of real turbulent motions [46]: 1. The gener-
ation of large-scale vortices, which depends on the specific
properties of the examined flow as a whole; 2. Break-up of these
vortices as a result of nonlinear nature into smaller-scale vortices
and the transfer of energy without any extensive loss downwards
in the spectrum (the Kolmogorov ‘cascade’ process); 3. Viscous
dissipation of energy on the smallest scales. Until recently, analysis
by statistical methods was carried out only on types 2 and 3 and
a theory was developed without taking into account the generation
mechanism (the required pulsation energy was introduced into the
flow from the outside by the introduction of a random external

a

b
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force). At the same time, the generation aspect of the problem of
large-scale turbulence, in particular (where the deterministic origin
is dominant) is most important because it includes the reasons for
the formation of turbulence and the mechanism of sustenance of
turbulence.

The large-scale transfer of a turbulent liquid is evidently carried
out mainly by organised motion of a group of large vortices causing
the distortion of the boundary of the turbulence field and transfer
of the turbulent fluid across the flow [71,113]. Consequently, the
motion of ordered and large-scale turbulent structures determines
mainly the dynamic, kinematic and energy characteristics of the flow
as a whole which naturally also determines the properties of ‘deep’
turbulence where energy dissipation takes place.

The reversed effect of the small-scale turbulence (and molecular
diffusion) on the main characteristics of a large-scale flow for
freely developed shear turbulent flows in the case of high Reynolds
numbers is evidently insignificant because these are effects of
different orders, the small-scale structures are ‘almost’ universal
(Fig.1.1), and the process of energy transfer is one-sided.
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1. The above considerations also determine in principle the ideology
of organising the computing process in direct numerical modelling
in the wake of large-scale flows with freely developed shear
turbulence for very high values of the Reynolds number. In this
case, the general cycle of investigations breaks up into two related
tasks.

Task 1: direct calculation of the nonstationary motion of ordered
and large-scale turbulent structures.

The large-scale and organised nature of such a motion make it
possible to describe the motion by means of numerical schemes

Fig.1.10. Diagram of flow in freely-developed turbulence (according to Townsend
[113]): 1) non-turbulised fluid; 2) motion of large vortices; 3) boundary of turbulised
fluid; 4) homogeneous turbulence (stochastic component – ‘turbulent background’).

1 2

3 4
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based on nonstationary hydrodynamics equations (integral laws of
conservation) for the model of the ideal medium (‘difference Euler’)
and characterised by the approximate (effective) dissipation mech-
anism. The main task of such a dissipative mechanism is to ‘smooth
out’ (‘extinguish’) small-scale pulsations ensuring the stability of the
solution and the required resolution for the flow macrostructures.
As shown by investigations and calculations, the application of the
‘oriented’ (non-symmetric) differences in the integral laws of
conservation without the application of semi-empirical models of
turbulence satisfies these conditions. The point is that the properties
of large-scale motions are determined basically by volume
convection (i.e. they have the ‘wave’, dynamic nature) and depend
on the solution as a whole. Consequently, calculations should be
carried out directly in the entire field of the flow on real (‘large’)
difference grids with subsequent determination of the necessary
average characteristics of the turbulent flow (for example,  mom-
ents of different order) by means of appropriate statistical
processing of the results.

Here, it should be mentioned that the possibility of determining
the statistical characteristics of the non-stationary (‘pulsation’)
large-scale turbulent flow on the basis of smoothed-out equations
is far from evident because there is a problem of the correctness
of the formulation of such a task (this will be discussed later).

In the given stage, as a result of solving the problem we simulate
the movement of all ordered structures, large (energy-carrying)
turbulent vortices and also the process of generation, and so on
(based on large-scale transfer). Here, it is also possible, but already
with the appropriate representation of the dissipative mechanism, to
investigate the ‘cascade’ process of energy transfer, i.e. the ‘desc-
ent’ to small-scale locally isotropic turbulence. With appropriate
initiation (and determination) on large structures, the energy
characteristics of turbulence in the ‘descent’ will  be modelled
evidently quite accurately because the given process is sufficiently
conservative.

This ‘deterministic’ approach makes it possible to separate the
ordered and large-scale formations for structural turbulence, and in
this case it  is necessary to specify accurately the method of
averaging pulsation fields.

Task 2: numerical modelling of the stochastic component of the
turbulent shear flow (small-scale turbulence).

In this case, we model the local ‘resolution’ – the process of
dissipation, the nature of propagation of energy in the turbulence
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core, and so on.  Calculations of the flow of this type should be
carried out,  in our view, using statistical methods (or by a
phenomenological procedure, introducing appropriate coefficients of
turbulent viscosity).  We can also use algorithms, based on the
examination of pulsation equations (for example [112], where the
the parameters of the mean flow are determined from the solution
of task 1.

In this case, it is important to mention that the calculations of
these flows in the given stage should be carried out only in limited
sub-regions, ‘cutting out’ zones of high gradients from the general
pattern of the flow. This approach is based on the assumption
according to which on the turbulence scale small in comparison with
the scale of mean motion, the local structure of turbulence is
sufficiently universal for different flows and is determined only by
local conditions (turbulent transfer is characterised in this case by
gradient diffusion) [113]. Consequently, in the calculations we can
use fully determined models and relatively fine calculation grids and
the level of requirements on the computer resources is greatly
reduced.

2. It  is well-known that the averaging of the Navier–Stokes
equations in respect of Re is carried out immediately on all scales
of turbulence for long periods of time (separation of ‘regular’ mean
motion takes place) and this requires modelling all structures at the
same time. Thus, i t  is not realistic to construct a model of
turbulence that is universal for different classes of motion. In
contrast to this approach, the concept described previously is based
on ‘splitting’ general motion into large- and small-scale structures
(the non-random’ ordered motion of macrostructures is distinguished
here). At the same time, motion of the ordered and large-scale
turbulent vortices (with the size λ  > h*, where h* is the step of
resolution of the difference grid) is determined by direct integration
of the complete equations of hydrodynamics, and modelling
(smoothing) is applied only to small-scale pulsations which are not
resolved in the explicit form in numerical integration and, as already
mentioned, are characterised by relatively universal properties.

This concept is extremely important in the methods of direct
numerical modelling of turbulence. It is interesting to note that the
need for such division was mentioned as early as in 1948 by
Drayden [158] who on the basis of analysis of the data obtained
in the boundary layer using a thermoanemometer, concluded that the
‘large masses of the liquid move more or less like coherent
structures’.
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This approach is fully adequate to the so-called models of
subgrid closing (for example, [154,160], etc). However, the point is
how to organise this process of splitting (averaging) and which
models should be used to set up approximate (smoothed-out)
equations describing the motion of ordered and large-scale turbulent
structures. Of course, this results in problems associated with the
correctness of formulation of the task, the selection of approx-
imation for large-scale vortices and evaluation of their influence on
large-scale motion. Finally, a central position should be occupied by
the aspects, associated with the realisation of these approaches.
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1.  In order to construct a numerical algorithm of the calculation
of large-scale structures (‘difference Euler ’), the initial system
should be represented by the approximation of the laws of
conservation written, for example, for the simplest case in the
integral form (the method of large particles, the flow method ([9]
and others):

{ }, , , ,F
S

F
ds F M E

t Ω

∂ = − =
∂ ∫� Q P                                  (1.14)

where SΩ is the side surface of volume Ω; Q
F
 is the vector of the

density of the flow with strength F (M is the mass, P = ρv is the
pulse, E is total energy).

The equations (1.14) are presented (both for a viscous
compressible gas and in the case of the ideal medium) taking into
account the boundary conditions and are solved numerically for each
calculation grid of the computing region.

Splitting the density vector Q
F
 into ‘convective’ and ‘diffusion’

component (and using appropriate approximations), it is possible to
construct conservative schemes of the calculations of the second
order of accuracy, taking into account correctly the domains of the
influence and the nature of interaction of the investigated quantities.

In the numerical solution of the problem, the integrals in (1.14)
are calculated from the quadrature formulas

1

,
n n

n F
S

F F
L ds

Ω

+ −  = −  τ  ∫� Q                                         (1.15)
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where operator L
n
 carries out averaging (smoothing) of the

characteristics of the medium for the elementary (but finite) size
of the calculation grid.

The density of distribution can be determined using, for example,
non-symmetric equations, ‘retaining’ the positive value of the
transfer operator.  In the schemes of the second order of accuracy
[9]:

, 1, 1/ 2,
1/ 2,

1, 2, 1/ 2,

1.5 0.5 0,

1.5 0.5 0,
m n m n m n

m n
m n m n m n

u

u
− +

+
+ + +

ρ − ρ ≥ρ =  ρ − ρ <

The homogeneous finite-different schemes, constructed in this
manner, are divergently conservative and dissipatively stable. This
makes it possible to carry out, using a single algorithm, continuous
calculations both in the region of smoothness of the solution and in
the zones of breaks. In this case, the stability of calculations is
ensured only by internal dissipation (approximation viscosity) so that
these schemes can be used in the presence of curvilinear boundaries
and also for spatial-nonstationary problems [19].

For example, the equations of the ‘difference Euler’ (obtained
by means of differential approximation for the simplest schemes of
splitting in the method of large particles) have the following form
[24]:
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           (1.16)

where p is pressure, ε
x
 = |u | ∆x/2, ε

x 
y=|v|∆y/2 are the coefficients

of approximation viscosity.
Here, we present expansions with the accuracy to O (∆t, h2).

It  is interesting to note that in (1.16) the structure of the
coefficients of approximation viscosity ε ~|v |h  resembles the
structure of the coefficient of turbulent viscosity for the λ -scale,
v

Tλ  ~ vλλ  (evidently, this is explained by the single reason for their
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formation – the non-linearity of processes taking place and the
adequacy of the applied schemes of splitting and the mechanism of
turbulent mixing). If a turbulent vortex with scale λ , moving with
velocity vλ, is related with a large particle with size h, moving with
velocity v

h
,  the expression for ε and v

T 
λ ,  will be identical. We

assume that ε
x
 ~ ε

y
 ~ v

Tλ and, consequently, equations (1.16) at
ρ = constant (incompressible fluid) acquire the form of the exact
Navier–Stokes equations where molecular viscosity ν is replaced by
the coefficient of effective turbulence ν

T
 (see [15,16,19]).

The lefthand part of (1.16) contains the exact expressions of the
initial Euler differential equations, and the righthand part contains
dissipative members, i.e. the ‘perturbation background’ formed as
a result of smoothing (1.15) of subgrid fluctuations and breaks in
the approximation of the initial system of the differential equations
by finite-difference systems depending on the internal nature of the
representations used. The dynamics of this ‘background’ is the
source of fluctuations. As indicated by these equations, the
smoothed equations (1.16), used in specific calculations, are
dissipative (although the model of the ideal medium was used as the
initial model). The specific type of the ‘oriented’ difference scheme
was described by Babakov [9,128]. The type of dissipative
mechanism depends on the nature of introduced approximations, and
its structure can be controlled.

The dissipative mechanism in (1.16) is an analogue of
‘Reynolds’ stresses in joining with (1.15) in respect of the scales
λ < h and reflects in a generalised form the contribution of small
(‘subgrid’) is vortices. For the schemes of the first  order of
accuracy, the coefficient of scheme (‘effective’) viscosity
ε ~ |v|h depends on the local velocity of the flow and the size of
the difference grid h (and is independent of molecular viscosity).
The resultant approximation viscosity in the schemes of the second
order of accuracy [9] (in the main members of asymptomatic

expansion) has the form 2~
v

h
y

∂ε
∂

 which also corresponds to our

approximate representation of turbulent viscosity. In fact, this shows
that to obtain the values of ‘effective’ viscosity, satisfying the
stability condition, calculation should be carried out using sufficiently
‘large’ calculation grids (or ‘lumps’ of molecules, clusters).
Consequently, the common approach determining the nature and role
of the dissipation mechanism may be the principle ‘the stability of
the solution for the necessary resolution’.
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For comparison with the difference Euler (1.16), we shall
present the equation of the ‘difference Navier–Stokes’.  The
equation of the pulse for a compressed gas, obtained in [24], in the
splitting schemes of the method of large particles for the Navier–
Stokes model has the following form:

( ) ( ) ( )
2 2

2
22 , ,

2

p uu x u
A u O t x

t x x

∂ + ρ∂ρ ∆ ∂ + = µ − + ρ + ∆ ∆ ∂ ∂ ∂ 

where A = λ /µ, µ = ρν, λ  is the second viscosity coefficient, ν  is
molecular viscosity. This shows that the approximation of ‘initial’
viscosity members is also affected by the scheme effects. In the
calculations of flows with high Reynolds numbers, the stability of
the calculation procedure can be ensured at a high effective
viscosity and the real viscosity should be ‘forgotten’.

It  may be seen that the numerical solution of the boundary
problems based on the Navier–Stokes equation at high Reynolds
numbers encounters not only technical problems but also problems
of principal nature (the approaches, associated with increase of the
density of the grids cannot always be used to solve these problems).
Thus, if the equation of the ideal gas includes the dissipation terms,
then (as shown by investigations on calculations) in the presence
of relatively wide assumptions regarding the nature of dissipation,
the generalised equation in the examination of the macrostructures
of the flows for the limiting conditions (Re→∞) can be obtained
with a specific accuracy from the equations with the approximate
dissipation mechanism, and not from the Navier–Stokes equations.

It should again be stressed that: the semiempirical models of
turbulence are not used in the described approach to the
examination of the macrostructure of vortex motions. The role of
the filter cutting off (or, more accurately, smoothing out) subgrid
pulsations is played in this case and by the dissipative mechanism
which is ‘present’ in the averaging operator (approximating
convective transfer), which ‘formed’ as a result of the application
of ‘oriented’ finite-difference representations. This dissipative
mechanism in the average form also reflects the contribution of
small-scale ‘subgrid’ vortices. In this case, direct calculations ‘in
the grid’ of complete averaged-out dynamic macroequations should
result in a stable solution, the ‘collection’ of the energy integral and
the establishment of the parameters of the non-stationary flow. This
makes it possible to obtain the effective value of the dissipative
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mechanism and satisfy the requirements of the invariance of the
division into ‘large’ and ‘small’ scales. In the region of the large
vortices we also determine important characteristics of the turbulent
flow such as the rate of dissipation of energy and the integral scale
(using, for example, Onufriev's rule). Thus, the described ‘large
scale’ approach makes it possible to investigate the main properties
of free maximally developed turbulence.

On the basis of the smoothed-out equations, it is possible to
evaluate the characteristics also on smaller scales, investigate the
‘cascade’ process of energy transfer in respect of the hierarchy of
the vortices, and so on.  However, the phenomena of this type
already require the introduction of semiempirical values of turbulent
viscosity. We shall explain a possible scheme of such an approach.

2. The accurate modelling of nonstationary nature allows for the
examination of the dynamics of development of the phenomenon.
The approximate mechanism with ‘fast’ dissipation in the difference
Euler equations can be used in principle to determine the average
characteristics of the flow from the stability condition. The given
dissipative mechanism can be controlled in such a manner as to
ensure that it will model to a certain degree (for the appropriate
resolution scales) the process of ‘cascade’ transfer for different
values of λ .  If the calculations of the DLV-motion of the non-
stationary ordered macrostructures (which depends on the entire
range of motion) is carried out using the difference Euler schemes
with the viscosity of the type

~ ,v hε                                                               (1.17)

then in the examination of the average characteristics of the large
scale ‘energy-carrying’ turbulent vortices in the region of high
gradients it is possible to introduce the turbulent viscosity of the
following type into the approximate dissipation mechanism:

ˆ ~ ,T ulν ∆                                                                               (1.18)

where u  is the variation of the mean velocity at distances of the
order of l, and for the zones of local turbulence, determined by
local gradients,  i t  is efficient to use in the difference Euler
effective viscosity ,ˆ m λν , satisfying the well-known Kolmogorov–
Obukhov law (see [72,85]):
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( )
23

1/3
,ˆ~ ~ ~ ,m

λ λ
λ λ

ν ν ν Θλ Θ ν  λ λ 
                                   (1.19)

and, consequently,

2 2
,

ˆ̂ ~ / .m λ λν Θλ ν                                                                        (1.20)

Here the Θ is the rate of dissipation of turbulent energy in the
cascade of vortices (this quantity can be obtained directly from the
calculations of large-scale formations, see, for example, approx-
imation (1.8)–(1.10), νλ is the variation of velocity (mainly the
pulsation component of velocity) at distances λ . In the zones of
local turbulence (λ  >> λ

0
), we examine the relative motion of fluid

particles in the section, and not the absolute motion, when the entire
section –‘the cell’– moves as an integral unit, which is character-
istic of large scales and follows from (1.17).

The introduction, into the calculation scheme (1.14)–(1.16), of
relationships of the type (1.20), makes it  possible to model
accurately the law of attenuation of turbulence for different
scales λ .  In this case, in regions of the viscous motion range,
characterised by the complete dissipation of energy (at distances
of ~h  at  Re

h
 ≈  1),  the effect of molecular viscosity becomes

considerable and, in this case, it is already necessary to transfer
to the calculation of complete Navier–Stokes equations with the
molecular dissipation mechanism. (The author is grateful to
Academician A.M. Obukhov for his attention to this work. The main
concept of this approach was developed after our seminar on March
30, 1978).

Thus, the new coefficients of turbulent viscosity, corresponding
to ‘its’ scale of motion, are gradually introduced.

As the resolution scales become finer,  the scale of subgrid
vortices in it  becomes smaller and the estimates of subgrid
pulsations become ‘coarser’ (larger and larger part of the spectrum
is involved in direct resolution).  The change of the type of
coefficient of effective viscosity (‘gluing’ of the solution) takes
place when fulfilling the condition of conservation of the energy
flux in the cascade of the vortices in the regions in which the ‘old’
solution becomes unstable and it is necessary to transfer to finer
steps (scales) of the calculation grid.  This ‘gluing’ can also be
used to determine the required constants in Eqs. (1.18) and (1.20).
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Evidently, the proposed cascade model reflects with sufficient
adequacy the process of turbulent transfer: at finer and finer
resolution, the problems of stability dictate the transition to a more
complicated solution in the conditions of continuously increasing
dissipation.

In this case, it should be remembered that in the determination
of the spatial–time field of ordered structures in organised motion,
the role of the dissipative mechanism in (1.16) is reduced to the
regularisation of the solution (the detailed structure of such a
dissipative mechanism is, generally speaking, not significant and its
optimum form is determined, as already mentioned, from the
conditions of stability by calculations using different approximation
grids). However, in the investigations of non-stationary (pulsation)
properties of turbulence using equations (1.18)–(1.20) one can hope
to obtain only to mean-statistical characteristics of the flow because
also in this case the requirements on the level of the model for
subgrid turbulence are fully acceptable. It may be seen that in this
approach it is not necessary to solve the Navier–Stokes equations
for high Reynolds numbers.
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��
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If the construction of the flow pattern of ‘slow’ large vortices
should not evidently lead to any serious problems (this is also
confirmed by calculations), then the possibility of determining the
averaged-out characteristics of non-stationary (‘pulsation’) large-
scaloe turbulent motion using smoothed-out equations is far from
obvious. Calculations using smoothed-out equations with the given
dissipation mechanism are carried out in time periods up to the start
of formation of a steady flow, i .e.  appearance of stable
characteristics (in a general cases non-stationary structures). Sub-
sequently, to determine the averaged-out characteristics of the
pulsation turbulent flow (moments) i t  is essential to carry out
appropriate statistical processing of the results. This can be carried
out directly using the calculation results or probability approaches.

We shall  discuss this in greater detail ,  taking into account
Ievlev's studies [62,63,100].  The general system of equations of
mechanics of solid media for hydrodynamics problems can be
written in the following form:
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Here the symbol ξ (m) denotes all  independent parameters
determining the state and motion of the medium, with the exception
of velocity v and density ρ; v

k
 is the component of total velocity

v along axis x
k
 (repeating indices indicate summation in respect of

all coordinate axes); F
i
 are the righthand parts of equations of the

amount of motion. For example, for an incompressible fluid:

21
.i

i
k k

v
F

x x x

∂∂ρ= − + ν
ρ ∂ ∂ ∂

In a turbulent flow, instantaneous values of v
i
, ρ, ξ(m) pulsate and

are random quantities. We shall select a group of n points in the
flow and use f

n
 to indicate the probability of different values of

random quantities v
i
, ρ, ξ(m) at these points at the same moment

of time t. Let it be that A
n
 denotes the set of values of v

i
, ρ, ξ (m)

at all selected points; quantities, relating to some point γ, will be
given the index (γ). Knowing the probability density f

n
,  we can

determine the average values (mathematical expectations) of any
functions of A

n
, in particular, we can determine the averaged-out

values of the quantities v
i
, ρ, ξ(m) at every examined point, one-

and multipoint moments of a higher order, etc.
The equation describing the time dependence of f

n
 has the

following form [62,63]:
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Here the symbol 〈…〉  denotes conventional mathematical
expectations in the braces of the quantities for the given values of
all arguments A

n
 of the coordinates of points and time.

The equation for f
n
 is exact but not closed because the

conventional mathematical expectations of different quantities
cannot be determined only on the basis of values of f

n 
(to determine

them, it is also necessary to know f
n+1

 and sometimes also more
multipoint distributions of probabilities).

In addition to the true values of the quantities v
i
, ρ, ξ (m), we

can also examine their approximate values ,  and ( )iv mρ ξ��� ,  deter-
mined from equations with smoothed-out righthand parts:
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                  (1.23)

where A
n
 denotes the range of values of ,  and ( )iv mρ ξ��� at all points

n .
Let us assume that ,  and ( )iv mρ ξ��� in equation (1.23) have random

values (because of the instability of solutions of smoothed-out
equations or because of random initial and boundary conditions).
Then, as shown by Ievlev, the equations for the probability density

,  and ( )iv mρ ξ��� of the range { , , ( )}n iA v mρ ξ� ��� will have the form identical
with (1.22). If we specify identical initial and boundary values for
f

n
 and 

nf
� , then the functions f

n
 and 

nf
� will be completely identical,

i.e. all the statistical characteristics of the flow determined from
A

n
 and 

nA�  will also be identical (although the time dependences of
( ) ( ) ( ), and ( )iv mγ γ γρ ξ���  will  not be in agreement at the same initial

conditions with true distributions v (γ)
i
 , ρ(γ) and ξ (γ)(m)).

Thus, calculations carried out using smoothed-out equations may
yield accurate statistical characteristics of the flow which depends
on large-scale turbulence, although the detailed spatial–time pattern
of this pulsation motion will not reproduce any real process.

This fundamental result will be referred to as Ievle's principle.
It provides a positive answer to the question of the possibility of
direct numerical modelling of non-stationary (pulsation) large-scale
turbulent motion using smoothed-out motion equations. In this case
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i t  is of course necessary to define correctly the conventional
mathematical expectations in the righthand parts of the smoothed-
out equations (1.23). It should also be mentioned that righthand parts
of the smoothed-out equations (1.23) are determined unambiguously
by the quantities v(γ)

i
 , ρ(γ) and ξ (γ)(m) in the nodes of the calculation

grid (in contrast to exact equations (1.21) where the righthand parts
also include additional random oscillations). Thus, ‘closure’ takes
place here by appropriate averaging (smoothing) of the effects of
subgrid small-scale turbulence. This principle also confirms the
hypothesis on dynamic independence of large- and small-scale
motions of turbulence at high Reynolds numbers.
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Numerical modelling is especially important in cases where the
physical pattern of the investigated phenomenon is not clear and
the internal mechanism of interaction is not completely known. In
the process of computation experiments (where the formulation of
the problem, the method of its solving and realisation of the
algorithm are examined in a single complex), the initial physical
model is made more accurate. By computer calculations of different
variants it is possible to collect facts and results which enable us
in the final analysis to select the most probable situations.

Finally, the next stage of the hierarchic ladder of ‘computeriz-
ation’ is the development (but already on the basis of the ‘subject’
mathematical models) of expert systems and automated design
systems (ADS) which make it possible to change principally the
situation and qualitatively improve the level of developments in the
area of design of new technology. The ADS make it possible to
automate almost the entire process of development from the routine
part of engineering work (processing of text and graphical
information, preparation of technical documents, etc.) to the design
of complex technical systems. This was almost impossible in the
‘pre-computer ’ period. In particular, the triad ‘the mathematical
model’ (computing experiments) expert system–ADS is the rational
base which would enable us to intensify rapidly experimental and
design work.
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The application of the method of numerical modelling is
especially important in problems of mathematical physics, plasma
physics, mechanics of solids (gas dynamics, elasticity theory, etc.)
[19,24,45,55,91,109,114,129]. This is explained by a number of
circumstances.

Difficulties in carrying out experiments

In examining phenomena taking place, for example, at hypersonic
flight speeds there are high temperatures which lead to the effects
of dissociation, ionisation in the flow and, in a number of cases,
even in the ‘glow’ of the gas. In these cases, it is very difficult to
model the phenomenon in laboratory and full-scale conditions
because to ensure similarity between the actual situation and the
modelling experiments it is no longer sufficient to satisfy only
classic criteria of similarity – equality of the Mach and Reynolds
numbers for the model and the nature. It is also important to ensure
the equality of absolute pressures and absolute temperatures; this
is possible only under the conditions of equality of the dimensions
of the model and the natural object. All this leads to considerable
technical difficulties and expensive experiments, not mentioning the
fact that the results of experimental measurements are often limited.
An identical situation also forms in the design of large tonnage
vessels – the selection of the optimum shape, the prediction of the
velocity in the wake behind the stern, calculation of the dynamic
and strength characteristics of propellers, etc.

The active application of the method of numerical modelling [19,
24,26,45,91,109,114,129,142] and image recognition [56] in the
development, on their basis, of expert systems and automatic control
systems makes it possible to reduce greatly the duration of scientific
and design studies. In cases in which actual experiments are
difficult to carry out, and the information on the process is unclear,
and indirect,  mathematical modelling is practically the only
investigation tool.  However, the principal role of physical
experiments must not be underestimated. Experiments will always
be the basis of any investigation, confirming (or rejecting) a scheme
and a solution in the theoretical approach.

Complexity of equations

The deep penetration of numerical methods into the mechanics of
solid media and plasma physics is also explained by the fact that
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the equations, describing the phenomena taking place here,
represent the most complex (in comparison with other areas of
mathematical physics) system of integral differential equations in
partial derivatives.

In a general case, this is a nonlinear system of the mixed type
with the unknown form of the transition surface (where the
equations change their type) and ‘moving boundaries’: the boundary
conditions of the problem are defined on surfaces or on lines which
themselves are determined during calculations. The range of
variation of the initial functions is so wide that the conventional
methods of analytical investigation (linearisation of equations,
expansion into series, separation of a small parameter, etc.) are not
suitable in a general case for a complete solution of the problem.

It should be mentioned that for the large majority of gas
dynamics problems no mathematical theorems of existence and
uniqueness have been proved and, in addition, it is even not believed
that such theorems can be obtained. In most cases, the
mathematical formulation of the problem is not defined and there
is only a physical formulation which is far from the actual situation.
As already mentioned, the mathematical difficulties of examining
problems of this type are connected with ‘strong’ nonlinearity and
nonstationarity of equations and also with a large number of
independent variables (spatial-nonstationary problems). Of special
interest are numerical methods which make it  possible to
investigate quantitatively some phenomena and processes which did
not have previously qualitative description, for example, in
economics, medicine, etc. [24,26,105].

As regards the problem of constructing systems of automation
of design, there are usually three conceptual levels in this case, the
problem of synthesis of complex technical systems (CTS) of the
given target application (comparative analysis of alternatives of the
solution and their rejection, ‘compression’ of the set of alternatives,
etc.); the problem of analysis of CTS of the given design response
(determination of the characteristics of designed CTS on the basis
of verification calculations, determination of the adequacy of
proposed functional characteristics of CTS, etc.);  finally, the
problem of formalisation and the preparation of general system
programming. If the first two levels form a problem-orientated
subsystem, i.e. ‘producing’ a branch of ADS, then the last task is
the ‘infrastructure’ of the ADS.

We believe that the main task in the problem of ‘optimum ADS’
is the task of algorithmic facilities for ADS (for example, the Boeing
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company carried out a thorough analysis of the results of
approximately 700 calculation studies carried out on computers in
the 70s and 80s; it was found that 70% of the final calculation
results were inaccurate because of the application of inadequate
mathematical models).

Thus, the development of mathematical models and, on the basis
of these models,  of intellectual expert systems (IES) and the
mechanics of solids, medicine, etc.  adequate to the examined
physical process or objects, is the main factor of the reliability of
developed systems of automation of design [24,26,51,56,105,116]. We
have knowingly separated the mechanics of solids as the subject
area because, firstly, i t  covers an extremely wide sphere of
applications of ADS, secondly, the mathematical models available
in this area are most complicated from the viewpoint of application
in a computer, and, thirdly, regardless of the existing experience in
solving applied problems of the mechanics of solid media, this
subject area contains a number of fundamental problems whose
solution will greatly affect the success of development of ADS in
related subject areas [51]. We shall mention another important
special feature of the investigated problems.

It is well known that modern supercomputers carry out millions
and billions of operations per second. This has opened completely
new possibilit ies for quantitative processing of information.
Computers have penetrated into almost all regions of human activity
and this has greatly expanded the range of problems that can be
solved by mathematical methods. It  has been shown that the
formulation of many problems of scientific and technical advances
does not fit  the formulation of the problems of theoretical
mathematics associated with the ‘principle of absolute accuracy’
which is the basis of Aristotle’s formal logics. Typical examples
include the problems of processing scientific investigations, optimum
planning and many others [114].

In order to use computers, it is important to have: a mathematical
model of the formulated task, a stable method for solving the
appropriate mathematical task, a stable algorithm, constructed on
the basis of this method, and a computer programme corresponding
to this algorithm.

The solutions of unstable problems with inaccurate data greatly
change even in the presence of very small changes in the initial
data. The algorithm reproduces a solution corresponding to the
initial data. In this case, its application in a computer will give
unstable results. Thus, the realisation in a computer of solutions of
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unstable problems within the framework of ‘the concept of
accuracy’ of the formulation of problems of theoretical mathematics
does not guarantee obtaining stable results when examining unstable
problems. The methods of computer solution of unstable problems
with inaccurate data relate to the class of mathematical problems
which are outside the range of theoretical mathematics and are
often found in formulation of the problems of technical and
scientific advances [114]. In this case, the problem of finding a
stable solution, adequate to the examined process, is central.

Analysis of the evolution of mathematical models, used in the
mechanics of solids, shows that the evolution takes place mainly
along the path of quantitative accumulation of factors determining
the examined process of phenomenon. The prediction constructed
on the basis of extrapolation of traditional approaches to
mathematical modelling, for example, the flow of a viscous
compressible glass around aircraft,  shows that the numerical
realisation of the problem requires a computing system with a
productivity of 1012–1014 (or more) operations per second and with
a memory volume of 1012 layers. Not discussing the question of
technical feasibility of these requirements, it is important to mention
another extremely important circumstance. Analysis of the effect
of the error of calculations in these volumes of arithmetic operations
shows that the traditional approach is to the construction of
numerical methods cannot ensure the required reliability of
calculation results in these cases. A rational increase in the length
of the computer word is not a solution in this case. Now it  is
necessary to process very large volumes of information, and the
problem of ‘arithmetic redundancy’ associated with the build up of
computation errors (especially in calculations over a long period of
time) is practically insoluble.

The catastrophic increase of the volume of arithmetic losses is
associated not only with the arithmetic complexity of calculations
but,  in a number of cases, the physical nature of the solved
problems and the imperfection of applied ‘traditional’ algorithms. It
is quite clear that the controlling quality of the designed components
(complex technical systems) is the reliability of the functioning
during the maximally long period of time. From the viewpoint of
mathematical (numerical) modelling this indicates that it is necessary
to ensure the possibility of examining the behaviour of the model
for some suitable long period of time. To this it is necessary to add
the greatly ‘dynamic’ nature of functioning of the design models,
determined by the time dependence of external influences.
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From the mathematical viewpoint,  the above requirement
indicates that the applied ‘imitation’ model (the system of
determining equations with boundary conditions) for an element
should ‘in the mean’ have the property of asymptotic stability (or
it should be maximally close to such a model). For asymptotically
stable algorithms, the main condition of obtaining a solution is the
existence of dissipative nature (i.e. no increase in the error of
calculations over long periods of time) [19,24]. In this case, it is
important to note that many of the currently available numerical
models in the mechanics of solids do not generally have this
property.

The solution to this situation is seen in the development of the
principle of rational numerical modelling. Obviously, in near future,
successes in the solution of the development of ADS in different
subject areas will  be achieved not as much by increasing the
operating speed and memory of computing systems (this requires
huge material expenditure) as by the development of rational models
and IES.

Non-stationarity, multidimensionality, dissipative nature and
nonlinearity are the characteristic features of the large number of
practical problems being solved at the present t ime
([19,24,45,91,109,114, 129], etc.). In this connection, it is important
to mention problems of the examination of dynamics of solids
moving in gas or liquid and also the dynamics of oceans and
atmospheres, examination of stalled flows, turbulence, the
development of hydrodynamic instabilities, speed interaction of
solids, filtration processes, etc. The existence of different scales,
nonlinearity and nonstationary nature of the processes comprising
these complex phenomena, requires a new approach to constructing
numerical models. In this case, the traditional ‘classical’ approaches
are characterised by low efficiency and require extremely long
computing times. In many cases, these models cannot be applied.

One of the possible solutions of this situation is to abandon the
generally accepted metric (point) evaluation of the results and
transfer to a structural evaluation [19,24,26,142]. It is important to
note that the transition to a structural correspondence opens new
prospects in constructing a stable solution and determining its
adequacy to the examined phenomenon (this situation is in complete
agreement with Tikhonov’s theory [114] in computer solution of
‘unstable problems with inaccurate data’. In the presence of only
information on the initial operator and the right-hand part of the
equation there is, generally speaking, no numerical method for
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obtaining a stable solution over long periods of time for the
examined problem. However, in transition to a structural description
of the medium (in introducing ‘parametric’ expansion) such a
solution can be obtained and the stability parameter depends on the
expansion parameter – the step of the calculation grid, etc. [32,
114]). This circumstance is especially important when we discuss
the modelling of physical processes on the basis of conservation
laws in the most general discrete representation for large classes
of functions or using statistical approaches.

Thus, modelling on the basis of the laws of conservation using
a structural description of the system (large particles,  finite
elements,  discrete vortices, etc.) with the application of the
principle of asymptotic (structural) stability forms a basis for
constructing methods of rational numerical modelling [19,24]. In
fact,  here it  is important to build simulation models (macro-
equations for a structural element) adequate to the examined
nonlinear processes.

 � �
 -�%$
��%$���'#
%$�/��-
 ���
 �'#��#'����
��
%�#����%$�-���'#
 ���#��$'�
 !���$--$-

In this case, various numerical algorithms are constructed using, in
fact, the same approach which is highly physical and adequate to
the examined transition phenomena, the so-called splitting method
[19]. As is always the case with computers, the integration range
is covered with a fixed (Euler) calculation grid, and the modelled
media is replaced with a set of the so-called liquid (Lagrange)
particles present inside every elementary cell or, if this is a discrete
medium (for example, rarified gas) by a set (ensemble) of some
particles and correlated molecules for which the Monte Carlo
method is used to construct a simulation model reflecting the
investigated stochastic process.

The general principle of splitting will now be formulated [19,24].
The ideology of the given method makes it possible to carry out
successively calculations in Euler–Lagrange variables so that it is
possible to use ‘stronger’ aspects of these approaches. A specific
iterative process is constructed in each time step: initially, we
examine ‘adaptation’, i.e. we examine the motion of a subsystem
only inside every cell without its displacement (without exchange
with adjacent cells for a solid medium or collisional relaxation in a
spatially-homogeneous case for a discrete model of a medium) and
this is followed by modelling ‘shear ’ which reflects exchange
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processes and displacement of the subsystems (collisionless
relaxation) but already without changes of the initial condition.

The equilibrium distribution of all parameters of the medium is
calculated after stabilising the process in time.

For numerical models of the method of ‘large particles’,
developed together with Yu.M. Davydov [24] on the basis of Euler
equations, instead of the set of particles in the cells we examine
the mass of the entire fluid (Euler) cell  as a whole – ‘large
particle’ (hence the name of the method). Subsequently, on the
basis of finite-difference or integral presentations of the laws of
conservation, we examine non-stationary (and continuous) flows of
these ‘large particles’ through an Euler grid. In fact, we use the
laws of conservation written in the form of balance equations for
a cell of finite dimensions (as is usually carried out in the process
of deriving gas-dynamic equations, but without further limiting
transition from a cell to a point).

In the FLUX method, developed by A.V. Babakov (see [19]),
integral laws of conservation of the following type are used:

( ) ,F

S

F d dS
t

ΩΩ

∂ Ω = −
∂ ∫∫ ∫ ∫ ∫� � Q n

where SΩ is the surface restricting finite volume Ω; F = {M, X, Y,
Z, E}; M; X, Y, Z; E is the mass, the components of the pulse and
energy Ω of the volume, respectively; Q

F
 is the vector of the

density of the flow of each of these quantities.
The general assumptions of the flux method and the difference

approximation are shown schematically in Table 2.1. Non-symmetric
‘oriented’ approximations for the density of distributions of
components F generate a dissipative mechanism and ensure the
second order of accuracy. As a result ,  we obtain divergent-
conservative and dissipative-stable numerical schemes which enable
us to examine a wide range of complex problems of gas dynamics
(supercritical conditions, turbulent flows in the wake behind a solid,
diffraction problems, transitions through the speed of sound, etc.).
These schemes are characterised by internal dissipation (scheme
viscosity). Thus, they enable us to carry out stable computations
without preliminary definition of breaks (homogeneous schemes of
continuous computing).

The results of calculations of a block of problems in examination
of multi-dimensional flows in aerodynamics are presented in
Figs.2.1–2.6.

Statistical methods of ‘particles in cells’ are used widely for
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Table 2.1

Main assumptions of the ‘FLUX’ method

Fig.2.1. Generation of difference grids on
bodies of complicated configuration (Yu.D.
Shevelev).

( ) , , , , ,F

S

F d dS F d M X Y Z E
t

ΩΩ Ω
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1
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Fig. 2.3. Distribution of pressure coefficient in supersonic flow-around an aircraft
(M∞ = 3) and different incidence angles α : 1) for α  = 20°, 2) for α  = 5°, 3) for
α  = 0° (G.P. Voskresenskii).
Fig. 2.4. Calculation of aerodynamic coefficients of normal force and momentum
in supersonic (M∞ = 3) flow-around of a body with tail panels, installed symmetrically
under angles: 1) for 90°; 2) for 135° and 3) for 45° (G.P. Voskresenskii).

Fig. 2.2. Supersonic flow-around (M∞ = 2) of descending space systems at different
incidence angles α : a) position of shock waves, b) distribution of pressure in the
solid (A.S. Kholodov).

a

b
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Fig. 2.5. Calculation of interference
coefficients in supersonic flow-around
of a configuration with complicated
distribution of wings: �   – calculations,
�  – experiments (Yu.D. Shevelev).

Fig. 2.6. Flow of a rarefied gas around a cone (C
x
 on (a) and C

y
 on (b)) under an

incidence angle at height of � 100 km: solid and broken lines – calculations (γ =
5/3; µ = Tω; 1) for {M∞ = 10, ω = 1, t

W
 = 1}; 2) for {10, 0.5, 1}; 3) for {10, 1,

0.1}; 4) for {1, 0.5, 0.1}; 5) for {20, 0.5, 0.1}), points – experiments (γ = 1.4,
M∞ = 5÷10; �  – t

W
 = 1, �  – for t

W
 = 0.5) (A.I. Erofeev).

a

b

Re0

Re
0
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solving the problems of dynamics of rarefied gas (and now also
turbulence phenomena). They are based on the principles of the
splitting method [143] and the method of direct numerical modelling
developed by V.A. Yanitskii [33] (on the basis of Monte Carlo
methods), one of the most complicated equations in mechanics, i.e.
the Boltzmann equation. In fact, in this case we are concerned with
the computer imaging of physical processes forming the basis of
investigated phenomena. We shall discuss this problem in greater
detail [29,33].

Let us assume that in the region Ω  with the boundary Γ  we
examine the flow of a Boltzmann gas from spherically symmetrical
molecules. Each molecule is characterised by position x  and by
velocity c and they collide with each other and with boundary Γ .
The laws of their elastic collisions are defined by means of

differential and total sections dσ
ij 

and σ
ij
 = ,ijdσ∫ and the Boltzman

equation for the molecules f(t,x,c) at the moment of time t at point
(x,c) of the six-dimensional space which has the following form:

( )' '
1 1 1   .

f f F f
c f f f f g d dc

t x M c

∂ ∂ ∂+ + = − σ
∂ ∂ ∂ ∫

Here F is the external force acting on the molecule, M is the mass
molecule and f

1
 = f(t,x,c

1
) is the distribution of molecules for which

integration is carried out, g = |c–c
1
|. The apostrophe at f indicates

f and f
1
 calculated from velocities c '  and c '

1
 after their collision.

The task is to find a solution of the Boltzmann equation
corresponding to the given initial f(t  = 0,x ,c) = f

0
(x ,c) and

boundary solutions f(t,xΓ,c) = 1( , )K∫ c c f(t,xΓ,c
1
)dc

1
. The approach

is based on the simulation of the Boltzmann gas by a system
consisting of a finite number of N particles (of the order of 1000
or 10000). For this purpose, in space Ω we introduce a relatively
fine grid which divides the space into cells of the given volume.
Continuous time t is replaced by discreet time tα = α∆ t . At the
initial moment, space Ω is filled by particles. Their co-ordinates and
velocities are defined by the Monte Carlo methods in accordance
with the initial distribution of co-ordinates and velocities n

0
(x) =

0 ( , )f d∫ x c c and ϕ
0
(x ,c) = f

0
(x ,c)/n

0
(x).

The calculation of the evolution of this system of particles over
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a short period of time ∆t is split into the following two physical
stages: in the first stage we model paired collisions of particles in
cells (only the velocities change in this case) and in the second
stage the free-flight of particles from cell  to cell  and their
interaction with the boundary Γ . The alternation of these stages of
collisions and displacements leads to the trajectories of movement
of the examined system in space whose points are represented by
the numbers of particles in the cells, their position and speed.
Having the set of realised trajectories, we can calculate any of the
macroparameters of the initial system through appropriate
independent estimates [33] of the corresponding integrals of the
type

( , )  .n t f d= ∫x c

The main difficulty in constructing a numerical algorithm for the
Boltzmann equation is the calculation of the collision integral present
in the right-hand part of the equation. The splitting scheme in this
approach is shown in Table 2.2.

The principal moment of our approach [33] is the fact that in the
next collisional stage of the splitting scheme modelling of the
Boltzmann equation without a convective derivative is replaced by
introducing Katz’s model which is asymptotically equivalent (at
N >>1) to the Boltzmann equation in the spatially-heterogeneous

Table 2.2
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*

* * *
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∂
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L f f t t f
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β β α β
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( ) [ ]
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· Boltzmann equation without 
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f f
I f f
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t c c K
t

β
β β

∂ ∂= −
∂ ∂

∂ ϕ = ϕ −
∂

c
x

�

�

1( · )
f f

I f f
t x

∂ ∂+ =
∂ ∂

c

Complete Boltzmann equation

Splitting

Stage I Stage II

Markovian approximation in a cell
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case. The Katz model (and contrast to the Boltzmann equation) is
linear and enables constructing a strictly Markovian process of
collision of particles [33] for a multidimensional case [19]. Figure
2.6 shows an example of calculation of the flow of a rarefied gas
around a cone under a given incidence angle carried out by A.I.
Erofeev using the scheme described previously [19].

This approach was also generalised by V.E. Yanitskii for the case
of examination of problems of stochastic turbulence [29].

One of the promising directions for numerical solutions of many
current problems of the mechanics of solids, described by
multidimensional systems of equations of the hyperbolic type, are
the grid–characteristic methods developed in [88].

Of special interest is the development of effective numerical
methods of solving multi-dimensional evolution equations of the
purely hyperbolic type or of parabolic equations containing a
hyperbolic part. These mathematical model describe many spatially-
nonstationary problems of the mechanics of solid and plasma
physics. The construction of the computing algorithm for the
problems of this type is a very complicated problem which is
usually solved in stages. Here, we shall formulate several general
assumptions of the mathematical technology of constructing these
schemes.

Hyperbolic nature of equations

The hyperbolic part of parabolic equations is most ‘unfavourable’
in the computing plan because it is a source of the formation of
steep gradients in narrow zones (discontinuities in solutions are
found in purely hyperbolic problems). The effective methods for
solving hyperbolic equations are therefore used in a large number
of applications. In fact, the method of splitting with respect to the
physical processes enable a relatively formal and efficient
introduction of almost any previously developed (for solving
hyperbolic equations) method into the general algorithm of solving
a parabolic problem, containing the hyperbolic part.

As examples, one can mention splitting in the method of the type
of particles in cells (into convective and non-convective parts);
McCormack schemes (non-viscous flow and a boundary layer);
modification of the grid-characteristic method for problems of
plasma physics (the hyperbolic part and members associated with
electronic thermal conductivity), etc.
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Multidimensionality

The most universal and effective approaches to solving multi-
dimensional parabolic and hyperbolic equations (for explicit and
implicit schemes) are various methods of splitting with respect to
spatial variants. This includes the well-known scheme proposed by
Pisman and Rackford, Yanenko, Samarskii, Godumov, Magomedov,
Kholodov, etc. Using this approach, it is possible to generalise
naturally almost any unidimensional numerical algorithm into a
multidimensional case. Thus, the initial problem is greatly simplified
and reduced to finding ‘good’ unidimensional schemes.

Nonlinearity. Conservative nature

The difference schemes, constructed for linear equations, can be
generalised, generally speaking, also for the case of quasi-linear
and even nonlinear equations. For explicit schemes this includes, for
example, the integral–interpolation methods, for implicit schemes
the Runge–Kutta method. In this case, the non-conservative scheme
can ‘made’ conservative.

Characteristic properties of hyperbolic equations

These concept are fundamental for the given type of problem
because perturbations in the medium propagate along the
characteristic manifolds. By taking them into account and
introducing into the numerical scheme it is possible to determine
accurately the range of the dependence of the solution. This is
important when preparing efficient calculation algorithms.

In addition to this, the application of the characteristic properties
of the hyperbolic equation makes it possible to ‘split’ the initial
hyperbolic system into considerably simpler conditions of
compatibility along some characteristic directions (in particular, in
a linear unidimensional case into mutually independent simpler
transfer equations of the type u

t
 + λ u

x
 = 0, where λ  > 0).

However, for a separate condition of compatibility, it is possible to
construct and analyse a very wide range of difference schemes,
optimise them and generalise for the case of the initial system of
equations [88]. As shown by a large number of examples, the
properties included in ‘elementary’ scheme are also retained for the
initial system of the hyperbolic equations. This type of splitting is
an important element when constructing numerical methods for
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complicated (including nonlinear and multidimensional) systems of
hyperbolic equations [88].

The method of indeterminate coefficients

It is very efficient to use the method of indeterminate coefficients
(with introduction of linear spaces of these coefficients) in the
stage of analysis of difference schemes for the simplest transfer
equations. This approach makes it possible to construct schemes of
different classes for arbitrary grid templates with positive
approximation (monotonic or majorant schemes according to another
terminology), playing an important role in computational mathematics.
In a more general case, it is possible to confirm the absence of
different schemes with positive approximation with a higher (higher
than the first) order of accuracy on solutions of initial equations.
The same approach was used for the most widely used grid
template (both explicit and implicit) to construct grid-characteristic
schemes of the second and third order of accuracy which are
closest, in the examined space of the coefficients, to the schemes
with positive approximation. In particular, new, more effective
modifications of the Lax-Wendroff, McCormack, Rusanov, etc.,
different schemes, employed widely in computing practice, were
obtained. This approach is highly promising also in constructing the
so-called hybrid schemes for the effective regularisation of
discontinuous numerical solution.

Thus, the efficiently developed apparatus of generalisation
(unidimensional different schemes to multidimensional equations,
linear to nonlinear cases, the method of solving hyperbolic systems
– to parabolic equations, etc.) enabled us to develop a specific set
of numerical schemes differing both in the accuracy and realisation
(explicit or implicit, conventional or absolutely stable, etc.) and
suitable for solving a wide range of nonlinear multidimensional
problems of the mechanics of solid and plasma physics. In the final
analysis, the basis of this ‘pyramid’, constructed using the given
mathematical technology, consists of a specific elementary scheme.
The selection of the scheme controls the properties of the
computing algorithm as a whole [17,88].

These methods have proved to be highly effective in examining
the characteristics of flying systems of complex shapes,
investigating the problems of mechanics of deformed media, laser
compression of shells [17,88], etc.
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The proposed method is a generalisation (for a compressible gas)
of an explicit hybrid scheme described in [23] on the basis of the
grid-characteristic formalism [87]. The concept of ‘hybridity’ was
proposed for the first time by Fedorenko in 1962 [118]. In fact, this
idea is used in many current schemes (TVD, ENO, UNO, etc.).
This generalisation was carried out by Oparin [102]. The scheme
has proved to be simple to apply, reliable and highly economical.

This scheme has the second order of accuracy on smooth
solutions and, being monotonic, does not use artificial viscosity nor
smoothing, nor the flux limiter procedure, used often in modern
schemes of computing dynamics of the liquid. At the same time, the
method makes it possible to carry out failure-free calculations in a
wide range on the basis of the Mach number (practically from zero
to several tens) over any period of time and enables large
discontinuities (up to several orders) to be used in the initial data
(density, pressure, etc.).

2.3.1 Scheme for the modelling equation of transfer

For better understanding, it is important to mention briefly the finite-
difference scheme for the linear modelling equations [23]

0, const .t xf af a+ = = (2.1)

We shall consider a space-uniform grid Ω = {x
i
 = ih ,  h  > 0,

i = 0, 1, …} and time step τ . On Ω we determine the grid function
f n

i   coinciding with the nodes of the grid with the required function
f. We introduce the conservative finite-difference approximation of
the transfer equation

1
1/ 2 1/ 2 0.

n n
i i i if f f f

a
h

+
+ −− −+ =

τ
(2.2)

We shall examine the following two-parameter family of
different schemes which depend on parameters α  and β:

( )
( )

1 1
1/ 2

2 1

1 , 0,

1 , 0.

n n n
i i i

i n n n
i i i

f f a
f

f f a

− +
+

− +

 α + − α −β + β ≥= 
α + − α −β + β <
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The first differential approximation for equation (2.2):

( )

( )
2

| | 1 2 2
2 2

| | 1 2 2 .
2 2

t x xx tt

xx

h
f af a f f

h a
a f

τ+ = + α − β − =

 τ+ α − β − 
 

(2.4)

For a scheme with orientated differences, i .e.  at  β = 0, the
requirement of the minimum of the approximated viscosity imposes,
as indicated by (4), the following condition on α :

0.5(1 ).Cα = − − (2.5)

where C = |a| τ/h. However, for schemes with central differences
(α  = 0), the identical condition is given by the equation:

0.5(1 ).Cβ = − (2.6)

It is also assumed that there is a monotonic grid function, for
example ½ 1, 0n n n n

i i i if f f f+ +∆ ≡ − ≥ . Function f n
i+1

 is also monotonic if
the following conditions are fulfilled:

a. for schemes with β  = 0 and α   from the relationship (5)

1/ 2 1/ 2( ) ,n n
i if C f+ −∆ ≥ ζ ∆  where  

( )1
( ) 2· ;

2

C
C

C

−
ζ =

−

b. for schemes with α   = 0 and β from equation (2.6)

1/ 2 1/ 2( ) ,n n
i if C f+ −∆ ≥ σ ∆  where  ( )1

( ) 2· .
C

C
C

+
σ =

It may be seen that the monotonic regions of the investigated
homogeneous schemes have a non-hollow intersection. Thus, there
is a whole class of monotonic hybrid schemes differing from each
other by the condition of switching from one homogeneous scheme
to another. The general form of this condition is as follows:

1/ 2 1/ 2 ,n n
i if f+ −∆ = δ∆  where  ( ) ( ).C Cζ ≤ δ ≤ σ

The selection δ  = 1 corresponds to the points of variation of the
sign of the second difference f

i
n and enables us to obtain the

estimate f
xx

 = O(h) for the required function f at the contact points,
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consequently, i t  is possible to retain the second order of
approximation with respect to spatial variables in smooth solutions.

It  is convenient to use the conditions of switching in the

following form: if ( )2 1 1 0n n n n
i i i ia f f f f+ + −− − − > ,  then we use the

scheme with β = 0, otherwise the scheme with α  = 0 is used.
For smooth solutions, the given scheme has the second order

of approximation with respect to time and spatial variables. It
is stable if the Courant condition is fulfilled and is monotonic
[23].

2.3.2. Generalisation for the system of equations of
unidimensional gas dynamics

We shall write the Euler equation for the unidimensional planar case
in the following form:

0,
t x

∂ ∂+ =
∂ ∂
W F

(2.7)

or

0
t x

∂ ∂+ =
∂ ∂
W F

A (2.8)
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W

The system of equations (7) is hyperbolic.  Characteristic
relationships [87] are used. Let it be that l

k
 and r

k
 are the left and
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right eigenvectors of the matrix A,  corresponding to the
eigennumbers λ

k
 (λ

1
 = u  + c ,  λ

2
 = u, λ

3
 = u  – c): lT

k
A  = λ

k
lT

k
,

Ar
k
 = λ

k
r

k
; or in the matrix form: ΩA = ΛΩ, AΩ–1 = Ω–1Λ, where

ΩT = {l
1
 l

2
 l

3
}, Ω–1 = {r

1
 r

2
 r

3
}, Λ = {λ

k
} is the matrix with the

eigennumbers distributed along the main diagonal of the matrix, and
the remaining elements are equal to 0. Here p = p(ρ, ρu, ρE) is
the equation of state in the general form; pρ, p

(ρu)
 and p

(ρE)
 are the

appropriate derivatives; c 2 = pρ + up
(ρu )  

+ (E  + p/ρ)  p
(ρE) .

 In a
partial case of the ideal gas pρ = 0.5(γ–1) u2,  p

(ρu)
 = –(γ–1) u ,

p
(ρE)

 = γ–1 and c2 = γp/ρ.
The matrices of the right and left eigenvectors have the form:
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+ − + ++ − ρ ρ ρ 

and

2

( ) ( ) ( )2

( ) ( ) ( )

2( )
1

2 .
2

2

T
u u u

E E E

p uc c p p uc

p c p p c
c

p p p

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

 + − −
 

Ω = − − + 
 − 

If A = const, the system of equations (2.8) after multiplication
from the left by Ω can be written in the following form:

0,k k
k

g g

t x

∂ ∂+ λ = =
∂ ∂

  where  1,2,3.,T
k k

kg == l W

This means that system (2.8) breaks up into three linear
equations. The system can be solved by the same method as the
previously examined linear modelling equation. This justifies the
application of the solution of the nonlinear system (2.8) of the
following conservative different scheme:

1
1/ 2 1/ 2 0,

n n n n
i i i i

h

+
+ −− −+ =

τ
W W F F

where

Ω−1=
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{ } { }
{ } { }

1 1
1/ 2 1

1 1
1 2.

n n n
i k k i k k i

n n
k k i k k i

− −
+ −

− −
+ +

= Ω α λ Ω + Ω β λ Ω +

+Ω γ λ Ω + Ω δ λ Ω

F W W

W W

The matrices of the eigenvectors and eigenvalues are calculated
to the point i + ½. The coefficients α

k
, β

k
, γ

k
, δ

k
 are selected from

the conditions of switching separately for each characteristic:

( ) ( ) ( ) ( )( )2 1 1
:

n n n n
k k k k k ki i i i

G g g g g+ + −= λ − − −

Table 2.3

where c
k
 =  ∆t |λ

k
| /h is the Courant number corresponding to the

k characteristic.
As a test of the given numerical procedure, we shall examine the

well-known problem of breakdown of a discontinuity. The integration
region is a unit section which is divided into halves and each half
has its own values of density, pressure and speed at the initial
moment of time. In the given case, the initial values for the gas with
γ = 1.4 are as follows: ρ

L
 = 1, ρ

R
 = 0.125, P

L
 = 100, P

R
 = 0.1 and

u
L
 = u

R
 = 0. In this case, the exact solution consists of a shock

wave moving to the right, and a rarefaction wave moving to the
left.  A contact discontinuity, displaced to the left ,  is situated
between them. This example was specially made more complicated
by the presence of a pressure gradient of three orders of magnitude.
In addition to this, the rarefaction wave contains a ‘dangerous’
region in which the sound characteristic changes the sign | u | =
c (u and c are the local values of the speed of the flow and the
speed of sound). In the vicinity of this region, certain numerical
methods are characterised by an error leading to a non-physical
rarefaction jump. Figures 2.7–2.9 show the results of calculation of
this problem for a sequence of doubling grids (the grid with the
lowest density consists of 100 cells) for the moment of time t =

λ
k
 > 0 λ

k
 < 0

G
k
 > 0 G

k
 < 0 G

k
 < 0

α
k
 =–0.5(1–c

k
)

β
k
 =1–α

k

γ
k
 = 0

δ
k
 = 0

α
k
 = 0

β
k
 =1–γ

k

γ
k
 = 0.5(1–c

k
)

δ
k
 = 0

α
k
 = 0

β
k
 = 0

γ
k
 = 1–δ

k

δ
k
 = –0.5(1–c

k
)

G
k
 > 0

α
k
 = 0

β
k
 = 0.5(1–c

k
)

γ
k
 = 1–β

k

δ
k
 = 0
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0.02 (the actual step with respect to time was determined using the
condition of stability with a Courant number of 0.4).  A rapid
convergence to the exact solution is observed. The quality of the
numerical solution is good. The fronts of the shock wave and the
contact discontinuity (to a slightly lower degree) are relatively steep
and contain no oscillations.

The numerical method was generalised for planar and spatial
cases using a relatively standard technology of splitting with respect
to the spatial variables.

Fig.2.7. Breakdown of a discontinuity. Calculated profiles of density for a sequence
of finer and finer grids (100, 200, 400,...).
Fig.2.8. Breakdown of a discontinuity. Calculated profiles of pressure for a sequence
of finer and finer griods (100, 200, 400,...).

Fig.2.9. Breakdown of a discontinuity.
Calculated profiles of the velocity of
sound (c) anf flow velocity for a sequence
of finer and finer grids (100, 200, 400...).
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A method has been proposed for constructing conservative
difference schemes for weak solutions of the Euler equations in
non-conservative variables. The method is based on the application
of identical transformations of the finite-difference equations for the
grid functions of conservative variables in equations for the grid
functions of arbitrary variables, including: (p, v, h), (p, v, e), (ρ,
v, e), (p, v, ρ). Rules have been formulated for the substitution of
the finite differences of the grid functions of dependent variables
in finite-difference equations, leading to equivalent finite-difference
equations. It has been shown that for a numerical method based on
the local-characteristic approach, the proposed method of
replacement of variables in the discrete form greatly simplifies the
finite-difference equations whilst maintaining conservative nature.
The results are presented of testing the schemes in the variables
(p, v, h), (p, v, e), (ρ, v, e), (p, v, ρ) equivalent to Harten (TVD2)
and Young (UNO3) schemes showing the correctness and
computing efficiency of the new methods.

It is well known that the laws of conservation in the mechanics
of solids lead to differential equations in the divergent form:1

( ),k
t k∂ = −∇U F U (2.9)

where U is the vector of conservative variables, representing the
densities of the conserved quantities (mass, pulse, energy), k∇  is
the derivative with respect to direction k, and Fk is the vector of
the fluxes of the appropriate quantities. The equations may be
written in the non-divergent form

,k
t kA∂ = − ∇U U       (2.10)

where Ak = ∂Fk/∂U is the Jacobi matrix of the vector of fluxes Fk

in relation to the vector of conservative variables. It is assumed
that V is the vector of variables, linked with the components of
vector U by some mutually-unambiguous, continuously differentiated
functional dependence2 U  = U(V) which is such that det[∂U /
1Equations are written in the Cartesian coordinate system. The rule of summation
with respect to the repeating index k = 1, 2, 3 is used:
2Usually it is assumed that U = (t, r) and V (t, r) are continuously differentiated
functions of their arguments in some spatial–time region.
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∂V] ≠ 0. The requirement for the mutual unambiguity of the
transformation corresponds to the equivalence of describing the
state of the medium by means of the vectors U and V.

The transition to non-conservative (sometimes referred to as
‘simplest’) variables leads to a system of equations for V in the
non-divergent form:

,k
t kB∂ = − ∇V V       (2.11)

where Bk = M–1Ak M , M = ∂U/∂V.
Whilst the integral form of the laws of conservation permits

discontinuities in the solutions of the functions, the differential
description based on equations (2.9)–(2.11) usually assumes the
continuous differentiability of the latter. The generalisation of the
differential description for the case of solutions permitting
discontinuities leads to the concept of weak solutions. The weak
solutions correspond to the equations (2.9)–(2.11) in the regions of
smoothness and to relationships linking the jumps of different
variables at discontinuities, where the latter can usually be obtained
using the appropriate differential equations or it can be obtained on
the basis of more complete physical models. It is natural to assume
that a correct discrete model should approximate (2.9) or (2.11) in
the range of smoothness of the solution and to a certain degree
should ‘approximate’ the appropriate solutions at discontinuities. The
models using the separation discontinuities within the framework of
a numerical algorithm, and the so-called methods of continuous
computing are used in most cases. In the latter case, to
‘approximate’ relationships at discontinuities, it is necessary to use
special methods of calculating the fluxes at the edges of the cells
based on the exact (by Godunov’s method [44]) and approximate
(for example, the Roe method [22]) solution of the problem of
breakdown of an arbitrary discontinuity. At present, conservative
numerical methods for solving the equations of the mechanics of
solids, based on the approximation of equations in the divergent
form (2.9) have been developed and are used widely. In this case,
using the concept of a reference volume, the approximation of
equations (2.9), expressing the finite-difference analogues of the
laws of conservation for the vector U  in the integral form is
constructed in such a manner that the increment of the vector U
in the computing cell is represented in the form of a sum of fluxes
through its edges [44]. In studies by Harten et al.  (see, for
example, [168–171,227]) methods were proposed of calculating the
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fluxes at the edges of the cells leading to the schemes of a high
order of approximation in a one-dimensional case, schemes TVD
[168], UNO [170], etc. In the solution of the spatial problems, the
latter also ensure high accuracy in the region of smoothness and
good resolution of discontinuities.  The difference methods for
solving the equations in the simplest variables are not used widely
because of the fact that the direct approximation of equations (2.10)
results in non-conservative schemes. We shall show how to obtain
conservative numerical methods in non-conservative variables. The
concept is based on the fact that, using as the finite-difference
equations for grid vector functions Uτ

h 
as the basis, the equation for

Vτ
h
 is obtained as a result of identical transformations of discrete

equations for Uτ
h
 and not by approximation of equations (2.10). The

existence of an equivalent conservative difference scheme
guarantees the conservative properties of the method, and the set
of the variables will be determined for a specific problem by the
suitable form of the equation of state, numerical efficiency, etc.

The replacement of the dependent variable and differential
equations (2.10) is carried out using an equation describing the
relationship of infinitely small increments of the vectors U and V:
dU  = M  dV.  We shall  examine transformations of the finite-
difference equations, based on the application of an exact relation-
ship for finite differences of the grid vector function U τ

h
 and

V τ
h
:∆U τ

h
 = M∆V τ

h
.

Let us assume that the vectors U∈Ω
U
⊂ ℜ m and V∈Ω

V
⊂ ℜ m are

linked by the transformation U = U(V). Here m is the number of
independent parameters of the state (thermodynamic variables,
components of pulse or velocity, etc.), determining unambiguously
the thermomechanical state of the medium. The regions of
permissible values of ΩU and ΩV are determined by the conditions
of physical feasibility of the appropriate states; for example,
temperature, density, internal energy cannot have negative values.
We introduce the matrix operator acting on the set ΩV of
permissible values of vector V which is such that the differences
of any two vectors υ

1
, υ

2
∈Ω V are related to the difference of their

images in ΩU, i.e. the following equality is valid

( ) ( ) 2 12 1 2 1 2 1 det( ( , )) 0.( ) ( , ) , MU U M υ υ ≠υ − υ = υ υ υ − υ       (2.12)

Example 1. Let it be that 1
2 1( )  , ,nu U= υ = υ ∀υ υ ∈ℜ
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1 2 2 1
2 1 2 2 1 2 1 1 2 1

1 2 2 1
2 1 2 2 1 2 1 1

( ) ( ) ( ... ( ),

( , ) ... .

n n n n

n n n n

u u

M

− − − −

− − − −

υ − υ = υ + υ υ + + υ υ + υ υ − υ

υ υ = υ + υ υ + υ υ + υ

Since we have exactly n  terms of the order n  – 1, it  can be

written that: 
1

2 1( , )
n

M n
−

υ υ = υ  is the derivative ∂u/∂υ  at point υ ;

( )1/( 1)1 2 2 1
2 2 1 2 1 1... /

nn n n n n
−− − − −υ = υ + υ υ + υ υ + υ  is the mean of the values

of υ
1
 and υ

2
, i.e., the point at which the value of the derivative

coincides with the tangent of the angle of the secant:

( ) 2 1

2 1

( ) ( )
.

u u u∂ υ − υυ =
∂υ υ − υ

Example 2 .  Roe proposed a method for intepreting grid
differences of the conservative vector of the flux ∆F and the vector
of conservative variables ∆U as a sum of jumps ∆F  = ∆ΣF

i
,

∆U = ∆ΣU
i
, on which the relationships are fulfilled, ∆F

i
 = λ

i
 ∆U

i
,

where λ
i
 is the eigenvalue of the Jacobi matrix of the vector of the

fluxes A = ∂F/∂U. In the method proposed by Roe, this is achieved
by introducing a special procedure for averaging the vector of the
solution at the edges of the cells (we shall return to it later) which
is such that

� .A∆ = ∆F U

� �( ) �
2 1, , A A= ∆ = −U U U U U  is the mean (according to Roe) of the

derivative states U
1
 and U

2
. For more details, please see studies

by Roe [219,220]. For our purposes, it is clear that the matrix A�

gives an example of the previously determined operator M and in
the given specific case V is a vector of conservative variables, and
the transformation of U is determined by the functional dependence
of the vector of the fluxes from the vector of the conservative
variables F = U(U).

Any difference scheme, approximating equation (2.9) for the
grid function Uτ

h
, determined on the spatial–time grid ωτ× ω

h
 (ωτ

and ω
h
 are respectively the time and spatial division of the

calculation region), can be written in the vector form:1

It is assumed that the boundary conditions are included in the given system
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( ) 0.h
τΦ =U (2.13)

This equation expresses only that we have N nonlinear algebraic
equations with respect to the number of components of the vector
Φ for N unknown components of the grid function Uτ

h
, representing

the required solution in the nodes of the calculation grid. As regards
the vector form of the finite-difference equations, the reader should
refer to [110]. For identical transformations of nonlinear vector
finite-difference equations from some grid functions to others, it is
necessary to replace finite differences. Therefore, in addition to the
vector U τ

h
 with dimension N ,  we introduce vector k τ

h
 with the

dimension ½(N  – 1) N  in respect to the number of possible
combinations, with the elements of the vector being the finite
differences

( ), where , , ,sp s p
qr q r t kU U U s p q r∆ = − ∈ω ∈ω                         (2.14)

of the grid function U
h
 on the grid ωτ×ω

h
. Instead of Φ(Uτ

h
,k)=0,

we shall write

( , ) 0,k sp
j qrU UΦ ∆ =      (2.15)

indicating for which elements of the vector there is a dependence
for the specific methods. Equation (2.15) will be regarded as the
representation of the finite-difference equation (2.13) having in
mind the relationship (2.14). In all cases, the expression of the type
U(V τ

h
) or Mk will denote the element by element application of

given operations. It should be stressed that the elements Vτ
h
 and k-

vectors from ℜ m, where m is the number of equations (2.1), and
the region of the permissible value is determined by the conditions
of realisability, resulting from the physical sense of the individual
components, for example, the density and internal energy should be
positive, etc. We shall write a nonlinear vector finite-difference
equation ΦU(U τ

h
) = 0 for the system (2.9) in the form of the

dependence of the values of the grid function and the vector of grid
differences, determined on the space–time grid ωτ×ω

h

( , ) 0,k sr
j qrU UΦ ∆ =  where ( , , , , , ).hk s p q r jτ∈ω ∈ω                   (2.16)
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It should be mentioned that taking into account the relationships
∆sp

qr
U = Us

q
 – Up

r
, the system is closed. Using the definition of the

operator M (2.12), we carried out identical transformations of the
equations for the grid functions Uτ

h
 in finite-difference equation for

the grid functions Vτ
h
:

( ) ( )' ) 0,, ( ( ),
spV k sp k
qrh j qr j

M VV V U Vτ ∆ =Φ = Φ ∆ = ΦV       (2.17)

where M∆ sp
qr 

V=M(Vs
q
,Vp

r
)(Vs

q
–Vp

r
) and (k,s,p ∈  ωτ ,  j ,q,r ∈  ω

h
).

Because of the large numbers of methods of writting equations
(2.13) in the form (2.14) which results from the definition of the
vector of grid differences, the proposed method can be used to
obtain different finite-difference equations ΦV(V τ

h
) = 0. For

example, the explicit difference scheme for the determination of
grid functions U

h
n+1 may be written in the form

( )1 , ,n k sp
h j qrU U U+ = Φ ∆

where  ( ), , , , , , , , ,hk s p n k s p q r jτ τ≤ ∈ω ∈ω ∈ω       (2.18)

or in the δ-form:

( )1 , .n n k sp
h h j qrU U U U+ − = Φ ∆       (2.19)

The transition to grid functions Vτ
h
 in equation (2.10) results in

the explicit scheme:

( )( )( )1 1 , .n k sp
h j qrV u U V M V+ −= Φ ∆      (2.20)

The transition to grid functions Vτ
h
 in equation (2.18) leads to

equations in finite differences

( )( ) ( )( )1 1, , .n n n n k sp
h h h h j qrM V V V V U V M+ + − = Φ ∆       (2.21)

The given finite-difference equation is very similar to the
corresponding differential equation M∂

i
V = (A

k
M) ∇ k

V, obtained in
transition from (2.10) to (2.11). The previously defined matrix
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operator M(υ
1
,υ

2
)  is identical to the Jacobi matrix M  in the

following respect. Whereas the Jacobi matrix M links infinitely
small increments of the functions U and V, the operator M(υ

1
,υ

2
)

links their finite differences. For a large number of sets of
functions, characterising the thermomechanical state of the medium,
we can construct, and not by one method only, simply analytical
equations for the operator M(υ

1
, υ

2
). In addition, it appears in many

cases that M(υ
1
,υ

2
) = M( �υ ), where M is an analytical expression

for the appropriate Jacobi matrix, and the vector of state �υ  is
obtained as a result of averaging states υ

1
,υ

2
.  The Roe method

provides a suitable example. Like in the case of equation (2.11)
which when presented in the simplest variables V are simpler than
the quasi-linear form of the equations in conservative variables
(2.10), for an entire family of currently available numerical methods,
based on the application of the local-characteristic approach, the
finite-difference equations for grid functions Vτ

h
 are simpler than

equations in the finite differences for grid functions Uτ
h
. Equations

(2.17) are obtained from equations (2.16) using identical
transformations, and we consequently obtain a simple relationship
between the solutions on the basis of equations (2.17) and (2.16),
and for the same initial data these solutions coincide to a certain
degree. We introduce the relationship of the equivalence of the
finite-difference schemes for different grid functions Uτ

h
 and Vτ

h
,

l inked by the function of dependence U  = U(V),  and we shall
assume that this scheme is not degenerated.

Determination. The finite-difference equation for the grid vector
functions U τ

h
 and V τ

h
 will be regarded as equivalent if from the

condition U
h

k = U(V
h

k) for all  k  < n  the equations give U
h
n+1 =

U(V
h
n+1), where U is some generally nonlinear vector function.

It is obvious that the solutions of the equivalent finite-difference
equations coincide in the sense U

n
k = U(V

h
k ), for all k ∈  ωτ for the

corresponding selection of the initial data and boundary conditions
and on the condition that calculations are carried out on an ‘ideal’
computer carrying out arithmetic operations with an infinite number
of significant numbers.

It may easily be shown that the equations (2.20) and (2.21) are
equivalent to the initial finite-difference equation for U in terms of
the previously described definition. For equation (2.20), this follows
immediately because if Uk

h
 = U(Vk

h
) ∀ k< n, then U(V

i
n+1) satisfies

the equation for U
h
n+1. In equations (2.21) in the same conditions

U
h

k = U(V
h

k) ∀ k< n and ∀ i ∈  ω
h
, the value M(V

i
n+1, V

i
n+1 – V

i
n)

satisfies the equations for U
i
n+1 – U

i
n. From this we obtain:
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( )( )
( ) ( ) ( )

1 1 1

1 1

, ,

,

n n n n n n
i i i i i i

n n n n
i i i i

U U M V V V V

U U V U V U V

+ + +

+ +

= + =

= + − =

which uses the definition of the operator M (2.12) and the initial
assumptions Uk

i
 = U(Vk

i
) for all k < n.

Since the equations (2.20) are already resolved in relation to
unknown grid functions on the (n + 1)-th time layer, two methods
of integration with respect to time can be investigated for equation
(2.21).

Method 1 (introduction of internal iterations)

Step 1: ( )( )1 , ,n n k sp
h j qrU V M V+ = Φ ∆k

Step 2: ( )( ) 1
1 1,k n k n n n

h h h h hV V M V V
−

+ += + k      (2.22)

Method 2 (application of the property of equivalents)

Step 1: ( )( )1 , ,n n k sp
h j qrU V M V+ = Φ ∆k

Step 2:    ( )( )( )( )1 1 1 1( , ,n n n n n n n n
h h h h h hM U U V V V V− + + ++ − =k k

   ( )( )( )( ) 1
1 1 1 1, .n n n n n n n n

h h h h h hV V M U U V V
−

+ − + += + +k k         (2.23)

The meaning of the vector k
h
n+1 n introduced here is very simple:

for ∀ i ∈  ω
h
 k

i
n+1n = U

i
n+1 – U

i
n and equivalent equations for grid

functions U τ
h
.

It is important to note that the introduced transformations of the
equations in the finite differences according to the rules

( ), ,h h h hM Uτ τ τ τ∆ → ∆ →U V U V      (2.24)

where M is determined by the condition (2.12), do not change the
graph of the initial equations on the spatial–time grid ωτ×ω

h
 (spatial

division may be structurised, partly structurised or non-structurised;
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interpretation of division – points in space, finite volumes, particles
– also has no meaning for the application of the given approach,
because we transform relationships written in discrete form).

The proposed mathematical method can be regarded as a method
of solving the initial system of nonlinear algebraic equations for Uτ

h

by the method of replacement of variables according to the rules
(2.24). From the computational viewpoint, this procedure with the
appropriate selection of the variables results in simplification of the
equations and greater computing efficiency of the method.

Example 3 . We examine a one-dimensional equation with the
characteristic form

0t xU U+ λ =

and the difference scheme of the type ‘explicit corner ’:

( )1
1 ,k k k k

i i i iU U U U+
−− = −σ −      (2.25)

where σ = λ∆ t/∆x. There are also variables υ  : υ2 = U. Evidently,
the differential equation for υ  has the form:

1 0.xυ + λυ =      (2.26)

The equation for υ  in the finite differences can be obtained
directly approximating (2.26):

( )1
1 .k k k k

i i i i
+

−υ − υ = −σ υ − υ

From condition U(x,0) = υ 2(x,0) in the differential formulation
we obtain:

( ) ( ) ( )2 2( , ) ,0 ,0 ,  at 0.U x t U x t x t x t t= − λ = υ − λ = υ >

In this case, we are not really concerned with the equations in
finite differences. If for all j  from the regional definition Uk

j
 =

(υ k
j
)2 at k = n, then U

j
n+1 ≠  (υ

j
n+1)2, which can be easily confirmed

by direct verification. If the equation for U expresses the law of
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conservation, the difference equations for υ  are non-conservative,
and vice versa. Let us assume that U is a conservative variable and
we obtain equations in the differences for υ  directly from (2.17)
by replacement of the finite differences, as proposed previously.
Initially, it is necessary to construct the operator M such that

( ) ( ) ( )( )2 2
2 1 1 2 2 1, ;Mυ − υ = υ υ υ − υ

and evidently

( )1 2 2 1, .M υ υ = υ + υ

Carrying out the replacement of the finite differences using the
operator of the equivalent substitution M ,  we obtain difference
equations in the variables υ :

( )( ) ( ) ( )1 1
1 1, ,n n n n n n n n

i i i i i i i iM M+ +
− −υ υ υ − υ = −σ υ υ υ − υ

or

( )( ) ( )( )
( ) ( ) ( ) ( )

1 1
1 1

2 2 2 21
1 1

,

.

n n n n n n n n
i i i i i i i i

n n
i i

+ +
− −

+
+ −

υ + υ υ − υ = −σ υ + υ υ − υ

 υ − υ = −σ υ − υ 
     (2.27)

The integration method, determined previously, are written in the
following form.

( )( ) ( )( )1
1 1  :k n k n n n n n

i i i i i i i i
+

− −υ + υ υ − υ = −σ υ + υ υ − υ

Method 1 (introduction of internal iterations)

Step 1: ( )( )1 1 ,n n n n
i i i i− −κ = −σ υ + υ υ − υ

Step 2: ( )1 /k n k n
i i i i

+υ = υ + κ υ + υ , after reaching the required

accuracy 1 1n k
i i

+ +υ = υ .

Method 2  (direct)
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Step 1: ( )( ), 1 1 ,n n n n
i i i i− −κ = −σ υ + υ υ − υ

Step 2: ( )
1/ 221 / .n n n n

i i i i
+    υ = υ + κ υ + υ + κ     

Method 3 (see (2.20)): ( ) ( )( )
1/ 221

, 1 1 .n n n n n n
i i i i i i

+
− −

 υ = υ − σ υ + υ υ − υ  
We shall construct the operators of the equivalent substitution of

the finite differences for different sets of gas-dynamic variables.
It will be shown that for the entire family of conservative numerical
methods for the Euler equations, the transition from the grid
conservative variables to non-conservative ones results in a
simplification of the difference equations. Finally, we obtain the
conservative difference schemes in the variables (p,v,h)T, (p,v,e)T,
(ρ,v,e)T, (p,v,ρ)T for Euler equations, equivalent to the conservative
local-characteristic methods, using the Roe solution and designed
for calculations of flows with discontinuities. Let it be that V  =
(p,u,h)T, and it is necessary to construct the matrix operator M(V

1
,

V
2
)  such that for arbitrary states V

1
 = (p

1
,u

1
,h

1
)T and V

2
 =

(p
2
,u

2
,h

2
)T we would have U

2
–U

1
 = M(V

1
,V

2
)(V

2
–V

1
). We shall use

the following procedure: according to Roe, we introduce the
parametric vector z in such a manner that the conservative vector
of the flows F  = (ρu ,  p+ρu 2,  u(h

+
u 2/2)T and the vector of

conservative variables U  = (ρ,ρν ,  ρ(h
+1/2

u 2)  – p)T depend in a
quadratic manner on the components of vector z:

( )
2

1 21
T

2
1 2 2

1 3 2 3

, , , , .

z zz

u H z z z p

z z p z z

   
   

= ρ ρ ρ = = +   
   −   

z U F

It was shown in [203] that if the relationship:

, ,,
,m E m E mE

p P P m P Eρ ρρ
∆ = ∆ρ + ∆ + ∆      (2.28)

is fulfilled (here and the rest ∆(·) = (·)
2
 – (:)

1
), and ρ,  m, E are

the components of vector U), then taking into account expansions

( ) ( )1 1 2 1 1 2 3 1 1 32 , , ,z z u z z z z H z z z z∆ρ = ∆ ∆ ρ = ∆ + ∆ ∆ ρ = ∆ + ∆      (2.29)
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( ) ( )( )1

1 m E
E

p P P P H
P ρ∆ = ∆ρ + ∆ ρν + ∆ ρ

+
     (2.30)

we can write

( ) , ( ) ,C B∆ = ∆ ∆ = ∆U z z F z z

where 1 2( ) / 2,= +z z z

( )

( )

2 1

1 11 3 2
2

3 2

1

2 1

1 13 1

0

2 2( ) 1 11

0

2 0 0

( ) 0

2
111

EE m

E E
E

m

m

EE
E

z z

z z Pz P z P z P zB P PP

z z

z

C z z P

z P zz z P
PPP

ρ

ρ

 
 

+ − += + + + 
  

 
 
 
 =  
 −−
 +++  

z

z

This leads to an equation for the matrix operator A which is such
that the following condition is fulfilled for arbitrary states: ∆F =
A∆U:

1( ) ( ) .A B C −= z z

Taking into account the fact that the form of this matrix
coincides with the analytical expression for the appropriate Jacobi
matrix A( U� ) = ∂F/∂U, this leads immediately to Roe’s averaging:

( ) ( )
( ) ( )

1 2

1 1 2 2 1 2

1 1 2 2 1 2

: ,

/ ,

/ ,

u u u

H H H

ρ = ρ ρ

= ρ + ρ ρ + ρ

= ρ + ρ ρ + ρ

U�

�

�
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We shall use the following notations of the mean states: the
tilder above the letter – the mean according to the Roe method, the
two dots above the letter – the mean in accordance with the
equation:

( ) ( )1 1 2 2 1 2/ ,ϕ = ϕ ρ + ϕ ρ ρ + ρ

where ϕ  is some function of the thermomechanical state.  For
example u u=�  and H H=� .  I t  is required that for two not
necessarily close states the condition ∆U = M(V

1
,V

2
)∆U is fulfilled

accurately.
∆V  will  be presented in the form ∆V=D(U , z )∆z .  The

appropriate expansion for pressure is obtained as a result  of
substitution of (2.29) into (2.30). Identity ( )∆ ρϕ = ρ∆ϕ + ϕ∆ρ� ,
because of which we can carry out immediately direct verification,
taking into account u u=� ,  gives the following equation for the
speed:

( )( )/ .u u u∆ = ∆ ρ − ∆ρ ρ��       (2.31)

The identical relationship for total enthalpy

( )( )/H H H∆ = ∆ ρ − ∆ρ ρ� �

leads to the following expansion for enthalpy:

( )( ) ( )/ .h H H u u u u u∆ = ∆ ρ − ∆ρ ρ − ∆ + − ∆� � � �      (2.32)

Gradually, we obtain an expansion for internal energy. For an
arbitrary equation of state we obtain:

( )( ) ( )( ) ( )1 1
.e e e H P e e e

∆ρ∆ = ∆ ρ − ∆ρ = ∆ ρ − ∆ − ∆ρ + −
ρ ρ ρ

� �
� � �

In particular, for the ideal gas

2 2 21
.

2 2

u u u
e H e

  −= − = + γ γ 

� �
��
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Substituting (2.29) into (2.31), (2.29) and (2.31) into (2.32), and
taking into account the equation for the difference of the means:

1 1 2 2 1 2
1

11 2

,
2 4

z
z

ϕ ρ + ϕ ρ ϕ + ϕ ∆ϕϕ − ϕ = − = ∆
ρ + ρ

in the final analysis we obtain

( )

( )

( )

( ) ( )

1 2 3 1 1

2 1
1

2
2

3 2 1 1 1
1

2

1 1 1

2
, / 0 .

2 / / /
4

m E m E

E E E

z P z P z P z P z P

P P P

z uz
D z

u
z uz z H u z u z

z

ρ
 + +
 

+ + + 
 − = ρ
 ρ
 
 ∆ 

+ − − − ρ − ρ ρ 
  

U z
�

�
�

� � � �� � �

Using the matrices B, C, D, we obtain the matrices setting the
relationship of the finite differences:

( ) ( ) 1
,B D

−
∆ = ∆F z U z V�  and  ( ) ( ) 1

, .C D
−

∆ = ∆U z U z V�

In order to realise the explicit  TVD and ENO schemes, we
require only matrix M–1 which should be such that ∆V = M–1 ∆U:

1 1

2

1
( , ) ( ) 0 ,

1

m E

m E

P P P

u
M D C

u H P u P P

ρ

− −

ρ

 
 
 
 

= =  − 
ρ ρ 

 δ + − + − + + 
 ρ ρ ρ 

U z z
�

�

�

�� �

� � �

where 
( )2

12

u

z

∆ ρ
δ =

�
.

Comparing the structure of the produced matrix with the
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appropriate Jacobi matrix, linking the infinitely small increments of
the vectors dV = M–1dU:

1

2

1
0 ,

1

m E

m E

P P P

u
M

u H P u P P

ρ

−

ρ

 
 
 
 ∂= −  − 

∂ ρ ρ 
 − + − + + 
 ρ ρ ρ 

U
V

it may seen that the matrix, describing the relationship of the finite
increments, is a sum of two matrices: the appropriate Jacobi matrix,
calculated using averaging according to Roe, and the matrix having
the second order in relation to the differences. In the present case,
it has one element differing from zero.

Transforming the differences equations for the grid functions of
the conservative variables using relationships of type (2.24), we
obtain equivalent difference equations for the grid functions of the
non-conservative variables. In a general case, this does not reduce
the extent of calculations, but for the local-characteristic
approaches, using the Roe method, the resultant equations are
simplified.

We shall present a different scheme in the simplest variables,
equivalent to schemes: Harten scheme TVD2 and Young scheme
UNO3 using the Roe method. Both conservative schemes are
written in the form

1
1/ 2 1/ 2 1/ 2 1 1/ 2 1/ 2, / 2.n n n n n n n

j j j j j j j j jR+
+ − + + + +   − = −λ − = + + Φ   U U F F F F F

The elements ϕ l of vector Φ
j+1/2

 has the following form:
for TVD2 (Harten, 1983)

( )( ) ( )1/ 2 1/ 2 1 1/ 2 1/ 2 1/ 2 ,l l l l l l l
j j j j j j ja g g a+ + + + + +ϕ = σ + − ψ + γ α       (2.25)

for UNO3 (Young, 1992)
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( )( )
( )( ) ( )

( )( ) ( )

1/ 2 1/ 2 1

1/ 2 1 1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 1 1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 1/ 2

,

if   

,

if   

,

l l l l
j j j j

l l l l l l l
j j j j j j j

l l
j j

l l l l l l l
j j j j j j j

l l
j j

l l l
j j j

a

a a

a a

m

+ + +

+ + + + + +

− +

+ + + + + +

− +

+ −

ϕ = α β + β

 σ β +β − ψ + γ + γ α

 α ≤ α

σ β +β − ψ + γ + γ α


 α > α
β = α α

� � ��

� �� �

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2

,

, ,  if   

, ,  if   .

l l l l l
j j j j j

l l l l l
j j j j j

m

m

− − + − − +

− + + + − +

  
 β = ∆ α ∆ α α ≤ α 
 β = ∆ α ∆ α α > α 

�

�

 (2.34)

If 1/ 2 0l
j+α = , then 1/ 2 1/ 2 1/ 2 0l l l

j j j+ + +γ = γ = γ =�
� . Otherwise:

( )( )
( )( )
( )( )

1/ 2 1/ 2 1 1/ 2

1/ 2 1/ 2 1 1/ 2

1/ 2 1/ 2 1 1/ 2

/ ,

/ ,

/ .

l l l l l
j j j j j

l l l l l
j j j j j

l l l l l
j j j j j

a

a

a

+ + + +

+ + + +

+ + + +

γ = σ β −β α

γ = σ β −β α

γ = σ β −β α

� �� �

� �� �

The following functions were used when writing the schemes:

x,  if   x y ,
m(x, y)

y,  if   x y ,

 ≤= 
>

( ) ( )
( )

2 32 2

32

1 1
( ) ( ) , ( ) 2 3 ,

2 2
1

( ) ,
6

x x x x x x x

x x x

σ = ψ − λ σ = − λ + λ

σ = λ −

�

� (2.35)

( ) ( )min , , if sgn sgn ,
,

0, otherwise

s x y x y s
m x y

 = == 

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( )2 2

, ,

( )
,

2

x x

x x
x

 ≥ ε
ψ =  + ε

< ε
ε

The methods are described in detail in [45,91,114,241].
Vector ααααα j+1/2

, approximating the variation of the local character-
istics of the variables, is computed through the variation of the
vector of conservative variables:

( )1
1/ 2 1/ 2 1 .n n

j j j jR−
+ + += −U Uα  (2.36)

The columns of the matrix R–1 are the left eigenvectors of the
Jacobi matrix of the flow vector.

It should be mentioned that the approximation of the differences
of the characteristic variables in half-integral points of the template
is in these schemes the most cumbersome and laborious operation.
The equivalent replacement of the finite differences in transition to
equations for grid functions Vτ

h
 is reflected mainly on the method

of calculating ααααα j+1/2
. Direct substitution gives

( )1
1/ 2 1/ 2 1 ,n n

j j j jS −
+ + += −V Vα

where S–1
j+1/2

 = R–1
j+1/2 

Mn
j+1/2

.  If  matrix R  is constructed using the
Roe method, then for an entire series of the simplest variables the
resulting matrices S–1 are simpler than matrices R–1.

In accordance with the rule of transformation of the finite
differences, the equivalent schemes in the variables V = (p,v,h)T

are written in the form

( ) ( )1
1/ 2 1/ 2 ,n n n n

j j j jU U+
+ − − = −λ − V V F F

or

( )1/ 2 1
1/ 2 1/ 2 ,n n n n n

j j j j jM + +
+ − − = −λ − V V F F

where
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( )
1/ 2

1/ 2 1/ 2 1/ 2

1 11
1/ 2 1/ 2 1/ 21/ 2 1/ 2 1

/ 2,

.,

n n n
j j j j j

nn n
j j jj j j j

R

S R MS

+
+ + +

− −−
+ + ++ + +

 = + + Φ 
== −

F F F

V Vα

The following notations were used here: M
j
n+1/2=M(V

j
n+1,V

j
n+1/2)

Mn
j+1/2

=M(Vn
j+1

,Vn
j
). All functions and matrix operators are written

through the variable V = (p,v,h), and we use the equation of state
of the type ρ = ρ(p,h), ρ = ρ(p,e), p = p(ρ,e), h = h(p,ρ). We use
one of the methods of integration in respect of time (2.20).

Method 1

( )1 1
1/ 2 1/ 2( ) .n n n n

j j j jU U+ −
+ − = − λ − V V F F

Method 2

Step 1: 1/ 2 1/ 2 .n n
j j j+ − ξ = −λ − F F

Step 2: ( ) ( )( )1/ 21 1 , , .
n n n

j j jj
M M

+− −= ξV Vυ

Step 3: ( ) 1/ 21 1 .
nn n

j j jj
M

++ −= + ξV V

Here υυυυυ  has the meaning of the preliminary value V
j
n+1 and differs

from the final results by the rounding error. For the variable V =
(p,u,h)T and the equation of state in the form ρ = ρ(p,h)

( ) ( ) ( ) ( ) ( )
T

*
2 1 1, , / , / ,n

j j p u p ξ = ρ + ξ ρ + ξ + ε ρ + ξ Vυ

where

( ) ( )2*
3 3 11/ 2 /E uε = + ξ − ρ + ξ ρ + ξ

and ξ
1
, ξ

2
, ξ

3
 are the components of vector ξ

j
.

In a general case, we obtain an equation for p:
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( ) ( )( )*
1 1, / .p pρ + ε ρ + ξ = ρ + ξ

In a partial case of the ideal gas, p = (γ–1)ε*, γ is the exponent
of the adiabate.

It should be mentioned that it  is not compulsory to find the
vector υυυυυ  in the computation stage of (M–1)

j
n+1/2 and it is sufficient

to determine the quantities included in the equations used for
determining the mean according to Roe and δ.
Method 3

Step 1: 1/ 2 1/ 2 .n n
j j j+ − ξ = −λ − F F

Step 2: (0) ,n
j j=V V

and subsequently we carry out iteration with respect to
k of the type V

j
(k+1) = V

j
(k) + M–1(V

j
n, V

j
(k))ξ

j
 on reach-

ing the required accuracy V
j
n+1 = V

j
(k).

At first  sight,  i t  may appear that method 2 is far more
complicated than method 1. Firstly, the equations of method 2 are
written in δ-form and when solving the stationary problems by the
stabilization method, the resultant solution contains the conservative
approximation of stationary equations. Secondly, method 2 is
generalised in a natural manner for a case in which the equations
contain rigid sources and must be linearised with respect to time.
Iteration method 3 has an advantage when using complex equations
of state.

When solving the problems in several spatial measurements in
the right-hand part of step 1, we carry out summation with respect
to the co-ordinate directions. In the finite volume method λ  =
∆ t/Ω ,  where Ω  is the measure of the cell  with index j .  Matrix
M–1 is computed as follows:

( ) ( )1 1
1 2M , , ,M− −= = δV V V� �

where V�  is determined unambiguously by the averaging of states
V

1
 and V

2
 by the Roe method, δ-correction having the second

order of smallness away from the discontinuities of the solution. In
the appendix, we present the specific type of matrices S–1 and
M–1 for different vectors V. All variables, including S–1 and M–1
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represent means of the corresponding state according to Roe.

The results of numerical testing

As in the replacement of dependent variables in differential
equations (2.9), (2.10), the substitution of grid functions in explicit
numerical local-characteristic methods is relatively simple. In the
case of TVD and UNO schemes it is sufficient for this purpose to:

1 To change, by identical transformations, the computation
procedure of all grid functions in accordance with the variation of
the mean of the grid functions of the variables of the flow fields;

2 Change, if necessary, the method of averaging quantities at
the edges of the cells for averaging by the Roe method;

3 Change of the procedure of calculating the approximations of
the differences of the characteristic variables (2.36), using instead
of the matrix of left eigenvectors R–1, the matrix S–1 = R–1M, which
has a considerably simpler structure (see Appendix);

4 Use one of the integration schemes in respect of t ime
(method 1, method 2 or method 3).

We shall verify the equivalency of the methods based on the
substitution of the grid functions of the dependent variables in the
Harten and Young schemes.

Comparison was carried out for the previously mentioned
schemes in different variables. The parameter of enthalpy correction
in the schemes UNO and TVD (2.35), and also the criteria of
smallness of the variations of the characteristic variables in (2.33)
and (2.34) were assumed to be identical in all calculations. The
initial data for the methods in different variables have the form:

0 , / 2,

, / 2,
L

i
R

i N

i N

≤
=  >

V
V

V

where i  is the grid index, and N is the number of nodes of the
calculation grid with a constant step.

The initial data represent the same solution expressed by means
of different variables (Table 2.4).

In every case, we used the appropriate form of the equation of
state of the ideal gas p(ρ,  e) = (γ–1)ρe ,  p(ρ,h) = (γ–1)ρh/γ,
ρ(p,h) = γp/[(γ–1)h] etc., where it was assumed that γ = 1.4.

The calculations were carried out on the identical spatial grid
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Fig.2.10. Breakdown of a discontinuity. Profiles of pressure determined using two
‘equivalent’ TVD2 schemes in conservative and non-conservative variables coincide.
Fig.2.11. (right) Breakdown of a discontinuity. Profiles of enthalpy determined
using two ‘equivalent’ TVD2 schemes in conservative and non-conservative variables
coincide.

Fig.2.12. Breakdown of a discontinuity. Profiles of pressure determined using two
‘equivalent’ UNO3 difference schemes in conservative and non-conservative variables
coincide.
Fig.2.13. Breakdown of a discontinuity. Profiles of enthalpy determined using two
‘equivalent’ UNO3 difference schemes in conservative and non-conservative variables
coincide.

Table 2.4

Variables

(ρ , ρu, ρ(e+u2))
(ρ, u, h)
(p, u, h)
(p, u, e)
(ρ, u, e)
(p, u, ρ)

(1. 0. 1)
1. 0. 14/10)
(4/10. 0. 14/10)
(4/10. 0. 1)
(1. 0. 1)
(4/10. 0. 1)

(1. 0. 10)
(1. 0. 14)
(4. 0. 14)
(4. 0. 10)
(1. 0. 10)
(4. 0. 1)

V
L

V
R
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N = 200, with the same sequence of steps in time, at CFL = 0.1.
The grid functions, representing a solution for each of the tested
methods after 1000 integration steps with respect to time, were
reduced to ‘pressure–enthalpy’ variables p

i
 = p(V

i
n=1000) ,  u

i
 =

u(V
i
n=1000), h

i
 = h

i
(V

i
n=1000) and are shown in Figs.2.10 and 2.11 for

the method equivalent to the TVD2 scheme, and in Figs.2.12, 2.13
for the UNO3 method. The numerical solutions, obtained by the
TVD2 and UNO3 methods are shown in Fig.2.14. Differences in
the form of the curves in Fig.2.14 are explained by the properties
of TVD2 and UNO3 schemes. At the same time, the difference in
the curves in Figs.2.10–2.13 cannot be resolved on the given scale,
it is a difference in the norm max|∆|, where ∆ is the difference of
the appropriate quantities, obtained by calculations using the method
in conservative U and simplest variables V, presented in Table 2.5
justified in the form in which they were derived as a result of
calculations in the DOUBLE format.

It  is important that the programs for both methods used
statements of all  variables of the real type such as REAL
(KIND = 8), and also the function of double accuracy (DABS,
DSQRT). The programmes were compiled using Digital Fortran and
calculations were carried out under the control of a 32-bit operating
system.

Fig.2.13. Breakdown of a discontinuity.
Profiles of enthalpy determined using two
‘equivalent’ TVD2 and UNO3 difference
schemes.

Table 2.5.

Method
( ) ( )max V U
i i

i
p p− ( ) ( )max V U

i i
i

u u− ( ) ( )max V U
i i

i
h h−

V=(p, u, h)
TVD2
V=(p, u, h)
UNO3
V=(ρ, u , h)
UNO3

5.960464832810430E–
–008
5.960464477539062E–
–008
5.960464388721221E–
–0.08

7.003605777301127E–
–015
0.0E+000

0.0E+000

2.384186501558361E–
–007
2.384185791015625E–
–007
2.384185791015625E–
–007
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The programs of the methods in the appropriate variables were
not optimised for the maximum operating speed, nevertheless, for
the algorithms (methods 1, 2) the rate of calculations is higher in
the simplest variables in comparison with the initial methods in
conservative variables (to 10% of productivity depending on the
number of equations m, determined by the spatial dimension of the
problem), and the advantage becomes greater for the schemes with
a high approximation order and also with an increase of m. The
maximum effect was achieved for 3D calculations on the basis of
the UNO3 scheme. We do not present specific numbers because
it is necessary to employ a strict approach based on the optimisation
of the programme code for methods in different variables. It should
only be mentioned out of all the methods tested, the maximum
computing efficiency was obtained in integration with respect to
time using scheme (method 1) in variables (ρ, u, h).

'!!$���+

Here we present the matrices S–1 and M–1 for the Euler equations
in two spatial measurements for different sets of the variables. The
variables V = (p, u, ν , h)T:

( )

( )( ) ( ) ( )

2 2 2

1

2 2 2

1 0 0

0 1 0

11 11

uc u H

u

M

uc u H

−

− Γ −νΓ Γ + + ν − Γ
 
 

− ρ ρ 
 = ν− ρ ρ 
 + Γ+ Γ ν + Γδ + + + ν − + Γ − − ρρ ρ ρ 
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Γ Γ + δ −ρ − Γδ− Γδ 
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 ρ
 − − 
 ρ 
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2
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h h

z

∆ + ∆ν
δ = − = ρ

Variables V = (p, u, ν, e)T:
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− Γ −νΓ Γ + + ν − Γ
 
 

− ρ ρ 
 = ν− ρ ρ 
 ν+ ν − − − ρ ρ ρ ρ  
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ρ 
 
 − −

ρ  



94

Turbulence: New Approaches

Variables V = (p, u, v, ρ)T:

( )2 2 2

1

1 0 0

,
0 1 0

1 0 0 0

uc u H

u

M −

− Γ −νΓ Γ + + ν − Γ
 
 

− ρ ρ =
 ν− ρ ρ 
  
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1
0 0 1
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1
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c
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S
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c

−

 
 
 

− 
 =  
ρ 

 
 − −
ρ  

Variables V= (p, u, ν, e)T :
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ρ ρ 
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−

Γ β −ρ 
 

−  Γ − −β Γ= β = 
 ρ
 
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The above methods correspond to the diagonalised form:

( ) ( )ndiag , , ,n n nc c Λ = σν σν σ ν + σ ν − 

and the matrix of right eigenvectors:

( ) ( )
( ) ( )

( ) ( )( ) ( )( )
2

1 0

.

y x x

x y y

y x x y x y

u n u cn u cn

R n cn cn

c
H un n H c un n H c un n

α α 
 ρ α + α − 
 = ν −ρ α ν + α ν − 
 
 − ρ − ν α + + ν α − + ν Γ 

In the equivalent method in the conservative variables we use
the following matrix of left eigenvectors and it is given here for
comparison with matrix operators S-1.
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 − − − ν Γ Γ Γν Γ − −
 
 − −
 ρ ρ ρ
 =

− − ν Γ − − ν −Γν + −Γ + Γ
 ρ ρ ρ ρ 
 − − ν Γ + + ν −Γν −−Γ − Γ 
 ρ ρ ρ ρ  
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.
2c

ρα =

The following notations were used here:

( )2 2 2
, ,,

,E Em mE m
P c P H u Pρρ ρΓ = = + − − ν     (A.1)

with additional relationships ,,k i k
m k m mE

P m P
≠ρρ

= − .

The partial derivatives of pressure with respect to the components of
the vector of conservative variables in (A.1) are determined using a
specific equation of state, for example:

2 2
,,

1 1
, ,E mm E

e

p p E p
P u Pρ ρ

ρ ρ

 ∂ ∂ ∂= + + ν − = ∂ρ ρ ∂ρ ρ ρ ∂ρ  (A.2)

where arbitrary pressures in respect of the thermodynamic variables
at the boundaries of the cells are determined using the equation of
state in such a manner as to fulfil the relationship (2.20) [2.10],
[2.12]. In the partial case the equation of state of the ideal gas
equation (2.20) is fulfilled in the appropriate derivatives are
expressed by a means of mean values in respect of Roe. Using the
relationship between the arbitrary thermodynamic quantities [2.13],
the equations (A.2) may be written in the form suitable for using
the equation of state of any type.

TABLE OF NOTATIONS

p –pressure
h –enthalpy
v=(u,ν )T –velocity
ρ –density
e –internal energy per unit mass
E = ρ(e+1/2u2) –total energy per unit volume
h –specific enthalpy
H = h+1/2u2 –total specific enthalpy
U = (ρ,ρv,E)T –vector of conservative variables
V –vector of arbitrary variables

∇ k
–derivative in respect of spatial direction k

F k –conservative vector of fluxes corresponding
  to spatial direction
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F = (ρu ,p+ρu2,uH)T –the same, for a single spatial
measurement

Ak = ∂F k/∂∂∂∂∂U –Jacobi matrix of the vector of fluxes
(matrix of coefficients of quasilinear
form of the differential equations in
conservative variables U)

A –the same for a single spatial
measurement

M –Jacobi matrix ∂U/∂V
Bk = M–1AkM – matrix of coefficients of quasilinear

form of the differential equations in
variables V

U : U = U(V) –mutually unambiguous transformation
U :  Ω

U
→Ω

V ,  
where Ω

U
,Ω

V
∈ ℜ m

U τ
h
,  V τ

h
–net functions, determined on a
generalised spatial–time net ωτ×ω

h

U i
j

–component (i,j) of the net function
U τ

h
,  where i ∈ω τ, j ∈ω

h

U n
h

–set of values of the net function on
time layer i ∈ω τ

∆ –difference operator
κκκκκ –vector of net differences, determined

on the generalised spatial–time net
ωτ×ω

h

ksp
qr

 = ∆ sp
qr

U τ
h
=Us

q
–Up

r
–component of vector κκκκκ , where s,
p ∈ω τ, q,

 
r ∈ω

h

M –operator (4), and also the appropriate
net operator, acting on the vector of
net differences

M
j
n+1/2=M(V

i
n+1,  V

j
n)

M
j
n

+1/2
=M(Vn

j+1
,  V

j
n)

Φ,ΦU,ΦV,Φ ' –nonlinear vector net functions

ΦU(U τ
h
) = 0, ΦV(V τ

h
) = 0.. . –nonlinear vector net equations,

ΦU(U τ
h
) = 0 –set of all equations of the discrete

model, including discrete formulation of
boundary conditions, whereas
Φ(Un

h
,Uk

h
) = 0, where k<n ,  k ,  n ∈ω τ,

Φ
j + 1 / 2

–part of the approximation of fluxes of
local characteristic variables in TVD,
UNO schemes



98

Turbulence: New Approaches

m = (m
1
,m

2
,m

3
)T = (ρu,ρv,ρw)T –momentum per unit volume

z = (z
1
,z

2
,z

3
)T = ( )T

, ,u Hρ ρ ρ ( )T
, ,u Hρ ρ ρ –Roe parametric

vector
B,D,C –matrices in quasilinear representation of the

differences in respect of vectors F, B, V,
through differences of parametric vector z

Λ –diagonal matrix of eigenvalues of the Jacobi
matrix of the flux vector

F
j + 1 / 2

–numerical approximation of the vector at the
face of the cell

n  = (n
x
,n

y
,n

z
)T –unit vector of the normal in the designation

of the finite volume method
v

n
 = (v ,n) –velocity in the direction of vector n

σ –area of the face in the designation of the
finite volume method

c –adiabatic velocity of sound
γ –parameter of the adiabate in the equation of

the state of the ideal gas
Pρ = Pρ|

m,E
, P

m
 = P

m
|ρ,E

, P
E
 = P

E
|ρ,m

 –partial derivatives of pressure
in respect of the components of the vector of
conservative variables
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Here, we shall describe the technique of one-, two- and three-
dimensional decomposition used for parallelization of problems of
numerical modelling of hydro- and gas-dynamic flows. We present
the dependence of the resultant speedup and the efficieny on the
number of processes and the size of the grid for different types of
decomposition. We present measurements of productivity on an
example of the problems of numerical modelling of the uplift of a
near-surface thermal in a stratified atmosphere.

Introduction

The majority of problems of hydro- and gas-dynamics can be solved
explicitly in the quadratures. For an approximate solution of these
problems, it is necessary to select a suitable formalisation of the
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problem within which the computing experiments are carried out
[17]. Methods of numerical modelling have been used for a
relatively long period of time, but only recently the rapid
development of computing methods has made it possible to carry
out demanding calculations and obtain physically substantiated
results for three-dimensional problems. In addition to this, the
application of supercomputers and parallel programs increases the
productivity of calculations (and, consequently, accuracy) several
tens of times.

Supercomputers increase the productivity by parallel execution
of several processes of data processing simultaneously in different
processors. Specialised parallel algorithms and programmes, realis-
ing these algorithms, have been developed for this purpose. In
addition to this, not all algorithms permit parallelization, for example,
if an algorithm consists of a consecutive modification of the same
data, and the selection of the branch of the algorithm of the
iteration step depends on the initial data, then such an algorithm is
very difficult to parallelize. In cases in which we have a parallel
algorithm, there are often several alternative variants and,
consequently, it is difficult to select the most efficient algorithm.

It is possible to select two sources of parallelism in the problem:
parallelism with respect to control and parallelism with respect to
data. In the first case, there are several independent processes of
data processing, for example, calculations and communications. In
the second case, the data can be divided into independent parts and
they can be processed independently (all of them or part of them).
Parallelism with respect to the data is encountered more often in
practice. In the numerical methods of solution of differential
equations in partial derivatives, the parallelism forms in a natural
manner because of the presence of a computing grid, and each
node of the grid or a group of nodes are candidates for the data
which can be processed partially and independently.

The procedure

The majority of systems of equations of hydro- and gas-dynamics
can be represented in the form of a system of equations in partial
derivatives of the hyperbolic type [107]

t x y

∂ ∂ ∂+ + +
∂ ∂ ∂
W W W

A B
z

∂
∂
W

C =G

where x, y, z are any independent co-ordinates in the region; A, B,
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C are the Jacobi matrices (of the order n, where n is the number
of components of vector W) of the functions determining the flows
of the main calculated variables, in the general case, the matrices
A, B, C may depend not only on the co-ordinates x, y, z but also
on the solution vector W . We are not interested in the splitting
scheme, a specific calculation method, the type of coordinate or
even the grid template for realisation of this method, because the
general procedure does not depend on these methods. The region
of application of the decomposition procedure described below
includes all  grid methods of solving hyperbolic systems of
equations.

The characteristic feature of the hyperbolic system of equations
is that their solutions have a locality property, i.e. during finite
time τ  the variation manages to spread over the distance τ ·max
(|λ A

k
|), τ ·max (|λ B

k
|), τ ·max(|λ C

k
|) along the axes x, y and z, where

λ A
k
, λ B

k
, λ C

k
 are the eigen numbers of the matrices A, B, C. Thus,

restricting the step with respect to time τ , corresponding to one
iteration of the numerical method, using the Courant condition

( ) ( ) ( ), , , 
max max max

yx z

k k k

hh hτ ≤ τ ≤ τ ≤
λ λ λA B C where h

x
,  h

y
 and h

z
 are

the dimension of the cell, we can guarantee that the effect of the
change of the solution in one cell will propagate during this time τ
only to its adjacent cells (Table 2.6). Thus, almost any division of
the calculation region into groups of adjacent nodes will correspond
to the property of parallelism with respect to the data.

Since the calculation region is presented in most cases in some
co-ordinates of a rectangle, a parallelepiped or a region restricted
by sections, parallel to the coordinate axes, the most suitable division
for realisation is the division into regions representing identical
rectangles/parallelepipeds. Figure 2.15 shows one-, two- and three-
dimensional decomposition of a three-dimensional region, i .e.
division into rectangular regions with respect to one, two or three
co-ordinates, respectively.

Each such parallelepiped can also be processed by the same
procedure, simultaneously with others, in a separate process. In
reality, cutting out such a parallelepiped represents the separation
of several terms of a large cycle of treatment of the points of the
region on an individual processor.

The points directly in the vicinity of boundary S
1
 of the division

region U
1
 (Fig.2.16) are calculated using a general scheme by
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adding additional points Br
1
, situated outside the region U

1
, as it is

carried out for calculation of the boundary points of the main
divided region U by introducing additional points B

0
l . A difference

Fig.2.15. One-, two- and three-dimensional decomposition of the three-dimensional
integration region.

Table 2.6

noitisopmocedlanoisnemid-eerhT

N 1 8 72 46 521

T (c) 57.23 503.4 875.1 617.0 734.0

S 1 16.7 67.02 57.54 59.47

E 1 159.0 867.0 517.0 006.0

noitisopmocedlanoisnemid-owT

N 1 9 51 46 001 441

T (c) 57.23 159.3 695.1 098.0 286.0 365.0

S 1 92.8 25.02 08.63 30.84 81.85

E 1 129.0 128.0 575.0 084.0 404.0

noitisopmocedlanoisnemid-enO

N 1 8 42 06 021

T (c) 57.23 573.4 057.1 489.0 576.0

S 1 94.7 27.81 92.33 25.84

E 1 639.0 087.0 555.0 404.0
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Fig.2.16. Data exchange scheme.

is in the determination of the values of the calculation components
at these outer points Bl

0
 and Br

1
:  for the outer boundary of the

divided region S
0
 they are determined by some method, on the basis

of the determination of the boundary condition; for the points,
geometrically falling into some other region of decomposition U

2
,

the values of the calculated components are taken (copied or
approximated, taking their values into account) from the process
responsible for the portion of the data.

Here, we require firstly the synchronisation of the processes
realised in different processes. Secondly, i t  is necessary to
exchange the data, processed in different processes – either
directly through the common shear memory, or by some method of
inter-process exchange of the data, for example, by sending
messages. Figure 2.16 shows by the dotted arrows the
corresponding exchanges between the processes. This scheme is
not the only one possible. For example, it is impossible not to have
doubled cells, and exchange the values of the flows to the surfaces
S

1
, S

2
, etc. This scheme was selected because it enables calculation

of each cell  to be carried out in the same manner (in a
homogeneous manner). In addition to this, it should be mentioned
that the number of fictitious cells can be varied depending on the
scheme (usually, the number corresponds to the order of the
scheme).

The main processor time is of course outside the calculation of
components in the cells.  Nevertheless, with an increase in the
number of decomposition regions, a significant role is played by the
time used for the exchanges between the computing nodes. The
number of exchanges for each type of decomposition and the ratio
of the time, used for the exchange, to the entire processing time
of the programme will be evaluated.

Let it  be that the number of cells of the region C  = K3 (the
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region – a cube with a rib of length K),  and in this case K  is
divisible by the number of computing nodes (processors) N, and
N = M2 = L3. Consequently, the region can be divided by (N – 1)
parallel planes into N identical layers in one-dimensional decompos-
ition, 2(M – 1) planes ((M – 1) parallel to the plane XY and (M –
1) – to the plane exit) into M 2 regions for two-dimensional
decomposition, 3(L – 1) planes into L3 regions for three-dimensional
decomposition. Each constructed region contains the same number
of cells C/N and, consequently, the time used for computation by
the calculation scheme coincides for all  three types of
decomposition. However, the number of exchanges N

comm
 is proport-

ional to the total area of the surface of the planes of the section
(with the proportionality coefficient 2qK2, where q is equal to the
number of calculated components multiplied by the number of
fictitious cells along the same direction), differs and is equal to

( )3 22 1q C N −  for unidimensional decomposition, to ( )3 24 1q C N −

for two-dimensional decomposition ( )3 2 36 1q C N −  (the exchanges

into both sides are taken into account).

Evaluation of efficiency

The time of a single iteration of the program T consists of the time
required for calculations of the calculated components in all cells
T

calc
 and the time used for inter-process exchanges T

comm
. It  is

assumed that the calculation time in a single cell is equal to τ
calc

,
and the duration of a single exchange is τ

comm
. Consequently, the

duration of operation in a single processor computer T
1
 = Cτ

cals
, and

in a multiprocessor with N  processors calc
comm commN

C
T N

N

τ= + τ ,

where N
comm

 is the number of exchanges which depends on the type
of decomposition. For the quantitative evaluation of the efficiency
of parallelization we shall use the following [238] characterics:

Speedup

1

( , ) ,NT
S N C

T
=

Efficiency
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( )
1

, .
·
NTS

E N C
N N T

= =

In the present case

comm comm

1
( , ) , ( , ) ,

1 · 1 ·

N
S N C E N C

N N
k k

C C

= =
+ +

where comm

calc

k
τ

=
τ

 is the ratio of the time of a single exchange to the

duration of a single iteration in a single cell. We use S
1
, E

1
, S

2
, E

2
,

S
3
,  E

3
 to denote the speedup and the efficiency for one-

dimensional, two-dimensional and three-dimensional decomposition,
respectively. Substituting the values of N

comm
, we obtain

( ) ( ) ( ) ( )1 1

3 3

1
, , , ,

1 1
1 2 1 2

N
S N C E N C

N N
qk qk

C C

= =
− −

+ +

( ) ( ) ( ) ( )2 2

3 3

1
, , ,

1 1
1 4 1 4

N
S N C E N C

N N
qk qk

C C

= =
− −

+ +

( ) ( ) ( ) ( )3 33 3

3 3

1
, , ,

1 1
1 6 1 6

N
S N C E N C

N N
qk qk

C C

= =
− −

+ +

The presence of non-zero k  causes that i t  is principally not
possible to achieve a linear speedup with respect to the number of
processes N at a constant size of the grid C.  For example, for
unidimensional decomposition, speedup S

1
 is generally always limited

by some constant (depending on C). However, in reality, since k
may be sufficiently small, in the sections of the values N and C,
used in practice, it is possible to ensure a large increase in speedup
which is efficiently approximated by the linear dependence, even
for unidimensional decomposition.

Since it is not possible to increase without limits the number of
decomposition regions (and, consequently, the number of the
processors), at a constant size of the grid, it is rational to discuss
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Fig.2.17. Graphs of the dependence of speedup S and the scaling coefficient E on
the number of processors N for k = 1/100, q = 2 * 6, at a constant size of the
grid C = 1003.

the dependence of the speedup on the number of processors N with
an increase in the size of the grid C(N) with increasing N.  For
example, for a linear increase of the size of the grid it is possible
to ensure the asymptotically linear speedup for three-dimensional
decomposition (in contrast to uni- and two-dimensional decom-
position).

Figure 2.17 shows the graphs (in different scales) of the
dependence of speedup and efficiency on the number of processors
for k = 1/100, q = 2 × 6, for a constant size of the grid of C =
100×100×100.
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The graphs show that for the values of N < 100, used most
frequently in practice, the two- and three-dimensional decom-
positions show an almost 100% linear speedup, and the
unidimensional decomposition lags behind by no more than 20%. For
N ≈ 1000 (this value is used less frequently but is still used in
practice), the speedup of the unidimensional decomposition amounts
to 70% of the theoretical possible value, and of the two-dimensional
composition to 10%. For N ≈ 10 000 (used only seldom in practice),
the speedup of the undimensional decomposition approaches its limit

3

1 2
as C

S
qk

= , that of the two-dimensional composition decreases by

20% in relation to the theoretically possible value, and of the three-
dimensional decomposition by 5%. It should be mentioned that in
all  l ikelihood (at the present time), the actual multiprocessors
system consisting of 10 000 computing nodes has a cluster
architecture in which the exchange time is considerably greater and
the nodes can be characterised by different productivity and,
consequently, more advanced models are required for evaluating the
productivity of such a scheme.

We shall also present graphs (Fig.2.18) of the dependence of
speedup and efficiency on the number of processors for the same
values of the parameters as in the previous graphs, and the linear
increase of the size of the grid C(N) = cN, c = 125.

In the present case, for three-dimensional decomposition,

efficiency E
3
 is even limited at the bottom by the value 

3

3 6

c

c qk+ .

Fig.2.18. Graphs of the dependence of speedup S and the scaling coefficient E on
the number of processors N at the same values of parameters as in Fig.2.17, and
for a linear increase of the size of the grid C(N) = cN, c = 125.
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Programs

Within the framework of investigations into numerical modelling
[137], carried out at the Institute for Computer Aided Design of the
Russian Academy of Sciences, a package of functions was
developed for realising a sequential programme, developed for a
single processor computer, with minimum losses for the modification
of the programming code. The packet uses a standard exchange
interface of MPI messages [230], so that i t  can be used in
different platforms, and the control of different operating systems,
without modifying the program code, written in the language C. The
programming model SPMD (Single Program, Multiple Data) is also
used which employs simultaneously several copies of the same
program parallel in different processors. The advantage of this
model is that it is necessary to maintain only one version of the
programming code which, in addition to this, is independent of the
number of processors and is specified as a parameter. It is possible
to start the resulting programme, consisting of a single process
(being a master). It is also possible to start a programme on a
cluster of machines with different operating systems and MPI
realisations. The package was tested on platforms Intel, Param,
MVC-1000, with operating systems Windows, Solaris, Linux. The
following MPI realisations were used: WMPI, MPICH.

When using the package, the external structure of the programme
does not change, and in addition to this,  the majority of the
programming code remains sequential as previously. Only the
separated number of areas in the programme changes. In these
areas it is necessary to expand the logics of operation of a normal
programme in comparison with the logics of operation of a single
process of a parallel programme (with its part of the distributed
data):

• Initiation (function initparallel()) and completion (function
finishparallel()) of the parallel part of the programme in the ini-
tialisation process and completion of the entire programme;

• Expansion of the part of the net template (the scattergridarray()
and exchange gridboundary()) functions in the process of initiali-
sation of the programme;

• Expansion of part of the calculated data (functions
scatterdataarray()) in the process of initialisation of the pro-
gramme;

• Gathering of the calculated distributed data (function
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gatherdataarray()) in the process of outputting the results of com-
putation;

• Selection of the minimum (function getglobalminimum()) step with
respect to time amongst the steps determined from the Courant
condition with respect to the part of the calculated data;

• Summation (function getglobalsum()) in the process of counting
the integral values of the loads of the retention;

• Exchange of doubled overlapping parts of the calculated data
(function exchangedataboundary()) in the process of setting the
boundary conditions.

The programme carries out decomposition with respect to these
spatial variables leading to the volume of communications of the

order 3 N , instead of N in decomposition with respect to single

spatial variables. For the exchange of data stored in the program
memory with a specific template (not in a sequence) and also for
abstracting from the features of the template and the exchange data
we used the so-called user types of data MPR [230]. These types
of data, describing the template, are determined in the localised
block in the process of initialisation of the programme and can be
easily exchanged. In the exchange functions, the type of data is
used as a parameter and makes it possible to realise the logics of
exchange in an abstract manner, for example, exchanges in
different directions are carried out by the same programme code.
For application in different types of communications – master-slave,
processes – neighbours and networks of processes – several types
of data have been determined:

• the type describing collective calculation variables (used only on
the master-processor);

• the type describing local calculated variables;
• the types describing the overlapping parts of the calculated data

(in respect to three different directions x, y, z).

A standard blocking sample regime is used for the master-slave
communications. The master-process on its own distributes data not
through sending the blocking sample but by means of direct copying
of the data. For communications between the processes-neighbours
it is necessary to use optimised combined operations of sending and
receiving a message produced for several platforms using the
SendRecv non-blocking operation and for some others using Send
and Recv alternation.
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Calculation characteristics and the results of numerical
modelling

The programme was tested on a problem of lift of a surface thermic
in a stratified atmosphere. This problem has been examined many
times in the literature [7,74], and similar results have been obtained
independently. We shall  present the results obtained using the
parallel programme described.

We shall examine a problem of the lift of a thermic – a heated
cloud of gas having the form of a hemisphere, radius R = 1360 m.
The temperature in the centre of the cloud T

0
 = 7085 K decreases

exponentially to the boundary of the cloud 
2

0 2exp ,
r

T T B
R

 
= − 

 
B=1.

The atmosphere is modelled by a linear decrease of temperature to
the level of the stratosphere at 11 km, the pressure on the surface
of the earth is 1 atm, the temperature on the surface of the earth
288 K. Figure 2.19 shows the distribution of the cloud of the
impurity, formed into a ring, at times t = 0, 1, 2, 3, 4, 5 min.

The calculation characteristics of operation of the real
programme will be described on a testing problem. Measurements
were taken in an MBC-1000-M supercomputer with 768 processors.
A series of measurements were taken for unidimensional, two-
dimensional and three-dimensional decompositions. The number of
processes in all three cases was approximately the same. Figure
2.20 gives speedup and efficiency, determined from the time of a
single iteration, on a grid with a size of 1203.

The data in the graphs have the following form (Fig.2.20).
The graphs show that the effect of the type of decomposition on

the speedup and efficiency is already strong at N > 25.
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The problem of an explosion of a supernova has not as yet been
solved (see, for example, a review by A. Mezzacappa [200]).
Calculations were carried out mainly for unidimensional models and
this has resulted in physical restrictions in the models of supernova
explosions. Recently, in studies of a group of the Institute of
Applied Mathematics of the Russian Academy of Sciences, the
authors proposed model of the explosion of a supernova based on
the development of large-scale convective instability [117,122],
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based on the concepts proposed in [59,150].
This programme requires a numerical solution of three-

dimensional equations of hydrodynamics with a good spatial
resolution. As shown in [177], even for an approximate description
of the process, i t  is necessary to use a difference grid with a
resolution of 50×50×50 only for the central region. This grid is
insufficient for more matched description of the processes taking
place. However, even under these conditions, the problem cannot
be solved because of the more-or-less acceptable computing time,
not talking about the need for checking several variants of the
calculations. In addition, the calculation conditions have become

Fig.2.19. Distribution of an impurity cloud (the isosurface of impurity concentration
is presented) rolled up into a ring, at times t = 0, 1, 2, 3, 4, and 5 min.
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more exacting in the case of expansion of the computing grid to the
range of low densities (for example, to densities of ρ ≈ 108 g/cm3).

To solve this problem, it is necessary to use parallel computers.
In this section, we present the preliminary results of calculations
using the technology of parallel computations. We also describe the
methods developed for parallel computations.

Description of the algorithm with embedded grids

In the numerical modelling of convection, we solved three-
dimensional equations of hydrodynamics with gravitation. Degenerate
relativistic electrons and non-relativistic nucleons provide a
contribution to the equations of state. The initial equations were
written in the divergent form:

· .
t

∂ + ∇ =
∂
U

F S

where U  = (ρ,  ρu ,  ρν ,  ρw ,  E) is the vector of conservative
variables, F is the vector of fluxes, S = (0, ρg

x
, ρg

y
, ρg

z
, ρug). The

calculation region was covered by three levels of the embedded
rectangular grids with a homogeneous step in space (Fig.2.21). In
numerical calculations on each embedded grid we used the explicit
conservative TVD difference scheme of the Godunov type with a
second order with respect to space and time:

Fig.2.20. Speedup S and scaling coefficient E, determined by calculations of the
problem of the liftup of a thermal in an MBS-1000 supercomputer on a grid with
a size of 1203.



112

Turbulence: New Approaches

Fig.2.21. Embedded grids.
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The flows through the boundaries of the grid F ,  G ,  H  were
calculated using Roe’s scheme and the local-characteristic
approach. For example, in one direction:

( )1/ 2, , , , 1, , 1/ 2 1/ 2 / 2,i j k i j k i j k i iF F F R W+ + + += + +

where R
i+1/2

 is the right eigenvector of the Jacobi matrix A = ∂F/
∂U, and W

i+1/2
 is the vector of numerical dissipation. The second

order with respect to time was ensured by using the Runge–Kutta
method, retaining the TVD property of the difference scheme. The
stability of numerical computation was guaranteed using a single
Courant number equal to 0.1 in our calculations for all embedded
grids. In this case, one step in respect of time on a course net
corresponded to two steps on a finer net. The boundary values of
the calculated quantities for each embedded grid, required for
continuous computing, were determined by monotonic linear
interpolation of the values of the quantities from a coarser grid. To
determine the values of the cells of the coarse grid, covered by the
cells of a finer grid, we used a simple averaging procedure. To
maintain the conservative nature of the calculations, the fluxes
through the cells of the coarse grid, bordering with the cells of the
finer grid, were replaced by the fluxes computed on the embedded
grid.
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Fig.2.22. Distribution of the lattice in
the processors.

At the initial moment of time, the initial perturbation of the
entropy of the Gaussian type was specified for the centre of the
calculation region:

( ) ( )0 0 0 0 0' exp / | | , ' 3 , 0.S S S S b S S r= − − − = =r r

The boundary conditions were specified as historic, i.e. the initial
values of all quantities were retained in respect of time at the
boundary.

Description of the parallel algorithm

The most important moment in the design of the parallel algorithm
is the selection of the scheme of distribution of the data between
the processes of the parallel programme. We selected a distribution
of the data assuming that the programme, realising the algorithm,
is applied on a uniform parallel computing system and that only one
process of the parallel programme will  be realised in each
processor (therefore, they will not be described in this book).

The processes of the parallel programme are logically examined
as a three-dimensional net with three co-ordinates I, J and K. To
ensure the optimum distribution of the load between the processes,
it was decided to distribute all the nodes of all grids uniformly in
the lattice of the processes (Fig.2.22). In this case, a parallelepiped
of the nodes of the grid of the same size was distributed on each
node of the lattice of the processes. Figure 2.22 shows the
projection of the distribution of a 12×12×12 grid in the nodes of the
lattice of the processes with a size of 4×3×1. A 3×4×12
parallelepiped is distributed on each process.
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It should be mentioned that the algorithm of solving the problems
based on the five-point template with respect to each coordinate,
i.e. for the calculations in every node of the net it is necessary to
know the values of the variables into adjacent cells of the grid with
respect to all six directions. Figure 2.23 shows in greater detail one
of the nodes of the lattice of the processes. The broken lines
indicate the nodes of the grid distributed on the given process, and
a thick line indicates the nodes of the grid containing the data
required for calculations in the given process. Figures 2.23 and 2.24
show that the boundary cells (not included in the computing region
of the processor) are either included in the composition of the
boundary layer of the entire grid or relate to the computing region
of the adjacent processor. In the second case, the data of these
cells will be regularly renewed in the computation process, carried
out in parallel by all processors, and the new values should be sent
to all who require these data for work. Thus, communications are
essential in any two adjacent processors (one of the co-ordinates
differs by unity).  To increase the operating speed of the
programme, it would be necessary to organise transfer (if allowed
by communication equipment) in such a manner that they take place
in parallel, i.e. the communication time during the calculation period
depends only on the maximum volume of a single message between
any two processors, and there is no explicit dependence of the
number of processors. On the basis of these considerations, the
communications were organised as follows: the passage of the net
on each dimension was carried out in sequence and in two iterations.

Fig.2.23. Data for a single processor.
Fig.2.24. (right) Relationship between lattices and computing space.
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In the first change, information was exchanged by the processors
with the front neighbour with even numbers, in the second iteration
the processors with the odd numbers.

As already mentioned, each grid was projected separately onto
the entire computing space (Fig.2.24). This approach enabled the
most uniform distribution of the computing load between the
processors but this was accompanied by the formation of additional
transfers in two functions of the programme. One of them
(Interpolation) is responsible for the determination of the boundary
conditions on the embedded grid (the data in the cells with the
boundary layer around the grid). The values were calculated on the
basis of the given cells, containing the boundaries of the embedded
grid, and the adjacent cells. The computed values must be attributed
to the corresponding variables of the grid of the cells of the
boundary layer and this requires sending these values.

The second function (Overlaid) is responsible for averaging. In
each iteration, finding a more detailed solution on the embedded
grid, it is necessary to improve the accuracy of the results in the
corresponding physical region on the grid-carrier, i.e. we average
out the values of four (eight in the three-dimensional case) cells of
the embedded grid, belonging to one cell of the grid-carrier, re-
determine it, and for this purpose the average value must often be
sent to the second processor (Fig.2.24). A similar procedure should
be carried out with the entire embedded net but this results in a
large volume and number of endings. The values of the cells of the
given region of the net-carrier are not important because in every
step they will be re-determined by averaging. The important values
are only those in the two extreme cells, obtained by averaging,
because they are required in computing the variable cells, bordering
with the region covered by the embedded grid. Taking this into
account, when writing the parallel programme it was decided, in the
averaging function, to restrict ourselves to calculations and sending
only the given outer cell.

There is another basic function of the programme-function of
determination of the step in respect of time. For this purpose, it is
necessary to analyse the values in all cells of the net and on the
basis of analysis find the minimum value of the step which is then
used for further computations. A specific value is obtained in every
processor. These values must be collected in a single processor,
select the minimum value and sent out again. In this case, it is not
possible to organise the parallel exchange of data, but when using
the sendings in respect of the binary tree it is possible to shorten
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greatly the communication time of the given function – it will be
proportional to log

2
P.

Justification of the selection of the instrumental means for
realisation of the parallel algorithm

The principal problem in the realisation of the complex parallel
algorithm is the problem of the selection of the instrumental means
of realisation. These means can be divided into two groups – with
explicit and implicit parallelism. The first (for example MPI [198]
and mpC [184]) required the programmer to carry out parallelization
of the data and computations. For the second (high-level languages
of parallel programming, for example HPF [198] and Fortran DVM
[73] carry out this automatically often using additional information,
supplied by the programmer. At first sight, the second approach is
preferred but practice shows that the parallelization is a very
complicated task and even the most advanced HPF compilers
generate programmes whose speed is several times slower than that
of their MPI analogues [218].

At the present time, the MPI is most popular in programming
systems with distributed memory (and this includes the majority of
Russian high-productivity parallel computing systems). However,
differing low level means and development using this system of the
realised task requires a very high qualification of the programmer
and is time consuming.

The Institute of System Programming of the Russian Academy
of Sciences have developed a language of parallel programming
mpC which, being a high level means, enables programmes to be
written that are comparable in efficiency (a difference of 5–10%)
with the most advanced packages of applied programmes, developed
by means of MPI on uniform computing systems and greatly exceed
them in respect of productivity on non-uniform computing systems
[181]. The language mpC is a two-step expansion of the C
language. In the first  step, language C has been expanded by
introducing vector operations. This is the expansion – C[], which
is equivalent, in respect of the computing power, to Fortran 90
language. In the second step, the language C[] was expanded by
the concept of the computing space which the programmer can
control in the same manner as when controlling the memory in
language C. Language mpC is characterised by a high expressive
power. For example, the application of vector operation in
programming the examined algorithm has made it possible to reduce
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the size of the programming code by approximately a factor of
three and greatly shorten the realisation time.

Analysis of the efficiency of the algorithm

One of the main characteristics of the parallel algorithm, solving the
problem of the characteristic size n  on P  processors,  is i ts
efficiency determined from the following equations [161]:

seq ( )
( , ) ,

· ( , )

T n
E n P

P T n P
=

where T
seq

(n) is the time of solution of the problem using a
sequential algorithm; T(n, P) is the realisation time of the problem
by means of the parallel algorithm on P processors.

If the efficiency depends on n and P only through their ratio, the
parallel algorithm is referred to as scaling. In other words, the
efficiency of application of the scaling algorithm remains constant
with the proportional variation of the dimension of the problem (in
the present case n = N3, where N is the linear size of the cubic
net) and the number of processors P.

We shall estimate the efficiency of our parallel algorithm within
the framework of several assumptions. Initially, we shall assume
that the communication equipment sustains the parallel transfer of
data. When evaluating the sending time we shall regard this time
as directly proportional to the volume of the transferred information;
this is accurate only if the length of the reports is relatively large.
For simple evaluation, we shall also assume that the processes form
a cubic lattice and that a cubic piece of the grid is projected onto
each processor. The programme consists of four main functions.
We shall examine each function.

The first is a function directly occupied by the calculation of the
values of the required variables of the problem in the next step in
respect of time. Since the values are determined in every cell, the
duration of calculations by this function is proportional to the
number of cells in the cross-hatched region in Fig.2.23 (with a
correction for the three-dimensional form of the problem), i.e.

3

1·ex
s

N
T

P
= α  (sector N×N×N is counted on P processors).

After carrying the calculations, i t  is necessary to send the
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restored values to the adjacent processor. Examination of these
sendings of the algorithm presented in the description shows that
the volume of the transferred information is proportional to the area
of the surface of the cube of the computing region of the processor.
Thus, including all  numerical coefficients in a proportionality
constant, we obtain the following equation for the sending time of
this function

2 2
com

1/3 2 /3· · .s

N N
T C C

P P

 = =  

The second function (Interpolation) is the determination of
boundary conditions on the embedded grid. Since we determine the
values of the variables in the cells of the boundary layer and their
number is proportional to the area of the layer (in the three-
dimensional case), then

2
ex

1 2/3
· .I

N
T

P
= β

The upper estimate for the sending time in the given function is:

2
com

1 2/3
· .I

N
T D

P
=

The third function is the averaging function (Overlaid). As in the
Interpolation function, we examine only the outer cells and
consequently, we obtain:

2
ex

2 2/3
·O

N
T

P
= β    and   

2
com

2 2/3
· .O

N
T D

P
=

The last function is the function of determination of the step in
respect of time. Since all cells are analysed, then as in the first
function
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3
ex

2 · ,T

N
T

P
= α

and the communication time has the form

com
2 2·log .TT A P=

We assume that the time of execution of the parallel programme
is equal to the sum of the computation and communication times:

ex com( , ) ( , ) ( , ).T n P T n P T n P= +

The total computation time is

( ) ( )

ex ex ex ex ex ex

3 2 3 2
1 2

1 2 1 2 2/3 2/3
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= + + + + =
α = α + α 
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The total communication time is

2
com com com com com

1 2 22 /3( , ) ( )· ·log .S T I O

N
T n P T T T T C D D A P

P
= + + + = + + +

The total volume of the computations is the same for sequential
and parallel algorithms. Consequently

ex 3 2
seq 1

( ) ( , ) · · .
P

T n T n P N N
=

= = α + β

In our problem  β < α  and N �  1, and consequently
3

seq ( ) · .T n N≈ α

Therefore, the expression for the efficiency of the parallel
algorithm has the form
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We examine the problem for scalability. For this purpose, as
mentioned previously, it is necessary to examine the behaviour of
the efficiency with the proportional variation of the dimension of the
problem N3 and the number of processors P .  We set

3 const
P

N
= µ = . Consequently, the expression for efficiency has the

form:

1/3
2

( , ) .
· · ·log

E n P
A P

α=
α + β µ + µ

It  may be seen that,  generally speaking, the problem is not
scalable. However, it  should be mentioned that log

2
P  is a very

‘sluggish’ function at high 2(log ) 1
: 0Pd P

P
dP P

→∞≈  → .  Corresp-

ondingly, the problem may be regarded as scalable at high P. This
conclusion is in good agreement with the results obtained by the
authors in analysis of the realisation time of the programme. In
particular, we measure the time of realisation of the problem on the

condition that 
3

const
N

P
= . The previous considerations show that

this time is determined by the following equation:

1/3
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P P

A P
N N
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 α + λ +  
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The results of the calculations, carried out in MPC-1000M are

presented in Fig.2.25. Here 
3

4096
N

P
=  or, in other words, 4096 net

cells per processor. The graph shows the logarithmic dependence.
This is in agreement with our estimates and it may also be seen that

Fig.2.26. Dependence of the speedup on the number of processors of MBC-1000M
supercomputer for two grids: 603 and 1203.
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Fig.2.25. Dependence of the execution time on the number of processors of MBC-
1000M supercomputer (number of cells per processor N3/P = 4096).
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this realisation time is practically constant, i.e., the algorithm and
realisation are scalable at:

2 2

1/ 3 2/3

1,

1.

P

N N

P P


   =    

�

�

It should be mentioned that the second restriction corresponds
to the condition of applicability of our estimates (the processors
exchange information in large packets).

On the other hand, it should be mentioned that at low P, the
efficiency tends to unity. This is confirmed by the graph (Fig.2.26)
of the dependence of the speedup of the programme with the
number of processors P on which the programme is realised at the
dimension of the problem of N = 60 and N = 120.

Fig.2.27. Distribution of the density of matter and the field of velocities in explosion
of a supernova at t = 0.00432 s, determined in computing experiments on 100
processors using embedded grid technology
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These methods were used to carry out preliminary calculations
of an explosion of a supernova. Figure 2.27 shows the distribution
of the ejected matter in the form of two jets and the appropriate
field of velocity of the matter in the process of development of large
scale convection. The results correspond to the moment of time
t = 0.00432s. This calculation requires ten minutes of computing in
the supercomputer of the Russian Academy of Sciences using 100
parallel processors.
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We shall present several results of calculating the movement of
ordered large scale turbulent structures.

As an example of calculating the real turbulent wake behind a
moving solid, we examine the problem of the flow of a compressible
gas around a circular cylinder at supercritical speeds (calculation
schemes, methodological computations and some of the results
obtained in this region were described in [10,19]). It is interesting
to note that in numerical modelling of the flow of a subsonic
supercritical flow of a compressible gas around a circular cylinder
( M∞  > crM∞  = 0.4, γ = 1.4) there is a distinctive possibility (both
in the case of viscous and non-viscous gas) of existence of two
detachment regimes: symmetric stationary and non-symmetric
periodicity. There is agreement with the experimental data
[12,13,81]. We shall pay more attention to these results obtained by
A.V. Babakov ([9,10,21] et al.).

Figure 1.8 shows the experimental [236] patterns of the flow of
a compressible gas around a circular cylinder at different Mach
numbers M∞.The Reynolds numbers in the examined experiments
are in the range 1.1×105–1.35×106 and correspond mainly to the
turbulent regimes of motion. These experimental data indicate that
the large scale vortex structures (reflecting mainly the wave
process) exist on the background of fine-scale turbulence. It is not
possible to take the latter adequately into account. However, as
reported in [12], ‘investigations carried out in the last 20 years in
the area of turbulence have resulted in a growing acceptance of the
fact that the processes of transfer in the majority of turbulent shear
flows are determined by the large scale vortex movements’ and ‘the



125

Selected results

direct link between large- and small-scale turbulence does not have
any controlling effect on the main characteristics of the
macrostructures’.

Taking into account that at high Reynolds numbers the convective
transfer in a considerably greater part of the flow region prevails
over viscous transfer (with the exception of the regions of the type
of boundary layers), and examining the problem of modelling flow
‘as a whole’, we shall use as a basis the complete non-stationary
model in the form integral laws of conservation (see equation (1.14)
in Chapter 1) for a non-viscous compressible gas (Euler model). The
realisation of the model of the viscous gas presents no principle
difficulties.  However, as already mentioned, the adequate
application of the model of the viscous gas at high Reynolds
numbers from most stationary flows with large scale structures in
currently available computers is, in our view, difficult, not only
because of technical reasons. In addition, the problem with practical
description capacity for the limiting developed turbulent flows
remains open (it is necessary to take into account all scales of the
phenomenon, up to molecular).

Figure 3.1 shows stationary solutions for the flows of a
compressible gas around the cylinder on subsonic and sonic
regimes. For the numbers M∞<Mcr

∞ the numerical solution is
continuous (the molecular mechanism of detachment and falling
jumps are not present) – this type of flow corresponds to the
potential one. At M∞ > Mcr

∞, there are local supersonic zones with
a closing jump which results in detachment of the flow (this is in
complete agreement with the experimenting [236]) and,
consequently, the bottom part is characterised by the formation of
the zones of reciprocal–circulation flow (the solutions, in particular,
were obtained on the condition of the flat symmetry of the flow).
The stationary nature of the presented solution is not disrupted even
in integration for long times in the entire region around the cylinder
without formulation of the symmetric conditions. Evidently, this is
explained by the symmetry of both the computation algorithm and
the initial and boundary conditions. In all likelihood, the errors of
the purely scheme and computing origins are not capable of causing
an instability of the stationary solution which in the natural
conditions is easily disrupted by natural perturbations.

In this case, i t  is necessary to examine the problem of the
possibility of existence of stationary detachments in natural
phenomena and full-scale experiments. In our view, the situation in
this case is very similar to the current fashionable direction of
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mathematical description of the loss of stability associated with
strange attractors where ‘the stationary regime remains theoretically
possible, but becomes unstable and, therefore, is not observed
closely’ [120]. In the examined phenomena, the stationary flow can
be, in all likelihood, interpreted as a metastable state unstable in
hydrodynamic sense, not realised in the natural conditions and being
very difficult to achieve in the experiments.

Experimental investigations [12, 13], carried out in a low-noise
aerodynamic pipe with an open part in the range of Re∞ numbers
from 2×103 to 4×104, in the conditions ensuring the absorption of

Fig.3.1. Stationary (metastable) regimes at different M∞. Instantaneous current lines
in the coordinate system connected with the body.
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acoustic perturbations (evidently, this was of controlling
importance), in movement of the model into the working part, the
‘aeolian tone’, characteristic of the stationary regime, disappeared.
Both in these experiments and in numerical calculations [11] there
was a large (approximately by a factor of 2) increase in the
coefficient of the wave resistance of the cylinder in transition from
the stationary regime to a non-stationary one (the mean value is
considered for the latter).

In the natural phenomena and in experimental investigations, the
heterogeneities of the flows and design special features lead to the
realisation of a stable periodic regime with a developed trail
[81,123,124,222]. In numerical modelling, these non-symmetric
perturbations do not occur (if they are not specially introduced).

In order to obtain a non-stationary regime in a numerical
experiment, the stationary state acted by means of short-term or
instantaneous perturbations, and the latter were of both physical and
purely computing nature. One of the types of these perturbations
modelled in principle a weak supersonic blow into the bottom part
of the cylinder in the sector 160° < ϕ  < 180°, acting for a short
(in comparison with the characteristic duration of the phenomenon)
period of time ∆t = 0.5. The second type of perturbations consisted
of ‘volitional’ rotation of the vectors of the speeds of the flow of
the stationary solution through the angle of 10° in the sector
120° < ϕ  < 240° of the bottom part of the flow. The third type of
perturbation was expressed by the simulation of the screen of the
form of the cylindrical arc 150° < ϕ < 180°, situated at a distance
of one gauge behind a cylinder and acting on the flow during a
period of time (∆t = 1).

It is important to mention that, in all cases, irrespective of the
type of introduced non-symmetric perturbation, the numerical
solution led to the same strictly periodic non-stationary regime. The
degree of perturbation of the flow affected only the time to
establishment of a new regime which was 20–100 relative units.
The resultant non-stationary periodic solution was again subjected
to these perturbations, but after a specific period of time it again
returned to the established periodic state,  and so on. The
‘independence’ of the examined flow from the initial data of the
type of perturbation and grids indicates in this case that there is a
sufficiently large reserve of the stability of the investigated flow
(within the framework of the model used). After establishing a
stable periodic regime, a decrease in the time step (for example,
by a factor of 10) and further integration for five periods also did
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Calculations [10] show that the minimum distance of the outer
boundary of the integration region should be 25 gauges. Further
numerical modelling of the vortex trail was carried out for M∞
values in the range 0.4–0.95 on a grid (60×90.3,100). The
investigated regime is characterised by descent of the vortex sheet
from the surface of the cylinder in its bottom region which during
its further evolution forms large scale vortex structures. The
position of the detachment point on the surface of the body in the
supercritical regime (for a circular cylinder M∞≈ 0.4) is determined
mainly by the compression shock closing the local non-stationary
supersonic zone. Practically in the entire period (with the exception,
possibly, of relatively short periods of time), only one point ϕ  = ϕω
with a zero tangential component of the speed is found on the
surface of the cylinder.  This point moves continuously on the
surface of the cylinder in the sector 180°–ϕ

0
<ϕ<180° +ϕ

0
, slows

down in the upper and lower positions and passes quite rapidly in
the vicinity of the point ϕ = 180°. Figure 3.2 shows the time
dependence of the coefficient of the lifting force of the cylinder in
the non-stationary regime for different values of M∞.

The experiment [123,124,222,236] shows that in the examined
range of the Mach number, the Strouhal number Sh = 2R/(TV∞),

not result in any significant changes of the flow characteristics.
This indicates that the resultant numerical results are not a
manifestation of the internal scheme effects. In the given series of
methodological calculations [9,10,21] the outer boundary of the
integration range was at a distance of 25–100 radii of the cylinder,
and the number of volumes-cells in the region was varied from 1200
to 5400. Some of the results of these investigations are presented
in Table 3.1.1

dirG 52.3,03×04 001.3,06×06
001,3.09×06

τ 500.0=
001,3.09×06

τ 5000.0=

C|xam
y
| 67.0 17.0 27.0 527.0

C
x

621.1 10.1 90.1 90.1

hS 232.0 232.0 442.0 142.0

Table 3.1

1 Notations of the grid parameters are as follows: (l × m , R
0
, R

1
), where l and m

are the number of divisions in respect of angular and radial coordinates; r = R
0
 is

the surface of the solid, r = R
l
 is the outer boundary
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Fig.3.2. Nonstationary regime. Behaviour of the coefficient of lifting force with
time: 1) M∞ = 0.5; 2) M∞ = 0.63; 3) M∞ = 0.7; 4) M∞ = 0.8.
Fig.3.3. (right). Nonstationary regime. Effect of Mach number (M∞) on aerodynamic
characteristics: C

x
, max |C

y
| and Strouhal number Sh.

where T is the period of the phenomenon, is in the range 0.18–0.24.
Figure 3.3 shows the numerical dependences on M∞ of the values
of Sh, the maximum value of the modulus of the coefficient of the
lifting force max |C

y
| and the mean (for the period) value of the

coefficient of wave resistance xC . For the maximum |C
y
| there is

an extreme value at M∞ ≈ 0.6.
In experimental investigations, special attention has again been

given to the visualisation of the flow as a means of examining its
structure [71]. In numerical modelling, the ‘visualisation’ of the flow
may be carried out using different procedures: in the form of
instantaneous flow lines in the co-ordinate systems moving with
different speeds in relation to the flow or in the form of isolines
of vorticity, density, pressure, etc. In this case, the vortex structures
existing in the flow are manifested in different manners. For
example, Figure 3.4 and 3.5 show the flow patterns in the form of
instantaneous flow lines for M∞ = 0.8 (∆t = 0.25T, T is the period).
In Figure 3.4, the instantaneous flow lines are depicted in the system
of the co-ordinates linked with the incident flow. This corresponds
to the photograph of tests on a ballistic track (developed vortex
structures, forming a vortex track, are clearly visible). Figure 3.5
corresponds to the instantaneous flow lines, depicted in the co-
ordinate systems linked with the solid – an analogue of the
photographs of the traces of impurity particles in an aerodynamic
pipe. Here, the vortex structures are manifested in the form of
wave-shaped motions of the media.
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Fig.3.4. Nonstationary wake behind a cylinder: M∞ = 0.8. Instantaneous lines of
current in the coordinate system connected with the incident flow.
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Fig.3.5. Nonstationary wake behind a cylinder: M∞ = 0.8. Instantaneous lines of
current in the coordinate system connected with the body.
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The patterns of the instantaneous flow lines depends strongly on
the speed of the co-ordinate system in which they are depicted. The
instantaneous flow lines are a peculiar visualisation of the flow
combined with a considerable amount of quantitative information on
them. However, there are considerable conceptual difficulties in
interpreting the relationship of the non-stationary patterns of the
flow lines with the actual flow patterns [71]. The patterns, invariant
in relation to the co-ordinate system, can be represented in, for
example, the form of vorticity and density isolines. Figures 3.6–3.8
show the isolines of vorticity for M∞ equal to 0.5; 0.6 and 0.7,
respectively. They show clearly the evolution of the wake behind
the solid with increasing Mach number M∞.The isolines of the
density correspond, as regards the structure, to the visualisation of
the experimental examination in the form of shadow photographs
(Fig.3.9). Visualisation of the flow makes it possible to determine
the geometrical dimensions of the vortex structures, the distance
between them and the speed of their motion. It can be seen that
the numerical experiment provides a very large amount of
information.

We shall now compare the results in greater detail  with the
experimental data [236]. For example, Figure 3.10 shows film
frames of the flows for M∞ = 0.64 ‘pasted in’ patterns of the flow
obtained by the numerical procedure (M∞ = 0.6) and selected, if
possible, in the phase and reduced to the same scale. Comparison
shows that the positions of the vortex structures and the geometrical
characteristics of the flow are in relatively good agreement. This
is indicated by both visual and quantitative comparison of the
calculated flow fields [9,10] with the experiments [236] (Re =
1.35×106), the values of the aerodynamic coefficients, the positions
of the points of separation and the nature of the behaviour of the
pressure along the surface of the cylinder [19]. For example, at
M∞ = 0.54, the experiment [81] gives Sh = 0.18, CH

x
 = 0.9 (CC

x
 =

0.34), and from the results of calculations in [9,10]  Sh = 0.178,
CH

x
 = 0.9 (CC

x
 = 0.45). Here Sh = D/TV∞ is the Strouhal’s number,

CH
x
, CC

x
 are the coefficients of resistance for non-stationary cases,

respectively.
To evaluate the reliability of the results, calculations were also

carried out for these problems with the introduction of a semi-
empirical (K – Θ) model of turbulence, where K is turbulent
energy, and Θ is the rate of dissipation [213]. The model makes it
possible to improve the accuracy of the integral characteristics and
evaluate the effect of small-scale ‘subgrid’ structures (which
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cannot be resolved directly) on the large-scale phenomena and
obtain certain energy characteristics of fine-scale turbulence.

The structure, the characteristics of the wake and the visual
pattern of the flow change only slightly (Fig.3.11). This also relates
to the drag factor of the body C

x
, whose value is controlled by the

Fig.3.6.  Isolines of vorticity in flow of a compressed gas around a cylinder:
M∞ = 0.5;  ∆t = 2.5.
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wave properties of the phenomenon. The application of the (K –
Θ) model (with turbulent viscosity) results in a change of the Sh
number in the range 10%, but as expected, decreases the amplitude
of pulsations of the parameters of the flow in the vicinity of the

Fig.3.7.  Isolines of vorticity in flow of a compressed gas around a cylinder:
M∞ = 0.6;  ∆t = 2.5.
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body because of the appearance of the turbulent boundary layer.
The flow in the vicinity of the body becomes more stationary and
this results in a small decrease of the lifting force coefficient C

y
.

The small quantitative variation of the flow parameters in the

Fig.3.8.  Isolines of vorticity in flow of a compressed gas around a cylinder:
M∞ = 0.7;  ∆t = 2.5.
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Fig.3.9. Isolines of density: M∞ = 0.8.
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near wake (with the exception of the immediate vicinity of the
body) indicates the weak dependence of the properties of the large
scale structures on the subgrid approximation (the nature of
dissipation, the presence of the turbulence model).  By direct
resolution it  is possible to ‘grab’ the main part of the energy
spectrum, situated in the low frequency and inertia sub-regions on
the scale of the wave numbers. This can be carried out on ‘real’
calculation grids and this also confirms the hypothesis on the
separation of large- and small-scale phenomena in maximally
developed turbulence.

The numerical experiment methods also made it possible to model
the trans-sonic regime, for example at M∞ = 0.9 (Fig.3.12) where
the vortex structures are formed behind the tail jump and not at the

Fig.3.10. Turbulent wake behind a cylinder. Comparison of experimental (a) [236]
and calculated (b) data.

a

b
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Fig. 3.11. Nonstationary wake behind a cylinder (M∞ = 0.6): a) instantaneous lines
of current, non-viscous model; b) instantaneous lines of current with introduction
of the K–Θ model; c) isolines of turbulent energy with introduction of the K–Θ
model.
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surface of the cylinder. In this case, the flow around the cylinder
is almost completely stationary (the vortex structures are detected
at a distance of more than 3 gauges behind the cylinder), and this
results in a decrease of max |C

y
|  with M∞ approaching the sonic

value (Fig.3.3). The non-stationary nature of the flow in the wake
results in particular in the situation in which the local supersonic
zones ‘breath’: Figure 3.13 shows isolines of local values of the
Mach number for M∞ = 0.7 for different moments of time. The
value of M = 1 is denoted by the thick line, restricting the local
supersonic zone.

It is interesting to examine the behaviour of the flow parameters
with time. For example, Fig.3.14 shows, for M∞ of 0.6 and 0.8, the
time dependence of pressure at different points of the cylinder
surface. Pressure pulsations are characterised by a high amplitude,
and for M∞ = 0.6 the maximum amplitude is found in the range
ϕ ≈110°, and for M∞ = 0.8 in the range ϕ ≈135°. The oscillations
of these functions in the flow are strictly periodic, but in addition
to the main frequency, harmonics with high frequencies are also
detected. Fourier analysis makes it  possible to determine the

Fig.3.12. Isolines of vorticity in trans-sonic flow around a cylinder (M∞ = 0.7);
a) experiment [236]; b) calculations.

a

b



140

Turbulence: New Approaches

amplitude of these harmonics. These facts indicate that in the
vicinity of the large scale ‘coherent’ structures there are also
pulsation fluctuations of different scales, whose average
characteristics should be determined.

The strict periodic nature of the numerical solution with time
makes it possible, having a sufficient number of ‘frames’ of the
flow for a single cycle, to separate from the solution the mean value
of the functions and their pulsation components at all points of the
integration region:

0

0

'( , ) ( , ) ( ),

1
( , ) ( , ) .

i i i

t T

i i

t

f x t f x t f x

f x t f x t dt
T

+

= −

= ∫
This processing of numerical information makes it possible not

only to obtain mean and pulsation components but also determine
moments for different functions:

Fig.3.13. Non-stationary local supersonic zones for different moments, M∞ = 0.7.

Fig.3.14. Pulsations of pressure on the surface of the cylinder: a) M∞ = 0.6, b)
M∞ = 0.8 (1 – ϕ  = 180°, 2 – ϕ  = 135°, 3 – ϕ  = 111°; angle ϕ  is counted from the
front critical point.
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0
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Some results of the appropriate analysis of the flows for M∞
equal to 0.5; 0.6; 0.7 and 0.8 are presented in Figs.3.15 and 3.16.

Figure 3.15 shows the isolines 
2

' '
ix xϑ ϑ  – analogue of the Reynolds

stresses, and Fig.3.16 – isolines of ‘pulsation energy’ '2
iϑ∑ . For

the ‘pulsation energy’ in the near wake there is one local maximum
situated behind the cylinder at a distance of r ≈ 3 which is almost
completely independent of the Mach number. Two extrema (max and
min), positioned symmetrically, are found for the ‘Reynolds stresses’
in the near wake. In addition to this, the examined functions have
local extreme values on the surface of the cylinder at the points
close to the position of the jumps closing the local supersonic zones.
In the same regions, at relatively long periods of time, the vortex
cover moves from the surface of the solid.

We shall  present results of another interesting numerical
experiment in which the motion of the cylinder (‘apparatus’) with
M∞ = 0.5 was accompanied by the appearance, in the wake, of a
screen (a ‘parachute’) in the form of an arc with 150° < ϕ  < 210°,
situated at a distance of seven radii behind the cylinder. After
approximately 100 periods, the flow was changed. In the vicinity
of the body, the oscillations in the flow weakened and the flow
became almost stationary, but more intensive (than prior to the
opening of the parachute) large-scale vortex structures (Fig.3.17)
formed behind the screen. In this case, the drag coefficient of the
cylinder–screen system increased by an order of magnitude in
comparison with a single cylinder.

Of considerable interest is the calculation of spatial-nonstationary
problems. Examination of the characteristics of these problems is
regarded as a basis for the systems of automated design of
complex technical structure. It is well known that because of the
‘non-adequate mathematics’, many technical projects using systems
for automatic control of processes have not been realised in
practice.

For example, the prediction of the field of speeds behind a ship
or calculation of the characteristics of an oscillating wing with a
finite dimension range in the liquid flow are very important practical
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Fig.3.15. Isolines of an analogue of Reynolds stresses 
2

' '
ix xϑ ϑ

problems, especially in the case of non-stationary motion regime.
Figure 3.18 shows the results of calculation of the spatial (3D)
flow around turn of a sheet (α (t) > 0) in the flow of an
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Fig. 3.16. Isolines of ‘pulsation energy’ '2
iϑ∑

incompressible fluid, calculated by V.V. Rykov [108]. Figure 3.18a
shows the formulation of the problem, Fig.3.19b, c the pattern of
the fields of speeds at different sections, y = const. The vortices
formed during rotation of the sheet, interact with the vortex wisps,
converging from the side edges, forming a complex pattern of the
flow in the turbulent wake behind the sheet.

Finally, Figs.3.19–3.21 illustrates some data obtained by
A.V. Babakov in examining the dynamic properties of an
‘automobile’ in the spatial configuration with a compressible gas
flowing around it. Figure 3.19 shows a fragment of the generated
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calculation grid, Figs.3.20 and 3.21 shows the patterns of the field
of speeds and isolines of pressure in the immediate vicinity of the
automobile. These results require a very detailed calculation grid
(~106 nodes). A.V. Babakov carried out these calculations in a
high-productivity multiprocessor computing system.

Thus, the problems of this class (macrostructure of detachment

Fig.3.17. Isolines of vorticity in movement of a solid with a ‘parachute’ (M∞ =
0.5).



145

Selected results

Fig.3.18. Rotation of a sheet of a fluid flow (3D): a) formulation of the problem;
b–c) vectors of velocity on the logarithmic scale in sections y  = const (b – y = 0,
c – y = 0.25).

flows of the compressed gas) are investigated on the basis of the
models of a non-viscous medium. The non-stationary Euler equations
(in the form of integral laws of conservation in the difference
representation with ‘rational’ averaging) ensure a correct descript-
ion of the mechanism, being evidently the main mechanism in
separation of this type for limiting flow conditions. As shown by
estimates, the scheme viscosity of the ‘difference Euler ’ in a
detachment zone is relatively low (and can be ‘controlled’) thus
ensuring the sufficiently adequate description of the flow pattern in
relation to the actual phenomenon. Comparison of the experimental
data shows that there is not only good qualitative but also
quantitative agreement between the results of physical and
numerical experiments.

a

b

c
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Thus, the average characteristics of the ordered large scale
structures for the limiting regimes of detachment have been
examined using dissipative linear models, obtained on the basis of
non-stationary equations of the ideal medium. This in complete
agreement with the methodology proposed by S.M. Belotserkovskii
and M.I. Nisht [31] in examining the detachment flows of the ideal
compressible fluid.

Fig.3.19. Spatial problem of flow around an automobile (fragment of the generated
calculation grid).

Fig.3.20. Field of velocities.
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1. The numerical modelling of the ‘stochastic’ (small-scale)
component of turbulence in the centre of the wake may be carried
out by a statistical method of the kinetic level. If the previous results
illustrated modelling of large-scale macrostructures of the flow, then
the statistical characteristics of the ‘turbulent’ background, forming
the centre of the wake (Fig.1.11) should be examined using the
Monte-Carlo procedures, constructing imitation models for appro-
priate kinetic equations. We shall  present here the approaches
developed by V.E. Yanitskii [24,33,131,132] with special reference
to the problem of the calculation of the breakdown of a turbulent
spot, examined as the cross-section of a wake.

Here, as in the dynamics of the rarefied gas (DRG), the problem
is solved on the level of the distribution function but it is now the
distribution of the instantaneous values of hydrodynamic velocity V
of the ‘liquid’ particle. In turbulence, the ideology of constructing
the computing process on the basis of the splitting method for
statistical approaches remains unchanged (in comparison with the
DRG problem). The particle is also characterised by the position
and speed, but now it is already a model of the liquid particle. The
difficulties in developing such a model are associated with the non-
stationary nature of this phenomenon and with the absence in
turbulence of the universial kinetic equation similar to the Boltzmann
equation in DRG. In principle, modelling can be carried out for
different types of kinetic equations. One of these attempts,

Fig. 3.21. Pressure isolines (C
p
 = const).
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following [131], will be demonstrated later. The main aim is to
maintain, when solving the non-stationary problem of turbulence, the
main principle of the method of direct statistical modelling [33]
writing them however, in different terms (Table 3.2).

2. The statistical method of the particles, described in [33], can
be strictly justified as the numerical Monte-Carlo method for solving
the problems, formulated on the basis of the Boltzmann equation.
One of the attractive qualities of this approach is its constructive
nature. Each procedure is easy to interpret physically. Naturally,
attempts are made to use similar approaches for modelling
turbulence (according to V.E. Yanitskii [131]).

An analogy between molar mixing in the turbulent flow and
molecular transfer in gases was already used by G. Bussinesq and
L. Prandtl for deriving the well-known equations of turbulent
friction. The Bussinesq equation

, ;T T

u
l

y

∂τ = ρν ν = ν
∂

where the random quantities l and v are the length of mixing and
the pulsation speed of liquid particles (moles).

The Prandtl equation

2, .T T

u u
L

y y

∂ ∂τ = ρν ν =
∂ ∂

Table 3.2

Particle

Distribution
function

Moments and
macroparameters

Model of the atom:

r – position
c –  gas velocity

Single-particle:
f = f (t,r,c)
∫ f dc =  – density

Velocities:
ρ–1 ∫cf dc = u –
gas velocity
(c–u) – thermal velocity

Model of liquid volume:
x – position
V – instantaneous
velocity

Single-point
f = f (t, x, V)
∫ f dV = 1 – normalisation

Velocities:
∫Vf dV = u – mean flow
velocity
(V – u) – pulsation velocity

  Object    DRG     Turbulence












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Developing this analogy, it is natural to assume that the chaotic
motion of liquid moles in the turbulent flow is governed by some
kinetic equations for the density f(t,x ,V) of distribution of the
probabilities of the instantaneous values of the speed v of the mole
at a given moment of time t at point x. The problems of describing
turbulence by kinetic equations have been investigated in studies of
many authors. Unfortunately, the turbulence theory contains no
universal closed kinetic equation for the single-point density
f(t,x,V) of the distribution of probabilities similar to the Boltzmann
equation in the dynamics of rarefied gases. The turbulence theory
remains the science of semi-empirical models also on the kinetic
level of description. As a basis for constructing the simulation
scheme, it is much more efficient to use mathematical models in
which the elementary physical relationships of the phenomenon are
not ‘buried] in a large number of additional assumptions. The basis
qualitatively reflecting the analogy of molar mixing in the liquids and
molecular mixing in gases is,  for our purposes, the following
relatively simple relaxation kinetic equation [101,194]:

1 2

.
2

Mf ff f
f

t x

   −∂ ∂ ∂+ + − + =  ∂ ∂ ∂ τ τ   

v
V F

V (3.1)

where v = V – u is the pulsation speed and u = 〈 V〉  is the mean
speed of the flow. The function

3/ 2 2

2 2

3 3
exp

4 2
Mf

q q

   υ= −  π   
(3.2)

is the density of probabilities of the normal law of distribution of

pulsation of the speed; 2 2 2 2
x y zq = ν + ν + ν  is the doubled mean value

of the specific kinetic energy of these pulsations. (The density of
turbulent energy is E = q2/2.) Vector field F is the field of mass
forces acting on the liquid particle. For an incompressible liquid
p = 1, and the force F = g – ∇ P, where P is the mean pressure
in the turbulised fluid, g is the vector of free-fall acceleration.

The relaxation parameters τ
i
 are expressed formally by means

of the turbulence scales L
i
 and the specific energy of turbulence

q2 in such a manner that τ
i
 = L

i
/q .  The turbulence scales L

i
 are
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not functionals of the single-point distribution f, they are determined
by the two-point correlation function. In the semi-empirical theories
of turbulence, the laws of variation of L

i
 are selected from

difference considerations, for example, they are determined by the
geometry of the problem or are determined from approximate
equations, l inking evolution L

i
 with the variation of the mean

characteristics of the turbulent medium. We shall assume that the
relationship L

i
(q) is given. In a number of cases, it may actually

be determined. For example, in a turbulent flow behind a grid, L
i

and q are linked by the Loitsyanskii invariant L
i
5/2q = const. In the

given approach, we assume the exponential dependences L
i
 and q:

( ) ( )1 22 1 2 11 1
1 2~ and ~ 1 .L q Lγ − γ +− − (3.3)

It should be mentioned that at γ
1
 = 0.7 from (3.3) we obtain the

Loitsyanskii invariant for the dissipation scale L
1
.  The main

empirical constants of the model are the exponents γ
1 

and γ
2
 and

the initial values of the integral scales L0
1
 and L0

2
.

If this assumes that the force field F is the given function of t
and x ,  then equation (3.1) differs from the BGC model (P.
Bhatnagar, E. Gross, M. Crook) used widely in the dynamics of

rarefied gases, by the additional term 
12

f
 ∂−  ∂ τ 

v
V

.  In order to

understand the meaning of this term, we shall examine Cauchy’s
problem for the distribution function that is independent of the
spatial variables:

1 2

,
2

Mf ff
f

t

  −∂ ∂− = ∂ ∂ τ τ 

v
V (3.4)

( ) 00, ( ).f t f= + =V V (3.5)

Multiplying (3.1) and (3.2) by V  and  v2 in succession and
integrating each time in respect of the entire space of speeds {V},
we obtain equations for u(t) and q2(t):

2 2

1

0, ,
q q

t t

∂ ∂= = −
∂ ∂ τ
u

(3.6)

( ) ( )2 2
0 00 , 0u t u q t q= + = = + = (3.7)
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These equalities show that in the system described by equation
(3.4), the pulse u is maintained and the energy q2 is a monoton-
ically decreasing function of time. Dependence (3.3) determines the
following type of the function ( ) 12 0 2 2

1 1 0( ) /q q q
γ

τ = τ . Consequently,
equation (3.6) has the following form:

� �
�

12 2(1 )

00
1

0, / .
q q

q q q
t

+γ
∂ ∂+ = =
∂ τ

The equation is solved analytically and, consequently, at γ
1
 > 0

we obtain:

�

( ) 1

2

1/0
1 1

1
.

1 /
q

t
γ=

+ γ τ

This dependence approximates the decrease of the turbulent
energy in wakes (see paragraph 3).

The meaning of the relaxation member in the right-hand part of
(3.1) is also easily examined in the spatial-homogeneous case.
Without dissipation and force F  we obtain the conventional
Bhatnagar–Gross–Crook equation:

2

,Mf ff

t

−∂ =
∂ τ

whose solution has the following form:

2 2/ /
0( , ) ( ) (1 ) ( ),t t

Mf t e f e f− τ τ= + −V V V (3.8)

here q2 = q 2
0
 = const,  τ

2
(q 2) = τ 0

2
 = const.  Here, equation (3.8)

shows that τ
2
 characterises the time during which any initial

distribution f
0
(V) evolves to the normal law f

M 
(V).

3. The experiments with the application of simulation as the
method of numerical modelling of turbulence were carried out by
V.E. Yanitskii on the example of solving a two-dimensional non-
stationary problem of the ‘turbulent spot’ [19,24,33,131,132]. At the
moment of time t = 0 in a still liquid with u ≡ 0 the initial distribution
q2(0,Y,Z) of the energy of turbulent pulsations develops in some
fashion. The problem is to determine the spatial distribution of the
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turbulence characteristics of the arbitrary moment of time t. This
problem formed from the examination of the pulse-free wake behind
a generator of pulsations with diameter D, distributed in the flow,
whose velocity is equal to U

0
. In the experiments, this axisym-

metric wake, extended along the OX  axis,  was realised and
investigated in [206]. The pulse-free nature, i.e. the absence in the
mean section of mass transfer along the axis of the wake OX
makes it possible to ignore, at a sufficiently large distance from the
source, the heterogeneity of the profile of the mean speed and
friction stresses. In this region, the spatial distribution of energy q2

is self-similar, the development of the turbulent wake takes place
as if it was initiated by a point source of pulsations, situated in the
accompanying flow with the speed U

0
, and when calculating the

fields it  can be accepted that t  = X/U
0
 [206]. At the distances

X ≥ 4D or in terms of the appropriate time variable t = X/U
0
, at

t  > t
0
 = 4D/ν

0
,  the measured function q 2(t ,Y ,Z) assumes the

Gaussian form:

( )2 2 2 2 2( , ) ( , , ) ( )exp 0.69 ( ) ,m qq t r q t Y Z q t r r t= = − −                       (3.9)

where r  = (Y2 + Z2)1/2,  q2(t ,  r
1/2

) = q2
m
(t)/2.

Energy q2
m
(t) at the centre of the spot and its characteristic

radius r
q
(t) are approximated by the following dependences [115]:

1 2

2 2 0 0
0 0

0 0

( ) ( ) 1 , ( ) 1 ;

n n

m q

t t t t
q t q r r t r

−
   − −

= + = +   τ τ   
      (3.10)

where n
1
 ≈ 1.58, n

2
 ≈ 0.35, τ

0
 = 2D/U

0
 for t

0
 < t < 50D/U

0
 (for

50D/U
0
) < t << 130D/U

0
 the exponents n

1
 and n

2
 are equal to 1.80

and 0.25, respectively).
The mathematical formulation of the problem of the turbulent

spot on the kinetic level of description may be described as follows.
We solve the Cauchy problem for the kinetic equation (3.1) in the
unlimited 5-dimensional phase space {Y, Z, V

x
, V

y
, V

z
}. The initial

distribution function f
0
(Y, Z,V) is represented by the density of the

normal law for the distribution of the probabilit ies of the
instantaneous values of hydrodynamic velocity V, i.e.
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3/ 2 2

0 2 2
0 0

1 3
( , ) exp ,

4 ( ) 2 ( )
f r V

q r q r

   ν= −      π   

where q2
0
(r) = q2

0
 exp(–0.69r2 /  r 2

0
).

The diagram of modelling was constructed on the basis of the
principles, described in the previous paragraph, as well as in the
dynamics of rarefied gases. Each particle is a model of the small
element of the turbulised liquid and is characterised by its position
r(t) and the instantaneous hydrodynamic speed B(t). The calculation
region, characterised by the evolution of the system from N such
particles, has the form of a rectangle with the dimensions F

y
×F

z
 =

2 × 2 in the first square of the co-ordinate plane, which assumes
the mirror symmetry of the problem in relation to the axes OY and
OZ. The external boundaries Y = F

y
 and Z = F

z
 are assumed to be

open for the particles leaving the calculation region. We use the
uniform grid with a total number of cells of 20 × 20 and the
dimensions of each cell h

z
 – h

y
 = 0.1. At the initial moment of time

t = 0, the distribution of the particles in the calculation region was
uniform, and the mean number of the particles in each cell was
assumed to be 10. The speeds v

i
 of the particles were ‘raffled off ’

in accordance with the density of the normal law of distribution of
the probabilities in which r = r

i
 is the distance of the i-th particle

from the origin of the co-ordinates.
Kinetic equation (3.1) includes the following physical processes:

• convective transfer 
f f

x

∂ ∂+
∂ ∂

V F
V

;

• dissipation of turbulent energy 
1

1
( )

2
f

∂−
τ ∂

v
V ;

• redistribution of pulsations in respect of the degrees 
2

Mf f−
τ

.

In accordance with these considerations, the modelling scheme
of the evolution of the model in a short time period ∆t, equal to
0.085 in the calculations, is the sequence of three stages of
splitting, described previously in [19,131].

Investigations were carried out in order to investigate the
principal possibility of simulating turbulence by the statistical method
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of particles in cells. Taking this into account, the authors assumed
that in the given stage of investigations it is permissible to make
additional simplifications of the formulation of the problems which
are not principle from the viewpoint of main problems.

The degeneration of the turbulent spot in the homogeneous (non-
stratifies) surrounding the medium, takes place as a result  of
dissipation of the energy of pulsations and of its diffusion. To a
certain approximation, the effect of the gradient of the mean
pressure on these processes can ignored, and because of the
absence of stratification it may assumed that g = 0. Thus, force F

i
,

acting on each mole, is equal to zero. At zero values of the initial
field of speeds u(t = +0, r) = 0 the condition P = const leads with
time to the appearance of the mean speed u

r
 of the turbulised liquid

in the radial direction. Starting from some moment, the derivative

2q

t

∂
∂

 becomes comparable with the convective member 
2

r

q
u

r

∂
∂

 and,

consequently, the field of the mean pressure should be taken into
account in this case. The initial values of q 2

0
 and r

0
,  equal to

0.0104 and 0.612, respectively, were selected in such a manner that
in the time period t < 20 there were simultaneous small effects of
the zero ∇ P and finite dimensions of the calculation region.

The moment t = 0 was related to point x
0
 = 4D in experiment

[206] which determines τ
0
 = 2D /U

0
,  n

1
 = 1.58, n

2
 = 0.35 in

approximation (3.10) of physical experiments. The initial kinetic
model has four empirical constants – initial values of the integral
scales L 0

1
 and L 0

2
 and exponents γ

1
 and γ

2
 in the exponential

dependences L
i
(q).  Special analysis [115] shows that these

constants are determined unambiguously by the initial data, if the
criteria of agreement with the experiments represented by the
agreement of the calculated function q 2

m
(t) and r

q
(t) with the

approximation (3.10), assuming in this case self-similarity of the
profile q2

m
(t,r). In the calculations it was assumed that γ

1
 = 0.63,

γ
2
 = 0.80, L 0

1
 = L 0

2
 = 0.14 (= 0.23r

0
) .  This corresponds to the

following values of the relaxation parameters: τ 0 
1
 = τ 0

2
 = 1.31. In

the dynamics of rarefied gases, the flows with identical values of
the parameters L and τ  relate to the ‘transition’ regime, i.e. it is
examined on the kinetic level of description.

Comparison with the experimental data obtained by E. Naudasher
[206] is shown in Figs.3.22 and 3.23. In the calculations, the
distribution of energy E = q2/2 in space assumes the self-similar
form with time. However, this form differs from the profile by
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E. Naudasher (Fig.3.23) and in the range r/r
q
 < 1.5 is approximated

efficiently by Bessel’s function J
0
 (1.52r/r

q
). Calculations with the

following initial distributions of the energy of pulsations in respect
of radius were verified:

2
2 2 2 0 0
0 0 0 0 0

0

const, ,
( ) (1.52 / ), ( )

0, .

q r r
q r q J r r q r

r r

 = ≤= = 
>

They confirm the same nature of the steady self-similarity, as
presented in Fig.3.23. The identical discrepancy between the results
of calculation and experiments was recorded by many investigators
solving the given problem numerically on the basis of different
turbulent models. In [115] it was shown that the presence of ‘a tail’
on the experimental curve q2(t,r) and, correspondingly, the absence
of a specific edge at the spot are explained by the intermittency

Fig.3.22. Breakdown of a turbulent homogeneous spot: a) variation of the characteristic
radius of the spot;  b) density of turbulent energy in the centre of the spot
( ( ) ( ) / (0)m m mE t E t E=  , points – experiments [206], curve – approximation of experiment
[206], crosses – calculations).

Fig.3.23. Distribution of turbulent energy
in the radius of a homogeneous spot: curve
– Nadausher 's  experiments [206];    –
calculated data for t = 4, + – for t = 6,
× – for t = 11.

∆

∆
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effect – irregular intermittency of the laminar and turbulent phases.
Thus, the above mentioned discrepancy shows the inadequacy in the
physics of the phenomenon common for many numerical models –
it is the ignorance of the intermittence effect.

4. One of the advantages of the kinetic approach in turbulence
is the possibility of obtaining the function of distribution of the
pulsations of the speed and, consequently, verify the hypotheses
associated with the function. A hypothesis on the normal law of
distribution of the probabilities of speed pulsations is used widely.
One of the best known hypotheses is the hypothesis proposed by
Millionshchikov, which assumes that the cumulants of the fourth and
higher orders are equal to zero. It makes it possible to express the
moments of the distribution function of high orders to the moments
of low orders: the first (mean speed), second (Reynolds friction
stresses) and third (energy fluxes). These relationships may be used
to express the closed system of Reynolds equations. To verify the
proposed hypothesis in the experiments, we measure the exponents
of asymmetry and the excess which are the cumulants of the third
and fourth order of the distribution of the speed of pulsations v. A
natural generalisation of this approach is the analysis of the
characteristic function of distribution of pulsations carried out by
V.E. Yanitskii for a turbulent spot [131,133].

Let us assume that ( ) / ( )r r r rV u D Vν = − .  The characteristic

function, corresponding to the distribution is, according to the
definition in [80]:

, ( ) ( , , ) .rimv
t r r rm e f t r dχ = ν ν∫

It can be represented in the exponential form

( ) ( )
, ( ) .p m i m

t r m e + θχ =

The functions ρ(m) and θ(m) are the functions of the cumulants
κ

n
 of the even and odd orders, respectively

( )
2 2

2 2 2
2

3 2 1

2 1 3
2

( ) ( 1) , ( ) 1;
2 2 !

( ) ( 1) , ;
6 (2 1)

k
k

k
k

k
k

k
k

m m
m D

k

m m
m

k

∞

=

∞ +

+
=

ρ = + − κ κ ≡ ν =

θ = −α + − κ κ ≡ α
+

∑

∑
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Here α  is the asymmetry and κ
4
 is the excess of distribution of the

pulsations of the radial speed v
r

The hypothesis on normality corresponds to the following
equalities:

( ) 0mθ ≡   and  2( ) / 2,m mρ ≡ −

or which is the same

2 / 2( ) Re ( ) mU m m e−
χ≡ =   and  ( ) Im ( ) 0.V m mχ= ≡

The Millionshchikov hypothesis corresponds to the assumption
that ρ(m) = –m2/2 and θ(m) = αm3/6, consequently,

2 2/ 2 3 / 2 3( ) cos( / 6), ( ) sin( / 6).m mU m e m V m e m− −= α = α       (3.11)

The statistical method of the particles makes it  possible to
evaluate directly U(m) and V(m) as the mean values of the
quantities cos(mν

r
) and sin(mν

r
).  Using the equations of the

consistent estimates, we obtain, from the results of modelling, the
approximate values �( )U m  and �( )V m ;  the rms scatter (standard
deviation) of these quantities is denoted by S

U
 and S

V
, respectively.

If the mean number of the particles in the region where
measurements are taken is N

*
, and the number of realisation in

averaging in respect of the ensemble is L, then:

( ) ( )2 2
V

* *

cos sin
, .r r

U

D m D m
S S

N L N L

ν ν
= =

In the statistical modelling of the turbulent spot we obtain the
characteristic function χ

t ,r
(m) of the distribution of the radial

pulsations v
r
 are the moments of time t  = 0, 1, 3, 6, 11.

Measurements were taken in ring-shaped regions { }( ) ( )q qxr t r xr t≤ ≤ ,

shown in Fig.3.24. The areas of the regions 1–4 were selected in
such a manner that on average they contain the same number of
particles N

*
. Table 3.3 shows their boundaries.

Regions 1 and 2 form the ‘core of the spot’, 3 and 4 are in the
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immediate vicinity of the conventional boundary of the spot r = r
q
,

5 and 6 characterise the ‘external region’. Figure 3.25 shows the
results for the moment t = 6. The solid lines show the values of
�( )U m  and �( )V m  calculated in simulation in the given regions
(numeration of the curves in Fig.3.25 corresponds to the numeration
of the regions in Fig.3.24). The circles indicate the accurate values
of U(m) and V(m) for the normal distribution. The vertical sections
give the band of the statistical scatter ±3S. It may easily be seen
that only the curves 1 fit this band. This means that the hypothesis
on the normal law for the distribution of the pulsation speeds can
be accepted only for the centre of the spot.

The straight crosses in Fig.3.25, almost coincide with the curves
2, denote the values of U(m) and V(m) calculated from equation
(3.11), corresponding to the Millionshchikov hypothesis at α  = 0.25.
The inclined crosses, coinciding with the curve 3 at m < 1.4, also
denote U(m) and V(m) according to Millionshchikov, but at α  =
0.65. It is evident that at m > 2 the curve 3 for V(m) leaves the
band ±3S  of the confidence range for the Millionshchikov
hypothesis. The curves 4 match the Millionshchikov hypothesis only
at m < 1, the curves 5 and 6 are not in qualitative agreement with
the curve.

noigerfoN 1 2 3 4 5 6

x 00.0 04.0 29.0 00.1 71.1 32.1

x 04.0 75.0 00.1 80.1 32.1 03.1

Table 3.3

Fig.3.24. Determination of the characteristic
function of a turbulent spot χ

t,r
 (m) (boundaries

of ring-shaped regions).
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The following conclusion can be made on the basis of this
analysis. The distribution of pulsations of the speed is isotropic only
in the centre of the spot and is governed by the normal law. With
increase of the distance from the centre to the periphery, the
anisotropy becomes greater, and in this case the Millionshchikov
hypothesis may be accepted in the core of the spot,  and the
deviations from the hypothesis start  in transition through the
conventional boundary r ~ r

q*
 < r

1/2
 (t). In the external region, the

distribution of the pulsations cannot be matched with this
hypothesis.

Possibly, by taking into account the intermittency phenomena, the
region of applicability of the Millionshchikov hypothesis is expanded
[115].

5. The method of direct statistical modelling makes it possible
to obtain in principle the single-point function of distribution of
pulsations or its moments. Figure 3.26 shows the distributions of the
exponents of asymmetry α

r
 and excess β

r
 obtained at different

moments of time (in respect of the relative radius ξ  = r/r
1/2

(t)).
The component of asymmetry α

r
(ξ ) = µ

3
/µ

2
3/2 characterise the

third moment of the function of distribution (the flow of turbulent
energy) and the excess exponent β

r
(ξ ) = µ

4
/(3µ2

2
–1) corresponds

to the fourth moment of the distribution function. The boundary of
the spot is clearly visible here.

Calculations were also carried out for a stratified (in respect of
density) spot [132]. Figure 3.27 shows on the logarithmic scale in
the form independent of the stratification (by introduction of the
frequency Froude number Fr

D
), comparison of the results obtained

by V.E. Yanitskii and N.N. Slavyanov with the experiment [192] in

Fig.3.25. Values of functions U(m) and V(m) for time t = 6 (numeration of curves
correspond to numeration of regions in Fig. 3.24).
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respect of the speed of attenuation of the axial pulsation of speed

(here FrD

U

ND
=  is the Froude frequency, ReD

UD=
ν

 is the Reynolds

number, 
0

1

2

g p
N

z

∂= −
π ρ ∂  is the Vaissala frequency 

23/ 4
max

0

FrD u

U
λ = ,

η  = N(t–t
0
)).

Figure 3.28 shows the dependence on time (related to the Vaisalla
period T) of quantity θ(t) equal to the relative potential energy of
π

m
(t) in the centre of the spot:

( )
( ) ,

( ) ( )
m

m
z m

t
t

E t t

π
θ =

+ π

where Em
z
(t) = E

z
(t,  y  = 0, z  = 0) is the kinetic energy of equal

pulsations in the centre of the spot, π
m
(t) = π

m 
(t,y = 0, z = 0).

If the first maximum is taken as the conventional start of the
collapse of the spot, this will correspond to the moment of time
(from the start of development t

0
 of the spot) t* = t–t

0
 ≈ 0.27T,

which is close to the experimental estimate T/3 [93].
It should be mentioned that at the initial moment the spot was

assumed to be non-mixed (mixing occurs only as a result  of

Fig.3.26. Parameter of asymmetry α
r
 (a)

and excess β
r
 (b) for a homogeneous

turbulent spot.

Boundary of
spot

Boundary of
spot
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Fig.3.27. Attenuation of axial pulsation of velocity in variables (λ , η) for a stratified
turbulent spot: ∆ – Fr

D
 = 23, Re

D
 = 2 · 104; o – Fr

D
 = 31, Re

D
 = 3 · 104 – experiments

by Lin and Pao [192]; + – direct statistical modelling.
Fig.3.28. Relative potential energy of mixing in a stratified turbulent spot (start
of collapse of the spot at * 0.27t =�  in calculations and t

*
 ≈ 0.33 in Merrit's expertiments

[93]).

turbulence). Quantity θ is not suitable as the degree of mixing
because it  gives too high an upper estimate. If we accept the
definition of the mixing exponent, according to [93], the numerical
results give, for this exponent, the value equal to 0.10÷0.15 at the
moment of the start  of the collapse. This corresponds to the
experimental data [192]. Thus, the physical and numerical
experiments give a low estimate of the degree of mixing determined
by turbulence only.

Figure 3.29 shows the distribution, on the axis of the stratified
spot of the horizontal component of the flow of turbulent energy,
normalised as the asymmetry of the distribution function of pulsations

( )
3/ 2

1/ 2 1/ 2

2 2 2

( , / ) ( , / ) / ( ),

.

y m

y

t y y Q t y y E t

Q v u v w

α =

= + +

It may be seen that the maximum value of the asymmetry of the
function of distribution of pulsations, determined by this procedure,
is reached approximately at half the Vaissala period.

6. The statistical method of the particles is designed for solving
problems formulated on the basis of kinetic equations. The version
of the method of particles in the cells, used in the present work,
is oriented to kinetic equations describing the medium as a set of
particles (molecules or liquid moles), whose scale of free (without
interaction) motion is comparable with the macroscopic scale of the
flow. The statistical method of the particles makes it possible to
obtain the distribution function of the probabilities of pulsations or
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derivatives or any moments of the distribution. In this sense, the
approach, and also the kinetic equation used as its basis, provides
more information than the approaches based on the truncated chain
of the Reynolds equations.

The kinetic methods corresponds to an infinite chain of evolution
equations for momenta. The general principal of the equations
obtained in this manner from the kinetic equation is well known and
is based on the integration of the kinetic equation with different
weight functions Ψ(V). The first three equations of the infinite chain
of the equations of the moments, equivalent to (3.1), have the
following forms [131]:

0;i
i

u
x

∂ =
∂ (3.12)

( ) 0;
j

i
j i j ij

j

u u
u v v P

t x x

∂ ∂ ∂+ + + δ =
∂ ∂ ∂  (3.13)

1 2

1 1 2
.

3

i j ji
k i j i k i k

k k k

i j k i j i j
k

v v uu
u v v v v v v

t x x x

E
v v v v v v v

x

∂ ∂∂∂+ + + +
∂ ∂ ∂ ∂

∂  + = − + − ∂ τ τ  

 (3.14)

Fig.3.29. Distribution along the axis of the stratified
spot of the horizontal component of the flux of
turbulent energy (asymmetry of the distribution
function of pulsations).
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This standard method may be used to obtain equations for the
moments of the third, fourth and higher orders. Finally, for the
kinetic equation there is also a problem of ‘closure’ but its solution
may be simpler because it does not require additional hypotheses
for breaking the infinite chain of the appropriate moment equations.
We believe that this is also the advantage of this approach. There
is another important aspect of the problem. The simulation, in
particular the statistical method of the particles for solving the
kinetic equations, is direct modelling of the mechanism of turbulent
exchange. Investigations, carried out by this method, make it
possible to understand these mechanisms better.

The main obstacle for the extensive application of the statistical
simulation by the method of particles is the absence of universal
kinetic curve of turbulence. There are also difficulties of another
type mentioned by V.E. Yanitskii [131]. We shall discuss them.

a. The given method has inherited many characteristic features
of the appropriate method of dynamics of rarefied gases and this
restricts its possibility to kinetic equations identical to the equations
for the rarefied gas. They (and the appropriate formulations of the
problems) do not reflect the specific features of turbulence to a
sufficient degree. For example, the equations (3.12) does not contain
the members of the type.

.i
i

pv
x

∂
∂

Thus, kinetic equations, which were used as the basis, ignores
the effect of pulsations of pressure on the diffusion of turbulence
energy. The previously mentioned numerical results show that by
selecting the empirical constant it is possible ‘compensate’ the
influence of the defect on the time and spatial characteristics of
the energy q2(t,r). However, the problem of the influence of this
defect on the distribution functions of pulsations of the speed has
not yet been answered.

b. Solving the problem of the pulse-free wake (of the problem
of the turbulent spot), we ignore the quantity ∇ P. Therefore, in the
calculations of time t we restrict ourselves to the relatively low
value of t  < 20. The correct formation of the problem should
include, in addition to the kinetic equation, the condition of non-
compressibility div u = 0. The application of this condition for the
equation of pulse transfer (13) give the well known equation for the
mean pressure:
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( )
2

2 .i j i j
i j

P u u v v
x x

∂∇ = − +
∂ ∂

Thus, the simulation scheme should include the additional
procedure solving the Poisson equation. It is still  necessary to
explain how to combine the available numerical methods of solution
of this equation with the scheme of the statistical method of the
particles in cells.

c .  Because of the differences between the numerical and
experimental results for the radial distribution of the energy of the
spot, previously we have mentioned the mixing effect. Analysis
carried out in [115] shows that to take this effect into account, it
is necessary to stop using the local dependences of the integral
scale L

i
, functions of energy q2 in the given point. At least, the

calculated field of the energy q2(t,r) will be in agreement with the
experiment if it assumed that L

i
 are exponential functions of energy

only in the centre of the spot q2
m
(t) with the same exponents γ

1
 =

0.63 and γ
2
 = 0.80. However, this method on its own may prove to

be insufficient for accurate calculation of more special features of
the distribution function f in the vicinity of the boundary of the
spot. The contribution of the pressure gradient to modelling of
mixing is also unclear. Statistical methods make it possible to solve
the problem of anisotropy and ‘non-equilibrium’ turbulence when the
distribution function greatly differs from the normal law. The main
obstacle for extensive application for the method is the absence of
universal kinetic equations of turbulence.

The development of these approaches is being continued. It is
hoped that successes will be achieved in solving more complicated
problems of turbulence when large scale processes are calculated
directly from the schemes of splitting for dynamic equation (for
example, using the method of large particles of flows), and local
fine-scale fluctuations are modelled by a statistical method [16, 19].
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1 .  S.A. Ivanov and V.E. Yanitskii [61] developed recently very
original schemes of direct statistical modelling of molar transfer in
a turbulent flow of a long-range wake, based on the realisation of
Brownian trajectories. We shall discuss several assumptions of this
approach, following [61].
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The proposed method is based on the concept of L. Prandtl of
turbulent mixing. The flow is determined by the movement of small
volumes of the liquid, referred to as moles, each of which has its
own speed. The speed field changes as a result of turbulent mixing
of the moles with different speeds. Generally speaking, any
characteristics of the flow is the averaging of identical
characteristics of moles, its components.

The basic problem used for the development of the method was
represented by the planar flow of the liquid in a long-range wake
behind a cylindrical solid. For the mean speed of the flow there is
the approximate analytical solution proposed by Görtler. It uses the
approximation of the turbulent section by a function proportional to
the derivative of the longitudinal speed with the accuracy of the
constant ν*. The derivative is taken along the axis y, normal to the
axis x, coinciding with the direction of the wake. This solution at
a relatively large distance from the solid provides satisfactory
agreement with the experiment, and can be used as a reference
solution.

Returning to direct modelling, it should be noted that the speed
of the moles in the given planar problem can be represented
efficiently by a means of the longitudinal component u along the
axis of the wake and the transverse (or vertical) component v ,
normal to this axis. The vertical speed v is of a purely pulsational
nature because the flow in the long-range wake is such that its
mean value v  is equal to zero (here and in the rest of the book
the mean value of the quantity is denoted by the line above). Thus,
moving in the transverse direction, each mole behaves as a
Brownian particle. In this case, the moles retain (according to
Prandtl’s assumptions) the x component of the pulse, i.e. they did
not change in the volume, they have a constant speed along the
entire length of the examination range. All moles have the same
size. The position of the mole is characterised by the coordinate of
its centre. At the initial moment, the moles are continuously
distributed along the y axis. Each mole is related to the longitudinal
speed which is such that the profile of the longitudinal speed of the
flow forms in the mean. In addition, for the determination of the
characteristics of the flow it is sufficient to examine the evolution
of this (generally infinite) chain of the moles. During the time
period ∆t all the moles are dispersed along the x axis by the step
determined by the speed of the incident flow x U t∞∆ = ∆ . In this
case, the coordinates of the moles on the y  axis change in
accordance with the law of movement of the Brownian particles.

–
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The diffusion coefficient ν
*
 is a parameter of the movement. It

determines the intensity of displacement of the moles and of their
mixing. It should be mentioned that all moles are equivalent to each
other at any moment of modelling and move on the y axis in an
isotropic fashion so that their uniform distribution on the axis is not
disrupted.

As a result of Brownian motion at the end of the examination
range at any point of y

*
 axis there will be in the general case a

mole which differs from which was situated at this point of the start
of observation, consequently, the mean speed of the moles, i.e. the
speed of the flow of the given point, changes. In order to calculate
the mean speed of the point at y

*
, it us sufficient to average-out

the speeds of the moles whose coordinates are close to this point.
The model makes it also possible to calculate the quantity such as
the friction stress. It is well known that the friction stress is a flow
of the appropriate pulse. Therefore, in modelling it is sufficient to
fix all the moles, intersecting point y

*
, during the time ∆t, taking

their pulses into account in this case. Each mole carries a pulse
equal to the product of its longitudinal speed by its size and by the
density of the liquid. The sum of these pulses with the sign taken
into account (plus, if the mole moves in the direction of increasing
y, and minus if it moves in the opposite direction) is the general
transfer of the pulse to the point y

*
 during time ∆t.

The numerical experiments in a computer, carried out using the
scheme described previously, showed complete agreement on the
modelling profile of the mean speed with the Görtler profile and,
consequently, the fact that this profile is similar to the experimental
profile (Fig.3.30). In addition to this, the viscosity obtained in the
course of modelling, also coincides with the value of viscosity
according to Görtler. The only free parameter of the model is the
constant ν

*
. The selection of this parameter determines the value

of variation of the mean speed of the axis of the wake during the
step ∆t. Therefore, ν

*
 is selected from the condition of coincidence

of the modelling speed with the results of physical experiments. The
resultant value ν

*
 = 0.0225 is in agreement with the identical

Görtler constant.
Thus, this methods gives the results completely corresponding to

the Görtler model of the long-range wake for the mean speed and
for the friction stress. However, this is not only the Monte Carlo
method for the Görtler equation. Using in the calculations only the
initial profile of the mean speed, we obtain almost complete
information on the flow, including viscosity, which is included in the
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Görtler equation a priori .  The agreement of the results of the
model with the Görtler solution should understood only as an
efficient physical interpretation for the equation taken from
empirical considerations. At the same time, this agreement reflects
the fact that the modelling viscosity does not correspond to the
experimental data. For example, according to the measurements
presented in [5], the profile of viscosity in the long-range wake in
self-similar variables does not change and has the form shown in
Fig.3.31. Consequently, it is necessary to define additionally the
model in such a manner as to overcome this discrepancy.

Direct modelling is an attempt to construct physically sustainable
model and, consequently, it is natural to return to empirical physical
considerations. Primarily, it is necessary to introduce the boundaries
of the region of turbulence. It is well known that the examined lee
flow consists of two parts: a strongly turbulised core and laminar
liquid surroundings. The separation of the regions is characterised
by the parameter of intermittency γ,  reflecting the multi-scale
nature of turbulence. According to Landau [85], we accept the
existence of two scales – a small scale, characterising pulsations
inside the turbulent part of the flow, and a large scale, associated
with the oscillations of the shape of the restricted region, occupied
by the turbulised liquid. The model described previously is of the

Fig.3.30. Long-range wake. Profile of mean velocity: solid line – Görtler model,
∅  – model with intermittency not take into account, × – Ivanov–Yanitskii model
[61] with mixing.
Fig.3.31 (right). Long-range wake. Profile of viscosity: solid line – Görtler model,
∅  – model with intermittency not taken into account, × – Ivanov–Yanitskii model
[61] with intermittency, o – experiment [5], broken function – function γ2 (t, y).

*/y c dx
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single-scale type in this sense and examines the flow of the liquid
as a perturbation in the entire space. The restriction of the turbulent
region by a means of the boundary of separation of the flow into
two logical parts corresponds to the behaviour of the second scale
of turbulence. To determine this boundary, we can use the well
known experimental expression for the intermittency coefficient.
The division of the flow into regions also changes the nature of
movement of the moles. In this case, the moles which have
penetrated into the turbulent zone, i.e. the moles whose coordinates
are smaller than the coordinates of the boundary, move, l ike
Brownian particles, in the direction normal to the axis of the wake.
If the mole reaches a boundary during its movement, reflects from
it as a Brownian particle. The moles, form in the laminar part of
the flow, i .e.  the moles whose coordinates extend outside the
boundary of turbulence, do not have vertical speeds in general.
However, it should be mentioned that the boundary change with
time, and the mole, situated in the laminar zone at this moment, may
be with time captured by the turbulent region.

In the second method of modelling the turbulent mixing, the
characteristics of the flow greatly differ from those obtained in the
case of the modelling with intermittency not taken into account. In
particular, modelling viscosity is completely proportional to the
experimental (Fig.3.31). Thus, on the basis of natural references,
constructing a physically understandable model, we obtain results
similar to the experimental data.

2. We examine a problem of statistical modelling of turbulence
in the core of the wake. It  is assumed that a flow of an
incompressible liquid arrives at a cylindrical body in the direction
normal to its generating line with a speed U∞ and the axis of the
wake coincides with the x axis. The Reynolds equations for the
mean speeds are reduced [126] to the form

( ) ( ), ' '
, , ( ) 0.

u x y u v
u x y v y

x y

∂ ∂= − =
∂ ∂

where the pulsation speeds ' ,u u u= − 'v v v= − , and the line above
the quantities indicates the averaging symbol. We introduce the
defect of the instantaneous speed:

* .u U u∞= −

For the mean value, the Reynolds equation transformed to the
form:
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* * .
u u v

U
x y∞

′ ′∂ ∂=
∂ ∂

It  is well known that the profile of the mean defect of the
instantaneous speed in the long-range wake, when the flow is self-
similar, is described satisfactorily by the Görtler model. The model
assumes the following approximation of the friction stress:

*' '
* * *, const .

u
u

y

∂τ = ρ ν = −ρν ν =
∂       (3.15)

The main equation of this model has the form

* *
2

* 2 0.
u u

U
x y

∞
∂ ∂+ ν =
∂ ∂

Its self-similar solution on the condition of conservation of the
pulse is

*

1

2 Wu dy C dU
+∞

∞
−∞

=∫

(C
W

 is the coefficient of resistance of the solid, d is the diameter
of the cylinder), has the form

*

0.5
2ln 2

( , ) 2 exp 16ln 2 .
d

dx

W

W

C y
u x y U

x C∞

  
 = −    π   

      (3.16)

In statistical modelling we shall examine the following Cauchy
problem:

2

* 2

0

( , ) ( , )
0,

(0, ) ( ).

u t y u t y

t y

u y u y

 ∂ ∂− ν = ∂ ∂
 =

(3.17)
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u
0
(y) is represented by the Görtler solution (3.16) at the point x =

x
0
. Here x

0
 is the coordinate on the axis of the wake from which

modelling starts. t is represented by the expression (x – x
0
)/U∞.

To solve the formulated problem, we propose the following
stochastic model of evolution of N moles in respect of time. In our
understanding, the mole is some volume of the liquid. It  is
characterised by its size ∆y

0
, the coordinate of its centre ξ

i
(t) and

the natural longitudinal speed u
i
. Modelling is carried out up to the

moment T in discrete steps ∆ t .  The space on the y  axis is
restricted by the value y

m
 so that we examine only the range

[–y
m
, y

m
]. To facilitate calculation of the average values, a uniform

grid with the step ∆y: y
i
 = y

m
 + ∆y(j–1), = j = 1, J  is placed on

the y axis.
At the initial moment of time the moles in the range [–y

m
, y

m
]

are distributed in the following manner: ξ
i
(0) = –y

m
 + i∆y

0
 – ∆y

0
/

2, i = 1, N . With this initial distribution, the moles are not only
distributed continuously on the y axis but also the number of moles
in every cell of the grid is the same and equal to N

0
 = ∆y/∆y

0
. In

accordance with the coordinate, for each mole we determine its
longitudinal speed: u

i
 = u

0
(ξ '

i  
(0)).  The mole retains this speed

throughout the modelling stage.
The calculation of the evolution of the model in the small range

t  is used to realise N  Brownian trajectories (the method of
realisation of the model is presented in [61]). The friction stress,
obtained in this model, corresponds to the Görtler approximation
(3.15). The numerical calculations, carried out in accordance with
the described model, have confirmed the agreement between the
resultant profile of the mean speed of the flow and the viscosity
with the identical profiles of the Görtler model (Fig.3.30).

3. We shall now take into account the intermittency effect. The
described model gives a value of turbulent viscosity

*' 'T
u

nu u v
y

∂= = ν
∂

 constant in the cross section of the wake. As

shown previously, this does not correspond to the experimental data.
Consequently, the model reflects inaccurately the turbulence
mechanism. Above all ,  i t  does not take into account the
intermittency effect, i.e. the division of the flow into the turbulent
and laminar components.

In [61], S.A. Ivanov and V.E. Yanitskii proposed a heuristic
model in which it  is attempted to take this phenomenon into
account.  They examined a different method of modelling by
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introduction of a random boundary between the turbulised core of
a wake and its laminar environment. According to experimental data
[186], the intermittency coefficient, characterising this boundary, is
determined from the equation

( ) ( )2

22

( )1
, exp , 0.

2 ( )2 ( )y

x
x y d y

xx

+∞
γ

γγ

 ξ − σ
 γ = − ξ >
 σπσ  

∫       (3.18)

here γ(x ,  y) may be understood as the probability of the given
point y being trapped by the turbulent part of the liquid; γ(x,y) =
P{y<ξ γ

+(x)}, where ξ γ
+ (x) is the normally distributed random

quantity with the probability density of n(bγ(x), σ2
γ(x)).

In the new model, the determination of the turbulence boundary
in the upper half plane of the wake (y  > 0) is reduced to
determination of the random quantity ξγ

+. For y  < 0, the flow is
symmetric and the boundary is determined by quantity ξ γ

–,
distributed normally with the probability density n(–bγ(x), σγ

2(x)).
On the whole, modelling is carried out in the same manner as

in the previous model. Only the block of displacement of the models
changes [61].

The difference between this model and the previous one is that
only the moles situated in the zone of turbulence [ξ γ

–(t), ξ γ
+(t)]

move on the y axis and they cannot leave this zone. Because of the
introduction of the boundary into the model, in addition to the
constant ν

*
 there are also two empirical functions bγ(x), σγ(x). For

them we have the experimental dependence σγ / bγ ≈ 0.24 [186].
In the calculations it  was assumed that bγ(x) ≈  2b

1/2
(x),  where

b
1/2

(x) is the half width of the profile of the speed at half height,

b
1/2

 = 0.25 x  [126].

We shall examine the results of numerical realisation of the
model with the intermittency effects taken into account.  The
following characteristics were selected for the modelled flow:
U∞ = 1, C

W
 = 1, d  = 1, ρ = 1 (here we accepted the following

notations: C
W

 – the coefficient of resistance of the solid, d – the
diameter of the cylinder, ρ – density, U∞ – the velocity of the
incident flow). Using the model,  we calculated the profiles of
velocity and viscosity. Computer calculations show that these
profiles reached the self-similar condition for different parameters.
The following values of parameters may be regarded as
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characteristic: y
m
 = 8.1; ∆y = 0.2; ∆y

0
 = 0.004; x

0
 = 50C

Wd
; ∆t =

5; N
S
 = 2500.

Quantity ν
*
, which is the main parameter of both models (both

with and without the random boundary), was determined in the
numerical experiments from the condition of coincidence of the
change of the velocity of the flow of the axis of the wake with the
experimental data. It was shown that, in this case, it was necessary
to take into account the Görtler value ν

*
 = 0.0225.

The profile of viscosity, reduced to the unit scale, is shown in
Fig.3.31. The graph also shows the viscosity in the Görtler model
and the values of viscosity determined on the basis of experimental
data [5]. The values of viscosity on the axis of the wake are equal
to 0.0225 for the Görtler model and for the model with intermittency.
For the experimental profile, this value is half the above value and
approximately equal to 0.011. It  should be mentioned that the
calculated viscosity is self-similar throughout the entire modelling
stage, regardless of the evolution of the profile, the velocity from
the Görtler model at t = 0 to a steeper profile at high t (Fig.3.31).
Its values are completely proportional to the experimental values
with a factor of 2. It should be mentioned that the value of viscosity
on the axis of the wake in our models was determined by
parameter ν

*
. This parameter characterises the value of change of

the speed on the axis of the wake in relation to x. The parameters
bγ and σγ determine the ‘boundaries’ of the viscosity profile – the
boundary separating the turbulent and laminar regions.

4. In the final analysis, we concluded that the model of statistical
modelling of turbulence in the core of the wake uses one free
parameter ν

*
 and gives the results coinciding with the well-known

Görtler model, i.e. the speed of the flow, close to the experimental
data, and the viscosity, equal to a constant.

Taking intermittency into account, parametric functions bγ(x) and
σγ(x), determining the boundary of the turbulent core of the flow,
are introduced additionally into the model. This model gives the
velocity which does not contradict the experimental results, and the
viscosity proportional to the experimental data. However, the
resultant absolute value of viscosity on the axis of the wake is
higher than the experimental value. The work in this direction
continues.

The values of turbulent viscosity, obtained here, can, generally
speaking, be used in equations so that it is possible to construct an
iteration process in order to improve the accuracy of the results.
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1. Recently, special attention has been paid to the numerical
modelling of the process of stabilisation of the flow in different
conditions both on the earth and in space [18,140,142]. For example,
investigations of the rotational motion are of principal fundamental
value for the physics of accretion discs [37] (see also chapter 4 of
the present book). The problem of accretion of matter on compact
sources is determined by the rate of loss of the angular moment in
the accretion discs. Usually, it is assumed that the mechanism of
the loss of the angular moment is associated with turbulent
viscosity which exceeds molecular viscosity by many orders of
magnitude. This results in the following problem: what is turbulent
viscosity and what is its physical meaning for accretion discs. We
believe that it  is necessary to separate two physical processes.
The first process is associated with the transfer (loss) of the angular
moment.  It is determined by large-scale turbulence structures. The
second process is responsible for the transfer of the kinetic energy
of turbulence into heat (dissipation). The problem of the relationship
of these processes depends on many factors: the possible stationary
nature of the process and the associated spectrum of turbulence,
the geometrical special features of the flow, the possible effect of
the magnetic field and other factors controlling the turbulence
spectrum.  Therefore, the problem of turbulence (including turbulent
convection and turbulent mixing) becomes controlling for
understanding the processes in astrophysical objects, as shown in
[114]. The process of stabilisation of the flow is of the non-
stationary nature and is extremely complicated to investigate.
However, advances have been made in understanding this process
in recent years because of the application of the methods of
mathematical modelling [18].

It is well-known [18] that turbulence may be investigated by
mathematical modelling or direct calculations of nonstationary
movement of ordered and large-scale structures (solving the Euler
equation) or by the application of specific type of hypotheses on the
stochastic nature of the field of velocities and other physical
quantities. In the second case, generally speaking, the physical
reasons for the development of turbulence (supplying energy to
chaotic motion) are not considered. We shall investigate the problem
of formation of large structures. In this sense, the most
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representative picture is provided by the structure of the long-range
wake during the flow around a cylinder consisting of ordered
vortices, mainly large-scale ones. However, small-scale vortices are
also presented at the same time. The main problem of the theory
of turbulence is to explain the development of such a spectrum of
scales in the turbulent flow.  Of course, it should be mentioned that
the majority of investigations have been concerned with specific
tasks in a narrow range of the variation of the physical parameters
so that the problem could not be examined in sufficient detail.

However, more and more studies have appeared recently (for
example, [148]) casting doubts on the problem of isotropic free
turbulence. It is claimed (for example, [15]) that turbulence is of
the alternating nature, i.e. the regions of turbulence are replaced
by regions of laminar flow.  It has been claimed (see, for example,
[15]) that turbulence is of the alternating nature, i.e. the regions of
turbulence are replaced by the regions of laminar flow. Therefore,
the author of [148] has suggested that it is more accurate to talk
about the interaction in the flow (linear or nonlinear) and not about
structures (laminar or turbulent). In this sense, the meaning of the
Reynolds number, introduced for the characteristic of the problem,
is difficult to understand because the Reynolds number starts to
depend on the local structure of the flow. Therefore, instead of
turbulent viscosity, it is necessary to introduce the concept of local
dynamic viscosity and this has also been proposed in [148].

2. We started our investigations of the development of turbulence
with a simple problem from the physical viewpoint: determination
of the profile of velocity in the gap between the cylinders, starting
with a highly nonequilibrium shear flow. The problem of the flow
between cylinders has been studied for more than 100 years. The
main results were obtained in the classic studies by Taylor (1923,
1936) where it  was shown that convective cells appear at a
Reynolds number of Re ~ 60 in the condition of incidence of the
angular moment of the amount of motion outwards. At the same
time, as for the plane-parallel flow, turbulence develops at
Re ~ 2000.  It was also shown [58] that the increase of the angular
moment outwards results in stabilisation of the laminar flow
(Re ~200 000 from the extrapolation of Taylor ’s results (1936)).
Our investigations were directed to the examination of the nature
of formation of the profile of velocity in the gap if in the initial
stage the distribution of the shear flow was nonequilibrium. The aim
of investigations was to examine the evolution of the structure of
the flow (including vortices) on the model of the flow in the gap.
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Our concept was that at high Reynolds numbers the inertia forces
prevail over the viscous stresses and turbulisation of the flow start
with the development of large scales – the formation of large
vortices as a result of the shear flow (Kelvin–Helmholtz instability).
In other words, the energy of chaotic mjotion in the turbulent flow
is the energy of the shear flow itself!

We have considered the simplest case from the viewpoint of
numerical modelling, i.e. the flow between two coaxial cylinders.
Already in the studies by Rayleigh it was shown that the centrifugal
force may stabilise the Taylor–Couette flow if the following
condition is satisfied [201]:

2( )
0.

d Vr

dr
≤       (3.19)

The solution of the problem of the onset of turbulence is of great
importance in astrophysical problems.  For example, it is usually
assumed that the accretion discs are characterised by the presence
of conventional turbulent viscosity, because the Reynolds numbers
are very high. Nevertheless, in a number of investigations these
results are doubted and it  is claimed that the flow of Kepler
rotation may prove to be laminar. The main argument of these
claims is justified by the stability of the differential rotation of the
medium with the moment increasing with the radius. Zel'dovich
carried out a number of analytical investigations of the flow between
two rotating cylinders with different laws of the variation of moment
in relation to radius.  In particular, Ze'dovich [58] designed the
dimensionless Taylor number Ty:

( )22

2
5

Ty ,

d
r

dr
d

r
dr

ω
=

ω 
  

      (3.20)
which can be used to obtain the condition of stabilisation of the flow
homogeneous with respect to density:

Ty 0.<       (3.21)

For example, if we consider the exponential dependence of the
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law of rotation ω~rn which corresponds to the constant value of the
Taylor number in the entire range Ty = 8 (n+2)/n2, stabilisation
starts at n > –2.  In solid-state rotation Ty = ∞ and the motion is
stable. The criterion, introduced by Zel'dovich, is more convenient
for astrophysical conditions in the evaluation of transition to the
turbulent flow. These investigations are important because the
movement of a homogeneous liquid with a rotating external cylinder
is identical with the gravitationally stabilised shear flow. Simple
similar considerations and analogy with the Richardson number (the
number determines the stabilisation of the laminar flow in the
atmosphere with gravitation, stratified in respect of density) and the
results in equation (3.20).

3. In the first chapter, we discussed the general concept of the
direct numerical modelling of a large number of nonlinear spatially
nonstationary problems of modern aerodynamics, hydrodynamics and
gas dynamics – phenomena accompanied by the development of
free shear turbulence and/or hydrodynamic instabilities [18,142].
The main concept of the proposed multiplan approach to the
examination of turbulence and instabilities is the development of
‘rational’ numerical models, adequate to the investigated pheno-
menon, and greatly differs from the investigated approaches to the
modelling of turbulence. Taking into account the structural
representation of turbulent flows, it is convenient to use models
closely related with the investigated interaction mechanism.  For
example, the large-scale transfer is set up on dynamic models for
the ideal medium, the laminar–turbulent flows – taking into account
the viscosity mechanism of interaction, and the stochastic process
– on the kinetic level.  This method of ‘rational’ modelling
corresponds to the mechanisms of interaction in structural
turbulence and makes it possible to reduce greatly the level of
requirements on the resources of computers in comparison with
other approaches.

The problem of turbulisation of the flow in the gap between
cylinders is complicated because this is associated with the effect
of different forces: the first is associated with inertia force V dV/
dr, and the second force is determined by viscosity. In particular,
the viscosity establishes the linear profile of the Couette plane-
parallel flow between two moving sheets, if the Reynolds number
is relatively small,  although the problem of the value of the
Reynolds number and the ratio of the forces require further
examination. The point is that in the presence of a steep gradient
of velocity and sufficiently high kinetic energy of the flow, the
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instabilit ies of the Kelvin–Helmholtz type can develop at the
boundary of two flows with different velocities (tangential
discontinuity). In this case, the main role is played by the dynamic
member in comparison with the viscosity member. In the
development of the Kelvin–Helmholtz instability, viscosity is not
included in the evaluation of the rate of growth [84]. As shown in
[18], these models can be investigated using Euler equations. The
importance of the large-scale structures in turbulence was
addressed for the first time in [158,234]. More detailed discussion
of this problem and of this approach in the calculation of turbulent
flows may be found in the first chapter and in books in [18,142].
It was shown that, basically, the energy of the turbulent flow is
associated with large scales, i.e. inertia forces.

In this formulation of the problem, the inertia forces produce, as
a result of the pair of forces, vortices (cyclones and anticyclones)
which may result in the establishment of the profile of the flow in
the gap. An important moment in this approach is the problem of
break up of the vortices. It is important to determine the forces
resulting in the disintegration (viscous or dynamic) and the
characteristic duration of these processes. According to our
assumptions, the high-frequency part of the spectrum is generated
in the nonlinear interaction of the large-scale structures with each
other and with the walls, i.e. molecular viscosity plays no important
role here (for relatively high Reynolds numbers).

4.  Following the concept proposed previously, we carried out the
following numerical experiments.  These experiments were
conducted on two coaxial cylinders with the characteristic size of
the gap ∆R/R = 0.227. Investigations were carried out using the
two-dimensional geometry in the polar system of coordinates (r,φ).
The Euler equation was solved numerically. We used the quasi-
monotonic grid-characteristic scheme of the second order of
accuracy in respect of space and time [102] (see also equation 2.3
in this book).

Molecular viscosity is not taken into account but the numerical
method includes implicitly some nonlinear dissipative mechanism
which, generally speaking, depends on the step of the grid
(decreases with decreasing step of the grid). However, it should be
mentioned that for turbulent flows, the rate of disintegration of
energy is determined by the rate of inertia transfer and is not
sensitive to the value of the dissipative mechanism (molecular
viscosity).

The ratio of the inertia and dissipative forces in the computing
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experiment may be evaluated from the experiment itself, measuring
the rate of dissociation of kinetic energy θ

num
 and constructing the

dimensionless number Re
nam

 from the similarity of the Reynolds
number:

( )3

Re ~ ,num
num

u

l

∆
θ

where ∆u  is the characteristic variation of velocity on the
characteristic scale l.

The characteristic dimensions of the finite-difference grids, used
for the computing experiments in this study, were: 100 points in the
direction of radius and 2500 in respect of the angle. The following
variants, differing in the initial and boundary conditions, were
investigated.

In the first variant, the inner cylinder was in the still state for
the entire period of time (V

0
 = 0), and the outer cylinder rotated

in the anticlockwise direction with a constant velocity (V
1
 = 1)3.  At

the initial moment, the flow had the following structure: in the
middle of the gap, close to the inner cylinder, the liquid was in the
stil l  state.  In the outer half of the cylinder,  the angular speed
corresponded to solid-state rotation, coinciding with the speed of the
outer cylinder. At the boundary of a tangential discontinuity we
specify a random, with low amplitude (less than 1% of velocity V

1
),

high-frequency (characteristic scale of the order of the size of the
computing grid) perturbation of the radial component of velocity.

The boundary conditions on the inner and outer cylinders were
established by means of an implicit  correction of the angular
component of velocity νφ and internal energy (in the conservative
manner) in the cells of the integration range, in the immediate
vicinity of the cylinders:

�
1

* 2

2
, ,

1
cyln

r

n

h
+

φ

+ αν τν = α = ν
+ α       (3.22)

where �φν is the velocity obtained in the next step in respect of time
of the solution of the Euler equations using the non-occurrence
condition, ν

cyl
 is the velocity of the cylinder, τ  is the step in respect

of time, h
r
 is the step of the grid in respect of the radial coordinate,

ν
*
 is the effective viscosity acting on the on near-boundary cells.

If as a result of correction of velocity (3.22) the kinetic energy
decreases, this indicated the dissipation of kinetic energy, i.e. the
conversion of this energy into heat. If, on the other hand, the kinetic
energy increases, the addition of kinetic energy related to the work
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of external forces sustaining the rotation of the cylinders.
Figure 3.32 shows the starting moment of development of the

flow t  = 0.05, 0.1, 0.2 (from top to bottom) when the Kelvin–
Helmholtz shear instability rapidly develops. The left part of this
figure shows the so-called conventional concentration, associated
with the initial position of the particle in the upper (black colour)
all lower (white) layers, and the vorticity is given on the right-hand
side. The inverse increment of the development of the Kelvin–
Helmholtz instability is proportional to ∆R/V

1
 [84].  This time is

relatively short. It is equivalent to numeral 1/30 of the rotation of
the outer cylinder. After this time, the growth of the vortices is
‘constricted’ by the size of the gap between the cylinders. This is
followed by a decrease in the number of vortices and by
intensification of the rotation in the course of attraction and merger
of the vortices (the Zhukovski force).

Two vortices remain after completing the calculation of the given
variant (t = 122, which equals approximately 20 revolutions). The
instantaneous lines of the flow at this moment of time are shown
in Fig. 3.33. The profile of the flow is established by means of the
distribution of the angular moment in large vortices. Figure 3.34
shows the profile of the angular moment (markers), established in

Fig.3.32. Structure of the flow for variant 1 (outer cylinder rotates in the anticlockwise
direction; the inner cylinder is stationary) for starting times t = 0.005; 0.1; 0.2
(from top to bottom): left – vorticity.
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the examined case, and the profile from [201] (solid line) when the
profile forms by means of the viscosity mechanism. Also, as
indicated by Taylor's and Zel'dovich theory, there is no turbulence
after the establishment of the profile of the flow in the gap.
However, the profiles,  determined in the calculations, differ
principally from the evaluation profile obtained in [15], giving the
dependence for velocity u = r6.5. This difference may be explained
by low values of the Reynolds number in comparison with the
critical value of the Reynolds number obtained in the experiment
and in Zel'dovich's estimates [58].

Figure 3.35 shows the correlators of velocity (or more accurately,
of the radial component of velocity u) at two different moments of
time when the outer cylinder carried out a third of revolution (t =
2) and approximately 20 rotations (t = 122), respectively. Correlator
K

u
 is determined as follows:

2

0

( , ) ( , ) ( , ) .uK r u r u r d
π

ϕ = ϕ + ξ ξ ξ∫
This figure shows clearly that the characteristic angular

dimension (let us say, the distance from the minimum to the
maximum of the correlator) corresponds to the size of the gap
between the cylinders, i.e. the dimensions of the large structures
are approximately equal and of the start of evolution (when they

Fig.3.33. Instantaneous lines of current for variant 1 at t = 122.
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have already formed and their number is large) and also closer to
the end of evolution (when their number is small).

Figure 3.36 shows the characteristic spectrum of the kinetic
energy ε

n
 (in respect of the wave numbers ε

n
), calculated from the

equations

Fig.3.34. Average (in respect of angle)
distribution of the angular moment
for variant 1 (t = 122): markers –
numerical modelling, solid line – viscous
Taylor–Couette solution.

Fig.3.35 . Correlators of velocity for variant 1 at times t = 2 and t = 122.

Fig.3.36. Spectrum of kinetic energy
for variant 1 at time t = 122.
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The spectrum was computed in the section in which the kinetic

energy is maximum, i.e. approximately in the mean section r ≈ 1.
Two moments should be noted.  Firstly, the fact that the ‘tail’ of
the spectrum is not governed by the Kolmogorov–Obukhov law.
Secondly, the given spectrum has a characteristic inflection point
n

1
=2π/∆R ,  determined by the width of the gap between the

cylinders.
Two other variants are associated with the examination of the

appearance of turbulence with the change of the boundary
conditions in such a manner as to violated the condition (3.19) of
the growth of the moment to the outside.  After approximately 20
revolutions we arrested of the outer cylinder which should have
resulted in a decrease of the angular moment in the external part
of the gap.  The results of the calculations show a decrease of the
characteristic size of the vortex, and the entire vorticity is
concentrated in the vicinity of the internal cylinder.

The system tends to the solid-state rotation and this is reflected
in Fig. 3.37 showing the graph of variation of the angular moment,
averaged out in respect of the angular coordinate, for the moment
of time t = 190.  Figure 3.38 shows the correlators of the radial
speed component of the speed, also stresses the decrease of the
characteristic size of the vortices and the pressing of the 46 to the
inn internal cylinder.

Fig.3.37. Averaged-out (with respect to
angle) distribution of angular moment
for variant 2 (after arresting the outer
cylinder; inner cylinder is also stationary)
at t = 190.
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Taking into account the results of these numerical experiments,
it is possible to evaluate the rate of dissipation of the kinetic energy
and, consequently, the effective turbulent viscosity. Figure 3.39
shows the time dependence of the integral of kinetic energy.  In
accordance with equation (3.22), this corresponds to the ‘numerical
Reynolds’ of the order of 1000.

Turbulence does not develop, as expected from the practically
solid-state distribution of the angular moment (with the exception
of boundary layers), obtained during the calculations.

In the last variant,  we considered the classic case of the
development of turbulence when the condition (3.19) or (3.21) is
violated, i .e. the internal cylinder rotates whereas the external
cylinder is stationary.  Figures 3.40–3.43 shows a result of the
numerical modelling relating to this case.  Figure 3.40 shows the
instantaneous line of current for the moment t = 840, Fig. 3.41 the
velocity correlators for t = 700 and t = 840, and Fig. 3.42 shows
the spectrum of kinetic energy for t = 840. The given distribution
of energy in respect of the wave numbers shows that in contrast
to the Kolmogorov–Obukhov classic spectrum, the high-frequency
part of the spectrum contains a small amount of energy. This
causes that the rate of transition of kinetic to thermal energy is
rapidly reduced and this is also indicated by the small change of
entropy in the calculations.  This comment is also valid for the first

Fig.3.38 . Correlators of velocity for variant 2 at times t = 132 and t = 190.

Fig.3.39. Determination of the mean velocity
of dissipation: variation of kinetic energy
with time (variant 2).
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two variants.
Figure 3.43 shows the field of vorticity (velocity rotor) for the

moment of time t = 840.  The centre shows the enlarged fragment
of the structure in the vicinity of a large vortex. Grey colour
corresponds to low values of absolute vorticity, and lighter and dark

Fig.3.40. Instantaneous lines of current for variant 3 (the inner cylinder rotates
in the anticlockwise direction; the outer cylinder is stationary) at moment t =
840.

Fig.3.41. Correlators of velocity for variant 3 at times t = 700 and t = 840.
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Fig.3.42. Spectrum of kinetic energy for variant 3 at time t = 840. The solid line
shows the graph n–5/2. The spectrum differs from the Kolmogorov–Obukhov spectrum
n –5/2

Fig.3.43. Structure of vorticity for variant 3. The centre shows the enlarged fragment
of the structure in the vicinity of a circular vortex (grey colour refers to low values
of absolute vorticity, lighter and darker tones to vorticity in the clockwise and
anticlockwise directions, respectively), at t = 840.
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tones indicate the vorticity in the clockwise and anticlockwise
direction, respectively. It  should be mentioned that the finer
structure (vortices) concentrates in the vicinity of the large
structures and in the vicinity of the inner cylinder.

The aim of our calculations was to show the evolution of the
spectrum with the development of turbulence. This relates in
particular to the third case in which the criterion of stability (3.19)
or (3.21) was violated. However, in all these equations, the main
large structures, examined in the calculations, had the scale
comparable with the size of the gap in the cylinder. This is clearly
indicated in Fig.3.35, 3.38 and 3.41. The high-frequency part of
turbulence also appeared in our calculations but it was localised
mainly in the region between the large vortices and the walls of the
cylinders. In the remaining part, the flow was almost laminar with
a small degree of vorticity, associated with the inner cylinder. For
example, the third variant in the inner cylinder shows the structure
of small-scale vortices (the high-frequency part of the turbulence
spectrum).

The kinetic energy of turbulent motion is associated with large-
scale vortex structures. It is assumed that the high-frequency part
of the spectrum is generated in the nonlinear interaction of the
large-scale structure with each other and with the walls. The role
of the nonlinear interaction is not only in increasing the effective
viscosity (more accurately speaking, this viscosity is not turbulent
but ‘dynamic’, using the terminology introduced in [148]), greatly
exceeding molecular viscosity. In contrast to molecular viscosity
which does not depend on the scale, effective (‘dynamic‘) viscosity
is sensitive to the dimensions of the structures (vortices) of the
flow. The larger structure results in a higher ‘dynamic’ viscosity.
‘Dynamic’ viscosity characterises the extent of nonlinear inter-
action. As indicated by the calculations, the nonlinear interactions
are characterised by different degrees of development in different
periods of the integration range. Therefore, we can discuss here
the local nature of ‘dynamic’ viscosity.

As mentioned previously by Zel'dovich [58] and confirmed by our
calculations, the structure of the flow between the cylinders is
represented by alternating turbulence, i.e. the regions of almost
laminar flow are replaced by regions of turbulence (large vortices).
Possibly, the relationship between these regions is determined by
the Reynolds number but isotropic turbulence does not appear at
all.

The direction of our further investigations should be associated
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with increasing grid resolution. The second approach to the
investigation of this process is associated with examination of the
evolution of a large vortex on detailed grids.
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1. The Rayleigh–Taylor instability (RTI) arises in many
nonstationary physical phenomena in which fluids (gases or other
media),  separated by the contact surface, are subjected to the
effect of the volume force (for example, gravitational force),
directed towards the lighter medium (or vacuum). The Richtmyer–
Meshkov instability (RMI) develops in pulsed acceleration of the
contact boundary – during the passage of a shock wave through the
boundary.  The increase of the intensity of perturbations as a result
of the Kelvin–Helmholtz instability (KHI) takes place in the
presence of a discontinuity in the velocity component, tangential in
relation to the contact surface. In most cases, KHI accompanies
the development of RIT and RMI. Jets of a heavier substance,
penetrating into a lighter substance during the development of RTI
or RMI, have the typical mushroom shape and this is also the
consequence of the development of KHI. The mushroom shape
becomes less evident with an increase of the ratio the densities and
disappears in the limiting case in which there is vacuum on one side
of the contact boundary.

These instabilities are reflected in a large number of varying
natural phenomena and technological applications, for example,
pulsed compression of targets of inertial confinement fusion,
turbulence, shock wave experiments, explosive flows, compression
of the magnetic field by a metallic liner, sustainment of plasma by
the magnetic field, explosion of supernova and collapsing stellar
cores in astrophysics, ionospheric phenomena in geophysics,
formation of colonies of microorganisms in water,  and other
phenomena. Recently, special interest has been paid to the
examination of RTI and RMI in connection with the problems of
inertial confinement fusion [106]. In the actual conditions, different
factors may influence greatly the development of RTI and RMI:
surface tension, compressibility, viscosity, heat conductivity,
diffusion, shock waves, the nonstationary nature of the acceleration
regime, heterogeneities, physical properties of media, etc. [226].
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It is generally recognised that in examining many complicated
phenomena it  is not possible to restrict examination to only
experimental and analytical investigations. The rapid increase of the
productivity of computers in the last couple of decades has
stimulated the development of computing methods in the mechanics
of fluids generally and for the examination of the problems of
hydrodynamic instabilities, in particular. The application of numerical
models makes it  possible to eliminate secondary factors and
concentrate on the main factor, which is sometimes difficult to
achieve in the actual experiments [6,8,83,95,134,193,197,215,217].
In addition to this, the numerical model provides more complete
information on the phenomena in comparison with the experiments.
A large number of computing studies have been carried out with
the two-dimensional numerical simulation of RTI (for example, [24-
27,32,162,164,167,242]). In a number of cases, these results make
it possible to interpret quite efficiently the natural experiments, but
they do not explain many important details. The increase in the
dimension of the phenomena (transition from two-dimensional to
spatial flows) is accompanied by physical effects which in problems
with a smaller size either do not occur or are manifested in a
quantitatively different degree. Successes in the development of
supercomputers have made it possible to transfer successfully to the
third measurements – nonstationary spatial calculations are now
more common [18,26,52,60,66,67,99,103,134,172,175,189,190,191,
215,235,240,243].

It should be mentioned that, at present, there are no universal
computing methods in the computing dynamics of fluids which would
be characterised by satisfactory accuracy and reliability. This
method has its own region of application, i ts advantages and
disadvantages. In the given case, the range of the investigated
problems is restricted by the problems of development of
hydrodynamic instabilities. These are difficult tasks – the behaviour
of the contact boundary in nonlinear and turbulent stages is highly
irregular and is subjected to strong deformation.

In the present work, direct numerical simulation was carried out
to investigate the development of instabilities and turbulent mixing
in mixed liquids (gases) at high Reynolds numbers and Prandtl
numbers of the order of 1. The numerical method includes implicitly
some nonlinear dissipative mechanism for the fluctuations of
density, as in the case of kinetic energy. This ‘rational’ approach
to direct numerical simulation is justified in [26].

2.  The numerical simulation of RTI was carried out using the
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model of a compressible non-viscous multicomponent medium. The
initial system for constructing numerical schemes of calculations the
total system of the Euler equations, written in the Cartesian
coordinates in the divergent form. These are equations for the
densities of n components of the medium

( ) ( )div 0, 1,..., ,i
i i n

t

∂ ρξ
+ ρξ = =

∂
V

the equations for three component of pulse density

( ) ( )
( ) ( )

( ) ( )

div ,

div ,

div ,

u P
u

t x
v P

v
t y

w P
w g

t z

∂ ρ ∂+ ρ = −
∂ ∂

∂ ρ ∂+ ρ = −
∂ ∂

∂ ρ ∂+ ρ = − − ρ
∂ ∂

V

V

V

and, finally, the equation for the density of total energy

( ) ( )( )div .
E

E gw
t

∂ ρ
+ ρ + ρ = −ρ

∂
V

Here t is the time, (x, y, z) are accordingly; V = (u, v, w) is the
velocity vector; ρ is density; ξ

1
,ξ

2
, . . . ,ξ

n
 are the mass concentr-

ations of the components; 
0

1
n

i
i=

ξ =∑ ,  E = e  + V2/2 is the specific

total energy and e  is the specific internal energy; g  > 0 is the
absolute value of the gravitational force.  Here, we assume that the
direction of the gravitational force is opposite to the direction of
the axis z, directed upwards. To close the system of the equations,
the equations of state for each component is required. In the
present study, in all calculations, we use the equation of state of
the ideal gas P = (γ–1)ρe for each component (any other equations
of state,  including tabulated ones, can be used). In all  the
calculations, presented below, the integration range has the form of
a rectangle or right-angled parallelepiped. The boundary conditions
of periodicity (or the conditions of corresponding symmetry) are
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specified at the lateral side of this formation, whereas the non-flow-
through conditions are specified on the upper and lower boundaries
of the region. No additional conditions are specified on the surface,
separating the light and heavy medium. Although, no front tracking
is carried out, as is the case in two- and three-dimensional problems
in the numerical investigation of the development of RTI (for
example, [162,164,175]). In the case of  three-dimensional problems
of RTI, this type of tracking is extremely difficult and relatively
expensive, especially in the case of multimode problems (and cannot
be used in the turbulent stage). In the present case, the contact
surface is implicitly controlled by the variations of density
(concentration) in each of node of the grid. Our mathematical model
does not take into account the real viscosity and surface tension.
Nevertheless, the very design of the scheme with the requirement
for monotonic nature ensures some nonlinear dissipated mechanism
which leads to the decay of shortwave harmonics. In other words,
the harmonics with the wavelength smaller than some effective
wavelength λ

cr
 are extinguished. This is confirmed by our

calculations. Evidently, λ
cr

 is approximately equal to several steps
of the computing finite-different grid. Youngs use the same approach
in his study of turbulent mixing [243].  In order to extinguish
shortwave harmonics and ensure the possibility of stable counting,
Li was forced to introduce the finite viscosity in his three-
dimensional calculations [189,190].

3. The set of the programmes, prepared for this application, is
used actively in the numerical modelling of various problems,
associated with the examination of hydrodynamic instabilities and
turbulent mixing. We shall mention a number of investigations
carried out by the authors together with N.A. Inogamov, A.Yu.
Dem'yanov, S.I. Abarzhi and other colleagues in the last couple of
years [20,53,54,60,66–68,102,103,178,179,208,210]. As an illustration,
we shall mention only the problem of gravitational turbulent mixing.
In gravitational turbulent mixing, pure heavy and light substances
are separated by the turbulent mixing zone (TMZ). In [53,60,103,
210] investigations were carried out into the field of velocities,
acceleration, densities and other parameters of the TMZ, and
information is obtained on the statistical properties of the zone.

The urgent problem of turbulent mixing has been investigated in
a number of investigations [14,64,70,98,130,135,138,164,207,217,
225,243]. Usually, special attention is given to the vertical profile

( )z ⊥ρ = ρ ,  obtained by averaging in respect of the transverse
coordinate (sign ⊥ ). It is used to determine the mixing coefficients
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α + and asymmetry coefficients As = α +/α
–
. 1 In transverse

averaging, the important numerical information on the dominant
structures, responsible for the mixing dynamics, is lost.  In the
studies in which investigations were carried out into the spectra and
transverse structures, the authors confined themselves firstly to the
comment on the enlargement of these structures2 and, secondly, to
the examination of the short-scale asymptotics of the spectrum. In
the current stage, qualitative statements are insufficient. In the
present work, we proposed, firstly, the approach for quantitative
description of enlargement. It is based on the construction of the
spectre of the quantities f = {ρ,u,w, p} and self-similar variables
�

�nf  in respect of the numerical data,  where ρ,  u ,  w ,  ρ is  the
density, the horizontal and vertical velocity, pressure, respectively.
Secondly, investigation of the short scale asymptotics, important for
explaining the problems of the fineness (dispersion) of mixing and
Kolmogorov dissipation, is supplemented by the examination of the
long-wave region.  This is the most important problem, because the
long-wave amplitudes in particular determine the rate of expansion
of the mixing layer and, consequently, the coefficients α

+
.

The characteristic calculation of the two-dimensional problem on
a detailed grid (1600 × 1600) is shown in Fig. 3.44.  In this problem,
the density of the heavy substance ρ

h
 = 1 (the dark colour in Fig.

3.44a–c), and the light substance ρ
l
 = 0.33 (light colour). The ratio

of the planes µ  = ρ
l  

/ρ
h
 = 1/3. The Attwood number is At =

(ρ
h
+ρ

l
)/(ρ

h
+ρ

l
) = 0.5. The intermediate shades correspond to

intermediate density. The force of gravity g is directed downwards.
The dimensions of the region are L

x
 × L

y
.  For the single

normalisation of units, it was assumed that L
x
 = 2π, g = 1, and in

the given case L
x
 = L

y
.  At t = 0, we specified the short scale

perturbation in the form of the subsurface field of velocities:

, ,n= −∇ϕ ϕ = ϕ∑v (3.23)

1The mixing layer in the incompressible medium, stationary at infinity, is restricted
at the top and bottom by fronts or mixing boundaries propagating in the heavy
(density ρ

h
) and light (ρ

l
) liquids, respectively. The total thickness of the layer h

consists of the sum h
+
+h

–
 of displacements of the upper (+) and lower (–) fronts

from the plane of the non-perturbed position of the boundary of the media. In
self-similar case, we write h

+
= α

+
 At gt2, where At = (1–µ)/(1+µ), µ = ρ

l
/ρ

h
 is the

ratio of densities, g is acceleration. This leads to the definition of the coefficients
α

+
 and As.

2This phenomenon was predicted theoretically [64,136]. In [136], the authors derived
a self-similar equation 2~ tλ  determining the scaling of the transverse dimensions
of dominant structures controlling the accerelation of the upper front.
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( ) ( )0 0sign cos sin exp | / ,n n nz a nx b nx n z nϕ = + −

where n is the number of harmonics, n = 50÷100. At t = 2÷3/ At ,
the transition stage is completed and the self-similar regime is
established. The existence of the transition stage (Fig.3.44d) is
determined by the non-self-similar nature of the initial data.

It is interesting to investigate the horizontal–vertical structure of
the mixing layer or the ‘internal mechanics’ of Rayleigh–Taylor
turbulence.  There is one horizontal layer of the cells. The horizontal
and vertical dimensions of the cell  are of the same order of
magnitude. It is interesting to look ‘inside’ the cell. The cell is rather
complicated. We shall present description of the cell in the 2D-
case, following from direct numerical modelling.

Tens of numerical calculations have been analysed. The ratio of
density µ, the density of the grid N

x
, (the number of nodes in the

horizontal 102÷103) and geometrical characteristics of the

Fig.3.44. Numerical modelling of spontaneous gravitational turbulent mixing: a–
c) distribution of density for moments t = 2, 4, 6; d) height of penetration (h

+
) of

light substance into heavy one in relation to At gt2.
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calculation configuration were varied.  This characteristic is given
by two parameters (L

h
+L

l
)/L

x
 and L

l
/L

h
, where L

x
 = 2π is the width

of the calculation region on the horizontal coordinate x, and L
h
 and

L
l
 are the initial thicknesses of the heavy and light layers. We use

the values of (i)  1–µ ~ 0.1, belonging to Bussinesq's case of
symmetric h

+
 = h

–
 expansion, (ii) mean (µ = 1/2÷1/3) and (iii) low

(µ = 1/10) ratios µ.  The upper (in the heavy liquid) and lower (in
the light liquid) boundaries of the mixing layer are denoted by h

+

and
 
h

–
.

The beginning and end of the self-similar stage of mixing was
determined in [68]. From the calculation region L

x
 × (L

l
 + L

h
) we

cut out a square or a rectangle ∆L
x
 × ∆L

z
 with a width of (2÷4)

h
+
 and the height –h

–
 < z  < h

+
, which included the investigated

self-similar ‘vortex cell’. The point is that in the self modelling
stage, the cells are still relatively small in  comparison with the
width L

x
 (at least 4–5 cells in L

x
 to exclude the effect of the side

boundaries and the set of the long-wave statistics). It was required
to increase the image of the cell for detailed analysis (it is irrational
to consider the entire calculation region). In addition to this, the
cells grow (inverse cascade). Therefore, without scaling on h

+
 it

is difficult to compare the self-similar cells relating to different
moments of time. The centre of the rectangle ∆L

x
 × ∆L

z
 was

selected arbitrarily on the section L
x
 on the level  z = 0 (the initial

position of the contact boundary).  Attention was given to the fields
ρ, the volume fraction of the light liquid c = (ρ

h
–ρ)/(ρ

h
–ρ

l
), the

vertical velocity w, vorticity ω = rot v, enstrophy ω2 and vertical
acceleration of the liquid particles Dw/Dt = w

t
 + ( )∇v w.

The typical cells are shown in Fig. 3.45, µ = 1/3, N
x
 × N

z
 = 1600

× 1600.  In the calculation field at moments t = 3, 4, and 6 squares
2.5 h

+
 × 2.5 h

+
, h

+
 = 0.05/(1 + µ) g

A
t2, g

A
 = (1–µ)g were cut out.

They were selected randomly with the centre on the level z = 0.
We shall examine Fig.3.45 in greater detail. The powerful jets of
the heavy liquid travel downwards. They formed after merger in the
previous stages of the inverse cascade and represent conglomerates
of several jets. The size of of the conglomerate is of the order of
h

+
 × h

+
.

The conglomerates of the jets are divided by large bubbles with
the size of h

+
 × h

+
 (on the right, t = 3; the left, t = 4; on the side

t = 6).  They ‘loose’ in the position on the vertical to the ‘old’
bubbles. On the other hand, they are large, travel at high velocity
and (in contrast to the ‘old’ bubbles) are efficiently bonded with the
main bulk of the light liquid (wide mouth). Consequently, there are
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prospects for their inflation and acceleration. The ‘old’ bubbles,
losing the bond with the main bulk, transform to floating vortex
pairs. These pairs ‘hover’ at the front h

+
. It is important to note

that these pairs or dipoles are floating (like thermics) and by this
they differ from the dipoles in a homogeneous fluid (in a
homogeneous case there is no baroclinic generation of vorticity).

The bubbles suck in the light l iquid. This is caused by the
difference in the pressures ∆p outside the mouth of the bubble and
inside the bubble.  The value ∆p may be high. Therefore, the flows
of the light liquid are relatively fast. The velocity of the light liquid
is so high that its dynamic pressure drags in the fragments of the

Fig.3.45. Characteristic structure of the ‘mean cell’ in the mixing layer. Horizontal
straight line – level z = 0. Upper row – t = 3, central row t = 4, lower row t = 6.
Left – density ρ. Black – ρ

h
 = 1, white – ρ

l
 = 1/3. Centre – vertical velocity w.

Black – downward motion w < –2.5 h
+
, white – upwards w > 2.5 h

+
. Right – vertical

acceleration of liquid particles Dw/Dt . Black – negative acceleration Dw/Dt  <
–3g

A
, white – positive acceleration Dw/Dt > –3g

A
. The z axis directed upwards.
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jets of the heavy liquid into the mouth of the bubble. The fragments
of the heavy jets in the mouth complicated supply of the light liquid
to the bubble. The competition between the breaks in the light liquid
into the bubble and the process of extending of the mouth continues
for some period of time. The closure of the mouth is the reason for
the formation of vortex pairs.

High absolute values of the vertical acceleration Dw /Dt  =

( )
/

t

w t

w w

∂ ∂
+ ∇v  are obtained (i) in the ‘impact’ of the heavy liquid, (ii)

in the floating of the bubbles upwards and in the ‘impact’ of the
light of jets, and (iii) in the ‘sucking’ of the light liquid into the
bubbles (high positive acceleration in the mass of the bubble). The
case (i) will be investigated. The heavy liquid is accelerated in
stages, descending to large depths, ~1.5 h

+
.  This results in the

formation of high velocities, 1.5–2.5 times higher than the speed of
the front h−

	 . If the rate of acceleration of the heavy substance is
low, deceleration of the heavy substance to the velocity of the front
takes place relatively rapidly (‘impact’). This is associated with
considerable deceleration of the heavy substance. Another
interesting detail, associated with the ‘mushroom’ at the tip of the
heavy jets, is the marked acceleration of the light liquid downwards
behind movement of the heavy substance. This takes place in the
region behind the cap of the mushroom in Fig.3.45.

If the separated bubbles transform to floating vortex pairs (light
thermics), then the mushroom-shaped formations, which complete
the heavy jets,  represent vortex pressing the form of sinking
thermics. In Fig 3.45, acceleration Dw /Dt  is compared with the
Archimedes acceleration g

A
.  The lifting of the light thermals is

associated with the positive and negative acceleration of the order
of g

A
. It is important to stress that the values of g

A 
are an order

of magnitude higher than the mean acceleration
( )~ 2 / 1 , 0.05Ah g+ +≈ α + + µ α ≈		 .  Consequently, it  should be con-

cluded that the pattern of the flow in the central large-scale cell
of the single-layer chain is relatively nontrivial.  This relates to the
comparison of the actual pattern in a description of turbulent
diffusion on the basis of the semi-phenomenological approach. In
turbulent diffusion, the acceleration should be of the order of ~ h+

		 .
Of course, it should be taken into account that the range of high
acceleration and deceleration occupies a relatively small fraction of
the mixing region.

4.  We shall examine the problem of the characteristic or mean



196

Turbulence: New Approaches

transverse scale 〈λ〉  in two-dimensional geometry. Figure 3.45
shows that the scale 〈λ〉 ,  affecting the rate of expansion of the
turbulent layer, is relatively large (~2h

+
). Of course, in addition to

the large-scale components, the pattern of the flow has a number
of fine components,  smaller than h

+
.  The transverse Fourier

spectrum is shown in Fig. 3.46 (for the vertical component of the
speed, calculated in the section z = 0). For the arbitrary function
f(x,...) its spectrum f

n
(...) is calculated from the equation:

2 2
2 2 1 1

0 0

, cos , sin ,n n n n nf a b a f nxdx b f nxdx
π π

− −= + = π = π∫ ∫

( )( ...) cos sin .n nf x a nx b nx= +∑
The values nt2 = 100, 200 and 300, correspond to the values of

〈λ〉 /h
+
 = 2π/α

+
 At gnt2 = 2.5, 1.3 and 0.8. The harmonics nt 2 =

100÷300 have maximum amplitudes.
The self-similar spectrum is computed using the equation of the

following type:

�
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�
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ρ
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ρ ρ

 


  (3.24)

Conditionally, it may be said that they are obtained from the
equations of self-similar formulation in the coordinate their
presentation by dividing by 2, 1/n n t∝ . This is associated with the
delta-correlation of the Fourier images of the modelling functions
(discreteness of their computer presentation) and with the special
nature of integration of such delta-correlated functions (the
placement of the linear differential dk by the root differential dk ,
cee [66,177]). The relationships (3.2) are important. For example,
they give the nontrivial conclusion according to which the maximum
spectral amplitude of the fluctuations of pressure increases in
proportion with t3.

The longwave section of the Fourier distribution decays slowly.
This is associated with the scatter of the values of 〈λ〉 . In [68], the
authors obtained theoretically the exponential angle of inclination of

nw n∝  of the longwave section of the distribution. The calculations
carried out on the maximum grids N

x
 × N

z
, were used in particular

for the verification of this law. The appropriate straight line is
plotted in Fig. 3.46. This straight line approximates quite
satisfactorily the calculated data.
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Fig.3.46. Fourier spectrum w
n
 of vertical

velocity w  (x ,  z  = 0, t) on horizontal
coordinate x for three moments of time.

5. On the basis of calculations of a large number of variants we
investigated the stimulation of mixing by longwave perturbations
(these calculations were carried by A.Yu. Dem'yanov using the
method of large particles [32]).  The initial perturbation was
specified in the form of speed and represented the sum of the short
scale and wide range perturbations. The wide-range perturbation,
homogeneous in respect of the wave numbers, did not introduce the
separated scale and, consequently, retains the quadratic self-similar
nature (possibly with different coefficients α

+
).  We shall write the

initial wide-range perturbations also in the form of expansion in
respect of harmonics (3.23).  Let it be that:

0 0 '( ) · · , ( ) · · ,n sat n wb n sat n n wba w b w= ξ ε = ξ ε  (3.25)

where ξ
n
,ξ '

n
 are independent random numbers, uniformly distributed

in the range [–1, 1]. The initial field (3.23), (3.25) is determined
by three factors.  Firstly, i t  is the rate of saturation

( ) ( )1 / , 0.6sat n
w F µ g n F= ± ≈  for the two-dimensional case and of

the order of 1 for the three-dimensional case ([66]), secondly, it is
the random factor and, thirdly, dimensionless parameter ε

wb
.  This

perturbation does not have a specific scale. It is defined by a single
parameter, amplitude ε

wb
, of random wide-range noise. Figure 3.47

shows the results of the calculations for different values of ε
wb

. It
may be seen that the stimulation may greatly increase the mixing
coefficient α

+
.  These calculations indicate the existence of the

threshold (ε
wb

)
thr

 in approximately 10 pro mille. At amplitudes smaller
than the threshold, mixing takes place in the spontaneous regime,
and the effect of noise can be ignored. In the case of super-
threshold amplitudes, the flow is rearranged. The spectral ‘hillock’
is displaced to the longwave side. This reflects the enhancement
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of the sub-harmonics. The increase of the longwave section is
associated with the intensification of mixing, reflected in the
increase of coefficient α

+
. If in the spontaneous process the origin

of sub-harmonics is associated with the central hillock in the
spectrum, then in the case of stimulation, part of the sub-harmonics
is taken from the wide-range noise, present in the initial stage. The
threshold amplitude is high and very important.  For example, it is
not rational to decrease the amplitude of the noise by means of
some expensive technological measures (of the type of polishing)
below the threshold amplitude.

The side boundaries of the calculation region restrict the
horizontal size of the large structures (clusters), complicate mixing
and, consequently, decrease the value of the turbulent mixing
coefficient.  In the calculations, this ‘constriction’ effect is
especially evident in the modelling of evolution of short-scale
perturbations after reaching the time 6 7 / Att = ÷ . N.A. Inogamov
analysed the problem of the asymptotics of Rayleigh–Taylor mixing
at long times and extended calculation regions (pipes).  He obtained
the ‘constricted’ asymptotics 2 /5h t+ ∝ ,  instead of the free
asymptotics 2h t+ ∝ .  We assume that in these calculations, the
moment 6 7 / Att = ÷  corresponds to the start of inhibition by the
side boundaries and to the rearrangement of the flow with the free
asymptotics to ‘constricted’ asymptotics.

6. It is important to mention again the following most important
moments of these investigations.

1. It has been established that in the narrow jets the vertical
velocity is several times higher than the speed of expansion of the
mixing zone h+

		  in the direction of the heavy liquid.
2. Various methods (correlators,  spectra) have been used to

analyse the characteristic scales 〈λ〉  of the structures on the

Fig.3.47. Dependence of the mixing coefficient
A

+
 (t = 5) on amplitude ε

wb
 in pro mille.
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horizontal.  It  has been established that the typical scales are
relatively large h+λ ≈  and the scatter of the scales is wide.

3.  This is caused by the slow decay of the longwave tail of the
Fourier spectrum in respect of wave numbers n.  For example, the
spectrum of vertical velocity at n→0 decreases only by n n∝
(see the straight line in Fig. 3.46).

4.  The exponents of the self-similar scaling of the Fourier
amplitudes have been determined.  In contrast to the scaling of the
wave number n→nt2, this is a relatively non-trivial problem, because
the dependences w(x,t), ρ(x,t), p(x,t) in relation to the horizontal
coordinate x are random-periodic functions (the vertical coordinate
is assumed to be fixed inside the mixing layer). In particular, it is
assumed that w(n,t) is the amplitude of the Fourier harmonics n =
L/λ

n
, where L is the width in the direction of the horizontal line of

the mixing region, λ
n
 is the wavelength of the n-th harmonic.

Consequently, the self-similar Fourier amplitude is not specified by
the equation w(nt2,t)/t as it appears at first sight, and in the case
of the two-dimensional problem we can use the equation w(nt2,t)t2.
After the establishment of the self-similar regime, the dependence
on time is no longer valid and the spectrum w(nt 2,t) t2 become
stationary (Fig.3.46) in the self-similar variables.

5. The stimulation of mixing by longwave noise has been
investigated. The results show that in the case of typical
homogeneous noise with no specified scale, the self-similarity 2h t∝
is retained. The threshold amplitude of random wide-range noise
was determined.  Below this amplitude, this noise can be ignored,
Fig. 3.47.  The inhibition of mixing by the side boundaries has been
investigated. The effects of stimulation and inhibition strongly
influence the mixing coefficient α

+
 by increasing and decreasing it,

respectively.
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The authors of [76] investigated numerically the structure of of
convective columns formed during a fire. The maximum height of
the convective columns and the height of spreading for different
values of energy generation and the size of the region have been
determined. The dependence of the results on the constants of the
algebraic model of turbulence has been investigated. The results of
calculations have been compared with the data obtained in
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laboratory experiments. Modelling calculations have been conducted
in the three-dimensional formulation.

1. In the last decade, the effort of a number of scientific teams
has been directed to the development of a mathematical model of
large-scale fire, primarily a city fire. In the monograph [92], the
authors investigated and classified the main reasons for the
formation of such fires, determined the definition of the large-scale
fire, differing from the commercial industrial (or forest) fire by the
high intensity of combustion and/or the rate of spreading. The
authors of the monograph [42] discuss the possible global climatic
consequences of the fires as a result  of the ejection into the
atmosphere of aerosol particles in the form of soot and ash.
Estimates of the reserves of the ‘potential fuel’ of such a fire and
the estimates of the mass of the smoke in different combustion
conditions are presented. Various aspects of the modelling of forest
fires have been investigated [50]. The authors of [49,78,229]
proposed calculation models, based on the systems of the Navier–
Stokes equations with constant transfer coefficients. Subsequently,
the authors of [47,48,97] used different variants of the algebraic
models of turbulence. In [212], the authors presented the results of
a fire in Hamburg and the results of numerical modelling of this fire
which took into account the actual values of energy generation for
the case of a city fire. In the same study, the authors presented the
data on an oil fire in Long Beach (1958) which had a radius of 0.5
km and was regarded as a point source. In [97,141] in numerical
and laboratory experiments it was shown that at a radius of the
region of fire greater than 8 km, the equations for the point source
are not valid for the calculation of the height of hovering and
spreading of the convective columns. The region of the fire cannot
be regarded as a point source.

This section of the book is concerned with a more detailed
examination of this problem. In particular,  we match more
accurately in a wide range the controlling parameters of the
numerical and laboratory experiments (in particular, the value of
energy generation in the region of the fire). Calculations were
carried out with different values of the constant in the equation for
the path length of mixing K  = 0.125 (according to the results
obtained in [47,48] K = 0.2 [212] ad K = 0.4). The results of the
comparison of the data obtained in laboratory experiments and the
calculations show that the best agreement is recorded in the case
with K = 0.2. The possibilities of using, in the calculations, the
differential models of turbulence on the basis of the procedure,



201

Selected results

proposed and used in [74,75,77], have been discussed. As shown
previously in [48], the phase transitions, determined by the presence
of moisture in the atmosphere, greatly affect the parameters of
lifting, hovering and emission of the aerosol into the atmosphere.
In the present study (as in [97]) these effects are not taken into
account.  This is explained, on the one side, by the need to
investigate the main relationships governing the flow of the model
of the dry atmosphere and, on the other side, by the orientation of
the calculations to the data of laboratory experiments (instead of
the full-scale experiments), in which the moisture content of the
atmosphere was not taken into account.

It should be mentioned that the investigated physical phenomena
of the large-scale fire has a number of important special features
which are not reproduced when using two-dimensional (flat or
axisymmetric) models.  In this work, we present several results of
the calculations of the region of fire in the three-dimensional
formulation of the problem (including the case of side wind) which
have not as yet been carried out. This is associated with the high
requirements imposed by the problem on the resolution capacity of
the algorithm both in the immediate vicinity of the region of fire and
in the region of convective rising flow and in the region of hovering
and spreading of the convective columns.

2.  In the present section, we investigate the system of equations
of turbulent motion of compressible gas, written in relation to the
equations averaged out according to Favre (with the exception of
density and pressure) [159] and supplemented by the algebraic
model of turbulence [97]:

( )

( )

· 0,

· ,

· · · .

t

g
t

E p
E g

t

∂ρ + ∇ ρ =
∂
∂ρ + ∇ ρ + ρ − = ρ
∂

  ∂ρ + ∇ ρ + − + = ρ  ∂ ρ  

V

V
VV I R

V R V q V

The equations are closed on the basis of the Bussinesq
approximation according to which the tensor of the Reynolds
stresses is proportional to the tensor of the mean strain rates:

2
2 ,

3 t t= − µ ∇ + µR VI S
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where R is the tensor of the Reynolds stresses; S is the tensor of
the strain rate, I is the unit tensor, and also by the relationship for
the heat flow:

, 0.9.t
t

t

e
µ= − ∇ σ =
σ

q

We shall use the equation of state p  = (γ–1)ρe  with the
parameter of the adiabate γ = 1.4. We shall use the cylindrical
system of the coordinates r, ϕ , z, and the plane z = 0 corresponds
to the surface of the earth, and the z axis is directed in the vertical
direction.

The values of the coefficient of turbulent transfer are calculated
in accordance with the algebraic model [97] ((this model was also
used in [47,48]) and according to this model, in the axisymmetric
case turbulent viscosity µ

t
 is determined from the equation:

1/ 2
2 2 22

2 ,
2t

l v u v v

z r r r
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In these equations, l is the path length of the mixing, K is the
empirical constant.  In the numerical calculations, the Prandtl
number was assumed to be Pr = 1, and the value of K was varied.
(It should be mentioned that the system of the equations does not
contain the coefficient of dynamic viscosity µ, because in the
investigated problem, the relationship µ

t
 >> µ is valid).

As in [97], the diffusion equation for the impurity concentration
was not investigated. The impurity was simulated by the intro-
duction of a specific number of particles on the external side of the
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region of fire by means of the fixed periods of time and by the
calculation of the movement of these particles on the basis of the
kinematic equations of motion (for more details see [75]).
According to the experience obtained in previous investigations, this
approximation of the ‘passive’ impurity makes it possible to describe
with sufficient accuracy the propagation of the emissions of smoke
and aerosol in the case of a large-scale fire.

The calculation region in the plane r ,  z  has the form of a
rectangle with the dimensions 2R

0
 (in respect of r) and H = 24 km

(in respect of z). The calculations were carried out considering the
standard atmosphere [97]. At the initial moment of time t  = 0 the
static pressure in the entire calculation region is assumed to be
equal to the atmospheric pressure at the height z above the level
of the fire. The source of energy generation was specified in the
form of a cylinder with a radius of R

0
 and the height h of 100 m.

The intensity of the volume source Q* varied with time in
accordance with a linear law to the value Q*

max
 which was obtained

after 30 min as in the case of studies in [47,48,229]. The intensity
of the source was assumed to be constant. It should be mentioned
that the variation of the time required by the source to reach the
maximum power (0 < t < 30 min) shows that the height of hovering
and spreading of the convective column is almost independently of
this time.

3. The calculations are carried out using the TVD scheme of the
of the second or third (for the three-dimensional formulation)
problem of the approximation order in respect of spatial variables
(with the exception of the points of the extreme of the
characteristic variables) and the first order in respect of time for
the Euler part of the equations [77].  For the approximation of the
processes of diffusion transfer we use the scheme of the first order
in respect of time and of the second order in respect of space.

The given method of linearisation of the hyperbolic part of the
equations [159] ensure the three-diagonal form of the block matrix
of the coefficient, corresponding to each coordinate direction. In the
calculation of the Jacobi matrix – the vectors of the source of the
Reynolds part of the equations (Reynolds stresses, the heat flows
and the dissipative function), we carried out the linearisation of only
the differentiation operators providing a contribution to the main
diagonal of the matrix of the coefficient, and the coefficients of
viscosity were taken from the lower time layer.

In order to decrease the volume of the calculations when solving
the linearised system of the equations in each step in respect of
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time, we use the method of approximate factorisation, consisting of
the representation of the operator in the left part of the equations
in the form of the products of two one-dimensional operators.

In the axisymmetric formulation, the calculations were carried out
using the 81 × 121 stationary grid, at the maximum Courant number
of 0.75 for the flow field. The Courant number is restricted by the
requirement on accuracy, and a further increase of the number,
according to the calculations, results in a rapid increase of the
dissipative error of the system. The grid became denser in the
direction of the surface of the earth on the z axis. In particular, the
calculation region was divided into four parts – the uniform grid
40 × 6 was specified in the region, the 40 × 115 grid was specified
above the region. This grid was uniform in respect of the z axis and
extended in respect of r to the given value of the upper boundary;
on the right of the region, we specified the 40 × 6 grid, uniform in
respect of z and extended in respect of r to the value of the outer
boundary; on the right and then at the top of the region which
specified the 40 × 115 grid, extended in respect of r and z .  In
three-dimensional formulation, the difference grid contained 50 × 50
× 100 nodes. The boundary conditions in the calculations were
specified in accordance with [97]. The accuracy of the calculations
was inspected on the basis of the balance of mass and energy. In
addition to this, the calculations were carried out on the grids with
different numbers of the nodes, and the previously presented
dimensions of the grid were selected on the basis of the need to
ensure accurate calculations and the independence of the results of
the calculations on the definition of the outer boundaries. The
calculations were carried out in a Pentium Pro 150 personal
computer (with a 32 MB operating memory). The computing time
of 1 h of physical t ime was equal to approximately 30 h of
processor time (for the axisymmetric formulation).

4. One of the main aims of the present investigation was the
determination of the possibility of obtaining an agreement between
the calculated results and the data recorded in laboratory
experiments [77,159]. This comparison would make it possible to
determine the permissible boundaries of the application of the
algebraic models of turbulence and the need for transition to
differential models. Consequently, calculations were carried out for
different values of the specified empirical constant in the equation
for the mixing length, included in the given algebraic model.
Previously, it  was shown that the results of calculations in the
problem of the rising of a single thermic in a stratified atmosphere
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[74] strongly dependent on the value of this constant. Table 3.4
shows the values of the controlling parameters of the problem
which were varied in the course of the calculations. The given
values of the energy generation corresponded to the data obtained
in laboratory experiments [77,159] and to the data obtained by other
authors. For example, in [49] Q = 0.23 MW/m2 at a lower value
of t*= 300 s, and in [48,229] Q = 0.05 MW/m2 at t*= 1800 s, and
the authors of [229] also investigated the cases with Q = 0.1 MW/
m2 and Q = 0.025 MW/m2. The latter value t*= 1800 s is in good
agreement with the estimates of the time to the establishment of
the maximum energy generation in a large city fire. At the same
time, the value Q  = 0.05 MW/m2, corresponding to complete
combustion for 1 hour of wood materials with the area density of
loading of 10 kg/m2 (at the heat forming capacity of the
inflammable material Q = 19.6 × 106 J/kg) is obviously too low for
a large city fire. For example, according to the data presented in
[212] on a fire in Hamburg in the July of 1943, the power is
estimated as 1.7 × 106 MW for an area of approximately 12 km2.
This gives the power of the source of Q = 0.14 MW/m2 for the
radius of the zone of R �  2 km. It should also be mentioned that
according to the same data, the wind at the moment of formation
of the fire was only slight and the moisture content of the
atmosphere was low. Other parameters were also similar to the
parameters used in modelling: the tropopause on the level of 11.5
km, the temperature in the stratosphere 216 K, the temperature at
the surface of the earth 288.1 K. The following results were
obtained: the height of the smoke column 12 km, the region with
the highest content of the smoke several hours after the start of
the fire 8–9 km. These data are in good agreement with the results
of the calculations [212]. In addition to this, the calculations gave
the maximum vertical velocity of the convective flow of 68 m/s.
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The main stages of the modelled gas-dynamic flow will  be
investigated. Attention should be given to the fact that the initial
stage of formation of the flow is physically similar to the problem
of surface thermics [74]. The periphery of the region is
characterised by the start of development of the wall flow, directed
into the region.  With time, this flow is converted into a vortex. In
contrast to the case of the surface thermal, where this vortex
affected the entire region of the flow, in the examined problem the
situation is far more complicated. As a result  of the large
dimensions of the region (at least 5 km), the peripheral vortex did
not manage to move to the near-axial region with the formation of
its own vortex, initially less developed than the peripheral vortex,
but subsequently rapidly propagating, and in subsequent stages the
near-wall vortex transforms to a convective column. A similar flow
pattern was also recorded in [97]. In [97] it was established that
at a radius of the region of fire greater than 10 km (i.e.  the
characteristic height of the tropopause H* � 11 km for mean
widths),  the initial stage of the flow becomes even more
complicated and is characterised by the presence of more than two
vortices. This multi-vortex cellular structure of the fire with a radius
of more than 10 km results in the situation in which the complicated
vortex flows absorb a large part of the energy, generated during the
fire.  This leads to a decrease in the rate of formation of the
convective column and in the later stage of the development of the
flow to a lower height of hovering and spreading of the convective
column.

The results of calculations for K  = 0.2 and the data of the
laboratory experiments,  processed in the form convenient for
comparison, are presented in Table 3.5.  Here H

max
 is the height of

hovering, H* is the height of spreading of the convective column,
h

max
 and h* are the appropriate height of hovering and the height

of spreading, converted from the results obtained in the laboratory
experiments using the similarity theory [141]. Table 3.5 presents the
mean values of the height of hovering of the upper edge for the
time of 30–60 min, because the upper edge carries out oscillations
around the equilibrium position.

As indicated by Table 3.5, the calculated data of the laboratory
experiments are in satisfactory agreement. Nevertheless, although
the calculations made it  possible to select the constant in the
algebraic model K  = 0.2, resulting in good agreement with the
laboratory experiments, on the whole this approach is disputable.
(In a definition in the calculations of the values of K = 0.125 we
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R mk, Q m/WM, 2 H
xam

mk, h
xam

mk, H mk,* h mk,*

5 370.0 3.8 3.8 1.5 3.5

21 370.0 2.11 7.9 0.6 2.5

22 370.0 0.21 8.11 0.6 6.5

5 42.0 1.21 4.31 0.8 3.9

21 42.0 2.71 5.61 0.11 5.9

22 42.0 8.81 7.81 5.01 7.9

Table 3.5

obtain the values 30–35% higher than the experimental values, and
at K = 0.2 the values 40–50% lower than the experimental data
were obtained). The main problem, associated with the application
of algebraic models,  is that they cannot be used to describe
complicated effects associated with the considerable curvature of
the flow lines and with intensive vorticity.  However, many foreign
and Russian investigators used in calculations of this type varieties
of algebraic models without analysing their effect on the resultant
solution. Therefore, the present work was concerned with the
detailed analysis of the application of one of the most widely used
algebraic models. One of the parameters of the model was varied
and the results were compared with the laboratory experiments.
The main conclusion was that by testing the model of the
experimental data it is possible to select a satisfactory parameter
for such a model. The results of the calculations of the propagation
of an impurity for different technological processes have an
acceptable error [151]. For the fundamental investigation of the
given problem it is necessary to increase greatly the size of the
grids and/or use the differential models of turbulence. Until
recently, these models have not been used in the calculations of
large-scale fires. The problems associated with the application of
models of this type are the subject of further investigations. On the
level of the technological estimate of the propagation of the
impurity we can restrict ourselves to simpler approaches. Below,
all the results of the calculations are given for the variants with
K = 0.2 or a different value of K is presented.

Figure 3.48 shows the isolines of temperature and the field of
distribution of the impurity for a variant with the radius of the
region of R

0
 = 5 km and Q = 0.24 MW/m2 at the moment of time
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t  = 60 min.  The given pattern is characteristic of the stage of
hovering of the convective column and the spreading of the tongue
of the impurity cloud.

Figure 3.49 shows the isolines of temperature and the field of
distribution of the impurity for the variant R

0
 = 12 km and Q = 0.24

MW/m2 for the moment of time t = 40 min.  It may be seen that
the convective column has already reached the height of hovering,
although the temperature in the top part of the column is still higher
than the temperature of the surrounding medium. However, in the
region of the tongue of the impurities, there are clearly visible
complicated vortex structures. Figure 3.50 shows the moment of
time t = 60 min for the variant R

0
 = 12 km and Q = 0.24 MW/m2,

characterised by the quasi-stationary distribution of the impurities.
Figure 3.51 shows for comparison (Fig. 3.43) the form of the
convective column for R

0
 = 12 km, Q = 0.073 MW/m2 and t  =

40 min for the case with K = 0 (assuming the absence of the effect
of turbulence).

Investigations were carried out into the effect of lateral wind on
the parameters of the convective column, in particular the height
of emission of the passive impurity from the region of fire into the
atmosphere. The calculations were carried out using a simple model

Fig.3.48. Isolines of temperature (solid lines) in the field of distribution of the
impurity for R

0
 = 5 km and Q = 0.24 MW/m2 and moments of time t = 60 min.

The isoline 1 – T = 230 K, 2 – T = 250 K, 3 – T = 270 K, and so on, with ∆T =
20 K (T

max
 = 430 K).
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Fig.3.49. Isolines of temperature (solid lines) in the field of distribution of the
impurity for R

0
 = 12 km and Q = 0.24 MW/m2 and moments of time t = 40 min.

The isoline 1 – T = 255 K, 2 – T = 305 K, 3 – T = 355 K, and so on, with ∆T =
50 K (T

max
 = 720 K).

Fig.3.50. Data identical with those in Fig.3.49, for time t = 60 min, R
0
 = 12 km,

and Q = 0.24 MW/m2. The isoline 1 – T = 260 K, 2 – T = 285 K, 3 – T = 310 K,
and so on, with ∆T = 25 K (T

max
 = 650 K).
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of the region of fire in the form of a spatial cylindrical source
(energy and impurity) with the energy generation constant in
volume and with respect of time.

The initial parameters of the problem were as follows: the radius
of the region R

0 
= 10 km, the power of the source Q = 0.05 MW/

m2, the speed of wind 10 m/s (stratification of the wind in respect
of height was not specified). The integration of the equations of
motion of the non-viscous gas was carried out using the MUSCL
TVD scheme [174], with the third order of approximation in respect
of spatial variables and the second order in respect of time.

The initial stage is characterised by the formation of a toroidal
vortex at the periphery of the region of fire.  After 15 min, the
region above the source is characterised by the intensive lifting of
the heated gas and the propagation of the cloud in the radial
direction at a height of the order of 4.5 km. The flow was
visualised by introducing a source of a passive impurity into the
region of fire. Figure 3.52 shows the projection of the cloud (top
view) above the region of fire at t = 20 min (in the left half) and
with the wind (in the right half).  The direction of the wind is
indicated by the arrow.  It is interesting to note that although the
source of the fire is a figure of rotation, in the absence of the wind,

Fig.3.51. Data identical with those in Fig.3.49, for the variant R
0
 = 12 km and

Q = 0.073 MW/m2, corresponding to time t = 40 min assuming no effect of turbulence
(non-viscous calculations). The isoline 1 – T = 200 K, 2 – T = 235 K, 3 – T =
270 K, and so on, with ∆T = 35 K (T

max
 = 550 K).
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Fig.3.52. Projection of a cloud of an impurity (top view), t = 20 min, without
wind (left) and with wind (right), R

0
 = 10 km, Q  = 0.05 MW/m2. The velocity of

side wind 10 m/s, direction indicated by the arrow. The figures on the axes are in
km. Point (0,0) indicate the epicentrum of the fire.

the distributed impurity is not such a figure. This indicates the
instability of the axisymmetric solution of the given problem. Figure
3.53 shows the side view for the same moment of time in the
presence of wind (directed from left to right).  The scale of the
axes in both graphs is given in kilometres. It should be mentioned
that these calculations were regarded as a first step for transition
to the examination of the given problem in the three-dimensional
formulation. Therefore, at present we can only talk about the
qualitative structure of the flow in the three-dimensional case, and
not about specific quantitative results. The complete model will take
into account the turbulence characteristics of movement of the gas,
the diffusion equation for transfer of the impurity and the
stratification of the wind in respect of height.

In conclusion, Fig. 3.54 shows a possible variant of the
visualisation of evolution and propagation of a cloud of smoke under
the effect of lateral wind. In this case, the initial formulation of the
problem includes the equation for the transfer of the impurity (there
may be several of them). The isosurfaces of the concentration of
the impurity are also shown in the graph.

the stability parameter depends on the averaging scale gas of the
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Fig.3.53. For the same variant of calculations and time as in Fig.3.52, side view
of the region of fire (in plane xz in the presence of wind (its direction coincides
with the direction of the z axis).

Fig.3.54. Dynamics of development and propagation of a cloud of impurity from
a large-scale source of buoyancy under the effect of wind. R

0
 = 10 km and Q =

0.05 MW/m2. The velocity of side wind 10 m/s. Moments of time 10, 20, ..., 60
min.
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Traditionally, astrophysical objects are very large. For example, the
dimensions of a solar spot of the order of 105–107 cm, the radius
of the sun is ~1011 cm, the radius of a red giant ~1015 cm, the size
of an accretion disc may exceed these dimensions, and the radius
of the galactic system reaches 1021–1022 cm. It may be seen that
if we estimate the Re number Re = RL=/ν  at these dimensions of
the flow, it will be considerably higher than the critical number for
the shear flow equal to approximately 2000. Consequently, the
problem of the turbulence of the flow is very urgent in the
astrophysical conditions.  After all it is clear that the characteristic
size cannot be represented by the size of the investigated object
and it  is necessary to use the characteristic size of the
heterogeneity which itself should be determined in the calculations.
Viscosity is significant only for fine-scale pulsations (Re

l0
 ≈ 1).

For the scales with the characteristic wave numbers λ  > > λ
0
, the

structures cannot depend on viscosity. In turn, the dissipation of
turbulent motion is determined by high frequencies. However, for
the Kolmogorov–Obukhov spectrum it is possible to determine the
rate of dissipation through the large-scale L: ε = (∆u)

3
/L, where

L is the characteristic size of the region containing the turbulent
flow, ∆u is the variation of the mean speed in the dimension L.
According to the theory of statistical turbulence, the ratio of
turbulent viscosity and molecular viscosity is ν

tur
/ν

boil
 ≈ Re, and the

pressure gradient (momentun transfer) is ∆P ≈ –ρ(∆u)2.
Qualitatively, the turbulent flow differs by the fact that i ts
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thermodynamic and the hydrodynamic characteristics (vector of the
speed, pressure, temperature, concentration of impurities, density,
speed of sound, the refractive index, etc) are subject to random
fluctuations, generated by the presence of a large number of
vortices of different scale and, consequently, they change very
chaotically and irregularly with time and in space. In addition to
this, it is important to examine the problem of the intermitting
structure of turbulence. All these factors make it necessary to carry
out numerical modelling of turbulence in the astrophysical
conditions for every object!

An important special feature of the astrophysical conditions is
the presence of gravitational forces. It  is possible to derive a
criterion characterising the local stratification of the flow

2
* *( ) / ,N z g z= ∂ρ ρ ∂

where ρ
*
 is the potential density. If N2 > 0, the Archimedes force

is backmoving, and turbulence should use energy for work against
the effect of the Archimedes force and, consequently, it develops
only slightly and often concentrates only in the individual thin layer.
In this case, the Richardson number is a criterion:

Ri .

dp
g

dz
du

dz

 
  = −
 ρ  

In subsequent stages, the concept of the α -disc has been
introduced with special reference to accretion discs. The main
assumption of the model of the α -disc is the assumption according
to which the sink of the kinetic energy of turbulence and the thermal
energy, generated in the transition of kinetic energy to thermal
energy as a result of viscosity, are equal. This is one aspect.

On the other hand, the increase of the angular moment with the
radius stabilises turbulence. For example, this problem was
investigated in the work of Ya.B. Zel'dovich [158].  He introduced
the Taylor criterion in the local examination of the criterion of
development of instability:
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( )22

2
5

Ty ,

d r

dr
d

r
dr

ω

=
ω 

  

Here 
d

dt

ϕω =  is angular velocity, r  is radius (the cylindrical

coordinates r, ϕ , z are used). This number differs from the criterion
introduced by Bradshaw [144] but is more suitable for astrophysical
situations because it should provides an universal dependence for
different geometrical situations. The Taylor criterion was derived
from the local examination of flow stability. If the rotation laws are
known, it is possible to derive the Taylor criterion for the entire flow.
It is assumed that high values of Ty correspond to more rigid
conditions of turbulence of the flow. For example, for the
exponential law of the dependence of angular speed on radius ω =
const rn, the Taylor criterion has the following form:

( )
2

8 2
Ty .

n

n

+
=

The stabilisation of the flow in relation to turbulisation of curves
occurs at n  > –2 which corresponds to the value Ty > 0. For a
Keppler accretion disc n = –3/2, which gives Ty = 16/9. If n = 0,
we are concerned with solid-state rotation and, in this case, there
is no shear flow and, consequently, no energy is available for the
development of the turbulent flow and this is reflected in the value
of the Taylor criterion Ty = ∞.

If  we remember Taylor ’s studies [233] where attention was
given to the flow between rotating cylinders with the gap ∆R, then
at ∆R/R  = 0.222 in the Taylor ’s studies Re

c
 ≈  2×105,  which

corresponds to the value of the Taylor criterion for the Keppler disc.
This value is hundred times higher than the critical value for the
Kuetta flow, but is still considerably smaller than the Reynolds
numbers characteristic of the astrophysical conditions.

The problem of turbulence is very important for accretion discs.
The observed x-ray irradiation in accretion of matter on a
relativistic object in double stellar systems is determined by the rate
of accretion:
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2 erg/s,L Mc≈ η

Here η  is the efficiency of conversion of gravitational energy, M
is the rate of accretion of matter on the relativistic object, c is the
speed of light. For a neutron star η ≈  0.1÷0.2, for a black hole
η ≈ 0.06÷0.4. The rate of accretion is determined by the mechanism
of transport of the angular moment on the disc to the outside.
There are several possibilities for the redistribution of the angular
moment. Evidently, molecular viscosity is not important in the
astrophysical conditions. However, as discussed previously, turbulent
viscosity τ

m 
≈ Re may operate [84]. However, according to Taylor’s

studies for the laws of rotation with increase of the angular moment
to the outside, the instability to turbulisation of the flow may be
suppressed. However, nonlinear interactions may generate
turbulence in the flow [58]. In particular, large-scale structures may
form [26,148]. In these conditions, the transfer of the moment is
associated with large-scale vortices and does not result in heating
of the accretion disc away from the gravitating solid.

The traditional model of the α -disc links the viscosity with the
temperature of the matter of the disc. This is characteristic of the
Kolmogorov–Obukhov spectrum where the small scales of
turbulence annihilate into heat. In this model, the efficiency of the
transport of the angular moment is characterised by the parameter
α :

2

24
t

s s

V H

V V
α = +

πρ

where 
2 3

2 2
s

r
p

V kT

m

ρ
= ρ + ε  is the thermal energy of the matter, ε

r
 is

the density of radiation energy, V
s
 is the velocity of sound and V

t

is turbulent velocity. In this assumption, the tensor of the tangential
stresses w

rϕ is written in the following form:

2.r t s

d
w R V

dRϕ
ω= ν ≈ αρ

Usually, i t  is assumed that parameter α  is in the range
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2

–1510 1
cr

M

M

 
< α < 

 
.  In fact, this parameter should be determined

on the basis of modelling the turbulent flow in the investigated
conditions. The definition of parameter α  also includes the strength
of the magnetic field H.

The magnetic field may influence the transport of the angular
moment. However, the following problem must be taken into
account. If the density of the energy of the magnetic field is higher
than the kinetic energy, the structure of the flow is determined by
the magnetic field and there is no turbulence. On the other hand,
if the density of the energy of the magnetic field is smaller than
the kinetic energy, the magnetic field has no effect on the flow.
Magnetic viscosity becomes considerable if the values of the kinetic
energy and the density of the energy of the magnetic field are of
the same order of magnitude. This situation exists in the case of
magnetic dynamo.

However, we know from examination that the transport of the
angular moment outside the disc does take place. Thus, we must
face the problem of finding the mechanism of transport of the
angular moment in the accretion disc.

.� �
 
 �/$
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The structure of the accretion disc has been studied in a large
number of investigations, starting from different analytical and simple
modelling constructions up to the calculations of the structure of the
accretion disc in the three-dimensional approach. In this book, we
shall describe the structure of the accretion disc taking into account
the study [4].

The accretion discs or gas formations in the vicinity of
gravitating bodies represent an interesting object for examination in
astrophysics and theoretical physics. These formations are typical
of the nuclei of galactics and double stellar systems where the
processes in the disc control the evolution of the binary system as
a whole. Special attention in these objects is paid to the
examination of the mechanisms of the loss of the angular moment
by the matter of the disc and subsequent accretion of the matter
on the compact gravitating object.  The rate of transfer of matter
on the central body from the accretion disc determines the nature
of radiation and this is especially important for investigations.

The methods of mathematical modelling, based on different
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physical models and computation algorithms, are used widely at
present for examining the processes in accretion discs, together
with analytical methods.  For example, the authors of [196,202,224]
carried out numerical calculations and the results of these
calculations shows the formation, in an accretion disc, of a double
stellar system of spiral shock waves. It  has been reported that
these formations represent an important mechanism of the loss of
matter by the disc. In addition to this, the redistribution of the
angular moment is caused by viscosity, the magnetic field, and in
our opinion, the formation of large-scale vortices.

The authors of [35,38,40] modelled the formation of a disc and
the formation of its structure taking into account the intercalation
of matter between the components of the binary system. In these
studies, the calculation region contains both components of the
binary system and, consequently, the vicinity of the star-accretor
where the disc forms, contains a relatively small number of
calculation cells of the difference grid. Consequently, it is difficult
to resolve in detail the special features of the spatial structure of
the flow in the disc. At the same time, it is not possible to produce
large-scale vortices because of the high numerical viscosity which
depends on the size of the calculation cells (or, in a more general
case, one should talk about dissipation processes).

Therefore, for more detailed examination the processes in the
discs it is desirable to separate of the disc as an individual element.
There is a principal physical difference in this formulation of the
problem: there is no accretion of matter on the gravitating centre
and on the outer boundary of the disc. In this case, it is possible
to carry out a more detailed examination of the spatial formations
in the disc, formed under the effect of gravitational forces of both
components and rotation of the binary stellar system as a whole
[3]. The structure of the flow in the disc is modelled in the two-
and three-dimensional spatial approximations.

We examine a system consisting of two stars with the masses
M and m, rotating around the centre of the mass of the system with
constant angular velocity ω. The star with mass M will be referred
to as the primary component,  and this,  with mass m  as the
secondary component (the star-donor) (Fig. 4.1).

According to the third Kepler law, distance A  between the
components is linked with the angular speed of rotation of the
system by the following relationship

2 3 ( ).A G M mω = +  (4.1)
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Here G  is the gravitational constant.  Distance L  between the
primary component and the centre of the mass of the system has
the following form

/( ).L Am M m= + (4.2)

We introduce a cylindrical coordinate system (r ,ϕ ,z), rotating
with angular velocity ω, with no inertia. The origin of the coordinate
of the system coincides with the centre of the primary component,
and the axis ϕ  = 0 passes through the secondary component (Fig.
4.1). It is assumed that in the region Ω = (r

1
 < r < r

2
)×(0 < ϕ  <

2π×(–z
0
 < z < z

0
), representing a cylindrical ring whose axis of

rotation coincides with the axis z, we specify the stationary (in the
absence of the secondary component) gas configuration of the
accretion disc in which the gas rotates around the primary
component. Self-gravitation of the gas is not taken into account
because it  is assumed that the mass of the gas in the disc is
considerably smaller than the mass of the first component. The gas
is compressible, ideal and its behaviour is described by a system of
three-dimensional equations of gas dynamics in Euler variables [84]:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2

2

1
0,

1
,r

d r u r r w

t r r z

r u rpr u r u r uw
p r

t r r z

∂ ρ ∂ ρ ∂ ρν ∂ ρ
+ + + =

∂ ∂ ∂ϕ ∂

∂ ρ +∂ ρ ∂ ρ ν ∂ ρ
+ + + = + ρν + ρ

∂ ∂ ∂ϕ ∂
F

     (4.3)

Fig.4.1. A system consisting of two stars with masses M and m, rotating around
the centre of masses of the system with constant angular velocity ω. The star
with mass M will be referred to as the primary component, the star with mass m
as secondary (star-donor)
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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pu r

t r r z
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r
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e u w h e p

ϕ

∂ ρ +∂ ρ ∂ ρν ∂ ρν
+ + + = − ν + ρ

∂ ∂ ∂ϕ ∂

∂ ρ +∂ ρ ∂ ρν ∂ ρ ν
+ + + = ρ

∂ ∂ ∂ϕ ∂
∂ ρ ∂ ρ ∂ ρν ∂ ρ

+ + + = ρ
∂ ∂ ∂ϕ ∂

= ε + + ν + = + ρ

F

F

F v

with the equation of state

( )1 .p = γ − ρε (4.4)

Here r is radius, ϕ  is the polar angle, t is time, ρ is the density of
the gas, p is pressure, ε is the specific internal energy, e  is the
total specific energy, γ is the adiabate parameter, h is the total
specific consulting, v =(u,ν ,w)T is the speed of the gas, u is the
radial component of the speed, v is the azimuth component, w the
component of the speed on the axis  z ,  F  is the total specific
external force with the component (F

r
,Fϕ ,F

z
) acting on the gas

particle.
In the dimensionless variables, where the scale multipliers are

represented by the values
33 11 8 3 1 21 10  g, 10  cm, 6.67 10  cm ·g ·s ,M R G − − −= × = = ×

The equation for the component of the external force, which
takes into account the effect of the forces of gravitation of the first
primary and secondary component, the centrifugal force and the
Coriolis force, have the form

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )

2
3/ 2 3/ 22 2 2 2

2
3/ 22 2

3/ 2 3/ 22 2 2 2

cos cos 2 ,

sin sin 2 ,

,

r

z

r md
s

r z d z

md
s u

d z

z mz

r z d z

ϕ

= − + α + ϕ − ω η + ϕ + ων
+ +

= − α + ϕ + ω η + ϕ − ω
+

= − −
+ +

F

F

F

where
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( )
( )

2 2

2 2

2 cos , sin sin / , cos cos / ,

2 cos , sin sin / , cos cos / .

d r A Ar r d A r d

s r L rL r s L r s

= + − ϕ α = ϕ α = − ϕ

= + − ϕ η = ϕ η = − ϕ
(4.5)

It  should be noted that the equations for the forces in the
selected coordinate system do not depend on the solution and,
consequently, on time, with the exception of the last member
(containing speed), associated with the Coriolis force.

The initial data in the calculations, described below, were
represented by the stationary gas configuration. It  was thus
possible to exclude the effect of gas-dynamic processes, caused by
the nonequilibrium nature of the initial state of the disc. In Ref. 2,
detailed investigations were carried out into possible equilibrium of
cylindrically symmetric configurations of the gas, rotating in the
vicinity of the gravitating centre; its pressure and density are linked
by the polytrope equation:

, , const .p k kγ= ρ γ =

In particular,  special attention has been given to selecting
equilibrium configurations of the gas with a boundary of the type:

( )( )2
0 0( ) exp ; , , 0Z r r r r r= ±α −β − α β > (4.6)

and equations of the equilibrium distribution of the functions of
velocity νϕ(r, z) and gas density ρ(r, z) are presented. By means
of analytical numerical investigations it  is shown that this
configuration of the gas may be regarded as equilibrium and that
it can be used as initial data in modelling the processes in the
accretion disc, in both the three-dimensional and two-dimensional
approximation.

The distance between the components in the binary stellar system
was assumed to be A = 4, the mass of the secondary component
in the main variant of the calculation was m = 1.  In this case, the
total rotation of the binary system takes place during the period
T

s
 ≈ 35. The gas was assumed to be ideal with the equation of

state (4.4) and the parameter of the adiabate γ = 5/3. The
parameters in equation (4.6), which determine the initial equilibrium
configuration of the disc, were assumed to be equal to α  = 0.2,
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β = 9, r
0
 = 0.8.  At these values of the parameters, the main mass

of the gas is concentrated in a cylindrical ring 0.5 < r  < 1.1,
–0.2 < z  < 0.2, and the total mass of the disc is M

gas
 ≈ 0.1, the

complete rotation of the gas particle with equilibrium configuration
takes place in the period T

1
 ≈ 0.6 and T

2
 ≈ 10 for the internal and

external edge of the disc, respectively.
Taking into account the symmetry of the problem in relation to

the plane z  = 0, the calculations were carried out in the region
Ω '  = (r

1
 < r

2
)×(0 < ϕ < 2π)×(0 < z  < z

0
)  with the appropriate

selection of the boundary conditions at the ‘lower’ boundary of the
region. In the remaining boundaries of the region we specified the
‘free’ boundary conditions of the type

0 0 , where , , , , ,
f f

f r u w e
r z

∂ ∂ = = = ν ∂ ∂ 
(4.7)

or the non-percolation condition

( )0 0 .u w= = (4.8)

Depending on the variance of the calculations, the parameters
of the region were selected equal to r

1
 = 0.2, r

2
 = 1.4, and r

1
 =

0.2, r
2
 = 2.1, and the values of z

0
 varied from 0.2 to 1.0. The size

of the difference metal was from 60 × 40 × 3 to 120 × 80 × 60
cells.  To solve the resultant equations, two different methods,
described in [8,9],  were used. The results obtained by these
methods coincided, indicating the physical consistency of the results.

The results of numerical calculations in the two-dimensional
approximation

The calculations were carried out with different parameters of the
system, the boundary and initial conditions. Here, it is important to
mentioned briefly only the most important results. In the process of
the calculations, the general characteristic stages of the develop-
ment of processes in the accretion disc were determined. In the
initial stage, the solution of the system of equations (4.3), (4.4) was
carried out in the absence of the secondary component (m = 0). In
this case, the initial equilibrium condition of the gas of the type
(4.6) did not change which confirms not only the stationary nature
of the state but also its stability.  It should be mentioned that this
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formulation of the problem differs from the traditional models using
the Kepler law of rotation in which the disc is assumed to be very
thin and cold.

In order to avoid high-intensity relaxation processes, the distance
between the component was varied from 103 A to A in a relatively
short period of time T

A
 = 4.5, in accordance with a linear law. The

parameters of the system and the specific external force change
in this case in accordance with the relationships (4.1), (4.2) and
(4.5), respectively. In this stage, the initial state of the gas in the
disc also changed only slightly.

In the following stage, under the effect on the field of external
forces F  and the force of the gas-kinetic pressure, the gas
gradually acquires the positive radial component of the speed
leading to the formation of a shock wave propagating to the
periphery of the calculation region. The front of the shock wave
becomes elliptical and this is a consequence of the heterogeneity,
in respect of the polar angle, of the components of the ‘perturbing’
total force (Fig. 4.2). The lines of the level of density and the
vector of the gas velocity are indicated on the graphs.

In transition through the front of the shockwave, the gas almost
completely loses the radial component of the speed. Consequently,

Fig.4.2. Lines of the level of density and vector of gas velocity at the moment
t = 10. The solid line indicates the Roche surface.
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a new quasi-stationary state forms behind the front, and the spiral
waves are an important component of this state (Fig. 4.3). This
configuration does not change qualitatively during the period of the
order of rotation of the binary system T

s
 ≈ 35.

For the analysis of the resultant helical structure of the disc,
additional calculations of were carried out to determine the
trajectory of the gas particles.  The calculations show that the
passage of the particles through the front of the spiral waves usually
reduces the angular moment. Nevertheless,  in the process of
movement, the particles may also acquire an additional angular
moment resulting in the displacement of the particle to the outer
edge of the disc, regardless of the intersection of the spiral waves
by the trajectory of the particles. Taking this into account, it was
concluded that the accretion of matter depends not only on the
presence of spiral waves but also on the general superposition of
the forces, including on the pressure gradient.

One of the aims of the modelling was the examination of the
possibility of formation of the stationary state of the accretion disc
in the binary star system. For this reason, a series of calculations
were carried out in the region containing the Roche cavity of the

Fig.4.3. Lines of the level of density and vector of gas velocity at the moment
t = 19. The solid line indicates the Roche surface.
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Fig.4.4. Lines of the level of density and vector of gas velocity at the moment
t = 19 (the solid line indicates the Roche surface; the region of calculations contains
the Roche cavity of the primary component and Lagrange point L

1
).

primary component and the Lagrange point L
1
. It has been shown

that in the case of the ‘free’ boundary conditions (4.7) the disc is
characterised by the establishment of a two-arm helical structure
of the disc (Fig. 4.4) which does not change qualitatively during a
long period of time, of the order of 12T

s
.

However, as previously, this structure is not stationary because
there is discharge of the matter of the disc both in the direction of
the internal boundary of the region (to the primary component) and
to the periphery, mainly in the vicinity of the internal Lagrange point.
In this case, the intensity of the spiral waves changes with time,
like the shape of the fronts of the waves (Fig. 4.5).

The stationary configuration can be produced formally by
avoiding the outflow of the matter of the disc by selecting the non-
percolation condition (2.8) on the boundaries of the region. In this
case, the structure of the disc, containing spiral waves, is also
established (Fig. 4.6), and the presence of these waves in the given
conditions indicates that the resultant waves are shock waves. It
should be mentioned that the problem of the nature of formation of
spiral waves has been examined in greater detail in Ref. 1.
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Fig.4.5. Lines of the level of density and vector of gas velocity at the moment
t = 419 (the solid line indicates the Roche surface; the region of calculations contains
the Roche cavity of the primary component and Lagrange point L

1
).

Fig.4.6. Lines of the level of density and vector of gas velocity at the moment
t = 120. The stationary configuration of the disc was produced by selecting the
non-percolation condition at the boundaries of the integration region.
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The results of numerical calculations in the two-dimensional
approximation
The studies of many authors (for example, [41]) indicated the
possibility of large differences in the results of mathematical
modelling of astrophysical problems in the two- and three-
dimensional approximation. Taking this circumstance into account,
it was necessary to carry out three-dimensional modelling of the
processes in the accretion disc which in other aspects are
completely identical with the calculations carried out in the previous
paragraph. As shown by the calculations, three-dimensional
modelling is characterised by the same stages of development of
the helical structure of the disc, as mentioned previously. These
stages will  be demonstrated on an example of the variant of
calculations with the mass of the secondary component equal to the
mass of the primary component (m = 1), and with the parameters
of the calculation region r

l 
 = 0.2, r

2
 = 2.2, z = 0.2, containing the

Roche cavity of the primary component and the Lagrange point L
1
.

The dimensions of the difference grid in the given calculation
variant were 120 × 80 × 60 cells of the grid in respect of the
coordinates, respectively.

The initial state of the gas was, as previously, the equilibrium
configuration (in the absence of the secondary component) of the
type of (2.6) with the parameters α  = 0.2, β = 9, r

0
 = 0.8. At

these values of the parameters, the density of the gas differs from
zero only in the part of the calculation region determined by the
equation of the boundary (4.6). In the remaining part of the region,
we specified the ‘background’ values of density and pressure, equal
to ρ

b
 ≈ 1 × 10–6, ρ

b
 ≈ 1 × 10–7, whereas the density and pressure

in the equilibrium configuration were characterised by the values of
ρ

0 
≈ 1×10–1, p

0
 ≈ 1×10–3, respectively.  On the ‘side’ boundaries

of the calculation region we specified the ‘free’ boundary conditions
(4.7), and the ‘upper’ boundaries the non-percolation condition (4.8),
and on the ‘lower’ boundary, as already mentioned in the paragraph
2, we specified the conditions of symmetry of the flow in relation
to the plane z = 0.

As in the two-dimensional approximation, the external effect on
the gas particle, determined by the relationships (4.1), (4.2), (4.5),
gradually increased to the calculated value by decreasing the
distance between the components from 103 A to A in accordance
with the linear law in the period of time T

A
 = 4.5.  Figures 4.7 and

4.8 show the lines of the level of gas density in the section of the
calculation region for the fixed angle ϕ  = 0 and the projection of
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Fig.4.7. Lines of the level of gas density in the cross section of the calculation
region at fixed angle ϕ  = 0 and the projection of velocity vectors on the plane of
the section at time t = 0.

Fig.4.8. Lines of the level of gas density in the cross section of the calculation
region at fixed angle ϕ  = 0 and the projection of velocity vectors on the plane of
the section at time t

A
 = 4.5.
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the vectors of the speed and the plane of the section for the
moments of time T = 0 and T

A
, respectively.

As indicated by Fig. 4.7 and 4.8, the initial configuration changes
only slightly in this period confirming the equilibrium nature of the
configuration.

The next stage is characterised by the formation of a radial
shock wave, propagating in the direction to the periphery of the
calculation region which as a result of the heterogeneity of the field
of external forces (4.5) in respect of the polar angle gradually
acquires the elliptical form. The new core of the disc, containing
two distinctive helical structures, forms behind the front of the
radial wave. It should be mentioned that the radial component of
the velocity of the gas and also the component of velocity on the
z axis,  in the forming core are small in comparison with the
azimuthal (rotational) component. In this sense, we can talk about
the quasi-stationary nature of the flow of the gas in the centre of
the disc.  To illustrate these processes, one should examine Figs.
4.9 and 4.10, which show the lines of the level of density and
projection of the field of the speed of the gas on the planes of the
sections of the calculation region at fixed values of r  = 0 and
ϕ = 0, respectively.

Fig.4.9. Lines of the level of density and projection of the field of gas velocities
on planes of sections of the calculation region at r = 0.
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When the radial wave leaves the boundaries of the calculation
region, the spiral structure of the disc is established. In the sections
at fixed values of r the structure is identical with that observed in
two-dimensional modelling (see the section at  r  = 0, shown in
Fig.4.11). This structure of the disc does not differ qualitatively
during the period of time from T

s
 to 2T

s
 (depending on the

calculation variant). As previously, in this case it can be concluded
that the observed flow is the quasi-equilibrium configuration of the
disc in the field of external forces, determined by (4.5).

Thus, one can note the qualitative agreement of the results of
two- and three-dimensional modelling in the stage of formation of
the quasi-equilibrium helical structure of the accretion disc.
Quantitative comparison is also interesting. Using this comparison,
comparison was made of the patterns of the flow for the same
moment of time in the variant of three- and two-dimensional
calculations corresponding to each other. For this purpose, the three-
dimensional configuration was integrated in the direction of height
(axis z) and was subsequently presented in the form of the lines
of the level in the two-dimensional ring-shaped region, like the two-
dimensional configuration. As shown by Figs. 4.12-2D, 4.13-3D,

Fig.4.10. Lines of the level of density and projection of the field of gas velocities
on planes of sections of the calculation region at ϕ  = 0.
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Fig.4.11. Section of the structure of the flow at t = 13 (notations as in previous
figures).

Fig.4.12. Section of the structure of the flow at t = 13 for 2D-calculations (notations
as in previous figures).
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there is also quantitative agreement, because the corresponding
isolines of these figures reflect approximately the same levels of
density.

It should be mentioned that the helical structure, obtained as a
result of three-dimensional modelling, is not stationary as in the
previous case because the ‘free’ boundary conditions (4.7) permit
the inflow or outflow of the gas through the ‘side’ boundaries of
the calculation region. Therefore, the material of the disc,
discharged mainly in the vicinity of the Lagrange point L

1
, leaves

the calculation region and this results in a decrease of the mass of
the disc and a change in the form of spiral waves (Fig. 4.14).

The flow is also strongly affected by the conditions on the left
‘upper’ boundary of the calculation region. This is an additional
difference of the three-dimensional calculations in comparison with
two-dimensional ones, where the ‘upper’ boundary does not form.
In the case of substitution of the ‘free’ conditions on the upper
boundary of the regions, the calculations show the flow of mass
through the given boundary. This is caused by the fact that the
component of the external force F

z
, determined by the relationship

(4.5), is of fixed sign and specifies the direction of the vector of

Fig.4.13. Section of the structure of the flow at t = 13 for 3D-calculations (notations
as in previous figures). In this case, the 3D-configuration was integrated ‘in the
direction of height’ (z axis) and then depicted in the form of lines of the level in
the two-dimensional ring-shaped region, like 2D-configuration.

Levels

Density

Time 13.00
Layer on K: 1
Z = 0.002

Calculation
No. www
Step No. 7028
Mesh: 120×80



233

Astrophysical turbulence, convection and instabilities

Fig.4.14. Section of the structure of the flow at r = 0 at t = 67 (notations as in
previous figures).

the force in relation to the equatorial plane z = 0.  This effect also
influences the part of the calculation region in which the
‘background’ values of the pressure and density ρ

b
, p

b
 are initially

given, and the pressure gradient, compensating the effect of the
external force in the equilibrium concentration, does not form.

Thus, in three-dimensional modelling it is also not possible to
obtain the stationary configuration of the accretion disc within the
framework of the examined formulation of the problem. The
calculations show that an important factor is the mechanism of
exchange of matter between the accretion disc and the shell of the
binary system which greatly controls the processes taking place in
the disc. In the simplest case, this mechanism is represented by the
complete absence of exchange of matter between the shell and the
disc, by formulating the conditions of non-percolation (4.8) in all
boundaries of the region. In this case (as in two-dimensional
modelling) one can obtain a stationary flow in the disc containing
spiral waves (Fig. 4.15) but this is nevertheless slightly artificial.

The agreement the between the results of the two- and three-
dimensional modelling, obtained in the calculations, is very interesting
for subsequent modelling of the processes of development of
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turbulence in the accretion disc. The large-scale structure of the
vortices is of the two-dimensional type. Consequently, it is possible
to carry out modelling of the development of turbulence in the two-
dimensional approach so that we can use numerical grids with
sufficient detail.

It is interesting to note that in studies with the exchange of mass
in the binary system and, consequently, with the accretion process,
the three-dimensional and two-dimensional calculations give
differences in the structures of the flow and agreement in the
result is recorded only for the values of γ close to 1. This is caused
by the importance of the centrifugal barrier in the accretion regime.
Matter does not accrete without the loss of the angular moment
and the newly falling matter with a smaller angular moment is
forced to flow around the resultant torus thus increasing the
thickness of the disc and changing the structure of the flow. In the
unidimensional case, the centrifugal barrier is not permeable [41].
Another interesting result is associated with the gradual decrease
of the intensity of helices with subsequent loss of one of them

Fig.4.15.  Lines of the level of density and vector of gas velocity in stationary
solution for 3D-calculations. The stationary configuration of the disc was produced
by selecting the non-percolation conditiona at the boundaries of the region.
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(upper one). The authors of [37] also detected only one of the
helices because the internal helix was disrupted by the flow of
accreting substance. In the present work, the single-sleeve structure
is associated with a low density of matter.

Analysis of the results of these calculations show that the
hydrodynamic processes in the disc are determined by the
complicated force field resulting in the formation of a structure
containing spiral formations with increased values of density and
pressure. However, without explicit consideration in the mathem-
atical model of the mechanisms of exchange of matter between the
accretion disc and the shell of the binary system it is not possible
to produce the stationary structure of the disc. To achieve the
stationary state of the disc, it is necessary to ensure the flow of
mass from the donor star, for example, within the framework of the
complete problem [38,40,41].
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Investigations of the effect of numerical viscosity on the structure
of the flow were conducted in [41]. In this section, we shall present
mainly the results of this investigation. Previously in [36,38–41,
146], the authors investigated the morphology of the flow in semi-
divided binary systems. Within the framework of the three-
dimensional numerical model, it was established that the presence
of a diluted inter-component gas greatly changes the structure of
the gas flows in the system. In particular, it was established that
the self-consistent solution of the problem does not contain the
impact interaction of the jet of matter, discharged from the internal
Lagrange point,  with the resultant accretion disc (‘hot spot’).
However, these solutions were obtained for the relatively high
numerical viscosity in the disc and this was determined by the need
for the application of a coarse calculation grid because of the limited
possibilities of the power of the computing techniques used. In
terms of α -viscosity, the numerical viscosity corresponded to [39].
At the same time, the problem of the structure of the flow at low
viscosity values is of considerable interest,  as confirmed by
appropriate experiments. This problem is especially important in
connection with the large-scale structure, possibly existing in the
accretion disc.

In the present work, as in [36,38–41,146], the process of the flow
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of the gas is described by a system of Euler equations disregarding
physical viscosity. The presence in the model of only numerical
viscosity restricts the possibilities of detailed investigation for
different values of viscosity, because the minimum value is restricted
by the limit of numerical viscosity. Nevertheless, changes in the
structure of the flow with the variation of viscosity in a wide range
may be obtained on the qualitative level.  Since the numerical
viscosity dependence (for the selected difference scheme) on the
time and spatial resolution, in order to obtain the dependence of the
solution on the viscosity, a sequence of calculations with a
decreasing step of the grid was used.

Investigations were carried out using a semi-detached binary
system, consisting of a donor with mass M, filling the Roche cavity,
and an accretor with mass M

ac
. The masses of the components of

the system were assumed to be equal. In order to describe the flow
of the gas, the numerical solution of the system of hydrodynamic
Euler equations in the three-dimensional space was used.

The adiabatic approximation was used in the solution. However,
the qualitative consideration of the radiation losses of the energy
may be taken into account by introducing the parameter of the
adiabate close to 1. This parameter corresponds to the case close
to the isothermal one. Consequently, the given physical–mathematical
model of the disc can be regarded as a system characterised by
energy losses [35,223].

As mentioned previously, the numerical viscosity in the
investigation was reduced by changing the step of the calculation
grid. Unfortunately, the limited power of the computer used in the
study did not make it possible to model the flow in a large range
on a dense grid. Consequently, like in [139,183,195,202], the flow
of the gas was modelled in a limited region consisting of a
parallelepiped (because of the symmetry of the problem in relation
to the equatorial plane, the calculations were carried out only in the
upper half space). A sphere with a radius of 0.01 was cut from the
calculation region. The sphere represented the accretor. To provide
more information, the parameters of the calculation region in the
equatorial plane are shown in Fig. 4.16 (the solid line) and, in
addition to this, the dotted line shows the Roche potential, the dot-
and-dash line shows the calculated region used in [26,38–41,146].

The initial conditions were represented by a rarefied gas with a
density 10–5 times lower in comparison with the density of the gas
in the jet. The boundary conditions were determined on the internal
Lagrange point where the conditions of injection of the jet of the
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substance in the vicinity of the accretor were specified. The
velocity of sound in the boundary cell was c(L

1
) = 10–1. The initial

(‘background’) values of the parameters were maintained
throughout the calculations at the fictitious nodes situated inside the
accretor, and also at the fictitious nodes in the remaining part of
the external boundary. Finally, the boundary conditions were
determined as a result of solving the problem of the breakdown of
a discontinuity (the Rieman problem) between the parameters of the
gas at the fictitious node and the parameters of the gas at the
calculation node closest to the given point.

The results obtained in previous investigations [see: 36,38–41,
146] showed a significant role of the inter-component shell in the
formation of the flow structure. The application, in the calculation
model, of the restricted calculation region does not make it possible
to take into account efficiently the inter-component shell  and,
correspondingly, the ‘restricted’ solution may greatly differ from the
‘complete solution’. We shall examine the effect of the restriction
of the calculation region on the solution. For this purpose, which we
compare the structure of the flow from the ‘complete’ model [41]
with the calculations, obtained in the same grid in the restricted
region.  Figures 4.17 and 4.18 show the isolines of the density and
the vector of the speed in the equatorial plane of the system for
the ‘complete’ and ‘restricted’ calculations, respectively.  Figures

Fig.4.16. Calculation region for the ‘complete’ (dot-and-dash) and ‘restricted’ (thick
line) problems. The cross-hatched region shows the donor. The broken lines show
Roche equipotentials.
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Fig.4.17. Isolines of density and vector of velocity in the equatorial plane for
calculations in the ‘complete’ region. The solid dot in the centre indicates the
accretor, broken lines the Roche equipotentials. The vector in the upper right corner
correspond to dimensionless velocity u = 4. The thick line shows the boundary
(‘last’) line of flow from those through which the flowing matter falls directly
into the disc.

4.17 and 4.18 also show the boundary (‘the last’) lines of the flow
through which the matter penetrates directly into the disc.
Comparison of the presented results shows that the morphology of
the flow in the region around the disc in the ‘restricted’ problem
reflects the main special features of the flow of the ‘complete’
problem. In particular, the system is characterised by the formation
of an accretion disc with approximately the same linear dimensions.
Shock waves I and II form. These waves are caused by the
interaction of the gas of the intercomponent shell with the jet of the
matter discharged from L

1
.  At the same time, the effect of the

intercomponent shell in the ‘restricted’ problem is not taken into
account completely correctly. In particular, there are no flows of
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the substance along the Roche plane of the donot star which, as
shown in [40], results in the collapse of the atmosphere of the
mass-losing star, causing changes in the structure of the flow in the
vicinity of point L

1
 and a significant increase of the temperature of

transfer of matter in the system. This circumstance greatly changes
the parameters of the structure of the ‘restricted’ problem in
comparison with the ‘complete’ problem. This may be illustrated by
Fig. 4.19, showing the distribution of density in the equatorial plane
of the system along the line, passing through L

1
, parallel to the Y

axis. The results presented in Fig. 4.19 show that in the ‘restricted’
problem, the jet of the substance, discharged from L

1
, expands to

the characteristic size ε  = c(L
1
)/(AΩ) [199]. The density in the

cross-section of the jet decreases exponentially [199], whereas in
the ‘complete’ problem, the density of the matter of the jet is greatly
determined by the effect of the collapse of the atmosphere of the
donor star. In addition to this, the ‘restricted’ problem does not
contain the flow of the intercomponent gas, returning to the system

Fig.4.18. Isolines of density and velocity vector in the equatorial plane for calculations
in the ‘restricted’ region (symbols are the same as in Fig.4.17).



240

Turbulence: New Approaches

under the effect of the Coriolis force (from the side of the jet,
opposite to the direction of orbital motion). This circumstance
results in the disappearance, in the ‘the restricted’ problem, of the
shockwave III which forms in the ‘complete’ formulation. The
following conclusions can be made:

1. In the ‘restricted’ problem, examination of the effect of the
general shell on the solution is not completely correct and this
results in both qualitative changes in the structure of the flow – the
system does not contain flows of the intercomponent gas (lines of
the flow a  and b in Fig. 4.20) and, consequently, shockwave III
disappears,  – and also in quantitative changes – because the
collapse of the atmosphere of the donor star is not considered, the
parameters of the jet change and, in particular, the thickness of the
jet greatly decreases.

2. The morphology of the flow of matter in the vicinity of the
accretor in the ‘restricted’ and also ‘complete’ problems on the
qualitative level is similar. By partially taking into account the
intercomponent shell  – i .e.  the substance rotating around the
accretor and interacting with the jet (flow lines c in Fig. 4.20), in
the ‘restricted’ problem we can obtain a solution corresponding to
the ‘complete’ solution in the region in the vicinity of the accretor.
In particular, as in the ‘complete’ problem [36,38–41,146], in the
‘restricted’ solution, the jet, deflected under the effect of the gas

Fig.4.19. Profiles of density in the equatorial plane along the line passing through
L

1
 (x  = 0.5, y = 0, z = 0) parallel to the Y axis for the ‘complete’ (broken line)

and ‘restricted’ (solid line) problems.
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of the intercomponent shell, approaches the disc along the tangent
and does not cause any impact effect on the edge of the disc (the
effect of the ‘hot spot’). The region of generation of energy is
situated along the edge of the jet facing the orbital motion where
the interaction of the general shell  with the jet results in the
formation of an elongated impact wave I (Figs. 4.17, 4.18, 4.20).

The result of comparison of the ‘restricted’ and ‘complete’
problems show that the interaction of the jet with the accretion disc
can also be examined, with certain reservations, in the ‘restricted’
formulation. Because of this circumstance, it is possible to carry out
calculations on denser grids and, consequently, at lower viscosity.
It also makes it possible to investigate the effect on viscosity on
the structure of the flow of matter in the vicinity of the accretor
and examine the problem of the existence of the ‘hot spot’ at low
viscosity.

Three series of calculations were carried out with different
spatial resolutions of the grids: 31×31×17.61, 61×61×17 and 91×91

Donor SW Disc

Accretor

Fig.4.20. Schematic representation of special features of gas-dynamic flow of matter
in semi-divided close binary systems. The figure shows Roche cavities (broken
lines), position of the accretor and Lagrange points and also the accretion quasi-
elliptical disc. The shock wave, formed as a result of interaction of the gas of the
general shell with the jet, is denoted SW and indicated by the thick line. The flows
a,b,c form the general shell of the system. Flow line d corresponds to the flow of
matter leaving the system.
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×25 (they will  be referred to as the calculations A, B, and C,
respectively).  In all  variants of the calculations, the grid was
uniform. In terms of the α -disc, the numerical viscosity of the
variants of the calculations A, B and C corresponded approximately
to α ≈  0.08÷0.1, 0.04÷0.06 and 0.01÷0.02.

Comparison of the results of the calculations A, B and C
together and also with the results presented in [195] (where a
200×200×50 grid was used in the same formulation) makes it
possible to examine the effect of viscosity on the solution.  Figures
4.21, 4.22 and 4.23 show the fields of density and the vector of
velocity in the equatorial plane of the system for the variants A,
B and C and also the images of the flow lines a  restricting the
accretion disc. Numerical analysis of the solutions shows that the
interaction between the jet and the disc is free of impacts in all
calculation variants. The morphology of the jet and of the accretion
disc is of the same type and, consequently, ‘hot spots’ do not form
in the system. This fact may be illustrated by Fig. 4.24 showing,

Fig.4.21. Distribution of density in the equatorial plane for calculation A (31×31×17
grid). Arrows show the velocity vector. The black star indicates the position of
the accretor, line a the flow line restricting the accretion disc. The scale gives the
correspondence of the values of the logarithm of density of gradations of grey
colour.
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Fig. 4.22. The same as Fig.4.21, for calculation B (61×61×17 grid).

Fig.4.23. The same as Fig.4.21, for calculation C (91×91×25 grid). In addition to
flow line a, restricting the accretion disc, the graph shows the flow line b passing
through the shock wave. Section 1–2 on the line b corresponds to the area of contact
of the jet of matter from L

1
 and the accretion disc, section 3–4 corresponds to the

are of interaction of the inter-component gas with the jet (shock wave).

3

4

1
2
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for the calculation variant C (with the minimum value of viscosity),
the distribution of the dimensionless temperature in the XY plane
for four values of the coordinate Z: z = 0 is the equatorial plane,
and z = h, 2h, 3h, where h (the size of the calculation grid in the
direction of height (corresponds to the scale 0.01A .  The
dimensionless temperature at point L

1
 is 10–2.  For transition to

dimensionless temperature, i t  is necessary to multiply the
dimensionless values by GM/(AR), where G  is the gravitational
constant,  M  is the total mass of the system, A  is the distance
between the components of the system, R  is the gas constant.
Analysis of the temperature field, presented in Fig. 4.24, indicates
the absence of the region of energy generation in the area of
contact between the jet and the disc, i.e. the absence of the ‘hot

Fig.4.24. Distribution of dimensionless temperature for calculations B (91×91×25
grid) in the equatorial plane (z = 0) and also in planes parallel to this plane z =
h, z = 2h, z = 3h, where h = 0.01 is the size of the calculation grid in the direction
of height. The black star indicates the position of the accretor.
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spots’ for all values of z. Examination of the variation of the gas
parameters along the flow lines confirms this conclusion. In
particular, Fig. 4.25 shows the variation of dimensionless tempe-
rature along the flow line b (Fig. 4.23). Analysis of the variation
of temperature makes it possible to draw conclusions on both the
absence of ‘hot spots’ in the area of contact between the jet and
the disc (region 1–2) and on the position of the region of energy
generation in the area of formation of shockwave I (region 3–4 in
Fig. 4.23 and 4.25).

Comparison of the resultant structures of the flow shows (see,
for example, Fig. 4.21, 4.22, 4.23) that the improvement of the
spatial resolution of the grid and, consequently, the decrease in the
numerical viscosity reduces the extent of diffusion spreading of the
jet discharge from the internal Lagrange point. In the variants of
the calculations with a finer jet (variants of B, C and also
calculations in [195]) a significant role in the system is played by
the gas of the intercomponent shell flowing around the jet at the
top and bottom. This fact is illustrated in Fig. 4.26 where, for
calculating C, the field of the density and vector of velocity in the
cross-section YZ,  produced through the point (0.9; 0.0; 0.0), is
shown. The variation of the density (increase in the thickness of
the flow) in the region of flow of the gas of the shell around the
jet, is also shown in Fig. 4.27 where the frontal plane (XZ) shows
the field of density for calculations C. The presence in the system
of the gas flowing around the jet may lead to the impression of an

Fig.4.25. Dimensionless temperature along flow line b in Fig. 4.23. Section 1–2
corresponds to the area of contact of the jet and the accretion disc, 3–4 corresponds
to the shock wave.
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Fig.4.26. Distribution of density and velocity vector in plane YZ, drawn through
the point (0.9; 0; 0), for calculations B (91×91×25 grid). Marker 1 shows the
position of the central part of the jet restricted by the isoline lg ρ = –2.3, marker
2 shows the front of the shock wave.

Fig.4.27. Distribution of density and velocity vector in the frontal (XZ) plane
for calculations B (91×91×25 grid). The black star shows the position of the accretor.
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impact interaction between the jet
and the disc (see, for example, the
three-dimensional image of the
isosurface of density in Fig. 4.28
and also the results in [195]),
although analysis of the solution
indicate unambiguously the smooth
nature of the flow.

The structure of the image of
the flow was characterised in [36,
38–41,146] in the following
manner:
• the disc – matter of the jet

which is immediately trapped by
the gravitational attraction of
the accretor and in subsequent
stages accretes on the central
body;

• the intercomponent shell – all
remaining matter,  and part of
this matter rotates around the
accretor, interactions with the
jet and can be accreted in
subsequent stages.
Thus, the matter of the jet was

divided on the basis of the physical
feature: if  the gas leaves the
system or interacts in subsequent
stages with the initial jet,  this
matter does not belong to the disc.

Fig.4.28. Spatial image of density isosurfaces.

In solutions with low viscosity another part of the shell appears, i.e.
the matter flowing around the jet at the top and bottom. Analysis
of the flow lines shows that this part of the shell does not belong
to the disc. A large part of this matter leaves the system. The
second part of matter gradually approaches the equatorial plane,
rotating around the accretor, and in subsequent stages interacts
with the jet.  In order to supplement the definitions in [36,38–
41,146], it is efficient to introduce the additional term –the hallo
around the disc, describing the substance which

1 Rotates around the accretor (gravitationally bonded);
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2 Does not belong to the disc (in physical formulation);
3 Interacts with the jet (collides with the jet or flows around it);
4 In subsequent stages, after the interaction, either takes part

      in accretion or leaves the system.
The variation of viscosity in the system leads unavoidably to

changes in the rate of accretion of the matter.  Analysis of variants
A, B and C shows that, as expected, in the calculation with low
viscosity the rate of accretion decreases. Unfortunately, detailed
examination of this problem requires extremely long computing times
greatly exceeding the available resources. The point is that in the
calculations with high viscosity [36,38–41,146], the viscosity time
of the disc

2 2

,V
s

R R

c H
τ = =

ν α

where R is the radius of the disc, c
s
 is the velocity of sound, H is

the characteristic thickness of the disc, did not greatly exceed the

hydrodynamic scale of time for the disc ga
s

R

c
τ =  so that it was

possible to obtain a stationary solution at times of the order of
several orbital revolutions of the system. With a decrease of
viscosity, finding the stationary solution is associated with problems
because the limited power of computes does not make it possible
to carry out calculations at times longer than τ

V
. Analysis of variant

C, i.e. examination of the dependence of the mass of the disc and
the hallo on time, shows that even at times exceeding 15 orbital
periods the solution is not yet stationary. Because of this
circumstance, i t  was not possible to obtain reliable numerical
estimates of the rate of accretion of matter in systems with low
viscosity.

Analysis shows that in the systems with different values of
viscosity, the jet,  deflected under the effect of the gas of the
intercomponent shell, approaches the disc along the tangent and
does not cause any impact disruption of the edge of the disc (‘a
hot spot’), and the region of excessive heat generation is situated
in the shockwave along the edge of the jet,  facing against the
direction of orbital movement.  This circumstance made it possible
to formulate a conclusion on the qualitatively similar pattern of the
flow at  different values of viscosity in the system.  At the same
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time, in variants with low viscosity (characterised by low values of
diffusion and, consequently, the small thickness of the jet) the flow
pattern showed an important role of the gas of the intercomponent
shell flowing around the jet at the top and bottom. An additional
term ‘ the hallo around the disc’ was introduced to describe this
detail of the flow pattern.
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Interesting investigations of the development of turbulence in
accretion discs were carried out in [188] where it was shown that
classic hydrodynamic turbulence cannot in principle affect the
transport of the angular moment in a Kepler disc. In a formal
examination, the following system of equations for the transfer of
the angular moment of forces F

R
 and FΦ can be obtained for the

two-dimensional case from the equations of hydrodynamics in
averaging in respect of the turbulence spectrum:

2

2
2

1
2 ,

2

1

2 2

R
R R R

R

U
U F U U U
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Uk
U F U U U

t

φ

φ
φ φ φ φ

∂∂ ρ + ∇ = ω ρ + ρ + ν ρ ∇
∂ ∂

∂∂ ρ + ∇ = − ρ + ρ + ν ρ ∇
∂ ω ∂φ

These equations show that, in contrast to the flat flow, sources
of turbulence may include Coriolis forces – the first member in the
first  equation in the right-hand part.   The member containing

epicyclic frequency 
2

2 2 dR
k

R dR

ω ω= , the first member on the right-

hand part of the second equation, is a stabilising factor.
Consequently, it is necessary to solve the problem of the possibility
of development of turbulence in the nonlinear regime. These
investigations can be carried out only using methods of
mathematical modelling.

As already mentioned, the methods of mathematical modelling are
restricted by the problem of numerical viscosity or dissipation (for
schemes of a high order). In addition to this, it is usually argued
that this instability cannot be detected because it requires high
Reynolds numbers.  For example, for an accretion disc Re

c
 ≈ 8 ×
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105, which is considerably higher than the Reynolds number in the
flat flow. At the same time, computing experiments carried out in
[188] showed that where there is instability to the development of
turbulence this instability is detected, and in other cases the flow
remains laminar. In this study, calculations were carried out of the
evolution of the kinetic energy of turbulence for different laws of
rotation. The results show that for the exponent in the law of
rotation n  > –2, the kinetic energy of turbulence in the disc
decreases and the flow transfers to laminar regime. In a study by
Zel 'dovich [58], similar results were obtained for the Taylor
criterion for liquids in the gap between rotating cylinders.

As mentioned previously, it is necessary to solve the problem of
numerical viscosity in multidimensional calculations, modelling the
development of the nonlinear phase of turbulence. In traditional
experimental hydrodynamics, the presence of viscosity might prevent
the development of turbulence. In other words, the flow in a disc
with low Reynolds numbers remains laminar,  whereas the
development of turbulence requires high Reynolds numbers so that
the problem of numerical modelling of turbulence is very difficult
to solve because of the high values of numerical viscosity.

However, a solution was found in the following direction. The
numerical viscosity in solving Euler equations is not identical with
small Reynolds numbers. The point is that Euler equations have
their dynamic instabilities from which turbulence structures may
form in calculations, whereas the application of the Navier–Stokes
equations could not result  in the formation of such structures
because of high numerical viscosity and restricted wavelength (in
comparison with the size of the difference grid), existing turbulent
instability. In 1990, Porter [214] carried out test calculations for
comparison of the code of Navier–Stokes equations and the cold
of Euler equations. It  was shown that the code for the Euler
equation resolves far more efficiently the fine structure and short
waves in comparison with the Navier–Stokes equations at Reynolds
of numbers. It was concluded that the Euler equations may be used
for modelling with high Reynolds numbers with much better
resolution. Identical conclusions were obtained by Belotserkovskii
in 1985 [16].

Recently, the problem of the coherent transport of the angular
moment has been discussed in a number of studies. As indicated
by the previous discussion, the problems of the structure of the
accretion disc and the mechanism of the transport of the angular
moment has a controlling effect on the structure of the flow in the
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disc. The application of high values of the turbulent viscosity or high
numerical viscosity leads, as in the model of α -viscosity, to rapid
heating of the matter of the accretion disc. The problem of the high-
temperature of the disc has been reflected in a large number of
investigations into the advection of energy in accretion discs (see
the review in [147]). The redistribution of the angular moment
through large-scale structures does not increase temperature. In
this case, the structure of the disc will be calculated using efficient
difference grids enabling the development of turbulence of large-
scale structures in the calculations.

The authors of [152] investigated the mechanism of coherent
transport of the angular moment as a result of the development of
large-scale vortices. The initial instability of the shear flow is
explained by the development of Rossby vortices [188]. The authors
of [152] investigated the development of Rossby vortices as a result
of the tangential injection of compressed air resulting in a radial
pressure gradient. In particular, this gradient leads to the formation
of a heterogeneity in the distribution of vorticity and increases the
intensity of Rossby instability. Thus, it may be assumed that the
non-monotonic form of the distribution of density, entropy and
pressure gradient lead to the formation of Rossby vortices. They
in turn lead to the development of turbulence in accretion star discs
[188].
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In astrophysical conditions, the problem of mixing plays the
controlling role in many objects and processes. For example, the
problem of mixing, as a result of the development of convection,
is important in explosions of supernovas, in the evolution of stars,
in thick accretion discs and other objects and processes.

The development of convection is associated with Archimedes
forces and energy generation processes. Convection occurs where
the diffusion processes cannot ensure efficient heat conductivity.
This results in the formation of a classic situation with a heavy fluid
positioned above a light fluid in the field of gravitational forces,
resulting in the development of Rayleigh–Taylor instability. A similar
situation forms in the deceleration of shockwaves in mass-losing
hells of supernovas or in the scraped up interstellar gas.

Instability also develops during the passage of shockwaves
through the layer structure of pre-supernovas. The Richtmyer–
Meshkov instability may develop in this case. It is necessary to
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solve the problem of the geometrical instability of the fronts of
thermonuclear combustion in supernovas. Instability may be
associated with both detonation and deflagration fronts of
thermonuclear combustion.

At present, the possibility of the development of Richtmyer–
Meshkov instability is indicated by the detection of the early yield
of γ-radiation from the breakdown of radioactive Co56 [156,232].
Examination of the mixing processes resulting from the development
of convective instability is important for determining the occurrence
of heavy elements and further processing of the mechanisms of
explosion of stars essential for investigating the physical properties
of matter under extreme conditions.

Initially, we shall pay attention to the development of convection
during evolution of stars. The widely used Schwartzschild criterion
of convective instability says that the temperature gradient at every
point must not exceed the adiabatic gradient. Consequently, the
stability equation has the following form:

1
1 ,

T dP dT

P dr dr

 − − > − γ 
1

1 ,
T dP dT

P dr dr

 − − > − γ 

where T is temperature, P is pressure, r is the actual radius in the
star, γ is the adiabatic indicator equal to the ratio of the specific

heat capacities 
p

V

c

c .  The fulfilment of the criterion is usually

verified using the following procedure.  Attention is given to a small
isolated element of the volume of matter and whether it  is
subjected to small perturbations and whether the element interacts
with the surrounding matter. The justification of the criterion is
usually regarded as convincing but, in reality, it is not suitable for
the accurate evaluation of the stability of the system in terms of
the normal modes and the initial conditions because the system
reacts to the loss of stability and to a perturbation as an integral
unit. From this viewpoint, the qualitative arguments, used for the
justification of the Schwartzschild criterion, are no more than an
assumption that for the spherical configuration, the instability can
be described by the modes of a relatively high order (i .e.  the
modes belonging to the spherical harmonics of high order l and
radial functions with many zeroes) which appear if the criterion is
violated in any small  vicinity of the isolated region. It may be
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asserted that the local approach does not satisfy the conditions of
development of convection having the limiting values of the scale
for characteristic unstable modes. The main assumption, represent-
ing the basis of the given approach, is the ignorance of the variation
of the gravitational potential resulting from the perturbation.
Although this assumption can be efficient for examination of high
order modes, it is hardly suitable for the modes belonging to l = 1
resulting from the perturbation [150]. These modes are most
important for the recognition of convective instability in many
important cases.

The first accurate examination of non-radial adiabatic pulsations
[211] shows that the instability, formed in a homogeneous
compressed sphere, has the modes of all moments, including l = 1.
The main reason for the instability is that the homogeneous density
is super-adiabatic everywhere for any finite range of the the
adiabate exponent γ. Consequently, it is fully justified to expect the
occurrence of large-scale convection with the modes l  = 1, for
example, for the case of a sphere with a viscous liquid, heated from
the inside [149]. The considerations that are valid for the
homogeneous sphere must also be valid for the sphere with the
equation of the state of matter described by a polytrope in the sense
that in the present case, convective instabilities with the modes
l = 1 also develop. This conclusion becomes evident if it is noted
that the polytropic gas, for which the pressure and density are linked

by the equation 
1

1+
nconstP = ρ , is super-adiabatic everywhere where

γ < 1 + 1/n .   Consequently, if  1 + 1/n exceeds γ,  the
Schwartzschild criterion will be violated simultaneously in the entire
matter and the instability will be manifested in the form of the
circulation of the largest permissible scale.

However, even in cases (for example, in the Cowlini model
[153]) in which a star is examined as an object with a point source),
where the effective index of the polytrope decreases from a
relatively high value in the external shell of the star to a sub-critical
value in its central part and the conditions, finally, are different
everywhere, i t  is clear that the most important modes are
associated with convective instabilities, again those which belong to
the harmonics of a lower order, including l = 1, and are described
by radial functions having one or several zeroes. If these
assumptions are accurate, the instabilit ies with the modes of
actually high orders do not play such a significant role in the theory
of convective instability, as assumed previously. In this sense, the
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approximation of the length of mixing for describing convection may
be insufficient [150].

Large-scale instability during the explosion of a supernova
In the last 30 years, several groups of investigators have examined
the reasons why the collapse of the iron core of a star with a mass
M > 10M

�
 results in the formation of a supernova of type II and

the formation of a neutron star.  To explain the supernova
phenomena, two main mechanisms have been proposed: the first is
associated with the rapid collapse of the shell of the star during the
passage of a shock wave through the shell formed as a result of
the arrest of the collapse on reaching the density higher than the
nuclear density [237], the second is associated with the heating of
matter behind the front of the shockwave due to the neutrino,
leaving the neutrino-sphere, surrounding the proton–neutron star.
This results in further moment of the shock wave and the collapse
of the shell [239].

However, numerical calculations show that these mechanisms
are unsatisfactory because of several reasons. In the first of these
mechanisms, the so-called rapid mechanism, the shock wave loses
a large part of its energy in the process of splitting of the iron
core into free nuclons [204]. When the shock wave reaches the
neutrino-sphere, the electron neutrino carries the thermal energy
and the lepton number from the front of the shockwave thus
decreasing the energy of the wave and pressure in it. This results
in the weakening of the shockwave and, in subsequent stages, in
its arrest [239]. The second mechanism is determined by the
conditions in the region between the neutrino-sphere and the shock
wave and depends in a critical manner on the value of neutrino
luminosity and the mean spectral energy of the neutrino. In this
case, the level of luminosity, required for sustaining the divergent
shock wave, can be obtained only taking into account convection
both below the neutrino sphere and above it. In turn, convection
may develop relatively rapidly only on the condition that heating (and
the construction of the unstable stratification of matter in respect
of entropy) is more rapid than the movement of the matter from the
shock wave to the surface of the proton–neutron star [180].

In the period after the arrest of matter in the core and the
propagation of the resultant shock wave on the shell, the core of
the star may also be characterised by the development of
hydrodynamic instabilities associated with convection. Examination
of the rapid increase of emission from SN1987 x-ray and γ-
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radiation, mixing of the external layers with the products of
thermonuclear explosion, containing Ni56, and the observed structure
in the form of two jets in the centre show that convective motions
may take place in a certain stage of explosion. The development
of several convective modes is possible in the period of restoration
of the shock wave.

One of the types of convection forms in the passage of the
shock wave through the external part of the core and is associated
with the resultant negative gradient of entropy. This convection is
short-lived because the negative gradient of entropy is not
maintained by the heating of the central areas of the star and is
rapidly reduced during convective mixing. In addition to this, at the
moment of the maximum of development of convection, the radius
of the photosphere for ν

e
 is very close to the radius of the shock

wave because the region of heating behind the shockwave is very
narrow.  A large part of the sources ν

e
 and eν , distributed on the

appropriate neutrino-spheres, whose thermodynamic condition is
established by the transfer of heat and the number of leptons by
the matter, accreted on the proton–neutron star. Therefore, this type
of convection may enhance the divergent shockwave [145].

The numerical modelling of convection in the vicinity and below
the neutrino-sphere [200], taking neutrino transfer into account,
shows that the convective speed is too low in comparison with the
volume speed of inflow of matter in order to cause any significant
transfer of entropy and leptons. Consideration of the transfer of
energy and leptons due to the neutrino from the rising element of
the liquid to the background reduces the rate of growth of entropy
convection 3–50 times, lepton convection 250–1000 times for the
region between the neutrino sphere and the matter with a density
of ρ = 1012 g/cm3. However, the calculations of the evolution of the
initial isothermal or adiabatic perturbation from the equilibrium
position [145] shows that the time to establishment of the
equilibrium state with respect to the entropy and leptons of the
liquid element with the background is slightly longer than in the
hydrodynamic calculations. Nevertheless, owing to the fact that
convection at a negative gradient of entropy rapidly dissipates, and
in the case of lepton convection, which exists for a considerably
longer period of time, the time to establishment of the equilibrium
state is considerably shorter than the time of growth of convective
motion, the conclusion of the suppression of convection with
neutrino transfer taken into account does not change in principle.
As a result, the contribution to neutrino luminosity from the region
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in the vicinity and below the neutrino sphere is insignificantly small.
The second type of convection, the so-called neutron figers

[239], forms in the region in which the negative gradient of the
lepton number is stabilised by the positive gradient of entropy, on
the condition that the element of the liquid comes into thermal
equilibrium with the surrounding matter faster than to the
equilibrium in respect of leptons. The first requirement is explained
by the fact that as a result of rapid convection, the gradient of
entropy becomes positive, whereas the negative gradient of the
lepton number, which initially forms in the vicinity of the neutrino
sphere, expands into the nucleus as a result of the diffusion of
leptons outwards. Since all six types of neutrino transfer energy and
only two leptons ( ),e eν ν transfer the lepton number as a result of
the large difference in the path to interaction with the matter, the
second condition is also fulfilled. Numeral calculations of the
development of this instability show, however, that in does not
develop because of the following reasons [145]:

a) the condition of instability changes, because the typical values
of the lepton number in the large part of the nucleus are half the
critical number;

b) the transfer of the large part of energy from the liquid element
to the background takes place by means of ν

e
 and eν -neutrino and,

in this case, the contribution to this process from the neutrino is
small;

c) in the typical conditions, the number of acts of neutrino
transfer of energy, required in the nucleus, is larger than for the
neutrino transfer of the lepton number;

d) the fluxes of the ν
e
 and eν -neutrino during the large part of

the evolution period of the initial perturbation are directed to
opposite sides and, in this case, they are subtracted in the transfer
of energy and added up during the transfer of the leptons.

Until recently, the role played by the convection in the mechanism
of explosion of the supernova star has been to a large extent
unclear and contradicting. To a large degree this indeterminacy is
associated with the development of methods of calculating neutrino
transfer,  selection of the equations of the state of matter,  the
dimensionality of the problem being solved, numerical methods,
shortcomings of adequate models of the nuclear equation of the
state of matter and, possibly, the absence of accurate understanding
of the interaction between the neutrino and matter at nuclear
densities.

In [173], using the method of SPH modelling for two-dimensional
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hydrodynamic calculations it was shown that the area in the vicinity
of the neutrino sphere is characterised by the development of lepton
convection and that entropy convection occurs above the neutrino
sphere. In turn, in [239] it was reported that the convection inside
a proton–neutron star is weak and, evidently, not important. The
authors of [182] examined the evolution of a proton–neutron star
during the time of the order of 1 s within the framework of the two
dimensional hydrodynamics in the radial diffusion of neutrino.

The results show that lepton convection continues for a long time
and affects the entire nucleus after 1 s. This is accompanied by the
doubling of neutrino luminosity and the mean energy of the neutrino
increases by 10–20%. On the other hand, it was shown in [145] that
when using the multigroup diffusion approximation for calculating
neutrino transfer in the approximation of the length of the mixing
path for convection, the latter is characterised by low efficiency
inside and around the neutrino sphere for 30 ms, regardless of the
factors that modelling lasted 0.5 s from the moment of recoil of the
nucleus.

In the process of collapse of the iron core of the star,
approximately 99% of the entire gravitational energy is taken away
in the form of neutrino.  To cause collapse of the external shell of
the star it is sufficient that only part of this energy is transformed
to the outer layers of the star by means of an effective and fast
mechanism. Convection – both inside and from the outside of the
neutrino sphere – may intensify the process of transfer of energy
to the front of the shock wave but, nevertheless, requires certain
conditions. For example, the characteristic time of formation of
convection should be shorter than the characteristic time of
accretion of the matter of the outer layers on the core. In addition
to this,  convection requires constant supply, as in the case of
entropy convection inside a proton–neutron star. Evidently, a more
realistic mechanism may be associated with the effect of
hydrodynamic large-scale instabilities acting at short characteristic
times of the order of 10–3–10–1 s and supporting the powerful flux
of high-energy neutrino radiation.

The authors of [122] investigated the interesting possibilities of
powerful emission of neutron radiation associated with hydrodynamic
motion in a proton–neutron star. In fact, this study represents a
development of the concepts proposed in [59].  The authors of [59]
examined the development of convective instability in a gravitating
homogeneous gas sphere (star). The main idea was based on the
similar time behaviour of the integral over the cross-section for the
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entropy and the same integral for the strength of the magnetic field.
In the experiments, these instabilities were detected in a Tokamak.
The authors of [43] investigated the development of helical MHD
instability in a plasma cylinder. It was shown that low unstable
modes, associated with large heterogeneities, as in the case of
plasma instability, grow almost rapidly. Analytical estimates in the
calculation of the two-dimensional problem show that the internal,
hot layers are displaced of the surface of the star during the
characteristic time τ ≈  R/V

sound
.

The authors of [122] carried out three-dimensional calculations
of the development of hydrodynamic instability in a proton–neutron
star with an excess of entropy in the centre. The numerical solution
of Euler equations was used to examine the time development of
the scale of the heterogeneity of entropy distribution. In the
formulation of the problem, the entropy shows the evolution of the
rising of hotter,  l ighter matter.  The calculations showed the
development, during 4 ms, of large-scale heterogeneities of entropy
with the shape resembling the ‘mushroom’ of a nuclear explosion
in the atmosphere of the earth with a distance from the centre of
the star of 20 km. The characteristic time of movement of the
single resultant bubble to the surface of the proton–neutron star
was 1 ms, which corresponds to a mean speed of c/150 (c is the
speed of light). A total of 6 bubbles with a mass of 10–2 M

�
 rose.

The intensity of neutron radiation was 5×1052 erg/s for the given
process. The energy, absorbed by the matter per 1 g in the shock
wave from neutron radiation was 2.3×1024 erg/g s which was
comparable with the neutrino losses from the front of the shock
wave. Consequently, i t  was concluded that the mechanism of
explosive convection could sustain the divergent shock wave and,
therefore, result in the burst of the supernova shell.

To develop further the proposed model of burst convection,
investigations were carried out into the development of a hydro-
dynamic instability, formed in a rotating proton–neutron star [117].
It is evident that if the proton–neutron star rotates (this assumption
is fully rational) the spherical symmetry in the initial distribution of
the hot gas is disrupted. According to the results of analytical and
numerical calculations (see below), rotation changes the pattern of
rising of the bubbles of hot matter, introducing some asymmetry to
the general evolution of the perturbation.
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Numerical modelling of convection
In the calculation of the distribution of density and temperature
inside a proton–neutron star the central density was assumed to be
ρ

c
 = 2×1014 g/cm3 and the central temperature T  = 1011K. The

equation of state,  used in the calculations, was used in the
tabulated form in the form of the dependence of pressure on density
and entropy, in accordance with [185]. The relative concentration
of the electrons was assumed to be constant and equal to 0.35. At
the initial moment of time in the vicinity of the centre of the star
(r

0
 = 0) the excess of entropy was defined in accordance with the

Gaussian law S  = S
0
 + (S

m
 – S

0
)exp{–(r–r

0
)2/b2}, determined by

the nonequilibrium process of neutronisation of matter after arrest
of the collapse. The value of initial entropy S

0
 was determined from

the central initial temperature and density. In these calculations, S
0

was equal to 1.6327 k
B
/nuclon. The maximum of entropy of the

nuclons was recorded in the centre, S
m
 = 2.8.  Parameter b = 0.02

was selected on the basis of the condition that the size of the region
of increased entropy equals 0.2 of the size of the calculation region.

The Euler equation for calculating the development of large-scale
convection, used for modelling the processes taking place inside a
proton–neutron star in the three-dimensional case, have the
following form

3

3

grad ,

div 0,

,

0.

dV GM
P

dt r
d

dt
dE dS P d

T
dt dt dt

dS

dt

ρρ = − −

ρ + ρ =

ρ= +
ρ

=

r

V

Here ρ is the density of matter, V is the velocity of matter, P is
pressure, E  is energy, S  is entropy. All these quantities are
functions of three coordinates and time.

Calculations were carried out using the explicit conservative
TVD difference scheme of the Godunov type.

The three-dimensional space was divided into cubic cells with a
constant step of the grid. The values of all variables of the vector
of densities (ρ, ρU, ρS) were related to the centres of the cells,
and the values of the flows of these variable (ρU, ρU2 + P, ρV, ρW,
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ρUS) were calculated at the boundaries between the cells.  The
variables were calculated at the moment of time t' from the solution
of a one-dimensional Rieman problem for each spatial direction. To
maintain the second order of approximation, the cycling
rearrangement of these directions was carried out. Subsequently, a
function was added to the equations, i.e. a source determined by
the effect of the gravitational field of the star which was assumed
to be constant during the calculations.

At the initial moment of time an equilibrium configuration was
obtained taking into account rotation, by means of the iteration
method proposed in [166] and modified taking the arbitrary equation
of state into account.

Calculations were carried out for two cases. The first case was
without rotation, in order to test the resultant equilibrium of the star.
The second case – slow solid-state rotation where the ratio of the
kinetic energy of rotation T to gravitational energy |W| was selected
as T / |W |= 0.01. The calculations of the kinetic and potential
energies were carried out in accordance with integral represent-
ations, taking the density profile of obtaining the calculations into
account.  The period of rotation of the star was 14 ms,
corresponding to the ratio of the kinetic energy to the potential of
0.01. The coordinate system was selected in such a manner that
the plane of rotation of the star coincides with the plane OXY. This
means that the vector of the angular velocity of rotation of the star
has only one component Ω

z
 = Ω = const.

The distribution of entropy in time is shown in Figs. 4.29 and
4.30. The entropy is represented in two sections of the star. In the
first section, it is presented along the axis of rotation (Fig. 4.29),
i.e. the vector of the angular velocity of rotation is in the image
plane.  In other words, the axis OX is plotted on the horizontal axis,
and the OZ axis of our system of coordinate is on the vertical axis.
Figure 4.30 shows the view in the plane of the section in the
equatorial plane. The initial configuration was selected for moment
t = 0.0 46 ms, and the final configuration is shown for the moment
of time t ≈5.87 ms. Complete calculation corresponds to 20 ms. In
contrast to the model examined in [166], in this case two bubbles
form initially after 3 ms and are extended along the axis of rotation
in opposite directions. Four additional bubbles form slightly later,
after 5 ms, and are distributed in the equatorial plane of rotation
of the proton–neutron star. The bubbles, distributed along the axis
of rotation, separate from the hot nucleus and rise to the surface.
This takes place as a result of the fact that the gradient of density
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gradient is steeper along the axis of rotation. The cold matter
descents to the centre in the gap between these bubbles.

The bubbles, distributed in the plane of rotation, separate from
the hot nucleus later and also rise to the surface. Our calculations
show that the formation of the first bubbles is followed by the
formation of additional bubbles whose volume is considerably
smaller. They also start to rise to the surface.

The first stage of development of perturbations is the increase
of asymmetry along the axis of rotation of the star which continues
for 3 ms (Fig. 4.29 a,b). In the plane of rotation (Fig. 4.30 a,b) the
asymmetry is still very weak, and evolution is smooth. During this
stage, the asymmetry of the distribution of matter is negligible and
bubbles of hot matter have not as yet formed. For the stages shown
in Fig. 4.29 d–f, the bubbles, moving along the axis of rotation, have

Fig.4.29. Lines of constant entropy in the XZ plane for nine moments of time.
The marking unit of the axes correspond to 200 km. Entropy is expressed in dimensionless
units. Background initial entropy corresponds to 1.6327 k

B
/nucl (dimensionless

value 0.37).
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Fig.4.30. The same as in Fig.4.29 but in the equatorial plane.

already form. This stage is characterised by the start  of the
formation of bubbles created in the plane of rotation (Fig. 4.30 d–
f). The stages, shown in Fig. 4.30 g–i, correspond to the final
formation of the bubbles in the plane of the equator and to the start
of rising with the bubbles to the surface. The bubbles along the axis
of rotation (see Fig. 4.30 g–i) have already left the calculation
region, i.e. they have travelled the distance from the centre greater
40 km. Figure 4.31 shows the three-dimensional profile of the
distribution of entropy for the initial moment of time (t = 0.046 ms)
and for the moment (t = 3.21 ms) when the bubbles have already
formed.  Figure 4.32 shows the distribution of the field of velocities.
The convective cells are clearly visible, they show both the lifting
of hot matter to the surface and the descent of cold matter to the
centre of the proton–neutron star.
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Linear analysis of the problem
To evaluate the initial growth of perturbations, we shall carry out
a linear analysis of the convective g-mode. We shall  write all
physical quantities in the form  f  = f

0
 +  f

1
,  where f

0
 are the

quantities corresponding to the equilibrium state,  and  f
1
 ≈

f
1
( �ω ,z)expi(σt+mφ), where �ω  is the distance from the axis in the

plane of the equator. Equilibrium equations for the functions f
0
 are

written in the form:

�
�

�

0
0

20
0 0

,

,

z

d
g

dz
dP

g
d ω

ρ = ρ

= ρ + ρ Ω ω
ω

Fig.4.31. Spatial profile of entropy for two characteristic times. The scale of the
axes is the same as in Fig. 4.29



264

Turbulence: New Approaches

where P
0
 is pressure, ρ

0
 is density, g is gravitational acceleration.

The vector of the angular velocity ΩΩΩΩΩ has component (0,Ω �ω , 0).
The quantities f will be substituted into the initial equation and

the members of the first  order of smallness are retained.
Consequently, we obtain a system for the amplitudes of
perturbations of velocity:

�

�

,1 ,1,1

,1 ,1

2
,1 ,1

2 / 0,

2 0,

0,

m m z z

m

m z z z

V i V g V g

V i V

V g

φ ωω

φ ω

σ + Ω − σ =

σ − Ω =

σ − =V a

�
�

where

( ) ( )2, , grad / grad /m im g g P Pω ωσ ≡ σ+ Ω ≡ +Ω ω ≡ ρ ρ− γa� �
�� .

When deriving this equation, we used the approximation in which
we neglected the amplitudes of perturbations of pressure and
gravitational potential in order to separate the g-mode in the

Fig.4.32. Distribution of entropy and the field of velocities in the XZ plane during
the formation and start of movement of bubbles. The scales of the axes are the
same as in Fig. 4.29.
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explicit form. The system has a non-zero solution, if the following
relationship is fulfilled:

( ) ( )2 2 2 24 0.m m z z m z zg a g a g aω ωσ σ − − − Ω σ − =� �
�

In the case without rotation (Ω  = 0) we obtain the equation
σ2

m
 = g

r
a

r
. The convective mode increases if the condition σ2

m
<0

is fulfilled.
In the presence of rotation, the condition of establishment of

instability of the g-mode changes. We shall examine two limiting
cases.  In the direction of the axis of rotation 0, 0gωω = =�

�  we
have the equation σ2

m
 =g

z
a

z
,  coinciding with the condition of

convective instability in the case without rotation. In the equator
plane z = 0, g

z
 = 0 we obtain the equation:

2 24 .m g aω ωσ = + Ω� �
�

This equation shows that even small rotation increases the rate
of growth of the convective g-mode. This analysis confirms the
conclusion according to which the convective mode develops most
rapidly along the axis of rotation and a large part of the initial
perturbation rises in the form of two large-scales along the OZ axis
in the opposite directions.

At the initial moment of time, the mass of matter with the excess
of entropy (S

max
 = 2.4) is 0.07 M

�
. After 4 ms 0.02 M

�
 of the mass

of this matter travels to the boundary of the neutrino-sphere ρ =
1011 g/cm3 and becomes transparent for the neutrinos situated in it.
The concentration of these neutrinos with a mean energy of 30–
50 MeV is sufficient for ensuring that the intensity of neutrino
radiation is higher or comparable with the neutrino losses from the
front of the shock wave, i .e.  the mechanism of large-scale
convection could sustain the divergent shock wave and cause the
burst of the supernova shell .  It  is interesting to note that the
observations of the central region of SN 1987A indicates the
presence of two large-scale ejections [205].
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Attempts to solve the problem of development of turbulence on
reaching critical numbers Re

cr
 started for more than 100 years ago.

The main direction of solving this problem has been focused on the
stochastic nature of turbulence. It was assumed that in the presence
of advanced isotropic turbulence the velocity pulsates around the
mean value at every point of the flow. This assumption has enabled
the stochastic description of turbulence to be used. However, the
turbulent chaos is far from the total chaos of thermodynamic
equilibrium and this indicates a certain degree of ordering of the
structure of the flows.  In particular, the often used Kolmogorov
spectrum energy (and other quantities) from the wave number k is
far from the uniform distribution, characteristic of thermodynamic
equilibrium. The ordering at the fixed moment of time indicates the
presence of coherent spatial structures.

Taking into account the ideology of constructing of the
computing process, described in the book, and the results of
calculations of coherent structures in turbulence, investigations were
carried out in co-operation with E.G. Shifrin [150] to develop some
‘axiomatic’ model of the limiting developed turbulence in an
incompressible liquid (to a certain degree this is theoretical
justification of the approach discussed previously).  Without
discussing the details of this problem, we shall mention only certain
assumptions of the developed theory. We propose a concept
according to which the motion of the liquid at Re→Re

cr
 is

characterised by the existence of some regions with a continuous
but not differentiated field of velocity. In connection with this we
referr to [152]: "...Doubts may arise as to whether it is generally
possible to represent the velocity in turbulent motion as some
continuous function of coordinates and time?... It may be necessary
to conventionalise the trajectory in turbulent motion. For this
purpose we must use, as the law of motion, the continuous function
not in a single point and not having a derivative in respect of time,
a kind of the Weierstrass function...’’

The concept is based on the assumption that the controlling
physical feature of developed turbulence is the property of mixing
of liquid particles manifested in the disruption of the ordering of
any of the systems during finite time.  It expresses the fact of non-
existence of Lagrange coordinates in the sub-region of
developed turbulence in the four–dimensional physical ‘space–time’.

The formation of these subregions – spots of developed
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turbulence – in the region of laminar flow (with a differentiated
field of velocity) is determined by the Gaussian principle of the
‘smallest effect’ in the situation in which the laminar flow loses
asymptotic stability and transition to a wider class of flows becomes
preferred from the energy viewpoint.

To describe the flows in this chaos, an expanded formulation of
the problem based on the following assumptions (see a study by
Shifrin in [150]) has been proposed:

1 Since the differential Navier–Stokes equations are not valid
for describing the non-differentiated fields, we use the integral
laws of conservation of mass, the amount of motion and the total
energy in the most general form. They have equivalent interpretation
as differential equations (macroequations) for average values in
respect of the normal moving finite sub-region ‘cell’. The concept
of the pulsation tensor forms naturally in this case, without
additional application of the so-called closure hypothesis.

2  The Navier–Stokes and Fourier laws are expanded  for the
tensor of viscous stresses and the heat flow (changing to the classic
laws in the differentiated fields).

3  The macroequations  together with the laws of equilibrium
thermodynamics, expanded Navier–Stokes and Fourier laws and the
averaging operator in the cell form a close system for describing
the average and instantaneous (non-averaged) quantities. The initial-
boundary problem at the boundaries of solids with flow-around is
formulated for them.

4 The ordered structure of the turbulent flow is determined as
the attractor of the asymptotically stable solution for the averaged
quantities; in this case, the scale of the averaging cell is a stability
parameter.

5  Incorrectness (non-singularity and instability of the solution)
of the problem of restoration of the fields of non-averaged quantities
in respect of the fields of the averaging out for the finite scale of
the cell (determined by the condition of asymptotic stability of the
mean quantities) is interpreted as the stochasticity of their physical
realisations.

The proposed concept is regarded as an ideological base and
justification of the validity of the direct numerical modelling of the
ordered structures of developed turbulence using the algorithms
approximating (or simulating) the integral laws of conservation.

The most important partial case is the ‘maximumally developed’
turbulence at Re→∞; this turbulence can be modelled (as the main
term of the asymptotic expansion of the boundary layer type) out

Conclusions
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using the equations describing the laws of conservation (in the
Euler form) with the boundary condition of non-percolation .

As indicated by the results,  the approach to examination of
turbulence on the basis of the solution of the Euler equations makes
it possible to determine the structure of large-scale vortices. The
results of calculation of the development of the large-scale
structure of the flow between two rotating coaxial cylinders were
presented in the third chapter.

As indicated by the results,  at  the end of calculations this
structure is represented by one or two large vortices, surrounded
by smaller ones. An almost laminar flow exists in the remaining
part. The following physical model of turbulence can be proposed
on the basis of the investigations.

When the critical values of the Reynolds number are reached in
the shear flow, the pair of the forces exceeds the tensor of viscous
stresses as a result of the pressure gradient. Large-scale vortices
form in these conditions.  However, the vortices are not divided any
further!  The interaction of the large vortices with the flow in their
vicinity generates a high-frequency component of turbulence. In
addition to this, because of the loss of energy for the initiation of
fine-scale vorices, in some of the vortices evolution takes place in
the direction of the loss of the energy of rotational motion. In turn,
some vortices (both large-scale and mainly fine-scale ones) merge
together, under the effect of attraction because of the Zhukovskii
force. These processes are characterised by the fil l ing of the
inertia range of the turbulence spectrum. The entire pattern of
developed turbulence has the form of the mixed structure.

In subsequent stages, carrying out complete physical calculations
of the proposed model of turbulence, it is possible to average out
the results in respect of the spectrum and obtain average flow
characteristics. For example, this was carried out in chapter 3,
paragraph 5. This averaging differs from the currently accepted
procedure of calculation of the stochastic turbulence using expansion
in respect of the moments of velocities or equations derived in
expansion in respect of the Reynolds number (Hopf type).

It is important to mention that this turbulent flow does not have
a single value of viscosity characterising the entire flow. Viscosity
becomes a local value and, as stressed in the study by Canuto, it
becomes dynamic viscosity. The same comment can be made
regarding the Reynolds number. This leads to the problem of the
justification of the expansion in respect of the Reynolds number
and the physical substantiation of using the resultant equations.
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The same concepts are used in solving the problem of
development of convection. In this case, the controlling role is also
played by the large scales.  Attention to these phenomena was
stressed as early as in 1962–1963 by Chandrasekar. It is interesting
to note that the presence of large convective structures is seen in
the central regions of the explosion of supernova 1987A (2 jets).

In conclusion, we shall mention the main assumptions of the given
concept.

– Construction of direct calculation models makes it possible to
investigate a wide range of the nonlinear problems of modern
aerodynamics – the phenomena of the maximally developed shear
free turbulence.

– On the basis of the experimental data on the existence of
ordered  formations with stochastic structure in shear developed
turbulence the processes are divided into random processes because
of their nature of movement of the vortices and non-random
(organised) movements of the large-scale vortices.

– The large-scale and the organised nature of such a motion
makes it possible to describe it by numerical schemes based on the
non-stationary equations of hydrodynamics  (and not statistical
approaches).

– Because of the individual nature of the nonstationary ordered
movement and large-scale macrostructures of turbulence, their
examination in low frequency and inertia range for very high
Reynolds numbers is carried out by director numerical modelling
(without using the semiempirical models of turbulence) based on
the examination of total smoothed-out dynamic equations for the
ideal medium, namely the nonstationary Euler equations in the form
of integral laws of conservation with the approximate dissipation
mechanism (generated by the averaging of the parameters in the
volume of the cell and ensuring the stability of calculations); the
application of finite-difference ‘oriented’ schemes makes it possible
to separate, with the required accuracy, the large-scale formations
using the methods of ‘rational’ approximation for ‘subgrid’
pulsations.

– The accuracy of the following formulation of the problem has
been shown: there is the principal possibility of obtaining accurate
statistical characteristics of the flow which depends on large-scale
turbulence, using smoothed-out equations of motion where the
contribution of the small-scale vortices is represented approximately
(without the requirement for the accurate calculation of true fields
of pulsating quantities).

Conclusions
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– Examination of the local defects (stochastic component) of
turbulence – the nature of distribution of Reynolds stresses, the
density of turbulent energy, the rate of dissipation of this energy,
etc.  – is carried out in the zones with steep gradients by the
statistical method using kinematic models of turbulence.

–  Examination of the laminar regimes of flow and phenomena
of laminar–turbulent transition is carried out on the basis of complete
Navier-Stokes equations.

– Numerical experiments were carried out to examine the
‘scenario’ of transition to chaos: the process of stochastisation of
the dynamic system (the Navier–Stokes model) ‘takes place’ only
in the presence of external mass forces (the field of gravitational
forces, the effects of rotation of the earth, wind loading, etc.),
generating the inertia mechanism of the systems required for these
purposes.

– The interaction of perturbations is used as an example for
examining the mechanism of transition and the main characteristics
of the turbulent stage in the development of two-dimensional and
spatial processes of Rayleigh–Taylor (in the multimode variant) and
Richtmyer–Meshkov instabilities.

It should be mentioned that the problem of examining turbulence
– the problem with the ‘inaccurately specified information’ – and
the introduced ‘expanded’ formulation of the problem (initial system
with the averaging operator) is identical to ‘parametric expansion’
according to A.N. Tikhonov [153].  The model itself ‘should be
examined not as a mathematical model of the object but as a
mathematical model of examination of the object’ (turbulence in the
present case). The concept of the ordered structure, introduced
here, realised in a stable mother as some attractor only at specific
values of parameter 6' (the step of the calculation grid) is close to
the concept of ‘e-stability’ in the solution according to Tikhonov.
In other words, the ordered structure of the turbulent flow is its
regularised description. (The ordered structure of the turbulent flow
is determined as the attractor of the asymptotically stable solution
for the average-out values; in this case, the stability parameter
depends on the averaging scale – the size of the cell h).

Examination of the ordered structure in turbulence is part of the
problem of self-organisation widely discussed at the present time,
i.e. the process of formation of order in complex nonlinear systems
and media (see, for example [154–156] and others).  Without
discussing the substance of these problems, we shall only mention
that the ordering process is evidently associated with the collective
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(cooperative) behaviour of the subsystems forming the system.
The models,  specimens and mechanisms of the theory of self-
organisation in complex nonlinear systems and media have been
studied only on a small scale and this is why the application of
heuristic approaches of the computation experiment in this case is
especially justified. However, i t  is important to mention that
nonequilibrium ,  nonlinearity of the medium  and its dissipative
nature are decisive for the formation of structures of this type.
Self-organisation is the result  of development of spatially
heterogeneous instabilities with their subsequent stabilisation as a
result of the balance between the dissipative consumption and the
supply of energy from sources of nonequilibrium [156].

In the numerical approach to the examination of turbulence it is
important to model the process of the initiation and evolution of the
structure in respect of both time and scale. Coherent structures
may exist away from equilibria only as a result  of relatively
efficient supply of energy and matter. In this case, the evolution of
the process is interpreted as the sequence of transitions in the
hierarchy of the structures of increasing complexity, and the stable
solution is selected in the conditions of increasing dissipation. This
in principle is the general Prigogine principle of self-organisation in
nonequilibrium systems [154].

The main ideology of the developed multi-plan approach to
examination of the turbulence is the development of ‘rational’
numerical models adequate to the investigated phenomenon. Thus,
the following answer can be given to the question: ‘which models
of the ideal medium, Navier–Stokes equations or which kinetic level
should be used for examination of turbulent movements?’. Taking
into account the structural  representation of the turbulent flows,
it is convenient to use the models which correspond to a large
degree to the investigated mechanism of interaction. The appropriate
imitation  models are constructed in this way: the large-scale
transfer in turbulence or in the development of the processes of
instability is investigated on the basis of dynamic models for the
ideal medium, laminar–turbulent flows are examined taking into
account the viscosity mechanism of interaction (the Navier–Stokes
equations) and the stochastic process is investigated on the kinetic
level.

Thus, the methods of ‘rational’ numerical modelling (BRAIN-
WARE) of the appropriate  mechanisms of interaction make it
possible to investigate numerically a wide range of the nonlinear
problems of computing mechanics – structural turbulence, transition

Conclusions
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phenomena, the processes of development of Rayleigh–Taylor,
Richtmyer–Meshkov instabilities, etc.  In this case it is possible
(and this is very important) to reduce greatly the level of
requirements on computer resources!
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