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Preface

Flexible alternating-current transmission systems (FACTS) is a recent technological
development in electrical power systems. It builds on the great many advances achieved in
high-current, high-power semiconductor device technology, digital control and signals
conditioning. From the power systems engineering perspective, the wealth of experience
gained with the commissioning and operation of high-voltage direct-current (HVDC) links
and static VAR compensator (SVC) systems, over many decades, in many parts of the globe,
may have provided the driving force for searching deeper into the use of emerging power
electronic equipment and techniques, as a means of alleviating long-standing operational
problems in both high-voltage transmission and low-voltage distribution systems. A large
number of researchers have contributed to the rapid advancement of the FACTS technology,
but the names N.G. Hingorani and L. Gyugyi stand out prominently. Their work on FACTS,
synthesised in their book, Understanding FACT — Concepts and Technology of Flexible AC
Transmission Systems (Institute of Electronic and Electrical Engineers, New York, 2000), is
a source of learning and inspiration.

Following universal acceptance of the FACTS technology and the commissioning of a vast
array of controllers in both high-voltage transmission and low voltage distribution systems,
research attention turned to the steady-state and dynamic interaction of FACTS controllers
with the power network. The research community responded vigorously, lured by the novelty
of the technology, turning out a very healthy volume of advanced models and high-quality
simulations and case studies. Most matters concerning steady-state modelling and
simulations of FACTS controllers are well agreed on, and the goal of our current book:
FACTS: Modelling and Simulation in Power Networks, is to provide a coherent and
systematic treatise of the most popular FACTS models, their interaction with the power
network, and the main steady-state operational characteristics.

The overall aims and objectives of the FACTS philosophy are outlined in Chapter 1. The
inherent limitations exhibited by high-voltage transmission systems, which are inflexible and
overdesigned, are brought to attention as a means of explaining the background against
which the FACTS technology developed and took hold. The most promising FACTS
controllers and their range of steady-state applicability are described in this chapter.

Chapters 2 and 3 provide a thorough grounding on the mathematical representation of the
most popular FACTS controllers and power plant components. The models are derived from
first principles: by encapsulating the main steady-state operational characteristics and
physical structure of the actual equipment, advanced power system models are developed in
phase coordinates. As a by-product, more restrictive models are then derived, which are
suitable for positive sequence power system analysis. Software written in Matlab™ code is
given for the most involved aspects of power plant modelling, such as transmission Line
parameter calculation.
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The power flow method is the most basic system analysis tool with which to assess the
steady-state operation of a power system. It has been in existence for almost half a century,
having reached quite a sophisticated level of development, in terms of both computational
efficiency and modelling flexibility. The Newton—Raphson method is the de facto standard
for solving the nonlinear power equations, which describe the power systems, owing to its
reliability towards convergence. Chapter 4 covers the theory of positive sequence power flow
in depth, and makes extensions to incorporate cases of adjusted solutions using two
conventional power system controllers. This serves as a preamble to the material presented in
Chapter 5, where a wide range of positive sequence power flow models of FACTS controllers
are developed. Test cases and software written in Matlab® code is provided for each
controller to enable the reader to gain ample experience with the various models provided.
Furthermore, suitable coding of the Jacobian elements given in Appendix A enables more
general FACTS power flow computer programs than those given in Chapter 5.

The concepts used in the study of positive sequence power flow in Chapters 4 and 5 are
extended in Chapter 6 to address the more involved topic of three-phase power flow. The first
part deals with the Newton—Raphson in-phase coordinates using simplified representations of
conventional power plant components. Software written in Matlab™ code is provided to
enable the solution of small and medium-size three-phase power systems. Advanced models
of conventional power plants are not included in the Matlab® function given in this chapter
but their incorporation is a straightforward programming exercise. The second half of
Chapter 6 addresses the modelling of three-phase controllers within the context of the power
flow Newton—Raphson method, where the voltage and power flow balancing capabilities of
shunt and series FACTS controllers, respectively, are discussed.

The topic of optimal power flow is covered in depth in Chapter 7. Building on the ground
covered in Chapters 4 and 5, the theory of positive sequence power flow is blended with
advanced optimisation techniques to incorporate economic and security aspects of power
system operation. The optimisation method studied in this chapter is Newton’s method,
which exhibits strong convergence and fits in well with the modelling philosophy developed
throughout the book. Both conventional plant equipment and FACTS controller representa-
tions are accommodated with ease within the frame of reference provided by Newton’s
method. To facilitate the extension of a conventional optimal power flow computer program
to include FACTS representation, Appendix B gives the Hessian and gradient elements for all
the FACTS controllers presented in Chapter 7. Software written in Matlab® code is provided
in Appendix C to carry out non-FACTS optimal power flow solutions of small and medium-
size power systems. The timely issue of power flow tracing is presented in Chapter 8. The
method is based on the principle of proportional sharing and yields unambiguous information
on the contribution of each generator to each transmission Line power flow and load in the
system. Several application examples are presented in the chapter.
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1.1 BACKGROUND

The electricity supply industry is undergoing a profound transformation worldwide. Market
forces, scarcer natural resources, and an everincreasing demand for electricity are some of
the drivers responsible for such an unprecedented change. Against this background of rapid
evolution, the expansion programmes of many utilities are being thwarted by a variety of
well-founded, environmental, land-use, and regulatory pressures that prevent the licensing
and building of new transmission lines and electricity generating plants. An in-depth
analysis of the options available for maximising existing transmission assets, with high
levels of reliability and stability, has pointed in the direction of power electronics. There is
general agreement that novel power electronics equipment and techniques are potential
substitutes for conventional solutions, which are normally based on electromechanical
technologies that have slow response times and high maintenance costs (Hingorani and
Gyugyi, 2000; Song and Johns, 1999).

An electrical power system can be seen as the interconnection of generating sources and
customer loads through a network of transmission lines, transformers, and ancillary
equipment. Its structure has many variations that are the result of a legacy of economic,
political, engineering, and environmental decisions. Based on their structure, power systems
can be broadly classified into meshed and longitudinal systems. Meshed systems can be
found in regions with a high population density and where it is possible to build power
stations close to load demand centres. Longitudinal systems are found in regions where
large amounts of power have to be transmitted over long distances from power stations to
load demand centres.

Independent of the structure of a power system, the power flows throughout the network
are largely distributed as a function of transmission line impedance; a transmission line with
low impedance enables larger power flows through it than does a transmission line with high
impedance. This is not always the most desirable outcome because quite often it gives rise
to a myriad of operational problems; the job of the system operator is to intervene to try to
achieve power flow redistribution, but with limited success. Examples of operating problems
to which unregulated active and reactive power flows may give rise are: loss of system
stability, power flow loops, high transmission losses, voltage limit violations, an inability to
utilise transmission line capability up to the thermal limit, and cascade tripping.

FACTS: Modelling and Simulation in Power Networks.
Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez and César Angeles-Camacho
© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85271-2



2 INTRODUCTION

In the long term, such problems have traditionally been solved by building new power plants
and transmission lines, a solution that is costly to implement and that involves long
construction times and opposition from pressure groups. It is envisaged that a new solution
to such operational problems will rely on the upgrading of existing transmission corridors
by using the latest power electronic equipment and methods, a new technological thinking
that comes under the generic title of FACTS — an acronym for flexible alternating current
transmission systems.

1.2 FLEXIBLE ALTERNATING CURRENT TRANSMISSION SYSTEMS

In its most general expression, the FACTS concept is based on the substantial incorporation
of power electronic devices and methods into the high-voltage side of the network, to make
it electronically controllable (IEEE/CIGRE, 1995).

Many of the ideas upon which the foundation of FACTS rests evolved over a period of
many decades. Nevertheless, FACTS, an integrated philosophy, is a novel concept that was
brought to fruition during the 1980s at the Electric Power Research Institute (EPRI), the
utility arm of North American utilities (Hingorani and Gyugyi, 2000). FACTS looks at ways
of capitalising on the many breakthroughs taking place in the area of high-voltage and high-
current power electronics, aiming at increasing the control of power flows in the high-
voltage side of the network during both steady-state and transient conditions. The new
reality of making the power network electronically controllable has started to alter the way
power plant equipment is designed and built as well as the thinking and procedures that go
into the planning and operation of transmission and distribution networks. These
developments may also affect the way energy transactions are conducted, as high-speed
control of the path of the energy flow is now feasible. Owing to the many economical and
technical benefits it promised, FACTS received the uninstinctive support of electrical
equipment manufacturers, utilities, and research organisations around the world (Song and
Johns, 1999).

Several kinds of FACTS controllers have been commissioned in various parts of the
world. The most popular are: load tap changers, phase-angle regulators, static VAR compen-
sators, thyristor-controlled series compensators, interphase power controllers, static
compensators, and unified power flow controllers (IEEE/CIGRE, 1995).

It was recognised quite early on the development programme of the FACTS technology
that, in order to determine the effectiveness of such controllers; on a networkwide basis, it
would be necessary to upgrade most of the system analysis tools with which power engineers
plan and operate their systems. Some of the tools that have received research attention and,
to a greater or lesser extent, have reached a high degree of modelling sophistication are:

positive sequence power flow;
three-phase power flow;
optimal power flow;

state estimation;

transient stability;

dynamic stability;
electromagnetic transients;
power quality.
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This book covers in breadth and depth the modelling and simulation methods required for
a thorough study of the steady-state operation of electrical power systems with FACTS
controllers. The first three application areas, which are clearly defined within the realm of
steady-state operation, are addressed in the book. The area of FACTS state estimation is still
under research and no definitive models or simulation methods have emerged, as yet. A great
deal of research progress has been made on the modelling and simulation of FACTS con-
trollers for transient and dynamic stability, electromagnetic transients, and power quality,
but the simulation tools required to conduct studies in such application areas are not really
suited to conduct steady-state power systems analysis, and they are not covered in this book.

1.3 INHERENT LIMITATIONS OF TRANSMISSION SYSTEMS

The characteristics of a given power system evolve with time, as load grows and generation
is added. If the transmission facilities are not upgraded sufficiently the power system
becomes vulnerable to steady-state and transient stability problems, as stability margins
become narrower (Hingorani and Gyugyi, 2000).

The ability of the transmission system to transmit power becomes impaired by one or
more of the following steady-state and dynamic limitations (Song and Johns, 1999):

angular stability;
voltage magnitude;
thermal limits;
transient stability;
dynamic stability.

These limits define the maximum electrical power to be transmitted without causing damage
to transmission lines and electric equipment. In principle, limitations on power transfer can
always be relieved by the addition of new transmission and generation facilities. Alternati-
vely, FACTS controllers can enable the same objectives to be met with no major alterations
to system layout. The potential benefits brought about by FACTS controllers include
reduction of operation and transmission investment cost, increased system security and
reliability, increased power transfer capabilities, and an overall enhancement of the quality
of the electric energy delivered to customers (IEEE/CIGRE, 1995).

1.4 FACTS CONTROLLERS

Power flow control has traditionally relied on generator control, voltage regulation by means
of tap-changing and phase-shifting transformers, and reactive power plant compensation
switching. Phase-shifting transformers have been used for the purpose of regulating active
power in alternating current (Ac) transmission networks. In practice, some of them
are permanently operated with fixed angles, but in most cases their variable tapping facilities
are actually made use of.

Series reactors are used to reduce power flow and short-circuit levels at designated
locations of the network. Conversely, series capacitors are used to shorten the electrical
length of lines, hence increasing the power flow. In general, series compensation is switched
on and off according to load and voltage conditions. For instance, in longitudinal power
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systems, series capacitive compensation is bypassed during minimum loading in order to
avoid transmission line overvoltages due to excessive capacitive effects in the system. Con-
versely, series capacitive compensation is fully utilised during maximum loading, aiming at
increasing the transfer of power without subjecting transmission lines to overloads.

Until recently, these solutions served well the needs of the electricity supply industry.
However, deregulation of the industry and difficulties in securing new ‘rights of way’ have
created the momentum for adopting new, radical technological developments based on high-
voltage, high-current solid-state controllers (Hingorani and Gyugyi, 2000). A few years ago,
in partnership with manufacturers and research organisations, the supply industry embarked
on an ambitious programme to develop a new generation of power electronic-based plant
components (Song and Johns, 1999). The impact of such developments has already made
inroads in all three areas of the business, namely, generation, transmission, and distribution.

Early developments of the FACTS technology were in power electronic versions of the
phase-shifting and tap-changing transformers. These controllers together with the electronic
series compensator can be considered to belong to the first generation of FACTS equipment.
The unified power flow controller, the static compensator, and the interphase power
controller are more recent developments. Their control capabilities and intended function
are more sophisticated than those of the first wave of FACTS controllers. They may be
considered to belong to a second generation of FACTS equipment. Shunt-connected
thyristor-switched capacitors and thyristor-controlled reactors, as well as high-voltage
direct-current (Dc) power converters, have been in existence for many years, although their
operational characteristics resemble those of FACTS controllers.

A number of FACTS controllers have been commissioned. Most of them perform a useful
role during both steady-state and transient operation, but some are specifically designed to
operate only under transient conditions, for instance, Hingorani’s subsynchronous resonance
(SSR) damper.

FACTS controllers intended for steady-state operation are as follows (IEEE/CIGRE,
1995):

o Thyristor-controlled phase shifter (PS): this controller is an electronic phase-shifting
transformer adjusted by thyristor switches to provide a rapidly varying phase angle.

e Load tap changer (LTC): this may be considered to be a FACTS controller if the tap
changes are controlled by thyristor switches.

e Thyristor-controlled reactor (TCR): this is a shunt-connected, thyristor-controlled reactor,
the effective reactance of which is varied in a continuous manner by partial conduction
control of the thyristor valve.

o Thyristor-controlled series capacitor (TCSC): this controller consists of a series capacitor
paralleled by a thyristor-controlled reactor in order to provide smooth variable series
compensation.

o Interphase power controller (IPC): this is a series-connected controller comprising two
parallel branches, one inductive and one capacitive, subjected to separate phase-shifted
voltage magnitudes. Active power control is set by independent or coordinated adjust-
ment of the two phase-shifting sources and the two variable reactances. Reactive power
control is independent of active power.

e Static compensator (STATCOM): this is a solid-state synchronous condenser connected in
shunt with the ac system. The output current is adjusted to control either the nodal
voltage magnitude or the reactive power injected at the bus.
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e Solid-state series controller (SSSC): this controller is similar to the STATCOM but it is

connected in series with the ac system. The output current is adjusted to control either the
nodal voltage magnitude or the reactive power injected at one of the terminals of the
series-connected transformer.

Unified power flow controller (UPFC): this consists of a static synchronous series
compensator (sssc) and a STATCOM, connected in such a way that they share a common
pc capacitor. The UPFC, by means of an angularly unconstrained, series voltage injection,
is able to control, concurrently or selectively, the transmission line impedance, the nodal
voltage magnitude, and the active and reactive power flow through it. It may also provide
independently controllable shunt reactive compensation.

Power electronic and control technology have been applied to electric power systems for
several decades. HVDC links and static VAR compensators are mature pieces of technology:

Static VAR compensator (SVC): this is a shunt-connected static source or sink of reactive
power.

High-voltage direct-current (HVDC) link: this is a controller comprising a rectifier
station and an inverter station, joined either back-to-back or through a pc cable. The
converters can use either conventional thyristors or the new generation of semiconductor
devices such as gate turn-off thyristors (GTOs) or insulated gate bipolar transistors
(IGBTs).

The application of FACTS controllers to the solution of steady-state operating problems is

outlined in Table 1.1.

Table 1.1 The role of FACTS (flexible alternating current transmission systems) controllers in power

system operation

Operating problem

Corrective action

FACTS controller

Voltage limits:
Low voltage at heavy load
High voltage at low load
High voltage following

an outage
Low voltage following

an outage

Thermal limits:
Transmission circuit overload
Tripping of parallel circuits

Loop flows:
Parallel line load sharing
Postfault power flow sharing

Power flow direction reversal

Supply reactive power
Absorb reactive power
Absorb reactive power;
prevent overload
Supply reactive power;
prevent overload

Reduce overload
Limit circuit loading

Adjust series reactance
Rearrange network or use
thermal limit actions

Adjust phase angle

STATCOM, SVC,
STATCOM, SVC, TCR
STATCOM, SVC, TCR

STATCOM, SVC

TCSC, SSSC, UPFC, IPC, PS
TCSC, SSSC, UPFC, IPC, PS

IPC, SSSC, UPFC, TCSC, PS
IPC, TCSC, SSSC, UPFC, PS

IPC, SSSC, UPFC, PS
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1.5 STEADY-STATE POWER SYSTEM ANALYSIS

In order to assist power system engineers to assess the impact of FACTS equipment on
transmission system performance, it has become necessary to write new power system
software or to upgrade existing software (Ambriz-Pérez, 1998; Fuerte-Esquivel, 1997).
This has called for the development of a new generation of mathematical models for
transmission systems and FACTS controllers, which had to be blended together, coded, and
extensively verified. This has been an area of intense research activity, which has given rise
to a copious volume of publications. Many aspects of FACTS modelling and simulation
have reached maturity, and we believe that the time is ripe for such an important and large
volume of information to be put together in a coherent and systematic fashion. This book
aims to achieve such a role in the area of steady-state operation of FACTS-upgraded power
systems.

From the operational point of view, FACTS technology is concerned with the ability to
control, in an adaptive fashion, the path of the power flows throughout the network, where
before the advent of FACTS, high-speed control was very restricted. The ability to control
the line impedance and the nodal voltage magnitudes and phase angles at both the sending
and the receiving ends of key transmission lines, with almost no delay, has significantly
increased the transmission capabilities of the network while considerably enhancing the
security of the system. In this context, power flow computer programs with FACTS
controller modelling capability have been very useful tools for system planners and system
operators to evaluate the technical and economical benefits of a wide range of alternative
solutions offered by the FACTS technology.

Arguably, power flow analysis — also termed load flow analysis in the parlance of power
systems engineers — is the most popular analysis tool used by planning and operation
engineers today for the purpose of steady-state power system assessment. The reliable
solution of real-life transmission and distribution networks is not a trivial matter, and
Newton—Raphson-type methods, with their strong convergence characteristics, have proved
most successful (Fuerte-Esquivel, 1997). Extensive research has been carried out over the
past 10 years in order to implement FACTS models into Newton—Raphson-type power
flow programs. This book offers a thorough grounding on the theory and practice of
positive sequence power flow and three-phase power flow. In many practical situations, it is
desirable to include economical and operational considerations into the power flow
formulation, so that optimal solutions, within constrained solution spaces, can be obtained.
This is the object of optimal power flow algorithms (Ambriz-Pérez, 1998), a topic also
covered in the book.
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2

Modelling of FACTS
Controllers

2.1 INTRODUCTION

Two kinds of emerging power electronics applications in power systems are already well
defined: (1) bulk active and reactive power control and (2) power quality improvement
(Hingorani and Gyugyi, 2000). The first application area is know as FACTS, where the latest
power electronic devices and methods are used to control the high-voltage side of the
network electronically (Hingorani, 1993). The second application area is custom power,
which focuses on low-voltage distribution and is a technology created in response to reports
of poor power quality and reliability of supply affecting factories, offices, and homes. It is
expected that when widespread deployment of the technology takes place, the end-user will
see tighter voltage regulation, minimum power interruptions, low harmonic voltages, and
acceptance of rapidly fluctuating and other nonlinear loads in the vicinity (Hingorani, 1995).

The one-line diagram shown in Figure 2.1 illustrates the connection of power plants in an
interconnected transmission system, where the boundary between the high-voltage
transmission and the low-voltage distribution is emphasised. The former benefits from the
installation of FACTS equipment whereas the latter benefits from the installation of custom
power equipment.

To a greater or lesser extent, high-voltage transmission systems are highly meshed. For
many decades the trend has been towards interconnection, linking generators and loads into
large integrated systems. The motivation has been to take advantage of load diversity,
enabling a better utilisation of primary energy resources.

From the outset, interconnection was aided by breakthroughs in high-current, high-power
semiconductor valve technology (Arrillaga, 1998). Thyristor-based high-voltage direct-
current (HVDC) converter installations provided a means for interconnecting power systems
with different operating frequencies — e.g. 50/60 Hz, for interconnecting power systems
separated by the sea and for interconnecting weak and strong power systems (Hingorani,
1996). The most recent development in HVDC technology is the HVDC system based on
solid-state voltage source converters, which enables independent, fast control of active and
reactive powers (McMurray, 1987).

FACTS: Modelling and Simulation in Power Networks.
Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez and César Angeles-Camacho
© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85271-2
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Power plant
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Figure 2.1 A simplified one-line diagram of a power system. Redrawn, with permission, from N.G.
Hingorani, ‘Introducing Custom Power’, IEEE Spectrum 32(6) 41-48, © 1995 IEEE

Power electronics is a ubiquitous technology that has affected every aspect of electrical
power networks, not just HVDC transmission but also alternating current (AC) transmission,
distribution, and utilisation. Deregulated markets are imposing further demands on
generating plants, increasing their wear and tear and the likelihood of generator instabilities
of various kinds. To help to alleviate such problems, power electronic controllers have
recently been developed to enable generators to operate more reliably in the new
marketplace. The thyristor-controlled series compensator (TCSC) is used to mitigate
subsynchronous resonances (SSRs) and to damp power system oscillations (Larsen et al.,
1992). However, it may be argued that the primary function of the TCSC, like that of its
mechanically controlled counterpart, the series capacitor bank, is to reduce the electrical
length of the compensated transmission line. Hence, the aim is still to increase power
transfers significantly, but with increased transient stability margins. With reference to the
schematic network of Figure 2.1, the TCSC is deployed on the FACTS side.

For most practical purposes the thyristor-based static VAR compensator (SVC) has made
the rotating synchronous compensator redundant, except where an increase in the short-
circuit level is required along with fast-acting reactive power support (Miller, 1982).
However, as power electronic technology continues to develop further, the replacement of
the SVC by a new breed of static compensators based on the use of voltage source
converters (VSCs) is looming. They are known as STATCOMs (static compensators) and
provide all the functions that the SVC can provide but at a higher speed (IEEE/CIGRE,
1995); it is more compact and requires only a fraction of the land required by an SVC
installation. The STATCOM is essentially a VSC interfaced to the ac system through a
shunt-connected transformer. The VSC is the basic building block of the new generation of
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power electronic controllers that have emerged from the FACTS and custom power
initiatives (Hingorani and Gyugyi, 2000). In high-voltage transmission, the most popular
FACTS equipment are: the STATCOM, the unified power flow controller (UPFC) and
the HVDC-VSC. At the low-voltage distribution level, the SVC provides the core of the
following custom power equipment: the distribution STATCOM, the dynamic voltage
restorer, and active filters.

2.2 MODELLING PHILOSOPHY

The remit of this book is the study of models and procedures with which to assess the
steady-state operation of electrical power systems at the fundamental frequency. The power
system application tool is termed ‘power flows’, and the most popular variants of the tool
are presented in this book; namely, positive sequence power flow (Stagg and El-Abiad,
1968), optimal power flow (Wood and Wollenberg, 1984), and three-phase power flow
(Arrillaga and Arnold, 1990). The first two applications deal with cases of balanced
operation, for nonoptimal and optimal solutions, respectively. The third application deals
with unbalanced operation induced by imbalances present either in plant components or in
system load. In this book, all three applications incorporate representation of conventional
power plant components and FACTS controllers.

The modelling of FACTS controllers in both the phase domain and the sequence domain
is addressed in this chapter, and Chapter 3 deals with the representation of conventional
power plant components in both domains. All models are developed from first principles,
with strong reference to the physical structure of the equipment. Such an approach is
amenable to flexible models useful for assessing the operation of plant components in
network-wide applications, taking due care of equipment design imbalances, which are
naturally present in all power plant equipment. However, if such imbalances are small and
can be neglected in the study, then simpler models of plant components become readily
available, in the form of sequence domain models.

It should be kept in mind that, in this book, the interest is in steady-state analysis at the
fundamental frequency, and the models developed reflect this fact. They are not suitable for
assessing the periodic steady-state operation of power systems (Acha and Madrigal, 2001)
or their dynamic or transient operation (Kundur, 1994).

2.3 CONTROLLERS BASED ON CONVENTIONAL THYRISTORS

Power electronic circuits using conventional thyristors have been widely used in power
transmission applications since the early 1970s (Arrillaga, 1998). The first applications took
place in the area of HVDC transmission, but shunt reactive power compensation using fast
controllable inductors and capacitors soon gained general acceptance (Miller, 1982). More
recently, fast-acting series compensators using thyristors have been used to vary the
electrical length of key transmission lines, with almost no delay, instead of the classical
series capacitor, which is mechanically controlled. In distribution system applications, solid-
state transfer switches using thyristors are being used to enhance the reliability of supply to
critical customer loads (Anaya-Lara and Acha, 2002).
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In this section, the following three thyristor-based controllers receive attention: the
thyristor-controlled reactor (TCR), the SVC and the TCSC. The operational characteristic of
each one of these controllers is studied with particular reference to steady-state operation.

2.3.1 The Thyristor-controlled Reactor

The main components of the basic TCR are shown in Figure 2.2(a). The controllable
element is the antiparallel thyristor pair, Thl and Th2, which conducts on alternate half-
cycles of the supply frequency. The other key component is the linear (air-core) reactor of
inductance L (Miller, 1982). The thyristor circuit symbol is shown in Figure 2.2(b).

incg (1)
4 Anod Gate
L (A) Cathode
(K)
w(t) Th2 Thl
o—— |

(a) (d)

Figure 2.2 Thyristor-based circuit: (a) Basic thyristor-controlled reactor (TCR); (b) thyristor circuit
symbol.

The overall action of the thyristor controller on the linear reactor is to enable the reactor
to act as a controllable susceptance, in the inductive sense, which is a function of the firing
angle «. However, this action is not trouble free, since the TCR achieves its fundamental
frequency steady-state operating point at the expense of generating harmonic distortion,
except for the condition of full conduction.

First, consider the condition when no harmonic distortion is generated by the TCR, which
takes place when the thyristors are gated into conduction, precisely at the peaks of the
supply voltage. The reactor conducts fully, and one could think of the thyristor controller as
being short-circuited. The reactor contains little resistance and the current is essentially
sinusoidal and inductive, lagging the voltage by almost 90°(n/2). This is illustrated in
Figure 2.3(a), where a fundamental frequency period of the voltage and current are shown.

It should be mentioned that this condition corresponds to a firing angle « of /2, which is
the current zero-crossing measured with reference to the voltage zero-crossing. The
relationship between the firing angle o and the conduction angle o is given by

o=2(n—a). (2.1)

Partial conduction is achieved with firing angles in the range: ©/2 < « < =, in radians. This
is illustrated in Figures 2.3(b)-2.3(d), where TCR currents, as a function of the firing angle,
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Figure 2.3 Current waveforms in the basic thyristor-controlled reactor: (a) o = 90°, o = 180°;
(b) a =100°, o = 160°; (c) @ = 130°, ¢ = 100°; (d) @ = 150°, o = 60°; for convenience, angles are
given in degrees. Note: i, current; v, voltage; «, firing angle; o, conduction angle. Reproduced by
permission of John Wiley & Sons Inc. from T.J.E Miller, 1982, Reactive Power Control in Electric
Systems

are shown. Increasing the value of firing angle above n/2 causes the TCR current waveform
to become nonsinusoidal, with its fundamental frequency component reducing in
magnitude. This, in turn, is equivalent to an increase in the inductance of the reactor,
reducing its ability to draw reactive power from the network at the point of connection.

For the voltage condition shown in Figure 2.2(a), with v(¢) = V2 Vsinwt, the TCR
instantaneous current itcg(?) is given by

1 wrt
itcr(f) = fJ V2 Vsinwtdt =

2V
AN 7 (cos v — cos wr) (2.2)

in the interval o < wt < (o + o), and is zero otherwise. V is the root mean square (rms)
voltage, and w = 2nf, where f is the operating frequency.

Using Fourier analysis, an expression for the fundamental frequency current, Itcgyi, iS
found:

\%4
Itcrf1 = Soln [2(n — a) + sin2q]. (2.3)
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If the firing angles of Th1 and Th2 are balanced, no even harmonics are generated, and the
rms value of the Ath odd harmonic current is given by
4V [sin(h+ o  sinh— 1)« sin ha
I = — 24
R 2 ) T 2=y YT ) (24)
where h =3,5,7,9, 11, 13 ....

Power system TCR installations are three-phase and use filters and other harmonic
cancellation arrangements to prevent the harmonic currents from reaching the high-voltage
side of the network. Also, the TCR inductors will have a small resistive component. By way
of example, Figure 2.4 shows a three-phase, delta-connected TCR. This topology uses six
groups of thyristor and is commonly known as a six-pulse TCR.

@
%
b ®
Ve,
Itcra
A\ 4
—
Itcra Itcrs
Branch 2 Branch 3

Figure 2.4 Three-phase thyristor-controlled reactor

In this arrangement, and under balanced operating conditions, the triplet harmonic
currents generated by the three TCR branches do not reach the external network, only
harmonic orders h = 5, 7, 11, 13, .... Moreover, if the TCR is split into two units of equal
rating and connected to the low-voltage side of a transformer having two secondary
windings, one connected in star and the other in delta, then cancellation of harmonic orders
h =35, and h = 7 is achieved. The alternative arrangement is termed a twelve-pulse TCR.
The lowest harmonic orders reaching the primary winding of the transformer are 7 = 11,
13, ..., which are normally removed by using tuned filters (Miller, 1982).

We would assume in the ensuing analysis that suitable harmonic cancellation measures
are in place, as we are concerned only with fundamental frequency operation and
parameters. However, neither balanced operation nor balanced TCR designs will be
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assumed a priori. It is not difficult to see from Equation (2.3) that a part of it may
be interpreted as the equivalent susceptances of the basic TCR shown in Figure 2.2, which is
a function of the controllable parameters . Accordingly, Equation (2.3) may be expressed
by

Itcr = —jBrcrV, (25)
where
2(m — ) + sin 2«

wLm

Brer = ) (2.6)

and the subscript f1, which indicates fundamental frequency current, has been dropped for
convenience.

The three-phase nodal admittance representation of a TCR may be obtained by resorting
to linear transformations. For instance, using the result in Equation (2.5), the case of the six-
pulse TCR shown in Figure 2.4 will have the following primitive parameters:

Itcri —jBrcr 1 0 0 Vi
Itcr2 | = 0 —JjBrcr2 0 Vo, (2.7
Itcr3 0 0 —jBrcr3 | | V3

and connectivity matrices for phases a, b, c:

Vi 1 1 0]V
v =(%) 0o 1 —1||wl, (2.8)
Vs | 10 1 ]|V
rera | 10 —1][f
Iers =(“f/6) Or o || e | (2.9)
Itcre | 3 0 -1 1 ||/Ircrs

Substituting Equation (2.8) into Equation (2.7), and the intermediate result into Equa-
tion (2.9), we obtain the following phase domain equivalent circuit for the six-pulse TCR:

Itcra 113 (Btcr1 + Brcr3) JBrcr1 iBTtcr3 Va

Itcrpy | =3 JBTCR1 —j(Brcr1 + Brcr2) iB1CR2 Vp

Itcr¢ JBTCR3 jB1cRr2 —j(Brcr2 + Brcrs) | | Ve
(2.10)

As as special condition, if all three branches in the TCR have equal equivalent
susceptances (Brcr1 = Brcr2 = Brcr3 = Brcr), something that is possible to achieve by
careful design, Equation (2.10) simplifies to

Itcrq 1 | —i2Brer  jBrcr jBrcr Va
Itcry | = 3 jBrcr  —j2B1crR  jBrer Vi |- (2.11)
Itcre jBrcr jBrcr  —j2Brtcr | | Ve

In this situation, an alternative representation becomes feasible, using the frame of reference
afforded by the concept of symmetrical components. Three sequence components are
associated with three-phase circuits, namely zero (0), positive (1), and negative (2)
sequences. The transformation from phase coordinates to sequence coordinates involves
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applying the matrix of symmetrical components Tg and its inverse to Equation (2.11),
leading to the following result:

Iter (o) 0 0 0 Vo)
Itcr(y | = |0 —jBrcr 0 Viy |- (2.12)
Itcr (2) 0 0 —jBrer | | Vo)

The operation required to transform a three-phase quantity into sequence quantities is
explained in detail in Section 3.2.12.

As expected, no zero sequence current can flow in this circuit owing to the delta-
connected nature of the TCR. The positive sequence (1) and negative sequence (2) circuits
present equal impedances (susceptances) to their respective current flows. Also, it is shown
in Equation (2.12) that no couplings exist between sequences. It should be remarked
that this would not have been the case if symmetrical components had been applied to
Equation (2.10) as opposed to Equation (2.11). The reason is that the admittance matrix
of Equation (2.10) is not necessarily a balanced one, since the condition Bycri # Brcr2 #
Brcr3z may exist.

Nevertheless, if equal equivalent admittances may be assumed in the six-pulse TCR then
the positive sequence representation becomes

Itcr (1) = —JBrerV(1)- (2.13)

This representation matches the behaviour of the basic (single-phase) TCR shown in
Figure 2.2(a) and given by Equation (2.5).

2.3.2 The Static VAR Compensator

In its simplest form, the SVC consists of a TCR in parallel with a bank of capacitors. From
an operational point of view, the SVC behaves like a shunt-connected variable reactance,
which either generates or absorbs reactive power in order to regulate the voltage magnitude at
the point of connection to the ac network. It is used extensively to provide fast reactive
power and voltage regulation support. The firing angle control of the thyristor enables the
SVC to have almost instantaneous speed of response.

A schematic representation of the SVC is shown in Figure 2.5, where a three-phase, three-
winding transformer is used to interface the SVC to a high-voltage bus. The transformer has
two identical secondary windings: one is used for the delta-connected, six-pulse TCR and
the other for the star-connected, three-phase bank of capacitors, with its star point floating.
The three transformer windings are also taken to be star-connected, with their star points
floating.

The modelling of one TCR branch has been dealt with in Section 2.3.1, and attention is
now dedicated to a bank of capacitors. The admittances of both branches of the SVC will
then combine quite straightforwardly.

The nodal admittance of the capacitor bank, in phase coordinates, may be expressed with
explicit representation of the star point, which is not grounded. However, it is more
advantageous to perform a Kron reduction to obtain a reduced equivalent, where only the
parameters of phases a, b, and c are represented explicitly.
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Figure 2.5 Representation of a three-phase static VAR compensator (SVC) comprising fixed
capacitors and thyristor-controlled reactors (TCRs)

In the most general case, when B¢y # Bca # Bes, and after having performed Kron’s
reduction, the reduced equivalent model of the bank of capacitors is:

: B + BcoB, : BcsB
lc J(BCI Cl) J C20C1 J C3DC1 ‘/
: Bc 1B, o BZ s Bc3B
I J c1bc2 J(BC __C2> _] c3bc2 ‘/l s (2'4)
i BciBcs i BcoBes 1 E%B
I . _]l— —] 5= J<BC3 — €3 Ve

where
ABc = B¢y + Bca + Bes,

Bci = wCy, (2.15)
Bco = w(s, .
Bc3 :wC3.

Kron’s reduction is a technique used to eliminate mathematically, specific rows and columns
in a matrix equation. It is explained in detail in Section 3.2.3.

If all three branches in the bank of capacitors have equal equivalent susceptances
(Bc1 = Bca = Bes = Be), Equation (2.14) simplifies to:

Ica 1 | i2Bc —iBc —jBc | [ Va
ler | =5 | =iBe i2Bc —ic || Vs ). (2.16)
[Cc _jBC _jBC J2BC Vc
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Three-phase models of the SVC in phase coordinates can now be formed with ease. The
most general expression for the six-pulse SVC would be the case when Equations (2.10) and
(2.14) are added together, giving rise to a model where design imbalances in the SVC may
be accounted for.

A more constrained, but still very useful, model is the case when Equations (2.11) and
(2.16) are used as the constituent parts of the SVC model:

Isvca Icq Itcra
Isver | = | Icn | + | Itcrp
Isvce Ic. Itcre
j2(Bc — Brcr) —j(Bc —Brcr) —j(Bc — Brcr) | | Va
=3 | JBc—Brer) j2(Bc —Brer)  —i(Be = Brer) | | Vo |- (217)

—j(Bc —Brcr) —j(Bc — Brer)  j2(Bc — Brer) Ve

It is clear that alternative models, of varying functionality, can also be formed. For instance,
combination of Equations (2.10) and (2.16) leads to an SVC model where the three branches
of the TCR may have different equivalent inductances but the three capacitances of the bank
are equal. Use of Equations (2.11) and (2.14) have the opposite functionality effect in the
SVC model.

In any case, only the SVC model given by Equation (2.17) is suitable for deriving a
representation in the frame of reference of symmetrical components. Applying the matrix of
symmetrical components Tg and its inverse to Equation (2.17) leads to the following result:

Isvc (o) 0 0 0 Vi)
Isve)| = |0 j(Bc—Brew) 0 Vay |- (2.18)
Isve (o) 0 0 j(Bc — Brer) | | Vo)

Similar to the TCR, no zero sequence current can flow in the SVC circuit as the star point
of the bank of capacitors is not grounded. The positive sequence and negative sequence
circuits contain equal impedances. However, for cases of balanced operation and balanced
SVC designs only the positive sequence representation is of interest:

Isvc (1) = jBsvc Vo, (2.19)
where

XCIXL {XL - % [2(t — ) + sin 2a]}7
XL =wL, (2.20)
1
=
It should be remarked that the positive sequence model of the SVC should also serve the
purpose of representing a single-phase SVC.

Bsvc = Bc — Btcr =

Xc

2.3.3 The Thyristor-controlled Series Compensator

TCSCs vary the electrical length of the compensated transmission line with little delay. This
characteristic enables the TCSC to be used to provide fast active power flow regulation. It
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also increases the stability margin of the system and has proved very effective in damping
SSR and power oscillations (Larsen et al., 1992).

In principle, the steady-state response of the TCSC may be calculated by solving the
differential equations that describe its electrical performance, using a suitable numeric
integration method. Alternatively, the TCSC differential equations may be expressed in
algebraic form and then a phasorial method used to solve them. The former approach
involves the integration of the differential equations over many cycles until the transient
response dies out. This solution method is rich in information as the full evolution of the
response is captured, from transient inception to steady-state operation, but it suffers from
excessive computational overheads, particularly when solving lightly damped circuits. Two
different solution flavours emerge from the phasorial approach. (1) the TCSC steady-state
operation may be determined very efficiently by using fundamental and harmonic frequency
phasors, neatly arranged in the harmonic domain frame of reference (Acha and Madrigal,
2001). The method yields full information for the fundamental and harmonic frequency
TCSC parameters but no transient information is available. (2) Alternatively, a nonlinear
equivalent impedance expression is derived for the TCSC and solved by iteration (Fuerte-
Esquivel, Acha, and Ambriz-Pérez, 2000a). The solution method is accurate and converges
very robustly towards the solution, but it only yields information for the fundamental
frequency steady-state solution. This is precisely the approach taken in power flow studies,
the application topic covered in this book.

2.3.3.1 Thyristor-conftrolled series capacitor equivalent circuit
A basic TCSC module consists of a TCR in parallel with a fix capacitor. An actual TCSC

comprises one or more modules. Figure 2.6 shows the layout of one phase of the TCSC
installed in the Slatt substation (Kinney, Mittelstadt, and Suhrbier, 1994).

l By pass disconnect l
I Series I
capacitor
Varistor (1.99 mF) TCSC
e e s [
. . - . - .

/ Ré::tor

Thyrist
§<_ Reactor yristor (0. 470 mH)
(0.307 mH) valve

1
| S|

By pass breaker

Figure 2.6 Physical structure of one phase of a thyristor-controlled series capacitor (TCSC).
Reproduced, with permission, from S.J. Kinney, W.A. Mittelstadt, and R.W. Suhrbier, ‘Test Results
and Initial Operating Experience for the BPA 500 kV Thyristor Controlled Series Capacitor: Design,
Operation, and Fault Test Results, Northcon 95°, in IEEE Technical Conference and Workshops
Northcon 95, Portland, Oregon, USA, October 1995, pp. 268-273, © 1995 IEEE
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The TCR achieves its fundamental frequency operating state at the expense of generating
harmonic currents, which are a function of the thyristor conduction angle. Nevertheless,
contrary to the SVC application where the harmonic currents generated by the TCR tend to
escape towards the network, in the TCSC application the TCR harmonic currents are
trapped inside the TCSC because of the low impedance of the capacitor compared with the
network equivalent impedance. This is, at least, the case for a well-designed TCSC
operating in capacitive mode. Measurements conducted in the Slatt and the Kayenta TCSC
systems support this observation. For instance, the Kayenta system generates at its
terminals, a maximum total harmonic distortion (THD) voltage of 1.5 % when operated in
capacitive mode and firing at an angle of 147° (Christl et al., 1992). It should be noted that
there is little incentive for operating the TCSC in inductive mode as this would increase the
electrical length of the compensated transmission line, with adverse consequences on
stability margins, and extra losses.

For the purpose of fundamental frequency power system studies, a complex TCSC
topology, such as the single-phase branch shown in Figure 2.6, may be taken to consist of
one equivalent TCR paralleled by one equivalent capacitor, as illustrated schematically in
Figure 2.7. The surge arrester is not represented as this is a representation intended for
steady-state operation, but the existence of a loop current is emphasised.

Rl

< Vr1esc

Figure 2.7 Thyristor-controlled series capacitor (TCSC) equivalent circuit. Reproduced with
permission from C.R. Fuerte-Esquivel, E. Acha, and H. Ambriz-Pérez, ‘A Thyristor Controlled Series
Compensator Model for the Power Flow Solution of Practical Power Networks’, IEEE Trans. Power
Systems 15(1) 58-64, © 2000 IEEE

This equivalent circuit has an associated equivalent reactance, which is a function of the
thyristor gating signals. Expressions for the various electrical parameters in the TCSC
equivalent circuit are derived in the following two sections.

2.3.3.2 Steady-state current and voltage equations

The TCSC current equations may be obtained with reference to the circuit shown in
Figure 2.8, using Laplace theory. This electric circuit represents, in simple terms, the
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lilhy
iline =1 cos wt CT) —_—C

Figure 2.8 Thyristor-controlled series capacitor (TCSC) electric circuit. Reproduced with
permission from C.R. Fuerte-Esquivel, E. Acha, and H. Ambriz-Pérez, ‘A Thyristor Controlled Series
Compensator Model for the Power Flow Solution of Practical Power Networks’, IEEE Trans. Power
Systems 15(1) 58-64, © 2000 IEEE

topology of a TCR in parallel with a capacitor branch, just before the thyristor fires on. The
thyristor is represented as an ideal switch, and the contribution of the external network is
assumed to be in the form of a sinusoidal current source. The current pulse through the
thyristor, which exhibits a degree of asymmetry right up to the point when the steady-state
is reached, is shown schematically in Figure 2.9. The time reference, termed the ‘original
time reference’ (OR), is taken at the positive-going zero-crossing of the voltage across

ORI

OR T =043 T+ Ou4
r'd

s B it 0 N A
U/

-0, ow 2% — 045 27+ Oue

AR

Figure 2.9 Thyristor-controlled series capacitor (TCSC) asymmetrical thyristor current. Note: AR,
auxiliary time reference; OR, original time reference. Reproduced with permission from C.R. Fuerte-
Esquivel, E. Acha, and H. Ambriz-Pérez, ‘A Thyristor Controlled Series Compensator Model for the
Power Flow Solution of Practical Power Networks’, IEEE Trans. Power Systems 15(1) 58-64, © 2000
IEEE

the inductive reactance of the TCSC. It is useful at this stage to introduce an ‘auxiliary time
reference’ (AR) in addition to the OR, which is taken at a time when the thyristor starts to
conduct.

Expressing the line current given in the circuit of Figure 2.8, ijj,e = coswt, in terms of the
auxiliary reference plane (AR),

fine = cos(wt — 0,) = coswt cos o, + sinwt sin oy, (2.21)
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where o,, equal to ™ — a, is the firing advance angle, and « is the firing angle with the
capacitor voltage positive-going, zero-crossing as reference.
Applying Kirchhoff’s current law to the circuit of Figure 2.8, we obtain

iline = ithy + icap~ (222)

During the conduction period the voltage across the TCSC inductive and capacitive
reactances have equal values,

Ld(;t:y - éjicap dr + V7, (2.23)
where V;p is the voltage across the capacitor when the thyristor turns on.
Expressing Equations (2.21)—(2.23) in the Laplace domain, we obtain
Line = cOS (aa ﬁ) + sin (aa M%) , (2.24)
liine = Iy + Lcap, (2.25)
Ieap = S’LC Iy — CV,, (2.26)

where s is the Laplace operator.
Substituting Equations (2.24) and (2.26) into Equation (2.25), we obtain the current
through the thyristor in the Laplace domain:
1 . WiCVeh
wsin(o,) + .
FrAEr Yt e
(2.27)

)
(2 +aB)(s? + o)

Iy = wg cos(a,) + w(z)

The corresponding expression in the time domain is readily established from the above
equation:

Ithy = A cos(wt — 0,) — A oS 0, cOs wyt — Bsin o, sinwot + DVjap sin wot, (2.28)
where
W
A= , 2.29
w§ — w? ( )
B= (2.30)
Wi — w
D = wC, (2.31)
PR=L (2.32)
0 =1e )

In order to make Equation (2.28) valid for the range [—o,, 0,] in Figure 2.9, it is
necessary to shift the equation to the original time reference, OR, by adding o, /w to the time
variable, to give

ithy = A cOs [w(t + &) — oa] — A cos o, Cos wy (t + 2)
w w

— Bsing sinwy 1+ 2) + DV, sinw, (14 7). (233)
w w
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After some arduous algebra, we have,

ithy = A coswt + (—A cos 0, cos wo, — Bsino,sinwo, + D V:;p sin wo, ) cos wot

+ (Acos o, sinwo, — Bsino, coswo, + D V:;p cos wo, ) sin wot, (2.34)
where
wo
=—. 2.35
w=2 (233)

Equation (2.34) is valid in the range —o, < wt < 0., and contains the transient and
steady-state components. One further consideration is added to this result to yield the
desired expression for the thyristor current in steady-state, which is reached when the
current pulse in Figure 2.9 becomes symmetrical (i.e. o, = 0,2). Such a condition takes
place when the capacitor voltage, Vjap, reaches such a level that the coefficient of the
sinusoidal term, sinwyt, takes a value of zero. At this point in time the capacitor voltage
becomes

Vi = g sin(og) — %cos(au)tan(waa). (2.36)
The expression for the steady-state thyristor current is obtained by substituting Equa-
tion (2.36) into Equation (2.34), to give

cos o,

iy = Acos(wt) — A cos(wowt). (2.37)

cos(way,)
With reference to Figure 2.9, when the steady-state is reached
Oa = 0q) = 043 = Og4 = 0a5 = O6- (2.38)
A similar equation to Equation (2.37), valid for the interval (1t — 0,) < wt < (T + 0,),
may be obtained by assuming that a second firing pulse, in Figure 2.9, takes place 7 radians
just after the first pulse, producing a current flow through the thyristor with opposite polarity
to the current given by Equation (2.37):

cos(ay,)

iy = A cos(wr) + A cos[co(wt — m)]. (2.39)

cos(way,)

For completeness, in the interval o, < wt < (T — 0y):
ity = 0. (2.40)

on

Expressions for the voltage across the TCSC capacitor during the conduction period v,

are obtained by substituting Equations (2.37) and (2.39) into:

on __ dithy
cap d t
The combined solution of Equations (2.37), (2.39), and (2.41) gives the voltages across the
capacitor in the intervals —o, < wt < 0,, and (T — 0,) < wt < (T + 0,):

v . (2.41)

X )| .

Voap = —AXpsin(wr) + A [%;SU(S)] sin(wwoy), (2.42)
X | .

o = —A X, sin(wr) — A [%;SJ(C;)] sin[ew(wr — 1)), (2.43)

where X, is the inductive reactance defined by the product wL.
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When the thyristor is not conducting, the circuit in Figure 2.8 reduces to a capacitor in
series with a direct current (pc) voltage source, which represents the capacitor voltage at the
time of thyristor commutation,

1 wt
W= J cos(wr) dr 4 Von-oft (2.44)
.

where Vc(’;p“’ff is the voltage across the capacitor just at the time when the thyristor is turned
off (i.e. o,/w). This value is readily obtained from Equation (2.42), to be

Voot = —A X, sin(0,) + A Xp. cos(0,) tan(woy,). (2.45)

Substitution of Equation (2.45) into Equation (2.44) enables the solution of v‘c’g) in the
intervals —o, < wf < 04, and (1 — 0,) < wt < (T + 0,):

vgg) = Xc [sin(wt) — sino,] — AX,[sino, — wcos o, tan wo,), (2.46)

v‘c’g) = Xc [sin(wr) + sino,] + AX,(sino, — wcos o, tan woy, ), (2.47)

where X is the inductive reactance defined by 1/wC.

Typical TCSC voltage and current waveforms are shown in Figures 2.10(a) and 2.10(b).
They correspond to the TCSC installed at the Kayenta substation (Christl ez al., 1992), with
the thyristors fired at angles of 150° and having an inductive reactance of 2.6 {2 and an
capacitive reactance of 152, at a base frequency of 60 Hz.

2.3.3.3 Thyristor-controlled series capacitor fundamental
frequency impedance

As illustrated by the TCSC waveforms shown in Figures 2.10(a) and 2.10(b), the inductor
current is nonsinusoidal but periodic, and it is said to contain harmonic distortion. If the
interest is the study of the TCSC at only the fundamental frequency then it becomes
necessary to apply Fourier analysis to a full period of the inductor current, say Equations
(2.37), (2.39), and (2.40), in order to obtain its expression at the fundamental frequency.

With reference to Figure 2.10(b), it is clear that the TCSC thyristor current has even and
quarter-wave symmetry. Hence, the fundamental frequency component can be obtained by
solving Equation (2.37) only:

4 (7 .
Iy = . ,[0 {A cos(wt) — A Cz:?fjaz)cos(ww t)} cos(wf)dwt
4 {Zaa + sin(ZUa)] _4A ccz)sz(aa) {w tan(k o,) — tan(aa)] ' (2.48)
T ws—1 T
The thyristor current at the fundamental frequency may be expressed as
iiny(1) = Iiny(1) cOS(w1). (2.49)

By recognising that the fundamental frequency voltage across the TCSC module,
Vreseq), equals the fundamental frequency voltage across the capacitor, and that the ideal
current source representing the external circuit is taken to be sinusoidal, an expression for
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Figure 2.10 Voltage and current waveforms in (a) thyristor-controlled series capacitor the (TCSC)
capacitor and (b) the TCSC inductor

the TCSC fundamental frequency impedance may be determined:

Vicscy =1 Xc leapi

Moreover, the TCSC contains no resistance and the line current splits between the currents
flowing in the capacitive and inductive branches:

—j Xc (coswt — Iy (1) cos wt)

Xtesc() = — = —jXe [1 + I/thy(]):|7 (2.51)
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where Xtcsc(ry is the TCSC equivalent reactance at the fundamental frequency, and ]/thy(l)
has the form of Iyy () in Equation (2.48) but is a dimensionless parameter as it has been
divided by a unitary current.

The TCSC equivalent reactance is as a function of its capacitive and inductive parameters,

and the firing angle:
Xrcscy = —Xe + C1 {2(n — @) +sin2(m — )]}

+ Gy cos?(n — a){wtan[w(n — )] — tan(n — )}, (2.52)
where

Xe X
Xjp=——"2 2.53
LC XC — XL7 ( )

X X
C, = ﬂ’ (2.54)

i
4 X?

C, = ——L. 2.55
2 Xon (2.55)

The poles of Equation (2.52) are:

2n — 1)(LC)"?
a=n )(2 R (2.56)
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Figure 2.11 Thyristor-controlled series capacitor (TCSC) fundamental frequency impedance

The TCSC capacitive and inductive reactance values should be chosen carefully in order
to ensure that just one resonant point is present in the range of n/2 to n. Figure 2.11 shows
the TCSC fundamental frequency reactance, as a function of the firing angle, for the TCSC
installed at the Kayenta substation (Christl ez al., 1992).

For the purpose of power flow studies, the TCSC may be adequately represented by the
equivalent reactance in Equation (2.52), which enables a straightforward representation of
the TCSC in the form of a nodal transfer admittance matrix. This is derived with reference
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Figure 2.12 Single-phase thyristor-controlled series capacitor (TCSC) comprising an equivalent
capacitor and a thyristor-controlled reactor (TCR) in parallel. Reproduced with permission from C.R.
Fuerte-Esquivel, E. Acha, and H. Ambriz-Pérez, ‘A Thyristor Controlled Series Compensator Model
for the Power Flow Solution of Practical Power Networks’, IEEE Trans. Power Systems 15(1) 58-64,
© 2000 IEEE

to the equivalent circuit in Figure 2.12, where it is assumed that the TCSC is connected
between buses k and m.

The transfer admittance matrix relates the nodal currents injections, I and I,,, to the nodal
voltages, V; and V,,, via the variable TCSC reactance shown in the equivalent circuit of
Figure 2.12:

1 1

1, — ; V
k _ JXtese 1 Xtesc k (2.57)
I, L,

JXtcsc JXtcsc

In three-phase TCSC installations, three independent modules, possibly of the form
shown in Figure 2.6, may be used, one for each phase. For modelling and simulation
purposes, it is assumed that no electromagnetic couplings exist between the TCSC units
making up the three-phase module. This enables a straightforward extension of the single-
phase TCSC transfer admittance, given by Equation (2.57), to model the three-phase TCSC:

_ o ] I o _
— - 0 0
Itcscak Xroser Xreser Vrescak
1 1
I — 0 0 - 0 V.
TCSChk Xresea Xrcsca TCSChk
1 1
Itcscek 0 — 0 . Vrcscek
B JXtcses JXtcscs
N 1 1
Itcscam - 0 —- 0 0 Vrcscam
JX1Csci JX1csci
Itcscom : ! 0 . ! 0 Vrcschm
iXtcsc2 i Xtcsc2
Itcscem 0 1 0 1 Vrcscem
L 1 L iXtcscs iXtescsd L i

(2.58)
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where subscripts 1, 2, and 3 are used to indicate that the three single-phase units may take
different values owing to either different design parameters or unequal thyristor firing
pulses.

If the three single-phase TCSC units have identical reactance values, say Xrcsc, then it is
possible to transform the TCSC phase domain model into the sequence domain frame of
reference. Owing to the decoupled nature of Equation (2.58), the positive, negative, and zero
sequence models are identical and have the same form as Equation (2.57), the representation
of the single-phase TCSC.

2.4 POWER ELECTRONIC CONTROLLERS BASED ON FULLY
CONTROLLED SEMICONDUCTOR DEVICES

Modern power system controllers based on power electronic converters are capable of
generating reactive power with no need for large reactive energy storage elements, such as
in SVC systems. This is achieved by making the currents circulate through the phases of the
Ac system with the assistance of fast switching devices (Hingorani and Gyugyi, 2000).

The semiconductor devices employed in the new generation of power electronic
converters are of the fully controlled type, such as the insulated gate bipolar transistor
(IGBT) and the gate turn-off thyristor (GTO). Their respective circuit symbols are shown in
Figure 2.13 (Mohan, Undeland, and Robbins, 1995).

Cathode (K) Collector (C)

Gate (G)

Gate (G) J

Anode (A) Emitter (E)

(a) (b)

Figure 2.13 Circuit symbols for: (a) gate turn-off thyristor and (b) insulated gate bipolar transistor.
Reproduced by permission of John Wiley & Sons Inc. from N. Mohan, T.M. Undeland, and
W.P. Robbins, 1995, Power Electronics: Converter Applications and Design, 2nd edn

The GTO is a more advanced version of the conventional thyristor, with a similar
switched-on characteristic but with the ability to switch off at a time different from when the
forward current falls naturally below the holding current level. Such added functionality has
enabled new application areas in industry to be developed, even at bulk power transmission
where nowadays it is possible to redirect active power at the megawatt level. However, there
is room for improvement in GTO construction and design, where still large negative pulses
are required to turn them off. At present, the maximum switching frequency attainable is in
the order of 1kHz (Mohan, Undeland, and Robbins, 1995).

The IGBT is one of the most well-developed members of the family of power transistors.
It is the most popular device used in the area of ac and bc motor drives, reaching power
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levels of a few hundred kilowatts. Power converters aimed at power systems applications are
beginning to make use of IGBTs owing to their increasing power-handling capability and
relatively low conduction losses. Further progress is expected in IGBT and GTO technology
and applications (Hingorani, 1998).

In pc—Ac converters that use fully controlled semiconductors rather than conventional
thyristors, the pC input can be either a voltage source (typically a capacitor) or a current
source (typically a voltage source in series with an inductor). With reference to this basic
operational principle, converters can be classified as either voltage source converters (VSCs)
or current source converters. For economic and performance reasons, most reactive power
controllers are based on the VSC topology. The availability of modern semiconductors with
relatively high voltage and current ratings, such as GTOs or IGBTs, has made the concepts
of reactive compensation based on switching converters a certainty, even for substantial
high-power applications.

A number of power system controllers that use VSCs as their basic building block are in
operation in various parts of the world. The most popular are: STATCOMs, solid-state series
controllers (SSSCs), the UPFC, and the HVDC-VSC (IEEE/CIGRE, 1995).

2.4.1 The Voltage Source Converter

There are several VSC topologies currently in use in actual power system operation and
some others that hold great potential, including: the single-phase full bridge (H-bridge); the
conventional three-phase, two-level converter; and the three-phase, three-level converter
based on the neutral-point-clamped converter. Other VSC topologies are based on
combinations of the neutral-point-clamped topology and multilevel-based systems.
Common aims of these topologies are: to minimise the operating frequency of the
semiconductors inside the VSC and to produce a high-quality sinusoidal voltage waveform
with minimum or no filtering requirements. By way of example, the topology of a
conventional two-level VSC using IGBT switches is illustrated in Figure 2.14.
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Figure 2.14 Topology of a three-phase, two-level voltage source converter (VSC) using insulated
gate bipolar transistors
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The VSC shown in Figure 2.14 comprises six IGBTs, with two IGBTs placed on each leg.
Moreover, each IGBT is provided with a diode connected antiparallel to make provisions for
possible voltage reversals due to external circuit conditions. Two equally sized capacitors
are placed on the pc side to provide a source of reactive power.

Although not shown in the circuit of Figure 2.14, the switching control module is an
integral component of the VSC (Mohan, Undeland, and Robbins, 1995). Its task is to control
the switching sequence of the various semiconductor devices in the VSC, aiming at
producing an output voltage waveform, that is as near to a sinusoidal waveform as possible,
with high power controllability and minimum switching loss.

Current VSC switching strategies aimed at utility applications may be classified into two
main categories (Raju, Venkata, and Sastry, 1997):

e Fundamental frequency switching: the switching of each semiconductor device is
limited to one turn-on and one turn-off per power cycle. The basic VSC topology
shown in Figure 2.14, with fundamental frequency switching, yields a quasi-square-wave
output, which has an unacceptable high harmonic content. It is current practice to use
several six-pulse VSCs, arranged to form a multipulse structure, to achieve better
waveform quality and higher power ratings (Hingorani and Gyugyi, 2000).

e Pulse-width modulation (PWM): this control technique enables the switches to be turned
on and off at a rate considerably higher than the fundamental frequency. The output
waveform is chopped and the width of the resulting pulses is modulated. Undesirable
harmonics in the output waveform are shifted to the higher frequencies, and filtering
requirements are much reduced. Over the years, various PWM control techniques have
been published, but the sinusoidal PWM scheme remains one of the most popular owing
to its simplicity and effectiveness (Mohan, Undeland, and Robbins, 1995).

From the viewpoint of utility applications, both switching techniques are far from perfect.
The fundamental frequency switching technique requires complex transformer arrange-
ments to achieve an acceptable level of waveform distortion. Such a drawback is offset by
its high semiconductor switch utilization and low switching losses; and it is, at present,
the switching technique used in high-voltage, high-power applications. The PWM technique
incurs high switching loss, but it is envisaged that future semiconductor devices will reduce
this by a significant margin, making PWM the universally preferred switching technique,
even for high-voltage and extra-high-voltage transmission applications.

2.4.1.1 Pulse-width modulation control

The basic PWM control method can be explained with reference to Figure 2.15, in which a
sinusoidal fundamental frequency signal is compared with a high-frequency triangular
signal, producing a square-wave signal, which serves the purpose of controlling the firing of
the individual valves of a given converter topology, such as the one shown in Figure 2.14.
The sinusoidal and triangular signals, and their associated frequencies, are termed reference
and carrier signals and frequencies, respectively. By varying the amplitude of the sinusoidal
signal against the fixed amplitude of the carrier signal, which is normally kept at 1 p.u., the
amplitude of the fundamental component of the resulting control signal varies linearly.
In Figures 2.15(a)-2.15(c), the carrier frequency f; is taken to be 9 times the desired
frequency f;.
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The width of the square wave is modulated in a sinusoidal manner, and the fundamental
and harmonic components can be determined by means of Fourier analysis. To determine
the magnitude and frequency of the resulting fundamental and harmonic terms, it is useful to
use the concept of amplitude modulation ratio, m,, and frequency modulation ratio, m;:

my = Vci)ntrol , (259)
Visi
Js
mg =", 2.60
i (260

where Vcomml is the peak amplitude of the sinusoidal (control) signal and \A/m is the peak
amplitude of the triangular (carrier) signal, which, for most practical purposes, is kept constant.
With reference to the ‘one-leg’ converter shown in Figure 2.16, corresponding to one leg
of the three-phase converter of Figure 2.14, the switches T,; and T,_ are controlled by
straightforward comparison of ¥eonyrol and v, resulting in the following output voltages:

%VDC when 7, is on in response to VUeontrol > Vtris
Vgo = (2.61)

—%VDC when 7,_ is on in response to Veontrol < Vtri-

The output voltage v,, fluctuates between — V,,o/2 and Vi,o/2, as T, and T, are never off
simultaneously, and is independent of the direction of i,

T || /\DPe v

Figure 2.16 ‘One leg’ voltage source converter (VSC). Reproduced by permission of John Wiley &
Sons Inc. from N. Mohan, T.M. Undeland, and W.P. Robbins, 1995, Power Electronics: Converter
Applications and Designs, 2nd edn

The voltage v,, and its fundamental frequency component are shown in Figure 2.15(b),
for the case of my =9 and m, = 0.8. The corresponding harmonic voltage spectrum, in
normalised form, is shown in Figure 2.15(c). This is a case of linear voltage control, where
m, < 1, but this is not the only possibility. Two other forms of voltage control exist, namely,
overmodulation and square-wave modulation. The former takes place in the region 1 <
m, < 3.24 and the latter applies when m, > 3.24 (Mohan, Undeland, and Robbins, 1995).

Only the case of linear voltage control (:m, < 1) is of interest in this section. The peak
amplitude of the fundamental frequency component is m, multiplied by V,./2, and the
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harmonics appear as sidebands, centred around the switching frequency and its multiples,
following a well-defined pattern given by:

f = (Bmy £ K)f1. (2.62)

Harmonic terms exist only for odd values of 3 with even values of . Conversely, even
values of 3 combine with odd values of k. Moreover, the harmonic m; should be an odd
integer in order to prevent the appearance of even harmonic terms in v,,.

2.4.1.2 Principles of voltage source converter operation

The interaction between the VSC and the power system may be explained in simple terms,
by considering a VSC connected to the ac mains through a loss-less reactor, as illustrated in
the single-line diagram shown in Figure 2.17(a). The premise is that the amplitude and the

AV,

K (b)

(@) ()

Figure 2.17 Basic operation of a voltage source converter (VSC): (a) VSC connected to a system
bus. Space vector representation for (b) lagging operation and (c) leading operation

phase angle of the voltage drop, AV,, across the reactor, X;, can be controlled, defining
the amount and direction of active and reactive power flows through X;. The voltage at the
supply bus is taken to be sinusoidal, of value V,/0°", and the fundamental frequency
component of the SVC ac voltage is taken to be V,g/d,zg. The positive sequence
fundamental frequency vector representation is shown in Figures 2.17(b) and 2.17(c) for
leading and lagging VAR compensation, respectively.

According to Figure 2.17, for both leading and lagging VAR, the active and the reactive
powers can be expressed as

ViViur .
P= R sin bR,
1
Vo ViV (2.63)
— s TR o b
0] X, X, COS OyR

®Note on notation: V/§ is a single complex number having a magnitude of V and a phase angle 6.
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With reference to Figure 2.17 and Equation (2.63), the following observations are
derived:

e The VSC output voltage V,x lags the Ac voltage source V by an angle ., and the input
current lags the voltage drop across the reactor AV, by m/2.

e The active power flow between the ac source and the VSC is controlled by the phase
angle é,z. Active power flows into the VSC from the ac source for lagging 6,z (6,8 > 0)
and flows out of the VSC from the ac source for leading 6,z (6,8 < 0).

e The reactive power flow is determined mainly by the magnitude of the voltage source, Vi,
and the VSC output fundamental voltage, V,z. For Vg > V, the VSC generates reactive
power and consumes reactive power when V,z < V.

The pc capacitor voltage Vi is controlled by adjusting the active power flow that goes
into the VSC. During normal operation, a small amount of active power must flow into the
VSC to compensate for the power losses inside the VSC, and 6,z is kept slightly larger than
0° (lagging).

The various power system controllers that use the VSC as their basic building block are
addressed below with reference to key steady-state operational characteristics and their
impact on system voltage and power flow control.

2.4.2 The Static Compensator

The STATCOM consists of one VSC and its associated shunt-connected transformer. It is
the static counterpart of the rotating synchronous condenser but it generates or absorbs
reactive power at a faster rate because no moving parts are involved. In principle, it
performs the same voltage regulation function as the SVC but in a more robust manner
because, unlike the SVC, its operation is not impaired by the presence of low voltages
(IEEE/CIGRE, 1995).

Bus k + Vo |6k - Yor Bus k&
+ EVR 1 1|7k
Ve -L-E | M YN ——
- —
mﬂ V
Ir Vi k| Ok

(a) (b)

Figure 2.18 Static compensator (STATCOM) system: (a) voltage source converter (VSC) connected
to the Ac network via a shunt-connected transformer; (b) shunt solid-state voltage source

A schematic representation of the STATCOM and its equivalent circuit are shown in
Figures 2.18(a) and 2.18(b), respectively. The equivalent circuit corresponds to the Thevenin
equivalent as seen from bus &, with the voltage source E g being the fundamental frequency
component of the VSC output voltage, resulting from the product of V. and m,.

In steady-state fundamental frequency studies the STATCOM may be represented in the
same way as a synchronous condenser, which in most cases is the model of a synchronous
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generator with zero active power generation. A more flexible model may be realised by
representing the STATCOM as a variable voltage source E,g, for which the magnitude and
phase angle may be adjusted, using a suitable iterative algorithm, to satisfy a specified
voltage magnitude at the point of connection with the ac network. The shunt voltage source
of the three-phase STATCOM may be represented by:

Elp = VIi(cos 8p +jsinép), (2.64)

where p indicates phase quantities, a, b, and c.

The voltage magnitude, V;’R, is given maximum and minimum limits, which are a
function of the STATCOM capacitor rating. However, ', may take any value between 0 and
2n radians.

With reference to the equivalent circuit shown in Figure 2.18(b), and assuming three-
phase parameters, the following transfer admittance equation can be written:

M) = [Yor  —Yug] [;’;} (2.65)
where

Le=[Rog Bop o, (2.66)
V= [vews vih vis]' (2.67)
Eug = [Vip L00p quszZ‘SﬁRk ViRkZ§f}Rk][7 (2.68)

Yoo O 0
Yr=| 0 Yy 0 [. (2.69)

0 0 Yo

2.4.3 The Solid State Series Compensator

For the purpose of steady-state operation, the SSSC performs a similar function to the static
phase shifter; it injects voltage in quadrature with one of the line end voltages in order to
regulate active power flow. However, the SSSC is a far more versatile controller than the
phase shifter because it does not draw reactive power from the Ac system; it has its own
reactive power provisions in the form of a pc capacitor. This characteristic makes the SSSC
capable of regulating not only active but also reactive power flow or nodal voltage
magnitude. This functionality is addressed further in Section 2.5. A schematic
representation of the SSSC and its equivalent circuit are shown in Figures 2.19(a) and
2.19(b), respectively.
The series voltage source of the three-phase SSSC may be represented by

Elp = Vih(cos 8% +jsin %), (2.70)

where p indicates phase quantities, a, b, and c.

The magnitude and phase angle of the SSSC model are adjusted by using any suitable
iterative algorithm to satisfy a specified active and reactive power flow across the SSSC.
Similar to the STATCOM, maximum and minimum limits will exist for the voltage
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Figure 2.19 Solid state series compensator (SSSC) system: (a) voltage source converter (VSC)
connected to the Ac network using a series transformer and (b) series solid state voltage source

magnitude Vg, which are a function of the SSSC capacitor rating; the voltage phase angle
O.r can take any value between O and 27 radians. The control capabilities of the SSSC
are addressed in Section 2.5.

Based on the equivalent circuit shown in Figure 2.19(b), and assuming three-phase
parameters, the following transfer admittance equation can be written:

Vi
Ik _ YCR _YcR _YCR
|:Im :| N |: _YCR YL‘R YCR Vm ' (271)
ECR

In addition to parameters used in Equations (2.66)—(2.69) the following quantities are
defined:

Lo =0 Do 1ol (2.72)

V= [Vasge vbseb  ve e ], (2.73)

Ecr = [VSR ZégR VfR ZéfR VfR Z5§R]’, (2-74)
Y%, O 0

Yr=| 0 Y% 0 |. (2.75)
0 0 Y%,

2.4.4 The Unified Power Flow Controller

The UPFC may be seen to consist of two VSCs sharing a common capacitor on their bc side
and a unified control system. A simplified schematic representation of the UPFC is given in
Figure 2.20(a), together with its equivalent circuit, in Figure 2.20(b) (Nabavi-Niaki and
Iravani, 1996).

The UPFC allows simultaneous control of active power flow, reactive power flow, and
voltage magnitude at the UPFC terminals. Alternatively, the controller may be set to control
one or more of these parameters in any combination or to control none of them (Fuerte-
Esquivel, Acha, and Ambriz-Pérez, 2000Db).
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Figure 2.20 Unified power flow controller (UPFC) system: (a) two back-to-back voltage source
converters (VSCs), with one VSC connected to the Ac network using a shunt transformer and the
second VSC connected to the ac network using a series transformer; (b) equivalent circuit based on
solid-state voltage sources. Redrawn, with permission, from A. Nabavi-Niaki and M.R. Iravani,
‘Steady-state and Dynamic Models of Unified Power Flow Controller (UPFC) for Power System
Studies’, IEEE Trans. Power Systems 11(4) 1937-1943, © 1996 IEEE

The active power demanded by the series converter is drawn by the shunt converter from
the ac network and supplied to bus m through the pc link. The output voltage of the series
converter is added to the nodal voltage, at say bus k, to boost the nodal voltage at bus m. The
voltage magnitude of the output voltage Vg provides voltage regulation, and the phase
angle 6. determines the mode of power flow control (Hingorani and Gyugyi, 2000).

In addition to providing a supporting role in the active power exchange that takes place
between the series converter and the Ac system, the shunt converter may also generate or
absorb reactive power in order to provide independent voltage magnitude regulation at its
point of connection with the Ac system.
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The UPFC equivalent circuit shown in Figure 2.20(b) consists of a shunt-connected
voltage source, a series-connected voltage source, and an active power constraint equation,
which links the two voltage sources. The two voltage sources are connected to the Ac system
through inductive reactances representing the VSC transformers. In a three-phase UPFC,
suitable expressions for the two voltage sources and constraint equation would be:

Ely = Vii(cos80p +jsinélp), (2.76)
Ele = Vii(cos 8% + jsin 6%), (2.77)
Re{—EgRI:I/; + EﬁRI:f} =0. (2.78)

where p indicates phase quantities, a, b, and c.
Similar to the shunt and series voltage sources used to represent the STATCOM and the
SSSC, respectively, the voltage sources used in the UPFC application would also have limits.
Based on the equivalent circuit shown in Figure 2.20(b), and assuming three-phase
parameters, the following transfer admittance equation can be written:

Vi

Ik _ (YCR + YUR) 7YCR 7YCR 7Y1)R Vm
|:Im :| N |: _YCR YCR Y(‘R 0 ECR ’ (279)

EUR

where all the parameters have been defined in Equations (2.66)—(2.69) and (2.72)—(2.75).

2.4.5 The High-voltage Direct-current Based on
Voltage Source Converters

The HVDC-VSC comprises two VSCs, one operating as a rectifier and the other as an
inverter. The two converters are connected either back-to-back or joined together by a pc
cable, depending on the application. Its main function is to transmit constant bc power from
the rectifier to the inverter station, with high controllability. A schematic representation of
the HVDC-VSC and its equivalent circuit are shown in Figures 2.21(a) and 2.21(b),
respectively.

One VSC controls pc voltage and the other the transmission of active power through the
pc link. Assuming loss-less converters, the active power flow entering the DC system must
equal the active power reaching the Ac system at the inverter end minus the transmission
losses in the pc cable. During normal operation, both converters have independent reactive
power control (Asplund, 2000).

The HVDC-VSC system is suitably represented by two shunt-connected voltage sources
linked together by an active power constraint equation. Each voltage source is connected to
the Ac system by means of its transformer reactance. Suitable expressions for the three-
phase voltage sources and the linking power equation are:

Epgy = Vipi (cos 8, +jsin g, ), (2.80)
Elgy = Vg (c08 8, +jsin8lg,), (2.81)
Re{ — ElpLupy + Epol, } = 0, (2.82)

where p indicates phase quantities, a, b, and c.
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Figure 2.21 High-voltage direct-current based on voltage source converter (HVDC-VSC) system:
(a) the VSC at the sending end performs the role of rectifier, and the VSC at the receiving end
performs the role of inverter; (b) equivalent circuit

()

In this application, the two shunt voltage sources used to represent the rectifier and
inverter stations have the following voltage magnitudes and phase angles limits:
VP

vR min vR max 1’

p

L < Vi < V)

0 < 80y < 2m,
p p

Vi min2 < Vora < Vi)

YR max 2’

0 < 80y, <2m.

Based on the equivalent circuit shown in Figure 2.21(b), and assuming three-phase
parameters, the following transfer admittance equation can be written:

Vi

Ik _ Y71R1 7Y1)R1 0 0 E71R1

{IJ‘[ 0 0 Y Y|V, | (2.83)
EUR2

where all the parameters have been defined in Equations (2.66)—(2.69) and (2.72)—(2.75).
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2.5 CONTROL CAPABILITIES OF CONTROLLERS BASED ON
VOLTAGE SOURCE CONVERTERS

To a greater or lesser extent, the three ‘series’ VSC-based controllers, namely the SSSC, the
UPFC, and the HVDC-VSC, share similar power system control capabilities. They are able
to regulate either nodal voltage magnitude or injection of reactive power at one of its
terminals, and active power flow through the controller. The UPFC and the HVDC-VSC
employ two converters and are able to regulate nodal voltage magnitude with one of them
and reactive power injection with the other. From the perspective of fundamental frequency
power system studies, there is little difference between the control flexibility afforded by
the three controllers, except that the UPFC and HVDC-SVC do it more robustly than
does the SSSC. The individual control functions are illustrated in Figure 2.22, with
reference to the operating regions of the SSSC.

The equivalent circuit of the SSSC shown Figure 2.19(b) is used as the basis for the
analysis. The voltage magnitude of V,,|0,, can be controlled at a specified value by injecting
an in-phase or antiphase voltage increment AV g|6., = 6,,, as illustrated in Figure 2.22(a).
Notice that for the purpose of drawing the phasor diagrams in Figure 2.22, the phase angle
0,, s taken to have a value of 0°. Series reactive compensation can be achieved by injecting
a complex voltage, AV g|é.r = 7 £ 90°, which is in quadrature with the line current,
Ln|Ym, as illustrated in Figure 2.22(b). Pure phase-angle control is also possible, as shown in
Figure 2.22(c), by injecting an angular quantity, 1|3=0.z, to the otherwise unaffected voltage,
Viu|Om. Furthermore, all three functions can be applied simultaneously by injecting an
incremental complex voltage AVig|ér to V|0, as shown in Figure 2.22(d), a
characteristic that adds unrivalled flexibility in power system operation.

(@) )

VAV AV AV
©) (d)

Figure 2.22 Phasor diagram illustrating the general concept of: (a) magnitude voltage control,
(b) impedance line compensation, (c) phase-angle regulation, and (d) simultaneous control. Redrawn,
with permission, from Institute of Electrical and Electronic Engineers/Conseil International des
Grands Réseaux Electrique, FACTS Overview, © 1995 IEEE
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2.6 SUMMARY

This chapter has presented an overview of the most salient characteristics of the power
electronic equipment currently used in the electricity supply industry for the purpose of
voltage regulation, active and reactive power flow control, and power quality enhancement.
The emphasis has been on steady-state operation, and a distinction has been made between
power electronic equipment, which uses conventional power semiconductor devices (i.e.
thyristors) and the new generation of power system controllers, which use fully controllable
semiconductor devices such as GTOs and IGBTs. The latter devices work well with fast
switching control techniques, such as the sinusoidal PWM control scheme, and, from the
power system perspective, operate like voltage sources, having an almost delay-free
response. Equipment based on thyristors have a slower speed of response, greater than
one cycle of the fundamental frequency, and use phase control as opposed to PWM control.
From the power system perspective, thyristor-based controllers behave like controllable
reactances as opposed to voltage sources.

The TCR, SVC, and TCSC belong to the category of thyristor-based equipment. The
STATCOM, SSSC, UPFC, and HVDC-VSC use the VSC as their basic building block. It has
been emphasised that all these power electronic controllers produce harmonic distortion,
which is an undesirable side-effect, as part of their normal operation. The various means of
harmonic cancellation open to system engineers have been mentioned, such as switching
control, multilevel configurations, three-phase connections, and, as a last resort, filtering
equipment. The remit of this book is not power system harmonics; hence, it is assumed that
harmonic distortion is effectively contained at source. The mathematical modelling
conducted for the various power electronic controllers addressed in the chapter reflect this
fact. The emphasis has been on deriving flexible models in the form of nodal admittance
matrices that use the frame of reference of the phases, which is a frame of reference closely
associated with the physical structure of the actual power system plant. A major strength of
this frame of reference is that all design and operational imbalances present in the power
system are incorporated quite straightforwardly in the model. Nevertheless, it is
acknowledged that very often it is desirable to reduce the comprehensiveness of the
power system solution and to carry out the study in the frame of reference of the sequences
rather than in that of the phases. This has the advantage of speedier calculations, but key
information becomes unavailable since sequence domain modelling tacitly assumes that
no imbalances are present in the plant being modelled. When such an assumption is
incorporated in the phase domain nodal admittance models, it yields simpler models
expressed in the frame of reference of the sequences.

The phase domain nodal admittance models are used in Chapter 6 as the basis for
developing the power flow equations of three-phase power systems. Similarly, the sequence
domain nodal admittance models are used to develop in Chapter 5 the power flow equations
of positive sequence power systems.
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3

Modelling of Conventional
Power Plant

3.1 INTRODUCTION

The conventional elements of an electrical power system are: generators, transformers,
transmission lines, cables, loads, banks of capacitors, nonlinear inductors, and protection
and control equipment. These elements are suitably interconnected to enable the generation
of electricity in sufficient quantity to meet system demand at any one point in time. The
operational objective is to transmit the electricity to the load centres at minimum production
cost, maximum reliability, and minimum transmission loss (Elgerd, 1982).

For most practical purposes, the electrical power network may be divided into four
subsystems, namely, generation, transmission, distribution, and utilisation. Transmission
networks operate at high voltages, typically in the range 500-132kV, although even higher
voltages are used in parts of North America (Weedy, 1987). Conversely, electricity is
produced at relatively low voltages, in the range of 25-11kV, and step-up transformers are
used at the generator substation to increase the voltage up to transmission levels. In contrast,
step-down transformers are used to reduce the high voltages used in transmission systems to
levels that are appropriate for industrial, commercial, and residential applications. In the
United Kingdom, a typical voltage level used in distribution networks is 33kV; and
industrial and residential consumers are fed at 11kV and 415V or 240 V.

Three-phase synchronous generators are used to produce most of the electricity consumed
worldwide (Grainger and Stevenson, 1994) and, except for a small percentage which is
transported in direct current (pc) form using high-voltage direct-current (HVDC) links,
all electricity is brought to the points of demand using alternating current (ac) three-phase
transmission lines and cables. This point deserves further analysis because quite
often the generating stations are located far away from where the load sites are, and
long-distance transmission becomes necessary (Shlash, 1974). More often than not, long-
distance transmission circuits consist of more than one three-phase circuit, and contain
series and shunt compensation to enable stable operation. Nevertheless, it has long been
recognised that remote generating stations, which are mostly of the hydroelectric type, are
only weakly interconnected and that the nonuniform nature of their rotors (i.e. saliency)
increases the overall system unbalance. It should also be remarked that the windings of
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three-phase transformers can be connected in a variety of ways to suit specific requirements
and that transformer connections should be modelled explicitly when system imbalances
cannot be ignored in power system studies (Hesse, 1966). The bulk load points associated
with transmission systems may be taken to be highly balanced, but such an assumption is no
longer valid in low-voltage distribution systems, where load points may be highly
unbalanced owing to an abundance of individual single-phase loads within a distribution
load point.

The application tool used to assess the steady-state operation of power systems exhibiting
a considerable degree of geometric unbalance or load unbalance is known as three-phase
power flow (Chen and Dillon, 1974; Laughton, 1968; Wasley and Shlash, 1974a). In this
application, all operations are carried out on a per-phase basis, and all power plant
components making up the power system are modelled in the frame of reference of the
phases (Chen et al., 1990; Harker and Arrillaga, 1979). However, if system geometric
imbalances may be taken to be insignificant and system load is balanced then there is much
numerical advantage to be gained by representing all power plant components in the frame of
reference of the sequences as opposed to that of the phases. In this situation, a positive
sequence power flow solution can be carried out, as opposed to the full blown three-phase
solution.

3.2 TRANSMISSION LINE MODELLING

High-voltage and extra-high-voltage transmission lines consist of a group of phase
conductors, which are responsible for transmitting the electrical energy. All power network
transmission lines are located at a finite distance from the earth’s surface and may use the
ground as a return path. Accordingly, it becomes necessary to take this effect into account
when calculating transmission-line parameters (Anderson, 1973). High-voltage transmission
lines may contain several conductors per phase (bundle conductors) and ground wires, and
distribution lines may include a neutral wire as a return path. Transmission and primary
distribution circuits may be responsible for introducing considerable geometric imbalances,
even at the fundamental frequency, depending on their electrical distance (Acha and
Madrigal, 2001; Arrillaga et al., 1997).

Ra,b,c + an,b,c

I series series I

—_ v
l(Ga,b,c + jBa,b,c )

2 shunt shunt

Figure 3.1 Transmission line representation in the form of an equivalent n-circuit
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In power system studies it is current practice to model the inductive and resistive effects
of multiconductor transmission lines as a series impedance matrix, and the capacitive effects
as a shunt admittance matrix. The overall transmission line model can then be represented
by either a nominal m-circuit or an equivalent m-circuit, as shown in Figure 3.1, if the
electrical length of the line is sufficient to merit the extra work involved in calculating it.

3.2.1 The Voltage-drop Equation

The phase conductors of a three-phase transmission line, with ground as the return path and
negligible capacitive effects, are illustrated schematically in Figure 3.2. If the circuit
terminal conditions enable current to flow in conductors a, b, ¢, and in the ground return
path, the voltage-drop equation of the transmission line shown in Figure 3.2, at a given
frequency, may be expressed in matrix form as follows:

Va Raa—g + jWLaa—g Rab—g + jWLab—g Ruc—g + jWLaC—g Ia Vf/l
V| = Rbafg —l—ijba,g Rbbfg +jWLbb7g Rbcfg +jWLbc—g I, | + V,/) R (31)
Vc Rca—g + jWLca—g Rcb—g =+ jWch—g Rcc—g =+ ijcc—g Ic VL/

the subscript g indicating that the ground return effect has been included.

1, R, L,
v, %\/\/\/\—> S N Vi
I Ry r Lo Ly
v, l/v\/v\ SE N Vi
L(,l(f
IL_ R(. ~ Lbc LC >
Ve ——= AN—F—TN Ve
J
R, Ly  I,=1+ 1+ 1.

MW YN\

Figure 3.2 Phase conductors of a three-phase transmission line

3.2.1.1 Calculation of lumped RLC parameters

The computation of three-phase transmission line parameters becomes cumbersome by the
existence of inductive and capacitive couplings between conductors, and between
conductors and ground (Anderson, 1973). Moreover, resistances and self and mutual
inductances vary nonlinearly with frequency and, together with the capacitive effects, vary
nonlinearly with the electrical distance of the line (Acha and Madrigal, 2001; Arrillaga et al.,
1997).

In fundamental frequency power system applications, it is normal practice to calculate the
inductive and capacitive effects of the transmission line independently and then to combine
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them together to give the final transmission-line representation. Once the resistances,
inductances, and capacitances associated with a particular transmission line configuration
have been determined, a transmission-line model in the form of a m-circuit, or any other
alternative representation, become feasible.

The series impedance matrix Zg.ies 0of a multiconductor transmission line, which takes
account of geometric imbalances and frequency dependency but not long-line effects, may
be assumed to consist of the following components:

Zseries = Zintemal + deometric + Zground' (32)

In Equation (3.2), Zinternar 1s the impedance inside the conductors, Zgoung is the impedance
contribution of the ground return path, and Zgeomeric 1S the impedance contribution from
the magnetic fluxes in the air surrounding the conductors. For most practical purposes, the
parameters Zg.omeric May be taken to be linear functions of the potential coefficients P.
Unlike Ziyeman, the parameters Zgrounds Zgeometrics and P are a function of the physical
geometry of the conductor’s arrangement in the tower. The capacitive effects are
incorporated in the shunt admittance matrix Ygnun, Which is a linear function of P. Shunt
parameters are addressed in Section 3.2.1.2.

If the surfaces of the conductors and the earth beneath the conductors may be assumed to
be equipotential surfaces then the standard method of images may be used to calculate the
potential coefficients P.

The method of images allows the conducting plane to be replaced by a fictitious
conductor located at the mirror image of the actual conductors. Figure 3.3 shows the case
when phase conductors a, b, and ¢ above ground have been replaced by three equivalent
conductors and their images (Anderson, 1973).

I dac |

| I

I dab I dbc I
—® O —®

a T b ¢
ha hy, he
Dab’ Dac"

hy hy

Lo, o,

Figure 3.3 Line geometry and its image
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The self-potential coefficient of an overhead conductor is solely a function of the height
of the conductor above ground, say /, and the external radius of the conductor, say 7.y In
contrast, the mutual potential coefficient between two conductors is a function of the
separation between the two conductors, d, and the separation between one conductor and the
image of the second conductor, D. For the three conductors in the transmission line shown in
Figure 3.3, the matrix of potential coefficients is

() () (3
p= () m(E) w(i) | 6.3)

In (2) In (Z—}f) In (%)

It should be noted that potential coefficients are dimensionless and reciprocal.
The geometric impedance matrix for the circuit of Figure 3.3 is

LW -
deometric =] ﬁp Qkm™! s (3.4)

where Zgeomeric varies linearly with the base frequency f,w = 2nf, and the permeability of
free space is pp = 4m x 107* Hkm ™.

3.2.1.2 Shunt admittances

Shunt admittance parameters vary linearly with frequency and are completely defined by the
inverse potential coefficients (Anderson, 1973). The matrix of shunt admittance parameters
for the circuit of Figure 3.3 is

Yhun = jw2neo P! Skm™!, (3.5)

where ¢, equal to 8.85 x 10~° Fkm™!, is the permittivity of free space.

3.2.1.3 Internal impedances

It has long been recognised that the internal resistance and inductance of conductors vary
with frequency in a nonlinear manner. The reason for this effect is attributed mainly to the
nonuniform distribution of current flow over the full area available, with current tending to
flow on the surface. This trend increases with frequency and is termed the ‘skin effect’. The
overall effect is an increase in resistance and a decrease in internal inductance (Arrillaga
et al., 1997).

In power systems applications, the established formula for evaluating the impedance of an
annular conductor, at a given frequency, uses the Bessel functions of zero order, first kind,
and second kind and their derivatives, which are solved, within specified accuracy, using
their associated infinite series. However, at power frequencies, the skin effect is negligibly
small and there is little error in calculating the internal impedance of conductors by
assuming that the magnetic field inside the conductor is confined to an area lying between
the external radius, 7.y, of the conductor and the geometric mean radius (gmr), 7gmy, of the
conductor (Grainger and Stevenson, 1994).
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Conducting
aluminium sheath

Fext

Steel core Pt | 780

Figure 3.4 Cross-section of a power conductor

As illustrated in Figure 3.4, the gmr lies between the external and internal radii of the
conductor. The gmr is normally measured and made available by the manufacturer. An
approximated, frequency-independent relationship is given by

=e e (3.6)

Tomr

If the frequency of interest is low enough for the skin effect to be of no consequence, then
the concept of potential coefficients can be applied to calculate the internal impedance of
conductors. For the three conductors in Figure 3.3, the matrix of internal potential
coefficients is,

(=) 0 0
gmry
Pinternal = 0 In (:;XT[;) 0 . (37)
0 0 In(m)
gmry
Hence, the conductor impedance matrix for this circuit is

. Who _
Zimernal = Rac +J%Pimemal Qkm 1, (38)

where R,. is a diagonal matrix with entries corresponding to the ac power frequency
resistances (50 or 60 Hz) of the various conductors in the transmission circuit.

3.2.1.4 Ground return impedances

The impedance of the ground return path varies nonlinearly with frequency and exhibits an
effect similar to that of the skin effect in conductors, where the effective area available for
the current to flow reduces with frequency.

The problem of current-carrying wires above a flat earth of homogeneous conductivity,
and the related issue of transmission-line parameter calculation, received a great deal of
research attention almost a century ago. It was J.R. Carson who in 1926 published a
comprehensive solution to the problem. The solution involves an infinite integral that cannot
be solved analytically or in closed form. However, the integral is conveniently expressed by
a set of infinite series that show good convergence characteristics for most problems
encountered in the areas of electromagnetic fields, propagation characteristics, and magnetic
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induction effects caused by power lines. Ever since, and perhaps because of the existence of
the infinite series, the solution published by Carson has been extensively used by power
engineers worldwide.

As the need arises to calculate ground impedances for a wide spectrum of frequencies,
and also because of the uncertainty in the available data, in particular regarding ground
conductivity, the tendency is to go for simpler formulations aiming at a reduction in
computing time while keeping the accuracy at a reasonable level. Recent formulations use
the concept of a complex mirroring surface beneath the ground. Rigorous mathematical
analyses have shown these formulations to be good physical and mathematical approxima-
tions to Carson’s solution.

The most popular equations in power system applications are those attributed to C.
Dubanton (Deri et al., 1981). The reason is their simplicity and good accuracy for the whole
span of frequencies for which Carson’s equations are valid. With reference to Figure 3.5,
the equations for calculating the self-impedance of conductor / and the mutual impedance
between conductors / and m take the following form:

Zy =M [2(}”4””)} Qkm!, (3.9)
2n Vextl
By + oy + 2p)*+ d2]?
Zn =200 [k + B + 2””2 {f;ﬂ Qkm™, (3.10)
m (s = hw)*+dj,)

where p, equal to (jw,uoag)'/ % is the complex depth beneath the ground at which the
mirroring surface is located.

dﬁlC
b c
dab . dhc .
hb hc
- : _____________________________ Earth surface
/% ~ > Fictitious surface
___:!:,11_____Bﬁg;___T_lZ”i_________T___ Mirroring image
: - : of earth surface
ha hb’ l’lc
X
[

Figure 3.5 Line geometry showing the complex depth
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It should be noted that the use of Equations (3.9) and (3.10) yields combined information
of Zgeometric + Ziground- Moreover, if the transmission-line parameters are intended for power
frequency applications (50 or 60 Hz) then the skin effect inside the conductors can be
ignored and Equation (3.9) can be combined with Equation (3.8) to take account of the
impedance contribution from Ziperna:

. Who [Z(hz +p)

le:Racl+Jﬁln :|ka1. (3.11)

Fomr [

In summary, for the purpose of low-frequency power applications, Equations (3.10) and
(3.11) may be used to calculate the individual elements of Equation (3.1). The impedance
parameters include geometric imbalances and ground return effects but no full frequency
dependency.

3.2.2 Ground Wires

Using the same notation as in Section 3.2.1, we may express the voltage-drop equation of a
three-phase transmission line with two ground wires, w and v, as follows (Anderson, 1973):

Va Zoa-g  Zav-g  Zac-g  Zaw-g Zav-g | | La 14
Vi Zpag Zov-g Zbcg Zbwyg Zpog | |Ip A
Vel = Zeag Zeb-g Zecg Zewyg Zevg I. | + Vé . (3 . 12)
Vi Zyarg Zwv-g Zwe-g Zww-g ZLwvg I, V"v
Vo Zoag Ziv-g Zicg Zowg Zpg I, V;

It is assumed that the individual impedance elements are calculated by using Equa-
tions (3.10) and (3.11). In compact notation, we have,

AVubc - AIabc + BIwm (313)
AVW’U = CIubc + DIWU7 (314)
where
Vo—V, =
AV pe = Vi — V;/, v Le= |1 |,
/ IC
V.~ V. Le (3.15)
= "
AVWD = y va = 5
v, 1
Zaafg Zabfg Zacfg Zawfg Za'vfg
A= Zba—g be—g Zbc—g 5 B = wafg Zb'ufg s
anfg Zcbfg chfg ch—g chfg (316)
C— Zwafg Zwag chg] . D= [wag Zw11g:| .
Zvafg vafg Zvc—g vaug Zvvfg
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As it is normal practice to connect ground wires to earth at both ends of every transmission
span, AV,,, = 0, and it is possible to simplify Equation (3.12) to

AV gpe = Al + Bl (3.17)
0 = Cl + DL, (3.18)
Solving Equation (3.18) for I,
L, = —D7'Cly,, (3.19)
and substitution of Equation (3.19) into Equation (3.17) yields
AV = [A =BD'Cllupe = Zape wog Lave, (3.20)
where
Zape-wv-g =A—BD'C. (3.21)

Equation (3.20) can be written in expanded form as

A Va Zaa- wu-g Zabfwvfg Zac—wo- g I,
AVb = Zba—wv—g be—wv—g Zbc—wv—g Ib . (3 22)
AVC anfwvfg Zchfwvfg chfwvfg I

The reduced equivalent matrix Equation (3.22) is fully equivalent to matrix Equation (3.12),
where the ground wires have been mathematically eliminated. For most system analysis
purposes, Equation (3.22) provides a suitable representation for transmission lines with
ground wires. Symmetrical components can be applied to Equation (3.22), and it is therefore
preferred over Equation (3.12).

3.2.3 Bundle Conductors

The use of more than one conductor per phase (i.e. bundle conductors) reduces the
equivalent transmission-line impedance and allows for an increase in power transmission. It
also allows for a reduction in corona loss and radio interference owing to a reduction in
conductor-surface voltage gradients.

For cases of transmission lines of 400kV and above it is standard practice to have four
bundle conductors per phase, whereas for 230kV lines, only three or two bundle conductors
per phase are required. These arrangements are shown in Figures 3.6(a), 3.6(b), and 3.6(c),
respectively (Grainger and Stevenson, 1994).

o o o\
o O
R

(a) (b) ©

Figure 3.6 Typical arrangements of bundle conductors: (a) four, (b) three, and (c) two bundle
conductors (open circles)
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In power system studies the interest is rarely on individual conductors but, rather, on the
individual phases. Hence, steps are taken to find reduced equivalents that involve only one
conductor per phase. The equivalent conductors correctly account for the original
configuration but keep essential information only.

The bundle-conductor reduction may be achieved in a number of ways. Use of the
concept of an equivalent geometric mean radius (GMR), Rgp, is one of them, and, although
it is a frequency-independent method, it yields reasonably accurate solutions, particularly at
power frequencies.

For cases of two, three, and four bundle conductors per phase, the following relations are
used to calculate the equivalent GMR:

Rgmr = (rgmr X d)1/27 (323)
Rome = (rgme x d x d)'7?, (3.24)
Rgmr = (rgmr xdxdx \/Ed)l/4 (325)

In this case, the equivalent phase resistance is simply obtained by dividing the resistance of
one of the original phase conductors in the bundle by the number of conductors in the
bundle. This simple approach takes the very practical view that all conductors in the bundle
are equal and that they are at the same potential.

A more rigorous approach, which includes frequency dependency for the reduction
of the series impedance matrix, involves matrix reduction using Kron’s method
(Anderson, 1973). In this situation, all conductor impedances are calculated explicitly
and, after a suitable manipulation of terms in the impedance matrix, the mathematical
elimination of bundle conductors is carried out. The actual elimination is the same process
as that for the matrix reduction given by Equations (3.17)—(3.21) in the elimination of
ground wires.

To illustrate the elimination procedure used when bundle conductors are present, take the
case of a three-phase transmission line (a, b, ¢) with two conductors per phase (1, 2) and no
ground wires. Using similar notation as in Sections 3.2.1 and 3.2.2, the matrix of series
impedance parameters representing such a transmission line would be:

[AVar T [ Zatat ¢ Zawwt - ¢ Zatclg Zaiwr-g Zavrg Zaicrg | [ L1 ]
AV Zna-g  Zoibi-g  Zbicl-g Zvlaz-g Zoibz-g Zbicag | | Ini
AVcl _ chalfg chblfg chclfg cha27g chb27g 201027g Icl (3 26)
AVaZ ZaZaLg ZaZhlfg ZaZleg Za2a27g Z[t2h27g Za2027g Ia2 . .
AV Zipal-g  Zobl-g  Zioel-g Zdaz-g Zpar-g Zkaeo-g | | In2

L AVCQ i L ZCZal—g Zc‘2b1—g ZcZCl—g ZcZaZ—g ZCZbZ—g ZCZCZ—g 4 L IcZ _

The individual elements of Equation (3.26) are calculated by using Equations (3.10) and
(3.11). In compact notation, we have,

|:AVabclj| _ |:Zabcll Zabclz] |:Iabc1:|

3.27
AV&ch ( )

Zabc21 Zabc22 Iabc2

If it is assumed that the two conductors in the bundle are at equal potential, then the row and
column corresponding to one of the conductors in the bundle, say 2, is mathematically
eliminated. There are three main steps involved in the elimination process:
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e Step 1: The voltage equality constraint AV, — AV,,e; =0 is incorporated into
Equation (3.27):

{ AV gpei } B [ Zopent Zaper2 } [Iabcl ]

= 3.28
AV a0 —AV 41 =0 L2t —ZLaver1 Lavero—ZLaper2 | [ Lave2 (3.28)

e Step 2: matrix symmetry is restored. This is achieved by adding and subtracting the terms
Zpc11Lape2 and (Zapeo1 —Zaper1)Lanez in rows 1 and 2, respectively:

|:AVabcl } _ [ Zpenn Zaper2 — Lapent } |:Iabc1 + Lapea ]
=, :

0 abc2l — Lapet1 (Zaverr + Laver1 — Labers — Lapear) Lipe2

(3.29)

e Step 3: the actual matrix reduction is carried out. This is fully equivalent to that given by
Equations (3.17)—(3.21) used for the mathematical elimination of ground wires:

AVazbc—b = Zubc—b—gIabc—b ’ (3 30)

where

Zahc—h—g =A—- BD?IC)

A = Zgper1,
B = Zupc12 — Zaper1,
C= Zachl - Zahclla (331)

D = Zupe22 + Zapet1 — Zave12 — Zaperr
A‘Iabc—b = Avubcb

Iabc—b = Iabcl + Iuch-

As illustrated in Figure 3.7, the current I, may be interpreted as the phase current just
before it splits into the individual currents I,,.; and I, in the bundle.

N

R

N

Iubc 2

I abc—b
—>

Iabc 1

L
N
L
NN

Figure 3.7 Currents in a two-bundle conductor

An alternative, more elegant approach than that carried out in steps 1 and 2 is achieved by
applying the following set of transformation matrices:

1o . [1 0
Tb_[O 1} and Tb—[_l J (3.32)

to the impedance matrix in Equation (3.27), that is,

1 0||Zwpett Zaper2 ||1 -1
{_1 1} [Zabczl Zab522:||:0 1] (3.33)
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This operation yields the same result as Equation (3.30). In Equations (3.32) and (3.33), 1 is
a 33 unit matrix, and the superscript ¢ indicates the transpose of the matrix.

In the more general case, when there are n conductors per phase, the transformation
matrix T, may have the following form:

1 -1 - -1
Tp=1|. . . .| (3.34)
0 0 - 1

Independent of the procedure used to determine the reduced equivalent matrix Equation
(3.30), this can be written in expanded form as

Ath—h Zoav Zab-b  Zacb I p
AV p | = | Zoa-v Zob-b Zpe-b | | Ip-b |- (3.35)
AV._, Zeab Zev-b Zecn Iy

3.2.4 Double Circuit Transmission Lines

Often two or more three-phase transmission lines are operated in parallel (Anderson, 1973;
Grainger and Stevenson, 1994). A common arrangement is to place two three-phase circuits
in the same tower, as shown in Figure 3.8. In this case, the magnetic interaction between the
phase conductors of both three-phase circuits can be represented by the following

Ground wire 1 Ground wire 2
L 3
Phase A .—T: T. Phasec

L L
Phase B oo /%\ Jo Phaseb
L L
Phase C .T. ,T. Phase a

N
LN

Figure 3.8 Double circuit, three-phase transmission line
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impedance matrix equation:

[AVel [Zuag Zavg Zacs Zaag Zapg Zacg] [la]
AV, Zpacg  Zip-g  Zpe-g  Zoa-g Zpp-g Zpc-g | | I
AVC _ anfg Zcbfg chfg Z(‘Afg Zchg chfg I, ) (336)
AV, Zaa-g Zab-g Zacg Zan-g Zap-g Zacg | |1a
AVp Zpa-g Zpb-g Zpe-g Zpag Zp-g Zpcg | |Ip
LAV ] | Zca-g  Zcvb-g Zceeg Zcag Zepg Zecog | | Ic ]

It is assumed here that neither ground wires nor bundle conductors are present in the double
circuit transmission line; alternatively, it is assumed they have been mathematically
eliminated by using the methods discussed in Sections 3.2.2 and 3.2.3, respectively. It is also
assumed that the individual elements of Equation (3.36) were calculated by using Equa-
tion (3.11) and (3.10).

3.2.5 The Per-unit System

Transmission-line parameters as calculated by Equations (3.10) and (3.11) are given in
ohms per kilometre. However, when dealing with transmission lines at the system level,
there are several advantages to be gained by expressing the line parameters in a uniform
units system, termed the per-unit system.

Moreover, equipment manufacturers also specify the equipment characteristics in either
percentage or per-unit values with respect to their nominal values. This is a simple
mechanism that enables the electrical power network to be analysed as a single entity
regardless of the voltage level at which the equipment operates.

The following electrical parameters are handled in per-unit values: voltage, current,
power, and impedance. In each case, the corresponding per-unit value is the ratio of the
actual value to a base value; that is,

actual value

per-unit value = (3.37)

base value

The per-unit (p.u.) value is dimensionless by virtue of the base and actual values sharing
the same units. It is common practice to specify the voltage, Vg, and power, Sgase, to be the
primary base values, from which the base current and impedance can be derived. In single-
phase systems:

SBase

Igase = Viase A7 (338)
V2

Ziase = 252 Q). (3.39)
SBase

In three-phase systems, the total power, S34, and the line-to-line voltage, Vi, are readily
available, and the following relations apply:

S3¢> Base
Ipae = —20B8C A 3.40
e \/§ VLL Base ( )
v2
ZBase = MQ- (341)

S3<9 Base
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Based on Equation (3.37), the per-unit parameters are:

S \%4
Spu. =< Vp.u. = ’
SBase VBase (3 42)
I z '
Ip,U. - IBase ’ P = ZBase .

It should be noted that the transmission line shunt admittances in Equation (3.5) are
converted into per-unit values by using:

Yp.u. = YZpyse. (343)

The transmission-line shunt admittance is sometimes referred to as ‘charging MVAR’,
Qg In some application programs, such as power flows, is actually supplied in terms of
MVAR as opposed to Siemens (S) or 2~ !, There is no difficulty in transforming Qg into an
equivalent per-unit shunt admittance if it is assumed that a voltage value of 1 p.u. exists at
both ends of the transmission line:

- = Qsh p.u.- (344)

Conversely, the information given by a transmission-line parameter program for the shunt
admittance can also be expressed as a charging admittance under the assumption of a 1 p.u.
voltage.

In high-voltage transmission studies, a base power of 100 MVA is normally selected for
the whole system. In contrast, selection of the base voltage is not unique; instead, as many
base voltages are selected as are required to match the number of voltage levels in the
network under study. Having said that, it is important to mention that in some application
studies, such as positive sequence power flows, it is not uncommon to have only one base
voltage being selected. This is owing to the fact that the generating plant is modelled as
injections of active and reactive power at the high-voltage bus of the generator transformer.
Also, it is normal to conduct a detailed study for only one voltage level of the network, say
400kV, with contributions from other parts of the network, operating at different voltage,
treated as either bulk power supply points or loads.

3.2.6 Transmission-line Program: Basic Parameters

A computer program for the calculation of transmission line parameters is given in Program
3.1.""Y) The program is general, as far as the number of conductors in the transmission line is
concerned, and caters for up to four bundle conductors per phase and any number of earth wires.

PROGRAM 3.1 Program written in Matlab® to calculate transmission-line parameters

gRxKF_ - - — = Main Program

TransmissionLineData;

MNote™: in Matlab® it is possible to write very long lines, up to 600 characters. Continuation lines are possible
and are indicated by the use of three periods at the end of the previous line. This convention has been adopted in this
copy.
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[ZSeries,YShunt] = ShortLine(nphc,ngw,nb,bsep,resis,rdext,gmr,...
x,y,f, sigmag,vbase, sbase)

$End main Program

function [ZSeries,YShunt] = ShortLine(nphc,ngw,nb,bsep, ...
resis,rdext,gmr,x, y,f,sigmag,vbase,sbase)

[RAD,GMR,RES] = BundleReduction(nphc,ngw,nb,bsep, rdext,gmr,resis);
[YShunt] = PotCoeff (nphc,RAD,x,y,£f);

[ZSeries] = Dubanton (nphc,ngw,GMR,RES,x,y,f,sigmag);

[ZSeries] = GroundWireReduction (nphc,ngw,ZSeries);

[zZSeries,YShunt] = PerUnit (nphc,ZSeries,Y¥Shunt, vbase, sbase);

function [RAD,GMR,RES] = BundleReduction(nphc,ngw,nb,bsep,rdext,...
gmr,resis);
for ii = 1: nphc + ngw
if nb(ii) ==
RAD(ii) = rdext(ii);
GMR(ii) = gmr(ii);
elseif nb(ii) ==
RAD(ii) = sqrt(rdext(ii)*bsep(ii));
GMR(ii) = sqrt(gmr(ii)*bsep(ii));
elseif nb(ii) ==
RAD(ii) = exp(log(rdext(ii)*bsep(ii)*bsep(ii))/3);
GMR(ii) = exp(log(gmr(ii)*bsep(ii)*bsep(ii))/3);
elseif nb(ii) ==
RAD(ii) = sqrt(sqgrt(rdext(ii)*bsep(ii)*bsep(ii)*bsep(ii)...
*sqrt (2)));
GMR(1ii) = sqrt(sqrt(gmr(ii)*bsep(ii)*bsep(ii)*bsep(ii)*sqrt(2)));
end
RES(ii) = resis(ii)/nb(ii);
end

function [YShunt] = PotCoeff (nphc,RAD,x,y,£f);
[YShunt] = zeros (nphc,nphc);
omega = 2*pi*f;
eps = 8.854*1e-9;
for ii = 1: nphc
for jj = 1: nphc
if (dii==3j)
YShunt(ii,ii)=log(2*y(ii)/RAD(ii));
else
YShunt(ii,jj) = log( sqrt ( ( x(ii) - x(jj) ) 2+ ...
(y(ii) +y(33))72) /sart ( ( x(ii) - x(jj) ) "2+ ...
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(y(ii)-y(33))"2) )
end
end
end
YShunt = i*2*pi*omega*eps*inv(¥YShunt);

function [ZSeries] = Dubanton(nphc,ngw,GMR,RES,x,y,f,sigmag)
[ZSeries] = zeros (nphc+ngw, nphc+ngw) ;
mnu = 4*pi*le-7;
omega = (0+(2*pi*f)*i);
pe = 1/sqrt (omega*mnu*sigmag) ;
for ii = 1: nphc + ngw
for jj = 1: nphc + ngw
if(ii==133)
ZSeries(ii,ii) = 1000*( RES(ii) + omega*mnux*...
log((y(ii)+y(3j)+2*pe)/GMR(ii))/(2*pi) );
else
ZSeries(ii,jj) = 1000*omega*mnu*...
log( sgrt((x(ii)-x(jj))"2+(y(ii)+y(Jj)+2*pe)”2) /...
sqrt((x(ii)-x(3j)) 2+(y(ii)-y(33))"2) )/ (2*pi);
end
end
end

function [ZSeries] = GroundWireReduction(nphc,ngw,ZSeries)
for ii = nphc + 1: nphc + ngw
ZSeries(ii,ii) = 1/ZSeries(ii,ii);
for jj = 1: nphc + ngw
if(ii~=133)
ZSeries(jj,ii) = zSeries(jj,ii)*ZSeries(ii,ii);
for kk = 1: nphc + ngw
if( kk ~=1ii)
ZSeries(jj,kk) = zSeries(jj,kk) -ZSeries(jj,ii)*...
ZSeries(ii,kk);
if ( jj == nphc + ngw)
ZSeries(ii,kk) = -ZSeries(ii,ii)*ZSeries(ii,kk);
end
end
end
end
end
end

if ngw>0
for jj = 1: nphc + ngw -1
ZSeries (nphc+ngw, jj) = -ZSeries(nphc+ngw,nphc+ngw)*...
ZSeries (nphc+ngw, jj);
end
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ZSeries = ZSeries(l:nphc,1l:nphc);
end

function [ZSeries,YShunt] = PerUnit (nphc,ZSeries,YShunt,vbase,sbase)
zbase = vbase*vbase/sbase;
for ii = 1: nphc

for jj = 1: nphc

ZSeries(ii,jj) = ZSeries(ii,jj)/zbase;
YShunt(ii,jj) = YShunt(ii,jj)*zbase;
end
end

3.2.7 Numerical Example of Transmission Line Parameter Calculation

The basic parameters of a 500kV, three-phase transmission line of flat configuration are
calculated using the Matlab®™ function ShortLine given in Section 3.2.6. There are four
(bundle) conductors per phase and no ground wires in the tower (Arrillaga et al., 1986).

The series impedance and the shunt admittance matrices are calculated in ohms per
kilometres and in per-unit values using a base power of 100 MVA.

Function TransmissionLineData, to read data for the 500kV, three-phase transmis-
sion line of flat configuration, is as follows:

$transmission line.

%

$nphc = number of phase conductors

$ngw = number of ground wires

%

nphc =3 ; ngw=20 ;

%

$Individual Conductors Data

$resis = resistance in ohms per meter

$rdext = external radius in meters

ggmr = geometrical mean radius in meters

gnb = number of bundle conductors per phase -1 to 4

$bsep = separation between conductors in the bundle in meters
$x,y = conductor’s co-ordinates in the tower in meters

%

resis(1l) =0.1379/1000 ; rdext(1l) =1.049/100 ; gmr(1l) =0.817/100 ;
nb(l) =4 ; bsep(l) =0.46 ; x(1) =12.65; y(1) =27.50 ;

resis(2) = 0.1379/1000 ; rdext(2) = 1.049/100 ; gmr(2) = 0.817/100 ;
nb(2) =4 ; bsep(2) =0.46 ; x(2) =0 ; y(2) =27.50 ;
resis(3) =0.1379/1000 ; rdext(3) =1.049/100 ; gmr(3) =0.817/100 ;

nb(3) =4 ; bsep(3) = 0.46 ; x(3) = -12.65 ; y(3) =27.50 ;
%
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%General Data

$f = frequency

$sigmag = ground’s conductivity

$vbase = base voltage

$sbase = base power

]

f=50; sigmag=0.01 ; vbase = 500 ; sbase =100 ;
%

%End of function TransmissionLineData

The series impedance and the shunt admittance matrices in ohms per kilometre are:
[0.0815 +j0.5435  0.0470 +j0.2774  0.0470 + j0.2339
Zupe = | 0.0470 +j0.2774 0.0815 +j0.5435 0.0470 +j0.2774 | Qkm ™',
| 0.0470 +j0.2339  0.0470 +j0.2774 0.0815 + j0.5435

[ §3.359  —j0.809 —j0.305
Yo = | —j0.809  j3.527 —j0.809 [pSkm .
| —j0.305 —j0.809  j3.359

The geometric imbalances inherent in this transmission line, due to its flat configuration,
are reflected in the fact that not all mutual reactances have the same value, that is, X,;, # X,
Similar effects can be observed in the mutual values of Y,,.. Also, The resistive effects
shown in the mutual elements of Z,,. are entirely due to the ground return effects. As
expected, this effect is not present in Y, since capacitive effects are not a function of
ground return.

With reference to a base voltage of 500kV and 100 MVA, the series impedance and shunt
admittance matrices in per-unit values are:

[0.0326 +j0.2174  0.0188 4+j0.1110 0.0188 + j0.0935
Zape = 1073 x | 0.0188 +j0.1110 0.0326 +j0.2174 0.0188 +0.1110 | p.u.,
| 0.0188 +j0.0935  0.0188 +j0.1110  0.0326 + j0.2174

[ j8.398 —j2.024 —j0.762
Yoo = 1073 x | —j2.024  j8.816 —j2.024 |p.u.
| —j0.762  —j2.024  j8.398

3.2.8 Long-line Effects

The transmission line models required for long-distance transmission applications are more
involved than those covered in Section 3.2.4, which are only suitable to represent short to
medium-distance transmission lines (Grainger and Stevenson, 1994). In actual applications,
however, it is not common practice to see transmission lines of more than 300 km without
series compensation, which fall within the category of medium-distance transmission lines
for the purpose of fundamental frequency operation.

However, in some special cases it is desirable to incorporate long-line effects into the
transmission line parameters (Bowman and McNamee, 1964). A case in point would
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be studies relating to placement and sizing of shunt and series compensation of long-
distance transmission. At frequency applications higher than the fundamental frequency, it
is certainly mandatory to incorporate long-line effects since the electrical distance increases
rapidly with frequency (Acha and Madrigal, 2001; Arrillaga et al., 1997). Even transmission
lines of only a few tens of kilometres may be seen as a very long line at 1 kHz.
Calculation of multiconductor transmission line parameters, including long-line effects,
requires the use of formulations derived from the wave propagation equation. This
introduces a degree of extra complexity as these formulations invariably involve square
roots and circular and hyperbolic functions of matrices. Several options are available to
carry out such nonconventional matrix operations, but perhaps the best known method is to
simply apply suitable eigenvector techniques to the relevant transmission line parameter
matrices (Wedephol, 1963). This enables all calculations to be performed in the frame of
reference of the modes and then referred back to the frame of reference of the phases.
Arguably, the best known formulation derived from the wave propagation equation is the

‘ABCD’ parameter formulation:
Vs| |A B|| Vg
) le ][] 549

A =T, x Diag(cosh~,[) x T, ',
B = T, x Diag(z,, x sinh~,l) x T, !,

where

3.46
C = T; x Diag(y,, x sinh~,/) x T, ", (3.46)

D = T; x Diag(cosh,[) x T; .

In Equations (3.46), Diag is a diagonal matrix; m is the subscript for modes 0, «, and 3; [ is
the length of the line; T, and Tj are transformation matrices made up of the eigenvectors of
the matrix products ZY and YZ, respectively; and Z and Y are lumped transmission-line
parameters as calculated by the Matlab®™ computer program given in Section 3.2.6.

The modal parameters for the propagation constant, -,,, and the characteristic impedance
and admittance, z,,, and y,,, in Equations (3.46) are calculated by first making Z and Y
diagonal:

Zm:TjZTh}
O (3.47)
Y, =T, YT,,
and then performing the following operations:
| (ZO)’O)I/Z 0 0
Y = 0 (zaya)'? 0 ; (3.48)
L 0 0 (z09)'"
[ (zoyg")"? 0 0
el G 5 K N (3.49)
| 0 0 (zay3")'"?

Alternative formulations, derived from the wave propagation equation, are available that
may present advantages in certain applications. The two obvious ones are the impedance
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and the admittance representations:
V. 7 7’11
S| = 1, (3.50)
Vr 7" 7 ||1x

R
-l vl e

where
Z' =T, x Diag(z, x coth~,l) x T; ',
7" =T, x Diag(z, x cschy,l) x Ty,

, . O (3.52)
Y' =T x Diag(y,, x cothy,l) x T, ",

Y" = —T; x Diag(y,, x cschy,l) x Tv_l'

3.2.9 Transmission Line Transpositions

High-voltage transmission lines may contain considerable geometric asymmetry, which in
turn causes voltage imbalances at the far end of the line, and transpositions are often used as
a means of balancing the overall impedances of the line (Anderson, 1973; Arrillaga et al.,
1986).

A three-phase transmission line, with a full set of transpositions, consists of three RLC
subsystems, as shown in Figure 3.9, where each section can be viewed as a m-circuit.
Alternatively, if each section is expressed in terms of its ABCD parameters then an
equivalent result can be obtained for the overall transmission line by cascading the

a Section 1 c Section 2 b Section 3
b a c
c b a
a,b,c S1 ab,c S2 a,b,c S3
Zshunl Zshunl Zshunl
1
| I |
ab,c Sl a,b,c Sl a,b,c S2 achZ a,b,c S3 a,b,c S3
Yshum Yshum shum shunt shunt Yshum

[T 1L
ool

Figure 3.9 Transposed transmission line representation and corresponding 7 sections
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individual elements (Anderson, 1973):
Lo ol le ol e ol
= X X )
IS C1 D1 Cz D2 C3 D3 —IR
Vs] [A BJ][ Vg
Is| [C D]|-Ik]
Notice that the voltages and currents at the receiving end of section 1 are the voltages and
current at the sending end of section 2, and so on. Notice also in Figure 3.9 that the phase
conductors in sections 1, 2, and 3 occupy different positions in the tower, following the
sense of rotation (a, b, ¢), (¢, a, b), and (b, c, a).
Cascading is also useful for calculating equivalent ABCD parameters of transmission

lines that contain not just transpositions but also shunt and series passive compensation. The
ABCD parameters of the series capacitive compensators are:

PIISS] B [(1) ﬂ [Ylﬂ (3.54)

where 1 and 0 are the unit and zero matrices, and Z = Diag(1/jwC). Similarly, the ABCD
parameters of the shunt compensator are:

PIISS] N [31( ﬂ [Yfﬂ (3.55)

where Y = Diag(jwC) and Y = Diag(1/jwL) for capacitive and inductive shunt compen-
sation, respectively.

(3.53)

3.2.10 Transmission Line Program: Distributed Parameters

In Program 3.2, Program 3.1 is expanded to incorporate long-line effects and discontinuities
along the length of the line such as passive shunt and series compensation. The expansion
is neatly accommodated, leaving the code unchanged, and all added modelling functionality
is coded in two new functions, namely LongLineData and LongLine.

PROGRAM 3.2 Program written in Matlab® to calculate transmission line parameters,
including long-line effects and passive shunt and series compensation

Frrk— — — — — Main Program

TransmissionLineData;

LongLineData;
[zZSeries,YShunt,Z012,Y012] = ShortLine(nphc,ngw,nb,bsep,resis, ...
rdext,gmr,x,y, f,sigmag,vbase, sbase);

[ZPhase,YPhase] = LongLine(nphc,nsections, length,ZSeries,¥YShunt,...
ZSe,¥Ysh);

$End main Program

function [ZPhase,YPhase] = LongLine(nphc,nsect, length,ZSeries, ...
YShunt,ZSe,¥Sh)
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AUX = eye(nphc*2);
[TV,Z2Y] = eig(ZSeries*YShunt);
[TI,YZ] = eig(¥YShunt*ZSeries);
ZModal = inv(TV)*ZSeries*TI;
YModal = inv(TI)*YShunt*TV;
kk=1;
for 11 = 1: nsect
if ( length(1ll) >0)
[ABCD] = ABCDLine(1ll,nphc,length,ZModal,YModal,TV,TI);
else
[ABCD] = ABCDComp (kk,nphc,ZSe,¥Sh);

kk =kk + 1;
end
AUX = AUX*ABCD;

end
ABCD = AUX;

A = ABCD(1l:nphc,l:nphc);

B = ABCD(1:nphc,nphc+1l:nphc*2);

C = ABCD (nphc+1:nphc*2,1:nphc);

D = ABCD(nphc+1:nphc*2,nphc+1:nphc*2);

ZPhase(l:nphc,l:nphc) = A*inv(C);
ZPhase(1l:nphc,nphc+l:nphc*2) = -B + A*inv(C)*D;
ZPhase (nphc+1:nphc*2,1:nphc) = inv(C);

ZPhase (nphc+1:nphc*2,nphc+1l:nphc*2) = inv(C)*D;

YPhase = inv(ZPhase);

%End LongLine function

function [ABCD] = ABCDLine(1l1l,nphc,length,ZModal,YModal,TV,TI);
Modal = zeros (nphc,nphc);
for ii = 1: nphc

gamma = sgrt(ZModal(ii,ii)*YModal(ii,ii));

gammar = real (gamma*length(1ll));

gammai = imag(gamma*length(1ll));

factl = sinh(gammar);

fact2 = cosh(gammar);

fact3 = sin(gammai);

fact4 = cos(gammai);

Modal(ii,ii) = ((fact2*factd)+(factl*fact3)*i);
end

ABCD(1l:nphc,l:nphc) = TV*Modal*inv (TV);
for ii = 1: nphc
gamma = sqgrt(ZModal(ii,ii)*YModal(ii,ii));

gammar = real (gamma*length(1ll));
gammai = imag(gamma*length(1ll));
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factl = sinh(gammar);
fact2
fact3
fact4 = cos(gammai);

Modal(ii,ii) = sqrt(ZModal(ii,ii)/YModal(ii,ii))*...
(factl*factd4+fact2*fact3*i);

cosh(gammar) ;

sin(gammai);

end
ABCD(1l:nphc,nphc+1l:nphc*2) = TV¥Modal*inv(TI);
for ii = 1: nphc

gamma = sqrt(ZModal(ii,ii)*YModal(ii,ii));

gammar = real (gamma*length(1l1l));

gammai = imag(gamma*length(1ll));

factl = sinh(gammar);

fact2 = cosh(gammar);

fact3 = sin(gammai);

fact4 = cos(gammai);

Modal(ii,ii) = sqrt(¥Modal(ii,ii)/ZModal(ii,ii))*...
(factl*factd4+fact2*fact3*i);

end

ABCD(nphc+1l:nphc*2,1l:nphc) = TI*Modal*inv(TV);

for ii = 1: nphc

gamma = sgrt(ZModal(ii,ii)*YModal(ii,ii));

gammar = real (gamma*length(1l1l));

gammai = imag(gamma*length(11l));

factl = sinh(gammar);

fact2 = cosh(gammar);

fact3 = sin(gammai);

fact4 = cos(gammai);

Modal(ii,ii) = (fact2*factd4+factl*fact3*i);
end

ABCD (nphc+1l:nphc*2,nphc+l:nphc*2) = TI*Modal*inv(TI);

%End ABCDLine function

function [ABCD] = ABCDComp (kk,nphc,ZSe,¥YSh)

One = eye(nphc) ;

ABCD(1l:nphc, l:nphc) = One ;

ABCD(1l:nphc,nphc+l:nphc*2) = zZSe(:,:,kk) ;

ABCD (nphc+1l:nphc*2,1l:nphc) = ¥YSh(:,:,kk) ;

ABCD (nphc+1l:nphc*2,nphc+1l:nphc*2) = ¥YSh(:,:,kk)*ZSe(:,:,kk) + One ;

$End ABCDComp function

65
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3.2.11 Numerical Example of Long Line Parameter Calculation

The parameters of the transmission line in Section 3.2.7 are calculated for the case when the
line is 500km long. The Matlab®™ function LongLine and the data given below, in
LongLineData, are used to such effect.

Function LongLineData, to read data for the S00kV, three-phase transmission line of flat
configuration is as follows:

$transmission line of Example 1, to include long-line effects and passive
$shunt and series compensation. The line is 500 km long and contains no
$compensation.

£

$Transmission Line Data

%

$nsections = number of sections in the transmission line

%length = total length of transmission line

%

nsections =1 ;

length(1l) =500 ;

%

%Compensating Plant Data

%

ZSe(:,:,1)=[000;000;0007];
YSh(:,:,1)=[000;000;0007];

%

%End of function LongLineData

In this example, the self and mutual admittances Y’ and Y” of the transfer admittance
matrix of Equation (3.51), are:

[ 1.6428 —j11.4850 —0.6708 + j4.7380 —0.1371 +j2.9077
Y = | —0.6708 +j4.7380 1.9417 —j12.7038 —0.6708 + j4.7380 | p.u.,
| —0.1371 +j2.9077 —0.6708 + j4.7380 1.6428 — j11.4850

[—1.6336+13.6479  0.6713 —j5.2450  0.1400 — j3.0994
Y' = | 0.6713-j5.2450 —1.9327+j14.9702  0.6713 —j5.2450 |p.u.
| 0.1400 —j3.0994  0.6713 —j5.2450  —1.6336 + j13.6479

These parameters were calculated by using accurate expressions derived from the wave
propagation equation. An alternative, approximated, solution, involving the lumped
parameters calculated with Matlab®™ function ShortLine and the nodal-based equations

1
Y = (Zape X 1ength)*1+§Yabc x length,
and

Y" = —(Zape % length) ™",
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is as follows:

[1.6379 —j10.8189 —0.6711 +j4.5699 —0.1387 + j2.8400
Y = | —0.6711 +j4.5699 1.9369 —j12.0023 —0.6711 +j4.5699 | p.u.,
| —0.1387 +j2.8400 —0.6711 4 j4.5699 1.6379 — j10.8189

[—1.6379 +j12.9184  0.6711 — j5.0759 0.1387 —j3.0306
Y'=| 0.6711—j5.0759  —1.9369 +j14.2064  0.6711 —j5.0759 |p.u.
| 0.1387 —j3.0306 0.6711 —j5.0759  —1.6379 4 j12.9184

It is interesting to notice that even for this relatively long-distance transmission line, little
difference exists between the conductances of the accurate and the approximated solutions.
However, the absolute error in the susceptances is around 5 %.

3.2.12 Symmetrical Components and Sequence Domain Parameters

If Equation (3.1), or its more involved counterparts Equations (3.22) and (3.35), can be
assumed to be perfectly balanced then they can be replaced by the following impedance
matrix equation (Chen and Dillon, 1974):

AV, zZ M M\
AV, | =M z M| |1L,|. (3.56)
AV, M M Z||L

Such a representation is easily transformed into the sequence domain frame of reference by
using the matrix of symmetrical components and its inverse:

1 1 1 1 1 1 1
Ts=|1 K h| and T,'= 3 1 h W, (3.57)
1 h K 1 K h
where h = 1/120°, and h% = 1/240°.
Equation (3.56), written in compact notation, is subjected to the following treatment,

T, AVipe = T, Zap TsT, e (3.58)
This yields the sequence domain representation of Equation (3.56),

The subscripts 0, 1, and 2 stand for zero, positive, and negative sequence components,
respectively. The following relationships exist between the terms in Equations (3.58) and
(3.59):

AV = T, 'AV 4,
Ioiz = T, "Lape, (3.60)
Zois = T, ' Zyp Ts.
Furthermore, Equation (3.59), in expanded form, is

AVy Zy 0 0] |h
Avi =10 z oll|n], (3.61)
AVZ 0 0 Z2 12
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where
Zy=7Z+2M,
Z\=7Z—M, (3.62)
Z,=7Z—-M.

This is a useful result that enables the calculation of the zero, positive, and negative
sequence impedances from known self and mutual impedances.

The reverse problem — that where the self and mutual impedances of a perfectly balanced
transmission line are to be determined from known sequence impedances — is of great
practical interest. Suitable equations can be derived from Equations (3.62):

Z==(Zy+27)),
(3.63)

M==(Zy—2Zy).

W = W] =

However, it should be remarked that if Equation (3.1) cannot be assumed to be perfectly
balanced then the use of symmetrical components does not yield a decoupled matrix
equation and the use of symmetrical components is of limited value.

To a limited extent this problem arises when the perfectly balanced counterpart of matrix
Equation (3.36) is represented in the sequence domain. If Equation (3.36) can be assumed to
be perfectly balanced then it is replaced by the following matrix equation:

AV, Z M M M M M||I]
AV, M Z M M M M||I
AV, | |[M M Z M M M||I (3.64)
AVy| |M M M Z M M||IL '
AVg M M M M Z M||I
AV¢ M M M M M Z||I
Using compact notation to represent Equation (3.64), and applying symmetrical
components,
T,'! 0 AVye | _[TS0 0 Z M|[T, o][T," 0 Lobe
0 Ts_l AVABC o 0 TS_1 M Z 0 T, 0 Ts_l Ligc |’
(3.63)
we obtain the following result:
AV012:| {Zmz Mmz} {1012}
/ = ! . 366
|:AV012 M012 Z012 I012 ( )
Equation (3.66) in expanded form is written as
AV [Z +2M 0 0 M 0 0 11
AV, 0 Z-M 0 0 0 0 I
AV | o 0 zZ-M 0 0 0o ||P (.67
AVy| — | 3m 0 0  Z+2M 0 0 L
AV, 0 0 0 0 zZ-M 0 I
Lav,] L o 0 0 0 0 z-M]||L]
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where the sequence domain voltages and currents corresponding to circuit two are primed to
differentiate them from those in circuit one. Also, note the impedance coupling between the
two zero sequence circuits.

3.2.13 Transmission Line Program: Sequence Parameters

Computer Program 3.1 is expanded in Program 3.3 to incorporate sequence parameter
calculations. The new function, SequenceImpedance, is added to the code given in the
program. No additional input data are required.

PROGRAM 3.3 Program written in Matlab® to calculate transmission-line sequence
parameters

Frrk— — — — — Main Program

TransmissionLineData;

[ZSeries,YShunt] = ShortLine(nphc,ngw,nb,bsep,resis,rdext,gmr, ...
x,y,f, sigmag,vbase, sbase)

[2012,Y012] = Sequencelmpedance(ZSeries,Y¥Shunt);
$End main Program

function [Z012,Y012] = SequenceImpedance(ZSeries,YShunt)
TS(1,1) = 1;
TS(1,2) =1;

TS(1,3) =1;
TS(2,1) =1;
TS(2,2) =-0.5-sqrt(3)*0.5*1i;
TS(2,3) =-0.5+sqrt(3)*0.5*1i;
TS(3,1) =1;

TS(3,2) = -0.5+sqrt(3)*0.5%1i;
TS(3,3) =-0.5-sqrt(3)*0.5*1i;
ST = inv(TS);

Z012 = ST*ZSeries*TS;

Y012 = ST*YShunt*TS;

3.2.14 Numerical Example of Sequence Parameter Calculation

The positive, negative, and zero sequence parameters of the transmission line in Section
3.2.7 are:

0.0702 +j0.4277  0.0050 —j0.0029 —0.0050 — j0.0029
Zoi» = 107% x | —0.0050 —j0.0029 0.0138 +j0.1122 —0.0101 +j0.0058 |p.u.,
0.0050 —j0.0029  0.0101 4 j0.0058  0.0138 +j0.1122
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j0.0053 —0.0002 +j0.0001  0.0002 -+ j0.0001
Yo = | 0.0002 + j0.0001 §0.0101 0.0008 — j0.0005 | p.u.
—0.0002 +j0.0001  —0.0008 — j0.0005 30.0101

As expected, Zg, and Yo, are diagonally dominant and the values on the diagonal
correspond to zero, positive, and negative sequence parameters, respectively. It is important
to notice that no full decoupling of the sequences is possible because of the inherent
geometric imbalances exhibited by the transmission line used in this test case; it is a
transmission line of flat configuration and contains no line transpositions.

3.3 POWER TRANSFORMER MODELLING

Power transformers are essential plant components of the power system. In general, they
provide the interface between sections of the network with different rating voltages, for
example a generating plant and the transmission network, a static VAR compensation (SVC)
and the transmission network. Transformers consist of two or three copper windings per
phase and one or more iron cores. They are normally contained in metallic enclosures (i.e.
tanks), and are immersed in high-grade oil for insulation purposes (Grainger and Stevenson,
1994).

From the modelling point of view, it is convenient to separate the electric circuit, formed
by the copper windings, from the magnetic circuit, formed by the iron core. The reactances
of the windings can be found from short-circuit tests, and the iron-core reactances can be
found from open-circuit tests. The three-phase windings of power transformers may be
connected in a number of ways, but in high-voltage transmission the most popular
connections are: (1) star—star, (2) delta—delta, and (3) star—delta. Furthermore, the star
point can be either solidly grounded, grounded through an earthing impedance, or it may be
floating.

In power transformers the magnetising current usually represents only a small percentage
of the load current. However, this current is rich in harmonics, and a detailed representation
of the magnetic circuit is mandatory in studies involving harmonic frequencies. In
fundamental frequency studies, such as power flows, this requirement is not as severe and it
is waved in most cases, unless the study is aimed at conducting an accurate assessment of
power system losses (Acha and Madrigal, 2001; Arrillaga et al., 1997).

3.3.1 Single-phase Transformers

The starting point for developing comprehensive power flow transformer models is the
schematic representation of the basic two-winding transformer shown in Figure 3.10. The
windings contain resistance but it is assumed that the core does not saturate and exhibits no
hysteresis.

The two transformer windings, termed primary (p) and secondary (s) windings contain
N, and N; turns, respectively. The voltages and currents existing in both windings are related
by a matrix of short-circuit (sc) impedance parameters, as given by the following
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Figure 3.10 Two-winding transformer
expression:
Vp Zse p Zsem I p
= 3.68
|: Vs :| [Zsc m Lscs I ( )
where
Zscp = Rp +szcp7
Zscs = Rs +szcs, (369)
Zsem = szc me

These parameters are obtained by measurements of the actual transformer, where R, and R,

are the resistances of the primary and secondary windings, respectively. The reactances

Xscps Xscs, and X, are short-circuit reactances obtained by exciting two terminals of the

transformer shown in Figure 3.10, at reduced voltage, and short circuiting the other two. The

ratio of excitation voltage to short-circuit current gives the relevant short-circuit reactance:
Eyp E3 E3

Xscp 213_47 scs :E7 Xscm :E~ (370)

From the point of view of system analysis there are advantages in expressing the short-
circuit impedance matrix of Equation (3.68) in admittance form:

Ip Yscp 7Yscm Vp
= , 3.71
|:1s:| |:_Yscm Yscs vs ( )
where
Z
Yscp = %7
Zscszcs - Zscm
Zscp
Yos=5—— > 3.72
e Zsc szcs - Zgzcm ( )
Zscm
Yim=—"—5—.
e Zscszcs - ZZ

scm

It is observed that up to three short-circuit tests may be required to characterise the matrices
of short-circuit parameters. However, the primary and secondary short-circuit admittances
are almost the same when expressed in per-unit values, say Y. Owing to the strong
magnetic coupling afforded by iron cores, the mutual admittance between primary and
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secondary windings can also be taken to have a value of Y.. Hence, the transformer short-
circuit admittance matrix, in per units, is:

HE Lt

3.3.2 Simple Tap-changing Transformer

The effect of expressing the transformer parameters in the per-unit system is to transform
the original voltage ratio N, : N, into a unity voltage ratio 1 : 1. This enables a simple
equivalent circuit consisting of the short-circuit admittance Y. connected between the
primary bus (p) and the secondary bus (s) to describe adequately the system performance of
the two-winding transformer.

However, power transformers are often fitted with a tap-changing mechanism to enable a
degree of voltage magnitude regulation at one of the transformer terminals. This is achieved
by injecting a small variable voltage magnitude in phase (added or subtracted) with the
voltage magnitude at the output winding. Such transformers are termed load tap-changing
(Itc) transformers and play an important role in power flow studies. The representation of an
Itc transformer may be achieved by the series connection of the short-circuit admittance
representing a per-unit transformer and an ideal transformer with taps ratio 7': 1 (Laughton,
1968). This arrangement is shown in Figure 3.11.

T:1

Figure 3.11 Simple tap-changing transformer

The following relationships exist in the ideal transformer,
vV T T T

Voo and =7 (3.74)
The current across the admittance Y. is:
1=Ye(Vy—V) =Y (V, = TV) = I, (3.75)
Also,
I'=TI =Y (TV, — T*Vy) = —L. (3.76)

Combining Equations (3.75) and (3.76) in matrix form gives:

L] [ Ye ~TY]|[Vy
|:I§:| n |:_TYsc TZYSC :| |:V§ :| ' (377)
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3.3.3 Advanced Tap-changing Transformer

Following the same line of reasoning, a comprehensive power system transformer model is
derived for a single-phase three-winding transformer (Acha, Ambriz-Pérez, and Fuerte-
Esquivel, 2000). Each winding is represented as the series combination of a short-circuit
admittance and an ideal transformer. Furthermore, each winding is provided with a complex
tap-changing mechanism to allow for tap-changing and phase-shifting facilities. Moreover,
the magnetising branch of the transformer is included to account for the core losses.
Figure 3.12 shows the equivalent circuit of the three-winding transformer.

1:U,
IIU,'

Figure 3.12 Comprehensive tap-changing transformer. Reproduced, with permission, from E. Acha,
H. Ambriz-Pérez, and C.R. Fuerte-Esquivel, ‘Advanced Transformer Control Modelling in an Optimal
Power Flow using Newton’s Method’, IEEE Trans. Power Systems 15(1) 290-298, © 2000 IEEE

The primary winding is represented as an ideal transformer having complex tap ratios
T,:1and 7T;: 1 in series with the admittance Y., where T, = T} =t + ja = T/¢,. The
symbol * denotes the conjugate operation. The secondary winding is represented as an ideal
transformer having complex tap ratios U, : 1 and U, : 1 in series with the admittance Y,
where U, = U} = u+ j3 = U/¢,. Similarly, the ideal transformer in the tertiary winding
has complex tap ratios W,:1 and W;:1 in series with an admittance Y., where
W, =W} =w+jy= W/l¢,.Itis assumed here that Y., Y. and Y. are the short-circuit
admittances of the primary, secondary, and tertiary windings, respectively. The magnetising
branch of the transformer is represented by the admittance Yy = Gy + jBy.

The resistive path of the magnetising branch is directly related to the iron losses, and its
conductance G, draws a current that varies linearly with the voltage across the magnetising
branch. However, in the inductive path the relationship between the current and the voltage
is dictated by the rms V-I characteristic, which under saturating conditions becomes non-
linear.
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The following relationships exist in the ideal primary, secondary, and tertiary

transformers:
vi T, T, I
L2t and H=2
Vo 1 1 L
V. v i g
2 _ l , and 2 = Il ,
Vo 1 1 L
Vs W, A 4
2= —, and Wi =3
Vo 1 1 3

The currents across the admittances Y. p, Y, and Y., are, respectively,
I = YSCP(VP - Vl) = YSCP(VP - TvVO) = Iy,
L= YSCS(VS - VZ) = YSCS(VS - UUVO) =1,
L =Y (Vi = V3) = Yo' (Vi = W Vo) = I,
and at the centre of the transformer the following relationship holds:
0=1,+L+1,— Iy =Tl + Ul, + Wil — I.
Substituting Equations (3.81)—(3.83) into Equation (3.84) gives:
0=—TYp,Vp — Ui¥iesVs = Wi Vi + (ToYsep + UsYoes + Wy Yoo, + Yo) Vo

Putting Equations (3.81)—(3.83) and (3.85) in matrix form gives:

I Yeep 0 0 T\ Yep
Is _ 0 Yscs 0 _vascs
It N 0 0 Ysct _W'u Ysct
0 7T:Yscp 7U:Yscs 7Wijscl T,%Yscp‘i’U%Yscs‘FW%;Yscl‘i’YO

(3.78)

(3.79)

(3.80)

(3.81)
(3.82)
(3.83)

(3.84)

(3.85)

SN SS

(3.86)

Equation (3.86) represents the transformer shown in Figure 3.12. However, it is possible
to find a reduced equivalent matrix that still models the transformer correctly while retaining

only the external buses p, s, and ¢. This is done by means of Gaussian elimination:

I U YepYees + W2 p Yoot + YaepYo —T, U YsepYscs
I | = % —T:UYsepYecs T Yo Ysep + WYYt + Y s Yo
I; —T:W,YeepYict —U'W, Y Yt

~T, W Yo pYict v,

—U,W: Y sYeer Vi |,

T%;YsctYscp‘FUgysctYscs‘FYsctYO Vt
where

A= TgYSCp + U%YSCS + WgYSCt + YO'

(3.87)
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The nodal admittance representation of a two-winding transformer can be easily obtained
by introducing simplifying assumptions in Equation (3.87). For instance, when the tertiary
winding does not exist, the row and column corresponding to this bus become redundant and
they are removed from Equation (3.87). Moreover, the tap ratios W, and W; become zero.
Hence, the nodal admittance matrix equation representing the two-winding transformer is
arrived at:

[lp} _1 {U?,YSCPYS” +Yepto  —ToUYeepYies ] [Vp} (3.88)
Is _A 7TZUUYSCPYSCS TgYschscp“i’YschO VS ’ '
where
A =TYp+ U5 + Yo

It must be noted that owing to the flexibility of the two-winding transformer model in
Equation (3.88), it is possible to assemble a transformer model that represents the
transformer circuit shown in Figure 3.12 by using three of these two-winding transformer
models. An example of how this can be achieved is shown elsewhere (see Acha, Ambriz-
Pérez, and Fuerte-Esquivel, 2000).

Transformer models with more constrained tapping arrangements can also be derived
from Equation (3.88). For instance, take the case of the tap-changing transformer shown in
Figure 3.11, represented by Equation (3.77). Such a representation can be derived from
Equation (3.88) by including no magnetising branch, ¥y = 0, and a nominal tapping position
for the secondary winding, U, = 1. Moreover, the tapping position of the primary winding
is real as opposed to complex, T, = T, and the short-circuit admittance is assumed to be all
on the primary side, Y. = 0 and Y., = Y. The latter consideration requires application of
L’Hopital differentiation rule with respect to Yss.

A further strength of the transformer model in Equation (3.88) is that, owing to the
complex nature of their taps, it represents rather well the system behaviour of a phase-
shifting (PS) two-winding transformer. This is more easily appreciated if it is assumed that
in Equation (3.88) both complex taps have unit magnitudes:

T, = 1/¢, = cos ¢, + jsin ¢, } (3.89)
U, =1/¢, = cos ¢, + jsin ¢,.
Hence,
I B 1 Ysep(Yses + Yo)
M " Yaep + Yees + Yo | —Yiep(cos ¢y — jsingy) x Yees(cos ¢, + jsin )
—Yep(cos ¢y +jsin¢y) X Yocs(cos d, — jsiny) } [ v, ] (3.90)
Yies(Ysep + Yo) Vel '

This is a comprehensive model of a PS transformer that yields very flexible power flow and
optimal power flow PS models, as will be shown in Chapters 4 and 7, respectively.

3.3.4 Three-phase Transformers

Based on nodal analysis, quite general models for multiwindings, multiphase transformers
can be derived (Chen and Dillon, 1974; Laughton, 1968). The essence of the method is to
transform the short-circuit parameters of the transformer windings, suitably arranged in a
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matrix of primitive parameters Y., into nodal parameters Y. This is done with the help
of appropriate connectivity matrices, namely, C,, and Cy,. The connectivity matrices relate
the voltages and currents in the unconnected transformer windings to the phase voltages and
currents when the three-phase transformer is actually connected.

The primitive and nodal parameters are related by the following matrix expression:

The primitive parameters of three identical single-phase transformers, for which the
terminals between transformers are not connected in any way but contain off-nominal
tapping facilities on the primary winding, have the following arrangement:

(1] [ Y T, Y [Vi]
L] -Tive T2V V2]
I Yo -T¥e O 0 0 0 Vi
L ~TYe T 0 0 0 0 Vs
(5] [ Ye —ToYe][Vs] L 0 0 Yo -TYe O 0 Vs
L) T lerye v lvel T n| T o 0 -T'Ye T?%. O 0 AR
Is 0 0 0 0 Y —T,Ys Vs
Is 0 0 0 0 “T:Y TV Ve
[15] [ Y =T, Y[ Vs]
sl [-TiVe T2V ||Ve]
(3.92)
In general, these matrix equations may be expressed in compact form:
Iy = Yy V. (3.93)

The three single-phase transformers, when suitably connected, electrically speaking, may
serve the purpose of transforming three-phase voltages and currents. The assembly is termed
a ‘three-phase bank’. Each single-phase unit in the bank is closely associated with one phase
of the three-phase system. Depending on the electrical connection and operating conditions,
there may be currents from more than one phase circulating in one single-phase unit at any
one time, but there are not flux interactions between windings of different units.

Quite a different situation prevails in multilimb transformers, where all windings of the
three-phase unit are magnetically coupled. The primitive admittance matrix equation of
the two-winding, three-phase transformers is a full matrix, and up to 21 short-circuit tests
may be required to define fully this primitive admittance matrix. In the remainder of this
chapter only the three-phase bank will be addressed.

The three most popular three-phase transformer connections found in high-voltage
transmission are addressed below, namely the star—star, delta—delta, and star—delta. To
determine their nodal admittance matrix models, one requires information of the matrix of
primitive parameters, Y., and the relevant connectivity matrices, Cny and Cyy.

3.3.4.1 Star-star connection

The three-phase connection is shown in Figure 3.13 when the windings are connected in star—
star configuration, with both star points grounded through admittances, Yy and Y,,, respectively.
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. v, vy,
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v, 3 Ve
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Figure 3.13 Star—star connection

The transformation matrix, which relates the voltages existing in the unconnected
transformer to the voltages in the connected three-phase transformer shown in Figure 3.13,
is given explicitly in Equation (3.94):

RZN 1T 0 0 0 0 0 —1 0] [Va]
Vs 00 01 0 O 0 -1 Vs
Vs 01 0 0 0 0 -1 0 Ve
Va |0 0O 0O O 1 O 0 -1 V.,
Vs| |0 O 1 0 0 0 -1 0 Vi (3.94)
Ve 00 0 0 0 1 0 -1 V.
\Z 00 0 0 0 O 1 0 Vi
| Vs | 10000 0O 0 1| Va]
In compact form, we have,
Vy = CyaVa- (3.95)

The nodal matrix representation of this transformer connection is obtained by substituting
Equations (3.92) and (3.94) into Equation (3.91):

Iy Yo 0 0 —T,Ys 0 0 Y T,Ys Vi

I, B 0 Ysc 0 0 - Tv Ysc 0 =Y, sc Tv Ysc VB

1 C 0 0 Ysc 0 0 - Tt' Ysc - Ysc Tv Ysc VC

L| |-T'Y 0 0 T?Y 0 0 T Y —T%Y, v,

I |~ 0 -TY% O 0 T?Y, 0 T Y ~T%Y, Vi

I 0 0 -T'Y O 0 T?Y,.  T:Y —T?Ys Ve

1, N - ysc - Ysc - ysc TU Ysc TU Ysc TU Ysc 3 Ysc + YN =3 TU Ysc VN
L [TV TV T -T2 —T2 T2 —3T:Ye 3T%Y+Y, | |V,]

(3.96)

If both star points N and n are solidly grounded then the nodal voltages Vy and V,, become
zero. Hence, the rows and columns corresponding to bus N and bus n become redundant and
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are deleted from matrix Equation (3.96):

Iy Yi 0 0 —T,Ys 0 0 Va
I B 0 Ysc O 0 - TU YSC O VB
I c| _ 0 0 Ysc 0 0 - Tv Ysc VC
L | | -TY 0 0 T?Y, 0 0 Vi | (3.97)
Iy 0 —T Y 0 0 Yy 0 Vi
I 0 0 ~T! Y 0 0 T* Y | | Ve

3.3.4.2 Delta-delta connection

This transformer connection is shown in Figure 3.14. In the delta connection the following
relationships exist between the voltages and currents in the connected and unconnected
circuits:

1
V= ——CyuVa, 3.98
9 \/g 1) ( )
\/gla = Cuwlw- (399)
I,
4—
Va
Iy
4——_
— 'V
I
<—
Vv,

Figure 3.14 Delta—delta connection

The relevant connectivity matrices for this transformer connection are set up and, upon
substitution in Equation (3.91), the following nodal admittance matrix is arrived at:

Ty T 2Ye —Ye —Ye 2TYe ToYe T,Yse 1TVaT

Ig —Ye 2Y4 —Y T,Ye —2T.Y ToYe Vg

Ie| 1| =Y —Ye 2Ye. T,Ys T,Ye —2T.Y || Ve

L | 3|-2TY. T T Y 2T, —T* —T*Y. V,

I, T'Ye 2T1Y. T'Ye Ty 2T%Y —T?Y Vi

L 7. ] L TYe T'Ye —2T'Y. -T*Y. —T*Y. 2T?Y. |LV,]
(3.100)

3.3.4.3 Star-delta connection

This transformer connection is shown in Figure 3.15 for the case when the star point is
solidly grounded. Following a similar procedure to that used to derive the nodal admittance
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Figure 3.15 Star—delta connection

matrices of the star—star and delta—delta connections, the nodal matrix representation of this
transformer connection is:

Iy Yee 0 0 —T,Ye/V3 TYy/V3 0 J[Va]

Ig 0 Yo 0 0 ~T.Y/V3 TYo/V3 || Vs

Ie| 0 0 Yee T,Y/V3 0 —T,Y«/V3| | Ve

L | | -T:Ye/V3 0 T'Y/V3  2T2Y/3 —T2Y/3 -T2Y/3 || Va

I, T:Y/V3 —TiYe/V3 0 —T?Y/3 2T?Y/3 —T%Y./3 Vp

L] | 0 TiYe/V3 —TiY/V3 -T2 /3 —T¥/3 2T%Y/3 || V]
(3.101)

3.3.5 Sequence Domain Parameters

Transformer parameters are also amenable to representation in the frame of reference of the
sequences (Chen and Dillon, 1974). The matrix of symmetrical components and its inverse,
given in Equations (3.57), are used to such effect. This requires that the order of all matrices
involved in the exercise be a multiple of three. This characteristic is met by matrices
representing the star—star connected transformer with both star points solidly grounded, the
delta—delta transformer, and the star—delta transformer with the star point solidly grounded.
It should be noted that the symmetrical components transform given in Equations (3.57)
cannot directly be applied to cases of star-connected windings, where one or two star points
are not grounded or are grounded through earthing impedances. In such cases, Kron’s
reductions are applied first to find out reduced equivalent representations which are a
function only of phase terminals. This follows the spirit of the procedure presented in
Section 3.2.2 for the elimination of transmission line ground wires.

A generic, compact representation of Equations (3.97), (3.100), and (3.101) correspond-
ing to the star—star, delta—delta, and star—delta connections may be expressed as:

Ligc Yy  —Yu || Vase
- , 3.102
[ Lape } |:_YIH YIV] [ Vabe } ( )
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where the order of matrices Yy, Y, Y, Yiv is 3 X 3 and suitable for direct treatment by
the matrix of symmetrical components, to enable representation in the frame of reference of
the sequences. This is achieved by applying the following symmetrical component
operations:

Y; = Tg'Y(Ts,
Y = Ts'YiTs,
Yii = Tg 'Y Ts,
Yi, = T5'YiyTs.

(3.103)

Table 3.1 shows matrices Yi, Yii, Yiii, and Y;y in explicit form, for the star—star, delta—delta,
and star—delta transformer connections.

Table 3.1 Transformer sequence domain admittances

Matrix type Star—star Delta—delta Star—delta
Yo 0 O 0o 0 O Yo 0 O
Yi 0 Ysc 0 0 Ysc 0 0 Ysc 0
0 0 Y 0 0 Y 0 0 Y
[T, Y 0 0 K 0 0 0 0 0
Yii 0 T,Y 0 0 T,Ys 0 0 T,Y/30° 0
| O 0 TyYs 10 0 T,Ys 0 0 T,Y L —=30°
[T Yy 0 0 K 0 0 ] 0 0 0
Yiii 0 T,Y 0 0 T)Y 0 0 T;Y/—30° 0
0 0 T Y 10 0 T, Y | 0 0 T, Y 30°
T?Y. 0O 0 [0 0 0 0 0 0
Y 0 T2 0 0 T2Y 0 0 T2 0
0 0 T2Y 10 0 T, Y | 0 0 T Y

The sequence domain representation of a transformer, in compact form, is:

Ioiop | _
Ioios

where the subscripts 0, 1, and 2 refer to zero, positive, and negative sequence quantities,
respectively. It has been emphasised in various points.

Careful examination of the sequence domain parameters indicates that three independent
transfer admittance matrix equations, leading to three independent circuits, are generated for
a three-phase transformer. This is more easily realised if the transformer taps are taken to be

Y(l) _Y! ii)

1

: V012p:|
. , 3.104
7Yi(m) Y‘]V) |: ( )

Voias

1
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real as opposed to complex, yielding symmetrical matrix equations and, hence, reciprocal
circuits. The star—star, delta—delta, and star—delta connections share the same positive and
negative sequence equivalent circuits, given in Figure 3.16.

I TY I
_> <_

Vp (I'T)Ysc (TZ—T)YSC TVA
O

o,

Figure 3.16 Positive and negative sequence equivalent circuit for the star—star, delta—delta, and star—
delta connections

In contrast, the zero sequence equivalent circuits for the three connections differ from one
another. The equivalent circuits are shown in Figures 3.17(a), 3.17(b), and 3.17(c) for the
star—star, delta—delta, and star—delta connections, respectively.

Iy, TY. Ioy Loy Y
— - —>

Vop Vos Vop Vos Vop Vos

o o}
(a) (b) (©

Figure 3.17 Zero sequence equivalent circuits for: (a) star—star, (b) delta—delta, and (c) star—delta
connections

It should be noted that for the star—delta transformer connection the primary and
secondary terminals of the zero sequence equivalent circuit are not electrically connected.
However, the primary terminal contains an admittance Y. connected between this terminal
and the reference. It is also interesting to note that the positive and negative transfer
admittances contain an asymmetrical phase shift of 30° between the primary and secondary
terminals giving rise to nonreciprocal equivalent circuits. The asymmetrical phase shift is
entirely attributable to the star—delta connection and it is present even when no taps are
availabe in the transformer. It is common practice in application studies, such as positive
sequence power flow and sequence domain-based fault levels to ignore the phase shift
during the calculations and then to account for it during the analysis of results.
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3.4 ROTATING MACHINERY MODELLING

In general, synchronous machines are grouped into two main types, according to their rotor
structure: round rotor and salient pole machines (Grainger and Stevenson, 1994). Steam
turbine driven generators (turbogenerators) work at high speed and have cylindrical rotors.
The rotor carries a bc excited field winding. Hydro units work at low speed and have salient
pole rotors. They normally have damper windings in addition to the field winding. Damper
windings consist of bars placed in slots on the pole faces and connected together at both
ends. Turbogenerators contain no damper windings but the solid steel of the rotor offers a
path for eddy currents, which have similar damping effects.

For simulation purposes, the currents circulating in the solid steel or in the damping
windings can be treated as currents circulating in two closed circuits. Accordingly, a three-
phase synchronous machine may be assumed to have three stator windings and three rotor
windings. This is illustrated in Figure 3.18, where all six windings are magnetically coupled.

Figure 3.18 Schematic representation of a three-phase synchronous generator. Redrawn by
permission of the Institution of Electrical Engineers from R.G. Wasley and M.A. Shlash, ‘Steady-
state Phase-variable Model of the Synchronous Machine for Use in 3-phase Load-flow Studies’,
Proceedings of the IEEE 121(10) 1155-1164 © 1974 IEEE

The relative position of the rotor with respect to the stator is given by the angle 6 between
the rotor’s direct axis and the stator’s phase a axis, termed the d axis and a axis, respectively.
In the stator, the axis of phases a, b, and ¢ are displaced from each other by 120 electrical
degrees. In the rotor, the d axis is magnetically centred in the north pole of the machine. A
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second axis, located 90 electrical degrees behind the d axis is termed the quadrature axis or
q axis.

Three main control systems directly affect the turbine-generator set, namely the boiler’s
firing control, the governor control, and the excitation system control. The excitation system
consists of the exciter and absolute value rectifier (AVR). The latter regulates the generator
terminal voltage by controlling the amount of current supplied to the field winding by the
exciter. For the purpose of steady-state analysis, it is assumed that the three control systems
act in an idealised manner, enabling the synchronous generator to produce constant power
output, to run at synchronous speed, and to regulate voltage magnitude at the generator’s
terminal with no delay and up to its reactive power design limits.

3.4.1 Machine Voltage Equation

The objective of this section is to derive a steady-state expression for the stator three-phase
voltages and currents of the synchronous generator (Wasley and Shlash, 1974b). The rotor
emfs (electromagnetic forces) and saliency are accounted for in the resulting voltage
equation, which may form the basis for connecting the machine model to a given three-
phase bus of an unbalanced power system representation.

With reference to Figure 3.18, using stator and rotor quantities expressed in frames of
reference attached to their respective physical circuits, namely stator and rotor circuits, the
instantaneous voltages of the machine may be expressed as:

v = Ri + pLi, (3.105)

where R and L are the machine resistance and inductance matrices, respectively, and p is the
time derivative operator.
Furthermore, expanding Equation (3.105) into stator and rotor subsets, we obtain:

Vs | R, 0 i Gy Gy | | i Ly Ly Pis
R R S [ Rt | S i ol [
where G = dL/d6; wy, equal to df/dt, is the rotor speed; and 6 = w,t + 6.
The submatrix coefficients L, G, and R are:

Laao + La cos(26) —Lapo — Lap c08(20 +60)  —Lypo — Lyz cos(20 — 60)
Lgs = | —Lapo — Li2€08(20 4+ 60)  Lyqo0 + Lap cos(20 4 120)  —Lgpo — Lgp cos(20 — 180) |,
—Lapo — Lip c08(20 — 60)  —Lgpo — Ly cos(260 — 180)  Lyao + Lyp cos(26 — 120)
(3.107)
Ly cos(6) Ly cos(6) —Lyy sin(6)
Ly = | Lycos(§ — 120) Ly cos(f —120)  —L,ssin(f — 120) |, (3.108)

| Las cos(0 4 120) Ly cos(0 + 120)  —Lgy sin(6 + 120)

[ Ly Lua O
Li=|Lwa L O |, (3.109)
0 0 L,
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—2L, sin(26) 2L, sin(260 + 60) 2L, sin(260 — 60)
G = | 2L sin(20 +60)  —2L,5sin(20 + 120) 2L, sin(26 — 180) |, (3.110)
| 2Lpsin(20 — 60) 2Ly sin(20 — 180)  —2L,y sin(20 — 120)

—Lysin(0) —L,y sin(9) —Lgy cos(9)
Gy = | —Lgsin(6 — 120) —Lyrsin(6 — 120)  —Lgpcos(6 — 120) |, (3.111)
| —Larsin(0 + 120)  —Lgssin( + 120)  —Lgs cos(6 + 120)

R, 0 0

R=|0 R O], (3.112)
|0 0 R
[Ry O 0

R=|0 Ru O |. (3.113)
L0 0 Ry

Since the rotor circuits are represented by a field winding on the d axis and two short-
circuited damper windings on the d axis and g axis, respectively, the rotor voltage vector
may be written as

Urd
=101, (3.114)
0

where v is the applied direct field voltage.

For the purpose of steady-state analysis, it will be assumed that the applied direct field
voltage equals the voltage drop across the field resistance owing to the pc component of the
field current and that additional voltages from Ryiy can be neglected. Using such a
simplification, the relevant part of Equation (3.106) is solved for pi;:

pir = —L ' [wGrss + Lis piy). (3.115)
Assuming the following set of unbalanced stator currents:
I, sin(wr + G1)
iy = | Lsin(wt + 5) |, (3.116)
L sin(wt + 33)

and the fact that the rotor runs at synchronous speed (i.e. w; = w), we have,

3 | Lncos(tm)
pir = —wLo L' Y | Lucos(ih) |, (3.117)
m=1 | —[, sin(t,,)

where
1/)1 :2wt+5+51,

Wy = 2wt + 6+ B — 120, (3.118)
W3 = 2wt + 6 + B3 + 120.
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The expression for pi, can be further simplified by substituting the inverse relation of
Equation (3.109) into Equation (3.117):

3 ki1, cos(w,)
pi; = Z —kol,, cos(Vy) |, (3.119)
m=1| kol sin(¢,)

where

ky = —WLaf |:l — —Lmkd:|
Lya Lia (3.120)
o wLaf

ka
Ly

It should be mentioned that the following practical simplifications have been made while
substituting the inverse relation of Equation (3.109) into Equation (3.117): Ly, is much
greater than L4, and Ly, =Ly

Equation (3.119) is now integrated:

13 ki, sin(t,,) ifa
i =20 | —kalwsin(u) | + |0 |, (3.121)
Y=t | —kyl, cos(Y) 0

where iz, is the bc component of the field current.

Inspection of Equation (3.118) and (3.121) reveals that the presence of negative sequence
currents at the machine terminals gives rise to rotor currents of double the supply frequency.
In contrast, positive sequence currents are associated with zero frequency rotor currents,
other than the direct field current. Also, owing to balanced machine design considerations,
there is no contribution from zero sequence currents:

Substituting Equations (3.119) and (3.121) into Equation (3.106) we obtain a reduced
expression for the stator voltage vector:

Uy R, 0 O I sin(wt + (1) 1 =1 —1][£5cos(wt+p5)
| =10 R, O I sin(wt + ﬂg) +wly| -1 1 -1 I, COS(L/.)I + 52)
Ve 0 0 R.||Lsin(wr+3;) -1 -1 1 I; cos(wrt + 33)

cos(wt + B1) cos(wt+ B2 — 120) cos(wt + 35 +120) | [ 1

ki —2ky)L,
+M cos(wt + 31 + 120) cos(wt + f32) cos(wt+ 3 — 120) | | I

cos(wt + B — 120) cos(wt + (32 + 120) cos(wt + 33) I
. cos(wt — By + 26) —cos(wt — 32 +26+60) —cos(wt — B3 +26 — 60)
_Fa —cos(wt — B +26+60)  cos(wt — B +26+120)  —cos(wt — 3 + 26 — 180)
—cos(wt — B +26 —60) —cos(wt — B, +26 —180)  cos(wt — B3 +26 — 120)
I sin(wr)
X | L | — Wquifd sin(wt +6— 120) . (3 122)

I sin(wr + 6 + 120)
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The last term in Equation (3.122) may be interpreted as an array of rotor emfs. Moreover,
taking the stator a phase as reference,

Va V1 sin(wt)
| =1V sin(wt + 042) . (3123)
Ve V3 sin(wt + a3)

It is seen that a root mean square (rms) form of Equation (3.122) may be established very
readily. Also, by negating the stator currents to correspond to generator operating
conditions, we have

Es = [RS —l—j(Xl + Xz)]ls +jX3I§ + Vg, (3.124)
where
Liwo  —Lao —Lapo
Xi=w|—Lao Lawo —Lao |, (3.125)
—Lao —Lapo  Laao
Lyt —2k) [ 1 B
X, = o= w |, (3.126)
mooho1
A 1 h2 h
L e]Zb
Xs= -2 |2 o1, (3.127)
ho1 K

It is observed that the term Ly (ki — 2k;)/4 reduces to —wLy, /4L if damper windings are
not present.

As a means of evaluating the reactance elements in Equation (3.124), it is noted that the
usually available dg0 reactances of the machine may be used in the following expressions:

1
wLaao = 7 (Xd + Xq + XO)a

wLao = — (X4 + X, — 2X), (3.128)

o = W

WLy = 3 (Xa — X,)-
Equation (3.124) includes the effect of machine saliency through matrix X5, where
(Xd —Xq) expresses the degree of saliency. Notice that if saliency can be ignored (i.e.
X4 = X,;) matrix X3 plays no role in machine performance. Also, X3 is dependent on
external circuit conditions through the machine angle 6. Matrix X, contributes negative
sequence impedance, impairing the balanced behaviour of the machine.

3.5 SYSTEM LOAD

In general, power system loads can be classified into rotating and static loads (Weedy,
1987). A third category corresponds to power electronic-based loads. Rotating loads consist
mainly of induction and synchronous motors, and their steady-state operation is affected by
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voltage and frequency variations in the supply. Power electronic-based loads are also
affected by voltage and frequency variations in the supply. There is general agreement that
such loads are more difficult to operate because, in addition to being susceptible to supply
variations, they inject harmonic current distortion back into the supply point (Acha and
Madrigal, 2001).

Detailed representation of a synchronous motor load in a three-phase power flow study
requires use of Equation (3.124), with changed signs to reflect the motoring action. An
expression of comparable detail can be derived for the induction motor load. However,
owing to the large number and diversity of loads that exist in power networks, it is
preferable to group loads and to treat them as bulk load points. It is only very important
loads that are singled out for detailed representation. It is interesting to note that a group of
rotating loads operating at constant torque may be adequately represented as a static load
that exhibits the characteristic of a constant current sink (Weedy, 1987).

In steady-state applications, most system loads are adequately represented by a three-
phase power sink, which may be connected either in a star or delta configuration, depending
on requirements (Chen and Dillon, 1974). Figure 3.19(a) shows the schematic rep-
resentation of a star-connected load with the star point solidly grounded, whereas
Figure 3.19(b) shows a schematic represantation of a delta-connected load.

Va I Va
Vb I Vb
Ve Ve
Ste Stp Sta Ste Sip Sta

(@) (b)

Figure 3.19 System load representation: (a) star-connected load with star point solidly grounded and
(b) delta-connected load

In three-phase power flow studies it is normal to represent bulk power load points as
complex powers per phase, on a per-unit basis:

SLa = PLa +jQLaa
Sty = PLp +jOLp, (3.129)
SLc - PLC +jQLc~
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Refinements can be applied to the above equations to make the power characteristic more
responsive to voltage performance:

, 11 117
:P aly, j B 3
SLa L _VJ +j0L [VJ
§ —pu ] oL [ (3.130)
=Ll v, JULb v, .

BRE 1 B
S, = Pr|—| +iow|—| .
nfiT 0

In Equations (3.130), « and [ take values in the range 0-2 and V,, V,,, and V. are the per-unit
three-phase nodal voltage magnitudes at the load point. Notice that when o = 3 = 0 the
complex power expressions in Equations (3.130) coincide with those in Equations (3.129).
However, if &« = 8 = 1, Equations (3.130) resemble complex current characteristics more
than complex power characteristics. Also, if o = =2, the complex powers in Equa-
tions (3.130) would behave like complex admittances.

The admittance-like characteristic in Equations (3.130) may be expressed in matrix form
for both kinds of load connections, star and delta, respectively:

Swa/VE 0 0
0 S/ VE 0o |, (3.131)
0 0 Si/V?
SLa/Vs + SLb/VbZ _SLb/Vb2 _SLa/Vr%
3 —S1p/ V3 So/Vi + St/ V? —SLe/V? . (3.132)
*SLa/Vg *SLC/VE SLC/VE + SLa/Vg

Moreover, if it is assumed that the load powers and voltage magnitudes are taken to be
balanced, Sy, = S, = S = S1, and V, =V, = V.=V, then application of the following
symmetrical component operation, Yo, = Ty 'Y, Ts, leads to the load model representa-
tion for zero, positive, and negative (0, 1, 2) sequences:

S./v: 0 0

0o S/v: 0 |, (3.133)
0 0 S./V?

0 0 0

0 S /v: o0 |. (3.134)
0 0 S/v?

Notice that no zero sequence loads exist for the case of a three-phase delta-connected load,
only positive and negative sequences.

As an extension of the above result, the positive, negative, and zero sequence expression
of a star-connected load with its star point solidly grounded may be expressed as

/ / / 1 a . 1 g
SLay =S =SLo =P [‘—/] +OL [V} ) (3.135)
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whereas for the case of a delta-connected load we have

, , 17° 177 ,
SLay=SLp =FL [V} +OL {V] , and St =0. (3.136)
It should be remarked that the exponents « and 3 are not confined to integer values and that
a wide range of load characteristics can be achieved by judicious selection of « and f3,
depending on the group of loads present in the study.

Also, a three-phase delta connected load can always be transformed into an equivalent
star circuit by using a delta—star transformation. However, notice that the transform-
ation will generate an extra bus in the form of the star point, which yields no physical
meaning.

3.6 SUMMARY

The chapter has addressed the mathematical modelling of the most common elements found
in conventional electrical power systems, namely, transmission lines, transformers,
generators, loads, and shunt and series passive compensation. The tools and methods
covered in the book are limited to fundamental frequency steady-state phenomena, and the
modelling approach followed in this chapter reflects this fact. Notwithstanding this, the
overall modelling philosophy is quite general in the sense that all plant component models
are formulated in the frame of reference of the phases, which is closely associated with the
physical structure of the equipment and its actual steady-state electrical operation. It is
shown throughout the chapter that simpler models do exist to represent a given plant
component but that these models are based on the assumption of perfect geometric balance
conditions. These models are realised with the help of the symmetrical component
transform, leading to plant component representation in the frame of reference of the
sequences.

Multiphase transmission line parameters are calculated with great accuracy, incorporating
all key effects that affect fundamental frequency operation such as geometric imbalances,
ground return loops, and even long-line effects. Practical transmission lines include several
conductors per phase and ground wires as well as more than one three-phase circuit sharing
the same right of way, giving rise to a large number of electromagnetically coupled
conductors. The chapter has presented a methodology for handling all these effects in a
systematic and efficient manner. A comprehensive computer program in Matlab®™ has been
written to calculate multiconductor transmission line parameters.

Three-phase power transformers have been modelled in the frame of reference of the
phases, with particular reference to complex off-nominal tapping positions. This caters for
the possibility of the transformer acting as a tap changer or as a phase shifter. The most
popular transformer connections used in high-voltage transmission have been addressed
and, under the assumption of perfect geometric conditions, transformer models in the frame
of reference of the sequences have been derived. The thrust of these models is fundamental
frequency, steady-state operation, and there is little loss of accuracy in representing the
three-phase transformer as a three-phase bank of transformers. A detailed model of the
synchronous generator, based on its physical windings arrangement, has been presented.
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The effects of saliency and the generator load angle are explicitly represented in the model.
This model also serves the purpose of representing a synchronous motor, by suitable
modification of signs to conform to motoring action. Static loads suitable for bulk load
representation have also received attention.

The models of conventional power plant components developed in this chapter interface
quite naturally with the models of FACTS components developed in Chapter 2. Together,
they provide a very sophisticated tool with which to represent power system networks
containing a vast array of power electronic controllers of various kinds. These are the
power systems that may be in operation tomorrow. Two different modelling flavours
emerge from this modelling exercise, the frame of reference of the phases and the frame of
reference of the sequences, each one having its own time and space. Chapters 4, 5, and 7,
dealing with positive sequence power flow and optimal power flow, use the positive
sequence models derived in this and Chapter 2. Chapter 6 covers the topic of three-phase
power flow and uses the comprehensive models developed in the frame of reference of
the phases.

REFERENCES

Acha, E., Madrigal, M., 2001, Power System Harmonics: Computer Modelling and Analysis, John
Wiley & Sons, Chichester.

Acha, E., Ambriz-Pérez, H., Fuerte-Esquivel, C.R., 2000, ‘Advanced Transformer Control Modelling in
an Optimal Power Flow using Newton’s Method’, IEEE Trans. Power Systems 15(1) 290-298.

Anderson, PM., 1973, Analysis of Power Systems, lowa State University Press, Ames IA.

Arrillaga, J., Acha, E., Densem, T.J., Bodger, P.S., 1986, ‘Ineffectiveness of Transmission Line
Transpositions at Harmonic Frequencies’, Proceedings of the IEE: Part C 133(2) 99-104.

Arrillaga, J., Smith, B.C., Watson, N.R., Wood, A.R., 1997, Power System Harmonic Analysis,
John Wiley & Sons, Chichester.

Bowman, W.I., McNamee, J.M., 1964, ‘Development of Equivalent PI and T Matrix Circuits for
Long Untransposed Transmission Lines’, IEEE Trans. Power Apparatus and Systems PAS-84(6)
625-632.

Carson, J.R., 1926, ‘Wave Propagation in Overhead Wires with Ground Return’, Bell System Technical
Journal, 5 (October) 539-554.

Chen, M.S., Dillon, W.E. 1974, ‘Power System Modelling’, Proceeding of the IEE 62(7) 901-915.

Chen, B.K., Chen, M.S., Shoults, R.R., Liang, C.C., 1990, ‘Hydrid Three-phase Load Flow’, IEE
Proceedings on Generation, Transmission and Distribution: Part C 137(3) 177-185.

Deri, A., Tevan, G., Semlyen, A., Castanheira, A., 1981, ‘The Complex Ground Return Plane, Simplified
Model for Homogeneous and Multi-layer Earth Return’, IEEE Trans. Power Apparatus and Systems,
PAS-100(8) 3686-3693.

Elgerd, O.1., 1982, Electric Energy System Theory: An Introduction, McGraw-Hill, New York.

Grainger, J.J., Stevenson, W.D., 1994, Power System Analysis, McGraw-Hill, New York.

Harker, B.J., Arrillaga, J., 1979, ‘3-Phase a.c./d.c. Load Flows’, Proceedings of the IEE 126(12) 1275—
1281.

Hesse, M.H., 1966, ‘Circulating Currents in Paralleled Untransposed Multicircuit Lines’, IEEE Trans.
Power Apparatus and Systems, PAS-85(7) 802-820.

Laughton, M.A., 1968, ‘Analysis of Unbalanced Polyphase Networks by the Method of Phase Co-
ordinates’, Proceedings of the IEE 115(8) 1163-1172.



REFERENCES 91

Shlash, M.A., 1974, Three-Phase Analysis of Unbalanced Power System Networks, PhD thesis,
Department of Electrical Engineering and Electronics, University of Manchester Institute of Science
and Technology, Manchester, UK.

Wasley, R.G., Shlash, M.A., 1974a, ‘Newton—Raphson Algorithm for 3-Phase Load Flow’, Proceedings
of the IEE 121(7) 630-638.

Wasley, R.G., Shlash, M.A., 1974b, ‘Steady-state Phase-variable Model of the Synchronous Machine
for Use in 3-phase Load-flow Studies’, Proceedings of the IEE 121(10) 1155-1164.

Wedephol, L.M., 1963, ‘Application of Matrix Methods to the Solution of Travelling Wave Phenomena
in Poly-Phase Systems’, Proceedings of the IEE 110(12) 2200-2212.

Weedy, B.M., 1987, Electric Power Systems, John Wiley & Sons, Chichester.






4

Conventional Power Flow

4.1 INTRODUCTION

The main aim of a modern electrical power system is to satisfy continuously the electrical
power contracted by all customers. This is a problem of great engineering complexity where
the following operational policies must be observed: (1) nodal voltage magnitudes and
system frequency must be kept within narrow boundaries; (2) the alternating current (Ac)
voltage and current waveforms must remain largely sinusoidal; (3) transmission lines must
be operated well below their thermal and stability limits; and (4) even short-term
interruptions must be kept to a minimum. Moreover, because of the very competitive nature
of the electricity supply business in an era of deregulation and open access, transmission
costs must be kept as low as possible.

To a large extent, several of these key issues in power system operation may be assessed
quite effectively by resorting to power flow and derived studies (Arrillaga and Arnold, 1990;
Grainger and Stevenson, 1994; Stagg and El-Abiad, 1968; Wood and Wollenberg, 1984).
The main objective of a power flow study is to determine the steady-state operating
condition of the electrical power network. The steady-state may be determined by finding
out, for a given set of loading conditions, the flow of active and reactive powers throughout
the network and the voltage magnitudes and phase angles at all buses of the network.

Expansion, planning and daily operation of power systems relies on extensive power flow
studies (Kundur, 1994; Weedy, 1987). The information conveyed by such studies indicates
whether or not the nodal voltage magnitudes and active and reactive power flows in
transmission lines and transformers are within prescribed operating limits. If voltage
magnitudes are outside bounds in one or more points of the network, then appropriate action
is taken in order to regulate such voltage magnitudes. Similarly, if the study predicts that the
power flow in a given transmission line is beyond the power carrying capacity of the line,
then control action is taken.

4.2 GENERAL POWER FLOW CONCEPTS

The power flow problem, is solved to determine the steady-state complex voltages at all
buses of the network, from which the active and reactive power flows in every transmission

FACTS: Modelling and Simulation in Power Networks.
Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez and César Angeles-Camacho
© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85271-2
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line and transformer are calculated (Stagg and El-Abiad, 1968). The set of equations
representing the power system are nonlinear. For most practical purposes, all power flow
methods exploit the well-conformed nodal properties of the power network and equipment.
In its most basic form, these equations are derived by assuming that a perfect symmetry
exists between the phases of the three-phase power system (Arrillaga and Arnold, 1990).
Owing to the nonlinear nature of the power flow equations, the numerical solution is reached
by iteration (Grainger and Stevenson, 1994).

4.2.1 Basic Formulation

A popular approach to assess the steady-state operation of a power system is to write
equations stipulating that at a given bus the generation, load, and powers exchanged through
the transmission elements connecting to the bus must add up to zero. This applies to both
active power and reactive power. These equations are termed ‘mismatch power equations’
and at bus k they take the following form:

AP, = P — Py — P = P — P = 0, (4.1)
AQr = Qg — Qu — O = OF" — Of" = 0.

The terms AP, and AQ; are the mismatch active and reactive powers at bus k, respectively.
Psi and Qg represent, respectively, the active and reactive powers injected by the generator
at bus k. For the purpose of the power flow solutions it is assumed that these variables can be
controlled by the power plant operator. P;; and Q;, represent the active and reactive powers
drawn by the load at bus k, respectively. Under normal operation the customer has control of
these variables, and in the power flow formulation they are assumed to be known variables.

In principle, at least, the generation and the load at bus k may be measured by the electric
utility and, in the parlance of power system engineers, their net values are known as the
scheduled active and reactive powers:

PZCh = P — P, (4.3)
o = Qi — Our

The transmitted active and reactive powers, Pi‘ﬂ and Qial, are functions of nodal voltages

and network impedances and are computed using the power flow equations. Provided the
nodal voltages throughout the power network are known to a good degree of accuracy then
the transmitted powers are easily and accurately calculated. In this situation, the
corresponding mismatch powers are zero for any practical purpose and the power balance
at each bus of the network is satisfied. However, if the nodal voltages are not known
precisely then the calculated transmitted powers will have only approximated values and the
corresponding mismatch powers are not zero. The power flow solution takes the approach of
successively correcting the calculated nodal voltages and, hence, the calculated transmitted
powers until values accurate enough are arrived at, enabling the mismatch powers to be zero
or fairly close to zero. In modern power flow computer programs, it is normal for all
mismatch equations to satisfy a tolerance as tight as le — 12 before the iterative solution can
be considered successful. Upon convergence, the nodal voltage magnitudes and angles yield
useful information about the steady-state operating conditions of the power system and are
known as state variables.
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Figure 4.1 Equivalent impedance

In order to develop suitable power flow equations, it is necessary to find relationships
between injected bus currents and bus voltages. Based on Figure 4.1 the injected complex
current at bus k, denoted by I;, may be expressed in terms of the complex bus voltages Ej
and E,, as follows:

1

I, = o (Ex — En) = Yim (Ex — En). (4.5)
Similarly for bus m,
1
Im = ; (Em — Ek) = Ymk (Em — Ek) (46)

The above equations can be written in matrix form as,

Iy YVim —ykm] [Ek]
- : 47
|:Im :| I: —Ymk Ymk Em ( )
or
Il | Y Y || Ex
-l ells) 9

where the bus admittances and voltages can be expressed in more explicit form:

Y; = Gy + jBy, (4.9)
E; Vel =, (cosb; + jsiné;), (4.10)

where i = k,m, and j = k, m.
The complex power injected at bus k consists of an active and a reactive component and

may be expressed as a function of the nodal voltage and the injected current at the bus:
Se = P + O = Exl;

i (4.11)
=FE; (YkkEk + YkmEm) s

where I} is the complex conjugate of the current injected at bus k.
The expressions for P$! and Q%! can be determined by substituting Equations (4.9) and
(4.10) into Equation (4.11), and separating into real and imaginary parts:
P = Vi G + Vi Vin [Gim €08 (0k — ) + B sin (6 — 0)], (4.12)
O = —V{Bu + Vi Vi [Giom sin (0 — O) — Bin c0s (6 — 0,)].  (4.13)
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For specified levels of power generation and power load at bus k, and according to
Equations (4.1) and (4.2), the mismatch equations may be written down as

APy = P — Pri — { Vi Gik + Vi Vi [Gion €08 (6 — 6,1) + B sin (0 — 0,)]} = 0,
(4.14)

AQc = Qat — Que — {—ViBi + Vi Viu [Guom sin (0 — 6,) — By cos (6 — 6,,)]} = 0.
(4.15)

Similar equations may be obtained for bus m simply by exchanging subscripts k and m in
Equations (4.14) and (4.15).

It should be remarked that Equations (4.12) and (4.13) represent only the powers injected
at bus k through the ith transmission element, that is, P and Qi°¥. However, a practical
power system will consist of many buses and many transmission elements. This calls for
Equations (4.12) and (4.13) to be expressed in more general terms, with the net power flow
injected at bus k expressed as the summation of the powers flowing at each one of the
transmission elements terminating at this bus. This is illustrated in Figures 4.2(a) and 4.2(b)
for cases of active and reactive powers, respectively.

k [)kicz\l m m
P L— | |
ok J Plcal I
\k
an cal
PLk .
(@) (b)

Figure 4.2 Power balance at bus k: (a) active power, and (b) reactive power

The generic net active and reactive powers injected at bus k are:
n .
Pl = ijjal, (4.16)
cal Z Ql cal’ (417)

where Pi and Qi are computed by using Equations (4.12) and (4.13), respectively.
As an extension, the generic power mismatch equations at bus k are:

APy = Pg — Py — Y P =0, (4.18)
i=1

AQr = Qak — O — ZQ’cal = (4.19)
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4.2.2 Variables and Bus Classification

In conventional power flow theory each bus is described by four variables: net active power,
net reactive powers, voltage magnitude, and voltage phase angle.

Since there are only two equations per bus, two out of the four variables must be specified
in each bus in order to have a solvable problem. From a purely mathematical viewpoint, any
two variables can be specified; however, in engineering terms, the choice is based on which
variables at the bus can be physically controlled through the availability of a nearby
controller (Elgerd, 1982; Kundur, 1994; Weedy, 1987; Wood and Wollenberg, 1984). In the
broadest sense, one can think of voltage magnitudes and phase angles as state variables, and
active and reactive powers as control variables.

Buses are classified according to which two out of the four variables are specified:

e Load PQ bus: no generator is connected to the bus, hence the control variables Ps and Qg
are zero. Furthermore, the active and reactive powers drawn by the load P, and Q; are
known from available measurements. In these types of buses the net active power and net
reactive power are specified, and V and 6 are computed.

e Generator PV bus: a generating source is connected to the bus; the nodal voltage
magnitude V is maintained at a constant value by adjusting the field current of the
generator and hence it generates or absorbes reactive power. Moreover, the generated
active power Pg is also set at a specified value. The other two quantities 6 and Qg are
computed. Constant voltage operation is possible only if the generator reactive power
design limits are not violated, that iS, Qg min < O < QG max-

e Generator PQ bus: if the generator cannot provide the necessary reactive power support to
constrain the voltage magnitude at the specified value then the reactive power is fixed at
the violated limit and the voltage magnitude is freed. In this case, the generated active
power Pg and reactive power Qg are specified, and the nodal voltage magnitude V and
phase angle 6 are computed.

e Slack (swing) bus: one of the generator buses is chosen to be the slack bus where the
nodal voltage magnitude, V.., and phase angle, 6., are specified. There is only one
slack bus in the power system and the function of a slack generator is to produce sufficient
power to provide for any unmet system load and for system losses, that are not known in
advance of the power flow calculation. The voltage phase angle at the slack bus 6, is
chosen as the reference against which all other voltage phase angles in the system are
measured. It is normal to fix its value to zero.

4.3 POWER FLOW SOLUTION METHODS
4.3.1 Early Power Flow Algorithms

From the mathematical modelling point of view, a power flow solution consists of solving
the set of nonlinear, algebraic equations that describe the electrical power network under
steady-state conditions. Over the years, several approaches have been put forward for the
solution of the power flow equations. Early approaches were based on loop equations and
numerical methods using Gauss-type solutions. The method was laborious because the
network loops had to be specified beforehand by the systems engineer. Improved techniques
saw the introduction of nodal analysis in favour of loop analysis, leading to a considerable
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reduction in data preparation. Nevertheless, reliability towards convergence was still the
main concern. Further developments led to the introduction of the Gauss—Seidel method
with acceleration factors. The appeal of this generation of power flow methods is their
minimum storage requirements and the fact that they are easy to comprehend and to code in
the form of computer programs. The drawback is that these algorithms exhibit poor
convergence characteristics when applied to the solution of networks of realistic size
(Elgerd, 1982). Power flow solutions based on the nodal impedance matrix were briefly
experimented with (Brown, 1975), but problems with computer storage and speed became
insurmountable issues at the time. To overcome such limitations, the Newton—Raphson
method and derived formulations were developed in the early 1970s and have since become
firmly established throughout the power system industry (Peterson and Scott Meyer, 1971;
Stott, 1974; Stott and Alsac, 1978; Tinney and Hart, 1967).

4.3.2 The Newtfon-Raphson Algorithm

In large-scale power flow studies the Newton—Raphson method has proved most successful
owing to its strong convergence characteristics (Peterson and Scott Meyer, 1971; Tinney and
Hart, 1967). This approach uses iteration to solve the following set of nonlinear algebraic
equations:

fl (X],.Xz, "’,XN) = Oa
£ (x1, x2, -+, xv) = 0,

, or F(X) =0 (4.20)
fN(-xtha "'7XN) = 07

where F represents the set of n nonlinear equations, and X is the vector of n unknown state
variables.

The essence of the method consists of determining the vector of state variables X by
performing a Taylor series expansion of F(X) about an initial estimate X

F(X) = F(X<0>) v J<X<0>) (X - X<°>) + higher-order terms, (4.21)

where J(X (0)) is a matrix of first-order partial derivatives of F(X) with respect to X, termed
the Jacobian, evaluated at X =X ©

This expansion lends itself to a suitable formulation for calculating the vector of state
variables X by assuming that X' is the value computed by the algorithm at iteration 1 and
that this value is sufficiently close to the initial estimate X”’. Based on this premise, all
high-order derivative terms in Equation (4.21) may be neglected. Hence,

_fI(X(l))_ 'f] (X(O))‘ _afI(X) afI(X) L. afI(X)_ _Xgl) _Xi())_
Ox1 Oxy Oxy
ofz(X)  0fz(X) of>(X)
1 0 . (1) (0
fz(X( )) ~ fz(X( )) n ox; o, ox,, X X5
of,(X) of,(X) - of,(X) :
(1) (0) - 1 0
_fn (X )— —fn(X )— axl ax2 axn 1 lx=x© _X,s ) - X,<1 ) n
F(X™) F(X©) JXO) x(1) _x(0)
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In compact form, and generalising the above expression for the case of iteration (i),

F(XU)) ~ F(XU*U) + J(X(H)) (X<"> - X<H>), (4.23)
wherei =1, 2 e Furthermore, if it is assumed that X is sufficiently close to the solution
X then F(X(‘)) o F(X(*)) = 0. Hence, Equation (4.23) becomes

F(X("—”) n J(X“—')) (X(i) . X<"—'>) ~ 0, (4.24)

and, solving for X,

X0 = XD _ Jfl(xofl)) F(X(H)) (4.25)

The iterative solution can be expressed as a function of the correction vector
AX) = xO) _ x=1)

AxD = (X<H>) F(X(H)>, (4.26)
and the initial estimates are updated using the following relation:
X0 = X0 4 Ax@, (4.27)

The calculations are repeated as many times as required using the most up-to-date values of
X in equation (4.26). This is done until the mismatches AX are within a prescribed small
tolerance (i.e. le—12).

In order to apply the Newton—Raphson method to the power flow problem, the relevant
equations must be expressed in the form of Equation (4.26), where X represents the set of
unknown nodal voltage magnitudes and phase angles. The power mismatch equations AP
and AQ are expanded around a base point (8”,V®’) and, hence, the power flow Newton—
Raphson algorithm is expressed by the following relationship:

i oP 0P (i)
APTY oo ovY ﬁg (4.28)
AQ 2Q 9Q ~ '
— 30 3V v
F(X(H)) | (X“’”) AXO)

The various matrices in the Jacobian may consists of up to (nb — 1) x (nb — 1) elements
of the form:

0Py 0Py v
00, ov, "
" i 4.29
0 Ok 0 QO v (4.29)
00, ov, "™
where k =1, ...,nb, and m = 1, ..., nb but omitting the slack bus entries.

Also, the rows and columns corresponding to reactive power and voltage magnitude for
PV buses are discarded. Furthermore, when buses k and m are not directly linked by a
transmission element, the corresponding k—m entry in the Jacobian is null. Owing to the low
degree of connectivity that prevails in practical power systems, the Jacobians of power flows
are highly sparse. An additional characteristic is that they are symmetric in structure but not
in value (Zollenkoff, 1970).
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It must be pointed out that the correction terms AV, are divided by V,, to compensate for
the fact that Jacobian terms (0P;/0V,,)V,, and (0Q;/0V,,)V,, are multiplied by V,,. It is
shown in the derivative terms given below that this artifice yields useful simplifying
calculations.

Consider the Ith element connected between buses k and m in Figure 4.1, for which self
and mutual Jacobian terms are given below.

For k # m:
0Py .
0. = = Vi Vi [Gnsin (6 — 6,,) — Bumcos (6 — 6,)], (4.30)
m,l
0Py, B .
va’l =ViVnu [ka cos (9k — Qm) + By, sin (Qk — Qm)}, (431)
m,l
00k 0Py
30,1 = Vs Vin, 1, (4.32)
00k, 0Py,
: = ., 4.
Vs Vini 001 (4.33)
For k = m:
OPur _ 0% — V2B, (4.34)
69k !
aPk i cal 2
6V Vi = P + V Gu, (435)
0
Ot _ pat _y2G,,, (4.36)
06k,
0
a\%: Vi = 0 — V2By. (4.37)

In general, for a bus k containing » transmission elements /, the bus self-elements take the
following form:

= 43s)
gzl,zvk l_lgﬁﬁjvkﬂza (4.39)
% 40)
ZTQ/: £ ZZ‘Q/:’ka» (4.41)

The mutual elements given by Equations (4.30)—(4.33) remain the same whether we have
one transmission element or n transmission elements terminating at bus k.

After the voltage magnitudes and phase angles have been calculated by iteration, active
and reactive power flows throughout the transmission system are determined quite
straightforwardly.
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An important point to bear in mind is that the mismatch power equations AP and AQ of
the slack bus are not included in Equation (4.28) and the unknown variables P, and Qgjack
are computed once the system power flows and power losses have been determined. Also,
Qg in PV buses are calculated in each iteration in order to check if the generators are within
reactive power limits. However, the mismatch reactive power equations AQ of PV buses are
not included in Equation (4.28). Details of this computation are given in the next section.

One of the main strengths of the Newton—Raphson method is its reliability towards
convergence. For most practical situations, and provided the state variables, X, are
suitably initialised, the method is said to exhibit a quadratic convergence characteristic; for
example,

fxW) =1e -1,
f(x?) = 1e -2,
f(X®) = 1e — 4,
f(X#) = 1e — 8,

for the maximum mismatch. Contrary to non-Newton—Raphson solutions, such a
characteristic is independent of the size of the network being solved and the number and
kinds of control equipment present in the power system. Aspects that may dent its quadratic
convergence performance are reactive power limit violations in generator PV buses and
extreme loading conditions.

4.3.3 State Variable Initialisation

The effectiveness of the Newton—Raphson method to achieve feasible iterative solutions is
dependent upon the selection of suitable initial values for all the state variables involved in
the study.

The power flow solution of networks that contain only conventional plat components is
normally started with voltage magnitudes of 1 p.u. (per unit) at all PQ buses. The slack and
PV buses are given their specified values, which remain constant throughout the iterative
solution if no generator reactive power limits are violated. The initial voltage phase angles
are selected to be O at all buses.

4.3.4 Generator Reactive Power Limits

Even though the mismatch reactive power equation AQ; of PV bus k is not required in
Equation (4.28), solution of Equation (4.17) for the PV bus is still carried out at each

iterative step to assess whether or not the calculated reactive power Qial is within the

generator reactive power limits:

Q6 min k < Ok < QGmax k- (4.42)
If either of the following conditions occur during the iterative process:
Qial > QGmax ks }

cal (4.43)
Qk S QGmin k>
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bus k becomes a generator PQ bus with either of the following mismatch power equations
incorporated in Equation (4.28):

(4.44)

AQr = QGmaxk — Qrk — O,
AQr = QGmink — Qrk — O,

depending on the violated limit, together with the relevant Jacobian entries. The nodal
voltage magnitude at bus k is allowed to vary and V) becomes a state variable.

It should be remarked that bus k may revert to being a generator PV bus at some point
during the iterative process if better estimates of Qi“l, calculated with more accurate nodal
voltages, indicate that the reactive power requirements at bus k can, after all, be met by the
generator connected at bus k. Hence, reactive power limit checking is carried out at each
iteration. Programming wisdom indicates that limit checking should start after the first or
second iteration, since nodal voltage values computed at the beginning of the iterative
process may be quite inaccurate leading to misleading reactive power requirements. The
switching of buses from PV to PQ and vice versa impose additional numerical demands on
the iterative solution and retard convergence.

4.3.5 Linearised Frame of Reference

In order to illustrate how network components may be processed in the linearised frame of
reference afforded by the Newton—Raphson method (Fuerte-Esquivel et al., 1998) consider
the simple three-bus system shown in Figure 4.3. Bus 1 is selected to be the slack bus and
bus 2 is a generator bus. Bus 3 contains no generation and becomes a load bus. A
transformer and a transmission line link buses 1 and 2 and buses 2 and 3, respectively. One
shunt element and one load are connected at bus 3.

The concept of ‘power balance at a node’ may be used to great effect to account for bus
power injections in the Newton—Raphson solution. At a given bus, the power balance
is obtained by adding the contribution of each plant component connected to that bus.

Busll Bus 2I Bus 3; PO
type
O—T®©

Generator 1 lack PV :|_
Slac type  Shunt Load

elemeng:

Generator 2

Figure 4.3 Three-bus network. Redrawn, with permission, from C.R. Fuerte-Esquivel, E. Acha,
S.G. Tan, and J.J. Rico, ‘Efficient Object Oriented Power System Software for the Analysis of
Large-scale Networks Containing FACTS Controlled Branches’, IEEE Trans. Power Systems 3(2)
464472, © 1998 IEEE



POWER FLOW SOLUTION METHODS 103

This is illustrated in Figure 4.4 with reference to Figure 4.3. The contribution of all three
buses is shown in this example for completeness, but it should be remembered that in
actual calculations active and reactive power mismatch entries are not required for the
slack bus. Likewise, the reactive power mismatch entry is not required for the generator
PV bus.

Mismatch
(specified power) Mismatch
(calculated power)
P gen | & = Py caie
Do Py cate
" D e P3 cac
O e 01 calc
2 gen 2 = - O calc
Qssec O3 cale
1| Peens 1] —Pians 1| AP,
2 Pien2 2|=PiingPrrans 2| AP,
3| —Piowa + 3 [PrineRiunt ___ 3| AP,
[ Ogens ' —Opans L AQ,
2| Qeen2 2= Qtine=Orans 2| AQ,
3| —Oiow 3 1 Qiine=Oshune 3| AQs
Mismatch Mismatch Mismatch
(specified power) (calculated power) vector

Figure 4.4 Power mismatch vector; subscripts ‘sen’ and ‘rec’ indicate the sending and receiving
ends. Reproduced, with permission, from C.R. Fuerte-Esquivel, E. Acha, S.G. Tan, and J.J. Rico,
‘Efficient Object Oriented Power System Software for the Analysis of Large-scale Networks
Containing FACTS Controlled Branches’, IEEE Trans. Power Systems 3(2) 464-472, © 1998 IEEE

The construction of the Jacobian matrix is slightly more involved owing to the need to
evaluate self and mutual Jacobian terms, and finding their location in the matrix.
Nevertheless, the basic procedure illustrated above, based on superposition, will also apply
to the formation of the Jacobian. For each plant component, relevant Jacobian equations are
chosen based on the type of buses to which the plant component is connected. These buses
determine the location of the individual Jacobian terms in the overall Jacobian structure.
The contributions of the line, transformer, and shunt components to the Jacobian are shown
in Figure 4.5. It should be noted that entries for the slack bus and the reactive power entry of
the generator bus are not considered in the Jacobian structure.
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COMPONENT

oB| | 9B

96,|, | 96|,

OB | | 9B

96,|, | 96|, JACOBIAN

90,

96, |, 2 3 3

98|

v, i , |on| on o, 9P,

oP, 20, 096,|, 26, |, 96; |,

aan

()QS aQ}

FAREAS 3 oP, OB| ,OR| | 9B OB

26,|,  |06,|, 06|, aVi| Vi

oP,

Groeme ] =
20T
3 20, 90| 90| |9 | 90,

D 96,|,  [06,|, 96,|,|06:| Vi

CLAREIAR

90| | 9| | =

CEANICIAN

Figure 4.5 Jacobian structure. Reproduced, with permission, from C.R. Fuerte-Esquivel, E. Acha,
S.G. Tan, and J.J. Rico, ‘Efficient Object Oriented Power System Software for the Analysis of
Large-scale Networks Containing FACTS Controlled Branches’, IEEE Trans. Power Systems 3(2)
464-472, © 1998 IEEE

4.3.6 Newion-Raphson Computer Program in Matiab®™ Code

A computer program suitable for the power flow solution of small and medium-sized power
systems is given in Program 4.1. The program is general, as far as the topology of the
network is concerned, and caters for any number of PV and PQ buses. Moreover, any bus in
the network may be designated to be the slack bus. Provisions are made for generator
reactive limit checking and to accommodate fix shunt compensation. No transformers are
represented in this base program and no sparsity techniques (Zollenkoff, 1970) are
incorporated.

PROGRAM 4.1 A program written in Matlab® to calculate positive sequence power flows
using the Newton—Raphson method

g**%— — — Main Program

PowerFlowsData; %Read systemdata

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,shbus,...
shresis,shreac,ntl,nbb,nsh);



POWER FLOW SOLUTION METHODS

[VM,VA,it] = NewtonRaphson(nmax,tol,itmax,ngn,nld,nbb,bustype,..

genbus, loadbus,PGEN, OGEN, OQMAX, OQMIN, PLOAD,QLOAD,YR,YI,VM,VA);

[POsend,PQrec,PQloss,PQbus] = PQflows (nbb,ngn,ntl,nld, genbus, ...

loadbus, tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,...
QLOAD,VM,VA);

it $%Iteration number

VM $%Nodal voltage magnitude (p.u.)

VA =VA*180/pi %Nodal voltage phase angle(Deg)
POsend %Sending active and reactive powers (p.u.)
PQrec %Receiving active and reactive powers (p.u.)

$End Main Program

$Build up admittance matrix

function [YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,...

tlcond, shbus,shresis,shreac,ntl,nbb,nsh);
YR=zeros (nbb,nbb);
YI=zeros(nbb,nbb);
% Transmission lines contribution
for kk =1: ntl
ii = tlsend(kk);
jj = tlrec(kk);
denom = tlresis(kk)"2+tlreac(kk)"2;
YR(ii,ii) = YR(ii,ii) + tlresis(kk)/denom + 0.5*tlcond(kk);
YI(ii,ii) =YI(ii,ii) - tlreac(kk)/denom + 0.5*tlsuscep(kk);
YR(ii,jj) = YR(ii,Jj) - tlresis(kk)/denom;
YI(ii,jj) =YI(ii,jj) + tlreac(kk)/denom;
YR(jj,ii) = YR(Jjj,ii) - tlresis(kk)/denom;
YI(jj,ii) =YI(jj,ii) + tlreac(kk)/denom;
YR(3J,J33) =Y¥YR(Jjj,jj) + tlresis(kk)/denom + 0.5*tlcond(kk);
YI(33,J3)=YI(3jj,jj) - tlreac(kk)/denom+ 0.5*tlsuscep(kk);
end

% Shunt elements contribution
for kk=1: nsh
ii = shbus(kk);
denom = shresis(kk)"2+shreac(kk)"2;
YR(ii,ii) = YR(ii,ii) + shresis(kk)/denom;
YI(ii,ii) =YI(ii,ii) - shreac(kk)/denom;
end
% End of function YBus

$Carry out iterative solution using the Newton-Raphson method

function [VM,VA,it] = NewtonRaphson (nmax,tol,itmax,ngn,nld,nbb,...

.
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bustype, genbus, loadbus, PGEN, QGEN, QMAX ,QMIN, PLOAD, QLOAD, YR, YI,VM,VA)
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% GENERAL SETTINGS
D = zeros(1l,nmax);
flag=0;

it=1;

% CALCULATE NET POWERS
[PNET,QNET] = NetPowers (nbb,ngn,nld, genbus, loadbus, PGEN, QGEN, ...
PLOAD, QLOAD) ;

while ( it < itmax & flag==0 )
% CALCULATED POWERS
[PCAL,QCAL] = CalculatedPowers(nbb,VM,VA,YR,YTI);

% CHECK FOR POSSIBLE GENERATOR’S REACTIVE POWERS LIMITS VIOLATIONS
[ONET,bustype] = GeneratorsLimits (ngn,genbus,bustype,QGEN,QMAX, ...
OMIN,QCAL,QNET, QLOAD, it, VM, nld, loadbus);

% POWER MISMATCHES
[DPQ,DP,DQ,flag] = PowerMismatches (nmax,nbb,tol,bustype,flag,PNET, ...
ONET, PCAL,QCAL) ;

% JACOBIAN FORMATION
[JAC] = NewtonRaphsonJacobian (nmax,nbb,bustype,PCAL,QCAL,VM,VA, ...
YR,YI);

% SOLVE FOR THE STATE VARIABLES VECTOR
D = JAC\DPQ';

% UPDATE STATE VARIABLES
[VA,VM] = StateVariablesUpdates(nbb,D,VA,VM);

it=1it + 1;
end
% End function Newton-Raphson

$Function to calculate the net scheduled powers

function [PNET,QNET] = NetPowers (nbb,ngn,nld, genbus, loadbus,PGEN, ...
QGEN, PLOAD,QLOAD);

% CALCULATE NET POWERS

PNET = zeros(1l,nbb);

ONET = zeros(1l,nbb);

for ii = 1: ngn

PNET(genbus(ii)) = PNET(genbus(ii)) + PGEN(ii);
ONET (genbus(ii)) = QNET (genbus(ii)) + QGEN(ii);
end

for ii=1: nld
PNET (loadbus (ii)) = PNET(loadbus(ii)) - PLOAD(ii);
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ONET (loadbus (ii)) = QNET (loadbus(ii)) - QLOAD(ii);
end
%End function NetPowers

$Function to calculate injected bus powers
function [PCAL,QCAL] = CalculatedPowers (nbb,VM,VA,YR,YTI)
% Include all entries
PCAL = zeros(1,nbb);
QOCAL = zeros(1l,nbb);
for ii = 1: nbb
PSUM = 0;
QSUM = 0;
for jj=1: nbb
PSUM
YI(ii,3jj)*sin(VA(ii)-VA(3])));

QSUM = QSUM + VM(ii)*VM(JF)*(YR(ii,jj)*sin(VA(ii)-VA(FF)) —..-

YI(ii,jJj)*cos(VA(ii)-VA(]])));
end
PCAL(ii) = PSUM;
QCAL(ii) = QSUM;
end
%End of functionCalculatePowers

$Function to check whether or not solution is within generators limits

PSUM + VM(1ii)*VM(3j)*(YR(ii,jj)*cos(VA(ii)-VA(FI)) +...
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function [QNET,bustype] = GeneratorsLimits (ngn,genbus, bustype,QGEN, ...

QOMAX, QMIN,QCAL,QNET, QLOAD, it, VM, nld, loadbus)

% CHECK FOR POSSIBLE GENERATOR'S REACTIVE POWERS LIMITS VIOLATIONS

if it>2
flag2 = 0;
for ii = 1: ngn
jj = genbus(ii);
if (bustype(jj) == 2)
if ( QCAL(3j) > QMAX(ii) )
ONET (genbus (ii)) = QMAX(ii);
bustype(jj) = 3;
flag2 = 1;
elseif ( QCAL(Jj) < QMIN(ii) )
ONET (genbus (ii)) = QMIN(ii);
bustype(jj) = 3;

flag2 = 1;
end
if flag2 ==
for ii = 1:nld
if loadbus(ii) == jj
ONET (loadbus (ii) = QNET (loadbus(ii)) - QLOAD(ii))
end

end
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end
end
end
%End function Generatorslimits

$Function to compute power mismatches
function [DPQ,DP,DQ,flag] = PowerMismatches (nmax,nbb,tol,bustype, ...
flag, PNET, QNET , PCAL, QCAL) ;
% POWER MISMATCHES
DPQ = zeros(1l,nmax);
DP = zeros(1l,nbb);
DQ = zeros(1l,nbb);
DP = PNET - PCAL;
DQ = ONET - QCAL;
% To remove the active and reactive powers contributions of the slack
% bus and reactive power of all PV buses
for ii = 1: nbb
if (bustype(ii) ==1)

DP(ii) = 0;
DQ(ii) = 0;

elseif (bustype(ii) ==2)
DQ(ii) =0;

end

end
% Re-arrange mismatch entries
kk=1;
for ii = 1: nbb

DPQ(kk) = DP(ii);

DPQ(kk+1) = DQ(ii);

kk = kk + 2;
end
% Check for convergence
for ii = 1: nbb*2

if ( abs(DPQ) < tol)

flag=1;

end
end
$End function PowerMismatches

$Function to built the Jacobian matrix

function [JAC] = NewtonRaphsonJacobian (nmax,nbb,bustype,PCAL,QCAL, ...

VM,VA,YR,YI);

% JACOBIAN FORMATION

% Include all entries
JAC = zeros (nmax,nmax) ;
iii=1;
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for ii = 1: nbb
jii=1;
for jj=1: nbb
if ii == jj
JAC(iii,jjj) = -QCAL(ii) - vM(ii)"2*YI(ii,ii);
JAC(iii,jjj+1) = PCAL(ii) + VM(ii)"2*YR(ii,ii);
JAC(iii+1,333j) = PCAL(ii) - VM(ii)"2*YR(ii,ii);
JAC(iii+1,3jjj+1) = QCAL(ii) - VM(ii)"2*YI(ii,ii);
else
JAC(1iii,Jjjj) =VM(ii)*VM(JJ)*(YR(ii,Jjj)*sin(VA(ii)-VA(JF))...
-YI(ii,Jjj)*cos(VA(ii)-VA(]])));
JAC(iii+1,3jj) = -VM(ii)*VM(jJ)*(YI(ii,jj)*sin(VA(ii)...
-VA(33))+YR(ii, 3j)*cos(VA(ii1)-VA(F)));
JAC(iii,j3jj+1) = -JAC(iii+1,333);
JAC(iii+1,3jjj+1) =JAC(iii,Jid);
end
333 =333 +2;
end
iii=iii+ 2;
end
% Delete the voltage magnitude and phase angle equations of the slack
% bus and voltage magnitude equations corresponding to PV buses
for kk = 1: nbb
if (bustype(kk) ==1)
ii =kk*2-1;
for jj=1: 2*nbb
if ii == 3jj
JAC(ii,ii) =1;
else
JAC(ii,jj) =0;
JAC(jj,ii) =0;
end
end
end
if (bustype(kk) == 1) | (bustype(kk) == 2)
ii =kk*2;
for jj=1: 2*nbb
if ii == jj
JAC(ii,ii) =1;
else
JAC(ii,jj) =0;
JAC(3jj,ii) =0;
end
end
end
end
$End of function NewtonRaphsonJacobian
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$Function to update state variables
function [VA,VM] = StateVariablesUpdates (nbb,D,VA,VM)
iii=1;
for ii = 1: nbb
VA(ii) =VA(ii) +D(iii);
VM(ii) = VM(ii) + D(iii+1)*VM(ii);
iii =iii +2;
end
$End function StateVariableUpdating

$Function to calculate the power flows
function [PQsend,PQrec,PQloss,PQbus] = PQflows (nbb,ngn,ntl,nld, ...
genbus, loadbus,tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,...
QLOAD,VM,VA);
POsend = zeros(1l,ntl);
PQrec = zeros(1l,ntl);
% Calculate active and reactive powers at the sending and receiving
% ends of tranmsission lines
for ii =1: ntl
Vsend = ( VM(tlsend(ii))*cos(VA(tlsend(ii))) + ...
VM(tlsend(ii))*sin(VA(tlsend(ii)))*i );
Vrec = ( VM(tlrec(ii))*cos(VA(tlrec(ii))) + ...
VM(tlrec(ii))*sin(VA(tlrec(ii)))*i );
tlimped = tlresis(ii) + tlreac(ii)*i;
current =(Vsend - Vrec) / tlimped + Vsend*( tlcond(ii) + ...
tlsuscep(ii)*i )*0.5 ;
PQsend(ii) = Vsend*conj(current);
current =(Vrec - Vsend) / tlimped + Vrec*( tlcond(ii) + ...
tlsuscep(ii)*i )*0.5 ;
PQrec(ii) = Vrec*conj(current);
PQloss(ii) = POsend(ii) + PQrec(ii);
end
% Calculate active and reactive powers injections at buses
PQbus = zeros(1,nbb);
for ii =1: ntl
PQbus (tlsend(ii)) = PQbus(tlsend(ii)) + PQsend(ii);
PQbus(tlrec(ii)) = PQbus(tlrec(ii)) + PQrec(ii);
end

% Make corrections at generator buses, where there is load, in order to
% get correct generators contributions
for ii=1: nld
jj = loadbus (ii);
for kk =1: ngn
11 = genbus (kk);
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if jj==11
PQbus (jj) = PQbus(jj) + ( PLOAD(ii) + QLOAD(ii)*i );
end
end
end

%End function PQflows

4.3.7 The Fast Decoupled Algorithm

It was demonstrated in the late 1970s that the storage and computing requirements of the
Newton—Raphson method could be reduced very significantly by introducing a series of
well-substantiated, simplifying, assumptions in Equation (4.28). These assumptions are
based on physical properties exhibited by electrical power systems, in particular in high-
voltage transmission systems.

The resulting formulation is no longer a Newton—Raphson method but a derived
formulation described as ‘fast decoupled’ (Stott, 1974; Stott and Alsac, 1978). The power
mismatch equations of both methods are identical but their Jacobians are quite different; the
Jacobian elements of the Newton—Raphson method are voltage-dependent whereas those of
the fast decoupled method are voltage-independent (i.e. constant parameters). Moreover, the
number of Jacobian entries used in the fast decoupled method is only half of those used in
the Newton—Raphson method. The trade-off lies in the weakening of the strong convergence
characteristic exhibited by the Newton—Raphson method; the convergence characteristics of
the fast decoupled method are linear as opposed to quadratic.

For a typical power flow problem, where convergence to a tight tolerance is mandatory,
the 6 iterations normally taken by the Newton—Raphson method to converge will increase to
25 iterations and above when the fast decoupled method is employed. In fact, the number of
iterations taken by the fast decoupled method may be influenced by the size of the system
being solved, how loaded the system is, the number of power system controllers, and the
ratio of resistance to reactance in the transmission elements — although there are simple
programming artifices to circumvent this problem. However, an asset of the fast decoupled
method is that one of its iterations only takes a fraction of the time required by one of
the Newton—Raphson method iterations. Hence, in power flow studies of high-voltage
networks with a small number of system controllers, the use of the fast decoupled method
may be advantageous.

With a view to developing the fast decoupled formulation, simplifications will be
introduced into the Jacobian of Equation (4.28). It has been observed that, during normal
operation, incremental changes in voltage magnitude produce almost no change in active
power flow and that, likewise, incremental changes in voltage phase angle produce almost
no change in reactive power flow. Hence, the following Jacobian elements may be assumed
to be zero:

] wa [ s
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Accordingly, the overall problem stated in Equation (4.28) reduces to the following two
subproblems:

; op)
(AP = — {% [20)7, (4.46)
(i-1) ~—— 0)
Fi(x{7") JI(XEM)) Ax!
. 2Q 7(@0) AV (i)
AQ]Y = — [WV {7} . (4.47)
Fz(Xg’;D) N e N —

L) axy

Further simplifying assumptions pertaining to high-voltage transmission networks, which
are relevant to the problem at hand, are as follows:

e X > R in all transmission lines and transformers of the network.

e The difference in voltage phase angles between two adjacent buses is small and hence the
following relations apply: sin(6; — 6,,) = 6x — 0,,, and cos(6x — 6,,) = 1.

e The nodal voltage magnitudes are close to 1 p.u. at every bus.

e Current flows in shunt-connected elements may be grouped together with the equivalent
loads and generator currents.

Incorporating these assumptions in the Jacobian elements of Equations (4.46) and (4.47)
we obtain the following set of equations:

AP|Y = —[B] [A0]7, (4.48)
N~ N——

F, (xﬁ"*”) ax?

[AQ"Y = —[B"] [AV]"Y, (4.49)
F2(X(2H)> axy

where B’ corresponds almost exactly to the negative of the imaginary part of the nodal
admittance matrix. Owing to the requirements of the power flow problem, the row and
column corresponding to the slack bus is not included in B’. Matrices B’ and B” are identical
if no generator buses exist in the system. However, in the more general case, when generator
buses do exist in the system then the row and column corresponding to each generator bus
are removed from matrix B”.

Equations (4.48) and (4.49) are very simple compared with that of the full Newton—
Raphson method given by Equation (4.28). Matrices B’ and B” are symmetric in structure
and, provided no phase-shifting transformers are present in the system, they are also
symmetric in value. These matrices are inverted only once, during the first iteration, and
then remain constant throughout the iterative process. This is in contrast to with the
Newton—Raphson method, where the Jacobian is evaluated and inverted (factorised,;
Zollenkoff, 1970) at each iteration.

4.3.8 Fast Decoupled Computer Program in Matlab™ Code

Program 4.2 is fully equivalent to the Newton—Raphson power flow program given in
Section 4.3.6 (Programe 4.1). The functions PowerFlowsData, YBus and PQflows are also
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used here. The function FastDecoupled replaces NewtonRaphson, with the new function
using all the functions called by NewtonRaphson except for NewtonRaphsonJacobian,
which is replaced with FastDecoupledJacobian.

PROGRAM 4.2 Program written in Matlab® to calculate positive sequence power flows
by means of the fast decoupled method.

%- - — Main Program

PowerFlowsData; $Function to read data

% Form the bus admittance matrix
[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond, shbus,...
shresis,shreac,ntl,nbb,nsh);

[VM,VA,it] = FastDecoupled(nmax,tol,itmax,ngn,nld,nbb,bustype,...
genbus, loadbus, PGEN, QGEN, QMAX , QMIN, PL.OAD, QLOAD, YR, YI,VM,VA);

[POsend,PQrec,PQloss,PQbus] = PQflows (nbb,ngn,ntl,nld, genbus, ...
loadbus,tlsend, tlrec,tlresis,tlreac,tlcond, tlsuscep,PLOAD,QLOAD,...
VM,VA);

it $Iteration number

VM g$Nodal voltage magnitude (p.u.)

VA = VA*180/pi ¢$Nodal voltage phase angle(Deg)
POsend %Sending active and reactive powers (p.u.)
PQrec %Receiving active and reactive powers (p.u.)

% End of Main Program

% Fast Decoupled function
function [VM,VA,it] = FastDecoupled(nmax,tol,itmax,ngn,nld,nbb,...
bustype, genbus, loadbus, PGEN, QGEN, QMAX, QMIN, PLOAD, QLOAD, YR, YI,VM,VA);

% GENERAL SETTINGS

flag=10;

Bl = zeros(nbb,nbb);

B2 = zeros(nbb,nbb);

% CALCULATE NET POWERS

[PNET,QNET] = NetPowers (nbb,ngn,nld, genbus, loadbus, PGEN,QGEN, PLOAD, ...
QLOAD) ;

% BEGINNING OF ITERATIVE LOOP

it=1;
while ( it < itmax & flag==0 )
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% CALCULATED POWERS
[PCAL,QCAL] = CalculatedPowers (nbb,VM,VA,YR,YI);

% CHECK FOR POSSIBLE GENERATOR'S REACTIVE POWERS LIMITS VIOLATIONS
[ONET,bustype] = GeneratorsLimits (ngn,genbus,bustype,QGEN,QMAX, ...
QMIN,QCAL,QNET, QLOAD, it, VM, nld, loadbus);

% POWER MISMATCHES
[DPQ,DP,DQ,flag] = PowerMismatches (nmax,nbb,tol,bustype,flag,PNET, ...
ONET, PCAL, QCAL) ;

% OBTAIN INVERTED JACOBIANS DURING THE FIRST ITERATION
[B1,B2] = FastDecoupledJacobian(nbb,bustype,DP,DQ,YI,B1,B2,it);
% SOLVE FOR THE STATE VARIABLES VECTOR
DVA = B1*DP’
DVM = B2*DQ’
% Re-arrange state variables entries
kk=1;
for ii =1: nbb
D(kk) = DVA(ii);
D(kk+1) = DVM(ii);
kk = kk + 2;
end

’
’

% UPDATE THE STATE VARIABLES VALUES
[VA,VM] = StateVariablesUpdating(nbb,D,VA,VM,it);

it=1it + 1;
end
% End of function FastDecoupled

$Form the Jacobian for the Fast Decoupled Method
function [B1,B2] = FastDecoupledJacobian(nbb,bustype,DP,DQ,YI, ...
B1,B2,it);
DVA = zeros (nbb);
DVM = zeros (nbb);
if (it==1)
% Include all entries
Bl = zeros (nbb,nbb);

B2 = zeros (nbb,nbb);
Bl = -YI;
B2 = -YI;

% Delete the voltage magnitude and phase angle equations of the slack
% bus and voltage magnitude equations corresponding to PV buses
for ii = 1: nbb
if (bustype(ii) ==1)
for jj=1: nbb
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if ii == jj
Bl(ii,ii) =1;
B2(ii,ii) =
else

=
~e

B1(ii,J3J)
B1(Jjj,ii)
B2(ii,jj) =

I I
~e N ~e

|
o ©o o o

~e

B2(jj,ii)
end
end
end
if (bustype(ii) ==1) | (bustype(ii) == 2)
for jj=1: nbb
if ii == 3jj
B2(ii,ii) =
else
B2(ii,3j) = 0;
B2(jj,ii)

|
—
~e

I
o
~e

end
end
end

end
Bl
B2
end
% End of FastdecoupledJacobian Function

inv(Bl);
inv(B2);

4.3.9 A Benchmark Numerical Example

A small network (Stagg and El-Abiad, 1968) is used to illustrate the power flow solutions
given by the Newton—Raphson and the fast decoupled methods. As shown in Figure 4.6, this
is a five-bus network containing two generators and seven transmission lines. The data are
given in function PowerFlowsData, suitable for use with either the Newton—Raphson or
the fast decoupled Matlab™ programs. The power flow results are superimposed on the one-
line diagram of the network, and the bus voltages are given in Table 4.1.

Function PowerFlowsData, to read data for the five-bus test network, is as follows:
$The following convention is used for the four types of buses available
%$in conventional power flow studies:
gbustype = 1 is slack or swing bus
$bustype = 2 is generator PV bus
$bustype = 3 is load PQ bus
$bustype = 4 is generator PQ bus
%
$The five buses in the network shown in Figure 4.6 are numbered for the

% purpose of the power flow solution, as follows:
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g¢North =1

$South = 2

$Lake = 3

$Main = 4

$Elm =5

%

%Bus data

gnbb = number of buses
gbustype = type of bus

%VM = nodal voltage magnitude
%VA = nodal voltage phase angle

nbb =5 ;

bustype(l) =1 ; VM(1) =1.06 ; VA(1l) =0 ;
bustype(2) =2 ; VM(2) =1 ; VA(2) =0 ;
bustype(3) =3 ; VM(3) =1 ; VA(3) =0 ;
bustype(4) =3 ; VM(4) =1 ; VA(4) =0 ;
bustype(5) =3 ; VM(5) =1 ; VA(5) =0 ;

%

$Generator data

gngn = number of generators
%genbus = generator bus number

$PGEN = scheduled active power contributed by the generator

%QGEN = scheduled reactive power contributed by the generator

$0MAX = generator reactive power upper limit
%OMIN = generator reactive power lower limit
ngn =2 ;

genbus(1l) =1 ; PGEN(1) =0 ; OGEN(1) =0 ; OMAX(1) =5 ; OMIN(1l) =-5;
genbus(2) =2 ; PGEN(2) = 0.4 ; QGEN(2) =0 ; OMAX(2) =3 ; QMIN(2) = -3 ;

%

¢Transmission line data

¢ntl = number of transmission lines

$tlsend = sending end of transmission line

$tlrec = receiving end of transmission line
$tlresis = series resistance of transmission line
$tlreac = series reactance of transmission line
%tlcond = shunt conductance of transmission line
$tlsuscep = shunt susceptance of transmission line
ntl=7;

tlsend(l) = 1 ; tlrec(l) = 2 ; tlresis(l) = 0.02
tlcond(1l) =0 ; tlsuscep(l) =0.06 ;

tlsend(2) = 1 ; tlrec(2) = 3 ; tlresis(2) = 0.08
tlcond(2) =0 ; tlsuscep(2) =0.05 ;

tlsend(3) = 2 ; tlrec(3) = 3 ; tlresis(3) = 0.06
tlcond(3) =0 ; tlsuscep(3) =0.04 ;

tlsend(4) = 2 ; tlrec(4) = 4 ; tlresis(4) = 0.06
tlcond(4) =0 ; tlsuscep(4) =0.04 ;

tlreac(1l)

tlreac(2)

tlreac(3)

tlreac(4)
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tlsend(5) = 2 ; tlrec(5) = 5 ; tlresis(5) = 0.04 ; tlreac(5) = 0.12 ;
tlcond(5) =0 ; tlsuscep(5) =0.03;

tlsend(6) = 3 ; tlrec(6) = 4 ; tlresis(6) = 0.01 ; tlreac(6) = 0.03 ;
tlcond(6) =0 ; tlsuscep(6) =0.02 ;

tlsend(7) = 4 ; tlrec(7) = 5 ; tlresis(7) = 0.08 ; tlreac(7) = 0.24 ;
tlcond(7) =0 ; tlsuscep(7) =0.05 ;

%

$Shunt data

gnsh = number of shunt elements

$shbus = shunt element bus number

$shresis = resistance of shunt element

$shreac = reactance of shunt element:

$+ve for inductive reactance and —ve for capacitive reactance
nsh =0 ;

shbus(1l) =0 ; shresis(1l) =0 ; shreac(1l) =0 ;

%

$Load data

$¢nld = number of load elements

$loadbus = load element bus number

$PLOAD = scheduled active power consumed at the bus

%QLOAD = scheduled reactive power consumed at the bus

nld =4

~e

loadbus (1) =2 ; PLOAD(1) = 0.2 ; QLOAD(1) = 0.1 ;
loadbus(2) = 3 ; PLOAD(2) = 0.45 ; QLOAD(2) = 0.15 ;
loadbus(3) = 4 ; PLOAD(3) = 0.4 ; QLOAD(3) = 0.05 ;
loadbus(4) =5 ; PLOAD(4) = 0.6 ; QLOAD(4) =0.1 ;

%General parameters

$itmax = maximum number of iterations permitted before the iterative
gprocess is terminated — protection against infinite iterative loops
$tol = criterion tolerance to be met before the iterative solution is
gsuccessfully brought to an end

itmax = 100;

tol = le-12;

nmax = 2*nbb;

%End of function PowerFlowsData

As expected, the Newton—Raphson and the fast decoupled methods yield practically the
same results when the power flow problem is solved to a prescribed tolerance of le —12.
The former method takes 6 iterations to converge whereas the latter takes 27 iterations.
However, it should be mentioned that one iteration of the fast decoupled method executes
much faster than one iteration of the Newton—Raphson method; no inversion (refactorisa-
tion) of the Jacobian is required at each iterative step of the fast decoupled.

It can be observed from the results presented in Table 4.1 that all nodal voltages are
within accepted voltage magnitude limits (i.e. 100 &= 6% in the UK). The largest power flow
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Figure 4.6 The five-bus test network, and the power flow results. From G.W. Stagg and A.H. El-

Abiad, Computer Methods in Power System Analysis, © 1968 McGraw-Hill. Reproduced by
permission of The McGraw-Hill Companies

Table 4.1 Nodal voltages of original network

Network bus

Nodal voltage North South Lake Main Elm
Magnitude (p.u.) 1.06 1.00 0.987 0.984 0.972
Phase angle (deg) 0.00 —2.06 —4.64 —4.96 —-5.71

takes place in the transmission line connecting the two generator buses: 89.3 MW, and
74.02 MVAR leave North, and 86.8 MW and 72.9 MVAR arrive at South. This is also the
transmission line that incurs higher active power loss (i.e. 2.5 MW). The active power
system loss is 6.12 MW.

The operating conditions demand a large amount of reactive power generation by
the generator connected at North (i.e. 90.82 MVAR). This amount is well in excess of the
reactive power drawn by the system loads (i.e. 40 MVAR). The generator at South draws the
excess of reactive power in the network (i.e. 61.59 MVAR). This amount includes the net
reactive power produced by several of the transmission lines.
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4.4 CONSTRAINED POWER FLOW SOLUTIONS

The handling of PV buses in power flow algorithms may fall within the category of
constrained power flow solutions — generators regulate nodal voltage magnitude by
supplying or absorbing reactive power up to their design limits. Load tap-changing and
phase-shifting transformers are used to regulate nodal voltage magnitude and active power
flow, respectively. They also give rise to constrained power flow solutions. Suitable power
flow models of tap-changing and phase-shifting transformers are developed in this section.

4.4.1 Load Tap-changing Transformers

The power flow models for load tap-changing (LTC) transformers addressed in this section
are based on the two-winding, single-phase transformer model presented in Section 3.3.3,
which is quite a general one. The model makes provisions for complex taps on both the
primary and the secondary windings, and the magnetising branch of the transformer is
included to account for core losses.

However, the LTC model does not require complex taps, and Equation (3.89) simplifies to
the following expression:

In| ~ T2Yi+ Y, + Yo | ~TeUn¥i¥n  T2YiYy + YoYo || Vi |

[Ik ] 1 UlVY, + 1Yy  —TU LY, ] { Vk} (4.50)
It is assumed in this expression that the primary and secondary sides of the transformer are
connected to bus k and bus m, respectively. This is with a view to developing LTC models
aimed at systems applications. Also, the subscript sc is dropped in the transformer
admittance terms.

Comprehensive bus power injection equations for the LTC transformer may be derived
based on Equation (4.50), but this involves very arduous algebra. Simpler expressions may
be derived if a number of practical assumptions are introduced in this equation. For instance,
it may be assumed that the tap-changing facility is only on the primary side (U,, = 1); the
impedance is all on the primary side (Y,, = 0); and the impact of the magnetising branch is
negligibly small in the power flow solution (¥y = 0). Incorporating these simplifying
assumptions in Equation (4.50) we obtain an expression that is compatible with
Equation (3.78):

Ik _ Yk —TkYk Vk _ Ykk TkYkm Vk (4 51)
]m —TkYk T]%Yk Vm TkYmk T;?Ymm Vm ' .

Power flow equations at both ends of the transformer are derived, where 7} is allowed to
vary within design rating values (T; min < Tk < Tk max):

P, = V,kak + Tk ViV [Grm cos(0x — 6,,) + B sin(6y — 0,,)], (
Or = —ViBu + TiViViy [Grw sin(6x — 6,,) — Bion c0s(0r — 0,,)], (
Py = TV2Gom + TiViu Vi (Gt c08(6, — 64) + B sin(0,, — 01)], (4.54
O = —T{V2Byn + TiViu Vi [Griesin(0,, — 60;) — Bprcos(0, — 6)],  (
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where
Yik = Youm = G + B = i,
kk mm kk J. kk k (4.56)
Yin = Yok = G + JBjn = — Y.

The set of linearised power flow equations for the nodal power injections, Equations (4.52)—
(4.55), assuming that the load tap changer (LTC) is controlling nodal voltage magnitude at
its sending end (bus k), may be written as:

Fapq0 [or oR 0B orc 10 fag "

06, 06, 0T ov, "
N op, 0P, P, . 0P, v AB,,

. 00, 06, 0Ty oV, (4 57)
A 00 00 9Ok 00k | AT | |
Ok 36, 06, oT. * ov, " T,

an 6Qm an T an V. AVm

[ AQ, | | 06, 06, o1, © ov, "] L7, |

The tap variable T} is adjusted, within limits, to constrain the voltage magnitude at bus k at a
specified value V;. For this mode of operation V is maintained constant at the target value.
The Jacobian elements in matrix Equation (4.57) are given as follows:

0P, 0Py

o6~ g, — % ViBu (4.58)
Z_I;],:Tk - S%Vm =Py — ViGu, (4.59)
%—%:_ZTQ,:,(:P"_%G% (4.60)
2—%@( = 2—‘%‘% = Q) + V2By, (4.61)
21;: V= ?31;: T = Py TEV,, G, (4.63)
o= G = P THViC, st
2&‘/:‘/'” B aa%n = On = T¢VyBun. (4.65)

If nodal voltage magnitude control by the LTC takes place on its receiving end (bus m) as
opposed to the sending end (bus k), the second and third columns in Equation (4.57) are
interchanged, and Jacobian elements similar to Equations (4.58)—(4.65) are derived and used
as entries in Equation (4.57). Also, note that in the state variables vector AT; and AV
commute places.

At the end of each iteration, i, the tap controller is updated using the following relation:

7 = 1Y 4 <Tkk> Y. (4.66)
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The implementation of the LTC model within the power flow algorithm benefits from the
introduction of a controlled bus, termed the PVT bus. It resembles a generator PV bus but
here the voltage control is exerted by an LTC as opposed to a generator. The nodal voltage
magnitude and the bus active and reactive powers are specified, whereas the LTC tap T} is
handled as a state variable. If T} is within limits, the specified voltage is attained and the
controlled bus remains PVT. However, if T, goes out of limits, T} is fixed at the violated limit
and the bus becomes PQ.

It should be remarked that a more comprehensive set of nodal power equations may be
derived for the two-winding transformer by basing the power equation derivations on
Equation (4.50) as opposed to Equation (4.51). There is no need to assume that the
transformer impedance is all placed on the primary side. Also, the effect of the magnetising
admittance may be included in the nodal power equations of the LTC transformer.
Alternatively, it may be assumed that the tap-changing facility is on the secondary side as
opposed to the primary side, in which case Ty = 1, and Uy, nin < Uy < Uy max-

4.4.1.1 State variable initialisation and limit checking

Further to the recommendations given in Section 4.3.3 for initialising the nodal voltage
magnitudes and phase angles of power flow solutions of networks that contain only
conventional plat components, it is normal to select the initial tapping position of LTCs to be
at their nominal value. Hence, Ty = 1 and U,, = 1 are used for cases of two-winding LTCs.

The status of LTC taps is checked at each iterative step to assess whether or not the LTC
is still operating within limits and capable of regulating voltage magnitude. For an
LTC regulating nodal voltage magnitude at bus k with tapping facilities in the primary
winding

Tk min < Tk < Tk max - (467)

If either of the following conditions occur during the iterative process:

T]Ei+l) + AT/§1> > Tk max

. . (4.68)

T;EHI) + AT;EI> < Tk min,
bus k becomes a PQ bus and the tap is fixed at the violated limit. The nodal voltage
magnitude at bus k is allowed to vary and V; replaces T, as the state variable. The tap-
changing transformer works as a conventional transformer, and the set of linearised power
flow equations is given as follows:

ap 0 rorc apc ope, 0P, 19T a0, 1"
36, 06, OV. * oV, "
AP opP, oP, OP, v oP, v A6,
"1 %6 86, ow * av, " (4:69)
A % % %V 00k Vv AVy ' '
Qk 69k aem avk ¢ an " Vk
aQﬂl anﬂ an V aQWL V AVm
L AQy | Lo6, 06, ovi “ ov, "1 v, |
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Checking of LTC taps limits normally starts after the first or second iteration since nodal
voltage values computed at the beginning of the iterative process may be quite inaccurate,
leading to misleading LTC tapping requirements.

Similar criteria would apply if the LTC tapping facilities were on the secondary winding,
with U,, and T} changing roles in Equation (4.50). Moreover, relevant power equations and
Jacobian elements, equivalent to Equations (4.52)—(4.55) and (4.58)—(4.65), are derived.
The linearised Equation (4.57) is modified accordingly.

4.4.1.2 Load tap changer computer program in Matlab™ code

Program 4.3 incorporates LTC transformer representation within the Newton—Raphson
power flow program given in Section 4.3.6. The functions PowerFlowsData, YBus, and
Poflows are also used here. In the main LTC Newton—Raphson program, the function
LTCPowerFlowsData is added to read LTC data, LTCNewtonRaphson replaces New-
tonRaphson, and LTCPQflows is used to calculate power flows and losses in the LTC
transformer.

Function LTCNewtonRaphson borrows the following functions from NewtonRaphson:
NetPowers; CalculatedPowers; GeneratorsLimits; PowerMismatches; Newton-
RaphsonJacobian; and StateVariablesUpdates. Furthermore, four new functions are
added to cater for LTC representation, namely: LTCCalculatedPowers; LTCUpdates;
LTCLimits; and LTCNewtonRaphsonJacobian.

PROGRAM 4.3  Program written in Matlab®™ to incorporate load tap-changing representa-
tion within the Newton—Raphson power flow algorithm.

%—- — — Main LTC Program

PowerFlowsData; $Function to read network data
LTCPowerFlowsData; $Function to read LTC data

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,shbus,...
shresis,shreac,ntl,nbb,nsh);

[VM,VA,it,Tap] = LTCNewtonRaphson(tol,itmax,ngn,nld,nbb,bustype, ...
genbus, loadbus, PGEN, QGEN, QMAX , QMIN, PLOAD, QLOAD, YR, YI, VM, VA,NLTC, . ..
LTCsend,LTCrece,R1ltc,X1ltc,Tap,TapHi, TapLo,Bus,LTCVM);

[PQsend,PQrec,PQloss,PQbus] = PQflows (nbb,ngn,ntl,nld, genbus, ...
loadbus, tlsend,tlrec,tlresis,tlreac,tlcond, tlsuscep,PLOAD,QLOAD, ...
VM, VA) ;

[LTCPQOsend, LTCPQrece] = LTCPQflows (NLTC,LTCsend,LTCrece,Rltc,X1ltc,...
Tap,VM,VA);

it %Iteration number
VM $%Nodal voltage magnitude (p.u.)
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VA = VA*180/pi %Nodal voltage phase angle(Deg)
POsend %Sending active and reactive powers (p.u.)
PQrec $Receiving active and reactive powers (p.u.)
Tap $Final transformer tap position

% End of Main LTCNewtonRaphson PROGRAM

function [VM,VA,it,Tap] = LTCNewtonRaphson(tol,itmax,ngn,nld,nbb,...
bustype, genbus, loadbus, PGEN, QGEN, QMAX , OMIN, PLOAD, QLOAD, YR, YI,VM, ...
VA,NLTC,LTCsend,LTCrec,R1ltc,X1ltc,Tap,TapHi, TapLo,Bus,LTCVM) ;

% GENERAL SETTINGS

flag=0;

it=1;

% CALCULATE NET POWERS

[PNET,QNET] = NetPowers (nbb,ngn,nld, genbus, loadbus, PGEN, QGEN, PLOAD, .. .
QLOAD) ;

while (it <= itmax & flag==0)

% CALCULATED POWERS
[PCAL,QCAL] = CalculatedPowers (nbb,VM,VA,YR,YI);

% CALCULATED LTC POWERS
[PCAL,QCAL, 1tcPCAL,1tcQCAL] = LTCCalculatedPowers (NLTC,LTCsend, ...
LTCrec,Tap,Rltc,X1ltc,VM, VA, PCAL,QCAL) ;

% POWER MISMATCHES
[DPQ,DP,DQ,flag] = PowerMismatches (nbb, tol,bustype,flag, PNET,QNET, ...
PCAL,QCAL);
% Check for convergence
if flag ==
break
end
% JACOBIAN FORMATION
[JAC] = NewtonRaphsonJacobian(nbb,bustype,PCAL,QCAL,VM,VA,YR,YTI);

% LTC JACOBIAN UPDATING
[JAC] = LTCNewtonRaphsonJacobian (bustype,LTCsend,LTCrec,NLTC, Tap, . . .
Bus,Rltc,X1ltc,ltcPCAL, 1tcQCAL,VM,VA,JAC);
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% SOLVE FOR THE STATE VARIABLES VECTOR
D = JAC\DPQ"’ ;

% UPDATE STATE VARIABLES
[VA,VM] = StateVariablesUpdates(nbb,D,VA,VM);

% UPDATE LTC TAPs
[VM,Tap] = LTCUpdates(VM,D,bustype,NLTC,LTCsend,LTCrec, Tap,Bus, ...
LTCVM) ;

% CHECK FOR POSSIBLE LTC TAPs' LIMITS VIOLATIONS
[Tap,bustype] = LTCLimits (bustype,NLTC, Tap,TapHi, TapLo,LTCsend, ...
LTCrec);

it=1it + 1;
end

function [PCAL,QCAL,1tcPCAL,l1tcQCAL] = LTCCalculatedPowers (NLTC, ...
LTCsend,LTCrec,ltctap,Rltc,X1tc,VM,VA,PCAL,QCAL)

for ii =1: NLTC
kk = (ii-1)*2+1;
% Calculate LTC admittances
denom = Rltc(ii) "2+X1ltc(ii)"2;
YRS = Rltc(ii)/denom;
YIS = -X1tc(ii)/denom;
YRM = —-R1ltc(ii)/denom;
YIM = X1ltc(ii)/denom;

Al = VA(LTCsend(ii))-VA(LTCrec(ii));

A2 = VA(LTCrec(ii))-VA(LTCsend(ii));

% Calculate LTC powers

1tcPCAL(kk) = VM(LTCsend(ii))"2*YRS + ltctap(ii)*VM(LTCsend(ii))*...
VM(LTCrec(ii))* (YRM*cos (Al) + YIM*sin(Al));

1tcQCAL(kk) = -VM(LTCsend (ii))"2*YIS + ltctap(ii)*VM(LTCsend(ii))*...
VM(LTCrec(ii))*(YRM*sin(Al) - YIM*cos(Al));

1tcPCAL(kk+1) = (VM(LTCrec(ii))*1ltctap(ii))”2*YRS + ltctap(ii)*...
VM(LTCsend(ii))*VM(LTCrec(ii))*(YRM*cos (A2)+YIM*sin(A2));
1tcQCAL(kk+1) = - (VM(LTCrec(ii))*1ltctap(ii))”~2*YIS + ltctap(ii)*...

VM(LTCsend(ii))*VM(LTCrec(ii))*(YRM*sin(A2)-YIM*cos(A2));
% Update calculated powers PCAL and QCAL
PCAL(LTCsend(ii)) = PCAL(LTCsend(ii)) + ltcPCAL(kk);

QCAL(LTCsend(ii)) = QCAL(LTCsend(ii)) + 1tcQCAL(kk);

PCAL(LTCrec(ii)) = PCAL(LTCrec(ii)) + 1tcPCAL(kk+1);
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QCAL(LTCrec(ii)) = QCAL(LTCrec(ii)) + 1tcQCAL (kk+1);
end

function [JAC] = LTCNewtonRaphsonJacobian(bustype,LTCsend,LTCrec, ...
NLTC,Tap,Bus,Rltc,X1ltc,1ltcPCAL,1tcQCAL,VM,VA,JAC)
% LTC JACOBIAN MODIFICATION
for ii = 1: NLTC
ind = Bus(ii)-LTCsend(ii);
JAC(:,2*%Bus(ii))=0.0;
fornn=1: 2
% Calculate LTC admittances
denom = Rltc(ii)"2+X1ltc(ii)"2;
YRS = Rltc(ii)/denom;
YIS = - X1ltc(ii)/denom;
% Calculate LTC Jacobian entries
JKK(1,1) = - (VM(LTCsend(ii))"2)*YIS;
JKK(1,2) = (VM(LTCsend(ii))"2)*YRS;

JKK(2,1) = - (VM(LTCsend(ii))"2)*YRS;
JKK(2,2) = - (VM(LTCsend(ii))"2)*YIS;
JKM(1,1) = 1tcQCAL((ii-1)*2+nn) + (VM(LTCsend(ii))"2)*YIS;
JKM(1,2) = 1tcPCAL((ii-1)*2+nn) + (VM(LTCsend(ii))"2)*YRS;
JKM(2,1) = - (1tcPCAL( (ii-1)*2+nn) + (VM(LTCsend(ii))"2)*YRS);
if ind==0
JKM(2,2) = —=(-1tcQCAL((ii-1)*2+nn) + (VM(LTCsend(ii))"2)*YIS);
else
JKM(2,2) = 1tcQCAL( (ii-1)*2+nn) + (VM(LTCsend(ii))"2)*YIS;
end
if ((bustype(LTCsend(ii)) ==4) & (Bus(ii) == LTCsend(ii)) )
JKK(1,2) = (LtcPCAL((ii-1)*2+nn) + (VM(LTCsend(ii))"2)*YRS);

if (nn == 2)
JKK(2,2) = - (-1tcQCAL( (ii-1)*2+nn)+ (VM(LTCsend(ii))"2)*YIS);

else
JKK(2,2) = 1tcQCAL( (ii-1)*2+nn) + (VM(LTCsend(ii))"2)*YIS;
JKM(2,1) = - (1LtcPCAL((ii-1)*2+nn) + ...

(VM(LTCsend(ii))"2)*YRS);
JKM(2,2) = (1tcQCAL( (ii-1)*2+nn) + ...
(VM(LTCsend(ii))"2)*YIS);
end
end

% Add LTC contribution to system JAC
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if ( (bustype(LTCsend(ii))==2) & (bustype(LTCrec(ii))>2))

JKK(1,2) =0;
JKK(2,1) =0;
JKK(2,2) =0;
if nn ==

JKM(2,1) = 0;
JKM(2,2) =0;

else
JKM(1,2) =0;
JKM(2,2) =0;
end

elseif ( (bustype(LTCsend(ii))==1) & (bustype(LTCrec(ii))>2))
JKK = zeros;
JKM = zeros;
JMK = zeros;

end

kk = 2*LTCsend(ii)-1;
mm = 2*LTCrec(ii)-1;
JAC (kk:kk+1,kk:kk+1) = JAC(kk:kk+1,kk:kk+1) + JKK;
JAC (kk:kk+1l,mm:mm+1) = JAC(kk:kk+1,mm:mm+1) + JKM;
send = LTCsend(ii);
LTCsend(ii) = LTCrec(ii);
LTCrec(ii) = send;
VM(LTCsend(ii)) = VM(LTCsend(ii))*Tap(ii);
end
end

function [VM,Tap] = LTCUpdates (VM, D, bustype,NLTC,LTCsend,LTCrec, Tap, .. .

Bus,LTCVM)
for ii = 1: NLTC
if ((bustype(LTCsend(ii)) ==4) & (Bus(ii) == LTCsend(ii)))
Tap(ii) = Tap(ii) + (D(2*LTCsend(ii))*Tap(ii));
VM(LTCsend(ii)) = LTCVM(ii);
elseif ( (bustype(LTCrec(ii)) ==4) & (Bus(ii) == LTCrec(ii)) )
Tap(ii) = Tap(ii) + D(2*LTCrec(ii))*Tap(ii);
VM(LTCrec(ii)) = LTCVM(ii);
end
end

function [Tap,bustype] = LTCLimits (bustype,NLTC, Tap,TapHi,TapLo,...
LTCsend,LTCrec)
% CHECK FOR POSSIBLE LTCs'’ TAPS LIMITS VIOLATIONS
for ii = 1: NLTC
forkk=1: 2
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if (bustype(LTCsend(ii)) == 4)
if ( Tap(ii) > TapHi(ii) )
Tap(ii) = TapHi(ii);
bustype(LTCsend(ii)) = 3;
elseif (Tap(ii) < TapLo(ii))
Tap(ii) = TapLo(ii);

bustype(LTCsend(ii)) = 3;
end
end
LTCsend(ii) = LTCrec(ii);
end

end

function [LTCPQsend, LTCPQrec] = LTCPQflows (NLTC,LTCsend,LTCrec,Rltc, ...
Xltc, Tap,VM,VA)
for ii =1: NLTC
% Calculate LTC admittances
denom = Rltc(ii)"2+X1ltc(ii)"2;
YRS = Rltc(ii)/denom;
YIS = -X1tc(ii)/denom;
YRM = -Rltc(ii)/denom;
YIM = X1ltc(ii)/denom;
for jj=1:2
Al = VA(LTCsend(ii))-VA(LTCrec(ii));
% Calculate LTC powers
1tcPCAL = VM(LTCsend(ii) ) 2*YRS + Tap(ii)*VM(LTCsend(ii))*
VM(LTCrec(ii))*(YRM*cos(Al) + YIM*sin(Al));
1tcQCAL = -VM(LTCsend(ii))"2*YIS + Tap(ii)*VM(LTCsend(ii))*
VM(LTCrec(ii))* (YRM*sin(Al) - YIM*cos(Al));

if 33 ==
LTCPQsend = 1tcPCAL + j*1tcQCAL;
else
LTCPQrec = 1tcPCAL + j*1tcQCAL;
end

send = LTCsend(ii);
LTCsend(ii) = LTCrec(ii);
LTCrec(ii) = send;
end
end

4.4.1.3 Test case of voltage magnitude control with
load tap-changing

The original five-bus network described in Section 4.3.9 is modified to include one LTC in
series with the transmission line connected between bus Lake and bus Main. An additional
bus, termed Lakefa, is used to connect the LTC as shown in Figure 4.7. The LTC is used to
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Figure 4.7 Modified test network and power flow results

maintain the voltage magnitude at Lake at 1 p.u. The initial condition of the tap is set to a
nominal value (i.e. T = 1). The winding impedance contains no resistance, and an inductive
reactance of 0.1 p.u.

The data given in function PowerFlowsData in Section 4.3.9 is modified to
accommodate the inclusion of the LTC. The transmission line originally connected between
Lake and Main is now connected between Lakefa (bus 6) and Main (bus 4). Only the
modified code lines are shown here:

$The convention used for the types of buses available in power flow
$studies is expanded to include nodal voltage control by LTC:
gbustype =5

nbb =6 ;
bustype(3) =5 ; VM(1) =1 ; VA(1) =0 ;
bustype(6) =3 ; VM(1) =1 ; VA(1) =0 ;

tlsend(6) =6 ; tlrec(6) =4 ; tlresis(6) =0.01 ; tlreac(6) =0.03 ;
tlcond(6) =0 ; tlsuscep(6) =0.02 ;
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Function LTCPowerFlowsData is as follows:

$This function is used exclusively to enter LTC data:
% Load Tap Changing transformers data

% NLTC: Number of LTC's

% LTCsend: Sending end bus

% LTCrec: Receiving end bus

% Rltc: LTC winding resistaance

% X1ltc: LTC winding reactance

% Tap: Initial value of LTC tap

% TapHi: Higher value of LTC tap

% TapLo: Lower value of LTC tap

% Bus: Controlled bus

% LTCVM: Target volatge magnitude at LTC bus

NLTC =1 ;
LTCsend(1l) =3 ; LTCrec(l) =6 ; Rltc(1l) =0 ; X1tc(1l) =0.1;

Tap(l) =1 ; TapHi(l) = 1.5 ; TapLo(l) =0.5 ; Bus(1l) =3 ; LTCVM(1) =1 ;
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Convergence is obtained in 5 iterations to a power mismatch tolerance of le—12. The
power flow results are shown in Figure 4.7. The nodal voltages are given in Table 4.2. It
should be noted that the LTC upholds the target value of 1 p.u. voltage magnitude at Lake

with a tap setting of 7' = 1.04.

Table 4.2 Nodal voltages in the modified network

System bus
Nodal voltage North South Lake  Lakefa Main Elm
Magnitude (p.u.) 1.060 1.000 1.000  0.969 0.969 0.966

Phase angle (deg) 0.00 —-216 —-441 5.3 =599 —-5.99

It is interesting to note that the voltages at Main and Elm deteriorate compared with
the case when no voltage regulation takes place at Lake; the base case presented in
Section 4.3.9. It is also interesting to note that the LTC achieves its voltage regulation
objective at the expense of consuming reactive power; it draws 10 MVAR from the system.
There is a general redistribution of reactive power flows throughout the network owing to
the inclusion of the LTC and its control action; however, the net amount of active and
reactive power generated or absorbed by the two generators changes little (i.e. 171.11 MVA
and 29.5 MVAR). The system active power loss is 6.11 MW. To show the prowess of the
Newton—Raphson method towards convergence, in Table 4.3 we give the maximum absolute
power mismatches in the system buses, which are shown to decrease quadratically towards

Z€r0.
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Table 4.3 Maximum absolute power mismatches

Iteration AP AQ
1 6.0e—1 1.2e—1
2 24e—-2 2.5e—-2
3 1.5¢e—4 7.5e—4
4 1.5¢—8 1.6e—7
5 0 0

4.4.1.4 Combined voltage magnitude control by means of
generafors and load tap changers

The option of controlling nodal voltage magnitude by adjusting LTCs and generators in a
combined fashion is a practical operating situation; such controls are prioritised. It is normal
to choose the generator as the first regulating component, holding the associated LTC taps at
their initial condition so long as the generator’s reactive limits are not reached. If the
generator hits one of its reactive limits then the master LTC tap becomes active and the bus
is converted to PVT; the bus becomes controlled by the LTC as opposed to the generator.

The control of nodal voltage magnitude by the generator has higher priority. If the set of
LTCs associated with a given generator are controlling buses different from the generator
bus and the generator reaches one of its reactive limits then the LTC is switched to control
the generator bus so that it changes to a PVT bus. The previous PVT bus controlled by the
LTC is converted to a PQ bus in the absence of another LTC available to regulate that bus.
These control actions are shown schematically in Figure 4.8.

PVT PVT P PVT
m OPEN n m Q OPEN n

T; T T; 1,

k PV k @ PVT

(a) (b)

Figure 4.8 Control of nodal voltage magnitude using: (a) one generator and two load tap changers
(LTCs) and (b) two LTCs after the generator violates one of its reactive limits

4.4.1.5 Control coordination between one load tap changer
and one generator

This test case serves to illustrate the situation where the voltage magnitude at a given bus is
controlled by one generator and one LTC. The five-bus network is modified to include one
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Figure 4.9 Control coordination between the generator and load tap changer at South

LTC, as shown in Figure 4.9. The minimum reactive power limit of the generator connected
at South is specified to be —55 MVAR. The LTC tap, located on the primary winding, is used
to control voltage magnitude when the generator violates its minimum reactive power limit.

The LTC works as a conventional transformer, with the tap fixed at the value given by the
initial condition for as long as the generator operates within its reactive limits. The initial
condition of the tap is set to a nominal value (i.e. T = 1). The winding impedance contains
no resistance and an inductive reactance of 0.1 p.u. Once the generator violates reactive
limits the LTC becomes active. The controlled bus is PV when controlled by the generator
and then changes to PVT when controlled by the LTC.

For the condition when the target voltage magnitude at South is 1p.u. the generator
violates its minimum reactive power limit, and voltage magnitude control switches to the
LTC. Convergence is obtained in 7 iterations. The power flow results are shown in
Figure 4.9.

The nodal voltages are very similar to the base case presented in Section 4.3.9. The value
of LTC tap required to achieve 1 p.u. voltage magnitude at South is 0.92. As expected, the
LTC achieves its operating point at the expense of consuming reactive power. However, in
this case it draws only 2.9 MVAR from the system. The system active power loss increases
to 6.31 MW.
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4.4.2 Phase-shifting Transformer

A flexible power flow model for the phase-shifting transformer is described in this section.
It is derived from the two-winding, single-phase transformer model presented by
Section 3.3.4, which contains complex taps on both the primary and secondary windings.

Comprehensive bus power injection equations for the phase shifter may be derived with
reference to Equation (3.91). However, simpler expressions may be derived if some practical
assumptions are introduced at this stage. For instance, it is reasonable to assume that the
phase-changing facility is only on the primary side, (i.e. ¢, = 0); the primary and secondary
windings admittances may be combined together [Y = YepYecs / (Ysep + Yis)]; and the
impact of the magnetising branch is negligibly small in the power flow solution (¥, = 0):

Ik o Y —Y(COS (25 +J sin ¢) Vk . Ykk Ykm Vk
L,| | —Y(cos¢ —jsino) Y Vol | Yok Yo || Vi |

(4.70)

Similar to the power flow LTC model, it is assumed in this expression that the primary and
secondary sides of the transformer are connected to bus k and bus m, respectively. Also,
the subscripts sc and u are dropped in the admittance term and in the phase angle ¢,
respectively.

Based on Equation (4.70), equations for the nodal power injections of the phase-shifting
transformer, where ¢ is allowed to vary within design rating values (¢ i, < ¢ < @ max), are
as follows:

Py = VEGi + ViV [Grm c08(0x — 0,) + Bim sin(6x — 6,,)], (4.71)
Or = —VIBi + ViV, [Gim sin(6; — 6,,) — Bimcos(0 — 6,,)], (4.72)
P = V2Gm + ViuVi [Guic c08(8,, — 0k) + B sin(6, — 61)], (4.73)
O = ~V2Byn + Vo Vi [Guisin(0,, — 6;) — By cos(6,, — 01)], (4.74)
where
Yie = G +jBu =7,
Yom = Gum + jBom = Y, @79)

Ykm = ka +.]Bkm = 7Y(COS¢ +jSin¢)7
Yok = Gu +ijk = _Y(COS¢ _jSin(b)'

Alternatively, substituting Equations (4.75) into Equations (4.71)—(4.74) leads to the
following more explicit expressions:

Py = ViG — ViV, [Gcos(b; — 0,, — ¢) + Bsin(y — 6, — 8)], (
Or = —ViB— ViV, [Gsin(6y — 0, — ¢) — Bcos(b — 6, — ¢)], (4.77
P, = VG —V,Vi [Gcos(0,, — Ok + ¢) + Bsin(6,, — 0; + ¢)], (
On=—V2B—V,V; [Gsin(0,, — O + ¢) — Bcos(0,, — Ok + ¢)]. (

If the phase-shifting transformer is used to control the active power flowing through it at a
specified value then the Jacobian is enlarged to accommodate one additional equation. In
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this situation ¢ enters as an extra state variable in the Jacobian equation. If the control

q

is exerted at the sending end (bus k) of the phase shifter then P}’ is the target power to be

regulated.

The set of linearised power flow equations for the phase-shifting transformer is,

APy

AP,

A QO

AQy

[APGY

U]

where AP{™, given by

ron on op, P, P17 ag,
o0, 06, oV, * av, "™ 04
op, opP, OP, opP, opP, Ab
Vk Vm m
300, 060, oV OV, o
00 0O 00k, 0Qk, 0k AVi
00, 06, oV, " ov, ™ ¢ Vi
00 00 00w, 00w, 0Qu| |AVa
00, 06, oV, ¥ ov, ™ ¢ Vo
) ] @ )
aPl(?m aPkm aPllmek aPkam aPl(?m A¢ps
| 96, 06, 0V oV, ¢ | |
AP = P - P

7@

is the active power flow mismatch for the phase shifter; an"f is the calculated power as given

by Equation (4.76); Ag¢ps, given by

Agps = ¢ — ¢l

is the incremental change in the phase shifter angle at the ith iteration.
The Jacobian elements in matrix Equation (4.80) are as follows:

oP,  OPy O
00, o, ov, "
oP,

. Vi = Py + VG,

00k _ 00 _ 0Py

00, o6, ov, "
an o 2

aT/ka = Oy — VB,

0Py _ _OPy _ _ 00n
o0, o6,  ov *
aPm _ 2

A Vin = P, + V2G,
00, _ 00w _ 0Py
00, 00, 0V,
a&vm =Q,— V:B.

oV

— %_? = —Qx — V2B,
- _% =P — V{G,

_ aa%" — 0, - V2B,
:aa%zpm - V.G,

(4.81)
(4.82)
(4.83)
(4.84)
(4.85)
(4.86)
(4.87)

(4.88)
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It should be noted that since P,‘f,ff = P, the following relationships hold true and simplify
the evaluation of the Jacobian matrix,

o)
aa];k,:" _ 2—2‘, (4.89)
%’;'% _ 275:, (4.90)
aal;{m Vi — 2—1‘2 Vi, (4.91)
%I:% V, = 2—‘1;"; Vi, (4.92)
% _ %_f;ﬁ (4.93)

At the end of each iterative step, i, the phase angle ¢ is updated by using the following
relation:

o) = gD 4 Ag (4.94)

It should be noted that a more comprehensive power flow phase-shifter model may be
obtained by basing the power derivations on Equation (3.91) as opposed to Equation (4.70).
For instance, the effect of the magnetising admittance may be included in the nodal power
equations of the transformer. Also, it may be considered that the phase-shifting facility
is on the secondary side as opposed to the primary side, in which case ¢; =0 and
Oumin < Ou < Pumax- The associated Jacobian elements have the same form as Equa-
tions (4.81)—(4.93).

4.4.2.1 State variable initialisation and limit checking

Similar to the case with LTCs, it is normal to initialise the tapping positions of phase-
shifting transformers at their nominal values. Hence, ¢; = 0 and ¢, = 0 are used for cases
of two-winding phase shifters.

The status of phase-shifter taps is checked at each iterative step to assess whether or not
they are still within limits and capable of regulating active power flow. For a phase shifter
connected between buses k and m, and regulating active power flow at bus k with tapping
facilities available in the primary winding, we may write:

Omin < ¢ < Pmax- (4.95)

If either of the following conditions occur during the iterative process:
¢ + AP > P,
¢ + A0 < P,

the tap is fixed at the violated limit. The active power flow in branch k-m is allowed to vary,
and ¢ is removed from the state variable vector. It becomes a constant parameter within the

(4.96)
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nodal admittance matrix of the phase-shifting transformer in Equation (4.70). Checking of
phase-shifter tap limits starts from iteration 1.

4.4.2.2 Phase-shifter computer program in Matlab®™ code

Program 4.4 incorporates phase-shifting transformer representation within the Newton—
Raphson power flow program given in Section 4.3.6. The functions PowerFlowsData,
YBus, and PQflows are also used here.

In the main phase-shifter Newton—Raphson program, the function PSPowerFlowsData
is added to read phase-shifter data, PSNewtonRaphson replaces NewtonRaphson, and
PSPOflows is used to calculate power flows and losses in the phase-shifting transformer.

Function PSNewtonRaphson uses the following functions from NewtonRaphson:
NetPowers; CalculatedPowers; GeneratorsLimits; PowerMismatches; Newton-
RaphsonJacobian; and StateVariablesUpdates. Furthermore, five new functions are
added to cater for phase shifters representation; namely: PSCalculatedPowers;
PSUpdates; PSNewtonRaphsonJacobian; PSPowerMismatches; and PSLimits.

PROGRAM 4.4 Program written in Matlab®™ to incorporate phase-shifter representation
within the Newton—Raphson power flow algorithm.

$— — - Main PS Program
PowerFlowsData; $Function to read network data
PSPowerFlowsData; $Function to read PS data

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,shbus,...
shresis,shreac,ntl,nbb,nsh);

[VM,VA,Tap,it] = PSNewtonRaphson(nmax,tol,itmax,ngn,nld,nbb, ...
bustype, genbus, loadbus, PGEN, QGEN, QMAX,QMIN, PLOAD,QLOAD,YR,YI,VM, ...
VA,NPS,PSsend, PSrec,Rps, Xps, Tap, TapHi, TapLo,Bus,psP);

[POsend,PQrec,PQloss,PQbus] = PQflows (nbb,ngn,ntl,nld, genbus, ...
loadbus, tlsend,tlrec,tlresis,tlreac,tlcond, tlsuscep,PLOAD,QLOAD, ...
VM,VA);

[PQPSsend, PQPSrec,PQPSloss] = PSPQflows (VM,VA,NPS,PSsend,PSrec,Rps, ...
Xps,Tap);

it %Iteration number

VM $%Nodal voltage magnitude (p.u.)

VA =VA*180/pi %Nodal voltage phase angle(Deg)
POsend %Sending active and reactive powers (p.u.)
PQrec %Receiving active and reactive powers (p.u.)
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Tap $Final transformer phase-shifting position
% End of Main PSNewtonRaphson Function

function [VM,VA,Tap,it] = PSNewtonRaphson(nmax,tol,itmax,ngn,nld,...
nbb,bustype, genbus, loadbus, PGEN, QGEN, QMAX , OQMIN, PLOAD,QLOAD, YR, YI, ...
VM,VA,NPS,PSsend,PSrec,Rps, Xps, Tap, TapHi, TapLo,Bus,psP);

% GENERAL SETTINGS

flag=0;

it=1;

% CALCULATE NET POWERS

[PNET,QONET] = NetPowers (nbb,ngn,nld, genbus, loadbus, PGEN, QGEN, PLOAD, ...
QLOAD) ;

while (it < itmax & flag==0)
% CALCULATED POWERS
[PCAL,QCAL] = CalculatedPowers (nbb,VM,VA,YR,YI);
% CALCULATED PS POWERS
[PCAL,QCAL, psPCAL,psQCAL] = PSCalculatedPowers(VM,VA,PCAL,QCAL, ...
PSsend, PSrec,NPS, Tap,Rps,Xps);

% POWER MISMATCHES
[DPQ,DP,DQ,flag] = PowerMismatches (nmax,nbb,tol,bustype,flag,PNET, ...
ONET, PCAL,QCAL) ;

% PS POWER MISMATCHES
[DPQ,flag] = PSPowerMismatches (nbb,DPQ,flag,tol,NPS,PSsend,PSrec,Bus, ...
psP,psPCAL);

%Check for convergence
if flag ==

break
end

% JACOBIAN FORMATION
[JAC] = NewtonRaphsonJacobian(nmax,nbb,bustype, PCAL,QCAL,VM,VA, ...
YR,YI);

% PS JACOBIAN UPDATING
[JAC] = PSNewtonRaphsonJacobian (nbb,VM,VA,JAC,NPS,PSsend,PSrec,Tap, .. .
Bus,Rps, Xps, psPCAL, psQCAL) ;
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% SOLVE FOR THE STATE VARIABLES VECTOR
D = JAC\DPQ';

% UPDATE STATE VARIABLES
[VA,VM] = StateVariablesUpdates (nbb,D,VA,VM);

% UPDATE PS TAPS
[Tap] = PSUpdates (nbb,D,NPS, Tap);

% CHECK FOR PS TAPS LIMITS VIOLATIONS
[Tap,Bus] = PSLimits (NPS, Tap, TapHi, TapLo,Bus);

it=1it +1;

end

function [PCAL,QCAL,psPCAL, psQCAL] = PSCalculatedPowers(VM,VA,PCAL, ...
QCAL, PSsend,PSrec,NPS, Tap,Rps,Xps)
for ii = 1: NPS
% Calculate PS admittances
denom = Rps(ii) "2+Xps(ii)"2;
YR = Rps(ii)/denom;
YI = - Xps(ii)/denom;
% Calculate PS powers
fornn=1: 2
kk = (ii-1)*2+nn;
Al=VA(PSsend(ii))-VA(PSrec(ii))-Tap(ii);
PSPCAL(kk) = (VM(PSsend(ii))"2)*YR - VM(PSsend(ii))*VM(PSrec(ii)).
* (YR*cos (Al)+YI*sin(Al));

PSQCAL (kk) = - (VM (PSsend(ii))"2)*YI - VM(PSsend(ii))*VM(PSrec(ii))..

* (YR*sin(Al)-YI*cos(Al));

% Update calculated powers PCAL and QCAL
PCAL(PSsend(ii)) = PCAL(PSsend(ii)) + psPCAL(kk);
QCAL (PSsend(ii)) = QCAL(PSsend(ii)) + psQCAL (kk);

send = PSsend (ii);
PSsend(ii) = PSrec(ii);
PSrec(ii) = send;
Tap(ii)=-Tap(ii);
end
end

function [DPQ,flag] = PSPowerMismatches (nbb,DPQ,flag,tol,NPS,PSsend, ..

PSrec,Bus,psP,psPCAL);
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% ADD PS POWER MISMATCHES TO DPQ

11=1;
for ii =1: NPS
if (PSsend(ii) == Bus(ii))
DPQ(ii+2*nbb) = psP(ii) - psPCAL(ii);
elseif (PSrec(ii) ==Bus(ii))
DPQ(ii+2*nbb) = psP(ii) + psPCAL(11+1);
end

if (Bus(ii) ==0)
DPQ(ii+2*nbb) =0;
end
11 =11+ 2;
end
% Check for convergence
if (flag==1)
for 11 = 2*nbb+1 : 2*nbb + NPS
if (abs(DPQ) < tol)

flag=1;
else
flag=0;
end
end

end

function [JAC] = PSNewtonRaphsonJacobian(nbb,VM,VA,JAC,NPS,PSsend, ...

PSrec,Tap,Bus,Rps, Xps,psPCAL, psQCAL)
% PS JACOBIAN MODIFICATION
for ii = 1: NPS

nn = (ii-1)*2+1;

pp = 2*nbb+iij;

% Calculate PS admittances
denom = Rps(ii) "2+Xps(ii)"2;
YR = Rps(ii)/denom;

YI = -Xps(ii)/denom;

% Calculate PS Jacobian entries
for kkl =1: 2

kk = 2*PSsend(ii)-1;

mm = 2*PSrec(ii)-1;

nn = (ii-1)*2+kkl;

JKK(1,1) = -(VM(PSsend(ii))"2)*YI;
JKK(1,2) = (VM(PSsend(ii))"2)*YR;
JKK(2,1) = - (VM(PSsend(ii))"2)*YR;
JKK(2,2) = - (VM(PSsend(ii))"2)*YI;
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JKM(1,1) = psQCAL(nn) + (VM(PSsend(ii))"2)*YI;
JKM(1,2) = psPCAL(nn) - (VM(PSsend(ii))"2)*YR;
JKM(2,1) = -psPCAL(nn) + (VM(PSsend(ii))"2)*YR;
JKM(2,2) = pSQCAL(nn) + (VM(PSsend(ii))"2)*YI;

% Add PS contribution to system JAC
JAC (kk:kk+1,kk:kk+1) = JAC(kk:kk+1,kk:kk+1) + JKK;
JAC (kk:kk+1l,mm:mm+1) = JAC(kk:kk+1,mm:mm+1) + JKM;

send = PSsend(ii);
PSsend(ii) = PSrec(ii);
PSrec(ii) = send;
end
kk = 2*PSsend(ii)-1;
mm = 2*PSrec(ii)-1;
nn = (ii-1)*2+1;
JKE (1) = psQCAL(nn) + (VM(PSsend(ii))"2)*YI;
JKE(2) = -psSPCAL(nn) + (VM(PSsend(ii))"2)*YR;

JEK(1) = -psQCAL(nn) - (VM(PSsend(ii))"2)*YI;
JEK(2) = psPCAL(nn) + (VM(PSsend(ii))"2)*YR;

JME(1) = -psSQCAL(nn+1) - (VM(PSrec(ii))"*2)*YI;
JME(2) = psPCAL(nn+1) - (VM(PSrec(ii))"2)*YR;

JEM(1) = psQCAL(nn) + (VM(PSsend(ii))"2)*YI;
JEM(2) = psPCAL(nn) - (VM(PSsend(ii))"2)*YR;

JE(1) = pSQCAL(nn) + (VM(PSsend(ii))"2)*YI;

if (Bus(ii) ~=0)
JAC (kk:kk+1,pp) = JAC(kk:kk+1,pp) + JKE';
JAC(mm:mm+1,pp) = JAC(mm:mm+1,pp) + JME' ;
JAC(pp,kk:kk+1) = JAC(pp,kk:kk+1l) + JEK;
JAC(pp,mm:mm+1) = JAC(pp,mm:mm+1) + JEM;
JAC(pp,pp) = JAC(pp,pPp) + JE(1);

else
JAC(l:pp,pp) = zeros;
JAC(pp,l:pp) = zeros;
JAC(pp,pp) = 1;

end

end

function [Tap] = PSUpdates (nbb,D,NPS, Tap)
for ii =1: NPS

Tap(ii) = Tap(ii) + D(ii+nbb*2);
end

function [Tap,Bus] = PSLimits (NPS,Tap,TapHi, TapLo,Bus)
% CHECK FOR POSSIBLE PS TAPs' LIMITS VIOLATIONS

139
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for ii = 1: NPS
if (Bus(ii) ~=0)
if (Tap(ii) > TapHi(ii))
Tap(ii) = TapHi(ii);
Bus(ii) = 0;
elseif (Tap(ii) < TapLo(ii))
Tap(ii) = TapLo(ii);
Bus(ii) = 0;
end
end
end

function[PQPSsend,PQPSrec,PQPSloss] = PSPQflows (VM,VA,NPS,PSsend, ...
PSrec,Rps,Xps,Tap)
%
PQPSsend = zeros(1,NPS);
PQPSrec = zeros(1,NPS);
% Calculate active and reactive powers at the sending and reciving ends of
% Phase shifter transformers
for ii = 1: NPS
Vsend = (VM(PSsend(ii))*cos(VA(PSsend(ii))) + ...
VM(PSsend(ii))*sin(VA(PSsend(ii)))*i);
Vrec = (VM(PSrec(ii))*cos(VA(PSrec(ii))) + ...
VM(PSrec(ii))*sin(VA(PSrec(ii)))*i);
Zself = (Rps(ii) + Xps(ii)*i);
Ymutual = -(cos(Tap(ii)) + sin(Tap(ii))*i)/Zself;

current = Vsend/Zself + Vrec*Ymutual;
PQPSsend(ii) = Vsend*conj(current);
Ymutual = - (cos(Tap(ii)) - sin(Tap(ii))*i)/zself;
current = Vsend*Ymutual + Vrec/Zself;
PQPSrec(ii) = Vrec*conj(current);
PQPSloss(ii) = PQPSsend(ii) + PQPSrec(ii);

end

4.4.2.3 Test cases for phase-shifting transformers

The PSNewtonRaphson power flow function is used to solve two test cases. The first case
corresponds to a straightforward active power flow control in a phase-shifter-upgraded
transmission line. The second case is an assessment of the power flow feasibility region of a
two phase-shifting transformer system.

Active power flow

The five-bus network is modified to include one phase-shifting transformer in series with the
transmission line connecting bus Lake and bus Main. The phase shifter is used to maintain
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active power flowing from Lakefa towards Main at 40 MW. This bus is added to enable
connection of the phase shifter. The initial value of the complex tap is set to the nominal
value (i.e. 1/0°). The winding contains no resistance, and an inductive reactance of 0.1 p.u.

The data given in function PowerFlowsData in Section 4.3.9 is modified to
accommodate for the inclusion of the phase shifter. The transmission line originally
connected between Lake and Main is now connected between Lakefa (bus 6) and Main
(bus 4). Only the modified code lines are shown here:

nbb =6 ;
bustype(6) =4 ; VM(1) =1 ; VA(1l) =0 ;

tlsend(6) = 6 ; tlrec(6) = 4 ; tlresis(6) = 0.01 ; tlreac(6) = 0.03 ;
tlcond(6) =0 ; tlsuscep(6) =0.02 ;

Function PSPowerFlowsData is as follows:
% Phase-Shifting Transformers Data

% NPS: number of PS'’s

% PSsend: Sending end bus

% PSrec: Receiving end bus

% Rps: PS winding resistance

% Xps: PS windding reactance

% Tap: Initial value of PS tap

% TapHi: Higher value of PS tap

% TapLo: Lower value of PS tap

% Bus: Controlled bus

% psP: Target active power at Bus

NPS =1;

PSsend(1l) =3 ; PSrec(1l) =6 ; Rps(1l) =0 ; Xps(1l) =0.1;
Tap(l) =0 ; TapHi(l) = 10*pi/180 ; TapLo(l) = -10*pi/180 ;
Bus(l) =6 ; psP(1) =0.4;

nmax = nmax + NPS;

Convergence is obtained in 5 iterations to a power mismatch tolerance of le —12. The
phase shifter upholds its target value. The power flow results are shown in Figure 4.10. The
nodal voltages are given in Table 4.4. The maximum absolute power mismatches of
the system buses and phase shifter are shown in Table 4.5.

As expected, the nodal voltage magnitudes do not change compared with the base
case presented in Section 4.3.9. However, the voltage phase angle difference between
Lake and Main does increase in value to reflect the larger amount of active power flowing
through this transmission line, which increases from 19.4 MW to 40 MW. This is slightly
more than a twofold increase in transmitted power, and the phase angle difference changes
from —0.32° to —2.74°.

The value of tap required to achieve the 40 MW flow through the phase shifter is —5.83°.
The phase shifter achieves its operating point at the expense of consuming 1.7 MVAR. The
system active power loss is 6.6 MW.
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Figure 4.10 Modified test network and power flow results
Table 4.4 Nodal voltages of the modified network
System buses

Nodal voltage North South Lake Lakefa Main Elm
Magnitude (p.u.) 1.06 1.000 0.984 0.987 0984 0972
Phase angle (deg) 0.00 -1.77 =58 —2.33 —3.06 —4.95

Table 4.5 Maximum absolute mismatches

Bus
Iteration AP AQ Phase shifter A¢
1 6.0e — 1 1.2e—1 4e—1
2 2.1e—2 3.7e—-2 8e—3
3 9.6e —5 1.8e—4 9.3e—5
4 3.6e—9 53e—9 4.7e—-9
5 0 0 0
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Feasible active power control region

When two or more phase-shifting transformers are close together, electrically speaking, they
may interact with each other. The amount of active power flow controlled by these series
controllers is confined to a region in which the phase angle controllers operate within limits
and where the solution of the power flow equations exists. Figure 4.11 shows the feasible

South—-Lake active power flow (MW)
[\]
S

-30 [ b

_4()7 L I L I L - I L I L I L I P L | L | L |
-10 (0] 10 20 30 40 50 60 70 80 90

North-Lake active power flow (MW)

Figure 4.11 Feasible region of active power flow control for PS1 and PS2

active power flow control region when phase shifters PS1 and PS2 are connected in series
with the transmission lines connecting North—-Lake and South—Lake, respectively. The range
of phase angle variation is specified to be £10°. The following combinations of phase angles
give the boundaries:

e Point A: ¢pg; = 10°, and ¢pgr = —10°;

e Point B: ¢ps; = 10°, and ¢pg, = 10°;

e Point C: ¢pg; = —10°, and ¢pg, = —10°;
e Point D: ¢pg; = —10°, and ¢pg, = 10°.

Extensive power flow simulations verify the feasibility region shown in Figure 4.11 for
this example. For instance, simulations are presented in Table 4.6, where the phase shifter
parameters, initial conditions, and control targets are given.

As expected, all the power flows specified inside the feasible region are successfully
upheld (Cases 1-3). Power flows specified outside the feasibility region lead to phase-shifter
limits violations; these are indicated by an asterisk. The size of the feasible active power
control region is a function of the phase angle controller range; as the range increases so too
does the sizes of the regions.
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Table 4.6 Feasible active power flow control by PS1 and PS2

Final phase angle
value (deg)

Active power flow
North-Lake (MW)

Active power flow
South-Lake (MW)

Case Iteration dps1 Ops> Specified Final Specified Final
1 4 —5.64 —3.62 50 50 30 30
2 4 8.7 8.78 -5 -5 70 70
3 4 -76 6.62 70 70 —15 —15
4 7 10" 0.96 -5 22 30 30
5 7 —10" —4.87 70 66.7 30 30
6 6 5.2 107 30 30 -20 —13.5
7 7 —7.87 —10" 50 50 70 54
8 9 10" 10" -10 13.8 -30 -7.6

* Phase-shifter

4.5 FURTHER CONCEPTS IN POWER FLOWS

limit violation.

4.5.1 Sparsity-oriented Solutions

When dealing with large-scale electrical power systems, the formation of actual matrices is
not desirable because of the exorbitant processing times associated with their numerical
solution. Instead, the Jacobian and nodal admittance matrices of the power system are stored

! P
2 Column
3 Value
) Nextpt
2 X nb _1 '
Column
27
Va ue

Column

Value

L

Column

iNextptb

Va ue

Column

Value

Figure 4.12 Linked lists for storing a sparse Jacobian matrix. Note: ptr, pointer. Redrawn, with
permission, from C.R. Fuerte-Esquivel, E. Acha, S.G. Tan, and J.J. Rico, ‘Efficient Object Oriented
Power System Software for the Analysis of Large-scale Networks Containing FACTS Controlled
Branches’, IEEE Trans. Power Systems 3(2) 464-472, © 1998 IEEE
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and processed in vector form, where only nonzero elements are explicitly handled. In
computer languages with no linked list facilities several one-dimensional arrays and skilful
programming schemes are required in order to obtain efficient power flow analysis
solutions. In modern programming languages such as C**, programming efforts are greatly
reduced owing to the existence of pointers and structures.

In theory, C** allows sparsity techniques to be implemented following a rather purist
object-oriented programming (OOP) approach. However, this programming philosophy
incurs excessive cpu overheads. Alternatively, a more efficient OOP approach may be
adopted where sparsity is implemented using an array of pointers pointing to structures.
Structures allow the encapsulation, in a single variable, of all the information associated
with a sparse coefficient (e.g. value, column, and pointer to next element). Pointers are used
to move from one structure to another. This is illustrated in Figure 4.12 for the case of a
system containing n, buses.

An array of pointers is created, the size of which equals the number of rows in the matrix.
Each element points to the address of the start of a list. Moreover, one list is created for each
row. In the case of conventional power flows, where storage locations are kept for the slack
bus, an array of pointers of size equal to 2 X (n, — 1) is created, where n,, is the number of
buses in the network. Each list consists of an array of structures used to store information
associated with off-diagonal Jacobian elements. The information associated with diagonal
elements is stored in a separate array of structures.

4.5.2 Truncated Adjustments

The Newton—Raphson algorithm may perform poorly when solving large-scale power
systems that are either heavily loaded or contain a substantial number of power system
controllers in close proximity, such as LTCs and phase shifters. In such circumstances, large
increments in the state variables may take place during the iterative solution, with this in
turn inducing large AP and AQ residual terms. The result may be poor convergence, or
more seriously, divergent solutions.

Such unwanted problems can be avoided quite effectively by limiting the size of
correction, with the actual computed adjustments being replaced by truncated adjustments.
This is a straightforward software solution to a common problem when dealing with utility-
size power systems.

4.5.2.1 Test case of fruncated adjustments involving three
load tap-changing transformers

The AEP30 test network (Freris and Sasson, 1968) modified to assess the impact of
truncated LTC solutions. The network contains two generators and four synchronous
condensers. Transformers connected between buses 4—-12, 6-10, and 27-28 are taken to be
LTC transformers. The nodal voltage magnitudes at buses 4, 6, and 12 are controlled at 1, 1,
and 1.04 p.u., respectively, using the primary taps of the three LTCs. The transformer
connected between buses 6-9 is taken to be a phase shifter with a fix tap on the primary
winding of 1/—-3.75°.
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To show the effectiveness of truncated solutions, two types of adjustments are carried out:

e Truncation of the size of correction (TA);
o Use of full correction (NTA).

Adjusted solutions are achieved in 6 iterations to a power mismatch tolerance of le —12.
However, the algorithm fails to reach convergence if the state variable increments are not
truncated. This is illustrated in Figure 4.13, where maximum active and reactive power
mismatches for both kinds of adjustments are shown.
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Figure 4.13 Convergence profile as a function of power mismatch

Mismatch (p.u)

The final LTC parameters are shown in Table 4.7. It is assumed in the study that none of
the LTCs violates tap limits. The active and reactive powers generated by the two
synchronous generators (GE) and four synchronous condensers (CO) are shown in Table
4.8, where it is shown that one generator and two condensers hit their upper reactive power
limits.

Table 4.7 Final settings of power system controllers

Controller Magnitude (p.u.) Angle (deg)
LTC 4-12 0.9013 0.00
LTC 6-10 0.8821 0.00
LTC 27-28 1.0667 0.00
PS 6-9 1.0000 —3.5

Note: LTC, load tap changer; PS, phase shifter.
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Table 4.8 Power generation

Source Active power (MW) Reactive power (MVAR)
GE-1 261.29 -3.1

GE-2 40.0 50.0"

CO-5 0.0 40.0"

CO-8 0.0 40.0"

CO-11 0.0 13.17

CO-13 0.0 —-2.27

* Violation reactive power limit.
Note: GE, generator; CO, condenser.

4.5.3 Special Load Tap Changer Configurations

Groups of LTCs may be operated in a coordinated fashion enabling more general control
strategies than those afforded by a single LTC. Series and parallel LTC configurations are
the most obvious possibilities. The series condition occurs when one or more LTCs regulate
the nonregulated terminal of another LTC. This situation is shown in Figure 4.14(a), in
which LTC 1 regulates bus k, and LTC 2 regulates bus m. The parallel condition occurs
when bus £ is regulated by two or more LTCs, as shown in Figure 4.14(b). It must be noted
that buses m and n may not necessarily be electrically connected.

m OPEN n
n LTC 2 m LTC 1 k
T, T, T, T,
—ﬂ_@[@#
PQ PVT PVT
k PVT

(@) (b)

Figure 4.14 Control configurations: (a) series and, (b) parallel. Reproduced, with permission, from
C.R. Fuerte-Esquivel, E. Acha, S.G. Tan, and J.J. Rico, ‘Efficient Object Oriented Power System
Software for the Analysis of Large-scale Networks Containing FACTS Controlled Branches’, IEEE
Trans. Power Systems 3(2) 464—472, © 1998 IEEE

The parallel condition does not belong to the category of single criterion control, where
only one control variable is adjusted in order to maintain another dependent variable at a
specified value. When two or more LTCs are controlling one nodal voltage magnitude
multiple solutions become a possibility because the number of unknown variables is greater
than the number of equations. An entire group of parallel LTCs may be treated as a single
control criterion if they are started from the same tapping initial condition. One equation and
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one variable corresponding to the common tap position may be sufficient to describe the
group performance. This Equation is linearised with respect to the common tap and
incorporated in the overall Jacobian Equation (4.57).

From the LTC set, the LTC that draws less reactive power is selected to be the master, and
its tapping position becomes the master tapping position. Since the various LTCs in the
group may have the same tapping position but different tap limits, it may be appropriate to
consider the following options:

e If an LTC different from the master hits one of its limits, the tapping position is fixed at
the offending limit and the LTC is removed from the linearised system of equations.

o If the master LTC hits a limit, it follows the same treatment as a slave LTC. Moreover, a
new master is selected from the remaining active LTCs. If no active LTC remains
following limit violation by the master then the bus becomes PQ.

A sensitivity factor, o, may be used when the various LTCs in the parallel set have different
tapping positions; « refers the slave tap position to the master tap position.

Assuming a group of n, LTCs operating in parallel, and taking T} to be the master
position, the sensitivity factor is calculated as:

G = 7 p=1..,n,. (4.97)
14

The expression used for computing the Jacobian entry for the master tap position is also
used for the other LTCs in the group. The tap is adjusted by using Equation (4.97), where
each LTC in the group has its own adjusting pattern and where the sensitivity factor is taken
into account:

. . AT\ Y
7O — -1 kY -1 -
P~ p <7k) P p=1...,m. (4.98)

An alternative adjusting strategy is given by Equation (4.98), where equal corrections are
given to all the LTCs in the group:

‘ . ATNY o
TI(’I) = TI(’I_I) + (Tk> Oz]()‘)TIEl_l)’ p=1.., np. (4'99)
k

4.5.3.1 Test case of sensitivity factors in parallel
load tap-changing operation

The AEP30 test system (Freris and Sasson, 1968) is modified to include four LTCs. The
nodal voltage magnitude at bus 6 is kept at 1.01 p.u. with LTCs 6-9 and 6-10 exerting
parallel control in bus 6. The voltage magnitude at buses 4 and 27 are controlled at 1.01 p.u.
and 1p.u. by LTCs 4-12 and 27-28, respectively. The transformers reactance and off-
nominal tap values given in (Freris and Sasson, 1968) are taken to be on the secondary and
primary windings, respectively. The primary windings of the four transformers are assumed
connected to buses 6, 4, and 27, respectively.
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Table 4.9 Initial position of load tap changer (LTC) taps

Case LTC 6-9 LTC 6-10 LTC 4-12 LTC 27-28
1 0.978 0.969 0.932 0.968
2 1.1 1.1 1.1 1.1
3 1.0 1.0 1.0 1.0
4 0.9 0.9 0.9 0.9
5 1.0 0.9 1.0 1.0

Following on the discussion started in Section 4.5.3, the adjustment of the two LTCs
operating in parallel is carried out by using: (1) sensitivity factors and (2) equal updating of
taps. A comparison is made for the various cases given in Table 4.9. The number of
iterations taken to obtain the solution as well as the final tapping values required to maintain
the nodal voltage magnitudes at the specified values are given in Table 4.10.

As expected, both adjusting methods give the same solution for a specified LTC initial
condition. However, the use of sensitivity factors guarantees better results in terms of the
number of iterations required to get to the solution, compared with the case in which
identical tapping updates is carried out.

Table 4.10 Final position of load tap changer (LTC) taps: (a) updating using
sensitivity factors and (b) equal updating

Tap position

Case Iteration LTC 6-9 LTC 6-10 LTC 4-12 LTC 27-28
(@)
1 5 0.976 0.967 0.915 0.998
2 5 0.974 0.974 0.915 0.998
3 5 0.974 0.974 0.915 0.998
4 5 0.974 0.974 0.915 0.998
5 5 1.008 0.907 0.913 0.995
(b)
1 6 0.976 0.967 0.915 0.998
2 5 0.974 0.974 0.915 0.998
3 5 0.974 0.974 0.915 0.998
4 5 0.974 0.974 0.915 0.998
5 10 1.008 0.908 0.913 0.995

4.6 SUMMARY

In this chapter we have addressed the basic theory of power flows. Building upon
elementary concepts afforded by circuit theory and complex algebra, we have derived
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equations for active and reactive powers injections at a bus. Owing to the idiosyncrasies of
the electrical power network, the mathematical model that describes its operation during
steady-state is nonlinear. Furthermore, for most practical situations, the power network is a
very large-scale system. Hence, solution of the nonlinear set of equations, which must be
reached by iteration, requires a robust and efficient numerical technique. For several decades
the Newton—Raphson method, with its quadratic convergence characteristic, has proved
invaluable in solving the power flow problem. The additional burden imposed on the
numerical solution by the many constraint actions resulting from the various power system
controllers in the network does not impair the ability of the Newton—Raphson method to
converge in a quadratic fashion. Derived Newton—Raphson formulations, such as the fast
decoupled method, also possess strong convergence characteristics. Both methods have been
explained in full detail in this chapter. The calculated power equations, mismatch powers,
and Jacobian terms all have been derived from first principles. The relevant equations
making up the Newton—Raphson and fast decoupled methods have been coded in Matlab™
and the programs used to solve a classical test case. The test system is small and yet it
provides sufficient realism and flexibility for the reader to explore different loading
scenarios, active power generator schedules, and transmission-line parameters. This is
something we certainly encourage the user to do.

The material presented in this chapter progressed to tackle the most specialised issue of
constrained power flow solutions. To this end, flexible models of tap-changing and phase-
shifting transformers were developed from first principles. Together with the generator,
these two power controllers are capable of providing automatic regulation at specific points
of the network provided their design limits are not exceeded. The generator and the tap-
changing transformer provide voltage magnitude regulation whereas the phase-shifting
transformer provides active power regulation. Inclusion of such regulating characteristics
within the power flow solution is a matter of great engineering importance. However, they
introduce additional complexity in power flow theory and may impose an extra burden on
the numerical solution. We believe that sufficient breadth and depth was provided in the
second part of this chapter to make accessible the concepts associated with constrained
power flow solutions. This is in preparation for the widespread constrained solutions
associated with the various FACTS controllers presented in the next chapter.
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Power Flow Including
FACTS Controllers

5.1 INTRODUCTION

FACTS controllers narrow the gap between the noncontrolled and the controlled power
system mode of operation, by providing additional degrees of freedom to control power
flows and voltages at key locations of the network (Hingorani and Gyugyi, 2000). Key
objectives of the technology are: to increase transmission capacity allowing secure loading
of the transmission lines up to their thermal capacities; to enable better utilisation of
available generation; and to contain outages from spreading to wider areas (Song and Johns,
1999).

In order to determine the effectiveness of this new generation of power systems
controllers on a network-wide basis, it has become necessary to upgrade most of the
analysis tools on which power engineers rely to plan and to operate their systems (IEEE/
CIGRE, 1995). For the purpose of steady-state network assessment, power flow solutions
are probably the most popular kind of computer-based calculations carried out by planning
and operation engineers. The reliable solution of power flows in real-life transmission and
distribution networks is not a trivial matter and, over the years, owing to its very practical
nature, many calculation methods have been put forward to solve this problem. Among
them, Newton—Raphson type methods, with their strong convergence characteristics, have
proved the most successful and have been embraced by industry (Tinney and Hart, 1967).

In preparation for the material covered in this chapter, in Chapter 4 we provided a
thorough grounding on conventional power flow theory with particular reference to the
Newton—Raphson method. Similar material can also be found in many of the excellent
power system analysis books that address the subject (Arrillaga and Arnold, 1990; Grainger
and Stevenson, 1994; Kundur, 1994). The aim of this chapter is to introduce a systematic
and coherent way to study models and methods for the representation of FACTS controllers
in power flow studies. This aspect of power flow theory has not been covered in existing
textbooks in the breadth and depth that the importance and complexity of the subject
demands (Fuerte-Esquivel et al., 1998). It should be emphasised that the material presented
in this chapter is a distillation of the wealth of research contributions on the subject that have

FACTS: Modelling and Simulation in Power Networks.
Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez and César Angeles-Camacho
© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85271-2
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been published over recent years (Ambriz-Pérez, Acha, and Fuerte-Esquivel, 2000; Fuerte-
Esquivel and Acha, 1996, 1997; Fuerte-Esquivel, Acha, and Ambriz-Pérez, 2000a, 2000b,
2000c; Nabavi-Niaki and Iravani, 1996; Noroozian and Andersson, 1993). It is in this
respect that the chapter gives an up-to-date and authoritative account of the power flow
models and methods of power electronics-based controllers currently available in the power
transmission industry.

5.2 POWER FLOW SOLUTIONS INCLUDING FACTS CONTROLLERS

The technical literature is populated with clever and elegant solutions for accommodating
models of controllable plant in Newton—Raphson power flow algorithms; load tap-changing
(Itc) and phase-shifting transformers are early examples of such work. The model-
ling approach used to represent controllable equipment can be broadly classified into two
main categories, namely, sequential and simultaneous solution methods. The former
approach is amenable to easier implementations in Newton—Raphson algorithms. However,
its major drawback is that the bus voltage magnitudes and angles are the only state variables
that are calculated in true Newton fashion, and a subproblem is formulated for updating the
state variables of the controllable devices at the end of each iteration. Such an approach
yields no quadratic convergence (Acha, 1993; Chang and Brandwajn, 1988).

Alternatively, the unified approach combines the state variables describing controllable
equipment with those describing the network in a single frame of reference for unified,
iterative solutions using the Newton—Raphson algorithm (Ambriz-Pérez, Acha, and Fuerte-
Esquivel, 2000; Fuerte-Esquivel and Acha, 1996, 1997; Fuerte-Esquivel, Acha, and Ambriz-
Pérez, 2000a, 2000b, 2000c; Fuerte-Esquivel et al., 1998). The method retains Newton’s
quadratic convergence characteristics.

The unified approach blends the alternating-current (ac) network and power system
controller state variables in a single system of simultaneous equations:

f(XnA(J,RnF) = Oa
g(XnAC>RnF) = 07

where X;,,c stands for the Ac network state variables, namely, nodal voltage magnitudes and
phase angles, and R, stands for the power system controller state variables.

The increase in the dimensions of the Jacobian, compared with the case when there are no
power system controllers, is proportional to the number and kind of such controllers. In very
general terms, the structure of the modified Jacobian is shown in Figure 5.1.

Building upon the basic principles of steady-state operation and modelling of FACTS
controllers described in Chapter 2 and the power flow theory detailed in Chapter 4, key
aspects of modelling implementation of FACTS controllers are presented in this chapter,
within the context of the Newton—Raphson power flow algorithm. The FACTS controllers
that receive attention are:

(5.1)

Static VAR compensator (SVC);

Thyristor-controlled series compensator (TCSC);

Static compensator (STATCOM);

Unified power flow controller (UPFC);

High-voltage direct-current-based voltage source converter (HVDC-VSC).
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Figure 5.1 Augmented Jacobian

5.3 STATIC VAR COMPENSATOR

Conventional and advanced power flow models of SVCs are presented in this section. The
advanced models depart from the conventional generator-type representation (Erinmez,
1986; IEEE SSCWG, 1995) of the SVC and are based instead on the variable shunt
susceptance concept. In the latter case, the SVC state variables are combined with the nodal
voltage magnitudes and angles of the network in a single frame of reference for unified,
iterative solutions using the Newton—Raphson method. Two models are presented in this
category (Ambriz-Pérez, Acha, and Fuerte-Esquivel, 2000), namely, the variable shunt
susceptance model and the firing-angle model. Moreover, a compound transformer and SVC
model based on the SVC firing-angle representation is also given.

5.3.1 Conventional Power Flow Models

Early SVC models for power flow analysis treat the SVC as a generator behind an inductive
reactance (Erinmez, 1986; IEEE SSCWG, 1995). The reactance accounts for the SVC
voltage-regulation characteristic.

A simpler representation assumes that the SVC slope is zero; an assumption that may be
acceptable as long as the SVC operates within its design limits, but one which may lead to
gross errors if the SVC is operating close to its limits (Kundur, 1994). This point is
illustrated in Figure 5.2 with reference to the upper characteristic when the system is
operating under low loading conditions. If the slope is taken to be zero then the generator
will violate its minimum limit, point Ay, _,. However, the generator will operate well within
limits if the SVC voltage—current slope is taken into account at, point A.
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Figure 5.2 Static VAR compensator and power system voltage—current characteristics. From P.P.
Kundur, Power System Stability and Control, © 1994 McGraw-Hill. Reproduced by permission of
The McGraw-Hill Companies

The reasons for including the SVC voltage—current slope in power flow studies are
compelling. The slope can be represented by connecting the SVC model to an auxiliary bus
coupled to the high-voltage bus by an inductive reactance consisting of the transformer
reactance and the SVC slope, in per unit (p.u.) on the SVC base. The auxiliary bus is
represented as a PV bus and the high-voltage bus is taken to be PQ. This model is shown
schematically in Figure 5.3(a). Alternatively, the SVC coupling transformer may be
represented explicitly as shown in Figure 5.3(b).

k High-voltage bus (PQ)
XsL
k High voltage bus (PQ) Ve Auxiliary bus (PV)
Xr-sL Xr %

Low voltage bus

Vier Auxiliary bus (PV) (PV withremote control)

() (b)

Figure 5.3 Conventional static VAR compensator power flow models: (a) slope representation and
(b) slope and coupling transformer representation
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These SVC representations are quite straightforward but are invalid for operation outside
the limits (IEEE SSCWG, 1995). In such cases, it becomes necessary to change the SVC
representation to a fixed reactive susceptance, given by

(5.2)

where Vgyc is the newly freed voltage due to the reactive power limit Qy;,, being exceeded.

The combined generator—susceptance representation yields accurate results. However, a
drawback of such a representation is that both models use a different number of buses. The
generator uses two or three buses, as shown in Figure 5.3, whereas the fixed susceptance
uses only one bus. In Newton—Raphson power flow solutions such a difference in the number
of buses required to represent the same plant component may lead to Jacobian reordering
and redimensioning during the iterative solution. Also, extensive checking becomes
necessary in order to verify whether or not the SVC has returned to operation within limits
at any stage of the iterative solution.

It should be remarked that for operation outside limits the SVC must be modelled as a
susceptance and not as a generator set at its violated limit, Qy;;,,. Ignoring this point will lead
to inaccurate results. The reason is that the amount of reactive power drawn by the SVC is
given by the product of the fixed susceptance, Bgy, and the nodal voltage magnitude, V.
Since V, is a function of network operating conditions, the amount of reactive power drawn
by the fixed susceptance model differs from the reactive power drawn by the generator
model; that is,

Qiim # —Brix V. (5.3)

This point is exemplified in Figure 5.4, where the reactive power output of the generator is
set at 100 MVAR. This value is constant as it is voltage-independent. The result given by the

12
110 -
108 I -
» —— Generator model pd
106 | Sus -

I ———Susceptance model ~
104 i
102 + -
100
98 e
96 | e
94 + o
92 | e
9 7

1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1
095 096 097 098 0.99 1.00 1.01 1.02 1.03 1.04 1.05
Voltage magnitude (p.u.)

Reactive power (MVAR)
\

Figure 5.4 Comparison of reactive power drawn by the generator and susceptance models.
Reproduced, with permission, from H. Ambriz-Pérez, E. Acha, and C.R. Fuerte-Esquivel, ‘Advanced
SVC Models for Newton—Raphson Load Flow and Newton Optimal Power Flow Studies’, I[EEE Trans.
Power Systems 15(1) 129-136, © 2000 IEEE
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constant susceptance model varies with nodal voltage magnitude. The voltage range
considered is 0.95-1.05 p.u. The susceptance value, on a 100 MVA base, is of 1p.u.

5.3.2 Shunt Variable Susceptance Model

In practice the SVC can be seen as an adjustable reactance with either firing-angle limits or
reactance limits (Ambriz-Pérez, Acha, and Fuerte-Esquivel, 2000). The equivalent circuit
shown in Figure 5.5 is used to derive the SVC nonlinear power equations and the linearised
equations required by Newton’s method.

Vi

Isvc l

Bsvc

Figure 5.5 Variable shunt susceptance. Reproduced, with permission, from H. Ambriz-Pérez, E.
Acha, and C.R. Fuerte-Esquivel, ‘Advanced SVC Models for Newton—-Raphson Load Flow and
Newton Optimal Power Flow Studies’, IEEE Trans. Power Systems 15(1) 129-136, © 2000 IEEE

With reference to Figure 5.5, the current drawn by the SVC is
Isve = jBsve Vi, (54)

and the reactive power drawn by the SVC, which is also the reactive power injected at bus %,
is

Osve = Or = =V} Bsvc. (5.5)

The linearised equation is given by Equation (5.6), where the equivalent susceptance Bsyc is
taken to be the state variable:

[APk](i) {0 0 }(i)[ Ab, }(i) 56)
AQv| |0 Ok ABsye/Bsve | '

At the end of iteration (i), the variable shunt susceptance Bsyc is updated according to
0
(i) (i-1) ABgyc (1)
Bgyc = Bgye + (—B > Bgyc- (5.7)
svc

The changing susceptance represents the total SVC susceptance necessary to maintain the
nodal voltage magnitude at the specified value.
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Once the level of compensation has been computed then the thyristor firing angle can be
calculated. However, the additional calculation requires an iterative solution because the
SVC susceptance and thyristor firing angle are nonlinearly related.

5.3.3 Static VAR Compensator Computer Program in Matlab®™ Code

Program 5.1 incorporates the SVC representation, modelled as a variable shunt susceptance
model, within the Newton—-Raphson power flow program given in Section 4.3.6. The
functions PowerFlowsData, YBus, and PQflows are also used here. In the main SVC
Newton—Raphson program, the function SvCBData is added to read the SVC data,
SVCNewtonRaphson replaces NewtonRaphson, and SVCPQflows is used to calculate
power flows and losses in the SVC.

Function SVCNewtonRaphson borrows the following functions from NewtonRaphson:
NetPowers; CalculatedPowers; GeneratorsLimits;, PowerMismatches; Newton-
RaphsonJacobian; and StateVariablesUpdates. Furthermore, four new functions are
added to cater for the SVC representation: SvCCalculatedPowers; SVCUpdates;
SVCLimits; and SVCNewtonRaphsonJacobian.

Program 5.1 Program written in Matlab® to incorporate static VAR compensator (SVC)
variable shunt susceptance model within the Newton—Raphson power flow algorithm

% - - — Main SVC Program

PowerFlowsData; $Function to read network data

SVCBData; %$Function to read Static VAR Compensator data

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,ntl,nbb);
[VM,VA,it,B] = SVCNewtonRaphson(tol,itmax,ngn,nld,nbb,bustype, ...
genbus, loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,VA, NSVC, ...

SvCsend,B,BLo, BHi,TarVol,VSta);

[PQsend,PQrec,PQloss,PQbus] = PQflows(nbb,ngn,ntl,nld,genbus, loadbus,
tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,QLOAD,VM,VA);

[QSVC] = SVCQpower (VM,NSVC, SVCsend, B) ;

$Print results

it gNumber of iterations

VM ¢Nodal voltage magnitude (p.u)
VA=VA*180/pi $Nodal voltage phase angles (Deg)
Qsvce $Final reactive power (p.u.)

B $Final susceptance (p.u)

$End of MAIN FOR SVC SHUT VARIABLE SUSCEPTANCE
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function [VM,VA,it,B] = SVCNewtonRaphson(tol,itmax,ngn,nld,nbb, ...
bustype, genbus, loadbus, PGEN,QGEN, QMAX,QMIN, PLOAD,QLOAD,YR, YT, ...
VM, VA,NSVC, SVCsend, B, BLo,BHi, TarVol,VSta) ;

% GENERAL SETTINGS
flag=0;
it=1;

% CALCULATE NET POWERS
[PNET,QNET] = NetPowers (nbb,ngn,nld, genbus, loadbus, PGEN, QGEN, ...
PLOAD, QLOAD) ;

while (it < itmax & flag==0)

% CALCULATED POWERS
[PCAL,QCAL] = CalculatedPowers(nbb,VM,VA,YR,YI);

%SVC CALCULATED POWER

[QCAL] = SVCCalculatePower (QCAL,VM,NSVC,SVCsend, B)

% POWER MISMATCHES
[DPQ,DP,DQ,flag] = PowerMismatches (nbb,tol,bustype,flag, PNET, ...
ONET, PCAL,QCAL);
if flag ==
break
end
% JACOBIAN FORMATION
[JAC] = NewtonRaphsonJacobian (nbb,bustype,PCAL,QCAL,DPQ,VM,VA, ...
YR, YI);
% MODIFICATION THE JACOBIAN FOR SVC
[JAC] = SVCJacobian(JAC,VM,NSVC,SVCsend, B,VSta);

% SOLVE JOCOBIAN
D = JAC\DPQ';

% UPDATE THE STATE VARIABLES VALUES, WITH TRUNCATED CORRECTIONS
% IF NECESSARY (VM increments < +-0.1 p.u. and VA increments < +- 5 deg)
[VA,VM] = StateVariablesUpdating(nbb,D,VA,VM,it);

% UPDATE THE SVC VARIABLES
[VM,B] = SVCUpdating(VM,D,NSVC, SVCsend, B,BLo,BHi,TarVol,VSta);
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$CHECK SUSCEPTANCE FOR LIMITS
[B] = SVCLimits (NSVC,B,BLo,BHi);

it=1it + 1;
end

$Function to calculate injected bus powers by the SVC function
[QCAL]= SVCCalculatePower (QCAL,VM,NSVC, SVCsend, B) ;
for ii =1 : NSVC

QCAL (SVCsend(ii) )=QCAL(SVCsend(ii))-VM(SVCsend(ii))"2*B(ii);
end

$Function to upgrade the Jacobian matrix with SVC elements
function [JAC] = SVCJacobian(JAC,VM,NSVC,SVCsend,B,VSta);
for ii =1 : NSVC

if (VSta(ii) ==1)
$Delete the voltage magnitud for the SVC bus
JAC( : , 2*SVCsend(ii) ) =0;

JAC(2*SVCsend(ii)-1,2*SVCsend(ii)-1) = ...
JAC(2*SVCsend(ii)- 1,2*SVCsend(ii)-1)- ...
VM(SVCsend(ii))"2*B(ii);
JAC(2*SVCsend(ii),2*SVCsend(ii))= - VM(SVCsend(ii))" 2*B(ii);
end
end

$Function to update SVC state variable

function [VM,B] = SVCUpdating(VM,D,NSVC,SVCsend,B,BLo,BHi,TarVol, .

vSta);
for ii =1 : NSVC

if (VSta(ii) ==1)
% Adjust the Voltage Magnitud target
VM(SVCsend(ii)) = TarVol(ii);

% Truncation
value = B(ii)*D(2*SVCsend(ii));
value2 = D(2*SVCsend(ii));
if (value >0.1)
value2 = 0.1/B(ii);
elseif (value<-0.1)
value2 = -0.1/B(ii);
end
B(ii) =B(ii) + B(ii)*value2;
end
end

161
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$Function to check the susceptance limits
function [B] = SVCLimits (NSVC,B,BLo,BHi);
% Check susceptance limits in SVC
for ii =1 : NSVC
if (B(ii) > BHi(ii))
B(ii) =BHi(ii);
elseif (B(ii) < BLo(ii))
B(ii) = BLo(ii);
end
end

$Function to calculate the reactive power in SVC
function [QSVC] = SVCQpower (VM,NSVC,SVCsend,B) ;
for ii =1 : NSVC

QSVC(ii) = -VM(SVCsend(ii))"2*B(ii);
end

5.3.4 Firing-angle Model

An alternative SVC model, which circumvents the additional iterative process, consists in
handling the thyristor-controlled reactor (TCR) firing angle « as a state variable in the
power flow formulation (Ambriz-Pérez, Acha, and Fuerte-Esquivel, 2000). The variable «
will be designated here as agyc, to distinguish it from the TCR firing angle o used in the
TCSC model.

The positive sequence susceptance of the SVC, given by Equation (2.20), is used in
Equation (5.5):

_Vlg Xc .
0= L -2 o(x — asve) + sin(asvel] (58

From Equation (5.8), the linearised SVC equation is given as

U]

N ag 1" (5.9)
AQk 0 ok [COS(ZOstc) — 1] AQSVC ’ '
7TXL

At the end of iteration (i), the variable firing angle agyc is updated according to

i i1 i
a(S\)/c = a(svc) + A04(5\)/0 (5.10)

5.3.5 Static VAR Compensator Firing-angle Computer
Program in Matlab™ Code

Program 5.2 incorporates the SVC firing-angle (SVC-FA) model within the Newton—
Raphson power flow program given in Section 4.3.6. The functions PowerFlowsData,
YBus, and PQflows are also used here. In the main SVC-FA Newton—Raphson program, the
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function SVCFAData is added to read the SVC-FA data, SVCFANewtonRaphson replaces
NewtonRaphson, and SVCFAPQflows is used to calculate power flows and losses in the
SVC-FA model.

Function SVCFANewtonRaphson borrows the following functions from Newton-
Raphson: NetPowers; CalculatedPowers; PowerMismatches; NewtonRaphson-
Jacobian; and StatevVariablesUpdates. Furthermore, four new functions are added
to cater for the SVC-FA representation, namely: SVCFACalculatedPowers; SVCFA-
Updates; SVCFALimits; and SVCFANewtonRaphsonJacobian.

PROGRAM 5.2 Program written in Matlab® to incorporate the static VAR compensator
firing-angle (SVC-FA) model within the Newton—Raphson power flow algorithm

% — - — Main SVC-FA Program

PowerFlowsData; $Function to read network data

SVCFAData; %$Function to read SVC-FA data

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,ntl,nbb);
[VM,VA,it,FA] = SVCFANewtonRaphson(tol,itmax,ngn,nld,nbb,bustype,...
genbus, loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,VA,NSVC, ...
SvCsend,FA,Xc,X1,FALo,FAHi,TarVol,VSta);

[POsend,PQrec,PQloss,PQbus] = PQflows (nbb,ngn,ntl,nld, genbus, ...
loadbus, tlsend,tlrec,tlresis,tlreac,tlcond, tlsuscep,PLOAD,QLOAD, ...
VM,VA);

[QSVC,B] = SVCFAQpower (VM, NSVC, SVCsend, FA, Xc,X1) ;

$Print online results

it $Number of iterations

VM $Nodal voltage magnitude (p.u)
VA=VA*180/pi %Nodal voltage phase angles (Deg)
QSsvC $Final reactive power value(p.u.)
B $Final susceptance value (p.u.)

FA=FA*180/pi %Final firing angle value (Deg)
$End of MAIN SVC-FA PROGRAM

function [VM,VA,it,FA] = SVCFANewtonRaphson(tol,itmax,ngn,nld,nbb,...
bustype, genbus, loadbus, PGEN,QGEN, QMAX,OMIN, PLOAD,QLOAD,YR,YI,VM, ...
VA,NSVC,SVCsend, FA,Xc,X1,FALo,FAHi,TarVol,VSta);

% GENERAL SETTINGS
flag=0;
it=1;
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% CALCULATE NET POWERS
[PNET,QNET] = NetPowers (nbb,ngn,nld, genbus, loadbus, PGEN, QGEN, ...
PLOAD, QLOAD) ;

while ( it < itmax & flag==0 )
% CALCULATED POWERS
[PCAL,QCAL] = CalculatedPowers (nbb,VM,VA,YR,YI);

$SVC CALCULATED POWER
[QCAL,B] = SVCFACalculatePower (QCAL,VM,NSVC,SVCsend,FA,Xc,X1);

% POWER MISMATCHES
[DPQ,DP,DQ,flag] = PowerMismatches (nbb, tol,bustype,flag, PNET,QONET, ...
PCAL,QCAL);

% JACOBIAN FORMATION
[JAC]=NewtonRaphsonJacobian(nbb,bustype, PCAL,QCAL,DPQ,VM, ...
VA,YR,YT);

% SVC-FA JACOBIAN UPDATING
[JAC]=SVCFAJacobian(JAC,VM,NSVC,SvCsend,FA,X1,B,VSta);

% SOLVE FOR THE STATE VARIAVLES VECTOR
D = JAC\DPQ"' ;

% UPDATE THE STATE VARIABLES
[VA,VM] = StateVariablesUpdating(nbb,D,VA,VM,it);

% UPDATE THE SVC-FA VARIABLES
[VM,FA] = SVCFAUpdating(VM,D,NSVC,SVCsend,FA,FALo,FAHi, TarvVol, ...
VSta);

$CHECK SVC-FA FIRING ANGLE FOR LIMITS VIOLATIONS
[FA] = SVCFALimits (NSVC,FA,FALo,FAHi);

it =it +1;
end

$Function to calculate injected bus powers by the SVC-FA
function [QCAL,B] = SVCFACalculatePower (QCAL,VM,NSVC,SVCsend,FA, ...
Xc,X1);
for ii =1 : NSVC
FA(ii) = FA(ii)*pi/180;
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B(ii)
B(ii)

(2% (pi-FA(ii)) + sin(2*FA(ii)))*Xc(ii)/pi;
(X1(ii) - B(ii))/(Xc(ii)*X1(ii));

QCAL(SVCsend(ii))=QCAL(SVCsend(ii))-VM(SVCsend(ii))"2*B(1ii);
end

$Function to add up the SVC-FA elements to Jacobian matrix function
[JAC] = SVCFAJacobian (JAC,VM,NSVC, SVCsend, FA,X1,B,VSta);
for ii =1 : NSVC
if VSta(ii) ==
$Delete the voltage magnitud for the SVC bus
JAC(:,2*SVCsend(ii))=0;
% Element add by the SVC to the Jacobian
FA(ii)=FA(ii)*pi/180;
JAC(2*SVCsend(ii)-1,2*SVCsend(ii)-1) = JAC(2*SVCsend(ii)-1,2*...
SVCsend(ii)-1) - VM(SVCsend(ii))"2*B(ii);
JAC(2*SVCsend(ii),2*SVCsend(ii))= 2*VM(SVCsend(ii))"2*...
(cos(2*FA(ii))-1)/(X1(ii)*pi);
end
end

$Function to update SVC-FA state variable
function[VM,FA]=SVCFAUpdating(VM,D,NSVC,SVCsend,FA,FALo,FAHi, ...
TarVol,VSta);
for ii =1 : NSVC
if (VSta(ii) ==1)
% Adjust the Volatge Magnitud target
VM(SVCsend(ii)) = Tarvol(ii);
% Truncation
value = D(2*SVCsend(ii));
if (value > 0.5236)
value = 0.5236;
elseif (value < -0.5236)
value = -0.5236;
end
FA(ii) = FA(ii) + value*180/pi;
if (FA(ii)<0.0)
FA(ii) = FA(ii)*(-1);
end
end
end

$Function to check the firing angle limits
function [FA] = SVCFALimits (NSVC,FA,FALo,FAHi);
$Check SVC-FA Limits
for ii =1 : NSVC

if (FA(ii) > FAHi(ii))
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FA(ii) = FAHi(ii);
elseif (FA(ii) < FALo(ii))
FA(ii) = FALo(ii);
end
end

$Function to calculate the reactive power in SVC
function [QSVC,B] = SVCFAQpower (VM,NSVC,SVCsend,FA,Xc,X1);
for ii =1 : NSVC
FA(ii) = FA(ii)*pi/180;
B(ii) = (2*(pi-FA(ii)) + sin(2*FA(ii)))*Xc(ii)/pi;
B(ii) = (X1(ii) - B(ii))/(Xc(ii)*X1(ii));
QSVC(ii)=-VM(SVCsend(ii))"2*B(ii);
end

5.3.6 Integrated Transformer Firing-angle Model

The SVC firing angle model is extended in this section to include the explicit representation
of the step-down transformer (Fuerte-Esquivel, Acha, and Ambriz-Pérez, 2000a). Both
components are combined to form a single model, which allows for direct voltage
magnitude control at the high-voltage side of the transformer without compromising the
quadratic convergence characteristics of the Newton—Raphson method.

The total admittance of the combined SVC—transformer set, Y1_gvc, as seen from the
high-voltage side of the transformer, consists of the series combination of admittances Yt
and Ysyc, as shown schematically in Figure 5.6.

k \ High-voltage bus (PVB)

Xe _—— ?SZ\ Xsvc

Figure 5.6 Combined static VAR compensator—transformer representation. Reproduced, with
permission, from C.R. Fuerte-Esquivel, E. Acha, and H. Ambriz-Pérez, ‘Integrated SVC and Step-
down Transformer Model for Newton—Raphson Load Flow Studies’, IEEE Power Engineering Review
20(2) 45-46, © 2000 IEEE
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It should be noted that the equivalent admittance, Y1 _gvc, is a function of the SVC firing
angle:

YrYi
Yr-svc(asve) = 4YTT+ SY\;f/c . (5.11)
The admittance of the combined variable shunt compensator is given by
Yr-svc = Gr-svc + jBr-svc, (5.12)
where R
Gr=sve = ———, (5.13)
R} + X,
Xgq
Br_sve = — 55—, 5.14
T-SVC R% +Xéq ( )
Xgq = X1 + Xsvc, (5.15)
Xc Xtcr
Xsve = —0———, 5.16
SVET Xe — Xrer (5.16)
TCXL
Xtcer = . 5.17
TCR 2(77: — Ozsvc) + sin(ZaSVC) ( )
The linearised power flow equations are given as
oG (i)
2 9GT-5vC
Ap, 10 1Y Y nen Ag, 10
k| asve k
= (5.18)
AQy » OBr—gvC Aasve
0 —-Vi———
dasvc
where the Jacobian terms in explicit form are:
oG- Rr oD
0Gr-sve _ _Rr 7 (5.19)
Oasvc D2 dasve
OBr-svc 1 < 0Xsvc oD >
——=—|-D Xegqg=— |, 5.20
dasve DA dasve | Mdasve (5.20)
oD 6XSVC
— =2X , 5.21
Oasvc Mdasve (5:21)
MXsve  2X3yc
=—"%(1—cos2 5.22
dasve X, (1 —cos2asvc), (5.22)
D =R; +Xg,. (5.23)
At the end of iteration (i), the firing angle agyc is updated according to
i i1 i
ofve = alyd + Aafc. (5.24)

5.3.7 Nodal Voltage Magnitude Conftrol using Static
VAR Compensators

The SVC connecting bus is a voltage-controlled bus where the voltage magnitude and active
and reactive powers are specified and either the SVC firing angle, agyc, or the SVC
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equivalent susceptance, Bsyc, are handled as state variables. This bus is defined to be PVB-
type. If agyc or Bsyc are within limits, the specified voltage magnitude is attained and
the controlled bus remains PVB. However, if agyc or Bsyc go outside the limits then these
variables are fixed at the violated limit and the bus becomes PQ. This is, of course, in the
absence of any other controller capable of providing reactive power control at the bus.

The reactive power mismatch values at the controlled buses are used to check whether or
not the SVC is operating within limits, a process that starts just after the reactive power
mismatch at the controlled bus is less than a specified tolerance; a value of le—3p.u. is
normally used.

5.3.8 Control Coordination between Reactive Sources

The use of different kinds of reactive power sources to control voltage magnitude at a given
bus calls for a prioritisation of reactive power sources in order to have a single control
criterion. Synchronous generators are normally selected to be the regulating plant
components with the highest priority, holding all the other reactive power sources fixed
at their initial values as long as the generators operate within limits. If all the generators
connected to the bus violate their reactive power limits then other kinds of reactive power
sources become activated (e.g. SVC). In such a case, the generators’ reactive powers are set
at their violated limits and the bus is transformed from PV to PVB. The control sequence is
shown schematically in Figure 5.7.

Generator active
PV bus

- Reactive
Remains limits
PV bus violation

SVC active
PVB bus

Looking for
active SVC

Reactive
limits
violation

yes LTC active

PVT bus

Remains
PVB bus

Looking for
active LTC

Remains
PVT bus

Figure 5.7 Coordination between nodal voltage magnitude controllers. Note: LTC, load tap charger;
SVC, static VAR compensator
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5.3.9 Numerical Example of Voltage Magnitude Control using
One Static VAR Compensator

The five-bus network (see Figure 5.8) is modified to examine the voltage-control capabilities
of the SVC models. The generators are set to control voltage magnitudes at the Slack bus
(North) and the PV bus (South) at 1.06 p.u. and 1 p.u., respectively. One SVC is placed at
Lake to keep voltage magnitude at that bus at 1 p.u.

131.06\L $ 85.34 45415 4045
North i
4195 4055 19.65 19.59 L-Main
s =
89.11 —>
l $74.06 e 6'78J/ #.25

86.66\L
6.71\L $7.91

20 +j10 —> :
! T $ 275 2.09 60 +]10

40 77.07

Figure 5.8 Power flow results in the five-bus network with one static VAR compensator

In order to compare the various SVC models, three different power flow simulations are
carried out. First, the SVC susceptance model is used to attain the specified voltage
magnitude. The other two simulations are for the firing-angle model and for the integrated
transformer—firing-angle model, respectively. The aim in all cases is to achieve 1 p.u.
voltage magnitude at Lake.

The SVC inductive and capacitive reactances are taken to be 0.288 p.u. and 1.07 p.u.,
respectively. The SVC firing angle is set initially at 140°, a value that lies on the capacitive
region of the SVC characteristic. The SVC transformer impedance is Zr = jO.11 p.u.

In all three cases, the SVC upholds its target value and, as expected, identical power flows
and bus voltages are obtained. Power flows are shown in Figure 5.8, and nodal voltages are
given in Table 5.1. Moreover, the three SVC models contribute the same amount of reactive
power to the system.
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Table 5.1 Nodal voltages of modified network

Network bus

Nodal voltage North  South Lake Main Elm
Magnitude (p.u.) 1.06 1 1 0.994 0.975
Phase angle (deg) O —2.05 —4383 —5.11 —5.80

Convergence is achieved in 5 iterations, satisfying a prespecified tolerance of le — 12 for
all the variables involved. The SVC susceptance values and firing-angle values are shown in
Table 5.2 for each step of the iterative process. It should be noted that the final firing-angle
solutions for the firing-angle model and the combined transformer—firing-angle model differ
slightly because of the inclusion of the reactance of the transformer in the latter model.

Table 5.2 Static VAR compensator state variables

Firing-angle model Transformer—firing angle model
Susceptance model
Iteration Bsvc (p.u.) Bsvc (pu.) asvc (deg) Bgvc (pu.) at_svc (deg)
1 0.1 0.4798 140 0.5066 140
2 0.1679 0.1038 130.23 0.1166 130.48
3 0.2047 0.2013 132.47 0.2029 132.40
4 0.2047 0.2047 132.55 0.2047 132.44
5 0.2047 0.2047 132.55 0.2047 132.44

The SVC data for both variable shunt susceptance and firing angle are given in function
SvCBData and SVCFAData, respectively; function PowerFlowsData remains as the
original:

Function SVCBData is as follows:

$This function is used exclusively to enter data for:
% STATIC VAR COMPENSATION
% VARIABLE SHUNT SUSCEPTANCE MODEL

% NSVC : Number of SVC'’s

% SVCsend : Compensated bus

% B : Initial SVC’s susceptance value (p.u.)

% BLo : Lower 1limit of variable susceptance (p.u.)

% BHi : Higher limit of variable susceptance (p.u)

% TarVol : Target nodal voltage magnitude to be controlled by SVC (p.u.)

% VSta : Indicate control status for nodal voltage magnitude:1 is on and 0
% is off

NSVC=1;
SvVCsend(1)=3; B(1)=0.02; BLo(l)= -0.25; BHi=0.25;
TarVol(1l)=1.0; VSta(l)=1;



THYRISTOR-CONTROLLED SERIES COMPENSATOR 17

Function SVCFAData is as follows:

$This function is used exclusively to enter data for:
% STATIC VAR COMPENSATION
% FIRING ANGLE MODEL

% NSVC : Number of SVC'’s

% SVCsend : Compensated bus

% Xc : Capacitive reactance (p.u.)

% X1 : Inductive reactance (p.u.)

% FA : Initial SVC'’s firing angle value (Deg)

% FALo : Lower limit of firing angle (Deg)

% BHi : Higher 1limit of firing angle (Deg)

% TarVol : Target nodal voltage magnitude to be controlled by SVC (p.u.)

% VSta : Indicate the status to get control over voltage magnitude nodal : 1
% ison; 0 is off

NSVC=1;
SvCsend(1)=3; Xc(l1)=1.07; X1(1)=0.288; FA(l)=140; FALo(1)=90;
FAHi(1)=180; TarvVol(1)=1.0; VSta(l)=1;

The SVC injects 20.5 MVAR into Lake and keeps the nodal voltage magnitude at 1 p.u.
The action of the SVC results in an overall improved voltage profile. The SVC generates
reactive power in excess of the local demand, which stands at 15 MVAR and, compared with
the base case, there is an almost fourfold export increase of reactive power to Main. Also,
there is an export of reactive power to South via transmission line Lake—South, with the
larger amount of reactive power available at the bus being absorbed by the synchronous
generator. It draws 77.1 MVAR as opposed to 61.59 MVAR in the base case.

5.4 THYRISTOR-CONTROLLED SERIES COMPENSATOR

Two alternative power flow models to assess the impact of TCSC equipment in network-
wide applications are presented in this section (Ambriz-Pérez, Acha, and Fuerte-Esquivel,
2000; Fuerte-Esquivel and Acha, 1996). The simpler TCSC model exploits the concept of a
variable series reactance. The series reactance is adjusted automatically, within limits, to satisfy a
specified amount of active power flows through it. The more advanced model uses directly the
TCSC reactance—firing-angle characteristic, given in the form of a nonlinear relation. The TCSC
firing angle is chosen to be the state variable in the Newton—Raphson power flow solution.

5.4.1 Variable Series Impedance Power Flow Model

The TCSC power flow model presented in this section is based on the simple concept of a
variable series reactance, the value of which is adjusted automatically to constrain the power
flow across the branch to a specified value. The amount of reactance is determined
efficiently using Newton’s method. The changing reactance Xtcsc, shown in Figures 5.9(a)
and 5.9(b), represents the equivalent reactance of all the series-connected modules making
up the TCSC, when operating in either the inductive or the capacitive regions.
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Figure 5.9 Thyristor-controlled series compensator equivalent circuit: (a) inductive and (b) capa-
citive operative regions

The transfer admittance matrix of the variable series compensator shown in Figure 5.9 is

given by

For inductive operation, we have

I
In

By = By
Bkm = Bmk

Bk
ijk

and for capacitive operation the signs are reversed.
The active and reactive power equations at bus k are:

Pk = VkaBkm sin(@k — Qm),

jBkm Vi
ijm Vm '

— 1

— Xrosc

—_1
Xresc ?

(5.25)

(5.26)

(5.27)
(5.28)

Qk = —V,?Bkk — VkaBkm COS(gk — 9,,,)

For the power equations at bus m, the subscripts k and m are exchanged in Equations (5.27)
and (5.28).

In Newton—Raphson solutions these equations are linearised with respect to the series
reactance. For the condition shown in Figure 5.9, where the series reactance regulates the
amount of active power flowing from bus k to bus m at a value P.c, the set of linearised
power flow equations is:

VAV [ 0Py oP; oP; oP;, v oP; X 17 A6 T
6, 06, oVt W, " Xpese O
oP oP OP OP oP
AP, Om 0w OFm m "X Al
0, 00, oV X aVy " Xrese TEC
00k 00k 00k 00k 00k AV,
=| = 2 Zhy Fhy, X AVi
AL o 0, v v, Xresc 1€ v |
% 6& a&v a&v 90 X AV,
AQp 0 0, Vi “ AV, " pese O v,
d Pi(;lcsc o Pf;lcsc d anzcsc d anzcsc v 0 PZ;[CSC % A Xrosc
| APfese || T, a0, vy F v, " Xrese O | Xrese

(5.29)
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where APfngC
AP:;;CSC — Pzerf _ Pl’c(;cscvcal,

is the active power flow mismatch for the series reactance; AXtcsc, given by

(i)

i—1
AXresc = Xrese — Xécséa

is the incremental change in series reactance; and Pffncsc’cal is the calculated power as given
by Equation (5.27). The Jacobian elements for the series reactance are given in Appendix A,
Section A.2.

The state variable Xtcsc of the series controller is updated at the end of each iterative step
according to

i i-1 AXresc\ Yoo
X%ésc = %csé + (7){ X%csé- (5.30)
TCSC

5.4.2 Thyristor-controlled Series Compensator Computer
Program in Matlab®™ Code

Program 5.3 incorporates the TCSC variable series reactance model within the Newton—
Raphson power flow program. The functions PowerFlowsData, YBus, and PQflows are
also used here. In the main TCSC Newton—Raphson program, the function TCSCPower-
FlowsData is added to read the TCSC data, TCSCNewtonRaphson replaces Newton-
Raphson, and TCSCPOQflows is used to calculate power flows and losses in the TCSC
model.

PROGRAM 5.3 Program written in Matlab® to incorporate the thyristor-controlled series
compensator (TCSC) variable reactance model within the Newton—Raphson power flow
algorithm

% - - - Main TCSC variable reactance

PowerFlowsData; $Function to read network data

TCSCData; %Function to read TCSC variable series reactance

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,ntl,nbb);

[VM,VA,it,X] = TCSCNewtonRaphson(tol,itmax,ngn,nld,nbb,bustype,...
genbus, loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD, YR, ...
YI,VM,VA,NTCSC, TCSCsend, TCSCrec,X,XLo,XHi,Flow,Psp,PSta);
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[POsend,PQrec,PQloss,PQbus] = PQflows (nbb,ngn,ntl,nld, genbus, ...
loadbus,tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,QLOAD, ...
VM,VA);

[Ptcsc,Qtesc] = TCSCPOflows (nbb, VA, VM, NTCSC, TCSCsend, TCSCrec, X) ;

%Print results

it $¢Number of iterations

VM $Nodal voltage magnitude (p.u)
VA=VA*180/pi %Nodal voltage phase angles (Deg)
Ptcsc $Active power flow in TCSC (p.u.)
Qtcsc %Reactive power flow in TCSC (p.u.)
X $Final reactance value (p.u.)

%$End of TCSC MAIN PROGRAM

$Carry out iterative solution using the Newton—Raphson method
function [VM,VA,it,X] = TCSCNewtonRaphson(tol,itmax,ngn,nld,nbb, ...
bustype, genbus, loadbus, PGEN,QGEN, QMAX ,OMIN, PLOAD,QLOAD, YR, YI, ...
VM,VA,NTCSC, TCSCsend,TCSCrec,X,XLo,XHi,Flow,Psp,PSta);

% GENERAL SETTINGS
flag=10;
it=1;

% CALCULATE NET POWERS
[PNET, ONET ]=NetPowers (nbb,ngn,nld, genbus, loadbus, PGEN, QGEN, . ..
PLOAD, QLOAD) ;

while ( it < itmax & flag==0 )
% CALCULATED POWERS
[PCAL,QCAL]=CalculatedPowers (nbb,VM,VA,YR,YI);

% CALCULATED TCSC POWERS
[TCSC_PQsend, TCSC_PQrec, PCAL,QCAL ]=TCSCCalculatedpower (nbb,VA, ...
VM, NTCSC, TCSCsend, TCSCrec, X, PCAL, QCAL) ;

% POWER MISMATCHES
[DPQ,DP,DQ,flag]=PowerMismatches (nbb,tol,bustype,flag, PNET,QONET, ...
PCAL, QCAL);
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% TCSC POWER MISMATCHES
[DPQ,flag]=TCSCPowerMismatches(flag,tol,nbb,DPQ,VM,VA,NTCSC, ...
TCSCsend, TCSCrec,X,Flow,it,Psp,PSta);

%Check for convergence
if flag ==

break
end

% JACOBIAN FORMATION
[JAC]=NewtonRaphsonJacobian(nbb,bustype,PCAL,QCAL,DPQ,VM,VA, ...
YR,YI);

% MODIFICATION THE JACOBIAN FOR TCSC
[JAC]=TCSCJacobian(nbb,JAC,VM,VA,NTCSC,TCSCsend, TCSCrec,X, ...
Flow,PSta,it);

% SOLVE JOCOBIAN

D = JAC\DPQ';

% UPDATE THE STATE VARIABLES VALUES, WITH TRUNCATED CORRECTIONS IF
% NECESSARY (VM increments < +-0.1 p.u. and VA inrements < +- 5 deg)
[VA,VM]=StateVariablesUpdating(nbb,D,VA,VM,it);

% UPDATE THE TCSC VARIABLES
[X]=TCSCUpdating(it,nbb,D,NTCSC,X,PSta);

$CHECK IMPEDANCE FOR LIMITS
[X]=TCSCLimits (NTCSC,X,XLo,XHi,PSta);

it=1it +1;
end

$Function to calculate injected bus powers by the TCSC
function [TCSC_PQsend,TCSC PQrec,PCAL,QCAL] = TCSCCalculatedpower...
(nbb,VA, VM,NTCSC, TCSCsend, TCSCrec, X, PCAL,QCAL) ;
for ii =1 : NTCSC
Bmm = - 1/X(ii);
Bmk = 1/X(ii);
forkk=1:2
A =VA(TCSCsend(ii))-VA(TCSCrec(ii));
Pcal = VM(TCSCsend(ii))*VM(TCSCrec(ii))*Bmk*sin(A);
Qcal = - VM(TCSCsend(ii))"2*Bmm - VM(TCSCsend(ii))*...
VM(TCSCrec(ii))*Bmk*cos(A);
PCAL(TCSCsend(ii)) = PCAL(TCSCsend(ii)) + Pcal;
QCAL (TCSCsend(ii)) = QCAL(TCSCsend(ii)) + Qcal;
if kk ==
TCSC_PQsend(ii) = Pcal + j*Qcal;
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else
TCSC_PQrec(ii) = Pcal + j*Qcal;
end
send = TCSCsend(ii);
TCSCsend(ii) = TCSCrec(ii);
TCSCrec(ii) = send;
end
end

$Function to compute power mismatches with TCSC
function [DPQ,flag] = TCSCPowerMismatches (flag,tol,nbb,DPQ,VM,VA, ...
NTCSC, TCSCsend, TCSCrec,TCSCX,Flow,it,TCSC_P,PSta);

ifit>1
for ii =1 : NTCSC
if PSta(ii) ==

Bmk = 1/TCSCX(ii);
forkk=1:2
A =VA(TCSCsend(ii)) - VA(TCSCrec(ii));
Pcal = VM(TCSCsend(ii))*VM(TCSCrec(ii))*Bmk*sin(A);

if (Flow(ii) == 1 & kk==1) | (Flow(ii) == -1 & kk == 2)
DPQ(1l, 2*nbb + ii) = TCSC_P(ii) - Pcal;
break;

end

send = TCSCsend (ii);
TCSCsend(ii) = TCSCrec(ii);
TCSCrec(ii) = send;
end
else
DPQ(1, 2*nbb + ii)= 0;
end
end
end

$Function to add the TCSC elements to Jacobian matrix
function [JAC] = TCSCJacobian(nbb,JAC,VM,VA,NTCSC,TCSCsend, ...
TCSCrec,X,Flow, PSta,it);
for ii =1 : NTCSC
Bmm = - 1/X(ii);
Bmk = 1/X(ii);
forkk=1:2
A = VA(TCSCsend(ii))-VA(TCSCrec(ii));
Hkm = - VM(TCSCsend (ii))*VM(TCSCrec(ii))*Bmm*cos(A);
Nkm = VM(TCSCsend(ii))*VM(TCSCrec(ii))*Bmm*sin(A);

JAC(2*TCSCsend(ii)-1, 2*TCSCsend(ii)-1) = JAC(2*TCSCsend(ii)-1,...
2*TCSCsend(ii)-1) - VM(TCSCsend(ii))"2*Bmm;



THYRISTOR-CONTROLLED SERIES COMPENSATOR 177

JAC(2*TCSCsend(ii)-1, 2*TCSCrec(ii)-1) = JAC(2*TCSCsend(ii)-1,...
2*TCSCrec(ii)-1) - Hkm;

JAC(2*TCSCsend(ii)-1, 2*TCSCrec(ii)) = JAC(2*TCSCsend(ii)-1,...
2*TCSCrec(ii)) - Nkm;

JAC(2*TCSCsend(ii), 2*TCSCsend(ii)) = JAC(2*TCSCsend(ii),...
2*TCSCsend(ii)) - VM(TCSCsend(ii))"2*Bmm;

JAC (2*TCSCsend(ii), 2*TCSCrec(ii)-1) = JAC(2*TCSCsend(ii), ...
2*TCSCrec(ii)-1) + Nkm;

JAC(2*TCSCsend(ii), 2*TCSCrec(ii)) = JAC(2*TCSCsend(ii),...
2*TCSCrec(ii)) - Hkm;

ifit>1
if PSta(ii) ==

if (Flow(ii) == 1 & kk==1)| (Flow(ii) == -1 & kk == 2)
JAC(2*nbb + ii, 2*TCSCsend(ii)-1) = Hkm;
JAC(2*nbb + ii, 2*TCSCsend(ii)) = - Nkm;
JAC(2*nbb + ii, 2*TCSCrec(ii)-1) = - Hkm;
JAC(2*nbb + ii, 2*TCSCrec(ii)) = - Nkm;
JAC(2*nbb + ii, 2*nbb + ii) = + Nkm;

end

JAC(2*TCSCsend(ii)-1, 2*nbb + ii) = Nkm;
JAC(2*TCSCsend(ii), 2*nbb + ii) = Hkm - VM(TCSCsend(ii))"2*Bmk;
else
JAC(2*nbb + ii, 2*nbb + ii) = 1;
end
end
send = TCSCsend(ii);
TCSCsend(ii) = TCSCrec(ii);
TCSCrec(ii) = send;
end
end

$Function to update TCSC state variable
function [X]= TCSCUpdating(it,nbb,D,NTCSC,X,PSta);

ifit>1
for ii =1 : NTCSC
if PSta(ii) ==
X(ii) =X(ii) + D(2*nbb + ii,1)*X(ii);
end
end
end

$Function to check the impedance limits
function [X] = TCSCLimits (NTCSC,X,XLo,XHi,PSta);
for ii =1 : NTCSC

% Check impedance Limits

if X(ii) < XLo(ii) | X(ii) > XHi(ii)
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PSta(ii) =0;

if X(ii) < XLo(ii)
X(ii) = XLo(ii);

elseif X(ii) > XHi(ii)
X(ii) = XHi(ii);

end

end
end

$Function to calculate power flows in TCSC controller
function [Ptcsc,Qtcsc] = TCSCPQflows (nbb,VA,VM,NTCSC, TCSCsend, . . .
TCSCrec,TCSCX) ;
for ii =1 : NTCSC
Bmk = 1/TCSCX(ii);
Bmm = -1/TCSCX (ii);
forkk=1:2
A =VA(TCSCsend(ii)) - VA(TCSCrec(ii));
Ptcsc(ii,kk) = VM(TCSCsend(ii))*VM(TCSCrec(ii))*Bmk*sin(A);
Qtcsc(ii,kk) = - VM(TCSCsend(ii))"2*Bmm — M(TCSCsend(ii))*VM...
(TCSCrec(ii))*Bmk*cos(A);
send = TCSCsend (ii);
TCSCsend(ii) = TCSCrec(ii);
TCSCrec(ii) = send;
end
end

5.4.3 Numerical Example of Active Power Flow Control using
One Thyristor-controlled Series Compensator: Variable
Series Compensator Model

The original five-bus network is modified to include one TCSC to compensate the
transmission line connected between Lake and Main. An extra bus, termed Lakefa, is used
to connect the TCSC, as shown in Figure 5.10.

The TCSC is used to maintain active power flowing from Lakefa towards Main at 21 MW.
The starting value of the TCSC is set at 50 % of the value of the transmission-line inductive
reactance (i.e. X = 0.015 p.u.). Convergence is obtained in 6 iterations to a power mismatch
tolerance of le — 12. The TCSC upholds the target value of 21 MW, which is achieved with
70 % series capacitive compensation of the transmission line Lake—Main.

The power flow results are shown in Figure 5.10, and the nodal voltages are given in
Table 5.3. As expected, nodal voltage magnitudes and reactive power flows do not change
appreciably compared with the base case. It should be noticed that transmission line Lake—
Main may not be the best candidate for series capacitive compensation since an increase of
8.2 % in active power has been achieved at the expense of 70 % compensation.
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Figure 5.10 Power flow results of the five-bus network with one thyristor-controlled series
compensator

Table 5.3 Bus voltages of the modified network

Network bus

Nodal voltage North South Lake Main Elm
Magnitude (p.u.) 1.06 1 0.987 0.988  0.984
Phase angle (deg) 0 —2.04 —-472 —446 —4381

The data given in function PowerFlowsData (Section 4.3.9) is modified to
accommodate the inclusion of the TCSC. The transmission line originally connected
between Lake and Main is now connected between Lakefa (bus 6) and Main (bus 4). Only
the modified code lines are shown here:

Function PowerFlowsData is as follows:

%Modifications to enter data for the TCSC:

nbb=6;

bustype(6)=3; VM(6)=1; VA(6)=0;

tlsend(6)=6; tlrec(6)=4; tlresis(6)=0.01; tlreac(6)=0.03;
tlcond(6)=0; tlsuscep6)=0.02;
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Additionally, the function TCcScData is used for entering the TCSC data:

% This function is used exclusively to enter data for:
THYRISTOR CONTROLLED SERIES COMPENSATOR reactance variable

oe

NTCSC : Number of TCSC's

TCSCsend : Sending bus

TCSCrec : Receiving bus

X : TCSC's reactance

XLo : Lower reactance limit

XHi : Higher reactance limit

Flow : Power flow direction: 1 is for sending to receiving bus; -1
indicates opposite direction

Psp : Active power flow to be controlled

00 00 o0 o0 Jd° o° o° o° o0 o

PSta : Indicates control status for active power: 1 is on and 0 is off

NTCSC=1;

TCSCsend(1)=3; TCSCrec(1)=6; X(1)=-0.015; XLo(1)=-0.05;
XHi(1)=0.05;

Flow(1l)=1; Psp(1)=0.21; PSta(l)=1;

5.4.4 Firing-angle Power Flow Model

The model presented in Section 5.4.1 uses the concept of an equivalent series reactance to
represent the TCSC. Once the value of reactance is determined using Newton’s method then
the associated firing angle arcsc can be calculated. Of course, this makes engineering sense
only in cases when all the modules making up the TCSC have identical design
characteristics and are made to operate at equal firing angles. If this is the case, the
computation of the firing angle is carried out. However, such calculation involves an
iterative solution since the TCSC reactance and firing angle are nonlinearly related. One
way to avoid the additional iterative process is to use the alternative TCSC power flow
model presented in this section.

The fundamental frequency equivalent reactance Xrcsc(;) of the TCSC module shown in
Figure 5.11 is (Fuerte-Esquivel, Acha, and Ambriz-Pérez, 2000):

Xrcsc() = — Xc + Ci{2(n — @) +sin[2(n — a)]}

— Cycos’(n — a){wtan[w(n — a)] — tan(n — )}, (5.31)

where ot x
¢ =2t e (5.32)

T
4X7

Cy = 5.33
2 XLTC ’ ( )

XcXL
Xie =y 5.34
L=y —x, ( )

S @E) " (5.35)
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Figure 5.11 Thyristor-controlled series compensator module. Reproduced, with permission, from
C.R. Fuerte-Esquivel, E. Acha, and H. Ambriz-Pérez, ‘A Thyristor Controlled Series Compensator
Model for the Power Flow Solution of Practical Power Networks’, IEEE Trans. Power Systems 15(1)
58-64, © 2000 IEEE

The equivalent reactance Xtcsc(1) in Equation (5.31) replaces Xrcsc in Equations (5.26) and
(5.25), and the TCSC active and reactive power equations at bus k are

Pk = VkaBkm (f1) sin(&k — 0,,,), (536)
Ok = —ViBia (1) — ViVuBin (1) c08(0k — O,), (5.37)

where
Biik(1y = —Bum(1) = Brcsc()- (5.38)

For equations at bus m, exchange subscripts k and m in Equations (5.36) and (5.37).
For the case when the TCSC controls active power flowing from bus k to bus m, at a
specified value, the set of linearised power flow equations is:

[ APl p oP Op 0Py, OF: \, Py 11 A6 ]
00, 0, ov, * ov, " da
AP, aﬁ aﬁ % Vi 0Py, Vi % Ab,,
o0, 00, oV, v, da
00 G[)? 00k 00k 00k
A — Sk Xk ok =k =X AV,
O o 0, v W 7" ’
8 W Wy Wy W ||
AQn o6, 6, ove v ey, " da AV,
aP;:},T"CSC ap:r’;CSC aP;:yTnCSC Vk ap?];l'lCSC v 6P;::1CSC Vm
L APZ;[CSC h - aek aem aVk an " aOzTCSC Jd L AO‘TCSC i
(5.39)

where AP, given by

aTcsc __ preg _ parcsc,cal
AP km =P km P km ’
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is the active power flow mismatch for the TCSC module; Aarcsc, given by

_(i+]) (i)
Aarcsc = aqese — Qrescs

is the incremental change in the TCSC firing angle at the ith iteration; and ngf“'cal is the
calculated power as given by Equation (5.36). The Jacobian elements for the series

reactance, as a function of the firing angle arcsc, are given in Appendix A, Section A.2.

5.4.5 Thyristor-controlled Series Compensator Firing-angle
Computer Program in Matlab®™ Code

Program 5.4 incorporates the thyristor-controlled series compensator firing-angle (TCSC-
FA) variable series reactance model within the Newton—Raphson power flow program. The
functions PowerFlowsData, YBus, and PQflows are also used here. In the main TCSC-FA
Newton—Raphson program, the function TCSCFAData is added to read the TCSC-FA data,
TCSCFANewtonRaphson replaces NewtonRaphson, and TCSCFAPQflows is used to
calculate power flows and losses in the TCSC model.

PROGRAM 5.4 Program written in Matlab® to incorporate the thyristor-controlled series
compensator firing-angle (TCSC-FA) model within the Newton—Raphson power flow algorithm

% - - — Main TCSC-FA Program

PowerFlowsData; $Function to read network data

TCSCFAData; % Function to read TCSC-FA data
[YR,YI]=YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,ntl,nbb);

[VM,VA,it,FA,X]=TCSCFANewtonRaphson(tol,itmax,ngn,nld,nbb, ...
bustype, genbus, loadbus,PGEN,QGEN,QMAX,OMIN, PLOAD,QLOAD,YR,YI,VM, ...
VA,NTCSCFA,TCSCFAsend, TCSCFArec,Xc,X1,FA,FALo,FAHi,Flow,PSta,Psp);

[POsend, PQrec,PQloss, PQbus |]=PQflows (nbb,ngn,ntl,nld,genbus, ...
loadbus,tlsend,tlrec,tlresis,tlreac,tlcond, tlsuscep,PLOAD,QLOAD,...
VM,VA);

[Ptcsc,Qtcsc ]=TCSCPQpower (VA,VM,NTCSCFA, TCSCFAsend, TCSCFArec,X);

%Print results

it gNumber of iterations

VM $Nodal voltage magnitude (p.u)
VA=VA*180/pi %Nodal voltage phase angles (deg)
Ptcsc $Active power flow in TCSC (p.u.)
Qtcsc %Reactive power flow in TCSC (p.u.)
X $Final reactance value (p.u.)

FA $Final firing angle value (deg)

% End of MAIN TCSC-FA PROGRAM
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$Carry out iterative solution using the Newton—Raphson method
[VM,VA,it,FA,X] = TCSCFANewtonRaphson(tol,itmax,ngn,nld,nbb,...
bustype, genbus, loadbus, PGEN, QGEN, QMAX ,OMIN, PLOAD,QLOAD, YR, YI,VM, ...
VA,NTCSCFA, TCSCFAsend, TCSCFArec, Xc, X1,FA,FALo, FAHi,Flow,PSta,Psp);

% GENERAL SETTINGS

flag=0;
it=1;

% CALCULATE NET POWERS
[PNET, QONET ]=NetPowers (nbb,ngn,nld, genbus, loadbus, PGEN, QGEN, ...
PLOAD, QLOAD) ;

while ( it < itmax & flag==0 )

% CALCULATED POWERS
[PCAL,QCAL]=CalculatedPowers(nbb,VM,VA,6YR,YI);

$TCSC CALCULATED POWER
[PCAL,QCAL,X]=TCSCFACalculatePower (PCAL,QCAL,VM,VA,NTCSCFA, ...
TCSCFAsend, TCSCFArec,FA,Xc,X1,Flow,PSta,Psp);

% POWER MISMATCHES
[DPQ,DP,DQ,flag]=PowerMismatches (nbb,tol,bustype,flag, PNET,QNET, ...
PCAL,QCAL);

% TCSC POWER MISMATCHES
[DPQ,flag]=TCSCFAPowerMismatches (flag,tol,nbb,DPQ,VM,VA,NTCSCFA, ...
TCSCFAsend, TCSCFArec,X,Flow,it,Psp,PSta);

%Check for convergence
if flag ==

break
end

% JACOBIAN FORMATION
[ JAC ]=NewtonRaphsonJacobian (nbb,bustype, PCAL,QCAL,DPQ,VM,VA, ...
YR,YI);

% MODIFICATION JACOBIAN FOR TCSC-FA -it calculates the TCSC

% equivalent reactance

[ JAC]=TCS CFAJacobian(it,nbb,JAC,VM,VA,NTCSCFA,TCSCFAsend, ...
TCSCFArec, FA,Xc,X1,Flow,PSta,Psp,X);

% SOLVE JOCOBIAN

D = JAC\DPQ';



184 POWER FLOW INCLUDING FACTS CONTROLLERS

% UPDATE THE STATE VARIABLES VALUES, WITH TRUNCATED CORRECTIONS IF
% NECESSARY (VM increments < +-0.1 p.u. and VA inrements < +- 5 deg)
[VA,VM] = StateVariablesUpdating(nbb,D,VA,VM,it);

% UPDATE THE TCSC-FA VARIABLES

[FA] = TCSCFAUpdating(it,nbb,D,NTCSCFA,FA,PSta);

%$CHECK IMPEDANCE LIMITS
[FA] = TCSCFALimits (NTCSCFA,FA,FALo,FAHi,PSta);

it=1it + 1;
end

$Function to calculate injected bus powers by TCSC-FA
function [PCAL,QCAL,X] = TCSCFACalculatePower (PCAL,QCAL,VM,VA,...
NTCSC,TCSCFAsend, TCSCFArec,FA,Xc,X1,Flow,PSta,Psp);
for ii =1 : NTCSC
% Calculate Equivalent Reactance TCSCX
Xlc = Xc(ii)*X1(ii)/(Xc(ii)-X1(ii));
w=sqrt(Xc(ii)/x1(ii));
Cl = (Xc(ii) + Xlc)/pi;
C2 = 4*X1c"2/(X1(ii)*pi);
Ang = pi - FA(ii)*pi/180;

X(ii) = -Xc(ii) + Cl*(2*Ang + sin(2*Ang)) - C2*cos(Ang) "2*...
(w*tan(w*Ang)-tan(Ang));

Bmm = - 1/X(1ii);

Bmk = 1/X(ii);

forkk=1:2
A = VA(TCSCFAsend(ii))-VA(TCSCFArec(ii));
Pcal = VM(TCSCFAsend(ii))*VM(TCSCFArec(ii))*Bmk*sin(A);
Qcal = - VM(TCSCFAsend(ii))"2*Bmm - VM(TCSCFAsend(ii))*VM...
(TCSCFArec(ii))*Bmk*cos(A);
PCAL (TCSCFAsend(ii)) = PCAL(TCSCFAsend(ii)) + Pcal;
QCAL (TCSCFAsend(ii)) = QCAL(TCSCFAsend(ii)) + Qcal;

if kk ==

TCSC_PQsend(ii) = Pcal + j*Qcal;
else

TCSC_PQrec(ii) = Pcal + j*Qcal;
end

send = TCSCFAsend(ii);
TCSCFAsend(ii) = TCSCFArec(ii);
TCSCFArec(ii) = send;
end
end
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$Function to compute power mismatches with TCSC-FA
function [DPQ,flag] = TCSCFAPowerMismatches (flag,tol,nbb,DPQ,VM,VA, ...
NTCSCFA, TCSCFAsend, TCSCFArec,X,Flow,it,Psp,PSta);

ifit>1
for ii =1 : NTCSCFA
if PSta(ii) ==

Bmk = 1/X(ii);
forkk=1:2
A = VA(TCSCFAsend(ii)) - VA(TCSCFArec(ii));
Pcal = VM(TCSCFAsend(ii) )*VM(TCSCFArec(ii))*Bmk*sin(A);

if(Flow==1&kk==1) | (Flow==-1&kk==2)
DPQ(1l, 2*nbb + ii) = Psp(ii) - Pcal;
break;

end

send = TCSCFAsend (ii);
TCSCFAsend(ii) = TCSCFArec(ii);
TCSCFArec(ii) = send;
end
else
DPQ(1, 2*nbb + ii)=0;
end
end
end

$Function to add the TCSC-FA elements to Jacobian matrix
function [JAC] = TCSCFAJacobian(it,nbb,JAC,VM,VA,NTCSCFA, ...
TCSCFAsend, TCSCFArec,FA,Xc,X1,Flow,PSta,Psp,X);
for ii =1 : NTCSCFA

% Calculate Equivalent Reactance TCSCX

Xlc = Xc(ii)*X1(ii)/(Xc(ii)-xX1(ii));

w=sqrt(Xc(ii)/x1(ii));

Cl = (Xc(ii) + X1lc)/pi;

C2 = 4*X1c"2/(X1(ii)*pi);

Ang = pi - FA(ii)*pi/180;

TCSCX = -Xc(ii) + C1l*(2*Ang + sin(2*Ang)) - C2*cos (Ang) "2*(w*tan...
(w*Ang)-tan(Ang));

%Calculate Reactance Derivative

Al =FA(ii)*pi/180;

DTCSCX1 = - 2*Cl*(1 + cos(2*Ang));

DTCSCX2 = C2*(w"2* (cos(Ang) “2/cos(w*Ang) "2));
DTCSCX3 = - C2* (w*tan(w*Ang)*sin(2*Ang));
DTCSCX4 = C2*(tan(Ang)*sin(2*Ang)-1);

DTCSCX = DTCSCX1 + DTCSCX2 + DTCSCX3 + DTCSCX4;
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Bmm = - 1/TCSCX;
Bmk = 1/TCSCX;

forkk=1:2
A = VA(TCSCFAsend(ii))-VA(TCSCFArec(ii));
Hkm = - VM(TCSCFAsend(ii))*VM(TCSCFArec(ii))*Bmm*cos (A);
Nkm = VM(TCSCFAsend(ii))*VM(TCSCFArec(ii))*Bmm*sin(A);

JAC (2*TCSCFAsend(ii)-1,2*TCSCFAsend(ii)-1) = JAC(2*TCSCFA...
send(ii)-1,2*TCSCFAsend(ii)-1) - VM(TCSCFAsend(ii))"2*Bmm;
JAC (2*TCSCFAsend(ii)-1,2*TCSCFArec(ii)-1) = JAC(2*TCSCFA...
send(ii)-1, 2*TCSCFArec(ii)-1) - Hkm;

JAC (2*TCSCFAsend(ii)-1,2*TCSCFArec(ii)) = JAC(2*TCSCFA...
send(ii)-1, 2*TCSCFArec(ii)) - Nkm;

JAC (2*TCSCFAsend(ii),2*TCSCFAsend(ii)) = JAC(2*TCSCFA...
send(ii),2*TCSCFAsend(ii)) - VM(TCSCFAsend(ii))"2*Bmm;

JAC (2*TCSCFAsend(ii),2*TCSCFArec(ii)-1) = JAC(2*TCSCFA...
send(ii),2*TCSCFArec(ii)-1) + Nkm;

JAC (2*TCSCFAsend(ii),2*TCSCFArec(ii)) = JAC(2*TCSCFA...
send(ii),2*TCSCFArec(ii)) - Hkm;

ifit>1
if PSta(ii) ==
A = VA(TCSCFAsend(ii))-VA(TCSCFArec(ii));

Ekm = —-VM (TCSCFAsend (ii))*VM(TCSCFArec(ii))*sin(A)*Bmk"2%. .

DTCSCX;

Fkm = - ((VM(TCSCFAsend(ii))"2 - VM(TCSCFAsend(ii))*VM...
(TCSCFArec(ii))*cos(A)))*Bmk"2*DTCSCX;

if (Flow(ii) == 1 & kk==1) | (Flow(ii) == -1 & kk == 2)

Hkm = — VM (TCSCFAsend(ii))*VM(TCSCFArec(ii))*Bmk*cos(A);
Nkm = VM (TCSCFAsend(ii))*VM(TCSCFArec(ii))*Bmk*sin(A);

JAC(2*nbb + ii, 2*TCSCFAsend(ii)-1) = - Hkm;
JAC(2*nbb + ii, 2*TCSCFAsend(ii)) = Nkm;
JAC(2*nbb + ii, 2*TCSCFArec(ii)-1) = Hkm;
JAC(2*nbb + ii, 2*TCSCFArec(ii)) = Nkm;
JAC(2*nbb + ii, 2*nbb + ii) = Ekm;
end
JAC(2*TCSCFAsend(ii)-1, 2*nbb + ii) = Ekm;
JAC(2*TCSCFAsend(ii), 2*nbb + ii) = Fkm;
else
JAC(2*nbb + ii, 2*nbb + ii) = 1;
end
end
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send = TCSCFAsend(ii);
TCSCFAsend(ii) = TCSCFArec(ii);
TCSCFArec(ii) = send;
end
end

$Function to update TCSC-FA state variables
function [FA] = TCSCFA Updating(it,nbb,D,NTCSCFA,FA,PSta);
ifit>1
for ii =1 : NTCSCFA
if PSta(ii) ==
FA(ii) = FA(ii) + D(2*nbb + ii,1)*180/pi;
end
end
end

¢Function to calculate the power flows in TCSC-FA controller
function [PQTCSCsend,PQTCSCrec] = TCSCPQpower (VA,VM,NTCSCFA, ...
TCSCFAsend, TCSCFArec,X);
for ii =1 : NTCSCFA
Bmk = 1/X(ii);
Bmm = -1/X(ii);
forkk=1:2
A = VA(TCSCFAsend(ii)) - VA(TCSCFArec(ii));
Ptcsc = VM(TCSCFAsend(ii) ) *VM(TCSCFArec(ii))*Bmk*sin(A);
Qtcsc = - VM(TCSCFAsend(ii))"2*Bmm —. ..
M(TCSCFAsend(ii))*VM(TCSCFArec(ii))*Bmk*cos(A);

if kk ==

PQTCSCsend(ii,kk) = Ptcsc + Qtcsc*i;
else

PQTCSCrec(ii,kk-1) = Ptcsc + Qtcsc*i;
end

send = TCSCFAsend(ii);
TCSCFAsend(ii) = TCSCFArec(ii);
TCSCFArec(ii) = send;
end
end

5.4.6 Numerical Example of Active Power Flow Control using
One Thyristor-controlled Series Compensator:
Firing-angle Model

Similar to the numerical example presented in Section 5.4.3, a TCSC is included in the five-
bus network to compensate the transmission line connected between Lake and Main. The
controller is used to maintain the active power flowing towards Main at 21 MW.
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Figure 5.12 Five-bus network with one thyristor-controlled series compensator, and power flow
results

The initial value of firing angle is set at 145°, and convergence is obtained in 7 iterations
to a power mismatch tolerance of le —12. The TCSC upholds the target value of 21 MW.
The power flow results are shown in Figure 5.12. As expected, the calculated TCSC
equivalent reactances using the firing-angle model and the variable series reactance model
agree with each other. Also, the nodal voltages are the same as those given in Table 5.3.

The maximum absolute power mismatches in the system buses and TCSC are shown in
Figure 5.12. The TCSC characteristic is highly nonlinear, a fact that shows in the results in
Table 5.4 where the nonquadratic convergent pattern of AP and AQ is evident, particularly
up to the 4th iteration.

The data given in function PowerFlowsData (Section 4.3.9) are modified to
accommodate for the inclusion of the TCSC-FA in the same way as described in Section
5.4.3. Additionally, the function TCSCFAdata is used for entering TCSC-FA model data:

% THYRISTOR CONTROLLED SERIES COMPENSATOR
% FIRING ANGLE MODEL

% NTCSCFA : Number of TCSC's
% TCSCFAsend : Sending bus
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TCSCFArec : Receiving bus

Xc : TCSC's reactance (p.u.)

X1 : TCSC’s inductance (p.u)

FA : Initial firing angle (deg)

FALo : Firing angle lower limit (degq)

FAHi : Firing angle higher limit (deg)

Flow : Power flow direction: 1 is for sending to receiving bus; -1
indicates opposite direction

Psp : Active power flow to be controlled (p.u.)

PSta : Indicate the control status for active power: 1 is on; 0 is off

o0 o0 00 o0 Od° o° o0 o o° o°

NTCSCFA=1;

TCSCFAsend(1)=3; TCSCFArec(l)=6; Xc(l1l)=9.375e-3; X1(1)=1.625e-3;
FA(1)=145; FALo(1)=90; FAHi(1)=180;

Flow(1l)=1; PSta(l)=1; Psp(1l)=0.21;

Table 5.4 Maximum absolute power mismatches in the system buses and
thyristor-controlled series compensator (TCSC)

Nodal power mismatches TCSC mismatches and parameters
Iteration AP AQ AP arese (deg) Xtesc gy (p-u.)

1 6e—1 1.2e—1 2.1e—1 145 —0.0518
2 2.1e—2 1.6e—2 2e—2 145 —0.0518
3 7.8e—2 24e—3 7.8e—2 146.26 —0.0341
4 3.6e—3 7.7¢-3 3.6e —3 148.46 —0.0222
5 le—4 2.2e—4 l.1le—4 148.66 —0.0216
6 1.1e—8 4.3e—38 1.1e—8 148.66 —0.0216
7 le—16 le—16 le—16 148.66 —0.0216

5.4.7 Numerical Properties of the Thyristor-controlled Series
Compensator Power Flow Model

The performance of the TCSC mathematical model is affected by the number of internal
resonant points exhibited by the TCSC in the range 90° to 180°. The resonant points (poles)
of Equation (5.31) are determined by the following expression (Fuerte-Esquivel, Acha, and
Ambriz-Pérez, 2000b):

(2n — 1w(LC)'?

1—
2

arcsc =T , Wwheren=1,2,3,.... (5.40)

Although in theory a TCSC can have n resonant points, in practice a well-designed TCSC
scheme will only have one resonant peak within its range of operation. By way of example,
Figure 5.13 shows the fundamental frequency reactance as a function of aycsc for the
Kayenta TCSC installation. The rated inductive and capacitive reactances of this TCSC
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Figure 5.13 Profiles of Xrcsc(y and 0Xtcsc()/Oarcsc as a function of firing angle, arcsc.
Reproduced, with permission, from C.R. Fuerte-Esquivel, E. Acha, and H. Ambriz-Pérez, ‘A Thyristor
Controlled Series Compensator Model for the Power Flow Solution of Practical Power Networks’

IEEE Trans. Power Systems 15(1) 58-64, © 2000 IEEE

are 2.6€) and 159, respectively, at a base frequency of 60Hz. The corresponding
susceptance profile is shown in Figure 5.14. The partial derivatives of both parameters are

also shown in these figures for completeness.

The TCSC exhibits a resonant point at arcsc = 142.81°, as shown in Figure 5.14. This
pole defines the transition from the inductive to the capacitive operating region, as the firing

angle value increases.
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Figure 5.14 Profiles of Brcsc (1) and OBresc(1y/0arcsc as a function of firing angle. Reproduced,
with permission, from C.R. Fuerte-Esquivel, E. Acha, and H. Ambriz-Pérez, ‘A Thyristor Controlled
Series Compensator Model for the Power Flow Solution of Practical Power Networks’, IEEE Trans.

Power Systems 15(1) 58-64, © 2000 IEEE
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It should be noted that both Xtcsc (1) and 0Xrcsc (1) / Oarcsc present large variations in
magnitude in response to small variations in firing angle near the resonant point. This
intrinsic characteristic of the TCSC causes the power equations and Jacobian to be ill-
conditioned if operation of the TCSC takes place too close to the resonant point.

5.5 STATIC SYNCHRONOUS COMPENSATOR

Following on the discussion of the STATCOM operational characteristics in Chapter 2, it is
reasonable to expect that for the purpose of positive sequence power flow analysis the
STATCOM will be well represented by a synchronous voltage source with maximum and
minimum voltage magnitude limits. The synchronous voltage source represents the
fundamental Fourier series component of the switched voltage waveform at the Ac converter
terminal of the STATCOM (Hingorani and Gyugyi, 2000; Song and Johns, 1999).

The bus at which the STATCOM is connected is represented as a PVS bus, which may
change to a PQ bus in the event of limits being violated. In such a case, the generated or
absorbed reactive power would correspond to the violated limit. Unlike the SVC, the
STATCOM is represented as a voltage source for the full range of operation, enabling a
more robust voltage support mechanism. The STATCOM equivalent circuit shown in
Figure 5.15 is used to derive the mathematical model of the controller for inclusion in power
flow algorithms.

ZvR + VleévR -

ﬁ®i

bus &

Figure 5.15 Static compensator (STATCOM) equivalent circuit

5.5.1 Power Flow Model

The power flow equations for the STATCOM are derived below from first principles and
assuming the following voltage source representation:

E.r = Vr(cos g +jSinbyg). (5.41)
Based on the shunt connection shown in Figure 5.15, the following may be written:

S?)R = VvRI:;R = VURY:R(V;R - V/:) (542)
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After performing some complex operations, the following active and reactive power
equations are obtained for the converter and bus k, respectively:

Por = V3G + Vg Vi [Gor c0s(8,r — k) + Bug sin(8,r — 61)], (5.43)
Qur = —VABug + VigVi[Gor sin(6urg — ;) — Bur cos(b,r — 0k)], (5.44)
Py = VI Gur + ViVir[Gor c0s(0r — 6.1) + Bur sin(0r — 6,1)], (5.45)
Or = —ViBur + ViVig[Gor sin(0r — 8,8) — Bug cos(0 — d,r)]- (5.46)

Using these power equations, the linearised STATCOM model is given below, where the
voltage magnitude V,z and phase angle 6,z are taken to be the state variables:

A R RIS
a0]( aVk k aé'nR aV?)R R
AVy
AQy 00 00k, 0O0c 00k A
o 60k aVk a(snR aVvR k (5 47)
~|op R opP uR opP R opP R AS ' '
AP,R Vk VUR uR
v aak aVk aé'nR aVUR
aQ’UR aQ'UR Vv, aQ'UR aQ’UR % AV’UR
[AQwk]  La6 Vi © dw Ve "I L Vir |

The Jacobian elements in Equation (5.47) are given in explicit form in Appendix A,
Section A.3.

5.5.2 Static Compensator Computer Program in Matlab®™ Code

Program 5.5 incorporates the STATCOM model within the Newton—Raphson power flow
program. The functions PowerFlowsData, YBus, and PQflows are also used here. In the
main STATCOM Newton—-Raphson program, the function SSCData is added to read the
STATCOM data, SSCNewtonRaphson replaces NewtonRaphson, and SSCPQflows is used
to calculate power flows and losses in the STATCOM.

PROGRAM 5.5 Program written in Matlab® to incorporate the static compensator
(STATCOM) within the Newton—Raphson power flow algorithm

% - — — Main STATCOM Program

PowerFlowsData; $Function to read network data

SSCData; $Function to read the STATCOM data

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,ntl,nbb);

[VM,VA,it,Vvr,Tvr] = SSCNewtonRaphson(tol,itmax,ngn,nld,nbb, ...
bustype, genbus, loadbus, PGEN, QGEN, QOMAX, OMIN, PLOAD,QLOAD, YR,YI,VM, ...
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VA,NSSC,SSCsend, Xvr,TarvVol,VSta,Psp,PSta,Qsp,QSta,Vvr,Tvr,VvrHi, ...
VvrLo);

[POsend,PQrec,PQloss,PQbus] = PQflows (nbb,ngn,ntl,nld, genbus, ...
loadbus, tlsend,tlrec,tlresis,tlreac,tlcond, tlsuscep,PLOAD,QLOAD, ...
VM, VA);

[Psend,QOsend,PSSC,QSSC] = SSCPQPowers (VM,VA,NSSC,SSCsend, Xvr,Vvr, ...
Tvr);

%Print results

it ¢Number of iterations

VM $Nodal voltage magnitude (p.u)
VA=VA*180/pi %Nodal voltage phase angles (Deg)

Vvr $Final voltage magnitude source (p.u.)
Tvr=Tvr*180/pi $Final voltage phase angle source (Deg)
POsend=Psend + j*Qsend $%Active and reactive powers in bus (p.u.)
PQSSC=PSSC + j*QSSC $Active and reactive powers in STACOM (p.u.)

% End of MAIN STATCOM PROGRAM

$Carry out iterative solution using the Newton—Raphson method
[VM,VA,it,Vvr,Tvr] = SSCNewtonRaphson(tol,itmax,ngn,nld,nbb,...
bustype, genbus, loadbus, PGEN, QGEN, QMAX ,OMIN, PLOAD,QLOAD,YR,YI,VM, ...
VA,NSSC,SSCsend, Xvr,TarVol,VSta,Psp,PSta,Qsp,QSta,Vvr,Tvr,VvrHi,...
VvrLo);

% GENERAL SETTINGS
flag=0;
it=1;

% CALCULATE NET POWERS
[PNET,QNET] = NetPowers (nbb,ngn,nld, genbus, loadbus, PGEN, QGEN, ...
PLOAD, QLOAD) ;

while ( it < itmax & flag==0 )

% CALCULATED POWERS
[PCAL,QCAL] = CalculatedPowers (nbb,VM,VA,YR,YI);

$STATCOM CALCULATED POWERS
[PCAL, QCAL,PSSC,QSSC] = SSCCalculatePowers (PCAL,QCAL,VM,VA,NSSC, ...
SSCsend, Vxr,Vvr,Tvr);
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POWER MISMATCHES
[DPQ,DP,DQ,flag] = PowerMismatches (nbb, tol,bustype,flag, PNET, QONET, ...
PCAL,QCAL) ;

$STATCOM POWER MISMATCHES
[DPQ] = SSCMismatches (DPQ,nbb,VM,VA,NSSC,SSCsend, Xvr,VSta,Psp, ...
PSta,0sp,0Sta,Vvr,Tvr);

% JACOBIAN FORMATION
[JAC] = NewtonRaphsonJacobian (nbb,bustype,PCAL,QCAL,DPQ,VM, VA, ...
YR,YI);

% STATCOM JACOBIAN
[JAC] = SSCJacobian(nbb,JAC,VM,VA,NSSC,SSCsend, Xvr,TarVol,VSta, ...
Psp,PSta,Qsp,QSta,Vvr,Tvr);

% SOLVE FOR THE STATE VARIABLES VECTOR
D = JAC\DPQ"' ;

% UPDATE THE STATE VARIABLES VALUES, WITH TRUNCATED CORRECTIONS IF
% NECESSARY (VM increments < +-0.1 p.u. and VA inrements < +- 5 deg)
[VA,VM] = StateVariablesUpdating(nbb,D,VA,VM,it);

$UPDATE STATCOM STATE VARIABLES
[VM,Vvr,Tvr] = SSCUpdating(nbb,D,VM,VA,NSSC,SSCsend, TarVol,VSta, ...
Psp,Vvr,Tvr);

$CHECK VOLTAGE MAGNITUDE LIMITS
[Vvr] = SSCLimits (NSSC,Vvr,VvrHi,VvrLo);

it=1it + 1;
end

$Function to calculate injected bus powers by the STATCOM
function [PCAL,QCAL,PSSC,QSSC] = SSCCalculatePowers (PCAL,QCAL,VM, ...
VA,NSSC, SSCsend, Xvr,Vvr,Tvr);
for ii =1 : NSSC
B(ii)=1/xXvr(ii);
Al = Tvr(ii)-VA(SSCsend(ii));
A2 = VA(SSCsend(ii))-Tvr(ii);

PCAL(SSCsend(ii)) = PCAL(SSCsend(ii)) + VM(SSCsend(ii))*Vvr(ii)*...
(B(ii)*sin(A2));

QCAL(SSCsend(ii)) = QCAL(SSCsend(ii)) + VM(SSCsend(ii))"2*B(ii) - ...
Vvr(ii)*VM(SSCsend(ii))*(B(ii)*cos(A2));



STATIC SYNCHRONOUS COMPENSATOR 195

PSSC(ii) = Vvr(ii)*VM(SSCsend(ii))*(B(ii)*sin(Al));
0SSC(ii) = -Vvr(ii)"2*B(ii) + Vvr(ii)*VM(SSCsend(ii))*(B(ii)...
*cos (Al));

end

$Function to compute power mismatches for the STATCOM
function [DPQ] = SSCMismatches (DPQ,nbb,VM,VA,NSSC,SSCsend, Xvr, ...
VSta,Psp, PSta,Qsp,QSta,Vvr,Tvr);
for ii =1 : NSSC
B(ii)=1/Xvr(ii);
Al = Tvr(ii)-VA(SSCsend(ii));
A2 = VA(SSCsend(ii))-Tvr(ii);

Pcal = VM(SSCsend(ii))*Vvr(ii)*(B(ii)*sin(A2));
Qcal = - VM(SSCsend(ii))"2*B(ii) + Vvr(ii)*VM(SSCsend(ii))*(B(ii)*...
cos(A2));

DPQ(2*(nbb + ii)-1) = Pcal - Psp(ii);

if (QSta(ii) ==1)
DPQ(2* (nbb + ii)) = Qcal - Qsp(ii);
else
DPQ(2*(nbb + ii)) = 0;
end
end

$Function to add the STATCOM elements to Jacobian matrix
function [JAC] = SSCJacobian(nbb,JAC,VM,VA,NSSC,SSCsend, Xvr,TarvVol, ...
VSta,Psp,PSta,Qsp,QSta,Vvr,Tvr);
for ii =1 : NSSC
B(ii)=1/Xvr(ii);
if VSta(ii) ==
JAC(: , 2*SSCsend(ii) )=0;

end
JAC(2*(nbb + ii)-1,2*%(nbb + ii)-1) = 1;
JAC(2*(nbb + ii),2*(nbb + ii)) = 1;

Al = Tvr(ii)-VA(SSCsend(ii));
A2 = VA(SSCsend(ii))-Tvr(ii);

Pcal = - VM(SSCsend(ii))*Vvr(ii)*( + B(ii)*sin(A2));
DQcal = Vvr(ii)*VM(SSCsend(ii))*(B(ii)*cos(A2));
Pssc = - Vvr(ii)*VM(SSCsend(ii))*(B(ii)*sin(Al));
DQOssc = Vvr(ii)*VM(SSCsend(ii))*(B(ii)*cos(Al));
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JAC(2*SSCsend(ii)-1,2*SSCsend(ii)-1) = JAC(2*SSCsend(ii)-1,...
2*SSCsend(ii)-1) + VM(SSCsend(ii))"2*B(ii);
JAC(2*SSCsend(ii),2*SSCsend(ii)-1) = JAC(2*SSCsend(ii),2*SSC...
send(ii)-1) - Pcal;
if (QSta(ii) ==1)
JAC(2*SSCsend(ii)-1,2*SSCsend(ii)) = JAC(2*SSCsend(ii)-1,...
2*SSCsend(ii)) - Pcal;
JAC(2*SSCsend(ii),2*SSCsend(ii)) = JAC(2*SSCsend(ii),2*SSC...
send(ii)) + VM(SSCsend(ii))"2*B(ii);
else
JAC(2*SSCsend(ii)-1,2*SSCsend(ii)) = JAC(2*SSCsend(ii)-1,...
2*SSCsend(ii)) - Pssc;
JAC(2*SSCsend(ii),2*SSCsend(ii)) = JAC(2*SSCsend(ii),2*SsSC...
send(ii)) - DQssc;
end
if (PSta(ii) ==1)
JAC(2* (nbb + ii)-1,2*SSCsend(ii)-1) = JAC(2*(nbb + ii)-1, 2*SSC...
send(ii)-1) + DQcal;
JAC(2*SSCsend(ii)-1,2*(nbb + ii)-1) = JAC(2*SSCsend(ii)-1,...
2*(nbb + ii)-1) - DQssc;
JAC(2*SSCsend(ii),2*(nbb + ii)-1)
2*(nbb + ii)-1) - Pssc;
JAC(2* (nbb + ii)-1,2%(nbb + ii)-1) = - DQssc;
if (QSta==1)
JAC(2*(nbb+ii),2*(nbb+ii)-1)=JAC(2*(nbb+ii),2*(nbb+ii)-1)-...
Pssc;
JAC(2*(nbb + ii)-1,2*SSCsend(ii)) = JAC(2*(nbb + ii)-1,2*SSC...
send(ii)) - Pcal;
else
JAC(2*(nbb + ii),2*(nbb + ii)-1) = 0.0;
JAC(2* (nbb + ii)-1,2*SSCsend(ii)) = JAC(2*(nbb + ii)-1,2*SSC...
send(ii)) + Pssc;
end

JAC(2*SSCsend(ii), ...

else
JAC(2*(nbb + ii)-1,2*(nbb + ii)-1)
end
if (QSta(ii) ==1)
JAC(2*(nbb + ii),2*SSCsend(ii)-1)
(ii)-1)- Pcal;
JAC(2*(nbb + ii),2*SSCsend(ii)) = JAC(2* (nbb + ii),2*SSCsend(ii))...
+ DQcal;
JAC(2*SSCsend(ii)-1,2*(nbb + ii)) = JAC(2*SSCsend(ii)-1,2*...
(nbb + ii)) + Pssc;
JAC (2*SSCsend(ii),2*(nbb + ii)) = JAC((nbb + ii),2*...
(nbb + ii)) - DQcal;
JAC(2*(nbb + ii),2*(nbb + ii)) = -2*Vvr(ii)"2*B(ii) + DQssc;
if (PSta(ii) ==1)

1.0;

JAC(2*(nbb + ii),2*SSCsend...
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JAC(2*(nbb+ii)-1,2*(nbb+ii)) =JAC(2*(nbb+ii)-1,2*(nbb+ii)) - Pssc;
else
JAC(2*(nbb + ii)-1,2*(nbb + ii)) = 0.0;
end
else
JAC(2*(nbb + ii),2*(nbb + ii)) =1.0;
end
end

$Function to update STATCOM state variable
function [VM,Vvr,Tvr] = SSCUpdating(nbb,D,VM,VA,NSSC,SSCsend, ...
TarVol,VSta, Psp,Vvr,Tvr);
for ii =1 : NSSC
if (VSta(ii) ==1)
% Adjust the Volatge Magnitud target
Vvr(ii) =vvr(ii) + Vvvr(ii)*D(2*SSCsend(ii));
VM(SSCsend(ii)) = TarvVol(ii);
if (Psp(ii) == 0)
Tvr(ii) = VA(SSCsend(ii));
else
Tvr(ii) = Tvr(ii) + D(2*(nbb + ii)-1);
end
else
Vvr(ii) =Vvr(ii) + Vvr(ii)*D(2*(nbb + ii));
Tvr(ii) = VA(SSCsend(ii));
end
end
¢Function to check source voltages limits in the STATCOM
function [Vvr] = SSCLimits(NSSC,Vvr,VvrHi,VvrLo);
for ii =1 : NSSC
%Check STATCOM Vvr Limits
if (Vvr(ii) > VvrHi(ii))
Vvr(ii) = VvvrHi(ii);
elseif (Vvr(ii) < VvrLo(ii))
Vvr(ii) = VvrLo(ii);
end
end

$Function to calculate the power flows in the STATCOM
function [Psend,Qsend,PSSC,QSSC] = SSCPQPowers (VM,VA,NSSC,SSCsend, ...
Xvr,Vvr,Tvr);
for ii =1 : NSSC
B(ii)=1/Xvr;
Al = Tvr(ii)-VA(SSCsend(ii));
A2 = VA(SSCsend(ii))-Tvr(ii);
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Psend(ii) = VM(SSCsend(ii))*Vvr(ii)*(B(ii)*sin(A2));
Osend(ii) = - VM(SSCsend(ii))"2*B(ii) + Vvr(ii)*VM(SSCsend(ii))*...
(B(ii)*cos(A2));

PSSC(ii) = Vvr(ii)*VM(SSCsend(ii))*(B(ii)*sin(Al));
Q0SSC(ii) = -Vvr(ii)"2*B(ii) + Vvr(ii)*VM(SSCsend(ii))*(B(ii)*...
cos(Al));

end

5.5.3 Numerical Example of Voltage Magnitude Control using
One Static Compensator

The five-bus network is modified to include one STATCOM connected at Lake, to maintain
the nodal voltage magnitude at 1 p.u. The source impedance is X,z = 0.1 p.u. The power
flow solution is shown in Figure 5.16 whereas the nodal voltage magnitudes and phase
angles are given in Table 5.5. Convergence is achieved in five iterations to a power
mismatch tolerance of le —12. Function sscData is used to enter STATCOM data, and
function PowerFlowsData remain unchanged.

131.12\L $ 85.4 45 +j15 40 +j5

h
North |, 92 40.54
—

89.2 —
l %74.1 =

86.6\L

Figure 5.16 STATCOM-upgraded test network and power flow results
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Table 5.5 Bus voltages of the STATCOM-upgraded network

Network bus

Nodal voltage North South Lake Main Elm
Magnitude (p.u.) 1.06 1 1 0.994 0975
Phase angle (deg) 0 —2.05 —4.83 —-5.11 -538

Function ssChata is as follows:

$This function is used exclusively to enter data for:
% STATIC SYNCHRONOUS COMPENSATOR (STATCOM)

NSSC : Number of STATCOM's

SSCsend: STATCOM's bus

Xvr : Converter’s reactance (p.u.)

TarVol: Target nodal voltage magnitude (p.u.)

VSta : Indicate the control status over nodal voltage magnitude: 1 is
on; 0 is off

Psp : Target active power flow (p.u.)

PSta : Indicate the control status over active power: 1 is on; 0 is off
0Osp : Target reactive power flow (p.u.)

OSta : Indicate the control status over reactive power:1 is on; 0 is off

00 00 o0 o0 Jd° O° o0 o° o0 o° o°

Vvr : Initial condition for the source voltage magnitude (p.u.)
% Tvr : Initial condition for the source voltage angle (deg)

% VvrHi : Lower limit source voltage magnitude (p.u.)

% VvrLo : higher limit source voltage magnitude (p.u.)

NSSC =1;

SSCsend(1)=3; Xvr(1l)=10; TarVol(1l)=1.0; VSta(l)=1;
Psp(1)=0.0; PSta(l)=1; Osp(1l)=0.0; QSta(1)=0;
Vvr(l)=1.0; Tvr(1)=0.0; VvrHi(1)=1.1; VvrLo(1)=0.9;

The power flow result indicates that the STATCOM generates 20.5 MVAR in order to
keep the voltage magnitude at 1 p.u. at Lake bus. The STATCOM parameters associated
with this amount of reactive power generation are V,g = 1.0205 p.u. and 6, = —4.83°. Use
of the STATCOM results in an improved network voltage profile, except at Elm, which is
too far away from Lake to benefit from the influence of the STATCOM.

The slack generator reduces its reactive power generation by almost 6 % compared with
the base case, and the reactive power exported from North to Lake reduces by more than
30 %. The largest reactive power flow takes place in the transmission line connecting North
and South, where 74.1 MVAR leaves North and 74 MVAR arrives at South. In general, more
reactive power is available in the network than in the base case, and the generator connected
at South increases its share of reactive power absorption compared with the base case. As
expected, active power flows are only marginally affected by the STATCOM installation.
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5.6 UNIFIED POWER FLOW CONTROLLER

The basic principle of UPFC operation has been discussed in Chapter 2. It follows from that
discussion that an equivalent circuit consisting of two coordinated synchronous voltage
sources should represent the UPFC adequately for the purpose of fundamental frequency
steady-state analysis. Such an equivalent circuit is shown in Figure 5.17. The synchronous
voltage sources represent the fundamental Fourier series component of the switched voltage
waveforms at the ac converter terminals of the UPFC (Hingorani and Gyugyi, 2000; Song
and Johns, 1999).

V, 26, Z.x F VL, - v .26,
I Y'Y () I,
N el O
IcR
bus k l Ir
Zor bus m

Re{-Virl v+ Vegl m } =0

wite (o) —

Figure 5.17 Unified power flow controller equivalent circuit

The UPFC voltage sources are:
E’UR - V'UR(COS 6‘UR +.] sin 61}R)a (548)
E.r = Veg(cos8g +jsinbeg), (5.49)

where Vg and 6,z are the controllable magnitude (Vogmin < Vg < Virmax) and phase angle
(0 < 6,8 < 2m) of the voltage source representing the shunt converter. The magnitude V.
and phase angle 6.r of the voltage source representing the series converter are controlled
between limits (Vegmin < Ver < Vermax) and (0 < 6.z < 2m), respectively.

The phase angle of the series-injected voltage determines the mode of power flow control.
If 6. is in phase with the nodal voltage angle 6, the UPFC regulates the terminal voltage. If
O. 18 in quadature with respect to 6, it controls active power flow, acting as a phase shifter.
If 6.z is in quadrature with the line current angle then it controls active power flow, acting as
a variable series compensator. At any other value of .z, the UPFC operates as a combination
of voltage regulator, variable series compensator, and phase shifter. The magnitude of the
series-injected voltage determines the amount of power flow to be controlled.
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5.6.1 Power Flow Model

Based on the equivalent circuit shown in Figure 5.17 and Equations (5.48) and (5.49), the
active and reactive power equations are (Fuerte-Esquivel and Acha, 1997; Fuerte-Esquivel,
Acha, and Ambriz-Pérez, 2000c), at bus k:
Pk = V]? Gkk + Vk Vm [ka cos(@k - am) + Bkm Sin(ek - am)]
+ Vi Ver [ka COS(ek — (SL-R) + By Sil’l((gk — 60R)]
+ Vi Vg [G’UR cos(@k — 6’UR) + B sin(9k — 6vR)]; (550)

Ox = =V} Bix + Vi Viu G sin (0 — 0,) — By cos (6 — 6,,)]
+ Vi VCR[ka sin(&k — 5cR) — Bin COS(Qk — 6CR)}
+ Vk VﬂR [GUR Sin(6‘k — 57)R) — Bq}R COS(@k — 67,13)]; (551)

at bus m:

Py =V G + Vi Vi[Gontc €080 — Ok) + By sin (0, — 0)]

+ Vi Ver (G €08(0, — Ocr) + B SIN(0,, — 6cr)], (5.52)
Qm = _Vi Bmm + Vm Vk [Gmk Sin(em - 9/{) - Bmk cos(@m - ek)]

+ Vm VcR [Gmm Sin(am - 601?) - Bmm COS(Gm - CR)]; (553)

series converter:

P.r = VCZR Gum + Ver Vi [ka COS((SCR — Qk) + B sin(écR — 91()]
+ Ver Via[Grm €08(6cr — ) + B Sin(6cr — 0], (5.54)

QL‘R = _VZR Bmm + VL‘R Vk[ka Sin((ScR - 01{) - Bkm COS((SCR - Gk)]

+ Ver Vi |G SIn(6cr — O) — Buum c08(6cr — Om)]; (5.55)

shunt converter:
Pr = V% G+ Vig Vi[Gur cos(8,r — 0k) + Bur sin(8,r — 01)], (5.56)
Qur = Vi Bug + Vig Vi[Gur sin(6ur — Oi) — Bug c08(6,r — 0)]. (5.57)

Assuming loss-less converter valves, the active power supplied to the shunt converter, P,
equals the active power demanded by the series converter, P.g; that is,

PUR + PcR =0. (558)

Furthermore, if the coupling transformers are assumed to contain no resistance then the
active power at bus k£ matches the active power at bus m. Accordingly,

PUR+PCR:Pk+Pm:0~ (559)

The UPFC power equations, in linearised form, are combined with those of the ac network.
For the case when the UPFC controls the following parameters: (1) voltage magnitude at the
shunt converter terminal (bus k), (2) active power flow from bus m to bus k, and (3) reactive
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power injected at bus m, and taking bus m to be a PQ bus, the linearised system of equations

is as follows:
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where APy, is the power mismatch given by Equation (5.58).
If voltage control at bus k is deactivated, the third column of Equation (5.60) is replaced
by partial derivatives of the bus and UPFC mismatch powers with respect to the bus voltage
magnitude V;. Moreover, the voltage magnitude increment of the shunt source, AV,g/V.g is
replaced by the voltage magnitude increment at bus k, AV, /V;.
If both buses, k and m, are PQ the linearised system of equations is as follows:
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Af, T
Ab,,

AV,
Vi

AV,
Vin

A 6L‘R

A VL'R
VCR

AéuR .
(5.61)

In this case, V,z is maintained at a fixed value within prescribed limits, Vi gmin <
Vir < Viyrmax- The Jacobian terms in Equations (5.60) and (5.61) are given in Appendix A,

Section A.4.
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5.6.2 Unified Power Flow Controller Computer Program in
Matlab™ Code

Program 5.6 incorporates the UPFC model within the Newton—Raphson power flow
program. The functions PowerFlowsData, YBus, and PQflows are also used here. In the
main UPFC Newton—Raphson program, the function UPFCData is added to read the UPFC
data, UPFCNewtonRaphson replaces NewtonRaphson, and UPFCPQflows is used to
calculate power flows and losses in the UPFC.

PROGRAM 5.6 Program written in Matlab® to incorporate the unified power flow
controller (UPFC) model within the Newton—Raphson power flow algorithm

% - — — Main UPFC Program

PowerFlowsData; $Function to read network data

UPFCdata; %$Function to read the UPFC data

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,ntl,nbb);

[VM,VA,it,Vcr,Tcr,Vvr,Tvr] = UPFCNewtonRaphson(tol,itmax,ngn,nld,...
nbb,bustype, genbus, loadbus, PGEN, QGEN, QMAX,OMIN, PLOAD,QLOAD, YR, YT, ...
VM, VA,NUPFC,UPFCsend,UPFCrec,Xcr,Xvr,Flow,Psp,PSta,Qsp,QSta,Vecr, ...
Tcr,VerLo,VcrHi,Vvr, Tvr,VvrLo,VvrHi,VvrTar,VvrSta);

[POsend,PQrec,PQloss,PQbus] = PQflows (nbb,ngn,ntl,nld, genbus, ...
loadbus,tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,QLOAD,...
VM,VA);

[UPFC_PQsend, UPFC_PQrec,PQcr,PQvr] = PQUPFCpower (nbb, VA, VM, NUPFC, . ..
UPFCsend,UPFCrec,Xcr,Xvr,Ver,Tcr,Vvr,Tvr) ;

$Print results

it gNumber of iterations

VM $Nodal voltage magnitude (p.u.)

VA=VA*180/pi %Nodal voltage phase angles (deg)
Sources=[Vcr,Tcr*180/pi,Vvr,Tvr*180/pi] %Final source voltage para-

% meters
UPFC_PQOsend $Active and reactive powers in sending bus (p.u.)
UPFC_PQrec %Active and reactive powers in receiving bus (p.u.)

$End of MAIN UPFC PROGRAM

%Carry out iterative solution using the Newton—Raphson method

function [VM,VA,it,Vcr,Tcr,Vvr,Tvr] = UPFCNewtonRaphson(tol,itmax,...
ngn,nld, nbb,bustype, genbus, loadbus, PGEN, QGEN, QMAX ,OMIN, PLOAD, ...
QLOAD, YR,YI,VM,VA, NUPFC,UPFCsend, UPFCrec, Xcr, Xvr,Flow,Psp,PSta, ...
Qsp,QSta,Ver,Tcr,VerLo,VerHi,Vvr, Tvr,VvrLo,VvrHi, VvrTar,VvrSta);
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% GENERAL SETTINGS
flag=10;
it=1;

% CALCULATE NET POWERS
[PNET,QNET] = NetPowers (nbb,ngn,nld, genbus, loadbus, PGEN, QGEN, ...

PLOAD, QLOAD) ;

while ( it < itmax & flag==0 )
% CALCULATED POWERS
[PCAL,QCAL] = CalculatedPowers(nbb,VM,VA,YR,YTI);

% CALCULATED UPFC POWERS

[PspQOsend, PspQrec, PQcr,PQvr,PCAL,QCAL] = UPFCCalculatedpower...
(nbb,VA, VM,NUPFC,UPFCsend, UPFCrec, Xcr,Xvr,Vcr,Tcr,Vvr, Tvr,PCAL, ...
QCAL) ;

% POWER MISMATCHES
[DPQ,DP,DQ,flag] = PowerMismatches (nbb, tol,bustype,flag, PNET,QONET, ...

PCAL,QCAL) ;

% UPFC POWER MISMATCHES
[DPQ,flag] = UPFCPowerMismatches(flag,tol, nbb,DPQ,VM,VA,NUPFC,Flow, ...
Psp,PSta,Q0sp,QSta,PspOsend, PspQrec, PQcr,PQvr) ;
if flag ==
break
end

% JACOBIAN FORMATION
[JAC] = NewtonRaphsonJacobian(nbb,bustype, PCAL,QCAL,DPQ,VM,VA,YR, ...
YT);

% MODIFICATION OF THE JACOBIAN FOR UPFC

[JAC] = UPFCJacobian(nbb,JAC,VM,VA,NUPFC,UPFCsend, UPFCrec, Xcr, ...
Xvr,Flow,PSta,QSta,Ver,Tcr,Vvr,Tvr,VvrSta);

% SOLVE JOCOBIAN
D = JAC\DPQ"' ;

% UPDATE THE STATE VARIABLES VALUES
[VA,VM] = StateVariablesUpdating(nbb,D,VA,VM,it);

% UPDATE THE TCSC VARIABLES
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[VM,Vcr,Tcr,Vvr,Tvr] = UPFCUpdating(nbb,VM,D,NUPFC,UPFCsend,PSta, ...
QSta,Vvcer,Tcr,Vvr,Tvr,VvrTar,VvrSta);

$CHECK VOLTAGE LIMITS IN THE CONVERTERS
[Vcr,Vvr] = UPFCLimits (NUPFC,Vcr,VcrLo,VerHi,Vvr,VvrLo,VvrHi);

it=1it + 1;

end

$Function to calculate injected bus powers by the UPFC

function [UPFC_PQsend,UPFC_PQrec,PQcr,PQvr,PCAL,QCAL] = UPFCCalcula...
tedpower (nbb,VA,VM,NUPFC,UPFCsend,UPFCrec, Xcr, Xvr,Vcr, Tcr,Vvr, ...
Tvr,PCAL,QCAL) ;

for ii =1 : NUPFC

Bkk = - 1/Xcr(ii)-1/Xvr(ii);
Bmm = -1/Xcr(ii);

Bmk = 1/Xcr(ii);

Bvr = 1/Xvr(ii);

forkk=1:2
Al = VA(UPFCsend(ii))-VA(UPFCrec(ii));
A2 = VA(UPFCsend(ii))-Tcr(ii);
A3 = VA(UPFCsend(ii))-Tvr(ii);
% Computation of Conventional Terms
Pkm = VM(UPFCsend(ii))*VM(UPFCrec(ii))*Bmk#*sin(Al);
Qkm = - VM(UPFCsend (ii))"2*Bkk - VM(UPFCsend(ii))*VM(UPFCrec(ii))...
*Bmk*cos (Al);
% Computation of Shunt Converters Terms
Pvrk = VM(UPFCsend(ii))*Vvr(ii)*Bvr*sin(A3);
Qvrk = - VM(UPFCsend(ii) )*Vvr(ii)*Bvr*cos(A3);
if kk ==
% Computation of Series Converters Terms
Pcrk = VM(UPFCsend(ii))*Vecr(ii)*Bmk*sin(A2);
Qcrk = - VM(UPFCsend (ii))*Vcr(ii)*Bmk*cos(A2);
$Power in bus k
Pk = Pkm + Pcrk + Pvrk;
Qk = Qkm + Qcrk + Qvrk;
UPFC_PQOsend(ii) = Pk + Qk*i;
PCAL (UPFCsend(ii)) = PCAL(UPFCsend(ii)) + Pk;
QCAL(UPFCsend(ii)) = QCAL(UPFCsend(ii)) + Qk;
$Power in Series Converter
Pcr = Vcr(ii)*VM(UPFCsend(ii))*Bmk*sin(-A2);
Qcr = - Ver(ii)"2*Bmm - Vcr(ii)*VM(UPFCsend(ii))*Bmk*cos(-A2);
$Power in Shunt Converter
Pvr = Vvr(ii)*VM(UPFCsend(ii))*Bvr*sin(-A3);
Qvr = Vvr(ii) "2*Bvr - Vvr(ii)*VM(UPFCsend(ii))*Bvr*cos(-A3);
PQvr(ii) = Pvr + Qvr*i;
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else
% Computation of Series Converters Terms
Pcrk = VM(UPFCsend(ii))*Vcr(ii)*Bkk*sin(A2);
Qcrk = - VM(UPFCsend (ii))*Vcr(ii)*Bkk*cos(A2);
$Power in bus m
Pcal = Pkm + Pcrk;
Qcal = Qkm + Qcrk;
UPFC_PQrec(ii) = Pcal + Qcal¥*i;
PCAL (UPFCsend(ii)) = PCAL(UPFCsend(ii)) + Pcal;
QCAL (UPFCsend(ii)) = QCAL(UPFCsend(ii)) + Qcal;
$Power in Series Converter
Pcr = Pcr + Ver (ii)*VM(UPFCsend(ii))*Bkk*sin(-A2);
Qcr = Qcr - VM(UPFCsend(ii))*Vecr(ii)*Bkk*cos(-A2);
PQcr(ii) = Pcr + Qcr*i;

end

send = UPFCsend(ii);

UPFCsend(ii) = UPFCrec(ii);

UPFCrec(ii) = send;

Beq = Bmm;

Bmm = BkKk;

Bkk = Beq;
end

end

$Function to compute power mismatches with UPFC

function [DPQ,flag] = UPFCPowerMismatches (flag,tol,nbb,DPQ,VM,VA, ...

NUPFC,Flow,Psp,PSta,Qsp,QSta,UPFC_PQsend,UPFC_PQrec,PQcr,PQvr) ;
iii =0;
for ii =1 : NUPFC
index = 2*(nbb + ii) + iii;
if PSta(ii) ==
if Flow(ii) ==
DPQ(index-1)
else
DPQ(index-1) = - Psp(ii) - real (UPFC_PQrec(ii));
end

Psp(ii) - real (UPFC_PQsend(ii));

else
DPQ(index-1) = 0;
end

if QSta(ii) ==
if Flow(ii) ==
DPQ(index) = Osp(ii) - imag(UPFC_PQrec(ii));
else
DPQ(index) = - Osp(ii) - imag(UPFC_PQrec(ii));
end
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else
DPQ(index) = 0;
end

DPQ(index + 1) = - real(PQcr(ii) + PQvr(ii));
iii=iii+1;

end

% Check for convergence

if ( abs(DPQ) < tol )
flag=1;

end

$Function to add the UPFC elements to the Jacobian matrix
function [JAC] = UPFCJacobian(nbb,JAC,VM,VA,NUPFC,UPFCsend, ...
UPFCrece, Xcr,Xvr,Flow,PSta,QSta,Vcr,Tcr,Vvr, Tvr,VvrSta);
iii=0;

for ii = 1 : NUPFC
indexQ=2*(nbb + ii) + iii;
indexP=indexQ-1;
indexL=indexQ + 1;
if vvrSta(ii) ==

JAC(:,2*UPFCsend(ii)) = 0.0;
end
Bmm = - 1/Xcr(ii)-1/Xvr(ii);
Bkk = -1/Xcr(ii);
Bmk = 1/Xcr(ii);

Bvr = 1/Xvr(ii);
forkk=1:2
Al = VA(UPFCsend(ii))-VA(UPFCrece(ii));
A2 = VA(UPFCsend(ii))-Tcr(ii);
A3 = VA(UPFCsend(ii))-Tvr(ii);
% Computation of Conventional Terms
Hkm = - VM(UPFCsend (ii))*VM(UPFCrece(ii))*Bmk*cos(Al);
Nkm = VM(UPFCsend(ii) ) *VM(UPFCrece(ii))*Bmk*sin(Al);
% Computation of Shunt Converters Terms
Hvr = -VM(UPFCsend(ii))*Vvr(ii)*Bvr*cos(A3);
Nvr = VM(UPFCsend(ii) )*Vvr(ii)*Bvr*sin(A3);
% Computation of Series Converters Terms
if kk ==
Hcr = - VM(UPFCsend(ii))*Vcr(ii)*Bmk*cos(A2);

Ncr = VM(UPFCsend(ii))*Vcr(ii)*Bmk*sin(A2);
else
Her = - VM(UPFCsend (ii))*Ver(ii)*Bkk*cos(A2);

207
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Ncr = VM(UPFCsend(ii))*Vecr(ii)*Bkk*sin(A2);
end
if kk ==
JAC(2*UPFCsend(ii)-1,2*UPFCsend(ii)-1) = JAC(2*UPFCsend...
(ii)-1, 2*UPFCsend(ii)-1) - VM(UPFCsend(ii))"2*Bmm;
if vvrsSta(ii) ==
JAC (2*UPFCsend(ii)-1,2*UPFCsend(ii)) = Nvr;

JAC (2*UPFCsend(ii),2*UPFCsend(ii)) = Hvr;
else
JAC (2*UPFCsend(ii)-1,2*UPFCsend(ii)) = JAC(2*UPFCsend(ii)-1,...

2*UPFCsend(ii)) - Nkm + Nvr;
JAC(2*UPFCsend(ii),2*UPFCsend(ii)) = JAC(2*UPFCsend...
(ii),2*UPFCsend(ii)) - Hkm + Hvr + 2*VM(UPFCsend (ii))"2*Bmk;

end

JAC(2*UPFCsend(ii)-1,indexL) = Hvr;

JAC(2*UPFCsend(ii),indexL) = - Nvr;
else

JAC (2*UPFCsend(ii)-1,2*UPFCsend(ii)-1) = JAC(2*UPFCsend. ..
(ii)-1,2*UPFCsend(ii)-1) + VM(UPFCsend(ii))"2*Bmk;

JAC (2*UPFCsend(ii),2*UPFCsend(ii)) = JAC(2*UPFCsend(ii),...
2*UPFCsend(ii)) + VM(UPFCsend(ii))"2*Bmk;

JAC(2*UPFCsend(ii)-1,indexL) =0.0;
JAC(2*UPFCsend(ii),indexL) = 0.0;
end

JAC(2*UPFCsend(ii)-1,2*UPFCrece(ii)-1) = JAC(2*UPFCsend(ii)-1,...
2*UPFCrece(ii)-1) + Hkm;
JAC(2*UPFCsend(ii),2*UPFCrece(ii)-1) = JAC(2*UPFCsend(ii),...
2*UPFCrece(ii)-1) - Nkm;
if vvrSta(ii) ==1 & kk ==
JAC (2*UPFCsend(ii)-1,2*UPFCrece(ii)) =0.0;
JAC(2*UPFCsend(ii),2*UPFCrece(ii)) =0.0;
else
JAC(2*UPFCsend(ii)-1,2*UPFCrece(ii)) = JAC(2*UPFCsend(ii)-1,...
2*UPFCrece(ii)) + Nkm;
JAC(2*UPFCsend(ii),2*UPFCrece(ii)) = JAC(2*UPFCsend(ii),...
2*UPFCrece(ii)) + Hkm;
end

% Computation of Active Power Controlled Jacobian’s Terms

if PSta(ii) ==
if (Flow(ii) ==1 & kk==1) | (Flow(ii) == -1 & kk == 2)
if kk ==
JAC(indexP, 2*UPFCsend(ii)-1) = - Hkm - Hcr - Hvr;

JAC (indexP, 2*UPFCsend(ii)) = - Nkm + Ncr;
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JAC(indexP, 2*UPFCrece(ii)-1) = - Hkm;
if vvrSta(ii) ==
JAC(indexP, 2*UPFCrece(ii)) =0.0;

else
JAC (indexP, 2*UPFCrece(ii)) = Nkm;
end
JAC (indexP, indexP) = Hcr;
if QSta(ii) ==
JAC (indexP, indexQ) = Ncr;
else
JAC(indexP, indexQ) =0.0;
end
else
JAC (indexP, 2*UPFCsend(ii)-1) = - Hkm - Hcr;

JAC (indexP, 2*UPFCsend(ii)) = Nkm + Ncr;
JAC(indexP, 2*UPFCrece(ii)-1) = Hkm;
if vvrSta(ii) ==

JAC(indexP, 2*UPFCrece(ii)) =0.0;

else
JAC(indexP, 2*UPFCrece(ii)) = Nkm;
end
JAC(indexP, indexP) = Hcr;
if QSta(ii) ==
JAC(indexP, indexQ) = Ncr;
else
JAC (indexP, indexQ) =0.0;
end
JAC(indexP, indexL) =0.0;
end
end
JAC(2*UPFCsend(ii)-1, indexP) = + Hcr;
JAC(2*UPFCsend(ii), indexP) = - Ncr;
else
JAC (indexP, indexP) =1.0;
end

% Computation of Rective Power Controlled Jacobian’s Terms
if QSta(ii) ==

209

if (Flow(ii) == 1 & kk==1) | (Flow(ii) == -1 & kk == 2)
if kk ==
JAC(indexQ, 2*UPFCsend(ii)-1) = - Nkm + Ncr;
JAC(indexQ, 2*UPFCsend(ii)) = - 2*VM(UPFCsend(ii))"2*Bmm - ...
Hkm + Hcr;

JAC(indexQ, 2*UPFCrece(ii)-1) = Nkm;
JAC (indexQ, indexQ) = Hcr;
if vvrSta(ii) ==

JAC(indexQ, 2*UPFCrece(ii)) =0.0;
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else

JAC(indexQ, 2*UPFCrece(ii)) = Hkm;
end
if PSta(ii) ==

JAC (indexQ, indexP) = - Ncr;
else

JAC (indexQ, indexP)
end

I
o
.
(=]

~

else
JAC (indexQ, 2*UPFCsend(ii)-1) = Nkm + Ncr;
JAC(indexQ, 2*UPFCsend(ii)) = - 2*VM(UPFCsend(ii)) ...
~2*Bkk + Hkm + Hcr;
JAC(indexQ, 2*UPFCrece(ii)-1) = - Nkm;
JAC (indexQ, indexQ) = Hcr;
if VvrSta(ii) ==1
JAC(indexQ, 2*UPFCrece(ii)) =0.0;
else
JAC(indexQ, 2*UPFCrece(ii)) = Hkm;
end
if PSta(ii) ==
JAC (indexQ, indexP) = - Ncr;
else
JAC (indexQ, indexP)
end
end

I
o
.
(=]

~

end

JAC(2*UPFCsend(ii)-1, indexQ) = Ncr;

JAC(2*UPFCsend(ii), indexQ) = Hcr;
else

JAC (indexQ, indexQ) =1.0;
end
temp = UPFCsend(ii);
UPFCsend(ii) = UPFCrece(ii);
UPFCrece(ii) = temp;

end

Al = Tcr(ii) - VA(UPFCsend(ii));
A2 = Tcr(ii) - VA(UPFCrece(ii));
A3 =Tvr(ii) - VA(UPFCsend(ii));

Hcrk = - Ver(ii)*VM(UPFCsend(ii) ) *Bmk*cos(Al);
Ncrk = Ver (ii)*VM(UPFCsend(ii) ) *Bmk*sin(Al);
Hcrm = Ver (ii) *VM(UPFCrece(ii) ) *Bmk*cos (A2);
Ncrm = - Ver(ii)*VM(UPFCrece(ii))*Bmk*sin(A2);
Hvrk = - Vvr(ii)*VM(UPFCsend(ii))*Bvr*cos(A3);
Nvrk = Vvr(ii)*VM(UPFCsend(ii))*Bvr*sin(A3);

JAC (indexL, 2*UPFCsend(ii)-1) = Hcrk + Hvrk;
if VvrSta ==
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JAC(indexL, 2*UPFCsend(ii)) = Nvrk;
else
JAC(indexL, 2*UPFCsend(ii)) = Nvrk + Ncrk;
end
JAC (indexL, 2*UPFCrece(ii)-1) = Hcrm;
JAC (indexL, 2*UPFCrece(ii)) = Ncrm;

JAC (indexL, indexL) = - Hvrk;
if PSta ==
JAC(indexL, indexP) = - Hcrk - Hcrm;
else
JAC(indexL, indexP) =0.0;
end
if QSta ==
JAC (indexL, indexQ) = Ncrk + Ncrm;
else
JAC(indexL, indexP) = 0.0;
end

iii=4iii+ 1;
end

$Function to update the UPFC state variables
function [VM,Vcr,Tcr,Vvr,Tvr] = UPFCUpdating(nbb,VM,D,NUPFC, ...
UPFCsend,PSta, QSta,Vcr,Tcr,Vvr,Tvr,VvrTar,VvrSta);
iii =0;
for ii = 1 : NUPFC
indexQ=2*(nbb + ii) + iii;
indexP=indexQ-1;
indexL=indexQ + 1;

if PSta(ii) ==
Tcr(ii) = Tcr(ii) + D(indexP);
end
if QSta(ii) ==
Ver(ii) = Ver(ii) + D(indexQ)*Ver(ii);
end
if vvrSta(ii) ==
Vvr(ii) = Vvvr(ii) + D(2*UPFCsend(ii),1)*Vvr(ii);
VM(UPFCsend(ii)) = VvrTar(ii);
end
Tvr(ii) = Tvr(ii) + D(indexL);
iii =iii +1;
end

$Function to check the voltage sources limits in the UPFC
function [Vcr,Vvr] = UPFCLimits (NUPFC,Vcr,VcerLo,VerHi,Vvr,VvrLo, ...
VvrHi);
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for ii =1 : NUPFC
% Check Magnitude Voltage Limits
if abs(Ver(ii)) < VerLo(ii) | abs(Ver(ii)) > VerHi(ii)
if abs(Vcr(ii)) < VerLo(ii)
Vcr(ii) = VerLo(ii);
elseif abs(Ver(ii)) > VerHi(ii)
Ver(ii) = VerHi(ii);
end
end
if abs(Vvr(ii)) < VvrLo(ii) | abs(Vvr(ii)) > VvrHi(ii)
if abs(Vvr(ii)) < VvrLo(ii)

Vvr(ii) = vvrLo(ii);
elseif abs(Vvr(ii)) > VvrHi(ii)
Vvr(ii) = VvrHi(ii);
end
end

end

$Function to calculate the power flows in the UPFC controller

function [UPFC_PQsend,UPFC_PQrec,PQcr,PQvr] = PQUPFCpower (nbb, ..

VA,VM, NUPFC,UPFCsend,UPFCrec, Xcr,Xvr,Vcr,Tcr,Vvr,Tvr);
for ii =1 : NUPFC
Bkk = - 1/Xcr(ii)-1/Xvr(ii);
Bmm = -1/Xcr(ii);
Bmk = 1/Xcr(ii);
Bvr = 1/Xvr(ii);
forkk=1:2
Al = VA(UPFCsend(ii))-VA(UPFCrec(ii));
A2 = VA(UPFCsend(ii))-Tcr(ii);
A3 = VA(UPFCsend(ii))-Tvr(ii);
% Computation of Conventional Terms
Pkm = VM(UPFCsend(ii))*VM(UPFCrec(ii))*Bmk*sin(Al);
Qkm = - VM(UPFCsend(ii))"2*Bkk - VM(UPFCsend(ii))...
*VM(UPFCrec(ii))*Bmk*cos(Al);
% Computation of Shunt Converters Terms
Pvrk = VM(UPFCsend(ii))*Vvr(ii)*Bvr*sin(A3);
Qvrk = - VM(UPFCsend(ii))*Vvr(ii)*Bvr*cos(A3);
if kk ==
% Computation of Series Converters Terms
Pcrk = VM(UPFCsend(ii))*Ver(ii)*Bmk*sin(A2);
Qcrk = - VM(UPFCsend(ii))*Vcr(ii)*Bmk*cos(A2);
$Power in bus k
Pk = Pkm + Pcrk + Pvrk;
Qk = Qkm + Qcrk + Qvrk;
UPFC_PQsend(ii) = Pk + Qk*i;
$Power in Series Converter
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Pcr = Vcr(ii)*VM(UPFCsend(ii))*Bmk*sin(-A2);
Qcr = - Ver(ii)"2*Bmm - Vcr(ii)*VM(UPFCsend(ii))*Bmk*cos(-A2);
$Power in Shunt Converter
Pvr = Vvr(ii)*VM(UPFCsend(ii))*Bvr*sin(-A3);
Qvr = Vvr(ii)"2*Bvr - Vvr(ii)*VM(UPFCsend(ii))*Bvr*cos(-A3);
PQvr(ii) = Pvr + Qvr*i;
else
% Computation of Series Converters Terms
Pcrk = VM(UPFCsend (ii))*Ver(ii)*Bkk*sin(A2);
Qcrk = - VM(UPFCsend(ii))*Vecr(ii)*Bkk*cos(A2);
$Power in bus m
Pcal = Pkm + Pcrk;
Qcal = Qkm + Qcrk;
UPFC_PQrec(ii) = Pcal + Qcal*i;
$Power in Series Converter
Pcr = Pcr + Ver (ii) *VM(UPFCsend(ii) ) *Bkk*sin(-A2);
Qcr = Qcr - VM(UPFCsend(ii))*Vecr(ii)*Bkk*cos(-A2);
PQcr(ii) = Pcr + Qcr*i;
end
send = UPFCsend(ii);
UPFCsend(ii) = UPFCrec(ii);
UPFCrec(ii) = send;

Beq = Bmm;

Bmm = BKkKk;

Bkk = Beq;
end

end

5.6.3 Numerical Example of Power Flow Conftrol using One
Unified Power Flow Controller

The five-bus network is modified to include one UPFC to compensate the transmission line
linking bus Lake and bus Main. The modified network is shown in Figure 5.18. The UPFC is
used to maintain active and reactive powers leaving the UPFC, towards Main, at 40 MW and
2 MVAR, respectively. Moreover, the UPFC shunt converter is set to regulate the nodal
voltage magnitude at Lake at 1 p.u.

The starting values of the UPFC voltage sources are taken to be V. = 0.04p.u.,
g = 87.13°, Vg = 1p.u., and 6,zg = 0°. Information on how to determine the starting
values for these voltage sources is given in Section 5.8.1. The source impedances have
values of X.g = X,g = 0.1 p.u.

Convergence is obtained in five iterations to a power mismatch tolerance of le —12. The
UPFC upheld its target values. The power flow results are shown in Figure 5.18, and the bus
voltages are given in Table 5.6.

The data given in function PowerFlowsData in Section 4.3.9 are modified to
accommodate for the inclusion of the UPFC. Furthermore, function UPFCData is used to
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Figure 5.18 Five-bus test network with one unified power flow controller, and power flow result

Table 5.6 Bus voltages of modified network

System bus
Nodal voltage North South Lake Lakefa Main Elm
Magnitude (p.u.) 1.06 1.00 1.00 0.997 0.992 0.975
Phase angle (deg) O —-1.77 —-6.02 -251 -3.19 —-4.97

enter UPFC data:

$This function is used exclusively to enter data for:
% UNIFIED POWER FLOW CONTROLLER

% NUPFC : Number of UPFC’s

% UPFCsend : Shunt converter'’s bus and series converter’ sending bus
% UPFCrec : Series converter’ receiving bus

% Xcr : Inductive reactance of Shunt impedance (p.u.)

% Xvr : Inductive reactance of Series impedance (p.u.)

% Flow : Power flow direction : 1 is for sending to receiving bus
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% -1 indicates opposite direction

% Psp : Target active power flow (p.u.)

% PSta : control status for active power : 1 is on; 0 is off

% Osp : Target reactive power flow (p.u.)

% QSta : control status for reactive power : 1 is on; 0 is off

% Vcr : Initial condition for the series source voltage magnitude (p.u.)
% Tcr : Initial condition for the series source voltage angle (rad.)

% VcrLo : Lower limit of series source voltage magnitude (p.u.)

% VcrHi : Higher limit of series source voltage magnitude (p.u.)

% Vvr : Initial condition to the shunt source voltage magnitude (p.u.)
% Tvr : Initial condition to the shunt source voltage angle (rad.)

% VvrLo : Lower 1limit of shunt source voltage magnitude (p.u.)

% VvrHi : Higher 1limit of shunt source voltage magnitude (p.u)

% VvrTar : Target nodal voltage magnitude to be controlled by shunt ...
% branch (p.u.)

% VvrSta : Control status for nodal voltage magnitude: 1 is on; o is off

NUPFC=1;

UPFCsend(1)=3; UPFCrec(1l)=6; Xcr(1)=0.1; Xvr(1)=0.1;
Flow(1l)=-1; Psp(1)=0.4; PSta(l)=1; QOsp(1)=0.02; QSta(1l)=1;
Vcr(1)=0.04; Tcr(1)=-87.13/57.3; VcrLo(1)=0.001; VcrHi(1)=0.2;
Vvr(1l)=1.0; Tvr(1)=0.0; VvrLo(1)=0.9; VvrHi(1)=1.1;

VvrTar(1l)=1.0; VvrSta(l)=1;

As expected, the power flows in the UPFC-upgraded network differ with respect to the
original case. The most noticeable changes are as follows: there is a 32 % increase of active
power flowing towards Lake through transmission lines North-Lake and South-Lake.
The increase is in response to the large amount of active power demanded by the UPFC
series converter. The maximum amount of active power exchanged between the UPFC and
the Ac system will depend on the robustness of the UPFC shunt bus, Lake. Since the UPFC
generates its own reactive power, the generator at North decreases its reactive power
generation by 5.6 %, and the generator connected at South increases its absorption of
reactive power by 22.6 %.

The maximum absolute power mismatches in the system buses and UPFC are shown
in Table 5.7. It must be noted that the selected UPFC initial conditions are very good

Table 5.7 Maximum power mismatches in the bus system and unified power
flower controller (UPFC)

Buses UPFC
Iteration AP AQ AP, A0 Pcg + Por
1 7.745e — 1 1.40le—1 5.0e—04 4.0e—02 0
2 1.89e -2 1.00le—-2 5.1e—-03 6.5e —02 5.7¢ -03
3 3.8¢e—03 5.1e—04 3.7¢—03 5.0e —04 8.6e —05
4 1.2e—07 1.6e — 06 1.2e—07 1.6e —6 1.2e—07
5 1.3e—12 1.9e—13 1.2e—12 1.8e—13 1.3e—14
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estimates, since the UPFC mismatches have small values from the outset of the iterative
process.

For completeness Table 5.8 shows the variation of the controllable voltage sources during
the iterative process.

Table 5.8 Variation of ideal source voltages

Series source Shunt source

Iteration Ver (p.u.) O.r (deg) Vg (pu.) O.r (deg)

1 0.04 —87.12 1 0

2 0.1004 —97.54 1.0134 —5.8882
3 0.1009 —-92.71 1.0174 —6.0051
4 0.1013 —92.73 1.0173 —6.0055
5 0.1013 —-92.73 1.0173 —6.0055

5.7 HIGH-VOLTAGE DIRECT-CURRENT-BASED VOLTAGE
SOURCE CONVERTER

From the principles of HVDC-VSC operation outlined in Chapter 2 it may be argued that for
the purpose of fundamental frequency analysis each converter station may be adequately
represented by a complex voltage source Vg behind its transformer reactance X,
(impedance Z,g). Similar to the case for the STATCOM, and UPFC, the synchronous
voltage sources represent the fundamental Fourier series component of the switched voltage
waveforms at the ac converter terminals of the HVDC-VSC.

The two voltage sources work in a coordinated fashion, and this fact is taken into account
by the mismatch power equation in the equivalent circuit shown in Figure 5.19. This circuit
is used to derive the mathematical model of the HVDC-VSC for inclusion in the power flow
Newton—Raphson algorithm.

The complex voltage sources representing the two VSC stations in the HVDC-VSC are:

Euri = Vur1(c0s Oyt + jsinbur1 ), (5.62)
Eury = Viro (€08 8yr1 +jsin Supa). (5.63)

In the current application, the voltage sources have the following voltage magnitudes
and phase angle limits: 0 < Vipi < Vigimax; 0 < 0ur1 <27 0 < Vigy < Vigo maxs
0 § 671R2 S 2.

The constraining power equation for the back-to-back HVDC-VSC (i.e. R, = 0) is

Re{VigiLig, + ViroLigy } =0, (5.64)
and for the case when both VSC stations are linked by a pc cable (i.e. R,. > 0) is

Re{VigiLig; + ViraLigy 4+ Ppciioss } = 0. (5.65)
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Figure 5.19 High-voltage direct-current based voltage source converter equivalent circuit

5.7.1 Power Equations

If it is assumed that the power flows from the station connected at bus k (rectifier) to the
station connected at bus m (inverter), the power flow equations injected at bus k are:

P = ViGuri + ViVri [Guri cos(0k — Sur1) + Burr sin(0 — Sur1)], (5.66)
Or = —VEBuri + ViVir1 [Gori sin(0r — Sur1) — Buri cos(6; — Sur1)]- (5.67)
The powers flowing into the rectifier are described by the following equations:
Pori = Vg Gori + Vg1 Vi[Gori €08(8ur1 — 6x) + Bugr sin(8,z1 — 6k)], (5.68)
Qurt = —VigBurt + Vg1 Vi[Guri sin(6or1 — 0k) — Bugi cos(8ur1 — 0k)]. (5.69)

The power equations for bus m and for the inverter are obtained by exchanging the
subscripts k and vR1 for m and vR2, respectively.

Moreover, one further equation is required to represent the power constraint given in the
form of either Equation (5.64) or Equation (5.65), depending on the application. For the case
of the full HVDC-VSC, the relevant power equation is:

Pogi + Pogy + Py = 0. (5.70)

It should be remarked that for the purpose of power flow studies the equivalent circuit of one
leg of the HVDC-VSC shown in Figure 5.19 is closely related to the equivalent circuit of the
STATCOM (see Section 5.5.1).

As described in Chapter 4, an n-bus power network with no voltage and power flow
regulation provisions is described by a 2 x (n— 1) nonlinear system of equations.
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Moreover, for each HVDC-VSC that exists in the power network the 2 x (n — 1) system of
equations is augmented by up to five equations to take account of the two converter stations
and the power constraint equation that exists on the pc side of the converters. The solution
of the combined system of nonlinear equations is carried out by iteration using the Newton—
Raphson method, enabling quadratic convergent solutions.

Both converter stations are capable of controlling the amount of active power injected at
their respective Ac buses. In a given power flow solution, one of the converters is designated
to be the master station, with the other converter being the slave station. Moreover, both
stations have control over either voltage magnitude or reactive power injected at their
connecting buses.

For the HVDC-VSC, when active power is regulated at the rectifier end and voltage
magnitude is regulated at the inverter end, the linearised system of equations has the
following structure:

AR [ R, O O o 1T A%
00k v - 00yr1 Vorr !
0 0 0 0 AV,
AQx 00« &Vk O O Vori 0 -l
00, Vi 00ur1 Vuri Vi
OP 1 OP R OP g1 OP g1
AP, ‘ =V - =V, 0 AS ,
" b Ve B W ™ o
aQle 6Q11Rl anRl anRl AV
AQvR aek avk Vk aéle aVURl Vle 0 Wffl
OPuvpc  OPuvpc OPuvpc  OPuvpc OPHvDC
L APHVDC J L aak 6Vk a61)R1 aV1)Rl oKl 6611R2 4 L A61}R2 J
(5.71)

where APyypc, given by

APuvpc = APgi — AP g2,

is the active power flow mismatch for the pc link. Notice that, since active power is
regulated at the rectifier end (i.e. APz = P — PS4%), the corresponding active power
equations of the inverter become redundant (i.e. APz, and AP,,) and are not used in
Equation (5.71). Moreover, since the voltage magnitude at bus m is kept constant the
reactive power equations of the inverter also become redundant (i.e. AQ,z, and AQP,,).
The relevant Jacobian elements are given in Appendix A, Section A.S5.

5.7.2 High-voltage Direct-current-based Voltage Source Converter
Computer Program in Matlab™ Code

Program 5.7 incorporates the HVDC model within the Newton—Raphson power flow
program. The functions PowerFlowsData, YBus, and PQflows are also used here. In the
main HVDC Newton—Raphson program, the function HvDCData is added to read the HVDC
data, HVDCNewtonRaphson replaces NewtonRaphson, and HVDCPQflows is used to
calculate power flows and losses in the HVDC.
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PROGRAM 5.7 Program written in Matlab®™ to incorporate the high-voltage direct-
current (HVDC) model within the Newton—Raphson power flow algorithm.

% — - — Main HVDC Program
PowerFlowsData;

HVDCdata;

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,ntl,nbb);

[VM,VA,it,Vvrl,Tvrl,Vvr2,Tvr2] = HVDCNewtonRaphson(tol,itmax,ngn, ...
nld,nbb,bustype, genbus, loadbus, PGEN, QGEN,QOMAX ,OMIN, PLOAD,QLOAD, YR, ...
YI,VM,VA,NHVDC, HVDCsend,HVDCrec,Xvrl,Xvr2,Rcd,Tarvoll,VStal,Qspl, ...
QStal,TarvVol2,VSta2, Qsp2,QSta2,Psp,Vvrl,Tvrl,Vvvr2,Tvr2,VvrHi,...
VvrLo);

[POsend,PQrec,PQloss,PQbus] = PQflows (nbb,ngn,ntl,nld, genbus, ...
loadbus, tlsend,tlrec,tlresis,tlreac,tlcond, tlsuscep,PLOAD,QLOAD, ...
VM,VA);

[HVDC_PQsend,HVDC_PQrec] = HVDCPQpower (nbb,VA,VM,NHVDC, HVDCsend, . ..
HVDCrec, Xvrl,Xvr2,Vvrl,Tvrl,Vvr2,Tvr2);

$Print results

it gNumber of iterations

VM ¢Nodal voltage magnitude (p.u)

VA=VA*180/pi $%Nodal voltage phase angles (deg)
Sources=[Vvl,Tvrl*180/pi,Vvr2,Tvr2*180/pi] %Final source voltage
% parameters

HVDC_PQsend %Active and reactive powers in sending bus (p.u.)
HVDC_PQrec %Active and reactive powers in receiving bus (p.u.)

$End of MAIN HVDC PROGRAM

$Carry out iterative solution using the Newton—Raphson method

function [VM,VA,it,Vvrl,Tvrl,Vvr2,Tvr2] = NewtonRaphson(tol,itmax,...
ngn,nld, nbb,bustype, genbus, loadbus, PGEN,QGEN, QMAX, OMIN,PLOAD, ...
QLOAD,YR,YI,VM,VA, NHVDC,HVDCsend, HVDCrece,Xvrl, Xvr2,Rcd, TarvVoll, ...
VStal,Qspl,QStal,TarVol2, VSta2,0sp2,0Sta2,Psp,Vvrl,Tvrl,Vvr2,...
Tvr2,VvrHi,VvrLo);

% GENERAL SETTINGS
flag=10;
it=1;

% CALCULATE NET POWERS
[PNET,QNET] = NetPowers (nbb,ngn,nld, genbus, loadbus, PGEN, QGEN, ...
PLOAD, QLOAD) ;
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while ( it < itmax & flag==0 )
% CALCULATED POWERS
[PCAL,QCAL] = CalculatedPowers (nbb,VM,VA,YR,YI);

$STATCOM CALCULATED POWERS
[PCAL,QCAL,PHVDC,QHVDC] = HVDCCalculatePowers (PCAL,QCAL,VM,VA, ...
NHVDC, HVDCsend,HVDCrece,Xvrl,Xvr2,Vvrl,Tvrl,Vvr2,Tvr2);

% POWER MISMATCHES
[DPQ,DP,DQ,flag] = PowerMismatches (nbb, tol,bustype,flag, PNET,QONET, ...
PCAL,QCAL) ;

$HVDC POWER MISMATCHES
[DPQ,flag] = HVDCMismatches (flag,tol,DPQ,nbb,VM,VA,NHVDC, HVDCsend, . ..
HVDCrece,TarVoll,vVStal,TarVol2,VSta2,Psp,0spl,QStal,Qsp2,0Sta2, ...
PHVDC, QHVDC);
if flag ==

break
end

% JACOBIAN FORMATION
[JAC] = NewtonRaphsonJacobian (nbb,bustype,PCAL,QCAL,DPQ,VM, VA, ...
YR,YI);

% HVDC JACOBIAN
[JAC] = HVDC_Jacobian(nbb,JAC,VM,VA,NHVDC,HVDCsend, HVDCrece, ...
Xvrl,Xvr2,Rcd,VStal,VSta2,QStal,QSta2,Vvrl,Tvrl,Vvr2,Tvr2);

% SOLVE FOR THE STATE VARIABLES VECTOR
D = JAC\DPQ' ;

% UPDATE THE STATE VARIABLES VALUES, WITH TRUNCATED CORRECTIONS IF
% NECESSARY (VM increments < +-0.1 p.u. and VA inrements < +- 5 deg)
[VA,VM] = StateVariablesUpdating(nbb,D,VA,VM,it);

$UPDATE HVDC STATE VARIABLES

[VM,Vvrl,Tvrl,Vvr2,Tvr2] = HVDC Updating(nbb,D,VM,VA,NHVDC, ...
HVDCsend, HVDCrece,QStal, QSta2,VStal,TarVoll,TarVol2,VSta2,Vvrl, ...
Tvrl,Vvr2,Tvr2);

$CHECK VOLTAGE CONVERTERS FOR LIMITS

[Vvrl,Vvr2] = HVDCLimits (NHVDC,Vvrl,Vvr2,VvrLo,VvrHi);
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it=1it +1;

end

$Function to calculate injected bus powers by the HVDC
function [PCAL,QCAL,PHVDC,QHVDC] = HVDCCalculatePowers (PCAL,QCAL, ...
VM, VA,NHVDC, HVDCsend,HVDCrece, Xvrl,Xvr2,Vvrl,Tvrl,Vvr2,Tvr2);
for ii =1 : NHVDC
forkk=1:2

Bkk = -1/Xvrl(ii);

Bvr = 1/Xvrl(ii);

A =VA(HVDCsend(ii)) - Tvrl(ii);

PHVDC(ii,kk) = VM(HVDCsend(ii))*Vvrl(ii)*Bvr*sin(A);
QHVDC(ii,kk) = - VM(HVDCsend(ii))"2*Bkk - VM(HVDCsend(ii))...
*Vvrl(ii)*Bvr*cos(A);

PCAL (HVDCsend(ii)) = PCAL(HVDCsend(ii)) + PHVDC(ii,kk);
QCAL (HVDCsend(ii)) = QCAL(HVDCsend(ii)) + QHVDC(ii,kk);

HVDCsend(ii) = HVDCrece(ii);
Xvrl(ii) = Xvr2(ii);
Tvrl(ii) = Tvr2(ii);
Vvrl(ii) =Vvr2(ii);
end
end

$Function to compute power mismatches with HVDC
function [DPQ,flag] = HVDCMismatches (flag,tol,DPQ,nbb,VM,VA,NHVDC, ...
HVDCsend,HVDCrece,TarVoll,VStal,TarVol2,VSta2,Psp,Q0spl,QStal, ...
QOsp2,0Sta2,PHVDC,QHVDC) ;
iii =0;
for ii =1 : NHVDC

index= 2*(nbb + ii) + iii;

DPQ(index-1) = Psp(ii) - PHVDC(ii, 1);

DPQ(index) = Qspl(ii) - QHVDC(ii,1);

DPQ(index + 1) = - Psp(ii) - PHVDC(ii,2);
DPQ(index + 2) = Qsp2(ii) - QHVDC(ii,2);
iii =iii+ 2;

end

% Check for convergence
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if ( abs(DPQ) < tol )
flag=1;
end

$Function to add up the HVDC elements to Jacobian matrix
function [JAC] = HVDC_ Jacobian(nbb,JAC,VM,VA,NHVDC,HVDCsend, ...
HVDCrece, Xvrl,Xvr2,Rcd,VStal,VSta2,QStal,QSta2,Vvvrl,Tvrl,Vvr2,Tvr2);
iii =0;
for ii =1 : NHVDC
index= 2*(nbb + ii) + iii;
forkk=1:2
if VStal(ii) ==
JAC(: , 2*HVDCsend(ii) )=0;
end
JAC(index-1,index-1) = 1;
JAC(index,index) = 1;

Bvr = 1/Xvrl(ii);
Al = Tvrl(ii)-VA(HVDCsend(ii));
A2 = VA(HVDCsend(ii))-Tvrl(ii);

Pcal = - VM(HVDCsend (ii))*Vvrl(ii)*Bvr*sin(A2);
Qcal = Vvrl(ii)*VM(HVDCsend(ii))*Bvr*cos(A2);
Phvdc = - Vvrl(ii)*VM(HVDCsend(ii) )*Bvr*sin(Al);
Qhvdc = Vvrl(ii)*VM(HVDCsend(ii) )*Bvr*cos(Al);

JAC(2*HVDCsend (ii)-1,2*HVDCsend(ii)-1) = JAC(2*HVDCsend(ii)-1,...
2*HVDCsend(ii)-1) + VM(HVDCsend(ii))"2*Bvr;
if (QStal(ii) ==1)

JAC(2*HVDCsend(ii),2*HVDCsend(ii)) = JAC(2*HVDCsend(ii),...
2*HVDCsend(ii)) + VM(HVDCsend(ii))"2*Bvr;
else

JAC(2*HVDCsend (ii)-1,2*HVDCsend(ii)) = JAC(2*HVDCsend(ii)-1,...
2*HVDCsend(ii)) + Phvdc;
JAC (2*HVDCsend(ii),2*HVDCsend(ii)) = JAC(2*HVDCsend(ii),...
2*HVDCsend(ii)) - Qhvdc;
JAC(2*HVDCsend(ii),2*HVDCsend(ii)-1) = JAC(2*HVDCsend(ii),...
2*HVDCsend(ii)-1) - Phvdc;
end
JAC (2*HVDCsend (ii)-1,index-1) = - Qcal;
JAC (index-1,2*HVDCsend(ii)-1) = Qhvdc;
JAC(index-1,2*HVDCsend(ii)) = Phvdc;
JAC (index-1,index-1) = - Qhvdc;
if (QStal(ii) ==1)
JAC (index-1,index) = Phvdc;
JAC(2*HVDCsend(ii),index-1) = Pcal;
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else
JAC(index-1,index) = 0.0 ;
JAC(2*HVDCsend(ii),index-1) = - Phvdc;

end

if (QStal(ii) ==1)
JAC(2*HVDCsend(ii)-1,index) = - Pcal;

JAC(2*HVDCsend(ii),index) = - Qcal;
JAC(index,2*HVDCsend(ii)-1) = - Phvdc;
JAC (index, 2*HVDCsend(ii)) = Qhvdc;
JAC(index,index) = -2*Vvrl(ii)"2*Bvr + Qhvdc;
JAC(index,index-1) = Phvdc;
end
HVDCsend(ii) = HVDCrece(ii);
Xvrl(ii) = Xvr2(ii);
Vvrl(ii) =Vvr2(ii);
Tvrl(ii) = Tvr2(ii);
VStal(ii) = VSta2(ii);
QStal(ii) = QSta2(ii);
index = index + 2;
end
iii=iii + 2;

end

$Function to update HVDC state variables
function [VM,Vvrl,Tvrl,Vvr2,Tvr2] = HVDC_Updating(nbb,D,VM,VA,NHVDC, ...
HVDCsend, HVDCrece,QStal,QSta2,vVStal,TarVoll, TarVol2,VSta2,vVvrl, ...
Tvrl,Vvr2, Tvr2);
iii =0;

for ii =1 : NHVDC

index = 2*(nbb + ii) + iii;
if (VStal(ii) ==1)
% Adjust the Volatge Magnitud target
Vvrl(ii) =Vvrl(ii) + Vvrl(ii)*D(2*HVDCsend(ii));
VM(HVDCsend(ii)) = TarVoll(ii);
Tvrl(ii) = Tvrl(ii) + D(index-1);
else
Vvrl(ii) =Vvrl(ii) + Vvvrl(ii)*D(index);
Tvrl(ii) = VA(HVDCsend(ii));
end
if (VSta2(ii) ==1)
% Adjust the Volatge Magnitud target
Vvr2(ii) =Vvr2(ii) + vvrl(ii)*D(2*HVDCrece(ii));
VM(HVDCsend(ii)) = Tarvol2(ii);
Tvr2(ii) = Tvr2(ii) + D(index + 2);
else
Vvr2(ii) =Vvr2(ii) + Vvr2(ii)*D(index + 2);

223
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Tvr2(ii) = Tvr2(ii) + D(index + 1);
end
end

$Function to check voltagesources limits in HVDC controllers
function [Vvrl,Vvr2] = HVDCLimits (NHVDC,Vvrl,Vvr2,VvrLo,VvrHi);
for ii =1 : NHVDC
% Check Magnitude Voltage Limits
forkk=1:2
if Vvrl(ii) < VvrLo(ii) |Vvrl(ii) > VvrHi(ii)
if vvrl(ii) < VvvrLo(ii)

Vvrl(ii) = vvrLo(ii);
elseif Vvrl(ii) > VvrHi(ii)
Vvrl(ii) = VvrHi(ii);
end
end

temp = Vvrl(ii);
Vvrl(ii) =Vvr2(ii);
Vvr2(ii) = temp;
end
end

$Function to calculate the power flows in HVDC controller
function [HVDC_PQsend,HVDC_ PQrece] = HVDCPQpower (nbb,VA,VM,NHVDC, ...
HVDCsend, HVDCrece, Xvrl,Xvr2,Vvrl,Tvrl,Vvr2,Tvr2);
for ii = 1: NHVDC
forkk=1: 2
Bkk = -1/Xvrl(ii);
Bvr = 1/Xvrl(ii);
A = VA(HVDCsend(ii)) - Tvrl(ii);
PHVDC(ii) = VM(HVDCsend(ii))*Vvrl(ii)*Bvr*sin(A);
QHVDC(ii) = - VM(HVDCsend(ii))"2*Bkk — (HVDCsend(ii))*Vvrl(ii)...
*Bvr*cos(A);

if kk ==

HVDC PQsend(ii) = PHVDC(ii) + i*QHVDC(ii);
else

HVDC_PQrece(ii) = PHVDC(ii) + i*QHVDC(ii);
end

HVDCsend(ii) = HVDCrece(ii);
Xvrl(ii) = Xvr2(ii);
vvrl(ii) =vvr2(ii);
Tvrl(ii) = Tvr2(ii);
end
end
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5.7.3 Numerical Example of Power Flow Control using
One HVDC-VSC

The five-bus system is used to illustrate the power flow control performance of the HVDC-
VSC models. This power flow controller may be used to regulate the amount of power flow
at their points of connection or even to reverse the direction of power flowing through the
controller.

5.7.3.1 HVDC-VSC back-to-back model

The original network is modified to include one back-to-back (BTB) HVDC model to
regulate power flow at the points of connection. Take, for instance, the case when the UPFC
is installed at the receiving end of line Lake—Main and is set to regulate active and reactive
powers flowing from Lake to Main at 40 MW and 2 MVAR, respectively. The voltage
magnitude at bus Lake is controlled at 1p.u. The back-to-back HVDC model replaces
the UPFC used in the test case described in Section 5.6.3. As expected, the power flow
results for both cases are exactly the same.

5.7.3.2 HVDC-VSC full model

A different situation arises when the full HVDC-VSC model replaces the combined UPFC-
transmission-line model connected between Lake and Main since the pc cable will contain
neither the inductance nor the capacitance of the transmission line. In this example, the
cable resistance in the pc system is taken to have the same value as the transmission-line
resistance in the Ac system, which is 1 %. Figure 5.20 shows results for the case when the full
HVDC-VSC is used to control active power flow at Lake at 40 MW, and Table 5.9 shows the
nodal voltages in the modified network.

The data given in function PowerFlowsData in Section 4.3.9 is modified to acco-
mmodate for the inclusion of the HVDC. For HVDC-BTB the modification is as in Section
5.4.3, and for the HVDC-VSC the transmission line originally connected between Lake and
Main is replaced by the HVDC-VSC. Function HVDCData is used to enter HVDC data:

$This function is used exclusively to enter data for:
$HIGH VOLTAGE DIRECT CURRENT (HVDC)

% NHVDC : Number of HVDC'’s

% HVDCsend : Shunt converter’s sending bus

% HVDCrec : Shunt converter’s receiving bus

% Rcd : DC cable’s resistance for HVDC DC-Link model

% Psp : Target active power flow (p.u.)

% VvrLo : Lower 1limit for voltage sources magnitudes (p.u.)

% VvrHi : Higher 1limit for voltage sources magnitudes (p.u.)
% SENDING BUS
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% Xvrl : Inductive reactance of transformer-sending

% TarVoll : Target nodal voltage magnitude (pu.)

% VStal : control status for nodal voltage magnitude: 1 is on; 0 is off

% Ospl : Target reactive power flow

% QStal : control status for reactive power: 1 is on; 0 is off

% Vvrl : Initial condition for the shunt source voltage magnitude (p.u.)

% Tvrl : Initial condition for the shunt source voltage phase angle (rad.)
% RECEIVING BUS

% Xvr2 : Inductive reactance of transformer-receiving

% TarVol2 : Target nodal voltage magnitude (pu.)

% VSta2 : Control status for nodal voltage magnitude: 1 is on; 0 is off

% QOsp2 : Target reactive power flow

% QSta2 : Control status for reactive power: 1 is on; 0 is off

% Vvr2 : Initial condition for the shunt source voltage magnitude (p.u.)

% Tvr2 : Initial condition for the shunt source voltage angle (rad.)

NHVDC=1;

HVDCsend(1)=3; HVDCrec(1l)=4; Xvrl(1)=0.1; Xvr2(1)=0.1; Rcd(1)=0.1;

TarVoll(1l)=1.0; VStal(1l)=1l; Ospl(1)=0.02; QStal(1l)=0;

TarvVol2(1)=1.0; VSta2(1)=0; Osp2(1)=-0.02; QSta2(1)=1;

Psp(l1)=0.4;

Vvrl(l)=1.0; Tvrl(1)=0.0; Vvr2(1)=1.0; Tvr2(1)=0.0;

VvrHi(1l)=1.1l; VvrLo(1)=0.9;
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Figure 520 Power flow results in the five-bus network with one full high-voltage direct-current-
based voltage source converter
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Table 5.9 Nodal voltages in the modified network

Network bus

Nodal voltage North South Lake Main Elm

Magnitude (p.u.) 1.06 1 1 0.989 0.973
Phase angle (deg) O -176 —-6.01 -3.14 —4.95

5.8 EFFECTIVE INITIALISATION OF FACTS CONTROLLERS

The modelling of FACTS controllers for application in power flow analysis results in highly
nonlinear equations which should be suitably initialised to ensure quadratic convergent
solutions when using the Newton—Raphson method. This section addresses such a problem
and makes firm recommendations for the use of simple and effective initialisation
procedures for all FACTS models in power flow and related studies.

5.8.1 Controllers Represented by Shunt Synchronous Voltage Sources

Extensive use of FACTS models represented by shunt voltage sources indicates that
elements such as the STATCOM, the shunt source of the UPFC, and the two-shunt sources
representing the HVDC-VSC are suitably initialised by selecting 1 p.u. voltage magnitudes
and 0° phase angles.

5.8.2 Controllers Represented by Shunt Admittances

It has been found that the SVC is well initialised by selecting a firing-angle value that cor-
responds to the reactance resonant peak; this value is calculated by using Equation (5.40).

5.8.3 Controllers Represented by Series Reactances

The TCSC can be represented as an equivalent variable reactance, the ability of which either
to generate or to absorb reactive power is a function of the thyristor firing angle, arcsc. The
adjustable reactance representing the TCSC module shown in Figure 5.11 is well described
by Equations (5.31)—(5.35).

Normally, the active power flow through the TCSC is chosen to be the control variable,
and arcsc is chosen to be the state variable. Hence, good initial values for apcsc become
mandatory in order to ensure robust iterative solutions. To this end, an approximation of
Equation (5.31) is used:

Xrese(n(arese) = —C; - @ - tan[w(m — arcsc)]- (5.72)
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Extensive testing carried out with a wide range of practical combination of values of
Xc and X; confirm that Expression (5.72) represents the most significant term of
Equation (5.31) for the range of interest of TCSC operation.

Expression (5.72) is further altered to include the reactance of the compensated
transmission line (i.e. Xrcsc (1) + XTL = X1csc)) and then solving for arcsc,

XTCSC(I)—TL> (573)

1
QaTcsc = T — —arctan
w Cw
It has been found that this expression yields very effective initialisations of apcsc when the
reactance contribution of the TCSC to Xrcsc (1)-tL 18 assumed to be nil. Hence,

w 2T

1 -X
arcsc = M — —arctan (C—TL) . (5.74)

5.8.4 Controllers Represented by Series Synchronous
Voltage Sources

Suitable initialisation of series voltage sources in power flow studies is mandatory to ensure
robust solutions. Examples of power electronic controllers that use one or more series
voltage sources are: the static synchronous series compensator (SSSC), UPFC, and the latest
addition to the family of FACTS controllers, the interline power flow controller (IPFC).

Different equations exist for the purpose of initialising the series voltage source,
depending on the operating condition exhibited by the controller. For example, for the case
when active and reactive powers are specified at bus &, and assuming V; = V,, = 1 p.u., and
0, = 6,, = 0 in Equations (5.50) and (5.51), leads to the following simple expressions:

Ver = Xer (P2, + O2)"7, (5.75)
qu
f.x = arctan (—P) (5.76)
msp

These equations are used to initialise the parameters of series voltage sources within the
Newton—Raphson power flow solution. These parameters are referred to as V,ﬁ?Q and 9,(&).

5.9 SUMMARY

This chapter has covered the topic of power flow models of FACTS controllers and assessed
their role in network-wide applications. Key aspects of modelling implementation in power
flow algorithms have received attention. Numerical examples have been included for each
one of the FACTS controllers presented.

The nonlinear power flow equations of the various FACTS controllers have been
linearised and included in a Newton—Raphson power flow algorithm. In this context, the state
variables corresponding to the controllable devices have been combined simultaneously
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with the state variables of the network in a single frame of reference for unified, iterative
solutions. The robustness of the method has been illustrated by numerical examples.

Coordinated strategies have been developed to handle cases when more than one
controller, either conventional or FACTS, regulates voltage magnitude at the same bus.

The starting values given to state variables of some FACTS controllers have proved to
have a determining effect as to whether or not the power flow solution can be obtained. This
is an implementation aspect of paramount importance and has been duly addressed. A set of
analytical equations has been derived to give series synchronous voltage sources good initial
conditions. The case of shunt synchronous voltage sources is not a critical issue. The
variable series compensation representation based on firing angle is a highly nonlinear
model, and use of the simple analytical equation presented in this chapter for initialisation
purposes should be used.
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6

Three-phase Power Flow

6.1 INTRODUCTION

If no proper action is taken at the design stage, long-distance alternating-current (AC)
transmission circuits introduce a significant amount of geometric unbalance, which in turn
causes undesirable voltage, current, and power flow imbalances (Wasley and Shlash, 1974a,
1947b). Over the years, a number of anomalies have been traced to the existence of power
system imbalances, such as increased power losses, heating of synchronous generators,
misfiring of power converters and ill-tripping of protective relays (Arrillaga and Harker,
1978; Harker and Arrillaga, 1979). Quite often, transmission lines are cited as the sole, most
important, reason for the existence of geometric imbalances (Hesse, 1966). In the past, line
transpositions were a popular resource for restoring geometric balance, but nowadays the
tendency is to avoid them on economic and design grounds. Under normal circumstances,
other power plant equipment such as transformers, generators, and shunt and series banks of
capacitors introduce little geometric unbalance and are no cause for concern. Moreover,
bulk transmission loads tend to be balanced.

In low-voltage distribution systems, the opposite situation exists. Three-phase transmis-
sion lines and cables are short and tend to be geometrically balanced, but urban loads are
mostly of the single-phase type, fed from single-phase feeders. In aggregate, at the
distribution substation, they result in three-phase loads exhibiting a high degree of
unbalance. The rapid growth of electrified railroads has also been cited as a contributing
factor to distribution system imbalances (Zhang and Chen, 1994). In rural circuits,
continuity of supply has sometimes been maintained by using two of the three single-phase
transformers in the bank, following failure of one of the units. The resulting three-phase
transformer connection is termed ‘open delta’ and, although not recommended for normal
operation owing to its unbalanced nature, can be used as a last resort to maintain supply.
Positive sequence power flows are not suitable for the study of power losses in systems
exhibiting significant transmission imbalances. The alternative solution approach is to use a
three-phase power flow algorithm, with all the relevant power plant equipment modelled in
phase coordinates, as detailed in Chapter 3 (Chen and Dillon, 1974; Laughton, 1968).
Comprehensive assessments of the impact of unbalanced loading and equipment on system
operation are carried out with little effort using fully fledge three-phase power flow solutions

FACTS: Modelling and Simulation in Power Networks.
Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez and César Angeles-Camacho
© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85271-2
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(Birt, Graffy, and McDonald, 1976; Chen et al., 1990; Laughton and Saleh, 1985; Smith and
Arrillaga, 1998).

Line transpositions are no longer regarded as the preferred option for keeping geometric
imbalances under control. Instead, a new solution is emerging, based on the use of power
electronics. If a thyristor-controlled series compensator (TCSC) is already available for the
purpose of impedance compensation then the idea would be to operate it in an unbalanced
manner so that geometric balance can be restored at the point of connection. The
applicability of an static VAR compensator (SVC) to restore voltage balance, in addition to
achieving its primary function of providing reactive power support, has been established at
the simulation level. However, this is at the expense of injecting a substantial amount of
third harmonic current into the Ac system. An alternative solution is to use a static
compensator (STATCOM) for which the harmonic generation pattern is not significantly
influenced by terminal Ac voltage conditions.

To carry out comprehensive studies of active and reactive power flows in unbalanced
transmission systems, and to determine the role that FACTS controllers may play in
reducing transmission imbalances, it is mandatory to have a three-phase power flow
computer program with FACTS equipment modelling capability (Angeles-Camacho, 2000;
Venegas and Fuerte-Esquivel, 2001). This is the object of this chapter, where the theory of
three-phase power flow is presented. It builds on the strength of the material presented in
Chapters 2-5. Chapters 2 and 3 addressed the modelling of FACTS controllers and
conventional power systems plant in phase coordinates, respectively. Chapters 4 and 5
studied the theory of conventional and FACTS power flow using the Newton—Raphson
method, respectively.

6.2 POWER FLOW IN THE PHASE FRAME OF REFERENCE

The starting point for developing nodal power equations suitable for three-phase power flow
solutions using the Newton—Raphson method is to establish a relationship between injected
bus currents and bus voltages. This may be achieved by using an approach similar to that
followed in Section 4.2.1 for the case of positive sequence power flows.

With reference to the three-phase transmission circuit shown in Figure 3.2, and redrawn
for convenience in Figure 6.1 in a slightly modified form, the three-phase currents and

Bus k Bus m
Ia a N a Ia
- AN~ «
Ea La _Ea
& N Ry Foe Ly I b
N AMA— =
E? I | g
IC k_ RC }Lbc LC > ac ~m IC
> AAAYA A0y -
E; |l ’ UE;,

Figure 6.1 Three-phase branch
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voltages are related by the transfer admittance matrix of the branch:

Iabc Yabc Yabc Eabc
[Izbcl _ kk km k , (61)

o | e
Raa g+JwLaa g Rab g+JwLasl—g Rac g+JwLac g

Yﬁic = Gilb(c + jBﬂiC = Rb" s 4+ JwLb“ § Rbb § 4 ]wLbfn_g R,l;‘n s 4 JwLbL 8 ,
Rca g+Jcha g Rcb g+Jchl€1—g Rcc g+Jchc g

where

(6.2)
Y = Yo = — Vi = —Yo,
Ee = [E¢ B ES)' = [veelt viel vieh],
Ee = [E¢ Eb EC]' = [Veeh Vil veeh', (6.3)
Iibc _ [ Ib Ic]
L =[5 1 1]

and where t is the transpose of the matrix or vector. Notice that the impedance parameters in
Equation (6.2) are assumed to include the impedance contribution due to ground return loops.

6.2.1 Power Flow Equations

Expressions for active and reactive power injected at the three-phase buses k and m of
Figure 6.1 may be derived from the following complex power expression:

Sibc B Pibc +jQ]zibc B Eiibclibc* (64
s | e s | T ek ?

After some arduous algebra, the expressions for active and reactive powers injected at
phases a, b, and ¢ of bus k are arrived at:

PZ—V,f{ > ViGE cos(6] — 6/) + BY, sinwz—e!)]}, (6.5)

i=km j=ab,c
O = Vkp{ Z Z V{[Gif sin(0] — oij) - BZ cos(0; — 91‘])]}; (6.6)
i=km j=ab,c

where the superscript p is used to denote phases a, b, and c.

As expected, the expressions for calculating the active and reactive powers injected at bus
m are of the same form as Equations (6.5) and (6.6), with the subscript m replacing k, and
vice versa:

P = Vm{ Z Z VI[G. cos(0?, — 0/ + B sin(6", —0’)}} (6.7)

i=mk j=ab,c

QZ—VZ{Z > VI[GY,sin(6), — 6/) — B cos(6), —91)}} (6.8)

i=mk j=ab,c
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6.2.2 Newton-Raphson Power Flow Algorithm

Solution of the positive sequence nodal power equations using the Newton—Raphson method
has shown strong reliability towards convergence. Building on experience, the Newton—
Raphson technique has been adopted to solve the three-phase nodal power equations.

The power expressions Equations (6.5)—(6.8) are linearised around a base operating point,
as illustrated in Section 4.3.2 for the case of positive sequence power flow. In the three-
phase application, mismatch powers and state variables terms become vectors of order
3 x 1, and individual Jacobian terms become matrices of order 3 x 3. The resulting
linearised equation, suitable for iterative solutions, becomes:

N ) e KR N R KU
(i 4 [
e R '
— |t Ave | (6.9)
A | Ry T
¢ 007 oV \/
J J

where ¢ = k,m,j = k,m, and (i) is the iteration number.
The vector terms take the following form:

AP/ = [AP¢ APY AP APY AP? AC), (6.10)

AQ] = [AQ) AQy AQ; AQ;, AQ; A, (6.11)
AG) = [AGF NGy AB; A6, NS, NG, (6.12)
4 a b ¢ a b ct
AVi  [AVE AVP AVQ AV, AV, AV . (6.13)
A4 ve vk ove ve vboove
The Jacobian terms are:
roP; 0Py 0P¢T
00: o0r o6
oP, |0oP) oP) oP)
o0 = |30 29 a0 | (6.14)
08 i 007 06
oOP; 3P, 0P
(00 20y 00
(0P o OPL, 0P
a b c
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oF; 0= 0F; a a_Pf‘Vb 0F; ¢ (6.15)
ovy ove'J avboave '
0P Ly 0P B3P,
a b c
OV oV avE
(007 007 0071
o0¢ 067 06
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U _ |2 28 29 (6.16)
0, LA/
0Q; 00Q; 9¢;
060 06 06 |




POWER FLOW IN THE PHASE FRAME OF REFERENCE 235

_aQ? a 6Q? b aQ% c_
6Vjavj avjbvf anch
oVl 7 love J ovP i o Ve i
007 .. 90 ., 907 .
oV sy v

(6.17)

It should be noted that the linearised Equation (6.9) applies to only one three-phase
transmission line connected between buses k and m. However, the result may be readily
extended to the more practical case, involving n; transmission lines connected between ny,
generic buses ¢ and j, where £ =1,... k,m,....n,—1,and j=1,... k,m,....n, — 1.
Note that only np, — 1 buses are considered since the contribution of the slack bus is not
explicitly represented in the linearised system of equations.

Consider the /th element connected between buses k and m in Equation (6.9), for which
the self and mutual Jacobian terms are explicitly given below, with the help of two phase
superscripts pl and p2 used to denote a, b, and c, respectively.

For k = m, and pl = p2:

aPﬁll 1 cal pl 2 1pl
= (ve') B, (6.18)
Kl
PZ.]Z pl plcal pl 2 plpl
oyt Vie =P + (Vk ) G s (6.19)
k.l
aQle 1 2 plpl
aaﬂi =pPi = ()G (6.20)
k,l
aQﬂl 0 cal 2 01 p
S Ve =t = (V) B (621)
k.l
For k = m, and pl # p2:
P/)l
g = VOV (G sin (! —07) = B cos (o —0f7) . (6.22)
k,l
apﬁll 2 1 2 1p2 1 p2 1p2 . 1 2
Vi =V (G cos (6! = 07) + B sin (6! - 67)], (623)
k,l
aQill 1 2 1p2 1 02 1p2 . 1 02
=V |Gl cos (07— 07) + B sin (6" — o) | (6.24)
k|l
anll 2 1y,p2 1p2 . 1 2 1p2 1 2
S V=V (G sin(6r — o) = By P eos (o' - 00)]. (625
k,l
For k # m:
%
69’21 = v {GZ,In”z sin (9?1 - 0{,’12) — B! * cos (Qfl - 9,’1’12)}, (6.26)
m,l
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op!"

L et o oo~ 02) < B o)), (6
m,l

00"

a?ﬂgl = —V,flV,ff [Gz,ln"z cos <0Z1 — Hﬁf) + BZ;I”Z sin (9,‘:1 — 922)} , (6.28)
m,l

0%,

S V= ViV (G sin(6r' — 02) = B cos (8 - 02) ] (6:29)
m,l

The iterative solution of the three-phase power flow equations using the Newton—Raphson
method requires similar considerations to those applied in the case of positive sequence
solutions regarding state variable initialisation and generator reactive power limit checking,
as presented in Sections 4.3.3 and 4.3.4, respectively. However, note that in the three-phase
application the voltage phase angles of phases a, b, and ¢ are initialised at values of 0,
—2m/3, and 27/3, respectively.

6.2.3 Matlab™ Code of a Power Flow Program in the
Phase Frame of Reference

The Matlab® computer program, given in Section 4.3.6, has been extended to cater for the
power flow solution of three-phase networks. The function TLParameters is used to
furnish transmission-line data in phase coordinates, starting from positive, negative, and
zero sequence information. This information is widely available in utility data bases since it
is used for the purpose of short-circuit current calculations, even though its usefulness is
of somewhat limited applicability in three-phase power flow studies, as it assumes that
transmission lines are geometrically balanced. The relevant theory is covered in
Section 3.2.13. If more realistic representation of transmission lines are required then the
function Longline given in Sections 3.2.7 and function TransmissionLineData given
in Section 3.2.11 can be used, and the ensuing transmission-line parameters supplied to the
three-phase power flow application.

Generators are represented as three-phase active power injections and adjustable reactive
power injections to meet specified nodal voltage magnitudes at their terminals. If a more
realistic synchronous generator representation is required then the three-phase model
derived in Section 3.4 should be implemented in the power flow program. Note that this is a
very comprehensive model which caters for saliency and has explicit representation of the
generator load angle.

To keep the length and complexity of the current program (Program 6.1) within bounds, it
does not contain provisions for three-phase transformer representation. However,
implementation of three-phase transformer banks with a wide range of connections can
be implemented with ease. The most popular transformer connections are detailed in
Section 3.3.4, where emphasis is placed on transformer complex tap modelling.

Loads are taken to be constant sinks of active and reactive power in the program but,
again, voltage dependency can be incorporated by using the relevant models provided in
Section 3.5.
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Program 6.1  Program written in Matlab™ to carry out power flow calculations in the three-
phase frame of reference using the Newton—Raphson method

PowerFlowsData3Ph; % read threephasedata

[TLImpedInv,TLAdmit] =TLParameters(ntl,tlresisp,tlreacp,tlcondp,...
tlsuscepp,tlresisz,tlreacz,tlcondz,tlsuscepz);

[YR,YI]=YBus3Ph(nbb,ntl,tlsend,tlrec,TLImpedInv,TLAdmit,nsh,...
shbus, shresis,shreac);

[VM,VA,it] =NewtonRaphson3Ph(nmax,tol,itmax,ngn,ntl,tlsend,tlrec,...
nld, nbb,bustype,genbus,loadbus,PGEN,QGEN,QMAX,QMIN, PLOAD,QLOAD, ...
YR,YI, TLImpedInv,TLAdmit,VM,VA);

[POsend,PQrec,PQloss ] =PowerFlows3Ph(nbb,ntl,tlsend,tlrec,VM,VA, ...
TLImpedInv,TLAdmit);

% END of main three-phase program

function [TLImpedInv,TLAdmit]=TLParameters(ntl,tlresisp,tlreacp,...
tlcondp, tlsuscepp, tlresisz,tlreacz,tlcondz,tlsuscepz)
% Transmission line parameters
TLImpedInv=zeros(3,3,ntl);
TLAdmit =zeros(3,3,ntl);
for kk=1 : ntl
Zself=((tlresisz(kk)+ tlreacz(kk)*i) + 2*(tlresisp(kk) + tlreacp...
(kk)*i))/3;
Zmutual = ((tlresisz(kk) + tlreacz(kk)*i)-(tlresisp(kk) + tlreacp...
(kk)*i))/3;
Yself=((tlcondz(kk) + tlsuscepz(kk)*i) + 2*(tlcondp(kk) + ...
tlsuscepp (kk)*i))/3;
Ymutual = ((tlcondz(kk) + tlsuscepz(kk)*i)-(tlcondp(kk) + tlsuscepp...
(kk)*i))/3;
for ii=1:3
for jj=1:3
if ii==3j
TLImpedInv(ii,jj,kk)=2self;
TLAdmit (ii,jj,kk) =Yself;
else
TLImpedInv(ii,jj,kk)=2Zmutual;
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TLAdmit(ii,jj,kk) =¥Ymutual;
end
end
end
imped=TLImpedInv(1l:3,1:3,kk);
imped2 =inv(imped);
TLImpedInv(1:3,1:3,kk)=1imped2;
end

function [YR,YI]=YBus3Ph(nbb,ntl,tlsend,tlrec,TLImpedInv, ...
TLAdmit,nsh,shbus,shresis, shreac)
% Set up YY
YY=zeros (nbb*3,nbb*3);
% Transmission lines conribution
for kk=1 : ntl
ii=(tlsend(kk)-1)*3 +1;
jj=(tlrec(kk)-1)*3 +1;
YY(ii:ii+2,ii:ii+2)=YY(ii:ii+2,ii:ii+2)+...
TLImpedInv(:,:,kk)+0.5*TLAdmit(:,:,kk);
YY(ii:ii+2,3jj:jj+2)=YY(ii:ii+2,jj:jj+2) - TLImpedInv(:,:,kk);
YY(jj:jj+2,ii:ii+2)=YY(jj:jj+2,ii:ii +2) - TLImpedInv(:,:,kk);
YY(33:33 +2,33:33 +2)=Y¥(J3J:33+2,33:33+2)+...
TLImpedInv(:,:,kk)+0.5*TLAdmit(:,:,kk);
end
% Shunt elements conribution
for kk=1 : nsh
SHAdmit =zeros(3,3);
jj=shbus(kk)*3;
for ii=1:3
SHAdmit(ii,ii)=1/(shresis(kk,ii) + shreac(kk,ii)*i);
end
YY(33-2:33,33-2:33) =¥Y¥(33-2:33,33-2:33) + SHAdmit (:,:);
end
YR=real(YY);
YI=imag(YY);

function [VM,VA,it]=NewtonRaphson3Ph(nmax,tol,itmax,ngn,ntl,...
tlsend, tlrec,nld,nbb,bustype, genbus, loadbus,PGEN, QGEN, QMAX,QMIN, ...
PLOAD, QLOAD, YR, YI,TLImpedInv,TLAdmit, VM,VA)

% GENERAL SETTINGS

D=zeros(1l,nmax*3);

flag=0;

it=1;

% CALCULATE NET POWERS
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[PNET,QONET ] =NetPowers3Ph(nbb,ngn,nld, genbus, loadbus, PGEN, QGEN, . ..
PLOAD,QLOAD) ;

while ( it <= itmax & flag==0 )
% CALCULATED POWERS
[PCAL,QCAL] =CalculatedPowers3Ph(nbb,ntl, tlsend,tlrec,VM,VA,...
TLImpedInv, TLAdmit);
% POWER MISMATCHES
[DPQ,flag] =PowerMismatches3Ph(nmax,nbb,tol,bustype,flag, PNET, ...
ONET, PCAL,QCAL);
if flag==1;
break;
end

% JACOBIAN FORMATION
[JAC] =NewtonRaphsonJacobian3Ph(nmax,nbb,bustype, PCAL,QCAL,VM, ...
VA,YR, YI);

% SOLVE FOR THE STATE VARIABLES VECTOR
D=JAC\DPQ';

% UPDATE STATE VARIABLES
[VA,VM] =StateVariablesUpdates3Ph(nbb,D,VA,VM);

it=it+1;
end

function [PNET,QNET] =NetPowers3Ph(nbb,ngn,nld, genbus, loadbus, ...
PGEN, QGEN, PLOAD,QLOAD) ;
% CALCULATE NET POWERS
PNET =zeros(1l,nbb*3);
QONET =zeros(1l,nbb*3);
for ii=1 : ngn
for jj=1:3
PNET( (genbus(ii)-1)*3 + jj) =PNET( (genbus(ii)-1)*3 + jj)+...
PGEN(ii,jj);
ONET( (genbus(ii)-1)*3 + jj) =QONET( (genbus(ii)-1)*3 + jj)+...
QGEN(ii,jJ);
end
end
for ii=1: nld
for jj=1:3
PNET( (loadbus(ii)-1)*3 + jj) =PNET( (loadbus(ii)-1)*3 + jj) - ...
PLOAD(ii,37);
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ONET( (loadbus(ii)-1)*3 + jj) =QNET( (loadbus(ii)-1)*3 + jj) - ...
QLOAD(ii,3jJ);
end
end

function [PCAL,QCAL]=CalculatedPowers3Ph(nbb,ntl,tlsend,tlrec,...
VM,VA, TLImpedInv,TLAdmit);
% Include all entries
POsend=zeros(ntl,3);
PQrec=zeros(ntl,3);
PQloss=zeros(ntl,3);
for iii=1 : ntl
Vsend=( VM(tlsend(iii),:).*cos(VA(tlsend(iii),:)) + ...
VM(tlsend(iii),:).*sin(VA(tlsend(iii),:))*1i);
Vrec=( VM(tlrec(iii),:).*cos(VA(tlrec(iii),z:))...
VM(tlrec(iii),:).*sin(VA(tlrec(iii),:))*1i);
for jj=1:5
if jj<4
PQsend(iii,jj)=Vsend(l,jj)*(conj(-TLImpedInv(jj,:,iii)) *...
(Vrec(1l,:))’ + conj(TLImpedInv(jj,:,iii) + 0.5*...
TLAdmit (jj,:,iii))*(Vsend(1l,:)’));
PQrec(iii,jj)=Vrec(l,jj)*(-conj(TLImpedInv(jj,:,iii))* ...
(Vsend(1l,:))’ + conj(TLImpedInv(jj,:,iii)+ 0.5*...
TLAdmit (jj,:,iii))* (Vrec(1l,:)"));
elseif jj==
PQOsend(iii,jj)=tlsend(iii);
PQrec(iii,jj)=tlrec(iii);
else
PQOsend(iii,jj)=tlrec(iii);
PQrec(iii,jj)=tlsend(iii);
end
PQloss =PQsend - PQrec;
end
end
PCALl=zeros(nbb,3);
for ii=1 : nbb
for jj=1:ntl
if PQOsend(jj,4)==1ii
PCAL1(ii,:)=PCAL1(ii,:)+PQsend(jj,1:3);
end
if PQrec(jj,4)==1i
PCAL1(ii,:)=PCAL1(ii,:)+PQrec(jj,1:3);
end
end
end
for ii=1 : nbb
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PCAL2(1,3%ii-2:ii*3)=PCAL1l(ii,:);
end
PCAL=real (PCAL2);
QCAL=imag (PCAL2);

function [DPQ,flag] =PowerMismatches3Ph(nmax,nbb,tol,bustype, ...
flag, PNET, QNET, PCAL, QCAL) ;
% POWER MISMATCHES
DPQ=zeros(1l,nmax);
DP =PNET - PCAL;
DQ=QNET - QCAL;
% To remove the active and reactive powers contributions of the slack
% bus and reactive power of all PV buses
kk=1;
for ii=1 : nbb

for jj=1:3

if (bustype(ii)==1)

DP(kk) =0;
DQ(kk) =0;

elseif (bustype(ii)==2)
DQ(kk)=0;

end

kk=kk 1;

end
end

% Re-arrange mismatch entries
kk=1;
for ii=1 : nbb
for jj=1:3
DPQ( (ii-1)*3 + kk) =DP(kk);
DPQ( (ii-1)*3 + kk + 3) =DQ(kk);
kk=kk+1;
end
end
% Check for convergence
for ii=1 : nbb*6
if (abs(DPQ) <tol)
flag=1;
end
end

function [JAC] =NewtonRaphsonJacobian(nmax,nbb,bustype,PCAL,QCAL, ...
VM,VA, YR,YI);

% JACOBIAN FORMATION - Include all entries

JAC =zeros (nmax,nmax) ;
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iii=1;

forii=1:

nbb

kk= (ii-1)*3 + 1;

jiji=1;

for jj=1 : nbb
11=(jj-1)*3 + 1;
if ii==3j

for mm=1:3;

for nn=1:3;

end

end
else

if nn==mm

JAC(iii +mm-1,jjj + nn-1)=- QCAL(kk + mm-1) — VM(ii,mm)...
*2*YI(kk + mm-1,kk + mm-1);

JAC(iii +mm-1,3 + jjj + nn-1)=PCAL(kk + mm-1)+...
VM(ii,mm)"2*YR(kk + mm-1,kk + mm-1);

JAC(iii + 3 +mm-1,jjj + nn-1) =PCAL(kk + mm-1) - VM(ii,mm)..
*2*YR(kk + mm-1,kk + mm-1);

JAC(iii +3 +mm-1,3jjj + 3 +nn-1)=QCAL(kk +mm-1) - ...
VM(ii,mm)"2*YI(kk + mm-1,kk + mm-1);

else

JAC(iii +mm-1,33jj + nn-1)=VM(ii,mm)*VM(ii,nn)*(YR(kk + ...

mm-1,kk + nn-1)*sin(VA(ii,mm)-VA(ii,nn))-YI(kk + mm-1,...
kk + nn-1)*cos(VA(ii,mm)-VA(ii,nn)));
JAC(iii +mm-1,3 + jjj + nn-1)=VM(ii,mm)*VM(ii,nn)*...

(YR(kk + mm-1,kk + nn-1)*cos(VA(ii,mm)-VA(ii,nn)) +YI(kk+...

mm-1,kk + nn-1)*sin(VA(ii,mm)-VA(ii,nn)));

JAC(iii +3 +mm-1,3jjj + nn-1)=-VM(ii,mm)*VM(ii,nn)*...
(YR(kk + mm-1,kk + nn-1)*cos(VA(ii,mm)-VA(ii,nn)) +YI(kk+.
mm-1,kk + nn-1)*sin(VA(ii,mm)-VA(ii,nn)));

JAC(iii +3 +mm-1,3jjj+ 3 +nn-1)=VM(ii,mm)*VM(ii,nn)...
*(YR(kk + mm-1,kk + nn-1)*sin(VA(ii,mm)-VA(ii,nn))-YI...
(kk + mm-1,kk + nn-1)*cos(VA(ii,mm)-VA(ii,nn)));

end

for mm=1:3;

for nn=1:3;

JAC(iii +mm-1,33jj + nn-1)=VM(ii,mm)*VM(Jjj,nn)*(YR(kk + ...
mm-1,11 +nn-1)*sin(VA(ii,mm)-VA(jj,nn)) - ¥I(kk +mm-1,11 +
nn-1l)*cos(VA(ii,mm)-VA(jj,nn)));

JAC(iii + mm-1,3 + jjj + nn-1)=VM(ii,mm)*VM(jj,nn)*(YR(kk +
mm-1,11 + nn-1)*cos(VA(ii,mm)-VA(jj,nn))+Y¥I(kk + mm-1,11 +
nn-1)*sin(VA(ii,mm)-VA(jj,nn)));
JAC(iii+3+mm-1,jjj+nn-1)=-VM(ii,mm)*VM(jj,nn)*(YR(kk+ .
mm-1,11 + nn-1)*cos(VA(ii,mm)-VA(jj,nn))+YI(kk +mm-1,11 +
nn-1)*sin(VA(ii,mm)-VA(jj,nn)));

JAC(iii +3 +mm-1,3jjj+ 3 +nn-1)=VM(ii,mm)*VM(jj,nn)...

..

oo

..
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*(YR(kk +mm-1,11 + nn-1)*sin(VA(ii,mm)-VA(jj,nn)) - YI(kk +
mm-1,11 + nn-1)*cos(VA(ii,mm)-VA(jj,nn)));
end
end
end
jij=3ji+e;
end

oo

iii=iii+6;
end
% Delete the voltage magnitude and phase angle equations of the slack

% bus and voltage magnitude equations corresponding to PV buses
for kk=1 : nbb

if (bustype(kk)==1)
11=(kk-1)*6 + 1;
for ii=11:11+2

for jj=1 : 6*nbb

if ii==3j
JAC(ii,ii)=1;
else

JAC(ii,j3)=0;
JAC(jj,ii)=0;
end
end
end
end
if (bustype(kk)==1) | (bustype(kk)==2)
11=(kk-1)*6 +1;
for ii=11+4+3:11+5
for jj=1: 6*nbb

ifii==3jj
JAC(ii,ii)=1;
else

JAC(ii,jj)=0;
JAC(3j,ii)=0;
end
end
end
end
end

function [VA,VM] =StateVariablesUpdates3Ph(nbb,D,VA,6VM)
for ii=1 : nbb
iii=(ii-1)*6 +1;
for jj=1:3
VA(ii,jj)=VA(ii,jj)+D(iii);
VM(ii,jJj)=VM(ii,jJ) +D(iii + 3)*VM(ii,jJ);
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iii=iii+1;
end
end

function [PQsend,PQrec,PQloss] =PowerFlows3Ph(nbb,ntl,tlsend,...
tlrec,VM, VA,TLImpedInv,TLAdmit);
% Include all entries
POsend=zeros(ntl,3);
PQrec=zeros(ntl,3);
PQloss=zeros(ntl,3);
for iii=1 : ntl
Vsend=( VM(tlsend(iii),:).*cos(VA(tlsend(iii),:))+...
VM(tlsend(iii),:).*sin(VA(tlsend(iii),:))*i );
Vrec=( VM(tlrec(iii),:).*cos(VA(tlrec(iii),:))+...
VM(tlrec(iii),:).*sin(VA(tlrec(iii),:))*1i);
for jj=1:5
if jj<4
POsend(iii,jj)=Vsend(1l,jj)*(conj(-TLImpedInv(jj,:,iii))...
*(Vrec(l,:))’ +conj(TLImpedInv(jj,:,iii)+...
0.5*TLAdmit (33, :,iii)) *(Vsend(1,:)"));
PQrec(iii,jj)=Vrec(1l,jj)*(-conj(TLImpedInv(jj,:,iii))* ...
(Vsend(1l,:))’ +conj(TLImpedInv(jj,:,iii)+...
0.5*TLAdmit (jj,:,iii)) *(Vrec(1l,:)'));
elseif jj==
PQOsend(iii,jj)=tlsend(iii);
PQrec(iii,jj)=tlrec(iii);
else
PQOsend(iii,jj)=tlrec(iii);
PQrec(iii,jj)=tlsend(iii);
end
PQloss =PQsend - PQrec;
end
end

6.2.4 Numerical Example of a Three-phase Network

The five-bus network shown in Section 4.3.9 is used as the basis for illustrating how the
three-phase power flow performs under balanced and unbalanced operating conditions. The
file threephasedata contains all the required data for the power flow solution. Notice that
voltage information is provided explicitly for the three phases, where a balanced set of
three-phase voltages means equal voltage magnitude and phase angles between adjacent
phases separated by 2m/3 radians, with the following rotation: 0, —2n/3, 2rt/3.

In this application, transmission lines require zero sequence information for resistance,
reactance, susceptance, and conductance, in addition to the corresponding positive sequence
parameters. Negative sequence parameters are not explicitly required since they are equal to
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positive sequence parameters in transmission lines. It should be mentioned that in the
original five-bus network, aimed at the testing of positive sequence power flow algorithms,
no information exists for zero sequence transmission-line parameters. For the purpose of the
current exercise, zero sequence transmission-line parameters have been taken to be three
times the positive sequence values.

The function threephasedata for the balanced test case is as follows:

% Bubars data

nbb=5;

bustype(1)=1; VM(1l,1)=1.06; VA(1,1)=0*pi/180;
VM(1,2)=1.06; VA(1,2)=240*pi/180; VM(1,3)=1.06; VA(1,3)= 120%pi/180;
bustype(2)=2; VM(2,1)=1.00; VA(2,1)=0*pi/180;
VM(2,2)=1.00; VA(2,2)=240%pi/180; VM(2,3)=1; VA(2,3)=120*pi/180;
bustype(3)=3; VM(3,1)=1.00; VA(3,1)=0*pi/180;
VM(3,2)=1.00; VA(3,2)=240%pi/180; VM(3,3)=1; VA(3,3)=120*pi/180;
bustype (4)=3; VM(4,1)=1.00; VA(4,1)=0*pi/180;
VM(4,2)=1.00; VA(4,2)=240%pi/180; VM(4,3)=1; VA(4,3)=120%pi/180;
bustype (5)=3; VM(5,1)=1.00; VA(5,1)=0%pi/180;
VM(5,2)=1.00; VA(5,2)=240%pi/180; VM(5,3)=1; VA(5,3)= 120*pi/180;

% Generators data

ngn=2;

genbus(1)=1; PGEN(1,1)=0.0; QGEN(1,1)=0; PGEN(1,2)=0.0;
QGEN(1,2)=0; PGEN(1,3)=0.0; QGEN(1,3)=0; QMAX(1)=9; QMIN(1)=-9;
genbus(2)=2; PGEN(2,1)=0.4; OQGEN(2,1)=0.0; PGEN(2,2)=0.4;
QOGEN(2,2)=0.0; PGEN(2,3)=0.4; OQGEN(2,3)=0.0; OMAX(2)=9;
QOMIN(2)=-9;

% Transmission lines data

ntl=7;

tlsend(l)=1; tlrec(l)=2; tlresisp(1)=0.02; tlreacp(1)=0.06;
tlcondp(1l)=0; tlsuscepp(l)=0.060; tlresisz(1)=0.06;
tlreacz(1)=0.18; tlcondz(1)=0; tlsuscepz(1)=0.18;
tlsend(2)=1; tlrec(2)=3; tlresisp(2)=0.08; tlreacp(2)=0.24;
tlcondp(2)=0; tlsuscepp(2)=0.050; tlresisz(2)=0.24;
tlreacz(2)=0.72; tlcondz(2)=0; tlsuscepz(2)=0.15;
tlsend(3)=2; tlrec(3)=3; tlresisp(3)=0.06; tlreacp(3)=0.18;
tlcondp(3)=0; tlsuscepp(3)=0.040; tlresisz(3)=0.18;
tlreacz(3)=0.54; tlcondz(3)=0; tlsuscepz(3)=0.12;
tlsend(4)=2; tlrec(4)=4; tlresisp(4)=0.06; tlreacp(4)=0.18;
tlcondp(4)=0; tlsuscepp(4)=0.040; tlresisz(4)=0.18;
tlreacz(4)=0.54; tlcondz(4)=0; tlsuscepz(4)=0.12;
tlsend(5)=2; tlrec(5)=5; tlresisp(5)=0.04; tlreacp(5)=0.12;
tlcondp(5)=0; tlsuscepp(5)=0.030; tlresisz(5)=0.12;
tlreacz(5)=0.36; tlcondz(5)=0; tlsuscepz(5)=0.09;
tlsend(6)=3; tlrec(6)=4; tlresisp(6)=0.01; tlreacp(6)=0.03;
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tlcondp(6)=0; tlsuscepp(6)=0.020; tlresisz(6)=0.03;
tlreacz(6)=0.09; tlcondz(6)=0; tlsuscepz(6)=0.06;
tlsend(7)=4; tlrec(7)=5; tlresisp(7)=0.08; tlreacp(7)=0.24;
tlcondp(7)=0; tlsuscepp(7)=0.050; tlresisz(7)=0.24;
tlreacz(7)=0.72; tlcondz(7)=0; tlsuscepz(7)=0.15;

% Loads data
nld=4;

loadbus(1)=2; PLOAD(1,1)=0.20; QLOAD(1,1)=0.10; PLOAD(1,2)=0.20;
QLOAD(1,2)=0.10; PLOAD(1,3)=0.20; QLOAD(1,3)=0.10;
loadbus(2)=3; PLOAD(2,1)=0.45; QLOAD(2,1)=0.15; PLOAD(2,2)=0.45;
QLOAD(2,2)=0.15; PLOAD(2,3)=0.45; QLOAD(2,3)=0.15;
loadbus(3)=4; PLOAD(3,1)=0.40; QLOAD(3,1)=0.05; PLOAD(3,2)=0.40;
QLOAD(3,2)=0.05; PLOAD(3,3)=0.40; QLOAD(3,3)=0.05;
loadbus(4)=5; PLOAD(4,1)=0.60; QLOAD(4,1)=0.10; PLOAD(4,2)=0.60;
QLOAD(4,2)=0.10; PLOAD(4,3)=0.60; QLOAD(4,3)=0.10;

% General parameters
itmax=10;

tol=le-12;
nmax=6*nbb;

As expected, the solution given by the three-phase program essentially agrees with that
provided by the positive sequence power flow program, given in Table 4.1. More
specifically, the nodal voltage magnitudes and phase angles for phase a of the network
coincide with those for the positive sequence. The voltage magnitude for phases a, b, and ¢
have equal values, with the phase angles for phases b and ¢ displaced by 240° and 120°,
respectively, with respect to those of phase a. Table 6.1 summarises the results for the
balanced three-phase solution. Convergence was achieved in 5 iterations to a power

mismatch tolerance of le-12.

Since this is a case of balanced operation and design parameters — all loads are taken to be
balanced — neither negative nor zero sequence voltages exist.

Table 6.1 Three-phase nodal voltages for the balanced case

Network bus

Voltage Phase North South Lake Main Elm
Magnitude (p.u.) a 1.06 1.00 0.9872 0.9841 0.9717
b 1.06 1.00 0.9872 0.9841 0.9717
c 1.06 1.00 0.9872 0.9841 0.9717
Phase angle (deg) a 0 —2.06 —4.63 —4.95 —-5.76
b 240 237.93 235.36 235.04 23423
c 120 117.93 115.36 115.04 114.23




POWER FLOW IN THE PHASE FRAME OF REFERENCE 247

An altogether different situation arises if imbalances are introduced into the test network,
say in the system load. This requires only a straightforward change in the data file, with the
file unbalthreephasedata reflecting these changes — at each bus, active and reactive
power loads have been altered arbitrarily by =15 % with respect to the base, balanced case:

¢Loads data with 15 unbalance
nld=4;

loadbus(1)=2; PLOAD(1,1)=0.20; QLOAD(1,1)=0.10;
PLOAD(1,2)=0.1739; QLOAD(1,2)=0.08695; PLOAD(1,3)=0.23;
QLOAD(1,3)=0.115; loadbus(2)=3;

PLOAD(2,1)=0.5175; QLOAD(2,1)=0.1725;

PLOAD(2,2)=0.45; QLOAD(2,2)=0.15; PLOAD(2,3)=0.3913;
QLOAD(2,3)=0.1304; loadbus(3)=4;

PLOAD(3,1)=0.3478; QLOAD(3,1)=0.0435;

LOAD(3,2)=0.46; QLOAD(3,2)=0.0575; PLOAD(3,3)=0.40;
QLOAD(3,3)=0.05; loadbus (4)=5;

PLOAD(4,1)=0.60; QLOAD(4,1)=0.10;

PLOAD(4,2)=0.5217; QLOAD(4,2)=0.087; PLOAD(4,3)=0.69;
QLOAD(4,3)=0.115;

Table 6.2(a) shows the three-phase voltage solution for unbalanced loading. The solution
was achieved in 5 iterations to a power mismatch tolerance of 1e — 12.

The impact of unbalanced loading on system performance can be appreciated by
comparing the results given in Table 6.2(b), where small amounts of negative and zero

Table 6.2 Three-phase nodal voltages in the unbalanced network: (a) phase voltages and
(b) sequence voltages

Network bus

Voltage Phase North South Lake Main Elm

(a) Phase voltages

Magnitude (p.u.) a 1.06 1.00 0.9820 0.9811 0.9789
b 1.06 1.00 0.9881 0.9831 0.9755
c 1.06 1.00 0.9908 0.9872 0.9599
Phase angle (deg) a 0 —-2.02 —4.67 —4.84 —-5.96
b 240 238.16 235.26 234.95 235.26
c 120 117.58 115.38 114.88 113.23

(b) Sequence voltages
Magnitude (p.u.) Negative ~ 0.00 0.0030 0.0032 0.0027 0.0148
Positive 1.06 1.0000 0.9870 0.9838 0.9713

Zero 0.00 0.0030 0.0020 0.0017 0.0070
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Figure 6.2 Three-phase power flows: (a) phase a, (b) phase b, and (c) phase ¢
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sequence voltages are now evident. Power system loss increased by nearly 2 % with respect
to the balanced case. It can be seen from the power flow results in Figures 6.2(a)—6.2(c) that
the power flows in all three phases are unbalanced.

It has been stated in the introduction of this chapter that FACTS controllers intended for
nodal voltage control could perform the role of restoring voltage magnitude balance at the
point of connection. It was also argued that a series compensator could provide a useful role
in balancing out power flows at the point of compensation. Such use of FACTS controllers is
assessed in the following sections.

6.3 STATIC VAR COMPENSATOR

In order to assess the role of SVC operation in unbalanced three-phase power systems
it is necessary to develop a more detailed model of the SVC than the one developed in
Section 5.3 for the case of positive sequence power flows. The new SVC power flow model
is developed in the frame of reference afforded by the phases, building on its admittance
matrix representation derived in Section 2.3.2.

The model corresponds to a three-phase, delta-connected thyristor-controlled reactor
(TCR) placed in parallel with a three-phase bank of capacitors connected in star
configuration, with its star point floating. Figure 6.3 shows the SVC equivalent circuit
used to derive the three-phase power flow equations. The individual branches are adjusted
individually, by controlling the firing angles of the thyristors, in order to achieve specified
nodal voltage magnitudes while satisfying the constraint power equations. Two distinct SVC
power flow models are described in this section: one uses controllable susceptances as state
variables whereas the other uses the firing angles of the thyristors.

It is illustrated in Figure 6.3 that the three-phase, star-connected capacitor bank has an
alternative representation in the form of a delta-connected equivalent circuit. Equation (6.30)
describes the three-phase SVC model, which is obtained by the simple addition of

a a b b c c a a b c c
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Figure 6.3 Three-phase model of the static VAR compensator (SVC) in phase coordinates
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Equations (2.10) and (2.14):

I | 1Bsyc Jstc —JBsvc Vi
I/f = 3 _.]BSVC JB?{/c _ngilc Vlf . (6.30)
I —iByc —iBSc  iBsve 1 LVE

In this matrix expression, two different kinds of terms exist, namely, self and mutual terms:

B!
A_ECZB] ZBTCR, forpl = pl;

BAY = T T (6.31)
Bgl B? ol 2
— 55+ Brck » for pl # pl;
where

s 2(75 - a%p]%) — sin2akdn

Breg = T ) (6.32)
TCR
Bl = wch!, (6.33)
ABc= Y BL. (6.34)
j=ab,c

The superscripts pl, p2, and j take values a, b, and c. Note that parameters with double
superscripts, pl and p2, correspond to branch parameters connected between phases pl
and p2.

6.3.1 Variable Susceptance Model

The three-phase power flow equations for the SVC may be derived with reference to the
equivalent circuit in Figure 6.3 and using the variable susceptances B’;i,‘g as state variables.
The three susceptance values are adjusted automatically by the iterative algorithm in order
to constrain the nodal voltage magnitude at the specified value. The final values of
susceptance represent the line susceptances in the delta-connected SVC equivalent circuit.

With reference to Figure 6.3, and using the SVC transfer admittance matrix of Equa-
tion (6.30), the three-phase power flow equations for the SVC are as follows:

Py =—V{ > VIBYcsin(0] — 0)), (6.35)
j=a,b.c

J#p

0= (Vk) By + V¢ E VJBSVC cos (6] — 92)’ (6.36)
Jj=ab,c
J#p

where the variables p and j take values g, b, and c.
Taking the partial derivatives of the power flow Equations (6.35) and (6.36), with
respect to the equivalent susceptances (state variables), we arrive at the following
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linearised equation:

N N i L T ) 0 opP! B 191 Age 70
oo¢ o6 005 0B °VC 0B V¢
AP oP; or; opP; oP; ., OP} .. 0 AG;
k o0 o0k 305 OB SV 0B °VC
Ape OP{ 0P OP; 0 0P, e 0P .. A
“L | oe oep o6 0BY, SVC 0Bg. V€
|0Qf 00¢ 00p 30 L 00 p. ABRc
B“ 0 BLa
AL o oo o aB%e 0B | | B
, 00 0Q¢ 3 3R Lu O 0 ABgic
A, o6 o6y o6 BHe V¢ B C Bc
00y 00; 00; 0 00i pgre 90k pea ABgyc
| AG; | L ooy a0 o6 3BYyc V¢ 0Bg V¢l | B |
(6.37)
The new Jacobian entries in the linearised expression have the following form:
P z i PViBY sin(6° — @
aBTBSVC:_VkaBSVCSIH(ak_ ) (6.38)
N
00 L P2 pii o o _ g
oB” Bgye = =2(V{) Béyc + V{ViBéyc cos (0F — 04).- (6.39)
sve

The terms corresponding to partial derivatives of active and reactive powers with respect
to nodal voltage phase angles have the same form as Equations (6.18), (6.20), (6.22), (6.24),
(6.26), and (6.28), respectively.

Once the SVC linearised equation has been evaluated at a given iteration, (i), it is then
combined with the linearised expression representing the overall external system — Equa-
tion (6.9) — and a new set of state variables is obtained. The SVC susceptances are updated
by using the following expression:

oj

A\ (@)
BYC = BYC + ( k) B, (6.40)
svc

This calculation completes iteration (i), and the three-phase mismatch power equations are
calculated and checked for convergence. If the convergence criterion has not been satisfied,
a new iteration is carried out.

6.3.2 Firing-angle Model

An alternative SVC model is realised by using the firing angles of the thyristors as state
variables, rather than equivalent susceptances. In this situation, the new SVC linearised
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equation takes the form:

rAPi1"Y rope ope ot oPg o oP 0T ag
00¢ o0k 06, Do 0agyc
AP? oP; oP: or; orP,  oPY 0 A
00¢ 20y 06, Oagkc dadc
AP OP{ 0P OP; 0 OP;, OP;, A
| ooy o6y o6 ke 0o (6.41)
O B e e e S N
O o0: o6 06 dac doge | | Dafc
oy gy 00 oy v
AQY 307 °6F 3 da. ool A
00 0Q; 00% 0 005 005
LAQ; | | oF 26y ot 0y 9ogyc | [Aagc ]
The new Jacobian entries in the linearised expression have the following form:
opy ; -\ OB,
= —V/Visin(0) — 0,) =>Y€ (6.42)
dagic Lk ( ‘ k) dagic
o0} > ; -7 OB,
= —|(V{) =V Vi cos(6) — 6, L 6.43
30l {( {)" = V{Vicos(6; k)} ot (6.43)
aBls)jvc 2 2
6a§@C T [1 + cos ZO(SVC:|. (6.44)

The terms corresponding to partial derivatives of active and reactive powers with respect to
nodal voltage phase angles are the same terms referred to in Equation (6.37).

Upon solution of the combined Equations (6.9) and (6.41), a new set of state variable
increments is obtained. The increments are used to update the state variable values — among
them the SVC firing angles — using the following expression:

(als)jvc)(i) = (agjvc)(i_l) + (Aa/s)j;/c)ﬁ)- (6.45)

This calculation completes iteration (i), and the three-phase mismatch power equations are
calculated and checked for convergence.

6.3.3 Numerical Example: Static VAR Compensator Voltage
Magnitude Balancing Capability

A three-phase SVC is added to the unbalanced five-bus network in Section 6.2.4 in order to
explore the capability of the SVC to restore geometric balance at the point of connection
while at the same time providing effective voltage magnitude regulation. The SVC is
assumed to be connected at Elm, and the voltage magnitude is set at 0.98 p.u. The study is
conducted using the SVC reactance model, and convergence is achieved in 5 iterations to
satisfy a power mismatch tolerance of 1e — 12.



THYRISTOR-CONTROLLED SERIES COMPENSATOR 253

Table 6.3 Nodal voltage in the three-phase unbalanced network with a static VAR compensator:
(a) phase voltages and (b) sequence voltages

Network bus

Voltage Phase North South Lake Main Elm
(a) Phase voltages
Magnitude (p.u.) a 1.06 1.00 0.9822 0.9810 0.98
1.06 1.00 0.9888 0.9974 0.98
c 1.06 1.00 0.9947 0.9923 0.98
Phase angle (deg) a 0 —2.04 —4.64 —4.79 -5.76
240 238.16 235.17 234.84 234.81
c 120 117.60 115.37 114.86 113.09
(b) Sequence voltages
Magnitude (p.u.) Zero 0.00 0.0028 0.0047 0.0050 0.0087
Positive 1.06 1.0000 0.9886 0.9859 0.9799
Negative 0.00 0.0028 0.0025 0.0022 0.0086

The three-phase nodal voltage magnitudes and phase angles are given in Table 6.3(a), in
which it is shown that the SVC is effective in regulating and balancing nodal voltage
magnitude at Elm. As expected, the phase angles at that bus are still unbalanced. It should
be mentioned that power losses now stand at 1.01 %, a result that compares favourably with
the unbalanced case where no SVC is used and where power losses stand at 2 %. Note that
negative sequence voltages have also reduced in magnitude [Table 6.3(b)].

6.4 THYRISTOR-CONTROLLED SERIES COMPENSATOR

Based on the nodal admittance representation of the TCSC, derived in Chapter 2, two quite
useful positive sequence power flow models were developed in Section 5.4. One model
uses an adjustable reactance as the state variable and the other uses the thyristor firing angle.
The same idea is now extended to the case of the TCSC power flow models in phase
coordinates.

6.4.1 Variable Susceptance Model

The three-phase TCSC representation is simply obtained by using three independent TCSC
modules, as shown in Figure 2.12. The changing susceptance, shown in Figure 6.4,
represents the fundamental frequency equivalent susceptance of each series module making
up the three-phase TCSC. The value of Brcsc is determined by using the Newton—Raphson
method to regulate active power flow through the three branches to a specified value.
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Figure 6.4 Three-phase variable series susceptance

The transfer admittance of the TCSC may be derived from visual inspection of the
equivalent circuit shown in Figure 6.4. Assuming that p takes the values a, b, c:

L, B B, I LVA ] '

In Equation (6.46) the terms B}, B, B’ , and B? are diagonal matrices since the three

TCSC modules are electromagnetically decoupled:

1

BZk =B, = B@csc = T Xxp’ (6.47)
) 1
BZm = B';nk = _Bécsc = X7’ (6-48)

where X’ represents the fundamental frequency equivalent reactance of the pth series
modules making up the TCSC.

With reference to Figure 6.4 and using the transfer admittance matrix in Equation (6.46),
the three-phase nodal power injections at bus k are:

P} = V{ViBY, sin(6] — 07), (6.49)
0f = ~(V{) By — Vi ViBl, cos(6 — ;). (6.50)

Power equations at bus m are obtained by replacing the subscript k with m, and vice versa, in
Equations (6.49) and (6.50).
The first partial derivatives of the power equations with respect to X” are:

oP’
x = py, (6.51)
a 4
a)Q(]; X = QL. (6.52)
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When the TCSC is controlling active power flowing from k to m, at specified value, the set
of linearised power flow equations is

I O S G VR SV e SR R U
o0, o0, avy kK ovp o oxe
APP oP: QP! 0Pl Ve oPy ., OPh 0 AO
" 000 o6, ove kv, ™ axe
7
aQﬁ aQﬂ aQP aQ/’ aQﬂ AVk
4 _ | =k =k ZEkyr ZEkyp =k xp >
A =l e vt an T aeX vi | (653)
000 dQr 30’ 00" 00" AV?P
m m m VP _mVp mXp m
AQy, 007 o6h, Vi K avhm M oxe v
S T gl B NG
| APYX ] L o, o, ovy ko avhp Mmoo axe T | [ Txe |
where AP, given by

».X _ pp.XReg 0.X,cal
APkm_Pkm _Pkm ’

is the active power flow mismatch for the TCSC. AX” is the incremental change in the total
series TCSC reactance, and the superscript (i) indicates iteration number.

6.4.2 Firing-angle Model

The TCSC structure shown in Figure 2.12 is extended to account for the three phases as
shown in Figure 6.5. This is used as the basis for deriving the three-phase power flow model,

a a
Vk | | ¢ ‘/m

1:~»”— —Ha—lz

144 .
v I Xc Ve
I 4,_['* 4H** -
X;
a(‘

Figure 6.5 Three thyristor-controlled series compensator modules
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where the TCSC firing angle is used as state variable (Venegas and Fuerte-Esquivel, 2001).
The three TCSC branches are assumed to be electrically and magnetically decoupled.

The fundamental frequency TCSC equivalent reactance, as a function of TCSC firing
angle, is given by Equation (2.52). It follows that the extension to three phases is quite
straightforward, owing to the decoupled nature of the three modules:

X7 —X0. + CH{2(n — a”) +sin2(n — a”)]} — C5 cos*(n — a’)

TCSC(1) —
x {wtan[w(n — )] — tan(n — o)}, (6.54)
where
X’U X!
XﬁC = Xp Xp ) (6.55)
)¢ X/)
= g7 (6.56)
T
4(x7.)?
Ch = 4 (Xie) pLC) : (6.57)
Xin

The transfer admittance matrices of both TCSC representations are identical, given by
Equations (6.46)—(6.48). Moreover, the TCSC nodal power equations also coincide. The
TCSC power equations with respect to the firing angle are:

2 0X°

OBTcsc() _(m TCSC(1) 6.58
o= (Brescn) —gor (6.58)
or; aX?csc( 1
s = PBrcsc(1) “ar (6.59)
00, achsc( 1)
aa]; O;Bresc(1 D" g (6.60)
where
ox?
%Cm = —2C7[1 + cos(2a”)] + C4 sin(2a”){wtan[w(n — a”)] — tan &’}

+C§<w2‘w 1>. (6.61)

cos?[w(m — ar)]

When the TCSC module is controlling the active power flowing from buses k to m, at a
specified value, the set of linearised power flow equations is:

rarp Y reey opl ot ve by, OPLT D age "
o0l o6 ov! v '™ Bar
APP op;, OP,  OP) Ve oPy, Ve oP”, AGh
20! o ovik ovhm dar
00" 00" 30! 00" 00" AV
Al =\ o o Y Gw | || 68
00, 00, 00 o0, 005,
AQ; 00, o6, V! vi ve " Bar %
OPhn Py OPLy o OPhn Oy
L AP | | 007 o6 ovy ok ovh M dar | Al
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where AP}
o _ ppaReg  pp,aeal
APkm - Pkm Pkm ’

and P! el Py, are the active power flow mismatches for the three-phase TCSC module, and
o), given by
o) — oP=1) + Aa”(i),

is the incremental change in the TCSC firing angle. The superscript (i) indicates iteration
number.

6.4.3 Numerical Example: Power Flow Control using One
Thyristor-controlled Series Compensator

In order to show the flexibility of the TCSC model in the phase domain, a three-phase power
flow study is carried out. The TCSC is added to the unbalanced five-bus network, connected
between buses Lake and Main. The aim of this example is to balance out the amount of
active power through the TCSC at 21 MW. The increase of active power in phase a is almost
50 % and in phase b 5 %; in phase c it decreases by 14 % with respect to the unbalanced
case in Section 6.2.4. The three-phase nodal voltage magnitudes and phase angles are given
in Table 6.4(a), whereas Table 6.4(b) gives the nodal voltage magnitudes in the sequence
domain. The power flows are shown in Figure 6.6.

Table 6.4 Nodal voltages in the three-phase unbalanced network with a thyristor-controlled series
compensator (TCSC): (a) phase voltages and (b) sequence voltages

Network bus

Voltage Phase North South Lake Main Elm LakeTCSC
(a) Phase voltages
Magnitude (p.u.) a 1.06 1.00 0.9839 0.9797 0.9788  0.9800
b 1.06 1.00 0.9884 0.9823 0.9751 0.9871
c 1.06 1.00 0.9912 0.9866 0.9593 0.9902
Phase angle (deg) a 0.00 —1.87 —5.28 —3.86 —5.54 —3.48
b 240.00 238.14 235.36 234.80 235.21 235.07
c 120.00 117.52 115.58 114.51 113.05 114.94

(b) Sequence voltages
Magnitude (p.u.) Zero 0.00 0.0035 0.0046 0.0097 0.0147  0.0098

Positive 1.06 1.0000 0.9878 0.9828 09710  0.9857
Negative 0.00 0.0035 0.0052 0.0079 0.0092  0.0086

6.5 STATIC COMPENSATOR

With reference to the single-phase equivalent circuit shown in Figure 2.18(b), and assuming
that the three Thévenin equivalents representing a three-phase STATCOM are decoupled,
the equivalent circuit is shown in Figure 6.7.
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Figure 6.6 Five-bus network with thyristor-controlled series compensator: (a) phase a, (b) phase b,
and (c) phase ¢
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Figure 6.7 Three-phase static compensator equivalent circuit

Based on this equivalent circuit, and the three-phase transfer admittance Equation (2.65),
the following expressions for active and reactive power injections at bus k may be
written:

Py = (V])* Gl + V{Vik[Glh cos (6] — 80y + Blgsin(6] — 60)]. (6.63)
2 .
0; = — (V) Bl + VLV [Glk sin (0] — 85) — Bl cos(6; — &0¢)]. (6.64)
The corresponding expressions for the three sources are:
2 .
Php = (VIR) GoR 4+ ViRVE [Ghl cos (80 — 07) + Bl sin (80, — 67)], (6.65)
e = —(Vig) Bl + VigV{ [Glfsin (805 — 0F) — Bigcos (6, — )], (6.66)

where p refers to phases a, b, and ¢ at bus k and at the terminals of the source.
Derivation of these power equations with respect to the STATCOM state variables V',

and 6" yields the following linearised equation:
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The Jacobian elements created for this application are as follows:

%ﬁ 0}~ (V{) Gl (6.68)
SVE = P (V) G (669)
% aa%”f Vi = VIRV [Ghg cos (80 — 0)) + Big sin (8, — 67)], (6.70)
oy, 00

avr Vie =~ o0 = VIV [Ghrcos (6] — 80%) + Bigsin(6, — 60%)],  (6.71)

2

S P~ (V)G 6.72)

RA

d

a‘Q/k Ve = Q! — (VI)B%, (6.73)
k

00, oP

VI = VIV [Ghpcos(0] — 80%) + Blgsin(0] — 60%)],  (6.74)

a6 V]

00" or’

av/f( Vi = GQ”R VEViR[Ghrsin(0 — 87z) — Bigcos (8 — 67z)]. (6.75)

aPﬁR » P \2pp

a(sPR = _Q’UR - (V’UR) B’UR7 (676)
’U

oP” ,

av/))li VfR = P/;R + (VgR) GZR» (6.77)

anR 0 P \2 ~p

aéﬂR = P?}R - (VUR) Gz)R7 (678>

00,

avﬂll: VvR - uR (VgR) B;)R (679)

Solution of the linearised Equation (6.67) yields information on the state variable
increments. The increments are, in turn, used to update the state variables. Voltage mag-
nitude limits are checked at the end of each iterative step and if one or more limits are
violated the voltage magnitude is fixed at the violated limit.

6.5.1 Static Compensator Three-phase Numerical Example

The three-phase STATCOM model is used to balance voltage magnitude at Elm at 0.98 p.u.
This is, in essence, the same case study carried out with the SVC model in Section 6.3.3.
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The source impedances are X,x = 0.1 p.u. per phase. The power flow results indicate that
the STATCOM generates 4.81 MVAR, 8.47 MVAR and 15.25 MVAR in phases a, b and c,
respectively, in order to achieve the three-phase voltage magnitude target. The STATCOM
parameters associated with this amount of reactive power generation are: V,g = 0.9849,
0.9886 and 0.9955 p.u. for phases a, b and c, respectively. As expected power flows results
coincide with those obtained using the SVC model in Section 6.3.3. Nodal voltage
magnitudes and phase angles are given in Table 6.3(a), and sequence domain voltage
magnitudes are given in Table 6.3(b).

6.6 UNIFIED POWER FLOW CONTROLLER

The UPFC schematic representation and its operational control were presented in Sec-
tion 2.4.4, and a positive sequence power flow model was developed in Section 5.6.
However, in order to assess the role of the UPFC operating under unbalanced conditions it is
necessary to develop the model in phase coordinates.

Assuming that the equivalent circuit of a three-phase UPFC consist of three single-phase
UPFC equivalent circuits, with no couplings between them, as shown in Figure 6.8, the

k m
& | e w oyl .
e, L

- llley_"aR bl b bb b| b =
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d - 2, +®R— Vil
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Figure 6.8 Three-phase unified power flow controller equivalent circuit
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three-phase power flow equations are as follows:

Py = (V{)’Gif + VL Vi [Gil cos (6 — 0,) + Bl sin (6] — 65,)]
+ VI VI (Gl cos (6 — 8%) + B sin (6] — 6%)]
+ VI Vi [Ghcos (0] — 85%) + Bl sin (6] — 67%) ], (6.80)

Q) = —(V)*BYf + V{Vi, (Gl sin (6] — 65,) — Byl cos (6] — 05,)]
+ VIV (G sin(0F — 665) — BLY cos (6 — &%)

- VIVE [l sin(6f — 67,) — Bljcos (8] — 8Ly)]. (6:81)

Equations (6.80) and (6.81) are the three-phase counterparts of Equations (5.50) and (5.51).
Equations for bus m, and the series and shunt converters are also obtained by direct
extensions of Equations (5.52)—(5.57) into phase coordinates.

In this situation, the active power supplied to the shunt converter, Re{V/,1";} satisfies the
active power demanded by the series converter, Re{ V7" }. The impedance of the series
and shunt transformers, Z'; and Z%, are included explicitly in the model.

The UPFC power equations, in linearised form, are combined with those of the ac
network. For the case when the UPFC controls the following parameters: (1) voltage
magnitude at the shunt converter terminal (bus k), (2) active power flowing from bus m to
bus k, and (3) reactive power injected at bus m, and taking bus m to be a PQ bus, the
linearised system of equations is as follows:

(APEY [oep opg opp, o, oPp o opp, 0P [ AT
307 00, VP K Qvh M B8, oV R 067 ’
Y I T A A R L A | e
307 00h oVP K dvh ™ ¥, vl R N
AQ} % 00} a_szf’ %V’) a_QZ 00y 74 a_Qg V"’k
367 00, OVI K dVh ™ ¥, Vi R e, k
002 dQr Q! 00" oQr 200 AV?
Y3 _ m m m Vﬂ _=myp m m V/ 0 m
AL, 36 o6 OVQ'k VLM 3ol Vi R v
oP’, oP’, oP’, . P’ oPt.  oP”
m m m Vﬂ mk \%4 mk mk VP 0 P
AP}, 300 o0h  ovP 'k dvh ™ a8k, ovh, ok Aber
00", 00", Q" 20" 20", Q"
O O sy Wy B Wuiyyp ||y
AQY, 300 o0, ov! vy, 38, OV, Vox
oP,, ©oP,, 0Py ., 0Py Ve oPy, OPy, W oPy, Ve
APy, | Lo00 o v R avh o ash, avi * ad | | as, ]
(6.82)

The Jacobian entries, which are 3 x 3 matrices, are derived in a similar way to those of
the STATCOM in Section 6.5. The linearised equation (6.82) is solved for the vector of state
variables increments, and this information is used to update the state variables. If the
convergence criterion has not been satisfied then a new iteration is started using the latest,
state variables information available.



UNIFIED POWER FLOW CONTROLLER 263

51.75 +j17.25 34.78 +j4.35

132.4el i 89.06

North 4920  47.37
— —
2 ‘ >
83 6l i7949 s

3438 _7

80. 90l

48.33 EIm
20+J10 o .
400T $ 7031 8.05 7.95 60 +j10
(a)
126.34l i 84.64 45 +j15 46 +j5.75
North 4543 43.94
— —
S
80.91\1/ i72.92 o 12.30
31.06 _7 6'22l ?1.99

78.47\1/

6.28l izm
Elm

17.4

+i8.7 5 |
4001\ i 65.41  5.39 6.03 52.17+j8.7

(b)

138.39l t 82.02 39.13 +j13.04 40 + 5

North 44.71 43.12

3. ‘
9 62\1/ i7264 g

91.17\1/

57.08 Elm
—
23+ jl11.5 ™)
40.0T $55,45 10.96 9.05 69 +j1L.5

(c)

Figure 6.9 Unified power flow controller upgraded test network and power flow
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6.6.1 Numerical Example of Power Flow Control using
One Unified Power Flow Controller

In order to assess the effectiveness of UPFC controllers to regulate active and reactive power
flow and to control voltage magnitude in one of the UPFC connecting buses, the five-bus
network is modified to include a three-phase UPFC model to compensate and to balance the
transmission line linking buses Lake and Main. The modified network is shown in
Figure 6.9. The UPFC is used to maintain active power leaving the UPFC, towards Main, at
30 MW in each phase; reactive power towards Main is selected in such a manner that
balanced voltage magnitudes of 0.98 p.u. are obtained at the bus connecting the UPFC and
compensated transmission line; the reactive power injections are set at 7.13 MVAR, 2.47
MVAR, and 6.05 MVAR for phases a, b, and c, respectively; voltage magnitudes at bus Lake
are fixed at 1 p.u. The three-phase nodal voltage magnitudes and phase angles are given in
Table 6.5(a), where it is shown that the UPFC is effective in regulating voltage magnitude in
both of the connecting buses. Figure 6.9 shows the power flow results when the UPFC
regulates reactive power at the above values. It is clear that the UPFC is an effective device
for restoring power balance. Table 6.5(b) shows the nodal voltage magnitudes in the
sequence domain.

Table 6.5 Nodal voltages in the three-phase unbalanced network with a unified power flow
controller: (a) phase voltages and (b) sequence voltages

Network bus

Voltage Phase North South Lake Main Elm LakeUPFC

(a) Phase voltages

Magnitude (p.u.) a 1.06 1.00 1.00 0.980 0.979 0.98
b 1.06 1.00 1.00 0.977 0.973 0.98
c 1.06 1.00 1.00 0.978 0.957 0.98

Phase angle (deg) a 0.00 —1.74 —6.05 -3.04 =519 —-249
b 240.00 238.27 234.80 23590 235.67 236.41

c 120.00  117.65 114.83 11536 113.39 115.98

(b) Sequence voltages
Magnitude (p.u.) Zero 0.00  0.0036 0.0050 0.0087 0.0161 0.0077

Positive 1.06 1.0000 1.0000 0.9782  0.9695 0.9799
Negative 0.00  0.0036 0.0050 0.0073  0.0090 0.0078

6.7 SUMMARY

In the first part of this chapter we presented the theory of power flow in phase coordinates
using the Newton—Raphson method. This enables the reliable solution of three-phase power
systems exhibiting any degree of geometric and operational imbalance. To illustrate the
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additional flexibility introduced by the phase coordinates modelling, the five-bus network
was solved for cases of balanced and unbalanced system load, and comparisons were drawn.
A three-phase power flow function written in Matlab®™ code was provided to enable a hands-
on application of the theory. It used the Newton—Raphson method and is suitable for solving
small and medium-sized networks with balanced and unbalanced system loads. The
function is quite general, but modelling capability has been kept at a relatively low level
to avoid cumbersome and lengthy code. Nevertheless, incorporation of advanced power
plant models, such as those studied in Chapter 3, is quite a straightforward programming
exercise.

The second part of the chapter focused on developing three-phase models of key FACTS
controllers, such as the SVC, STATCOM, TCSC, and UPFC. The first two controllers are
shunt-connected, and the test cases presented emphasise the fact that, at least in principle,
these controllers are capable of restoring voltage magnitude at the point of connection, in
addition to fulfilling their basic function of providing reactive power support. The TCSC and
UPFC are series-connected controllers and, in their respective numerical examples, they are
set to enable balanced active power flows in the compensated transmission line. This is
achieved by contributing unbalanced compensation, a fact that does not dent the quadratic
convergence characteristic of the three-phase power flow Newton—Raphson method.
Incorporation of these FACTS controller models into the Matlab®™ function given in this
chapter is a more cumbersome exercise than the incorporation of conventional power plant
models.

REFERENCES

Angeles-Camacho, C., 2000, Modelado en Estado Estacionario del Controlador Unificado de Flujo de
Potencia para el Andlisis Trifdsico de Sistemas Eléctricos, MSc thesis, Instituto Tecnoldgico de
Morelia, México.

Arrillaga, J., Harker B.J., 1978, ‘Fast Decoupled Three-phase Load Flow’, Proceedings of the IEE
125(8) 734-740.

Birt, K.A., Graffy, J.J., McDonald J.D., 1976, ‘Three-phase Load Flow Program’, IEEE Trans. on Power
Apparatus and Systems PAS-95(1) 59-65.

Chen, B.K., Chen, M.S., Shoults, R.R., Liang, C.C., 1990, ‘Hybrid Three-phase Load Flow’, IEE
Proceedings on Generation, Transmission and Distribution, Part C 137(3) 177-185.

Chen, M.S., Dillon, W.E., 1974, ‘Power System Modelling’, Proceedings of the IEE 62(7)
901-915.

Harker, B.J., Arrillaga, J., 1979, ‘3-phase a.c./d.c. Load Flow’, Proceedings of the IEE 126(12) 1275—
1281.

Hesse, M.H., 1966, ‘Circulating Currents in Parallel Untransposed Multicircuits Lines’, IEEE Trans.
Power Apparatus and Systems PAS-85(July) 802-820.

Laughton, M.A., 1968, ‘Analysis of Unbalanced Polyphase Networks by the Method of Phase Co-
ordinates’, Proceedings of the IEE 115(8) 1163-1172.

Laughton, M.A., Saleh, A.O.M., 1985, ‘Unified Phase Coordinate Load-flow and Fault Analysis of
Polyphase Networks’, Electrical Power & Energy Systems 2(4) 2805-2814.

Smith, B.C., Arrillaga, J., 1998, ‘Improved Three-phase Load Flow using Phase and Sequence
Components’, IEE Proceedings on Generation, Transmission and Distribution, Part C 145(3)
245-250.



266 THREE-PHASE POWER FLOW

Venegas, T., Fuerte-Esquivel, C.R., 2001, ‘Steady-state Modelling of an Advanced Series Compensator
for Power Flow Analysis of Electric Networks in Phase Co-ordinates’, IEEE Trans. on Power
Systems 16(4) 758-765.

Wasley, R.G., Shlash, M. A., 1974a, ‘Newton—Raphson Algorithm for 3-phase Load Flow’, Proceedings
of the IEE 121(7) 630-638.

Wasley, R.G., Shlash, M.A., 1974b, ‘Steady-state Phase-variable Model of the Synchronous Machine
for Use in 3-phase Load-flow Studies’, Proceedings of the IEE, 121(10) 1155-1164.

Zhang, X.P., Chen, H., 1994, ‘Asymmetrical Three-phase Load-flow Study based on Symmetrical
Component Theory’, IEE Proceedings on Generation, Transmission and Distribution, Part C 141(3)
248-252.



7

Optimal Power Flow

7.1 INTRODUCTION

Electric power systems have experienced continuous growth in all three sectors of the
business, namely, generation, transmission, and distribution. In the past, transmission
systems were characterised by a low degree of interconnection, hence, it was uncomplicated
to share the load among several generating units. The increase in load sizes and operational
complexity brought about by widespread interconnection of transmission systems, some
encompassing continental distances, introduced major difficulties into the operation of
electrical power networks. It became necessary for many electrical utilities to operate their
systems closer to the system operating capacity. It became impractical to determine
appropriate operating strategies based only on observation and the experience of the
operator. The operating philosophy had to be revised, and new concepts based on economic
considerations were adopted. Optimal power flow (OPF) solution methods have been
developed over the years to meet this very practical requirement of power system operation
(Alsac et al., 1990; Dommel and Tinney, 1968; El-Hawary and Tsang, 1986; Happ, 1977,
Huneault and Galiana, 1991; Maria and Findlay, 1987; Monticelli and Liu, 1992; Sasson,
1969; Sasson, Viloria, and Aboytes, 1973; Sun et al., 1984; Tinney and Hart, 1967; Wood
and Wollenberg, 1984)

Optimal power flows can be more easily understood if one thinks in terms of conventional
power flows, where the objective is to determine the steady-state operating conditions of the
power network. Voltage magnitudes and angles at all buses of the network corresponding to
specified levels of load and generation are determined first. Power flows throughout the
network are calculated afterwards. It is most likely that this solution, although feasible, will
not yield the most economic generating schedule or an operating point where minimum
losses are incurred. The OPF solution, in contrast, includes an objective function that is
optimised without violating the system operating constraints. These include the network
equations, loading conditions, and physical limits on active and reactive power generation.
The selection of the objective function depends on the operating philosophy of each power
system. A common objective function concerns the active power generation cost. The
economic dispatch problem is a particular case of the OPF problem (Wood and Wollenberg,
1984).

FACTS: Modelling and Simulation in Power Networks.
Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez and César Angeles-Camacho
© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85271-2
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7.2 OPTIMAL POWER FLOW USING NEWTON’S METHOD
7.2.1 General Formulation

OPF solutions are carried out to determine the optimum operating state of a power network
subjected to physical and operational constraints. An objective function, which may
incorporate economic, security, or environmental aspects of the power system, is formulated
and solved using a suitable optimisation algorithm, such as Newton’s method. The
constraints are physical laws that govern power generation and transmission system
availability, the design limits of the electrical equipment, and operating strategies. This kind
of problem is usually expressed as a static, nonlinear programming problem, with the
objective function represented as a nonlinear equation and the constraints represented by
nonlinear or linear equations.

More often than not, the objective function is taken to be the cost of generation, reflecting
the economic aspects of the electrical power system (Dommel and Tinney, 1968; Maria and
Findlay, 1987; Monticelli and Liu, 1992; Sun et al., 1984). Hence, the mathematical
formulation minimises active power generation cost by suitable adjustment of the control
parameters.

The OPF problem can be formulated as follows:

Minimise f(x) subject to A(x) = 0 and g(x) < 0. (7.1)

In this expression, x is the vector of state variables, f(x) is the objective function to be
optimised, A(x) represents the power flow equations, and g(x) consists of state variable
limits and functional operating constraints.

In general, the aim is to optimise an objective function with the solution satisfying a
number of equality and inequality constraints. Any solution point that satisfies all the
constraints is said to be a feasible solution. A local minimum is a feasible solution point
where the objective function is minimised within a neighbourhood. The global minimum is
a local minimum with the lowest value in the complete feasible region (Bertsekas, 1982;
Luenberger, 1984).

7.2.1.1 Variables

Variables that can be adjusted in pursuit of the optimal solution are termed control variables,
such as active power generation, taps and phase angles in tap-changing and phase-shifting
transformers, respectively, and voltage magnitudes at the generator buses. The control
parameters are taken to be continuous quantities. Such a representation is well handled by the
OPF formulation and provides a suitable representation of controls with small discrete steps.

Dependent variables are those that depend on the control variables. They can take any
value, within limits, as dictated by the solution algorithm. Examples of dependent variables
are voltage phase angles at all buses, except the slack bus; voltage magnitudes at all load
buses; reactive power at all generation buses; active power generation costs; and active and
reactive power flows (network losses) in transmission lines and transformers.

In addition to control and dependent variables, active and reactive power loads and
network topology and data form a set of fixed parameters that must be specified at the outset
of the study.
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7.2.1.2 Objective function

The main aim of the OPF solution is to determine the control settings and system state
variables that optimise the value of the objective function. The selection of the objective
function should be based on careful analysis of the power system security and economy.
Arguably, power generation cost is the most popular objective function in OPF studies,
where the thermal generation unit costs are generally represented by a nonlinear, second-
order function (Luenberger, 1984; Sun et al., 1984):

Fr = Zng (Py), (7.2)
=1

where Fy is the fuel cost of unit k, Py is the active power generated by unit k, and n, is the
number of generators in the system, including the slack generator. More specifically,

Fi(Pgt) = ax + biPg + ciPy, (7.3)

where ay, by, and c; are the cost coefficients of unit k.

It should be noted that it is crucial to include the slack generator contribution in the OPF
formulation, Equation (7.1), otherwise the minimisation process will dispatch all the
generating units at their minimum capacity while assigning the rest of the required
generation to the slack generator, which would be seen by the optimisation procedure as
having zero generation cost and infinite generation capacity.

7.2.1.3 Equality constraints

The power flow equations provide a means for calculating the power balance that exists in
the network during steady-state operation. They must be satisfied, unconditionally, if a
feasible solution is to exist (Dommel and Tinney, 1968; Sun et al., 1984), otherwise the OPF
problem is said to be infeasible, with attempts being made to find a limited but still useful
solution by relaxing some of the network constraints.

The power flow equations represent the link between the control variables and the
dependent variables,

Pi(V,0) + Py — Po = 0, (7.4)
Qu(V,0) + Qar — Qe =0, (7.5)

where P, and Qy are, respectively, the active and reactive power injections at bus k; Py and
Qu are, respectively, the active and reactive power loads at bus k; Pg and Qg are,
respectively, the scheduled active and reactive power generations at bus k; V and 6 are,
respectively, the nodal voltage magnitudes and angles.

A generic bus including generation, load, and a transmission line is shown in Figure 7.1.
It should be noted that all equality constraints in the power network are nonlinear.
However, they are incorporated in a linearised form within the OPF formulation
(Luenberger, 1984).
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PUV. 8)+jQuV, 0)]

Vi £ 6
ng + ngkT

O

Figure 7.1 A generic bus of the electrical power network

P+ jOu

7.2.1.4 Inequality constraints

All variables have upper and lower limits that must be satisfied in the optimal solution.
Constraints on control variables reflect the bounds of the operating conditions of the
equipment used for power dispatch. Arguably, limits on the generated active power and
voltage magnitude at the generating units are the most important of such bounds.

Functional constraints result from the application of limits on control variables, with
constraints on voltage magnitudes at load buses and on active and reactive power flows in
transmission lines being the most popular:

PRt <Py <PR*, k=1,...,n; (7.6)
0N < Qg < O™, k=1,...,n; (7.7)
VR <Y VR k=1, (7.8)

where n, is the total number of buses, n, is the total number of generation buses, and
Ok = Qu(V,0) + Qur- (7.9)

If a reactive power limit violation takes place in a generator bus, it changes to a load bus,
with associated voltage constraints.

It should be mentioned that functional constraints are normally relaxed under
system emergency conditions in order to obtain suboptimal but still technically feasible
solutions.

7.2.2 Application of Newton’s Method to Optimal Power Flow

The first step towards solving the constrained optimisation problem using Newton’s method
is to convert the problem into an unconstrained optimisation problem. This is achieved by
constructing an augmented Lagrangian function for Equation (7.1), which in generic form
may be written as:

L(x, 1) = f(x) + L'h(x) + V[g(x), nl, (7.10)

where A and p are Lagrange multiplier vectors for equality and inequality constraints,
respectively, Y[g(x), p] is the penalty function of the inequality constraints, and a superscript
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t indicates the transpose. In Equation (7.10) there are as many Lagrange multipliers as
number of active constraints. The method for handling functional inequality constraints is
addressed in Section 7.2.6.

In OPF using Newton’s method, the Lagrangian function for active and reactive power
flows is modelled as an equality constraint, given by the following equation (Luenberger,
1984):

Ny

Lsystem("» ;\') Fr+ Z j-pk Pk V 0) + Py — gk] + Z )”qk [Q,‘(V, 9) + Ou — ng]7
k=1 k=1

(7.11)
where Fr is the objective function, the summations are for the n, buses specified in the

study, and A, and Ay are the Lagrange multipliers for the active and reactive power
equations, respectively.

7.2.3 Llinearised System Equations

Solution of the Lagrangian function of Equation (7.11) may be efficiently achieved by
solving, by iteration, the following system of linearised equations,

[W][iﬂ = {gﬂ (7.12)

Sometimes, it is more convenient to express the system of Equations (7.12) as follows:

WAz = —g, (7.13)
where

W= [H Jt} (7.14)

J 0
Az = [Ax AL]', (7.15)
g = [VxVA], (7.16)
Vx = [VP, VOV V], (7.17)
VA = [V, VA, (7.18)
Ax = [AP, AO AV], (7.19)
= [Ak, Akg]". (7.20)

Matrix W contains the second partial derivatives of the Lagrangian function L(x, ) with
respect to the state variables x and Lagrange multipliers A. Some derivative terms give rise
to the Hessian H whereas others give rise to the Jacobian J or its transposed matrix J'.
Matrix W is symmetric and has a null submatrix, 0, at its lower right-hand corner, since the
second partial derivatives of the form 0”L(x,)/0/,0/, do not exist.
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The gradient vector g is VL(x,%), and the first partial derivatives of g are the second
partial derivatives of the Lagrangian function L(x,A). The Lagrange multipliers are the
incremental costs for active and reactive powers, A, and X, respectively. Az is the vector of
correction terms. The state variables are the active power generations, the nodal voltage
magnitudes, and phase angles, P,, V, and 6, respectively.

The derivative terms associated with the inequality constraints, [g(x),p], are not
included at the beginning of the iterative solution. They are incorporated into the linearised
system of Equations (7.12) only after limits become enforced; hence, the Hessian and
Jacobian terms are:

CPL(x,N) f(x) | [*h(x)]

H= ox2  ox? +[ ox? } A (7.21)
B O*L(x, ) _ 0h(x)

I="%a = o (7.22)

A key property of submatrices H, J, and J' is that they all have the same sparsity structure as
the nodal admittance matrix (Wood and Wollenberg, 1984).

7.2.4 Optimality Conditions for Newton’s Method

In general, conditions for global optimality (x°™, A°"") can be checked by assessing the
positiveness of matrix W. However, it is computationally too expensive for large-scale
problems to verify that matrix W is positive definite, and this test is skipped in
most practical problems. Other optimality tests performed involve checking that the gradient
vector is zero and that the Lagrange multipliers for the binding inequalities pass their sign
test (Bertsekas, 1982; Luenberger, 1984).

In practical OPF solutions the following tests are carried out (Sun et al., 1984).

all power mismatches are within a prescribed tolerance;

the inequality constraints are satisfied;

the vector gradient is zero;

further reductions in the objective function are possible only if constraints are violated.

It should be emphasised that in general optimisation problems, the solution has to satisfy
a number of equality and inequality constraints. Inequality constraints are made active by
changing them into equality constraints. Hence, the general optimisation problem is to find
the optimum of a function subjected to a set of equality constraints.

7.2.5 Conventional Power Plant Modelling in Optimal Power Flow

Superposition is used to construct the linearised system of Equations (7.12) at each iterative
step. The plant components of the power system are modelled independently and their
individual entries placed in W and g. The bus number to which the plant component is
connected determines the location of the individual Hessian and Jacobian terms in the
overall W and g structures.
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7.2.5.1 Transmission lines

The positive sequence representation of the nominal nt-circuit shown in Figure 3.1 is used to
derive the transmission line power flow equations required by the OPF formulation in a
similar manner to the procedure carried out in Section 4.2.1 for the case of a series
impedance.

The Lagrangian function associated with the power mismatch equations at buses k and m
is:

L = Lians-tine (X, M) = Mok (Pk + Pax — Pg) + A (Ox + Quak — Qgi)

(7.23)
+ )\pm(Pm + Pdm - Pgm) + >\qm(Qm + Qdm - ng)-

The first partial derivatives of the Lagrangian function in Equation (7.23), with respect to the
voltage magnitudes and phase angles at buses k and m, and the four Lagrange multipliers,
are used as entries in the gradient vector g. The individual entries of matrix W are the
second derivative terms of the Lagrangian function with respect to voltage magnitudes and
phase angles at buses k and m, and the four Lagrange multipliers in Equation (7.23). These
terms are given explicitly in Appendix B, Section B.1.

The contribution of a transmission line to the overall linearised system of Equations (7.12)
is:

Wik Win || Az | | &
{ka WmmHAzm}‘ [gm 7-24)

where

e oL o o)
69,% 00,0V, 06, 00,

dL oL on o0
6Vk6¢9k asz aVk aVk

Wy = , (7.25)
oP; oP;
— — 0 0
00, oVy
00k 00k

L PL 0Py Qu 1
00,00, 000V, 00, 06,
o’L ’L 0P, 0Q.

Wy, = | OVi00n VIOV, OVi OVi | (7.26)
0P Oy
aam an
00 0

00, oV
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(0L FL P 0]
00,00, 96,0V 06, 6,
FL FLon 0
W,y — | OVn0c QV,OVe OV OV (7.27)
0P, 0P,
0 0
06, Vs
00m 00m
L o6, o6 0 0
[ TL TL 0Py 00,
0602, 00,0V, 06, b,
W, = | Va0 V2 OV, 3V, (7.28)
oP,, P,
00n 00
L v, 0
Az = [AGp AV A Agi]', (7.29)
Az = [Ab, AV, Ay ANl (7.30)
g = [Vﬁk VVk V)\pk V)\qk]t, (7 31)
= [V V'V Y VAgu]". (7.32)

These terms are systematically placed in W and g to make them correspond to the locations
of buses k and m.

7.2.5.2 Shunt elements

In electrical power systems, nodal voltages are markedly affected by load variations and by
network topology changes. The voltage drops when the network operates under heavy
loading, and, conversely, when the load level is low overvoltages can arise owing to the
capacitive effect of transmission lines. Such voltage variations are not conducive to good
operation, and voltage regulation is enforced by controlling the production or absorption of
reactive power at key locations in the network. Shunt capacitors and shunt reactors are used
for such a purpose. Shunt compensators are either permanently connected to the network or
are switched on or off according to requirements (Wood and Wollenberg, 1984).

A way to include a purely reactive shunt element in the OPF formulation is shown below.
If the shunt element is connected at bus k, the Lagrangian function is given by:

L= Lshunt(xa )") = )vqk(Qshunt,k) = )qu(_vlnghum) (733)
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The shunt element contribution to the overall linearised system of equations is:

_ZAqushunt _2VkBshunt:| |: AVk :| _ _2AqukBshunt

= - . 7.34
_2VkBshum 0 A>\qk |: _V]nghunt :| ( )

7.2.5.3 Synchronous generators

In addition to providing the active power demanded by the system, synchronous generators
also control the production or absorption of reactive power, aimed at maintaining a constant
voltage magnitude at their terminals. In the OPF formulation, the active power—cost
characteristics of steam generators are included in the problem formulation whereas hydro
generators are assumed to operate at a fixed active power generation while contributing fully
to the production or absorption of reactive power.

The generator representation in the OPF formulation may be based on a quadratic
expression of the active power—cost characteristic. The Lagrangian function of a generator
supplying active power to a bus k is given by:

L = Lyen(X, 1) = a + by Py + ciPy. (7.35)
Its contribution to the overall linearised system of equations is:

|:2Ck —1:||:Ang:| __|:bk+2ckng_)\pk

10 || A 0 (7.36)

7.2.6 Handling of Inequality Constraints

The set of equality constraints included in the Lagrangian function at any stage of the
iterative process is called the active set (Bertsekas, 1982; Luenberger, 1984). The set of
inequality constraints that are active when the optimum is reached is called the binding set,
and the optimal solution does not necessarily require all the inequality constraints to be
binding. The binding set is not known a priori, and it is the task of the optimisation
algorithm to determine it as well as to enforce it. The inequalities that become active during
the solution process are changed to equalities and included in the active set. The problem is
then to minimise the Lagrangian function for the newly updated active set.

7.2.6.1 Handling of inequality constraints on variables

The inequality constraints are handled in the OPF formulation by means of the multiplier
method, as opposed to the penalty function method (Bertsekas, 1982; Luenberger, 1984).
The inequality constraints, when made active, are changed to equality constraints. This has
the effect of a restraining force that pulls the inadmissible points back into the admissible
region. In the multiplier method, a penalty term is added to the Lagrangian function L(x,}),
thus forming an augmented Lagrangian function, given by Equation (7.10). The
minimisation of the Lagrangian function is carried out by using Newton’s method only
for the primal variables (state variables). The dual variables, p, are updated at the end of
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each global iteration. Multipliers (dual variables) are checked for limit violations, and
variables within bounded limits are ignored.

The inequality constraints used in Equation (7.10) are handled by using the following
generic form:

pelge(x) — 8] +5[g(x) — g’ if e+ clg(x) — g > 0;

Velge ), ] = 4 gy [gk(x) - &} +3 [gk(x) —&r> if e +c [gk(x) —&} < 0;
0 otherwise;
(7.37)

where g and g are limits on state variables as well as functional constraints.
At a given iteration, (i + 1), the multipliers are adjusted according to the following
criteria:

i+ 0 (g (x0) = gi], i p + e [g,(xD) - gi] = 0;
i+1 ; ) . ; ) .
H;E = /,L,({” + ¢ [gk(xm) — g_k], if H/(:) + ¢ {gk(xm) - gk} <05 (7.38)
0 otherwise;

where 0 < ¢l < (1),

Upon convergence, p satisfies the optimality conditions as given by Kuhn and Tucker
(Bertsekas, 1982; Luenberger, 1984). In such a case, all the state variable increments are
smaller than a pre-specified tolerance and no limit violations occur.

The multiplier method provides an efficient way to handle the binding and nonbinding
constraints. After moving a variable to one of its limits, the algorithm holds it there for as
long as it is required, otherwise the variable is freed.

Equation (7.37) satisfies the Kuhn and Tucker conditions (Bertsekas, 1982; Luenberger,
1984):

pg(x) =0; p>0. (7.39)

For any given constraint, if the product pg(x) is equal to zero, either u is equal to zero or
g(x) is nonbinding; if x> 0, then g(x) must be zero. Equation (7.37) provides a means to
indicate whether or not a constraint is binding.

At the end of each iteration, all variables are checked according to Equation (7.37) and
updated according to Equation (7.38). Equation (7.37) is used to evaluate the gradient vector
and matrix W. Hence, the first and second derivatives of Equation (7.37) are required. The
first derivative is added to the gradient vector g and the second derivative to matrix W. It
should be noted that when a variable is within limits, the derivatives are null.

Successful initialisation and updating of the penalty parameter c is largely dependent on
the kind of system being solved and on experience, but the following practical conditions
should be observed:

e the initial parameter ¢” should not be too large to the point that the unconstrained

minimisation becomes ill-conditioned;

o the parameter ¢ should not be increased too fast to the point that the unconstrained
minimisation becomes numerically unstable;

e the parameter ¢ should not be increased too slowly to the extent that the multiplier
iterations have a poor rate of convergence.
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Experience shows that an effective evaluation of the penalty parameter is achieved by giving
¢ a value determined by experimentation, with subsequent evaluations of ¢ based on the
following monotonic increases: ¢+ 1) = B¢l where 3 is a scalar greater than one.

7.2.6.2 Handling of inequality constraints on functions

Arguably, the most important functional inequality constraints are those corresponding to
controllable sources of reactive power (Wood and Wollenberg, 1984). Reactive power
generator limits are checked at the end of each global iteration. It should be pointed out that
there are computational advantages gained by including explicitly the reactive power
equation of a generator in matrix W. If the generator operates within reactive power limits, a
large number in the diagonal element associated with ), is used to nullify the reactive power
equation. However, the large number is removed when the functional inequality constraint
becomes activated, in order to enforce either an upper or a lower reactive power limit.

The penalty function technique may be used either to activate or to deactivate the
equations corresponding to generator buses. Quadratic penalty functions are used since they
have first and second derivatives. The form of the penalty function for the reactive power
constraint at a generator bus k is (Bertsekas, 1982; Luenberger, 1984):

1
Ej = ES)\Sk. (7.40)
The first and second derivatives are:
dE,
d)\ﬁlllj = Shg, (7.41)
q
d’E
dquk =3, (7.42)
qk

where S is a large, positive penalty weighting factor.

Adding the first and second derivatives of the penalty function to the elements associated
with A\, in g and W deactivates the reactive power flow equation of the generator bus . In
such a situation, Ay has a zero value. When one of the reactive power limits is violated, the
derivatives are removed from W and g, and the bus changes from being a generator bus to a
load bus. Hence, A\ changes its value from zero to nonzero.

The sign in A\ indicates whether or not the reactive power has returned within limits as
indicated by the criteria given in Table 7.1.

Table 7.1 Constraints on reactive power injections

Limit Ak <0 Agk >0

Upper Add penalty term Remove penalty term
Lower Remove penalty term Add penalty term
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7.3 IMPLEMENTATION OF OPTIMAL POWER FLOW USING
NEWTON’S METHOD

The mathematical formulation for active power optimisation has been dealt with above
(Bertsekas, 1982; Luenberger, 1984). Practical aspects of computer implementation are now
presented, with three main steps identified in the flow diagram of Figure 7.2: (1)
initialisation of control variables; (2) the outer (main) iteration loop; and (3) the inner
iteration loop, which corresponds to the actual Newton process (Ambriz-Pérez, 1998).
The first step comprises initialisation of variables and a lossless economic dispatch (Wood
and Wollenberg, 1984). In the main iterative loop, the state variables x are checked to assess
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State variable initialisation

Y
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on equal incremental
generation costs

>
y
Newton process: assembly

and solution of the linearised
system of equations

!

Update of multipliers and
penalty weighting factors

A

Are all variables

within limits? Yes

i>1
NO max Yes

Figure 7.2 Flowchart for active power optimisation
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whether or not they are within bounds. The inequality constraints either are activated or
inactivated according to the criteria established in Equation (7.37). The multipliers and
penalty weighting factors are updated by using Equation (7.38). At a given iteration, (i), if
no change in the inequality constraint set takes place at the end of the main loop then the
optimisation process terminates.

The Newton process takes place in the inner iteration loop, a process characterised by
fixed values of the multipliers and penalty weighting factors. The linearised system of
equations for minimising the active power generation cost is solved in this loop. Once the
linearised system of equations has been assembled then a sparsity-oriented solution is
carried out. This process is repeated until a small, prespecified, tolerance is reached.
Normally, a tight convergence criterion is adopted for the mismatch gradient vector (i.e.
le — 12).

7.3.1 Initial Conditions in Optimal Power Flow Solutions

All the state variables and Lagrange multipliers must be given an initial value at the
beginning of the solution procedure. The initial values should be selected by following good
engineering judgement in order to ensure an acceptable rate of convergence. In this
application, nodal voltages are initialised in a way similar to that of the power flow problem
[i.e. 1 p.u. magnitude and 0° phase angle for all buses]. This provides a suitable starting
condition. Engineering experience indicates that, for most problems, departure from the
unitary voltage magnitude and zero phase angle is not too large (i.e. 0.95 <V, <1.05, and
—10° <6, <10°.

7.3.2 Active Power Schedule

A lossless economic dispatch, as opposed to a power flow solution, is used to provide good
starting conditions for the OPF application. The equal incremental cost criterion may be
used for this purpose. Different variants of the method are available in the open literature,
but the one recommended here is to take the generator limits into consideration, since this
yields more realistic starting conditions (Wood and Wollenberg, 1984).

The Lagrangian of the lossless economic dispatch may be expressed by

ng
L= Lgen(X,A) = Fr + A (Pd - Zpgk> . (7.43)
k=1

Necessary conditions to minimise active power generation cost is that the first derivative of
the cost function, with respect to each one of the variables involved, is zero and that the
balance between the generation and the demand be met:
OL  dFi(Pgy)
OP g dPg

ng
> Pu=Pa (7.45)
k=1

— A =0, (7.44)
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Moreover, the inequality constraints given by Expression (7.6) have to be satisfied. If this
is not the case, an economic dispatch is carried out and the inequality constraints are
handled by means of the multiplier method.

The following set of equations is formed when Newton’s method is applied to the lossless
economic dispatch problem.

—d2F 'AP 7 B aL T
21 0 0 -1 ! —
2 AP oL
0 d_F22 0 —1 g
dP? OPg
_ . : - _ . ) (7.46)
&F, AP, oL
0 0 o 1 : P,
S T T 1 0] LAXx] LPy— > Py

If only quadratic cost functions are used and no limits violations take place then the optimal
solution is reached in just one iteration. Otherwise, if generation limits are violated then
such limits are enforced and a new iteration is started.

7.3.3 Lagrange Multipliers

The Lagrange multipliers for active and reactive power flow mismatch equations are
initialised at the A, value given by the lossless economic dispatch and )\, equal to zero,
respectively. Experience shows that these values give rise to very robust iterative solutions.

7.3.4 Penalty Weighting Factors

There is general agreement that the multiplier method is more effective than the penalty
function method to deal with inequality constraints (Bertsekas, 1982; Luenberger, 1984).
The former is a less empirical method, but a great deal of experimentation is still needed
to select suitable values for the weighting parameter ¢. For instance, a value of ¢(?) = 1000
is recommended for voltage magnitude constraints, whereas for active power constraints a
good value to choose is the largest quadratic coefficient of the cost curves multiplied by
1000 (Ambriz-Pérez, 1998).

In subsequent iterations, the parameter ¢” is increased by a constant factor 3. Values of
(8 = 1.3 produce reliable solutions. Larger values of 5 may lead to ill-conditioned situations
whereas smaller values of 5 may lead to a slow rate of convergence.

The weighting factor S in Equations (7.40)—(7.42) is a positive parameter as large as
le 4+ 10. It provides an effective enforcement of the functional inequality constraints for
controllable sources of reactive power.

7.3.5 Conjugated Variables

The voltage magnitude and reactive power generation at a given bus are strongly interlinked.
If a pair of such variables is simultaneously outside limits during the solution process, only
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one of them will be made active in the first instance. The voltage magnitude is bounded first,
that is, reactive power generation is not made active if its associated voltage magnitude is
outside limits. Likewise, if these variables are bounded and they are about to be released at
the end of a main iteration, only one of them will be released at the time (Ambriz-Pérez,
1998).

7.3.6 An Optimal Power Flow Numerical Example

The five-bus test network (Stagg and El-Abiad, 1968) used in Section 4.3.9 to illustrate the
use of the conventional power flow Newton-Raphson method is also used in this section to
illustrate the use of the Matlab®™ OPF computer program and associated data, given in
Appendix C.

The maximum and minimum voltage magnitude limits at all buses are taken to be 0.9 p.u.
and 1.1 p.u., respectively, except at North, where the maximum limit is set at 1.5 p.u. The
cost coefficients of the two generating units are taken to be: a=60$h!,
b=34$MW'h!, and ¢ = 0.004 $MW >h~!. The maximum and minimum generator
active power limits are set at 200 MW and 10 MW, respectively, whereas the maximum and
minimum reactive power limits are set at 300 MVAR and —300 MVAR, respectively.

The resulting power flows are shown in Figure 7.3, and the nodal voltages and Lagrange
multipliers at the optimum operating point are given in Table 7.2.

80.15 l $0.29 45 +j15 40 +j5

North | 32.94
—>

47.20

46.84

3.56

20 +j10 il
j T $ 607 6 60 +j10

87.89 14.41

Figure 7.3 Five-bus test network and optimal power flow results
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Table 7.2 Nodal parameters for the five-bus system

Bus
Elm Main Lake South North
Voltage:
Magnitude (p.u.) 1.0726 1.0779 1.0784 1.1000 1.1096
Phase angle (deg) —4.42 —3.85 —3.62 —1.31 0.00
p($ MW! h") 4.2639 4.2341 4.2232 4.1032 4.0412

It can be observed from the results presented in Table 7.2 that all nodal voltages edge
towards the high side. However, they serve the purpose of the OPF solution in this example,
where limit violations take place during the iterative process and the multiplier method
handles the violations very efficiently. For example, the voltage magnitude in South is
bounded at its upper limit of 1.1 p.u. at the end of the solution process. All other nodal
voltages are well within their permitted range. It should be mentioned that selection of a
more stringent voltage range (e.g. 100 &+ 6 %) poses no problem in Newton’s method.

The results in Table 7.2 also show that the largest nodal Lagrange multiplier is at Elm,
which, incidentally, is the most remote bus in the network. The nodal Lagrange multipliers
are closely connected with the cost of supplying nodal load (Ambriz-Pérez, 1998).

It may be argued that the active power flows shown in Figure 7.3 are not markedly
different from those given by the conventional power flow solution, presented in the
numerical example in Section 4.3.9, except for the active and reactive power flows in line
North—South. It was remarked in Section 4.3.9 that these power flows were quite high and
that the line incurred high power losses: 2.5 MW and 1.12 MVAR. This is in contrast to the
values provided by the OPF solution, where the new active power flow is 47.2 MW and the
transmission line generates reactive power. The active power loss reduces to 0.36 MW.

The powers produced by the two generators in the OPF solution are very different from
those obtained in the conventional power flow solution. In the case of the OPF solution the
production or absorption of reactive power is an intrinsic function of the optimisation
algorithm, thus avoiding the undesirable situation that arises in the case of the conventional
power flow solution, where one generator is set to generate a large amount of reactive power
only for the second generator to absorb slightly more than 60 % of that power. In the OPF
solution of this example, the two generators tend to share as evenly as possible the system
active power requirements because both generators have been given equal cost functions.

Table 7.3 summarises the key parameters generated by the OPF solution, such as active
power generation cost and active power loss.

Table 7.3 Optimal power flow solution for the five-bus

system

Quantity Value
Active power generation cost ($ h™!) 747.98
Active power loss (MW) 3.05
Active power generation (MW) 168.05

Reactive power generation (MVAR) 14.71




LOAD TAP-CHANGING TRANSFORMER 283

7.4 POWER SYSTEM CONTROLLER REPRESENTATION IN
OPTIMAL POWER FLOW STUDIES

Building on the basic theory and practice of OPF using Newton’s method, covered in
Section 7.2, extensions are now made to study the representation of controllable equipment
found in electrical power networks, such as the well-established tap-changing transformer
and the new breed of power electronic controllers generically known as FACTS equipment
(IEEE/CIGRE, 1995).

The following controllers are studied in the remainder of the chapter: the tap changer, the
phase shifter, the static VAR compensator (SVC), the thyristor-controlled series com-
pensator (TCSC), and the unified power flow controller (UPFC). The nature and control
characteristics of each of these controllers differ from one another, and their modelling
within the OPF solution reflects these facts; hence, they are addressed separately.

In general, an augmented Lagrangian function is established for each controller, in the
form of Equation (7.11), which serves the basis for establishing a linearised equation, in the
form of the system of Equation (7.12). The state variables of a given power system
controller are combined with the network nodal voltage magnitudes and phase angles in a
single frame of reference for a unified optimal solution using Newton’s method. The
controller state variables are adjusted automatically to satisfy specified power flows, voltage
magnitudes, and optimality conditions, as given by Kuhn and Tucker (Bertsekas, 1982;
Wood and Wollenberg, 1984).

Once the equation has been assembled and combined with matrix W and gradient vector g
of the entire network, a sparsity-oriented solution is carried out. This process is repeated
until a small, prespecified, tolerance is reached for all the variables involved.

7.5 LOAD TAP-CHANGING TRANSFORMER

Load tap-changing (ltc) transformers regulate nodal voltage magnitude by varying auto-
matically the transformer tap ratio under load. Their representation in system application
studies is a matter of paramount importance that has received a great deal of research
attention over many years. Nowadays, the problem is well understood and a variety of ltc
models are available in the literature (Acha, Ambriz-Pérez, and Fuerte-Esquivel, 2000). A
case in point is the simple and yet flexible power flow ltc model derived in Section 4.4.1. We
now turn our attention to the more involved problem of load tap changer representation in
OPF studies.

7.5.1 Load Tap-changing Lagrangian Function

The nodal power equations required in this OPF application are the same as those derived in
Section 4.4.1 for the power flow ltc model, namely, Equations (4.52)-(4.55). These
equations are used in the Lagrangian function associated with the active and reactive power
mismatches at buses k and m, which can be expressed by:

Lic(%, %) = Mo (Pr + Pak — Pgr) + Agi(Qk + Qarc — Qgi)
+ )\pm(Pm + Pdm - Pgm) + )\qm(Qm + Qdm - ng)~ (747)
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In this expression, A is the vector of Lagrange multipliers, and the state variable vector x
includes P,, V, 0, and T. If the tapping facilities are on the secondary winding, as opposed
to the primary winding, then U,, replaces T} as state variable.

7.5.2 linearised System of Equations

Representation of the Itc transformer in the OPF algorithm requires that matrix W be
augmented by one row and one column. Furthermore, T, or U,, becomes an extra state
variable in the OPF formulation.

Application of Newton’s method to the case when the LTC taps are on the primary
winding yields the following linearised system of equations:

Wik Win Wi Azy 2k
ka Wmm WmT Azm =—18mn|- (748>
Wi Wi Wrr Azr gr

In this expression, the structure of the matrix and vector terms: Wiy, Wy, W, W Az,
Az, g, and g, is given by Equations (7.24)—(7.32), respectively. The additional matrix
terms in Equation (7.48) reflect the contribution of T}, the ltc state variable. These terms are
giving explicitly by the following matrix and vector terms:

’L o’L 0P, 90
i = = |\ An A R — =
WkT - WTk - |:aokaTk avkaTk aTk aTk:|’ (749)
L L oP, 00
t m m
- m = 190,07, At | 7.
Wor = Wr [aamaTk OV, 0Ty 0Ty GTJ (7.50)
o’L
Wi = lar2 751
" {aT,%} ! (751)
AZT = [ATk]v (752)
gr = [V (7.53)

If the LTC taps are on the secondary winding rather than the primary winding the state
variable U, replaces T in Equations (7.49)—(7.53).

It should be noted that the first and second partial derivatives for the various entries in
Equation (7.48) are derived from the Lagrangian function of Equation (7.47), given in
Appendix B, Section B.1.2. The derivative terms corresponding to inequality constraints are
entered into matrix W only if limits are enforced as a result of one or more state variable
having violated limits.

If the LTC is set to control voltage magnitude at a specified value at either bus k or bus m
then Wt in Equation (7.51) is modified by adding the second derivative term of a large
quadratic penalty function. Furthermore, the first derivative term of the quadratic penalty
function is entered into the gradient element gy in Equation (7.53).

The initial values of the primary and secondary taps are set to 1. The experience gained
with the OPF using Newton’s method indicates that the algorithm is highly reliable towards
convergence (Ambriz-Pérez, 1998).
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7.5.3 Load Tap-changing Transformer Test Cases

The five-bus test network used in the numerical example in Section 7.3.6 is modified to
include LTC-1 in series with transmission line Lake-Main, and LTC-2 and LTC-3, in
parallel, connected in series with transmission line Elm—Main. Two dummy buses, namely
LakeLTC and EImLTC, are used to connect the three LTCs. The topology of the upgraded
network is shown in Figure 7.4, where none of the three LTCs is set to maintain voltage
magnitude at a specified value. The LTC taps are assumed to be on the primary windings
and are initiated at 1 p.u. The impedances are taken to be on the secondary winding, having
zero resistance and 0.05 p.u. inductive reactance. The OPF algorithm takes four iterations to
converge.

The nodal voltages and active and reactive powers dispatched by the generators and
Lagrange multiplier at each bus are given in Table 7.4. The power flows and tap positions as
a function of iteration number are shown in Figure 7.4 and Table 7.5, respectively. It should
be noted that the algorithm updates the taps of both parallel LTCs identically, something
expected as these two LTCs have identical parameters. Experience with the OPF algorithm
shows that Newton’s method can handle any number of parallel transformers with ease
(Ambriz-Pérez, 1998). This applies whether or not the transformers have different
parameters or tap position limits. If an LTC hits one of its limits then the multiplier method
is used to enforce that limit (Bertsekas, 1982; Wood and Wollenberg, 1984).
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Figure 7.4 Modified five-bus system with three load tap changers (LTCs) and the optimal power flow
solution
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Table 7.4 Nodal voltages in the modified five-bus system with three load tap changers (LTCs)

Bus
LakeLTC EImLTC Elm Main Lake South North
Voltage:
Magnitude (p.u.) 1.077 1.072 1.072 1.077 1.078 1.100  1.109
Phase angle (deg) —3.815 —4.457 —4.508 —4.013 —-3.505 —1.332 0.000
Jp($ MW 'h! ) 4.2247 4.2640 4.2645 4.2352 4.2222 4.1033 4.0411

Table 7.5 Load tap changer (LTC) tap positions in the
five-bus system

Iteration LTC-1 LTC-2 LTC-3
0 1.000 1.000 1.000
1 1.007 1.007 1.007
2 1.001 0.998 0.998
3 1.003 1.001 1.001
4 1.002 1.001 1.001

It may be observed that this OPF solution changes little compared with the base OPF case
presented in Section 7.3.6, where no LTCs are used. This may be explained by the fact that
the solution achieved in Section 7.3.6 was already a very good solution and that the OPF is
fixing the taps of all three LTCs to be fairly close to their nominal value of 1p.u. (i.e. the
three LTCs are operating as conventional transformers).

7.6 PHASE-SHIFTING TRANSFORMER

The OPF implementation of the advanced transformer model derived in Section 3.3.4, with
reference to its phase-shifting capability, is addressed in this section. The OPF uses
Newton’s method as its optimisation engine, enabling an OPF phase-shifter model that is
both flexible and robust towards convergence (Acha, Ambriz-Pérez, and Fuerte-Esquivel,
2000). It can be set to simulate a wide range of operating modes with ease. The power flow
Equations (4.76)—(4.79) provide the starting point for the derivation of the phase-shifter
OPF formulation.

7.6.1 Lagrangian Function

The main aim of the optimisation algorithm described in this chapter is to minimise the
active power generation cost in the power system by adjusting suitable controllable
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parameters. For a phase-shifter model with phase-shifting facilities in the primary winding,
the Lagrangian function may be expressed by:

L(x,L) =f(P,) + Mh(Pg, V, 0, ¢,). (7.54)

In this expression, f(P,) is the objective function to be optimised; the term h(Pg, V, 0, ¢,)
represents the power flow equations; x is the vector of state variables, A is the vector of
Lagrange multipliers for equality constraints; and P,, V, 0, and ¢, are the active power
generation, voltage magnitude, voltage phase angle, and phase-shifter angle for tapping
position ¢, respectively. The inequality constraints, h(P,, V, 8, ¢,) <0, are not shown in
Equation (7.54) because they are included only when variables are outside limits.

The Lagrangian function of the power flow mismatch equations at buses k and m is incor-
porated into the OPF formulation as an equality constraint, given by the following equation:

Lign(X, &) = A\ (Pi + Pa — Poic) + A (Qk + Qe — Qi)
+ >\pm(Pm + Pdm - Pgm) + )\qm(Qm + Qdm - ng) (755)

In this expression, Py, Pgn, Qu. and O, are the active and reactive power loads at buses k
and m; Py, Py, Qgr and Q,,, are scheduled active and reactive power generations at buses
k and m; and Ak, Apms Agi and A, are Lagrange multipliers for active and reactive powers
at buses k and m.

A key function of the phase-shifting transformer is to regulate the amount of active power
that flows through it, say Py,,. In the OPF formulation this operating condition is expressed
as an equality constraint, represented by the following Lagrangian function:

LﬂOW (X7 ;") == Aflow—km (Pkm - Pspecified)- (756)

In this expression, Agow_tn 1S the Lagrange multiplier associated with the active power
flowing from bus k to bus m; Pgpecifiea 1S the required amount of active power flow through
the phase-shifter transformer.

The overall Lagrangian function of the phase shifter, encompassing the individual

contributions, is:
Lps (X, &) = Lign(X, &) + Liow (X, 1). (7.57)

7.6.2 Llinearised System of Equations

Representation of the phase-shifting transformer in the OPF algorithm requires that matrix
W be augmented by one row and one column, with ¢, becoming the state variable.
Furthermore, if the phase shifter is set to control active power flow then the dimension of
matrix W is increased further by one row and one column. Hence, for each phase shifter
involved in the OPF solution the dimension of W is increased by up to two rows and
columns, depending on operational requirements.

If the two-winding transformer has phase-shifting facilities in the primary winding, the
linearised system of equations for minimising the Lagrangian function using Newton’s
method is:

Wik Wim Wy Azy 8
ka Wmm Wm(p AZm =—|8m |- (758)
W(/)k W(bm Wc‘)q‘) Azq‘) 8o
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In this expression, the structure of matrix and vector terms Wiy, Wi, Wik, Wim, AZy,
Az, g, and g, is given by Equations (7.24)—(7.32), respectively. The additional matrix
terms in Equation (7.58) reflect the contribution of ¢,, the phase shifter state variable. These
terms are given explicitly by:

o°L O’L 0P, 00
69k6¢, 6Vka¢z a¢t a¢t

Wi, = Wi = oo | (7.59)
36,0, VN,
T T o
Wiy = Wom = aea,,;zng, 62’22@ 00 00r ) (7.60)
d0,0n, Vor, 00
’L L
Wy, = 2?5 0002 1. (7.61)
oos
Azy = [Ad, ANy]', (7.62)
g = [V VA (7.63)

If the phase-shifting mechanism is on the secondary winding rather than the primary
winding, the state variable ¢, replaces ¢, in Equations (7.59)—(7.63).

It should be noted that the first and second partial derivatives for the various entries in
Equation (7.58) are derived from the Lagrangian function of Equation (7.57), and given in
Appendix B, Section B.2. The derivative terms corresponding to inequality constraints are
entered into matrix W only if limits are enforced as a result of one or more state variables
having violated limits.

The procedure described by Equations (7.58)—(7.63) corresponds to a situation where the
phase shifter is set to control active power flowing from buses k to m, which is the phase-
shifter standard control mode. However, in OPF solutions the phase shifter variables are
normally adjusted automatically during the solution process in order to reach the best
operating point of the electrical power system. In such a situation, the phase shifter is not set
to control a fixed amount of active power flowing from buses k to m, and matrix W is
suitably modified to reflect this operating condition. This is done by adding the second
partial derivative term of a large (infinite), quadratic penalty function to the diagonal
location in the matrix in Equation (7.61) corresponding to the Lagrange multiplier Ay,,,. The
first derivative term of the function is added to the corresponding gradient element in
Equation (7.63).

The initial conditions given to all variables involved in the study impact significantly the
convergence pattern. Experience has shown that the phase-shifter model is very robust
towards convergence when the phase-shifting angle is initialised at 0°. State variables are
initialised similarly to the power flow problem (i.e. 1 p.u. voltage magnitude and 0° voltage
angle for all buses). The Lagrange multiplier for the power flow constraint, Agow_m» 1S s€t to
zero. These values enable very robust iterative solutions (Ambriz-Pérez, 1998).
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Figure 7.5 Five-bus network with one phase shifter, and optimal power flow solution

7.6.3 Phase-shifting Transformer Test Cases

The five-bus system given in Section 7.3.6 is used to illustrate the performance of the
phase-shifter model. One phase shifter is connected in series with the transmission line
Lake—Main. An additional bus, termed LakePS, is used for the purpose of incorporating
the phase shifter, as shown in Figure 7.5. Two different modes of phase-shifter operation are
considered in this test case: (1) no active power flow regulation and (2) active power flow
regulation at LakePS.

The phase-shifter primary and secondary windings contain no resistance, and 0.05 p.u.
inductive reactance. The phase-shifting control is assumed to be located in the primary
winding and having phase angle limits of +10°. For both test cases, the primary complex tap
is initialised at 1/0°, and convergence is obtained in four iterations to a tolerance of le — 9.

7.6.3.1 Case I: no active power flow regulation

The OPF solution for the unregulated case is shown in Figure 7.5. This case enables the OPF
solution to find the optimum amount of power transfer between buses Lake and Main, which
is calculated to be 14.92 MW. This power flow value yields minimum fuel cost and active
power system losses (i.e. 747.98 $h™!, and 3.052 MW, respectively). The voltage magni-
tudes and phase angles, active and reactive powers dispatched by the generators, and
Lagrange multipliers are given in Table 7.6.
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Table 7.6 Nodal voltages in the five-bus network with one phase shifter: case 1
(no active power flow regulation)

Bus
LakePS Elm Main Lake South North
Voltage:
Magnitude (p.u.) 1.079 1.072 1.078 1.077 1.100 1.109
Phase angle (deg) —3.632 —4.424 —3.864 —3.610 —1.306 0.000
Jp($ MW! h’l) 4.223 4.26 4.234 4.223 4.103 4.041

It should be noted that, in this case, the OPF solution forces the phase angle of the phase-
shifter transformer to be small, yielding a very similar power flow distribution to that
produced when no phase shifter is used in the network, which is the case presented in
Section 7.3.6. The slight differences between the two solutions can be traced to the fact that,
in the modified network, the inductive reactance of the original transmission line Lake—
Main may be seen as having increased by approximately 10 %.

7.6.3.2 Case 2: active power flow regulation at LakePS

Information similar to that given for case 1 is presented in Table 7.7 for the case when the
phase shifter is set to regulate active power flow through LakePS at 25 MW.

The phase shifter is set to control active power flow at a level different from the one that
yields an optimum solution; hence, the fuel cost and network losses are bound to increase.
The solution given by the OPF algorithm gives an active power generation cost of
748.33$h~!, and transmission losses are 3.143 MW.

It is interesting to note that the 40 % increase in active power flow through LakePS is
achieved with a relatively modest increase in total cost, calculated to be below 0.05 %, but
the active power loss increases more markedly, calculated to be just under 3 %. This test
case indicates that the great operational flexibility brought about by power system
controllers may come at a price. It should be remarked, however, that this is a small network

Table 7.7 Nodal voltages in the five-bus network with one phase shifter: case 2
(active power flow regulation at LakePS)

Bus
LakePS Elm Main Lake South North
Voltage:
Magnitude (p.u.) 1.079 1.073 1.079 1.076 1.100 1.109
Phase angle (deg) —2.705 —4.097 —3.102 —4.098 —1.193 0.000

Jp($MW~1h™h) 4.182 4.251 4.201 4.251 4.101 4.044




STATIC VAR COMPENSATOR 291

Table 7.8 Phase-shifter angles in the five-bus test system

¢ (deg)
Iterations Case 1 Case 2
0 0.000 0.000
1 —0.325 —1.874
2 —0.363 —2.122
3 —0.346 —2.009
4 —0.346 —2.010

Note: case 1, no active power flow regulation; case 2, active power
flow regulation at LakePS.

and no general conclusions can be drawn for practical utility networks, but this comparative
study does indicate that copious OPF studies and trade-offs may become necessary
when dealing with large-scale power systems and a large number of power system
controllers.

The phase-shifter angles for both test cases are shown in Table 7.8, highlighting the strong
convergence characteristics of OPF using Newton’s method. Owing to the two very different
operational requirements on the phase shifter, its phase angles reach quite distinct values
(i.e. —0.346° and —2.01°). The larger value corresponds to the regulated case, where a
larger amount of active power passes through the phase-shifter transformer.

7.7 STATIC VAR COMPENSATOR

This section focuses on SVC models suitable for OPF solutions using Newton’s method
(Ambriz-Pérez, Acha, and Fuerte-Esquivel, 2000). The modelling approach taken is to
assume that the SVC acts as a continuous, variable shunt susceptance, which adjusts
automatically in order to ensure that a target nodal voltage magnitude at the SVC terminal is
met, while satisfying network constraint conditions.

Two different ‘flavours’ of the SVC model are presented in this section: (1) the firing-
angle model and (2) the shunt susceptance model.

A linearised SVC model suitable for OPF iterative solutions using Newton’s method is
described below. The SVC state variable is combined with the network state variables for a
unified, optimal solution using Newton’s method (Ambriz-Pérez, 1998).

7.7.1 Lagrangian Function
The constrained optimisation problem stated in Equation (7.1) is transformed into an

unconstrained optimisation problem by forming the augmented Lagrangian function of an
SVC model expressed in the form of an adjustable shunt susceptance:

L(x,)) = f(P;) + M'h[P,, V, 0, B(a)]. (7.64)
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In this expression, f(P,) is the objective function; i(P,, V, 0, B(«)] represents the power
flow equations; x is the vector of state variables; A is the vector of Lagrange multipliers for
equality constraints; P, V, 0, and B(a) are the active power generation, voltage magnitude,
voltage phase angle, and SVC shunt susceptance, respectively. The inequality constraint
g[P;, V, 0, B(a)] < 0 is not shown in Equation (7.64) because it is added to L(x,}) only
when variables go outside limits.

The SVC susceptance, B(a), may be expressed as either an equivalent susceptance, By,
or a susceptance that is an explicit function of the SVC firing angle, c. Both parameters may
be used as state variables and, respectively, form the basis of the two SVC models addressed
in this section.

The contribution of the SVC to the Lagrangian function is explicitly represented in
Newton’s method as an equality constraint given by the following equation:

stc(x7 ;h) = /\quk- (765)

In this expression, X is the vector of state variables, [V} B(c)]'; Qx is the reactive power
injected or absorbed by the SVC at bus k, as given in Equation (5.5); and A is the vector of
Lagrange multipliers, with Ay being the Lagrange multiplier at bus k associated with the
reactive power balance equation. The variable B(«) is either By, or «, depending on the
SVC model used in the OPF study.

7.7.2 Llinearised System of Equations

Representation of the SVC controller into the OPF algorithm using Newton’s method
requires that for each SVC present in the network, matrix W be augmented by one row and
one column. Either « or By, depending on the SVC models selected, enters as an extra state
variable in the OPF formulation.

Application of Newton’s method to the SVC firing-angle model is given by the following
linearised equation:

[ L 00 0L ([ AV] [ VYV, ]
V2 oV Vida
00k 00k
L A | == Vo |- 7.66
A dar ak a* (7.66)
oL 0o L

[0adV, da 0a2 ] L Aa | | Va |

The entries in Equation (7.66) are obtained by deriving Equation (7.65) with respect to the
relevant state variables and Lagrange multipliers. These terms are given in explicit form in
Appendix B, Section B.3. The derivative terms corresponding to inequality constraints are
not required at the beginning of the iterative solution; they are introduced into matrix
Equation (7.66) after limits become enforced in response to limits violations.

An alternative OPF model for the SVC is readily established by choosing the SVC
equivalent susceptance, By, to be the state variable rather than the firing angle, o. The
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linearised system of equations describing the alternative SVC OPF model is:

G 00k L [ AV ] A
asz aVk aVkastc
00k 00k
Xk AN =—| V)« |. 7.67
v, 0 OB ax a (7.67)
o°L 00k

L OBcOVi  OBgye 1 L ABgy | | VB |

The entries in Equation (7.67) are obtained by deriving Equation (7.65) with respect to the
relevant state variables and Lagrange multipliers. These terms are given in explicit form in
Appendix B, Section B.3.

In OPF studies it is normal to assume that voltage magnitudes at SVC terminals
are controlled within limits (e.g. 0.95-1.05 p.u). However, more stringent voltage magnitude
requirements are met with ease in Newton’s method. For instance, to control the voltage
magnitude at bus & at a fixed value, it is necessary only to add the second derivative term of
a large, quadratic, penalty factor to the second derivative term of the Lagrangian function
with respect to the voltage magnitude V. (i.e. 62L/ OV?). Also, the first derivative term of the
quadratic penalty function is added to the corresponding gradient element (i.e. OL/0Vy).
Hence, in Equations (7.66) and (7.67) the diagonal elements corresponding to voltage
magnitude V; will have a very large (infinite) value, resulting in a null voltage increment
AVk.

The SVC is well initialised by selecting a firing-angle value corresponding to the
equivalent reactance resonance peak, which can be calculated using Equation (5.39). The
SVC Lagrange multiplier, A, is initialised at zero value. These initial values give rise to
very robust iterative solutions (Ambriz-Pérez, 1998).

7.7.3 Static VAR Compensator Test Cases

The five-bus system in Section 7.3.6 is modified to include one SVC at Main, as shown in
Figure 7.6. The objective is to minimise its active power generation cost. The SVC
capacitive and inductive reactance are X¢ = 0.9375 p.u., and X; = 0.1625 p.u., respectively,
The lower and upper limits for the firing angle are 90° and 180°, respectively. The initial
firing angle is given a value o = 145°.

Four case studies are carried out: cases A and B use the SVC model based on the firing-
angle concept, whereas cases C and D use the model based on the equivalent variable
susceptance. Moreover, cases A and C consider the voltage magnitude at Main to be allowed
to take any value in the range 0.95-1.1 p.u; cases B and D consider the voltage magnitude at
Main to be fixed at 1.1 p.u.

7.7.3.1 Firing-angle model

In the firing-angle model, two cases are simulated:

e Case A: the voltage magnitude at Main is allowed to take any value in the range 0.95—
1.1p.u;
e Case B: the voltage magnitude at Main is fixed at 1.1 p.u.
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Figure 7.6 Modified five-bus network with one static VAR compensator, and optimal power flow
solution

The power flow results are shown in Figure 7.6. The voltage magnitudes and phase
angles and Lagrange multipliers are given in Table 7.9. Similar results are given for case B
in Table 7.10. The SVC susceptance values and reactive power injections are shown in
Table 7.11.

As expected, active power generation cost and active power loss increase in case B. The
OPF results are 748.339$h~!, 3.14226 MW, and 37.13MVAR. In this case there are
relatively large flows of reactive power from bus Main to other buses, thus increasing
network losses.

Table 7.9 Nodal voltages in the modified network: case A (use of static VAR
compensator model based on the firing-angle concept, with voltage magnitude
at Main allowed to take any value in the range 0.95-1.1p.u.)

Bus
Elm Main Lake South North
Voltage:
Magnitude (p.u.) 1.075 1.085 1.083 1.100 1.109
Phase angle (deg) —4.450 —3.962 —3.701 —1.304 0.000

Jp(SMW='h!) 4.2625 4.2324 42217 4.1030 4.0411
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Table 7.10 Nodal voltages in the modified network: case B (use of static VAR
compensator model based on the firing-angle concept, with voltage magnitude
at Main fixed at 1.1 p.u.)

Bus
Elm Main Lake South North
Voltage:
Magnitude (p.u.) 1.080 1.100 1.095 1.100 1.111
Phase angle (deg) —4.471 —4.148 —3.836 —1.2613 0.000
Jp(SMW! h™!) 4.2650 4.2431 4.2299 4.1024 4.0426

Table 7.11 Static VAR compensator parameters at each iteration: firing-angle model, cases A and B

Case A Case B
Iteration « (deg) By (p.u.) 0 (MVAR) « (deg) Beq (p-u.) 0 (MVAR)
0 145.000 0.514 —51.420 145.000 0.514 —51.420
1 136.627 0.056 —17.231 136.598 0.054 —6.630
2 137.819 0.131 —14.534 144.712 0.501 —60.640
3 137.234 0.095 —11.213 140.832 0.306 —37.130
4 137.347 0.102 —12.061 - - -

— Iteration not required; model has converged.

The results in Table 7.11 indicate that in order to maintain the voltage magnitude at Main
at 1.1 p.u. it is necessary for the SVC to inject more reactive power. It should be noted that
the minus sign indicates injection of reactive power. These results illustrate the strong
convergence of the SVC OPF algorithm, with solutions achieved in 4 and 3 iterations,
respectively.

7.7.3.2 Susceptance model

The SVC modelled in the form of a susceptance replaces the SVC firing-angle-based model
used in the two test cases above (cases A and B). The initial SVC susceptance value is set at
Bgye = 0.514 p.u., which corresponds to o = 145°. Two cases are simulated:

e Case C: the voltage magnitude at Main is allowed to take any value in the range 0.95—
l.1p.u;
e Case D: the voltage magnitude at Main is fixed at 1.1 p.u.

Convergence is obtained in four and three iterations for cases C and D, respectively. As
expected, the solution for voltage magnitude, voltage phase angle, active and reactive power
generation, and Lagrange multipliers coincide with those presented in Tables 7.9 and 7.10.
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Table 7.12 Equivalent static VAR compensator susceptances for cases C and D

Case C Case D
Iteration By (pu.) 0 (MVAR) By (p-u.) 0 (MVAR)
0 0.514 —51.420 0.514 —51.420
1 0.056 —7.204 0.054 —6.594
2 0.131 —14.534 0.501 —60.641
3 0.095 —11.213 0.306 —37.130
4 0.102 —12.061 - -

— Iteration not required; model has converged.

The equivalent susceptance values taken by the SVC model during the iterative process
are shown in Table 7.12. It can be observed from Tables 7.11 and 7.12 that both sets of SVC
susceptances coincide with each other.

7.8 THYRISTOR-CONTROLLED SERIES COMPENSATOR

This section studies the topic of OPF TCSC modelling and simulation (Acha and Ambriz-
Pérez, 1999). This is done within the context of Newton’s method in which the TCSC is
modelled as an adjustable, nonlinear series reactance which is a function of the TCSC firing
angle.

7.8.1 Lagrangian Function

The constrained optimisation problem, stated in generic form in Equation (7.1), is converted
into an unconstrained problem. This involves formulating a suitable Lagrangian function for
the TCSC controller, which may take the following form:

L(x, ) = f(Pg) + Mh[Pg, V, 0, X(a)]. (7.68)

In this expression, f(Pg) is the objective function; h[P,, V, 6, X(c)| represents the power
flow equations; x is the vector of state variables; A is the vector of Lagrange multipliers for
equality constraints; and P,, V, 6, and X(a) are the active power generation, voltage
magnitude, voltage phase angle, and TCSC reactance, respectively. The reactance, X(a),
is an explicit function of the TCSC firing angle, «. The inequality constraint
g[P;, V, 6, X(a)] < 0 is not shown in Equation (7.68) because it is added to L(x, ) only
when variables go outside limits.

The power flow mismatch equations at buses k& and m are explicitly modelled in the
Lagrangian function as an equality constraint given by the following equation:

Licse (X, &) = Mok (P + Pak — Pgi) + A (O + Quak — Qi)
+ >\pm(Pm + Pdm - Pgm) + Aqm(Qm + Qdm - ng)- (769>
In this expression, Py, Pam, and Qgx, Qam are the active and reactive power loads at buses k

and m; Py, Pom, Ok, and Qg are the scheduled active and reactive power generations at
buses k and m; and Ay, Apms Mg and Ay, are Lagrange multipliers at buses k and m.
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Figure 7.7 Compensated transmission line

As shown in Figure 7.7, the active power flow across branch m—I, P,,, is controlled by the
TCSC connected between buses k and m. In the OPF formulation this operating condition is
expressed as an equality constraint, which remains active throughout the iterative process
unless one expressly wishes this constraint to be deactivated.

The Lagrangian function, L, of the total branch k—I, may be expressed by:

L = Licse (X> ;\') + Liiow (X, )v), (770)
where
Leiow = At (Pmi — Pipecified) - (7.71)

In this expression, A, is the Lagrange multiplier for the active power flow in branch m—I,
and Pgpecisieq is the target active power flow through the TCSC controller.

7.8.2 linearised System of Equations

Incorporation of the TCSC controller into the OPF algorithm using Newton’s method
requires that for each TCSC present in the network, matrix W be augmented by two rows
and two columns when the aim is to exert active power flow control. However, if the TCSC
is not controlling active power flow then matrix W is augmented only by one row and one
column. The former case uses the Lagrange multiplier, ),,;, to account for the contribution
of the power flow through branch m—I, and « enters as an extra state variable in the OPF
formulation.

Application of Newton’s method to the TCSC firing-angle model is given by the
following linearised equation:

Wik Wim 0 Wi, | [ Az 8«
Woio Wom Wor Wo | [Azn | &0 | a7
0 W, W, W, Az, g
Wak Wam Wa Wao | LAz, g,

In this expression, the structure of matrix and vector terms Wy, Wi, Wi, Wi, Az,
Az, g, and g, is given by Equations (7.25)—(7.32), respectively. The additional matrix
terms in Equation (7.72) reflect the contribution of «, the TCSC state variable. These terms
are given explicitly by:

L L 0Py 30

W =W, = | 06,00 0V,da 0o oo |, (7.73)
0 0 0 0
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°L PL  oP, 00|
00,,00, 06,0V, 06, 06,
°L L oP, 00
Wi = W — | OV BV, 0V 3V, OV, |
" oP,, oP,, 0 0
00, v,
00 00
L w0
’L oL 0dP, 30,
00,0 0V,a Oa O«
Wam :Winn = 9
OP,y P
o0,  dV, o 0
[ PL L 3P 00/]
00> 00,0V, 06, 06,
L L on oo
W, = oV,06, 6V,2 ov, oV, ’
oP, oP,
00 00,
L 26, v, 0 0 |
0 0 0 0]
Wal = W{(z = aPml aPml s
00, v, 0 0_

o’L
Waa = W 0 ;
0 O

Az = [0 AV ANy ANl
g = [VH] VV[ V)\pl v)\ql]ta

Azy =[Aa A,
g, = [Va V/\ml]t.

(7.74)

(7.75)

(7.76)

(7.77)

(7.78)

(7.79)
(7.80)

(7.81)
(7.82)

The first and second partial derivatives for the various entries in Equation (7.72) are derived
from the Lagrangian function of Equation (7.70) and are given in Appendix B, Section B.4.
The derivative terms corresponding to inequality constraints are entered into matrix W
only if limits are enforced as a result of one or more state variable having violated
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limits. It should be noted that the procedure in Equation (7.72) corresponds to the case
when the TCSC is controlling active power flowing through branch m—I (standard control
mode).

In OPF applications, minimum-cost solutions are obtained when the OPF algorithm itself
selects the optimum level of power flow through the TCSC. However, any change in the
TCSC operating mode is easily accommodated in the OPF formulation given in Equation
(7.72). For instance, if the TCSC is not controlling active power flow then matrix W
and vector g are suitably modified to reflect this operating mode. This can be achieved by
adding the second derivative term of a large (infinite) quadratic penalty factor to the
diagonal element of the matrix in Equation (7.78) corresponding to multiplier A,
thus forcing this multiplier to be zero for the whole of the iterative process. The first
derivative term of the quadratic penalty function is added to the corresponding element in
Equation (7.80).

The Lagrange multipliers for active and reactive power flow mismatch equations are
initialised at the A, value given by the lossless economic dispatch solutions and at A\, equal
to 0, respectively. For TCSC Lagrange multipliers the initial value of ), is set to zero.
Experience shows that these values give rise to very robust iterative solutions (Ambriz-
Pérez, 1998). The main factor affecting the OPF rate of convergence of TCSC-upgraded
networks is the initial firing angle, . Good starting conditions are required to prevent the
solution diverging or arriving at some anomalous value. Good initial conditions for the
TCSC firing angle were established in Section 5.8.3. Use of Equations (5.72)—(5.73)
invariably leads to good OPF solutions for TCSC-upgraded networks.

7.8.3 Thyristor-controlled Series Compensator Test Cases

The five-bus test system of Section 7.3.6 is used to study the impact of the TCSC on the
network. The TCSC is added in series with transmission line Lake—Main, and the dummy
bus LakeTCSC is added to enable such a connection to take place.

The OPF solution is achieved in five iterations to a mismatch tolerance of le — 9 and
starting from a TCSC firing-angle value equal to 150°. The TCSC optimises the active
power flow level in transmission line Lake—Main to a value of 14.97 MW. Moreover, the
OPF solution yields the following minimum active power generation cost and network
losses: 747.975$h~! and 3.05MW, respectively. The TCSC capacitive and inductive
reactance values required to achieve the result are: X- = 0.9375% and X; = 0.1625 %,
respectively, using a base voltage of 400kV. The optimal power flows are shown in
Figure 7.8. The nodal voltage magnitudes and phase angles and the Lagrange multipliers are
given in Table 7.13.

It can be observed that the OPF solution changes little compared with the base OPF case
presented in Section 7.3.6 when no TCSC is used. This may be explained by the fact that the
solution achieved in Section 7.3.6 is already a very good solution and that the OPF is fixing
the level of compensation afforded by the TCSC to be fairly small.

The TCSC firing angles, per iteration, are shown in Table 7.14, highlighting the very
strong convergence characteristics of OPF using Newton’s method and the importance of
selecting good initial conditions. For completeness, the equivalent TCSC reactance is also
provided.
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Figure 7.8 Modified five-bus system, and optimal power flow solution

Table 7.13 Nodal voltages in TCSC-upgraded network

Bus
LakeTCSC Elm Main Lake South North
Voltage:
Magnitude (p.u.) 1.078 1.072 1.077 1.078 1.100 1.109
Phase angle (deg) —3.534 —4.417 —3.846 —3.622 —1.303 0.000
7p($ MW~ !h! ) 4.2232 4.2639 4.2341 42232 4.1031 4.0412

Table 7.14 Thyristor-controlled series compensator (TCSC)

parameters
TCSC parameters
Iteration a (deg) Xresc (p-u.)
0 150.000 —0.0180
1 150.587 —0.0169
2 162.845 —0.0101
3 154.328 —0.0130
4 156.399 —0.0119
5 156.407 —0.0119




UNIFIED POWER FLOW CONTROLLER 301
7.9 UNIFIED POWER FLOW CONTROLLER

The UPFC OPF model presented in this section enables very flexible and reliable power
system optimisation studies to be carried out (Ambriz-Pérez et al., 1998). The flexibility
stems from the generality of the UPFC model and the robustness from the strong
convergence exhibited by the OPF solution using Newton’s method. The UPFC model may
be set to control active and reactive powers simultaneously as well as nodal voltage
magnitude, at either the sending or the receiving end bus. Alternatively, the UPFC model
may be set to control one or more of the parameters above in any combination or to control
none of them.

7.9.1 Unified Power Flow Controller Lagrangian Function

Based on the equivalent circuit shown in Figure 5.17 and Equations (5.50)—(5.59), the
Lagrangian function for the UPFC may be written as:

L(x,L) = f(Pg) + Mh(Pg, V, 0, cr, Ver, Our, Vir)- (7.83)

In this expression, f(P,) is the objective function to be optimised; h(P,, V, 0,
Ver, Ocry Vor, 6ur) represents the power flow equations; x is the vector of state variables;
M is the vector of Lagrange multipliers for equality constraints; and P,, V, and ¢ are the
active power generation, voltage magnitude, and voltage phase angle, respectively. The
UPFC control variables are 6.z, V.z, 6.z, and V,g. The inequality constraints g(P,, V, 0,
Ver, Ocr, Vur, Our) < 0 are not shown in Equation (7.83) because it is added only to L(x, A)
when there are variables outside limits.

The Lagrangian function, L,,(X,A), corresponding to the power flow mismatch equations
at buses k and m, is given by the following equation:

Lign (X, &) = Api (P + Parc — Pgr) + A (Ok + Qar — Qgk)
+ )\pm(Pm + Pdm - Pgm) + )\qm(Qm + Qdm - ng) (784)

In this expression Py, Py, Qu, and Q,, are the active and reactive power loads at buses k
and m; Py, Pg, Qg and Oy, are the scheduled active and reactive power generations at
buses k and m; and Apk, Apm, gk, and A, are Lagrange multipliers at buses k and m. The
vector of state variables x is [V 8]', where V and 8 include both nodal voltages and UPFC
voltage sources.

7.9.2 Direct-current Link Lagrangian Function

A fundamental premise in the UPFC model is that the active power supplied to the shunt
converter, P,g, must satisfy the active power demanded by the series converter, P.z. This
condition must be met throughout the solution process. In the OPF formulation this condition
is expressed as an equality constraint,

Lsh—se (Xa )") = >\sh—se (P'UR + PcR)a (785>

where Mg is the Lagrange multiplier associated with the shunt and series power
converters.
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Figure 7.9 Unified power flow controller power flow constraint at bus m

7.9.3 Unified Power Flow Conftroller Power Flow Constraints

The power injected at bus m by the UPFC, as illustrated in Figure 7.9, can be formulated as
a power flow constraint in the branch connecting buses m and I. We may write:

Lml(x7 )‘-) = pml(Pml - Pspeciﬁed) + )\qml(le - Qspeciﬁed)v (786>

where )\, ,; and A, ,,; are, respectively, the Lagrange multipliers associated with the active
and reactive power injections at bus m; and Pgyecifiea and QOgpecifiea are, respectively, the
specified active and reactive powers leaving bus m.

In conventional OPF formulations, such constraints are enforced only if power flow limits
have been exceeded. However, in this particular application this constraint may remain
active throughout the iterative solution.

The UPFC Lagrangian function comprising the individual contributions presented above
is as follows:

Lupfc (X, )\.) = Lin (X, )\.) + Lg—ce (X, )\.) =+ Lm[(x7 )\,) (787)

7.9.4 Llinearised System of Equations

Incorporation of the UPFC controller into the OPF algorithm using Newton’s method
requires that, for each UPFC, matrix W be augmented by up to eleven rows and columns.
This procedure corresponds to the case where the UPFC is operated in standard control
mode (i.e. it is controlling the nodal voltage magnitude at bus k, active power flowing from
buses m to [, and reactive power injected at bus m). The linearised system of equations for
minimising the UPFC Lagrangian function of Equation (7.87), using Newton’s method is:

W, W, W, W, W,.. 0 0 Az, -8,
Wio Wi Wiz Wiz Waoo W Woo Az, -8,
Wai Wi Wae War Wieoo 0 0 Az —8ax
Wi Wi Waa Wer Wieo 0 0 Azy | =| —8a

Wik Wacen Wirear Wincewr 0 0 0 AV Lo
0 W, 0 0 0 W, W, Az, —g
0 Wi 0 0 0 W, 0 || Az, | | — 8. |

(7.88)
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In this expression, the structure of matrix and vector terms Wy, Wi, Wik, Wi, Az,
Az, g, and g, is given by Equations (7.25)—(7.32), respectively. Also, W1, Wi, Wy, Az,
and g are given by Equations (7.74), (7.76), (7.79), and (7.80), respectively. The additional
matrix terms in Equation (7.88) reflect the contribution of 8.z, V g, 6.z, and Vg, the UPFC
state variables. These terms are given explicitly by:

[ oL ’L  OP, 00
R (789)
PL PL P, 00
| 00,0V.g OV OV.g OV.g OVer
[ L L 0P, 00
Wka — W{( = a9/'c2667)12 aszaévR 651)R 667)R , (790)
o’L ’L P, A0,
_aakaVUR aVkav'nR aVUR aVUR
aPsh—se aPsh—se
W = WL = | O shse , 7.91
sh k ksh—se 69/{ aVk 0 0 ( )
oL L dP, Q.
WcRm — WincR — a91112650R aszaécR a5(‘R a(scR ’ (792)
°L 3*L 0P, 00
| 00,,0V.g 0V, 0V.rg OVeg 0OVig
[ oL o’L  oP, 030,
Wva _ WEan _ aemzaévR avmza(sz aévR aévR , (793)
0°L 0°L oP,, 00,
_aemaVvR anaVvR aVvR aV’UR
aPrhfse aPshfse
Ws —sem — Wl _se — - Q= s 7.94
sh—s m sh—se 69,” an 0 0 ( )
OP,; OP,
— = 0 0
o0, ov,
— t _ m m
Wmilm B Wmmfl B anl anl 0 0 ' (795)
06, dv,
oL ’L
6%, 06.x0Vex
WCR cR — azL azL y (796)
Vexdo OV,
o’L o’L
0 6CR 0 51}R aé()R 0 VUR
W = WLR ¢cR — azL azL y (797)

0 VCR 0 57)1? 0 VcR 0 VUR
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aPshfse aPshfse

Wshfse cR — W:;R sh—se — aécR 6VCR 0 0 y (798)
L L
362,  06.,40Vr
WVRVR = 5 (799)
L L

OVrdbe  OVZ

Wansevk = Wi o = {agg—’;]:e ag ;R} (7.100)
0P, P,
Wi =W, = | & oV vl : (7.101)
Ou Om
o6, v,
Az = [Abeg  AVig], (7.102)
Azg = [Abig  AVigl', (7.103)
Azgse = [ANhsel, (7.104)
Az =AM AXgmi ], (7.105)
gr = [Vér VVr], (7.106)
gr = [Vér VVi], (7.107)
Zhse = [VAsi—sel, (7.108)
gn1 = [V Vgl (7.109)

The elements of matrix W are given explicitly in Appendix B, Section B.5. The deri-
vative terms corresponding to inequality constraints are not required at the beginning of
the iterative process; they are introduced into matrix Equation (7.88) only after limits
become enforced.

The representation given in Equation (7.88) corresponds to a situation where the UPFC is
operated in standard control mode. However, if different UPFC operating modes are
required then matrix W and multipliers A are modified with ease to reflect the new operating
mode.

For instance, if buses m and k are PQ type and the UPFC is not controlling active power
flowing from buses m to [ and reactive power is not injected at bus m then matrix W and
gradient vector g are modified as follows: (1) the second derivative term of a large (infinite),
quadratic penalty factor is added to the diagonal elements of matrix Wy, corresponding to
the multipliers A, ,,; and A,,,,;; (2) the first derivative terms of the quadratic penalty functions
are evaluated and added to the corresponding gradient elements in g;. Alternatively, if only
one operating constraint is released, say reactive power injected at bus m, then only the
diagonal element of matrix Wy, corresponding to multiplier ), is penalised.
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The Lagrange multipliers for active and reactive power flow mismatch equations are
initialised at the A, value given by the lossless economic dispatch solution and A, equal to
zero, respectively. For UPFC Lagrange multipliers, the initial value of Ay, . is set to A, and
Ap mi and A, ,,_; are set equal to zero. Experience has shown that these values give rise to
very robust iterative solutions. Equations for initialising the voltage magnitudes and phase
angles of the series and shunt sources are given in Section 5.8.4.

7.9.5 Unified Power Flow Controller Test Cases

One UPFC is added to the five-bus system of Figure 7.3, in series with the transmission line
Lake-Main. A dummy bus, termed LakeUPFC, is added to enable the UPFC model to be
connected, as shown in Figure 7.10. The UPFC is used to maintain active and reactive power
at 25 MW and — 6 MVAR, respectively, at the sending end of transmission line LakeUPFC—
Main. The shunt converter is used to maintain Lake’s nodal voltage magnitude at 1 p.u.

The two UPFC voltage sources are initialised with reference to equations and guidelines
given in Section 5.8.4, resulting in the following values: V. gz = 0.025p.u., 6.x = 76.5°,
V.g = 1.0p.u., and 6, = 0°; The resistances of the coupling transformers are ignored and
their inductive reactances are taken to be X.g = X,z = 0.1 p.u.. The voltage magnitude Vg
varies in the range 0.001-0.6 p.u., and V¢ in the range 0.9-1.1p.u.

This is a case of regulated UPFC operation, and the OPF solution, albeit optimal, is not
expected to be the one that yields minimum cost. This point will be addressed further, by

45 +j15

40 +i5

80.15 \L $ 1.87

North | 3695 3592 é;lliec 2500  24.93
—> — —>
43.20 4.19 l
: : 2.32 6.00
£ |
l ? GIE3E 8.37 2.45
34.07 2343 7 l $

)
20+j10T$

88.47 24.15

Figure 7.10 UPFC-upgraded five-bus system, and optimal power flow solution
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Table 7.15 Nodal voltages in the UPFC-upgraded network

Bus
LakeUPFC Elm Main Lake South North
Voltage:
Magnitude (p.u.) 1.007 0.999 1.006 1.000 1.029 1.036
Phase angle (deg) —3.128 —4.722 —3.580 —4.685 —1.402 0.000
Jp($ MW! h’l) 4.2680 4.2823 4.2246 4.2680 4.1077 4.0412

numerical example, in Section 7.9.6. The cost and active power losses given by the OPF
solution in this test case are: 750.357 $h™!, and 3.631 MW, respectively. The optimal power
flow results are shown in Figure 7.10; the voltage magnitudes and phase angles, and the
Lagrange multipliers are given in Table 7.15.

Compared with the base case shown in Figure 7.3, larger active power flows in
transmission lines North-Lake and South-Lake take place in order to meet the demand
imposed by the UPFC power constraints. By comparing both OPF solutions, it can be
observed that in the UPFC-upgraded system there are increases in active and reactive power
generation of 0.5 MW and 7.015 MVAR. Furthermore, the generation cost and the network
losses increased by 2.027$h~! and 0.5MW, respectively. The reason for the higher
generation cost and power loss can be explained in terms of a reduced number of control
variables available to the OPF solution; the UPFC is set to regulate active and reactive
power flows and voltage magnitude.

It may be argued, with reference to the voltage information shown in Table 7.15, that
the nodal voltage regulation imposed by the UPFC at Lake yields a much improved voltage
profile than that achieved by the base OPF solution, shown in Table 7.2, where nodal voltage
magnitudes edged on the high side. Conversely, the A, values tend to be higher in the present
test case than in the base OPF case, where no UPFC is used. This may be explained in terms
of the slightly higher cost incurred by the regulating action of the UPFC controller.

The voltage magnitudes and phase angles of the UPFC series and shunt voltage sources
are shown in Table 7.16, highlighting the strong convergence characteristic of the OPF using
Newton’s method and the all-important point of selecting good initial conditions for the two
UPFC voltage sources.

Table 7.16 Parameters of unified power flow controller voltage sources

Series source Shunt source
Iteration Ver (pou.) bcr (deg) Vg (pu.) byr (deg)
0 0.025 —176.500 1.000 0.000
1 0.052 —94.102 0.998 —4.718

2 0.052 —94.876 0.997 —4.705




SUMMARY 307

Table 7.17 Unified power flow controller (UPFC) operating modes

Operating mode Number of iterations  Generation cost ($h~')  Power loss (MW)
Normal UPFC operation 2 750.357 3.631
Fixed voltage (at bus Lake) 2 749.928 3.519
Fixed P and Q 3 748.236 3.119
All constraints deactivated 3 747.828 3.015

7.9.6 Unified Power Flow Controller Operating Modes

In order to illustrate the behaviour of the various UPFC operating modes, its functional
constraints are freed in sequence. The normal UPFC operating mode (all constraints
activated) is compared with cases where active and reactive power flows are freed, and
the voltage magnitude remains fixed; the voltage magnitude is freed, and active and reactive
power flows are fixed; all three constraints are freed. Table 7.17 presents a summary of the
results.

As expected, the case of normal UPFC operation gives the most expensive solution,
whereas the case where all the constraints are deactivated gives the minimum cost solution.
The former case was studied in Section 7.9.5, and the latter case is very much in line with
the results obtained in the base OPF solution, where no UPFC is used. However, it may be
argued that one of the main purposes of installing a UPFC controller in the first place is, to
have the ability to regulate power flows and voltage magnitude at the point of UPFC
deployment.

7.10 SUMMARY

The OPF algorithm studied in this chapter is a direct application of Newton’s method to the
minimisation of a multivariable, nonlinear function. An iteration of the OPF algorithm
consists of the simultaneous solution of all the unknown variables involved in the problem
using Lagrange functions. Second partial derivatives of the Lagrange function with respect
to all the variables and the Lagrange multipliers are determined and the resultant terms are
suitably accommodated in matrix W. This matrix has a block matrix structure where each
block stores 12 nonzero elements per bus.

The OPF solution gives the optimum operational state of a power network where a
specific objective has been met, and the network is subjected to physical and operational
constraints. Active power generation cost is the most popular objective function used today.

An OPF computer program is an effective tool to conduct power system studies. It
provides a realistic and effective way to obtain a minimum production cost of active power
dispatch within the specified plant and transmission network operating limits. The optimal
redistribution of generated active power results in a significant reduction in the active power
generation cost and active power transmission losses.

FACTS controller models have been developed for an OPF algorithm using first
principles. The models have been linearised and included in the frame of reference afforded
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by Newton’s method. The extended OPF Newton algorithm is a very powerful tool capable
of solving FACTS-upgraded power networks very reliably, using a minimum of iterative
steps. The computational efficiency of the algorithm is further increased by employing
the multiplier method to handle the binding set.

The FACTS controller models have been shown to be very flexible; they take into account
their various operating modes as well as their interactions with the network and other
controllable plant components. Flexibility has been achieved without adversely affecting the
efficiency of the solution. In general, the solution of networks with and without FACTS
controllers has been achieved in the same number of iterations. The effect of the initial
conditions on convergence has also been studied. Improper selection of initial conditions
may degrade convergence or, more seriously, cause the solution to diverge.
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8

Power Flow Tracing

8.1 INTRODUCTION

Deregulation and unbundling of transmission services in the electricity supply industry
worldwide has given rise to a new area of operation known as ‘electrical energy trading’.
Since the late 1980s, the time of privatisation of the UK supply industry, several proposals
for the operation of the power network have been put forward in various parts of the world.
Arguably, the concept of virtual direct access through a voluntary wholesale pool (Secretary
of State for Energy, 1988) was the first workable market-oriented operating philosophy, but
it is not in operation any more; it has been superseded by the New Energy Trading
Agreement (NETA), which is in operation in England and Wales (Saunders and Boag,
2001). Furthermore, the NETA operating philosophy will soon be extended to encompass
Scotland, becoming the British Electricity Trading and Transmission Arrangements
(BETTA) (OFGEM, 2003). The ‘Pool’ concept served well the needs of the newly
established market but its management attracted criticism for being too complex to operate
and for being open to market distortions.

In academic circles, a major criticism of the ‘pool’ was that it did not address crucial
issues such as the use of system charges and power transmission losses on a sound
engineering basis. It was also argued that this operating philosophy was limiting business
opportunities, such as the provision of ancillary services. The ‘pool’ was born out of the
inability to trace individual generator power contributions in the network. Indeed, at the time
of privatisation, the issue was deemed as too complicated to have a viable solution.
The electricity pool rules state that “with an integrated system it is not possible to trace
electricity from a particular generator to a particular supplier” (EPEW, 1993). Nevertheless,
it was shown in the mid-1990s that the tracing of power flows from generators to suppliers
was indeed possible, and algorithms, based on the concepts of dominant power flows and
proportional sharing, were put forward to solve such an outstanding issue. Independent,
basic research at the University of Manchester Institute of Science and Technology (UMIST;
Kirschen and Strbac, 1999; Kirschen, Allan, and Strbac, 1997), Durham University (Bialek,
1996, 1997, 1998), and University of Glasgow (Acha, Fuerte-Esquivel, and Chua, 1996;
Acha et al., 1997) led to similar outcomes. Earlier work had addressed the plausibility of
such a solution, but this work was confined to solving dominant power flows in radial
systems (Macqueen, 1993) as opposed to general, interconnected networks. More recently,

FACTS: Modelling and Simulation in Power Networks.
Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez and César Angeles-Camacho
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variations and further applications of the basic algorithms have been published (Acha, 1998;
Reta and Vargas, 2001), including the incorporation of FACTS equipment models (Acha
et al., 2003; Laguna-Velasco et al., 2001). The notion of proportional sharing has been
shown to be mathematically demonstrable (Laguna-Velasco, 2002).

In this chapter, the power flow tracing algorithm put forward in an earlier publication
(Acha et al., 2003) is first detailed. It should be mentioned that power flow tracing is only a
mechanism for tracing generation costs and allocating charges for use of line. The algorithm
is in fact an electricity auditing procedure and answers all questions relating to individual
generator contributions to optimal power flows, power losses, and costs in each plant
component of the power network. A distinction is made between generation costs, possibly
attributable to fuel burning, and costs incurred for use of ‘wires’. The contribution of
FACTS equipment to reactive power flows and losses is discussed.

8.2 BASIC ASSUMPTIONS

As successfully argued by Reta and Vargas (2000), the power tracing algorithms are based
only on electric circuit concepts and hence, at their core, they use the proportional sharing
principle (Bialek, 1996, 1997, 1998). This is explained with reference to the simple radial
transmission system shown in Figure 8.1, consisting of three buses, two generators, two

B1 Bz B3
160 MW | 110 MW 100 MW | 150 MW 140MW|
—— —|— —
Gi("v
TL, TL»
140 MW
A\Lso Mw MWT A\LSO MW
L1 GZ Lz L3
(a)
B B, B;
160 MW] 110 MW IOOMWI 75 MW 70 MW I
G @H — —|— —>
1
TL, TL,
—\Lso MW 25 MW 70 MW
LI Lz L3
(b)
B] B, B;
OMW omMw | 75 MW 70 MW
I M M e HI
TL, TL,
0 MW 25 MW 70 MW
100 MW
L, G, L, Ls

(c)

Figure 8.1 Individual power flows in a simple radial system: (a) power solution; (b) contribution of
generator Gy, and (c) contribution of generator G,
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J
(a) (b)

Figure 8.2 The proportional sharing principle: intuitive appeal: (a) The situation at bus B, and
(b) the situation at bus B,,

transmission lines, and three loads. The power flow solution is given in Figure 8.1(a), where
it is appreciated that the combined generation of 260 MW by generators, G; and G,, go to
supply the system load of 240 MW. Each transmission line in this contrived system incurs
power losses of 10 MW. Figure 8.1(b) shows the contribution of generator G; to the power
flows at the sending and receiving ends of transmission lines TL, and TL, and to loads L,
L,, and L;. By the same token, Figure 8.1(c) shows the contribution of generator G, to the
power flows at the sending and receiving end of transmission line TL, and to loads L, and
L;. Notice that there is no contribution of generator G, to load L; and that it causes no
power loss in transmission line TL,. Hence, the 10 MW loss in TL; is due entirely to Gy,
whereas the 10 MW loss in TL, is shared equally by G, and G,.

As appreciated from Figure 8.1(b), generator G, contributes to power flows in branches
TL; and TL, and to loads L, L,, and Lj; it is also clear that, in this case, the entire system
falls within the dominion of generator G;. Similarly, as appreciated from Figure 8.1(c),
generator G, contributes only to the power flow in branches TL, and to loads L, and L;.
Hence, the dominion of generator G, is more restricted than that of generator Gj.
Furthermore, there is an overlap between the dominions of generators G; and G,.

Of particular interest are the power inflows and outflows in bus B,, where the principle of
proportional sharing is self-evident. An anatomy of this bus may be drawn: Figure 8.2(a)
represents the situation prevailing in bus B, in Figure 8.1(a), and Figure 8.2(b) is a more
generic expansion of the concept involved.

In Figure 8.2(b), the expressions PyyPim / (Pim -+ Pjn) and PuiPjn / (Pim + Pjm) represent
the contributions of inflows P;, and P, to outflow mk, respectively. Similarly, the
expressions PPy, / (P,-m +ij) and PP, / (Pim +ij) represent the contributions of
inflows P;, and P;, to outflow ml, respectively.

8.3 MATHEMATICAL JUSTIFICATION OF THE PROPORTIONAL
SHARING PRINCIPLE

The following justification is drawn from Laguna-Velasco (2002). With reference to
Figure 8.2, the voltage at bus m may be expressed as a function of the branch impedance Z,
and its current flow I, or of Z,,; and I,,;:

Vin = Zpidk = Zinili. (8.1)
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Alternatively, it may be expressed as the product of the equivalent impedance, as seen from
bus m, and the total injected current into bus m:

kaZml
Vm = I 5 8.2
(ka + Zml) ' ( )
where
It = In + Iin (8.3)

Combining Equations (8.1) and (8.2), and solving for I, and I,,;, gives:

Zml
Im - 17 8.4
¢ (ka +Zml) ' ( )
ka
Ly = (=2 \p,. 8.5
! (ka +Zml) ' ( )

An expression for the power flow in branch mk may be derived as a function of the powers
contributed by inflows im and jm:

Smk = le,;;k

*

- 'm 75 7 im jm (86)

‘mk 'ml

2 g
= (727 ) (5 45

where
Sim = Val},, (8.7)
Sjm = le;n' (88>

By the same token, the power flow in branch ml is:

_ Z;:lk X .
su= (i) (n 500, (52

Equations (8.6) and (8.9) can be given in terms of only complex powers as opposed to
powers and impedances by making use of the relations

Lk = Vrzn/Sjnk
and Z,y = V2 /S

Smk Smk
Suk= | |Sim+ | o< | Sjms 8.10
g (Smk + Sml> (Smk + Sml) ! ( )
Sml Sml
Su=|m—"—|Sm+|=——|Sin. 8.11
! (Sml + Smk) (Sml + Smk> ! ( )

It should be noted that the following power conservation relation:

Sim + Sjm = Smk + Sml
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can be used instead in Equations (8.10) and (8.11):

S; S;
Sm _ im jm Sm 7 812
¢ (Sim + Sjl?l N Sim + Sjm) ¢ ( )
S; S;
S = = 2 ) S 8.13
: <Slm + Sjm N Sim + Sjm> ! ( )

Separation of the real and imaginary components in Equations (8.12) and (8.13) leads to
useful expressions for active and reactive powers:

P = Pin B P (8.14)
e Pim+ij Pim+P_jm o .

Qim Qjm

Qm = ( + ka, 8.15

« Qim + Qjm Qim + Qjm ( )
Pi P‘m

Py = o + ! Pmla (816)

Pim+ij Pim+ij

Qim Qjm

le - ( + le~ 8.17

Qim + Qjm Qim + Qjm ( )

Note that the expressions for active power are those derived intuitively in Section 8.3,
appearing in Figure 8.2(b). They are generalised in Sections 8.5-8.6 for the case of n inflows
and loads.

8.4 DOMINIONS

The concept of dominion is at the centre of the power tracing algorithm. In its most basic
form it may be seen as a directed graph consisting of one source, and one or more sinks. The
set of branches linking source and buses are related to transmission components present in
the network, such as lines, transformers, high-voltage direct-current (HVDC) links and
series FACTS equipment. The directions of the branches are dictated by the power flow or
the optimal power flow (OPF) solution upon which the tracing study is based.

There are several ways of carrying out the actual implementation of the algorithm used
for determining the sources dominions. Kirschen, Allan, and Strbac (1997) give one
possible course of action, where the concepts of ‘commons’ and ‘links’ are used. A
‘common’ is defined as a set of contiguous buses supplied by the same source. Branches
within a common are termed internal branches’, and the set of external branches linking two
commons is termed the ‘link’. The analysis is conducted at the common and link level first.
Once the power contribution to each common is known then all buses, loads, and branches
within the common are allocated a share of the power flowing into that common.

An alternative algorithm is detailed in this section. It is a lower-level algorithm in which
the concepts of source dominions and common branches are used (Bialek, 1997), as
opposed to commons and links (Kirschen, Allan, and Strbac, 1997).

The source dominions are determined as follows:

e Select the first source and, starting from the source bus, check all the branches with a
connection to the bus.
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e Branches in which the power flows away from the bus (i.e. outflows) are included as part
of the dominion along with the bus at the receiving end of the branch. Conversely,
branches in which the power flows into the bus (i.e. inflows) do not form part of the
dominion of the source. The procedure is repeated for each new bus as soon as it becomes
part of the dominion of the source.

e After no further buses can be reached, the process comes to a halt, resulting in a directed
subgraph containing only branches that carry power pertaining to the source currently
under analysis.

e The above procedure is repeated for the second source of the network, the third, and so on.

e If the dominion of a source contains no branches, then the dominion is a degenerated
dominion, and the source will contribute power only to the local load.

The use of the branch—-node incidence matrix offers a systematic way for implementing
this algorithm. This matrix is highly sparse and yields very efficient solutions.

By way of example, Figure 8.3 shows the five-bus system with active and reactive power
flows, which correspond to the optimal power flow solution as opposed to a conventional
power flow solution. Figures 8.4(a) and 8.4.2(b) show the active power dominions, and
Figure 8.5(a) and 8.5(b) show the reactive power dominions.

80.15 l $0.29 45 +j15 40 + 35
47.20
ZF 2.16
46.84l
i 3.56
20 +j10 60 + j10
! T $ 6.07 6.44 )
87.89 14.41

Figure 8.3 Optimal power flow solution
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T
(a) (b)

Figure 8.4 The active dominion of the generators: (a) Gen—North and (b) Gen—South

> IEI

(@) ()

Figure 8.5 The reactive dominion of the generators: (a) Gen—North and (b) Gen—South

8.4.1 Dominion Contributions to Active Power Flows

Building on the ideas advanced in Section 8.2, the two-inflow, two-outflow system shown in
Figure 8.2 is modified, as shown in Figure 8.6, to include n inflows, with one of the outflows
being a transmission line and the other a load.

The active and reactive power contribution of each dominion or generator to the branch
and load is determined by using the proportional sharing principle demonstrated in
Section 8.3. In this section the issue of active power is addressed, and Figure 8.6 reflects this
point.

The power flow at the sending end of line m is made up of the contribution of the n
inflows and the generator. Similarly, the load Py is fed by the contribution of the n inflows
and the generator.

Expanding on the result given in Equation (8.14) to encompass n inflows but restricted to
branch mk (the load will be treated separately in Section 8.4.3), the following equations
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Figure 8.6 Contributions of active power dominions to branch mk

apply at the sending end of the branch:

Pl =Py +Py + - +P), +P, (8.18)
Pp, = Pp, x Cp, . (8.19)
Py =PgxCp | (8.20)
, P

c, = , 8.21
P Pp, +Pp, +--++ Pp, + Pg ( )

where i = 1,2, ..., n, and single primes indicate the sending end.
As an extension, the contribution of the n inflows at the receiving end of branch mk is
determined by the following expressions:

P, =Py +P, +---+ P, +Pg, (8.22)
P, =Pp, xCp (8.23)
P =P xCy | (8.24)
Pl/
I uk : (8.25)
" Pp, 4+ Pp,+ -+ Pp, + Pg

where i = 1,2,...,n, and double primes indicate the receiving end.
In these expressions, Pp, are the power contributions of dominion D; to bus m. The
contribution of each dominion will contain inflows from every one of its branches. If bus m

is the starting point then the bus inflow will be Pg as opposed to Pp,. Cp, are contribution
coefficients.
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8.4.2 Dominion Contributions to Reactive Power Flows

In each branch, the reactive power contribution of each dominion, and any source of reactive
power connected directly to the bus, is also determined by using the proportional sharing
principle. The circuit representation in Figure 8.6 is suitably modified to accommodate the
slightly more involved situation prevailing in reactive power applications, where sources of
reactive power may come in a variety of forms: namely, as synchronous generators, shunt
and series compensation, FACTS equipment, and long transmission lines. This situation is
illustrated in Figure 8.7.

In Figure 8.7, QL is a reactive power load, and Qs is a reactive power sink. The sink caters
for the possibility of generator or FACTS equipment connected at bus m and drawing
reactive power from the bus. Also, Qrp is the reactive power contribution from the

capacitive effects of transmission lines, and Qp,,...,QOp, are the reactive power
contributions of dominions 1, ...,n to bus m. If bus m is the starting point of the dominion
then the bus inflow will be Qg or QF as opposed to Op, . .., Op,. Oc would correspond to a

generator, and Qp to FACTS equipment.
Based on Figure 8.7, the contributions from the dominion are obtained by using the
following equations.

’ 7’
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Figure 8.7 Contribution of reactive power dominions to branch mk
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Sending end of line mk:

Qi = Op, + Op, + -+ Op, + 0 + O + OFy ,
Op, = Op, X Cp i

Q% = Q6 X Cp i

O = QF X Cp
O = Ot X Cp s

/
mk

Chi = 7
2mk = Op, + Qp, + -+ + Op, + O + O + Or

where i = 1,2,...,n.

Receiving end of line mk:
O = O, + O, + -+ 0p + Q%+ 0f + Oy,
5, = Ob, % Copm:
Q6 = 06 % Copm:
0F = Gi  Chu
O — Qck

C// _ ;
2mk ™ Op, + Qp, + -+ + Ob, + 06 + O + 011 — Ocm

T = (@ + Qcm) X Cf e + Qe

where i =1,2,...,n.

8.4.3 Dominion Contributions fo Loads and Sinks

8.32
8.33
8.34
8.35

~~ o~ o~
— — — —

(8.36)

(8.37)

The proportional sharing principle is also used for finding the dominion and source
contributions to the load connected at bus m. Based on Figure 8.8, the following equations

apply for the case of active power:

PL =Py +P;)2 +~--+P;3n + Pg,
P;)’_ = PD, x CpL,

PDI PD2 o 0 o PD”
! J ! m
Py

ij

Figure 8.8 Active dominions contributions to load L

(8.38)
(8.39)
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P = P x Cp, (8.40)
P
CpL = L 7 (8.41)
Pp, + Pp, + -+ Pp, + Pg
where i =1,2,...,n. For the case of reactive power, the variable Q replaces P in

Equations (8.38)—(8.41). Note also that reactive power contributions from Qr and Q1 may
exist.

8.5 TRACING ALGORITHM

The general algorithm for tracing power flows is summarised in Figure 8.9. Note that the
algorithm differs slightly for the cases of active and reactive powers.

Run the base power flow case

y

Based on power flows as given by the
power flow solution, determine the
source dominions

v

Find all the branches that belong to
more than one dominion (i.e. the
common branches)

A 4
In each branch, find the power
contribution of the relevant dominions
and/or local source to the total branch
flow and associated nodes

A 4
In each node, find the power
contribution of the relevant dominions
and/or local source to the node’s load

v

Account for the power losses in each
dominion

Figure 8.9 Flowchart for the tracing algorithm
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8.6 NUMERICAL EXAMPLES

This section is concerned with the application of the power tracing algorithm to solve a
number of test cases of varying degrees of complexity. The first example (Section 8.6.1)
corresponds to a simple radial network, which serves rather well the purpose of illustrating
the application of the theory to active power concerns. The second example (Section 8.6.2)
addresses the case of active power in a meshed network, which is still a fairly simple
network. The motivation for solving this test case is that it enables a direct comparison
between the power tracing methodology presented in this chapter and an alternative tracing
methodology (Bialek, 1996, 1997, 1998). The third test case (Section 8.6.3) deals with
reactive power, as opposed to active power, and includes the contribution of FACTS
equipment to reactive power generation. The tracing of reactive power in a large power
network is quantified in the fourth test case (Section 8.6.4). The last case (Section 8.6.5)
corresponds to the tracing of active power contributed by one wind generator and one
conventional generator in a meshed network.

8.6.1 Simple Radial Network

The tracing algorithm is applied first to the case of active power in the test system shown in
Figure 8.1, which is a radial network. In addition to finding the individual power
contributions of generators G; and G, to power flows in transmission lines TL; and TL,, and
to system loads L, L,, and L3, the individual contributions of the generators to transmission
loss becomes readily available. If information exists on charges for use of line then it is a
straightforward matter to allocate charges to each generator per transmitted or lost
megawatt. It is assumed in this example that there is a charge of £1 per lost megawatt in TL,
and TL,.

The dominions of generators G, and G, were identified by inspection in Section 8.2;
however, for the purpose of computer implementation it is essential to have a systematic
approach. In this section the branch-bus incidence matrix is used for the purpose of
dominion identification. The branch-bus incidence matrix of this network is given in
Figure 8.10, together with the branch searches for the dominions of generators G, and G,

2-3 1-2 2-3

+1

S
)

S
w ) -
S

Figure 8.10 Branch-bus incidence matrices and branch searches for the dominions of (a) generator
G; and (b) generator G,

(a) (b)
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Generator G is connected to bus 1. This entry provides the starting point for establishing
the dominion of G;. The + 1 in location (1, 1) of the matrix indicates that line 1-2 belongs
to the dominion of G;. One additional line belongs to this dominion and, from the branch—
bus incidence matrix, it is found as follows: the sending end of line 1-2 is bus 1, and the
receiving bus is bus 2, as given by 41 and —1 in locations (1, 1) and (2, 1) of the matrix,
respectively. There is a 41 entry in the row corresponding to the receiving end of line 1-2.
This indicates that bus 2 contains inflows, and the search is moved from column 1 to column
2 of the matrix. This makes line 2-3 part of the dominion of G,. Thee is no + 1 found in the
row corresponding to the receiving end of line 2-3. Hence, bus 3 contains no outflows, and
the search stops at bus 3.

Using the same line of reasoning, G, is connected to bus 2. This entry provides the
starting point for establishing the dominion of G,. The +1 in location (2, 2) of the matrix
indicates that line 2-3 belongs to the dominion of G,. There is no +1 found in the row
corresponding to the receiving end of line 2—-3. Hence, bus 3 contains no outflows, and the
search stops at bus 3.

The dominion contributions to system loads and power losses in transmission lines are
determined quite straightforwardly by using Equations (8.18)—(8.25).

In transmission line TL:

P/G] = Pg, x Cllz =160 x 0.6875 = 110,
P{, = Pg, x C, = 160 x 0.625 = 100,

with

P, 110

| =—==—=0.6875

27 pg, 160 ’
P, 100

1" 12

=12 - _— —0.625.
127 pg, 160

In transmission line TL,:
pb] = Pp, x Cyy; =100 x 0.75 = 75,
P{;] = Pp, x Cyy =100 x 0.7 = 70,
P’G2 = Pg, x Cyy; =100 x 0.75 = 75,
p’(’}2 = Pg, X C/z’3 =100 x 0.7 =70,

with
P 150
Chy = > = =0.75
B Pp, +Pg, 100+ 100 ’
oo Pn 140 0.7.

37 Pp +Pg, 100+100

This information is summarised in Table 8.1, and Table 8.2 presents a breakdown of the
power loss and charge for use of line for generators G; and G,.

From this simple example, it is interesting to note that generator G, contributes no power
flow to transmission line TL; and, quite correctly, is not charged for the use of TL;.
Similarly, both generators contribute in equal measure to power flow and power loss in
transmission line TL, and are charged equally.
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Table 8.1 Contributions to active power flows

Sending end Receiving end
Branch C' (%) Pp, (MW) Pj, (MW) C" (%) Py MW)  Pp (MW)
1-2 68.75 110 0 62.5 100 0
2-3 75 75 75 70 70 70

Table 8.2 Contributions to power loss and charges for use of line
for dominions D; and D,

Power loss (W) Charge for use of lines (£)
Branch D, D, D, D,
1-2 10 0 10 0
2-3 5 5 5
Total 15 5 15

Note: The charge for use of line is set at £1 per megawatt.

8.6.2 Simple Meshed Network: Active Power

The test system used by Bialek (1996, 1997, 1998) forms the basis of the example presented
in this section. As shown in Figure 8.11, it is a simple power network comprising four buses,
linked together by five transmission lines. Generation is available at buses B; and B,, and
loads are connected at buses B3 and Bg.

4
218 MW

A
225 MW

300 MW 200 MW

B, ™ = B,

A

<

3

82 MW 83 MW

Figure 8.11 Power flows in a small, meshed network
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Table 8.3 Charges for use of line

Line 1-2 1-3 14 2-4 4-3

Charge (£) 12.75 6 11.7 35 5.75

Table 8.3 gives information on applied charges for use of line, which have been taken to

be equal to the branch resistances (Bialek, 1996, 1997, 1998). The power flows, as given by

a

power flow solution, are shown in Figure 8.11. Based on these trajectories, the two

domains of the network are determined, one domain per generator.

The branch-bus incidence matrix of this network is given in Figure 8.12 together with the

branch search for the dominion of generator G;. Generator G is connected to bus B;. This
entry provides the starting point for establishing the dominion of generator G;. A +1 at
locations (1, 1), (1, 2), and (1, 3) of the matrix indicates that lines 1-3, 1-2, and 1-4 belong
to the dominion of generator 1. Additional lines belong to this dominion, and they will be
found as follows:

The sending end of line 1-3 is bus B, and the receiving end is bus B, as given by the + 1
and —1 in locations (1, 1) and (3, 1) of the matrix, respectively. There is no + 1 entry in
the row corresponding to the receiving end of line 1-3. This indicates that bus B3 contains
no outflows. Therefore, the search stops at bus B; for this route.

The row corresponding to the receiving end of line 1-2 contains + 1s. Thus, the search is
moved from column 2 to column 4 of the matrix. This makes line 2-4 part of the
dominion of generator G;. Applying the same line of reasoning, we move the search on
from column 4 to column 5, and line 4-3 is incorporated into the dominion of generator
G;. No +1 is found in the row corresponding to the receiving end of line 4 —3. Hence, bus
B; contains no outflows, and the search stops at bus B for this route.

The row corresponding to the receiving end of line 1-4 contains a +1 in column 5.
Accordingly, the search is moved on from column 3 to column 5 of the matrix. This
makes line 4-3 part of the dominion of generator G,. It must be noted that this line has

D@

S
@ ©
ollcs

S
N~ w (Y] —_
S

Figure 8.12 Branch-bus incidence matrix and branch search for the dominion of generator G,
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B;

Figure 8.13 Dominion of generator G,

already been added to the dominion of generator Gy, and it should not be incorporated
twice in the dominion. No + 1 is found in the row corresponding to the receiving end of
line 4-3.

e Since we have exhausted all the + 1 entries in row 1 of the matrix then we are satisfied
that we have completed the search for all branches belonging to the dominion of
generator G;. It must be noted that, in this case, the entire network belongs to the
dominion of generator G;.

The directed subgraph of dominion D; is shown in Figure 8.13.

The branch—bus incidence matrix of the network shown in Figure 8.11 together with the
branch search process for the dominion of generator G, are shown in Figure 8.14. Generator
G, is connected to bus B,. This entry provides the starting point for establishing the
dominion of generator G,. A + 1 entry in location (2, 4) of the matrix indicates that line 2—4
belongs to the dominion of generator G,. Additional lines belonging to this dominion will

1-4 2-4 4-3

ol0lO
o

I I ! I )
N (O8] [\S] —

[0
Sloto

Figure 8.14 Branch-bus incidence matrix and branch search for the dominion of generator G,
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B, _T_r B .,_T__ B

o

Figure 8.15 Dominion of generator G,

be found as follows:

e The row corresponding to the receiving end of line 2—4 contains + 1 entries. Accord-
ingly, the search is moved on from column 4 to column 5 of the matrix. This makes line
4-3 part of the dominion of generator G,. We move the search on from column 4 to
column 5 of the matrix and line 4-3 is incorporated into the dominion of generator G,. No
+ 1 entries are found in the row corresponding to the receiving end of line 4-3. Bus B3
contains no outflows.

e We have exhausted all the + 1 entries in row 2 of the matrix and this indicates that we
have completed the search for all branches belonging to the dominion of generator G,. At
this point we have also completed the search for all the dominions available in this
network.

The directed subgraph of dominion 2 is shown in Figure 8.15.

Branch 2—4 and branch 4 -3 are both common to dominions D; and D,. Hence, the power
tracing algorithm is used to calculate the contributions of each dominion to common
branches 2—4 and 4 -3. This information is presented in Table 8.4.

By way of example, the power flow contribution of dominion D; at the sending and
receiving ends of transmission line 2—4 are calculated as follow:

173
Cl=—"" 1, P —1x59=59
27594014 0 m T ’
171
o _0.088444, P! — 0.988444 x 59 — 58.317919.
%7591 114 D 8

Table 8.4 Contribution of dominions D; and D, to branches 2—4 and 4-3

Sending end Receiving end
Branch C' (%) Pp, (MW) Pp, (MW) C" (%) Py (MW)  Pp (MW)
2-4 100 59 114 98.8439 58.3179 112.6821

4-3 29.3286 49.9519 33.0481 28.9753 49.3501 32.6499
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Table 8.5 System power losses (sending end) and charges for use of line for dominions D; and D,

Power loss (MW) Charge for use of lines (p.u.)

Branch D, D, Per line D, D,
1-2 1 0 12.75 12.75 0

1-3 7 0 6 6 0

14 3 0 11.7 11.7 0

2-4 0.6821 1.3179 3.5 1.1937 2.3063
4-3 0.6018 0.3982 5.75 3.4604 2.2896
Total 12.2839 1.7161 N.A. 35.1041 4.5959

N.A. Not applicable.

The contributions of dominions D; and D, to active power losses in branch 2—4 become
readily available from the above result. Table 8.5 gives the power losses and charges for use
of line.

The charge, E, for use of line in line 2—4 is calculated as follows:

Ep, = x 0.6821 = 1.1937 p.u.,

(o 6821 + 1 3179

E
D2 = (o 6821 + 1 3179

The charge for use of line in line 4-3 is:

5.75
Ep, =

6018 = 3.4604p.u.
0.6018 7 03082 ) * 00018 = 3.4604p.u,,

) x 1.3179 = 2.3063 p.u.

5.75
Ep, = | —————5—==) x0.3982 = 2.2896 p.u.
P <O.6018 n 0.3982) b4

It is important to remark that a number of methodologies exist for calculating charges for
use of line. For instance, Table 8.6 gives the charges for use of line as calculated by three

Table 8.6 Comparison of charges (p.u.) for use of line by three different methods for dominions
D, and D,: (a) the tracing algorithm (presented in this chapter), (b) the generalised factor algorithm
(Ng, 1980), and (c) the topological factor method (Bialek, 1996, 1997, 1998)

(a) Tracing (b) Generalised factor (c) Topological factor

Branch D] D2 D] D2 D] D2

1-2 12.75 0 12.75 0 12.75 0

1-3 6 0 5.22 0.78 6 0

14 11.7 0 11.7 0 11.7 0
2-4 1.1937 2.3063 1.77 1.73 1.21 2.29
4-3 3.4604 2.2896 3.06 2.69 3.48 2.27

Total 35.1041 4.5959 34.5 5.2 35.14 4.56
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different methods. The tracing algorithm presented in this chapter is compared with the
method of topological factors (Bialek, 1996, 1997, 1998) and the method of generalised
factors detailed by Ng (1980). It is brought to the reader’s attention that in this example
some of the generalised factors are negative and would produce negative charges for use of
line (i.e. a generator would be compensated for using a transmission facility; Bialek, 1996,
1997, 1998). In actual applications all negative factors and costs are set to zero (Ng, 1980).

The charges based on topological factors compare very well with the charges given by the
tracing algorithm. In contrast, some differences are observed with respect to the charges
given by the generalised factor algorithm. Perhaps the most suspect results are the charges
made to generator G, for the use of branch 1-3, and the undercharge to generator G;. It must
be noted that branch 1-3 is not part of the dominion of generator G,. This fact is correctly
recognised by the topological factor algorithm. Also, important differences exist in the
charges made to generators G; and G, for the use of line 2—4.

8.6.3 Meshed Network with FACTS Conftrollers: Reaclive Power

In this case, two FACTS devices are included: one unified power flow controller (UPFC) in
branch Lake-Main and one static compensator (STATCOM) in node Elm. The reactive
power flows throughout the network are shown in Figure 8.16. The dominions of the

Jvr Jvr 0 10.6
<— < Grarcon

10 $ 57 2.1 3.2

Figure 8.16 Five-node system with unified power flow controller (UPFC) and static compensator
(STATCOM)
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Table 8.7 Reactive dominions of generators, FACTS, and transmission lines (TLs)

Transmission line Loads and sinks
Gen—North North-Lake Lake
Gen-South South-Lake South, Lake
UPEC Lake—Main, Main—-South, South-Lake Lake, Main, South
STATCOM Elm-South, South-Lake Elm, South, Lake
TL: North-Lake None Lake
TL: South-Lake None Lake
TL: North—South North-Lake, South-Lake South, Lake
TL: Main—-South South-Lake South, Lake
TL: Lake—Main Main-South, South-Lake Main, South, Lake
TL: Main—-Elm Elm-South, Main-South, South-Lake Main, Elm, South, Lake

Note: UPFC, unified power flow controller; STATCOM, static compensator.

reactive source’s dominions are given in Table 8.7. The dominions of generators and FACTS
equipments are as shown in Figure 8.17.

The reactive dominion of Gen-North reduces to line North-Lake, and this generator
contributes only to the reactive load connected at Lake. Six transmission lines become

(a) (b)

(© (d)
Figure 8.17 Reactive dominions: (a) Gen—North, (b) Gen—South, (c) unified power flow converter,
and (c) static compensator




NUMERICAL EXAMPLES 331

Table 8.8 Dominion contributions to system loads

South Elm Main Lake
Gen—North 0.0 0.0 0.0 14
Gen-South 4.1 0.0 0.0 1.6
UPFC 0.3 0.0 1.6 2.9
STATCOM 1.2 8.0 0.0 0.5
TL: North-Lake 0.0 0.0 0.0 2.6
TL: South-Lake 0.0 0.0 0.0 2.7
TL: North-South 2.3 0.0 0.0 2.4
TL: Main—-South 1.4 0.0 0.0 0.5
TL: Lake-Main 0.1 0.0 1.6 0.2
TL: Main—-Elm 0.6 2.0 1.8 0.2
Total load at node 10 10 5 15

Note: STATCOM, static compensator; UPFC, unified power flow controller; TL,
transmission line; TL: South—-Elm is obsorbing MVAR.

sources of reactive power but they also form part of various dominions. Table 8.8 shows the
contributions of the various sources to the individual reactive system loads.

8.6.4 Large Network

In order to show how the tracing algorithm works with a larger power system, the New
Zealand South Island 220 kV system illustrated in Figure 8.18 is used to carry out this study.
The system data are given in Arrillaga and Watson (2001).

From the power flow solution, it emerges that there are two machines that contribute
substantial reactive power injections into their connecting nodes. These synchronous
machines are the one connected at Islington—220 and the one connected at Benmore—016.

The synchronous machine’s dominion connected to Islington—220 is depicted
schematically in Figure 8.19 together with the system contribution to reactive power flow
in this particular dominion.

In this case, the transformers complex taps have been set to nominal values (i.e. the
transformer equivalent circuits do not contain shunt admittances).

Information on the Islington—220 dominion is shown in Table 8.9. The reactive power
absorption of each line is depicted in Table 8.10.

8.6.5 Tracing the Power Output of a Wind Generator

With the ongoing deregulation of the electricity supply industry, the opportunity has arisen
for the widespread incorporation of renewable sources of electricity into the power network.
In the United Kingdom, for instance, wind generation is a form of renewable generation that
is set to experience unprecedented growth, in particular, offshore wind generation.
Among the pressing problems that the industry will have to solve, if electricity genera-
tion from the wind is to become commercially successful in a deregulated environment,
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Tekapo—220 Islington—220
| >
Tekapo—011
Twizel-220
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Figure 8.18 The New Zealand South Island 220kV system. Reproduced by permission of John
Wiley & Sons Ltd from J. Arrillaga and N.R. Watson, 2001, Computer Modelling of Electrical Power
System, 2nd edn
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Figure 8.19 Islington—220 reactive power dominion

Table 8.9 Islington—220 dominion: general data

Index Sending end Receiving end Q absorbed (MVAR)
TL1 Islington—220 Tekapo—220 42.5108
TL2 Islington-220 Twizel-220 40.7907
TL3 Islington-220 Bromley-220 0.8010
TL4 Bromley—220 Twizel-220 38.2211
TLS Islington-220 Livingstn-220 19.1111
TL6 Livingstn—220 Roxburgh-220 74.0988
TL7 Roxburgh—220 Invercarg—220 5.6353
TL8 Invercarg—-220 Tiwai-220 0.4756
TL9 Invercarg—-220 Tiwai-220 0.4756

333
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Table 8.10 Line contributions to reactive power absorption

Q(MVAR)
Contribution

Index Outflow Inflow Contributed coefficients
TL1:

dominion 17.0548 0.0000 17.0548 0.4012

system 17.5000 —7.9559 25.4560 0.5988
TL2:

dominion 12.0992 0.0000 12.0992 0.2966

system 22.5000 —6.1915 28.6915 0.7034
TL3:

dominion 62.3661 61.5959 0.7701 0.9615

system 2.5000 2.4691 0.0309 0.0385
TL4:

dominion 6.0533 0.0000 6.0532 0.1584

system 22.7513 —9.41658 32.1678 0.8416
TLS:

dominion 25.3950 14.0807 11.3143. 0.5920

system 17.5000 9.70321 7.7968 0.4080
TL6:

dominion 7.78264 0.7990 6.9836 0.0942

system 26.6437 2.7355 23.9082 0.3226
TL7:

dominion 0.3232 0.2860 0.0372 0.0066

system 28.3145 25.0573 3.2572 0.5780
TLS:

dominion 0.0873 0.0863 0.0010 0.0021

system 22.0149 21.7640 0.2501 0.5277
TL9:

dominion 0.0873 0.0863 0.0010 0.0021

system 22.0149 21.7640 0.2501 0.5277

is to develop an understanding of the impact that large, random blocks of electricity will
have on the power network. For instance, how much electricity can a wind-generating
company, under obligation to supply, afford to contract to supply given its ‘fuel’ supply
uncertainty?

An equally critical issue that needs addressing concerns the ability to trace the power
output of one or more wind farms within an interconnected network. This has a direct
bearing on the aspirations of a growing number of consumers keen on being supplied with
electricity that has been produced with little damage to the environment. The power tracing
methodology offers a realistic possibility of achieving this goal and one that should
encourage providers of clean energy.

The numerical example presented in this section addresses one way in which the tracing
methodology can be applied in the area of delivery of clean power. This requires a
simulation environment similar to the one shown in Figure 8.20, where the interaction of the
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Generation and load forecasting algorithms

v

k=1,2,....,n

Newton—Raphson power flow

k=k+1 i

Tracing algorithm

k>2n > End

Figure 8.20 Power flow simulation environment

forecasting, power flow, and power tracing algorithms is illustrated. This simulation
environment offers a simple and yet comprehensive way of modelling time-dependent
generators and loads.

8.6.5.1 The wind generator model

Wind generators slaved to the power network are mostly of the induction type. During
high winds, when the rotor speed supersedes the synchronous speed, active power is injected
into the grid. In the presence of low winds there is an automatic cutout to prevent motoring
from happening. During normal conditions, the turbine operates at nearly constant
frequency. The induction wind generator achieves its operation at the expense of consuming
reactive power. From the power flow point of view, it makes engineering sense to treat the
generator bus as a PQ bus with a positive active power injection and a negative reactive
power injection.

However, these power injections must be time-dependent to reflect the stochastic nature
of the prime mover (i.e. the wind). Figure 8.21 shows the active power output of a typical
wind farm for a period of 54 hours, where very large variations between measurements are
observed; for example, the generator goes from zero power output at 16 hours, to 1.8 MW at
18 hours (Johansson et al., 1992). For cases of wind farms of low capacity, their reactive
power requirements can be met locally. Moreover, if suitable power electronics equipment is
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Figure 8.21 Wind generator model for power flow studies that caters for time dependency

used in tandem with the wind generator set then the reactive power compensation can be
met adaptively.

8.6.5.2 Numerical example

This numeric example illustrates how the simulation environment of Figure 8.20 works. The
example relates to the power network shown in Figure 8.22, where only active power flows
are shown. In this example all the power flows are expressed in kilowatts. Generator G, is a
wind generator with the power generation profile shown in Figure 8.21. The output of
generator G3 and loads are taken to remain constant. Generator G is the slack generator. By

1300

1000
G _ G,
935.8 | 13931
987.4
383.6

A 4

G2 -

900
—J

Figure 8.22 Power flows (in kilowatts) when the wind generator injects maximum active power (i.e.
1.8 MW)
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Figure 8.23 Dominions of (a) generator G,, (b) generator G, and (c) generator G;

way of example, two cases are considered below: (1) at 18 hours when the wind generator
is injecting maximum power (i.e. 1.8 MW) and (2) at 36 hours when it is injecting zero
power.

The wind generator injects maximum power

Figure 8.22 shows the power flows for the case when the wind generator is injecting
1.8 MW. Based on these power flows, three network dominions are determined. Figure 8.23
shows the dominions of generators G1—Gg.

It can be observed in Figure 8.23 that branches 4—1 and 5—1 are common to the dominions
of generator 2 and generator 3. Using the tracing algorithm, the contribution of both
dominions to each element of the network are calculated. Active power losses and charges
for use of line associated with each dominion are then established. This information is
summarised in Table 8.11.

The charge for use of line to dominion &, in branch ij, is calculated as follows:

Xi:
Ep = (=2 Ly, 8.42
D (Lfotal) D ( )

where x;; is the company charge assigned to the use of branch ij.

The wind generator contributes no active power

Figure 8.24(a) shows the power flows for the case when the wind generator contributes no
active power. The directed subgraphs for the two dominions are shown in Figures 8.24(b)
and 8.24(c). The contribution of dominions D; and D5 to active power losses throughout
the network become readily available. Table 8.12 gives the power losses and charges for
use of line.
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Figure 8.24 (a) Power flows in the test network for the case when the wind generator, G,, contributes
no active power (i.e. 0 MW); directed subgraph for (b) dominion D; and (c) dominion D5

8.7 SUMMARY

The relentless trend towards deregulation and unbundling of transmission services in the
electricity supply industry has provided the motivation for developing methodologies that
trace the output of each generator throughout a power system, whether it is a simple radial
network or an interconnected network of national or even continental dimensions. Over the
last few years a great deal of progress has been made in this direction, and methods based on
the principle of proportional sharing are well regarded in academic circles. Several
alternative algorithms have appeared in the open literature since 1996, with a large
proportion of these papers devoted to economic issues. However, other applications are
beginning to emerge such as the tracing of power contributed by ‘green’ generators and
distortion power contributed by harmonic sources.
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The tracing algorithm we have detailed in this chapter is the one we developed at
Glasgow, but the application cases contained in this chapter can equally be solved by using
any of the alternative methodologies found in the open literature. The algorithm may serve
the purpose of auditing the individual generator contributions to system loading, power
flows, transmission losses, generation costs, and charges for use of lines. The algorithm is
independently applied to the tracing of active, reactive, and distortion powers. The
algorithm is accurate and comprehensive. In fact, power flow tracing is only a mechanism
for tracing, for instance, generation costs and allocating charges for use of line. These two
basic capabilities of the algorithm have been compared with results corresponding to a
simple case available in the open literature. Also, a larger study involving a subsection of an
interconnected power network has been conducted.
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Appendix A: Jacobian
Elements for FACTS
Controllers in Positive
Sequence Power Flow

A.1 TAP-CHANGING TRANSFORMER

The partial derivatives of the power equations with respect to the primary tap of the two
winding transformer are:

2702

0Py T — 2ViT;

6_T,l, v A [Rm(U?) + Rl) + XmR2 - 2Gkk(RmF1 +XmF2)] + Vka [ka C05(61)

_ 4T? 2V V. T3U, ,

+ Bjou sin(6)] [1 - Av (RuF1 + Xsz)] + kTU (X sin(61 — ¢1)

— Ry, cos(61 — ¢1)],
0 2V2T? .
a—%T’u = 2 < [ZBkk(RmFl + XmFZ) - RmRZ + Xm(U,?, + Rl)] + Vka[ka Sln(él)

472
— B c0s(6)] {1 - T” (RnF1 + Xsz)]
2 T3
— W [Rysin(6; — 1) + Xy cos(61 — é1)].

The partial derivatives of the power equations with respect to the secondary tap of the two

winding transformer are:
0Py U — 2VEU?
ou, ' A

[Rm(Ug +R1) + Xy Ry + F1 — 2Gi (R Fy +XkF2)]

4U2
+ Vka[ka COS(&]) + Bkm sin(él )] 1-— £ (RkFl + Xsz)

WV, T,
+kT [Xi sin(6; — ¢1) — R cos(61 — ¢1)],

FACTS: Modelling and Simulation in Power Networks.
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) 2V2U2
&UU =220 2By (ReFy + XikF>) — RiRy + Xi (U + Ry + F2)]
oUv A

2

4U
+ ViV G sin(81) — B cos(81)] | 1 = —%

(RkFl +XkF2)

_2ViV,UST,

A [Resin(81 — 1) + Xy cos(dr — )],

where
Fy = TRy + UR), + Req1,
Fy = T2X, + U*X,, + Xeq1,
Reqi = (R,R; — X,X,)G, — (R,X; + R,X,)B,,
Xeqi = (RyRy — X, X;)B, + (R,X; + R;X,)G,,
R, =R,G, — X,B,,
Ry = RyB, + X;G,,
R; = R,Gy — X,,By,
R4 = R,By + X,Gy,

¢I = ¢tv - ¢mu
?2 = Guv — P
A=F}+F3
61 =0 — 6.

A.2 THYRISTOR-CONTROLLED SERIES COMPENSATOR

Partial derivatives of the variable series impedance model are:
oPy

WX - —VkaBkm Sin(ek _ 9,,,),
0
a%x = V2Bii + ViV B c0s (0 — 0,,),
oPy, . 0Py
ox = X
Partial derivatives of the firing angle model:
OPy 0Xrcsc)
o KBTCSC() T8 T
00 0Xrtesc(n)

30 QkBTCSC(l)Ta
OBrcsc(l) . 0Xrtesc(n)
o0 = Do g,

0Xrcsc(n)

e —2C1[1 4 cos(2a)] + C; sin(2cr){w tan[ew(m — a)] — tan o}



UNIFIED POWER FLOW CONTROLLER 345
A.3 STATIC SYNCHRONOUS COMPENSATOR

Partial derivatives for the static compensator (STATCOM) model are:
0Py
%,
OP;
aévR
6PUR
Bbur
anR
06
S—I;’; Vi = Py + ViGu,
oP;
Vir
OP,r
oP,r
oVy
00; _
06,
20,
657)R
00.r
661)R
6QUR .

0 —VurVk[Gur c0s(6r — Ok) + Byg sin(6,r — 1)),

2—‘Q/ZV1¢ = Qx — V}Bu,
20
Vg
aQT}R
OV
aQUR
oV

—Qx — V{Gip,

== Vk V’UR [GUR Sin(ok - (SUR) - B’I}R cos(&k - 67}R)L

2
= 7Q1)R - VURBUR)

= V’URVI( [G’UR Sin(éwR - 0]() - B1)R COS(57)R - Qk)]a

VvR = Vk VUR [GUR COS(gk - 671R) + BUR Sin(ek - 67}R>]7

Vig = Pug + VG,

Vk = V’URVk[G’UR COS(6UR - ek) + BvR Sin(évR - 9k)]7
Pk - VkZGwR7
= — Vi Vir[Gor cos(0r — 8ur) + Bur sin(0x — 64r)],

2
= P’UR - VURG’UR7

Vir = ViVir[Gor sin(0x — 6yr) — Byg cos(6x — 6ur)],

Vir = Q’UR - V,%RBURv

Vk - _VURV/( [GUR Sin((sz - ok) - BUR COS(611R - 91()}

A.4 UNIFIED POWER FLOW CONTROLLER

Partial derivatives for the unified power flow controller (UPFC) at bus k are:

0Py _ Or — V2B
00, ~ Q& VicBuo
0

O =P — V]%Gkk»

30,
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oP;
06,
00k
06,
oPy,

—Lv, =P+ VG
aVk k r + k Ukk s

= Vka[ka sin(9k — 9m) — Bkm cos(0k — Hm)],
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00cr
00k
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WVer
00
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00k
69UR
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00«
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Partial derivatives at the receiving bus m are:

aPm
00

= ViVer[Giom sin(0x — 6cr) — Bim c0s(0x — Ocr)],

= —Nicr,
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oP,,

Nmm = va = Pm + V,%lem7
an 2
V=0, -V, Bmm7
av,, "= On = Vn
oP,, .
HmcR = 20 = VchR[Gmm Sln(am - 6c ) - Bmm cos(Hm - 6CR)]>
cR
00
= —Nucr,
aGCR K
opP,, .
chR = W VCR = VmVCR [Gmm COS(@m - 6L'R) - Bmm Sln(em - 60R)L
cR
00m
—Vc - Hmc .
Ve R R
The partial derivatives at the UPFC series converter are:
oP, .
60R = VerVi[Gim sin(6cr — Ok) — B c0s(Ocr — Ok)],
k
oP,.
6611: = _QcR - VCZRBmma
oP, .
20 R == cRVm[Gmm Sln(écr - om) - Bmm COS((SL‘R - em)]a
oP,
aVR Ver = Pegr + VERGmmv
cR
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7 Vi = VerVi[Gim €08(0cr — Ok) + Bion sin(6cr — Ok)],
aPCR .
W Vm = VcR Vm [Gmm COS((SCR - am) + Bmm Sln(écR - gm)]
The partial derivatives for the UPFC shunt converter are:
oP, .
aGIkR = vRVk[GvR SIH(6DR - Gk) - B’UR Cos(évR - 6/()]7
opP,
66)1]: = —wR — VgRB’uRy
GP%V/( = V?}RVk [GUR COS((SUR - ak) + B?}R Sin((SvR - 01{)}7
oP,r

— Ry r=Pxr~+ V%G
aV’”R R R+ vR R

A.5 HIGH-VOLTAGE DIRECT-CURRENT-BASED VOLTAGE
SOURCE CONVERTER

Partial derivatives for the rectifier and inverter stations of the high-voltage direct-current-
based voltage source converter (HVDC-SVC) are:
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Appendix B:

Gradient and Hessian
Elements for Optimal Power
Flow Newton’s Method

B.1 FIRST AND SECOND PARTIAL DERIVATIVES FOR
TRANSMISSION LINES

B.1.1 The Gradient Vector

The first partial derivatives with respect to the state variables at bus k are:

aL aPk an aPm an
vk rve >\ >\ m A A m Ap
30~ a0, T e, T ae, T e,
oL
m:Pk+Pdk*ng;
P
oL OP; 00y oP,, 00,
a_Vk \pk A7 6V + )\qk 6V + )\pm a—vk + )\qm a—vky
oL
DV Or + Qurx — Qgr-
q
The first partial derivatives with respect to the state variables at bus m are:
oL oP; 00« opP,, 00,
—=A A A m A map
0, "6, T %6, a6, T,
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\pm
oL oP; 00 oP,, 00,
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FACTS: Modelling and Simulation in Power Networks.
Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez and César Angeles-Camacho
© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85271-2



350 APPENDIX B: GRADIENT AND HESSIAN ELEMENTS FOR OPF

B.1.2 The Matrix W

The second partial derivatives with respect to the state variables at bus k are (diagonal
blocks):

2 2 2 2 2
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L L 0P
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The second partial derivatives with respect to the state variables at buses k and m are
(off-diagonal blocks):
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L L 30
MO0, 00,00 06y,
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o°L °L o

NV VA OV

The second partial derivatives with respect to the state variables at bus m are (diagonal
block):
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The second partial derivatives of active and reactive power flow equations are:

aiggk = ViV [ Gion $in(0c — O1n) — B €08 (6 — O],

aszg];/k = Viu[Gion sin(0k — 01n) — Bian c0s (6 — O1n)],

agjgt/k = —Viu[Gn c08(6k = O,n) + B sin(G — 6,,)),

a;j:gém = Ve[Gin sin(6 — 0) — Binw05(65 — 0],

aaa:aQ\];m = —Vi[Gim cos(6k — O) + Bin sin(0x — 6,)],
3’Py
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o602,
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Vin|Grn €08(0x — 0) + Bin sin(0x — 6,,)],

= —Vk [ka sin(@k — Qm) — Bkm COS(gk — 9,,,)],

= Vk[ka COS(ak — 0,,,) + Bin sin(6‘k — 9,,,)],

= [Gim cos(0x — O,) + Bim sin(6x — 6,,)],

=[Gy sin(6x — 6,,) — By cos(6x — 6,,)],
= —Vka[ka COS(@k — Hm) + B Sin(ek - Hm)],
= —Vka[ka sin(@k — Hm) — Bkm COS(@k — Gm)],

= —Vka[ka COS(Qk — 9m) + B sin(@k — Gm)],

= —Vka[ka sin(&k — HW,) — Bkm COS(@k — 9,,1)],

=0.

To obtain the partial derivatives of P,, and Q,), it is only necessary to exchange subscripts k
and m in the above equations.

B.2 PHASE SHIFTER TRANSFORMER

The first partial derivatives making up the gradient are not given here since they coincide
with the elements of the phase shifter (PS) Jacobian already given in Section 4.4.2.

The second partial derivatives of active and reactive power with respect to the phase
shifter angle ¢;, and phase angle voltages are:

0’Py
01,00,

0° Ok
0¢,00,,

= Vka(ka cos 61 + By, sin 6 ),

= Vka(ka sin (51 — Bkm COS 61),
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O _ —ViVu(G 81 + By sin 61)
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2
62”%21( = vak(Gmk sin (52 - Bmk COS 62)

The second partial derivatives of active and reactive power at buses k and m with respect
to the phase shifter angle ¢,, and voltages magnitudes are:
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061, 0Vi
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The second partial derivatives with respect to the phase shifter angle ¢,, are:

aZP a Iﬂ aBm
Tk ViV (sin 61 K cos 6 k) ,

62¢I’U a¢m a(zszw

0> 0k < OG i OB, )

——— = V.V, | cos b no

Pon la@v e

o’p,, OB,
—V,V 8 5 ,

62¢m k<sm g a(bm Tesn a¢zv)
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asz ( ac;mk aBmk)
— V, Ve[ cos 6 22 4 sin & ,
P 286, 206,

OGim T,U, .

a¢k = 1: T(F]SIH(ﬁI_FZCOS(bl)?
tv 2

0By, T,U, .

a(;” - _ 1: Y (Fysin ¢y + Fjcos ¢y),
tv 2

G TU,, . |

5 k— A, (Fysin ¢y — Fycos ¢),
tv

aBmk _ TUU'U

F, si F .
. A (Fysin ¢y + F cos ¢,)

The second partial derivatives of active and reactive power with respect to the phase
shifter angle ¢,, and phase angle voltages are:

P, = —ViVin(Gui c08 81 + By sin 8y),
064,00y
@227%9;( = —ViViu(Gm sin 61 — By cos 1),
a;:;%m = ViVin(Gion €08 61 + By 8in 61),
GS;JQakam = ViViu(Gion Sin 61 — By c0s O1),
azj;ném = Vi V(G €08 63 + By sin 62),
ainQarZ)m = ViuVi(Gyi 8in 63 — By c0s 62),
ajsiféngk = —Vu V(G €08 63 + By sin 62),
ai%;k = —V,uVi(Gpi $in 8, — By 08 63).

The second partial derivatives of active and reactive power with respect to the phase-
shifter angle ¢,, and voltage magnitudes are:

P
a¢u716Vk B

0 = Vu(Gian €08 61 + By, 8in ;)
agbu,,,@Vk — Vm\Ykm 1 km SIN 01 ),

P v .
m = —Vi (G 8in 81 — By cos 6y),
0°Ox
6¢M’U6Vm

—Vu(Gn sin 61 — By, c0s 61),

= V(G c0os 81 + By sin 6y),
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O*Py = V(G sin 83 — By c0s 63),
0,0V
aZ;Qa";/k = —Vu(Guk cos 6 + By sin 6,),
a;;%vm = Viu(Gpi sin 83 — By c0s 63),
a;fv%vm = —Vi (G c08 63 + By sin ).

The second partial derivatives of active and reactive power with respect to the phase-
shifter angle ¢,, are:

e300, 20, ),
s = vt cone i ),
a@j (:; —VV, (sm 5 aa¢i': — cos 8 2?:7) )
o)
szk - TAIZJ (F2sin g + Fycos g),

?;k - folz]v (F1 cos ¢ + Fa sin ¢2).

B.3 STATIC VAR COMPENSATOR

The first and second partial derivative making up the static VAR compensator (SVC)
gradient are not given here; they correspond to Equations (5.6) and (5.9) for variable
susceptance and the firing-angle SVC model, respectively.

The second partial derivative terms for the SVC reactive power are:

0k
N7

O’k 2 Xc .
7 XX, {XL - 2(m — «) + sin(2a)] },

—2Bsvc,
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0°Ox

VidBse Vb

O’k 4V sin(2c)

0a? - T[XL ’

*Or 4V, [cos(2a) — 1]

dadV, X, ’
Bsve = — — {XL X —a)+ sin(2a)]}.

XcXL T

B.4 THYRISTOR-CONTROLLED SERIES COMPENSATOR

The first partial derivatives of the power equations with respect to the controllable reactance
are given in Appendix A. These terms are used to assemble the thyristor-controlled series
compensator (TCSC) gradient.

The second partial derivatives of active and reactive power equations with respect to the
controllable reactance are:

o*P, , 1
m = —Vm Sln(ek — Hm)Xz—,
TCcscOVi Tcsc
alo) 1
S L2V + Vi cos(Bh — On)]
0XtcscOVi [=2Vi + Vin cos(B )]X%CSC
0’P, , 1
W = —Vm sm(@k — Qm) Xz—,
1CSCOVim TCSC
02 1
ﬁ = Vk COS(ek — 9,71))(27,
TCSCOVim Tcse
O*P, 1
==V, Vm O — em B
0X1csc00y Vim cos(Bs >X%csc
0’0k 1
—— = -V, Vysin(by — 0,,) ——,
0Xtcsc00k Vo sin(B )X%csc
’P, 1
———— = ViV, cos(by — 0,,) —5—,
0X1csc00, ¢ (6 )X%csc
0?0k 1
———— =V, Vysin(6y — 0,,) ——,
0X1csc00,, ¢ (6 )X%csc
o°P 2
2—k = Vka Sin(ek — 9,,,) 3
0Xfcsc Xtcse
02 2
ZQ" = [V — ViV cos(O — 0,)] ——.
0XFcsc Xtese

The equations for bus m are simply obtained by exchanging subscripts k and m in the above
set of equations.



UNIFIED POWER FLOW CONTROLLER 357

The second partial derivative terms of active and reactive power with respect to the firing

angle are:
o°P X
5 6\1; = —V,sin(6; — em)B%csc aTCSC ,
al0Vy «
O »  0Xtesc
=|-2 m — Um B ’
0oV, [—2Vi + Vi cos(6k — 1) ]Brcsc %
o*p, ) 0Xrcsc
3V, = —V;sin(6; — Gm)B%CSC “2a
02 )¢
aaanﬁ = Vi cos(6x — em)B%CSC%,
P ¢
aaaek = —ViVcos(br — em)B%csc %SC,
k
0* ox
O Vysin(Oh — ) Bhesc
a0y «
Py »  O0Xtesc
9000, ViVin co8(0x — 01)Bicse 20
GRS . 0Xtcsc
2ol ViV sin(6 — Hm)B%csch
O’P;

0*Xrese . OXrese GB%CSC)

. 2
W:—Vka sin(6x — 6 )(BTCSC da2 + 1o fole!

00k 2 »  O®Xrcsc  OXtcsc OB
B [ Vi + ViV cos(0; — 0 )] Bicsc 5 + o aT;SC ,
O’Bresc Lo 0°Xresc | 0Xresc 0B2csc
0a? TCSC 3a2 Oa oo’
0Bicsc _ 2 OXresc
O Xiese Oa
X 2 — — i _
o TSSC _4Cy sin2(x — )] + Gy cos?[w(n a)]cos(n a) sin(m — @)
Oar os*[ww(m — a)]

2w cos? (T — a) cos[w(n — a)] sin[w(n — a)]
- cut{ cos' [ — a)] }

+ ng{Ztan[w(n’ —a)]cos2(n — )] + Z)ZIZH[Z(: }

— Cz{Ztan(n — a)cos2(m — a)] + S:;Sz Z : Z }

B.5 UNIFIED POWER FLOW CONTROLLER

The first partial derivatives of active and reactive power with respect to the voltage
magnitude and phase angles are given in Appendix A. These terms are used to assemble the

unified power flow controller (UPFC) gradient.
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The second partial derivatives of active and reactive power flow equations at bus k are:

2
660f;k = —ViViu G c08(0r — 0,) + Brm sSin(0 — 0,,)] — Vi Ver[Grom cos (0 — 8cr)
i
+ Bion Sin(0x — 6cr)| — ViVir|[Gor cos(Ox — 6ur) + Bug sin(0x — dur)],
2
aa 9Q2k = — ViV, [Gpn sin(6x — 6,) — Bion €080k — 0,1)] — ViVer[Grom sin (0 — )
i
— B c08(0r — 6cr)] — Vi Vur|[Gor sin(0r — Oyr) — By cos(0x — 81 )],
2
P
azkagm = ViV [ka COS(Qk o em) + Bim Sin(ek - am)];
o’ ‘
69,(6Q9km = ViViu|Gin sin(6 — 6,) — B co8 (6 — 6,)],
0Py = Vi Ver|[Gim €08(0 — 6cr) + B sin(0x — Ocr)]
aekaém — VkVeR[Yikm k cR e SIN( O r)]s
0 _ ViiVer|Giom sin(6x — 8cr) — Bian c08(0x — 6cr)]
00,068 k¥R km k™ OcR km k R)|
O’P, = ViVir[Gor c08(0k — ur) + Byr sin(Ox — 6,r)]
00,06, KT oRITR kT Ok uR k — Our)]
’0x = ViVor[Gor sin(0y — 8,r) — Byg cos(Ox — bur)]
aeka 6’UR — ViV uR[YwR k vR vR k vR )|y
P —Vin|Gian Sin(0k — 014) — B c08(0x — )] — Ver[Giom sin(0r — 6cr)
aekavk - m|Ykm k m km k m cR|[Yikm k ‘R
— B c08(0; — 6cr)] — Viur[Gor sin(0x — 8ur) — Bug cos(6x — 6ur)]s
2
OO _ Vur [Gion €08 (0 — O) + Bion Sin(0x — 6,)] + Ver[Gim cOs(0x — cr)
00, 0Vy
+ Bkm Sin(ek - 6¢>R)} + VUR[GURCOS(HIC — 61}R) + B’UR sin(@k — 6’UR)]’
o*Py = —Vi[Grm sin(6x — 0,1) — Bin c08(6x — 6,)]
003V, k| Ziem ke Pm km k= Om)],
2
agkaQém = Vi[Gim cos(0x — 0) + Bign sin(6 — 6,)],
o°P .
69k6‘21e = —Vi[Gu sin(Ok — 6cr) — Bim c0s(Or — Ocr)],
o)} = Vi[Gi cos(0x — 8cr) + Bim Sin(0r — 6cr)]
aekaVCR — Vk|Yim k cR km k R)|s
o’P .
aeka‘;(vR - _Vk [GUR snl(ek - 6'”R) - BUR COS(Qk - 6’UR)]7
o Vi[Gur cos(0x — 6ur) + Bur sin(0x — 8,r)]
aekGVvR T KR k vR uR k vR )]s
2P

W = —Vka[ka cos(9k — 0,,,) + By, sin(@k — 9,,,)],
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2
aaesz = — ViV G sin(0x — 6,,) — Bin cos(6x — 6,,)],
o’P _
69,”6/\(/,( = Viu[Gion sSin(On — Gion) — Bign cos(Ox — 0,)],
02 '
aamgt/k = 7Vm[ka cos(@k - em) + B](m sm(Gk — 0m)]7
2
a:mgf/m = Vi[Giom sin(0x — 0,) — B cos(0x — 0,)],
2
asmg‘k/m = —Vi[Gim cos(Or — 0,) + Bim sin(6x — 0,,)],
o*P
Wzk = 7VchR[ka COS(Qk - 601?) + Bkm sin(@k — cR)]7
cR
2
% = _VkVCR[ka Sin(ek - 6CR) - Bkm COS(@k — 6CR)]7
cR
0P ‘
a&L.Ra];/k = Ver[Gion sin (0 — bcr) — Bian c0s(0h — bcr )],
o2 '
afscR%];/k = —V.g[Gm cos(0x — bcr) + Bim sin(0r — 8cr)],
o’P )
m = Vi|Gpon sin(0x — 8cr) — B c08(0x — 6cr)),
02 '
ﬁ = —Vi[Gn c08(6k — Ocr) + Bion Sin(0r — cr)],
2
Z;k = —ViVir[Gg c08(6k — Our) + Bur sin(0 — 6ur)],
VR
62
ng = _VkVUR[GUR Sin(ek - 6UR) - BvR COS(Gk — 61}R)]7
vR
o’P ,
aévkakvk = Vr[Gur sin(6; — 6,r) — Byg cos(0x — 81 )],
0? .
aévR%];/k - _VUR[GUR COS(ak - 57’R) + BUR Sln(gk - 61}R>]7
o*pP .
—aévRa((/yR = Vi[Gr sin(Ox — 6,r) — Byg cos(0x — bur)],
o? .
—aéuRaQ‘k/UR = —Vi[Gyr cos(0r — bur) + Byg sin(0x — 6ur)],
2P
— = 2G,
av]? kk
GRS

=28
avlg kk 5
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a@:gém = [Gim c08(0k — ) + Bim sin(0x — 0,,)],
agian];m = [Gim sin(6x — 0,n) — Bim cos (6 — 0,)],
as:g;m = [Gm €08k — 6cr) + Bim sin(Ox — Ocr)],
a‘?:ag‘ZR =[Gy Sin(0; — bcr) — Biam c0s(0r — Ocr)],
= Gl ) Bl 5
agkzaQ‘ﬁvR = [Gyg sin(bx — bur) — Bur cos(Ox — 64r)]-

The second partial derivatives of active and reactive power flow equations at bus m
are:

2
aan:%m = —VuVi|Gui c0s (6, — Or) + B sin(6,, — 0x)],
0’0 .

36 = =V Vi|Gion SIN(0, — 0k) — By cos(6, — 01 )],

62P’”—vv[G O — 0 in(0,, — 0
3000, " |G €08 (0, %) + B sin(6,, )]s

62Q”‘:VV[G in(6,, — 6;) — B (-
36,06, Vi [Giom sin (6, k) tm €OS (O, )]s
Py ValGuns o -
g0y, G sin(6,, — 0x) — Bim cos(6, — 61)],
6)ZQ’"——V (G (- 0,, — 0
00,0V, n|Giom €08 (6 k) + Bian €08 (0 k)],
Py v _
00V, % |Grom sin(6,, — Or) — Bian cos(0,, — O1)],
0n v _
0V, i [Grom €080 — Ok) + B sin(0,, — 61)],
%P, .
e —~ViuVi[Gion €08(0n — Ok) + Bion Sin (0, — k)] — Vi Ver[Grum c08(0 — 6cr)
+ By c08(0, — Ocr)]s

OO . _

62 = —Vu Vi |Gion SIn(0 — 0k) — Bim €080 — Ok)] — Vin Ver |G SIN(0 — Ocr)

— By cos(0,, — 6cr)],
%P,

30,06~ Yok [Gom €0(Om = 8er) + B c0(On = ber)],
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0O _
0,060 Vi Ver|Gonm SIn(6 — 6cr) — Bum €08(0, — Ocr)],
P _ [Gon sin (O — k) — Bian €08 (Om — O]
06,0V, = m|Ukm S m k Tm COS(0, )],
asz =V, [ka COS(Hm - 91() + Bin sin(@m — '9k)]
06,,0V; )
o%P,, . .
300V = —Vi[Gion Sin(6, — O) — Bign c0s(0,y — 65)] — Ver[Grm Sin(6, — Ocr)
— By cos(0,, — 6cr)],
%0
0 = Vi[Gian €08(0, — k) + Bim sin(0y, — 0x)] + Ver[Gonm €08 (01 — bcr)
00,,0V,,
+ By sin(6,, — Ocr)],
O*P,, .
0,0V —Vul G $in(6y — 8cr) — Bum €080 — bcr)],
OO .
0V Vin[Goum €08(0 — 6cr) + By sin(6,, — Ocr)],
2
OPu _ —ViuVer[Grum €08(6i — 6cr) + Bu 8In(6 — 6cr)],
062,
%0
QZ = _VchR[Gmm Sin(em - 66‘ ) - Bmm COS(em - 6cR)])
aéc‘R
o*P .
0600V, R (G 100, — Ocr) — Bim €08(0 — Ocr)],
0’ Qn _
R0V, —Ver[Gm €08(0y — 6cr) + B sin(6,, — 6cr)],
o*P,, .
oV Vi G $i0 (01 — 6cr) — Bum €08(0, — 8cr)]s
0’ Qu
= — — X B . _ )
%670V Viu[Grm €08(0y — 8cr) + Bum Sin(0,, — Ocr )],
3*P,, .
oV, 0V, - [ka COS(Hm - gk) + Bim Sln(@m — Qk)L
0O ,
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o*P,,
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a2Pm .

575y = (G €05 = ber) + B Sin(O = 6cx)
2

63 g{;R - [Gmm Sin(em - 6{,‘R) - Bmm COS(am - 6CR)]’

The second partial derivatives of active power flow equations for the series converter are:

a;gga = —VerVi[Gim c08(8cr — k) + Bion sin(écr — 0],

a;g; = —V&Viu[Gum c08(8cr — On) + By sin(6cr — 0],

aa;(g;; = VerVi[Gim c08(6cr — Ok) + Bim sin(6cr — 01)],

azzgéRR = VerVin|Guun €08(bck = On) + Bum sin(bcr — O],

aaagv = Ver[Gin sin(bek — Ok) + B c0(6cr = 0],

ang;l/em = Vg [Gom Sin(8cr — O) + Bun 08(8cr — O],

aZg{ZR = Vi[Gim sin(6cr — ) + Bion c08(6er — 04)],

ag,:g({;; = Vi [Gom SIN(Sck — Onm) + Bum €08(8e — )],

a?sjfézk = VerVi[Gin c08(8cr — 01) + Biw sin(6ex — 01)],

a?j}gc‘lim = —Ver[Gpum Sin(6cr — i) — By €08(Ocr — )],

a?j:ggm = V&V [Gpum €0S(8cr — ) + Boum sin(6er — 0]

&Sa;% = —Vu[Gum Sin(bcg — ) — B €08(6cg — 0in)] — Vi[Grom Sin(6er — Ok)

— By cos(ber — 6r)],

a;gj = —VgVin|Guum c08(6cr — Om) + B sin(8cr — 01n)] — VerVie|Grom cos(6er — 0Ok)
+ B sin(6c.r — 61)],

a‘igifize =[G €08(0cr — Ok) + By sin(Ocr — Ok)],

Pk

TR —Vr[Gim sin(6cg — 6x) — B c0s(6cr — 01)],
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OPey =[G (6ck — Om) + B Sin(Seg — O)]
vaaVcR_ mm COS{O¢, m mm SIN\OcR m)ly
2

OPer _ 2G .

OV

The second partial derivatives of active power flow equations for the shunt converters
are:

o’p,
ang = — Vg Vi[Gyg cos(bur — Ok) + Bur sin(b,r — 1)),
k
2
66;1)[" — —VvRVk[GUR COS((SUR — Hk) + BvR sin(évR — 9/{)}’
vR
o’p, '
a@ka(SIZR = VirVk [GUR COS((SUR - ek) + Byr Sll’l((SUR — Hk)},
o°P, .
a@;R@f/k = —Vr[Gur sin(8,r — Ok) + Byg cos(b,r — 1)),
o’P, _
Gﬁké\ljk = Vr[Gyr sin(6,g — 0i) + Byg cos(bur — k)],
o°P, .
m = —Vi[Gor sin(bur — Ox) — Bur cos(8ur — Ok)],
o’P, _
agkaVR;R = Vi[Gor sin(6yr — O) + Byg cos(6,r — k)],
o’p, _
aVka‘va = [GUR COS((SUR - (gk) + Byr Sln((sz — 9,{)},
P

= —2G .
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Appendix C: Matlab®
Computer Program for
Optimal Power Flow Solutions
using Newton’s Method

A computer program suitable for the optimal power flow (OPF) solution of small and
medium size power systems is given below. The program is general, as far as the topology of
the network is concerned, and caters for any number of PV and PQ buses. The slack bus is
the first generator bus in the data file. Notice that active and reactive power limits should be
given to the slack generator. No transformers are represented in this base program and no
sparsity techniques are incorporated.

YY**k— — — — = Main Program

%% EE RS SRR S SRR RS S S SRS SRR RS S S S S SRR R RS S SR SRR SRR SRR R R SRR SRR R R EEEEEEE]
%% Input data *
BY *khhhkkkhhhhhkhkhhdhhhkhhdhhhhhhdhhhhhdhhhhddhhrdhddhhhhdddhhdhhddhrrrdhhx
opfdata;

%% RS EE RS SRR EEEEEEEEEREEEEEEEEEEEEEEEEEEEEEESEEEEEEESEEEEEEEEEEESEEE S
%% Definition of auxiliary vectors and matrices *
%% R RS E S S SRR RS S S SRS S SRR S S S SRS R RS SRR R RS EEEEEEEEEEEEEEEEE]
%3%Nodes

VOLTAGE=zeros (nbb, 1) ; ANGLE=zeros (nbb, 1) ; LAMBDAP=zeros (nbb,1);
LAMBDAQ=zeros (nbb, 1) ; PGENERATED=zeros (nbb, 1) ;
StatusVoltage = ones(nbb,1);
Violation=zeros(nbb, 1) ;Kindexvol=zeros(nbb,1l);MiuBus=zeros(nbb,1);
StatV=ones(nbb,1);ActivedV=zeros(nbb,1);

%%Generators
statusgen=ones(ngn,1l);StatP=ones(ngn,1l);StatQ=ones(ngn,1l);

FACTS: Modelling and Simulation in Power Networks.
Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez and César Angeles-Camacho
© 2004 John Wiley & Sons, Ltd ISBN: 0-470-85271-2
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ActivedP=zeros(ngn,l);ActivedQ=zeros(ngn,1l);Kindexgen=zeros(ngn,1l);
IndGenQ=zeros(ngn,l);MiuGen=zeros(ngn,1l);

ChangeStat=0;Kindex=0;cost=0;Ckg=0;MaxDz=0;
$%SetGenQ=0;GenViolado=0;0ptimo=0;

%% EEEEEE R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEREEEESEEEEEEEEEEEEE]
%% The elements of Ybus are calculated here *
%% RS S S S S S S SRS EEEEEEEEEEEEEEEEE R R EEEEEEEEEEEEEEREEEEESEEEEEEEEEEEEEEES
[GKK,BKK,GKM,BKM] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,...
tlcond, ntl,nbb);

By *khhhkkkhhhhhkhkhhdhhhkhhhhhhhhdhhhdhhdhhhhhdhhhdhddhhhhdddhddrhddhrrrdhrx

%% Initial dispatch *
%% IR EE SRR EEE RS S SRR SRS EEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEESEEEEESS

[PGEN,Ckg,LambdaP] = InitialDispatch(nbb,ngn,A,B,C,PLOAD, PGEN, PMIN, ...
PMAX,Ckg,LambdaP) ;
Ckg=Ckg*10000;

%% khkkhkkhkkhkkhkkhkhkhkkhkhhkhkhhhkhkhkhkhkhhkhkhkhhhkhkhkhkhkhkhkhhhkhkhkhkhkhkhkhkhhhkhkhkkkkhkkkkkhkhkkk**

%% Main iteration starts here *
%% EE R R R R R R R SRR EE R R RS R R R R R R R R R E R R EEEE R R R R EEEEEEREEEREEEEEEEEEEEEEEEEE S

[cost] = CostGeneration(cost,A,B,C,PGEN,ngn);

for(iterOpf = 1: IterOpfTot)

S khkhkhhhhhhhdhhhhhhhhhdhhdhhdhhhdhdhdhhdhhhhhhhdhdhdhdhrdrdrdrdhhhrhrdrd

%% Calculated powers in buses and generators *
By *hhhkkkhhhhhkkhhhhhhkhhhhhkhhhdhhhkhhdhhhhhdhhhdhddhhkhhdhddhrdrdddhrrrdhrx
[Pbus,Qbus] = CalculatedPowers (nbb,VM,VA,GKK, BKK,GKM,BKM,ntl, ...
tlsend, tlrec);
[OGEN ]=ReactivePowerGenerators (QGEN,ngn,Qbus,QLOAD, genbus, bustype) ;

By *khhhkkkhhhhhkhkhhdhhhkhhhhhkhhhdhhhhhdhhhhdhdhhhdhddhhhhdhddhhdrhddhrrhdhrx

%% Check reactive power of generators, including the slack *
%% generator. Remove penalty factors from Lagrangian multiplier *
%% LambdaQ in buses with reactive power limits *
%% violations *

By *khdhkkkhhhhhkhkhhdhhhkhhdhhhhhdhhhkhhdhhhhhdhhhhddhhhhdhddhhdrhddhrrrdhrx
SetGenQ=0;
[Violation,ActivedQ, statusgen,SetGenQ,IndGenQ] = Voltage(nbb,ngn, ...
genbus, QGEN,QLOAD,Violation,ActivedQ,vmin,vmax,TolVoltage,VM,Qbus, ...
statusgen,bustype, QMAX,QMIN, SetGenQ, IndGenQ,iterOpf);

By *hhhkkkhkhhhhkhkhhhhhhkhhdhhhhddhhhkdhhdhhhhdhdhhhdhdddhkhhdddhhdhdddhrrrddhx

%% Copy data from solution vector to auxiliary vector *
%% IR EEE SRR EEE RS E SRR SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEESS
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[ANGLE, VOLTAGE , LAMBDAP, LAMBDAQ, PGENERATED ]=VectorAux (nbb,ngn, VM, ...
VA,LambdaP,LambdaQ, PGEN, vmax, vimin, ANGLE , VOLTAGE , LAMBDAP , LAMBDAQ, . . .
PGENERATED) ;

%% RS S S S S S S SRS S S EEE SRR LR SRS S S S SRR R R R EREEEEEEEEEEEEEEESEEEEEEEEEEEEEEES
%% Internal iterations *

BY *khhhkkkhhhhhkkhhdhhhkhhdhhhhhhdhhhhhdhhhhhdhhhdhddhhhhdhddhhdhhddhrrhdhrx

for( IntIter = 1: NIntIter)

%% R R S SRR S SRR RS S S SRS R R R RS S SRS SRR R RS S S SRR SRR R R R R R SRR SRR R R EEEEEEE]
%% The Matrix W and gradient vector are calculated *
By *hhkhkkkkhhhhkkhhhhhkhhhhhhhhdhhhkhhdhhhkhkhdhhddhdddhkhdhdhddhrkdrdddhrrrrdrx
if(IntIter ==1)
[Hessian,grad] = MatrixW(nbb,bustype,ngn,GKK, BKK,GKM,BKYM, ...
tlsend,tlrec,LambdaP,LambdaQ,VM,VA,ntl);

%% Generators
[Hessian,grad]=MatrixWGen (nbb,ntl,ngn,genbus,B,C,LambdaP,PGEN,...
Hessian,grad);

%% Mismatch of nodal powers
[Hessian,grad] = Mismatch(nbb,ngn, genbus, PGEN, QGEN, PLOAD,QLOAD, ...
Pbus,Qbus,Hessian,grad);

end

S *khkhkhhhhhhhhhhhhhhhhhhdhhdhhhhhdhhdhhdhhhhhhhdhdhdhhdhhhdrdhdrdhhhrhrdrd

%% Penalize generators with no reactive *

%% power limits violations *

By *hdhkkkhhhhhkkhhdhhhkhhdhhhhddhhhkdhhdhhhhdhdhhhdhddhhkhhdhddhhdrdddhkrrrdhrx
if (SetGenQ>0)

AuxBigNumber=(10e+10)/2;
[Hessian,grad] = PenaltyFunctionQ(nbb,AuxBigNumber,Hessian, ...
grad, genbus, IndGenQ, SetGenQ,LambdaQ,ActivedQ);

end

%% khkkhkkhkkhkkhkkhkhkhkhkhhkhkhhhkhkhkhkhkhhkhkhkhhhkhkhkhhkhkhkhhhkhkhkhkhkhkhkhkhhhkhkhkkkhkhkhkkkhkhkhkkk**

%% Penalize the voltage magnitude and phase angle of slack bus *

%% the phase angle must be 0 *

By *khhhkkkhhhhhkhkhhhhhhkhhdhhhkhhhdhhhhhdhhhhhdhhhdhhdhhrhdddhhdhddhrrrdhrx
[Hessian,grad] = Convexificacion(nbb,Hessian,grad,Cc,vmax, ...
vmin, VOLTAGE, StatusVoltage,VM);

L khkhhkhhhhhhhdhhhhhhhhhdhhdhhdhhhdhdhdhhdhhhhhhhdhdhdhdhrdrdrdrdhrhhrdrdrd

%% It holds activated variables in w-matrix, *
% after exiting internal iterations *

%% khkkhkhkhkkhkkhkhkhkhkhhkhkhhhkhkhkhkhkhhkhkhkhhhkhkhkhhkhkhkhhhkhkhkhkhkhkhkhkhhkhkhkkkhkhkhkkkhkhkhkhkk**

[Hessian,grad,ActivedV,ActivedP] = AugmentedLagrangian(nbb, ...
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Hessian,grad,Ckv,Ckg,vmax,vmin, VOLTAGE,StatusVoltage,VM,ActivedyV, ...
MiuBus, ngn,ActivedP,PGEN,StatP,MiuGen,PMAX,PMIN);

%%
%3
%3

%%
%%
%%
%%

%%
%%
%%

%%
%%
%%

%%
%%
%3
%%

%3

%%

R R R R R SR SR R R R R R RS R R R R R EE R SRR

Solves the system, of equations *
kkhkkhkhhkkkhkkhhhhkkkhhhhkkhdhhhhkkhkhdhhhhkhkhhhhkhkkhdhhhhkkhdhhhkkhkhhhkkkkhdhhhkkkkhhhkkkkhkkx*x
Hessian=full (Hessian);
Dz = Hessian\grad;

EEE RS RS EEEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEELESEEEEEEEEEESESEE]

Updates phase angles, voltages magnitudes, *
and multipliers lambdap and lambdagq *
EE SRR S EEE SRS EEE S SRR RS E SRS SRR EEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEE]
if(iterOpf==1 & IntIter<20), Alfa=Alfa+0.025; end
Dz=Alfa*Dz;
[Dz,VA,VM,LambdaP,LambdaQ,PGEN] = Actualisation(Dz,nbb,VA, ...
VM, LambdaP,LambdaQ,bustype,ngn, PGEN) ;

khkkhkkhkhkkhkkhkhkhkhkhhkhkhhhkhkhkhkhkhhkhkhkhhhkhkhkhkhkhkhkhhhkhkhkhkhkhkhkhkhhkhkhkkkkhkkkkhkhkhkkk**

Reset calculated powers in buses, w-matrix and gradient *
kkhkkhkkhkhkkkkhkhhkkkhkhhhkkkkhhhhkkkhhhhkkkhhhhkkkhhhhkkhkhhhkkkkhhhkkkkk kkkkk hkkkk kk*x*x

[Hessian,grad] = Reset_Hessian grad(Hessian,grad,ngn,nbb);

khkkhkkhkkhkkhkkhkhkhkkhkhkhkhkhhhkhkhkhkhkhhkhkhkhhhkhkhkhhkhkhkhhhkhkhkhkhkhkhkhkhhkhkhkhkkkkhkkkkhkhkhkkk**

Calculated Powers in buses and generators (second time) *
R RS S S S SRR RS S S SRS SRR RS S S SRR R RS SRR SRS R SRR R SRR S EEEEEEEEEEEEE]
[Pbus,Qbus] = CalculatedPowers (nbb,VM, VA, GKK,BKK,GKM,BKM, ...
ntl,tlsend,tlrec);
[QGEN] = ReactivePowerGenerators (QGEN,ngn,Qbus,QLOAD, genbus, ...
bustype);

R SR R SRR SRS R R R R R R R R R R EE R SRR

The gradient vector is calculated (second time). *
Convergence is checked *
R SRR R E SRS RS EEEEEEEEREEEEEEEEEEEEEREEEEEEEEESEEEEEREESEEEEEEEEEEESEEES]
[Hessian,grad] = MatrixW(nbb,bustype,ngn,GKK,BKK,GKM,BKM, ...
tlsend, tlrec,LambdaP,LambdaQ,VM,VA,ntl);
Generators
[Hessian,grad] = MatrixWGen(nbb,ntl,ngn,genbus,B,C,LambdaP, ...
PGEN,Hessian,grad);
Mismatch of nodal powers
[Hessian,grad]=Mismatch(nbb,ngn,genbus, PGEN,QGEN, PLOAD,QLOAD, ...
Pbus,Qbus,Hessian,grad);

Optimo=0; %$%Flag
[Optimo] = ReviewNodes (Optimo,grad,nbb,bustype,ActivedV,Tol2);
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[Optimo] = ReviewGen (Optimo,grad,ngn,ActivedP,Toll,nbb);
[MaxDz] = Norma(MaxDz,grad,nbb,ngn);
if (Optimo==0),break, end;

end %% End of internal iteration

%% R R E R RS SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEESEEEEEEEEEEEEEES]
%% Select the active set for the next iteration *
%% R RS SRS S S SRR S S SRS S E SRR ESEEE SR SRR ESEE SRS SRR RS SRS EEEEEEEEEEEEE]
NumNode=zeros (nbb,1);
ValueVoltage= zeros(nbb,1);
NumGenerator=zeros(ngn,1);
ValueGenerator=zeros(ngn,1l);
%% Identify candidates for addition to active set
SetVol=0;
[StatusVoltage, SetVol,NumNode,ValueVoltage] = Check Limits V...
(nbb, Tolvoltage,vmin,vmax,VM,StatusVoltage,Dz,SetVol,NumNode, ...
ValueVoltage, ActivedV);

SetGenP=0;

if(iterOpf>=0)
[StatP, SetGenP,NumGenerator,ValueGenerator] = Check_Limits P...
(ngn,TolPower,PMIN,PMAX,PGEN,StatP,SetGenP,NumGenerator, ...
ValueGenerator, ActivedP);

end

By *hhkhkkkkhhhkkhhhhhkhhhhhkhhddhhhkdhhdhhhkdkdhdhhhdhdddhhrdhddhrkrdddhrrrrdrx
%% Looking for the maximum index *
BY *khhhhkkhhhhhkhhhhhhhhhdhhhhhhdhhhhhdhhhhddhhhdhhdhhhhdddhrdhhddhrrrdhrx
MaxVol=0;
if (Setvol>0)
MaxVol=ValueVoltage(l);
for(ii=1: SetVol)
if (ValueVoltage(ii)>MaxVol),MaxVol=ValueVoltage(ii);end
end
end

MaxGen=0;
if (SetGenP>0)
MaxGen=ValueGenerator(1l);
for(ii = 1: SetGenP)
if (ValueGenerator(ii)>MaxGen),MaxGen=ValueGenerator(ii);end
end
end

By *hhkhkkkkhhhhkkhhhhhkhhdhhhkhhhdhhhkhhdhhhrhhddhhdhdddhkhdhdhddhrkrrddhkrrrddrx

%% Adding new inequality constraints to the active set. *
%3 They must be >= Tolerance *

S Fhkhkhhhhhhhhhhhhhhhhhhdhhdhhhhhdhhdhhdhhhhhhrdhdhdhhdhrdrdhdhdhhdrhrdrd
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if (Setvol>0)
[Hessian,grad,ActivedV] = AugmentedLagrangianV(nbb,Hessian, ...
grad, Ckv,vmax,vmin,StatusVoltage,VM,ActivedV,MiuBus, Setvol, ...
NumNode,ValueVoltage,MaxVol,EnforceTol);

end

if (SetGenP>0)
[Hessian,grad,ActivedP] = AugmentedLagrangianG(ngn,nbb,Hessian, ...
rad,Ckg,PMIN,PMAX,StatP,PGEN,ActivedP,MiuGen, SetGenP, ...
NumGenerator,ValueGenerator,MaxGen,EnforceTol);

end

%% khkkhkkhkhkkhkkhkhkhkkhkhhkhkhhhkhkhkhkhhkhkhkhhhkhkhkhhkhkhkhhhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkkkhkhkhkkkk*

%% Select candidate, constraints to be removed *

%% from the active set
%% R R R R R R R R SRR E R SR EEE R R R R R R R R R R R R R R R R R EEREEEEEEEEEEEEEE SRR S

*

NumMiu_ V=zeros(nbb,1);
ValMiu_V=zeros(nbb,1);
NumMiu_P=zeros(ngn,l);
ValMiu P=zeros(ngn,l);
RelvVol=0;
for(ii = 1: nbb)
if (Activedv(ii)==2)
[Hessian,grad,ActivedV]=AugmentedLagrangian_IV(nbb,Hessian,...
grad,Ckv,vmax,vmin, StatusVoltage,VM,ActivedV,MiuBus,ii);
[MiuBus,NumMiu V,ValMiu V,RelVol] = IdentifyMiuBus...
(StatusVoltage, MiuBus,Ckv,VM,vmax,vmin,ActivedV,RelvVol,...
NumMiu V,ValMiu V,ii);
end
end

RelGen=0;
for(ii = 1: ngn)
if (ActivedP(ii)==2)
[Hessian,grad,ActivedP] = AugmentedLagrangian IG(ngn,...
Hessian,grad,Ckg,PMIN,PMAX,StatP,PGEN,ActivedP,MiuGen,ii);
[MiuGen,NumMiu_ P,ValMiu P,RelGen] = IdentifyMiuGen(StatP,...
MiuGen,Ckg, PGEN, PMAX,PMIN,ActivedP,RelGen,NumMiu P,ValMiu P,ii);
end
end

%% EE RS SRS SRR RS S SRS RS RS ESEEEEEE RS SRS REEEEEEEEEEEEEEEEEEEEEEE]
%% It looks for the maximum index *

%% khkkhkkhkkhkkhkkhkhkhkkhkhhkhkhhhkhkhkhkhkhhkhkhkhhhkhkhkhkhkhkhkhhhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkkkhkhkhkhkk**

MaxVol=0;
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if (Relvol>0)
MaxVol=ValMiu V(1);
for(ii = 1: Relvol)
if(valMiu_VvV(ii)>MaxVol) ,MaxVol=valMiu V(ii);end
end
end

MaxGen=0;
if (RelGen>0)
MaxGen=ValMiu P(1);
for(ii = 1: RelGen)
if(valMiu P(ii)>MaxGen),MaxGen=ValMiu P(ii);end
end
end

By *hhkhkkkkhhhkkhhhhhkhhhhhkhhhdhhhkhhdhhhkrdhdhhhkdhdddhkhrdddrrkrrddhrrrrdrx

%% Releasing inequality constraints from the active *

% set. They must be >= Tolerance *

%% EE SRR R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEEEEEE S
if (RelvVol>0)

for(ii = 1:RelVol)
if(((valMiu V(ii)/MaxVol)>=RelTol)&(ValMiu Vv(ii)>...
(Fraction*MaxVol)))
send=NumMiu V(ii);
[Hessian,grad,ActivedV,StatusVoltage] =...
ReleasingAumentedLagrangianV(VM,vmax,vmin, StatusVoltage,MiuBus, ...
Hessian, grad,Ckv,ActivedV,StatusVoltage,send);
end
end
end

if (RelGen>0)
for(ii= 1:RelGen)
if(((valMiu P(ii)/MaxGen)>=RelTol)&(ValMiu P(ii)>...
(Fraction*MaxGen)))
send=NumMiu P(ii);
[Hessian,grad,ActivedP,StatP] =...
ReleasingAumentedLagrangianG(PGEN,PMAX,PMIN,StatP,MiuGen, ...
Hessian, grad,Ckg,ActivedP,StatP,send);
end

end

end

S khkhhkhhhhhhhdhhhhhhhhhdhhdhhdhhhdhdhhdhhdhhhhhhdhdhdhhdhhdrdhdrdhhhrhrdrd

%% Compute the initial values of MiuBUS *
%% and MiuGEN *

DY *khhhkkkhhhhhkhkhhhhhhkhhhhhhhhdhhhkhhdhhhhhdhhhdhhdhhhhdddhrdhhddhrhrdhrx

[MiuBus] = MultiplierBus (nbb,Ckv,MiuBus,VM,vmax,vmin) ;
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[MiuGen] = MultiplierGen(ngn,Ckg,MiuGen,PGEN,PMAX,PMIN);

[ANGLE, VOLTAGE , LAMBDAP, LAMBDAQ, PGENERATED ] = VectorAux(nbb,ngn, ...
VM, VA,LambdaP, LambdaQ, PGEN, vmax,vmin, ANGLE, VOLTAGE , LAMBDAP, ...
LAMBDAQ, PGENERATED) ;

Ckv=1.3*Ckv;

Ckg=1.3*Ckg;

%% khkkhkkhkkhkkhkhkhkkhkhhkhkhhkhkhkhkhkhkhhkhkhkhhhkhkhkkhhkhkhkhhhkhkhkhkhkhkhkhkkhkhkhkkkkhkkkkhkhkhkkk**

%% It changes the status of ‘‘Actived’’ variables from 1 to 2, *
%% to enable values to be identified at the following iteration: *
%% 0 can be analyzed, 1 recently activated, *
% 2 it is already active and checks its lambda. *

%% R SRR E SRS EEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEES]
for(ii= 1: nbb)
if (Activedv(ii)==1),ActivedV(ii)=2;end
end
for(ii =1: ngn)
if (ActivedP(ii)==1),ActivedP(ii)==1;end
end

By *hhkhkkkkhhhhkkhhhhhhkhhhhhkhkhhdhhhkhhdhhhhdhddhhdhddhhdhhdddhrkdrdddrrrrddrx

%% It checks whether or not there are changes *
%% in the active set. Changes in Generators *
%% RS EE R E SRS R EEEEEEEEEREEEEEEEEEEEEEEEEEEEEEESEEEEEREESEEEEEEEEEEEEEES]
in0=0;
for(ii = 1: ngn)
[ChangeStat,Kindexl,statusgen,LambdaQ,ActivedQ,bustype] =...
IdentifyConstQ(ChangeStat,genbus,statusgen,LambdaQ, ...
ActivedQ,bustype,ii);
if (ChangeStat~=0),in0=1;end
end
GenViolado=0;
for(ii= 1: ngn)
[GenViolado]=CheckQGenLimits (GenViolado,QLOAD,Qbus, QMIN,...
QMAX,genbus, TolPower,ii);
if (GenvViolado==1),break;end
end
if (GenViolado==1),0ptimo=1;end

%% khkkhkkhkkkhkkhkhkhkhkhhkhkhhhkhkhkhkhkhhkhkhkhhhkhkhkhkhkhkhkhhhkhkhkhhhkhkhkhkhkhkhkhkhkhkhkkkkkhkhkkkk*

% It checks whether or not there are changes in the *
%% multipliers. Changes in generators *
By *hhhkkkkhhhkkhhhhhkhhdhhkhkhhdhhhkhhdhhhkdkhddhkdhddhhhdhdhddhrkrrddhkrrrrdrx
inl=0;in2=0;
for(ii = 1: nbb)
[inl,in2]=MatrixWVoltageMiu(inl,in2,TolVoltage,VM,vmax,vmin,...
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MiuBus,ActivedV,StatusVoltage,ii);

if(inl==1 | in2==1),break;end

end

in3=0;1in4=0;

for( ii=1: ngn)
[in3,ind4] = MatrixWGenMiu(in3,in4,TolPower,PGEN,PMAX,PMIN, ...
MiuGen,ActivedP,StatP,ii);
if(in3==1 | in4==1),break;end

end

[cost] = CostGeneration(cost,A,B,C,PGEN,ngn);
[suma] = CheckConvexification(nbb,Cc,VM,VOLTAGE) ;

%% khkkhkkhkhkkhkkhkhkhkhkhhkhkhkhkhkhkhkhhkhkhkhhhkhkhkhhkhkhkhhhkhkhkhkhkhkhkhkhhkhkhkkkkhkhkkkhkhkhkkk**

%% If the total cost is within tolerance *
%% and the optimality conditions are satisfied, then *
%% the process can be stopped. *

By *khdhkkkhhhhhkkhhdhhhkhhdhhhhhdhhhdhhdhhhhdhdhhhdhddhhhhdhddhddrhddhrrhdhrx

if((in0==0)&(inl==0)&(in2==0)&(in3==0)&(ind4==0)&(RelvVol==0)& ...
(RelGen==0))
eps=LastCost-cost;
if (eps<0),eps=-eps;end
if (TolEps==1e-8)
if (eps<TolEps),Optimo=0;end
end
end

LastCost=cost;

if((in0==0)&(inl==0)&(in2==0)&(in3==0)&(in4==0)&(RelVol==0)...
& (RelGen==0)& (Optimo==0))
VM
VA=VA*180/pi
PGEN
LambdaP
LambdaQ
fprintf(’'\n=== Objective Function Value ===');
fprintf('\n f = %%12.8f $/hr ', cost);
fprintf('\n’);
fprintf('\n’);
fprintf( ’\n************************************************’ );
fprintf(’\n* End of main iteration *1);
fprintf(’'\n* *1);
fprlntf( ’\n************************************************’ );
break; %% This instruction breaks the main iterations loop

end
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By *hhkhkkkkhhhkkhhhhhhkhhdhhhhhhdhhhkhhdhhhkhkdhdhhhdhdddhkhhdddhrkrdddhrrrrdrx

%% It checks for the Dz being too small. If true then *
%% Ckv=const, Ckg=const and IntIter=30 *
%% R R EE RS SRR EEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEREESEEEEEEEEEEEEEES]
if((MaxDz<0.00001)&(inl==0)&(in2==0)&(in3==0)&(in4==0)&...
(Relvol==0)& (RelGen==0))
NIntIter==30;
Ckv=Ckv/1.3;
Ckg=Ckg/1.3;
end

end %% End of the Main PROGRAM

function [GKK,BKK,GKM,BKM] = YBus(tlsend,tlrec,tlresis,tlreac,...
tlsuscep,tlcond,ntl,nbb);
%% Transmission lines contribution

GKK=zeros(ntl,1);

BKK=zeros(ntl,1l);

GKM=zeros(ntl,1);

BKM=zeros(ntl,1);

for ii =1: ntl
denom = tlresis(ii)"2+tlreac(ii)"2;
GKK(ii) = GKK(ii) + tlresis(ii)/denom + 0.5*tlcond(1ii);
BKK(ii) = BKK(ii) - tlreac(ii)/denom + 0.5*tlsuscep(ii);
GKM(ii) = GKM(ii) - tlresis(ii)/denom;
BKM(ii) = BKM(ii) + tlreac(ii)/denom;

end

return; %% End of Ybus

function [PGEN,Ckg,LAMBDAP] = InitialDispatch(nbb,ngn,A,B,C,PLOAD,...
PGEN, PMIN, PMAX,Ckg, LambdaP) ;
suml=0.0;sum2=0.0;sum3=0.0;sum4=0; sum5=0;
lambda=0.0;
Ckg=0;
for(ii= l:ngn)
suml=suml+B(ii)/C(ii);
sum2=sum2+1/C(ii);
if(Cc(ii)>=Ckg),Ckg=C(ii);end
end
for(ii= l:nbb)
sum3=sum3+PLOAD(ii);
end
sum3=1.03*sum3;
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for( ii=1l:ngn)
sum4=sum4+PMIN(ii);
sum5=sum5+PMAX (ii);
end

if (sum3>sum5 | sum3<sumd)
fprlntf( ’\n************************************************’ );

fprintf(’\n* THERE IS NO SOLUTION *1);
fprintf(’\n* LOAD<PMIN OR LOAD>PMAX *1Y);
fprintf(’\n* *1);

fprintf( ’\n************************************************’ );

end

lambda=(2*sum3+suml)/sum2;
for(ii= l:nbb)
LambdaP (ii)=lambda;

end

for(ii= l:ngn)
suml=1.0/(2*C(ii))*(lambda-B(ii));
PGEN(ii)=suml;

end

return; $%End of InitialDispatch

function[cost] = CostGeneration(cost,A,B,C,PGEN,ngn)

cost=0.0;

for( ii =1: ngn)
cost=cost+A(ii)+B(ii)*PGEN(ii)+C(ii)*PGEN(ii)*PGEN(ii);

end

return; %%End of CostGeneration function

function [Pbus,Qbus] = CalculatedPowers (nbb,VM, VA, GKK,BKK,GKM, BKM,
ntl,tlsend,tlrec);

Pbus= zeros(nbb,1);

Qbus = zeros(nbb,1);

V =zeros(2,1);

A =zeros(2,1);

for ii =1: ntl

send = tlsend(ii); rece = tlrec(ii);
V(1)=VM(send); V(2)= VM(rece);
A(1l)=VA(send); A(2)=VA(rece);

angle=A(1l)-A(1l);

Pbus (send)=Pbus(send)+V(1)*V(1)*(GKK(ii)*cos(angle)+...
BKK(ii)*sin(angle));

QObus (send)=Qbus (send)+V(1l)*V(1l)*(GKK(ii)*sin(angle)-BKK(ii)...
*cos(angle));angle=A(1l)-A(2);
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Pbus (send)=Pbus(send)+V(1)*V(2)*(GKM(ii)*cos(angle)+...
BKM(ii)*sin(angle));
Qbus (send)=Qbus (send)+V(1)*V(2)*(GKM(ii)*sin(angle)-BKM(ii)...
*cos(angle));
angle=A(2)-A(2);
Pbus (rece)=Pbus(rece)+V(2)*V(2)*(GKK(ii)*cos(angle)+...
BKK(ii)*sin(angle));
Qbus (rece)=Qbus(rece)+V(2)*V(2)*(GKK(ii)*sin(angle)-BKK(ii)...
*cos(angle));
angle=A(2)-A(1l);
Pbus (rece)=Pbus(rece)+V(2)*V(1l)*(GKM(ii)*cos(angle)+...
BKM(ii)*sin(angle));
Obus (rece)=Qbus(rece)+V(2)*V(1l)*(GKM(ii)*sin(angle)-BKM(ii)...
*cos(angle));

end

return; %$%End of CalculatedPowers function

function [QGEN] = ReactivePowerGenerators (QGEN,ngn,Qbus,QLOAD, ...
genbus,bustype) ;
for ii =1: ngn

bgen=genbus (ii);

if (bustype(bgen)==1 | bustype(bgen)==2)

OGEN(ii)=Qbus (bgen)+QLOAD (bgen);

end
end
return; $%End of ReactivePowerGenerators function

function [Violation,ActivedQ, statusgen,SetGenQ,IndGenQ] = Voltage...
(nbb,ngn, genbus,QGEN, QLOAD,Violation,ActivedQ, vmin,vmax, TolVoltage, ...
VM, Qbus,statusgen,bustype,QMAX,QMIN,SetGenQ, IndGenQ,iterOpf);
if (iterOpf >=2)
for ii = 1: ngn
bgen=genbus (ii);
if (ActivedQ(ii)==1)
bgen=bgen;
else
Violation(bgen)=1;
if(((vmin(bgen)-TolVoltage)<VM(bgen))&(VM(bgen)<(vmax(bgen)+...
TolVoltage)))
Violation(bgen)=0;
end
if ((VM(bgen)<0.5)|(VM(bgen)>1.5))

fprintf( ’\n************************************************’ );

fprintf(’\n* *');
fprintf(’\n* UNFEASIBLE SOLUTION *1y .
fprintf(’\n* *1):

fprintf( ’\n************************************************’ );

end
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if(Violation(bgen)==0)
Rpower=QLOAD (bgen)+Qbus (bgen) ;
if(statusgen(ii)==1)

if ((Rpower>(QMAX(1ii)+0.001)) | (Rpower<(QMIN(ii)...

-0.001)))
QGEN(ii)=-QGEN(ii);

bustype(bgen)=3; %% load bus

if (Rpower>QMAX(ii))
QGEN(ii)=QMAX(ii);
statusgen(ii)=0;

else
QGEN (ii)=QMIN(ii);
statusgen(ii)=2;

end

end
end
end
end

if (bustype(bgen)==1 | bustype(bgen)==2)

SetGenQ=SetGenQ+1;
IndGenQ(SetGenQ)=ii;
end
end
else
for(ii=1: ngn)
SetGenQ=SetGenQ+1;
IndGenQ(SetGenQ)=ii;
end
end
return; %% End of Voltage function

377

function [ANGLE, VOLTAGE, LAMBDAP, LAMBDAQ,PGENERATED] = VectorAux(nbb, ...

ngn,VM, VA, LambdaP,LambdaQ, PGEN, vmax,vmin, ANGLE , VOLTAGE , LAMBDAP, ...

LAMBDAQ, PGENERATED) ;
for ii =1: nbb
ANGLE (ii)=VA(ii);
VOLTAGE (ii)=VM(ii);
LAMBDAP (ii)=LambdaP(ii);
LAMBDAQ(ii)=LambdaQ(ii);
if(VM(ii) >=vmax(ii))
VOLTAGE (ii)=vmax(ii);
elseif (VM(ii)<=vmin(ii))
VOLTAGE (ii)=vmin;
end
end
for ii =1: ngn
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PGENERATED (ii)=PGEN(ii);
end
return; $%End of VectorAux function

function [Hessian,grad] = MatrixW(nbb,bustype,ngn,GKK,BKK,GKM,BKY, ...
tlsend,tlrec,LambdaP,LambdaQ,VM,VA,ntl);
Hessian = zeros(4*nbb+ngn,4*nbb+ngn);
grad = zeros (4*nbb+ngn, 1);
for jj=1: ntl
send= tlsend(jJj);
rece= tlrec(jj);
%% Load-Load
if (bustype(send)== 3 & bustype(rece)==3)
nb=nbb;
il=1;
i2=2;

forii=1:2

v1l=VM(send); v2= VM(rece);
Al=VA(send); A2=VA(rece);
LPl=LambdaP(send); LP2=LambdaP (rece);
LQl=LambdaQ(send); LQ2=LambdaQ(rece);

difAngl2=A1-A2;

difAng21=A2-A1l;

G12=GKM(jj); B12=BKM(jj); G11=GKK(jj); B11=BKK(3j);
G21=G12; B21=B1l2; G22=Gl1; B22=Bl1;
Hkm=(G1l2*sin(difAngl2)-Bl2*cos(difAngl2));
Nkm=(Gl2*cos(difAngl2)+Bl2*sin(difAngl2));
Hmk=(G21l*sin(difAng21)-B21l*cos(difAng21l));
Nmk=(G21l*cos(difAng21)+B21l*sin(difAng2l));

%% Diagonal element
Hessian(send,send)=Hessian(send,send)-LP1*v1*v2*Nkm-LP2*vl...
*v2*Nmk -LQ1*v1*v2*Hkm-LQ2*v1*v2*Hmk;

Hessian(send, l*nb+send)=Hessian(send, l*nb+send)-...
LP1*v2*HKkm+LP2*v2*HmKk+LQ1l*v2*Nkm-LQ2*v2*Nmk ;
Hessian(send,2*nb+send)=Hessian(send,2*nb+send)-v1*v2*Hkm;
Hessian(send,3*nb+send)=Hessian(send,3*nb+send)+v1*v2*Nkm;

Hessian(nb+send,send)=Hessian(nb+send,send)-...
LP1*v2*Hkm+LP2*v2*HmkKk+LQ1*v2*Nkm-LQ2*v2*Nmk;
Hessian(nb+send,nb+send)=Hessian(nb+send,nb+send)...
+LP1*2*%G11-LQ1*2*B11;
Hessian(nb+send,2*nb+send)=Hessian(nb+send,2*nb+send)...
+2*v1*Gl1l+v2*Nkm;
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Hessian(nb+send, 3*nb+send)=Hessian(nb+send,3*nb+send)-...
2*v1*Bl1l+v2*Hkm;

Hessian(2*nb+send,send)=Hessian(2*nb+send,send)-v1*v2*Hkm;
Hessian(2*nb+send,nb+send)=Hessian(2*nb+send,nb+send)+2*v1*Gll...
+v2*Nkm;

Hessian(2*nb+send, 2*nb+send)=Hessian(2*nb+send,2*nb+send);
Hessian(2*nb+send, 3*nb+send)=Hessian(2*nb+send, 3*nb+send);

Hessian(3*nb+send, send)=Hessian(3*nb+send,send)+v1*v2*Nkm;
Hessian(3*nb+send,nb+send)=Hessian(3*nb+send,nb+send)-...
2*v1*Bl1l+v2*HKkm;

Hessian(3*nb+send, 2*nb+send)=Hessian(3*nb+send,2*nb+send);
Hessian(3*nb+send, 3*nb+send)=Hessian(3*nb+send, 3*nb+send);

%% Off diagonal element
Hessian(send,rece)=Hessian(send,rece)+LP1l*v1*v2*Nkm+...
LP2*v1*v2*Nmk+LQ1l*v1*v2*Hkm+LQ2*v1*v2*Hmk;
Hessian(send,nb+rece)=Hessian(send,nb+rece)-...
LP1*v1*HKm+LP2*v1*HmK+LQl*v1*Nkm-LQ2*v1*Nmk;

Hessian(send, 2*nb+rece)=Hessian(send,2*nb+rece)+v1*v2*Hmk;
Hessian(send, 3*nb+rece)=Hessian(send, 3*nb+rece)-v1*v2*Nmk;

Hessian(nb+send,rece)=Hessian(nb+send,rece)+LP1l*v2...
*Hkm-LP2*v2*Hmk-LQ1*v2*Nkm+LQ2*v2*Nmk;
Hessian(nb+send,nbtrece)=Hessian(nb+send,nb+rece)+LP1*Nkm+...
LP2*Nmk+LQ1*Hkm+LQ2*Hmk ;
Hessian(nb+send,2*nb+rece)=Hessian(nb+send,2*nb+rece)+v2*Nmk;
Hessian(nb+send, 3*nb+trece)=Hessian(nb+send, 3*nb+rece)+v2*Hmk;

Hessian(2*nb+send,rece)=Hessian(2*nb+send,rece)+v1*v2*Hkm;
Hessian(2*nb+send,nb+rece)=Hessian(2*nb+send,nb+rece)+v1*Nkm;
Hessian(2*nb+send, 2*nb+rece)=Hessian(2*nb+send,2*nb+rece);
Hessian(2*nb+send, 3*nb+rece)=Hessian(2*nb+send, 3*nb+rece);

Hessian(3*nb+send,rece)=Hessian(3*nb+send,rece)-v1*v2*Nkm;
Hessian(3*nb+send,nb+rece)=Hessian(3*nb+send,nb+rece)+v1*Hkm;
Hessian(3*nb+send, 2*nb+rece)=Hessian(3*nb+send,2*nb+rece);
Hessian(3*nb+send, 3*nb+rece)=Hessian(3*nb+send,3*nb+rece);

grad(send)=grad(send)-(-LP1*v1*v2*Hkm+LP2*v1*v2*Hmk+LOl*v1*v2...
*Nkm-LQ2*v1*v2*Nmk) ;

grad(nb+send)=grad(nb+send)-...
(+LP1*(2*v1*Gl1l+v2*Nkm)+LP2*v2*Nmk+LQ1l* (2*v1*Bl1l+v2*Hkm)...
+LQ2*v2*Hmk ) ;
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grad(2*nb+send)=0.0;
grad(3*nb+send)=0.0;

itemp=send; send=rece; rece=itemp;
itemp=il; il=i2; i2=itemp;
rtemp=Al; Al=A2; A2=rtemp;

end

end

%% PV-load buses or Slack-load buses
if ((bustype(send)== 2 & bustype(rece)==3)|...
(bustype (send)== 3 & bustype(rece)==2)|...
(bustype(send)== 1 & bustype(rece)==3)|...
(bustype(send)== 3 & bustype(rece)==1))
nb=nbb;
il=1;
i2=2;

forii=1:2

vl=VM(send); v2= VM(rece);

Al=VA(send); A2=VA(rece);

LPl=LambdaP(send); LP2=LambdaP(rece);
LQol=LambdaQ(send) ; LQ2=LambdaQ(rece);
difAngl2=A1-A2; difAng21=A2-Al;
G12=GKM(jj); B12=BKM(jj); GL1=GKK(jj); B11=BKK(jj);
G21=G1l2; B21=B1l2; G22=Gl1; B22=Bl11;

Hkm=(Gl12*sin(difAngl2)-Bl2*cos(difAngl2));
Nkm=(Gl2*cos(difAngl2)+Bl2*sin(difAngl2));
Hmk=(G21l*sin(difAng21)-B21l*cos(difAng21l));
Nmk=(G21l*cos(difAng21)+B21l*sin(difAng2l));

if (bustype(send)== 2 | bustype(send)== 1)
LQ1=0;

else
LQO2=0;

end

%% Diagonal elements
Hessian(send,send) = Hessian(send,send)-LP1l*v1*v2...
*Nkm-LP2*v1*v2*Nmk-LQ1*v1*v2*Hkm-LQ2*v1*v2*Hmk;
Hessian(send, l*nb+send) = Hessian(send, l1*nb+send)-...
LP1*v2*HKm+LP2*v2*HmK+LQ1*v2*Nkm-LQ2*v2*Nmk ;
Hessian(send,2*nb+send) = Hessian(send,2*nb+send)-v1*v2*Hkm;
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Hessian(send, 3*nb+send) = Hessian(send, 3*nb+send)+v1*v2*Nkm;
Hessian(nb+send,send) = Hessian(nb+send,send)-...
LP1*v2*Hkm+LP2*v2*Hmk+LQ1*v2*Nkm-LQ2*v2*Nmk;
Hessian(nb+send,nb+send) = Hessian(nb+send,nb+send)+...
LP1*%2*G11-LQ1*2*B11;
Hessian(nb+send,2*nb+send) = Hessian(nb+send,2*nb+send)+...
2*y1*G1l1l+v2*Nkm;
Hessian(nb+send,3*nb+send) = Hessian(nb+send,3*nb+send)-...
2*y1*Bl1+v2*HKkm;

Hessian(2*nb+send,send) = Hessian(2*nb+send, send)-v1*v2*Hkm;
Hessian(2*nb+send,nb+send) = Hessian(2*nb+send,nb+send)+...

2*y1*Gll+v2*Nkm;

Hessian(2*nb+send, 2*nb+send)=Hessian(2*nb+send,2*nb+send);

Hessian(2*nb+send, 3*nb+send)=Hessian(2*nb+send, 3*nb+send);

Hessian(3*nb+send, send)=Hessian(3*nb+send, send)+v1*v2*Nkm;
Hessian(3*nb+send,nb+send)=Hessian(3*nb+send,nb+send)-...
2*v1*Bl1l+v2*Hkm;

Hessian(3*nb+send, 2*nb+send)=Hessian(3*nb+send,2*nb+send);
Hessian(3*nb+send, 3*nb+send)=Hessian(3*nb+send,3*nb+send);

$% Off-Diagonal elements
Hessian(send,rece)=Hessian(send,rece)+LP1l*v1*v2*Nkm+LP2*yv1*v2*
Nmk+LQ1*v1*v2*Hkm+LQ2*v1*v2*Hmk;
Hessian(send,nb+rece)=Hessian(send,nb+rece)-...
LP1*v1*Hkm+LP2*v1*Hmk+LQ1l*v1*Nkm-LQ2*v1*Nmk;

Hessian(send, 2*nb+rece)=Hessian(send,2*nb+rece)+v1*v2*Hmk;
Hessian(send,3*nb+rece)=Hessian(send,3*nb+rece)-v1*v2*Nmk;

Hessian(nb+send,rece)=Hessian(nb+send,rece)+LP1l*v2...
*Hkm-LP2*v2*Hmk-LQ1*v2*Nkm+LQ2*v2*Nmk ;
Hessian(nb+send,nb+rece)=Hessian(nb+send,nb+rece)+LP1*Nkm+LP2*
Nmk+LQ1*Hkm+LQ2 *Hmk ;

Hessian(nb+send, 2*nb+rece)=Hessian(nb+send,2*nb+rece)+v2*Nmk;
Hessian(nb+send, 3*nb+rece)=Hessian(nb+send, 3*nb+rece)+v2*Hmk;

Hessian(2*nb+send,rece)=Hessian(2*nb+send,rece)+vl*v2*Hkm;
Hessian(2*nb+send,nb+rece)=Hessian(2*nb+send,nb+rece)+v1*Nkm;
Hessian(2*nb+send, 2*nb+rece)=Hessian(2*nb+send,2*nb+rece);
Hessian(2*nb+send, 3*nb+rece)=Hessian(2*nb+send,3*nb+rece);

Hessian(3*nb+send,rece)=Hessian(3*nb+send,rece)-v1*v2*Nkm;
Hessian(3*nb+send,nb+rece)=Hessian(3*nb+send,nb+rece)+v1*Hkm;
Hessian(3*nb+send, 2*nb+rece)=Hessian(3*nb+send,2*nb+rece);
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Hessian(3*nb+send, 3*nb+rece)=Hessian(3*nb+send, 3*nb+rece);

grad(send)=grad(send)-(-LP1*v1*v2*Hkm+LP2*v1*v2*Hmk+ ...
LO1*v1*v2*Nkm-LQ2*v1*v2*Nmk) ;
grad(nb+send)=grad(nb+send) (+LP1* (2*v1*Gl1l+v2*Nkm)+LP2*v2*Nmk+. ..
LQ1*(-2*v1*Bl1+v2*Hkm)+LQ2*v2*HmkK) ;

grad(2*nb+send)=0.0;

grad(3*nb+send)=0.0;

itemp=send; send=rece; rece=itemp;
itemp=il; il=i2; i2=itemp;
rtemp=Al; Al=A2; A2=rtemp;

end

end

%% Slack-PV or PV-PV
if ((bustype(send)== 1 & bustype(rece)==2)
(bustype(send)== 2 & bustype(rece)==1)

(bustype(send)== 2 & bustype(rece)==2))

nb=nbb;
il=1;
i2=2;
forii=1:2
vl=VM(send); v2=VM(rece);
Al=VA(send); A2=VA(rece);
LPl=LambdaP(send); LP2=LambdaP(rece);
LQ1=0; LQ2=0;
difAngl2=A1-A2; difAng21=A2-Al;
G12=GKM(jj); B12=BKM(jj); G1l1=GKK(3jj); BIL1=BKK(3j);

G21=Gl2; B21=B12; G22=Gl1; B22=Bl1;

Hkm=(G1l2*sin(difAngl2)-Bl2*cos(difAngl2));
Nkm=(Gl2*cos(difAngl2)+Bl2*sin(difAngl2));
Hmk=(G21l*sin(difAng21)-B21l*cos(difAng21l));
Nmk=(G21l*cos(difAng21)+B21l*sin(difAng2l));

%% Diagonal elements
Hessian(send,send)=Hessian(send,send)-LP1*v1*v2*Nkm-LP2*v1*v2%*...
Nmk-LQ1l*v1*v2*Hkm-LQ2*v1*v2*Hmk;

Hessian(send, l*nb+send)=Hessian(send, l1*nb+send)-...
LP1*v2*HKkm+LP2*v2*HmKk+LQ1l*v2*Nkm-LQ2*v2*Nmk ;
Hessian(send,2*nb+send)=Hessian(send, 2*nb+send)-v1*v2*Hkm;
Hessian(send,3*nb+send)=Hessian(send, 3*nb+send)+v1*v2*Nkm;

Hessian(nb+send,send)=Hessian(nb+send,send)-...
LP1*v2*Hkm+LP2*v2*Hmk+LQ1*v2*Nkm-LQ2*v2*Nmk;
Hessian(nb+send,nb+send)=Hessian(nb+send,nb+send)+LP1*2*Gl1l-...
LQ1*2*B11;
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Hessian(nb+send, 2*nb+send)=Hessian(nb+send,2*nb+send)+2*v1*Gll...
+v2*Nkm;

Hessian(nb+send, 3*nb+send)=Hessian(nb+send,3*nb+send)-...
2*v1*Bl1+v2*Hkm;

Hessian(2*nb+send,send)=Hessian(2*nb+send,send)-v1*v2*Hkm;
Hessian(2*nb+send,nb+send)=Hessian(2*nb+send,nb+send)+2*v1*Gll...
+v2*Nkm;
Hessian(2*nb+send,2*nb+send)=Hessian(2*nb+send,2*nb+send) ;
Hessian(2*nb+send,3*nb+send)=Hessian(2*nb+send,3*nb+send) ;
Hessian(3*nb+send,send)=Hessian(3*nb+send,send)+v1*v2*Nkm;
Hessian(3*nb+send,nb+send)=Hessian(3*nb+send,nb+send)...
-2*y1*Bl1+v2*Hkm;
Hessian(3*nb+send,2*nb+send)=Hessian(3*nb+send,2*nb+send);
Hessian(3*nb+send,3*nb+send)=Hessian(3*nb+send,3*nb+send);

%% off-diagonal elements
Hessian(send,rece)=Hessian(send,rece)+LPl*v1*v2*Nkm+.. .
LP2*v1*v2*Nmk+LQ1*v1*v2*Hkm+LQ2*v1*v2*Hmk;
Hessian(send,nb+rece)=Hessian(send,nb+rece)-...
LP1*v1*Hkm+LP2*v1*Hmk+LQO1l*v1*Nkm-LQ2*v1*Nmk;
Hessian(send,2*nb+rece)=Hessian(send,2*nb+rece)+v1*v2*Hmk;
Hessian(send, 3*nb+rece)=Hessian(send, 3*nb+rece)-v1*v2*Nmk;

Hessian(nb+send,rece)=Hessian(nb+send,rece)+LPl*v2...
*Hkm-LP2*v2*Hmk-LQ1l*v2*Nkm+LQ2*v2*Nmk;
Hessian(nb+send,nb+rece)=Hessian(nb+send,nb+rece)+LPl...
*Nkm+LP2 *Nmk+LQ1*Hkm+LQ2 *Hmk ;
Hessian(nb+send,2*nb+trece)=Hessian(nb+send,2*nb+rece)+v2*Nmk;
Hessian(nb+send, 3*nb+rece)=Hessian(nb+send, 3*nb+rece)+v2*Hmk;

Hessian(2*nb+send,rece)=Hessian(2*nb+send,rece)+v1*v2*Hkm;
Hessian(2*nb+send,nb+rece)=Hessian(2*nb+send,nb+rece)+v1*Nkm;
Hessian(2*nb+send,2*nb+rece)=Hessian(2*nb+send,2*nb+rece);
Hessian(2*nb+send,3*nb+rece)=Hessian(2*nb+send,3*nb+rece);

Hessian(3*nb+send,rece)=Hessian(3*nb+send,rece)-v1*v2*Nkm;
Hessian(3*nb+send,nb+rece)=Hessian(3*nb+send,nb+rece)+v1*Hkm;
Hessian(3*nb+send,2*nb+rece)=Hessian(3*nb+send,2*nb+rece);
Hessian(3*nb+send,3*nb+rece)=Hessian(3*nb+send,3*nb+rece);

grad(send)=grad(send)-(-LPl*v1*v2*Hkm+LP2*v1*v2*Hmk+LQl*v1*v2...
*Nkm-LQ2*v1*v2*Nmk) ;
grad(nb+send)=grad(nb+send)- (+LP1* (2*v1*Gl1l+v2*Nkm)+...
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LP2*v2*Nmk+LQ1l* (-2*v1*Bl1l+v2*Hkm)+L0O2*v2*Hmk) ;
grad(2*nb+send)=0.0;
grad(3*nb+send)=0.0;

itemp=send; send=rece; rece=itemp;
itemp=il; il=i2; i2=itemp;
rtemp=Al; Al=A2; A2=rtemp;

end

end

end
return; %$%End of MatrixW function

function [Hessian,grad] = MatrixWGen (nbb,ntl,ngn,genbus,B,C,LambdaP, ...
PGEN,Hessian,grad);
for jj=1: ngn
Gbus=genbus(jj);
Hessian(4*nbb+3jj,4*nbb+jj)=Hessian(4*nbb+jj,4*nbb+jj)+2*C(jj);
2% // - === - Out of Diagonal
Hessian(4*nbb+jj,2*nbb+Gbus)=Hessian(4*nbb+jj,2*nbb+Gbus)-1.0;
Hessian(2*nbb+Gbus, 4*nbb+jj)=Hessian(2*nbb+Gbus, 4*nbb+jj)-1.0;
LP1=LambdaP (Gbus);
PGenI=PGEN(jj);
grad(4*nbb+jj)= grad(4*nbb+jj)-(B(jj)+2*C(jj)*PGenI-LP1l);
end
return; $%End of MatrixWGen function

function [Hessian,grad] = Mismatch(nbb,ngn,genbus,PGEN, QGEN,PLOAD, ...
QLOAD, Pbus,Qbus,Hessian,grad);
AUXP = zeros(nbb,1);
AUXQ = zeros(nbb,1);
for jj=1: ngn
AUXP(genbus(jj)) = PGEN(JJj);
AUXQ(genbus(]jj)) = QGEN(Jj);
end
for ii= 1: nbb
grad(2*nbb+ii)=0;
grad(3*nbb+ii)=0;
grad(2*nbb+ii)=grad(2*nbb+ii)-(Pbus(ii)-AUXP(ii)+PLOAD(ii));
grad(3*nbb+ii)=grad(3*nbb+ii)-(Qbus(ii)-AUXQ(ii)+QLOAD(ii));
end
return; %$%End of Mismatch function

function [Hessian,grad] = PenaltyFunctionQ(nbb,BigNumber, Hessian, ...
grad, genbus, IndGenQ,SetGenQ,LambdaQ,ActivedQ);
for(ii =1: SetGenQ)

inl=IndGenQ(ii);

send=genbus (inl);
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Hessian(3*nbb+send, 3*nbb+send)=Hessian(3*nbb+send, 3*nbb+send)+...
2*BigNumber;
ActivedQ(inl)=2;
LQl=LambdaQ(send);
grad(3*nbb+send)=grad(3*nbb+send)-2*BigNumber*LQ1;

end

return; $%End of PenaltyFunctionQ function

function [Hessian,grad] = Convexificacion(nbb,Hessian,grad,Cc,vmax, ...
vmin,VOLTAGE, StatusVoltage,VM);
%% Slack bus must be the first node
Hessian(l,1l)=Hessian(1l,1)+10el0;
%% Voltage magnitudes
for ii= 1: nbb
Vol=vVM(ii);
VOLD=VOLTAGE (ii);
VolMax=vmax(ii);
VolMin=vmin(ii);
StatvV=StatusVoltage(ii);
Hessian(nbb+ii,nbb+ii)=Hessian(nbb+ii,nbb+ii)+Cc;
if (Statv==0)
grad(nbb+ii)=grad(nbb+ii)-(Cc*(Vol-VolMax));
elseif(Statv==1)
grad(nbb+ii)=grad(nbb+ii)-(Cc*(Vol-VOLD));
elseif (Statv==2)
grad(nbb+ii)=grad(nbb+ii)-(Cc*(Vol-VolMin));
end
end
return; %$%End of Convexification function

function [Hessian,grad,ActivedV,ActivedP] = AugmentedLagrangian(nbb, ...
Hessian,grad,Ckv,Ckg,vmax,vmin, VOLTAGE, StatusVoltage,VM,ActivedV, ...
MiuBus,ngn,ActivedP,PGEN, StatP,MiuGen, PMAX,PMIN) ;
%% NODES
for(ii= 1: nbb)
if (Activedv(ii)~=0)

Vol=VM(ii);

VOLD=VOLTAGE (ii);

VolMax=vmax(ii);

VolMin=vmin(ii);

Statv=StatusVoltage(ii);

MiuB=MiuBus(ii);

send= ii;

Hessian(nbb+send,nbb+send)=Hessian(nbb+send, nbb+send)+Ckv;

if (Statv==0)

grad (nbb+send)=grad(nbb+send) - (MiuB+Ckv* (Vol-VolMax));
end
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if (Statv==2)
grad(nbb+send)=grad(nbb+send)-(MiuB+Ckv* (Vol-VolMin));

end

if (ActivedV(send)==0)
ActivedV(send)=1;

end

end
end

%% GENERATORS
for(ii= 1: ngn)
if (ActivedP(ii)~=0)
for (ii = 1: ngn)
send=ii;
PGenI=PGEN(ii);
Stat=StatP(ii);
MiuG= MiuGen(ii);
Max_PGen=PMAX(ii);
Min PGen=PMIN(ii);
Hessian(4*nbb+send, 4*nbb+send) = Hessian(4*nbb+send, 4*nbb...
+send)+Ckg;
if(Stat==0)
grad(4*nbb+send)=grad(4*nbb+send)-(MiuG+Ckg*...
(PGenI-Max PGen));
end
if(Stat==2)
grad(4*nbb+send)=grad(4*nbb+send)-(MiuG+Ckg*...
(PGenI-Min PGen));
end
if (ActivedP(ii)==0)
ActivedP(ii)=1;
end
end
end
end
return; %$%End of AugmentedLagrangian function

function [Dz,VA,VM,LambdaP,LambdaQ,PGEN] = Actualisation(Dz,nbb,VA,VM, ...
LambdaP,LambdaQ,bustype,ngn,PGEN) ;
for(ii= 1: nbb)

pl =Dz(ii);

p2 = Dz (nbb+ii);
p3 =Dz (2*nbb+ii);
p4 =Dz (3*nbb+ii);

%% Load bus
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if (bustype(ii)==3)

VA(ii)=VA(ii)+pl;
VM(1ii)=VM(ii)+p2;

LambdaP (ii)=LambdaP(ii)+p3;
LambdaQ(ii)=LambdaQ(ii)+p4;
%%%% Slack bus

elseif (bustype(ii)==1)

VA(ii)=0.0; %%%% It must be cero
VM(1ii)=VM(ii)+p2;

LambdaP (ii)=LambdaP(ii)+p3;
LambdaQ(ii)=LambdaQ(ii)+0.0; $%%% It must be cero
%%%% Generator bus

elseif (bustype(ii)==2)

VA(ii)=VA(ii)+pl;

VM(ii)=VM(ii)+p2;

LambdaP (ii)=LambdaP(ii)+p3;
LambdaQ(ii)=LambdaQ(ii)+0.0; %$%%% It must be cero

end

end

for(ii= 1: ngn)
PGEN(ii)=PGEN(ii)+Dz(4*nbb+ii);

end

return; $%End of Actualisation function

function [Hessian,grad] = Reset Hessian grad(Hessian,grad,ngn,nbb);

for ii = 1: (4*nbb+ngn)
for jj=1: (4*nbb+ngn)
Hessian(ii,jj)=0;

end

grad(ii)=0;

end

return; %%End of Reset Hessian grad function

387

function [Optimo] =ReviewNodes (Optimo,grad,nbb,bustype,ActivedV,TOL) ;

for (ii =1: nbb)
pl=grad(ii);
p2=grad(nbb+ii);
p3=grad(2*nbb+ii);
p4=grad(3*nbb+ii);
if (Activedv(ii)~=0)

p2=1e-10;

else

p2=le-10;

end
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if(pl<0),pl=-pl;end
if(p2<0),p2=-p2;end
if (p3<0),p3=-p3;end
if (p4<0),pd=-p4;end

if (bustype(ii)==3) $%%%%% Load bus
if (pl1>TOL),Optimo=1;end
if (p2>TOL),Optimo=1;end
if (p3>TOL),Optimo=1;end
if (p4>TOL),Optimo=1;end
end
if (bustype(ii)==1) $%%% Slack bus
if(pl1>TOL),Optimo=1;end
if (p2>TOL),Optimo=1;end
if (p3>TOL),Optimo=1;end
if (p4>TOL),Optimo=1;end
end
if (bustype(ii)==2) $%%% Generator bus
if(p1>TOL),Optimo=1;end
if (p2>TOL),Optimo=1;end
if (p3>TOL),Optimo=1;end
if (p4>TOL),Optimo=1;end
end
end
return; %$%End of ReviewNodes function

function [Optimo] = ReviewGen(Optimo,grad,ngn,ActivedP, TOL,nbb);
for (ii =1: ngn)
pl=grad(4*nbb+ii);
if (ActivedP(ii)~=0), pl=le-10;end
if(pl<0),pl=-pl;end
if(pl>TOL)Optimo=1;end
end
return; $%End of ReviewGen function

function [MaxDz] = Norma(MaxDz,grad,nbb,ngn);

MaxDz=0;

for(ii = 1: nbb)
value=grad(ii);
if(value<0),value=-value;end
if(value>MaxDz),MaxDz=value;end

end

for(ii = (2*nbb+1): (4*nbb+ngn))
value=grad(ii);
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if(value<0),value=-value;end

if (value>MaxDz),MaxDz=value;end
end
return; %$%End of Norma function

function [StatusVoltage,SetVol,NumNode,ValuevVoltage]...
= Check_Limits_V(nbb,TolvVoltage,vmin,vmax,VM,StatusVoltage,Dz, ...
SetVol,NumNode,ValueVoltage,ActivedV);
for (ii = 1: nbb)
if (Activedv(ii)==0)
Movement=Dz (nbb+ii);
Kindex=0.0;
if(((vmin(ii)-TolVoltage)<VM(ii)) &(VM(ii)<(vmax(ii) + ...
TolVoltage)))
StatusVoltage(ii)=1;
end
if(VM(ii)>(vmax(ii)+TolVoltage))
StatusVoltage(ii)=0;
Kindex=(VM(ii)-vmax(ii))/Movement;
if (Kindex<0),Kindex=-Kindex;end
end
if(VM(ii)<(vmin(ii)-TolVoltage))
StatusVoltage(ii)=2;
Kindex=(vmin(ii)-VM(ii))/Movement;
if (Kindex<0),Kindex=-Kindex;end
end
if (Kindex > 0)
SetVol=SetVol+l;
NumNode (SetVol)= ii;
ValueVoltage(SetVol)=Kindex;
end
end
end
return; %$%End of Check Limits V function

function [StatP,SetGenP,NumGenerator,ValueGenerator]...
= Check Limits P(ngn,TolPower,PMIN,PMAX,PGEN,StatP,SetGenP,...
NumGenerator,ValueGenerator,ActivedP);
for (ii =1: ngn)
if (ActivedP(ii)==0)
Movement=1;
Kindex=0.0;
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if (((PMIN(ii)-TolPower)<PGEN(ii)) & (PGEN(ii)<(PMAX(ii)...

+TolPower)))
StatP(ii)=1;

end

if (PGEN(ii)>(PMAX(ii)+TolPower))
StatP(ii)=0;
Kindex=(PGEN(ii)-PMAX(ii))/Movement;
if (Kindex<0),Kindex=-Kindex;end

end

if (PGEN(ii)<(PMIN(ii)-TolPower))
StatP(ii)=2;
Kindex=(PMIN(ii)-PGEN(ii))/Movement;
if (Kindex<0),Kindex=-Kindex;end

end

if (Kindex > 0)
SetGenP=SetGenP+1;
NumGenerator (SetGenP)= ii;
ValueGenerator (SetGenP)=Kindex;

end

end

end

return; %$%End of Check_Limits_P function

function [Hessian,grad,ActivedV] = AugmentedLagrangianV(nbb, ...
Hessian,grad,Ckv,vmax,vmin, StatusVoltage,VM,ActivedV,MiuBus, ...
SetVol,NumNode,ValueVoltage,MaxVol,EnforceTol);
for(jj=1: Setvol)
inl=NumNode(jj);
if (((ValueVoltage(jj)/MaxVol)>=EnforceTol) | (VM(inl)<0.80)...
| (VM(inl)>1.20))

ii=inl;
Vol=VM(ii);
VolMax=vmax(ii);
VolMin=vmin(ii);
Statv=StatusVoltage(ii);
MiuB=MiuBus(ii);
send= ii;
Hessian (nbb+send,nbb+send)=Hessian(nbb+send,nbb+send)+Ckv;
if (Statv==0)
grad (nbb+send)=grad(nbb+send)- (MiuB+Ckv* (Vol-VolMax)) ;
end
if (Statv==2)
grad(nbb+send)=grad(nbb+send)-(MiuB+Ckv* (Vol-VolMin));
end
if (ActivedV(send)==0)
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ActivedV(send)=1;
end
end
end
return; %$%End of AugmentedLagrangianV function

function[Hessian,grad,ActivedP] = AugmentedLagrangianG(ngn,nbb,...
Hessian,grad,Ckg,PMIN,PMAX,StatP,PGEN,ActivedP,MiuGen, SetGenP, ...
NumGenerator,ValueGenerator,MaxGen,EnforceTol);
for(jj = 1: SetGenP)
inl=NumGenerator(jj);
if ((ValueGenerator(jj)/MaxGen)>=EnforceTol)
ii=inil;
send=ii;
PGenI=PGEN(ii);
Stat=StatP(ii);
MiuG= MiuGen(ii);
Max_PGen=PMAX(ii);
Min PGen=PMIN(ii);
Hessian(4*nbb+send, 4*nbb+send)=Hessian(4*nbb+send,4*nbb+send)...
+Ckg;
if(Stat==0)
grad(4*nbb+send)=grad(4*nbb+send) - (MiuG+Ckg* (PGenI- ...
Max_Pgen));
end
if (Stat==2)
grad(4*nbb+send)=grad(4*nbb+send) - (MiuG+Ckg* (PGenI-...
Min PGen));
end
if (ActivedP(ii)==0)
ActivedP(ii)=1;
end
end
end
return; %$%End of AugmentedLagrangianG function

function [Hessian,grad,ActivedV] = AugmentedLagrangian IV(nbb,...
Hessian,grad,Ckv,vmax,vmin,StatusVoltage,VM,ActivedV,MiuBus,ii);
Vol=VM(ii);

VolMax=vmax(ii);

VolMin=vmin(ii);

StatV=StatusVoltage(ii);

MiuB=MiuBus(ii);

send= ii;

Hessian(nbb+send, nbb+send)=Hessian(nbb+send,nbb+send)+Ckv;
if(Statv==0)
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grad(nbb+send)=grad(nbb+send)-(MiuB+Ckv* (Vol-VolMax));
end
if (Statv==2)

grad (nbb+send)=grad(nbb+send) - (MiuB+Ckv* (Vol-VolMin));
end
if (ActivedV(send)==0);ActivedV(send)=1;end
return; %$%End of AugmentedLagrangian_ IV function

function [MiuBus,NumMiu_ V,ValMiu V,RelVol] = IdentifyMiuBus(...
StatusVoltage,MiuBus,Ckv,VM,vmax,vmin,Activedv,RelVol, NumMiu V,...
ValMiu V,ii);
Tolerance=0.0001;
StatV=StatusVoltage(ii);
if(MiuBus(ii)==0),Tolerance=0;end
temp=MiuBus(ii);
if (Statv==0)
MiuBus (ii)=MiuBus(ii)+Ckv*(VM(ii)-vmax(ii)+Tolerance);
end
if (Statv==2)
MiuBusS(ii)=MiuBus(ii)+Ckv* (VM(ii)-vmin(ii)-Tolerance);
end
Kindex=0.0;
Kindex1=0.0;
if (Statv==1),Kindex1l=Kindex; end
if (Activedv(ii)==2)
if (Statv==0)
if (MiuBus(ii)<0),Kindex1=MiuBus(ii); end
if (MiuBus(ii)>=0),Kindex1=0; end
if (Kindex1<0),Kindexl=-Kindexl; end
end
if (Statv==2)
if (MiuBus(ii)>0),Kindex1=MiuBus(ii); end
if (MiuBus(ii)<=0),Kindex1=0; end
if (Kindex1<0),Kindexl=-Kindexl; end
end
end
MiuBus (ii)=temp;
if (Kindex1>0)
RelVol=RelVol+l;
NumMiu_ V(RelVol)=ii;
ValMiu_V(RelVol)=Kindex;
end
return; %%End of IdentifyMiuBus function

function [Hessian,grad,ActivedP] = AugmentedLagrangian IG(ngn,...
Hessian,grad,Ckg,PMIN,PMAX,StatP,PGEN,ActivedP,MiuGen,ii);
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send=ii;
PGenI=PGEN(ii);
Stat=StatP(ii);
MiuG= MiuGen(ii);
Max PGen=PMAX(ii);
Min_ PGen=PMIN(ii);

Hessian(4*nbb+send, 4*nbb+send)=Hessian(4*nbb+send, 4*nbb+send)+Ckg;
if (Stat==0)
grad(4*nbb+send)=grad(4*nbb+send)- (MiuG+Ckg* (PGenI-Max PGen));

end

if (Stat==2)
grad(4*nbb+send)=grad(4*nbb+send)-(MiuG+Ckg* (PGenI-Min PGen));

end

if (ActivedP(ii)==0);ActivedP(ii)=1;end

return; %$%End of AugmentedLagrangian IG function

function [MiuBus,NumMiu_ P,ValMiu P,RelGen] = IdentifyMiuGen...
(StatP,MiuGen,Ckg,PGEN,PMAX,PMIN,ActivedP,RelGen,NumMiu P, ...
ValMiu P,ii);
Tolerance=0.0000001;
Stat=StatP(ii);
if(MiuGen(ii)==0),Tolerance=0;end
temp=MiuGen(ii);
Kindex=0.0;
Kindex1=0.0;
if (Stat==0),MiuGen(ii)=MiuGen(ii)+Ckg* (PGen+Tolerance-Max PGen) ;end
if (Stat==2),MiuGen(ii)=MiuGen(ii)+Ckg* (PGen-Tolerance-Min PGen) ;end
if(Stat==1),Kindex1=Kindex;end
if (ActivedP(ii)==2)
if (Stat==0)
if (MiuGen(ii)<0),Kindex1l=MiuGen(ii);end
if (MiuGen(ii)>0),Kindex1=0;end
if (Kindex1<0),Kindexl=-Kindexl;end
end
if (Stat==2)
if (MiuGen(ii)>0),Kindex1=MiuGen(ii);end
if (MiuGen(ii)<0),Kindex1=0;end
if (Kindex1<0),Kindexl=-Kindexl;end
end
end
MiuGen(ii)=temp;
if (Kindex1>0)
RelGen=RelGen+l;
NumMiu P(RelVol)=ii;
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ValMiu_ P(RelVol)=Kindex;
end
return; %3%End of IdentifyMiuGen function

function [Hessian,grad,ActivedV,StatusVoltage] =...
ReleasingAumentedLagrangianV(VM,vmax,vmin,StatusVoltage,MiuBus, ...
Hessian,grad,Ckv,ActivedV,StatusVoltage,send);

Vol=VM(send);

VolMax=vmax(send) ;

VolMin=vmin(send);

StatV=StatusVoltage(send);

MiuB=MiuBus (send);
Hessian(nbb+send,nbb+send)=Hessian(nbb+send,nbb+send)-Ckv;
if(Statv==0),grad(nbb+send)=grad(nbb+send)+MiuB+Ckv* (Vol-VolMax) ;end
if(Statv==2),grad(nbb+send)=grad(nbb+send)+MiuB+Ckv* (Vol-VolMin) ;end
ActivedV(send)=0;

StatusVoltage(send)=1;

return; $%End of ReleasingAumentedLagrangianV function

function [Hessian,grad,ActivedP,StatP]=ReleasingAumentedLagrangianG...
(PGEN, PMAX,PMIN, StatP,MiuGen,Hessian, grad,Ckg,ActivedP,StatP,send);
PGenI=PGEN(send);
Stat=StatP(send);
MiuG=MiuGen(send);
Hessian(4*nbb+send, 4*nbb+send)=Hessian(4*nbb+send, 4*nbb+send)-Ck;
if(Stat==0)

grad(4*nbb+send)=grad(4*nbb+send)+MiuG+Ckg* (PGenI-PMAX(send));
end
if(Stat==2),

grad(4*nbb+send)=grad(4*nbb+send)+MiuG+Ckg* (PGenI-PMIN(send));
end
ActivedP(send)=0;
StatP(send)=1;
return; $%End of ReleasingAumentedLagrangianG function

function [MiuBus] = MultiplierBus (nbb,Ckv,MiuBus,VM,vmax,vmin) ;
TolVoltage=0.00000001;
for(ii = 1:nbb)
if((MiuBus(ii)+Ckv*(VM(ii)-vmax(ii)+TolVoltage)) >=10)
MiuBus (ii)=MiuBus(ii)+Ckv*(VM(ii)-vmax(ii)+TolVoltage);
elseif ((MiuBus(ii)+Ckv*(VM(ii)-vmin(ii)-TolVoltage)) <=0)
MiuBus(ii)=MiuBus(ii)+Ckv*(VM(ii)-vmin(ii)-TolVoltage);
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else
MiuBus(ii)=0;
end
end
return; %$%End of MultiplierBus function

function [MiuGen] = MultiplierGen(ngn,Ckg,MiuGen,PGEN,PMAX,PMIN);
TolPower=0.0000001;
for(ii = 1l:ngn)
if ((MiuGen(ii)+Ckg* (PGEN(ii)-PMAX(ii)+TolPower)) >=0)
MiuGen(ii)=MiuGen(ii)+Ckg* (PGEN(ii)-PMAX(ii)+TolPower);
elseif ((MiuGen(ii)+Ckg* (PGEN(ii)-PMIN(ii)-TolPower)) <= 0)
MiuGen(ii)=MiuGen(ii)+Ckg* (PGEN(ii)-PMIN(ii)-TolPower);
else
MiuGen(ii)=0;
end
end
return; %$%End of MultiplierGen function

function [ChangeStat,Kindexl,statusgen,LambdaQ,ActivedQ,bustype] =...
IdentifyConstQ(ChangeStat, genbus,statusgen,LambdaQ,ActivedQ,...
bustype, ii);
send=genbus (ii);
ChangeStat=statusgen(ii);
Kindex1=0;
if (statusgen(ii)==0)
if (LambdaQ(send)<0)
ActivedQ(ii)=2;
Kindex1=0;
bustype(send)=2;
statusgen(ii)=1;
LambdaQ(send)=0;
else
ActivedQ(ii)=1;
Kindexl=1;
end
end
if(statusgen(ii)==2)
if (LambdaQ(send)>0)
ActivedQ(ii)=2;
Kindex1=0;
bustype(send)=2;
statusgen(ii)=1;
LambdaQ(ii)=0;
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else
ActivedQ(ii)=1;
Kindexl=1;
end
end
if (ChangeStat==statusgen(ii))
ChangeStat=0;
else
ChangeStat=1;
end
return; %$%End of IdentifyConstQ function

function [GenViolado] = CheckQGenLimits (GenViolado,QLOAD,Qbus,...

OMIN, QMAX, genbus,TolPower,ii);

GenViolado=1;

QOpower=QLOAD (genbus (ii))+Qbus (genbus(ii));

if (( (QMIN(genbus(ii))-TolPower )<Qpower) (QMAX(genbus(ii))+TolPower)))
GenViolado=0;

end

return; %$%End of CheckQGenLimits function

function [inl,in2] = MatrixWvVoltageMiu(inl,in2,TolVoltage,VM,vmax, ...
vmin,MiuBus,ActivedV,StatusVoltage,ii);
if(((vmin(ii)-TolVoltage)<VM(ii))&(VM(ii)<(vmax(ii)+TolVoltage)))
inl=0;
else
inl=1;
end
if((VM(1i1)<0.5)|(VM(ii)>1.5))

fprintf( ’\n************************************************’ );

fprintf(’\n* *1Y);
fprintf(’\n* UNFEASIBLE SOLUTION *1);
fprintf(’\n* *1);
fprintf( ’\n************************************************' );
end
delta=0;

if (Activedv(ii)~=0)
if (StatusVoltage(ii)==0)
delta=VM(ii)-vmax(ii);
if(delta<0),delta=-delta; end
if(delta>0.0001),in2=1; end

end

if (StatusVoltage(ii)==2)
delta=VM(ii)-vmax(ii);
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if(delta<0),delta=-delta; end
if(delta>0.0001),in2=1; end
end
end
if (Activedv(ii)==0)
if (MiuBus(ii)>0),in2=1;end
if (MiuBus(ii)<0),in2=1;end
end
return; %$%End of MatrixWvVoltageMiu function

function [in3,in4] = MatrixWGenMiu(in3,in4,TolPower,PGEN,PMAX,PMIN, ...
MiuGen,ActivedP,StatP,ii);
if(((PMIN(ii)-TolPower)<PGEN(ii)) (PMAX(ii)+TolPower)))
in3=0;
else
in3=1;
end
delta=0;
if (ActivedP(ii)~=0)
if(StatP(ii)==0)
delta=PGEN(ii)-PMAX(ii);
if(delta<0),delta=-delta; end
if(delta>0.0001),in4d4=1; end
end
if(StatP(ii)==2)
delta=PGEN(ii)-PMAX(ii);
if(delta<0),delta=-delta; end
if(delta>0.0001),in4d4=1; end
end
end
if (ActivedP(ii)==0)
if (MiuGen(ii)>0),in4=1;end
if(MiuGen(ii)<0),in4=1;end
end
return; %$%End of MatrixWGenMiu function

function [sum] = CheckConvexification(nbb,Cc,VM,VOLTAGE) ;
sum=0;
for( ii = 1: nbb)

sum =sum+Cc* (VM(1ii)-VOLTAGE (ii))* (VM(ii)-VOLTAGE (ii));
end
fprintf(’\n=== Convexification Value ===');
fprintf(’\nC =%%12.8f ', sum);
fprintf('\n’);

return; %$%End of CheckConvexification function
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