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Preface

Flexible alternating-current transmission systems (FACTS) is a recent technological

development in electrical power systems. It builds on the great many advances achieved in

high-current, high-power semiconductor device technology, digital control and signals

conditioning. From the power systems engineering perspective, the wealth of experience

gained with the commissioning and operation of high-voltage direct-current (HVDC) links

and static VAR compensator (SVC) systems, over many decades, in many parts of the globe,

may have provided the driving force for searching deeper into the use of emerging power

electronic equipment and techniques, as a means of alleviating long-standing operational

problems in both high-voltage transmission and low-voltage distribution systems. A large

number of researchers have contributed to the rapid advancement of the FACTS technology,

but the names N.G. Hingorani and L. Gyugyi stand out prominently. Their work on FACTS,

synthesised in their book, Understanding FACT – Concepts and Technology of Flexible AC

Transmission Systems (Institute of Electronic and Electrical Engineers, New York, 2000), is

a source of learning and inspiration.

Following universal acceptance of the FACTS technology and the commissioning of a vast

array of controllers in both high-voltage transmission and low voltage distribution systems,

research attention turned to the steady-state and dynamic interaction of FACTS controllers

with the power network. The research community responded vigorously, lured by the novelty

of the technology, turning out a very healthy volume of advanced models and high-quality

simulations and case studies. Most matters concerning steady-state modelling and

simulations of FACTS controllers are well agreed on, and the goal of our current book:

FACTS: Modelling and Simulation in Power Networks, is to provide a coherent and

systematic treatise of the most popular FACTS models, their interaction with the power

network, and the main steady-state operational characteristics.

The overall aims and objectives of the FACTS philosophy are outlined in Chapter 1. The

inherent limitations exhibited by high-voltage transmission systems, which are inflexible and

overdesigned, are brought to attention as a means of explaining the background against

which the FACTS technology developed and took hold. The most promising FACTS

controllers and their range of steady-state applicability are described in this chapter.

Chapters 2 and 3 provide a thorough grounding on the mathematical representation of the

most popular FACTS controllers and power plant components. The models are derived from

first principles: by encapsulating the main steady-state operational characteristics and

physical structure of the actual equipment, advanced power system models are developed in

phase coordinates. As a by-product, more restrictive models are then derived, which are

suitable for positive sequence power system analysis. Software written in Matlab1 code is

given for the most involved aspects of power plant modelling, such as transmission Line

parameter calculation.



The power flow method is the most basic system analysis tool with which to assess the

steady-state operation of a power system. It has been in existence for almost half a century,

having reached quite a sophisticated level of development, in terms of both computational

efficiency and modelling flexibility. The Newton–Raphson method is the de facto standard

for solving the nonlinear power equations, which describe the power systems, owing to its

reliability towards convergence. Chapter 4 covers the theory of positive sequence power flow

in depth, and makes extensions to incorporate cases of adjusted solutions using two

conventional power system controllers. This serves as a preamble to the material presented in

Chapter 5, where a wide range of positive sequence power flow models of FACTS controllers

are developed. Test cases and software written in Matlab1 code is provided for each

controller to enable the reader to gain ample experience with the various models provided.

Furthermore, suitable coding of the Jacobian elements given in Appendix A enables more

general FACTS power flow computer programs than those given in Chapter 5.

The concepts used in the study of positive sequence power flow in Chapters 4 and 5 are

extended in Chapter 6 to address the more involved topic of three-phase power flow. The first

part deals with the Newton–Raphson in-phase coordinates using simplified representations of

conventional power plant components. Software written in Matlab1 code is provided to

enable the solution of small and medium-size three-phase power systems. Advanced models

of conventional power plants are not included in the Matlab1 function given in this chapter

but their incorporation is a straightforward programming exercise. The second half of

Chapter 6 addresses the modelling of three-phase controllers within the context of the power

flow Newton–Raphson method, where the voltage and power flow balancing capabilities of

shunt and series FACTS controllers, respectively, are discussed.

The topic of optimal power flow is covered in depth in Chapter 7. Building on the ground

covered in Chapters 4 and 5, the theory of positive sequence power flow is blended with

advanced optimisation techniques to incorporate economic and security aspects of power

system operation. The optimisation method studied in this chapter is Newton’s method,

which exhibits strong convergence and fits in well with the modelling philosophy developed

throughout the book. Both conventional plant equipment and FACTS controller representa-

tions are accommodated with ease within the frame of reference provided by Newton’s

method. To facilitate the extension of a conventional optimal power flow computer program

to include FACTS representation, Appendix B gives the Hessian and gradient elements for all

the FACTS controllers presented in Chapter 7. Software written in Matlab1 code is provided

in Appendix C to carry out non-FACTS optimal power flow solutions of small and medium-

size power systems. The timely issue of power flow tracing is presented in Chapter 8. The

method is based on the principle of proportional sharing and yields unambiguous information

on the contribution of each generator to each transmission Line power flow and load in the

system. Several application examples are presented in the chapter.
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1
Introduction

1.1 BACKGROUND

The electricity supply industry is undergoing a profound transformation worldwide. Market

forces, scarcer natural resources, and an everincreasing demand for electricity are some of

the drivers responsible for such an unprecedented change. Against this background of rapid

evolution, the expansion programmes of many utilities are being thwarted by a variety of

well-founded, environmental, land-use, and regulatory pressures that prevent the licensing

and building of new transmission lines and electricity generating plants. An in-depth

analysis of the options available for maximising existing transmission assets, with high

levels of reliability and stability, has pointed in the direction of power electronics. There is

general agreement that novel power electronics equipment and techniques are potential

substitutes for conventional solutions, which are normally based on electromechanical

technologies that have slow response times and high maintenance costs (Hingorani and

Gyugyi, 2000; Song and Johns, 1999).

An electrical power system can be seen as the interconnection of generating sources and

customer loads through a network of transmission lines, transformers, and ancillary

equipment. Its structure has many variations that are the result of a legacy of economic,

political, engineering, and environmental decisions. Based on their structure, power systems

can be broadly classified into meshed and longitudinal systems. Meshed systems can be

found in regions with a high population density and where it is possible to build power

stations close to load demand centres. Longitudinal systems are found in regions where

large amounts of power have to be transmitted over long distances from power stations to

load demand centres.

Independent of the structure of a power system, the power flows throughout the network

are largely distributed as a function of transmission line impedance; a transmission line with

low impedance enables larger power flows through it than does a transmission line with high

impedance. This is not always the most desirable outcome because quite often it gives rise

to a myriad of operational problems; the job of the system operator is to intervene to try to

achieve power flow redistribution, but with limited success. Examples of operating problems

to which unregulated active and reactive power flows may give rise are: loss of system

stability, power flow loops, high transmission losses, voltage limit violations, an inability to

utilise transmission line capability up to the thermal limit, and cascade tripping.

FACTS: Modelling and Simulation in Power Networks.
Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez and César Angeles-Camacho
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In the long term, such problems have traditionally been solved by building new power plants

and transmission lines, a solution that is costly to implement and that involves long

construction times and opposition from pressure groups. It is envisaged that a new solution

to such operational problems will rely on the upgrading of existing transmission corridors

by using the latest power electronic equipment and methods, a new technological thinking

that comes under the generic title of FACTS – an acronym for flexible alternating current

transmission systems.

1.2 FLEXIBLE ALTERNATING CURRENT TRANSMISSION SYSTEMS

In its most general expression, the FACTS concept is based on the substantial incorporation

of power electronic devices and methods into the high-voltage side of the network, to make

it electronically controllable (IEEE/CIGRÉ, 1995).

Many of the ideas upon which the foundation of FACTS rests evolved over a period of

many decades. Nevertheless, FACTS, an integrated philosophy, is a novel concept that was

brought to fruition during the 1980s at the Electric Power Research Institute (EPRI), the

utility arm of North American utilities (Hingorani and Gyugyi, 2000). FACTS looks at ways

of capitalising on the many breakthroughs taking place in the area of high-voltage and high-

current power electronics, aiming at increasing the control of power flows in the high-

voltage side of the network during both steady-state and transient conditions. The new

reality of making the power network electronically controllable has started to alter the way

power plant equipment is designed and built as well as the thinking and procedures that go

into the planning and operation of transmission and distribution networks. These

developments may also affect the way energy transactions are conducted, as high-speed

control of the path of the energy flow is now feasible. Owing to the many economical and

technical benefits it promised, FACTS received the uninstinctive support of electrical

equipment manufacturers, utilities, and research organisations around the world (Song and

Johns, 1999).

Several kinds of FACTS controllers have been commissioned in various parts of the

world. The most popular are: load tap changers, phase-angle regulators, static VAR compen-

sators, thyristor-controlled series compensators, interphase power controllers, static

compensators, and unified power flow controllers (IEEE/CIGRÉ, 1995).

It was recognised quite early on the development programme of the FACTS technology

that, in order to determine the effectiveness of such controllers; on a networkwide basis, it

would be necessary to upgrade most of the system analysis tools with which power engineers

plan and operate their systems. Some of the tools that have received research attention and,

to a greater or lesser extent, have reached a high degree of modelling sophistication are:

� positive sequence power flow;

� three-phase power flow;

� optimal power flow;

� state estimation;

� transient stability;

� dynamic stability;

� electromagnetic transients;

� power quality.
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This book covers in breadth and depth the modelling and simulation methods required for

a thorough study of the steady-state operation of electrical power systems with FACTS

controllers. The first three application areas, which are clearly defined within the realm of

steady-state operation, are addressed in the book. The area of FACTS state estimation is still

under research and no definitive models or simulation methods have emerged, as yet. A great

deal of research progress has been made on the modelling and simulation of FACTS con-

trollers for transient and dynamic stability, electromagnetic transients, and power quality,

but the simulation tools required to conduct studies in such application areas are not really

suited to conduct steady-state power systems analysis, and they are not covered in this book.

1.3 INHERENT LIMITATIONS OF TRANSMISSION SYSTEMS

The characteristics of a given power system evolve with time, as load grows and generation

is added. If the transmission facilities are not upgraded sufficiently the power system

becomes vulnerable to steady-state and transient stability problems, as stability margins

become narrower (Hingorani and Gyugyi, 2000).

The ability of the transmission system to transmit power becomes impaired by one or

more of the following steady-state and dynamic limitations (Song and Johns, 1999):

� angular stability;

� voltage magnitude;

� thermal limits;

� transient stability;

� dynamic stability.

These limits define the maximum electrical power to be transmitted without causing damage

to transmission lines and electric equipment. In principle, limitations on power transfer can

always be relieved by the addition of new transmission and generation facilities. Alternati-

vely, FACTS controllers can enable the same objectives to be met with no major alterations

to system layout. The potential benefits brought about by FACTS controllers include

reduction of operation and transmission investment cost, increased system security and

reliability, increased power transfer capabilities, and an overall enhancement of the quality

of the electric energy delivered to customers (IEEE/CIGRÉ, 1995).

1.4 FACTS CONTROLLERS

Power flow control has traditionally relied on generator control, voltage regulation by means

of tap-changing and phase-shifting transformers, and reactive power plant compensation

switching. Phase-shifting transformers have been used for the purpose of regulating active

power in alternating current (AC) transmission networks. In practice, some of them

are permanently operated with fixed angles, but in most cases their variable tapping facilities

are actually made use of.

Series reactors are used to reduce power flow and short-circuit levels at designated

locations of the network. Conversely, series capacitors are used to shorten the electrical

length of lines, hence increasing the power flow. In general, series compensation is switched

on and off according to load and voltage conditions. For instance, in longitudinal power

FACTS CONTROLLERS 3



systems, series capacitive compensation is bypassed during minimum loading in order to

avoid transmission line overvoltages due to excessive capacitive effects in the system. Con-

versely, series capacitive compensation is fully utilised during maximum loading, aiming at

increasing the transfer of power without subjecting transmission lines to overloads.

Until recently, these solutions served well the needs of the electricity supply industry.

However, deregulation of the industry and difficulties in securing new ‘rights of way’ have

created the momentum for adopting new, radical technological developments based on high-

voltage, high-current solid-state controllers (Hingorani and Gyugyi, 2000). A few years ago,

in partnership with manufacturers and research organisations, the supply industry embarked

on an ambitious programme to develop a new generation of power electronic-based plant

components (Song and Johns, 1999). The impact of such developments has already made

inroads in all three areas of the business, namely, generation, transmission, and distribution.

Early developments of the FACTS technology were in power electronic versions of the

phase-shifting and tap-changing transformers. These controllers together with the electronic

series compensator can be considered to belong to the first generation of FACTS equipment.

The unified power flow controller, the static compensator, and the interphase power

controller are more recent developments. Their control capabilities and intended function

are more sophisticated than those of the first wave of FACTS controllers. They may be

considered to belong to a second generation of FACTS equipment. Shunt-connected

thyristor-switched capacitors and thyristor-controlled reactors, as well as high-voltage

direct-current (DC) power converters, have been in existence for many years, although their

operational characteristics resemble those of FACTS controllers.

A number of FACTS controllers have been commissioned. Most of them perform a useful

role during both steady-state and transient operation, but some are specifically designed to

operate only under transient conditions, for instance, Hingorani’s subsynchronous resonance

(SSR) damper.

FACTS controllers intended for steady-state operation are as follows (IEEE/CIGRÉ,

1995):

� Thyristor-controlled phase shifter (PS): this controller is an electronic phase-shifting

transformer adjusted by thyristor switches to provide a rapidly varying phase angle.

� Load tap changer (LTC): this may be considered to be a FACTS controller if the tap

changes are controlled by thyristor switches.

� Thyristor-controlled reactor (TCR): this is a shunt-connected, thyristor-controlled reactor,

the effective reactance of which is varied in a continuous manner by partial conduction

control of the thyristor valve.

� Thyristor-controlled series capacitor (TCSC): this controller consists of a series capacitor

paralleled by a thyristor-controlled reactor in order to provide smooth variable series

compensation.

� Interphase power controller (IPC): this is a series-connected controller comprising two

parallel branches, one inductive and one capacitive, subjected to separate phase-shifted

voltage magnitudes. Active power control is set by independent or coordinated adjust-

ment of the two phase-shifting sources and the two variable reactances. Reactive power

control is independent of active power.

� Static compensator (STATCOM): this is a solid-state synchronous condenser connected in

shunt with the AC system. The output current is adjusted to control either the nodal

voltage magnitude or the reactive power injected at the bus.

4 INTRODUCTION



� Solid-state series controller (SSSC): this controller is similar to the STATCOM but it is

connected in series with the AC system. The output current is adjusted to control either the

nodal voltage magnitude or the reactive power injected at one of the terminals of the

series-connected transformer.

� Unified power flow controller (UPFC): this consists of a static synchronous series

compensator (sssc) and a STATCOM, connected in such a way that they share a common

DC capacitor. The UPFC, by means of an angularly unconstrained, series voltage injection,

is able to control, concurrently or selectively, the transmission line impedance, the nodal

voltage magnitude, and the active and reactive power flow through it. It may also provide

independently controllable shunt reactive compensation.

Power electronic and control technology have been applied to electric power systems for

several decades. HVDC links and static VAR compensators are mature pieces of technology:

� Static VAR compensator (SVC): this is a shunt-connected static source or sink of reactive

power.

� High-voltage direct-current (HVDC) link: this is a controller comprising a rectifier

station and an inverter station, joined either back-to-back or through a DC cable. The

converters can use either conventional thyristors or the new generation of semiconductor

devices such as gate turn-off thyristors (GTOs) or insulated gate bipolar transistors

(IGBTs).

The application of FACTS controllers to the solution of steady-state operating problems is

outlined in Table 1.1.

Table 1.1 The role of FACTS (flexible alternating current transmission systems) controllers in power

system operation

Operating problem Corrective action FACTS controller

Voltage limits:

Low voltage at heavy load Supply reactive power STATCOM, SVC,

High voltage at low load Absorb reactive power STATCOM, SVC, TCR

High voltage following Absorb reactive power; STATCOM, SVC, TCR

an outage prevent overload

Low voltage following Supply reactive power; STATCOM, SVC

an outage prevent overload

Thermal limits:

Transmission circuit overload Reduce overload TCSC, SSSC, UPFC, IPC, PS

Tripping of parallel circuits Limit circuit loading TCSC, SSSC, UPFC, IPC, PS

Loop flows:

Parallel line load sharing Adjust series reactance IPC, SSSC, UPFC, TCSC, PS

Postfault power flow sharing Rearrange network or use IPC, TCSC, SSSC, UPFC, PS

thermal limit actions

Power flow direction reversal Adjust phase angle IPC, SSSC, UPFC, PS
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1.5 STEADY-STATE POWER SYSTEM ANALYSIS

In order to assist power system engineers to assess the impact of FACTS equipment on

transmission system performance, it has become necessary to write new power system

software or to upgrade existing software (Ambriz-Pérez, 1998; Fuerte-Esquivel, 1997).

This has called for the development of a new generation of mathematical models for

transmission systems and FACTS controllers, which had to be blended together, coded, and

extensively verified. This has been an area of intense research activity, which has given rise

to a copious volume of publications. Many aspects of FACTS modelling and simulation

have reached maturity, and we believe that the time is ripe for such an important and large

volume of information to be put together in a coherent and systematic fashion. This book

aims to achieve such a role in the area of steady-state operation of FACTS-upgraded power

systems.

From the operational point of view, FACTS technology is concerned with the ability to

control, in an adaptive fashion, the path of the power flows throughout the network, where

before the advent of FACTS, high-speed control was very restricted. The ability to control

the line impedance and the nodal voltage magnitudes and phase angles at both the sending

and the receiving ends of key transmission lines, with almost no delay, has significantly

increased the transmission capabilities of the network while considerably enhancing the

security of the system. In this context, power flow computer programs with FACTS

controller modelling capability have been very useful tools for system planners and system

operators to evaluate the technical and economical benefits of a wide range of alternative

solutions offered by the FACTS technology.

Arguably, power flow analysis – also termed load flow analysis in the parlance of power

systems engineers – is the most popular analysis tool used by planning and operation

engineers today for the purpose of steady-state power system assessment. The reliable

solution of real-life transmission and distribution networks is not a trivial matter, and

Newton–Raphson-type methods, with their strong convergence characteristics, have proved

most successful (Fuerte-Esquivel, 1997). Extensive research has been carried out over the

past 10 years in order to implement FACTS models into Newton–Raphson-type power

flow programs. This book offers a thorough grounding on the theory and practice of

positive sequence power flow and three-phase power flow. In many practical situations, it is

desirable to include economical and operational considerations into the power flow

formulation, so that optimal solutions, within constrained solution spaces, can be obtained.

This is the object of optimal power flow algorithms (Ambriz-Pérez, 1998), a topic also

covered in the book.
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2
Modelling of FACTS
Controllers

2.1 INTRODUCTION

Two kinds of emerging power electronics applications in power systems are already well

defined: (1) bulk active and reactive power control and (2) power quality improvement

(Hingorani and Gyugyi, 2000). The first application area is know as FACTS, where the latest

power electronic devices and methods are used to control the high-voltage side of the

network electronically (Hingorani, 1993). The second application area is custom power,

which focuses on low-voltage distribution and is a technology created in response to reports

of poor power quality and reliability of supply affecting factories, offices, and homes. It is

expected that when widespread deployment of the technology takes place, the end-user will

see tighter voltage regulation, minimum power interruptions, low harmonic voltages, and

acceptance of rapidly fluctuating and other nonlinear loads in the vicinity (Hingorani, 1995).

The one-line diagram shown in Figure 2.1 illustrates the connection of power plants in an

interconnected transmission system, where the boundary between the high-voltage

transmission and the low-voltage distribution is emphasised. The former benefits from the

installation of FACTS equipment whereas the latter benefits from the installation of custom

power equipment.

To a greater or lesser extent, high-voltage transmission systems are highly meshed. For

many decades the trend has been towards interconnection, linking generators and loads into

large integrated systems. The motivation has been to take advantage of load diversity,

enabling a better utilisation of primary energy resources.

From the outset, interconnection was aided by breakthroughs in high-current, high-power

semiconductor valve technology (Arrillaga, 1998). Thyristor-based high-voltage direct-

current (HVDC) converter installations provided a means for interconnecting power systems

with different operating frequencies – e.g. 50/60Hz, for interconnecting power systems

separated by the sea and for interconnecting weak and strong power systems (Hingorani,

1996). The most recent development in HVDC technology is the HVDC system based on

solid-state voltage source converters, which enables independent, fast control of active and

reactive powers (McMurray, 1987).

FACTS: Modelling and Simulation in Power Networks.
Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez and César Angeles-Camacho
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Power electronics is a ubiquitous technology that has affected every aspect of electrical

power networks, not just HVDC transmission but also alternating current (AC) transmission,

distribution, and utilisation. Deregulated markets are imposing further demands on

generating plants, increasing their wear and tear and the likelihood of generator instabilities

of various kinds. To help to alleviate such problems, power electronic controllers have

recently been developed to enable generators to operate more reliably in the new

marketplace. The thyristor-controlled series compensator (TCSC) is used to mitigate

subsynchronous resonances (SSRs) and to damp power system oscillations (Larsen et al.,

1992). However, it may be argued that the primary function of the TCSC, like that of its

mechanically controlled counterpart, the series capacitor bank, is to reduce the electrical

length of the compensated transmission line. Hence, the aim is still to increase power

transfers significantly, but with increased transient stability margins. With reference to the

schematic network of Figure 2.1, the TCSC is deployed on the FACTS side.

For most practical purposes the thyristor-based static VAR compensator (SVC) has made

the rotating synchronous compensator redundant, except where an increase in the short-

circuit level is required along with fast-acting reactive power support (Miller, 1982).

However, as power electronic technology continues to develop further, the replacement of

the SVC by a new breed of static compensators based on the use of voltage source

converters (VSCs) is looming. They are known as STATCOMs (static compensators) and

provide all the functions that the SVC can provide but at a higher speed (IEEE/CIGRÉ,

1995); it is more compact and requires only a fraction of the land required by an SVC

installation. The STATCOM is essentially a VSC interfaced to the AC system through a

shunt-connected transformer. The VSC is the basic building block of the new generation of

Transmission
substation

Power plant

Transformer

Distribution
transformers

400 V

3 – 34 kV120 – 765 kV

Distribution
feeder

Distribution
substation

Transmission
(FACTS)

Distribution
(custom power)

Figure 2.1 A simplified one-line diagram of a power system. Redrawn, with permission, from N.G.

Hingorani, ‘Introducing Custom Power’, IEEE Spectrum 32(6) 41–48, # 1995 IEEE
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power electronic controllers that have emerged from the FACTS and custom power

initiatives (Hingorani and Gyugyi, 2000). In high-voltage transmission, the most popular

FACTS equipment are: the STATCOM, the unified power flow controller (UPFC) and

the HVDC-VSC. At the low-voltage distribution level, the SVC provides the core of the

following custom power equipment: the distribution STATCOM, the dynamic voltage

restorer, and active filters.

2.2 MODELLING PHILOSOPHY

The remit of this book is the study of models and procedures with which to assess the

steady-state operation of electrical power systems at the fundamental frequency. The power

system application tool is termed ‘power flows’, and the most popular variants of the tool

are presented in this book; namely, positive sequence power flow (Stagg and El-Abiad,

1968), optimal power flow (Wood and Wollenberg, 1984), and three-phase power flow

(Arrillaga and Arnold, 1990). The first two applications deal with cases of balanced

operation, for nonoptimal and optimal solutions, respectively. The third application deals

with unbalanced operation induced by imbalances present either in plant components or in

system load. In this book, all three applications incorporate representation of conventional

power plant components and FACTS controllers.

The modelling of FACTS controllers in both the phase domain and the sequence domain

is addressed in this chapter, and Chapter 3 deals with the representation of conventional

power plant components in both domains. All models are developed from first principles,

with strong reference to the physical structure of the equipment. Such an approach is

amenable to flexible models useful for assessing the operation of plant components in

network-wide applications, taking due care of equipment design imbalances, which are

naturally present in all power plant equipment. However, if such imbalances are small and

can be neglected in the study, then simpler models of plant components become readily

available, in the form of sequence domain models.

It should be kept in mind that, in this book, the interest is in steady-state analysis at the

fundamental frequency, and the models developed reflect this fact. They are not suitable for

assessing the periodic steady-state operation of power systems (Acha and Madrigal, 2001)

or their dynamic or transient operation (Kundur, 1994).

2.3 CONTROLLERS BASED ON CONVENTIONAL THYRISTORS

Power electronic circuits using conventional thyristors have been widely used in power

transmission applications since the early 1970s (Arrillaga, 1998). The first applications took

place in the area of HVDC transmission, but shunt reactive power compensation using fast

controllable inductors and capacitors soon gained general acceptance (Miller, 1982). More

recently, fast-acting series compensators using thyristors have been used to vary the

electrical length of key transmission lines, with almost no delay, instead of the classical

series capacitor, which is mechanically controlled. In distribution system applications, solid-

state transfer switches using thyristors are being used to enhance the reliability of supply to

critical customer loads (Anaya-Lara and Acha, 2002).
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In this section, the following three thyristor-based controllers receive attention: the

thyristor-controlled reactor (TCR), the SVC and the TCSC. The operational characteristic of

each one of these controllers is studied with particular reference to steady-state operation.

2.3.1 The Thyristor-controlled Reactor

The main components of the basic TCR are shown in Figure 2.2(a). The controllable

element is the antiparallel thyristor pair, Th1 and Th2, which conducts on alternate half-

cycles of the supply frequency. The other key component is the linear (air-core) reactor of

inductance L (Miller, 1982). The thyristor circuit symbol is shown in Figure 2.2(b).

The overall action of the thyristor controller on the linear reactor is to enable the reactor

to act as a controllable susceptance, in the inductive sense, which is a function of the firing

angle �. However, this action is not trouble free, since the TCR achieves its fundamental

frequency steady-state operating point at the expense of generating harmonic distortion,

except for the condition of full conduction.

First, consider the condition when no harmonic distortion is generated by the TCR, which

takes place when the thyristors are gated into conduction, precisely at the peaks of the

supply voltage. The reactor conducts fully, and one could think of the thyristor controller as

being short-circuited. The reactor contains little resistance and the current is essentially

sinusoidal and inductive, lagging the voltage by almost 90�(p/2). This is illustrated in

Figure 2.3(a), where a fundamental frequency period of the voltage and current are shown.

It should be mentioned that this condition corresponds to a firing angle � of p/2, which is

the current zero-crossing measured with reference to the voltage zero-crossing. The

relationship between the firing angle � and the conduction angle � is given by

� ¼ 2ðp� �Þ: ð2:1Þ
Partial conduction is achieved with firing angles in the range: p=2 < � < p, in radians. This

is illustrated in Figures 2.3(b)–2.3(d), where TCR currents, as a function of the firing angle,

iTCR (t)

v(t) Th2 Th1

L

(b)

Anode
(A)

Gate
(G)

Cathode
(K)

(a)

Figure 2.2 Thyristor-based circuit: (a) Basic thyristor-controlled reactor (TCR); (b) thyristor circuit

symbol.
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are shown. Increasing the value of firing angle above p/2 causes the TCR current waveform

to become nonsinusoidal, with its fundamental frequency component reducing in

magnitude. This, in turn, is equivalent to an increase in the inductance of the reactor,

reducing its ability to draw reactive power from the network at the point of connection.

For the voltage condition shown in Figure 2.2(a), with vðtÞ ¼ ffiffiffi
2

p
V sin!t, the TCR

instantaneous current iTCRðtÞ is given by

iTCRðtÞ ¼ 1

L

ð !t

�

ffiffiffi
2

p
V sin!t dt ¼

ffiffiffi
2

p
V

!L
ðcos�� cos!tÞ ð2:2Þ

in the interval � � !t � ð�þ �Þ, and is zero otherwise. V is the root mean square (rms)

voltage, and ! ¼ 2pf , where f is the operating frequency.

Using Fourier analysis, an expression for the fundamental frequency current, ITCRf1, is

found:

ITCR f1 ¼ V

j!Lp
½2 p� �Þ þ sin 2��:ð ð2:3Þ

90 180 270 360

v
i

0 90 180 270 3600

90 180 270 3600 90 180 270 360

Phase (degrees)

0

(d)

Phase (degrees)

(b)

Phase (degrees)

(a)

Phase (degrees)

(c)

i,
v

i i
i

Figure 2.3 Current waveforms in the basic thyristor-controlled reactor: (a) � ¼ 90�, � ¼ 180�;
(b) � ¼ 100�, � ¼ 160�; (c) � ¼ 130�, � ¼ 100�; (d) � ¼ 150�, � ¼ 60�; for convenience, angles are
given in degrees. Note: i, current; v, voltage; �, firing angle; �, conduction angle. Reproduced by

permission of John Wiley & Sons Inc. from T.J.E Miller, 1982, Reactive Power Control in Electric

Systems
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If the firing angles of Th1 and Th2 are balanced, no even harmonics are generated, and the

rms value of the hth odd harmonic current is given by

ITCR h ¼ 4 V

j!Lp
sinðhþ 1Þ�
2ðhþ 1Þ þ sin h� 1Þ�

2ðh� 1Þ � cos�
sin h�

h

� �
; ð2:4Þ

where h ¼ 3, 5, 7, 9, 11, 13 . . . .
Power system TCR installations are three-phase and use filters and other harmonic

cancellation arrangements to prevent the harmonic currents from reaching the high-voltage

side of the network. Also, the TCR inductors will have a small resistive component. By way

of example, Figure 2.4 shows a three-phase, delta-connected TCR. This topology uses six

groups of thyristor and is commonly known as a six-pulse TCR.

In this arrangement, and under balanced operating conditions, the triplet harmonic

currents generated by the three TCR branches do not reach the external network, only

harmonic orders h ¼ 5, 7, 11, 13, . . . . Moreover, if the TCR is split into two units of equal

rating and connected to the low-voltage side of a transformer having two secondary

windings, one connected in star and the other in delta, then cancellation of harmonic orders

h ¼ 5, and h ¼ 7 is achieved. The alternative arrangement is termed a twelve-pulse TCR.

The lowest harmonic orders reaching the primary winding of the transformer are h ¼ 11,

13, . . . , which are normally removed by using tuned filters (Miller, 1982).

We would assume in the ensuing analysis that suitable harmonic cancellation measures

are in place, as we are concerned only with fundamental frequency operation and

parameters. However, neither balanced operation nor balanced TCR designs will be

Va

V b

Vc

ITC Rc ITC Rb ITC Ra

ITC R1 ITC R2 ITC R3

Branch 1 Branch 2 Branch 3

Figure 2.4 Three-phase thyristor-controlled reactor
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assumed a priori. It is not difficult to see from Equation (2.3) that a part of it may

be interpreted as the equivalent susceptances of the basic TCR shown in Figure 2.2, which is

a function of the controllable parameters �. Accordingly, Equation (2.3) may be expressed

by

ITCR ¼ �jBTCRV ; ð2:5Þ
where

BTCR ¼ 2ðp� �Þ þ sin 2�

!Lp
; ð2:6Þ

and the subscript f1, which indicates fundamental frequency current, has been dropped for

convenience.

The three-phase nodal admittance representation of a TCR may be obtained by resorting

to linear transformations. For instance, using the result in Equation (2.5), the case of the six-

pulse TCR shown in Figure 2.4 will have the following primitive parameters:

ITCR 1

ITCR 2

ITCR 3

2
4

3
5 ¼

�jBTCR 1 0 0

0 �jBTCR2 0

0 0 �jBTCR3

2
4

3
5 V1

V2

V3

2
4

3
5; ð2:7Þ

and connectivity matrices for phases a, b, c:

V1

V2

V3

2
64

3
75 ¼ ðp=6Þffiffiffi

3
p

1 �1 0

0 1 �1

�1 0 1

2
64

3
75

Va

Vb

Vc

2
64

3
75; ð2:8Þ

ITCR a

ITCR b

ITCR c

2
4

3
5 ¼ ð�p=6Þffiffiffi

3
p

1 0 �1

�1 1 0

0 �1 1

2
4

3
5 ITCR1

ITCR2
ITCR3

2
4

3
5: ð2:9Þ

Substituting Equation (2.8) into Equation (2.7), and the intermediate result into Equa-

tion (2.9), we obtain the following phase domain equivalent circuit for the six-pulse TCR:

ITCR a

ITCR b

ITCR c

2
4

3
5 ¼ 1

3

�jðBTCR1 þ BTCR3Þ jBTCR 1 jBTCR 3

jBTCR 1 �jðBTCR1 þ BTCR2Þ jBTCR 2

jBTCR 3 jBTCR 2 �jðBTCR2 þ BTCR3Þ

2
4

3
5 Va

Vb

Vc

2
4

3
5:

ð2:10Þ
As as special condition, if all three branches in the TCR have equal equivalent

susceptances (BTCR 1 ¼ BTCR2 ¼ BTCR 3 ¼ BTCR), something that is possible to achieve by

careful design, Equation (2.10) simplifies to

ITCR a

ITCR b

ITCR c

2
4

3
5 ¼ 1

3

�j2BTCR jBTCR jBTCR

jBTCR �j2BTCR jBTCR

jBTCR jBTCR �j2BTCR

2
4

3
5 Va

Vb

Vc

2
4

3
5: ð2:11Þ

In this situation, an alternative representation becomes feasible, using the frame of reference

afforded by the concept of symmetrical components. Three sequence components are

associated with three-phase circuits, namely zero (0), positive (1), and negative (2)

sequences. The transformation from phase coordinates to sequence coordinates involves

CONTROLLERS BASED ON CONVENTIONAL THYRISTORS 15



applying the matrix of symmetrical components TS and its inverse to Equation (2.11),

leading to the following result:

ITCR ð0Þ
ITCR ð1Þ
ITCR ð2Þ

2
4

3
5 ¼

0 0 0

0 �jBTCR 0

0 0 �jBTCR

2
4

3
5 Vð0Þ

Vð1Þ
Vð2Þ

2
4

3
5: ð2:12Þ

The operation required to transform a three-phase quantity into sequence quantities is

explained in detail in Section 3.2.12.

As expected, no zero sequence current can flow in this circuit owing to the delta-

connected nature of the TCR. The positive sequence (1) and negative sequence (2) circuits

present equal impedances (susceptances) to their respective current flows. Also, it is shown

in Equation (2.12) that no couplings exist between sequences. It should be remarked

that this would not have been the case if symmetrical components had been applied to

Equation (2.10) as opposed to Equation (2.11). The reason is that the admittance matrix

of Equation (2.10) is not necessarily a balanced one, since the condition BTCR 1 6¼ BTCR2 6¼
BTCR 3 may exist.

Nevertheless, if equal equivalent admittances may be assumed in the six-pulse TCR then

the positive sequence representation becomes

ITCR ð1Þ ¼ �jBTCRVð1Þ: ð2:13Þ
This representation matches the behaviour of the basic (single-phase) TCR shown in

Figure 2.2(a) and given by Equation (2.5).

2.3.2 The Static VAR Compensator

In its simplest form, the SVC consists of a TCR in parallel with a bank of capacitors. From

an operational point of view, the SVC behaves like a shunt-connected variable reactance,

which either generates or absorbs reactive power in order to regulate the voltage magnitude at

the point of connection to the AC network. It is used extensively to provide fast reactive

power and voltage regulation support. The firing angle control of the thyristor enables the

SVC to have almost instantaneous speed of response.

A schematic representation of the SVC is shown in Figure 2.5, where a three-phase, three-

winding transformer is used to interface the SVC to a high-voltage bus. The transformer has

two identical secondary windings: one is used for the delta-connected, six-pulse TCR and

the other for the star-connected, three-phase bank of capacitors, with its star point floating.

The three transformer windings are also taken to be star-connected, with their star points

floating.

The modelling of one TCR branch has been dealt with in Section 2.3.1, and attention is

now dedicated to a bank of capacitors. The admittances of both branches of the SVC will

then combine quite straightforwardly.

The nodal admittance of the capacitor bank, in phase coordinates, may be expressed with

explicit representation of the star point, which is not grounded. However, it is more

advantageous to perform a Kron reduction to obtain a reduced equivalent, where only the

parameters of phases a, b, and c are represented explicitly.
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In the most general case, when BC1 6¼ BC2 6¼ BC3, and after having performed Kron’s

reduction, the reduced equivalent model of the bank of capacitors is:

IC a

IC b

IC c

2
66664

3
77775 ¼

j BC1 � B2
C 1

�BC

� �
�j BC 2BC 1

�BC
�j BC3BC 1

�BC

�j BC 1BC 2

�BC
j BC2 � B2

C 2

�BC

� �
�j BC3BC 2

�BC

�j BC 1BC 3

�BC
�j BC 2BC 3

�BC
j BC3 � B2

C 3

�BC

� �

2
66664

3
77775

Va

Vb

Vc

2
66664

3
77775; ð2:14Þ

where

�BC ¼ BC1 þ BC2 þ BC3;

BC1 ¼ !C1;

BC2 ¼ !C2;

BC3 ¼ !C3:

9>>>=
>>>;

ð2:15Þ

Kron’s reduction is a technique used to eliminate mathematically, specific rows and columns

in a matrix equation. It is explained in detail in Section 3.2.3.

If all three branches in the bank of capacitors have equal equivalent susceptances

(BC1 ¼ BC2 ¼ BC3 ¼ BC), Equation (2.14) simplifies to:

IC a

IC b

IC c

2
4

3
5 ¼ 1

3

j2BC �jBC �jBC

�jBC j2BC �jBC

�jBC �jBC j2BC

2
4

3
5 Va

Vb

Vc

2
4

3
5: ð2:16Þ

Va

Vb

Vc

ITC Rc ITC Rb ITCRa

ITC R1 ITC R2 ITCR3

Branch 1 Branch 2 Branch 3

C 1 C 2 C 3

ICc ICb ICa

n

Ia

Ib

Ic

Figure 2.5 Representation of a three-phase static VAR compensator (SVC) comprising fixed

capacitors and thyristor-controlled reactors (TCRs)
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Three-phase models of the SVC in phase coordinates can now be formed with ease. The

most general expression for the six-pulse SVC would be the case when Equations (2.10) and

(2.14) are added together, giving rise to a model where design imbalances in the SVC may

be accounted for.

A more constrained, but still very useful, model is the case when Equations (2.11) and

(2.16) are used as the constituent parts of the SVC model:

ISVC a

ISVC b

ISVC c

2
64

3
75 ¼

IC a

IC b

IC c

2
64

3
75þ

ITCR a

ITCR b

ITCR c

2
64

3
75

¼ 1

3

j2ðBC � BTCRÞ �jðBC � BTCRÞ �jðBC � BTCRÞ
�jðBC � BTCRÞ j2ðBC � BTCRÞ �jðBC � BTCRÞ
�jðBC � BTCRÞ �jðBC � BTCRÞ j2ðBC � BTCRÞ

2
64

3
75

Va

Vb

Vc

2
64

3
75: ð2:17Þ

It is clear that alternative models, of varying functionality, can also be formed. For instance,

combination of Equations (2.10) and (2.16) leads to an SVC model where the three branches

of the TCR may have different equivalent inductances but the three capacitances of the bank

are equal. Use of Equations (2.11) and (2.14) have the opposite functionality effect in the

SVC model.

In any case, only the SVC model given by Equation (2.17) is suitable for deriving a

representation in the frame of reference of symmetrical components. Applying the matrix of

symmetrical components TS and its inverse to Equation (2.17) leads to the following result:

ISVC ð0Þ
ISVC ð1Þ
ISVC ð2Þ

2
4

3
5 ¼

0 0 0

0 jðBC � BTCRÞ 0

0 0 jðBC � BTCRÞ

2
4

3
5 Vð0Þ

Vð1Þ
Vð2Þ

2
4

3
5: ð2:18Þ

Similar to the TCR, no zero sequence current can flow in the SVC circuit as the star point

of the bank of capacitors is not grounded. The positive sequence and negative sequence

circuits contain equal impedances. However, for cases of balanced operation and balanced

SVC designs only the positive sequence representation is of interest:

ISVC ð1Þ ¼ jBSVCVð1Þ; ð2:19Þ
where

BSVC ¼ BC � BTCR ¼ 1

XCXL

XL � XC

p
½2ðp� �Þ þ sin 2��

� �
;

XL ¼ !L;

XC ¼ 1

!C
:

9>>>>>=
>>>>>;

ð2:20Þ

It should be remarked that the positive sequence model of the SVC should also serve the

purpose of representing a single-phase SVC.

2.3.3 The Thyristor-controlled Series Compensator

TCSCs vary the electrical length of the compensated transmission line with little delay. This

characteristic enables the TCSC to be used to provide fast active power flow regulation. It
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also increases the stability margin of the system and has proved very effective in damping

SSR and power oscillations (Larsen et al., 1992).

In principle, the steady-state response of the TCSC may be calculated by solving the

differential equations that describe its electrical performance, using a suitable numeric

integration method. Alternatively, the TCSC differential equations may be expressed in

algebraic form and then a phasorial method used to solve them. The former approach

involves the integration of the differential equations over many cycles until the transient

response dies out. This solution method is rich in information as the full evolution of the

response is captured, from transient inception to steady-state operation, but it suffers from

excessive computational overheads, particularly when solving lightly damped circuits. Two

different solution flavours emerge from the phasorial approach. (1) the TCSC steady-state

operation may be determined very efficiently by using fundamental and harmonic frequency

phasors, neatly arranged in the harmonic domain frame of reference (Acha and Madrigal,

2001). The method yields full information for the fundamental and harmonic frequency

TCSC parameters but no transient information is available. (2) Alternatively, a nonlinear

equivalent impedance expression is derived for the TCSC and solved by iteration (Fuerte-

Esquivel, Acha, and Ambriz-Pérez, 2000a). The solution method is accurate and converges

very robustly towards the solution, but it only yields information for the fundamental

frequency steady-state solution. This is precisely the approach taken in power flow studies,

the application topic covered in this book.

2.3.3.1 Thyristor-controlled series capacitor equivalent circuit

A basic TCSC module consists of a TCR in parallel with a fix capacitor. An actual TCSC

comprises one or more modules. Figure 2.6 shows the layout of one phase of the TCSC

installed in the Slatt substation (Kinney, Mittelstadt, and Suhrbier, 1994).

By pass breaker

TCSC

Series

capacitor
(1.99 mF)Varistor

Thyristor
valve

Reactor

(0. 470 mH)
Reactor

(0 .307 mH)

By pass disconnect

Figure 2.6 Physical structure of one phase of a thyristor-controlled series capacitor (TCSC).

Reproduced, with permission, from S.J. Kinney, W.A. Mittelstadt, and R.W. Suhrbier, ‘Test Results

and Initial Operating Experience for the BPA 500 kV Thyristor Controlled Series Capacitor: Design,

Operation, and Fault Test Results, Northcon 95’, in IEEE Technical Conference and Workshops

Northcon 95, Portland, Oregon, USA, October 1995, pp. 268–273, # 1995 IEEE
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The TCR achieves its fundamental frequency operating state at the expense of generating

harmonic currents, which are a function of the thyristor conduction angle. Nevertheless,

contrary to the SVC application where the harmonic currents generated by the TCR tend to

escape towards the network, in the TCSC application the TCR harmonic currents are

trapped inside the TCSC because of the low impedance of the capacitor compared with the

network equivalent impedance. This is, at least, the case for a well-designed TCSC

operating in capacitive mode. Measurements conducted in the Slatt and the Kayenta TCSC

systems support this observation. For instance, the Kayenta system generates at its

terminals, a maximum total harmonic distortion (THD) voltage of 1.5% when operated in

capacitive mode and firing at an angle of 147� (Christl et al., 1992). It should be noted that

there is little incentive for operating the TCSC in inductive mode as this would increase the

electrical length of the compensated transmission line, with adverse consequences on

stability margins, and extra losses.

For the purpose of fundamental frequency power system studies, a complex TCSC

topology, such as the single-phase branch shown in Figure 2.6, may be taken to consist of

one equivalent TCR paralleled by one equivalent capacitor, as illustrated schematically in

Figure 2.7. The surge arrester is not represented as this is a representation intended for

steady-state operation, but the existence of a loop current is emphasised.

This equivalent circuit has an associated equivalent reactance, which is a function of the

thyristor gating signals. Expressions for the various electrical parameters in the TCSC

equivalent circuit are derived in the following two sections.

2.3.3.2 Steady-state current and voltage equations

The TCSC current equations may be obtained with reference to the circuit shown in

Figure 2.8, using Laplace theory. This electric circuit represents, in simple terms, the

C

L

I loop

V TCSC

Figure 2.7 Thyristor-controlled series capacitor (TCSC) equivalent circuit. Reproduced with

permission from C.R. Fuerte-Esquivel, E. Acha, and H. Ambriz-Pérez, ‘A Thyristor Controlled Series

Compensator Model for the Power Flow Solution of Practical Power Networks’, IEEE Trans. Power

Systems 15(1) 58–64, # 2000 IEEE
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topology of a TCR in parallel with a capacitor branch, just before the thyristor fires on. The

thyristor is represented as an ideal switch, and the contribution of the external network is

assumed to be in the form of a sinusoidal current source. The current pulse through the

thyristor, which exhibits a degree of asymmetry right up to the point when the steady-state

is reached, is shown schematically in Figure 2.9. The time reference, termed the ‘original

time reference’ (OR), is taken at the positive-going zero-crossing of the voltage across

the inductive reactance of the TCSC. It is useful at this stage to introduce an ‘auxiliary time

reference’ (AR) in addition to the OR, which is taken at a time when the thyristor starts to

conduct.

Expressing the line current given in the circuit of Figure 2.8, iline ¼ cos!t, in terms of the

auxiliary reference plane (AR),

iline ¼ cos !t � �að Þ ¼ cos!t cos �a þ sin!t sin �a; ð2:21Þ

i cap

i line = 1 cos ω t

i thy

L

C

Figure 2.8 Thyristor-controlled series capacitor (TCSC) electric circuit. Reproduced with

permission from C.R. Fuerte-Esquivel, E. Acha, and H. Ambriz-Pérez, ‘A Thyristor Controlled Series

Compensator Model for the Power Flow Solution of Practical Power Networks’, IEEE Trans. Power

Systems 15(1) 58–64, # 2000 IEEE

α

σa2−σa

π

π

π

− σ a3 π + σ a4

2 π + σ a62 π − σ a5

ω t

i(t)

2

OR

AR

Figure 2.9 Thyristor-controlled series capacitor (TCSC) asymmetrical thyristor current. Note: AR,

auxiliary time reference; OR, original time reference. Reproduced with permission from C.R. Fuerte-

Esquivel, E. Acha, and H. Ambriz-Pérez, ‘A Thyristor Controlled Series Compensator Model for the

Power Flow Solution of Practical Power Networks’, IEEE Trans. Power Systems 15(1) 58–64,# 2000

IEEE
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where �a, equal to �� �, is the firing advance angle, and � is the firing angle with the

capacitor voltage positive-going, zero-crossing as reference.

Applying Kirchhoff’s current law to the circuit of Figure 2.8, we obtain

iline ¼ ithy þ icap: ð2:22Þ
During the conduction period the voltage across the TCSC inductive and capacitive

reactances have equal values,

L
d ithy

d t
¼ 1

C

ð
icap dt þ Vþ

cap; ð2:23Þ

where Vþ
cap is the voltage across the capacitor when the thyristor turns on.

Expressing Equations (2.21)–(2.23) in the Laplace domain, we obtain

Iline ¼ cos �a

s

s2 þ !2

� 	
þ sin �a

!

s2 þ !2

� 	
; ð2:24Þ

Iline ¼ Ithy þ Icap; ð2:25Þ
Icap ¼ s2LC Ithy � CVþ

cap; ð2:26Þ
where s is the Laplace operator.

Substituting Equations (2.24) and (2.26) into Equation (2.25), we obtain the current

through the thyristor in the Laplace domain:

Ithy ¼ !2
0

s

ðs2 þ !2
0Þðs2 þ !2Þ cosð�aÞ þ !2

0

1

ðs2 þ !2
0Þðs2 þ !2Þ! sinð�aÞ þ

!2
0CV

þ
cap

s2 þ !2
0

:

ð2:27Þ
The corresponding expression in the time domain is readily established from the above

equation:

ithy ¼ A cosð!t � �aÞ � A cos �a cos!0t � B sin�a sin!0t þ DVþ
cap sin!0t; ð2:28Þ

where

A ¼ !2
0

!2
0 � !2

; ð2:29Þ

B ¼ !0!

!2
0 � !2

; ð2:30Þ

D ¼ !0C; ð2:31Þ

!2
0 ¼

1

LC
: ð2:32Þ

In order to make Equation (2.28) valid for the range [��a, �a2] in Figure 2.9, it is

necessary to shift the equation to the original time reference, OR, by adding �a /! to the time

variable, to give

ithy ¼ A cos ! t þ �a

!

� �
� �a

h i
� A cos �a cos!0 t þ �a

!

� �
� B sin �a sin!0 t þ �a

!

� �
þ DVþ

cap sin!o t þ �a

!

� �
: ð2:33Þ
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After some arduous algebra, we have,

ithy ¼ A cos!t þ ð�A cos �a cos$�a � B sin �a sin$�a þ DVþ
cap sin$�aÞ cos!0t

þ ðA cos �a sin$�a � B sin �a cos$�a þ DVþ
cap cos$�aÞ sin!0t; ð2:34Þ

where

$ ¼ !0

!
: ð2:35Þ

Equation (2.34) is valid in the range ��a < !t < �a2, and contains the transient and

steady-state components. One further consideration is added to this result to yield the

desired expression for the thyristor current in steady-state, which is reached when the

current pulse in Figure 2.9 becomes symmetrical (i.e. �a ¼ �a2). Such a condition takes

place when the capacitor voltage, Vþ
cap, reaches such a level that the coefficient of the

sinusoidal term, sin!0t, takes a value of zero. At this point in time the capacitor voltage

becomes

Vþ
cap ¼

B

D
sinð�aÞ � A

D
cosð�aÞ tanð$�aÞ: ð2:36Þ

The expression for the steady-state thyristor current is obtained by substituting Equa-

tion (2.36) into Equation (2.34), to give

ithy ¼ A cosð!tÞ � A
cos �a

cosð$�aÞ cosð$!tÞ: ð2:37Þ
With reference to Figure 2.9, when the steady-state is reached

�a ¼ �a2 ¼ �a3 ¼ �a4 ¼ �a5 ¼ �a6: ð2:38Þ
A similar equation to Equation (2.37), valid for the interval ðp� �aÞ < !t < ðpþ �aÞ,

may be obtained by assuming that a second firing pulse, in Figure 2.9, takes place � radians

just after the first pulse, producing a current flow through the thyristor with opposite polarity

to the current given by Equation (2.37):

ithy ¼ A cosð!tÞ þ A
cosð�aÞ
cosð$�aÞ cos½$ð!t � pÞ�: ð2:39Þ

For completeness, in the interval �a < !t < ðp� �aÞ:
ithy ¼ 0: ð2:40Þ

Expressions for the voltage across the TCSC capacitor during the conduction period voncap
are obtained by substituting Equations (2.37) and (2.39) into:

voncap ¼ L
d ithy

d t
: ð2:41Þ

The combined solution of Equations (2.37), (2.39), and (2.41) gives the voltages across the

capacitor in the intervals ��a < !t < �a, and ðp� �aÞ < !t < ðpþ �aÞ:

voncap ¼ �AXL sin !tð Þ þ A
$XL cosð�aÞ
cosð$�aÞ

� �
sinð$�aÞ; ð2:42Þ

voncap ¼ �AXL sinð!tÞ � A
$XL cos ð�aÞ
cosð$�aÞ

� �
sin½$ð!t � pÞ�; ð2:43Þ

where XL is the inductive reactance defined by the product !L.
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When the thyristor is not conducting, the circuit in Figure 2.8 reduces to a capacitor in

series with a direct current (DC) voltage source, which represents the capacitor voltage at the

time of thyristor commutation,

voffcap ¼
1

C

ð !t

�

cosð!tÞ dt þ Von--off
cap ; ð2:44Þ

where Von--off
cap is the voltage across the capacitor just at the time when the thyristor is turned

off (i.e. �a/!). This value is readily obtained from Equation (2.42), to be

Von--off
cap ¼ �AXL sinð�aÞ þ A$XL cosð�aÞ tanð$�aÞ: ð2:45Þ

Substitution of Equation (2.45) into Equation (2.44) enables the solution of voffcap in the

intervals ��a < !t < �a, and ðp� �aÞ < !t < ðpþ �aÞ:
voffcap ¼ XC ½sinð!tÞ � sin�a� � AXL½sin�a �$ cos �a tan$�a�; ð2:46Þ
voffcap ¼ XC ½sinð!tÞ þ sin�a� þ AXLðsin�a �$ cos �a tan$�aÞ; ð2:47Þ

where XC is the inductive reactance defined by 1/!C.
Typical TCSC voltage and current waveforms are shown in Figures 2.10(a) and 2.10(b).

They correspond to the TCSC installed at the Kayenta substation (Christl et al., 1992), with

the thyristors fired at angles of 150� and having an inductive reactance of 2.6� and an

capacitive reactance of 15�, at a base frequency of 60Hz.

2.3.3.3 Thyristor-controlled series capacitor fundamental
frequency impedance

As illustrated by the TCSC waveforms shown in Figures 2.10(a) and 2.10(b), the inductor

current is nonsinusoidal but periodic, and it is said to contain harmonic distortion. If the

interest is the study of the TCSC at only the fundamental frequency then it becomes

necessary to apply Fourier analysis to a full period of the inductor current, say Equations

(2.37), (2.39), and (2.40), in order to obtain its expression at the fundamental frequency.

With reference to Figure 2.10(b), it is clear that the TCSC thyristor current has even and

quarter-wave symmetry. Hence, the fundamental frequency component can be obtained by

solving Equation (2.37) only:

Ithyð1Þ ¼ 4

p

ð �a

0

A cosð! tÞ � A
cosð�aÞ
cosð!�aÞ cosð$! tÞ

� �
cosð! tÞd! t

¼ A
2�a þ sinð2�aÞ

p

� �
� 4A cos2ð�aÞ

$2 � 1

$ tanðk �aÞ � tanð�aÞ
p

� �
: ð2:48Þ

The thyristor current at the fundamental frequency may be expressed as

ithyð1Þ ¼ Ithyð1Þ cosð! tÞ: ð2:49Þ
By recognising that the fundamental frequency voltage across the TCSC module,

VTCSC(1), equals the fundamental frequency voltage across the capacitor, and that the ideal

current source representing the external circuit is taken to be sinusoidal, an expression for
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the TCSC fundamental frequency impedance may be determined:

ZTCSCð1Þ ¼
VTCSCð1Þ
Iline

¼ �jXC Icapð1Þ
Iline

: ð2:50Þ

Moreover, the TCSC contains no resistance and the line current splits between the currents

flowing in the capacitive and inductive branches:

XTCSCð1Þ ¼
�jXC ðcos!t � Ithyð1Þ cos!tÞ

cos!t
¼ �jXC 1þ I0thyð1Þ

h i
; ð2:51Þ
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Figure 2.10 Voltage and current waveforms in (a) thyristor-controlled series capacitor the (TCSC)

capacitor and (b) the TCSC inductor
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where XTCSCð1Þ is the TCSC equivalent reactance at the fundamental frequency, and I0thyð1Þ
has the form of Ithyð1Þ in Equation (2.48) but is a dimensionless parameter as it has been

divided by a unitary current.

The TCSC equivalent reactance is as a function of its capacitive and inductive parameters,

and the firing angle:

XTCSCð1Þ ¼ �XC þ C1 f2ðp� �Þ þ sin½2ðp� �Þ�g
þ C2 cos

2ðp� �Þf$ tan½$ðp� �Þ� � tanðp� �Þg; ð2:52Þ
where

XLC ¼ XC XL

XC � XL

; ð2:53Þ

C1 ¼ XC þ XLC

p
; ð2:54Þ

C2 ¼ � 4X2
LC

XLp
: ð2:55Þ

The poles of Equation (2.52) are:

� ¼ p� ð2n� 1ÞðLCÞ1=2�!
2

; for n ¼ 1; 2; 3 . . . : ð2:56Þ

The TCSC capacitive and inductive reactance values should be chosen carefully in order

to ensure that just one resonant point is present in the range of p=2 to p. Figure 2.11 shows

the TCSC fundamental frequency reactance, as a function of the firing angle, for the TCSC

installed at the Kayenta substation (Christl et al., 1992).

For the purpose of power flow studies, the TCSC may be adequately represented by the

equivalent reactance in Equation (2.52), which enables a straightforward representation of

the TCSC in the form of a nodal transfer admittance matrix. This is derived with reference

90 100 110

−60

Firing angle (deg)

120 130 140 150 160 170 180

−40

−20

0

20

40

60

E
qu

iv
al

en
t r

ea
ct

an
ce

 (
W

 )

Figure 2.11 Thyristor-controlled series capacitor (TCSC) fundamental frequency impedance
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to the equivalent circuit in Figure 2.12, where it is assumed that the TCSC is connected

between buses k and m.

The transfer admittance matrix relates the nodal currents injections, Ik and Im, to the nodal

voltages, Vk and Vm, via the variable TCSC reactance shown in the equivalent circuit of

Figure 2.12:

Ik

Im

2
664

3
775 ¼

� 1

jXTCSC

1

jXTCSC

1

jXTCSC

� 1

jXTCSC

2
664

3
775

Vk

Vm

2
664

3
775: ð2:57Þ

In three-phase TCSC installations, three independent modules, possibly of the form

shown in Figure 2.6, may be used, one for each phase. For modelling and simulation

purposes, it is assumed that no electromagnetic couplings exist between the TCSC units

making up the three-phase module. This enables a straightforward extension of the single-

phase TCSC transfer admittance, given by Equation (2.57), to model the three-phase TCSC:

ITCSCak

ITCSCbk

ITCSCck

ITCSCam

ITCSCbm

ITCSCcm

2
6666666666666666666664

3
7777777777777777777775

¼

� 1

jXTCSC1

0 0
1

jXTCSC1

0 0

0 � 1

jXTCSC2

0 0
1

jXTCSC2

0

0 0 � 1

jXTCSC3

0 0
1

jXTCSC3

1

jXTCSC1

0 0 � 1

jXTCSC1

0 0

0
1

jXTCSC2

0 0 � 1

jXTCSC2

0

0 0
1

jXTCSC3

0 0 � 1

jXTCSC3

2
6666666666666666666664

3
7777777777777777777775

VTCSCak

VTCSCbk

VTCSCck

VTCSCam

VTCSCbm

VTCSCcm

2
6666666666666666666664

3
7777777777777777777775

ð2:58Þ
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Figure 2.12 Single-phase thyristor-controlled series capacitor (TCSC) comprising an equivalent

capacitor and a thyristor-controlled reactor (TCR) in parallel. Reproduced with permission from C.R.

Fuerte-Esquivel, E. Acha, and H. Ambriz-Pérez, ‘A Thyristor Controlled Series Compensator Model

for the Power Flow Solution of Practical Power Networks’, IEEE Trans. Power Systems 15(1) 58–64,

# 2000 IEEE
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where subscripts 1, 2, and 3 are used to indicate that the three single-phase units may take

different values owing to either different design parameters or unequal thyristor firing

pulses.

If the three single-phase TCSC units have identical reactance values, say XTCSC, then it is

possible to transform the TCSC phase domain model into the sequence domain frame of

reference. Owing to the decoupled nature of Equation (2.58), the positive, negative, and zero

sequence models are identical and have the same form as Equation (2.57), the representation

of the single-phase TCSC.

2.4 POWER ELECTRONIC CONTROLLERS BASED ON FULLY
CONTROLLED SEMICONDUCTOR DEVICES

Modern power system controllers based on power electronic converters are capable of

generating reactive power with no need for large reactive energy storage elements, such as

in SVC systems. This is achieved by making the currents circulate through the phases of the

AC system with the assistance of fast switching devices (Hingorani and Gyugyi, 2000).

The semiconductor devices employed in the new generation of power electronic

converters are of the fully controlled type, such as the insulated gate bipolar transistor

(IGBT) and the gate turn-off thyristor (GTO). Their respective circuit symbols are shown in

Figure 2.13 (Mohan, Undeland, and Robbins, 1995).

The GTO is a more advanced version of the conventional thyristor, with a similar

switched-on characteristic but with the ability to switch off at a time different from when the

forward current falls naturally below the holding current level. Such added functionality has

enabled new application areas in industry to be developed, even at bulk power transmission

where nowadays it is possible to redirect active power at the megawatt level. However, there

is room for improvement in GTO construction and design, where still large negative pulses

are required to turn them off. At present, the maximum switching frequency attainable is in

the order of 1 kHz (Mohan, Undeland, and Robbins, 1995).

The IGBT is one of the most well-developed members of the family of power transistors.

It is the most popular device used in the area of AC and DC motor drives, reaching power

Gate (G)

Collector (C)

Emitter (E)Anode (A)

Gate (G)

Cathode (K)

(a) (b)

Figure 2.13 Circuit symbols for: (a) gate turn-off thyristor and (b) insulated gate bipolar transistor.

Reproduced by permission of John Wiley & Sons Inc. from N. Mohan, T.M. Undeland, and

W.P. Robbins, 1995, Power Electronics: Converter Applications and Design, 2nd edn
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levels of a few hundred kilowatts. Power converters aimed at power systems applications are

beginning to make use of IGBTs owing to their increasing power-handling capability and

relatively low conduction losses. Further progress is expected in IGBT and GTO technology

and applications (Hingorani, 1998).

In DC–AC converters that use fully controlled semiconductors rather than conventional

thyristors, the DC input can be either a voltage source (typically a capacitor) or a current

source (typically a voltage source in series with an inductor). With reference to this basic

operational principle, converters can be classified as either voltage source converters (VSCs)

or current source converters. For economic and performance reasons, most reactive power

controllers are based on the VSC topology. The availability of modern semiconductors with

relatively high voltage and current ratings, such as GTOs or IGBTs, has made the concepts

of reactive compensation based on switching converters a certainty, even for substantial

high-power applications.

A number of power system controllers that use VSCs as their basic building block are in

operation in various parts of the world. The most popular are: STATCOMs, solid-state series

controllers (SSSCs), the UPFC, and the HVDC-VSC (IEEE/CIGRÉ, 1995).

2.4.1 The Voltage Source Converter

There are several VSC topologies currently in use in actual power system operation and

some others that hold great potential, including: the single-phase full bridge (H-bridge); the

conventional three-phase, two-level converter; and the three-phase, three-level converter

based on the neutral-point-clamped converter. Other VSC topologies are based on

combinations of the neutral-point-clamped topology and multilevel-based systems.

Common aims of these topologies are: to minimise the operating frequency of the

semiconductors inside the VSC and to produce a high-quality sinusoidal voltage waveform

with minimum or no filtering requirements. By way of example, the topology of a

conventional two-level VSC using IGBT switches is illustrated in Figure 2.14.
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Figure 2.14 Topology of a three-phase, two-level voltage source converter (VSC) using insulated

gate bipolar transistors
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The VSC shown in Figure 2.14 comprises six IGBTs, with two IGBTs placed on each leg.

Moreover, each IGBT is provided with a diode connected antiparallel to make provisions for

possible voltage reversals due to external circuit conditions. Two equally sized capacitors

are placed on the DC side to provide a source of reactive power.

Although not shown in the circuit of Figure 2.14, the switching control module is an

integral component of the VSC (Mohan, Undeland, and Robbins, 1995). Its task is to control

the switching sequence of the various semiconductor devices in the VSC, aiming at

producing an output voltage waveform, that is as near to a sinusoidal waveform as possible,

with high power controllability and minimum switching loss.

Current VSC switching strategies aimed at utility applications may be classified into two

main categories (Raju, Venkata, and Sastry, 1997):

� Fundamental frequency switching: the switching of each semiconductor device is

limited to one turn-on and one turn-off per power cycle. The basic VSC topology

shown in Figure 2.14, with fundamental frequency switching, yields a quasi-square-wave

output, which has an unacceptable high harmonic content. It is current practice to use

several six-pulse VSCs, arranged to form a multipulse structure, to achieve better

waveform quality and higher power ratings (Hingorani and Gyugyi, 2000).

� Pulse-width modulation (PWM): this control technique enables the switches to be turned

on and off at a rate considerably higher than the fundamental frequency. The output

waveform is chopped and the width of the resulting pulses is modulated. Undesirable

harmonics in the output waveform are shifted to the higher frequencies, and filtering

requirements are much reduced. Over the years, various PWM control techniques have

been published, but the sinusoidal PWM scheme remains one of the most popular owing

to its simplicity and effectiveness (Mohan, Undeland, and Robbins, 1995).

From the viewpoint of utility applications, both switching techniques are far from perfect.

The fundamental frequency switching technique requires complex transformer arrange-

ments to achieve an acceptable level of waveform distortion. Such a drawback is offset by

its high semiconductor switch utilization and low switching losses; and it is, at present,

the switching technique used in high-voltage, high-power applications. The PWM technique

incurs high switching loss, but it is envisaged that future semiconductor devices will reduce

this by a significant margin, making PWM the universally preferred switching technique,

even for high-voltage and extra-high-voltage transmission applications.

2.4.1.1 Pulse-width modulation control

The basic PWM control method can be explained with reference to Figure 2.15, in which a

sinusoidal fundamental frequency signal is compared with a high-frequency triangular

signal, producing a square-wave signal, which serves the purpose of controlling the firing of

the individual valves of a given converter topology, such as the one shown in Figure 2.14.

The sinusoidal and triangular signals, and their associated frequencies, are termed reference

and carrier signals and frequencies, respectively. By varying the amplitude of the sinusoidal

signal against the fixed amplitude of the carrier signal, which is normally kept at 1 p.u., the

amplitude of the fundamental component of the resulting control signal varies linearly.

In Figures 2.15(a)–2.15(c), the carrier frequency fs is taken to be 9 times the desired

frequency f1.
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Figure 2.15 Operation of a pulse-width modulator: (a) comparison of a sinusoidal fundamental

frequency with a high-frequency triangular signal; (b) resulting train of square-wave signals; (c)

harmonic voltage spectrum. Reproduced by permission of John Wiley & Sons Inc. from N. Mohan,

T.M. Undeland, and W.P Robbins, 1995, Power Electronics: Converter Applications and Design,

2nd edn
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The width of the square wave is modulated in a sinusoidal manner, and the fundamental

and harmonic components can be determined by means of Fourier analysis. To determine

the magnitude and frequency of the resulting fundamental and harmonic terms, it is useful to

use the concept of amplitude modulation ratio, ma, and frequency modulation ratio, mf:

ma ¼ V̂Vcontrol

V̂Vtri

; ð2:59Þ

mf ¼ fs

f1
; ð2:60Þ

where V̂Vcontrol is the peak amplitude of the sinusoidal (control) signal and V̂Vtri is the peak

amplitude of the triangular (carrier) signal, which, formost practical purposes, is kept constant.

With reference to the ‘one-leg’ converter shown in Figure 2.16, corresponding to one leg

of the three-phase converter of Figure 2.14, the switches Taþ and Ta� are controlled by

straightforward comparison of vcontrol and vtri, resulting in the following output voltages:

vao ¼
1
2
V

DC
when Taþ is on in response to vcontrol > vtri;

� 1
2
V

DC
when Ta� is on in response to vcontrol < vtri:

(
ð2:61Þ

The output voltage vao fluctuates between �VDC/2 and VDC/2, as Ta� and Taþ are never off

simultaneously, and is independent of the direction of io.

The voltage vao and its fundamental frequency component are shown in Figure 2.15(b),

for the case of mf ¼ 9 and ma ¼ 0:8. The corresponding harmonic voltage spectrum, in

normalised form, is shown in Figure 2.15(c). This is a case of linear voltage control, where

ma < 1, but this is not the only possibility. Two other forms of voltage control exist, namely,

overmodulation and square-wave modulation. The former takes place in the region 1 <
ma < 3:24 and the latter applies when ma > 3:24 (Mohan, Undeland, and Robbins, 1995).

Only the case of linear voltage control (ma < 1) is of interest in this section. The peak

amplitude of the fundamental frequency component is ma multiplied by VDC/2, and the
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Figure 2.16 ‘One leg’ voltage source converter (VSC). Reproduced by permission of John Wiley &

Sons Inc. from N. Mohan, T.M. Undeland, and W.P. Robbins, 1995, Power Electronics: Converter

Applications and Designs, 2nd edn
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harmonics appear as sidebands, centred around the switching frequency and its multiples,

following a well-defined pattern given by:

fh ¼ ð�mf � �Þf1: ð2:62Þ
Harmonic terms exist only for odd values of � with even values of �. Conversely, even
values of � combine with odd values of �. Moreover, the harmonic mf should be an odd

integer in order to prevent the appearance of even harmonic terms in vao.

2.4.1.2 Principles of voltage source converter operation

The interaction between the VSC and the power system may be explained in simple terms,

by considering a VSC connected to the AC mains through a loss-less reactor, as illustrated in

the single-line diagram shown in Figure 2.17(a). The premise is that the amplitude and the

phase angle of the voltage drop, �Vx, across the reactor, Xl, can be controlled, defining

the amount and direction of active and reactive power flows through Xl. The voltage at the

supply bus is taken to be sinusoidal, of value Vsff0�(1), and the fundamental frequency

component of the SVC AC voltage is taken to be VvRff�vR. The positive sequence

fundamental frequency vector representation is shown in Figures 2.17(b) and 2.17(c) for

leading and lagging VAR compensation, respectively.

According to Figure 2.17, for both leading and lagging VAR, the active and the reactive

powers can be expressed as

P ¼ VsVvR

Xl

sin �vR;

Q ¼ V2
s

Xl

� VsVvR

Xl

cos �vR:

9>>=
>>; ð2:63Þ

γ
δ vR ∆Vx
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γ δ vR
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cI γ∠ Xl vR vR vRE V δ= ∠

0sV ∠ °

+

VDC

−

+ ∆Vx −

(a)

ma

Figure 2.17 Basic operation of a voltage source converter (VSC): (a) VSC connected to a system

bus. Space vector representation for (b) lagging operation and (c) leading operation

(1)Note on notation: Vff� is a single complex number having a magnitude of V and a phase angle �.
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With reference to Figure 2.17 and Equation (2.63), the following observations are

derived:

� The VSC output voltage VvR lags the AC voltage source Vs by an angle �vR, and the input

current lags the voltage drop across the reactor �Vx by p=2.
� The active power flow between the AC source and the VSC is controlled by the phase

angle �vR. Active power flows into the VSC from the AC source for lagging �vR ð�vR > 0Þ
and flows out of the VSC from the AC source for leading �vR ð�vR < 0Þ.

� The reactive power flow is determined mainly by the magnitude of the voltage source, Vs,

and the VSC output fundamental voltage, VvR. For VvR > Vs, the VSC generates reactive

power and consumes reactive power when VvR < Vs.

The DC capacitor voltage VDC is controlled by adjusting the active power flow that goes

into the VSC. During normal operation, a small amount of active power must flow into the

VSC to compensate for the power losses inside the VSC, and �vR is kept slightly larger than

0� (lagging).

The various power system controllers that use the VSC as their basic building block are

addressed below with reference to key steady-state operational characteristics and their

impact on system voltage and power flow control.

2.4.2 The Static Compensator

The STATCOM consists of one VSC and its associated shunt-connected transformer. It is

the static counterpart of the rotating synchronous condenser but it generates or absorbs

reactive power at a faster rate because no moving parts are involved. In principle, it

performs the same voltage regulation function as the SVC but in a more robust manner

because, unlike the SVC, its operation is not impaired by the presence of low voltages

(IEEE/CIGRÉ, 1995).

A schematic representation of the STATCOM and its equivalent circuit are shown in

Figures 2.18(a) and 2.18(b), respectively. The equivalent circuit corresponds to the Thevenin

equivalent as seen from bus k, with the voltage source EvR being the fundamental frequency

component of the VSC output voltage, resulting from the product of VDC and ma.

In steady-state fundamental frequency studies the STATCOM may be represented in the

same way as a synchronous condenser, which in most cases is the model of a synchronous

vRvRV δ+ − YvR

(a)

Bus k Bus k

(b)

VDC

+

_

I vR

vRE

Vk

ma
kkV θ

kkI γ

Figure 2.18 Static compensator (STATCOM) system: (a) voltage source converter (VSC) connected

to the AC network via a shunt-connected transformer; (b) shunt solid-state voltage source
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generator with zero active power generation. A more flexible model may be realised by

representing the STATCOM as a variable voltage source EvR, for which the magnitude and

phase angle may be adjusted, using a suitable iterative algorithm, to satisfy a specified

voltage magnitude at the point of connection with the AC network. The shunt voltage source

of the three-phase STATCOM may be represented by:

E
�
vR ¼ V

�
vRðcos ��vR þ j sin �

�
vRÞ; ð2:64Þ

where � indicates phase quantities, a, b, and c.

The voltage magnitude, V
�
vR, is given maximum and minimum limits, which are a

function of the STATCOM capacitor rating. However, ��vR may take any value between 0 and

2p radians.

With reference to the equivalent circuit shown in Figure 2.18(b), and assuming three-

phase parameters, the following transfer admittance equation can be written:

½Ik� ¼ ½YvR �YvR� Vk

EvR

� �
; ð2:65Þ

where

Ik ¼ ½Iak ff�ak Ibk ff�bk Ickff�ck �t; ð2:66Þ
Vk ¼ Va

k ff	ak Vb
k ff	bk Vc

kff	ck

 �t

; ð2:67Þ
EvR ¼ ½Va

vR kff�avRk Vb
vR kff�bvRk Vc

vR kff�cvRk�t; ð2:68Þ

YvR ¼
Ya
vR k 0 0

0 Yb
vR k 0

0 0 Yc
vR k

2
64

3
75: ð2:69Þ

2.4.3 The Solid State Series Compensator

For the purpose of steady-state operation, the SSSC performs a similar function to the static

phase shifter; it injects voltage in quadrature with one of the line end voltages in order to

regulate active power flow. However, the SSSC is a far more versatile controller than the

phase shifter because it does not draw reactive power from the AC system; it has its own

reactive power provisions in the form of a DC capacitor. This characteristic makes the SSSC

capable of regulating not only active but also reactive power flow or nodal voltage

magnitude. This functionality is addressed further in Section 2.5. A schematic

representation of the SSSC and its equivalent circuit are shown in Figures 2.19(a) and

2.19(b), respectively.

The series voltage source of the three-phase SSSC may be represented by

E
�
cR ¼ V

�
cRðcos ��cR þ j sin ��cRÞ; ð2:70Þ

where � indicates phase quantities, a, b, and c.

The magnitude and phase angle of the SSSC model are adjusted by using any suitable

iterative algorithm to satisfy a specified active and reactive power flow across the SSSC.

Similar to the STATCOM, maximum and minimum limits will exist for the voltage
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magnitude VcR, which are a function of the SSSC capacitor rating; the voltage phase angle

�cR can take any value between 0 and 2� radians. The control capabilities of the SSSC

are addressed in Section 2.5.

Based on the equivalent circuit shown in Figure 2.19(b), and assuming three-phase

parameters, the following transfer admittance equation can be written:

Ik
Im

� �
¼ YcR �YcR �YcR

�YcR YcR YcR

� � Vk

Vm

EcR

2
4

3
5: ð2:71Þ

In addition to parameters used in Equations (2.66)–(2.69) the following quantities are

defined:

Im ¼ ½Iamff�am Ibmff�bm Icmff�cm�t; ð2:72Þ
Vm ¼ ½Va

mff	am Vb
mff	bm Vc

mff	cm �t; ð2:73Þ
EcR ¼ ½Va

cR ff�acR Vb
cR ff�bcR Vc

cR ff�ccR�t; ð2:74Þ

YcR ¼
Ya
cR k 0 0

0 Yb
cR k 0

0 0 Yc
cR k

2
64

3
75: ð2:75Þ

2.4.4 The Unified Power Flow Controller

The UPFC may be seen to consist of two VSCs sharing a common capacitor on their DC side

and a unified control system. A simplified schematic representation of the UPFC is given in

Figure 2.20(a), together with its equivalent circuit, in Figure 2.20(b) (Nabavi-Niaki and

Iravani, 1996).

The UPFC allows simultaneous control of active power flow, reactive power flow, and

voltage magnitude at the UPFC terminals. Alternatively, the controller may be set to control

one or more of these parameters in any combination or to control none of them (Fuerte-

Esquivel, Acha, and Ambriz-Pérez, 2000b).

cRcRV δ+ − Bus m
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mmV θkkV θ
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Figure 2.19 Solid state series compensator (SSSC) system: (a) voltage source converter (VSC)

connected to the AC network using a series transformer and (b) series solid state voltage source
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The active power demanded by the series converter is drawn by the shunt converter from

the AC network and supplied to bus m through the DC link. The output voltage of the series

converter is added to the nodal voltage, at say bus k, to boost the nodal voltage at bus m. The

voltage magnitude of the output voltage VcR provides voltage regulation, and the phase

angle �cR determines the mode of power flow control (Hingorani and Gyugyi, 2000).

In addition to providing a supporting role in the active power exchange that takes place

between the series converter and the AC system, the shunt converter may also generate or

absorb reactive power in order to provide independent voltage magnitude regulation at its

point of connection with the AC system.

Bus m
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Figure 2.20 Unified power flow controller (UPFC) system: (a) two back-to-back voltage source

converters (VSCs), with one VSC connected to the AC network using a shunt transformer and the

second VSC connected to the AC network using a series transformer; (b) equivalent circuit based on

solid-state voltage sources. Redrawn, with permission, from A. Nabavi-Niaki and M.R. Iravani,

‘Steady-state and Dynamic Models of Unified Power Flow Controller (UPFC) for Power System

Studies’, IEEE Trans. Power Systems 11(4) 1937–1943, # 1996 IEEE
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The UPFC equivalent circuit shown in Figure 2.20(b) consists of a shunt-connected

voltage source, a series-connected voltage source, and an active power constraint equation,

which links the two voltage sources. The two voltage sources are connected to the AC system

through inductive reactances representing the VSC transformers. In a three-phase UPFC,

suitable expressions for the two voltage sources and constraint equation would be:

E
�
vR ¼ V

�
vR cos ��vR þ j sin ��vRð Þ; ð2:76Þ

E
�
cR ¼ V

�
cR cos ��cR þ j sin ��cRð Þ; ð2:77Þ

Ref�E
�
vRI

��
vR þ E

�
vRI

��
m g ¼ 0: ð2:78Þ

where � indicates phase quantities, a, b, and c.

Similar to the shunt and series voltage sources used to represent the STATCOM and the

SSSC, respectively, the voltage sources used in the UPFC application would also have limits.

Based on the equivalent circuit shown in Figure 2.20(b), and assuming three-phase

parameters, the following transfer admittance equation can be written:

Ik
Im

� �
¼ ðYcR þ YvRÞ �YcR �YcR �YvR

�YcR YcR YcR 0

� � Vk

Vm

EcR

EvR

2
664

3
775; ð2:79Þ

where all the parameters have been defined in Equations (2.66)–(2.69) and (2.72)–(2.75).

2.4.5 The High-voltage Direct-current Based on
Voltage Source Converters

The HVDC-VSC comprises two VSCs, one operating as a rectifier and the other as an

inverter. The two converters are connected either back-to-back or joined together by a DC

cable, depending on the application. Its main function is to transmit constant DC power from

the rectifier to the inverter station, with high controllability. A schematic representation of

the HVDC-VSC and its equivalent circuit are shown in Figures 2.21(a) and 2.21(b),

respectively.

One VSC controls DC voltage and the other the transmission of active power through the

DC link. Assuming loss-less converters, the active power flow entering the DC system must

equal the active power reaching the AC system at the inverter end minus the transmission

losses in the DC cable. During normal operation, both converters have independent reactive

power control (Asplund, 2000).

The HVDC-VSC system is suitably represented by two shunt-connected voltage sources

linked together by an active power constraint equation. Each voltage source is connected to

the AC system by means of its transformer reactance. Suitable expressions for the three-

phase voltage sources and the linking power equation are:

E
�
vR1 ¼ V

�
vR1 cos ��vR1 þ j sin ��vR1

� 

; ð2:80Þ

E
�
vR2 ¼ V

�
vR2 cos �

�
vR2 þ j sin �

�
vR2

� 

; ð2:81Þ

Ref � E
�
vR1I

��
vR1 þ E

�
vR2I

��
m g ¼ 0; ð2:82Þ

where � indicates phase quantities, a, b, and c.
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In this application, the two shunt voltage sources used to represent the rectifier and

inverter stations have the following voltage magnitudes and phase angles limits:

V
�
vR min 1 < V

�
vR1 < V

�
vR max 1;

0 < ��vR1 < 2�;

V
�
vR min 2 < V

�
vR2 < V

�
vR max 2;

0 < �
�
vR2 < 2p:

Based on the equivalent circuit shown in Figure 2.21(b), and assuming three-phase

parameters, the following transfer admittance equation can be written:

Ik
Im

� �
¼ YvR1 �YvR1 0 0

0 0 YvR2 �YvR2

� � Vk

EvR1

Vm

EvR2

2
664

3
775; ð2:83Þ

where all the parameters have been defined in Equations (2.66)–(2.69) and (2.72)–(2.75).
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Figure 2.21 High-voltage direct-current based on voltage source converter (HVDC-VSC) system:

(a) the VSC at the sending end performs the role of rectifier, and the VSC at the receiving end

performs the role of inverter; (b) equivalent circuit
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2.5 CONTROL CAPABILITIES OF CONTROLLERS BASED ON
VOLTAGE SOURCE CONVERTERS

To a greater or lesser extent, the three ‘series’ VSC-based controllers, namely the SSSC, the

UPFC, and the HVDC-VSC, share similar power system control capabilities. They are able

to regulate either nodal voltage magnitude or injection of reactive power at one of its

terminals, and active power flow through the controller. The UPFC and the HVDC-VSC

employ two converters and are able to regulate nodal voltage magnitude with one of them

and reactive power injection with the other. From the perspective of fundamental frequency

power system studies, there is little difference between the control flexibility afforded by

the three controllers, except that the UPFC and HVDC-SVC do it more robustly than

does the SSSC. The individual control functions are illustrated in Figure 2.22, with

reference to the operating regions of the SSSC.

The equivalent circuit of the SSSC shown Figure 2.19(b) is used as the basis for the

analysis. The voltage magnitude of Vmj	m can be controlled at a specified value by injecting

an in-phase or antiphase voltage increment �VcRj�cr ¼ 	m, as illustrated in Figure 2.22(a).

Notice that for the purpose of drawing the phasor diagrams in Figure 2.22, the phase angle

	m is taken to have a value of 0�. Series reactive compensation can be achieved by injecting

a complex voltage, �VcRj�cR ¼ �m � 90�, which is in quadrature with the line current,

Imj�m, as illustrated in Figure 2.22(b). Pure phase-angle control is also possible, as shown in

Figure 2.22(c), by injecting an angular quantity, 1j��cR, to the otherwise unaffected voltage,
Vmj	m. Furthermore, all three functions can be applied simultaneously by injecting an

incremental complex voltage �VcRj�cR to Vmj	m, as shown in Figure 2.22(d), a

characteristic that adds unrivalled flexibility in power system operation.

Figure 2.22 Phasor diagram illustrating the general concept of: (a) magnitude voltage control,

(b) impedance line compensation, (c) phase-angle regulation, and (d) simultaneous control. Redrawn,

with permission, from Institute of Electrical and Electronic Engineers/Conseil International des

Grands Réseaux Électrique, FACTS Overview, # 1995 IEEE
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2.6 SUMMARY

This chapter has presented an overview of the most salient characteristics of the power

electronic equipment currently used in the electricity supply industry for the purpose of

voltage regulation, active and reactive power flow control, and power quality enhancement.

The emphasis has been on steady-state operation, and a distinction has been made between

power electronic equipment, which uses conventional power semiconductor devices (i.e.

thyristors) and the new generation of power system controllers, which use fully controllable

semiconductor devices such as GTOs and IGBTs. The latter devices work well with fast

switching control techniques, such as the sinusoidal PWM control scheme, and, from the

power system perspective, operate like voltage sources, having an almost delay-free

response. Equipment based on thyristors have a slower speed of response, greater than

one cycle of the fundamental frequency, and use phase control as opposed to PWM control.

From the power system perspective, thyristor-based controllers behave like controllable

reactances as opposed to voltage sources.

The TCR, SVC, and TCSC belong to the category of thyristor-based equipment. The

STATCOM, SSSC, UPFC, and HVDC-VSC use the VSC as their basic building block. It has

been emphasised that all these power electronic controllers produce harmonic distortion,

which is an undesirable side-effect, as part of their normal operation. The various means of

harmonic cancellation open to system engineers have been mentioned, such as switching

control, multilevel configurations, three-phase connections, and, as a last resort, filtering

equipment. The remit of this book is not power system harmonics; hence, it is assumed that

harmonic distortion is effectively contained at source. The mathematical modelling

conducted for the various power electronic controllers addressed in the chapter reflect this

fact. The emphasis has been on deriving flexible models in the form of nodal admittance

matrices that use the frame of reference of the phases, which is a frame of reference closely

associated with the physical structure of the actual power system plant. A major strength of

this frame of reference is that all design and operational imbalances present in the power

system are incorporated quite straightforwardly in the model. Nevertheless, it is

acknowledged that very often it is desirable to reduce the comprehensiveness of the

power system solution and to carry out the study in the frame of reference of the sequences

rather than in that of the phases. This has the advantage of speedier calculations, but key

information becomes unavailable since sequence domain modelling tacitly assumes that

no imbalances are present in the plant being modelled. When such an assumption is

incorporated in the phase domain nodal admittance models, it yields simpler models

expressed in the frame of reference of the sequences.

The phase domain nodal admittance models are used in Chapter 6 as the basis for

developing the power flow equations of three-phase power systems. Similarly, the sequence

domain nodal admittance models are used to develop in Chapter 5 the power flow equations

of positive sequence power systems.
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Paris, September 1992.
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3
Modelling of Conventional
Power Plant

3.1 INTRODUCTION

The conventional elements of an electrical power system are: generators, transformers,

transmission lines, cables, loads, banks of capacitors, nonlinear inductors, and protection

and control equipment. These elements are suitably interconnected to enable the generation

of electricity in sufficient quantity to meet system demand at any one point in time. The

operational objective is to transmit the electricity to the load centres at minimum production

cost, maximum reliability, and minimum transmission loss (Elgerd, 1982).

For most practical purposes, the electrical power network may be divided into four

subsystems, namely, generation, transmission, distribution, and utilisation. Transmission

networks operate at high voltages, typically in the range 500–132 kV, although even higher

voltages are used in parts of North America (Weedy, 1987). Conversely, electricity is

produced at relatively low voltages, in the range of 25–11 kV, and step-up transformers are

used at the generator substation to increase the voltage up to transmission levels. In contrast,

step-down transformers are used to reduce the high voltages used in transmission systems to

levels that are appropriate for industrial, commercial, and residential applications. In the

United Kingdom, a typical voltage level used in distribution networks is 33 kV; and

industrial and residential consumers are fed at 11 kV and 415V or 240V.

Three-phase synchronous generators are used to produce most of the electricity consumed

worldwide (Grainger and Stevenson, 1994) and, except for a small percentage which is

transported in direct current (DC) form using high-voltage direct-current (HVDC) links,

all electricity is brought to the points of demand using alternating current (AC) three-phase

transmission lines and cables. This point deserves further analysis because quite

often the generating stations are located far away from where the load sites are, and

long-distance transmission becomes necessary (Shlash, 1974). More often than not, long-

distance transmission circuits consist of more than one three-phase circuit, and contain

series and shunt compensation to enable stable operation. Nevertheless, it has long been

recognised that remote generating stations, which are mostly of the hydroelectric type, are

only weakly interconnected and that the nonuniform nature of their rotors (i.e. saliency)

increases the overall system unbalance. It should also be remarked that the windings of

FACTS: Modelling and Simulation in Power Networks.
Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez and César Angeles-Camacho
# 2004 John Wiley & Sons, Ltd ISBN: 0-470-85271-2



three-phase transformers can be connected in a variety of ways to suit specific requirements

and that transformer connections should be modelled explicitly when system imbalances

cannot be ignored in power system studies (Hesse, 1966). The bulk load points associated

with transmission systems may be taken to be highly balanced, but such an assumption is no

longer valid in low-voltage distribution systems, where load points may be highly

unbalanced owing to an abundance of individual single-phase loads within a distribution

load point.

The application tool used to assess the steady-state operation of power systems exhibiting

a considerable degree of geometric unbalance or load unbalance is known as three-phase

power flow (Chen and Dillon, 1974; Laughton, 1968; Wasley and Shlash, 1974a). In this

application, all operations are carried out on a per-phase basis, and all power plant

components making up the power system are modelled in the frame of reference of the

phases (Chen et al., 1990; Harker and Arrillaga, 1979). However, if system geometric

imbalances may be taken to be insignificant and system load is balanced then there is much

numerical advantage to be gained by representing all power plant components in the frame of

reference of the sequences as opposed to that of the phases. In this situation, a positive

sequence power flow solution can be carried out, as opposed to the full blown three-phase

solution.

3.2 TRANSMISSION LINE MODELLING

High-voltage and extra-high-voltage transmission lines consist of a group of phase

conductors, which are responsible for transmitting the electrical energy. All power network

transmission lines are located at a finite distance from the earth’s surface and may use the

ground as a return path. Accordingly, it becomes necessary to take this effect into account

when calculating transmission-line parameters (Anderson, 1973). High-voltage transmission

lines may contain several conductors per phase (bundle conductors) and ground wires, and

distribution lines may include a neutral wire as a return path. Transmission and primary

distribution circuits may be responsible for introducing considerable geometric imbalances,

even at the fundamental frequency, depending on their electrical distance (Acha and

Madrigal, 2001; Arrillaga et al., 1997).

, , , ,
series seriesja b c a b cR X+

( ), , , ,
shunt shunt

1
j

2
a b c a b cG B+

Figure 3.1 Transmission line representation in the form of an equivalent p-circuit
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In power system studies it is current practice to model the inductive and resistive effects

of multiconductor transmission lines as a series impedance matrix, and the capacitive effects

as a shunt admittance matrix. The overall transmission line model can then be represented

by either a nominal p-circuit or an equivalent p-circuit, as shown in Figure 3.1, if the

electrical length of the line is sufficient to merit the extra work involved in calculating it.

3.2.1 The Voltage-drop Equation

The phase conductors of a three-phase transmission line, with ground as the return path and

negligible capacitive effects, are illustrated schematically in Figure 3.2. If the circuit

terminal conditions enable current to flow in conductors a, b, c, and in the ground return

path, the voltage-drop equation of the transmission line shown in Figure 3.2, at a given

frequency, may be expressed in matrix form as follows:

Va

Vb

Vc

2
4

3
5 ¼

Raa�g þ j!Laa�g Rab�g þ j!Lab�g Rac�g þ j!Lac�g
Rba�g þ j!Lba�g Rbb�g þ j!Lbb�g Rbc�g þ j!Lbc�g
Rca�g þ j!Lca�g Rcb�g þ j!Lcb�g Rcc�g þ j!Lcc�g

2
4

3
5 Ia

Ib
Ic

2
4

3
5þ

V 0
a

V 0
b

V 0
c

2
64

3
75; ð3:1Þ

the subscript g indicating that the ground return effect has been included.

3.2.1.1 Calculation of lumped RLC parameters

The computation of three-phase transmission line parameters becomes cumbersome by the

existence of inductive and capacitive couplings between conductors, and between

conductors and ground (Anderson, 1973). Moreover, resistances and self and mutual

inductances vary nonlinearly with frequency and, together with the capacitive effects, vary

nonlinearly with the electrical distance of the line (Acha and Madrigal, 2001; Arrillaga et al.,

1997).

In fundamental frequency power system applications, it is normal practice to calculate the

inductive and capacitive effects of the transmission line independently and then to combine

Ra La

Rc Lc

Rb Lb
Lab

Lbc
Lac

Va V ′a

Vb

Ia

Ib

Ic

Ig= Ia+ Ib+ IcRg Lg

Vc

V ′b

V ′c

Figure 3.2 Phase conductors of a three-phase transmission line
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them together to give the final transmission-line representation. Once the resistances,

inductances, and capacitances associated with a particular transmission line configuration

have been determined, a transmission-line model in the form of a p-circuit, or any other

alternative representation, become feasible.

The series impedance matrix Zseries of a multiconductor transmission line, which takes

account of geometric imbalances and frequency dependency but not long-line effects, may

be assumed to consist of the following components:

Zseries ¼ Zinternal þ Zgeometric þ Zground: ð3:2Þ
In Equation (3.2), Zinternal is the impedance inside the conductors, Zground is the impedance

contribution of the ground return path, and Zgeometric is the impedance contribution from

the magnetic fluxes in the air surrounding the conductors. For most practical purposes, the

parameters Zgeometric may be taken to be linear functions of the potential coefficients P.
Unlike Zinternal, the parameters Zground, Zgeometric, and P are a function of the physical

geometry of the conductor’s arrangement in the tower. The capacitive effects are

incorporated in the shunt admittance matrix Yshunt, which is a linear function of P. Shunt

parameters are addressed in Section 3.2.1.2.

If the surfaces of the conductors and the earth beneath the conductors may be assumed to

be equipotential surfaces then the standard method of images may be used to calculate the

potential coefficients P.

The method of images allows the conducting plane to be replaced by a fictitious

conductor located at the mirror image of the actual conductors. Figure 3.3 shows the case

when phase conductors a, b, and c above ground have been replaced by three equivalent

conductors and their images (Anderson, 1973).

hc

hc′

dab dbc

dac

a b c

ha

ha′

a′ b′ c′

hb

Dab′ Dac′

hb′

Figure 3.3 Line geometry and its image
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The self-potential coefficient of an overhead conductor is solely a function of the height

of the conductor above ground, say h, and the external radius of the conductor, say rext. In

contrast, the mutual potential coefficient between two conductors is a function of the

separation between the two conductors, d, and the separation between one conductor and the

image of the second conductor, D. For the three conductors in the transmission line shown in

Figure 3.3, the matrix of potential coefficients is

P ¼

ln 2ha
rext a

� �
ln Dab

dab

� �
ln Dac

dac

� �
ln Dba

dba

� �
ln 2hb

rext b

� �
ln Dbc

dbc

� �
ln Dca

dca

� �
ln Dcb

dcb

� �
ln 2hc

rext c

� �

2
666664

3
777775: ð3:3Þ

It should be noted that potential coefficients are dimensionless and reciprocal.

The geometric impedance matrix for the circuit of Figure 3.3 is

Zgeometric ¼ j
!�0
4p

P� km�1; ð3:4Þ

where Zgeometric varies linearly with the base frequency f ; ! ¼ 2pf , and the permeability of

free space is �0 ¼ 4p� 10�4 H km�1.

3.2.1.2 Shunt admittances

Shunt admittance parameters vary linearly with frequency and are completely defined by the

inverse potential coefficients (Anderson, 1973). The matrix of shunt admittance parameters

for the circuit of Figure 3.3 is

Yshunt ¼ j!2p"0 P�1 S km�1; ð3:5Þ
where "0, equal to 8:85� 10�9 F km�1; is the permittivity of free space.

3.2.1.3 Internal impedances

It has long been recognised that the internal resistance and inductance of conductors vary

with frequency in a nonlinear manner. The reason for this effect is attributed mainly to the

nonuniform distribution of current flow over the full area available, with current tending to

flow on the surface. This trend increases with frequency and is termed the ‘skin effect’. The

overall effect is an increase in resistance and a decrease in internal inductance (Arrillaga

et al., 1997).

In power systems applications, the established formula for evaluating the impedance of an

annular conductor, at a given frequency, uses the Bessel functions of zero order, first kind,

and second kind and their derivatives, which are solved, within specified accuracy, using

their associated infinite series. However, at power frequencies, the skin effect is negligibly

small and there is little error in calculating the internal impedance of conductors by

assuming that the magnetic field inside the conductor is confined to an area lying between

the external radius, rext, of the conductor and the geometric mean radius (gmr), rgmr, of the

conductor (Grainger and Stevenson, 1994).
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As illustrated in Figure 3.4, the gmr lies between the external and internal radii of the

conductor. The gmr is normally measured and made available by the manufacturer. An

approximated, frequency-independent relationship is given by

rgmr ¼ e�1 4= rext: ð3:6Þ
If the frequency of interest is low enough for the skin effect to be of no consequence, then

the concept of potential coefficients can be applied to calculate the internal impedance of

conductors. For the three conductors in Figure 3.3, the matrix of internal potential

coefficients is,

Pinternal ¼

ln rext 1
rgmr1

� �
0 0

0 ln rext 2
rgmr2

� �
0

0 0 ln rext 3
rgmr3

� �

2
66664

3
77775: ð3:7Þ

Hence, the conductor impedance matrix for this circuit is

Zinternal ¼ Rac þ j
!�0
4p

Pinternal � km�1; ð3:8Þ

where Rac is a diagonal matrix with entries corresponding to the AC power frequency

resistances (50 or 60Hz) of the various conductors in the transmission circuit.

3.2.1.4 Ground return impedances

The impedance of the ground return path varies nonlinearly with frequency and exhibits an

effect similar to that of the skin effect in conductors, where the effective area available for

the current to flow reduces with frequency.

The problem of current-carrying wires above a flat earth of homogeneous conductivity,

and the related issue of transmission-line parameter calculation, received a great deal of

research attention almost a century ago. It was J.R. Carson who in 1926 published a

comprehensive solution to the problem. The solution involves an infinite integral that cannot

be solved analytically or in closed form. However, the integral is conveniently expressed by

a set of infinite series that show good convergence characteristics for most problems

encountered in the areas of electromagnetic fields, propagation characteristics, and magnetic

Figure 3.4 Cross-section of a power conductor
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induction effects caused by power lines. Ever since, and perhaps because of the existence of

the infinite series, the solution published by Carson has been extensively used by power

engineers worldwide.

As the need arises to calculate ground impedances for a wide spectrum of frequencies,

and also because of the uncertainty in the available data, in particular regarding ground

conductivity, the tendency is to go for simpler formulations aiming at a reduction in

computing time while keeping the accuracy at a reasonable level. Recent formulations use

the concept of a complex mirroring surface beneath the ground. Rigorous mathematical

analyses have shown these formulations to be good physical and mathematical approxima-

tions to Carson’s solution.

The most popular equations in power system applications are those attributed to C.

Dubanton (Deri et al., 1981). The reason is their simplicity and good accuracy for the whole

span of frequencies for which Carson’s equations are valid. With reference to Figure 3.5,

the equations for calculating the self-impedance of conductor l and the mutual impedance

between conductors l and m take the following form:

Zll ¼ j
!�0
2p

ln
2 hl þ pð Þ

rext l

� �
� km�1; ð3:9Þ

Zlm ¼ j
!�0
2p

ln
½ hl þ hm þ 2pð Þ2þ d2lm�1=2

½ hl � hmð Þ2þ d2lm�1=2
( )

� km�1; ð3:10Þ

where p, equal to ðj!�0�gÞ1=2, is the complex depth beneath the ground at which the

mirroring surface is located.

ha hb hc

dab dbc

dac

ha′ hb′ hc′

a

a′ b′ c′

Dab′ Dac′

Earth surface

p′

p

b c

Fictitious surface

Mirroring image 
of earth surface

Figure 3.5 Line geometry showing the complex depth
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It should be noted that the use of Equations (3.9) and (3.10) yields combined information

of Zgeometric þ Zground. Moreover, if the transmission-line parameters are intended for power

frequency applications (50 or 60Hz) then the skin effect inside the conductors can be

ignored and Equation (3.9) can be combined with Equation (3.8) to take account of the

impedance contribution from Zinternal:

Zll ¼ Rac l þ j
!�0
2p

ln
2 hl þ pð Þ
rgmr l

� �
� km�1: ð3:11Þ

In summary, for the purpose of low-frequency power applications, Equations (3.10) and

(3.11) may be used to calculate the individual elements of Equation (3.1). The impedance

parameters include geometric imbalances and ground return effects but no full frequency

dependency.

3.2.2 Ground Wires

Using the same notation as in Section 3.2.1, we may express the voltage-drop equation of a

three-phase transmission line with two ground wires, w and v, as follows (Anderson, 1973):

Va

Vb

Vc

Vw

Vv

2
6666664

3
7777775
¼

Zaa�g Zab�g Zac�g Zaw�g Zav�g

Zba�g Zbb�g Zbc�g Zbw�g Zbv�g

Zca�g Zcb�g Zcc�g Zcw�g Zcv�g

Zwa�g Zwb�g Zwc�g Zww�g Zwv�g

Zva�g Zvb�g Zvc�g Zvw�g Zvv�g

2
6666664

3
7777775

Ia

Ib

Ic

Iw

Iv

2
6666664

3
7777775
þ

V 0
a

V 0
b

V 0
c

V 0
w

V 0
v

2
6666664

3
7777775
: ð3:12Þ

It is assumed that the individual impedance elements are calculated by using Equa-

tions (3.10) and (3.11). In compact notation, we have,

�Vabc ¼ AIabc þ BIwv; ð3:13Þ
�Vwv ¼ CIabc þ DIwv; ð3:14Þ

where

�Vabc ¼
Va � V

0
a

Vb � V
0
b

Vc � V
0
c

2
6664

3
7775; Iabc ¼

Ia

Ib

Ic

2
64

3
75;

�Vwv ¼
Vw � V

0
w

Vv � V
0
v

2
4

3
5; Iwv ¼

Iw

Iv

� �
;

9>>>>>>>>>>=
>>>>>>>>>>;

ð3:15Þ

A ¼
Zaa�g Zab�g Zac�g

Zba�g Zbb�g Zbc�g

Zca�g Zcb�g Zcc�g

2
64

3
75; B ¼

Zaw�g Zav�g

Zbw�g Zbv�g

Zcw--g Zcv�g

2
64

3
75;

C ¼ Zwa�g Zwb�g Zwc�g

Zva�g Zvb�g Zvc�g

� �
; D ¼ Zww�g Zwv�g

Zvw�g Zvv�g

� �
:

ð3:16Þ
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As it is normal practice to connect ground wires to earth at both ends of every transmission

span, �Vwv ¼ 0, and it is possible to simplify Equation (3.12) to

�Vabc ¼ AIabc þ BIwv ; ð3:17Þ
0 ¼ CIabc þ DIwv: ð3:18Þ

Solving Equation (3.18) for Iwv ,

Iwv ¼ �D�1CIabc; ð3:19Þ
and substitution of Equation (3.19) into Equation (3.17) yields

�Vabc ¼ A� BD�1C
� �

Iabc ¼ Zabc�wv�g Iabc; ð3:20Þ
where

Zabc�wv�g ¼ A� BD�1C: ð3:21Þ
Equation (3.20) can be written in expanded form as

�Va

�Vb

�Vc

2
4

3
5 ¼

Zaa�wv�g Zab�wv�g Zac�wv�g

Zba�wv�g Zbb�wv�g Zbc�wv�g
Zca�wv�g Zcb�wv�g Zcc�wv�g

2
4

3
5 Ia

Ib
Ic

2
4

3
5: ð3:22Þ

The reduced equivalent matrix Equation (3.22) is fully equivalent to matrix Equation (3.12),

where the ground wires have been mathematically eliminated. For most system analysis

purposes, Equation (3.22) provides a suitable representation for transmission lines with

ground wires. Symmetrical components can be applied to Equation (3.22), and it is therefore

preferred over Equation (3.12).

3.2.3 Bundle Conductors

The use of more than one conductor per phase (i.e. bundle conductors) reduces the

equivalent transmission-line impedance and allows for an increase in power transmission. It

also allows for a reduction in corona loss and radio interference owing to a reduction in

conductor-surface voltage gradients.

For cases of transmission lines of 400 kV and above it is standard practice to have four

bundle conductors per phase, whereas for 230 kV lines, only three or two bundle conductors

per phase are required. These arrangements are shown in Figures 3.6(a), 3.6(b), and 3.6(c),

respectively (Grainger and Stevenson, 1994).

d

d

(a)

d

d

(b)

d

(c)

Figure 3.6 Typical arrangements of bundle conductors: (a) four, (b) three, and (c) two bundle

conductors (open circles)
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In power system studies the interest is rarely on individual conductors but, rather, on the

individual phases. Hence, steps are taken to find reduced equivalents that involve only one

conductor per phase. The equivalent conductors correctly account for the original

configuration but keep essential information only.

The bundle-conductor reduction may be achieved in a number of ways. Use of the

concept of an equivalent geometric mean radius (GMR), Rgmr is one of them, and, although

it is a frequency-independent method, it yields reasonably accurate solutions, particularly at

power frequencies.

For cases of two, three, and four bundle conductors per phase, the following relations are

used to calculate the equivalent GMR:

Rgmr ¼ ðrgmr � dÞ1=2; ð3:23Þ
Rgmr ¼ ðrgmr � d � dÞ1=3; ð3:24Þ
Rgmr ¼ ðrgmr � d � d �

ffiffiffi
2

p
dÞ1=4: ð3:25Þ

In this case, the equivalent phase resistance is simply obtained by dividing the resistance of

one of the original phase conductors in the bundle by the number of conductors in the

bundle. This simple approach takes the very practical view that all conductors in the bundle

are equal and that they are at the same potential.

A more rigorous approach, which includes frequency dependency for the reduction

of the series impedance matrix, involves matrix reduction using Kron’s method

(Anderson, 1973). In this situation, all conductor impedances are calculated explicitly

and, after a suitable manipulation of terms in the impedance matrix, the mathematical

elimination of bundle conductors is carried out. The actual elimination is the same process

as that for the matrix reduction given by Equations (3.17)–(3.21) in the elimination of

ground wires.

To illustrate the elimination procedure used when bundle conductors are present, take the

case of a three-phase transmission line (a, b, c) with two conductors per phase (1, 2) and no

ground wires. Using similar notation as in Sections 3.2.1 and 3.2.2, the matrix of series

impedance parameters representing such a transmission line would be:

�Va1

�Vb1

�Vc1

�Va2

�Vb2

�Vc2

2
66666664

3
77777775
¼

Za1a1�g Za1b1 � g Za1c1�g Za1a2�g Za1b2�g Za1c2�g

Zb1a1�g Zb1b1�g Zb1c1�g Zb1a2�g Zb1b2�g Zb1c2�g

Zc1a1�g Zc1b1�g Zc1c1�g Zc1a2�g Zc1b2�g Zc1c2�g

Za2a1�g Za2b1�g Za2c1�g Za2a2�g Za2b2�g Za2c2�g

Zb2a1�g Zb2b1�g Zb2c1�g Zb2a2�g Zb2b2�g Zb2c2�g

Zc2a1�g Zc2b1�g Zc2c1�g Zc2a2�g Zc2b2�g Zc2c2�g

2
66666664

3
77777775

Ia1

Ib1

Ic1

Ia2

Ib2

Ic2

2
66666664

3
77777775
: ð3:26Þ

The individual elements of Equation (3.26) are calculated by using Equations (3.10) and

(3.11). In compact notation, we have,

�Vabc1

�Vabc2

� �
¼ Zabc11 Zabc12

Zabc21 Zabc22

� �
Iabc1

Iabc2

� �
: ð3:27Þ

If it is assumed that the two conductors in the bundle are at equal potential, then the row and

column corresponding to one of the conductors in the bundle, say 2, is mathematically

eliminated. There are three main steps involved in the elimination process:

52 MODELLING OF CONVENTIONAL POWER PLANT



� Step 1: The voltage equality constraint �Vabc2 ��Vabc1 ¼ 0 is incorporated into

Equation (3.27):

�Vabc1

�Vabc2 ��Vabc1¼ 0

� �
¼ Zabc11 Zabc12

Zabc21�Zabc11 Zabc22�Zabc12

� �
Iabc1
Iabc2

� �
: ð3:28Þ

� Step 2: matrix symmetry is restored. This is achieved by adding and subtracting the terms

Zabc11Iabc2 and ðZabc21�Zabc11ÞIabc2 in rows 1 and 2, respectively:

�Vabc1

0

� �
¼ Zabc11 Zabc12 � Zabc11

Zabc21 � Zabc11 Zabc22 þ Zabc11 � Zabc12 � Zabc21ð Þ
� �

Iabc1 þ Iabc2

Iabc2

� �
:

ð3:29Þ
� Step 3: the actual matrix reduction is carried out. This is fully equivalent to that given by

Equations (3.17)–(3.21) used for the mathematical elimination of ground wires:

�Vabc--b ¼ Zabc--b--gIabc--b; ð3:30Þ
where

Zabc--b--g ¼ A� BD�1C;

A ¼ Zabc11;

B ¼ Zabc12 � Zabc11;

C ¼ Zabc21 � Zabc11;

D ¼ Zabc22 þ Zabc11 � Zabc12 � Zabc21;

�Vabc--b ¼ �Vabc1;

Iabc--b ¼ Iabc1 þ Iabc2:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð3:31Þ

As illustrated in Figure 3.7, the current Iabc--b may be interpreted as the phase current just

before it splits into the individual currents Iabc1 and Iabc2 in the bundle.

An alternative, more elegant approach than that carried out in steps 1 and 2 is achieved by

applying the following set of transformation matrices:

Tb ¼ 1 �1

0 1

� �
and Tt

b ¼
1 0

�1 1

� �
ð3:32Þ

to the impedance matrix in Equation (3.27), that is,

1 0
�1 1

� �
Zabc11 Zabc12

Zabc21 Zabc22

� �
1 �1
0 1

� �
: ð3:33Þ

R L

R L

Iabc 2

Iabc 1

Iabc−b

Figure 3.7 Currents in a two-bundle conductor
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This operation yields the same result as Equation (3.30). In Equations (3.32) and (3.33), 1 is

a 3�3 unit matrix, and the superscript t indicates the transpose of the matrix.

In the more general case, when there are n conductors per phase, the transformation

matrix Tb may have the following form:

Tb ¼
1 �1 � � � �1

0 1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1

2
664

3
775: ð3:34Þ

Independent of the procedure used to determine the reduced equivalent matrix Equation

(3.30), this can be written in expanded form as

�Va�b

�Vb�b

�Vc�b

2
4

3
5 ¼

Zaa�b Zab�b Zac�b

Zba�b Zbb�b Zbc�b

Zca�b Zcb�b Zcc�b

2
4

3
5 Ia�b

Ib�b

Ic�b

2
4

3
5: ð3:35Þ

3.2.4 Double Circuit Transmission Lines

Often two or more three-phase transmission lines are operated in parallel (Anderson, 1973;

Grainger and Stevenson, 1994). A common arrangement is to place two three-phase circuits

in the same tower, as shown in Figure 3.8. In this case, the magnetic interaction between the

phase conductors of both three-phase circuits can be represented by the following

Phase c

Phase b

Phase a

Phase A

Phase B

Phase C

Ground wire 1 Ground wire 2

Figure 3.8 Double circuit, three-phase transmission line
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impedance matrix equation:

�Va

�Vb

�Vc

�VA

�VB

�VC

2
66666664

3
77777775
¼

Zaa�g Zab�g Zac�g ZaA�g ZaB�g ZaC�g

Zba�g Zbb�g Zbc�g ZbA�g ZbB�g ZbC�g

Zca�g Zcb�g Zcc�g ZcA�g ZcB�g ZcC�g

ZAa�g ZAb�g ZAc�g ZAA�g ZAB�g ZAC�g
ZBa�g ZBb�g ZBc�g ZBA�g ZBB�g ZBC�g

ZCa�g ZCb�g ZCc�g ZCA�g ZCB�g ZCC�g

2
66666664

3
77777775

Ia

Ib

Ic

IA

IB

IC

2
66666664

3
77777775
: ð3:36Þ

It is assumed here that neither ground wires nor bundle conductors are present in the double

circuit transmission line; alternatively, it is assumed they have been mathematically

eliminated by using the methods discussed in Sections 3.2.2 and 3.2.3, respectively. It is also

assumed that the individual elements of Equation (3.36) were calculated by using Equa-

tion (3.11) and (3.10).

3.2.5 The Per-unit System

Transmission-line parameters as calculated by Equations (3.10) and (3.11) are given in

ohms per kilometre. However, when dealing with transmission lines at the system level,

there are several advantages to be gained by expressing the line parameters in a uniform

units system, termed the per-unit system.

Moreover, equipment manufacturers also specify the equipment characteristics in either

percentage or per-unit values with respect to their nominal values. This is a simple

mechanism that enables the electrical power network to be analysed as a single entity

regardless of the voltage level at which the equipment operates.

The following electrical parameters are handled in per-unit values: voltage, current,

power, and impedance. In each case, the corresponding per-unit value is the ratio of the

actual value to a base value; that is,

per-unit value ¼ actual value

base value
: ð3:37Þ

The per-unit (p.u.) value is dimensionless by virtue of the base and actual values sharing

the same units. It is common practice to specify the voltage, VBase, and power, SBase, to be the

primary base values, from which the base current and impedance can be derived. In single-

phase systems:

IBase ¼ SBase

VBase

A; ð3:38Þ

ZBase ¼ V2
Base

SBase
�: ð3:39Þ

In three-phase systems, the total power, S3f, and the line-to-line voltage, VLL, are readily

available, and the following relations apply:

IBase ¼ S3� Baseffiffiffi
3

p
VLL Base

A; ð3:40Þ

ZBase ¼ V2
LL Base

S3� Base

�: ð3:41Þ
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Based on Equation (3.37), the per-unit parameters are:

Sp:u: ¼ S

SBase
; Vp:u: ¼ V

VBase

;

Ip:u: ¼ I

IBase
; Zp:u: ¼ Z

ZBase
:

ð3:42Þ

It should be noted that the transmission line shunt admittances in Equation (3.5) are

converted into per-unit values by using:

Yp:u: ¼ YZBase: ð3:43Þ
The transmission-line shunt admittance is sometimes referred to as ‘charging MVAR’,

Qsh. In some application programs, such as power flows, is actually supplied in terms of

MVAR as opposed to Siemens (S) or ��1. There is no difficulty in transforming Qsh into an

equivalent per-unit shunt admittance if it is assumed that a voltage value of 1 p.u. exists at

both ends of the transmission line:

Yp:u: ¼ Qsh p:u:

V2
p:u:

¼ Qsh p:u:: ð3:44Þ

Conversely, the information given by a transmission-line parameter program for the shunt

admittance can also be expressed as a charging admittance under the assumption of a 1 p.u.

voltage.

In high-voltage transmission studies, a base power of 100MVA is normally selected for

the whole system. In contrast, selection of the base voltage is not unique; instead, as many

base voltages are selected as are required to match the number of voltage levels in the

network under study. Having said that, it is important to mention that in some application

studies, such as positive sequence power flows, it is not uncommon to have only one base

voltage being selected. This is owing to the fact that the generating plant is modelled as

injections of active and reactive power at the high-voltage bus of the generator transformer.

Also, it is normal to conduct a detailed study for only one voltage level of the network, say

400 kV, with contributions from other parts of the network, operating at different voltage,

treated as either bulk power supply points or loads.

3.2.6 Transmission-line Program: Basic Parameters

A computer program for the calculation of transmission line parameters is given in Program

3.1.(1) The program is general, as far as the number of conductors in the transmission line is

concerned, and caters for up to four bundle conductors per phase and any number of earthwires.

PROGRAM 3.1 Program written in Matlab1 to calculate transmission-line parameters

%***- - - - - Main Program

TransmissionLineData;

(1)Note1: in Matlab1 it is possible to write very long lines, up to 600 characters. Continuation lines are possible
and are indicated by the use of three periods at the end of the previous line. This convention has been adopted in this
copy.
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[ZSeries,YShunt] = ShortLine(nphc,ngw,nb,bsep,resis,rdext,gmr,...

x,y,f, sigmag,vbase,sbase)

%End main Program

function [ZSeries,YShunt] = ShortLine(nphc,ngw,nb,bsep,...

resis,rdext,gmr,x, y,f,sigmag,vbase,sbase)

[RAD,GMR,RES] = BundleReduction(nphc,ngw,nb,bsep,rdext,gmr,resis);

[YShunt] = PotCoeff(nphc,RAD,x,y,f);

[ZSeries] = Dubanton(nphc,ngw,GMR,RES,x,y,f,sigmag);

[ZSeries] = GroundWireReduction(nphc,ngw,ZSeries);

[ZSeries,YShunt] = PerUnit(nphc,ZSeries,YShunt,vbase,sbase);

function [RAD,GMR,RES] = BundleReduction(nphc,ngw,nb,bsep,rdext,...

gmr,resis);

for ii = 1: nphc + ngw

if nb(ii) == 1

RAD(ii) = rdext(ii);

GMR(ii) = gmr(ii);

elseif nb(ii) == 2

RAD(ii) = sqrt(rdext(ii)*bsep(ii));

GMR(ii) = sqrt(gmr(ii)*bsep(ii));

elseif nb(ii) == 3

RAD(ii) = exp(log(rdext(ii)*bsep(ii)*bsep(ii))/3);

GMR(ii) = exp(log(gmr(ii)*bsep(ii)*bsep(ii))/3);

elseif nb(ii) == 4

RAD(ii) = sqrt(sqrt(rdext(ii)*bsep(ii)*bsep(ii)*bsep(ii)...

*sqrt (2)));

GMR(ii) = sqrt(sqrt(gmr(ii)*bsep(ii)*bsep(ii)*bsep(ii)*sqrt(2)));

end

RES(ii) = resis(ii)/nb(ii);

end

function [YShunt] = PotCoeff(nphc,RAD,x,y,f);

[YShunt] = zeros(nphc,nphc);

omega = 2*pi*f;

eps = 8.854*1e-9;

for ii = 1: nphc

for jj = 1: nphc

if ( ii == jj )

YShunt(ii,ii)=log(2*y(ii)/RAD(ii));

else

YShunt(ii,jj) = log( sqrt ( ( x(ii) - x(jj) )^2 + ...

( y(ii) + y(jj) )^2 ) / sqrt ( ( x(ii) - x(jj) )^2 + ...
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( y(ii)-y(jj) )^2 ) );

end

end

end

YShunt = i*2*pi*omega*eps*inv(YShunt);

function [ZSeries] = Dubanton(nphc,ngw,GMR,RES,x,y,f,sigmag)

[ZSeries] = zeros(nphc+ngw,nphc+ngw);

mnu = 4*pi*1e-7;

omega = (0+(2*pi*f)*i);

pe = 1/sqrt(omega*mnu*sigmag);

for ii = 1: nphc + ngw

for jj = 1: nphc + ngw

if( ii == jj )

ZSeries(ii,ii) = 1000*( RES(ii) + omega*mnu*...

log((y(ii)+y(jj)+2*pe)/GMR(ii))/(2*pi) );

else

ZSeries(ii,jj) = 1000*omega*mnu*...

log( sqrt((x(ii)-x(jj))^2+(y(ii)+y(jj)+2*pe)^2) /...

sqrt((x(ii)-x(jj))^2+(y(ii)-y(jj))^2 ) )/(2*pi);

end

end

end

function [ZSeries] = GroundWireReduction(nphc,ngw,ZSeries)

for ii = nphc + 1: nphc + ngw

ZSeries(ii,ii) = 1/ZSeries(ii,ii);

for jj = 1: nphc + ngw

if( ii ~= jj )

ZSeries(jj,ii) = ZSeries(jj,ii)*ZSeries(ii,ii);

for kk = 1: nphc + ngw

if( kk ~= ii )

ZSeries(jj,kk) = ZSeries(jj,kk) -ZSeries(jj,ii)*...

ZSeries(ii,kk);

if ( jj == nphc + ngw)

ZSeries(ii,kk) = -ZSeries(ii,ii)*ZSeries(ii,kk);

end

end

end

end

end

end

if ngw > 0

for jj = 1: nphc + ngw -1

ZSeries(nphc+ngw,jj) = -ZSeries(nphc+ngw,nphc+ngw)*...

ZSeries(nphc+ngw,jj);

end
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ZSeries = ZSeries(1:nphc,1:nphc);

end

function [ZSeries,YShunt] = PerUnit(nphc,ZSeries,YShunt,vbase,sbase)

zbase = vbase*vbase/sbase;

for ii = 1: nphc

for jj = 1: nphc

ZSeries(ii,jj) = ZSeries(ii,jj)/zbase;

YShunt(ii,jj) = YShunt(ii,jj)*zbase;

end

end

3.2.7 Numerical Example of Transmission Line Parameter Calculation

The basic parameters of a 500 kV, three-phase transmission line of flat configuration are

calculated using the Matlab1 function ShortLine given in Section 3.2.6. There are four

(bundle) conductors per phase and no ground wires in the tower (Arrillaga et al., 1986).

The series impedance and the shunt admittance matrices are calculated in ohms per

kilometres and in per-unit values using a base power of 100MVA.

Function TransmissionLineData, to read data for the 500 kV, three-phase transmis-

sion line of flat configuration, is as follows:

%transmission line.

%

%nphc = number of phase conductors

%ngw = number of ground wires

%

nphc = 3 ; ngw = 0 ;

%

%Individual Conductors Data

%resis = resistance in ohms per meter

%rdext = external radius in meters

%gmr = geometrical mean radius in meters

%nb = number of bundle conductors per phase -1 to 4

%bsep = separation between conductors in the bundle in meters

%x,y = conductor’s co-ordinates in the tower in meters

%

resis(1) = 0.1379/1000 ; rdext(1) = 1.049/100 ; gmr(1) = 0.817/100 ;

nb(1) = 4 ; bsep(1) = 0.46 ; x(1) = 12.65 ; y(1) = 27.50 ;

resis(2) = 0.1379/1000 ; rdext(2) = 1.049/100 ; gmr(2) = 0.817/100 ;

nb(2) = 4 ; bsep(2) = 0.46 ; x(2) = 0 ; y(2) = 27.50 ;

resis(3) = 0.1379/1000 ; rdext(3) = 1.049/100 ; gmr(3) = 0.817/100 ;

nb(3) = 4 ; bsep(3) = 0.46 ; x(3) = -12.65 ; y(3) = 27.50 ;

%
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%General Data

%f = frequency

%sigmag = ground’s conductivity

%vbase = base voltage

%sbase = base power

%

f = 50 ; sigmag = 0.01 ; vbase = 500 ; sbase = 100 ;

%

%End of function TransmissionLineData

The series impedance and the shunt admittance matrices in ohms per kilometre are:

Zabc ¼
0:0815þ j0:5435 0:0470þ j0:2774 0:0470þ j0:2339

0:0470þ j0:2774 0:0815þ j0:5435 0:0470þ j0:2774

0:0470þ j0:2339 0:0470þ j0:2774 0:0815þ j0:5435

2
64

3
75� km�1;

Yabc ¼
j3:359 �j0:809 �j0:305

�j0:809 j3:527 �j0:809

�j0:305 �j0:809 j3:359

2
64

3
75mS km�1:

The geometric imbalances inherent in this transmission line, due to its flat configuration,

are reflected in the fact that not all mutual reactances have the same value, that is, Xab 6¼Xac.

Similar effects can be observed in the mutual values of Yabc. Also, The resistive effects

shown in the mutual elements of Zabc are entirely due to the ground return effects. As

expected, this effect is not present in Yabc since capacitive effects are not a function of

ground return.

With reference to a base voltage of 500 kVand 100MVA, the series impedance and shunt

admittance matrices in per-unit values are:

Zabc ¼ 10�3 �
0:0326þ j0:2174 0:0188þ j0:1110 0:0188þ j0:0935

0:0188þ j0:1110 0:0326þ j0:2174 0:0188þ j0:1110

0:0188þ j0:0935 0:0188þ j0:1110 0:0326þ j0:2174

2
64

3
75p:u:;

Yabc ¼ 10�3 �
j8:398 �j2:024 �j0:762

�j2:024 j8:816 �j2:024

�j0:762 �j2:024 j8:398

2
64

3
75p:u:

3.2.8 Long-line Effects

The transmission line models required for long-distance transmission applications are more

involved than those covered in Section 3.2.4, which are only suitable to represent short to

medium-distance transmission lines (Grainger and Stevenson, 1994). In actual applications,

however, it is not common practice to see transmission lines of more than 300 km without

series compensation, which fall within the category of medium-distance transmission lines

for the purpose of fundamental frequency operation.

However, in some special cases it is desirable to incorporate long-line effects into the

transmission line parameters (Bowman and McNamee, 1964). A case in point would
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be studies relating to placement and sizing of shunt and series compensation of long-

distance transmission. At frequency applications higher than the fundamental frequency, it

is certainly mandatory to incorporate long-line effects since the electrical distance increases

rapidly with frequency (Acha and Madrigal, 2001; Arrillaga et al., 1997). Even transmission

lines of only a few tens of kilometres may be seen as a very long line at 1 kHz.

Calculation of multiconductor transmission line parameters, including long-line effects,

requires the use of formulations derived from the wave propagation equation. This

introduces a degree of extra complexity as these formulations invariably involve square

roots and circular and hyperbolic functions of matrices. Several options are available to

carry out such nonconventional matrix operations, but perhaps the best known method is to

simply apply suitable eigenvector techniques to the relevant transmission line parameter

matrices (Wedephol, 1963). This enables all calculations to be performed in the frame of

reference of the modes and then referred back to the frame of reference of the phases.

Arguably, the best known formulation derived from the wave propagation equation is the

‘ABCD’ parameter formulation:

VS

IS

� �
¼ A B

C D

� �
VR

�IR

� �
; ð3:45Þ

where

A ¼ Tv � Diag cosh �mlð Þ � T�1
v ;

B ¼ Tv � Diag zm � sinh �mlð Þ � T�1
i ;

C ¼ Ti � Diag ym � sinh �mlð Þ � T�1
v ;

D ¼ Ti � Diag cosh �mlð Þ � T�1
i :

9>>>>=
>>>>;

ð3:46Þ

In Equations (3.46), Diag is a diagonal matrix; m is the subscript for modes 0, �, and �; l is
the length of the line; Tv and Ti are transformation matrices made up of the eigenvectors of

the matrix products ZY and YZ, respectively; and Z and Y are lumped transmission-line

parameters as calculated by the Matlab1 computer program given in Section 3.2.6.

The modal parameters for the propagation constant, �m, and the characteristic impedance

and admittance, zm, and ym, in Equations (3.46) are calculated by first making Z and Y

diagonal:

Zm ¼ T�1
v ZTi;

Ym ¼ T�1
i Y Tv;

)
ð3:47Þ

and then performing the following operations:

�m ¼
ðz0y0Þ1=2 0 0

0 ðz�y�Þ1=2 0

0 0 ðz�y�Þ1=2

2
664

3
775; ð3:48Þ

zm ¼ 1

ym
¼

ðz0y�1
0 Þ1=2 0 0

0 ðz�y�1
� Þ1=2 0

0 0 ðz�y�1
� Þ1=2

2
664

3
775: ð3:49Þ

Alternative formulations, derived from the wave propagation equation, are available that

may present advantages in certain applications. The two obvious ones are the impedance
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and the admittance representations:

VS

VR

� �
¼ Z0 Z00

Z00 Z0

� �
IS

IR

� �
; ð3:50Þ

IS

IR

� �
¼ Y0 Y00

Y00 Y0

� �
VS

VR

� �
; ð3:51Þ

where

Z0 ¼ Tv � Diag zm � coth �mlð Þ � T�1
i ;

Z00 ¼ Tv � Diag zm � csch�mlð Þ � T�1
i ;

Y0 ¼ Ti � Diag ym � coth �mlð Þ � T�1
v ;

Y00 ¼ �Ti � Diag ym � csch�mlð Þ � T�1
v :

9>>>>=
>>>>;

ð3:52Þ

3.2.9 Transmission Line Transpositions

High-voltage transmission lines may contain considerable geometric asymmetry, which in

turn causes voltage imbalances at the far end of the line, and transpositions are often used as

a means of balancing the overall impedances of the line (Anderson, 1973; Arrillaga et al.,

1986).

A three-phase transmission line, with a full set of transpositions, consists of three RLC

subsystems, as shown in Figure 3.9, where each section can be viewed as a p-circuit.
Alternatively, if each section is expressed in terms of its ABCD parameters then an

equivalent result can be obtained for the overall transmission line by cascading the

a

b

c

c

a

b

b

c

a

Section 1 Section 2 Section 3

, , S1
shunt

2

a b cY

, , S1
shunt
a b cZ , , S2

shunt
a b cZ , , S3

shunt
a b cZ

, , S1
shunt

2

a b cY , , S2
shunt

2

a b cY , , S2
shunt

2

a b cY , , S3
shunt

2

a b cY , , S3
shunt

2

a b cY

Figure 3.9 Transposed transmission line representation and corresponding p sections
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individual elements (Anderson, 1973):

VS

IS

� �
¼ A1 B1

C1 D1

� �
� A2 B2

C2 D2

� �
� A3 B3

C3 D3

� �
VR

�IR

� �
;

VS

IS

� �
¼ A B

C D

� �
VR

�IR

� �
:

9>>>=
>>>;

ð3:53Þ

Notice that the voltages and currents at the receiving end of section 1 are the voltages and

current at the sending end of section 2, and so on. Notice also in Figure 3.9 that the phase

conductors in sections 1, 2, and 3 occupy different positions in the tower, following the

sense of rotation (a, b, c), (c, a, b), and (b, c, a).

Cascading is also useful for calculating equivalent ABCD parameters of transmission

lines that contain not just transpositions but also shunt and series passive compensation. The

ABCD parameters of the series capacitive compensators are:

VS

IS

� �
¼ 1 Z

0 1

� �
VR

�IR

� �
; ð3:54Þ

where 1 and 0 are the unit and zero matrices, and Z ¼ Diag 1=j!CÞ:ð Similarly, the ABCD

parameters of the shunt compensator are:

VS

IS

� �
¼ 1 0

Y 1

� �
VR

�IR

� �
; ð3:55Þ

where Y ¼ Diag j!Cð Þ and Y ¼ Diag 1=j!LÞð for capacitive and inductive shunt compen-

sation, respectively.

3.2.10 Transmission Line Program: Distributed Parameters

In Program 3.2, Program 3.1 is expanded to incorporate long-line effects and discontinuities

along the length of the line such as passive shunt and series compensation. The expansion

is neatly accommodated, leaving the code unchanged, and all added modelling functionality

is coded in two new functions, namely LongLineData and LongLine.

PROGRAM 3.2 Program written in Matlab1 to calculate transmission line parameters,

including long-line effects and passive shunt and series compensation

%***- - - - - Main Program

TransmissionLineData;

LongLineData;

[ZSeries,YShunt,Z012,Y012] = ShortLine(nphc,ngw,nb,bsep,resis,...

rdext,gmr,x,y,f,sigmag,vbase,sbase);

[ZPhase,YPhase] = LongLine(nphc,nsections,length,ZSeries,YShunt,...

ZSe,Ysh);

%End main Program

function [ZPhase,YPhase] = LongLine(nphc,nsect,length,ZSeries,...

YShunt,ZSe,YSh)
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AUX = eye(nphc*2);

[TV,ZY] = eig(ZSeries*YShunt);

[TI,YZ] = eig(YShunt*ZSeries);

ZModal = inv(TV)*ZSeries*TI;

YModal = inv(TI)*YShunt*TV;

kk = 1;

for ll = 1: nsect

if ( length(ll) > 0 )

[ABCD] = ABCDLine(ll,nphc,length,ZModal,YModal,TV,TI);

else

[ABCD] = ABCDComp(kk,nphc,ZSe,YSh);

kk = kk + 1;

end

AUX = AUX*ABCD;

end

ABCD = AUX;

A = ABCD(1:nphc,1:nphc);

B = ABCD(1:nphc,nphc+1:nphc*2);

C = ABCD(nphc+1:nphc*2,1:nphc);

D = ABCD(nphc+1:nphc*2,nphc+1:nphc*2);

ZPhase(1:nphc,1:nphc) = A*inv(C);

ZPhase(1:nphc,nphc+1:nphc*2) = -B + A*inv(C)*D;

ZPhase(nphc+1:nphc*2,1:nphc) = inv(C);

ZPhase(nphc+1:nphc*2,nphc+1:nphc*2) = inv(C)*D;

YPhase = inv(ZPhase);

%End LongLine function

function [ABCD] = ABCDLine(ll,nphc,length,ZModal,YModal,TV,TI);

Modal = zeros(nphc,nphc);

for ii = 1: nphc

gamma = sqrt(ZModal(ii,ii)*YModal(ii,ii));

gammar = real(gamma*length(ll));

gammai = imag(gamma*length(ll));

fact1 = sinh(gammar);

fact2 = cosh(gammar);

fact3 = sin(gammai);

fact4 = cos(gammai);

Modal(ii,ii) = ((fact2*fact4)+(fact1*fact3)*i);

end

ABCD(1:nphc,1:nphc) = TV*Modal*inv(TV);

for ii = 1: nphc

gamma = sqrt(ZModal(ii,ii)*YModal(ii,ii));

gammar = real(gamma*length(ll));

gammai = imag(gamma*length(ll));
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fact1 = sinh(gammar);

fact2 = cosh(gammar);

fact3 = sin(gammai);

fact4 = cos(gammai);

Modal(ii,ii) = sqrt(ZModal(ii,ii)/YModal(ii,ii))*...

(fact1*fact4+fact2*fact3*i);

end

ABCD(1:nphc,nphc+1:nphc*2) = TV*Modal*inv(TI);

for ii = 1: nphc

gamma = sqrt(ZModal(ii,ii)*YModal(ii,ii));

gammar = real(gamma*length(ll));

gammai = imag(gamma*length(ll));

fact1 = sinh(gammar);

fact2 = cosh(gammar);

fact3 = sin(gammai);

fact4 = cos(gammai);

Modal(ii,ii) = sqrt(YModal(ii,ii)/ZModal(ii,ii))*...

(fact1*fact4+fact2*fact3*i);

end

ABCD(nphc+1:nphc*2,1:nphc) = TI*Modal*inv(TV);

for ii = 1: nphc

gamma = sqrt(ZModal(ii,ii)*YModal(ii,ii));

gammar = real(gamma*length(ll));

gammai = imag(gamma*length(ll));

fact1 = sinh(gammar);

fact2 = cosh(gammar);

fact3 = sin(gammai);

fact4 = cos(gammai);

Modal(ii,ii) = (fact2*fact4+fact1*fact3*i);

end

ABCD(nphc+1:nphc*2,nphc+1:nphc*2) = TI*Modal*inv(TI);

%End ABCDLine function

function [ABCD] = ABCDComp(kk,nphc,ZSe,YSh)

One = eye(nphc) ;

ABCD(1:nphc,1:nphc) = One ;

ABCD(1:nphc,nphc+1:nphc*2) = ZSe(:,:,kk) ;

ABCD(nphc+1:nphc*2,1:nphc) = YSh(:,:,kk) ;

ABCD(nphc+1:nphc*2,nphc+1:nphc*2) = YSh(:,:,kk)*ZSe(:,:,kk) + One ;

%End ABCDComp function
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3.2.11 Numerical Example of Long Line Parameter Calculation

The parameters of the transmission line in Section 3.2.7 are calculated for the case when the

line is 500 km long. The Matlab1 function LongLine and the data given below, in

LongLineData, are used to such effect.

Function LongLineData, to read data for the 500 kV, three-phase transmission line of flat

configuration is as follows:

%transmission line of Example 1, to include long-line effects and passive

%shunt and series compensation. The line is 500 km long and contains no

%compensation.

%

%Transmission Line Data

%

%nsections = number of sections in the transmission line

%length = total length of transmission line

%

nsections = 1 ;

length(1) = 500 ;

%

%Compensating Plant Data

%

ZSe(:,:,1) = [ 0 0 0 ; 0 0 0 ; 0 0 0 ] ;

YSh(:,:,1) = [ 0 0 0 ; 0 0 0 ; 0 0 0 ] ;

%

%End of function LongLineData

In this example, the self and mutual admittances Y0 and Y00 of the transfer admittance

matrix of Equation (3.51), are:

Y0 ¼
1:6428� j11:4850 �0:6708þ j4:7380 �0:1371þ j2:9077

�0:6708þ j4:7380 1:9417� j12:7038 �0:6708þ j4:7380

�0:1371þ j2:9077 �0:6708þ j4:7380 1:6428� j11:4850

2
64

3
75p:u:;

Y00 ¼
�1:6336þ j13:6479 0:6713� j5:2450 0:1400� j3:0994

0:6713� j5:2450 �1:9327þ j14:9702 0:6713� j5:2450

0:1400� j3:0994 0:6713� j5:2450 �1:6336þ j13:6479

2
64

3
75p:u:

These parameters were calculated by using accurate expressions derived from the wave

propagation equation. An alternative, approximated, solution, involving the lumped

parameters calculated with Matlab1 function ShortLine and the nodal-based equations

Y0 ¼ Zabc � lengthð Þ�1þ 1

2
Yabc � length;

and

Y00 ¼ � Zabc � lengthð Þ�1;
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is as follows:

Y0 ¼
1:6379� j10:8189 �0:6711þ j4:5699 �0:1387þ j2:8400

�0:6711þ j4:5699 1:9369� j12:0023 �0:6711þ j4:5699

�0:1387þ j2:8400 �0:6711þ j4:5699 1:6379� j10:8189

2
64

3
75p:u:;

Y00 ¼
�1:6379þ j12:9184 0:6711� j5:0759 0:1387� j3:0306
0:6711� j5:0759 �1:9369þ j14:2064 0:6711� j5:0759
0:1387� j3:0306 0:6711� j5:0759 �1:6379þ j12:9184

2
4

3
5p:u:

It is interesting to notice that even for this relatively long-distance transmission line, little

difference exists between the conductances of the accurate and the approximated solutions.

However, the absolute error in the susceptances is around 5%.

3.2.12 Symmetrical Components and Sequence Domain Parameters

If Equation (3.1), or its more involved counterparts Equations (3.22) and (3.35), can be

assumed to be perfectly balanced then they can be replaced by the following impedance

matrix equation (Chen and Dillon, 1974):

�Va

�Vb

�Vc

2
4

3
5 ¼

Z M M

M Z M

M M Z

2
4

3
5 Ia

Ib
Ic

2
4

3
5: ð3:56Þ

Such a representation is easily transformed into the sequence domain frame of reference by

using the matrix of symmetrical components and its inverse:

Ts ¼
1 1 1

1 h2 h

1 h h2

2
4

3
5 and T�1

s ¼ 1

3

1 1 1

1 h h2

1 h2 h

2
4

3
5; ð3:57Þ

where h ¼ 1ff120�, and h2 ¼ 1ff240�.
Equation (3.56), written in compact notation, is subjected to the following treatment,

T�1
s �Vabc ¼ T�1

s ZabcTsT
�1
s Iabc: ð3:58Þ

This yields the sequence domain representation of Equation (3.56),

�V012 ¼ Z012I012: ð3:59Þ
The subscripts 0, 1, and 2 stand for zero, positive, and negative sequence components,

respectively. The following relationships exist between the terms in Equations (3.58) and

(3.59):

�V012 ¼ T�1
s �Vabc;

I012 ¼ T�1
s Iabc;

Z012 ¼ T�1
s ZabcTs:

9>=
>; ð3:60Þ

Furthermore, Equation (3.59), in expanded form, is

�V0

�V1

�V2

2
4

3
5 ¼

Z0 0 0

0 Z1 0

0 0 Z2

2
4

3
5 I0

I1
I2

2
4

3
5; ð3:61Þ
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where

Z0 ¼ Z þ 2M;

Z1 ¼ Z �M;

Z2 ¼ Z �M:

9>=
>; ð3:62Þ

This is a useful result that enables the calculation of the zero, positive, and negative

sequence impedances from known self and mutual impedances.

The reverse problem – that where the self and mutual impedances of a perfectly balanced

transmission line are to be determined from known sequence impedances – is of great

practical interest. Suitable equations can be derived from Equations (3.62):

Z ¼ 1

3
Z0 þ 2Z1ð Þ;

M ¼ 1

3
Z0 � Z1ð Þ:

9>=
>; ð3:63Þ

However, it should be remarked that if Equation (3.1) cannot be assumed to be perfectly

balanced then the use of symmetrical components does not yield a decoupled matrix

equation and the use of symmetrical components is of limited value.

To a limited extent this problem arises when the perfectly balanced counterpart of matrix

Equation (3.36) is represented in the sequence domain. If Equation (3.36) can be assumed to

be perfectly balanced then it is replaced by the following matrix equation:

�Va

�Vb

�Vc

�VA

�VB

�VC

2
6666664

3
7777775
¼

Z M M M M M

M Z M M M M

M M Z M M M

M M M Z M M

M M M M Z M

M M M M M Z

2
6666664

3
7777775

Ia
Ib
Ic
IA
IB
IC

2
6666664

3
7777775
: ð3:64Þ

Using compact notation to represent Equation (3.64), and applying symmetrical

components,

T�1
s 0

0 T�1
s

� �
�Vabc

�VABC

� �
¼ T�1

s 0

0 T�1
s

� �
Z M
M Z

� �
Ts 0
0 Ts

� �
T�1
s 0

0 T�1
s

� �
Iabc
IABC

� �
;

ð3:65Þ
we obtain the following result:

�V012

�V
0
012

� �
¼ Z012 M012

M012 Z012

� �
I012
I
0
012

� �
: ð3:66Þ

Equation (3.66) in expanded form is written as

�V0

�V1

�V2

�V
0
0

�V
0
1

�V
0
2

2
666666664

3
777777775
¼

Z þ 2M 0 0 3M 0 0

0 Z �M 0 0 0 0

0 0 Z �M 0 0 0

3M 0 0 Z þ 2M 0 0

0 0 0 0 Z �M 0

0 0 0 0 0 Z �M

2
666666664

3
777777775

I0
I1

I2

I
0
0

I
0
1

I
0
2

2
666666664

3
777777775
; ð3:67Þ
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where the sequence domain voltages and currents corresponding to circuit two are primed to

differentiate them from those in circuit one. Also, note the impedance coupling between the

two zero sequence circuits.

3.2.13 Transmission Line Program: Sequence Parameters

Computer Program 3.1 is expanded in Program 3.3 to incorporate sequence parameter

calculations. The new function, SequenceImpedance, is added to the code given in the

program. No additional input data are required.

PROGRAM 3.3 Program written in Matlab1 to calculate transmission-line sequence

parameters

%***- - - - - Main Program

TransmissionLineData;

[ZSeries,YShunt] = ShortLine(nphc,ngw,nb,bsep,resis,rdext,gmr,...

x,y,f, sigmag,vbase,sbase)

[Z012,Y012] = SequenceImpedance(ZSeries,YShunt);

%End main Program

function [Z012,Y012] = SequenceImpedance(ZSeries,YShunt)

TS(1,1) = 1;

TS(1,2) = 1;

TS(1,3) = 1;

TS(2,1) = 1;

TS(2,2) = -0.5-sqrt(3)*0.5*i;

TS(2,3) = -0.5+sqrt(3)*0.5*i;

TS(3,1) = 1;

TS(3,2) = -0.5+sqrt(3)*0.5*i;

TS(3,3) = -0.5-sqrt(3)*0.5*i;

ST = inv(TS);

Z012 = ST*ZSeries*TS;

Y012 = ST*YShunt*TS;

3.2.14 Numerical Example of Sequence Parameter Calculation

The positive, negative, and zero sequence parameters of the transmission line in Section

3.2.7 are:

Z012 ¼ 10�3 �
0:0702þ j0:4277 0:0050� j0:0029 �0:0050� j0:0029

�0:0050� j0:0029 0:0138þ j0:1122 �0:0101þ j0:0058

0:0050� j0:0029 0:0101þ j0:0058 0:0138þ j0:1122

2
64

3
75p:u:;
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Y012 ¼
j0:0053 �0:0002þ j0:0001 0:0002þ j0:0001

0:0002þ j0:0001 j0:0101 0:0008� j0:0005
�0:0002þ j0:0001 �0:0008� j0:0005 j0:0101

2
4

3
5p:u:

As expected, Z012 and Y012 are diagonally dominant and the values on the diagonal

correspond to zero, positive, and negative sequence parameters, respectively. It is important

to notice that no full decoupling of the sequences is possible because of the inherent

geometric imbalances exhibited by the transmission line used in this test case; it is a

transmission line of flat configuration and contains no line transpositions.

3.3 POWER TRANSFORMER MODELLING

Power transformers are essential plant components of the power system. In general, they

provide the interface between sections of the network with different rating voltages, for

example a generating plant and the transmission network, a static VAR compensation (SVC)

and the transmission network. Transformers consist of two or three copper windings per

phase and one or more iron cores. They are normally contained in metallic enclosures (i.e.

tanks), and are immersed in high-grade oil for insulation purposes (Grainger and Stevenson,

1994).

From the modelling point of view, it is convenient to separate the electric circuit, formed

by the copper windings, from the magnetic circuit, formed by the iron core. The reactances

of the windings can be found from short-circuit tests, and the iron-core reactances can be

found from open-circuit tests. The three-phase windings of power transformers may be

connected in a number of ways, but in high-voltage transmission the most popular

connections are: (1) star–star, (2) delta–delta, and (3) star–delta. Furthermore, the star

point can be either solidly grounded, grounded through an earthing impedance, or it may be

floating.

In power transformers the magnetising current usually represents only a small percentage

of the load current. However, this current is rich in harmonics, and a detailed representation

of the magnetic circuit is mandatory in studies involving harmonic frequencies. In

fundamental frequency studies, such as power flows, this requirement is not as severe and it

is waved in most cases, unless the study is aimed at conducting an accurate assessment of

power system losses (Acha and Madrigal, 2001; Arrillaga et al., 1997).

3.3.1 Single-phase Transformers

The starting point for developing comprehensive power flow transformer models is the

schematic representation of the basic two-winding transformer shown in Figure 3.10. The

windings contain resistance but it is assumed that the core does not saturate and exhibits no

hysteresis.

The two transformer windings, termed primary (p) and secondary (s) windings contain

Np and Ns turns, respectively. The voltages and currents existing in both windings are related

by a matrix of short-circuit (sc) impedance parameters, as given by the following
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expression:

Vp

Vs

� �
¼ Zsc p Zscm

Zscm Zsc s

� �
Ip
Is

� �
ð3:68Þ

where

Zsc p ¼ Rp þ jXsc p;

Zsc s ¼ Rs þ jXsc s;

Zscm ¼ jXscm:

9>=
>; ð3:69Þ

These parameters are obtained by measurements of the actual transformer, where Rp and Rs

are the resistances of the primary and secondary windings, respectively. The reactances

Xsc p;Xsc s, and Xscm are short-circuit reactances obtained by exciting two terminals of the

transformer shown in Figure 3.10, at reduced voltage, and short circuiting the other two. The

ratio of excitation voltage to short-circuit current gives the relevant short-circuit reactance:

Xsc p ¼ E12

I34
; Xsc s ¼ E34

I12
; Xscm ¼ E13

I24
: ð3:70Þ

From the point of view of system analysis there are advantages in expressing the short-

circuit impedance matrix of Equation (3.68) in admittance form:

Ip
Is

� �
¼ Ysc p �Yscm

�Yscm Ysc s

� �
Vp

Vs

� �
; ð3:71Þ

where

Ysc p ¼ Zsc s

Zsc pZsc s � Z2
scm

;

Ysc s ¼ Zsc p

Zsc pZsc s � Z2
scm

;

Yscm ¼ Zscm

Zsc pZsc s � Z2
scm

:

9>>>>>>>=
>>>>>>>;

ð3:72Þ

It is observed that up to three short-circuit tests may be required to characterise the matrices

of short-circuit parameters. However, the primary and secondary short-circuit admittances

are almost the same when expressed in per-unit values, say Ysc. Owing to the strong

magnetic coupling afforded by iron cores, the mutual admittance between primary and

Is

4

3

2

1

+
Vp

-

+
Vs

-

Ip

Figure 3.10 Two-winding transformer
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secondary windings can also be taken to have a value of Ysc. Hence, the transformer short-

circuit admittance matrix, in per units, is:

Ip

Is

� �
¼ Ysc �Ysc

�Ysc Ysc

� �
Vp

Vs

� �
: ð3:73Þ

3.3.2 Simple Tap-changing Transformer

The effect of expressing the transformer parameters in the per-unit system is to transform

the original voltage ratio Np : Ns into a unity voltage ratio 1 : 1. This enables a simple

equivalent circuit consisting of the short-circuit admittance Ysc connected between the

primary bus (p) and the secondary bus (s) to describe adequately the system performance of

the two-winding transformer.

However, power transformers are often fitted with a tap-changing mechanism to enable a

degree of voltage magnitude regulation at one of the transformer terminals. This is achieved

by injecting a small variable voltage magnitude in phase (added or subtracted) with the

voltage magnitude at the output winding. Such transformers are termed load tap-changing

(ltc) transformers and play an important role in power flow studies. The representation of an

ltc transformer may be achieved by the series connection of the short-circuit admittance

representing a per-unit transformer and an ideal transformer with taps ratio T : 1 (Laughton,

1968). This arrangement is shown in Figure 3.11.

The following relationships exist in the ideal transformer,

V

Vs

¼ T

1
; and

T

1
¼ I0

I
: ð3:74Þ

The current across the admittance Ysc is:

I ¼ Ysc Vp � V
� 	 ¼ Ysc Vp � TVs

� 	 ¼ Ip: ð3:75Þ
Also,

I0 ¼ TI ¼ Ysc TVp � T2Vs

� 	 ¼ �Is: ð3:76Þ
Combining Equations (3.75) and (3.76) in matrix form gives:

Ip
Is

� �
¼ Ysc �TYsc

�TYsc T2Ysc

� �
Vp

Vs

� �
: ð3:77Þ

Ip I ′

Vp

T :1

Ysc
I V

Vs

Is

Figure 3.11 Simple tap-changing transformer
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3.3.3 Advanced Tap-changing Transformer

Following the same line of reasoning, a comprehensive power system transformer model is

derived for a single-phase three-winding transformer (Acha, Ambriz-Pérez, and Fuerte-

Esquivel, 2000). Each winding is represented as the series combination of a short-circuit

admittance and an ideal transformer. Furthermore, each winding is provided with a complex

tap-changing mechanism to allow for tap-changing and phase-shifting facilities. Moreover,

the magnetising branch of the transformer is included to account for the core losses.

Figure 3.12 shows the equivalent circuit of the three-winding transformer.

The primary winding is represented as an ideal transformer having complex tap ratios

Tv : 1 and Ti : 1 in series with the admittance Ysc p, where Tv ¼ T�
i ¼ t þ j� ¼ Tff�t. The

symbol � denotes the conjugate operation. The secondary winding is represented as an ideal

transformer having complex tap ratios Uv : 1 and Ui : 1 in series with the admittance Ysc s,

where Uv ¼ U�
i ¼ uþ j� ¼ Uff�u. Similarly, the ideal transformer in the tertiary winding

has complex tap ratios Wv : 1 and Wi : 1 in series with an admittance Ysc t, where

Wv ¼ W�
i ¼ wþ j� ¼ Wff�w. It is assumed here that Ysc p, Ysc s and Ysc t are the short-circuit

admittances of the primary, secondary, and tertiary windings, respectively. The magnetising

branch of the transformer is represented by the admittance Y0 ¼ G0 þ jB0.

The resistive path of the magnetising branch is directly related to the iron losses, and its

conductance G0 draws a current that varies linearly with the voltage across the magnetising

branch. However, in the inductive path the relationship between the current and the voltage

is dictated by the rms V–I characteristic, which under saturating conditions becomes non-

linear.

B0G0

Ip I1′
Vp

Ysc p I1 V1

Tv:1
Ti:1

V0

IsI2′

1:Uv

1:Ui
Vs

Ysc sI2V2

I0 It

1:Wv

I3′

1:Wi Vt

Ysc tI3
V3

Figure 3.12 Comprehensive tap-changing transformer. Reproduced, with permission, from E. Acha,

H. Ambriz-Pérez, and C.R. Fuerte-Esquivel, ‘Advanced Transformer Control Modelling in an Optimal

Power Flow using Newton’s Method’, IEEE Trans. Power Systems 15(1) 290–298, # 2000 IEEE
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The following relationships exist in the ideal primary, secondary, and tertiary

transformers:

V1

V0

¼ Tv

1
; and

Ti

1
¼ I

0
1

I1
; ð3:78Þ

V2

V0

¼ Uv

1
; and

Ui

1
¼ I

0
2

I2
; ð3:79Þ

V3

V0

¼ Wv

1
; and

Wi

1
¼ I

0
3

I3
: ð3:80Þ

The currents across the admittances Ysc p, Ysc s, and Ysc t are, respectively,

I1 ¼ Ysc p Vp � V1

� 	 ¼ Ysc p Vp � TvV0

� 	 ¼ Ip; ð3:81Þ
I2 ¼ Ysc s Vs � V2ð Þ ¼ Ysc s Vs � UvV0ð Þ ¼ Is; ð3:82Þ
I3 ¼ Ysc t Vt � V3ð Þ ¼ Ysc t Vt �WvV0ð Þ ¼ It; ð3:83Þ

and at the centre of the transformer the following relationship holds:

0 ¼ I
0
1 þ I

0
2 þ I

0
3 � I0 ¼ TiI1 þ UiI2 þWiI3 � I0: ð3:84Þ

Substituting Equations (3.81)–(3.83) into Equation (3.84) gives:

0 ¼ �T�
vYsc pVp � U�

vYsc sVs �W�
vYsc tVt þ T2

vYsc p þ U2
vYsc s þW2

vYsc t þ Y0
� 	

V0: ð3:85Þ
Putting Equations (3.81)–(3.83) and (3.85) in matrix form gives:

Ip
Is
It
0

2
664

3
775 ¼

Ysc p 0 0 �TvYsc p
0 Ysc s 0 �UvYsc s
0 0 Ysc t �WvYsc t

�T�
vYsc p �U�

vYsc s �W�
vYsc t T2

vYsc p þ U2
vYsc s þW2

vYsc t þ Y0

2
664

3
775

Vp

Vs

Vt

V0

2
664

3
775:

ð3:86Þ
Equation (3.86) represents the transformer shown in Figure 3.12. However, it is possible

to find a reduced equivalent matrix that still models the transformer correctly while retaining

only the external buses p, s, and t. This is done by means of Gaussian elimination:

Ip

Is

It

2
64

3
75 ¼ 1

D

U2
vYsc pYsc s þW2

vYsc pYsc t þ Ysc pY0 �TvU
�
vYsc pYsc s

�T�
vUvYsc pYsc s T2

vYsc sYsc p þW2
vYsc sYsc t þ Ysc sY0

�T�
vWvYsc pYsc t �U�

vWvYsc sYsc t

2
64

�TvW
�
vYsc pYsc t

�UvW
�
vYsc sYsc t

T2
vYsc tYsc p þ U2

vYsc tYsc s þ Ysc tY0

3
75

Vp

Vs

Vt

2
64

3
75; ð3:87Þ

where

D ¼ T2
vYsc p þ U2

vYsc s þW2
vYsc t þ Y0:
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The nodal admittance representation of a two-winding transformer can be easily obtained

by introducing simplifying assumptions in Equation (3.87). For instance, when the tertiary

winding does not exist, the row and column corresponding to this bus become redundant and

they are removed from Equation (3.87). Moreover, the tap ratios Wv and Wi become zero.

Hence, the nodal admittance matrix equation representing the two-winding transformer is

arrived at:

Ip
Is

� �
¼ 1

D
U2

vYsc pYsc s þ Ysc pY0 �TvU
�
vYsc pYsc s

�T�
vUvYsc pYsc s T2

vYsc sYsc p þ Ysc sY0

� �
Vp

Vs

� �
; ð3:88Þ

where

D ¼ T2
vYsc p þ U2

vYsc s þ Y0:

It must be noted that owing to the flexibility of the two-winding transformer model in

Equation (3.88), it is possible to assemble a transformer model that represents the

transformer circuit shown in Figure 3.12 by using three of these two-winding transformer

models. An example of how this can be achieved is shown elsewhere (see Acha, Ambriz-

Pérez, and Fuerte-Esquivel, 2000).

Transformer models with more constrained tapping arrangements can also be derived

from Equation (3.88). For instance, take the case of the tap-changing transformer shown in

Figure 3.11, represented by Equation (3.77). Such a representation can be derived from

Equation (3.88) by including no magnetising branch, Y0 ¼ 0, and a nominal tapping position

for the secondary winding, Uv ¼ 1. Moreover, the tapping position of the primary winding

is real as opposed to complex, Tv ¼ T , and the short-circuit admittance is assumed to be all

on the primary side, Ysc s ¼ 0 and Ysc p ¼ Ysc. The latter consideration requires application of

L’Hopital differentiation rule with respect to Ysc s.

A further strength of the transformer model in Equation (3.88) is that, owing to the

complex nature of their taps, it represents rather well the system behaviour of a phase-

shifting (PS) two-winding transformer. This is more easily appreciated if it is assumed that

in Equation (3.88) both complex taps have unit magnitudes:

Tv ¼ 1ff�t ¼ cos�t þ j sin�t;

Uv ¼ 1ff�v ¼ cos�v þ j sin�v :

)
ð3:89Þ

Hence,

Ip

Is

" #
¼ 1

Ysc p þ Ysc s þ Y0

Ysc p Ysc s þ Y0ð Þ
�Ysc p cos�t � j sin�tð Þ � Ysc s cos�u þ j sin�uð Þ

�

�Ysc p cos�t þ j sin�tð Þ � Ysc s cos�u � j sin�uð Þ
Ysc s Ysc p þ Y0

� 	 �
Vp

Vs

� �
: ð3:90Þ

This is a comprehensive model of a PS transformer that yields very flexible power flow and

optimal power flow PS models, as will be shown in Chapters 4 and 7, respectively.

3.3.4 Three-phase Transformers

Based on nodal analysis, quite general models for multiwindings, multiphase transformers

can be derived (Chen and Dillon, 1974; Laughton, 1968). The essence of the method is to

transform the short-circuit parameters of the transformer windings, suitably arranged in a
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matrix of primitive parameters Y  , into nodal parameters Y��. This is done with the help

of appropriate connectivity matrices, namely, C� and C �. The connectivity matrices relate

the voltages and currents in the unconnected transformer windings to the phase voltages and

currents when the three-phase transformer is actually connected.

The primitive and nodal parameters are related by the following matrix expression:

Y��¼ C� Y  C �: ð3:91Þ

The primitive parameters of three identical single-phase transformers, for which the

terminals between transformers are not connected in any way but contain off-nominal

tapping facilities on the primary winding, have the following arrangement:

I1

I2

� �
¼ Ysc �TvYsc

�T�
v Ysc T2

v Ysc

� �
V1

V2

� �
;

I3

I4

� �
¼ Ysc �TvYsc

�T�
v Ysc T2

v Ysc

� �
V3

V4

� �
)

I1

I2

I3

I4

I5

I6

2
666666664

3
777777775
¼

Ysc �TvYsc 0 0 0 0

�T�
v Ysc T2

v Ysc 0 0 0 0

0 0 Ysc �TvYsc 0 0

0 0 �T�
v Ysc T2

v Ysc 0 0

0 0 0 0 Ysc �TvYsc

0 0 0 0 �T�
v Ysc T2

v Ysc

2
666666664

3
777777775

V1

V2

V3

V4

V5

V6

2
666666664

3
777777775

I5

I6

� �
¼ Ysc �TvYsc

�T�
v Ysc T2

v Ysc

� �
V5

V6

� �
:

;

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð3:92Þ
In general, these matrix equations may be expressed in compact form:

I ¼ Y  V : ð3:93Þ

The three single-phase transformers, when suitably connected, electrically speaking, may

serve the purpose of transforming three-phase voltages and currents. The assembly is termed

a ‘three-phase bank’. Each single-phase unit in the bank is closely associated with one phase

of the three-phase system. Depending on the electrical connection and operating conditions,

there may be currents from more than one phase circulating in one single-phase unit at any

one time, but there are not flux interactions between windings of different units.

Quite a different situation prevails in multilimb transformers, where all windings of the

three-phase unit are magnetically coupled. The primitive admittance matrix equation of

the two-winding, three-phase transformers is a full matrix, and up to 21 short-circuit tests

may be required to define fully this primitive admittance matrix. In the remainder of this

chapter only the three-phase bank will be addressed.

The three most popular three-phase transformer connections found in high-voltage

transmission are addressed below, namely the star–star, delta–delta, and star–delta. To

determine their nodal admittance matrix models, one requires information of the matrix of

primitive parameters, Y  , and the relevant connectivity matrices, C� and C �.

3.3.4.1 Star–star connection

The three-phase connection is shown in Figure 3.13 when the windings are connected in star–

star configuration, with both star points grounded through admittances, YN and Yn, respectively.

76 MODELLING OF CONVENTIONAL POWER PLANT



The transformation matrix, which relates the voltages existing in the unconnected

transformer to the voltages in the connected three-phase transformer shown in Figure 3.13,

is given explicitly in Equation (3.94):

V1

V2

V3

V4

V5

V6

V7

V8

2
66666666664

3
77777777775
¼

1 0 0 0 0 0 �1 0

0 0 0 1 0 0 0 �1

0 1 0 0 0 0 �1 0

0 0 0 0 1 0 0 �1

0 0 1 0 0 0 �1 0

0 0 0 0 0 1 0 �1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
66666666664

3
77777777775

VA

VB

VC

Va

Vb

Vc

VN

Vn

2
66666666664

3
77777777775
: ð3:94Þ

In compact form, we have,

V ¼ C �V�: ð3:95Þ
The nodal matrix representation of this transformer connection is obtained by substituting

Equations (3.92) and (3.94) into Equation (3.91):

IA
IB
IC
Ia
Ib
Ic
IN
In

2
66666666664

3
77777777775
¼

Ysc 0 0 �TvYsc 0 0 �Ysc TvYsc
0 Ysc 0 0 �TvYsc 0 �Ysc TvYsc
0 0 Ysc 0 0 �TvYsc �Ysc TvYsc

�T�
v Ysc 0 0 T2

v Ysc 0 0 T�
v Ysc �T2

vYsc
0 �T�

vYsc 0 0 T2
vYsc 0 T�

v Ysc �T2
vYsc

0 0 �T�
v Ysc 0 0 T2

v Ysc T�
v Ysc �T2

vYsc
�Ysc �Ysc �Ysc TvYsc TvYsc TvYsc 3Ysc þ YN �3TvYsc
T�
v Ysc T�

v Ysc T�
v Ysc �T2

vYsc �T2
v Ysc �T2

v Ysc �3T�
v Ysc 3T2

v Ysc þ Yn

2
66666666664

3
77777777775

VA

VB

VC

Va

Vb

Vc

VN

Vn

2
66666666664

3
77777777775

ð3:96Þ
If both star points N and n are solidly grounded then the nodal voltages VN and Vn become

zero. Hence, the rows and columns corresponding to bus N and bus n become redundant and

Ysc

Ysc

YN

Ysc

Ysc

Ysc

Yn

VA

VB

VC

IA

IB

IC

Va

Vb

Ia

Ib

Ic

Ysc

Vc

Figure 3.13 Star–star connection
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are deleted from matrix Equation (3.96):

IA
IB
IC
Ia
Ib
Ic

2
6666664

3
7777775
¼

Ysc 0 0 �TvYsc 0 0

0 Ysc 0 0 �TvYsc 0

0 0 Ysc 0 0 �TvYsc
�T�

vYsc 0 0 T2
vYsc 0 0

0 �T�
vYsc 0 0 T2

vYsc 0

0 0 �T�
vYsc 0 0 T2

vYsc

2
6666664

3
7777775

VA

VB

VC

Va

Vb

Vc

2
6666664

3
7777775
: ð3:97Þ

3.3.4.2 Delta–delta connection

This transformer connection is shown in Figure 3.14. In the delta connection the following

relationships exist between the voltages and currents in the connected and unconnected

circuits:

V ¼ 1ffiffiffi
3

p C �V�; ð3:98Þ

ffiffiffi
3

p
I� ¼ C� I : ð3:99Þ

The relevant connectivity matrices for this transformer connection are set up and, upon

substitution in Equation (3.91), the following nodal admittance matrix is arrived at:

IA

IB

IC

Ia

Ib

Ic

2
66666664

3
77777775
¼ 1

3

2Ysc �Ysc �Ysc �2TvYsc TvYsc TvYsc

�Ysc 2Ysc �Ysc TvYsc �2TvYsc TvYsc

�Ysc �Ysc 2Ysc TvYsc TvYsc �2TvYsc

�2T�
vYsc T�

vYsc T�
vYsc 2T2

vYsc �T2
vYsc �T2

vYsc

T�
vYsc �2T�

vYsc T�
vYsc �T2

vYsc 2T2
vYsc �T2

vYsc

T�
vYsc T�

vYsc �2T�
vYsc �T2

vYsc �T2
vYsc 2T2

vYsc

2
66666664

3
77777775

VA

VB

VC

Va

Vb

Vc

2
66666664

3
77777775
:

ð3:100Þ

3.3.4.3 Star–delta connection

This transformer connection is shown in Figure 3.15 for the case when the star point is

solidly grounded. Following a similar procedure to that used to derive the nodal admittance

Ysc

Ysc Ysc

Ysc

Ysc

VA

VB

VC

IA

IB

IC

Va

Vb

Ia

Ib

Ic

Ysc

Vc

Figure 3.14 Delta–delta connection
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matrices of the star–star and delta–delta connections, the nodal matrix representation of this

transformer connection is:

IA

IB

IC

Ia

Ib

Ic

2
6666666664

3
7777777775
¼

Ysc 0 0 �TvYsc

 ffiffiffi

3
p

TvYsc

 ffiffiffi

3
p

0

0 Ysc 0 0 �TvYsc

 ffiffiffi

3
p

TvYsc

 ffiffiffi

3
p

0 0 Ysc TvYsc

 ffiffiffi

3
p

0 �TvYsc

 ffiffiffi

3
p

�T�
vYsc


 ffiffiffi
3

p
0 T�

v Ysc

 ffiffiffi

3
p

2T2
v Ysc



3 �T2

v Ysc


3 �T2

v Ysc


3

T�
v Ysc


 ffiffiffi
3

p �T�
vYsc


 ffiffiffi
3

p
0 �T2

vYsc


3 2T2

v Ysc


3 �T2

v Ysc


3

0 T�
v Ysc


 ffiffiffi
3

p �T�
vYsc


 ffiffiffi
3

p �T2
vYsc



3 �T2

v Ysc


3 2T2

v Ysc


3

2
6666666664

3
7777777775

VA

VB

VC

Va

Vb

Vc

2
6666666664

3
7777777775
:

ð3:101Þ

3.3.5 Sequence Domain Parameters

Transformer parameters are also amenable to representation in the frame of reference of the

sequences (Chen and Dillon, 1974). The matrix of symmetrical components and its inverse,

given in Equations (3.57), are used to such effect. This requires that the order of all matrices

involved in the exercise be a multiple of three. This characteristic is met by matrices

representing the star–star connected transformer with both star points solidly grounded, the

delta–delta transformer, and the star–delta transformer with the star point solidly grounded.

It should be noted that the symmetrical components transform given in Equations (3.57)

cannot directly be applied to cases of star-connected windings, where one or two star points

are not grounded or are grounded through earthing impedances. In such cases, Kron’s

reductions are applied first to find out reduced equivalent representations which are a

function only of phase terminals. This follows the spirit of the procedure presented in

Section 3.2.2 for the elimination of transmission line ground wires.

A generic, compact representation of Equations (3.97), (3.100), and (3.101) correspond-

ing to the star–star, delta–delta, and star–delta connections may be expressed as:

IABC
Iabc

� �
¼ YI �YII

�YIII YIV

� �
VABC

Vabc

� �
; ð3:102Þ

Ysc

Ysc

Ysc

Va

Vb

Ia

Ib

Ic

Vc

Ysc

Ysc

YN

VA

VB

VC

IA

IB

IC

Ysc

Figure 3.15 Star–delta connection
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where the order of matrices YI, YII, YIII, YIV is 3� 3 and suitable for direct treatment by

the matrix of symmetrical components, to enable representation in the frame of reference of

the sequences. This is achieved by applying the following symmetrical component

operations:

Yi ¼ T�1
S YITS;

Yii ¼ T�1
S YIITS;

Yiii ¼ T�1
S YIIITS;

Yiv ¼ T�1
S YIVTS:

9>>>>=
>>>>;

ð3:103Þ

Table 3.1 shows matrices Yi, Yii, Yiii, and Yiv in explicit form, for the star–star, delta–delta,

and star–delta transformer connections.

The sequence domain representation of a transformer, in compact form, is:

I012p
I012s

� �
¼ Y

ðiÞ
i �Y

ðiiÞ
i

�Y
ðiiiÞ
i Y

ðivÞ
i

" #
V012p

V012s

� �
; ð3:104Þ

where the subscripts 0, 1, and 2 refer to zero, positive, and negative sequence quantities,

respectively. It has been emphasised in various points.

Careful examination of the sequence domain parameters indicates that three independent

transfer admittance matrix equations, leading to three independent circuits, are generated for

a three-phase transformer. This is more easily realised if the transformer taps are taken to be

Table 3.1 Transformer sequence domain admittances

Matrix type Star–star Delta–delta Star–delta

Yi

Ysc 0 0

0 Ysc 0

0 0 Ysc

2
4

3
5 0 0 0

0 Ysc 0

0 0 Ysc

2
4

3
5 Ysc 0 0

0 Ysc 0

0 0 Ysc

2
4

3
5

Yii

TvYsc 0 0

0 TvYsc 0

0 0 TvYsc

2
4

3
5 0 0 0

0 TvYsc 0

0 0 TvYsc

2
4

3
5 0 0 0

0 TvYscff30� 0

0 0 TvYscff �30�

2
4

3
5

Yiii

T�
v Ysc 0 0

0 T�
v Ysc 0

0 0 T�
v Ysc

2
4

3
5 0 0 0

0 T�
v Ysc 0

0 0 T�
v Ysc

2
4

3
5 0 0 0

0 T�
v Yscff � 30� 0

0 0 T�
v Yscff30�

2
4

3
5

Yiv

T2
v Ysc 0 0

0 T2
v Ysc 0

0 0 T2
v Ysc

2
4

3
5 0 0 0

0 T2
v Ysc 0

0 0 T2
v Ysc

2
4

3
5 0 0 0

0 T2
v Ysc 0

0 0 T2
v Ysc

2
4

3
5
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real as opposed to complex, yielding symmetrical matrix equations and, hence, reciprocal

circuits. The star–star, delta–delta, and star–delta connections share the same positive and

negative sequence equivalent circuits, given in Figure 3.16.

In contrast, the zero sequence equivalent circuits for the three connections differ from one

another. The equivalent circuits are shown in Figures 3.17(a), 3.17(b), and 3.17(c) for the

star–star, delta–delta, and star–delta connections, respectively.

It should be noted that for the star–delta transformer connection the primary and

secondary terminals of the zero sequence equivalent circuit are not electrically connected.

However, the primary terminal contains an admittance Ysc connected between this terminal

and the reference. It is also interesting to note that the positive and negative transfer

admittances contain an asymmetrical phase shift of 30� between the primary and secondary

terminals giving rise to nonreciprocal equivalent circuits. The asymmetrical phase shift is

entirely attributable to the star–delta connection and it is present even when no taps are

availabe in the transformer. It is common practice in application studies, such as positive

sequence power flow and sequence domain-based fault levels to ignore the phase shift

during the calculations and then to account for it during the analysis of results.

Ip Is

Vp

TYsc

(1-T)Ysc (T2-T)Ysc Vs

Figure 3.16 Positive and negative sequence equivalent circuit for the star–star, delta–delta, and star–

delta connections

I0p I0pI0sTYsc Ysc

 V0pV0p  V0p V0s V0s  V0s
(1−   T)Ysc

(T−T2)Ysc

(a) (c)(b)

Figure 3.17 Zero sequence equivalent circuits for: (a) star–star, (b) delta–delta, and (c) star–delta

connections
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3.4 ROTATING MACHINERY MODELLING

In general, synchronous machines are grouped into two main types, according to their rotor

structure: round rotor and salient pole machines (Grainger and Stevenson, 1994). Steam

turbine driven generators (turbogenerators) work at high speed and have cylindrical rotors.

The rotor carries a DC excited field winding. Hydro units work at low speed and have salient

pole rotors. They normally have damper windings in addition to the field winding. Damper

windings consist of bars placed in slots on the pole faces and connected together at both

ends. Turbogenerators contain no damper windings but the solid steel of the rotor offers a

path for eddy currents, which have similar damping effects.

For simulation purposes, the currents circulating in the solid steel or in the damping

windings can be treated as currents circulating in two closed circuits. Accordingly, a three-

phase synchronous machine may be assumed to have three stator windings and three rotor

windings. This is illustrated in Figure 3.18, where all six windings are magnetically coupled.

The relative position of the rotor with respect to the stator is given by the angle � between
the rotor’s direct axis and the stator’s phase a axis, termed the d axis and a axis, respectively.

In the stator, the axis of phases a, b, and c are displaced from each other by 120 electrical

degrees. In the rotor, the d axis is magnetically centred in the north pole of the machine. A

ic

ec

eb

ib

ea

ia

d

q

(t)

ifd

ikq

ikd

aq

Figure 3.18 Schematic representation of a three-phase synchronous generator. Redrawn by

permission of the Institution of Electrical Engineers from R.G. Wasley and M.A. Shlash, ‘Steady-

state Phase-variable Model of the Synchronous Machine for Use in 3-phase Load-flow Studies’,

Proceedings of the IEEE 121(10) 1155–1164 # 1974 IEEE
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second axis, located 90 electrical degrees behind the d axis is termed the quadrature axis or

q axis.

Three main control systems directly affect the turbine-generator set, namely the boiler’s

firing control, the governor control, and the excitation system control. The excitation system

consists of the exciter and absolute value rectifier (AVR). The latter regulates the generator

terminal voltage by controlling the amount of current supplied to the field winding by the

exciter. For the purpose of steady-state analysis, it is assumed that the three control systems

act in an idealised manner, enabling the synchronous generator to produce constant power

output, to run at synchronous speed, and to regulate voltage magnitude at the generator’s

terminal with no delay and up to its reactive power design limits.

3.4.1 Machine Voltage Equation

The objective of this section is to derive a steady-state expression for the stator three-phase

voltages and currents of the synchronous generator (Wasley and Shlash, 1974b). The rotor

emfs (electromagnetic forces) and saliency are accounted for in the resulting voltage

equation, which may form the basis for connecting the machine model to a given three-

phase bus of an unbalanced power system representation.

With reference to Figure 3.18, using stator and rotor quantities expressed in frames of

reference attached to their respective physical circuits, namely stator and rotor circuits, the

instantaneous voltages of the machine may be expressed as:

v ¼ Riþ pLi; ð3:105Þ
where R and L are the machine resistance and inductance matrices, respectively, and p is the

time derivative operator.

Furthermore, expanding Equation (3.105) into stator and rotor subsets, we obtain:

vs
vr

� �
¼ Rs 0

0 Rr

� �
is
ir

� �
þ !r

Gss Gsr

Gt
sr 0

� �
is
ir

� �
þ Lss Lsr

Lt
sr Lrr

� �
pis
pir

� �
; ð3:106Þ

where G ¼ dL=d�; !r, equal to d�=dt, is the rotor speed; and � ¼ !rtþ �.
The submatrix coefficients L, G, and R are:

Lss ¼
Laa0þLa2 cos 2�ð Þ �Lab0�La2 cos 2�þ 60ð Þ �Lab0�La2 cos 2�� 60ð Þ

�Lab0�La2 cos 2�þ 60ð Þ Laa0þLa2 cos 2�þ 120ð Þ �Lab0�La2 cos 2�� 180ð Þ
�Lab0�La2 cos 2�� 60ð Þ �Lab0�La2 cos 2�� 180ð Þ Laa0þLa2 cos 2�� 120ð Þ

2
4

3
5;

ð3:107Þ

Lsr ¼
Laf cos �ð Þ Laf cos �ð Þ �Laf sin �ð Þ

Laf cos �� 120ð Þ Laf cos �� 120ð Þ �Laf sin �� 120ð Þ
Laf cos �þ 120ð Þ Laf cos �þ 120ð Þ �Laf sin �þ 120ð Þ

2
4

3
5; ð3:108Þ

Lrr ¼
Lfd Lmkd 0

Lmkd Lkd 0

0 0 Lkq

2
4

3
5; ð3:109Þ
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Gss ¼
�2La2 sin 2�ð Þ 2La2 sin 2�þ 60ð Þ 2La2 sin 2�� 60ð Þ

2La2 sin 2�þ 60ð Þ �2La2 sin 2�þ 120ð Þ 2La2 sin 2�� 180ð Þ
2La2 sin 2�� 60ð Þ 2La2 sin 2�� 180ð Þ �2La2 sin 2�� 120ð Þ

2
4

3
5; ð3:110Þ

Gsr ¼
�Laf sin �ð Þ �Laf sin �ð Þ �Laf cos �ð Þ

�Laf sin �� 120ð Þ �Laf sin �� 120ð Þ �Laf cos �� 120ð Þ
�Laf sin �þ 120ð Þ �Laf sin �þ 120ð Þ �Laf cos �þ 120ð Þ

2
4

3
5; ð3:111Þ

Rr ¼
Ra 0 0

0 Rb 0

0 0 Rc

2
4

3
5; ð3:112Þ

Rr ¼
Rfd 0 0

0 Rkd 0

0 0 Rkq

2
4

3
5: ð3:113Þ

Since the rotor circuits are represented by a field winding on the d axis and two short-

circuited damper windings on the d axis and q axis, respectively, the rotor voltage vector

may be written as

vr ¼
vfd
0

0

2
4

3
5; ð3:114Þ

where vfd is the applied direct field voltage.

For the purpose of steady-state analysis, it will be assumed that the applied direct field

voltage equals the voltage drop across the field resistance owing to the DC component of the

field current and that additional voltages from Rf if can be neglected. Using such a

simplification, the relevant part of Equation (3.106) is solved for pir:

pir ¼ �L�1
rr !Grsis þ Lrs pis½ �: ð3:115Þ

Assuming the following set of unbalanced stator currents:

is ¼
I1 sin !t þ �1ð Þ
I2 sin !t þ �2ð Þ
I3 sin !t þ �3ð Þ

2
4

3
5; ð3:116Þ

and the fact that the rotor runs at synchronous speed (i.e. !r ¼ !), we have,

pir ¼ �!LafL
�1
rr

X3
m¼1

Im cos  mð Þ
Im cos  mð Þ
�Im sin  mð Þ

2
4

3
5; ð3:117Þ

where

 1 ¼ 2!t þ � þ �1;

 2 ¼ 2!t þ � þ �2 � 120;

 3 ¼ 2!t þ � þ �3 þ 120:

9>=
>; ð3:118Þ
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The expression for pir can be further simplified by substituting the inverse relation of

Equation (3.109) into Equation (3.117):

pir ¼
X3
m¼1

k1Im cos  mð Þ
�k2Im cos  mð Þ
k2Im sin  mð Þ

2
4

3
5; ð3:119Þ

where

k1 ¼ �!Laf
Lfd

1� Lmkd

Lkd

� �
;

k2 ¼ !Laf
Lkd

:

9>>=
>>; ð3:120Þ

It should be mentioned that the following practical simplifications have been made while

substituting the inverse relation of Equation (3.109) into Equation (3.117): Lfd is much

greater than Lmkd, and Lkq¼Lkd.

Equation (3.119) is now integrated:

ir ¼ 1

2!

X3
m¼1

k1Im sin  mð Þ
�k2Im sin  mð Þ
�k2Im cos  mð Þ

2
4

3
5þ

ifd
0

0

2
4

3
5; ð3:121Þ

where ifd is the DC component of the field current.

Inspection of Equation (3.118) and (3.121) reveals that the presence of negative sequence

currents at the machine terminals gives rise to rotor currents of double the supply frequency.

In contrast, positive sequence currents are associated with zero frequency rotor currents,

other than the direct field current. Also, owing to balanced machine design considerations,

there is no contribution from zero sequence currents:

Substituting Equations (3.119) and (3.121) into Equation (3.106) we obtain a reduced

expression for the stator voltage vector:

va

vb

vc

2
64

3
75¼

Ra 0 0

0 Rb 0

0 0 Rc

2
64

3
75

I1 sin !tþ �1ð Þ
I2 sin !tþ �2ð Þ
I3 sin !tþ �3ð Þ

2
64

3
75þ!Laa0

1 �1 �1

�1 1 �1

�1 �1 1

2
64

3
75

I1 cos !tþ �1ð Þ
I2 cos !tþ �2ð Þ
I3 cos !tþ �3ð Þ

2
64

3
75

þ ðk1 � 2k2ÞLaf
4

cos !tþ �1ð Þ cos !tþ �2 � 120ð Þ cos !tþ �3 þ 120ð Þ
cos !tþ �1 þ 120ð Þ cos !tþ �2ð Þ cos !tþ �3 � 120ð Þ
cos !tþ �1 � 120ð Þ cos !tþ �2 þ 120ð Þ cos !tþ �3ð Þ

2
64

3
75

I1

I2

I3

2
64

3
75

�!La2
2

cos !t� �1 þ 2�ð Þ �cos !t� �2 þ 2�þ 60ð Þ �cos !t� �3 þ 2�� 60ð Þ
� cos !t� �1 þ 2�þ 60ð Þ cos !t� �2 þ 2�þ 120ð Þ � cos !t� �3 þ 2�� 180ð Þ
� cos !t� �1 þ 2�� 60ð Þ � cos !t� �2 þ 2�� 180ð Þ cos !t� �3 þ 2�� 120ð Þ

2
64

3
75

�
I1

I2

I3

2
64

3
75�!Laf ifd

sin !tð Þ
sin !tþ �� 120ð Þ
sin !tþ �þ 120ð Þ

2
64

3
75: ð3:122Þ
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The last term in Equation (3.122) may be interpreted as an array of rotor emfs. Moreover,

taking the stator a phase as reference,

va
vb
vc

2
4

3
5 ¼

V1 sin !tð Þ
V2 sin !t þ �2ð Þ
V3 sin !t þ �3ð Þ

2
4

3
5: ð3:123Þ

It is seen that a root mean square (rms) form of Equation (3.122) may be established very

readily. Also, by negating the stator currents to correspond to generator operating

conditions, we have

ES ¼ RS þ j X1 þ X2ð Þ½ �IS þ jX3I
�
S þ VS; ð3:124Þ

where

X1 ¼ !
Laa0 �Lab0 �Lab0
�Lab0 Laa0 �Lab0
�Lab0 �Lab0 Laa0

2
4

3
5; ð3:125Þ

X2 ¼ Laf k1 � 2k2ð Þ
4

1 h2 h

h 1 h2

h2 h 1

2
4

3
5; ð3:126Þ

X3 ¼ �!La2e
j2�

2

1 h2 h

h2 h 1

h 1 h2

2
4

3
5: ð3:127Þ

It is observed that the term Laf k1 � 2k2ð Þ 4= reduces to �!L2af =4Lfd if damper windings are

not present.

As a means of evaluating the reactance elements in Equation (3.124), it is noted that the

usually available dq0 reactances of the machine may be used in the following expressions:

!Laa0 ¼ 1

3
Xd þ Xq þ X0

� 	
;

!Lab0 ¼ 1

6
Xd þ Xq � 2X0

� 	
;

!La2 ¼ 1

3
Xd � Xq

� 	
:

9>>>>>=
>>>>>;

ð3:128Þ

Equation (3.124) includes the effect of machine saliency through matrix X3, where

Xd � Xq

� 	
expresses the degree of saliency. Notice that if saliency can be ignored (i.e.

Xd ¼ Xq) matrix X3 plays no role in machine performance. Also, X3 is dependent on

external circuit conditions through the machine angle �. Matrix X2 contributes negative

sequence impedance, impairing the balanced behaviour of the machine.

3.5 SYSTEM LOAD

In general, power system loads can be classified into rotating and static loads (Weedy,

1987). A third category corresponds to power electronic-based loads. Rotating loads consist

mainly of induction and synchronous motors, and their steady-state operation is affected by
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voltage and frequency variations in the supply. Power electronic-based loads are also

affected by voltage and frequency variations in the supply. There is general agreement that

such loads are more difficult to operate because, in addition to being susceptible to supply

variations, they inject harmonic current distortion back into the supply point (Acha and

Madrigal, 2001).

Detailed representation of a synchronous motor load in a three-phase power flow study

requires use of Equation (3.124), with changed signs to reflect the motoring action. An

expression of comparable detail can be derived for the induction motor load. However,

owing to the large number and diversity of loads that exist in power networks, it is

preferable to group loads and to treat them as bulk load points. It is only very important

loads that are singled out for detailed representation. It is interesting to note that a group of

rotating loads operating at constant torque may be adequately represented as a static load

that exhibits the characteristic of a constant current sink (Weedy, 1987).

In steady-state applications, most system loads are adequately represented by a three-

phase power sink, which may be connected either in a star or delta configuration, depending

on requirements (Chen and Dillon, 1974). Figure 3.19(a) shows the schematic rep-

resentation of a star-connected load with the star point solidly grounded, whereas

Figure 3.19(b) shows a schematic represantation of a delta-connected load.

In three-phase power flow studies it is normal to represent bulk power load points as

complex powers per phase, on a per-unit basis:

SLa ¼ PLa þ jQLa;

SLb ¼ PLb þ jQLb;

SLc ¼ PLc þ jQLc:

9>=
>; ð3:129Þ

Va

Vb

Vc

SLc SLb SLa SLc SLb SLa

Va

Vb

Vc

(a) (b)

Figure 3.19 System load representation: (a) star-connected load with star point solidly grounded and

(b) delta-connected load
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Refinements can be applied to the above equations to make the power characteristic more

responsive to voltage performance:

S
0
La ¼ PLa

1

Va

� ��
þjQLa

1

Va

� ��
;

S
0
Lb ¼ PLb

1

Vb

� ��
þjQLb

1

Vb

� ��
;

S
0
Lc ¼ PLc

1

Vc

� ��
þjQLc

1

Vc

� ��
:

9>>>>>>>>=
>>>>>>>>;

ð3:130Þ

In Equations (3.130), � and � take values in the range 0–2 and Va, Vb, and Vc are the per-unit

three-phase nodal voltage magnitudes at the load point. Notice that when � ¼ � ¼ 0 the

complex power expressions in Equations (3.130) coincide with those in Equations (3.129).

However, if � ¼ � ¼ 1, Equations (3.130) resemble complex current characteristics more

than complex power characteristics. Also, if � ¼ � ¼ 2, the complex powers in Equa-

tions (3.130) would behave like complex admittances.

The admittance-like characteristic in Equations (3.130) may be expressed in matrix form

for both kinds of load connections, star and delta, respectively:

SLa


V2
a 0 0

0 SLb


V2
b 0

0 0 SLc


V2
c

2
4

3
5; ð3:131Þ

1

3

SLa


V2
a þ SLb



V2
b �SLb



V2
b �SLa



V2
a

�SLb


V2
b SLb



V2
b þ SLc



V2
c �SLc



V2
c

�SLa


V2
a �SLc



V2
c SLc



V2
c þ SLa



V2
a

2
64

3
75: ð3:132Þ

Moreover, if it is assumed that the load powers and voltage magnitudes are taken to be

balanced, SLa ¼ SLb ¼ SLc ¼ SL, and Va ¼ Vb ¼ Vc ¼ V, then application of the following

symmetrical component operation, Y012 ¼ T�1
S YabcTS, leads to the load model representa-

tion for zero, positive, and negative (0, 1, 2) sequences:

SL


V2 0 0

0 SL


V2 0

0 0 SL


V2

2
4

3
5; ð3:133Þ

0 0 0

0 SL


V2 0

0 0 SL


V2

2
4

3
5: ð3:134Þ

Notice that no zero sequence loads exist for the case of a three-phase delta-connected load,

only positive and negative sequences.

As an extension of the above result, the positive, negative, and zero sequence expression

of a star-connected load with its star point solidly grounded may be expressed as

S
0
L ð1Þ ¼ S

0
L ð2Þ ¼ S

0
L ð0Þ ¼ PL

1

V

� ��
þjQL

1

V

� ��
; ð3:135Þ
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whereas for the case of a delta-connected load we have

S
0
L ð1Þ ¼ S

0
L ð2Þ ¼ PL

1

V

� ��
þjQL

1

V

� ��
; and S

0
L ð0Þ ¼ 0: ð3:136Þ

It should be remarked that the exponents � and � are not confined to integer values and that

a wide range of load characteristics can be achieved by judicious selection of � and �,
depending on the group of loads present in the study.

Also, a three-phase delta connected load can always be transformed into an equivalent

star circuit by using a delta–star transformation. However, notice that the transform-

ation will generate an extra bus in the form of the star point, which yields no physical

meaning.

3.6 SUMMARY

The chapter has addressed the mathematical modelling of the most common elements found

in conventional electrical power systems, namely, transmission lines, transformers,

generators, loads, and shunt and series passive compensation. The tools and methods

covered in the book are limited to fundamental frequency steady-state phenomena, and the

modelling approach followed in this chapter reflects this fact. Notwithstanding this, the

overall modelling philosophy is quite general in the sense that all plant component models

are formulated in the frame of reference of the phases, which is closely associated with the

physical structure of the equipment and its actual steady-state electrical operation. It is

shown throughout the chapter that simpler models do exist to represent a given plant

component but that these models are based on the assumption of perfect geometric balance

conditions. These models are realised with the help of the symmetrical component

transform, leading to plant component representation in the frame of reference of the

sequences.

Multiphase transmission line parameters are calculated with great accuracy, incorporating

all key effects that affect fundamental frequency operation such as geometric imbalances,

ground return loops, and even long-line effects. Practical transmission lines include several

conductors per phase and ground wires as well as more than one three-phase circuit sharing

the same right of way, giving rise to a large number of electromagnetically coupled

conductors. The chapter has presented a methodology for handling all these effects in a

systematic and efficient manner. A comprehensive computer program in Matlab1 has been

written to calculate multiconductor transmission line parameters.

Three-phase power transformers have been modelled in the frame of reference of the

phases, with particular reference to complex off-nominal tapping positions. This caters for

the possibility of the transformer acting as a tap changer or as a phase shifter. The most

popular transformer connections used in high-voltage transmission have been addressed

and, under the assumption of perfect geometric conditions, transformer models in the frame

of reference of the sequences have been derived. The thrust of these models is fundamental

frequency, steady-state operation, and there is little loss of accuracy in representing the

three-phase transformer as a three-phase bank of transformers. A detailed model of the

synchronous generator, based on its physical windings arrangement, has been presented.
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The effects of saliency and the generator load angle are explicitly represented in the model.

This model also serves the purpose of representing a synchronous motor, by suitable

modification of signs to conform to motoring action. Static loads suitable for bulk load

representation have also received attention.

The models of conventional power plant components developed in this chapter interface

quite naturally with the models of FACTS components developed in Chapter 2. Together,

they provide a very sophisticated tool with which to represent power system networks

containing a vast array of power electronic controllers of various kinds. These are the

power systems that may be in operation tomorrow. Two different modelling flavours

emerge from this modelling exercise, the frame of reference of the phases and the frame of

reference of the sequences, each one having its own time and space. Chapters 4, 5, and 7,

dealing with positive sequence power flow and optimal power flow, use the positive

sequence models derived in this and Chapter 2. Chapter 6 covers the topic of three-phase

power flow and uses the comprehensive models developed in the frame of reference of

the phases.
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4
Conventional Power Flow

4.1 INTRODUCTION

The main aim of a modern electrical power system is to satisfy continuously the electrical

power contracted by all customers. This is a problem of great engineering complexity where

the following operational policies must be observed: (1) nodal voltage magnitudes and

system frequency must be kept within narrow boundaries; (2) the alternating current (AC)

voltage and current waveforms must remain largely sinusoidal; (3) transmission lines must

be operated well below their thermal and stability limits; and (4) even short-term

interruptions must be kept to a minimum. Moreover, because of the very competitive nature

of the electricity supply business in an era of deregulation and open access, transmission

costs must be kept as low as possible.

To a large extent, several of these key issues in power system operation may be assessed

quite effectively by resorting to power flow and derived studies (Arrillaga and Arnold, 1990;

Grainger and Stevenson, 1994; Stagg and El-Abiad, 1968; Wood and Wollenberg, 1984).

The main objective of a power flow study is to determine the steady-state operating

condition of the electrical power network. The steady-state may be determined by finding

out, for a given set of loading conditions, the flow of active and reactive powers throughout

the network and the voltage magnitudes and phase angles at all buses of the network.

Expansion, planning and daily operation of power systems relies on extensive power flow

studies (Kundur, 1994; Weedy, 1987). The information conveyed by such studies indicates

whether or not the nodal voltage magnitudes and active and reactive power flows in

transmission lines and transformers are within prescribed operating limits. If voltage

magnitudes are outside bounds in one or more points of the network, then appropriate action

is taken in order to regulate such voltage magnitudes. Similarly, if the study predicts that the

power flow in a given transmission line is beyond the power carrying capacity of the line,

then control action is taken.

4.2 GENERAL POWER FLOW CONCEPTS

The power flow problem, is solved to determine the steady-state complex voltages at all

buses of the network, from which the active and reactive power flows in every transmission

FACTS: Modelling and Simulation in Power Networks.
Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez and César Angeles-Camacho
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line and transformer are calculated (Stagg and El-Abiad, 1968). The set of equations

representing the power system are nonlinear. For most practical purposes, all power flow

methods exploit the well-conformed nodal properties of the power network and equipment.

In its most basic form, these equations are derived by assuming that a perfect symmetry

exists between the phases of the three-phase power system (Arrillaga and Arnold, 1990).

Owing to the nonlinear nature of the power flow equations, the numerical solution is reached

by iteration (Grainger and Stevenson, 1994).

4.2.1 Basic Formulation

A popular approach to assess the steady-state operation of a power system is to write

equations stipulating that at a given bus the generation, load, and powers exchanged through

the transmission elements connecting to the bus must add up to zero. This applies to both

active power and reactive power. These equations are termed ‘mismatch power equations’

and at bus k they take the following form:

�Pk ¼ PGk � PLk � Pcal
k ¼ Psch

k � Pcal
k ¼ 0; ð4:1Þ

�Qk ¼ QGk � QLk � Qcal
k ¼ Qsch

k � Qcal
k ¼ 0: ð4:2Þ

The terms �Pk and �Qk are the mismatch active and reactive powers at bus k, respectively.

PGk and QGk represent, respectively, the active and reactive powers injected by the generator

at bus k. For the purpose of the power flow solutions it is assumed that these variables can be

controlled by the power plant operator. PLk and QLk represent the active and reactive powers

drawn by the load at bus k, respectively. Under normal operation the customer has control of

these variables, and in the power flow formulation they are assumed to be known variables.

In principle, at least, the generation and the load at bus k may be measured by the electric

utility and, in the parlance of power system engineers, their net values are known as the

scheduled active and reactive powers:

Psch
k ¼ PGk � PLk; ð4:3Þ

Qsch
k ¼ QGk � QLk: ð4:4Þ

The transmitted active and reactive powers, Pcal
k and Qcal

k , are functions of nodal voltages

and network impedances and are computed using the power flow equations. Provided the

nodal voltages throughout the power network are known to a good degree of accuracy then

the transmitted powers are easily and accurately calculated. In this situation, the

corresponding mismatch powers are zero for any practical purpose and the power balance

at each bus of the network is satisfied. However, if the nodal voltages are not known

precisely then the calculated transmitted powers will have only approximated values and the

corresponding mismatch powers are not zero. The power flow solution takes the approach of

successively correcting the calculated nodal voltages and, hence, the calculated transmitted

powers until values accurate enough are arrived at, enabling the mismatch powers to be zero

or fairly close to zero. In modern power flow computer programs, it is normal for all

mismatch equations to satisfy a tolerance as tight as 1e�12 before the iterative solution can

be considered successful. Upon convergence, the nodal voltage magnitudes and angles yield

useful information about the steady-state operating conditions of the power system and are

known as state variables.
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In order to develop suitable power flow equations, it is necessary to find relationships

between injected bus currents and bus voltages. Based on Figure 4.1 the injected complex

current at bus k, denoted by Ik, may be expressed in terms of the complex bus voltages Ek

and Em as follows:

Ik ¼ 1

zkm
ðEk � EmÞ ¼ ykm ðEk � EmÞ: ð4:5Þ

Similarly for bus m,

Im ¼ 1

zmk
ðEm � EkÞ ¼ ymk ðEm � EkÞ: ð4:6Þ

The above equations can be written in matrix form as,

Ik
Im

� �
¼ ykm �ykm

�ymk ymk

� �
Ek

Em

� �
; ð4:7Þ

or

Ik
Im

� �
¼ Ykk Ykm

Ymk Ymm

� �
Ek

Em

� �
; ð4:8Þ

where the bus admittances and voltages can be expressed in more explicit form:

Yij ¼ Gij þ jBij; ð4:9Þ
Ei ¼ Vi e

j�i ¼ Vi ðcos �i þ j sin �iÞ; ð4:10Þ
where i ¼ k;m; and j ¼ k;m.

The complex power injected at bus k consists of an active and a reactive component and

may be expressed as a function of the nodal voltage and the injected current at the bus:

Sk ¼ Pk þ jQk ¼ Ek I
�
k

¼ Ek ðYkk Ek þ Ykm EmÞ�;
ð4:11Þ

where I�k is the complex conjugate of the current injected at bus k.

The expressions for Pcal
k and Qcal

k can be determined by substituting Equations (4.9) and

(4.10) into Equation (4.11), and separating into real and imaginary parts:

Pcal
k ¼ V2

k Gkk þ Vk Vm Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �; ð4:12Þ
Qcal

k ¼ �V2
k Bkk þ Vk Vm Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �: ð4:13Þ

mk

mEkE

kI mIkm mkz z=

Figure 4.1 Equivalent impedance
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For specified levels of power generation and power load at bus k, and according to

Equations (4.1) and (4.2), the mismatch equations may be written down as

�Pk ¼ PGk � PLk � V2
k Gkk þ Vk Vm Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �� � ¼ 0;

ð4:14Þ
�Qk ¼ QGk � QLk � �V2

k Bkk þ Vk Vm Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �� � ¼ 0:

ð4:15Þ

Similar equations may be obtained for bus m simply by exchanging subscripts k and m in

Equations (4.14) and (4.15).

It should be remarked that Equations (4.12) and (4.13) represent only the powers injected

at bus k through the ith transmission element, that is, Pi cal
k and Qi cal

k . However, a practical

power system will consist of many buses and many transmission elements. This calls for

Equations (4.12) and (4.13) to be expressed in more general terms, with the net power flow

injected at bus k expressed as the summation of the powers flowing at each one of the

transmission elements terminating at this bus. This is illustrated in Figures 4.2(a) and 4.2(b)

for cases of active and reactive powers, respectively.

The generic net active and reactive powers injected at bus k are:

Pcal
k ¼

Xn
i¼1

Pi cal
k ; ð4:16Þ

Qcal
k ¼

Xn
i¼1

Qi cal
k ; ð4:17Þ

where Pi cal
k and Qi cal

k are computed by using Equations (4.12) and (4.13), respectively.

As an extension, the generic power mismatch equations at bus k are:

�Pk ¼ PGk � PLk �
Xn
i¼1

Pi cal
k ¼ 0; ð4:18Þ

�Qk ¼ QGk � QLk �
Xn
i¼1

Qi cal
k ¼ 0: ð4:19Þ
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cali
kPk
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m

GkQ

LkQ
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kQ
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kQ

cali
kQk

(b)

m

Figure 4.2 Power balance at bus k: (a) active power, and (b) reactive power
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4.2.2 Variables and Bus Classification

In conventional power flow theory each bus is described by four variables: net active power,

net reactive powers, voltage magnitude, and voltage phase angle.

Since there are only two equations per bus, two out of the four variables must be specified

in each bus in order to have a solvable problem. From a purely mathematical viewpoint, any

two variables can be specified; however, in engineering terms, the choice is based on which

variables at the bus can be physically controlled through the availability of a nearby

controller (Elgerd, 1982; Kundur, 1994; Weedy, 1987; Wood and Wollenberg, 1984). In the

broadest sense, one can think of voltage magnitudes and phase angles as state variables, and

active and reactive powers as control variables.

Buses are classified according to which two out of the four variables are specified:

� Load PQ bus: no generator is connected to the bus, hence the control variables PG and QG

are zero. Furthermore, the active and reactive powers drawn by the load PL and QL are

known from available measurements. In these types of buses the net active power and net

reactive power are specified, and V and � are computed.

� Generator PV bus: a generating source is connected to the bus; the nodal voltage

magnitude V is maintained at a constant value by adjusting the field current of the

generator and hence it generates or absorbes reactive power. Moreover, the generated

active power PG is also set at a specified value. The other two quantities � and QG are

computed. Constant voltage operation is possible only if the generator reactive power

design limits are not violated, that is, QG min < QG < QG max.

� Generator PQ bus: if the generator cannot provide the necessary reactive power support to

constrain the voltage magnitude at the specified value then the reactive power is fixed at

the violated limit and the voltage magnitude is freed. In this case, the generated active

power PG and reactive power QG are specified, and the nodal voltage magnitude V and

phase angle � are computed.

� Slack (swing) bus: one of the generator buses is chosen to be the slack bus where the

nodal voltage magnitude, Vslack, and phase angle, �slack, are specified. There is only one

slack bus in the power system and the function of a slack generator is to produce sufficient

power to provide for any unmet system load and for system losses, that are not known in

advance of the power flow calculation. The voltage phase angle at the slack bus �slack is
chosen as the reference against which all other voltage phase angles in the system are

measured. It is normal to fix its value to zero.

4.3 POWER FLOW SOLUTION METHODS

4.3.1 Early Power Flow Algorithms

From the mathematical modelling point of view, a power flow solution consists of solving

the set of nonlinear, algebraic equations that describe the electrical power network under

steady-state conditions. Over the years, several approaches have been put forward for the

solution of the power flow equations. Early approaches were based on loop equations and

numerical methods using Gauss-type solutions. The method was laborious because the

network loops had to be specified beforehand by the systems engineer. Improved techniques

saw the introduction of nodal analysis in favour of loop analysis, leading to a considerable
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reduction in data preparation. Nevertheless, reliability towards convergence was still the

main concern. Further developments led to the introduction of the Gauss–Seidel method

with acceleration factors. The appeal of this generation of power flow methods is their

minimum storage requirements and the fact that they are easy to comprehend and to code in

the form of computer programs. The drawback is that these algorithms exhibit poor

convergence characteristics when applied to the solution of networks of realistic size

(Elgerd, 1982). Power flow solutions based on the nodal impedance matrix were briefly

experimented with (Brown, 1975), but problems with computer storage and speed became

insurmountable issues at the time. To overcome such limitations, the Newton–Raphson

method and derived formulations were developed in the early 1970s and have since become

firmly established throughout the power system industry (Peterson and Scott Meyer, 1971;

Stott, 1974; Stott and Alsac, 1978; Tinney and Hart, 1967).

4.3.2 The Newton–Raphson Algorithm

In large-scale power flow studies the Newton–Raphson method has proved most successful

owing to its strong convergence characteristics (Peterson and Scott Meyer, 1971; Tinney and

Hart, 1967). This approach uses iteration to solve the following set of nonlinear algebraic

equations:

f1 ðx1; x2; � � � ; xNÞ ¼ 0;
f2 ðx1; x2; � � � ; xNÞ ¼ 0;

..

.

fN ðx1; x2; � � � ; xNÞ ¼ 0;

9>>>=
>>>;
; or FðXÞ ¼ 0 ð4:20Þ

where F represents the set of n nonlinear equations, and X is the vector of n unknown state

variables.

The essence of the method consists of determining the vector of state variables X by

performing a Taylor series expansion of F(X) about an initial estimate X(0):

F Xð Þ ¼ F Xð0Þ
� �

þ J Xð0Þ
� �

X� Xð0Þ
� �

þ higher-order terms; ð4:21Þ
where J(X (0)) is a matrix of first-order partial derivatives of F(X) with respect to X, termed

the Jacobian, evaluated at X¼X (0).

This expansion lends itself to a suitable formulation for calculating the vector of state

variables X by assuming that X(1) is the value computed by the algorithm at iteration 1 and

that this value is sufficiently close to the initial estimate X(0). Based on this premise, all

high-order derivative terms in Equation (4.21) may be neglected. Hence,

f1ðXð1ÞÞ

f2ðXð1ÞÞ
..
.

fnðXð1ÞÞ

2
666666664

3
777777775

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
FðXð1ÞÞ

�

f1ðXð0ÞÞ

f2ðXð0ÞÞ
..
.

fnðXð0ÞÞ

2
666666664

3
777777775

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
FðXð0ÞÞ

þ

qf1ðXÞ
qx1

qf1ðXÞ
qx2

� � � qf1ðXÞ
qxn

qf2ðXÞ
qx1

qf2ðXÞ
qx2

� � � qf2ðXÞ
qxn

..

. ..
. . .

. ..
.

qfnðXÞ
qx1

qfnðXÞ
qx2

. .
. qfnðXÞ

qxn

2
66666666664

3
77777777775

����������������
X¼Xð0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

JðXð0ÞÞ

X
ð1Þ
1 � X

ð0Þ
1

X
ð1Þ
2 � X

ð0Þ
2

..

.

X
ð1Þ
n � X

ð0Þ
n

2
6666666664

3
7777777775

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Xð1Þ�Xð0Þ

:

ð4:22Þ
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In compact form, and generalising the above expression for the case of iteration (i),

F XðiÞ
� �

� F Xði�1Þ
� �

þ J Xði�1Þ
� �

XðiÞ � Xði�1Þ
� �

; ð4:23Þ
where i ¼ 1, 2 . . . . Furthermore, if it is assumed that XðiÞ is sufficiently close to the solution

X(*) then F XðiÞ	 
 � F Xð�Þ	 
 ¼ 0: Hence, Equation (4.23) becomes

F Xði�1Þ
� �

þ J Xði�1Þ
� �

XðiÞ � Xði�1Þ
� �

¼ 0; ð4:24Þ

and, solving for XðiÞ,

XðiÞ ¼ Xði�1Þ � J�1 Xði�1Þ
� �

F Xði�1Þ
� �

ð4:25Þ
The iterative solution can be expressed as a function of the correction vector

�XðiÞ ¼ XðiÞ � Xði�1Þ,

�XðiÞ ¼ � J�1 Xði�1Þ
� �

F Xði�1Þ
� �

; ð4:26Þ
and the initial estimates are updated using the following relation:

XðiÞ ¼ Xði�1Þ þ �XðiÞ: ð4:27Þ
The calculations are repeated as many times as required using the most up-to-date values of

X in equation (4.26). This is done until the mismatches �X are within a prescribed small

tolerance (i.e. 1e�12).

In order to apply the Newton–Raphson method to the power flow problem, the relevant

equations must be expressed in the form of Equation (4.26), where X represents the set of

unknown nodal voltage magnitudes and phase angles. The power mismatch equations �P

and �Q are expanded around a base point (h(0),V(0)) and, hence, the power flow Newton–

Raphson algorithm is expressed by the following relationship:

�P

�Q

� �ðiÞ
|fflfflfflfflffl{zfflfflfflfflffl}
F Xði�1Þð Þ

¼ �
qP
qh

qP
qVV

qQ
qh

qQ
qVV

2
4

3
5
ðiÞ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
J Xði�1Þð Þ

�h
�V

V

" #ðiÞ

|fflfflfflfflffl{zfflfflfflfflffl}
�XðiÞ

: ð4:28Þ

The various matrices in the Jacobian may consists of up to (nb� 1Þ � ðnb� 1Þ elements

of the form:

qPk

q �m
;

qPk

qVm

Vm;

qQk

q �m
;

qQk

qVm

Vm;

9>>=
>>; ð4:29Þ

where k ¼ 1; . . . ; nb; and m ¼ 1; . . . ; nb but omitting the slack bus entries.

Also, the rows and columns corresponding to reactive power and voltage magnitude for

PV buses are discarded. Furthermore, when buses k and m are not directly linked by a

transmission element, the corresponding k–m entry in the Jacobian is null. Owing to the low

degree of connectivity that prevails in practical power systems, the Jacobians of power flows

are highly sparse. An additional characteristic is that they are symmetric in structure but not

in value (Zollenkoff, 1970).
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It must be pointed out that the correction terms �Vm are divided by Vm to compensate for

the fact that Jacobian terms ðqPk=qVmÞVm and ðqQk=qVmÞVm are multiplied by Vm. It is

shown in the derivative terms given below that this artifice yields useful simplifying

calculations.

Consider the lth element connected between buses k and m in Figure 4.1, for which self

and mutual Jacobian terms are given below.

For k 6¼ m:

qPk; l

q�m; l
¼ Vk Vm Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �; ð4:30Þ

qPk; l

qVm; l
Vm; l ¼ Vk Vm Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �; ð4:31Þ

qQk; l

q�m; l
¼ � qPk; l

qVm; l
Vm; l; ð4:32Þ

qQk; l

qVm; l
Vm; l ¼ qPk; l

q�m; l
: ð4:33Þ

For k ¼ m:

qPk; l

q�k; l
¼ �Qcal

k � V2
k Bkk; ð4:34Þ

qPk; l

qVk; l
Vk; l ¼ Pcal

k þ V2
k Gkk; ð4:35Þ

qQk; l

q�k; l
¼ Pcal

k � V2
k Gkk; ð4:36Þ

qQk; l

qVk; l
Vk; l ¼ Qcal

k � V2
k Bkk: ð4:37Þ

In general, for a bus k containing n transmission elements l, the bus self-elements take the

following form:
qPk

q�k
¼

Xn
l¼1

qPk; l

q�k; l
; ð4:38Þ

qPk

qVk

Vk ¼
Xn
l¼1

qPk; l

qVk; l
Vk; l; ð4:39Þ

qQk

q�k
¼

Xn
l¼1

qQk; l

q�k; l
; ð4:40Þ

qQk

qVk

Vk ¼
Xn
l¼1

qQk; l

qVk; l
Vk; l: ð4:41Þ

The mutual elements given by Equations (4.30)–(4.33) remain the same whether we have

one transmission element or n transmission elements terminating at bus k.

After the voltage magnitudes and phase angles have been calculated by iteration, active

and reactive power flows throughout the transmission system are determined quite

straightforwardly.
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An important point to bear in mind is that the mismatch power equations �P and �Q of

the slack bus are not included in Equation (4.28) and the unknown variables Pslack and Qslack

are computed once the system power flows and power losses have been determined. Also,

QG in PV buses are calculated in each iteration in order to check if the generators are within

reactive power limits. However, the mismatch reactive power equations �Q of PV buses are

not included in Equation (4.28). Details of this computation are given in the next section.

One of the main strengths of the Newton–Raphson method is its reliability towards

convergence. For most practical situations, and provided the state variables, Xð0Þ, are

suitably initialised, the method is said to exhibit a quadratic convergence characteristic; for

example,

fðXð1ÞÞ ¼ 1e� 1;

fðXð2ÞÞ ¼ 1e� 2;

fðXð3ÞÞ ¼ 1e� 4;

fðXð4ÞÞ ¼ 1e� 8;

for the maximum mismatch. Contrary to non-Newton–Raphson solutions, such a

characteristic is independent of the size of the network being solved and the number and

kinds of control equipment present in the power system. Aspects that may dent its quadratic

convergence performance are reactive power limit violations in generator PV buses and

extreme loading conditions.

4.3.3 State Variable Initialisation

The effectiveness of the Newton–Raphson method to achieve feasible iterative solutions is

dependent upon the selection of suitable initial values for all the state variables involved in

the study.

The power flow solution of networks that contain only conventional plat components is

normally started with voltage magnitudes of 1 p.u. (per unit) at all PQ buses. The slack and

PV buses are given their specified values, which remain constant throughout the iterative

solution if no generator reactive power limits are violated. The initial voltage phase angles

are selected to be 0 at all buses.

4.3.4 Generator Reactive Power Limits

Even though the mismatch reactive power equation �Qk of PV bus k is not required in

Equation (4.28), solution of Equation (4.17) for the PV bus is still carried out at each

iterative step to assess whether or not the calculated reactive power Qcal
k is within the

generator reactive power limits:

QGmin k < QGk < QGmax k: ð4:42Þ
If either of the following conditions occur during the iterative process:

Qcal
k � QGmax k;

Qcal
k 	 QGmin k;

)
ð4:43Þ
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bus k becomes a generator PQ bus with either of the following mismatch power equations

incorporated in Equation (4.28):

�Qk ¼ QGmax k � QLk � Qcal
k ;

�Qk ¼ QGmin k � QLk � Qcal
k ;

)
ð4:44Þ

depending on the violated limit, together with the relevant Jacobian entries. The nodal

voltage magnitude at bus k is allowed to vary and Vk becomes a state variable.

It should be remarked that bus k may revert to being a generator PV bus at some point

during the iterative process if better estimates of Qcal
k , calculated with more accurate nodal

voltages, indicate that the reactive power requirements at bus k can, after all, be met by the

generator connected at bus k. Hence, reactive power limit checking is carried out at each

iteration. Programming wisdom indicates that limit checking should start after the first or

second iteration, since nodal voltage values computed at the beginning of the iterative

process may be quite inaccurate leading to misleading reactive power requirements. The

switching of buses from PV to PQ and vice versa impose additional numerical demands on

the iterative solution and retard convergence.

4.3.5 Linearised Frame of Reference

In order to illustrate how network components may be processed in the linearised frame of

reference afforded by the Newton–Raphson method (Fuerte-Esquivel et al., 1998) consider

the simple three-bus system shown in Figure 4.3. Bus 1 is selected to be the slack bus and

bus 2 is a generator bus. Bus 3 contains no generation and becomes a load bus. A

transformer and a transmission line link buses 1 and 2 and buses 2 and 3, respectively. One

shunt element and one load are connected at bus 3.

The concept of ‘power balance at a node’ may be used to great effect to account for bus

power injections in the Newton–Raphson solution. At a given bus, the power balance

is obtained by adding the contribution of each plant component connected to that bus.

Generator 1

Generator 2

Slack
PV
type

PQ
type

LoadShunt
element

Bus1 2 3Bus Bus

Figure 4.3 Three-bus network. Redrawn, with permission, from C.R. Fuerte-Esquivel, E. Acha,

S.G. Tan, and J.J. Rico, ‘Efficient Object Oriented Power System Software for the Analysis of

Large-scale Networks Containing FACTS Controlled Branches’, IEEE Trans. Power Systems 3(2)

464–472, # 1998 IEEE
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This is illustrated in Figure 4.4 with reference to Figure 4.3. The contribution of all three

buses is shown in this example for completeness, but it should be remembered that in

actual calculations active and reactive power mismatch entries are not required for the

slack bus. Likewise, the reactive power mismatch entry is not required for the generator

PV bus.

The construction of the Jacobian matrix is slightly more involved owing to the need to

evaluate self and mutual Jacobian terms, and finding their location in the matrix.

Nevertheless, the basic procedure illustrated above, based on superposition, will also apply

to the formation of the Jacobian. For each plant component, relevant Jacobian equations are

chosen based on the type of buses to which the plant component is connected. These buses

determine the location of the individual Jacobian terms in the overall Jacobian structure.

The contributions of the line, transformer, and shunt components to the Jacobian are shown

in Figure 4.5. It should be noted that entries for the slack bus and the reactive power entry of

the generator bus are not considered in the Jacobian structure.
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∆P2

∆P3
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∆Q2

∆Q3
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2

3

1

2

3
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vector

+ =

Figure 4.4 Power mismatch vector; subscripts ‘sen’ and ‘rec’ indicate the sending and receiving

ends. Reproduced, with permission, from C.R. Fuerte-Esquivel, E. Acha, S.G. Tan, and J.J. Rico,

‘Efficient Object Oriented Power System Software for the Analysis of Large-scale Networks

Containing FACTS Controlled Branches’, IEEE Trans. Power Systems 3(2) 464–472, # 1998 IEEE
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4.3.6 Newton–Raphson Computer Program in Matlab1 Code

A computer program suitable for the power flow solution of small and medium-sized power

systems is given in Program 4.1. The program is general, as far as the topology of the

network is concerned, and caters for any number of PV and PQ buses. Moreover, any bus in

the network may be designated to be the slack bus. Provisions are made for generator

reactive limit checking and to accommodate fix shunt compensation. No transformers are

represented in this base program and no sparsity techniques (Zollenkoff, 1970) are

incorporated.

PROGRAM 4.1 A program written in Matlab1 to calculate positive sequence power flows

using the Newton–Raphson method

%***- - - Main Program

PowerFlowsData; %Read system data

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,shbus,...

shresis,shreac,ntl,nbb,nsh);
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Figure 4.5 Jacobian structure. Reproduced, with permission, from C.R. Fuerte-Esquivel, E. Acha,

S.G. Tan, and J.J. Rico, ‘Efficient Object Oriented Power System Software for the Analysis of

Large-scale Networks Containing FACTS Controlled Branches’, IEEE Trans. Power Systems 3(2)

464–472, # 1998 IEEE
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[VM,VA,it] = NewtonRaphson(nmax,tol,itmax,ngn,nld,nbb,bustype,...

genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,VA);

[PQsend,PQrec,PQloss,PQbus] = PQflows(nbb,ngn,ntl,nld,genbus,...

loadbus,tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,...

QLOAD,VM,VA);

it %Iteration number

VM %Nodal voltage magnitude (p.u.)

VA = VA*180/pi %Nodal voltage phase angle(Deg)

PQsend %Sending active and reactive powers (p.u.)

PQrec %Receiving active and reactive powers (p.u.)

%End Main Program

%Build up admittance matrix

function [YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,...

tlcond,shbus,shresis,shreac,ntl,nbb,nsh);

YR=zeros(nbb,nbb);

YI=zeros(nbb,nbb);

% Transmission lines contribution

for kk = 1: ntl

ii = tlsend(kk);

jj = tlrec(kk);

denom = tlresis(kk)^2+tlreac(kk)^2;

YR(ii,ii) = YR(ii,ii) + tlresis(kk)/denom + 0.5*tlcond(kk);

YI(ii,ii) = YI(ii,ii) - tlreac(kk)/denom + 0.5*tlsuscep(kk);

YR(ii,jj) = YR(ii,jj) - tlresis(kk)/denom;

YI(ii,jj) = YI(ii,jj) + tlreac(kk)/denom;

YR(jj,ii) = YR(jj,ii) - tlresis(kk)/denom;

YI(jj,ii) = YI(jj,ii) + tlreac(kk)/denom;

YR(jj,jj) = YR(jj,jj) + tlresis(kk)/denom + 0.5*tlcond(kk);

YI(jj,jj) = YI(jj,jj) - tlreac(kk)/denom + 0.5*tlsuscep(kk);

end

% Shunt elements contribution

for kk = 1: nsh

ii = shbus(kk);

denom = shresis(kk)^2+shreac(kk)^2;

YR(ii,ii) = YR(ii,ii) + shresis(kk)/denom;

YI(ii,ii) = YI(ii,ii) - shreac(kk)/denom;

end

% End of function YBus

%Carry out iterative solution using the Newton-Raphson method

function [VM,VA,it] = NewtonRaphson(nmax,tol,itmax,ngn,nld,nbb,...

bustype, genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,VA)
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% GENERAL SETTINGS

D = zeros(1,nmax);

flag = 0;

it = 1;

% CALCULATE NET POWERS

[PNET,QNET] = NetPowers(nbb,ngn,nld,genbus,loadbus,PGEN,QGEN,...

PLOAD,QLOAD);

while ( it < itmax & flag==0 )

% CALCULATED POWERS

[PCAL,QCAL] = CalculatedPowers(nbb,VM,VA,YR,YI);

% CHECK FOR POSSIBLE GENERATOR’S REACTIVE POWERS LIMITS VIOLATIONS

[QNET,bustype] = GeneratorsLimits(ngn,genbus,bustype,QGEN,QMAX,...

QMIN,QCAL,QNET, QLOAD, it, VM, nld, loadbus);

% POWER MISMATCHES

[DPQ,DP,DQ,flag] = PowerMismatches(nmax,nbb,tol,bustype,flag,PNET,...

QNET,PCAL,QCAL);

% JACOBIAN FORMATION

[JAC] = NewtonRaphsonJacobian(nmax,nbb,bustype,PCAL,QCAL,VM,VA,...

YR,YI);

% SOLVE FOR THE STATE VARIABLES VECTOR

D = JAC\DPQ’;

% UPDATE STATE VARIABLES

[VA,VM] = StateVariablesUpdates(nbb,D,VA,VM);

it = it + 1;

end

% End function Newton-Raphson

%Function to calculate the net scheduled powers

function [PNET,QNET] = NetPowers(nbb,ngn,nld,genbus,loadbus,PGEN,...

QGEN, PLOAD,QLOAD);

% CALCULATE NET POWERS

PNET = zeros(1,nbb);

QNET = zeros(1,nbb);

for ii = 1: ngn

PNET(genbus(ii)) = PNET(genbus(ii)) + PGEN(ii);

QNET(genbus(ii)) = QNET(genbus(ii)) + QGEN(ii);

end

for ii = 1: nld

PNET(loadbus(ii)) = PNET(loadbus(ii)) - PLOAD(ii);
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QNET(loadbus(ii)) = QNET(loadbus(ii)) - QLOAD(ii);

end

%End function NetPowers

%Function to calculate injected bus powers

function [PCAL,QCAL] = CalculatedPowers(nbb,VM,VA,YR,YI)

% Include all entries

PCAL = zeros(1,nbb);

QCAL = zeros(1,nbb);

for ii = 1: nbb

PSUM = 0;

QSUM = 0;

for jj = 1: nbb

PSUM = PSUM + VM(ii)*VM(jj)*(YR(ii,jj)*cos(VA(ii)-VA(jj)) +...

YI(ii,jj)*sin(VA(ii)-VA(jj)));

QSUM = QSUM + VM(ii)*VM(jj)*(YR(ii,jj)*sin(VA(ii)-VA(jj)) –...

YI(ii,jj)*cos(VA(ii)-VA(jj)));

end

PCAL(ii) = PSUM;

QCAL(ii) = QSUM;

end

%End of functionCalculatePowers

%Function to check whether or not solution is within generators limits

function [QNET,bustype] = GeneratorsLimits(ngn,genbus,bustype,QGEN,...

QMAX,QMIN,QCAL,QNET, QLOAD, it, VM, nld, loadbus)

% CHECK FOR POSSIBLE GENERATOR’S REACTIVE POWERS LIMITS VIOLATIONS

if it > 2

flag2 = 0;

for ii = 1: ngn

jj = genbus(ii);

if (bustype(jj) == 2)

if ( QCAL(jj) > QMAX(ii) )

QNET(genbus(ii)) = QMAX(ii);

bustype(jj) = 3;

flag2 = 1;

elseif ( QCAL(jj) < QMIN(ii) )

QNET(genbus(ii)) = QMIN(ii);

bustype(jj) = 3;

flag2 = 1;

end

if flag2 == 1

for ii = 1:nld

if loadbus(ii) == jj

QNET(loadbus(ii) = QNET(loadbus(ii)) - QLOAD(ii))

end

end
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end

end

end

%End function Generatorslimits

%Function to compute power mismatches

function [DPQ,DP,DQ,flag] = PowerMismatches(nmax,nbb,tol,bustype,...

flag,PNET,QNET,PCAL,QCAL);

% POWER MISMATCHES

DPQ = zeros(1,nmax);

DP = zeros(1,nbb);

DQ = zeros(1,nbb);

DP = PNET - PCAL;

DQ = QNET - QCAL;

% To remove the active and reactive powers contributions of the slack

% bus and reactive power of all PV buses

for ii = 1: nbb

if (bustype(ii) == 1 )

DP(ii) = 0;

DQ(ii) = 0;

elseif (bustype(ii) == 2 )

DQ(ii) = 0;

end

end

% Re-arrange mismatch entries

kk = 1;

for ii = 1: nbb

DPQ(kk) = DP(ii);

DPQ(kk+1) = DQ(ii);

kk = kk + 2;

end

% Check for convergence

for ii = 1: nbb*2

if ( abs(DPQ) < tol)

flag = 1;

end

end

%End function PowerMismatches

%Function to built the Jacobian matrix

function [JAC] = NewtonRaphsonJacobian(nmax,nbb,bustype,PCAL,QCAL,...

VM,VA,YR,YI);

% JACOBIAN FORMATION

% Include all entries

JAC = zeros(nmax,nmax);

iii = 1;
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for ii = 1: nbb

jjj = 1;

for jj = 1: nbb

if ii == jj

JAC(iii,jjj) = -QCAL(ii) - VM(ii)^2*YI(ii,ii);

JAC(iii,jjj+1) = PCAL(ii) + VM(ii)^2*YR(ii,ii);

JAC(iii+1,jjj) = PCAL(ii) - VM(ii)^2*YR(ii,ii);

JAC(iii+1,jjj+1) = QCAL(ii) - VM(ii)^2*YI(ii,ii);

else

JAC(iii,jjj) = VM(ii)*VM(jj)*(YR(ii,jj)*sin(VA(ii)-VA(jj))...

-YI(ii,jj)*cos(VA(ii)-VA(jj)));

JAC(iii+1,jjj) = -VM(ii)*VM(jj)*(YI(ii,jj)*sin(VA(ii)...

-VA(jj))+YR(ii,jj)*cos(VA(ii)-VA(jj)));

JAC(iii,jjj+1) = -JAC(iii+1,jjj);

JAC(iii+1,jjj+1) = JAC(iii,jjj);

end

jjj = jjj + 2;

end

iii = iii + 2;

end

% Delete the voltage magnitude and phase angle equations of the slack

% bus and voltage magnitude equations corresponding to PV buses

for kk = 1: nbb

if (bustype(kk) == 1)

ii = kk*2-1;

for jj = 1: 2*nbb

if ii == jj

JAC(ii,ii) = 1;

else

JAC(ii,jj) = 0;

JAC(jj,ii) = 0;

end

end

end

if (bustype(kk) == 1) | (bustype(kk) == 2)

ii = kk*2;

for jj = 1: 2*nbb

if ii == jj

JAC(ii,ii) = 1;

else

JAC(ii,jj) = 0;

JAC(jj,ii) = 0;

end

end

end

end

%End of function NewtonRaphsonJacobian
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%Function to update state variables

function [VA,VM] = StateVariablesUpdates(nbb,D,VA,VM)

iii = 1;

for ii = 1: nbb

VA(ii) = VA(ii) + D(iii);

VM(ii) = VM(ii) + D(iii+1)*VM(ii);

iii = iii + 2;

end

%End function StateVariableUpdating

%Function to calculate the power flows

function [PQsend,PQrec,PQloss,PQbus] = PQflows(nbb,ngn,ntl,nld,...

genbus,loadbus,tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,...

QLOAD,VM,VA);

PQsend = zeros(1,ntl);

PQrec = zeros(1,ntl);

% Calculate active and reactive powers at the sending and receiving

% ends of tranmsission lines

for ii = 1: ntl

Vsend = ( VM(tlsend(ii))*cos(VA(tlsend(ii))) + ...

VM(tlsend(ii))*sin(VA(tlsend(ii)))*i );

Vrec = ( VM(tlrec(ii))*cos(VA(tlrec(ii))) + ...

VM(tlrec(ii))*sin(VA(tlrec(ii)))*i );

tlimped = tlresis(ii) + tlreac(ii)*i;

current =(Vsend - Vrec) / tlimped + Vsend*( tlcond(ii) + ...

tlsuscep(ii)*i )*0.5 ;

PQsend(ii) = Vsend*conj(current);

current =(Vrec - Vsend) / tlimped + Vrec*( tlcond(ii) + ...

tlsuscep(ii)*i )*0.5 ;

PQrec(ii) = Vrec*conj(current);

PQloss(ii) = PQsend(ii) + PQrec(ii);

end

% Calculate active and reactive powers injections at buses

PQbus = zeros(1,nbb);

for ii = 1: ntl

PQbus(tlsend(ii)) = PQbus(tlsend(ii)) + PQsend(ii);

PQbus(tlrec(ii)) = PQbus(tlrec(ii)) + PQrec(ii);

end

% Make corrections at generator buses, where there is load, in order to

% get correct generators contributions

for ii = 1: nld

jj = loadbus(ii);

for kk = 1: ngn

ll = genbus(kk);
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if jj == ll

PQbus(jj) = PQbus(jj) + ( PLOAD(ii) + QLOAD(ii)*i );

end

end

end

%End function PQflows

4.3.7 The Fast Decoupled Algorithm

It was demonstrated in the late 1970s that the storage and computing requirements of the

Newton–Raphson method could be reduced very significantly by introducing a series of

well-substantiated, simplifying, assumptions in Equation (4.28). These assumptions are

based on physical properties exhibited by electrical power systems, in particular in high-

voltage transmission systems.

The resulting formulation is no longer a Newton–Raphson method but a derived

formulation described as ‘fast decoupled’ (Stott, 1974; Stott and Alsac, 1978). The power

mismatch equations of both methods are identical but their Jacobians are quite different; the

Jacobian elements of the Newton–Raphson method are voltage-dependent whereas those of

the fast decoupled method are voltage-independent (i.e. constant parameters). Moreover, the

number of Jacobian entries used in the fast decoupled method is only half of those used in

the Newton–Raphson method. The trade-off lies in the weakening of the strong convergence

characteristic exhibited by the Newton–Raphson method; the convergence characteristics of

the fast decoupled method are linear as opposed to quadratic.

For a typical power flow problem, where convergence to a tight tolerance is mandatory,

the 6 iterations normally taken by the Newton–Raphson method to converge will increase to

25 iterations and above when the fast decoupled method is employed. In fact, the number of

iterations taken by the fast decoupled method may be influenced by the size of the system

being solved, how loaded the system is, the number of power system controllers, and the

ratio of resistance to reactance in the transmission elements – although there are simple

programming artifices to circumvent this problem. However, an asset of the fast decoupled

method is that one of its iterations only takes a fraction of the time required by one of

the Newton–Raphson method iterations. Hence, in power flow studies of high-voltage

networks with a small number of system controllers, the use of the fast decoupled method

may be advantageous.

With a view to developing the fast decoupled formulation, simplifications will be

introduced into the Jacobian of Equation (4.28). It has been observed that, during normal

operation, incremental changes in voltage magnitude produce almost no change in active

power flow and that, likewise, incremental changes in voltage phase angle produce almost

no change in reactive power flow. Hence, the following Jacobian elements may be assumed

to be zero:

qP
qV

V

� �
; and

qQ
qh

� �
: ð4:45Þ
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Accordingly, the overall problem stated in Equation (4.28) reduces to the following two

subproblems:

�P½ �ðiÞ|fflfflffl{zfflfflffl}
F1 X

ði�1Þ
1ð Þ

¼ � qP
qh

� �ðiÞ
|fflfflffl{zfflfflffl}
J1 X

ði�1Þ
1ð Þ

�h½ �ðiÞ|fflfflffl{zfflfflffl}
�X

ðiÞ
1

; ð4:46Þ

�Q½ �ðiÞ|fflfflffl{zfflfflffl}
F2 X

ði�1Þ
2ð Þ

¼ � qQ
qV

V

� �ðiÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
J2 X

ði�1Þ
2ð Þ

�V

V

� �ðiÞ
|fflfflfflffl{zfflfflfflffl}

�X
ðiÞ
2

: ð4:47Þ

Further simplifying assumptions pertaining to high-voltage transmission networks, which

are relevant to the problem at hand, are as follows:

� X 
 R in all transmission lines and transformers of the network.

� The difference in voltage phase angles between two adjacent buses is small and hence the

following relations apply: sinð�k � �mÞ ¼ �k � �m, and cosð�k � �mÞ ¼ 1:
� The nodal voltage magnitudes are close to 1 p.u. at every bus.

� Current flows in shunt-connected elements may be grouped together with the equivalent

loads and generator currents.

Incorporating these assumptions in the Jacobian elements of Equations (4.46) and (4.47)

we obtain the following set of equations:

�P½ �ðiÞ|fflfflffl{zfflfflffl}
F1 X

ði�1Þ
1ð Þ

¼ � B0½ � �h½ �ðiÞ|fflfflffl{zfflfflffl}
�X

ðiÞ
1

; ð4:48Þ

�Q½ �ðiÞ|fflfflffl{zfflfflffl}
F2 X

ði�1Þ
2ð Þ

¼ � B00½ � �V½ �ðiÞ|fflfflffl{zfflfflffl}
�X

ðiÞ
2

; ð4:49Þ

where B0 corresponds almost exactly to the negative of the imaginary part of the nodal

admittance matrix. Owing to the requirements of the power flow problem, the row and

column corresponding to the slack bus is not included in B0. Matrices B0 and B00 are identical
if no generator buses exist in the system. However, in the more general case, when generator

buses do exist in the system then the row and column corresponding to each generator bus

are removed from matrix B00.
Equations (4.48) and (4.49) are very simple compared with that of the full Newton–

Raphson method given by Equation (4.28). Matrices B0 and B00 are symmetric in structure

and, provided no phase-shifting transformers are present in the system, they are also

symmetric in value. These matrices are inverted only once, during the first iteration, and

then remain constant throughout the iterative process. This is in contrast to with the

Newton–Raphson method, where the Jacobian is evaluated and inverted (factorised;

Zollenkoff, 1970) at each iteration.

4.3.8 Fast Decoupled Computer Program in Matlab1 Code

Program 4.2 is fully equivalent to the Newton–Raphson power flow program given in

Section 4.3.6 (Programe 4.1). The functions PowerFlowsData, YBus and PQflows are also
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used here. The function FastDecoupled replaces NewtonRaphson, with the new function

using all the functions called by NewtonRaphson except for NewtonRaphsonJacobian,

which is replaced with FastDecoupledJacobian.

PROGRAM 4.2 Program written in Matlab1 to calculate positive sequence power flows

by means of the fast decoupled method.

%- - - Main Program

PowerFlowsData; %Function to read data

% Form the bus admittance matrix

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,shbus,...

shresis,shreac,ntl,nbb,nsh);

[VM,VA,it] = FastDecoupled(nmax,tol,itmax,ngn,nld,nbb,bustype,...

genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,VA);

[PQsend,PQrec,PQloss,PQbus] = PQflows(nbb,ngn,ntl,nld,genbus,...

loadbus,tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,QLOAD,...

VM,VA);

it %Iteration number

VM %Nodal voltage magnitude (p.u.)

VA = VA*180/pi %Nodal voltage phase angle(Deg)

PQsend %Sending active and reactive powers (p.u.)

PQrec %Receiving active and reactive powers (p.u.)

% End of Main Program

% Fast Decoupled function

function [VM,VA,it] = FastDecoupled(nmax,tol,itmax,ngn,nld,nbb,...

bustype,genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,VA);

% GENERAL SETTINGS

flag = 0;

B1 = zeros(nbb,nbb);

B2 = zeros(nbb,nbb);

% CALCULATE NET POWERS

[PNET,QNET] = NetPowers(nbb,ngn,nld,genbus,loadbus,PGEN,QGEN,PLOAD,...

QLOAD);

% BEGINNING OF ITERATIVE LOOP

it = 1;

while ( it < itmax & flag==0 )
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% CALCULATED POWERS

[PCAL,QCAL] = CalculatedPowers(nbb,VM,VA,YR,YI);

% CHECK FOR POSSIBLE GENERATOR’S REACTIVE POWERS LIMITS VIOLATIONS

[QNET,bustype] = GeneratorsLimits(ngn,genbus,bustype,QGEN,QMAX,...

QMIN,QCAL,QNET, QLOAD, it, VM, nld, loadbus);

% POWER MISMATCHES

[DPQ,DP,DQ,flag] = PowerMismatches(nmax,nbb,tol,bustype,flag,PNET,...

QNET,PCAL,QCAL);

% OBTAIN INVERTED JACOBIANS DURING THE FIRST ITERATION

[B1,B2] = FastDecoupledJacobian(nbb,bustype,DP,DQ,YI,B1,B2,it);

% SOLVE FOR THE STATE VARIABLES VECTOR

DVA = B1*DP’;

DVM = B2*DQ’;

% Re-arrange state variables entries

kk = 1;

for ii = 1: nbb

D(kk) = DVA(ii);

D(kk+1) = DVM(ii);

kk = kk + 2;

end

% UPDATE THE STATE VARIABLES VALUES

[VA,VM] = StateVariablesUpdating(nbb,D,VA,VM,it);

it = it + 1;

end

% End of function FastDecoupled

%Form the Jacobian for the Fast Decoupled Method

function [B1,B2] = FastDecoupledJacobian(nbb,bustype,DP,DQ,YI,...

B1,B2,it);

DVA = zeros(nbb);

DVM = zeros(nbb);

if ( it == 1 )

% Include all entries

B1 = zeros(nbb,nbb);

B2 = zeros(nbb,nbb);

B1 = -YI;

B2 = -YI;

% Delete the voltage magnitude and phase angle equations of the slack

% bus and voltage magnitude equations corresponding to PV buses

for ii = 1: nbb

if (bustype(ii) == 1)

for jj = 1: nbb
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if ii == jj

B1(ii,ii) = 1;

B2(ii,ii) = 1;

else

B1(ii,jj) = 0;

B1(jj,ii) = 0;

B2(ii,jj) = 0;

B2(jj,ii) = 0;

end

end

end

if (bustype(ii) == 1) | (bustype(ii) == 2)

for jj = 1: nbb

if ii == jj

B2(ii,ii) = 1;

else

B2(ii,jj) = 0;

B2(jj,ii) = 0;

end

end

end

end

B1 = inv(B1);

B2 = inv(B2);

end

% End of FastdecoupledJacobian Function

4.3.9 A Benchmark Numerical Example

A small network (Stagg and El-Abiad, 1968) is used to illustrate the power flow solutions

given by the Newton–Raphson and the fast decoupled methods. As shown in Figure 4.6, this

is a five-bus network containing two generators and seven transmission lines. The data are

given in function PowerFlowsData, suitable for use with either the Newton–Raphson or

the fast decoupled Matlab1 programs. The power flow results are superimposed on the one-

line diagram of the network, and the bus voltages are given in Table 4.1.

Function PowerFlowsData, to read data for the five-bus test network, is as follows:

%The following convention is used for the four types of buses available

%in conventional power flow studies:

%bustype = 1 is slack or swing bus

%bustype = 2 is generator PV bus

%bustype = 3 is load PQ bus

%bustype = 4 is generator PQ bus

%

%The five buses in the network shown in Figure 4.6 are numbered for the

% purpose of the power flow solution, as follows:
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%North = 1

%South = 2

%Lake = 3

%Main = 4

%Elm = 5

%

%Bus data

%nbb = number of buses

%bustype = type of bus

%VM = nodal voltage magnitude

%VA = nodal voltage phase angle

nbb = 5 ;

bustype(1) = 1 ; VM(1) = 1.06 ; VA(1) =0 ;

bustype(2) = 2 ; VM(2) = 1 ; VA(2) =0 ;

bustype(3) = 3 ; VM(3) = 1 ; VA(3) =0 ;

bustype(4) = 3 ; VM(4) = 1 ; VA(4) =0 ;

bustype(5) = 3 ; VM(5) = 1 ; VA(5) =0 ;

%

%Generator data

%ngn = number of generators

%genbus = generator bus number

%PGEN = scheduled active power contributed by the generator

%QGEN = scheduled reactive power contributed by the generator

%QMAX = generator reactive power upper limit

%QMIN = generator reactive power lower limit

ngn = 2 ;

genbus(1) = 1 ; PGEN(1) = 0 ; QGEN(1) = 0 ; QMAX(1) = 5 ; QMIN(1) = -5 ;

genbus(2) = 2 ; PGEN(2) = 0.4 ; QGEN(2) = 0 ; QMAX(2) = 3 ; QMIN(2) = -3 ;

%

%Transmission line data

%ntl = number of transmission lines

%tlsend = sending end of transmission line

%tlrec = receiving end of transmission line

%tlresis = series resistance of transmission line

%tlreac = series reactance of transmission line

%tlcond = shunt conductance of transmission line

%tlsuscep = shunt susceptance of transmission line

ntl = 7 ;

tlsend(1) = 1 ; tlrec(1) = 2 ; tlresis(1) = 0.02 ; tlreac(1) = 0.06 ;

tlcond(1) = 0 ; tlsuscep(1) = 0.06 ;

tlsend(2) = 1 ; tlrec(2) = 3 ; tlresis(2) = 0.08 ; tlreac(2) = 0.24 ;

tlcond(2) = 0 ; tlsuscep(2) = 0.05 ;

tlsend(3) = 2 ; tlrec(3) = 3 ; tlresis(3) = 0.06 ; tlreac(3) = 0.18 ;

tlcond(3) = 0 ; tlsuscep(3) = 0.04 ;

tlsend(4) = 2 ; tlrec(4) = 4 ; tlresis(4) = 0.06 ; tlreac(4) = 0.18 ;

tlcond(4) = 0 ; tlsuscep(4) = 0.04 ;
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tlsend(5) = 2 ; tlrec(5) = 5 ; tlresis(5) = 0.04 ; tlreac(5) = 0.12 ;

tlcond(5) = 0 ; tlsuscep(5) = 0.03 ;

tlsend(6) = 3 ; tlrec(6) = 4 ; tlresis(6) = 0.01 ; tlreac(6) = 0.03 ;

tlcond(6) = 0 ; tlsuscep(6) = 0.02 ;

tlsend(7) = 4 ; tlrec(7) = 5 ; tlresis(7) = 0.08 ; tlreac(7) = 0.24 ;

tlcond(7) = 0 ; tlsuscep(7) = 0.05 ;

%

%Shunt data

%nsh = number of shunt elements

%shbus = shunt element bus number

%shresis = resistance of shunt element

%shreac = reactance of shunt element:

%+ve for inductive reactance and –ve for capacitive reactance

nsh = 0 ;

shbus(1) = 0 ; shresis(1) = 0 ; shreac(1) = 0 ;

%

%Load data

%nld = number of load elements

%loadbus = load element bus number

%PLOAD = scheduled active power consumed at the bus

%QLOAD = scheduled reactive power consumed at the bus

nld = 4 ;

loadbus(1) = 2 ; PLOAD(1) = 0.2 ; QLOAD(1) = 0.1 ;

loadbus(2) = 3 ; PLOAD(2) = 0.45 ; QLOAD(2) = 0.15 ;

loadbus(3) = 4 ; PLOAD(3) = 0.4 ; QLOAD(3) = 0.05 ;

loadbus(4) = 5 ; PLOAD(4) = 0.6 ; QLOAD(4) = 0.1 ;

%General parameters

%itmax = maximum number of iterations permitted before the iterative

%process is terminated – protection against infinite iterative loops

%tol = criterion tolerance to be met before the iterative solution is

%successfully brought to an end

itmax = 100;

tol = 1e-12;

nmax = 2*nbb;

%End of function PowerFlowsData

As expected, the Newton–Raphson and the fast decoupled methods yield practically the

same results when the power flow problem is solved to a prescribed tolerance of 1e�12.

The former method takes 6 iterations to converge whereas the latter takes 27 iterations.

However, it should be mentioned that one iteration of the fast decoupled method executes

much faster than one iteration of the Newton–Raphson method; no inversion (refactorisa-

tion) of the Jacobian is required at each iterative step of the fast decoupled.

It can be observed from the results presented in Table 4.1 that all nodal voltages are

within accepted voltage magnitude limits (i.e. 100 � 6% in the UK). The largest power flow
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takes place in the transmission line connecting the two generator buses: 89.3MW, and

74.02MVAR leave North, and 86.8MW and 72.9MVAR arrive at South. This is also the

transmission line that incurs higher active power loss (i.e. 2.5MW). The active power

system loss is 6.12MW.

The operating conditions demand a large amount of reactive power generation by

the generator connected at North (i.e. 90.82MVAR). This amount is well in excess of the

reactive power drawn by the system loads (i.e. 40MVAR). The generator at South draws the

excess of reactive power in the network (i.e. 61.59MVAR). This amount includes the net

reactive power produced by several of the transmission lines.
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Figure 4.6 The five-bus test network, and the power flow results. From G.W. Stagg and A.H. El-

Abiad, Computer Methods in Power System Analysis, # 1968 McGraw-Hill. Reproduced by

permission of The McGraw-Hill Companies

Table 4.1 Nodal voltages of original network

Network bus

Nodal voltage North South Lake Main Elm

Magnitude (p.u.) 1.06 1.00 0.987 0.984 0.972

Phase angle (deg) 0.00 �2.06 �4.64 �4.96 �5.77
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4.4 CONSTRAINED POWER FLOW SOLUTIONS

The handling of PV buses in power flow algorithms may fall within the category of

constrained power flow solutions – generators regulate nodal voltage magnitude by

supplying or absorbing reactive power up to their design limits. Load tap-changing and

phase-shifting transformers are used to regulate nodal voltage magnitude and active power

flow, respectively. They also give rise to constrained power flow solutions. Suitable power

flow models of tap-changing and phase-shifting transformers are developed in this section.

4.4.1 Load Tap-changing Transformers

The power flow models for load tap-changing (LTC) transformers addressed in this section

are based on the two-winding, single-phase transformer model presented in Section 3.3.3,

which is quite a general one. The model makes provisions for complex taps on both the

primary and the secondary windings, and the magnetising branch of the transformer is

included to account for core losses.

However, the LTC model does not require complex taps, and Equation (3.89) simplifies to

the following expression:

Ik
Im

� �
¼ 1

T2
k Yk þ U2

mYm þ Y0

U2
mYkYm þ YkY0 �TkUmYkYm
�TkUmYkYm T2

k YkYm þ YmY0

� �
Vk

Vm

� �
: ð4:50Þ

It is assumed in this expression that the primary and secondary sides of the transformer are

connected to bus k and bus m, respectively. This is with a view to developing LTC models

aimed at systems applications. Also, the subscript sc is dropped in the transformer

admittance terms.

Comprehensive bus power injection equations for the LTC transformer may be derived

based on Equation (4.50), but this involves very arduous algebra. Simpler expressions may

be derived if a number of practical assumptions are introduced in this equation. For instance,

it may be assumed that the tap-changing facility is only on the primary side (Um ¼ 1); the

impedance is all on the primary side (Ym ¼ 0); and the impact of the magnetising branch is

negligibly small in the power flow solution (Y0 ¼ 0). Incorporating these simplifying

assumptions in Equation (4.50) we obtain an expression that is compatible with

Equation (3.78):

Ik
Im

� �
¼ Yk �TkYk

�TkYk T2
k Yk

� �
Vk

Vm

� �
¼ Ykk TkYkm

TkYmk T2
k Ymm

� �
Vk

Vm

� �
: ð4:51Þ

Power flow equations at both ends of the transformer are derived, where Tk is allowed to

vary within design rating values (Tk min < Tk < Tk max):

Pk ¼ V2
k Gkk þ TkVkVm Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �; ð4:52Þ

Qk ¼ �V2
k Bkk þ TkVkVm Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �; ð4:53Þ

Pm ¼ T2
k V

2
mGmm þ TkVmVk Gmk cos �m � �kð Þ þ Bmk sin �m � �kð Þ½ �; ð4:54Þ

Qm ¼ �T2
k V

2
mBmm þ TkVmVk Gmk sin �m � �kð Þ � Bmk cos �m � �kð Þ½ �; ð4:55Þ
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where

Ykk ¼ Ymm ¼ Gkk þ jBkk ¼ Yk;

Ykm ¼ Ymk ¼ Gkm þ jBkm ¼ �Yk:
ð4:56Þ

The set of linearised power flow equations for the nodal power injections, Equations (4.52)–

(4.55), assuming that the load tap changer (LTC) is controlling nodal voltage magnitude at

its sending end (bus k), may be written as:
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: ð4:57Þ

The tap variable Tk is adjusted, within limits, to constrain the voltage magnitude at bus k at a

specified value Vk. For this mode of operation Vk is maintained constant at the target value.

The Jacobian elements in matrix Equation (4.57) are given as follows:

qPk

q�k
¼ � qPk

q�m
¼ �Qk � V2

k Bkk; ð4:58Þ
qPk

qTk
Tk ¼ qPk

qVm

Vm ¼ Pk � V2
k Gkk; ð4:59Þ

qQk
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q�m
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k Gkk; ð4:60Þ
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k V
2
mBmm: ð4:65Þ

If nodal voltage magnitude control by the LTC takes place on its receiving end (bus m) as

opposed to the sending end (bus k), the second and third columns in Equation (4.57) are

interchanged, and Jacobian elements similar to Equations (4.58)–(4.65) are derived and used

as entries in Equation (4.57). Also, note that in the state variables vector �Tk and �Vk

commute places.

At the end of each iteration, i, the tap controller is updated using the following relation:

T
ðiÞ
k ¼ T

ði�1Þ
k þ �Tk

Tk

� �ðiÞ
T
ði�1Þ
k : ð4:66Þ
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The implementation of the LTC model within the power flow algorithm benefits from the

introduction of a controlled bus, termed the PVT bus. It resembles a generator PV bus but

here the voltage control is exerted by an LTC as opposed to a generator. The nodal voltage

magnitude and the bus active and reactive powers are specified, whereas the LTC tap Tk is

handled as a state variable. If Tk is within limits, the specified voltage is attained and the

controlled bus remains PVT. However, if Tk goes out of limits, Tk is fixed at the violated limit

and the bus becomes PQ.

It should be remarked that a more comprehensive set of nodal power equations may be

derived for the two-winding transformer by basing the power equation derivations on

Equation (4.50) as opposed to Equation (4.51). There is no need to assume that the

transformer impedance is all placed on the primary side. Also, the effect of the magnetising

admittance may be included in the nodal power equations of the LTC transformer.

Alternatively, it may be assumed that the tap-changing facility is on the secondary side as

opposed to the primary side, in which case Tk ¼ 1, and Um min < Um < Um max.

4.4.1.1 State variable initialisation and limit checking

Further to the recommendations given in Section 4.3.3 for initialising the nodal voltage

magnitudes and phase angles of power flow solutions of networks that contain only

conventional plat components, it is normal to select the initial tapping position of LTCs to be

at their nominal value. Hence, Tk ¼ 1 and Um ¼ 1 are used for cases of two-winding LTCs.

The status of LTC taps is checked at each iterative step to assess whether or not the LTC

is still operating within limits and capable of regulating voltage magnitude. For an

LTC regulating nodal voltage magnitude at bus k with tapping facilities in the primary

winding

Tk min < Tk < Tk max: ð4:67Þ
If either of the following conditions occur during the iterative process:

T
ð iþ1Þ
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ð iÞ
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ð iÞ
k 	 Tk min;

ð4:68Þ

bus k becomes a PQ bus and the tap is fixed at the violated limit. The nodal voltage

magnitude at bus k is allowed to vary and Vk replaces Tk as the state variable. The tap-

changing transformer works as a conventional transformer, and the set of linearised power

flow equations is given as follows:
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Checking of LTC taps limits normally starts after the first or second iteration since nodal

voltage values computed at the beginning of the iterative process may be quite inaccurate,

leading to misleading LTC tapping requirements.

Similar criteria would apply if the LTC tapping facilities were on the secondary winding,

with Um and Tk changing roles in Equation (4.50). Moreover, relevant power equations and

Jacobian elements, equivalent to Equations (4.52)–(4.55) and (4.58)–(4.65), are derived.

The linearised Equation (4.57) is modified accordingly.

4.4.1.2 Load tap changer computer program in Matlab1 code

Program 4.3 incorporates LTC transformer representation within the Newton–Raphson

power flow program given in Section 4.3.6. The functions PowerFlowsData, YBus, and

PQflows are also used here. In the main LTC Newton–Raphson program, the function

LTCPowerFlowsData is added to read LTC data, LTCNewtonRaphson replaces New-

tonRaphson, and LTCPQflows is used to calculate power flows and losses in the LTC

transformer.

Function LTCNewtonRaphson borrows the following functions from NewtonRaphson:

NetPowers; CalculatedPowers; GeneratorsLimits; PowerMismatches; Newton-

RaphsonJacobian; and StateVariablesUpdates. Furthermore, four new functions are

added to cater for LTC representation, namely: LTCCalculatedPowers; LTCUpdates;

LTCLimits; and LTCNewtonRaphsonJacobian.

PROGRAM 4.3 Program written in Matlab1 to incorporate load tap-changing representa-

tion within the Newton–Raphson power flow algorithm.

%- - - Main LTC Program

PowerFlowsData; %Function to read network data

LTCPowerFlowsData; %Function to read LTC data

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,shbus,...

shresis,shreac,ntl,nbb,nsh);

[VM,VA,it,Tap] = LTCNewtonRaphson(tol,itmax,ngn,nld,nbb,bustype,...

genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,VA,NLTC,...

LTCsend,LTCrece,Rltc,Xltc,Tap,TapHi,TapLo,Bus,LTCVM);

[PQsend,PQrec,PQloss,PQbus] = PQflows(nbb,ngn,ntl,nld,genbus,...

loadbus,tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,QLOAD,...

VM,VA);

[LTCPQsend,LTCPQrece] = LTCPQflows(NLTC,LTCsend,LTCrece,Rltc,Xltc,...

Tap,VM,VA);

it %Iteration number

VM %Nodal voltage magnitude (p.u.)
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VA = VA*180/pi %Nodal voltage phase angle(Deg)

PQsend %Sending active and reactive powers (p.u.)

PQrec %Receiving active and reactive powers (p.u.)

Tap %Final transformer tap position

% End of Main LTCNewtonRaphson PROGRAM

function [VM,VA,it,Tap] = LTCNewtonRaphson(tol,itmax,ngn,nld,nbb,...

bustype,genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,...

VA,NLTC,LTCsend,LTCrec,Rltc,Xltc,Tap,TapHi,TapLo,Bus,LTCVM);

% GENERAL SETTINGS

flag = 0;

it = 1;

% CALCULATE NET POWERS

[PNET,QNET] = NetPowers(nbb,ngn,nld,genbus,loadbus,PGEN,QGEN,PLOAD,...

QLOAD);

while (it <= itmax & flag==0)

% CALCULATED POWERS

[PCAL,QCAL] = CalculatedPowers(nbb,VM,VA,YR,YI);

% CALCULATED LTC POWERS

[PCAL,QCAL,ltcPCAL,ltcQCAL] = LTCCalculatedPowers(NLTC,LTCsend,...

LTCrec,Tap,Rltc,Xltc,VM,VA,PCAL,QCAL);

% POWER MISMATCHES

[DPQ,DP,DQ,flag] = PowerMismatches(nbb,tol,bustype,flag,PNET,QNET,...

PCAL,QCAL);

% Check for convergence

if flag == 1

break

end

% JACOBIAN FORMATION

[JAC] = NewtonRaphsonJacobian(nbb,bustype,PCAL,QCAL,VM,VA,YR,YI);

% LTC JACOBIAN UPDATING

[JAC] = LTCNewtonRaphsonJacobian(bustype,LTCsend,LTCrec,NLTC,Tap,...

Bus,Rltc,Xltc,ltcPCAL,ltcQCAL,VM,VA,JAC);
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% SOLVE FOR THE STATE VARIABLES VECTOR

D = JAC\DPQ’;

% UPDATE STATE VARIABLES

[VA,VM] = StateVariablesUpdates(nbb,D,VA,VM);

% UPDATE LTC TAPs

[VM,Tap] = LTCUpdates(VM,D,bustype,NLTC,LTCsend,LTCrec,Tap,Bus,...

LTCVM);

% CHECK FOR POSSIBLE LTC TAPs’ LIMITS VIOLATIONS

[Tap,bustype] = LTCLimits(bustype,NLTC,Tap,TapHi,TapLo,LTCsend,...

LTCrec);

it = it + 1;

end

function [PCAL,QCAL,ltcPCAL,ltcQCAL] = LTCCalculatedPowers(NLTC,...

LTCsend,LTCrec,ltctap,Rltc,Xltc,VM,VA,PCAL,QCAL)

for ii = 1: NLTC

kk = (ii-1)*2+1;

% Calculate LTC admittances

denom = Rltc(ii)^2+Xltc(ii)^2;

YRS = Rltc(ii)/denom;

YIS = -Xltc(ii)/denom;

YRM = -Rltc(ii)/denom;

YIM = Xltc(ii)/denom;

A1 = VA(LTCsend(ii))-VA(LTCrec(ii));

A2 = VA(LTCrec(ii))-VA(LTCsend(ii));

% Calculate LTC powers

ltcPCAL(kk) = VM(LTCsend(ii))^2*YRS + ltctap(ii)*VM(LTCsend(ii))*...

VM(LTCrec(ii))*(YRM*cos(A1) + YIM*sin(A1));

ltcQCAL(kk) = -VM(LTCsend(ii))^2*YIS + ltctap(ii)*VM(LTCsend(ii))*...

VM(LTCrec(ii))*(YRM*sin(A1) - YIM*cos(A1));

ltcPCAL(kk+1) = (VM(LTCrec(ii))*ltctap(ii))^2*YRS + ltctap(ii)*...

VM(LTCsend(ii))*VM(LTCrec(ii))*(YRM*cos(A2)+YIM*sin(A2));

ltcQCAL(kk+1) = - (VM(LTCrec(ii))*ltctap(ii))^2*YIS + ltctap(ii)*...

VM(LTCsend(ii))*VM(LTCrec(ii))*(YRM*sin(A2)-YIM*cos(A2));

% Update calculated powers PCAL and QCAL

PCAL(LTCsend(ii)) = PCAL(LTCsend(ii)) + ltcPCAL(kk);

QCAL(LTCsend(ii)) = QCAL(LTCsend(ii)) + ltcQCAL(kk);

PCAL(LTCrec(ii)) = PCAL(LTCrec(ii)) + ltcPCAL(kk+1);
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QCAL(LTCrec(ii)) = QCAL(LTCrec(ii)) + ltcQCAL(kk+1);

end

function [JAC] = LTCNewtonRaphsonJacobian(bustype,LTCsend,LTCrec,...

NLTC,Tap,Bus,Rltc,Xltc,ltcPCAL,ltcQCAL,VM,VA,JAC)

% LTC JACOBIAN MODIFICATION

for ii = 1: NLTC

ind = Bus(ii)-LTCsend(ii);

JAC(:,2*Bus(ii))= 0.0;

for nn = 1: 2

% Calculate LTC admittances

denom = Rltc(ii)^2+Xltc(ii)^2;

YRS = Rltc(ii)/denom;

YIS = - Xltc(ii)/denom;

% Calculate LTC Jacobian entries

JKK(1,1) = - (VM(LTCsend(ii))^2)*YIS;

JKK(1,2) = (VM(LTCsend(ii))^2)*YRS;

JKK(2,1) = - (VM(LTCsend(ii))^2)*YRS;

JKK(2,2) = - (VM(LTCsend(ii))^2)*YIS;

JKM(1,1) = ltcQCAL((ii-1)*2+nn) + (VM(LTCsend(ii))^2)*YIS;

JKM(1,2) = ltcPCAL((ii-1)*2+nn) + (VM(LTCsend(ii))^2)*YRS;

JKM(2,1) = - (ltcPCAL((ii-1)*2+nn) + (VM(LTCsend(ii))^2)*YRS);

if ind == 0

JKM(2,2) = -(-ltcQCAL((ii-1)*2+nn) + (VM(LTCsend(ii))^2)*YIS);

else

JKM(2,2) = ltcQCAL((ii-1)*2+nn) + (VM(LTCsend(ii))^2)*YIS;

end

if ((bustype(LTCsend(ii)) == 4) & (Bus(ii) == LTCsend(ii)) )

JKK(1,2) = (ltcPCAL((ii-1)*2+nn) + (VM(LTCsend(ii))^2)*YRS);

if (nn == 2)

JKK(2,2) = -(-ltcQCAL((ii-1)*2+nn)+ (VM(LTCsend(ii))^2)*YIS);

else

JKK(2,2) = ltcQCAL((ii-1)*2+nn) + (VM(LTCsend(ii))^2)*YIS;

JKM(2,1) = - (ltcPCAL((ii-1)*2+nn) + ...

(VM(LTCsend(ii))^2)*YRS);

JKM(2,2) = (ltcQCAL((ii-1)*2+nn) + ...

(VM(LTCsend(ii))^2)*YIS);

end

end

% Add LTC contribution to system JAC
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if ( (bustype(LTCsend(ii))==2) & (bustype(LTCrec(ii))>2))

JKK(1,2) = 0;

JKK(2,1) = 0;

JKK(2,2) = 0;

if nn == 1

JKM(2,1) = 0;

JKM(2,2) = 0;

else

JKM(1,2) = 0;

JKM(2,2) = 0;

end

elseif ( (bustype(LTCsend(ii))==1) & (bustype(LTCrec(ii))>2))

JKK = zeros;

JKM = zeros;

JMK = zeros;

end

kk = 2*LTCsend(ii)-1;

mm = 2*LTCrec(ii)-1;

JAC(kk:kk+1,kk:kk+1) = JAC(kk:kk+1,kk:kk+1) + JKK;

JAC(kk:kk+1,mm:mm+1) = JAC(kk:kk+1,mm:mm+1) + JKM;

send = LTCsend(ii);

LTCsend(ii) = LTCrec(ii);

LTCrec(ii) = send;

VM(LTCsend(ii)) = VM(LTCsend(ii))*Tap(ii);

end

end

function [VM,Tap] = LTCUpdates(VM,D,bustype,NLTC,LTCsend,LTCrec,Tap,...

Bus,LTCVM)

for ii = 1: NLTC

if ((bustype(LTCsend(ii)) == 4) & (Bus(ii) == LTCsend(ii)))

Tap(ii) = Tap(ii) + (D(2*LTCsend(ii))*Tap(ii));

VM(LTCsend(ii)) = LTCVM(ii);

elseif ( (bustype(LTCrec(ii)) == 4) & (Bus(ii) == LTCrec(ii)) )

Tap(ii) = Tap(ii) + D(2*LTCrec(ii))*Tap(ii);

VM(LTCrec(ii)) = LTCVM(ii);

end

end

function [Tap,bustype] = LTCLimits(bustype,NLTC,Tap,TapHi,TapLo,...

LTCsend,LTCrec)

% CHECK FOR POSSIBLE LTCs’ TAPS LIMITS VIOLATIONS

for ii = 1: NLTC

for kk = 1: 2
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if (bustype(LTCsend(ii)) == 4)

if ( Tap(ii) > TapHi(ii) )

Tap(ii) = TapHi(ii);

bustype(LTCsend(ii)) = 3;

elseif (Tap(ii) < TapLo(ii))

Tap(ii) = TapLo(ii);

bustype(LTCsend(ii)) = 3;

end

end

LTCsend(ii) = LTCrec(ii);

end

end

function [LTCPQsend,LTCPQrec] = LTCPQflows(NLTC,LTCsend,LTCrec,Rltc,...

Xltc,Tap,VM,VA)

for ii = 1: NLTC

% Calculate LTC admittances

denom = Rltc(ii)^2+Xltc(ii)^2;

YRS = Rltc(ii)/denom;

YIS = -Xltc(ii)/denom;

YRM = -Rltc(ii)/denom;

YIM = Xltc(ii)/denom;

for jj = 1 : 2

A1 = VA(LTCsend(ii))-VA(LTCrec(ii));

% Calculate LTC powers

ltcPCAL = VM(LTCsend(ii))^2*YRS + Tap(ii)*VM(LTCsend(ii))*

VM(LTCrec(ii))*(YRM*cos(A1) + YIM*sin(A1));

ltcQCAL = -VM(LTCsend(ii))^2*YIS + Tap(ii)*VM(LTCsend(ii))*

VM(LTCrec(ii))*(YRM*sin(A1) - YIM*cos(A1));

if jj == 1

LTCPQsend = ltcPCAL + j*ltcQCAL;

else

LTCPQrec = ltcPCAL + j*ltcQCAL;

end

send = LTCsend(ii);

LTCsend(ii) = LTCrec(ii);

LTCrec(ii) = send;

end

end

4.4.1.3 Test case of voltage magnitude control with
load tap-changing

The original five-bus network described in Section 4.3.9 is modified to include one LTC in

series with the transmission line connected between bus Lake and bus Main. An additional

bus, termed Lakefa, is used to connect the LTC as shown in Figure 4.7. The LTC is used to
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maintain the voltage magnitude at Lake at 1 p.u. The initial condition of the tap is set to a

nominal value (i.e. T ¼ 1). The winding impedance contains no resistance, and an inductive

reactance of 0.1 p.u.

The data given in function PowerFlowsData in Section 4.3.9 is modified to

accommodate the inclusion of the LTC. The transmission line originally connected between

Lake and Main is now connected between Lakefa (bus 6) and Main (bus 4). Only the

modified code lines are shown here:

%The convention used for the types of buses available in power flow

%studies is expanded to include nodal voltage control by LTC:

%bustype = 5

nbb = 6 ;

bustype(3) = 5 ; VM(1) = 1 ; VA(1) =0 ;

bustype(6) = 3 ; VM(1) = 1 ; VA(1) =0 ;

tlsend(6) = 6 ; tlrec(6) = 4 ; tlresis(6) = 0.01 ; tlreac(6) = 0.03 ;

tlcond(6) = 0 ; tlsuscep(6) = 0.02 ;

4.1

4.0

60 + j10

North Lake Main

South Elm

12.1
12.1

37.738.9

73.2

72

19.5

5.2

20 + j10

40

85.2 45 + j15 40 + j5

57.3 56

13.612
92.2

89.6

4.66.5

9.2 8

2.6

2.0

4.9

8.1

32.6

19.7

32

7

55.7

131.11

T = 1.04

Lakefa

Figure 4.7 Modified test network and power flow results
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Function LTCPowerFlowsData is as follows:

%This function is used exclusively to enter LTC data:

% Load Tap Changing transformers data

% NLTC: Number of LTC’s

% LTCsend: Sending end bus

% LTCrec: Receiving end bus

% Rltc: LTC winding resistaance

% Xltc: LTC winding reactance

% Tap: Initial value of LTC tap

% TapHi: Higher value of LTC tap

% TapLo: Lower value of LTC tap

% Bus: Controlled bus

% LTCVM: Target volatge magnitude at LTC bus

NLTC = 1 ;

LTCsend(1) = 3 ; LTCrec(1) = 6 ; Rltc(1) = 0 ; Xltc(1) = 0.1 ;

Tap(1) = 1 ; TapHi(1) = 1.5 ; TapLo(1) = 0.5 ; Bus(1) = 3 ; LTCVM(1) = 1 ;

Convergence is obtained in 5 iterations to a power mismatch tolerance of 1e–12. The

power flow results are shown in Figure 4.7. The nodal voltages are given in Table 4.2. It

should be noted that the LTC upholds the target value of 1 p.u. voltage magnitude at Lake

with a tap setting of T ¼ 1:04.

It is interesting to note that the voltages at Main and Elm deteriorate compared with

the case when no voltage regulation takes place at Lake; the base case presented in

Section 4.3.9. It is also interesting to note that the LTC achieves its voltage regulation

objective at the expense of consuming reactive power; it draws 10MVAR from the system.

There is a general redistribution of reactive power flows throughout the network owing to

the inclusion of the LTC and its control action; however, the net amount of active and

reactive power generated or absorbed by the two generators changes little (i.e. 171.11MVA

and 29.5MVAR). The system active power loss is 6.11MW. To show the prowess of the

Newton–Raphson method towards convergence, in Table 4.3 we give the maximum absolute

power mismatches in the system buses, which are shown to decrease quadratically towards

zero.

Table 4.2 Nodal voltages in the modified network

System bus

Nodal voltage North South Lake Lakefa Main Elm

Magnitude (p.u.) 1.060 1.000 1.000 0.969 0.969 0.966

Phase angle (deg) 0.00 �2.16 �4.41 �5.13 �5.99 �5.99
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4.4.1.4 Combined voltage magnitude control by means of
generators and load tap changers

The option of controlling nodal voltage magnitude by adjusting LTCs and generators in a

combined fashion is a practical operating situation; such controls are prioritised. It is normal

to choose the generator as the first regulating component, holding the associated LTC taps at

their initial condition so long as the generator’s reactive limits are not reached. If the

generator hits one of its reactive limits then the master LTC tap becomes active and the bus

is converted to PVT; the bus becomes controlled by the LTC as opposed to the generator.

The control of nodal voltage magnitude by the generator has higher priority. If the set of

LTCs associated with a given generator are controlling buses different from the generator

bus and the generator reaches one of its reactive limits then the LTC is switched to control

the generator bus so that it changes to a PVT bus. The previous PVT bus controlled by the

LTC is converted to a PQ bus in the absence of another LTC available to regulate that bus.

These control actions are shown schematically in Figure 4.8.

4.4.1.5 Control coordination between one load tap changer
and one generator

This test case serves to illustrate the situation where the voltage magnitude at a given bus is

controlled by one generator and one LTC. The five-bus network is modified to include one

(a)

OPENm n

PV

T2T1

k

PVT PVT

(b)

OPENm n

PVT

T2T1

k

PQ PVT

Figure 4.8 Control of nodal voltage magnitude using: (a) one generator and two load tap changers

(LTCs) and (b) two LTCs after the generator violates one of its reactive limits

Table 4.3 Maximum absolute power mismatches

Iteration �P �Q

1 6.0e�1 1.2e�1

2 2.4e�2 2.5e�2

3 1.5e�4 7.5e�4

4 1.5e�8 1.6e�7

5 0 0
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LTC, as shown in Figure 4.9. The minimum reactive power limit of the generator connected

at South is specified to be –55MVAR. The LTC tap, located on the primary winding, is used

to control voltage magnitude when the generator violates its minimum reactive power limit.

The LTC works as a conventional transformer, with the tap fixed at the value given by the

initial condition for as long as the generator operates within its reactive limits. The initial

condition of the tap is set to a nominal value (i.e. T ¼ 1). The winding impedance contains

no resistance and an inductive reactance of 0.1 p.u. Once the generator violates reactive

limits the LTC becomes active. The controlled bus is PV when controlled by the generator

and then changes to PVT when controlled by the LTC.

For the condition when the target voltage magnitude at South is 1 p.u. the generator

violates its minimum reactive power limit, and voltage magnitude control switches to the

LTC. Convergence is obtained in 7 iterations. The power flow results are shown in

Figure 4.9.

The nodal voltages are very similar to the base case presented in Section 4.3.9. The value

of LTC tap required to achieve 1 p.u. voltage magnitude at South is 0.92. As expected, the

LTC achieves its operating point at the expense of consuming reactive power. However, in

this case it draws only 2.9MVAR from the system. The system active power loss increases

to 6.31MW.

10.9

10.71

60 + j10

North Lake Main

South Elm

21.821.941.442.9

74.2

73.2

25.5

8.7

20 + j10

40

86.88 45 +  j15 40 + j5

50.4 49.3

13.512.6
88.4

85.9

4.96.7

21.9 21.9

16.26

11.9

5.2

7.9

29.6

25.9

29.1

6.4

55

131.31

T = 0.92

Figure 4.9 Control coordination between the generator and load tap changer at South
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4.4.2 Phase-shifting Transformer

A flexible power flow model for the phase-shifting transformer is described in this section.

It is derived from the two-winding, single-phase transformer model presented by

Section 3.3.4, which contains complex taps on both the primary and secondary windings.

Comprehensive bus power injection equations for the phase shifter may be derived with

reference to Equation (3.91). However, simpler expressions may be derived if some practical

assumptions are introduced at this stage. For instance, it is reasonable to assume that the

phase-changing facility is only on the primary side, (i.e. �u ¼ 0); the primary and secondary

windings admittances may be combined together ½Y ¼ Ysc pYsc s ðYsc p þ Ysc sÞ�



; and the

impact of the magnetising branch is negligibly small in the power flow solution (Y0 ¼ 0):

Ik
Im

� �
¼ Y �Y cos�þ j sin�ð Þ

�Y cos�� j sin�ð Þ Y

� �
Vk

Vm

� �
¼ Ykk Ykm

Ymk Ymm

� �
Vk

Vm

� �
:

ð4:70Þ

Similar to the power flow LTC model, it is assumed in this expression that the primary and

secondary sides of the transformer are connected to bus k and bus m, respectively. Also,

the subscripts sc and u are dropped in the admittance term and in the phase angle �,
respectively.

Based on Equation (4.70), equations for the nodal power injections of the phase-shifting

transformer, where � is allowed to vary within design rating values (� min <�<� max), are

as follows:

Pk ¼ V2
k Gkk þ VkVm Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �; ð4:71Þ

Qk ¼ �V2
k Bkk þ VkVm Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �; ð4:72Þ

Pm ¼ V2
mGmm þ VmVk Gmk cos �m � �kð Þ þ Bmk sin �m � �kð Þ½ �; ð4:73Þ

Qm ¼ �V2
mBmm þ VmVk Gmk sin �m � �kð Þ � Bmk cos �m � �kð Þ½ �; ð4:74Þ

where

Ykk ¼ Gkk þ jBkk ¼ Y;

Ymm ¼ Gmm þ jBmm ¼ Y ;

Ykm ¼ Gkm þ jBkm ¼ �Y cos�þ j sin�ð Þ;
Ymk ¼ Gmk þ jBmk ¼ �Y cos�� j sin�ð Þ:

9>>>=
>>>;

ð4:75Þ

Alternatively, substituting Equations (4.75) into Equations (4.71)–(4.74) leads to the

following more explicit expressions:

Pk ¼ V2
k G� VkVm G cos �k � �m � �ð Þ þ B sin �k � �m � �ð Þ½ �; ð4:76Þ

Qk ¼ �V2
k B� VkVm G sin �k � �m � �ð Þ � B cos �k � �m � �ð Þ½ �; ð4:77Þ

Pm ¼ V2
mG� VmVk G cos �m � �k þ �ð Þ þ B sin �m � �k þ �ð Þ½ �; ð4:78Þ

Qm ¼ �V2
mB� VmVk G sin �m � �k þ �ð Þ � B cos �m � �k þ �ð Þ½ �: ð4:79Þ

If the phase-shifting transformer is used to control the active power flowing through it at a

specified value then the Jacobian is enlarged to accommodate one additional equation. In
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this situation � enters as an extra state variable in the Jacobian equation. If the control

is exerted at the sending end (bus k) of the phase shifter then P
�PS

km is the target power to be

regulated.

The set of linearised power flow equations for the phase-shifting transformer is,

�Pk

�Pm

�Qk

�Qm

�P
�PS

km

2
66666666666666664

3
77777777777777775

ðiÞ
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; ð4:80Þ

where �P
�PS

km , given by

�P
�PS

km ¼ P
�;reg
km � P

�PS

km ;

is the active power flow mismatch for the phase shifter; P
�PS

km is the calculated power as given

by Equation (4.76); ��PS, given by

��PS ¼ �ðiÞ � �ði�1Þ;

is the incremental change in the phase shifter angle at the ith iteration.

The Jacobian elements in matrix Equation (4.80) are as follows:

qPk

q�k
¼ � qPk

q�m
¼ � qQk

qVm

Vm ¼ � qPk

q�
¼ �Qk � V2

k B; ð4:81Þ
qPk

qVk

Vk ¼ Pk þ V2
k G; ð4:82Þ

qQk

q�k
¼ � qQk

q�m
¼ qPk

qVm

Vm ¼ � qQk

q�
¼ Pk � V2

k G; ð4:83Þ
qQk

qVk

Vk ¼ Qk � V2
k B; ð4:84Þ

qPm

q�m
¼ � qPm

q�k
¼ � qQm

qVk

Vk ¼ qPm

q�
¼ �Qm � V2

mB; ð4:85Þ
qPm

qVm

Vm ¼ Pm þ V2
mG; ð4:86Þ

qQm

q�m
¼ � qQm

q�k
¼ qPm

qVk

Vk ¼ qQm

q�
¼ Pm � V2

mG; ð4:87Þ
qQm

qVm

Vm ¼ Qm � V2
mB: ð4:88Þ
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It should be noted that since P
�PS

km ¼ Pk, the following relationships hold true and simplify

the evaluation of the Jacobian matrix,

qP�
km

q �k
¼ qPk

q �k
; ð4:89Þ

qP�
km

q �m
¼ qPk

q �m
; ð4:90Þ

qP�
km

qVk

Vk ¼ qPk

qVk

Vk; ð4:91Þ

qP�
km

qVm

Vm ¼ qPk

qVm

Vm; ð4:92Þ

qP�
km

q�
¼ qPk

q�
: ð4:93Þ

At the end of each iterative step, i, the phase angle � is updated by using the following

relation:

�ðiÞ ¼ �ði�1Þ þ��
ðiÞ
PS ð4:94Þ

It should be noted that a more comprehensive power flow phase-shifter model may be

obtained by basing the power derivations on Equation (3.91) as opposed to Equation (4.70).

For instance, the effect of the magnetising admittance may be included in the nodal power

equations of the transformer. Also, it may be considered that the phase-shifting facility

is on the secondary side as opposed to the primary side, in which case �t ¼ 0 and

�u min < �u < �u max. The associated Jacobian elements have the same form as Equa-

tions (4.81)–(4.93).

4.4.2.1 State variable initialisation and limit checking

Similar to the case with LTCs, it is normal to initialise the tapping positions of phase-

shifting transformers at their nominal values. Hence, �t ¼ 0 and �u ¼ 0 are used for cases

of two-winding phase shifters.

The status of phase-shifter taps is checked at each iterative step to assess whether or not

they are still within limits and capable of regulating active power flow. For a phase shifter

connected between buses k and m, and regulating active power flow at bus k with tapping

facilities available in the primary winding, we may write:

�min < � < �max: ð4:95Þ
If either of the following conditions occur during the iterative process:

�ðiþ1Þ þ��ðiÞ � �max;

�ðiþ1Þ þ��ðiÞ 	 �min;
ð4:96Þ

the tap is fixed at the violated limit. The active power flow in branch k–m is allowed to vary,

and � is removed from the state variable vector. It becomes a constant parameter within the
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nodal admittance matrix of the phase-shifting transformer in Equation (4.70). Checking of

phase-shifter tap limits starts from iteration 1.

4.4.2.2 Phase-shifter computer program in Matlab1 code

Program 4.4 incorporates phase-shifting transformer representation within the Newton–

Raphson power flow program given in Section 4.3.6. The functions PowerFlowsData,

YBus, and PQflows are also used here.

In the main phase-shifter Newton–Raphson program, the function PSPowerFlowsData

is added to read phase-shifter data, PSNewtonRaphson replaces NewtonRaphson, and

PSPQflows is used to calculate power flows and losses in the phase-shifting transformer.

Function PSNewtonRaphson uses the following functions from NewtonRaphson:

NetPowers; CalculatedPowers; GeneratorsLimits; PowerMismatches; Newton-

RaphsonJacobian; and StateVariablesUpdates. Furthermore, five new functions are

added to cater for phase shifters representation; namely: PSCalculatedPowers;

PSUpdates; PSNewtonRaphsonJacobian; PSPowerMismatches; and PSLimits.

PROGRAM 4.4 Program written in Matlab1 to incorporate phase-shifter representation

within the Newton–Raphson power flow algorithm.

%- - - Main PS Program

PowerFlowsData; %Function to read network data

PSPowerFlowsData; %Function to read PS data

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,shbus,...

shresis,shreac,ntl,nbb,nsh);

[VM,VA,Tap,it] = PSNewtonRaphson(nmax,tol,itmax,ngn,nld,nbb,...

bustype,genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,...

VA,NPS,PSsend,PSrec,Rps,Xps,Tap,TapHi,TapLo,Bus,psP);

[PQsend,PQrec,PQloss,PQbus] = PQflows(nbb,ngn,ntl,nld,genbus,...

loadbus,tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,QLOAD,...

VM,VA);

[PQPSsend,PQPSrec,PQPSloss] = PSPQflows(VM,VA,NPS,PSsend,PSrec,Rps,...

Xps,Tap);

it %Iteration number

VM %Nodal voltage magnitude (p.u.)

VA = VA*180/pi %Nodal voltage phase angle(Deg)

PQsend %Sending active and reactive powers (p.u.)

PQrec %Receiving active and reactive powers (p.u.)
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Tap %Final transformer phase-shifting position

% End of Main PSNewtonRaphson Function

function [VM,VA,Tap,it] = PSNewtonRaphson(nmax,tol,itmax,ngn,nld,...

nbb,bustype,genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,...

VM,VA,NPS,PSsend,PSrec,Rps,Xps,Tap,TapHi,TapLo,Bus,psP);

% GENERAL SETTINGS

flag = 0;

it = 1;

% CALCULATE NET POWERS

[PNET,QNET] = NetPowers(nbb,ngn,nld,genbus,loadbus,PGEN,QGEN,PLOAD,...

QLOAD);

while (it < itmax & flag==0)

% CALCULATED POWERS

[PCAL,QCAL] = CalculatedPowers(nbb,VM,VA,YR,YI);

% CALCULATED PS POWERS

[PCAL,QCAL,psPCAL,psQCAL] = PSCalculatedPowers(VM,VA,PCAL,QCAL,...

PSsend, PSrec,NPS,Tap,Rps,Xps);

% POWER MISMATCHES

[DPQ,DP,DQ,flag] = PowerMismatches(nmax,nbb,tol,bustype,flag,PNET,...

QNET,PCAL,QCAL);

% PS POWER MISMATCHES

[DPQ,flag] = PSPowerMismatches(nbb,DPQ,flag,tol,NPS,PSsend,PSrec,Bus,...

psP,psPCAL);

%Check for convergence

if flag == 1

break

end

% JACOBIAN FORMATION

[JAC] = NewtonRaphsonJacobian(nmax,nbb,bustype,PCAL,QCAL,VM,VA,...

YR,YI);

% PS JACOBIAN UPDATING

[JAC] = PSNewtonRaphsonJacobian(nbb,VM,VA,JAC,NPS,PSsend,PSrec,Tap,...

Bus,Rps,Xps,psPCAL,psQCAL);
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% SOLVE FOR THE STATE VARIABLES VECTOR

D = JAC\DPQ’;

% UPDATE STATE VARIABLES

[VA,VM] = StateVariablesUpdates(nbb,D,VA,VM);

% UPDATE PS TAPS

[Tap] = PSUpdates(nbb,D,NPS,Tap);

% CHECK FOR PS TAPS LIMITS VIOLATIONS

[Tap,Bus] = PSLimits(NPS,Tap,TapHi,TapLo,Bus);

it = it + 1;

end

function [PCAL,QCAL,psPCAL,psQCAL] = PSCalculatedPowers(VM,VA,PCAL,...

QCAL, PSsend,PSrec,NPS,Tap,Rps,Xps)

for ii = 1: NPS

% Calculate PS admittances

denom = Rps(ii)^2+Xps(ii)^2;

YR = Rps(ii)/denom;

YI = - Xps(ii)/denom;

% Calculate PS powers

for nn = 1: 2

kk = (ii-1)*2+nn;

A1=VA(PSsend(ii))-VA(PSrec(ii))-Tap(ii);

psPCAL(kk) = (VM(PSsend(ii))^2)*YR - VM(PSsend(ii))*VM(PSrec(ii))...

* (YR*cos(A1)+YI*sin(A1));

psQCAL(kk) = -(VM(PSsend(ii))^2)*YI - VM(PSsend(ii))*VM(PSrec(ii))...

* (YR*sin(A1)-YI*cos(A1));

% Update calculated powers PCAL and QCAL

PCAL(PSsend(ii)) = PCAL(PSsend(ii)) + psPCAL(kk);

QCAL(PSsend(ii)) = QCAL(PSsend(ii)) + psQCAL(kk);

send = PSsend(ii);

PSsend(ii) = PSrec(ii);

PSrec(ii) = send;

Tap(ii)=-Tap(ii);

end

end

function [DPQ,flag] = PSPowerMismatches(nbb,DPQ,flag,tol,NPS,PSsend,...

PSrec,Bus,psP,psPCAL);
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% ADD PS POWER MISMATCHES TO DPQ

ll = 1;

for ii = 1: NPS

if (PSsend(ii) == Bus(ii))

DPQ(ii+2*nbb) = psP(ii) - psPCAL(ii);

elseif (PSrec(ii) == Bus(ii))

DPQ(ii+2*nbb) = psP(ii) + psPCAL(ll+1);

end

if (Bus(ii) == 0)

DPQ(ii+2*nbb) = 0;

end

ll = ll + 2;

end

% Check for convergence

if (flag == 1)

for ll = 2*nbb+1 : 2*nbb + NPS

if (abs(DPQ) < tol)

flag = 1;

else

flag = 0;

end

end

end

function [JAC] = PSNewtonRaphsonJacobian(nbb,VM,VA,JAC,NPS,PSsend,...

PSrec,Tap,Bus,Rps,Xps,psPCAL,psQCAL)

% PS JACOBIAN MODIFICATION

for ii = 1: NPS

nn = (ii-1)*2+1;

pp = 2*nbb+ii;

% Calculate PS admittances

denom = Rps(ii)^2+Xps(ii)^2;

YR = Rps(ii)/denom;

YI = -Xps(ii)/denom;

% Calculate PS Jacobian entries

for kk1 = 1: 2

kk = 2*PSsend(ii)-1;

mm = 2*PSrec(ii)-1;

nn = (ii-1)*2+kk1;

JKK(1,1) = -(VM(PSsend(ii))^2)*YI;

JKK(1,2) = (VM(PSsend(ii))^2)*YR;

JKK(2,1) = -(VM(PSsend(ii))^2)*YR;

JKK(2,2) = -(VM(PSsend(ii))^2)*YI;
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JKM(1,1) = psQCAL(nn) + (VM(PSsend(ii))^2)*YI;

JKM(1,2) = psPCAL(nn) - (VM(PSsend(ii))^2)*YR;

JKM(2,1) = -psPCAL(nn) + (VM(PSsend(ii))^2)*YR;

JKM(2,2) = psQCAL(nn) + (VM(PSsend(ii))^2)*YI;

% Add PS contribution to system JAC

JAC(kk:kk+1,kk:kk+1) = JAC(kk:kk+1,kk:kk+1) + JKK;

JAC(kk:kk+1,mm:mm+1) = JAC(kk:kk+1,mm:mm+1) + JKM;

send = PSsend(ii);

PSsend(ii) = PSrec(ii);

PSrec(ii) = send;

end

kk = 2*PSsend(ii)-1;

mm = 2*PSrec(ii)-1;

nn = (ii-1)*2+1;

JKE(1) = psQCAL(nn) + (VM(PSsend(ii))^2)*YI;

JKE(2) = -psPCAL(nn) + (VM(PSsend(ii))^2)*YR;

JEK(1) = -psQCAL(nn) - (VM(PSsend(ii))^2)*YI;

JEK(2) = psPCAL(nn) + (VM(PSsend(ii))^2)*YR;

JME(1) = -psQCAL(nn+1) - (VM(PSrec(ii))^2)*YI;

JME(2) = psPCAL(nn+1) - (VM(PSrec(ii))^2)*YR;

JEM(1) = psQCAL(nn) + (VM(PSsend(ii))^2)*YI;

JEM(2) = psPCAL(nn) - (VM(PSsend(ii))^2)*YR;

JE(1) = psQCAL(nn) + (VM(PSsend(ii))^2)*YI;

if (Bus(ii) ~= 0)

JAC(kk:kk+1,pp) = JAC(kk:kk+1,pp) + JKE’;

JAC(mm:mm+1,pp) = JAC(mm:mm+1,pp) + JME’;

JAC(pp,kk:kk+1) = JAC(pp,kk:kk+1) + JEK;

JAC(pp,mm:mm+1) = JAC(pp,mm:mm+1) + JEM;

JAC(pp,pp) = JAC(pp,pp) + JE(1);

else

JAC(1:pp,pp) = zeros;

JAC(pp,1:pp) = zeros;

JAC(pp,pp) = 1;

end

end

function [Tap] = PSUpdates(nbb,D,NPS,Tap)

for ii = 1: NPS

Tap(ii) = Tap(ii) + D(ii+nbb*2);

end

function [Tap,Bus] = PSLimits(NPS,Tap,TapHi,TapLo,Bus)

% CHECK FOR POSSIBLE PS TAPs’ LIMITS VIOLATIONS
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for ii = 1: NPS

if (Bus(ii) ~= 0)

if (Tap(ii) > TapHi(ii))

Tap(ii) = TapHi(ii);

Bus(ii) = 0;

elseif (Tap(ii) < TapLo(ii))

Tap(ii) = TapLo(ii);

Bus(ii) = 0;

end

end

end

function[PQPSsend,PQPSrec,PQPSloss] = PSPQflows(VM,VA,NPS,PSsend,...

PSrec,Rps,Xps,Tap)

%

PQPSsend = zeros(1,NPS);

PQPSrec = zeros(1,NPS);

% Calculate active and reactive powers at the sending and reciving ends of

% Phase shifter transformers

for ii = 1: NPS

Vsend = (VM(PSsend(ii))*cos(VA(PSsend(ii))) + ...

VM(PSsend(ii))*sin(VA(PSsend(ii)))*i);

Vrec = (VM(PSrec(ii))*cos(VA(PSrec(ii))) + ...

VM(PSrec(ii))*sin(VA(PSrec(ii)))*i);

Zself = (Rps(ii) + Xps(ii)*i);

Ymutual = -(cos(Tap(ii)) + sin(Tap(ii))*i)/Zself;

current = Vsend/Zself + Vrec*Ymutual;

PQPSsend(ii) = Vsend*conj(current);

Ymutual = -(cos(Tap(ii)) - sin(Tap(ii))*i)/Zself;

current = Vsend*Ymutual + Vrec/Zself;

PQPSrec(ii) = Vrec*conj(current);

PQPSloss(ii) = PQPSsend(ii) + PQPSrec(ii);

end

4.4.2.3 Test cases for phase-shifting transformers

The PSNewtonRaphson power flow function is used to solve two test cases. The first case

corresponds to a straightforward active power flow control in a phase-shifter-upgraded

transmission line. The second case is an assessment of the power flow feasibility region of a

two phase-shifting transformer system.

Active power flow

The five-bus network is modified to include one phase-shifting transformer in series with the

transmission line connecting bus Lake and bus Main. The phase shifter is used to maintain
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active power flowing from Lakefa towards Main at 40MW. This bus is added to enable

connection of the phase shifter. The initial value of the complex tap is set to the nominal

value (i.e. 1ff0
). The winding contains no resistance, and an inductive reactance of 0.1 p.u.

The data given in function PowerFlowsData in Section 4.3.9 is modified to

accommodate for the inclusion of the phase shifter. The transmission line originally

connected between Lake and Main is now connected between Lakefa (bus 6) and Main

(bus 4). Only the modified code lines are shown here:

nbb = 6 ;

bustype(6) = 4 ; VM(1) = 1 ; VA(1) =0 ;

tlsend(6) = 6 ; tlrec(6) = 4 ; tlresis(6) = 0.01 ; tlreac(6) = 0.03 ;

tlcond(6) = 0 ; tlsuscep(6) = 0.02 ;

Function PSPowerFlowsData is as follows:

% Phase-Shifting Transformers Data

% NPS: number of PS’s

% PSsend: Sending end bus

% PSrec: Receiving end bus

% Rps: PS winding resistance

% Xps: PS windding reactance

% Tap: Initial value of PS tap

% TapHi: Higher value of PS tap

% TapLo: Lower value of PS tap

% Bus: Controlled bus

% psP: Target active power at Bus

NPS = 1;

PSsend(1) = 3 ; PSrec(1) = 6 ; Rps(1) = 0 ; Xps(1) = 0.1 ;

Tap(1) = 0 ; TapHi(1) = 10*pi/180 ; TapLo(1) = -10*pi/180 ;

Bus(1) = 6 ; psP(1) = 0.4 ;

nmax = nmax + NPS;

Convergence is obtained in 5 iterations to a power mismatch tolerance of 1e�12. The

phase shifter upholds its target value. The power flow results are shown in Figure 4.10. The

nodal voltages are given in Table 4.4. The maximum absolute power mismatches of

the system buses and phase shifter are shown in Table 4.5.

As expected, the nodal voltage magnitudes do not change compared with the base

case presented in Section 4.3.9. However, the voltage phase angle difference between

Lake and Main does increase in value to reflect the larger amount of active power flowing

through this transmission line, which increases from 19.4MW to 40MW. This is slightly

more than a twofold increase in transmitted power, and the phase angle difference changes

from –0.32
 to –2.74
.
The value of tap required to achieve the 40MW flow through the phase shifter is �5.83
.

The phase shifter achieves its operating point at the expense of consuming 1.7MVAR. The

system active power loss is 6.6MW.
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Figure 4.10 Modified test network and power flow results

Table 4.4 Nodal voltages of the modified network

System buses

Nodal voltage North South Lake Lakefa Main Elm

Magnitude (p.u.) 1.06 1.000 0.984 0.987 0.984 0.972

Phase angle (deg) 0.00 �1.77 �5.8 �2.33 �3.06 �4.95

Table 4.5 Maximum absolute mismatches

Bus

Iteration �P �Q Phase shifter ��

1 6.0e�1 1.2e�1 4e�1

2 2.1e�2 3.7e�2 8e�3

3 9.6e�5 1.8e�4 9.3e�5

4 3.6e�9 5.3e�9 4.7e�9

5 0 0 0
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Feasible active power control region

When two or more phase-shifting transformers are close together, electrically speaking, they

may interact with each other. The amount of active power flow controlled by these series

controllers is confined to a region in which the phase angle controllers operate within limits

and where the solution of the power flow equations exists. Figure 4.11 shows the feasible

active power flow control region when phase shifters PS1 and PS2 are connected in series

with the transmission lines connecting North–Lake and South–Lake, respectively. The range

of phase angle variation is specified to be �10
. The following combinations of phase angles

give the boundaries:

� Point A: �PS1 ¼ 10
, and �PS2 ¼ �10
;
� Point B: �PS1 ¼ 10
, and �PS2 ¼ 10
;
� Point C: �PS1 ¼ �10
, and �PS2 ¼ �10
;
� Point D: �PS1 ¼ �10
, and �PS2 ¼ 10
.

Extensive power flow simulations verify the feasibility region shown in Figure 4.11 for

this example. For instance, simulations are presented in Table 4.6, where the phase shifter

parameters, initial conditions, and control targets are given.

As expected, all the power flows specified inside the feasible region are successfully

upheld (Cases 1–3). Power flows specified outside the feasibility region lead to phase-shifter

limits violations; these are indicated by an asterisk. The size of the feasible active power

control region is a function of the phase angle controller range; as the range increases so too

does the sizes of the regions.
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Figure 4.11 Feasible region of active power flow control for PS1 and PS2
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4.5 FURTHER CONCEPTS IN POWER FLOWS

4.5.1 Sparsity-oriented Solutions

When dealing with large-scale electrical power systems, the formation of actual matrices is

not desirable because of the exorbitant processing times associated with their numerical

solution. Instead, the Jacobian and nodal admittance matrices of the power system are stored

Table 4.6 Feasible active power flow control by PS1 and PS2

Final phase angle Active power flow Active power flow

value (deg) North–Lake (MW) South–Lake (MW)

Case Iteration �PS1 �PS2 Specified Final Specified Final

1 4 �5.64 �3.62 50 50 30 30

2 4 8.7 8.78 �5 �5 70 70

3 4 �7.6 6.62 70 70 �15 �15

4 7 10* 0.96 �5 2.2 30 30

5 7 �10* �4.87 70 66.7 30 30

6 6 5.2 10* 30 30 �20 �13.5

7 7 �7.87 �10* 50 50 70 54

8 9 10* 10* �10 13.8 �30 �7.6

* Phase-shifter limit violation.
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Figure 4.12 Linked lists for storing a sparse Jacobian matrix. Note: ptr, pointer. Redrawn, with

permission, from C.R. Fuerte-Esquivel, E. Acha, S.G. Tan, and J.J. Rico, ‘Efficient Object Oriented

Power System Software for the Analysis of Large-scale Networks Containing FACTS Controlled

Branches’, IEEE Trans. Power Systems 3(2) 464–472, # 1998 IEEE

144 CONVENTIONAL POWER FLOW



and processed in vector form, where only nonzero elements are explicitly handled. In

computer languages with no linked list facilities several one-dimensional arrays and skilful

programming schemes are required in order to obtain efficient power flow analysis

solutions. In modern programming languages such as Cþþ, programming efforts are greatly

reduced owing to the existence of pointers and structures.

In theory, Cþþ allows sparsity techniques to be implemented following a rather purist

object-oriented programming (OOP) approach. However, this programming philosophy

incurs excessive cpu overheads. Alternatively, a more efficient OOP approach may be

adopted where sparsity is implemented using an array of pointers pointing to structures.

Structures allow the encapsulation, in a single variable, of all the information associated

with a sparse coefficient (e.g. value, column, and pointer to next element). Pointers are used

to move from one structure to another. This is illustrated in Figure 4.12 for the case of a

system containing nb buses.

An array of pointers is created, the size of which equals the number of rows in the matrix.

Each element points to the address of the start of a list. Moreover, one list is created for each

row. In the case of conventional power flows, where storage locations are kept for the slack

bus, an array of pointers of size equal to 2� (nb � 1) is created, where nb is the number of

buses in the network. Each list consists of an array of structures used to store information

associated with off-diagonal Jacobian elements. The information associated with diagonal

elements is stored in a separate array of structures.

4.5.2 Truncated Adjustments

The Newton–Raphson algorithm may perform poorly when solving large-scale power

systems that are either heavily loaded or contain a substantial number of power system

controllers in close proximity, such as LTCs and phase shifters. In such circumstances, large

increments in the state variables may take place during the iterative solution, with this in

turn inducing large �P and �Q residual terms. The result may be poor convergence, or

more seriously, divergent solutions.

Such unwanted problems can be avoided quite effectively by limiting the size of

correction, with the actual computed adjustments being replaced by truncated adjustments.

This is a straightforward software solution to a common problem when dealing with utility-

size power systems.

4.5.2.1 Test case of truncated adjustments involving three
load tap-changing transformers

The AEP30 test network (Freris and Sasson, 1968) modified to assess the impact of

truncated LTC solutions. The network contains two generators and four synchronous

condensers. Transformers connected between buses 4–12, 6–10, and 27–28 are taken to be

LTC transformers. The nodal voltage magnitudes at buses 4, 6, and 12 are controlled at 1, 1,

and 1.04 p.u., respectively, using the primary taps of the three LTCs. The transformer

connected between buses 6–9 is taken to be a phase shifter with a fix tap on the primary

winding of 1ff�3.75
.
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To show the effectiveness of truncated solutions, two types of adjustments are carried out:

� Truncation of the size of correction (TA);

� Use of full correction (NTA).

Adjusted solutions are achieved in 6 iterations to a power mismatch tolerance of 1e�12.

However, the algorithm fails to reach convergence if the state variable increments are not

truncated. This is illustrated in Figure 4.13, where maximum active and reactive power

mismatches for both kinds of adjustments are shown.

The final LTC parameters are shown in Table 4.7. It is assumed in the study that none of

the LTCs violates tap limits. The active and reactive powers generated by the two

synchronous generators (GE) and four synchronous condensers (CO) are shown in Table

4.8, where it is shown that one generator and two condensers hit their upper reactive power

limits.
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Figure 4.13 Convergence profile as a function of power mismatch

Table 4.7 Final settings of power system controllers

Controller Magnitude (p.u.) Angle (deg)

LTC 4–12 0.9013 0.00

LTC 6–10 0.8821 0.00

LTC 27–28 1.0667 0.00

PS 6–9 1.0000 �3.75

Note: LTC, load tap changer; PS, phase shifter.
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4.5.3 Special Load Tap Changer Configurations

Groups of LTCs may be operated in a coordinated fashion enabling more general control

strategies than those afforded by a single LTC. Series and parallel LTC configurations are

the most obvious possibilities. The series condition occurs when one or more LTCs regulate

the nonregulated terminal of another LTC. This situation is shown in Figure 4.14(a), in

which LTC 1 regulates bus k, and LTC 2 regulates bus m. The parallel condition occurs

when bus k is regulated by two or more LTCs, as shown in Figure 4.14(b). It must be noted

that buses m and n may not necessarily be electrically connected.

The parallel condition does not belong to the category of single criterion control, where

only one control variable is adjusted in order to maintain another dependent variable at a

specified value. When two or more LTCs are controlling one nodal voltage magnitude

multiple solutions become a possibility because the number of unknown variables is greater

than the number of equations. An entire group of parallel LTCs may be treated as a single

control criterion if they are started from the same tapping initial condition. One equation and

Table 4.8 Power generation

Source Active power (MW) Reactive power (MVAR)

GE-1 261.29 �3.1

GE-2 40.0 50.0*

CO-5 0.0 40.0*

CO-8 0.0 40.0*

CO-11 0.0 13.17

CO-13 0.0 �2.27

*Violation reactive power limit.
Note: GE, generator; CO, condenser.

OPENm n

PVT PVT
PVT

T2T1T1T2

(a) (b)

m kn

PQ
k

LTC 2 LTC 1

Figure 4.14 Control configurations: (a) series and, (b) parallel. Reproduced, with permission, from

C.R. Fuerte-Esquivel, E. Acha, S.G. Tan, and J.J. Rico, ‘Efficient Object Oriented Power System

Software for the Analysis of Large-scale Networks Containing FACTS Controlled Branches’, IEEE

Trans. Power Systems 3(2) 464–472, # 1998 IEEE
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one variable corresponding to the common tap position may be sufficient to describe the

group performance. This Equation is linearised with respect to the common tap and

incorporated in the overall Jacobian Equation (4.57).

From the LTC set, the LTC that draws less reactive power is selected to be the master, and

its tapping position becomes the master tapping position. Since the various LTCs in the

group may have the same tapping position but different tap limits, it may be appropriate to

consider the following options:

� If an LTC different from the master hits one of its limits, the tapping position is fixed at

the offending limit and the LTC is removed from the linearised system of equations.

� If the master LTC hits a limit, it follows the same treatment as a slave LTC. Moreover, a

new master is selected from the remaining active LTCs. If no active LTC remains

following limit violation by the master then the bus becomes PQ.

A sensitivity factor, �, may be used when the various LTCs in the parallel set have different

tapping positions; � refers the slave tap position to the master tap position.

Assuming a group of np LTCs operating in parallel, and taking Tk to be the master

position, the sensitivity factor is calculated as:

�p ¼ Tk

Tp
; p ¼ 1; . . . ; np: ð4:97Þ

The expression used for computing the Jacobian entry for the master tap position is also

used for the other LTCs in the group. The tap is adjusted by using Equation (4.97), where

each LTC in the group has its own adjusting pattern and where the sensitivity factor is taken

into account:

T ðiÞ
p ¼ T ði�1Þ

p þ �Tk

Tk

� �ðiÞ
T ði�1Þ
p ; p ¼ 1; . . . ; np: ð4:98Þ

An alternative adjusting strategy is given by Equation (4.98), where equal corrections are

given to all the LTCs in the group:

TðiÞ
p ¼ Tði�1Þ

p þ �Tk

Tk

� �ðiÞ
�ðiÞ
p T ði�1Þ

p ; p ¼ 1; . . . ; np: ð4:99Þ

4.5.3.1 Test case of sensitivity factors in parallel
load tap-changing operation

The AEP30 test system (Freris and Sasson, 1968) is modified to include four LTCs. The

nodal voltage magnitude at bus 6 is kept at 1.01 p.u. with LTCs 6–9 and 6–10 exerting

parallel control in bus 6. The voltage magnitude at buses 4 and 27 are controlled at 1.01 p.u.

and 1 p.u. by LTCs 4–12 and 27–28, respectively. The transformers reactance and off-

nominal tap values given in (Freris and Sasson, 1968) are taken to be on the secondary and

primary windings, respectively. The primary windings of the four transformers are assumed

connected to buses 6, 4, and 27, respectively.
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Following on the discussion started in Section 4.5.3, the adjustment of the two LTCs

operating in parallel is carried out by using: (1) sensitivity factors and (2) equal updating of

taps. A comparison is made for the various cases given in Table 4.9. The number of

iterations taken to obtain the solution as well as the final tapping values required to maintain

the nodal voltage magnitudes at the specified values are given in Table 4.10.

As expected, both adjusting methods give the same solution for a specified LTC initial

condition. However, the use of sensitivity factors guarantees better results in terms of the

number of iterations required to get to the solution, compared with the case in which

identical tapping updates is carried out.

4.6 SUMMARY

In this chapter we have addressed the basic theory of power flows. Building upon

elementary concepts afforded by circuit theory and complex algebra, we have derived

Table 4.9 Initial position of load tap changer (LTC) taps

Case LTC 6–9 LTC 6–10 LTC 4–12 LTC 27–28

1 0.978 0.969 0.932 0.968

2 1.1 1.1 1.1 1.1

3 1.0 1.0 1.0 1.0

4 0.9 0.9 0.9 0.9

5 1.0 0.9 1.0 1.0

Table 4.10 Final position of load tap changer (LTC) taps: (a) updating using

sensitivity factors and (b) equal updating

Tap position

Case Iteration LTC 6–9 LTC 6–10 LTC 4–12 LTC 27–28

(a)

1 5 0.976 0.967 0.915 0.998

2 5 0.974 0.974 0.915 0.998

3 5 0.974 0.974 0.915 0.998

4 5 0.974 0.974 0.915 0.998

5 5 1.008 0.907 0.913 0.995

(b)

1 6 0.976 0.967 0.915 0.998

2 5 0.974 0.974 0.915 0.998

3 5 0.974 0.974 0.915 0.998

4 5 0.974 0.974 0.915 0.998

5 10 1.008 0.908 0.913 0.995
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equations for active and reactive powers injections at a bus. Owing to the idiosyncrasies of

the electrical power network, the mathematical model that describes its operation during

steady-state is nonlinear. Furthermore, for most practical situations, the power network is a

very large-scale system. Hence, solution of the nonlinear set of equations, which must be

reached by iteration, requires a robust and efficient numerical technique. For several decades

the Newton–Raphson method, with its quadratic convergence characteristic, has proved

invaluable in solving the power flow problem. The additional burden imposed on the

numerical solution by the many constraint actions resulting from the various power system

controllers in the network does not impair the ability of the Newton–Raphson method to

converge in a quadratic fashion. Derived Newton–Raphson formulations, such as the fast

decoupled method, also possess strong convergence characteristics. Both methods have been

explained in full detail in this chapter. The calculated power equations, mismatch powers,

and Jacobian terms all have been derived from first principles. The relevant equations

making up the Newton–Raphson and fast decoupled methods have been coded in Matlab1

and the programs used to solve a classical test case. The test system is small and yet it

provides sufficient realism and flexibility for the reader to explore different loading

scenarios, active power generator schedules, and transmission-line parameters. This is

something we certainly encourage the user to do.

The material presented in this chapter progressed to tackle the most specialised issue of

constrained power flow solutions. To this end, flexible models of tap-changing and phase-

shifting transformers were developed from first principles. Together with the generator,

these two power controllers are capable of providing automatic regulation at specific points

of the network provided their design limits are not exceeded. The generator and the tap-

changing transformer provide voltage magnitude regulation whereas the phase-shifting

transformer provides active power regulation. Inclusion of such regulating characteristics

within the power flow solution is a matter of great engineering importance. However, they

introduce additional complexity in power flow theory and may impose an extra burden on

the numerical solution. We believe that sufficient breadth and depth was provided in the

second part of this chapter to make accessible the concepts associated with constrained

power flow solutions. This is in preparation for the widespread constrained solutions

associated with the various FACTS controllers presented in the next chapter.
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5
Power Flow Including
FACTS Controllers

5.1 INTRODUCTION

FACTS controllers narrow the gap between the noncontrolled and the controlled power

system mode of operation, by providing additional degrees of freedom to control power

flows and voltages at key locations of the network (Hingorani and Gyugyi, 2000). Key

objectives of the technology are: to increase transmission capacity allowing secure loading

of the transmission lines up to their thermal capacities; to enable better utilisation of

available generation; and to contain outages from spreading to wider areas (Song and Johns,

1999).

In order to determine the effectiveness of this new generation of power systems

controllers on a network-wide basis, it has become necessary to upgrade most of the

analysis tools on which power engineers rely to plan and to operate their systems (IEEE/

CIGRÉ, 1995). For the purpose of steady-state network assessment, power flow solutions

are probably the most popular kind of computer-based calculations carried out by planning

and operation engineers. The reliable solution of power flows in real-life transmission and

distribution networks is not a trivial matter and, over the years, owing to its very practical

nature, many calculation methods have been put forward to solve this problem. Among

them, Newton–Raphson type methods, with their strong convergence characteristics, have

proved the most successful and have been embraced by industry (Tinney and Hart, 1967).

In preparation for the material covered in this chapter, in Chapter 4 we provided a

thorough grounding on conventional power flow theory with particular reference to the

Newton–Raphson method. Similar material can also be found in many of the excellent

power system analysis books that address the subject (Arrillaga and Arnold, 1990; Grainger

and Stevenson, 1994; Kundur, 1994). The aim of this chapter is to introduce a systematic

and coherent way to study models and methods for the representation of FACTS controllers

in power flow studies. This aspect of power flow theory has not been covered in existing

textbooks in the breadth and depth that the importance and complexity of the subject

demands (Fuerte-Esquivel et al., 1998). It should be emphasised that the material presented

in this chapter is a distillation of the wealth of research contributions on the subject that have

FACTS: Modelling and Simulation in Power Networks.
Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez and César Angeles-Camacho
# 2004 John Wiley & Sons, Ltd ISBN: 0-470-85271-2



been published over recent years (Ambriz-Pérez, Acha, and Fuerte-Esquivel, 2000; Fuerte-

Esquivel and Acha, 1996, 1997; Fuerte-Esquivel, Acha, and Ambriz-Pérez, 2000a, 2000b,

2000c; Nabavi-Niaki and Iravani, 1996; Noroozian and Andersson, 1993). It is in this

respect that the chapter gives an up-to-date and authoritative account of the power flow

models and methods of power electronics-based controllers currently available in the power

transmission industry.

5.2 POWER FLOW SOLUTIONS INCLUDING FACTS CONTROLLERS

The technical literature is populated with clever and elegant solutions for accommodating

models of controllable plant in Newton–Raphson power flow algorithms; load tap-changing

(ltc) and phase-shifting transformers are early examples of such work. The model-

ling approach used to represent controllable equipment can be broadly classified into two

main categories, namely, sequential and simultaneous solution methods. The former

approach is amenable to easier implementations in Newton–Raphson algorithms. However,

its major drawback is that the bus voltage magnitudes and angles are the only state variables

that are calculated in true Newton fashion, and a subproblem is formulated for updating the

state variables of the controllable devices at the end of each iteration. Such an approach

yields no quadratic convergence (Acha, 1993; Chang and Brandwajn, 1988).

Alternatively, the unified approach combines the state variables describing controllable

equipment with those describing the network in a single frame of reference for unified,

iterative solutions using the Newton–Raphson algorithm (Ambriz-Pérez, Acha, and Fuerte-

Esquivel, 2000; Fuerte-Esquivel and Acha, 1996, 1997; Fuerte-Esquivel, Acha, and Ambriz-

Pérez, 2000a, 2000b, 2000c; Fuerte-Esquivel et al., 1998). The method retains Newton’s

quadratic convergence characteristics.

The unified approach blends the alternating-current (AC) network and power system

controller state variables in a single system of simultaneous equations:

fðXnAC;RnFÞ ¼ 0;

gðXnAC;RnFÞ ¼ 0;
ð5:1Þ

where XnAC stands for the AC network state variables, namely, nodal voltage magnitudes and

phase angles, and RnF stands for the power system controller state variables.

The increase in the dimensions of the Jacobian, compared with the case when there are no

power system controllers, is proportional to the number and kind of such controllers. In very

general terms, the structure of the modified Jacobian is shown in Figure 5.1.

Building upon the basic principles of steady-state operation and modelling of FACTS

controllers described in Chapter 2 and the power flow theory detailed in Chapter 4, key

aspects of modelling implementation of FACTS controllers are presented in this chapter,

within the context of the Newton–Raphson power flow algorithm. The FACTS controllers

that receive attention are:

� Static VAR compensator (SVC);

� Thyristor-controlled series compensator (TCSC);

� Static compensator (STATCOM);

� Unified power flow controller (UPFC);

� High-voltage direct-current-based voltage source converter (HVDC-VSC).
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5.3 STATIC VAR COMPENSATOR

Conventional and advanced power flow models of SVCs are presented in this section. The

advanced models depart from the conventional generator-type representation (Erinmez,

1986; IEEE SSCWG, 1995) of the SVC and are based instead on the variable shunt

susceptance concept. In the latter case, the SVC state variables are combined with the nodal

voltage magnitudes and angles of the network in a single frame of reference for unified,

iterative solutions using the Newton–Raphson method. Two models are presented in this

category (Ambriz-Pérez, Acha, and Fuerte-Esquivel, 2000), namely, the variable shunt

susceptance model and the firing-angle model. Moreover, a compound transformer and SVC

model based on the SVC firing-angle representation is also given.

5.3.1 Conventional Power Flow Models

Early SVC models for power flow analysis treat the SVC as a generator behind an inductive

reactance (Erinmez, 1986; IEEE SSCWG, 1995). The reactance accounts for the SVC

voltage-regulation characteristic.

A simpler representation assumes that the SVC slope is zero; an assumption that may be

acceptable as long as the SVC operates within its design limits, but one which may lead to

gross errors if the SVC is operating close to its limits (Kundur, 1994). This point is

illustrated in Figure 5.2 with reference to the upper characteristic when the system is

operating under low loading conditions. If the slope is taken to be zero then the generator

will violate its minimum limit, point AXSL¼0
. However, the generator will operate well within

limits if the SVC voltage–current slope is taken into account at, point A.

AC network
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controllers
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Figure 5.1 Augmented Jacobian
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The reasons for including the SVC voltage–current slope in power flow studies are

compelling. The slope can be represented by connecting the SVC model to an auxiliary bus

coupled to the high-voltage bus by an inductive reactance consisting of the transformer

reactance and the SVC slope, in per unit (p.u.) on the SVC base. The auxiliary bus is

represented as a PV bus and the high-voltage bus is taken to be PQ. This model is shown

schematically in Figure 5.3(a). Alternatively, the SVC coupling transformer may be

represented explicitly as shown in Figure 5.3(b).

IS

V

0

A
V1

V2

System reactive
load characteristics

D

Imin Imax

Capacitive rating

Inductive rating

D A xSL = 0

Vmin

Vmax

Figure 5.2 Static VAR compensator and power system voltage–current characteristics. From P.P.

Kundur, Power System Stability and Control, # 1994 McGraw-Hill. Reproduced by permission of

The McGraw-Hill Companies
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High voltage bus (PQ)

Vref

XT−SL

Auxiliary bus (PV)

High-voltage bus (PQ)
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XSL

Low voltage bus
(PV with remote control)

XT

k

k

(b)

Figure 5.3 Conventional static VAR compensator power flow models: (a) slope representation and

(b) slope and coupling transformer representation
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These SVC representations are quite straightforward but are invalid for operation outside

the limits (IEEE SSCWG, 1995). In such cases, it becomes necessary to change the SVC

representation to a fixed reactive susceptance, given by

BSVC ¼ � Qlim

V2
SVC

; ð5:2Þ

where VSVC is the newly freed voltage due to the reactive power limit Qlim being exceeded.

The combined generator–susceptance representation yields accurate results. However, a

drawback of such a representation is that both models use a different number of buses. The

generator uses two or three buses, as shown in Figure 5.3, whereas the fixed susceptance

uses only one bus. In Newton–Raphson power flow solutions such a difference in the number

of buses required to represent the same plant component may lead to Jacobian reordering

and redimensioning during the iterative solution. Also, extensive checking becomes

necessary in order to verify whether or not the SVC has returned to operation within limits

at any stage of the iterative solution.

It should be remarked that for operation outside limits the SVC must be modelled as a

susceptance and not as a generator set at its violated limit, Qlim. Ignoring this point will lead

to inaccurate results. The reason is that the amount of reactive power drawn by the SVC is

given by the product of the fixed susceptance, Bfix, and the nodal voltage magnitude, Vk.

Since Vk is a function of network operating conditions, the amount of reactive power drawn

by the fixed susceptance model differs from the reactive power drawn by the generator

model; that is,

Qlim 6¼ �BfixV
2
k : ð5:3Þ

This point is exemplified in Figure 5.4, where the reactive power output of the generator is

set at 100MVAR. This value is constant as it is voltage-independent. The result given by the
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Figure 5.4 Comparison of reactive power drawn by the generator and susceptance models.

Reproduced, with permission, from H. Ambriz-Pérez, E. Acha, and C.R. Fuerte-Esquivel, ‘Advanced

SVC Models for Newton–Raphson Load Flow and Newton Optimal Power Flow Studies’, IEEE Trans.

Power Systems 15(1) 129–136, # 2000 IEEE
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constant susceptance model varies with nodal voltage magnitude. The voltage range

considered is 0.95–1.05 p.u. The susceptance value, on a 100MVA base, is of 1 p.u.

5.3.2 Shunt Variable Susceptance Model

In practice the SVC can be seen as an adjustable reactance with either firing-angle limits or

reactance limits (Ambriz-Pérez, Acha, and Fuerte-Esquivel, 2000). The equivalent circuit

shown in Figure 5.5 is used to derive the SVC nonlinear power equations and the linearised

equations required by Newton’s method.

With reference to Figure 5.5, the current drawn by the SVC is

ISVC ¼ jBSVC Vk; ð5:4Þ
and the reactive power drawn by the SVC, which is also the reactive power injected at bus k,

is

QSVC ¼ Qk ¼ �V2
k BSVC: ð5:5Þ

The linearised equation is given by Equation (5.6), where the equivalent susceptance BSVC is

taken to be the state variable:

�Pk

�Qk

� �ðiÞ
¼ 0 0

0 Qk

� �ðiÞ
��k

�BSVC

�
BSVC

� �ðiÞ
: ð5:6Þ

At the end of iteration (i), the variable shunt susceptance BSVC is updated according to

B
ðiÞ
SVC ¼ B

ði-1Þ
SVC þ �BSVC

BSVC

� �ðiÞ
B
ði-1Þ
SVC : ð5:7Þ

The changing susceptance represents the total SVC susceptance necessary to maintain the

nodal voltage magnitude at the specified value.

ISVC

BSVC

Vk

Figure 5.5 Variable shunt susceptance. Reproduced, with permission, from H. Ambriz-Pérez, E.

Acha, and C.R. Fuerte-Esquivel, ‘Advanced SVC Models for Newton–Raphson Load Flow and

Newton Optimal Power Flow Studies’, IEEE Trans. Power Systems 15(1) 129–136, # 2000 IEEE
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Once the level of compensation has been computed then the thyristor firing angle can be

calculated. However, the additional calculation requires an iterative solution because the

SVC susceptance and thyristor firing angle are nonlinearly related.

5.3.3 Static VAR Compensator Computer Program in Matlab1 Code

Program 5.1 incorporates the SVC representation, modelled as a variable shunt susceptance

model, within the Newton–Raphson power flow program given in Section 4.3.6. The

functions PowerFlowsData, YBus, and PQflows are also used here. In the main SVC

Newton–Raphson program, the function SVCBData is added to read the SVC data,

SVCNewtonRaphson replaces NewtonRaphson, and SVCPQflows is used to calculate

power flows and losses in the SVC.

Function SVCNewtonRaphson borrows the following functions from NewtonRaphson:

NetPowers; CalculatedPowers; GeneratorsLimits; PowerMismatches; Newton-

RaphsonJacobian; and StateVariablesUpdates. Furthermore, four new functions are

added to cater for the SVC representation: SVCCalculatedPowers; SVCUpdates;

SVCLimits; and SVCNewtonRaphsonJacobian.

Program 5.1 Program written in Matlab1 to incorporate static VAR compensator (SVC)

variable shunt susceptance model within the Newton–Raphson power flow algorithm

% - - - Main SVC Program

PowerFlowsData; %Function to read network data

SVCBData; %Function to read Static VAR Compensator data

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,ntl,nbb);

[VM,VA,it,B] = SVCNewtonRaphson(tol,itmax,ngn,nld,nbb,bustype,...

genbus, loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,VA,NSVC,...

SVCsend,B,BLo, BHi,TarVol,VSta);

[PQsend,PQrec,PQloss,PQbus] = PQflows(nbb,ngn,ntl,nld,genbus,loadbus,

tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,QLOAD,VM,VA);

[QSVC] = SVCQpower(VM,NSVC,SVCsend,B);

%Print results

it %Number of iterations

VM %Nodal voltage magnitude (p.u)

VA=VA*180/pi %Nodal voltage phase angles (Deg)

QSVC %Final reactive power (p.u.)

B %Final susceptance (p.u)

%End of MAIN FOR SVC SHUT VARIABLE SUSCEPTANCE
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function [VM,VA,it,B] = SVCNewtonRaphson(tol,itmax,ngn,nld,nbb,...

bustype, genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,...

VM,VA,NSVC,SVCsend,B,BLo,BHi,TarVol,VSta);

% GENERAL SETTINGS

flag = 0;

it = 1;

% CALCULATE NET POWERS

[PNET,QNET] = NetPowers(nbb,ngn,nld,genbus,loadbus,PGEN,QGEN,...

PLOAD,QLOAD);

while (it < itmax & flag==0)

% CALCULATED POWERS

[PCAL,QCAL] = CalculatedPowers(nbb,VM,VA,YR,YI);

%SVC CALCULATED POWER

[QCAL] = SVCCalculatePower(QCAL,VM,NSVC,SVCsend,B)

% POWER MISMATCHES

[DPQ,DP,DQ,flag] = PowerMismatches(nbb,tol,bustype,flag,PNET,...

QNET, PCAL,QCAL);

if flag == 1

break

end

% JACOBIAN FORMATION

[JAC] = NewtonRaphsonJacobian(nbb,bustype,PCAL,QCAL,DPQ,VM,VA,...

YR,YI);

% MODIFICATION THE JACOBIAN FOR SVC

[JAC] = SVCJacobian(JAC,VM,NSVC,SVCsend,B,VSta);

% SOLVE JOCOBIAN

D = JAC\DPQ’;

% UPDATE THE STATE VARIABLES VALUES, WITH TRUNCATED CORRECTIONS

% IF NECESSARY (VM increments < +-0.1 p.u. and VA increments < +- 5 deg)

[VA,VM] = StateVariablesUpdating(nbb,D,VA,VM,it);

% UPDATE THE SVC VARIABLES

[VM,B] = SVCUpdating(VM,D,NSVC,SVCsend,B,BLo,BHi,TarVol,VSta);
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%CHECK SUSCEPTANCE FOR LIMITS

[B] = SVCLimits(NSVC,B,BLo,BHi);

it = it + 1;

end

%Function to calculate injected bus powers by the SVC function

[QCAL]= SVCCalculatePower(QCAL,VM,NSVC,SVCsend,B);

for ii = 1 : NSVC

QCAL(SVCsend(ii))=QCAL(SVCsend(ii))-VM(SVCsend(ii))^2*B(ii);

end

%Function to upgrade the Jacobian matrix with SVC elements

function [JAC] = SVCJacobian(JAC,VM,NSVC,SVCsend,B,VSta);

for ii = 1 : NSVC

if (VSta(ii) == 1)

%Delete the voltage magnitud for the SVC bus

JAC( : , 2*SVCsend(ii) ) = 0;

JAC(2*SVCsend(ii)-1,2*SVCsend(ii)-1) = ...

JAC(2*SVCsend(ii)- 1,2*SVCsend(ii)-1)- ...

VM(SVCsend(ii))^2*B(ii);

JAC(2*SVCsend(ii),2*SVCsend(ii))= - VM(SVCsend(ii))^2*B(ii);

end

end

%Function to update SVC state variable

function [VM,B] = SVCUpdating(VM,D,NSVC,SVCsend,B,BLo,BHi,TarVol,...

VSta);

for ii = 1 : NSVC

if (VSta(ii) == 1)

% Adjust the Voltage Magnitud target

VM(SVCsend(ii)) = TarVol(ii);

% Truncation

value = B(ii)*D(2*SVCsend(ii));

value2 = D(2*SVCsend(ii));

if (value > 0.1)

value2 = 0.1/B(ii);

elseif (value < -0.1)

value2 = -0.1/B(ii);

end

B(ii) = B(ii) + B(ii)*value2;

end

end
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%Function to check the susceptance limits

function [B] = SVCLimits(NSVC,B,BLo,BHi);

% Check susceptance limits in SVC

for ii = 1 : NSVC

if (B(ii) > BHi(ii))

B(ii) = BHi(ii);

elseif (B(ii) < BLo(ii))

B(ii) = BLo(ii);

end

end

%Function to calculate the reactive power in SVC

function [QSVC] = SVCQpower(VM,NSVC,SVCsend,B);

for ii = 1 : NSVC

QSVC(ii) = -VM(SVCsend(ii))^2*B(ii);

end

5.3.4 Firing-angle Model

An alternative SVC model, which circumvents the additional iterative process, consists in

handling the thyristor-controlled reactor (TCR) firing angle � as a state variable in the

power flow formulation (Ambriz-Pérez, Acha, and Fuerte-Esquivel, 2000). The variable �
will be designated here as �SVC, to distinguish it from the TCR firing angle � used in the

TCSC model.

The positive sequence susceptance of the SVC, given by Equation (2.20), is used in

Equation (5.5):

Qk ¼ �V2
k

XCXL

XL � XC

p
½2ðp� �SVCÞ þ sinð2�SVCÞ�

� �
: ð5:8Þ

From Equation (5.8), the linearised SVC equation is given as

�Pk

�Qk

� �ðiÞ
¼

0 0

0
2V2

k

�XL

½cosð2�SVCÞ � 1�

2
4

3
5
ðiÞ

��k
��SVC

� �ðiÞ
: ð5:9Þ

At the end of iteration (i), the variable firing angle �SVC is updated according to

�
ðiÞ
SVC ¼ �

ði�1Þ
SVC þ��

ðiÞ
SVC: ð5:10Þ

5.3.5 Static VAR Compensator Firing-angle Computer
Program in Matlab1 Code

Program 5.2 incorporates the SVC firing-angle (SVC-FA) model within the Newton–

Raphson power flow program given in Section 4.3.6. The functions PowerFlowsData,

YBus, and PQflows are also used here. In the main SVC-FA Newton–Raphson program, the
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function SVCFAData is added to read the SVC-FA data, SVCFANewtonRaphson replaces

NewtonRaphson, and SVCFAPQflows is used to calculate power flows and losses in the

SVC-FA model.

Function SVCFANewtonRaphson borrows the following functions from Newton-

Raphson: NetPowers; CalculatedPowers; PowerMismatches; NewtonRaphson-

Jacobian; and StateVariablesUpdates. Furthermore, four new functions are added

to cater for the SVC-FA representation, namely: SVCFACalculatedPowers; SVCFA-

Updates; SVCFALimits; and SVCFANewtonRaphsonJacobian.

PROGRAM 5.2 Program written in Matlab1 to incorporate the static VAR compensator

firing-angle (SVC-FA) model within the Newton–Raphson power flow algorithm

% - - - Main SVC-FA Program

PowerFlowsData; %Function to read network data

SVCFAData; %Function to read SVC-FA data

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,ntl,nbb);

[VM,VA,it,FA] = SVCFANewtonRaphson(tol,itmax,ngn,nld,nbb,bustype,...

genbus, loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,VA,NSVC,...

SVCsend,FA,Xc,Xl,FALo,FAHi,TarVol,VSta);

[PQsend,PQrec,PQloss,PQbus] = PQflows(nbb,ngn,ntl,nld,genbus,...

loadbus,tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,QLOAD,...

VM,VA);

[QSVC,B] = SVCFAQpower(VM,NSVC,SVCsend,FA,Xc,Xl);

%Print online results

it %Number of iterations

VM %Nodal voltage magnitude (p.u)

VA=VA*180/pi %Nodal voltage phase angles (Deg)

QSVC %Final reactive power value(p.u.)

B %Final susceptance value (p.u.)

FA=FA*180/pi %Final firing angle value (Deg)

%End of MAIN SVC-FA PROGRAM

function [VM,VA,it,FA] = SVCFANewtonRaphson(tol,itmax,ngn,nld,nbb,...

bustype, genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,...

VA,NSVC,SVCsend, FA,Xc,Xl,FALo,FAHi,TarVol,VSta);

% GENERAL SETTINGS

flag = 0;

it = 1;
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% CALCULATE NET POWERS

[PNET,QNET] = NetPowers(nbb,ngn,nld,genbus,loadbus,PGEN,QGEN,...

PLOAD,QLOAD);

while ( it < itmax & flag==0 )

% CALCULATED POWERS

[PCAL,QCAL] = CalculatedPowers(nbb,VM,VA,YR,YI);

%SVC CALCULATED POWER

[QCAL,B] = SVCFACalculatePower(QCAL,VM,NSVC,SVCsend,FA,Xc,Xl);

% POWER MISMATCHES

[DPQ,DP,DQ,flag] = PowerMismatches(nbb,tol,bustype,flag,PNET,QNET,...

PCAL,QCAL);

% JACOBIAN FORMATION

[JAC]=NewtonRaphsonJacobian(nbb,bustype,PCAL,QCAL,DPQ,VM,...

VA,YR,YI);

% SVC-FA JACOBIAN UPDATING

[JAC]=SVCFAJacobian(JAC,VM,NSVC,SVCsend,FA,Xl,B,VSta);

% SOLVE FOR THE STATE VARIAVLES VECTOR

D = JAC\DPQ’;

% UPDATE THE STATE VARIABLES

[VA,VM] = StateVariablesUpdating(nbb,D,VA,VM,it);

% UPDATE THE SVC-FA VARIABLES

[VM,FA] = SVCFAUpdating(VM,D,NSVC,SVCsend,FA,FALo,FAHi,TarVol,...

VSta);

%CHECK SVC-FA FIRING ANGLE FOR LIMITS VIOLATIONS

[FA] = SVCFALimits(NSVC,FA,FALo,FAHi);

it = it + 1;

end

%Function to calculate injected bus powers by the SVC-FA

function [QCAL,B] = SVCFACalculatePower(QCAL,VM,NSVC,SVCsend,FA,...

Xc,Xl);

for ii = 1 : NSVC

FA(ii) = FA(ii)*pi/180;
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B(ii) = (2*(pi-FA(ii)) + sin(2*FA(ii)))*Xc(ii)/pi;

B(ii) = (Xl(ii) - B(ii))/(Xc(ii)*Xl(ii));

QCAL(SVCsend(ii))=QCAL(SVCsend(ii))-VM(SVCsend(ii))^2*B(ii);

end

%Function to add up the SVC-FA elements to Jacobian matrix function

[JAC] = SVCFAJacobian(JAC,VM,NSVC,SVCsend,FA,Xl,B,VSta);

for ii = 1 : NSVC

if VSta(ii) == 1

%Delete the voltage magnitud for the SVC bus

JAC(:,2*SVCsend(ii))=0;

% Element add by the SVC to the Jacobian

FA(ii)=FA(ii)*pi/180;

JAC(2*SVCsend(ii)-1,2*SVCsend(ii)-1) = JAC(2*SVCsend(ii)-1,2*...

SVCsend(ii)-1) - VM(SVCsend(ii))^2*B(ii);

JAC(2*SVCsend(ii),2*SVCsend(ii))= 2*VM(SVCsend(ii))^2*...

(cos(2*FA(ii))-1)/(Xl(ii)*pi);

end

end

%Function to update SVC-FA state variable

function[VM,FA]=SVCFAUpdating(VM,D,NSVC,SVCsend,FA,FALo,FAHi,...

TarVol,VSta);

for ii = 1 : NSVC

if (VSta(ii) == 1)

% Adjust the Volatge Magnitud target

VM(SVCsend(ii)) = TarVol(ii);

% Truncation

value = D(2*SVCsend(ii));

if (value > 0.5236)

value = 0.5236;

elseif (value < -0.5236)

value = -0.5236;

end

FA(ii) = FA(ii) + value*180/pi;

if (FA(ii)<0.0)

FA(ii) = FA(ii)*(-1);

end

end

end

%Function to check the firing angle limits

function [FA] = SVCFALimits(NSVC,FA,FALo,FAHi);

%Check SVC-FA Limits

for ii = 1 : NSVC

if (FA(ii) > FAHi(ii))
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FA(ii) = FAHi(ii);

elseif (FA(ii) < FALo(ii))

FA(ii) = FALo(ii);

end

end

%Function to calculate the reactive power in SVC

function [QSVC,B] = SVCFAQpower(VM,NSVC,SVCsend,FA,Xc,Xl);

for ii = 1 : NSVC

FA(ii) = FA(ii)*pi/180;

B(ii) = (2*(pi-FA(ii)) + sin(2*FA(ii)))*Xc(ii)/pi;

B(ii) = (Xl(ii) - B(ii))/(Xc(ii)*Xl(ii));

QSVC(ii)=-VM(SVCsend(ii))^2*B(ii);

end

5.3.6 Integrated Transformer Firing-angle Model

The SVC firing angle model is extended in this section to include the explicit representation

of the step-down transformer (Fuerte-Esquivel, Acha, and Ambriz-Pérez, 2000a). Both

components are combined to form a single model, which allows for direct voltage

magnitude control at the high-voltage side of the transformer without compromising the

quadratic convergence characteristics of the Newton–Raphson method.

The total admittance of the combined SVC–transformer set, YT–SVC, as seen from the

high-voltage side of the transformer, consists of the series combination of admittances YT
and YSVC, as shown schematically in Figure 5.6.

High-voltage bus (PVB)

X SVC

ZT = RT + jXT

XL

XC

k

Y T-SVCI SVC

+

−

k

Figure 5.6 Combined static VAR compensator–transformer representation. Reproduced, with

permission, from C.R. Fuerte-Esquivel, E. Acha, and H. Ambriz-Pérez, ‘Integrated SVC and Step-

down Transformer Model for Newton–Raphson Load Flow Studies’, IEEE Power Engineering Review

20(2) 45–46, # 2000 IEEE
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It should be noted that the equivalent admittance, YT–SVC, is a function of the SVC firing

angle:

YT--SVCð�SVCÞ ¼ YTYSVC

YT þ YSVC
: ð5:11Þ

The admittance of the combined variable shunt compensator is given by

YT--SVC ¼ GT--SVC þ jBT--SVC; ð5:12Þ
where

GT--SVC ¼ RT

R2
T þ X2

Eq

; ð5:13Þ

BT--SVC ¼ � XEq

R2
T þ X2

Eq

; ð5:14Þ

XEq ¼ XT þ XSVC; ð5:15Þ
XSVC ¼ XC XTCR

XC � XTCR

; ð5:16Þ

XTCR ¼ pXL

2 p� �SVCð Þ þ sin 2�SVCð Þ : ð5:17Þ

The linearised power flow equations are given as

�Pk

�Qk

� �ðiÞ
¼

0 V2
k

qGT--SVC

q�SVC

0 �V2
k

qBT--SVC

q�SVC

2
664

3
775
ðiÞ

��k
��SVC

� �ðiÞ
; ð5:18Þ

where the Jacobian terms in explicit form are:

qGT--SVC

q�SVC

¼ �RT

D2

qD
q�SVC

; ð5:19Þ

qBT--SVC

q�SVC

¼ 1

D2
T

�D
qXSVC

q�SVC

þ XEq

qD
q�SVC

� �
; ð5:20Þ

qD
q�SVC

¼ 2XEq

qXSVC

q�SVC

; ð5:21Þ

qXSVC

q�SVC

¼ 2X2
SVC

�XL

1� cos 2�SVCð Þ; ð5:22Þ

D ¼ R2
T þ X2

Eq: ð5:23Þ
At the end of iteration (i), the firing angle �SVC is updated according to

�
ið Þ
SVC ¼ �

i-1ð Þ
SVC þ��

ið Þ
SVC: ð5:24Þ

5.3.7 Nodal Voltage Magnitude Control using Static
VAR Compensators

The SVC connecting bus is a voltage-controlled bus where the voltage magnitude and active

and reactive powers are specified and either the SVC firing angle, �SVC, or the SVC
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equivalent susceptance, BSVC, are handled as state variables. This bus is defined to be PVB-

type. If �SVC or BSVC are within limits, the specified voltage magnitude is attained and

the controlled bus remains PVB. However, if �SVC or BSVC go outside the limits then these

variables are fixed at the violated limit and the bus becomes PQ. This is, of course, in the

absence of any other controller capable of providing reactive power control at the bus.

The reactive power mismatch values at the controlled buses are used to check whether or

not the SVC is operating within limits, a process that starts just after the reactive power

mismatch at the controlled bus is less than a specified tolerance; a value of 1e�3 p.u. is

normally used.

5.3.8 Control Coordination between Reactive Sources

The use of different kinds of reactive power sources to control voltage magnitude at a given

bus calls for a prioritisation of reactive power sources in order to have a single control

criterion. Synchronous generators are normally selected to be the regulating plant

components with the highest priority, holding all the other reactive power sources fixed

at their initial values as long as the generators operate within limits. If all the generators

connected to the bus violate their reactive power limits then other kinds of reactive power

sources become activated (e.g. SVC). In such a case, the generators’ reactive powers are set

at their violated limits and the bus is transformed from PV to PVB. The control sequence is

shown schematically in Figure 5.7.

Generator active
PV bus

Reactive
limits

violation

no

yes

Remains
PV bus

Looking for
active SVC

no

yesSVC  ctive
PVB bus

no  eactive
limits

violation

yesRemains
PVB bus

Looking for
active LTC

no

yes LTC ctive
PVT bus

PQ
bus

noViolation of
tap changer

limits

yes Remains
PVT bus

a

aR

Figure 5.7 Coordination between nodal voltage magnitude controllers. Note: LTC, load tap charger;

SVC, static VAR compensator
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5.3.9 Numerical Example of Voltage Magnitude Control using
One Static VAR Compensator

The five-bus network (see Figure 5.8) is modified to examine the voltage-control capabilities

of the SVC models. The generators are set to control voltage magnitudes at the Slack bus

(North) and the PV bus (South) at 1.06 p.u. and 1 p.u., respectively. One SVC is placed at

Lake to keep voltage magnitude at that bus at 1 p.u.

In order to compare the various SVC models, three different power flow simulations are

carried out. First, the SVC susceptance model is used to attain the specified voltage

magnitude. The other two simulations are for the firing-angle model and for the integrated

transformer–firing-angle model, respectively. The aim in all cases is to achieve 1 p.u.

voltage magnitude at Lake.

The SVC inductive and capacitive reactances are taken to be 0.288 p.u. and 1.07 p.u.,

respectively. The SVC firing angle is set initially at 140�, a value that lies on the capacitive

region of the SVC characteristic. The SVC transformer impedance is ZT ¼ j0.11 p.u.

In all three cases, the SVC upholds its target value and, as expected, identical power flows

and bus voltages are obtained. Power flows are shown in Figure 5.8, and nodal voltages are

given in Table 5.1. Moreover, the three SVC models contribute the same amount of reactive

power to the system.

60 + j10

North Lake Main

South Elm

19.5919.6540.5541.95

74.06

72.99

24.09

7.32

20 + j10

40

85.34 45+j15 40+j5

12.4111.28
89.11

86.66

13.0211.19

6.69

9.51

27.66

24.49

27.18

4.77

77.07

131.06

3.25

7.91

6.78

6.71

53.2954.48

2.092.75

20.47

Figure 5.8 Power flow results in the five-bus network with one static VAR compensator
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Convergence is achieved in 5 iterations, satisfying a prespecified tolerance of 1e�12 for

all the variables involved. The SVC susceptance values and firing-angle values are shown in

Table 5.2 for each step of the iterative process. It should be noted that the final firing-angle

solutions for the firing-angle model and the combined transformer–firing-angle model differ

slightly because of the inclusion of the reactance of the transformer in the latter model.

The SVC data for both variable shunt susceptance and firing angle are given in function

SVCBData and SVCFAData, respectively; function PowerFlowsData remains as the

original:

Function SVCBData is as follows:

%This function is used exclusively to enter data for:

% STATIC VAR COMPENSATION

% VARIABLE SHUNT SUSCEPTANCE MODEL

% NSVC : Number of SVC’s

% SVCsend : Compensated bus

% B : Initial SVC’s susceptance value (p.u.)

% BLo : Lower limit of variable susceptance (p.u.)

% BHi : Higher limit of variable susceptance (p.u)

% TarVol : Target nodal voltage magnitude to be controlled by SVC (p.u.)

% VSta : Indicate control status for nodal voltage magnitude:1 is on and 0

% is off

NSVC=1;

SVCsend(1)=3; B(1)=0.02; BLo(1)= -0.25; BHi=0.25;

TarVol(1)=1.0; VSta(1)=1;

Table 5.1 Nodal voltages of modified network

Network bus

Nodal voltage North South Lake Main Elm

Magnitude (p.u.) 1.06 1 1 0.994 0.975

Phase angle (deg) 0 �2.05 �4.83 �5.11 �5.80

Table 5.2 Static VAR compensator state variables

Susceptance model
Firing-angle model Transformer–firing angle model

Iteration BSVC (p.u.) BSVC (p.u.) �SVC (deg) BSVC (p.u.) �T–SVC (deg)

1 0.1 0.4798 140 0.5066 140

2 0.1679 0.1038 130.23 0.1166 130.48

3 0.2047 0.2013 132.47 0.2029 132.40

4 0.2047 0.2047 132.55 0.2047 132.44

5 0.2047 0.2047 132.55 0.2047 132.44
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Function SVCFAData is as follows:

%This function is used exclusively to enter data for:

% STATIC VAR COMPENSATION

% FIRING ANGLE MODEL

% NSVC : Number of SVC’s

% SVCsend : Compensated bus

% Xc : Capacitive reactance (p.u.)

% Xl : Inductive reactance (p.u.)

% FA : Initial SVC’s firing angle value (Deg)

% FALo : Lower limit of firing angle (Deg)

% BHi : Higher limit of firing angle (Deg)

% TarVol : Target nodal voltage magnitude to be controlled by SVC (p.u.)

% VSta : Indicate the status to get control over voltage magnitude nodal : 1

% is on; 0 is off

NSVC=1;

SVCsend(1)=3; Xc(1)=1.07; Xl(1)=0.288; FA(1)=140; FALo(1)=90;

FAHi(1)=180; TarVol(1)=1.0; VSta(1)=1;

The SVC injects 20.5MVAR into Lake and keeps the nodal voltage magnitude at 1 p.u.

The action of the SVC results in an overall improved voltage profile. The SVC generates

reactive power in excess of the local demand, which stands at 15MVAR and, compared with

the base case, there is an almost fourfold export increase of reactive power to Main. Also,

there is an export of reactive power to South via transmission line Lake–South, with the

larger amount of reactive power available at the bus being absorbed by the synchronous

generator. It draws 77.1MVAR as opposed to 61.59MVAR in the base case.

5.4 THYRISTOR-CONTROLLED SERIES COMPENSATOR

Two alternative power flow models to assess the impact of TCSC equipment in network-

wide applications are presented in this section (Ambriz-Pérez, Acha, and Fuerte-Esquivel,

2000; Fuerte-Esquivel and Acha, 1996). The simpler TCSC model exploits the concept of a

variable series reactance. The series reactance is adjusted automatically, within limits, to satisfy a

specified amount of active power flows through it. The more advanced model uses directly the

TCSC reactance–firing-angle characteristic, given in the form of a nonlinear relation. The TCSC

firing angle is chosen to be the state variable in the Newton–Raphson power flow solution.

5.4.1 Variable Series Impedance Power Flow Model

The TCSC power flow model presented in this section is based on the simple concept of a

variable series reactance, the value of which is adjusted automatically to constrain the power

flow across the branch to a specified value. The amount of reactance is determined

efficiently using Newton’s method. The changing reactance XTCSC, shown in Figures 5.9(a)

and 5.9(b), represents the equivalent reactance of all the series-connected modules making

up the TCSC, when operating in either the inductive or the capacitive regions.
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The transfer admittance matrix of the variable series compensator shown in Figure 5.9 is

given by
Ik
Im

� �
¼ jBkk jBkm

jBmk jBmm

� �
Vk

Vm

� �
: ð5:25Þ

For inductive operation, we have

Bkk ¼ Bmm ¼ � 1
XTCSC

;

Bkm ¼ Bmk ¼ 1
XTCSC

;

)
ð5:26Þ

and for capacitive operation the signs are reversed.

The active and reactive power equations at bus k are:

Pk ¼ VkVmBkm sin �k � �mð Þ; ð5:27Þ
Qk ¼ �V2

k Bkk � VkVmBkm cos �k � �mð Þ: ð5:28Þ
For the power equations at bus m, the subscripts k and m are exchanged in Equations (5.27)

and (5.28).

In Newton–Raphson solutions these equations are linearised with respect to the series

reactance. For the condition shown in Figure 5.9, where the series reactance regulates the

amount of active power flowing from bus k to bus m at a value P
reg
km , the set of linearised

power flow equations is:
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Figure 5.9 Thyristor-controlled series compensator equivalent circuit: (a) inductive and (b) capa-

citive operative regions
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where �PXTCSC

km

�PXTCSC

km ¼ P
reg
km � P

XTCSC; cal
km ;

is the active power flow mismatch for the series reactance; �XTCSC, given by

�XTCSC ¼ X
ðiÞ
TCSC � X

ði�1Þ
TCSC;

is the incremental change in series reactance; and P
XTCSC; cal
k m is the calculated power as given

by Equation (5.27). The Jacobian elements for the series reactance are given in Appendix A,

Section A.2.

The state variable XTCSC of the series controller is updated at the end of each iterative step

according to

X
ðiÞ
TCSC ¼ X

ði�1Þ
TCSC þ �XTCSC

XTCSC

� �ðiÞ
X
ði�1Þ
TCSC: ð5:30Þ

5.4.2 Thyristor-controlled Series Compensator Computer
Program in Matlab1 Code

Program 5.3 incorporates the TCSC variable series reactance model within the Newton–

Raphson power flow program. The functions PowerFlowsData, YBus, and PQflows are

also used here. In the main TCSC Newton–Raphson program, the function TCSCPower-

FlowsData is added to read the TCSC data, TCSCNewtonRaphson replaces Newton-

Raphson, and TCSCPQflows is used to calculate power flows and losses in the TCSC

model.

PROGRAM 5.3 Program written in Matlab1 to incorporate the thyristor-controlled series

compensator (TCSC) variable reactance model within the Newton–Raphson power flow

algorithm

% - - - Main TCSC variable reactance

PowerFlowsData; %Function to read network data

TCSCData; %Function to read TCSC variable series reactance

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,ntl,nbb);

[VM,VA,it,X] = TCSCNewtonRaphson(tol,itmax,ngn,nld,nbb,bustype,...

genbus, loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,...

YI,VM,VA,NTCSC, TCSCsend, TCSCrec,X,XLo,XHi,Flow,Psp,PSta);
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[PQsend,PQrec,PQloss,PQbus] = PQflows(nbb,ngn,ntl,nld,genbus,...

loadbus,tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,QLOAD,...

VM,VA);

[Ptcsc,Qtcsc] = TCSCPQflows(nbb,VA,VM,NTCSC,TCSCsend,TCSCrec,X);

%Print results

it %Number of iterations

VM %Nodal voltage magnitude (p.u)

VA=VA*180/pi %Nodal voltage phase angles (Deg)

Ptcsc %Active power flow in TCSC (p.u.)

Qtcsc %Reactive power flow in TCSC (p.u.)

X %Final reactance value (p.u.)

%End of TCSC MAIN PROGRAM

%Carry out iterative solution using the Newton–Raphson method

function [VM,VA,it,X] = TCSCNewtonRaphson(tol,itmax,ngn,nld,nbb,...

bustype, genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,...

VM,VA,NTCSC, TCSCsend,TCSCrec,X,XLo,XHi,Flow,Psp,PSta);

% GENERAL SETTINGS

flag = 0;

it = 1;

% CALCULATE NET POWERS

[PNET,QNET]=NetPowers(nbb,ngn,nld,genbus,loadbus,PGEN,QGEN,...

PLOAD,QLOAD);

while ( it < itmax & flag==0 )

% CALCULATED POWERS

[PCAL,QCAL]=CalculatedPowers(nbb,VM,VA,YR,YI);

% CALCULATED TCSC POWERS

[TCSC_PQsend,TCSC_PQrec,PCAL,QCAL]=TCSCCalculatedpower(nbb,VA,...

VM,NTCSC,TCSCsend,TCSCrec,X,PCAL,QCAL);

% POWER MISMATCHES

[DPQ,DP,DQ,flag]=PowerMismatches(nbb,tol,bustype,flag,PNET,QNET,...

PCAL, QCAL);
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% TCSC POWER MISMATCHES

[DPQ,flag]=TCSCPowerMismatches(flag,tol,nbb,DPQ,VM,VA,NTCSC,...

TCSCsend,TCSCrec,X,Flow,it,Psp,PSta);

%Check for convergence

if flag == 1

break

end

% JACOBIAN FORMATION

[JAC]=NewtonRaphsonJacobian(nbb,bustype,PCAL,QCAL,DPQ,VM,VA,...

YR,YI);

% MODIFICATION THE JACOBIAN FOR TCSC

[JAC]=TCSCJacobian(nbb,JAC,VM,VA,NTCSC,TCSCsend,TCSCrec,X,...

Flow,PSta,it);

% SOLVE JOCOBIAN

D = JAC\DPQ’;

% UPDATE THE STATE VARIABLES VALUES, WITH TRUNCATED CORRECTIONS IF

% NECESSARY (VM increments < +-0.1 p.u. and VA inrements < +- 5 deg)

[VA,VM]=StateVariablesUpdating(nbb,D,VA,VM,it);

% UPDATE THE TCSC VARIABLES

[X]=TCSCUpdating(it,nbb,D,NTCSC,X,PSta);

%CHECK IMPEDANCE FOR LIMITS

[X]=TCSCLimits(NTCSC,X,XLo,XHi,PSta);

it = it + 1;

end

%Function to calculate injected bus powers by the TCSC

function [TCSC_PQsend,TCSC_PQrec,PCAL,QCAL] = TCSCCalculatedpower...

(nbb,VA, VM,NTCSC,TCSCsend,TCSCrec,X,PCAL,QCAL);

for ii = 1 : NTCSC

Bmm = - 1/X(ii);

Bmk = 1/X(ii);

for kk = 1 : 2

A = VA(TCSCsend(ii))-VA(TCSCrec(ii));

Pcal = VM(TCSCsend(ii))*VM(TCSCrec(ii))*Bmk*sin(A);

Qcal = - VM(TCSCsend(ii))^2*Bmm - VM(TCSCsend(ii))*...

VM(TCSCrec(ii))*Bmk*cos(A);

PCAL(TCSCsend(ii)) = PCAL(TCSCsend(ii)) + Pcal;

QCAL(TCSCsend(ii)) = QCAL(TCSCsend(ii)) + Qcal;

if kk == 1

TCSC_PQsend(ii) = Pcal + j*Qcal;
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else

TCSC_PQrec(ii) = Pcal + j*Qcal;

end

send = TCSCsend(ii);

TCSCsend(ii) = TCSCrec(ii);

TCSCrec(ii) = send;

end

end

%Function to compute power mismatches with TCSC

function [DPQ,flag] = TCSCPowerMismatches(flag,tol,nbb,DPQ,VM,VA,...

NTCSC, TCSCsend,TCSCrec,TCSCX,Flow,it,TCSC_P,PSta);

if it > 1

for ii = 1 : NTCSC

if PSta(ii) == 1

Bmk = 1/TCSCX(ii);

for kk = 1 : 2

A = VA(TCSCsend(ii)) - VA(TCSCrec(ii));

Pcal = VM(TCSCsend(ii))*VM(TCSCrec(ii))*Bmk*sin(A);

if (Flow(ii) == 1 & kk == 1) | (Flow(ii) == -1 & kk == 2)

DPQ(1, 2*nbb + ii) = TCSC_P(ii) - Pcal;

break;

end

send = TCSCsend(ii);

TCSCsend(ii) = TCSCrec(ii);

TCSCrec(ii) = send;

end

else

DPQ(1, 2*nbb + ii)= 0;

end

end

end

%Function to add the TCSC elements to Jacobian matrix

function [JAC] = TCSCJacobian(nbb,JAC,VM,VA,NTCSC,TCSCsend,...

TCSCrec,X,Flow, PSta,it);

for ii = 1 : NTCSC

Bmm = - 1/X(ii);

Bmk = 1/X(ii);

for kk = 1 : 2

A = VA(TCSCsend(ii))-VA(TCSCrec(ii));

Hkm = - VM(TCSCsend(ii))*VM(TCSCrec(ii))*Bmm*cos(A);

Nkm = VM(TCSCsend(ii))*VM(TCSCrec(ii))*Bmm*sin(A);

JAC(2*TCSCsend(ii)-1, 2*TCSCsend(ii)-1) = JAC(2*TCSCsend(ii)-1,...

2*TCSCsend(ii)-1) - VM(TCSCsend(ii))^2*Bmm;
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JAC(2*TCSCsend(ii)-1, 2*TCSCrec(ii)-1) = JAC(2*TCSCsend(ii)-1,...

2*TCSCrec(ii)-1) - Hkm;

JAC(2*TCSCsend(ii)-1, 2*TCSCrec(ii)) = JAC(2*TCSCsend(ii)-1,...

2*TCSCrec(ii)) - Nkm;

JAC(2*TCSCsend(ii), 2*TCSCsend(ii)) = JAC(2*TCSCsend(ii),...

2*TCSCsend(ii)) - VM(TCSCsend(ii))^2*Bmm;

JAC(2*TCSCsend(ii), 2*TCSCrec(ii)-1) = JAC(2*TCSCsend(ii),...

2*TCSCrec(ii)-1) + Nkm;

JAC(2*TCSCsend(ii), 2*TCSCrec(ii)) = JAC(2*TCSCsend(ii),...

2*TCSCrec(ii)) - Hkm;

if it > 1

if PSta(ii) == 1

if (Flow(ii) == 1 & kk == 1 )j (Flow(ii) == -1 & kk == 2)

JAC(2*nbb + ii, 2*TCSCsend(ii)-1) = Hkm;

JAC(2*nbb + ii, 2*TCSCsend(ii)) = - Nkm;

JAC(2*nbb + ii, 2*TCSCrec(ii)-1) = - Hkm;

JAC(2*nbb + ii, 2*TCSCrec(ii)) = - Nkm;

JAC(2*nbb + ii, 2*nbb + ii) = + Nkm;

end

JAC(2*TCSCsend(ii)-1, 2*nbb + ii) = Nkm;

JAC(2*TCSCsend(ii), 2*nbb + ii) = Hkm - VM(TCSCsend(ii))^2*Bmk;

else

JAC(2*nbb + ii, 2*nbb + ii) = 1;

end

end

send = TCSCsend(ii);

TCSCsend(ii) = TCSCrec(ii);

TCSCrec(ii) = send;

end

end

%Function to update TCSC state variable

function [X]= TCSCUpdating(it,nbb,D,NTCSC,X,PSta);

if it > 1

for ii = 1 : NTCSC

if PSta(ii) == 1

X(ii) = X(ii) + D(2*nbb + ii,1)*X(ii);

end

end

end

%Function to check the impedance limits

function [X] = TCSCLimits(NTCSC,X,XLo,XHi,PSta);

for ii = 1 : NTCSC

% Check impedance Limits

if X(ii) < XLo(ii) | X(ii) > XHi(ii)
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PSta(ii) = 0;

if X(ii) < XLo(ii)

X(ii) = XLo(ii);

elseif X(ii) > XHi(ii)

X(ii) = XHi(ii);

end

end

end

%Function to calculate power flows in TCSC controller

function [Ptcsc,Qtcsc] = TCSCPQflows(nbb,VA,VM,NTCSC,TCSCsend,...

TCSCrec,TCSCX);

for ii = 1 : NTCSC

Bmk = 1/TCSCX(ii);

Bmm = -1/TCSCX(ii);

for kk = 1 : 2

A = VA(TCSCsend(ii)) - VA(TCSCrec(ii));

Ptcsc(ii,kk) = VM(TCSCsend(ii))*VM(TCSCrec(ii))*Bmk*sin(A);

Qtcsc(ii,kk) = - VM(TCSCsend(ii))^2*Bmm – M(TCSCsend(ii))*VM...

(TCSCrec(ii))*Bmk*cos(A);

send = TCSCsend(ii);

TCSCsend(ii) = TCSCrec(ii);

TCSCrec(ii) = send;

end

end

5.4.3 Numerical Example of Active Power Flow Control using
One Thyristor-controlled Series Compensator: Variable
Series Compensator Model

The original five-bus network is modified to include one TCSC to compensate the

transmission line connected between Lake and Main. An extra bus, termed Lakefa, is used

to connect the TCSC, as shown in Figure 5.10.

The TCSC is used to maintain active power flowing from Lakefa towards Main at 21MW.

The starting value of the TCSC is set at 50% of the value of the transmission-line inductive

reactance (i.e. X ¼ 0.015 p.u.). Convergence is obtained in 6 iterations to a power mismatch

tolerance of 1e�12. The TCSC upholds the target value of 21MW, which is achieved with

70% series capacitive compensation of the transmission line Lake–Main.

The power flow results are shown in Figure 5.10, and the nodal voltages are given in

Table 5.3. As expected, nodal voltage magnitudes and reactive power flows do not change

appreciably compared with the base case. It should be noticed that transmission line Lake–

Main may not be the best candidate for series capacitive compensation since an increase of

8.2% in active power has been achieved at the expense of 70% compensation.
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The data given in function PowerFlowsData (Section 4.3.9) is modified to

accommodate the inclusion of the TCSC. The transmission line originally connected

between Lake and Main is now connected between Lakefa (bus 6) and Main (bus 4). Only

the modified code lines are shown here:

Function PowerFlowsData is as follows:

%Modifications to enter data for the TCSC:

nbb=6;

bustype(6)=3; VM(6)=1; VA(6)=0;

tlsend(6)=6; tlrec(6)=4; tlresis(6)=0.01; tlreac(6)=0.03;

tlcond(6)=0; tlsuscep6)=0.02;

60 + j10

North Lake Main

South Elm

20.921.040.942.4

74.2

73.2

25.1

1.56

20 + j1

40

90.93 45 + j15 40 + j5

17.316.7
88.6

86.2

4.312.51

8e-4

2.7
26.6

25.4

26.2

1.09

61.80

131.12

0.41

5.05

7.13

7.08

52.9254.1

4.95.6

21.0

2.41 Lakefa

70%

Figure 5.10 Power flow results of the five-bus network with one thyristor-controlled series

compensator

Table 5.3 Bus voltages of the modified network

Network bus

Nodal voltage North South Lake Main Elm

Magnitude (p.u.) 1.06 1 0.987 0.988 0.984

Phase angle (deg) 0 �2.04 �4.72 �4.46 �4.81

THYRISTOR-CONTROLLED SERIES COMPENSATOR 179



Additionally, the function TCSCData is used for entering the TCSC data:

% This function is used exclusively to enter data for:

% THYRISTOR CONTROLLED SERIES COMPENSATOR reactance variable

% NTCSC : Number of TCSC’s

% TCSCsend : Sending bus

% TCSCrec : Receiving bus

% X : TCSC’s reactance

% XLo : Lower reactance limit

% XHi : Higher reactance limit

% Flow : Power flow direction: 1 is for sending to receiving bus; -1

% indicates opposite direction

% Psp : Active power flow to be controlled

% PSta : Indicates control status for active power: 1 is on and 0 is off

NTCSC=1;

TCSCsend(1)=3; TCSCrec(1)=6; X(1)=-0.015; XLo(1)=-0.05;

XHi(1)=0.05;

Flow(1)=1; Psp(1)=0.21; PSta(1)=1;

5.4.4 Firing-angle Power Flow Model

The model presented in Section 5.4.1 uses the concept of an equivalent series reactance to

represent the TCSC. Once the value of reactance is determined using Newton’s method then

the associated firing angle �TCSC can be calculated. Of course, this makes engineering sense

only in cases when all the modules making up the TCSC have identical design

characteristics and are made to operate at equal firing angles. If this is the case, the

computation of the firing angle is carried out. However, such calculation involves an

iterative solution since the TCSC reactance and firing angle are nonlinearly related. One

way to avoid the additional iterative process is to use the alternative TCSC power flow

model presented in this section.

The fundamental frequency equivalent reactance XTCSCð1Þ of the TCSC module shown in

Figure 5.11 is (Fuerte-Esquivel, Acha, and Ambriz-Pérez, 2000):

XTCSC 1ð Þ ¼ � XC þ C1 2 p� �ð Þ þ sin 2 p� �ð Þ½ �f g
� C2 cos

2 p� �ð Þ $ tan $ p� �ð Þ½ � � tan p� �ð Þf g; ð5:31Þ
where

C1 ¼ XC þ XLC

p
; ð5:32Þ

C2 ¼ 4X2
LC

XLp
; ð5:33Þ

XLC ¼ XCXL

XC � XL

; ð5:34Þ

$ ¼ XC

XL

� �1=2

: ð5:35Þ
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The equivalent reactance XTCSC 1ð Þ in Equation (5.31) replaces XTCSC in Equations (5.26) and

(5.25), and the TCSC active and reactive power equations at bus k are

Pk ¼ VkVmBkm ð f1Þ sin �k � �mð Þ; ð5:36Þ
Qk ¼ �V2

k Bkk ð f1Þ � VkVmBkm ð f1Þ cos �k � �mð Þ; ð5:37Þ

where

Bkk 1ð Þ ¼ �Bkm 1ð Þ ¼ BTCSC 1ð Þ: ð5:38Þ

For equations at bus m, exchange subscripts k and m in Equations (5.36) and (5.37).

For the case when the TCSC controls active power flowing from bus k to bus m, at a

specified value, the set of linearised power flow equations is:
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where �P�TCSC

km , given by

�P�TCSC

km ¼ P
reg
km � P

�TCSC; cal
km ;

XC

XL

ILOOP

Vk

Ik

m
Im

k

Vm

Figure 5.11 Thyristor-controlled series compensator module. Reproduced, with permission, from

C.R. Fuerte-Esquivel, E. Acha, and H. Ambriz-Pérez, ‘A Thyristor Controlled Series Compensator

Model for the Power Flow Solution of Practical Power Networks’, IEEE Trans. Power Systems 15(1)

58–64, # 2000 IEEE
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is the active power flow mismatch for the TCSC module; ��TCSC, given by

��TCSC ¼ �
ðiþ1Þ
TCSC � �

ðiÞ
TCSC;

is the incremental change in the TCSC firing angle at the ith iteration; and P
�TCSC ; cal
km is the

calculated power as given by Equation (5.36). The Jacobian elements for the series

reactance, as a function of the firing angle �TCSC, are given in Appendix A, Section A.2.

5.4.5 Thyristor-controlled Series Compensator Firing-angle
Computer Program in Matlab1 Code

Program 5.4 incorporates the thyristor-controlled series compensator firing-angle (TCSC-

FA) variable series reactance model within the Newton–Raphson power flow program. The

functions PowerFlowsData, YBus, and PQflows are also used here. In the main TCSC-FA

Newton–Raphson program, the function TCSCFAData is added to read the TCSC-FA data,

TCSCFANewtonRaphson replaces NewtonRaphson, and TCSCFAPQflows is used to

calculate power flows and losses in the TCSC model.

PROGRAM 5.4 Program written in Matlab1 to incorporate the thyristor-controlled series

compensator firing-angle (TCSC-FA) model within the Newton–Raphson power flow algorithm

% - - - Main TCSC-FA Program

PowerFlowsData; %Function to read network data

TCSCFAData; % Function to read TCSC-FA data

[YR,YI]=YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,ntl,nbb);

[VM,VA,it,FA,X]=TCSCFANewtonRaphson(tol,itmax,ngn,nld,nbb,...

bustype,genbus, loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,...

VA,NTCSCFA,TCSCFAsend, TCSCFArec,Xc,Xl,FA,FALo,FAHi,Flow,PSta,Psp);

[PQsend,PQrec,PQloss,PQbus]=PQflows(nbb,ngn,ntl,nld,genbus,...

loadbus,tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,QLOAD,...

VM,VA);

[Ptcsc,Qtcsc]=TCSCPQpower(VA,VM,NTCSCFA,TCSCFAsend,TCSCFArec,X);

%Print results

it %Number of iterations

VM %Nodal voltage magnitude (p.u)

VA=VA*180/pi %Nodal voltage phase angles (deg)

Ptcsc %Active power flow in TCSC (p.u.)

Qtcsc %Reactive power flow in TCSC (p.u.)

X %Final reactance value (p.u.)

FA %Final firing angle value (deg)

% End of MAIN TCSC-FA PROGRAM
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%Carry out iterative solution using the Newton–Raphson method

[VM,VA,it,FA,X] = TCSCFANewtonRaphson(tol,itmax,ngn,nld,nbb,...

bustype,genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,...

VA,NTCSCFA,TCSCFAsend,TCSCFArec,Xc,Xl,FA,FALo,FAHi,Flow,PSta,Psp);

% GENERAL SETTINGS

flag = 0;

it = 1;

% CALCULATE NET POWERS

[PNET,QNET]=NetPowers(nbb,ngn,nld,genbus,loadbus,PGEN,QGEN,...

PLOAD,QLOAD);

while ( it < itmax & flag==0 )

% CALCULATED POWERS

[PCAL,QCAL]=CalculatedPowers(nbb,VM,VA,YR,YI);

%TCSC CALCULATED POWER

[PCAL,QCAL,X]=TCSCFACalculatePower(PCAL,QCAL,VM,VA,NTCSCFA,...

TCSCFAsend,TCSCFArec,FA,Xc,Xl,Flow,PSta,Psp);

% POWER MISMATCHES

[DPQ,DP,DQ,flag]=PowerMismatches(nbb,tol,bustype,flag,PNET,QNET,...

PCAL,QCAL);

% TCSC POWER MISMATCHES

[DPQ,flag]=TCSCFAPowerMismatches(flag,tol,nbb,DPQ,VM,VA,NTCSCFA,...

TCSCFAsend,TCSCFArec,X,Flow,it,Psp,PSta);

%Check for convergence

if flag == 1

break

end

% JACOBIAN FORMATION

[JAC]=NewtonRaphsonJacobian(nbb,bustype,PCAL,QCAL,DPQ,VM,VA,...

YR,YI);

% MODIFICATION JACOBIAN FOR TCSC-FA -it calculates the TCSC

% equivalent reactance

[JAC]=TCS CFAJacobian(it,nbb,JAC,VM,VA,NTCSCFA,TCSCFAsend,...

TCSCFArec, FA,Xc,Xl,Flow,PSta,Psp,X);

% SOLVE JOCOBIAN

D = JAC\DPQ’;
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% UPDATE THE STATE VARIABLES VALUES, WITH TRUNCATED CORRECTIONS IF

% NECESSARY (VM increments < +-0.1 p.u. and VA inrements < +- 5 deg)

[VA,VM] = StateVariablesUpdating(nbb,D,VA,VM,it);

% UPDATE THE TCSC-FA VARIABLES

[FA] = TCSCFAUpdating(it,nbb,D,NTCSCFA,FA,PSta);

%CHECK IMPEDANCE LIMITS

[FA] = TCSCFALimits(NTCSCFA,FA,FALo,FAHi,PSta);

it = it + 1;

end

%Function to calculate injected bus powers by TCSC-FA

function [PCAL,QCAL,X] = TCSCFACalculatePower(PCAL,QCAL,VM,VA,...

NTCSC,TCSCFAsend,TCSCFArec,FA,Xc,Xl,Flow,PSta,Psp);

for ii = 1 : NTCSC

% Calculate Equivalent Reactance TCSCX

Xlc = Xc(ii)*Xl(ii)/(Xc(ii)-Xl(ii));

w = sqrt(Xc(ii)/Xl(ii));

C1 = (Xc(ii) + Xlc)/pi;

C2 = 4*Xlc^2/(Xl(ii)*pi);

Ang = pi - FA(ii)*pi/180;

X(ii) = -Xc(ii) + C1*(2*Ang + sin(2*Ang)) - C2*cos(Ang)^2*...

(w*tan(w*Ang)-tan(Ang));

Bmm = - 1/X(ii);

Bmk = 1/X(ii);

for kk = 1 : 2

A = VA(TCSCFAsend(ii))-VA(TCSCFArec(ii));

Pcal = VM(TCSCFAsend(ii))*VM(TCSCFArec(ii))*Bmk*sin(A);

Qcal = - VM(TCSCFAsend(ii))^2*Bmm - VM(TCSCFAsend(ii))*VM...

(TCSCFArec(ii))*Bmk*cos(A);

PCAL(TCSCFAsend(ii)) = PCAL(TCSCFAsend(ii)) + Pcal;

QCAL(TCSCFAsend(ii)) = QCAL(TCSCFAsend(ii)) + Qcal;

if kk == 1

TCSC_PQsend(ii) = Pcal + j*Qcal;

else

TCSC_PQrec(ii) = Pcal + j*Qcal;

end

send = TCSCFAsend(ii);

TCSCFAsend(ii) = TCSCFArec(ii);

TCSCFArec(ii) = send;

end

end
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%Function to compute power mismatches with TCSC-FA

function [DPQ,flag] = TCSCFAPowerMismatches(flag,tol,nbb,DPQ,VM,VA,...

NTCSCFA,TCSCFAsend,TCSCFArec,X,Flow,it,Psp,PSta);

if it > 1

for ii = 1 : NTCSCFA

if PSta(ii) == 1

Bmk = 1/X(ii);

for kk = 1 : 2

A = VA(TCSCFAsend(ii)) - VA(TCSCFArec(ii));

Pcal = VM(TCSCFAsend(ii))*VM(TCSCFArec(ii))*Bmk*sin(A);

if( Flow == 1 & kk == 1 ) | ( Flow == -1 & kk == 2 )

DPQ(1, 2*nbb + ii) = Psp(ii) - Pcal;

break;

end

send = TCSCFAsend(ii);

TCSCFAsend(ii) = TCSCFArec(ii);

TCSCFArec(ii) = send;

end

else

DPQ(1, 2*nbb + ii)= 0;

end

end

end

%Function to add the TCSC-FA elements to Jacobian matrix

function [JAC] = TCSCFAJacobian(it,nbb,JAC,VM,VA,NTCSCFA,...

TCSCFAsend,TCSCFArec,FA,Xc,Xl,Flow,PSta,Psp,X);

for ii = 1 : NTCSCFA

% Calculate Equivalent Reactance TCSCX

Xlc = Xc(ii)*Xl(ii)/(Xc(ii)-Xl(ii));

w = sqrt(Xc(ii)/Xl(ii));

C1 = (Xc(ii) + Xlc)/pi;

C2 = 4*Xlc^2/(Xl(ii)*pi);

Ang = pi - FA(ii)*pi/180;

TCSCX = -Xc(ii) + C1*(2*Ang + sin(2*Ang)) - C2*cos(Ang)^2*(w*tan...

(w*Ang)-tan(Ang));

%Calculate Reactance Derivative

A1 = FA(ii)*pi/180;

DTCSCX1 = - 2*C1*(1 + cos(2*Ang));

DTCSCX2 = C2*(w^2*(cos(Ang)^2/cos(w*Ang)^2));

DTCSCX3 = - C2*(w*tan(w*Ang)*sin(2*Ang));

DTCSCX4 = C2*(tan(Ang)*sin(2*Ang)-1);

DTCSCX = DTCSCX1 + DTCSCX2 + DTCSCX3 + DTCSCX4;
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Bmm = - 1/TCSCX;

Bmk = 1/TCSCX;

for kk = 1 : 2

A = VA(TCSCFAsend(ii))-VA(TCSCFArec(ii));

Hkm = - VM(TCSCFAsend(ii))*VM(TCSCFArec(ii))*Bmm*cos(A);

Nkm = VM(TCSCFAsend(ii))*VM(TCSCFArec(ii))*Bmm*sin(A);

JAC(2*TCSCFAsend(ii)-1,2*TCSCFAsend(ii)-1) = JAC(2*TCSCFA...

send(ii)-1,2*TCSCFAsend(ii)-1) - VM(TCSCFAsend(ii))^2*Bmm;

JAC(2*TCSCFAsend(ii)-1,2*TCSCFArec(ii)-1) = JAC(2*TCSCFA...

send(ii)-1, 2*TCSCFArec(ii)-1) - Hkm;

JAC(2*TCSCFAsend(ii)-1,2*TCSCFArec(ii)) = JAC(2*TCSCFA...

send(ii)-1, 2*TCSCFArec(ii)) - Nkm;

JAC(2*TCSCFAsend(ii),2*TCSCFAsend(ii)) = JAC(2*TCSCFA...

send(ii),2*TCSCFAsend(ii)) - VM(TCSCFAsend(ii))^2*Bmm;

JAC(2*TCSCFAsend(ii),2*TCSCFArec(ii)-1) = JAC(2*TCSCFA...

send(ii),2*TCSCFArec(ii)-1) + Nkm;

JAC(2*TCSCFAsend(ii),2*TCSCFArec(ii)) = JAC(2*TCSCFA...

send(ii),2*TCSCFArec(ii)) - Hkm;

if it > 1

if PSta(ii) == 1

A = VA(TCSCFAsend(ii))-VA(TCSCFArec(ii));

Ekm = -VM(TCSCFAsend(ii))*VM(TCSCFArec(ii))*sin(A)*Bmk^2*...

DTCSCX;

Fkm = - ((VM(TCSCFAsend(ii))^2 - VM(TCSCFAsend(ii))*VM...

(TCSCFArec(ii))*cos(A)))*Bmk^2*DTCSCX;

if (Flow(ii) == 1 & kk == 1) | (Flow(ii) == -1 & kk == 2)

Hkm = - VM(TCSCFAsend(ii))*VM(TCSCFArec(ii))*Bmk*cos(A);

Nkm = VM(TCSCFAsend(ii))*VM(TCSCFArec(ii))*Bmk*sin(A);

JAC(2*nbb + ii, 2*TCSCFAsend(ii)-1) = - Hkm;

JAC(2*nbb + ii, 2*TCSCFAsend(ii)) = Nkm;

JAC(2*nbb + ii, 2*TCSCFArec(ii)-1) = Hkm;

JAC(2*nbb + ii, 2*TCSCFArec(ii)) = Nkm;

JAC(2*nbb + ii, 2*nbb + ii) = Ekm;

end

JAC(2*TCSCFAsend(ii)-1, 2*nbb + ii) = Ekm;

JAC(2*TCSCFAsend(ii), 2*nbb + ii) = Fkm;

else

JAC(2*nbb + ii, 2*nbb + ii) = 1;

end

end
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send = TCSCFAsend(ii);

TCSCFAsend(ii) = TCSCFArec(ii);

TCSCFArec(ii) = send;

end

end

%Function to update TCSC-FA state variables

function [FA] = TCSCFA_Updating(it,nbb,D,NTCSCFA,FA,PSta);

if it > 1

for ii = 1 : NTCSCFA

if PSta(ii) == 1

FA(ii) = FA(ii) + D(2*nbb + ii,1)*180/pi;

end

end

end

%Function to calculate the power flows in TCSC-FA controller

function [PQTCSCsend,PQTCSCrec] = TCSCPQpower(VA,VM,NTCSCFA,...

TCSCFAsend,TCSCFArec,X);

for ii = 1 : NTCSCFA

Bmk = 1/X(ii);

Bmm = -1/X(ii);

for kk = 1 : 2

A = VA(TCSCFAsend(ii)) - VA(TCSCFArec(ii));

Ptcsc = VM(TCSCFAsend(ii))*VM(TCSCFArec(ii))*Bmk*sin(A);

Qtcsc = - VM(TCSCFAsend(ii))^2*Bmm –...

M(TCSCFAsend(ii))*VM(TCSCFArec(ii))*Bmk*cos(A);

if kk == 1

PQTCSCsend(ii,kk) = Ptcsc + Qtcsc*i;

else

PQTCSCrec(ii,kk-1) = Ptcsc + Qtcsc*i;

end

send = TCSCFAsend(ii);

TCSCFAsend(ii) = TCSCFArec(ii);

TCSCFArec(ii) = send;

end

end

5.4.6 Numerical Example of Active Power Flow Control using
One Thyristor-controlled Series Compensator:
Firing-angle Model

Similar to the numerical example presented in Section 5.4.3, a TCSC is included in the five-

bus network to compensate the transmission line connected between Lake and Main. The

controller is used to maintain the active power flowing towards Main at 21MW.
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The initial value of firing angle is set at 145�, and convergence is obtained in 7 iterations

to a power mismatch tolerance of 1e�12. The TCSC upholds the target value of 21MW.

The power flow results are shown in Figure 5.12. As expected, the calculated TCSC

equivalent reactances using the firing-angle model and the variable series reactance model

agree with each other. Also, the nodal voltages are the same as those given in Table 5.3.

The maximum absolute power mismatches in the system buses and TCSC are shown in

Figure 5.12. The TCSC characteristic is highly nonlinear, a fact that shows in the results in

Table 5.4 where the nonquadratic convergent pattern of �P and �Q is evident, particularly

up to the 4th iteration.

The data given in function PowerFlowsData (Section 4.3.9) are modified to

accommodate for the inclusion of the TCSC-FA in the same way as described in Section

5.4.3. Additionally, the function TCSCFAdata is used for entering TCSC-FA model data:

% THYRISTOR CONTROLLED SERIES COMPENSATOR

% FIRING ANGLE MODEL

% NTCSCFA : Number of TCSC’s

% TCSCFAsend : Sending bus
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20.921.040.942.4

74.2

73.1

25.1
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40

90.93 45 + j15 40 + j5

17.316.7
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86.21
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1.1
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131.12

0.4

5.1

7.1

7.1

52.954.1

4.95.6

Lakefa

Figure 5.12 Five-bus network with one thyristor-controlled series compensator, and power flow

results
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% TCSCFArec : Receiving bus

% Xc : TCSC’s reactance (p.u.)

% Xl : TCSC’s inductance (p.u)

% FA : Initial firing angle (deg)

% FALo : Firing angle lower limit (deg)

% FAHi : Firing angle higher limit (deg)

% Flow : Power flow direction: 1 is for sending to receiving bus; -1

% indicates opposite direction

% Psp : Active power flow to be controlled (p.u.)

% PSta : Indicate the control status for active power: 1 is on; 0 is off

NTCSCFA=1;

TCSCFAsend(1)=3; TCSCFArec(1)=6; Xc(1)=9.375e-3; Xl(1)=1.625e-3;

FA(1)=145; FALo(1)=90; FAHi(1)=180;

Flow(1)=1; PSta(1)=1; Psp(1)=0.21;

5.4.7 Numerical Properties of the Thyristor-controlled Series
Compensator Power Flow Model

The performance of the TCSC mathematical model is affected by the number of internal

resonant points exhibited by the TCSC in the range 90� to 180�. The resonant points (poles)
of Equation (5.31) are determined by the following expression (Fuerte-Esquivel, Acha, and

Ambriz-Pérez, 2000b):

�TCSC ¼ p 1� ð2n� 1Þ!ðLCÞ1=2
2

" #
; where n ¼ 1; 2; 3; . . . : ð5:40Þ

Although in theory a TCSC can have n resonant points, in practice a well-designed TCSC

scheme will only have one resonant peak within its range of operation. By way of example,

Figure 5.13 shows the fundamental frequency reactance as a function of �TCSC for the

Kayenta TCSC installation. The rated inductive and capacitive reactances of this TCSC

Table 5.4 Maximum absolute power mismatches in the system buses and

thyristor-controlled series compensator (TCSC)

Nodal power mismatches TCSC mismatches and parameters

Iteration �P �Q �P�TCSC

km �TCSC (deg) XTCSC (f1) (p.u.)

1 6e�1 1.2e�1 2.1e�1 145 �0.0518

2 2.1e�2 1.6e�2 2e�2 145 �0.0518

3 7.8e�2 2.4e�3 7.8e�2 146.26 �0.0341

4 3.6e�3 7.7e�3 3.6e�3 148.46 �0.0222

5 1e�4 2.2e�4 1.1e�4 148.66 �0.0216

6 1.1e�8 4.3e�8 1.1e�8 148.66 �0.0216

7 1e�16 1e�16 1e�16 148.66 �0.0216
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are 2.6� and 15�, respectively, at a base frequency of 60Hz. The corresponding

susceptance profile is shown in Figure 5.14. The partial derivatives of both parameters are

also shown in these figures for completeness.

The TCSC exhibits a resonant point at �TCSC ¼ 142.81�, as shown in Figure 5.14. This

pole defines the transition from the inductive to the capacitive operating region, as the firing

angle value increases.
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Figure 5.13 Profiles of XTCSC ð1Þ and qXTCSC ð1Þ=q�TCSC as a function of firing angle, �TCSC.

Reproduced, with permission, from C.R. Fuerte-Esquivel, E. Acha, and H. Ambriz-Pérez, ‘AThyristor

Controlled Series Compensator Model for the Power Flow Solution of Practical Power Networks’

IEEE Trans. Power Systems 15(1) 58–64, # 2000 IEEE
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It should be noted that both XTCSC ð1Þ and qXTCSC ð1Þ
�
q�TCSC present large variations in

magnitude in response to small variations in firing angle near the resonant point. This

intrinsic characteristic of the TCSC causes the power equations and Jacobian to be ill-

conditioned if operation of the TCSC takes place too close to the resonant point.

5.5 STATIC SYNCHRONOUS COMPENSATOR

Following on the discussion of the STATCOM operational characteristics in Chapter 2, it is

reasonable to expect that for the purpose of positive sequence power flow analysis the

STATCOM will be well represented by a synchronous voltage source with maximum and

minimum voltage magnitude limits. The synchronous voltage source represents the

fundamental Fourier series component of the switched voltage waveform at the AC converter

terminal of the STATCOM (Hingorani and Gyugyi, 2000; Song and Johns, 1999).

The bus at which the STATCOM is connected is represented as a PVS bus, which may

change to a PQ bus in the event of limits being violated. In such a case, the generated or

absorbed reactive power would correspond to the violated limit. Unlike the SVC, the

STATCOM is represented as a voltage source for the full range of operation, enabling a

more robust voltage support mechanism. The STATCOM equivalent circuit shown in

Figure 5.15 is used to derive the mathematical model of the controller for inclusion in power

flow algorithms.

5.5.1 Power Flow Model

The power flow equations for the STATCOM are derived below from first principles and

assuming the following voltage source representation:

EvR ¼ VvR cos �vR þ j sin �vRð Þ: ð5:41Þ

Based on the shunt connection shown in Figure 5.15, the following may be written:

SvR ¼ VvRI
�
vR ¼ VvRY

�
vR V�

vR � V�
k

� 	
: ð5:42Þ

vR vRV δ+ ∠ −

bus k

ZvR
k kV θ∠

IvR

Ik

Figure 5.15 Static compensator (STATCOM) equivalent circuit
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After performing some complex operations, the following active and reactive power

equations are obtained for the converter and bus k, respectively:

PvR ¼ V2
vRGvR þ VvRVk GvR cos �vR � �kð Þ þ BvR sin �vR � �kð Þ½ �; ð5:43Þ

QvR ¼ �V2
vRBvR þ VvRVk GvR sin �vR � �kð Þ � BvR cos �vR � �kð Þ½ �; ð5:44Þ

Pk ¼ V2
k GvR þ VkVvR GvR cos �k � �vRð Þ þ BvR sin �k � �vRð Þ½ �; ð5:45Þ

Qk ¼ �V2
k BvR þ VkVvR GvR sin �k � �vRð Þ � BvR cos �k � �vRð Þ½ �: ð5:46Þ

Using these power equations, the linearised STATCOM model is given below, where the

voltage magnitude VvR and phase angle �vR are taken to be the state variables:

�Pk

�Qk
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666666666664
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¼
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: ð5:47Þ

The Jacobian elements in Equation (5.47) are given in explicit form in Appendix A,

Section A.3.

5.5.2 Static Compensator Computer Program in Matlab1 Code

Program 5.5 incorporates the STATCOM model within the Newton–Raphson power flow

program. The functions PowerFlowsData, YBus, and PQflows are also used here. In the

main STATCOM Newton–Raphson program, the function SSCData is added to read the

STATCOM data, SSCNewtonRaphson replaces NewtonRaphson, and SSCPQflows is used

to calculate power flows and losses in the STATCOM.

PROGRAM 5.5 Program written in Matlab1 to incorporate the static compensator

(STATCOM) within the Newton–Raphson power flow algorithm

% - - - Main STATCOM Program

PowerFlowsData; %Function to read network data

SSCData; %Function to read the STATCOM data

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,ntl,nbb);

[VM,VA,it,Vvr,Tvr] = SSCNewtonRaphson(tol,itmax,ngn,nld,nbb,...

bustype,genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,...
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VA,NSSC,SSCsend, Xvr,TarVol,VSta,Psp,PSta,Qsp,QSta,Vvr,Tvr,VvrHi,...

VvrLo);

[PQsend,PQrec,PQloss,PQbus] = PQflows(nbb,ngn,ntl,nld,genbus,...

loadbus,tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,QLOAD,...

VM,VA);

[Psend,Qsend,PSSC,QSSC] = SSCPQPowers(VM,VA,NSSC,SSCsend,Xvr,Vvr,...

Tvr);

%Print results

it %Number of iterations

VM %Nodal voltage magnitude (p.u)

VA=VA*180/pi %Nodal voltage phase angles (Deg)

Vvr %Final voltage magnitude source (p.u.)

Tvr=Tvr*180/pi %Final voltage phase angle source (Deg)

PQsend=Psend + j*Qsend %Active and reactive powers in bus (p.u.)

PQSSC=PSSC + j*QSSC %Active and reactive powers in STACOM (p.u.)

% End of MAIN STATCOM PROGRAM

%Carry out iterative solution using the Newton–Raphson method

[VM,VA,it,Vvr,Tvr] = SSCNewtonRaphson(tol,itmax,ngn,nld,nbb,...

bustype,genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,VM,...

VA,NSSC,SSCsend, Xvr,TarVol,VSta,Psp,PSta,Qsp,QSta,Vvr,Tvr,VvrHi,...

VvrLo);

% GENERAL SETTINGS

flag = 0;

it = 1;

% CALCULATE NET POWERS

[PNET,QNET] = NetPowers(nbb,ngn,nld,genbus,loadbus,PGEN,QGEN,...

PLOAD,QLOAD);

while ( it < itmax & flag==0 )

% CALCULATED POWERS

[PCAL,QCAL] = CalculatedPowers(nbb,VM,VA,YR,YI);

%STATCOM CALCULATED POWERS

[PCAL,QCAL,PSSC,QSSC] = SSCCalculatePowers(PCAL,QCAL,VM,VA,NSSC,...

SSCsend,Vxr,Vvr,Tvr);
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POWER MISMATCHES

[DPQ,DP,DQ,flag] = PowerMismatches(nbb,tol,bustype,flag,PNET,QNET,...

PCAL,QCAL);

%STATCOM POWER MISMATCHES

[DPQ] = SSCMismatches(DPQ,nbb,VM,VA,NSSC,SSCsend,Xvr,VSta,Psp,...

PSta,Qsp,QSta,Vvr,Tvr);

% JACOBIAN FORMATION

[JAC] = NewtonRaphsonJacobian(nbb,bustype,PCAL,QCAL,DPQ,VM,VA,...

YR,YI);

% STATCOM JACOBIAN

[JAC] = SSCJacobian(nbb,JAC,VM,VA,NSSC,SSCsend,Xvr,TarVol,VSta,...

Psp,PSta,Qsp,QSta,Vvr,Tvr);

% SOLVE FOR THE STATE VARIABLES VECTOR

D = JAC\DPQ’;

% UPDATE THE STATE VARIABLES VALUES, WITH TRUNCATED CORRECTIONS IF

% NECESSARY (VM increments < +-0.1 p.u. and VA inrements < +- 5 deg)

[VA,VM] = StateVariablesUpdating(nbb,D,VA,VM,it);

%UPDATE STATCOM STATE VARIABLES

[VM,Vvr,Tvr] = SSCUpdating(nbb,D,VM,VA,NSSC,SSCsend,TarVol,VSta,...

Psp,Vvr,Tvr);

%CHECK VOLTAGE MAGNITUDE LIMITS

[Vvr] = SSCLimits(NSSC,Vvr,VvrHi,VvrLo);

it = it + 1;

end

%Function to calculate injected bus powers by the STATCOM

function [PCAL,QCAL,PSSC,QSSC] = SSCCalculatePowers(PCAL,QCAL,VM,...

VA,NSSC, SSCsend,Xvr,Vvr,Tvr);

for ii = 1 : NSSC

B(ii)=1/Xvr(ii);

A1 = Tvr(ii)-VA(SSCsend(ii));

A2 = VA(SSCsend(ii))-Tvr(ii);

PCAL(SSCsend(ii)) = PCAL(SSCsend(ii)) + VM(SSCsend(ii))*Vvr(ii)*...

(B(ii)*sin(A2));

QCAL(SSCsend(ii)) = QCAL(SSCsend(ii)) + VM(SSCsend(ii))^2*B(ii) - ...

Vvr(ii)*VM(SSCsend(ii))*(B(ii)*cos(A2));
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PSSC(ii) = Vvr(ii)*VM(SSCsend(ii))*(B(ii)*sin(A1));

QSSC(ii) = - Vvr(ii)^2*B(ii) + Vvr(ii)*VM(SSCsend(ii))*(B(ii)...

*cos(A1));

end

%Function to compute power mismatches for the STATCOM

function [DPQ] = SSCMismatches(DPQ,nbb,VM,VA,NSSC,SSCsend,Xvr,...

VSta,Psp, PSta,Qsp,QSta,Vvr,Tvr);

for ii = 1 : NSSC

B(ii)=1/Xvr(ii);

A1 = Tvr(ii)-VA(SSCsend(ii));

A2 = VA(SSCsend(ii))-Tvr(ii);

Pcal = VM(SSCsend(ii))*Vvr(ii)*(B(ii)*sin(A2));

Qcal = - VM(SSCsend(ii))^2*B(ii) + Vvr(ii)*VM(SSCsend(ii))*(B(ii)*...

cos(A2));

DPQ(2*(nbb + ii)-1) = Pcal - Psp(ii);

if (QSta(ii) == 1)

DPQ(2*(nbb + ii)) = Qcal - Qsp(ii);

else

DPQ(2*(nbb + ii)) = 0;

end

end

%Function to add the STATCOM elements to Jacobian matrix

function [JAC] = SSCJacobian(nbb,JAC,VM,VA,NSSC,SSCsend,Xvr,TarVol,...

VSta,Psp,PSta,Qsp,QSta,Vvr,Tvr);

for ii = 1 : NSSC

B(ii)=1/Xvr(ii);

if VSta(ii) == 1

JAC(: , 2*SSCsend(ii) )=0;

end

JAC(2*(nbb + ii)-1,2*(nbb + ii)-1) = 1;

JAC(2*(nbb + ii),2*(nbb + ii)) = 1;

A1 = Tvr(ii)-VA(SSCsend(ii));

A2 = VA(SSCsend(ii))-Tvr(ii);

Pcal = - VM(SSCsend(ii))*Vvr(ii)*( + B(ii)*sin(A2));

DQcal = Vvr(ii)*VM(SSCsend(ii))*(B(ii)*cos(A2));

Pssc = - Vvr(ii)*VM(SSCsend(ii))*(B(ii)*sin(A1));

DQssc = Vvr(ii)*VM(SSCsend(ii))*(B(ii)*cos(A1));
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JAC(2*SSCsend(ii)-1,2*SSCsend(ii)-1) = JAC(2*SSCsend(ii)-1,...

2*SSCsend(ii)-1) + VM(SSCsend(ii))^2*B(ii);

JAC(2*SSCsend(ii),2*SSCsend(ii)-1) = JAC(2*SSCsend(ii),2*SSC...

send(ii)-1) - Pcal;

if (QSta(ii) == 1 )

JAC(2*SSCsend(ii)-1,2*SSCsend(ii)) = JAC(2*SSCsend(ii)-1,...

2*SSCsend(ii)) - Pcal;

JAC(2*SSCsend(ii),2*SSCsend(ii)) = JAC(2*SSCsend(ii),2*SSC...

send(ii)) + VM(SSCsend(ii))^2*B(ii);

else

JAC(2*SSCsend(ii)-1,2*SSCsend(ii)) = JAC(2*SSCsend(ii)-1,...

2*SSCsend(ii)) - Pssc;

JAC(2*SSCsend(ii),2*SSCsend(ii)) = JAC(2*SSCsend(ii),2*SSC...

send(ii)) - DQssc;

end

if (PSta(ii) == 1)

JAC(2*(nbb + ii)-1,2*SSCsend(ii)-1) = JAC(2*(nbb + ii)-1, 2*SSC...

send(ii)-1) + DQcal;

JAC(2*SSCsend(ii)-1,2*(nbb + ii)-1) = JAC(2*SSCsend(ii)-1,...

2*(nbb + ii)-1) - DQssc;

JAC(2*SSCsend(ii),2*(nbb + ii)-1) = JAC(2*SSCsend(ii),...

2*(nbb + ii)-1) - Pssc;

JAC(2*(nbb + ii)-1,2*(nbb + ii)-1) = - DQssc;

if (QSta == 1)

JAC(2*(nbb+ii),2*(nbb+ii)-1)=JAC(2*(nbb+ii),2*(nbb+ii)-1)-...

Pssc;

JAC(2*(nbb + ii)-1,2*SSCsend(ii)) = JAC(2*(nbb + ii)-1,2*SSC...

send(ii)) - Pcal;

else

JAC(2*(nbb + ii),2*(nbb + ii)-1) = 0.0;

JAC(2*(nbb + ii)-1,2*SSCsend(ii)) = JAC(2*(nbb + ii)-1,2*SSC...

send(ii)) + Pssc;

end

else

JAC(2*(nbb + ii)-1,2*(nbb + ii)-1) = 1.0;

end

if (QSta(ii) == 1)

JAC(2*(nbb + ii),2*SSCsend(ii)-1) = JAC(2*(nbb + ii),2*SSCsend...

(ii)-1)- Pcal;

JAC(2*(nbb + ii),2*SSCsend(ii)) = JAC(2*(nbb + ii),2*SSCsend(ii))...

+ DQcal;

JAC(2*SSCsend(ii)-1,2*(nbb + ii)) = JAC(2*SSCsend(ii)-1,2*...

(nbb + ii)) + Pssc;

JAC(2*SSCsend(ii),2*(nbb + ii)) = JAC((nbb + ii),2*...

(nbb + ii)) - DQcal;

JAC(2*(nbb + ii),2*(nbb + ii)) = -2*Vvr(ii)^2*B(ii) + DQssc;

if (PSta(ii) == 1)
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JAC(2*(nbb + ii)-1,2*(nbb + ii)) = JAC(2*(nbb + ii)-1,2*(nbb + ii)) - Pssc;

else

JAC(2*(nbb + ii)-1,2*(nbb + ii)) = 0.0;

end

else

JAC(2*(nbb + ii),2*(nbb + ii)) = 1.0;

end

end

%Function to update STATCOM state variable

function [VM,Vvr,Tvr] = SSCUpdating(nbb,D,VM,VA,NSSC,SSCsend,...

TarVol,VSta, Psp,Vvr,Tvr);

for ii = 1 : NSSC

if (VSta(ii) == 1)

% Adjust the Volatge Magnitud target

Vvr(ii) = Vvr(ii) + Vvr(ii)*D(2*SSCsend(ii));

VM(SSCsend(ii)) = TarVol(ii);

if (Psp(ii) == 0)

Tvr(ii) = VA(SSCsend(ii));

else

Tvr(ii) = Tvr(ii) + D(2*(nbb + ii)-1);

end

else

Vvr(ii) = Vvr(ii) + Vvr(ii)*D(2*(nbb + ii));

Tvr(ii) = VA(SSCsend(ii));

end

end

%Function to check source voltages limits in the STATCOM

function [Vvr] = SSCLimits(NSSC,Vvr,VvrHi,VvrLo);

for ii = 1 : NSSC

%Check STATCOM Vvr Limits

if (Vvr(ii) > VvrHi(ii))

Vvr(ii) = VvrHi(ii);

elseif (Vvr(ii) < VvrLo(ii))

Vvr(ii) = VvrLo(ii);

end

end

%Function to calculate the power flows in the STATCOM

function [Psend,Qsend,PSSC,QSSC] = SSCPQPowers(VM,VA,NSSC,SSCsend,...

Xvr,Vvr,Tvr);

for ii = 1 : NSSC

B(ii)=1/Xvr;

A1 = Tvr(ii)-VA(SSCsend(ii));

A2 = VA(SSCsend(ii))-Tvr(ii);
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Psend(ii) = VM(SSCsend(ii))*Vvr(ii)*(B(ii)*sin(A2));

Qsend(ii) = - VM(SSCsend(ii))^2*B(ii) + Vvr(ii)*VM(SSCsend(ii))*...

(B(ii)*cos(A2));

PSSC(ii) = Vvr(ii)*VM(SSCsend(ii))*(B(ii)*sin(A1));

QSSC(ii) = - Vvr(ii)^2*B(ii) + Vvr(ii)*VM(SSCsend(ii))*(B(ii)*...

cos(A1));

end

5.5.3 Numerical Example of Voltage Magnitude Control using
One Static Compensator

The five-bus network is modified to include one STATCOM connected at Lake, to maintain

the nodal voltage magnitude at 1 p.u. The source impedance is XvR ¼ 0.1 p.u. The power

flow solution is shown in Figure 5.16 whereas the nodal voltage magnitudes and phase

angles are given in Table 5.5. Convergence is achieved in five iterations to a power

mismatch tolerance of 1e�12. Function SSCData is used to enter STATCOM data, and

function PowerFlowsData remain unchanged.

60 + j10

North Lake Main

South Elm

19.619.6440.5441.92

74.1

74.0

24.1

7.3

20 + j10

40

85.4 45 + j15 40 + j5

12.411.3
89.2

86.6

14.011.2

6.7

9.5

27.6

24.5

27.2

4.7

78.1

131.12

4.3

7.9

6.8

6.78

54.354.5

2.12.7

20.5

Figure 5.16 STATCOM-upgraded test network and power flow results
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Function SSCData is as follows:

%This function is used exclusively to enter data for:

% STATIC SYNCHRONOUS COMPENSATOR (STATCOM)

% NSSC : Number of STATCOM’s

% SSCsend: STATCOM’s bus

% Xvr : Converter’s reactance (p.u.)

% TarVol: Target nodal voltage magnitude (p.u.)

% VSta : Indicate the control status over nodal voltage magnitude: 1 is

% on; 0 is off

% Psp : Target active power flow (p.u.)

% PSta : Indicate the control status over active power: 1 is on; 0 is off

% Qsp : Target reactive power flow (p.u.)

% QSta : Indicate the control status over reactive power:1 is on; 0 is off

% Vvr : Initial condition for the source voltage magnitude (p.u.)

% Tvr : Initial condition for the source voltage angle (deg)

% VvrHi : Lower limit source voltage magnitude (p.u.)

% VvrLo : higher limit source voltage magnitude (p.u.)

NSSC = 1;

SSCsend(1)=3; Xvr(1)=10; TarVol(1)=1.0; VSta(1)=1;

Psp(1)=0.0; PSta(1)=1; Qsp(1)=0.0; QSta(1)=0;

Vvr(1)=1.0; Tvr(1)=0.0; VvrHi(1)=1.1; VvrLo(1)=0.9;

The power flow result indicates that the STATCOM generates 20.5MVAR in order to

keep the voltage magnitude at 1 p.u. at Lake bus. The STATCOM parameters associated

with this amount of reactive power generation are VvR ¼ 1:0205 p.u. and �vR ¼ �4:83�. Use
of the STATCOM results in an improved network voltage profile, except at Elm, which is

too far away from Lake to benefit from the influence of the STATCOM.

The slack generator reduces its reactive power generation by almost 6% compared with

the base case, and the reactive power exported from North to Lake reduces by more than

30%. The largest reactive power flow takes place in the transmission line connecting North

and South, where 74.1MVAR leaves North and 74MVAR arrives at South. In general, more

reactive power is available in the network than in the base case, and the generator connected

at South increases its share of reactive power absorption compared with the base case. As

expected, active power flows are only marginally affected by the STATCOM installation.

Table 5.5 Bus voltages of the STATCOM-upgraded network

Network bus

Nodal voltage North South Lake Main Elm

Magnitude (p.u.) 1.06 1 1 0.994 0.975

Phase angle (deg) 0 �2.05 �4.83 �5.11 �5.8
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5.6 UNIFIED POWER FLOW CONTROLLER

The basic principle of UPFC operation has been discussed in Chapter 2. It follows from that

discussion that an equivalent circuit consisting of two coordinated synchronous voltage

sources should represent the UPFC adequately for the purpose of fundamental frequency

steady-state analysis. Such an equivalent circuit is shown in Figure 5.17. The synchronous

voltage sources represent the fundamental Fourier series component of the switched voltage

waveforms at the AC converter terminals of the UPFC (Hingorani and Gyugyi, 2000; Song

and Johns, 1999).

The UPFC voltage sources are:

EvR ¼ VvR cos �vR þ j sin �vRð Þ; ð5:48Þ
EcR ¼ VcR cos �cR þ j sin �cRð Þ; ð5:49Þ

where VvR and �vR are the controllable magnitude (VvRmin � VvR � VvRmax) and phase angle

(0 � �vR � 2p) of the voltage source representing the shunt converter. The magnitude VcR

and phase angle �cR of the voltage source representing the series converter are controlled

between limits (VcRmin � VcR � VcRmaxÞ and ð0 � �cR � 2pÞ, respectively.
The phase angle of the series-injected voltage determines the mode of power flow control.

If �cR is in phase with the nodal voltage angle yk, the UPFC regulates the terminal voltage. If

�cR is in quadature with respect to yk, it controls active power flow, acting as a phase shifter.

If �cR is in quadrature with the line current angle then it controls active power flow, acting as

a variable series compensator. At any other value of �cR, the UPFC operates as a combination

of voltage regulator, variable series compensator, and phase shifter. The magnitude of the

series-injected voltage determines the amount of power flow to be controlled.

_

IvR
bus m

cR cRV δ+ ∠ −

bus k

m mV θ∠ZcR
k kV θ∠

ZvR

vR vRV δ∠

+

Ik Im

IcR

Re{-VvRI*
vR+ VcRI*

m } = 0

Figure 5.17 Unified power flow controller equivalent circuit
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5.6.1 Power Flow Model

Based on the equivalent circuit shown in Figure 5.17 and Equations (5.48) and (5.49), the

active and reactive power equations are (Fuerte-Esquivel and Acha, 1997; Fuerte-Esquivel,

Acha, and Ambriz-Pérez, 2000c), at bus k:

Pk ¼ V2
k Gkk þ Vk Vm Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �

þ Vk VcR Gkm cos �k � �cRð Þ þ Bkm sin �k � �cRð Þ½ �
þ Vk VvR GvR cos �k � �vRð Þ þ BvR sin �k � �vRð Þ½ �; ð5:50Þ

Qk ¼ �V2
k Bkk þ Vk Vm Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �

þ Vk VcR Gkm sin �k � �cRð Þ � Bkm cos �k � �cRð Þ½ �
þ Vk VvR GvR sin �k � �vRð Þ � BvR cos �k � �vRð Þ½ �; ð5:51Þ

at bus m:

Pm ¼ V2
m Gmm þ Vm Vk Gmk cos �m � �kð Þ þ Bmk sin �m � �kð Þ½ �

þ Vm VcR Gmm cos �m � �cRð Þ þ Bmm sin �m � �cRð Þ½ �; ð5:52Þ

Qm ¼ �V2
m Bmm þ Vm Vk Gmk sin �m � �kð Þ � Bmk cos �m � �kð Þ½ �

þ Vm VcR Gmm sin �m � �cRð Þ � Bmm cos �m � �cRð Þ½ �; ð5:53Þ
series converter:

PcR ¼ V2
cR Gmm þ VcR Vk Gkm cos �cR � �kð Þ þ Bkm sin �cR � �kð Þ½ �

þ VcR Vm Gmm cos �cR � �mð Þ þ Bmm sin �cR � �mð Þ½ �; ð5:54Þ

QcR ¼ �V2
cR Bmm þ VcR Vk Gkm sin �cR � �kð Þ � Bkm cos �cR � �kð Þ½ �

þ VcR Vm Gmm sin �cR � �mð Þ � Bmm cos �cR � �mð Þ½ �; ð5:55Þ
shunt converter:

PvR ¼ �V2
vR GvR þ VvR Vk GvR cos �vR � �kð Þ þ BvR sin �vR � �kð Þ½ �; ð5:56Þ

QvR ¼ V2
vR BvR þ VvR Vk GvR sin �vR � �kð Þ � BvR cos �vR � �kð Þ½ �: ð5:57Þ

Assuming loss-less converter valves, the active power supplied to the shunt converter, PvR,

equals the active power demanded by the series converter, PcR; that is,

PvR þ PcR ¼ 0: ð5:58Þ
Furthermore, if the coupling transformers are assumed to contain no resistance then the

active power at bus k matches the active power at bus m. Accordingly,

PvR þ PcR ¼ Pk þ Pm ¼ 0: ð5:59Þ
The UPFC power equations, in linearised form, are combined with those of the AC network.

For the case when the UPFC controls the following parameters: (1) voltage magnitude at the

shunt converter terminal (bus k), (2) active power flow from bus m to bus k, and (3) reactive
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power injected at bus m, and taking bus m to be a PQ bus, the linearised system of equations

is as follows:
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ð5:60Þ
where �Pbb is the power mismatch given by Equation (5.58).

If voltage control at bus k is deactivated, the third column of Equation (5.60) is replaced

by partial derivatives of the bus and UPFC mismatch powers with respect to the bus voltage

magnitude Vk. Moreover, the voltage magnitude increment of the shunt source, �VvR=VvR is

replaced by the voltage magnitude increment at bus k, �Vk=Vk.

If both buses, k and m, are PQ the linearised system of equations is as follows:
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In this case, VvR is maintained at a fixed value within prescribed limits, VvRmin �
VvR � VvRmax. The Jacobian terms in Equations (5.60) and (5.61) are given in Appendix A,

Section A.4.
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5.6.2 Unified Power Flow Controller Computer Program in
Matlab1 Code

Program 5.6 incorporates the UPFC model within the Newton–Raphson power flow

program. The functions PowerFlowsData, YBus, and PQflows are also used here. In the

main UPFC Newton–Raphson program, the function UPFCData is added to read the UPFC

data, UPFCNewtonRaphson replaces NewtonRaphson, and UPFCPQflows is used to

calculate power flows and losses in the UPFC.

PROGRAM 5.6 Program written in Matlab1 to incorporate the unified power flow

controller (UPFC) model within the Newton–Raphson power flow algorithm

% - - - Main UPFC Program

PowerFlowsData; %Function to read network data

UPFCdata; %Function to read the UPFC data

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,ntl,nbb);

[VM,VA,it,Vcr,Tcr,Vvr,Tvr] = UPFCNewtonRaphson(tol,itmax,ngn,nld,...

nbb,bustype,genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,YI,...

VM,VA,NUPFC,UPFCsend,UPFCrec,Xcr,Xvr,Flow,Psp,PSta,Qsp,QSta,Vcr,...

Tcr,VcrLo,VcrHi,Vvr, Tvr,VvrLo,VvrHi,VvrTar,VvrSta);

[PQsend,PQrec,PQloss,PQbus] = PQflows(nbb,ngn,ntl,nld,genbus,...

loadbus,tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,QLOAD,...

VM,VA);

[UPFC_PQsend,UPFC_PQrec,PQcr,PQvr] = PQUPFCpower(nbb,VA,VM,NUPFC,...

UPFCsend,UPFCrec,Xcr,Xvr,Vcr,Tcr,Vvr,Tvr);

%Print results

it %Number of iterations

VM %Nodal voltage magnitude (p.u.)

VA=VA*180/pi %Nodal voltage phase angles (deg)

Sources=[Vcr,Tcr*180/pi,Vvr,Tvr*180/pi] %Final source voltage para-

% meters

UPFC_PQsend %Active and reactive powers in sending bus (p.u.)

UPFC_PQrec %Active and reactive powers in receiving bus (p.u.)

%End of MAIN UPFC PROGRAM

%Carry out iterative solution using the Newton–Raphson method

function [VM,VA,it,Vcr,Tcr,Vvr,Tvr] = UPFCNewtonRaphson(tol,itmax,...

ngn,nld, nbb,bustype,genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,...

QLOAD,YR,YI,VM,VA, NUPFC,UPFCsend,UPFCrec,Xcr,Xvr,Flow,Psp,PSta,...

Qsp,QSta,Vcr,Tcr,VcrLo,VcrHi,Vvr,Tvr,VvrLo,VvrHi,VvrTar,VvrSta);
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% GENERAL SETTINGS

flag = 0;

it = 1;

% CALCULATE NET POWERS

[PNET,QNET] = NetPowers(nbb,ngn,nld,genbus,loadbus,PGEN,QGEN,...

PLOAD,QLOAD);

while ( it < itmax & flag==0 )

% CALCULATED POWERS

[PCAL,QCAL] = CalculatedPowers(nbb,VM,VA,YR,YI);

% CALCULATED UPFC POWERS

[PspQsend,PspQrec,PQcr,PQvr,PCAL,QCAL] = UPFCCalculatedpower...

(nbb,VA, VM,NUPFC,UPFCsend,UPFCrec,Xcr,Xvr,Vcr,Tcr,Vvr,Tvr,PCAL,...

QCAL);

% POWER MISMATCHES

[DPQ,DP,DQ,flag] = PowerMismatches(nbb,tol,bustype,flag,PNET,QNET,...

PCAL,QCAL);

% UPFC POWER MISMATCHES

[DPQ,flag] = UPFCPowerMismatches(flag,tol,nbb,DPQ,VM,VA,NUPFC,Flow,...

Psp,PSta,Qsp,QSta,PspQsend,PspQrec,PQcr,PQvr);

if flag == 1

break

end

% JACOBIAN FORMATION

[JAC] = NewtonRaphsonJacobian(nbb,bustype,PCAL,QCAL,DPQ,VM,VA,YR,...

YI);

% MODIFICATION OF THE JACOBIAN FOR UPFC

[JAC] = UPFCJacobian(nbb,JAC,VM,VA,NUPFC,UPFCsend,UPFCrec,Xcr,...

Xvr,Flow,PSta,QSta,Vcr,Tcr,Vvr,Tvr,VvrSta);

% SOLVE JOCOBIAN

D = JAC\DPQ’;

% UPDATE THE STATE VARIABLES VALUES

[VA,VM] = StateVariablesUpdating(nbb,D,VA,VM,it);

% UPDATE THE TCSC VARIABLES
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[VM,Vcr,Tcr,Vvr,Tvr] = UPFCUpdating(nbb,VM,D,NUPFC,UPFCsend,PSta,...

QSta,Vcr,Tcr,Vvr,Tvr,VvrTar,VvrSta);

%CHECK VOLTAGE LIMITS IN THE CONVERTERS

[Vcr,Vvr] = UPFCLimits(NUPFC,Vcr,VcrLo,VcrHi,Vvr,VvrLo,VvrHi);

it = it + 1;

end

%Function to calculate injected bus powers by the UPFC

function [UPFC_PQsend,UPFC_PQrec,PQcr,PQvr,PCAL,QCAL] = UPFCCalcula...

tedpower(nbb,VA,VM,NUPFC,UPFCsend,UPFCrec,Xcr,Xvr,Vcr,Tcr,Vvr,...

Tvr,PCAL,QCAL);

for ii = 1 : NUPFC

Bkk = - 1/Xcr(ii)-1/Xvr(ii);

Bmm = -1/Xcr(ii);

Bmk = 1/Xcr(ii);

Bvr = 1/Xvr(ii);

for kk = 1 : 2

A1 = VA(UPFCsend(ii))-VA(UPFCrec(ii));

A2 = VA(UPFCsend(ii))-Tcr(ii);

A3 = VA(UPFCsend(ii))-Tvr(ii);

% Computation of Conventional Terms

Pkm = VM(UPFCsend(ii))*VM(UPFCrec(ii))*Bmk*sin(A1);

Qkm = - VM(UPFCsend(ii))^2*Bkk - VM(UPFCsend(ii))*VM(UPFCrec(ii))...

*Bmk*cos(A1);

% Computation of Shunt Converters Terms

Pvrk = VM(UPFCsend(ii))*Vvr(ii)*Bvr*sin(A3);

Qvrk = - VM(UPFCsend(ii))*Vvr(ii)*Bvr*cos(A3);

if kk == 1

% Computation of Series Converters Terms

Pcrk = VM(UPFCsend(ii))*Vcr(ii)*Bmk*sin(A2);

Qcrk = - VM(UPFCsend(ii))*Vcr(ii)*Bmk*cos(A2);

%Power in bus k

Pk = Pkm + Pcrk + Pvrk;

Qk = Qkm + Qcrk + Qvrk;

UPFC_PQsend(ii) = Pk + Qk*i;

PCAL(UPFCsend(ii)) = PCAL(UPFCsend(ii)) + Pk;

QCAL(UPFCsend(ii)) = QCAL(UPFCsend(ii)) + Qk;

%Power in Series Converter

Pcr = Vcr(ii)*VM(UPFCsend(ii))*Bmk*sin(-A2);

Qcr = - Vcr(ii)^2*Bmm - Vcr(ii)*VM(UPFCsend(ii))*Bmk*cos(-A2);

%Power in Shunt Converter

Pvr = Vvr(ii)*VM(UPFCsend(ii))*Bvr*sin(-A3);

Qvr = Vvr(ii)^2*Bvr - Vvr(ii)*VM(UPFCsend(ii))*Bvr*cos(-A3);

PQvr(ii) = Pvr + Qvr*i;
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else

% Computation of Series Converters Terms

Pcrk = VM(UPFCsend(ii))*Vcr(ii)*Bkk*sin(A2);

Qcrk = - VM(UPFCsend(ii))*Vcr(ii)*Bkk*cos(A2);

%Power in bus m

Pcal = Pkm + Pcrk;

Qcal = Qkm + Qcrk;

UPFC_PQrec(ii) = Pcal + Qcal*i;

PCAL(UPFCsend(ii)) = PCAL(UPFCsend(ii)) + Pcal;

QCAL(UPFCsend(ii)) = QCAL(UPFCsend(ii)) + Qcal;

%Power in Series Converter

Pcr = Pcr + Vcr(ii)*VM(UPFCsend(ii))*Bkk*sin(-A2);

Qcr = Qcr - VM(UPFCsend(ii))*Vcr(ii)*Bkk*cos(-A2);

PQcr(ii) = Pcr + Qcr*i;

end

send = UPFCsend(ii);

UPFCsend(ii) = UPFCrec(ii);

UPFCrec(ii) = send;

Beq = Bmm;

Bmm = Bkk;

Bkk = Beq;

end

end

%Function to compute power mismatches with UPFC

function [DPQ,flag] = UPFCPowerMismatches(flag,tol,nbb,DPQ,VM,VA,...

NUPFC,Flow,Psp,PSta,Qsp,QSta,UPFC_PQsend,UPFC_PQrec,PQcr,PQvr);

iii = 0;

for ii = 1 : NUPFC

index = 2*(nbb + ii) + iii;

if PSta(ii) == 1

if Flow(ii) == 1

DPQ(index-1) = Psp(ii) - real(UPFC_PQsend(ii));

else

DPQ(index-1) = - Psp(ii) - real(UPFC_PQrec(ii));

end

else

DPQ(index-1) = 0;

end

if QSta(ii) == 1

if Flow(ii) == 1

DPQ(index) = Qsp(ii) - imag(UPFC_PQrec(ii));

else

DPQ(index) = - Qsp(ii) - imag(UPFC_PQrec(ii));

end
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else

DPQ(index) = 0;

end

DPQ(index + 1) = - real(PQcr(ii) + PQvr(ii));

iii=iii+1;

end

% Check for convergence

if ( abs(DPQ) < tol )

flag = 1;

end

%Function to add the UPFC elements to the Jacobian matrix

function [JAC] = UPFCJacobian(nbb,JAC,VM,VA,NUPFC,UPFCsend,...

UPFCrece,Xcr,Xvr,Flow,PSta,QSta,Vcr,Tcr,Vvr,Tvr,VvrSta);

iii = 0;

for ii = 1 : NUPFC

indexQ=2*(nbb + ii) + iii;

indexP=indexQ-1;

indexL=indexQ + 1;

if VvrSta(ii) == 1

JAC(:,2*UPFCsend(ii)) = 0.0;

end

Bmm = - 1/Xcr(ii)-1/Xvr(ii);

Bkk = -1/Xcr(ii);

Bmk = 1/Xcr(ii);

Bvr = 1/Xvr(ii);

for kk = 1 : 2

A1 = VA(UPFCsend(ii))-VA(UPFCrece(ii));

A2 = VA(UPFCsend(ii))-Tcr(ii);

A3 = VA(UPFCsend(ii))-Tvr(ii);

% Computation of Conventional Terms

Hkm = - VM(UPFCsend(ii))*VM(UPFCrece(ii))*Bmk*cos(A1);

Nkm = VM(UPFCsend(ii))*VM(UPFCrece(ii))*Bmk*sin(A1);

% Computation of Shunt Converters Terms

Hvr = -VM(UPFCsend(ii))*Vvr(ii)*Bvr*cos(A3);

Nvr = VM(UPFCsend(ii))*Vvr(ii)*Bvr*sin(A3);

% Computation of Series Converters Terms

if kk == 1

Hcr = - VM(UPFCsend(ii))*Vcr(ii)*Bmk*cos(A2);

Ncr = VM(UPFCsend(ii))*Vcr(ii)*Bmk*sin(A2);

else

Hcr = - VM(UPFCsend(ii))*Vcr(ii)*Bkk*cos(A2);
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Ncr = VM(UPFCsend(ii))*Vcr(ii)*Bkk*sin(A2);

end

if kk == 1

JAC(2*UPFCsend(ii)-1,2*UPFCsend(ii)-1) = JAC(2*UPFCsend...

(ii)-1, 2*UPFCsend(ii)-1) - VM(UPFCsend(ii))^2*Bmm;

if VvrSta(ii) == 1

JAC(2*UPFCsend(ii)-1,2*UPFCsend(ii)) = Nvr;

JAC(2*UPFCsend(ii),2*UPFCsend(ii)) = Hvr;

else

JAC(2*UPFCsend(ii)-1,2*UPFCsend(ii)) = JAC(2*UPFCsend(ii)-1,...

2*UPFCsend(ii)) - Nkm + Nvr;

JAC(2*UPFCsend(ii),2*UPFCsend(ii)) = JAC(2*UPFCsend...

(ii),2*UPFCsend(ii)) - Hkm + Hvr + 2*VM(UPFCsend(ii))^2*Bmk;

end

JAC(2*UPFCsend(ii)-1,indexL) = Hvr;

JAC(2*UPFCsend(ii),indexL) = - Nvr;

else

JAC(2*UPFCsend(ii)-1,2*UPFCsend(ii)-1) = JAC(2*UPFCsend...

(ii)-1,2*UPFCsend(ii)-1) + VM(UPFCsend(ii))^2*Bmk;

JAC(2*UPFCsend(ii),2*UPFCsend(ii)) = JAC(2*UPFCsend(ii),...

2*UPFCsend(ii)) + VM(UPFCsend(ii))^2*Bmk;

JAC(2*UPFCsend(ii)-1,indexL) = 0.0;

JAC(2*UPFCsend(ii),indexL) = 0.0;

end

JAC(2*UPFCsend(ii)-1,2*UPFCrece(ii)-1) = JAC(2*UPFCsend(ii)-1,...

2*UPFCrece(ii)-1) + Hkm;

JAC(2*UPFCsend(ii),2*UPFCrece(ii)-1) = JAC(2*UPFCsend(ii),...

2*UPFCrece(ii)-1) - Nkm;

if VvrSta(ii) == 1 & kk == 2

JAC(2*UPFCsend(ii)-1,2*UPFCrece(ii)) = 0.0;

JAC(2*UPFCsend(ii),2*UPFCrece(ii)) = 0.0;

else

JAC(2*UPFCsend(ii)-1,2*UPFCrece(ii)) = JAC(2*UPFCsend(ii)-1,...

2*UPFCrece(ii)) + Nkm;

JAC(2*UPFCsend(ii),2*UPFCrece(ii)) = JAC(2*UPFCsend(ii),...

2*UPFCrece(ii)) + Hkm;

end

% Computation of Active Power Controlled Jacobian’s Terms

if PSta(ii) == 1

if (Flow(ii) == 1 & kk == 1) j (Flow(ii) == -1 & kk == 2)

if kk == 1

JAC(indexP, 2*UPFCsend(ii)-1) = - Hkm - Hcr - Hvr;

JAC(indexP, 2*UPFCsend(ii)) = - Nkm + Ncr;
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JAC(indexP, 2*UPFCrece(ii)-1) = - Hkm;

if VvrSta(ii) == 1

JAC(indexP, 2*UPFCrece(ii)) = 0.0;

else

JAC(indexP, 2*UPFCrece(ii)) = Nkm;

end

JAC(indexP, indexP) = Hcr;

if QSta(ii) == 1

JAC(indexP, indexQ) = Ncr;

else

JAC(indexP, indexQ) = 0.0;

end

else

JAC(indexP, 2*UPFCsend(ii)-1) = - Hkm - Hcr;

JAC(indexP, 2*UPFCsend(ii)) = Nkm + Ncr;

JAC(indexP, 2*UPFCrece(ii)-1) = Hkm;

if VvrSta(ii) == 1

JAC(indexP, 2*UPFCrece(ii)) = 0.0;

else

JAC(indexP, 2*UPFCrece(ii)) = Nkm;

end

JAC(indexP, indexP) = Hcr;

if QSta(ii) == 1

JAC(indexP, indexQ) = Ncr;

else

JAC(indexP, indexQ) = 0.0;

end

JAC(indexP, indexL) = 0.0;

end

end

JAC(2*UPFCsend(ii)-1, indexP) = + Hcr;

JAC(2*UPFCsend(ii), indexP) = - Ncr;

else

JAC(indexP, indexP) = 1.0;

end

% Computation of Rective Power Controlled Jacobian’s Terms

if QSta(ii) == 1

if (Flow(ii) == 1 & kk == 1) j (Flow(ii) == -1 & kk == 2)

if kk == 1

JAC(indexQ, 2*UPFCsend(ii)-1) = - Nkm + Ncr;

JAC(indexQ, 2*UPFCsend(ii)) = - 2*VM(UPFCsend(ii))^2*Bmm - ...

Hkm + Hcr;

JAC(indexQ, 2*UPFCrece(ii)-1) = Nkm;

JAC(indexQ, indexQ) = Hcr;

if VvrSta(ii) == 1

JAC(indexQ, 2*UPFCrece(ii)) = 0.0;
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else

JAC(indexQ, 2*UPFCrece(ii)) = Hkm;

end

if PSta(ii) == 1

JAC(indexQ, indexP) = - Ncr;

else

JAC(indexQ, indexP) = 0.0;

end

else

JAC(indexQ, 2*UPFCsend(ii)-1) = Nkm + Ncr;

JAC(indexQ, 2*UPFCsend(ii)) = - 2*VM(UPFCsend(ii)) ...

^2*Bkk + Hkm + Hcr;

JAC(indexQ, 2*UPFCrece(ii)-1) = - Nkm;

JAC(indexQ, indexQ) = Hcr;

if VvrSta(ii) == 1

JAC(indexQ, 2*UPFCrece(ii)) = 0.0;

else

JAC(indexQ, 2*UPFCrece(ii)) = Hkm;

end

if PSta(ii) == 1

JAC(indexQ, indexP) = - Ncr;

else

JAC(indexQ, indexP) = 0.0;

end

end

end

JAC(2*UPFCsend(ii)-1, indexQ) = Ncr;

JAC(2*UPFCsend(ii), indexQ) = Hcr;

else

JAC(indexQ, indexQ) = 1.0;

end

temp = UPFCsend(ii);

UPFCsend(ii) = UPFCrece(ii);

UPFCrece(ii) = temp;

end

A1 = Tcr(ii) - VA(UPFCsend(ii));

A2 = Tcr(ii) - VA(UPFCrece(ii));

A3 = Tvr(ii) - VA(UPFCsend(ii));

Hcrk = - Vcr(ii)*VM(UPFCsend(ii))*Bmk*cos(A1);

Ncrk = Vcr(ii)*VM(UPFCsend(ii))*Bmk*sin(A1);

Hcrm = Vcr(ii)*VM(UPFCrece(ii))*Bmk*cos(A2);

Ncrm = - Vcr(ii)*VM(UPFCrece(ii))*Bmk*sin(A2);

Hvrk = - Vvr(ii)*VM(UPFCsend(ii))*Bvr*cos(A3);

Nvrk = Vvr(ii)*VM(UPFCsend(ii))*Bvr*sin(A3);

JAC(indexL, 2*UPFCsend(ii)-1) = Hcrk + Hvrk;

if VvrSta == 1
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JAC(indexL, 2*UPFCsend(ii)) = Nvrk;

else

JAC(indexL, 2*UPFCsend(ii)) = Nvrk + Ncrk;

end

JAC(indexL, 2*UPFCrece(ii)-1) = Hcrm;

JAC(indexL, 2*UPFCrece(ii)) = Ncrm;

JAC(indexL, indexL) = - Hvrk;

if PSta == 1

JAC(indexL, indexP) = - Hcrk - Hcrm;

else

JAC(indexL, indexP) = 0.0;

end

if QSta == 1

JAC(indexL, indexQ) = Ncrk + Ncrm;

else

JAC(indexL, indexP) = 0.0;

end

iii = iii + 1;

end

%Function to update the UPFC state variables

function [VM,Vcr,Tcr,Vvr,Tvr] = UPFCUpdating(nbb,VM,D,NUPFC,...

UPFCsend,PSta, QSta,Vcr,Tcr,Vvr,Tvr,VvrTar,VvrSta);

iii = 0;

for ii = 1 : NUPFC

indexQ=2*(nbb + ii) + iii;

indexP=indexQ-1;

indexL=indexQ + 1;

if PSta(ii) == 1

Tcr(ii) = Tcr(ii) + D(indexP);

end

if QSta(ii) == 1

Vcr(ii) = Vcr(ii) + D(indexQ)*Vcr(ii);

end

if VvrSta(ii) == 1

Vvr(ii) = Vvr(ii) + D(2*UPFCsend(ii),1)*Vvr(ii);

VM(UPFCsend(ii)) = VvrTar(ii);

end

Tvr(ii) = Tvr(ii) + D(indexL);

iii = iii +1;

end

%Function to check the voltage sources limits in the UPFC

function [Vcr,Vvr] = UPFCLimits(NUPFC,Vcr,VcrLo,VcrHi,Vvr,VvrLo,...

VvrHi);
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for ii = 1 : NUPFC

% Check Magnitude Voltage Limits

if abs(Vcr(ii)) < VcrLo(ii) j abs(Vcr(ii)) > VcrHi(ii)

if abs(Vcr(ii)) < VcrLo(ii)

Vcr(ii) = VcrLo(ii);

elseif abs(Vcr(ii)) > VcrHi(ii)

Vcr(ii) = VcrHi(ii);

end

end

if abs(Vvr(ii)) < VvrLo(ii) j abs(Vvr(ii)) > VvrHi(ii)

if abs(Vvr(ii)) < VvrLo(ii)

Vvr(ii) = VvrLo(ii);

elseif abs(Vvr(ii)) > VvrHi(ii)

Vvr(ii) = VvrHi(ii);

end

end

end

%Function to calculate the power flows in the UPFC controller

function [UPFC_PQsend,UPFC_PQrec,PQcr,PQvr] = PQUPFCpower(nbb,...

VA,VM, NUPFC,UPFCsend,UPFCrec,Xcr,Xvr,Vcr,Tcr,Vvr,Tvr);

for ii = 1 : NUPFC

Bkk = - 1/Xcr(ii)-1/Xvr(ii);

Bmm = -1/Xcr(ii);

Bmk = 1/Xcr(ii);

Bvr = 1/Xvr(ii);

for kk = 1 : 2

A1 = VA(UPFCsend(ii))-VA(UPFCrec(ii));

A2 = VA(UPFCsend(ii))-Tcr(ii);

A3 = VA(UPFCsend(ii))-Tvr(ii);

% Computation of Conventional Terms

Pkm = VM(UPFCsend(ii))*VM(UPFCrec(ii))*Bmk*sin(A1);

Qkm = - VM(UPFCsend(ii))^2*Bkk - VM(UPFCsend(ii))...

*VM(UPFCrec(ii))*Bmk*cos(A1);

% Computation of Shunt Converters Terms

Pvrk = VM(UPFCsend(ii))*Vvr(ii)*Bvr*sin(A3);

Qvrk = - VM(UPFCsend(ii))*Vvr(ii)*Bvr*cos(A3);

if kk == 1

% Computation of Series Converters Terms

Pcrk = VM(UPFCsend(ii))*Vcr(ii)*Bmk*sin(A2);

Qcrk = - VM(UPFCsend(ii))*Vcr(ii)*Bmk*cos(A2);

%Power in bus k

Pk = Pkm + Pcrk + Pvrk;

Qk = Qkm + Qcrk + Qvrk;

UPFC_PQsend(ii) = Pk + Qk*i;

%Power in Series Converter
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Pcr = Vcr(ii)*VM(UPFCsend(ii))*Bmk*sin(-A2);

Qcr = - Vcr(ii)^2*Bmm - Vcr(ii)*VM(UPFCsend(ii))*Bmk*cos(-A2);

%Power in Shunt Converter

Pvr = Vvr(ii)*VM(UPFCsend(ii))*Bvr*sin(-A3);

Qvr = Vvr(ii)^2*Bvr - Vvr(ii)*VM(UPFCsend(ii))*Bvr*cos(-A3);

PQvr(ii) = Pvr + Qvr*i;

else

% Computation of Series Converters Terms

Pcrk = VM(UPFCsend(ii))*Vcr(ii)*Bkk*sin(A2);

Qcrk = - VM(UPFCsend(ii))*Vcr(ii)*Bkk*cos(A2);

%Power in bus m

Pcal = Pkm + Pcrk;

Qcal = Qkm + Qcrk;

UPFC_PQrec(ii) = Pcal + Qcal*i;

%Power in Series Converter

Pcr = Pcr + Vcr(ii)*VM(UPFCsend(ii))*Bkk*sin(-A2);

Qcr = Qcr - VM(UPFCsend(ii))*Vcr(ii)*Bkk*cos(-A2);

PQcr(ii) = Pcr + Qcr*i;

end

send = UPFCsend(ii);

UPFCsend(ii) = UPFCrec(ii);

UPFCrec(ii) = send;

Beq = Bmm;

Bmm = Bkk;

Bkk = Beq;

end

end

5.6.3 Numerical Example of Power Flow Control using One
Unified Power Flow Controller

The five-bus network is modified to include one UPFC to compensate the transmission line

linking bus Lake and bus Main. The modified network is shown in Figure 5.18. The UPFC is

used to maintain active and reactive powers leaving the UPFC, towards Main, at 40MWand

2MVAR, respectively. Moreover, the UPFC shunt converter is set to regulate the nodal

voltage magnitude at Lake at 1 p.u.

The starting values of the UPFC voltage sources are taken to be VcR ¼ 0:04 p.u.,
�cR ¼ 87:13�, VvR ¼ 1 p.u., and �vR ¼ 0�. Information on how to determine the starting

values for these voltage sources is given in Section 5.8.1. The source impedances have

values of XcR ¼ XvR ¼ 0:1 p.u.
Convergence is obtained in five iterations to a power mismatch tolerance of 1e�12. The

UPFC upheld its target values. The power flow results are shown in Figure 5.18, and the bus

voltages are given in Table 5.6.

The data given in function PowerFlowsData in Section 4.3.9 are modified to

accommodate for the inclusion of the UPFC. Furthermore, function UPFCData is used to
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enter UPFC data:

%This function is used exclusively to enter data for:

% UNIFIED POWER FLOW CONTROLLER

% NUPFC : Number of UPFC’s

% UPFCsend : Shunt converter’s bus and series converter’ sending bus

% UPFCrec : Series converter’ receiving bus

% Xcr : Inductive reactance of Shunt impedance (p.u.)

% Xvr : Inductive reactance of Series impedance (p.u.)

% Flow : Power flow direction : 1 is for sending to receiving bus

60 + j10

North Lake Main

South Elm

39.8440.048.4350.34

76.42

75.87

36.57

1.78

20 + j10

40

85.76 45 + j15 40 + j5

8.929.34
81.14

78.84

3.492.0

11.71

12.97
13.74

37.48

13.63

1.85

75.49

131.48

0.34

4.71

13.46

13.31

46.6947.61

5.295.14

40.0

17.79

Lakefa

Figure 5.18 Five-bus test network with one unified power flow controller, and power flow result

Table 5.6 Bus voltages of modified network

System bus

Nodal voltage North South Lake Lakefa Main Elm

Magnitude (p.u.) 1.06 1.00 1.00 0.997 0.992 0.975

Phase angle (deg) 0 �1.77 �6.02 �2.51 �3.19 �4.97
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% -1 indicates opposite direction

% Psp : Target active power flow (p.u.)

% PSta : control status for active power : 1 is on; 0 is off

% Qsp : Target reactive power flow (p.u.)

% QSta : control status for reactive power : 1 is on; 0 is off

% Vcr : Initial condition for the series source voltage magnitude (p.u.)

% Tcr : Initial condition for the series source voltage angle (rad.)

% VcrLo : Lower limit of series source voltage magnitude (p.u.)

% VcrHi : Higher limit of series source voltage magnitude (p.u.)

% Vvr : Initial condition to the shunt source voltage magnitude (p.u.)

% Tvr : Initial condition to the shunt source voltage angle (rad.)

% VvrLo : Lower limit of shunt source voltage magnitude (p.u.)

% VvrHi : Higher limit of shunt source voltage magnitude (p.u)

% VvrTar : Target nodal voltage magnitude to be controlled by shunt ...

% branch (p.u.)

% VvrSta : Control status for nodal voltage magnitude: 1 is on; o is off

NUPFC=1;

UPFCsend(1)=3; UPFCrec(1)=6; Xcr(1)=0.1; Xvr(1)=0.1;

Flow(1)=-1; Psp(1)=0.4; PSta(1)=1; Qsp(1)=0.02; QSta(1)=1;

Vcr(1)=0.04; Tcr(1)=-87.13/57.3; VcrLo(1)=0.001; VcrHi(1)=0.2;

Vvr(1)=1.0; Tvr(1)=0.0; VvrLo(1)=0.9; VvrHi(1)=1.1;

VvrTar(1)=1.0; VvrSta(1)=1;

As expected, the power flows in the UPFC-upgraded network differ with respect to the

original case. The most noticeable changes are as follows: there is a 32% increase of active

power flowing towards Lake through transmission lines North–Lake and South–Lake.

The increase is in response to the large amount of active power demanded by the UPFC

series converter. The maximum amount of active power exchanged between the UPFC and

the AC system will depend on the robustness of the UPFC shunt bus, Lake. Since the UPFC

generates its own reactive power, the generator at North decreases its reactive power

generation by 5.6%, and the generator connected at South increases its absorption of

reactive power by 22.6%.

The maximum absolute power mismatches in the system buses and UPFC are shown

in Table 5.7. It must be noted that the selected UPFC initial conditions are very good

Table 5.7 Maximum power mismatches in the bus system and unified power

flower controller (UPFC)

Buses UPFC

Iteration �P �Q �Pmk �Qmk PcR þ PvR

1 7.745e�1 1.401e�1 5.0e�04 4.0e�02 0

2 1.89e�2 1.001e�2 5.1e�03 6.5e�02 5.7e�03

3 3.8e�03 5.1e�04 3.7e�03 5.0e�04 8.6e�05

4 1.2e�07 1.6e�06 1.2e�07 1.6e�6 1.2e�07

5 1.3e�12 1.9e�13 1.2e�12 1.8e�13 1.3e�14
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estimates, since the UPFC mismatches have small values from the outset of the iterative

process.

For completeness Table 5.8 shows the variation of the controllable voltage sources during

the iterative process.

5.7 HIGH-VOLTAGE DIRECT-CURRENT-BASED VOLTAGE
SOURCE CONVERTER

From the principles of HVDC-VSC operation outlined in Chapter 2 it may be argued that for

the purpose of fundamental frequency analysis each converter station may be adequately

represented by a complex voltage source VvR behind its transformer reactance XvR

(impedance ZvR). Similar to the case for the STATCOM, and UPFC, the synchronous

voltage sources represent the fundamental Fourier series component of the switched voltage

waveforms at the AC converter terminals of the HVDC-VSC.

The two voltage sources work in a coordinated fashion, and this fact is taken into account

by the mismatch power equation in the equivalent circuit shown in Figure 5.19. This circuit

is used to derive the mathematical model of the HVDC-VSC for inclusion in the power flow

Newton–Raphson algorithm.

The complex voltage sources representing the two VSC stations in the HVDC-VSC are:

EvR1 ¼ VvR1 cos �vR1 þ j sin �vR1ð Þ; ð5:62Þ
EvR2 ¼ VvR2 cos �vR1 þ j sin �vR2ð Þ: ð5:63Þ

In the current application, the voltage sources have the following voltage magnitudes

and phase angle limits: 0 � VvR1 � VvR1max; 0 � �vR1 � 2�; 0 � VvR2 � VvR2max;

0 � �vR2 � 2�.

The constraining power equation for the back-to-back HVDC-VSC (i.e. R
DC

¼ 0) is

Re VvR1I
�
vR1 þ VvR2I

�
vR2


 � ¼ 0; ð5:64Þ
and for the case when both VSC stations are linked by a DC cable (i.e. R

DC
> 0) is

Re VvR1I
�
vR1 þ VvR2I

�
vR2 þ PDC;loss


 � ¼ 0: ð5:65Þ

Table 5.8 Variation of ideal source voltages

Series source Shunt source

Iteration VcR (p.u.) �cR (deg) VvR (p.u.) �vR (deg)

1 0.04 �87.12 1 0

2 0.1004 �97.54 1.0134 �5.8882

3 0.1009 �92.71 1.0174 �6.0051

4 0.1013 �92.73 1.0173 �6.0055

5 0.1013 �92.73 1.0173 �6.0055

216 POWER FLOW INCLUDING FACTS CONTROLLERS



5.7.1 Power Equations

If it is assumed that the power flows from the station connected at bus k (rectifier) to the

station connected at bus m (inverter), the power flow equations injected at bus k are:

Pk ¼ V2
k GvR1 þ VkVvR1 GvR1 cos �k � �vR1ð Þ þ BvR1 sin �k � �vR1ð Þ½ �; ð5:66Þ

Qk ¼ �V2
k BvR1 þ VkVvR1 GvR1 sin �k � �vR1ð Þ � BvR1 cos �k � �vR1ð Þ½ �: ð5:67Þ

The powers flowing into the rectifier are described by the following equations:

PvR1 ¼ V2
vR1GvR1 þ VvR1Vk GvR1 cos �vR1 � �kð Þ þ BvR1 sin �vR1 � �kð Þ½ �; ð5:68Þ

QvR1 ¼ �V2
vR1BvR1 þ VvR1Vk GvR1 sin �vR1 � �kð Þ � BvR1 cos �vR1 � �kð Þ½ �: ð5:69Þ

The power equations for bus m and for the inverter are obtained by exchanging the

subscripts k and vR1 for m and vR2, respectively.
Moreover, one further equation is required to represent the power constraint given in the

form of either Equation (5.64) or Equation (5.65), depending on the application. For the case

of the full HVDC-VSC, the relevant power equation is:

PvR1 þ PvR2 þ P
DC

¼ 0: ð5:70Þ
It should be remarked that for the purpose of power flow studies the equivalent circuit of one

leg of the HVDC-VSC shown in Figure 5.19 is closely related to the equivalent circuit of the

STATCOM (see Section 5.5.1).

As described in Chapter 4, an n-bus power network with no voltage and power flow

regulation provisions is described by a 2� ðn� 1Þ nonlinear system of equations.

_

IvR1
Bus mBus k

m mV θ∠k kV θ∠

ZvR1

1 1vR vRV δ∠

+

Ik Im

IvR2

ZvR2

_
2 2vR vRV δ∠

+

{ }1 2Re 0vR k vR mV I V I V I
DC DC

∗ ∗
+ + =

Figure 5.19 High-voltage direct-current based voltage source converter equivalent circuit

HIGH-VOLTAGE DIRECT-CURRENT-BASED VOLTAGE SOURCE CONVERTER 217



Moreover, for each HVDC-VSC that exists in the power network the 2� ðn� 1Þ system of

equations is augmented by up to five equations to take account of the two converter stations

and the power constraint equation that exists on the DC side of the converters. The solution

of the combined system of nonlinear equations is carried out by iteration using the Newton–

Raphson method, enabling quadratic convergent solutions.

Both converter stations are capable of controlling the amount of active power injected at

their respective AC buses. In a given power flow solution, one of the converters is designated

to be the master station, with the other converter being the slave station. Moreover, both

stations have control over either voltage magnitude or reactive power injected at their

connecting buses.

For the HVDC-VSC, when active power is regulated at the rectifier end and voltage

magnitude is regulated at the inverter end, the linearised system of equations has the

following structure:

�Pk

�Qk

�PvR

�QvR

�PHVDC

2
66666666666666664

3
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¼
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;

ð5:71Þ
where �PHVDC, given by

�PHVDC ¼ �PvR1 ��PvR2;

is the active power flow mismatch for the DC link. Notice that, since active power is

regulated at the rectifier end (i.e. �PvR1 ¼ P
spec
vR1 � Pcalc

vR1), the corresponding active power

equations of the inverter become redundant (i.e. �PvR2 and �Pm) and are not used in

Equation (5.71). Moreover, since the voltage magnitude at bus m is kept constant the

reactive power equations of the inverter also become redundant (i.e. �QvR2 and �QPm).

The relevant Jacobian elements are given in Appendix A, Section A.5.

5.7.2 High-voltage Direct-current-based Voltage Source Converter
Computer Program in Matlab1 Code

Program 5.7 incorporates the HVDC model within the Newton–Raphson power flow

program. The functions PowerFlowsData, YBus, and PQflows are also used here. In the

main HVDC Newton–Raphson program, the function HVDCData is added to read the HVDC

data, HVDCNewtonRaphson replaces NewtonRaphson, and HVDCPQflows is used to

calculate power flows and losses in the HVDC.
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PROGRAM 5.7 Program written in Matlab1 to incorporate the high-voltage direct-

current (HVDC) model within the Newton–Raphson power flow algorithm.

% - - - Main HVDC Program

PowerFlowsData;

HVDCdata;

[YR,YI] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,tlcond,ntl,nbb);

[VM,VA,it,Vvr1,Tvr1,Vvr2,Tvr2] = HVDCNewtonRaphson(tol,itmax,ngn,...

nld,nbb,bustype,genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,YR,...

YI,VM,VA,NHVDC, HVDCsend,HVDCrec,Xvr1,Xvr2,Rcd,TarVol1,VSta1,Qsp1,...

QSta1,TarVol2,VSta2, Qsp2,QSta2,Psp,Vvr1,Tvr1,Vvr2,Tvr2,VvrHi,...

VvrLo);

[PQsend,PQrec,PQloss,PQbus] = PQflows(nbb,ngn,ntl,nld,genbus,...

loadbus,tlsend,tlrec,tlresis,tlreac,tlcond,tlsuscep,PLOAD,QLOAD,...

VM,VA);

[HVDC_PQsend,HVDC_PQrec] = HVDCPQpower(nbb,VA,VM,NHVDC,HVDCsend,...

HVDCrec,Xvr1,Xvr2,Vvr1,Tvr1,Vvr2,Tvr2);

%Print results

it %Number of iterations

VM %Nodal voltage magnitude (p.u)

VA=VA*180/pi %Nodal voltage phase angles (deg)

Sources=[Vv1,Tvr1*180/pi,Vvr2,Tvr2*180/pi] %Final source voltage

% parameters

HVDC_PQsend %Active and reactive powers in sending bus (p.u.)

HVDC_PQrec %Active and reactive powers in receiving bus (p.u.)

%End of MAIN HVDC PROGRAM

%Carry out iterative solution using the Newton–Raphson method

function [VM,VA,it,Vvr1,Tvr1,Vvr2,Tvr2] = NewtonRaphson(tol,itmax,...

ngn,nld, nbb,bustype,genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,...

QLOAD,YR,YI,VM,VA, NHVDC,HVDCsend,HVDCrece,Xvr1,Xvr2,Rcd,TarVol1,...

VSta1,Qsp1,QSta1,TarVol2, VSta2,Qsp2,QSta2,Psp,Vvr1,Tvr1,Vvr2,...

Tvr2,VvrHi,VvrLo);

% GENERAL SETTINGS

flag = 0;

it = 1;

% CALCULATE NET POWERS

[PNET,QNET] = NetPowers(nbb,ngn,nld,genbus,loadbus,PGEN,QGEN,...

PLOAD,QLOAD);
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while ( it < itmax & flag==0 )

% CALCULATED POWERS

[PCAL,QCAL] = CalculatedPowers(nbb,VM,VA,YR,YI);

%STATCOM CALCULATED POWERS

[PCAL,QCAL,PHVDC,QHVDC] = HVDCCalculatePowers(PCAL,QCAL,VM,VA,...

NHVDC, HVDCsend,HVDCrece,Xvr1,Xvr2,Vvr1,Tvr1,Vvr2,Tvr2);

% POWER MISMATCHES

[DPQ,DP,DQ,flag] = PowerMismatches(nbb,tol,bustype,flag,PNET,QNET,...

PCAL,QCAL);

%HVDC POWER MISMATCHES

[DPQ,flag] = HVDCMismatches(flag,tol,DPQ,nbb,VM,VA,NHVDC, HVDCsend,...

HVDCrece,TarVol1,VSta1,TarVol2,VSta2,Psp,Qsp1,QSta1,Qsp2,QSta2,...

PHVDC, QHVDC);

if flag == 1

break

end

% JACOBIAN FORMATION

[JAC] = NewtonRaphsonJacobian(nbb,bustype,PCAL,QCAL,DPQ,VM,VA,...

YR,YI);

% HVDC JACOBIAN

[JAC] = HVDC_Jacobian(nbb,JAC,VM,VA,NHVDC,HVDCsend,HVDCrece,...

Xvr1,Xvr2,Rcd,VSta1,VSta2,QSta1,QSta2,Vvr1,Tvr1,Vvr2,Tvr2);

% SOLVE FOR THE STATE VARIABLES VECTOR

D = JAC\DPQ’;

% UPDATE THE STATE VARIABLES VALUES, WITH TRUNCATED CORRECTIONS IF

% NECESSARY (VM increments < +-0.1 p.u. and VA inrements < +- 5 deg)

[VA,VM] = StateVariablesUpdating(nbb,D,VA,VM,it);

%UPDATE HVDC STATE VARIABLES

[VM,Vvr1,Tvr1,Vvr2,Tvr2] = HVDC_Updating(nbb,D,VM,VA,NHVDC,...

HVDCsend,HVDCrece,QSta1, QSta2,VSta1,TarVol1,TarVol2,VSta2,Vvr1,...

Tvr1,Vvr2,Tvr2);

%CHECK VOLTAGE CONVERTERS FOR LIMITS

[Vvr1,Vvr2] = HVDCLimits(NHVDC,Vvr1,Vvr2,VvrLo,VvrHi);
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it = it + 1;

end

%Function to calculate injected bus powers by the HVDC

function [PCAL,QCAL,PHVDC,QHVDC] = HVDCCalculatePowers(PCAL,QCAL,...

VM,VA,NHVDC,HVDCsend,HVDCrece,Xvr1,Xvr2,Vvr1,Tvr1,Vvr2,Tvr2);

for ii = 1 : NHVDC

for kk = 1 : 2

Bkk = -1/Xvr1(ii);

Bvr = 1/Xvr1(ii);

A = VA(HVDCsend(ii)) - Tvr1(ii);

PHVDC(ii,kk) = VM(HVDCsend(ii))*Vvr1(ii)*Bvr*sin(A);

QHVDC(ii,kk) = - VM(HVDCsend(ii))^2*Bkk - VM(HVDCsend(ii))...

*Vvr1(ii)*Bvr*cos(A);

PCAL(HVDCsend(ii)) = PCAL(HVDCsend(ii)) + PHVDC(ii,kk);

QCAL(HVDCsend(ii)) = QCAL(HVDCsend(ii)) + QHVDC(ii,kk);

HVDCsend(ii) = HVDCrece(ii);

Xvr1(ii) = Xvr2(ii);

Tvr1(ii) = Tvr2(ii);

Vvr1(ii) = Vvr2(ii);

end

end

%Function to compute power mismatches with HVDC

function [DPQ,flag] = HVDCMismatches(flag,tol,DPQ,nbb,VM,VA,NHVDC,...

HVDCsend,HVDCrece,TarVol1,VSta1,TarVol2,VSta2,Psp,Qsp1,QSta1,...

Qsp2,QSta2,PHVDC,QHVDC);

iii = 0;

for ii = 1 : NHVDC

index= 2*(nbb + ii) + iii;

DPQ(index-1) = Psp(ii) - PHVDC(ii,1);

DPQ(index) = Qsp1(ii) - QHVDC(ii,1);

DPQ(index + 1) = - Psp(ii) - PHVDC(ii,2);

DPQ(index + 2) = Qsp2(ii) - QHVDC(ii,2);

iii = iii + 2;

end

% Check for convergence
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if ( abs(DPQ) < tol )

flag = 1;

end

%Function to add up the HVDC elements to Jacobian matrix

function [JAC] = HVDC_Jacobian(nbb,JAC,VM,VA,NHVDC,HVDCsend,...

HVDCrece, Xvr1,Xvr2,Rcd,VSta1,VSta2,QSta1,QSta2,Vvr1,Tvr1,Vvr2,Tvr2);

iii = 0;

for ii = 1 : NHVDC

index= 2*(nbb + ii) + iii;

for kk = 1 : 2

if VSta1(ii) == 1

JAC(: , 2*HVDCsend(ii) )=0;

end

JAC(index-1,index-1) = 1;

JAC(index,index) = 1;

Bvr = 1/Xvr1(ii);

A1 = Tvr1(ii)-VA(HVDCsend(ii));

A2 = VA(HVDCsend(ii))-Tvr1(ii);

Pcal = - VM(HVDCsend(ii))*Vvr1(ii)*Bvr*sin(A2);

Qcal = Vvr1(ii)*VM(HVDCsend(ii))*Bvr*cos(A2);

Phvdc = - Vvr1(ii)*VM(HVDCsend(ii))*Bvr*sin(A1);

Qhvdc = Vvr1(ii)*VM(HVDCsend(ii))*Bvr*cos(A1);

JAC(2*HVDCsend(ii)-1,2*HVDCsend(ii)-1) = JAC(2*HVDCsend(ii)-1,...

2*HVDCsend(ii)-1) + VM(HVDCsend(ii))^2*Bvr;

if (QSta1(ii) == 1 )

JAC(2*HVDCsend(ii),2*HVDCsend(ii)) = JAC(2*HVDCsend(ii),...

2*HVDCsend(ii)) + VM(HVDCsend(ii))^2*Bvr;

else

JAC(2*HVDCsend(ii)-1,2*HVDCsend(ii)) = JAC(2*HVDCsend(ii)-1,...

2*HVDCsend(ii)) + Phvdc;

JAC(2*HVDCsend(ii),2*HVDCsend(ii)) = JAC(2*HVDCsend(ii),...

2*HVDCsend(ii)) - Qhvdc;

JAC(2*HVDCsend(ii),2*HVDCsend(ii)-1) = JAC(2*HVDCsend(ii),...

2*HVDCsend(ii)-1) - Phvdc;

end

JAC(2*HVDCsend(ii)-1,index-1) = - Qcal;

JAC(index-1,2*HVDCsend(ii)-1) = Qhvdc;

JAC(index-1,2*HVDCsend(ii)) = Phvdc;

JAC(index-1,index-1) = - Qhvdc;

if (QSta1(ii) == 1)

JAC(index-1,index) = Phvdc;

JAC(2*HVDCsend(ii),index-1) = Pcal;
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else

JAC(index-1,index) = 0.0 ;

JAC(2*HVDCsend(ii),index-1) = - Phvdc;

end

if (QSta1(ii) == 1)

JAC(2*HVDCsend(ii)-1,index) = - Pcal;

JAC(2*HVDCsend(ii),index) = - Qcal;

JAC(index,2*HVDCsend(ii)-1) = - Phvdc;

JAC(index,2*HVDCsend(ii)) = Qhvdc;

JAC(index,index) = -2*Vvr1(ii)^2*Bvr + Qhvdc;

JAC(index,index-1) = Phvdc;

end

HVDCsend(ii) = HVDCrece(ii);

Xvr1(ii) = Xvr2(ii);

Vvr1(ii) = Vvr2(ii);

Tvr1(ii) = Tvr2(ii);

VSta1(ii) = VSta2(ii);

QSta1(ii) = QSta2(ii);

index = index + 2;

end

iii = iii + 2;

end

%Function to update HVDC state variables

function [VM,Vvr1,Tvr1,Vvr2,Tvr2] = HVDC_Updating(nbb,D,VM,VA,NHVDC,...

HVDCsend,HVDCrece,QSta1,QSta2,VSta1,TarVol1,TarVol2,VSta2,Vvr1,...

Tvr1,Vvr2, Tvr2);

iii =0;

for ii = 1 : NHVDC

index = 2*(nbb + ii) + iii;

if (VSta1(ii) == 1)

% Adjust the Volatge Magnitud target

Vvr1(ii) = Vvr1(ii) + Vvr1(ii)*D(2*HVDCsend(ii));

VM(HVDCsend(ii)) = TarVol1(ii);

Tvr1(ii) = Tvr1(ii) + D(index-1);

else

Vvr1(ii) = Vvr1(ii) + Vvr1(ii)*D(index);

Tvr1(ii) = VA(HVDCsend(ii));

end

if (VSta2(ii) == 1)

% Adjust the Volatge Magnitud target

Vvr2(ii) = Vvr2(ii) + Vvr1(ii)*D(2*HVDCrece(ii));

VM(HVDCsend(ii)) = TarVol2(ii);

Tvr2(ii) = Tvr2(ii) + D(index + 2);

else

Vvr2(ii) = Vvr2(ii) + Vvr2(ii)*D(index + 2);
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Tvr2(ii) = Tvr2(ii) + D(index + 1);

end

end

%Function to check voltagesources limits in HVDC controllers

function [Vvr1,Vvr2] = HVDCLimits(NHVDC,Vvr1,Vvr2,VvrLo,VvrHi);

for ii = 1 : NHVDC

% Check Magnitude Voltage Limits

for kk = 1 : 2

if Vvr1(ii) < VvrLo(ii) j Vvr1(ii) > VvrHi(ii)

if Vvr1(ii) < VvrLo(ii)

Vvr1(ii) = VvrLo(ii);

elseif Vvr1(ii) > VvrHi(ii)

Vvr1(ii) = VvrHi(ii);

end

end

temp = Vvr1(ii);

Vvr1(ii) = Vvr2(ii);

Vvr2(ii) = temp;

end

end

%Function to calculate the power flows in HVDC controller

function [HVDC_PQsend,HVDC_PQrece] = HVDCPQpower(nbb,VA,VM,NHVDC,...

HVDCsend, HVDCrece,Xvr1,Xvr2,Vvr1,Tvr1,Vvr2,Tvr2);

for ii = 1: NHVDC

for kk = 1: 2

Bkk = -1/Xvr1(ii);

Bvr = 1/Xvr1(ii);

A = VA(HVDCsend(ii)) - Tvr1(ii);

PHVDC(ii) = VM(HVDCsend(ii))*Vvr1(ii)*Bvr*sin(A);

QHVDC(ii) = - VM(HVDCsend(ii))^2*Bkk – (HVDCsend(ii))*Vvr1(ii)...

*Bvr*cos(A);

if kk == 1

HVDC_PQsend(ii) = PHVDC(ii) + i*QHVDC(ii);

else

HVDC_PQrece(ii) = PHVDC(ii) + i*QHVDC(ii);

end

HVDCsend(ii) = HVDCrece(ii);

Xvr1(ii) = Xvr2(ii);

Vvr1(ii) = Vvr2(ii);

Tvr1(ii) = Tvr2(ii);

end

end
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5.7.3 Numerical Example of Power Flow Control using
One HVDC-VSC

The five-bus system is used to illustrate the power flow control performance of the HVDC-

VSC models. This power flow controller may be used to regulate the amount of power flow

at their points of connection or even to reverse the direction of power flowing through the

controller.

5.7.3.1 HVDC-VSC back-to-back model

The original network is modified to include one back-to-back (BTB) HVDC model to

regulate power flow at the points of connection. Take, for instance, the case when the UPFC

is installed at the receiving end of line Lake–Main and is set to regulate active and reactive

powers flowing from Lake to Main at 40MW and 2MVAR, respectively. The voltage

magnitude at bus Lake is controlled at 1 p.u. The back-to-back HVDC model replaces

the UPFC used in the test case described in Section 5.6.3. As expected, the power flow

results for both cases are exactly the same.

5.7.3.2 HVDC-VSC full model

A different situation arises when the full HVDC-VSC model replaces the combined UPFC–

transmission-line model connected between Lake and Main since the DC cable will contain

neither the inductance nor the capacitance of the transmission line. In this example, the

cable resistance in the DC system is taken to have the same value as the transmission-line

resistance in the AC system, which is 1%. Figure 5.20 shows results for the case when the full

HVDC-VSC is used to control active power flow at Lake at 40MW, and Table 5.9 shows the

nodal voltages in the modified network.

The data given in function PowerFlowsData in Section 4.3.9 is modified to acco-

mmodate for the inclusion of the HVDC. For HVDC-BTB the modification is as in Section

5.4.3, and for the HVDC-VSC the transmission line originally connected between Lake and

Main is replaced by the HVDC-VSC. Function HVDCData is used to enter HVDC data:

%This function is used exclusively to enter data for:

%HIGH VOLTAGE DIRECT CURRENT (HVDC)

% NHVDC : Number of HVDC’s

% HVDCsend : Shunt converter’s sending bus

% HVDCrec : Shunt converter’s receiving bus

% Rcd : DC cable’s resistance for HVDC DC-Link model

% Psp : Target active power flow (p.u.)

% VvrLo : Lower limit for voltage sources magnitudes (p.u.)

% VvrHi : Higher limit for voltage sources magnitudes (p.u.)

% SENDING BUS
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% Xvr1 : Inductive reactance of transformer-sending

% TarVol1 : Target nodal voltage magnitude (pu.)

% VSta1 : control status for nodal voltage magnitude: 1 is on; 0 is off

% Qsp1 : Target reactive power flow

% QSta1 : control status for reactive power: 1 is on; 0 is off

% Vvr1 : Initial condition for the shunt source voltage magnitude (p.u.)

% Tvr1 : Initial condition for the shunt source voltage phase angle (rad.)

% RECEIVING BUS

% Xvr2 : Inductive reactance of transformer-receiving

% TarVol2 : Target nodal voltage magnitude (pu.)

% VSta2 : Control status for nodal voltage magnitude: 1 is on; 0 is off

% Qsp2 : Target reactive power flow

% QSta2 : Control status for reactive power: 1 is on; 0 is off

% Vvr2 : Initial condition for the shunt source voltage magnitude (p.u.)

% Tvr2 : Initial condition for the shunt source voltage angle (rad.)

NHVDC=1;

HVDCsend(1)=3; HVDCrec(1)=4; Xvr1(1)=0.1; Xvr2(1)=0.1; Rcd(1)=0.1;

TarVol1(1)=1.0; VSta1(1)=1; Qsp1(1)=0.02; QSta1(1)=0;

TarVol2(1)=1.0; VSta2(1)=0; Qsp2(1)=-0.02; QSta2(1)=1;

Psp(1)=0.4;

Vvr1(1)=1.0; Tvr1(1)=0.0; Vvr2(1)=1.0; Tvr2(1)=0.0;

VvrHi(1)=1.1; VvrLo(1)=0.9;
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Figure 5.20 Power flow results in the five-bus network with one full high-voltage direct-current-

based voltage source converter

226 POWER FLOW INCLUDING FACTS CONTROLLERS



5.8 EFFECTIVE INITIALISATION OF FACTS CONTROLLERS

The modelling of FACTS controllers for application in power flow analysis results in highly

nonlinear equations which should be suitably initialised to ensure quadratic convergent

solutions when using the Newton–Raphson method. This section addresses such a problem

and makes firm recommendations for the use of simple and effective initialisation

procedures for all FACTS models in power flow and related studies.

5.8.1 Controllers Represented by Shunt Synchronous Voltage Sources

Extensive use of FACTS models represented by shunt voltage sources indicates that

elements such as the STATCOM, the shunt source of the UPFC, and the two-shunt sources

representing the HVDC-VSC are suitably initialised by selecting 1 p.u. voltage magnitudes

and 0� phase angles.

5.8.2 Controllers Represented by Shunt Admittances

It has been found that the SVC is well initialised by selecting a firing-angle value that cor-

responds to the reactance resonant peak; this value is calculated by using Equation (5.40).

5.8.3 Controllers Represented by Series Reactances

The TCSC can be represented as an equivalent variable reactance, the ability of which either

to generate or to absorb reactive power is a function of the thyristor firing angle, �TCSC. The

adjustable reactance representing the TCSC module shown in Figure 5.11 is well described

by Equations (5.31)–(5.35).

Normally, the active power flow through the TCSC is chosen to be the control variable,

and �TCSC is chosen to be the state variable. Hence, good initial values for �TCSC become

mandatory in order to ensure robust iterative solutions. To this end, an approximation of

Equation (5.31) is used:

XTCSCð1Þ �TCSCð Þ � �C2 	$ 	 tan $ p� �TCSCð Þ½ �: ð5:72Þ

Table 5.9 Nodal voltages in the modified network

Network bus

Nodal voltage North South Lake Main Elm

Magnitude (p.u.) 1.06 1 1 0.989 0.973

Phase angle (deg) 0 �1.76 �6.01 �3.14 �4.95
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Extensive testing carried out with a wide range of practical combination of values of

XC and XL confirm that Expression (5.72) represents the most significant term of

Equation (5.31) for the range of interest of TCSC operation.

Expression (5.72) is further altered to include the reactance of the compensated

transmission line (i.e. XTCSC ð1Þ þ XTL ¼ XTCSCð1Þ) and then solving for �TCSC,

�TCSC ¼ p� 1

$
arctan

�XTCSC ð1Þ�TL

C2$

� �
: ð5:73Þ

It has been found that this expression yields very effective initialisations of �TCSC when the

reactance contribution of the TCSC to XTCSC (1)–TL is assumed to be nil. Hence,

�TCSC ¼ p� 1

$
arctan

�XTL

C2$

� �
: ð5:74Þ

5.8.4 Controllers Represented by Series Synchronous
Voltage Sources

Suitable initialisation of series voltage sources in power flow studies is mandatory to ensure

robust solutions. Examples of power electronic controllers that use one or more series

voltage sources are: the static synchronous series compensator (SSSC), UPFC, and the latest

addition to the family of FACTS controllers, the interline power flow controller (IPFC).

Different equations exist for the purpose of initialising the series voltage source,

depending on the operating condition exhibited by the controller. For example, for the case

when active and reactive powers are specified at bus k, and assuming Vk ¼ Vm ¼ 1 p.u., and

�k ¼ �m ¼ 0 in Equations (5.50) and (5.51), leads to the following simple expressions:

VcR ¼ XcRðP2
m sp þ Q2

m spÞ1=2; ð5:75Þ

�cR ¼ arctan
Pm sp

Qm sp

� �
: ð5:76Þ

These equations are used to initialise the parameters of series voltage sources within the

Newton–Raphson power flow solution. These parameters are referred to as V
ð0Þ
vR and �

ð0Þ
vR .

5.9 SUMMARY

This chapter has covered the topic of power flow models of FACTS controllers and assessed

their role in network-wide applications. Key aspects of modelling implementation in power

flow algorithms have received attention. Numerical examples have been included for each

one of the FACTS controllers presented.

The nonlinear power flow equations of the various FACTS controllers have been

linearised and included in a Newton–Raphson power flow algorithm. In this context, the state

variables corresponding to the controllable devices have been combined simultaneously
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with the state variables of the network in a single frame of reference for unified, iterative

solutions. The robustness of the method has been illustrated by numerical examples.

Coordinated strategies have been developed to handle cases when more than one

controller, either conventional or FACTS, regulates voltage magnitude at the same bus.

The starting values given to state variables of some FACTS controllers have proved to

have a determining effect as to whether or not the power flow solution can be obtained. This

is an implementation aspect of paramount importance and has been duly addressed. A set of

analytical equations has been derived to give series synchronous voltage sources good initial

conditions. The case of shunt synchronous voltage sources is not a critical issue. The

variable series compensation representation based on firing angle is a highly nonlinear

model, and use of the simple analytical equation presented in this chapter for initialisation

purposes should be used.
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6
Three-phase Power Flow

6.1 INTRODUCTION

If no proper action is taken at the design stage, long-distance alternating-current (AC)

transmission circuits introduce a significant amount of geometric unbalance, which in turn

causes undesirable voltage, current, and power flow imbalances (Wasley and Shlash, 1974a,

1947b). Over the years, a number of anomalies have been traced to the existence of power

system imbalances, such as increased power losses, heating of synchronous generators,

misfiring of power converters and ill-tripping of protective relays (Arrillaga and Harker,

1978; Harker and Arrillaga, 1979). Quite often, transmission lines are cited as the sole, most

important, reason for the existence of geometric imbalances (Hesse, 1966). In the past, line

transpositions were a popular resource for restoring geometric balance, but nowadays the

tendency is to avoid them on economic and design grounds. Under normal circumstances,

other power plant equipment such as transformers, generators, and shunt and series banks of

capacitors introduce little geometric unbalance and are no cause for concern. Moreover,

bulk transmission loads tend to be balanced.

In low-voltage distribution systems, the opposite situation exists. Three-phase transmis-

sion lines and cables are short and tend to be geometrically balanced, but urban loads are

mostly of the single-phase type, fed from single-phase feeders. In aggregate, at the

distribution substation, they result in three-phase loads exhibiting a high degree of

unbalance. The rapid growth of electrified railroads has also been cited as a contributing

factor to distribution system imbalances (Zhang and Chen, 1994). In rural circuits,

continuity of supply has sometimes been maintained by using two of the three single-phase

transformers in the bank, following failure of one of the units. The resulting three-phase

transformer connection is termed ‘open delta’ and, although not recommended for normal

operation owing to its unbalanced nature, can be used as a last resort to maintain supply.

Positive sequence power flows are not suitable for the study of power losses in systems

exhibiting significant transmission imbalances. The alternative solution approach is to use a

three-phase power flow algorithm, with all the relevant power plant equipment modelled in

phase coordinates, as detailed in Chapter 3 (Chen and Dillon, 1974; Laughton, 1968).

Comprehensive assessments of the impact of unbalanced loading and equipment on system

operation are carried out with little effort using fully fledge three-phase power flow solutions

FACTS: Modelling and Simulation in Power Networks.
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(Birt, Graffy, and McDonald, 1976; Chen et al., 1990; Laughton and Saleh, 1985; Smith and

Arrillaga, 1998).

Line transpositions are no longer regarded as the preferred option for keeping geometric

imbalances under control. Instead, a new solution is emerging, based on the use of power

electronics. If a thyristor-controlled series compensator (TCSC) is already available for the

purpose of impedance compensation then the idea would be to operate it in an unbalanced

manner so that geometric balance can be restored at the point of connection. The

applicability of an static VAR compensator (SVC) to restore voltage balance, in addition to

achieving its primary function of providing reactive power support, has been established at

the simulation level. However, this is at the expense of injecting a substantial amount of

third harmonic current into the AC system. An alternative solution is to use a static

compensator (STATCOM) for which the harmonic generation pattern is not significantly

influenced by terminal AC voltage conditions.

To carry out comprehensive studies of active and reactive power flows in unbalanced

transmission systems, and to determine the role that FACTS controllers may play in

reducing transmission imbalances, it is mandatory to have a three-phase power flow

computer program with FACTS equipment modelling capability (Angeles-Camacho, 2000;

Venegas and Fuerte-Esquivel, 2001). This is the object of this chapter, where the theory of

three-phase power flow is presented. It builds on the strength of the material presented in

Chapters 2–5. Chapters 2 and 3 addressed the modelling of FACTS controllers and

conventional power systems plant in phase coordinates, respectively. Chapters 4 and 5

studied the theory of conventional and FACTS power flow using the Newton–Raphson

method, respectively.

6.2 POWER FLOW IN THE PHASE FRAME OF REFERENCE

The starting point for developing nodal power equations suitable for three-phase power flow

solutions using the Newton–Raphson method is to establish a relationship between injected

bus currents and bus voltages. This may be achieved by using an approach similar to that

followed in Section 4.2.1 for the case of positive sequence power flows.

With reference to the three-phase transmission circuit shown in Figure 3.2, and redrawn

for convenience in Figure 6.1 in a slightly modified form, the three-phase currents and
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Figure 6.1 Three-phase branch

232 THREE-PHASE POWER FLOW



voltages are related by the transfer admittance matrix of the branch:

Iabck

Iabcm

" #
¼ Yabc

kk Yabc
km

Yabc
mk Yabc

mm

" #
Eabc
k

Eabc
m

" #
; ð6:1Þ

where

Yabc
kk ¼ Gabc

kk þ jBabc
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R
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ð6:3Þ

and where t is the transpose of the matrix or vector. Notice that the impedance parameters in

Equation (6.2) are assumed to include the impedance contribution due to ground return loops.

6.2.1 Power Flow Equations

Expressions for active and reactive power injected at the three-phase buses k and m of

Figure 6.1 may be derived from the following complex power expression:

Sabck

Sabcm

" #
¼ Pabc

k þ jQabc
k

Pabc
m þ jQabc

m

" #
¼ Eabc

k Iabc�k

Eabc
m Iabc�m

" #
: ð6:4Þ

After some arduous algebra, the expressions for active and reactive powers injected at

phases a, b, and c of bus k are arrived at:

P
�
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V
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i Þ�
( )

; ð6:6Þ

where the superscript � is used to denote phases a, b, and c.

As expected, the expressions for calculating the active and reactive powers injected at bus

m are of the same form as Equations (6.5) and (6.6), with the subscript m replacing k, and

vice versa:

P�
m ¼ V�

m

X
i¼m;k

X
j¼ a;b;c

V
j
i ½G�j

mi cosð��m � � j
i Þ þ B

�j
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; ð6:7Þ

Q�
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V
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mi sinð��m � � j
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i Þ�
( )

: ð6:8Þ
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6.2.2 Newton–Raphson Power Flow Algorithm

Solution of the positive sequence nodal power equations using the Newton–Raphson method

has shown strong reliability towards convergence. Building on experience, the Newton–

Raphson technique has been adopted to solve the three-phase nodal power equations.

The power expressions Equations (6.5)–(6.8) are linearised around a base operating point,

as illustrated in Section 4.3.2 for the case of positive sequence power flow. In the three-

phase application, mismatch powers and state variables terms become vectors of order

3� 1, and individual Jacobian terms become matrices of order 3� 3. The resulting

linearised equation, suitable for iterative solutions, becomes:
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; ð6:9Þ

where ‘ ¼ k;m; j ¼ k;m, and (i) is the iteration number.

The vector terms take the following form:
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The Jacobian terms are:
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It should be noted that the linearised Equation (6.9) applies to only one three-phase

transmission line connected between buses k and m. However, the result may be readily

extended to the more practical case, involving nl transmission lines connected between nb
generic buses ‘ and j, where ‘ ¼ 1; . . . ; k;m; . . . ; nb � 1, and j ¼ 1; . . . ; k;m; . . . ; nb � 1.

Note that only nb � 1 buses are considered since the contribution of the slack bus is not

explicitly represented in the linearised system of equations.

Consider the ‘th element connected between buses k and m in Equation (6.9), for which

the self and mutual Jacobian terms are explicitly given below, with the help of two phase

superscripts �1 and �2 used to denote a, b, and c, respectively.

For k ¼ m, and �1 ¼ �2:
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For k ¼ m, and �1 6¼ �2:
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For k 6¼ m:

qP�1
k;l

q��2m;l
¼ V

�1
k V�2

m G
�1 �2
km sin ��1k � ��2m

� �
� B

�1 �2
km cos ��1k � ��2m

� �h i
; ð6:26Þ

POWER FLOW IN THE PHASE FRAME OF REFERENCE 235



qP�1
k;l

qV�2
m;l

V
�2
m; l ¼ V

�1
k V�2

m G
�1 �2
km cos ��1k � ��2m

� �
þ B

�1 �2
km sin ��1k � ��2m

� �h i
; ð6:27Þ

qQ�1
k;l

q��2m;l
¼ �V

�1
k V�2

m G
�1 �2
km cos ��1k � ��2m

� �
þ B

�1 �2
km sin ��1k � ��2m

� �h i
; ð6:28Þ

qQ�1
k;l

qV�2
m;l

V
�2
m;l ¼ V

�1
k V�2

m G
�1 �2
km sin ��1k � ��2m

� �
� B

�1 �2
km cos ��1k � ��2m

� �h i
: ð6:29Þ

The iterative solution of the three-phase power flow equations using the Newton–Raphson

method requires similar considerations to those applied in the case of positive sequence

solutions regarding state variable initialisation and generator reactive power limit checking,

as presented in Sections 4.3.3 and 4.3.4, respectively. However, note that in the three-phase

application the voltage phase angles of phases a, b, and c are initialised at values of 0,

�2p=3, and 2p=3, respectively.

6.2.3 Matlab1 Code of a Power Flow Program in the
Phase Frame of Reference

The Matlab1 computer program, given in Section 4.3.6, has been extended to cater for the

power flow solution of three-phase networks. The function TLParameters is used to

furnish transmission-line data in phase coordinates, starting from positive, negative, and

zero sequence information. This information is widely available in utility data bases since it

is used for the purpose of short-circuit current calculations, even though its usefulness is

of somewhat limited applicability in three-phase power flow studies, as it assumes that

transmission lines are geometrically balanced. The relevant theory is covered in

Section 3.2.13. If more realistic representation of transmission lines are required then the

function Longline given in Sections 3.2.7 and function TransmissionLineData given

in Section 3.2.11 can be used, and the ensuing transmission-line parameters supplied to the

three-phase power flow application.

Generators are represented as three-phase active power injections and adjustable reactive

power injections to meet specified nodal voltage magnitudes at their terminals. If a more

realistic synchronous generator representation is required then the three-phase model

derived in Section 3.4 should be implemented in the power flow program. Note that this is a

very comprehensive model which caters for saliency and has explicit representation of the

generator load angle.

To keep the length and complexity of the current program (Program 6.1) within bounds, it

does not contain provisions for three-phase transformer representation. However,

implementation of three-phase transformer banks with a wide range of connections can

be implemented with ease. The most popular transformer connections are detailed in

Section 3.3.4, where emphasis is placed on transformer complex tap modelling.

Loads are taken to be constant sinks of active and reactive power in the program but,

again, voltage dependency can be incorporated by using the relevant models provided in

Section 3.5.
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Program 6.1 Program written in Matlab1 to carry out power flow calculations in the three-

phase frame of reference using the Newton–Raphson method

PowerFlowsData3Ph; % read threephasedata

[TLImpedInv,TLAdmit]=TLParameters(ntl,tlresisp,tlreacp,tlcondp,...

tlsuscepp,tlresisz,tlreacz,tlcondz,tlsuscepz);

[YR,YI]=YBus3Ph(nbb,ntl,tlsend,tlrec,TLImpedInv,TLAdmit,nsh,...

shbus, shresis,shreac);

[VM,VA,it]=NewtonRaphson3Ph(nmax,tol,itmax,ngn,ntl,tlsend,tlrec,...

nld, nbb,bustype,genbus,loadbus,PGEN,QGEN,QMAX,QMIN,PLOAD,QLOAD,...

YR,YI, TLImpedInv,TLAdmit,VM,VA);

[PQsend,PQrec,PQloss]=PowerFlows3Ph(nbb,ntl,tlsend,tlrec,VM,VA,...

TLImpedInv,TLAdmit);

% END of main three-phase program

function [TLImpedInv,TLAdmit]=TLParameters(ntl,tlresisp,tlreacp,...

tlcondp, tlsuscepp, tlresisz,tlreacz,tlcondz,tlsuscepz)

% Transmission line parameters

TLImpedInv=zeros(3,3,ntl);

TLAdmit=zeros(3,3,ntl);

for kk=1 : ntl

Zself=((tlresisz(kk)+ tlreacz(kk)*i) + 2*(tlresisp(kk) + tlreacp...

(kk)*i))/3;

Zmutual=((tlresisz(kk) + tlreacz(kk)*i)-(tlresisp(kk) + tlreacp...

(kk)*i))/3;

Yself=((tlcondz(kk) + tlsuscepz(kk)*i) + 2*(tlcondp(kk) + ...

tlsuscepp (kk)*i))/3;

Ymutual=((tlcondz(kk) + tlsuscepz(kk)*i)-(tlcondp(kk) + tlsuscepp...

(kk)*i))/3;

for ii=1 : 3

for jj=1 : 3

if ii==jj

TLImpedInv(ii,jj,kk)=Zself;

TLAdmit(ii,jj,kk)=Yself;

else

TLImpedInv(ii,jj,kk)=Zmutual;
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TLAdmit(ii,jj,kk)=Ymutual;

end

end

end

imped=TLImpedInv(1:3,1:3,kk);

imped2=inv(imped);

TLImpedInv(1:3,1:3,kk)=imped2;

end

function [YR,YI]=YBus3Ph(nbb,ntl,tlsend,tlrec,TLImpedInv,...

TLAdmit,nsh,shbus,shresis,shreac)

% Set up YY

YY=zeros(nbb*3,nbb*3);

% Transmission lines conribution

for kk=1 : ntl

ii=(tlsend(kk)-1)*3 + 1;

jj=(tlrec(kk)-1)*3 + 1;

YY(ii:ii + 2,ii:ii + 2)=YY(ii:ii + 2,ii:ii + 2)+...

TLImpedInv(:,:,kk)+0.5*TLAdmit(:,:,kk);

YY(ii:ii + 2,jj:jj + 2)=YY(ii:ii + 2,jj:jj + 2) - TLImpedInv(:,:,kk);

YY(jj:jj + 2,ii:ii + 2)=YY(jj:jj + 2,ii:ii + 2) - TLImpedInv(:,:,kk);

YY(jj:jj + 2,jj:jj + 2)=YY(jj:jj + 2,jj:jj + 2)+...

TLImpedInv(:,:,kk)+0.5*TLAdmit(:,:,kk);

end

% Shunt elements conribution

for kk=1 : nsh

SHAdmit=zeros(3,3);

jj=shbus(kk)*3;

for ii=1 : 3

SHAdmit(ii,ii)=1/(shresis(kk,ii) + shreac(kk,ii)*i);

end

YY(jj-2:jj,jj-2:jj)=YY(jj-2:jj,jj-2:jj)+SHAdmit(:,:);

end

YR=real(YY);

YI=imag(YY);

function [VM,VA,it]=NewtonRaphson3Ph(nmax,tol,itmax,ngn,ntl,...

tlsend, tlrec,nld,nbb,bustype,genbus,loadbus,PGEN,QGEN,QMAX,QMIN,...

PLOAD,QLOAD,YR, YI,TLImpedInv,TLAdmit, VM,VA)

% GENERAL SETTINGS

D=zeros(1,nmax*3);

flag=0;

it=1;

% CALCULATE NET POWERS
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[PNET,QNET]=NetPowers3Ph(nbb,ngn,nld,genbus,loadbus,PGEN,QGEN,...

PLOAD,QLOAD);

while ( it <= itmax & flag==0 )

% CALCULATED POWERS

[PCAL,QCAL]=CalculatedPowers3Ph(nbb,ntl, tlsend,tlrec,VM,VA,...

TLImpedInv,TLAdmit);

% POWER MISMATCHES

[DPQ,flag] = PowerMismatches3Ph(nmax,nbb,tol,bustype,flag,PNET,...

QNET, PCAL,QCAL);

if flag==1;

break;

end

% JACOBIAN FORMATION

[JAC]=NewtonRaphsonJacobian3Ph(nmax,nbb,bustype,PCAL,QCAL,VM,...

VA,YR, YI);

% SOLVE FOR THE STATE VARIABLES VECTOR

D=JAC\DPQ’;

% UPDATE STATE VARIABLES

[VA,VM]=StateVariablesUpdates3Ph(nbb,D,VA,VM);

it=it+1;

end

function [PNET,QNET]=NetPowers3Ph(nbb,ngn,nld,genbus,loadbus,...

PGEN,QGEN, PLOAD,QLOAD);

% CALCULATE NET POWERS

PNET=zeros(1,nbb*3);

QNET=zeros(1,nbb*3);

for ii=1 : ngn

for jj=1 : 3

PNET((genbus(ii)-1)*3 + jj)=PNET((genbus(ii)-1)*3 + jj)+...

PGEN(ii,jj);

QNET((genbus(ii)-1)*3 + jj)=QNET((genbus(ii)-1)*3 + jj)+...

QGEN(ii,jj);

end

end

for ii=1 : nld

for jj=1 : 3

PNET((loadbus(ii)-1)*3 + jj)=PNET((loadbus(ii)-1)*3 + jj) - ...

PLOAD(ii,jj);
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QNET((loadbus(ii)-1)*3 + jj)=QNET((loadbus(ii)-1)*3 + jj) - ...

QLOAD(ii,jj);

end

end

function [PCAL,QCAL]=CalculatedPowers3Ph(nbb,ntl,tlsend,tlrec,...

VM,VA, TLImpedInv,TLAdmit);

% Include all entries

PQsend=zeros(ntl,3);

PQrec=zeros(ntl,3);

PQloss=zeros(ntl,3);

for iii=1 : ntl

Vsend=( VM(tlsend(iii),:).*cos(VA(tlsend(iii),:)) + ...

VM(tlsend(iii),:).*sin(VA(tlsend(iii),:))*i );

Vrec=( VM(tlrec(iii),:).*cos(VA(tlrec(iii),:))...

VM(tlrec(iii),:).*sin(VA(tlrec(iii),:))*i );

for jj=1 : 5

if jj<4

PQsend(iii,jj)=Vsend(1,jj)*(conj(-TLImpedInv(jj,:,iii)) *...

(Vrec(1,:))’ + conj(TLImpedInv(jj,:,iii) + 0.5*...

TLAdmit(jj,:,iii))*(Vsend(1,:)’));

PQrec(iii,jj)=Vrec(1,jj)*(-conj(TLImpedInv(jj,:,iii))* ...

(Vsend(1,:))’ + conj(TLImpedInv(jj,:,iii)+ 0.5*...

TLAdmit(jj,:,iii))* (Vrec(1,:)’));

elseif jj==4

PQsend(iii,jj)=tlsend(iii);

PQrec(iii,jj)=tlrec(iii);

else

PQsend(iii,jj)=tlrec(iii);

PQrec(iii,jj)=tlsend(iii);

end

PQloss=PQsend - PQrec;

end

end

PCAL1=zeros(nbb,3);

for ii=1 : nbb

for jj=1:ntl

if PQsend(jj,4)==ii

PCAL1(ii,:)=PCAL1(ii,:)+PQsend(jj,1:3);

end

if PQrec(jj,4)==ii

PCAL1(ii,:)=PCAL1(ii,:)+PQrec(jj,1:3);

end

end

end

for ii=1 : nbb
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PCAL2(1,3*ii-2:ii*3)=PCAL1(ii,:);

end

PCAL=real(PCAL2);

QCAL=imag(PCAL2);

function [DPQ,flag]=PowerMismatches3Ph(nmax,nbb,tol,bustype,...

flag,PNET,QNET,PCAL,QCAL);

% POWER MISMATCHES

DPQ=zeros(1,nmax);

DP=PNET - PCAL;

DQ=QNET - QCAL;

% To remove the active and reactive powers contributions of the slack

% bus and reactive power of all PV buses

kk=1;

for ii=1 : nbb

for jj=1 : 3

if (bustype(ii)==1 )

DP(kk)=0;

DQ(kk)=0;

elseif (bustype(ii)==2 )

DQ(kk)=0;

end

kk=kk 1;

end

end

% Re-arrange mismatch entries

kk=1;

for ii=1 : nbb

for jj=1 : 3

DPQ((ii-1)*3 + kk)=DP(kk);

DPQ((ii-1)*3 + kk + 3)=DQ(kk);

kk=kk+1;

end

end

% Check for convergence

for ii=1 : nbb*6

if (abs(DPQ)<tol)

flag=1;

end

end

function [JAC]=NewtonRaphsonJacobian(nmax,nbb,bustype,PCAL,QCAL,...

VM,VA, YR,YI);

% JACOBIAN FORMATION - Include all entries

JAC=zeros(nmax,nmax);
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iii=1;

for ii=1 : nbb

kk=(ii-1)*3 + 1;

jjj=1;

for jj=1 : nbb

ll=(jj-1)*3 + 1;

if ii==jj

for mm=1:3;

for nn=1:3;

if nn==mm

JAC(iii + mm-1,jjj + nn-1)=- QCAL(kk + mm-1) - VM(ii,mm)...

^2*YI(kk + mm-1,kk + mm-1);

JAC(iii + mm-1,3 + jjj + nn-1)=PCAL(kk + mm-1)+...

VM(ii,mm)^2*YR(kk + mm-1,kk + mm-1);

JAC(iii + 3 + mm-1,jjj + nn-1)=PCAL(kk + mm-1) - VM(ii,mm)...

^2*YR(kk + mm-1,kk + mm-1);

JAC(iii + 3 + mm-1,jjj + 3 + nn-1)=QCAL(kk + mm-1) - ...

VM(ii,mm)^2*YI(kk + mm-1,kk + mm-1);

else

JAC(iii + mm-1,jjj + nn-1)=VM(ii,mm)*VM(ii,nn)*(YR(kk + ...

mm-1,kk + nn-1)*sin(VA(ii,mm)-VA(ii,nn))-YI(kk + mm-1,...

kk + nn-1)*cos(VA(ii,mm)-VA(ii,nn)));

JAC(iii + mm-1,3 + jjj + nn-1)=VM(ii,mm)*VM(ii,nn)*...

(YR(kk + mm-1,kk + nn-1)*cos(VA(ii,mm)-VA(ii,nn)) + YI(kk + ...

mm-1,kk + nn-1)*sin(VA(ii,mm)-VA(ii,nn)));

JAC(iii + 3 + mm-1,jjj + nn-1)=-VM(ii,mm)*VM(ii,nn)*...

(YR(kk + mm-1,kk + nn-1)*cos(VA(ii,mm)-VA(ii,nn)) + YI(kk + ...

mm-1,kk + nn-1)*sin(VA(ii,mm)-VA(ii,nn)));

JAC(iii + 3 + mm-1,jjj + 3 + nn-1)=VM(ii,mm)*VM(ii,nn)...

*(YR(kk + mm-1,kk + nn-1)*sin(VA(ii,mm)-VA(ii,nn))-YI...

(kk + mm-1,kk + nn-1)*cos(VA(ii,mm)-VA(ii,nn)));

end

end

end

else

for mm=1:3;

for nn=1:3;

JAC(iii + mm-1,jjj + nn-1)=VM(ii,mm)*VM(jj,nn)*(YR(kk + ...

mm-1,ll + nn-1)*sin(VA(ii,mm)-VA(jj,nn)) - YI(kk + mm-1,ll + ...

nn-1)*cos(VA(ii,mm)-VA(jj,nn)));

JAC(iii + mm-1,3 + jjj + nn-1)=VM(ii,mm)*VM(jj,nn)*(YR(kk + ...

mm-1,ll + nn-1)*cos(VA(ii,mm)-VA(jj,nn))+YI(kk + mm-1,ll + ...

nn-1)*sin(VA(ii,mm)-VA(jj,nn)));

JAC(iii + 3 + mm-1,jjj + nn-1)=-VM(ii,mm)*VM(jj,nn)*(YR(kk + ...

mm-1,ll + nn-1)*cos(VA(ii,mm)-VA(jj,nn))+YI(kk + mm-1,ll + ...

nn-1)*sin(VA(ii,mm)-VA(jj,nn)));

JAC(iii + 3 + mm-1,jjj + 3 + nn-1)=VM(ii,mm)*VM(jj,nn)...
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*(YR(kk + mm-1,ll + nn-1)*sin(VA(ii,mm)-VA(jj,nn)) - YI(kk + ...

mm-1,ll + nn-1)*cos(VA(ii,mm)-VA(jj,nn)));

end

end

end

jjj=jjj+6;

end

iii=iii+6;

end

% Delete the voltage magnitude and phase angle equations of the slack

% bus and voltage magnitude equations corresponding to PV buses

for kk=1 : nbb

if (bustype(kk)==1)

ll=(kk-1)*6 + 1;

for ii=ll : ll + 2

for jj=1 : 6*nbb

if ii==jj

JAC(ii,ii)=1;

else

JAC(ii,jj)=0;

JAC(jj,ii)=0;

end

end

end

end

if (bustype(kk)==1) j (bustype(kk)==2)

ll=(kk-1)*6 + 1;

for ii=ll + 3 : ll + 5

for jj=1 : 6*nbb

if ii==jj

JAC(ii,ii)=1;

else

JAC(ii,jj)=0;

JAC(jj,ii)=0;

end

end

end

end

end

function [VA,VM]=StateVariablesUpdates3Ph(nbb,D,VA,VM)

for ii=1 : nbb

iii=(ii-1)*6 + 1;

for jj=1 : 3

VA(ii,jj)=VA(ii,jj)+D(iii);

VM(ii,jj)=VM(ii,jj)+D(iii + 3)*VM(ii,jj);
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iii=iii+1;

end

end

function [PQsend,PQrec,PQloss]=PowerFlows3Ph(nbb,ntl,tlsend,...

tlrec,VM, VA,TLImpedInv,TLAdmit);

% Include all entries

PQsend=zeros(ntl,3);

PQrec=zeros(ntl,3);

PQloss=zeros(ntl,3);

for iii=1 : ntl

Vsend=( VM(tlsend(iii),:).*cos(VA(tlsend(iii),:))+...

VM(tlsend(iii),:).*sin(VA(tlsend(iii),:))*i );

Vrec=( VM(tlrec(iii),:).*cos(VA(tlrec(iii),:))+...

VM(tlrec(iii),:).*sin(VA(tlrec(iii),:))*i );

for jj=1 : 5

if jj<4

PQsend(iii,jj)=Vsend(1,jj)*(conj(-TLImpedInv(jj,:,iii))...

*(Vrec(1,:))’+conj(TLImpedInv(jj,:,iii)+...

0.5*TLAdmit(jj,:,iii)) *(Vsend(1,:)’));

PQrec(iii,jj)=Vrec(1,jj)*(-conj(TLImpedInv(jj,:,iii))* ...

(Vsend(1,:))’+conj(TLImpedInv(jj,:,iii)+...

0.5*TLAdmit(jj,:,iii)) *(Vrec(1,:)’));

elseif jj==4

PQsend(iii,jj)=tlsend(iii);

PQrec(iii,jj)=tlrec(iii);

else

PQsend(iii,jj)=tlrec(iii);

PQrec(iii,jj)=tlsend(iii);

end

PQloss=PQsend - PQrec;

end

end

6.2.4 Numerical Example of a Three-phase Network

The five-bus network shown in Section 4.3.9 is used as the basis for illustrating how the

three-phase power flow performs under balanced and unbalanced operating conditions. The

file threephasedata contains all the required data for the power flow solution. Notice that

voltage information is provided explicitly for the three phases, where a balanced set of

three-phase voltages means equal voltage magnitude and phase angles between adjacent

phases separated by 2p=3 radians, with the following rotation: 0, �2p=3, 2p=3.
In this application, transmission lines require zero sequence information for resistance,

reactance, susceptance, and conductance, in addition to the corresponding positive sequence

parameters. Negative sequence parameters are not explicitly required since they are equal to
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positive sequence parameters in transmission lines. It should be mentioned that in the

original five-bus network, aimed at the testing of positive sequence power flow algorithms,

no information exists for zero sequence transmission-line parameters. For the purpose of the

current exercise, zero sequence transmission-line parameters have been taken to be three

times the positive sequence values.

The function threephasedata for the balanced test case is as follows:

% Bubars data

nbb=5;

bustype(1)=1; VM(1,1)=1.06; VA(1,1)=0*pi/180;

VM(1,2)=1.06; VA(1,2)=240*pi/180; VM(1,3)=1.06; VA(1,3)= 120*pi/180;

bustype(2)=2; VM(2,1)=1.00; VA(2,1)=0*pi/180;

VM(2,2)=1.00; VA(2,2)=240*pi/180; VM(2,3)=1; VA(2,3)=120*pi/180;

bustype(3)=3; VM(3,1)=1.00; VA(3,1)=0*pi/180;

VM(3,2)=1.00; VA(3,2)=240*pi/180; VM(3,3)=1; VA(3,3)=120*pi/180;

bustype(4)=3; VM(4,1)=1.00; VA(4,1)=0*pi/180;

VM(4,2)=1.00; VA(4,2)=240*pi/180; VM(4,3)=1; VA(4,3)= 120*pi/180;

bustype(5)=3; VM(5,1)=1.00; VA(5,1)=0*pi/180;

VM(5,2)=1.00; VA(5,2)=240*pi/180; VM(5,3)=1; VA(5,3)= 120*pi/180;

% Generators data

ngn=2;

genbus(1)=1; PGEN(1,1)=0.0; QGEN(1,1)=0; PGEN(1,2)=0.0;

QGEN(1,2)=0; PGEN(1,3)=0.0; QGEN(1,3)=0; QMAX(1)=9; QMIN(1)=-9;

genbus(2)=2; PGEN(2,1)=0.4; QGEN(2,1)=0.0; PGEN(2,2)=0.4;

QGEN(2,2)=0.0; PGEN(2,3)=0.4; QGEN(2,3)=0.0; QMAX(2)=9;

QMIN(2)=-9;

% Transmission lines data

ntl=7;

tlsend(1)=1; tlrec(1)=2; tlresisp(1)=0.02; tlreacp(1)=0.06;

tlcondp(1)=0; tlsuscepp(1)=0.060; tlresisz(1)=0.06;

tlreacz(1)=0.18; tlcondz(1)=0; tlsuscepz(1)=0.18;

tlsend(2)=1; tlrec(2)=3; tlresisp(2)=0.08; tlreacp(2)=0.24;

tlcondp(2)=0; tlsuscepp(2)=0.050; tlresisz(2)=0.24;

tlreacz(2)=0.72; tlcondz(2)=0; tlsuscepz(2)=0.15;

tlsend(3)=2; tlrec(3)=3; tlresisp(3)=0.06; tlreacp(3)=0.18;

tlcondp(3)=0; tlsuscepp(3)=0.040; tlresisz(3)=0.18;

tlreacz(3)=0.54; tlcondz(3)=0; tlsuscepz(3)=0.12;

tlsend(4)=2; tlrec(4)=4; tlresisp(4)=0.06; tlreacp(4)=0.18;

tlcondp(4)=0; tlsuscepp(4)=0.040; tlresisz(4)=0.18;

tlreacz(4)=0.54; tlcondz(4)=0; tlsuscepz(4)=0.12;

tlsend(5)=2; tlrec(5)=5; tlresisp(5)=0.04; tlreacp(5)=0.12;

tlcondp(5)=0; tlsuscepp(5)=0.030; tlresisz(5)=0.12;

tlreacz(5)=0.36; tlcondz(5)=0; tlsuscepz(5)=0.09;

tlsend(6)=3; tlrec(6)=4; tlresisp(6)=0.01; tlreacp(6)=0.03;
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tlcondp(6)=0; tlsuscepp(6)=0.020; tlresisz(6)=0.03;

tlreacz(6)=0.09; tlcondz(6)=0; tlsuscepz(6)=0.06;

tlsend(7)=4; tlrec(7)=5; tlresisp(7)=0.08; tlreacp(7)=0.24;

tlcondp(7)=0; tlsuscepp(7)=0.050; tlresisz(7)=0.24;

tlreacz(7)=0.72; tlcondz(7)=0; tlsuscepz(7)=0.15;

% Loads data

nld=4;

loadbus(1)=2; PLOAD(1,1)=0.20; QLOAD(1,1)=0.10; PLOAD(1,2)=0.20;

QLOAD(1,2)=0.10; PLOAD(1,3)=0.20; QLOAD(1,3)=0.10;

loadbus(2)=3; PLOAD(2,1)=0.45; QLOAD(2,1)=0.15; PLOAD(2,2)=0.45;

QLOAD(2,2)=0.15; PLOAD(2,3)=0.45; QLOAD(2,3)=0.15;

loadbus(3)=4; PLOAD(3,1)=0.40; QLOAD(3,1)=0.05; PLOAD(3,2)=0.40;

QLOAD(3,2)=0.05; PLOAD(3,3)=0.40; QLOAD(3,3)=0.05;

loadbus(4)=5; PLOAD(4,1)=0.60; QLOAD(4,1)=0.10; PLOAD(4,2)=0.60;

QLOAD(4,2)=0.10; PLOAD(4,3)=0.60; QLOAD(4,3)=0.10;

% General parameters

itmax=10;

tol=1e-12;

nmax=6*nbb;

As expected, the solution given by the three-phase program essentially agrees with that

provided by the positive sequence power flow program, given in Table 4.1. More

specifically, the nodal voltage magnitudes and phase angles for phase a of the network

coincide with those for the positive sequence. The voltage magnitude for phases a, b, and c

have equal values, with the phase angles for phases b and c displaced by 240� and 120�,
respectively, with respect to those of phase a. Table 6.1 summarises the results for the

balanced three-phase solution. Convergence was achieved in 5 iterations to a power

mismatch tolerance of 1e - 12.

Since this is a case of balanced operation and design parameters – all loads are taken to be

balanced – neither negative nor zero sequence voltages exist.

Table 6.1 Three-phase nodal voltages for the balanced case

Network bus

—————————————— ———————————————

Voltage Phase North South Lake Main Elm

Magnitude (p.u.) a 1.06 1.00 0.9872 0.9841 0.9717

b 1.06 1.00 0.9872 0.9841 0.9717

c 1.06 1.00 0.9872 0.9841 0.9717

Phase angle (deg) a 0 �2.06 �4.63 �4.95 �5.76

b 240 237.93 235.36 235.04 234.23

c 120 117.93 115.36 115.04 114.23
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An altogether different situation arises if imbalances are introduced into the test network,

say in the system load. This requires only a straightforward change in the data file, with the

file unbalthreephasedata reflecting these changes – at each bus, active and reactive

power loads have been altered arbitrarily by �15 % with respect to the base, balanced case:

%Loads data with 15 unbalance

nld=4;

loadbus(1)=2; PLOAD(1,1)=0.20; QLOAD(1,1)=0.10;

PLOAD(1,2)=0.1739; QLOAD(1,2)=0.08695; PLOAD(1,3)=0.23;

QLOAD(1,3)=0.115; loadbus(2)=3;

PLOAD(2,1)=0.5175; QLOAD(2,1)=0.1725;

PLOAD(2,2)=0.45; QLOAD(2,2)=0.15; PLOAD(2,3)=0.3913;

QLOAD(2,3)=0.1304; loadbus(3)=4;

PLOAD(3,1)=0.3478; QLOAD(3,1)=0.0435;

LOAD(3,2)=0.46; QLOAD(3,2)=0.0575; PLOAD(3,3)=0.40;

QLOAD(3,3)=0.05; loadbus(4)=5;

PLOAD(4,1)=0.60; QLOAD(4,1)=0.10;

PLOAD(4,2)=0.5217; QLOAD(4,2)=0.087; PLOAD(4,3)=0.69;

QLOAD(4,3)=0.115;

Table 6.2(a) shows the three-phase voltage solution for unbalanced loading. The solution

was achieved in 5 iterations to a power mismatch tolerance of 1 e� 12.

The impact of unbalanced loading on system performance can be appreciated by

comparing the results given in Table 6.2(b), where small amounts of negative and zero

Table 6.2 Three-phase nodal voltages in the unbalanced network: (a) phase voltages and

(b) sequence voltages

Network bus

—————————————— ———————————————

Voltage Phase North South Lake Main Elm

(a) Phase voltages

Magnitude (p.u.) a 1.06 1.00 0.9820 0.9811 0.9789

b 1.06 1.00 0.9881 0.9831 0.9755

c 1.06 1.00 0.9908 0.9872 0.9599

Phase angle (deg) a 0 �2.02 �4.67 �4.84 �5.96

b 240 238.16 235.26 234.95 235.26

c 120 117.58 115.38 114.88 113.23

(b) Sequence voltages

Magnitude (p.u.) Negative 0.00 0.0030 0.0032 0.0027 0.0148

Positive 1.06 1.0000 0.9870 0.9838 0.9713

Zero 0.00 0.0030 0.0020 0.0017 0.0070
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Figure 6.2 Three-phase power flows: (a) phase a, (b) phase b, and (c) phase c

248 THREE-PHASE POWER FLOW



sequence voltages are now evident. Power system loss increased by nearly 2 % with respect

to the balanced case. It can be seen from the power flow results in Figures 6.2(a)–6.2(c) that

the power flows in all three phases are unbalanced.

It has been stated in the introduction of this chapter that FACTS controllers intended for

nodal voltage control could perform the role of restoring voltage magnitude balance at the

point of connection. It was also argued that a series compensator could provide a useful role

in balancing out power flows at the point of compensation. Such use of FACTS controllers is

assessed in the following sections.

6.3 STATIC VAR COMPENSATOR

In order to assess the role of SVC operation in unbalanced three-phase power systems

it is necessary to develop a more detailed model of the SVC than the one developed in

Section 5.3 for the case of positive sequence power flows. The new SVC power flow model

is developed in the frame of reference afforded by the phases, building on its admittance

matrix representation derived in Section 2.3.2.

The model corresponds to a three-phase, delta-connected thyristor-controlled reactor

(TCR) placed in parallel with a three-phase bank of capacitors connected in star

configuration, with its star point floating. Figure 6.3 shows the SVC equivalent circuit

used to derive the three-phase power flow equations. The individual branches are adjusted

individually, by controlling the firing angles of the thyristors, in order to achieve specified

nodal voltage magnitudes while satisfying the constraint power equations. Two distinct SVC

power flow models are described in this section: one uses controllable susceptances as state

variables whereas the other uses the firing angles of the thyristors.

It is illustrated in Figure 6.3 that the three-phase, star-connected capacitor bank has an

alternative representation in the form of a delta-connected equivalent circuit. Equation (6.30)

describes the three-phase SVC model, which is obtained by the simple addition of

a
kC

b
kC

c
kC

a a
k kV q b b

k kV q c c
k kV q

c
CI

b
CI

a
CI

a a
k kV q b b

k kV q c c
k kV q

ca
kL

ab
kL

bc
kL

TCR
cITCR

bI
TCR
aI

ab
kC bc

kC

ca
kC

Figure 6.3 Three-phase model of the static VAR compensator (SVC) in phase coordinates
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Equations (2.10) and (2.14):

Iak

Ibk

Ick

2
64

3
75 ¼ 1

3

jBaa
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�jBba
SVC jBbb
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2
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3
75: ð6:30Þ

In this matrix expression, two different kinds of terms exist, namely, self and mutual terms:

B
�1 �2
SVC ¼

B
�1
C

�BC

X
j¼a;b;c
j 6¼�1

B
j
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X
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8>>><
>>>:
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where

B
�1�2
TCR ¼

2 p� ��1�2
TCR

� �
� sin 2��1�2

TCR

p!L�1�2TCR

; ð6:32Þ

B
�1
C ¼ !C�1

C ; ð6:33Þ

�BC ¼
X
j¼a;b;c

B
j
C: ð6:34Þ

The superscripts �1, �2, and j take values a, b, and c. Note that parameters with double

superscripts, �1 and �2, correspond to branch parameters connected between phases �1
and �2.

6.3.1 Variable Susceptance Model

The three-phase power flow equations for the SVC may be derived with reference to the

equivalent circuit in Figure 6.3 and using the variable susceptances B
�1�2
SVC as state variables.

The three susceptance values are adjusted automatically by the iterative algorithm in order

to constrain the nodal voltage magnitude at the specified value. The final values of

susceptance represent the line susceptances in the delta-connected SVC equivalent circuit.

With reference to Figure 6.3, and using the SVC transfer admittance matrix of Equa-

tion (6.30), the three-phase power flow equations for the SVC are as follows:

P
�
k ¼ �V

�
k

X
j¼a;b;c
j6¼�

V
j
kB

�j
SVC sin ��k � �jk

� �
; ð6:35Þ

Q
�
k ¼ � V

�
k

� �2
B
��
SVC þ V

�
k

X
j¼a;b;c
j6¼�

V
j
kB

�j
SVC cos �

�
k � �jk

� �
; ð6:36Þ

where the variables � and j take values a, b, and c.

Taking the partial derivatives of the power flow Equations (6.35) and (6.36), with

respect to the equivalent susceptances (state variables), we arrive at the following
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linearised equation:

�Pa
k

�Pb
k

�Pc
k

�Qa
k

�Qb
k

�Qc
k

2
6666666666666666666666664

3
7777777777777777777777775

ðiÞ

¼

qPa
k

q�ak

qPa
k

q�bk

qPa
k

q�ck

qPa
k

qBab
SVC

Bab
SVC 0

qPa
k

qBca
SVC

Bca
SVC

qPb
k

q�ak

qPb
k

q�bk

qPb
k

q�ck

qPb
k

qBab
SVC

Bab
SVC

qPb
k

qBbc
SVC

Bbc
SVC 0

qPc
k

q�ak

qPc
k

q�bk

qPc
k

q�ck
0

qPc
k

qBbc
SVC

Bbc
SVC

qPc
k

qBca
SVC

Bca
SVC

qQa
k

q�ak

qQa
k

q�bk

qQa
k

q�ck

qQa
k

qBab
SVC

Bab
SVC 0

qQa
k

qBca
SVC

Bca
SVC

qQb
k

q�ak

qQb
k

q�bk

qQb
k

q�ck

qQb
k

qBab
SVC

Bab
SVC

qQb
k

qBbc
SVC

Bbc
SVC 0

qQc
k

q�ak

qQc
k

q�bk

qQc
k

q�ck
0

qQc
k

qBbc
SVC

Bbc
SVC

qQc
k

qBca
SVC

Bca
SVC

2
6666666666666666666666664

3
7777777777777777777777775

ðiÞ
��ak

��bk

��ck

�Bab
SVC

Bab
SVC

�Bbc
SVC

Bbc
SVC

�Bca
SVC

Bca
SVC

2
6666666666666666666666664

3
7777777777777777777777775

ðiÞ

:

ð6:37Þ

The new Jacobian entries in the linearised expression have the following form:

qP�
k

qB�j
SVC

B
�j
SVC ¼ �V

�
k V

j
kB

�j
SVC sin ��k � �jk

� �
; ð6:38Þ

qQ�
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qB�j
SVC

B
�j
SVC ¼ �2 V

�
k

� �2
B
�j
SVC þ V

�
k V

j
kB

�j
SVC cos ��k � �jk

� �
: ð6:39Þ

The terms corresponding to partial derivatives of active and reactive powers with respect

to nodal voltage phase angles have the same form as Equations (6.18), (6.20), (6.22), (6.24),

(6.26), and (6.28), respectively.

Once the SVC linearised equation has been evaluated at a given iteration, (i), it is then

combined with the linearised expression representing the overall external system – Equa-

tion (6.9) – and a new set of state variables is obtained. The SVC susceptances are updated

by using the following expression:

B
�j ðiÞ
SVC ¼ B

�j ði�1Þ
SVC þ �B

�j
k

B
�j
SVC

 !ðiÞ
B
�j ði�1Þ
SVC : ð6:40Þ

This calculation completes iteration (i), and the three-phase mismatch power equations are

calculated and checked for convergence. If the convergence criterion has not been satisfied,

a new iteration is carried out.

6.3.2 Firing-angle Model

An alternative SVC model is realised by using the firing angles of the thyristors as state

variables, rather than equivalent susceptances. In this situation, the new SVC linearised
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equation takes the form:
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The new Jacobian entries in the linearised expression have the following form:
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pXL
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The terms corresponding to partial derivatives of active and reactive powers with respect to

nodal voltage phase angles are the same terms referred to in Equation (6.37).

Upon solution of the combined Equations (6.9) and (6.41), a new set of state variable

increments is obtained. The increments are used to update the state variable values – among

them the SVC firing angles – using the following expression:

ð��j
SVCÞðiÞ ¼ ð��j

SVCÞði�1Þ þ ð��
�j
SVCÞðiÞ: ð6:45Þ

This calculation completes iteration (i), and the three-phase mismatch power equations are

calculated and checked for convergence.

6.3.3 Numerical Example: Static VAR Compensator Voltage
Magnitude Balancing Capability

A three-phase SVC is added to the unbalanced five-bus network in Section 6.2.4 in order to

explore the capability of the SVC to restore geometric balance at the point of connection

while at the same time providing effective voltage magnitude regulation. The SVC is

assumed to be connected at Elm, and the voltage magnitude is set at 0.98 p.u. The study is

conducted using the SVC reactance model, and convergence is achieved in 5 iterations to

satisfy a power mismatch tolerance of 1 e� 12.
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The three-phase nodal voltage magnitudes and phase angles are given in Table 6.3(a), in

which it is shown that the SVC is effective in regulating and balancing nodal voltage

magnitude at Elm. As expected, the phase angles at that bus are still unbalanced. It should

be mentioned that power losses now stand at 1.01 %, a result that compares favourably with

the unbalanced case where no SVC is used and where power losses stand at 2 %. Note that

negative sequence voltages have also reduced in magnitude [Table 6.3(b)].

6.4 THYRISTOR-CONTROLLED SERIES COMPENSATOR

Based on the nodal admittance representation of the TCSC, derived in Chapter 2, two quite

useful positive sequence power flow models were developed in Section 5.4. One model

uses an adjustable reactance as the state variable and the other uses the thyristor firing angle.

The same idea is now extended to the case of the TCSC power flow models in phase

coordinates.

6.4.1 Variable Susceptance Model

The three-phase TCSC representation is simply obtained by using three independent TCSC

modules, as shown in Figure 2.12. The changing susceptance, shown in Figure 6.4,

represents the fundamental frequency equivalent susceptance of each series module making

up the three-phase TCSC. The value of BTCSC is determined by using the Newton–Raphson

method to regulate active power flow through the three branches to a specified value.

Table 6.3 Nodal voltage in the three-phase unbalanced network with a static VAR compensator:

(a) phase voltages and (b) sequence voltages

Network bus

————————————————————————————

Voltage Phase North South Lake Main Elm

(a) Phase voltages

Magnitude (p.u.) a 1.06 1.00 0.9822 0.9810 0.98

b 1.06 1.00 0.9888 0.9974 0.98

c 1.06 1.00 0.9947 0.9923 0.98

Phase angle (deg) a 0 �2.04 �4.64 �4.79 �5.76

b 240 238.16 235.17 234.84 234.81

c 120 117.60 115.37 114.86 113.09

(b) Sequence voltages

Magnitude (p.u.) Zero 0.00 0.0028 0.0047 0.0050 0.0087

Positive 1.06 1.0000 0.9886 0.9859 0.9799

Negative 0.00 0.0028 0.0025 0.0022 0.0086
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The transfer admittance of the TCSC may be derived from visual inspection of the

equivalent circuit shown in Figure 6.4. Assuming that � takes the values a, b, c:

I
�
k

I�m

� �
¼ jB

�
kk jB

�
km

jB
�
mk jB�

mm

� �
V

�
k

V�
m

� �
: ð6:46Þ

In Equation (6.46) the terms B
�
kk;B

�
km;B

�
mk, and B�

mm are diagonal matrices since the three

TCSC modules are electromagnetically decoupled:

B
�
kk ¼ B�

mm ¼ B
�
TCSC ¼ � 1

X�
; ð6:47Þ

B
�
km ¼ B

�
mk ¼ �B

�
TCSC ¼ 1

X�
; ð6:48Þ

where X� represents the fundamental frequency equivalent reactance of the �th series

modules making up the TCSC.

With reference to Figure 6.4 and using the transfer admittance matrix in Equation (6.46),

the three-phase nodal power injections at bus k are:

P
�
k ¼ V

�
k V

�
mB

�
km sin ��k � ��m

� �
; ð6:49Þ

Q
�
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� �2
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�
kk � V

�
k V

�
mB

�
km cos ��k � ��m

� �
: ð6:50Þ

Power equations at bus m are obtained by replacing the subscript k with m, and vice versa, in

Equations (6.49) and (6.50).

The first partial derivatives of the power equations with respect to X� are:

qP�
k

qX�
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�
k ; ð6:51Þ
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Figure 6.4 Three-phase variable series susceptance
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When the TCSC is controlling active power flowing from k to m, at specified value, the set

of linearised power flow equations is
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where �P
�;X
km , given by

�P
�;X
km ¼ P

�;X;Re g
km � P

�;X;cal
km ;

is the active power flow mismatch for the TCSC. �X� is the incremental change in the total

series TCSC reactance, and the superscript (i) indicates iteration number.

6.4.2 Firing-angle Model

The TCSC structure shown in Figure 2.12 is extended to account for the three phases as

shown in Figure 6.5. This is used as the basis for deriving the three-phase power flow model,
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Figure 6.5 Three thyristor-controlled series compensator modules
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where the TCSC firing angle is used as state variable (Venegas and Fuerte-Esquivel, 2001).

The three TCSC branches are assumed to be electrically and magnetically decoupled.

The fundamental frequency TCSC equivalent reactance, as a function of TCSC firing

angle, is given by Equation (2.52). It follows that the extension to three phases is quite

straightforward, owing to the decoupled nature of the three modules:

X
�
TCSCð1Þ ¼ �X

�
C þ C

�
1 2 p� ��ð Þ þ sin 2 p� ��ð Þ½ �f g � C
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2 p� ��ð Þ
� ! tan ! p� ��ð Þ½ � � tan p� ��ð Þf g; ð6:54Þ
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X
�
L p

: ð6:57Þ

The transfer admittance matrices of both TCSC representations are identical, given by

Equations (6.46)–(6.48). Moreover, the TCSC nodal power equations also coincide. The

TCSC power equations with respect to the firing angle are:
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When the TCSC module is controlling the active power flowing from buses k to m, at a

specified value, the set of linearised power flow equations is:
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where �P
�;�
km

�P
�;�
km ¼ P

�;�;Reg
km � P

�;�;cal
km ;

and P
�;�;cal
km ;P

�
k , are the active power flow mismatches for the three-phase TCSC module, and

��ðiÞ, given by

�� ið Þ ¼ �� i�1ð Þ þ��� ið Þ;

is the incremental change in the TCSC firing angle. The superscript (i) indicates iteration

number.

6.4.3 Numerical Example: Power Flow Control using One
Thyristor-controlled Series Compensator

In order to show the flexibility of the TCSC model in the phase domain, a three-phase power

flow study is carried out. The TCSC is added to the unbalanced five-bus network, connected

between buses Lake and Main. The aim of this example is to balance out the amount of

active power through the TCSC at 21 MW. The increase of active power in phase a is almost

50 % and in phase b 5 %; in phase c it decreases by 14 % with respect to the unbalanced

case in Section 6.2.4. The three-phase nodal voltage magnitudes and phase angles are given

in Table 6.4(a), whereas Table 6.4(b) gives the nodal voltage magnitudes in the sequence

domain. The power flows are shown in Figure 6.6.

6.5 STATIC COMPENSATOR

With reference to the single-phase equivalent circuit shown in Figure 2.18(b), and assuming

that the three Thévenin equivalents representing a three-phase STATCOM are decoupled,

the equivalent circuit is shown in Figure 6.7.

Table 6.4 Nodal voltages in the three-phase unbalanced network with a thyristor-controlled series

compensator (TCSC): (a) phase voltages and (b) sequence voltages

Network bus

——————————————————————————————

Voltage Phase North South Lake Main Elm LakeTCSC

(a) Phase voltages

Magnitude (p.u.) a 1.06 1.00 0.9839 0.9797 0.9788 0.9800

b 1.06 1.00 0.9884 0.9823 0.9751 0.9871

c 1.06 1.00 0.9912 0.9866 0.9593 0.9902

Phase angle (deg) a 0.00 �1.87 �5.28 �3.86 �5.54 �3.48

b 240.00 238.14 235.36 234.80 235.21 235.07

c 120.00 117.52 115.58 114.51 113.05 114.94

(b) Sequence voltages

Magnitude (p.u.) Zero 0.00 0.0035 0.0046 0.0097 0.0147 0.0098

Positive 1.06 1.0000 0.9878 0.9828 0.9710 0.9857

Negative 0.00 0.0035 0.0052 0.0079 0.0092 0.0086
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Figure 6.6 Five-bus network with thyristor-controlled series compensator: (a) phase a, (b) phase b,

and (c) phase c
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Based on this equivalent circuit, and the three-phase transfer admittance Equation (2.65),

the following expressions for active and reactive power injections at bus k may be

written:
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; ð6:63Þ
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The corresponding expressions for the three sources are:
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where � refers to phases a, b, and c at bus k and at the terminals of the source.

Derivation of these power equations with respect to the STATCOM state variables V
�
vR

and ��vR yields the following linearised equation:
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Figure 6.7 Three-phase static compensator equivalent circuit
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The Jacobian elements created for this application are as follows:
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Solution of the linearised Equation (6.67) yields information on the state variable

increments. The increments are, in turn, used to update the state variables. Voltage mag-

nitude limits are checked at the end of each iterative step and if one or more limits are

violated the voltage magnitude is fixed at the violated limit.

6.5.1 Static Compensator Three-phase Numerical Example

The three-phase STATCOM model is used to balance voltage magnitude at Elm at 0.98 p.u.

This is, in essence, the same case study carried out with the SVC model in Section 6.3.3.
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The source impedances are XvR ¼ 0:1 p.u. per phase. The power flow results indicate that

the STATCOM generates 4.81 MVAR, 8.47 MVAR and 15.25 MVAR in phases a, b and c,

respectively, in order to achieve the three-phase voltage magnitude target. The STATCOM

parameters associated with this amount of reactive power generation are: VvR ¼ 0:9849,
0.9886 and 0.9955 p.u. for phases a, b and c, respectively. As expected power flows results

coincide with those obtained using the SVC model in Section 6.3.3. Nodal voltage

magnitudes and phase angles are given in Table 6.3(a), and sequence domain voltage

magnitudes are given in Table 6.3(b).

6.6 UNIFIED POWER FLOW CONTROLLER

The UPFC schematic representation and its operational control were presented in Sec-

tion 2.4.4, and a positive sequence power flow model was developed in Section 5.6.

However, in order to assess the role of the UPFC operating under unbalanced conditions it is

necessary to develop the model in phase coordinates.

Assuming that the equivalent circuit of a three-phase UPFC consist of three single-phase

UPFC equivalent circuits, with no couplings between them, as shown in Figure 6.8, the
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three-phase power flow equations are as follows:
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Equations (6.80) and (6.81) are the three-phase counterparts of Equations (5.50) and (5.51).

Equations for bus m, and the series and shunt converters are also obtained by direct

extensions of Equations (5.52)–(5.57) into phase coordinates.

In this situation, the active power supplied to the shunt converter, Re V
�
vRI

��
vRf g satisfies the

active power demanded by the series converter, Re V
�
cRI

��
m

� �
. The impedance of the series

and shunt transformers, Z
��
cR and Z

��
vR, are included explicitly in the model.

The UPFC power equations, in linearised form, are combined with those of the AC

network. For the case when the UPFC controls the following parameters: (1) voltage

magnitude at the shunt converter terminal (bus k), (2) active power flowing from bus m to

bus k, and (3) reactive power injected at bus m, and taking bus m to be a PQ bus, the

linearised system of equations is as follows:
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ð6:82Þ
The Jacobian entries, which are 3� 3 matrices, are derived in a similar way to those of

the STATCOM in Section 6.5. The linearised equation (6.82) is solved for the vector of state

variables increments, and this information is used to update the state variables. If the

convergence criterion has not been satisfied then a new iteration is started using the latest,

state variables information available.
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6.6.1 Numerical Example of Power Flow Control using
One Unified Power Flow Controller

In order to assess the effectiveness of UPFC controllers to regulate active and reactive power

flow and to control voltage magnitude in one of the UPFC connecting buses, the five-bus

network is modified to include a three-phase UPFC model to compensate and to balance the

transmission line linking buses Lake and Main. The modified network is shown in

Figure 6.9. The UPFC is used to maintain active power leaving the UPFC, towards Main, at

30 MW in each phase; reactive power towards Main is selected in such a manner that

balanced voltage magnitudes of 0.98 p.u. are obtained at the bus connecting the UPFC and

compensated transmission line; the reactive power injections are set at 7.13 MVAR, 2.47

MVAR, and 6.05 MVAR for phases a, b, and c, respectively; voltage magnitudes at bus Lake

are fixed at 1 p.u. The three-phase nodal voltage magnitudes and phase angles are given in

Table 6.5(a), where it is shown that the UPFC is effective in regulating voltage magnitude in

both of the connecting buses. Figure 6.9 shows the power flow results when the UPFC

regulates reactive power at the above values. It is clear that the UPFC is an effective device

for restoring power balance. Table 6.5(b) shows the nodal voltage magnitudes in the

sequence domain.

6.7 SUMMARY

In the first part of this chapter we presented the theory of power flow in phase coordinates

using the Newton–Raphson method. This enables the reliable solution of three-phase power

systems exhibiting any degree of geometric and operational imbalance. To illustrate the

Table 6.5 Nodal voltages in the three-phase unbalanced network with a unified power flow

controller: (a) phase voltages and (b) sequence voltages

Network bus

————————————————————————————————

Voltage Phase North South Lake Main Elm LakeUPFC

(a) Phase voltages

Magnitude (p.u.) a 1.06 1.00 1.00 0.980 0.979 0.98

b 1.06 1.00 1.00 0.977 0.973 0.98

c 1.06 1.00 1.00 0.978 0.957 0.98

Phase angle (deg) a 0.00 �1.74 �6.05 �3.04 �5.19 �2.49

b 240.00 238.27 234.80 235.90 235.67 236.41

c 120.00 117.65 114.83 115.36 113.39 115.98

(b) Sequence voltages

Magnitude (p.u.) Zero 0.00 0.0036 0.0050 0.0087 0.0161 0.0077

Positive 1.06 1.0000 1.0000 0.9782 0.9695 0.9799

Negative 0.00 0.0036 0.0050 0.0073 0.0090 0.0078
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additional flexibility introduced by the phase coordinates modelling, the five-bus network

was solved for cases of balanced and unbalanced system load, and comparisons were drawn.

A three-phase power flow function written in Matlab1 code was provided to enable a hands-

on application of the theory. It used the Newton–Raphson method and is suitable for solving

small and medium-sized networks with balanced and unbalanced system loads. The

function is quite general, but modelling capability has been kept at a relatively low level

to avoid cumbersome and lengthy code. Nevertheless, incorporation of advanced power

plant models, such as those studied in Chapter 3, is quite a straightforward programming

exercise.

The second part of the chapter focused on developing three-phase models of key FACTS

controllers, such as the SVC, STATCOM, TCSC, and UPFC. The first two controllers are

shunt-connected, and the test cases presented emphasise the fact that, at least in principle,

these controllers are capable of restoring voltage magnitude at the point of connection, in

addition to fulfilling their basic function of providing reactive power support. The TCSC and

UPFC are series-connected controllers and, in their respective numerical examples, they are

set to enable balanced active power flows in the compensated transmission line. This is

achieved by contributing unbalanced compensation, a fact that does not dent the quadratic

convergence characteristic of the three-phase power flow Newton–Raphson method.

Incorporation of these FACTS controller models into the Matlab1 function given in this

chapter is a more cumbersome exercise than the incorporation of conventional power plant

models.

REFERENCES

Angeles-Camacho, C., 2000,Modelado en Estado Estacionario del Controlador Unificado de Flujo de

Potencia para el Análisis Trifásico de Sistemas Eléctricos, MSc thesis, Instituto Tecnológico de
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7
Optimal Power Flow

7.1 INTRODUCTION

Electric power systems have experienced continuous growth in all three sectors of the

business, namely, generation, transmission, and distribution. In the past, transmission

systems were characterised by a low degree of interconnection, hence, it was uncomplicated

to share the load among several generating units. The increase in load sizes and operational

complexity brought about by widespread interconnection of transmission systems, some

encompassing continental distances, introduced major difficulties into the operation of

electrical power networks. It became necessary for many electrical utilities to operate their

systems closer to the system operating capacity. It became impractical to determine

appropriate operating strategies based only on observation and the experience of the

operator. The operating philosophy had to be revised, and new concepts based on economic

considerations were adopted. Optimal power flow (OPF) solution methods have been

developed over the years to meet this very practical requirement of power system operation

(Alsac et al., 1990; Dommel and Tinney, 1968; El-Hawary and Tsang, 1986; Happ, 1977;

Huneault and Galiana, 1991; Maria and Findlay, 1987; Monticelli and Liu, 1992; Sasson,

1969; Sasson, Viloria, and Aboytes, 1973; Sun et al., 1984; Tinney and Hart, 1967; Wood

and Wollenberg, 1984)

Optimal power flows can be more easily understood if one thinks in terms of conventional

power flows, where the objective is to determine the steady-state operating conditions of the

power network. Voltage magnitudes and angles at all buses of the network corresponding to

specified levels of load and generation are determined first. Power flows throughout the

network are calculated afterwards. It is most likely that this solution, although feasible, will

not yield the most economic generating schedule or an operating point where minimum

losses are incurred. The OPF solution, in contrast, includes an objective function that is

optimised without violating the system operating constraints. These include the network

equations, loading conditions, and physical limits on active and reactive power generation.

The selection of the objective function depends on the operating philosophy of each power

system. A common objective function concerns the active power generation cost. The

economic dispatch problem is a particular case of the OPF problem (Wood and Wollenberg,

1984).

FACTS: Modelling and Simulation in Power Networks.
Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez and César Angeles-Camacho
# 2004 John Wiley & Sons, Ltd ISBN: 0-470-85271-2



7.2 OPTIMAL POWER FLOW USING NEWTON’S METHOD

7.2.1 General Formulation

OPF solutions are carried out to determine the optimum operating state of a power network

subjected to physical and operational constraints. An objective function, which may

incorporate economic, security, or environmental aspects of the power system, is formulated

and solved using a suitable optimisation algorithm, such as Newton’s method. The

constraints are physical laws that govern power generation and transmission system

availability, the design limits of the electrical equipment, and operating strategies. This kind

of problem is usually expressed as a static, nonlinear programming problem, with the

objective function represented as a nonlinear equation and the constraints represented by

nonlinear or linear equations.

More often than not, the objective function is taken to be the cost of generation, reflecting

the economic aspects of the electrical power system (Dommel and Tinney, 1968; Maria and

Findlay, 1987; Monticelli and Liu, 1992; Sun et al., 1984). Hence, the mathematical

formulation minimises active power generation cost by suitable adjustment of the control

parameters.

The OPF problem can be formulated as follows:

Minimise f xð Þ subject to h xð Þ ¼ 0 and g xð Þ � 0: ð7:1Þ
In this expression, x is the vector of state variables, f ðxÞ is the objective function to be

optimised, hðxÞ represents the power flow equations, and gðxÞ consists of state variable

limits and functional operating constraints.

In general, the aim is to optimise an objective function with the solution satisfying a

number of equality and inequality constraints. Any solution point that satisfies all the

constraints is said to be a feasible solution. A local minimum is a feasible solution point

where the objective function is minimised within a neighbourhood. The global minimum is

a local minimum with the lowest value in the complete feasible region (Bertsekas, 1982;

Luenberger, 1984).

7.2.1.1 Variables

Variables that can be adjusted in pursuit of the optimal solution are termed control variables,

such as active power generation, taps and phase angles in tap-changing and phase-shifting

transformers, respectively, and voltage magnitudes at the generator buses. The control

parameters are taken to be continuous quantities. Such a representation is well handled by the

OPF formulation and provides a suitable representation of controls with small discrete steps.

Dependent variables are those that depend on the control variables. They can take any

value, within limits, as dictated by the solution algorithm. Examples of dependent variables

are voltage phase angles at all buses, except the slack bus; voltage magnitudes at all load

buses; reactive power at all generation buses; active power generation costs; and active and

reactive power flows (network losses) in transmission lines and transformers.

In addition to control and dependent variables, active and reactive power loads and

network topology and data form a set of fixed parameters that must be specified at the outset

of the study.
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7.2.1.2 Objective function

The main aim of the OPF solution is to determine the control settings and system state

variables that optimise the value of the objective function. The selection of the objective

function should be based on careful analysis of the power system security and economy.

Arguably, power generation cost is the most popular objective function in OPF studies,

where the thermal generation unit costs are generally represented by a nonlinear, second-

order function (Luenberger, 1984; Sun et al., 1984):

FT ¼
Xng
k¼ 1

Fk Pgk

� �
; ð7:2Þ

where Fk is the fuel cost of unit k, Pgk is the active power generated by unit k, and ng is the

number of generators in the system, including the slack generator. More specifically,

Fk Pgk

� � ¼ ak þ bkPgk þ ckP
2
gk; ð7:3Þ

where ak, bk, and ck are the cost coefficients of unit k.

It should be noted that it is crucial to include the slack generator contribution in the OPF

formulation, Equation (7.1), otherwise the minimisation process will dispatch all the

generating units at their minimum capacity while assigning the rest of the required

generation to the slack generator, which would be seen by the optimisation procedure as

having zero generation cost and infinite generation capacity.

7.2.1.3 Equality constraints

The power flow equations provide a means for calculating the power balance that exists in

the network during steady-state operation. They must be satisfied, unconditionally, if a

feasible solution is to exist (Dommel and Tinney, 1968; Sun et al., 1984), otherwise the OPF

problem is said to be infeasible, with attempts being made to find a limited but still useful

solution by relaxing some of the network constraints.

The power flow equations represent the link between the control variables and the

dependent variables,

Pk V ; �ð Þ þ Pdk � Pgk ¼ 0; ð7:4Þ
Qk V ; �ð Þ þ Qdk � Qgk ¼ 0; ð7:5Þ

where Pk and Qk are, respectively, the active and reactive power injections at bus k; Pdk and

Qdk are, respectively, the active and reactive power loads at bus k; Pgk and Qgk are,

respectively, the scheduled active and reactive power generations at bus k; V and � are,

respectively, the nodal voltage magnitudes and angles.

A generic bus including generation, load, and a transmission line is shown in Figure 7.1.

It should be noted that all equality constraints in the power network are nonlinear.

However, they are incorporated in a linearised form within the OPF formulation

(Luenberger, 1984).
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7.2.1.4 Inequality constraints

All variables have upper and lower limits that must be satisfied in the optimal solution.

Constraints on control variables reflect the bounds of the operating conditions of the

equipment used for power dispatch. Arguably, limits on the generated active power and

voltage magnitude at the generating units are the most important of such bounds.

Functional constraints result from the application of limits on control variables, with

constraints on voltage magnitudes at load buses and on active and reactive power flows in

transmission lines being the most popular:

Pmin
gk � Pgk � Pmax

gk ; k ¼ 1; . . . ; ng; ð7:6Þ
Qmin

gk � Qgk � Qmax
gk ; k ¼ 1; . . . ; ng; ð7:7Þ

Vmin
k � Vk � Vmax

k ; k ¼ 1; . . . ; nb; ð7:8Þ
where nb is the total number of buses, ng is the total number of generation buses, and

Qgk ¼ Qk V ; �ð Þ þ Qdk: ð7:9Þ
If a reactive power limit violation takes place in a generator bus, it changes to a load bus,

with associated voltage constraints.

It should be mentioned that functional constraints are normally relaxed under

system emergency conditions in order to obtain suboptimal but still technically feasible

solutions.

7.2.2 Application of Newton’s Method to Optimal Power Flow

The first step towards solving the constrained optimisation problem using Newton’s method

is to convert the problem into an unconstrained optimisation problem. This is achieved by

constructing an augmented Lagrangian function for Equation (7.1), which in generic form

may be written as:

L x; kð Þ ¼ f xð Þ þ kth xð Þ þ c g xð Þ; l½ �; ð7:10Þ
where k and l are Lagrange multiplier vectors for equality and inequality constraints,

respectively, c½gðxÞ; l� is the penalty function of the inequality constraints, and a superscript

Pdk + jQdk

Pk(V, q ) + jQk(V, q )

Pgk + jQgk

Vk ∠ θk

Figure 7.1 A generic bus of the electrical power network
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t indicates the transpose. In Equation (7.10) there are as many Lagrange multipliers as

number of active constraints. The method for handling functional inequality constraints is

addressed in Section 7.2.6.

In OPF using Newton’s method, the Lagrangian function for active and reactive power

flows is modelled as an equality constraint, given by the following equation (Luenberger,

1984):

Lsystem x; kð Þ ¼ FT þ
Xnb
k¼ 1

lpk Pk V ; �ð Þ þ Pdk � Pgk

� �þXnb
k¼ 1

lqk Qi V ; �ð Þ þ Qdk � Qgk

� �
;

ð7:11Þ

where FT is the objective function, the summations are for the nb buses specified in the

study, and kpk and kqk are the Lagrange multipliers for the active and reactive power

equations, respectively.

7.2.3 Linearised System Equations

Solution of the Lagrangian function of Equation (7.11) may be efficiently achieved by

solving, by iteration, the following system of linearised equations,

½W� �x

�k

� �
¼ rx

rk

� �
: ð7:12Þ

Sometimes, it is more convenient to express the system of Equations (7.12) as follows:

W�z ¼ �g; ð7:13Þ
where

W ¼ H Jt

J 0

� �
; ð7:14Þ

�z ¼ ½�x�k�t; ð7:15Þ
g ¼ ½rxrk�t; ð7:16Þ
rx ¼ ½rPg rhrV�t; ð7:17Þ
rk ¼ ½rkp rkq�t; ð7:18Þ
�x ¼ ½�Pg �h�V�t; ð7:19Þ
�k ¼ ½�kp �kq�t: ð7:20Þ

Matrix W contains the second partial derivatives of the Lagrangian function Lðx; kÞ with
respect to the state variables x and Lagrange multipliers k. Some derivative terms give rise

to the Hessian H whereas others give rise to the Jacobian J or its transposed matrix Jt.

Matrix W is symmetric and has a null submatrix, 0, at its lower right-hand corner, since the

second partial derivatives of the form q2Lðx; kÞ=qlkqlm do not exist.
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The gradient vector g is rLðx; kÞ, and the first partial derivatives of g are the second

partial derivatives of the Lagrangian function Lðx; kÞ. The Lagrange multipliers are the

incremental costs for active and reactive powers, kp and kq, respectively. �z is the vector of

correction terms. The state variables are the active power generations, the nodal voltage

magnitudes, and phase angles, Pg, V, and �, respectively.
The derivative terms associated with the inequality constraints, c½gðxÞ; l�, are not

included at the beginning of the iterative solution. They are incorporated into the linearised

system of Equations (7.12) only after limits become enforced; hence, the Hessian and

Jacobian terms are:

H ¼ q2L x; kð Þ
qx2

¼ q2f xð Þ
qx2

þ q2h xð Þ
qx2

� �t
k; ð7:21Þ

J ¼ q2L x; kð Þ
qxqk

¼ qh xð Þ
qx

: ð7:22Þ

A key property of submatrices H, J, and Jt is that they all have the same sparsity structure as

the nodal admittance matrix (Wood and Wollenberg, 1984).

7.2.4 Optimality Conditions for Newton’s Method

In general, conditions for global optimality (xopt, kopt) can be checked by assessing the

positiveness of matrix W. However, it is computationally too expensive for large-scale

problems to verify that matrix W is positive definite, and this test is skipped in

most practical problems. Other optimality tests performed involve checking that the gradient

vector is zero and that the Lagrange multipliers for the binding inequalities pass their sign

test (Bertsekas, 1982; Luenberger, 1984).

In practical OPF solutions the following tests are carried out (Sun et al., 1984).

� all power mismatches are within a prescribed tolerance;

� the inequality constraints are satisfied;

� the vector gradient is zero;

� further reductions in the objective function are possible only if constraints are violated.

It should be emphasised that in general optimisation problems, the solution has to satisfy

a number of equality and inequality constraints. Inequality constraints are made active by

changing them into equality constraints. Hence, the general optimisation problem is to find

the optimum of a function subjected to a set of equality constraints.

7.2.5 Conventional Power Plant Modelling in Optimal Power Flow

Superposition is used to construct the linearised system of Equations (7.12) at each iterative

step. The plant components of the power system are modelled independently and their

individual entries placed in W and g. The bus number to which the plant component is

connected determines the location of the individual Hessian and Jacobian terms in the

overall W and g structures.
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7.2.5.1 Transmission lines

The positive sequence representation of the nominal p-circuit shown in Figure 3.1 is used to

derive the transmission line power flow equations required by the OPF formulation in a

similar manner to the procedure carried out in Section 4.2.1 for the case of a series

impedance.

The Lagrangian function associated with the power mismatch equations at buses k and m

is:

L ¼ Ltrans-lineðx; kÞ ¼ �pkðPk þ Pdk � PgkÞ þ �qkðQk þ Qdk � QgkÞ
þ �pmðPm þ Pdm � PgmÞ þ �qmðQm þ Qdm � QgmÞ:

ð7:23Þ

The first partial derivatives of the Lagrangian function in Equation (7.23), with respect to the

voltage magnitudes and phase angles at buses k and m, and the four Lagrange multipliers,

are used as entries in the gradient vector g. The individual entries of matrix W are the

second derivative terms of the Lagrangian function with respect to voltage magnitudes and

phase angles at buses k and m, and the four Lagrange multipliers in Equation (7.23). These

terms are given explicitly in Appendix B, Section B.1.

The contribution of a transmission line to the overall linearised system of Equations (7.12)

is:

Wkk Wkm

Wmk Wmm

� �
�zk
�zm

� �
¼ � gk

gm

� �
ð7:24Þ

where

Wkk ¼

q2L
q�2k

q2L
q�kqVk

qPk

q�k

qQk

q�k

q2L
qVkq�k

q2L
qV2

k

qPk

qVk

qQk

qVk

qPk

q�k

qPk

qVk

0 0

qQk

q�k

qQk

qVk

0 0

2
666666666666664

3
777777777777775

; ð7:25Þ

Wkm ¼

q2L
q�kq�m

q2L
q�kqVm

qPm

q�k

qQm

q�k
q2L

qVkq�m

q2L
qVkqVm

qPm

qVk

qQm

qVk

qPk

q�m

qPk

qVm

0 0

qQk

q�m

qQk

qVm

0 0

2
6666666666664

3
7777777777775
; ð7:26Þ
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Wmk ¼

q2L
q�mq�k

q2L
q�mqVk

qPk

q�m

qQk

q�m

q2L
qVmq�k

q2L
qVmqVk

qPk

qVm

qQk

qVm

qPm

q�k

qPm

qVk

0 0

qQm

q�k

qQm

q�k
0 0

2
66666666666664

3
77777777777775
; ð7:27Þ

Wmm ¼

q2L
q�2m

q2L
q�mqVm

qPm

q�m

qQm

q�m
q2L

qVmq�m

q2L
qV2

m

qPm

qVm

qQm

qVm

qPm

q�m

qPm

qVm

0 0

qQm

q�m

qQm

qVm

0 0

2
6666666666664

3
7777777777775
; ð7:28Þ

�zk ¼ ��k �Vk ��pk ��qk

� �t
; ð7:29Þ

�zm ¼ ��m �Vm ��pm ��qm

� �t
; ð7:30Þ

gk ¼ r�k rVk r�pk r�qk½ �t; ð7:31Þ
gm ¼ r�m rVm r�pm r�qm

� �t
: ð7:32Þ

These terms are systematically placed in W and g to make them correspond to the locations

of buses k and m.

7.2.5.2 Shunt elements

In electrical power systems, nodal voltages are markedly affected by load variations and by

network topology changes. The voltage drops when the network operates under heavy

loading, and, conversely, when the load level is low overvoltages can arise owing to the

capacitive effect of transmission lines. Such voltage variations are not conducive to good

operation, and voltage regulation is enforced by controlling the production or absorption of

reactive power at key locations in the network. Shunt capacitors and shunt reactors are used

for such a purpose. Shunt compensators are either permanently connected to the network or

are switched on or off according to requirements (Wood and Wollenberg, 1984).

Away to include a purely reactive shunt element in the OPF formulation is shown below.

If the shunt element is connected at bus k, the Lagrangian function is given by:

L ¼ Lshuntðx; kÞ ¼ lqkðQshunt;kÞ ¼ lqkð�V2
k BshuntÞ: ð7:33Þ
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The shunt element contribution to the overall linearised system of equations is:

�2�qkBshunt �2VkBshunt

�2VkBshunt 0

� �
�Vk

��qk

� �
¼ � �2�qkVkBshunt

�V2
k Bshunt

� �
: ð7:34Þ

7.2.5.3 Synchronous generators

In addition to providing the active power demanded by the system, synchronous generators

also control the production or absorption of reactive power, aimed at maintaining a constant

voltage magnitude at their terminals. In the OPF formulation, the active power–cost

characteristics of steam generators are included in the problem formulation whereas hydro

generators are assumed to operate at a fixed active power generation while contributing fully

to the production or absorption of reactive power.

The generator representation in the OPF formulation may be based on a quadratic

expression of the active power–cost characteristic. The Lagrangian function of a generator

supplying active power to a bus k is given by:

L ¼ Lgenðx; kÞ ¼ ak þ bkPgk þ ckP
2
gk: ð7:35Þ

Its contribution to the overall linearised system of equations is:

2ck �1

�1 0

� �
�Pgk

��pk

� �
¼ � bk þ 2ckPgk � �pk

0

� �
: ð7:36Þ

7.2.6 Handling of Inequality Constraints

The set of equality constraints included in the Lagrangian function at any stage of the

iterative process is called the active set (Bertsekas, 1982; Luenberger, 1984). The set of

inequality constraints that are active when the optimum is reached is called the binding set,

and the optimal solution does not necessarily require all the inequality constraints to be

binding. The binding set is not known a priori, and it is the task of the optimisation

algorithm to determine it as well as to enforce it. The inequalities that become active during

the solution process are changed to equalities and included in the active set. The problem is

then to minimise the Lagrangian function for the newly updated active set.

7.2.6.1 Handling of inequality constraints on variables

The inequality constraints are handled in the OPF formulation by means of the multiplier

method, as opposed to the penalty function method (Bertsekas, 1982; Luenberger, 1984).

The inequality constraints, when made active, are changed to equality constraints. This has

the effect of a restraining force that pulls the inadmissible points back into the admissible

region. In the multiplier method, a penalty term is added to the Lagrangian function L(x,k),
thus forming an augmented Lagrangian function, given by Equation (7.10). The

minimisation of the Lagrangian function is carried out by using Newton’s method only

for the primal variables (state variables). The dual variables, l, are updated at the end of
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each global iteration. Multipliers (dual variables) are checked for limit violations, and

variables within bounded limits are ignored.

The inequality constraints used in Equation (7.10) are handled by using the following

generic form:

ck½gkðxÞ; �k� ¼
�k gkðxÞ � �ggk½ � þ c

2
gkðxÞ � �ggk½ �2; if �k þ c gkðxÞ � �ggk½ � � 0;

�k gkðxÞ � gk

h i
þ c

2
gkðxÞ � gk

h i2
; if �k þ c gkðxÞ � gk

h i
� 0;

0 otherwise;

8><
>:

ð7:37Þ
where �gg and g are limits on state variables as well as functional constraints.

At a given iteration, (iþ 1), the multipliers are adjusted according to the following

criteria:

�
ðiþ 1Þ
k ¼

�
ðiÞ
k þ cðiÞ gkðxðiÞÞ � �ggk

� �
; if �

ðiÞ
k þ cðiÞ gkðxðiÞÞ � �ggk

� � � 0;

�
ðiÞ
k þ cðiÞ gkðxðiÞÞ � gk

h i
; if �

ðiÞ
k þ cðiÞ gkðxðiÞÞ � g

k

h i
� 0;

0 otherwise;

8>><
>>: ð7:38Þ

where 0 < cðiÞ < cðiþ1Þ.
Upon convergence, l satisfies the optimality conditions as given by Kuhn and Tucker

(Bertsekas, 1982; Luenberger, 1984). In such a case, all the state variable increments are

smaller than a pre-specified tolerance and no limit violations occur.

The multiplier method provides an efficient way to handle the binding and nonbinding

constraints. After moving a variable to one of its limits, the algorithm holds it there for as

long as it is required, otherwise the variable is freed.

Equation (7.37) satisfies the Kuhn and Tucker conditions (Bertsekas, 1982; Luenberger,

1984):

�gðxÞ ¼ 0; � � 0: ð7:39Þ

For any given constraint, if the product �gðxÞ is equal to zero, either � is equal to zero or

gðxÞ is nonbinding; if � > 0, then gðxÞ must be zero. Equation (7.37) provides a means to

indicate whether or not a constraint is binding.

At the end of each iteration, all variables are checked according to Equation (7.37) and

updated according to Equation (7.38). Equation (7.37) is used to evaluate the gradient vector

and matrix W. Hence, the first and second derivatives of Equation (7.37) are required. The

first derivative is added to the gradient vector g and the second derivative to matrix W. It

should be noted that when a variable is within limits, the derivatives are null.

Successful initialisation and updating of the penalty parameter c is largely dependent on

the kind of system being solved and on experience, but the following practical conditions

should be observed:

� the initial parameter c(0) should not be too large to the point that the unconstrained

minimisation becomes ill-conditioned;

� the parameter c(i) should not be increased too fast to the point that the unconstrained

minimisation becomes numerically unstable;

� the parameter c(i) should not be increased too slowly to the extent that the multiplier

iterations have a poor rate of convergence.
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Experience shows that an effective evaluation of the penalty parameter is achieved by giving

c(0) a value determined by experimentation, with subsequent evaluations of c(i) based on the

following monotonic increases: cðiþ 1Þ ¼ �cðiÞ, where � is a scalar greater than one.

7.2.6.2 Handling of inequality constraints on functions

Arguably, the most important functional inequality constraints are those corresponding to

controllable sources of reactive power (Wood and Wollenberg, 1984). Reactive power

generator limits are checked at the end of each global iteration. It should be pointed out that

there are computational advantages gained by including explicitly the reactive power

equation of a generator in matrix W. If the generator operates within reactive power limits, a

large number in the diagonal element associated with �q is used to nullify the reactive power
equation. However, the large number is removed when the functional inequality constraint

becomes activated, in order to enforce either an upper or a lower reactive power limit.

The penalty function technique may be used either to activate or to deactivate the

equations corresponding to generator buses. Quadratic penalty functions are used since they

have first and second derivatives. The form of the penalty function for the reactive power

constraint at a generator bus k is (Bertsekas, 1982; Luenberger, 1984):

Eqk ¼ 1

2
S�2

qk: ð7:40Þ

The first and second derivatives are:

dEqk

d�qk

¼ S�qk; ð7:41Þ

d2Eqk

d2�qk

¼ S; ð7:42Þ

where S is a large, positive penalty weighting factor.

Adding the first and second derivatives of the penalty function to the elements associated

with �qk in g and W deactivates the reactive power flow equation of the generator bus k. In

such a situation, �qk has a zero value. When one of the reactive power limits is violated, the

derivatives are removed from W and g, and the bus changes from being a generator bus to a

load bus. Hence, �qk changes its value from zero to nonzero.

The sign in �qk indicates whether or not the reactive power has returned within limits as

indicated by the criteria given in Table 7.1.

Table 7.1 Constraints on reactive power injections

Limit �qk < 0 �qk > 0

Upper Add penalty term Remove penalty term

Lower Remove penalty term Add penalty term
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7.3 IMPLEMENTATION OF OPTIMAL POWER FLOW USING
NEWTON’S METHOD

The mathematical formulation for active power optimisation has been dealt with above

(Bertsekas, 1982; Luenberger, 1984). Practical aspects of computer implementation are now

presented, with three main steps identified in the flow diagram of Figure 7.2: (1)

initialisation of control variables; (2) the outer (main) iteration loop; and (3) the inner

iteration loop, which corresponds to the actual Newton process (Ambriz-Pérez, 1998).

The first step comprises initialisation of variables and a lossless economic dispatch (Wood

and Wollenberg, 1984). In the main iterative loop, the state variables x are checked to assess

State variable initialisation

Economic dispatch based
on equal incremental
generation costs

Newton process: assembly
and solution of the linearised
system of equations

Update of multipliers and
penalty weighting factors

Start

Are all variables
within limits?

i > imax

Stop

No

Yes

Yes

i = i + 1

No

Figure 7.2 Flowchart for active power optimisation
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whether or not they are within bounds. The inequality constraints either are activated or

inactivated according to the criteria established in Equation (7.37). The multipliers and

penalty weighting factors are updated by using Equation (7.38). At a given iteration, (i), if

no change in the inequality constraint set takes place at the end of the main loop then the

optimisation process terminates.

The Newton process takes place in the inner iteration loop, a process characterised by

fixed values of the multipliers and penalty weighting factors. The linearised system of

equations for minimising the active power generation cost is solved in this loop. Once the

linearised system of equations has been assembled then a sparsity-oriented solution is

carried out. This process is repeated until a small, prespecified, tolerance is reached.

Normally, a tight convergence criterion is adopted for the mismatch gradient vector (i.e.

1e� 12).

7.3.1 Initial Conditions in Optimal Power Flow Solutions

All the state variables and Lagrange multipliers must be given an initial value at the

beginning of the solution procedure. The initial values should be selected by following good

engineering judgement in order to ensure an acceptable rate of convergence. In this

application, nodal voltages are initialised in a way similar to that of the power flow problem

[i.e. 1 p.u. magnitude and 0� phase angle for all buses]. This provides a suitable starting

condition. Engineering experience indicates that, for most problems, departure from the

unitary voltage magnitude and zero phase angle is not too large (i.e. 0.95�Vk� 1.05, and

�10� � �k� 10�.

7.3.2 Active Power Schedule

A lossless economic dispatch, as opposed to a power flow solution, is used to provide good

starting conditions for the OPF application. The equal incremental cost criterion may be

used for this purpose. Different variants of the method are available in the open literature,

but the one recommended here is to take the generator limits into consideration, since this

yields more realistic starting conditions (Wood and Wollenberg, 1984).

The Lagrangian of the lossless economic dispatch may be expressed by

L ¼ Lgenðx; kÞ ¼ FT þ � Pd �
Xng
k¼ 1

Pgk

 !
: ð7:43Þ

Necessary conditions to minimise active power generation cost is that the first derivative of

the cost function, with respect to each one of the variables involved, is zero and that the

balance between the generation and the demand be met:

qL
qPgk

¼ dFkðPgkÞ
dPgk

� �pk ¼ 0; ð7:44Þ
Xng
k¼ 1

Pgk ¼ Pd: ð7:45Þ
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Moreover, the inequality constraints given by Expression (7.6) have to be satisfied. If this

is not the case, an economic dispatch is carried out and the inequality constraints are

handled by means of the multiplier method.

The following set of equations is formed when Newton’s method is applied to the lossless

economic dispatch problem.

d2F1

dP2
1

0 � � � 0 �1

0
d2F2

dP2
2

� � � 0 �1
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.
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If only quadratic cost functions are used and no limits violations take place then the optimal

solution is reached in just one iteration. Otherwise, if generation limits are violated then

such limits are enforced and a new iteration is started.

7.3.3 Lagrange Multipliers

The Lagrange multipliers for active and reactive power flow mismatch equations are

initialised at the �p value given by the lossless economic dispatch and �q equal to zero,

respectively. Experience shows that these values give rise to very robust iterative solutions.

7.3.4 Penalty Weighting Factors

There is general agreement that the multiplier method is more effective than the penalty

function method to deal with inequality constraints (Bertsekas, 1982; Luenberger, 1984).

The former is a less empirical method, but a great deal of experimentation is still needed

to select suitable values for the weighting parameter c. For instance, a value of cð0Þ ¼ 1000

is recommended for voltage magnitude constraints, whereas for active power constraints a

good value to choose is the largest quadratic coefficient of the cost curves multiplied by

1000 (Ambriz-Pérez, 1998).

In subsequent iterations, the parameter c(i) is increased by a constant factor �. Values of
� ¼ 1:3 produce reliable solutions. Larger values of � may lead to ill-conditioned situations

whereas smaller values of � may lead to a slow rate of convergence.

The weighting factor S in Equations (7.40)–(7.42) is a positive parameter as large as

1e þ 10. It provides an effective enforcement of the functional inequality constraints for

controllable sources of reactive power.

7.3.5 Conjugated Variables

The voltage magnitude and reactive power generation at a given bus are strongly interlinked.

If a pair of such variables is simultaneously outside limits during the solution process, only
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one of them will be made active in the first instance. The voltage magnitude is bounded first,

that is, reactive power generation is not made active if its associated voltage magnitude is

outside limits. Likewise, if these variables are bounded and they are about to be released at

the end of a main iteration, only one of them will be released at the time (Ambriz-Pérez,

1998).

7.3.6 An Optimal Power Flow Numerical Example

The five-bus test network (Stagg and El-Abiad, 1968) used in Section 4.3.9 to illustrate the

use of the conventional power flow Newton–Raphson method is also used in this section to

illustrate the use of the Matlab1 OPF computer program and associated data, given in

Appendix C.

The maximum and minimum voltage magnitude limits at all buses are taken to be 0.9 p.u.

and 1.1 p.u., respectively, except at North, where the maximum limit is set at 1.5 p.u. The

cost coefficients of the two generating units are taken to be: a ¼ 60 $ h�1,

b ¼ 3:4 $MW�1 h�1, and c ¼ 0:004 $MW�2 h�1. The maximum and minimum generator

active power limits are set at 200MW and 10MW, respectively, whereas the maximum and

minimum reactive power limits are set at 300MVAR and �300MVAR, respectively.

The resulting power flows are shown in Figure 7.3, and the nodal voltages and Lagrange

multipliers at the optimum operating point are given in Table 7.2.
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Figure 7.3 Five-bus test network and optimal power flow results

IMPLEMENTATION OF OPTIMAL POWER FLOW USING NEWTON’S METHOD 281



It can be observed from the results presented in Table 7.2 that all nodal voltages edge

towards the high side. However, they serve the purpose of the OPF solution in this example,

where limit violations take place during the iterative process and the multiplier method

handles the violations very efficiently. For example, the voltage magnitude in South is

bounded at its upper limit of 1.1 p.u. at the end of the solution process. All other nodal

voltages are well within their permitted range. It should be mentioned that selection of a

more stringent voltage range (e.g. 100� 6%) poses no problem in Newton’s method.

The results in Table 7.2 also show that the largest nodal Lagrange multiplier is at Elm,

which, incidentally, is the most remote bus in the network. The nodal Lagrange multipliers

are closely connected with the cost of supplying nodal load (Ambriz-Pérez, 1998).

It may be argued that the active power flows shown in Figure 7.3 are not markedly

different from those given by the conventional power flow solution, presented in the

numerical example in Section 4.3.9, except for the active and reactive power flows in line

North–South. It was remarked in Section 4.3.9 that these power flows were quite high and

that the line incurred high power losses: 2.5MW and 1.12MVAR. This is in contrast to the

values provided by the OPF solution, where the new active power flow is 47.2MW and the

transmission line generates reactive power. The active power loss reduces to 0.36MW.

The powers produced by the two generators in the OPF solution are very different from

those obtained in the conventional power flow solution. In the case of the OPF solution the

production or absorption of reactive power is an intrinsic function of the optimisation

algorithm, thus avoiding the undesirable situation that arises in the case of the conventional

power flow solution, where one generator is set to generate a large amount of reactive power

only for the second generator to absorb slightly more than 60% of that power. In the OPF

solution of this example, the two generators tend to share as evenly as possible the system

active power requirements because both generators have been given equal cost functions.

Table 7.3 summarises the key parameters generated by the OPF solution, such as active

power generation cost and active power loss.

Table 7.2 Nodal parameters for the five-bus system

Bus

—————————————————————————————

Elm Main Lake South North

Voltage:

Magnitude (p.u.) 1.0726 1.0779 1.0784 1.1000 1.1096

Phase angle (deg) �4.42 �3.85 �3.62 �1.31 0.00

lpð$MW�1 h�1Þ 4.2639 4.2341 4.2232 4.1032 4.0412

Table 7.3 Optimal power flow solution for the five-bus

system

Quantity Value

Active power generation cost ($ h�1) 747.98

Active power loss (MW) 3.05

Active power generation (MW) 168.05

Reactive power generation (MVAR) 14.71
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7.4 POWER SYSTEM CONTROLLER REPRESENTATION IN
OPTIMAL POWER FLOW STUDIES

Building on the basic theory and practice of OPF using Newton’s method, covered in

Section 7.2, extensions are now made to study the representation of controllable equipment

found in electrical power networks, such as the well-established tap-changing transformer

and the new breed of power electronic controllers generically known as FACTS equipment

(IEEE/CIGRÉ, 1995).

The following controllers are studied in the remainder of the chapter: the tap changer, the

phase shifter, the static VAR compensator (SVC), the thyristor-controlled series com-

pensator (TCSC), and the unified power flow controller (UPFC). The nature and control

characteristics of each of these controllers differ from one another, and their modelling

within the OPF solution reflects these facts; hence, they are addressed separately.

In general, an augmented Lagrangian function is established for each controller, in the

form of Equation (7.11), which serves the basis for establishing a linearised equation, in the

form of the system of Equation (7.12). The state variables of a given power system

controller are combined with the network nodal voltage magnitudes and phase angles in a

single frame of reference for a unified optimal solution using Newton’s method. The

controller state variables are adjusted automatically to satisfy specified power flows, voltage

magnitudes, and optimality conditions, as given by Kuhn and Tucker (Bertsekas, 1982;

Wood and Wollenberg, 1984).

Once the equation has been assembled and combined with matrixW and gradient vector g
of the entire network, a sparsity-oriented solution is carried out. This process is repeated

until a small, prespecified, tolerance is reached for all the variables involved.

7.5 LOAD TAP-CHANGING TRANSFORMER

Load tap-changing (ltc) transformers regulate nodal voltage magnitude by varying auto-

matically the transformer tap ratio under load. Their representation in system application

studies is a matter of paramount importance that has received a great deal of research

attention over many years. Nowadays, the problem is well understood and a variety of ltc

models are available in the literature (Acha, Ambriz-Pérez, and Fuerte-Esquivel, 2000). A

case in point is the simple and yet flexible power flow ltc model derived in Section 4.4.1. We

now turn our attention to the more involved problem of load tap changer representation in

OPF studies.

7.5.1 Load Tap-changing Lagrangian Function

The nodal power equations required in this OPF application are the same as those derived in

Section 4.4.1 for the power flow ltc model, namely, Equations (4.52)–(4.55). These

equations are used in the Lagrangian function associated with the active and reactive power

mismatches at buses k and m, which can be expressed by:

Lltcðx; kÞ ¼ �pkðPk þ Pdk � PgkÞ þ �qkðQk þ Qdk � QgkÞ
þ �pmðPm þ Pdm � PgmÞ þ �qmðQm þ Qdm � QgmÞ: ð7:47Þ
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In this expression, k is the vector of Lagrange multipliers, and the state variable vector x

includes Pg, V, �, and Tk. If the tapping facilities are on the secondary winding, as opposed

to the primary winding, then Um replaces Tk as state variable.

7.5.2 Linearised System of Equations

Representation of the ltc transformer in the OPF algorithm requires that matrix W be

augmented by one row and one column. Furthermore, Tk or Um becomes an extra state

variable in the OPF formulation.

Application of Newton’s method to the case when the LTC taps are on the primary

winding yields the following linearised system of equations:

Wkk Wkm WkT

Wmk Wmm WmT

WTk WTm WTT

2
4

3
5 �zk

�zm
�zT

2
4

3
5 ¼ �

gk
gm
gT

2
4

3
5: ð7:48Þ

In this expression, the structure of the matrix and vector terms:Wkk,Wkm,Wmk,Wmm,�zk,
�zm, gk, and gm is given by Equations (7.24)–(7.32), respectively. The additional matrix

terms in Equation (7.48) reflect the contribution of Tk, the ltc state variable. These terms are

giving explicitly by the following matrix and vector terms:

Wt
kT ¼ WTk ¼ q2L

q�kqTk

q2L
qVkqTk

qPk

qTk

qQk

qTk

� �
; ð7:49Þ

Wt
mT ¼ WTm ¼ q2L

q�mqTk

q2L
qVmqTk

qPm

qTk

qQm

qTk

� �
; ð7:50Þ

WTT ¼ q2L
qT2

k

� �
; ð7:51Þ

�zT ¼ ½�Tk�; ð7:52Þ
gT ¼ ½rTk�: ð7:53Þ

If the LTC taps are on the secondary winding rather than the primary winding the state

variable Um replaces Tk in Equations (7.49)–(7.53).

It should be noted that the first and second partial derivatives for the various entries in

Equation (7.48) are derived from the Lagrangian function of Equation (7.47), given in

Appendix B, Section B.1.2. The derivative terms corresponding to inequality constraints are

entered into matrix W only if limits are enforced as a result of one or more state variable

having violated limits.

If the LTC is set to control voltage magnitude at a specified value at either bus k or bus m

then WTT in Equation (7.51) is modified by adding the second derivative term of a large

quadratic penalty function. Furthermore, the first derivative term of the quadratic penalty

function is entered into the gradient element gT in Equation (7.53).

The initial values of the primary and secondary taps are set to 1. The experience gained

with the OPF using Newton’s method indicates that the algorithm is highly reliable towards

convergence (Ambriz-Pérez, 1998).
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7.5.3 Load Tap-changing Transformer Test Cases

The five-bus test network used in the numerical example in Section 7.3.6 is modified to

include LTC-1 in series with transmission line Lake–Main, and LTC-2 and LTC-3, in

parallel, connected in series with transmission line Elm–Main. Two dummy buses, namely

LakeLTC and ElmLTC, are used to connect the three LTCs. The topology of the upgraded

network is shown in Figure 7.4, where none of the three LTCs is set to maintain voltage

magnitude at a specified value. The LTC taps are assumed to be on the primary windings

and are initiated at 1 p.u. The impedances are taken to be on the secondary winding, having

zero resistance and 0.05 p.u. inductive reactance. The OPF algorithm takes four iterations to

converge.

The nodal voltages and active and reactive powers dispatched by the generators and

Lagrange multiplier at each bus are given in Table 7.4. The power flows and tap positions as

a function of iteration number are shown in Figure 7.4 and Table 7.5, respectively. It should

be noted that the algorithm updates the taps of both parallel LTCs identically, something

expected as these two LTCs have identical parameters. Experience with the OPF algorithm

shows that Newton’s method can handle any number of parallel transformers with ease

(Ambriz-Pérez, 1998). This applies whether or not the transformers have different

parameters or tap position limits. If an LTC hits one of its limits then the multiplier method

is used to enforce that limit (Bertsekas, 1982; Wood and Wollenberg, 1984).
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Figure 7.4 Modified five-bus system with three load tap changers (LTCs) and the optimal power flow

solution
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It may be observed that this OPF solution changes little compared with the base OPF case

presented in Section 7.3.6, where no LTCs are used. This may be explained by the fact that

the solution achieved in Section 7.3.6 was already a very good solution and that the OPF is

fixing the taps of all three LTCs to be fairly close to their nominal value of 1 p.u. (i.e. the

three LTCs are operating as conventional transformers).

7.6 PHASE-SHIFTING TRANSFORMER

The OPF implementation of the advanced transformer model derived in Section 3.3.4, with

reference to its phase-shifting capability, is addressed in this section. The OPF uses

Newton’s method as its optimisation engine, enabling an OPF phase-shifter model that is

both flexible and robust towards convergence (Acha, Ambriz-Pérez, and Fuerte-Esquivel,

2000). It can be set to simulate a wide range of operating modes with ease. The power flow

Equations (4.76)–(4.79) provide the starting point for the derivation of the phase-shifter

OPF formulation.

7.6.1 Lagrangian Function

The main aim of the optimisation algorithm described in this chapter is to minimise the

active power generation cost in the power system by adjusting suitable controllable

Table 7.4 Nodal voltages in the modified five-bus system with three load tap changers (LTCs)

Bus

————————————————————————————————————————

LakeLTC ElmLTC Elm Main Lake South North

Voltage:

Magnitude (p.u.) 1.077 1.072 1.072 1.077 1.078 1.100 1.109

Phase angle (deg) �3.815 �4.457 �4.508 �4.013 �3.505 �1.332 0.000

lpð$MW�1 h�1Þ 4.2247 4.2640 4.2645 4.2352 4.2222 4.1033 4.0411

Table 7.5 Load tap changer (LTC) tap positions in the

five-bus system

Iteration LTC-1 LTC-2 LTC-3

0 1.000 1.000 1.000

1 1.007 1.007 1.007

2 1.001 0.998 0.998

3 1.003 1.001 1.001

4 1.002 1.001 1.001
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parameters. For a phase-shifter model with phase-shifting facilities in the primary winding,

the Lagrangian function may be expressed by:

Lðx; kÞ ¼ f ðPgÞ þ kthðPg; V; �; �tÞ: ð7:54Þ
In this expression, f (Pg) is the objective function to be optimised; the term h(Pg, V, �, �t)
represents the power flow equations; x is the vector of state variables, k is the vector of

Lagrange multipliers for equality constraints; and Pg, V, �, and �t are the active power

generation, voltage magnitude, voltage phase angle, and phase-shifter angle for tapping

position t, respectively. The inequality constraints, h(Pg, V, �, �t)< 0, are not shown in

Equation (7.54) because they are included only when variables are outside limits.

The Lagrangian function of the power flow mismatch equations at buses k and m is incor-

porated into the OPF formulation as an equality constraint, given by the following equation:

Lkmðx; kÞ ¼ �pkðPk þ Pdk � PgkÞ þ �qkðQk þ Qdk � QgkÞ
þ �pmðPm þ Pdm � PgmÞ þ �qmðQm þ Qdm � QgmÞ: ð7:55Þ

In this expression, Pdk, Pdm, Qdk, and Qdm are the active and reactive power loads at buses k

and m; Pgk, Pgm, Qgk, and Qgm are scheduled active and reactive power generations at buses

k and m; and �pk, �pm, �qk, and �qm are Lagrange multipliers for active and reactive powers

at buses k and m.

A key function of the phase-shifting transformer is to regulate the amount of active power

that flows through it, say Pkm. In the OPF formulation this operating condition is expressed

as an equality constraint, represented by the following Lagrangian function:

Lflow x; kð Þ ¼ �flow--kmðPkm � PspecifiedÞ: ð7:56Þ
In this expression, �flow–km is the Lagrange multiplier associated with the active power

flowing from bus k to bus m; Pspecified is the required amount of active power flow through

the phase-shifter transformer.

The overall Lagrangian function of the phase shifter, encompassing the individual

contributions, is:
Lpsðx; kÞ ¼ Lkmðx; kÞ þ Lflowðx; kÞ: ð7:57Þ

7.6.2 Linearised System of Equations

Representation of the phase-shifting transformer in the OPF algorithm requires that matrix

W be augmented by one row and one column, with �t becoming the state variable.

Furthermore, if the phase shifter is set to control active power flow then the dimension of

matrix W is increased further by one row and one column. Hence, for each phase shifter

involved in the OPF solution the dimension of W is increased by up to two rows and

columns, depending on operational requirements.

If the two-winding transformer has phase-shifting facilities in the primary winding, the

linearised system of equations for minimising the Lagrangian function using Newton’s

method is:
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In this expression, the structure of matrix and vector terms Wkk, Wkm, Wmk, Wmm, �zk,

�zm, gk, and gm is given by Equations (7.24)–(7.32), respectively. The additional matrix

terms in Equation (7.58) reflect the contribution of �t, the phase shifter state variable. These

terms are given explicitly by:

Wt
k� ¼ W�k ¼

q2L
q�kq�t

q2L
qVkq�t

qPk

q�t

qQk

q�t

q2L
q�kq��

q2L
qVkq��

0 0

2
6664

3
7775; ð7:59Þ

Wt
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q2L
q�mq�t

q2L
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0 0

2
6664

3
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W�� ¼
q2L
q�2
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q2L
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q2L
q��q�t

0

2
6664

3
7775; ð7:61Þ

�z� ¼ ��t ���

� �t
; ð7:62Þ

g� ¼ r�t r��

� �t
: ð7:63Þ

If the phase-shifting mechanism is on the secondary winding rather than the primary

winding, the state variable �u replaces �t in Equations (7.59)–(7.63).

It should be noted that the first and second partial derivatives for the various entries in

Equation (7.58) are derived from the Lagrangian function of Equation (7.57), and given in

Appendix B, Section B.2. The derivative terms corresponding to inequality constraints are

entered into matrix W only if limits are enforced as a result of one or more state variables

having violated limits.

The procedure described by Equations (7.58)–(7.63) corresponds to a situation where the

phase shifter is set to control active power flowing from buses k to m, which is the phase-

shifter standard control mode. However, in OPF solutions the phase shifter variables are

normally adjusted automatically during the solution process in order to reach the best

operating point of the electrical power system. In such a situation, the phase shifter is not set

to control a fixed amount of active power flowing from buses k to m, and matrix W is

suitably modified to reflect this operating condition. This is done by adding the second

partial derivative term of a large (infinite), quadratic penalty function to the diagonal

location in the matrix in Equation (7.61) corresponding to the Lagrange multiplier �km. The
first derivative term of the function is added to the corresponding gradient element in

Equation (7.63).

The initial conditions given to all variables involved in the study impact significantly the

convergence pattern. Experience has shown that the phase-shifter model is very robust

towards convergence when the phase-shifting angle is initialised at 0�. State variables are

initialised similarly to the power flow problem (i.e. 1 p.u. voltage magnitude and 0� voltage
angle for all buses). The Lagrange multiplier for the power flow constraint, �flow–km, is set to
zero. These values enable very robust iterative solutions (Ambriz-Pérez, 1998).
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7.6.3 Phase-shifting Transformer Test Cases

The five-bus system given in Section 7.3.6 is used to illustrate the performance of the

phase-shifter model. One phase shifter is connected in series with the transmission line

Lake–Main. An additional bus, termed LakePS, is used for the purpose of incorporating

the phase shifter, as shown in Figure 7.5. Two different modes of phase-shifter operation are

considered in this test case: (1) no active power flow regulation and (2) active power flow

regulation at LakePS.

The phase-shifter primary and secondary windings contain no resistance, and 0.05 p.u.

inductive reactance. The phase-shifting control is assumed to be located in the primary

winding and having phase angle limits of �10�. For both test cases, the primary complex tap

is initialised at 1ff0�, and convergence is obtained in four iterations to a tolerance of 1e � 9.

7.6.3.1 Case 1: no active power flow regulation

The OPF solution for the unregulated case is shown in Figure 7.5. This case enables the OPF

solution to find the optimum amount of power transfer between buses Lake and Main, which

is calculated to be 14.92MW. This power flow value yields minimum fuel cost and active

power system losses (i.e. 747.98 $ h�1, and 3.052MW, respectively). The voltage magni-

tudes and phase angles, active and reactive powers dispatched by the generators, and

Lagrange multipliers are given in Table 7.6.
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Figure 7.5 Five-bus network with one phase shifter, and optimal power flow solution
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It should be noted that, in this case, the OPF solution forces the phase angle of the phase-

shifter transformer to be small, yielding a very similar power flow distribution to that

produced when no phase shifter is used in the network, which is the case presented in

Section 7.3.6. The slight differences between the two solutions can be traced to the fact that,

in the modified network, the inductive reactance of the original transmission line Lake–

Main may be seen as having increased by approximately 10%.

7.6.3.2 Case 2: active power flow regulation at LakePS

Information similar to that given for case 1 is presented in Table 7.7 for the case when the

phase shifter is set to regulate active power flow through LakePS at 25MW.

The phase shifter is set to control active power flow at a level different from the one that

yields an optimum solution; hence, the fuel cost and network losses are bound to increase.

The solution given by the OPF algorithm gives an active power generation cost of

748.33 $ h�1, and transmission losses are 3.143MW.

It is interesting to note that the 40% increase in active power flow through LakePS is

achieved with a relatively modest increase in total cost, calculated to be below 0.05%, but

the active power loss increases more markedly, calculated to be just under 3%. This test

case indicates that the great operational flexibility brought about by power system

controllers may come at a price. It should be remarked, however, that this is a small network

Table 7.6 Nodal voltages in the five-bus network with one phase shifter: case 1

(no active power flow regulation)

Bus

———————————————————————————————————————

LakePS Elm Main Lake South North

Voltage:

Magnitude (p.u.) 1.079 1.072 1.078 1.077 1.100 1.109

Phase angle (deg) �3.632 �4.424 �3.864 �3.610 �1.306 0.000

lpð$MW�1 h�1Þ 4.223 4.26 4.234 4.223 4.103 4.041

Table 7.7 Nodal voltages in the five-bus network with one phase shifter: case 2

(active power flow regulation at LakePS)

Bus

———————————————————————————————————————

LakePS Elm Main Lake South North

Voltage:

Magnitude (p.u.) 1.079 1.073 1.079 1.076 1.100 1.109

Phase angle (deg) �2.705 �4.097 �3.102 �4.098 �1.193 0.000

lpð$MW�1 h�1Þ 4.182 4.251 4.201 4.251 4.101 4.044
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and no general conclusions can be drawn for practical utility networks, but this comparative

study does indicate that copious OPF studies and trade-offs may become necessary

when dealing with large-scale power systems and a large number of power system

controllers.

The phase-shifter angles for both test cases are shown in Table 7.8, highlighting the strong

convergence characteristics of OPF using Newton’s method. Owing to the two very different

operational requirements on the phase shifter, its phase angles reach quite distinct values

(i.e. �0.346� and �2.01�). The larger value corresponds to the regulated case, where a

larger amount of active power passes through the phase-shifter transformer.

7.7 STATIC VAR COMPENSATOR

This section focuses on SVC models suitable for OPF solutions using Newton’s method

(Ambriz-Pérez, Acha, and Fuerte-Esquivel, 2000). The modelling approach taken is to

assume that the SVC acts as a continuous, variable shunt susceptance, which adjusts

automatically in order to ensure that a target nodal voltage magnitude at the SVC terminal is

met, while satisfying network constraint conditions.

Two different ‘flavours’ of the SVC model are presented in this section: (1) the firing-

angle model and (2) the shunt susceptance model.

A linearised SVC model suitable for OPF iterative solutions using Newton’s method is

described below. The SVC state variable is combined with the network state variables for a

unified, optimal solution using Newton’s method (Ambriz-Pérez, 1998).

7.7.1 Lagrangian Function

The constrained optimisation problem stated in Equation (7.1) is transformed into an

unconstrained optimisation problem by forming the augmented Lagrangian function of an

SVC model expressed in the form of an adjustable shunt susceptance:

Lðx; kÞ ¼ f ðPgÞ þ kth½Pg; V ; �; Bð�Þ�: ð7:64Þ

Table 7.8 Phase-shifter angles in the five-bus test system

�t (deg)

——————————————

Iterations Case 1 Case 2

0 0.000 0.000

1 �0.325 �1.874

2 �0.363 �2.122

3 �0.346 �2.009

4 �0.346 �2.010

Note: case 1, no active power flow regulation; case 2, active power
flow regulation at LakePS.
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In this expression, f ðPgÞ is the objective function; hðPg; V ; �; Bð�Þ� represents the power

flow equations; x is the vector of state variables; k is the vector of Lagrange multipliers for

equality constraints; Pg, V, �, and B(�) are the active power generation, voltage magnitude,

voltage phase angle, and SVC shunt susceptance, respectively. The inequality constraint

g½Pg; V; �; Bð�Þ� < 0 is not shown in Equation (7.64) because it is added to Lðx; kÞ only
when variables go outside limits.

The SVC susceptance, B(�), may be expressed as either an equivalent susceptance, Bsvc,

or a susceptance that is an explicit function of the SVC firing angle, �. Both parameters may

be used as state variables and, respectively, form the basis of the two SVC models addressed

in this section.

The contribution of the SVC to the Lagrangian function is explicitly represented in

Newton’s method as an equality constraint given by the following equation:

Lsvcðx; kÞ ¼ �qkQk: ð7:65Þ

In this expression, x is the vector of state variables, ½Vk Bð�Þ�t; Qk is the reactive power

injected or absorbed by the SVC at bus k, as given in Equation (5.5); and k is the vector of

Lagrange multipliers, with �qk being the Lagrange multiplier at bus k associated with the

reactive power balance equation. The variable B(�) is either Bsvc or �, depending on the

SVC model used in the OPF study.

7.7.2 Linearised System of Equations

Representation of the SVC controller into the OPF algorithm using Newton’s method

requires that for each SVC present in the network, matrix W be augmented by one row and

one column. Either � or Bsvc, depending on the SVC models selected, enters as an extra state

variable in the OPF formulation.

Application of Newton’s method to the SVC firing-angle model is given by the following

linearised equation:

q2L
qV2

k

qQk

qVk

q2L
qVkq�

qQk

qVk

0
qQk

q�

q2L
q�qVk

qQk

q�
q2L
q�2

2
66666664

3
77777775

�Vk

��q k

��

2
66666664

3
77777775
¼ �

rVk

r�q k

r�

2
66666664

3
77777775
: ð7:66Þ

The entries in Equation (7.66) are obtained by deriving Equation (7.65) with respect to the

relevant state variables and Lagrange multipliers. These terms are given in explicit form in

Appendix B, Section B.3. The derivative terms corresponding to inequality constraints are

not required at the beginning of the iterative solution; they are introduced into matrix

Equation (7.66) after limits become enforced in response to limits violations.

An alternative OPF model for the SVC is readily established by choosing the SVC

equivalent susceptance, Bsvc, to be the state variable rather than the firing angle, �. The
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linearised system of equations describing the alternative SVC OPF model is:

q2L
qV2

k

qQk

qVk

q2L
qVkqBsvc

qQk

qVk

0
qQk

qBsvc

q2L
qBsvcqVk

qQk

qBsvc

0

2
66666664

3
77777775

�Vk

��q k

�Bsvc

2
66666664

3
77777775
¼ �

rVk

r�q k

rBsvc

2
66666664

3
77777775
: ð7:67Þ

The entries in Equation (7.67) are obtained by deriving Equation (7.65) with respect to the

relevant state variables and Lagrange multipliers. These terms are given in explicit form in

Appendix B, Section B.3.

In OPF studies it is normal to assume that voltage magnitudes at SVC terminals

are controlled within limits (e.g. 0.95–1.05 p.u). However, more stringent voltage magnitude

requirements are met with ease in Newton’s method. For instance, to control the voltage

magnitude at bus k at a fixed value, it is necessary only to add the second derivative term of

a large, quadratic, penalty factor to the second derivative term of the Lagrangian function

with respect to the voltage magnitude Vk (i.e. q
2L=qV2

k ). Also, the first derivative term of the

quadratic penalty function is added to the corresponding gradient element (i.e. qL=qVk).

Hence, in Equations (7.66) and (7.67) the diagonal elements corresponding to voltage

magnitude Vk will have a very large (infinite) value, resulting in a null voltage increment

�Vk.

The SVC is well initialised by selecting a firing-angle value corresponding to the

equivalent reactance resonance peak, which can be calculated using Equation (5.39). The

SVC Lagrange multiplier, �qk, is initialised at zero value. These initial values give rise to

very robust iterative solutions (Ambriz-Pérez, 1998).

7.7.3 Static VAR Compensator Test Cases

The five-bus system in Section 7.3.6 is modified to include one SVC at Main, as shown in

Figure 7.6. The objective is to minimise its active power generation cost. The SVC

capacitive and inductive reactance are XC ¼ 0.9375 p.u., and XL ¼ 0.1625 p.u., respectively,

The lower and upper limits for the firing angle are 90� and 180�, respectively. The initial

firing angle is given a value � ¼ 145�.
Four case studies are carried out: cases A and B use the SVC model based on the firing-

angle concept, whereas cases C and D use the model based on the equivalent variable

susceptance. Moreover, cases A and C consider the voltage magnitude at Main to be allowed

to take any value in the range 0.95–1.1 p.u; cases B and D consider the voltage magnitude at

Main to be fixed at 1.1 p.u.

7.7.3.1 Firing-angle model

In the firing-angle model, two cases are simulated:

� Case A: the voltage magnitude at Main is allowed to take any value in the range 0.95–

1.1 p.u.;

� Case B: the voltage magnitude at Main is fixed at 1.1 p.u.
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The power flow results are shown in Figure 7.6. The voltage magnitudes and phase

angles and Lagrange multipliers are given in Table 7.9. Similar results are given for case B

in Table 7.10. The SVC susceptance values and reactive power injections are shown in

Table 7.11.

As expected, active power generation cost and active power loss increase in case B. The

OPF results are 748.339 $ h�1, 3.14226MW, and 37.13MVAR. In this case there are

relatively large flows of reactive power from bus Main to other buses, thus increasing

network losses.
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14.9114.9332.2732.98
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Figure 7.6 Modified five-bus network with one static VAR compensator, and optimal power flow

solution

Table 7.9 Nodal voltages in the modified network: case A (use of static VAR

compensator model based on the firing-angle concept, with voltage magnitude

at Main allowed to take any value in the range 0.95–1.1 p.u.)

Bus

—————————————————————————————

Elm Main Lake South North

Voltage:

Magnitude (p.u.) 1.075 1.085 1.083 1.100 1.109

Phase angle (deg) �4.450 �3.962 �3.701 �1.304 0.000

lpð$MW�1 h�1Þ 4.2625 4.2324 4.2217 4.1030 4.0411
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The results in Table 7.11 indicate that in order to maintain the voltage magnitude at Main

at 1.1 p.u. it is necessary for the SVC to inject more reactive power. It should be noted that

the minus sign indicates injection of reactive power. These results illustrate the strong

convergence of the SVC OPF algorithm, with solutions achieved in 4 and 3 iterations,

respectively.

7.7.3.2 Susceptance model

The SVC modelled in the form of a susceptance replaces the SVC firing-angle-based model

used in the two test cases above (cases A and B). The initial SVC susceptance value is set at

Bsvc ¼ 0.514 p.u., which corresponds to � ¼ 145�. Two cases are simulated:

� Case C: the voltage magnitude at Main is allowed to take any value in the range 0.95–

1.1 p.u.;

� Case D: the voltage magnitude at Main is fixed at 1.1 p.u.

Convergence is obtained in four and three iterations for cases C and D, respectively. As

expected, the solution for voltage magnitude, voltage phase angle, active and reactive power

generation, and Lagrange multipliers coincide with those presented in Tables 7.9 and 7.10.

Table 7.10 Nodal voltages in the modified network: case B (use of static VAR

compensator model based on the firing-angle concept, with voltage magnitude

at Main fixed at 1.1 p.u.)

Bus

—————————————————————————————

Elm Main Lake South North

Voltage:

Magnitude (p.u.) 1.080 1.100 1.095 1.100 1.111

Phase angle (deg) �4.471 �4.148 �3.836 �1.2613 0.000

lpð$MW�1 h�1Þ 4.2650 4.2431 4.2299 4.1024 4.0426

Table 7.11 Static VAR compensator parameters at each iteration: firing-angle model, cases A and B

Case A Case B

Iteration � (deg) Beq (p.u.) Q (MVAR) � (deg) Beq (p.u.) Q (MVAR)

0 145.000 0.514 �51.420 145.000 0.514 �51.420

1 136.627 0.056 �7.231 136.598 0.054 �6.630

2 137.819 0.131 �14.534 144.712 0.501 �60.640

3 137.234 0.095 �11.213 140.832 0.306 �37.130

4 137.347 0.102 �12.061 – – –

– Iteration not required; model has converged.
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The equivalent susceptance values taken by the SVC model during the iterative process

are shown in Table 7.12. It can be observed from Tables 7.11 and 7.12 that both sets of SVC

susceptances coincide with each other.

7.8 THYRISTOR-CONTROLLED SERIES COMPENSATOR

This section studies the topic of OPF TCSC modelling and simulation (Acha and Ambriz-

Pérez, 1999). This is done within the context of Newton’s method in which the TCSC is

modelled as an adjustable, nonlinear series reactance which is a function of the TCSC firing

angle.

7.8.1 Lagrangian Function

The constrained optimisation problem, stated in generic form in Equation (7.1), is converted

into an unconstrained problem. This involves formulating a suitable Lagrangian function for

the TCSC controller, which may take the following form:

Lðx; kÞ ¼ f ðPgÞ þ kth½Pg; V ; �; Xð�Þ�: ð7:68Þ
In this expression, f ðPgÞ is the objective function; h½Pg; V; �; Xð�Þ� represents the power

flow equations; x is the vector of state variables; k is the vector of Lagrange multipliers for

equality constraints; and Pg, V, �, and X(�) are the active power generation, voltage

magnitude, voltage phase angle, and TCSC reactance, respectively. The reactance, X(�),
is an explicit function of the TCSC firing angle, �. The inequality constraint

g½Pg; V; �; Xð�Þ� < 0 is not shown in Equation (7.68) because it is added to Lðx; kÞ only
when variables go outside limits.

The power flow mismatch equations at buses k and m are explicitly modelled in the

Lagrangian function as an equality constraint given by the following equation:

Ltcscðx; kÞ ¼ �pkðPk þ Pdk � PgkÞ þ �qkðQk þ Qdk � QgkÞ
þ �pmðPm þ Pdm � PgmÞ þ �qmðQm þ Qdm � QgmÞ: ð7:69Þ

In this expression, Pdk, Pdm, and Qdk, Qdm are the active and reactive power loads at buses k

and m; Pgk, Pgm, Qgk, and Qgm are the scheduled active and reactive power generations at

buses k and m; and �pk, �pm, �qk, and �qm are Lagrange multipliers at buses k and m.

Table 7.12 Equivalent static VAR compensator susceptances for cases C and D

Case C Case D

Iteration Bsvc (p.u.) Q (MVAR) Bsvc (p.u.) Q (MVAR)

0 0.514 �51.420 0.514 �51.420

1 0.056 �7.204 0.054 �6.594

2 0.131 �14.534 0.501 �60.641

3 0.095 �11.213 0.306 �37.130

4 0.102 �12.061 – –

– Iteration not required; model has converged.
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As shown in Figure 7.7, the active power flow across branch m–l, Pml, is controlled by the

TCSC connected between buses k and m. In the OPF formulation this operating condition is

expressed as an equality constraint, which remains active throughout the iterative process

unless one expressly wishes this constraint to be deactivated.

The Lagrangian function, L, of the total branch k�l, may be expressed by:

L ¼ Ltcscðx; kÞ þ Lflowðx; kÞ; ð7:70Þ
where

Lflow ¼ �mlðPml � PspecifiedÞ: ð7:71Þ
In this expression, �ml is the Lagrange multiplier for the active power flow in branch m�l,

and Pspecified is the target active power flow through the TCSC controller.

7.8.2 Linearised System of Equations

Incorporation of the TCSC controller into the OPF algorithm using Newton’s method

requires that for each TCSC present in the network, matrix W be augmented by two rows

and two columns when the aim is to exert active power flow control. However, if the TCSC

is not controlling active power flow then matrix W is augmented only by one row and one

column. The former case uses the Lagrange multiplier, �ml, to account for the contribution

of the power flow through branch m–l, and � enters as an extra state variable in the OPF

formulation.

Application of Newton’s method to the TCSC firing-angle model is given by the

following linearised equation:

Wkk Wkm 0 Wk�

Wmk Wmm Wml Wm�

0 Wml Wll Wl�

W�k W�m W�l W��

2
6664

3
7775
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2
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3
7775: ð7:72Þ

In this expression, the structure of matrix and vector terms Wkk, Wkm, Wmk, Wmm, �zk,

�zm, gk, and gm is given by Equations (7.25)–(7.32), respectively. The additional matrix

terms in Equation (7.72) reflect the contribution of �, the TCSC state variable. These terms

are given explicitly by:

W�k ¼ Wt
k� ¼

q2L
q�kq�

q2L
qVkq�
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q�
qQk

q�
0 0 0 0

2
4

3
5; ð7:73Þ

Rml + jXml
k mXC

XL

l
Pml

Figure 7.7 Compensated transmission line
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Wlm ¼ Wt
ml ¼
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W�l ¼ Wt
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0 0 0 0
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qVl

0 0

2
4

3
5; ð7:77Þ

W�� ¼
q2L
q�2

0

0 0

2
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3
5; ð7:78Þ

�zl ¼ ��l �Vl ��pl ��ql½ �t; ð7:79Þ

gl ¼ r�l rVl r�pl r�ql½ �t; ð7:80Þ

�z� ¼ �� ��ml½ �t; ð7:81Þ
g� ¼ r� r�ml½ �t: ð7:82Þ

The first and second partial derivatives for the various entries in Equation (7.72) are derived

from the Lagrangian function of Equation (7.70) and are given in Appendix B, Section B.4.

The derivative terms corresponding to inequality constraints are entered into matrix W

only if limits are enforced as a result of one or more state variable having violated
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limits. It should be noted that the procedure in Equation (7.72) corresponds to the case

when the TCSC is controlling active power flowing through branch m–l (standard control

mode).

In OPF applications, minimum-cost solutions are obtained when the OPF algorithm itself

selects the optimum level of power flow through the TCSC. However, any change in the

TCSC operating mode is easily accommodated in the OPF formulation given in Equation

(7.72). For instance, if the TCSC is not controlling active power flow then matrix W

and vector g are suitably modified to reflect this operating mode. This can be achieved by

adding the second derivative term of a large (infinite) quadratic penalty factor to the

diagonal element of the matrix in Equation (7.78) corresponding to multiplier �ml,
thus forcing this multiplier to be zero for the whole of the iterative process. The first

derivative term of the quadratic penalty function is added to the corresponding element in

Equation (7.80).

The Lagrange multipliers for active and reactive power flow mismatch equations are

initialised at the �p value given by the lossless economic dispatch solutions and at �q equal

to 0, respectively. For TCSC Lagrange multipliers the initial value of �ml is set to zero.

Experience shows that these values give rise to very robust iterative solutions (Ambriz-

Pérez, 1998). The main factor affecting the OPF rate of convergence of TCSC-upgraded

networks is the initial firing angle, �. Good starting conditions are required to prevent the

solution diverging or arriving at some anomalous value. Good initial conditions for the

TCSC firing angle were established in Section 5.8.3. Use of Equations (5.72)–(5.73)

invariably leads to good OPF solutions for TCSC-upgraded networks.

7.8.3 Thyristor-controlled Series Compensator Test Cases

The five-bus test system of Section 7.3.6 is used to study the impact of the TCSC on the

network. The TCSC is added in series with transmission line Lake–Main, and the dummy

bus LakeTCSC is added to enable such a connection to take place.

The OPF solution is achieved in five iterations to a mismatch tolerance of 1e � 9 and

starting from a TCSC firing-angle value equal to 150�. The TCSC optimises the active

power flow level in transmission line Lake–Main to a value of 14.97MW. Moreover, the

OPF solution yields the following minimum active power generation cost and network

losses: 747.975 $ h�1 and 3.05MW, respectively. The TCSC capacitive and inductive

reactance values required to achieve the result are: XC ¼ 0.9375% and XL ¼ 0.1625%,

respectively, using a base voltage of 400 kV. The optimal power flows are shown in

Figure 7.8. The nodal voltage magnitudes and phase angles and the Lagrange multipliers are

given in Table 7.13.

It can be observed that the OPF solution changes little compared with the base OPF case

presented in Section 7.3.6 when no TCSC is used. This may be explained by the fact that the

solution achieved in Section 7.3.6 is already a very good solution and that the OPF is fixing

the level of compensation afforded by the TCSC to be fairly small.

The TCSC firing angles, per iteration, are shown in Table 7.14, highlighting the very

strong convergence characteristics of OPF using Newton’s method and the importance of

selecting good initial conditions. For completeness, the equivalent TCSC reactance is also

provided.
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Figure 7.8 Modified five-bus system, and optimal power flow solution

Table 7.14 Thyristor-controlled series compensator (TCSC)

parameters

TCSC parameters

Iteration � (deg) XTCSC (p.u.)

0 150.000 �0.0180

1 150.587 �0.0169

2 162.845 �0.0101

3 154.328 �0.0130

4 156.399 �0.0119

5 156.407 �0.0119

Table 7.13 Nodal voltages in TCSC-upgraded network

Bus

—————————————————————————————————————————

LakeTCSC Elm Main Lake South North

Voltage:

Magnitude (p.u.) 1.078 1.072 1.077 1.078 1.100 1.109

Phase angle (deg) �3.534 �4.417 �3.846 �3.622 �1.303 0.000

lpð$MW�1 h�1Þ 4.2232 4.2639 4.2341 4.2232 4.1031 4.0412
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7.9 UNIFIED POWER FLOW CONTROLLER

The UPFC OPF model presented in this section enables very flexible and reliable power

system optimisation studies to be carried out (Ambriz-Pérez et al., 1998). The flexibility

stems from the generality of the UPFC model and the robustness from the strong

convergence exhibited by the OPF solution using Newton’s method. The UPFC model may

be set to control active and reactive powers simultaneously as well as nodal voltage

magnitude, at either the sending or the receiving end bus. Alternatively, the UPFC model

may be set to control one or more of the parameters above in any combination or to control

none of them.

7.9.1 Unified Power Flow Controller Lagrangian Function

Based on the equivalent circuit shown in Figure 5.17 and Equations (5.50)–(5.59), the

Lagrangian function for the UPFC may be written as:

Lðx; kÞ ¼ f ðPgÞ þ kthðPg; V; �; �cR; VcR; �vR; VvRÞ: ð7:83Þ
In this expression, f ðPgÞ is the objective function to be optimised; hðPg; V; �;
VcR; �cR; VvR; �vRÞ represents the power flow equations; x is the vector of state variables;

k is the vector of Lagrange multipliers for equality constraints; and Pg, V, and � are the

active power generation, voltage magnitude, and voltage phase angle, respectively. The

UPFC control variables are �cR, VcR, �vR, and VvR. The inequality constraints gðPg; V ; �;
VcR; �cR; VvR; �vRÞ < 0 are not shown in Equation (7.83) because it is added only to Lðx; kÞ
when there are variables outside limits.

The Lagrangian function, Lkm(x,k), corresponding to the power flow mismatch equations

at buses k and m, is given by the following equation:

Lkmðx; kÞ ¼ �pkðPk þ Pdk � PgkÞ þ �qkðQk þ Qdk � QgkÞ
þ �pmðPm þ Pdm � PgmÞ þ �qmðQm þ Qdm � QgmÞ: ð7:84Þ

In this expression Pdk, Pdm, Qdk, and Qdm are the active and reactive power loads at buses k

and m; Pgk, Pgm, Qgk, and Qgm are the scheduled active and reactive power generations at

buses k and m; and �pk, �pm, �qk, and �qm are Lagrange multipliers at buses k and m. The

vector of state variables x is [V d]t, where V and d include both nodal voltages and UPFC

voltage sources.

7.9.2 Direct-current Link Lagrangian Function

A fundamental premise in the UPFC model is that the active power supplied to the shunt

converter, PvR, must satisfy the active power demanded by the series converter, PcR. This

condition must be met throughout the solution process. In the OPF formulation this condition

is expressed as an equality constraint,

Lsh--seðx; kÞ ¼ �sh--seðPvR þ PcRÞ; ð7:85Þ
where �sh–se is the Lagrange multiplier associated with the shunt and series power

converters.
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7.9.3 Unified Power Flow Controller Power Flow Constraints

The power injected at bus m by the UPFC, as illustrated in Figure 7.9, can be formulated as

a power flow constraint in the branch connecting buses m and l. We may write:

Lmlðx; kÞ ¼ �pmlðPml � PspecifiedÞ þ �qmlðQml � QspecifiedÞ; ð7:86Þ
where �p ml and �q ml are, respectively, the Lagrange multipliers associated with the active

and reactive power injections at bus m; and Pspecified and Qspecified are, respectively, the

specified active and reactive powers leaving bus m.

In conventional OPF formulations, such constraints are enforced only if power flow limits

have been exceeded. However, in this particular application this constraint may remain

active throughout the iterative solution.

The UPFC Lagrangian function comprising the individual contributions presented above

is as follows:

Lupfcðx; kÞ ¼ Lkmðx; kÞ þ Lsh--seðx; kÞ þ Lmlðx; kÞ: ð7:87Þ

7.9.4 Linearised System of Equations

Incorporation of the UPFC controller into the OPF algorithm using Newton’s method

requires that, for each UPFC, matrix W be augmented by up to eleven rows and columns.

This procedure corresponds to the case where the UPFC is operated in standard control

mode (i.e. it is controlling the nodal voltage magnitude at bus k, active power flowing from

buses m to l, and reactive power injected at bus m). The linearised system of equations for

minimising the UPFC Lagrangian function of Equation (7.87), using Newton’s method is:

Wkk Wkm WkcR WkvR Wk sh�se 0 0

Wmk Wmm WmcR WmvR Wmsh�se Wml Wmm�l

WcRk WcRm WcRcR WcRvR WcRsh�se 0 0

WvRk WvRm WvRcR WvRvR WvRsh�se 0 0

Wsh�se k Wsh�sem Wsh�se cR Wsh�sevR 0 0 0

0 Wlm 0 0 0 Wl l Wlm�l

0 Wm�lm 0 0 0 Wm�ll 0

2
666666666664

3
777777777775

�zk

�zm

�zcR

�zvR

�zsh�se

�zl

�zm�l

2
666666666664

3
777777777775
¼

�gk

�gm

�gcR

�gvR

�gsh�se

�gl

�gm�l

2
666666666664

3
777777777775
:

ð7:88Þ

Rml + jXml

k m l
Pml

Qml

Figure 7.9 Unified power flow controller power flow constraint at bus m
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In this expression, the structure of matrix and vector terms Wkk, Wkm, Wmk, Wmm, Dzk,
Dzm, gk, and gm is given by Equations (7.25)–(7.32), respectively. Also,Wml,Wlm,Wll, Dzl,
and gl are given by Equations (7.74), (7.76), (7.79), and (7.80), respectively. The additional

matrix terms in Equation (7.88) reflect the contribution of �cR, VcR, �vR, and VvR, the UPFC

state variables. These terms are given explicitly by:

WcR k ¼ Wt
k cR ¼

q2L
q�kq�cR

q2L
qVkq�cR

qPk

q�cR

qQk

q�cR
q2L

q�kqVcR

q2L
qVkqVcR

qPk

qVcR

qQk

qVcR

2
6664

3
7775; ð7:89Þ

WvR k ¼ Wt
k vR ¼

q2L
q�kq�vR

q2L
qVkq�vR

qPk

q�vR

qQk

q�vR
q2L

q�kqVvR

q2L
qVkqVvR

qPk

qVvR

qQk

qVvR

2
6664

3
7775; ð7:90Þ

Wsh�se k ¼ Wt
k sh�se ¼

qPsh�se

q�k

qPsh�se

qVk

0 0

� �
; ð7:91Þ

WcRm ¼ Wt
m cR ¼

q2L
q�mq�cR

q2L
qVmq�cR

qPm

q�cR

qQm

q�cR
q2L

q�mqVcR

q2L
qVmqVcR

qPm

qVcR

qQm

qVcR

2
6664

3
7775; ð7:92Þ

WvRm ¼ Wt
m vR ¼

q2L
q�mq�vR

q2L
qVmq�vR

qPm

q�vR

qQm

q�vR
q2L

q�mqVvR

q2L
qVmqVvR

qPm

qVvR

qQm

qVvR

2
6664

3
7775; ð7:93Þ

Wsh�sem ¼ Wt
m sh�se ¼

qPsh�se

q�m

qPsh�se

qVm

0 0

� �
; ð7:94Þ

Wm�lm ¼ Wt
mm� l ¼

qPml

q�m

qPml

qVm

0 0

qQml

q�m

qQml

qVm

0 0

2
664

3
775; ð7:95Þ

WcR cR ¼
q2L
q�2cR

q2L
q�cRqVcR

q2L
qVcRq�cR

q2L
qV2

cR

2
6664

3
7775; ð7:96Þ

WcR vR ¼ Wt
vR cR ¼

q2L
q�cRq�vR

q2L
q�cRqVvR

q2L
qVcRq�vR

q2L
qVcRqVvR

2
6664

3
7775; ð7:97Þ
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Wsh�se cR ¼ Wt
cR sh�se ¼

qPsh�se

q�cR

qPsh�se

qVcR

0 0

� �
; ð7:98Þ

WvR vR ¼

q2L
q�2vR

q2L
q�vRqVvR

q2L
qVvRq�vR

q2L
qV2

vR

2
66664

3
77775; ð7:99Þ

Wsh�se vR ¼ Wt
vR sh�se ¼

qPsh�se

q�vR

qPsh�se

qVvR

� �
; ð7:100Þ

Wlm-- l ¼ Wt
m� ll ¼

qPml

q�l

qPml

qVl

0 0

qQml

q�l

qQml

qVl

0 0

2
6664

3
7775; ð7:101Þ

�zcR ¼ ��cR �VcR½ �t; ð7:102Þ
�zvR ¼ ��vR �VvR½ �t; ð7:103Þ

�zsh�se ¼ ��sh�se½ �; ð7:104Þ
�zm�l ¼ ��pml ��qml½ �t; ð7:105Þ

gcR ¼ r�cR rVcR½ �t; ð7:106Þ
gvR ¼ r�vR rVvR½ �t; ð7:107Þ

gsh�se ¼ r�sh�se½ �; ð7:108Þ
gm�l ¼ r�pml r�qml½ �t: ð7:109Þ

The elements of matrix W are given explicitly in Appendix B, Section B.5. The deri-

vative terms corresponding to inequality constraints are not required at the beginning of

the iterative process; they are introduced into matrix Equation (7.88) only after limits

become enforced.

The representation given in Equation (7.88) corresponds to a situation where the UPFC is

operated in standard control mode. However, if different UPFC operating modes are

required then matrix W and multipliers k are modified with ease to reflect the new operating

mode.

For instance, if buses m and k are PQ type and the UPFC is not controlling active power

flowing from buses m to l and reactive power is not injected at bus m then matrix W and

gradient vector g are modified as follows: (1) the second derivative term of a large (infinite),

quadratic penalty factor is added to the diagonal elements of matrix Wll, corresponding to

the multipliers �pml and �qml; (2) the first derivative terms of the quadratic penalty functions

are evaluated and added to the corresponding gradient elements in gl. Alternatively, if only

one operating constraint is released, say reactive power injected at bus m, then only the

diagonal element of matrix Wll corresponding to multiplier �qml is penalised.
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The Lagrange multipliers for active and reactive power flow mismatch equations are

initialised at the �p value given by the lossless economic dispatch solution and �q equal to

zero, respectively. For UPFC Lagrange multipliers, the initial value of �sh–se is set to �p, and
�p m–l and �q m–l are set equal to zero. Experience has shown that these values give rise to

very robust iterative solutions. Equations for initialising the voltage magnitudes and phase

angles of the series and shunt sources are given in Section 5.8.4.

7.9.5 Unified Power Flow Controller Test Cases

One UPFC is added to the five-bus system of Figure 7.3, in series with the transmission line

Lake–Main. A dummy bus, termed LakeUPFC, is added to enable the UPFC model to be

connected, as shown in Figure 7.10. The UPFC is used to maintain active and reactive power

at 25MW and �6MVAR, respectively, at the sending end of transmission line LakeUPFC–

Main. The shunt converter is used to maintain Lake’s nodal voltage magnitude at 1 p.u.

The two UPFC voltage sources are initialised with reference to equations and guidelines

given in Section 5.8.4, resulting in the following values: VcR ¼ 0.025 p.u., �cR ¼ 76.5�,
VvR ¼ 1.0 p.u., and �vR ¼ 0�; The resistances of the coupling transformers are ignored and

their inductive reactances are taken to be XcR ¼ XvR ¼ 0:1 p.u.. The voltage magnitude VcR

varies in the range 0.001–0.6 p.u., and VvR in the range 0.9–1.1 p.u.

This is a case of regulated UPFC operation, and the OPF solution, albeit optimal, is not

expected to be the one that yields minimum cost. This point will be addressed further, by

Lake-
UPFC

8.37

8.31

60 + j10

North Lake Main

South Elm

24.9325.0035.9236.95

4.19

1.16

20 + j10

88.47

1.87 45 + j15 40 + j5

52.76 51.68

4.402.3243.20

42.85

4.166.00

24.15

7.59

2.45

2.40

80.15

3.57

23.77

6.70

23.4334.07

5.98

3.98

34.78

7.75

Figure 7.10 UPFC-upgraded five-bus system, and optimal power flow solution
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numerical example, in Section 7.9.6. The cost and active power losses given by the OPF

solution in this test case are: 750.357 $ h�1, and 3.631MW, respectively. The optimal power

flow results are shown in Figure 7.10; the voltage magnitudes and phase angles, and the

Lagrange multipliers are given in Table 7.15.

Compared with the base case shown in Figure 7.3, larger active power flows in

transmission lines North–Lake and South–Lake take place in order to meet the demand

imposed by the UPFC power constraints. By comparing both OPF solutions, it can be

observed that in the UPFC-upgraded system there are increases in active and reactive power

generation of 0.5MW and 7.015MVAR. Furthermore, the generation cost and the network

losses increased by 2.027 $ h�1 and 0.5MW, respectively. The reason for the higher

generation cost and power loss can be explained in terms of a reduced number of control

variables available to the OPF solution; the UPFC is set to regulate active and reactive

power flows and voltage magnitude.

It may be argued, with reference to the voltage information shown in Table 7.15, that

the nodal voltage regulation imposed by the UPFC at Lake yields a much improved voltage

profile than that achieved by the base OPF solution, shown in Table 7.2, where nodal voltage

magnitudes edged on the high side. Conversely, the �p values tend to be higher in the present
test case than in the base OPF case, where no UPFC is used. This may be explained in terms

of the slightly higher cost incurred by the regulating action of the UPFC controller.

The voltage magnitudes and phase angles of the UPFC series and shunt voltage sources

are shown in Table 7.16, highlighting the strong convergence characteristic of the OPF using

Newton’s method and the all-important point of selecting good initial conditions for the two

UPFC voltage sources.

Table 7.15 Nodal voltages in the UPFC-upgraded network

Bus

—————————————————————————————————————————

LakeUPFC Elm Main Lake South North

Voltage:

Magnitude (p.u.) 1.007 0.999 1.006 1.000 1.029 1.036

Phase angle (deg) �3.128 �4.722 �3.580 �4.685 �1.402 0.000

lpð$MW�1 h�1Þ 4.2680 4.2823 4.2246 4.2680 4.1077 4.0412

Table 7.16 Parameters of unified power flow controller voltage sources

Series source Shunt source

Iteration VcR (p.u.) �cR (deg) VvR (p.u.) �vR (deg)

0 0.025 �76.500 1.000 0.000

1 0.052 �94.102 0.998 �4.718

2 0.052 �94.876 0.997 �4.705
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7.9.6 Unified Power Flow Controller Operating Modes

In order to illustrate the behaviour of the various UPFC operating modes, its functional

constraints are freed in sequence. The normal UPFC operating mode (all constraints

activated) is compared with cases where active and reactive power flows are freed, and

the voltage magnitude remains fixed; the voltage magnitude is freed, and active and reactive

power flows are fixed; all three constraints are freed. Table 7.17 presents a summary of the

results.

As expected, the case of normal UPFC operation gives the most expensive solution,

whereas the case where all the constraints are deactivated gives the minimum cost solution.

The former case was studied in Section 7.9.5, and the latter case is very much in line with

the results obtained in the base OPF solution, where no UPFC is used. However, it may be

argued that one of the main purposes of installing a UPFC controller in the first place is, to

have the ability to regulate power flows and voltage magnitude at the point of UPFC

deployment.

7.10 SUMMARY

The OPF algorithm studied in this chapter is a direct application of Newton’s method to the

minimisation of a multivariable, nonlinear function. An iteration of the OPF algorithm

consists of the simultaneous solution of all the unknown variables involved in the problem

using Lagrange functions. Second partial derivatives of the Lagrange function with respect

to all the variables and the Lagrange multipliers are determined and the resultant terms are

suitably accommodated in matrix W. This matrix has a block matrix structure where each

block stores 12 nonzero elements per bus.

The OPF solution gives the optimum operational state of a power network where a

specific objective has been met, and the network is subjected to physical and operational

constraints. Active power generation cost is the most popular objective function used today.

An OPF computer program is an effective tool to conduct power system studies. It

provides a realistic and effective way to obtain a minimum production cost of active power

dispatch within the specified plant and transmission network operating limits. The optimal

redistribution of generated active power results in a significant reduction in the active power

generation cost and active power transmission losses.

FACTS controller models have been developed for an OPF algorithm using first

principles. The models have been linearised and included in the frame of reference afforded

Table 7.17 Unified power flow controller (UPFC) operating modes

Operating mode Number of iterations Generation cost ($ h�1) Power loss (MW)

Normal UPFC operation 2 750.357 3.631

Fixed voltage (at bus Lake) 2 749.928 3.519

Fixed P and Q 3 748.236 3.119

All constraints deactivated 3 747.828 3.015
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by Newton’s method. The extended OPF Newton algorithm is a very powerful tool capable

of solving FACTS-upgraded power networks very reliably, using a minimum of iterative

steps. The computational efficiency of the algorithm is further increased by employing

the multiplier method to handle the binding set.

The FACTS controller models have been shown to be very flexible; they take into account

their various operating modes as well as their interactions with the network and other

controllable plant components. Flexibility has been achieved without adversely affecting the

efficiency of the solution. In general, the solution of networks with and without FACTS

controllers has been achieved in the same number of iterations. The effect of the initial

conditions on convergence has also been studied. Improper selection of initial conditions

may degrade convergence or, more seriously, cause the solution to diverge.
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8
Power Flow Tracing

8.1 INTRODUCTION

Deregulation and unbundling of transmission services in the electricity supply industry

worldwide has given rise to a new area of operation known as ‘electrical energy trading’.

Since the late 1980s, the time of privatisation of the UK supply industry, several proposals

for the operation of the power network have been put forward in various parts of the world.

Arguably, the concept of virtual direct access through a voluntary wholesale pool (Secretary

of State for Energy, 1988) was the first workable market-oriented operating philosophy, but

it is not in operation any more; it has been superseded by the New Energy Trading

Agreement (NETA), which is in operation in England and Wales (Saunders and Boag,

2001). Furthermore, the NETA operating philosophy will soon be extended to encompass

Scotland, becoming the British Electricity Trading and Transmission Arrangements

(BETTA) (OFGEM, 2003). The ‘Pool’ concept served well the needs of the newly

established market but its management attracted criticism for being too complex to operate

and for being open to market distortions.

In academic circles, a major criticism of the ‘pool’ was that it did not address crucial

issues such as the use of system charges and power transmission losses on a sound

engineering basis. It was also argued that this operating philosophy was limiting business

opportunities, such as the provision of ancillary services. The ‘pool’ was born out of the

inability to trace individual generator power contributions in the network. Indeed, at the time

of privatisation, the issue was deemed as too complicated to have a viable solution.

The electricity pool rules state that ‘‘with an integrated system it is not possible to trace

electricity from a particular generator to a particular supplier’’ (EPEW, 1993). Nevertheless,

it was shown in the mid-1990s that the tracing of power flows from generators to suppliers

was indeed possible, and algorithms, based on the concepts of dominant power flows and

proportional sharing, were put forward to solve such an outstanding issue. Independent,

basic research at the University of Manchester Institute of Science and Technology (UMIST;

Kirschen and Strbac, 1999; Kirschen, Allan, and Strbac, 1997), Durham University (Bialek,

1996, 1997, 1998), and University of Glasgow (Acha, Fuerte-Esquivel, and Chua, 1996;

Acha et al., 1997) led to similar outcomes. Earlier work had addressed the plausibility of

such a solution, but this work was confined to solving dominant power flows in radial

systems (Macqueen, 1993) as opposed to general, interconnected networks. More recently,

FACTS: Modelling and Simulation in Power Networks.
Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez and César Angeles-Camacho
# 2004 John Wiley & Sons, Ltd ISBN: 0-470-85271-2



variations and further applications of the basic algorithms have been published (Acha, 1998;

Reta and Vargas, 2001), including the incorporation of FACTS equipment models (Acha

et al., 2003; Laguna-Velasco et al., 2001). The notion of proportional sharing has been

shown to be mathematically demonstrable (Laguna-Velasco, 2002).

In this chapter, the power flow tracing algorithm put forward in an earlier publication

(Acha et al., 2003) is first detailed. It should be mentioned that power flow tracing is only a

mechanism for tracing generation costs and allocating charges for use of line. The algorithm

is in fact an electricity auditing procedure and answers all questions relating to individual

generator contributions to optimal power flows, power losses, and costs in each plant

component of the power network. A distinction is made between generation costs, possibly

attributable to fuel burning, and costs incurred for use of ‘wires’. The contribution of

FACTS equipment to reactive power flows and losses is discussed.

8.2 BASIC ASSUMPTIONS

As successfully argued by Reta and Vargas (2000), the power tracing algorithms are based

only on electric circuit concepts and hence, at their core, they use the proportional sharing

principle (Bialek, 1996, 1997, 1998). This is explained with reference to the simple radial

transmission system shown in Figure 8.1, consisting of three buses, two generators, two
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Figure 8.1 Individual power flows in a simple radial system: (a) power solution; (b) contribution of

generator G1, and (c) contribution of generator G2
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transmission lines, and three loads. The power flow solution is given in Figure 8.1(a), where

it is appreciated that the combined generation of 260MW by generators, G1 and G2, go to

supply the system load of 240MW. Each transmission line in this contrived system incurs

power losses of 10MW. Figure 8.1(b) shows the contribution of generator G1 to the power

flows at the sending and receiving ends of transmission lines TL1 and TL2 and to loads L1,

L2, and L3. By the same token, Figure 8.1(c) shows the contribution of generator G2 to the

power flows at the sending and receiving end of transmission line TL2 and to loads L2 and

L3. Notice that there is no contribution of generator G2 to load L1 and that it causes no

power loss in transmission line TL1. Hence, the 10MW loss in TL1 is due entirely to G1,

whereas the 10MW loss in TL2 is shared equally by G1 and G2.

As appreciated from Figure 8.1(b), generator G1 contributes to power flows in branches

TL1 and TL2 and to loads L1, L2, and L3; it is also clear that, in this case, the entire system

falls within the dominion of generator G1. Similarly, as appreciated from Figure 8.1(c),

generator G2 contributes only to the power flow in branches TL2 and to loads L2 and L3.

Hence, the dominion of generator G2 is more restricted than that of generator G1.

Furthermore, there is an overlap between the dominions of generators G1 and G2.

Of particular interest are the power inflows and outflows in bus B2, where the principle of

proportional sharing is self-evident. An anatomy of this bus may be drawn: Figure 8.2(a)

represents the situation prevailing in bus B2 in Figure 8.1(a), and Figure 8.2(b) is a more

generic expansion of the concept involved.

In Figure 8.2(b), the expressions PmkPim

�
Pim þ Pjm

� �
and PmkPjm

�
Pim þ Pjm

� �
represent

the contributions of inflows Pim and Pjm to outflow mk, respectively. Similarly, the

expressions PmlPim

�
Pim þ Pjm

� �
and PmlPjm

�
Pim þ Pjm

� �
represent the contributions of

inflows Pim and Pjm to outflow ml, respectively.

8.3 MATHEMATICAL JUSTIFICATION OF THE PROPORTIONAL
SHARING PRINCIPLE

The following justification is drawn from Laguna-Velasco (2002). With reference to

Figure 8.2, the voltage at bus m may be expressed as a function of the branch impedance Zmk
and its current flow Imk, or of Zml and Iml:

Vm ¼ ZmkImk ¼ ZmlIml: ð8:1Þ

100 MW

50 MW

150 MW
B2

100 MW

Pim

jmim
mk mk

im jm im jm

PP
P P

P P P P

 
= +  + +

Bm

Pjm

i

j

k

l

jmim
ml ml

im jm im jm

PP
P P

P P P P
= +  +

(a) (b)





+

Figure 8.2 The proportional sharing principle: intuitive appeal: (a) The situation at bus B2 and

(b) the situation at bus Bm
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Alternatively, it may be expressed as the product of the equivalent impedance, as seen from

bus m, and the total injected current into bus m:

Vm ¼ ZmkZml

Zmk þ Zml

� �
IT; ð8:2Þ

where

IT ¼ Iim þ Ijm: ð8:3Þ

Combining Equations (8.1) and (8.2), and solving for Imk and Iml, gives:

Imk ¼ Zml

Zmk þ Zml

� �
IT; ð8:4Þ

Iml ¼ Zmk

Zmk þ Zml

� �
IT: ð8:5Þ

An expression for the power flow in branch mk may be derived as a function of the powers

contributed by inflows im and jm:

Smk ¼ VmI
�
mk

¼ Vm

Z�
ml

Z�
mk þ Z�

ml

� �
I�im þ I�jm
� �

¼ Z�
ml

Z�
mk þ Z�

ml

� �
Sim þ Sjm
� �

;

ð8:6Þ

where

Sim ¼ VmI
�
im; ð8:7Þ

Sjm ¼ VmI
�
jm: ð8:8Þ

By the same token, the power flow in branch ml is:

Sml ¼ Z�
mk

Z�
mk þ Z�

ml

� �
Sim þ Sjm
� �

: ð8:9Þ

Equations (8.6) and (8.9) can be given in terms of only complex powers as opposed to

powers and impedances by making use of the relations

Zmk ¼ V2
m

�
S�mk

and Zml ¼ V2
m

�
S�ml:

Smk ¼ Smk

Smk þ Sml

� �
Sim þ Smk

Smk þ Sml

� �
Sjm; ð8:10Þ

Sml ¼ Sml

Sml þ Smk

� �
Sim þ Sml

Sml þ Smk

� �
Sjm: ð8:11Þ

It should be noted that the following power conservation relation:

Sim þ Sjm ¼ Smk þ Sml
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can be used instead in Equations (8.10) and (8.11):

Smk ¼ Sim

Sim þ Sjm
þ Sjm

Sim þ Sjm

� �
Smk; ð8:12Þ

Sml ¼ Sim

Sim þ Sjm
þ Sjm

Sim þ Sjm

� �
Sml: ð8:13Þ

Separation of the real and imaginary components in Equations (8.12) and (8.13) leads to

useful expressions for active and reactive powers:

Pmk ¼ Pim

Pim þ Pjm

þ Pjm

Pim þ Pjm

� �
Pmk; ð8:14Þ

Qmk ¼ Qim

Qim þ Qjm

þ Qjm

Qim þ Qjm

� �
Qmk; ð8:15Þ

Pml ¼ Pim

Pim þ Pjm

þ Pjm

Pim þ Pjm

� �
Pml; ð8:16Þ

Qml ¼ Qim

Qim þ Qjm

þ Qjm

Qim þ Qjm

� �
Qml: ð8:17Þ

Note that the expressions for active power are those derived intuitively in Section 8.3,

appearing in Figure 8.2(b). They are generalised in Sections 8.5–8.6 for the case of n inflows

and loads.

8.4 DOMINIONS

The concept of dominion is at the centre of the power tracing algorithm. In its most basic

form it may be seen as a directed graph consisting of one source, and one or more sinks. The

set of branches linking source and buses are related to transmission components present in

the network, such as lines, transformers, high-voltage direct-current (HVDC) links and

series FACTS equipment. The directions of the branches are dictated by the power flow or

the optimal power flow (OPF) solution upon which the tracing study is based.

There are several ways of carrying out the actual implementation of the algorithm used

for determining the sources dominions. Kirschen, Allan, and Strbac (1997) give one

possible course of action, where the concepts of ‘commons’ and ‘links’ are used. A

‘common’ is defined as a set of contiguous buses supplied by the same source. Branches

within a common are termed internal branches’, and the set of external branches linking two

commons is termed the ‘link’. The analysis is conducted at the common and link level first.

Once the power contribution to each common is known then all buses, loads, and branches

within the common are allocated a share of the power flowing into that common.

An alternative algorithm is detailed in this section. It is a lower-level algorithm in which

the concepts of source dominions and common branches are used (Bialek, 1997), as

opposed to commons and links (Kirschen, Allan, and Strbac, 1997).

The source dominions are determined as follows:

� Select the first source and, starting from the source bus, check all the branches with a

connection to the bus.
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� Branches in which the power flows away from the bus (i.e. outflows) are included as part

of the dominion along with the bus at the receiving end of the branch. Conversely,

branches in which the power flows into the bus (i.e. inflows) do not form part of the

dominion of the source. The procedure is repeated for each new bus as soon as it becomes

part of the dominion of the source.

� After no further buses can be reached, the process comes to a halt, resulting in a directed

subgraph containing only branches that carry power pertaining to the source currently

under analysis.

� The above procedure is repeated for the second source of the network, the third, and so on.

� If the dominion of a source contains no branches, then the dominion is a degenerated

dominion, and the source will contribute power only to the local load.

The use of the branch–node incidence matrix offers a systematic way for implementing

this algorithm. This matrix is highly sparse and yields very efficient solutions.

By way of example, Figure 8.3 shows the five-bus system with active and reactive power

flows, which correspond to the optimal power flow solution as opposed to a conventional

power flow solution. Figures 8.4(a) and 8.4.2(b) show the active power dominions, and

Figure 8.5(a) and 8.5(b) show the reactive power dominions.

5.01

5.00

60 + j10

North Lake Main

South Elm

14.8714.8932.2332.94

1.08

5.15

27.66

1.53

20 + j10

87.89

0.29 45 + j15 40 + j5

56.06 55.00

5.201.3747.20

46.84

2.024.29

6.07 6.44

2.16

3.56

5.50

1.96

30.61

4.85

14.41

80.15

30.14

28.06

Figure 8.3 Optimal power flow solution
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8.4.1 Dominion Contributions to Active Power Flows

Building on the ideas advanced in Section 8.2, the two-inflow, two-outflow system shown in

Figure 8.2 is modified, as shown in Figure 8.6, to include n inflows, with one of the outflows

being a transmission line and the other a load.

The active and reactive power contribution of each dominion or generator to the branch

and load is determined by using the proportional sharing principle demonstrated in

Section 8.3. In this section the issue of active power is addressed, and Figure 8.6 reflects this

point.

The power flow at the sending end of line m is made up of the contribution of the n

inflows and the generator. Similarly, the load PL is fed by the contribution of the n inflows

and the generator.

Expanding on the result given in Equation (8.14) to encompass n inflows but restricted to

branch mk (the load will be treated separately in Section 8.4.3), the following equations

(a) (b)

Figure 8.4 The active dominion of the generators: (a) Gen–North and (b) Gen–South

(a) (b)

Figure 8.5 The reactive dominion of the generators: (a) Gen–North and (b) Gen–South
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apply at the sending end of the branch:

P0
mk ¼ P0

D1
þ P0

D2
þ � � � þ P0

Dn
þ P0

G; ð8:18Þ
P0
Di

¼ PDi
� C0

Pmk
; ð8:19Þ

P0
G ¼ PG � C0

Pmk
; ð8:20Þ

C0
Pmk

¼ P0
mk

PD1
þ PD2

þ � � � þ PDn
þ PG

; ð8:21Þ

where i ¼ 1; 2; . . . ; n, and single primes indicate the sending end.

As an extension, the contribution of the n inflows at the receiving end of branch mk is

determined by the following expressions:

P00
mk

¼ P00
D1

þ P00
D2

þ � � � þ P00
Dn

þ P00
G; ð8:22Þ

P00
Di

¼ PDi
� C00

Pmk
; ð8:23Þ

P00
G ¼ PG � C00

Pmk
; ð8:24Þ

C00
Pmk

¼ P00
mk

PD1
þ PD2

þ � � � þ PDn
þ PG

; ð8:25Þ

where i ¼ 1; 2; . . . ; n, and double primes indicate the receiving end.

In these expressions, PDi
are the power contributions of dominion Di to bus m. The

contribution of each dominion will contain inflows from every one of its branches. If bus m

is the starting point then the bus inflow will be PG as opposed to PDi
. CPm

are contribution

coefficients.

k

m PL

PG

PD1

PD2

PD

…

n

P′ mkP mk ′′

Figure 8.6 Contributions of active power dominions to branch mk
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8.4.2 Dominion Contributions to Reactive Power Flows

In each branch, the reactive power contribution of each dominion, and any source of reactive

power connected directly to the bus, is also determined by using the proportional sharing

principle. The circuit representation in Figure 8.6 is suitably modified to accommodate the

slightly more involved situation prevailing in reactive power applications, where sources of

reactive power may come in a variety of forms: namely, as synchronous generators, shunt

and series compensation, FACTS equipment, and long transmission lines. This situation is

illustrated in Figure 8.7.

In Figure 8.7, QL is a reactive power load, and QS is a reactive power sink. The sink caters

for the possibility of generator or FACTS equipment connected at bus m and drawing

reactive power from the bus. Also, QTL is the reactive power contribution from the

capacitive effects of transmission lines, and QD1
; . . . ;QDn

are the reactive power

contributions of dominions 1; . . . ; n to bus m. If bus m is the starting point of the dominion

then the bus inflow will be QG or QF as opposed to QD1
; . . . ;QDn

. QG would correspond to a

generator, and QF to FACTS equipment.

Based on Figure 8.7, the contributions from the dominion are obtained by using the

following equations.

Q′ mk

2DQ

DQ

m

k

QG

Q mk

FQ

QCm QCk

1DQ

TLQ

QSQL

n

…

′′

Figure 8.7 Contribution of reactive power dominions to branch mk
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Sending end of line mk:

Q0
mk ¼ Q0

D1
þ Q0

D2
þ � � � þ Q0

Dn þ Q0
G þ Q0

F þ Q0
TL; ð8:26Þ

Q0
Di

¼ QDi
� C0

Qmk; ð8:27Þ
Q0

G ¼ QG � C0
Qmk; ð8:28Þ

Q0
F ¼ QF � C0

Qmk; ð8:29Þ
Q0

TL ¼ QTL � C0
Qmk; ð8:30Þ

C0
Qmk ¼

Q0
mk

QD1
þ QD2

þ � � � þ QDn
þ QG þ QF þ QTL

; ð8:31Þ

where i ¼ 1; 2; . . . ; n.

Receiving end of line mk:

Q00
mk ¼ Q00

D1
þ Q00

D2
þ � � � þ Q00

Dn
þ Q00

G þ Q00
F þ Q00

TL; ð8:32Þ
Q00

Di
¼ Q0

Di
� C00

Qkm; ð8:33Þ
Q00

G ¼ Q0
G � C00

Qkm; ð8:34Þ
Q00

F ¼ Q0
F � C00

Qkm; ð8:35Þ

C00
Qmk ¼

Q00
mk � QCk

QD1
þ QD2

þ � � � þ QDn
þ QG þ QF þ QTL � QCm

; ð8:36Þ

Q00
TL ¼ Q0

TL þ QCm

� �� C00
Qmk þ QCk; ð8:37Þ

where i ¼ 1; 2; . . . ; n.

8.4.3 Dominion Contributions to Loads and Sinks

The proportional sharing principle is also used for finding the dominion and source

contributions to the load connected at bus m. Based on Figure 8.8, the following equations

apply for the case of active power:

PL ¼ P0
D1

þ P0
D2

þ � � � þ P0
Dn

þ P0
G; ð8:38Þ

P0
Di

¼ PDi
� CPL; ð8:39Þ

GP

DP
2DP

1DP

m

PLijP

n

Figure 8.8 Active dominions contributions to load L
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P0
G ¼ PG � CPL; ð8:40Þ

CPL ¼ PL

PD1
þ PD2

þ � � � þ PDn
þ PG

; ð8:41Þ

where i ¼ 1; 2; . . . ; n. For the case of reactive power, the variable Q replaces P in

Equations (8.38)–(8.41). Note also that reactive power contributions from QF and QTL may

exist.

8.5 TRACING ALGORITHM

The general algorithm for tracing power flows is summarised in Figure 8.9. Note that the

algorithm differs slightly for the cases of active and reactive powers.

Run the base power flow case

Based on power flows as given by the
power flow solution, determine the

source dominions

Find all the branches that belong to
more than one dominion (i.e.

common branches)

In each branch, find the power
contribution of the relevant dominions
and/or local source to the total branch

flow and associated nodes

In each node, find the power
contribution of the relevant dominions
and/or local source to the node’s load

Account for the power losses in each
dominion

the

Figure 8.9 Flowchart for the tracing algorithm
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8.6 NUMERICAL EXAMPLES

This section is concerned with the application of the power tracing algorithm to solve a

number of test cases of varying degrees of complexity. The first example (Section 8.6.1)

corresponds to a simple radial network, which serves rather well the purpose of illustrating

the application of the theory to active power concerns. The second example (Section 8.6.2)

addresses the case of active power in a meshed network, which is still a fairly simple

network. The motivation for solving this test case is that it enables a direct comparison

between the power tracing methodology presented in this chapter and an alternative tracing

methodology (Bialek, 1996, 1997, 1998). The third test case (Section 8.6.3) deals with

reactive power, as opposed to active power, and includes the contribution of FACTS

equipment to reactive power generation. The tracing of reactive power in a large power

network is quantified in the fourth test case (Section 8.6.4). The last case (Section 8.6.5)

corresponds to the tracing of active power contributed by one wind generator and one

conventional generator in a meshed network.

8.6.1 Simple Radial Network

The tracing algorithm is applied first to the case of active power in the test system shown in

Figure 8.1, which is a radial network. In addition to finding the individual power

contributions of generators G1 and G2 to power flows in transmission lines TL1 and TL2, and

to system loads L1, L2, and L3, the individual contributions of the generators to transmission

loss becomes readily available. If information exists on charges for use of line then it is a

straightforward matter to allocate charges to each generator per transmitted or lost

megawatt. It is assumed in this example that there is a charge of £1 per lost megawatt in TL1

and TL2.

The dominions of generators G1 and G2 were identified by inspection in Section 8.2;

however, for the purpose of computer implementation it is essential to have a systematic

approach. In this section the branch–bus incidence matrix is used for the purpose of

dominion identification. The branch–bus incidence matrix of this network is given in

Figure 8.10, together with the branch searches for the dominions of generators G1 and G2.

n
b

1−2 2−3

1

2

3

+1

−1 +1

−1

n
b

1−2 2−3

1

2

3

+1

−1 +1

−1

(a) (b)

Figure 8.10 Branch–bus incidence matrices and branch searches for the dominions of (a) generator

G1 and (b) generator G2
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Generator G1 is connected to bus 1. This entry provides the starting point for establishing

the dominion of G1. The þ1 in location (1, 1) of the matrix indicates that line 1–2 belongs

to the dominion of G1. One additional line belongs to this dominion and, from the branch–

bus incidence matrix, it is found as follows: the sending end of line 1–2 is bus 1, and the

receiving bus is bus 2, as given by þ1 and �1 in locations (1, 1) and (2, 1) of the matrix,

respectively. There is a þ1 entry in the row corresponding to the receiving end of line 1–2.

This indicates that bus 2 contains inflows, and the search is moved from column 1 to column

2 of the matrix. This makes line 2–3 part of the dominion of G1. Thee is no þ1 found in the

row corresponding to the receiving end of line 2–3. Hence, bus 3 contains no outflows, and

the search stops at bus 3.

Using the same line of reasoning, G2 is connected to bus 2. This entry provides the

starting point for establishing the dominion of G2. The þ1 in location (2, 2) of the matrix

indicates that line 2–3 belongs to the dominion of G2. There is no þ1 found in the row

corresponding to the receiving end of line 2–3. Hence, bus 3 contains no outflows, and the

search stops at bus 3.

The dominion contributions to system loads and power losses in transmission lines are

determined quite straightforwardly by using Equations (8.18)–(8.25).

In transmission line TL1:

P0
G1

¼ PG1
� C0

12 ¼ 160� 0:6875 ¼ 110;

P00
G1

¼ PG1
� C00

12 ¼ 160� 0:625 ¼ 100;

with

C0
12 ¼

P12

PG1

¼ 110

160
¼ 0:6875;

C00
12 ¼

P0
12

PG1

¼ 100

160
¼ 0:625:

In transmission line TL2:

P0
D1

¼ PD1
� C0

23 ¼ 100� 0:75 ¼ 75;

P00
D1

¼ PD1
� C00

23 ¼ 100� 0:7 ¼ 70;

P0
G2

¼ PG2
� C0

23 ¼ 100� 0:75 ¼ 75;

P00
G2

¼ PG2
� C00

23 ¼ 100� 0:7 ¼ 70;

with

C0
23 ¼

P23

PD1
þ PG1

¼ 150

100þ 100
¼ 0:75;

C00
23 ¼

P0
23

PD1
þ PG2

¼ 140

100þ 100
¼ 0:7:

This information is summarised in Table 8.1, and Table 8.2 presents a breakdown of the

power loss and charge for use of line for generators G1 and G2.

From this simple example, it is interesting to note that generator G2 contributes no power

flow to transmission line TL1 and, quite correctly, is not charged for the use of TL1.

Similarly, both generators contribute in equal measure to power flow and power loss in

transmission line TL2 and are charged equally.
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8.6.2 Simple Meshed Network: Active Power

The test system used by Bialek (1996, 1997, 1998) forms the basis of the example presented

in this section. As shown in Figure 8.11, it is a simple power network comprising four buses,

linked together by five transmission lines. Generation is available at buses B1 and B2, and

loads are connected at buses B3 and B4.

Table 8.1 Contributions to active power flows

Sending end Receiving end

Branch C0 (%) P0
D1

(MW) P0
D2

(MW) C00 (%) P00
D1

(MW) P00
D2

(MW)

1–2 68.75 110 0 62.5 100 0

2–3 75 75 75 70 70 70

Table 8.2 Contributions to power loss and charges for use of line

for dominions D1 and D2

Power loss (W) Charge for use of lines (£)

Branch D1 D2 D1 D2

1–2 10 0 10 0

2–3 5 5 5 5

Total 15 5 15 5

Note: The charge for use of line is set at £1 per megawatt.

112 MW

200 MW300 MW

59 MW60 MW

115 MW

173 MW

114 MW400 MW

225 MW

218 MW

3 4

1 2

171 MW
82 MW 83 MW

Β Β

ΒΒ

Figure 8.11 Power flows in a small, meshed network
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Table 8.3 gives information on applied charges for use of line, which have been taken to

be equal to the branch resistances (Bialek, 1996, 1997, 1998). The power flows, as given by

a power flow solution, are shown in Figure 8.11. Based on these trajectories, the two

domains of the network are determined, one domain per generator.

The branch–bus incidence matrix of this network is given in Figure 8.12 together with the

branch search for the dominion of generator G1. Generator G1 is connected to bus B1. This

entry provides the starting point for establishing the dominion of generator G1. A þ1 at

locations (1, 1), (1, 2), and (1, 3) of the matrix indicates that lines 1–3, 1–2, and 1–4 belong

to the dominion of generator 1. Additional lines belong to this dominion, and they will be

found as follows:

� The sending end of line 1–3 is bus B1, and the receiving end is bus B3, as given by the þ1

and �1 in locations (1, 1) and (3, 1) of the matrix, respectively. There is no þ1 entry in

the row corresponding to the receiving end of line 1–3. This indicates that bus B3 contains

no outflows. Therefore, the search stops at bus B3 for this route.

� The row corresponding to the receiving end of line 1–2 contains þ1s. Thus, the search is

moved from column 2 to column 4 of the matrix. This makes line 2–4 part of the

dominion of generator G1. Applying the same line of reasoning, we move the search on

from column 4 to column 5, and line 4–3 is incorporated into the dominion of generator

G1. No þ1 is found in the row corresponding to the receiving end of line 4 –3. Hence, bus

B3 contains no outflows, and the search stops at bus B3 for this route.

� The row corresponding to the receiving end of line 1–4 contains a þ1 in column 5.

Accordingly, the search is moved on from column 3 to column 5 of the matrix. This

makes line 4–3 part of the dominion of generator G1. It must be noted that this line has

Table 8.3 Charges for use of line

Line 1–2 1–3 1–4 2–4 4–3

Charge (£) 12.75 6 11.7 3.5 5.75

n
b

1−3 1−2 1− 4 2−4 4−3

1

2

3

4

+1

−1

+1

−1

+1

−1

+1

−1 +1

−1

Figure 8.12 Branch–bus incidence matrix and branch search for the dominion of generator G1
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already been added to the dominion of generator G1, and it should not be incorporated

twice in the dominion. No þ1 is found in the row corresponding to the receiving end of

line 4–3.

� Since we have exhausted all the þ1 entries in row 1 of the matrix then we are satisfied

that we have completed the search for all branches belonging to the dominion of

generator G1. It must be noted that, in this case, the entire network belongs to the

dominion of generator G1.

The directed subgraph of dominion D1 is shown in Figure 8.13.

The branch–bus incidence matrix of the network shown in Figure 8.11 together with the

branch search process for the dominion of generator G2 are shown in Figure 8.14. Generator

G2 is connected to bus B2. This entry provides the starting point for establishing the

dominion of generator G2. A þ1 entry in location (2, 4) of the matrix indicates that line 2– 4

belongs to the dominion of generator G2. Additional lines belonging to this dominion will

3 4

1 2

B

B B

B

Figure 8.13 Dominion of generator G1

1−3 1−2 1−4 2−4 4−3

1

2

3

4

+1

−1

+1

−1

+1

−1

+1

−1 +1

−1

b
n

Figure 8.14 Branch–bus incidence matrix and branch search for the dominion of generator G2

326 POWER FLOW TRACING



be found as follows:

� The row corresponding to the receiving end of line 2– 4 contains þ1 entries. Accord-

ingly, the search is moved on from column 4 to column 5 of the matrix. This makes line

4–3 part of the dominion of generator G2. We move the search on from column 4 to

column 5 of the matrix and line 4–3 is incorporated into the dominion of generator G2. No

þ1 entries are found in the row corresponding to the receiving end of line 4–3. Bus B3

contains no outflows.

� We have exhausted all the þ1 entries in row 2 of the matrix and this indicates that we

have completed the search for all branches belonging to the dominion of generator G2. At

this point we have also completed the search for all the dominions available in this

network.

The directed subgraph of dominion 2 is shown in Figure 8.15.

Branch 2– 4 and branch 4 –3 are both common to dominions D1 and D2. Hence, the power

tracing algorithm is used to calculate the contributions of each dominion to common

branches 2– 4 and 4 –3. This information is presented in Table 8.4.

By way of example, the power flow contribution of dominion D1 at the sending and

receiving ends of transmission line 2–4 are calculated as follow:

C0
24 ¼

173

59þ 114
¼ 1; P0

D1
¼ 1� 59 ¼ 59;

C00
24 ¼

171

59þ 114
¼ 0:988444; P00

D1
¼ 0:988444� 59 ¼ 58:317919:

2

3 4B B

B

Figure 8.15 Dominion of generator G2

Table 8.4 Contribution of dominions D1 and D2 to branches 2–4 and 4–3

Sending end Receiving end

Branch C0 (%) P0
D1

(MW) P0
D2

(MW) C00 (%) P00
D1

(MW) P00
D2

(MW)

2–4 100 59 114 98.8439 58.3179 112.6821

4–3 29.3286 49.9519 33.0481 28.9753 49.3501 32.6499
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The contributions of dominions D1 and D2 to active power losses in branch 2– 4 become

readily available from the above result. Table 8.5 gives the power losses and charges for use

of line.

The charge, E, for use of line in line 2– 4 is calculated as follows:

ED1
¼ 3:5

0:6821þ 1:3179

� �
� 0:6821 ¼ 1:1937 p:u:;

ED2
¼ 3:5

0:6821þ 1:3179

� �
� 1:3179 ¼ 2:3063 p:u:

The charge for use of line in line 4–3 is:

ED1
¼ 5:75

0:6018þ 0:3982

� �
� 0:6018 ¼ 3:4604 p:u:;

ED2
¼ 5:75

0:6018þ 0:3982

� �
� 0:3982 ¼ 2:2896 p:u:

It is important to remark that a number of methodologies exist for calculating charges for

use of line. For instance, Table 8.6 gives the charges for use of line as calculated by three

Table 8.5 System power losses (sending end) and charges for use of line for dominions D1 and D2

Power loss (MW) Charge for use of lines (p.u.)

Branch D1 D2 Per line D1 D2

1–2 1 0 12.75 12.75 0

1–3 7 0 6 6 0

1–4 3 0 11.7 11.7 0

2–4 0.6821 1.3179 3.5 1.1937 2.3063

4–3 0.6018 0.3982 5.75 3.4604 2.2896

Total 12.2839 1.7161 N.A. 35.1041 4.5959

N.A. Not applicable.

Table 8.6 Comparison of charges (p.u.) for use of line by three different methods for dominions

D1 and D2: (a) the tracing algorithm (presented in this chapter), (b) the generalised factor algorithm

(Ng, 1980), and (c) the topological factor method (Bialek, 1996, 1997, 1998)

(a) Tracing (b) Generalised factor (c) Topological factor

Branch D1 D2 D1 D2 D1 D2

1–2 12.75 0 12.75 0 12.75 0

1–3 6 0 5.22 0.78 6 0

1–4 11.7 0 11.7 0 11.7 0

2–4 1.1937 2.3063 1.77 1.73 1.21 2.29

4–3 3.4604 2.2896 3.06 2.69 3.48 2.27

Total 35.1041 4.5959 34.5 5.2 35.14 4.56
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different methods. The tracing algorithm presented in this chapter is compared with the

method of topological factors (Bialek, 1996, 1997, 1998) and the method of generalised

factors detailed by Ng (1980). It is brought to the reader’s attention that in this example

some of the generalised factors are negative and would produce negative charges for use of

line (i.e. a generator would be compensated for using a transmission facility; Bialek, 1996,

1997, 1998). In actual applications all negative factors and costs are set to zero (Ng, 1980).

The charges based on topological factors compare very well with the charges given by the

tracing algorithm. In contrast, some differences are observed with respect to the charges

given by the generalised factor algorithm. Perhaps the most suspect results are the charges

made to generator G2 for the use of branch 1–3, and the undercharge to generator G1. It must

be noted that branch 1–3 is not part of the dominion of generator G1. This fact is correctly

recognised by the topological factor algorithm. Also, important differences exist in the

charges made to generators G1 and G2 for the use of line 2– 4.

8.6.3 Meshed Network with FACTS Controllers: Reactive Power

In this case, two FACTS devices are included: one unified power flow controller (UPFC) in

branch Lake–Main and one static compensator (STATCOM) in node Elm. The reactive

power flows throughout the network are shown in Figure 8.16. The dominions of the

10

North Lake Main

South Elm

1.5

3.2

3.0

10

1.4

5.52.9 3.92.8

2.1 3.2

2.2

2.6

6.7

4.0

1.1

5.7

UPFC

2.0

15 5

STAT COM

10.6

Figure 8.16 Five-node system with unified power flow controller (UPFC) and static compensator

(STATCOM)
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reactive source’s dominions are given in Table 8.7. The dominions of generators and FACTS

equipments are as shown in Figure 8.17.

The reactive dominion of Gen–North reduces to line North–Lake, and this generator

contributes only to the reactive load connected at Lake. Six transmission lines become

Table 8.7 Reactive dominions of generators, FACTS, and transmission lines (TLs)

Transmission line Loads and sinks

Gen–North North–Lake Lake

Gen–South South–Lake South, Lake

UPFC Lake–Main, Main–South, South–Lake Lake, Main, South

STATCOM Elm–South, South–Lake Elm, South, Lake

TL: North–Lake None Lake

TL: South–Lake None Lake

TL: North–South North–Lake, South–Lake South, Lake

TL: Main–South South–Lake South, Lake

TL: Lake–Main Main–South, South–Lake Main, South, Lake

TL: Main–Elm Elm–South, Main–South, South–Lake Main, Elm, South, Lake

Note: UPFC, unified power flow controller; STATCOM, static compensator.

(a) (b)

(c) (d)

Figure 8.17 Reactive dominions: (a) Gen–North, (b) Gen–South, (c) unified power flow converter,

and (c) static compensator
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sources of reactive power but they also form part of various dominions. Table 8.8 shows the

contributions of the various sources to the individual reactive system loads.

8.6.4 Large Network

In order to show how the tracing algorithm works with a larger power system, the New

Zealand South Island 220 kV system illustrated in Figure 8.18 is used to carry out this study.

The system data are given in Arrillaga and Watson (2001).

From the power flow solution, it emerges that there are two machines that contribute

substantial reactive power injections into their connecting nodes. These synchronous

machines are the one connected at Islington–220 and the one connected at Benmore–016.

The synchronous machine’s dominion connected to Islington–220 is depicted

schematically in Figure 8.19 together with the system contribution to reactive power flow

in this particular dominion.

In this case, the transformers complex taps have been set to nominal values (i.e. the

transformer equivalent circuits do not contain shunt admittances).

Information on the Islington–220 dominion is shown in Table 8.9. The reactive power

absorption of each line is depicted in Table 8.10.

8.6.5 Tracing the Power Output of a Wind Generator

With the ongoing deregulation of the electricity supply industry, the opportunity has arisen

for the widespread incorporation of renewable sources of electricity into the power network.

In the United Kingdom, for instance, wind generation is a form of renewable generation that

is set to experience unprecedented growth, in particular, offshore wind generation.

Among the pressing problems that the industry will have to solve, if electricity genera-

tion from the wind is to become commercially successful in a deregulated environment,

Table 8.8 Dominion contributions to system loads

South Elm Main Lake

Gen–North 0.0 0.0 0.0 1.4

Gen–South 4.1 0.0 0.0 1.6

UPFC 0.3 0.0 1.6 2.9

STATCOM 1.2 8.0 0.0 0.5

TL: North–Lake 0.0 0.0 0.0 2.6

TL: South–Lake 0.0 0.0 0.0 2.7

TL: North–South 2.3 0.0 0.0 2.4

TL: Main–South 1.4 0.0 0.0 0.5

TL: Lake–Main 0.1 0.0 1.6 0.2

TL: Main–Elm 0.6 2.0 1.8 0.2

Total load at node 10 10 5 15

Note: STATCOM, static compensator; UPFC, unified power flow controller; TL,
transmission line; TL: South–Elm is obsorbing MVAR.
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Tekapo−011

Tekapo−220 Islington−220

Bromley−220

Benmore−220

Aviemore−011

Ohau-system

Livingstn−220

Benmore−016

Aviemore−220

Twizel−220

Roxburgh−220
Roxburgh−011

Manapouri−014

Manapouri−220

Tiwai−220

Invercarg−220

Figure 8.18 The New Zealand South Island 220 kV system. Reproduced by permission of John

Wiley & Sons Ltd from J. Arrillaga and N.R. Watson, 2001, Computer Modelling of Electrical Power

System, 2nd edn
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Tekapo−220 Islington−220

Bromley−220

Livingstn−220

Roxburgh−220

Invercarg−220

Twizel−220

Tiwai −220

Figure 8.19 Islington–220 reactive power dominion

Table 8.9 Islington–220 dominion: general data

Index Sending end Receiving end Q absorbed (MVAR)

TL1 Islington–220 Tekapo–220 42.5108

TL2 Islington–220 Twizel–220 40.7907

TL3 Islington–220 Bromley–220 0.8010

TL4 Bromley–220 Twizel–220 38.2211

TL5 Islington–220 Livingstn–220 19.1111

TL6 Livingstn–220 Roxburgh–220 74.0988

TL7 Roxburgh–220 Invercarg–220 5.6353

TL8 Invercarg–220 Tiwai–220 0.4756

TL9 Invercarg–220 Tiwai–220 0.4756
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is to develop an understanding of the impact that large, random blocks of electricity will

have on the power network. For instance, how much electricity can a wind-generating

company, under obligation to supply, afford to contract to supply given its ‘fuel’ supply

uncertainty?

An equally critical issue that needs addressing concerns the ability to trace the power

output of one or more wind farms within an interconnected network. This has a direct

bearing on the aspirations of a growing number of consumers keen on being supplied with

electricity that has been produced with little damage to the environment. The power tracing

methodology offers a realistic possibility of achieving this goal and one that should

encourage providers of clean energy.

The numerical example presented in this section addresses one way in which the tracing

methodology can be applied in the area of delivery of clean power. This requires a

simulation environment similar to the one shown in Figure 8.20, where the interaction of the

Table 8.10 Line contributions to reactive power absorption

Q ðMVARÞ
——————————————————— Contribution

Index Outflow Inflow Contributed coefficients

TL1:

dominion 17.0548 0.0000 17.0548 0.4012

system 17.5000 �7.9559 25.4560 0.5988

TL2:

dominion 12.0992 0.0000 12.0992 0.2966

system 22.5000 �6.1915 28.6915 0.7034

TL3:

dominion 62.3661 61.5959 0.7701 0.9615

system 2.5000 2.4691 0.0309 0.0385

TL4:

dominion 6.0533 0.0000 6.0532 0.1584

system 22.7513 �9.41658 32.1678 0.8416

TL5:

dominion 25.3950 14.0807 11.3143. 0.5920

system 17.5000 9.70321 7.7968 0.4080

TL6:

dominion 7.78264 0.7990 6.9836 0.0942

system 26.6437 2.7355 23.9082 0.3226

TL7:

dominion 0.3232 0.2860 0.0372 0.0066

system 28.3145 25.0573 3.2572 0.5780

TL8:

dominion 0.0873 0.0863 0.0010 0.0021

system 22.0149 21.7640 0.2501 0.5277

TL9:

dominion 0.0873 0.0863 0.0010 0.0021

system 22.0149 21.7640 0.2501 0.5277
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forecasting, power flow, and power tracing algorithms is illustrated. This simulation

environment offers a simple and yet comprehensive way of modelling time-dependent

generators and loads.

8.6.5.1 The wind generator model

Wind generators slaved to the power network are mostly of the induction type. During

high winds, when the rotor speed supersedes the synchronous speed, active power is injected

into the grid. In the presence of low winds there is an automatic cutout to prevent motoring

from happening. During normal conditions, the turbine operates at nearly constant

frequency. The induction wind generator achieves its operation at the expense of consuming

reactive power. From the power flow point of view, it makes engineering sense to treat the

generator bus as a PQ bus with a positive active power injection and a negative reactive

power injection.

However, these power injections must be time-dependent to reflect the stochastic nature

of the prime mover (i.e. the wind). Figure 8.21 shows the active power output of a typical

wind farm for a period of 54 hours, where very large variations between measurements are

observed; for example, the generator goes from zero power output at 16 hours, to 1.8MW at

18 hours (Johansson et al., 1992). For cases of wind farms of low capacity, their reactive

power requirements can be met locally. Moreover, if suitable power electronics equipment is

Generation and load forecasting algorithms

k = 1 n

Newton−Raphson power flow

Tracing algorithm

k ≥        n End

k = k + 1

,, 2, …

Figure 8.20 Power flow simulation environment
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used in tandem with the wind generator set then the reactive power compensation can be

met adaptively.

8.6.5.2 Numerical example

This numeric example illustrates how the simulation environment of Figure 8.20 works. The

example relates to the power network shown in Figure 8.22, where only active power flows

are shown. In this example all the power flows are expressed in kilowatts. Generator G2 is a

wind generator with the power generation profile shown in Figure 8.21. The output of

generator G3 and loads are taken to remain constant. Generator G1 is the slack generator. By

383.6
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Figure 8.22 Power flows (in kilowatts) when the wind generator injects maximum active power (i.e.

1.8MW)
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Figure 8.21 Wind generator model for power flow studies that caters for time dependency
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way of example, two cases are considered below: (1) at 18 hours when the wind generator

is injecting maximum power (i.e. 1.8MW) and (2) at 36 hours when it is injecting zero

power.

Thewind generator injectsmaximumpower

Figure 8.22 shows the power flows for the case when the wind generator is injecting

1.8MW. Based on these power flows, three network dominions are determined. Figure 8.23

shows the dominions of generators G1–G3.

It can be observed in Figure 8.23 that branches 4–1 and 5–1 are common to the dominions

of generator 2 and generator 3. Using the tracing algorithm, the contribution of both

dominions to each element of the network are calculated. Active power losses and charges

for use of line associated with each dominion are then established. This information is

summarised in Table 8.11.

The charge for use of line to dominion k, in branch ij, is calculated as follows:

EDk
¼ xij

LTotal

� �
LDk

; ð8:42Þ

where xij is the company charge assigned to the use of branch ij.

Thewind generator contributes no active power

Figure 8.24(a) shows the power flows for the case when the wind generator contributes no

active power. The directed subgraphs for the two dominions are shown in Figures 8.24(b)

and 8.24(c). The contribution of dominions D1 and D3 to active power losses throughout

the network become readily available. Table 8.12 gives the power losses and charges for

use of line.

1
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G G
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Figure 8.23 Dominions of (a) generator G2, (b) generator G1, and (c) generator G3
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8.7 SUMMARY

The relentless trend towards deregulation and unbundling of transmission services in the

electricity supply industry has provided the motivation for developing methodologies that

trace the output of each generator throughout a power system, whether it is a simple radial

network or an interconnected network of national or even continental dimensions. Over the

last few years a great deal of progress has been made in this direction, and methods based on

the principle of proportional sharing are well regarded in academic circles. Several

alternative algorithms have appeared in the open literature since 1996, with a large

proportion of these papers devoted to economic issues. However, other applications are

beginning to emerge such as the tracing of power contributed by ‘green’ generators and

distortion power contributed by harmonic sources.
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Figure 8.24 (a) Power flows in the test network for the case when the wind generator, G2, contributes

no active power (i.e. 0MW); directed subgraph for (b) dominion D1 and (c) dominion D3
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The tracing algorithm we have detailed in this chapter is the one we developed at

Glasgow, but the application cases contained in this chapter can equally be solved by using

any of the alternative methodologies found in the open literature. The algorithm may serve

the purpose of auditing the individual generator contributions to system loading, power

flows, transmission losses, generation costs, and charges for use of lines. The algorithm is

independently applied to the tracing of active, reactive, and distortion powers. The

algorithm is accurate and comprehensive. In fact, power flow tracing is only a mechanism

for tracing, for instance, generation costs and allocating charges for use of line. These two

basic capabilities of the algorithm have been compared with results corresponding to a

simple case available in the open literature. Also, a larger study involving a subsection of an

interconnected power network has been conducted.

REFERENCES

Acha, E., 1998, ‘Tracing Wind Power in a Pooled Transmission System’, EPSOM’98, Zurich,

Switzerland, September 1998, pp. 23–25.

Acha, E., Fuerte-Esquivel, C.R., Chua C.S., 1996, ‘On the Auditing of Individual Generator

Contributions to Power Flows and Losses in Meshed Power Networks’, RVP 96-SIS-10,

Reunion de Verano de Potencia, IEEE Sección México, Acapulco Gro., Mexico, July 1996,
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Appendix A: Jacobian
Elements for FACTS
Controllers in Positive
Sequence Power Flow

A.1 TAP-CHANGING TRANSFORMER

The partial derivatives of the power equations with respect to the primary tap of the two

winding transformer are:

qPk

qTv
Tv ¼ 2V2

k T
2
v

�
Rm U2

v þ R1

� �þ XmR2 � 2Gkk RmF1 þ XmF2ð Þ� �þ VkVm Gkm cos �1ð Þ½

þ Bkm sinð�1Þ� 1� 4T2
v

�
ðRmF1 þ XmF2Þ

� �
þ 2VkVmT

3
vUv

�
Xm sin �1 � �1ð Þ½

� Rm cos �1 � �1ð Þ�;
qQk

qTv
Tv ¼ 2V2

k T
2
v

�
2Bkk RmF1 þ XmF2ð Þ � RmR2½ þ Xm U2

m þ R1

� �� þ VkVm Gkm sin �1ð Þ½

� Bkm cos �1ð Þ� 1� 4T2
v

�
RmF1 þ XmF2ð Þ

� �

� 2VkVmT
3
vUv

�
Rm sin �1 � �1ð Þ þ Xm cos �1 � �1ð Þ�:½

The partial derivatives of the power equations with respect to the secondary tap of the two

winding transformer are:

qPk

qUv
Uv ¼ 2V2

k U
2
v

�
Rm U2

v þ R1

� �þ XkR2 þ F1 � 2Gkk RkF1 þ XkF2ð Þ� �
þ VkVm Gkm cos �1ð Þ þ Bkm sin �1ð Þ½ � 1� 4U2

v RkF1 þ XkF2ð Þ
� �

þ 2VkVmU
3
vTv

�
Xk sin �1 � �1ð Þ � Rk cos �1 � �1ð Þ½ �;
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qQk

qUv
Uv ¼ 2V2

k U
2
v

�
2Bkk RkF1 þ XkF2ð Þ � RkR2 þ Xk U2

v þ R1 þ F2
� �� �

þ VkVm Gkm sin �1ð Þ � Bkm cos �1ð Þ½ � 1� 4U2
v

�
Rk F1 þ Xk F2ð Þ

� �

� 2VkVmU
3
vTv

�
Rk sin �1 � �1ð Þ þ Xk cos �1 � �1ð Þ½ �;

where

F1 ¼ T2Rs þ U2
vRp þ Req1;

F2 ¼ T2
vXs þ U2

vXp þ Xeq1;

Req1 ¼ ðRpRs � XpXsÞGo � ðRpXs þ RsXpÞBo;

Xeq1 ¼ ðRpRs � XpXsÞBo þ ðRpXs þ RsXpÞGo;

R1 ¼ RsGo � XsBo;

R2 ¼ RsBo þ XsGo;

R3 ¼ RpG0 � XpB0;

R4 ¼ RpB0 þ XpG0;

�1 ¼ �tv � �uv;

�2 ¼ �uv � �tv;

� ¼ F2
1 þ F2

2 ;

�1 ¼ �k � �m:

A.2 THYRISTOR-CONTROLLED SERIES COMPENSATOR

Partial derivatives of the variable series impedance model are:

qPk

qX
X ¼ �VkVmBkm sinð�k � �mÞ;

qQk

qX
X ¼ V2

k Bkk þ VkVmBkm cosð�k � �mÞ;
qPX

km

qX
X ¼ qPk

qX
X:

Partial derivatives of the firing angle model:

qPk

q�
¼ PkBTCSCð1Þ

qXTCSCð1Þ
q�

;

qQk

q�
¼ QkBTCSCð1Þ

qXTCSCð1Þ
q�

;

qBTCSCð1Þ
q�

¼ B2
TCSCð1Þ

qXTCSCð1Þ
q�

;

qXTCSCð1Þ
q�

¼ �2C1½1þ cosð2�Þ� þ C2 sinð2�Þ $ tan½$ð�� �Þ� � tan�f g

þ C2 $2 cos2ð�� �Þ
cos2½$ð�� �Þ� � 1

� �
:
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A.3 STATIC SYNCHRONOUS COMPENSATOR

Partial derivatives for the static compensator (STATCOM) model are:

qPk

q�k
¼ �Qk � V2

k GvR;

qPk

q�vR
¼ VkVvR½GvR sinð�k � �vRÞ � BvR cosð�k � �vRÞ�;

qPvR

q�vR
¼ �QvR � V2

vRBvR;

qPvR

q�k
¼ VvRVk GvR sin �vR � �kð Þ � BvR cos �vR � �kð Þ½ �;

qPk

qVk

Vk ¼ Pk þ V2
k GvR;

qPk

qVvR
VvR ¼ VkVvR GvR cos �k � �vRð Þ þ BvR sin �k � �vRð Þ½ �;

qPvR

qVvR
VvR ¼ PvR þ V2

vRGvR;

qPvR

qVk

Vk ¼ VvRVk GvR cos �vR � �kð Þ þ BvR sin �vR � �kð Þ½ �;
qQk

q�k
¼ Pk � V2

k GvR;

qQk

q�vR
¼ �VkVvR GvR cos �k � �vRð Þ þ BvR sin �k � �vRð Þ½ �;

qQvR

q�vR
¼ PvR � V2

vRGvR;

qQvR

q�k
¼ �VvRVk GvR cos �vR � �kð Þ þ BvR sin �vR � �kð Þ½ �;

qQk

qVk

Vk ¼ Qk � V2
k BvR;

qQk

qVvR
VvR ¼ VkVvR GvR sin �k � �vRð Þ � BvR cos �k � �vRð Þ½ �;

qQvR

qVvR
VvR ¼ QvR � V2

vRBvR;

qQvR

qVk

Vk ¼ �VvRVk GvR sin �vR � �kð Þ � BvR cos �vR � �kð Þ½ �:

A.4 UNIFIED POWER FLOW CONTROLLER

Partial derivatives for the unified power flow controller (UPFC) at bus k are:

qPk

q�k
¼ �Qk � V2

k Bkk;

qQk

q�k
¼ Pk � V2

k Gkk;
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qPk

q�m
¼ VkVm Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �;

qQk

q�m
¼ �Nkm;

qPk

qVk

Vk ¼ Pk þ V2
k Gkk;

qQk

qVm

Vm ¼ Hkm;

qPk

qVm

Vm ¼ VkVm Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �;
qQk

qVk

Vk ¼ Qk � V2
k Bkk;

qPk

q�cR
¼ VkVcR Gkm sin �k � �cRð Þ � Bkm cos �k � �cRð Þ½ �;

qQk

q�cR
¼ �NkcR;

qPk

qVcR

VcR ¼ VkVcR Gkm cos �k � �cRð Þ þ Bkm sin �k � �cRð Þ½ �;
qQk

qVcR

VcR ¼ HkcR;

qPk

q�vR
¼ VkVvR GvR sin �k � �vRð Þ � BvR cos �k � �vRð Þ½ �;

qQk

q�vR
¼ �NkvR;

qPk

qVmR

VvR ¼ VkVvR GvR cos �k � �vRð Þ þ BvR sin �k � �vRð Þ½ �;
qQk

qVvR
VvR ¼ HkvR:

Partial derivatives at the receiving bus m are:

Hmk ¼ qPm

q�k
¼ VmVk Gmk sin �m � �kð Þ � Bmk cos �m � �kð Þ½ �;

qQm

q�k
¼ �Nmk;

Hmm ¼ qPm

q�m
¼ �Qm � V2

mBmm;

qQm

q�m
¼ Pm � V2

mGmm;

Nmk ¼ qPm

qVk

Vk ¼ VmVk Gmk cos �m � �kð Þ þ Bmk sin �m � �kð Þ½ �;
qQm

qVk

Vk ¼ Hmk;
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Nmm ¼ qPm

qVm

Vm ¼ Pm þ V2
mGmm;

qQm

qVm

Vm ¼ Qm � V2
mBmm;

HmcR ¼ qPm

q�cR
¼ VmVcR Gmm sin �m � �cRð Þ � Bmm cos �m � �cRð Þ½ �;

qQm

q�cR
¼ �NmcR;

NmcR ¼ qPm

qVcR

VcR ¼ VmVcR Gmm cos �m � �cRð Þ � Bmm sin �m � �cRð Þ½ �;
qQm

qVcR

VcR ¼ HmcR:

The partial derivatives at the UPFC series converter are:

qPcR

q�k
¼ VcRVk Gkm sin �cR � �kð Þ � Bkm cos �cR � �kð Þ½ �;

qPcR

q�cR
¼ �QcR � V2

cRBmm;

qPcR

q�m
¼ VcRVm Gmm sin �cr � �mð Þ � Bmm cos �cR � �mð Þ½ �;

qPcR

qVcR

VcR ¼ PcR þ V2
cRGmm;

qPcR

qVk

Vk ¼ VcRVk Gkm cos �cR � �kð Þ þ Bkm sin �cR � �kð Þ½ �;
qPcR

qVm

Vm ¼ VcRVm Gmm cos �cR � �mð Þ þ Bmm sin �cR � �mð Þ½ �:

The partial derivatives for the UPFC shunt converter are:

qPvR

q�k
¼ VvRVk GvR sin �vR � �kð Þ � BvR cos �vR � �kð Þ½ �;

qPvR

q�vR
¼ �QvR � V2

vRBvR;

qP vR
qVk
Vk ¼ VvRVk GvR cos �vR � �kð Þ þ BvR sin �vR � �kð Þ½ �;

qPvR

qVvR
VvR ¼ PvR þ V2

vRGvR:

A.5 HIGH-VOLTAGE DIRECT-CURRENT-BASED VOLTAGE
SOURCE CONVERTER

Partial derivatives for the rectifier and inverter stations of the high-voltage direct-current-

based voltage source converter (HVDC-SVC) are:
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qPk

q�k
¼ �Qk � V2

k GvR1;

qPk

q�vR1
¼ �VkVvR1 GvR1 sin �k � �vR1ð Þ � BvR1 cos �k � �vR1ð Þ½ �;

qPk

qVk

Vk ¼ Pk þ V2
k GvR1;

qPk

qVvR1
VvR1 ¼ �VkVvR1 GvR1 cos �k � �vR1ð Þ þ BvR1 sin �k � �vR1ð Þ½ �;

qQk

q�k
¼ Pk � V2

k GvR1;

qQk

q�vR1
¼ VkVvR1 GvR1 cos �k � �vR1ð Þ þ BvR1 sin �k � �vR1ð Þ½ �;

qQk

qVk

Vk ¼ Qk � V2
k BvR1;

qQk

qVvR1
VvR1 ¼ �VkVvR1 GvR1 sin �k � �vR1ð Þ � BvR1 cos �k � �vR1ð Þ½ �;

qPvR1

q�vR1
¼ �QvR1 � V2

vR1BvR1;

qPvR1

q�k
¼ �VvR1Vk GvR1 sin �vR1 � �kð Þ � BvR1 cos �vR1 � �kð Þ½ �;

qPvR1

qVvR1
VvR1 ¼ PvR1 þ V2

vR1GvR1;

qPvR1

qVk

Vk ¼ �VvR1Vk GvR1 cos �vR1 � �kð Þ þ BvR1 sin �vR1 � �kð Þ½ �;
qQvR1

q�vR1
¼ PvR1 � V2

vR1GvR1;

qQvR1

q�k
¼ VvR1Vk GvR1 cos �vR1 � �kð Þ þ BvR1 sin �vR1 � �kð Þ½ �;

qQvR1

qVvR1
VvR1 ¼ QvR1 � V2

vRBvR1;

qQvR1

qVk

Vk ¼ �VvR1Vk GvR1 sin �vR1 � �kð Þ � BvR1 cos �vR1 � �kð Þ½ �;
qPHVDC

q�k
¼ �Qk � V2

k GvR1;

qPHVDC

q�vR1
¼ �VkVvR1 GvR1 sin �k � �vR1ð Þ � BvR1 cos �k � �vR1ð Þ½ �;

qPHVDC

qVk

Vk ¼ Pk þ V2
k GvR1;

qPHVDC

qVvR1
VvR1 ¼ �VkVvR1 GvR1 cos �k � �vR1ð Þ þ BvR1 sin �k � �vR1ð Þ½ �;

qPHVDC

q�vR2
¼ �QvR2 � V2

vR2BvR2:
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Appendix B:
Gradient and Hessian
Elements for Optimal Power
Flow Newton’s Method

B.1 FIRST AND SECOND PARTIAL DERIVATIVES FOR
TRANSMISSION LINES

B.1.1 The Gradient Vector

The first partial derivatives with respect to the state variables at bus k are:

qL
q�k

¼ �pk

qPk

q�k
þ �qk

qQk

q�k
þ �pm

qPm

q�k
þ �qm

qQm

q�k
;

qL
q�pk

¼ Pk þ Pdk � Pgk;

qL
qVk

¼ �pk

qPk

qVk

þ �qk

qQk

qVk

þ �pm

qPm

qVk

þ �qm

qQm

qVk

;

qL
q�qk

¼ Qk þ Qdk � Qgk:

The first partial derivatives with respect to the state variables at bus m are:

qL
q�m

¼ �pk

qPk

q�m
þ �qk

qQk

q�m
þ �pm

qPm

q�m
þ �qm

qQm

q�m
;

qL
q�pm

¼ Pm þ Pdm � Pgm;

qL
qVm

¼ �pk

qPk

qVm

þ �qk

qQk

qVm

þ �pm

qPm

qVm

þ �qm

qQm

qVm

;

qL
q�qm

¼ Qm þ Qdm � Qgm:
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B.1.2 The Matrix W

The second partial derivatives with respect to the state variables at bus k are (diagonal

blocks):

q2L
q�2k

¼ �pk

q2Pk

q�2k
þ �qk

q2Qk

q�2k
þ �pm

q2Pm

q�2k
þ �qm

q2Qm

q�2k
;

q2L
q�kq�pk

¼ q2L
q�pkq�k

¼ qPk

q�k
;

q2L
q�kqVk

¼ q2L
qVkq�k

¼ �pk

q2Pk

q�kqVk

þ �qk

q2Qk

q�kqVk

þ �pm

q2Pm

q�kqVk

þ �qm

q2Qm

q�kqVk

;

q2L
q�kq�qk

¼ q2L
q�qkq�k

¼ qQk

q�k
;

q2L
qV2

k

¼ �pk

q2Pk

qV2
k

þ �qk

q2Qk

qV2
k

þ �pm

q2Pm

qV2
k

þ �qm

q2Qm

qV2
k

;

q2L
qVkq�pk

¼ q2L
q�pkqVk

¼ qPk

qVk

;

q2L
qVkq�qk

¼ q2L
q�qkqVk

¼ qQk

qVk

:

The second partial derivatives with respect to the state variables at buses k and m are

(off-diagonal blocks):

q2L
q�kq�m

¼ q2L
q�mq�k

¼ �pk

q2Pk

q�kq�m
þ �qk

q2Qk

q�kq�m
þ �pm

q2Pm

q�kq�m
þ �qm

q2Qm

q�kq�m
;

q2L
q�kq�pm

¼ q2L
q�pmq�k

¼ qPm

q�k
;

q2L
q�kqVm

¼ q2L
qVmq�k

¼ �pk

q2Pk

q�kqVm

þ �qk

q2Qk

q�kqVm

þ �pm

q2Pm

q�kqVm

þ �qm

q2Qm

q�kqVm

;

q2L
q�kq�qm

¼ q2L
q�qmq�k

¼ qQm

q�k
;

q2L
qVkq�m

¼ q2L
q�mqVk

¼ �pk

q2Pk

qVkq�m
þ �qk

q2Qk

qVkq�m
þ �pm

q2Pm

qVkq�m
þ �qm

q2Qm

qVkq�m
;

q2L
qVkq�pm

¼ q2L
q�pmqVk

¼ qPm

qVk

;

q2L
qVkqVm

¼ q2L
qVmqVk

¼ �pk

q2Pk

qVkqVm

þ �qk

q2Qk

qVkqVm

þ �pm

q2Pm

qVkqVm

þ �qm

q2Qm

qVkqVm

;

q2L
qVkq�qm

¼ q2L
q�qmqVk

¼ qQm

qVk

;

q2L
q�pkq�m

¼ q2L
q�mq�pk

¼ qPk

q�m
;
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q2L
q�qkq�m

¼ q2L
q�mq�qk

¼ qQk

q�m
;

q2L
q�pkqVm

¼ q2L
qVmq�pk

¼ qPk

qVm

;

q2L
q�qkqVm

¼ q2L
qVmq�qk

¼ qQk

qVm

:

The second partial derivatives with respect to the state variables at bus m are (diagonal

block):

q2L
q�2m

¼ �pk

q2Pk

q�2m
þ �qk

q2Qk

q�2m
þ �pm

q2Pm

q�2m
þ �qm

q2Qm

q�2m
;

q2L
q�mq�pm

¼ q2L
q�pmq�m

¼ qPm

q�m
;

q2L
q�mqVm

¼ q2L
qVmq�m

¼ �pk

q2Pk

q�mqVm

þ �qk

q2Qk

q�mqVm

þ �pm

q2Pm

q�mqVm

þ �qm

q2Qm

q�mqVm

;

q2L
q�mq�qm

¼ q2L
q�qmq�m

¼ qQm

q�m
;

q2L
qV2

m

¼ �pk

q2Pk

qV2
m

þ �qk

q2Qk

qV2
m

þ �pm

q2Pm

qV2
m

þ �qm

q2Qm

qV2
m

;

q2L
qVmq�pm

¼ q2L
q�pmqVm

¼ qPm

qVm

;

q2L
qVmq�qm

¼ q2L
q�qmqVm

¼ qQm

qVm

:

The second partial derivatives of active and reactive power flow equations are:

q2Pk

q�mq�k
¼ VkVm Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �;

q2Qk

q�mq�k
¼ VkVm Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �;

q2Pk

q�mqVk

¼ Vm Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �;
q2Qk

q�mqVk

¼ �Vm Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �;
q2Pk

q�mqVm

¼ Vk Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �;
q2Qk

q�mqVm

¼ �Vk Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �;
q2Pk

q�kqVk

¼ �Vm Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �;
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q2Qk

q�kqVk

¼ Vm Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �;
q2Pk

q�kqVm

¼ �Vk Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �;
q2Qk

q�kqVm

¼ Vk Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �;
q2Pk

qVkqVm

¼ Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �;
q2Qk

qVkqVm

¼ Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �;
q2Pk

q�2m
¼ �VkVm Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �;

q2Qk

q�2m
¼ �VkVm Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �;

q2Pk

q�2k
¼ �VkVm Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �;

q2Qk

q�2k
¼ �VkVm Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �;

q2Pk

qV2
k

¼ 2Gkk;

q2Qk

qV2
k

¼ �2Bkk;

q2Pk

qV2
m

¼ 0;

q2Qk

qV2
m

¼ 0:

To obtain the partial derivatives of Pm and Qm it is only necessary to exchange subscripts k

and m in the above equations.

B.2 PHASE SHIFTER TRANSFORMER

The first partial derivatives making up the gradient are not given here since they coincide

with the elements of the phase shifter (PS) Jacobian already given in Section 4.4.2.

The second partial derivatives of active and reactive power with respect to the phase

shifter angle �tv and phase angle voltages are:

q2Pk

q�tvq�k
¼ VkVm Gkm cos �1 þ Bkm sin �1ð Þ;

q2Qk

q�tvq�m
¼ VkVm Gkm sin �1 � Bkm cos �1ð Þ;
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q2Pk

q�tvq�m
¼ �VkVm Gkm cos �1 þ Bkm sin �1ð Þ;

q2Qk

q�tvq�m
¼ �VkVm Gkm sin �1 � Bkm cos �1ð Þ;

q2Pm

q�tvq�m
¼ �VmVk Gmk cos �2 þ Bmk sin �2ð Þ;

q2Qm

q�tvq�m
¼ �VmVk Gmk sin �2 � Bmk cos �2ð Þ;

q2Pm

q�tvq�k
¼ VmVk Gmk cos �2 þ Bmk sin �2ð Þ;

q2Qm

q�tvq�k
¼ VmVk Gmk sin �2 � Bmk cos �2ð Þ:

The second partial derivatives of active and reactive power at buses k and m with respect

to the phase shifter angle �tv and voltages magnitudes are:

q2Pk

q�tvqVk

¼ Vm Gkm sin �1 � Bkm cos �1ð Þ;

q2Qk

q�tvqVk

¼ �Vm Gkm cos �1 þ Bkm sin �1ð Þ;

q2Pk

q�tvqVm

¼ Vk Gkm sin �1 � Bkm cos �1ð Þ;

q2Qk

q�tvqVm

¼ �Vk Gkm cos �1 þ Bkm sin �1ð Þ;

q2Pm

q�tvqVk

¼ �Vm Gmk sin �2 � Bmk cos �2ð Þ;

q2Qm

q�tvqVk

¼ Vm Gmk cos �2 þ Bmk sin �2ð Þ;

q2Pm

q�tvqVm

¼ �Vk Gmk sin �2 � Bmk cos �2ð Þ;

q2Qm

q�tvqVk

¼ Vk Gmk cos �2 þ Bmk sin �2ð Þ:

The second partial derivatives with respect to the phase shifter angle �tv are:

q2Pk

q2�tv

¼ VkVm sin �1
qGmk

q�tv
� cos �1

qBmk

q�tv

� �
;

q2Qk

q2�tv

¼ VkVm cos �1
qGmk

q�tv
þ sin �1

qBmk

q�tv

� �
;

q2Pm

q2�tv

¼ �VmVk sin �2
qGmk

q�tv
� cos �2

qBmk

q�tv

� �
;
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q2Qm

q2�tv

¼ VmVk cos �2
qGmk

q�tv
þ sin �2

qBmk

q�tv

� �
;

qGkm

q�tv
¼ TvUv

A2

F1 sin�1 � F2 cos�1ð Þ;
qBkm

q�tv
¼ � TvUv

A2

F2 sin�1 þ F1 cos�1ð Þ;
qGmk

q�tv
¼ � TvUv

A2

F1 sin�2 � F2 cos�2ð Þ;
qBmk

q�tv
¼ TvUv

A2

F2 sin�2 þ F1 cos�2ð Þ:

The second partial derivatives of active and reactive power with respect to the phase

shifter angle �uv and phase angle voltages are:

q2Pk

q�uvq�k
¼ �VkVm Gmk cos �1 þ Bmk sin �1ð Þ;

q2Qk

q�uvq�k
¼ �VkVm Gkm sin �1 � Bkm cos �1ð Þ;

q2Pk

q�uvq�m
¼ VkVm Gkm cos �1 þ Bkm sin �1ð Þ;

q2Qk

q�uvq�m
¼ VkVm Gkm sin �1 � Bkm cos �1ð Þ;

q2Pm

q�uvq�m
¼ VmVk Gmk cos �2 þ Bmk sin �2ð Þ;

q2Qm

q�uvq�m
¼ VmVk Gmk sin �2 � Bmk cos �2ð Þ;

q2Pm

q�uvq�k
¼ �VmVk Gmk cos �2 þ Bmk sin �2ð Þ;

q2Qm

q�uvq�k
¼ �VmVk Gmk sin �2 � Bmk cos �2ð Þ:

The second partial derivatives of active and reactive power with respect to the phase-

shifter angle �uv and voltage magnitudes are:

q2Pk

q�uvqVk

¼ �Vm Gkm sin �1 � Bkm cos �1ð Þ;

q2Qk

q�uvqVk

¼ Vm Gkm cos �1 þ Bkm sin �1ð Þ;

q2Pk

q�uvqVm

¼ �Vk Gkm sin �1 � Bkm cos �1ð Þ;

q2Qk

q�uvqVm

¼ Vk Gkm cos �1 þ Bkm sin �1ð Þ;
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q2Pm

q�uvqVk

¼ Vm Gmk sin �2 � Bmk cos �2ð Þ;

q2Qm

q�uvqVk

¼ �Vm Gmk cos �2 þ Bmk sin �2ð Þ;

q2Pm

q�uvqVm

¼ Vm Gmk sin �2 � Bmk cos �2ð Þ;

q2Qm

q�uvqVm

¼ �Vk Gmk cos �2 þ Bmk sin �2ð Þ:

The second partial derivatives of active and reactive power with respect to the phase-

shifter angle �uv are:

q2Pm

q2�uv

¼ VmVk sin �2
qGmk

q�uv
� cos �2

qBmk

q�uv

� �
;

q2Qk

q2�uv

¼ VkVm cos �1
qGkm

q�uv
þ sin �1

qBkm

q�uv

� �
;

q2Pk

q2�uv

¼ �VkVm sin �1
qGkm

q�uv
� cos �1

qBkm

q�uv

� �
;

q2Qm

q2�uv

¼ �VmVk cos �2
qGmk

q�uv
þ sin �2

qBmk

q�uv

� �
;

qGmk

q�uv
¼ TvUv

A2

F1 sin�2 � F2 cos�2ð Þ;
qBmk

q�uv
¼ TvUv

A2

F2 sin�1 þ F2 cos�1ð Þ;
qGkm

q�uv
¼ � TvUv

A2

F1 sin�1 � F2 cos�1ð Þ;
qBmk

q�uv
¼ � TvUv

A2

F1 cos�2 þ F2 sin�2ð Þ:

B.3 STATIC VAR COMPENSATOR

The first and second partial derivative making up the static VAR compensator (SVC)

gradient are not given here; they correspond to Equations (5.6) and (5.9) for variable

susceptance and the firing-angle SVC model, respectively.

The second partial derivative terms for the SVC reactive power are:

q2Qk

qV2
k

¼ �2BSVC;

q2Qk

qV2
k

¼ 2

XCXL

XL � XC

p
½2ðp� �Þ þ sinð2�Þ�

� �
;
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q2Qk

qVkqBSVC

¼ �2Vk;

q2Qk

q�2
¼ � 4Vk sin 2�ð Þ

pXL

;

q2Qk

q�qVk

¼ 4Vk cos 2�ð Þ � 1½ �
pXL

;

BSVC ¼ � 1

XCXL

XL � Xc

p
½2ðp� �Þ þ sinð2�Þ�

� �
:

B.4 THYRISTOR-CONTROLLED SERIES COMPENSATOR

The first partial derivatives of the power equations with respect to the controllable reactance

are given in Appendix A. These terms are used to assemble the thyristor-controlled series

compensator (TCSC) gradient.

The second partial derivatives of active and reactive power equations with respect to the

controllable reactance are:

q2Pk

qXTCSCqVk

¼ �Vm sin �k � �mð Þ 1

X2
TCSC

;

q2Qk

qXTCSCqVk

¼ �2Vk þ Vm cos �k � �mð Þ½ � 1

X2
TCSC

;

q2Pk

qXTCSCqVm

¼ �Vm sin �k � �mð Þ 1

X2
TCSC

;

q2Qk

qXTCSCqVm

¼ Vk cos �k � �mð Þ 1

X2
TCSC

;

q2Pk

qXTCSCq�k
¼ �VkVm cos �k � �mð Þ 1

X2
TCSC

;

q2Qk

qXTCSCq�k
¼ �VkVm sin �k � �mð Þ 1

X2
TCSC

;

q2Pk

qXTCSCq�m
¼ VkVm cos �k � �mð Þ 1

X2
TCSC

;

q2Qk

qXTCSCq�m
¼ VkVm sin �k � �mð Þ 1

X2
TCSC

;

q2Pk

qX2
TCSC

¼ VkVm sin �k � �mð Þ 2

X3
TCSC

;

q2Qk

qX2
TCSC

¼ V2
k � VkVm cos �k � �mð Þ� � 2

X3
TCSC

:

The equations for bus m are simply obtained by exchanging subscripts k and m in the above

set of equations.
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The second partial derivative terms of active and reactive power with respect to the firing

angle are:

q2Pk

q�qVk

¼ �Vm sin �k � �mð ÞB2
TCSC

q XTCSC

q�
;

q2Qk

q�qVk

¼ �2Vk þ Vm cos �k � �mð Þ½ �B2
TCSC

qXTCSC

q�
;

q2Pk

q�qVm

¼ �Vk sin �k � �mð ÞB2
TCSC

qXTCSC

q�
;

q2Qk

q�qVm

¼ Vk cos �k � �mð ÞB2
TCSC

qXTCSC

q�
;

q2Pk

q�q�k
¼ �VkVm cos �k � �mð ÞB2

TCSC

qXTCSC

q�
;

q2Qk

q�q�k
¼ �VkVm sin �k � �mð ÞB2

TCSC

qXTCSC

q�
;

q2Pk

q�q�m
¼ VkVm cos �k � �mð ÞB2

TCSC

qXTCSC

q�
;

q2Qk

q�q�m
¼ VkVm sin �k � �mð ÞB2

TCSC

qXTCSC

q�
;

q2Pk

q�2
¼ �VkVm sin �k � �mð Þ B2

TCSC

q2XTCSC

q�2
þ qXTCSC

q�
qB2

TCSC

q�

� �
;

qQk

q�
¼ �V2

k þ VkVm cos �k � �mð Þ� �
B2
TCSC

q2XTCSC

q�2
þ qXTCSC

q�
qB2

TCSC

q�

� �
;

q2BTCSC

q�2
¼ B2

TCSC

q2XTCSC

q�2
þ qXTCSC

q�
qB2

TCSC

q�
;

qB2
TCSC

q�
¼ � 2

X3
TCSC

qXTCSC

q�
;

q2XTCSC

q�2
¼ �4C1 sin½2ðp� �Þ� þ C2$

2 2 cos2½$ðp� �Þ� cosðp� �Þ sinðp� �Þ
cos4½$ðp� �Þ�

� �

� C2$
2 2$ cos2ðp� �Þ cos½$ðp� �Þ� sin½$ðp� �Þ�

cos4½$ðp� �Þ�
� �

þ C2$ 2 tan½$ðp� �Þ� cos½2ðp� �Þ� þ$ sin½2ðp� �Þ�
cos2½$ðp� �Þ�

� �

� C2 2 tanðp� �Þ cos½2ðp� �Þ� þ sin½2ðp� �Þ�
cos2ðp� �Þ

� �
:

B.5 UNIFIED POWER FLOW CONTROLLER

The first partial derivatives of active and reactive power with respect to the voltage

magnitude and phase angles are given in Appendix A. These terms are used to assemble the

unified power flow controller (UPFC) gradient.
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The second partial derivatives of active and reactive power flow equations at bus k are:

q2Pk

q�2k
¼ �VkVm½Gkm cosð�k � �mÞ þ Bkm sinð�k � �mÞ� � VkVcR½Gkm cosð�k � �cRÞ

þ Bkm sin �k � �cRð Þ� � VkVvR GvR cos �k � �vRð Þ þ BvR sin �k � �vRð Þ½ �;
q2Qk

q�2k
¼ �VkVr½Gkm sinð�k � �mÞ � Bkm cosð�k � �mÞ� � VkVcR½Gkm sinð�k � �cRÞ

� Bkm cosð�k � �cRÞ� � VkVvR½GvR sinð�k � �vRÞ � Bkm cos �k � �vRð Þ�;
q2Pk

q�kq�m
¼ VkVm Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �;

q2Qk

q�kq�m
¼ VkVm Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �;

q2Pk

q�kq�cR
¼ VkVcR Gkm cos �k � �cRð Þ þ Bkm sin �k � �cRð Þ½ �;

q2Qk

q�kq�cR
¼ VkVcR Gkm sin �k � �cRð Þ � Bkm cos �k � �cRð Þ½ �;

q2Pk

q�kq�vR
¼ VkVvR GvR cos �k � �vRð Þ þ BvR sin �k � �vRð Þ½ �;

q2Qk

q�kq�vR
¼ VkVvR GvR sin �k � �vRð Þ � BvR cos �k � �vRð Þ½ �;

q2Pk

q�kqVk

¼ �Vm½Gkm sinð�k � �mÞ � Bkm cosð�k � �mÞ� � VcR½Gkm sin �k � �cRð Þ
� Bkm cos �k � �cRð Þ� � VvR GvR sin �k � �vRð Þ � BvR cos �k � �vRð Þ½ �;

q2Qk

q�kqVk

¼ VvR½Gkm cosð�k � �mÞ þ Bkm sinð�k � �mÞ� þ VcR½Gkm cosð�k � �cRÞ
þ Bkm sinð�k � �cRÞ� þ VvR½GvRcos �k � �vRð Þ þ BvR sin �k � �vRð Þ�;

q2Pk

q�kqVm

¼ �Vk Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �;
q2Qk

q�kqVm

¼ Vk Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �;
q2Pk

q�kqVcR

¼ �Vk Gkm sin �k � �cRð Þ � Bkm cos �k � �cRð Þ½ �;
q2Qk

q�kqVcR

¼ Vk Gkm cos �k � �cRð Þ þ Bkm sin �k � �cRð Þ½ �;
q2Pk

q�kqVvR
¼ �Vk GvR sin �k � �vRð Þ � BvR cos �k � �vRð Þ½ �;

q2Qk

q�kqVvR
¼ Vk GvR cos �k � �vRð Þ þ BvR sin �k � �vRð Þ½ �;

q2Pk

q�2m
¼ �VkVm Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �;
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q2Qk

q�2m
¼ �VkVm Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �;

q2Pk

q�mqVk

¼ Vm Gkm sin �km � �kmð Þ � Bkm cos �k � �mð Þ½ �;

q2Qk

q�mqVk

¼ �Vm Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �;

q2Pk

q�mqVm

¼ Vk Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �;

q2Qk

q�mqVm

¼ �Vk Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �;

q2Pk

q�2cR
¼ �VkVcR Gkm cos �k � �cRð Þ þ Bkm sin �k � �cRð Þ½ �;

q2Qk

q�2cR
¼ �VkVcR Gkm sin �k � �cRð Þ � Bkm cos �k � �cRð Þ½ �;

q2Pk

q�cRqVk

¼ VcR Gkm sin �k � �cRð Þ � Bkm cos �k � �cRð Þ½ �;

q2Qk

q�cRqVk

¼ �VcR Gkm cos �k � �cRð Þ þ Bkm sin �k � �cRð Þ½ �;

q2Pk

q�cRqVcR

¼ Vk Gkm sin �k � �cRð Þ � Bkm cos �k � �cRð Þ½ �;

q2Qk

q�cRqVcR

¼ �Vk Gkm cos �k � �cRð Þ þ Bkm sin �k � �cRð Þ½ �;

q2Pk

q�2vR
¼ �VkVvR GvR cos �k � �vRð Þ þ BvR sin �k � �vRð Þ½ �;

q2Qk

q�2vR
¼ �VkVvR½GvR sinð�k � �vRÞ � BvR cosð�k � �vRÞ�;

q2Pk

q�vRqVk

¼ VvR GvR sin �k � �vRð Þ � BvR cos �k � �vRð Þ½ �;

q2Qk

q�vRqVk

¼ �VvR GvR cos �k � �vRð Þ þ BvR sin �k � �vRð Þ½ �;

q2Pk

q�vRqVvR
¼ Vk GvR sin �k � �vRð Þ � BvR cos �k � �vRð Þ½ �;

q2Qk

q�vRqVvR
¼ �Vk GvR cos �k � �vRð Þ þ BvR sin �k � �vRð Þ½ �;

q2Pk

qV2
k

¼ 2Gkk;

q2Qk

qV2
k

¼ �2Bkk;
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q2Pk

qVkqVm

¼ Gkm cos �k � �mð Þ þ Bkm sin �k � �mð Þ½ �;
q2Qk

qVkqVm

¼ Gkm sin �k � �mð Þ � Bkm cos �k � �mð Þ½ �;
q2Pk

qVkqVcR

¼ Gkm cos �k � �cRð Þ þ Bkm sin �k � �cRð Þ½ �;
q2Qk

qVkqVcR

¼ Gkm sin �k � �cRð Þ � Bkm cos �k � �cRð Þ½ �;
q2Pk

qVkqVvR
¼ GvR cos �k � �vRð Þ þ BvR sin �k � �vRð Þ½ �;

q2Qk

qVkqVvR
¼ GvR sin �k � �vRð Þ � BvR cos �k � �vRð Þ½ �:

The second partial derivatives of active and reactive power flow equations at bus m

are:

q2Pm

q�2k
¼ �VmVk Gmk cos �m � �kð Þ þ Bkm sin �m � �kð Þ½ �;

q2Qm

q�2k
¼ �VmVk Gkm sin �m � �kð Þ � Bkm cos �m � �kð Þ½ �;

q2Pm

q�kq�m
¼ VmVk Gkm cos �m � �kð Þ þ Bkm sin �m � �kð Þ½ �;

q2Qm

q�kq�m
¼ VkVm Gkm sin �m � �kð Þ � Bkm cos �m � �kð Þ½ �;

q2Pm

q�kqVk

¼ Vm Gkm sin �m � �kð Þ � Bkm cos �m � �kð Þ½ �;
q2Qm

q�kqVk

¼ �Vm Gkm cos �m � �kð Þ þ Bkm cos �m � �kð Þ½ �;
q2Pm

q�kqVm

¼ Vk Gkm sin �m � �kð Þ � Bkm cos �m � �kð Þ½ �;
q2Qm

q�kqVm

¼ �Vk Gkm cos �m � �kð Þ þ Bkm sin �m � �kð Þ½ �;
q2Pm

q�2m
¼ �VmVk Gkm cos �m � �kð Þ þ Bkm sin �m � �kð Þ½ � � VmVcR Gmm cos �m � �cRð Þ½

þ Bmm cos �m � �cRð Þ�;
q2Qm

q�2m
¼ �VmVk Gkm sin �m � �kð Þ � Bkm cos �m � �kð Þ½ � � VmVcR Gmm sin �m � �cRð Þ½

� Bmm cos �m � �cRð Þ�;
q2Pm

q�mq�cR
¼ VmVcR Gmm cos �m � �cRð Þ þ Bmm cos �m � �cRð Þ½ �;
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q2Qm

q�mq�cR
¼ VmVcR Gmm sin �m � �cRð Þ � Bmm cos �m � �cRð Þ½ �;

q2Pm

q�mqVk

¼ �Vm Gkm sin �m � �kð Þ � Bkm cos �m � �kð Þ½ �;

q2Qm

q�mqVk

¼ Vm Gkm cos �m � �kð Þ þ Bkm sin �m � �kð Þ½ �;

q2Pm

q�mqVm

¼ �Vk Gkm sin �m � �kð Þ � Bkm cos �m � �sð Þ½ � � VcR Gmm sin �m � �cRð Þ½

� Bmm cos �m � �cRð Þ�;
q2Qm

q�mqVm

¼ Vk Gkm cos �m � �kð Þ þ Bkm sin �m � �kð Þ½ � þ VcR Gmm cos �m � �cRð Þ½

þ Bmm sinð�m � �cRÞ�;
q2Pm

q�mqVcR

¼ �Vm Gmm sin �m � �cRð Þ � Bmm cos �m � �cRð Þ½ �;

q2Qm

q�mqVcR

¼ Vm Gmm cos �m � �cRð Þ þ Bmm sin �m � �cRð Þ½ �;

q2Pm

q�2cR
¼ �VmVcR Gmm cos �m � �cRð Þ þ Bmm sin �m � �cRð Þ½ �;

q2Qm

q�2cR
¼ �VmVcR Gmm sin �m � �cRð Þ � Bmm cos �m � �cRð Þ½ �;

q2P
q�cRqVm

¼ VcR Gmm sin �m � �cRð Þ � Bmm cos �m � �cRð Þ½ �;

q2Qm

q�cRqVm

¼ �VcR Gmm cos �m � �cRð Þ þ Bmm sin �m � �cRð Þ½ �;

q2Pm

q�cRqVcR

¼ Vm Gmm sin �m � �cRð Þ � Bmm cos �m � �cRð Þ½ �;

q2Qm

q�cRqVcR

¼ �Vm Gmm cos �m � �cRð Þ þ Bmm sin �m � �cRð Þ½ �;

q2Pm

qVkqVm

¼ Gkm cos �m � �kð Þ þ Bkm sin �m � �kð Þ½ �;

q2Qm

qVkqVm

¼ Gkm sin �m � �kð Þ � Bkm cos �m � �kð Þ½ �;

q2Pm

qV2
m

¼ 2Gmm;

q2Qm

qV2
m

¼ �2Bmm;
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q2Pm

qVmqVcR

¼ Gmm cos �m � �cRð Þ þ Bmm sin �m � �cRð Þ½ �;
q2Qm

qVmqVcR

¼ Gmm sin �m � �cRð Þ � Bmm cos �m � �cRð Þ½ �:

The second partial derivatives of active power flow equations for the series converter are:

q2PcR

q�2k
¼ �VcRVk Gkm cos �cR � �kð Þ þ Bkm sin �cR � �kð Þ½ �;

q2PcR

q�2m
¼ �VcRVm Gmm cos �cR � �mð Þ þ Bmm sin �cR � �mð Þ½ �;

q2PcR

q�kq�cR
¼ VcRVk Gkm cos �cR � �kð Þ þ Bkm sin �cR � �kð Þ½ �;

q2PcR

q�mq�cR
¼ VcRVm Gmm cos �cR � �mð Þ þ Bmm sin �cR � �mð Þ½ �;

q2PcR

q�kqVk

¼ VcR Gkm sin �cR � �kð Þ þ Bkm cos �cR � �kð Þ½ �;

q2PcR

q�mqVm

¼ VcR Gmm sin �cR � �mð Þ þ Bmm cos �cR � �mð Þ½ �;

q2PcR

q�kqVcR

¼ Vk Gkm sin �cR � �kð Þ þ Bkm cos �cR � �kð Þ½ �;

q2PcR

q�mqVcR

¼ Vm Gmm sin �cR � �mð Þ þ Bmm cos �cR � �mð Þ½ �;

q2PcR

q�cRq�k
¼ VcRVk Gkm cos �cR � �kð Þ þ Bkm sin �cR � �kð Þ½ �;

q2PcR

q�cRqVm

¼ �VcR Gmm sin �cR � �mð Þ � Bmm cos �cR � �mð Þ½ �;

q2PcR

q�cRq�m
¼ VcRVm Gmm cos �cR � �mð Þ þ Bmm sin �cR � �mð Þ½ � ;

q2PcR

q�cRqVcR

¼ �Vm Gmm sin �cR � �mð Þ � Bmm cos �cR � �mð Þ½ � � Vk Gkm sin �cR � �kð Þ½
� Bkm cos �cR � �kð Þ�;

q2PcR

q�2cR
¼ �VcRVm Gmm cos �cR � �mð Þ þ Bmm sin �cR � �mð Þ½ � � VcRVk Gkm cos �cR � �kð Þ½

þ Bkm sin �cR � �kÞð �;
q2PcR

qVkqVcR

¼ Gkm cos �cR � �kð Þ þ Bkm sin �cR � �kð Þ½ �;

q2PcR

q�cRqVk

¼ �VcR Gkm sin �cR � �kð Þ � Bkm cos �cR � �kð Þ½ �;
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q2PcR

qVmqVcR

¼ Gmm cos �cR � �mð Þ þ Bmm sin �cR � �mð Þ½ �;
q2PcR

qV2
cR

¼ 2Gmm:

The second partial derivatives of active power flow equations for the shunt converters

are:

q2PvR

q�2k
¼ �VvRVk GvR cos �vR � �kð Þ þ BvR sin �vR � �kð Þ½ �;

q2PvR

q�2vR
¼ �VvRVk GvR cos �vR � �kð Þ þ BvR sin �vR � �kð Þ½ �;

q2PvR

q�kq�vR
¼ VvRVk GvR cos �vR � �kð Þ þ BvR sin �vR � �kð Þ½ �;

q2PvR

q�vRqVk

¼ �VvR GvR sin �vR � �kð Þ þ BvR cos �vR � �kð Þ½ �;
q2PvR

q�kqVk

¼ VvR GvR sin �vR � �kð Þ þ BvR cos �vR � �kð Þ½ �;
q2PvR

q�vRqVvR
¼ �Vk GvR sin �vR � �kð Þ � BvR cos �vR � �kð Þ½ �;

q2PvR

q�kqVvR
¼ Vk GvR sin �vR � �kð Þ þ BvR cos �vR � �kð Þ½ �;

q2PvR

qVkqVvR
¼ GvR cos �vR � �kð Þ þ BvR sin �vR � �kð Þ½ �;

q2PvR

qV2
vR

¼ �2GvR:
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Appendix C: Matlab1

Computer Program for
Optimal Power Flow Solutions
using Newton’s Method

A computer program suitable for the optimal power flow (OPF) solution of small and

medium size power systems is given below. The program is general, as far as the topology of

the network is concerned, and caters for any number of PV and PQ buses. The slack bus is

the first generator bus in the data file. Notice that active and reactive power limits should be

given to the slack generator. No transformers are represented in this base program and no

sparsity techniques are incorporated.

%%***- - - - - Main Program

%% ******************************************************************

%% Input data *

%% ******************************************************************

opfdata;

%% ******************************************************************

%% Definition of auxiliary vectors and matrices *

%% ******************************************************************

%%Nodes

VOLTAGE=zeros(nbb,1);ANGLE=zeros(nbb,1);LAMBDAP=zeros(nbb,1);

LAMBDAQ=zeros(nbb,1);PGENERATED=zeros(nbb,1);

StatusVoltage = ones(nbb,1);

Violation=zeros(nbb,1);Kindexvol=zeros(nbb,1);MiuBus=zeros(nbb,1);

StatV=ones(nbb,1);ActivedV=zeros(nbb,1);

%%Generators

statusgen=ones(ngn,1);StatP=ones(ngn,1);StatQ=ones(ngn,1);

FACTS: Modelling and Simulation in Power Networks.
Enrique Acha, Claudio R. Fuerte-Esquivel, Hugo Ambriz-Pérez and César Angeles-Camacho
# 2004 John Wiley & Sons, Ltd ISBN: 0-470-85271-2



ActivedP=zeros(ngn,1);ActivedQ=zeros(ngn,1);Kindexgen=zeros(ngn,1);

IndGenQ=zeros(ngn,1);MiuGen=zeros(ngn,1);

ChangeStat=0;Kindex=0;cost=0;Ckg=0;MaxDz=0;

%%SetGenQ=0;GenViolado=0;Optimo=0;

%% ******************************************************************

%% The elements of Ybus are calculated here *

%% ******************************************************************

[GKK,BKK,GKM,BKM] = YBus(tlsend,tlrec,tlresis,tlreac,tlsuscep,...

tlcond, ntl,nbb);

%% ******************************************************************

%% Initial dispatch *

%% ******************************************************************

[PGEN,Ckg,LambdaP] = InitialDispatch(nbb,ngn,A,B,C,PLOAD, PGEN, PMIN,...

PMAX,Ckg,LambdaP);

Ckg=Ckg*10000;

%% ******************************************************************

%% Main iteration starts here *

%% ******************************************************************

[cost] = CostGeneration(cost,A,B,C,PGEN,ngn);

for(iterOpf = 1: IterOpfTot)

%% ******************************************************************

%% Calculated powers in buses and generators *

%% ******************************************************************

[Pbus,Qbus] = CalculatedPowers(nbb,VM,VA,GKK,BKK,GKM,BKM,ntl,...

tlsend,tlrec);

[QGEN]=ReactivePowerGenerators(QGEN,ngn,Qbus,QLOAD,genbus,bustype);

%% ******************************************************************

%% Check reactive power of generators, including the slack *

%% generator. Remove penalty factors from Lagrangian multiplier *

%% LambdaQ in buses with reactive power limits *

%% violations *

%% ******************************************************************

SetGenQ=0;

[Violation,ActivedQ,statusgen,SetGenQ,IndGenQ] = Voltage(nbb,ngn,...

genbus,QGEN,QLOAD,Violation,ActivedQ,vmin,vmax,TolVoltage,VM,Qbus,...

statusgen,bustype,QMAX,QMIN,SetGenQ,IndGenQ,iterOpf);

%% ******************************************************************

%% Copy data from solution vector to auxiliary vector *

%% ******************************************************************
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[ANGLE,VOLTAGE,LAMBDAP,LAMBDAQ,PGENERATED]=VectorAux(nbb,ngn,VM,...

VA,LambdaP,LambdaQ,PGEN,vmax,vmin,ANGLE,VOLTAGE,LAMBDAP,LAMBDAQ,...

PGENERATED);

%% ******************************************************************

%% Internal iterations *

%% ******************************************************************

for( IntIter = 1: NIntIter)

%% ******************************************************************

%% The Matrix W and gradient vector are calculated *

%% ******************************************************************

if(IntIter == 1)

[Hessian,grad] = MatrixW(nbb,bustype,ngn,GKK, BKK,GKM,BKM,...

tlsend,tlrec,LambdaP,LambdaQ,VM,VA,ntl);

%% Generators

[Hessian,grad]=MatrixWGen(nbb,ntl,ngn,genbus,B,C,LambdaP,PGEN,...

Hessian,grad);

%% Mismatch of nodal powers

[Hessian,grad] = Mismatch(nbb,ngn,genbus,PGEN,QGEN,PLOAD,QLOAD,...

Pbus,Qbus,Hessian,grad);

end

%% ******************************************************************

%% Penalize generators with no reactive *

%% power limits violations *

%% ******************************************************************

if(SetGenQ>0)

AuxBigNumber=(10e+10)/2;

[Hessian,grad] = PenaltyFunctionQ(nbb,AuxBigNumber,Hessian,...

grad,genbus,IndGenQ,SetGenQ,LambdaQ,ActivedQ);

end

%% ******************************************************************

%% Penalize the voltage magnitude and phase angle of slack bus *

%% the phase angle must be 0 *

%% ******************************************************************

[Hessian,grad] = Convexificacion(nbb,Hessian,grad,Cc,vmax,...

vmin,VOLTAGE,StatusVoltage,VM);

%% ******************************************************************

%% It holds activated variables in w-matrix, *

%% after exiting internal iterations *

%% ******************************************************************

[Hessian,grad,ActivedV,ActivedP] = AugmentedLagrangian(nbb,...
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Hessian,grad,Ckv,Ckg,vmax,vmin,VOLTAGE,StatusVoltage,VM,ActivedV,...

MiuBus, ngn,ActivedP,PGEN,StatP,MiuGen,PMAX,PMIN);

%% ******************************************************************

%% Solves the system, of equations *

%% ******************************************************************

Hessian=full(Hessian);

Dz = Hessian\grad;

%% ******************************************************************

%% Updates phase angles, voltages magnitudes, *

%% and multipliers lambdap and lambdaq *

%% ******************************************************************

if(iterOpf==1 & IntIter<20), Alfa=Alfa+0.025; end

Dz=Alfa*Dz;

[Dz,VA,VM,LambdaP,LambdaQ,PGEN] = Actualisation(Dz,nbb,VA,...

VM,LambdaP,LambdaQ,bustype,ngn,PGEN);

%% ******************************************************************

%% Reset calculated powers in buses, w-matrix and gradient *

%% ******************************************************************

[Hessian,grad] = Reset_Hessian_grad(Hessian,grad,ngn,nbb);

%% ******************************************************************

%% Calculated Powers in buses and generators (second time) *

%% ******************************************************************

[Pbus,Qbus] = CalculatedPowers(nbb,VM,VA,GKK,BKK,GKM,BKM,...

ntl,tlsend,tlrec);

[QGEN] = ReactivePowerGenerators(QGEN,ngn,Qbus,QLOAD,genbus,...

bustype);

%% ******************************************************************

%% The gradient vector is calculated (second time). *

%% Convergence is checked *

%% ******************************************************************

[Hessian,grad] = MatrixW(nbb,bustype,ngn,GKK,BKK,GKM,BKM,...

tlsend,tlrec,LambdaP,LambdaQ,VM,VA,ntl);

%% Generators

[Hessian,grad] = MatrixWGen(nbb,ntl,ngn,genbus,B,C,LambdaP,...

PGEN,Hessian,grad);

%% Mismatch of nodal powers

[Hessian,grad]=Mismatch(nbb,ngn,genbus,PGEN,QGEN,PLOAD,QLOAD,...

Pbus,Qbus,Hessian,grad);

Optimo=0; %%Flag

[Optimo] = ReviewNodes(Optimo,grad,nbb,bustype,ActivedV,Tol2);
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[Optimo] = ReviewGen(Optimo,grad,ngn,ActivedP,Tol1,nbb);

[MaxDz] = Norma(MaxDz,grad,nbb,ngn);

if(Optimo==0),break, end;

end %% End of internal iteration

%% ******************************************************************

%% Select the active set for the next iteration *

%% ******************************************************************

NumNode=zeros(nbb,1);

ValueVoltage= zeros(nbb,1);

NumGenerator=zeros(ngn,1);

ValueGenerator=zeros(ngn,1);

%% Identify candidates for addition to active set

SetVol=0;

[StatusVoltage,SetVol,NumNode,ValueVoltage] = Check_Limits_V...

(nbb, TolVoltage,vmin,vmax,VM,StatusVoltage,Dz,SetVol,NumNode,...

ValueVoltage, ActivedV);

SetGenP=0;

if(iterOpf>=0)

[StatP,SetGenP,NumGenerator,ValueGenerator] = Check_Limits_P...

(ngn,TolPower,PMIN,PMAX,PGEN,StatP,SetGenP,NumGenerator,...

ValueGenerator, ActivedP);

end

%% ******************************************************************

%% Looking for the maximum index *

%% ******************************************************************

MaxVol=0;

if(SetVol>0)

MaxVol=ValueVoltage(1);

for(ii = 1: SetVol)

if(ValueVoltage(ii)>MaxVol),MaxVol=ValueVoltage(ii);end

end

end

MaxGen=0;

if(SetGenP>0)

MaxGen=ValueGenerator(1);

for(ii = 1: SetGenP)

if(ValueGenerator(ii)>MaxGen),MaxGen=ValueGenerator(ii);end

end

end

%% ******************************************************************

%% Adding new inequality constraints to the active set. *

%% They must be >= Tolerance *

%% ******************************************************************
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if(SetVol>0)

[Hessian,grad,ActivedV] = AugmentedLagrangianV(nbb,Hessian,...

grad, Ckv,vmax,vmin,StatusVoltage,VM,ActivedV,MiuBus,SetVol,...

NumNode,ValueVoltage,MaxVol,EnforceTol);

end

if(SetGenP>0)

[Hessian,grad,ActivedP] = AugmentedLagrangianG(ngn,nbb,Hessian,...

rad,Ckg,PMIN,PMAX,StatP,PGEN,ActivedP,MiuGen,SetGenP,...

NumGenerator,ValueGenerator,MaxGen,EnforceTol);

end

%% ******************************************************************

%% Select candidate, constraints to be removed *

%% from the active set *

%% ******************************************************************

NumMiu_V=zeros(nbb,1);

ValMiu_V=zeros(nbb,1);

NumMiu_P=zeros(ngn,1);

ValMiu_P=zeros(ngn,1);

RelVol=0;

for(ii = 1: nbb)

if(ActivedV(ii)==2)

[Hessian,grad,ActivedV]=AugmentedLagrangian_IV(nbb,Hessian,...

grad,Ckv,vmax,vmin,StatusVoltage,VM,ActivedV,MiuBus,ii);

[MiuBus,NumMiu_V,ValMiu_V,RelVol] = IdentifyMiuBus...

(StatusVoltage, MiuBus,Ckv,VM,vmax,vmin,ActivedV,RelVol,...

NumMiu_V,ValMiu_V,ii);

end

end

RelGen=0;

for(ii = 1: ngn)

if(ActivedP(ii)==2)

[Hessian,grad,ActivedP] = AugmentedLagrangian_IG(ngn,...

Hessian,grad,Ckg,PMIN,PMAX,StatP,PGEN,ActivedP,MiuGen,ii);

[MiuGen,NumMiu_P,ValMiu_P,RelGen] = IdentifyMiuGen(StatP,...

MiuGen,Ckg,PGEN,PMAX,PMIN,ActivedP,RelGen,NumMiu_P,ValMiu_P,ii);

end

end

%% ******************************************************************

%% It looks for the maximum index *

%% ******************************************************************

MaxVol=0;
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if(RelVol>0)

MaxVol=ValMiu_V(1);

for(ii = 1: RelVol)

if(ValMiu_V(ii)>MaxVol),MaxVol=ValMiu_V(ii);end

end

end

MaxGen=0;

if(RelGen>0)

MaxGen=ValMiu_P(1);

for(ii = 1: RelGen)

if(ValMiu_P(ii)>MaxGen),MaxGen=ValMiu_P(ii);end

end

end

%% ******************************************************************

%% Releasing inequality constraints from the active *

%% set. They must be >= Tolerance *

%% ******************************************************************

if(RelVol>0)

for(ii = 1:RelVol)

if(((ValMiu_V(ii)/MaxVol)>=RelTol)&(ValMiu_V(ii)>...

(Fraction*MaxVol)))

send=NumMiu_V(ii);

[Hessian,grad,ActivedV,StatusVoltage] =...

ReleasingAumentedLagrangianV(VM,vmax,vmin,StatusVoltage,MiuBus,...

Hessian, grad,Ckv,ActivedV,StatusVoltage,send);

end

end

end

if(RelGen>0)

for(ii= 1:RelGen)

if(((ValMiu_P(ii)/MaxGen)>=RelTol)&(ValMiu_P(ii)>...

(Fraction*MaxGen)))

send=NumMiu_P(ii);

[Hessian,grad,ActivedP,StatP] =...

ReleasingAumentedLagrangianG(PGEN,PMAX,PMIN,StatP,MiuGen,...

Hessian, grad,Ckg,ActivedP,StatP,send);

end

end

end

%% ******************************************************************

%% Compute the initial values of MiuBUS *

%% and MiuGEN *

%% ******************************************************************

[MiuBus] = MultiplierBus(nbb,Ckv,MiuBus,VM,vmax,vmin);
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[MiuGen] = MultiplierGen(ngn,Ckg,MiuGen,PGEN,PMAX,PMIN);

[ANGLE,VOLTAGE,LAMBDAP,LAMBDAQ,PGENERATED] = VectorAux(nbb,ngn,...

VM,VA,LambdaP,LambdaQ,PGEN,vmax,vmin,ANGLE,VOLTAGE,LAMBDAP,...

LAMBDAQ,PGENERATED);

Ckv=1.3*Ckv;

Ckg=1.3*Ckg;

%% ******************************************************************

%% It changes the status of ‘‘Actived’’ variables from 1 to 2, *

%% to enable values to be identified at the following iteration: *

%% 0 can be analyzed, 1 recently activated, *

%% 2 it is already active and checks its lambda. *

%% ******************************************************************

for(ii= 1: nbb)

if(ActivedV(ii)==1),ActivedV(ii)=2;end

end

for(ii = 1: ngn)

if(ActivedP(ii)==1),ActivedP(ii)==1;end

end

%% ******************************************************************

%% It checks whether or not there are changes *

%% in the active set. Changes in Generators *

%% ******************************************************************

in0=0;

for(ii = 1: ngn)

[ChangeStat,Kindex1,statusgen,LambdaQ,ActivedQ,bustype] =...

IdentifyConstQ(ChangeStat,genbus,statusgen,LambdaQ,...

ActivedQ,bustype,ii);

if(ChangeStat~=0),in0=1;end

end

GenViolado=0;

for(ii= 1: ngn)

[GenViolado]=CheckQGenLimits(GenViolado,QLOAD,Qbus,QMIN,...

QMAX,genbus,TolPower,ii);

if(GenViolado==1),break;end

end

if(GenViolado==1),Optimo=1;end

%% ******************************************************************

%% It checks whether or not there are changes in the *

%% multipliers. Changes in generators *

%% ******************************************************************

in1=0;in2=0;

for(ii = 1: nbb)

[in1,in2]=MatrixWVoltageMiu(in1,in2,TolVoltage,VM,vmax,vmin,...
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MiuBus,ActivedV,StatusVoltage,ii);

if(in1==1 | in2==1),break;end

end

in3=0;in4=0;

for( ii = 1: ngn)

[in3,in4] = MatrixWGenMiu(in3,in4,TolPower,PGEN,PMAX,PMIN,...

MiuGen,ActivedP,StatP,ii);

if(in3==1 | in4==1),break;end

end

[cost] = CostGeneration(cost,A,B,C,PGEN,ngn);

[suma] = CheckConvexification(nbb,Cc,VM,VOLTAGE);

%% ******************************************************************

%% If the total cost is within tolerance *

%% and the optimality conditions are satisfied, then *

%% the process can be stopped. *

%% ******************************************************************

if((in0==0)&(in1==0)&(in2==0)&(in3==0)&(in4==0)&(RelVol==0)& ...

(RelGen==0))

eps=LastCost-cost;

if(eps<0),eps=-eps;end

if(TolEps==1e-8)

if(eps<TolEps),Optimo=0;end

end

end

LastCost=cost;

if((in0==0)&(in1==0)&(in2==0)&(in3==0)&(in4==0)&(RelVol==0)...

&(RelGen==0)&(Optimo==0))

VM

VA=VA*180/pi

PGEN

LambdaP

LambdaQ

fprintf(’\n=== Objective Function Value ===’);

fprintf(’\n f = %%12.8f $/hr ’, cost);

fprintf(’\n’);

fprintf(’\n’);

fprintf(’\n************************************************’);

fprintf(’\n* End of main iteration *’);

fprintf(’\n* *’);

fprintf(’\n************************************************’);

break; %% This instruction breaks the main iterations loop

end
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%% ******************************************************************

%% It checks for the Dz being too small. If true then *

%% Ckv=const, Ckg=const and IntIter=30 *

%% ******************************************************************

if((MaxDz<0.00001)&(in1==0)&(in2==0)&(in3==0)&(in4==0)&...

(RelVol==0)& (RelGen==0))

NIntIter==30;

Ckv=Ckv/1.3;

Ckg=Ckg/1.3;

end

end %% End of the Main PROGRAM

function [GKK,BKK,GKM,BKM] = YBus(tlsend,tlrec,tlresis,tlreac,...

tlsuscep,tlcond,ntl,nbb);

%% Transmission lines contribution

GKK=zeros(ntl,1);

BKK=zeros(ntl,1);

GKM=zeros(ntl,1);

BKM=zeros(ntl,1);

for ii = 1: ntl

denom = tlresis(ii)^2+tlreac(ii)^2;

GKK(ii) = GKK(ii) + tlresis(ii)/denom + 0.5*tlcond(ii);

BKK(ii) = BKK(ii) - tlreac(ii)/denom + 0.5*tlsuscep(ii);

GKM(ii) = GKM(ii) - tlresis(ii)/denom;

BKM(ii) = BKM(ii) + tlreac(ii)/denom;

end

return;%% End of Ybus

function [PGEN,Ckg,LAMBDAP] = InitialDispatch(nbb,ngn,A,B,C,PLOAD,...

PGEN,PMIN,PMAX,Ckg,LambdaP);

sum1=0.0;sum2=0.0;sum3=0.0;sum4=0;sum5=0;

lambda=0.0;

Ckg=0;

for(ii= 1:ngn)

sum1=sum1+B(ii)/C(ii);

sum2=sum2+1/C(ii);

if(C(ii)>=Ckg),Ckg=C(ii);end

end

for(ii= 1:nbb)

sum3=sum3+PLOAD(ii);

end

sum3=1.03*sum3;
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for( ii=1:ngn)

sum4=sum4+PMIN(ii);

sum5=sum5+PMAX(ii);

end

if(sum3>sum5|sum3<sum4)

fprintf(’\n************************************************’);

fprintf(’\n* THERE IS NO SOLUTION *’);

fprintf(’\n* LOAD<PMIN OR LOAD>PMAX *’);

fprintf(’\n* *’);

fprintf(’\n************************************************’);

end

lambda=(2*sum3+sum1)/sum2;

for(ii= 1:nbb)

LambdaP(ii)=lambda;

end

for(ii= 1:ngn)

sum1=1.0/(2*C(ii))*(lambda-B(ii));

PGEN(ii)=sum1;

end

return; %%End of InitialDispatch

function[cost] = CostGeneration(cost,A,B,C,PGEN,ngn)

cost=0.0;

for( ii = 1: ngn)

cost=cost+A(ii)+B(ii)*PGEN(ii)+C(ii)*PGEN(ii)*PGEN(ii);

end

return; %%End of CostGeneration function

function [Pbus,Qbus] = CalculatedPowers(nbb,VM,VA,GKK,BKK,GKM,BKM,

ntl,tlsend,tlrec);

Pbus= zeros(nbb,1);

Qbus = zeros(nbb,1);

V =zeros(2,1);

A =zeros(2,1);

for ii = 1: ntl

send = tlsend(ii); rece = tlrec(ii);

V(1)= VM(send); V(2)= VM(rece);

A(1)= VA(send); A(2)= VA(rece);

angle=A(1)-A(1);

Pbus(send)=Pbus(send)+V(1)*V(1)*(GKK(ii)*cos(angle)+...

BKK(ii)*sin(angle));

Qbus(send)=Qbus(send)+V(1)*V(1)*(GKK(ii)*sin(angle)-BKK(ii)...

*cos(angle));angle=A(1)-A(2);
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Pbus(send)=Pbus(send)+V(1)*V(2)*(GKM(ii)*cos(angle)+...

BKM(ii)*sin(angle));

Qbus(send)=Qbus(send)+V(1)*V(2)*(GKM(ii)*sin(angle)-BKM(ii)...

*cos(angle));

angle=A(2)-A(2);

Pbus(rece)=Pbus(rece)+V(2)*V(2)*(GKK(ii)*cos(angle)+...

BKK(ii)*sin(angle));

Qbus(rece)=Qbus(rece)+V(2)*V(2)*(GKK(ii)*sin(angle)-BKK(ii)...

*cos(angle));

angle=A(2)-A(1);

Pbus(rece)=Pbus(rece)+V(2)*V(1)*(GKM(ii)*cos(angle)+...

BKM(ii)*sin(angle));

Qbus(rece)=Qbus(rece)+V(2)*V(1)*(GKM(ii)*sin(angle)-BKM(ii)...

*cos(angle));

end

return; %%End of CalculatedPowers function

function [QGEN] = ReactivePowerGenerators(QGEN,ngn,Qbus,QLOAD,...

genbus,bustype);

for ii = 1: ngn

bgen=genbus(ii);

if(bustype(bgen)==1 | bustype(bgen)==2)

QGEN(ii)=Qbus(bgen)+QLOAD(bgen);

end

end

return; %%End of ReactivePowerGenerators function

function [Violation,ActivedQ,statusgen,SetGenQ,IndGenQ] = Voltage...

(nbb,ngn,genbus,QGEN,QLOAD,Violation,ActivedQ,vmin,vmax,TolVoltage,...

VM, Qbus,statusgen,bustype,QMAX,QMIN,SetGenQ,IndGenQ,iterOpf);

if (iterOpf >=2 )

for ii = 1: ngn

bgen=genbus(ii);

if(ActivedQ(ii)==1)

bgen=bgen;

else

Violation(bgen)=1;

if(((vmin(bgen)-TolVoltage)<VM(bgen))&(VM(bgen)<(vmax(bgen)+...

TolVoltage)))

Violation(bgen)=0;

end

if((VM(bgen)<0.5)j(VM(bgen)>1.5))
fprintf(’\n************************************************’);

fprintf(’\n* *’);

fprintf(’\n* UNFEASIBLE SOLUTION *’);

fprintf(’\n* *’);

fprintf(’\n************************************************’);

end
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if(Violation(bgen)==0)

Rpower=QLOAD(bgen)+Qbus(bgen);

if(statusgen(ii)==1)

if((Rpower>(QMAX(ii)+0.001)) |(Rpower<(QMIN(ii)...

-0.001)))

QGEN(ii)=-QGEN(ii);

bustype(bgen)=3; %% load bus

if(Rpower>QMAX(ii))

QGEN(ii)=QMAX(ii);

statusgen(ii)=0;

else

QGEN(ii)=QMIN(ii);

statusgen(ii)=2;

end

end

end

end

end

if(bustype(bgen)==1 | bustype(bgen)==2)

SetGenQ=SetGenQ+1;

IndGenQ(SetGenQ)=ii;

end

end

else

for(ii = 1: ngn )

SetGenQ=SetGenQ+1;

IndGenQ(SetGenQ)=ii;

end

end

return; %% End of Voltage function

function [ANGLE,VOLTAGE,LAMBDAP,LAMBDAQ,PGENERATED] = VectorAux(nbb,...

ngn,VM,VA,LambdaP,LambdaQ,PGEN,vmax,vmin,ANGLE,VOLTAGE,LAMBDAP,...

LAMBDAQ,PGENERATED);

for ii = 1: nbb

ANGLE(ii)=VA(ii);

VOLTAGE(ii)=VM(ii);

LAMBDAP(ii)=LambdaP(ii);

LAMBDAQ(ii)=LambdaQ(ii);

if(VM(ii) >=vmax(ii))

VOLTAGE(ii)=vmax(ii);

elseif(VM(ii)<=vmin(ii))

VOLTAGE(ii)=vmin;

end

end

for ii = 1: ngn
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PGENERATED(ii)=PGEN(ii);

end

return; %%End of VectorAux function

function [Hessian,grad] = MatrixW(nbb,bustype,ngn,GKK,BKK,GKM,BKM,...

tlsend,tlrec,LambdaP,LambdaQ,VM,VA,ntl);

Hessian = zeros(4*nbb+ngn,4*nbb+ngn);

grad = zeros(4*nbb+ngn,1);

for jj = 1: ntl

send= tlsend(jj);

rece= tlrec(jj);

%% Load-Load

if(bustype(send)== 3 & bustype(rece)==3)

nb=nbb;

i1=1;

i2=2;

for ii = 1: 2

v1= VM(send); v2= VM(rece);

A1= VA(send); A2= VA(rece);

LP1=LambdaP(send); LP2=LambdaP(rece);

LQ1=LambdaQ(send); LQ2=LambdaQ(rece);

difAng12=A1-A2;

difAng21=A2-A1;

G12=GKM(jj); B12=BKM(jj); G11=GKK(jj); B11=BKK(jj);

G21=G12; B21=B12; G22=G11; B22=B11;

Hkm=(G12*sin(difAng12)-B12*cos(difAng12));

Nkm=(G12*cos(difAng12)+B12*sin(difAng12));

Hmk=(G21*sin(difAng21)-B21*cos(difAng21));

Nmk=(G21*cos(difAng21)+B21*sin(difAng21));

%% Diagonal element

Hessian(send,send)=Hessian(send,send)-LP1*v1*v2*Nkm-LP2*v1...

*v2*Nmk -LQ1*v1*v2*Hkm-LQ2*v1*v2*Hmk;

Hessian(send,1*nb+send)=Hessian(send,1*nb+send)-...

LP1*v2*Hkm+LP2*v2*Hmk+LQ1*v2*Nkm-LQ2*v2*Nmk;

Hessian(send,2*nb+send)=Hessian(send,2*nb+send)-v1*v2*Hkm;

Hessian(send,3*nb+send)=Hessian(send,3*nb+send)+v1*v2*Nkm;

Hessian(nb+send,send)=Hessian(nb+send,send)-...

LP1*v2*Hkm+LP2*v2*Hmk+LQ1*v2*Nkm-LQ2*v2*Nmk;

Hessian(nb+send,nb+send)=Hessian(nb+send,nb+send)...

+LP1*2*G11-LQ1*2*B11;

Hessian(nb+send,2*nb+send)=Hessian(nb+send,2*nb+send)...

+2*v1*G11+v2*Nkm;
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Hessian(nb+send,3*nb+send)=Hessian(nb+send,3*nb+send)-...

2*v1*B11+v2*Hkm;

Hessian(2*nb+send,send)=Hessian(2*nb+send,send)-v1*v2*Hkm;

Hessian(2*nb+send,nb+send)=Hessian(2*nb+send,nb+send)+2*v1*G11...

+v2*Nkm;

Hessian(2*nb+send,2*nb+send)=Hessian(2*nb+send,2*nb+send);

Hessian(2*nb+send,3*nb+send)=Hessian(2*nb+send,3*nb+send);

Hessian(3*nb+send,send)=Hessian(3*nb+send,send)+v1*v2*Nkm;

Hessian(3*nb+send,nb+send)=Hessian(3*nb+send,nb+send)-...

2*v1*B11+v2*Hkm;

Hessian(3*nb+send,2*nb+send)=Hessian(3*nb+send,2*nb+send);

Hessian(3*nb+send,3*nb+send)=Hessian(3*nb+send,3*nb+send);

%% Off diagonal element

Hessian(send,rece)=Hessian(send,rece)+LP1*v1*v2*Nkm+...

LP2*v1*v2*Nmk+LQ1*v1*v2*Hkm+LQ2*v1*v2*Hmk;

Hessian(send,nb+rece)=Hessian(send,nb+rece)-...

LP1*v1*Hkm+LP2*v1*Hmk+LQ1*v1*Nkm-LQ2*v1*Nmk;

Hessian(send,2*nb+rece)=Hessian(send,2*nb+rece)+v1*v2*Hmk;

Hessian(send,3*nb+rece)=Hessian(send,3*nb+rece)-v1*v2*Nmk;

Hessian(nb+send,rece)=Hessian(nb+send,rece)+LP1*v2...

*Hkm-LP2*v2*Hmk-LQ1*v2*Nkm+LQ2*v2*Nmk;

Hessian(nb+send,nb+rece)=Hessian(nb+send,nb+rece)+LP1*Nkm+...

LP2*Nmk+LQ1*Hkm+LQ2*Hmk;

Hessian(nb+send,2*nb+rece)=Hessian(nb+send,2*nb+rece)+v2*Nmk;

Hessian(nb+send,3*nb+rece)=Hessian(nb+send,3*nb+rece)+v2*Hmk;

Hessian(2*nb+send,rece)=Hessian(2*nb+send,rece)+v1*v2*Hkm;

Hessian(2*nb+send,nb+rece)=Hessian(2*nb+send,nb+rece)+v1*Nkm;

Hessian(2*nb+send,2*nb+rece)=Hessian(2*nb+send,2*nb+rece);

Hessian(2*nb+send,3*nb+rece)=Hessian(2*nb+send,3*nb+rece);

Hessian(3*nb+send,rece)=Hessian(3*nb+send,rece)-v1*v2*Nkm;

Hessian(3*nb+send,nb+rece)=Hessian(3*nb+send,nb+rece)+v1*Hkm;

Hessian(3*nb+send,2*nb+rece)=Hessian(3*nb+send,2*nb+rece);

Hessian(3*nb+send,3*nb+rece)=Hessian(3*nb+send,3*nb+rece);

grad(send)=grad(send)-(-LP1*v1*v2*Hkm+LP2*v1*v2*Hmk+LQ1*v1*v2...

*Nkm-LQ2*v1*v2*Nmk);

grad(nb+send)=grad(nb+send)-...

(+LP1*(2*v1*G11+v2*Nkm)+LP2*v2*Nmk+LQ1*(2*v1*B11+v2*Hkm)...

+LQ2*v2*Hmk);
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grad(2*nb+send)=0.0;

grad(3*nb+send)=0.0;

itemp=send; send=rece; rece=itemp;

itemp=i1; i1=i2; i2=itemp;

rtemp=A1; A1=A2; A2=rtemp;

end

end

%% PV-load buses or Slack-load buses

if((bustype(send)== 2 & bustype(rece)==3)|...

(bustype(send)== 3 & bustype(rece)==2)|...

(bustype(send)== 1 & bustype(rece)==3)|...

(bustype(send)== 3 & bustype(rece)==1))

nb=nbb;

i1=1;

i2=2;

for ii = 1: 2

v1= VM(send); v2= VM(rece);

A1= VA(send); A2= VA(rece);

LP1=LambdaP(send); LP2=LambdaP(rece);

LQ1=LambdaQ(send); LQ2=LambdaQ(rece);

difAng12=A1-A2; difAng21=A2-A1;

G12=GKM(jj); B12=BKM(jj); G11=GKK(jj); B11=BKK(jj);

G21=G12; B21=B12; G22=G11; B22=B11;

Hkm=(G12*sin(difAng12)-B12*cos(difAng12));

Nkm=(G12*cos(difAng12)+B12*sin(difAng12));

Hmk=(G21*sin(difAng21)-B21*cos(difAng21));

Nmk=(G21*cos(difAng21)+B21*sin(difAng21));

if(bustype(send)== 2 | bustype(send)== 1)

LQ1=0;

else

LQ2=0;

end

%% Diagonal elements

Hessian(send,send) = Hessian(send,send)-LP1*v1*v2...

*Nkm-LP2*v1*v2*Nmk-LQ1*v1*v2*Hkm-LQ2*v1*v2*Hmk;

Hessian(send,1*nb+send) = Hessian(send,1*nb+send)-...

LP1*v2*Hkm+LP2*v2*Hmk+LQ1*v2*Nkm-LQ2*v2*Nmk;

Hessian(send,2*nb+send) = Hessian(send,2*nb+send)-v1*v2*Hkm;
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Hessian(send,3*nb+send) = Hessian(send,3*nb+send)+v1*v2*Nkm;

Hessian(nb+send,send) = Hessian(nb+send,send)-...

LP1*v2*Hkm+LP2*v2*Hmk+LQ1*v2*Nkm-LQ2*v2*Nmk;

Hessian(nb+send,nb+send) = Hessian(nb+send,nb+send)+...

LP1*2*G11-LQ1*2*B11;

Hessian(nb+send,2*nb+send) = Hessian(nb+send,2*nb+send)+...

2*v1*G11+v2*Nkm;

Hessian(nb+send,3*nb+send) = Hessian(nb+send,3*nb+send)-...

2*v1*B11+v2*Hkm;

Hessian(2*nb+send,send) = Hessian(2*nb+send,send)-v1*v2*Hkm;

Hessian(2*nb+send,nb+send) = Hessian(2*nb+send,nb+send)+...

2*v1*G11+v2*Nkm;

Hessian(2*nb+send,2*nb+send)=Hessian(2*nb+send,2*nb+send);

Hessian(2*nb+send,3*nb+send)=Hessian(2*nb+send,3*nb+send);

Hessian(3*nb+send,send)=Hessian(3*nb+send,send)+v1*v2*Nkm;

Hessian(3*nb+send,nb+send)=Hessian(3*nb+send,nb+send)-...

2*v1*B11+v2*Hkm;

Hessian(3*nb+send,2*nb+send)=Hessian(3*nb+send,2*nb+send);

Hessian(3*nb+send,3*nb+send)=Hessian(3*nb+send,3*nb+send);

%% Off-Diagonal elements

Hessian(send,rece)=Hessian(send,rece)+LP1*v1*v2*Nkm+LP2*v1*v2* ...

Nmk+LQ1*v1*v2*Hkm+LQ2*v1*v2*Hmk;

Hessian(send,nb+rece)=Hessian(send,nb+rece)-...

LP1*v1*Hkm+LP2*v1*Hmk+LQ1*v1*Nkm-LQ2*v1*Nmk;

Hessian(send,2*nb+rece)=Hessian(send,2*nb+rece)+v1*v2*Hmk;

Hessian(send,3*nb+rece)=Hessian(send,3*nb+rece)-v1*v2*Nmk;

Hessian(nb+send,rece)=Hessian(nb+send,rece)+LP1*v2...

*Hkm-LP2*v2*Hmk-LQ1*v2*Nkm+LQ2*v2*Nmk;

Hessian(nb+send,nb+rece)=Hessian(nb+send,nb+rece)+LP1*Nkm+LP2*...

Nmk+LQ1*Hkm+LQ2*Hmk;

Hessian(nb+send,2*nb+rece)=Hessian(nb+send,2*nb+rece)+v2*Nmk;

Hessian(nb+send,3*nb+rece)=Hessian(nb+send,3*nb+rece)+v2*Hmk;

Hessian(2*nb+send,rece)=Hessian(2*nb+send,rece)+v1*v2*Hkm;

Hessian(2*nb+send,nb+rece)=Hessian(2*nb+send,nb+rece)+v1*Nkm;

Hessian(2*nb+send,2*nb+rece)=Hessian(2*nb+send,2*nb+rece);

Hessian(2*nb+send,3*nb+rece)=Hessian(2*nb+send,3*nb+rece);

Hessian(3*nb+send,rece)=Hessian(3*nb+send,rece)-v1*v2*Nkm;

Hessian(3*nb+send,nb+rece)=Hessian(3*nb+send,nb+rece)+v1*Hkm;

Hessian(3*nb+send,2*nb+rece)=Hessian(3*nb+send,2*nb+rece);
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Hessian(3*nb+send,3*nb+rece)=Hessian(3*nb+send,3*nb+rece);

grad(send)=grad(send)-(-LP1*v1*v2*Hkm+LP2*v1*v2*Hmk+ ...

LQ1*v1*v2*Nkm-LQ2*v1*v2*Nmk);

grad(nb+send)=grad(nb+send)(+LP1*(2*v1*G11+v2*Nkm)+LP2*v2*Nmk+...

LQ1*(-2*v1*B11+v2*Hkm)+LQ2*v2*Hmk);

grad(2*nb+send)=0.0;

grad(3*nb+send)=0.0;

itemp=send; send=rece; rece=itemp;

itemp=i1; i1=i2; i2=itemp;

rtemp=A1; A1=A2; A2=rtemp;

end

end

%% Slack-PV or PV-PV

if((bustype(send)== 1 & bustype(rece)==2)|...

(bustype(send)== 2 & bustype(rece)==1)|...

(bustype(send)== 2 & bustype(rece)==2))

nb=nbb;

i1=1;

i2=2;

for ii = 1: 2

v1= VM(send); v2= VM(rece);

A1= VA(send); A2= VA(rece);

LP1=LambdaP(send); LP2=LambdaP(rece);

LQ1=0; LQ2=0;

difAng12=A1-A2; difAng21=A2-A1;

G12=GKM(jj); B12=BKM(jj); G11=GKK(jj); B11=BKK(jj);

G21=G12; B21=B12; G22=G11; B22=B11;

Hkm=(G12*sin(difAng12)-B12*cos(difAng12));

Nkm=(G12*cos(difAng12)+B12*sin(difAng12));

Hmk=(G21*sin(difAng21)-B21*cos(difAng21));

Nmk=(G21*cos(difAng21)+B21*sin(difAng21));

%% Diagonal elements

Hessian(send,send)=Hessian(send,send)-LP1*v1*v2*Nkm-LP2*v1*v2*...

Nmk-LQ1*v1*v2*Hkm-LQ2*v1*v2*Hmk;

Hessian(send,1*nb+send)=Hessian(send,1*nb+send)-...

LP1*v2*Hkm+LP2*v2*Hmk+LQ1*v2*Nkm-LQ2*v2*Nmk;

Hessian(send,2*nb+send)=Hessian(send,2*nb+send)-v1*v2*Hkm;

Hessian(send,3*nb+send)=Hessian(send,3*nb+send)+v1*v2*Nkm;

Hessian(nb+send,send)=Hessian(nb+send,send)-...

LP1*v2*Hkm+LP2*v2*Hmk+LQ1*v2*Nkm-LQ2*v2*Nmk;

Hessian(nb+send,nb+send)=Hessian(nb+send,nb+send)+LP1*2*G11-...

LQ1*2*B11;
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Hessian(nb+send,2*nb+send)=Hessian(nb+send,2*nb+send)+2*v1*G11...

+v2*Nkm;

Hessian(nb+send,3*nb+send)=Hessian(nb+send,3*nb+send)-...

2*v1*B11+v2*Hkm;

Hessian(2*nb+send,send)=Hessian(2*nb+send,send)-v1*v2*Hkm;

Hessian(2*nb+send,nb+send)=Hessian(2*nb+send,nb+send)+2*v1*G11...

+v2*Nkm;

Hessian(2*nb+send,2*nb+send)=Hessian(2*nb+send,2*nb+send);

Hessian(2*nb+send,3*nb+send)=Hessian(2*nb+send,3*nb+send);

Hessian(3*nb+send,send)=Hessian(3*nb+send,send)+v1*v2*Nkm;

Hessian(3*nb+send,nb+send)=Hessian(3*nb+send,nb+send)...

-2*v1*B11+v2*Hkm;

Hessian(3*nb+send,2*nb+send)=Hessian(3*nb+send,2*nb+send);

Hessian(3*nb+send,3*nb+send)=Hessian(3*nb+send,3*nb+send);

%% off-diagonal elements

Hessian(send,rece)=Hessian(send,rece)+LP1*v1*v2*Nkm+...

LP2*v1*v2*Nmk+LQ1*v1*v2*Hkm+LQ2*v1*v2*Hmk;

Hessian(send,nb+rece)=Hessian(send,nb+rece)-...

LP1*v1*Hkm+LP2*v1*Hmk+LQ1*v1*Nkm-LQ2*v1*Nmk;

Hessian(send,2*nb+rece)=Hessian(send,2*nb+rece)+v1*v2*Hmk;

Hessian(send,3*nb+rece)=Hessian(send,3*nb+rece)-v1*v2*Nmk;

Hessian(nb+send,rece)=Hessian(nb+send,rece)+LP1*v2...

*Hkm-LP2*v2*Hmk-LQ1*v2*Nkm+LQ2*v2*Nmk;

Hessian(nb+send,nb+rece)=Hessian(nb+send,nb+rece)+LP1...

*Nkm+LP2*Nmk+LQ1*Hkm+LQ2*Hmk;

Hessian(nb+send,2*nb+rece)=Hessian(nb+send,2*nb+rece)+v2*Nmk;

Hessian(nb+send,3*nb+rece)=Hessian(nb+send,3*nb+rece)+v2*Hmk;

Hessian(2*nb+send,rece)=Hessian(2*nb+send,rece)+v1*v2*Hkm;

Hessian(2*nb+send,nb+rece)=Hessian(2*nb+send,nb+rece)+v1*Nkm;

Hessian(2*nb+send,2*nb+rece)=Hessian(2*nb+send,2*nb+rece);

Hessian(2*nb+send,3*nb+rece)=Hessian(2*nb+send,3*nb+rece);

Hessian(3*nb+send,rece)=Hessian(3*nb+send,rece)-v1*v2*Nkm;

Hessian(3*nb+send,nb+rece)=Hessian(3*nb+send,nb+rece)+v1*Hkm;

Hessian(3*nb+send,2*nb+rece)=Hessian(3*nb+send,2*nb+rece);

Hessian(3*nb+send,3*nb+rece)=Hessian(3*nb+send,3*nb+rece);

grad(send)=grad(send)-(-LP1*v1*v2*Hkm+LP2*v1*v2*Hmk+LQ1*v1*v2...

*Nkm-LQ2*v1*v2*Nmk);

grad(nb+send)=grad(nb+send)-(+LP1*(2*v1*G11+v2*Nkm)+...
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LP2*v2*Nmk+LQ1*(-2*v1*B11+v2*Hkm)+LQ2*v2*Hmk);

grad(2*nb+send)=0.0;

grad(3*nb+send)=0.0;

itemp=send; send=rece; rece=itemp;

itemp=i1; i1=i2; i2=itemp;

rtemp=A1; A1=A2; A2=rtemp;

end

end

end

return; %%End of MatrixW function

function [Hessian,grad] = MatrixWGen(nbb,ntl,ngn,genbus,B,C,LambdaP,...

PGEN,Hessian,grad);

for jj = 1: ngn

Gbus=genbus(jj);

Hessian(4*nbb+jj,4*nbb+jj)=Hessian(4*nbb+jj,4*nbb+jj)+2*C(jj);

%% // - - - - - Out of Diagonal

Hessian(4*nbb+jj,2*nbb+Gbus)=Hessian(4*nbb+jj,2*nbb+Gbus)-1.0;

Hessian(2*nbb+Gbus,4*nbb+jj)=Hessian(2*nbb+Gbus,4*nbb+jj)-1.0;

LP1=LambdaP(Gbus);

PGenI=PGEN(jj);

grad(4*nbb+jj)= grad(4*nbb+jj)-(B(jj)+2*C(jj)*PGenI-LP1);

end

return; %%End of MatrixWGen function

function [Hessian,grad] = Mismatch(nbb,ngn,genbus,PGEN,QGEN,PLOAD,...

QLOAD,Pbus,Qbus,Hessian,grad);

AUXP = zeros(nbb,1);

AUXQ = zeros(nbb,1);

for jj = 1: ngn

AUXP(genbus(jj)) = PGEN(jj);

AUXQ(genbus(jj)) = QGEN(jj);

end

for ii= 1: nbb

grad(2*nbb+ii)=0;

grad(3*nbb+ii)=0;

grad(2*nbb+ii)=grad(2*nbb+ii)-(Pbus(ii)-AUXP(ii)+PLOAD(ii));

grad(3*nbb+ii)=grad(3*nbb+ii)-(Qbus(ii)-AUXQ(ii)+QLOAD(ii));

end

return; %%End of Mismatch function

function [Hessian,grad] = PenaltyFunctionQ(nbb,BigNumber,Hessian,...

grad,genbus,IndGenQ,SetGenQ,LambdaQ,ActivedQ);

for(ii = 1: SetGenQ)

in1=IndGenQ(ii);

send=genbus(in1);
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Hessian(3*nbb+send,3*nbb+send)=Hessian(3*nbb+send,3*nbb+send)+...

2*BigNumber;

ActivedQ(in1)=2;

LQ1=LambdaQ(send);

grad(3*nbb+send)=grad(3*nbb+send)-2*BigNumber*LQ1;

end

return; %%End of PenaltyFunctionQ function

function [Hessian,grad] = Convexificacion(nbb,Hessian,grad,Cc,vmax,...

vmin,VOLTAGE,StatusVoltage,VM);

%% Slack bus must be the first node

Hessian(1,1)=Hessian(1,1)+10e10;

%% Voltage magnitudes

for ii= 1: nbb

Vol=VM(ii);

VOLD=VOLTAGE(ii);

VolMax=vmax(ii);

VolMin=vmin(ii);

StatV=StatusVoltage(ii);

Hessian(nbb+ii,nbb+ii)=Hessian(nbb+ii,nbb+ii)+Cc;

if(StatV==0)

grad(nbb+ii)=grad(nbb+ii)-(Cc*(Vol-VolMax));

elseif(StatV==1)

grad(nbb+ii)=grad(nbb+ii)-(Cc*(Vol-VOLD));

elseif(StatV==2)

grad(nbb+ii)=grad(nbb+ii)-(Cc*(Vol-VolMin));

end

end

return; %%End of Convexification function

function [Hessian,grad,ActivedV,ActivedP] = AugmentedLagrangian(nbb,...

Hessian,grad,Ckv,Ckg,vmax,vmin,VOLTAGE,StatusVoltage,VM,ActivedV,...

MiuBus,ngn,ActivedP,PGEN,StatP,MiuGen,PMAX,PMIN);

%% NODES

for(ii= 1: nbb)

if(ActivedV(ii)~=0)

Vol=VM(ii);

VOLD=VOLTAGE(ii);

VolMax=vmax(ii);

VolMin=vmin(ii);

StatV=StatusVoltage(ii);

MiuB=MiuBus(ii);

send= ii;

Hessian(nbb+send,nbb+send)=Hessian(nbb+send,nbb+send)+Ckv;

if(StatV==0)

grad(nbb+send)=grad(nbb+send)-(MiuB+Ckv*(Vol-VolMax));

end
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if(StatV==2)

grad(nbb+send)=grad(nbb+send)-(MiuB+Ckv*(Vol-VolMin));

end

if(ActivedV(send)==0)

ActivedV(send)=1;

end

end

end

%% GENERATORS

for(ii= 1: ngn)

if(ActivedP(ii)~=0)

for (ii = 1: ngn)

send=ii;

PGenI=PGEN(ii);

Stat=StatP(ii);

MiuG= MiuGen(ii);

Max_PGen=PMAX(ii);

Min_PGen=PMIN(ii);

Hessian(4*nbb+send,4*nbb+send) = Hessian(4*nbb+send,4*nbb...

+send)+Ckg;

if(Stat==0)

grad(4*nbb+send)=grad(4*nbb+send)-(MiuG+Ckg*...

(PGenI-Max_PGen));

end

if(Stat==2)

grad(4*nbb+send)=grad(4*nbb+send)-(MiuG+Ckg*...

(PGenI-Min_PGen));

end

if(ActivedP(ii)==0)

ActivedP(ii)=1;

end

end

end

end

return; %%End of AugmentedLagrangian function

function [Dz,VA,VM,LambdaP,LambdaQ,PGEN] = Actualisation(Dz,nbb,VA,VM,...

LambdaP,LambdaQ,bustype,ngn,PGEN);

for(ii= 1: nbb)

p1 = Dz(ii);

p2 = Dz(nbb+ii);

p3 = Dz(2*nbb+ii);

p4 = Dz(3*nbb+ii);

%% Load bus
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if(bustype(ii)==3)

VA(ii)=VA(ii)+p1;

VM(ii)=VM(ii)+p2;

LambdaP(ii)=LambdaP(ii)+p3;

LambdaQ(ii)=LambdaQ(ii)+p4;

%%%% Slack bus

elseif(bustype(ii)==1)

VA(ii)=0.0; %%%% It must be cero

VM(ii)=VM(ii)+p2;

LambdaP(ii)=LambdaP(ii)+p3;

LambdaQ(ii)=LambdaQ(ii)+0.0; %%%% It must be cero

%%%% Generator bus

elseif(bustype(ii)==2)

VA(ii)=VA(ii)+p1;

VM(ii)=VM(ii)+p2;

LambdaP(ii)=LambdaP(ii)+p3;

LambdaQ(ii)=LambdaQ(ii)+0.0; %%%% It must be cero

end

end

for(ii= 1: ngn)

PGEN(ii)=PGEN(ii)+Dz(4*nbb+ii);

end

return; %%End of Actualisation function

function [Hessian,grad] = Reset_Hessian_grad(Hessian,grad,ngn,nbb);

for ii = 1: (4*nbb+ngn)

for jj = 1: (4*nbb+ngn)

Hessian(ii,jj)=0;

end

grad(ii)=0;

end

return; %%End of Reset_Hessian_grad function

function [Optimo] =ReviewNodes(Optimo,grad,nbb,bustype,ActivedV,TOL);

for (ii = 1: nbb)

p1=grad(ii);

p2=grad(nbb+ii);

p3=grad(2*nbb+ii);

p4=grad(3*nbb+ii);

if(ActivedV(ii)~=0)

p2=1e-10;

else

p2=1e-10;

end
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if(p1<0),p1=-p1;end

if(p2<0),p2=-p2;end

if(p3<0),p3=-p3;end

if(p4<0),p4=-p4;end

if(bustype(ii)==3) %%%%%% Load bus

if(p1>TOL),Optimo=1;end

if(p2>TOL),Optimo=1;end

if(p3>TOL),Optimo=1;end

if(p4>TOL),Optimo=1;end

end

if(bustype(ii)==1) %%%% Slack bus

if(p1>TOL),Optimo=1;end

if(p2>TOL),Optimo=1;end

if(p3>TOL),Optimo=1;end

if(p4>TOL),Optimo=1;end

end

if(bustype(ii)==2) %%%% Generator bus

if(p1>TOL),Optimo=1;end

if(p2>TOL),Optimo=1;end

if(p3>TOL),Optimo=1;end

if(p4>TOL),Optimo=1;end

end

end

return; %%End of ReviewNodes function

function [Optimo] = ReviewGen(Optimo,grad,ngn,ActivedP,TOL,nbb);

for (ii = 1: ngn)

p1=grad(4*nbb+ii);

if(ActivedP(ii)~=0), p1=1e-10;end

if(p1<0),p1=-p1;end

if(p1>TOL)Optimo=1;end

end

return; %%End of ReviewGen function

function [MaxDz] = Norma(MaxDz,grad,nbb,ngn);

MaxDz=0;

for(ii = 1: nbb)

value=grad(ii);

if(value<0),value=-value;end

if(value>MaxDz),MaxDz=value;end

end

for(ii = (2*nbb+1): (4*nbb+ngn))

value=grad(ii);
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if(value<0),value=-value;end

if(value>MaxDz),MaxDz=value;end

end

return; %%End of Norma function

function [StatusVoltage,SetVol,NumNode,ValueVoltage]...

= Check_Limits_V(nbb,TolVoltage,vmin,vmax,VM,StatusVoltage,Dz,...

SetVol,NumNode,ValueVoltage,ActivedV);

for (ii = 1: nbb)

if(ActivedV(ii)==0)

Movement=Dz(nbb+ii);

Kindex=0.0;

if(((vmin(ii)-TolVoltage)<VM(ii)) &(VM(ii)<(vmax(ii) + ...

TolVoltage)))

StatusVoltage(ii)=1;

end

if(VM(ii)>(vmax(ii)+TolVoltage))

StatusVoltage(ii)=0;

Kindex=(VM(ii)-vmax(ii))/Movement;

if(Kindex<0),Kindex=-Kindex;end

end

if(VM(ii)<(vmin(ii)-TolVoltage))

StatusVoltage(ii)=2;

Kindex=(vmin(ii)-VM(ii))/Movement;

if(Kindex<0),Kindex=-Kindex;end

end

if(Kindex > 0)

SetVol=SetVol+1;

NumNode(SetVol)= ii;

ValueVoltage(SetVol)=Kindex;

end

end

end

return; %%End of Check_Limits_V function

function [StatP,SetGenP,NumGenerator,ValueGenerator]...

= Check_Limits_P(ngn,TolPower,PMIN,PMAX,PGEN,StatP,SetGenP,...

NumGenerator,ValueGenerator,ActivedP);

for (ii = 1: ngn)

if(ActivedP(ii)==0)

Movement=1;

Kindex=0.0;
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if(((PMIN(ii)-TolPower)<PGEN(ii)) &(PGEN(ii)<(PMAX(ii)...

+TolPower)))

StatP(ii)=1;

end

if(PGEN(ii)>(PMAX(ii)+TolPower))

StatP(ii)=0;

Kindex=(PGEN(ii)-PMAX(ii))/Movement;

if(Kindex<0),Kindex=-Kindex;end

end

if(PGEN(ii)<(PMIN(ii)-TolPower))

StatP(ii)=2;

Kindex=(PMIN(ii)-PGEN(ii))/Movement;

if(Kindex<0),Kindex=-Kindex;end

end

if(Kindex > 0)

SetGenP=SetGenP+1;

NumGenerator(SetGenP)= ii;

ValueGenerator(SetGenP)=Kindex;

end

end

end

return; %%End of Check_Limits_P function

function [Hessian,grad,ActivedV] = AugmentedLagrangianV(nbb,...

Hessian,grad,Ckv,vmax,vmin,StatusVoltage,VM,ActivedV,MiuBus,...

SetVol,NumNode,ValueVoltage,MaxVol,EnforceTol);

for(jj = 1: SetVol)

in1=NumNode(jj);

if(((ValueVoltage(jj)/MaxVol)>=EnforceTol)|(VM(in1)<0.80)...

|(VM(in1)>1.20))

ii=in1;

Vol=VM(ii);

VolMax=vmax(ii);

VolMin=vmin(ii);

StatV=StatusVoltage(ii);

MiuB=MiuBus(ii);

send= ii;

Hessian(nbb+send,nbb+send)=Hessian(nbb+send,nbb+send)+Ckv;

if(StatV==0)

grad(nbb+send)=grad(nbb+send)-(MiuB+Ckv*(Vol-VolMax));

end

if(StatV==2)

grad(nbb+send)=grad(nbb+send)-(MiuB+Ckv*(Vol-VolMin));

end

if(ActivedV(send)==0)
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ActivedV(send)=1;

end

end

end

return; %%End of AugmentedLagrangianV function

function[Hessian,grad,ActivedP] = AugmentedLagrangianG(ngn,nbb,...

Hessian,grad,Ckg,PMIN,PMAX,StatP,PGEN,ActivedP,MiuGen,SetGenP,...

NumGenerator,ValueGenerator,MaxGen,EnforceTol);

for(jj = 1: SetGenP)

in1=NumGenerator(jj);

if((ValueGenerator(jj)/MaxGen)>=EnforceTol)

ii=in1;

send=ii;

PGenI=PGEN(ii);

Stat=StatP(ii);

MiuG= MiuGen(ii);

Max_PGen=PMAX(ii);

Min_PGen=PMIN(ii);

Hessian(4*nbb+send,4*nbb+send)=Hessian(4*nbb+send,4*nbb+send)...

+Ckg;

if(Stat==0)

grad(4*nbb+send)=grad(4*nbb+send)-(MiuG+Ckg*(PGenI- ...

Max_Pgen));

end

if(Stat==2)

grad(4*nbb+send)=grad(4*nbb+send)-(MiuG+Ckg*(PGenI-...

Min_PGen));

end

if(ActivedP(ii)==0)

ActivedP(ii)=1;

end

end

end

return; %%End of AugmentedLagrangianG function

function [Hessian,grad,ActivedV] = AugmentedLagrangian_IV(nbb,...

Hessian,grad,Ckv,vmax,vmin,StatusVoltage,VM,ActivedV,MiuBus,ii);

Vol=VM(ii);

VolMax=vmax(ii);

VolMin=vmin(ii);

StatV=StatusVoltage(ii);

MiuB=MiuBus(ii);

send= ii;

Hessian(nbb+send,nbb+send)=Hessian(nbb+send,nbb+send)+Ckv;

if(StatV==0)
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grad(nbb+send)=grad(nbb+send)-(MiuB+Ckv*(Vol-VolMax));

end

if(StatV==2)

grad(nbb+send)=grad(nbb+send)-(MiuB+Ckv*(Vol-VolMin));

end

if(ActivedV(send)==0);ActivedV(send)=1;end

return; %%End of AugmentedLagrangian_IV function

function [MiuBus,NumMiu_V,ValMiu_V,RelVol] = IdentifyMiuBus(...

StatusVoltage,MiuBus,Ckv,VM,vmax,vmin,ActivedV,RelVol,NumMiu_V,...

ValMiu_V,ii);

Tolerance=0.0001;

StatV=StatusVoltage(ii);

if(MiuBus(ii)==0),Tolerance=0;end

temp=MiuBus(ii);

if(StatV==0)

MiuBus(ii)=MiuBus(ii)+Ckv*(VM(ii)-vmax(ii)+Tolerance);

end

if(StatV==2)

MiuBusS(ii)=MiuBus(ii)+Ckv*(VM(ii)-vmin(ii)-Tolerance);

end

Kindex=0.0;

Kindex1=0.0;

if(StatV==1),Kindex1=Kindex; end

if(ActivedV(ii)==2)

if(StatV==0)

if(MiuBus(ii)<0),Kindex1=MiuBus(ii); end

if(MiuBus(ii)>=0),Kindex1=0; end

if(Kindex1<0),Kindex1=-Kindex1; end

end

if(StatV==2)

if(MiuBus(ii)>0),Kindex1=MiuBus(ii); end

if(MiuBus(ii)<=0),Kindex1=0; end

if(Kindex1<0),Kindex1=-Kindex1; end

end

end

MiuBus(ii)=temp;

if(Kindex1>0)

RelVol=RelVol+1;

NumMiu_V(RelVol)=ii;

ValMiu_V(RelVol)=Kindex;

end

return; %%End of IdentifyMiuBus function

function [Hessian,grad,ActivedP] = AugmentedLagrangian_IG(ngn,...

Hessian,grad,Ckg,PMIN,PMAX,StatP,PGEN,ActivedP,MiuGen,ii);
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send=ii;

PGenI=PGEN(ii);

Stat=StatP(ii);

MiuG= MiuGen(ii);

Max_PGen=PMAX(ii);

Min_PGen=PMIN(ii);

Hessian(4*nbb+send,4*nbb+send)=Hessian(4*nbb+send,4*nbb+send)+Ckg;

if(Stat==0)

grad(4*nbb+send)=grad(4*nbb+send)-(MiuG+Ckg*(PGenI-Max_PGen));

end

if(Stat==2)

grad(4*nbb+send)=grad(4*nbb+send)-(MiuG+Ckg*(PGenI-Min_PGen));

end

if(ActivedP(ii)==0);ActivedP(ii)=1;end

return; %%End of AugmentedLagrangian_IG function

function [MiuBus,NumMiu_P,ValMiu_P,RelGen] = IdentifyMiuGen...

(StatP,MiuGen,Ckg,PGEN,PMAX,PMIN,ActivedP,RelGen,NumMiu_P,...

ValMiu_P,ii);

Tolerance=0.0000001;

Stat=StatP(ii);

if(MiuGen(ii)==0),Tolerance=0;end

temp=MiuGen(ii);

Kindex=0.0;

Kindex1=0.0;

if(Stat==0),MiuGen(ii)=MiuGen(ii)+Ckg*(PGen+Tolerance-Max_PGen);end

if(Stat==2),MiuGen(ii)=MiuGen(ii)+Ckg*(PGen-Tolerance-Min_PGen);end

if(Stat==1),Kindex1=Kindex;end

if(ActivedP(ii)==2)

if(Stat==0)

if(MiuGen(ii)<0),Kindex1=MiuGen(ii);end

if(MiuGen(ii)>0),Kindex1=0;end

if(Kindex1<0),Kindex1=-Kindex1;end

end

if(Stat==2)

if(MiuGen(ii)>0),Kindex1=MiuGen(ii);end

if(MiuGen(ii)<0),Kindex1=0;end

if(Kindex1<0),Kindex1=-Kindex1;end

end

end

MiuGen(ii)=temp;

if(Kindex1>0)

RelGen=RelGen+1;

NumMiu_P(RelVol)=ii;
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ValMiu_P(RelVol)=Kindex;

end

return; %%End of IdentifyMiuGen function

function [Hessian,grad,ActivedV,StatusVoltage] =...

ReleasingAumentedLagrangianV(VM,vmax,vmin,StatusVoltage,MiuBus,...

Hessian,grad,Ckv,ActivedV,StatusVoltage,send);

Vol=VM(send);

VolMax=vmax(send);

VolMin=vmin(send);

StatV=StatusVoltage(send);

MiuB=MiuBus(send);

Hessian(nbb+send,nbb+send)=Hessian(nbb+send,nbb+send)-Ckv;

if(StatV==0),grad(nbb+send)=grad(nbb+send)+MiuB+Ckv*(Vol-VolMax);end

if(StatV==2),grad(nbb+send)=grad(nbb+send)+MiuB+Ckv*(Vol-VolMin);end

ActivedV(send)=0;

StatusVoltage(send)=1;

return; %%End of ReleasingAumentedLagrangianV function

function [Hessian,grad,ActivedP,StatP]=ReleasingAumentedLagrangianG...

(PGEN,PMAX,PMIN,StatP,MiuGen,Hessian, grad,Ckg,ActivedP,StatP,send);

PGenI=PGEN(send);

Stat=StatP(send);

MiuG=MiuGen(send);

Hessian(4*nbb+send,4*nbb+send)=Hessian(4*nbb+send,4*nbb+send)-Ck;

if(Stat==0)

grad(4*nbb+send)=grad(4*nbb+send)+MiuG+Ckg*(PGenI-PMAX(send));

end

if(Stat==2),

grad(4*nbb+send)=grad(4*nbb+send)+MiuG+Ckg*(PGenI-PMIN(send));

end

ActivedP(send)=0;

StatP(send)=1;

return; %%End of ReleasingAumentedLagrangianG function

function [MiuBus] = MultiplierBus(nbb,Ckv,MiuBus,VM,vmax,vmin);

TolVoltage=0.00000001;

for(ii = 1:nbb)

if((MiuBus(ii)+Ckv*(VM(ii)-vmax(ii)+TolVoltage)) >= 0)

MiuBus(ii)=MiuBus(ii)+Ckv*(VM(ii)-vmax(ii)+TolVoltage);

elseif((MiuBus(ii)+Ckv*(VM(ii)-vmin(ii)-TolVoltage)) <= 0)

MiuBus(ii)=MiuBus(ii)+Ckv*(VM(ii)-vmin(ii)-TolVoltage);
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else

MiuBus(ii)=0;

end

end

return; %%End of MultiplierBus function

function [MiuGen] = MultiplierGen(ngn,Ckg,MiuGen,PGEN,PMAX,PMIN);

TolPower=0.0000001;

for(ii = 1:ngn)

if((MiuGen(ii)+Ckg*(PGEN(ii)-PMAX(ii)+TolPower)) >= 0)

MiuGen(ii)=MiuGen(ii)+Ckg*(PGEN(ii)-PMAX(ii)+TolPower);

elseif((MiuGen(ii)+Ckg*(PGEN(ii)-PMIN(ii)-TolPower)) <= 0)

MiuGen(ii)=MiuGen(ii)+Ckg*(PGEN(ii)-PMIN(ii)-TolPower);

else

MiuGen(ii)=0;

end

end

return; %%End of MultiplierGen function

function [ChangeStat,Kindex1,statusgen,LambdaQ,ActivedQ,bustype] =...

IdentifyConstQ(ChangeStat,genbus,statusgen,LambdaQ,ActivedQ,...

bustype, ii);

send=genbus(ii);

ChangeStat=statusgen(ii);

Kindex1=0;

if(statusgen(ii)==0)

if(LambdaQ(send)<0)

ActivedQ(ii)=2;

Kindex1=0;

bustype(send)=2;

statusgen(ii)=1;

LambdaQ(send)=0;

else

ActivedQ(ii)=1;

Kindex1=1;

end

end

if(statusgen(ii)==2)

if(LambdaQ(send)>0)

ActivedQ(ii)=2;

Kindex1=0;

bustype(send)=2;

statusgen(ii)=1;

LambdaQ(ii)=0;
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else

ActivedQ(ii)=1;

Kindex1=1;

end

end

if(ChangeStat==statusgen(ii))

ChangeStat=0;

else

ChangeStat=1;

end

return; %%End of IdentifyConstQ function

function [GenViolado] = CheckQGenLimits(GenViolado,QLOAD,Qbus,...

QMIN,QMAX,genbus,TolPower,ii);

GenViolado=1;

Qpower=QLOAD(genbus(ii))+Qbus(genbus(ii));

if(((QMIN(genbus(ii))-TolPower)<Qpower)(QMAX(genbus(ii))+TolPower)))

GenViolado=0;

end

return; %%End of CheckQGenLimits function

function [in1,in2] = MatrixWVoltageMiu(in1,in2,TolVoltage,VM,vmax,...

vmin,MiuBus,ActivedV,StatusVoltage,ii);

if(((vmin(ii)-TolVoltage)<VM(ii))&(VM(ii)<(vmax(ii)+TolVoltage)))

in1=0;

else

in1=1;

end

if((VM(ii)<0.5)|(VM(ii)>1.5))

fprintf(’\n************************************************’);

fprintf(’\n* *’);

fprintf(’\n* UNFEASIBLE SOLUTION *’);

fprintf(’\n* *’);

fprintf(’\n************************************************’);

end

delta=0;

if(ActivedV(ii)~=0)

if(StatusVoltage(ii)==0)

delta=VM(ii)-vmax(ii);

if(delta<0),delta=-delta; end

if(delta>0.0001),in2=1; end

end

if(StatusVoltage(ii)==2)

delta=VM(ii)-vmax(ii);
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if(delta<0),delta=-delta; end

if(delta>0.0001),in2=1; end

end

end

if(ActivedV(ii)==0)

if(MiuBus(ii)>0),in2=1;end

if(MiuBus(ii)<0),in2=1;end

end

return; %%End of MatrixWVoltageMiu function

function [in3,in4] = MatrixWGenMiu(in3,in4,TolPower,PGEN,PMAX,PMIN,...

MiuGen,ActivedP,StatP,ii);

if(((PMIN(ii)-TolPower)<PGEN(ii))(PMAX(ii)+TolPower)))

in3=0;

else

in3=1;

end

delta=0;

if(ActivedP(ii)~=0)

if(StatP(ii)==0)

delta=PGEN(ii)-PMAX(ii);

if(delta<0),delta=-delta; end

if(delta>0.0001),in4=1; end

end

if(StatP(ii)==2)

delta=PGEN(ii)-PMAX(ii);

if(delta<0),delta=-delta; end

if(delta>0.0001),in4=1; end

end

end

if(ActivedP(ii)==0)

if(MiuGen(ii)>0),in4=1;end

if(MiuGen(ii)<0),in4=1;end

end

return; %%End of MatrixWGenMiu function

function [sum] = CheckConvexification(nbb,Cc,VM,VOLTAGE);

sum=0;

for( ii = 1: nbb)

sum =sum+Cc*(VM(ii)-VOLTAGE(ii))*(VM(ii)-VOLTAGE(ii));

end

fprintf(’\n=== Convexification Value ===’);

fprintf(’\n C = %%12.8f ’, sum);

fprintf(’\n’);

return; %%End of CheckConvexification function
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