Fourth Edition, last update January 18, 2006

Lessons In Electric Circuits, Volume IV — Digital

By Tony R. Kuphaldt

Fourth Edition, last update January 18, 2006

©2000-2007, Tony R. Kuphalds

This book is published under the terms and conditions of the Design Science License. These
terms and conditions allow for free copying, distribution, and/or modification of this document by
the general public. The full Design Science License text is included in the last chapter.

As an open and collaboratively developed text, this book is distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Design Science License
for more details.

Available in its entirety as part of the Open Book Project collection at:

www.ibiblio.org/obp/electricCircuits

PRINTING HISTORY

e First Edition: Printed in June of 2000. Plain-ASCII illustrations for universal computer
readability.

e Second Edition: Printed in September of 2000. Illustrations reworked in standard graphic
(eps and jpeg) format. Source files translated to Texinfo format for easy online and printed
publication.

e Third Edition: Printed in February 2001. Source files translated to SubML format. SubML is
a simple markup language designed to easily convert to other markups like I TEX, HTML, or
DocBook using nothing but search-and-replace substitutions.

e Fourth Edition: Printed in March 2002. Additions and improvements to 3rd edition.

http://www.ibiblio.org/obp/electricCircuits

ii

Contents

1 NUMERATION SYSTEMS

1.1 Numbers and symbolso
1.2 Systems of numeration Lo e
1.3 Decimal versus binary numeration L0000
1.4 Octal and hexadecimal numeration
1.5 Octal and hexadecimal to decimal conversion
1.6 Conversion from decimal numeration,

2 BINARY ARITHMETIC

2.1 Numbers versus numeration Lo Lo
2.2 Binary addition L e e e
2.3 Negative binary numbers L L e
2.4 Subtraction L
2.5 Overflow o e
2.6 Bit groupings e
3 LOGIC GATES
3.1 Digital signals and gates L
3.2 The NOT gate i e e e e
3.3 The "buffer” gate L e
3.4 Multiple-input gates
3.5 TTL NAND and AND gates. o v i it e e e e e
3.6 TTL NOR and OR gates ittt
3.7 CMOS gate circuitry e
3.8 Special-output gates
3.9 Gate universalityo e
3.10 Logic signal voltage levels L o
3.11 DIP gate packaging e
3.12 Contributors L e

4 SWITCHES

4.1 Switch typeso
4.2 Switch contact design
4.3 Contact "normal” state and make/break sequence

iii

iv

4.4 Contact "bounce”

ELECTROMECHANICAL RELAYS

5.1 Relay construction oL
5.2 Contactors
5.3 Time-delay relays L
5.4 Protectiverelays o
5.5 Solid-state relays

LADDER LOGIC

6.1 7Ladder” diagramso
6.2 Digital logic functions L oo,
6.3 Permissive and interlock circuits 0o 0L
6.4 Motor control circuits Lo
6.5 Fail-safedesign
6.6 Programmable logic controllers0,
6.7 Contributors L

BOOLEAN ALGEBRA

7.1 Imtroduction
7.2 Boolean arithmetic L 0oL,
7.3 Boolean algebraic identities o0 0L
7.4 Boolean algebraic properties
7.5 Boolean rules for simplification
7.6 Circuit simplification examples
7.7 The Exclusive-OR function
7.8 DeMorgan’s Theorems
7.9 Converting truth tables into Boolean expressions

KARNAUGH MAPPING

8.1 Imtroduction. L oo
8.2 Venn diagrams and sets
8.3 DBoolean Relationships on Venn Diagrams
8.4 Making a Venn diagram look like a Karnaugh map

8.5 Karnaugh maps, truth tables, and Boolean expressions

8.6 Logic simplification with Karnaugh maps
8.7 Larger 4-variable Karnaugh maps
8.8 Minterm vs maxterm solution L.
8.9 ¥ (sum) and IT (product) notation
8.10 Don’t care cells in the Karnaugh map
8.11 Larger 5 & 6-variable Karnaugh maps

COMBINATIONAL LOGIC FUNCTIONS

CONTENTS

CONTENTS

10 MULTIVIBRATORS

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

Digital logic with feedback L oo
The S-Rlatch oL o
The gated S-Rlatch
The Dlatch o o
Edge-triggered latches: Flip-Flops
The J-K flip-flop o L o e
Asynchronous flip-flop inputs
Monostable multivibratorso

11 COUNTERS

11.1
11.2
11.3
114

Binary count sequence
Asynchronous counters e e e e
Synchronous counters L o
Counter modulus L

12 SHIFT REGISTERS

12.1
12.2
12.3
12.4
12.5
12.6
12.7

Introduction oL
shift register, serial-in/serial-out shift o L.
shift register, parallel-in, serial-out L 0.
Serial-in, parallel-out shift register oo Lo
Parallel-in, parallel-out, universal shift register
Ring counters oL
references oL e e e

13 DIGITAL-ANALOG CONVERSION

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

Introduction oL
The R/2"R DAC o o
The R/2R DAC o
Flash ADC e
Digital ramp ADC e
Successive approximation ADC oL o
Tracking ADC 0 e e
Slope (integrating) ADC
Delta-Sigma (AX) ADC o

13.10Practical considerations of ADC circuitso

14 DIGITAL COMMUNICATION

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

Introduction L e e e e e e
Networks and busses e e e
Data flow e e e
Electrical signal types L
Optical data communication
Network topology o e
Network protocols e e e
Practical considerations Lo

vi CONTENTS

15 DIGITAL STORAGE (MEMORY) 419
15.1 Why digital? e 419
15.2 Digital memory terms and concepts 420
15.3 Modern nonmechanical memory Lo Lo 422
15.4 Historical, nonmechanical memory technologies 424
15.5 Read-only memory oL e 429
15.6 Memory with moving parts: "Drives” o 430

16 PRINCIPLES OF DIGITAL COMPUTING 433
16.1 A binary adder L 433
16.2 Look-up tables e 434
16.3 Finite-state machines L L e 439
16.4 MICTOPIrOCESSOTS « v v v v v v v e v e e e e e e e e e e e e e e e e e 443
16.5 Microprocessor programming a e 445

A-1 ABOUT THIS BOOK 449

A-2 CONTRIBUTOR LIST 453

A-3 DESIGN SCIENCE LICENSE 457

Chapter 1

NUMERATION SYSTEMS

Contents
1.1 Numbers and symbols v i i it i it ittt e 1
1.2 Systems of numeration 00000 n e oo e
1.3 Decimal versus binary numeration 8
1.4 Octal and hexadecimal numeration 10
1.5 Octal and hexadecimal to decimal conversion 12
1.6 Conversion from decimal numeration 13

”There are three types of people: those who can count, and those who can’t.”
Anonymous

1.1 Numbers and symbols

The expression of numerical quantities is something we tend to take for granted. This is both a
good and a bad thing in the study of electronics. It is good, in that we’re accustomed to the use
and manipulation of numbers for the many calculations used in analyzing electronic circuits. On
the other hand, the particular system of notation we’ve been taught from grade school onward is
not the system used internally in modern electronic computing devices, and learning any different
system of notation requires some re-examination of deeply ingrained assumptions.

First, we have to distinguish the difference between numbers and the symbols we use to represent
numbers. A number is a mathematical quantity, usually correlated in electronics to a physical
quantity such as voltage, current, or resistance. There are many different types of numbers. Here
are just a few types, for example:

WHOLE NUMBERS:
1, 2, 3, 4, 5,6, 7,8, 9.

INTEGERS:
-4, -3, -2, -1, 0, 1, 2, 3, 4 .

2 CHAPTER 1. NUMERATION SYSTEMS

IRRATIONAL NUMBERS:
m (approx. 3.1415927), e (approx. 2.718281828),
square root of any prime

REAL NUMBERS:
(A1l one-dimensional numerical values, negative and positive,
including zero, whole, integer, and irrational numbers)

COMPLEX NUMBERS:
3 -3j4, 34.5 /[20°

Different types of numbers find different application in the physical world. Whole numbers
work well for counting discrete objects, such as the number of resistors in a circuit. Integers are
needed when negative equivalents of whole numbers are required. Irrational numbers are numbers
that cannot be exactly expressed as the ratio of two integers, and the ratio of a perfect circle’s
circumference to its diameter (7) is a good physical example of this. The non-integer quantities of
voltage, current, and resistance that we’re used to dealing with in DC circuits can be expressed as
real numbers, in either fractional or decimal form. For AC circuit analysis, however, real numbers
fail to capture the dual essence of magnitude and phase angle, and so we turn to the use of complex
numbers in either rectangular or polar form.

If we are to use numbers to understand processes in the physical world, make scientific predictions,
or balance our checkbooks, we must have a way of symbolically denoting them. In other words, we
may know how much money we have in our checking account, but to keep record of it we need to
have some system worked out to symbolize that quantity on paper, or in some other kind of form
for record-keeping and tracking. There are two basic ways we can do this: analog and digital. With
analog representation, the quantity is symbolized in a way that is infinitely divisible. With digital
representation, the quantity is symbolized in a way that is discretely packaged.

You're probably already familiar with an analog representation of money, and didn’t realize it
for what it was. Have you ever seen a fund-raising poster made with a picture of a thermometer on
it, where the height of the red column indicated the amount of money collected for the cause? The
more money collected, the taller the column of red ink on the poster.

1.1. NUMBERS AND SYMBOLS 3

An analog representation
of a numerical quantity

— $50,000
— $40,000
— $30,000
— $20,000
— $10,000

— $0

This is an example of an analog representation of a number. There is no real limit to how finely
divided the height of that column can be made to symbolize the amount of money in the account.
Changing the height of that column is something that can be done without changing the essential
nature of what it is. Length is a physical quantity that can be divided as small as you would like,
with no practical limit. The slide rule is a mechanical device that uses the very same physical
quantity — length — to represent numbers, and to help perform arithmetical operations with two or
more numbers at a time. It, too, is an analog device.

On the other hand, a digital representation of that same monetary figure, written with standard
symbols (sometimes called ciphers), looks like this:

$35,955.38

Unlike the ”thermometer” poster with its red column, those symbolic characters above cannot
be finely divided: that particular combination of ciphers stand for one quantity and one quantity
only. If more money is added to the account (+ $40.12), different symbols must be used to represent
the new balance ($35,995.50), or at least the same symbols arranged in different patterns. This is an
example of digital representation. The counterpart to the slide rule (analog) is also a digital device:
the abacus, with beads that are moved back and forth on rods to symbolize numerical quantities:

4 CHAPTER 1. NUMERATION SYSTEMS

Slide rule (an analog device)

1 1 | IIIIIII I II IIHIIIIIIII I II IIIIII IIIII II IIIIII IIIII l T S“de

Numerical quantities are represented by
the positioning of the slide.

Abacus (a digital device)

Numerical quantities are represented by
the discrete positions of the beads.

Lets contrast these two methods of numerical representation:

ANALOG DIGITAL

Intuitively understood ----------—- Requires training to interpret
Infinitely divisible —-———=-—-----——- Discrete

Prone to errors of precision —-———--- Absolute precision

Interpretation of numerical symbols is something we tend to take for granted, because it has been
taught to us for many years. However, if you were to try to communicate a quantity of something to
a person ignorant of decimal numerals, that person could still understand the simple thermometer
chart!

The infinitely divisible vs. discrete and precision comparisons are really flip-sides of the same
coin. The fact that digital representation is composed of individual, discrete symbols (decimal digits
and abacus beads) necessarily means that it will be able to symbolize quantities in precise steps. On
the other hand, an analog representation (such as a slide rule’s length) is not composed of individual
steps, but rather a continuous range of motion. The ability for a slide rule to characterize a numerical
quantity to infinite resolution is a trade-off for imprecision. If a slide rule is bumped, an error will
be introduced into the representation of the number that was ”entered” into it. However, an abacus

1.1. NUMBERS AND SYMBOLS 5

must be bumped much harder before its beads are completely dislodged from their places (sufficient
to represent a different number).

Please don’t misunderstand this difference in precision by thinking that digital representation
is necessarily more accurate than analog. Just because a clock is digital doesn’t mean that it will
always read time more accurately than an analog clock, it just means that the interpretation of its
display is less ambiguous.

Divisibility of analog versus digital representation can be further illuminated by talking about the
representation of irrational numbers. Numbers such as 7 are called irrational, because they cannot
be exactly expressed as the fraction of integers, or whole numbers. Although you might have learned
in the past that the fraction 22/7 can be used for 7 in calculations, this is just an approximation.
The actual number ”pi” cannot be exactly expressed by any finite, or limited, number of decimal
places. The digits of m go on forever:

3.1415926535897932384 .

It is possible, at least theoretically, to set a slide rule (or even a thermometer column) so as
to perfectly represent the number 7, because analog symbols have no minimum limit to the degree
that they can be increased or decreased. If my slide rule shows a figure of 3.141593 instead of
3.141592654, I can bump the slide just a bit more (or less) to get it closer yet. However, with digital
representation, such as with an abacus, I would need additional rods (place holders, or digits) to
represent 7 to further degrees of precision. An abacus with 10 rods simply cannot represent any
more than 10 digits worth of the number 7, no matter how I set the beads. To perfectly represent
7, an abacus would have to have an infinite number of beads and rods! The tradeoff, of course, is
the practical limitation to adjusting, and reading, analog symbols. Practically speaking, one cannot
read a slide rule’s scale to the 10th digit of precision, because the marks on the scale are too coarse
and human vision is too limited. An abacus, on the other hand, can be set and read with no
interpretational errors at all.

Furthermore, analog symbols require some kind of standard by which they can be compared for
precise interpretation. Slide rules have markings printed along the length of the slides to translate
length into standard quantities. Even the thermometer chart has numerals written along its height
to show how much money (in dollars) the red column represents for any given amount of height.
Imagine if we all tried to communicate simple numbers to each other by spacing our hands apart
varying distances. The number 1 might be signified by holding our hands 1 inch apart, the number
2 with 2 inches, and so on. If someone held their hands 17 inches apart to represent the number 17,
would everyone around them be able to immediately and accurately interpret that distance as 177
Probably not. Some would guess short (15 or 16) and some would guess long (18 or 19). Of course,
fishermen who brag about their catches don’t mind overestimations in quantity!

Perhaps this is why people have generally settled upon digital symbols for representing numbers,
especially whole numbers and integers, which find the most application in everyday life. Using the
fingers on our hands, we have a ready means of symbolizing integers from 0 to 10. We can make
hash marks on paper, wood, or stone to represent the same quantities quite easily:

5 +5 +3 =13

T 1]

For large numbers, though, the "hash mark” numeration system is too inefficient.

6 CHAPTER 1. NUMERATION SYSTEMS

1.2 Systems of numeration

The Romans devised a system that was a substantial improvement over hash marks, because it used
a variety of symbols (or ciphers) to represent increasingly large quantities. The notation for 1 is the
capital letter I. The notation for 5 is the capital letter V. Other ciphers possess increasing values:

X =10
L =50
C = 100
D = 500
M = 1000

If a cipher is accompanied by another cipher of equal or lesser value to the immediate right of it,
with no ciphers greater than that other cipher to the right of that other cipher, that other cipher’s
value is added to the total quantity. Thus, VIIT symbolizes the number 8, and CLVII symbolizes
the number 157. On the other hand, if a cipher is accompanied by another cipher of lesser value to
the immediate left, that other cipher’s value is subtracted from the first. Therefore, IV symbolizes
the number 4 (V minus I), and CM symbolizes the number 900 (M minus C). You might have noticed
that ending credit sequences for most motion pictures contain a notice for the date of production,
in Roman numerals. For the year 1987, it would read: MCMLXXXVII. Let’s break this numeral down
into its constituent parts, from left to right:

M = 1000
+
CM = 900

L =50

Aren’t you glad we don’t use this system of numeration? Large numbers are very difficult to
denote this way, and the left vs. right / subtraction vs. addition of values can be very confusing,
too. Another major problem with this system is that there is no provision for representing the
number zero or negative numbers, both very important concepts in mathematics. Roman culture,
however, was more pragmatic with respect to mathematics than most, choosing only to develop their
numeration system as far as it was necessary for use in daily life.

We owe one of the most important ideas in numeration to the ancient Babylonians, who were
the first (as far as we know) to develop the concept of cipher position, or place value, in representing
larger numbers. Instead of inventing new ciphers to represent larger numbers, as the Romans did,
they re-used the same ciphers, placing them in different positions from right to left. Our own decimal
numeration system uses this concept, with only ten ciphers (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) used in
”weighted” positions to represent very large and very small numbers.

1.2. SYSTEMS OF NUMERATION 7

Each cipher represents an integer quantity, and each place from right to left in the notation
represents a multiplying constant, or weight, for each integer quantity. For example, if we see the
decimal notation ”71206”, we known that this may be broken down into its constituent weight-
products as such:

1206 = 1000 + 200 + 6
1206 = (1 x 1000) + (2 x 100) + (0 x 10) + (6 x 1)

Each cipher is called a digit in the decimal numeration system, and each weight, or place value, is
ten times that of the one to the immediate right. So, we have a ones place, a tens place, a hundreds
place, a thousands place, and so on, working from right to left.

Right about now, you’re probably wondering why I'm laboring to describe the obvious. Who
needs to be told how decimal numeration works, after you've studied math as advanced as algebra
and trigonometry? The reason is to better understand other numeration systems, by first knowing
the how’s and why’s of the one you're already used to.

The decimal numeration system uses ten ciphers, and place-weights that are multiples of ten.
What if we made a numeration system with the same strategy of weighted places, except with fewer
or more ciphers?

The binary numeration system is such a system. Instead of ten different cipher symbols, with
each weight constant being ten times the one before it, we only have two cipher symbols, and each
weight constant is twice as much as the one before it. The two allowable cipher symbols for the
binary system of numeration are ”1” and ”0,” and these ciphers are arranged right-to-left in doubling
values of weight. The rightmost place is the ones place, just as with decimal notation. Proceeding
to the left, we have the twos place, the fours place, the eights place, the sizteens place, and so on.
For example, the following binary number can be expressed, just like the decimal number 1206, as
a sum of each cipher value times its respective weight constant:

11010
11010

2+ 8 + 16 = 26
(1 x16) + 1 x8)+((O0x4)+ (1x2)+ Ox1D

This can get quite confusing, as I've written a number with binary numeration (11010), and
then shown its place values and total in standard, decimal numeration form (16 + 8 + 2 = 26). In
the above example, we're mixing two different kinds of numerical notation. To avoid unnecessary
confusion, we have to denote which form of numeration we’re using when we write (or type!).
Typically, this is done in subscript form, with a ”2” for binary and a ”10” for decimal, so the binary
number 11010, is equal to the decimal number 264g.

The subscripts are not mathematical operation symbols like superscripts (exponents) are. All
they do is indicate what system of numeration we’re using when we write these symbols for other
people to read. If you see ”31(”, all this means is the number three written using decimal numeration.
However, if you see 7319”7, this means something completely different: three to the tenth power
(59,049). As usual, if no subscript is shown, the cipher(s) are assumed to be representing a decimal
number.

Commonly, the number of cipher types (and therefore, the place-value multiplier) used in a
numeration system is called that system’s base. Binary is referred to as ”base two” numeration, and
decimal as "base ten.” Additionally, we refer to each cipher position in binary as a bit rather than
the familiar word digit used in the decimal system.

8 CHAPTER 1. NUMERATION SYSTEMS

Now, why would anyone use binary numeration? The decimal system, with its ten ciphers, makes
a lot of sense, being that we have ten fingers on which to count between our two hands. (It is inter-
esting that some ancient central American cultures used numeration systems with a base of twenty.
Presumably, they used both fingers and toes to count!!). But the primary reason that the binary
numeration system is used in modern electronic computers is because of the ease of representing two
cipher states (0 and 1) electronically. With relatively simple circuitry, we can perform mathematical
operations on binary numbers by representing each bit of the numbers by a circuit which is either on
(current) or off (no current). Just like the abacus with each rod representing another decimal digit,
we simply add more circuits to give us more bits to symbolize larger numbers. Binary numeration
also lends itself well to the storage and retrieval of numerical information: on magnetic tape (spots
of iron oxide on the tape either being magnetized for a binary ”1” or demagnetized for a binary ”07”),
optical disks (a laser-burned pit in the aluminum foil representing a binary ”1” and an unburned
spot representing a binary ”07”), or a variety of other media types.

Before we go on to learning exactly how all this is done in digital circuitry, we need to become
more familiar with binary and other associated systems of numeration.

1.3 Decimal versus binary numeration

Let’s count from zero to twenty using four different kinds of numeration systems: hash marks,
Roman numerals, decimal, and binary:

System Hash Marks Roman Decimal Binary
Zero n/a n/a 0 0
One \ I 1 1
Two I II 2 10
Three Il 111 3 11
Four 1] v 4 100
Five /M7 v 5 101
Six /|7] VI 6 110
Seven /17] VII 7 111
Eight /|71 VIII 8 1000
Nine /M7 IX 9 1001
Ten alivaviiiv X 10 1010
Eleven v XI 11 1011
Twelve iivaviiiral XII 12 1100
Thirteen /|||/ /]||/ ||| XIII 13 1101
Fourteen /|||/ /|||/ ||l XIV 14 1110
Fifteen /|||/ /|I|I/ /]||/ XV 15 1111
Sixteen /|||/ /|I|I/ /|||I/ | XVI 16 10000
Seventeen /|||/ /|||/ /|||I/ || XVII 17 10001
Eighteen /|||/ /|||/ /1|7 || XVIII 18 10010
Nineteen /|||/ /|||/ /1|I/ ||| XIX 19 10011
Twenty Al lvavalivavalivavaiivi XX 20 10100

Neither hash marks nor the Roman system

are very practical for symbolizing large numbers.

1.3. DECIMAL VERSUS BINARY NUMERATION 9

Obviously, place-weighted systems such as decimal and binary are more efficient for the task. No-
tice, though, how much shorter decimal notation is over binary notation, for the same number of
quantities. What takes five bits in binary notation only takes two digits in decimal notation.

This raises an interesting question regarding different numeration systems: how large of a number
can be represented with a limited number of cipher positions, or places? With the crude hash-mark
system, the number of places IS the largest number that can be represented, since one hash mark
”place” is required for every integer step. For place-weighted systems of numeration, however, the
answer is found by taking base of the numeration system (10 for decimal, 2 for binary) and raising
it to the power of the number of places. For example, 5 digits in a decimal numeration system
can represent 100,000 different integer number values, from 0 to 99,999 (10 to the 5th power =
100,000). 8 bits in a binary numeration system can represent 256 different integer number values,
from 0 to 11111111 (binary), or 0 to 255 (decimal), because 2 to the 8th power equals 256. With
each additional place position to the number field, the capacity for representing numbers increases
by a factor of the base (10 for decimal, 2 for binary).

An interesting footnote for this topic is the one of the first electronic digital computers, the
Eniac. The designers of the Eniac chose to represent numbers in decimal form, digitally, using a
series of circuits called "ring counters” instead of just going with the binary numeration system, in
an effort to minimize the number of circuits required to represent and calculate very large numbers.
This approach turned out to be counter-productive, and virtually all digital computers since then
have been purely binary in design.

To convert a number in binary numeration to its equivalent in decimal form, all you have to
do is calculate the sum of all the products of bits with their respective place-weight constants. To
illustrate:

Convert 11001101, to decimal form:

bits = 1 1 0 01 1 0 1
weight = 1 6 3 1 8 4 2 1
(in decimal 2 4 2 6

notation) 8

The bit on the far right side is called the Least Significant Bit (LSB), because it stands in the
place of the lowest weight (the one’s place). The bit on the far left side is called the Most Significant
Bit (MSB), because it stands in the place of the highest weight (the one hundred twenty-eight’s
place). Remember, a bit value of 71”7 means that the respective place weight gets added to the total
value, and a bit value of ”0” means that the respective place weight does not get added to the total
value. With the above example, we have:

12819 + 6419 + 819 + 410 + 110 = 205y

If we encounter a binary number with a dot (.), called a ”binary point” instead of a decimal
point, we follow the same procedure, realizing that each place weight to the right of the point is
one-half the value of the one to the left of it (just as each place weight to the right of a decimal
point is one-tenth the weight of the one to the left of it). For example:

Convert 101.0115 to decimal form:

10 CHAPTER 1. NUMERATION SYSTEMS

bits = i1 01 . 0 1 1

weight = 4 2 1 1 1 1
(in decimal / /]
notation) 2 4 8

419 + 119 + 0.25¢9 + 0.12579 = 5.375qg

1.4 Octal and hexadecimal numeration

Because binary numeration requires so many bits to represent relatively small numbers compared
to the economy of the decimal system, analyzing the numerical states inside of digital electronic
circuitry can be a tedious task. Computer programmers who design sequences of number codes
instructing a computer what to do would have a very difficult task if they were forced to work with
nothing but long strings of 1’s and 0’s, the "native language” of any digital circuit. To make it easier
for human engineers, technicians, and programmers to ”speak” this language of the digital world,
other systems of place-weighted numeration have been made which are very easy to convert to and
from binary.

One of those numeration systems is called octal, because it is a place-weighted system with a
base of eight. Valid ciphers include the symbols 0, 1, 2, 3, 4, 5, 6, and 7. Each place weight differs
from the one next to it by a factor of eight.

Another system is called hezadecimal, because it is a place-weighted system with a base of sixteen.
Valid ciphers include the normal decimal symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, plus six alphabetical
characters A, B, C, D, E, and F, to make a total of sixteen. As you might have guessed already,
each place weight differs from the one before it by a factor of sixteen.

Let’s count again from zero to twenty using decimal, binary, octal, and hexadecimal to contrast
these systems of numeration:

Number Decimal Binary Octal Hexadecimal
Zero 0 0 0 0
One 1 1 1 1
Two 2 10 2 2
Three 3 11 3 3
Four 4 100 4 4
Five 5 101 5 5
Six 6 110 6 6
Seven 7 111 7 7
Eight 8 1000 10 8
Nine 9 1001 11 9
Ten 10 1010 12 A
Eleven 11 1011 13 B
Twelve 12 1100 14 C

1.4. OCTAL AND HEXADECIMAL NUMERATION 11

Thirteen 13 1101 15 D
Fourteen 14 1110 16 E
Fifteen 15 1111 17 F
Sixteen 16 10000 20 10
Seventeen 17 10001 21 11
Eighteen 18 10010 22 12
Nineteen 19 10011 23 13
Twenty 20 10100 24 14

Octal and hexadecimal numeration systems would be pointless if not for their ability to be easily
converted to and from binary notation. Their primary purpose in being is to serve as a ”shorthand”
method of denoting a number represented electronically in binary form. Because the bases of octal
(eight) and hexadecimal (sixteen) are even multiples of binary’s base (two), binary bits can be
grouped together and directly converted to or from their respective octal or hexadecimal digits.
With octal, the binary bits are grouped in three’s (because 23 = 8), and with hexadecimal, the
binary bits are grouped in four’s (because 24 = 16):

BINARY TO OCTAL CONVERSION
Convert 10110111.15 to octal:

implied zero implied zeros

. 010 110 111 100
Convert each group of bits -—= = —== ., ==
to its octal equivalent: 2 6 7 4

Answer: 10110111.1, = 267.43g

We had to group the bits in three’s, from the binary point left, and from the binary point right,
adding (implied) zeros as necessary to make complete 3-bit groups. Each octal digit was translated
from the 3-bit binary groups. Binary-to-Hexadecimal conversion is much the same:

BINARY TO HEXADECIMAL CONVERSION
Convert 10110111.15 to hexadecimal:

implied zeros

. 1011 0111 1000
Convert each group of bits -——- = . -
to its hexadecimal equivalent: B 7 8

Answer: 10110111.1, = B7.844

Here we had to group the bits in four’s, from the binary point left, and from the binary point
right, adding (implied) zeros as necessary to make complete 4-bit groups:

12 CHAPTER 1. NUMERATION SYSTEMS

Likewise, the conversion from either octal or hexadecimal to binary is done by taking each octal
or hexadecimal digit and converting it to its equivalent binary (3 or 4 bit) group, then putting all
the binary bit groups together.

Incidentally, hexadecimal notation is more popular, because binary bit groupings in digital equip-
ment are commonly multiples of eight (8, 16, 32, 64, and 128 bit), which are also multiples of 4.
Octal, being based on binary bit groups of 3, doesn’t work out evenly with those common bit group
sizings.

1.5 Octal and hexadecimal to decimal conversion

Although the prime intent of octal and hexadecimal numeration systems is for the ”shorthand”
representation of binary numbers in digital electronics, we sometimes have the need to convert from
either of those systems to decimal form. Of course, we could simply convert the hexadecimal or
octal format to binary, then convert from binary to decimal, since we already know how to do both,
but we can also convert directly.

Because octal is a base-eight numeration system, each place-weight value differs from either
adjacent place by a factor of eight. For example, the octal number 245.37 can be broken down into
place values as such:

octal

digits = 2 4 5 3 7

weight = 6 8 1 1 1

(in decimal 4 / /

notation) 8 6
4

The decimal value of each octal place-weight times its respective cipher multiplier can be deter-
mined as follows:

(2 x 6419) + (4 x819) + (5x 1y9) + (3 x 0.12519) +
(7 x 0.01562579) = 165.484375;

The technique for converting hexadecimal notation to decimal is the same, except that each
successive place-weight changes by a factor of sixteen. Simply denote each digit’s weight, multiply
each hexadecimal digit value by its respective weight (in decimal form), then add up all the decimal
values to get a total. For example, the hexadecimal number 30F.A9;4 can be converted like this:

hexadecimal

digits = 3 0F . A 9

weight = 2 1 1 1 1

(in decimal 5 / /

notation) 6 1 2
6 5

1.6. CONVERSION FROM DECIMAL NUMERATION 13

(3 x 2561p9) + (0 x 1699) + (15 x 139) + (10 x 0.062515) +
(9 x 0.00390625;p) = 783.66015625;¢

These basic techniques may be used to convert a numerical notation of any base into decimal
form, if you know the value of that numeration system’s base.

1.6 Conversion from decimal numeration

Because octal and hexadecimal numeration systems have bases that are multiples of binary (base 2),
conversion back and forth between either hexadecimal or octal and binary is very easy. Also, because
we are so familiar with the decimal system, converting binary, octal, or hexadecimal to decimal
form is relatively easy (simply add up the products of cipher values and place-weights). However,
conversion from decimal to any of these ”strange” numeration systems is a different matter.

The method which will probably make the most sense is the ”trial-and-fit” method, where you
try to ”fit” the binary, octal, or hexadecimal notation to the desired value as represented in decimal
form. For example, let’s say that I wanted to represent the decimal value of 87 in binary form. Let’s
start by drawing a binary number field, complete with place-weight values:

weight =

1 6 3 1 8 4 2 1
(in decimal 2 4 2 6
notation) 8

Well, we know that we won’t have a ”1” bit in the 128’s place, because that would immediately
give us a value greater than 87. However, since the next weight to the right (64) is less than 87, we
know that we must have a ”1” there.

1
. - - - - - - - Decimal value so far = 649
weight = 6 3 1 8 4 2 1
(in decimal 4 2 6
notation)

If we were to make the next place to the right a 71”7 as well, our total value would be 6419 +
3219, or 961¢. This is greater than 871y, so we know that this bit must be a ”70”. If we make the
next (16’s) place bit equal to ”1,” this brings our total value to 6419 + 1619, or 8010, which is closer
to our desired value (8719) without exceeding it:

1 0 1
. - - - - - - - Decimal value so far = 80y
weight = 6 3 1 8 4 2 1
(in decimal 4 2

14 CHAPTER 1. NUMERATION SYSTEMS

notation)

By continuing in this progression, setting each lesser-weight bit as we need to come up to our
desired total value without exceeding it, we will eventually arrive at the correct figure:

1 01 0 1 1 1
. - - - - - - - Decimal value so far = 879
weight = 6 3 1 8 4 2 1

(in decimal 4 2
notation)

This trial-and-fit strategy will work with octal and hexadecimal conversions, too. Let’s take the
same decimal figure, 871¢, and convert it to octal numeration:

weight = 6
(in decimal 4
notation)

If we put a cipher of ”1” in the 64’s place, we would have a total value of 641¢ (less than 871p).
If we put a cipher of ”2” in the 64’s place, we would have a total value of 1281 (greater than 871¢).
This tells us that our octal numeration must start with a ”1” in the 64’s place:

1
. - - - Decimal value so far = 6419
weight = 6 8 1
(in decimal 4

notation)

Now, we need to experiment with cipher values in the 8’s place to try and get a total (decimal)
value as close to 87 as possible without exceeding it. Trying the first few cipher options, we get:

"1" = 6419 + 819 = 7279
"an 6419 + 1619 = 8019
"3" = 6419 + 244 8810

A cipher value of ”3” in the 8’s place would put us over the desired total of 8719, so 727 it is!

1 2
. - - - Decimal value so far = 80jg
weight = 6 8 1
(in decimal 4
notation)

Now, all we need to make a total of 87 is a cipher of ”7” in the 1’s place:

1.6. CONVERSION FROM DECIMAL NUMERATION 15

1 2 7
. - - - Decimal value so far = 87y
weight = 6 8 1
(in decimal 4
notation)

Of course, if you were paying attention during the last section on octal/binary conversions,
you will realize that we can take the binary representation of (decimal) 871p, which we previously
determined to be 10101115, and easily convert from that to octal to check our work:

Implied zeros

I
001 010 111 Binary

1 2 7 Octal
Answer: 1010111, = 127y

Can we do decimal-to-hexadecimal conversion the same way? Sure, but who would want to?
This method is simple to understand, but laborious to carry out. There is another way to do these
conversions, which is essentially the same (mathematically), but easier to accomplish.

This other method uses repeated cycles of division (using decimal notation) to break the decimal
numeration down into multiples of binary, octal, or hexadecimal place-weight values. In the first
cycle of division, we take the original decimal number and divide it by the base of the numeration
system that we’re converting to (binary=2 octal=8, hex=16). Then, we take the whole-number
portion of division result (quotient) and divide it by the base value again, and so on, until we end
up with a quotient of less than 1. The binary, octal, or hexadecimal digits are determined by the
”remainders” left over by each division step. Let’s see how this works for binary, with the decimal
example of 871¢:

87 Divide 87 by 2, to get a quotient of 43.5
--— = 43.5 Division "remainder" = 1, or the < 1 portion
2 of the quotient times the divisor (0.5 x 2)
43 Take the whole-number portion of 43.5 (43)
-— = 21.5 and divide it by 2 to get 21.5, or 21 with

2 a remainder of 1

21 And so on . . . remainder =1 (0.5 x 2)
--— = 10.5

2

10 And so on . . . remainder = 0
-—— =25.0

16

5

-—- =2.5
2
2

-—-=1.0
2
1

--- =0.5
2

CHAPTER 1. NUMERATION SYSTEMS

And so on . . . remainder 1 (0.5 x 2)

I
o

And so on . . . remainder

. until we get a quotient of less than 1
remainder = 1 (0.5 x 2)

The binary bits are assembled from the remainders of the successive division steps, beginning
with the LSB and proceeding to the MSB. In this case, we arrive at a binary notation of 10101115.

When we divide by 2, we

will always get a quotient ending with either ”.0” or ”.5”, i.e. a remainder

of either 0 or 1. As was said before, this repeat-division technique for conversion will work for
numeration systems other than binary. If we were to perform successive divisions using a different
number, such as 8 for conversion to octal, we will necessarily get remainders between 0 and 7. Let’s
try this with the same decimal number, 871¢:

87
--- = 10.875
8

10
-——-=1.25

8

1
--- =0.125
8

RESULT: 8710 =

We can use a similar

Divide 87 by 8, to get a quotient of 10.875
Division "remainder" = 7, or the < 1 portion
of the quotient times the divisor (.875 x 8)

Remainder = 2

Quotient is less than 1, so we’ll stop here.
Remainder = 1

1274

technique for converting numeration systems dealing with quantities less

than 1, as well. For converting a decimal number less than 1 into binary, octal, or hexadecimal,
we use repeated multiplication, taking the integer portion of the product in each step as the next
digit of our converted number. Let’s use the decimal number 0.8125;¢ as an example, converting to

binary:
0.8125 x 2 = 1.625

0.625 x 2 = 1.25

0.25 x 2 =0.5

Integer portion of product = 1

Take < 1 portion of product and remultiply
Integer portion of product =1

Integer portion of product = 0

1.6. CONVERSION FROM DECIMAL NUMERATION 17

0.5x2=1.0 Integer portion of product =1
Stop when product is a pure integer
(ends with .0)

RESULT: 0.8125;p = 0.1101,

As with the repeat-division process for integers, each step gives us the next digit (or bit) further
away from the ”point.” With integer (division), we worked from the LSB to the MSB (right-to-left),
but with repeated multiplication, we worked from the left to the right. To convert a decimal number
greater than 1, with a j 1 component, we must use both techniques, one at a time. Take the decimal
example of 54.406251g, converting to binary:

REPEATED DIVISION FOR THE INTEGER PORTION:

54

--= = 27.0 Remainder = 0

2

27

--- = 13.5 Remainder =1 (0.5 x 2)
2

13

-—— = 6.5 Remainder = 1 (0.5 x 2)
2

6

--- = 3.0 Remainder = 0

2

3

--—-=1.5 Remainder = 1 (0.5 x 2)
2

1

--- =0.5 Remainder = 1 (0.5 x 2)
2

PARTIAL ANSWER: 5419 = 110110,

REPEATED MULTIPLICATION FOR THE < 1 PORTION:

0.40625 x 2 = 0.8125 Integer portion of product = 0

I
e

0.8125 x 2 = 1.625 Integer portion of product

18

CHAPTER 1.
0.625 x 2 = 1.25 Integer portion of product =1
0.25 x 2 =0.5 Integer portion of product = 0
0.5x2=1.0 Integer portion of product =1

PARTIAL ANSWER: 0.40625;75 = 0.01101,

COMPLETE ANSWER: 541, + 0.40625;, = 54.40625;,

1101102 + 0.011015 = 110110.01101,

NUMERATION SYSTEMS

Chapter 2

BINARY ARITHMETIC

Contents
2.1 Numbers versus numeration ¢ ot v v vt vt v e 19
2.2 Binary addition 0 e e e e e e e e e e e e e 20
2.3 Negative binary numbers v v it b i e e e e e e e 20
2.4 Subtraction i 0 e e e e e e e e e e e e e e e e 23
2.5 Overflow . . . v 0 i i i e 24
2.6 Bitgroupings i i i e e e e e e e e 26

2.1 Numbers versus numeration

It is imperative to understand that the type of numeration system used to represent numbers has
no impact upon the outcome of any arithmetical function (addition, subtraction, multiplication,
division, roots, powers, or logarithms). A number is a number is a number; one plus one will always
equal two (so long as we’re dealing with real numbers), no matter how you symbolize one, one,
and two. A prime number in decimal form is still prime if it’s shown in binary form, or octal, or
hexadecimal. 7 is still the ratio between the circumference and diameter of a circle, no matter what
symbol(s) you use to denote its value. The essential functions and interrelations of mathematics
are unaffected by the particular system of symbols we might choose to represent quantities. This
distinction between numbers and systems of numeration is critical to understand.

The essential distinction between the two is much like that between an object and the spoken
word(s) we associate with it. A house is still a house regardless of whether we call it by its English
name house or its Spanish name casa. The first is the actual thing, while the second is merely the
symbol for the thing.

That being said, performing a simple arithmetic operation such as addition (longhand) in binary
form can be confusing to a person accustomed to working with decimal numeration only. In this
lesson, we’ll explore the techniques used to perform simple arithmetic functions on binary numbers,
since these techniques will be employed in the design of electronic circuits to do the same. You
might take longhand addition and subtraction for granted, having used a calculator for so long, but

19

20 CHAPTER 2. BINARY ARITHMETIC

deep inside that calculator’s circuitry all those operations are performed ”longhand,” using binary
numeration. To understand how that’s accomplished, we need to review to the basics of arithmetic.

2.2 Binary addition

Adding binary numbers is a very simple task, and very similar to the longhand addition of decimal
numbers. As with decimal numbers, you start by adding the bits (digits) one column, or place
weight, at a time, from right to left. Unlike decimal addition, there is little to memorize in the way
of rules for the addition of binary bits:

0+0=0
1+0=1
0O0+1=1
1+1=10
1+1+1=11

Just as with decimal addition, when the sum in one column is a two-bit (two-digit) number, the
least significant figure is written as part of the total sum and the most significant figure is ”carried”
to the next left column. Consider the following examples:

11 1 <--- Carry bits ----- > 11
1001101 1001001 1000111
+ 0010010 + 0011001 + 0010110
1011111 1100010 1011101

The addition problem on the left did not require any bits to be carried, since the sum of bits in
each column was either 1 or 0, not 10 or 11. In the other two problems, there definitely were bits to
be carried, but the process of addition is still quite simple.

As we’ll see later, there are ways that electronic circuits can be built to perform this very task of
addition, by representing each bit of each binary number as a voltage signal (either "high,” for a 1;
or "low” for a 0). This is the very foundation of all the arithmetic which modern digital computers
perform.

2.3 Negative binary numbers

With addition being easily accomplished, we can perform the operation of subtraction with the same
technique simply by making one of the numbers negative. For example, the subtraction problem
of 7 - 5 is essentially the same as the addition problem 7 + (-5). Since we already know how to
represent positive numbers in binary, all we need to know now is how to represent their negative
counterparts and we’ll be able to subtract.

Usually we represent a negative decimal number by placing a minus sign directly to the left of
the most significant digit, just as in the example above, with -5. However, the whole purpose of
using binary notation is for constructing on/off circuits that can represent bit values in terms of
voltage (2 alternative values: either “high” or ”low”). In this context, we don’t have the luxury of a

2.3. NEGATIVE BINARY NUMBERS 21

third symbol such as a ”minus” sign, since these circuits can only be on or off (two possible states).
One solution is to reserve a bit (circuit) that does nothing but represent the mathematical sign:

1015 = 5y (positive)

Extra bit, representing sign (O=positive, l=negative)

01015 = 54 (positive)

Extra bit, representing sign (O=positive, l=negative)

11015 = =519 (negative)

As you can see, we have to be careful when we start using bits for any purpose other than
standard place-weighted values. Otherwise, 11015 could be misinterpreted as the number thirteen
when in fact we mean to represent negative five. To keep things straight here, we must first decide
how many bits are going to be needed to represent the largest numbers we’ll be dealing with, and
then be sure not to exceed that bit field length in our arithmetic operations. For the above example,
D've limited myself to the representation of numbers from negative seven (11113) to positive seven
(01112), and no more, by making the fourth bit the ”sign” bit. Only by first establishing these limits
can I avoid confusion of a negative number with a larger, positive number.

Representing negative five as 11015 is an example of the sign-magnitude system of negative
binary numeration. By using the leftmost bit as a sign indicator and not a place-weighted value, 1
am sacrificing the ”pure” form of binary notation for something that gives me a practical advantage:
the representation of negative numbers. The leftmost bit is read as the sign, either positive or
negative, and the remaining bits are interpreted according to the standard binary notation: left to
right, place weights in multiples of two.

As simple as the sign-magnitude approach is, it is not very practical for arithmetic purposes. For
instance, how do I add a negative five (11013) to any other number, using the standard technique
for binary addition? I'd have to invent a new way of doing addition in order for it to work, and
if T do that, I might as well just do the job with longhand subtraction; there’s no arithmetical
advantage to using negative numbers to perform subtraction through addition if we have to do it
with sign-magnitude numeration, and that was our goal!

There’s another method for representing negative numbers which works with our familiar tech-
nique of longhand addition, and also happens to make more sense from a place-weighted numeration
point of view, called complementation. With this strategy, we assign the leftmost bit to serve a
special purpose, just as we did with the sign-magnitude approach, defining our number limits just
as before. However, this time, the leftmost bit is more than just a sign bit; rather, it possesses a
negative place-weight value. For example, a value of negative five would be represented as such:

Extra bit, place weight = negative eight

10115 = 599 (negative)

(1 X —810) + (O X 410) + (1 X 210) + (1 X 110) = —510

22 CHAPTER 2. BINARY ARITHMETIC

With the right three bits being able to represent a magnitude from zero through seven, and
the leftmost bit representing either zero or negative eight, we can successfully represent any integer
number from negative seven (10012 = -819 + 119 = -119) to positive seven (0111 = 019 + 719 =
T10)-

Representing positive numbers in this scheme (with the fourth bit designated as the negative
weight) is no different from that of ordinary binary notation. However, representing negative num-
bers is not quite as straightforward:

Zero 0000

positive one 0001 negative one 1111
positive two 0010 negative two 1110
positive three 0011 negative three 1101
positive four 0100 negative four 1100
positive five 0101 negative five 1011
positive six 0110 negative six 1010
positive seven 0111 negative seven 1001

negative eight 1000

Note that the negative binary numbers in the right column, being the sum of the right three
bits’ total plus the negative eight of the leftmost bit, don’t ”count” in the same progression as the
positive binary numbers in the left column. Rather, the right three bits have to be set at the proper
value to equal the desired (negative) total when summed with the negative eight place value of the
leftmost bit.

Those right three bits are referred to as the two’s complement of the corresponding positive
number. Consider the following comparison:

positive number two’s complement
001 111
010 110
011 101
100 100
101 011
110 010
111 001

In this case, with the negative weight bit being the fourth bit (place value of negative eight), the
two’s complement for any positive number will be whatever value is needed to add to negative eight
to make that positive value’s negative equivalent. Thankfully, there’s an easy way to figure out the
two’s complement for any binary number: simply invert all the bits of that number, changing all
1’s to 0’s and vice versa (to arrive at what is called the one’s complement) and then add one! For
example, to obtain the two’s complement of five (1015), we would first invert all the bits to obtain
0105 (the "one’s complement”), then add one to obtain 011s, or -519 in three-bit, two’s complement
form.

Interestingly enough, generating the two’s complement of a binary number works the same if you
manipulate all the bits, including the leftmost (sign) bit at the same time as the magnitude bits.

2.4. SUBTRACTION 23

Let’s try this with the former example, converting a positive five to a negative five, but performing
the complementation process on all four bits. We must be sure to include the 0 (positive) sign bit
on the original number, five (01015). First, inverting all bits to obtain the one’s complement: 1010s.
Then, adding one, we obtain the final answer: 10115, or -51¢ expressed in four-bit, two’s complement
form.

It is critically important to remember that the place of the negative-weight bit must be already
determined before any two’s complement conversions can be done. If our binary numeration field
were such that the eighth bit was designated as the negative-weight bit (100000002), we’d have to
determine the two’s complement based on all seven of the other bits. Here, the two’s complement of
five (00001012) would be 11110115. A positive five in this system would be represented as 000001015,
and a negative five as 111110115.

2.4 Subtraction

We can subtract one binary number from another by using the standard techniques adapted for
decimal numbers (subtraction of each bit pair, right to left, "borrowing” as needed from bits to
the left). However, if we can leverage the already familiar (and easier) technique of binary addition
to subtract, that would be better. As we just learned, we can represent negative binary numbers
by using the ”two’s complement” method and a negative place-weight bit. Here, we’ll use those
negative binary numbers to subtract through addition. Here’s a sample problem:

Subtraction: 719 - 519 Addition equivalent: 719 + (=51¢g)

If all we need to do is represent seven and negative five in binary (two’s complemented) form, all
we need is three bits plus the negative-weight bit:

positive seven = 0111,
negative five 1011,

Now, let’s add them together:

1111 <--- Carry bits
0111
+ 1011

Discard extra bit

Answer = 00109

Since we've already defined our number bit field as three bits plus the negative-weight bit, the
fifth bit in the answer (1) will be discarded to give us a result of 00105, or positive two, which is the
correct answer.

Another way to understand why we discard that extra bit is to remember that the leftmost bit
of the lower number possesses a negative weight, in this case equal to negative eight. When we add

24 CHAPTER 2. BINARY ARITHMETIC

these two binary numbers together, what we're actually doing with the MSBs is subtracting the
lower number’s MSB from the upper number’s MSB. In subtraction, one never ”carries” a digit or
bit on to the next left place-weight.

Let’s try another example, this time with larger numbers. If we want to add -251¢ to 181,
we must first decide how large our binary bit field must be. To represent the largest (absolute
value) number in our problem, which is twenty-five, we need at least five bits, plus a sixth bit
for the negative-weight bit. Let’s start by representing positive twenty-five, then finding the two’s
complement and putting it all together into one numeration:

+2519 = 011001, (showing all six bits)

One’s complement of 11001, = 100110,

One’s complement + 1 = two’s complement = 100111,
-2515 = 100111,

Essentially, we're representing negative twenty-five by using the negative-weight (sixth) bit with
a value of negative thirty-two, plus positive seven (binary 1115).
Now, let’s represent positive eighteen in binary form, showing all six bits:

1819 = 0100109
Now, let’s add them together and see what we get:

11 <--- Carry bits
100111
+ 010010

111001

Since there were no ”extra” bits on the left, there are no bits to discard. The leftmost bit on
the answer is a 1, which means that the answer is negative, in two’s complement form, as it should
be. Converting the answer to decimal form by summing all the bits times their respective weight
values, we get:

(1 x -3219) + (1 x1699) + (1 x819) + (1 x 1190 = -Tyo

Indeed -71¢ is the proper sum of -2515 and 18;¢.

2.5 Overflow

One caveat with signed binary numbers is that of overflow, where the answer to an addition or
subtraction problem exceeds the magnitude which can be represented with the alloted number of
bits. Remember that the place of the sign bit is fixed from the beginning of the problem. With the
last example problem, we used five binary bits to represent the magnitude of the number, and the
left-most (sixth) bit as the negative-weight, or sign, bit. With five bits to represent magnitude, we
have a representation range of 2°, or thirty-two integer steps from 0 to maximum. This means that

2.5. OVERFLOW 25

we can represent a number as high as 4317 (0111115), or as low as -321¢ (100000z). If we set up an
addition problem with two binary numbers, the sixth bit used for sign, and the result either exceeds
43110 or is less than -321¢, our answer will be incorrect. Let’s try adding 1719 and 191y to see how
this overflow condition works for excessive positive numbers:

1710 = 100012 1910 = 100112

1 11 <--- Carry bits
(Showing sign bits) 010001
+ 010011

100100

The answer (1001002), interpreted with the sixth bit as the -321¢ place, is actually equal to -281¢,
not +361¢ as we should get with +1715 and +19;¢ added together! Obviously, this is not correct.
What went wrong? The answer lies in the restrictions of the six-bit number field within which we’re
working Since the magnitude of the true and proper sum (3619) exceeds the allowable limit for our
designated bit field, we have an overflow error. Simply put, six places doesn’t give enough bits to
represent the correct sum, so whatever figure we obtain using the strategy of discarding the left-most
”carry” bit will be incorrect.

A similar error will occur if we add two negative numbers together to produce a sum that is too
low for our six-bit binary field. Let’s try adding -1719 and -191¢ together to see how this works (or
doesn’t work, as the case may bel!):

-1710 = 101111, -19;9 = 101101,

1 1111 <--- Carry bits
(Showing sign bits) 101111
+ 101101

1011100

Discard extra bit
FINAL ANSWER: 0111009 = +2819

The (incorrect) answer is a positive twenty-eight. The fact that the real sum of negative seventeen
and negative nineteen was too low to be properly represented with a five bit magnitude field and a
sixth sign bit is the root cause of this difficulty.

Let’s try these two problems again, except this time using the seventh bit for a sign bit, and
allowing the use of 6 bits for representing the magnitude:

1710 + 1910 (-1710) + (-1910)

1 11 11 1111
0010001 1101111

26 CHAPTER 2. BINARY ARITHMETIC

+ 0010011 + 1101101

01001009 110111004

Discard extra bit

. ANSWERS: 01001009
10111009

+3619
-3610

By using bit fields sufficiently large to handle the magnitude of the sums, we arrive at the correct
answers.

In these sample problems we’ve been able to detect overflow errors by performing the addition
problems in decimal form and comparing the results with the binary answers. For example, when
adding +1719 and +19;(together, we knew that the answer was supposed to be +361¢, so when the
binary sum checked out to be -2819, we knew that something had to be wrong. Although this is a
valid way of detecting overflow, it is not very efficient. After all, the whole idea of complementation
is to be able to reliably add binary numbers together and not have to double-check the result by
adding the same numbers together in decimal form! This is especially true for the purpose of building
electronic circuits to add binary quantities together: the circuit has to be able to check itself for
overflow without the supervision of a human being who already knows what the correct answer is.

What we need is a simple error-detection method that doesn’t require any additional arithmetic.
Perhaps the most elegant solution is to check for the sign of the sum and compare it against the
signs of the numbers added. Obviously, two positive numbers added together should give a positive
result, and two negative numbers added together should give a negative result. Notice that whenever
we had a condition of overflow in the example problems, the sign of the sum was always opposite
of the two added numbers: +171¢ plus +1919 giving -281¢, or -171¢ plus -191¢ giving +2819. By
checking the signs alone we are able to tell that something is wrong.

But what about cases where a positive number is added to a negative number? What sign should
the sum be in order to be correct. Or, more precisely, what sign of sum would necessarily indicate an
overflow error? The answer to this is equally elegant: there will never be an overflow error when two
numbers of opposite signs are added together! The reason for this is apparent when the nature of
overflow is considered. Overflow occurs when the magnitude of a number exceeds the range allowed
by the size of the bit field. The sum of two identically-signed numbers may very well exceed the
range of the bit field of those two numbers, and so in this case overflow is a possibility. However, if a
positive number is added to a negative number, the sum will always be closer to zero than either of
the two added numbers: its magnitude must be less than the magnitude of either original number,
and so overflow is impossible.

Fortunately, this technique of overflow detection is easily implemented in electronic circuitry, and
it is a standard feature in digital adder circuits: a subject for a later chapter.

2.6 Bit groupings
The singular reason for learning and using the binary numeration system in electronics is to under-

stand how to design, build, and troubleshoot circuits that represent and process numerical quantities
in digital form. Since the bivalent (two-valued) system of binary bit numeration lends itself so easily

2.6. BIT GROUPINGS 27

to representation by ”"on” and ”off” transistor states (saturation and cutoff, respectively), it makes
sense to design and build circuits leveraging this principle to perform binary calculations.

If we were to build a circuit to represent a binary number, we would have to allocate enough
transistor circuits to represent as many bits as we desire. In other words, in designing a digital
circuit, we must first decide how many bits (maximum) we would like to be able to represent, since
each bit requires one on/off circuit to represent it. This is analogous to designing an abacus to
digitally represent decimal numbers: we must decide how many digits we wish to handle in this
primitive ”calculator” device, for each digit requires a separate rod with its own beads.

A 10-rod abacus

NS

Each rod represents
a single decimal digit

A ten-rod abacus would be able to represent a ten-digit decimal number, or a maxmium value
of 9,999,999,999. If we wished to represent a larger number on this abacus, we would be unable to,
unless additional rods could be added to it.

In digital, electronic computer design, it is common to design the system for a common ”bit
width:” a maximum number of bits allocated to represent numerical quantities. Early digital com-
puters handled bits in groups of four or eight. More modern systems handle numbers in clusters of
32 bits or more. To more conveniently express the ”bit width” of such clusters in a digital computer,
specific labels were applied to the more common groupings.

Eight bits, grouped together to form a single binary quantity, is known as a byte. Four bits,
grouped together as one binary number, is known by the humorous title of nibble, often spelled as
nybble.

A multitude of terms have followed byte and nibble for labeling specfiic groupings of binary
bits. Most of the terms shown here are informal, and have not been made ”authoritative” by any
standards group or other sanctioning body. However, their inclusion into this chapter is warranted
by their occasional appearance in technical literature, as well as the levity they add to an otherwise
dry subject:

e Bit: A single, bivalent unit of binary notation. Equivalent to a decimal ”digit.”
e Crumb, Tydbit, or Tayste: Two bits.

e Nibble, or Nybble: Four bits.

28 CHAPTER 2. BINARY ARITHMETIC

Nickle: Five bits.

Byte: Eight bits.
Deckle: Ten bits.

Playte: Sixteen bits.

Dynner: Thirty-two bits.

e Word: (system dependent).

The most ambiguous term by far is word, referring to the standard bit-grouping within a partic-
ular digital system. For a computer system using a 32 bit-wide ”data path,” a ”"word” would mean
32 bits. If the system used 16 bits as the standard grouping for binary quantities, a ”word” would
mean 16 bits. The terms playte and dynner, by contrast, always refer to 16 and 32 bits, respectively,
regardless of the system context in which they are used.

Context dependence is likewise true for derivative terms of word, such as double word and long-
word (both meaning twice the standard bit-width), half~word (half the standard bit-width), and
quad (meaning four times the standard bit-width). One humorous addition to this somewhat boring
collection of word-derivatives is the term chawmp, which means the same as half-word. For example,
a chawmp would be 16 bits in the context of a 32-bit digital system, and 18 bits in the context of a
36-bit system. Also, the term gawble is sometimes synonymous with word.

Definitions for bit grouping terms were taken from Eric S. Raymond’s ”Jargon Lexicon,” an
indexed collection of terms — both common and obscure — germane to the world of computer pro-
gramming.

Chapter 3

LOGIC GATES

Contents
3.1 Digital signalsand gates e 30
3.2 The NOT gate @ v i i i i i i i i i e et et et e e e e e e e 33
3.3 The ”buffer” gate i i e 45
3.4 Multiple-input gates L i L e e e e e e e e 48
3.4.1 The AND gate i i e 49
3.42 The NAND gate o i 51
3.43 TheORgate e 52
344 The NOR gate o e 53
3.4.5 The Negative-AND gate 54
3.4.6 The Negative-OR gate 55
3.4.7 The Exclusive-OR gate 56
3.4.8 The Exclusive-NOR gate 58
3.50 TTLNAND and AND gates.« v v vt v v v it v v vt o 59
36 TTLNORand OR gates it i i it v i o, 64
3.7 CMOS gate circuitry ¢ ¢ v v v v i v i i e et e e e e e e e e e e 67
3.8 Special-output gates L L e e e e e e e e 80
3.9 Gateuniversality L L e e e e e e e e e e 84
3.9.1 Constructing the NOT function 84
3.9.2 Constructing the ”buffer” function L. 85
3.9.3 Constructing the AND function 85
3.9.4 Constructing the NAND function 86
3.9.5 Constructing the OR function 87
3.9.6 Constructing the NOR function 88
3.10 Logic signal voltage levels 0000, 89
3.11 DIP gate packaging v ¢ v v v v v o v v v v v bt e e e e e 99
3.12 Contributors i e e e e e e e e e e e e e e e e e 101

29

30 CHAPTER 3. LOGIC GATES

3.1 Digital signals and gates

While the binary numeration system is an interesting mathematical abstraction, we haven’t yet seen
its practical application to electronics. This chapter is devoted to just that: practically applying the
concept of binary bits to circuits. What makes binary numeration so important to the application of
digital electronics is the ease in which bits may be represented in physical terms. Because a binary
bit can only have one of two different values, either 0 or 1, any physical medium capable of switching
between two saturated states may be used to represent a bit. Consequently, any physical system
capable of representing binary bits is able to represent numerical quantities, and potentially has the
ability to manipulate those numbers. This is the basic concept underlying digital computing.

Electronic circuits are physical systems that lend themselves well to the representation of binary
numbers. Transistors, when operated at their bias limits, may be in one of two different states:
either cutoff (no controlled current) or saturation (maximum controlled current). If a transistor
circuit is designed to maximize the probability of falling into either one of these states (and not
operating in the linear, or active, mode), it can serve as a physical representation of a binary bit. A
voltage signal measured at the output of such a circuit may also serve as a representation of a single
bit, a low voltage representing a binary ”0” and a (relatively) high voltage representing a binary
”71.” Note the following transistor circuit:

Transistor in saturation

\ — 5V

/

"high" input = "low" output

0V ="low" logic level (0)
5V ="high" logic level (1)

In this circuit, the transistor is in a state of saturation by virtue of the applied input voltage
(5 volts) through the two-position switch. Because it’s saturated, the transistor drops very little
voltage between collector and emitter, resulting in an output voltage of (practically) 0 volts. If
we were using this circuit to represent binary bits, we would say that the input signal is a binary
71”7 and that the output signal is a binary ”0.” Any voltage close to full supply voltage (measured
in reference to ground, of course) is considered a ”1” and a lack of voltage is considered a ”0.”
Alternative terms for these voltage levels are high (same as a binary 71”) and low (same as a binary
70”). A general term for the representation of a binary bit by a circuit voltage is logic level.

Moving the switch to the other position, we apply a binary ”0” to the input and receive a binary
71”7 at the output:

3.1. DIGITAL SIGNALS AND GATES 31

Transistor in cutoff

— 5V

"low" input = "high" output

0V ="low" logic level (0)
5V ="high" logic level (1)

What we’ve created here with a single transistor is a circuit generally known as a logic gate, or
simply gate. A gate is a special type of amplifier circuit designed to accept and generate voltage
signals corresponding to binary 1’s and 0’s. As such, gates are not intended to be used for amplifying
analog signals (voltage signals between 0 and full voltage). Used together, multiple gates may be
applied to the task of binary number storage (memory circuits) or manipulation (computing circuits),
each gate’s output representing one bit of a multi-bit binary number. Just how this is done is a
subject for a later chapter. Right now it is important to focus on the operation of individual gates.

The gate shown here with the single transistor is known as an inverter, or NOT gate, because it
outputs the exact opposite digital signal as what is input. For convenience, gate circuits are generally
represented by their own symbols rather than by their constituent transistors and resistors. The
following is the symbol for an inverter:

Inverter, or NOT gate

Input 4[>% Output

An alternative symbol for an inverter is shown here:

Input 46{} Output

Notice the triangular shape of the gate symbol, much like that of an operational amplifier. As was
stated before, gate circuits actually are amplifiers. The small circle, or ”bubble” shown on either the
input or output terminal is standard for representing the inversion function. As you might suspect,
if we were to remove the bubble from the gate symbol, leaving only a triangle, the resulting symbol
would no longer indicate inversion, but merely direct amplification. Such a symbol and such a gate
actually do exist, and it is called a buffer, the subject of the next section.

Like an operational amplifier symbol, input and output connections are shown as single wires,
the implied reference point for each voltage signal being ”ground.” In digital gate circuits, ground

32 CHAPTER 3. LOGIC GATES

is almost always the negative connection of a single voltage source (power supply). Dual, or ”split,”
power supplies are seldom used in gate circuitry. Because gate circuits are amplifiers, they require
a source of power to operate. Like operational amplifiers, the power supply connections for digital
gates are often omitted from the symbol for simplicity’s sake. If we were to show all the necessary
connections needed for operating this gate, the schematic would look something like this:

Vin

e — Ground

Power supply conductors are rarely shown in gate circuit schematics, even if the power supply
connections at each gate are. Minimizing lines in our schematic, we get this:

<
8
| <

A
N4
Y

"V..” stands for the constant voltage supplied to the collector of a bipolar junction transistor
circuit, in reference to ground. Those points in a gate circuit marked by the label "V..~ are all
connected to the same point, and that point is the positive terminal of a DC voltage source, usually
5 volts.

As we will see in other sections of this chapter, there are quite a few different types of logic gates,
most of which have multiple input terminals for accepting more than one signal. The output of any
gate is dependent on the state of its input(s) and its logical function.

One common way to express the particular function of a gate circuit is called a truth table. Truth
tables show all combinations of input conditions in terms of logic level states (either "high” or ”low,”
71”7 or 70,” for each input terminal of the gate), along with the corresponding output logic level,
either "high” or "low.” For the inverter, or NOT, circuit just illustrated, the truth table is very
simple indeed:

3.2. THE NOT GATE 33

NOT gate truth table
Input bo Output

Input | Output
0 1
1 0

Truth tables for more complex gates are, of course, larger than the one shown for the NOT gate.
A gate’s truth table must have as many rows as there are possibilities for unique input combinations.
For a single-input gate like the NOT gate, there are only two possibilities, 0 and 1. For a two input
gate, there are four possibilities (00, 01, 10, and 11), and thus four rows to the corresponding truth
table. For a three-input gate, there are eight possibilities (000, 001, 010, 011, 100, 101, 110, and
111), and thus a truth table with eight rows are needed. The mathematically inclined will realize
that the number of truth table rows needed for a gate is equal to 2 raised to the power of the number
of input terminals.

e REVIEW:

e In digital circuits, binary bit values of 0 and 1 are represented by voltage signals measured in
reference to a common circuit point called ground. An absence of voltage represents a binary
70" and the presence of full DC supply voltage represents a binary ”1.”

e A logic gate, or simply gate, is a special form of amplifier circuit designed to input and output
logic level voltages (voltages intended to represent binary bits). Gate circuits are most com-
monly represented in a schematic by their own unique symbols rather than by their constituent
transistors and resistors.

e Just as with operational amplifiers, the power supply connections to gates are often omitted
in schematic diagrams for the sake of simplicity.

o A truth table is a standard way of representing the input/output relationships of a gate circuit,
listing all the possible input logic level combinations with their respective output logic levels.

3.2 The NOT gate

The single-transistor inverter circuit illustrated earlier is actually too crude to be of practical use
as a gate. Real inverter circuits contain more than one transistor to maximize voltage gain (so
as to ensure that the final output transistor is either in full cutoff or full saturation), and other
components designed to reduce the chance of accidental damage.

Shown here is a schematic diagram for a real inverter circuit, complete with all necessary com-
ponents for efficient and reliable operation:

34 CHAPTER 3. LOGIC GATES

Practical inverter (NOT) circuit

Input ' Q,

This circuit is composed exclusively of resistors and bipolar transistors. Bear in mind that other
circuit designs are capable of performing the NOT gate function, including designs substituting
field-effect transistors for bipolar (discussed later in this chapter).

Let’s analyze this circuit for the condition where the input is "high,” or in a binary 71”7 state.
We can simulate this by showing the input terminal connected to V.. through a switch:

V. =5volts

VCC

R,
Ve oV R,

—|;\ Input\i_ 0 Q Q3

2
’ . D,
B D,A 5V Output
Qs
Ra T

=

In this case, diode D; will be reverse-biased, and therefore not conduct any current. In fact, the

3.2. THE NOT GATE 35

only purpose for having D; in the circuit is to prevent transistor damage in the case of a negative
voltage being impressed on the input (a voltage that is negative, rather than positive, with respect
to ground). With no voltage between the base and emitter of transistor Q1, we would expect no
current through it, either. However, as strange as it may seem, transistor Q1 is not being used as
is customary for a transistor. In reality, Q; is being used in this circuit as nothing more than a
back-to-back pair of diodes. The following schematic shows the real function of Qj:

V. =5volts

The purpose of these diodes is to ”steer” current to or away from the base of transistor Qs, de-
pending on the logic level of the input. Exactly how these two diodes are able to ”steer” current isn’t
exactly obvious at first inspection, so a short example may be necessary for understanding. Suppose
we had the following diode/resistor circuit, representing the base-emitter junctions of transistors Qo
and Q4 as single diodes, stripping away all other portions of the circuit so that we can concentrate
on the current ”steered” through the two back-to-back diodes:

36 CHAPTER 3. LOGIC GATES

Q-5 Ve — 5V

With the input switch in the "up” position (connected to V..), it should be obvious that there
will be no current through the left steering diode of @1, because there isn’t any voltage in the switch-
diode-R;-switch loop to motivate electrons to flow. However, there will be current through the right
steering diode of Qq, as well as through Qs’s base-emitter diode junction and Q4’s base-emitter
diode junction:

This tells us that in the real gate circuit, transistors Qo and Q4 will have base current, which
will turn them on to conduct collector current. The total voltage dropped between the base of Q1
(the node joining the two back-to-back steering diodes) and ground will be about 2.1 volts, equal to
the combined voltage drops of three PN junctions: the right steering diode, Q2’s base-emitter diode,
and Q4’s base-emitter diode.

Now, let’s move the input switch to the ”down” position and see what happens:

3.2. THE NOT GATE 37

"3

RN Qxe-p) V. — 5V

If we were to measure current in this circuit, we would find that all of the current goes through
the left steering diode of Q1 and none of it through the right diode. Why is this? It still appears as
though there is a complete path for current through Q4’s diode, Qs’s diode, the right diode of the
pair, and R, so why will there be no current through that path?

Remember that PN junction diodes are very nonlinear devices: they do not even begin to conduct
current until the forward voltage applied across them reaches a certain minimum quantity, approx-
imately 0.7 volts for silicon and 0.3 volts for germanium. And then when they begin to conduct
current, they will not drop substantially more than 0.7 volts. When the switch in this circuit is in
the "down” position, the left diode of the steering diode pair is fully conducting, and so it drops
about 0.7 volts across it and no more.

Ve — 5V

Recall that with the switch in the "up” position (transistors Q2 and Q4 conducting), there was
about 2.1 volts dropped between those same two points (Q1’s base and ground), which also happens
to be the minimum voltage necessary to forward-bias three series-connected silicon PN junctions
into a state of conduction. The 0.7 volts provided by the left diode’s forward voltage drop is simply
insufficient to allow any electron flow through the series string of the right diode, Q2’s diode, and
the R3//Q4 diode parallel subcircuit, and so no electrons flow through that path. With no current

38 CHAPTER 3. LOGIC GATES

through the bases of either transistor Qs or Qq, neither one will be able to conduct collector current:
transistors Qs and Q4 will both be in a state of cutoff.

Consequently, this circuit configuration allows 100 percent switching of Q2 base current (and
therefore control over the rest of the gate circuit, including voltage at the output) by diversion of
current through the left steering diode.

In the case of our example gate circuit, the input is held ”high” by the switch (connected to V..),
making the left steering diode (zero voltage dropped across it). However, the right steering diode is
conducting current through the base of Qs, through resistor Ry:

V. =5volts

With base current provided, transistor Qo will be turned ”on.” More specifically, it will be
saturated by virtue of the more-than-adequate current allowed by R; through the base. With Qg
saturated, resistor Rz will be dropping enough voltage to forward-bias the base-emitter junction of
transistor Q4, thus saturating it as well:

3.2. THE NOT GATE 39

V. =5volts

With Q4 saturated, the output terminal will be almost directly shorted to ground, leaving the
output terminal at a voltage (in reference to ground) of almost 0 volts, or a binary 70" (”low”) logic
level. Due to the presence of diode Do, there will not be enough voltage between the base of Q3 and
its emitter to turn it on, so it remains in cutoff.

Let’s see now what happens if we reverse the input’s logic level to a binary ”70” by actuating the
input switch:

V. =5volts

40 CHAPTER 3. LOGIC GATES

Now there will be current through the left steering diode of Q1 and no current through the right
steering diode. This eliminates current through the base of Q2, thus turning it off. With Qs off,
there is no longer a path for Q4 base current, so Q4 goes into cutoff as well. Qg, on the other hand,
now has sufficient voltage dropped between its base and ground to forward-bias its base-emitter
junction and saturate it, thus raising the output terminal voltage to a “high” state. In actuality,
the output voltage will be somewhere around 4 volts depending on the degree of saturation and any
load current, but still high enough to be considered a ”high” (1) logic level.

With this, our simulation of the inverter circuit is complete: a ”1” in gives a ”0” out, and vice
versa.

The astute observer will note that this inverter circuit’s input will assume a "high” state of left
floating (not connected to either V.. or ground). With the input terminal left unconnected, there
will be no current through the left steering diode of Q1, leaving all of Ry’s current to go through
Q2’s base, thus saturating Qo and driving the circuit output to a ”low” state:

V=5 volts

oV

Input
(floating)

D,

The tendency for such a circuit to assume a high input state if left floating is one shared by
all gate circuits based on this type of design, known as Transistor-to-Transistor Logic, or TTL.
This characteristic may be taken advantage of in simplifying the design of a gate’s output circuitry,
knowing that the outputs of gates typically drive the inputs of other gates. If the input of a TTL
gate circuit assumes a high state when floating, then the output of any gate driving a TTL input
need only provide a path to ground for a low state and be floating for a high state. This concept
may require further elaboration for full understanding, so I will explore it in detail here.

A gate circuit as we have just analyzed has the ability to handle output current in two directions:
in and out. Technically, this is known as sourcing and sinking current, respectively. When the gate
output is high, there is continuity from the output terminal to V.. through the top output transistor
(Q3), allowing electrons to flow from ground, through a load, into the gate’s output terminal, through
the emitter of Q3, and eventually up to the V.. power terminal (positive side of the DC power supply):

3.2. THE NOT GATE 41

V. =5volts

Inverter gate sourcing current

To simplify this concept, we may show the output of a gate circuit as being a double-throw switch,
capable of connecting the output terminal either to V.. or ground, depending on its state. For a
gate outputting a "high” logic level, the combination of Q3 saturated and Q4 cutoff is analogous to
a double-throw switch in the ”V..” position, providing a path for current through a grounded load:

Simplified gate circuit sourcing current

VCC

T

Input e Output
— i

T Load

Please note that this two-position switch shown inside the gate symbol is representative of tran-
sistors Qs and Q4 alternately connecting the output terminal to V.. or ground, not of the switch
previously shown sending an input signal to the gate!

Conversely, when a gate circuit is outputting a ”low” logic level to a load, it is analogous to
the double-throw switch being set in the ”ground” position. Current will then be going the other
way if the load resistance connects to V..: from ground, through the emitter of Q4, out the output
terminal, through the load resistance, and back to V... In this condition, the gate is said to be
sinking current:

42 CHAPTER 3. LOGIC GATES

V. =5volts

Inverter gate sinking current

Simplified gate circuit sinking current

\Y,
V CC CC

T Load

= g Output
T

Input 3

The combination of Q3 and Q4 working as a ”push-pull” transistor pair (otherwise known as a
totem pole output) has the ability to either source current (draw in current to V..) or sink current
(output current from ground) to a load. However, a standard TTL gate input never needs current to
be sourced, only sunk. That is, since a TTL gate input naturally assumes a high state if left floating,
any gate output driving a TTL input need only sink current to provide a ”70” or "low” input, and
need not source current to provide a ”1” or a ”high” logic level at the input of the receiving gate:

3.2. THE NOT GATE 43

A direct connection to V. is not
V necessary to drive the TTL gate

—= input high!
Input T _TTL
R gate -

An output that "floats" when high
—& s sufficient.

Input_ | 3 W ITL —
e gate
!cc Ve

TT
! — 2 . TIL
J} gate

AT N

Any gate drivinga TTL
input must sink some
current in the low state.

Input

This means we have the option of simplifying the output stage of a gate circuit so as to eliminate
Qs altogether. The result is known as an open-collector output:

44 CHAPTER 3. LOGIC GATES

Inverter circuit with open-collector output

VCC

Input

D, Output

Rs

L

To designate open-collector output circuitry within a standard gate symbol, a special marker is
used. Shown here is the symbol for an inverter gate with open-collector output:

Inverter with open-
collector output

o

Please keep in mind that the "high” default condition of a floating gate input is only true for
TTL circuitry, and not necessarily for other types, especially for logic gates constructed of field-effect
transistors.

e REVIEW:

e An inverter, or NOT, gate is one that outputs the opposite state as what is input. That is, a
”low” input (0) gives a ”high” output (1), and vice versa.

e Gate circuits constructed of resistors and bipolar transistors as illustrated in this section are
called TTL. TTL is an acronym standing for Transistor-to-Transistor Logic. There are other
design methodologies used in gate circuits, some which use field-effect transistors rather than
bipolar transistors.

e A gate is said to be sourcing current when it provides a path for current between the output
terminal and the positive side of the DC power supply (V). In other words, it is connecting
the output terminal to the power source (+V).

e A gate is said to be sinking current when it provides a path for current between the output
terminal and ground. In other words, it is grounding (sinking) the output terminal.

3.3. THE "BUFFER” GATE 45

e Gate circuits with totem pole output stages are able to both source and sink current. Gate
circuits with open-collector output stages are only able to sink current, and not source current.
Open-collector gates are practical when used to drive TTL gate inputs because TTL inputs
don’t require current sourcing.

3.3 The ”buffer” gate

If we were to connect two inverter gates together so that the output of one fed into the input
of another, the two inversion functions would ”cancel” each other out so that there would be no
inversion from input to final output:

Double inversion

Logic state re-inverted
to original status

oot/

O inverted into a 1

While this may seem like a pointless thing to do, it does have practical application. Remember
that gate circuits are signal amplifiers, regardless of what logic function they may perform. A weak
signal source (one that is not capable of sourcing or sinking very much current to a load) may be
boosted by means of two inverters like the pair shown in the previous illustration. The logic level is
unchanged, but the full current-sourcing or -sinking capabilities of the final inverter are available to
drive a load resistance if needed.

For this purpose, a special logic gate called a buffer is manufactured to perform the same function
as two inverters. Its symbol is simply a triangle, with no inverting ”bubble” on the output terminal:

"Buffer" gate

Input;l} Output

Input | Output
0 0
1 1

The internal schematic diagram for a typical open-collector buffer is not much different from
that of a simple inverter: only one more common-emitter transistor stage is added to re-invert the
output signal.

46 CHAPTER 3. LOGIC GATES
Buffer circuit with open-collector output

VCC
J

R R,

Input Q, '\\Qz Output

D 1_A_ Q4
- Qs

i

~— |nverter — —<—|nverter —

Let’s analyze this circuit for two conditions: an input logic level of 71”7 and an input logic level
of 70.” First, a "high” (1) input:

VCC
Ve R R,
R
—L\ Input Q 4§
_Er Q 2 Output
- D1 Q4
Qs
RS
L ”

As before with the inverter circuit, the ”high” input causes no conduction through the left
steering diode of Q; (emitter-to-base PN junction). All of R;’s current goes through the base of
transistor Q9, saturating it:

3.3. THE "BUFFER” GATE 47

Output

Q,

Having Q2 saturated causes Q3 to be saturated as well, resulting in very little voltage dropped
between the base and emitter of the final output transistor Q4. Thus, Q4 will be in cutoff mode,
conducting no current. The output terminal will be floating (neither connected to ground nor V..),
and this will be equivalent to a "high” state on the input of the next TTL gate that this one feeds
in to. Thus, a "high” input gives a "high” output.

With a "low” input signal (input terminal grounded), the analysis looks something like this:

VCC

7

Vv R R,

CC

—L Ing R4§T

_f} ! Q Output
- Q4
D
1 o ™
R3

-

All of Ry’s current is now diverted through the input switch, thus eliminating base current
through Q. This forces transistor Qo into cutoff so that no base current goes through Qs either.
With Qs cutoff as well, Q4 is will be saturated by the current through resistor Ry, thus connecting
the output terminal to ground, making it a ”low” logic level. Thus, a "low” input gives a ”low”

48 CHAPTER 3. LOGIC GATES

output.

The schematic diagram for a buffer circuit with totem pole output transistors is a bit more
complex, but the basic principles, and certainly the truth table, are the same as for the open-
collector circuit:

Buffer circuit with totem pole output

VCC

R,

R R:S p, Qs
Input
P Q Q2 Output

Dl_A_ Q Q6

3 R,

Rs

1
—~— |nverter —>:—<+—|nverter —>

e REVIEW:

e Two inverter, or NOT, gates connected in ”series” so as to invert, then re-invert, a binary bit
perform the function of a buffer. Buffer gates merely serve the purpose of signal amplification:
taking a ”weak” signal source that isn’t capable of sourcing or sinking much current, and
boosting the current capacity of the signal so as to be able to drive a load.

e Buffer circuits are symbolized by a triangle symbol with no inverter ”bubble.”

e Buffers, like inverters, may be made in open-collector output or totem pole output forms.

3.4 Multiple-input gates

Inverters and buffers exhaust the possibilities for single-input gate circuits. What more can be done
with a single logic signal but to buffer it or invert it? To explore more logic gate possibilities, we
must add more input terminals to the circuit(s).

Adding more input terminals to a logic gate increases the number of input state possibilities.
With a single-input gate such as the inverter or buffer, there can only be two possible input states:
either the input is “high” (1) or it is ”low” (0). As was mentioned previously in this chapter, a two
input gate has four possibilities (00, 01, 10, and 11). A three-input gate has eight possibilities (000,

3.4. MULTIPLE-INPUT GATES 49

001, 010, 011, 100, 101, 110, and 111) for input states. The number of possible input states is equal
to two to the power of the number of inputs:

Number of possible input states = 2"

Where,
n = Number of inputs

This increase in the number of possible input states obviously allows for more complex gate
behavior. Now, instead of merely inverting or amplifying (buffering) a single "high” or ”low” logic
level, the output of the gate will be determined by whatever combination of 1’s and 0’s is present
at the input terminals.

Since so many combinations are possible with just a few input terminals, there are many different
types of multiple-input gates, unlike single-input gates which can only be inverters or buffers. Each
basic gate type will be presented in this section, showing its standard symbol, truth table, and
practical operation. The actual TTL circuitry of these different gates will be explored in subsequent
sections.

3.4.1 The AND gate

One of the easiest multiple-input gates to understand is the AND gate, so-called because the output
of this gate will be "high” (1) if and only if all inputs (first input and the second input and . . .)
are "high” (1). If any input(s) are "low” (0), the output is guaranteed to be in a ”low” state as well.

2-input AND gate 3-input AND gate

Input,

Input

P } Output |nPUtB—} Output
Inputg Inputc

In case you might have been wondering, AND gates are made with more than three inputs, but
this is less common than the simple two-input variety.
A two-input AND gate’s truth table looks like this:

2-input AND gate

InputA—} Output
Inputy;—

A | B| Output
0|0 0
01 0
1|0 0
111 1

50

Diode) provides visual indication of the output logic level:

CHAPTER 3. LOGIC GATES

What this truth table means in practical terms is shown in the following sequence of illustrations,
with the 2-input AND gate subjected to all possibilities of input logic levels. An LED (Light-Emitting

Output

Inputg

Input, = 0
Inputz = 0
Output = 0 (no light)

Output
e

Inputg

Input, = 1
Inputz = 0
Output = 0 (no light)

cc

Output

Inputg

Input, = 0
Inputg = 1
Output = 0 (no light)

3.4. MULTIPLE-INPUT GATES

Inputg

Input, = 1
Inputg = 1

1\ B ;)utput

VRN

Output = 1 (light!)

51

It is only with all inputs raised to "high” logic levels that the AND gate’s output goes "high,”

thus energizing the LED for only one out of the four input combination states.

3.4.2 The

NAND gate

A variation on the idea of the AND gate is called the NAND gate. The word "NAND?” is a verbal
contraction of the words NOT and AND. Essentially, a NAND gate behaves the same as an AND
gate with a NOT (inverter) gate connected to the output terminal. To symbolize this output signal
inversion, the NAND gate symbol has a bubble on the output line. The truth table for a NAND

gate is as one might expect, exactly opposite as that of an AND gate:

2-input NAND gate

InputA—} Output
Inputg—

A| B | Output
0|0 1
01 1
1|0 1
1|1 0

Eq

Input,—
Inputy;—

uivalent gate circuit

D—I>W Output

As with AND gates, NAND gates are made with more than two inputs. In such cases, the same
general principle applies: the output will be "low” (0) if and only if all inputs are "high” (1). If any

input is ”low” (0), the output will go "high” (1).

52 CHAPTER 3. LOGIC GATES

3.4.3 The OR gate

Our next gate to investigate is the OR gate, so-called because the output of this gate will be "high”
(1) if any of the inputs (first input or the second input or . . .) are "high” (1). The output of an
OR gate goes "low” (0) if and only if all inputs are "low” (0).

2-input OR gate 3-input OR gate
Input, Input,
Output Inputg Output
Inputg Input,
A two-input OR gate’s truth table looks like this:

2-input OR gate

|npUtAj>— Output
Inputg

A | B| Output
00 0
01 1
110 1
1|1 1

The following sequence of illustrations demonstrates the OR gate’s function, with the 2-inputs
experiencing all possible logic levels. An LED (Light-Emitting Diode) provides visual indication of
the gate’s output logic level:

Output
0 &

Input, = 0

Inputz = 0
Output = 0 (no light)

3.4. MULTIPLE-INPUT GATES

Input, = 1
Inputg = 0
Output = 1 (light!)

Input, = 0
Inputg = 1
Output= 1 (light!)

Input, = 1

Inputg = 1
Output= 1 (light!)

53

A condition of any input being raised to a ”high” logic level makes the OR gate’s output go

“high,” thus energizing the LED for three out of the four input combination states.

3.4.4 The NOR gate

As you might have suspected, the NOR gate is an OR gate with its output inverted, just like a

NAND gate is an AND gate with an inverted output.

54 CHAPTER 3. LOGIC GATES

2-input NOR gate

InputA:2>07 Output
Inputg

A| B | Output
0|0 1
01 0
1|0 0
1|1 0

Equivalent gate circuit
Input
P Am Output
Inputg

NOR gates, like all the other multiple-input gates seen thus far, can be manufactured with more
than two inputs. Still, the same logical principle applies: the output goes "low” (0) if any of the
inputs are made "high” (1). The output is "high” (1) only when all inputs are "low” (0).

3.4.5 The Negative-AND gate

A Negative-AND gate functions the same as an AND gate with all its inputs inverted (connected
through NOT gates). In keeping with standard gate symbol convention, these inverted inputs are
signified by bubbles. Contrary to most peoples’ first instinct, the logical behavior of a Negative-AND
gate is not the same as a NAND gate. Its truth table, actually, is identical to a NOR gate:

3.4. MULTIPLE-INPUT GATES 55

2-input Negative-AND gate

Input,—9)
Output
Inputg—9

A| B | Output
0|0 1
01 0
1|0 0
1|1 0

Equivalent gate circuits

} Output
InputBM
InputAm Output
Inputg

Input,

3.4.6 The Negative-OR gate

Following the same pattern, a Negative-OR gate functions the same as an OR gate with all its inputs
inverted. In keeping with standard gate symbol convention, these inverted inputs are signified by
bubbles. The behavior and truth table of a Negative-OR gate is the same as for a NAND gate:

56 CHAPTER 3. LOGIC GATES

2-input Negative-OR gate

InputAj>, Output
Inputg

A| B | Output
0|0 1
01 1
1|0 1
1|1 0

Equivalent gate circuits

Input,
Output
Inputg

InputA—} Output
Inputg—

3.4.7 The Exclusive-OR gate

The last six gate types are all fairly direct variations on three basic functions: AND, OR, and NOT.
The Exclusive-OR, gate, however, is something quite different.

Exclusive-OR gates output a "high” (1) logic level if the inputs are at different logic levels, either
0 and 1 or 1 and 0. Conversely, they output a "low” (0) logic level if the inputs are at the same
logic levels. The Exclusive-OR (sometimes called XOR) gate has both a symbol and a truth table
pattern that is unique:

3.4. MULTIPLE-INPUT GATES o7

Exclusive-OR gate

InputA:)D output
Inputg

A| B | Output
0|0 0
01 1
1|0 1
1|1 0

There are equivalent circuits for an Exclusive-OR. gate made up of AND, OR, and NOT gates,
just as there were for NAND, NOR, and the negative-input gates. A rather direct approach to
simulating an Exclusive-OR, gate is to start with a regular OR gate, then add additional gates to
inhibit the output from going "high” (1) when both inputs are ”high” (1):

Exclusive-OR equivalent circuit

Input, - } Output

Inputg

A| B| Output
0|0 0
01 1
1|0 1
1|1 0

In this circuit, the final AND gate acts as a buffer for the output of the OR gate whenever the
NAND gate’s output is high, which it is for the first three input state combinations (00, 01, and 10).
However, when both inputs are “high” (1), the NAND gate outputs a "low” (0) logic level, which
forces the final AND gate to produce a ”low” (0) output.

Another equivalent circuit for the Exclusive-OR gate uses a strategy of two AND gates with
inverters, set up to generate "high” (1) outputs for input conditions 01 and 10. A final OR gate
then allows either of the AND gates’ ”high” outputs to create a final "high” output:

58 CHAPTER 3. LOGIC GATES

Exclusive-OR equivalent circuit

>
=
L

Input, Output

Inputg

A | B| Output
0|0 0
01 1
110 1
1|1 0

Exclusive-OR, gates are very useful for circuits where two or more binary numbers are to be
compared bit-for-bit, and also for error detection (parity check) and code conversion (binary to
Grey and vice versa).

3.4.8 The Exclusive-NOR gate

Finally, our last gate for analysis is the Exclusive-NOR, gate, otherwise known as the XNOR gate.
It is equivalent to an Exclusive-OR gate with an inverted output. The truth table for this gate is
exactly opposite as for the Exclusive-OR gate:

3.5. TTL NAND AND AND GATES 59

Exclusive-NOR gate

InputAjD Output
Inputg

A| B | Output
0|0 1
01 0
1|0 0
1|1 1

Equivalent gate circuit

InputAjW Output
Inputg

As indicated by the truth table, the purpose of an Exclusive-NOR, gate is to output a "high” (1)
logic level whenever both inputs are at the same logic levels (either 00 or 11).

e REVIEW:
e Rule for an AND gate: output is "high” only if first input and second input are both "high.”
e Rule for an OR gate: output is "high” if input A or input B are "high.”

e Rule for a NAND gate: output is not "high” if both the first input and the second input are
7 high.”

e Rule for a NOR gate: output is not ”high” if either the first input or the second input are
” high.”

e A Negative-AND gate behaves like a NOR gate.
e A Negative-OR gate behaves like a NAND gate.
e Rule for an Exclusive-OR gate: output is "high” if the input logic levels are different.

e Rule for an Exclusive-NOR, gate: output is "high” if the input logic levels are the same.

3.5 TTL NAND and AND gates

Suppose we altered our basic open-collector inverter circuit, adding a second input terminal just like
the first:

60 CHAPTER 3. LOGIC GATES

A two-input inverter circuit

Output

This schematic illustrates a real circuit, but it isn’t called a ”two-input inverter.” Through
analysis we will discover what this circuit’s logic function is and correspondingly what it should be
designated as.

Just as in the case of the inverter and buffer, the ”steering” diode cluster marked ”Q;” is actually
formed like a transistor, even though it isn’t used in any amplifying capacity. Unfortunately, a simple
NPN transistor structure is inadequate to simulate the three PN junctions necessary in this diode
network, so a different transistor (and symbol) is needed. This transistor has one collector, one base,
and two emitters, and in the circuit it looks like this:

Veo
R R,
Input, Q, Q,
Inputg———
Output
D,A AD, Qs
Rs

3.5. TTL NAND AND AND GATES 61

In the single-input (inverter) circuit, grounding the input resulted in an output that assumed the
“high” (1) state. In the case of the open-collector output configuration, this ”high” state was simply
”floating.” Allowing the input to float (or be connected to V) resulted in the output becoming
grounded, which is the ”low” or 0 state. Thus, a 1 in resulted in a 0 out, and vice versa.

Since this circuit bears so much resemblance to the simple inverter circuit, the only difference
being a second input terminal connected in the same way to the base of transistor Qs, we can say
that each of the inputs will have the same effect on the output. Namely, if either of the inputs are
grounded, transistor Qo will be forced into a condition of cutoff, thus turning Q3 off and floating the
output (output goes "high”). The following series of illustrations shows this for three input states
(00, 01, and 10):

VCC
Ry
Pt Q, Cutoff
"Q," 1
Q Output
Q; Cutoff
R3
—
Input, = 0
Inputg = 0
Output= 1
VCC
Ry
Pt Q, Cutoff
Q" 1
Q Output
Qs Cutoff
R3
£
Input, = 0
Inputg = 1

Output= 1

62 CHAPTER 3. LOGIC GATES

VCC
VCC R R2
Input,
! ad-»—{Q, cutoff
ld " " 1
Inp%t o Output
S WY Y
DI D, Qs Cutoff
- R3
=
Input, = 1
Inputz = 0
Output= 1

In any case where there is a grounded (”low”) input, the output is guaranteed to be floating
("high”). Conversely, the only time the output will ever go ”low” is if transistor Q3 turns on, which
means transistor Q2 must be turned on (saturated), which means neither input can be diverting R
current away from the base of Q2. The only condition that will satisfy this requirement is when

both inputs are "high” (1):

VCC
RZ
P Q, Saturation
n n 0
Q Output
Qs Saturation
R3
—
Input, = 1
Inputg = 1
Qutput= 0

Collecting and tabulating these results into a truth table, we see that the pattern matches that
of the NAND gate:

3.5. TTL NAND AND AND GATES 63

NAND gate
Input,—
P }Output
Inputg—

A| B | Output

0|0 1

01 1

1|0 1

111 0

In the earlier section on NAND gates, this type of gate was created by taking an AND gate
and increasing its complexity by adding an inverter (NOT gate) to the output. However, when we
examine this circuit, we see that the NAND function is actually the simplest, most natural mode of
operation for this TTL design. To create an AND function using TTL circuitry, we need to increase
the complexity of this circuit by adding an inverter stage to the output, just like we had to add an
additional transistor stage to the TTL inverter circuit to turn it into a buffer:

AND gate with open-collector output

Output

—~— NAND gate —>:—<—Inverter —>

The truth table and equivalent gate circuit (an inverted-output NAND gate) are shown here:

64 CHAPTER 3. LOGIC GATES

AND gate
InputA—} Output
Inputg—

Output

RlR|O|O]|>
R|O|—|(O|
R|O|O

Equivalent circuit

Input, —
Output
Inputg—
Of course, both NAND and AND gate circuits may be designed with totem-pole output stages
rather than open-collector. I am opting to show the open-collector versions for the sake of simplicity.

e REVIEW:

e A TTL NAND gate can be made by taking a TTL inverter circuit and adding another input.

e An AND gate may be created by adding an inverter stage to the output of the NAND gate
circuit.

3.6 TTL NOR and OR gates

Let’s examine the following TTL circuit and analyze its operation:

3.6. TTL NOR AND OR GATES 65

Output

Qs

D,A AD, %FQ
L

Transistors Q1 and Q9 are both arranged in the same manner that we’ve seen for transistor Q1
in all the other TTL circuits. Rather than functioning as amplifiers, Q; and Q2 are both being used
as two-diode "steering” networks. We may replace Q1 and Qo with diode sets to help illustrate:

Output

If input A is left floating (or connected to V..), current will go through the base of transistor Qs,
saturating it. If input A is grounded, that current is diverted away from Q3’s base through the left
steering diode of ”Q1,” thus forcing Q3 into cutoff. The same can be said for input B and transistor
Q4: the logic level of input B determines Q4’s conduction: either saturated or cutoff.

Notice how transistors Q3 and Qg are paralleled at their collector and emitter terminals. In
essence, these two transistors are acting as paralleled switches, allowing current through resistors
R3 and Ry according to the logic levels of inputs A and B. If any input is at a ”high” (1) level,

66 CHAPTER 3. LOGIC GATES

then at least one of the two transistors (Qs and/or Q) will be saturated, allowing current through
resistors R3 and Ry, and turning on the final output transistor Qs for a "low” (0) logic level output.
The only way the output of this circuit can ever assume a "high” (1) state is if both Qs and Qg are
cutoff, which means both inputs would have to be grounded, or "low” (0).

This circuit’s truth table, then, is equivalent to that of the NOR gate:

NOR gate
Input
P Aw Output
Inputg

A| B | Output

0(0 1

01 0

1|0 0

1|1 0

In order to turn this NOR gate circuit into an OR gate, we would have to invert the output logic
level with another transistor stage, just like we did with the NAND-to-AND gate example:

OR gate with open-collector output

Input,

Input ’ k :
p B 4KQ5
D, D, R,

L

Output
Qs

—~— NOR gate —>—<— Inverter —>

The truth table and equivalent gate circuit (an inverted-output NOR gate) are shown here:

3.7. CMOS GATE CIRCUITRY 67

OR gate

Input
) AD Output
Inputg

A| B[Output

0|0 0

0|1 1

1|0 1

111 1

Equivalent circuit

InputAw Output
Inputg

Of course, totem-pole output stages are also possible in both NOR and OR TTL logic circuits.
e REVIEW:

e An OR gate may be created by adding an inverter stage to the output of the NOR gate circuit.

3.7 CMOS gate circuitry

Up until this point, our analysis of transistor logic circuits has been limited to the TTL design
paradigm, whereby bipolar transistors are used, and the general strategy of floating inputs being
equivalent to "high” (connected to V..) inputs — and correspondingly, the allowance of ”open-
collector” output stages — is maintained. This, however, is not the only way we can build logic
gates.

Field-effect transistors, particularly the insulated-gate variety, may be used in the design of gate
circuits. Being voltage-controlled rather than current-controlled devices, IGFETSs tend to allow very
simple circuit designs. Take for instance, the following inverter circuit built using P- and N-channel
IGFETs:

68 CHAPTER 3. LOGIC GATES

Inverter circuit using IGFETs
Vdd (+5 volts)
|_
_| —
|_
Input —¢ ¢+— Output

—
|~
—

Notice the "V44” label on the positive power supply terminal. This label follows the same
convention as ”"V..” in TTL circuits: it stands for the constant voltage applied to the drain of a
field effect transistor, in reference to ground.

Let’s connect this gate circuit to a power source and input switch, and examine its operation.
Please note that these IGFET transistors are E-type (Enhancement-mode), and so are normally-off
devices. It takes an applied voltage between gate and drain (actually, between gate and substrate)
of the correct polarity to bias them on.

. .
—| ::{ Saturated
- ~ N
—_ Input] | Output —— 5y
+ T.
Cutoff

JE

Input = "low" (0)
Output = "high" (1)

The upper transistor is a P-channel IGFET. When the channel (substrate) is made more positive
than the gate (gate negative in reference to the substrate), the channel is enhanced and current is
allowed between source and drain. So, in the above illustration, the top transistor is turned on.

The lower transistor, having zero voltage between gate and substrate (source), is in its normal
mode: off. Thus, the action of these two transistors are such that the output terminal of the gate
circuit has a solid connection to V44 and a very high resistance connection to ground. This makes
the output "high” (1) for the "low” (0) state of the input.

Next, we’ll move the input switch to its other position and see what happens:

3.7. CMOS GATE CIRCUITRY 69

—|E‘ Cutoff

Output —
} Input P — 5V

74 s
J: Saturated

Input = "high" (1)
Output = "low" (0)

Now the lower transistor (N-channel) is saturated because it has sufficient voltage of the correct
polarity applied between gate and substrate (channel) to turn it on (positive on gate, negative on
the channel). The upper transistor, having zero voltage applied between its gate and substrate, is
in its normal mode: off. Thus, the output of this gate circuit is now ”low” (0). Clearly, this circuit
exhibits the behavior of an inverter, or NOT gate.

Using field-effect transistors instead of bipolar transistors has greatly simplified the design of
the inverter gate. Note that the output of this gate never floats as is the case with the simplest
TTL circuit: it has a natural ”totem-pole” configuration, capable of both sourcing and sinking load
current. Key to this gate circuit’s elegant design is the complementary use of both P- and N-channel
IGFETs. Since IGFETs are more commonly known as MOSFETs (Metal-Oxide-Semiconductor
Field Effect Transistor), and this circuit uses both P- and N-channel transistors together, the
general classification given to gate circuits like this one is CMOS: Complementary Metal Oxide
Semiconductor.

CMOS circuits aren’t plagued by the inherent nonlinearities of the field-effect transistors, because
as digital circuits their transistors always operate in either the saturated or cutoff modes and never
in the active mode. Their inputs are, however, sensitive to high voltages generated by electrostatic
(static electricity) sources, and may even be activated into "high” (1) or ”low” (0) states by spurious
voltage sources if left floating. For this reason, it is inadvisable to allow a CMOS logic gate input
to float under any circumstances. Please note that this is very different from the behavior of a TTL
gate where a floating input was safely interpreted as a "high” (1) logic level.

This may cause a problem if the input to a CMOS logic gate is driven by a single-throw switch,
where one state has the input solidly connected to either V44 or ground and the other state has the
input floating (not connected to anything):

70 CHAPTER 3. LOGIC GATES

CMOS gate

Input

When switch is closed, the gate sees a
definite "low" (0) input. However, when
switch is open, the input logic level will

be uncertain because it's floating.

Also, this problem arises if a CMOS gate input is being driven by an open-collector TTL gate.
Because such a TTL gate’s output floats when it goes "high” (1), the CMOS gate input will be left
in an uncertain state:

Open-collector
PFTL gate CMOS gate

Output Input

!ri
[L

When the open-collector TTL gate’s output
is "high" (1), the CMOS gate’s input will be
left floating and in an uncertain logic state.

Fortunately, there is an easy solution to this dilemma, one that is used frequently in CMOS
logic circuitry. Whenever a single-throw switch (or any other sort of gate output incapable of both
sourcing and sinking current) is being used to drive a CMOS input, a resistor connected to either
V44 or ground may be used to provide a stable logic level for the state in which the driving device’s
output is floating. This resistor’s value is not critical: 10 k€ is usually sufficient. When used to
provide a "high” (1) logic level in the event of a floating signal source, this resistor is known as a
pullup resistor:

3.7. CMOS GATE CIRCUITRY 71

Vdd

R CMOS gate

pullup

_E/ Input . Output

When switch is closed, the gate sees a
definite "low" (0) input. When the switch
is open, Ry, Will provide the connection
to Vdd needed to secure a reliable "high"
logic level for the CMOS gate input.

When such a resistor is used to provide a "low” (0) logic level in the event of a floating signal
source, it is known as a pulldown resistor. Again, the value for a pulldown resistor is not critical:

CMOS gate
Vdd
Input
Output

R

pulldow

When switch is closed, the gate sees a
definite "high" (1) input. When the switch

is open, Ry igoun Will provide the connection
to ground needed to secure a reliable "low"
logic level for the CMOS gate input.

Because open-collector TTL outputs always sink, never source, current, pullup resistors are
necessary when interfacing such an output to a CMOS gate input:

Open-collector
TTL gate Vi CMOS gate

Vcc Vdd
Rpullup —|_

A

| il

72 CHAPTER 3. LOGIC GATES

Although the CMOS gates used in the preceding examples were all inverters (single-input), the
same principle of pullup and pulldown resistors applies to multiple-input CMOS gates. Of course, a
separate pullup or pulldown resistor will be required for each gate input:

Pullup resistors for a 3-input
CMOS AND gate

Vdd

Input,

Inputg
_ i
_n.p/u I—L}

This brings us to the next question: how do we design multiple-input CMOS gates such as AND,
NAND, OR, and NOR? Not surprisingly, the answer(s) to this question reveal a simplicity of design
much like that of the CMOS inverter over its TTL equivalent.

For example, here is the schematic diagram for a CMOS NAND gate:

CMOS NAND gate
vdd
Q ’_E 2
—
s

Y/

Output
Qs

TF1

Input,

Q,

K]

Inputg

Notice how transistors Q; and Qs resemble the series-connected complementary pair from the
inverter circuit. Both are controlled by the same input signal (input A), the upper transistor turning
off and the lower transistor turning on when the input is "high” (1), and vice versa. Notice also how
transistors Q2 and Qg are similarly controlled by the same input signal (input B), and how they
will also exhibit the same on/off behavior for the same input logic levels. The upper transistors of

3.7. CMOS GATE CIRCUITRY 73

both pairs (Q1 and Q2) have their source and drain terminals paralleled, while the lower transistors
(Qz and Q) are series-connected. What this means is that the output will go "high” (1) if either
top transistor saturates, and will go "low” (0) only if both lower transistors saturate. The following
sequence of illustrations shows the behavior of this NAND gate for all four possibilities of input logic
levels (00, 01, 10, and 11):

dd
1 2
— E
>

—

N ON

1
Output

Q
==
uca

1
Output

Qll—_lzz
]

FF ON

1
vad Output

]
(@]
et | s |
1
0

Inputg

74 CHAPTER 3. LOGIC GATES

<
&

Ql 2
] :_Li]
OF'F»—, OFF

0
vdd o | Output
Input, 3
e puty | | ~
1 ON
1 Q4 -
Inputg ON

As with the TTL NAND gate, the CMOS NAND gate circuit may be used as the starting point
for the creation of an AND gate. All that needs to be added is another stage of transistors to invert
the output signal:

CMOS AND gate
Vdd

Qt— Q
== miE
ﬁf]

5

|_

(o

|_

> Qs t— Output

— —

QS — |

Input, — —
|_
Qs |
Inputg _—

—~— NAND gate ——=<—Inverter —>

A CMOS NOR gate circuit uses four MOSFETS just like the NAND gate, except that its tran-
sistors are differently arranged. Instead of two paralleled sourcing (upper) transistors connected to
Vaa and two series-connected sinking (lower) transistors connected to ground, the NOR gate uses
two series-connected sourcing transistors and two parallel-connected sinking transistors like this:

3.7. CMOS GATE CIRCUITRY

CMOS NOR gate

Vad

Q

T

Q,

Input,

Qs
—
|
—

Inputg

Output

75

As with the NAND gate, transistors Q; and Qs work as a complementary pair, as do transistors
Q2 and Q4. Each pair is controlled by a single input signal. If either input A or input B are "high”
(1), at least one of the lower transistors (Qz or Q4) will be saturated, thus making the output "low”
(0). Only in the event of both inputs being ”low” (0) will both lower transistors be in cutoff mode
and both upper transistors be saturated, the conditions necessary for the output to go ”high” (1).

This behavior, of course, defines the NOR logic function.

The OR function may be built up from the basic NOR gate with the addition of an inverter
stage on the output:

76 CHAPTER 3. LOGIC GATES

CMOS OR gate

Vad

Q

Qs

—
>

QS* Output

TF IR

Qs

) Q4
H_ll5 B

|
Input, —

g

Inputg

<«—NOR gate —»<—Inverter —

Since it appears that any gate possible to construct using TTL technology can be duplicated in
CMOS, why do these two ”families” of logic design still coexist? The answer is that both TTL and
CMOS have their own unique advantages.

First and foremost on the list of comparisons between TTL and CMOS is the issue of power
consumption. In this measure of performance, CMOS is the unchallenged victor. Because the com-
plementary P- and N-channel MOSFET pairs of a CMOS gate circuit are (ideally) never conducting
at the same time, there is little or no current drawn by the circuit from the V44 power supply except
for what current is necessary to source current to a load. TTL, on the other hand, cannot function
without some current drawn at all times, due to the biasing requirements of the bipolar transistors
from which it is made.

There is a caveat to this advantage, though. While the power dissipation of a TTL gate remains
rather constant regardless of its operating state(s), a CMOS gate dissipates more power as the
frequency of its input signal(s) rises. If a CMOS gate is operated in a static (unchanging) condition,
it dissipates zero power (ideally). However, CMOS gate circuits draw transient current during every
output state switch from ”low” to “high” and vice versa. So, the more often a CMOS gate switches
modes, the more often it will draw current from the V44 supply, hence greater power dissipation at
greater frequencies.

A CMOS gate also draws much less current from a driving gate output than a TTL gate because
MOSFETSs are voltage-controlled, not current-controlled, devices. This means that one gate can
drive many more CMOS inputs than TTL inputs. The measure of how many gate inputs a single
gate output can drive is called fanout.

Another advantage that CMOS gate designs enjoy over TTL is a much wider allowable range
of power supply voltages. Whereas TTL gates are restricted to power supply (V..) voltages be-

3.7. CMOS GATE CIRCUITRY 7

tween 4.75 and 5.25 volts, CMOS gates are typically able to operate on any voltage between 3 and
15 volts! The reason behind this disparity in power supply voltages is the respective bias require-
ments of MOSFET versus bipolar junction transistors. MOSFETSs are controlled exclusively by gate
voltage (with respect to substrate), whereas BJTs are current-controlled devices. TTL gate circuit
resistances are precisely calculated for proper bias currents assuming a 5 volt regulated power sup-
ply. Any significant variations in that power supply voltage will result in the transistor bias currents
being incorrect, which then results in unreliable (unpredictable) operation. The only effect that
variations in power supply voltage have on a CMOS gate is the voltage definition of a ”high” (1)
state. For a CMOS gate operating at 15 volts of power supply voltage (Vg4q), an input signal must
be close to 15 volts in order to be considered ”high” (1). The voltage threshold for a "low” (0) signal
remains the same: near 0 volts.

One decided disadvantage of CMOS is slow speed, as compared to TTL. The input capacitances
of a CMOS gate are much, much greater than that of a comparable TTL gate — owing to the use of
MOSFETSs rather than BJTs — and so a CMOS gate will be slower to respond to a signal transition
(low-to-high or vice versa) than a TTL gate, all other factors being equal. The RC time constant
formed by circuit resistances and the input capacitance of the gate tend to impede the fast rise- and
fall-times of a digital logic level, thereby degrading high-frequency performance.

A strategy for minimizing this inherent disadvantage of CMOS gate circuitry is to ”buffer” the
output signal with additional transistor stages, to increase the overall voltage gain of the device.
This provides a faster-transitioning output voltage (high-to-low or low-to-high) for an input voltage
slowly changing from one logic state to another. Consider this example, of an ”unbuffered” NOR
gate versus a ”buffered,” or B-series, NOR gate:

78 CHAPTER 3. LOGIC GATES

"Unbuffered" NOR gate

Vvdd
Q
—
>
—
Q,
1 Output
Q Q
ey
|~
Input, — F: _‘
Inputg

"B-series" (buffered) NOR gate
Vdd

Q
I

Q,
— ’T: ’_\LT
— —
Output
— —
e |n L=
Input, : F:Ll
[

Inputg

In essence, the B-series design enhancement adds two inverters to the output of a simple NOR
circuit. This serves no purpose as far as digital logic is concerned, since two cascaded inverters
simply cancel:

3.7. CMOS GATE CIRCUITRY 79

) D>

l

(same as)

l

l

(same as)

l
0o

However, adding these inverter stages to the circuit does serve the purpose of increasing overall
voltage gain, making the output more sensitive to changes in input state, working to overcome the
inherent slowness caused by CMOS gate input capacitance.

REVIEW:
CMOS logic gates are made of IGFET (MOSFET) transistors rather than bipolar junction
transistors.
CMOS gate inputs are sensitive to static electricity. They may be damaged by high voltages,

and they may assume any logic level if left floating.

Pullup and pulldown resistors are used to prevent a CMOS gate input from floating if being
driven by a signal source capable only of sourcing or sinking current.

CMOS gates dissipate far less power than equivalent TTL gates, but their power dissipation
increases with signal frequency, whereas the power dissipation of a TTL gate is approximately
constant over a wide range of operating conditions.

CMOS gate inputs draw far less current than TTL inputs, because MOSFETs are voltage-
controlled, not current-controlled, devices.

CMOS gates are able to operate on a much wider range of power supply voltages than TTL:
typically 3 to 15 volts versus 4.75 to 5.25 volts for TTL.

CMOS gates tend to have a much lower maximum operating frequency than TTL gates due
to input capacitances caused by the MOSFET gates.

80 CHAPTER 3. LOGIC GATES

e B-series CMOS gates have "buffered” outputs to increase voltage gain from input to output,
resulting in faster output response to input signal changes. This helps overcome the inherent
slowness of CMOS gates due to MOSFET input capacitance and the RC time constant thereby
engendered.

3.8 Special-output gates

It is sometimes desirable to have a logic gate that provides both inverted and non-inverted outputs.
For example, a single-input gate that is both a buffer and an inverter, with a separate output terminal
for each function. Or, a two-input gate that provides both the AND and the NAND functions in a
single circuit. Such gates do exist and they are referred to as complementary output gates.

The general symbology for such a gate is the basic gate figure with a bar and two output lines
protruding from it. An array of complementary gate symbols is shown in the following illustration:

Complementary buffer

L

Complementary AND gate

Complementary OR gate

L

Complementary XOR gate

npe

Complementary gates are especially useful in ”crowded” circuits where there may not be enough
physical room to mount the additional integrated circuit chips necessary to provide both inverted
and noninverted outputs using standard gates and additional inverters. They are also useful in
applications where a complementary output is necessary from a gate, but the addition of an inverter
would introduce an unwanted time lag in the inverted output relative to the noninverted output.
The internal circuitry of complemented gates is such that both inverted and noninverted outputs
change state at almost exactly the same time:

3.8. SPECIAL-OUTPUT GATES 81

Complemented gate Standard gate with inverter added

V, A
@ Time delay introduced —3!
by the inverter

Another type of special gate output is called tristate, because it has the ability to provide three
different output modes: current sinking ("low” logic level), current sourcing ("high”), and floating
("high-Z,” or high-impedance). Tristate outputs are usually found as an optional feature on buffer
gates. Such gates require an extra input terminal to control the "high-Z” mode, and this input is
usually called the enable.

Tristate buffer gate

Enable

+V

=

" : Output

Input

With the enable input held "high” (1), the buffer acts like an ordinary buffer with a totem pole
output stage: it is capable of both sourcing and sinking current. However, the output terminal floats
(goes into "high-Z” mode) if ever the enable input is grounded ("low”), regardless of the data signal’s
logic level. In other words, making the enable input terminal "low” (0) effectively disconnects the
gate from whatever its output is wired to so that it can no longer have any effect.

Tristate buffers are marked in schematic diagrams by a triangle character within the gate symbol
like this:

82 CHAPTER 3. LOGIC GATES

Tristate buffer symbol

Enable (B)

Input % Output
(A)

Truth table

B | Output
High-Z
0
High-Z
1

R|lR|O|O|>
R[(O|RL|O

Tristate buffers are also made with inverted enable inputs. Such a gate acts normal when the
enable input is "low” (0) and goes into high-Z output mode when the enable input is "high” (1):

Tristate buffer with
inverted enable input

Enable (B)

Input % Output
(A

Truth table

B | Output
0 0
1| High-Z
0 1
1| High-Z

R(R|O|O[>

One special type of gate known as the bilateral switch uses gate-controlled MOSFET transistors
acting as on/off switches to switch electrical signals, analog or digital. The ”on” resistance of such
a switch is in the range of several hundred ohms, the ”off” resistance being in the range of several
hundred mega-ohms.

Bilateral switches appear in schematics as SPST (Single-Pole, Single-Throw) switches inside of
rectangular boxes, with a control terminal on one of the box’s long sides:

3.8. SPECIAL-OUTPUT GATES 83

CMOS bilateral switch

Control
|

InfOut ——"—— In/out

A bilateral switch might be best envisioned as a solid-state (semiconductor) version of an elec-
tromechanical relay: a signal-actuated switch contact that may be used to conduct virtually any
type of electric signal. Of course, being solid-state, the bilateral switch has none of the undesir-
able characteristics of electromechanical relays, such as contact ”bouncing,” arcing, slow speed, or
susceptibility to mechanical vibration. Conversely, though, they are rather limited in their current-
carrying ability. Additionally, the signal conducted by the ”contact” must not exceed the power
supply "rail” voltages powering the bilateral switch circuit.

Four bilateral switches are packaged inside the popular model ”4066” integrated circuit:

Quad CMOS hilateral switch
4066

14 13 12 11 10

(o]
(o]

1 [GND

e REVIEW:

e Complementary gates provide both inverted and noninverted output signals, in such a way
that neither one is delayed with respect to the other.

o Tristate gates provide three different output states: high, low, and floating (High-Z). Such
gates are commanded into their high-impedance output modes by a separate input terminal
called the enable.

e Bilateral switches are MOSFET circuits providing on/off switching for a variety of electrical
signal types (analog and digital), controlled by logic level voltage signals. In essence, they are
solid-state relays with very low current-handling ability.

84 CHAPTER 3. LOGIC GATES

3.9 Gate universality

NAND and NOR gates possess a special property: they are universal. That is, given enough gates,
either type of gate is able to mimic the operation of any other gate type. For example, it is possible
to build a circuit exhibiting the OR function using three interconnected NAND gates. The ability
for a single gate type to be able to mimic any other gate type is one enjoyed only by the NAND and
the NOR. In fact, digital control systems have been designed around nothing but either NAND or
NOR gates, all the necessary logic functions being derived from collections of interconnected NANDs
or NORs.

As proof of this property, this section will be divided into subsections showing how all the basic
gate types may be formed using only NANDs or only NORs.

3.9.1 Constructing the NOT function

Input ~[>o Output

Input | Output

0 1
1 0
Input Input —
} Output 3 Output
.or. ..
+V
J - Input
Output Output
Input

As you can see, there are two ways to use a NAND gate as an inverter, and two ways to use a NOR,
gate as an inverter. Either method works, although connecting TTL inputs together increases the
amount of current loading to the driving gate. For CMOS gates, common input terminals decreases
the switching speed of the gate due to increased input capacitance.

Inverters are the fundamental tool for transforming one type of logic function into another, and
so there will be many inverters shown in the illustrations to follow. In those diagrams, I will only
show one method of inversion, and that will be where the unused NAND gate input is connected to
+V (either V.. or V44, depending on whether the circuit is TTL or CMOS) and where the unused
input for the NOR gate is connected to ground. Bear in mind that the other inversion method
(connecting both NAND or NOR inputs together) works just as well from a logical (1’s and 0’s)

3.9. GATE UNIVERSALITY 85

point of view, but is undesirable from the practical perspectives of increased current loading for TTL
and increased input capacitance for CMOS.

3.9.2 Constructing the ”buffer” function

Being that it is quite easy to employ NAND and NOR gates to perform the inverter (NOT) function,
it stands to reason that two such stages of gates will result in a buffer function, where the output is
the same logical state as the input.

Input ~[> Output

Input | Output
0 0
1 1
+V

i\t}j—_} Output

Input

Input
Output

3.9.3 Constructing the AND function

To make the AND function from NAND gates, all that is needed is an inverter (NOT) stage on the
output of a NAND gate. This extra inversion ”cancels out” the first N in NAND, leaving the AND
function. It takes a little more work to wrestle the same functionality out of NOR gates, but it can
be done by inverting ("NOT”) all of the inputs to a NOR gate.

86 CHAPTER 3. LOGIC GATES

2-input AND gate

InputA—} Output
Inputy—

A | B| Output

ofo 0

0f1 0

1|0 0

1|1 1
+V

Input,— > } Output
Inputg—

Input,

- Output
Inputg

3.9.4 Constructing the NAND function

It would be pointless to show you how to ”construct” the NAND function using a NAND gate, since
there is nothing to do. To make a NOR gate perform the NAND function, we must invert all inputs
to the NOR gate as well as the NOR gate’s output. For a two-input gate, this requires three more
NOR gates connected as inverters.

3.9. GATE UNIVERSALITY 87

2-input NAND gate

InputA—} Output
Inputg—

A| B| Output
00 1
01 1
1|0 1
1|1 0

Output

3.9.5 Constructing the OR function

Inverting the output of a NOR gate (with another NOR gate connected as an inverter) results in
the OR function. The NAND gate, on the other hand, requires inversion of all inputs to mimic the
OR function, just as we needed to invert all inputs of a NOR gate to obtain the AND function.
Remember that inversion of all inputs to a gate results in changing that gate’s essential function
from AND to OR (or vice versa), plus an inverted output. Thus, with all inputs inverted, a NAND
behaves as an OR, a NOR behaves as an AND, an AND behaves as a NOR, and an OR behaves as
a NAND. In Boolean algebra, this transformation is referred to as DeMorgan’s Theorem, covered in
more detail in a later chapter of this book.

88 CHAPTER 3. LOGIC GATES

2-input OR gate

|nputA:Z>7 Output
Inputg

A | B| Output
0|0 0
0|1 1
10 1
1|1 1

+V

DS

+V } Output
L

InputB_Jj

Input,

Inputg Output

3.9.6 Constructing the NOR function

Much the same as the procedure for making a NOR gate behave as a NAND, we must invert all
inputs and the output to make a NAND gate function as a NOR.

3.10. LOGIC SIGNAL VOLTAGE LEVELS 89

2-input NOR gate

|npUtA® Output
Inputg

A | B| Output
00 1
01 0
1|0 0
1|1 0

+V

L +V
AT
O

s

Inputg |

e REVIEW:

e NAND and NOR gates are universal: that is, they have the ability to mimic any type of gate,
if interconnected in sufficient numbers.

3.10 Logic signal voltage levels

Logic gate circuits are designed to input and output only two types of signals: “high” (1) and ”low”
(0), as represented by a variable voltage: full power supply voltage for a "high” state and zero
voltage for a "low” state. In a perfect world, all logic circuit signals would exist at these extreme
voltage limits, and never deviate from them (i.e., less than full voltage for a "high,” or more than
zero voltage for a ”low”). However, in reality, logic signal voltage levels rarely attain these perfect
limits due to stray voltage drops in the transistor circuitry, and so we must understand the signal
level limitations of gate circuits as they try to interpret signal voltages lying somewhere between full
supply voltage and zero.

TTL gates operate on a nominal power supply voltage of 5 volts, +/- 0.25 volts. Ideally, a TTL
”high” signal would be 5.00 volts exactly, and a TTL ”low” signal 0.00 volts exactly. However, real
TTL gate circuits cannot output such perfect voltage levels, and are designed to accept "high” and
"low” signals deviating substantially from these ideal values. ”Acceptable” input signal voltages
range from 0 volts to 0.8 volts for a ”low” logic state, and 2 volts to 5 volts for a ”high” logic
state. ” Acceptable” output signal voltages (voltage levels guaranteed by the gate manufacturer over
a specified range of load conditions) range from 0 volts to 0.5 volts for a ”low” logic state, and 2.7
volts to 5 volts for a "high” logic state:

90

Acceptable TTL gate
input signal levels

Acceptable

CHAPTER 3. LOGIC GATES

TTL gate

output signal levels

5V T 5V
1 V.=5V : 1

High cc High
T —+ 2.7V
| 2V 4
4 08V — T

Low —{ [‘ Low — T= 01V

ov

If a voltage signal ranging between 0.8 volts and 2 volts were to be sent into the input of a TTL
gate, there would be no certain response from the gate. Such a signal would be considered uncertain,
and no logic gate manufacturer would guarantee how their gate circuit would interpret such a signal.

As you can see, the tolerable ranges for output signal levels are narrower than for input signal
levels, to ensure that any TTL gate outputting a digital signal into the input of another TTL gate
will transmit voltages acceptable to the receiving gate. The difference between the tolerable output
and input ranges is called the noise margin of the gate. For TTL gates, the low-level noise margin
is the difference between 0.8 volts and 0.5 volts (0.3 volts), while the high-level noise margin is the
difference between 2.7 volts and 2 volts (0.7 volts). Simply put, the noise margin is the peak amount
of spurious or "noise” voltage that may be superimposed on a weak gate output voltage signal before
the receiving gate might interpret it wrongly:

Acceptable TTL gate Acceptable TTL gate
input signal levels output signal levels
T 5V T 5V
High high-level noise margin High T
1 —+ 27V
Low — T 05V
_[— — 0oV

low-level noise margin

CMOS gate circuits have input and output signal specifications that are quite different from
TTL. For a CMOS gate operating at a power supply voltage of 5 volts, the acceptable input signal
voltages range from 0 volts to 1.5 volts for a ”low” logic state, and 3.5 volts to 5 volts for a ”"high”
logic state. ” Acceptable” output signal voltages (voltage levels guaranteed by the gate manufacturer
over a specified range of load conditions) range from 0 volts to 0.05 volts for a ”low” logic state, and
4.95 volts to 5 volts for a "high” logic state:

3.10. LOGIC SIGNAL VOLTAGE LEVELS

Acceptable CMOS gate
input signal levels

— 5V

High { 1L

— 35V

— 15V

Low{ 7

oV

V=5V

91

Acceptable CMOS gate
output signal levels

High — —

5V
— 495V

Low — =

| 005V
oV

It should be obvious from these figures that CMOS gate circuits have far greater noise margins
than TTL: 1.45 volts for CMOS low-level and high-level margins, versus a maximum of 0.7 volts for
TTL. In other words, CMOS circuits can tolerate over twice the amount of superimposed ”noise”
voltage on their input lines before signal interpretation errors will result.

CMOS noise margins widen even further with higher operating voltages. Unlike TTL, which is
restricted to a power supply voltage of 5 volts, CMOS may be powered by voltages as high as 15
volts (some CMOS circuits as high as 18 volts). Shown here are the acceptable "high” and ”low”
states, for both input and output, of CMOS integrated circuits operating at 10 volts and 15 volts,

respectively:

Acceptable CMOS gate
input signal levels

T 10V

High

-7V

Low

Vg =10V

Acceptable CMOS gate
output signal levels
High — —— 10V
1 995V
_| 005V
Low — = Y

92 CHAPTER 3. LOGIC GATES

Acceptable CMOS gate Acceptable CMOS gate
input signal levels output signal levels
o High — — 15V
15V 9 1495V
High | 4 +
-1 1V T
T V=15V 1
— —— 4 V 3
Low — 4 +
_| 005V
T ov Low —==gYy

The margins for acceptable "high” and ”low” signals may be greater than what is shown in the
previous illustrations. What is shown represents ”worst-case” input signal performance, based on
manufacturer’s specifications. In practice, it may be found that a gate circuit will tolerate ”high”
signals of considerably less voltage and ”low” signals of considerably greater voltage than those
specified here.

Conversely, the extremely small output margins shown — guaranteeing output states for ”high”
and ”low” signals to within 0.05 volts of the power supply ”rails” — are optimistic. Such ”solid”
output voltage levels will be true only for conditions of minimum loading. If the gate is sourcing or
sinking substantial current to a load, the output voltage will not be able to maintain these optimum
levels, due to internal channel resistance of the gate’s final output MOSFETs.

Within the "uncertain” range for any gate input, there will be some point of demarcation dividing
the gate’s actual ”low” input signal range from its actual "high” input signal range. That is,
somewhere between the lowest ”high” signal voltage level and the highest ”low” signal voltage level
guaranteed by the gate manufacturer, there is a threshold voltage at which the gate will actually
switch its interpretation of a signal from ”low” or ”"high” or vice versa. For most gate circuits, this
unspecified voltage is a single point:

3.10. LOGIC SIGNAL VOLTAGE LEVELS 93

Typical response of a logic gate
to a variable (analog) input voltage

5V V=5V

=+ >_ Vout

Time —

In the presence of AC "noise” voltage superimposed on the DC input signal, a single threshold
point at which the gate alters its interpretation of logic level will result in an erratic output:

Slowly-changing DC signal with
AC noise superimposed

Time —

If this scenario looks familiar to you, it’s because you remember a similar problem with (analog)
voltage comparator op-amp circuits. With a single threshold point at which an input causes the
output to switch between "high” and "low” states, the presence of significant noise will cause erratic
changes in the output:

94 CHAPTER 3. LOGIC GATES

? Vs
+

- I
-V
Square wave

output voltage
] |

j_
|

The solution to this problem is a bit of positive feedback introduced into the amplifier circuit.
With an op-amp, this is done by connecting the output back around to the noninverting (+) input
through a resistor. In a gate circuit, this entails redesigning the internal gate circuitry, establishing
the feedback inside the gate package rather than through external connections. A gate so designed is
called a Schmitt trigger. Schmitt triggers interpret varying input voltages according to two threshold
voltages: a positive-going threshold (Vr,), and a negative-going threshold (Vr_):

Schmitt trigger response to a
"noisy" input signal

5V V=5V

ov - ————— - -
Time —>

Schmitt trigger gates are distinguished in schematic diagrams by the small ”hysteresis” symbol
drawn within them, reminiscent of the B-H curve for a ferromagnetic material. Hysteresis engendered
by positive feedback within the gate circuitry adds an additional level of noise immunity to the gate’s
performance. Schmitt trigger gates are frequently used in applications where noise is expected
on the input signal line(s), and/or where an erratic output would be very detrimental to system
performance.

The differing voltage level requirements of TTL and CMOS technology present problems when

3.10. LOGIC SIGNAL VOLTAGE LEVELS 95

the two types of gates are used in the same system. Although operating CMOS gates on the same
5.00 volt power supply voltage required by the TTL gates is no problem, TTL output voltage levels
will not be compatible with CMOS input voltage requirements.

Take for instance a TTL NAND gate outputting a signal into the input of a CMOS inverter gate.
Both gates are powered by the same 5.00 volt supply (V..). If the TTL gate outputs a "low” signal
(guaranteed to be between 0 volts and 0.5 volts), it will be properly interpreted by the CMOS gate’s
input as a "low” (expecting a voltage between 0 volts and 1.5 volts):

+ Veo Vad
—_— DR p— IIIOWH
SV —] >o—
) TTL CMOS
5V — —1 5V
TTL 1 1 CMOS
output input
1 T 15v
o5V L _______ T
0V —— ----------ooe- —=ov

TTL output falls within
acceptable limits for
CMOS input

However, if the TTL gate outputs a "high” signal (guaranteed to be between 5 volts and 2.7
volts), it might not be properly interpreted by the CMOS gate’s input as a “high” (expecting a
voltage between 5 volts and 3.5 volts):

CHAPTER 3. LOGIC GATES

96
+ Ve Vad
g — "high"
5V —] Hy_
) TTL CMOS
BV —— -------------- 5V
T T 35v
27V o T
1 cmos
TTL input
output 4 1
ov —L-ov

TTL output falls outside of
acceptable limits for

CMOS input

Given this mismatch, it is entirely possible for the TTL gate to output a valid "high” signal
(valid, that is, according to the standards for TTL) that lies within the "uncertain” range for the
CMOS input, and may be (falsely) interpreted as a ”low” by the receiving gate. An easy ”fix” for
this problem is to augment the TTL gate’s "high” signal voltage level by means of a pullup resistor:

+ Ve Rouip Vaa
5V — .
i TTL CMOS
5V —— --------------
TTL T
output
ov -+

TTL "high" output voltage
assisted by Ryp

CMOS
input

Something more than this, though, is required to interface a TTL output with a CMOS input,
if the receiving CMOS gate is powered by a greater power supply voltage:

3.10. LOGIC SIGNAL VOLTAGE LEVELS 97

sv= | > =1V

<
8

=
+

| +

TTL CMOS
= — 10V
+ v
T CMOS
SV~ 1 input
LY AVAE =S — - 3V
output 05V 1
OV I "_-_-_-_-_---”-”--—_+ OV

The TTL "high" signal will
definitely not fall within the
CMOS gate’s acceptable limits

There will be no problem with the CMOS gate interpreting the TTL gate’s ”low” output, of
course, but a "high” signal from the TTL gate is another matter entirely. The guaranteed output
voltage range of 2.7 volts to 5 volts from the TTL gate output is nowhere near the CMOS gate’s
acceptable range of 7 volts to 10 volts for a "high” signal. If we use an open-collector TTL gate
instead of a totem-pole output gate, though, a pullup resistor to the 10 volt V44 supply rail will
raise the TTL gate’s "high” output voltage to the full power supply voltage supplying the CMOS
gate. Since an open-collector gate can only sink current, not source current, the “high” state voltage
level is entirely determined by the power supply to which the pullup resistor is attached, thus neatly
solving the mismatch problem:

98 CHAPTER 3. LOGIC GATES

+ Vee Rouip Vad +
5V — ¢ So— — 10V
_ TTL CMOS -
(open-collector)
N 10V = --=--------— 10V
T —+7v
A T CMOS
output T T nput
T —4 3V
O%Y/ == cooozomznzo Ly

Now, both "low" and "high"
TTL signals are acceptable
to the CMOS gate input

Due to the excellent output voltage characteristics of CMOS gates, there is typically no problem
connecting a CMOS output to a TTL input. The only significant issue is the current loading
presented by the TTL inputs, since the CMOS output must sink current for each of the TTL inputs
while in the "low” state.

When the CMOS gate in question is powered by a voltage source in excess of 5 volts (V..),
though, a problem will result. The ”high” output state of the CMOS gate, being greater than 5
volts, will exceed the TTL gate’s acceptable input limits for a ”high” signal. A solution to this
problem is to create an ”open-collector” inverter circuit using a discrete NPN transistor, and use it
to interface the two gates together:

Rpullup
+ Vg Vo +
ov— o— =5V
) CMOS TTL i

The "Rpuiiup” resistor is optional, since TTL inputs automatically assume a "high” state when
left floating, which is what will happen when the CMOS gate output is ”low” and the transistor cuts
off. Of course, one very important consequence of implementing this solution is the logical inversion
created by the transistor: when the CMOS gate outputs a ”low” signal, the TTL gate sees a ”high”
input; and when the CMOS gate outputs a "high” signal, the transistor saturates and the TTL gate
sees a "low” input. So long as this inversion is accounted for in the logical scheme of the system, all
will be well.

3.11. DIP GATE PACKAGING 99

3.11 DIP gate packaging

Digital logic gate circuits are manufactured as integrated circuits: all the constituent transistors and
resistors built on a single piece of semiconductor material. The engineer, technician, or hobbyist
using small numbers of gates will likely find what he or she needs enclosed in a DIP (Dual Inline
Package) housing. DIP-enclosed integrated circuits are available with even numbers of pins, located
at 0.100 inch intervals from each other for standard circuit board layout compatibility. Pin counts
of 8, 14, 16, 18, and 24 are common for DIP ”chips.”

Part numbers given to these DIP packages specify what type of gates are enclosed, and how many.
These part numbers are industry standards, meaning that a ”74LS02” manufactured by Motorola
will be identical in function to a ”74LS02” manufactured by Fairchild or by any other manufacturer.
Letter codes prepended to the part number are unique to the manufacturer, and are not industry-
standard codes. For instance, a SN74LS02 is a quad 2-input TTL NOR gate manufactured by
Motorola, while a DM74LS02 is the exact same circuit manufactured by Fairchild.

Logic circuit part numbers beginning with ”74” are commercial-grade TTL. If the part number
begins with the number ”54”, the chip is a military-grade unit: having a greater operating tem-
perature range, and typically more robust in regard to allowable power supply and signal voltage
levels. The letters "LS” immediately following the 74/54 prefix indicate ”Low-power Schottky”
circuitry, using Schottky-barrier diodes and transistors throughout, to decrease power dissipation.
Non-Schottky gate circuits consume more power, but are able to operate at higher frequencies due
to their faster switching times.

A few of the more common TTL ”"DIP” circuit packages are shown here for reference:

100 CHAPTER 3. LOGIC GATES

5400/7400 5402/7402
Quad NAND gate Quad NOR gate

4@12WWWW w] [13] [12] [1] [10] [o] [s]

giegs=illara

2] [4] [s]

=

?@

(-]
]
]
[-]
[
(]
=]

5408/7408 5432/7432
Quad AND gate Quad OR gate

2l 5 [[[l (6]] [[w] [5] [s]
gis: gy
101 (01 [[2

L] 2] 3] (4] [s] [e]

z]
z]
5]

=

<

@]
O

N

[
[]
=]
[]
]
[~
[~

5486/7486 5404/7404
Quad XOR gate Hex inverter

[14] [13] [12] [u] [10] [o] [s] IVEIEHEIHHBIWW
ERESY RS

7 [| [P P P e

L] 2] L] [4] [s] [e] [7] L] 2] L] [[s] [e] [7]

<
3

3.12. CONTRIBUTORS

4011
Quad NAND gate

[14] [13] [12] [1a] [s0] [o] [s]

“H}@
T@?@TD

L] 2] L] [4] [s] [e] [7]

4081
Quad AND gate

[13] [12] [10] [o] [s]

D (] .

4001
Quad NOR gate

w] [13] [12] [1] [10] [o] [s]

;“5> il
[[]

@
z
lw)

[-]
[

3] [e]

(@]
[]
[~

4071
Quad OR gate

1] [13] [12] [10]

=]
<]
=]

<

AL

D

L] 2] 3] [4] [s] [e] [7]

4070
Quad XOR gate

2] [h

[14] [13] [12] [1a] [s0] [o] [s]

E il
]

o] 2] 3] Lo [s] [¢] [7]

4069
Hex inverter

[14] [13] [12] [11] [10] [o] [s]

)V“ SO
b& b& GND

L] 2] L] [4] [s] [e] [7]

3.12 Contributors

Contributors to this chapter are listed in chronological order of their contributions, from most recent

L] 2] L] [[s] [e] [7]

[y
~

to first. See Appendix 2 (Contributor List) for dates and contact information.

Jan-Willem Rensman (May 2, 2002):

hysteresis to this chapter.

Suggested the inclusion of Schmitt triggers and gate

102 CHAPTER 3. LOGIC GATES

Chapter 4

SWITCHES

Contents
4.1 Switch types . . v v v i i i et e e e e e e e e e e e e e e e e e e e 103
4.2 Switchcontact design i e e e 107
4.3 Contact ”normal” state and make/break sequence 111
4.4 Contact ?bounce” i ittt e e e e e e e e e e e e e e e e e 115

4.1 Switch types

An electrical switch is any device used to interrupt the flow of electrons in a circuit. Switches
are essentially binary devices: they are either completely on (”closed”) or completely off ("open”).
There are many different types of switches, and we will explore some of these types in this chapter.

Though it may seem strange to cover this elementary electrical topic at such a late stage in this
book series, I do so because the chapters that follow explore an older realm of digital technology based
on mechanical switch contacts rather than solid-state gate circuits, and a thorough understanding of
switch types is necessary for the undertaking. Learning the function of switch-based circuits at the
same time that you learn about solid-state logic gates makes both topics easier to grasp, and sets
the stage for an enhanced learning experience in Boolean algebra, the mathematics behind digital
logic circuits.

The simplest type of switch is one where two electrical conductors are brought in contact with
each other by the motion of an actuating mechanism. Other switches are more complex, containing
electronic circuits able to turn on or off depending on some physical stimulus (such as light or
magnetic field) sensed. In any case, the final output of any switch will be (at least) a pair of
wire-connection terminals that will either be connected together by the switch’s internal contact
mechanism (”closed”), or not connected together (?open”).

Any switch designed to be operated by a person is generally called a hand switch, and they are
manufactured in several varieties:

103

104 CHAPTER 4. SWITCHES

Toggle switch

—/o—

Toggle switches are actuated by a lever angled in one of two or more positions. The common
light switch used in household wiring is an example of a toggle switch. Most toggle switches will
come to rest in any of their lever positions, while others have an internal spring mechanism returning
the lever to a certain normal position, allowing for what is called ”momentary” operation.

Pushbutton switch

1

—_— o——

Pushbutton switches are two-position devices actuated with a button that is pressed and released.
Most pushbutton switches have an internal spring mechanism returning the button to its ”out,” or
”unpressed,” position, for momentary operation. Some pushbutton switches will latch alternately on
or off with every push of the button. Other pushbutton switches will stay in their ”in,” or ”pressed,”
position until the button is pulled back out. This last type of pushbutton switches usually have a
mushroom-shaped button for easy push-pull action.

Selector switch

—ele

—e o—

Selector switches are actuated with a rotary knob or lever of some sort to select one of two or
more positions. Like the toggle switch, selector switches can either rest in any of their positions or
contain spring-return mechanisms for momentary operation.

Joystick switch

@

—e o—

A joystick switch is actuated by a lever free to move in more than one axis of motion. One or
more of several switch contact mechanisms are actuated depending on which way the lever is pushed,
and sometimes by how far it is pushed. The circle-and-dot notation on the switch symbol represents
the direction of joystick lever motion required to actuate the contact. Joystick hand switches are
commonly used for crane and robot control.

Some switches are specifically designed to be operated by the motion of a machine rather than by
the hand of a human operator. These motion-operated switches are commonly called limit switches,
because they are often used to limit the motion of a machine by turning off the actuating power to
a component if it moves too far. As with hand switches, limit switches come in several varieties:

Lever actuator limit switch

—‘\'—

4.1. SWITCH TYPES 105

These limit switches closely resemble rugged toggle or selector hand switches fitted with a lever
pushed by the machine part. Often, the levers are tipped with a small roller bearing, preventing the
lever from being worn off by repeated contact with the machine part.

Proximity switch
prox

Proximity switches sense the approach of a metallic machine part either by a magnetic or high-
frequency electromagnetic field. Simple proximity switches use a permanent magnet to actuate a
sealed switch mechanism whenever the machine part gets close (typically 1 inch or less). More com-
plex proximity switches work like a metal detector, energizing a coil of wire with a high-frequency
current, and electronically monitoring the magnitude of that current. If a metallic part (not nec-
essarily magnetic) gets close enough to the coil, the current will increase, and trip the monitoring
circuit. The symbol shown here for the proximity switch is of the electronic variety, as indicated by
the diamond-shaped box surrounding the switch. A non-electronic proximity switch would use the
same symbol as the lever-actuated limit switch.

Another form of proximity switch is the optical switch, comprised of a light source and photocell.
Machine position is detected by either the interruption or reflection of a light beam. Optical switches
are also useful in safety applications, where beams of light can be used to detect personnel entry
into a dangerous area.

In many industrial processes, it is necessary to monitor various physical quantities with switches.
Such switches can be used to sound alarms, indicating that a process variable has exceeded normal
parameters, or they can be used to shut down processes or equipment if those variables have reached
dangerous or destructive levels. There are many different types of process switches:

Speed switch
A

e
P S

These switches sense the rotary speed of a shaft either by a centrifugal weight mechanism mounted
on the shaft, or by some kind of non-contact detection of shaft motion such as optical or magnetic.

Pressure switch

S
Gas or liquid pressure can be used to actuate a switch mechanism if that pressure is applied to
a piston, diaphragm, or bellows, which converts pressure to mechanical force.

Temperature switch

—

106 CHAPTER 4. SWITCHES

An inexpensive temperature-sensing mechanism is the ”bimetallic strip:” a thin strip of two
metals, joined back-to-back, each metal having a different rate of thermal expansion. When the
strip heats or cools, differing rates of thermal expansion between the two metals causes it to bend.
The bending of the strip can then be used to actuate a switch contact mechanism. Other temperature
switches use a brass bulb filled with either a liquid or gas, with a tiny tube connecting the bulb to
a pressure-sensing switch. As the bulb is heated, the gas or liquid expands, generating a pressure
increase which then actuates the switch mechanism.

Liquid level switch

ol
A floating object can be used to actuate a switch mechanism when the liquid level in an tank
rises past a certain point. If the liquid is electrically conductive, the liquid itself can be used as a
conductor to bridge between two metal probes inserted into the tank at the required depth. The
conductivity technique is usually implemented with a special design of relay triggered by a small

amount of current through the conductive liquid. In most cases it is impractical and dangerous to
switch the full load current of the circuit through a liquid.

Level switches can also be designed to detect the level of solid materials such as wood chips,
grain, coal, or animal feed in a storage silo, bin, or hopper. A common design for this application
is a small paddle wheel, inserted into the bin at the desired height, which is slowly turned by a
small electric motor. When the solid material fills the bin to that height, the material prevents
the paddle wheel from turning. The torque response of the small motor than trips the switch
mechanism. Another design uses a ”tuning fork” shaped metal prong, inserted into the bin from
the outside at the desired height. The fork is vibrated at its resonant frequency by an electronic
circuit and magnet/electromagnet coil assembly. When the bin fills to that height, the solid material
dampens the vibration of the fork, the change in vibration amplitude and/or frequency detected by
the electronic circuit.

Liquid flow switch

ERSH

Inserted into a pipe, a flow switch will detect any gas or liquid flow rate in excess of a certain
threshold, usually with a small paddle or vane which is pushed by the flow. Other flow switches are
constructed as differential pressure switches, measuring the pressure drop across a restriction built
into the pipe.

Another type of level switch, suitable for liquid or solid material detection, is the nuclear switch.
Composed of a radioactive source material and a radiation detector, the two are mounted across
the diameter of a storage vessel for either solid or liquid material. Any height of material beyond
the level of the source/detector arrangement will attenuate the strength of radiation reaching the
detector. This decrease in radiation at the detector can be used to trigger a relay mechanism to
provide a switch contact for measurement, alarm point, or even control of the vessel level.

4.2. SWITCH CONTACT DESIGN 107

Nuclear level switch
(for solid or liquid material)

source [] L1 detector

source [[detector

Both source and detector are outside of the vessel, with no intrusion at all except the radiation
flux itself. The radioactive sources used are fairly weak and pose no immediate health threat to
operations or maintenance personnel.

As usual, there is usually more than one way to implement a switch to monitor a physical process
or serve as an operator control. There is usually no single ”perfect” switch for any application,
although some obviously exhibit certain advantages over others. Switches must be intelligently
matched to the task for efficient and reliable operation.

e REVIEW:

e A switch is an electrical device, usually electromechanical, used to control continuity between
two points.

e Hand switches are actuated by human touch.

Limit switches are actuated by machine motion.

Process switches are actuated by changes in some physical process (temperature, level, flow,
etc.).

4.2 Switch contact design

A switch can be constructed with any mechanism bringing two conductors into contact with each
other in a controlled manner. This can be as simple as allowing two copper wires to touch each
other by the motion of a lever, or by directly pushing two metal strips into contact. However, a good
switch design must be rugged and reliable, and avoid presenting the operator with the possibility of
electric shock. Therefore, industrial switch designs are rarely this crude.

The conductive parts in a switch used to make and break the electrical connection are called
contacts. Contacts are typically made of silver or silver-cadmium alloy, whose conductive properties
are not significantly compromised by surface corrosion or oxidation. Gold contacts exhibit the best

108 CHAPTER 4. SWITCHES

corrosion resistance, but are limited in current-carrying capacity and may ”cold weld” if brought
together with high mechanical force. Whatever the choice of metal, the switch contacts are guided
by a mechanism ensuring square and even contact, for maximum reliability and minimum resistance.

Contacts such as these can be constructed to handle extremely large amounts of electric current,
up to thousands of amps in some cases. The limiting factors for switch contact ampacity are as
follows:

e Heat generated by current through metal contacts (while closed).
e Sparking caused when contacts are opened or closed.

e The voltage across open switch contacts (potential of current jumping across the gap).

One major disadvantage of standard switch contacts is the exposure of the contacts to the
surrounding atmosphere. In a nice, clean, control-room environment, this is generally not a problem.
However, most industrial environments are not this benign. The presence of corrosive chemicals
in the air can cause contacts to deteriorate and fail prematurely. Even more troublesome is the
possibility of regular contact sparking causing flammable or explosive chemicals to ignite.

When such environmental concerns exist, other types of contacts can be considered for small
switches. These other types of contacts are sealed from contact with the outside air, and therefore
do not suffer the same exposure problems that standard contacts do.

A common type of sealed-contact switch is the mercury switch. Mercury is a metallic element,
liquid at room temperature. Being a metal, it possesses excellent conductive properties. Being
a liquid, it can be brought into contact with metal probes (to close a circuit) inside of a sealed
chamber simply by tilting the chamber so that the probes are on the bottom. Many industrial
switches use small glass tubes containing mercury which are tilted one way to close the contact,
and tilted another way to open. Aside from the problems of tube breakage and spilling mercury
(which is a toxic material), and susceptibility to vibration, these devices are an excellent alternative
to open-air switch contacts wherever environmental exposure problems are a concern.

Here, a mercury switch (often called a tilt switch) is shown in the open position, where the
mercury is out of contact with the two metal contacts at the other end of the glass bulb:

4.2. SWITCH CONTACT DESIGN 109

Here, the same switch is shown in the closed position. Gravity now holds the liquid mercury in
contact with the two metal contacts, providing electrical continuity from one to the other:

Mercury switch contacts are impractical to build in large sizes, and so you will typically find
such contacts rated at no more than a few amps, and no more than 120 volts. There are exceptions,
of course, but these are common limits.

Another sealed-contact type of switch is the magnetic reed switch. Like the mercury switch,
a reed switch’s contacts are located inside a sealed tube. Unlike the mercury switch which uses
liquid metal as the contact medium, the reed switch is simply a pair of very thin, magnetic, metal
strips (hence the name ”reed”) which are brought into contact with each other by applying a strong
magnetic field outside the sealed tube. The source of the magnetic field in this type of switch
is usually a permanent magnet, moved closer to or further away from the tube by the actuating
mechanism. Due to the small size of the reeds, this type of contact is typically rated at lower
currents and voltages than the average mercury switch. However, reed switches typically handle
vibration better than mercury contacts, because there is no liquid inside the tube to splash around.

It is common to find general-purpose switch contact voltage and current ratings to be greater
on any given switch or relay if the electric power being switched is AC instead of DC. The reason
for this is the self-extinguishing tendency of an alternating-current arc across an air gap. Because
60 Hz power line current actually stops and reverses direction 120 times per second, there are many
opportunities for the ionized air of an arc to lose enough temperature to stop conducting current,
to the point where the arc will not re-start on the next voltage peak. DC, on the other hand, is a
continuous, uninterrupted flow of electrons which tends to maintain an arc across an air gap much
better. Therefore, switch contacts of any kind incur more wear when switching a given value of direct
current than for the same value of alternating current. The problem of switching DC is exaggerated
when the load has a significant amount of inductance, as there will be very high voltages generated
across the switch’s contacts when the circuit is opened (the inductor doing its best to maintain
circuit current at the same magnitude as when the switch was closed).

With both AC and DC, contact arcing can be minimized with the addition of a ”snubber” circuit
(a capacitor and resistor wired in series) in parallel with the contact, like this:

110 CHAPTER 4. SWITCHES
"Snubber"
R C

/

A sudden rise in voltage across the switch contact caused by the contact opening will be tem-
pered by the capacitor’s charging action (the capacitor opposing the increase in voltage by drawing
current). The resistor limits the amount of current that the capacitor will discharge through the
contact when it closes again. If the resistor were not there, the capacitor might actually make the
arcing during contact closure worse than the arcing during contact opening without a capacitor!
While this addition to the circuit helps mitigate contact arcing, it is not without disadvantage: a
prime consideration is the possibility of a failed (shorted) capacitor/resistor combination providing
a path for electrons to flow through the circuit at all times, even when the contact is open and cur-
rent is not desired. The risk of this failure, and the severity of the resulting consequences must be
considered against the increased contact wear (and inevitable contact failure) without the snubber
circuit.

The use of snubbers in DC switch circuits is nothing new: automobile manufacturers have been
doing this for years on engine ignition systems, minimizing the arcing across the switch contact
”points” in the distributor with a small capacitor called a condenser. As any mechanic can tell
you, the service life of the distributor’s "points” is directly related to how well the condenser is
functioning.

With all this discussion concerning the reduction of switch contact arcing, one might be led to
think that less current is always better for a mechanical switch. This, however, is not necessarily
so. It has been found that a small amount of periodic arcing can actually be good for the switch
contacts, because it keeps the contact faces free from small amounts of dirt and corrosion. If a
mechanical switch contact is operated with too little current, the contacts will tend to accumulate
excessive resistance and may fail prematurely! This minimum amount of electric current necessary
to keep a mechanical switch contact in good health is called the wetting current.

Normally, a switch’s wetting current rating is far below its maximum current rating, and well
below its normal operating current load in a properly designed system. However, there are applica-
tions where a mechanical switch contact may be required to routinely handle currents below normal
wetting current limits (for instance, if a mechanical selector switch needs to open or close a digital
logic or analog electronic circuit where the current value is extremely small). In these applications,
is it highly recommended that gold-plated switch contacts be specified. Gold is a "noble” metal and
does not corrode as other metals will. Such contacts have extremely low wetting current require-
ments as a result. Normal silver or copper alloy contacts will not provide reliable operation if used
in such low-current service!

e REVIEW:

e The parts of a switch responsible for making and breaking electrical continuity are called the
”contacts.” Usually made of corrosion-resistant metal alloy, contacts are made to touch each
other by a mechanism which helps maintain proper alignment and spacing.

e Mercury switches use a slug of liquid mercury metal as a moving contact. Sealed in a glass

4.3. CONTACT "NORMAL” STATE AND MAKE/BREAK SEQUENCE 111

tube, the mercury contact’s spark is sealed from the outside environment, making this type of
switch ideally suited for atmospheres potentially harboring explosive vapors.

e Reed switches are another type of sealed-contact device, contact being made by two thin metal
"reeds” inside a glass tube, brought together by the influence of an external magnetic field.

e Switch contacts suffer greater duress switching DC than AC. This is primarily due to the
self-extinguishing nature of an AC arc.

e A resistor-capacitor network called a ”snubber” can be connected in parallel with a switch
contact to reduce contact arcing.

o Wetting current is the minimum amount of electric current necessary for a switch contact to
carry in order for it to be self-cleaning. Normally this value is far below the switch’s maximum
current rating.

4.3 Contact "normal” state and make/break sequence

Any kind of switch contact can be designed so that the contacts ”close” (establish continuity) when
actuated, or "open” (interrupt continuity) when actuated. For switches that have a spring-return
mechanism in them, the direction that the spring returns it to with no applied force is called the
normal position. Therefore, contacts that are open in this position are called normally open and
contacts that are closed in this position are called normally closed.

For process switches, the normal position, or state, is that which the switch is in when there is
no process influence on it. An easy way to figure out the normal condition of a process switch is to
consider the state of the switch as it sits on a storage shelf, uninstalled. Here are some examples of
”normal” process switch conditions:

e Speed switch: Shaft not turning
e Pressure switch: Zero applied pressure

e Temperature switch: Ambient (room) temperature

Level switch: Empty tank or bin

e Flow switch: Zero liquid flow

It is important to differentiate between a switch’s "normal” condition and its ”normal” use in an
operating process. Consider the example of a liquid flow switch that serves as a low-flow alarm in a
cooling water system. The normal, or properly-operating, condition of the cooling water system is
to have fairly constant coolant flow going through this pipe. If we want the flow switch’s contact to
close in the event of a loss of coolant flow (to complete an electric circuit which activates an alarm
siren, for example), we would want to use a flow switch with normally-closed rather than normally-
open contacts. When there’s adequate flow through the pipe, the switch’s contacts are forced open;
when the flow rate drops to an abnormally low level, the contacts return to their normal (closed)
state. This is confusing if you think of "normal” as being the regular state of the process, so be sure
to always think of a switch’s "normal” state as that which it’s in as it sits on a shelf.

112 CHAPTER 4. SWITCHES

The schematic symbology for switches vary according to the switch’s purpose and actuation. A
normally-open switch contact is drawn in such a way as to signify an open connection, ready to close
when actuated. Conversely, a normally-closed switch is drawn as a closed connection which will be
opened when actuated. Note the following symbols:

Pushbutton switch

Normally-open Normally-closed

= . -

There is also a generic symbology for any switch contact, using a pair of vertical lines to represent
the contact points in a switch. Normally-open contacts are designated by the lines not touching,
while normally-closed contacts are designated with a diagonal line bridging between the two lines.
Compare the two:

Generic switch contact designation

Normally-open Normally-closed

~HF -

The switch on the left will close when actuated, and will be open while in the "normal” (unac-
tuated) position. The switch on the right will open when actuated, and is closed in the "normal”
(unactuated) position. If switches are designated with these generic symbols, the type of switch
usually will be noted in text immediately beside the symbol. Please note that the symbol on the left
is not to be confused with that of a capacitor. If a capacitor needs to be represented in a control
logic schematic, it will be shown like this:

Capacitor

-

In standard electronic symbology, the figure shown above is reserved for polarity-sensitive capac-
itors. In control logic symbology, this capacitor symbol is used for any type of capacitor, even when
the capacitor is not polarity sensitive, so as to clearly distinguish it from a normally-open switch
contact.

With multiple-position selector switches, another design factor must be considered: that is, the
sequence of breaking old connections and making new connections as the switch is moved from
position to position, the moving contact touching several stationary contacts in sequence.

common - 3

4.3. CONTACT "NORMAL” STATE AND MAKE/BREAK SEQUENCE 113

The selector switch shown above switches a common contact lever to one of five different positions,
to contact wires numbered 1 through 5. The most common configuration of a multi-position switch
like this is one where the contact with one position is broken before the contac