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Pr efac e

Power electronics, as an application-oriented discipline, has been developed
to address specific power conversion problems in industrial, commercial, resi-
dential and aerospace environments. In the past three decades, motivated by
the burgeoning demand of delivering electric power in various specific forms,
this branch of electrical engineering has undergone an intense development in
many areas of technology, including power devices, control methods, circuit
design, computer-aided analysis, passive components, packaging techniques,
and so on. The principal focus in power electronics has been to fulfill the
functional requirements of the intended applications. Because practical ap-
plications are the prime concerns, it often turns out that a particular circuit
topology or system implementation has found widespread applications long
before it has been thoroughly analyzed. For instance, switching power con-
verters have been used for more than half a century, but analytical models
that allow systematic circuit design (e.g., averaged models and sampled-data
models) have been available only since the late 1970s.

Power electronics circuits, being nonlinear, exhibit a variety of complex
behavior such as sudden change of operating regime, chaotic operation, occa-
sional instability (in certain parameter windows), intermittent subharmonic
or chaotic operation, etc. Power electronics engineers are always dealing with
these problems in the course of developing power electronics products. Since
the engineers’ job is to make the circuit work in the expected operating regime,
the usual treatment is to find ways to eliminate any unwanted behavior, of-
ten in some quick and heuristic manner such as adjusting circuit components
and parameters through a trial-and-error procedure. However, as the field of
power electronics gains maturity, the quest for better design, functionality and
reliability has made it necessary for engineers to understand thoroughly the
behavior of the systems being designed under all possible practical conditions.
For example, bifurcation, a behavior characterized by a sudden change of op-
erating regime when a parameter is varied intentionally or unintentionally,
can be catastrophic, leading possibly to unexpected expansion of operating
ranges which can damage semiconductor devices. Thus, knowing when (un-
der what conditions) and how (in what way) a bifurcation occurs should be
of fundamental importance. Such knowledge, however, requires appropriate
modeling methodology and in-depth analysis.

This book is concerned with the study of complex behavior of switching
power converters. The objective is to provide a systematic treatment pro-
cedure for observation, identification and diagnosis of the complex behavior
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exhibited by switching power converters. The essential techniques for captur-
ing complex behavior on the computer and in the laboratory are explained,
along with application examples describing the key procedure for diagnosing
complex behavior such as chaos and bifurcation. The target audience includes
graduate students, researchers and engineers who work in the field of power
electronics and have the need or interest to understand complex behavior
in switching power converters. Furthermore, in presenting the techniques of
investigation and the various findings, a conscientious effort has been made
to emphasize circuit operation rather than mathematical abstraction, and
whenever possible, phenomena will be explained in terms of the physical cir-
cuit operation with a minimal amount of mathematics. With this, we hope
this book can also be useful as a start-up guide for graduate students and
researchers who wish to grasp the essentials for analyzing complex behavior
in power converters, as well as a readable reference for engineers who wish to
understand such complex behavior.

We begin in Chapter 1 with an overview of the complex behavior of switch-
ing power converters, outlining some important findings and research method-
ologies. We will also introduce some salient concepts of nonlinear dynamical
systems that are essential to the study of complex behavior in switching con-
verters. In Chapter 2, we introduce specific computer and laboratory tech-
niques for studying complex behavior. In Chapter 3, we describe the key
modeling approaches for switching converters which are capable of retain-
ing the salient nonlinear properties and hence can be used to study complex
behavior. Our formal investigation of the nonlinear dynamics of switching
converters begins in Chapter 4, where we test-drive a discrete-time analysis
method on a simple first-order system. The purpose is to illustrate the key
procedure involved in the analysis of period-doubling bifurcation, which is a
commonly found phenomenon in switching converters. In Chapter 5, we take a
detailed look at the basic phenomenology for power electronics circuits, which
is characterized by the interaction of smooth and non-smooth bifurcations.
In describing this important basic phenomenon, we emphasize the physical
mechanism that prevents a switching converter from operating “smoothly.”
Specifically, from a ciruit operational viewpoint, we explain the mechanism of
the so-called border collision, and make an attempt to predict its occurrence.
In Chapter 6, we move on to a high-order converter, known as the Ćuk con-
verter. The bifurcation behavior of this converter is studied for two different
control configurations. Our aim is to highlight the importance of choosing the
appropriate models for analysis. This issue is again addressed in Chapters 7
and 8, where two different types of parallel-connected switching converters
are treated with different modeling approaches. In Chapter 9, we consider
an application of bifurcation analysis to a practical power-factor-correction
switching converter where we uncover a possible but rarely known fast-scale
instability. In Chapter 10, we investigate the problem of intermittent opera-
tion in switching converters. By using an appropriate model that incorporates
a mechanism that couples spurious signals into a power converter, we explain
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a possible origin for intermittent chaotic or subharmonic operations.
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suing this writing project were kindly provided by Prof. Hiroshi Kawakami
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1

Introduction

Research in nonlinear systems and complexity had made remarkable progress
in the 1970’s and 1980’s, leading to discoveries which were not only new, but
also revolutionary in the sense that some of our traditional beliefs regarding
the behavior of deterministic systems were relentlessly challenged [63, 64,
79, 92]. Most striking of all, simple deterministic systems can behave in
a “random-like” fashion and their solution trajectories can deny “long-term
predictability” even if the initial conditions are practically known [29, 54, 76,
109]. Such behavior is now termed chaos, which underlies the complexity and
subtle order exhibited by real-world systems. Scientists, mathematicians and
engineers from a diverging range of disciplines have found remarkably similar
complex behavior in their systems. The root cause of such complex behavior
has been identified collectively as nonlinearity. Precisely, without exception,
all systems in the real world are nonlinear. In this book, we are concerned
with a particular class of engineering systems, known as power electronics,
which by virtue of its rich nonlinearity exhibits a variety of complex behavior.

In this introductory chapter we will take a quick tour of power electron-
ics circuits and dynamical systems. Our aim is to introduce the basic types
of switching converters, their salient operating features, modeling approaches
and nonlinear behavior. We will also introduce some basic concepts of non-
linear dynamics that are necessary for understanding the complex behavior
of switching converters to be described in the later chapters.

1.1 Overview of Power Electronics Circuits

The basic operation of any power electronics circuit involves toggling among
a set of linear or nonlinear circuit topologies, under the control of a feed-
back system [33, 78, 81, 99, 100, 118, 128]. As such, they can be regarded
as piecewise switched dynamical systems. For example, in simple switching
converters, such as the ones shown in Figure 1.1, an inductor (or inductors)
is/are “switched” between the input and the output through an appropriate
switching element (labelled as S in the figure). The way in which the in-
ductor(s) is/are switched determines the output voltage level and transient
behavior. Usually, a semiconductor switch and a diode are used to implement
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FIGURE 1.1
Examples of simple switching converters. (a) Buck converter; (b) boost con-
verter; (c) buck-boost converter; (d) boost-buck (Ćuk) converter.

such switching. Through the use of a feedback control circuit, the relative
durations of the various switching intervals are continuously adjusted. Such
feedback action effectively controls the transient and steady-state behaviors of
the circuit. Thus, both the circuit topology and the control method determine
the dynamical behavior of a power electronics circuit.

1.1.1 Switching Power Converters

Most power converters are constructed on the basis of the simple converters
shown in Figure 1.1 [128]. Typically, the switch and the diode are turned
on and off in a cyclic and complementary manner. The switch is directly
controlled by a pulse-width modulated signal which is derived from a feedback
circuit. The diode turns on and off depending upon its terminal condition.
When the switch is closed, the diode is reverse biased and hence open. Under
this condition, the inductor current ramps up. When the switch is turned off,
the diode is forward biased and behaves as a short circuit. This causes the
inductor current to ramp down. The process repeats cyclically. The system
can therefore be plainly described by a set of state equations, each responsible
for one particular switch state. For the operation described above, we have
two state equations:

ẋ = A1x+B1E switch on and diode off (1.1)
ẋ = A2x+B2E switch off and diode on (1.2)
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where x is the state vector usually consisting of all capacitor voltages and
inductor currents, theA’s andB’s are the system matrices, and E is the input
voltage. Furthermore, because the conduction of the diode is determined by
its own terminal condition, there is a possibility that the diode can turn itself
off even when the switch is off. This happens when the diode current becomes
zero and is not permitted to reverse its direction. In the power electronics
literature, this operation has been termed discontinuous conduction mode,
as opposed to continuous conduction mode where the switch and the diode
operate strictly in a complementary fashion.∗ Clearly, we have another state
equation for the situation where both switch and diode are off.

ẋ = A3x+B3E switch off and diode off. (1.3)

In practice, the choice between continuous and discontinuous conduction
modes of operation is often an engineering decision. Continuous conduction
mode is more suited for high power applications, whereas discontinuous con-
duction mode is limited to low power applications because of the relatively
high device stresses. On the other hand, discontinuous conduction mode gives
a more straighforward control design and generally yields faster transient re-
sponses. Clearly, a number of factors determine whether the converter would
operate in continuous or discontinuous conduction mode. For instance, the
size of the inductance determines how rapidly the current ramps up and down,
and hence is a determining factor for the operating mode. We will postpone
the detailed discussion of the operating modes to Chapter 3.

We now examine the control of switching converters. First, as in all control
systems, a control input is needed. For switching converters, the usual choice
is the duty cycle, d, which is defined as the fraction of a repetition period, T ,
during which the switch is closed, i.e.,

d =
tc
T

(1.4)

where tc is the time duration when the switch is held closed. In practice, the
duty cycle is continuously controlled by a feedback circuit that aims to main-
tain the output voltage at a fixed level even under input and load variations.
In the steady state, the output voltage is a function of the duty cycle and
the input voltage. For the buck converter operating in continuous conduction
mode, for example, the volt-time balance for the inductor requires that the
following be satisfied in the steady state:

(E − VC )DT = VC(1−D)T ⇒ VC = DE (buck converter) (1.5)

where uppercase letters denote steady-state values of the respective variables.
Likewise, for the other converters shown in Figure 1.1 operating in continuous

∗For simplicity, we omit details of the other operating modes which can possibly happen in
the Ćuk converter [143].
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conduction mode, we have

VC =
E

1−D
(boost converter) (1.6)

VC =
ED

1−D
(buck-boost converter) (1.7)

VC =
ED

1−D
(Ćuk converter) (1.8)

Thus, we see that as long as the duty cycle and input voltage are fixed, the
output voltage will converge to a value given in the above formulas. Moreover,
in the event of a transient in the load or the input voltage, the output voltage
will experience a corresponding transient before it settles back to the steady-
state value. Furthermore, in the event of an input voltage shift, the duty
cycle value must be changed accordingly if the same output voltage is to be
maintained. Clearly, we need a control circuit for output voltage regulation.

We may imagine that the simplest feedback method compares the output
voltage with a reference and sends a control signal to adjust the duty cycle so
as to minimize the error. Alternatively, a full state feedback can be considered.
For instance, in the second-order buck, boost and buck-boost converters, both
the output voltage and the inductor current can be used by the feedback
circuit. In practice, two particular implementations have become the industry
standard for controlling switching converters, namely, voltage feedback control
and current-programmed control, also known as voltage-mode and current-
mode control, respectively [83]. The former uses only the output voltage in
the feedback process, and the latter uses both the output voltage and the
inductor current.

1.1.2 Voltage-Mode Control

A typical voltage-mode controlled buck converter is shown in Figure 1.2 (a).
The key feature of this control is the presence of a feedback loop which keeps
track of the output voltage variation and adjusts the duty cycle accordingly.
Precisely, in this control scheme, the difference between the output voltage,
vC , and a reference signal, Vref , is processed by a compensation network which
generates a control signal, vcon, i.e.,

vcon(t) = g(Vref − vC) (1.9)

where g(.) is a function determined by the compensation network. This con-
trol signal effectively tells how the duty cycle has to be changed in order to
give the best transient dynamics for the output voltage. In a typical im-
plementation, this control signal is compared with a periodic ramp signal,
Vramp(t), to generate a pulse-width modulated signal which drives the switch.
The ramp signal typically takes the form:

Vramp (t) = VL + (VU − VL)
(
t

T
mod 1

)
, (1.10)
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FIGURE 1.2
Voltage-mode controlled buck converter. (a) Circuit schematic; (b) wave-
forms of control signal and ramp signal; (c) possible implementation of error
amplifier.

where VL and VU are the lower and upper thresholds of the ramp signal.
Figure 1.2 (b) shows the interaction of the control signal and the ramp sig-
nal. Suppose the control signal moves in the opposite direction as the output
voltage, i.e., vcon goes up when the output voltage decreases, and vice versa.
Then, the output voltage can be regulated with the following switching rule:

Switch =
{
on if Vramp(t) ≤ vcon(t)
off if Vramp(t) > vcon(t)

(1.11)
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which can be easily implemented by a comparator, as shown in Figure 1.2 (a).
Thus, the duty cycle at the nth switching period, dn, is given implicitly by

vcon((dn + n)T ) = Vramp((dn + n)T ). (1.12)

We can easily verify in this case that if the control signal goes up as a result of
an output voltage drop, the duty cycle increases.∗ Thus, the feedback action
regulates the output voltage, and the closed-loop dynamics can be shaped by
the compensation network.

1.1.3 Current-Mode Control

For current-mode control, an inner current loop is used in addition to the volt-
age feedback loop. The aim of this inner loop is to force the inductor current
to follow some reference signal provided by the output voltage feedback loop.
The result of current-mode control is a faster response. This kind of control
is mainly applied to boost and buck-boost converters which suffer from an
undesirable non-minimum phase response [83, 128]. A simplified schematic is
shown in Figure 1.3 (a). The circuit operation of the inner loop can be de-
scribed as follows. Suppose the switch is now turned on by a clock pulse. The
inductor current thus rises up, and as soon as it reaches the value of the ref-
erence current Iref , the comparator output goes momentarily high and turns
off the switch. The inductor current then ramps down. The process repeats
as the next clock pulse turns the switch back on. Figure 1.3 (b) describes the
typical inductor current waveform. By inspecting the waveform, we can write
the duty cycle at the nth switching period implicitly as

dn =
Iref((dn + n)T ) − iL(nT )

(E/L)T
(1.13)

To achieve output voltage regulation, an output voltage loop is needed, as
shown in Figure 1.3 (a). This loop senses the output voltage error and adjusts
the value of Iref accordingly. In practice, the inner current loop is a much
faster loop compared to the output voltage loop. Thus, when we study the
inner current loop dynamics, we may assume that Iref is essentially constant
or varying slowly. Details of the analysis of this system are left to Chapter 5.

With the inductor current taken into account, current-mode control gener-
ally performs better. In practice, however, the application of current-mode
control to the buck converter does not gain much benefit over voltage-mode
control. This is because the inductor current information can be readily de-
rived from the output voltage in the case of the buck converter. Thus, with

∗Depending on how the error amplifier is connected, the control voltage can be designed
to react in the same or opposite direction as the output voltage. If the control signal goes
in the same direction as the output voltage, the switching rule (1.11) must be reversed in
order to regulate the output voltage. The choice is arbitrary.
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FIGURE 1.3
Current-mode controlled boost converter. (a) Circuit schematic; (b) wave-
forms of inductor current and reference current.

an appropriate design of the compensation circuit, voltage-mode control can
achieve comparable performance as current-mode control. When applied to
the boost or buck-boost converter, the benefits of current-mode control be-
comes significant. Essentially, since the inductor current is programmed to
follow a reference current (which is in turn derived from the output volt-
age), its averaged dynamics is “destroyed.” Thus, for frequencies much below
the switching frequency, the inductor current dynamics becomes insignificant,
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making the design of the compensator much easier to perform. Besides, with
the absence of the low-frequency inductor current dynamics, the inherent non-
minimum phase problem associated with the boost and buck-boost converters
is automatically eliminated. However, current-mode control is not completely
free from stability problems. In fact, it has been shown that high-frequency
instability in the form of subharmonics and chaos is possible in current-mode
controlled converters, as will be detailed in Chapter 5.

1.1.4 Complexity of Operation

Up till now, switching power converters have always been designed to operate
in only one specific type of periodic operation, commonly known as period-
1 operation, in which all waveforms repeat at the same rate as the driving
clock. Most converter circuits are thus expected to work stably in this regime
under all possible disturbances. However, period-1 operation is not the only
possibility. For instance, under certain conditions, the circuit may operate in
a period-n regime in which the periods of all waveforms are exactly n times
that of the driving clock. We can immediately appreciate the complexity in
the operation of switching converters, where a variety of operational regimes
exist and a large number of parameters may affect the stability of a particular
regime. As parameters vary, the operation can go from one regime to another,
sometimes in an abrupt manner. Such a phenomenon, where one regime
fails to operate (e.g., as a result of a loss of stability) and another one picks
up, is termed bifurcation.∗ Thus, even when a converter is well designed to
work in a particular (desired) regime, it could fail to operate as expected
if some parameters are varied, causing it to assume another regime. If the
newly assumed regime is an undesirable one, locating the bifurcation boundary
becomes imperative. A few basic questions are often posed to the engineers:

1. What determines the operating regime of a given system?

2. How can we guarantee that a circuit operates in a desired regime?

3. When a system fails to operate in its desired operating regime, what is
then the operating regime it would assume?

To answer these questions, we need to develop appropriate simulation and
experimental tools (see Chapter 2). We also need to derive appropriate models
to facilitate analysis (see Section 1.2 and Chapter 3). Most importantly, we
have to identify the basic phenomenology associated with each system under
study. For nonlinear systems, there is no stereotypical result that fits all. We
have to tackle each system separately.

∗Bifurcation literally means splitting into two parts. In nonlinear dynamics, the term has
been used to mean splitting of the behavior of a system at a threshold parameter value into
two qualitatively different behaviors, corresponding to parameter values below and above
the threshold [65].
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1.2 Overview of Modeling Strategies for Switching
Converters

As mentioned before, switching converters are essentially piecewise switched
circuits. The number of possible circuit topologies is usually fixed, and the
switching is done in a cyclic manner (but not necessarily periodically because
of the feedback action). This results in a nonlinear time-varying operating
mode, which naturally demands the use of nonlinear methods for analysis
and design.

1.2.1 From Nonlinear Models to Linear Models

Power electronics engineers are always dealing with nonlinear problems and
have attempted to explore methods not normally used in other circuit design
areas, e.g., state-space averaging [98], phase-plane trajectory analysis [108],
Lyapunov based control [126], Volterra series approximation [159], etc. How-
ever, in order to expedite the design of power electronics systems, “adequate”
simplifying models are imperative. In the process of deriving models, accuracy
is often traded off for simplicity for many good practical reasons. Since closed-
loop stability and transient responses are basic design concerns in practical
power electronics systems, models that can permit the direct application of
conventional small-signal approaches will present obvious advantages. Thus,
much research in modeling power electronics circuits has been directed toward
the derivation of linearized models that can be applied in a small-signal anal-
ysis, the limited validity being the price to pay. (The fact that most engineers
are trained to use linear methods is also a strong motivation for developing
linearized models.) The use of linearized models for analysis is relatively ma-
ture in power electronics. However, it falls short of predicting any nonlinear
behavior.

1.2.2 Back to Nonlinear Models

Since our purpose here is nonlinear analysis, we will not consider linearization
right at the start of the analysis, which effectively suppresses all nonlinear
terms. In fact, linearization is a useful technique only when we need to char-
acterize the system behavior locally around a point in the state space. The
major modeling step prior to linearization is the derivation of a suitable non-
linear model. In this book we will focus on two particularly useful modeling
approaches:

1. Continuous-time averaging approach

2. Discrete-time iterative mapping approach (or simply discrete-time ap-
proach)
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Averaging Approach

Probably the most widely adopted modeling approach for switching convert-
ers is the averaging approach which was developed by R.D. Middlebrook in
the 1970s [98]. This modeling approach effectively removes the time-varying
dependence from the original time-varying model. The ultimate aim is to pro-
duce a continuous-time state equation which contains no time-varying terms.
The key idea in this approach lies in discarding the switching details of the
state variables and retains only their “average” dynamics. In the modeling
process, the state equations corresponding to all possible stages are first writ-
ten down, and the final model is simply the weighted average of all the state
equations. The weightings are determined from the relative durations of the
stages. Typically, an averaged model takes the form:

dx

dt
=

(
N∑
i=1

diAi

)
x+

(
N∑
i=1

diBi

)
E (1.14)

where x is the state vector, N is the number of stages in a period, di is the
fractional period (duty cycle) of the ith stage, Ai and Bi are the system
matrices for the ith stage. Finally, we need to state the control law in order
to complete the model. This is usually given as a set of equations defining
explicitly or implicitly the quantities dj. The general form of such a set of
equations is {

G1(d1, d2, ..., E,x) = 0
G2(d1, d2, ..., E,x) = 0
· · ·

(1.15)

Note that the above equations generally define the duty cycles dj as nonlinear
functions of the system states and parameters. Thus, despite its appearance,
the averaged model is nonlinear. Clearly, the averaged model so derived has
left out all high-frequency details, and hence is not suitable for characterizing
high-frequency or fast-scale dynamics. As a rule, we should only use an aver-
aged model for analysis or characterization of phenomena which occur as fast
as an order of magnitude below the switching frequency.

Discrete-Time Mapping Approach

Another modeling approach that provides fuller dynamical information is the
discrete-time iterative mapping approach. Here, we aim to model the dynam-
ics in a discrete manner. We take the value of the state vector at the start of
a period, say xn, follow its trajectory through all the N stages, and find its
value at the end of the period. The ultimate aim is to produce a difference
equation of the form:

xn+1 = f (xn,d, E) (1.16)

where xn is the state vector at t = nT , E is the input voltage, d is the vector
of the duty cycles, i.e., d = [d1 d2 · · · dN ]T . To complete the model, a
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control equation similar to (1.15) is needed. It is worth noting that the above
description assumes the sampling period be equal to the switching period.
Thus, the model so obtained is capable of describing the dynamical variation
up to the switching frequency.

Needless to say, the two modeling approaches have their own advantages
and disadvantages. Intuitively, the averaged model should be quite easy to
obtain (involving less algebraic manipulation) whereas the discrete-time iter-
ative model would probably involve more tedious algebra. They also deviate
in their capabilities of characterizing dynamical behavior of a given system.
Generally speaking, the averaged model is good for slow-scale (low-frequency)
characterization whereas the discrete-time model is good for fast-scale (high-
frequency) characterization. In Chapter 3, we will take a detailed look at the
modeling processes and their capabilities.

1.3 Overview of Nonlinear Dynamical Systems

As we have seen in the foregoing section, switching power converters can be
modeled by a continuous-time differential equation or a discrete-time differ-
ence equation. In general, any system that can be put in such a form is a
dynamical system in the sense that its behavior varies as a function of time
[44, 55, 56]. More precisely, what constitutes a dynamical system is

• a set of independent state variables; and

• a function which connects the rates of change of the state variables with
the state variables themselves and other inputs.

In an electrical circuit, for example, the inductor currents and capacitor
voltages form a set of independent state variables.∗ The basic constitutive
laws of all elements (i.e., v = iR for resistors, L(di/dt) = v for inductors,
C(dv/dt) = i for capacitors, and other possible nonlinear laws), together with
the relevant independent Kirchhoff’s law equations, give the connecting func-
tion [144]. Thus, with a set of state variables and a connecting function, we
can describe a dynamical system. Further, we may assume that the following
form is universal for describing a dynamical system:

dx(t)
dt

= f(x(t), µ, t) (1.17)

∗We emphasize “independent” here. If a circuit contains dependent inductor currents
and/or capacitor voltages, the number of state variables should be less than the num-
ber of inductors and capacitors. In the circuit theory literature, there are well established
rules to identify independent state variables. See for example the texts by Rohrer [124] and
Tse [144].
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where x is the vector consisting of the state variables, f is the connecting
function, and µ is a vector of parameters. The above system, with f being
dependent upon time, is called a non-autonomous system. Moreover, if the
time dependence is absent in f , i.e.,

dx(t)
dt

= f(x(t), µ), (1.18)

the system is autonomous.
In switching converters, distinction between non-autonomous and autonom-

ous systems can be made conveniently by the presence or absence of a fixed
frequency driving clock. In the past, most converters were constructed in
a free-running mode, typically using a hysteretic or self-oscillating control
circuit. Such systems are therefore autonomous. Nowadays, with the advent
of integrated circuits (ICs), fixed frequency oscillators are easily implemented
and most switching converters are designed to operate periodically under a
fixed frequency clock which comes with most control ICs. Such systems are
therefore non-autonomous. For example, the circuits shown in Figures 1.2
and 1.3 are non-autonomous systems.

1.3.1 Qualitative Behavior of Dynamical Systems

The afore-described dynamical systems are often called deterministic systems,
in the sense that the exact way in which they evolve as time advances is fully
determined by the describing differential equations [4, 53]. Precisely, given
an initial condition, the solution of the system, also known as the trajectory,
is completely determined. For linear systems, we know that closed-form so-
lutions can be found. But for nonlinear systems, closed-form solutions are
almost always unavailable, and numerical solutions must be sought.

After an initial transient period, the system soon enters its steady state.
The solution in the steady state can be regarded as an equilibrium solution,
in the sense that if the system starts at a point on this solution, it stays
permanently on that solution. Thus, we may conceive that there could be
many equilibrium solutions which may or may not be steady-state solutions.
When the system is let go from a point outside these equilibrium solutions, it
converges to only one of them. The equilibrium solution to which the system
converges is called an attracting equilibrium solution or simply an attractor.
In nonlinear systems, the behavior can be further complicated by the selective
convergence to an equilibrium solution depending upon the initial point. In
other words, there may be two or more competing attractors, and depending
on the initial condition, the system converges selectively to one of them. Thus,
to determine the steady-state behavior of a system, we have to know the
possible attractors as well as their respective basins of attraction.

For ease of visualization, we refer to a 3-dimensional state space in the
following discussion of attractors. In general, we may classify attractors under
the following categories:
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(a)

(b)

FIGURE 1.4
Attractors from the Lorenz system [134]: ẋ = 10(y − x), ẏ = −xz + rx − y
and ż = xy − 8z/3. (a) Limit cycle with r = 160; (b) chaotic attractor with
r = 25.

1. Fixed point: The solution is a point in the state space.

2. Limit cycle or periodic orbit: The trajectory moves along a closed path
in the state space. Furthermore, this motion is associated with a finite
number of frequencies, which are related to one another by rational
ratios. The motion is periodic. An example is shown in Figure 1.4 (a).

3. Chaotic attractor: The trajectory appears to move randomly in the
state space. Moreover, the trajectory is bounded and the motion is
non-periodic. An example is shown in Figure 1.4 (b). We will discuss
the properties of chaos in more detail in Section 1.3.3.

4. Quasi-periodic orbit: The trajectory moves on the surface of a torus, as
illustrated in Figure 1.5. The motion is associated with a finite number
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FIGURE 1.5
Quasi-periodic orbit. The trajectory moves on the surface of the torus and
eventually visits every point on that surface. The motion is characterized by
two rotations, one around the large circumference at frequency f1 and the
other around the cross section of the torus at frequency f2. The ratio of f1
to f2 is irrational.

of frequencies, which are related to one another by irrational ratios. The
motion appears “almost periodic” but is not exactly periodic.

1.3.2 Bifurcation

As mentioned before, a dynamical system can have multiple equilibrium solu-
tions. For a given set of parameters and initial condition, the system converges
to one of the equilibrium solutions. This equilibrium solution is the attractor.
If the parameters are allowed to vary, the system may relinquish its presently
assumed equilibrium solution and pick up another equilibrium solution. For
instance, as the parameters vary, the presently assumed equilibrium solution
becomes unstable and the system is attracted to another stable equilibrium
solution. This phenomenon is termed bifurcation, as we have briefly men-
tioned before. In general, bifurcation can be regarded as a sudden change
of qualitative behavior of a system when a parameter is varied. We may
therefore classify bifurcation according to the type of qualitative change that
takes place when a parameter is varied. In the following we briefly summarize
some commonly observed bifurcations in physical and engineering systems
[1, 2, 3, 65, 85, 104, 109].

1. Saddle-node bifurcation: This type of bifurcation is characterized by a
sudden loss or acquisition of a stable equilibrium solution as a param-
eter moves across a critical value. Systems that exhibit a saddle-node
bifurcation can be “normalized” to the form ẋ = µ± x2, where µ is the
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FIGURE 1.6
Saddle-node bifurcation of the system ẋ = µ − x2. As µ goes from negative
to positive, a stable fixed point suddenly appears. Conversely, as µ goes from
positive to negative, the stable fixed point suddenly disappears.

parameter and its critical parameter value is 0.∗ Figure 1.6 illustrates
this bifurcation.

2. Transcritical bifurcation: This type of bifurcation is characterized by an
exchange of stability status of two equilibrium solutions, as illustrated
in Figure 1.7. Precisely, the system initially has one stable equilibrium
solution and one unstable equilibrium solution. As a parameter is varied
and reaches a critical value, the stable equilibrium solution becomes
unstable, while the unstable equilibrium one becomes stable and takes
over. The form of the system equation that exhibits a transcritical
bifurcation can be normalized to ẋ = µx± x2. The critical value of µ is
again 0.

3. Supercritical pitchfork bifurcation: This type of bifurcation is character-
ized by splitting of a stable equilibrium solution into two stable equi-
librium solutions at the critical parameter value. Precisely, the system
exchanges stability status between one equilibrium solution and another
pair of equilibrium solutions. Systems exhibiting this type of bifurcation

∗From the center manifold theorem [53, 77, 138], any local bifurcation of an N -dimensional
system can be analyzed by examining the so-called center manifold at the point of bi-
furcation, which is an M -dimensional (M < N) subspace tangential to the eigenspace
corresponding to zero eigenvalue(s) of the Jacobian evaluated at the bifurcation point. The
normalized system equation shown above describes the dynamics on this center manifold.
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FIGURE 1.7
Transcritical bifurcation of the system ẋ = µx− x2. As µ moves across zero,
stability suddenly exchanges between two fixed points.

FIGURE 1.8
Supercritical pitchfork bifurcation of the system ẋ = µx−x3. As µ goes from
negative to positive, the stable fixed point suddenly forks off into two stable
fixed points. The system is then attracted to one of the stable fixed points.

can be normalized to the form ẋ = µx − x3, where µ = 0 is the critical
parameter value. Figure 1.8 illustrates this bifurcation.

4. Subcritical pitchfork bifurcation: This type of bifurcation is character-
ized by a sudden explosion of a stable equilibrium solution as a pa-
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(a)

(b)

FIGURE 1.9
(a) Subcritical pitchfork bifurcation of the system ẋ = µx + x3. As µ goes
from negative to positive, the stable fixed point suddenly blows up; (b) sudden
“jump” in real systems due to the presence of higher order terms ẋ = µx+x3−
x5. Note that a hysteresis loop exists. When µ moves in backward direction,
the jump occurs at a negative value of µ.

rameter moves across a critical value. The normalized equation takes
the form of ẋ = µx + x3, where µ = 0 is the critical parameter value.
Figure 1.9 (a) illustrates this bifurcation. In real systems, higher order
terms always exist to counteract the explosion, e.g., ẋ = µx + x3 − x5.
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FIGURE 1.10
Period-2 orbit with r = 149 in the Lorenz system (see caption of Figure 1.4).

In this case, the system does not blow up at µ = 0, but “jumps” to
another stable equilbrium solution, as illustrated in Figure 1.9 (b).

5. Period-doubling bifurcation: This type of bifurcation is characterized
by a sudden doubling of the period of a stable periodic orbit or limit
cycle. Using the example of the Lorenz system shown in Figure 1.4, we
may observe period-doubling bifurcation by varying the parameter r.
Specifically, the periodic orbit shown in Figure 1.4 loses stability when
r is decreased to around 149, and at that point, a period-2 orbit takes
over, as shown in Figure 1.10. Further decreasing r to about 147, the
period doubles again, as shown in Figure 1.11.

6. Hopf bifurcation: This type of bifurcation is characterized by a sudden
expansion of a stable fixed point to a stable limit cycle. Systems that
exhibit this bifurcation can be normalized to a second-order equation of
the form ẋ = −y+ x[µ− (x2 + y2)], ẏ = x+ y[µ− (x2 + y2)]. For µ < 0,
the system has a stable fixed point (x = y = 0), which is associated
with a pair of complex eigenvalues having negative real parts. As µ
goes from negative to positive, the pair of complex eigenvalues move
across the imaginary axis, i.e., the real parts become positive. Thus,
the fixed point loses stability. However, due to the second-order terms,
the system has a stable limit cycle of radius

√
µ for µ > 0.

7. Border collision: This type of bifurcation occurs in dynamical systems
where two or more structurally different systems operate for different
parameter ranges. When a parameter is varied across the boundary of
two structurally different systems, an abrupt change in behavior occurs.
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(a)

(b)

FIGURE 1.11
(a) Period-4 orbit with r = 147 in the Lorenz system; (b) enlargement of the
small framed area.

This is known as border collision. The exact type of behavioral change
depends on the dynamics of the systems corresponding to the two sides
of the boundary.

It is worth noting that with the exception of border collision, the afore-
described types of bifurcation do not involve structural changes of the sys-
tem. They are sometimes called smooth bifurcation or standard bifurcation.
The meaning of the adjective “smooth” has a mathematical origin, which
relates to the differentiability of the function that describes the system. Co-
incidentally, the term “non-smooth” fits well with the appearance of the bi-
furcation diagrams which manifest rather unusual transitions not resembling
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TABLE 1.1
Qualitative differences between “smooth” (standard) bifurcations and border
collisions.

Characteristics “Smooth” (standard) Border collisions
bifurcations e.g., period-
doubling, Hopf, etc.

Cause Loss of stability Alteration of circuit
operation

Structure of system Structurally unchanged Structurally changed
(topological sequence (topological sequence
unchanged) altered)

Manifestation in Appearance as typified in Abrupt transitions
bifurcation diagrams bifurcation diagrams of not resembling any

standard types standard bifurcation
(e.g., abrupt bendings,
discontinuities, jumps)

those in standard bifurcations, as we will see in later chapters.∗ Furthermore,
a “smooth” bifurcation is normally associated with the loss of stability of one
solution and the picking up of another, whereas border collision is character-
ized by abrupt alteration of the detailed operating principle. In other words, a
“smooth” bifurcation occurs at a stability boundary, whereas border collision
occurs at an operation boundary where the system experiences an operational
change. We will discuss what we mean by an operational change more pre-
cisely in Section 1.4. Table 1.1 summarizes the basic differences between these
two classes of bifurcations.

1.3.3 Deterministic Chaos

As mentioned earlier in Section 1.3.1, chaos is a particular qualitative behavior
of nonlinear systems, which is characterized by an aperiodic and apparently
random trajectory [115]. In addition, the trajectory is unpredictable in the
long term, meaning that knowing the trajectory at this time gives no infor-
mation about where exactly the trajectory will be in the far future. Note that
the dynamics of any deterministic system can be theoretically described by
differential equations, although the derivation of such differential equations
may prove to be difficult for very complicated systems. A classic example of
an apparently random system is the flipping of a coin. The final outcome,
either a head or a tail, appears to be unpredictable. However, the process of

∗Here, we may regard bifurcation diagrams as summary charts of behavioral changes, which
typically record the change of behavior of a system as some parameter(s) is/are varied.
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FIGURE 1.12
Two trajectories of the Lorenz system: ẋ = 10(y−x), ẏ = −xz+25x− y and
ż = xy − 8z/3. At t = 0, the trajectory labelled with “+” starts at (0, –5,
15), and the one labelled with “•” starts at (1, –6, 16). The final points are
taken at t = 1. Note that if the initial points are set closer, a longer time is
needed to observe the divergence of the two trajectories.

generating any particular outcome in this system is unarguably determinis-
tic. First, the initial position of the coin can theoretically be known. Then,
the initial velocity, gravitational force, air viscosity, the mass and moment of
inertia of the coin, etc. are all theoretically known or knowable. Therefore,
deterministic equations can be theoretically written to describe the motion
of the coin as it is thrown up and later falls under the force of gravity. Fi-
nally, its landing position is also theoretically computable. The question is
what makes the outcome random and unpredictable. In fact, this question is
shared by all deterministic systems which exhibit apparent randomness and
deny long-term predictability.

The answer to the above question lies in a key property of chaotic systems,
which is now widely known as sensitive dependence on initial condition. In
brief, two nearby starting points can evolve into two entirely uncorrelated
trajectories. We take the Lorenz system again as an example, and examine
two trajectories beginning at two nearby points. As shown in Figure 1.12,
the two trajectories initially stay close to each other, but quickly move apart.
We should now appreciate the difficulty of predicting where the system will
end up eventually. In other words, the trajectory is unpredictable in the long
run because there is a limit to which the starting condition can be accurately
located. In our earlier example of tossing a coin, we may begin each time
with a slightly different initial condition, including the position of the coin,
upward velocity, spinning speed, etc. The final landing position is therefore
unpredictable, even though the system is deterministic.
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1.3.4 Quantifying Chaos

The afore-described property of being sensitively dependent upon initial con-
dition can be taken as a defining property of chaotic systems [41, 65, 162, 167].
Thus, we may test whether a system is chaotic by evaluating its sensitivity
to a change of initial condition. To illustrate how the sensitivity to initial
condition can be quantified, we consider a first-order system which is defined
by

ẋ = f(x). (1.19)

Suppose x0(t) is the trajectory corresponding to an initial value x0. We
consider another trajectory which starts at a nearby point, say x0 + ε0. We
simply denote this trajectory by x(t). Clearly, what we are interested in is
the difference between x(t) and x0(t) as time elapses. Let this difference be
s(t), i.e.,

s(t) = x(t)− x0(t). (1.20)

If we assume that s(t) grows exponentially, we may write s(t) = s(0)eλt, where
λ can be found empirically to fit the divergence rate. Alternatively, we may
describe the dynamics of s(t) by

ṡ = λs. (1.21)

Moreover, the Taylor’s expansion of f(x) around x0 is

f(x) = f(x0) + f ′(x0)(x− x0) +
1
2!
f ′′(x0)(x− x0)2 + · · · (1.22)

Thus, ignoring higher-order terms in (1.22), the variable s(t) changes at a rate
given by

ṡ(t) =
d

dt
(x(t)− x0(t))

= f ′(x0)(x− x0). (1.23)

Now, from (1.21) and (1.23), we get

λ = f ′(x0). (1.24)

Therefore, we may test divergence of the two trajectories, x(t) and x0(t), by
inspecting the sign of λ. Precisely, a positive value of λ indicates that the
two trajectories diverge at the point x0, whereas a negative value indicates
convergence. The quantity λ has been known as the Lyapunov exponent.
Furthermore, the value of the Lyapunov exponent may change along the tra-
jectory. Thus, we need to look at the average value of the Lyapunov exponent
along a sufficiently long segment of the trajectory in order to tell whether
nearby trajectories diverge exponentially on the average. The test for chaos
should therefore be based on the average Lyapunov exponent. In brief, if the
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average Lyapunov exponent is positive, the system is sensitively dependent
upon initial condition and thus is chaotic [77].

The above concept of measuring the divergence rate of two nearby trajec-
tories can be extended to higher-order systems. If we consider an Nth order
system, the expansion or contraction of s(t) at a specific point must be as-
sociated with specific directions. In general, there should be N Lyapunov
exponents corresponding to N directions in the state space. We note that
f ′(x) in the above first-order system is simply the eigenvalue of the system,
which describes the divergence rate of the error near x. In an Nth order
system, the N Lyapunov exponents at a certain point are the N eigenvalues
evaluated at that point. Each of these Lyapunov exponents is associated with
a direction of expansion or contraction which is given by the corresponding
eigenvector. Thus, at a certain point, the trajectory may expand in some
direction, and contract in another. If any one of the Lyapunov exponents is
positive, nearby trajectories are diverging at that point. Again, we need to
take the average of the Lyapunov exponents along a sufficiently long segment
of the trajectory. For the higher-order case, we conclude that if the “largest”
average Lyapunov exponent is positive, the system is sensitively dependent
upon initial condition and thus is chaotic. In Chapter 2, we will describe the
computation of the average Lyapunov exponents in some detail.

1.3.5 Routes to Chaos

In the foregoing we have shown that randomness and lack of predictability
are the key elements of chaos. However, being random or unpredictable does
not necessarily mean that no systematic study can be pursued on the complex
behavior of nonlinear systems. In fact, behind the complex behavior, there
is always some subtle order that governs the way complexity is organized. In
particular, in studying chaos, we often try to find some traceable precursors
so that we might tell if chaos is likely to happen in an otherwise non-chaotic
system. We have seen earlier that nonlinear systems can exhibit a variety of
behavior, chaos being one particular type. We have also seen that nonlinear
systems can undergo bifurcation whereby qualitative behavior can change
from one type to another. In the literature, the term route to chaos has
been commonly used to refer to the series of bifurcations through which non-
chaotic behavior transmutates into chaotic behavior. Here, we summarize a
few important routes to chaos [109].

1. Route to chaos via period-doubling: As discussed earlier, some nonlinear
systems may undergo period-doubling bifurcation as a certain parameter
is varied. This doubling of the period may continue to occur when the
same parameter is varied in the same direction. Eventually, the behavior
becomes chaotic. In fact, the Lorenz system shown earlier exhibits this
type of route to chaos, as the parameter r is varied. We recall that
when r = 160, the steady-state behavior is periodic (i.e., exhibiting a
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limit cycle), as shown in Figure 1.4 (a). As we reduce r to about 149,
we observe a period-doubling bifurcation, and if we further reduce r to
about 147, we observe another period-doubling bifurcation. Figures 1.10
and 1.11 show the period-2 and period-4 attractors. In fact, period-
doubling bifurcation continues to occur as r is reduced. When r is
about 144, the attractor is chaotic.

2. Route to chaos via quasi-periodicity: Some nonlinear systems may un-
dergo Hopf bifurcation whereby a stable fixed point changes to a limit
cycle as a certain parameter is varied. As the parameter continues to
vary, the system admits another periodicity which is not in a rational
ratio to that of the first limit cycle. The resulting behavior is quasi-
periodic. Under some circumstances, upon further varying the parame-
ter, the behavior becomes chaotic.

3. Route to chaos via intermittency: Some nonlinear systems exhibit chao-
tic behavior intermittently, with bursts of chaotic behavior separated
by long intervals of periodic behavior. Under the variation of a certain
parameter, the bursts of chaotic behavior become progressively longer
while the intervals of periodic behavior become shorter. Eventually, the
behavior becomes fully chaotic.

4. Crisis: Some nonlinear systems may all of a sudden become chaotic
when a certain parameter is varied. There is no traceable route to chaos
in the form of a sequence of events. Crisis may be encountered, for
example, when an attractor “collides” with an unstable chaotic orbit,
causing the attractor to span also the unstable chaotic orbit. The result
is a sudden expansion to chaos.

1.4 Complex Behavior in Power Electronics

Chaos and bifurcation have long been observed by power electronics engineers
in the course of developing power electronics circuits [169]. Problems such as
subharmonic oscillations, intermittent chaos, quasi-periodic and chaotic oper-
ations are not at all uncommon. Because of the complexity of these problems,
most practicing engineers have resorted to quick fixes via some trial-and-error
procedures, the aim being just to get rid of the undesirable operations. With
the success of nonlinear dynamics research in the 1970s, the complex behavior
in power electronics has begun to receive some formal treatments since the
late 1980s, and much of the reported work has focused on switching power
converters. Research in this field has now reached a point where the basic
phenomena associated with some commonly used power converters have been
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identified. Of particular importance is the identification of bifurcation phe-
nomena, which has played a crucial role in improving our understanding of
the complex behavior exhibited by switching converters.

Power electronics can exhibit both smooth bifurcation and border collision,
depending upon whether a structural change is involved. It should be noted
that the switching between one topology to another during the normal oper-
ation of a power converter should not be considered as structural change (for
the purpose of distinguishing between smooth bifurcation and border colli-
sion). Precisely, our definition of structural change as applied to switching
converters is as follows.

A switching converter is said to be structurally changed if its topological
sequence in a switching period is altered.

When no structural changes are involved, power electronics systems may
exhibit a variety of smooth bifurcation such as period-doubling bifurcation,
Hopf bifurcation, etc., as will be detailed in later chapters. Moreover, it
should be apparent that power electronics systems are prone to border collision
since operating boundaries exist to separate various operating modes. Two
situations are particularly relevant to switching converters, as illustrated in
Figure 1.13.

1. Change of operating mode: In any switching converter, a boundary ex-
ists between continuous and discontinuous conduction modes of oper-
ation. Due to the difference in the topological sequence assumed by
the converter for the two conduction modes, the converter undergoes
a structural change when its operation changes from one mode to an-
other. Crossing the boundary of the two conduction modes would cause
a border collision.

2. Saturating nonlinearity: Saturating boundaries naturally exist due to
the inherent limitation of the range of some control parameters. At such
saturating boundaries, the topological sequence is significantly altered.
For example, in the voltage-mode buck converter shown in Figure 1.2,
the control signal is supposed to hit the ramp signal once per switching
period. If this fails to happen due to an excessively wide swing of the
control signal, the topological sequence is altered significantly. A border
collision thus occurs.

In the past two decades, a few important basic findings regarding bifurcation
in switching converters have been established. Some surveys of published work
have been conducted by Hamill [58], Hamill, Banerjee and Verghese [59], Nagy
[102], Tse [145], and Tse and di Bernardo [148]. Here, we give a brief summary.

1. Voltage-mode controlled buck converters typically undergo period-doubl-
ing bifurcations [27, 48, 60], whereas boost converters are more likely to
exhibit Hopf bifurcation [5, 68].
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FIGURE 1.13
Operating boundaries on parameter space separating regions with different
topological sequences. Border collision occurs at the boundaries where the
converter experiences a structural change as its topological sequence is altered.

2. Period-doubling is common in buck or boost-type converters operat-
ing in discontinuous conduction mode [141, 142] and current-mode con-
trolled converters [25, 38, 150].

3. A variety of bifurcations are possible when other nonlinear control meth-
ods are used, e.g., crisis, saddle-node bifurcation, switching-time bifur-
cation, etc. [45, 59, 73, 94].

4. Border collision is often present to organize the overall bifurcation pat-
tern [8, 10, 14, 172].

In the rest of this book, we will take a detailed look at the bifurcation
phenomena that govern the complex behavior of switching power converters.
We will begin in Chapter 2 with some important computer and laboratory
tools for studying the dynamics of nonlinear systems, and in Chapter 3 we
will proceed with the essential modeling techniques for facilitating nonlinear
analysis of switching power converters. From Chapter 4, through the end, we
will examine some selected power converters, with emphasis on bifurcation
phenomena. In the process of studying complex behavior of the various con-
verters, we try to illustrate the investigational approach that we have found
effective in dealing with complex behavior in switching power converters.
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2

Computer and Laboratory Techniques for
Studying Nonlinear Behavior in Switching
Power Converters

Computer simulations and laboratory measurements are indispensable to the
investigation of the behavior of nonlinear systems, both for the purpose of
verifying certain analytical findings and for making initial observations on
how a given system behaves. In capturing the behavior of nonlinear sys-
tems, however, the usual techniques employed for the study of linear systems
are often found inadequate or inappropriate. For example, chaos and quasi-
periodicity are difficult to identify from the standard time-domain simulations
or frequency-domain measurements. Furthermore, in order to capture a cer-
tain bifurcation scenario by simulation or experimentally, we need to devise
an elaborate procedure which may require the use of specific computational
or experimental techniques. In this chapter we review the essential techniques
for capturing certain complex behavior of nonlinear systems, e.g., bifurcation
and chaos, with particular emphasis on switching power converters. We begin
with pointing out some common errors in the use of computer simulations
for studying complex behavior, which give invalid or inviable verifications of
certain findings or even erroneous conclusions about the occurrence of certain
phenomena. The specific techniques for computer simulation and laboratory
measurement of nonlinear phenomena will be described in detail.

2.1 The Use and Misuse of Computer Simulations

Digital computers have played a pivotal role in the identification of nonlin-
ear phenomena such as chaos and bifurcation. In using digital computers for
studying nonlinear behavior, however, it is sometimes easy to come to erro-
neous conclusions if the results revealed by the simulations are not carefully
interpreted. The gist of the problem often lies in how well one understands
the objective of the simulation and the limitation of digital computation. In
the following we discuss two types of errors which are particularly relevant
to the study of complex behavior. The first one originates from an improper

©2004 CRC Press LLC



choice of models and the second one is related to insufficient resolution in the
simulation.

2.1.1 Improper Choice of Models

The consequence of using an improper model for simulation depends on how
the results are to be used. If the results are used for verifying certain analyt-
ical findings, improper simulating models may make the verification invalid.
Specifically, to verify a certain phenomenon which has been observed from
an analytical model, computer simulation should be performed using the em-
pirical system model that emulates the “true” behavior of the system. In
the case of power converters, if some discrete-time iterative maps or averaged
equations have been used to establish the occurrence of certain phenomena,
then computer simulation can provide valid verification only if it is based on
the original piecewise switched model.

Moreover, if the simulation results are used to observe phenomena in a given
system, the use of an improper model can have profound consequence. For
instance, a certain phenomenon such as period-doubling may fail to show up
when an averaged model is used to study it. Likewise, the simulation results
may erroneously conclude the occurrence of a certain phenomenon which is
inconsistent with the system under study.

2.1.2 Insufficient Resolution

Switching power converters are piecewise switched circuits. A typical switch-
ing converter operates by toggling its topology according to some external
signals as well as the circuit’s own conditions. The determination of the time
instants at which the circuit topology changes is crucial to the accuracy of the
simulation results. Thus, the algorithm used in the simulation should allow
the variation of switching instants to be recorded with sufficient resolution.

A variety of pathological conditions may arise as a result of insufficient reso-
lution. For example, if the duty cycle should converge to 0.42, simulation with
a time step equal to one-twentieth of the switching period may give a subhar-
monic orbit that alternates between 0.40 and 0.45. Some even more serious
errors can result from poor resolution. For example, if the supposed switching
instants do not “grid” on the simulation time steps, the cumulation of numer-
ical residues may make the simulated operation appear intermittently chaotic
while it should have actually been operating in a perfectly stable period-1 or-
bit. So, stable operation may look chaotic on a digital computer. Moreover,
the converse can happen as well. Periodicity may be incorrectly concluded for
a chaotic operation if insufficient resolution is used in the simulation, typically
due to the time step chosen being too large.

Finally, it should be borne in mind that no chaos should ever be found by
digital computers in theory. The best we can get is an orbit of a very long
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period. But this can be practically regarded as chaos if the observation is
complemented by other supporting analytical and experimental evidence.

2.2 Accuracy of Models: Does It Matter?

In performing computer simulations, it is often asked whether the model used
should be as accurate as possible. The answer again depends on how the
simulation results are to be used. Accurate models are generally preferred for
verification purposes because the simulation results should reflect the true be-
havior of the physical system in order to make the verification valid. Moreover,
if the simulation aims to observe certain qualitative behavior such as chaos,
then the model need not be very accurate since exact trajectories are never
wanted. What is needed is perhaps a simple model that contains adequately
the salient nonlinear features of the system under study.∗

It should be stressed that computer simulation alone, however, is not com-
pletely convincing as a verification or investigation tool since numerical pro-
cedures are always subject to round-off errors, however small, and the model
used for simulation may not fully describe the system. What we see in the
computer simulated waveformsmay sometimes contain artifacts due to numer-
ical errors or flaws in the simulating model. Hence, laboratory experiments
remain an indispensable form of verification [62, 158].

2.3 Mode of Investigation

Despite the apparent popularity in the use of the traditional “analyze-simulate-
experiment” mode of investigation as reported in numerous scientific publica-
tions, the actual investigation of complex behavior in physical systems would
have been done, mostly, in the reverse order. In fact, experimentation can
sometimes be well ahead of any analysis and simulation, especially for many
practical electronics systems whose popularity in practical use often precedes
any detailed analysis. In that case, experimentation plays an important role
in providing important clues to the possible kinds of phenomena that may

∗Here we recall our discussion in Chapter 1 concerning the choice between averaged models
and discrete-time iterative maps for the analysis of bifurcation phenomena in switching
converters. We note that averaged models are simple models and yet adequate for predicting
low-frequency bifurcations such as Hopf bifurcation in some switching converters.
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occur in a given system. This is like a “pre-analysis” which narrows down the
problem area and guides the choice of analysis methods.

On the other hand, it is equally probable that certain phenomena may
be observed unintentionally while developing a practical system. Then, the
quest for an explanation for the observed unusual behavior motivates in-depth
analysis of the underlying mechanism. This in turn calls for appropriate
analytical models which fit the observed phenomena and provide adequate
analytical basis to predict the occurrence of similar phenomena. As we move
on to the study of particular converter systems in later chapters, we will see,
in a number of occasions, how initial simulation and experimentation can
provide essential clues to the choice of analytical models.

2.4 Capturing Complex Behavior on Computers

One important process in the study of complex behavior of nonlinear systems
is to record the occurrence of representative phenomena. The basic questions
are what to record and how to record. Here, we classify behavioral observa-
tions under two categories of conditions, namely, fixed parameters and varying
parameters.

2.4.1 Time-Evolution Behavior under Fixed Parameters

When a system is let go in time with a fixed set of parameters, several prop-
erties of its evolution may be of interest, namely, waveforms of selected vari-
ables, steady-state trajectories in the state space (also known as attractors),
and frequency spectra of selected variables in the steady state.

These properties are relatively straightforward to obtain from computer
simulations and laboratory measurements. However, in their original forms,
these properties may not provide much insight into the behavior of the system.
For example, it is not always easy to tell from the waveforms the difference
between chaotic operation and quasi-periodic operation. Sometimes, even pe-
riodic operation and chaotic operation can be hard to distinguish. However, if
these properties are presented in certain formats, identification of a particular
behavior can be more easily accomplished. Here, we focus on three specific
formats:

• Sampled data or stroboscopic maps.

• Phase portraits or 2-dimensional projections.

• Poincaré sections.
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(a)

(b)

FIGURE 2.1
Detecting periodicity by sampling. (a) Period-1 waveform sampled at 10 s
intervals giving a fixed point; (b) period-2 waveform sampled at 10 s intervals
giving two alternating fixed points.

Sampled Data

For periodically driven (non-autonomous) systems, like most of the fixed-
frequency switching converters, information about periodicity can be easily
obtained by sampling the waveforms. Essentially, we take a waveform, ex-
tract its value at periodic time instants and look for specific patterns. Fig-
ure 2.1 illustrates how this sampling process reveals the periodicity of periodic
waveforms.

Typically, by inspecting the sampled data, we can draw the following con-
clusions regarding the period of the waveform relative to the sampling period.

1. If the sampled data stays at a constant value, the waveform is periodic
with its period equal to the sampling period.

2. If the sampled data cycles through N values, the waveform is periodic
with its period equal to N times the sampling period.

Moreover, if no clear pattern is observed in the sampled data, no definite
conclusion can be drawn. Chaos or quasi-periodicity is possible.

The basic problem with this method is related to the choice of the appropri-
ate sampling frequency. For non-autonomous systems, the driving frequency
is a handy choice since any periodic behavior of the system must be related
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to the driving frequency. For switching converters, the switching frequency
is the natural choice. However, this sampled-data method is in principle not
suitable for autonomous systems which do not possess any externally driven
periodic source. The phase portrait and Poincaré section will prove to be
useful for autonomous systems, as we will see shortly.

Phase Portraits

The use of sampled data, as described above, provides a simple and fast means
of identifying the periodicity of a system. However, we should be cautious
about its use when the order of the system under study is two or higher since
inspecting one particular state variablemay not give correct information about
the periodicity of the system. One variable may have a period-1 waveform,
while another may be period-2, etc. Thus, inspection of the entire attractor
is needed to provide complementary information.

Shown in Figure 2.2 (a) is an attractor of a 3-dimensional system in which
variables x and z are period-1 and variable y is period-2. For this attractor,
inspecting x or z alone may give a wrong indication about its periodicity. In
this case, an effective tool is to project the trajectory on a 2-dimensional plane,
for example, the x-y plane, as shown in Figure 2.2 (b). Such projections, also
called phase portraits, are very useful in uncovering subtle periodicity. In this
specific example, we clearly see the double-roller which correctly indicates the
period-2 operation of the system.

Poincaré Section

To distinguish between chaos and quasi-periodicity, we need a special tool to
uncover the “hidden” information contained in the steady-state trajectory of a
system (i.e., attractor). Here, we consider third-order systems for simplicity.
Our discussion applies to autonomous and non-autonomous systems. The
tool we use is called Poincaré section, which is a 2-dimensional plane that
intersects the trajectory. By examining the way in which the steady-state
trajectory intersects an appropriately chosen Poincaré section, we can tell if
the steady-state operation is periodic, quasi-periodic or chaotic [41, 113]. The
following is what we can typically conclude from inspecting a Poincaré section.

1. If the Poincaré section contains a finite number of points, the operation
is periodic, as illustrated in Figure 2.3 (a).

2. If the Poincaré section contains a closed loop, the attractor is a torus,∗

i.e., the operation is quasi-periodic, as illustrated in Figure 2.3 (b).

∗A torus is topologically equivalent to the surface of a doughnut-like object. A quasi-
periodic trajectory moves on the surface of a doughnut, similar to an inductor coil winding
around a ferrite ring. If a cross-section of the doughnut surface is examined, the trajectory
can be seen going through every point of this cross-section.
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(a)

(b)

FIGURE 2.2
(a) An attractor from a 3-dimensional system and (b) a phase portrait. x and
z are period-1 waveforms, and y is period-2.

3. If the Poincaré section contains a large number of irregularly and densely
located points, the operation is chaotic, as exemplified in Figure 2.4.

2.4.2 Bifurcation Behavior under Varying Parameters

Nonlinear systems can behave in many different ways depending upon the
values of the parameters. The transition from one type of behavior to another
can happen abruptly when some parameters are varied. We refer to the sudden
change in the behavior of a system under parameter variation as bifurcation.
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(a)

(b)

FIGURE 2.3
Poincaré section of (a) a period-2 orbit; and (b) a quasi-periodic orbit.

Bifurcation can sometimes be catastrophic. For example, a converter may
operate nicely when a certain parameter is kept below a certain threshold.
Beyond this threshold, a chaotic attractor may suddenly take over, with its
trajectory extended to a much wider voltage and current ranges causing dam-
age to the devices. Thus, the study of bifurcation in an engineering system is
relevant not only to its functionality but also to reliability and safety.

The most commonly used tool for capturing bifurcation behavior is the
bifurcation diagram, which is essentially a summary chart of the different
types of behavior exhibited by a system when some parameters are varied.
The simplest case corresponds to variation of only one parameter. In this
case, the bifurcation diagram usually consists of an x-y plot, where sampled
data are plotted against the chosen parameter. An example will clarify its
construction.

Consider a system which can be represented by an iterative map. Alter-
natively, we may assume that sampled data are available from sampling the
simulated or measured waveforms of the system. For the purpose of illustra-
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FIGURE 2.4
Chaotic attractor from Lorenz equation and a Poincaré section. Note that
when using a digital computer to capture points that hit the Poincaré section,
a finite “thickness” or tolerance band must be defined. Here, points that fall
in the range 11.99 ≤ y ≤ 12.01 are considered to be on the Poincaré section.
This may lead to artifacts if the tolerance range is set too wide.

tion, we take the logistic map as the generating system [54]:

xn+1 = µxn(1− xn) (2.1)

where µ is a parameter which can be varied. If we use this map to generate
a sequence of numbers, we observe behavioral changes of the steady-state
sequence as µ is varied. In order to record the changes, we construct the
bifurcation diagram as follows:

1. Starting with a small µ, we generate a sufficiently large number of con-
secutive values of x, e.g., 500, from the iterative map. Discard the initial
transient, say the first 100 values. The remaining 400 values of x form
one data set.

2. With a slightly larger µ, we again generate 500 consecutive values of x
from the iterative map and discard the transient. We then have another
data set.

3. We repeat the above process for different values of µ within a chosen
range.

4. Suppose we have 200 data sets corresponding to 200 equally spaced
values of µ between 2.5 and 4. Then, we simply plot each data set

©2004 CRC Press LLC



FIGURE 2.5
Bifurcation diagram as a tool for recording the changes of behavior as a pa-
rameter is varied. This bifurcation diagram is generated from the logistic map
for 200 equally spaced values of µ between 2.5 and 4. For each value of µ, 400
iterates of x are plotted.

against µ. The resulting diagram is shown in Figure 2.5, which is the
bifurcation diagram required.

From the bifurcation diagram, we can see clearly the behavioral change of the
system within the parameter range of interest.

When two parameters are involved, bifurcation diagrams are usually con-
structed to show the boundaries of different operating regimes. Thus, in
typical bifurcation diagrams with two parameters plotted on both axes, re-
gions of operations are identified and separated by boundary curves.∗ Finally,
when three parameters are involved, although it is theoretically possible to
construct bifurcation diagrams as 3-dimensional plots, they are usually too
complex to be of practical use. In most cases, it is more helpful to construct
multiple bifurcation diagrams for different parameters rather than to put all
parameters in the same bifurcation diagram.

∗Here, we restrict ourselves to cases where only one parameter needs to be varied in order
to cause a bifurcation. Moreover, some systems require variation of two or more parameters
simultaneously in order to define a bifurcation. If n parameters must be varied to effect a
bifurcation, such a bifurcation is called a co-dimension-n bifurcation [162].
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2.5 Test for Chaos: The Lyapunov Exponent

As discussed in Chapter 1, chaos is characterized by divergence of nearby
trajectories, which also gives chaos a signature property of denying long-term
predictability. This property can be used to test chaos and to some extent
quantify the “chaoticity” of a system in terms of the rate of divergence of
nearby trajectories. Precisely, suppose two nearby trajectories are separated
by a distance ε0 initially. Then, if this distance expands or contracts expo-
nentially as time elapses, it may be expressed as

ε(t) = ε0e
λt (2.2)

where the sign of λ determines whether the separation is expanding or con-
tracting. Specifically, if λ > 0, the two trajectories diverge exponentially in
time. As discussed in Chapter 1, since the rate of divergence of nearby trajec-
tories measured in this way may vary along the trajectory, we need to look at
the average divergence rate over a sufficiently long segment of the trajectory.
Also, the choice of initial point may affect the result. Thus, we need to take
a large number of measurements and evaluate the average λ. We refer to this
average λ as the average Lyapunov exponent or simply the Lyapunov expo-
nent. We also recall from our earlier discussion in Chapter 1 that for systems
of second or higher order, there are more than one Lyapunov exponents, each
being associated with one particular direction of expansion or contraction. In
general, an Nth order system has N Lyapunov exponents. If any one of the
Lyapunov exponents is positive, the behavior of the system is chaotic. In the
following we discuss the methods for computing the Lyapunov exponent.

2.5.1 Computing Lyapunov Exponents from Iterative Maps

First-Order Systems

Suppose we wish to find the Lyapunov exponent of a system which is generated
by the first-order iterative map xn+1 = f(xn). A procedure for computing
the Lyapunov exponent may be derived from the definition stated above. We
consider two trajectories starting at the point x0 and a nearby point x0 + ε0.
Iterating N times, we get f(N)(x0) and f(N)(x0 + ε0) for the two different
initial values. Then, the separation of the two trajectories after N iterations
is

εN =
∣∣∣f(N)(x0 + ε0)− f(N)(x0)

∣∣∣ , (2.3)

and the growth of this separation can be evaluated by

εN
ε0

=
∣∣∣∣f(N)(x0 + ε0)− f(N)(x0)

ε0

∣∣∣∣ . (2.4)
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If we assume that this ratio increases exponentially with N , then we may
write

εN
ε0

= eλN (2.5)

which gives

λ =
1
N

ln
∣∣∣∣f(N)(x0 + ε0)− f(N)(x0)

ε0

∣∣∣∣ . (2.6)

The above formula can be used to estimate λ. It basically says that λ is the
average of all ln |(f(N)(x0+ε0)−f(N)(x0))/ε0| along the trajectory. A problem
with using this formula is to choose an appropriate value for N . Obviously,
N must be large enough to give a “good” average. But we also know that
nearby trajectories will not keep diverging exponentially in the long run since
the values of the iterates must necessarily be bounded. Thus, N should not be
chosen too large to cause εN to saturate or be folded back. Of course, smaller
the value of ε0, larger the value of N we may choose. We will discuss this
issue in more detail when we introduce the time series method for estimating
Lyapunov exponents in the next subsection. Here, since the iterative map
is available in closed form, we have a better way to find λ, as we will now
explain.

For differentiable maps, if we let ε0 tend to zero, we recognize that (f(N)(x0+
ε0)−f(N)(x0))/ε0 is by definition the x-derivative of f(N)(x) evaluated at x0.
Thus, we may write

λ =
1
N

ln
∣∣∣∣df(N)(x)

dx

∣∣∣∣
x=x0

(2.7)

which, upon application of the chain rule, becomes

λ =
1
N

ln |f ′(x0)f ′(x1) · · · f ′(xN−1)| =
1
N

N−1∑
i=0

ln |f ′(xi)| (2.8)

where f ′(x) = df(x)/dx and xi is the ith iterate, i.e., xi = f(i)(x0). Clearly,
from (2.8), λ is the average of all ln |f ′(xi)| along the trajectory. In order
for nearby trajectories to diverge exponentially in time, we require that the
average value of ln |f ′(xi)| be positive, i.e., the average value of |f ′(xi)| be
greater than 1. Furthermore, since we have let ε0 tend to zero in this case,
N can be chosen as large as possible. In practice, however, a very large
N is usually not needed because the improvement in accuracy will quickly
saturate and become insignificant to justify the huge computational effort
required when a very large N is used.

Finally, we note that the above λ is found only for one initial point. To
obtain the average Lyapunov exponent, we have to take the average of λ’s
obtained for a number of initial points. As an example, we apply the above
procedure to compute the average Lyapunov exponents for the logistic map
defined in (2.1). Figure 2.6 shows the results for a range of µ. Here, we can
clearly identify regions of chaotic behavior.
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FIGURE 2.6
Average Lyapunov exponents computed for the logistic map for 100 equally
spaced values of µ. For each value of µ, 50 iterates are used in the computation
of one Lyapunov exponent using (2.8), and an average Lyapunov exponent is
taken over 10 Lyapunov exponents found from 10 different initial values.

Second or Higher Dimensional Systems

For second or higher dimensional systems, the procedure for finding the aver-
age Lyapunov exponent is in principle the same. However, the formula for λ
given in (2.8) has to be modified. Let us consider an mth order iterative map
of the form:

xn = f(xn−1) (2.9)

where x is an m-dimensional vector. For this map, as mentioned before, we
havem Lyapunov exponents, each corresponding to one direction of expansion
or contraction. We have also seen in the first-order case that the Lyapunov
exponent is effectively the average of all ln |f ′(xi)| along the trajectory {xi}.
Note that f ′(xi) is actually the eigenvalue of f(x) evaluated at xi. Extending
this concept to the mth order iterative map, we may write the m Lyapunov
exponents as

λ1, λ2, · · · , λm =
1
N

ln
∣∣eig [J(x0)J(x1)J(x2) · · ·J(xN−1)]∣∣ (2.10)

where eig denotes the eigenvalues of a matrix and J(xi) is the Jacobian of
f(x) evaluated at xi [65, 115, 162]. Once the Lyapunov exponents are found,
we may determine if the system exhibits chaotic behavior according to the
sign of the largest Lyapunov exponent. If the largest Lyapunov exponent is
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positive, the system is chaotic.∗

2.5.2 Computing Lyapunov Exponents from Time Series

In the absence of a closed-form iterative map, the average Lyapunov exponent
may still be estimated if a time series or sampled data of a waveform is
available from an implicit iterative function or computer simulation. The
basic principle of the estimation method follows from the definition of the
Lyapunov exponent. Suppose we have a time series {x0, x1, x2, · · ·}. We first
select a value in this series, e.g., xj . Since our purpose is to observe how two
nearby trajectories diverge as time elapses, we try to find another value in
the time series which is close to xj. Suppose xk is very close to xj. Then, we
may simply regard the series beginning at xj and that beginning at xk as two
nearby trajectories. The initial separation of these two trajectories is

ε0 = |xj − xk| . (2.11)

We assume that time advances relative to the starting times j and k. The
separation after N time steps is

εN = |xj+N − xk+N | . (2.12)

Applying a similar reasoning as in (2.2), we may write εN = ε0e
λN , which can

be rearranged as

λ =
1
N

ln
εN
ε0
. (2.13)

Finally, let us not forget that the average Lyapunov exponent is what we wish
to find. Thus, we need to find λ for a number of xj chosen along the time
series. Preferably, equally spaced points should be chosen for xj to ensure
that the choice of xj is not biased to a local region. Suppose for each xj, we
get a value for λ, which we denote here by λ(xj). Then, the average Lyapunov
exponent is the average of all λ(xj)’s.

Although the estimation process is rather straightforward, a few problems
are worth noting.

1. As mentioned before, since all values of the time series are bounded,
the choice of N should not be too large to make εN saturate. As we
can see from (2.13), ln εN is supposed to be proportional to N if εN is
below saturation. As shown in Figure 2.7, the proportionality between
ln εN and N is maintained only for N below a certain level. In general,

∗The formula shown here has been derived directly from the definition of the Lyapunov
exponent. It does not necessarily represent the most effective numerical algorithm. In
fact, numerous effective algorithms have been developed over the years for computing the
Lyapunov exponents for higher dimensional systems. For example, see [115] for an algorithm
based on the Gram-Schmitt renormalization method.
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(a)

(b)

FIGURE 2.7
Logarithm of trajectory separation versus the number of time steps for a time
series generated from the logistic map with λ = 3.8 and xj = 0.57. (a) Initial
separation is 10−6; (b) initial separation is 10−4.
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smaller the initial separation ε0, larger the maximum value of N that
can be used. A practical rule is to set N to approximately the number
of iterates required for εN to expand to about half of the whole range
of x.

2. The second problem is associated with the choice of k. In general, k
should be chosen as remote from j as possible. If k is close to j, the
two trajectories starting at xj and xk may be correlated to some extent.
In that case, the Lyapunov exponent found can be deceptively small.
A simple way to avoid this problem is to choose k such that significant
differences are displayed between the time series segment containing
xj and that containing xk. In practice, only a crude estimate of the
minimum delay |j−k| is needed, and in most cases, it can be found from
a quick visual inspection of the time series. The algorithm should then
insist that k and j are separated by at least the value of the minimum
delay.

3. Finally, we should be cautious about the use of the time-series method
for finding Lyapunov exponents for periodic time series. Obviously, if
the time series is periodic, the above procedure will always give εN = ε0,
i.e., λ = 0, regardless of the size of N . This is not what we would expect
because the Lyapunov exponent in this case is supposed to tell us how
fast nearby trajectories converge to the stable periodic orbit and hence
must be a negative value. Thus, this method should not be used to
compute Lyapunov exponents for periodic time series.

2.6 Laboratory Investigation

In this section we focus our attention on experimental investigation, and
specifically on some essential laboratory techniques for capturing the complex
behavior of switching converter circuits. We will briefly review the commonly
used instruments for capturing time-domain waveforms, phase portraits and
frequency spectra. Our main discussion will be focused on the various labora-
tory techniques for displaying Poincaré sections and bifurcation diagrams on
the oscilloscope.

2.6.1 Capturing Waveforms, Phase Portraits and Frequency
Spectra

The use of analog oscilloscopes for capturing periodic waveforms is common
in engineering practice. However, analog oscilloscopes generally work only for
periodic waveforms. Typically, we see a “shaking” waveform on the oscillo-
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FIGURE 2.8
Ćuk converter under fixed-frequency current-mode control. The RS flip-flop
block is constructed from a pair of NOR gates.

scope when a chaotic or quasi-periodic signal is probed. To display a chaotic
or quasi-periodic waveform, we may use a digital storage oscilloscope (DSO)
which can “memorize” the waveform for a certain time period and display it
at a later time.

To capture phase portraits, the usual technique is to use the X-Y mode of
the oscilloscope instead of a sweeping time base [117]. Again, analog oscil-
loscopes display “shaking” phase portraits for aperiodic signals. In practice,
such “shaking” phase portraits can still be recorded if they clearly depict the
appearance of the attractors.

Aperiodic signals can be easily distinguished from periodic signals by in-
specting their frequency spectra. Spectral analyzers are commonly used for
this purpose. Alternatively, we may use a DSO that can perform Fast Fourier
Transform (FFT) on the signal being measured.

Example: A Ćuk Converter under Fixed-Frequency Current-Mode Control

As an example, we consider the Ćuk converter operating under fixed-frequency
current-mode control [153], as shown in Figure 2.8. This circuit can be easily
constructed in the laboratory and its operation can be briefly described as
follows. The essential control variable is the sum of the two inductor currents
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which is picked up by the 1 Ω sensing resistor. The voltage across this sensing
resistor is then compared with an adjustable threshold voltage which serves
as a bifurcation parameter. The on-off status of the power switch (5N06)
is determined by the output of the comparator (LM311). Essentially, when
the power switch is on, the voltage across the sensing resistor ramps up, and
as it reaches the threshold voltage, the RS flip-flop (actually a pair of NOR
gates) is re-set and the power switch is turned off. Then, the control variable
ramps down, until the clock pulse sets the RS flip-flop again and turns the
switch back on. The cycle repeats at 5 kHz. In Chapter 6, we will study
this circuit in some depth. It will be shown that the qualitative behavior of
this converter is dependent upon the choice of the parameter values. Here,
we show in Figures 2.9 and 2.10 some typical waveforms, phase portraits and
frequency spectra obtained from this circuit.

2.6.2 Capturing Poincaré Sections on Oscilloscopes

Principle of Poincaré Section Measurement

Obviously, since the oscilloscope can only display 2-dimensional phase por-
traits, we can at best view a projection of an attractor. Using the X-Y mode
of the oscilloscope, we can display a 2-dimensional projection which in effect
is a phase portrait, from any two given signals. This is adequate as long as the
2-dimensional projection clearly reflects the type of the attractor. For most
cases, we are still able to tell, from a 2-dimensional projection, confidently if
it is a periodic orbit. However, for a torus or chaotic attractor, we usually
cannot make a definite conclusion unless we know what its Poincaré section
looks like. To show a Poincaré section on the oscilloscope, what we need
to do is to identify the moment when the trajectory cuts through a certain
2-dimensional plane which has been chosen as the Poincaré section.

Suppose the system’s variables are x, y and z, and the oscilloscope is now
plotting x against y using the X-Y mode [117]. Thus, the oscilloscope is
showing the projection of the attractor on the x-y plane. We may define a
Poincaré section as z = k, where k is a suitable constant. Imagine that the
attractor is traversing in the 3-dimensional space and is cutting through the
plane z = k in both upward and downward directions, as shown in Figure 2.11.
Further suppose that we have a means to highlight the intersecting points on
the projection. (We will explain how to do it later.) If the motion is periodic,
such as the one shown in the figure, the projection should adequately reflect
the periodicity of the motion. In this case, we see stationary points on the
projection being highlighted.

It should be noted that, by definition, the Poincaré section captures only
one direction of crossing so that the period, if finite, can be correctly found. In
a period-2 orbit as shown in Figure 2.3 (a), for example, the Poincaré section
should correctly show only two crossing points, instead of four. Moreover, if
the motion is quasi-periodic, we should see a closed loop on the projection, as
shown in Figure 2.3 (b), and likewise for chaotic motion.
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(a)

(b)

(c)

FIGURE 2.9
Experimental waveform, phase portrait and frequency spectrum from a Ćuk
converter operating under current-mode control showing period-2 operation.
Reference for i1 + i2 set at 0.49 A. (a) Inductor current (1×0.2 A/div,
0.2 ms/div, lowest horizontal grid line is 0 A); (b) phase portrait of inductor
current against a capacitor voltage; (c) FFT of inductor current [153].
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(a)

(b)

(c)

FIGURE 2.10
Experimental waveform, phase portrait and frequency spectrum from a Ćuk
converter operating under current-mode control showing chaotic operation.
Reference for i1+i2 set at 0.74 A. (a) Inductor current (1×1 V/div, 500 µs/div,
lowest horizontal grid line is 0 A); (b) phase portrait of inductor current
against a capacitor voltage; (c) FFT of inductor current [153].

©2004 CRC Press LLC



FIGURE 2.11
Poincaré section and 2-dimensional projection of an attractor.

Clearly, we need a comparator circuit to determine the instant when the
attractor is hitting the plane z = k. This can be done easily using the circuit
shown in Figure 2.12. The function of this circuit is to produce a pulse
whenever the signal z is equal to the value k which is set by a potentiometer.
The display of the Poincaré section is then left to the oscilloscope. The idea
is to make use of the Z-axis modulation function of the oscilloscope, which
momentarily brightens the trace when its Z-input receives a pulse. Thus,
if the output from the circuit described above is applied to the Z-input of
the oscilloscope, the trace will momentarily brighten whenever the attractor
intersects the plane z = k.

Example: An Autonomous Ćuk Converter

As an example, we consider a third-order autonomous Ćuk converter [155],
as shown in Figure 2.13. This circuit operates under a so-called free-running
current-mode control which is effectively a bang-bang type of control. The
sum of the inductor currents, sampled by a 0.1 Ω sensing resistor, is com-
pared with a reference signal which is derived continuously from the output
voltage via a feedback circuit. The comparison is actually done by a Schmitt
trigger circuit which also provides adjustment for the width of the hysteretic
band. Referring to the circuit diagram, the feedback voltage gain is adjusted
by Rµ and the inductor dc current level is adjusted by RK . The 1 MΩ vari-
able resistor sets the width of the hysteretic band and hence the switching
frequency.

Analysis of the dynamics of this converter (see Chapter 6) reveals the pos-
sibility of a Hopf bifurcation, and computer simulation consistently reveals
the characteristic sequence of changes in qualitative behavior starting from

©2004 CRC Press LLC



−

+

−

+

�signal z

✟✟❍
❍

✟✟❍
❍

✟✟
✟✟
❜

❜❜
❜

✟✟
✟✟
❜

❜
❜❜

�

4528

5

1,423,8

7
pulse

680kΩ

18V

200pF
5.6kΩ

monostable

✲
to Z-input
of scope

✑✑✸

❡

FIGURE 2.12
Circuit for detecting intersection of attractor and Poincaré section.

fixed point, via limit cycles and quasi-periodic orbits, to chaos [155]. Ex-
perimental study would inevitably require examining Poincaré sections since
quasi-periodic and chaotic attractors can only be distinguished from the ap-
pearance of their Poincaré sections. Figure 2.14 shows the sequence of phase
portraits starting from fixed point, through limit cycle and quasi-periodic
orbit, to chaotic orbit.

Poincaré Sections for Non-Autonomous Circuits
For non-autonomous systems, Poincaré sections can be obtained in a likewise
manner with the Z-axis modulation set to sample at the switching frequency
of the converter under study. The resulting display contains bright dots along
with the attractor, and the number of bright dots indicates the period of
repetition in the case of periodic and subharmonic motion. Specifically, N
bright dots means that the system is attracted to a subharmonic orbit whose
period is N times the switching period. A large number of irregularly and
densely located points may indicate chaos.

2.6.3 Plotting Bifurcation Diagrams on Oscilloscopes

Bifurcation diagrams are frequently used for identifying the way in which a
system’s qualitative behavior changes as some chosen parameters are varied.
To display a bifurcation diagram, we need to construct a circuit which gen-
erates the necessary signals to the oscilloscope for displaying a bifurcation
diagram. We will begin with basic operational requirements and then discuss
the details of the implementation. For brevity, we will refer to the electronic
circuit being studied as system under test (SUT).
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FIGURE 2.13
Experimental circuit of free-running autonomous Ćuk converter.

Basic Operating Principle

We first examine what a bifurcation diagram contains. A typical bifurcation
diagram, as discussed in Section 2.4.2, has its horizontal axis corresponding
to variation of a bifurcation parameter and its vertical axis corresponding to
the sampled steady-state value of a variable from the SUT. Obviously, we
can make use of the X-Y mode of the oscilloscope to display a bifurcation
parameter provided the necessary signals are applied to the X and Y input
channels. In order to generate these signals, we need to perform two basic
processes:

1. Vary a given parameter of the SUT according to a slowly swept sawtooth
voltage which is applied to the X-input of the oscilloscope.

2. Sample a given signal from the SUT and send the sampled data to the
Y-input of the oscilloscope.

Moreover, these two functions must be performed in a well coordinated man-
ner. Firstly, the sawtooth must sweep relatively slowly, and the value of
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(a) (b)

(c) (d)

FIGURE 2.14
Phase portraits from autonomous Ćuk converter showing (a) fundamental
(period-1) solution; (b) limit cycle with a point on Poincaré section; (c) quasi-
periodic orbit with a closed path on Poincaré section; (d) chaotic orbit with
scattered points on Poincaré section [155]. The output voltage across the 20 Ω
load is used as input to the Poincaré section detector circuit of Figure 2.12.

the bifurcation parameter is set according to the sawtooth voltage in a step-
wise manner. Then, for each value of the bifurcation parameter, the SUT is
sampled to give enough data to the Y-input channel. Figure 2.15 shows the
functional block diagram of the measurement system.

Digital Implementation

We now consider a digital implementation of the required measurement sys-
tem. The sawtooth voltage can be generated by a D/A converter which reads
the output from one or more digital counters. The horizontal resolution of
the bifurcation diagram is determined by the number of bits of the D/A con-
verter. A 12-bit D/A converter, for instance, will offer 4096 steps, and hence
will give 4096 points along the horizontal axis of the bifurcation diagram to
be displayed on the oscilloscope. Figure 2.16 shows the block diagram of a
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Block diagram of the system for displaying bifurcation diagrams. x denotes
the variable to be sampled from the system under test (SUT). The CRO can
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FIGURE 2.16
Block diagram of sawtooth generator. Output serves as voltage analog of
bifurcation parameter to be sent to X-input channel of oscilloscope and the
system under test (SUT).
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FIGURE 2.17
Schematic of experimental current-mode controlled boost converter, Iref being
the bifurcation parameter supplied by the sawtooth generator. The RS flip-
flop block consists of a pair of NOR gates.

possible implementation of the sawtooth generator. The next question is how
fast we should drive the counter, i.e., how fast should the sawtooth sweep.
The value of the sawtooth voltage controls the value of the bifurcation

parameter used in the SUT. At each step of the sawtooth voltage, we have
to ensure that enough time is given to sample enough data points from the
SUT which are to be sent to the Y-input of the oscilloscope. If the sampling
is done at a frequency fs Hz, and N data points are to be displayed for each
value of the bifurcation parameter, then the sawtooth must sweep as slowly
as N/fs second per step. Thus, if a 12-bit D/A converter is used, the sweep
rate of the sawtooth should be lower than fs/(4096N) Hz.
Finally, the vertical resolution is controlled by the number of sampled data

displayed during each step of the slowly swept sawtooth. Usually 500 samples
are adequate. This value, denoted by N above, will affect the sweep rate of
the sawtooth.

Example: A Simple Switching Converter

Suppose we wish to obtain a bifurcation diagram for the current-mode con-
trolled boost converter shown in Figure 2.17. Our aim is to capture a bi-
furcation diagram on the oscilloscope, with Iref as the bifurcation parameter
(horizontal axis) and the inductor current as the sampled data (vertical axis).
The operation of the circuit can be described briefly as follows. A 5 kHz

clock periodically turns on the power switch. While the switch is on, the
inductor current climbs up linearly until its value is equal to Iref which is the
bifurcation parameter. When the inductor current reaches (just exceeds) Iref ,
the comparator goes high, resetting the RS flip-flop. This turns off the power
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FIGURE 2.18
Bifurcation diagram from oscilloscope for the current-mode controlled boost
converter, inductor current being the variable (vertical axis) and peak inductor
current Iref being the bifurcation parameter (horizontal axis) [146].

switch. Once the switch is turned off, the inductor current ramps down until
the next clock pulse sets the RS flip-flop again and turns the switch back on.
The cycle repeats periodically at 5 kHz.
The sampling is to be done at the switching frequency of the boost con-

verter, i.e., 5 kHz. The variable to be sampled is the inductor current which is
picked up by the 1 Ω sensing resistor. The slowly swept sawtooth effectively
defines Iref , and is also sent to the X-input of the oscilloscope. 500 samples
of inductor current are displayed at each step of the bifurcation parameter.
Figure 2.18 shows a photograph of the oscilloscope display as the trace

sweeps horizontally from left to right, corresponding to Iref swept from 0 to
about 1 A. A 12-bit A/D converter is used for the sawtooth generator, i.e., a
maximum of 4096 horizontal steps can be recorded. At each step 500 samples
are displayed.

A Practical Note on Sampling Power Electronics Waveforms

In the above example, a problem related to the sampling of signals from
switching circuits is worth noting. Specifically, there are possible ringings (fast
oscillatory pulses) sandwiched between smooth segments due to the presence
of parasitic inductance and capacitance. When sampling such signals (e.g.,
inductor current in the above example), care should be taken to avoid sam-
pling at the ringings. We can either apply suitable filtering or deliberately
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delay the sampling instant. In our example above, sampling is synchronized
with the turn-on instants of the power switch, but with a small delay to avoid
the ringing pulses.

2.6.4 Alternative Methods of Plotting Bifurcation Diagrams
in the Laboratory

If the bifurcation parameter is a signal variable (e.g., the reference current),
the sawtooth sweep method can be used. But if one intends to study the
bifurcations in response to the variation of a power variable (e.g., the input
voltage) or a physical parameter (e.g., the load resistance), other methods
have to be used. There is a simpler way to display a bifurcation diagram
on the oscilloscope. The idea is to use the Z-axis modulation to implicitly
sample the required variable. This will eliminate the sample-and-hold circuit
described above. If the oscillator blanking pulse of the pulse-width-modulator
in the converter is available, we may simply use it to drive the Z-input of the
oscilloscope and hence eliminate the need for constructing a separate driving
circuit as mentioned in the previous sub-section. It is worth noting that the
use of Z-axis modulation for obtaining bifurcation diagrams is simpler, but is
less flexible compared to the use of an extra sample-and-hold circuit which
allows the use of a computer for plotting, storing and further manipulating
the data obtained from the SUT.
Furthermore, we may generate the sweeping voltage manuallywith a voltage

supply. If we can do it steadily and slowly, we can still get a reasonably
good bifurcation diagram. It should be understood that the capturing of the
diagram can be done by a DSO, or by a camera using a long exposure time if
an analog oscilloscope is used.
Finally, there is an important criterion for displaying a bifurcation diagram

on the oscilloscope. The bifurcation parameter has to be a voltage or repre-
sented by a voltage. In the case where the bifurcation parameter is a current
or value of a component (e.g., a resistance), we need to devise a way to make
a voltage analog of the bifurcation parameter. This would vary from case
to case. For instance, if the load resistance is the bifurcation parameter, we
need to produce a voltage analog of the resistance value, sweep it through a
suitable range, and feed it to the X-input of the oscilloscope. A handy way
to do this is to use a two-limb rheostat with a common jockey. A portion of
one limb is connected as the load, and the other limb connected to a separate
voltage source. The voltage across the same portion of the second limb is fed
to the X-input channel of the oscilloscope. Thus, the variation (i.e., manual
sweep) of the load resistance is proportional to the voltage fed to the X-input.
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2.7 Roles of Laboratory Experiments and Computer
Simulations

In closing this chapter, it is worth reiterating that laboratory experiments and
computer simulations serve a two-fold purpose in the investigation of complex
behavior of physical systems.

1. As in traditional scientific studies, laboratory experiments and computer
simulations serve to verify results which have been found on the basis
of some numerical or behavioral models.

2. Many nonlinear phenomena in practical systems are often first observed
during experimental measurements and routine simulations, and de-
tailed analysis is done subsequently to provide explanations to the ob-
served phenomena. This latter mode of investigation is particularly
relevant to practical electronic systems.

As we will see in the later chapters, experimentations and simulations are
used, as appropriate, for the purpose of verification as well as for providing
quick clues to the choice of suitable models for analysis.
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3

Modeling of Switching Power Converters for
Nonlinear Dynamical Analysis

In its simplest terms, the operation of a switching converter can be described
as an orderly repetition of a fixed sequence of circuit topologies. The con-
version function of the converter is determined by the constituent topologies
and the order in which they are repeated. Such toggling between topologies
is achieved by placing switches at suitable positions and turning them on and
off in such a way that the required topological sequence is produced. The
usual control strategy to achieve a certain conversion function is to vary the
relative time durations of the constituent topologies, which are usually not
linearly related to the ultimate control objective. Thus, the overall operation
is time-varying and nonlinear. Without appropriate models, analysis of these
switching circuits would prove to be difficult.
Up to now, the modeling of switching converters has evolved around two

basic approaches, namely, discrete-time approach and averaging approach. In
this chapter we describe the basic principles of these modeling approaches
and apply them to the boost and buck converters which have been shown to
be the two basic types of converter topologies [91]. Our purpose here is to
illustrate the key procedures for obtaining adequate models for the purpose
of nonlinear dynamical analysis.

3.1 A Glimpse at Discrete-Time Modeling

The inherent piecewise switched operation of switching converters implies a
multi-topological model in which one particular circuit topology describes the
system for a particular interval of time. Also, the operation is cyclic, implying
that the involving topologies repeat themselves periodically. Thus, a natural
way to model such kind of operation is to split the system into several sub-
systems, each being responsible for describing the system in one sub-interval
of time. If we wish to find the solution at a particular future time t, we take an
initial value, identify which sub-system is in charge, solve that particular sub-
system, and continue to solve the appropriate sub-system as time advances.
At the switching instants (at which the sub-systems toggle), a “stitching”

©2004 CRC Press LLC



process has to be performed, which involves substitution of the final value of
the previous sub-interval as the initial value of the present sub-interval. In the
following, we test-drive this method on the simple boost converter, and our
aim is to give a quick overview of the essential steps involved in the derivation
of discrete-time models.

3.1.1 Ad Hoc Derivation of the Discrete-Time Iterative Map
for the Boost Converter

The very first step in the analysis of a multi-topological circuit is to write
down the state equations which describe the individual switched circuits. For
converters operating in continuous conduction mode,∗ two switched circuits
can be identified, one corresponding to the “switch-on” interval and the other
to the “switch-off” interval. Let us consider the simple boost converter shown
in Figure 3.1. For the sake of simplicity in this introductory section, we set
the value of the equivalent-series-resistance rC to zero. In this case, the state
equations can be written as

ẋ = A1x+B1E for switch-on interval tn ≤ t < t′n (3.1)
ẋ = A2x+B2E for switch-off interval t′n ≤ t < tn+1 (3.2)

where

x =
[
vC
iL

]
(3.3)

A1 =


 −1CR

0

0 0


 , B1 =


 01

L


 (3.4)

A2 =



−1
CR

1
C

−1
L

0


 , B2 =


 01

L


 (3.5)

tn+1 = tn + T ; T being the switching period. (3.6)

The sparseness of the matrix A1 permits the solution for the switch-on
interval to be found easily by directly integrating the RHS of (3.1), i.e.,

x(t) =


 vC(tn)e−(t−tn)/CR

iL(tn) +
E(t− tn)

L


 for tn < t < t′n. (3.7)

∗At this point, we may simply regard the continuous conductionmode as a specific operating
condition where the inductor current is always non-zero.
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FIGURE 3.1
Boost converter. (a) Basic circuit; (b) circuit topology when switch S is
turned on; (c) circuit topology when switch S is turned off and continuous
conduction of the inductor current is maintained.

Then, putting t = t′n into the above equation gives the value of x at the end
of the switch-on interval, i.e.,

vC(t′n) = vC(tn)e−dT/CR (3.8)

iL(t′n) = iL(tn) +
EdT

L
(3.9)

where d = t′n/T and is known as duty cycle in much of the literature of power
electronics.
To find the solution for the switch-off interval, we may apply Laplace trans-

formation to (3.2) to yield the following equation in the s-domain. Note that
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the Laplace transform of the input voltage is E/s.

X(s) = [s1−A2]−1 [x(t′n) +B2E(s)]

=


 s

1
C

− 1
L

s+
1

CR






vC(t′n)

iL(t′n) +
E

sL




s2 +
s

CR
+

1
LC

(3.10)

where X(s) denotes the Laplace tranform of x(t). Thus, from (3.10), we may
write the s-domain expressions for the capacitor voltage and the inductor
current as

Vc(s) =
E

s
+

K1s+K2

H(s)
(3.11)

IL(s) =
E

Rs
+

K3s+K4

H(s)
(3.12)

where

K1 = vC (t′n) −E (3.13)

K2 =
1
C

iL(t′n)− 2σE (3.14)

K3 = iL(t′n) −
E

R
(3.15)

K4 =
1

CR
iL(t′n)−

1
L
vC(t′n) +

(
R

L
− 2σ

)
E

R
(3.16)

2σ =
1

CR
(3.17)

H(s) = s2 +
s

CR
+

1
LC

. (3.18)

Then, by taking the inverse Laplace transformation of the partial fraction
expansions of Vc(s) and IL(s), the time-domain expressions for vC and iL for
the interval t′n < t < tn+1 can be found.

vC(t) = E +K1e
−σ(t−t′n) cosω(t − t′n)

+
K2 −K1σ

ω
e−σ(t−t

′
n) sinω(t− t′n) (3.19)

iL(t) =
E

R
+K3e

−σ(t−t′n) cosω(t − t′n)

+
K4 −K3σ

ω
e−σ(t−t

′
n) sinω(t− t′n) (3.20)

where

ω =

√
1

LC
− σ2. (3.21)

©2004 CRC Press LLC



Now, since K1, K2, K3 and K4 are functions of x(t′n) which is in turn a
function of x(tn) and d, a difference equation involving x(tn+1), x(tn) and d
can be obtained by putting t = tn+1 and tn+1− t′n = (1− d)T into (3.19) and
(3.20). The general form of this difference equation is

x(tn+1) = f(x(tn), d) (3.22)

where the function f(.) is given by

f(x, d) =
[
f11 f12
f21 f22

]
x+

[
g1
g2

]
E, (3.23)

with

f11 = e−
dT
CR−σ(1−d)T

[
cos (1− d)ωT − σ

ω
sin (1− d)ωT

]

f12 =
1

ωC
e−σ(1−d)T sin (1− d)ωT

f21 = −
1
ωL

e−
dT
CR−σ(1−d)T sin (1− d)ωT

f22 = e−σ(1−d)T
[
cos (1− d)ωT +

1
ω

(
1

CR
− σ

)
sin (1− d)ωT

]

g1 = 1− e−σ(1−d)T
[
cos (1− d)ωT

− 1
ω

(
dT

LC
− σ

)
sin (1− d)ωT

]

g2 =
1
R

{
1 + e−σ(1−d)T

[(
RdT

L
− 1
)
cos (1− d)ωT

+
1
ω

[(
1

CR
− σ

)
RdT

L
+

R

L
− σ

]
sin (1− d)ωT

]}
.

Equation (3.22) is the discrete-time state equation for the boost converter
operating in continuous conduction mode. In much of the literature, the
terms iterative map, iterative function and Poincaré map have been used
synonymically with discrete-time state equation.
Finally, we need to define a control law to complete the model. This control

law essentially relates the value of d in each switching cycle with one or more
of the state variables. We will come back to this point in Section 3.6.

3.1.2 Steady-State Solution

To avoid obscuring the essentials, we simply assume that a unique steady-
state equilibrium point exists. The steady-state operating point can be found
by enforcing periodicity, i.e., putting x(tn+1) = x(tn) in (3.22). The result is
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the following linear equation:∗[
1− f11 −f12
−f21 1− f22

] [
Vc
IL

]
=
[
g1
g2

]
E (3.24)

with the f ’s and g’s evaluated at d = D.
The steady-state values of the capacitor voltage and inductor current of

the boost converter can hence be found using Cramer’s rule, provided (1 −
f11)(1− f22)− f21f12 does not vanish, i.e.,

Vc =
[g1(1− f22) + g2f12]E

(1− f11)(1 − f22)− f21f12

∣∣∣∣
d=D

(3.25)

IL =
[g2(1− f11) + g1f21]E

(1− f11)(1 − f22)− f21f12

∣∣∣∣
d=D

(3.26)

At this point, we clearly recognize that the function f(.) in the discrete-time
state equation (3.22) is far too complex to permit any systematic analysis to
be conveniently performed. Simplification is needed to facilitate analysis. In
the following we will introduce a simple series approximation which permits
the original discrete-time state equation to be approximated to any desired
degree of accuracy.

3.1.3 Approximation by Series Expansion

In most practical situations, the circuit parameters are often chosen such that
the form of f(.) can be dramatically simplified. For example, in the case of
the switching converters under study, T/CR and σT are usually small. Thus,
the trigonometric and the exponential functions can be approximated as finite
series expansions. The accuracy of the approximation is determined by the
number of terms included in the series expansions. This issue will be discussed
in more detail in Section 3.3.
Applying a second-degree series approximation to the f ’s in (3.23), we get

the following approximate expressions for the boost converter:

f11 ≈ 1−
T

CR
+
1
2

(
T

CR

)2
− (1− d)2T 2

2LC
(3.27)

f12 ≈
(1− d)T

C
− R

2

[
(1− d)T

CR

]2
(3.28)

∗For a given fixed duty cycle, it is not difficult to show that the system always converges
to an equilibrium point. The argument is that all elements are incrementally passive and
there are no self-oscillating loops or cutsets. By the contraction principle, the system must
converge to a unique equilibrium point. A rigorous proof can be found in Tse and Adams
[149].
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f21 ≈ −
(1− d)T

L
+
(1− d2)T 2

2LCR
(3.29)

f22 ≈ 1−
(1 − d)2T 2

2LC
(3.30)

g1 ≈
(1− d2)T 2

2LC
(3.31)

g2 ≈
T

L
(3.32)

Note that as we have omitted rC in the analysis, the above expressions do
not contain any terms involving rC. Also, putting the above approximate
expressions in (3.25) and (3.26), we get the steady-state equilibrium point as

Vc =
E

1−D
(1 + ξ) (3.33)

IL =
E

R(1−D)2

[
1− RTD(1 −D)2

2L
+ ε

]
(3.34)

where ξ and ε are first or higher order terms and can be neglected.

3.2 General Procedure for Derivation of Discrete-Time
Iterative Maps for the Basic Switching Converters

In the previous section, the discrete-time analysis method was introduced in a
somewhat informal fashion, in that only the boost converter was treated and
some less general properties were made use of in the derivation of the state
equation, such as the sparseness of the system matrices. In this section, we
describe a formal procedure for deriving discrete-time matrix state equation,
which is valid for all switching converters regardless of their exact circuit
topologies and topological sequences.

3.2.1 Continuous Conduction Mode

When the switching converter is operating in continuous conduction mode, its
topological sequence consists of two linear circuits described by the following
state equations:

ẋ = A1x+B1e(t) for tn ≤ t < tn + dT (3.35)
ẋ = A2x+B2e(t) for tn + dT ≤ t < tn+1 (3.36)

where x again denotes the state vector [vC iL]T , e(t) the input voltage (which
is varying with time in general), d the duty cycle, T the switching period, the
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FIGURE 3.2
Buck converter. (a) Basic circuit; (b) circuit topology when switch S is turned
on; (c) circuit topology when switch S is turned off and continuous conduction
of the inductor current is maintained.

A’s andB’s represent system matrices, and tn denotes nT . Figures 3.1 and 3.2
show, respectively, the topological sequence for the boost and buck converters
operating in continuous conduction mode.
In a likewise fashion as illustrated in Section 3.1, the value of x at the end

of the first sub-interval is first expressed in terms of that at the beginning of
the sub-interval. The standard form of this expression is

x(tn + dT ) = Φ1(dT )x(tn) +
∫ tn+dT

tn

Φ1(tn + dT − τ )B1e(t).dτ (3.37)

= Φ1(dT )x(tn) +
∫ dT

0

Φ1(ξ)B1e(t).dξ (3.38)
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FIGURE 3.3
Inductor current waveform in discontinuous conduction mode.

where Φ1 is the corresponding transition matrix. Similarly for the second
sub-interval, the following expression is written.

x(tn+1) = Φ2(dT )x(tn + dT ) +
∫ dT

0

Φ2(ξ)B2e(t).dξ (3.39)

where
d = 1− d. (3.40)

The total increment of x acquired over one switching period can be ob-
tained by substituting (3.39) in (3.38). Furthermore, assuming that the input
voltage e(t) is a “slowing” varying function (in the sense that e(t) remains
nearly constant within a switching period), the above process of successive
substitutions yields

xn+1 = Φt(d)xn +Ψt(d)e(nT ) (3.41)

where

xn = x(tn) , (3.42)
Φt(d) = Φ2(dT )Φ1(dT ) , (3.43)

Ψt(d) = Φ2(dT )
∫ dT

0

Φ1(ξ)B1dξ +
∫ dT

0

Φ2(ξ)B2dξ . (3.44)

Equation (3.41) is the general discrete-time iterative map for the basic
switching converter working in continuous conduction mode. It should be
noted that from the system’s viewpoint, d is an input, and (3.41) does not
possess a linear term in d. Direct application of linear methods is thus pro-
hibited. Use of this equation in the analysis of switching converters will be
discussed in the later chapters.
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FIGURE 3.4
Circuit topologies for (a) boost converter and (b) buck converter when both
switch and diode are turned off. These topologies take charge for the (1 −
d− h)T sub-interval, as shown in Figure 3.3, when the converters operate in
discontinuous conduction mode.

3.2.2 Discontinuous Conduction Mode

When the switching converter is operating in discontinuous conduction mode,
the inductor current takes a zero value for a finite sub-interval of time, as
illustrated in Figure 3.3. For this case, an additional circuit topology has
to be considered, corresponding to the sub-interval of time during which the
inductor current is zero. Figure 3.4 shows the additional circuit topologies
for the boost and buck converters. The set of linear state equations, for the
discontinuous-conduction-mode case, becomes

ẋ = A1x+B1e(t) for tn ≤ t < tn + dT (3.45)
ẋ = A2x+B2e(t) for tn + dT ≤ t < tn + (d+ h)T (3.46)
ẋ = A3x+B3e(t) for tn + (d+ h)T ≤ t < tn+1 (3.47)

where hT is the duration of the second sub-interval and h < 1− d.
Applying the technique of successive substitution to the above system, we

get a discrete-time iterative map similar in form to (3.41), except that the
matrices Φt and Ψt are now functions of d and h, and are given by

Φt(d, h) = Φ3(hT )Φ2(hT )Φ1(dT ) (3.48)

Ψt(d, h) = Φ3(hT )Φ2(hT )
∫ dT

0

Φ1(ξ)B1dξ
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+ Φ3(hT )
∫ hT

0

Φ2(ξ)B2dξ +
∫ hT

0

Φ3(ξ)B3dξ (3.49)

where
h = 1− d− h. (3.50)

At this point we note that when the switching converter is operating in dis-
continuous conduction mode, two additional conditions apply to reduce the
order of the system by one and to eliminate the dependence of Φt and Ψt on
the variable h.

1. The inductor current is zero for the sub-interval tn+(d+h)T ≤ t ≤ tn+1.
Thus, iL(tn) = 0 for all n. This implies that the inductor current does
not act as a state variable in this discrete-time model, and the state
equation is essentially first order with the capacitor voltage as the only
state variable.

2. Continuity of the inductor current guarantees that

lim
t→t′n+

iL(t) = lim
t→t′n−

iL(t) = iL,peak (3.51)

where t′n = tn+ dT and iL,peak is the peak inductor current. This leads
effectively to an expression for h in terms of d, thus eliminating the
dependence of Φt and Ψt on h. For example, if the inductance current
is taken as a triangular waveform, then the expression relating h and d
for the boost converter is simply

h =
ed

vC − e
, (3.52)

and that for the buck converter is

h =
(e− vC )d

vC
. (3.53)

When these conditions are taken into account, the form of the resulting
iterative map differs significantly from that of (3.41). In general, the iterative
map for the basic switching converter operating in discontinuous conduction
mode is given by

vC(tn+1) = f(vC (tn), d) (3.54)
where f(.) is derived by enforcing the above conditions on (3.41).

3.3 Approximation of Iterative Maps by Series
Expansions

In the derivation of the discrete-time iterative maps, the transition matrices
Φ1, Φ2 and Φ3 are involved. In general, we can write these transition matrices
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as
Φk(ξ) = eAkξ (3.55)

where the exponential matrix eAξ is given by the following infinite series:

eAkξ =̂ 1+Akξ +
1
2!
A2
kξ

2 + · · ·+ 1
n!
An
kξ

n + · · · (3.56)

Here, we note that eAkξ is a square matrix of the same order as Ak, whose
elements are functions of ξ. Literature abounds with methods for calculating
eAkξ as functions of ξ in closed form [125]. However, the approach is usually
quite complicated, and for most practical purposes, it suffices to approximate
eAkξ by the first N terms of the exponential series.
It is important, when finite series approximation is used, to ensure that the

number of terms included is sufficiently large to achieve the desired accuracy.
In the following we evaluate the error incurred when only a finite number of
terms are included in the computation of a transition matrix. Suppose only
the first N terms are used, i.e.,

eAkξ ≈ 1+Akξ +
1
2!
A2
kξ

2 + · · ·+ 1
N !
AN
k ξN . (3.57)

Then, we may write the error matrix E as

E = 1
(N + 1)!

AN+1
k ξN+1 +

1
(N + 2)!

AN+2
k ξN+2 + · · · (3.58)

Now let ‖A‖ be the ∞-norm of the square matrix A of order r defined by

‖A‖ =̂ max
i

∑
j

|aij|. (3.59)

The above norm is the maximum among the r values, each of which is the
sum of |aij| in the same row. Obviously, |aij| ≤ ‖A‖ for all i and j.
Applying the inequality ‖AB‖ ≤ ‖A‖.‖B‖ to (3.58), we get an upper

bound for the elements of the error matrix E , i.e.,

|Eij| ≤
∞∑

m=N+1

1
m!
|(i, j) element of (Akξ)m|

≤
∞∑

m=N+1

1
m!
‖Akξ‖m

≤ ‖Akξ‖N+1

(N + 1)!
[1 + ‖Akξ‖+ ‖Akξ‖2 + · · ·] (3.60)

=
‖Akξ‖N+1

(N + 1)! (1− ‖Akξ‖)
. (3.61)
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The last equality assumes that ‖Akξ‖ < 1 and hence the infinite series in
(3.60) converges. Thus, the upper bound U of the error when (3.57) is used
to approximate eAkξ is

U = ‖Akξ‖N+1

(N + 1)! (1− ‖Akξ‖)
. (3.62)

To get an idea of the magnitude of U , we substitute in (3.62) some typical
values of the system matrices. First, we note that typical elements of the
system matrices are 1/C(R + rC), R/C(R + rC), 1/L, and rC/L, and ξ is
always less than the switching period T . Thus, the norm ‖Akξ‖ is typically
less than one. For example, if T/C(R+ rC) = 0.1, RT/L = 5, R = 25 Ω, and
rC ≈ 0, then ‖Akξ‖ < 0.1 + 0.2 = 0.3. Suppose the transition matrices are
approximated using (3.57) with N = 2, i.e.,

Φk(ξ) = 1+Akξ +
1
2
A2
kξ

2. (3.63)

Then, the maximum error in the elements of Φk(ξ) is given by

U = 0.33

3! (1− 0.3) = 6.4285× 10
−3. (3.64)

The above figure is quite acceptable in practice as it gives a maximum per-
centage error of less than 6.4% for the elements of Φk. Thus, (3.63) represents
a reasonably close approximation for the transition matrices concerned. The
answer to whether we should use a higher-order approximation lies entirely
on how much we are willing to sacrifice accuracy for simplicity.

3.4 Approximate Iterative Maps for the Boost and Buck
Converters

It is well known that all existing topologies of switching converter circuits
can be derived from combinations of boost and/or buck converters along with
some form of transformation function, which involves an ideal transformer
element which is capable of transforming DC as well as AC [128]. A rigorous
demonstration of this viewpoint has been provided by Liu and Lee [91]. Thus,
the boost and buck converters are of fundamental importance, and their prop-
erties naturally pertain to any complex derivative converter system. In this
section we summarize the approximate expressions for the various matrices
and functions involved in the iterative maps of the boost and buck converters.
We will postpone the detailed discussions of the use of these iterative maps for
the analysis of nonlinear behavior of switching converters to the later chapters.
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TABLE 3.1

Values of fij’s and gi’s in iterative maps of boost and buck converters
operating in continuous conduction mode. For brevity, we write
τC = CR and τL = L/R. Also, rC has been included in the
derivations of these formulas.

Boost converter Buck converter

f11 1− T

τC
+

T 2

2τ2
C

− (1− d)2T 2

2τCτL
1− T

τC
+

T 2

2τ2
C

− T 2

2τCτL

f12
R(1− d)T

τC
−R(1− d)

2T 2

2τ2
C

− rC(1− d)2T 2

2τCτL

RT

τC
− RT 2

2τ2
C

− rCT
2

2τCτL

f21 − (1− d)T
RτL

+
(1− d2)T 2

2RτCτL

+
rC(1− d)2T 2

2R2τ2
L

− T

RτL
+

T 2

2RτCτL
+

rCT
2

2R2τ2
L

f22 1− (1− d)2T 2

2τCτL
+
r2
C(1− d)2T 2

2R2τ2
L

1− rCT

RτL
− T 2

2τCτL
+

r2
CT

2

2R2τ2
L

g1
(1− d2)T 2

2τCτL

(
1− d

2

)
dT 2

τCτL

g2
T

RτL
− rC(1− d2)T 2

2R2τ2
L

dT

RτL
−
(
1− d

2

)
rCdT

2

R2τ2
L

3.4.1 Continuous Conduction Mode

Application of second-degree approximation to the switching converter oper-
ating in continuous conduction mode leads to an approximate state equation
of the form similar to (3.41), namely,

xn+1 = F (d)xn +G(d)e(tn) (3.65)

where e(tn) is the value of the input voltage at t = tn,

F (d) =
[
f11(d) f12(d)
f21(d) f22(d)

]
and G(d) =

[
g1(d)
g2(d)

]
. (3.66)

Table 3.1 summarizes the approximate expressions for the fij ’s and gi’s for
the boost and buck converters. For the sake of notational brevity, τC and τL
are used to denote the time constants CR and L/R respectively. Also, the
approximation R+ rC ≈ R has been applied in these expressions.
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TABLE 3.2

Approximate expressions of f(.) for boost and buck
converters operating in discontinuous conduction mode.
For brevity, we write τC = CR, τL = L/R, vC = vC(tn),
and e = e(tn).

Boost converter Buck converter

f(.)
(
1− T

τC
+

T 2

2τ2
C

)
vC

+
d2T 2e2

n

2τCτL(vC − en)

(
1− T

τC
+

T 2

2τ2
C

)
vC

+
d2T 2e(e − vC)

2τCτLvC

3.4.2 Discontinuous Conduction Mode

As explained in Section 3.2, the iterative map for the switching converter
operating in discontinuous conduction mode takes the following form:

vC(tn+1) = f(vC (tn), d). (3.67)

An approximate expression for the function f(.) can, in a similar fashion, be
obtained via a second-degree approximation. We tabulate the results in Ta-
ble 3.2 for the boost and buck converters. As we can see here, the iterative
maps for the case of discontinuous conduction mode differ significantly from
those for continuous conduction mode. We therefore expect quite significant
difference in the dynamical behavior of switching converters operating in dis-
continuous conduction mode from those operating in continuous conduction
mode. We will cover this in detail in Chapter 4.

3.5 The Method of Averaging

The averaging approach was developed by Middlebrook and Ćuk [98] in the
late 1970s for modeling switching converters. The main objective of this
approach is to eliminate the time-varying parameters in the original system
equations. Essentially, an averaged model discards the switching details and
focuses only on the envelope of the dynamical motion, and is therefore well
suited for characterizing switching converters in the low-frequency domain. In
engineering practice, such averaged models are often linearized to yield linear
time-invariantmodels that can be analyzed in the standard frequency domain,
facilitating design of control loops and evaluation of transient responses in
ways that are familiar to engineers. In this book, however, since our objective
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is to study nonlinear behavior, we will not perform any linearization but rather
analyze the averaged models as they are.

3.5.1 General Procedure

Suppose the switching converter under study toggles between N circuit topolo-
gies. In one switching cycle, it spends a fraction of time in one particular
topology. Again, we let x be the state vector, dj be the fraction of the period
in which the circuit stays in the jth topology, and T be the period of one
switching cycle. Obviously, d1 + d2 + · · ·+ dN = 1. Thus, as we did before,
we can write down the following state equations for the system:

ẋ =



A1x+B1E if tn ≤ t < tn + d1T
A2x+B2E if tn + d1T ≤ t < tn + (d1 + d2)T
. . .
ANx+BNE if tn + (1− dN)T ≤ t < tn+1

(3.68)

where Aj and Bj are the system matrices for the jth topology, and E is the
input voltage.
The essential step in the modeling is to “average” out the system matrices

[98], yielding the following continuous-time averaged model:

ẋ = Amx+BmE for all t (3.69)

where

Am =
N∑
j=1

djAj and Bm =
N∑
j=1

djBj. (3.70)

In essence, averaging retains the low-frequency properties while it ignores
the detailed dynamics within a switching cycle. Usually, the validity of av-
eraged models is only restricted to the low-frequency range up to an order
of magnitude below the switching frequency. For this reason, averaged mod-
els become inadequate when the aim is to explore nonlinear phenomena that
may appear across a wide spectrum of frequencies. Nevertheless, averaging
techniques can be useful to analyze those bifurcation phenomena which are
confined to the low-frequency range, as we will show later in this book.
We note further that the input voltage has been assumed to be fixed. How-

ever, if the input voltage is allowed to vary with time, such variation must
be at least an order of magnitude slower than the fastest variation of the
state variables that the averaged model is capable of characterizing. In other
words, compared to the discrete-time model, the allowable input voltage vari-
ation should be much slower. Here, we simply take it as a constant, but we
do bear in mind that the averaged model is still valid for very slowly varying
input voltages.
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3.5.2 Averaged Models for the Boost and Buck Converters

Clearly, the derivation of Am and Bm is all that is needed to get the averaged
model for a given switching converter. The algebra involved is simple. For
the case of the simple switching converters operating in continuous conduction
mode, the model takes the form of

ẋ = Am(d)x+Bm(d)E for all t (3.71)

where d is the duty cycle. For the boost converter, Am and Bm are given,
respectively, by

Am =




−1
C(R+ rC)

R(1− d)
C(R+ rC)

−R(1− d)
L(R+ rC)

−RrC(1− d)
L(R+ rC)


 and Bm =


 01

L


 , (3.72)

and for the buck converter, they are

Am =




−1
C(R+ rC)

R

C(R+ rC)
−R

L(R+ rC)
−RrC

L(R+ rC)


 and Bm =


 0d

L


 . (3.73)

For the case of discontinuous conduction mode, the general form given in
(3.69) is still valid. Moreover, as argued in Section 3.2.2, the model is first-
order, and we need to consider only vC . For the boost converter, we get

dvC(t)
dt

=
−1

C(R+ rC)
vC(t) +

RdhT

2LC(R+ rC)
E (3.74)

where d and h are as defined in Section 3.2.2 (see Figure 3.3). We also recall
that h and d are related by (3.52). Thus, we may write (3.74) as

dvC(t)
dt

=
−vC(t)

C(R+ rC)
+

Rd2T

2LC(R+ rC)

[
E2

vC(t) −E

]
, (3.75)

which is the averaged state equation for the boost converter operating in
discontinuous conduction mode.
In a likewise manner, we get the averaged state equation for the buck con-

verter operating in discontinuous conduction mode as

dvC(t)
dt

=
−vC(t)

C(R+ rC)
+

Rd2T

2LC(R+ rC)

[
E(E − vC(t))

vC(t)

]
. (3.76)
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TABLE 3.3
Steady-state solutions for boost and buck converters by solving
equation (3.77), assuming R+ rC ≈ R.

Converter Continuous Discontinuous
conduction mode conduction mode

Boost VC =
E

1−D VC =
E

2

[
1 +

√
1 +

2RD2T

L

]

IL=
E

R(1−D)2

Buck VC = DE VC =
2E

1 +
√

1 + 8L
RD2T

IL =
DE

R

3.5.3 Steady-State Solutions

Suppose the system stabilizes to a steady state with the duty cycle equal to
D. The solution of the steady-state value of x (sometimes called equilibrium
point) is particularly simple with the averaged models. Essentially, since
dx/dt = 0 in the steady state, the steady-state solution, X, can be found by
solving the algebraic equation

X = −Am(D)−1BmE (3.77)

where superscript −1 denotes matrix inversion. The results for the boost and
buck converters are tabulated in Table 3.3.

3.5.4 Averaged Circuit Models

An obvious advantage of the averaging approach is the provision of time-
invariant state equations in continuous time, which allow rather straightfor-
ward synthesis of equivalent circuit models that can be easily used by engi-
neers. For instance, (3.72) and (3.73) can be translated to equivalent circuit
models for the boost and buck converters by straightforward reconstruction of
loops and nodes in accordance with Kirchhoff’s laws. The results are shown
in Figure 3.5. Likewise, from (3.75) and (3.76), we get the equivalent cir-
cuit models shown in Figure 3.6. At this point we take note that these circuit
models can be linearized to give “linear models,” and hence frequency-domain
models as well. In fact, the linearization of averaged models has been widely
practiced by power electronics engineers, and until now, the use of linearized
averaged models has been the industry standard for feedback loop characteri-
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FIGURE 3.5
Averaged circuit models for (a) boost converter and (b) buck converter oper-
ating in continuous conduction mode, with rC omitted for simplicity.
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FIGURE 3.6
Averaged circuit models for (a) boost converter and (b) buck converter oper-
ating in discontinuous conduction mode, with rC omitted for simplicity.

zation and control design of switching power supplies [33, 118]. But since our
objective in this book is to examine nonlinear behavior, we will stick to the
original averaged models in our analysis.
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3.6 Control Law to Complete the Model

The discrete-time and averaged models described in the foregoing treat the
duty cycle as an input. In practice, the duty cycle is controlled via some
feedback mechanisms. Thus, to complete the model, we need to state the
control law which is usually a set of equations by which the duty cycle is
explicitly or implicitly defined.
For instance, in the usual pulse-width modulation control, a control signal

(deriving from the state variables) and a ramp signal are compared, and their
intersection defines the switching instant. Thus, the control law can be as
simple as

Vramp(dT ) = vcon(x(dT )) (3.78)

where Vramp(t) is a ramp voltage and vcon(.) is a suitable control signal derived
from the state variables. From this equation, we can find d for each switching
period.
In general, the control equation varies from case to case, depending upon

the type of feedback configuration used. In later chapters we will examine
a few control laws which are commonly used in practice, e.g., current-mode
control, free-running hysteretic control, etc.

3.7 Determination of the Boundary of Operating Modes

From the models derived in the foregoing for the two different operating
modes, we clearly see that the dynamical behavior of switching converters
is strongly affected by the operating mode they assume. It is therefore im-
portant to know the condition under which a given converter operates in a
particular mode. This problem can be solved very easily by considering the
inductor current waveform. In order to operate in continuous conduction
mode, the inductor current must be non-zero throughout the entire switching
period. This requirement can be translated to

IL,average −
∆I

2
> 0 (3.79)

where ∆I and IL,average are, respectively, the peak-to-peak ripple magnitude
and the average value of the inductor current, as illustrated in Figure 3.7.
The value of ∆I in general depends on the size of the inductance, input

voltage, output voltage, duty cycle and switching period. For IL,average, we
may simply look up Table 3.3. In particular, for the boost converter, we
have ∆I = EDT/L and IL,average = E/R(1 − D)2. Thus, the condition for
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FIGURE 3.7
Condition for operation in continuous conduction mode.

operating in continuous conduction mode is

L

RT
>

D(1−D)2

2
. (3.80)

In a likewise fashion, we get the condition for the buck converter to operate
in continuous conduction mode as

L

RT
>
1−D

2
. (3.81)

Figure 3.8 shows the boundary of the two operating modes for the boost and
buck converters. In both cases, if the value of L/RT is below a certain value,
the converter can operate in continuous conduction mode if the duty cycle is
greater than a certain value. This result agrees with our intuition because if
the “switch-off” interval is too long, the inductor current would have fallen
to zero. However, for the boost converter, as shown in Figure 3.8 (a), the
converter can also operate in continuous conduction mode if the duty cycle is
small enough. This is somewhat counter-intuitive, but not at all mysterious.
In fact, it is not difficult to see that when the duty cycle is small, the output
voltage is expected to be close to or just a little bigger than the input voltage.
Thus, the inductor current goes up fast during the switch-on interval but goes
down very slowly during the switch-off interval. If the duty cycle is small, the
inductor current cannot reach zero during the switch-off interval, thus keeping
itself in continuous conduction. For the extreme case where the duty cycle
is zero, i.e., the switch remains open all the time, we immediately see from
Figure 3.1 that the steady-state inductor current is equal to E/R.

3.8 Border Collision: A Trivial Case

From the foregoing discussion, we immediately see that if either D, L or R
is allowed to vary over a wide range, the converter can possibly change its
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(a)

(b)

FIGURE 3.8
Boundary of operating modes for (a) boost converter, and (b) buck converter.

mode of operation. Here, we recall our discussion in Chapter 1 that a special
kind of bifurcation can possibly be resulted from a change of operating mode
from continuous conduction to discontinuous conduction, or vice versa. In
practice, it is quite common that the load resistance may vary over a wide
change of values. If the design does not take into account the possible change
of operating mode, the converter may fail to maintain a regulated output
voltage. This phenomenon is an example of border collision, which is caused
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(a)

(b)

FIGURE 3.9
Bifurcation diagrams showing border collision due to change of operating
mode for (a) boost converter and (b) buck converter, with L = 1 mH,
T = 0.0001 s, and D = 0.4.

by a structural change as the load resistance varies across the boundary of the
operating modes. With the help of Table 3.3, we may plot specific bifurcation
diagrams with R serving as the bifurcation parameter, as shown in Figure 3.9.
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3.9 Pros and Cons of the Models

We are now able to develop discrete-time models and averaged models for
switching converters. Before we use these models for analysis, it is important
to understand what they are good for and what their limitations are. In fact,
choosing the right model for analysis is as important as the analysis itself.
First of all, the method of averaging is simple and more likely to give

tractable mathematical and circuit models; it is, however, useful only for
characterizing low-frequency or slow-scale phenomena. On the contrary, the
derivation of discrete-time models is more complicated but the models offer
more complete information on the dynamical behavior of the systems under
study. Since the discrete-time model is derived from sampling the system at
discrete times, the information contained in the model is limited by the sam-
pling rate. In the case where the sampling rate equals the switching frequency,
the model is capable of describing all dynamical behavior up to the switching
frequency, but is totally ignorant of the dynamics within a switching period.
If we want finer details, we have to raise the sampling rate.
As we will see later in this book, each method can be used to study the

bifurcation behavior of switching converters. The key question is “when to
use what.” This issue is best illustrated with real situations. We will come
back to it when we have to determine which model to use for studying a
particular phenomenon. In brief, averaged models and discrete-time models
are capable of characterizing slow-scale and fast-scale phenomena, respec-
tively. Averaged models enjoy simplicity but contain less dynamical infor-
mation, whereas discrete-time models contain fuller information but require
more complex mathematics.
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4

Analysis of Period-Doubling Bifurcation in
Switching Converters Operating in
Discontinuous Conduction Mode

The use of iterative maps for the study of dynamical properties of switching
converters has a long history in power electronics. Discrete-time analytical
models were first derived in the mid 1970s for the analysis of simple switching
converters [111]. The purpose then was to obtain a dynamical model which
allows small-signal stability analysis and feedback design to be carried out
for switching converters. Linearization was always the vital step, and no
nonlinear dynamics was studied.
In this chapter we re-visit the use of iterative maps. But instead of killing

the nonlinear terms through the process of linearization as the engineers did,
we try to preserve as much nonlinearity as possible. We will begin with
switching converters operating in discontinuous conduction mode, which are
first-order systems, as discussed in Chapter 3. In the course of our investi-
gation, iterative maps will be used as the main analytical tools for locating
bifurcation points, with supporting evidence to be provided by computer sim-
ulations and laboratory experiments. In summary, our main objectives in this
chapter are:

1. To review the procedure for deriving the describing iterative map for a
given switching converter;

2. To illustrate the key steps taken in the analysis of bifurcation behavior
of switching converters using iterative maps;

3. To identify the basic bifurcation behavior exhibited by switching con-
verters operating in discontinuous conduction mode.

4.1 Review of the Derivation of Iterative Maps

In Chapter 3, we have detailed the procedures for deriving iterative maps
for switching converters. For the case of discontinuous conduction mode, the
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FIGURE 4.1
Inductor current waveform in discontinuous conduction mode.

iterative map is first-order. The procedure for deriving this first-order map
has been discussed in Section 3.2.2. We summarize the essential steps as
follows:

1. Write down the state equations for all involving circuit topologies. In
the case of discontinuous conduction mode, we have three such state
equations, i.e.,

ẋ =



A1x+B1E for nT ≤ t < (n+ d)T
A2x+B2E for (n+ d)T ≤ t < (n + d+ h)T
A3x+B3E for (n+ d+ h)T ≤ t < (n+ 1)T

(4.1)

where x = [vC iL]T , A’s and B’s are the system matrices, d is the duty
cycle, T is the switching period, and h is the fraction of the switching
period during which the switch is off and the inductor current is non-
zero. See Figure 4.1.

2. Express the solution to each of these state equations in terms of the
respective transition matrix.

3. “Stitch” the consecutive solutions at the switching instants by putting
the final value of the previous sub-interval as the initial value of the
following sub-interval. The result is the following iterative equation:

x((n+ 1)T ) = Φ3(h̄T )Φ2(hT )Φ1(dT ) (4.2)

×
(
x(nT ) +

∫ (n+d)T

nT

Φ1(nT − τ )B1E.dτ

)

+ Φ3(h̄T )Φ2(hT )
∫ (n+d+h)T

(n+d)T

Φ2((n+ d)T − τ )B2E.dτ

+ Φ3(h̄T )
∫ (n+1)T

(n+d+h)T

Φ3((n + d+ h)T − τ )B3E.dτ
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where h̄ = 1− d− h and the transition matrix Φi(.) is given by

Φi(ξ) = 1+
∞∑
n=1

1
n!
An
i ξ

n for i = 1, 2 and 3. (4.3)

4. Enforce the conditions specific to discontinuous conduction mode. First,
the inductor current is zero for all t = nT . Second, d and h are related
by enforcing continuity of the inductor current at the switching instant,
as given in (3.52) and (3.53).

5. Apply series approximation to the transition matrices to simplify the
iterative map.

Upon completing the above steps, we get a first-order iterative map of the
form:

vC,n+1 = f(vC,n , dn) (4.4)

where subscript n denotes the value at t = nT . See Table 3.2 for the forms of
iterative maps for the boost and buck converters. For easy reference in later
sections of this chapter, we repeat the results here.

vC,n+1 = αvC,n +
βd2nE(E − vC,n)

vC,n
for buck converter (4.5)

vC,n+1 = αvC,n +
βd2nE

2

vC,n −E
for boost converter (4.6)

where

α = 1− T

CR
+

T 2

2C2R2
(4.7)

β =
T 2

2LC
. (4.8)

4.2 The Closed-Loop System and Control Equation

In practice, switching converters are controlled via a feedback mechanism. The
usual control objective is to keep the output voltage fixed. For simplicity, we
consider a proportional feedback which effectively samples the output voltage
and generates an error signal from which the value of the duty cycle is derived,
i.e.,

dn = H (D− κ(vC − Vref)) (4.9)

where D is the steady-state duty cycle, κ is the small-signal feedback gain,
Vref is the reference (target) output voltage, and H(.) accounts for the limited
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FIGURE 4.2
Schematic of the closed-loop voltage feedback buck regulator.

range of the duty cycle between 0 and 1.

H(x) =



0 for x < 0
1 for x > 1
x otherwise

(4.10)

Figure 4.2 shows the schematic of the closed-loop system. Combining this
control equation with the discrete-time map of the system, we yield a discrete-
time map for the closed-loop system.
In particular, for the buck converter, we get

vC,n+1 = αvC,n +
β (H (D− κ(vC − Vref)))

2
E(E − vC,n)

vC,n
(4.11)

Also, D can be found by putting vC,n+1 = vC,n in (4.11), i.e.,

D =

√
(1 − α)V 2

C

βE(E − VC)
(4.12)

where uppercase letters denote steady-state values as usual.
For the boost converter, the discrete-time map for the closed-loop system

is

vC,n+1 = αvC,n +
H(D − κ(vC,n − Vref))2βE2

vC,n − E
(4.13)

where D can be found in a likewise manner and is given by

D =

√
(1− α)(VC −E)VC

βE2
. (4.14)
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In the following we will use the discrete-time map (4.11) to study the non-
linear dynamics of the buck converter operating in discontinuous conduction
mode. Readers may refer to Tse [141] for a similar treatment of the boost
converter.

4.3 Period-Doubling Bifurcation

The main aim of our investigation of the buck converter operating in dis-
continuous conduction mode is to examine the stability of its fundamental
operation.∗ Specifically, we wish to study the way in which the system loses
stability.
We consider small disturbance ∆vC around the steady-state value VC . The

usual Taylor’s series expansion can be written as

∆vC,n+1 =
∞∑
k=1

1
k!

∂kf(vC )
∂vkC

∣∣∣∣
vC=VC

(∆vC,n)k. (4.15)

If the disturbance is small, the magnitude of ∂f(vC )/∂vC at vC = VC de-
termines the stability. This partial derivative is sometimes referred to as the
characteristic multiplier or eigenvalue. For the present 1-D map, it simply
corresponds to the slope of f(x) at the fixed point [138].
We assume that in the neighborhood of the steady-state point the duty

cycle does not saturate. Hence, we may consider the discrete-time map (4.11)
without the need for applying H(.). Thus, the characteristic multiplier, λ,
can be obtained by direct differentiation:

λ =
∂f(vC )
∂vC

∣∣∣∣
vC=VC

= α− βED[2κVC (E − VC) +DE]
V 2
C

. (4.16)

The system remains fundamentally stable if the magnitude of the character-
istic multiplier is less than 1, i.e.,

|λ| =
∣∣∣∣α− βED[2κVC (E − VC ) +DE]

V 2
C

∣∣∣∣ < 1. (4.17)

At the boundary where the characteristic multiplier is −1, vC repeats itself
every second period, and as the characteristic multiplier decreases below −1,
vC may diverge in an oscillatory fashion or maintain a stable subharmonic

∗In much of the system theory literature, the term fundamental operation refers to period-1
operation. In the case of switching converters, this refers to the usual periodic operation in
which all waveforms are periodic in the switching period.
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FIGURE 4.3
Iterative maps showing (a) stable fixed point; (b) period-2 subharmonic solu-
tion; and (c) period-4 subharmonic solution.

operation, depending upon the higher-order terms in (4.15). The critical value
of the small-signal feedback gain can be found by setting the characteristic
multipler to −1, i.e.,

κc =
(1 + α)V 2

C − βE2D2

2βEDVC (E − VC)
. (4.18)

Now using (4.11), we can easily arrive at some useful conclusion concerning
the behavior of the system near κ = κc. As we will see, (4.11) represents
a typical unimodal map [5]. A common plan of attack for such maps is as
follows. Initially we set κ at a value smaller than κc and confirm that the
system has a stable fixed point. Then, we increase κ and observe the way
in which the system loses stability and bifurcates into subharmonic orbits of
period 2. We further increase κ to observe a typical subharmonic cascade and
eventually chaotic motion.
An example will help visualize the situation. Suppose T/CR = 0.12,

RT/L = 20, E = 33 V, and VC = 25 V. This gives D = 0.4717. Also
it is readily verified that the value of RT/L is large enough to ensure a
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FIGURE 4.4
Bifurcation diagram from the approximate discrete-time map describing the
buck converter operating in discontinuous conduction mode.

discontinuous-conduction-mode operation. Direct substitution gives

vC,n+1 = 0.8872vC,n+
1.2× 33× (33− vC,n) ×H(dn)2

vC,n
(4.19)

where dn = 0.4717− κ(vC,n − 25). The characteristic multiplier, as given in
(4.17), is

λ = 0.4220− 11.9548κ. (4.20)

Thus, the critical value of κ is 0.1189. Figure 4.3 shows the iterative maps
corresponding to a sub-critical case (κ < κc), and two super-critical cases (κ >
κc). As shown clearly, the system has a stable fixed point in the sub-critical
case, and a stable subharmonic orbit in super-critical cases. Furthermore,
using (4.19), a bifurcation diagram can be generated as shown in Figure 4.4.
Reference to this diagram shows that the system becomes chaotic when κ
is larger than about 0.17. We can confirm this by computing the average
Lyapunov exponents for the same range of κ, as described in Section 2.5.1.
Figure 4.5 shows the result.

4.4 Computer Simulations

In this section, we verify the period-doubling bifurcation using “exact” cycle-
by-cycle simulation of the system. The simulation is based on a piecewise
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FIGURE 4.5
Average Lyapunov exponents for the buck converter operating in discontinu-
ous conduction mode.

switched model which represents a very accurate description of the system.
Essentially the model involves toggling between three linear circuits accord-
ing to the duty cycle control and circuit condition. The simulation uses the
following parameters: T = 33.33 µs, E = 33 V, VC = 25 V, L = 208 µH,
C = 222 µF, R = 12.5 Ω.
We have simulated the steady-state waveforms for various values of κ. Fig-

ures 4.6 (a), 4.7 (a), 4.8 (a) and 4.9 (a) show the steady-state waveforms of
the closed-loop system with κ = 0.1, 0.126, 0.184 and 0.216 respectively. The
phase portraits corresponding to these four cases are shown in Figures 4.6
(b), 4.7 (b), 4.8 (b) and 4.9 (b), which demonstrate clearly the fundamen-
tal, period-2 subharmonic, period-4 subharmonic, and chaotic orbits. We
have also summarized in Figure 4.10 the steady-state information in the form
of a bifurcation diagram which demonstrates clearly the sequence of period-
doubling subharmonics as well as the presence of a period-3 window around
κ = 0.245.
The general appearance of this simulation-based bifurcation diagram resem-

bles that of Figure 4.4. However, some noticeable differences are still observed
between them, which can be attributed to the fact that Figure 4.4 is gener-
ated from an approximate iterative map whose validity relies very much on
the accuracy of the truncated Taylor series. On the other hand, Figure 4.10
represents exact simulated system behavior.
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(a) (b)

FIGURE 4.6
(a) Fundamental waveforms from simulation of the exact state equation with
κ = 0.1; (b) phase portrait.

(a) (b)

FIGURE 4.7
(a) Period-2 subharmonic waveforms from simulation of the exact state equa-
tion with κ = 0.136; (b) phase portrait.

4.5 Experimentation

Further evidence of period-doubling in switching converters operating in dis-
continuous conduction mode can be provided by laboratory tests. For the sim-
ple voltage feedback buck converter, a possible experimental circuit is shown
in Figure 4.11.
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(a) (b)

FIGURE 4.8
(a) Period-4 subharmonic waveforms from simulation of the exact state equa-
tion with κ = 0.184; (b) phase portrait.

(a) (b)

FIGURE 4.9
(a) Chaotic waveforms from simulation of the exact state equation with κ =
0.216; (b) phase portrait.

4.5.1 Circuit Operation

In the experimental circuit, the switch is implemented by a Mosfet whose
on-off status is controlled by a pulse-width modulated signal. The switch is on
when the positive input of the comparator is larger than the sawtooth voltage,
and is off otherwise. Thus, the duty cycle is determined by the control voltage
vcon. The small-signal relation between vcon and the duty cycle is given by

∆vcon = VM∆d (4.21)
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FIGURE 4.10
Bifurcation diagram from simulations; 500 consecutive points of vC after tran-
sients are plotted for each κ.

where VM is the height of the sawtooth voltage. Figure 4.12 shows this sit-
uation. The loop is closed by connecting the op-amp input to the converter
output via a resistor ladder R1–R2, as shown in Figure 4.11. Assuming an
ideal op-amp characteristic, the following equation relating vcon and vC is
immediately clear:

vcon =
(
1 +

Rf

R1 ‖ R2

)
VZ −

Rf

R1
vC . (4.22)

Separating the small-signal variation from the steady-state condition yields

∆vcon = −
Rf

R1
∆vC . (4.23)

From (4.22) and (4.21), we have

∆d = − Rf

VMR1
∆vC . (4.24)

Comparing (4.24) with the feedback equation, namely,

∆d = −κ∆vC , (4.25)

we immediately see that the feedback factor κ can be adjusted by varying R1

and Rf since

κ =
Rf

VMR1
. (4.26)
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FIGURE 4.11
Experimental voltage feedback buck converter operating in discontinuous con-
duction mode.

Furthermore, the desired steady-state condition can be achieved by choosing
a correct value for VZ.
A few points regarding the implementation of the experimental circuit are

worth noting:

1. In the earlier analytical and simulation studies, a uniform sampling
scheme has been used for the feedback control. In the experiment, how-
ever, natural sampling is used for the sake of simplicity, as shown in
Figure 4.12. Thus, (4.25) and (4.24) are not actually equivalent. This
may introduce a subtle source of error if κ is adjusted according to (4.26).
Nevertheless, such discrepancy in the sampling scheme has been shown
to be of little effect on the main result concerning the period-doubling
route to chaos, as will be verified in the next subsection.

2. From (4.5), we see that the system is governed by only two independent
parameters, namely RT/L and T/CR. Moverover, the operating mode
is determined by the parameter RT/L. The choice of component values
in the experiment gives exactly the same set of parameter values as in the
theoretical and simulation studies. Specifically, we reduce the power by
using a resistor that is 10 times bigger than that used in the simulation.
To ensure a discontinuous mode of operation, we consistently use an
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FIGURE 4.12
Pulse-width modulation.

inductor that is also 10 times bigger, thereby keeping RT/L unchanged.
Similarly we use a capacitor that is 10 times smaller in order to keep
T/CR unchanged. Note that T remains the same.

3. In the experiment, the power level is deliberately lowered to 5 W so
as to minimize device stress. Thus, the load resistance is 125 Ω. The
switching frequency is 3 kHz which is low enough to ensure that the
circuit is unaffected by high-frequency problems. The values of RT/L
and T/CR are chosen to align with those used in our simulation studies.

4.5.2 Experimental Observations

Several representative waveforms are captured from the experimental circuit.
Figures 4.13 and 4.14 show typical period-2 and period-4 subharmonic wave-
forms respectively. Oscilloscope pictures of the phase portraits corresponding
to these two cases are shown in Figures 4.15 (a) and (b). To obtain the
chaotic waveform and corresponding phase portrait, a digital storage oscillo-
scope is employed. Steady-state waveforms are captured over a sufficiently
long interval and are shown in Figures 4.16 and 4.17.
To make things worse, saturating nonlinearity of the pulse-width modula-

tor may come into play under certain conditions. As modeled by the function
H(d) introduced earlier in Section 4.1, saturating nonlinearity effectively con-
fines the value of d within the range 0 to 1. In fact, it has been observed in our
simulation and experimental circuit that periods with d = 1 as well as d = 0
are present when the system becomes chaotic, as exemplified in Figures 4.9
and 4.16. Detailed inspection of the circuit and waveforms reveals that, in the
period preceding a period with d = 1, a very low output voltage occurs, caus-
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FIGURE 4.13
Period-2 waveform from experimental buck converter operating in discontin-
uous conduction mode [142] (upper trace: 0.5 V/div, lower trace: 10 mA/div,
time base: 0.5 ms/div).

FIGURE 4.14
Period-4 waveform from experimental buck converter operating in discontin-
uous conduction mode [142] (upper trace: 0.5 V/div, lower trace: 10 mA/div,
time base: 0.5 ms/div).

ing the value of vcon to rise above the upper threshold of Vramp, as illustrated
in Figure 4.12. The switch is thus closed for the entire period, and the induc-
tor current increases linearly until the switch turns off in the following period.
Thus, two periods appear to have been merged into one switching cycle. On
the other hand, when a very high output voltage occurs, vcon drops below
the lower threshold of Vramp, causing the switch to open for the entire period.

©2004 CRC Press LLC



(a) (b)

FIGURE 4.15
Phase portraits of (a) period-2 and (b) period-4 operations from experimental
buck converter operating in discontinuous conduction mode [142].

FIGURE 4.16
Chaotic waveform from experimental buck converter operating in discontinu-
ous conduction mode [142] (upper trace: 0.5 V/div, lower trace: 10 mA/div,
time base: 0.5 ms/div).

Thus, a period is “skipped.” It may be conceived that the ability to “merge”
and “skip” periods, as inherited from saturating nonlinearity, constitutes a
unique feature of the dynamics of switching converters. In Chapter 5, we
will examine saturating nonlinearity more formally under the notion of border
collision. Here, our experimental observation has indicated that chaos in the
switching converter under study is strongly related to saturating nonlinearity.
In this chapter, however, as a first investigation and to avoid beclouding, we
limit ourselves to the basic phenomenon of period-doubling.
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FIGURE 4.17
Phase portrait of chaotic operation from experimental buck converter operat-
ing in discontinuous conduction mode [142].

4.6 Recapitulation of Basic Phenomenology

As a remark before we close this chapter, the basic bifurcation phenomenol-
ogy for switching converters operating in discontinuous conduction mode has
been found to be a flip-type or period-doubling bifurcation [138]. At this
point, there is sufficient evidence to conclude that such systems can operate
chaotically if the magnitude of the small-signal feedback gain becomes too
large. However, we cannot exclude the possibility of other forms of bifurca-
tion that may occur in this class of switching converters since our study has
been restricted to a particular, though representative, type of feedback con-
trol scheme. In fact, as we will see in Chapter 6, the choice of the control
scheme plays an important role in determining the basic phenomenology and
the same converter can behave totally differently if it is controlled under a
different scheme.
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5

Bifurcation Behavior in Switching Power
Converters: Smooth versus Non-Smooth
Bifurcations

In this chapter, we continue our study of the nonlinear dynamics of switch-
ing converters on the basis of discrete-time iterative maps. In particular, we
analyze a few selected second-order systems and identify their associated bi-
furcation phenomena. We further aim to highlight a special type of bifurcation
phenomenon which is characteristic of power electronics systems in general.
This phenomenon is known as border collision, which occurs in almost all
switching power converters.
Border collision is a subject which has been studied in great depth by re-

searchers in the physics and mathematics disciplines. Instead of presenting
the theoretical aspect of border collision (which is beyond the scope of the
present discussion), we try to explain the physical mechanism of border col-
lision from a circuit operational viewpoint. Our aim is to show that border
collision, as a phenomenon observed in switching converters, inherits directly
from a characteristic feature of the circuit operation known as saturating non-
linearity.∗ Border collision therefore forms part of the basic phenomenology
for switching power converters. In the first section of this chapter, we will take
a quick glimpse at the various complex phenomena, using the simple buck con-
verter as an example. In the rest of this chapter and in later chapters, we
will examine in detail the bifurcation phenomena in various types of switching
converters including current-mode controlled converters, the Ćuk converter,
parallel-connected converters, and power-factor-correction converters.

5.1 A Quick Glimpse at Complexity

Before we probe into details of the mechanisms leading to the various complex
behaviors in switching power converters, it is instructive to take a quick tour

∗To avoid obscuring the essentials, we ignore the case of border collision caused by a change
of operating mode, e.g., from continuous to discontinuous conduction mode.
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FIGURE 5.1
Voltage-mode controlled buck converter. (a) Schematic diagram; (b) opera-
tion waveform. For the purpose of illustration, details of compensator network
have been omitted, and only simple proportional gain is shown.

of a typical bifurcation pattern from a simple switching converter. Without
deriving any iterative function, we will study the bifurcation behavior of a
buck converter through computer simulations and laboratory experiments.

5.1.1 Buck Converter Operating in Continuous Conduction
Mode under Simple Voltage Feedback Control

In this section, the subject of investigation is a simple voltage feedback buck
converter operating in continuous conduction mode, as shown in Figure 5.1 (a).
The operation of this circuit can be briefly described as follows. When switch
S turns on, the inductor current ramps up almost linearly, and when switch
S turns off, the inductor current ramps down and de-energizes through the
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diode to the load. In the voltage-mode control scheme, the output voltage er-
ror with respect to the reference voltage is amplified to give a control voltage
vcon:

vcon (t) = A (vC − Vref) (5.1)

which is then compared with a ramp signal Vramp(t), defined as

Vramp (t) = VL + (VU − VL)
(

t

T
mod 1

)
, (5.2)

where all symbols are explained in Figure 5.1. Note that in order to keep our
discussion simple, we omit details of the compensation network and retain only
a simple proportional control. Nonetheless, this simplified control configura-
tion suffices to illustrate the main features of the bifurcation behavior, as we
will see shortly. The comparator output, u, gives the pulse-width-modulated
signal necessary for driving the switch. Typically, the switch is turned on
when vcon (t) ≤ Vramp, and turned off when vcon (t) > Vramp, as illustrated in
Figure 5.1 (b). The state equation can be written as

ẋ =
{
A1x+B1E switch S on
A2x+B2E switch S off

(5.3)

where x denotes the state variable, i.e., x = [vC iL]T , the A’s and B’s are
the system matrices given by

A1 = A2 =
[
−1/RC 1/C
−1/L 0

]
,

B1 =
[
0
1/L

]
, and B2 =

[
0
0

]
. (5.4)

Using the above equations, exact cycle-by-cycle simulation can be performed.
The parameters used in the simulations are as follows:

E = 22—33 V, L = 20 mH, C = 47 µF ,R = 22 Ω, Vref = 11 V,
A = 8.4, T = 400 µs, VL = 3.8 V, VU = 8.2 V.

5.1.2 Bifurcation Behavior from Simulations and
Measurements

The afore-described buck converter has been studied in some depth by Baner-
jee [6], di Bernardo et al. [16], Fossas and Olivar [48], and Hamill et al.
[60]. Period-doubling bifurcation, chaos, and coexisting attractors have been
observed in this converter.
In Figure 5.2 (a), we exemplify a typical bifurcation diagramwhich has been

generated by computer simulations using the equations given in Section 5.1.1.
In this bifurcation diagram, E has been chosen as the bifurcation parameter.
Also, Figure 5.2 (b) shows the experimentally measured bifurcation diagram.
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(a)

(b)

FIGURE 5.2
Bifurcation of voltage feedback buck converter operating in continuous con-
duction mode. (a) Simulated bifurcation diagram, and (b) measured bifur-
cation diagram with inductor current versus input voltage (x-axis: 5 V/div,
y-axis: 50 mA/div).

To quantify the “chaoticity” (as may be preferred by some engineers), a plot of
the computed averaged largest Lyapunov exponent is shown in Figure 5.3. The
chaotic attractors are also captured by computer simulations and laboratory
measurements. Figures 5.4 and 5.5 show the simulated and measured phase
portraits and Poincaré sections corresponding to the case where E = 33 V.
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FIGURE 5.3
Computed largest Lyapunov exponent versus input voltage for the voltage
feedback buck converter operating in continuous conduction mode.

5.1.3 A Zoo of Complex Behaviors

This particular buck converter exhibits an interesting bifurcation route, with
the main bifurcation being period-doubling. A few features can be picked up
along the bifurcation path:

1. Expansion of chaotic attractor — When E exceeds about 32.27 V, the
converter enters a chaotic region. Beyond about 32.34 V, the chaotic at-
tractor encounters another bifurcation, more precisely an interior crisis,
and expands to a large chaotic attractor. The details of this transition
are somewhat complicated, but we may look at it simply as a bifurcation
which expands a chaotic attractor to a larger chaotic attractor.∗

2. Coexisting orbits and attractors — In some periodic windows along the
main period-doubling route, there are other orbits possibly coexisting.
For example, when E is about 24 V, unstable chaotic orbits coexist with
the periodic attractor, giving rise to a long transient chaotic behavior
before the converter settles to the stable periodic orbit. This is mani-
fested in the bifurcation diagram of Figure 5.2 (a) as bands of irregular

∗Here, we have described the expansion of the chaotic attractor under the broad view of
bifurcation. In fact, this is an example of an interior crisis where a chaotic attractor
“collides” with a coexisting unstable chaotic orbit, leading to a sudden expansion to a large
chaotic attractor which includes the original chaotic attractor as a subset [52]. See also
Chapter 5 of [11].
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(a)

(b)

FIGURE 5.4
Chaotic operation of voltage mode controlled Buck converter, with L =
20 mH, C = 47 µF, R = 22 Ω, T = 400 µs, E = 33 V and Vref = 11 V.
(a) Simulated phase portrait of chaotic attractor; (b) simulated Poincaré sec-
tion of chaotic attractor.

points near E = 24 V. In practice, engineers may occasionally see some
irregular transient behavior in this input voltage range.∗ Furthermore,
when E is near 29 V, we see similar coexisting orbits manifested as a

∗Computer simulation has no noise. Thus, had the simulation been run for a much longer
time and the transient iterates been discarded, these bands of irregular points would have
been eliminated from the bifurcation diagram.
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(a)

(b)

FIGURE 5.5
Chaotic operation of voltage mode controlled Buck converter, with L =
20 mH, C = 47 µF, R = 22 Ω, T = 400 µs, E = 33 V and Vref = 11 V. (a)
Measured phase portrait of chaotic attractor plotted with inductor current
(y-axis: 0.1 A/div) versus output voltage (x-axis: 0.2 V/div); (b) measured
Poincaré section of chaotic attractor plotted with inductor current (y-axis:
0.1 A/div) versus output voltage (x-axis: 0.2 V/div).

small band of irregular points. But these are chaotic attractors coexist-
ing with the main stable period-2 orbit [6].

5.1.4 “Skipped” Cycles and Border Collision

Of particular interest is the qualitative difference in the operation of the cir-
cuit before and after the crisis which occurs at around E = 32.34 V. A
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closer examination of the waveforms of the control signal and the pulse-width
modulator output reveals that the operation of the circuit after the crisis dif-
fers significantly from that before the crisis. Specifically, we observe many
“skipped” cycles, where the control signal fails to hit the ramp signal.
The presence of skipped cycles has been caused by the so-called saturating

nonlinearity, which is usually in place to limit the ranges of values of certain
control parameters. In this case, the value of vcon when it hits the ramp volt-
age, as illustrated in Figure 5.1, is normally limited from above by VU as well
as from below by VL. At the point where vcon just leaves the allowable range,
i.e., vcon “grazes” at the upper or lower tip of the ramp signal, the system
is said to hit a border collision bifurcation. Outside this range, vcon fails to
hit the ramp signal, going either too far above or below. When vcon manages
to hit the ramp signal every switching period, the operation is seen to be
“smooth” and bifurcation develops “smoothly” according to some standard
pattern, e.g., period-doubling in this case, as shown in Figures 5.6 (a) to (c).
When vcon swings beyond the allowable range and misses the ramp signal,
the system behaves completely differently. Figure 5.6 (d) depicts the situa-
tion after a border collision has taken place.∗ At this point we should stress
that the expansion of the chaotic attractor at E = 32.34 V is a result of an
interior crisis and not border collision. However, border collision as described
above is a cause of the qualitative change in the circuit operation. In other
words, this particular converter has actually gone through a border collision
(responsible for the “skipped” cycles) as well as an interior crisis (responsible
for the expansion of the chaotic attractor).
The problem of determining the kind of behavioral change that would oc-

cur at border collision is non-trivial. Essentially, the system redefines itself
completely at border collision. Thus, when crossing the border, the system’s
behavior can change abruptly, e.g., from one periodic orbit to another periodic
orbit, from a periodic orbit to chaos, from one chaotic attractor to another
chaotic attractor, etc. The analysis must necessarily require knowledge of the
system descriptions both before and after border collision. In this book, we do
not intend to go into details of the mathematics of border collision [8, 82, 104].
Our attention will instead be focused on the mechanisms that cause border
collision in terms of circuit operations.

∗In formal terms, as we mentioned in Chapter 1, the necessary criterion for border collision
is a structural change which is equivalent to an alteration of the topological sequence in the
case of switching converters. Obviously, the topological sequence is altered at the saturation
boundary as evidenced by the presence of “skipped” cycles.
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(a)

(b)

(c)

(d)

FIGURE 5.6
Control signal and ramp signal waveforms from voltage feedback buck con-
verter. (a) Period-1 orbit; (b) period-2 orbit; (c) chaotic orbit; (d) expanded
chaotic orbit featuring “skipped” cycles. Note that in (d), the control signal
fails to hit the ramp signal for some cycles, as circled.
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5.2 Current-Mode Controlled Switching Converters

As mentioned in Chapter 1, current-mode control is one of the most popular
control methods used for achieving fast output regulation in switching con-
verters, and its basic philosophy is to “program” or force the inductor current
to follow a reference value which is provided by an output feedback circuit.
In the rest of this chapter, we will study the current-mode controlled boost

converter in some depth using the discrete-time modeling approach. Our ini-
tial focus is the high-frequency dynamics of the inner current loop which is
the heart of the current-mode control. This inner loop can become unstable
under certain conditions, and as we will see, the basic phenomenology asso-
ciated with this inner loop is period-doubling which is not detectable by the
averaged dynamical model.

5.2.1 Overview of Operation

Figure 5.7 (a) shows the schematic diagram of a current-mode controlled boost
converter. Enclosed in the dashed box is the output feedback loop, which will
be omitted in our initial study. Note that as far as the dynamics of the
inner current loop is concerned, it suffices to consider the system without the
output feedback loop. This is because the output feedback loop is usually
much slower and its purpose is to adjust the reference value Iref in the event
of load variation. Thus, the omission of the voltage feedback loop should not
alter the high-frequency dynamics of the inner current loop. For simplicity
and for consistency with the usual nomenclature, we refer to the system as
an open-loop system if the output voltage loop is absent.
The circuit operation of the inner current loop can be briefly described as

follows. First of all, the inductor current, iL, is chosen as the programming
variable which, by comparing with a reference current Iref , generates the on-off
driving signal for switch S. Specifically, switch S is turned on at the beginning
of the cycle, i.e., at t = nT . The inductor current increases while switch S
is on. As iL climbs to the value of Iref , switch S is turned off, and remains
off until the next cycle begins. A typical waveform of the inductor current is
shown in Figure 5.7 (b). The state equation that describes the dynamics of
the boost converter can be written as

ẋ =
{
A1x+B1E for switch S on
A2x+B2E for switch S off

(5.5)

where x denotes the state variable, i.e., x = [vC iL]T , the A’s and B’s are
the system matrices given by

A1 =
[
−1/C(R+ rC) 0

0 0

]
,
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FIGURE 5.7
Current-mode controlled boost converter. (a) Circuit schematic; (b) inductor
current waveform.

A2 =
[
−1/C(R+ rC) R/C(R+ rC)
−R/L(R+ rC) 0

]
, (5.6)

B1 = B2 =
[
0
1/L

]
.

With the output feedback loop closed, the system is said to be a closed-
loop system. The additional loop allows the reference Iref to be adjusted
dynamically in accordance with the load variation. Typically, a proportional-
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integral type of control network is incorporated to ensure fast response in the
event of load fluctuation as well as to maintain the necessary steady-state
condition in the event of a change in the demand of the load current.

5.2.2 Derivation of the Describing Iterative Map

Our purpose in this subsection is to derive the iterative function that describes
the current-mode controlled boost converter. In the open-loop case, since the
control parameter of interest is the reference current Iref , an iterative function
of the following form is desired:

xn+1 = f(xn, Iref) (5.7)

where x = [vC iL]T , and subscript n denotes the value at the beginning of
the nth cycle, i.e., xn = x(nT ).
Following the same procedure as described in Section 3.2, the iterative

function drops out initially in the form of[
vC,n+1

iL,n+1

]
=
[
f11(dn) f12(dn)
f21(dn) f22(dn)

] [
vC,n
iL,n

]
+
[
g1(dn)
g2(dn)

]
E (5.8)

where the fij ’s and gi’s are given in Table 3.1. However, since an iterative
map of the form (5.7) is desired, dn should be expressed in terms of Iref . By
inspection of the circuit and the inductor current waveform, we have

L
diL
dt

= L
Iref − iL,n

dnT
= E (5.9)

=⇒ dn =
Iref − iL,n
(E/L)T

(5.10)

Now, we may combine (5.8) and (5.10) to obtain the required iterative map
for the open-loop current-mode controlled boost converter.
In the case of the closed-loop system, the model requires an additional

equation to describe the relationship between the output voltage and the
reference current. For simplicity, we consider a linear proportional feedback
configuration, and the required equation is

Iref = Irefs − κ(vo(nT + dnT )− Vref)
≈ Irefs − κ(vC(nT )e−dnT/C(R+rC ) − Vref) (5.11)

where κ is the feedback gain which can be chosen to modify the closed-loop
dynamics, Vref is the reference steady-state output voltage, and Irefs is the
steady-state reference current. Since dnT � CR, we may write

e−
dnT
CR ≈ 1− dnT

CR
+

d2nT
2

2C2R2
. (5.12)
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Also, by inspection of the waveform,

Iref =
E

L
dnT + iL,n. (5.13)

Thus, by solving dn numerically, we are able to generate x iteratively for any
given value of κ, which is equivalent to obtaining an iterative function of the
form

xn+1 = f(xn, κ). (5.14)

The above iterative maps describing the open-loop and closed-loop current-
mode controlled boost converters will be used in later parts of this chapter to
study the manner in which the system loses stability.

5.3 Initial Simulation Study of the Boost Converter
under Current-Mode Control

In the study of nonlinear systems, initial simulation or experimentation often
proves to be useful, and sometimes mandatory, in providing important clues to
the choice of analytical approach. Since nonlinear systems can behave in many
different ways, it would be hard to pinpoint what to look for in the analysis if
no prior knowledge is gathered about the likely behavior of the system under
study. In this section, we collect some representative time-domain waveforms
from computer simulation of the current-mode controlled boost converter and
make an initial evaluation of the possible behavior exhibited by the system.
The parameters used in the simulation are: T = 100 µs, L = 1.5 mH, R

= 40 Ω, and E = 5 V. To mimic the true behavior of the circuit, the exact
piecewise switched model is used for simulation. Also, for consistency with
usual practice, a duty cycle limiter d ≤ 0.9 is included in the simulation.
This will prevent the switch from being closed for the entire period (i.e.,
continuously being closed for more than one period) in the case where the
reference current is large.
We begin with a relatively small value of Iref . Figure 5.8 shows the steady-

state inductor current waveform and phase portrait, which clearly demon-
strate a stable period-1 operation. This is the usual operation or the only
practically acceptable operation for power converters.
When Iref is increased, period-1 operation is no longer possible. Essentially,

when Iref reaches a certain value, the period of operation doubles itself, as
shown in Figure 5.9. The periodic operation is clearly seen from the phase
portrait. Moreover, further increase in Iref leads directly to chaotic operation,
as shown in Figure 5.10. It is worth noting that under chaotic operation
the spectrum has a continuous and broad-band nature, as reflected by the
magnitude of the fast Fourier transform (FFT) shown in Figure 5.10 (c).
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(a)

(b)

FIGURE 5.8
Period-1 operation. (a) Simulated inductor current waveform; (b) phase por-
trait [25].

Based on the above simulations, we may summarize our initial observations
as follows:

1. The system loses its stability via a period-doubling bifurcation, and may
(or may not) continue to double its period. This is an indication of the
possible occurrence of a standard period-doubling cascade.

2. The system may go to chaos at a certain value of Iref without continuing
to double its period. As we have mentioned previously, the system is
likely to have been struck by border collision. In fact, careful readers
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(a)

(b)

FIGURE 5.9
Period-2 operation. (a) Simulated inductor current waveform; (b) phase por-
trait [25].

may have detected the occurrence of border collision from the time-
domain waveform of Figure 5.10 (a). Specifically, the inductor current
fails to touch the reference value for some periods due to the presence
of the duty-cycle limiter in this case. This indicates that the operation
has hit a “boundary” which is set by the duty-cycle limiter.∗

∗Note that even in the absence of the duty-cycle limiter, the duty cycle is naturally limited
to a maximum of 1. The phenomenon should therefore remain qualitatively unaffected by
the exact value of the duty cycle limit or its presence.
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(a)

(b)

(c)

FIGURE 5.10
Chaotic operation. (a) Simulated inductor current waveform; (b) phase por-
trait; (c) FFT spectrum [25].
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At this point, we have collected first evidence that the likely basic phenom-
ena are period-doubling and border collision. To probe further, we may try
altering some parameters and observe how period-doubling and border col-
lision interact with each other. In varying the circuit parameters, there are
several rules that we need to observe. First, we wish to keep the operation
in continuous conduction mode which is a defining condition for our study.
Thus, the inductance and load resistance should be kept within a certain
range. The output capacitance, moreover, can be varied over a wide range
without affecting the operating mode.

5.4 Bifurcation Behavior of the Open-Loop Current-
Mode Controlled Boost Converter

5.4.1 Analysis via the Iterative Map

In view of the possible period-doubling bifurcation observed in the initial
simulation study, we follow a traditional analysis to locate the onset of the first
and subsequent period-doubling bifurcations. The main step is to examine the
characteristic multipliers of the system. We begin with the iterative function
f(.) given in (5.7) and compute the characteristic multipliers corresponding
to a given operating point X. The first period-doubling bifurcation occurs
when one of the characteristic multipliers equals −1. Likewise, computation
of the characteristic multipliers of the function f(f (.)) can locate the onset of
the second period-doubling bifurcation (i.e., from period-2 to period-4 orbits),
if it exists.
In general, the characteristic multipliers of an iterative function f(.) are

the roots, λ, of the characteristic equation

det(λ1− JF (X)) = 0 (5.15)

where JF (X) is the Jacobian of f (.) evaluated at X. In the case of the
current-mode controlled boost converter, f(.) can be written as

xn+1 = f(xn, Iref) =
[
f1(vC,n, iL,n, Iref)
f2(vC,n, iL,n, Iref)

]
. (5.16)

We recall from (5.8) that

f1(.) = f11(dn)vC,n + f12(dn)iL,n + g1(dn)E (5.17)
f2(.) = f21(dn)vC,n + f22(dn)iL,n + g2(dn)E (5.18)

where dn is in turn a function of Iref , as given in (5.10). Hence, the Jacobian
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JF (X) is given by

JF (X) =




∂f1(.)
∂vC,n

∂f1(.)
∂iL,n

∂f2(.)
∂vC,n

∂f2(.)
∂iL,n



xn=X

(5.19)

where

∂f1(.)
∂vC,n

= f11(dn) + vC,nf
′
11(dn)

ddn
dvC,n

+ iL,nf
′
21(dn)

ddn
dvC,n

+Eg′1(dn)
ddn
dvC,n

(5.20)

∂f1(.)
∂iL,n

= vC,nf
′
11(dn)

ddn
diL,n

+ f12(dn)

+ iL,nf
′
12(dn)

ddn
diL,n

+Eg′1(dn)
ddn
diL,n

(5.21)

∂f2(.)
∂vC,n

= f21(dn) + vC,nf
′
21(dn)

ddn
dvC,n

+ iL,nf
′
22(dn)

ddn
dvC,n

+Eg′2(dn)
ddn
dvC,n

(5.22)

∂f2(.)
∂iL,n

= vC,nf
′
21(dn)

ddn
diL,n

+ f22(dn)

+ iL,nf
′
22(dn)

ddn
diL,n

+Eg′2(dn)
ddn
diL,n

. (5.23)

The characteristic multipliers can be computed in two steps:

1. Find the operating point corresponding to any given Iref using any nu-
merical method, e.g., Newton-Raphson method [113].

2. Solve the characteristic equation (5.15).

We are now ready to analyze the period-doubling bifurcation in this sys-
tem. As mentioned earlier, one of our objectives is to investigate the effect
of varying circuit parameters. For the boost converter under study (and for
other simple converters as well), only two dynamical elements exist, i.e., the
inductor and the output capacitor. Thus, two parameters are of interest and
their dimensionless forms are (see [128])

τL =
L

RT
(5.24)

τC =
CR

T
. (5.25)
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TABLE 5.1

Circuit parameters for the
open-loop current-mode
controlled boost converter.

Circuit Components Values
Switching Period T 100 µs
Inductance L 1.5 mH
Load Resistance R 40 Ω
Input Voltage E 5 V

TABLE 5.2

Characteristic multipliers of the open-loop current-mode
controlled boost converter for τC = 8.

Iref Characteristic multipliers Norm Remarks
0.4 −0.796317, 0.743175 – Stable period-1
0.45 −0.901889, 0.748953 – Stable period-1
0.497 −1, 0.752484 – Period-double
0.5 0.985136, 0.575415 – Stable period-2
0.51 0.887391, 0.636454 – Stable period-2
0.512 0.861104, 0.655413 – Stable period-2
0.514 0.828361, 0.680837 – Stable period-2
0.51612 0.755725, 0.745718 – Stable period-2
0.52 0.743632±j0.0990274 0.750197 Stable period-2
0.53 0.7254±j0.186191 0.748914 Stable period-2
0.54 0.707215±j0.242556 0.747654 Stable period-2
0.55 0.689074±j0.286867 0.746402 Stable period-2
0.56 0.670968±j0.324089 0.745139 Stable period-2
0.57 0.652892±j0.356432 0.743849 Stable period-2
0.58 0.634837±j0.385116 0.742518 Stable period-2
0.59 0.6168±j0.410884 0.741126 Stable period-2

The requirement for operating in continuous conduction mode dictates that
the value of τL be chosen to satisfy

τL ≥
D(1 −D)2

2
(5.26)

with 1 − D = E/U (see Section 3.7). It can be readily verified that the
particular set of parameters shown in Table 5.1 satisfies (5.26). In order not
to affect the operating condition, we will keep τL unchanged.
We may now begin to calculate the characteristic multipliers, and specifi-

cally we aim to find the condition under which a period-doubling bifurcation
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FIGURE 5.11
Loci of characteristic multipliers for τC = 8.

occurs. We may perform the above-described calculations for different val-
ues of τC . Here, we exemplify the exercise with the case of τC = 8, which
represents a realistic practical situation. Since the main concern is the onset
of period-doubling as Iref is varied, we calculate the characteristic multipliers
for a range of values of Iref and follow their movements. We omit the arith-
metics here and report the results tabularly in Table 5.2 and also graphically
in Figure 5.11.
In the process of calculating the characteristic multipliers, we observe the

following:

1. Stable period-1 operation: For Iref < 0.497 A, the magnitudes of
the characteristic multipliers are less than 1, implying stable period-1
orbits.

2. Period-doubling bifurcation: As Iref increases, one of the charac-
teristic multipliers moves toward −1, and at Iref ≈ 0.497 A, the char-
acteristic multipliers are −1 and 0.752484, implying a period-doubling
bifurcation at this point.

3. Stable period-2 operation: For Iref > 0.497 A, the iterative function
f(.) is unstable. Since the period has doubled, the function f (f(.))
should be considered. Here, the fixed point of f(f (.)) actually consists
of two alternate fixed points of f(.). The characteristic multipliers can
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be computed using the same procedure. In this case, right after the
first period-doubling, the characteristic multipliers jump to about 1 and
0.575, and gradually move toward each other. When Iref ≈ 0.516 A,
the two real characteristic multipliers collide and break off to become a
complex conjugate pair.

4. Border collision (suspected): When Iref is increased beyond 0.596
A, calculations are no longer possible since the algorithms involve de-
termination of the steady-state operating points from the time series
which has become chaotic. In fact, at the point where the period-2 or-
bit loses stability, the norm of the complex characteristic multipliers is
about 0.74, which is far from the boundary of the unit circle. Thus, it is
not possible to see the movement of the characteristic multipliers across
the boundary of the unit circle, as would be expected from a standard
bifurcation [65]. The system may have been struck by a border colli-
sion.∗

The above analysis based on the characteristic multipliers is able to locate
the onsets of period-doubling bifurcations, as long as the system has a com-
putable operating point. However, such an analysis falls short of revealing the
behavior at border collision points. It should be noted that border collision
does not necessarily bring about chaos, and it may cause the system to switch
to a different periodic orbit. A fuller picture regarding the bifurcation routes
exhibited by the system can be quickly provided by performing numerical
experiments on the iterative maps.

5.4.2 Bifurcation Diagrams Based on the Iterative Map

Based on the iterative map, i.e., (5.8) and (5.10), we can generate bifurcation
diagrams handily and fast. The procedure involves straightforward generation
of discrete-time values of x at t = nT for all n. If the iteration is allowed to
proceed for a sufficiently long time, the sequence may either diverge, converge
to a periodic orbit, or be attracted to a chaotic orbit. Then, for each value
of the bifurcation parameter (Iref in this case), we collect the discrete-time
values of x with the initial transient discarded. Thus, we have one set of data
for each value of Iref . A bifurcation diagram can then be constructed after a
sufficient number of data sets are obtained.
A number of bifurcation diagrams can be constructed for different values of

τC . Figure 5.12 shows a few representative cases corresponding to τC = 1.6,
2.0, 4.0 and 8.0. Other circuit parameters are as listed in Table 5.1. There are
a few important observations we can make from these bifurcation diagrams:

∗At this point, we have no strong evidence to conclude about the occurrence of border
collision. We still need further confirmation, for example, from a bifurcation diagram which
clearly shows a transition at the bifurcation point which does not resemble any of the stan-
dard ones, or from time-domain waveforms which show a change in the operating principle.
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(a)

(b)

FIGURE 5.12
Bifurcation diagrams based on the iterative map. (a) τC = 1.6; (b) τC = 2;
(c) τC = 4; (d) τC = 8.

1. The most notable feature of these bifurcation diagrams is the manifes-
tation of an abrupt bifurcation that invariably occurs after one period-
doubling, as marked in each dragram in Figure 5.12. Such an abrupt
change observed on a bifurcation diagram has been known to be caused
by border collision [9, 103, 104, 172].

2. The behavorial change at the border collision is not the same for the
different cases. For instance, for τC = 8, the border collision causes
a jump into “weak” chaos, which is sometimes seen as quasi-periodic
behavior by the experimentalists because of its small spread. For other
values of τC , border collision brings about a different periodic orbit.
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(c)

(d)

FIGURE 5.12 continued.

3. Beyond the border collision point, the bifurcation pattern continues to
develop, and depending upon the value of τC , it runs into chaos in
varying distances from the border collision point. In general, the larger
the value of τC , the shorter the distance to chaos [25].

In summary, the bifurcation patterns are organized by period-doubling and
border collision, with period-doubling being the first bifurcation adjacent to
the normal period-1 operation. In the next section we will verify this basic
phenomenon by performing exact simulation of the cycle-by-cycle operation
of the system.
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(a)

(b)

FIGURE 5.13
Bifurcation diagrams from exact computer simulations of circuit operation.
(a) τC = 1.6; (b) τC = 2; (c) τC = 4; (d) τC = 8.

5.4.3 Bifurcation Diagrams Based on Circuit Simulations

As mentioned before in Chapter 2, simulations based on the piecewise switched
model give the true waveforms of the circuit and hence may be used to verify
findings which have been obtained from discrete-time analysis. Here, we use
the simulated waveforms to generate bifurcation diagrams. Specifically, a large
number of the current waveforms are simulated for a range of values of Iref .
The values of the current at t = nT are sampled from each waveform, with
the initial transient discarded. A bifurcation diagram can then be constructed
by plotting the sampled current values against Iref . Figure 5.13 shows some
bifurcation diagrams constructed in this way.
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(c)

(d)

FIGURE 5.13 continued.

To facilitate comparison, the same sets of parameter values are used for
the bifurcation diagrams shown in Figure 5.13. See Table 5.1. In general, the
iterative-map based bifurcation diagrams are in very good agreement with the
simulated ones, except that the iterative-map based ones are shifted slightly
to the right. Such discrepancy is due to the use of a truncated Taylor series
in the derivation of the iterative map. Nonetheless, the basic phenomenon of
the “period-doubling and border collision interplay” is clearly demonstrated
by both types of computer generated bifurcation diagrams. Furthermore, if
a view of the “chaoticity” is of interest (as mentioned in Chapter 2), we may
compute numerically the largest average Lyapunov exponent as a function of
the reference current, as exemplified in Figure 5.14.
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FIGURE 5.14
Largest average Lyapunov exponents computed from the iterative time series
for τC = 8 [25].

5.4.4 Experimental Verification

Further evidence can be obtained from laboratory experiments. In performing
laboratory tests, the variation of τC is realized by changing the value of the
output capacitance. The rest of the circuit parameters are kept unchanged so
as to maintain the circuit operation in continuous conduction mode. Details
of the technique for obtaining bifurcation diagrams from experimental circuits
have been given in Chapter 3. In Figure 5.15, we collect two representative
bifurcation diagrams which verify the basic phenomenon observed earlier in
the computer generated bifurcation diagrams.

5.5 Theoretical Analysis of Period-Doubling Bifurcation
and Border Collision

From the foregoing simulations and experiments, we have observed that bor-
der collision comes in after the first period-doubling, and brings about a sud-
den jump into a different periodic orbit or chaos. Of practical relevance is
the question of where these bifurcations occur. While exact locations can be
hard to find in view of the complexity of the system, analytical expressions
of reasonably good approximation can be obtained if certain simplifying as-
sumptions are made. In this section we focus on the first period-doubling and
the next border collision, and derive closed-form expressions for the locations
of these bifurcations.
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(a)

(b)

FIGURE 5.15
Measured bifurcation diagrams from current-mode controlled boost converter.
Horizontal axis: Iref ; vertical axis: sampled inductor current iL,n. From (a)
to (b), the output capacitance changes from a small value to a large value
corresponding to (a) τC ≈ 2; (b) τC ≈ 20 [151].

5.5.1 Analysis of Period-Doubling

In fact, the problem of locating the first period-doubling bifurcation in the
current-mode controlled switching converters was solved a long time ago by
power electronics engineers who interpreted this bifurcation as a fundamental
stability problem [22, 66, 81, 123]. The solution is straightforward. Essentially,
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FIGURE 5.16
Inductor current waveform of the boost converter under current-mode control.

we consider the value of the inductor current at the beginning of a switching
period and at the end of the period, which should be equal in the steady state.
By introducing a small disturbance to the steady-state condition, the system’s
stability can be tested. The standard analysis proceeds as follows. We let iL,n
and iL,n+1 be the inductor current at t = nT and (n + 1)T respectively, as
shown in Figure 5.16. Denote the output voltage (voltage across the output
capacitor) by vC . Now, by inspecting the slopes of the inductor current in
Figure 5.16, we get

Iref − iL,n+1

(1− dn)T
=

vC − E

L
and

Iref − iL,n
dnT

=
E

L
(5.27)

where dn is the duty cycle of the nth switching period. Combining the above
equations, we have

iL,n+1 =
(
1− vC

E

)
iL,n +

IrefvC
E

− (vC − E)T
L

. (5.28)

Since we are interested in the inner current loop dynamics near the steady
state, we may write

δiL,n+1 =
( −D
1−D

)
δiL,n + O(δi2n) (5.29)

where D is the steady-state duty cycle and δ denotes small disturbance.
Clearly, the characteristic multiplier or eigenvalue, λ, is given by

λ =
−D
1−D

(5.30)

which must fall between –1 and 1 for stable operation. In particular, the first
period-doubling occurs when λ = −1 which corresponds to

D = 0.5. (5.31)
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Indeed, it has been well known in power electronics that current-mode con-
trolled converters must operate with the duty ratio set below 0.5 in order
to maintain a stable period-1 operation [81]. Moreover, if the location of the
period-doubling bifurcation in terms of Iref is desired, we can re-express (5.31)
in terms of Iref by using the steady-state equation relating R, D and Iref . For
the boost converter, we have

Iref =
E

R

[
DRT

2L
+

1
(1−D)2

]
(5.32)

which can be derived from the power-balance equation(
Iref −

∆I

2

)
E =

E2

(1−D)2R
(5.33)

where ∆I denotes the peak-to-peak current ripple and is given by ∆I =
DTE/L (see Figure 5.16). Thus, putting D = 0.5 in (5.32), we obtain the
value of Iref at the first period-doubling bifurcation, i.e.,

Iref,period-doubling =
E

R

(
RT

4L
+ 4
)

=
E

R

(
1
4τL

+ 4
)

. (5.34)

In other words, period-doubling occurs when Iref exceeds the above limit. In
Chapter 9, we will re-visit this problem in the light of slope compensation and
its effect on the location of the period-doubling bifurcation.

5.5.2 Analysis of Border Collision

As mentioned before, one of the basic causes for border collision in power elec-
tronics is saturating nonlinearity.∗ For any switching converter, the duty cycle
is always bounded between 0 and 1. This is a natural saturating nonlinearity
that exists in all switching converter circuits. In some practical situations, the
designer may further introduce saturation boundaries to limit the operating
range. In the case of the current-mode controlled boost converter studied in
the foregoing, the instantaneous duty cycle is not permitted to go beyond a
limit which is set by the circuit designer. In our simulations and experiments,
we have set the upper limit of the duty cycle to 0.9. Even if this is not set,
the maximum duty cycle is limited below 1.0 in any case. Thus, when the
circuit operates within the boundary, it exhibits smooth bifurcation such as
the period-doubling bifurcation at D = 0.5 shown earlier. Moreover, when
the operation hits the boundary, it exhibits a border collision.

∗The case of changing operating mode is not relevant here because if the reference current
continues to increase, the converter is surely maintaining its continuous conduction mode
of operation.
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Suppose the upper limit of the duty cycle is Dlimit . Our aim here is to
find an expression for Iref at which the duty cycle just hits this limit. Before
we proceed with the analysis, we recall that border collision occurs after the
first period-doubling. In other words, the system is operating with a stable
period-2 orbit just before border collision. Clearly, the period-2 orbit consists
of two switching periods. Suppose the duty cycle in the first period is D, and
that in the following period is D′, as shown in Figure 5.17 (a). Let us consider
the stability of this period-2 orbit. The relevant iterative equation (similar to
(5.28)) is

iL,n+2 =
(
1− vC

E

)2
iL,n + · · · (5.35)

Assuming a large output capacitance, we have

vC =
E

1−Daverage
=

E(
1− D +D′

2

) , (5.36)

from which we can write

δiL,n+2 =
(

D +D′

2−D −D′

)2

δiL,n + O(δi2L,n) (5.37)

Thus, stability of the period-2 orbit requires that | D+D′

2−D−D′ | < 1, which is
equivalent to D + D′ < 1. However, the system must deny stable period-1
orbit. Therefore, from (5.31), we require thatDperiod-1 ≥ 0.5, i.e., 12 (D+D′) ≥
0.5 or D + D′ ≥ 1. Consequently, in the steady state, D′ must tend toward
1−D, i.e.,

D′ → 1−D. (5.38)

Also, it is readily shown that m1 and m2 are related by

2m2

m1 +m2
= D +D′ (5.39)

Thus, (5.38) implies

m2 → m1 =
E

L
. (5.40)

Figure 5.17 (b) illustrates the situation when the system is operating with a
stable period-2 orbit.
Under stable period-2 operation, the duty cycles of the two constituent

periods must therefore be D and 1−D. The average output voltage is given
by

vC =
E

1−Daverage
=

E

1− D + (1−D)
2

= 2E. (5.41)
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FIGURE 5.17
Inductor current waveform of the boost converter under period-2 operation.
(a) Period-2 orbit settling to a steady state; (b) steady-state stable period-2
orbit.

Referring to Figure 5.17 (b), the average inductor current is given by

IL,average = D

(
Iref −

∆I1
2

)
+ (1−D)

(
Iref −

∆I2
2

)

= D

(
Iref −

DTE

2L

)
+ (1−D)

(
Iref −

(1 −D)TE

2L

)

= Iref −
ET

2L
[1− 2D(1 −D)] (5.42)

For power balance, we must have

IL,averageE =
v2C
R

⇒ IL,average =
4E
R

. (5.43)
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Combining (5.42) and (5.43), we have the value of Iref given by

Iref =
E

2R


1 +

8L
RT
− 2D(1 −D)

L

RT


 . (5.44)

At border collision, we simply put D = Dlimit in the above expression,
giving

Iref,border collision =
E

2R

[
1 + 8τL + 2Dlimit(1−Dlimit)

τL

]
(5.45)

which is the value of Iref at which border collision occurs in a current-mode
controlled boost converter. In particular, if no specific duty cycle limit is set
by the circuit designer, i.e., Dlimit = 1, we have

Iref,border collision =
E

2R

[
8 +

1
τL

]
. (5.46)

We may now apply (5.45) to locate the border collision point. For the
same set of circuit parameters as in the numerical simulations, the value of
Iref,border collision is found to be 0.667 for Dlimit = 1, and 0.637 for Dlimit = 0.9.
Figure 5.18 shows the value of Iref,border collision as a function of Dlimit for the
same set of circuit parameters. For other values of τL, a set of curves plotted in
normalized values of Iref,border collision is shown in Figure 5.19. Furthermore,
Figure 5.20 gives a fuller view of the main operation regions separated by
the first period-doubling and border collision boundaries. In general, the
theoretical formula is consistent with what we have observed in the previous
computer simulations. Note that we do not expect an exact match between
values found from the formula and those observed from simulations since we
have assumed a very large output capacitance in the derivation of the formula,
i.e., τC � 1.

5.6 Bifurcation Behavior of the Closed-Loop Current-
Mode Controlled Boost Converter

With the output voltage feedback loop closed, the system is made capable
of regulating the output voltage. The schematic diagram of the system is
shown in Figure 5.7, where the dash box represents the output feedback loop
in question. The operation of the circuit is basically the same as the open-
loop system, except that the value of Iref is no longer a constant but is being
varied by the feedback loop. Usually, the transient response of the feedback
loop is much slower than the switching frequency.
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FIGURE 5.18
Theoretical Iref versus Dlimit at border collision. E = 5 V, R = 40 Ω, L =
1.5 mH, T = 100 µs (i.e., τL = 0.375).

FIGURE 5.19
Normalized Iref versus Dlimit at border collision for various τL.

As mentioned before, the addition of the slow output feedback loop should
not alter the basic bifurcation phenomena that have been found for the open-
loop system. In other words, period-doubling and border collision still occur
at the values of Iref analyzed in the previous sections. The design problem is
simply translated to the feedback loop which controls the steady-state value

©2004 CRC Press LLC



FIGURE 5.20
Theoretical operation regions and bifurcation boundaries for R = 40 Ω, L =
1.5 mH, T = 100 µs (i.e., τL = 0.375), assuming Dlimit = 1.

of Iref for a particular application.
In the closed-loop system, additional parameters related to the feedback

loop are introduced. These new feedback parameters may also play a role
in determining the bifurcation behavior of the system. Specifically, the ques-
tion is whether similar or different kinds of bifurcation would occur when a
particular feedback parameter is varied. It is therefore of interest to study
the bifurcation behavior with some feedback parameters chosen as bifurcation
parameters. In the following we focus on the proportional feedback gain, κ,
which has been defined earlier in (5.11) and is repeated here for convenience:

Iref = Irefs − κ(vC(nT )e−dnT/C(R+rC ) − Vref) (5.47)

where Vref is the reference steady-state output voltage, and Irefs is the steady-
state reference current. In practice, the value of Irefs is controlled by the
feedback loop via an integral-type of control function which adjusts Irefs ac-
cording to the demand of the output load current.
Taking similar procedures as in Sections 5.4.2 and 5.4.3 for constructing bi-

furcation diagrams, we can examine the bifurcation scenarios with κ serving as
the bifurcation parameter. Here, we show the computer-simulated bifurcation
diagrams similar to those obtained in Section 5.4.2.
As shown in Figure 5.21, the bifurcation phenomenon is basically the same

as in the open-loop case, with period-doubling and border collision interplay-
ing to organize the bifurcation patterns. It should be noted that the abrupt
bifurcation due to border collision is still visible in each bifurcation diagram
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(a)

(b)

FIGURE 5.21
Bifurcation diagrams from computer simulations of the closed-loop current-
mode controlled boost converter. (a) Irefs = 0.3528; (b) Irefs = 0.2918; (c)
Irefs = 0.25; (d) Irefs = 0.2.

although it appears less obvious in some cases. We note further that for
all cases shown in Figure 5.21, the value of Irefs has been kept within the
stable operation range in order to focus on the effect of the feedback loop.
The period-doublings and border collisions observed in these cases are due to
variation of the feedback gain.
Finally, an interesting universal feature is worth noting in the current-mode

controlled boost converter studied above. Specifically, comparing the open-
loop and closed-loop cases, we observe a very similar transition in the appear-
ance of the bifurcation diagram. For the open-loop case, as τC is increased, we
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(c)

(d)

FIGURE 5.21 continued.

see that the distance to chaos along the Iref axis is progressively shortened,
with less number of period-doubling bifurcations after the border collision.
This same transition can be observed in the closed-loop system. This cor-
responds to the progressive shortening of the distance to chaos along the κ
axis as we decrease Irefs . In fact, the same bifurcation patterns, organized by
two independent parameters (e.g., τC and Iref in the open-loop case, and Irefs
and κ in the closed-loop case), have been observed in other types of switching
converters under current-mode control [23, 26, 150].
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5.7 Border Collision: Is It Important?

Border collision as inherited from the built-in saturating nonlinearity of the
circuit operation is a characteristic type of bifurcation which is universally
observed in all power electronics circuits as well as in many other types of
switching systems. From a theoretical viewpoint, this signature bifurcation
is unarguably an important subject of investigation. In recent years, a lot of
research efforts have been put into studying border collision in the physics
and mathematics research communities [9, 14, 15, 103, 104, 172].
For engineers, however, the ultimate objective is design, for which stability

is one of the most important criteria. For most engineering purposes, stability
can be interpreted as “operation under the expected regime,” and for the case
of switching converters, stable period-1 operation is the prime objective. A
bifurcation phenomenon is therefore practically relevant and important if it
describes the way in which the expected operating regime loses stability. For
switching converters, border collision has been shown, in most cases, not the
immediate bifurcation through which the system loses its stability. Thus, it
is often argued that for the purpose of practical design, border collision may
be a process too remote to consider. However, if border collision may lead to
catastrophic consequences, the efforts spent in understanding its mechanism
should be well justified, even for the mere purpose of avoiding it. Moreover,
there are practical occasions where border collision is the immediate bifurca-
tion that destabilizes the operation of a switching converter, as we will see in
Chapter 7.
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6

Nonlinear Dynamics of the Ćuk Converter

The discrete-time modeling approach described in the previous chapters yields
very effective models for describing the dynamics of nonlinear systems. Es-
sentially, the system being modeled is sampled at a certain sampling rate and
an iterative function is written to relate the state of the system at one sam-
pling instant with that at the previous sampling instant. Clearly, the resulting
model characterizes the system accurately up to the sampling frequency. If
the system is of low order, e.g., one or two, the analysis is usually quite man-
ageable. However, for higher-order systems, the derivation of the iterative
function and the subsequent analysis are necessarily complicated.
In the first part of this chapter we illustrate the application of discrete-time

modeling to a system of moderately high order. Specifically, we study the Ćuk
converter under fixed-frequency current-mode control, which is a fourth-order
system. As we will see from the results of the analysis, the system exhibits
period-doubling bifurcation which is well captured by the discrete-time model.
In the second part of the chapter, the Ćuk converter is analyzed using the

averaging approach. As we mentioned in Chapter 3, the averaging approach
is capable only of characterizing low-frequency behavior. Period-doubling is
therefore not detectable with an averaged model. However, when the Ćuk con-
verter is under a self-oscillating or so-called free-running current-mode control,
the basic phenomenology is a Hopf-type bifurcation which is a low-frequency
bifurcation. Here, we refer to low-frequency bifurcation as the bifurcation of
dynamical behavior from a stable period-1 orbit to an orbit of much longer
period. Thus, characterized by the birth of a low-frequency orbit, this type of
bifurcation is well within the capability of the averaging approach for modeling
its behavior.
Before we begin our study of the Ćuk converter, an important theoretical

point is worth clarifying. Autonomous systems of order below three can have
only fixed points or limit cycles, and no chaos [2, 162].∗ For any switch-
ing converter running on a fixed-frequency clock, the overall system is non-
autonomous and even first-order systems can operate chaotically, as we have
seen in the study of simple discontinuous-conduction-mode converters. How-
ever, no chaos should be found in self-oscillating or free-running buck, boost

∗For switching converters, the term “fixed point” refers to period-1 operation and “limit
cycle” refers to periodic operation with period equal to an integer multiple of the switching
period.
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or buck-boost converters which are autonomous systems of order below three.
If we ever encounter chaos in a free-running switching converter, it must be
of third order or higher.

6.1 Review of the Ćuk Converter and Its Operation

With only one smoothing inductor, simple switching converters cannot provide
non-pulsating current for both input and output. The Ćuk converter [37]
was proposed originally to overcome this problem by using two inductors.
Figure 6.1 (a) shows the basic Ćuk converter. For simplicity we will focus on
operation in continuous conduction mode, for which only two complementary
switch states are involved, i.e., the switch is closed while the diode is open,
and vice versa, as shown in Figures 6.1 (b) and (c). Provided the sum of the
inductor currents remains positive, the diode conducts current for the whole
sub-interval during which the switch is off, and the Ćuk converter maintains
in continuous conduction mode. Thus, the situations illustrated in Figures 6.2
(a) and (b) both belong to continuous conduction mode. However, we should
stress that, unlike other simple switching converters, the Ćuk converter can
operate in a number of discontinuous conduction modes [46].
The Ćuk converter, being a fourth-order system, does not lend itself to any

simple analysis. The complexity lies mainly in the modeling of the circuit.
If the same iterative map approach can be taken, as for the case of a sim-
ple switching converter, we will end up with a fourth-order iterative map.
Analysis and simulations become rather complicated. At the time of writing,
however, the dynamics of the Ćuk converter remains relatively unexplored,
even for the simplest mode of operation in continuous conduction.

6.2 Bifurcation Behavior for Fixed-Frequency Operation

As mentioned above, the iterative map approach is applicable to the analysis
of the Ćuk converter if one can bear the algebraic tedium. We start with
defining a suitable state vector x, e.g.,

x = [vC1 vC2 iL1 iL2]T (6.1)

For each switch state, we can write down a state equation in the following
form:

dx

dt
= Aix+BiE for i = 1, 2 (6.2)
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FIGURE 6.1
(a) The Ćuk converter; (b) equivalent circuit when switch is on and diode is
off; (c) equivalent circuit when switch is off and diode is on.

where i = 1 corresponds to switch being closed and diode being opened,
and i = 2 corresponds to the complementary state. In particular, if we let
C1 = C2 = C and L1 = L2 = L, we have

A1 =



−1/RC2 0 1/C2 0

0 0 −1/C1 0
−1/L2 1/L2 0 0
0 0 0 0


 , B1 =




0
0
0

1/L1


 , (6.3)

A2 =



−1/RC2 0 1/C2 0

0 0 0 1/C1

−1/L2 0 0 0
0 −1/L1 0 0


 , B2 =




0
0
0

1/L1


 . (6.4)

©2004 CRC Press LLC



✲
�
�
❛❛❛❛

✟✟


✪
✪❍❍❍❍❍

�
�
❛❛❛❛

✟✟


✪
✪❍❍❍❍❍

✻

iL1

iL2

iL1 + iL2

✲�
�❍❍❍❍

�
�❍❍❍❍
✁
✁
✁
✁❅
❅
❅
❅

�
�❍❍❍❍

�
�❍❍❍❍
✁
✁
✁
✁❅
❅
❅
❅

✻

iL2

iL1

iL1 + iL2

(a)

(b)

✲✛ ✲✛

S on S off

✲✛✲✛

S on S off

t

t

FIGURE 6.2
(a) Inductor current waveforms in continuous mode; (b) inductor current
waveforms also in continuous mode.

Following the same procedure as outlined in Section 3.2, the value of xn+1

can be expressed in terms of xn and the duty cycle dn, i.e.,

vC1,n+1

vC2,n+1

iL1,n+1

iL2,n+1


 =



f11(dn) f12(dn) f13(dn) f14(dn)
f21(dn) f22(dn) f23(dn) f24(dn)
f31(dn) f32(dn) f33(dn) f34(dn)
f41(dn) f42(dn) f43(dn) f44(dn)





vC1,n
vC2,n
iL1,n
iL2,n




+



g1(dn)
g2(dn)
g3(dn)
g4(dn)


E (6.5)

where the fij(.)’s and gi(.)’s can be found by direct substitution. If we assume
L1 = L2 = L and C1 = C2 = C for algebraic simplicity, and define tc = dnT
and td = (1− d)T for notational brevity, we have

f11 =
[
1− td

CR
+

t2d
2

(
1

C2R2
− 1

LC

)][
1− tc

CR
+

t2c
2

(
1

C2R2
+

1
LC

)]
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+
(
td
C
− t2d
2C2R

)(
− tc

C
+

t2c
2LCR

)
(6.6)

f12 =
[
1− td

CR
+

t2d
2

(
1

C2R2
− 1

LC

)]
t2c
2LC

+
(
td
C
− t2d
2C2R

)
tc
L

(6.7)

f13 =
[
1− td

CR
+

t2d
2

(
1

C2R2
− 1

LC

)](
tc
C
− t2c
2C2R

)

+
(
td
C
− t2d
2C2R

)(
1− t2c

LC

)
(6.8)

f14 = 0 (6.9)

f21 =
(
1− t2d

2LC

)
t2c
2LC

(6.10)

f22 =
(
1− t2d

2LC

)(
1− t2c

2LC

)
(6.11)

f23 =
(
1− t2d

2LC

)(
− tc

C

)
(6.12)

f24 =
td
C

(6.13)

f31 =
(
− td

L
+

t2d
2LCR

)[
1− tc

CR
+

t2c
2

(
1

C2R2
+

1
LC

)]

+
(
1− t2d

LC

)(
− tc

C
+

t2c
2LCR

)
(6.14)

f32 =
(
− td

L
+

t2d
2LCR

)
t2c
2LC

+
(
1− t2d

LC

)(
1− t2c

LC

)
(6.15)

f33 =
(
− td

L
+

t2d
2LCR

)(
tc
C
− t2c
2C2R

)
+
(
1− t2d

LC

)(
1− t2c

LC

)
(6.16)

f34 = 0 (6.17)

f41 =
(−td

L

)(
t2c
2LC

)
(6.18)

f42 =
(−td

L

)(
1− t2c

2LC

)
(6.19)

f43 =
(−td

L

)(−tc
C

)
(6.20)

f44 = 1−
t2d
2LC

(6.21)

g1 = 0 (6.22)

g2 =
(
1− t2d

2LC

)( −t2d
2LC

)
+

t2d
LC

(
1− t2c

2LC

)
(6.23)

g3 = 0 (6.24)
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FIGURE 6.3
Schematic of current-mode controlled Ćuk converter.

g4 =
−td
L

(
1− t2d

2LC

)
− td

L

( −t2d
2LC

)
+

tc
L

(
1− t2d

2LC

)
. (6.25)

6.2.1 Fixed-Frequency Current-Mode Control

Like other switching converters, the Ćuk converter can be controlled in various
different ways. For instance, in a particular current-mode control scheme, we
may choose the sum of the inductor currents, iL1 + iL2, as the programming
variable which, by comparing with a reference current Iref , generates the on-
off driving signal for the switch. Figure 6.3 shows the schematic of this control
scheme. Essentially, the switch is turned on at the beginning of the cycle, i.e.,
at t = nT . The inductor currents increase while the switch is on. As iL1+ iL2
climbs to the value of Iref , the switch is turned off, and remains off until the
next cycle begins. Typical waveforms are shown in Figure 6.4. We can derive
the following control equation almost by inspection:

Iref − (iL1 + iL2)n =
[
E

L1
+

vC2,n − vC1,n
L2

]
dnT (6.26)

where subscript n denotes values at t = nT . Hence, we can write

dn =
Iref − (iL1 + iL2)n(
E

L1
+

vC2,n − vC1,n

L2

)
T

(6.27)

which combines with (6.5) to give the discrete-time map required.

©2004 CRC Press LLC



✧✧❜❜✧✧❜❜✧✧❜❜✧✧

t

t

��❝❝��❝❝��❝❝��

�
��❏
❏�
��❏
❏�
��❏
❏�
��

t

iL1

iL2

iL1 + iL2

Iref

t
Clock

FIGURE 6.4
Waveforms of current-mode controlled Ćuk converter.

In fact, we can make use of (6.5) and (6.27) to study the bifurcation phe-
nomena of the Ćuk converter under the above specific current-mode control.
Moreover, if a different form of control is used, we need to derive another
control equation, in lieu of (6.27), for analyzing the the system. In any case,
(6.5) remains applicable.

6.2.2 Analysis of Bifurcation Behavior

To analyze the bifurcation behavior, we may repeat the same procedure used
in Chapter 5 for studying the current-mode boost converter. In brief, we
first obtain the period-n equilibrium orbit by setting x(0) = x(nT ). For
instance, for period-1 orbit, we simply have x(0) = x(T ). Then, we investigate
the stability of this orbit by evaluating the magnitudes of the characteristic
multipliers at the equilibrium orbit. This can be done by differentiating (6.5)
to get ∆xn+1 = ∂f (.)/∂x|x=X ∆xn, where X is the equilibrium point or
steady-state operating point. Stability can then be determined by checking
whether the magnitudes of all characteristic multipliers are less than 1.
Alternatively, we may perform quick numerical analyses to identify the

bifurcation phenomena in this type of converter. Essentially, based on (6.5)
and (6.27), we can obtain the discrete-time values of x at t = nT for all n.
Typically, if we allow the iteration to proceed for a sufficiently long time, the
sequence may either diverge, converge to a periodic orbit, or be attracted to
a chaotic orbit. Our aim is to record behavioral changes as Iref is varied.
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TABLE 6.1

Circuit parameters for numerical and simulation
studies of the fixed-frequency current-mode
controlled Ćuk converter.

Circuit Components and Parameters Values
Switching Period T 200 µs
Inductances L1 and L2 16 mH
Capacitances C1 and C2 47 µF
Load Resistance R 75 Ω
Input Voltage E 15 V

In our numerical experiments, the values of the components are chosen to
ensure that the circuit operates in the continuous mode, as listed in Table 6.1.
A typical bifurcation diagram is shown in Figure 6.5. From this diagram we
observe that when Iref is below 0.49 A, the system is attracted to a period-
1 orbit. As we increase Iref the period-1 orbit loses stability and gives way
to a period-2 orbit. When Iref is further increased beyond about 0.58 A,
the system “collides” with the border where the waveform of the sum of the
inductor currents just touches Iref right at the clock pulse. Beyond this point,
chaotic motion is observed. It is worth noting that since Iref corresponds
to the power that the converter delivers, a given converter can operate in
the usual periodic fashion provided that the power level is limited to a certain
value. In other words, with a given set of component values and input voltage,
although the converter is capable of supplying both step-up and step-down
output voltage, the power level must be restricted to ensure proper operation.

6.2.3 Verification by Computer Simulations

To verify the foregoing findings regarding the bifurcation behavior of the fixed-
frequency current-mode controlled Ćuk converter, we perform exact cycle-by-
cycle simulation of the system. All four possible switch states are considered
in the simulating model. Essentially, the simulation program toggles among
the four possible configurations according to the states of switches, and solves
the appropriate describing equation with a sufficiently small time step. Note
that unlike the iterative map derived earlier, the simulation program does
not only deal with continuous-conduction-mode operation, but also emulates
appropriately the circuit operation in various discontinuous conduction modes
[46]. Thus, the simulation gives the true waveforms of the circuit.
Figures 6.6, 6.7 and 6.8 show the period-1, period-2 and chaotic waveforms,

corresponding to Iref = 0.4 A, 0.5 A and 0.7 A, respectively. Also, by perform-
ing a large number of simulations for a range of values of Iref , and discarding
waveforms of the first 1000 periods, we obtain the steady-state orbits for dif-
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FIGURE 6.5
Bifurcation diagram from the iterative map for the fixed-frequency current-
mode controlled Ćuk converter. Y-axis is the sum of the inductor currents
sampled at t = nT and x-axis is the reference current Iref serving as the
bifurcation parameter.

ferent values of Iref in the range 0.46 < Iref < 0.74. Results are collected in
the form of a bifurcation diagram, as shown in Figure 6.9.
The above findings have also been confirmed by laboratory measurements.

Readers may refer to Section 2.6.1 for experimental results.

6.2.4 Interim Conclusion on the Basic Phenomenology

At this point, we may make an interim conclusion regarding the basic phe-
nomenology of the fixed-frequency current-mode Ćuk converter. Essentially,
the system loses stability via period-doubling bifurcation, similar to the cases
of the current-mode controlled boost and buck converters. This observation
remains true regardless of the presence of an output voltage feedback loop
which may be needed in practice for regulation purposes. This is because
period-doubling bifurcation is a high-frequency phenomenon which should be
unaffected by the relatively slow output feedback loop. Thus, we may con-
clude that converters under fixed-frequency current-mode control generally
lose stability via a period-doubling type of bifurcation. Moreover, border
collision as a result of saturating the duty cycle will always occur, and the
mechanism is exactly as described in Section 5.5.2.
At this stage, no definite conclusion may be drawn regarding the occurrence
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FIGURE 6.6
Computer simulation of period-1 waveform with Iref = 0.4 A.

FIGURE 6.7
Computer simulation of period-2 waveform with Iref = 0.5 A.

of other kinds of phenomena in this type of converter system. In fact, as is
typical in the analysis of nonlinear problems, the only way to find out about
the behavior of a given nonlinear system is to analyze it all from scratch
since subtle differences in the system configuration can give totally different
behavior.
In the rest of this chapter, we continue to study the current-mode controlled

Ćuk converter. However, instead of applying a fixed-frequency clock to drive
the switch, we will employ a self-oscillating loop for generating the on-off
driving signal for the switch. As will be shown later, the basic phenomenol-
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FIGURE 6.8
Computer simulation of chaotic waveform with Iref = 0.7 A.

FIGURE 6.9
Bifurcation diagram from computer simulations of the fixed-frequency
current-mode controlled Ćuk converter. Y-axis is the sum of the inductor
currents sampled at t = nT and x-axis is the reference current Iref serving as
the bifurcation parameter [150].

ogy is completely different, and in that case the analysis can be carried out
effectively and simply by means of an averaged model.
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6.3 Bifurcation Behavior for Free-Running Operation

Self-oscillating or free-running current-controlled switching converters are of-
ten used in low-cost switching power supplies, since they require no external
clocks and their constructions are relatively simple. In contrast to their non-
autonomous counterparts for which chaos is observed even for the simplest
first-order discontinuous-mode converters, free-running converters of order
below three cannot exhibit chaos. The essential feature of an autonomous
switching converter is the absence of any external driving signal, which is
mandatory in the non-autonomous case for periodic switching of the power
switch. In this section we study the Ćuk converter operating in free-running
(autonomous) mode. In particular, we will present the following aspects of
investigation: (i) derivation of describing state equation; (ii) stability of the
equilibrium state and identification of Hopf bifurcation based on the describ-
ing state equation; (iii) computer simulations of the circuits revealing the
bifurcation from fixed point, through limit cycles and quasi-periodic orbits,
and eventually to chaos.

6.3.1 Autonomous System Modeling

In the free-running Ćuk converter under study, the switch is turned on and
off, in a hysteretic fashion, when the sum of the inductor currents falls below
or rises above a certain pre-set hysteretic or tolerance band [168]. The average
value and width of this pre-set band are adjusted by a feedback Schmitt trigger
circuit. Also, the output voltage is fed back to set the average value of the
hysteretic band, forcing the control variable to be related by the following
control equation.

iL1 + iL2 = g(vC1) (6.28)

where g(.) is the control function. For example, a simple proportional control
takes the form of

∆(iL1 + iL2) = −µ∆vC1 (6.29)

where µ is the gain factor. This equation has the following equivalent form,
assuming regulated output.

iL1 + iL2 = K − µvC1 (6.30)

where K and µ are the control parameters. Figure 6.10 shows a simplified
schematic of the system.
The system can be represented by the following state equations where s = 1
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FIGURE 6.10
Ćuk converter under free-running current-mode control.

when the switch is turned on, and s = 0 when the switch is off.




diL1

dt
= −(1− s)vC2

L
+

E

L
diL2

dt
=

vC2s

L
− vC1

L
dvC1

dt
=

iL2

C
− vC1

CR
dvC2

dt
=

(1− s)iL1

C
− iL2s

C

(6.31)

The averaged model has the same form as above, with s replaced by the duty
cycle d which is the fraction of the switching period for which the switch is
turned on.
Since iL1 + iL2 is related to vC1 by a linear algebraic equation, the system

reduces its order by one. Specifically, when the control equation (6.30) is
taken into account, the system can be reduced to the following third-order
system. 



diL2

dt
=

vC2d

L
− vC1

L
dvC1

dt
=

iL2

C
− vC1

CR
dvC2

dt
=

(1− d)(K − µvC1)
C

− iL2

C

(6.32)
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where d is the duty cycle. Also, from (6.30),

d(iL1 + iL2)
dt

= −µdvC1

dt
. (6.33)

Substitution of the involving derivatives gives

d =
1
2
−

µL

C
iL2 −

(
1 +

µL

CR

)
vC1 + E

2vC2
, (6.34)

which must satisfy 0 < d < 1. Finally, putting (6.34) into (6.32) results in
the following state equations that describe the dynamics of the autonomous
system.


diL2

dt
= −µiL2

2C
−
(
1− µL

CR

)
vC1

2L
+

vC2

2L
− E

2L
dvC1

dt
=

iL2

C
− vC1

CR

dvC2

dt
= − iL2

C
+
(

K − µvC1

2C

)1 +
µL
C iL2 −

(
1 + µL

CR

)
vC1 +E

vC2



(6.35)

Note that this representation is valid only if 0 < d < 1. Thus, when analyzing
the system numerically we must implement a saturating function such that
the value of d is clipped at 0 or 1, as appropriate.

6.3.2 Dimensionless Equations

The afore-derived state equations can be put in a dimensionless form. Define
the dimensionless state variables as follows:

x1 =
RiL2

E
, x2 =

vC1

E
, x3 =

vC2

E
. (6.36)

Also define the dimensionless time and parameters as follows:

τ =
Rt

2L
, ξ =

L/R

CR
, κ1 = µR, κo =

KR

E
. (6.37)

Direct substitution of these new dimensionless variables, time and parame-
ters in the autonomous equations (6.35) yields the following dimensionless
autonomous equations:


dx1

dτ
= −ξκ1x1 − (1− κ1ξ)x2 + x3 − 1

dx2

dτ
= 2ξ(x1 − x2)

dx3

dτ
= −2ξx1 + ξ(κo − κ1x2)

(
1 +

κ1ξx1 − (1 + κ1ξ)x2 + 1
x3

)
(6.38)
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To complete the model, saturation must be included. Now, d may be written
as

d = 0.5− κ1ξx1 − (1 + κ1ξ)x2 + 1
2x3

. (6.39)

The condition for saturation is

d > 1⇔ κ1ξx1 − (1 + κ1ξ)x2 + x3 + 1 < 0 (6.40)
or d < 0⇔ κ1ξx1 − (1 + κ1ξ)x2 − x3 + 1 > 0. (6.41)

By putting d = 1 or 0 in (6.32) and performing dimensionless substitution,
the state equations for saturation are



dx1

dτ
= 2(x3 − x2)

dx2

dτ
= 2ξ(x1 − x2)

dx3

dτ
= −2ξx1

for d > 1, (6.42)

and




dx1

dτ
= −2x2

dx2

dτ
= 2ξ(x1 − x2)

dx3

dτ
= −2ξx1 + 2ξ(κ0 − κ1x2)

for d < 0. (6.43)

The equilibrium point can be calculated by putting dx1/dτ = dx2/dτ =
dx3/dτ = 0 in (6.38) and considering the restricted sign of X2. This gives

X =


X1

X2

X3


 =


 Xs

Xs

Xs + 1


 (6.44)

where

Xs =
−(1 + κ1) +

√
(1 + κ1)2 + 4κo
2

. (6.45)

6.3.3 Stability of Equilibrium Point and Hopf Bifurcation

The Jacobian, J(X), for the dimensionless system evaluated at the equilib-
rium point is given by

J(X) =


−κ1ξ −(1 − κ1ξ) 1

2ξ −2ξ 0
J31 J32 J33




©2004 CRC Press LLC



where

J31 = −2ξ + κ1ξ
2(κo − κ1Xs)
1 +Xs

(6.46)

J32 =
−2κ1ξ − ξ(1 + κ1ξ)(κo − κ1Xs)

1 +Xs
(6.47)

J33 =
ξ(κo − κ1Xs)(Xs − 1)

(1 +Xs)2
. (6.48)

From (6.45), Xs(Xs +1) = κo − κ1Xs. The Jacobian can hence be simplified
to

J(X) =


 −κ1ξ −(1− κ1ξ) 1

2ξ −2ξ 0
−2ξ + κ1ξ

2Xs
−2κ1ξ
1+Xs

− ξ(1 + κ1ξ)Xs
−ξXs(1−Xs)

1+Xs


 . (6.49)

We will now examine the stability of the equilibrium point and the trajec-
tory around the equilibrium point by deriving the eigenvalues of the system at
the equilibrium point. The usual procedure is to solve the following equation
for λ:

det [λI − J(X)] = 0 (6.50)

Upon expanding, we get

λ3 +
ξ[(κ1 + 2) + (κ1 + 3)Xs −X2

s ]
1 +Xs

λ2

+
2ξ[2 + (ξ + 2)Xs − ξ(κ1 + 1)X2

s ]
1 +Xs

λ

+
4ξ[κ1 + ξ(1 + 2Xs)]

1 +Xs
= 0. (6.51)

Using this equation, the following conditions are easily verified:

lim
λ→−∞

det [λI − J(X)] → −∞ (6.52)

and det[−J(X)] > 0. (6.53)

Hence, there exists at least one λ ∈ (−∞, 0) such that det [λI − J(X)] = 0,
i.e., the system has at least one negative real eigenvalue. Also, numerical
calculations of eigenvalues for the practical range of parameters 0 < κ0 < 100,
0 < κ1 < 10 and 0.01 < ξ < 10 reveal that the other two eigenvalues are a
complex conjugate pair which have either a positive or negative real part
depending upon values of κ0 and κ1. In particular the following observations
are made:

1. For small values of κ0, the pair of complex eigenvalues has a negative
real part.
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TABLE 6.2

Eigenvalues at ξ = 0.0136 showing dependence on κ0.

κ1 = 1 Remarks
κ0 = 1 −0.0078725± j0.232363, Stable equilibrium point

−0.0274423
κ0 = 3 −0.00666899± j0.232102, Stable equilibrium point

−0.0275472
κ0 = 5 −0.00482465± j0.231866, Stable equilibrium point

−0.0275798
κ0 = 7 −0.0029592± j0.231535, Stable equilibrium point

−0.0276402
κ0 = 9 −0.0011668± j0.231428, Stable equilibrium point

−0.0276955
κ0 = 11 0.000538546± j0.231217, Unstable equilibrium point

−0.0277466

2. As κ0 increases, the real part of the complex eigenvalues gets less neg-
ative, and at a critical value of κ0, the real part changes from negative
to positive. Table 6.2 shows a typical scenario of the variation of the
eigenvalues.

3. The critical value of κ0 depends on the values of κ1 and ξ. Figure 6.11
shows the boundary curves where the sign of the real part of the complex
eigenvalues changes. On these curves, the system loses stability via a
Hopf bifurcation [56, 135].

To establish a Hopf bifurcation formally, one needs to show that, for given
ξ and κ1, there exists κ0 for which the following conditions are satisfied by
the complex eigenvalue pair [2]:

Re(λ)|κ0=κ0c
= 0 (6.54)

Im(λ)|κ0=κ0c
�= 0 (6.55)

d

dκ0
Re(λ)

∣∣∣∣
κ0=κ0c

�= 0 (6.56)

where κ0c is the critical value of κ0 at which a Hopf bifurcation occurs. Note
that the last condition is necessary to ensure that the complex eigenvalue pair
moves from the left side to the right side of the complex plane “transver-
sally,” i.e., without “locusing” along the imaginary axis. In fact, all the above
conditions can be numerically established using (6.51).
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FIGURE 6.11
Boundary of stability. Area below the curve corresponds to stable equilibrium
points, and that above to unstable equilibrium points.

6.3.4 Local Trajectories from Describing Equation

We now re-examine the stability in terms of the local trajectories near the
equilibrium point. Our aim is to observe, by plotting the local trajectories,
the behavior of the system as it goes from a stable region to an unstable
region. The trajectory of the system near the equilibrium point can be easily
derived from the corresponding eigenvalues and eigenvectors. Suppose the
eigenvalues and corresponding eigenvectors are

λr , σ± jω and v̄r, v̄1 ± jv̄2 . (6.57)

The solution in general is given by

x(t) = cre
λrtv̄r + 2cceσt[cos(ωt+ φc)v̄1 − sin(ωt + φc)v̄2] (6.58)

where cr , cc and φc are determined by initial conditions. The geometry of the
trajectory is best described in terms of the eigenline Lr which is parallel to
v̄r , and the eigenplane Ec which is spanned by v̄1 and v̄2, the intersection of
Lr and Ec being the equilibrium point. Essentially, since the real eigenvalue
is negative, the system moves initially in the direction of Lr, going toward
Ec. At the same time it moves in a helical motion converging toward or
diverging away from Lr , depending upon the sign of the real part of the
complex eigenvalues. As it lands on Ec, it keeps spiraling along Ec toward or
away from the equilibrium point. The following examples illustrate two typical
local trajectories, corresponding to a stable and an unstable equilibrium point.
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(a)

(b)

FIGURE 6.12
Two views of the stable local trajectory for ξ = κ0 = κ1 = 1 (based on
averaged model).

We first examine the stable system with ξ = κ0 = κ1 = 1. The Jacobian
matrix evaluated at the equilibrium point is

J(X) =


 −1 0 1

2 −2 0
−1.58579 −2.24264 −0.171573


 . (6.59)

The eigenvalues, λ, and their corresponding eigenvectors, v̄, are found as

λ = −2.74051,−0.215533± j1.69491

v̄ =


−0.2971670.802604

0.517222


 ,


 0.185114∓ j0.399955
−0.114761∓ j0.339261

0.823104
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(a)

(b)

FIGURE 6.13
Two views of the unstable local trajectory for ξ = κ1 = 1, κ0 = 4 (based on
averaged model).

Since the trajectory moves in the 3-dimensional space, it is best viewed using
a 3-d plot which is available in most plotting softwares. Two plots of the
trajectory from different perspectives are shown in Figure 6.12.
We next examine the unstable system with ξ = κ1 = 1 and κ0 = 4. As

shown in Figure 6.11, the system just loses stability. The Jacobian matrix
evaluated at the equilibrium point is

J(X) =


 −1 0 1

2 −2 0
−0.763932 −3.36656 0.130495


 . (6.60)

The eigenvalues, λ, and their corresponding eigenvectors, v̄, are found as

λ = −2.9757, 0.0530965± j1.63879
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FIGURE 6.14
Trajectory spiraling into stable period-1 orbit (K = 0.4) from exact cycle-by-
cycle simulation.

v̄ =


−0.3314040.679316

0.654753


 ,


 0.233197∓ j0.362892
−0.033598∓ j0.326689

0.840282


 .

Two 3-d plots of the local trajectory from different perspectives are shown in
Figure 6.13.
From the above examples, we clearly observe that the system loses stability

via Hopf bifurcation as a stable spiral develops into an unstable spiral in the
locality of the equilibrium point. In the next section we re-examine the system
using exact computer simulations of the actual switching circuit. As we will
see, the system develops into a limit cycle as it loses stability, and further
develops into quasi-periodic and chaotic orbits.

6.3.5 Computer Simulations

Since the foregoing analysis is based on a nonlinear state equation which is
derived from an approximate (averaged) continuous model, it falls short of
predicting the details of the bifurcation sequence. Instead of refining the
model, we will examine the system using computer simulation which employs
an exact piecewise switched model. Essentially the computer simulation pro-
gram generates the cycle-by-cycle waveforms of all capacitor voltages and
inductor currents by toggling between a set of state equations that describe
the constituent linear circuits for all possible switch states. The program also
incorporates the free-running current-control algorithm for determining the
switch state during simulation.
In the simulation study of the free-running Ćuk converter, we set the input
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(a)

(b)

FIGURE 6.15
(a) Trajectory spiraling away from the unstable period-1 orbit; (b) limit cycle
(K = 1.5), both from exact cycle-by-cycle simulation.

voltage at 15 V and the values of the components as follows.

L1 = L2 = 10 mH, C1 = C2 = 47 µF, R = 40 Ω.

Note that since we are simulating the actual circuit, the parameters used will
be µ and K instead of the dimensionless ones used for analysis. In particular
we will focus on the qualitative change of dynamics as the parameters are
varied, as hinted from the result of Section 6.3.3.
To see the trend, it suffices to keep µ constant and vary K. A summary

of the observed behavior is as follows. A complete view of the effect of ξ, µ
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(a)

(b)

FIGURE 6.16
(a) Quasi-periodic orbit from exact cycle-by-cycle simulation; (b) blow-up of
a Poincaré section taken at i1 = 8.2 (K = 10.5).

and K on the stability of the fundamental equilibrium state will be provided
shortly.

1. When K is small, the trajectory spirals into a fixed period-1 orbit, cor-
responding to a fixed point in the averaged system. Figure 6.14 shows
the simulated trajectory.

2. For a larger K, the period-1 orbit becomes unstable, and the trajectory
spirals outward as shown in Figure 6.15 (a), and settles into a limit
cycle, as shown in Figure 6.15 (b).

3. For yet a larger K, a quasi-periodic orbit can be observed, as shown in
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(a)

(b)

FIGURE 6.17
(a) Chaotic orbit from exact cycle-by-cycle simulation; (b) blow-up of a
Poincaré section taken at i1 = 9.5 (K = 13).

Figure 6.16 (a). A Poincaré section is shown in Figure 6.16 (b) which
essentially contains the points of the intersection of the trajectory and
the vertical plane i1 = 8.2.

4. Finally, chaos occurs when K is further increased. Figures 6.17 (a) and
(b) show the trajectory and a Poincaré section.

Furthermore, based on a number of simulation runs, we can obtain the
boundary of stability similar to Figure 6.11, for different values of ξ. More
precisely, the boundary curves define the values of parameters for which a
trajectory changes its qualitative behavior from one that spirals into a fixed
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FIGURE 6.18
Boundary of stability from exact simulation. Area below the curve corre-
sponds to stable fundamental operation, and that above to operations other
than stable fundamental operation. These curves agree with the analytical
curves shown earlier.

period-1 orbit (i.e., fixed point corresponding to the case of averaged model) to
one that spirals away from it. As shown in Figure 6.18, the stability boundary
curves obtained from exact circuit simulations agree with those of Figure 6.11
obtained from the averaged model.
At this point we have collected evidence from both analysis and computer

simulation suggesting that the Hopf-type bifurcation is a basic bifurcation
behavior for the Ćuk converter operating under a free-running current-mode
control. Laboratory experiments would provide complementary evidence for
the analytical and computer generated behavior. For details of an experi-
mental circuit and results, we refer the readers to Chapter 2. In particular,
see Figure 2.13 for the circuit schematic and Figure 2.14 for a series of phase
portraits and Poincaré sections showing the transition from a stable period-1
orbit to chaos, through limit cycles and quasi-periodic orbits.

6.4 Recapitulation

In concluding this chapter, it is worth mentioning that the Ćuk converter,
despite being a popular type of switching converter, is still rarely studied in
the literature. Much work has been reported on its steady-state operation
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and practical implementation, but very little has been known about its non-
linear dynamics. In this chapter we have studied this converter when it is
operated under two particular current-mode control configurations. Under
fixed-frequency current-mode control, the basic phenomenon is still period-
doubling, which seems to be universal across all current-mode controlled con-
verters so far studied. Here, we make no mention of border collision but
assume that the readers are aware of its presence when the concerned bifur-
cation parameter continues to vary. When a free-running hysteretic control
takes charge of the operation, however, a completely different bifurcation be-
havior is observed. In this case, a slow-scale Hopf-type bifurcation is the
major player. Because the phenomenon is a slow-scale or low-frequency one,
we are able to analyze it with a simple averaged model. This also disproves
the commonly held belief that averaged models are not useful for nonlinear
dynamical analysis. The real gist of the problem is whether the model is ade-
quate for studying the particular behavior concerned. The next two chapters
will provide further supporting evidence of this viewpoint.
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7

Bifurcation Behavior of Parallel-Connected
Buck Converters via Discrete-Time Models

In this and the next chapters, we examine parallel-connected systems of
switching converters which have become a popular design choice for high cur-
rent applications [112, 116, 139]. We first examine the case of connecting buck
converters in parallel in this chapter, and move on to the case of connecting
boost converters in parallel in the next chapter. Our focus is bifurcation be-
havior and how it is affected by the choice of parameter values. As we will see,
initial simulation and experimentation play an important role in guiding the
choice of analytical models. Specifically, knowing the basic phenomenology of
the system can greatly facilitate the choice between the use of discrete-time
models and that of averaged models. This point will be illustrated in this and
the next chapters.

7.1 Parallel-Connected Switching Converters

7.1.1 The Basic Issue of Current Sharing

Paralleling power converters allows high current to be delivered to loads with-
out the need to employ devices of high power ratings. The main design
issue in parallel converters is the control of the sharing of current among
the constituent converters. If a switching converter is regarded as a volt-
age regulator that provides very stiff voltage to a load, then it is theoret-
ically impossible to put two such converters in parallel feeding the same
load and sharing equal current, unless the two converters are perfectly iden-
tical. In practice, mandatory control is needed to ensure proper current
sharing, and many effective control schemes have been proposed in the past
[50, 90, 112, 116, 131, 139, 140]. One common approach is to employ an
active control scheme to force the current in one converter to follow that of
the other. The essence of this control approach is to monitor the difference
of the output currents in two constituent converters (i.e., current error) and
incorporate this information in the main voltage control loop. Specifically, for
the case of two converters connected in parallel, one converter simply has a
voltage feedback control while the other has an additional inner current loop
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FIGURE 7.1
Block diagram of parallel-connected switching converters under a master-slave
control.

that provides the current error information which is used in turn to “adjust”
the voltage feedback loop to ensure equal sharing of current. Such a scheme
is commonly known as the master-slave current-sharing scheme [112, 131].

7.1.2 The Master-Slave Scheme for Current Sharing

The system under study consists of two switching converters which are con-
nected in parallel feeding a common load. The current drawn by the load is
shared properly between the two buck converters by the action of a master-
slave control scheme, as mentioned briefly in the preceding section. Figure 7.1
shows the block diagram of this master-slave configuration.
Denoting the two converters as Converter 1 and Converter 2 as shown in
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FIGURE 7.2
Pulse-width modulation (PWM) showing relationship between the control
voltage and the PWM output.

Figure 7.1, the operation of the system can be described as follows. Both
converters are controlled via a simple pulse-width modulation (PWM) scheme,
in which a control voltage vcon is compared with a sawtooth signal to generate
a pulse-width modulated signal that drives the switch, as shown in Figure 7.2.
The sawtooth signal of the PWM generator is given by

vramp = VL + (VU − VL)
t mod T

T
, (7.1)

where VL and VU are the lower and upper voltage limits of the ramp, and T
is the switching period. The PWM output is “high” when the control voltage
is greater than Vramp, and is “low” otherwise.
For Converter 1, the control voltage is derived from a voltage feedback loop,

i.e.,
vcon1 = Voffset −Kv1(v − Vref), (7.2)

where Voffset is a dc offset voltage that gives the steady-state duty cycle, Vref

is the reference voltage, and Kv1 is the voltage feedback gain for Converter 1.
For Converter 2, an additional current error signal, which is proportional

to the weighted difference of the output currents of the two converters, de-
termines the control voltage. Specifically we write the control voltage for
Converter 2 as

vcon2 = Voffset −Kv2(v − Vref) −Ki(i2 −mi1), (7.3)

where Kv2 is the voltage feedback gain of Converter 2, Ki is the current feed-
back gain, and m is a current weighting factor. Under this scheme, the output
current of Converter 2 will follow that of Converter 1 at a ratio of m to 1,
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Two parallel-connected buck converters.

where m > 0. When m = 1, we expect equal current sharing. In much of
the literature, Converter 1 is referred to as the “master” which operates in-
dependently, and Converter 2 the “slave” which imitates the master’s current
value.

7.2 State Equations for Two Parallel Buck Converters

The foregoing section defines the essential control scheme that provides cur-
rent sharing and output voltage regulation. In this section we complete the
system description by specifying the type of converter for Converters 1 and 2.
Specifically, both Converters 1 and 2 are a simple buck converter. Figure 7.3
shows the circuit diagram of the parallel-connected buck converters.
When the converters are operating in continuous conduction mode, diode

Di is always in complementary state to switch Si, for i = 1, 2. That is, when
Si is on, Di is off, and vice versa. Hence, only four switch states are possible
during a switching cycle, namely

(i) S1 and S2 are on;

(ii) S1 is on and S2 is off;

(iii) S1 is off and S2 is on;

(iv) S1 and S2 are off.
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The state equations corresponding to these switch states are generally given
by

ẋ = A1x+B1E for S1 and S2 on
ẋ = A2x+B2E for S1 on and S2 off
ẋ = A3x+B3E for S1 off and S2 on
ẋ = A4x+B4E for S1 and S2 off,

(7.4)

where E is the input voltage, x is the state vector defined as

x = [v i1 i2]
T
, (7.5)

and the A’s and B’s for the case of two buck converters are given by

A1 = A2 = A3 = A4

=




− 1
C(R+ rC)

R

C(R+ rC)
R

C(R+ rC)

− R

L1(R+ rC)
− 1

L1

(
rCR

R+ rC
+ rL1

)
− 1

L1

(
rCR

R+ rC

)

− R

L2(R+ rC)
− 1

L2

(
rCR

R+ rC

)
− 1

L2

(
rCR

R+ rC
+ rL2

)



, (7.6)

B1 =




0
1
L1

1
L2


 , B2 =




0
1
L1

0


 , B3 =




0
0
1
L2


 , B4 =



0
0
0


 . (7.7)

It is worth noting that the sequence of switch states, in general, takes the
order as written in (7.4), i.e., starting with “S1 and S2 on” and ending with
“S1 and S2 off” in a switching cycle. However, either “S1 on S2 off” or “S1

off S2 on” (not both) goes in the middle, depending upon the duty cycles of
S1 and S2. In the case where S1 has a larger duty cycle, we should omit the
third equation in (7.4), and likewise for the case where S2 has a larger duty
cycle. This should be taken care of in the simulation and analysis.

7.3 Initial Simulation Study

We now begin our investigation with computer simulations. Since we are
primarily concerned with system stability in conjunction with the feedback
design, we will focus our attention on the effects of varying the various gains
on the bifurcation behavior of the system. In particular, the gains Kv1, Kv2,
Ki and m present themselves as design parameters that can be changed at
will. We will henceforth focus on variation of these parameters.
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TABLE 7.1

Component values and steady-state voltages
used in simulation. ESR stands for
equivalent series resistance.

Circuit Components Values
Switching Period T 40 µs
Input Voltage E 40 V
Output Voltage v 20 V
Offset Voltage Voffset 3 V
Inductance L1, ESR rL1 1.5 mH, 0.05 Ω
Inductance L2, ESR rL2 3.0 mH, 0.2 Ω
Capacitance C, ESR rC 4.7 µF, 0.01 Ω
Load Resistance R 10 Ω

The simulation is based on the exact state equations derived in Section 7.2.
Essentially, for each set of parameter values, time-domain cycle-by-cycle wave-
forms are generated by solving the appropriate linear equation in any sub-
interval of time, according to the states of the switches which are determined
from values of the control voltages vcon1 and vcon2. Sampled data are then
collected at t = nT in the steady state. With a sufficient number of sets of
steady-state data, we can construct the bifurcation diagrams as required. The
circuit parameters used in the simulations are shown in Table 7.1.

Voltage Feedback Gains as Bifurcation Parameters

We first keep Kv2 constant and vary Kv1. The bifurcation diagram, as shown
in Figure 7.4, shows period-doubling bifurcation and chaos. In addition, we
see sudden expansion of the chaotic attractor at around Kv1 = 7.5. This phe-
nomenon is similar to the interior crisis we mentioned earlier in Section 5.1
when we discussed the voltage feedback buck converter. Next, we keep Kv1

constant and vary Kv2. The bifurcation diagram, as shown in Figure 7.5,
again manifests period-doubling bifurcation, chaos and sudden expansion of
the attractor. Finally, we vary Kv1 and Kv2 simultaneously, and the cor-
responding bifurcation diagram is shown in Figure 7.6. Similar bifurcation
scenarios are observed.

Current Gain as Bifurcation Parameter

In studying the bifurcation behavior in respect of current gain variation, we
keep m, Kv1 and Kv2 constant, and vary Ki. It is found that the system
remains in stable period-1 operation irrespective of the choice of Ki. Basically
Ki only determines how close the slave follows the master. The larger Ki is,
the closer the slave’s output current is to the master’s.
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FIGURE 7.4
Bifurcation diagram with Kv1 as bifurcation parameter (Kv2 = 3.5, Ki = 5
and m = 1). First period-doubling occurs when Kv1 = 3.85.

FIGURE 7.5
Bifurcation diagram with Kv2 as bifurcation parameter (Kv1 = 3.5, Ki = 5
and m = 1). First period-doubling occurs when Kv2 = 4.10.

Current Sharing Ratio as Bifurcation Parameter

The final computer investigation is performed for variation of the current
sharing ratio m. This time, we fix Kv1, Kv2 and Ki at suitable values such
that the system is in stable operation. We vary m and collect bifurcation
diagrams which look typically like the one shown in Figure 7.7.
In this case, we find no trace of any standard types of bifurcation. The

stable period-1 operation suddenly gives way to chaos. Note that the chaotic
attractor seems to spread over only a narrow range of values, as shown in Fig-
ure 7.7. This is sometimes called one-piece chaos, as the bifurcation diagram
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FIGURE 7.6
Bifurcation diagram with Kv1 and Kv2 as bifurcation parameters varying
simultaneously (Ki = 5, m = 1).

FIGURE 7.7
Bifurcation diagram with current sharing ratio m as bifurcation parameter
(Kv1 = 3.0, Kv2 = 3.0, Ki = 5).

shows a single wedge-like pattern. This type of bifurcation has been observed
in piecewise smooth maps and identified as border collision by Nusse, Ott and
Yorke [104]. In the following, we will investigate this bifurcation in terms of
the circuit operation, and we will apply the viewpoint of saturating nonlin-
earity to analyze this phenomenon. Specifically, we consider the time-domain
waveforms of the control voltages vcon1 and vcon2 and examine the way in
which these signals cross the ramp in the process of generating the PWM
signals.
In normal operation, vcon1 and vcon2 hit the ramp once per switching cycle

as shown in Figure 7.8 (a), and the corresponding inductor waveforms are
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(a)

(b)

FIGURE 7.8
Stable period-1 operation. (a) Control voltages and ramp; (b) inductor cur-
rents.

shown in Figure 7.8 (b). Now, if we increase m and examine the waveform,
we observe the following qualitative change near the point of border collision.

• Before border collision — Control signal vcon2 is above the lower tip of
the ramp. Normal operation is maintained, as shown in Figure 7.9 (a).

• After border collision — Control signal vcon2 goes slightly underneath
the lower tip of the ramp, and then moves upward to hit the ramp
from below. Thus, Converter 2 does not turn on its switch at the usual
turn-on instant. Instead, it does so at an instant shortly after the ver-
tical edge of vramp. The duty cyle is disturbed, and chaos begins. Fig-
ure 7.9 (b) shows the waveforms shortly after the bifurcation. It may
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(a)

(b)

FIGURE 7.9
Control voltage waveforms (a) just before border collision (m = 2.8); and (b)
just after border collision (m = 3.0).

appear counter-intuitive that vcon2 rises up and hits the ramp from be-
low while the switch of Converter 2 is still off. In fact, this is possible
because vcon2 is an image of the output voltage which is governed by
the entire parallel-connected system. Near the point of border collision,
Converter 1 shares most of the load current. Thus, if Converter 1 turns
on as usual at the vertical edge of the ramp, the output voltage (and
vcon2) rises as usual.

We may conclude that the system fails to operate in the expected period-1
regime when m increases to a certain value. This suggests that stable period-
1 operation of this system requires keeping m below a certain threshold. In
Section 7.6, we will analyze the condition under which this bifurcation occurs.
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(a)

(b)

FIGURE 7.10
Bifurcation diagrams with (a) Kv1 as the bifurcation parameter; (b) Kv2 as
the bifurcation parameter (vertical scale: 0.2 V/div).

7.4 Experimentation

The computer simulations described in the foregoing have essentially provided
an initial indication of the possible bifurcation behavior exhibited by the paral-
lel converter system under study. In summary, what these simulations suggest
is that

1. the system loses stability via period-doubling if the voltage feedback
gains are too large;

2. the behavior of the system is relatively unaffected by variation of the
current gain;
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FIGURE 7.11
Bifurcation diagram with both Kv1 and Kv2 varied simultaneously (vertical
scale: 0.2 V/div).

(a) (b)

FIGURE 7.12
(a) Control voltage waveforms under stable period-1 operation (vertical scale:
1 V/div, horizontal scale: 20 µs/div); (b) inductor current waveforms un-
der stable period-1 operation (vertical scale: 0.2 A/div, horizontal scale:
20 µs/div).

3. the system jumps into chaos when the current sharing ratio m reaches
a certain threshold.

Although simulations have been performed using the original piecewise
switched model and hence should provide realistic observations, we may still
be uncertain about the actual system’s behavior which may be different from
the simulated behavior due to the presence of device parasitics and switching
delays which have not been taken into account in the simulations. Laboratory
experiments would be helpful to verify the simulated behavior. In this case,
an experimental system of parallel buck converters can be easily constructed
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FIGURE 7.13
Control voltage waveforms at the boundary of border collision (vertical scale:
1 V/div, horizontal scale: 20 µs/div).

according to the circuit shown in Figure 7.1. For ease of comparison, the
parameter values used in the experiments are the same as those used in the
simulations.
Bifurcation diagrams are captured with Kv1 and Kv2 serving as bifurcation

parameters. In particular, Figure 7.10 shows the bifurcation diagrams when
Kv1 and Kv2 are varied individually, and Figure 7.11 shows the bifurcation
diagram when Kv1 and Kv2 are varied simultaneously. It has been found that
the corresponding values of Kv1 and Kv2 at the first onset of period-doubling
are about 4.0, consistent with our simulation results.

The time-domain waveforms under stable period-1 operation and at the
boundary of border collision are also captured. In particular, Figures 7.12
(a) and (b) show the control voltage waveforms and inductor current wave-
forms under stable period-1 operation. Figure 7.13 shows the control voltage
waveforms at the boundary of border collision, which corresponds to current
sharing ratio m of about 2.8.

7.5 Analysis of Period-Doubling Bifurcation

From the foregoing simulation and experimental studies, we have identified
period-doubling bifurcation in a system of parallel buck converters when the
voltage feedback gains are varied. We have also seen how a stable operation
suddenly gives way to chaos when the current sharing ratio is increased. In
this and the next sections we analyze these bifurcations in terms of a suitable
discrete-time model. We will first derive the model, and examine the Jacobian
and the way the system loses stability.
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7.5.1 Derivation of the Discrete-Time Map

Our purpose in this section is to derive a discrete-time map that describes the
dynamics of a system of two buck converters connected in parallel, as defined
earlier in Section 7.2 (see Figure 7.3), in the neighborhood of the period-1
steady state. We let x be the state vector as defined previously, and further
let d1 and d2 be the duty cycle of Converter 1 (master) and Converter 2
(slave), respectively. The discrete-time map that we aim to find takes the
following form:

xn+1 = f(xn, d1,n, d2,n) (7.8)
where subscript n denotes the value at the beginning of the nth cycle, i.e.,
xn = x(nT ). For the closed-loop system, we also need to find the feedback
equations that relate d1,n and d2,n to xn.
The state equations are given in (7.4) for different switch states. The order

in which the system toggles between the switch states depends on d1 and d2.
We will study periodic orbits for which d2,n > d1,n for all n as this allows a
convenient derivation of the discrete-time model. In particular the assumption
d2 > d1 is consistent with our simulation study since rL1 has a lower value
than rL2. Note that such an assumption loses no generality.
Recall that if d2 > d1, the state “S1 on and S2 off” should be omitted.

Hence, we have three switch states:

1. For nT < t ≤ nT + d1,nT , both S1 and S2 are turned on.

2. For nT + d1,nT < t ≤ nT + d2,nT , S1 is turned off and S2 remains on.

3. For nT + d2,nT < t ≤ (n + 1)T , both S1 and S2 are off.

In each switch state, the describing state equation is ẋ = Ajx+BjE, where
j = 1, 3, 4. (Note that j = 2 does not appear here.) For each state equation
we can derive the solution, and by stacking up the solutions, xn+1 can be
expressed in terms of xn, d1,n and d2,n, i.e.,

xn+1 = Φ4((1− d2,n)T )Φ3((d2,n − d1,n)T )Φ1(d1,nT )xn
+Φ4((1 − d2,n)T )Φ3((d2,n − d1,n)T )(Φ1(d1,nT )− 1)A−1

1 B1E

+Φ4((1 − d2,n)T )(Φ3((d2,n − d1,n)T )− 1)A−1
3 B3E

+(Φ4((1 − d2,n)T )− 1)A−1
4 B4E, (7.9)

where 1 is the unit matrix, and Φj(ξ) is the transition matrix corresponding
to Aj and is given by

Φj(ξ) = eAjξ = 1+
∞∑
k=1

1
k!
Ak
j ξ
k, for j = 1, 2, 3, 4. (7.10)

For the parallel-connected buck converters, we let A = A1 = A2 = A3 = A4

and Φ(ξ) = Φ1(ξ) = Φ2(ξ) = Φ3(ξ) = Φ4(ξ). Hence, (7.9) can be written as

xn+1 = Φ(T )xn + Φ(T )A−1B1E + Φ((1− d1,n)T )A−1(B3 −B1)E
+Φ((1− d2,n)T )A−1(B4 −B3)E −A−1B4E. (7.11)
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Our next step is to find the feedback relations that connect the duty cycles
and the state variables. The control voltages vcon1 and vcon2, as given before
by (7.2) and (7.3), can be rewritten as

vcon1 = U1 + κT1 x (7.12)
vcon2 = U2 + κT2 x (7.13)

where U1 and U2 are constants, and the gain vectors κ1 and κ2 are

κT1 = [−Kv1 0 0] and κT2 = [−Kv2 Kim −Ki]. (7.14)

The ramp function can also be rewritten simply as

vramp = α+ β(t mod T ), (7.15)

where α and β are constants. To find the defining equations for the duty
cycles, we first note that the switches are turned off when vcon1 = vramp and
vcon2 = vramp. Now, define s1(xn, d1,n) and s2(xn, d1,n, d2,n) as

s1(xn, d1,n)
def= vcon1 − vramp

= U1 + κT1 x(d1,nT ) − (α+ βd1,nT )
= U1 + κT1 [Φ(d1,nT )xn + (Φ(d1,nT )− 1)A−1B1E]
− (α+ βd1,nT ) (7.16)

s2(xn, d1,n, d2,n)
def= vcon2 − vramp

= U2 + κT2 x(d2,nT )− (α+ βd2,nT )
= U2 + κT2 [Φ(d2,nT )xn + Φ(d2,nT )A−1B1E

+ Φ((d2,n − d1,n)T )A−1(B3 −B1)E −A−1B3E]
− (α+ βd2,nT ). (7.17)

Thus, S1 and S2 are turned off, respectively, when

s1(xn, d1,n) = 0 (7.18)

and
s2(xn, d1,n, d2,n) = 0. (7.19)

Solving (7.18) and (7.19), d1,n and d2,n can be obtained. Combining with
(7.11), we have the discrete-time iterative map for the closed-loop system.

7.5.2 Derivation of the Jacobian

The Jacobian plays an important role in the study of dynamical systems
[2, 162]. The essence of using a Jacobian in the analysis of dynamical systems
lies in the capture of the dynamics in the small neighborhood of an equilibrium
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point or orbit (stable or unstable). We will make use of this conventional
method to examine the bifurcation phenomena observed in Section 7.5.3. But
before we move on, we need to find the necessary expressions that enable the
Jacobian to be computed.
Suppose the equilibrium point is given by x(nT ) = X. The Jacobian of

the discrete-time map evaluated at the equilibrium point can be written as
follows:

J(X) =
∂f

∂xn
− ∂f

∂d1,n

(
∂s1

∂d1,n

)−1(
∂s1

∂xn

)

− ∂f

∂d2,n

(
∂s2

∂d2,n

)−1 [(
∂s2

∂xn

)

+
∂s2

∂d1,n

(
∂s1

∂d1,n

)−1 (
∂s1

∂xn

)] ∣∣∣∣∣
xn=X

, (7.20)

where

∂f

∂xn
=




∂f1

∂vn

∂f1

∂i1,n

∂f1

∂i2,n

∂f2

∂vn

∂f2

∂i1,n

∂f2

∂i2,n

∂f3

∂vn

∂f3

∂i1,n

∂f3

∂i2,n




(7.21)

∂f

∂d1,n
=
[

∂f1

∂d1,n

∂f2

∂d1,n

∂f3

∂d1,n

]T
(7.22)

∂s1

∂xn
=
[
∂s1

∂vn

∂s1

∂i1,n

∂s1

∂i2,n

]
(7.23)

∂f

∂d2,n
=
[

∂f1

∂d2,n

∂f2

∂d2,n

∂f3

∂d2,n

]T
(7.24)

∂s2

∂xn
=
[
∂s2

∂vn

∂s2

∂i1,n

∂s2

∂i2,n

]
. (7.25)

Using (7.11), (7.16) and (7.17), we can find all the derivatives in (7.20). First,
∂f/∂xn can be found from (7.11), i.e.,

∂f

∂xn
= Φ(T ). (7.26)

Also, direct differentiation gives ∂f/∂d1,n as

∂f

∂d1,n
= −TΦ((1− d1,n)T )(B3 −B1)E. (7.27)
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Likewise, we get ∂f/∂d2,n as

∂f

∂d2,n
= −TΦ((1− d2,n)T )(B4 −B3)E. (7.28)

From (7.16), we obtain ∂s1/∂xn readily as

∂s1

∂xn
= κT1 Φ(d1,nT ). (7.29)

Again by direct differentiation, we get

∂s1

∂d1,n
= κT1

∂Φ(d1,nT )
∂d1,n

xn + κT1
∂(Φ(d1,nT ) − 1)A−1B1

∂d1,n
E − βT

= κT1 (ATΦ(d1,nT ))xn + κT1 (Φ(d1,nT )B1T )E − βT

= TκT1 Φ(d1,nT )(Axn +B1E)− βT. (7.30)

And from (7.17), we get

∂s2

∂xn
= κT2 Φ(d2,nT ). (7.31)

Finally, we need to get ∂s2/∂d2,n and ∂s2/∂d1,n. From (7.17) we have

∂s2

∂d2,n
= κT2

∂Φ(d2,nT )
∂d2,n

xn + κT2
∂Φ(d2,nT )A−1B1

∂d2,n
E

+ κT2
∂Φ((d2,n − d1,n)T )A−1(B3 −B1)

∂d2,n
E − βT

= κT2 (ATΦ(d2,nT )xn + κT2 (Φ(d2,nT )B1T )E
+ κT2 Φ((d2,n − d1,n)T )(B3 −B1)TE − βT

= TκT2 Φ(d2,nT )(Axn +B1E)
+ TκT2 Φ((d2,n − d1,n)T )(B3 −B1)E − βT, (7.32)

and

∂s2

∂d1,n
= κT2

∂Φ((d2,n − d1,n)T )A−1(B3 −B1)E
∂d1,n

= −TκT2 Φ((d2,n − d1,n)T )(B3 −B1)E. (7.33)

Now, putting all the derivatives into (7.20) gives

J(X) = Φ(T ) +
Φ((1− d1,n)T )(B3 −B1)EκT1 Φ(d1,nT )

κT1 Φ(d1,nT )(Axn +B1E)− β

+
Φ((1− d2,n)T )(B4 −B3)E

[
κT2 Φ(d2,nT ) +W

]
Z

(7.34)
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where

W =
−κT2 Φ((d2,n − d1,n)T )(B3 −B1)EκT1 Φ(d1,nT )

κT1 Φ(d1,nT )(Axn +B1E)− β
, (7.35)

Z = κT2 Φ(d2,nT )(Axn +B1E)
+ κT2 Φ((d2,n − d1,n)T )(B3 −B1)E − β. (7.36)

Numerical algorithms can now be developed for computing J(X) and hence
the characteristic multipliers, as will be shown shortly.

7.5.3 Characteristic Multipliers and Period-Doubling
Bifurcation

The Jacobian derived in the foregoing subsection provides a means to evaluate
the dynamics of the system. Here, we study in particular the loci of the
characteristic multipliers (also called eigenvalues), the aim being to identify
possible bifurcation scenarios as the voltage feedback gains are varied. To find
the characteristic multipliers, we solve the following polynomial equation in
λ, whose roots actually give the characteristic multipliers.

det[λ1− J(X)] = 0 (7.37)

where J(X) is the Jacobian found previously. We will pay attention to the
movement of the characteristic multipliers as Kv1 and Kv2 are varied. Any
crossing from the interior of the unit circle to the exterior indicates a bifur-
cation. In particular, if a real characteristic multiplier goes through −1 as it
moves out of the unit circle, a period-doubling occurs [85, 162].
Using (7.34), we can generate loci of characteristic multipliers numerically.

Since we are interested here in varying Kv1 and Kv2, we keep m = 1, thereby
ensuring that the system is remote from any border collision due possibly
to large m, as we have seen previously in the simulations and experiments.
Other parameter values are the same as those used in the simulations. Now,
we can proceed with the numerical calculations of the eigenvalues. Typical
loci are tabulated in Tables 7.2 and 7.3, which are graphically illustrated in
Figures 7.14 and 7.15. Both loci indicate a period-doubling bifurcation as Kv1

and Kv2 vary. This agrees with the simulation and experimental results in
Sections 7.3 and 7.4.

7.6 Analysis of Border Collision

As observed in the simulation, a border collision occurs when m increases
beyond a certain limit. In this section, we attempt to analyze this border col-
lision and specifically to find the limit of m below which the system maintains
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TABLE 7.2

Characteristic multipliers for different values of Kv1.

Kv1 Characteristic multipliers Remarks
2.60 −0.576± j0.394, 0.997 Stable 1T
3.00 −0.628± j0.273, 0.997 Stable 1T
3.20 −0.651± j0.189, 0.997 Stable 1T
3.38 −0.668, −0.668, 0.997 Stable 1T
3.45 −0.784, −0.574, 0.997 Stable 1T
3.60 −0.890, −0.499, 0.997 Stable 1T
3.80 −0.986, −0.444, 0.997 Stable 1T
3.85 −1.000, −0.433, 0.997 Period-doubling

TABLE 7.3

Characteristic multipliers for different values of Kv2.

Kv2 Characteristic multipliers Remarks
2.40 −0.565± j0.300, 0.997 Stable 1T
2.60 −0.590± j0.263, 0.997 Stable 1T
3.00 −0.636± j0.168, 0.997 Stable 1T
3.28 −0.664, −0.664, 0.997 Stable 1T
3.40 −0.779, −0.572, 0.997 Stable 1T
3.60 −0.865, −0.522, 0.997 Stable 1T
4.00 −0.982, −0.470, 0.997 Stable 1T
4.10 −1.000, −0.462, 0.997 Period-doubling

stable operation. In the following study, we assume that Kv1 andKv2 are kept
within the stable range so that the system is remote from any period-doubling
bifurcation due possibly to large Kv1 and Kv2.
Inspection of the loci of the characteristic multipliers reveals that a sudden

“jump” occurs as m increases, which is typical of border collision [104, 172].
Such a bifurcation arises when vcon1 or vcon2 begins to pass over or under the
ramp without hitting it during the whole switching period. This situation
is illustrated in Figure 7.16. As m increases, the system traverses from one
situation where vcon1 and vcon2 both hit the ramp, to another where vcon1

or vcon2 misses the ramp. Such a transition, as we have explained before in
Chapter 5, is a consequence of saturating nonlinearity.
By studying the expressions of vcon1, vcon2 and vramp, we can estimate

the critical value of m, at which border collision takes place. Ignoring the
ripple, we have v ≈ Vref in the steady state. Thus, (7.2) and (7.3) can be
approximated by

vcon1(t) ≈ Voffset, (7.38)
vcon2(t) ≈ Voffset −Ki[i2(t)−mi1(t)]. (7.39)
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FIGURE 7.14
Locus of characteristic multipliers as Kv1 varies. Arrows indicate increasing
Kv1.

FIGURE 7.15
Locus of characteristic multipliers as Kv2 varies. Arrows indicate increasing
Kv2.

Since Voffset is always set between VL and VU , vcon1 will always hit the ramp
during a switching cycle. We therefore need only to focus on vcon2(nT ). As
mentioned before, we assume that d2 > d1 in the neighborhood of the period-
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FIGURE 7.16
The two possible border collision scenarios.

1 orbit. Also, neglecting the middle period (d2,n − d1,n)T in the period-1
orbit and assuming i2(d1,nT ) ≈ mi1(d1,nT ), and neglecting the ESRs of the
inductors, we may express i1(nT ) and i2(nT ) as

i1(nT ) = i1(d1,nT )−
v

L1
(1− d1,n)T, (7.40)

i2(nT ) = i2(d1,nT )−
v

L2
(1− d1,n)T. (7.41)

Putting (7.40) and (7.41) in (7.39), we get

vcon2(nT ) = Voffset −Kiv(1 − d1,n)T
(

m

L1
− 1

L2

)
. (7.42)

Now, we may substitute either vcon2(nT ) = VL or vcon2(nT ) = VU in (7.42)
to obtain the critical value of m. In particular, putting vcon2(nT ) = VL in
(7.42) gives

mcrit =
(

Voffset − VL
Kiv(1− d1,n)T

+
1
L2

)
L1, (7.43)

where mcrit is the critical value of m at which vcon2 just hits VL at t = nT .
Furthermore, vcon2(nT ) = VU gives a negative value for m, which is not
possible, thus ruling out the possibility of a border collision with vcon2 hitting
VU .
Using the same set of parameter values and voltages as in Section 7.3, we

find that mcrit = 2.75 which agrees very well with the bifurcation diagram
shown in Figure 7.7.
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The above result clearly illustrates that the current-sharing ratio m in a
master-slave controlled parallel converter system must be kept below a certain
value in order to ensure a stable period-1 operation.

7.7 A Remark on Modeling: Can It Be Simpler?

As a final remark before closing this chapter, the analysis here has followed a
discrete-time approach, involving the derivation of an iterative map and the
analysis of the Jacobian evaluated at the equilibrium point. We have shown
that the bifurcation phenomena are well captured by the iterative map, al-
though the complicated and implicit form of the map admits only numerical
studies. Moreover, we stress that this choice of analytical approach is unavoid-
able because the basic phenomenology is period-doubling which necessitates
a model that characterizes the system at least as frequently as one switching
period. In the next chapter we will study a system of parallel boost convert-
ers which apparently does not require such frequent characterization. As we
will see shortly, similar to the case of the free-running Ćuk converter, aver-
aged models are found to be adequate since the basic phenomenology is a
low-frequency Hopf-type bifurcation.
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8

Slow-Scale Bifurcation Behavior of
Parallel-Connected Boost Converters via
Averaged Models

In this chapter we continue our study of parallel converter systems. In par-
ticular, our choice of the constituent converters is the boost-type converter.
Because of the fundamental difference in the phenomenology between the
boost converter and the buck converter, the analysis adopted here differs from
that used in the previous chapter. Precisely, in the previous chapter, we have
applied the discrete-time modeling approach to analyze period-doubling bifur-
cation in a system of buck converters connected in parallel, which is essentially
a high-frequency bifurcation phenomenon. For the case of connecting boost
converters in parallel, however, initial experimentation shows that it exhibits
a kind of low-frequency bifurcation. As explained before in Chapter 6, this
type of bifurcation should be well within the capability of the averaging ap-
proach for modeling its behavior. In the rest of this chapter, we will describe
the details of this system and how the averaged model reveals its bifurcation
behavior.

8.1 The System of Parallel-Connected Boost Converters

The system under study here is structurally the same as the one described in
Section 7.1.2. Thus, the basic control equations are as given before in (7.1) to
(7.3). However, instead of the buck converter, the boost converter is employed
for both Converters 1 and 2. Figure 8.1 shows two boost converters connected
in parallel. As in the case of the parallel buck converters, the presence of four
switches (S1 , S2, D1 and D2) allows a total of sixteen possible switch states,
and in each switch state the circuit is a linear third-order circuit.
Similar to the case of the parallel buck converters, when the converters are

operating in continuous conduction mode, diode Di is always in complemen-
tary state to switch Si, for i = 1, 2. That is, when Si is on, Di is off, and vice
versa. Hence, only four switch states are possible during a switching cycle,
namely
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FIGURE 8.1
Two parallel-connected boost converters.

(i) S1 and S2 are on;

(ii) S1 is on and S2 is off;

(iii) S1 is off and S2 is on;

(iv) S1 and S2 are off.

The state equations corresponding to these switch states are likewise given by
(7.4), with the A’s and B’s given by

A1 =



−rL1

L1
0 0

0 −rL2

L2
0

0 0 − 1
C(R+ rC)


 , (8.1)

A2 =



−rL1

L1
0 0

0 − 1
L2

(
rCR

R+ rC
+ rL2) −

R

L2(R+ rC)

0
R

C(R+ rC)
− 1

C(R + rC)


 , (8.2)

A3 =



− 1

L1
(

rCR

R+ rC
+ rL1) 0 − R

L1(R+ rC)
0 −rL2

L2
0

R

C(R+ rC)
0 − 1

C(R + rC)


 , (8.3)
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A4 =



− 1

L1
(

rCR

R+ rC
+ rL1) 0 − R

L1(R + rC)

0 − 1
L2

(
rCR

R + rC
+ rL2) −

R

L2(R + rC)
R

C(R+ rC)
R

C(R+ rC)
− 1

C(R+ rC)


 , (8.4)

B1 = B2 = B3 = B4 =




1
L1
1
L2
0


 . (8.5)

As in the case of the buck system studied in Chapter 7, the sequence of
switch states, in general, takes the order as written in (7.4), i.e., starting
with “S1 and S2 on” and ending with “S1 and S2 off” in a switching cycle.
However, either “S1 on S2 off” or “S1 off S2 on” (not both) goes in the middle,
depending upon the duty cycles of S1 and S2. In the case where S1 has a larger
duty cycle, we should omit the third equation in (7.4), and likewise for the
case where S2 has a larger duty cycle. This should be taken care of in the
simulation and analysis.

8.2 Initial Experimentation

We begin our investigation with an experimental system which is constructed
according to the circuit shown in Figure 7.1, with Converters 1 and 2 both
realized by the boost converter. Our purpose is to get some initial idea of the
possible kind of behavior exhibited by this system. The circuit parameters
are shown in Table 8.1.

TABLE 8.1

Circuit parameters used in initial
experimentation.

Circuit Components Values
Switching Period T 40 µs
Input Voltage E 12 V
Output Voltage v 24 V
Reference Voltage Vref 24 V
Inductance L1 0.004 H
Inductance L2 0.004 H
Capacitance C 10 µF
Load Resistance R 10 Ω
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(a)

(b)

FIGURE 8.2
Sequence of changes observed experimentally when feedback gain Kv2 is
increased. (a) Stable period-1 orbit (horizontal scale: 5 V/div, vertical
scale: 0.04 A/div); (b) quasi-periodic orbit; (c) limit cycle (horizontal scale:
10 V/div, vertical scale: 0.4 A/div) [72].

Of particular interest is the way the system changes its qualitative behav-
ior when some parameters are varied. In the experiment, we try varying the
feedback gains Kv1, Kv2 and Ki, and observe the changes. The main ob-
servation is that the system loses stability as Kv1 or Kv2 is increased, while
its qualitative behavior is unaffected by the variation of Ki. The way it loses
stability is via a typical Hopf-type bifurcation in which the period-1 operation
bifurcates into quasi-periodic orbits and limit cycles. To exemplify the situa-
tion, we show in Figure 8.2 the sequence of changes when we increase Kv2. In
all the oscilloscope pictures, y-axis corresponds to i1 and x-axis corresponds
to v. Here, we see a stable period-1 orbit in Figure 8.2 (a), a quasi-periodic
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(c)

FIGURE 8.2 continued.

orbit in Figure 8.2 (b), and a limit cycle in Figure 8.2 (c). To confirm the
quasi-periodicity and the periodicity of the limit cycle observed in Figures 8.2
(b) and (c), we show the corresponding stroboscopic maps in Figure 8.3.

8.3 Averaged Model for Two Parallel Boost Converters

From the initial experimentation, we have learned that the system exhibits a
Hopf-type bifurcation which is essentially a low-frequency phenomenon since
the quasi-periodic orbits or limit cycles formed after the bifurcation point are
low-frequency orbits. Averaged models are therefore adequate in describing
this behavior. In the following we will derive an averaged model for the system
of parallel boost converters and use it to predict the onset of Hopf bifurcation.

8.3.1 Derivation of State Equations

The averaged model for the parallel-connected boost converters is shown in
Figure 8.4. We assume that rL1, rL2 and rC are zero in order to simplify
the subsequent analysis. The system can be represented by the averaged
equations:

di1
dt

=
−(1− d1)v

L1
+

E

L1

di2
dt

=
−(1− d2)v

L2
+

E

L2
(8.6)

©2004 CRC Press LLC



(a)

(b)

FIGURE 8.3
(a) Stroboscopic map of Figure 8.2 (b) showing quasi-periodic orbit; (b) stro-
boscopic map of Figure 8.2 (c) showing limit cycle [72]. Horizontal scale:
10 V/div, vertical scale: 0.4 A/div.

dv

dt
=

(1− d1)i1
C

+
(1− d2)i2

C
− v

RC
,

where d1 and d2 are the duty cycles of Converter 1 and Converter 2. Also,
the particular control method dictates that the duty cycles be given by:

d1 = D− kv1(v − Vref) (8.7)

and
d2 = D − kv2(v − Vref)− ki(i2 − i1), (8.8)

where D is the steady-state duty cycle, kv1 = Kv1/(VU−VL), kv2 = Kv2/(VU−
VL) and ki = Ki/(VU − VL). Furthermore, 0 < d1 < 1 and 0 < d2 < 1 should
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FIGURE 8.4
Averaged model of parallel-connected boost converters.

be satisfied. Putting (8.7) and (8.8) into (8.6), we get the following state
equations that describe the dynamics of the system:

di1
dt

=
−(1−D+ kv1(v − Vref))v

L1
+

E

L1

di2
dt

=
−(1−D+ kv2(v − Vref) + ki(i2 − i1))v

L2
+

E

L2

dv

dt
=

(1−D + kv1(v − Vref))i1
C

+
(1−D+ kv2(v − Vref) + ki(i2 − i1))i2

C
− v

RC
. (8.9)

The state equations are valid only when 0 < d1 < 1 and 0 < d2 < 1. Such
conditions are satisfied when the system is operating in the neighborhood of
the stable equilibrium state.

8.3.2 Dimensionless Equations

The afore-derived state equations can be put in a dimensionless form. We
define the dimensionless state variables as follows:

x1 =
i1R

Vref
, x2 =

i2R

Vref
, x3 =

v

Vref
. (8.10)

We also define the dimensionless time and parameters as follows:

τ =
t

T
, ξ1 =

L1

RT
, ξ2 =

L2

RT
, ζ =

CR

T
, (8.11)

κv1 = kv1Vref , κv2 = kv2Vref , κi =
kiVref

R
, e =

E

Vref
. (8.12)
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Direct substitution of these new dimensionless variables, time and parameters
in the state equations (8.9) yields the following dimensionless state equations:

dx1

dτ
=

e− (1−D + κv1(x3 − 1))x3

ξ1

dx2

dτ
=

e− (1−D + κv2(x3 − 1) + κi(x2 − x1))x3

ξ2
(8.13)

dx3

dτ
=

(1−D + κv1(x3 − 1))x1

ζ

+
(1−D+ κv2(x3 − 1) + κi(x2 − x1))x2 − x3

ζ
.

Now, (8.7) and (8.8) can be written as

d1 = D − κv1(x3 − 1) (8.14)
and d2 = D − κv2(x3 − 1)− κi(x2 − x1). (8.15)

To complete the model, saturation must be included. When d1 < 0 and/or
d2 < 0, we put d1 = 0 and/or d2 = 0 in (8.6) and perform dimensionless
substitution. Similarly, when d1 > dmax and/or d2 > dmax, we put d1 = dmax

and/or d2 = dmax in (8.6) and perform dimensionless substitution.

8.3.3 Equilibrium Point Calculation

The equilibrium point can be calculated by setting all time-derivatives in
(8.13) to zero and solving for x1, x2 and x3. This gives e = 1−D and

X =


X1

X2

X3


 =




1
2(1−D)

1
2(1−D)

1


 . (8.16)

8.4 Stability of Equilibrium Point and Hopf Bifurcation

The Jacobian, J(X), for the dimensionless system evaluated at the equilib-
rium point is given by

J(X) =




0 0
−(κv1 + 1−D)

ξ1

κi
ξ2

−κi
ξ2

−(κv2 + 1−D)
ξ2

2e(1 −D) − κi
2eζ

2e(1−D) + κi
2eζ

κv1 + κv2 − 2e
2eζ



. (8.17)
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We now study the stability of the equilibrium point and the trajectory in
the neighborhood of the equilibrium point by deriving the eigenvalues of the
system at the equilibrium point. The usual procedure is to solve the following
equation for λ:

det[λ1− J(X)] = 0. (8.18)

Expanding (8.18) gives

λ3 +
(
κi
ξ2
− κv1 + κv2 − 2e

2eζ

)
λ2

+
[(

κv2 + 1−D
ξ2

)(
2e(1−D) + κi

2eζ

)

+
(

2e(1−D) − κi
2eζ

)(
κv1 + 1−D

ξ1

)

−
(
κi
ξ2

)(
κv1 + κv2 − 2e

2eζ

)]
λ

+
[(

κi
ξ2

)(
κv1 + 1−D

ξ1

)(
2(1−D)

ζ

)]
= 0. (8.19)

From the above equation, we can easily verify the following conditions:

lim
λ→−∞

det[λ1− J(X)]→ −∞ (8.20)

and
det[−J(X)] > 0. (8.21)

Hence, there exists at least one negative real λ such that det[λ1−J(X)] = 0.
Also, numerical calculations of eigenvalues for the practical range of param-
eters (ξ1 = ξ2 = 10, ζ = 2.5, e = 0.5 and D = 0.5) reveal that the other
two eigenvalues are a complex conjugate pair which have either a positive or
negative real part depending upon values of κv1 and κv2. In particular, the
following observations are made.

1. For small values of κv1 and κv2, the pair of eigenvalues have a negative
real part.

2. As κv1 and/or κv2 increases, the real part of the complex eigenvalues
gets less negative, and at a critical value of κv1 and/or κv2, the real part
changes from negative to positive. Table 8.2 shows a typical scenario of
the variation of the eigenvalues. The loci are plotted in Figure 8.5 for
ease of reference.

3. The critical value of κv1 and/or κv2 depends on the values of ξ1, ξ2, ζ,
e, D and κi. As we increase κv1 and/or κv2, the sign of the real part
of the complex eigenvalues changes, and the system loses stability via a
Hopf bifurcation [2, 162].
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FIGURE 8.5
Loci of the complex eigenvalue pair moving from left to right as κv2 increases.

TABLE 8.2

Eigenvalues for increasing value of κv2 (κv1 = 0.48 and κi = 0.40).

κv2 Eigenvalues Remarks
0.340 −0.0330± j0.1810, −0.0460 Stable equilibrium point
0.380 −0.0260± j0.1870, −0.0440 Stable equilibrium point
0.420 −0.0190± j0.1920, −0.0420 Stable equilibrium point
0.460 −0.0120± j0.1960, −0.0410 Stable equilibrium point
0.500 −0.0044± j0.2000, −0.0390 Stable equilibrium point
0.540 0.0030± j0.2030, −0.0380 Unstable equilibrium point

The situation is very similiar to the case of the Ćuk converter under free-
running hysteretic control. As explained in Section 6.3.3, in order to show
Hopf bifurcation as κv2 is varied (likewise for any other parameters), we need
to establish the following conditions:

Re(λ)|κv2=κv2c = 0 (8.22)

Im(λ)|κv2=κv2c �= 0 (8.23)

d

dκv2
Re(λ)

∣∣∣∣
κv2=κv2c

�= 0 (8.24)

where κv2c is the critical value of κv2 at which a Hopf bifurcation occurs. We
also recall that the last condition is necessary to ensure that the movement of
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the complex eigenvalue pair does not slide along the imaginary axis. In fact,
all the above conditions can be numerically established using (8.19).

8.5 Local Trajectories from the Averaged Equations

In this section, we re-examine the stability in terms of the local trajectories
near the equilibrium point. Since the use of an averaged model for predicting
nonlinear phenomena will become inadequate when stability is lost, our aim
in this section is to observe, by plotting the local trajectories, the behavior of
the system as it goes from a stable region to an unstable region. For further
investigation beyond the bifurcation point predicted by the averaged model,
we have to resort to the exact piecewise switched model, as will be discussed
in Section 8.6.∗

We begin with the stable system. From Table 8.2, we may choose κv1 =
0.48, κv2 = 0.45 and κi = 0.40. The Jacobian evaluated at the equilibrium
point is

J(X) =


 0 0 −0.098

0.04 −0.04 −0.095
0.04 0.36 −0.028


 . (8.25)

The eigenvalues, λ, and their corresponding eigenvectors, v̄, are found as

λ = −0.041,−0.013± j0.195 (8.26)

v̄ =


 0.916
−0.116
0.384


 ,

0.028± j0.410

0.030± j0.398
0.820


 . (8.27)

The local trajectory is shown in Figure 8.6.
Next, we examine the unstable system with κv1 = 0.48, κv2 = 0.55 and κi

= 0.40. The system loses stability. The Jacobian evaluated at the equilibrium
point is

J(X) =


 0 0 −0.098

0.04 −0.04 −0.105
0.04 0.36 0.012


 . (8.28)

The eigenvalues, λ, and their corresponding eigenvectors, v̄, are found as

λ = −0.038, 0.00484± j0.204 (8.29)

∗The trajectory in the neighborhood of the equilibrium point can be described analytically
in terms of the eigenvalues and eigenvectors of the system near the equilibrium point. The
local dynamics of this third-order system is coincidentally the same as that of the free-
running Ćuk converter. See Section 6.3.4 for a general description.

©2004 CRC Press LLC



FIGURE 8.6
A view of the stable (spiraling inward) local trajectory generated from the
averaged model (κv1 = 0.48, κv2 = 0.45 and κi = 0.40).

FIGURE 8.7
A view of the unstable (spiraling outward) local trajectory generated from
the averaged model (κv1 = 0.48, κv2 = 0.55 and κi = 0.40).

v̄ =


 0.923
−0.151
0.355


 ,

0.00933± j0.393

0.015± j0.420
0.818


 . (8.30)

A view of the local trajectory is shown in Figure 8.7. Also, in Figure 8.8, we
observe how the trajectory settles into a limit cycle after the initial transient
period.

From the above examples, we clearly observe that the system loses stability
via a Hopf bifurcation. Before the bifurcation, the local trajectory spirals
into the equilibrium point. After the bifurcation, the local trajectory spirals
away from the equilibrium point and settles down into a limit cycle. In the
following section, we will re-examine the system using cycle-by-cycle computer
simulations of the actual circuit operation.
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FIGURE 8.8
Limit cycle generated from the averaged model (κv1 = 0.48, κv2 = 0.55 and
κi = 0.40).

8.6 Computer Simulation Study

Since the foregoing analysis is based on a set of nonlinear state equations
which is derived from an averaged continuous model, it falls short of revealing
further details beyond the bifurcation point. In this section, we examine the
system using computer simulation which employs an exact piecewise switched
model. Essentially, using the state equations in Section 8.1 and incorporat-
ing suitable algorithms that take into account the possible operation of the
circuit in discontinuous conduction mode, we can emulate the exact cycle-by-
cycle operation of the system. Thus, the simulation results represent viable

TABLE 8.3

Component values and steady-state voltages
used in simulation. (ESR stands for
equivalent series resistance.)

Circuit Components Values
Switching Period T 40 µs
Input Voltage E 12 V
Output Voltage v 24 V
Reference Voltage Vref 24 V
Inductance L1, ESR rL1 0.004 H, 0.05 Ω
Inductance L2, ESR rL2 0.004 H, 0.2 Ω
Capacitance C, ESR rC 10 µF, 0.01 Ω
Load Resistance R 10 Ω
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FIGURE 8.9
A view of the stable (spiraling inward) local trajectory generated from the
exact piecewise switched model.

verification of the behavior of the real circuit.
Since we are primarily concerned with system stability in conjunction with

the feedback design, we will focus our attention on the effects of varying the
various gains on the bifurcation behavior of the system. In particular, the
gains Kv1, Kv2 and Ki present themselves as design parameters that can be
changed at will.

The simulation is based on the exact state equations given in Section 8.1.
For each set of parameter values, time-domain cycle-by-cycle waveforms can
be generated by solving the appropriate linear equation in any sub-interval of
time, according to the states of the switches which are determined from values
of the control voltages vcon1 and vcon2. Sampled data are then collected at
t = nT in the steady state. With a sufficient number of sets of steady-state
data, we can construct bifurcation diagrams. The circuit parameters used in
our simulations are shown in Table 8.3.

Since we are simulating the actual circuit, the original circuit parameters
will be used instead of the dimensionless ones. In particular we will focus on
the qualitative change of dynamical behavior as Kv1 and/or Kv2 is varied.
To observe the trend, we keep Kv1 constant and vary Kv2. Similarly, we may
keep Kv2 constant and vary Kv1. A summary of the observed behavior is as
follows.

1. When Kv2 is small, the trajectory spirals into a fixed period-1 orbit,
corresponding to a fixed point in the averaged system. Figure 8.9 shows
the simulated trajectory.

2. When Kv2 is increased beyond a critical value, the period-1 orbit be-
comes unstable, and the trajectory spirals outward, as shown in Figure
8.10, and settles into a quasi-periodic orbit, as shown in Figure 8.11.
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FIGURE 8.10
A view of the unstable (spiraling outward) local trajectory generated from
the exact piecewise switched model.

FIGURE 8.11
Quasi-periodic orbit generated from the exact piecewise switched model.

The above observations confirm the prediction we made in Section 8.5 based
on the averaged equations.

In order to give a fuller picture of the dynamics of the system beyond the
Hopf bifurcation point, we need to generate a large number of trajectories and
bifurcation diagrams. In the following, we show a few representative bifur-
cation diagrams and some typical sequences of trajectories as some selected
parameters are varied.

We first keep Kv1 and Ki constant and vary Kv2. A bifurcation diagram
is shown in Figure 8.12. The sequence of simulated trajectories shown in
Figure 8.13 reveals a typical Hopf bifurcation, in which a stable equilibrium
state breaks down to quasi-periodic orbits and limit cycles. The corresponding
stroboscopic maps confirming quasi-periodicity and periodicity are shown in
Figure 8.14. In fact, if we keep Kv2 and Ki constant and varyKv1, we observe
similar bifurcation behavior.
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FIGURE 8.12
Bifurcation diagram with Kv2 as bifurcation parameter (Kv1 = 0.11 and
Ki = 1).

(a)

FIGURE 8.13
Sequence of change of qualitative behavior. (a) Stable period-1 orbit (Kv1 =
0.11, Kv2 = 0.11 and Ki = 1); (b) quasi-periodic orbit (Kv1 = 0.11, Kv2 =
0.13 and Ki = 1); (c) limit cycle (Kv1 = 0.11, Kv2 = 0.15 and Ki = 1).

Finally, to study the bifurcation behavior in respect of current gain varia-
tion, we keep Kv1 and Kv2 constant, and vary Ki. It is found that the system
remains in stable period-1 operation irrespective of the choice of Ki. Basically
Ki only determines how close the slave follows the master. The larger Ki is,
the closer the slave’s output current is to the master’s.
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(b)

(c)

FIGURE 8.13 continued.

8.7 Usefulness of Averaged Models

In concluding this chapter, we reiterate that despite the usual belief that aver-
aged models are generally not applicable for the study of bifurcation behavior,
their use can yield simple and effective analytical solutions when dealing with
low-frequency bifurcation phenomena. In this chapter we have shown how an
averaged model can be used to explain some low-frequency nonlinear phenom-
ena in a parallel system of two boost converters under a master-slave control
scheme. It has been found that Hopf bifurcation can occur when the voltage
feedback gains are too large. In engineering design, stable period-1 operation
is the only acceptable operation. Thus, in practice, instability often refers
to failure of the circuit in maintaining its operation in the expected stable
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(a)

(b)

FIGURE 8.14
(a) Stroboscopic map of Figure 8.13 (b) showing quasi-periodic orbit; (b)
stroboscopic map of Figure 8.13 (c) showing limit cycle.

period-1 regime. Here, we have identified the parameters whose variations
cause “instability” and analyzed the detailed bifurcation behavior via simple
averaged models.
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9

Fast-Scale Bifurcation Analysis of
Power-Factor-Correction Boost Converters

In engineering, stability is often interpreted as a behavioral condition in which
the system being examined is operating in the expected regime. For instance,
in power electronics, we refer to a stable operation as a specific periodic op-
eration. When a switching converter fails to maintain its operation in this
expected manner, it is considered unstable. In conventional power electron-
ics, all those subharmonic, quasi-periodic and chaotic operations are regarded
as being undesirable and should be avoided. Thus, the traditional design
objective must include the prevention of any bifurcation within the intended
operating range. In other words, any effective design must automatically
avoid the occurrence of bifurcation for the range of variation of the parame-
ters [75]. Thus, for systems that have been shown to bifurcate when a certain
parameter is changed, the design problem is, in a sense, addressing the “con-
trol of bifurcation.” Such a design problem can therefore be solved on the
basis of bifurcation analysis. In this chapter we will examine the traditional
stability problem from a bifurcation analysis perspective. We will re-visit
the boost converter under current-mode control [22, 81], and show that the
widely known ramp compensation technique is effectively a means of control-
ling bifurcation. Furthermore, we apply the result of this bifurcation analysis
to investigate the “fast-scale” instability problem of a power-factor-correction
boost converter. Such instability may take the form of chaos or high-frequency
subharmonics at certain phase angles of the mains period, and may present a
subtle source of harmonic distortion that degrades the otherwise high power
factor of the converter.

9.1 Bifurcation Analysis of Boost Converters under
Current-Mode Control with Ramp Compensation

9.1.1 Review of Basic Operation

The boost converter under current-mode control has been analyzed thoroughly
in Chapter 5. Here, we extend the analysis to include the application of ramp
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FIGURE 9.1
Boost converter under current-mode control with ramp compensation.

compensation for suppressing period-doubling bifurcation. In the following we
give a quick review of its operation when ramp compensation is introduced.

The boost converter with ramp compensation is shown in Figure 9.1. Here,
we notice that the reference current is first subtracted by a periodic ramp
signal before it is presented to the comparator. Thus, the resulting reference
current that is used to compare with the inductor current becomes

Iref,comp = Iref −mc(t mod T ) (9.1)

where mc is the slope of the compensation ramp. The operation is exactly
the same as in the normal current-mode controlled converter. Specifically,
the switch is turned on periodically, and off according to the output of a
comparator that compares the inductor current with Iref,comp. While the
switch is on, the inductor current iL climbs up, and as it reaches Iref,comp,
the switch is turned off, thereby causing the inductor current to ramp down
until the next periodic turn-on instant. In the closed-loop system, Iref is
controlled via a feedback loop which attempts to keep the output voltage
fixed by adjusting Iref .

An important feature of the current-mode control is the presence of an
inner current loop. It has been shown in Chapter 5 that, without ramp com-
pensation, this inner loop becomes unstable when the duty ratio (designed
steady-state value) exceeds 0.5. We have also seen that the system loses sta-
bility via a period-doubling bifurcation. The introduction of the compensation
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ramp has been proven effective in solving this stability problem [81, 123], and
the use of compensation ramp has become an industry standard for almost
all current-mode control applications. In the following we attempt to uncover
the magic of ramp compensation from a bifurcation control viewpoint.

9.1.2 Review of Period-Doubling Bifurcation

Before we examine the effect of ramp compensation, let us recall a few im-
portant expressions related to the period-doubling bifurcation of the current-
mode controlled boost converter. We have shown in Chapter 5 that the inner
current loop dynamics, without ramp compensation, is described by

iL,n+1 =
(
1− vC

E

)
iL,n +

IrefvC
E

− (vC − E)T
L

. (9.2)

Introducing a small disturbance δiL,n to iL,n, we have

δiL,n+1 =
( −D

1−D

)
δiL,n + O(δi2n), (9.3)

from which we get the characteristic multiplier or eigenvalue, λ, as

λ =
−D

1−D. (9.4)

Thus, the first period-doubling occurs when λ = −1 which corresponds to
D = 0.5. The equivalent condition for period-doubling can also be expressed
in terms of Iref . First, we recognize from the requirement of power balance
that (see Section 5.5.1)(

Iref −
DTE

2L

)
E =

E2

(1−D)2R
. (9.5)

Hence, the critical value of Iref for period-doubling, without ramp compensa-
tion, is

Iref,c =
E

R

[
DRT

2L
+

1
(1−D)2

]
D=0.5

(9.6)

=
E

R

(
RT

4L
+ 4
)
. (9.7)

We will see later that the use of ramp compensation is to raise the value of
Iref,c, thereby widening the operating range.

9.1.3 Ramp Compensation from a Bifurcation Control
Viewpoint

We now study the system with the ramp compensation included. Figure 9.2
shows the inductor current waveform and its relationship with the reference

©2004 CRC Press LLC



❛❛❛❛❛❛❛❛❛❛
❙
❙
❙
❙
❙
❙❙

✡
✡
✡
✡
✡
✡✡

❛❛❛❛❛❛❛❛❛❛
❙
❙
❙
❙
❙
❙❙

✡
✡
✡
✡
✡
✡✡

✲

✻

slope=−mc

slope=E
L

slope=
−(vC−E)

L

compensating ramp

✂
✂
✂✂

t

Iref

iL❍❍

FIGURE 9.2
Illustration of current-programming control showing inductor current with
ramp compensation

current. By inspecting the inductor current waveform, we get the modified
iterative map for the inner loop dynamics as

δin+1 =
(

Mc

1 +Mc
− D

(1−D)(1 +Mc)

)
δin +O(δi2n) (9.8)

where Mc = mcL/E is the normalized compensating slope. Now, using (9.8),
we get the eigenvalue or characteristic multiplier, λ, for the ramp-compensated
inner loop dynamics as

λ =
Mc

1 +Mc
− D

(1−D)(1 +Mc)
. (9.9)

Hence, by putting λ = −1, the critical duty ratio, at which the first period-
doubling occurs, is

Dc =
Mc + 0.5
Mc + 1

. (9.10)

From (9.6) and (9.10), we get the critical value of Iref for the ramp-compensated
system as

Iref,c =
E

R

[
DRT

2L
+

1
(1−D)2

]
D=Dc

=
E

R

[
RT

2L
Mc + 0.5
Mc + 1

+ 4(Mc + 1)2

]
. (9.11)

Note that Iref,c increases monotonically as the compensating slope increases.
Hence, it is obvious that ramp compensation effectively provides more margin
for the system to operate without running into period-doubling bifurcation.
As shown in Figure 9.3, the onset of the first period-doubling has been “de-
layed” to a larger value of Iref by the introduction of the compensation ramp.
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(a)

(b)

FIGURE 9.3
Bifurcation diagrams obtained numerically for the boost converter under
current-programming control, showing the “delaying” of the onset of bifur-
cation by ramp compensation. (a) No ramp compensation; (b) with compen-
sating ramp mc = 0.1E/L; (c) mc = 0.3E/L; (d) mc = 0.8E/L. For all cases,
C = 20 µF, L = 1.5 mH, R = 40 Ω, E = 5 V and T = 100 µs.

The above result can also be used for design. For example, we may plot
the critical value of Iref against R, as shown in Figure 9.4. The magnitude of
the slope of the compensating ramp can then be chosen to provide a sufficient
margin for avoiding period-doubling bifurcation. Likewise, we may consider
the input voltage variation and produce a similar set of design curves that
provide information on the choice of the compensating slope for ensuring a
“bifurcation-free” operation, as shown in Figure 9.5. Also, we may plot the
boundary curves in terms of normalized parameters, as shown in Figure 9.6.
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(c)

(d)

FIGURE 9.3 continued.

9.2 Application to Power-Factor-Correction Boost
Converter

In the foregoing, we have described the application of ramp compensation
in controlling bifurcation in a boost converter under current-mode control.
In practice, the current-mode controlled converter also finds application in
shaping the input current. In fact, the so-called boost rectifier or power-factor-
correction converter is effectively a current-mode controlled boost converter
[42, 122]. The circuit schematic is shown in Figure 9.7. In this case, instead
of setting Iref constant for a fixed load, we let Iref vary according to the input
voltage waveform. Thus, the input current is being directly programmed to
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FIGURE 9.4
Specific boundary curves Iref,c versus R for current-programmed boost
converter without compensation and with normalized compensating slope
Mc = 0.2, 0.4, 0.6, 0.8 and 1.

FIGURE 9.5
Specific boundary curves Iref,c versus E for current-programmed boost con-
verter without compensation and with compensation slope Mc = 0.2, 0.4, 0.6,
0.8 and 1.
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FIGURE 9.6
Specific boundary curves plotted with normalized parameters.

follow the waveform of the input voltage. The result is a nearly unity power
factor.

9.2.1 Bifurcation Analysis

The bifurcation analysis described earlier is directly applicable to the case of
the power-factor-correction boost converter. Effectively, since Iref follows the
input voltage, its waveform is a rectified sine wave whose frequency is much
lower than the switching frequency. Typically, the frequency of this sine wave
is 50 or 60 Hz. Thus, the situation is analogous to the case of applying a time-
varying ramp compensation to a current-mode controlled boost converter.
Suppose the input voltage is given by

e(t) = Ê |sinωmt| (9.12)

where ωm is the mains angular frequency. For algebraic brevity, we express
the input voltage in terms of the phase angle θ, i.e., e(θ) = Ê |sin θ|.

As shown in Figure 9.8, when the input voltage is in its first quarter cycle
(i.e., 0 ≤ θ < π/2), the value of Iref increases, which is equivalent to applying
a negative compensating ramp to Iref (i.e., Mc < 0). Moreover, when the
input voltage is in its second quarter cycle (i.e., π/2 < θ ≤ π), the value of
Iref decreases, which is equivalent to applying a positive compensating ramp
to Iref (i.e., Mc > 0). At θ = π/2, there is no ramp compensation. Therefore,
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FIGURE 9.7
Schematic of the power-factor-correction boost converter showing direct pro-
gramming of the input current. Iref is a rectified sine wave whose amplitude
is adjusted by the “feedback” network to match the power level.

FIGURE 9.8
Programming of input current waveform in power-factor-correction boost con-
verter. For 0 ≤ θ < π/2, an effective negative ramp compensation is applied
(i.e., Mc < 0), whereas for π/2 < θ ≤ π, an effective positive ramp compen-
sation is applied (i.e., Mc > 0).

based on the earlier analysis, we can conclude that the system has asymmetric
regions of stability for the two quarter mains cycles.

Specifically, the second quarter cycle (i.e., π/2 ≤ θ < π) should be more
remote from period-doubling∗ because of the presence of ramp compensa-
tion. To be precise, we need to find the critical phase angle, θc, at which
period-doubling occurs. Since the duty ratio is equal to 1 − e/vC and Mc is

∗The term period-doubling here refers to the switching period being doubled. This phe-
nomenon is considered as a kind of fast-scale instability [96], to distinguish it from the
average slow-scale power-factor-correction operation at the mains frequency.
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−(dIref/dt)L/Ê| sin θ|, we have, from (9.10),

|sin θc| =
vC + 2L

dIref

dt
2Ê

. (9.13)

Moreover, if the power factor approaches one, we have

Iref ≈ Îin |sin θ| for 0 ≤ θ ≤ π (9.14)

where Îin is the peak input current. For brevity we restrict the analysis to
the range [0, π], understanding that the waveform repeats for every interval
[kπ, (k+ 1)π], for all integers k. Thus, we have

dIref

dt
≈ ωmÎin cos θ for 0 ≤ θ ≤ π. (9.15)

Hence, from (9.13), we have

θc = 2 arctan


2Ê ±

√
4Ê2 − v2

C + 4ω2
mÎ

2
inL

2

vC − 2ωmÎinL


 . (9.16)

Furthermore, incorporating the power equality, i.e., ÊÎin/2 = v2
C/R (assuming

100% efficiency), and defining two parameters rv and τL as

rv =
vC

Ê
(9.17)

τL =
L

R
, (9.18)

the critical phase angle given in (9.16) can be written in the following compact
form:

θc = 2 arctan


2±

√
4− r2

v + 16ω2
mτ

2
Lr

4
v

rv − 4ωmτLr2
v


 . (9.19)

By inspecting (9.19), we clearly see that the voltage ratio rv = vC/Ê and
the parameter τL = L/R control the bifurcation behavior. For clarity, we
denote the two real solutions (if they exist) by θc1 and θc2. Specifically, we
can identify three regions in the parameter space (see Figure 9.9):

• Region 1 (bifurcation-free region or fast-scale stable region):
We can readily show that if

τL >
1

4ωmrv
, (9.20)

the solutions given by (9.19) are essentially outside of the range of in-
terest. In fact, at the boundary τL = 1/4ωmrv, we simply have θc1 = 0
and θc2 = π. The operation in this region is free from period-doubling
bifurcation for all time and hence is fast-scale stable [96].
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FIGURE 9.9
Bifurcation regions in parameter space (mains frequency is 50 Hz). Upper
boundary curve is τL = 1/4ωmrv and lower curve is τL =

√
(r2
v − 4)/16ω2

mr
4
v.

• Region 2 (bifurcation region or partial fast-scale unstable re-
gion): We also observe from (9.19) that if 4 − r2

v + 16ω2
mτ

2
Lr

4
v is non-

negative in addition to satisfying (9.20), i.e.,√
r2
v − 4

16ω2
mr

4
v

≤ τL <
1

4ωmrv
, (9.21)

then there are two real solutions for θc. Under this condition, period-
doubling or fast-scale instability occurs for intervals [0, θc1] and [θc2, π].
Moreover, as θc1 and θc2 get closer to each other, the stable interval
diminishes. At the lower boundary τL =

√
r2
v − 4/16ω2

mr
4
v, the two real

solutions merge together, i.e., θc1 = θc2, and period-doubling bifurcation
cannot be avoided.

• Region 3 (full-bifurcation region or fast-scale unstable region):
If τL is below the boundary of Region 2, i.e.,

τL ≤
√

r2
v − 4

16ω2
mr

4
v

, (9.22)

the fast-scale stable interval has disappeared altogether.
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FIGURE 9.10
Critical phase angles versus vC/Ê for the power-factor-correction boost con-
verter.

In Figure 9.10, we plot the critical phase angle as a function of rv (i.e.,
vC/Ê). We summarize as follows some important observations regarding the
occurrence of period-doubling in the input current waveform during the half
mains cycle, i.e., 0 ≤ θ ≤ π.

1. To guarantee operation in the bifurcation-free regime (Region 1 in Fig-
ure 9.9), we need a sufficiently large τL, i.e., either a sufficiently large L
or small R. This is actually the preferred operation in practice.

2. For values of vC/Ê where real solutions of θc exist, the converter fails
to maintain the expected bifurcation-free operation for intervals of time
corresponding to θ < θc1 and θ > θc2.

3. If θc1 is greater than 90o, the converter would have gone into period-
doubling for the whole first quarter cycle. Likewise, if θc2 is less than
90o, the converter would have gone into period-doubling for the whole
second quarter cycle.

4. Referring to Figure 9.9, if τL is smaller than a certain value (about
0.0001 for a mains frequency of 50 Hz), period-doubling is unavoidable
and will occur for all values of vC/Ê > 2.
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FIGURE 9.11
Simulated inductor current time-domain waveform (upper) and same wave-
form sampled at the switching frequency (lower) for Region 2 at vC/Ê =

√
2.

9.2.2 Fast-Scale Instability by Computer Simulations

In this section we verify the above findings by computer simulations. Con-
sistent with the assumption of unity power factor used in the foregoing theo-
retical analysis, the reference current waveform Iref is generated according to
the waveform template defined in (9.14), where the peak input current Îin is
determined by the power equality condition, i.e., ÊÎin/2 = v2

C/R.
The circuit component values used in the simulations are:

L = 2 mH, C = 470 µF and R = 135 Ω.

The switching frequency and mains frequency are 50 kHz and 50Hz, respec-
tively. This choice of component values leads to the theoretical curves of the
critical phase angles corresponding to τL = 0.000015 s in Figure 9.10.

Figure 9.11 shows the simulated inductor current waveform for an operation
in Region 2 (bifurcation region), where real solutions of θc exist. The peak
input voltage is 110

√
2 V, and the reference output voltage is 220 V, which

correspond to v/Ê =
√

2 in Figure 9.10. Indeed, period-doubling bifurcation
can be observed during a half mains cycle in the inductor current waveform,
as shown in Figure 9.11 (upper). In order to see the period-doubling and
fast-scale instability more clearly, we sample the waveform at a rate equal to
the switching frequency, as shown in Figure 9.11 (lower), where the two criti-
cal phase angles and the corresponding bifurcations can be clearly identified.
Between these two points the sampled values of the current follow accurately
the sinusoidal shape of the reference current. A close-up view of the waveform
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FIGURE 9.12
Close-up view of simulated inductor current waveform near the critical points
for Region 2 at vC/Ê =

√
2.

around the critical points is shown in Figure 9.12. Furthermore, Figure 9.13
compares the values of the critical phase angles found by simulations and
those obtained analytically. They are in very good agreement.

The bifurcation region characterized by the presence of a critical point in
each quarter mains cycle persists until the left-hand side critical phase angle
θc1 reaches its maximum, i.e., 90o, corresponding to the peak current value.
As mentioned in the preceding section, when θc1 becomes greater than 90o, the
whole first quarter cycle should have been fast-scale unstable with possible
chaos for some intervals. This result is indeed confirmed by the simulated
inductor current waveform shown in Figure 9.14, obtained for v/Ê = 2.

Finally, in order to confirm the theoretical conclusion regarding the oc-
curence of full-bifurcation or fast-scale instability in Region 3, we present the
simulation results for parameters satisfying (9.22). As shown in Figure 9.15,
the system operates in full-bifurcation with the stable interval replaced com-
pletely by period-doublings and chaos.
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FIGURE 9.13
Critical phase angles obtained by simulations and analysis for τL = 0.000015 s.

FIGURE 9.14
Simulated sampled inductor current when one critical phase angle reaches 90o

for vC/Ê = 2 (upper) and close-up views of simulated waveform near critical
points (middle and lower).
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FIGURE 9.15
Simulated sampled inductor current for Region 3 at vC/Ê = 2.5 (upper) and
close-up view of the inductor current waveform (lower).

9.3 A Note on Fast-Scale and Slow-Scale Instabilities

In the afore-described analysis, we focus on the fast-scale instability of the
power-factor-correction boost converter. We have shown the possibility of
fast-scale period-doubling at certain phase angles of the mains cycle. Such an
instability may add to the total harmonic distortion in the input current, de-
grading the input power factor. Moreover, the same converter may also suffer
from slow-scale instability. To study slow-scale phenomena, averaged models
can be employed. Here, we stress that the appropriate averaged models should
be derived by averaging over the switching period (not the mains period). In
fact, period-doubling at the mains frequency has been shown possible in the
power-factor-correction boost converter [107].
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10

Intermittent Chaotic Operation in Switching
Power Converters

It is not uncommon in the design of switching power supplies that the rather
puzzling irregular (chaotic) behavior is observed intermittently between long
periods of regular behavior. Noise or bad construction is the usual blame.
In this chapter we explain the “intermittent” chaos observed in switching
converters in terms of coupling of spurious signals.

As we have seen in previous chapters, varying a crucial parameter can cause
a bifurcation to occur. It is therefore not surprising to see that if a crucial
parameter is being modulated by some external driving source, for example
through an unintentional coupling, the system can be driven out of the regular
operating regime intermittently. The situation is analogous to a time-varying
parameter applied to the system in such a way that bifurcations occur causing
the system’s behavior to change from time to time. Thus, if a spurious signal is
coupled unintentionally into a crucial parameter causing it to vary over a range
that covers some bifurcation points, the system may operate intermittently
between the regular regime and other unwanted regimes.

The circuit model used to study the phenomenon should naturally incor-
porate a weak signal which is coupled to the converter via unintended paths
(e.g., conducted or radiated EMI). We show that for the case of a simple
voltage-mode controlled buck converter, coupling of spurious signals into the
reference voltage can cause intermittent chaotic or subharmonic operations.
Similar analysis can be applied to current-mode controlled converters, with an
appropriate coupling mechanism (e.g., modulation of the compensation slope
by a spurious signal), to identify possible intermittent chaotic operations.

10.1 Simplified Model of Spurious Signal Intrusion

We begin with the crude but practically valid assumption that the power
converter under study is not perfectly protected from intrusion of signals which
are generated outside the power supply [47, 163]. The intrusion can take the
form of coupling via conducted or radiated paths. Sometimes, the intruders
can live on the same circuit board or be present at a very close proximity.
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FIGURE 10.1
A power supply coupled with spurious source. (a) Crude model; (b) circuit
model showing a buck converter with an additive intruding signal vs acted
upon the reference voltage.

Figure 10.1 (a) shows a crude model which illustrates the situation, where vs
denotes the effective additive intruding source.

In order to study the effects of coupling of spurious (intruding) signals,
we need a circuit model that describes the way in which the power supply is
connected to the spurious signal source. One simple approach is to model the
coupling as an additive process which injects the spurious signal directly to
some crucial parameters such as the reference voltage of the power supply, as
shown in Figure 10.1 (b).

Suppose the effective additive source is vs, which may be due to some
oscillators or PWM generators present in the proximity. For convenience we
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denote the strength of the spurious source by α which is the ratio of the
amplitude of vs to Vref , i.e.,

α =
v̂s
Vref

(10.1)

where v̂s is the amplitude of the effective intruding source appearing behind
the reference voltage of the power supply. We will investigate the effect of cou-
pling the intruding source to the power supply for various levels of strengths
of the intruding source as well as for different types of intruding sources (e.g.,
sinusoids and square pulses).

10.2 Quick Glimpse at “Intermittent” Chaos

When vs is a sinusoidal signal of frequency fs, the reference voltage is being
modulated as

Vref �→ Vref(1 + α sin 2πfst). (10.2)

Such spurious coupling can occur in power supplies that operate in an RF
environment. Suppose the switching frequency is fo, and fo �= fs. Obviously,
we would expect the effect of the intruding source on the power supply to be
periodic in 1/|fo − fs|.

To get a quick glimpse of the phenomenon, let us consider the buck converter
shown in Figure 10.1 (b) for two particular effective signal strengths. The
circuit parameters are as follows:

L = 20 mH, C = 47 µF, R = 22 Ω, fo = 2500 Hz,
E = 24 V, Vref = 11 V, VL = 3.8 V and VU = 8.2 V.

The spurious signal frequency fs is 2501 Hz. Time-domain cycle-by-cycle
simulations are performed and the inductor current waveform is shown in
Figure 10.2. Here, we observe “intermittent” chaos and “intermittent” sub-
harmonics for relatively strong and weak coupling, respectively.∗

These kinds of phenomena are commonly observed by practicing power sup-
ply engineers in their design workbenches. Here, we show that the phenomena
can be explained in terms of coupling of a spurious signal through unintended
paths to the power supply.

The intermittent period is related to the difference between the intruding
signal frequency and the power supply’s switching frequency. In this case, the
intermittent period is 1 s.

∗The term intermittent chaos has been used in the mathematics literature to describe a
few special types of chaotic behavior [109]. Here, we use the term to describe a particular
operation where chaos shows up periodically between regular operations. Such intermittent
chaotic operation is sometimes called breathing in the physics literature [119].
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(a)

FIGURE 10.2
Inductor current waveform for buck converter with unintended coupling of
sinusoidal intruding source for (a) α = 0.0034 showing “intermittent” chaos,
and (b) α = 0.0003 showing “intermittent” subharmonics.

©2004 CRC Press LLC



(b)

FIGURE 10.2 continued.

10.3 Time-Bifurcation Diagrams – A Closer Look

For a clear exposition of the phenomenon, it is customary in the systems the-
ory literature to examine the “sampled waveforms,” which effectively ignore
the detailed switching ripples but focus on the movement of the waveforms at
periodic switching instants. Specifically we sample the waveforms at t = nT ,
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where T is the switching period, i.e., T = 1/fo, and the resulting plots are
called time-bifurcation diagrams since they reflect the change of qualitative
behavior as time elapses.

10.3.1 Sinusoidal Intruding Source

We begin with the case of sinusoidal intruding signals as described in the
previous section, i.e.,

vs = αVref sin 2πfst. (10.3)

Some typical time-bifurcation diagrams are shown in Figure 10.3, from which
we observe the following.

• When the intruding signal strength is very weak, the power supply can
still maintain its regular operation, though the average operating point
fluctuates. The effect is not significant.

• As the intruding signal strength increases, the power supply experiences
subharmonic operation intermittently with regular operation. For a rel-
atively low intruding signal strength, period-2 subharmonic operation is
observed intermittently with regular operation. Further increase in in-
truding signal strength causes period-4 subharmonic operation to occur
intermittently with period-2 subharmonic and regular operations.

• When the intruding signal strength is strong, the power supply expe-
riences chaotic operation intermittently with subharmonic and regular
operations.

• The intermittent period is equal to the 1/|fo−fs|. Thus, if the intruding
signal frequency is very close to the switching frequency of the power
supply, the intermittency is long.

10.3.2 Rectangular Pulse Intruding Source

We now consider another type of spurious signal which is likely to be generated
from a PWM generator of another power supply and coupled to the power
supply under study through unintended paths. This situation can arise in
modular power supplies with individual PWM generators. For the purpose of
analysis, we assume that the intruding source vs is given by

vs = αVref rect(fst) (10.4)

where

rect(x) =



+1 if 0 ≤ x < 0.5
−1 if 0.5 ≤ x < 1
rect(x− 1) if x ≥ 1.

(10.5)

Effects similar to the case of sinusoidal intruding signals have been found from
simulations. Some time-bifurcation diagrams are shown in Figure 10.4.
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(a) α = 0.0001

(b) α = 0.00022

FIGURE 10.3
Sampled inductor current waveforms (time-bifurcation diagrams) for buck
converter with unintended coupling of sinusoidal intruding source for different
coupling strengths. (a) Regular operation with fluctuation of average value;
(b)–(d) “intermittent” subharmonics; (e)–(f) “intermittent” chaos.
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(c) α = 0.0003

(d) α = 0.0031

FIGURE 10.3 continued.

10.4 Experimental Observations

A circuit prototype can be constructed to verify the possibility of intermittent
operation as suggested by the afore-described circuit model. To avoid obscur-
ing the essentials, the experimental study does not include the actual coupling
process which has been assumed to take place by any possible means. For the
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(e) α = 0.0034

(f) α = 0.007

FIGURE 10.3 continued.

purpose of verifying the phenomena observed from simulations, it suffices to
“add” the intruding signal directly to the reference voltage. The circuit pa-
rameters are the same as those used in the simulations. Sinusoidal as well
as rectangular intruding signals have been applied in the experiment. By
varying the intruding signal strength, we observe “intermittent” subharmon-
ics and chaos similar to those observed from simulations. Figure 10.5 shows
a few time-bifurcation diagrams obtained experimentally.
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(a) α = 0.001

(b) α = 0.003

FIGURE 10.4
Sampled inductor current waveforms (time-bifurcation diagrams) for buck
converter with unintended coupling of rectangular intruding source for dif-
ferent coupling strengths. (a)–(b) “intermittent” subharmonics; (c)–(d) “in-
termittent” chaos.
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(c) α = 0.004

(d) α = 0.008

FIGURE 10.4 continued.

10.5 Parameters Affecting the Occurrence of
“Intermittent” Chaos

So far, we have only considered a particular set of parameters and the general
phenomena of “intermittent” subharmonics and chaos in a switching con-
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(a) sinewave intruder α = 0.0012

(b) rectangular wave intruder α = 0.0007

FIGURE 10.5
Measured time-bifurcation diagrams for buck converter with coupling of in-
truding source for different coupling strengths. (a)–(b) Intermittent period-
2 subharmonics (upper trace: output voltage, 90 mV/div for (a) and
140 mV/div for (b); lower trace: inductor current, 100 mA/div); (c)–(d)
intermittent period-2 and period-4 subharmonics (upper trace: output volt-
age, 150 mV/div for (c) and 140 mV/div for (d); lower trace: inductor cur-
rent, 100 mA/div); (e)–(f) “intermittent” chaos (upper trace: output voltage,
250 mV/div; lower trace: inductor current, 200 mA/div).

verter. Further simulations with different sets of parameters are needed to
determine whether α can be smaller or bigger in order to drive the converter
into “intermittent” chaos.
The thresholds of the coupling signal strength for intermittent subharmon-
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(c) sinewave intruder α = 0.0036

(d) rectangular wave intruder α = 0.0036

FIGURE 10.5 continued.

ics and chaos are summarized in Tables 10.1 and 10.2. Graphical presentations
are also shown in Figure 10.6, where the upper surface gives the thresholds
for “intermittent” chaos and the lower surface gives the thresholds for “in-
termittent” subharmonics. It should be noted that these data are obtained
for a particular converter operating with a specific set of circuit parameters,
and they are useful for inspecting the general trend rather than providing
absolute design data. Nonetheless, from these data, it is clear that if the feed-
back gain is higher (relatively) or the input voltage is higher (for the same
output voltage), the converter is more vulnerable to attack by spurious signal
coupling, i.e., a smaller α suffices to cause “intermittent” subharmonics and
chaos. This observation can be easily understood because the converter con-
cerned is closer to the operating boundary with a higher feedback gain or a
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(e) sinewave intruder α = 0.004

(f) rectangular wave intruder α = 0.0044

FIGURE 10.5 continued.

higher input voltage, and a relatively smaller α will push it to subharmonics
and chaos.
If an analytical expression for the threshold of α is desired, we may fol-

low the standard procedure for finding the bifurcation point. The general
procedure involves deriving the Jacobian and evaluating its eigenvalues, as
explained previously in Chapters 5 and 7. We omit the details here. In sum-
mary, we first derive the iterative map for the buck converter, as described in
Chapter 3. The desirable form of the iterative map for this study is

xn = f(xn−1, E, A, Vref) (10.6)

where x is the usual state vector, E is the input voltage, A is the feedback gain,
and Vref is the reference voltage to which spurious signal is added. The next
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TABLE 10.1
Threshold values of α at which “intermittent” subharmonics occur.

Gain A E=19V E=20V E=21V E=22V E=23V E=24V

6.0 0.0045 0.0043 0.0041 0.0039 0.0036 0.0033
6.4 0.0038 0.0037 0.0035 0.0032 0.0030 0.0027
6.8 0.0033 0.0031 0.0029 0.0025 0.0024 0.0021
7.2 0.0028 0.0026 0.0024 0.0021 0.0019 0.0016
7.6 0.0023 0.0021 0.0019 0.0017 0.0014 0.0011
8.0 0.0019 0.0017 0.0015 0.0013 0.0010 0.0007
8.4 0.0015 0.0014 0.0011 0.0009 0.0005 0.0003

TABLE 10.2
Threshold values of α at which “intermittent” chaos occur.

Gain A E=19V E=20V E=21V E=22V E=23V E=24V

6.0 0.0076 0.0076 0.0075 0.0074 0.0072 0.0070
6.4 0.0068 0.0068 0.0067 0.0066 0.0065 0.0063
6.8 0.0062 0.0062 0.0061 0.0060 0.0058 0.0056
7.2 0.0056 0.0056 0.0055 0.0053 0.0051 0.0049
7.6 0.0050 0.0050 0.0049 0.0048 0.0046 0.0043
8.0 0.0045 0.0045 0.0044 0.0043 0.0041 0.0038
8.4 0.0041 0.0041 0.0040 0.0039 0.0036 0.0034

step is to derive the Jacobian, as illustrated in previous chapters. Suppose
the system is operating in a stable period-1 regime when no spurious signal
is added to Vref . Let X be the steady-state value of x. Then, we aim to
find αVref such that period-doubling occurs when Vref becomes (1 + α)Vref .
Precisely at the bifurcation point, one of the eigenvalues of the Jacobian of
f(.) is −1, i.e.,

eig [Jf(X , E, A, (1+ α)Vref)] = −1 (10.7)

where Jf(.) is the Jacobian of f(.) evaluated at the given steady-state condi-
tion with αVref added to Vref . Thus, by solving (10.7), the threshold amplitude
α can be found.

10.6 Summary of the Basic Phenomenon

In the foregoing, we have made an attempt to rationalize a commonly observed
but rarely explained phenomenon in power supply design. By using an appro-
priate circuit model, “intermittent” chaos and subharmonics can be explained
in terms of coupling of spurious signals. Several points are worth noting here.
First, our study in this chapter has focused on a simple voltage-feedback buck
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FIGURE 10.6
Graphical representation of the thresholds of coupling signal strength for “in-
termittent” chaos (upper surface) and “intermittent” subharmonics (lower
surface).

converter. Since the purpose is to illustrate the effect of the spurious signal
coupling, we retain only the essential part of the feedback circuit and the
main power stage. The key phenomenon is the modulation of a crucial pa-
rameter which leads to operation in the vicinity of the stability boundary.
Second, we have shown in particular that the signal strength and frequency of
the intruding signal are vital parameters that affect the type of intermittent
behavior and the period of intermittency. Finally, we should stress that the
same analysis can be used to study the intermittent chaotic and subharmonic
operations in other types of converters. For instance, current-mode controlled
converters are equally vulnerable to attacks by spurious signal coupling. It
should be obvious that if the compensation slope is modulated to the extent
that the converter is driven out of the usual stability region, we may observe
intermittent chaos or subharmonics in a current-mode controlled switching
converter.
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converter, International Journal of Circuit Theory and Applications,
vol. 23, no 3, pp. 217–225, 1995.

[151] C. K. Tse and W. C. Y. Chan, Experimental verification of bifurca-
tions in current-programmed boost converters: from quasi-periodicity to
period-doubling, Proceedings of European Conference on Circuit The-
ory and Design, pp. 1274–1279, 1997.

[152] C. K. Tse, O. Dranga and H. H. C. Iu, Bifurcation analysis of a power-
factor-correction boost converter: uncovering fast-scale instability, Pro-
ceedings of IEEE International Symposium on Circuits and Systems,
vol. 3, pp. 312–315, 2003.

©2004 CRC Press LLC



[153] C. K. Tse, S. C. Fung and M. W. Kwan, Experimental confirmation of
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Glossary

Almost periodic function

A function f(t) is an almost periodic function in t if, for any ε > 0 and for all
t,

|f(t+ τ )− f(t)| < ε

for any interval of length L = L(ε) and for some τ independent of t.

Aperiodic function

A function is aperiodic if it is not periodic. See also periodic function.

Attractor

An attractor is an invariant set of the state space for a dynamical system
which is reached asymptotically as t → ∞ or t → −∞. Any dissipative
system, starting from an ensemble of initial points, will shrink to an attractor.
Each attractor is surrounded in the phase space by its own basin of attraction
[29]. See also dissipative system.

Autonomous system

A system is autonomous if it can be described by a differential equation of
the form:

dx
dt

= f (x)

where f(x) does not depend on t [53, 135].

Averaged model of a switching system

An averaged model describes the dynamics of a switching system by taking
the weighted average of the differential equations describing the system in
all sub-intervals of time within a switching period. It effectively removes the
dynamical details within a switching period [156].
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Basin of attraction

For dissipative systems, more than one attractor may exist for a parameter
set. The system eventually approaches one particular attractor, depending
upon the initial condition. The closure of the set of initial conditions for
which the system approaches to a given attractor is known as the basin of
attraction for that attractor [56].

Bifurcation

Bifurcation is the sudden change of qualitative behavior of a system when one
or more parameters are varied. Bifurcation literally means splitting into two
parts. In nonlinear dynamics, the term has been used to mean splitting of
the behavior of a system at a threshold parameter value into two qualitatively
different behaviors, corresponding to parameter values below and above the
threshold [85].

Bifurcation diagram

A bifurcation diagram is a summary chart of the behavioral changes as some
selected parameters are varied [109].

Boost converter

The boost converter is a dc/dc converter whose output voltage is 1/(1 − d)
times higher than the input voltage, where d is the duty cycle of the main
power switch [121]. See also duty cycle.

Border collision

Border collision is a bifurcation that involves structural change of the system
at the bifurcation point. It is characterized by an alteration of the operation
of the system. In switching circuits, such an alteration is manifested by the
change in the topological sequence of the switching cycle [103].

Buck converter

The buck converter is a dc/dc converter whose output voltage is a fraction d
of the input voltage, where d is the duty cycle of the main power switch [121].
See also duty cycle.

Buck-boost converter

The buck-boost converter is dc/dc converter whose output voltage is either
higher or lower than the input voltage, depending upon the value of the duty
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cycle d. The input to output voltage ratio is given by d/(1 − d) [121]. See
also duty cycle.

Center manifold

In a local bifurcation involving loss of instability of an attractor, there is
a set of critical eigenvalues corresponding to a neutral (non-attracting non-
repelling) response under a linear approximation. All essential bifurcation
phenomena can be observed in the reduced space defined by the center man-
ifold which is the eigenspace associated with those critical eigenvalues [2].

Chaos

See deterministic chaos.

Chaotic transient

Chaotic transient is a long irregular transient motion, which eventually leads
to an attractor of any type. It can be due to the presence of an unstable
chaotic orbit coexisting with an attractor.

Characteristic multiplier

Characteristic multipliers are the eigenvalues of the Jacobian of a discrete-
time iterative system. The system is locally stable if all the characteristic
multipliers have a magnitude of less than 1 [138].

Co-dimension of bifurcation

The co-dimension of a bifurcation is the number of parameters that must be
specified in order to define that bifurcation [65].

Coexisting solutions

Some nonlinear dynamical systems may have two or more solutions coexisting
for given fixed parameter values [53].

Conservative system

In a conservative system, energy remains constant along the solution. Typi-
cally, a conservative system can be described by

dx
dt

=
∂H

∂y
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dy
dt

= −∂H

∂x

where H is called the Hamiltonian function or energy function. Conservative
systems are also called Hamiltonian systems [44].

Continuous conduction mode

When a dc/dc converter operates with its inductor current always assuming
a non-zero value, it is said to be operating in continuous conduction mode
[100].

Controlling chaos

Control of chaos refers to the elimination of chaotic motion in a system. The
usual objective is to make the system operate in a desired periodic state [75].

Crisis

A crisis is a bifurcation of an attractor in which the attractor changes abruptly
and discontinuously. An interior crisis is a catastrophic-explosive bifurca-
tion which involves a sudden, instantaneous enlargement of the attractor. A
boundary crisis is a catastrophic-dangerous bifurcation which has a blue sky
disappearance of the attractor, giving a sudden jump to a remote unrelated
attractor [101].

Ćuk converter

The Ćuk converter is a fourth-order dc/dc converter, which was invented by
Slobodán Ćuk in the late 1970s. This converter exhibits non-pulsating input
and output currents [37].

Current-mode control

Current-mode control is a popular control method for controlling dc/dc con-
verters. The output voltage error is amplified to give a control signal which
is used as a template to directly program the inductor current through a fast
control loop. Current-mode control is used mainly for the boost and buck-
boost types of converters [99].

Dangerous bifurcation

Dangerous bifurcation is a bifurcation via which a solution abruptly jumps to
a remote one [138].
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Deterministic chaos

A behavior exhibited by a deterministic system, which is characterized by a
random-like motion and lack of long-term predictability, is called chaos. When
a system is behaving chaotically, it is extremely sensitive to initial condition,
and its largest average Lyapunov exponent is positive [3].

Deterministic system

A deterministic system is a system that can be described without the inclusion
of any random process [4].

Difference equation

A difference equation describes the dynamics of a discrete variable. The usual
form is: xn+1 = f(xn, µ), where µ is a set of parameters. The term differ-
ence equation is used synonymically with iterative map, discrete-time map, or
Poincaré map.

Discontinuous conduction mode

When a dc/dc converter operates with its inductor current assuming a zero
value for some interval of time in a switching period, it is said to be operating
in discontinuous conduction mode [100].

Dissipative system

A system that dissipates energy as time elapses is a dissipative system. It has
a negative divergence, and always tends toward an attractor [162]. See also
divergence.

Divergence

For a system described by a set of N first-order differential equation, i.e.,
ẋ = f(x), the scalar divergence of f is [164]

div(f(x)) =
∂f1

∂x1
+

∂f2

∂x1
+ · · ·+ ∂fn

∂xn

Duty cycle or duty ratio

The duty cycle is defined as the fraction of the switching period during which
the main power switch (or the switch concerned) is turned on [128].
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Eigenvalue and eigenvector

Let A be an n-dimensional square matrix. The eigenvalues λ1, λ2, ..., λn are
the solutions of the characteristic equation

det(A− λ1) = 0

where 1 is the unit matrix. For each eigenvalue λi, there is a corresponding
eigenvector, vi, which satisfies

(A− λi1)vi = 0.

Equilibrium point or solution

For the dynamical system ẋ = f(x), the point X is called an equilibrium
point if

f(X) = 0.

Equilibrium points are also called fixed points.

Feigenbaum number

See period-doubling cascade.

Fixed point

See equilibrium point.

Flip bifurcation

Flip bifurcation is a bifurcation characterized by the loss of stability of a
period-1 solution and the birth of a period-2 solution. If the newly born
period-2 solution is stable, it is called supercritical flip bifurcation. If the newly
born period-2 solution is unstable, it is called subcritical flip bifurcation. Flip
bifurcation is also called period-doubling bifurcation [138]. See also bifurcation.

Fundamental solution

A fundamental solution is a fixed point. For switching converters under an
averaged modeling viewpoint, a fundamental solution is equivalent to a period-
1 solution.

Hamiltonian system

See conservative system.
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Harmonic balance

Harmonic balance is a common procedure to approximate the periodic solu-
tions of differential equations. The solution is assumed to take the form

x = a0 +
N∑
i=1

a2i−1 cos(iωt) +
N∑
i=1

a2i sin(iωt).

Then, putting it into the differential equation gives terms involving products
of powers of sin(iωt) and cos(iωt). These terms can then be expanded to sums
of sines and cosines of higher harmonics. Finally, harmonic balance implies
equating to zero all coefficients of sines and cosines. This gives expressions
for the unknown coefficients in the above approximate expression.

Hopf bifurcation

Hopf bifurcation is a bifurcation characterized by the loss of stability of a
focus as a parameter is varied, leading to the birth of a limit cycle. If the
newly born limit cycle is a stable one, it is called supercritical Hopf bifurcation.
If the newly born limit cycle is an unstable one, it is called subcritical Hopf
bifurcation. In the supercritical case, the system is attracted to a limit cycle
after the bifurcation, whereas in the subcritical case, the system goes to some
distant part of the state space. In terms of the movement of the eigenvalues as
the parameter is varied, Hopf bifurcation is characterized by the transversal
crossing of a pair of complex eigenvalues at the imaginary axis [135].

Intermittency

Intermittency is a behavior characterized by long periods of periodic motion
with occasional irregular bursts. There are three types of bifurcation that
lead to intermittency. The first type is related to tangent bifurcation of a
one-dimensional map, which is characterized by the loss of stability when the
real eigenvalue of the fixed point moves across the unit cycle at +1. The second
type is related to subcritical Hopf bifurcation. The third type is related to
subcritical period-doubling bifurcation [65].

Iterative map

See difference equation.
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Jacobian

For the one-dimensional system ẋ = f(x), the Jacobian is df(x)/dx [138].
For a higher-order system described by

ẋ =



f1(x)
f2(x)
...

fn(x)


 .

the Jacobian Jf is a matrix which is given by

Jf =




df1

dx1

df2

dx1
· · · dfn

dx1

df1

dx2

df2

dx2
· · · dfn

dx2
...

. . .
...

df1

dxn
df2

dxn
· · · dfn

dxn



x=X

.

Laplace transform

The Laplace transform is a mathematical transformation which converts a
time-domain representation f(t) to a complex-frequency-domain representa-
tion F (s) [144].

F (s) =
∫ ∞

0

e−stf(t) dt

It is also useful as a tool to solve differential equations. Typically, a differential
equation can be transformed to an algebraic one via the Laplace transform.

Limit cycle

A limit cycle is a periodic orbit assumed by an autonomous system.

Linearization

Linearization is a process whereby a nonlinear system is represented by a
linear differential equation. The resulting representation is accurate only for
describing the system in a small neighborhood of the equilibrium point about
which linearization is carried out [135]. For the system ẋ = f (x), the lin-
earized equation around the equilibrium point x =X takes the form

∆ẋ = Jf (X)∆x

where Jf(X) is the Jacobian evaluated at x =X.
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Logistic map

The logistic map is an iterative map given by

xn+1 = µxn(1− xn)

where µ is a parameter which can be varied to effect a period-doubling bifur-
cation [54].

Lorenz system

The Lorenz system is originally proposed to model the convective flow in the
atmosphere. It is a three-dimensional system given by

dx
dt

= −σ(x − y)

dy
dt

= −xz + rx− y

dz
dt

= xy − bz

where σ, r and b are dimensionless parameters [92, 134].

Lyapunov exponent

The Lyapunov exponent is a measure of the sensitive dependence of a system’s
solution to the initial condition [167].

Neimark-Sacker bifurcation

Neimark-Sacker bifurcation is a bifurcation whereby a periodic limit cycle is
replaced by a quasi-periodic solution. It is the same as Hopf bifurcation, but
is used mainly in discrete-time systems.

Non-autonomous system

A non-autonomous system is described by a differential equation having an
explicit dependence upon time, i.e.,

dx
dt

= f(x, t).

Normal form

The normal form of a nonlinear system is a simplified form of the system which
retains the necessary qualitative behavior of the system near a bifurcation
point [44]. See also center manifold.
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Period-doubling bifurcation

See flip bifurcation.

Period-doubling cascade

A period-doubling cascade is a common route to chaos, in which a periodic
orbit keeps doubling its period through a series of flip or period-doubling bi-
furcation. As the parameter increases in the direction of the cascade, the
bifurcations become more and more closely spaced. The ratio of the succes-
sive parameter intervals tends to a limit, which is known as the Feigenbaum
number, δ∞ = 4.66920... This limiting ratio is universal and arises in a very
wide class of problems [54].

Periodic function

A function f(t) is periodic with period T if

f(t + T ) = f(t) for all t.

Pitchfork bifurcation

Pitchfork bifurcation is a bifurcation characterized by the loss of stability of an
equilibrium point leading to the birth of two equilibrium points. If the newly
born equilibrium points are stable, it is a supercritical pitchfork bifurcation.
If the newly born equilibrium points are unstable, it is a subcritical pitchfork
bifurcation. In the supercritical case, the system assumes a new stable state,
whereas in the subcritical case, the system may blow up to a remote solution
[135].

Poincaré map

A Poincaré map describes a continuous dynamical system in terms of a discrete
map or difference equation. The method is based on a geometrical interpreta-
tion in which the trajectory moving in the state space intersects with a plane
at discrete instants of time. The relation between two consecutive points in-
tersecting the plane in the same direction is called a Poincaré map. Its final
form is mathematically equivalent to difference equation.

Poincaré section

A Poincaré section is a plane in the state space on which the trajectory inter-
sects transversally. The consecutive points of intersection define the Poincaré
map [109]. See also Poincaré map.
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Power factor

Power factor is defined as the ratio of the real power to the apparent power.
It normally refers to the input side of a converter. The real power is the
actual or average power supplied to the converter. The apparent power is
the product of the root-mean-square input voltage and the root-mean-square
input current [121, 147].

Power factor =
Real input power

Vin,rmsIin,rms

Power factor correction

The process whereby the power factor is raised to a value approaching unity
is called power factor correction. The converter that performs this process is
called power-factor-correction converter [147].

Quasi-periodic function

A function is quasi-periodic if it contains frequency components which are not
rationally related [110]. See also almost periodic function.

Robustness

Models or solutions that are not sensitive to small variations of parameters
are said to be robust.

Route to chaos

A route to chaos is the sequence of bifurcations through which a system be-
comes chaotic [138].

Saddle-node bifurcation

Saddle-node bifurcation is a bifurcation characterized by a sudden loss or
appearance of a solution [1]. It is also called blue sky bifurcation.

Stroboscopic map

A stroboscopic map is a discrete map or iterative map obtained by sampling
a continuous system periodically [19]. See also Poincaré map.
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Structural change of switching converters

A switching converter is said to be structurally changed if its topological se-
quence in a switching cycle is altered. A converter may encounter a structural
change at an operational boundary. A trivial case is when a converter changes
its operation from continuous conduction mode to discontinuous conduction
mode as a result of load variation.

Subharmonic cascade

See period-doubling cascade.

Subharmonic operation of switching circuits

A periodic operation is called a subharmonic operation if its period is an
integer multiple of the switching period. Subharmonic operation can result
from period-doubling bifurcation.

Trajectory

The solution x(t) of the system ẋ = f(x), given x(0) = x0, plotted on the
state space, is called the trajectory of the system. In the steady state, the
trajectory, if periodic, is called an orbit.

Transcritical bifurcation

Transcritical bifurcation is a bifurcation characterized by an exchange of sta-
bility between two equilibrium solutions [44].

Transient chaos

See chaotic transient.

Voltage-mode control

Voltage-mode control is a popular control method for dc/dc converters. The
output voltage is compared with a reference level, and the error is amplified
to become a control signal which is used to generate the driving signal for the
power switch with continuously adjusted duty cycle [118].
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