
Performance Analysis of Network Architectures

Dietmar Tutsch

Performance
Analysis of
Network
Architectures

With 98 Figures and 12 Tables

123

Author

Dietmar Tutsch

Institut für Technische Informatik
und Mikroelektronik
Technische Universität Berlin
Einsteinufer 17
10587 Berlin
Germany
DietmarT@cs.tu-berlin.de

Library of Congress Control Number: 2006929315

ACM Computing Classification (1998): C.2, C.4, G.3, I.6

ISBN-10 3-540-34308-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34308-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use.

Typeset by the author
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Cover design: KünkelLopka Werbeagentur, Heidelberg

Printed on acid-free paper 45/3100/YL - 5 4 3 2 1 0

Preface

This monograph has only become possible due to broad support from many
people. Without their work and ideas, the research presented would never
have been as successful.

I would like to thank Prof. Günter Hommel for supervising my research
and for his valuable comments and suggestions, which were very important for
this work. Prof. Hommel has always been addressable for fruitful discussions.
In addition, I am deeply grateful to Prof. Miroslaw Malek for his continuous
support of my work. He has spent much time in meetings with me to direct
my interest to several new topics.

This monograph also represents the author’s habilitation thesis. Sincere
thanks goes to all its reviewers, Prof. Hommel and Prof. Malek as well as
Prof. Manfred Glesner and Prof. Peter Kropf. In addition, I am indebted to
Prof. Hans-Ulrich Heiß and Prof. Thomas Sikora who joined the habilitation
committee with Prof. Hommel and Prof. Malek. I appreciate their time and
effort for supporting my work.

Furthermore, I am very grateful to Joachim Sokol for supporting my re-
search on ubiquitous computing. I would also like to thank all my former and
current colleagues for discussions and resulting ideas and concepts. Particu-
larly, I am very grateful to Daniel Lüdtke and Marcus Brenner for our weekly
meetings and discussions about our common work on network architectures.
Sincere thanks also go to Eveline Homberg for drawing many figures of this
monograph.

Finally, I am indebted to all those students of TU Berlin who have been
involved in my research, especially to Daniel Benecke, Rainer Holl-Biniasz,
Matthias Kühm, and Arvid Walter, who implemented many components in
our software tools and did excellent work.

Technische Universität Berlin, Dietmar Tutsch

June 2006

Contents

1 Introduction . 1
1.1 Motivation . 2
1.2 Contribution . 3
1.3 Related Work . 4
1.4 Term Definitions . 5

1.4.1 Models and Performance Evaluation 5
1.4.2 Parallel System Architecture . 6
1.4.3 Distributed System Architecture . 7
1.4.4 Network Architecture . 8

2 Characteristics of Network Architectures 11
2.1 Switching Techniques . 11

2.1.1 Circuit Switching . 11
2.1.2 Packet Switching . 12

2.2 Traffic Patterns . 14
2.2.1 Distribution in Space . 14
2.2.2 Distribution in Time . 15

2.3 Wired Network Architectures . 21
2.3.1 Basic Classifications . 22
2.3.2 Bus . 23
2.3.3 Mesh . 23
2.3.4 Torus . 25
2.3.5 Ring . 25
2.3.6 Star . 26
2.3.7 Tree . 27
2.3.8 Hypercube . 27
2.3.9 Crossbar . 28
2.3.10 Multistage Interconnection Network 30
2.3.11 Switching Fabric . 46
2.3.12 Dynamic Networks versus Static Networks 46

2.4 Wireless Network Architectures . 47

VIII Contents

2.4.1 Basics in Wireless Transmission . 48
2.4.2 Cellular Networks . 52
2.4.3 Ad-hoc Networks . 54

2.5 Network-on-Chip Architectures . 55
2.5.1 Origin and Use . 56
2.5.2 Particular Characteristics . 58
2.5.3 Topologies . 60

2.6 Network Reconfiguration . 62
2.6.1 Reconfiguration Types and Levels 63
2.6.2 Dynamic Reconfiguration . 64
2.6.3 Reconfigurable Hardware Architectures 67

3 Performance Evaluation . 73
3.1 Numerical Simulation . 74

3.1.1 Statistics . 75
3.1.2 Acceleration . 82

3.2 Markov Chains . 85
3.2.1 Markov Process . 86
3.2.2 Discrete Time Markov Chain . 86
3.2.3 Continuous Time Markov Chain . 90
3.2.4 Solution Methods . 93

3.3 Petri Nets . 99
3.3.1 Basic Petri Nets . 99
3.3.2 Stochastic Petri Nets . 102

4 Model Engineering . 107
4.1 Model Development . 107

4.1.1 Simulation Model . 111
4.1.2 Mathematical Model . 115

4.2 Complexity Reduction . 116
4.2.1 Simulation. 116
4.2.2 Mathematical Model . 118

4.3 Automatic Model Generation . 126
4.3.1 Rule Design . 126
4.3.2 Generating Systems of Equations . 128
4.3.3 Generator Design . 131

5 Application: Cellular Network . 133
5.1 USAIA Framework . 134
5.2 Petri Net Model . 137

5.2.1 Initialized Mobile Nodes . 138
5.2.2 Real-time Traffic . 142
5.2.3 Entire Model . 146

5.3 Model Engineering and Performance . 147
5.3.1 Model Development and Complexity Reduction 148

Contents IX

5.3.2 Modeling Power . 148

6 Application: Multistage Interconnection Network 153
6.1 Simulation: Petri Nets . 153

6.1.1 Full Petri Net Model . 154
6.1.2 Iterative Petri Net Model . 158
6.1.3 Multicast Probabilities . 161

6.2 Simulation: MINSimulate . 165
6.2.1 Simulator Engineering . 166
6.2.2 Features . 169

6.3 Mathematical Model: Complexity Reduction 172
6.3.1 Symmetries . 172
6.3.2 Multiple State Spaces . 184
6.3.3 Fixed Point Iteration . 189

6.4 Mathematical Model: Automatic Model Generation 192
6.4.1 Rule Design . 192
6.4.2 Generating and Solving the Equations 209
6.4.3 Changing the Model . 210

6.5 Model Engineering and Performance . 215
6.5.1 Comparison of the Modeling Techniques 215
6.5.2 Model Capabilities . 218

7 Concluding Remarks . 219

References . 223

Index . 239

1

Introduction

Parallel and distributed computer systems are built to close the gap between
high-performance demands in computing and the available computing power
of stand-alone single processor machines. Choosing an appropriate network
architecture to connect the parallel or distributed computer system plays an
important role in the development process of the system. An ineligible network
architecture may significantly delay the communication between the parallel
or distributed components and decrease the system performance.

This book introduces the different kinds of network architectures. Wired
architectures as well as wireless ones are taken into account. Various network
topologies are presented, including their main components, the switches which
realize the input-output connections in network nodes. The internal structure
of networks and switches is exhaustively discussed. In addition, a new network
topology is presented.

The advantages and drawbacks of the various switch structures and net-
work topologies are described to work out their favored application areas. For
instance, these areas depend on their related network traffic. Thus, the net-
work traffic is also focused on in this book. The traffic is characterized by its
distribution in time and space. Knowing the distribution in time is important
to sufficiently dimension the network components, e.g., the buffer sizes. On
the other hand, knowing the distribution in space helps choose an appropriate
network topology supporting this distribution.

An important item in characterizing the advantages and drawbacks of
switch and network architectures is comparing their performance. To improve
this characterization by performance evaluation, a new method to determine
network performance of parallel and distributed systems is derived in this
book. Furthermore, guidelines and engineering techniques are given to rapidly
establish models of the system in question, to reduce their complexity, and to
solve them in a time-saving manner. These guidelines result in a systematiza-
tion of the model development process and help set up appropriate models.

2 1 Introduction

1.1 Motivation

To evaluate the performance of networks is a challenging task. Many pa-
rameters influence the performance of a particular network architecture. To
determine its performance, three methods can be applied.

1. Measurement: The system hardware has to be set up to connect measure-
ment devices.

2. Simulation: A software model of the system has to be set up, and simula-
tion runs lead to the performance results.

3. Mathematical methods: Systems of equations have to be established to
model the system in question. Performance is derived by solving these
equations.

Measurement suffers from the huge drawback that the system must first be
realized in hardware before any measurement can start. If it then turns out
that the system does not fulfill the required performance, the architecture
must be changed. Repetitively reconstructing it several times until the opti-
mal architecture is found consumes much time and money. Thus, modeling
with simulation or mathematical methods is the most appropriate technique.
Nevertheless, measurement should not completely be excluded. Many systems
are too complex to be determined by simulation or mathematical methods if
detailed and accurate results are required. Then, measurement often turns out
to be the only feasible solution. Furthermore, measurement also helps validate
any results achieved by simulation or mathematical methods. Inaccuracies and
errors in those models can be detected.

This book mainly focuses on simulation and mathematical methods. Fea-
tures, strengths, and drawbacks related to simulation and mathematical meth-
ods are investigated. But before these techniques can be applied to evaluate
parallel and distributed system architectures, models according to the meth-
ods must be derived.

Model development is a difficult task. Experience is needed, as well as
creativity. Usually, no general rules can be given for model development. But
guidelines can be presented from the experience acquired while establishing
models. One should be aware that badly engineered models lead to time-
consuming performance evaluation, or they are not even able to produce any
results due to their huge size and limited computer power and memory. There-
fore, this book additionally introduces model engineering techniques related
to the investigated performance evaluation methods.

Summarizing previous items, the following challenges emerge:

• Fast model development is desired. Guidelines of experienced developers
may help in model set-up. These guidelines must be established.

• Models should be developed in such a way that they can be simulated or
mathematically solved in a short time to produce results fast. Guidelines
and model engineering techniques that lead to such models are required.

1.2 Contribution 3

• Models should accurately represent the real-world system. Previously men-
tioned guidelines and engineering techniques should consider this.

The following chapters give some guidelines and model engineering techniques
that fulfill the above issues and help in model development.

1.2 Contribution

This book focuses on the model engineering of network and switch archi-
tectures for parallel and distributed systems. Particularly, simulation models
and mathematical models are of interest. The models are established to allow
system performance evaluation. Examining the architecture implies coping
with different network topologies, different buffer positions and sizes, differ-
ent switch sizes, etc. Routing, protocols, and fault tolerance are not in the
scope of this book.

In Chap. 2, the characteristics of networks for parallel and distributed
systems are described, including switching techniques, traffic patterns, and
wired and wireless network architectures. With regard to traffic patterns, not
only if the distribution in time taken into account, the distribution in space is
also considered. Particularly, multicast distributions and the network topol-
ogy support for multicast are examined. As a result of this research, a new
wired network architecture was developed, and is presented in Sect. 2.3.10.
This new architecture is called multilayer multistage interconnection network
(MLMIN), and heavily increases network performance in the case of multicast
traffic.

Methods for performance evaluation of parallel and distributed systems are
discussed in Chap. 3. Simulation and mathematical methods are presented.
Simulation refers to discrete event simulation only. Continuous simulation is
not taken into account due to its drawbacks (see Sect. 3.1). With regard to
mathematical methods, the focus is on Markov chains and Petri nets. Queuing
theory suffers from its problems in modeling complex network topologies and
is thus not considered here.

Establishing a simulation model or a mathematical model calls for some
“feeling” of how to design an appropriate model. A model quickly becomes
too large or too complex, resulting either in huge calculation times or, worse,
in no solution at all. On the other hand, setting up a small model with low
calculation times may consume much time during development. Furthermore,
small models usually neglect too many details, and are thus too inaccurate.

In Chap. 4, some new guidelines for model development and complexity
reduction are given. These guidelines evolved while establishing many models
of communication networks to determine their performance.

The presented guidelines include a new concept of automatic model gen-
eration that gives a strategy for how to develop a generator for automatic
model derivation. Of course, such a concept saves much development time.

4 1 Introduction

Two examples show how to apply the above concepts. A smaller example
presented in Chap. 5 deals with a cellular network. It examines the handoff
procedure of mobile nodes carrying real-time traffic. Due to the modest model
size, a Petri net description sufficiently handles the system in question.

Unfortunately, this is not valid for the second example, which is dealt with
in Chap. 6. Multistage interconnection networks are modeled to optimize their
architecture. They are of common interest due to their use in parallel com-
puters and in switches connecting distributed systems; their reconfiguration
properties are also examined currently [124].

It turns out that this system is too large to be simply modeled by Petri
nets. Other techniques like simulation and Markov chains are also applied and
compared. The automatic model generation particularly accelerates model
development, and is thus a good option in model establishment.

1.3 Related Work

Much research has been performed in investigating the performance of parallel
and distributed systems, particularly in the area of communication networks
connecting the nodes of such systems. Methods to evaluate the performance
include Markov chains, queuing theory, Petri nets, and simulation (see Chap.
3). The most important publications are referenced in the following.

A broad theory about Markov chains is provided by many publications [4,
19, 44, 53, 54, 92, 95, 96, 199]. Especially, [19] does not introduce only Markov
chains: The research groups of the authors also focus on queuing theory. Thus,
this book also states the relation between Markov chains and queuing theory.
Other publications introducing queuing theory are, for instance, [61, 72, 95,
96, 137, 199].

Some research groups which deal with Markov chains also apply Petri
nets as a modeling method. Their publications and those of other authors
describing Petri nets are, for instance, [36, 63, 75, 86, 118, 128, 144, 160, 165].
Finally, simulation methods are exhaustively treated in [9, 23, 57, 88, 107, 248].

Some publications particularly deal with the performance evaluation of
multistage interconnection networks, which is one of the applications of this
book. In the following, it is concentrated on research that was published dur-
ing the last years. Older publications (but also newer ones) are cited in the
chapters of this book to which they are related, where they are discussed in
detail.

Group communication in circuit-switched multistage interconnection net-
works (MINs) is investigated in [242] by applying Markov chains. Markov
chains are also used in [250] to compare MIN performance in the case of dif-
ferent buffering schemes. Hot-spot traffic performance in MINs is examined in
[87]. [200] deals with multicast in Clos networks as a subclass of MINs. One
of the authors of the previously mentioned paper also published [235], where

1.4 Term Definitions 5

MINs are used to establish active routers. Further publications describe mul-
tistage interconnection networks that connect a parallel computer [191] and
MINs used to set up ATM switches [184].

The performance evaluation of wireless networks is broadly based [150, 174,
185, 190]. Some publications relate to handoffs in a cellular network, which is
close to one of the applications of this book. For instance, the book deals with
the spatial distribution of wireless networks and their performance evaluation
using Markov chains [25]. Further publications evaluating performance in the
case of handoffs and considering the influence of architectures are [12] (using
Markov chains) and [132] (using Petri nets). Markov chains as a method to
model a cellular system supporting traffic of multiple bandwidth requirements
are also applied in [101, 131]. Some assumptions about the movement of mobile
nodes are given in [29].

1.4 Term Definitions

The basic terms of this book are introduced below, before the following chap-
ters will use them in the defined context. Unfortunately, terminology in this
field is not unique. Thus, other books may define them differently.

1.4.1 Models and Performance Evaluation

The term “performance evaluation” covers all kinds of methods to deter-
mine system performance. Section 1.1 already enumerated and classified these
methods as measurement, simulation, and mathematical methods. This book
mainly concentrates on the last two items. A detailed description of them will
be given in Chap. 3. The methods are applied to evaluate network architec-
tures for parallel and distributed systems.

The performance to be determined is usually described by latency and
throughput of the network or of a part of it. Latency defines the time between
the initiation of a message transmission at the source and its complete receipt
at the destination [51]. That means the latency is the sum of the time for com-
munication overhead at the source, signal delay time, ratio of message length
to bandwidth, and the time for communication overhead at the destination
[163]. Investigating network architectures, the communication overheads at
the source and destination are usually not of interest. Furthermore, the ratio
of message length to bandwidth can be neglected if message units are very
small. Then, the delay time becomes the only quantity to characterize the la-
tency (e.g., [32, 244]), particularly if no direct connection between the source
and the destination is established. Comparing several network architectures,
the delay times are compared by global clock cycles rather than by absolute
values of time units [51]. This book also characterizes network architectures
by their delay times measured in clock cycles.

6 1 Introduction

The throughput of a network is defined as the amount of information
delivered per time unit [51]. Again, this quantity can be determined related
to absolute values of time units or to clock cycles, as practiced in the remaining
part of this book. The throughput heavily depends on network size. Thus, the
throughput is usually normalized by dividing it by the network size.

Simulation or mathematical methods for performance evaluation are ap-
plied by modeling the system in question. A model is an abstract or theoretical
representation of this system. Many different models can be used to describe
the system behavior. Often, a simplified system behavior is modeled to keep
the model size reasonable.

1.4.2 Parallel System Architecture

A parallel system refers to a system that executes an action simultaneously
with tightly coupled devices [194]. The devices support each other via the
exchange of intermediate results received by performing a part of the action.
If a device fails, the action usually cannot be completed, which especially
corresponds to failed connections between the devices.

Tanenbaum [196] defines a parallel system (for instance, a multicomputer
system) as a system that “(simultaneously) works on a single problem.”

Parallel systems can be found in many areas. This book focuses on par-
allel systems related to computer science: devices (e.g., nodes of a computer
system) are connected by a communication network and perform an action in
close cooperation [1, 2, 115, 119, 167].

Multiplying matrices on a parallel computer system is a typical example.
The parallel computer system consists of hundreds of processors. They are
connected by a high-performance communication network, e.g., a crossbar or
a hypercube (see Sect. 2.3). The matrix multiplication is divided into multiple
independent scalar multiplications. Each processor performs a part of those
scalar multiplications. The results are transferred to some of the processors
and further evaluated there. If a processor fails (and no redundancy is avail-
able), some results are missing and the product of the matrices cannot be
determined.

Parallel system architecture refers to overall features concerning the par-
allel system design. Its main issues are the structure and the behavior of the
system.

For instance, Fig. 1.1 roughly shows the architecture of a parallel com-
puter system. The main elements of the system are the nodes. Usually, they
consist of processors and some local node memory. The nodes are all close to-
gether, e.g., on a computer main board or on separate boards that are directly
connected.

Tightly coupling the devices requires in general a structure of closely lo-
cated devices: a parallel system is established in a limited area.

1.4 Term Definitions 7

Node

Fig. 1.1. Architecture of a parallel computer system

1.4.3 Distributed System Architecture

A distributed system refers to a system that executes an action with loosely
coupled devices [194]. Communication time between the devices only repre-
sents a small fraction of the entire execution time. Therefore, the devices need
not to be highly meshed. They may be distributed in a wide area.

If a device fails, distinct tasks are no longer available. But all other devices
proceed with their actions. Even if the connection between them fails, distinct
tasks are no longer available but all devices remain in service as stand-alone
devices.

As in case of parallel systems, this book only focuses on distributed sys-
tems related to computer science: devices (e.g., stand-alone computers) are
connected by a communication network and perform an action in loose coop-
eration (by communicating every now and then).

Distributed system architecture refers to all features concerning dis-
tributed system design. For instance, Fig. 1.2 roughly shows the architecture
of a distributed computer system. It consists of several computers connected
via a network. The computers commonly solve a task or can act as stand-alone
machines. Even computers of distinct networks can work together if networks
are connected (e.g., via a gateway or switch [6, 77]). Due to the networks,
large distances may exist between computers of a distributed system [247].

Several definitions describe parallel systems as a subset of distributed sys-
tems. For instance, Tanenbaum [195, 196] defines a distributed system as “a
set of independent computers that appear to the user as a single system.” Dis-
cussing the hardware concept of such systems, he explicitly includes shared
memory systems (multiprocessor systems) besides distributed memory sys-
tems (multicomputer systems).

In this book, parallel systems like shared memory systems are distinguished
from distributed systems by their tight coupling via the memory: if a processor
accesses (a part of) the memory that is located at a particular port, all other
processors are blocked in the case of accessing the same (part of the) memory.
As a result, communication time increases (if the delay until the data transfer
between processor and memory starts is also included in the communication

8 1 Introduction

Gateway

Switch

� � � ��

� �� � �	

� � �
 � � � �� � �� � ��

� � � ��� � � �� � � � !

Fig. 1.2. Architecture of a distributed computer system

time). Communication time represents in this context the time from a data
request to the memory until the data is delivered to the requesting processor.

Nevertheless, there is a smooth transition between parallel and distributed
systems. For instance, if the shared memory system consists of a shared mem-
ory with multiple ports or if each processor holds its own cache memory, the
processors are no longer coupled as tightly as in the previous example.

Coulouris’ definition [40] of a distributed system does not agree with
Tanenbaum’s. Shared memory systems (with common memory) are excluded
from distributed systems. He defines a distributed system as “one in which
components located at networked computers communicate and coordinate
their actions only by passing messages.” This means that only message-passing
systems belong to the set of distributed systems.

Coulouris derives from his definition three main features of distributed
systems: concurrency of components, lack of a global clock, and independent
failures of components. The last two features particularly emphasize the char-
acter of loosely coupled devices in distributed systems. Systems synchronized
by a global clock or in which failed components cause further failures must be
called tightly coupled.

1.4.4 Network Architecture

Previous sections show that a major component of parallel and distributed
systems is their network. It allows communication between parallel or dis-
tributed devices. Due to tightly coupled devices of parallel systems, messages
that are exchanged in such systems should be received with only a short de-
lay. To meet the demands of high network performance, the devices usually
are located close together, avoiding large distances to be traveled by messages

1.4 Term Definitions 9

within the network. As a result, networks of parallel systems only cover a local
area.

The network architecture describes the network topology and its physical
realization by determining the kinds and parameters of the network elements
in detail. The network topology only gives the structure of the connections
between the nodes related to graph theory.

Devices of distributed systems may be spread over a large area, which
means that a network linking the devices is also spread over a large area. The
local parts of such a network are usually connected by switches. The switches
often consist of similar architectures as networks for parallel systems [51, 184].
This book focuses on such architectures.

Distributed systems that include mobile devices need networks that deal
with this additional issue. Such wireless networks are also a topic of this book.
The performance and dynamic behavior of links between wireless devices and
wired devices are the main focus. Distributed computer systems with mo-
bile devices allow mobile computing, also called nomadic computing [94, 126].
Ubiquitous computing [68, 161, 228] overlaps with mobile computing: ubiqui-
tous computing assumes many computing devices in the user’s environment
allowing ubiquitous computer access. Such computing devices may include
mobile devices. Ubiquitous computing is also called pervasive computing.

In general, devices of a parallel or distributed system, which are connected
via a network, are also called communication partners or nodes in this context,
independently of whether they are mobile or fixed devices.

2

Characteristics of Network Architectures

In comparing parallel and distributed systems, many characteristics surface
that both systems have in common. This chapter introduces those character-
istics. It concentrates on characteristics highlighted by the communication as-
pects of parallel and distributed systems. Due to coupled devices, both kinds
of systems require a network between the devices allowing communication.
Common characteristics concerning message transfer (switching techniques),
network architectures, and network traffic patterns are described. Protocols
and fault tolerance are not investigated in this book, and are thus not ad-
dressed.

2.1 Switching Techniques

A common task of parallel systems and distributed systems is their need
for a communication system. It connects the devices (nodes) of the system
and enables any required message exchange between them. The switching
techniques [45, 163, 181] describe when and how message components are
transferred along a network link. They are not in charge of determining the
path that the message takes through the network. This job is performed by the
routing algorithm and is not subject of this book. Only some routing basics
related to particular network architectures are explained in Sects. 2.3 and 2.4.

2.1.1 Circuit Switching

The circuit switching technique [108] reserves a physical link between the
sender (source node) and the receiver (destination node). Reservation is es-
tablished by a control information (probe) between source and destination.
Then, the physical link is reserved for the total transfer time. Therefore, net-
work resources may heavily be wasted if the amount of transferred data per
time unit (called data rate) is lower than the rate the link is able to deal

12 2 Characteristics of Network Architectures

with. Furthermore, messages of other communication partners may not be
exchanged due to these reserved links (message blocking).

On the other hand, after establishing a connection, no further signaling is
needed during message transfer except for the releasing of the link at the end
of the transfer. Thus, circuit switching performs well if messages are long.

At the hardware level, messages are usually divided into phits (physical
units). A phit represents the smallest unit that can be transferred during a
hardware clock cycle. Depending on the link width, a phit usually consists of
at least one and up to 64 bits.

2.1.2 Packet Switching

The packet switching technique divides a message into several packets. Pack-
ets consist of a header field and a payload field (Fig. 2.1, top). The header

H

H P H P H P

HP P P T P

Message Message

Packets

FlitsPP

P : Payload T : TailH : Header

Fig. 2.1. Dividing a message into packets and flits

contains the destination information. Further information may also be added,
like packet length (if the packets are not of equal length), sender information,
or any other switching information. The payload field contains message data.
Packet switching has the advantage that packets can be stored (buffered) dur-
ing their transfer within the network (e.g., at intermediate nodes that have
to be passed) due to their limited size. This means packets can be forwarded
within parts of the network and stored at their current position in the case of
blocking. Blocking may arise due to occupied buffers and links of intermediate
nodes. After blocking, forwarding of buffered packets can be resumed.

Logical links are introduced describing the message path through the net-
work. The feature of storing packets allows multiple logical links to use the
same physical links: the resources are better utilized.

Three kinds of packet switching techniques are distinguished: store-and-
forward switching, cut-through switching, and wormhole switching.

2.1 Switching Techniques 13

Store-and-Forward Switching

In store-and-forward switching [49], packets are forwarded from the source
node to the destination node while being buffered at each intermediate node.
A node forwards a packet when the succeeding node is available. A move from
one node to the next one is called a hop.

Cut-Through Switching

In cut-through switching [91, 179, 209, 230], packets are forwarded from the
source node to the destination node in a manner similar to store-and-forward
switching. But packets are buffered at an intermediate node only if the suc-
ceeding node is not available. In other words, packets move through (“cut
through”) the network by passing intermediate nodes until they are blocked.
On the hardware level, the phits are forwarded in a pipeline manner.

If blocking occurs, packets are buffered until the blocking is released: vir-
tual cut-through switching blocks the packet until the last phit arrives at
this buffer, while in partial cut-through switching, phits are already allowed
to proceed even if not all phits have reached the buffer where the packet is
blocked.

Due to less buffering, packets traverse a network much faster than in the
case of store-and-forward switching if only few blockings occur. If blocking
occurs at each intermediate node, cut-through switching performs like store-
and-forward switching.

Wormhole Switching

In wormhole switching [21, 87, 136, 139, 148], packets are further divided into
logical units called flits (flow control units). All flits (Fig. 2.1, bottom) are
of equal size (usually between one and eight bytes). The first flit contains
the header information and reserves a link through the network while it is
forwarded in a cut-through switching manner. The following flits contain the
payload. The last flit (called tail) deallocates the link.

Each intermediate node has a buffer of flit size. As in the case of cut-
through switching, the header flit moves through the network by passing
intermediate nodes until it is blocked. If blocking occurs, the header flit is
buffered at the related intermediate node. All other flits belonging to the
same packet are buffered at their current intermediate nodes.

Dividing packets into flits of equal size reduces buffer costs. Intermediate
nodes only need buffers of the flit size. On the other hand, if flits are blocked
and buffered, the packet is spread over a part of the network. Due to the
reserved link between the header flit and the tail flit, such a packet blocks a
part of the network.

14 2 Characteristics of Network Architectures

2.2 Traffic Patterns

Besides switching techniques, parallel and distributed systems also show some
other common characteristics concerning their network traffic patterns. A par-
ticular network traffic pattern results from the communication requests of the
network nodes. The times at which messages are sent and their particular
destinations determine the traffic of one node. Superposing the traffic of all
nodes gives the traffic pattern of the network.

That means the network traffic patterns are defined by the distribution of
messages in space as well as by their distribution in time.

2.2.1 Distribution in Space

The distribution of messages in space can be related to the varying message
density in network areas. But it can also describe the varying number of nodes
a message is destined to. Both aspects will be discussed here.

Uniformity and Hot Spot

Ideally, the message density is uniformly distributed all over the network.
Such a traffic pattern ensures an equal load on all communication links. This
is particularly important if all links have equal capacity.

Therefore, uniform traffic allows the design of very regular network struc-
tures, simplifying the network design. Equal network components can be used
independently of the particular network area that is considered. Furthermore,
establishing mathematical models of the network becomes much easier due to
the regular and symmetric structure and uniform traffic, as will be seen in
Sect. 3.2.

On the other hand, tasks or devices may be asymmetrically distributed
among the network nodes. That means nodes are not equal in either their
hardware or their software. Then, messages are usually non-uniformly dis-
tributed in the network. For instance, if only one node owns a main memory
to store a huge amount of data, all other nodes send their data to this memory:
a very high load results on the link to the memory node. In such a scenario,
this link is called a hot spot [5, 100, 110, 166], and it may become a bottleneck
of the system. More generally, a hot spot is any device in a system that turns
into a performance bottleneck due to high utilization.

Multicast

The varying number of nodes a message is destined to also describes a dis-
tribution in space. Sending a message to multiple destination nodes is called
multicast [151, 182, 192, 200, 207, 209, 212, 225, 241]. The term multicast
includes the two particular cases of unicast and broadcast. Unicast denotes

2.2 Traffic Patterns 15

the process of sending a message to only a single destination node whereas
broadcast represents the process of sending a message to all destination nodes
of the network.

A multicast can be realized either by message replication before routing
(MRBR) or by message replication while routing (MRWR) [74, 238]. In MRBR
[239], a multicast message that is destined to i nodes is copied i times before it
is routed through the network. Then, those i messages are treated as unicast
messages, each of them sent to one of the required destinations. In MRWR
[18], the multicast message is sent as one message into the network. It proceeds
through the network until it reaches a node or switch from which no single
way leads to all required destinations. There, the message is copied as many
times as there are different ways to reach all desired destinations. Such nodes
or switches may be passed several times.

2.2.2 Distribution in Time

The distribution of messages in time addresses the time-dependent variation
of the traffic density.

Initial Transient Phase

The simplest case gives a scenario in which the traffic density changes only
for a limited time interval and then ends up in a steady state. The network is
said to be in an initial transient phase during the time of traffic change.

For instance, such a scenario arises if an idle network is connected to nodes
that are sending messages at a constant rate. Depending on the network size
and the rate, the network needs some time until it is filled with messages
and remains in a steady state with regard to the quantity of messages in the
network.

Basic Functions of Time

The shape of time-dependent traffic in networks can be described by functions
of time. Such a function of time that represents a single message in the network
is also called signal in telecommunications. Signals that show a very simple
shape are said to be basic signals. Table 2.1 introduces some basic signals.
Symbol t denotes the time. Replacing t by t − t0 allows a time shift of the
function by time t0. Replacing t by t

T stretches the function by the constant
T .

Usually, time-dependent traffic [204] in networks consists of a superposition
of many signals sent from many source nodes. Particularly, the shape of such a
superposition describes the distribution of messages in time (time-dependent
variation of the traffic density).

Many distributions in time that show specific behavior are distinguished.
Two of them, which result in an often observed traffic density shape, are
addressed below: bursty traffic and multifractal traffic.

16 2 Characteristics of Network Architectures

Table 2.1. Basic signals

Signal Description

Sinus
s(t) = sin(2πt)

Gauss
s(t) = e

−πt2

Heaviside

ε(t) =

j
0 : t < 0
1 : t ≥ 0

Rectangular

rect(t) =

j
1 : |t| < 1

2

0 : |t| ≥ 1
2

Dirac

δ(t) = lim
T0→∞

1

T0
rect

„
t

T0

«

Bursty Traffic

A special kind of time-dependent traffic is called bursty traffic [58, 205]. Bursts
denote a high amount of transferred messages in a very short time. Bursty
traffic consists of bursts separated by a longer period of fewer messages. Fig-
ure 2.2 gives an example. In parallel and distributed systems, bursts may be
caused by transferring large files, large databases, large program code, and so
on.

ra
te

 o
f t

ra
ns

fe
rr

ed
 m

es
sa

ge
s

time

Fig. 2.2. Bursty traffic

2.2 Traffic Patterns 17

Multifractal Traffic

To define multifractal traffic [24, 28, 52, 215], self-similar traffic is introduced
first. Self-similar traffic is defined as a traffic pattern that is invariant against
changes in scale or size [116, 121, 122, 186, 232]. If a part of the self-similar
traffic is cut out and magnified, it will show the same structure and behavior
as the non-magnified original traffic.

An approximation of a self-similar traffic is depicted in Fig. 2.3. It is a

time

ra
te

 o
f t

ra
ns

fe
rr

ed
 m

es
sa

ge
s

Fig. 2.3. Approximation of self-similar traffic

kind of a rectangular function. If a part of this function is cut out and magni-
fied, this function again shows the same structure. This can be performed for
several steps (time scalings). This self-similarity arises because the function
of Fig. 2.3 is built by superposing periodical rectangle functions of different
frequencies. The different frequencies represent different time scale factors.

Figure 2.3 does not really represent self-similar traffic because cutting out
and magnifying the function for a few time scalings yields a similar structure,
but the similarity stops if scaling is continued.

Self-similarity can easily be defined if discrete time traffic is assumed. For
instance, this is true for clocked systems. A time discrete signal x(t) is said
to be self-similar with parameter β (0 < β < 1) if, for all m ∈ N\{0},

Var(x(m)) =
Var(x)

mβ
and (2.1)

ρx(m)(t) = ρx(t) (2.2)

hold, where Var denotes the variance, ρ the autocorrelation, and

x(m)(τ) =
1

m

τm∑
t=τm−(m−1)

x(t) (2.3)

18 2 Characteristics of Network Architectures

describes the average over m values of the original signal. Section 3.1.1 deals
with the calculation of the variance and the autocorrelation.

The parameter β indicates the self-similarity. It is related to the Hurst
parameter H which gives the degree of long-range dependence:

H = 1 − β

2
. (2.4)

A value of H ≤ 0.5 (β ≥ 1) expresses the lack of self-similarity. The closer H
is to 1, the greater the self-similarity. H = 1 means β = 0, and results in

Var(x(m)) = Var(x). (2.5)

If β is not constant for all m, but constant with value β̂ for small m, and with
a slight change for larger m, such traffic is called multifractal.

The definition of self-similarity for continuous time traffic emerges from
an extension of above theory, and can be found in [186].

Interarrival Time Distribution

The above sections describe the temporal behavior of traffic density in several
ways. When modeling parallel and distributed systems, the behavior in time
of the traffic is often stochastically described by the distribution of the time
passing by until an event occurs. Such an event may be the random arrival of
a new packet at a communication network. Then, this distribution is called
the interarrival time distribution of the new packets. Waiting times, service
times, and so on are also described by the same distributions.

The distribution function A(t) denotes the probability that the event under
consideration occurred in the interval [0, t]. This function is also called the
cumulative distribution function (CDF). Its derivative

a(t) =
dA(t)

dt
(2.6)

is the probability density function (pdf).
One of the most important distributions is the exponential distribution. Its

cumulative distribution function and probability density function are given,
respectively, by

A(t) = 1 − e−λt and (2.7)

a(t) = λe−λt, (2.8)

where λ represents the mean arrival rate. If service times are described, λ
is replaced by μ. The memoryless property of the exponential distribution is
often used (see Sect. 3.2.1). It says that the probability of the occurrence of the
investigated event in interval [0, t] is equal to the probability of its occurrence
in interval [τ, t + τ] if it did not take place until time τ .

2.2 Traffic Patterns 19

The Erlang-k distribution describes the sum of k exponentially distributed
phases with mean rate kλ. The CDF and pdf result in

A(t) = 1 − e−kλt ·
k−1∑
i=0

(kλt)i

i!
and (2.9)

a(t) =
(kλ)k · tk−1 · e−kλt

(k − 1)!
, (2.10)

with k ∈ N. A generalization of this distribution is obtained if the restriction
on k to be a natural number is relaxed. Such a distribution is called gamma
distribution, where k is replaced by α (with α > 0):

A(t) =

∫ t

0

αλ · (αλτ)α−1

Γ (α)
· e−αλτdτ. (2.11)

Γ (α) is defined by Γ (α) =
∫ ∞

0 τα−1e−λdτ . The Erlang-k distribution results
from the gamma distribution for a positive integer α = k.

The hyperexponential distribution describes the choice between k expo-
nentially distributed phases with mean rates λi. The CDF and pdf are

A(t) =
k∑

i=1

qi

(
1 − e−λit

)
= 1 −

k∑
i=1

qie
−λit and (2.12)

a(t) =

k∑
i=1

qiλie
−λit, (2.13)

where qi represents the probability that the ith phase is chosen. Thus,∑k
i=1 qi = 1 holds.
To describe system failures, the Weibull distribution is often applied. Its

CDF and pdf are

A(t) = 1 − e−(λt)α

and (2.14)

a(t) = αλαtα−1e−(λt)α

, (2.15)

where α represents the shape parameter with α > 0.
A distribution describing non-stochastic behavior is given by the determin-

istic distribution. The investigated event is assumed to take place at time t0.
Thus, no stochastic behavior is involved. The cumulative distribution function
and probability density function result in

A(t) =

{
0 : t < t0
1 : t ≥ t0

and (2.16)

a(t) =

{
1 : t = t0
0 : otherwise.

(2.17)

20 2 Characteristics of Network Architectures

To model multifractal traffic as presented in Sect. 2.2.2, the Pareto distri-
bution is often proposed to describe the related interarrival times. It belongs
to the group of heavy tailed distributions where the tail of the distribution
is hyperbolic (i.e. t → ∞). The CDF and pdf of the Pareto distribution are
given by

A(t) = 1 −
(

b

t

)α

and (2.18)

a(t) = α · bα

tα+1
, (2.19)

with 0 < α < 2. It is defined over the interval t ≥ b.
A distribution where each value in an interval [bl, br] will be chosen with

equal probability is called uniform distribution:

A(t) =

⎧⎨
⎩

0 : t < bl
t−bl

br−bl
: bl ≤ t ≤ br

1 : t > br

and (2.20)

a(t) =

{
1

br−bl
: bl ≤ t ≤ br

0 : otherwise
(2.21)

represent the its CDF and pdf.
Errors or values given by a sum of many other values are often distributed

according to the normal distribution (also called Gaussian distribution). Its
probability density function is given by

a(t) =
1√

2πσ2
e−

(t−μ)2

2σ2 , (2.22)

with the location parameter μ representing the mean and with the scale pa-
rameter σ representing the square root of the variance (see Sect. 3.1). No
closed-form cumulative distribution function for the normal distribution ex-
ists.

Many further distributions are known, e.g., Cox distribution, double expo-
nential distribution (also called Laplace distribution), Student’s t-distribution,
lognormal distribution, and beta distribution, among others[107].

All previously mentioned distributions are continuous. Interarrival times of
discrete time systems are modeled by discrete distributions. They are charac-
terized by their cumulative distribution functions and their probability mass
functions. The probability mass function p(t) denotes the probability with
which an arrival occurs at discrete time t.

Many discrete distributions exist. For instance, the geometric distribution
offers the memoryless property as the exponential distribution does in the case
of continuous time. The cumulative distribution function and the probability
mass function are defined by

2.3 Wired Network Architectures 21

A(t) = 1 − (1 − p)t+1 and (2.23)

p(t) = p · (1 − p)t, (2.24)

with t ∈ N represents the t-th time step and (1− p) gives the probability that
no arrival occurred in a time step.

The discrete uniform distribution describes several possible times ti at
which an arrival may occur. The cumulative distribution function and the
probability mass function are given by

A(t) =

⎧⎨
⎩

0 : t < tl
t−tl+1
tr−tl+1 : t ∈ {tl = t0, t1, . . . , tr}

1 : t > tr

and (2.25)

p(t) =

{
1

tr−tl+1 : t ∈ {tl = t0, t1, . . . , tr}
0 : otherwise.

(2.26)

The number of arrivals in an interval when the arrivals occur at a constant
rate are often described by the Poisson distribution with

A(t) =
e−λλt

t!
and (2.27)

p(t) = e−λ
t∑

i=0

λi

i!
, (2.28)

where t ∈ N.
Other discrete distributions include the Bernoulli distribution, the bino-

mial distribution, and the negative binomial distribution, among others [107].

2.3 Wired Network Architectures

The most important and critical step in designing a communication system
for a parallel or distributed system is to choose the network architecture.
The architecture is given by the network topology, the buffer sizes, the buffer
positions, and so on.

The chosen architecture must fulfill all requirements given by the amount
and shape of the expected network traffic, the number of communication part-
ners, and the distance between them. Network architectures are classified as
wired or wireless. In this section, it is focused on wired network architectures,
while the next section will deal with wireless network architectures. Network
architectures for on-chip communication, with their particular characteristics,
are introduced in Sect. 2.5.

Many wired network architectures have been proposed [6, 51, 77, 119, 133,
186, 195]. Some of them are briefly discussed below.

22 2 Characteristics of Network Architectures

2.3.1 Basic Classifications

In general, wired networks are categorized as direct or indirect. Direct net-
works are also called static networks. They consist of a limited number of fixed
point-to-point links between some communication partners (nodes). Messages
are transferred from a source node (sender) to a destination node (receiver)
via intermediate nodes. There are no further switches to change links. For
instance, a mesh (Sect. 2.3.3) belongs to this group of networks. The most
important characteristic of direct networks is their node degree: the number
of links of a node to neighboring nodes.

Indirect networks are also called dynamic networks. They consist of many
switches to dynamically change links between nodes. No intermediate nodes
are involved in transferring a message from a source node to a destination
node. For instance, a crossbar (Sect. 2.3.9) belongs to this group of networks.
The most important characteristic of indirect networks is their number of
stages: the number of switches of a connection.

The switches in indirect networks may themselves consist of dynamic net-
works. For instance, smaller crossbars may realize the switches in multistage
interconnection networks (Sect. 2.3.10). The nodes of direct networks usually
also contain such switches. They connect all inputs and outputs of the node
and its core. Thus, direct networks as well as indirect networks may reveal a
hierarchical structure.

The way several pairs of nodes communicate in a network without inter-
ference is called multiplexing. In wired networks, two kinds of multiplexing
are mainly used: multiplexing in space and multiplexing in time.

Space division multiplexing (SDM) separates communication channels of
different sender-receiver pairs by space. That means different pairs of nodes
use different wires that are not connected to each other. Switches between the
wires ensure that nodes of sender-receiver pairs may change if desired. The
large quantity of wires needed for a large number of communication pairs is
the main disadvantage of SDM.

Time division multiplexing (TDM) allows a sender-receiver pair to use a
wire for a certain amount of time. Then, another sender-receiver pair can
access this wire for a certain amount of time, and so on. Thus, only a single
wire is needed. But TDM suffers from the drawback that all nodes must be
synchronized. Only if all nodes deal with exactly the same time, are they able
to send or receive in the desired time slice and not interfere with any other
node.

Space division multiplexing and time division multiplexing may also be
combined. Pure SDM is used in fully connected network architectures where
each node is connected to every other node. Pure TDM is used in a single bus
architecture.

2.3 Wired Network Architectures 23

2.3.2 Bus

The most common network architecture to connect few nodes is a bus (Fig.
2.4). Each node is connected to the bus. The source node (called master)

Bus

Node Node Node

Fig. 2.4. Bus architecture

initiates the communication by allocating the bus. It transmits the destina-
tion node’s address and the message via the bus. All nodes listen to the bus
and compare this address with their own. An address match identifies the
destination node (called slave), which reads the message. Finally, the bus is
deallocated.

Due to the concept of a single common bus, time division multiplexing
must be applied and only one sender is allowed to transfer a message at a
given time. That is why the bus becomes a bottleneck in a communication
system consisting of a large number of nodes.

To overcome this problem, some systems use several busses to combine
time division multiplexing and space division multiplexing. Each bus connects
only a part of the nodes. All busses are linked to a switching fabric which
couples the whole system. Switching fabric architectures are discussed in Sect.
2.3.11.

Busses profit from their simple hardware setup and from their simple rout-
ing.

2.3.3 Mesh

A popular static network architecture of parallel computers is a mesh [48]. In
such an architecture, the nodes are located at the crosspoints of the mesh.
Three kinds of meshes are distinguished: one-dimensional meshes (also called
chains), two-dimensional meshes (2-D meshes, grids), and three-dimensional
meshes (3-D meshes). Figure 2.5 shows a 2-D mesh.

Each node is connected to its two nearest neighbors in each dimension.
For instance, four bidirectional links handle all communication of a node of
a 2-D mesh. The number of links per node does not change if additional
nodes are added to the mesh. Therefore, a mesh offers very good scalability.
Additionally, it is of low cost, because a mesh network consists of fewer links
per node than most other architectures (crossbars and their hierarchies as an
exception are presented later).

24 2 Characteristics of Network Architectures

Node Node Node

NodeNodeNode

Node Node Node

Fig. 2.5. 2-D mesh architecture

Their blocking behavior reveals one of the most important disadvantages
of meshes. Usually, messages pass several nodes and links before they reach
their destination. As a result, links are demanded by many connections using
the same link; blocking occurs. Blocking can be reduced if communication is
mainly local, e.g., if a task to solve differential equations or finite element
methods is spread over nodes. Then, messages are exchanged only between
nodes located close together.

Messages are mostly transferred by packet switching, leading to simple
routing, another advantage of meshes. For instance, the packet header includes
the destination information as Δx and Δy (in the two-dimensional case) rep-
resenting the destination node distance in the x direction (horizontal) and the
y direction (vertical), respectively. Packets may then be forwarded in the x
direction first. The sign of Δx determines whether the positive or the negative
direction must be chosen. Each intermediate node decrements/increments Δx.
If Δx = 0 is reached, the packet is forwarded in the y direction in the same
manner. Δy = 0 means that the destination is reached.

This algorithm is called XY routing. Other algorithms are, for instance,
the West-First, North-Last, and Negative-First routing, where particular turns
are forbidden.

Many variations on the above scheme are known. Forwarding in x direction
and y direction may be merged to get alternative paths through the mesh.
Partially forwarding in the wrong direction may help avoid blockings or faulty
links.

2.3 Wired Network Architectures 25

2.3.4 Torus

An extension of the mesh architecture is given by the torus. It is a mesh net-
work where all boundary nodes show additional links to their corresponding
boundary node at the opposite boundary. Figure 2.6 depicts a two-dimensional
torus (2-D torus). Three-dimensional tori (3-D tori) also exist. Higher dimen-

Node Node Node

NodeNodeNode

Node Node Node

Fig. 2.6. 2-D torus architecture

sions are possible, too. The communication network of many parallel computer
systems consists of a 3-D torus.

A torus is a static network, like a mesh. Due to their similar structure, a
torus reveals the same advantages and drawbacks as a mesh. A slight benefit
compared to a mesh is the shorter average distance between two communicat-
ing nodes in a torus. The additional links at the boundary avoid long distances
between opposite nodes.

2.3.5 Ring

Another static network is called ring. In such an architecture, each node is
connected to exactly two other nodes, one on each side, leading to an overall
structure of a closed loop (Fig. 2.7). Having only two neighboring nodes keeps
the amount of interfaces per node very small.

Messages are sent to the ring and usually circle in a common direction from
node to node. Each node checks whether it is the receiver. A ring network often
realized is the token ring. There, a token synchronizes the nodes’ access to
the network. The token circles on the ring to signal the status of the network.

26 2 Characteristics of Network Architectures

Node

Node

Node

Node

Fig. 2.7. Ring architecture

To send a message, nodes must wait to receive the token. If it is marked
as “empty,” the message can be sent, and the token marking is changed to
“occupied.” Nodes that receive this token now are not allowed to send. After
the message circles around once, it is removed and the token is marked as
“empty” again.

The main drawback is that the entire network is affected if any link fails.
Doubling each link reduces the problem. Such an architecture is called dual
ring.

2.3.6 Star

The star network describes a static architecture where all nodes are connected
to a central node (Fig. 2.8). Thus, all nodes (except the central one) can only
communicate to the others via the central node. That is why the central node
may become a bottleneck of a system that consists of many nodes.

NodeNode

Node

Node

Node

Node

Node

Node Node

Fig. 2.8. Star network architecture

2.3 Wired Network Architectures 27

On the other hand, only two hops are needed to reach any of the other
nodes. If the central node is sender or receiver, a single hop realizes a com-
munication.

2.3.7 Tree

In the static architecture of a tree network, all nodes are arranged as a tree: a
root node is connected to descendant nodes. These nodes are again connected
to descendant nodes, and so on. Nodes with no further descendant nodes are
called leafs.

If the structure of the tree is such that all nodes (except the leafs) are
connected to a fixed number k of descendants, the network architecture is
called a k-ary tree. For instance, Fig. 2.9 shows a binary tree. This tree is

Node

NodeNode

NodeNode NodeNode

Fig. 2.9. Binary tree network architecture

also called balanced because all leaf nodes have the same distance to the root
node.

If the nodes of a tree are arranged such that communication mainly takes
place between nodes that are located in the same (minimum) subtree, con-
nections consist of only few hops.

On the other hand, if any node in the left half of the tree communicates
with any node in the right half, the communication is established via the root
node. Therefore, the root node acts as a bottleneck of the network.

An alternative structure, named fat tree [114], overcomes this problem:
Nodes are placed only at the leafs of the tree. The nodes at the tree branches
are replaced by switches, and the capacity of the connections is increased by
k at each stage from the leafs to the root. A dynamic network architecture
results. It is topologically equivalent to a bidirectional multistage intercon-
nection network, described in detail in Sect. 2.3.10.

2.3.8 Hypercube

A further static network architecture is given by a hypercube [168]. The nodes
of the hypercube also represent the nodes of the network. As an example,

28 2 Characteristics of Network Architectures

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node Node

Node

Node

Node

Fig. 2.10. 4-D hypercube architecture

Figure 2.10 shows a four-dimensional hypercube (4-D hypercube). It is es-
tablished by a 3-D hypercube (solid lines) where each node is connected to
an additional node of another 3-D hypercube (dashed lines) forming a 4-D
hypercube.

Hypercubes can be built of any dimension d, connecting N = 2d nodes.
Nevertheless, an existing hypercube cannot be enlarged to a higher dimension
unless there are unused ports at the nodes.

Concerning the blocking behavior, equal problems arise as for meshes.
But blocking occurs less frequently because messages use less links in average
from source node to destination node. At most, d hops are needed to reach a
destination.

2.3.9 Crossbar

Crossbars [59, 98, 152, 176, 214, 237, 243, 245] are dynamic networks consist-
ing of a switch matrix. This switch matrix ensures that each network input
can be connected to each network output via exactly one switch: A connection
consists of only a single hop. Figure 2.11 shows a 4×4 crossbar, which consists
of four inputs and four outputs. This means that the crossbar connects four
nodes. Alternative graphical representations of crossbars are depicted in Fig.
2.12. The right right part of the figure gives the simplest way of representation,
and is mainly used.

The switches are located at the crosspoints of the horizontal and vertical
lines. Each switch corresponds to a specific input-output pair. The inputs and
outputs are connected to the related source nodes (senders) and destination
nodes (receivers).

Crossbars of c inputs and c outputs produce c2 switches/crosspoints. This
means that the crossbars are scalable, but the complexity increases quadrat-
ically; the main drawback of crossbars. Hierarchically connected crossbars,
e.g., multistage interconnection networks (Sect. 2.3.10), avoid this drawback.

2.3 Wired Network Architectures 29

Node

Node

Node

Node

Crossbar

0

0

2

3

1

1 2 3

Fig. 2.11. Crossbar architecture

If messages are forwarded by packet switching, buffers can be inserted to
prevent packet loss in the case of conflicts for resources [30]. Usually, first-
in first-out (FIFO) buffers are used. Several buffer locations are appropriate:
buffers at crossbar inputs, buffers at crossbar outputs, internal buffers, and
shared buffers [250].

Figure 2.13(a) shows a crossbar architecture, including buffers at crossbar
inputs (input buffering) [230]. Input buffering suffers from head-of-line (HOL)
blocking, for instance, if the first position of all buffers is occupied by packets
that are destined to the same crossbar output. Then, all packets except one
are blocked, and most parts of the crossbar remain idle. Even if the second
buffer position contains a packet destined to another output, the crossbar
mainly remains idle because this packet cannot pass the blocked packet.

Buffers at the outputs (output buffering) [123, 249] overcome this problem
(Fig. 2.13(b)). The major drawback of such a buffer location is the high packet
transfer rate of the crossbar that is needed, for instance, if all c crossbar inputs

3

2

1

0 0

1

2

3

0

1

2

3

0

1

2

3

Fig. 2.12. Alternative crossbar representations

30 2 Characteristics of Network Architectures

(a) Input buffering (b) Output buffering

(c) Internal buffering (d) Shared buffering

Fig. 2.13. Crossbar buffer locations

receive a packet destined to the same output. Then, the transfer rate of the
crossbar must be c times as high as the input rate at the crossbar.

Internal buffers overcome both previously mentioned problems. Figure
2.13(c) depicts such a buffer scheme. But there are also drawbacks to this ar-
chitecture: a much higher number of FIFO buffers (c2) is needed. This means
that hardware cost is increased.

A completely different buffering scheme is given by shared buffers [177,
210]. Shared buffers can be located at crossbar inputs (Fig. 2.13(d)), cross-
bar outputs, or internally. A common pool of buffer space is available. Each
input/output allocates buffer space as required.

The drawback of such a buffering scheme emerges from the higher control
cost: the buffer must manage where to store which packet. Internal queues
have to be used to keep the transfer order of the packets.

2.3.10 Multistage Interconnection Network

To overcome the drawbacks of crossbars, multistage interconnection networks
(MIN) [1, 55, 71, 87, 99, 104, 119, 140, 179, 235, 242] are frequently proposed

2.3 Wired Network Architectures 31

to connect the nodes of parallel systems or to establish switching fabrics (Sect.
2.3.11) connecting the nodes of distributed systems.

Such architectures were already used to design telephone switches in the
1960s. At that time, Beneš [13, 14] investigated MINs operating in circuit
switching mode and established a mathematical description of their behavior.
Nowadays, buffers are inserted [250] and packet switching is applied to MIN
architectures that are part of computer networks.

MINs are dynamic networks based on switching elements (SEs) [84]. The
most common approach to realize SEs are crossbars. SEs are arranged in
stages and connected by interstage links. The link structure and number of
SEs characterizes the MIN. Several MIN architectures exist.

MIN with Banyan Property

Multistage interconnection networks with the banyan property [33, 49, 85,
103, 179] are networks where a unique path from an input to an output exists.
Such MINs of size N×N (N inputs and N outputs) consist of c×c switching
elements (SEs of c inputs and c outputs) [32, 156, 216] with n = logc N stages
(Fig. 2.14).

To achieve synchronously operating switches, the network is internally
clocked [246]. This network clock cycle consists of as many hardware clock
cycles as are needed to completely forward all phits of a packet for one stage.

At each stage k (0 ≤ k ≤ n− 1), there is a FIFO buffer of size mmax(k) in
front of each SE input [50, 142, 206, 244]. Of course, output buffering, internal
buffering, or shared buffering are also possible. The packets are forwarded by
store-and-forward switching, cut-through switching, or wormhole switching
from one stage to its succeeding one.

Packets that are destined to full buffers can be handled by dropping those
packets [240] or by applying the backpressure mechanism. The backpressure
mechanism keeps packets in their current stage until the required buffer be-
comes available again. This means that no packets are lost within the network.
Local and global backpressure are distinguished. Local backpressure observes
only the destination buffer at the next stage: the packet at stage k is sent
if space at stage k + 1 is available. Global backpressure acquires additional
information about packet flows: the packet at stage k is sent even if no space
at stage k + 1 is available, but will become available by the time the packet is
received. Such a situation may arise if a packet leaves stage k +1 at the same
clock cycle.

The network shown also belongs to the class of delta networks. This means
that it is a banyan network where all packets can use the same routing tag to
reach a certain network output independently of the input at which they enter
the network. Rectangle delta networks additionally demand square SEs (i.e.,
equal number of SE inputs and outputs), shown in Fig. 2.14. This network
also belongs to the class of regular delta networks (i.e., equal size of all SEs)

32 2 Characteristics of Network Architectures

Fig. 2.14. Three-stage delta network consisting of c×c SEs

and bidelta networks (i.e., delta property for input-to-output direction and
output-to-input direction).

Various bidelta network architectures consisting of 2×2 SEs are depicted in
Fig. 2.15. In the literature [102, 103], they are referred to as Omega, Flip, Base-
line, Indirect Binary Cube (IBC), and Modified Data Manipulator (MDM).
Their interstage connections distinguish them. For instance, the interstage
connections of the Modified Data Manipulator are established by number-
ing the SEs at each stage k. Numbers are coded to the base of c, starting
with 0. This means that each SE is numbered by a (n − 1)-digit number
νn−1νn−2 . . . ν2ν1, where 0 ≤ νi ≤ c − 1 and 1 ≤ i ≤ n − 1. Then, SE
νn−1νn−2 . . . ν2ν1 at stage k is connected to c SEs at stage k + 1 that are
numbered νn−1 . . . νn−k � νn−k−2 . . . ν1, where � equals all values from 0 to

2.3 Wired Network Architectures 33

(a) Indirect Binary Cube (b) Omega

(c) Flip (d) Baseline

(e) Modified Data Manipulator

Fig. 2.15. Bidelta networks consisting of 2×2 SEs

c − 1. The rules concerning the interstage connections of all architectures of
Fig. 2.15 are given in Table 2.2.

34 2 Characteristics of Network Architectures

Table 2.2. Interstage connections

Bidelta network SEs at stage k + 1

MDM νn−1 . . . νn−k � νn−k−2 . . . ν1

Omega νn−2 . . . ν1�

Flip �νn−1 . . . ν2

Baseline νn−1 . . . νn−k � νn−k−1 . . . ν2

IBC νn−1 . . . νk+2 � νk . . . ν1

Alternatively, mathematical formulae can be applied to obtain the inter-
stage connections. Then, all SE inputs and all SE outputs at every stage must
be numbered consecutively from 0 to N − 1. For instance, in MDM architec-
ture, the output �O(k) at stage k is connected to input �I(k+1) at stage k+1
by

�I(k + 1) = �O(k) −
((

ζ div
N

ck+1

)
− (ζ mod c)

)
·
(

N

ck+1
− 1

)
, (2.29)

where

ζ = �O(k) − N

ck
·
(

�O(k) div
N

ck

)
. (2.30)

Besides the ways presented on how interstage connections are established,
many other architectural variations exist. They are mainly developed to reduce
the amount of blocked packets due to occupied resources like buffers or SEs.
Some of them are presented below. All of them offer multiple paths between a
source-destination pair: if a packet will be blocked due to an occupied resource,
it can choose an alternative path to the destination.

Besides avoiding blocking, alternative paths also help deal with faulty net-
work elements. If a path of a packet crosses a faulty network element, it can
be changed to an alternative path to the packet’s destination.

On the other hand, abandoning the banyan property may cause out of
order packet sequences: packets of a message are not received in the order
sent. They may pass others by taking alternative paths through the network.
Then, the destination node must be able to deal with such a scenario, e.g. by
ordering the packets again.

Dilated MIN

Dilation reduces blocking by replicating the interstage connection lines d
times. Then, the SE size must be increased by a factor of d to ensure the
required number of SE inputs and outputs for the connection lines: c×c SEs
of a MIN with banyan property result in (c · d)×(c · d) SEs for the dilated
MIN. Figure 2.16 shows the architecture of an 8 × 8 dilated MIN with all
interstage connection lines doubled (d = 2). The concept of dilated MINs was

2.3 Wired Network Architectures 35

Fig. 2.16. Dilated multistage interconnection network (d = 2)

introduced by Kruskal and Snir [102]. It allows transmitting up to d packets
from a particular SE at stage i to any SE at stage i + 1. Blocking occurs only
if more than d packets are sent or if the destination buffer does not provide
sufficient space.

At each network output, a d:1 multiplexer collects the packets from the
corresponding SE outputs at the last network stage and forwards them to
the network output. Two different output schemes are distinguished: single
acceptance (SA) and multiple acceptance (MA). Single acceptance means that
just one packet is accepted by the network output per clock cycle. If there are
packets at more than one corresponding SE output, one of them is chosen.
All others are blocked at the last stage. The multiplexer decides according to
its scheduling algorithm which packet to choose.

Multiple acceptance means that more than one packet may be accepted by
the network output per clock cycle. Either all packets are accepted or just an
upper limit R. If an upper limit is given, R packets are chosen to be forwarded
to the network output and all others are blocked at the last stage. As a result,
single acceptance is a special case of multiple acceptance with R = 1.

Replicated MIN

Replicated MINs enlarge multistage interconnection networks with the banyan
property by replicating them L times. The resulting MINs are arranged in L
layers. Corresponding input ports are connected, as well as corresponding
output ports. Figure 2.17 shows the architecture of an 8 × 8 replicated MIN
consisting of 2×2 SEs and two layers. A three-dimensional view of the same
network is given by Fig. 2.18. As with dilated MINs, replicated ones were also
introduced by Kruskal and Snir [102]. Packets are received by the inputs of
the network and distributed to the layers. Layers may be chosen by random,
by round robin, dependent on layer loads, or any other scheduling algorithm.
The distribution is performed by a 1:L demultiplexer.

36 2 Characteristics of Network Architectures

Fig. 2.17. Replicated multistage interconnection network (L = 2)

At each network output, an L:1 multiplexer collects the packets from the
corresponding layer outputs and forwards them to the network output. Two
different output schemes are distinguished, as in the case of dilated MINs:
single acceptance (SA) and multiple acceptance (MA). If single acceptance is
applied and there are packets in more than one corresponding layer output,
one of them is chosen. All others are blocked at the last stage of their layer.
The multiplexer decides according to its scheduling algorithm which packet
to choose.

Multiple acceptance also works similar to this scheme in case of dilation:
either all packets are accepted, or just an upper limit R. If an upper limit is

Output 7
Output 6

Output 5
Output 4

Output 3
Output 2

Output 1
Output 0

Input 4

Input 7
Input 6

Input 5

Input 3
Input 2

Input 1
Input 0

Fig. 2.18. Replicated multistage interconnection network (L = 2, 3-D view)

2.3 Wired Network Architectures 37

given, R packets are chosen to be forwarded to the network output, and all
others are blocked at the last stage of their layer. As a result, single acceptance
is a special case of multiple acceptance with R = 1.

Replicated MINs may avoid out of order packet sequences by sending pack-
ets belonging to the same connection to the same layer.

Beneš Network

Another approach to reduce blocking is to add further network stages. Figure
2.19 shows the Beneš network [13] as an example. It is of size 8×8 and consists

Fig. 2.19. Beneš network

of 2×2 SEs. A Beneš network is built by extending a Baseline network with
its inverse one. The last stage of the Baseline and the first stage of the inverse
Baseline are merged. This leads to 2n − 1 stages for Beneš networks. Instead
of a Baseline, all other MIN architectures revealing the delta property can
also serve as a network basis.

Due to their architecture, Beneš networks are non-blocking multistage in-
terconnection networks if packet switching is performed. They show the small-
est complexity of all non-blocking packet-switched MINs.

Bidirectional MIN

Bidirectional MINs [1, 239] operate with SEs and interstage connection lines
in which packets can pass in both directions. As a result, such networks offer
alternative paths for all source-destination pairs. Figure 2.20 shows an 8×8
bidirectional MIN consisting of 2×2 bidirectional SEs. In contrast to previ-
ously presented MINs, sources and destinations are located at the left-hand
side of the figure, due to the bidirectional connections.

38 2 Characteristics of Network Architectures

Fig. 2.20. Bidirectional multistage interconnection network

Bidirectional SEs need additional transfer features compared to ordinary
SEs which had only to transfer packets in the forward direction. Bidirectional
SEs must also be able to transfer in the backward direction and to allow
turnarounds (Fig. 2.21). Due to those turnarounds, bidirectional MINs are also
called turnaround MINs. If their SEs are crossbars, they are called turnaround
crossbars.

Depending on their source and destination nodes, packets pass between
one and 2n− 1 stages to reach their destination.

forward backward turnaround

Fig. 2.21. Transfer directions of bidirectional switching elements

Tandem Banyan Network

Tandem banyan networks [180, 197] are established by placing multiple MINs
with the banyan property in sequence (Fig. 2.22). Each output of the indi-
vidual MINs is connected to the corresponding input of the following MIN.
Additionally, it is connected to the corresponding overall output of the tandem
banyan network (Fig. 2.22, bottom).

According to the banyan property, packets try to follow their unique path
through the first MIN. If a packet reaches an SE where further packets are
destined to the same SE output and it loses the competition for this output,
no blocking occurs, in contrast to an ordinary MIN. In the case of a tandem
banyan network, the packet is marked and sent to the wrong SE output.

2.3 Wired Network Architectures 39

0 N−1

0

N−1

Banyan Banyan Banyan

0

N−1

Fig. 2.22. Tandem banyan network

Sending to the wrong output is called deflection routing. Then, all packets
continue through the MIN. If further conflicts occur, marked packets have
minor priority compared to unmarked.

Marked packets that reach the output of an individual MIN are known to
leave the MIN at the wrong output. Therefore, they try again to reach the
right output by entering the following MIN. Their marking is removed. If they
again lose a conflict and reach a wrong output, they enter the following MIN,
and so on.

Unmarked packets that reach an output of an individual MIN have never
taken the wrong way in this MIN. This means that they have reached the
destination output: they are sent to the overall output of the tandem banyan
network.

Recirculation Network

Recirculation networks [192] are also based on the concept of deflection rout-
ing. The way packets that take the wrong way are handled is almost identical
to that of tandem banyan networks. But in contrast to tandem banyan net-
works, recirculation networks consist of only a single MIN with the banyan
property. Packets that leave this MIN at the wrong output are recirculated
and enter this MIN again (Fig. 2.23). As a result, the hardware costs are
heavily reduced.

On the other hand, such architecture shows bad performance in the case
of heavy network traffic (Sect. 2.2). Recircled packets superpose with new
packets to a large extent and cause network congestion.

40 2 Characteristics of Network Architectures

0

N−1

0

N−1

Banyan

Fig. 2.23. Recirculation network

Sorter Network

Blocking may also be reduced by sorter networks [145]. Sorter networks are
inserted in front of a MIN with banyan property. Packets entering the sorter
network are ordered according to their destination node. As a result, the
following MIN with banyan property becomes non-blocking for those packets.

Figure 2.24 shows an 8×8 Batcher-Banyan network as an example. The
binary comparators of the Batcher sorter ensure the sorting of the packets
before they enter the MIN with banyan property. Inactive comparator inputs
operate as if covering a packet that is destined to an output number larger
than the highest available output number.

Batcher sorter

max{x,y}x min{x,y}x

y min{x,y} max{x,y}y

Banyan network

< < < < <

<

<

< < <

<

< < <

<<

<

<

>

>

> >>

>

> <

Fig. 2.24. Batcher-Banyan network

2.3 Wired Network Architectures 41

Expanded Delta Network

To overcome blocking in delta networks, expanded delta networks [7] are intro-
duced. Such networks are established by interleaving several networks with the
delta property. The quantity of interleaved delta networks is called expansion
factor EF . It also describes the number of output lines per output. For exam-
ple, a 2×2 expanded delta network with EF = 8 is given in Fig. 2.25. Such a

0

0

0

1

1

0

1

1

0

1

Fig. 2.25. Expanded delta network

network is also known as Expanded Delta Fast Packet Switch (EDFPS).
The main drawback of those networks are the huge hardware costs. Even

the costs of a 2×2 network are high, as can be seen from Fig. 2.25.

Clos Networks

Clos networks [37, 67, 184, 200, 219] are characterized by how switches at
the middle stage are connected to the first and last network stages. The basic
version of a Clos network consists of three stages, as shown in Fig. 2.26. An
N×N network where N = k · s is built of k SEs of size s×m at the first
stage, m SEs of size k×k at the middle stage, and k SEs of size m×s at the
last stage. Each network input-output pair can be connected by a path via
an arbitrary middle stage SE. This means that m paths are available for each
connection. A non-blocking Clos network is achieved by m > 2s − 1.

42 2 Characteristics of Network Architectures

1 1 1 1

m kk m

1

s

1

s
1 1 1

2 2 2

k m k

Fig. 2.26. Clos network

Clos networks of more than three stages emerge by substituting again the
middle stage SEs by a Clos network. Using this scheme multiple times, Clos
networks with an arbitrary but odd number of stages can be established.

Multilayer Multistage Interconnection Networks

The architecture of multilayer multistage interconnection networks (MLMIN)
[218] resulted from the idea to create an optimal MIN that is able to deal with
multicast traffic. Multicast traffic evokes a high network load because each
multicast message is delivered to many destination nodes (see Sect. 2.2.1).
This means that each multicast message is multiplied before or during its
journey through the MIN.

Replicated networks as presented in Sect. 2.3.10 could be a solution: repli-
cated MINs of L layers handle traffic with an average of L multicast desti-
nations with similar performance as that of regular MINs with the banyan
property that transfer unicast traffic. But such networks show L times higher
cost.

A better solution is to profit from the particular way in which a multicast
is performed in MINs if packet replication while routing is applied. Figure
2.27 shows such a scenario for an 8×8 MIN consisting of 2×2 SEs. A packet
is received by Input 3 and destined to Output 5 and Output 7. The packet
enters the network and is not copied until it reaches the middle stage. Then,
two copies of the packet proceed through the remaining stages.

Packet replication before routing in the above example would copy the
packet and send it twice into the network. Therefore, packet replication while
routing reduces the number of packets at the first stages. In other words,
comparing the packet density at the stages in case of replication while routing

2.3 Wired Network Architectures 43

1

stage 0 1 2

0

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Fig. 2.27. Multicast while routing

shows that the greater the stage number, the greater is the number of packets.
The only exception is when the traffic pattern results in such a destination
distribution that packet replication always takes place at the first stage. Then,
the number of packets is equal at all stages. But such a distribution is very
unlikely, in general.

To set up multistage interconnection networks that are appropriate for
multicasting, the previously mentioned different traffic densities of the stages
must be considered.

The newly developed multilayer multistage interconnection networks
(MLMINs) take care of these multicast traffic characteristics. Due to the dif-
ferent traffic densities, more switching power is needed at the last stages,
compared to the first stages, of a network.

To supply the network with the required switching power, the new network
structure replicates the number of layers at each stage. The factor with which
the number of layers is increased is called growth factor GF (GF ∈ N\{0}).
Figure 2.28 shows an 8×8 MLMIN (three stages), with growth factor GF = 2,
in lateral view. That means the number of layers is doubled at each stage,
and each switching element has twice as many outputs as inputs. Assume, for
example, that 2×2 SEs are used. Such an architecture ensures that even in
case of two broadcast packets staying at the inputs, all packets can be sent
to the outputs (if there is buffer space available at the succeeding stage). For
instance, one packet is broadcast to the lower layer and the other one to the
upper layer. Figure 2.29 shows such a scenario. As can be seen in the figure,
the SE architecture of MLMINs slightly differs from regular SEs: the outputs
are replicated by the growth factor GF to connect the switch to all GF layers.

Replicating the number of layers at each stage avoids unnecessary layer
replications at the first stages, as in case of the replicated MINs. Choosing

44 2 Characteristics of Network Architectures

Inputs Outputs

Stage 1 Stage 2Stage 0

Fig. 2.28. Multilayer multistage interconnection network (GF = 2)

Packet2

Packet1

Fig. 2.29. Unblocked broadcast at a 2×2 SE with GF = 2

GF = c ensures that no internal blocking occurs in an SE, even if all SE
inputs broadcast their packets to all SE outputs. Nevertheless, blocking may
still occur at the network output, depending on the number R of accepted
packets per clock cycle.

A drawback of the new architecture arises from the exponentially growing
number of layers for each additional stage. The more the number of network
inputs established, the more the stages and layers. To limit the number of
layers and, therefore, the amount of hardware, two options are considered:
starting the replication in a more rear stage and stopping further layer repli-
cation if a given number of layers is reached.

The first option is demonstrated in Fig. 2.30 in lateral view. The example
presents an 8×8 MLMIN in which replication does not start before Stage 2
(last stage), with GF = 2. A 3-D view is given in Fig. 2.31. The stage number

Inputs Outputs

Stage 0 Stage 1 Stage 2

Fig. 2.30. MLMIN in which replication starts at Stage 2 (lateral view)

2.3 Wired Network Architectures 45

Input 6

Input 2

Input 4

Input 0
Input 1

Input 3

Input 5

Input 7

Output 5
Output 4

Output 3
Output 2

Output 1
Output 0

Output 6
Output 7

Fig. 2.31. MLMIN in which replication starts at Stage 2 (3-D view)

in which replication starts is defined by GS (GS ∈ N). Figures 2.30 and 2.31
introduce an MLMIN with GS = 2. Of course, moving the start of layer
replications some stages to the rear not only reduces the number of layers, it
also reduces the network performance due to fewer SEs and, therefore, fewer
paths through the network [218].

Stopping further layer replication if a given number GL of layers is reached
also reduces the network complexity (GL ∈ N\{0}). It prevents exponential
growth beyond reasonable limits in the case of large networks. Figure 2.32
shows such an MLMIN, with limited number of layers in lateral view. A 3-D
view is presented in Fig. 2.33. The number of layers of this 8×8 MLMIN is

Inputs Outputs

Stage 0 Stage 1 Stage 2

Fig. 2.32. MLMIN with limited number of layers (lateral view)

limited to an upper GL = 2. Layers are replicated with a growth factor of
GF = 2. As in the previous option, the reduced amount of SEs also decreases
network performance [218].

Both presented options can be combined to further reduce network com-
plexity. Such a network is determined by parameters GS (start of replication),
GF (growth factor), and GL (layer limit). For instance, Fig. 2.33 shows an
MLMIN with GS = 1, GF = 2, and GL = 2.

MINs with the banyan property and replicated MINs can be considered
as special cases of MLMINs. MINs with the banyan property are equivalent
to MLMINs with GF = 1. In this case, GS and GL have no effect. Replicated
MINs are equivalent to MLMINs with GS = 0, GF = L, and GL = L.

46 2 Characteristics of Network Architectures

Input 6

Input 2

Input 4

Input 0
Input 1

Input 3

Input 5

Input 7

Output 5
Output 4

Output 3
Output 2

Output 1
Output 0

Output 6
Output 7

Fig. 2.33. MLMIN with limited number of layers (3-D view)

An exhaustive comparison of MLMIN cost and MLMIN performance to
MINs with the banyan property and replicated MINs can be found in [218].
There, the advantage of the performance related to the cost of multilayer
multistage interconnection networks is elaborated.

2.3.11 Switching Fabric

Often, network nodes or subnetworks are connected by a central device. Such a
device is called switch [6]. A switching fabric often builds the internal structure
of a switch.

Most switching fabrics are based on multistage interconnection networks.
All dynamic network architectures of Sect. 2.3.10 that overcome the problem
of blocking are suitable. These include crossbars (Sect. 2.3.9), which can be
seen as special case of MINs: a one-stage MIN.

Many irregular network structures, such as local area networks (LANs)
and the Internet, are established using switches and switching fabrics. Nodes
are connected by a switch building a subnetwork. Subnetworks are again con-
nected by a switch building a larger subnetwork. These larger subnetworks
are again connected by a switch, and so on.

2.3.12 Dynamic Networks versus Static Networks

Previously presented network architectures were classified as dynamic (indi-
rect) and static (direct) (Sect. 2.3.1). Static networks were characterized as
having a limited number of fixed point-to-point links between nodes while dy-
namic networks consist of many switches to dynamically change links between
nodes.

But looking at the nodes of static networks in more detail reveals that there
are also switches to change connections. For instance, Fig. 2.34 shows a 2-D
mesh and one of its nodes. The nodes of the mesh incorporate a node core and
a 5×5 switching element (Fig. 2.34(b)), optionally with buffers. The switching
element connects all inputs and outputs of the node to allow packets that are

2.4 Wireless Network Architectures 47

Node Node Node

NodeNodeNode

Node Node Node

(a) 2-D mesh

5x5

Core

(b) Node of the mesh

Fig. 2.34. 2-D mesh architecture

sent from a neighboring node to pass the node in question. Furthermore, the
node core, which represents the actual node functionality, is linked via the
switching element to the rest of the mesh.

The switching element can be realized by a crossbar, for instance. Thus,
one should be aware that the classification in dynamic networks and static
ones is not clearly distinct.

2.4 Wireless Network Architectures

Besides wired network architectures, as presented in the previous section,
wireless architectures [25, 174, 190] may also be used to establish a network
for a distributed system. This means that the nodes of a network are not con-
nected by wires. Information is exchanged via the transmission of electromag-
netic waves. The detailed physical background about electromagnetic waves
will not be discussed here. The interested reader is referred to [150, 185]. This
section addresses the architectures of wireless networks and their dynamic
reconfiguration due to moving nodes.

Often, network architectures are characterized as fixed or mobile [174].
These attributes refer to the nodes of the network. Fixed nodes do not change
their location. Thus, they are usually connected to a network by wire. Nev-
ertheless, there also exist fixed nodes with wireless connections, for instance,
because a wired connection would be more expensive than a wireless one.

In contrast to fixed nodes, mobile nodes move. This leads to changing net-
work architectures, because different locations may lead to different network

48 2 Characteristics of Network Architectures

access conditions. This section deals with distributed systems consisting of
mobile nodes (MNs) and wireless network architectures. Mobile nodes that
have a wired network connection (e.g., notebooks that are connected at dif-
ferent locations via a modem or Ethernet) are not addressed.

Architectures of wireless networks are much more influenced than wired
networks by the particular constraints given by the transmission medium.
Thus, although the physical background of electromagnetic waves will not be
discussed here, some basics about wireless transmission are introduced before
the network architectures are presented.

2.4.1 Basics in Wireless Transmission

In wireless networks, communication is performed by sending and receiving
signals realized by electromagnetic waves. This section discusses the basics of
signal propagation.

Spatial Transmission and Disturbances

To transmit signals as electromagnetic waves, antennas are needed. They build
the interface between the communication device and the transmission medium
(air, space). The simplest (theoretical) antenna is a point, symmetrically send-
ing signals in all directions with equal power. Such an antenna is called an
isotropic radiator.

A real antenna is for instance the Hertzian dipole, a thin metal baton. A
length of half of the transmission wavelength λ is very effective. The dipole
shows uniform (omni-directional) sending power only in the plane perpendic-
ular to the baton.

More complex antennas transmit in preferred directions. This supports the
adaption of the transmission to an asymmetric environment, which usually
occurs in real-world scenarios. Such antennas are called directional antennas.

By combining multiple antennas, antenna architectures with various char-
acteristics can be realized. These architectures, such as sectorized antennas
and multi-element antenna arrays are explained in [174], along with smart
antennas that use signal processing to improve performance.

If uniform transmission in all directions in a plane around the sender is
assumed, the plane can be divided into three parts (Fig. 2.35): transmission
range, detection range, and interference range.

The transmission range describes the area where a receiver can communi-
cate well with the sender due to a good signal noise ratio. The power of the
received signal gets weaker the farther the receiver is from the sender. If no
communication is possible due to the large distance from the sender, but the
sender’s signal can still be distinguished from background noise, the area is
called detection range. Finally, if the receiver is located within the interference
range, the sender can no longer be distinguished from the background noise.

2.4 Wireless Network Architectures 49

range
interference

range
detection

sender

no interference

range
transmission

Fig. 2.35. Ranges of a sender

Nevertheless, it is still strong enough to interfere with other signals and to
disturb them.

Even in the case of a uniform transmission, the ranges usually do not look
like rings, as in Fig. 2.35. That is because objects in this area disturb the
signal transmission. The higher the frequency of the signal, the more s the
signal disturbed by an object (called obstacle) that is located in the line of
sight. The line of sight (LOS) is defined by a straight line between the sender
and the receiver. A receiver that is located behind an object does not receive
the signal. It is completely blocked by the object (this is called shadowing).

Another disturbance is called reflection. Huge objects reflect the signal
while absorbing a part of the power. The reflected signal may interfere with
the original signal. Because both signals took paths of different lengths, they
arrive at the receiver at different times. Such an effect is called delay spread.
In extreme cases, the signal may be destroyed due to interference, particularly
if many reflected signals overlay. On the other hand, reflection is often used to
reach receivers that are not in the LOS. The signal may be reflected several
times to be forwarded to a receiver.

Refraction may also disturb the signal. If the transmission medium changes,
refraction occurs due to the different velocities of the electromagnetic wave,
depending on the medium.

50 2 Characteristics of Network Architectures

In the case of objects that are in their size close to the wavelength, scatter-
ing and diffraction may occur. Scattering means that the signal is divided into
many weaker signals. Diffraction arises if the signal is deflected at an edge of
an object. In both cases, the signal power is weakened and strongly depends
on the location.

The signal is also influenced if either sender or receiver moves. Then, effects
like the Doppler shift must be considered. The Doppler shift describes the
wavelength shift between sender and receiver caused by different velocities.

Multiplexing and Modulation

Wireless communication must deal with two main shortcomings concerning
the transfer of information. First, only a single medium is available for all
nodes that like to communicate. This problem is solved by multiplexing. Sec-
ond, information (like ‘0’ and ‘1’ bits) cannot directly be transmitted because
electromagnetic waves of particular frequencies must be used. Modulation
overcomes this. Both issues are briefly addressed here.

Multiplexing ensures that multiple nodes can use the same medium for
communication. Four kinds of multiplexing can be applied to wireless net-
works: multiplexing in space, in frequency, in time, and in code.

Space division multiplexing (SDM) profits from the fact that the signal
power decreases the greater the distance to the sender (Fig. 2.35). This means
that if the spatial distance between two senders exceeds a particular limit
(twice the interference range), they will not interfere with each other. A node
receives the information of the sender in whose range it is located. Commu-
nication channels of different sender-receiver pairs are divided by space.

Frequency division multiplexing (FDM) divides the available frequency
band into multiple non-overlapping subbands. Thus, communication channels
of different sender-receiver pairs are divided by frequency. Guard spaces (very
small frequency bands) between adjacent subbands prevent channel interfer-
ence. To ensure a particular transmission quality and rate, the frequency band
can only be split into a small number of subbands. Therefore, only a small
number of communication pairs are possible.

Time division multiplexing (TDM) allows a sender-receiver pair to use the
entire frequency band for a certain amount of time. Then, another sender-
receiver pair can access the frequency band for a certain amount of time,
and so on. Gaps between succeeding transmissions serve as guard spaces to
prevent interference. TDM suffers from the drawback that all nodes must be
synchronized. Only if all nodes are synchronized in time are they able to send
or receive in the desired time slice and not interfere with any other node.

Code division multiplexing (CDM) does not divide frequency band or time.
All sender-receiver pairs use the same frequency band all the time. Different
communication channels are distinguished by codes. Each channel is encoded
by a particular code. A receiver only knows the code assigned to its channel.
Therefore, it is able to decode the information only of its channel. The other

2.4 Wireless Network Architectures 51

channels form a kind of background noise. In CDM, sender and receiver need
some computing power to encode and decode the information.

After one of the above medium access methods is chosen, modulation must
be applied to include the information to be transmitted into the electromag-
netic waves. To transmit digital data, two steps must be performed. First, a
digital modulation transfers the digital data into an analog baseband signal.
Then, an analog modulation shifts this signal to the frequency band that is
intended for transmission. The digital and analog modulation schemes are
briefly presented in the following. A detailed description can be found in
[76, 150, 174, 185, 229].

Amplitude shift keying (ASK) is a digital modulation scheme in which the
two values ‘0’ and ‘1’ are represented by two different amplitudes of a sine
signal.

Another digital modulation scheme is called frequency shift keying (FSK).
For instance, in binary FSK (BFSK), the two different binary values result
in two different frequencies of the signal. To avoid fast phase changes due to
the different frequencies, continuous phase modulation (CPM) and (particu-
larly) minimum shift keying (MSK) are used. This scheme also considers the
previous binary value, besides the current one, to determine the frequency.

Phase shift keying (PSK) changes the phase of the signal depending on the
digital value. In case of binary PSK (BPSK), the phase is shifted by π each
time the binary value changes from ‘0’ to ‘1’, and vice versa. Quadrature PSK
(QPSK) represents two bits by a particular phase. As a result, four differ-
ent phases are applied. Previous kinds of PSK schemes need synchronization
between sender and receiver to get a common reference signal that can be
compared with the current phase of a signal. Differential QPSK (DQPSK)
shifts the phase relative to the phase of the previous two bits. No reference
signal is needed. Combining PSK with ASK leads to quadrature amplitude
modulation (QAM).

Another concept of digital modulation is called multi-carrier modulation
(MCM). A bit stream is divided into many bit streams of lower rate. Each of
these lower rate bit streams is modulated by one of the previously mentioned
schemes, e.g., QPSK, and transmitted via a separate frequency. Orthogonal
frequency division multiplexing (OFDM) chooses the frequencies of MCM
such that they are orthogonal. This means that the amplitude of each signal
reaches its maximum at a frequency at which all other amplitudes are zero.
Adding some coding for error detection and correction of the other bit streams
results in coded OFDM (COFDM).

After performing the digital modulation, an analog modulation shifts the
signal to the desired frequency band. Three analog modulation schemes are
mainly used: amplitude, frequency, and phase modulation. They operate simi-
larly to the digital modulation schemes ASK, FSK, and PSK, but in a contin-
uous way. Amplitude modulation (AM) changes the amplitude of the carrier
sine signal depending on the amplitude of the analog signal to be coded. Fre-
quency modulation (FM) changes the frequency of the carrier signal to encode

52 2 Characteristics of Network Architectures

the amplitude of the analog signal, and phase modulation (PM) changes the
phase of the carrier signal.

This digital and analog modulation result in a radio signal that a sender
node of a distributed system transmits to a receiver node. The receiver node
transforms the signal via analog demodulation to an analog baseband signal.
Depending on the digital modulation of the data, synchronization is needed,
for example, to detect a phase shift. With this information, the receiver can
recover the original data from the baseband signal.

Often, the bandwidth needed for the radio signal is enlarged before trans-
mission. This technique is called spread spectrum. It helps reduce the in-
terference of signals of low bandwidth called narrowband interference. The
two realizations direct sequence spread spectrum (DSSS) and frequency hop-
ping spread spectrum (FHSS), which change the coding of the digital data
or change the frequency of the radio signal, respectively, are explained in
[159, 174].

2.4.2 Cellular Networks

Wired network architectures of parallel and distributed systems are distin-
guished by considering the location of their nodes and the way how they are
connected by wires. Wireless networks use only one medium. The locations
of the nodes vary if mobile nodes (MNs) are involved. Thus, wireless network
architectures must be classified in a different way than wired ones. This book
considers two basic architectures: architectures in which mobile nodes com-
municate only directly with stationary network elements and architectures
that consist of only mobile network elements. The latter architecture will be
discussed in the next section.

Architectures in which mobile nodes directly communicate with only the
stationary network elements are, for instance, cellular networks [12, 131, 174,
223]. The stationary elements are called base stations (BSs). Each of them
covers a particular area (transmission range) by its transmissions. This area
is denoted as cell. A mobile node within this cell communicates only with the
base station directly. If the mobile node needs to communicate with some other
mobile node in the cell, communication is established via the base station.

To cover an area that is larger than the transmission range of a base
station, multiple base stations are positioned so that each location of the
requested area can be reached by at least one base station. If it is assumed that
the transmission range represents a circle, as in Fig. 2.35, the range of each
base station can be approximated by a hexagon. Then, the optimal spatial
distribution of the base stations is as depicted in Fig. 2.36. Nevertheless,
assuming the transmission range to be circles does not always correspond to
reality (see Sect. 2.4.1).

Cell sizes are usually kept small to achieve high capacity: cellular networks
use space division multiplexing. The greater the number of cells into which the
area is divided, the greater the number of communication channels that can

2.4 Wireless Network Architectures 53

2f
1f 1f 1f

3f

2f

1f
3f

1f

2f
1f

3f

2f

1f
3f

3f

1f

2f

Fig. 2.36. Spatial distribution of base stations

simultaneously be established by reusing the same frequency. If the expected
density of mobile nodes is small in any area, the cell size may be chosen larger
than that in an area where the expected density of mobile nodes is high.

Small cell sizes also lead to lower transmission power needed by the mobile
nodes: they are always close to a base station. Because mobile nodes cannot
permanently be connected to a power supply network due to their mobility,
saving power is an important issue for them.

Another argument for small cell sizes is interference. In small cells, only
local disturbances interfere with the transmitted signal. Furthermore, if a cell
fails, only a small area is not covered by a base station. Mobile nodes can
reach a covered area fast.

On the other hand, small cell sizes cause high cost in infrastructure. Many
more base stations are needed than in the case of large cell sizes. All the base
stations must be connected by a wired communication network, such as the
ones as presented in Sect. 2.3.

Additionally, more communication overhead results, because handoffs oc-
cur more often. A handoff names the process of a mobile node that changes its
base station due to its movement: the context of a mobile node is switched to
another base station in the case where the signal power falls below a certain
threshold value.

During a handoff, a mobile node must establish a new communication
channel to the new base station. Procedures like authentication must be per-
formed, authorization must be verified, and so on. In addition, the availability
of a communication channel and the required bandwidth to the new base sta-
tion must be checked. Within a cell, for instance, time division multiplexing
may be used, allowing multiple mobile nodes to communicate to the base sta-
tion. If all time slices are already in use, no new connection can be established.

54 2 Characteristics of Network Architectures

Besides connecting to the new base station, the mobile node must also
disconnect from the old base station. To avoid a complete disconnection of
the mobile node from all base stations during the handoff, there will be a short
time during which the mobile node is connected to both base stations. This is
feasible only if an overlap of the areas covered by the two base stations exists.
Figure 2.37 shows such an overlap and a mobile node that crosses this area. If

BS1 BS2
MN

Fig. 2.37. Overlap of two base stations

the mobile node receives data from both base stations during a time interval,
the handoff is called soft handoff. In contrast, a hard handoff switches from
one base station to the other at a certain point in time.

Due to the overlap of adjacent base stations, as depicted in Fig. 2.37,
adjacent base stations use different frequencies or different codes to avoid in-
terference in the overlap area. In other words, frequency division multiplexing
or code division multiplexing is applied.

To keep the amount of frequencies in the case of FDM as small as possible,
base stations that do not overlap may use the same frequencies. Figure 2.36
shows how frequencies may be assigned to the base stations. A cluster includes
all cells of equal frequency. Figure 2.36 consists of three clusters.

A further division of the area can be performed by partitioning a cell into
slices. Sectorized antennas that transmit at different frequencies can be used
to cover the different slices. If a cell suffers from much traffic, it can borrow
frequencies from adjacent cells. This borrowing channel allocation (BCA) is
much more flexible than the fixed channel allocation (FCA). If any frequency
can be assigned to a base station, it is known as dynamic channel allocation
(DCA).

2.4.3 Ad-hoc Networks

Cellular networks as described in the previous section need some infrastruc-
ture such as base stations. If no such infrastructure is available, for example,

2.5 Network-on-Chip Architectures 55

because it is too expensive or it takes too long to establish, mobile ad-hoc net-
works [39, 120, 127, 162, 174] may be used. This section gives an introduction,
particularly to multi-hop ad-hoc networks.

Ad-hoc networks consist only of mobile nodes. A mobile node acts as the
source node of a message, as its destination node, and as an intermediate
node to forward the message to the destination or in its direction. Figure 2.38
depicts a possible scenario in an ad-hoc network. A mobile node would like to

MN

MN

MN

MN MN

MN
MN

MN
MN

MN

Fig. 2.38. Ad-hoc network

send a message to another mobile node. But because the source node is not
able to directly reach the destination node, it first transmits the message to an
intermediate mobile node which is in its range. This intermediate node sends
the message to another intermediate node, which is able to directly reach the
destination node and delivers the message.

One of the most important problems of ad-hoc networks is the routing,
i.e., finding the right path to the destination node. The simplest way is the
one in which each mobile node periodically sends a signal. An adjacent node
receives this signal and updates its local table, which contains all neighboring
nodes. This can be used by a sender, which sends the message to its neighbors
according to its local table. Next, these neighbors send the message to their
neighbors, and so on. Additional effort may be needed to avoid loops, to
consider a fast changing topology, to deal with asymmetric links (a node may
receive its neighbor but not vice versa), and so on. Because this book addresses
more the network architecture and less the routing, the interested reader is
referred to [158, 174] for routing details.

2.5 Network-on-Chip Architectures

In addition to wired and wireless network architectures, a third kind of net-
work architecture can be distinguished that connects the components on a
single chip. Currently, a bus topology usually provides the basis for such an

56 2 Characteristics of Network Architectures

architecture. But, in future, more complex architectures will be needed most
likely. They are called network-on-chip (NoC). For instance, networks-on-chips
[15, 46, 47, 187] are proposed to connect the components of a system-on-chip
or the cores of a multicore processor. Such network architectures are also
wired, but they must cope with particular constraints. In the following, the
term network-on-chip also includes the bus topology. The term simply denotes
all kinds of network architectures that are used for linking the components on
a single chip.

2.5.1 Origin and Use

The ongoing improvement in very large scale integration (VLSI) technology
leads to a further increasing number of devices per chip. Since this increased
density can no longer be used to improve the performance of the components
on the chips as in the past, the freed chip area can be used for other system
components or for multiple processor cores in case of a former uniprocessor
chip architecture [46].

System-on-Chip

Due to the incorporation of other system components, an entire system may
be built on a single chip, including digital and analog devices. Such a sys-
tem is called system-on-chip (SoC). To shorten the development time of new
chips, system components sometimes are prefabricated. The developer chooses
from the available prefabricated components called intellectual property cores
(IP cores), synonymous with intellectual property blocks (IP blocks). These
IP cores may be soft IP cores given by software libraries or hard IP cores
with positioned hardware elements and routed wires [135]. In addition to IP
cores, entire processors, analog devices, and so on are also options for system
components.

Figure 2.39 depicts a system-on-chip with its network-on-chip connecting
some IP cores. SoCs may be complete computer systems, processors with many
peripheral functions, or specialized systems for embedded applications. They
have several advantages compared to multiple chip systems. Due to short dis-
tances between the components, SoCs operate much faster. The integration
on a single chip provides lower assembly cost and higher reliability. The high
integration of components also reduces the power consumption of each com-
ponent (while the increasing number of components raises the overall power
consumption).

Three different technologies are applied to realize a system-on-chip. These
technologies include the full-custom realization, the standard cell realization,
and the realization with field programmable gate arrays (FPGAs). The full-
custom SoC sets up a chip with optimized circuits for a particular function
that the developer is willing to realize. The standard cell SoC design is based

2.5 Network-on-Chip Architectures 57

IPIP

IP
IP

IPIP

IPNoC

IP

Fig. 2.39. System-on-chip

on a hardware description language (HDL) like VHDL or Verilog. These lan-
guages use standard libraries providing the logical and physical representa-
tions of standard components (IP cores). The SoC hardware realization can
be performed by application-specific integrated circuits (ASICs). The third
system-on-chip realization is by using FPGAs. FPGAs will be described in
detail in Sect. 2.6.

Multicore Processors

If the improvement in VLSI affects uniprocessor chips (with a single processor
core), the chip area gained can be used to incorporate additional processor
cores. Such a system is called multicore processor or multiprocessor system-
on-chip (MPSoC). Currently, much less than ten cores is a reasonable number
for a chip.

Figure 2.40 shows a multicore processor with its network-on-chip connect-
ing the cores. Like multiprocessor systems such as parallel computers, multi-
core processors also outperform single core uniprocessor systems if a parallel
execution of the applications is possible. A high speed-up in computing can be
achieved. Despite some common features between them, multicore processors

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

NoC

Fig. 2.40. Multicore processor

58 2 Characteristics of Network Architectures

differ from multiprocessor systems with discrete processor chips in many ways.
For instance, because chip area is limited, the cores of a multicore processor
have usually no local memory (except a cache). All cores access a shared mem-
ory, which may be the bottleneck of the system as the number of cores grows.
Some multicore processors even share a second level cache, causing the same
problems as a shared main memory. On the other hand, the cache coherency
circuits for first-level cache and (non-shared) second-level cache can operate
at a higher frequency due to much shorter cache distances.

Concerning the level of parallelism, multicore processors are operating us-
ing thread level parallelism (TLP), which is also called chip-level multipro-
cessing (CMP) in this context.

Multicore processors are called symmetric if all cores are identical. If the
cores differ, the multicore processor is asymmetric.

2.5.2 Particular Characteristics

For multicore processors, as well as for systems-on-chips, one of the main
challenges is to find an appropriate network for connecting the (processor or
IP) cores: the network-on-chip. In principle, the same networks as for off-chip
connections can be applied. But NoCs reveal some particular characteristics
that have to be considered [15, 171].

Comparing networks-on-chip with off-chip networks, one of the main dif-
ferences is the reduced overall network area. Thus, a network that is set up on
a chip results in much shorter distances between the network components. In
consequence, signals on the wires reach their destination much faster than in
off-chip networks. The NoC can exchange signals at a higher frequency. The
clock cycle time of the network can be reduced significantly. On the other
hand, a fast clocking in combination with global wires across the chip may
lead to synchronization problems: a global synchronization may fail because
the signal delay for traversing the chip takes more time than a clock pe-
riod. Repeaters in long wires keep the delays linear to wire length instead of
quadratic.

The signals on the shorter wires in NoCs require less voltage to be driven.
Thus, less power is consumed by each network component, compared to an
identical component of a previous chip generation, which is larger in size.
But, on the other hand, the greater integration leads to more components
on the same chip area. This counters the previously mentioned power sav-
ing properties, and the overall power needed increases. Additionally, it is also
increased by the higher clocking on the chip. The growing power consump-
tion implies that thermal problems may arise. Furthermore, increased power
demands make power supply to the components on the chip difficult. There-
fore, networks with basically low power demands are a good option for NoC
architectures.

A way to save power in the network is by the reduction of network compo-
nents in number and size. Fewer and smaller components consume less power.

2.5 Network-on-Chip Architectures 59

Such networks additionally save chip area, which is expensive. The chip cost
depends on the chip area by the power of three [83]. A reduced network chip
area can be achieved by using simple components. For instance, NoC routers
with reduced intelligence concerning network failures, routing alternatives,
arbitration, and blocking behavior save logic circuits and, thus, chip area.

The high cost of chip area is also the reason for high memory cost. Memory
requires a large chip area compared to other components. Therefore, fast static
memory cells are particularly expensive. Smaller buffers should be chosen in
NoC architectures. For instance, if a communicating pair of nodes always uses
the same network path, no out of order sequences of data occur. A buffer to
reorder data can be omitted. Furthermore, the switching technique of worm-
hole switching should be applied. Then, a buffer size to accommodate flits
instead of packets is sufficient. If packet switching is not a precondition, cir-
cuit switching may be a better option than wormhole switching. No buffers
are needed at all. But then, blocking of messages can be a problem.

Buffers should be more centralized. If buffers of relatively small size are
distributed in the NoC, the overhead areas of the buffers accumulate uncon-
trollably. Internal buffering in crossbars must be avoided, for instance. An
NoC architecture with a central buffer should be preferred to architectures
with distributed buffers.

Because the network with its attached cores is located on a single chip, two
advantages result. First, sorting out malfunctioning chips after chip produc-
tion and testing lead to chips that rarely fail while operating. In consequence,
any logical circuits to detect and handle failures of network components can
be omitted in such reliable networks. Protocols need no error correction or
retransmission features. This again saves chip area. Nevertheless, in the case
of a poor chip design or bad environmental conditions, errors may occur due
to the low chip voltages. Then, crosstalk, electromagnetic interference, and
radiation-induced charge injection are not negligible in relation to chip volt-
age. Error correction logic can only be omitted if electrical noise can be kept
within maintainable limits by using very conservative circuits [47].

In addition, the chip designer should be aware that network congestion may
occur similarly to off-chip networks. Dropping data would then nevertheless
require retransmission management, which is costly. A careful buffer imple-
mentation is usually a better way to address congestion. For the same reason,
only deadlock-free network architectures should be considered for NoCs. For
most topologies, deadlock-free routing algorithms are available.

The second advantage of single-chip systems is that the network with its
attached cores needs no external pins to connect the network to the cores,
neither on the network side nor at the cores. Network and cores are connected
on-chip. Only pins for external devices must be incorporated, so less area for
pins is required. Furthermore, the number of links per core is not as critical as
for nodes in an off-chip network where each link to a neighboring node requires
pins and powerful signal drivers. As a result, each core on the chip can be
connected to many neighbors if allowed by the chip layout and the resulting

60 2 Characteristics of Network Architectures

wire crossings. In addition, much wider links than in off-chip networks can
be introduced. For instance, 300 wires in parallel to simultaneously transfer
300-bit data are feasible [47, 105].

2.5.3 Topologies

Many topologies for networks-on-chips are feasible. In principle, all networks
introduced in Sect. 2.3 are also appropriate for NoCs. But there are some
constraints and specifics due to the characteristics presented in the previous
section. They influence the NoC topology and other properties of the NoC
architecture.

Two problems were pointed out: the power consumption problem and the
area consumption problem. The power consumption problem leads to the con-
clusion that networks with basically low power demands should be preferred
to NoC architectures. For instance, topologies that require very long wires
across the chip must be avoided.

The area consumption problem favors networks with components of low
number and small size. Networks that offer only simple functionality fulfill
these requirements. As mentioned in Sect. 2.5.2, the single-chip property al-
lows simple functionalities, for instance, as in case of the failure detection,
which can simply be omitted. Furthermore, buffer sizes must be reduced and
centralized as much as possible.

Besides these restricting features of NoCs concerning their architecture,
there are also relaxing features, as derived in previous section. For instance,
the number of links and wires per core (which is the communication node of
the NoC) is not as critical as for off-chip networks. Thus, not only are network
topologies with a low number of links like meshes or multistage interconnection
networks a good option, a highly parallel data transfer is also feasible.

Currently, most system-on-chip and multicore processors use bus or cross-
bar topologies. Figure 2.41 depicts a current multicore processor consisting of
two cores connected by a crossbar. Both cores of this dual core processor con-
tain a CPU with its first level and second level cache. The crossbar connects
them and provides a high speed connection to the (off-chip) main memory.
If only two cores are involved, a crossbar or a bus is sufficient for the data
exchange.

Busses are also appropriate for current SoC implementations. Their func-
tionality and their low number of components only causes moderate network
traffic that can be handled by busses. More complex networks are not yet
needed.

But as the number of SoC components or the number of cores on a mul-
ticore processor grows [66], busses fail due to their bad blocking behavior.
Furthermore, the power consumption of busses also increases because higher
voltages are needed to drive the longer wires [20]. Crossbars must also be
avoided due to the resulting size and the chip area consumption involved. Re-

2.5 Network-on-Chip Architectures 61

CPU 1

L1 Cache L1 Cache

L2 Cache L2 Cache

Cross−

bar

Main Memory

CPU 2

Fig. 2.41. Dual core processor with crossbar NoC

placing crossbars by multiplexers and demultiplexers can reduce this problem,
but not completely solve it.

In the literature, many topologies are proposed for networks-on-chips. One
of them is the multistage interconnection network topology. Guerrier and
Greiner [73] established a bidirectional MIN structure (equivalent to a fat tree)
using FPGAs. They called this on-chip network, with its particular router de-
sign and communication protocol, Scalable, Programmable, Integrated Net-
work (SPIN). The network operates with a wormhole switching technique and
with deterministic routing, although alternative paths exist in a bidirectional
MIN. Its performance for different network buffer sizes was compared.

Alderighi et al. [3] used MINs with the Clos structure. Multiple parallel
Clos networks connect the inputs and the outputs to achieve fewer blockings.
Again, FPGAs serve as basis for realization.

Lahiri et al. [106] evaluated bus and ring topologies for NoCs. They in-
vestigated the performance of particular architectures of busses and rings
dependent on spatial localities. Shared and hierarchical busses are used.

Shared busses also build the basis of Wingard’s research [234]. His SoC
communication infrastructure, called STBUS, can additionally be used to set
up crossbars.

Wiklund and Liu [231] proposed a mesh based network-on-chip. They
called it SoCBUS. It was developed especially for hard real-time embedded
systems. Packets lock circuit parts while passing them.

Another mesh NoC was developed by Kumar et al. [105]. Their project
describes a design methodology for generating the mesh architecture, and, in
a second step, the application is mapped onto the mesh.

Lee et al. [112] presented a star network architecture. It is realized as a
globally asynchronous system. They compared to it several other topologies.

Lüdtke et al. [124] investigated bidirectional MINs to be applied for recon-
figurable NoCs. Particularly, profiting from the locality of bidirectional MINs

62 2 Characteristics of Network Architectures

was the goal of this research: a rewiring of the interconnections when the
locality of network traffic changes heavily improves the network performance.

Sánchez et al. [173] described a reconfigurable direct network. In a two-
dimensional torus topology, a node is able to exchange its position with a
neighboring node.

Majer et al. [125] developed a simulator for evaluating a reconfigurable
mesh architecture for NoCs, called DyNoC. The DyNoC is an incomplete
mesh. Large chip areas are used for function blocks (Sect. 2.6), prohibiting
mesh nodes from these areas.

More research has been performed in the area of network topologies for
networks-on-chips. For instance, the reconfiguration of NoCs has been investi-
gated by some researchers. Some of previously presented research papers deal
with NoC topologies in combination with dynamic reconfiguration.

To support the design of a network-on-chip for a particular application,
some tools have been developed. They help chose a feasible network architec-
ture and offer some assistance in hardware development. To map the commu-
nication demands of the cores onto predefined topologies like meshes, MINs,
and other topologies, Bertozzi et al. [17] developed a tool called NetChip
(consisting of SUNMAP [143] and xpipes [16, 187]). This tool provides com-
plete synthesis flows for NoC architectures. The authors investigated several
topologies with their tool: mesh, torus, hypercube, and MINs.

Ching et al. [35] introduced a high-level NoC description language that
eventually creates VHDL code. The related tool is also able to simulate the
high-level description. Cycle-accurate performance results are obtained.

Table 2.3 gives an overview about proposed NoC topologies and related
features. To summarize, previous publications propose the following topolo-
gies for NoCs: busses, meshes, tori, rings, stars, hypercubes, crossbars, and
multistage interconnection networks. All of them were presented in Sect. 2.3.

2.6 Network Reconfiguration

Previous sections presented several network architectures. Usually, the opti-
mal network architecture heavily depends on the applications running on the
network nodes. Different kinds of applications produce different kinds of net-
work traffic pattern and, thus, different kinds of network architectures deal
with them best [106]. In consequence, a system with a changing network ar-
chitecture dependent on the applications and the traffic may perform better
than a system with a fixed architecture if the reconfiguration overhead does
not counteract the performance gain. Such a reconfiguration of wired network
architectures or network-on-chip architectures will be the topic of this section
[11, 38, 224].

2.6 Network Reconfiguration 63

Table 2.3. NoC topologies

Topology Features

bus hierarchical busses [106],
STBUS [234],
tool support by NetChip [17]

mesh locked circuit parts by packets (SoCBUS) [231],
mapping of applications [105],
reconfigurable mesh [10, 125]

torus neighboring nodes may be exchanged [173],
tool support by NetChip [17]

ring considering spatial localities [106],
tool support by NetChip [17]

star asynchronous realization [112]

hypercube tool support by NetChip [17]

crossbar composed using STBUS [234]

MIN deterministic routing [73],
FPGA realization [3, 73],
reconfigurable bidirectional MINs [124],
tool support by NetChip [17]

2.6.1 Reconfiguration Types and Levels

Different types of network reconfiguration are distinguished: configuration,
reconfiguration, and dynamic reconfiguration.

The term network configuration relates to a network that is composed of
predesigned components. These predesigned components build the basis of the
network architecture. The network architecture is set up by configuring the
components and adapting them to fulfill the desired network features. Due
to the predesigned components, network design becomes fast and easy. Only
the component parameters have to be fixed. The network is configured during
set-up, also called compile time. Therefore, the configuration is sometimes
called compile-time reconfiguration (CTR). The term network reconfiguration
describes the case where a network can be configured multiple times. That
means that it can still be configured after network set-up, for instance, by
changing network parameters: reconfiguration takes place.

Finally, dynamic reconfiguration of a network refers to a network recon-
figuration that takes place while the network is operating. This means that
parameters of the network are changed without interrupting the network in
its task of continuously transferring messages. Because the reconfiguration is
activated at run-time, it is also called run-time reconfiguration (RTR). Table
2.4 summarizes the meanings and differences of the three terms.

All kinds of network reconfiguration can be related to software and hard-
ware. Software reconfiguration from the technical point of view can easily be
applied by changing or updating the software of the network control units if

64 2 Characteristics of Network Architectures

Table 2.4. Term overview

Type Characteristic

configuration network parameter set-up at compile-time

reconfiguration network parameter set-up after compile-time

dynamic reconfiguration network parameter set-up at run-time

the software is stored in erasable and rewritable memory, like RAM cells or
flash memory. Software reconfiguration is a well-known issue and, thus, it is
concentrated on hardware reconfiguration in the following.

Hardware reconfiguration can address different abstraction levels. At the
gate level, simple switches or multiplexers can be reconfigured by changing
the state of particular transistors. At the transfer level, crossbars, busses, and
other network components are affected by the reconfiguration. Their compo-
nents, like the multiplexers, are subject to change. And at the architecture
level, the network topology, the switching technique, etc. are the objects of
interest to be reconfigured. Of course, a reconfiguration at a higher level usu-
ally also causes a reconfiguration at the lower levels. In the remaining part
of this section, the higher hardware levels of reconfiguration are considered.
Particularly, the challenges of dynamic reconfiguration are presented.

2.6.2 Dynamic Reconfiguration

As previously mentioned, the performance of a particular network architec-
ture heavily depends on the network traffic pattern. In consequence, if traffic
patterns change, a dynamic reconfiguration of the network architecture to
adapt it to the new traffic pattern may significantly improve the network per-
formance if the reconfiguration overhead does not counter the performance
gain (which will be discussed later in this section).

Figure 2.42 gives an example. Two applications are executed on the nodes
of a multiprocessor system. The multiprocessor system consists of eight nodes,
which are connected by a three-stage bidirectional multistage interconnection
network with 2×2 switching elements.

Each application launches two processes. The processes of the first applica-
tion are running on nodes P2 and P3, those of the second application on nodes
P4 and P5 (Fig. 2.42(a)). The processes that belong to the same application
are obviously communicating much more with each other than with processes
belonging to different applications. The figure depicts the main communica-
tion paths.

Now, a third application is started that consists of four processes. The four
available nodes, P0, P1, P6, and P7, are allocated by these processes. Figure
2.42(b) shows that their communication path is extremely long if P0 or P1
wants to exchange messages with P6 or P7. Messages must pass all stages
from left to right and back again. A dynamic reconfiguration of the network

2.6 Network Reconfiguration 65

(a) Two running applications

(b) New application started

(c) Reconfigured network

Fig. 2.42. Dynamic network reconfiguration

66 2 Characteristics of Network Architectures

topology, so that the critical communication path is shortened, improves the
performance [124]. Changing the interstage connections in front of the first
stage dynamically reconfigures the bidirectional MIN (Fig. 2.42(c)). The pro-
cesses of the new application can communicate by messages that turn around,
at the latest, at the middle stage. The lengths of the communication paths of
the first and second applications are not changed. Their messages still pass
only the first stage.

The previous example gave a scenario that profited from the topological
localities of the network. The dynamic reconfiguration mapped the localities
of the network topology onto the localities of the network traffic pattern.

Another scenario for a dynamic reconfiguration can be the changing of
traffic patterns, resulting in a hot-spot node. The hot spot may appear due
to a new application. In this case, a dynamic reconfiguration of the network
that provides more communication capacity to the hot-spot node reduces this
bottleneck.

Generally, dynamic reconfiguration can overcome temporary bottlenecks
concerning the communication capacity. This can be achieved by temporar-
ily dropping network characteristics that reduce performance. For instance,
error checking in messages can be stopped. The time for error checking is
saved and messages reach their destinations faster. In addition, the related
hardware can be used for some performance-enhancing tasks. In this scenario,
communication safety is sacrificed for the benefit of higher communication
capacity.

Besides these self-optimizations and adaptations of network architectures,
other reasons for network reconfiguration exist. For instance, design and man-
ufacturing costs are reduced because predesigned network hardware can be
used instead of dedicated integrated circuits, which need to be developed.
Furthermore, new developments and standards can be incorporated into net-
works after their completion: networks with a long lifetime can be updated
without exchanging hardware modules. Even changes during the design phase
due to new standards or requirements can be handled without a complete
network redesign.

Network hardware resources can efficiently be used by reconfiguring net-
work components with different functionalities that are not required in par-
allel. This means that a network component can switch between two or more
functionalities from time to time. Finally, reconfiguration can help increase
fault tolerance and reduce failures. If parts of network components fail, im-
portant functionalities can be transferred to the remaining parts of the com-
ponents in question.

Previous items point out the benefits of network reconfiguration. However,
applying dynamic reconfiguration raises several questions and problems. For
instance, packet switching may lead to a situation where packets are stored
in the network buffers while the network is dynamically reconfigured. If this
reconfiguration also changes the interconnections of the network (Fig. 2.42(b)
and 2.42(c)), the stored packets must be handled with care: their path to the

2.6 Network Reconfiguration 67

destination node may have changed or, worse, there may be no longer a path
from the current position to the destination node due to the reconfiguration.
Thus, a technique must be developed for dealing with such stored packets that
ensures that they or some retransmitted copies reach the desired destination
node. This technique must not reduce the network performance and counter
the benefit of reconfiguration.

The dynamic reconfiguration will result in a new network architecture. For
instance, the parameters of the network topology are changed in the above ex-
ample. Thus, determining the new architecture is also related to the problem
of packets stored prior to reconfiguration. On the one hand, the new architec-
ture chosen should support the redirection of the stored packets. On the other
hand, the reason for initiating the reconfiguration, e.g., changed network traf-
fic patterns, must also be addressed. The challenge is to find an optimal new
network architecture that is a good choice to act as the result of the dynamic
reconfiguration.

Another important open consideration in this environment is the predic-
tion of network traffic patterns of the near future. A dynamic reconfiguration
of the network takes some time during which no messages are transferred. The
time interval needed for reconfiguration is called reconfiguration phase. The
length of the reconfiguration phase depends on the technology used. In the
case of FPGAs, it may last from microseconds to a few seconds [135]. This
means that a dynamic reconfiguration makes sense only if the operation phase
is much longer than the preceding reconfiguration phase. The operation phase
describes a time interval in which no reconfiguration occurs. In consequence,
prior to a reconfiguration, it must be determined whether the reconfiguration
is currently profitable. To do so, the network traffic of the near future must
be predicted. Such prediction is usually very difficult.

2.6.3 Reconfigurable Hardware Architectures

For a dynamic reconfiguration of network architectures, some hardware is
needed that provides this functionality. This section presents three hardware
architectures supporting dynamic reconfiguration: FPGA, FPFA, and FPID.

FPGA

Field-programmable gate arrays (FPGAs) are semiconductor chips that con-
tain an array of function blocks, interconnection links, and input/output (I/O)
blocks [38, 135]. Each of these components is reconfigurable. The structure of
an example FPGA is depicted in Fig. 2.43. Many FPGA chips additionally
provide separate memory blocks (also called block random access memory,
BRAM). Sometimes, they also consist of embedded adders, multipliers, or
even processor cores.

The interconnection links are organized into horizontal and vertical parallel
wires (also called routing channels), with switch blocks at their intersections

68 2 Characteristics of Network Architectures

I/0 block connection block

function block

switch block

Fig. 2.43. FPGA structure

and connection blocks for attaching function blocks. Short wires can be used
to set up local connections linking neighboring function blocks, while global
connections result if wires are involved that pass the entire chip length or
width. Many different wire lengths exist. Switch blocks and connection blocks
link different wires together with switches to form a connection. Such con-
nections can be changed by reconfiguring the switch blocks and connection
blocks; the switch settings are then altered.

The I/O blocks are responsible for providing connections outside the
FPGA chip. For this, they are linked with the external pins of the FPGA.
Due to several different standards (e.g., of voltages) of the electrical signals
that may occur outside the FPGAs, an interface is required that can be con-
figured and adapted to a particular standard. I/O blocks fulfill this task. Some
FPGAs additionally consist of some gigabit transceiver blocks for high-speed
data exchange.

2.6 Network Reconfiguration 69

The function blocks (also called logic blocks, configurable logic blocks,
or CLBs, or logic array blocks, or LABs) can be reconfigured so that they
represent some basic logic gate functionality like AND, OR, or NOT. FPGAs
with these functional blocks are called fine-grained FPGAs. FPGAs that are
denoted as coarse-grained FPGAs can handle more complex functionalities
within a functional block, such as multiplexers, encoders, or mathematical
functions needed for algorithms.

Function blocks usually consist of several logic cells (also called logic ele-
ments). An example of a logic cell is given in Fig. 2.44. It is called an LUT-

LUT

>

D Q

Fig. 2.44. Logic cell

based logic cell because the main component of it is a look-up table (LUT). In
the LUT, dedicated return values are stored for each combination of the values
of the n inputs: a truth table is represented. The return value is delivered to
the D-type flip-flop at the cell output where it is stored. Changing the return
values of the LUT reconfigures the logic cell. In some FPGA architectures
[135], LUTs are also able to store a 2n-bit value or to act as a 2n-bit shift
register that provides additional functionality.

An alternative to LUT-based logic cells are MUX-based ones. In this case,
multiplexers (MUXs) are the main components. Their inputs, including their
control inputs, can be reconfigured such that a 0, a 1, or the binary output
of another cell is assigned to them. Multiple multiplexers can be connected to
realize a truth table, as in a LUT-based approach.

Nowadays, most FPGAs are LUT-based due to their higher speed. Their
look-up tables are usually realized using static random access memory (SRAM)
technology. SRAM allows infinite and fast reconfigurations. In contrast,
technologies based on electrically erasable programmable read-only memory
(EEPROM) and on flash memory are slower, and technologies based on anti-
fuse links are configurable only once.

The task of reconfiguring an FPGA is called programming. Before pro-
gramming, an FPGA design must be determined that shows the desired chip
behavior. In the first step, this behavior is usually specified via a hardware
description language (HDL). To accelerate the development, the HDL often

70 2 Characteristics of Network Architectures

provides libraries with predefined components. As already mentioned, they
are called soft intellectual property blocks (soft IP blocks).

If functional simulation shows the correctness of the HDL specification,
synthesis maps it to a netlist that is used to generate a gate-level description.
A further simulation at this level checks the correctness again. Mapping the
gate-level description to the FPGA elements gives the signal delay times. They
are incorporated into the simulation for a last check. FPGA manufacturers
provide tools supporting many of these development steps. These tools also
perform the last step in design: they eventually generate the configuration file
(also called bit file) that is uploaded into the FPGA to program it. While
uploading, the configuration file is called configuration bitstream.

The configuration file for SRAM-based FPGAs consists of configuration
data and configuration commands. The configuration data describes the new
states of the reconfigurable FPGA devices. The configuration commands de-
fine how to handle the configuration data. Configuration cells on the FPGA
chip realize the configuration of the FPGA blocks. These cells are addressed
like a long single chain of cells. Using configuration port programming and se-
rial load mode, the configuration file is transferred bit-serial from an external
memory to the FPGA. There, the bits are shifted through the configuration
cell chain. When the bits reach their corresponding configuration cells, the
FPGA blocks can be configured.

A parallel load mode is also available. If applied, eight bits (i.e., a byte)
are transferred in parallel from memory to the FPGA. There, the bits are
loaded either in a serial manner with high speed into the configuration cell
chain or in parallel into a system of eight chains.

Multicontext FPGAs allow storing configuration bits of multiple configu-
rations in the configuration cells [38, 198]. In the case of switching between
only a few configurations, they can be stored, and configuration bits need not
to be transferred at each reconfiguration.

A reconfiguration while operating (that is a dynamic reconfiguration) is
supported by many FPGAs. If FPGA blocks are reconfigured with the same
data as in the preceding reconfiguration, the blocks do not change, and operate
without interruption. FPGAs that are dedicated for dynamic reconfiguration
keep the contents of their registers during the reconfiguration phase.

Another feature of some FPGAs is their capability of partial reconfigu-
ration. Single columns of FPGA blocks can be reconfigured separately. The
advantage is twofold. First, bitstreams are of smaller size and, thus, FPGA
programming is accelerated. Second, the non-reconfigured parts are not in-
volved, and can continue operating unpersuaded.

Reconfiguring parts of the FPGA while other parts keep operating helps
overcome one of the main drawbacks of reconfiguration. Reconfiguration takes
some time, as described in the previous section. During the reconfiguration
phase, the FPGA will be in an undefined state (at least for those regions
where a change takes place). In consequence, this time is lost, for example, for
transferring messages if the FPGA acts as a network. A reconfiguration is ad-

2.6 Network Reconfiguration 71

vantageous only if the performance benefit of the reconfiguration overbalances
the drawback of transfer interruption. In the case of partial reconfiguration,
transfer interruption can be avoided if a way is found to reconfigure only parts
of the network that are currently inactive. But one should be aware that this
may not always be possible.

A technique called pipeline morphing [224] is sometimes proposed for dy-
namically reconfigurable FPGAs that act as processors. It addresses compu-
tations that can be divided into multiple steps according to pipeline stages.
If there are too many stages to be mapped to an FPGA, the stages are suc-
cessively realized by dynamic reconfiguration of the FPGA. Transferring this
technique to FPGAs that act as networks does not seem feasible. Due to the
reconfiguration phase, message delay times, a very important network perfor-
mance measure, would be increased significantly.

However, FPGAs are a weak option to realize dynamically reconfigurable
network architectures [38, 173]. Due to the fixed horizontal and vertical wiring
of FPGAs, the network topology can only be changed in a very limited fash-
ion. New FPGA architectures are needed [11, 124, 125]. On the other hand,
network parameters like buffers can be reconfigured very well with current
FPGAs.

FPFA

Field-programmable function arrays (FPFAs) represent a variation of FPGAs.
Sometimes, FPFAs are also called field-programmable nodal arrays (FPNAs)
[135]. Compared to FPGAs, they are not organized bit by bit but word by
word. This data organization better supports complex data computations.
Multiple-bit words are processed by complex function blocks [10]. Thus, FP-
FAs are usually coarse grained. This coarse-grained structure leads to a greater
power efficiency, compared to fine-grained FPGAs.

The function blocks of FPFAs are sometimes called reconfigurable data
path units (rDPUs). Often, they are simple reconfigurable processing ele-
ments. An example of an FPFA structure is, for instance, the reconfigurable
data path architecture (rDPA) [78].

There also exist chips with a mixture of bit by bit data organization and
word by word data organization. They were referred to as field-programmable
mixed arrays (FPMAs). FPMAs are called multi-grained.

FPID

Field-programmable interconnect devices (FPIDs) are based on the same
technology as FPGAs. FPIDs are also called field-programmable intercon-
nect chips (FPICs). Their task is to act as chips that connect other chips
or components by offering short delays [93, 117, 227]. Figure 2.45 shows an
example where some FPIDs are distributed between other chips on a board.
The FPIDs can be dynamically reconfigured to realize any desired connec-

72 2 Characteristics of Network Architectures

Chip

FPID

Chip Chip

ChipChip

Chip Chip

Chip Chip

ChipFPIDChipChip

ChipChipChipChip

Chip

Chip

Board

Fig. 2.45. Board with two FPIDs

tions. This means that any of their pins can be internally connected to any
other pin.

In future, combining FPIDs and FPGAs on a multichip module (MCM)
or on a system-on-chip device will further increase the flexibility in designing
dynamically reconfigurable network architectures.

3

Performance Evaluation

High performance is the most important goal in designing parallel or dis-
tributed systems. Therefore, performance evaluation is needed to compare
various architectures for their performance.

Three kinds of performance evaluation methods can be distinguished:
measurement at an existing system, numerical simulation, and mathematical
methods. Performance measurement at an existing system (physical measure-
ment) suffers from the drawback that the system must first be established in
hardware before any performance evaluation is possible. If it turns out that
this system architecture shows low to bad performance, new hardware must
be realized, usually generating huge cost.

Another disadvantage of physical measurement is due to self-interference.
Any measurement device somehow changes the system set-up, and therefore,
the system behavior changes compared to a set-up without such a device. In
consequence, system performance may also be influenced. Measurement is,
however, important in order to verify that a realized system performs accord-
ing to specified requirements, and that the design and implementation process
has been successful.

The focus in this book is on simulation and mathematical methods used
during the design phase of the system. These methods evaluate the perfor-
mance of the system in question by first setting up a stochastic model for
it. Then, the performance measures of the model are determined. Stochastic
models are needed in order to include non-deterministic events like network
traffic generation in space and time.

The mathematical methods applied include Markov chains and Petri nets.
Other methods such as queuing theory with single station queuing systems or
queuing networks are not used in this book, and thus will not be presented
here. Detailed information about queuing theory can be found in [19, 61, 72,
95, 96, 113, 137, 199].

74 3 Performance Evaluation

3.1 Numerical Simulation

Numerical simulation is based on the concept of designing a model of the
system in question. This model describes the system behavior either by its
discrete events (using the discrete event system specification, or DEVS, for-
malism), by its discrete time behavior (using the discrete time system spec-
ification, or DTSS, formalism), or by its continuous time and state change
(using the differential equation system specification, or DESS, formalism) also
referred to as continuous simulation.

Continuous simulation [248] can be applied if the state variables of the
system under consideration change continuously in time. Then, the model
description is based on differential equations. Often, ordinary models result
in a system of differential equations that is too large to be solved symbolically.
Less complex systems sometimes can be solved numerically to determine the
steady state and the desired performance results.

The steady state describes the system state in which no further change
occurs. A steady state θ̄ of a measure θ exists if the following equation holds
in time t:

θ(t) = θ̄ for t → ∞. (3.1)

Discrete time simulation [248] can be applied if the state variables of the
system in question change only at discrete points in time. The simulator de-
termines the system state each time step. For instance, it counts how frequent
a particular state is reached. Often, applications for discrete time simulation
are digital systems that are clocked. The discrete time steps are given by the
frequency of the clock.

In discrete event simulation [9, 57, 88, 107, 248], the system is modeled by
its events. Starting in a particular state, the model determines the next state
transition that occurs. The new state is calculated. The measures of interest
are observed by considering how long this state lasts. This means that the time
until the next event occurs (state transition) is determined. This scheme is
continued until the steady state is reached or any other termination criterion
is fulfilled.

Discrete event simulation that includes stochastic events is sometimes
called Monte Carlo simulation in literature. This name historically comes from
random number driven methods of numerical mathematics, and does not ex-
actly apply to stochastic discrete event simulation as used in this book. As
already mentioned, times between different states are observed for a dynamic
process [107], while for Monte Carlo simulations, events can be described as
a simple function of random numbers [172]. Determining events of a parallel
or distributed system may require very complex functions or algorithms, and
cannot be called a Monte Carlo simulation.

3.1 Numerical Simulation 75

3.1.1 Statistics

Simulation is usually applied to determine an unknown performance measure
θ in a random variable Y : θ = E(Y). Several realizations (Y1, Y2, . . .) of this
random variable are generated. A single realization Yi is also called obser-
vation, and represents a sequence of state transitions. A subset of reachable
states is passed. In statistics, an observation is also called sample. Because a
sample or observation represents a time series by a tuple of single values and
their occurrence in time, there are statistical methods available to characterize
the observations.

Mean and Accuracy Estimation

If all Yi result from the steady state, the expected value μ = E(Y) (also called
expectation) can be estimated by the arithmetic mean

Ŷ (n) = ȳ =
1

n

n∑
i=1

Yi. (3.2)

It is also important to get an idea of how close this estimated value is to
the real value. Such a clue gives the variance, defined as the mean quadratic
deviation of the random variable from the expected value:

Var(Y) = E((Y − E(Y))2) = E(Y 2) − (E(Y))2. (3.3)

For a sample of size n, an estimation of its variance is

V̂ar(ȳ) =
1

n(n − 1)

n∑
i=1

(Yi − ȳ)2. (3.4)

The variance is also called second central moment. In general, the k-th central
moment is given by E((Y − E(Y))k).

Equations (3.2) to (3.4) are only valid if all values are normally distributed
and independent of each other. Particularly, the latter issue reveals a prob-
lematic condition often not fulfilled when performing multiple realizations of
Y . Values within a single realization are usually highly dependent on each
other. For instance, if a network is congested, messages sent through the net-
work will show high delay times and influence the delay times of the following
messages because they also contribute to network congestion.

The dependence between two values can be described by the autocorrela-
tion

ρ(k) = ρ(−k) = Corr(Yi, Yi+k) = Corr(Yi, Yi−k), (3.5)

where k (0 ≤ k ≤ n− 1) is called lag. The autocorrelation can be determined
by the covariance

γ(k) = γ(−k) = Cov(Yi, Yi+k) = Cov(Yi, Yi−k) (3.6)

76 3 Performance Evaluation

using the relation ρ(k) = γ(k)/γ(0). The autocorrelation results from normal-
izing the covariance by the variance. Taking the autocorrelation into account,
the variance is given by

Var(ȳ) =
1

n
R̃γ(0), (3.7)

with

R̃ = 1 + 2

n−1∑
k=1

(
1 − k

n

)
ρ(k) (3.8)

as a function of the autocorrelation of the observed process, and n, the number
of available results. In the case of completely independent values, ρ(k) = 0
holds for all k ≥ 1, and therefore, R̃ = 1. In the case of dependent values, and
if an infinite number is available, R̃ approximates

R = lim
n→∞

(
1 + 2

n∑
k=1

(
1 − k

n

)
ρ(k)

)
= 1 + 2

∞∑
k=1

ρ(k) (3.9)

and denotes the number of correlated values that carry the same information
as a single value of uncorrelated values.

If R exists and is finite, the real variance, given as the sum of all covari-
ances, results in

σ2 = lim
n→∞

n Var(ȳ) =
∞∑

k=−∞

γ(k) = γ(0)R. (3.10)

An estimation of the variance in the case of a finite number of values then
leads to

s2 ≈ 1

n

(
1 + 2

n−1∑
k=1

(
1 − k

n

)
ck

c0

)
, (3.11)

with

ck =
1

n − k

n−k∑
i=1

(Yi − ȳ)(Yi+k − ȳ), (3.12)

known as empirical covariance.
If correlated values exist and the standard estimation of Eq. (3.4) is used

instead of that of Eq. (3.11), the calculated variance may differ significantly
from the real variance.

Spectral Analysis

One of the methods to deal with correlated observations is called spectral
analysis. Two versions exist. The first is given by Fishman [56]. It allows
an estimation of the variance if the process shows weak stationary behavior,
defined as

3.1 Numerical Simulation 77

• E(Yi) = E(Y) for i ∈ N\{0} and −∞ < E(Y) < ∞
• Var(Yi) = Var(Y) for i ∈ N\{0} and Var(Y) < ∞
• Cov(Yi, Yi+k) is independent of i for i ∈ N\{0}
Then, the covariance γ(k) and the spectral density p(f) can be expressed as
the Fourier transform pair

p(f) =

∞∑
k=−∞

γ(k) cos(2πfk) and (3.13)

γ(k) =

∫ 1
2

− 1
2

p(f) cos(2πfk) df. (3.14)

Case f = 0 yields p(0) as the sum of all covariances, i.e., the variance σ2.
Equation (3.13) converts the covariances to the frequency domain, and

variance estimation can be performed by estimating the variance of the spec-
tral density at f = 0. Unfortunately, the precision of such estimation is usually
very poor due to huge differences between the values that the function pro-
duces [107].

A second version of spectral analysis was described by Heidelberger and
Welch [81]. This version is more appropriate than the one just presented. It
is based on the periodogram

Π

(
j

n

)
=

|Ay(j)|2
n

(3.15)

of a series of observations Y1, Y2, . . . , Yn and the discrete points j. Ay(j) rep-
resents the fast Fourier transform of the series of observations Yk as

Ay(j) =
n∑

k=1

Yke
−2πi(k−1)j

n , (3.16)

with i =
√−1 giving the imaginary unit. An accurate estimation of the spec-

tral density

pY

(
j

n

)
≈ E

(
Π

(
j

n

))
(3.17)

results and determines the variance of the time series for j
n → 0. Smoothing

this function facilitates variance estimation: the periodogram is logarithmized
and two succeeding values are merged. The smoothened periodogram

L(fj) = ln

(
Π

(
2j−1

n

)
+ Π

(
2j
n

))
2

(3.18)

of the frequencies fj = (4j−1)/n is approximated by a polynomial for further
simplification.

This method estimates the variance for a sequence of observations. Accu-
racy can be determined via this variance (see Sect. 3.1.1). When new sequences
are available, the newly calculated variances help sequentially improve accu-
racy until termination criteria are met.

78 3 Performance Evaluation

Batch Means

Besides using spectral analysis, the method of batch means is also often ap-
plied for variance estimation of correlated observations. This method divides
the series of observations Y1, Y2, . . . , Yn into b =
n/m� sequences of non-
overlapping groups of size m. Then, the first group consists of Y1, Y2, . . . , Ym,
the second group of Ym+1, Ym+2, . . . , Y2m, and so on. Further statistical anal-
ysis is based on the means ȳ1(m), ȳ2(m), . . . , ȳb(m) of each group (Fig. 3.1,
top). The method results from the idea that the more the time spent between

Y1 Y2 Y3 Y4 Ym Ym+2 Y2m+1 Y3m

y1 y4y3y2

y2

y1

y3

y4

Ym+1 Y2m... ... Y3m+1

overlapping

non−overlapping

Fig. 3.1. Batch means

two observations, the less their correlation. Therefore, the group size m should
be as large as possible. On the other hand, if m gets too large, many obser-
vations are needed to estimate the variance, and therefore, simulation takes a
long time.

One of the methods to sequentially determine m tests whether a given m
leads to only slightly correlated means and increases m in the case of strong
correlation [153]. Slight correlation is tested by the estimation of the empirical
covariance ck (Eq. (3.12)) of the lag k. A very small ratio ck/c0 (e.g., less than
0.05) indicates slight correlation.

A modification of the previously described method of batch means uses
overlapping groups [138]. Each observation starts a new group (Fig. 3.1, bot-
tom). This means that each observation belongs to m groups (if the group
size is m). Then n−m+1 groups of size m result instead of the
n/m� in the
case of non-overlapping groups. The group size may be determined identically
to the algorithm given in the case of non-overlapping groups. A drawback is
a less detailed prediction about accuracy (e.g., a worse confidence level, as
defined in Sect. 3.1.1) due to overlapping [138].

3.1 Numerical Simulation 79

Confidence

Previously determined variance now helps giving a confidence [169, 178] to the
results. The confidence for a sample size of n is expressed by the confidence
level

P
(
ȳ − tn−1,1−α/2 ·

√
s2/n ≤ E(Y) ≤ ȳ + tn−1,1−α/2 ·

√
s2/n

)
= 1 − α (3.19)

with α giving the expected error and tn−1,1−α/2 giving the quantile (Sect.
3.1.1) of the Student’s t-distribution with n − 1 degrees of freedom and the
expected error. Equation (3.19) holds only if the values determined by simula-
tion are normally distributed. The interval within the brackets on the left-hand
side of the equation is called confidence interval. For instance, if k experiments
containing n realizations exist, k different confidence intervals result. Then,
k · (1 − α) of them will include the expected value E(Y).

Confidence is also often specified by the estimated precision (also called
relative statistical error),

ε =
Δy

ȳ
, (3.20)

with
Δy = tn−1,1−α/2 ·

√
s2/n (3.21)

giving the absolute statistical error. This means that the estimated precision
is closely related to the confidence level.

Initial Transient Phase

During a single simulation run, two phases can be distinguished. In the first
phase, called initial transient phase, the system model transiently oscillates
until a steady state (if it exists) is reached. The steady state represents the
second phase.

Some investigations aim to determine measures E(Y |t = t0) at a particu-
lar time t0 (called terminating simulation) while others are interested only in
the steady state E(Y |t → ∞) (called steady-state simulation). In the latter
case, values of the initial transient phase distort the results, particularly the
confidence level. Therefore, determining the initial transient phase and start-
ing the observation of results in steady state improves the results and is the
main task in steady-state simulation.

In [153], the main methods to estimate the length of the initial transient
phase are presented. Most of them base on heuristics. One of the commonly
applicable methods is the Schruben test [175]. The Schruben test does not
directly determine the length of the initial transient phase. It tests for a part
of the simulation run whether there is any transient influence or this part is
in a steady state. It profits from the high sensitivity of partial sums in time

80 3 Performance Evaluation

series. Partial sums Sn(k) = ȳ(n) − ȳ(k) are established by considering the
mean of the first n and k values, respectively. The time series

Tn(t) =

nt�Sn(
nt�)√

n V̂ar(Y (n))
(3.22)

can then be calculated, where 0 < t ≤ 1 and Tn(0) = 0. It is assumed that
such a series converges to a Brownian bridge process. This process represents
a mathematical model of Brownian motion (a random walk with random step
sizes) in the interval [0, 1]. Testing this process for its steady state is more
convenient than for most other processes [175].

Before this method of the Brownian bridge process is started, a heuristic is
applied to accelerate the detection of the steady state: if a series Y1, Y2, . . . , Yn0

crosses its mean ȳ(n0) for the j-th time, it is assumed to be close to its
steady state [153]. Often, a value of j = 25 is proposed. Figure 3.2 illustrates
the Schruben test. Simulation tools like TimeNET [65, 88] and Akaroa [155]
detect the steady state using the Schruben test.

Skewness and Quantiles

Estimating the mean of the performance measure in question (represented
by a random variable) may lead to incomplete or wrong conclusions. The
distribution of this random variable is also very important. It provides useful
information about the deviation of the values. In Sect. 3.1.1, the variance was
defined. It gives information about how close the realizations Yi are to the
mean on average.

The skewness is another parameter giving information about the shape of
the distribution. The skewness ν is defined as

ν =
E((Y − E(Y))3)

(σ2)3/2
. (3.23)

It describes the symmetry of the probability density function or the proba-
bility mass function of the distribution. In case of ν = 0, the distribution is
symmetric. For instance, the normal distribution is a symmetric distribution.
For ν > 0, the distribution is skewed to the right, and for ν < 0, it is skewed
to the left.

Quantiles are also helpful for estimating the shape of the distribution. For
a continuous distribution function A(t) of a continuous random variable t with
0 < A(t1) ≤ A(t2) < 1 for t1 < t2, the q-quantile tq is defined as

tq = A−1(q), (3.24)

with 0 < q < 1 and A−1 representing the inverse function of A. This means
that tq fulfills the equation A(tq) = q.

3.1 Numerical Simulation 81

discard previous observations

new observations to
establish Tn (t)

new observation

steady−

no

yes

yes

mean?
crossing of

j−th

start of
steady−state

simulation

simulation
start of

nostate?

Fig. 3.2. Schruben test

The median, the quartiles, and the octiles are particular quantiles. The
median denotes the 0.5-quantile. In the case of a symmetric distribution, the
median is equal to the mean. The quartiles are the 0.25-quantile and the
0.75-quantile. The octiles are given by the 0.125-quantile and 0.875-quantile.

Techniques and methods for quantile estimation in steady-state simulation
can be found in [80, 111].

Random Number Generator

A random number generator is needed if stochastic events are modeled. Such
algorithmic generators provide uniformly distributed pseudo-random numbers
to include randomness in simulation [82, 154]. Many algorithms are proposed
in the literature [97].

82 3 Performance Evaluation

The unsolved problem in construction of random number generators is that
they generate numbers in cycles. This means that after generating a certain
quantity of numbers a previously generated number is generated again. The
same sequence of numbers starts again due to the generation algorithms, which
are usually recursive and based on integer modulo M arithmetic. A series of
random integer numbers Ii is generated by

Ii = (a · Ii−1 + c) mod m, (3.25)

with the multiplier a, the increment c, and the modulus m as non-negative
parameters. The seed of the series is given by I0. In the case of c > 0, the
generators are called mixed linear congruential pseudo-random number gen-
erators.

Current generators are usually multiplicative linear congruential pseudo-
random number generators (MLC-PRNG), which means that c equals 0. For
instance, the ANSI C rand() function belongs to this class.

Nowadays, computers with 32-bit architecture lead to a modulus of M =
231 − 1. With clock frequencies of more than 1 GHz, all numbers of a cycle
can be generated within a few minutes. Thus, simulation runs lasting longer
than only a few minutes will deal with cyclically generated random numbers.
Exhaustive simulation run times are particularly common in rare event simu-
lation, for instance, if packet loss in the ATM environment is measured, or if
self-similarity prevents fast confidence.

Some recently developed generators called multiple recursive LC-PRNGs
and combined multiple recursive LC-PRNGs [109] overcome this problem and
offer cycles between 2185 and 2377. Furthermore, generalized feedback shift
register PRNGs also lead to reasonable cycle size. The Mersenne Twister
[134] as an example provides cycles of 219937 − 1.

3.1.2 Acceleration

One of the main drawbacks of simulation models is their very high simulation
run time. If models include stochastic events, run times may reach hours, days,
or even weeks until the desired confidence level is reached. Real-world scenarios
are usually influenced by stochastic events generated by the environment.

Therefore, many methods have been developed to accelerate simulation
runs. In the following, the most important of these methods are presented.
Two types can be distinguished: methods to reduce the variance and methods
to enforce more relevant events.

Variance Reduction

Accelerating the simulation by variance reduction means increasing the accu-
racy of the results and, thus, the confidence. Due to Eq. (3.19), the confidence
level is increased by reducing the variance s2 or by increasing the number

3.1 Numerical Simulation 83

of observations n. In other words, if the variance is reduced, the number of
observations can also be reduced while keeping the confidence the same.

Many methods for variance reduction can be found in the literature (for
instance, [9, 23, 34, 57, 107, 147, 233]). Some of them will be briefly discussed
in the following. They apply to discrete simulation.

If stratification is chosen to reduce the variance, the set of observations is
divided into disjunct strata. The number of observations for each stratum de-
termines the stratum size. A temporary variable X is introduced representing
a stochastic parameter of the simulation model such that each X (i) relates
to a Y (i). Y (i) may be a single observation or a mean. It is assumed that
the relation between simulation input and X is known. Then, all probabilities
P (X = i) are also known. An estimation h(Y) may now be decomposed to

h(Y) =
n∑

i=1

h(Y |X = i)P (X = i) (3.26)

= E(h(Y |X)). (3.27)

Y |X = i gives Y if X = i holds. By determining the variance Var(Y), the
equation gives the average variance of Y for all given X . Additionally, the
variability of X must also be considered. The variance is given by [34]

Var(Y) = E(Var(Y |X)) + Var(E(Y |X)). (3.28)

Because stratification requires that all probabilities P (X = i) are known, it
reduces the variance Var(Y) by these probabilities (Eq. (3.26)).

An extension of stratification is called importance sampling [69], where
stratified sampling is changed such that weights of the probabilities of X
are modified. A modification is chosen in a way such that most observations
belong to high probabilities P (X = i) and are determined for high conditional
variances. But this also modifies the probability distribution of the model
input and, thus, modifies the model.

Instead of assuming that the probabilities P (X = i) are known, as in
stratification, the conditional Monte Carlo method assumes that the expected
values E(Y |X = i) are known. Variance reduction is achieved by considering
Eq. (3.28). But [23] shows that this assumption holds only for particular
scenarios.

Many further methods to reduce the variance are known, such as control
variables, antithetic variates, and Latin hypercube sampling. They introduce
dependences or modify the observations or the sequence of observations. An
overview is given in [9, 23, 57, 147].

Enforcement

In addition to variance reduction, enforcement also accelerates simulation.
This technique either changes the model or influences the simulation sequence.

84 3 Performance Evaluation

Enforcement aims to achieve more observations without extending simulation
run time. Two main methods can be distinguished: parallelization of the sim-
ulation run and boosting the occurrence of the measured event.

A main issue in parallelization deals with dividing a single simulation
model into several submodels to be executed on several nodes of a parallel or
distributed computer system. Usually, the submodels will somehow interact
because they depend on each other [60]. If this dependence is too strong,
the interaction results in heavy communication consuming much computing
power. In consequence, parallelization does not accelerate the simulation time
very much, or even retards it [26]. A high performance communication network
connecting the nodes is essential.

Another problem arises by the partitioning of the model into submodels.
To automatically divide the model is usually not possible due to complex and
varying models. On the other hand, manually dividing them consumes much
time, and is reasonable only in the case of very long simulation run times or
if the model is used for multiple investigations. Furthermore, all submodels
should require similar computation power to ensure a balanced distribution
of the entire model among the nodes.

Instead of parallelization of the model via submodels at the nodes, paral-
lelization of the entire model also offers a way to accelerate the simulation.
Multiple replications of the model are started in parallel on the nodes of a
parallel or distributed computer system. This method, called multiple repli-
cations in parallel (MRIP) [88, 155], is based on stochastic behavior: many
uncorrelated observations are needed to establish statistics about accuracy
and confidence (see Sect. 3.1.1). Independent simulations in parallel supply
such observations if all random number generators start with different roots.
Nevertheless, convergence to wrong values can be a problem particularly if
a large number of nodes perform the simulation [70]. Spectral analysis as
accuracy estimation overcomes this problem [155].

Due to completely independent replications, no synchronization is needed.
Communication occurs once for distributing the simulation model among the
nodes. Further communication arises only from result statistics to determine
current confidence levels and to observe termination criteria. Statistics can
be determined by establishing points in time for each replication ri, at which
the amount of local observations nri

, local means E(Yri
), and local variances

Var(Yri
) are calculated. Then,

E(Y) =

∑
i nri

E(Yri
)∑

i nri

(3.29)

gives the global mean and

Var(Y) =

∑
i n2

ri
Var(Yri

)

(
∑

i nri
)
2 (3.30)

gives the global variance.

3.2 Markov Chains 85

In addition to parallelization, boosting the occurrence of the measured
events represents a method to accelerate simulation. It can particularly be
helpful to measure rare events. As an example, a method called repetitive
simulation trials after reaching thresholds (RESTART) [226] will be discussed
here. This method profits from a more frequent occurrence of the rare event
A if simulation starts from a particular model state given by the event C that
enlarges the probability of the rare event (A ⊂ C). This means that

P (A) = P (C) · P (A|C), (3.31)

with P (A) << P (C) << 1. RESTART improves the estimation of P (A|C)
by multiple repetitions of the simulation run starting at event C. Thus, more
observations of the rare event result, and an accurate probability of it can be
determined faster. Introducing a sequence of such intermediate events Ci, with
C1 ⊂ C2 ⊂ . . . ⊂ Cm ⊂ A, further accelerates the simulation. The RESTART
algorithm is given as follows:

1. If the intermediate event Ci occurs, the system state is saved.
2. The simulation run is started/continued from the saved system state.

• If an event Di occurs that reveals a worse reachability of the rare event
A than Ci, the simulation run is stopped. The algorithm continues with
step 2.

• If the intermediate event Ci+1 occurs
– and Ci+1
= A, the new system state is saved and the algorithm

continues with step 2 at the newly saved state.
– and Ci+1 = A, the rare event is reached. Statistics are modified.

The algorithm continues with step 2.
• If a fixed number Ri of simulation runs starting at a system state

related to Ci is performed, the previously saved state (related to Ci−1)
is reloaded and simulation continues in the same manner until an event
Di−1 occurs, the intermediate event Ci occurs again, or a fixed number
Ri−1 of simulation runs are performed.

If NA events A occurred (in all repetitions) and N events occurred together
(in the first repetitions), an estimation of P (A) can be determined by

P̂ (A) =
NA

N
∏m

i=1 Ri
. (3.32)

The variance of the result is formally given in relation to the covariance [226].
Unfortunately, determining the covariance is usually a difficult task.

3.2 Markov Chains

Simulation, as just described, provides a powerful method for performance
evaluation. But it comes with a huge drawback: it often requires long run

86 3 Performance Evaluation

times until accurate results with high confidence levels are determined. Often,
it is possible to approximatively model the real system using stochastic pro-
cesses. If those stochastic processes belong to the class of Markov processes,
mathematically treatable models result.

3.2.1 Markov Process

Markov processes are often proposed to model and evaluate parallel and dis-
tributed systems. A large theory is provided by [4, 19, 44, 53, 54, 89, 92, 95,
96, 199].

Markov processes are stochastic processes, characterized by a generaliza-
tion of random variables and relationships between them. In a stochastic pro-
cess, the random variables Ytn

belong to a family, with tn representing a time
parameter, 0 < t0 < t1 < A stochastic process is called a Markov process
if Ytn+1 depends only on the previous value Ytn

and not on the earlier values
Yt0 , Yt1 , . . . , Ytn−1 :

P (Ytn+1 ≤ sn+1 | Ytn
= sn, Ytn−1 = sn−1, . . . , Yt0 = s0)

= P (Ytn+1 ≤ sn+1 | Ytn
= sn), (3.33)

where sn represents the state of the system at time tn. The Markov property
(also called memoryless property) is often formulated as follows: the future
of a process depends only on the present and is independent of the past. In
consequence, the mean time between state changes (called mean sojourn time)
is identical to the mean residual and the mean elapsed time [199].

If the system additionally shows a time-independent pattern of dynamic
behavior,

P (Ytn+1 ≤ sn+1 | Ytn
= sn) = P (Ytn+1−tn

≤ sn+1 | Y0 = sn), (3.34)

it is called time-homogeneous. Otherwise, it is said to be time-inhomogeneous.
If the state space representing the set of all states sn consists of discrete

values (discrete state space), a Markov process is called Markov chain (Figs.
3.3(b) and 3.3(d)). In the following, only models dealing with a discrete state
space are considered.

Time can also be distinguished to consist of continuous values (continuous
time) or discrete values (discrete time), as shown in Fig. 3.3.

3.2.2 Discrete Time Markov Chain

This subsection deals with discrete values in time, before an extension to
Markov chains with continuous time is presented in the next subsection.

3.2 Markov Chains 87

t

Y(t)

(a) Continuous time, continuous
states

t

Y(t)

(b) Continuous time, discrete
states

t

Y(t)

(c) Discrete time, continuous
states

t

Y(t)

(d) Discrete time, discrete
states

Fig. 3.3. Kinds of processes

Definition

A Markov chain with a discrete time parameter tn is known as a discrete time
Markov chain (DTMC). Equation (3.33) can be rewritten as

P (Yn+1 = sn+1 | Yn = sn, Yn−1 = sn−1, . . . , Y0 = s0)

= P (Yn+1 = sn+1 | Yn = sn), (3.35)

where 0, 1, . . . , n, n + 1, . . . represent the points of observation. Due to the
discrete time, the system changes its state step-by-step. Equation (3.35) yields
the transition probability from state sn to state sn+1. In the following, sn

is abbreviated by i and sn+1 by j. Then, the transition probability pij(n)
changing from state i to state j in a single step at time n is determined by

pij(n) = P (Yn+1 = sn+1 = j | Yn = sn = i) (3.36)

88 3 Performance Evaluation

or, in the case of a homogeneous discrete time Markov chain, by

pij = pij(n) = P (Yn+1 = j | Yn = i) = P (Y1 = j | Y0 = i). (3.37)

The sum of all transition probabilities from state i to all states j (including
state i) results in

∑
j pij = 1. The stochastic transition matrix P accommo-

dates all probabilities pij :

P = [pij] =

⎛
⎜⎜⎜⎝

p00 p01 p02 · · ·
p10 p11 p12 · · ·
p20 p21 p22 · · ·
...

...
...

⎞
⎟⎟⎟⎠ . (3.38)

Besides the one-step transition probability, n-step transition probabilities

p
(n)
ij (k, l) are defined. They give the probability of changing from state i at

time k to state j at time l in n = l − k steps:

p
(n)
ij (k, l) = P (Yl = j | Yk = i), (3.39)

where 0 ≤ k ≤ l. Due to the Markov property (independence assumption)

and due to the constraint
∑

j p
(n)
ij (k, l) = 1, the n-step transition probability

can be described by one-step probabilities if an intermediate state h at time
m is introduced (k < m < l). h can be each state of the state space:

p
(n)
ij (k, l) =

∑
h

p
(m−k)
ih (k, m) · p(l−m)

hj (m, l). (3.40)

Recursively applying Eq. (3.40) leads back to the one-step transition probabil-
ities. Equation (3.40) determines a system of equations called the Chapman-
Kolmogorov equation. In the case of a homogeneous discrete time Markov
chain, this equation becomes independent of k and l,

p
(n)
ij =

∑
h

p
(m)
ih · p(n−m)

hj , (3.41)

and leads, for m = 1, to

p
(n)
ij =

∑
h

p
(1)
ih · p(n−1)

hj . (3.42)

Then, the matrix P(n) of n-step transition probabilities is given by

P(n) = P(1)P(n−1) = PP(n−1) = Pn. (3.43)

This means that the n-step transition probability matrix is determined by
multiplying the one-step transition probability matrix n − 1 times by itself.

3.2 Markov Chains 89

Now, the transient state probabilities νi(n) = P (Yn = i) that the Markov
chain is in state i at time n can be calculated starting with the initial prob-
abilities νi(0). If the vector ν(n) = (ν0(n), ν1(n), ν2(n), . . .) denotes all state
probabilities, ν(n) is given by

ν(n) = ν(0)P(n) = ν(0)Pn = ν(n − 1)P. (3.44)

The state probabilities at time n represent an important measure to determine
the performance of a system that is modeled by Markov chains. For instance,
one of the states of a modeled network architecture can describe an entirely
occupied buffer. Thus, sending a new message to this buffer would lead to a
loss of the message. The model can be applied to investigate the occurrence
of such states with transitions leading to message loss.

Many investigations examine the system in question particularly for their
stationary behavior. In such a case, the system state does not change from time
step to time step. In homogeneous DTMC, the stationary probability vector
ν = (ν0, ν1, ν2, . . .) introduces such a system state: the transition probabilities
pij do not influence the state probabilities νj =

∑
i νipij , for all j:

ν = νP, (3.45)

while ∑
i

νi = 1 (3.46)

holds. If only a single stationary probability vector exists independently of
the initial system state, this vector is called unique steady-state probability
vector. If it exists, it can be derived from Eq. (3.44) via the limiting state
probabilities ν̃:

ν̃ = lim
n→∞

ν(n) = lim
n→∞

ν(n − 1)P = ν̃P. (3.47)

The steady state can usually be determined more simply by solving the system
of equations as given above rather than by the time-dependent calculation of
ν(n). Many algorithms exist to solve a system of equations (if the Markov
chain is of finite state). Nevertheless, difficulties arise if the system of equations
becomes very large, or if the matrix P consists of a large number of “0”
entries, or entries close to it. In the first case, the computer memory required
to solve and store the system of equations may exceed the available memory.
In the latter case, numerical rounding errors may cause inaccurate results and
division-by-zero problems.

Characteristics

Several characteristics of discrete time Markov chains are identified. They are
briefly summarized here. Detailed definitions and characterizations can be
found in [19].

90 3 Performance Evaluation

If a state j can occur by starting at state i and performing a finite number
of state transitions, the state j is called reachable from state i. If all states
are reachable from each other, the Markov chain is irreducible.

If no other state than itself can be reached from a state, the state is
absorbing. In such a case, the Markov chain cannot be irreducible.

The states to which the Markov chain will return are said to be recurrent
states. All other states are transient states. The period Di of a recurrent state
i is defined as the greatest common divisor of all n that fulfills the condition

p
(n)
ii > 0. If Di > 0, it is a periodic state; otherwise, it is aperiodic. If an

aperiodic state exists and the Markov chain is irreducible, then the Markov
chain itself is aperiodic. If all states are additionally of finite mean recurrence
time, the Markov chain is called ergodic.

Due to the Markov property, the sojourn time of a homogeneous DTMC
is geometrically distributed: the probability that state i will exist at time k is
given by

P (Ri = k) = (1 − pii) · pk−1
ii , (3.48)

where Ri represents the sojourn time of state i. Because of the geometric
distribution, the mean sojourn time is

E(Ri) =
1

1 − pii
. (3.49)

3.2.3 Continuous Time Markov Chain

Continuous time Markov chains (CTMCs) differ from discrete time Markov
chains by the time at which state transitions may occur. In the case of CTMCs,
transitions can take place at an arbitrary time, in contrast to DTMCs, where
state transitions happen only at discrete points in time.

Definition

A Markov chain with a continuous time parameter tn ∈ R
+
0 is known as a

continuous time Markov chain. Due to the discrete state space, Eq. (3.33)
changes to

P (Ytn+1 = sn+1 | Ytn
= sn, Ytn−1 = sn−1, . . . , Yt0 = s0)

= P (Ytn+1 = sn+1 | Ytn
= sn), (3.50)

defining the Markov property in the continuous time case. As a result, the state
sojourn time is exponentially distributed, because that is the only continuous
memoryless distribution (see Sect. 2.2.2).

The transition probability pij(ta, tb) of changing from state i to state j
during the time interval [ta, tb), with ta ≤ tb, is given by

pij(ta, tb) = P (Ytb
= sb = j | Yta

= sa = i), (3.51)

3.2 Markov Chains 91

or, in the case of a homogeneous continuous time Markov chain with t = tb−ta,

pij(t) = pij(0, t) = P (Yta+t = j | Yta
= i) = P (Yt = j | Y0 = i). (3.52)

If the probability of holding state i at time ta is denoted by πi(ta),

πj(tb) =
∑

i

pij(ta, tb)πi(ta) (3.53)

describes the probability of being in state j at time tb. All state probabilities
can be included in a vector π(t) = (π0(t), π1(t), π2(t), . . .) leading to

π(tb) = π(ta) · P(ta, tb), (3.54)

with the stochastic transition matrix P(ta, tb) = [pij(ta, tb)]. In the case of a
homogeneous CTMC, Eq. (3.54) simplifies to

π(t) = π(0) ·P(0, t) = π(0) ·P(t). (3.55)

The Chapman-Kolmogorov equations of the continuous time Markov chain
are defined by

pij(ta, tb) =
∑

k

pik(ta, tc)pkj(tc, tb) (3.56)

with ta ≤ tc ≤ tb. However, in contrast to the DTMC, a differential system
of equations must be established to determine the steady-state probabilities.
Thus, transition rates qij(t) are needed. They describe the transition rate form
state i to state j at time t:

qij(t) = lim
Δt→0

pij(t, t + Δt)

Δt
if i
= j, (3.57)

qii(t) = lim
Δt→0

pii(t, t + Δt) − 1

Δt
. (3.58)

Applying these equations to Eq. (3.56) and with tc → tb, the Kolmogorov
forward equation is

∂pij(ta, tb)

∂tb
=

∑
k

pik(ta, tb)qkj(tb). (3.59)

The Kolmogorov backward equation can be established by applying tc → ta:

∂pij(ta, tb)

∂ta
=

∑
k

pkj(ta, tb)qik(ta). (3.60)

The time-homogenous versions result in

dpij(t)

dt
=

∑
k

pik(t)qkj and (3.61)

dpij(t)

dt
=

∑
k

pkj(t)qik. (3.62)

92 3 Performance Evaluation

The differential equation for the unconditional state probabilities
dπj(tb)

dtb
ob-

tained from Eq. (3.53) can be converted now by using the Kolmogorov forward
and backward equations:

dπj(tb)

dtb
=

∂
∑

i pij(ta, tb)πi(ta)

∂tb

=
∑

k

qkj(tb)πk(tb). (3.63)

In the time-homogenous case, Eq. (3.63) simplifies to

dπj(t)

dt
=

∑
k

qkjπk(t). (3.64)

A matrix form of this equation can also be given as

π̇(t) =
dπ(t)

dt
= π(t)Q, (3.65)

where Q denotes the infinitesimal generator matrix defined by the transition
rates from state k to state j (with k
= j): Q = [qkj]. The diagonal elements
qkk are determined such that the sum of each row of Q vanishes: qkk =
−∑

j|j �=k qkj .
To determine the performance of a system, the steady state of the system

is often investigated. The steady-state probability vector, also called the equi-
librium probability vector, gives this information. If the steady state exists,

lim
t→∞

dπ(t)

dt
= 0 (3.66)

holds because the steady-state probabilities are independent of time. In con-
sequence, Eq. (3.64) leads to

0 =
∑

k

qkjπk, (3.67)

for all j, resulting in a system of linear equations:

0 = πQ. (3.68)

Characteristics

Many solutions of the system of equations Eq. (3.68) exist, for instance, the
trivial solution of all πi = 0. A unique solution can be obtained via an addi-
tional condition. Then, the homogenous continuous time Markov chain is said
to be ergodic. Such an additional condition is achieved by the fact that the
sum of all steady-state probabilities must add up to 1:

3.2 Markov Chains 93∑
i

πi = 1. (3.69)

A homogenous CTMC can be ergodic only if it is irreducible. This means that
each state i is reachable from every other state j.

In contrast to discrete time Markov chains, continuous time Markov chains
are never periodic. As a result, the mean recurrence time is finite for all states.

The state sojourn times Ri of the homogenous CTMC must fulfill the
memoryless property. This means that they are exponentially distributed with
mean value

E(Ri) = − 1

qii
. (3.70)

The residual state holding time equals the state sojourn time in distribution
and mean. It describes the time until the next state change takes place.

3.2.4 Solution Methods

After having derived a Markov chain that models the system in question, a
mathematical solution method must be applied to solve the Markov chain.
As seen in the previous section, a system of equations represents the Markov
chain, and must be solved. The steady-state solution and the transient solu-
tion can be identified. The algorithms of both solution methods are briefly
described in the following. A detailed discussion of them is given in [19, 189].
Ergodicity of the Markov chains is assumed.

Steady-state Solution

To determine the steady-state probability vector, either Eq. (3.45) or (3.68)
must be solved in the case of a discrete time Markov chain or a continuous
time Markov chain, respectively. If Eq. (3.45) is changed to 0 = ν(P − I),
where I represents the identity matrix, then both cases must deal with the
solution of a linear system of equations,

0 = xA. (3.71)

The matrix A is of rank n − 1 if the Markov chain consists of n states.
This means that one of the equations is redundant. It can be replaced by the
additional condition of Eq. (3.46) or Eq. (3.69), respectively. Then, commonly
used solution methods of linear systems can be applied.

Some Markov chains allow symbolic solutions. Such a Markov chain is,
for instance, a birth-death process. In a birth-death process, state transitions
only occur between neighboring states. Thus, matrix A mainly consists of
zero entries. Equation (3.71) can easily be solved by choosing one of the state
probabilities and successively substituting all others in the right-hand sides of
the equations.

94 3 Performance Evaluation

Markov chains of general structures can be solved by numerical meth-
ods. One of them is called Gaussian elimination. The algorithm transfers the
system of equations Eq. (3.71) into a triangular structure. This is done by
solving the last (i.e., n-th) equation for xn−1, and replacing xn−1 in all other
equations. Then, xn−2 is similarly replaced by solving the (n − 1)-th equa-
tion, and so on until x0 is obtained. Then, successively substituting the state
probabilities leads to the solution.

The Grassmann algorithm varies from the Gaussian elimination. It avoids
subtraction to keep numerical results free of rounding errors in the case of
nearly equal numbers. Nevertheless, it also yields a triangular matrix, as with
the Gaussian elimination.

Besides direct methods like Grassmann’s algorithm and Gaussian elimina-
tion, iterative methods also introduce a way to solve the system of equations
Eq. (3.71). Iterative methods do not change the matrix A. Thus, efficient
methods to store this matrix can be applied. Systems of larger state space
can be stored and solved, compared to direct methods. On the other hand,
the iteration algorithm must ensure that it converges. Unfortunately, it is
usually difficult to prove convergence.

Steady-state investigation is mostly performed by applying fixed point
iteration [149]. Fixed point iteration solves equations of the form

x = f(x). (3.72)

First, x is initialized with a value x(0). Then, the new value of x is calculated
in each iteration step � from its previous value:

x(�) = f(x(�−1)). (3.73)

The iteration is stopped if x(�) is close to the exact solution x given by a tol-
erance level ε. Because the exact solution is unknown, the accuracy is usually
estimated by comparing the variance of the results x(�) of several successive
iteration steps.

Many methods of fixed point iteration exist. The power method determines
the state probabilities by initializing them and then iteratively calculating

ν
(�) = ν

(�−1)P (3.74)

in the case of discrete time Markov chains or

π
(�) = π

(�−1)(Q + I) (3.75)

in the case of continuous time Markov chains. If the convergence criterion ε
is reached, the iteration is stopped.

Jacobi’s method starts with a system of equations

b = xA. (3.76)

After initializing x, an iteration step is given by

3.2 Markov Chains 95

x(�) =
(
b − x(�−1)(U + L)

)
D−1, (3.77)

where D represents the diagonal matrix of A, U the upper triangular matrix,
and L the lower triangular matrix: A = D + U + L.

A variation of this algorithm is given by the Gauss-Seidel method. All xi

of Eq. (3.77) are sequentially determined instead of in parallel, as in Jacobi’s
method. An acceleration is achieved because already newly calculated values
of state probabilities are considered while computing the other ones:

x(�) =
(
b− x(�)U − x(�−1)L

)
D−1, (3.78)

where x(�) at the right-hand side of the equation represents the already cal-
culated values of the current iteration step �.

Transient Solution

If the system performance at a particular time t is of interest, a different
solution method must be applied than the steady-state solution. Furthermore,
there is no common method for discrete time Markov chains and continuous
time Markov chains.

In the case of continuous time Markov chains, Eq. (3.65) builds the basis
to be solved. Two kinds of measures can be determined by this equation:
instantaneous measures, which give performance information for a point in
time, and cumulative measures, which give performance information for a
period of time. The latter change Eq. (3.65). If

L(t) =

∫ t

0

π(τ)dτ (3.79)

denotes the overall amount of time spent in each state during the given time
interval [0, t), the differential equation

dL(t)

dt
= L(t)Q + π(0), (3.80)

with L(0) = 0 must be transiently solved.
Symbolic transient solutions of continuous time Markov chains exist if the

system is very simple, e.g., a pure birth process with constant birth rate λ.
This results in the generator matrix

Q =

⎛
⎜⎜⎜⎝

−λ λ 0 0 · · ·
0 −λ λ 0 · · ·
0 0 −λ λ · · ·
...

...
...

...

⎞
⎟⎟⎟⎠ . (3.81)

This system of linear differential equations can successively be solved (see, for
instance, [19]). The state probabilities are obtained as

96 3 Performance Evaluation

πk(t) =
(λt)k

k!
e−λt (3.82)

for all states k.
More complex systems can only be determined by numerical methods.

The transient uniformization (also called Jensen’s method) represents such
a method. Instantaneous measures can be calculated, as well as cumulative
measures. Equation (3.65) is solved by embedding a discrete time Markov
chain into a CTMC. The CTMC state probabilities are expressed as a power
series of the transition probabilities of the DTMC [164].

In addition to uniformization, standard techniques to solve ordinary dif-
ferential equations can be used. The time interval of interest is divided into
several parts. Then, the solution is determined by considering the state prob-
abilities at the discrete interval limit times. Explicit and implicit solutions
exist [164].

Decomposition

Besides the methods to achieve accurate solutions as presented in previous sec-
tions, approximation methods can also be applied. Decomposition belongs to
this group. Courtois [41, 42] invented this method for calculating the steady-
state performance. It divides the model into submodels that can be investi-
gated separately. Then, the results of the submodels are combined to obtain
the global results of the model.

In the optimal case, the submodels are completely independent, and the
results of the submodels represent the global results. But unfortunately,
most models cannot be divided into completely independent submodels.
Thus, nearly-independent submodels with tightly coupled structures should
be found. In this case, the model itself is said to be nearly completely decom-
posable.

For instance, a system with several states offers an example if one (or
more) of the states is very rarely visited. Due to the infrequent transitions to
this state, they can be neglected, and this state and the rest of the state space
can be assumed to be nearly-independent submodels. They are separated and
independently solved.

Dividing a model into submodels leads to new generator matrices QIJ in
the case of a CTMC or to new transition probability matrices PIJ in the case
of a DTMC as submatrices of the global one. For instance, if P is given by

3.2 Markov Chains 97

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p00 p01 p02 p03 p04 p05 p06 · · ·
p10 p11 p12 p13 p14 p15 p16 · · ·
p20 p21 p22 p23 p24 p25 p26 · · ·
p30 p31 p32 p33 p34 p35 p36 · · ·
p40 p41 p42 p43 p44 p45 p46 · · ·
p50 p51 p52 p53 p54 p55 p56 · · ·
p60 p61 p62 p63 p64 p65 p66 · · ·
...

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.83)

then the transition matrices of the submodels may be denoted as

P00 =

(
p00 p01

p10 p11

)
, (3.84)

P11 =

⎛
⎝ p22 p23 p24

p32 p33 p34

p42 p43 p44

⎞
⎠ , and (3.85)

P22 =

⎛
⎜⎝

p55 p56 · · ·
p65 p66 · · ·
...

...

⎞
⎟⎠ (3.86)

if M = 3 nearly-independent submodels are generated with the first submodel
consisting of states 0 and 1, the second submodel consisting of state 2, 3, and
4, and the third submodel consisting of the remaining states. The remaining
transition probabilities pij build the additional transition matrices PIJ with
I
= J . This means that the matrix P is in general given by

P =

⎛
⎜⎜⎜⎝

P00 P01 · · · P0(M−1)

P10 P11 · · · P1(M−1)

...
...

...
P(M−1)0 P(M−1)1 · · · P(M−1)(M−1)

⎞
⎟⎟⎟⎠ (3.87)

= A + B, (3.88)

where A consists of all Pii and B of the remaining submatrices:

A =

⎛
⎜⎜⎜⎜⎝

P00

P11 0

P22

0 · · ·
P(M−1)(M−1)

⎞
⎟⎟⎟⎟⎠ , (3.89)

B =

⎛
⎜⎜⎜⎝

0 P01 · · · P0(M−1)

P10 0 · · · P1(M−1)

...
...

...
P(M−1)0 P(M−1)1 · · · 0

⎞
⎟⎟⎟⎠ . (3.90)

98 3 Performance Evaluation

Up to now, the transition matrices PII are not stochastic matrices, because
the elements of each row may not sum up to 1. A matrix X must be introduced
so that stochastic matrices P∗ and P∗

II result:

P∗ = (A + X) =

⎛
⎜⎜⎜⎜⎝

P∗
00

P∗
11 0

P∗
22

0 · · ·
P∗

(M−1)(M−1)

⎞
⎟⎟⎟⎟⎠ . (3.91)

The matrix X should be defined such that matrices P∗
II become ergodic.

Equations (3.88) and (3.91) lead to

P = (A + X) + (B− X) (3.92)

= P∗ + C. (3.93)

Now, all submodels I can separately be solved using

ν
∗
IP

∗
II = ν

∗
I (3.94)

to obtain their corresponding state probabilities ν
∗
I . With these probabilities,

a transition probability matrix

Γ = [ΓIJ] =

⎛
⎜⎜⎜⎝

Γ00 Γ01 · · · Γ0(M−1)

Γ10 Γ11 · · · Γ1(M−1)

...
...

...
Γ(M−1)0 Γ(M−1)1 · · · Γ(M−1)(M−1)

⎞
⎟⎟⎟⎠ (3.95)

can be determined. The states ΓIJ are called macro states and calculated by

ΓIJ =
∑

i

⎛
⎝ν∗

Ii

∑
j

pIJij

⎞
⎠ , (3.96)

where i and j represent the row and column of the denoted matrix or vector,
respectively. With Γ, the macro steady-state probabilities can be obtained by

γΓ = γ, (3.97)

with
∑

γI = 1. Then, an approximation of the steady-state probabilities ν of
the initial model can be found by

νIi
≈ γIν

∗
Ii

. (3.98)

The error of this approximation is investigated in [43].
Besides this method of Courtois, another decomposition method called

Takahashi’s method exists [193]. Again, a decomposition into macro states

3.3 Petri Nets 99

must be performed. But the macro states of Takahashi’s method are estab-
lished differently than that of Courtois. In contrast to Courtois’ method, no
nearly-independent submodels must be found. This is because the macro state
probabilities and the original state probabilities are iteratively determined.
Unfortunately, there is no generally applicable rule for clustering the system.
But the efficiency and convergence of this method depend very much on good
clustering. A detailed description of the method can be found in [19, 193].

3.3 Petri Nets

Modeling a parallel or distributed system with Markov chains may lead to a
very large system of equations. For the modeler, it becomes difficult to handle
all the equations and to avoid errors. Therefore, many high-level modeling lan-
guages (e.g., queuing networks, fault-trees, production rule systems, etc. [79])
have been introduced to keep the model development as simple as possible.
Many of those high-level languages map their resulting model onto a lower-
level description. Petri nets [160] belong to this group of high-level modeling
languages. If they fulfill particular requirements, they can be mapped onto a
continuous time Markov chain.

3.3.1 Basic Petri Nets

Petri nets were first introduced as a modeling tool in automata theory. Later,
many extensions were proposed to improve their modeling power.

Definition

Petri nets [36, 63, 75, 86, 118, 128, 144, 165] are a bipartite directed graph
consisting of two kinds of nodes and two kinds of arcs. The nodes are denoted
as places, pi, and transitions, ti. The arcs are either input arcs or output arcs.
A place is connected to a transition via an input arc. A connection from a
transition to a place is established via an output arc. Arcs between the same
kinds of nodes are not allowed. Places are usually graphically represented by
circles, and transitions are depicted by rectangles or bars.

A Petri net furthermore consists of tokens represented by dots within
places. A particular distribution of tokens in a set P of places is called a
marking M ∈ N

|P |. It determines the number of tokens in each place and rep-
resents a particular state of the Petri net. Figure 3.4 presents a small example
of a Petri net with two places, two transitions (each with an input arc and an
output arc), and a token in place p1.

If there is at least one token in all places connected to a particular tran-
sition by an input arc, the transition is said to be enabled. Then, an atomic
action called firing may take place. The firing of a transition results in the

100 3 Performance Evaluation

t

t

1

1

2

2

p p

Fig. 3.4. Example of a Petri net

removal of a token from each place connected to the transition by an input
arc and in the addition of a token to each place connected to the transition by
an output arc. If more than one transition is enabled, the firing must be se-
quentialized. No parallel firing is allowed. Petri net semantics does not define
which transition fires first.

Due to the removal and addition of tokens, the firing of a transition changes
the marking of the Petri net. Thus, firing leads to a state change of the model.
The behavior of the system in question can be described by a sequence of
firings. The initial state of the system is indicated by the initial marking M0

of the Petri net model. A marking that can be reached from the initial marking
by a sequence of firings is called reachable. The reachability set consists of all
such markings.

Taking into consideration previous explanations, a Petri net definition is
as follows: a Petri net is described by a 5-tuple

PN = {P, T, I, O, M0}, (3.99)

with
P = {p1, · · · , p|P |} : set of places
T = {t1, · · · , t|T |} : set of transitions

I ∈ {0, 1}|P×T | : matrix of input arcs

O ∈ {0, 1}|P×T | : matrix of output arcs
M0 = {m01, · · · , m0|P |} : initial marking

and m0i representing the number of initial tokens in place pi. An input arc
from place pi to transition tj exists if and only if Ipi,tj

= 1. Accordingly, an
output arc from transition tj to place pi exists if and only if Opi,tj

= 1.

Extensions

The basic definition of Petri nets as presented above has been extended in
two ways: to improve modeling power and to improve modeling convenience.

3.3 Petri Nets 101

Improving modeling convenience only changes the way a model represents
the system under consideration. Such extensions can be unfolded to achieve
again a basic Petri net that conforms to the definition.

Introducing an arc multiplicity is one of the extensions. Arc multiplicities
deal with multiple input arcs or output arcs between two nodes of a Petri net.
Instead of drawing k input (output) arcs connecting place pi and transition
tj , only a single input (output) arc is depicted. The multiplicity k is denoted
on the arc. The entries of I and O represent the multiplicities, and thus are
natural numbers.

In case of multiplicities, a transition is only enabled if the number of tokens
in a place corresponds at least to the multiplicity of the input arc connecting
the place and the transition.

An extension to improve modeling power are inhibitor arcs. An inhibitor
arc connects a place pi and a transition tj . Its graphical representation is a
line starting at the place and ending with a small circle at the transition. If
place pi holds at least one token, transition tj is disabled independently of
the state of the other places. Arc multiplicities may also be allowed. Then,
transition tj is disabled if there are at least as many tokens in place pi as the
multiplicity denotes.

Inhibitor arcs help check whether a place holds a given number of tokens.
Petri nets of the basic definition are not able to do so. With inhibitor arcs,
their modeling power is increased.

Modeling power is also increased by defining transition priorities. If tran-
sitions are connected via input arcs to the same place, and this place does
not hold a sufficient number of tokens to allow all the transitions to fire, tran-
sition priorities regulate which transitions are preferred. In such a case, the
transition of the highest priority only will be enabled (if its other input arcs
are connected to places that also hold a sufficient number of tokens). In the
graphical representation, priorities are denoted as integers at the transition.

Another extension of the modeling power is given by guards. As inhibitor
arcs, they disable transitions depending on the marking of the Petri net. But
they are more general: a transition may only be enabled if the corresponding
guard is satisfied. The guard may consist of any marking-dependent condition.

Considering previous explanations, an extended Petri net definition is as
follows: an extended Petri net is described by an 8-tuple

PNext = {P, T,P , I, O, H, G, M0}, (3.100)

with

102 3 Performance Evaluation

P = {p1, · · · , p|P |} : set of places
T = {t1, · · · , t|T |} : set of transitions
P ∈ N

|T | : vector of transition priorities

I ∈ N
|P×T | : matrix of input arcs and multiplicities

O ∈ N
|P×T | : matrix of output arcs and multiplicities

H ∈ N
|P×T | : matrix of inhibitor arcs and multiplicities

G ∈ {true, false}|T | : vector of guards
M0 = {m01, · · · , m0|P |} : initial marking

where G is a marking dependent function.

3.3.2 Stochastic Petri Nets

The previous section defined basic Petri nets. Stochastic Petri nets (SPNs)
extend this definition so that stochastic events and timed events can also be
handled, further improving the modeling power [141, 146].

Timed Transitions

Timing is introduced by adding a new parameter to transitions. This pa-
rameter, called firing time, defines the time interval from the enabling of a
transition until it fires (if there is no influence from any other transition that
fires).

If multiple timed transitions are enabled, an execution policy must deter-
mine which transition is allowed to fire. For instance, the preselection policy
chooses one of the enabled transitions at random. Firing times are not con-
sidered. A policy more often applied is called race policy, and will be used
in the following chapters. In race policy, firing times are considered and the
transition with the smallest firing time fires first.

To determine what happens to the remaining transitions that did not fire,
a memory policy must be introduced. For instance, the remaining transitions
may again restart their firing times, and time already spent in an enabled
state is lost. This policy is called resampling policy. In contrast, the enabling
memory policy conserves the time that has already been spent in an enabled
state. After the firing of a transition, the firing times of the remaining transi-
tions continue to elapse if they are still enabled. If they are no longer enabled,
the firing time already spent is lost. A third policy is called age policy. In this
policy, firing times already spent are never lost.

Different kinds of memory policies may be applied in a single stochastic
Petri net. Each transition can follow its given memory policy independently
of the other transitions to represent its desired behavior.

If each place connected to a transition via an input arc is covered by
multiple tokens, the transition can act either as a single server transition or
as an infinite server transition. A single server transition processes the tokens
in sequence. This means that the firing time related to a particular token

3.3 Petri Nets 103

starts to elapse after the firing process related to the previous one concludes.
In contrast, an infinite server transition processes all tokens in parallel. It
behaves similarly to an infinite number of parallel single server transitions.

Firing times can be of any probability distribution to incorporate stochas-
tic events. If transitions show geometric or exponential distribution, the
stochastic Petri net may be transformed to a discrete time or continuous
time Markov chain. Then, the solution methods of DTMCs or CTMCs can
be applied to determine the performance of the modeled system (see Sect.
3.3.2). If only transitions with exponential distributed firing times (including
the special case of transitions with zero firing times) are used, such nets are
called generalized stochastic Petri nets.

Generalized Stochastic Petri Nets

Generalized stochastic Petri nets (GSPNs) [129] are Petri nets that only con-
sist of transitions with exponential distributed firing times or with zero firing
times. Transitions with zero firing time are said to be immediate transitions.
Transitions with exponentially distributed firing times are graphically rep-
resented as white rectangular boxes, while immediate transitions are black
segments.

Particularly in the case of immediate transitions, several transitions may
be enabled in parallel. Due to zero firing times, firing has to take place si-
multaneously. Then, firing probabilities help determine the order of firing.
Such firing probabilities are introduced by associating weights wi to transi-
tions. The normalized weight wi/(

∑
j wj) of a transition i (normalized to all

enabled transitions j) gives its firing probability.
A marking in which at least one immediate transition is enabled is called

vanishing marking because it immediately changes due to zero firing time. All
other markings are called tangible markings.

The exponentially distributed firing time of a transition is characterized
by its firing rate λi. The firing rate may be marking dependent. A firing
rate λi → ∞ denotes a zero firing time, and thus represents an immediate
transition in a GSPN definition.

Previous explanations lead to a definition of generalized stochastic Petri
nets described by a 10-tuple:

GSPN = {P, T,P , I, O, H, G, M0, Λ, W}, (3.101)

with

104 3 Performance Evaluation

P = {p1, · · · , p|P |} : set of places
T = {t1, · · · , t|T |} : set of transitions
P ∈ N

|T | : vector of transition priorities

I ∈ N
|P×T | : matrix of input arcs and multiplicities

O ∈ N
|P×T | : matrix of output arcs and multiplicities

H ∈ N
|P×T | : matrix of inhibitor arcs and multiplicities

G ∈ {true, false}|T | : vector of guards
M0 = {m01, · · · , m0|P |} : initial marking

Λ ∈ (R+ ∪ {∞})|T | : vector of transition firing rates

W ∈ R
+|T |

: vector of transition weights.

Extensions of generalized stochastic Petri nets also exist. Often, systems
show deterministic behavior concerning some events. To adapt the modeling
power of GSPNs to such behavior, transitions with deterministic firing times
are added to the given definition [130]. The resulting Petri net that consists of
transitions of immediate, exponentially distributed, and deterministic firing
times is called a deterministic and stochastic Petri net (DSPN). Transitions
with deterministic firing times are mutually exclusive and have a preemption
policy. They are graphically represented as black rectangular boxes.

Solution Methods

Using stochastic Petri nets as a modeling technique, performance measures
of the system under consideration can be obtained by various observations.
For instance, a particular marking may reveal a particular event to be inves-
tigated. Then, the probability that this marking occurs can be determined.
Furthermore, the number of tokens in a place may give some performance
information. The frequency of the firing of a transition could also be of inter-
est. The delay of a token that traverses a subset of the Petri net is also often
investigated for performance evaluation.

After establishing a GSPN or DSPN model of the system in question,
analytical or simulation methods can be applied to determine the performance
measures. For instance, discrete event simulation, as presented in Sect. 3.1
provides a solution method.

A mathematical solution of Petri nets is available for GSPNs based on
the extended reachability graph. It includes the reachability set and some
stochastic information at the arcs. Timed transitions generate firing rates at
the corresponding arcs, and immediate transitions generate probabilities. The
graph can be established by starting with the initial marking M0 as root.
Next, all possible firing patterns result in the next possible markings. Then
again, all possible firing patterns are treated, and so on.

The extended reachability graph describes a semi-Markov process. It can
be transformed into a continuous time Markov chain by the elimination of
all vanishing markings: probabilities/rates of an arc leading to the vanishing
marking and exiting from it are simply multiplied, resulting in a new arc that

3.3 Petri Nets 105

skips this vanishing marking [8, 19]. The resulting graph is called reduced
reachability graph. Usually, the reduced reachability graph is generated on
the fly instead of the memory-consuming extended reachability graph.

The reduced reachability graph can be solved by applying steady-state
analysis or transient analysis, as presented in Sect. 3.2.

If multiple transitions with deterministic firing times exist, the Petri net
cannot generally be mapped onto a Markov chain. Only DSPNs, which consist
of deterministic transitions with mutually exclusive firing times and preemp-
tion policy can be solved by using the Markov chain formalism. They can be
replaced by an embedded Markov chain [62, 63, 90], where the system is in-
vestigated at time instants at which it is memoryless. Such instants are called
regeneration points. They are time instants when either transitions with an
exponentially distributed firing time only are enabled or when a deterministic
transition is enabled and fires. A discrete time Markov chain at the regener-
ation points can be established. A continuous time Markov chain describes
the exponentially distributed state transitions while the deterministic transi-
tion is enabled. The resulting embedded Markov chain can be solved and the
investigated performance measures determined [63].

4

Model Engineering

Previous chapters outlined common modeling techniques as well as charac-
teristics of network architectures for parallel and distributed systems. This
chapter aims to combine both. The topic of network architecture modeling
is exhaustively discussed by considering the experience acquired while per-
forming the research that has been taken as a basis for this book. Model
development is addressed first. Reducing the model size and the handling
of the evaluation process are also dealt with. Finally, model validation often
points out the limits of a model. This chapter gives some guidelines

1. for keeping the model to a size tractable by a computer system and
2. for keeping the required time (to establish and solve the model) as small

as possible.

The first item refers to the often observed effect that an established model
exceeds available computer memory due to its size.

The second item addresses the constraints of available computing power
and man power: the time interval between the modeling request and the recep-
tion of the final results, referred to as modeling time, should ideally last only
an instant. But it may in practice last minutes, hours, or even days. The goal
of reducing modeling time leads to the two tasks of decreasing the model de-
velopment time (mainly in the case of mathematical modeling methods) and
the model evaluation time (also called computation time) for performance
evaluation (mainly in the case of simulation).

4.1 Model Development

The most important issues in model development are model size, modeling
time, and the accuracy of the model’s results. All three issues heavily depend
on each other: the more accurate the results are to be, the more detailed the
model must be, something that usually increases the modeling and evaluation
times.

108 4 Model Engineering

Many things influence model size, modeling time, and accuracy. Some of
them may be influenced and adapted during the modeling process. But some
of them are out of the control of the model developer due to system constraints
and modeling goals. Modeling aspects include

• modeling technique,
• modeling granularity,
• logical system complexity,
• system complexity in time, and
• performance measures.

The modeling technique affects model size, modeling time, and accuracy, as
well as the proceeding model development processes. Before exhaustively dis-
cussing this, other aspects are briefly addressed.

The modeling granularity describes how detailed and exact the system in
question is represented by the model. It is obvious that a more detailed and
exact model leads to a larger model size, because either a higher number of
system states are distinguished, or a higher number of transitions between
states. As a result, modeling time (development time as well as computation
time) is increased. On the other hand, higher accuracy is usually achieved.
Fewer system dependences are neglected, driving the model behavior closer
to the real-world system behavior.

Logical system complexity gives information about the number of system
components and their logical dependence on each other. The more the number
of system components and logical dependences, the larger the model size. The
reason is similar to that of the previous case of the modeling granularity: the
number of system states to be distinguished and the number of transitions
increase with logical system complexity. Of course, logical system complexity
strongly depends on the point of view from which the system is observed. For
instance, the complexity of a distributed or parallel system hardware differs
if it is observed at transistor level, compared to being observed at the logical
gate level. Nevertheless, both levels achieve exact results, in contrast to low
granularity, where dependences are neglected.

System complexity in time gives information about the number of system
state changes per time interval. As with logical system complexity, system
complexity in time strongly depends on the point of view the system being
observed. For instance, if a clocked system is modeled, either all system state
changes during a single clock cycle may be separately modeled, or, if a less
detailed point of view is chosen, they are accumulated. As a result in the latter
case, only system state at the end of the clock cycle must be considered: the
number of system states to be distinguished and the number of transitions
can be reduced, leading to a smaller model size.

Performance measures to be determined also influence model size and mod-
eling time. The more detailed the performance measures required, the more
detailed the model to be established, increasing model size and modeling time.
For instance, delay times of messages sent between the nodes of a distributed

4.1 Model Development 109

system are requested. Determining the mean delay of all messages leads to a
less complex model than determining the delay distribution, for which differ-
ent delays have to be separately dealt with.

As already mentioned, the most important consideration concerning model
size, modeling time, and accuracy is the kind of modeling technique chosen
for performance evaluation. Selecting a particular modeling technique sets the
modeling limits related to it as presented in Chap. 3. Often, mathematical
modeling techniques turn out not to be appropriate due to their restrictions
and model sizes.

If both simulation and mathematical modeling are feasible, then the opti-
mal technique usually depends on the number of investigations [201] that are
planned. Due to short model development times and long model computation
times, simulation is the better choice if only one (or a few) investigation(s)
must be performed. Mathematical modeling methods are a better choice if a
large number of investigations are required: developing a mathematical model
consumes much time, but evaluating this model usually leads to the result
very fast.

Table 4.1 gives an example. While writing this book, many ways to model
multistage interconnection networks (MINs) were developed and investigated
(see Chap. 6 for details). Their modeling times are compared in Table 4.1.

Table 4.1. Comparison of the modeling methods

Modeling method Development time Computation time

Petri net 100 person hours > 2 weeks

MINSimulate 400 person hours 4 hours

Markov chains 1500 person hours < 1 second

The Petri net description [212] of a MIN is set up using the graphical toolkit
TimeNET [65]. Due to the huge state space resulting from the Petri net de-
scription, no analytical solution is feasible. Simulation must be performed to
achieve performance results of the MIN. The simulation tool MINSimulate

[208], which is based on the programming language C++, was specifically de-
veloped to model and evaluate MINs. Finally, the mathematical model is based
on Markov chains. Note that this mathematical model includes many neglects
and simplifications to keep the state space small enough to be tractable by a
computer system. Section 4.2 points out all neglects and simplifications and
explains them.

Table 4.1 first compares the model development times. The estimated
model development times include the validation and error detection times of
the models. There is a large difference in the development times. A fast method
in development and model validation is the Petri net description. The main
reason is the high level of abstraction, leading to a simple and compact graph-

110 4 Model Engineering

ical representation. It allows a proper model survey. The token game supports
easy model validation. The time consumed for the C++ simulation program
development is higher than for Petri nets especially because model valida-
tion is more complicated. The validation requires a step-by-step simulation.
The development time of the mathematical model is much higher than in all
other methods. The reason is the low abstraction level development based on
Markov chains. The state transition probabilities are time dependent, which
leads to complex equations.

The evaluation times of the methods are as different as the development
times, but in reverse order. The mathematical modeling method is the fastest
method for results. All other models use simulation, which enlarges the eval-
uation time. The C++ simulation run time is lower than the Petri net run
time because this simulator profits from being written specifically for model
multistage interconnection networks. Table 4.1 shows the evaluation times
(computation times) on a Linux PC consisting of a 1,200 MHz processor. The
throughput, delay times, and queue lengths at all stages of a 64×64 network
consisting of 2×2 switching elements are investigated. The MIN has a buffer
length of 1 at each stage, an input rate of 1.0, and a multicast input traffic
pattern called trafficeqpr [211].

Because of the high simulation times in the case of large network sizes, a
mathematical model is preferable if many networks with different parameters
have to be evaluated. Petri net descriptions are an acceptable method if the
examination of small networks is sufficient or if a single network has to be
evaluated.

If no idea at all is available about the complexity of the network of a
parallel and distributed system, the best way to start is with a modeling
technique of least development time, such as Petri nets. Then, a model is
established in a short time, and the first practical experience in modeling this
particular system is gained. If it turns out that the model computation time
is too high, not much time has been wasted in starting with this simple model
development technique. Moreover, the first experience is usually very helpful
to understand how to model the basic behavior of the system. This knowledge
accelerates the development of models using other modeling techniques like
Markov chains.

The flow chart of Fig. 4.1 gives a rough guideline for determining the mod-
eling technique. Of course, there is usually no clear answer to most questions
in the decision boxes due to the imprecise questions, and maybe due to the
poorly known system. But the developer’s tendency (how he is inclined to
answer questions) also helps find a feasible modeling technique with the given
guidelines.

4.1 Model Development 111

development
of

start

high
computation

time?

development time (e.g.Petri net)
model of short

yestime too high ?
computation

no

model
established

analytical model
(e.g. Markov chain)

complex system?

optimized simulation
model (e.g. C++ model)

yes

no

yes

unknown

yesno

no

many networks
to investigate ?

Fig. 4.1. Model development guideline

4.1.1 Simulation Model

If simulation is chosen as the modeling technique, the drawback of high evalu-
ation times surfaces. There are several reasons evaluation times could increase
more than necessary.

112 4 Model Engineering

Overhead

One of these reasons was mentioned above. Table 4.1 includes two simulation
models: a Petri net simulation and a C++ simulation. While evaluating the
same MIN, very different simulation run times are needed. The Petri net model
takes much more time to obtain the results due to Petri net formalism, and
that overhead has to be dealt with.

Figure 6.1 of Chap. 6 gives an example. It shows the Petri net description of
an 8×8 MIN consisting of 2×2 SEs. Without explaining the detailed behavior
here (it will be explained in Chap. 6), the complex Petri net structure is
nevertheless obvious.

Using a modeling method like Petri nets may lead to a model that deals
not only with the functional behavior of the system in question, but addition-
ally deals with all intern relations and dependences of the method itself, such
as priorities and weights. For instance, in the above example there are many
immediate transitions that feature equal priority and equal weight (e.g., all
Store transitions). With regard to the functional behavior, the order of firing
does not matter once the transitions allowed to fire are fixed. Only the system
states before and after the firing of the Store transitions are relevant. Inter-
mediate states are not of interest. But using Petri nets and their definitions
results in the choosing of a single transition at random to fire. Afterwards,
the state of the Petri net is revaluated. Again, many transitions are discov-
ered to have equal priority and weight, and one of these is chosen and fires,
revaluation starts again, and so on.

Such a model behavior is called overhead: details are considered during
the simulation process that are irrelevant concerning the functional behavior.
Simulating these details increases the computation time.

Modeling the functional behavior without any overhead confirms this: Ta-
ble 4.1 references a second simulation method of multistage interconnection
networks. The toolkit MINSimulate [208] simulates networks of the same kind
as those previously modeled by Petri nets. This time, the toolkit was specifi-
cally developed for modeling multistage interconnection networks. Simulation
is performed by C++ code. A detailed description of MINSimulate can be
found in Sect. 6.2.

Even though some overhead exists due to the object-oriented design, MIN-

Simulate shows much less overhead than exists in the Petri net case due to its
particular design. As a result, model evaluation time is reduced to a fraction of
Petri net run time. On the other hand, developing toolkits like MINSimulate

consumes much more time than taking advantage of a commonly available
toolkit like TimeNET, which supports establishing complex system models.

Data Representation

Besides an efficient simulation algorithm with as little overhead as possible,
an efficient simulation data representation also accelerates simulation.

4.1 Model Development 113

MINSimulate serves as an example: packets that enter the multistage in-
terconnection network are stored at a dedicated computer memory location.
This includes the headers of the packets and all the payload. During the
packet’s movement from buffer to buffer through the MIN, only a pointer to
the packet is moved from data structure to data structure, which represent
the buffers. If all packet data were to be moved, this process would be much
more time consuming; simulation run time would increase.

Such an efficient data representation also shows another direction for ac-
celerating simulation: data that are only locally available in a parallel and dis-
tributed system in the real world can be made globally available in simulation
to decrease simulation run time. For instance, in the real world, multistage in-
terconnection networks consist of signaling lines between neighboring stages.
The lines signal to preceding stages whether the packet destination buffers
are available so packets may be forwarded to them. If cut-through switching
is applied, a packet may cross many stages during a clock cycle. This means
that signaling information must also cross several stages to be available to
intermediate switching elements, and finally at the packets stage.

Simulating this local signaling consumes much more time than smartly
accessing all buffers globally to discover which ones are empty and directly
forwarding the packet to the last buffer of the determined cut-through path of
the current clock cycle. Applying this local information globally in simulation
does not change the overall behavior of how far packets move compared to the
real world. Advantage is only taken of the fact that in a simulation program,
all status information can be globally addressed, while in real world, this
information is only locally available in a parallel and distributed system due
to hardware constraints.

For instance, MINSimulate profits from globally addressed information
that is only locally available in the real world.

Confidence

If simulation is applied and the model includes stochastic events, the confi-
dence level of the achieved results must be determined. For instance, the con-
fidence level of MINSimulate’s simulation results is observed by the toolkit
Akaroa [155]. The simulation is stopped when previously established termi-
nation criteria are met.

The chosen confidence level dramatically influences the model evaluation
time. The more accurate the results are required to be, the higher the evalua-
tion time. For instance, the C++ model evaluation time of Table 4.1 emerges
by choosing a confidence level of 95% and an estimated precision of 2%. If
the confidence level is changed to 98%, the model evaluation time increases by
more than 30 minutes. If the confidence level is kept at 95% and the estimated
precision is changed to 1%, model evaluation time is dramatically increased
to about 11 hours.

114 4 Model Engineering

This effect is particularly observed when simulating rare events. Loss rates
of networks are an example. Loss rates of about 10−9 lead to an average num-
ber of a billion packets crossing the network until a packet is lost: high eval-
uation times arise. If a very narrow confidence interval with a high precision
is additionally chosen, many packet loss events must occur until the simu-
lation termination criteria are met, increasing the model evaluation time to
intolerable values.

As a result, confidence level and estimated precision should be carefully
chosen. The required accuracy of the simulation results should be considered
to determine the lowest reasonable confidence level and the highest reasonable
estimated precision value, avoiding unnecessary model evaluation times.

With regard to confidence, another issue may increase model evaluation
time: the random number generator, which is needed if stochastic events are
modeled. As already mentioned in Sect. 3.1.1, random number generators
generate numbers in cycles. This means that after generating a certain quan-
tity of numbers, a previously generated number is generated again. The same
sequence of numbers starts again due to the generation algorithm.

If the cycle is very short and the root of the random numbers is badly
chosen, the observed measure may start to oscillate with equal period around
the average value. If this oscillation is of high amplitude, the desired confi-
dence level may never be reached. Therefore (and to avoid wrong results), it
is important to provide simulation with random number generators of large
cycles. MINSimulate incorporates the random number generator of Akaroa

instead of the ANSI C rand() function. Akaroa offers periods between 2185

and 2377 [109, 154], while ANSI C rand() offers periods of only 231.

Parallelism and Data Recycling

A further reduction of model evaluation time can be achieved by distributed
simulation on several computer systems or processors that are connected via
a network. A simulation distributing the entire model to each computer or
processor is based on multiple replications in parallel (MRIP), as presented
in Sect. 3.1.2. If the model in question is simulated on i computer systems
in parallel, model evaluation time is accelerated by slightly less than i due to
two effects: first, additional communication between the i computer systems is
needed, consuming time; second, the initial transient phase must be performed
by all computers. Thus, this time is not divided by i.

But often, communication time and simulation time until the steady state
is reached can be neglected. For instance, MINSimulate in combination with
Akaroa offers MRIP. Profiting from this scheme halves simulation time of the
previously presented example of a 64×64 MIN to about two hours if executed
in parallel on two computers instead of about four hours for a stand-alone
simulation.

Due to the multiple replications independently running on different pro-
cessors, fault tolerance is included in the simulation. If a replication on a

4.1 Model Development 115

processor fails, the remaining replications still deliver their results, and the
simulation still comes to a successful end as soon as termination criteria are
met. Additionally, a restart of the failed replication can be performed.

Another type of parallel measure achievement emerges from determining
multiple measures in parallel. If multiple measures of a system must be deter-
mined, it is obvious to integrate them into a single system model, so starting
the simulation once will provide all results instead of starting it multiple times,
once for each measure. This is particularly relevant if terminating simulation
results are of interest. If results for several points in time are desired, all ob-
served parameters have to be determined for each time step in question. In
discrete time systems, these time steps are usually the discrete time steps of
the system. For instance if the system is clocked, a clock cycle equals a time
step. In continuous time systems, an appropriate time step must be chosen
related to the desired investigation of the system.

Determining temporal parameters in separate simulations for each time
step is not efficient. A faster method observes all parameters of all time steps
in a single simulation. The only drawback of such a method is the number of
measures. For instance, if 100 parameters are observed at 1,000 time steps,
100,000 measures must be handled by the simulator.

4.1.2 Mathematical Model

If a mathematical technique like Markov chains or Petri nets is chosen for
modeling, granularity and complexity become very important issues. That is
because mathematical models allocate considerable memory on a computer
system. Usually, a mathematical model leads to a system of equations de-
scribing the states and the state transitions of the system in question. If the
state space is too large, it exceeds the memory of computer systems, and the
system of equations cannot be solved.

An example is given by the Petri net model of Fig. 6.1. As mentioned in
Chap. 3, Petri nets help mathematically model systems. Petri nets can be
mapped onto the underlying Markov chain leading to the related system of
equations. In the case of the model of Fig. 6.1, the maximum size of a MIN
modeled in such a way must not be larger than 2×2. The state space of larger
MINs significantly increases and results in state space explosion: they are not
tractable by an ordinary computer system.

Reduction of the modeling granularity to reduce the state space would lead
to a very inaccurate model, and is therefore not feasible. Nevertheless, due to
the Petri net definitions, the translation of the Petri net to the Markov chain
introduces many states that are not relevant for the general behavior. These
states may be superposed to a single state. This concept is called lumping.

The previous example shows that establishing a minimum-sized model is
one of the main tasks in mathematical modeling. Usually, high level descrip-
tion techniques like Petri nets are not able to optimize model size. Therefore,

116 4 Model Engineering

achieving small model size is closely related to development at the low descrip-
tion level of Markov chains, for instance. But even that may result in models
too large to be handled by computer systems. In such a case, model size must
be further reduced by neglecting system dependences and by decreasing the
state space. The model will be simplified.

4.2 Complexity Reduction

This section discusses model simplifications to reduce model complexity. The
aim is either to speed up model simulation run time or to allow mathematical
modeling of systems whose mathematical model was too large and formerly
not tractable.

Simplifying models such that their complexity is very low is an easy task.
Simply changing the modeling granularity to a very low value would do it. But
in this case, the accuracy of the performance evaluated by the model would
drop very much, and the results would be useless. Therefore, the challenge is
to find simplifications that only slightly change the accuracy. Usually, these
simplifications keep the modeling granularity. In the following, the general
approaches that turned out to be efficient are summarized.

4.2.1 Simulation

As previously mentioned, high evaluation times are the main drawback of sim-
ulations. Reducing model complexity usually helps accelerate simulation. Two
different ways to reduce model complexity with only slightly decreasing accu-
racy are presented here: neglecting dependences and combining a sequence of
events into a single event.

Neglects of Dependences

Neglecting dependences reduces the number of state transitions and states. In
other words, simulation runs pass fewer transitions and states, and therefore
simulation is accelerated.

On the other hand, dependence neglects usually influence the behavior of
the model. This means that the model behavior differs from the real-world
system behavior. In consequence, model results also differ from system results.
This can be avoided only if dependences that only slightly influence model be-
havior are neglected (these dependences are called loose dependences). Then,
model results will differ only slightly from real-world system results.

Applying dependence neglects to models therefore gives rise to the task of
finding loose dependences in the system. There is no general way to do this.
Usually, a system developer should know the system enough to identify obvi-
ously loose dependences. But there may be others that are not immediately
visible, or ones where it is unclear whether the dependence is loose or strong.

4.2 Complexity Reduction 117

If no clear statement about the kind of dependence is possible, it must be
investigated by comparing the model results by including the dependence and
then excluding it. Of course, such a comparison only makes sense if the model
is built to allow more than one investigation. Then, the results of both models
can be compared for a few carefully selected investigations. If the less complex
model turns out to be nearly as accurate as the more complex one, it can be
assumed that such a behavior is true for all investigations. The less complex
model can be exclusively applied to the remaining investigations: simulation
run time is reduced.

An example demonstrates dependence neglects [220]. In a distributed sys-
tem, messages are sent from node to node through the interconnection net-
work. If packet switching is applied, these messages are divided into packets
(see Fig. 2.1). All packets belonging to the same message are destined to the
same node and enter the network in sequence. This is also true for the packets
belonging to the next message, intended for another destination node, and so
on. In the real distributed system, sequences of packets with the same desti-
nation enter the network. The upper MIN input of Fig. 4.2 illustrates such
sequences. The first message is destined to node 3. It consists of four packets.
The next message consists of two packets and is destined to node 1.

333 3

36 4 2 4 1

1 1 0
1

2
3

4
5

6
7

Fig. 4.2. Packet sequences

Neglecting these dependences in the network model means that all pack-
ets entering the network are assumed to be independent. Nodes are modeled
as packet sources that generate packets with destinations independently of
previously generated packets (lower MIN input of Fig. 4.2). Packet genera-
tion becomes less complex in simulation. Furthermore, performance measures
vary less, and narrow confidence intervals are reached faster. In mathematical

118 4 Model Engineering

models, this particular dependence neglect raises additional issues, described
in Sect. 4.2.2.

To give an example, two 64×64 MINs are compared. They are identical
except for their nodes. The nodes of one network always offer sequences of
10 packets with the same destination to the MIN, while those of the other
offer independent packets. Performance measures show that the throughput,
delay times, and queue lengths of the MIN with the packet sequences as load
are slightly smaller than those of the other. Simulation time (using the tool
MINSimulate) is more than doubled.

In real networks of distributed systems, the dependence between pack-
ets is given not only by their destination. The packet density (number of
packets per time interval) often depends on former densities, also in long
time range. An example is multifractal traffic, which is often observed in net-
works. MINSimulate provides independent packet traffic as well as any kind
of destination-dependent and time-dependent traffic.

Combining Events

Combining a sequence of events into a single event may also decrease model
evaluation time without decreasing accuracy. Each event that occurs and must
be dealt with consumes computation time. In other words, reducing the events
also reduces computation time. But the same problems occur as in case of ne-
glected dependences: combining events may result in model behavior different
from real-world system behavior, particularly if some events in the sequence
are neglected. In consequence, results achieved from the model also differ from
system results. The model becomes inaccurate.

To avoid inaccuracy, events have to be determined that can be combined
without changing model behavior. A multistage interconnection network may
serve as an example. As described in Sect. 2.3.10, such networks are internally
clocked to achieve synchronously operating switches. But clocking only affects
the network itself. The nodes of a distributed system, which are connected to
the MIN, may operate asynchronously. Therefore, nodes offer packets to be
transferred by the network at an arbitrary moment to the network. But the
MIN only checks at the beginning of every clock cycle whether packets are
waiting for transfer. In consequence, if packets are buffered at the nodes, all
events related to the offering of a new packet to a network input can be
combined. Only the number of packets waiting at the beginning of a clock
cycle are of interest. Figure 4.3 illustrates asynchronous packet generation of
nodes (top) and the combination of those events (bottom) into a single event
at the beginning of a clock cycle (represented by a dashed line).

4.2.2 Mathematical Model

The main drawback of mathematical models is their usually large state space
due to model complexity. Therefore, mathematical modeling aims to reduce

4.2 Complexity Reduction 119

packets

packets

1

1

t

t

Fig. 4.3. Combining events

model complexity, as in the case of simulation. Ideas emerging from simulation
can also be applied, but the features of mathematical models call for additional
methods.

Decomposition

One of the most effective methods to reduce model complexity is given by
dividing the system to be modeled into multiple independent subsystems.
Each of the subsystems results in a much smaller model than a model of the
complete system. Subsystem models can be solved independently of each other
to characterize the complete system. This approach is called decomposition
(see Sect. 3.2.4).

An example is given by a four-node parallel system where each of two
crossbars connects two nodes, and no cross-connection between the crossbars
exists (Fig. 4.4). The system can be divided into two independent subsystems.
Subsystem I consists only of nodes N1 and N2, while Subsystem II consists
only of nodes N3 and N4. Both subsystems can be solved independently of
each other.

Unfortunately, most systems cannot be divided into independent subsys-
tems. In that case, some systems offer the facility to divide them into near-
independent subsystems. If dependences can be ordered, their ordering de-
termines the order of the solution. Figure 4.5 shows a parallel system with
near-independent subsystems. If the link from the lower crossbar output of
Subsystem I represents a unidirectional link to the crossbar of Subsystem
II (and no backward signaling exists), an ordered solution of the subsystems
solves the whole system. First, Subsystem I is solved; the lower crossbar out-

120 4 Model Engineering

N1

N2

N3

N4

Ι

ΙΙ

Fig. 4.4. Decomposition of independent parallel subsystems

N1

N2

N3

N4

Ι

ΙΙ

Fig. 4.5. Decomposition of near-independent parallel subsystems

put gives the offered load to the upper crossbar input of Subsystem II. Solving
Subsystem II concludes the analysis of the system.

If the link between Subsystem I and II, for instance, also includes a back-
ward signaling from II to I, and the backpressure algorithm is applied, then
no ordering of the subsystems is possible, because dependences are cyclic. Two
solution methods can be applied: an approximation, as described in Sect. 3.2.4,
or an iterative method.

4.2 Complexity Reduction 121

The iterative method solves the system using fixed point iteration. During
each iteration step, the state of each subsystem is separately determined by
considering the subsystem state of the previous iteration step. At every i-
th iteration step, the influence of the other subsystems is incorporated. The
less dependent the subsystems, the larger the i that can be chosen. On the
other hand, if i is too large relative to the dependence of the subsystems, the
iteration may oscillate and never reach a fixed point.

Symmetries

Networks, particularly those of parallel systems, often belong to a class that
profits in two ways from decomposition. First, dividing the networks into
near-independent subsystems results in smaller models of subsystems that are
tractable by a computer system. Additionally, this splitting into subsystems
often results in another advantage: all subsystems are similar. In consequence,
iteratively solving a single subsystem while it cyclically depends on itself saves
computation time, compared to iteratively solving all subsystems.

Usually, similar subsystems emerge if the network is of regular (symmet-
ric) structure. Not only the architecture, but network traffic must also be
symmetric (uniform), i.e., similar in all subsystems. Then, substitution by a
single subsystem is feasible.

Multistage interconnection networks are again an example. Figure 4.6(a)
illustrates a buffered 8×8 MIN consisting of 2×2 switching elements. The net-
work is of a regular structure, called modified data manipulator. It is assumed
that the traffic offered to the network results in uniform traffic. This means
that equal load is offered on average at all network inputs, and all outputs
are destinations of the packets with equal probability. Then, all SE rows of
the MIN show on average identical behavior and identical state probabilities
as, for instance, the buffer queue length probabilities. The network model
complexity can be reduced by simply modeling a single row of the MIN. It
represents a subsystem and is given in Fig. 4.6(b). This subsystem cyclically
depends on itself. For instance, for performance evaluation of the MIN for a
given input traffic, the kind and amount of traffic at both inputs at the SE at
stage 0 can immediately be determined. But Fig. 4.6(b) also shows that per-
formance evaluation needs the kind and amount of traffic entering the model
at the lower input of the SE at stage 1. This traffic comes from an output of an
SE at stage 0 of another row. Due to symmetry, this SE sends on average the
same kind and amount of traffic as the SE at stage 0 given in Fig. 4.6(b). In
consequence, the average throughput at the SE output at stage 0 determines
the offered load at the lower SE input at stage 1. On the other hand, the
buffer queue length probabilities of the lower SE input at stage 1 determine
the average amount of accepted packets and, therefore, the throughput the
SE output at stage 0 can achieve. A cyclic dependence exists.

This scheme of reducing the MIN to a single row of SEs can be continued.
An even more reduced model emerges from reducing each SE of the row to

122 4 Model Engineering

Stage 0 1 2

(a) Entire system

Stage 0 1 2

(b) Subsystem based on an SE row

Stage 0 1 2

(c) Subsystem based on input-output pairs

Fig. 4.6. 8×8 multistage interconnection network

a single input-output pair. Due to the SE symmetry and the uniform traffic,
all SE inputs as well as all SE outputs show equal behavior: a single input-
output pair models the entire SE. Thus, a row of input-output pairs, each of
them representing an SE, is sufficient to model the entire MIN. In Fig. 4.6(b),
this would be realized by horizontally cutting the figure in the middle of the
SEs and considering only the upper part (Fig. 4.6(c)). The state of a MIN
stage can now be represented and modeled by the state of a single buffer of the
related SE input. An example is given in Chap. 6. There, a model representing

4.2 Complexity Reduction 123

a MIN is exhaustively discussed. The model is based on discrete time Markov
chains and takes advantage of MIN symmetries.

Asymmetry

Even if the system is not symmetric, the method above can be applied in
particular cases. The idea is based on the superposition of symmetric system
parts.

Often, asymmetric systems can be divided into parts where each of them
shows symmetric structure. Multistage interconnection networks serve again
as an example. Figure 4.7 illustrates a MIN of symmetric architecture but

Fig. 4.7. MIN loaded with asymmetric traffic

asymmetric (non-uniform) network traffic: a very low load is offered to all
network inputs except the last one. This input is fed by a high network load.
The high load of one input spreads over the network and establishes a tree
of high load in the network. As a result, the network traffic and, therefore,
the buffer queue length probabilities are not equal in all SEs belonging to the
same network stage.

The system can be modeled in a way similar to symmetric systems: sys-
tem parts are modeled, which cyclically influence themselves. But, this time, a
model not only of a single subsystem emerges from the system, but depending
on the kind of asymmetry, multiple subsystems (model parts) are established.
Dependences may exist between some of the subsystems and, cyclically, within
a subsystem. A model reduction can be achieved by applying a single subsys-
tem model part to all subsystems identical to it.

For instance, in Fig. 4.7, the part of the overall model that describes the
SE of the first row at stage 0 also describes the SE of the third row at stage
0. Both SEs behave identically, and only a single model part describing one

124 4 Model Engineering

of them is needed to establish a model of the whole system. In contrast, the
SE of the last row at stage 0 must present its own model part because its
behavior is different from that of above rows.

Using this scheme, only six model parts describing SEs emerge to establish
the whole system model instead of the 12 model parts if each SE is described
by its own model part. Similarities and resulting model parts are depicted in
Fig. 4.8. For instance, model part VI represents all four SEs of the last stage.

II

III

III IV

IV

V

VI

VI

VI

VIVI

Fig. 4.8. Model parts of the asymmetric MIN

On the other hand, model part I is the only one representing a single SE.

Multiple State Spaces

As already mentioned, very detailed models often result in huge state spaces
that cannot be handled by typical computer memory. Thus, those models
cannot mathematically be solved by computers.

If various different details of the system are relevant and should be mod-
eled, a single state space representing all details may become too large. Estab-
lishing multiple models can solve the problem. Each of the models is described
by a state space representing one of the system details of interest. These mul-
tiple models are often closely related and their mathematical solution can
simultaneously be obtained from a single calculation.

A buffered network of a parallel or distributed system is an example: a
particular buffer of the network is investigated. The buffer is able to store a
maximum of 10 packets. By modeling the network, the aim is to achieve the
distribution of the queue lengths of the buffers. In addition, a distribution of
which packet holds the first buffer position is of interest. For instance, the
ratio between unicast packets and multicast packets may be examined.

The given problem can be solved by establishing a model with a single
state space. Because 10 different queue lengths can occur (if an empty buffer

4.2 Complexity Reduction 125

is omitted), and because for each queue length there may be a unicast packet
or multicast packet at the first position, 20 different states and their transitions
need to be modeled.

If two models are established, two state spaces represent the system. One
model investigates the queue length and thus consists of 10 states and their
transitions. The other model examines the first buffer position resulting in
two states and the corresponding transitions. That means if both models are
simultaneously solved, only 12 states have to be handled instead of 20. The
description of the system is of course not as detailed as before, but it may be
sufficient for the desired investigation.

Representing a system by multiple models may induce multiple state
spaces that are dependent on each other. In consequence, a simple product
of state probabilities originating from different state spaces does not give the
probability with which those states simultaneously occur.

The above example of two network models illustrates this problem. Let
us assume that there are many more multicast packets in the first buffer
position if the queue consists only of this position, and that there are fewer
multicast packets if the buffer queue length is larger than a single packet.
Thus, the probabilities of both states of the first buffer position only give the
(weighted) average probabilities of all queue lengths. Simply multiplying the
probability that the first buffer position is occupied by a multicast packet with
the probability that the queue length is 1 does not result in the probability
that the packet of a queue of length 1 is a multicast packet. The product
would be too small because it would not consider that there are many more
multicast packets if the queue consists only of one position.

Discretization

In a discrete time system such as the MINs presented as clocked systems,
state transition only occur at multiples of a time unit Δt. Markov chains only
require the system to show the Markov property at discrete times. Only the
state transition probabilities of two succeeding time units are needed. How
much time the transitions consume is insignificant, as long as they finish in a
time unit. The system model becomes less complex this way, and it is easier
to deal with.

However, most real-world systems are continuous time systems. Neverthe-
less, many of them can be discretized by finding the smallest time unit that
is relevant for their behavior. For instance, if a state variable of a system is to
be controlled and the highest frequency of the system is known, then system
time can be discretized to twice this frequency: Shannon’s Theorem proves
that a sample rate of twice the system frequency is sufficient to determine the
system. But discretization may lead to a more detailed system description in
terms of system states. A larger state space, as in the case of a continuous
time model may result (as already concluded, the size of the state space is
one of the most critical problems in mathematical modeling).

126 4 Model Engineering

4.3 Automatic Model Generation

In previous sections, model development time and model evaluation time
(computation time) were distinguished. Table 4.1 compares them for differ-
ent modeling methods. It turns out that development of mathematical models
like Markov chains consumes much more time than development of simulation
models. The large development times arise due to the complicated and com-
plex equation systems that have to be established for mathematical models.

If the equations that describe a system are investigated in detail, it turns
out that, for many systems, not all the equations are completely different.
Groups of equations exist in which the equations differ only slightly.

Interconnection networks of parallel and distributed systems are an exam-
ple, for instance, if buffers are in the network. The state of each buffer can be
described by the number of packets that stay in the buffer at a discrete point
in time (e.g., at the beginning of a clock cycle). A state transition from a
queue length of, for instance, four packets in a particular clock cycle to three
packets in the succeeding one will take place if and only if a packet leaves
the buffer and no new packet arrives. It is assumed that the buffer can only
handle a single arrival and a single exit of a packet per clock cycle.

Now, consider the scenario, where a state transition from a queue length
of five packets to four packets is investigated. Again, the same conditions
hold: the transition takes place if and only if a packet leaves the buffer and
no new packet arrives. This means that the equations modeling both state
transitions belong to the same group. The conditions for the transition can
be used as rules to set up the equations: in this example which, is quite
simple, the transition probability is the product of the probability that a
packet leaves the buffer and the probability that no new one arrives. Such rules
can automatically be translated into equations, saving development time.

Deriving the rules for equation set-up based on the equation group emerges
as the main issue for automatic model generation.

4.3.1 Rule Design

Before rules can be derived, the states of the system in question must be
identified. To perform this task, the same considerations apply as in the case
of manually setting up the equations.

For instance, the more the number of states defined, the more detailed the
model. On the other hand, the more the number of existing states, the more
complex the model, and the more the number of difficulties that arise in the
mathematical solution of the equations. Complexity reduction, as described
in Sect. 4.2, remains an important task. It must be emphasized that auto-
matic model generation does not influence the model complexity compared to
manual model set-up. If states are identical, then state transition equations
are also identical. Automatic model generation only accelerates establishing
a model.

4.3 Automatic Model Generation 127

After the states to be modeled have been identified, all existing state tran-
sitions must be derived. The next step deals with the determination of groups
of similar state transitions and, thus, similar equations. These groups can be
found by starting with a single equation. Designing rules to set up this single
equation usually suggests which other state transitions also fit the rules.

Rules should be elaborated such that they clearly relate to a system char-
acteristic. Then, corresponding rules can easily be located to adapt to new
or changed system characteristics in order to investigate the new or changed
system.

For instance, a distributed system is connected by a clocked and buffered
network operating in store-and-forward switching mode. Rules are derived,
describing, for example, the preconditions for the arrival of a new packet at
a buffer. One of those rules states that at least one packet must stay in the
preceding buffer in the previous clock cycle (Fig. 4.9). Otherwise, no packet
would be available to be forwarded to the buffer described by the rule. Now,

P P P P

Fig. 4.9. Store-and-forward switching: only preceding buffer relevant

the switching mode is changed to cut-through switching. The rule above is
clearly related to the switching mode and, thus, it is obvious that it must
be changed. In the given example, it will be changed in such a way that an
empty preceding buffer is also feasible if the predecessor of the preceding buffer
includes at least one packet (Fig. 4.10), or the predecessor of the predecessor,
and so on. In such cases, a packet “cuts” through all empty buffers until it

P PP P

Fig. 4.10. Cut-through switching: preceding buffer may be empty

reaches the buffer in question.
Usually, the best way to elaborate the rules consists of investigating a

small system. For instance, if a parallel system of a thousand nodes is to be

128 4 Model Engineering

investigated, and the system has regular structure, the first step would be
to investigate a similar system of fewer nodes, e.g., 10 nodes. But the system
must not be shrunk so much that it results in an extreme example with simpler
equations and rules.

After the basic rules of a small system are found, they can be applied
to larger systems. Larger systems show whether the rules are still valid or
whether any add-ons are needed. On the other hand, it must be ensured that
the rules also cover any extreme example.

Furthermore, any borderline cases must be considered while deriving the
rules of a group. In a group, there are often equations that fit into the concept
of the group but differ in a particular feature or show additional constraints.
An example is equations describing transitions at the border of a regular
structure, compared to equations for transitions in the middle of the regular
structure.

Again, a distributed system connected by a clocked and buffered network
operating in store-and-forward switching mode is an example. One of the rules
describing the preconditions for the arrival of a new packet at a buffer was
outlined above: at least one packet must stay in the preceding buffer at the
previous clock cycle (Fig. 4.9). If such a packet is offered to the buffer in
question, it will be stored in the buffer. This is true for all states of the queue
length and, therefore, can be considered in all equations describing all states.
But there is an exception: if the buffer in question is completely occupied by
packets, it cannot accept the offered packet. In contrast to all other states, a
packet must leave the buffer at the same time to accept a new one. In other
words, the group of equations that describe the transition between two buffer
queue lengths consists of similar equations, but one of them deals with an
additional constraint. The rules must take this into account.

Similar considerations are well known from algebraic specification meth-
ods; for instance, specifying the functional behavior of an ADT buffer (ab-
stract data type buffer) while considering full and empty buffer states.

4.3.2 Generating Systems of Equations

The systems of equations are generated based on rules. Section 4.3.1 helps find
such rules. After deriving the rules, they must be represented in an appropriate
way for computer processing.

In many cases, simple if-then constructs in an ordinary programming lan-
guage are sufficient and the most efficient way. Nevertheless, other approaches
may also be a qualified choice depending on the kinds of rules. For instance,
Sect. 6.4 demonstrates an automatically generated system of equations for
multistage interconnection networks. There, the idea was to represent the
rules using an expert system. However, it turned out that an expert system
would complicate the description more than necessary and if-then constructs
were sufficient. Nevertheless, expert systems are also the feasible representa-
tions.

4.3 Automatic Model Generation 129

Another consideration in the design of an equation generator is how to in-
clude model parameters. Model parameters are, for instance, the size (number
of nodes) of a parallel and distributed system, as well as the functional be-
havior like the switching technique (store-and-forward or cut-through). Three
different schemes to include model parameters can be distinguished:

• hard coding of parameter values into rules,
• input of parameter values during the generation of equations, and
• input of parameter values during the solution of the equations.

These schemes may also be combined if the model consists of multiple types
of parameters.

The hard coding of parameter values into the rules is usually necessary
if multiple rule sets exist. A set of rules depends on the parameter value.
The rules generate a specific system of equations valid only for the particular
parameter value. If the value changes, new equations have to be generated.
Such a scheme is a good option if rules significantly differ for parameter values.
For instance, the switching technique in networks significantly influences a
part of the rules to establish a model (see Sect. 4.3.1).

Entering the parameter values during the run-time of the generation of
equations means that the rules are able to handle all (legal) parameter values.
The rules are universal. Nevertheless, once the parameters are passed, a spe-
cific system of equations is generated that is again valid only for the particular
parameter values. If the values change, new equations have to be generated.

Passing the parameter values during the run-time of the equations’ solution
means that the parameters (and not particular values) are included in the
system of equations. Universal rules generate universal equations, which can
be solved for all (legal) parameter values. This is the best scheme if a series
of parameter values is to be investigated: the solution can be started multiple
times with different parameters without generating new equations for each
run. Such a scheme is usually a good option if the parameter value is simply a
number, like an integer. For instance, the size of a parallel system represents
such a parameter, or the buffer sizes of its network (see Sect. 4.3.1).

All equations belonging to the same group are generated by repetitively
applying the rules of this group to each equation. The rules of this group
combined with the particular constraints of each equation lead to its final
form. The queue length of a FIFO buffer gives an example (Fig. 4.11). All
equations to determine πm are to be generated, where πm represents the
probability that the buffer queue length equals m.

π 3 π 2 π 1π mmaxπ m

Fig. 4.11. Queue length probabilities

130 4 Model Engineering

A loop passes through all queue lengths m, starting with m = 1 and
ending with m = mmax, where mmax denotes the buffer size. For each m, the
corresponding equation of πm is derived by considering the group rules and the
particular constraints. For instance, one of the group rules says that a queue
length of m is reached if there was a queue length of m + 1 before, no new
packet arrived at the buffer, and one left it. But if m = mmax, which means a
completely filled buffer, the state m+1 does not exist and this particular rule
does not apply; nevertheless, maybe all other rules still apply. The nonexistent
state mmax + 1 is a constraint for this equation.

In the given example, the loop passes through all states of the subsystem.
Of course, state transitions may also belong to a group of equations, and,
then, another loop passes through all those transitions. Many more groups
may exist; for instance, measures may belong to a group.

Before automatically generating the equations by rules, another design is-
sue must be considered: an appropriate way to represent the equations must be
found. It has to be kept in mind what the equations model. For instance, that
a parallel or distributed system is to be modeled to determine its temporal or
steady-state performance. In other words, by considering the models goal, a
step-by-step solution of each equation, a steady-state solution of the system
of equations, or possibly another kind of solution will lead to the desired re-
sult. Therefore, many tools are feasible for handling the system of equations,
depending on what the model is intended for. The equations must be repre-
sented in such a way that they can be imported into the corresponding tool.
Tools may be

• computer algebra systems and tools or
• ordinary programming languages.

Of course, they are not limited to the above list.
Computer algebra systems usually support symbolic and numerical solu-

tions of systems of equations. A symbolic solution allows an investigation of
the desired measure depending on all parameters influencing it. For instance,
if the measure results in a product of a parameter and any term of the re-
maining parameters, the value of the measure increases if the value of the first
parameter increases. Specifically, the measure increases proportionally to the
first parameter.

Symbolic solutions work very well if equations are polynomial and the
number of variables is low. But often, such constraints are exceeded, and a
symbolic solution fails. Then, a numerical solution can usually still be found.
The computer algebra system yields a numerical value for the desired measure.
The performance of the parallel or distributed system is determined for a
particular case, but if parameters change, no prediction of how performance
changes is possible.

Most computer algebra systems support various import formats, such as
all kinds of data files and programming languages (e.g., C and Fortran). The
equations generated should apply to one of these formats.

4.3 Automatic Model Generation 131

The system of equations can also be solved by algorithms implemented in
ordinary programming languages. Any computational overhead arising from
computer algebra systems due to their universality can be avoided. The model
developer adapts the solution algorithm to his or her particular model and
includes the automatically generated equations. For instance, fixed point it-
eration could act as a solution method, and be implemented in the C++
programming language. This main program never changes, and includes the
equations generated, which are also represented by C++ code. If generation
rules change due to a changed system, only the newly generated equations
are included in the unchanged main program. After recompiling it, a new
investigation may start.

4.3.3 Generator Design

Figure 4.12 graphically outlines previous explanations on how to design a gen-
erator for automatic model development and on how to evaluate the model.
The figure represents a guideline for what steps to perform to achieve auto-
matic model generation. Of course, there are various kinds of systems, and
various model types that can be applied. Therefore, this guideline must be
adapted to the particular problem. Considering all hints given in Sects. 4.3.1
and 4.3.2 will help. A complete example of an automatic generation of equa-
tions is given in Chap. 6.

132 4 Model Engineering

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

� �
� �

� �
� �

� �
� �

� �
� �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

identification of groups of similar equations

model parameter input

representation of rules

solution of equations

computer algebra system

symbolic numerical C++ Java ...

interpretation of results

programming language

programming language expert system

during generation during solutionhard coded

covering extrem examples

...

determining the modeled system states

rule design

clear relation to system characteristics

Fig. 4.12. Design of a generator and model evaluation

5

Application: Cellular Network

Chapter 4 gave guidelines on how to model network architectures for parallel
and distributed systems. Some ideas to reduce model complexity and accel-
erate model development were presented. This chapter gives an example on
how to design a model for cellular networks using those ideas. The handoff
in cellular networks will be of particular interest. The handoff process gives
important information about the size of overlap area that must be chosen.
But additional parameters, such as the velocity of the mobile nodes and the
cell diameter, must also be considered.

The example investigates a concept for ubiquitous network access by mo-
bile users dealing with real-time applications. They move in a cellular network
and perform several handoffs. It is assumed that mobile users in particular use
audio-based and video-based applications with specific quality of service (QoS)
requirements. Support of real-time applications in wireless scenarios requires
both fast handoffs and seamless QoS guarantees on the path of the mobile
node through the network. A proposed solution to combine them for real-
time support is the Ubiquitous Service Access Internet Architecture (USAIA)
[183, 223]. USAIA provides hierarchical mobility management that interacts
with the QoS mechanisms on three different network levels:

• The cellular level for handoffs between adjacent cells belonging to the same
subnetwork. This level provides a fast handoff protocol and a scheme for
resource reservation in advance to minimize the impacts of the movements
of the mobile nodes to the QoS contract.

• The domain level for handoffs between different subnetworks. This level
provides mobility management by means of either hierarchical foreign
agents or Multiprotocol Label Switching (MPLS) [170]. Furthermore, QoS
support is assumed to be provided by Differentiated Services and/or
MPLS.

• The inter-networking level for handoffs between administrative domains.
This level uses Mobile Internet Protocol (Mobile IP) [157] for mobility
management.

134 5 Application: Cellular Network

For this investigation, the handoff is simplified, and the different protocols
[188] are only marginally considered and not explained in detail here. The
network performance will be mainly examined, depending on the network
architecture and the required bandwidth of the mobile users.

5.1 USAIA Framework

USAIA is an all-IP framework for mobile access, with support for real-time
traffic. It provides hierarchical mobility management that interacts with ap-
propriate QoS mechanisms in different network areas. USAIA distinguishes
the following three areas:

• the cellular level, including all cells of the wireless part of the access net-
work belonging to the same IP subnetwork

• the domain level, including all IP subnetworks belonging to an adminis-
trative domain

• the global level, including all other administrative domains of the global
Internet

Within the USAIA framework, base stations (BSs) are viewed as routers con-
necting the wireless cellular network to the wired part of the access network,
which itself is connected to the Internet. Because the cellular level of USAIA
is the subject of the performance evaluation of this study, it is explained in
more detail in the following. All other aspects of the USAIA framework are
described in detail in [183, 223].

The mobility management at the cell level is performed using a new fast
handoff protocol. Furthermore, USAIA provides all necessary mechanisms for
resource reservation in advance. For this purpose, the signaling protocol RSVP
(Resource Reservation Protocol [22]) is modified in such a way that mobile
nodes (MNs) are able to request resources on the BSs to which they have
not yet performed a handoff. These requested resources are called passive
reservations, because they can be used by the best-effort traffic of other MNs,
as long as no handoff of the requesting MN has occurred. After a successful
handoff, passive reservations turn into active ones. In that state, they cannot
be used any longer by other traffic. To distinguish between these kinds of
resources, the available bandwidth of a BS is partitioned, as depicted in Fig.
5.1.

Reservations of MNs requesting new resources from the network fall into
the initial reservation class. Active and passive reservations of users leaving the
scope of their initial or current BSs fall into the continuous reservation class.
Reservations of MNs sharing the best-effort delivery traffic fall into the no
reservation class. The mechanism to request resources in advance minimizes
possible distortions of the real-time transmission during handoffs. This can
be assured as long as the BSs are able to accept passive reservations. To
provide the opportunity to accept as many passive reservations as possible,

5.1 USAIA Framework 135

no
reservation

initial
reservation

activepassive

priority

bandwidth

continuous
reservation

Fig. 5.1. Bandwidth partitioning

the protocols involved are optimized and extended in several ways. The details
of these optimizations can be found in [183].

The key aspect of the USAIA framework is the seamless interworking of
the mobility management and the resource reservation mechanisms to provide
appropriate support of real-time traffic. To understand the interactions of both
mechanisms, the message exchange between a correspondent host (CH) and
the MN via the BS is explained in more detail (see also Fig. 5.2).

• The initial message is the beacon signal of a BS, containing the IP address
of the BS that sends it. Beacon signals are sent via broadcast. The rate
of the beacon signals is correlated to the current load and the available
resources of the BS. To support fast handoffs, the beacon signal conveys
a provider-defined share of the maximum resources that can be requested
by MNs. This happens either during the handoff procedure as a passive
reservation or as an initial reservation, i.e., after the successful termination
of the authentication process, when the MN enters the network.

• Within the cell overlap areas, the MN recognizes beacons from different
BSs, and triggers the handoff procedure. The handoff is initiated by send-
ing an MN Announcemessage to the new BS, carrying the MN’s own address
as well as that one of the “old” BS. The MN Announce message contains
either an indication of whether the handoff is marked as “triggered” or
whether it is a “handoff announcement.” The former initiates the handoff
procedure and the latter makes it possible to request resources in advance,
without losing connectivity to the current BS.

• The new BS confirms receipt of the MN Announce message with an
MN Announce Ack message.

• If the MN Announce message is marked as triggered, the new BS sends a
Notify message via the wired link to the old BS to inform it that the MN
has moved. This message conveys the address of the new BS. The new BS
also creates a routing table entry for the MN.

• Receiving a Notify message, the old BS deletes its routing table entry for
the MN.

136 5 Application: Cellular Network

• If the MN Announce message is not marked as triggered, the BS accepts a
retransmitted MN Announce message to trigger the handoff or the reserva-
tion in advance requests, respectively.

• The MN can now send RSVP messages for reservations in advance; these
messages are acknowledged by the new BS by a RSVP RESV Confirmation

message. The new BS performs all necessary internal actions to handle this
passive reservation.

• The MN sends either a retransmitted RSVP RESV message to maintain its
passive reservation(s) or a retransmitted MN Announce message marked as
triggered. The latter initializes the real handoff.

• On receiving a triggered MN Announce message, the new BS turns the pas-
sive reservation into an active reservation and transmits a Notify message
to the old BS.

• Finally, the new BS broadcasts a gratuitous proxy ARP (Address Reso-
lution Protocol) to map the MN IP address to the BS link layer address,
thus forcing all nodes involved to update their ARP caches with that in-
formation. This mechanism prevents the chaining of several BSs.

The most critical point of the USAIA framework with respect to real-time
traffic support is the mechanisms provided on the cellular level due to the
following reasons. First, the resources on the wireless link are usually much
more limited than on the wired part of the network. Second, handoffs between

(3) Announce_Ack

(7c) Announce_Ack
(5) RESV_Conf.

(4) Passive RESV

Dat
a

(a
fte

r S
te

p
(7

))

(7a) Notify

Dat
a

Data

(after Step (7))

(before Step (7))

Data

(2) Announce

(1) Beacon

(6) Announce [T]

(7
b)

 G
ra

tu
ito

us
 A

RP

MN

local CHs
Router

new
BS

old
BS

(b
ef

or
e

Ste
p

(7
))

Fig. 5.2. Local handoff protocol

5.2 Petri Net Model 137

cells will likely happen more frequently than on the domain level or global
level, thus influencing real-time traffic more significantly.

The major goal of the USAIA framework is the decoupling of the MN
movement from the resources provided on any location visited. This means
that there should be no need to stop the MN movement just to avoid any
distortion of its real-time traffic. Therefore, the performance evaluation of all
traffic classes involved with respect to accepted and failed reservations at the
cellular level is of major interest.

5.2 Petri Net Model

Following the guidelines of Chap. 4, the modeling of the USAIA framework is
started with the fastest and most simple model development scheme: the Petri
net description. Another guideline of Chap. 4, that can be applied here, is to
profit from symmetry. The Petri net description is based on modeling events
of a single BS transmission range assuming a symmetric cellular network (as
in Fig. 2.36) and that all BSs behave the same way. The model represents the
transmission range of the BS and all MN activities that might occur within
that range. These activities include nodes arriving at the range of the BS,
nodes moving within the range, nodes initializing a new association within
the range (MNs that are “switched on”), and nodes leaving the range. The
term association denotes any kind of connection between BS and MN.

With regard to the kind of traffic MNs deal with, the model distinguishes
MNs that carry real-time traffic (in the context of USAIA, this is related to
a previous setup of a reservation request via RSVP) and MNs carrying best-
effort traffic. Furthermore, the model takes into account MNs that establish
a new association within the range of the BS. Any MN that deals with more
than a single data flow within an association is handled by the model by
dividing this node into multiple nodes, each one dealing with one of the data
flows within a separate association. For instance, an MN carrying a data flow
with real-time traffic and a data flow with best-effort traffic is represented
by two MNs: one of them carrying a data flow with the real-time data and
the other with the best-effort traffic. According to the guidelines of Chap. 4,
a complex data flow scenario is decomposed into two simpler ones. A state
space reduction results because only single data flows occur, and no combined
data flows have to be represented by additional states.

To deal with the broad scope of individual reservation requests (initial and
passive) of arbitrary size up to the permitted limit of bandwidth, discretiza-
tion is applied as proposed in Chap. 4; the real-time traffic of MNs is assumed
to belong to one of the three following classes: a class of low bandwidth re-
quirements (called Min), a class of high bandwidth requirements (called Max),
representing the maximum share of bandwidth a provider is willing to accept
for a single request, and a class of average bandwidth requirements (called

138 5 Application: Cellular Network

Avg). Each of those classes is divided into two subclasses according to the
extension of the Controlled Load Service Class described in [183].

Subclass R indicates that the requested bandwidth of a passive reservation
can be reduced by the BS in the case of further incoming passive reservation
requests and if the number of accumulated bandwidth of passive reservations
exceeds a certain threshold value. For simplicity, our model distinguishes only
between reservations that can be reduced to the lowest level of service the
application is willing to accept and reservations that cannot be reduced due
to the missing tolerance range. The latter means that the range specified in
the Controlled Load Service specification of the application is set to 0. In
reality, USAIA deals with the entire range of possible reductions, because the
BS uses only the appropriate percentage of the tolerance ranges of all passive
reservations to admit a new passive reservation request.

Subclass F means a fixed required bandwidth for passive reservations with
no reduction allowed. As a result, different bandwidth allocations are modeled
by six subclasses: MinF, AvgF, MaxF, MinR, AvgR, and MaxR.

In consequence, applying the discretization guideline of Chap. 4 to the
bandwidth in the USAIA framework keeps the model tractable, while using
continuous bandwidth would lead to an infinite state space. Of course, the
more the number of bandwidth classes, the more accurate the model. In the
following example, it turns out that three classes combined with two subclasses
are sufficient to perform the required investigations.

DSPNs are used to describe the USAIA framework. Any passing time is
represented by transitions that consume time from enabling to firing. Tran-
sitions with deterministic firing times are modeled by black filled rectangles.
Transitions with exponentially distributed firing times are modeled by white
rectangles. Immediate transitions, which do not consume any time, are mod-
eled by black bars. All model input parameters, that can be changed are given
in Table 5.1. They are explained in more detail in the following.

Each token appearing in the model represents an MN, except tokens in
place Beacon modeling the beacon signal. Therefore, a kind of token “flow”
through the net occurs, representing the current state of the corresponding
MN. To handle multiple MNs (tokens) in parallel, all timed transitions are
infinite server transitions except T1 (see Fig. 5.4), which models the MN arrival
at the BS, and T44 (see Fig. 5.3), which models newly started applications at
MNs.

The Petri net is described in detail below, starting with MNs opening their
communication with an initial association. For simplicity, the authentication
process is not taken into account.

5.2.1 Initialized Mobile Nodes

MNs that stay in the range of the BS and that like to establish a new associ-
ation with a BS due to a newly started application are modeled by transition

5.2 Petri Net Model 139

Table 5.1. Model parameters

Parameter Meaning

DnewMN average time between new node arrivals

Dinit average time between new initializations

Doverlap time to pass the overlap area

Dremain time to pass the remaining range

Dprocess time for handshake between BS and MN

Dbeacon/DbeacInc base/decrement time of beacon

fracRTT fraction of real-time traffic

AvgRcvdBS average number of received BSs

fracClass traffic fraction of class Class (Table 5.2)

guard T49 etc accepting an active reservation

guard T40 etc threshold of passive bandwidth reduction

guard T45/T46 etc accepting a passive reservation

guard T4 etc accepting a initial reservation

T44 (Fig. 5.3). The rate of new applications requesting an association is as-
sumed to be exponentially distributed. The average time between two requests
is identified by the parameter Dinit. A new association to be established (to-
ken in place Init) requests either best-effort traffic or real-time traffic. The
relation between the two kinds of traffic is modeled by the weights of the
transitions T42 and T43. The parameter fracRTT defines the ratio of real-
time traffic, and, therefore, defines the weight of transition T43. The weight
of transition T42 results in 1-fracRTT.

If the MN requires real-time traffic (firing of transition T43), the node
listens for a beacon signal (place listInitRT). The beacon signal model is
introduced in Sect. 5.2.2. If such a signal is received (firing of transition T39),
the node announces its presence to the BS (place AnnInit) by an MN Announce

message. Transition T38 models all the time needed for that procedure. That
is the announcement procedure itself, including local processing time, and
the reservation request procedure, also including the local processing time.
Stochastic influence on this time, for instance, additional delays due to signal
interferences, is neglected to keep the model simple. Thus, this time is deter-
ministic and expressed by parameter Dprocess. This parameter is assumed
to be independent of the kind of reservation (initial or passive).

The model provides dealing with network architectures where multiple BSs
are in range of the MN. The parameter AvgRcvdBS defines the average number
of BSs that are received at an MN’s location. Of course, an initial association
will be set up to only one of those BSs. Transition T36 ensures that the BS
of our model will get the initial association. Otherwise, the request is turned
to a passive reservation (firing of transition T37). The weight of T37 results
in (AvgRcvdBS - 1)/AvgRcvdBS. Such an initial passive reservation is treated
similarly to passive reservations that result from such MNs arriving at the

140 5 Application: Cellular Network

T38

T39

Init

T4 T5 T6

T44

T20 T29 T30

InitMin InitMaxInitAvg

getMin getAvg getMax

T7 T8 T13

T31 T32 T33

InitEstab

T36

Initactpass

T37

AnnInit

listInitRT

T42 T43

Fig. 5.3. MNs establishing a new association

5.2 Petri Net Model 141

range of the BS (Sect. 5.2.2). This means such passive reservations may turn
into active ones (e.g., when the initial reservation to the other BS terminates),
considering the same assumptions (concerning path, and so on) as in the case
of arriving nodes.

The firing of transition T36 indicates that the initial reservation is set
up at the modeled BS. The weight of T36 results in 1/AvgRcvdBS. Because
initial reservations are also assumed to belong to one of the three bandwidth
classes Min, Avg, and Max, the transitions T31, T32, and T33 manage the
distribution among the classes by their weights. The parameter fracMinI

(weight of transition T31) gives the fraction of traffic class Min, fracAvgI
(weight of T32), the fraction of class Avg, and fracMaxI (weight of T33), the
fraction of class Max. The MN will try to establish a reservation until the
required bandwidth is accepted or the MN leaves the range of the BS.

If the traffic belongs to the class Min, a token is generated in place getMin.
Establishing the corresponding reservation is done by transition T4. But T4 is
only enabled if its guard is fulfilled:

#InitMin+ #InitAvg · AvgMult+ #InitMax · MaxMult
≤ Initbw− 1. (5.1)

The guard prevents a new reservation if the required bandwidth is not avail-
able. AvgMult defines the factor of the bandwidth the class Avg requires rel-
ative to the class Min. MaxMult defines the factor of the bandwidth the class
Max requires relative to the class Min. Initbw represents the total bandwidth
of the BS for initial reservations relative to the bandwidth of the class Min.

If the guard is fulfilled, an initial reservation is established (token in
InitMin). The time the MN stays within the range of the BS is modeled by the
exponentially distributed transition T20 with an average delay of (Doverlap
+ Dremain)/2. Given such a delay, it is assumed that the MNs are initialized
while spending half of their average time in the range of the BS. Doverlap and
Dremain will be defined in Sect. 5.2.2. Due to the lack of movement patterns
of MNs, the firing delay and its distribution are assumed. Besides exponen-
tial distribution, any other kind of distribution could also be modeled using a
transition with a generalized distribution.

If the guard is not fulfilled, the MN tries to establish an initial reserva-
tion as long as it is in the range of the BS. Leaving the range is modeled by
transition T7 with an average delay time of (Doverlap + Dremain)/2. The
measure RInitMin = E(#InitMin) gives the average number of initial reser-
vations, and RIgMin = E(#getMin) gives the average number of nodes waiting
for an initial reservation.

Both of the other bandwidth classes are modeled in a similar way. The only
difference is given by the bandwidth requirements, which result in slightly
different guards concerning the corresponding transitions to T4. For instance,
in the case of the bandwidth class Avg, the maximum occupied bandwidth at
the BS (right-hand side of Eq. (5.1)) has to be changed to Initbw - AvgMult

142 5 Application: Cellular Network

because the newly established association requires AvgMult times the minimal
bandwidth (of class Min).

5.2.2 Real-time Traffic

MNs that enter the transmission range of the BS are modeled by the transition
T1 (Fig. 5.4). The arrival rate is assumed to be exponentially distributed. The
average time between two arrivals is given by the parameter DnewMN, which
can be set depending on the MN density and movement pattern. The relation

RTorBET

AnnRT

Beacon

T1

T2T3

T9

T10

AnnBET

T27

T28

T22 T23

bandw

T25

T35

T81 T80 T79 T77 T75 T73

listenRT

T11

T24 weakSig

listenBET

BETsameother

BETestab

Fig. 5.4. MNs entering the BS range

between real-time traffic and best-effort traffic is modeled by the weights of
the transitions T27 and T9, as in case of initialized MNs.

An arriving MN first enters the overlap area of the new and the old BS. If
it carries real-time traffic (firing of transition T9 in Fig. 5.4), the node listens
for a beacon signal (place listenRT) because it is willing to establish an
association for a passive reservation. Transition T3 represents the generation
of the beacon signal, and therefore fires at a predefined fixed rate. Firing

5.2 Petri Net Model 143

leads to a token in Beacon. The MN receives the signal (firing of transition
T10). Other kinds of traffic are also served in this way (transitions T28, best
effort traffic, and T39, initialized nodes; Fig. 5.3). These three transitions are
preferred to transition T11 due to their higher priority, set to 2. A firing of
one of the three transitions does not lead to a deletion of the token in place
Beacon because the corresponding arcs are double-sided. As a result, all MNs
listening are handled first, and then the token representing the beacon signal
is removed by the low priority transition T11.

The rate of T3, i.e., the rate of the beacon signal, is usually load dependent.
This means that the higher the BS load (bandwidth occupied by associations),
the lower the rate. As a result, the delay time of T3 is a marking-dependent
function that deals with this constraint. Here, the delay time is controlled
by the number of associations. It results in a basic rate of 1/Dbeacon in the
case of no association. Dbeacon represents a model parameter. The rate is
decreased for each association depending on a second parameter, DbeacInc.
Other marking-dependent functions can be chosen as well.

If a beacon signal is received (firing of transition T10), the node announces
its presence to the BS (place AnnRT) and requests a passive reservation via
RSVP. Transition T2 accumulates the time required to handle this request,
including the time for message passing, processing, and so on, similarly to
T38 in the case of initialized MNs. The delay of T2 is given by the parameter
Dprocess. The remaining model only considers the MN movement time.

After handling the request for a passive reservation, a token in place bandw
occurs. Six transitions are enabled now (T81, T80, T79, T77, T75, and T73).
They represent the assignment of the traffic carried by the MN to the six
different real-time traffic bandwidth classes. The ratio of class MinF is modeled
by the weight of transition T81 and determined by parameter fracMinF. Table

Table 5.2. Bandwidth classes

Class Transition Weight parameter

MinF T81 fracMinF

AvgF T80 fracAvgF

MaxF T79 fracMaxF

MinR T77 fracMinR

AvgR T75 fracAvgR

MaxR T73 fracMaxR

5.2 gives the transitions and weights of all bandwidth classes. After the firing
of one of the transitions, a token is generated in the corresponding subnet,
as shown in Fig. 5.5. The token in place bandw is removed. The token “flow”
within the subnet is exemplary explained for the bandwidth class MinF of Fig.
5.5.

144 5 Application: Cellular Network

aMinF

aMinR

MinF

T81

T12 T17

T45 T46

pMinFa

pMinFp

T47 T48

T49

T50

T51

T70

T72

T93

T14

T101 T104T40

faMinF

timeMinF

ptoaMinRptoaMinF

faMinR

fpMinF

Fig. 5.5. One of the bandwidth classes

A token in place MinF indicates that the MN is carrying traffic of the class
MinF. Next, the load of the BS is investigated and it is determined whether a
passive reservation to the MN can be established (firing of transition T45 or
T46) or whether the request for a passive reservation is to be denied due to
the lack of bandwidth (firing of transition T14).

Compared to the priority 1 of transition T14, the transitions T45 and T46

have a higher priority (priority of 2), and therefore, establishing the passive
reservation has priority over denying it. But transitions T45 and T46 are also
guarded. Both guards are equal and guarantee that a passive reservation is
only established if the available bandwidth allows turning it into an active
reservation if necessary. Nevertheless, the model also allows reserving more
bandwidth than is available because not all passive reservations are turned
into active ones. Therefore, the previously mentioned guards are of free choice,
and the Petri net model may help find the optimal guards and the optimal

5.2 Petri Net Model 145

constraints in the real network for accepting passive reservations. Examples
of guards are found in Sect. 5.3.

If T45 and T46 are not enabled due to the guards, T14 is fired and places a
token in place fpMinF: the passive reservation has failed. The MN crosses the
range of the BS without any reservation to it. The crossing time is modeled
by transition T93 assuming an exponential distribution (or any other kind of
distribution modeled by transitions with generalized distributions) with an
average crossing time of Doverlap + Dremain. Doverlap models the time an
MN needs to cross the overlap area of the old and the new BS. The time to tra-
verse the remaining (new) range is given by Dremain. The average number of
tokens in fpMinF determines the average number of failed passive reservations
RfpMinF = E(#fpMinF).

If T45 and T46 are enabled, a passive reservation can be established. As
mentioned in Sect. 5.2.1, the model allows dealing with network architectures
where multiple BSs are in range of the MN. The parameter AvgRcvdBS defines
the average number of BSs that are received at an MN’s location. Of course,
an active association will later be set up to only one of those BSs. Transition
T45 ensures that the BS of our model will get the active association, and
transition T46 ensures that one of the AvgRcvdBS - 1 other BSs will get it.
Due to the assumed uniform movement pattern, the weight of transition T45

results in 1/AvgRcvdBS, and the weight of transition T46 results in (AvgRcvdBS
- 1)/AvgRcvdBS.

If T46 fires, the MN will never establish an active reservation at the mod-
eled BS. Place pMinFp represents the MN crossing the range of the BS. Transi-
tion T48 determines the average crossing time, given by Doverlap + Dremain.
Instead of the exponential distribution, any other one may be chosen. Place
timeMinF represents that the MN has left the transmission range. The passive
reservation times out after the elapsed time defined by transition T50. It is
given by the parameter Dtimeout. The average number of tokens in timeMinF

allows determining the number of passive reservations that are timing out:
RToutMinF = E(#timeMinF).

If T45 fires, the MN will establish an active reservation. Place pMinFa

models the MN crossing half of the overlap area of the old and the new BS
(modeled by an average delay time of Doverlap/2 by transition T47). Usually,
the signal of the old BS will become weaker than the signal of the new BS
after the crossing of half of the overlap area. As a result, the firing of T47 and
a token in place ptoaMinF means that the passive reservation has to be turned
into an active one: transition T49 fires if the available bandwidth of the BS
is sufficient (a token is placed in aMinF). Otherwise, the firing of transition
T101 indicates the failure of turning to an active reservation (token in place
faMinF). The guard of T49 and the priorities of both transitions deal with
this decision. Transition T49 has the higher priority, but also a guard in the
way of

146 5 Application: Cellular Network

#aMinF+ #aAvgF · AvgMult+ #aMaxF · MaxMult
+(#aMinR+ #aAvgR · AvgMult+ #aMaxR · MaxMult)/reduce
≤ Contbw− 1, (5.2)

where AvgMult defines the factor of the bandwidth that the class Avg requires
relative to the class Min (for both subclasses, F and R). MaxMult defines the
factor of the bandwidth that the class Max requires relative to the class Min.
Contbw represents the total continuous reservation bandwidth of the BS rela-
tive to the bandwidth of an association of class MinF. The parameter reduce
models the factor of maximum bandwidth reduction of the reducible band-
width classes. The guard in Eq. (5.2) ensures that the bandwidth for a new
active reservation of the class MinF is available.

If the guard is fulfilled, the active reservation is activated (token in aMinF).
The MN crosses the second part of the overlap area and the remaining range
of the BS (modeled by the exponentially or alternatively distributed transi-
tion T12 with an average delay of Doverlap/2 + Dremain). If the guard is not
fulfilled, an active reservation fails (modeled by place faMinF and transition
T51 with an average delay of Doverlap/2 + Dremain). The measure RaMinF

= E(#aMinF) denotes the average number of active reservations and the mea-
sure RfaMinF = E(#faMinF) determines the average number of failed active
reservations.

All bandwidth classes are modeled in a way similar to that in Fig. 5.5.
The only difference is given by the bandwidth requirements, and results in
slightly different guards concerning the corresponding transitions to T45, T46,
and T49. Concerning transition T56 in the case of the bandwidth class AvgF,
for instance, the maximum occupied bandwidth of the BS (right-hand side of
Eq. (5.2)) should be Contbw−AvgMult.

The bandwidth classes MinR, AvgR, and MaxR, which represent passive
reservations of reducible bandwidth, deal with an additional transition, as
compared to the previously described case of fixed bandwidth (e.g., T40 of
bandwidth class MinR in Fig. 5.5). It models establishing an active reservation
of non-reduced bandwidth if the BS load is light. The priority of T40 is higher
than those ones of T70 and T104. But its guard prevents its firing if the BS
is heavily loaded. The guard belongs to the model parameter set.

5.2.3 Entire Model

Combining the submodels of Figs. 5.3 to 5.5 lead to the entire Petri net
model of the USAIA framework. It is depicted in Fig. 5.6. Table 5.3 shows all
transition weights that differ from 1. The model development and evaluation
was performed using the toolkit TimeNET [65].

5.3 Model Engineering and Performance 147

RTorBET

listenRT

AnnRT

Beacon

T1

T2
T3

T9

T10

T11

AnnBET

T27

28

BETestab

T35

aMinF aAvgF aMaxF

aMinR aAvgR aMaxR

MinF
AvgF MaxF MinR AvgR MaxR

T73T75T77T79T80T81

T12 T15 T16 T17 T18 T21

BETsameother

T22 T23

weakSigT24

T25

T20 T29 T30

InitMin InitAvg InitMax

T31 T32 T33

InitEstab

Initactpass

T36

T37

T38

AnnInit

T39

listInitRT

Init

T44

T45 T46

pMinFa

pMinFp

T47 T48

T49

T50

T51

T52 T53

pAvgFa

pAvgFp

T54 T55

timeAvgF
T56

T57

T58

T59 T60

pMaxFa

pMaxFp

T61 T62

T63

T64

T65

T66 T67

pMinRa

T68 T69

T70

T71

T72

T74 T76

pAvgRa

T78 T82

timeAvgR
T83

T84

T85

T86 T87

pMaxRa

pMaxRp

T88 T89

T90

T91

T92

T93 T94 T95 T96 T97 T98

getMin getAvg getMax

T4 T5 T6

T7 T8 T13

T14 T19 T26 T34 T99 T100

T101 T102 T103 T104 T105 T106T40 T41 T107

bandw

listenBET

faMinF

timeMinF

ptoaMinRptoaMaxFptoaAvgFptoaMinF ptoaAvgR

faAvgF faMaxF faMinR faAvgR

timeMaxF timeMinR

pAvgRppMinRp

fpMinF fpAvgF fpMaxF fpMinR fpAvgR fpMaxR

ptoaMaxR

timeMaxR

faMaxR

T42 T43

Fig. 5.6. Petri net model of the USAIA framework

Table 5.3. Transition weights

Transition Weight

T9,T43 fracRTT

T27,T42 1 - fracRTT

T22,T36,T45 etc 1/AvgRcvdBS

T23,T37,T46 etc (AvgRcvdBS - 1)/AvgRcvdBS

T81 etc, T31 etc fracClass

5.3 Model Engineering and Performance

The model previously presented is revisited here in order to give a summary
of how the design rules from Chap. 4 have influenced the architecture.

148 5 Application: Cellular Network

5.3.1 Model Development and Complexity Reduction

One of the most successful ways to reduce model complexity is to profit from
symmetry, as this model does. Only a single base station is modeled, assuming
all other base stations behave similarly. The data representation chosen is as
simple as possible. Tokens that cannot be distinguished represent the mobile
nodes and their movements. Other MN information, such as an identification
number or billing information, is not needed to determine the performance of
the USAIA framework for the given questions.

The model also combines events. Not all steps of the handoff protocol as
given in Fig. 5.2 are explicitly incorporated. For instance, requests and their
acknowledgments are combined in a single transition that reflects the amount
of time needed for communication.

Discretization is applied by introducing only three bandwidth classes. The
bandwidth that the MNs request in reality will usually be continuously dis-
tributed between minimum and maximum bandwidths. Here, the model com-
plexity is reduced by mapping the requested bandwidth onto one of three
discrete bandwidth classes.

However, some of the guidelines have not been considered. For instance,
the computational overhead of a Petri net description is taken into account
to come up with a fast graphical high-level modeling, which is provided by
Petri nets. The following example applies the model to a wireless local area
network (WLAN) environment and shows that the computation time is still
small enough to perform all desired investigations. Thus, any other modeling
techniques can be waived here. Chapter 6 gives an application where the
simulation performance of the Petri net model is prohibitive for the required
analysis of the system. In this case, other modeling techniques have to be
used.

5.3.2 Modeling Power

The previously presented model is independent of cellular network technology.
For each specific technology, the parameters can be adapted.

To demonstrate this model, the parameter set of a wireless local area
network (WLAN) [27, 31, 64, 174, 236] scenario is used, according to IEEE
802.11b.

The features of a commercial product are applied as an access point, which
in this case is the realization of the BS. Both terms are synonymous. For the
model, it does not matter that access points are not IP-aware, because all time
constraints were taken into account as if they were processing IP packets.

The diameter of the transmission range is about 60 meters for data rates
up to 11 Mbps. Users (MNs) are assumed to pass the transmission range on
paths that cover a length of half the diameter on average. If they walk (7
km/h), they spend 15.429 seconds within the range. It is further assumed
that the network is set up in such a way that an average overlap of 10 meters

5.3 Model Engineering and Performance 149

occurs along the path of a user. Of course, the model can also deal with any
other overlap. As a result, the overlap area of 10 meters is passed in Doverlap

= 5.143 s and the remaining path within the transmission range in Dremain

= 15.429 s − 5.143 s = 10.286 s.
The BS is assumed to process any announcements or reservations of MNs

in Dprocess = 0.001 s. Passive reservations time out after Dtimeout = 15 s.
The beacon signal is initially sent at a rate of 10 per second (Dbeacon = 0.1
s) and decreased for each 10 established connections (DbeacInc = 10) by one.

MNs are assumed to be located in the range of AvgRcvdBS = 2 BSs on
average. Their movement pattern and density result in MNs that arrive at a
new BS at a rate of 1 per DnewMN = 0.05 s. MNs are initialized within the range
of a BS at a rate of 1 per Dinit = 0.15 s. Half of all new nodes are assumed
to carry best-effort traffic, and half of them real-time traffic (fracRTT = 0.5).

According to the product specification, the base station is able to handle
about 50 nominal users that require a small bandwidth. Those users are as-
sociated with our bandwidth class MinF (and Min initial reservations). The
mainstream users are assumed to consume twice the bandwidth of nominal
users, and are associated with bandwidth classes AvgF and Avg. Power users
are assumed to require four times the bandwidth of nominal users, and belong
to the classes MaxF and Max. Users that can reduce their consumed bandwidth
are assumed to allow a maximum reduction of 50%. The BS bandwidth is
divided into a bandwidth of a maximum of 40 nominal users for active reser-
vations and into a bandwidth of a maximum of eight nominal users for initial
reservations. All bandwidth classes are assumed to occur with equal proba-
bilities.

Concerning the guards that observe whether passive reservations can be
turned into active ones (e.g., Eq. (5.2)), previous definitions lead to AvgMult=
2 and MaxMult= 4. A maximum reduction of 50% results in reduce= 2. Thus,
the guards of transitions T49, T56, T63, T70, T83, and T90 are determined.
Furthermore, the guards that observe whether initial reservations are accepted
are also set up by their corresponding equations (e.g., Eq. (5.1)).

The guards that observe whether a passive connection can be established
are determined in a similar way. Nevertheless, any other arbitrary enabling
function can also be chosen. The guard we have chosen considers all active
reservations and their corresponding bandwidths. Only a fraction of the men-
tioned active bandwidth reservations is taken into account. This is because
usually some time passes until a passive reservation turns into an active one.
During this time, some of the other active reservations of the BS are ter-
minated because the corresponding MNs have left the transmission range of
the BS or terminated their applications. Thus, only the remaining fraction of
active reservations is considered by the guard. The parameter remact allows
assuming this fraction. The example presented sets it to 60% (remact = 0.6).

Furthermore, the passive reservations and their corresponding bandwidths
(if they turn into active reservations) are considered. Only a fraction of those
reservations is taken into account because several passive reservations will

150 5 Application: Cellular Network

time out and never turn into an active reservation. This ratio is given by the
parameter rempass. It is the investigated parameter of the given example:
What ratio should be chosen to achieve a high number of active and passive
reservations but also a low number of failed ones? The guards of transition
T45 and T46 result in

0.6(#aMinF+ #aAvgF · 2 + #aMaxF · 4
+#aMinR+ #aAvgR · 2 + #aMaxR · 4)

+rempass · ((#pMinFp+ #timeMinF+ #pMinFa)

+(#pAvgFp+ #timeAvgF+ #pAvgFa) · 2
+(#pMaxFp+ #timeMaxF+ #pMaxFa) · 4
+(#pMinRp+ #timeMinR+ #pMinRa)

+(#pAvgRp+ #timeAvgR+ #pAvgRa) · 2
+(#pMaxRp+ #timeMaxR+ #pMaxRa) · 4) ≤ 39. (5.3)

The guards of the other bandwidth classes differ only in the right-hand side
of the equation that determines the maximum occupied bandwidth of the BS
to allow at least one active reservation of the corresponding bandwidth class.

The BS is configured to deal with as many active reservations as possible.
This means that traffic of subclass R is accepted by the BS only with their
reduced bandwidth. It is modeled by disabling transitions T40, T41, and T107.

Figures 5.7 to 5.10 show some results. The reciprocal ratio of passive reser-
vations is 1/rempass. The average number of active reservations (Fig. 5.7), the
average number of failed active reservations (Fig. 5.8), the average number of
passive reservations (Fig. 5.9), and the average number of failed active reser-
vations (Fig. 5.10) are compared for all six bandwidth classes. The results are
achieved by simulation due to multiple enabled deterministic transitions that
cannot be mapped onto a Markov chain. As termination criteria, a confidence
level of 95% and an estimated precision of 2% is used. But in the case of rare
events, these criteria are relaxed due to a simulation run-time of more than
10 hours on a 1,200 MHz processor. Relaxing the estimated precision to 5%
leads to about two hours simulation time.

The plots of the bandwidth classes MinF and AvgR, and those of AvgF and
MaxR, are equal due to equal probabilities of the bandwidth classes and equal
bandwidth of both classes if bandwidth reduction is taken into account.

The minimal ratio of passive connections to avoid failed active reservations
arises as another result of the example. The reciprocal ratio should not be
larger than 10 (Fig. 5.8), resulting in rempass = 0.1.

5.3 Model Engineering and Performance 151

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40 45 50

ac
tiv

e
re

se
rv

at
io

ns

reciprocal fraction of passive reservations

#MinF
#AvgF
#MaxF
#MinR
#AvgR
#MaxR

Fig. 5.7. Active reservations

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50

fa
ile

d
ac

tiv
e

re
se

rv
at

io
ns

reciprocal fraction of passive reservations

#MinF
#AvgF
#MaxF
#MinR
#AvgR
#MaxR

Fig. 5.8. Failed active reservations

152 5 Application: Cellular Network

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50

pa
ss

iv
e

re
se

rv
at

io
ns

reciprocal fraction of passive reservations

#MinF
#AvgF
#MaxF
#MinR
#AvgR
#MaxR

Fig. 5.9. Passive reservations

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

fa
ile

d
pa

ss
iv

e
re

se
rv

at
io

ns

reciprocal fraction of passive reservations

#MinF
#AvgF
#MaxF
#MinR
#AvgR
#MaxR

Fig. 5.10. Failed passive reservations

6

Application: Multistage Interconnection

Network

This chapter will give a second example of model engineering. Multistage
interconnection networks serve as the network architecture in question. This
example is much more exhaustive than the previous one. Simulation models
as well as mathematical models are considered.

Multistage interconnection networks (Sect. 2.3.10) are often proposed to
connect a parallel or distributed system. MINs with the banyan property per-
forming packet switching will be of special interest. Again, as in the previous
example of modeling bandwidth partitioning for cellular networks, Petri nets
are developed first as they allow easy and fast model construction.

Petri nets allow solving the model by mathematical methods (analyzing
the underlying Markov chain) or by simulation. But in the example presented,
it will turn out in Sect. 6.1 that mathematical solutions using Petri nets are
not feasible, and only simulation can be applied. Besides Petri net simulation,
a particularly adapted C++ simulation as well as Markov chains will be used
to model the MIN.

6.1 Simulation: Petri Nets

To gain experience in modeling MINs, some assumptions are made to keep
the model as simple as possible:

• The traffic load (offered load) to all inputs of the network is equal. It is
assumed that a packet is offered to each network input at each clock cycle.

• Packet destinations are uniformly distributed. This means that each out-
put of the network is with equal probability one of the destinations of a
packet.

• Conflicts between packets for network resources are randomly solved with
equal probabilities.

• The switching of all elements is synchronously performed with an internal
clock cycle.

154 6 Application: Multistage Interconnection Network

• Routing is performed in pipeline manner. This means that the routing
process occurs at every stage in parallel.

• All packets have the same size (like in ATM).
• Packets are immediately removed from their final destinations after arrival.
• The destinations of succeeding packets are independent of each other.

These assumptions allow establishing a model to determine the performance
of N×N MINs consisting of 2×2 SEs with n = log2 N stages. At each stage
k (0 ≤ k ≤ n − 1), there is a FIFO buffer to store a single packet in front of
each SE input. The packets are routed by store-and-forward switching from
one stage to its succeeding one by the backpressure mechanism.

6.1.1 Full Petri Net Model

Figure 6.1 shows the Petri net description of an 8×8 MIN consisting of 2×2
SEs [212]. The Petri net behavior is determined by the behavior of twelve

Fig. 6.1. Petri net model of an 8×8 MIN

2×2 switching elements. One of them is shown in Fig. 6.2. Table 6.1 gives
the priorities and weights of the immediate transitions. The only timed tran-
sition is called CycleTime. It represents (together with places NewCycle and
FinishCycle and with transition ResetCycle) the clock cycle of the network.
It is, of course, a deterministic value.

Places Buf1 and Buf2 model the two input buffers of the switching element.
Places Buf1empty and Buf2empty show the states of the two buffers. If there is
a token in a place, the corresponding buffer is empty. The packet is represented
by a token in Buf1 or Buf2, respectively. If a packet enters the switch at the
upper input port, a token is placed in place Buf1, and the token in place
Buf1empty is removed via the Petri net description of the SE of the preceding

6.1 Simulation: Petri Nets 155

FinishCycle NewCycle

Buf1

Buf1empty

Buf2empty

Buf2

In1Out1

In2Out1

In1OutBoth

In2OutBoth

In1Out2

In2Out2

NextBuf1

NextBuf1empty

NextBuf2empty

NextBuf2

ResetCycle

CycleTime

Choose11

Choose21

Choose1Both

Choose2Both

Choose12

Choose22

Store11

Store21

Store1Both

Store2Both

Store12

Store22

Fig. 6.2. Petri net model of a 2×2 SE

Table 6.1. Transitions of an SE

Immediate trans. Priority Weight Description

ResetCycle 2 1.000000 clock
Choose11 4 0.5 · ω1

Choose21 4 0.5 · ω1 selection
Choose1Both 4 ω2 of the
Choose2Both 4 ω2 required
Choose12 4 0.5 · ω1 output
Choose22 4 0.5 · ω1

Store11 1 1.000000 transmission
Store21 1 1.000000 to the
Store1Both 1 1.000000 input
Store2Both 1 1.000000 buffer
Store12 1 1.000000 of the
Store22 1 1.000000 next stage

stage or via the Petri net description of the preceding node if it is the first
stage. The transitions Choose11, Choose1Both, and Choose12 are inhibited
because there is a token in place FinishCycle. When the clock cycle starts,
transition CycleTime fires after the deterministic cycle time. In the new state,
one out of the three transitions Choose11, Choose1Both, or Choose12 fires
because they have priority 4, in contrast to transition ResetCycle, which has
priority 2. Transition Choose11 will fire if the upper output of the SE is the
destination of the packet. Transition Choose12 will fire if the lower output of
the SE is the destination, and transition Choose1Both will fire if both outputs
are the destination. The weights ω1 and ω2 of these transitions determine with

156 6 Application: Multistage Interconnection Network

what probability only a single output (which can be the upper or the lower
one) or both outputs are the destination of the packet, respectively. They
can be chosen in relation to the desired packet multicast traffic pattern [207].
The calculation of ωi(k) giving the probability that i SE outputs are the
destination of a packet at the SE input is described for a given multicast
traffic in Sect. 6.1.3. After firing, the token in place Buf1 is removed and
arrives in place In1Out1, In1Out2, or In1OutBoth.

In the next step, transition ResetCycle fires because of its priority over
all Store transitions. In the last step, the packet, represented by the token in
place In1Out1, In1Out2, or In1OutBoth, will be moved to the input buffers of
the corresponding SEs at the next network stage. These buffers are represented
by places NextBuf1 and NextBuf2, and their states are represented by places
NextBuf1empty and NextBuf2empty.

If there is a token in place In1Out1, the transition Store11will fire depend-
ing on the availability of the upper output. It is available if the correspond-
ing input buffer of the next stage is empty, represented by a token in place
NextBuf1empty. A conflict with a packet from the lower input of the current
switch, represented by a token in place In2Out1 or In2OutBoth, is randomly
solved with equal probabilities because both enabled transitions, Store11

and Store21 or Store11 and Store2Both, respectively, have the same pri-
ority. If transition Store11 fires, the token is moved from place In1Out1 to
place NextBuf1. The token in place NextBuf1empty is removed and place
Buf1empty receives a token. This completes a clock cycle.

The case of a token in place In1Out2 is similar to the case above except that
the lower output is the destination. If there is a token in place In1OutBoth,
the transition Store1Both will fire if both outputs are available, represented
by a token in place NextBuf1empty and place NextBuf2empty. This is called
a complete multicast. Alternatively, a partial multicast may be modeled [212].
In such a scenario, a subset of the packet’s copies are also allowed to proceed
if not all desired outputs are available. In each case, a conflict with a packet
from the lower input of the current SE is also randomly solved with equal
probabilities.

The process just described occurs at each SE in the network at the same
time and is repeated at each clock cycle: packets are moved from the input
ports of the network through the stages to the output ports of the network.

Given the model of Fig. 6.1, performance results can be obtained. For
instance, the normalized throughput of the network at the output (called So)
can be determined by calculating the probability of a token being in the place
modeling the related network output (rightmost places of Fig. 6.1).

Because tokens in DSPNs cannot be distinguished, additional places and
transitions must be established to measure the delay time of packets in the
MIN. Fig. 6.3 and Table 6.2 show how to model delay times. Measurement is
performed in such a way that a new token is added to the model part for delay
time measurement at each clock cycle (place MeasSt). If there is no token (i.e.,
no packet) in the measured input-output path of the SE, the token in MeasSt

6.1 Simulation: Petri Nets 157

In1Out1

In1OutBoth

MeasSt
Delay FinTime

NoPack

Packet PackOut NewDTime

Fig. 6.3. Measurement of delay times

Table 6.2. Parameter of transitions (delay time measurement)

Timed transition Priority Weight

NoPack 3 1.000000
Packet 2 1.000000
PackOut 1 1.000000
NewDTime 4 1.000000

will immediately be removed by transition NoPack. On the other hand, if there
is a token in the input-output path, the token is moved via transition Packet

to place Delay. This place collects as many of such tokens as the packet spends
clock cycles at this stage. All tokens are moved via PackOut to place FinTime
when the packet leaves the stage. The number of tokens is then measured. At
the end of the current clock cycle, they are removed by transition NewDTime.

Unfortunately, this Petri net model suffers from the huge state space it
generates. Even for small networks, the state space is too large to be ac-
commodated in computer memory. Therefore, a mathematical solution of the
model is not feasible. Simulation can still be applied. However, simulation
suffers from the drawback of high simulation run times. For instance, 64×64
MINs require more than two weeks of simulation if termination criteria are
set to a confidence level of 95% and an estimated precision of 2% on a 1,200
MHz processor. Larger networks cannot be handled by this model.

158 6 Application: Multistage Interconnection Network

6.1.2 Iterative Petri Net Model

To reduce model complexity, decomposition and symmetry considerations are
applied. Profiting from decomposition and symmetry in the case of Petri net
models of MINs requires measure-dependent transitions [211]. As fixed point
iteration must be used to deal with cyclic dependences between the subsys-
tems, one way to consider the results of the steady-state probability vector
of the previous iteration is to adapt the parameters of the transitions in the
Petri net. These transitions are said to be measure dependent. Two ways ex-
ist to introduce measure-dependent transitions: adapting the firing rate of a
transition with exponentially distributed firing time and adapting the weight
of an immediate transition. Both ways will be presented in the following.

In this derivation, it is assumed that the behavior of a timed Petri net can
be divided into time intervals of similar actions (e.g., the Petri net description
contains a clock cycle, as in the case of multistage interconnection networks). A
time interval represents an iteration step. Thus, a transition and its probability
pfire that it will fire if enabled can be used as the synchronization point
between the subsystem models or as the synchronization point within a single
model of a subsystem in the case of symmetry. During such a time interval,
the probability pfire will depend on the steady-state probability vector of the
previous iteration: pfire(i) = fp(π(i − 1)), where i is the iteration number. In
the case of convergence, we get pfire = fp(π).

To realize the firing probability within the time interval dependent on a
subsystem measure, a transition of exponentially distributed firing time with
a firing rate of

λ = − ln(1 − pfire)

T
, (6.1)

resulting from pfire = 1 − e−λT , is applied, where T is the duration of the
time interval. Such a transition can be chosen either to push new tokens into
the model of the subsystem in question with the desired probability or to
remove them from the model. The probability of pushing or removing a token
is determined for each iteration step by considering the results of the other
subsystem model and the dependences on it.

If the duration of the time interval T is unknown or changes, for example,
because it depends on the firing of a transition with exponentially distributed
firing time, a synchronization of the subsystem models with another transition
of exponentially distributed firing time is not possible. But the problem can be
solved by using immediate transitions. Figure 6.4 shows the case of pushing a
new token into the model. All transitions are immediate ones and have guards
(square brackets). The Petri net description that models the subsystem to
be examined starts with place ModelInp and is represented by dashed arcs.
When the time interval starts, a token is in place Ready. If the model of the
subsystem holds a state to accept a new token (a new token is permitted by
the model via the guards), the transitions NewTk and NoNewTk are enabled.
The weight of transition NewTk is pfire, and the weight of transition NoNewTk

6.1 Simulation: Petri Nets 159

permitted]
[new token

permitted]
[new token

NoNewTk Ready

ModelInp

CycleFin

Wait

[time interval finished]

NewTk

Fig. 6.4. Synchronization with immediate transitions (new token)

is 1− pfire. Then, transition NewTk fires with probability pfire, and with this
probability (which depends on the other subsystem, or this subsystem itself in
the case of symmetry), a new token enters the examined model, and another
one is generated in place Wait. When firing transition NoNewTk, the token is
only moved to place Wait. It stays there for the rest of the time interval. Now,
transition CycleFin is able to fire, and the token moves back to place Ready.
A new time interval starts.

Figure 6.5 shows the case of removing a token. The place ModelOutp rep-
resents the output place of the subsystem model from where the tokens should
be removed with probability pfire. This probability is the weight of transition

permitted]
[removing

CycleFin

Wait

[time interval finished]

Rem

NoRem

permitted]
[removing

ModelOutp

Fig. 6.5. Synchronization with immediate transitions (remove token)

160 6 Application: Multistage Interconnection Network

Rem. Transition NoRem is weighted by 1 − pfire. The behavior within a time
interval is almost identical to the previous case.

The probability pfire is updated at the end of each iteration step. An it-
eration step consists of the analytical solution of all subsystems or, if such a
model has too many states to be solved analytically, it consists of the solution
by simulation. In the case of simulation, the complete iteration process can
be divided into precision steps. At each precision step, a new iteration run is
started. The initial values are the corresponding results from the previous it-
eration run. The iteration run stops if the termination conditions are reached.
For the early precision steps, the termination conditions of the simulation are
chosen relaxed in order to accelerate the simulation of an iteration step. The
closer the iteration converges to the fixed point, the more the termination con-
ditions of the simulation are tightened to reach higher result precisions. The
number of precision steps can be adapted to the model examined. However,
at each iteration step, a simulation run must be performed. Even with relaxed
termination criteria, this will usually consume more time than a single simu-
lation run if the entire system is modeled and fixed point iteration is avoided.
Therefore, the main focus of decomposition and symmetry is mathematical
modeling methods.

Figure 6.6 serves as an example of decomposition and symmetry in the case
of Petri nets. It shows a subsystem model of a MIN, which has already been
modeled as an entire MIN, as depicted by Fig. 6.1. Only a single row of 2×2
SEs is modeled. The dependences on the other rows are realized by measure-
dependent transitions with exponentially distributed firing times. Such tran-

Fig. 6.6. Petri net description of an 8×8 MIN using decomposition

sitions implement the packet transfer from an SE input buffer connected to
an SE of another row not represented in the subsystem. The firing rate is set
to λ = − ln(1−ξ), where ξ is determined by the second input buffer of the SE
(which is connected to an SE existing in the row model) during the previous
iteration. ξ is the ratio of the expected value that there is a new packet in the
buffer to the expected value that there is a new packet or the buffer is empty:

ξ =
P{NewPacket}

P{NewPacket} + P{BufferEmpty} . (6.2)

6.1 Simulation: Petri Nets 161

The firing rate of the single deterministic transition, which represents the
clock rate, is set to 1.

The removal of a packet in an SE output connected to an SE not repre-
sented in the row model (i.e., destined to the input of an SE not represented at
the next stage) is also performed by a transition of exponentially distributed
firing time. The packet passes the next stage after the expected delay time
of the next stage. The delay time dns of the next stage is determined by the
previous iteration. The firing rate of the transition that removes the packet is
set to

μ = − ln(1 − 1

dns
). (6.3)

Although the model size is reduced by profiting from decomposition and sym-
metry, the state space is too large to analyze the models. Therefore, simulation
must be used. The iteration is performed in two precision steps. To achieve
the results of Sect. 6.5, a termination criterion of a confidence level of 80%
and an estimated precision of 10% has been set for the first precision step. For
the second precision step, a confidence level of 95% and a precision of 2% have
been used. The iteration stops if the difference in the iteration variable of two
succeeding iterations remains less than a certain bound. In this iteration, a
relative difference of 5% for the first precision step is applied, and 1% for the
second one.

With these constraints, the simulation run time could be reduced to about
20 hours. This still large run time is caused by the Petri net overhead. To
accelerate simulation, this overhead must be eliminated by establishing a sim-
ulation model particularly adapted to the system in question (see Sect. 6.2).

6.1.3 Multicast Probabilities

In this section, the multicast probabilities ωmult(k) are derived to model the
multicast traffic under investigation. ωmult(k) describes the probability that
a packet at an SE input at stage k is destined to mult of the SE’s outputs.
The multicast probabilities are needed to represent the network traffic in the
models, for instance, the previously established Petri net.

Let a(i) denote the probability that a packet arriving at a MIN input is
directed to a destination set of i MIN outputs (1 ≤ i ≤ N). This means
that all a(i) represent the given global distribution in space of the network
multicast traffic.

For the following derivation, the definition of a subnetwork is needed. A
subnetwork is a part of a MIN that is itself a MIN with one less stage. For
instance, in Fig. 6.7, the three-stage MIN includes two subnetworks of two
stages. In general, an n-stage MIN (cn×cn MIN) with c×c SEs includes c
subnetworks of n − 1 stages (cn−1×cn−1 MINs). Each of these subnetworks
again consists of c subnetworks, which are of size cn−2×cn−2, and so on [207].

If a packet arrives at an input of a network (or subnetwork), it takes an
output of the SE at the first stage to reach the following subnetwork if at

162 6 Application: Multistage Interconnection Network

Subnetwork with

k=2 Stages

Subnetwork with

k=2 Stages

s=0 s=1 s=2
Network with n=3 Stages

Fig. 6.7. 4×4 subnetworks of an 8×8 MIN

least one output of this subnetwork is the packet’s destination. For instance,
in Fig. 2.14 of Sect. 2.3.10, a packet arriving at the upper left c×c SE is sent
via the first (upper) SE output to the upper subnetwork if at least one of
the subnetwork outputs is a destination of the packet. Maybe the packet is
destined to network outputs that are located in exactly mult subnetworks.
Then, a multicast to mult outputs of the SE in the first network stage occurs.

In the following, the multicast probabilities ωmult(k) of stage k of a n-
stage MIN are determined by calculating the multicast probabilities of the
first stage of the s-stage subnetwork starting at the investigated stage k of
the n-stage network. Because k is numbered from 0 to n − 1, the relation
s = n − k holds.

Now, consider a cs×cs (sub)network and a packet arriving at a (sub)net-
work input, which is destined to i (sub)network outputs. Then, the number
of combinations btot(s, i) in which the i destinations can be spread over the
cs network outputs is given by

btot(s, i) =

(
cs

i

)
. (6.4)

The number of combinations in which the i destinations are spread over only
the outputs that are located in exactly mult of the c subnetworks consisting
of s − 1 stages is denoted by bmult(s, i). For instance, b1(s, i) is the number
of combinations in which all i destinations are located in only one of the

subnetworks. There are
(

cs−1

i

)
possibilities to distribute all destinations in a

subnetwork of size cs−1×cs−1. Because each network consists of c subnetworks

6.1 Simulation: Petri Nets 163

out of which we can choose one to distribute to all destinations, the number
of combinations in which all i destinations are located in only one of the
subnetworks is

b1(s, i) = c ·
(

cs−1

i

)
. (6.5)

Of course, this is only true for 1 ≤ i ≤ cs−1. Otherwise, we get b1(s, i) = 0.
To determine the number of combinations in which the i destinations are

spread over outputs that are located in exactly mult > 1 of the c subnetworks,
the number of eligible subnetwork outputs is counted first. mult subnetworks,
with each of them consisting of cs−1 outputs, result in mult · cs−1 eligible

outputs. Spreading i destinations over these outputs leads to
(
mult·cs−1

i

)
com-

binations. But these combinations also include combinations where the desti-
nations are chosen from fewer than mult subnetworks; all destinations may be
chosen from only one subnetwork. These combinations have to be subtracted:
as defined above, b�(s, i) is the number of combinations where the i destina-
tions are spread over outputs that are located in exactly � of the c subnetworks
(1 ≤ � ≤ mult − 1), including all

(
c
�

)
permutations to choose � out of the c

subnetworks. Then, b�(s, i)/
(
c
�

)
is the number of such combinations for � fixed

subnetworks (one fixed permutation).
Out of the investigated mult subnetworks, there are

(
mult

�

)
ways to choose

� subnetworks. Eliminating these ways from all combinations found above
leads to

bmult(s, i) =

(
c

mult

)

·
[(

mult · cs−1

i

)
−

mult−1∑
�=1

(
mult

�

)
b�(s, i)(

c
�

)
]

, (6.6)

where
(

c
mult

)
denotes the number of possibilities to choose mult subnetworks

out of c. Of course, Eq. (6.6) is only valid if the number of destinations i is
greater than or equal to mult and if it is less than or equal to all investi-
gated subnetwork outputs mult · cs−1: mult ≤ i ≤ mult · cs−1. Otherwise,
bmult(s, i) = 0.

The ratio bmult(s, i)/btot(s, i) describes the ratio of combinations that are
destined to exactly mult subnetworks related to all combinations. As a result,
the ratio gives the probability with which a multicast to mult SE outputs
at the first network stage (and therefore to mult subnetworks) of the cs×cs

network occurs if a packet arriving at a network input is destined to i network
outputs.

The probability that a packet arriving at a cs×cs network’s input is des-
tined to i network outputs is denoted by ak(i), and is determined later (the
cs×cs network is a subnetwork of our investigated cn×cn network starting at
stage k = n − s).

If all numbers i of possible packet destinations and the probabilities ak(i) of
their occurrence are considered, the multicast probabilities of the first network

164 6 Application: Multistage Interconnection Network

stage of the cs×cs MIN, and, therefore, the multicast probabilities of stage k
of the cn×cn MIN, are received:

ωmult(k) = ωmult(n − s) =
cs∑

i=1

bmult(s, i)

btot(s, i)
· ak(i). (6.7)

To calculate ωmult(k) for all stages k of the cn×cn network requires all ak(i)
to be determined. They can be derived as follows.

At the first stage k = 0 of the network, a0(i) is identical to a(i) of the
given global network traffic pattern. With this initialization, the recursive
calculation of all succeeding stages is possible: if ak−1(i) is the probability that
a packet arriving at stage k − 1 is a multicast to i outputs of the cs+1×cs+1

subnetwork beginning at stage k − 1, the probability ak(j) that a packet
arriving at the succeeding stage k is a multicast to j outputs of the cs×cs

subnetwork beginning in stage k is given by

ak(j) =

(c−1)·cs+j∑
i=j

ak−1(i)
(cs

j)((c−1)·cs

i−j)

(cs+1

i)

(c−1)·cs∑
i=1

ak−1(i)
(cs+1

i)−((c−1)·cs

i)

(cs+1

i)
+

cs+1∑
i=(c−1)·cs+1

ak−1(i)

, (6.8)

with s = n − k, 0 < k < n, and 1 ≤ j ≤ cs. The numerator represents the
sum of the ratios of the destination sets of the cs+1×cs+1 network that have
j outputs in the cs×cs subnetwork under investigation as destination and the
remaining i− j outputs in the other c−1 subnetworks that are located at the
same cs+1×cs+1 network stages. This ratio is weighted with the probability
ak−1(i) that a packet arriving at the first stage of the cs+1×cs+1 network is
a multicast to i outputs.

Before explaining the denominator, an example is presented: Figure 6.8
shows a MIN consisting of n = 2 stages and 2×2 SEs (c = 2). The network
multicast traffic pattern a(i) is given, and therefore, a0(i) = a(i) is known.
To determine a1(j) of the subnetworks (in this case, SEs) starting at stage 1
(the last stage), Eq. (6.8) leads to (k = 1, s = n − k = 1)

Fig. 6.8. Two-stage MIN consisting of 2×2 SEs

6.2 Simulation: MINSimulate 165

a1(j) =

2+j∑
i=j

a0(i)
(2

j)(
2

i−j)
(4

i)

2∑
i=1

a0(i)
(4

i)−(2
i)

(4
i)

+
4∑

i=3

a0(i)

. (6.9)

For instance, a1(j) of the upper right subnetwork (SE) is to be determined.
With probability a0(i), packets entering the network are directed to i of the
four network outputs. There exist

(
4
i

)
output combinations for them. All of

those combinations in which j outputs are chosen from the two outputs of
the upper right subnetwork (

(
2
j

)
) and the remaining i − j are chosen from

the two outputs of the other (lower right) subnetwork (
(

2
i−j

)
) result in traffic

to j outputs of the investigated (upper right) subnetwork: the numerator is
established. This example is resumed later.

The limits of the numerator’s sum (Eq. (6.8)) are caused by the following:
the smallest considered number of outputs i is j, because if there is a packet
that is a multicast to i outputs (i < j) in a network, the packet will be a
multicast at most to i outputs in a subnetwork, and the investigated number
j is not reached. The highest considered i is (c− 1) · cs + j, because if there is
a packet that is a multicast to i outputs (i > (c− 1) · cs + j) in a network, the
packet will be a multicast at least to i− (c−1) · cs outputs in the investigated
subnetwork (in the other subnetworks, there can be a multicast at most to all
(c−1) · cs outputs). In consequence, if i < j or i > (c−1) · cs + j there cannot
be a multicast to j outputs in the investigated subnetwork.

The denominator represents the destination sets that cause the packet to
be sent to the investigated subnetwork. In the first sum (1 ≤ i ≤ (c− 1) · cs),(
cs+1

i

)
represents all possible destination sets with i outputs as destination. In(

(c−1)·cs

i

)
cases, however, all i outputs are routed to the other c − 1 subnet-

works. If (c − 1) · cs + 1 ≤ i ≤ cs+1 (second sum), the packet must always be
sent to all subnetworks (including the investigated one) because of the large

number of destinations. All
(
cs+1

i

)
cases are relevant.

In the example just presented (Eq. (6.9)), no packets reach the investigated
(upper right) subnetwork if all i outputs that are the destinations of the packet
are located in the other (lower right) subnetwork (

(
2
i

)
combinations). The

remaining
(
4
i

)− (
2
i

)
combinations cause traffic in the upper right subnetwork,

and have to be considered. If i is greater than the number of outputs of the
other (lower right) subnetwork (i > 2), there must exist packet destinations in
the investigated (upper right) subnetwork, and all combinations are relevant.

6.2 Simulation: MINSimulate

The simulator presented here is designed particularly to model multistage in-
terconnection networks. Besides MINs with the banyan property as referred to
in the previous section, Clos networks, bidirectional MINs, replicated MINs,

166 6 Application: Multistage Interconnection Network

multilayer MINs, and crossbars are also supported by the simulator. The sim-
ulator is named MINSimulate [208].

6.2.1 Simulator Engineering

The main goal in designing this simulator was to establish a model for faster
determination of MIN performance results than possible by Petri nets. Fur-
thermore, it also helped in the validation of mathematical model results (see
Sect. 6.3). Therefore, the simulator was built in such a way that it deals in
more detail with the behavior of MINs. The entire network is modeled, rather
than only a single row of SEs. Packets are distinguishable, and all dependences
are considered.

Overhead

To avoid any overhead as with high-level description techniques like Petri
nets, the simulation is performed by C++ code. The network is represented
as a directed graph starting at the source nodes (network inputs) and ending
at the destination nodes (network outputs). Packets are generated at the
sources. Each packet is provided with a tag determining its destination. Due
to multicasting, this tag is modeled by a vector of N binary elements, each
representing a network output. The elements of the desired outputs are set to
“1”; all others to “0”. If the packet arrives at a c×c SE, the tag is divided into c
subtags of equal size. Each subtag belongs to one switch output; the first (lower
indices) subtag belongs to the first output, and so on. If a subtag contains at
least one “1” value, a copy of the packet is sent to the corresponding output,
containing the subtag as the new tag. Figure 6.9 gives an example. A part of
an 8×8 MIN consisting of 2×2 SEs is shown. A packet, destined to outputs 1,
2, and 3, resulting in tag 01110000, crosses the network. At each stage, the
tag is divided in the middle into two subtags (c = 2). Due to the existence
of at least one “1” value in the subtag, a copy of the packet is sent to the
corresponding SE output.

To keep the allocated memory as small as possible, only representations
of the packets, referred to as containers, are routed along the network paths.
These containers are replaced by the actual packets at the network outputs,
allowing evaluations. Figure 6.10 gives a sketch of the simulation model.

ContainerMultiputs (CMs) receive the containers and store them in
queues. At the first network stage, FirstContainerMultiputs (FCMs) addi-
tionally perform the replacement of the packets by containers.

ContainerOutputs (COs) send the containers to the next network stage.
At the last stage, LastContainerOutputs (LCOs) additionally replace the
containers with the corresponding packets. Each operation of a switch is con-
trolled by its Crossbar Manager. The clocks perform the sequencing of the
parallel actions due to single processor computer simulation.

6.2 Simulation: MINSimulate 167

0 1 0

1

1

1

10 1 1

0 0
11

00

1 1

0 7.........

1 0 0 0 00

0

1

2

3

packet tag (outputs):

Fig. 6.9. Multicasting by tag

Data Representation

As already mentioned in Sect. 4.1, packets that enter the multistage inter-
connection network are stored at a dedicated computer memory location; this
includes the header of the packet and all the payload. During the packet’s
movement from buffer to buffer through the MIN, only a pointer to the packet
is moved from data structure to data structure representing the buffers. Such
a representation decreases the memory required as well as the simulation time.
It is obvious that the allocated memory is reduced due to the less memory
needed for a pointer, as opposed to an entire packet. The reduction in simu-
lation time results from less data to be moved during simulation. If all packet
data were to be moved, this process would be much more time consuming
than simply moving the pointers, as in MINSimulate.

Confidence

Confidence level and precision of simulation results are observed by the toolkit
Akaroa. The simulation is stopped when the termination criteria are met.
Akaroa has been developed at the University of Canterbury, New Zealand
[155].

The simulation is started by Akaroa. It handles the simulation run and ob-
serves the given measures in a simulation sequence. Each result is transferred
to Akaroa via functions in the programming language C. Akaroa calculates the
current estimated precision and confidence level. Spectral analysis, as well as
the method of batch means, can be applied for variance estimation. If the ter-
mination criteria given by the user are fulfilled, the simulation run is stopped
and the final results are printed.

168 6 Application: Multistage Interconnection Network

Main clock

rQ
Clock 2

Fig. 6.10. Sketch of the simulation model

Intermediate results, precision, and confidence are available during the
simulation run via the Akaroa package, which includes several programs.

6.2 Simulation: MINSimulate 169

Parallelism and Data Recycling

The toolkit Akaroa, which handles the simulation run, offers parallelism in
simulation. Replications of the simulation program are started on different
processors in parallel. Akaroa centrally collects the results of all observed
measures and of all replications. Estimated precision and confidence are cal-
culated. If termination criteria are fulfilled, the multiple replications in parallel
(MRIP) are stopped. i independent replications lead to an acceleration of sim-
ulation time close to i. Some slight losses are caused by communication with
the central unit of Akaroa (called master).

As already described in Sect. 4.1, multiple replications lead to fault tol-
erance in the simulation. If a replication on a processor fails, the remaining
replications still deliver results to the Akaroa master, and the simulation still
comes to a successful end.

Data recycling is also applied in MINSimulate. If multiple measures of
MIN are of interest, all of them are determined during a single simulation
run.

If measures consist of parameters dependent on time, inefficient individual
simulations for each time step can be replaced by observing all measures of
all time steps in a single simulation run. MINSimulate in combination with
Akaroa offers both methods: a fast method to determine all measures of all
time steps in a single simulation, and individual simulations for each time
step if the number of measures exceeds the amount that can be handled by
the computer’s main memory: in the case of a single simulation, each time
step must be covered by its own measure set, resulting in a huge number of
measures if many time steps are observed.

6.2.2 Features

The network to be evaluated is determined by the user via a graphical user
interface (GUI). Figure 6.11 shows the main tab to set simulation parameters.
Parameters that are not available in the currently chosen network configura-
tion are blind out. A short sketch of the parameters and their available settings
is given below. They are described in more detail in [208].

First, it can be chosen whether to simulate single crossbars or MINs. If
MINs are chosen, their type must be specified: MINs with the banyan property,
Clos networks, and bidirectional MINs are available. To simulate replicated
or multilayer MINs, the Banyan item must be chosen in combination with
the Multilayer tab. There, constant number of layers refers to replicated
MINs.

Input buffers can be chosen as shared ones (with a minimum size and
maximum size for each crossbar input, as well as the overall buffer size of
a crossbar) or as non-shared ones (with the size per crossbar input). Tab
Special buffer configuration allows individual buffer settings for each
stage.

170 6 Application: Multistage Interconnection Network

Fig. 6.11. Main tab of MINSimulate

The global address destination distribution of packets entering the network
can also be varied. The most important patterns are onl1 (only unicast; all
targets are packet destinations with equal probability), N over K (multicast;
all target combinations are packet destinations with equal probability), Ufun
(multicast with many unicasts and many broadcasts), and onlN (only broad-
cast). If single sources are desired to produce deviating address distributions,
tab Non-uniform traffic helps.

The parameter Streamlength refers to the number of packets a message
consists of. It allows generating sequences of packets that are destined to the
same destination node.

When choosing the routing algorithm, the following packet switching
schemes are available: store-and-forward switching, (virtual) cut-through
switching, and wormhole switching. Multicast in the case of wormhole switch-
ing usually suffers from deadlocks. The wormhole switching algorithm of MIN-

Simulate avoids deadlocks by grouping appropriate parts of the network [225].
Wormhole switching requires dividing the packets into flits. The number of
flits per packet is also a parameter for the simulation.

The kind of multicast can be set to complete multicast, partial multicast, or
a two-phase version of both, where complete multicast is first applied to an SE,

6.2 Simulation: MINSimulate 171

and, in the second phase, partial multicast is performed for all remaining SE
outputs. Another parameter represents the offered load to each network input.
The last parameter in the main tab determines whether to observe measures
in time (terminating simulation) instead of observing the steady state. In the
case of transient simulation, the number of clock cycles to simulate can be
fixed in the Transient simulation area.

Crossbar size or MIN size are defined via tab Network parameters (see
Fig. 6.12). If MINs are chosen, two of the three parameters of the equation

Fig. 6.12. Network parameter tab of MINSimulate

n = logc N must be set by the user; the third is calculated by the GUI. Packets
may be defined to be generated with variable size. For instance, the packet size
distribution known from the Internet may be of interest. Other parameters at
this tab relate to Clos networks (blind out in Fig. 6.12).

Instead of simulating a particular network configuration, a parameter
can be varied to deal with parameter-dependent results. In tab Simulation

series, the parameter to vary is chosen. A start value, an end value, and a
step size determine the variation. If desired, step size can be changed once in
the parameter interval.

172 6 Application: Multistage Interconnection Network

Performance measures are chosen via tab Output. The most important
ones are throughput, delay times, and queue lengths. A histogram of delay
times within an interval is also available. Deadlines can be added to packets,
and packets that exceed their deadline are then removed. In such a scenario,
packet loss is a measure.

Akaroa parameters to determine confidence level and estimated precision
of results are set in tab Akaroa.

Results achieved by MINSimulate are presented in Sect. 6.5. Compared to
the 20 hours of simulation (computation) run time of Petri nets, MINSimulate

obtains results in about four hours. However, although this heavily reduces
simulation run time, it is still too high for many investigations.

6.3 Mathematical Model: Complexity Reduction

To overcome the high computation times of the simulations previously pre-
sented, mathematical models are now derived. This section and the following
one deal with the development of a mathematical model of MINs. As outlined
in Chap. 4, the development of mathematical models is generally very time
consuming. Therefore, only a simple architecture of multistage interconnec-
tion networks, this one with the banyan property, is considered. A concept to
generally decrease development time is presented in Sect. 6.4.

This section demonstrates the basics of establishing a mathematical model
by taking the high complexity of such models into account. Thus, complexity
reduction in mathematically modeling MINs is a very important issue. If all
states of a MIN would be represented in the model, the state space would
become too large. Even the state space of a small network, like an 8×8 MIN
consisting of 2×2 switching elements (SEs), would exceed ordinary memory
size: assuming that each SE input can adapt only two states, three stages of
eight SE inputs each would result in 224 network states! But, in the case of
buffered SE inputs, many more than two states describe the SE input and
its buffer. The buffer size and the number of different packet types determine
the number of distinguishable states of an SE input. For instance, ten packet
types and a buffer of the size of ten packets would lead to 1010 states for each
SE input (considering only a completely filled buffer) and (1010)24 = 10240

states could be distinguished for the entire MIN. Thus, complexity reduction
is essential.

6.3.1 Symmetries

In this example, profiting from the network symmetries reduces network com-
plexity. A short sketch of this idea was presented in Sect. 4.2.2. Symmetric
network architecture combined with symmetric (uniform) network traffic leads
to a similar behavior of network subsystems. A representation of the entire
network (Fig. 4.6(a)) can be replaced by a single switching element row of

6.3 Mathematical Model: Complexity Reduction 173

input-output pairs (Fig. 4.6(c)). As described in Sect. 4.2.2, this subsystem
cyclically depends on itself because inputs (mean values of throughput, delay,
and queue length) to this row that originate from another row are also repre-
sented by this single row. The uniform traffic precondition is guaranteed by
some assumptions, which are similar to those of the Petri net model of Sect.
6.1:

• The traffic load to all inputs of the network is equal.
• Packet destinations are uniformly distributed. This means that every out-

put of the network is with equal probability one of the destinations of a
packet.

• Conflicts between packets for network resources are randomly solved with
equal probabilities.

• The switching of all elements is synchronously performed with an internal
clock cycle.

• Routing is performed in a pipeline manner. This means that the routing
process occurs in every stage in parallel.

Furthermore, some additional assumptions simplify the dependences and also
reduce the state space:

• All packets have the same size.
• Packets are immediately removed from their final destinations after arrival.
• The destinations of succeeding packets are independent of each other.

These assumptions allow establishing a mathematical model to determine the
performance of N×N MINs consisting of 2×2 SEs with n = log2 N stages.
At each stage k (0 ≤ k ≤ n − 1), there is a FIFO buffer of size mmax(k)
in front of each SE input (the Petri net model previously presented dealt
only with a FIFO buffer to store a single packet). The packets are routed
by store-and-forward switching from one stage to its succeeding one by the
backpressure mechanism. The derivation for cut-through switching is similar
to the following one except some minor differences. It can be found in [209]
(see also Sect. 6.4.3).

Discrete time Markov chains (DTMCs) are chosen as modeling technique.
The model is an extension of Jenq’s model I [85]. However, the following model
is also able to deal with multicast traffic. A detailed description of the model
can be found in [203].

Due to the uniform traffic, the state of each network stage is represented
by the state of a single SE input buffer at that stage. With regard to the first
position in the buffer, seven states can be distinguished.

State n represents a normal packet (that means a non-broadcast packet)
in the first buffer position (not including the states nb, fb, and nbfb). The
probability that a buffer at stage k at time t is in this state is given by πn(k, t).

State nb represents a normal packet that was blocked because the desti-
nation buffer was full or made full by the packet in the other SE input sent
to it (state nb does not include state nbfb). Such a packet is called a blocked

174 6 Application: Multistage Interconnection Network

normal packet. The probability that a buffer at stage k at time t is in this
state is given by πnb(k, t).

State b represents a broadcast packet in the first buffer position (not in-
cluding state bb). The probability that a buffer at stage k at time t is in this
state is given by πb(k, t).

State bb represents a broadcast packet that was blocked because both
destination buffers were full or made full by the packet in the other SE input
sent to these destination buffers. Such a packet is called a blocked broadcast
packet. The probability that a buffer at stage k at time t is in this state is
given by πbb(k, t).

State fb represents the case where there have been broadcast packets in
the first position of both buffers of an SE. These packets have been in conflict
with each other, and the conflict has been resolved in such a way that only one
copy of each was sent. The destination buffer examined has not been made
full by one of the copies. For instance, the broadcast packet in the upper input
wins the conflict for the upper output and the broadcast packet in the lower
input wins the conflict for the lower output (dashed lines in Fig. 6.13). Then,
each packet sends a copy to its reserved output. In the upper input, there
remains a packet destined to the lower output, and in the lower input, there
remains a packet destined to the upper output (solid line in Fig. 6.13). Both

b

b

Fig. 6.13. Remaining packets change to state fb

buffers are in the state fb because it is known that there is no conflict between
their packets in the next clock cycle. The probability that a buffer at stage k
at time t is in this state is given by πfb(k, t).

State nbfb represents the case where there have been broadcast packets in
the first position of both buffers of an SE. These packets have been in conflict
with each other, and the conflict was resolved in such a way that only a copy
of each was sent. The destination buffer examined has been made full by one
of the copies (the difference with state fb.). The probability that a buffer at
stage k at time t is in this state is given by πnbfb(k, t).

State 0 represents the case where the first buffer position is empty. This
means that the entire buffer is empty. The probability that a buffer at stage
k at time t is in this state is given by π0(k, t).

Successively determining the state probabilities for each clock cycle (rep-
resented by the time t) dependent on the previous one finally leads to steady-
state network performance. To calculate the state of a buffer in the next clock

6.3 Mathematical Model: Complexity Reduction 175

cycle, it is important to know whether a packet left the buffer and whether a
new packet arrived at it.

Probability of Sending Packets

In the following, the probability of sending a packet to the next stage is
derived. For this analysis, all previously introduced states of a packet in the
first buffer position have to be independently considered. The probability that
a packet in the first buffer position of stage k (0 ≤ k ≤ n−1) will be forwarded
to the next stage at time t is given by r(k, t). If the first buffer position contains
a normal packet (Fig. 6.14), the buffer is in state n. The probability that this
packet will be forwarded to the next stage is denoted by rn(k, t). To calculate

n

stage k

r (k, t)n

...

n: state n
 : state n, nb, b, bb, or 0

Fig. 6.14. Sending a normal packet

this probability, all possible behaviors of the two input buffers of the following
stage k + 1 have to be considered. We distinguish behaviors α, ᾱ, β, and β̄.
Behavior α is defined to describe the case where it is not known whether the
buffer at stage k + 1 is full. It is guaranteed, however, that the packet will
not be blocked. This can be the case if either the buffer at stage k + 1 is not
full or the buffer is full but one packet is leaving. Let the probability for this
behavior be α(k + 1, t). Correspondingly, behavior ᾱ is defined to represent
the case where the buffer is full and no packet will leave, so that the packet
in stage k will be blocked. The probability for this behavior is 1−α(k + 1, t).

In contrast, behavior β means that it is known that the buffer at stage k+1
is full, for example, because the buffer of the SE in front of it has a blocked
broadcast packet in the first position (state bb), but buffer space will become
available. The probability that buffer space becomes available in such a case
is given by β(k + 1, t). Correspondingly, behavior β̄ is defined to represent
the case where no buffer space will become available. The probability for this
behavior is 1 − β(k + 1, t).

The probability rn(k, t) that a normal packet in the first buffer position
will be sent to the next stage is

rn(k, t) = rnαα(k, t) + rnαβ(k, t) + rnββ(k, t) + rnαᾱ(k, t)

+rnαβ̄(k, t) + rnᾱβ(k, t) + rnββ̄(k, t), (6.10)

176 6 Application: Multistage Interconnection Network

where each term of the sum represents a behavior of the buffers at stage k+1:
thus, rnαα(k, t) is the probability that the normal packet will be sent if both
of the following buffers show behavior α.

The two buffers of stage k + 1 are not distinguished. rnαβ(k, t) represents
the case where one of the two buffers shows behavior α and the other buffer
behavior β. No definition rnβα(k, t) is required.

To send a normal packet out of stage k, the destination buffer of this packet
must be or become available. This means that at least one of the following
buffers must show behavior α or β. If the next stage buffers show behavior
ᾱᾱ, ᾱβ̄, or β̄β̄, the packet will be blocked.

In the following, the sending probabilities of a normal packet for all possible
input buffer behaviors of stage k + 1 are determined. It is started with the
probability rnαα(k, t) that the normal packet at stage k will be sent and
the second buffer of this SE at stage k is in such a state that both buffers
of stage k + 1 following the SE considered show behavior α. Because these
buffers are independent of each other, they show this behavior with probability
α2(k + 1, t).

One input buffer of the SE at stage k is in state n, as assumed above. Then,
the second input buffer must be in state 0, state n, or state b. If it were to be in
one of the other states, at least one of the buffers at stage k would have to show
behavior β or β̄. But this behavior is not considered yet. If the second input
buffer is in state 0 (probability π0(k, t)), there is no conflict, and the normal
packet considered will be forwarded with the probability 1. If the buffer is in
state n (probability πn(k, t)), the normal packet considered will be forwarded
if different SE outputs are the destination (probability 0.5) or the same SE
output is the destination (probability 0.5) and the considered packet wins the
conflict (probability 0.5). If the buffer is in state b (probability πb(k, t)), the
normal packet considered will be forwarded if it wins the unavoidable conflict
(probability 0.5).

Because of the normal packet in one input buffer, the state space of the
second one is reduced: it cannot be in state fb or nbfb. These two states are
only possible if both input buffers are in one of these states. To adapt the
probabilities π0(k, t), πn(k, t), and πb(k, t), which are defined for the complete
state space, to the reduced state space, we have to use a normalization term,
ψfb(k, t), which is determined later. So, we get

rnαα(k, t) = α2(k + 1, t) (π0(k, t) · 1 + πn(k, t) · (0.5 + 0.5 · 0.5)

+πb(k, t) · 0.5) · 1

ψfb(k, t)
. (6.11)

All other probabilities of the sum in Eq. (6.10) are derived in the same manner.
They are listed below to finally give the entire system of equations:

6.3 Mathematical Model: Complexity Reduction 177

rnαβ(k, t) = α(k + 1, t)β(k + 1, t)πnb(k, t) · (0.5 + 0.5 · 0.5)

· 1

ψfb(k, t)
, (6.12)

rnββ(k, t) = β2(k + 1, t)πbb(k, t) · 0.5 · 1

ψfb(k, t)
, (6.13)

rnαᾱ(k, t) = α(k + 1, t)(1 − α(k + 1, t)) · 2 · 0.5

· (π0(k, t) + πn(k, t) · (0.5 + 0.5 · 0.5) + πb(k, t) · 0.5)

· 1

ψfb(k, t)
, (6.14)

rnαβ̄(k, t) = α(k + 1, t)(1 − β(k + 1, t)) · 2 · 0.5

·πnb(k, t) · 0.5 · 1

ψfb(k, t)
, (6.15)

rnᾱβ(k, t) = β(k + 1, t)(1 − α(k + 1, t)) · 2 · 0.5

·πnb(k, t) · 0.5 · 0.5 · 1

ψfb(k, t)
, and (6.16)

rnββ̄(k, t) = β(k + 1, t)(1 − β(k + 1, t)) · 2 · 0.5

·πbb(k, t) · 0.5 · 1

ψfb(k, t)
. (6.17)

A detailed description of the equations (and all following ones of this section)
can be found in [203].

If the first buffer position of stage k contains a blocked normal packet, the
buffer is in state nb. The probability that this packet will be forwarded to the
next stage is given by rnb(k, t). It is calculated with similar considerations as
rn(k, t):

rnb(k, t) = rnbαβ(k, t) + rnbββ(k, t) + rnbᾱβ(k, t) + rnbββ̄(k, t), (6.18)

where each term of the sum represents a behavior of the buffers at stage k +1
in which a transmission is possible:

rnbαβ(k, t) = α(k + 1, t)β(k + 1, t)

· (π0(k, t) + πn(k, t) · 0.75 + πb(k, t) · 0.5 + πnb(k, t) · 0.25)

· 1

ψfb(k, t)
, (6.19)

rnbββ(k, t) = β2(k + 1, t) (πnb(k, t) · 0.5 + πbb(k, t) · 0.5) · 1

ψfb(k, t)
, (6.20)

178 6 Application: Multistage Interconnection Network

rnbᾱβ(k, t) = (1 − α(k + 1, t))β(k + 1, t) · 2 · 0.5

· (π0(k, t) + πn(k, t) · 0.75 + πb(k, t) · 0.5 + πnb(k, t) · 0.25)

· 1

ψfb(k, t)
, and (6.21)

rnbββ̄(k, t) = β(k + 1, t)(1 − β(k + 1, t)) · 2 · 0.5

· (πnb(k, t) · 0.5 + πbb(k, t) · 0.5)
1

ψfb(k, t)
. (6.22)

If the first buffer position at stage k contains a broadcast packet, the buffer
is in state b. The probability that this packet will be completely forwarded to
the next stage is called rb(k, t);

rb(k, t) = rbαα(k, t) + rbαβ(k, t) + rbββ(k, t), (6.23)

with

rbαα(k, t) = α2(k + 1, t) (π0(k, t) + πn(k, t) · 0.5 + πb(k, t) · 0.25)

· 1

ψfb(k, t)
, (6.24)

rbαβ(k, t) = α(k + 1, t)β(k + 1, t)πnb(k, t) · 0.5 · 1

ψfb(k, t)
, and (6.25)

rbββ(k, t) = β2(k + 1, t)πbb(k, t) · 0.25 · 1

ψfb(k, t)
. (6.26)

If the broadcast packet is not completely transferred to the next stage,
for example, because only one destination buffer is available, there could be
a chance to transfer a copy to one of the destination buffers. The probability
that only one copy of a broadcast packet in the first buffer position of stage k
will be forwarded to the next stage and that state fb or nbfb does not result
at stage k is called rpb(k, t):

rpb(k, t) = rpbαα(k, t) + rpbαβ(k, t) + rpbαᾱ(k, t) + rpbαβ̄(k, t)

+rpbᾱβ(k, t) + rpbββ̄(k, t). (6.27)

The cases in which the state fb or nbfb result at stage k after transmission
are not considered yet. The terms of the sum in Eq. (6.27) are given by

rpbαα(k, t) = α2(k + 1, t)πn(k, t) · 0.5 · 1

ψfb(k, t)
, (6.28)

rpbαβ(k, t) = α(k + 1, t)β(k + 1, t)πnb(k, t) · 0.5 · 1

ψfb(k, t)
, (6.29)

6.3 Mathematical Model: Complexity Reduction 179

rpbαᾱ(k, t) = α(k + 1, t)(1 − α(k + 1, t)) · 2
· (π0(k, t) + πn(k, t) · 0.75 + πb(k, t) · 0.5) · 1

ψfb(k, t)
, (6.30)

rpbαβ̄(k, t) = α(k + 1, t)(1 − β(k + 1, t)) · 2
·πnb(k, t) · 0.5 · 1

ψfb(k, t)
, (6.31)

rpbᾱβ(k, t) = (1 − α(k + 1, t))β(k + 1, t) · 2
·πnb(k, t) · 0.25 · 1

ψfb(k, t)
, and (6.32)

rpbββ̄(k, t) = β(k + 1, t)(1 − β(k + 1, t)) · 2
·πbb(k, t) · 0.5 · 1

ψfb(k, t)
. (6.33)

Now, the cases in which a transmission results in the states fb or nbfb at
stage k are considered. This is only possible if the other input buffer is in
state b or bb.

The probability that only one copy of a broadcast packet that is in the
first buffer position at stage k and is in conflict with another broadcast packet
(state b of the second input buffer) will be forwarded to the next stage and
state fb or nbfb results at stage k is given by rpbfb(k, t):

rpbfb(k, t) = rpbfbαα(k, t) = α2(k + 1, t)πb(k, t) · 0.5 · 1

ψfb(k, t)
. (6.34)

The probability that only one copy of a broadcast packet that is in the first
buffer position at stage k and is in conflict with a blocked broadcast packet
(state bb of the second input buffer) will be forwarded to the next stage and
state fb or nbfb results at stage k is given by rpbfbb(k, t):

rpbfbb(k, t) = rpbfbbββ(k, t) = β2(k + 1, t)πbb(k, t) · 0.5 · 1

ψfb(k, t)
. (6.35)

If the first buffer position at stage k contains a blocked broadcast packet,
the buffer is in state bb. The probability that this packet will be completely

forwarded to the next stage is given by rbb(k, t):

rbb(k, t) = rbbββ(k, t) = β2(k + 1, t) (π0(k, t) + πn(k, t) · 0.5

+πb(k, t) · 0.25 + πnb(k, t) · 0.5

+πbb(k, t) · 0.25) · 1

ψfb(k, t)
. (6.36)

If the blocked broadcast packet is not completely transferred to the next
stage, for example, because only one destination buffer is available, there could
be a chance to transfer a copy to one of the destination buffers. The probability

180 6 Application: Multistage Interconnection Network

that only one copy of a blocked broadcast packet that is in the first buffer
position at stage k will be forwarded to the next stage and state fb or nbfb
does not result at stage k is given by rpbb(k, t):

rpbb(k, t) = rpbbββ(k, t) + rpbbββ̄(k, t). (6.37)

The cases in which the state fb or nbfb results at stage k after transmission
are not considered yet. The terms of the sum in Eq. (6.37) are given by

rpbbββ(k, t) = β2(k + 1, t) (πn(k, t) · 0.5 + πnb(k, t) · 0.5)

· 1

ψfb(k, t)
and (6.38)

rpbbββ̄(k, t) = β(k + 1, t)(1 − β(k + 1, t)) · 2
·(π0(k, t) + πn(k, t) · 0.75 + πnb(k, t) · 0.75

+πb(k, t) · 0.5 + πbb(k, t) · 0.5) · 1

ψfb(k, t)
. (6.39)

Now, the cases in which a transmission results in the states fb or nbfb at
stage k are considered. This is only possible if the other input buffer is in
state b or bb.

The probability that only one copy of a blocked broadcast packet that is
in the first buffer position at stage k and is in conflict with another broadcast
or blocked broadcast packet (state b or bb of the second input buffer) will be
forwarded to the next stage and state fb or nbfb results at stage k is given
by rpbbfb(k, t):

rpbbfb(k, t) = rpbbfbββ(k, t)

= β2(k + 1, t) (πb(k, t) · 0.5 + πbb(k, t) · 0.5)

· 1

ψfb(k, t)
. (6.40)

The probability that a packet in the first position of a buffer in state fb
at stage k will be forwarded to the next stage is called rfb(k, t). Because the
destination buffer is available (otherwise, the buffer would be in state nbfb)
and there is no conflict with the packet in the buffer of the other SE input
(see definition of state fb), the examined packet will leave the buffer in any
case:

rfb(k, t) = 1. (6.41)

Although rfb(k, t) is a constant, this probability is defined to get a continuous
scheme.

The probability that a packet in the first position of a buffer in state nbfb
at stage k will be forwarded to the next stage is called rnbfb(k, t):

rnbfb(k, t) = rnbfbαβ(k, t)+rnbfbββ(k, t)+rnbfbᾱβ(k, t)+rnbfbββ̄(k, t). (6.42)

6.3 Mathematical Model: Complexity Reduction 181

Because the probability πfb(k, t) is defined for the entire state space, each
following term is adapted to the reduced state space of fb and nbfb. The
terms of the sum in Eq. (6.42) result in

rnbfbαβ(k, t) = α(k + 1, t)β(k + 1, t)πfb(k, t) · 1

ψfb(k, t)
, (6.43)

rnbfbββ(k, t) = β2(k + 1, t)πnbfb(k, t) · 1

ψfb(k, t)
, (6.44)

rnbfbᾱβ(k, t) = (1 − α(k + 1, t))β(k + 1, t) · 2
·πfb(k, t) · 0.5 · 1

ψfb(k, t)
, and (6.45)

rnbfbββ̄(k, t) = β(k + 1, t)(1 − β(k + 1, t)) · 2
·πnbfb(k, t) · 0.5 · 1

ψfb(k, t)
. (6.46)

Normalization and Available Destination Buffers

To normalize to the possible states of the second buffer of the SE due to the
reduced state space, two terms are used:

ψfb(k, t) = πfb(k, t) + πnbfb(k, t) and (6.47)

ψfb(k, t) = π0(k, t) + πn(k, t) + πb(k, t) + πnb(k, t) + πbb(k, t). (6.48)

To calculate the probability β(k, t) that a packet will leave a non-empty
buffer, the sum of each possible buffer state and the probability of forwarding
the packet in the first buffer position as determined before must be considered.
Because a non-empty buffer is examined, the probabilities must be adapted
to the reduced state space with a normalization term ψ0̄(k, t):

β(k, t) =
1

ψ0̄(k, t)
(πn(k, t)rn(k, t) + πnb(k, t)rnb(k, t)

+πb(k, t)rb(k, t) + πbb(k, t)rbb(k, t)

+πfb(k, t)rfb(k, t) + πnbfb(k, t)rnbfb(k, t)) . (6.49)

The normalization term includes all states except the state 0 (because the
buffer is not empty):

ψ0̄(k, t) = πn(k, t) + πnb(k, t) + πb(k, t)

+πbb(k, t) + πfb(k, t) + πnbfb(k, t). (6.50)

To calculate the probability α(k, t) that a buffer space is available, the
probability πm(k, t) that the buffer at stage k contains m packets is defined.
This probability introduces an additional state space. It is later referred to this
probability and state space. πmmax(k)(k, t) is the probability that the buffer
is full. Buffer space is available if the buffer is not full or if the buffer is full
and a packet will leave:

α(k, t) = (1 − πmmax(k)(k, t)) + πmmax(k)(k, t)β(k, t). (6.51)

182 6 Application: Multistage Interconnection Network

Probability of Receiving Packets

Now, the probability of receiving a packet from the previous stage is derived.
The probability that a new packet will be sent into the input buffer at stage
k + 1 (0 ≤ k ≤ n − 1) at time t is given by qI(k + 1, t). To determine this
probability, all state combinations of the both input buffers in the previous
stage k (except state combination 0,0) have to be independently considered.
State combination 0,0 (both input buffers at stage k are empty) results in
qI0,0 = 0, because there is no packet to be received by stage k + 1. The
probability is

qI(k + 1, t) = qI0,n(k + 1, t) + qI0,nb(k + 1, t) + qI0,b(k + 1, t)

+qI0,bb(k + 1, t) + qIn,n(k + 1, t) + qIn,nb(k + 1, t)

+qIn,b(k + 1, t) + qIn,bb(k + 1, t) + qInb,nb(k + 1, t)

+qInb,b(k + 1, t) + qInb,bb(k + 1, t) + qIb,b(k + 1, t)

+qIb,bb(k + 1, t) + qIbb,bb(k + 1, t) + qIfb,fb(k + 1, t)

+qIfb,nbfb(k + 1, t) + qInbfb,nbfb(k + 1, t). (6.52)

For instance, qI0,n(k + 1, t) is the probability (Fig. 6.15) that a new packet

0

n

stage k

...

...

...
...

stage k+1

...

...

q (k+1, t)I0,n

n: state n
0: state 0
 : any state

Fig. 6.15. Receiving packets if previous buffers are in state 0 and n

will be sent to the input buffer at stage k + 1 at time t if one input buffer at
stage k is in state 0 (empty), and one input buffer is in state n (the first buffer
position contains a normal packet). Because there are two possibilities of how
the states can be spread over the two inputs, this combination has probability
2 · π0(k, t)πn(k, t). The reduced state space of the second input buffer, if the
other is in state 0, results in the normalization term ψfb(k, t). If both input
buffers at the examined stage k + 1 are available, the normal packet is sent
in any case (probability 1) to the input buffers, resulting in the probability
α2(k + 1, t) · 1. If one input buffer of the examined stage k + 1 is available

6.3 Mathematical Model: Complexity Reduction 183

and the other is not available (i.e., it is full), there are two possibilities which
of the two buffers is full. The normal packet is sent to the available input
buffer if it is the destination of the packet (probability 0.5), resulting in the
probability α(k + 1, t)(1 − α(k + 1, t)) · 2 · 0.5. The sum of the last two terms
results in α(k + 1, t). Because, so far, the entire 2×2 SE with its two outputs
was considered, a normalization to one output is required (factor 0.5):

qI0,n(k + 1, t) = 2 · π0(k, t)
πn(k, t)

ψfb(k, t)
· α(k + 1, t) · 0.5. (6.53)

All other terms are derived similarly:

qI0,nb(k + 1, t) = 2 · π0(k, t)
πnb(k, t)

ψfb(k, t)
· β(k + 1, t) · 0.5, (6.54)

qI0,b(k + 1, t) = 2 · π0(k, t)
πb(k, t)

ψfb(k, t)
· 2α(k + 1, t) · 0.5, (6.55)

qI0,bb(k + 1, t) = 2 · π0(k, t)
πbb(k + 1, t)

ψfb(k, t)
· 2β(k + 1, t) · 0.5, (6.56)

qIn,n(k + 1, t) = πn(k, t)
πn(k, t)

ψfb(k, t)
· 1.5 · α(k + 1, t) · 0.5, (6.57)

qIn,nb(k + 1, t) = 2 · πn(k, t)
πnb(k, t)

ψfb(k, t)

· (0.5 · α(k + 1, t) + β(k + 1, t)) · 0.5, (6.58)

qIn,b(k + 1, t) = 2 · πn(k, t)
πb(k, t)

ψfb(k, t)
· 2α(k + 1, t) · 0.5, (6.59)

qIn,bb(k + 1, t) = 2 · πn(k, t)
πbb(k, t)

ψfb(k, t)
· 2β(k + 1, t) · 0.5, (6.60)

qInb,nb(k + 1, t) = πnb(k, t)
πnb(k, t)

ψfb(k, t)
· 1.5 · β(k + 1, t) · 0.5, (6.61)

qInb,b(k + 1, t) = 2 · πnb(k, t)
πb(k, t)

ψfb(k, t)

· (α(k + 1, t) + β(k + 1, t)) · 0.5, (6.62)

qInb,bb(k + 1, t) = 2 · πnb(k, t)
πbb(k, t)

ψfb(k, t)
· 2β(k + 1, t) · 0.5, (6.63)

qIb,b(k + 1, t) = πb(k, t)
πb(k, t)

ψfb(k, t)
· 2α(k + 1, t) · 0.5, (6.64)

qIb,bb(k + 1, t) = 2 · πb(k, t)
πbb(k, t)

ψfb(k, t)
· 2β(k + 1, t) · 0.5, (6.65)

qIbb,bb(k + 1, t) = πbb(k, t)
πbb(k, t)

ψfb(k, t)
· 2β(k + 1, t) · 0.5, (6.66)

184 6 Application: Multistage Interconnection Network

qIfb,fb(k + 1, t) = πfb(k, t)
πfb(k, t)

ψfb(k, t)
· 2 · 0.5, (6.67)

qIfb,nbfb(k + 1, t) = 2 · πfb(k, t)
πnbfb(k, t)

ψfb(k, t)

·(1 + β(k + 1, t)) · 0.5, and (6.68)

qInbfb,nbfb(k + 1, t) = πnbfb
πnbfb

ψfb(k, t)
· 2β(k + 1, t) · 0.5. (6.69)

With Eqs. (6.53) to (6.69), the probability q(k+1, t) that a packet is ready to
be sent to a destination buffer at stage k + 1 (0 ≤ k ≤ n − 1), independently
of whether the destination buffer is available, can be determined:

q(k + 1, t) =
qI(k + 1, t)

α(k + 1, t)
. (6.70)

Some constraints of the previous equations can also be given. Because the
packets will immediately be removed after the network clock cycle in which
they arrive at the network outputs ends, we get

α(n, t) = 1 and (6.71)

β(n, t) = 1. (6.72)

The probability that a packet arrives at the available buffer of the first network
stage is given by the offered load load of the network:

q(0, t) = load. (6.73)

An offered load of 1 accomplishes an immediate pushing of packets into the
network if a buffer at the first stage is available.

6.3.2 Multiple State Spaces

In addition to the state of the packet in the first position of an SE input buffer,
a second state space of the buffer is needed: the buffer queue length. The queue
length shows whether a buffer is full, empty, or in a state in between, which is
important for determining the probability of packet transmission to a buffer.
On the other hand, the first buffer position shows between which packets a
conflict occurs, and is thus important for determining the probability of packet
transmission to the SE output.

Combining both state spaces into a single state space would lead to a large
state space for each buffer. Therefore, the state space of the entire network
would become too large to be handled. The beginning of Sect. 6.3 gave an
example where ten packet types and a buffer of the size of ten packets would
lead to 1010 states for each SE input. The more concrete example above deals
with seven packet types, including the state “no packet” as state 0. But all
seven states apply only to the first buffer position. All other positions can

6.3 Mathematical Model: Complexity Reduction 185

only be in state n, b, or 0 due to the definitions. Nevertheless, if a buffer
size of ten packets is used, a large state space still results for an SE input
buffer. Considering that an empty buffer position can only be followed by
other empty positions, 1+ 6 · (1 + 2 · (1 + 2 · (. . .))) = 6, 133 states describe an
SE input buffer. Thus, an n-stage MIN would result in 6, 133n states.

If only the packet type of the first buffer position is considered (because it
is the only one relevant) and the type of the remaining buffer positions (but
not the queue length) is neglected, the state space is dramatically reduced to
6 · 10 + 1 = 61 states (six packet types with ten queue lengths each and an
empty queue). Then, 61n states describe an n-stage network.

Establishing multiple state spaces as presented in Sect. 4.2.2 leads to fur-
ther state reduction. If the state of the first buffer position and the buffer
queue length are separated, two independent state spaces emerge. An SE in-
put buffer is described by 7+11 = 18 states, including the empty queue added
to the ten distinguishable queue lengths. A n-stage network is described by
18n states.

Of course, the two state spaces are not completely independent, as Eq.
(6.51) shows. But keeping the state space of each SE separate from the other
ones and combining them during calculation further reduces the number of
states to be stored to 18 · n. The additional calculation time spent for com-
bining states is low, due to only 18 states per network stage.

State Probabilities of Buffer Queue Lengths

In the following, the second state space of the MIN model is determined. The
probability that the buffer at stage k contains a packet queue of length m
(1 ≤ m ≤ mmax(k), where mmax(k) is the buffer length at stage k) is called
πm(k, t). For instance, π0(k, t) is the probability of a buffer queue of length 0,
i.e., that the buffer is empty.

For 2 ≤ m ≤ mmax(k) − 1, m packets result in the buffer in three cases.
First, if there were m−1 packets before, and no packet left, and a packet was
ready to be sent into this buffer. Second, if there were m packets before, and
no packet left, and no packet was ready to be sent into this buffer; or if there
were m packets before, and a packet left, and another packet was ready to be
sent into the buffer. Third, if there were m+1 packets before and a packet left
and no packet was ready to be sent into the buffer. Therefore, the probability
πm(k, t) results in

πm(k, t) = πm−1(k, t − 1) · pnosend(k, t − 1) · q(k, t − 1)

+πm(k, t − 1) · (pnosend(k, t − 1) · (1 − q(k, t − 1))

+psend(k, t − 1) · q(k, t − 1))

+πm+1(k, t − 1) · psend(k, t − 1) · (1 − q(k, t − 1))

if mmax(k) > 1 ∧ 2 ≤ m ≤ mmax(k) − 1. (6.74)

186 6 Application: Multistage Interconnection Network

For m = 0, m = 1, and m = mmax(k), the following particular constraints
(see [203]) must be considered:

π0(k, t) = π0(k, t − 1) · (1 − q(k, t − 1))

+π1(k, t − 1) · psend(k, t − 1) · (1 − q(k, t − 1)), (6.75)

π1(k, t) = π0(k, t − 1) · q(k, t − 1)

+π1(k, t − 1) · (pnosend(k, t − 1) · (1 − q(k, t − 1))

+psend(k, t − 1) · q(k, t − 1))

+π2(k, t − 1) · psend(k, t − 1) · (1 − q(k, t − 1))

if mmax(k) > 1 ∧ m = 1, (6.76)

π
(1)
mmax(k)(k, t) = π0(k, t − 1) · q(k, t − 1)

+π1(k, t − 1) · (pnosend(k, t − 1)

+psend(k, t − 1) · q(k, t − 1))

if mmax(k) = 1, and (6.77)

π
(2)
mmax(k)(k, t) = πmmax(k)−1(k, t − 1) · pnosend(k, t − 1) · q(k, t − 1)

+πmmax(k)(k, t − 1) · (pnosend(k, t − 1)

+psend(k, t − 1) · q(k, t − 1))

if mmax(k) > 1 ∧ m = mmax(k). (6.78)

The probability psend that a packet leaves a buffer was calculated before in
Eq. (6.49) and is given by

psend(k, t) = β(k, t), (6.79)

hence, the probability that it does not leave is

pnosend(k, t) = 1 − psend(k, t). (6.80)

State Probabilities of the First Buffer Position

The first state space, which was introduced at the beginning of this section
and includes the packet types, is now determined.

The probability πn(k, t) that the first buffer position at stage k (0 ≤ k ≤
n − 1) contains a normal packet (state n) is calculated first. The buffer will
reach this state in the next clock cycle in five cases.

First, if there was a normal packet before that did not leave and the des-
tination buffer is not full (otherwise, the state changes to nb), for example,
because another packet wins an existing conflict. The probability that the des-
tination buffer is not full under the condition that there is at least one packet
in the destination buffer (e.g., the winning packet) is given by pnotfull(k+1, t).

6.3 Mathematical Model: Complexity Reduction 187

Second, if there was a broadcast packet before from which a copy left and
the destination buffer of the remaining packet is not full.

Third, if there were two or more packets in the buffer (probability
1−π1(k, t−1)−π0(k, t−1)), the first one left, and the second one, which now
becomes the first one, is a normal packet (probability ω1(k)), and the desti-
nation buffer, which could be empty in this case, is not full. The probability
ω1(k) that a new packet at stage k is destined to only a single SE output
depends on the network traffic pattern. The calculation of ωi(k), which gives
the probability that i SE outputs are destination of a packet at the SE input,
is derived in Sect. 6.1.3.

Fourth, if the buffer was empty and a new packet, which is a normal packet,
was sent into the buffer and the destination buffer is not full.

Fifth, if the buffer became empty and a new packet, which is a normal
packet, was sent into the buffer and the destination buffer is not full.

πn(k, t) = πn(k, t − 1) · (1 − rn(k, t − 1)) · pnotfull(k + 1, t)

+πb(k, t − 1) · rpb(k, t − 1) · pnotfull(k + 1, t)

+(1 − π1(k, t − 1) − π0(k, t − 1)) · psend(k, t − 1)

·ω1(k) · (1 − πmmax(k+1)(k + 1, t))

+π0(k, t − 1) · q(k, t − 1)

·(ω1(k) + ω2(k)) · (1 − πmmax(k+1)(k + 1, t))

+π1(k, t − 1) · psend(k, t − 1) · q(k, t − 1)

·ω1(k) · (1 − πmmax(k+1)(k + 1, t)). (6.81)

All other state probabilities of the first buffer position are derived similarly
to πn(k, t):

πb(k, t) = πb(k, t − 1)

·(1 − rb(k, t − 1) − rpb(k, t − 1)

−rpbfb(k, t − 1) − rpbfbb(k, t − 1))

·(1 − p2
full(k + 1, t))

+(1 − π1(k, t − 1) − π0(k, t − 1)) · psend(k, t − 1) · ω2(k)

·(1 − pfull(k + 1, t)πmmax(k+1)(k + 1, t))

+π0(k, t − 1) · q(k, t − 1) · ωB(k) · (1 − π2
mmax(k+1)(k + 1, t))

+π1(k, t − 1) · psend(k, t − 1) · q(k, t − 1) · ω2(k)

·(1 − pfull(k + 1, t)πmmax(k+1)(k + 1, t)), (6.82)

188 6 Application: Multistage Interconnection Network

πnb(k, t) = πn(k, t − 1) · (1 − rn(k, t − 1)) · pfull(k + 1, t)

+πb(k, t − 1) · rpb(k, t − 1) · pfull(k + 1, t)

+πbb(k, t − 1) · rpbb(k, t − 1)

+πnb(k, t − 1) · (1 − rnb(k, t − 1))

+πnbfb(k, t − 1) · (1 − rnbfb(k, t − 1))

·πfb(k, t − 1)rfb(k, t − 1) + πnbfb(k, t − 1)rnbfb(k, t − 1)

ψfb(k, t − 1)

+(1 − π1(k, t − 1) − π0(k, t − 1)) · psend(k, t − 1)

·ω1(k) · πmmax(k+1)(k + 1, t)

+π0(k, t − 1) · q(k, t − 1) · ω1(k) · πmmax(k+1)(k + 1, t)

+π1(k, t − 1) · psend(k, t − 1) · q(k, t − 1)

·ω1(k) · πmmax(k+1)(k + 1, t), (6.83)

πbb(k, t) = πb(k, t − 1) · (1 − rb(k, t − 1) − rpb(k, t − 1)

−rpbfb(k, t − 1) − rpbfbb(k, t − 1)) · p2
full(k + 1, t)

+πbb(k, t − 1)

·(1 − rbb(k, t − 1) − rpbb(k, t − 1) − rpbbfb(k, t − 1))

+(1 − π1(k, t − 1) − π0(k, t − 1)) · psend(k, t − 1) · ω2(k)

·pfull(k + 1, t)πmmax(k+1)(k + 1, t)

+π0(k, t − 1) · q(k, t − 1) · ω2(k) · π2
mmax(k+1)(k + 1, t)

+π1(k, t − 1) · psend(k, t − 1) · q(k, t − 1) · ω2(k)

·pfull(k + 1, t)πmmax(k+1)(k + 1, t), (6.84)

πfb(k, t) = πb(k, t − 1) · rpbfb(k, t − 1) · pnotfull(k + 1, t), and (6.85)

πnbfb(k, t) = πb(k, t − 1) · rpbfbb(k, t − 1)

+πb(k, t − 1) · rpbfb(k, t − 1) · pfull(k + 1, t)

+πbb(k, t − 1) · rpbbfb(k, t − 1)

+πnbfb(k, t − 1) · (1 − rnbfb(k, t − 1))

·(πfb(k, t − 1)(1 − rfb(k, t − 1))

+πnbfb(k, t − 1)(1 − rnbfb(k, t − 1))
) 1

ψfb(k, t − 1)
. (6.86)

The probability pfull(k, t) that the buffer is full is defined for the case
where it is known that the buffer is not empty, but it is not known whether
it is full or not. This probability is (1 ≤ k ≤ n − 1)

pfull(k, t) =
πmmax(k)(k, t)

1 − π0(k, t)
. (6.87)

6.3 Mathematical Model: Complexity Reduction 189

Then, we get
pnotfull(k, t) = 1 − pfull(k, t). (6.88)

Because the packets will immediately be removed after arrival from the out-
puts of the network, the constraints

α(n, t) = 1, (6.89)

β(n, t) = 1, (6.90)

pfull(n, t) = 0, and (6.91)

pnotfull(n, t) = 1 (6.92)

are given.

6.3.3 Fixed Point Iteration

Due to the large number of equations, particularly if the number of network
stages increases, a symbolic solution of the system of equations is not feasible.
But it can numerically be solved by fixed point iteration.

Algorithm

The equations can be solved iteratively, starting with the initialization (0 ≤
k ≤ n − 1):

π0(k, 0) = 1, (6.93)

πn(k, 0) = πb(k, 0) = πnb(k, 0) = πbb(k, 0)

= πfb(k, 0) = πnbfb(k, 0) = 0, (6.94)

πm(k, 0) = 0 for 1 ≤ m ≤ mmax(k), (6.95)

α(k, 0) = β(k, 0) = 1, and (6.96)

ψfb(k, 0) = ψfb(k, 0) = 1. (6.97)

First, the traffic distribution in the network (ω1(k) and ω2(k)) is calculated.
Then, within the iterative loop, the probabilities r(k, t), α(k, t), and β(k, t)
(starting with the last network stage) are determined first, followed by all
qI(k, t) and q(k, t), then all πm(k, t), followed by all pfull(k, t) and the states
of the first buffer position, and finally, all ψfb(k, t). The algorithm is given
below:

190 6 Application: Multistage Interconnection Network

get network size (number of stages n), buffer sizes mmax,
offered load load, and traffic pattern a;

for k = 0 to n − 1 do
calculate ω1(k) and ω2(k);

end do;
for k = 0 to n − 1 do

initialize π0(k, 0), πn(k, 0), πnb(k, 0), πb(k, 0), πbb(k, 0),
πfb(k, 0), and πnbfb(k, 0);

for m = 1 to mmax(k) do
initialize πm(k, 0);

end do;
initialize α(k, 0) and β(k, 0);
initialize ψfb(k, 0) and ψfb(k, 0);

end do;
repeat

for k = n − 1 to 0 step −1 do
calculate all r(k, t);
calculate β(k, t) and α(k, t);

end do;
for k = 1 to n do

calculate qI(k, t) and q(k, t);
end do;
for k = 0 to n − 1 do

calculate psend(k, t);
for m = 0 to mmax(k) do

calculate πm(k, t);
end do;
calculate pfull(k, t);

end do;
for k = 0 to n − 1 do

calculate π0(k, t), πn(k, t), πnb(k, t), πb(k, t),
πbb(k, t), πfb(k, t), and πnbfb(k, t);

end do;
until steady state has been reached;
calculate the measures;
print the measures;

Measures

After the steady state has been reached, the normalized throughput at the
network input (called Si) and at the output (called So) can be determined.
The normalized throughput at the input (output) of the network is the mean
number (expected value) of packets that pass an input (output) of the network
in a network clock cycle.

6.3 Mathematical Model: Complexity Reduction 191

A new packet is able to enter the network if buffer space is available in
the first network stage (probability 1−πmmax(0)(0)) or if the buffer is full and
a packet is sent out (probability πmmax(0)(0) · psend(0)). Then, new packets
enter the network with the offered load load:

Si = (1 − πmmax(0)(0)) · load

+πmmax(0)(0) · psend(0) · load. (6.98)

The normalized throughput at the network output is equal to the probability
that a packet is able to be sent to the network output, because the outputs
are always available (packets are immediately removed from the outputs):

So = q(n). (6.99)

The normalized delay time at a stage is the average time a packet stays at
the stage, and is normalized to the network clock cycle.

The normalized delay time d(k) at each stage k can be calculated using
Little’s Law. The number of packets in the buffer at stage k that will pass an
SE output results from the number in the first buffer position and the number
in the remaining buffer positions. Broadcast and blocked broadcast packets
generate two packets that will pass an output. Therefore, the mean number
in the first buffer position is πn(k) + πnb(k) + πfb(k) + πnbfb(k) + 2(πb(k) +
πbb(k)). Additionally, the mean number in the remaining buffer positions is
the probability that there are m packets in the buffer (2 ≤ m ≤ mmax(k))
multiplied by m (but one, because the packet in the first buffer position, has
already been considered). With probability ω2(k), these packets are broadcast
packets, and generate a second packet at the SE outputs. The normalized delay
time at stage k is

d(k) =
1

qI(k + 1)
· (πn(k) + πnb(k) + πfb(k) + πnbfb(k) + 2(πb(k) + πbb(k))

+(1 + ω2(k)) ·
mmax(k)∑

m=2

((m − 1) · πm(k))). (6.100)

The normalized delay time dtot in the network is the sum of all stage delay
times:

dtot =

n−1∑
k=0

d(k). (6.101)

The mean buffer queue length at a stage is the mean number of packets in
the buffer at this stage.

The mean queue length m̄(k) of the buffers at each stage k is given by the
probability that there are m packets in the buffer multiplied by m for each
possible queue length:

m̄(k) =

mmax(k)∑
m=1

(m · πm(k)). (6.102)

192 6 Application: Multistage Interconnection Network

The mean queue length is a by-product of our algorithm but an important
measure in buffer size design.

Some MIN performance results of this mathematical model are presented
in Sect. 6.5. Results are determined in computation time of less than one
second. The mathematical model achieves a tremendous acceleration in com-
putation time when compared to simulation models, which consume at least
four hours (MINSimulate) and up to two weeks (Petri nets).

6.4 Mathematical Model: Automatic Model Generation

The previous section showed how large the system of equations can grow even
if complexity reduction is applied to the model. This means that establishing
the system of equations is very time consuming. If changes are required, for
instance, if cut-through switching instead of store-and-forward switching is to
be used, the entire system of equations must be revised. Such small modifi-
cations only slightly change the system of equations (see [209]). But larger
modifications, for instance, if c×c SEs are used instead of simple 2×2 SEs,
again lead to very time consuming development of the system of equations. An
automatic model generation as described in Sect. 4.3 would be very helpful.

This section deals with automatic model generation for multistage inter-
connection networks with the banyan property consisting of c×c switching
elements. c is arbitrary, but must be constant for the entire network. c×c SEs
are chosen to demonstrate how powerful automatic model generation is. The
previous section only dealt with 2×2 SEs to allow manually establishing the
system of equations. Larger SEs result in an exponentially growing number of
equations related to the increasing number of input-output pairs at each SE.
Despite this growth, automatic model generation still succeeds in establishing
the system of equations.

6.4.1 Rule Design

As discussed in Sect. 4.3, the first step in automatic model generation is to
classify groups of similar states or state transitions. Such similar states or
state transitions lead to similar equations. The presented example can profit
from the equations established in Sect. 6.3. Comparing these equations gives
four groups:

1. sending probabilities,
2. receiving probabilities,
3. state probabilities: buffer queue lengths, and
4. state probabilities: first buffer positions.

As the second step in automatic model generation, the rules to establish the
equations of each group must be developed. Before the rules are introduced,
some definitions are given to adapt the assumptions of Sect. 6.3 to c×c SEs.

6.4 Mathematical Model: Automatic Model Generation 193

The state space of the first buffer position, which copes with c×c SEs, rep-
resents all reachable states of the first buffer position. It is obvious that packets
that are directed to different numbers of SE outputs have to be distinguished.
Furthermore, earlier results ([213] and Sect. 6.3) show that the information
that blocked packets exist (due to an occupied destination buffer) results in
non-negligible information about state probabilities in the next network clock
cycle. πmult,block(k, t) denotes the probability of being in state mult, block rep-
resenting a buffer at stage k at time t containing a packet in the first buffer
position directed to mult SE outputs. This means that forwarding this packet
results in sending copies to mult SE outputs. In the previous clock cycle,
sending block of the mult copies (0 ≤ block ≤ mult ≤ c) failed because of
occupied destination buffers (and at least mult − block copies failed because
of lost conflicts with other packets directed to the same destination) if the
packet did not arrive newly at the current buffer. For a newly arrived packet,
block of the destination buffers are currently occupied. The probability of an
empty buffer is denoted as π0,0(k, t).

Rules for Sending Probabilities

First, a packet in the first buffer position at stage k (0 ≤ k ≤ n − 1) at time
t is observed that is directed to mult SE outputs, and sending block of the
mult copies failed because of occupied destination buffers in the previous clock
cycle. rmult,block,nbl,fbl(k, t) denotes the probability that mult− nbl copies of
such a packet are sent to the succeeding stage while nbl copies are blocked
and stay in the buffer. Those nbl copies include fbl copies that are blocked
because of occupied (full) destination buffers. The remaining nbl− fbl copies
are blocked because of lost conflicts with other SE inputs for the desired
outputs. Figure 6.16 gives an example. The state of the last and the state of the
new clock cycle are shown. It is assumed that the packet at the upper buffer is
destined to four switch outputs. In the given scenario, two destination buffers
of the succeeding stage are full. They block two of the packet copies if no buffer
space becomes available. Another destination buffer is also the destination of
a second packet. If the second packet wins this conflict, r4,0,3,2(k, t) describes
the corresponding sending probability (three blocked copies, two because of
full destination buffers).

The sending probability rmult,block,nbl,fbl(k, t) depends on two basic pa-
rameters. First, the states of the other SE input buffers influence the number
and kind of conflicts. Second, the behavior of the destination buffers influ-
ences the availability of the destinations. Again, behaviors α, ᾱ, β, and β̄ are
distinguished for each buffer succeeding one of the SE outputs at stage k + 1,
as defined in Sect. 6.3.

To automatically generate a sending probability equation, the generator
successively examines all combinations of input buffer states and output be-
haviors. For a specific combination, Pblbhv can be derived, which gives the

194 6 Application: Multistage Interconnection Network

*

**

*

*

*

*

+

+

o

o

o

r
4,0,3,2

π

π
3,2

4,0

Fig. 6.16. Example for sending probability indices

probability that the investigated blocking behavior (nbl blocked copies in-
cluding fbl copies that are blocked because of occupied destination buffers)
results from this combination.

The sum of the probabilities of each combination multiplied by Pblbhv

leads to the sending probability rmult,block,nbl,fbl(k, t). Inputs of equal state
are accumulated, resulting in the probability (π(mult,block)′ (k, t))ip(mult,block)′

of ip(mult,block)′ inputs being in state (mult, block)′. To get the probability of
a given input combination, the product of all state probabilities represented
has to be taken. Figure 6.17 gives an example: let the investigated packet be in
conflict with two inputs of state 1, 1 (ip1,1 = 2) and with three inputs of state
3, 2 (ip3,2 = 3). All other values of ip(mult,block)′ are zero. Therefore, the prob-
ability that those five input packets appear in the combination depicted in Fig.
6.17 is (π1,1(k, t))2 ·(π3,2(k, t))3. Of course, different combinations of the same
input packets at inputs 2 to 6 do not change the resulting conflicts. To consider
all possible combinations to inputs assignments, the product has to be multi-
plied by this number of permutations denoted as Combπ({ip(mult,block)′}). In

the example, Combπ({ip(mult,block)′}) =
(
5
2

)
= 10 results. The rules for calcu-

6.4 Mathematical Model: Automatic Model Generation 195

3,2

3,2

3,2

1,1

β

β

α

α

β

β

other
inputs

investigated
packet

mult,block

1,1

element

switching

6 x 6

Fig. 6.17. Example for input states and output behavior

lating Combπ({ip(mult,block)′}) are derived later, after presenting the general
rules to set up the equations for rmult,block,nbl,fbl(k, t).

Output behaviors are accumulated in a similar way. For instance, if
opα outputs show behavior α, the probability for this is (α(k + 1, t))opα .
The example (Fig. 6.17) shows opα = 1, opᾱ = 1, opβ = 3, and opβ̄ =
1. The assignment of behaviors to outputs may arbitrarily be permuted.
Combαβ(opα, opᾱ, opβ , opβ̄) denotes the number of permutations. Its rules
are also derived later, along with the rules for determining the probabil-
ity Pblbhv of obtaining the investigated blocking behavior, given by nbl
and fbl: it depends on the input states and output behaviors Pblbhv =
Pblbhv({ip(mult,block)′}, opα, opᾱ, opβ , opβ̄).

To determine a particular rmult,block,nbl,fbl(k, t), all combinations of the
input states and output behaviors have to be considered. These rules can be
described by Eq. (6.103), and by additionally applying all other equations and
algorithms:

196 6 Application: Multistage Interconnection Network

rmult,block,nbl,fbl(k, t) =

∑
∀ combinations

((∏
∀ (mult,block)′

(π(mult,block)′ (k, t))ip(mult,block)′

)

·Combπ({ip(mult,block)′})
·(α(k + 1, t))opα · (ᾱ(k + 1, t))opᾱ

·(β(k + 1, t))opβ · (β̄(k + 1, t))opβ̄

·Combαβ(opα, opᾱ, opβ , opβ̄)

·Pblbhv({ip(mult,block)′}, opα, opᾱ, opβ, opβ̄)

)
,

(6.103)

where

ip(mult,block)′ : number of inputs in state (mult, block)′

(except examined input)

Combπ({ip(mult,block)′}) : number of permutations for given states

opα : number of outputs with behavior α

opᾱ : number of outputs with behavior ᾱ

opβ : number of outputs with behavior β

opβ̄ : number of outputs with behavior β̄

Combαβ : number of permutations for given output

behaviors

Pblbhv({ip(mult,block)′}, opα, opᾱ, opβ , opβ̄) :

probability of resulting in the investigated

blocking behavior (nbl, fbl).

Because the sending probability of one SE input of c×c SEs is investigated,
there remain c − 1 other inputs, so the following constraint holds:∑

∀ (mult,block)′

ip(mult,block)′ = c − 1 (6.104)

The number of permutations Combπ({ip(mult,block)′}) according to these in-
puts for the given input states is

6.4 Mathematical Model: Automatic Model Generation 197

Combπ({ip(mult,block)′}) =

∏
∀ (mult,block)′

(c − 1 − ∑
(mult,block)′′<(mult,block)′

ip(mult,block)′′

ip(mult,block)′

)
,

(6.105)

where states (mult, block)′′ denotes all the states (indices) of the previously
already used product terms. As in Eq. (6.104), the output behaviors are con-
strained by the number of SE outputs:

opα + opᾱ + opβ + opβ̄ = c. (6.106)

To calculate Combαβ(opα, opᾱ, opβ, opβ̄), the number of permutations for the
given output behaviors, the cases where buffer space is or becomes available
(behavior α and β) and the cases where buffer space does not become available
(behavior ᾱ and β̄) have to be distinguished. Combαβ(opα, opᾱ, opβ , opβ̄) is
the number of permutations of those two cases among the outputs for the
given behaviors:

Combαβ(opα, opᾱ, opβ , opβ̄) =

(
c

opᾱ + opβ̄

)
=

(
c

opα + opβ

)
. (6.107)

In the following rules describing Pblbhv({ip(mult,block)′}, opα, opᾱ, opβ, opβ̄), all
indices are omitted for notational convenience. To determine Pblbhv , some
assumptions are made without loss of generality (Fig. 6.18):

• The investigated packet is located in the first SE input.

*

inputs
other

packet
investigated

block

mult

remaining
outputs

c x c

switching

element

Fig. 6.18. Assumptions for an investigated packet of state mult, block

198 6 Application: Multistage Interconnection Network

• The investigated packet is directed to the first mult SE outputs. The first
block of those outputs are followed by occupied buffers that blocked the
copies in the previous clock cycle.

Now, an event tree is constructed describing all conflict situations and output
behaviors. The investigation of the event tree is necessary because, in the case
of multicasting, the probabilities of resulting conflicts for an output depend
on the conflicts arising at the other outputs.

The event tree sequentially considers the first mult outputs, starting with
the first output. Figures 6.19 to 6.22 explain the event tree construction for
one of the first mult outputs. Let the considered output be out. Now, all
other inputs in (2 ≤ in ≤ c) are successively examined for whether their
copies cause a conflict for output out with the investigated packet in input 1.
Conflicts that occur because of a copy that was previously blocked due to an
occupied destination buffer (edge conf bl) and conflicts that occur because
of other copies (edge conf nbl) are distinguished. All these cases (and those

conf_nbl noconf_nbl

noconf_bl

conf_bl

output
out

relation relation relation
to 3 to 3 to 3

Fig. 6.19. Types of conflicts with input 2 (relation to input 3: see Fig. 6.20)

relation
to in +1

relation
to in +1

relation
to in +1

relation
into

conf_nbl noconf_nbl

noconf_bl

conf_bl

Fig. 6.20. Types of conflicts with input in (2 < in < c)

6.4 Mathematical Model: Automatic Model Generation 199

destination
buffer

destination
buffer

destination
buffer

relation
c

conf_nbl noconf_nbl

noconf_bl

conf_bl

to

Fig. 6.21. Types of conflicts with input c

output

conf_loser

destination
buffer

available
not_available

conf_winner

output
+1out

output
out +1 out +1

Fig. 6.22. Destination availability and conflict resolution

where there is no conflict) are investigated and weighted with their probability
of occurring.

Assume that blockin copies of the packet staying in input in are destined to
outputs followed by occupied destination buffers. Furthermore, assume that
(blockin)′ of them are considered to be directed to one of the outputs that
have been investigated before output out. Edge conf bl occurs if one of the
remaining blockin,out = blockin − (blockin)′ copies is directed to the currently
examined output (out of the remaining c − out + 1 outputs). The related
probability Pconf bl is

Pconf bl =
blockin,out

c − out + 1
. (6.108)

For instance, the packet staying in the second input (in = 2) is destined
to block2 = 2 occupied destinations (Fig. 6.23). Whether a conflict for the
third output (out = 3) of a 4×4 SE occurs is investigated. While examining
output 1, it might have been assumed that this output was one of the two
destinations. Then, examining output 3, there is one of the two copies left

200 6 Application: Multistage Interconnection Network

2

3

4

11

2

3

4

*
*

now investigated

investigated

already

2nd copy

1st copy

Fig. 6.23. Example for conflict scenarios

(block2,3 = 1) that could be destined to output 3 or 4, which have not yet
been examined. A conflict with the packet in input 1 for output 3 results with
probability Pconf bl = 1/2.

No such previously mentioned conflict (edge noconf bl) occurs with prob-
ability Pnoconf bl = 1 − Pconf bl. In this case, there may be a conflict with
a copy that was not previously blocked because of an occupied destination
buffer (edge conf nbl). Assuming that multin − blockin such copies of in-
put in exist, but (multin − blockin)′ of them are considered to be directed
to one of the outputs that have been investigated before, the remaining
noblockin,out = multin − blockin − (multin − blockin)′ copies may be directed
to the current output. The remaining outputs to choose as a destination must
be reduced by the number blockin,out of outputs that are reserved to be the
destination of the blocked copies:

Pconf nbl =
noblockin,out

c − out + 1 − blockin,out
. (6.109)

No conflict with such a copy (edge noconf nbl) occurs with probability
Pnoconf nbl = 1−Pconf nbl. No conflict at all occurs with probability Pnoconf bl ·
Pnoconf nbl.

Having considered all inputs and calculated the probability for the chosen
path through the event tree, it has to be investigated whether the destination
buffer is or becomes available (Fig. 6.22). The probability that the destination
buffer is not and does not become available (edge not available) is given by
the number opᾱout

+ opβ̄out
of remaining outputs with behavior ᾱ or β̄ that

are not allocated to previously examined outputs:

Pnot available =
opᾱout

+ opβ̄out

c − out + 1
. (6.110)

The destination buffer is or becomes available (edge available) with proba-
bility Pavailable = 1−Pnot available. Then, the copy of the investigated packet
wins the conflict (edge conf winner) with probability

6.4 Mathematical Model: Automatic Model Generation 201

Pconf winner =
1

inp conf + 1
, (6.111)

with inp conf denoting the number of other inputs that have a copy directed
to the currently examined output for the chosen path in the event tree. The
copy of the investigated packet loses the conflict (edge conf loser) with prob-
ability Pconf loser = 1 − Pconf winner.

Now, constructing the event tree is continued, investigating the next out-
put out+1 in the same way. After all mult outputs of the investigated packet
in input 1 have been considered, the chosen path through the event tree gives
the number of won and lost conflicts for the path and the probability Ppath

for choosing this path.
The remaining c − mult outputs of the c×c switching element are the

destination of the copies injected from input 2 to c that have still not been
considered to be directed to one of the previously examined outputs. Copies
that have been blocked because of occupied destination buffers result in output
behavior β or β̄, and therefore influence the number of outputs with such
behavior. But, because Pblbhv is derived for a fixed number opβ + opβ̄ of
outputs with such behavior, the portion of all combinations resulting in the
given number must be calculated: input in (2 ≤ in ≤ c) injects (blockin)rest

copies previously not considered into the switching element that have been
blocked because of occupied destination buffers. Then,

Combblall
=

c∏
in=2

(
c − mult

(blockin)rest

)
(6.112)

combinations are available to spread these copies over the remaining outputs.
But only Combblfixed

combinations result in the required number of outputs
with the described behavior. Combblfixed

is given by the number of combi-
nations to choose the remaining opβrest

+ opβ̄rest
outputs with behavior β

or β̄ from all remaining outputs. Furthermore, it is given by the number of
combinations of the remaining blocked copies ((blockin)rest for input in) that
exactly address these opβrest

+ opβ̄rest
outputs:

Combblfixed
=

(
c − mult

opβrest
+ opβ̄rest

)

·exact
(
opβrest

+ opβ̄rest
, {(blockin)rest|2 ≤ in ≤ c}

)
,

(6.113)

with

202 6 Application: Multistage Interconnection Network

exact
(
op, {(blockin)rest|2 ≤ in ≤ c}

)
=

c∏
in=2

(
op

(blockin)rest

)

−
op−1∑
j=1

(
exact

(
op − j, {(blockin)rest|2 ≤ in ≤ c}

)
·
(

op

op − j

))
.

(6.114)

In a similar way, the given number opᾱ + opβ̄ of current blocking behavior
must hold. If there remain opᾱrest

+ opβ̄rest
outputs with such a behavior in

the c − mult outputs still not considered,

Combbarall
=

(
c − mult

opᾱrest
+ opβ̄rest

)
(6.115)

combinations are possible. But only those combinations Combbarfixed
that

result in the required opβ̄rest
blockings of outputs to previously occupied des-

tination buffers and opᾱrest
blockings of other outputs are considered.

Combbarfixed
=

(
opβrest

+ opβ̄rest

opβ̄rest

)
·
(

opαrest
+ opᾱrest

opᾱrest

)
. (6.116)

Taking all paths in the event tree into account, along with Eqs. (6.112) to
(6.116), the probability of resulting in the investigated blocking behavior
Pblbhv is determined by

Pblbhv =
∑

all paths

(
Ppath · Combblfixed

Combblall

· Combbarfixed

Combbarall

)
. (6.117)

Due to the event tree, the calculation of Pblbhv is time consuming. The run
time to generate the sending probabilities can be reduced using some rules
concerning the existence of combinations in Eq. (6.103). If it is known that
a combination does not exist, Pblbhv does not have to be calculated, and this
addend of rmult,block,nbl,fbl(k, t) is set to zero. A combination does not exist

• if the number of outputs with behavior β or β̄ is less than the greatest
value block that a packet in the first buffer positions of the inputs has.
Proof: By definition, all block copies are directed to occupied destination
buffers. If there exists one input with block > opβ + opβ̄, then there must
be one of the block copies that is directed to an output with behavior α
or ᾱ. This contradicts the definition.

• if the added number of outputs with behavior β or β̄ is greater than the
sum of all values block of the packets in the first buffer positions of the
inputs.
Proof: By definition, an output shows behavior β or β̄ if there is a copy of
a packet that is blocked because of an occupied destination buffer follow-
ing the investigated output. If

∑
block < opβ + opβ̄ , then there must be

one output with behavior β or β̄ to which no such copy is directed. This
contradicts the definition.

6.4 Mathematical Model: Automatic Model Generation 203

• if the added number of outputs with behavior α or β is less than the
difference mult− nbl of the investigated packet.
Proof: If a packet is directed to mult outputs and nbl copies will be blocked
in the current clock cycle, the remaining mult−nbl will be sent. Therefore,
at least mult − nbl outputs must show either behavior α or β to accept
those packets.

• if the number of outputs with behavior β is less than the difference block−
nbl of the investigated packet.
Proof: If a packet is directed to mult outputs and block copies of it were
blocked because of occupied destination buffers, then there exist at most
mult−block outputs among the destinations with behavior α. If nbl copies
will be blocked in the current clock cycle, the remaining mult−nbl will be
sent. As stated, at most mult − block copies can be sent to outputs with
behavior α. Therefore, at least the remaining (mult−nbl)−(mult−block) =
block − nbl must be sent to outputs with behavior β.

• if the number of outputs with either behavior ᾱ or β̄ is less than the
number fbl of copies that will be blocked because of occupied destination
buffers.
Proof: If opᾱ + opβ̄ < fbl, then there are copies among the fbl that are
directed to an output with behavior α or β. This means that those copies
will not be blocked. This contradicts the definition of fbl.

Considering the above rules and calculation methods, all required equations to
determine the sending probabilities rmult,block,nbl,fbl(k, t) are obtained. Some
of those equations can further be improved by using additional information. If
nbl copies will be blocked, and fbl out of them because of occupied destination
buffers, the remaining nbl−fbl copies will be blocked because of lost conflicts.
In the previous clock cycle, there were block copies blocked because of occupied
destination buffers and mult − block copies blocked because of lost conflicts,
and without any information about destination buffer states. As a result,
at most mult − block destination buffers are not occupied. If nbl − fbl >
mult−block, there will exist (nbl−fbl)−(mult−block) copies that are blocked
due to lost conflicts but that are also directed to an occupied destination buffer
(in addition to the fbl copies). Even if such an occupied destination buffer
will send a packet and buffer space becomes available, the winning packet
will fill up this space again. As a result, rmult,block,nbl,fbl(k, t) is added to
rmult,block,nbl,nbl−(mult−block)(k, t) and then set to zero.

Rules for Receiving Probabilities

In the previous subsection, rules to determine the sending probabilities were
presented. If the sending probabilities are determined, the probability qI(k, t)
that a packet is received by a buffer at stage k (1 ≤ k ≤ n, with stage n
representing the network outputs) at time t can easily be calculated by the
following rule.

204 6 Application: Multistage Interconnection Network

For an input buffer at stage k−1 in state mult, block, there are mult−nbl
copies sent to the succeeding stage, while nbl copies are blocked and remain in
the buffer at stage k − 1 with probability rmult,block,nbl,fbl(k, t). This leads to
an average number of mult−nbl

c packets that are received by one of the buffers
at stage k from one input buffer at stage k − 1. Because all c input buffers of
the switching element at stage k − 1 are connected to the investigated buffer
at stage k, and those c inputs are independent of each other, on average
mult−nbl

c · c = mult − nbl packets are received by this buffer. The sum of
all states in terms of their occurrence probabilities and sending probabilities
results in the receiving probability. Equation (6.118) incorporates these rules:

qI(k, t) =
∑

∀ mult,block

(
πmult,block(k − 1, t)

·
∑

∀ nbl,fbl

(
rmult,block,nbl,fbl(k − 1, t) · (mult− nbl)

))
. (6.118)

The probability q(k, t) that a packet is ready to be sent into a buffer at stage k
(1 ≤ k ≤ n) at time t, regardless of whether the destination buffer is available,
is determined similarly to Eq. (6.70) by

q(k, t) =
qI(k, t)

α(k, t)
. (6.119)

The receiving probability q(0, t) of the first network stage is given by the
offered load load to the network

q(0, t) = load. (6.120)

Rules for State Probabilities of Buffer Queue Lengths

The probability that the buffer at stage k contains a packet queue of length m
(1 ≤ m ≤ mmax(k), where mmax(k) is the buffer length at stage k) is called
πm(k, t), as in Sect. 6.3. There are several actions resulting in a buffer queue
length of m. With regard to the buffer queue length of the previous clock
cycle, a length of m results

• if there were m − 1 packets before, and no packet left, and a packet was
ready to be sent into this buffer:

πm−
(k, t) = πm−1(k, t − 1) · (1 − psend(k, t − 1)) · q(k, t − 1)

if mmax(k) > 1 ∧ 2 ≤ m ≤ mmax(k) − 1, (6.121)

where psend(k, t) denotes the probability of completely sending the packet
out of the first buffer position. The rules for psend(k, t) will be determined
later. For m = 1, the buffer was empty before, and no packet can leave:

6.4 Mathematical Model: Automatic Model Generation 205

πm−
(k, t) = πm−1(k, t − 1) · q(k, t − 1)

if mmax(k) ≥ 1 ∧ m = 1. (6.122)

For m = 0, the buffer queue length m − 1 does not exist:

πm−
(k, t) = 0

if mmax(k) ≥ 1 ∧ m = 0. (6.123)

• if there were m packets before, and no packet left, and no packet was ready
to be sent into this buffer:

πm0(k, t) = πm(k, t − 1) · (1 − psend(k, t − 1)) · (1 − q(k, t − 1))

if mmax(k) > 1 ∧ 1 ≤ m ≤ mmax(k) − 1. (6.124)

For m = mmax(k), the buffer is full, and no packet can be received by the
buffer:

πm0(k, t) = πm(k, t − 1) · (1 − psend(k, t − 1))

if mmax(k) ≥ 1 ∧ m = mmax(k). (6.125)

For m = 0, the buffer is empty, and no packet can be sent:

πm0(k, t) = πm(k, t − 1) · (1 − q(k, t − 1))

if mmax(k) ≥ 1 ∧ m = 0. (6.126)

• if there were m packets before, and a packet left, and another packet was
ready to be sent into the buffer:

πm00(k, t) = πm(k, t − 1) · psend(k, t − 1) · q(k, t − 1)

if mmax(k) ≥ 1 ∧ 1 ≤ m ≤ mmax(k). (6.127)

For m = 0, the buffer is empty, and no packet can be sent:

πm00(k, t) = 0

if mmax(k) ≥ 1 ∧ m = 0. (6.128)

• if there were m + 1 packets before, and a packet left, and no packet was
ready to be sent into the buffer:

πm+(k, t) = πm+1(k, t − 1) · psend(k, t − 1) · (1 − q(k, t − 1))

if m
= mmax(k). (6.129)

For m = mmax(k), the buffer queue length m + 1 does not exist:

πm+(k, t) = 0

if m = mmax(k). (6.130)

The sum of the probabilities related to the four scenarios mentioned describes
the state probability of buffer queue length m:

πm(k, t) = πm−
(k, t) + πm0(k, t) + πm00(k, t) + πm+(k, t). (6.131)

206 6 Application: Multistage Interconnection Network

Rules for State Probabilities of the First Buffer Positions

In this section, the rules to achieve the state probabilities given by the first
position of an SE input buffer are derived. πmult,block(k, t) denotes the prob-
ability of being in state mult, block, representing a buffer at stage k at time t
containing a packet in the first buffer position directed to mult SE outputs,
as defined at the beginning of Sect. 6.4.1.

State mult, block can be reached in two different cases, for which rules
have to be developed.

• First, if the packet in the first buffer position of the previous clock cy-
cle is not completely sent to the next network stage due to conflicts and
blockings, and the remaining packet obtains state mult, block.

• Second, if a new packet that results in state mult, block enters the first
buffer position because the buffer is empty or the former packet in the
first buffer position has completely left.

If the packet in the first buffer position of the previous clock cycle caused state
multprev, blockprev, and was not completely sent to the next network stage
due to blockings, state mult, block occurs with the related sending probability
rmultprev ,blockprev ,mult,block if such a transition exists (i.e., is not zero):

πI
mult,block(k, t) =

∑
∀ multprev ,blockprev

πmultprev ,blockprev
(k, t − 1)

·rmultprev ,blockprev ,mult,block(k, t − 1). (6.132)

The probabilities rmultprev ,blockprev ,mult,block have been determined in Sect.
6.4.1.

The rules describing the appearance of a new packet in the first buffer
position are derived below. Three different buffer lengths are distinguished:
the buffer was empty with probability π0(k, t), there was one packet in the
buffer with probability π1(k, t), or there were two or more packets in the buffer
with probability 1 − π0(k, t) − π1(k, t).

• If there were one or more packets in the buffer, a packet may enter the
first buffer position if the former packet completely left this position with
probability psend(k, t).

• If there were less than two packets in the buffer, a packet may enter the
first buffer position if a packet is ready to be send into this buffer with
probability q(k, t).

• The probability that a new packet is directed to mult switching element
outputs at stage k is denoted as ωmult(k). This probability results from
the given network traffic [207] (see Sect. 6.1.3).

• block destinations must be followed by a full buffer at stage k + 1, and
mult − block destinations must not be followed by a full buffer. All per-
mutations have to be considered.

6.4 Mathematical Model: Automatic Model Generation 207

Expressing these rules as a formula yields:

πII
mult,block(k, t) =

(
π0(k, t − 1) · q(k, t − 1)

+π1(k, t − 1) · psend(k, t − 1) · q(k, t − 1)

+(1 − π0(k, t − 1) − π1(k, t − 1)) · psend(k, t − 1)
)

·ωmult(k) ·
(
πmmax(k+1)(k + 1, t)

)block

·
(
1 − πmmax(k+1)(k + 1, t)

)mult−block

·
(

mult

block

)
. (6.133)

The state probabilities of the first buffer position are given by the sum of the
previously derived probabilities:

πmult,block(k, t) = πI
mult,block(k, t) + πII

mult,block(k, t). (6.134)

Rules for Buffer Behavior and Measures

This subsection deals with some additional rules to generate some equations
out of the four groups mentioned. Each equation is an independent one that
does not belong to any group. Nevertheless, it is convenient to automatically
generate them depending on the SE size.

To calculate the probability β(k, t) that a packet will completely leave an
occupied buffer, and the buffer will therefore become available for other pack-
ets, each possible buffer state probability πmult,block(k, t) and the probability
rmult,block,0,0(k, t) of completely sending the packet out of the first buffer po-
sition must be considered. Because such a buffer obviously cannot be empty,
the probability β(k, t) is normalized to non-empty states:

β(k, t) =
1

1 − π0,0(k, t)

·
∑

∀ mult,block �=0,0

πmult,block(k, t) · rmult,block,0,0(k, t). (6.135)

This probability is identical to probability psend(k, t) that a packet is com-
pletely sent out of a non-empty buffer:

psend(k, t) = β(k, t). (6.136)

To determine the probability α(k, t) that a packet will not be blocked because
of an occupied buffer, two cases have to be distinguished:

• The buffer is not occupied.
• The buffer is occupied, but one packet is leaving.

208 6 Application: Multistage Interconnection Network

Expressed as a formula, the rules result in

α(k, t) = (1 − πmmax(k)(k, t)) + πmmax(k)(k, t) · β(k, t). (6.137)

Because the packets will immediately be removed after arrival from the net-
work outputs, the constraints

α(n, t) = 1 and (6.138)

β(n, t) = 1 (6.139)

hold as in Sect. 6.3.2. Network performance is described by the performance
measures, as in Sect. 6.3.3: the normalized throughput at the network input
and at the output, the delay times, and the buffer queue lengths.

The normalized throughput at the network input is first derived. A new
packet is able to enter the network

• if buffer space is available at the first network stage (probability 1 −
πmmax(0)(0)) or

• if the buffer is full and a packet is sent (probability πmmax(0)(0) ·psend(0)).

Then, new packets enter the network with probability q(0, t), which is identical
to the offered load load:

Si =
(
(1 − πmmax(0)(0)) + πmmax(0)(0) · psend(0)

)
· q(0, t). (6.140)

The normalized throughput at the network output is equal to the probability
that a packet can be sent to the network output because the outputs are
always available (packets are immediately removed from the outputs):

So = q(n). (6.141)

The mean delay time at a stage is the average time a packet stays at this
stage and is normalized to the network clock cycle. The delay time d(k) at
each stage k can be calculated using Little’s Law. The number of packets in
the buffer at stage k that will pass an SE output results from

• the number in the first buffer position and
• the number in the remaining buffer positions.

A packet that is directed to mult outputs generates mult copies that will
pass an output. Therefore, the mean number in the first buffer position is
πmult,block(k) ·mult, considering all states. Additionally, the mean number in
the remaining buffer positions results from the probability that there are m
packets in the buffer (2 ≤ m ≤ mmax(k)) multiplied by m (but the packet
in the first buffer position has already been considered). With probability
ωoutp(k), these packets are multicast to outp outputs, and therefore generate
outp copies that will pass an output:

6.4 Mathematical Model: Automatic Model Generation 209

d(k) =
1

qI(k + 1)
·
(∑

∀ mult,block

πmult,block(k, t) · mult

+

mmax(k)∑
m=2

(
(m − 1) · πm(k) ·

c∑
outp=1

ωoutp(k) · outp
))

. (6.142)

The mean delay time dtot in the network is the sum of all stage delay times:

dtot =
n−1∑
k=0

d(k). (6.143)

The mean buffer queue length at a stage is the average number of packets
in the buffer at this stage. The mean queue length of the buffers m̄(k) at
each stage k is given by the probability that there are m packets in the buffer
multiplied by m, for each possible queue length:

m̄(k) =

mmax(k)∑
m=1

(m · πm(k)). (6.144)

6.4.2 Generating and Solving the Equations

The rules above can be used to generate the system of equations to model
multistage interconnection networks. To generate the equations and to achieve
the results of Sect. 6.5.1, the rules were implemented in C++. The detailed
program code is omitted here.

To include the model parameters in the rules, all three different schemes
of Sect. 4.3.2 are applied. For instance, the switching technique (store-and-
forward) is represented as a hard-coded rule. A model dealing with cut-
through switching mainly differs in some additional rules for the sending prob-
abilities and the state probabilities of buffer queue length (see Sect. 6.4.3).

The SE size of the MIN is given as an input parameter during the gener-
ation of the equations. The equations are valid only for this SE size.

Network size, network traffic, and buffer size are parameters that are
passed during the solution of the equations. The solution can be obtained
several times in sequence with changed parameters.

The example presented generates the system of equations as lines of an
ordinary programming language, in particular C++. The lines are included in
a fixed point iteration algorithm during its compilation. The algorithm works
as in Sect. 6.3. Only slight changes in variable names occur. The iteration is
initialized with the unloaded network:

π0(k, 0) = π0,0(k, 0) = 1, (6.145)

πm(k, 0) = 0 for 1 ≤ m ≤ mmax(k), (6.146)

πmult,block(k, 0) = 0 for mult, block
= 0, 0, and (6.147)

α(k, 0) = β(k, 0) = 1. (6.148)

210 6 Application: Multistage Interconnection Network

First, the network parameters, such as network size, buffer sizes, offered load,
and traffic pattern, are specified. Then, within the iterative loop, all proba-
bilities r(k, t), α(k, t), and β(k, t) (starting with the last network stage) are
determined, then all qI(k, t) and q(k, t), then all πm(k, t), and finally, the states
of the first buffer position πmult,block(k, t). The algorithm is given below:

get network size (number of stages n), buffer sizes mmax(k),
offered load load, and traffic pattern a;

for k = 0 to n − 1 do
calculate all ωoutp(k);

end do;
for k = 0 to n − 1 do

initialize all πmult,block(k, 0);
for m = 1 to mmax(k) do

initialize πm(k, 0);
end do;
initialize α(k, 0) and β(k, 0);

end do;
repeat

for k = n − 1 to 0 step −1 do
calculate all r(k, t);
calculate β(k, t) and α(k, t);

end do;
for k = 1 to n do

calculate qI(k, t) and q(k, t);
end do;
for k = 0 to n − 1 do

for m = 0 to mmax(k) do
calculate πm(k, t);

end do;
end do;
for k = 0 to n − 1 do

calculate all πmult,block(k, t);
end do;

until steady state has been reached;
calculate the measures;
print the measures;

6.4.3 Changing the Model

The previous example showed how rules are established and the system of
equations is automatically generated. As mentioned in Sect. 4.3, another ad-
vantage of establishing equations by rules becomes apparent if the model must
be changed. Then, slight changes in the rules for equation generation are usu-
ally sufficient to model changes in the system in question.

6.4 Mathematical Model: Automatic Model Generation 211

As an example, the switching technique of the modeled system of this
chapter is changed to cut-through switching. Cut-through switching changes
the behavior of the MIN as follows: packets that are received by an empty
buffer at stage k are immediately (at the same clock cycle) sent to stage k +1
if no conflicts with other packets for the related output at stage k occur.
This means that packets may pass several network stages per clock cycle. If a
conflict occurs, it is solved as between “usual” packets in the store-and-forward
switching case.

In the case of store-and-forward switching, packets are always stored in the
buffer at the next stage, provided the buffer is not full. This includes the case
of an empty buffer. As a result, packets are forwarded at most one network
stage per clock cycle.

Rules for Sending Probabilities

First, the rules for the sending probabilities are determined. Equation (6.103)
remains almost unchanged. Only the product term, which is given by∏

∀ (mult,block)′(π(mult,block)′ (k, t))ip(mult,block)′ , has to be adapted. It represents
a particular combination of the states of the SE inputs for which an investi-
gated packet wins a potential conflict and is sent. This term is replaced by a
term referred to as InpCombct in the following.

Besides the combinations of Eq. (6.103), which are still valid if no cut-
through occurs, additional terms must be considered in the case of a cut-
through: an empty buffer may receive a packet that will try to “cut through”
to the succeeding stage and that may give rise to a conflict with the packet
at the investigated input. This is different from store-and-forward switching,
where a conflict with an empty buffer never occurs.

If there are any states (0, 0)′ of the other inputs (i.e., empty buffers; this
means ip(0,0)′ > 0) and cut-through switching is performed, each of the states
may remain in an empty state if no packet is received (probability 1− q(k, t)).

If a packet is received (probability q(k, t)), it is directed to mult outputs
(1 ≤ mult ≤ c) of the SE at stage k with probability ωmult(k). A new packet
directed to mult outputs has behavior similar to state (mult, 0)′ (concerning
caused output conflicts) and can be treated equally. Conversely, it means that
in the case of cut-through switching, each term π(mult,0)′ (k, t) of the previously
mentioned input combinations can be left unchanged to indicate a buffered
packet formerly in state (mult, 0)′, or can be changed to π(0,0)′(k, t) · q(k, t) ·
ωmult(k) to indicate a “cut-through packet” recently received.

Without loss of generality, it is assumed that imult of all ip(mult,0)′ terms
π(mult,0)′(k, t) are changed to π(0,0)′(k, t) · q(k, t) ·ωmult(k), and the remaining
ip(mult,0)′ − imult of these terms remain unchanged (0 ≤ imult ≤ ip(mult,0)′).

Due to the
(ip(mult,0)′

imult

)
different ways of choosing the terms to change,

such a state for the given ip(mult,0)′ SE inputs will occur with probability

(π(mult,0)′ (k, t))ip(mult,0)′−imult ·(π(0,0)′ (k, t) ·q(k, t) ·ωmult(k))imult ·(ip(mult,0)′

imult

)
.

212 6 Application: Multistage Interconnection Network

Because an input combination may consist of several terms π(mult,0)′(k, t)
with different values of mult (1 ≤ mult ≤ c), the change affects all terms
π(mult,0)′(k, t), and their occurrence probabilities have to be multiplied.

Therefore, the probability InpCombct of merged input combinations that
result in a particular output conflict (i.e., a given input combination without
any “cut through,” resulting in that particular output conflict and in the
added corresponding combination with cut-through occurrence) is determined
by

InpCombct({ip(mult,block)′}) =

(∏
∀ (mult,block)′|block>0∨mult=0

(π(mult,block)′ (k, t))ip(mult,block)′

)

·(1 − q(k, t))ip(0,0)′

·
∑

∀ exch

(c∏
mult=1

(
(π(mult,0)′(k, t))ip(mult,0)′−imult

·(π(0,0)′(k, t) · q(k, t) · ωmult(k))imult

·
(

ip(mult,0)′

imult

)))
, (6.149)

where exch denotes all exchange combinations due to imult. This equation
also includes the case where none of the terms π(mult,0)′ (k, t) is replaced: all
imult are set to imult = 0.

For example, let us assume an SE size of 5×5 and the term π(3,0)′(k, t) ·
π(5,0)′(k, t) · π(1,1)′(k, t) · π(0,0)′(k, t) · (1 − q(k, t)) describing the state of the
four other inputs that may be in conflict with the investigated input if no
cut-through occurs. Table 6.3 gives the input buffer state probabilities that
result in equal output conflicts. The index (k, t) is omitted.

Table 6.3. Equal output conflicts

no cut-through π(3,0)′ · π(5,0)′ · π(1,1)′ · π(0,0)′ · (1 − q)

cut-through π(0,0)′ · q · ω3· π(5,0)′ · π(1,1)′ · π(0,0)′ · (1 − q)
π(3,0)′ · π(0,0)′ · q · ω5· π(1,1)′ · π(0,0)′ · (1 − q)
π(3,0)′ · π(5,0)′ · π(1,1)′ · π(0,0)′ · (1 − q)
π(0,0)′ · q · ω3· π(0,0)′ · q · ω5· π(1,1)′ · π(0,0)′ · (1 − q)

Besides the rules on how to establish InpCombct, nothing else is changed,
compared to store-and-forward switching.

6.4 Mathematical Model: Automatic Model Generation 213

Rules for Receiving Probabilities

The rules to establish the receiving probabilities remain unchanged. But an-
other rule must be introduced to deal with an empty buffer at stage k − 1
(probability π0,0(k − 1, t)) that receives a packet (probability q(k − 1, t)) and
immediately forwards it to some available outputs. The newly received packet
at stage k − 1 is destined for mult outputs with probability ωmult(k − 1). Ex-
actly mult − nbl of them are reached with probability rmult,0,nbl,fbl(k − 1, t).

The old rule and the new one lead to the new probability of receiving
packets:

qI(k, t) =
∑

∀ mult,block

(
πmult,block(k − 1, t)

·
∑

∀ nbl,fbl

(
rmult,block,nbl,fbl(k − 1, t) · (mult− nbl)

))

+π0,0(k − 1, t) · q(k − 1, t)

·
c∑

mult=1

(
ωmult(k − 1)

·
∑

∀ nbl,fbl

(
rmult,0,nbl,fbl(k − 1, t) · (mult− nbl)

))
. (6.150)

All other rules and constraints related to the receiving probabilities remain
unchanged.

Rules for State Probabilities of Buffer Queue Lengths

In the case of cut-through switching, the rules for πm−
(k, t) only change for

m = 1: if the buffer was empty during the last cycle (m−1 = 0), m = 1 packets
are buffered if the newly received packet, which is directed to mult outputs
with probability ωmult(k), is not completely “cutting through” (probability
1 − rmult,0,0,0(k, t − 1)):

πm−
(k, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

πm−1(k, t − 1) · (1 − psend(k, t − 1)) · q(k, t − 1)
if mmax(k) > 1 ∧ 2 ≤ m ≤ mmax(k) − 1

πm−1(k, t − 1) · q(k, t − 1)
·∑c

mult=1(ωmult(k) · (1 − rmult,0,0,0(k, t − 1)))
if mmax(k) ≥ 1 ∧ m = 1

0 if mmax(k) ≥ 1 ∧ m = 0.
(6.151)

In the same way, πm00(k, t) changes if m = 0: if the buffer was empty during
the last cycle (m = 0), it remains empty if the newly received packet is
completely “cutting through”:

214 6 Application: Multistage Interconnection Network

πm00(k, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

πm(k, t − 1) · psend(k, t − 1) · q(k, t − 1)
if mmax(k) ≥ 1 ∧ 1 ≤ m ≤ mmax(k)

πm(k, t − 1) · q(k, t − 1)
·∑c

mult=1(ωmult(k) · rmult,0,0,0(k, t − 1))
if mmax(k) ≥ 1 ∧ m = 0.

(6.152)
The rules for generating πm0(k, t) and for generating πm+(k, t) remain un-
changed.

Rules for State Probabilities of the First Buffer Position

The rules to establish the state probabilities of the first buffer position remain
unchanged except for the term π0(k, t − 1) · q(k, t − 1). This term must be
removed from πII

mult,block(k, t). This case of a newly received packet entering
the first buffer position because the buffer was empty must be adapted to cut-
through switching: if the packet is directed to multrcvd outputs (probability
ωmultrcvd

(k)), the buffer state will migrate to this state at the next clock
cycle if no cut-through occurs. But a cut-through may occur to the newly
received packet, or to some copies of it. Then, rmultrcvd ,0,mult,block(k, t − 1)
gives the probability that mult copies remain in the buffer and block of them
are blocked because of occupied destination buffers. A third term to be added
to Eq. (6.134) emerges:

πIII
mult,block(k, t) = π0(k, t − 1) · q(k, t − 1)

·
c∑

multrcvd=1

(ωmultrcvd
(k) · rmultrcvd,0,mult,block(k, t − 1)).

(6.153)

All other rules remain unchanged.

Rules for Buffer Behavior and Measures

All rules for buffer behavior and measures remain unchanged. But a new
measure Pcut(k, t) can be introduced. It denotes the probability that a newly
received packet is completely and immediately forwarded at stage k at time
t. Such a cut-through occurs if the buffer at stage k is empty (probability
π0(k, t)) and the newly received packet, which is destined to mult outputs
with probability ωmult(k), is completely sent (probability rmult,0,0,0(k, t)):

Pcut(k, t) = π0(k, t) ·
c∑

mult=1

(ωmult(k) · rmult,0,0,0(k, t)). (6.154)

6.5 Model Engineering and Performance 215

Generating and Solving the Equations

Due to the rule-based modeling and due to the automatically generated equa-
tions, no changes are needed for generating and solving the equations (the
changed rules however, must be entered into the generator).

6.5 Model Engineering and Performance

Previous sections presented four ways to determine the performance of multi-
stage interconnection networks. This section summarizes previous results in a
comparison. Furthermore, it gives some examples of investigations that were
enabled by these models and that lead to interesting results.

6.5.1 Comparison of the Modeling Techniques

As multicasting is considered in the models, many different assumptions about
the shape of the distribution in space of the network traffic pattern are pos-
sible. The simplest is to assume that all possible combinations of destination
addresses are equally distributed for each packet entering the network. This
traffic pattern is applied in the following results. It determines the multi-
cast destination distribution a(i), which leads to the multicast probabilities
ωmult(k) (see Sect. 6.1.3) required for the Petri net model and the mathe-
matical models. Simulation with MINSimulate directly deals with a(i). a(i)
gives the probability that a packet entering the network has i destination ad-
dresses (1 ≤ i ≤ N). The above assumption that all possible combinations of
destination addresses are equally distributed yields

a(i) =

(
N
i

)
∑N

j=1

(
N
j

) . (6.155)

Figures 6.24 and 6.25 compare the results of all modeling techniques presented
in this chapter. They show the normalized throughput of the network outputs
and the normalized delay time. The network size is varied. A buffer size of
1 at each network stage and an offered load of 1 are used. An SE size of
2×2 is chosen. Because of the time-intensive simulation runs, the Petri net
models are only determined up to a size of 64 network inputs. All simulations
(Petri nets and MINSimulate) were stopped when the confidence level reached
95% and the precision reached 2%. The iterative Petri net model starts its
first step with a confidence level of 80% and precision of 10% as termination
criteria (Sect. 6.1.2). After the results of two consecutive iterations differ by
less than 5%, it is moved to the second step with a confidence level of 95%
and a precision of 2%.

As Fig. 6.24 shows, the throughput results demonstrate a good correspon-
dence between the various techniques. Only the iterative Petri net description

216 6 Application: Multistage Interconnection Network

0

0.2

0.4

0.6

0.8

1

2 4 8 16 32 64 128

no
rm

al
iz

ed
 th

ro
ug

hp
ut

 a
t t

he
 o

ut
pu

t

network ports

entire PN
iterative PN

MINSimulate
manual mathe

generated mathe

Fig. 6.24. Result comparison (normalized throughput)

0

20

40

60

80

100

120

2 4 8 16 32 64 128

no
rm

al
iz

ed
 d

el
ay

network ports

entire PN
iterative PN

MINSimulate
manual mathe

generated mathe

Fig. 6.25. Result comparison (normalized delay)

noticeably differs from the other methods. It is caused by the sum up of the
inaccuracies of each simulation in the iteration.

The mathematical model that was manually set up (Sect. 6.3) and the
automatically generated mathematical model (Sect. 6.4) differ slightly. The
models are not completely identical. One of the two main differences is the ne-
glect of some states resulting from conflicts between two broadcast packets in
the first buffer positions. These states are called fb and nbfb in the manually
set up model. The automatically generated model generally neglects conflict-
less states resulting from earlier conflicts of multicast packets. Taking such
conflicts into account would significantly increase the state space in the case

6.5 Model Engineering and Performance 217

of c×c switching elements. Many different combinations of output overlapping
between all multicast packets in the inputs are feasible. Of course, this state
reduction decreases the accuracy of the model. But experiments show that the
larger the SE size becomes, the less the state reduction influences accuracy.

The second main difference between the models increases accuracy, be-
cause new states have been defined that increase the state space, but only
linearly with the SE size, in contrast to approximately exponential growth
in the case of conflictless states. The newly introduced states describe how
many of the copies of a multicast packet were previously blocked by occupied
destinations and how many by lost conflicts. The model that was manually
set up only distinguishes between multicast packets blocked by at least one
copy directed to an occupied destination and multicast packets not blocked
at all by occupied destinations.

Removing the conflictless states decreases accuracy somewhat more than
the introduction of new states describing the multicast destination behavior
can increase accuracy. There is quite no difference with respect to delay times
(Fig. 6.25) between the two models.

Table 6.4 outlines the quality of the results. They are compared to MIN-

Simulate as a reference that models the network closest to reality. The quality
is determined by the maximum difference between the throughput of the re-
lated model and MINSimulate.

Table 6.4 also shows the model development times, the computation times
(for a 64×64 MIN), and the required memory. The estimated model develop-

Table 6.4. Comparison of the modeling methods

Technique Development time Computation time Quality Required mem.

entire Petri net 100 person hours > 2 weeks 0.2% 8.6 MByte

iterative Petri net 200 person hours 20 hours 4.5% 5.5 MByte

MINSimulate 400 person hours 4 hours — 7.1 MByte

manual mathe 1,500 person hours < 1 second 0.2% 0.9 MByte

generated mathe 400 person hours < 1 second 1.3% 0.9 MByte

ment times include the time for validation and error detection. There are large
differences in the development times. Fast development and model validation
characterizes the Petri net descriptions. The main reason for this is the graphi-
cal model interface. It allows a proper model survey. The token game supports
easy model validation. Because of the decomposition approach, the iterative
Petri net description suffers from higher development time. The detection of
near-independent subnets to decompose the network is time intensive and
requires the intuition of the model designer.

The time spent for the MINSimulate program development is higher than
that for Petri nets because model validation is more complicated. The valida-
tion requires a step-by-step simulation. The given value only represents the

218 6 Application: Multistage Interconnection Network

time required to establish the basic simulation model that is able to handle the
same kinds of MINs as the Petri net models or the mathematical models. Of
course, all additional features of MINSimulate need additional development
time.

The development time of the mathematical model that was manually set
up is much higher than in all other methods. The reason is the low-level
development based on Markov chains. The state transition probabilities result
in complex equations. Development and validation is very time consuming.
Automatic model generation significantly reduces the development time.

The computation times (run times) of the methods are as different as
the development times, but in reverse order. The mathematical models are
the fastest techniques in result achievement. All other models use simulation,
which increases the computation time. The MINSimulate computation time
is lower than the two Petri net computation times because it profits from the
program particularly adapted to model multistage interconnection networks.
The lower computation time of the iterative Petri net description, compared
to the entire Petri net description, results from the smaller model because only
one row of the network has to be modeled. Table 6.4 shows the computation
times on a 1,200 MHz processor.

6.5.2 Model Capabilities

This section briefly presents the capabilities of the models. For detailed stud-
ies, it is referred to the related publications.

The models of multistage interconnection networks are developed to inves-
tigate various architecture issues and traffic features. For instance, buffer sizes
and their influence on network performance are examined in [213, 216, 206];
simulation and mathematical models are used. Different buffer architectures
are compared by simulation in [210]. [207, 208, 216, 217] deal with the switch-
ing element size and propose a size for optimal performance using mathemat-
ical modeling and simulation. Time-dependent traffic is applied to MINs in
[204, 205, 215], while [202, 201, 211, 212] show the traffic distribution in space;
again both, simulation and mathematical methods are used. In [209], various
switching techniques are compared to evaluate their power. The features of
MIN architectures with no banyan property are presented in [214, 218, 219]
using simulation.

7

Concluding Remarks

In recent years, many parallel and distributed systems have been established.
There are several reasons for this development. For instance, decreasing com-
munication costs allow intense use of communication networks. Furthermore,
communication bandwidth has been increasing. Thus, large amounts of data
can be transferred between the nodes of parallel and distributed systems in
reasonable time. Applications are no longer limited to centralized systems.

Powerful management software supports parallel and distributed comput-
ing in homogenous systems as well as in highly heterogeneous ones. Par-
ticularly, the efforts in ubiquitous computing result in heterogeneous and
asymmetric distributed systems. These include wireless networks. Thus, a
distributed system may consist of fixed nodes as well of mobile nodes.

This book has dealt with the engineering of network architectures for par-
allel and distributed systems. The engineering part has been realized by mod-
eling the system under consideration. A performance evaluation of different
model parameter sets allows for comprehensive comparison of various archi-
tectures in order to find the optimal one concerning the design goal.

A characterization of network architectures for parallel and distributed
systems explains features that influence the system behavior, and, therefore,
its performance. The network represents one of the most important compo-
nents. For instance, different switching techniques result in different blocking
behaviors, and delay times, particularly, vary. Depending on the applications
that run on the system, the network has to deal with various traffic patterns.
Traffic patterns are distributed in space and in time. For instance, multicasting
shows a distribution in space and has been considered in the examples.

Different kinds of network architecture have also been discussed. Due to
their advantages and drawbacks, network performance changes with archi-
tecture. Wired and wireless architectures have been distinguished. A separate
section has dealt with network-on-chip (NoC) architectures. In wired architec-
tures, multistage interconnection networks are the focus because they reach
high performance with low hardware complexity. Investigating multicast traf-
fic has led to a new architecture to support this kind of traffic in an optimal

220 7 Concluding Remarks

way. The newly described architecture is called multilayer multistage inter-
connection network. It significantly improves network performance in the case
of multicast traffic while only slightly increasing hardware costs.

NoCs, as a special kind of wired architecture, have been characterized by
their particular features due to their single chip realization.

To evaluate the performance of parallel and distributed systems, many
methods can be applied. This book has concentrated on simulation and math-
ematical methods. Simulation provides a powerful modeling method with the
capability to describe all kinds of systems. But it often suffers from very
time-consuming computation times. On the other hand, mathematical meth-
ods like Markov chains and Petri nets profit from their short computation
time but come with the drawback of limited system description capabilities.
Furthermore, model development often becomes a complex task.

Thus, this book has tried to help with model engineering. A guideline
on how to choose the right modeling method has been presented. Depending
on the modeling method, help with model development has been provided.
Model complexity reduction proves to be one of the most important tasks in
modeling. A less complex model usually results in shorter computation time,
or allows computation for the first time.

Finally, a new concept for automatic model generation significantly accel-
erates model development. The given strategy derives an automatic generator
by considering previously elaborated rules describing system behavior.

Two examples have shown how to apply the above mentioned concepts. A
smaller example has dealt with a wireless cellular network. It has examined
the handoff procedure of mobile nodes carrying real-time traffic. Due to the
moderate model size, a Petri net description sufficiently handles the system
in question.

Unfortunately, the second example is more complex. Multistage intercon-
nection networks (MINs) were modeled to optimize their architecture. MINs
are of interest due to their use in parallel computers and in switches connecting
distributed systems.

It turns out that a MIN is too complex to be simply modeled by Petri
nets. The Petri net model is to large to be handled by a computer. Other
techniques like simulation and Markov chains have also been applied and
compared. The automatic model generation is particularly impressive with its
powerful features. For instance, it heavily accelerated model development and
system changes could easily be handled.

The automatic model generation will be used in future to develop and
investigate reconfigurable parallel and distributed system architectures. Cur-
rent research examines how reconfigurable networks can optimize network
performance.

Bidirectional multistage interconnection networks are of particular interest
for reconfigurable parallel systems. They show some locality in communication
delay times. Nodes that are located close together (concerning the network
inputs) can exchange messages by passing only few stages. In the borderline

7 Concluding Remarks 221

case, only the first stage is used. But nodes that are connected to network
inputs far away from each other must communicate by exchanging messages
that pass almost all stages of the MIN.

Reconfiguration raises a couple of questions. For instance, how do we deter-
mine the optimal new architecture of the network? Another question concerns
dynamic reconfiguration: how do we deal with messages that have not yet fin-
ished their path to the destination node at the instant of reconfiguration? This
question mainly targets appropriate (e.g., adapting) routing methods. Simple
routing algorithms as used in the examples of this book will fail.

Another question asks for the optimal point in time for reconfiguration.
Network traffic prediction would be helpful. And because network traffic is
strongly related to the applications running on the system, a kind of applica-
tion prediction must be established.

Important future work will be to include all the issues above into a model
of the network to investigate reconfiguration. In contrast to previous mod-
els, the network behavior in time becomes very important. Either transient
solution techniques of mathematical models or terminating simulations must
be applied. Models will no longer refer to a static network structure; dy-
namic change of the structure must somehow be incorporated into the model
description. Adaptive routing techniques and traffic prediction must also be
modeled.

At TU Berlin, a new simulator is currently under development to sup-
port previous constraints. This simulator is called CINSim (component-based
interconnection network simulator) [221, 222]. In addition to reconfigurable
systems, it also focuses on modeling heterogeneous and asymmetric systems.
These kinds of systems cannot be described by MINSimulate.

Asymmetric systems require additional effort in routing. Global routing
quickly becomes a bottleneck for a large parallel or distributed system. Local
routing avoids this, but its modeling raises many more problems than in the
case of symmetric systems. The reason is the usually sequential execution
of the simulator. This possibly means that events occurring in parallel in a
system must somehow be sequentialized. For instance, events interacting and
occurring in the stages of a symmetric MIN in parallel can be sequentialized
by starting with the switching elements at the last stage and dealing step-
by-step with each stage until the first stage with the largest distance to the
network outputs is reached. In an asymmetric MIN, a switching element may
have different distances to the different network outputs. Therefore, no simple
sequentializing method can be applied. If the system in question is additionally
heterogeneous, the problem may become even more complex if, for instance,
switching elements or routers are clocked with different frequencies due to
different hardware constraints.

As previously pointed out, many unsolved problems exist in modeling and
evaluating network architectures for parallel and distributed systems. The
more complex the architectures of systems become, the more difficult modeling
becomes.

References

1. Abandah, G. A. and Davidson, E. S., Modeling the communication perfor-
mance of the IBM SP2. In: Proceedings of the 10th International Parallel Pro-
cessing Symposium (IPPS’96); Hawaii. IEEE Computer Society Press, 1996.

2. Abandah, G. A. and Davidson, E. S., Characterizing distributed shared mem-
ory performance: A case study of the Convex SPP1000. IEEE Transactions on
Parallel and Distributed Systems, 9(2):206–216, February 1998.

3. Alderighi, M., Casini, F., D’Angelo, S., Salvi, D., and Sechi, G. R., A fault-
tolerant FPGA-based multi-stage interconnection network for space applica-
tions. In: Proceedings of the First IEEE International Workshop on Electronic
Design, Test and Applications (DELTA’02), pp. 302–306, 2002.

4. Allen, D., Probability, Statistics and Queueing Theory with Computer Science
Applications. Academic Press, New York, 2nd ed., 1990.

5. Atiquzzaman, M. and Akhtar, M. S., Performance of buffered multistage inter-
connection networks in a nonuniform traffic environment. Journal of Parallel
and Distributed Computing, 30(1):52–63, October 1995.

6. Awdeh, R. Y. and Mouftah, H. T., Survey of ATM switch architectures.
Computer Networks and ISDN Systems, 27:1567–1613, 1995.

7. Awdeh, R. Y. and Mouftah, H. T., The expanded delta fast packet switch. In:
Proceedings IEEE SUPERCOMM/ICC’94; New Orleans, pp. 397–401. IEEE
Computer Society, IEEE Computer Society Press, May 1994.

8. Balbo, G., Chiola, G., Franceschinis, G., and Molinar Roet, G., On the efficient
construction of the tangible reachability graph of generalized stochastic Petri
net models. In: Proceedings of the 2nd International Workshop on Petri Nets
and Performance Models; Madison, pp. 136–145, 1987.

9. Banks, J., Carson, J. S., Nelson, B. L., and Nicol, D. M., Discrete-Event System
Simulation. Prentice Hall, 3rd ed., 2000.

10. Bansal, N., Gupta, S., Dutt, N., Nicolau, A., and Gupta, R., Network topol-
ogy exploration of mesh-based coarse-grain reconfigurable architectures. In:
Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition (DATE’04), pp. 474–479. IEEE, 2004.

11. Becker, J., Dynamically and partially reconfigurable architectures. it – Infor-
mation Technology, 46(4):218–225, 2004.

224 References

12. Begain, K., Herold, H., and Bolch, G., Analytical model of cellular mobile
networks with adaptive data connections. In: Proceedings of the European
Simulation Symposium 1998 (ESM’98); Manchester, pp. 787–793. SCS, SCS
International, 1998.

13. Beneš, V. E., Optimal rearrangeable multistage connecting networks. Bell
System Technology Journal, 43:1641–1656, March 1964.

14. Beneš, V. E., Mathematical Theory of Connecting Networks and Telephone
Traffic, volume 17 of Mathematics in Science and Engineering. Academic Press,
New York, 1965.

15. Benini, L. and De Micheli, G., Networks on chips: A new SoC paradigm. IEEE
Computer, 35(1):70–80, 2002.

16. Bertozzi, D. and Benini, L., Xpipes: A network-on-chip architecture for gigas-
cale system-on-chip. IEEE Circuits and Systems Magazine, 4(2):18–31, 2004.

17. Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R., Stergiou, S., Benini, L.,
and De Micheli, G., NoC synthesis flow for customized domain specific mul-
tiprocessor systems-on-chip. IEEE Transactions on Parallel and Distributed
Systems, 16(2):113–129, February 2005.

18. Bhattacharya, S., Elsesser, G., Tsai, W.-T., and Du, D.-Z., Multicasting in
generalized multistage interconnection networks. Journal of Parallel and Dis-
tributed Computing, 22(7):80–95, July 1994.

19. Bolch, G., Greiner, S., de Meer, H., and Trivedi, K. S., Queueing Networks
and Markov Chains – Modeling and Performance Evaluation with Computer
Science Applications. John Wiley & Sons, New York, 1998.

20. Bolotin, E., Cidon, I., Ginosar, R., and Kolodny, A., Cost considerations in
network on chip. Integration, the VLSI Journal, 38:19–42, 2004.

21. Boura, Y. M. and Das, C. R., Performance analysis of buffering schemes
in wormhole routers. IEEE Transactions on Computers, 46(6):687–694, June
1997.

22. Braden et al., Resource reservation protocol - version 1 functional specification.
RFC 2205, IETF, 1997.

23. Bratley, P., Fox, B.L., and Schrage, L.E., A Guide to Simulation. Springer
Verlag, 2nd ed., 1987.

24. Brenner, M., Tutsch, D., and Hommel, G., Measuring transient performance of
a multistage interconnection network using Ethernet networking equipment. In:
Proceedings of the International Conference on Communications in Computing
2002 (CIC’02); Las Vegas, pp. 211–216. CSREA Press, 2002.

25. Breuer, L., From Markov Jump Processes to Spatial Queues. Kluwer Academic
Publishers, 2003.

26. Burk, W.H., Limitations to parallel processing. In: Proceedings of the 9th
International Phoenix Conference on Computers and Communications, pp. 86–
93. IEEE Press, 1990.

27. Cali, F., Conti, M., and Gregori, E., IEEE 802.11 wireless LAN: Capacity
analysis and protocol enhancement. In: Proceedings of INFOCOM’98; San
Francisco, 1998.

28. Carlsson, P. and Fiedler, M., Multifractal products of stochastic processes. In:
Proceedings of the 15th Nordic Teletraffic Seminar (NTS-15), 1999.

29. Castelluccia, C., Extending Mobile IP with adaptive individual paging: A per-
formance analysis. Mobile Computing and Communications Review, 5(2):14–
26, 2001.

References 225

30. Chan, K.-S., Yeung, K. L., and Chan, S., A refined model for performance anal-
ysis of buffered banyan networks with and without priority control. In: Pro-
ceedings IEEE Global Telecommunications Conference 97 (GLOBECOM’97);
Phoenix, pp. 1745–1750. IEEE Computer Society, IEEE Computer Society
Press, 1997.

31. Chaya, H.S., and Gupta, S., Performance modeling of the asynchronous data
transfer methods of IEEE 802.11 MAC protocol. Wireless Networks, 3:217–234,
1997.

32. Cheemalavagu, S. and Malek, M., Analysis and simulation of banyan intercon-
nection networks with 2×2, 4×4 and 8×8 switching elements. In: Proceedings
Real-Time Systems Symposium; Los Angeles, pp. 83–89. IEEE Computer So-
ciety, IEEE Computer Society Press, December 1982.

33. Chen, C.-K., and Atiquzzaman, M., An improved model for the performance
analysis of multistage switches. In: D. Dowd and E. Gelenbe, editors, Pro-
ceedings of the Third International Workshop on Modeling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems; Durham, pp. 105–109.
IEEE Computer Society, IEEE Computer Society Press, January 1995.

34. Cheng, R.C.H., Variance reduction methods. In: Proceedings of the 1986 Win-
ter Simulation Conference, pp. 60–68. SCS, 1986.

35. Ching, D., Schaumont, P., and Verbauwhede, I., Integrated modeling and
generation of a reconfigurable network-on-chip. In: Proceedings of the 18th
International Parallel and Distributed Processing Symposium (IPDPS 2004),
pp. 139–145, 2004.

36. Ciardo, G., Blakemore, A., Chimento, P. F., Muppala, J. K., and Trivedi, K. S.,
Automated generation and analysis of Markov reward models using stochastic
reward nets. In: C. Meyer and R. J. Plemmons, editors, Linear Algebra, Markov
Chains, and Queueing Models, volume 48 of IMA Volumes in Mathematics and
its Applications, pp. 145–191. Springer Verlag, Berlin, 1993.

37. Clos, C., A study of nonblocking switching network. Bell System Technology
Journal, 32:406–424, March 1953.

38. Compton, K. and Hauck, S., Configurable computing: A survey of systems and
software. ACM Computing Surveys, 34(2):177–210, 2002.

39. Corson, S. and Macker, J., Mobil ad-hoc networking (MANET): Routing pro-
tocol performance issues and evaluation considerations. RFC 2501, IETF,
1999.

40. Coulouris, G., Dollimore, J., and Kindberg, T., Distributed Systems: Concepts
and Design. Addison Wesley, 3rd ed., 2001.

41. Courtois, P., Decomposability, instabilities, and saturation in multiprogram-
ming systems. Communications of the ACM, 18(7):371–377, July 1975.

42. Courtois, P., Decomposability: Queueing and Computer System Applications.
Academic Press, New York, 1977.

43. Courtois, P. and Semal, P., Bounds for positive eigenvectors of non-negative
matrices and their approximations by decomposition. Journal of the ACM,
31(4):804–825, 1984.

44. Cox, D.R. and Miller, H.D., The Theory of Stochastic Processes. Chapman &
Hall, London, 1968.

45. Culler, D.E., Singh, J.P., and Gupta, A., Parallel Computer Architecture: A
Hardware Software Approach. Morgan Kaufmann Publishers, 1999.

226 References

46. Dally, W. J., and Lacy, S., VLSI architecture: Past, present, and future. In: Pro-
ceedings of the 20th Anniversary Conference on Advanced Research in VLSI,
pp. 232–241, 1999.

47. Dally, W. J. and Towles, B., Route packets, not wires: On-chip interconnection
networks. In: Proceedings of Design Automation Conference (DAC 2001), pp.
684–689, 2001.

48. de Rose, C.A.F. and Heiß, H.-U., Dynamic processor allocation in large mesh-
connected multicomputers. In: Proceedings of the EURO-PAR 2001; Manch-
ester; Lecture Notes in Computer Science (LNCS 2150). Springer Verlag, 2001.

49. Dias, D. M. and Jump, J. R., Analysis and simulation of buffered delta net-
works. IEEE Transactions on Computers, C–30(4):273–282, April 1981.

50. Ding, J. and Bhuyan, L. N., Finite buffer analysis of multistage interconnection
networks. IEEE Transactions on Computers, 43(2):243–247, February 1994.

51. Duato, J., Yalamanchili, S., and Ni, L., Interconnection Networks – An Engi-
neering Approach. Morgan Kaufmann Publishers, 2003.

52. Tran-Gia et al. Impacts of new services on the architecture and performance of
broadband networks. Final Report COST-257, European Union, Universität
Würzburg, 2000.

53. Feller, W., An Introduction to Probability Theory and its Applications, vol-
ume 1. John Wiley & Sons, New York, 3rd ed., 1968.

54. Feller, W., An Introduction to Probability Theory and its Applications, vol-
ume 2. John Wiley & Sons, New York, 2nd ed., 1971.

55. Feng, T. Y., A survey of interconnection networks. Computer, pp. 12–27,
December 1981.

56. Fishman, G., Problems in the statistical analysis of simulation experiments:
The comparison of means and the length of sample records. Communications
of the ACM, 10(2):94–99, 1967.

57. Fishman, G. S., Discrete-Event Simulation. Springer Verlag, 2001.
58. Fong, S. and Singh, S., Queuing analysis of shared-buffer switches with control

scheme under bursty traffic. Computer Communications, 21:1681–1692, 1998.
59. Fujii, H., Yasuda, Y., Akashi, H., Inagami, Y., Koga, M., Ishihara, O.,

Kashiyama, M., Wada, H., and Sumimoto, T., Architecture and performance
of the Hitachi SR2201 massively parallel processor system. In: Proceedings
of the 11th International Parallel Processing Symposium (IPPS’97); Genf, pp.
233–241. IEEE Computer Society Press, April 1997.

60. Fujimoto, R., Parallel discrete event simulation. Communications of the ACM,
33:30–60, 1990.

61. Gelenbe, E. and Pujolle, G., Introduction to Queueing Networks. John Wiley
& Sons, 2nd ed., 1998.

62. German, R., Analysis of Stochastic Petri Nets with Non-Exponentially Dis-
tributed Firing Times. PhD thesis, Technische Univeristät Berlin, 1994.

63. German, R., Performance Analysis of Communication Systems. John Wiley
& Sons, 2000.

64. German, R. and Heindl, A., Performance evaluation of IEEE 802.11 wireless
LANs with stochastic Petri nets. In: Proceedings of the 8th Int. Workshop on
Petri Nets and Performance Models, pp. 44–53. IEEE, IEEE Computer Society
Press, 1999.

65. German, R., Kelling, C., Zimmermann, A., and Hommel, G., TimeNET —
a toolkit for evaluating non–Markovian stochastic Petri nets. Performance
Evaluation, 24:69–87, 1995.

References 227

66. Gharsalli, F., Baghdadi, A., Bonaciu, M., Majauskas, G., Cesario, W., and
Jerraya, A. A., An efficient architecture for the implementation of message
passing programming model on massive multiprocessor. In: Proceedings of the
15th IEEE International Workshop on Rapid System Prototyping (RSP’04),
pp. 80–87. IEEE Press, 2004.

67. Giacomazzi, P., and Trecordi, V., A study of non blocking multicast switch-
ing networks. IEEE Transactions on Communications, 43(2/3/4):1163–1168,
February/March/April 1995.

68. Glesner, M., Hollstein, T., Indrusiak, L. S., Zipf, P., Pionteck, T., Petrov,
M., Zimmer, H., and Murgan, T., Reconfigurable platforms for ubiquitous
computing. In: International Proceedings of the ACM Computing Frontiers
Conference 2004; Ischia, 2004.

69. Glynn, P. W. and Iglehart, D. L., Importance sampling for stochastic simula-
tions. Management Science, 35:1367–1392, 1989.

70. Glynn, P. W. and Heidelberger, P., Analysis of parallel replicated simula-
tions under a completion time constraint. ACM Transactions on Modeling and
Computer Simulation, 1:3–23, 1991.

71. Goke, L.R. and Lipovski, G.J., Banyan networks for partitioning multipro-
cessor systems. ACM SIGARCH Computer Architecture News, 2(4):21–28,
December 1973.

72. Gross, D. and Harris, C. M., Fundamentals of Queueing Theory. Wiley Inter-
science, 3rd ed., 1998.

73. Guerrier, P. and Grenier, A., A generic architecture for on-chip packet-switched
interconnections. In: Proceedings of IEEE Design Automation and Test in
Europe (DATE 2000), pp. 250–256. IEEE Press, 2000.

74. Guo, M.-H. and Chang, R.-S., Multicast ATM switches: Survey and per-
formance evaluation. ACM Sigcomm: Computer Communication Review,
28(2):98–131, April 1998.

75. Haas, P. J., Stochastic Petri Nets. Springer Verlag, 2002.
76. Halsall, F., Data Communications, Computer Networks and Open Systems.

Addison Wesley Longman, London, 1996.
77. Händel, R., Huber, M. N., and Schröder, S., ATM Networks. Addison-Wesley,

2nd ed., 1995.
78. Hartenstein, R. W., Kress, R., and Reinig, H., A new FPGA architecture for

word-oriented datapaths. In: Proceedings of 4th International Workshop on
Field-Programmable Logic and Applications (FPL ’94), pp. 144–155, 1994.

79. Haverkort, B. R. and Trivedi, K.S., Specification and generation of Markov
reward models. Discrete-Event Dynamic Systems: Theory and Applications,
3:219–247, 1993.

80. Heidelberger, P. and Lewis, P.A.W., Quantile estimation in dependent se-
quences. Operations Research, 32(1):185–209, 1984.

81. Heidelberger, P. and Welch, P.D., A spectral method for confidence interval
generation and run length control in simulations. Communications of the ACM,
24(4):233–245, 1981.

82. Hellekalek, P., Good random number generators are (not so) easy to find.
Mathematics and Computers in Simulation, pp. 485–505, 1998.

83. Hennessy, J. and Patterson, D. A., Computer Architecture : A Quantitative
Approach. Morgan Kaufmann Publishers, San Mateo, 2nd ed., 2002.

84. Huang, T.-Y. and Wu, J.-L. C., Alternate resolution strategy in multistage
interconnection networks. Parallel Computing, 20:887–896, 1994.

228 References

85. Jenq, Y.-C., Performance analysis of a packet switch based on single–buffered
banyan network. IEEE Journal on Selected Areas in Communications, SAC–
1(6):1014–1021, December 1983.

86. Jensen, K., Coloured Petri Nets. Springer Verlag, 2nd ed., 1996.
87. Jurczyk, M., Performance comparison of wormhole-routing priority switch

architectures. In: Proceedings International Conference on Parallel and Dis-
tributed Processing Techniques and Applications 2001 (PDPTA’01); Las Vegas,
pp. 1834–1840, 2001.

88. Kelling, C., Simulationsverfahren für zeiterweiterte Petri-Netze. SCS, 1995.
89. Kemeny, J. G. and Snell, J. L., Finite Markov Chains. The University Series

in Undergraduate Mathematics. D. van Nostrand Company, Inc., Princeton,
New Jersey, 1960.

90. Kendall, D.G., Some problems in the theory of queues. Journal of the Royal
Statistical Society, Series B, 13:151–185, 1951.

91. Kermani, P. and Kleinrock, L., Virtual cut-through: A new computer commu-
nication switching technique. Computer Neworks, 3:267–286, 1979.

92. King, J., Computer and Communication Systems Performance Modeling.
Prentice-Hall, Englewood Cliffs, N.J., 1990.

93. Kirschbaum, A. and Glesner, M., Rapid prototyping of communication archi-
tectures. In: Proceedings of the 8th IEEE International Workshop on Rapid
System Prototyping (IWRSP 1997), pp. 136–141. IEEE, 1997.

94. Kleinrock, L., Nomadicity: Anytime, anywhere in a disconnected world. Mobile
Networks and Applications, 1(4):351–357, 1997.

95. Kleinrock, L., Queueing Systems, Volume 1: Theory. Wiley Interscience, New
York, 1975.

96. Kleinrock, L., Queueing Systems, Volume 2: Computer Applications. Wiley
Interscience, New York, 1976.

97. Knuth, D. E., Art of Programming, Volume 2: Seminumerical Algorithms.
Addison-Wesley, 3rd ed., 1997.

98. Köhler, R.-D. and Kemmler, W., Gigabit-Ethernet – 3COM – Die Komponen-
ten der Zukunft. Fossil-Verlag, 1999.

99. Koike, N., NEC Cenju-3: A microprocessor-based parallel computer. In: Pro-
ceedings of the 8th International Symposium Parallel Processing, pp. 396–401,
April 1994.

100. Koppelman, D. M., Congested banyan network analysis using congested–queue
states and neighboring–queue effects. IEEE/ACM Transactions on Network-
ing, 4(1):106–111, February 1996.

101. Kouvatsos, D., Awan, I., and Al-Begain, K., Performance modelling of a wire-
less cell with multiple class services. IEE Proceedings on Computers & Digital
Technology, 150(2):75–86, 2003.

102. Kruskal, C. P. and Snir, M., The performance of multistage interconnec-
tion networks for multiprocessors. IEEE Transactions on Computers, C–
32(12):1091–1098, 1983.

103. Kruskal, C. P. and Snir, M., A unified theory of interconnection network
structure. Theoretical Computer Science, 48(1):75–94, 1986.

104. Kruskal, C. P. and Snir, M., Optimal interconnection networks for parallel pro-
cessors: The importance of being square. In: Yechiam Yemini, editor, Current
Advances in Distributed Computing and Communications, pp. 91–113. Com-
puter Science Press, Rockville, 1987.

References 229

105. Kumar, S., Jantsch, A., Soininen, J.-P., Forsell, M., Millberg, M., Öberg, J.,
Tiensyrjä, K., and Hemani, A., A network on chip architecture and design
methodology. In: Proceedings of the IEEE Computer Society Annual Sympo-
sium on VLSI (ISVLSI’02), pp. 105–112, 2002.

106. Lahiri, K., Dey, S., and Raghunathan, A., Evaluation of the traffic-performance
characteristics of system-on-chip communication architectures. In: Proceedings
of the 14th International Conference on VLSI Design (VLSID ’01), pp. 29–35.
IEEE Press, 2001.

107. Law, A.M. and Kelton, W.D., Simulation Modeling & Analysis. McGraw-Hill,
3rd ed., 2000.

108. Lea, C.-T., Buffered or unbuffered: A case study based on logd(n, e, p) networks.
IEEE Transactions on Communications, 44(1):105–113, January 1996.

109. L’Ecuyer, P., Good parameters and implementations for combined multiple re-
cursive random number generators. Operations Research, 47(1):159–164, Jan-
uary 1999.

110. Lee, G., Kang, B.-C., and Kain, R. Y., Analysis of finite buffered multistage
combining networks. IEEE Transactions on Parallel and Distributed Systems,
6(7):760–766, July 1995.

111. Lee, J.-S. R., McNickle, D., and Pawlikowski, K., Quantile estimations in
sequential steady-state simulation. In: Proceedings of European Simulation
Multiconference (ESM’99), pp. 168–174. SCS, 1999.

112. Lee, J.-S., Song, S.-J., Lee, K., Woo, J.-H., Kim, S.-E., Nam, B.-G., and Yoo,
H.-J., An 800MHz star-connected on-chip network for application to systems
on a chip. In: Proceedings of 2003 IEEE International Solid-State Circuits
Conference (ISSCC 2003), pp. 468–475. IEEE Press, 2003.

113. Lehoczky, J. P., Real-time queueing network theory. In: Proceedings Real-Time
Systems Symposium, pp. 58–67. IEEE Computer Society Press, December 1997.

114. Leiserson, C. E., Fat-trees: Universal networks for hardware–efficient super-
computing. IEEE Transactions on Computers, 34(10):892–901, October 1985.

115. Leiserson, C. E., Abuhamdeh, Z. S., Douglas, D. C., Feynman, C. R., Gan-
mukhi, M. N., Hill, J. V., Hillis, W. D., Kuszmaul, B. C., Pierre, M. A. St.,
Wells, D. S., Wong-Chan, M. C., Yang, S.-W., and Zak, R., The network archi-
tecture of the Connection Machine CM-5. Journal of Parallel and Distributed
Computing, 33:145–158, March 1996.

116. Leland, W. E., Taqqu, M. S., Willinger, W., and Wilson, D. V., On the self-
similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions
on Networking, 2(1):1–14, February 1994.

117. Li, J. and Cheng, C.-K., Routability improvement using dynamic interconnect
architecture. IEEE Transactions on VLSI Systems, 6(3):498–501, 1998.

118. Lindemann, C., Performance Modelling with Deterministic and Stochastic
Petri Nets. John Wiley & Sons, 1998.

119. Lipovski, G. J. and Malek, M., Parallel Computing: Theory and Comparisons.
John Wiley & Sons, New York, 1987.

120. Lu, W. and Giordano, S., Challenges in mobile ad hoc networking (collection
of articles). IEEE Communications Magazin, 39(6), 2001.

121. Lucas, M. T., Dempsey, B. J., Wrege, D. E., and Weaver, A. C., (M,P,S)
– an efficient background traffic model for wide-area network simulation. In:
Proceedings IEEE Global Telecommunications Conference, volume 3, pp. 1572–
1576. IEEE Computer Society, IEEE Computer Society Press, November 1997.

230 References

122. Lucas, M. T., Wrege, D. E., Dempsey, B. J., and Weaver, A. C., Statistical
characterization of wide-area IP traffic. In: Proceedings Sixth International
Conference on Computer Communications and Networks, pp. 442–447. IEEE
Computer Society, IEEE Computer Society Press, September 1997.

123. Luciani, J. V. and Chen, C. Y. R., An analytical model for partially blocking
finite–buffered switching networks. IEEE/ACM Transactions on Networking,
2(5):533–540, October 1994.

124. Lüdtke, D., Tutsch, D., Walter, A., and Hommel, G., Improved performance
of bidirectional multistage interconnection networks by reconfiguration. In:
Proceedings of 2005 Design, Analysis, and Simulation of Distributed Systems
(DASD 2005); San Diego, pp. 21–27. SCS, April 2005.

125. Majer, M., Bobda, C., Ahmadinia, A., and Teich, J., Packet routing in dynami-
cally changing networks on chip. In: Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2005), page 154. IEEE
Press, 2005.

126. Malek, M., The NOMADS republic. In: Proceedings of International Confer-
ence on Advances in Infrastructure for Electronic Business, Education, Science,
Medicine and Mobile Technologies on the Internet; L’Aquila. Scuola Superiore
G. Reiss Romoli (SSGRR), Telecom Italia, 2003.

127. Maltz, D., Broch, J., and Johnson, D., Lessons from a full-scale multihop
wireless ad hoc network testbed. IEEE Personal Communications, 8(1), 2001.

128. Marsan, M. A., Stochastic Petri nets: An elementary introduction. In:
G. Rozenberg, editor, Advances in Petri Nets, volume 424 of Lecture Notes
in Computer Science, pp. 1–29. Springer Verlag, Berlin, 1990.

129. Marsan, M. A., Balbo, G., and Conte, G., A class of generalized stochastic
Petri nets for the performance evaluation of multiprocessor systems. ACM
Transactions on Computer Systems, 2(2):93–122, May 1984.

130. Marsan, M. A. and Chiola, G., On Petri nets with deterministic and expo-
nential transition firing times. In: G. Rozenberg, editor, Proceedings of the
7th European Workshop on Application and Theory of Petri Nets; Oxford, vol-
ume 266 of Advances in Petri Nets 1987, Lecture Notes on Computer Science.
Springer Verlag, Berlin, 1986.

131. Marsan, M. A., Marano, S., Mastroianni, C., and Meo, M., Performance analy-
sis of cellular mobile communication networks supporting multimedia services.
Mobile Networks and Applications, 5:167–177, 2000.

132. Marsan, M. A., Chiasserini, C.-F., and Fumagalli, A., Dimensioning handover
buffers in wireless ATM networks with GSPN models. In: 19th Int. Conf.
on Application and Theory of Petri Nets (ICATPN’98), pp. 44–63. Springer-
Verlag, 1998.

133. Marsan, M. A. and Gaeta, R., Modeling ATM systems with GSPNs and SWNs.
ACM Sigmetrics: Performance Evaluation Review, 2(26):28–37, August 1998.

134. Matsumoto, M., and Nishimura, T., Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions
on Modeling and Computer Simulation, 8(1):3–30, 1998.

135. Maxfield, C., The Design Warrior’s Guide to FPGAs. Newnes / Elsevier,
2004.

136. McKinley, P. K., Tsai, Y.-J., and Robinson, D. F., Collective communication
in wormhole–routed massively parallel computers. Computer, 28(12):39–50,
December 1995.

References 231

137. Medhi, J., Stochastic Models in Queueing Theory. Academic Press, 2002.
138. Meketon, M.S. and Schmeister, B., Overlapping batch means: Something for

nothing. In: Proceedings of the 1984 Winter Simulation Conference, pp. 227–
230. SCS, 1984.

139. Mohapatra, P., Wormhole routing techniques for directly connected multicom-
puter systems. ACM Computing Surveys, 30(3):374–410, September 1998.

140. Mohapatra, P. and Das, C. R., Performance analysis of finite–buffered asyn-
chronous multistage interconnection networks. IEEE Transactions on Parallel
and Distributed Systems, 7(1):18–25, January 1996.

141. Molloy, M.K., On the Integration of Delay and Throughput Measures in Dis-
tributed Processing Models. PhD thesis, University of California Los Angeles,
1981.

142. Mun, Y. and Youn, H. Y., Performance analysis of finite buffered multistage
interconnection networks. IEEE Transactions on Computers, 43(2):153–161,
February 1994.

143. Murali, S. and De Micheli, G., SUNMAP: A tool for automatic topology selec-
tion and generation for NoCs. In: Proceedings of the 41st Design Automation
Conference (DAC 2004), pp. 914–919. ACM, 2004.

144. Murata, T., Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541–580, April 1989.

145. Narasimha, M., The Batcher-Banyan self-routing network: Universality and
simplification. IEEE Transactions on Communications, 36(10):1175–1178, Oc-
tober 1988.

146. Natkin, S., Les Reseaux de Petri stochastiques et leur Application à l’Evaluation
des Systèmes Informatiques. PhD thesis, CNAM Paris, 1980.

147. Nelson, B.L., A perspective on variance reduction in dynamic simulation ex-
periments. Communications in Statistics (B: Simulation and Computation),
16(2):385–426, 1987.

148. Ni, L. M., Gui, Y., and Moore, S., Performance evaluation of switch-based
wormhole networks. IEEE Transactions on Parallel and Distributed Systems,
8(5):462–474, May 1997.

149. Ortega, J. M. and Rheinboldt, W. C., Iterative Solution of Nonlinear Equations
in Several Variables. Computer Science and Applied Mathematics. Academic
Press, New York, 1970.

150. Pahlavan, K. and Krishnamurthy, P., Principles of Wireless Network. Prentice
Hall, 2002.

151. Park, J. and Yoon, H., Cost-effective algorithms for multicast connection in
ATM switches based on self-routing multistage networks. Computer Commu-
nications, 21:54–64, 1998.

152. Patel, J. H., Performance of processor–memory interconnections for multipro-
cessors. IEEE Transactions on Computers, C–30(10):771–780, October 1981.

153. Pawlikowski, K., Steady-state simulation of queueing processes: A survey of
problems and solutions. ACM Computing Surveys, 22(2):123–170, 1990.

154. Pawlikowski, K., Jeong, H.-D. J., and Lee, J.-S. R., On credibility of simulation
studies of telecommunication networks. IEEE Communications Magazine, pp.
132–139, January 2002.

155. Pawlikowski, K., Yau, V. W. C., and McNickle, D., Distributed stochastic
discrete-event simulation in parallel time streams. In: Proceedings of the 1994
Winter Simulation Conference; Lake Buena Vista, pp. 723–730, December
1994.

232 References

156. Pelz, E. and Tutsch, D., Modeling multistage interconnection networks of arbi-
trary crossbar size with compositional high level Petri nets. In: Proceedings of
the 2005 European Simulation and Modelling Conference (ESM 2005); Porto,
pp. 537–543. Eurosis, 2005.

157. Perkins, C., et al., IP mobility support. RFC 2002, IETF, 1996.
158. Perkins, C., Ad Hoc Networking. Addison Wesley, 2001.
159. Peterson, R., Ziemer, R., and Borth, D., Introduction to Spread Spectrum

Communications. Prentice Hall, 1995.
160. Petri, C. A., Kommunikation mit Automaten. PhD thesis, Universität Bonn,

1962.
161. Ponnekanti, S. R., Lee, B., Fox, A. Hanrahan, P., and Winograd, T., ICrafter:

A service framework for ubiquitous computing environments. In: Proceedings
of the Ubiquitous Computing Conference (UBICOMP 2001). Springer Verlag,
2001.

162. Raguin, D., Kubisch, M., Karl, H., and Wolisz, A., Queue-driven cut-through
medium access in wireless ad hoc networks. In: Proceedings of IEEE Wire-
less Communications and Networking Conference (WCNC’04); Atlanta. IEEE,
2004.

163. Rauber, T. and Rünger, G., Parallele und verteilte Programmierung. Springer
Verlag, Berlin, 2000.

164. Reibman, A. and Trivedi, K., Numerical transient analysis of markov models.
Computers and Operations Research, 15(1):19–36, 1988.

165. Reisig, W., Petri Nets: an Introduction. Springer Verlag, Heidelberg, 1985.
166. Ren, W., Siu, K.-Y., Suzuki, H., and Shinohara, M., Multipoint-to-multipoint

ABR service in ATM. Computer Networks and ISDN Systems, 30:1793–1810,
1998.

167. Rettberg, R.D., Crowther, W.R., Carvey, P.P., and Tomlinson, R.S., The
Monarch parallel processor hardware design. Computer, 23(4):18–30, April
1990.

168. Robinson, D. F., Judd, D., McKinley, P. K., and Cheng, B. H. C., Efficient
multicast in all–port wormhole–routed hypercubes. Journal of Parallel and
Distributed Computing, 31(2):126–140, December 1995.

169. Rohatgi, V.K., An Introduction to Probability Theory and Mathematical Statis-
tics. John Wiley & Sons, 1976.

170. Rosen et al., Multiprotocol label switching architecture. Internet draft, IETF,
1999.

171. Rădulescu, A. and Goossens, K., Communication services for networks on
chip. In: Shuvra S. Bhattacharyya, Ed F. Deprettere, and Jr̈gen Teich, editors,
Domain-Specific Processors: Systems, Architectures, Modeling, and Simulation,
pp. 193–213. Marcel Dekker, 2004.

172. Rubinstein, R.Y., Simulation and the Monte-Carlo-Method. John Wiley &
Sons, 1981.

173. Sánchez, J. L. and Garćıa, J. M., Dynamic reconfiguration of node location in
wormhole networks. Journal of Systems Architecture, 46(10):873–888, 2000.

174. Schiller, J., Mobile Communications. Addison Wesley, London, 2nd ed., 2003.
175. Schruben, L.W., Singh, H., and Tierney, L., Optimal test for initialization bias

in simulation output. Operations Research, 31(6):1167–1178, 1983.

References 233

176. Shaikh, S. Z., Schwartz, M. and Szymanski, T. H., Analysis, control and de-
sign of crossbar and banyan based broadband packet switches for integrated
traffic. In: IEEE International Conference On Communications ICC’90 Includ-
ing Supercomm Technical Sessions. SUPERCOMM ICC’90 Conference Record;
Atlanta, volume 2, pp. 761–765, New York, April 1990.

177. Sharma, N. K., Review of recent shared memory based ATM switches. Com-
puter Communications, 22:297–316, 1999.

178. Sherman, M. and Carlstein, E., Confidence intervals based on estimators with
unknown rates of convergence. Computational Statistics and Data Analysis,
pp. 123–139, 2004.

179. Shi, H. and Sethu, H., Virtual circuit blocking probabilities in an ATM banyan
network with bxb switching elements. In: Proceedings of the Applied Telecom-
munication Symposium 2001 (ATS’01); Seattle, pp. 21–25. SCS, 2001.

180. Sibal, S. and Zhang, J., On a class of banyan networks and tandem banyan
switching fabrics. IEEE Transactions on Communications, 43(7):2231–2240,
July 1995.

181. Sima, D., Fountain, T., and Kacsuk, P., Advanced Computer Architectures.
Addison Wesley, 1997.

182. Sivaram, R., Panda, D.K., and Stunkel, C.B., Efficient broadcast and multi-
cast on multistage interconnection networks using multiport encoding. IEEE
Transaction on Parallel and Distributed Systems, 9(10):1004–1028, October
1998.

183. Sokol, J. and Widmer, J., USAIA Ubiquitous Service Access Internet Architec-
ture. Technical Report TR–01–003, International Computer Science Institute,
Berkeley, 2001.

184. Soumiya, T., Nakamichi, K., Kakuma, S., Hatano, T., and Hakata, A., The
large capacity ATM backbone switch ”FETEX-150 ESP”. Computer Networks,
31(6):603–615, 1999.

185. Stallings, W., Wireless Communications and Networking. Prentice Hall, 2002.
186. Stallings, W., High-Speed Networks. Prentice Hall, New Jersey, 1998.
187. Stergiou, S., Angiolini, F., Carta, S., Raffo, L., Bertozzi, D., and De Micheli,

G., xpipes lite: A synthesis oriented design library for networks on chips. In:
Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition (DATE’05), volume 2, pp. 1188–1193. IEEE, 2005.

188. Stevens, W.R., TCP/IP Illustrated, Volume 1 – The Protocols. Addison-
Wesley, Boston, 1994.

189. Stewart, W., Introduction to Numerical Solution of Markov Chains. Princeton
University Press, Princeton, N.J., 1994.

190. Stüber, G.L., Principles of Mobile Communication. Kluwer Academic Pub-
lishers, Boston, 2nd ed., 2001.

191. Stunkel, C.B., Shea, D.G., Abali, B., Atkins, M.G., Bender, C.A., Grice, D.G.,
Hochschild, P., Joseph, D.J., Nathanson, B.J., Swetz, R.A., Stucke, R.F., Tsao,
M., and Varker, P.R., The SP2 high-performance switch. IBM Systems Journal,
34(2):185–204, 1995.

192. Subramaniam, S. and Somani, A.K., Multicasting in ATM networks using
MINs. Computer Communications, 19:712–722, 1996.

193. Takahashi, Y., A lumping method for numerical calculations of stationary
distributions of Markov chains. Research report B 18, Tokyo Institute of Tech-
nology, Department of Information Science, Tokyo, 1975.

234 References

194. Tanenbaum, A.S., Modern Operating Systems. Prentice Hall, Englewood Cliffs,
N.J., 2nd ed., 2001.

195. Tanenbaum, A.S., Computer Networks. Prentice Hall, 4th ed., 2002.
196. Tanenbaum, A.S. and van Steen, M., Distributed Systems: Principles and

Paradigms. Prentice Hall, 1st ed., 2002.
197. Tobagi, F.A., Kwok, T., and Chiussi, F.M., Architecture, performance, and

implementation of the tandem-banyan fast packet switch. IEEE Journal on
Selected Areas of Communication, 9(8):1173–1193, October 1991.

198. Trimberger, S., Carberry, D., Johnson, A., and Wong, J., A time-multiplexed
FPGA. In: Proceedings of the IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, pp. 22–28, 1997.

199. Trivedi, K., Probability and Statistics with Reliability, Queuing, and Computer
Science Applications. Prentice-Hall, Englewood Cliffs, N.J., 1982.

200. Turner, J. and Melen, R., Multirate Clos networks. IEEE Communications
Magazine, 41(10):38–44, October 2003.

201. Tutsch, D., Model comparison by performance evaluation of multistage in-
terconnection networks. In: Proceedings of the High Performance Computing
Symposium 1998 (HPC’98); Boston, pp. 369–374. SCS, April 1998.

202. Tutsch, D., Object-oriented modeling of interconnection networks. In: Pro-
ceedings of the International Workshop on Communication Based Systems
(CBS’98); Berlin, pp. 107–116, October 1998.

203. Tutsch, D., Verfahren zur Leistungsbewertung von gepufferten mehrstufigen
Verbindungsnetzwerken. PhD thesis, Technische Universität Berlin, 1998.

204. Tutsch, D., Performance analysis of transient network behavior in case of
packet multicasting. In: Proceedings of the European Simulation Symposium
1999 (ESS’99); Erlangen, pp. 630–634. SCS, October 1999.

205. Tutsch, D., Transient multicast traffic performance of MINs: A case study. In:
Workshop Distributed Computing on the Web 1999 (DCW’99); Rostock, pp.
103–110. GI, June 1999.

206. Tutsch, D., Buffer design in delta networks. In: Günter Hommel and Sheng
Huanye, editors, The Internet Challenge: Technology and Applications, pp. 93–
101. Kluwer Academic Publishers, 2002.

207. Tutsch, D. and Brenner, M., Multicast probabilities of multistage intercon-
nection networks. In: Proceedings of the 12th European Simulation Symposium
2000 (ESS’00); Hamburg, pp. 554–558. SCS, September 2000.

208. Tutsch, D. and Brenner, M., MINSimulate – a multistage interconnection
network simulator. In: 17th European Simulation Multiconference: Foundations
for Successful Modelling & Simulation (ESM’03); Nottingham, pp. 211–216.
SCS, June 2003.

209. Tutsch, D., Brenner, M., and Hommel, G., Performance analysis of multistage
interconnection networks in case of cut-through switching and multicasting.
In: Proceedings of the High Performance Computing Symposium 2000 (HPC
2000); Washington DC, pp. 377–382. SCS, April 2000.

210. Tutsch, D., Hendler, M., and Hommel, G., Multicast performance of multistage
interconnection networks with shared buffering. In: Proceedings of the IEEE
International Conference on Networking (ICN 2001); Colmar, pp. 478–487.
IEEE, July 2001.

References 235

211. Tutsch, D. and Holl-Biniasz, R., Performance evaluation using measure de-
pendent transitions in Petri nets. In: Proceedings of the Fifth International
Symposium on Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems (MASCOTS’97); Haifa, pp. 235–240. IEEE Computer So-
ciety Press, January 1997.

212. Tutsch, D. and Hommel, G., Performance of buffered multistage intercon-
nection networks in case of packet multicasting. In: Proceedings of the 1997
Conference on Advances in Parallel and Distributed Computing (APDC’97);
Shanghai, pp. 50–57. IEEE Computer Society Press, March 1997.

213. Tutsch, D. and Hommel, G., Multicasting in buffered multistage interconnec-
tion networks: an analytical algorithm. In: 12th European Simulation Multi-
conference: Simulation – Past, Present and Future (ESM’98); Manchester, pp.
736–740. SCS, June 1998.

214. Tutsch, D. and Hommel, G., Multicasting in interconnection networks: Mod-
eling and performance evaluation. In: Proceedings of the High Performance
Computing Symposium 1999 (HPC’99); San Diego, pp. 413–424. SCS, April
1999.

215. Tutsch, D. and Hommel, G., Multifractal multicast traffic in multistage in-
terconnection networks. In: Proceedings of the High Performance Computing
Symposium 2001 (HPC 2001); Seattle, pp. 257–262. SCS, April 2001.

216. Tutsch, D. and Hommel, G., Comparing switch and buffer sizes of multistage
interconnection networks in case of multicast traffic. In: Proceedings of the
High Performance Computing Symposium 2002 (HPC 2002); San Diego, pp.
300–305. SCS, April 2002.

217. Tutsch, D. and Hommel, G., Generating systems of equations for performance
evaluation of buffered multistage interconnection networks. Journal of Parallel
and Distributed Computing, 62(2):228–240, February 2002.

218. Tutsch, D. and Hommel, G., Multilayer multistage interconnection networks.
In: Proceedings of 2003 Design, Analysis, and Simulation of Distributed Sys-
tems (DASD 2003); Orlando, pp. 155–162. SCS, April 2003.

219. Tutsch, D. and Hommel, G., Multicast routing in Clos networks. In: Proceed-
ings of 2004 Design, Analysis, and Simulation of Distributed Systems (DASD
2004); Arlington, pp. 21–27. SCS, April 2004.

220. Tutsch, D. and Lüdtke, D., Multicast in switches: Packet sequences versus
independent packets. In: Proceedings of 2005 Design, Analysis, and Simulation
of Distributed Systems (DASD 2005); San Diego, pp. 46–52. SCS, April 2005.

221. Tutsch, D., Lüdtke, D., and Kühm, M., Investigating dynamic reconfiguration
of network architectures with CINSim. In: Proceedings of the 13th Conference
on Measurement, Modeling, and Evaluation of Computer and Communication
Systems 2006 (MMB 2006); Nürnberg, pp. 445–448. VDE, March 2006.

222. Tutsch, D., Lüdtke, D., Walter, A., and Kühm, M., CINSim – a component-
based interconnection network simulator for modeling dynamic reconfiguration.
In: Proceedings of the 12th International Conference on Analytical and Stochas-
tic Modelling Techniques and Applications (ASMTA 2005); Riga, pp. 132–137.
IEEE/SCS, June 2005.

223. Tutsch, D. and Sokol, J., Petri net based performance evaluation of USAIA’s
bandwidth partitioning for the wireless cell level. In: 9th International Work-
shop on Petri Nets and Performance Models (PNPM’01); Aachen, pp. 49–58.
IEEE Computer Society, 2001.

236 References

224. Vaidyanathan, R. and Trahan, J.L., Dynamic Reconfiguration: Architectures
and Algorithms. Kluwer Academic, New York, 2003.

225. Varavithya, V. and Mohapatra, P., Asynchronous tree-based multicasting in
wormhole-switched multistage interconnection networks. IEEE Transactions
on Parallel and Distributed Systems, pp. 1159–1178, November 1999.

226. Villen-Altamirano, M. and Villen-Altamirano, J., RESTART: A methode for
accelerating rare event simulations. In: J.W. Cohen and C.D. Pack, editors,
Queueing Performance and Control in ATM (ITC-13), pp. 71–76. Elsevier
Science Publishers, North-Holland, 1991.

227. Waugh, T.C., Field programmable gate array: Key to reconfigurable array out-
performance supercomputers. In: Proceedings of the Custom Integrated Circuits
Conference 1991, pp. 6.6/1–4, 1991.

228. Weiser, M., Some computer science issues in ubiquitous computing. Commu-
nications ACM, 36(7):74–84, 1993.

229. Wesel, E., Wireless Multimedia Communications: Networking Video, Voice,
and Data. Addison Wesley, London, 1998.

230. Widjaja, I., Leon-Garcia, A., and Mouftah, H.T., The effect of cut-through
switching on the performance of buffered banyan networks. Computer Networks
and ISDN Systems, 26:139–159, 1993.

231. Wiklund, D. and Liu, D., SoCBUS: Switched network on chip for hard real time
embedded systems. In: Proceedings of the 17th IEEE International Parallel
and Distributed Processing Symposium (IPDPS 2003), pp. 78–85. IEEE Press,
2003.

232. Willinger, W., Taqqu, M.S., Sherrman, R., and Wilson, D.V., Self-similarity
through high-variablility: Statistical analysis of Ethernet LAN traffic at the
source level. IEEE/ACM Transactions on Networking, 5(1):71–86, 1997.

233. Wilson, J.R., Variance reduction techniques for digital simulation. American
Journal on Mathematics in Management Science, 4(3):277–312, 1984.

234. Wingard, D., MicroNetwork-based integration for SoCs. In: Proceedings of the
Design Automation Conference (DAC 2001), pp. 673–677. ACM, 2001.

235. Wolf, T. and Turner, J., Design issues for high performance active routers.
IEEE Journal on Selected Areas of Communications, 19(3):404–409, March
2001.

236. Wolisz, A., Wireless internet architectures: Selected issues. In: J. Wozniak and
J. Konorski, editors, Personal Wireless Communications, pp. 1–16. Kluwer,
2000.

237. Wong, P.C. and Yeung, M.S., Design and analysis of a novel fast packet switch–
pipeline banyan. IEEE/ACM Transactions on Networking, 3(1):63–69, Febru-
ary 1995.

238. Xiong, Y. and Mason, L., Analysis of multicast ATM switching networks using
CRWR scheme. Computer Networks and ISDN Systems, 30:835–854, 1998.

239. Xu, H., Gui, Y., and Ni, L.M., Optimal software multicast in wormhole-routed
multistage networks. IEEE Transactions on Parallel and Distributed Systems,
8(6):597–606, June 1997.

240. Yang, Y., An analytical model for the performance of buffered multicast banyan
networks. Computer Communications, 22:598–607, 1999.

241. Yang, Y., A class of multistage conference switching networks for group com-
munication. In: Proc. 2002 International Conference on Parallel Processing
(ICPP 2002); Vancouver, pp. 73–80. IEEE, August 2002.

References 237

242. Yang, Y. and Wang, J., A class of multistage conference switching networks for
group communication. IEEE Transactions on Parallel and Distributed Systems,
15(3):228–243, March 2004.

243. Yasuda, Y., Fujii, H., Akashi, H., Inagami, Y., Tanaka, T., Wada, H., and
Sumimoto, T., Deadlock-free fault-tolerant routing in the multi-dimensional
crossbar network and its implementation for the Hitachi SR2201. In: Proceed-
ings of the 11th International Parallel Processing Symposium (IPPS’97); Genf,
pp. 346–352. IEEE Computer Society Press, April 1997.

244. Yoon, H., Lee, K.Y., and Liu, M.T., Performance analysis of multibuffered
packet–switching networks in multiprocessor systems. IEEE Transactions on
Computers, 39(3):319–327, March 1990.

245. Youn, H.Y. and Chen, C. C.-Y., A comprehensive performance evaluation of
crossbar networks. IEEE Transactions on Parallel and Distributed Systems,
4(5):481–489, May 1993.

246. Youn, H.Y. and Mun, Y., On multistage interconnection networks with small
clock cycles. IEEE Transactions on Parallel and Distributed Systems, 6(1):86–
93, January 1995.

247. Yuen, S., Kropf, P.G., Unger, H., and Babin, G., Simulation of communities
of nodes in a wide area distributed system. In: Proceedings of the EUROSIM
2001; Delft. IEEE, 2001.

248. Zeigler, B. P., Praehofer, H., and Kim, T. G., Theory of Modeling and Simu-
lation. Academic Press, 2nd ed., 2000.

249. Zhou, B. and Atiquzzaman, M., Efficient analysis of multistage interconnection
networks using finite output-buffered switching elements. Computer Networks
and ISDN Systems, 28:1809–1829, 1996.

250. Zhou, B. and Atiquzzaman, M., A performance comparison of four buffer-
ing schemes for multistage interconnection networks. International Journal of
Parallel and Distributed Systems and Networks, 5(1):17–25, 2002.

Index

accuracy
confidence level, 167
precision, 167

ad-hoc network, 55
address destination distribution, 170
Akaroa, 167
antenna, 48
arithmetic mean, 75
ASIC, 57
autocorrelation, 75
automatic model generation, 126, 216

backpressure mechanism, 31, 154
banyan property, 31
base station, 52
batch means, 78

non-overlapping, 78
overlapping, 78

bit file, 70
blocking, 12
broadcast, 15
buffer, 29

input, 29
internal, 30
on-chip, 59
output, 29
shared, 30, 169

burst, 16

CDF, 18
cell, 52
cellular network, 52, 133
central moment, 75
Chapman-Kolmogorov equation, 88

chip area, 59
circuit switching, 11, 59
CLB, 69
clock cycle

hardware, 12, 31
network, 31

cluster, 54
computer algebra system, 130
computing

mobile, 9
nomadic, 9
pervasive, 9
ubiquitous, 9

confidence, 79, 113, 172
confidence level, 79
configurable logic block, 69
configuration, 63
configuration bitstream, 70
configuration file, 70
conflicts, 153, 173
connection block, 68
core, 56
covariance, 75
CTR, 63
cumulative distribution function, 18
cumulative measure, 95
cut-through switching, 13

data rate, 11
data recycling, 114, 169
data representation, 112
decomposition, 96, 119
deflection routing, 39
delay spread, 49

240 Index

delay time, 5
delta property, 31
demodulation, 52
dependence

loose, 116
neglects, 116

DESS, 74
destination address, 215
detection range, 48
DEVS, 74
diffraction, 50
distribution

continuous, 20
deterministic, 19
discrete, 20
discrete uniform, 21
Erlang-k, 19
exponential, 18, 93, 103
gamma, 19
Gaussian, 20
geometric, 20, 90, 103
heavy tailed, 20
hyperexponential, 19
interarrival time, 18
normal, 20
Pareto, 20
Poisson, 21
service time, 18
uniform, 20
waiting time, 18
Weibull, 19

distribution function, 18
Doppler shift, 50
DTSS, 74
dual core processor, 60
dynamic reconfiguration, 63

equations
representation, 130
universal, 129

estimated precision, 79, 113, 172
expectation, 75
expected value, 75

fault tolerance, 3
faulty network element, 34
fixed point iteration, 94, 121, 189, 216
flits, 13, 59
FPFA, 71

FPGA, 57, 61, 67
coarse grained, 69
fine grained, 69
multicontext, 70
programming, 69

FPID, 71
FPMA, 71
FPNA, 71
function block, 69

Gauss-Seidel method, 95
Gaussian elimination, 94
generator, 129

design, 131
Grassmann algorithm, 94
group of equations, 126, 192

handoff, 53
hardware description language, 57, 69
hardware reconfiguration, 64
header, 12
high-level modeling, 99
hop, 13
hot spot, 14, 66
Hurst parameter, 18

I/O block, 68
initial transient phase, 15, 79, 114
instantaneous measure, 95
intellectual property

block, 56, 70
core, 56

interference range, 48
Internet, 171

Jacobi’s method, 94

LAB, 69
lag, 75
latency, 5
link, 11, 22, 59
Little’s Law, 191
locality, 66
logic array block, 69
logic block, 69
logic cell, 69
logic element, 69
lumping, 115
LUT, 69

Index 241

macro states, 98
Markov chain, 85, 103, 173

absorbing state, 90
aperiodic, 90
birth-death process, 93
continuous time, 90, 99, 104
discrete time, 87
embedded, 105
ergodic, 90, 92, 98
finite state, 89
holding time, 93
irreducible, 90, 93
iterative solution, 94
reachable, 93
reachable state, 90
recurrent state, 90
sojourn time, 86, 90, 93
steady-state solution, 93
transient solution, 95, 221
transient state, 90
transition rate, 91

Markov process, 86
Markov property, 86
mathematical methods, 2
measurement, 2

device, 73
physical, 73

measures
delay, 191
throughput, 156, 190

median, 81
memory block, 67
memoryless, 86
memoryless property, 18
model, 6

automatic model generation, 192
changes, 210
complexity reduction, 116, 172
computation time, 107, 218
development, 107
development time, 107, 126, 217
evaluation time, 107
granularity, 108
logical system complexity, 108
manual, 216
mathematical, 115
parameters, 129, 209
performance measures, 108
quality, 217

run time, 218
simplification, 116
simulation, 111
system complexity in time, 108

modeling techniques, 215
modeling time, 107
modulation, 51

analog, 51
digital, 51

MPSoC, 57
multicast, 14, 166

complete, 156
partial, 156

multicast probabilities, 161
multicore processor, 57
multifractal traffic, 17, 118
multiple acceptance, 35
multiple replications in parallel, 114,

169
multiple state spaces, 124
multiplexer, 69
multiplexing, 22, 50
multiprocessor system, 57, 64
multiprocessor system-on-chip, 57

narrowband interference, 52
near-independence, 119
nearly completely decomposable

models, 96
nearly-independent submodels, 96
network, 8

area, 58
failure, 59
synchronization, 58
traffic prediction, 67

network architecture, 21
Batcher-Banyan network, 40
Beneš network, 37
bidirectional MIN, 27, 37, 61, 64, 220
bus, 23, 60, 61
chain, 23
Clos network, 41, 61
crossbar, 28, 60, 61
dilated MIN, 34
direct, 22, 46
dynamic, 22, 46
expanded delta network, 41
fat tree, 27, 61
fully connected, 22

242 Index

grid, 23
hypercube, 27
indirect, 22, 46
mesh, 23, 46, 61
multilayer multistage interconnection

network, 42
multistage interconnection network,

30, 61, 153
recirculation network, 39
replicated MIN, 35
ring, 25, 61
sorter network, 40
star, 26, 61
static, 22, 46
switching element, 31
switching fabric, 46
tandem banyan network, 38
torus, 25
tree, 27
turnaround crossbar, 38
turnaround MIN, 38
wired, 21
wireless, 47

network reconfiguration, 62
network-on-chip, 56

characteristics, 58
tools, 62
topology, 60

node
fixed, 47
mobile, 47

numerical solution, 130

observation, 75
obstacle, 49
octiles, 81
operation phase, 67
out of order packet sequence, 34, 59
overhead, 112

packet size, 171
packet switching, 12

cut-through switching, 13, 170, 211
store-and-forward switching, 13, 170
wormhole switching, 13, 59, 170

parallelism, 114, 169
partial cut-through switching, 13
payload, 12
pdf, 18

performance, 5
performance evaluation, 5, 73
Petri net, 99, 215

arc multiplicity, 101
deterministic and stochastic, 104
extended reachability graph, 104
firing probability, 103
firing time, 102
generalized stochastic, 103
guard, 101
immediate transition, 103
inhibitor arc, 101
input arc, 99
marking, 99
output arc, 99
place, 99
preselection policy, 102
reachability set, 100, 104
reduced reachability graph, 105
stochastic, 102
tangible marking, 103
timed transition, 102
token, 99
transition, 99
transition priority, 101
vanishing marking, 103
weight, 103

phits, 12
pin, 59
power demands, 58
power method, 94
probability

equilibrium, 92
limiting state, 89
stationary, 89
steady-state, 89, 92
transient, 89

probability density function, 18, 80
probability mass function, 20, 80
programming language, 130
protocol, 3

quantile, 80
quartiles, 81

random number generator, 81, 114
random variable, 75
rDPU, 71
receiver, 22

Index 243

reconfigurable system, 220
reconfiguration, 62

compile-time, 63
dynamic, 63
hardware, 64
partial, 70
pipeline morphing, 71
run-time, 63
types, 63

reconfiguration phase, 67, 70
reflection, 49
refraction, 49
regeneration points, 105
routing, 3, 11
routing channel, 67
RTR, 63
rules, 126

design, 127
representation, 128
sets, 129
universal, 129

sample, 75
scattering, 50
Schruben test, 79
seed, 82
self-similar traffic, 17
sender, 22
sequences of packets, 170
shadowing, 49
signal, 15
simulation, 2

acceleration, 82
conditional Monte Carlo, 83
continuous, 74
discrete event, 74, 104
discrete time, 74
enforcement, 83
importance sampling, 83
Monte Carlo, 74
multiple replications, 84
numerical, 74
parallelization, 84
precision steps, 160
rare event, 82, 85, 114
steady-state, 79
stratification, 83
terminating, 79, 115, 221
variance reduction, 82

single acceptance, 35
skewness, 80
SoC, 56
spectral analysis, 76
spread spectrum, 52
state

reachable, 75
state probability, 173
state space, 86
state transition, 74
statistical error, 79
steady state, 15, 74, 79
stochastic events, 74
stochastic process, 86
store-and-forward switching, 13
subsystems

asymmetry, 123
cyclic dependence, 120
independent, 119
near-independent, 119
similar, 121

switch block, 67
switching techniques, 11, 59
symbolic solution, 130
system

asymmetric, 123, 221
changes, 210
characteristics, 11
discretization, 125
distributed, 7
distributed memory, 7
heterogeneous, 221
message-passing, 8
multicomputer, 7
multiprocessor, 7
parallel, 6
shared memory, 7
symmetric, 121, 172

system-on-chip, 56
FPGA, 57
full-custom, 56
standard cell, 56

Takahashi’s method, 98
throughput, 6
time-homogeneous, 86
timed transition

age policy, 102
enabling memory policy, 102

244 Index

execution policy, 102

firing rate, 103

infinite server, 102

memory policy, 102

race policy, 102

resampling policy, 102

tool

Akaroa, 113

CINSim, 221

MINSimulate, 109, 112

TimeNET, 109

topology, 9, 21

traffic load, 153, 173

traffic pattern, 14, 62

distribution in space, 14, 161, 215

distribution in time, 15

traffic prediction, 221

transient uniformization, 96

transition

deterministic, 104

exponentially distributed, 103, 158
immediate, 103, 158
measure-dependent, 158

transition probability, 87
transmission power, 53
transmission range, 48

unicast, 14
uniform traffic, 14, 172
uniprocessor, 56

validation, 217
variance, 75, 80

real, 76
virtual cut-through switching, 13
VLSI, 56
voltage, 58

wire, 60
wireless network, 9, 47
wormhole switching, 13, 59

	front-matter
	01 Introduction
	02 Characteristics of Network Architectures
	03 Performance Evaluation
	04 Model Engineering
	05 Application Cellular Network
	06 Application Multistage Interconnection Network
	07 Concluding Remarks
	back-matter

