

Wireless Sensor Network
Designs

Anna Hać
University of Hawaii at Manoa, Honolulu, USA

Wireless Sensor Network
Designs

Wireless Sensor Network
Designs

Anna Hać
University of Hawaii at Manoa, Honolulu, USA

Copyright 2003 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK,
without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the
Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex
PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Hać, Anna.
Wireless sensor network designs / Anna Hac.

p. cm.
Includes bibliographical references and index.
ISBN 0-470-86736-1
1. Sensor networks. 2. Wireless LANs. I. Title.

TK7872.D48.H33 2003
621.382’1 – dc22

2003057612

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-86736-1

Typeset in 11/13pt Palatino by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by TJ International, Padstow, Cornwall
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

Contents

Preface ix

About the Author xv

1 Networked Embedded Systems 1
1.1. Introduction 1
1.2. Object-Oriented Design 3
1.3. Design Integration 4
1.4. Design Optimization 6
1.5. Co-design and Reconfiguration 9
1.6. Java-Driven Co-design and Prototyping 12

1.6.1. Java-Based Co-design 13
1.6.2. Run-Time Management 15
1.6.3. Embedded Systems Platform 17

1.7. Hardware and Software Prototyping 20
1.8. Multiple Application Support 23

1.8.1. FPGA-Based System Architecture 25
1.9. Summary 27

Problems 28
Learning Objectives 28
Practice Problems 29
Practice Problem Solutions 29

2 Smart Sensor Networks 31
2.1. Introduction 31
2.2. Vibration Sensors 32
2.3. Smart Sensor Application to Condition Based Maintenance 34
2.4. Smart Transducer Networking 42
2.5. Controller Area Network 46
2.6. Summary 58

vi CONTENTS

Problems 60
Learning Objectives 60
Practice Problems 60
Practice Problem Solutions 60

3 Power-Aware Wireless Sensor Networks 63
3.1. Introduction 63
3.2. Distributed Power-Aware Microsensor Networks 65
3.3. Dynamic Voltage Scaling Techniques 71
3.4. Operating System for Energy Scalable Wireless Sensor Networks 75
3.5. Dynamic Power Management in Wireless Sensor Networks 79
3.6. Energy-Efficient Communication 81
3.7. Power Awareness of VLSI Systems 85
3.8. Summary 95

Problems 97
Learning Objectives 97
Practice Problems 97
Practice Problem Solutions 98

4 Routing in Wireless Sensor Networks 101
4.1. Introduction 101
4.2. Energy-Aware Routing for Sensor Networks 102
4.3. Altruists or Friendly Neighbors in the Pico Radio Sensor Network 109

4.3.1. Energy-Aware Routing 111
4.3.2. Altruists or Friendly Neighbors 114
4.3.3. Analysis of Energy Aware and Altruists Routing Schemes 116

4.4. Aggregate Queries in Sensor Networks 120
4.4.1. Aggregation Techniques 125
4.4.2. Grouping 133

4.5. Summary 135
Problems 136

Learning Objectives 136
Practice Problems 137
Practice Problem Solutions 137

5 Distributed Sensor Networks 141
5.1. Introduction 141
5.2. Bluetooth in the Distributed Sensor Network 142

5.2.1. Bluetooth Components and Devices 144
5.2.2. Bluetooth Communication and Networking 146
5.2.3. Different Technologies 151

5.3. Mobile Networking for Smart-Dust 154
5.3.1. Smart-Dust Technology 154
5.3.2. Communication and Networking 159

5.4. Summary 162
Problems 163

Learning Objectives 163

CONTENTS vii

Practice Problems 163
Practice Problem Solutions 163

6 Clustering Techniques in Wireless Sensor Networks 165
6.1. Introduction 165
6.2. Topology Discovery and Clusters in Sensor Networks 166

6.2.1. Topology Discovery Algorithm 169
6.2.2. Clusters in Sensor Networks 171
6.2.3. Applications of Topology Discovery 177

6.3. Adaptive Clustering with Deterministic Cluster-Head Selection 181
6.4. Sensor Clusters’ Performance 185

6.4.1. Distributed Sensor Processing 187
6.5. Power-Aware Functions in Wireless Sensor Networks 192

6.5.1. Power Aware Software 196
6.6. Efficient Flooding with Passive Clustering 198

6.6.1. Passive Clustering 203
6.7. Summary 207

Problems 208
Learning Objectives 208
Practice Problems 209
Practice Problem Solutions 209

7 Security Protocols for Wireless Sensor Networks 213
7.1. Introduction 213
7.2. Security Protocols in Sensor Networks 214

7.2.1. Sensor Network Security Requirements 216
7.2.2. Authenticated Broadcast 219
7.2.3. Applications 223

7.3. Communication Security in Sensor Networks 225
7.4. Summary 230

Problems 230
Learning Objectives 230
Practice Problems 231
Practice Problem Solutions 231

8 Operating Systems for Embedded Applications 235
8.1. Introduction 235
8.2. The Inferno Operating System 236
8.3. The Pebble Component-Based Operating System 242

8.3.1. Protection Domains and Portals 246
8.3.2. Scheduling and Synchronization 250
8.3.3. Implementation 253
8.3.4. Embedded Applications 258

8.4. Embedded Operating System Energy Analysis 264
8.5. Summary 270

Problems 271
Learning Objectives 271

viii CONTENTS

Practice Problems 272
Practice Problem Solutions 272

9 Network Support for Embedded Applications 275
9.1. Introduction 275
9.2. Bluetooth Architecture 277
9.3. Bluetooth Interoperability with the Internet and Quality of Service 283
9.4. Implementation Issues in Bluetooth-Based Wireless Sensor Networks 288
9.5. Low-Rate Wireless Personal Area Networks 297
9.6. Data-Centric Storage in Wireless Sensor Networks 306
9.7. Summary 314

Problems 315
Learning Objectives 315
Practice Problems 315
Practice Problem Solutions 316

10 Applications of Wireless Sensor Networks 323
10.1. Introduction 323
10.2. Application and Communication Support for Wireless Sensor Networks 325
10.3. Area Monitoring and Integrated Vehicle Health Management Applications 334

10.3.1. Development Platform 338
10.3.2. Applications 343

10.4. Building and Managing Aggregates in Wireless Sensor Networks 345
10.5. Habitat and Environmental Monitoring 349

10.5.1. Island Habitat Monitoring 350
10.5.2. Implementation 355

10.6. Summary 360
Problems 362

Learning Objectives 362
Practice Problems 362
Practice Problem Solutions 363

References 369

Index 385

Preface

The emergence of compact, low-power, wireless communication sensors
and actuators in the technology supporting the ongoing miniaturization of
processing and storage, allows for entirely new kinds of embedded system.
These systems are distributed and deployed in environments where they
may not have been designed into a particular control path, and are often very
dynamic. Collections of devices can communicate to achieve a higher level of
coordinated behavior.

Wireless sensor nodes deposited in various places provide light, tem-
perature, and activity measurements. Wireless nodes attached to circuits
or appliances sense the current or control the usage. Together they form a
dynamic, multi-hop, routing network connecting each node to more powerful
networks and processing resources.

Wireless sensor networks are application-specific, and therefore they have
to involve both software and hardware. They also use protocols that relate to
both the application and to the wireless network.

Wireless sensor networks are consumer devices supporting multimedia
applications, for example personal digital assistants, network computers, and
mobile communication devices. Emerging embedded systems run multiple
applications, such as web browsers, and audio and video communication
applications. These include capturing video data, processing audio streams,
and browsing the World Wide Web (WWW). There is a wide range of data
gathering applications, energy-agile applications, including remote climate
monitoring, battlefield surveillance, and intra-machine monitoring. Example
applications are microclimate control in buildings, environmental monitor-
ing, home automation, distributed monitoring of factory plants or chemical
processes, interactive museums, etc. An application of collective awareness
is a credit card anti-theft mode. There is also a target tracking application,

x PREFACE

and applications ranging from medical monitoring and diagnosis to target
detection, hazard detection, and automotive and industrial control. In short,
there are applications in military (e.g. battlefields), commercial (e.g. dis-
tributed mobile computing, disaster discovery systems, etc.), and educational
environments (e.g. conferences, conventions, etc.) alike.

This book introduces networked embedded systems, smart sensors, and
wireless sensor networks. The focus of the book is on the architecture,
applications, protocols, and distributed systems support for these net-
works.

Wireless sensor networks use new technology and standards. They involve
small, energy-efficient devices, hardware/software co-design, and network-
ing support. Wireless sensor networks are becoming an important part of
everyday life, industrial and military applications. It is a rapidly growing area
as new technologies are emerging, and new applications are being developed.

The characteristics of modern embedded systems are the capability to com-
municate over the networks and to adapt to different operating environments.

Designing an embedded system’s digital hardware has become increasingly
similar to software design. The wide spread use of hardware description
languages and synthesis tools makes circuit design more abstract. A cosyn-
thesis method and prototyping platform can be developed specifically for
embedded devices, combining tightly integrated hardware and software
components.

Users are demanding devices, appliances, and systems with better capabil-
ities and higher levels of functionality. In these devices and systems, sensors
are used to provide information about the measured parameters or to identify
control states. These sensors are candidates for increased built-in intelligence.
Microprocessors are used in smart sensors and devices, and a smart sensor
can communicate measurements directly to an instrument or a system. The
networking of transducers (sensors or actuators) in a system can provide flex-
ibility, improve system performance, and make it easier to install, upgrade
and maintain systems.

The sensor market is extremely diverse and sensors are used in most
industries. Sensor manufacturers are seeking ways to add new technology in
order to build low-cost, smart sensors that are easy to use and which meet
the continuous demand for more sophisticated applications. Networking is
becoming pervasive in various industrial settings, and decisions about the use
of sensors, networks, and application software can all be made independently,
based on application requirements.

The IEEE (Institute of Electrical and Electronics Engineers) 1451 smart
transducer interface standards provide the common interface and enabling
technology for the connectivity of transducers to microprocessors, control

PREFACE xi

and field networks, and data acquisition and instrumentation systems. The
standardized Transducer Electronic Data Sheet (TEDS) specified by IEEE
1451.2 allows for self-description of sensors. The interfaces provide a stan-
dardized mechanism to facilitate the plug and play of sensors to networks.
The network-independent smart transducer object model, defined by IEEE
1451.1, allows sensor manufacturers to support multiple networks and pro-
tocols. This way, transducer-to-network interoperability can be supported.
IEEE standards P1451.3 and P1451.4 will meet the needs of analog transducer
users for high-speed applications. Transducer vendors and users, system inte-
grators, as well as network providers can benefit from the IEEE 1451 interface
standards. Networks of distributed microsensors are emerging as a solution
for a wide range of data gathering applications. Perhaps the most substantial
challenge faced by designers of small but long-lived microsensor nodes, is
the need for significant reductions in energy consumption. A power-aware
design methodology emphasizes the graceful scalability of energy consump-
tion with factors such as available resources, event frequency, and desired
output quality, at all levels of the system hierarchy. The architecture for a
power-aware microsensor node highlights the collaboration between soft-
ware that is capable of energy-quality tradeoffs and hardware with scalable
energy consumption.

Power-aware methodology uses an embedded micro-operating system to
reduce node energy consumption by exploiting both sleep state and active
power management. Wireless distributed microsensor networks have gained
importance in a wide spectrum of civil and military applications. Advances in
MEMS (Micro Electro Mechanical Systems) technology, combined with low-
power, low-cost, Digital Signal Processors (DSPs) and Radio Frequency (RF)
circuits have resulted in feasible, inexpensive, wireless microsensor networks.
A distributed, self-configuring network of adaptive sensors has significant
benefits. They can be used for remote monitoring in inhospitable and toxic
environments. A large class of benign environments also requires the deploy-
ment of a large number of sensors, such as intelligent patient monitoring,
object tracking, and assembly line sensing. The massively distributed nature
of these networks provides increased resolution and fault tolerance as com-
pared with a single sensor node. Networking a large number of low-power
mobile nodes involves routing, addressing and support for different classes
of service at the network layer. Self-configuring wireless sensor networks
consist of hundreds or thousands of small, cheap, battery-driven, spread-out
nodes, bearing a wireless modem to accomplish a monitoring or control task
jointly. Therefore, an important concern is the network lifetime: as nodes
run out of power, the connectivity decreases and the network can finally be
partitioned and become dysfunctional.

xii PREFACE

Deployment of large networks of sensors requires tools to collect and
query data from these networks. Of particular interest are aggregates whose
operations summarize current sensor values in part or all of an entire sensor
network. Given a dense network of a thousand sensors querying for example,
temperature, users want to know temperature patterns in relatively large
regions encompassing tens of sensors, and individual sensor readings are of
little value.

Networks of wireless sensors are the result of rapid convergence of three
key technologies: digital circuitry, wireless communications, and MEMS.
Advances in hardware technology and engineering design have led to reduc-
tions in size, power consumption, and cost. This has enabled compact,
autonomous nodes, each containing one or more sensors, computation and
communication capabilities, and a power supply. Ubiquitous computing is
based on the idea that future computers merge with their environment until
they become completely invisible to the user. Ubiquitous computing envisions
everyday objects as being augmented with computation and communication
capabilities. While such artifacts retain their original use and appearance,
their augmentation can seamlessly enhance and extend their usage, thus
opening up novel interaction patterns and applications. Distributed wireless
microsensor networks are an important component of ubiquitous computing,
and small dimensions are a design goal for microsensors. The energy supply
of the sensors is a main constraint of the intended miniaturization process. It
can be reduced only to a specific degree since energy density of conventional
energy sources increases slowly. In addition to improvements in energy den-
sity, energy consumption can be reduced. This approach includes the use of
energy-conserving hardware. Moreover, a higher lifetime of sensor networks
can be accomplished through optimized applications, operating systems, and
communication protocols. Particular modules of the sensor hardware can be
turned off when they are not needed. Wireless distributed microsensor sys-
tems enable fault-tolerant monitoring and control of a variety of applications.
Due to the large number of microsensor nodes that may be deployed, and the
long system lifetimes required, replacing the battery is not an option. Sensor
systems must utilize minimal energy while operating over a wide range of
operating scenarios. These include power-aware computation and communi-
cation component technology, low-energy signaling and networking, system
partitioning considering computation and communication trade-offs, and a
power-aware software infrastructure. Routing and data dissemination in sen-
sor networks requires a simple and scalable solution. The topology discovery
algorithm for wireless sensor networks selects a set of distinguished nodes,
and constructs a reachability map based on their information. The topology
discovery algorithm logically organizes the network in the form of clusters

PREFACE xiii

and forms a tree of clusters rooted at the monitoring node. The topology
discovery algorithm is completely distributed, uses only local information,
and is highly scalable.

To achieve optimal performance in a wireless sensor network, it is impor-
tant to consider the interactions among the algorithms operating at the
different layers of the protocol stack. For sensor networks, one question is
how the self-organization of the network into clusters affects the sensing
performance. Thousands to millions of small sensors form self-organizing
wireless networks, and providing security for these sensor networks is not
easy since the sensors have limited processing power, storage, bandwidth,
and energy. A set of Security Protocols for Sensor Networks (SPINS), explores
the challenges for security in sensor networks. SPINS include: TESLA (the
micro version of the Timed, Efficient, Streaming, Loss-tolerant Authentication
Protocol), providing authenticated streaming broadcast, and SNEP (Secure
Network Encryption Protocol) providing data confidentiality, two-party data
authentication, and data freshness, with low overhead. An authenticated
routing protocol uses SPINS building blocks. Wireless networks, in general,
are more vulnerable to security attacks than wired networks, due to the
broadcast nature of the transmission medium. Furthermore, wireless sensor
networks have an additional vulnerability because nodes are often placed in
a hostile or dangerous environment, where they are not physically protected.
The essence of ubiquitous computing is the creation of environments satu-
rated with computing and communication in an unobtrusive way. WWRF
(Wireless World Research Forum) and ISTAG (Information Society Technolo-
gies Advisory Group) envision a vast number of various intelligent devices,
embedded in the environment, sensing, monitoring and actuating the phys-
ical world, communicating with each other and with humans. The main
features of the IEEE 802.15.4 standard are network flexibility, low cost, and
low power consumption. This standard is suitable for many applications in
the home requiring low data rate communications in an ad hoc self-organizing
network.

The IEEE 802.15.4 standard defines a low-rate wireless personal area
network (LR-WPAN) which has ultra-low complexity, cost, and power, for
low data rate wireless connectivity among inexpensive fixed, portable, and
moving devices. The IEEE 802.15.4 standard defines the physical (PHY)
layer and Media Access Control (MAC) layer specifications. In contrast to
traditional communication networks, the single major resource constraint in
sensor networks is power, due to the limited battery life of sensor devices.
Data-centric methodologies can be used to solve this problem efficiently. In
Data Centric Storage (DCS) data dissemination frameworks, all event data
are stored by type at designated nodes in the network and can later be

xiv PREFACE

retrieved by distributed mobile access points in the network. Resilient Data-
Centric Storage (R-DCS) is a method of achieving scalability and resilience by
replicating data at strategic locations in the sensor network. Various wireless
technologies, like simple RF, Bluetooth, UWB (ultrawideband) or infrared
can be used for communication between sensors. Wireless sensor networks
require low-power, low-cost devices that accommodate powerful processors,
a sensing unit, wireless communication interface and power source, in a
robust and tiny package. These devices have to work autonomously, to require
no maintenance, and to be able to adapt to the environment. Wireless Sensor
Network Designs focuses on the newest technology in wireless sensor networks,
networked embedded systems, and their applications. A real applications-
oriented approach to solving sensor network problems is presented. The book
includes a broad range of topics from networked embedded systems and
smart sensor networks, to power-aware wireless sensor networks, routing,
clustering, security, and operating systems along with networks support.
The book is organized into ten chapters, with the goal to explain the newest
sensor technology, design issues, protocols, and solutions to wireless sensor
network architectures.

As previously discussed, Chapter 1 describes networked embedded sys-
tems, their design, prototyping, and application support. Chapter 2 intro-
duces smart sensor networks and their applications. Chapter 3 introduces
power-aware wireless sensor networks. Routing in wireless sensor networks
and the aggregation techniques are discussed in Chapter 4. Distributed sensor
networks are presented in Chapter 5, and clustering techniques in wireless
sensor networks are introduced in Chapter 6. Chapter 7 presents security
protocols in sensor networks. Operating systems for embedded applications
are discussed in Chapter 8. Chapter 9 presents network support for embed-
ded applications. Applications of wireless sensor networks are studied in
Chapter 10.

A. H.

ACKNOWLEDGEMENTS

The author wishes to thank John Wiley Publisher Birgit Gruber for her
support and excellent handling of the preparation of this book. Many thanks
to the entire staff of John Wiley, particularly Irene Cooper and Daniel Gill,
for making publication of this book possible. Thanks also to the six reviewers
for their thorough reviews.

About the Author

Anna Hać received MS and PhD degrees in computer science from the
Department of Electronics, Warsaw University of Technology, Poland, in
1977 and 1982, respectively.

She is a professor in the Department of Electrical Engineering, University
of Hawaii at Manoa, Honolulu. During her long and successful academic
career she was a Visiting Scientist at the Imperial College, University of
London, England, a postdoctoral fellow at the University of California at
Berkeley, an assistant professor of Electrical Engineering and Computer
Science at The Johns Hopkins University, a Member of Technical Staff at
AT&T Bell Laboratories, and a senior summer faculty fellow at the Naval
Research Laboratory.

Her research contributions include system and workload modeling, perfor-
mance analysis, reliability, modeling process synchronization mechanisms
for distributed systems, distributed file systems, distributed algorithms, con-
gestion control in high-speed networks, reliable software architecture for
switching systems, multimedia systems, wireless networks, and network
protocols.

She has published more than 130 papers in archival journals and inter-
national conference proceedings, and she is the author of two textbooks
Multimedia Applications Support for Wireless ATM Networks (2000), and Mobile
Telecommunications Protocols for Data Networks (2003).

She is a member of the Editorial Board of the IEEE Transactions on Multi-
media, and is on the Editorial Advisory Board of Wiley’s International Journal
of Network Management.

1
Networked Embedded
Systems

1.1. INTRODUCTION

The characteristics of modern embedded systems are the capability to
communicate over the networks and to adapt to different operating envi-
ronments. Embedded systems can be found in consumer devices supporting
multimedia applications, for example, personal digital assistants, network
computers, and mobile communication devices. The low-cost, consumer-
oriented, and fast time-to-market objectives dominate embedded system
design. Hardware and software codesign is used to cope with growing
design complexity.

Designing an embedded system’s digital hardware has become increasingly
similar to software design. The widespread use of hardware description
languages and synthesis tools makes circuit design more abstract. Market
pressures to reduce development time and effort encourage abstract specifi-
cation as well, and promote the reuse of hardware and software components.
Therefore, a specification language should provide a comfortable means for
integrating reuse libraries.

Java is an object-oriented, versatile language of moderate complexity that
can be used as the specification language in the design flow. Java has built-in
primitives for handling multiple threads, and supports the concurrency and
management of different control flows. New applications can be rapidly
developed in Java.

Wireless Sensor Network Designs A. Hać
 2003 John Wiley & Sons, Ltd ISBN: 0-470-86736-1

2 NETWORKED EMBEDDED SYSTEMS

A cosynthesis method and prototyping platform can be developed specif-
ically for embedded devices that combine tightly integrated hardware and
software components.

Exploration and synthesis of different design alternatives and co-verification
of specific implementations are the most demanding tasks in the design of
embedded hardware and software systems. Networked embedded systems
pose new challenges to existing design methodologies as novel requirements
like adaptivity, run-time, and reconfigurability arise. A codesign environment
based on Java object-oriented programming language supports specification,
cosynthesis and prototype execution for dynamically reconfigurable hard-
ware and software systems.

Networked embedded systems are equipped with communication capa-
bilities and can be controlled over networks. JaCoP (Java driven Codesign
and Prototyping environment) is a codesign environment based on Java that
supports specification, cosynthesis and prototyping of networked embedded
systems.

Emerging embedded systems run multiple applications such as web
browsers, audio and video communication applications, and require network
connectivity.

Networked embedded systems are divided into:

• multifunction systems that execute multiple applications concurrently, and
• multimode systems that offer the users a number of alternative modes

of operation.

In multifunction systems, the embedded systems can execute multiple
applications concurrently. These applications include capturing video data,
processing audio streams, and browsing the WWW (World Wide Web).
Embedded systems must often adapt to changing operating conditions. For
example, multimedia applications adapt to the changing network rate by
modifying video frame rate in response to network congestion. A trade-
off between quality of service (QoS) and the network rate is applied. Audio
applications use different compression techniques, depending on the network
load and quality of service (QoS) feedback from the client applications.

In multimode systems, the embedded multimode systems experience a
number of alternative modes of operation. For example, a mobile phone
performing a single function can change the way it operates to accommodate
different communication protocols supporting various functions and features.
Flexible, multimode devices are mandatory for applications such as electronic
banking and electronic commerce. Depending on the type of connection and
the security level required, devices apply different encryption algorithms
when transmitting data.

1.2. OBJECT-ORIENTED DESIGN 3

Another use of embedded multimode systems is influenced by the rapid
evolution of web-based applications. The application change causes the
requirements for devices such as set-top boxes to change within months.
For certain application domains, designers can alleviate the problem of short
product lifetime by designing hardware and software system components that
users can configure or upgrade after production. However, many embedded
devices do not support these tasks.

Remote administration of electronic products over the Internet has become
an important feature: there are printers or copiers with embedded Web
servers. By using reconfigurable hardware components, vendors can change
hardware implemented functionality after installing networked devices at
the customer site.

1.2. OBJECT-ORIENTED DESIGN

Embedded systems require hardware and software codesign tools and frame-
works. However, designing configurable hardware and software systems
creates a problem. A complete design environment for embedded sys-
tems should include dynamically reconfigurable hardware components. The
object-oriented programming language, Java, is used for specification and
initial profiling, and for the final implementation of the system’s software
components.

Several trends influence the embedded systems development and shape
requirements for the optimal development tool. Designing an embedded sys-
tem’s digital hardware has become increasingly similar to software design.
The widespread use of hardware description languages and synthesis tools
makes circuit design more abstract. Market pressures to reduce develop-
ment time and effort encourage abstract specification as well, and promote
the reuse of hardware and software components. Therefore, a specifica-
tion language should provide a comfortable means for integrating reuse
libraries.

Object-oriented programming has proven to be an efficient paradigm for the
design of complex software systems. Although ‘object-oriented’ may imply
performance degradation, it comes with significant benefits: not only does it
provide a better means for managing complexity and reusing existing mod-
ules, it also reduces problems and costs associated with code maintenance.
These benefits far outweigh the performance degradation.

In embedded-system design, a major trend is increasingly to implement
functionality in software. This allows for faster implementation, more flexibil-
ity, easier upgradability, and customization with additional features. Unlike

4 NETWORKED EMBEDDED SYSTEMS

hardware, software incurs no manufacturing costs, although the costs of
software maintenance cause increasing concern.

The design of networked embedded systems requires support for a diverse
feature set that includes Internet mobility, network programming, security,
code reuse, multithreading, and synchronization. However, Java has not been
designed for specifying systems with hard real-time constraints.

The need for communicating with embedded systems over the Internet
pushes more designers towards Java, which has been adopted as the premier
design platform for implementing set-top box applications. Set-top boxes
create a rapidly growing embedded-systems market that promises to reach
millions of homes.

1.3. DESIGN INTEGRATION

A cosynthesis method and prototyping platform can be developed specif-
ically for embedded devices that combine tightly integrated hardware and
software components.

A cosynthesis is used to make the most efficient assignment of tasks
to software or hardware, and the cosynthesis method uses an initial Java
specification of the desired functionality. Software profiling by the Java vir-
tual machine identifies bottlenecks and computation-intensive tasks. Using
a graphical visualization tool that displays each task’s relative and abso-
lute execution times, the designer quickly uncovers an application’s most
computationally demanding tasks.

The candidate tasks for hardware implementation are selected on the basis
of profiling results and the reuse library of available hardware components.
A high-level synthesis tool is used to transform Java methods into register
transfer level VHDL (Very High-Speed Integrated Circuit Hardware Descrip-
tion Language). The tool generates an appropriate interface description for
each hardware block.

The target architecture for synthesis is the prototyping and exploration
platform shown in Figure 1.1. In this architecture software and hardware parts
of the design are handled separately. A run-time environment implemented
in software on a PC (Personal Computer) is used to prototype software. An
additional configurable hardware extension, the dynamically reconfigurable
field-programmable gate array (DPGA) board, handles hardware.

In the run-time environment, the Java virtual machine forms the core com-
ponent of the software execution engine. A database stores information about
the classes and methods used by the design. Software synthesis takes the form
of generated byte code, compiler encoded, platform independent code. The

1.3. DESIGN INTEGRATION 5

Class loader Database

Device
driver

Hardware
wrapper

Interpreter
engine

Operating
system

Front-end
graphical user

interface

Profiling
information

Execution
control

DPGA board

PCI

FPGA
bit files

Java
bytecode

Runtime environment

Figure 1.1 Design exploration platform for networked embedded systems.

virtual machine contains the necessary interface mechanisms (the hardware
wrapper and device driver) to communicate with hardware modules.

This approach yields a smooth migration from a software implementation
to a hardware and software system without modifying the Java source code.
The components for hardware object handling to the Java virtual machine
can be added and interfaced to an external hardware component. This design
automates the configurable hardware device management.

A prototyping board connected to a PC via a PCI (PC Interface) bus is
used to design the exploration platform. The board consists of a DPGA chip
and a local memory. The DPGA offers short reconfiguration times and full
access to implemented circuit internal registers, which allows mapping of
multiple hardware objects onto a single chip. The parts of the chip can be
reconfigured even when the other parts of the chip are operating, allowing
execution of multiple methods on the DPGA board when running a system
prototype.

In practice, the run-time environment in Figure 1.1 reads in a table with the
desired function partitions routed to hardware or software implementations.
The environment directly handles these tasks executed as software on the
Java virtual machine. For hardware modules, it configures the DPGA (with
information from the DPGA bit files) and manages its communication with
the DPGA.

During execution of the application, the interpreter must activate the
hardware call module whenever the control flow reaches the hardware

6 NETWORKED EMBEDDED SYSTEMS

method. Depending on the DPGA board’s current state, a hardware call can
trigger one or more of the following actions:

• complete or partial reconfiguration of the DPGA;
• transfer of input data to the board;
• transfer of data back to the calling thread;
• transmission of an enable signal that in turn starts the emulation of the

hardware design, and
• transfer of data back to the calling thread.

These procedures are implemented in the hardware wrapper shown in
Figure 1.1. The synchronization mechanism allows only one thread at a time
to access the DPGA board.

The initial software specification cannot provide enough details to optimize
the hardware–software boundary because there is not enough detail about the
final implementation. During prototyping, the most interesting are different
protocols and interface mechanisms.

1.4. DESIGN OPTIMIZATION

Embedded-system designers seek to maximize performance within the con-
straints of limited hardware resources. During optimization, the focus is
on those parts of the design that could be alternatively implemented in
software or hardware, and their corresponding interfaces. The prototyping
environment gathers characteristic information about hardware and software
modules, and stores it in a library of reusable modules. The most important
parameters that are measured include:

• execution times of a module for both hardware and software implementa-
tions;

• required area for hardware implementation, and
• specific interface costs (in terms of additional execution time for data

transfer, hardware area, or software code).

In systems that depend on both hardware and software, efficient interface
design is crucial to achieve maximum performance. For this reason, the opti-
mization process emphasizes an efficient design of interfaces while searching
for the optimum mapping of modules to hardware and software.

1.4. DESIGN OPTIMIZATION 7

Layer 2
Communication via SRAM

Layer 1
Direct communition link

Task_4Task_3Task_2Task_1

Task_4Task_3Task_2Task_1

Hardware–software interface

Software communication channel

Software

Hardware

Hardware communications channels

Figure 1.2 System communication model.

The basic structure and interface types are shown in Figure 1.2. The interface
model contains a communication channel for software modules, an interface
for data exchange between the hardware and software domain, and a two-
layer communication channel for hardware entities. Layer 1 represents a
direct communication link that is implemented on chip. Layer 2 represents
communication via scratch-pad memory SRAM.

During the design optimization, the prototyping environment calculates
the interface overhead for the current mapping of modules to the hardware
and software partitions. If tightly coupled modules are mapped to hardware,
the communication is implemented by using on-chip registers or through the
shared memory, using static RAM (random access memory).

The prototyping environment optimizes a system design for minimum
execution times within the constraints of limited DPGA chip area and commu-
nication bandwidth. To represent the quality of the implementation by a single
numerical value, the cost function is used. The cost function is a weighted
sum of the squares of the costs of hardware, software, and communication.

8 NETWORKED EMBEDDED SYSTEMS

For small designs, the partitions can be assigned by using an exhaustive
search algorithm, which finds the implementation that provides the minimum
cost function. The complexity of this solution grows exponentially and
becomes infeasible for systems with more than 25 modules. This partitioning
belongs to the group of NP-complete problems. A more suitable, heuristic
optimization method is simulated annealing.

The simulated-annealing method models the physical process of melting
a material and then cooling it so that it crystallizes into a state of minimal
energy. This method has been successfully applied to several problems in very
large systems integration. Further, it is easy to implement for differing cost
functions and usually delivers good results. The algorithm, a probabilistic
search method that can climb out of a local minimum, consists of two
nested loops:

• The outer loop decreases the current temperature according to a certain
user-specified cooling schedule.

• The inner loop generates and evaluates several new partitions by shift-
ing modules from one partition to the other (depending on the current
temperature).

The algorithm accepts moving a module from one partition to the other
if doing so decreases the overall cost function. With a certain probability
that depends on the current temperature, it may also accept cost increases.
This way, the algorithm can escape from a local minimum. The inner loop
repeats until the algorithm detects a steady state for the current tempera-
ture. Depending on the temperature schedule and the stopping criterion, a
trade-off between the computation time and the result quality is possible.
Computation times can be decreased significantly by choosing an initial par-
tition instead of a random partition before starting the optimization. This
way the algorithm begins with a lower starting temperature, thus reducing
the number of iterations.

For example, the optimization process for a reasonably sized system with
about 100 modules takes less than one minute with a Pentium II processor.
Because simulated annealing is a probabilistic method, two executions of
the algorithm may produce slightly different results, but with such short
run-times, the optimization process can be repeated several times, thereby
increasing the likelihood of obtaining a near optimal result.

Java-based rapid prototyping of embedded systems offers several benefits.
It allows system-level testing of novel designs and architectures using a flex-
ible platform for development of both software and hardware components.
Java-based prototyping also combines profiling results from the specification

1.5. CO-DESIGN AND RECONFIGURATION 9

level and characteristic measures of the prototype implementation. Combin-
ing these data gives a more solid prediction of the final system’s performance
and cost, making possible a reliable optimization strategy.

1.5. CO-DESIGN AND RECONFIGURATION

Exploration and synthesis of different design alternatives and co-verification
of specific implementations are the most demanding tasks in the design of
embedded hardware and software systems. Networked embedded systems
pose new challenges to existing design methodologies as novel requirements
like adaptivity, run-time, and reconfigurability arise. A codesign environment
based on Java object-oriented programming language supports specifica-
tion, cosynthesis and prototype execution for dynamically reconfigurable
hardware and software systems.

A design exploration and prototyping platform has been developed for
embedded hardware and software systems with reconfiguration capabilities.
The target architecture for such systems consists of a microprocessor running
a Java virtual machine, and a hardware processor consisting of one or
more FPGAs. An overview of the design flow for cosynthesis is illustrated in
Figure 1.3. Starting from an initial Java specification, profiling data is gathered

Software
methods

Software
compilation

Interface
generation

Reuse
library

Hardware
methods

Java
bytecode

FPGA
bitfiles

Hardware
synthesis

Profiling

Partitioning

Java specification

Figure 1.3 Specification and cosynthesis.

10 NETWORKED EMBEDDED SYSTEMS

while executing the program with typical input data. This profiling data is
then visualized to guide the designer in the partitioning process. Partitioning
is done at the method level of granularity using a graphical user interface.
Functions to be implemented in hardware are synthesized using high-level
and logic synthesis tools. Previously designed hardware components are
accessible through a database of parameterizable VHDL components. After
the cosynthesis, Java byte code for all methods of the initial specification is
stored in the pool of software methods. For all methods that are candidates
for implementation in reconfigurable hardware, the FPGA configuration data
as well as interface information is stored in the pool of hardware methods.
The target hardware platform consists of dynamically reconfigurable FPGAs
(DPGAs). These new FPGA architectures can be partially reconfigured at run
time, i.e. a portion of the chip can be reprogrammed while other sections
are operating without interruption. The target software platform for system
prototyping is Linux PC.

A run-time manager controls the dynamic behavior of a reconfigurable sys-
tem during execution. The run-time manager schedules methods for execution
either as software on the Java virtual machine (JVM) of the host processor or
as hardware on the reconfigurable DPGA hardware. The scheduling depends
on the dynamic behavior of the application and on the current partitioning
table chosen by the designer. In contrast to traditional prototyping systems,
execution on this platform is a highly dynamic process. The execution flow of
the hardware and software system is dominated by the software part. Soft-
ware methods are executed on the JVM. Whenever the control flow reaches a
hardware method, the time system determines whether the appropriate con-
figuration file has already been downloaded. If not, then the manager chooses
a DPGA and starts configuration. If there is already a DPGA configured with
the desired functionality, or if only partial reconfiguration is necessary, the
address and parameters of the communication channel to the target DPGA
are loaded.

The core component of the run time environment is the Java virtual machine
shown in Figure 1.1. It basically consists of a class loader for dynamically load-
ing Java byte code and an execution engine for interpreting the byte codes on
the host processor. Design framework can use the KAFFE JVM which comes
with a complete source code. The execution framework integrates reconfig-
urable DPGA hardware, and several extensions to the class loader and the
interpreter are necessary. The class loader is extended to read in the current
hardware and software partitioning table and to handle hardware methods,
i.e. methods which have to be executed on the DPGA board. These hardware
methods and information about their corresponding interfaces, which are nec-
essary to transfer data to and from the DPGA, are accessed through a database.

1.5. CO-DESIGN AND RECONFIGURATION 11

The execution engine needs to know whether a method will be interpreted
as byte code or executed in hardware. Therefore, the class loader assigns a
special flag to every hardware method. During execution of the application,
the interpreter has to activate the hardware call module whenever flow
of control reaches a hardware method. Depending on the current state of
the DPGA board, several actions are triggered with every hardware call.
If necessary, a new configuration data is downloaded to the chip, input
data is transferred to the board, the hardware design is executed and the
resulting data is transferred back to the calling thread. These procedures
are implemented in the hardware wrapper (Figure 1.1). Furthermore, a strict
synchronization mechanism is implemented. In this implementation, one
thread at a time is allowed to access the DPGA board.

Extending the Java virtual machine for interaction with reconfigurable
hardware resources allows implementation of a completely user-transparent
mechanism for execution of a mixed hardware and software applications. In
the prototyping phase, the user can explore design alternatives and different
hardware and software mappings via a graphical user interface. The Java
code remains unchanged, as the run-time system and the extended inter-
preter completely manage execution of hardware and software components.
However, the drawback of this approach is that only Java virtual machines
can be used where the source code is available. For different VMs or releases,
extensions and customizations have to be made.

In an alternative implementation, the Java class and native methods are
used to interface with the hardware part of the system. The main focus is
on implementing all necessary functionality for hardware interfacing and
reconfiguration in Java. Therefore, the platform specific API (Application
Programming Interface) of the reconfigurable hardware board can be kept
very small. In this case the board API basically consists of native func-
tions to write a value to, and read a value from, a certain address of
the board. These functions are implemented via the Java Native Interface
(JNI). This means that all methods for managing the configuration pro-
cess and execution are implemented in Java, and all communication to the
hardware board is based on the native implementations of the read and
write functions. For communicating with the external board via the PCI
bus, a dedicated device driver is implemented as a kernel loadable module
under Linux.

The benefits of this approach are clear. The Java VM does not have to
be modified and the hardware interface is clearly defined within the Java
language. This means that the designer has complete control over all methods
for accessing and managing the reconfigurable hardware. The drawback is
that the application code has to be modified. The DPGA interface class has

12 NETWORKED EMBEDDED SYSTEMS

to be included in the application source and the designer has to call the
appropriate functions for using the DPGA. However, this method can be
used with any virtual machine. Therefore, it is relatively simple to integrate
and test different commercial implementations of the JVM.

1.6. JAVA-DRIVEN CO-DESIGN AND PROTOTYPING

In embedded systems an increasing share of functionality is implemented in
software, and the flexibility or reconfigurability is added to the list of non-
functional requirements. Networked embedded systems are equipped with
communication capabilities and can be controlled over networks. JaCoP (Java
driven Codesign and Prototyping environment) is a codesign environment
based on Java that supports specification, cosynthesis and prototyping of
networked embedded systems.

The rapidly growing market for web-enabled consumer electronic devices
introduces a paradigm shift in embedded system design. Traditionally,
embedded systems have been designed to perform a fixed set of previ-
ously specified functions within a well-known operating environment. The
functionality of the embedded system remains unchanged during product
lifetime. However, with shorter time-to-market windows and increasing
product functionality, this design philosophy has exhibited its shortcomings.
Hardware and software codesign tools are increasingly used to alleviate some
of the problems in the design of complex heterogeneous systems.

The key feature of next-generation embedded devices is the capability
to communicate over networks and to adapt to different operating envi-
ronments. There is an emerging class of systems that concurrently execute
multiple applications, such as processing audio streams, capturing video
data and web browsing. These systems need to be adaptive to changing oper-
ating conditions. For instance, in multimedia applications the video frame
rate has to be adjusted depending on the network congestion. Likewise,
for audio streams different compression techniques are applied depending
on the network load. Besides this class of multifunction system there are
multimode systems, i.e. systems that know several alternative modes of oper-
ation, for example a mobile phone that is able to switch between different
communication protocols or a transmitter that can toggle between different
encryption standards.

This paradigm shift in both functional and nonfunctional requirements
of embedded appliances not only holds for consumer devices. In industrial
automation there is a growing demand for sensor and actuator devices that
can be remotely controlled and maintained via the Internet.

1.6. JAVA-DRIVEN CO-DESIGN AND PROTOTYPING 13

Several system-level design languages and codesign frameworks have
been proposed by researchers and are gaining acceptance in industry, but
there is a lack of methods and tools for investigating issues that are raised
when designing run-time reconfigurable hardware and software systems.
A complete design environment for embedded systems includes dynam-
ically reconfigurable hardware components. JaCoP (Java driven Codesign
and Prototyping environment) is based on Java, which is used for specifi-
cation and initial profiling as well as for the final implementation of system
software.

1.6.1. Java-Based Co-design

Designing the digital hardware part of a system has become increasingly
similar to software design. With widespread use of hardware description
languages and synthesis tools, circuit design has moved to higher levels of
abstraction. For managing complexity of future designs, abstract specification
and reuse of previously developed hardware and software components is
essential. Therefore, a specification language should provide means for inte-
grating reuse libraries, that is, packages of previously developed components.
Furthermore, object-oriented programming has proven to be a very efficient
paradigm in the design of complex software systems. Object-oriented pro-
gramming provides better means for managing complexity and for reusing
existing modules. Object-oriented programming also reduces costs associated
with code maintenance. In embedded system design, a major trend is increas-
ingly to implement functionality in software. The reasons for this are faster
implementation, better flexibility and easier upgradability. Consequently, the
cost of software maintenance is an issue of growing importance. Java is useful
as a specification language, and it is an object-oriented, versatile language
of moderate complexity. Java has built-in support for handling multiple
threads, and expressing concurrency and managing different flows of control
is well supported.

The Java Beans specification provides a standard concept for reuse of
software components. With respect to networked embedded system design,
features like Internet mobility, network programming, security, and syn-
chronization are of great importance. However, Java has not been designed
for specification of real-time systems. Therefore, there have been proposed
extensions (and restrictions) to the language for specifying such systems.
The need to communicate with embedded systems over the Internet pushes
more designers towards Java. Personal Java has been adopted as the premier
design platform for implementing applications for set-top boxes.

14 NETWORKED EMBEDDED SYSTEMS

DES cipher IDEA cipher RSA cipher

Wavelet transform

Quantization and RLE

Modulation

Video processing subsystem:

Data encryption subsystem:

Figure 1.4 Reconfigurable system set-top box.

The framework for specification and design exploration of mixed hard-
ware and software implementations is targeted for reconfigurable embedded
systems. In Figure 1.4, two examples of application of run-time reconfigu-
rations are given. The first task graph shows an encryption system which
can switch between different operation modes, i.e. different encryption algo-
rithms. Typically, only one application at a time is active and reconfiguration
of the system is not time-critical. The second task graph represents a part
of a video communication system. The task of processing a video stream
is decomposed into a series of subtasks, which are executed on the same
piece of silicon. The chip is reconfigured periodically. Rapidly reconfigurable
hardware components are needed to meet soft deadlines.

The design flow is as follows: starting from an initial Java specification, pro-
filing data is gathered while executing the program with typical input data.
This profiling data is then analyzed and animated to guide the designer in the
partitioning process. Partitioning is done at the method level of granularity
using a graphical user interface. Functions that are implemented in hard-
ware are synthesized using high-level and logic synthesis tools. Previously
designed hardware components are integrated by using a database of parame-
terizable VHDL components. After cosynthesis, Java byte code for all methods
of the initial specification is stored in the pool of software methods. For all
methods that are candidates for implementation in reconfigurable hardware,
the FPGA configuration data as well as interface information is stored in the
pool of hardware methods. The target hardware platform consists of dynam-
ically reconfigurable FPGAs (DPGAs). These new FPGA architectures may
be partially reconfigured at run-time, i.e. a portion of the chip can be repro-
grammed while other sections are operating without interruption. The target
software platform for system prototyping is currently a Linux Pentium PC.

1.6. JAVA-DRIVEN CO-DESIGN AND PROTOTYPING 15

1.6.2. Run-Time Management

The interactions between the hardware and software parts of the system, as
well as the reconfiguration process, are managed by the run-time environment
(Figure 1.1). The run-time manager schedules methods for execution either as
software on the Java virtual machine of the host processor or as hardware on
the reconfigurable DPGA hardware. The scheduling depends on the dynamic
behavior of the application and on the current partitioning table chosen by
the designer. In contrast to traditional FPGA-based prototyping systems,
execution on this platform is a highly dynamic process. The execution flow
of the hardware and software system is dominated by the software part.
Software methods are executed on the Java virtual machine. Whenever the
control flow reaches a hardware method, the run-time system determines
whether the appropriate configuration file has already been downloaded. If
not, then the manager chooses an available DPGA and starts configuration.
If there is already a DPGA configured with the desired functionality, or if
only partial reconfiguration is necessary, the address and parameters of the
communication channel to the target DPGA are loaded.

In virtual machine, a Java class and native methods are used for interfacing
with the hardware part of the system. The main focus is to implement all
necessary functionality for interfacing hardware and for reconfiguration in
Java. Therefore, the platform specific API of the reconfigurable hardware
board is kept very small. In this case, the board API basically consists of
native functions to write a value to, and read a value from, a certain address
on the board. These functions are implemented via the Java Native Interface
(JNI). All methods for managing the reconfiguration process and execution
are implemented in Java and all communication to the hardware board is
based on the native implementations of the read and write functions. For
communicating with the external board via the PCI bus, a dedicated Linux
device driver is used.

The benefits of this approach are as follows. The Java VM does not have
to be modified and the hardware interface is clearly defined within the Java
language. A designer has complete control over all methods for accessing and
managing the reconfigurable hardware. The drawback is that the applications
source code has to be modified. The interface class DPGA circuit has to be
included in the application source, and the designer has to call the appropriate
functions for using the DPGA. However, this methodology can be used
with any virtual machine. Therefore, it is relatively simple to integrate and
test different commercial implementations of the JVM. To support a better
interface for the user of the JaCoP system, a special class (HW base) for
managing hardware designs and for controlling the reconfiguration process

16 NETWORKED EMBEDDED SYSTEMS

Linux operating system

Java virtual machine

Application
code

HW_ job HW_ jobHW_ job

Native
functions

Device
driver

Class DPGA_circuit

Class HW_base

Figure 1.5 Thread access to hardware.

is used (Figure 1.5). This class encapsulates all functionality specific to the
underlying hardware resource, and also hides details of the hardware and
software interfaces from the designer. Communication to the DPGA board
is done by method invocations of the board API (DPGA circuit) class.
To present the dynamic reconfiguration capabilities of the hardware, it is
desirable to implement several individual hardware designs on the chip.
Each of these designs is accessed by a corresponding Java thread. With the
JaCoP native implementation, a mechanism is provided for multiple threads
to make concurrent use of the external hardware resource. Therefore, the class
HW job is developed. An object of this type (Figure 1.5) represents a thread
that makes use of hardware methods. These objects use a single instance
of type HW base when accessing the DPGA. To avoid racing conditions or
invalid hardware configuration, the operations that access the DPGA are
defined as critical sections. The methods for reconfiguration and for register
reads and writes are synchronized. The currently active HW job cannot be
preempted by other threads while executing such critical sections. In network
embedded system applications, threads are used in two different scenarios.
A typical example is a system task that operates on certain blocks of data,
consuming a significant amount of time. After processing this data, the
thread terminates. Another example is a task that is periodically activated.
To save the cost of repeated reconfigurations, the corresponding hardware
design is kept on the FPGA. Whenever data is available for processing, the
corresponding thread becomes active and returns to a wait state afterwards.

Reuse of hardware beans occurs when the software engineering tech-
niques are increasingly used to lever the concurrent design of hardware
and software of embedded systems based on a single system-level descrip-
tion. When designing a set of systems within a certain application domain

1.6. JAVA-DRIVEN CO-DESIGN AND PROTOTYPING 17

(e.g. set-top boxes), reuse of standard components (modulators, video and
audio processing tasks, ciphering algorithms, data compression, and error
control) is especially attractive. To reduce the development cost and the
time to market, the tool and methodology for reuse is integrated into JaCoP.
This methodology is based on the Java Beans mechanism for reusing soft-
ware components. Therefore, the concept is extended to allow for hardware
components (hardware beans).

In the introspection and serialization, the beans are used for composing
applications by using a visual builder tool. In this design environment, the
different parameters of a component are exhibited (i.e. introspection) and
interactively customized. After customization, the chosen configuration has
to be saved (i.e. serialization) for use within the run-time environment.
This mechanisms are also used for hardware designs. For example when
composing a system in the JaCoP environment, the weights of a Finite
Impulse Response (FIR)-filter bean can be chosen by the system designer
without the need for an additional synthesis step.

Properties and events are used in the implemented functionality of a
hardware and software basic component, which is reflected in the methods
of a bean. Events are used for intercomponent communication during run-
time. Properties are basically named attributes of a component, which can
be accessed at design time and at run-time. According to the strict naming
convention, property ‘X’ can be accessed by so-called ‘get X’ and ‘set X’
methods. With respect to hardware components, properties and events are
both used for transferring data between components. For example, by setting
a property of a decoder bean, a block of input data can be transferred
to the decoder. After processing of the data block, an event is fired and
the result can be obtained by retrieving the corresponding bean property.
Multiple threads can access both hardware and software beans at run-time.
Therefore, the aspects of synchronization need to be taken into account when
developing a bean.

Reuse methodologies typically require additional effort during the design
of a specific component. They are useful when implementing a variety of
systems within a certain application domain. One of the benefits of Java is that
it encourages design for reuse by providing the Java Beans mechanism and
also by providing a built-in concept and a tool for hypertext documentation
of Java classes.

1.6.3. Embedded Systems Platform

The target architecture of an embedded system platform consists of a standard
microprocessor tightly interfaced with a dynamically reconfigurable FPGA.

18 NETWORKED EMBEDDED SYSTEMS

They are connected to static random access memory (RAM). This is a pro-
totype of a single chip solution of a reconfigurable system. Such systems
are available, for example, the Siemens Tricore or the National Napa1000
Reconfigurable Processor. The Napa1000 is a single-chip implementation for
signal processing which provides both fixed logic (a 32-bit RISC (Reduced
Instruction Set Computer) core) and a reconfigurable logic part (a 50-k gate
Adaptive Logic Processor). For developing the codesign methodology and
the corresponding cosynthesis flow, a Linux PC is used as development
platform and host processor and the XC6200DS board as a reconfigurable
hardware resource. The main components of this board are a PCI interface
and a reconfigurable processing unit XC6216. Furthermore, there are two
banks of memory included, which can be accessed from both the DPGA and
the PCI bus. The most prominent feature of this DPGA is its microprocessor
interface. Direct write and read operations over an address and data bus are
supported to every logic cell or register on the chip. This provides a mech-
anism for transferring data between hardware and software components of
the design. The hardware wrapper can read from, and write to, every register
of the hardware design at run-time.

This implementation is referred to as the JaCoP native interface. An alter-
native implementation for the run-time system is referred to as the JaCoP
interpreter. Performance of the JaCoP interpreter is defined by the costs of
DPGA reconfiguration and communication between hardware and software.
A complete reconfiguration of the chip is too slow for dynamic applica-
tions with soft deadlines. Typical times for standard reconfiguration ranges
between 30 ms and 400 ms depending on the size of the circuit. In order
to reduce this overhead for reconfiguration, a mechanism for compression
and improved transmission of the DPGA configuration files has been devel-
oped. Basically, all redundant address and data pairs are omitted and the
necessary configuration data is transmitted in a binary format. By using this
optimization, reconfiguration time is reduced to about 4 ms to 31 ms. Besides
reconfiguration, the second important factor that introduces overhead is the
hardware and software communication. An efficient implementation of the
hardware and software interface is the most important factor for overall
performance of the combined system. In this architecture communication is
accomplished by writing and reading internal registers on the DPGA. For the
XC6216, a single write or read operation can only access one specific column
of logic cells. To minimize communication costs, a layout optimization is
used so that individual registers are placed in individual columns whenever
possible. Furthermore, for the used DPGA, a so-called map register is config-
ured before accessing an individual register to mask out the corresponding
rows of logic cells. Profiling shows that this is a very time consuming process,

1.6. JAVA-DRIVEN CO-DESIGN AND PROTOTYPING 19

therefore a second optimization for the layout of the hardware designs is used.
Whenever possible, all I/O (input/output) registers of a design have to be
placed in corresponding rows. By using this layout constraint, configuration
of the map register can be avoided before read or write accesses. Conse-
quently, register access is improved drastically from about 70 microseconds
down to 8 microseconds.

By using these optimizations, the total overhead for integrating external
hardware can be attributed to the different components involved in the
DPGA execution process. About 78 % of the total time for hardware inte-
gration occurs in the virtual machine and the device driver. About 22 % of
time is used to execute the DPGA design and transfer data over the PCI bus.
For this reason, speedup of a mixed hardware and software implementation
can only be achieved by implementing a method of significant complexity
in hardware. Moving simple operations like additions or multiplications to
DPGA hardware cannot deliver speedup because of the overhead involved.
More complex examples include an algorithm for error detection and cor-
rection. Hamming codes are typically used in conjunction with other codes
for detection and correction of single bit faults. Both the Hamming coder
and decoder are implemented on the DPGA. As this application includes
more complex bit level operations, a significant speedup of the hardware and
software implementation is experienced in comparison with the execution of
the software prototype on the host CPU. The main advantage of the native
interface is that it can be used with any Java VM, for example, an opti-
mized JVM2, which is only available in binary form. A significant speedup
can be achieved by integrating the reconfigurable hardware platform. If
an application has computational complex components that are executed
on the DPGA board, hardware accelerated execution is possible regard-
less of the necessary overhead for reconfiguration and communication. The
results also show that the implementation using native functions has a small
performance drawback when compared to modifying the virtual machine.
On the other hand, this implementation is especially attractive when using
commercial JVMs.

A codesign environment for Java-based design of reconfigurable net-
worked embedded systems, JaCoP includes tools that aid in specification,
hardware and software partitioning, profiling, cosynthesis and prototype
execution. This approach provides means for implementation of hardware
and software threads. Multiple threads can concurrently use the features
of a reconfigurable DPGA architecture. Based on the Java Beans specifi-
cation, a suitable methodology for design reuse is integrated. The design
flow is implemented and tested on a PC connected to a reconfigurable
hardware board.

20 NETWORKED EMBEDDED SYSTEMS

1.7. HARDWARE AND SOFTWARE PROTOTYPING

A design flow of the prototyping environment is shown in Figure 1.6. This
design flow includes a complete synthesis flow and accommodates fast
prototyping. The hardware and software interface is generated by an interface
generator. The software part is instrumented and byte code is generated for
execution on the Java virtual machine. The hardware part is synthesized and
mapped to the reconfigurable FPGA target platform. The interface is done in
both software and hardware.

During the specification phase, only the software methods (left branch in
Figure 1.6) are used for functional validation and profiling. Then the initial
specification is partitioned into a part for execution on the host PC (software
methods) and a part which is executed on the FPGA hardware platform
(hardware methods). Partitioning can be based on Java methods, on loops, or
on basic block level. During code generation, byte code is generated for all
methods, whereas FPGA configuration files are generated for the individual
hardware methods only. The run-time system (RTS) reads information from
the partitioning step and decides whether, according to the partitioning
method, to schedule it on the host PC or on the FPGA hardware. The RTS
also manages dynamic reconfiguration of the hardware at run-time.

For each hardware method, an interface description is automatically
generated. It consists of a RT-level VHDL frame for inclusion into the
hardware building block, and a hardware method call for inclusion into the
software code.

Code generation for the hardware part consists of the following steps:

• High-level synthesis (HLS) of the selected Java methods implemented
in hardware;

• Register-transfer-level synthesis of the VHDL description generated by the
HLS tool in the previous step and logic optimization of the resulting netlist;

• Layout synthesis and generation of the configuration data for the target
FPGA hardware platform.

The exchange of data between the hardware and software part occurs
through an interface. The interface generator uses information provided by
the high-level synthesis tool and automatically generates a register-transfer
level description of the VHDL frame with the correct size. The structure of this
interface frame is shown in Figure 1.7. The frame consists of a set of registers
for storing input and output data of the corresponding Java method. It also
contains a small logic block for handling control signals that are necessary for
interaction with the run-time system. This includes signals for starting and

1.7. HARDWARE AND SOFTWARE PROTOTYPING 21

Java

Operator
library

Harware
methods

Software
methods

Method
call

VHDL
frame

Interface
generation

High-level
synthesis

RTL VHDL

RT-level
synthesis

Netlist

Tech. Map.
P & R

Bitfile

PCI.IF
Host

Test
library

FPGA
board

Hardware
methodsRTS

Software
methods

Testbench/Simulation

Profiling

Interface

Partitioning

Bytecode

Java
compiler

Figure 1.6 Prototyping environment.

22 NETWORKED EMBEDDED SYSTEMS

Java
HW-method

C
o
n
t
r
o
l

Result register

Argument register

R
un

 ti
m

e
sy

st
em

Figure 1.7 VHDL frame.

resetting the hardware process, and a ready signal that indicates when the
computation in hardware is completed and the results can be read back.

The VHDL component for the Java hardware method generated during
high-level synthesis is embedded into the VHDL frame produced by the inter-
face generator. The complete design is synthesized for the FPGA platform.

The run-time system (RTS) is responsible for managing execution and
interaction of hardware and software methods. RTS relies on a database that
contains the set of methods executable either in hardware or software, and
the methods for which both hardware and software implementations are
available. The software executables are defined by Java classes that are stored
in Java byte code format. The corresponding hardware blocks are emulated
on the FPGA board and stored as configuration bit files.

During cosimulation, the run-time system schedules methods for execution
according to the current partitioning table. Software methods are executed on
the Java Virtual Machine (JVM) on the host workstation as shown in Figure 1.6.
In a software-oriented approach, the execution flow of the combined system
is dominated by the software part of the system.

The run-time system also manages execution of tasks on the emulation
platform. The set of available FPGAs and communication channels is specified
in a configuration file. During cosimulation, when control flow in one of the
threads reaches a hardware method, the run-time system determines whether
the corresponding configuration bit file has already been downloaded to
an FPGA.

At the beginning of the cosimulation procedure, none of the FPGAs is
configured with a bit stream. The RTS determines an available FPGA and
triggers the download mechanism. When the bit file has been downloaded
to an FPGA, the RTS determines the address of the FPGA containing the
requested hardware method, and starts to transfer data which has to be
processed by this method. After the emulated method has finished processing,

1.8. MULTIPLE APPLICATION SUPPORT 23

FPGA
XC6216

RAM

A

AD

D

D

PCI-bus

Figure 1.8 Experimental platform.

it sends an interrupt signal to the RTS and the results from the computation
can be read from the result register of the FPGA design. During emulation
of a hardware method on the FPGA, the calling thread is suspended and
any other software thread can be executed on the Java virtual machine at the
same time.

A hardware and software prototyping platform is shown in Figure 1.8.
The workstation is used to enter the Java specification, to compile Java to
byte code, and to execute the byte code for the software part of the system.
Different synthesis tasks necessary to move dedicated Java methods to the
FPGA emulation board are carried out on the host workstation. The RTS is
implemented in software on the host. The hardware part is implemented by
using a dedicated FPGA board connected to the workstation over the PCI bus.

1.8. MULTIPLE APPLICATION SUPPORT

In traditional embedded systems design, the key objective is to find an
optimal architecture to perform a single, specific application. In this system
architecture, ASICs (Application Specific Integrated Circuits) and processors
are typical building blocks. The designer performs partitioning of the applica-
tion onto ASICs and processors according to the performance metrics such as
processing power, flexibility and power consumption. Emerging embedded
systems in the area of information appliance (e.g. PDAs and IMT2000 (Inter-
national Mobile Telecommunication) terminals) are different from traditional
embedded systems in the following aspects:

• they run multiple applications such as web browsers, audio and video
communication applications, etc., and

• they require network connectivity.

To design a multiple-application embedded system that requires consid-
erable processing capability for each application, is a challenging task from

24 NETWORKED EMBEDDED SYSTEMS

the viewpoint of the traditional design approach, which gives, in general, an
architecture that is good for only one application but is inferior or not suitable
for other applications. To meet the cost and power consumption constraints,
the designer may have to use costly redesign loops that often do not converge
or produce over-design. Resolving this problem requires programmability of
the system architecture so that an embedded system can be adapted to new
applications.

Programmability is introduced to the architecture by embedding FPGAs
into the system. FPGA is a viable option for the following reasons:

• FPGAs have processing capability and logic capacity close to those
of ASICs.

• By reprogramming the FPGAs, the embedded system can adapt itself to a
new application.

• Although available FPGAs are not very power-efficient, there is continu-
ous effort to achieve low-power consumption through methods such as
applying low supply voltage and power-down mode.

Embedded system management uses network connectivity to download
new applications from remote servers. This connectivity can be served by
using Java as a software platform. A programmable embedded system uses
Java to download and execute new application codes without shutting down
the entire system.

Java-based embedded system architecture includes FPGA coupled with a
standard processor. In this architecture, Java code and FPGA bit-stream of
new application is downloaded over the network. FPGA is programmed and
dynamic reconfiguration of FPGA is supported. Communication between
hardware (FPGA) and software (Java application code) uses a set of native
APIs to access the underlying hardware from Java applications. Native
APIs from the Java application are invoked by Java Native Interface (JNI).
A partitioning granularity is a Java method which is implemented into
hardware components (hardware methods).

Designing embedded system architecture for emerging information appli-
ances, such as PDAs and IMT2000 terminals, requires multiple-application
support and network connectivity. Programmable architecture is an efficient
way of implementing the multiple-application support. FPGA-based embed-
ded system architecture uses Java as a software platform. A set of native
communication APIs is used for the communication between Java applica-
tion and the FPGA, where from 80 to 90 % of the system’s execution time is
consumed for communication over the PCI bus.

1.8. MULTIPLE APPLICATION SUPPORT 25

The Y-chart approach to exploring the design space of multiple-application
embedded systems uses a stream-based function (SBF) model of a set of
applications that produces quantitative performance numbers for parameter-
ized target architectures. A simulator performs interpreted or noninterpreted
simulation while extracting the performance results.

Java is used in the embedded system design, for example:

• system specification for expressing real-time constraints, and
• software implementation and execution platform with enhanced real-time

capability.

Programmability of an FPGA requires run-time reconfiguration method
that dynamically changes the functionality of an FPGA during system execu-
tion. A run-time partial reconfiguration strategy is applied to FPGA so that
programming and execution can be performed concurrently. Configuration
overhead has significant impact on the overall system performance and needs
to be reduced.

1.8.1. FPGA-Based System Architecture

An example of a hardware component running in the FPGA, which corre-
sponds to a Java method, is shown in Figure 1.9. An input buffer and an
output buffer are used to receive arguments and to store the results, respec-
tively. A control signal buffer is used to manipulate and check (e.g. to give a

Output
buffer

Control
buffer

Address
decoder

Input
buffer

Address
bus

Data
bus

Processor bus

HW
method

core

Figure 1.9 Architecture of the hardware method.

26 NETWORKED EMBEDDED SYSTEMS

Shared
system
memory

Processor

Network
interface

Configuration
controller

Bitstream
storage

FPGA
local

memory

FPGA

Shared bus

Figure 1.10 The hardware platform.

start signal and to check the done signal) the state of the hardware method.
These buffers are mapped onto the processor address space and the processor
can access them with memory read and write instructions.

The hardware platform of the architecture consists of a standard processor,
an FPGA, and a system memory, which are connected through a shared
processor bus as shown in Figure 1.10.

When the processor initiates a read or write operation to some hardware
method, the corresponding hardware method responds to the bus activity
with the help of its own address decoder. The processor initiates hardware
and software communication and the FPGA responds as a slave in the bus
activity. A configuration controller with bit-stream storage is included in
the architecture to support dynamic reconfiguration of the FPGA. Since the
configuration controller takes the responsibility of programming the FPGA
with the initiation from the processor, the processor can perform other useful
jobs in parallel with an FPGA programming job.

Java is used as a software platform as shown in Figure 1.11. An embedded
OS provides services, for example thread service and other hardware man-
agement service, for Java run-time environment. Java applications in remote
places can be downloaded into the embedded system through the system
manager. The system manager implements three basic protocols as follows:

• application code (including FPGA bit stream) download protocol;
• system-maintenance-related protocol for remote management;
• authentication protocol to control access to the embedded system.

The system manager contains a custom class loader that is based on a
socket connection. An application in a remote place can be downloaded and
executed in the following procedures:

1.9. SUMMARY 27

Processor

Native
library

Embedded
OS

Java application

System manager

Java virtual machine

Processor
address space

Direct
physical
address

HW
methods
(FPGA)

Figure 1.11 The software platform.

• get an authority to make the system enter management mode;
• download new applications code, and then perform initialization such as

placing FPGA bit stream into bit-stream storage;
• execute new application.

For simplicity, it is assumed that buffers of hardware methods are mapped
onto predefined and fixed physical address regions.

When Java is used as a software platform, the application cannot access
the underlying hardware directly. The application running in the JVM on the
processor cannot access the physical address region mapped on to buffers of
hardware methods in the FPGA directly. This can be solved by:

• modifying the JVM to have direct access service to the physical address of
the processor, or

• developing a native communication library so that an application can
access it through Java Native Interface (JNI) with some overhead.

The first solution results in minimal overhead, however, modifying the JVM
internals is not easy and may not follow the latest releases of JVM. Developing
an extra-native communication library outside of JVM introduces a JNI layer.

1.9. SUMMARY

The key feature of next-generation embedded devices is the capability to
communicate over networks and to adapt to different operating environ-
ments. There is an emerging class of system that concurrently executes

28 NETWORKED EMBEDDED SYSTEMS

multiple applications, such as processing audio streams, capturing video
data and web browsing. Such systems need to be adaptive to changing
operating conditions.

A specification language should provide means for integrating reuse
libraries, that is, packages of previously developed components. Object-
oriented programming has proven to be a very efficient paradigm in the
design of complex software systems. Object-oriented programming provides
better means for managing complexity and for reusing existing modules.
Object-oriented programming also reduces costs associated with code mainte-
nance. In embedded system design, a major trend is increasingly to implement
functionality in software. The reasons for this are faster implementation, better
flexibility and easier upgradability.

Programmability is introduced to the architecture by embedding FPGAs
into the system. FPGAs have processing capability and logic capacity close
to those of ASICs, and by reprogramming the FPGAs, the embedded system
can adapt itself to a new application.

Programmable architecture is an efficient way of implementing the multi-
ple-application support. FPGA-based embedded system architecture uses
Java as a software platform. A set of native communication APIs is used for
the communication between Java application and the FPGA.

PROBLEMS

Learning Objectives

After completing this chapter you should be able to:

• demonstrate understanding of the object-oriented design;
• discuss what is meant by design integration;
• explain what design optimization is;
• demonstrate understanding of codesign and reconfiguration;
• explain what Java driven codesign and prototyping is;
• discuss Java based codesign;
• explain what run-time management is;
• demonstrate understanding of an embedded systems platform;
• discuss the issues of hardware and software prototyping;
• explain what the multiple application support is;
• demonstrate understanding of FPGA-based system architecture.

PROBLEMS 29

Practice Problems

Problem 1.1: What is the difference between multifunction and multimode
networked embedded systems?

Problem 1.2: Why is cosynthesis used for embedded devices?
Problem 1.3: What is the role of a run-time manager?
Problem 1.4: What is Java driven codesign and prototyping environment?
Problem 1.5: What functionality is added by JaCoP?
Problem 1.6: What steps are taken for code generation in hardware

prototyping?
Problem 1.7: What are the basic protocols implemented by a system manager

in the software platform?

Practice Problem Solutions

Problem 1.1:

Multifunction networked embedded systems can execute multiple applica-
tions concurrently. Multimode networked embedded systems offer the users
a number of alternative modes of operation.

Problem 1.2:

A cosynthesis method and prototyping platform developed specifically for
embedded devices combines tightly integrated hardware and software com-
ponents. A cosynthesis is used to make the most efficient assignment of tasks
to software or hardware.

Problem 1.3:

A run-time manager controls the dynamic behavior of a reconfigurable system
during execution. The run-time manager schedules methods for execution,
either as software on the Java virtual machine (JVM) of the host processor or
as hardware on the reconfigurable DPGA hardware.

Problem 1.4:

JaCoP (Java driven codesign and prototyping environment) is a codesign
environment based on Java which supports specification, cosynthesis and
prototyping of networked embedded systems.

Problem 1.5:

A codesign environment for Java-based design of reconfigurable networked
embedded systems, JaCoP includes tools that aid in specification, hardware
and software partitioning, profiling, cosynthesis, and prototype execution.

30 NETWORKED EMBEDDED SYSTEMS

Problem 1.6:

Code generation for the hardware prototyping includes high-level synthesis
(HLS) of the selected Java methods implemented in hardware, register-
transfer-level synthesis of the VHDL description generated by the HLS tool
and logic optimization of the resulting netlist, and layout synthesis and
generation of the configuration data for the target FPGA hardware platform.

Problem 1.7:

The system manager implements three basic protocols, namely the appli-
cation code (including FPGA bit-stream) download protocol, the system
maintenance-related protocol for remote management, and the authentication
protocol to control access to the embedded system.

2
Smart Sensor Networks

2.1. INTRODUCTION

Users are demanding devices, appliances, and systems with better capabilities
and higher levels of functionality. Sensors in these devices and systems are
used to provide information about the measured parameters or to identify
control states, and these sensors are candidates for increased built-in intelli-
gence. Microprocessors are used in smart sensors and devices. A smart sensor
can communicate measurements directly to an instrument or a system. The
networking of transducers (sensors or actuators) in a system can provide flex-
ibility, improve system performance, and make it easier to install, upgrade
and maintain systems.

The sensor market is extremely diverse and sensors are used in most
industries. Sensor manufacturers are seeking ways to add new technology
for building low-cost, smart sensors that are easy to use and which meet
the continuous demand for more sophisticated applications. Networking is
becoming pervasive in various industrial settings. Decisions about the use
of sensors, networks, and application software can all be made indepen-
dently, based on the application requirements. In reality, however, all these
function modules cannot be easily integrated due to the lack of a set of
common interfaces.

A typical sensor or control network consists of network nodes comprising
up to 256 units linked by multiwire cables. Each network node contains a
microprocessor device, and a sensor or multiple sensors can be connected
to each node through an electronic interface. Every network has its own

Wireless Sensor Network Designs A. Hać
 2003 John Wiley & Sons, Ltd ISBN: 0-470-86736-1

32 SMART SENSOR NETWORKS

custom-designed interface for sensors, and sensor manufacturers have to
support various networks and protocols. The purpose of the IEEE (Institute
of Electrical and Electronics Engineers) 1451 Standards for Smart Transducer
Interface for Sensors and Actuators, is to define a set of common interfaces for
connecting transducers to microprocessor-based systems, instruments, and
field networks in a network-independent fashion.

The standardized Transducer Electronic Data Sheet (TEDS) specified by
IEEE 1451.2 allows for self-description of sensors. The interfaces provide a
standardized mechanism to facilitate the plug-and-play of sensors to net-
works. The network-independent smart transducer object model defined
by IEEE 1451.1 allows sensor manufacturers to support multiple networks
and protocols. This way, transducer-to-network interoperability can be sup-
ported. IEEE P1451.3 and P1451.4 standards will meet the needs of the analog
transducer users for high-speed applications. Transducer vendors and users,
system integrators, and network providers can benefit from the IEEE 1451
interface standards.

2.2. VIBRATION SENSORS

The ability of modern condition maintenance systems to provide smart inter-
active control over potentially dangerous or production sensitive machinery,
assumes that the data received from connected sensors is correct for all pos-
sible fault conditions. No matter what measurement parameter is monitored,
there is usually a multitude of different sensors available to choose from,
and it would be rare to find just one model for each parameter that could
accurately and reliably measure all required ranges. Selection of the correct
sensor and correct installation is of paramount importance, especially when
it comes to vibration monitoring. High frequency gear mesh measurements,
for instance, would require a sensor with a suitably high frequency range,
whereas at the other end of the scale, very low speed machinery or monitor-
ing structural movements would require a low frequency accelerometer with
high mechanical gain and good resolution.

Smart sensors communicate with their outside world by using the data
capture and analysis or control system. Smart sensors use digital communi-
cation. There are many alternative paths along which to develop the potential
benefits of an agreed protocol. The proposed IEEE 1451 standard has four
levels, three of which focus purely on digital interfaces as shown in Figure 2.1,
while the fourth level, known as P1451.4, defines an interface for mixed mode
sensors with analog signals as well as digital information.

2.2. VIBRATION SENSORS 33

1451.1
Object
model

network
interface

1451.2
Transducer

Independent
Interface

(TII)

1451.3
Channel
Interface

Bus
(CIB)

1451.4
Mixed
Mode

Interface
(MMI)

Mixed
Mode

Transducer
(MMT)

Channel
Interface
Module
(CIM)

Smart
Transducer
Interface
Module
(STIM)

Network
Capable

Application
Processor
(NCAP)

Figure 2.1 IEEE 1451 architecture.

The standard specifies data sets and formats that allow for each sensor to
contain an electronic data sheet of information, such that it can be readily
identified by the computer from a whole array of other sensors. This additional
electronic package uses Transducer Electronic Data Sheet (TEDS). It has to
be easy to use, support all different types of transducers, be flexible enough
to meet individual needs, and remain compatible with level 1451.3 of the
standard. TEDS data should include the following parameters:

• identification, e.g. model number;
• device, e.g. sensor type, sensitivity, and measurement units;
• calibration, e.g. date of last calibration and correction factors;
• application, e.g. channel ID (identifier) and measurement coordinates.

Apart from size restrictions or sensors with special outputs or for high
temperature environments, TEDS can be put inside almost any vibration
sensor during manufacture, and some data collection systems are available
with the requisite TEDS interface. A TEDS sensor enables a system automat-
ically to check on the status, exact position, and any other relevant detail
put into the memory, during the normal data collection process. The TEDS
function is the first step towards the truly intelligent vibration sensor. With
additional integration of an ADC (analog-to-digital converters), and signal
analysis such as FFT (Fast Fourier Transform) or frequency band monitoring
within the sensor itself, important monitoring decisions can be made directly
at the measurement location, and with local node or even individual sensor
telemetry, cabling problems can also be eliminated.

34 SMART SENSOR NETWORKS

No matter how smart the sensor becomes, there will always be the problem
of correct sensor selection and deployment, in order to obtain the best
information about potential failure.

Once the accelerometer has been correctly sourced, the next step is to mount
and position it correctly in order to measure what is required. Accelerometers
are designed to give an output in one axis only, so positioning can sometimes
be essential for obtaining the best signal. Hand held probes are to be avoided
if possible, due to the effect on frequency range and the positional errors
that can occur with their use. Stud mounting on a properly prepared surface
is always the best method, especially for high frequency measurements.
Any effects on signal integrity should be understood and allowed for, or
compensated for, in the measurement system.

The market for vibration sensors is driven by application and customer
demand towards lower cost, and yet still be rugged, reliable and even
intelligent transducers. Production machines with built-in vibration sensors
are already available.

2.3. SMART SENSOR APPLICATION TO CONDITION
BASED MAINTENANCE

IEEE 1451 is the proposed standard for interfacing sensors and actuators
to digital microcontrollers, processors and networks. This standard reduces
the complexities in establishing digital communication with transducers
and actuators. IEEE 1451 defines the bus architecture, addressing proto-
cols, wiring, calibration, and error correction, thus enabling a building-block
approach to system design with plug-and-play modules. System integrators,
instrument developers, engineers, and end users can plug IEEE 1451 com-
pliant sensors and actuators together with measurement and communication
modules to form a measurement system that allows transducers to interface
directly with established networks and control systems.

Techniques for machinery fault prediction under development use multi-
ple sensors with algorithms to extract useful information from the spectral
properties of signals. Methods such as wavelet analysis, Hilbert transform
analysis, adaptive neural networks, performance analysis, nonlinear charac-
terization and multifunction data fusion with embedded sensors, are applied.
In a plug-and-play architecture, sensors and actuators are linked together
through a series of common interfaces to modules designed not only to
process the signals, but to interface to existing communication networks.
This approach eliminates full featured, more expensive components such as
computers and stand alone instruments.

2.3. SMART SENSOR APPLICATION TO CONDITION BASED MAINTENANCE 35

In the process control industry, sensors and transducers are connected
directly to digital networks, over a common interface, and used in factory
automation and closed loop control. The growth in slow speed sensors for
measuring temperature, pressure, and position, contributed to the develop-
ment of digital bus architectures. These systems have bandwidth limitations,
proprietary hardware, and require design work to interface them with existing
sensors.

Microprocessors, microcontrollers, ADCs (analog-to-digital converters) and
their related electronics have become smaller, more powerful, and less expen-
sive. There are advantages in including increased functionality into the
transducer. The proposed industry standard interface for the connection of
transducers and actuators to microcontrollers and to connect microcontrollers
to networks is a logical extension of the General Purpose Interface Bus (GPIB
or IEEE 488), except that this brings standardization to sensors instead of
instruments. Figure 2.2 shows the building blocks for the implementation of
a smart sensor interface.

An example application is a condition-monitoring system for milling
machines in a large factory. A measurement system is needed for monitoring
the health of bearings inside the milling machine and to detect tool wear or
damage. Traditional methods of vibration measurement, using portable data
collectors to monitor bearing health, have failed in this application, due to the
varying operating conditions of the milling machine. Spindle movement and
intermittent cutting operations affect the vibration signatures and can mask
the vibration measurements of the bearings completely. The measurement

Smart Transducer
Interface Module

(STIM)

Transducer Bus
Interface Module

(TBIM)

Mixed-Mode
Transducer

(MMI)

Network
Capable

Application
Processor
(NCAP)

1451.1
Common

object
model

1451.2

P1451.3

P1451.4

Network

Figure 2.2 Functional block diagram of IEEE P1451.

36 SMART SENSOR NETWORKS

system must take into account the various states of the machine and record
vibration measurements at predetermined intervals.

An intelligent tool-condition-monitoring method is needed to detect tool
wear or damage automatically instead of replacing the tool at regular intervals
or discovering defects in material after operation. Direct sensing methods
have been developed using multiple sensors to detect vibration, force, acoustic
emission, temperature, and motor current. Tool wear is a very complex
process and can be detected with sensor fusion, feature extraction, and
pattern recognition.

A spectrum analyzer or data acquisition system with a dedicated personal
computer can be adapted to work in this environment, with various inputs
from the control system for timing. This was considered to be too expensive
and cumbersome to be implemented across the factory, on every line every
machine. A low-cost system needed to be developed that could accept
inputs from various sensors, process the information, and notify operators
of impending failures or problems. With IEEE 1451 compatible components
such as vibration sensors and actuators, a smart transducer interface module
and a communications module, a measurement system can be constructed to
implement the functions needed and communicate throughout the factory’s
network. A solution is illustrated in Figure 2.3.

The IEEE 1451.1 standard defines the Network Capable Application Proces-
sor (NCAP). The NCAP is the smart sensor’s window to the external control
network that is connected to any transducer, or a group of transducers,
with an appropriately configured NCAP. This building block of the IEEE
1451 standard typically consists of a processor with an embedded operating
system and a sense of time. The processor has a communication stack for a net-
work protocol. If the NCAP is used with the Ethernet, for example, it will have
a TCP/IP protocol stack. Figure 2.4 illustrates an example of an NCAP. In this

Status
indicators

NCAP

Signal processing
frequency analysis
pattern recognition
monitoring

STIM TEDS
Signal

conditioning
A/D

Digital
I/O

Control
system
inputs

Sensors

Power

Ethernet

Figure 2.3 IEEE P1451 implementation of machine condition monitoring system.

2.3. SMART SENSOR APPLICATION TO CONDITION BASED MAINTENANCE 37

Chipset
consisting of

ASIC
and

microprocesor

Reset

Special
timing
digital I/O

IEEE 1451.2
(STIM
connection)
or serial
or digital I/O

FLASH memory
RAM memory

Quartz
crystal

Power

Ethernet
(10 baseT)

Status
indicators
(LEDS)

Xformer
and

driver

Figure 2.4 Network capable application processor (NCAP).

approach the design of the building blocks is done by the experts in this field
who develop the modules to interface smart transducers with the existing
networks. A system designer implementing a solution for a process chooses
the module for a particular application and plugs it into the design. With addi-
tional code built into the NCAP, this module can be used as a micro web server
with web pages providing information about the transducers connected to it.

The IEEE 1451.2 standard specifies Smart Transducer Interface Module
(STIM). This is a digital interface and serial communication protocol that
allows any transducer, or group of transducers, to receive and send digital
data using a common interface. This common interface, called the Transducer
Independent Interface (TII), is a 10-wire serial I/O bus that is similar to the
IEEE 488 bus. The TII implements a serial data exchange with allowances for
handshaking and interrupts. TII has defined power supply lines and permits
hot-swapping of modules for plug and play capability. Any transducer can
be adapted to the 1451.2 protocol with a Smart Transducer Interface Module
(STIM). This building block of the 1451 standard is the measuring system. It
can be as simple as a switch connected to a 4-bit processor, or as complex
as a 255-channel device running an individual process. The STIM performs
the tasks of signal conditioning, signal conversion and linearization. With
added hardware it can perform functions such as spectrum analysis, fuzzy
pattern recognition, adaptive noise canceling or a specific algorithm. The
development of STIMs focuses on how to meet individual needs and special
applications. Figure 2.5 illustrates one example of a STIM and how it interfaces
with an NCAP through the TII.

38 SMART SENSOR NETWORKS

Smart Transducer
Interface Module

(STIM)

Transducer
Intelligent
Interface

(TII)

DI/O

?

DAC

ADCXDCR

XDCR

XDCR

XDCR

TEDS

Network

NCAP

Address
logic

Figure 2.5 Overview of a STIM and how it associates through the TII to an NCAP.

Information about the STIM and the attached transducers is digitally stored
in the format for which is integral to this standard Transducer Electronic
Data Sheet (TEDS). This includes transducer identification, channel infor-
mation, physical location, calibration, and correction data. TEDS provides a
standardized set of mechanisms and information that can be used by appli-
cations to adapt automatically to device changes, thus supporting plug and
play devices.

The IEEE P1451.3 standard defines Distributed Multidrop System (DMS),
a digital interface for connecting multiple physically separated transducers,
which allows for time synchronization of data. This transducer bus facilitates
communications, data transfer, triggering, and synchronization.

A representation of IEEE P1451.3 with the functional blocks of the NCAP,
transducer bus controller, and the transducer bus interface modules is shown
in Figure 2.6. A single transmission line is used to supply power to the TBIMs
and to provide communication to the bus controller. The NCAP contains
the controller for the bus and the interface to the broader network. A TBIM
supports different transducers and the bus may contain many TBIMs. This
allows a distributed network of sensors and actuators to be connected through
a common interface.

The IEEE P1451.4 standard defines Mixed-Mode Communication Protocol
and Interface to bridge the gap between legacy systems and IEEE 1451

2.3. SMART SENSOR APPLICATION TO CONDITION BASED MAINTENANCE 39

Network Capable
Application Processor

(NCAP)

Transducer
Bus

Controller
(TBC)

Transducer Bus
Interface Module

(TBIM)

Transducer Bus
Interface Module

(TBIM)

Network

Signal and power

Return

Figure 2.6 Physical representation of the IEEE P1451.3: multidrop system interface.

architectures. This standard allows analog transducers to communicate digital
information, for the purposes of self-identification and configuration, over
the same medium. A TEDS is defined for traditional analog sensors to
store information such as model number, serial number, sensitivity and
calibration parameters, inside the transducer. The term ‘mixed-mode’ refers
to the operation of the transducer in either its traditional analog (sensing)
mode or in its digital (communication) mode, during which transducer can
be reconfigured, or its TEDS can be retrieved or updated. The transducer
functions normally when the voltage supply is forward biased and will
output its analog measurement signal. When the sensor is reverse biased,
the traditional analog circuitry is disabled and the TEDS memory can be
accessed. The circuit schematic is outlined in Figure 2.7 illustrating the reverse
bias technique.

Although this example is specific to IEPE (Integrated Electronics, Piezo-
Electric) devices, the preliminary standard generalizes the configuration of
this mixed mode interface for a wide range of transducers. Some legacy trans-
ducers systems may require more than one line for operation, for instance,
certain devices may require a constant voltage source, and a separate line for
the transducer output signal. In this case, the analog power line is defined as
the data line while in the digital mode. A similar reverse polarization scheme
disables the analog circuitry, and activates the digital communication.

While in digital mode, the P1451.4 transducer can identify itself by trans-
mitting the contents of its memory. This is the capability most commonly
associated with P1451.4. However, part of this memory may contain infor-
mation as to how the P1451.4 transducer may be configured. After receiving
this information, a host to the P1451.4 bus (likely a 1451.2 STIM) can issue a

40 SMART SENSOR NETWORKS

TEDS
memory

Amplifier

Crystal

−5 V
4 mA
Reverse bias

Digital
memory
signal

Analog
measurement

signal
+ 23 V
4 mA

Forward bias

TEDS equipped
sensor

TEDS signal
conditioner

Figure 2.7 Circuit schematic for IEEE P1451.4.

B

A

TEDS logic
level controls
relay

Digital
communication/
configuration

Analog
transduction

EEPROM
and
PIO

To next
node

From
previous
node

Figure 2.8 Self configuring P1451.4 transducer.

command to the transducer to configure itself into a number of different con-
figurations. One immediate use of this capability is to implement a multidrop
sensor bus. Figure 2.8 outlines a transducer with such capability.

The transducer in Figure 2.8 contains three distinct components, each
of which is enclosed by a dashed boundary. The first, labeled ‘analog
transduction’ represents an IEPE type sensor. The second, labeled ‘Digital

2.3. SMART SENSOR APPLICATION TO CONDITION BASED MAINTENANCE 41

Communication/Configuration’ adds the mixed-mode capability promised
by IEEE P1451.4. Together with the analog transduction component, it forms
the transducer outlined in Figure 2.7. However, the digital hardware in this
particular transducer has an extra pin, which is held at logical high or logical
low upon command. This logic level, in turn, controls the position of switch-
ing hardware found in the third component of the transducer. The A position
of this switching hardware directs the power/signal line to this particular
node. The B position of the switching hardware directs the power/signal line
to another transducer.

By arranging these self-configuring transducers appropriately as shown
in Figure 2.9, we can construct a multidrop sensor bus of mixed mode
transducers. The digital circuitry in Figure 2.8 is always connected to the
bus. When the bus is pulled low, all nodes of the network are visible to the
controller (this is likely to be a 1451.2 STIM). The protocol of this P1451.4
network allows each node shown in Figure 2.9 to have a unique identification.
The network protocol also permits the master to poll the entire bus to identify
each node uniquely. With this data, the master consecutively toggles each
node to its B (or pass-through) position.

The master commands node 1 to toggle to its A position. The master releases
the bus from negative bias. All digital circuitry is then disabled, and only
the analog circuitry of node 1 is exposed to the constant current, positively
polarized, line bias. The analog transduction section of node 1 ensues to
bias and operate in its traditional manner, and high fidelity measurements
possible with IEPE sensors can be taken by the master (STIM).

When the measurements phase for that particular node is complete, the
master pulls the line low to disable the analog circuitry and wake up the
digital circuitry of the entire bus. The master commands node 1 to toggle to
its B position, then commands node 2 to its A position. Analog measurements
can then be made from node 2. This process is repeated for each of the N
nodes on the network.

The hardware interfaces and communication protocols, defined under
IEEE 1451, will enable instrumentation manufacturers to design and produce
solutions for machinery-condition-analysis systems at a significantly lower

A
B

A
B

A
B

A
B

Node 1 Node 2 Node 3

To bus master
(microcontroller)

Node ‘n’
(bus
termination)

Figure 2.9 P1451.4 multidrop sensor bus.

42 SMART SENSOR NETWORKS

cost than traditional methods. The proposed standard takes advantage of
established networks so that sensors and transducers can be leveraged onto
networks with familiar, inexpensive, off-the-shelf wiring and networking
components. The IEEE standard’s plug-and-play approach allows freedom of
choice between transducers, field networks and interface modules. Standard
Internet and intranet links allow access to distributed devices from any remote
site, and enable customized and familiar IP (Internet Protocol) addressing.

2.4. SMART TRANSDUCER NETWORKING

IEEE 1451 defines hardware and software standardized methods for support-
ing smart sensor and network connectivity. The standard’s specifications
place no restrictions on the use of signal conditioning and processing
schemes, analog-to-digital converters, microprocessors, network protocols,
and network communication media. IEEE 1451 reduces industry’s effort to
develop and migrate towards networked smart transducers. This standard
provides the means to achieve transducer-to-network interchange ability and
transducer-to-network interoperability.

The IEEE 1451.2 project defines a Transducer Electronic Data Sheet (TEDS)
and its data format, along with a 10-wire digital interface and communication
protocol between transducers and a microprocessor. The framework of the
IEEE 1451.2 interface is shown in Figure 2.10. The TEDS, stored in a non-
volatile memory, contains fields that describe the type, attributes, operation,

Smart Transducer
Interface Module (STIM)

XDCR ADC

DAC

DI/O

?

XDCR

XDCR

XDCR

Network Capable
Application
Processor
(NCAP)

IEEE 1451.1
smart

transducer
object model

IEEE 1451.2
interface

Network

Transducer
Independent
Interface (TII)

Transducer
Electronic

Data Sheet
(TEDS)

XDCR =
transducer

Address
logic

Figure 2.10 Framework of IEEE 1451.1 and 1451.2 interfaces.

2.4. SMART TRANSDUCER NETWORKING 43

and calibration of the transducer. With a requirement of only 178 bytes of
memory for the mandatory data, the TEDS is scalable. A transducer integrated
with a TEDS provides a feature that makes the self-description of transduc-
ers to the network possible. Since the transducer manufacturer data in the
TEDS always goes with the transducer, and this information is electronically
transferred to a NCAP or host, the human errors associated with manually
entering sensor parameters are eliminated. The manufacturer data and the
optional calibration data are stored in the TEDS, so losing transducer paper
data is not a concern. With the TEDS feature, upgrading transducers with
higher accuracy and enhanced capability, and replacing transducers for main-
tenance purposes, becomes simply ‘plug-and-play’. The IEEE 1451.2 interface
defines STIM. Up to 255 sensors or actuators of various digital and analog
mixes can be connected to a STIM. The STIM is connected to a network node
called NCAP through the 10-wire transducer independent interface using a
modified Serial Peripheral Interface (SPI) protocol for data transfer.

The IEEE 1451.1 standard defines a common object model for a networked
smart transducer and the software interface specifications for each class rep-
resenting the model. Some of these classes form the blocks, components, and
services of the conceptual transducer. The networked smart transducer object
model encapsulates the details of the transducer hardware implementation
within a simple programming model. This makes programming the sensor
or actuator hardware interface less complex by using an input/output (I/O)-
driver paradigm. The network services interfaces encapsulate the details of
the different network protocol implementations behind a small set of commu-
nications methods. The model of the networked smart transducer is shown
in Figure 2.11.

During the course of the development of the IEEE 1451.1 and 1451.2
standards, some sensor manufacturers and users recognized the need for
a standard interface for distributed multidrop smart-sensor systems. In a
distributed system a large array of sensors, in the order of hundreds, needs
to be read in a synchronized manner. The bandwidth requirements of these
sensors may be relatively high, of the order of several hundred kHz, with
time correlation requirements in tens of nanoseconds. IEEE P1451.3 defines
the standard specification. The physical representation of the proposed IEEE
P1451.3 standard is shown in Figure 2.6. A single transmission line is proposed
to supply power to the transducers and to provide the communications
between the bus controller and the Transducer Bus Interface Modules (TBIM).
A transducer bus is expected to have one bus controller and many TBIMs.
A TBIM may contain one or more different transducers. The NCAP contains
the controller for the bus and the interface to the network that may support
many other buses.

44 SMART SENSOR NETWORKS

Tr
an

sd
uc

er
(s

)
(s

en
so

r(
s)

 o
r

ac
tu

at
or

(s
))

Transducer hardware
interface specification

(e.g. IEEE 1451.2)
Transducer

logical interface
specification

Network
protocol logical

interface
specification

Network

Network
hardware

Network
protocol

Transducer
software I/O port

hardware

A
pp

lic
at

io
n

so
ftw

ar
e

Figure 2.11 Networked smart transducer model.

In the condition-based monitoring and maintenance industry, analog
transducers such as piezoelectric, piezoresistive, and accelerometer-based
transducers are used with electronics instruments to measure the conditional
state of machinery. Transducer measurements are sent to an instrument or
computer for analysis. The idea of having small TEDS on analog transducers
and the ability to connect transducers to a network is used in the IEEE
P1451.4 standard. An IEEE 1451.4 transducer can be a sensor or actuator with,
typically, one addressable device, and is referred to as a node-containing
TEDS. The IEEE P1451.4 transducer may be used to sense multiple physical
phenomena. Each phenomenon sensed or controlled is associated with a
node. If more than one node is included in an IEEE 1451.4 transducer, one of
the nodes must have a memory block that holds the node list. The node list
contains the identifications of the other nodes.

In order to reduce cabling and interfacing costs, a model using differ-
ent wiring configurations is chosen as a transducer connection interface.
If a single wire model is used, the analog transducer signal transmission
and communication of the digital TEDS data to an instrument or a net-
work are done on the same wire, but at separate times. If a multiwire
model is used, communication of digital data and analog signals can be
accomplished simultaneously. The digital communication can be used to
read the TEDS information and to configure an IEEE P1451.4 transducer.

2.4. SMART TRANSDUCER NETWORKING 45

The context of the mixed-mode transducer and its interface(s) are shown in
Figure 2.12.

A distributed measurement and control system can be easily designed
and built based on the IEEE 1451 standards. An application model of IEEE
1451 is shown in Figure 2.13. Three NCAP/STIMs are used for illustration
purposes. In scenario one, with sensors and actuators connected to the STIM

Transducer Electronic
Data Sheet

(TEDS) Energy
conversion

Transducer(s)Node(s)

Network Capable
Application Processor

(NCAP) with IEEE P1451.4
mixed-mode interface

IEEE P1451.4 mixed-mode interface(s)

IEEE P1451.4 mixed-mode transducer

Network

Figure 2.12 Context of mixed-mode transducer and interface.

Sensor
STIM

Actuator
STIM

Sensor
STIM

Distributed control

NCAP
#1

NCAP
#2

NCAP
#3

Actuator
STIM

Remote
sensing

Remote
actuating

Monitoring
station

Network

Figure 2.13 An application of IEEE 1451 based sensors on a network.

46 SMART SENSOR NETWORKS

of NCAP No.1, the application software running in the NCAP can perform
a localized control function, for example, maintain a constant temperature of
a bath. The NCAP reports measured data, process information, and control
status to a remote monitoring station or host. It frees the host from the
processor-intensive, closed loop control operation. In the second scenario,
NCAP No.2, connected with sensors only, can perform a remote process or
condition monitoring function, for instance, to monitor the vibration level of
a set of bearings in a turbine. In the third scenario, based on the broadcast
data received from NCAP No.2, NCAP No.3 activates an alarm when the
vibration level of the bearings exceeds a critical point set.

The Ethernet has been used for networking computers for information and
data exchange. The TCP/IP (Transaction Control Protocol/Internet Protocol)
enables data transfer between computers across the Internet. An industrial
Ethernet NCAP, which is IEEE 1451.2 compatible, can be used to build web-
based distributed measurement and control applications which enable the
access of sensor information and measurements across the Internet.

2.5. CONTROLLER AREA NETWORK

IEEE 1451 smart transducer standard offers true plug-and-play facilities for
connecting sensor and actuator devices to field bus and device-level networks.
Although the first implementations of the standard have been developed to
allow transducer devices to connect to Ethernet networks, thus creating an
industrial Ethernet, the standard can also be applied to CAN (Controller Area
Network)-based device level networks. The IEEE 1451 standard describes
design and implementation for an IEEE 1451.2 STIM (Smart Transducer
Interface Module), involving a software port, onto a standard microcontroller.
The IEEE 1451.1 standard defined NCAP (Network Capable Application
Processor) can be implemented in a CAN node thus realizing a form of
gateway between transducer devices and the CAN network, based on the
IEEE 1451 standard.

IEEE 1451 introduces a common interface standard to give a network-
independent view of devices. Smart transducers can embed local intelligence
to support features such as self-diagnostics, local control and analytical
algorithms, and can perform self-declaration to the network based on an
electronic data sheet. This self-declaration feature allows transducer devices
to be connected to the network in a true plug-and-play way.

The first commercial IEEE 1451 implementations are targeted at the Ethernet
networks. Ethernet has traditionally played a role as a LAN (Local Area
Network), positioned high up in the CIM (Channel Interface Module) model.

2.5. CONTROLLER AREA NETWORK 47

However, as the cost of embedded Ethernet solutions decreases, the Ethernet
is applied at the field bus level and even at the device network level, but
Ethernet does not support various device profiles, in a formal sense, and IEEE
1451 offers a retrofit solution for Ethernet, defining a device level interface
for smart sensors. This solution is referred to as industrial Ethernet.

The IEEE 1451 standard, however, is more than an Ethernet solution.
The transducer developers need a network-independent standard for device
connection. CAN based networks are good candidates for IEEE 1451 imple-
mentations and a number of companies are developing these solutions. The
IEEE 1451 standard maps the transducer device to the target network based
on an object model defined independently of the network. Each network has
an NCAP (Network-Capable Application Processor) which maps to the target
network profile.

Along with providing a common-software interface standard for trans-
ducer devices, a common-hardware interface is also necessary for network
independence. The common hardware interface exists where an architectural
difference occurs between the IEEE 1451 standard and the more traditional
approach for field bus and device level network interfacing.

The IEEE 1451 standard comprises of four complete sub-standards. Each
sub-standard may be used as a stand-alone or as a part of an overall IEEE 1451
family solution. The IEEE 1451.1 and 1451.2 standards have been balloted
and accepted by the IEEE. IEEE P1451.3 and P1451.4 are under development,
hence the prefix P, which denotes a proposed document. Figure 2.10 shows a
block diagram for the IEEE 1451.1 and IEEE 1451.2 solutions.

IEEE 1451.1 defines a network-independent information model, enabling
transducers to interface to network-capable application processors (NCAPs).
It provides a definition for a transducer and its components using an object-
oriented model. The model consists of a set of object classes with specified
attributes, actions and behaviors used to provide a clear, comprehensive
description of a transducer. The model also provides a hardware independent
abstraction for the interface to the sensor and actuator. The model can be
mapped onto example networks such as DeviceNet, Ethernet, LonWorks
and SDS (Smart Distributed System). This mapping is achieved through a
standard API (Application Programming Interface). This standard optionally
supports all of the interface module communication approaches taken by the
rest of the IEEE 1451 family (i.e. STIM, TBIM, Mixed-mode transducer).

IEEE 1451.2 defines the following:

• a TEDS (Transducer Electronic Data Sheet) and its data format;
• a standard digital interface and the communication protocols used between

the transducer(s) and the microprocessor;

48 SMART SENSOR NETWORKS

• an electrical interface, and
• read and write logic functions to access the TEDS and transducers.

IEEE 1451.2 requires that the TEDS are physically located with the transduc-
ers (as part of the STIM) at all times. The TEDS contains information describing
the transducers that are embodied within the STIM. The amount of detail
held within the TEDS will vary with each specific STIM implementation, but
critical information will always be present.

IEEE P1451.3 defines a specification for a standard physical interface
for connecting multiple physically separated transducers in a multidrop
configuration. This is necessary because in some cases, for example, it is not
possible physically to locate the TEDS with the transducers (for instance,
due to harsh environments). The IEEE P1451.3 document proposes a bus
implementation (known as the Transducer Bus Interface Module, TBIM)
that is small and cheap enough to fit easily into a transducer. The network
overhead developed is optimized to allow maximum data transfer throughput
with a simple control logic interface.

IEEE P1451.4 defines a specification that allows analog transducers (e.g.
piezoelectric transducers, strain guages, etc.) to communicate digital informa-
tion (mixed mode) for the purposes of self-identification and configuration.
This standard also proposes that the communication of the digital TEDS data
is shared with the analog signal from the transducer with a minimum set of
wires, fewer than the 10-wire requirement of the IEEE 1451.2 standard.

IEEE 1451.1 and IEEE 1451.2 together define the specification for networked
smart transducers. They provide the framework for the sensor and actuator
manufacturers to support multiple networks and protocols easily.

As a whole, the family of IEEE 1451 standard interfaces provides the
following benefits:

• enable self-identification of transducers;
• facilitate self-configuration;
• maintain long term self-documentation;
• make for easy transducer upgrade and maintenance;
• increase data and system reliability;
• allow transducers to be calibrated remotely, or to be self-calibrated.

The following components are used in the description of IEEE 1451.2:

XDCR: an abbreviation for transducer, which is a sensor or an actuator.
STIM: Smart Transducer Interface Module (Figure 2.10).

2.5. CONTROLLER AREA NETWORK 49

A STIM can range in complexity from a simple single-channel sensor, or
actuator, to a product supporting multiple channels of transducers. A
transducer channel is denoted smart in this context because:

• it is described by a machine-readable TEDS;
• the control and data associated with the channel are digital;
• triggering, status and control are provided to support the proper function-

ing of the channel

NCAP: Network Capable Application Processor.
The NCAP mediates between the STIM and a digital network, and may
provide local intelligence. The STIM communicates with the network
transparently, via the TII that links it to the NCAP.

TII: Transducer Independent Interface.
The TII is a 10-wire serial I/O bus that defines:

• a triggering function that triggers reading and writing from/to a transducer;
• a bit transfer methodology;
• a byte-write data-transport protocol (NCAP to STIM);
• a byte-read data-transport protocol (STIM to NCAP);
• data transport frames.

TEDS: Transducer Electronic Data Sheet.
The TEDS is a data sheet written in electronic format that describes the
STIM and the transducers associated with it, such as manufacturer’s name,
type of transducer, serial number, etc. The TEDS must remain with the
STIM for the duration of the STIM’s lifetime.

We discuss an example implementation of the IEEE 1451.2 standard to
design a STIM. We break down the IEEE 1451.2 standard into its logical parts,
and then reorganize these parts into a software model. The resulting software
model is shown in Figure 2.14. The 1451.2 STIM contains the following: TEDS;
control and status registers; transducer channels; interrupt masks; address and
function decoding logic; data transport handling functions; trigger and trig-
ger acknowledge functions for the digital interface to the TII; a TII driver, and
a transducer interface. The logical software blocks are shown in Figure 2.15.

The TII contains the physical lines to support data transport, clocking,
triggering and acknowledgment. Each STIM must have a TEDS, which
consists of eight different subgroupings, which are:

• Meta TEDS [mandatory]

50 SMART SENSOR NETWORKS

ADuc812 hardware

XDCR I/O TEDS

Addressing Status

Data transportControl

Interrupts Triggering

STIM kernel

TII-software interface

TII-physical mapping

NCAP hardware

STIM

Figure 2.14 STIM software architecture.

STIM control
and

channel data
block

Address and
function block

Tll block

TEDS block

STIM
transducer
interface

Figure 2.15 IEEE 1451.2 broken down into its logical software blocks.

– makes available, at the interface, all the information needed to gain
access to any channel,

– contains information common to all channels,
– information is constant and read-only.

2.5. CONTROLLER AREA NETWORK 51

• Channel TEDS [mandatory, one for each channel]
– makes available, at the interface, all the information concerning the

channel being addressed to enable proper operation of that channel,
– information is constant and read-only.

• Calibration TEDS [optional]
– makes available, at the interface, all of the information used by the

correction engine in connection with the channel being addressed,
– information may be configured to be read and write capable, or it may

be configured as read-only.
• Meta-Identification TEDS [optional]

– makes available, at the interface, the information needed to identify
the STIM,

– contains any identification information common to all channels,
– information is constant and read-only.

• Channel-Identification TEDS [optional]
– makes available at the interface all of the information needed to identify

the channel being addressed,
– information is constant and read-only.

• Calibration-Identification TEDS [optional]
– makes available at the interface the information describing the calibra-

tion of the STIM,
– information may be configured to be read and write capable, or it may be

configured as read-only (it must be the same as for the calibration TEDS).
• End-Users’ Application Specific TEDS [optional]

– contains end-users’ writable application-specific data,
– information is nonvolatile.

• Industry Extensions TEDS [optional]
– the function of the extension TEDS, the appropriate functional and

channel address range where it may reside, and the meaning and type
of the data fields will be defined by the creator of the extension.

For the purposes of this implementation, the software was coded in four
modules, as follows:

• STIM control, channel data and transducer interface module;
• TII module;
• TEDS module;
• Address and function module.

52 SMART SENSOR NETWORKS

8 × 12-bit ADCs,
dual DACs, 32

I/O lines

8051 compatible
MCU, 8 kb

program flash,
256 bytes RAM

640 bytes
‘user’ flash

8 kb program
flash

SPI port

Figure 2.16 A block diagram of the principal features contained on the ADuC812.

This software was built and run on the Analog Devices ADuC812 Micro-
converter development board. A block diagram of the principal features
contained on the ADuC812 is shown in Figure 2.16. The ADuC812 contains an
8051 compatible MCU, 8 kb of program flash/EE, 640 bytes of data flash/EE,
256 bytes of RAM, up to 32 programmable I/O lines, an SPI serial I/O port,
dual DACs and an eight-channel true 12-bit ADC. The SPI port is an industry
standard four-wire synchronous serial communications interface. It can be
configured for master or slave operation, and is externally clocked when in
slave mode. The data flash/EE is a memory array which consists of 640 bytes,
configured into 160 4-byte pages. The interface to this memory space is via
a group of registers that is mapped in the SFR space. The 8-kb program
flash/EE will ultimately store and run the end-user’s application code.

This board, together with two attached transducers (an AD590 temperature
sensor and a digital I/O controlled fan) comprises the STIM. The NCAP used
for this implementation was the HP BFOOT 66501. Figure 2.17 shows the
mapping between the IEEE 1451.2 software and the ADuC812.

• the STIM is controlled from the program flash/EE, and each channel’s
transducer data, status and control registers is held in RAM for the duration
of the STIM lifetime;

• the transducer interface is mapped onto the ADCs, DACs and I/O lines;
• the TII is a superset of the SPI port (plus some I/O lines);

2.5. CONTROLLER AREA NETWORK 53

IEEE 1451.2
software

components

ADuC812
micro converter

components

STIM
transducer
interface

8 × 12-bit ADCs,
dual DACs, 32

I/O lines

TII

SPI port

Address and
function

8 kb program
flash

TEDS

640 bytes 'user'
flash

8051 compatible
MCU, 8 kb program

flash, 256 bytes
RAM

STIM control and
channel data

Figure 2.17 Mapping the STIM software onto the microconverter: software blocks
overlay onto the ADuC812 feature blocks.

• the TEDS map into the 640 bytes of data flash/EE, and
• the Address and Function block is stored into the program flash/EE.

‘STIM Control and Channel Data’ and ‘Transducer Interface’ modules con-
tain the definitions for the transducer channels (there are 256 transducer chan-
nels allowed per STIM). One of these channels must be CHANNEL ZERO,
the global channel that is used for globally addressing all of the implemented
channels simultaneously. As channels are added, they must be numbered
sequentially, starting from the main control flow of the program. Our particu-
lar implementation defines two channels: one sensor (an AD590 temperature
sensor) and one actuator (a digital-output controlled fan). As with the TII
module, this module contains certain definitions that are hardware-coupled
(i.e. the physical lines that the sensor and actuator are realized on).

The TII module defines the physical interface to the NCAP. The TII was
implemented as a superset of the existing microconverter ADuC812 SPI port.
There are 10 lines in the TII, while there are typically only three or four in
an SPI implementation. This module must integrate these lines with their
hardware interface, and also provide an abstract layer for software interaction.

54 SMART SENSOR NETWORKS

Viewing the TII functions from the user’s perspective, this hardware coupling
is transparent. The TII API calls allow for the transport of read and write
protocol frames, and for detecting and manipulating the states of the TII lines.

The TEDS module defines the TEDS for the STIM. It defines where the TEDS
are physically mapped (e.g. Flash RAM, ROM or EEPROM (Electronically
Erasable Programmable read only)), how they are written and stored, how
they are retrieved and what they contain. The TEDS supported include the
mandatory TEDS (i.e. one meta- and two channel-TEDS) and also the optional
meta-ID TEDS.

The ‘Address and Function’ module implements all of the main func-
tionality that is defined by the IEEE 1451 standards. It takes care of the
data transport, control, interrupt, status and trigger functions. Note that
each one of the different function types is preceded by a three letter abbre-
viation representing the grouping to which it belongs, e.g. the function
DAT ReadMetaTEDS() belongs to the data transport function group. The data
transport submodule detects activity on the physical transport lines (by calling
TII API functions). This submodule controls the transmission and reception
of the TEDS information, the status information and the transducer data.

The aim of the software implementation was to create a complete minimal
IEEE 1451.2 realization. This work involved dividing the standard into its
various parts, then identifying the compulsory and optional sections. The
architecture was designed to meet all of the mandatory specifications, and
to allow for expansion to support a full and complete specification. As a
result, the code was structured, modular and scalable. As far as possible,
the architecture abstracted the software into layers, so that all but the most
hardware-dependent functions would also be portable.

The program code took just over 5.5 kB of program Flash/EE. The TEDS
took up 268 bytes. For every channel that is added, another Channel-TEDS
becomes mandatory. Therefore, the 640-byte data Flash/EE on board the
ADuC812 will quickly fill up. The TEDS may also be mapped elsewhere
should the need arise.

The end product was tested extensively. The NCAP used was HP BFOOT
66501 (which is also a thin web server) was used to test the system, so it was
possible to read and display the TEDS over the WWW (World Wide Web).
It was possible to track temperature trend remotely over time, using a Java
applet to read the AD590 sensor data from the STIM, via the NCAP. It was
also possible to control the temperature at the sensor by triggering the fan to
actuate when the sensor value exceeded a pre-set threshold. To achieve this,
all that needs to be known is the IP address of the NCAP.

For design engineers who are used to developing device profiles and
interfaces for transducer devices on CAN based networks, the IEEE 1451

2.5. CONTROLLER AREA NETWORK 55

Smart
transducer
interface

board

TII comms

TEDS

Kernel

‘Smart transducer interface
module’-IEEE 1451.2

Object information
model-IEEE 1451.1

Transducer domain
(real world)

AD590 temperature
sensor and digital IO fan

ADuC812
evaluation board

‘Network
capable

application
processor ’

Application
Transducer

Independent
Interface

Network
abstraction

block

Transducer
abstraction

block N
et

w
o

rk
 (

E
th

er
n

et
)

Intranet/Internet

HB Bfoot 66501

(TII)

Web browser 1

Web browser 2

Figure 2.18 Conceptual IEEE 1451 based solution.

approach differs. Figure 2.18 shows a conventional solution where a typical
transducer device, comprising some sensors in this example, is interfaced
to a CAN-based network, say a DeviceNet solution. Here the sensors are
interfaced directly to the network node and a single node processor is used
to read and condition the sensor data. Figure 2.18 shows the same sensors
interfaced to the DeviceNet network, or some other network, but this time the
IEEE 1451 standard is employed. A separate processor is used to implement
the NCAP at the node level, where the NCAP interfaces to the network on one
side and interfaces to the TII at the other side. A separate processor resides in
the STIM module.

It is seen that compared with conventional solutions for transducer inter-
facing, the IEEE 1451 solution includes an additional serial interface, the
TII, and an additional processor for the STIM. These additional hardware
features make the implementation appear cumbersome. However, the addi-
tional hardware in the IEEE 1451 context allows the transducer manufacturer
to develop to a common interface standard, which is independent of any par-
ticular network. The transducer developer needs to develop only one product
where it is anticipated that the various network developers will provide the

56 SMART SENSOR NETWORKS

NCAPs, which are in effect gateways between the target network and the
STIM. Thus the transducer device manufacturer will develop expertise in
STIM and does not need to have knowledge of the NCAP or the networks
other than the NCAPs.

Many of the transducer manufacturers are SME (Small to Medium Enter-
prise) sized companies and it is easier for such companies to develop a
single product to suit all networks. Obviously if some particular network
or networks are of volume interest to a transducer manufacturer, then the
manufacturer may elect to do a dedicated implementation for such a network
or networks. However, the STIM solution is more universal, although at an
incremental cost.

IEEE 1451 is not just an industrial Ethernet standard but it is a generic
standard which can be applied to many field bus or device-level networks.

The IEEE 1451 offers a useful reference for control and data models
to describe sensors and actuators. The standard helps to unify the many
different models presented in network standards.

The CAN can explore this standard and implement NCAP solutions. The
CAN based networks are used to provide device level solutions, and the

8 K byte
electrically

reprogrammable
nonvolatile

program flash
memory

640 byte
electrically

reprogrammable
nonvolatile
data flash
memory256 bytes

RAM

Auto-calibration
8-channel
high speed
12 bit ADC

Other on-chip
peripherals:

temp. Sensor
2 × 12-bit DACs

Serial I/O
Parallel I/O

WDT
PSM

128 byte
special
function
register

area

8051
code

compatible
core

Figure 2.19 The ADuC812 programming model.

2.5. CONTROLLER AREA NETWORK 57

IEEE 1451 standard encourages more transducer manufacturers to develop
products for networked environments.

Figure 2.19 shows the programming model for the ADuC812. The ADuC812
has separate address spaces for program and data memory. The additional
640 bytes of Flash/EE that is available to the user may be accessed indirectly
via a group of control registers in the SFR (Special Function Register) area of
the data memory space. The lower 128 bytes of RAM are directly addressable,
while the upper 128 bytes may only be addressed indirectly. The SFR area
is accessed by direct addressing only and provides an interface between the
CPU and all on-chip peripherals.

Figure 2.20 shows how the 1451 implementation makes use of the ADuC812
programming model. The TEDS are located in the 640-byte data Flash/EE, the
TII and actuator are directly tied into the peripherals block and the sensor is
hanging off of the ADC block. All of these features are accessed and controlled

-STIM program
control flow.

-STIM logical
transducer
interface.

-Addressing and
functions.
-Tll logical
interface.

-TEDS read/write.

8051
code

compatible
core

TEDS:

Channel 1-0 × 2 B
Channel 2-0 × 13

Meta-0 × 00

Sensor-AD590
on ADC channel 0

128 byte
special
function
register

area

STIM
channel
data/info.

TEDS
loading
buffer

Actuator (i.e. fan)
on a port I/O pin

Tll physical
interface

Writing and
reading the

TEDS
-logical flow

Figure 2.20 Implementation mapped into the ADuC812 programming model.

58 SMART SENSOR NETWORKS

via the SFR area. The standard data RAM is used for storing the STIM channel
transducer data and registers. It must reserve a buffer from which the TEDS
may be individually loaded, and into which the TEDS may be read back
from the data Flash/EE. Note also that the RAM must contain all local and
system variables that are required by the code, and it must also allow for the
run-time stack. All of these requirements place limitations on the size of the
TEDS buffer, which the end-user should be aware of. All of the programming
functions are stored into the program Flash/EE memory. In Figure 2.20, the
dotted line shows the logical link between the read/write functions, and
the actual writing and reading to/from the TEDS data Flash/EE area. These
TEDS function calls are designed to be logically transparent to the end-user,
and the method of implementation is not important.

2.6. SUMMARY

Smart sensors communicating with their outside world use digital communi-
cation. There are many alternative paths along which to develop the potential
benefits of an agreed protocol. The proposed IEEE 1451 standard has four
levels, three of which focus purely on digital interfaces, while the fourth level,
known as P1451.4, defines an interface for mixed mode sensors with analog
signals as well as digital information.

In a plug-and-play architecture, sensors and actuators are linked together
through a series of common interfaces to modules designed to process the
signals and to interface to existing communication networks. In the process
control industry, sensors and transducers are connected directly to digital
networks over a common interface, and are used in factory automation and
closed loop control.

An intelligent tool-condition monitoring method is needed to detect tool
wear or damage automatically instead of replacing the tool at regular intervals
or discovering defects in material after operation. Direct sensing methods
have been developed using multiple sensors to detect vibration, force, acoustic
emission, temperature, and motor current. Tool wear is a very complex
process and can be detected with sensor fusion, feature extraction, and
pattern recognition.

Microprocessors can support smart sensors and devices. With this added
capability, it is possible for a smart sensor to communicate measurements to
an instrument or a system directly. Networking of transducers (sensors or
actuators) in a system can provide flexibility, improve system performance,
and make it easier to install, upgrade and maintain systems.

IEEE 1451 defines hardware and software standardized methods to support
smart sensor and network connectivity. The standard’s specifications place

2.6. SUMMARY 59

no restrictions on the use of signal conditioning and processing schemes,
analog-to-digital converters, microprocessors, network protocols, and net-
work communication media. IEEE 1451 reduces industry’s effort to develop
and migrate towards networked smart transducers. This standard pro-
vides the means to achieve transducer-to-network interchange ability and
transducer-to-network interoperability.

The IEEE 1451.1 standard defines a common object model for a networked
smart transducer and the software interface specifications for each class rep-
resenting the model. Some of these classes form the blocks, components, and
services of the conceptual transducer. The networked smart transducer object
model encapsulates the details of the transducer hardware implementation
within a simple programming model. This makes programming the sensor
or actuator hardware interface less complex by using an input/output (I/O)
driver paradigm. The network services interfaces encapsulate the details
of the different network protocol implementations behind a small set of
communications methods.

The IEEE 1451.1 defined NCAP (Network Capable Application Processor)
can be implemented in a CAN node thus realizing a form of gateway
between transducer devices and the CAN network, based on the IEEE
1451 standard. The IEEE 1451 introduces a common interface standard
to give a network independent view of devices. Smart transducers can
embed local intelligence to support features such as self-diagnostics, local
control and analytical algorithms, and can perform self-declaration to the
network based on an electronic data sheet. This self-declaration feature
allows transducer devices to be connected to the network in a plug-and-
play way.

The IEEE 1451 standard maps the transducer device to the target network
based on an object model defined independently of the network. Each network
has an NCAP (Network Capable Application Processor) which maps to the
target network profile.

Along with providing a common software interface standard for trans-
ducer devices, a common hardware interface is also necessary for network
independence. The common hardware interface exists where an architectural
difference occurs between the IEEE 1451 standard and the more traditional
approach for field bus and device level network interfacing.

IEEE 1451.1 defines a network-independent information model, enabling
transducers to interface to network capable application processors (NCAPs).
It provides a definition for a transducer and its components using an object-
oriented model.

IEEE 1451.2 defines TEDS (Transducer Electronic Data Sheet) and its data
format, a standard digital interface and the communication protocols used

60 SMART SENSOR NETWORKS

between the transducer(s) and the microprocessor, an electrical interface, and
read and write logic functions to access the TEDS and transducers.

IEEE P1451.3 defines a specification for a standard physical interface
for connecting multiple physically separated transducers in a multidrop
configuration. The IEEE P1451.3 document proposes a bus implementation
(known as the Transducer Bus Interface Module, TBIM) that is small and
cheap enough to fit easily into a transducer.

IEEE P1451.4 defines a specification that allows analog transducers (e.g.
piezoelectric transducers, strain gauges, etc.) to communicate digital informa-
tion (mixed mode) for the purposes of self-identification and configuration.

IEEE 1451.1 and IEEE 1451.2 together define the specification for networked
smart transducers. They provide the framework for the sensor and actuator
manufacturers to support multiple networks and protocols easily.

PROBLEMS

Learning Objectives

After completing this chapter you should be able to:

• demonstrate understanding of smart sensors;
• explain the role of vibration sensors;
• discuss how smart sensors are applied to condition based maintenance;
• demonstrate understanding of smart transducer networking.

Practice Problems

Problem 2.1: How do smart sensors communicate?
Problem 2.2: What parameters should be included in TEDS data?
Problem 2.3: What does IEEE 1451.1 standard define?
Problem 2.4: What does IEEE 1451.2 standard define?
Problem 2.5: What does IEEE 1451.3 standard define?
Problem 2.6: What does IEEE 1451.4 standard define?
Problem 2.7: What are the benefits of using IEEE 1451 standard interfaces?

Practice Problem Solutions

Problem 2.1:

Smart sensors use digital communication. Smart sensors communicate with
their outside world by using the data capture and analysis or a control system.

PROBLEMS 61

Problem 2.2:

TEDS data should include identification, e.g. model number; device, e.g.
sensor type, sensitivity, and measurement units; calibration, e.g. date of
last calibration and correction factors, and application, e.g. channel ID and
measurement coordinates.

Problem 2.3:

The IEEE 1451.1 standard defines the Network Capable Application Processor
(NCAP).

Problem 2.4:

The IEEE 1451.2 standard specifies Smart Transducer Interface Module
(STIM).

Problem 2.5:

The IEEE P1451.3 standard defines Distributed Multidrop System (DMS), a
digital interface for connecting multiple physically separated transducers,
which allows for time synchronization of data. This transducer bus facilitates
communications, data transfer, triggering, and synchronization.

Problem 2.6:

The IEEE P1451.4 standard defines mixed-mode communication protocol
and interface to bridge the gap between legacy systems and IEEE 1451
architectures.

Problem 2.7:

The family of IEEE 1451 standard interfaces enables self-identification of trans-
ducers, facilitates self-configuration, maintains long-term self-documentation,
makes for easy transducer upgrade and maintenance, increases data and sys-
tem reliability, and allows transducers to be calibrated remotely or to be
self-calibrated.

3
Power-Aware Wireless
Sensor Networks

3.1. INTRODUCTION

Networks of distributed microsensors are emerging as a solution for a wide
range of data gathering applications. Perhaps the most substantial challenge
facing designers of small but long-lived microsensor nodes is the need
for significant reductions in energy consumption. A power-aware design
methodology emphasizes the graceful scalability of energy consumption
with factors such as available resources, event frequency, and desired output
quality, at all levels of the system hierarchy. The architecture for a power-
aware microsensor node highlights the collaboration between software that
is capable of energy-quality trade-offs, and hardware with scalable energy
consumption.

The energy scalable design methodologies are geared specifically toward
microsensor applications. At the hardware level, the unusual energy con-
sumption characteristics are effected by the low duty cycle operation of
a sensor node. This design adapts to varying active workload conditions
with dynamic voltage scaling. At the software level, energy-agile algorithms
for sensor networks, such as adaptive beam forming, provide energy qual-
ity trade-offs that are accessible to the user. Power-aware system design
encompasses the entire system hierarchy, coupling software that under-
stands the energy-quality trade-off with hardware that scales its own energy
consumption accordingly.

Wireless Sensor Network Designs A. Hać
 2003 John Wiley & Sons, Ltd ISBN: 0-470-86736-1

64 POWER-AWARE WIRELESS SENSOR NETWORKS

The node’s processor is capable of scaling energy consumption gracefully
with computational workload. This scalability allows for energy-agile algo-
rithms of scalable computational complexity. Scalability at the algorithm
level is highly desirable because a large range of both energy and quality
can be achieved. As the energy–quality characteristics of DSP (Digital Signal
Processing) algorithms may not be optimal due to data dependencies, it is
important to use algorithmic transforms to achieve desirable energy–quality
(E–Q) characteristics and accurately model the energy–quality relationship
through benchmarking.

Distributed microsensor networks allow a versatile and robust platform
for remote environment monitoring. Crucial to long system lifetimes for
these microsensors are algorithms and protocols that provide the option
of trading quality for energy savings. Dynamic voltage scaling on the
sensor node’s processor enables energy savings from these scalable algo-
rithms. Dynamic voltage scaling uses a sensor node built of a commercial
processor, a digitally adjustable DC–DC regulator, and a power-aware oper-
ating system.

A system-level power management technique is used in massively dis-
tributed wireless microsensor networks. A power-aware sensor node model
enables the embedded operating system to make transitions to different sleep
states based on observed event statistics. The adaptive shutdown policy is
based on a stochastic analysis and renders desired energy–quality scalabil-
ity at the cost of latency and missed events. Algorithmic transformations
improve the energy–quality scalability of the data gathering network.

Power-aware methodology uses an embedded microoperating system to
reduce node energy consumption by exploiting both sleep state and active
power management.

The energy dissipated by communication is a key concern in the devel-
opment of networks of hundreds to thousands of distributed wireless
microsensors. To evaluate the dissipation of communication energy in this
unique application domain, energy models based on actual microsensor
hardware are used for high-density, energy-conscious wireless networks.
Assessing and leveraging the energy implications of microsensor hardware
and applications is crucial to achieving energy-efficient microsensor network
communication.

Power awareness becomes increasingly important in VLSI systems to scale
power consumption in response to changing operating conditions. These
changes might be brought about by the time-varying nature of inputs,
desired output quality, or environmental conditions. Regardless of whether
they were engineered for being power aware, systems display variations in
power consumption as conditions change.

3.2. DISTRIBUTED POWER-AWARE MICROSENSOR NETWORKS 65

Low power system design, assuming a worst-case power dissipation sce-
nario, is being supplanted by a more comprehensive philosophy variously
termed power-aware, energy-aware or energy–quality-scalable design. The
basic idea behind these essentially identical approaches is to allow the system
power to scale with changing conditions and quality requirements.

3.2. DISTRIBUTED POWER-AWARE MICROSENSOR NETWORKS

The design of micropower wireless sensor systems has gained increasing
importance for a variety of civil and military applications. Advances in
microelectromechanical systems (MEMS) technology and its associated inter-
faces, signal processing, and RF circuitry have enabled the development
of wireless sensor nodes. The focus has shifted from limited macrosensors
communicating with base stations to creating wireless networks of com-
municating microsensors, as illustrated in Figure 3.1. Such sensor networks
aggregate complex data to provide rich, multidimensional pictures of the
environment. While individual microsensor nodes are not as accurate as their
expensive macrosensor counterparts, their size and cost enables the network-
ing of hundreds or thousands of nodes in order to achieve high quality, easily
deployed, fault-tolerant sensing networks.

A key challenge in the design of a microsensor node is low energy dis-
sipation. A power-aware system design employs a system whose energy
consumption adapts to constraints and variations in the environment, on-
board resources, or user requests. Power-aware design methodologies offer
scalable energy savings that are ideal for the high variabilities of the microsen-
sor environment.

Remote base
station

Microsensor
node

Figure 3.1 Microsensor networks for remote sensing.

66 POWER-AWARE WIRELESS SENSOR NETWORKS

Low-power system design allows the system’s energy consumption to scale
with changing conditions and quality requirements.

There are two main views motivating power-aware design and its emer-
gence as an important paradigm. The first view is to explain the importance
of power-awareness as a consequence of the increasing emphasis on making
systems more scalable. In this context, making a system scalable refers to
enabling the user to trade off system performance parameters as opposed to
hard wiring them. Scalability is an important factor, since it allows the end-
user to implement operational policy, which often varies significantly over
the lifetime of the system. At times, the user of a microsensor network might
want extremely high performance (e.g. data with a high signal-to-noise ratio)
at the cost of reduced battery lifetime. However, at other times, the opposite
might be true, the user may be willing to trade-off quality in return for
maximizing battery lifetime. Such trade-offs can only be optimally realized if
the system is designed in a power-aware manner. A related motivation for
power awareness is that a well-designed system should gracefully degrade its
quality and performance as available energy resources are depleted, instead
of exhibiting an all-or-none behavior of high-SNR (Signal-to-Noise Ratio)
data followed by a network failure.

While the view above argues for power awareness from a user-centric
and user-visible perspective, this paradigm can also be motivated in more
fundamental, system-oriented terms. With burgeoning system complexity
and the accompanying increase in integration, there is more diversity in
operating scenarios than ever before. Hence, design philosophies that assume
the system to be in the worst case operating state most of the time are prone to
yield globally suboptimal results. This naturally leads to the concept of power
awareness. For instance, the embedded processor in a sensor node can display
tremendous workload diversity depending on activity in the environment.
Nodes themselves can also play a variety of roles in the network; a sensor
networking protocol may call for the node to act as a data gatherer, aggregator,
relay, or any combination of these. Hence, even if the user does not explicitly
change quality criteria, the processor can nevertheless exploit operational
diversity by scaling its energy consumption as the workload changes.

An example of a sensor node that illustrates power-aware design method-
ologies is shown in Figure 3.2. This system, the first prototype of µAMPS
(micro-Adaptive Multi-domain Power-aware Sensors), is designed with com-
mercial off-the-shelf components for rapid prototyping and modularity.

Power for the sensor node is supplied by a single 3.6-V DC (Direct Current)
source. The 5-V supply powers the analog sensor circuitry and A/D (Analog-
to-Digital) converter. The 3.3-V supply powers all digital components on the
sensor node with the exception of the processor core. The core is powered

3.2. DISTRIBUTED POWER-AWARE MICROSENSOR NETWORKS 67

Battery

DC/DC converter

Acoustic
sensor

Seismic
sensor

A/D

Data
aggregation
algorithms

Network
protocols

Link
level

protocols

StrongARM SA-1100

Memory
Hardware

Software (ROM)

Low power
radio

mOS

Figure 3.2 µAMPS sensor node hardware and software framework.

by a digitally adjustable switching regulator that can provide 0.9 V to 1.6 V
in 20 discrete increments. The digitally adjustable voltage allows the (Stron-
gARM) SA-1100 to control its own core voltage, enabling dynamic voltage
scaling techniques.

The node includes seismic and acoustic sensors. The seismic sensor is
a MEMS accelerometer capable of resolving 2 mg. The acoustic sensor is
an electret microphone with low-noise bias and amplification. The analog
signals from these sensors are conditioned with 8th-order analog filters and
are sampled by a 12-bit A/D. The high-order filters eliminate the need for
over sampling and additional digital filtering in the SA-1100. All components
are carefully chosen for low power dissipation; a sensor, filter, and A/D
typically requires only 5 mA at 5 volts.

A StrongARM SA-1100 microprocessor is selected for its low power con-
sumption, sufficient performance for signal processing algorithms, and static
CMOS (Complementary Metal-Oxide Semiconductor) design. The memory
map mimics the SA-1100 Brutus (Config SA1100 BRUTUS) evaluation plat-
form and thus supports up to 16 Mb of RAM and 512 kb of ROM. The
lightweight, multithreaded µOS (microOperating System) running on the
SA-1100 is an adaptation of the eCOS (embedded Cygnus operating system)
microkernel that has been customized to support the power-aware method-
ologies. The µOS, data aggregation algorithms, and networking firmware are
embedded into ROM.

The radio module interfaces directly to the SA-1100. The radio is based on
a commercial single chip transceiver optimized for (Industry Scientific and

68 POWER-AWARE WIRELESS SENSOR NETWORKS

Medical) ISM 2.45 GHz wireless systems. The PLL (Phase Lock Loop), trans-
mitter chain, and receiver chain are capable of being shut off under software
or hardware control for energy savings. To transmit data, an external voltage
controlled oscillator (VCO) is directly modulated, providing simplicity at the
circuit level and reduced power consumption at the expense of limits on the
amount of data that can be transmitted continuously. The radio module is
capable of transmitting up to 1 Mbps at a range of up to 15 meters.

The energy consumption characteristics of the components in a microsen-
sor node provide a context for the power-aware software to make energy
quality trade-offs.

Energy consumption in a static (Complementary Metal-Oxide Semicon-
ductor) CMOS-based processor can be classified into switching and leak-
age components.

While switching energy is usually the more dominant of the two compo-
nents, the low duty cycle operation of a sensor node can induce precisely the
opposite behavior. For sufficiently low duty cycles or high supply voltages,
leakage energy can exceed switching energy. For example, when the duty
cycle of the StrongARM SA-1100 is 10 %, the leakage energy is more than 50 %
of the total energy consumed. Techniques such as dynamic voltage scaling
and the progressive shutdown of idle components in the sensor node mitigate
the energy consumption penalties of low duty cycle processor operation.

Low duty cycle characteristics are also observable in radio. To power up a
radio and transmit a packet of varying length, ideally, the energy consumed
per bit would be independent of packet length. At lower data rates, however,
the start-up overhead of the radio’s electronics begins to dominate the radio’s
energy consumption. Due to its slow feedback loop, a typical PLL-based
frequency synthesizer has a settling time of the order of milliseconds, which
may be much higher than the transmission time for short packets. Particular
effort is required to reduce transient response time in low-power frequency
synthesizers for low data rate sensor systems.

Dynamic Voltage Scaling (DVS) exploits variabilities in processor workload
and latency constraints, and realizes this energy quality trade-off at the circuit
level. The switching energy of any particular computation is independent
of time. Reducing supplied voltage offers savings in switching energy at
the expense of additional propagation delay through static logic. Hence,
if the workload on the processor is light, or the latency tolerable but the
computation is high, the supplied voltage can be reduced with the processor
clock frequency to trade-off latency for energy savings. Both switching and
leakage energy are reduced by DVS.

Figure 3.3 illustrates the regulation scheme on a sensor node for DVS
support. The µOS running on the SA-1100 selects one of the above 11

3.2. DISTRIBUTED POWER-AWARE MICROSENSOR NETWORKS 69

SA-1100

Voltage limiting logic

mOS

55

0.9−1.6 V

3.6 V

Regulator
controller

Voltage/
current

feedback

Requested voltage
(digital value)

Figure 3.3 Feedback for dynamic voltage scaling.

frequency voltage pairs in response to the current and predicted workload.
A 5-bit value corresponding to the desired voltage is sent to the regulator
controller, and logic external to the SA-1100 protects the core from a voltage
that exceeds its maximum rating. The regulator controller typically drives
the new voltage on the buck regulator in under 100 µs (microseconds). At the
same time, the new clock frequency is programmed into the SA-1100, causing
the on-board PLL to lock to the new frequency. Relocking the PLL requires
150 µs, and computation stops during this period.

The implementation of the above system demonstrates energy–quality
trade-offs with DVS. For a fixed computational workload, the latency (the
inverse of quality) of the computation increases as the energy decreases.
The quality of a FIR (Finite Impulse Response) filtering algorithm is varied
by scaling the number of filter taps. The filter quality is sacrificed, and the
processor can run at a lower clock speed and thus operate at a lower voltage.
The DVS-based implementation of energy quality trade-offs consumes up to
60 % less energy than a fixed-voltage processor.

Algorithmic transformations, such as the most significant first transform,
can improve the E–Q characteristics of a particular algorithm by reducing
data dependencies. Figure 3.4 shows a testbed of sensors for beam forming,
a class of algorithm often used in sensor arrays to make inferences about the
environment. In this testbed, an array of six sensors is spaced roughly linearly
at intervals of approximately 10 meters, a source moves parallel to the sensor
cluster at a distance of 10 meters, and interference exists at a distance of
50 meters. Beam forming on the sensor data with varying numbers of sensors
is performed. The energy dissipated on the StrongARM SA-1100 in relation
to the number of sensors is measured. The matched filter output (quality)
is calculated, and a reliable model of the E–Q relationship is delivered by
varying the number of sensors in beam forming.

The E–Q characteristics are compared for two scenarios, the first being
traditional beam forming, and the second using a most significant first

70 POWER-AWARE WIRELESS SENSOR NETWORKS

10 m

Sensor
cluster

50 m

B

1

2

3

4

5

6

ASource
trajectory

Interference

Figure 3.4 A sensor testbed.

transform. In the first scenario, beam forming is simply done in a preset
order <1,2,3,4,5,6>. As the source moves from location A to B, the E–Q
dependencies change dramatically. When the source is in location A, the
beam forming quality is close to maximum because the source is closest to
the sensors. However, with the source at B, quality is close to maximum after
beam forming only two sensors, thus showing the dependency of the E–Q
on the relative source location.

Intelligent data processing can circumvent this dependency. Intuitively,
the data should be beam formed from sensors that have higher signal energy
to interference energy, or process the most significant first. Figure 3.5 shows
a block diagram for applying a most significant first transform to beam
forming. To find the desired beam-forming order, each sensor’s data energy
is estimated. The energies are then sorted using quicksort. The quicksort
output determines the desired beam-forming order. By finding the desired
beam forming order, the similar E–Q dependencies are achieved even as
the source moves with respect to the sensors. The energy cost required to
gain this additional scalability is low compared to the energy cost of LMS
(Laser Mirror Scanner) beam forming itself: on the SA-1100, the additional
computational cost was 8.8 mJ, which is only 0.44 % of the total energy for
LMS (Laser Mirror Scanner) beam forming (for the two-sensor case). The
incremental refinement characteristics of a sensor’s beam-forming algorithm
are improved, leading to more uniform and predictably scalable E–Q in the
presence of data dependencies.

The energy scalable framework enables the development and implemen-
tation of energy-agile applications. It is important that all processing in the
sensor node is energy scalable, including link-level protocols, sensor-network
protocols, data-aggregation algorithms, and sensor signal processing.

3.3. DYNAMIC VOLTAGE SCALING TECHNIQUES 71

LMS
beam forming

Beam-forming
order

M
sensor
data

Signal
energy

Quicksort

Figure 3.5 The most significant first transform used to improve E–Q characteristics of
LMS beam forming.

The µAMPS sensor node prototype demonstrates the effectiveness of
power-aware system design methodologies. Inefficiencies of low-duty cycle
operation are countered with a focus on leakage current and start-up time
reduction, and variations in processor workload are exploited by dynamic
voltage scaling. Variations in incoming data rate and volume are exploited
by energy-agile algorithms whose computational complexity scales with
the arrival statistics of the data, allowing switching energy savings in the
hardware. Close collaboration between the hardware and software of a
microsensor node results in dramatic energy savings.

3.3. DYNAMIC VOLTAGE SCALING TECHNIQUES

Distributed microsensor networks are emerging as a compelling new hard-
ware platform for remote environment monitoring. Researchers are consider-
ing a range of applications including remote climate monitoring, battle-field
surveillance, and intramachine monitoring. A distributed microsensor net-
work consists of many small, expendable, battery-powered wireless nodes.
Once the nodes are deployed throughout an area, they collect data from
the environment and automatically establish dedicated networks to transmit
their data to a base station. The nodes collaborate to gather data and extend
the operating lifetime of the entire system. Compared with larger macrosen-
sor based systems, microsensor networks offer a longevity, robustness, and
ease of deployment that is ideal for environments where maintenance or
battery replacement may be inconvenient or impossible.

The µAMPS (micro-Adaptive Multi-Domain Power-Aware Sensors) use
the enabling technologies for distributed microsensor networks. Microsensor
networks are composed of hundreds to thousands of small, inexpensive,
and homogeneous nodes. Once deployed, the nodes periodically organize
themselves into clusters, based on the selection and location of cluster head

72 POWER-AWARE WIRELESS SENSOR NETWORKS

Base
station

Cluster
head

Beam formed data

Dynamically
formed
clusters

Figure 3.6 Operation of the µAMPS distributed microsensor network.

nodes. Cluster heads receive data from the nodes in their cluster, aggregate
the data locally through beam forming, and transmit the result to a base
station. Figure 3.6 illustrates this organization and data flow. The use of
a two-hop routing protocol and data fusion at the cluster head substan-
tially reduces total transmission energy in the network, thus prolonging
system lifetime.

The µAMPS sensor node is designed as a highly integrated solution.
To demonstrate enabling technologies, the prototypes are integrated with
commercial, off-the-shelf components, for example, the StrongARM SA-1100
microprocessor.

Attaining months or years of useful life from a distributed microsensor net-
work requires system design for power awareness. An essential component
of power aware systems is the ability to make intelligent trade-offs between
energy and quality, and energy scalability in microsensor networks.

In algorithms where additional computation incrementally refines a result,
the energy of computation can be traded off for quality. There are many
examples in microsensor networks. For instance, transmitted data can be
encrypted with a key of varying length, allowing trade-offs between com-
putational energy and the security of the transmission. A beam-forming
algorithm can fuse data from a varying number of sensors, with the mean
square error of the result decreasing as data from more sensors are combined.
The number of taps in a FIR filter can be varied; longer impulse responses
yield a more powerful filter.

We can assume that energy can scale gracefully with these variations. A
variable voltage microprocessor can reduce the energy consumed during low
workload periods through dynamic voltage scaling.

3.3. DYNAMIC VOLTAGE SCALING TECHNIQUES 73

Variations in the quality of an algorithm appear to a processor as variations
in processor utilization, which affect the number of clock cycles and the
total switched capacitance for the computation. When a processor is idle
due to a light workload, clock cycles and energy are wasted. Gating the
clock during idle cycles reduces the switched capacitance of idle cycles.
Reducing the clock frequency during periods of low workload eliminates
most idle cycles altogether. Neither approach, however, affects the total
switched capacitance for the computation and the supplied voltage for
the actual computation, or substantially reduces the energy lost to leakage.
Reducing the supply voltage in conjunction with the clock frequency achieves
energy savings for the actual computation. Scaling the frequency, and supply
voltage together results in a nearly quadratic savings in energy and reduces
leakage current.

Dynamic voltage scaling (DVS) is the active adjustment of the supply
voltage and the clock frequency in response to fluctuations in a proces-
sor’s utilization. A voltage scheduler, running in tandem with an operating
system’s task scheduler, can adjust voltage and frequency in response to
a priori knowledge or predictions of the system’s workload. DVS has been
successfully applied to custom chip sets.

Dynamic voltage scaling capabilities can be demonstrated on the SA-1100,
the processor chosen for the µAMPS wireless microsensor prototype. A
DC–DC converter circuit with a digitally adjustable voltage delivers power
to the SA-1100 core and is controlled by a multithreaded, power-aware
operating system.

The SA-1100 operates at a nominal core supply voltage of 1.5 volts and
is capable of on-the-fly clock frequency changes in the range of 59 MHz to
206 MHz. Each frequency change incurs a latency of up to 150 s while the
SA-1100’s on-board PLL (Phase Lock Loop) locks to the new frequency. The
SA-1100 is a completely static component and thus facilitates energy savings
with DVS as discussed above.

A PCB (Printed Circuit Board) containing a custom DC–DC converter
circuit provides a dynamically adjustable voltage to the SA-1100’s core.
Figures 3.7 and 3.8 illustrate the operation of this circuit. A buck regulator
composed of discrete components is driven by a commercial step-down
switching regulator controller. This controller is programmed with a 5-bit
digital value to regulate one of 32 voltages between 0.9 and 2.0 volts. The
operating system running on the SA-1100 commands the core voltage as
a 5-bit digital value that is passed to the regulator controller. External
programmable logic between the SA-1100 and the regulator controller pre-
vents the regulator from delivering a voltage beyond the SA-1100 core’s
rated maximum.

74 POWER-AWARE WIRELESS SENSOR NETWORKS

Prog.
logic Controller Buck

regulator SA-1100

mOS

Digital
value

MOSFET
gate drive

Variable VDD
supply

Digital value

Integrated onto PCB

Figure 3.7 Overview of the adjustable DC–DC converter.

C
on

tr
ol

G
at

e
dr

iv
e

Sense

Cin

R sense

Cout

Vout

Vin 5 V

0.9−2 V

Figure 3.8 Simplified schematic for the buck regulator.

The power-aware operating system is based on the embedded Cygnus
operating system (eCOS) kernel. This µOS supports preemptive multi-
tasking, allowing threads such as data fusion, data packetization, net-
work protocol handling, and voltage scheduling to operate simultaneously
within a microsensor node. The µOS resides within a bootable instruc-
tion ROM.

In the implementation, the µOS monitors load on the processor and
adjusts the clock frequency and supply voltage together to meet throughput
requirements imposed by the tasks. Though the majority of throughput
requirements and real-time deadlines on a microsensor network are known a
priori, more sophisticated load prediction algorithms may be needed for more
optimal voltage scheduling.

DVS can be used on the system in two scenarios, each with and without
voltage scaling. The first scenario trades energy for computational latency

3.4. OPERATING SYSTEM FOR ENERGY SCALABLE WIRELESS SENSOR NETWORKS 75

on a fully loaded processor, and the second trades energy for output quality
on a constant throughput FIR filter. All energy measurements are based on
measured current into the regulator circuit and therefore include losses in the
variable voltage regulator.

The SA-1100 is running the µOS with multiple threads and no idle time.
Reducing the clock frequency without altering the voltage does not decrease
the energy per operation. Supply voltage scaling, on the other hand, can
reduce the energy cost of an operation dramatically. An ideal system with DVS
would operate at the lowest voltage possible for each supported frequency.

The energy per operation is greater for lower frequencies since the energy
lost to leakage is distributed over fewer computations. Voltage scaling exhibits
up to 60 % in energy savings over fixed-voltage approaches. A regulator
controller optimized for low loads would provide immediate improvements;
all of the commercial options were designed for a higher voltage and much
higher average currents than those typically used by the SA-1100.

To evaluate the energy consumption of energy-scalable algorithms on this
system, a FIR filter is run under the µOS, adjusting the number of filter taps
to alter the quality of the filter.

The FIR filter is run at a constant throughput, and the impulse response
length is varied. The µOS dynamically adjusts the core voltage and frequency
to meet the throughput requirement with the lowest possible energy.

3.4. OPERATING SYSTEM FOR ENERGY SCALABLE WIRELESS
SENSOR NETWORKS

Massively distributed, dedicated, wireless microsensor networks have gained
importance in a wide spectrum of civil and military applications. Advances
in MEMS technology, combined with low power, low cost DSP (Digital Signal
Processing) and RF (radio frequency) circuits have resulted in cheap and wire-
less microsensor networks becoming feasible. A distributed, self-configuring
network of adaptive sensors has significant benefits. These networks can be
used for remote monitoring of inhospitable and toxic environments. A large
class of benign environments also require the deployment of a large number of
sensors, such as intelligent patient monitoring, object tracking, assembly line
sensing, etc. Their massively distributed nature provides wider resolution, as
well as increased fault tolerance, than would a single sensor node.

A wireless microsensor node is typically battery operated and is thus
energy constrained. To maximize the lifetime of the sensor node after its
deployment, all aspects, including circuits, architecture, algorithms and pro-
tocols, have to be made energy efficient. Once the system has been designed,

76 POWER-AWARE WIRELESS SENSOR NETWORKS

additional energy savings can be obtained by using dynamic power man-
agement concepts whereby the sensor node is shut down if no interesting
events occur. Such event-driven power consumption is critical in obtaining
maximum battery life. In addition, it is highly desirable that the node has
a graceful energy–quality (E–Q) scalability such that, if the application so
demands, the user is able to extend the mission lifetime at the cost of sensing
accuracy. Energy scalable algorithms and protocols are required for such
energy constrained situations.

Sensing applications present a wide range of requirements in terms of
data rates, computation, average transmission distance, etc., as protocols
and algorithms have to be tuned to each application. Therefore, embedded
operating systems and software are critical in such microsensor networks
as programmability is a necessary requirement. Operating system directed
power-management technique can improve the energy efficiency of the sensor
nodes. Dynamic Power Management (DPM) is an effective tool for reducing
system power consumption without significantly degrading performance.
The basic idea is to shut down devices when they are not needed and
wake them up when necessary. DPM in general is a nontrivial problem. If
the energy and performance overheads in transitioning to sleep states were
negligible, then a simple greedy algorithm, which makes the system go into
the deepest sleep state as soon as it is idle, would be perfect. However, in
reality, transitioning to a sleep state has the overhead of storing the processor
state and shutting off the power supply. Waking up too takes a finite amount
of time. Therefore, implementing the right policy for transitioning to the
sleep state is critical for the success of DPM. The algorithm can be used
to provide desirable E–Q characteristics in sensing applications. In energy-
scalable algorithms the principal notion is that computation is done in such
way that a drop in energy availability results in minimum possible quality
degradation.

The fundamental idea in distributed sensor applications is to incorporate
sufficient processing power in each node such that they are self-configuring
and adaptive. Figure 3.9 illustrates the basic sensor node architecture. Each
node consists of the embedded sensor, A/D converter, a processor with
memory (which in this case will be the StrongARM SA-1100 processor) and the
RF circuits. Each of these components are controlled by the microOperating
System (µOS) through microdevice drivers. An important function of the
µOS is to enable Power Management (PM). Based on event statistics, the µOS
decides which devices to turn off or on.

This network consists of homogeneous sensor nodes distributed over
a rectangular region R with dimensions W × L with each node having a
visibility radius of ρ (shown by the region Ck). Three different communication

3.4. OPERATING SYSTEM FOR ENERGY SCALABLE WIRELESS SENSOR NETWORKS 77

W

R

L

Battery and DC/DC converter

R
ad

io

A
/D

S
en

so
r

Memory

StrongARM

mOS

Nodek

Ck
r

Figure 3.9 Sensor network and node architecture.

models can be used for such a network:

• direct transmission (every node directly transmits to the base station);
• multihop (data is routed through the individual nodes towards the base

station), and
• clustering.

If the distance between the neighboring sensors is less than the average
distance between the sensors and the user or the base station, transmission
power can be saved if the sensors collaborate locally. Further it is likely that
sensors in local clusters share highly correlated data. Some of the nodes elect
themselves as cluster heads (as depicted by nodes in black) and the remaining
nodes join one of the clusters based on a minimum transmit power criteria.
The cluster head then aggregates and transmits the data from the other cluster
nodes. Such application-specific network protocols for wireless microsensor

78 POWER-AWARE WIRELESS SENSOR NETWORKS

networks have been developed. A clustering scheme is an order of magnitude
more energy efficient than a simple direct transmission scheme.

A power-aware sensor-node model essentially describes the power con-
sumption in different levels of node sleep state. Every component in the node
can have different power modes, e.g. the StrongARM can be in active, idle
or sleep mode; the radio can be in transmit, receive, standby or off mode.
Each node sleep state corresponds to a particular combination of component
power modes. In general, if there are N components labeled (1, 2, . . . , N)
each with ki number of sleep states, the total number of node sleep states are∏N

i=1 ki. Every component power mode is associated with a latency overhead
for transitioning to that mode. Therefore each node sleep mode is charac-
terized by a power consumption and a latency overhead. However, from a
practical point of view not all the sleep states are useful. Table 3.1 enumerates
the component power modes corresponding to five different useful sleep
states for the sensor node. Each of these node sleep modes corresponds to an
increasingly deeper sleep state and is therefore characterized by an increasing
latency and decreasing power consumption. These sleep states are chosen
based on actual working conditions of the sensor node, e.g. it does not make
sense to have the A/D in the active state and everything else completely off.
The design problem is to formulate a policy of transitioning between states
based on observed events so as to maximize energy efficiency. The power
aware sensor model is similar to the system power model in the Advanced
Configuration and Power Interface (ACPI) standard. An ACPI compliant sys-
tem has five global states. SystemStateS0 (working state), and SystemStateS1
to SystemStateS4 corresponding to four different levels of sleep states. The
sleep states are differentiated by the power consumed, the overhead required
in going to sleep and the wake up time. In general, the deeper the sleep state,
the less the power consumption, and the longer the wake-up time. Another
aspect of similarity is that in ACPI the Power Manager (PM) is a module of
the µOS.

Table 3.1 Useful sleep states for the sensor node.

Sleep
state

StrongARM Memory Sensor,
analog–digital

converter

Radio

S0 Active Active On Tx, Rx
S1 Idle Sleep On Rx
S2 Sleep Sleep On Rx
S3 Sleep Sleep On Off
S4 Sleep Sleep Off Off

Tx = transmit, Rx = receive.

3.5. DYNAMIC POWER MANAGEMENT IN WIRELESS SENSOR NETWORKS 79

3.5. DYNAMIC POWER MANAGEMENT IN WIRELESS
SENSOR NETWORKS

While shutdown techniques can yield substantial energy savings in idle
system states, additional energy savings are possible by optimizing the
sensor node performance in the active state. Dynamic Voltage Scaling (DVS)
is an effective technique for reducing CPU (Central Processing Unit) energy.
A block diagram of a DVS processor system is shown in Figure 3.10. Most
microprocessor systems are characterized by a time varying computational
load. Simply reducing the operating frequency during periods of reduced
activity results in linear decreases in power consumption, but does not affect
the total energy consumed per task. Reducing the operating voltage implies
greater critical path delays, which, in turn, compromise peak performance.

Significant energy benefits can be achieved by recognizing that peak perfor-
mance is not always required and, therefore, the processor’s operating voltage
and frequency can be dynamically adapted according to the instantaneous
processing requirement. The goal of DVS is to adapt the power supply and
operating frequency to match the workload, so the visible performance loss is
negligible. The problem is that future workloads are often nondeterministic.

The rate at which DVS is carried out also has a significant bearing on per-
formance and energy. A low update rate implies greater workload averaging,
which results in lower energy use. The update energy and performance cost
is also amortized over a longer time frame. On the other hand, a low update
rate also implies a greater performance hit since the system will not respond
to a sudden increase in workload.

Variable voltage
processor m(r)

Task queue

Vfixed

V (r) f (r)

r

w

W
or

k
lo

ad
m

on
ito

r

D
C

/D
C

co
nv

er
te

r

l1

l

l2

ln

Figure 3.10 Block diagram of a DVS processor system.

80 POWER-AWARE WIRELESS SENSOR NETWORKS

A workload prediction strategy based on adaptive filtering of the past
workload profile is used and analyzed with several filtering schemes. A
performance hit metric is used to judge the efficacy of these schemes.

An event occurs when a sensor node picks up a signal with power above a
predetermined threshold. For analytical tractability, every node is assumed
to have a uniform radius of visibility, r. In real applications, the terrain
might influence the visible radius. An event can be static (such as a localized
change in temperature/pressure in an environment monitoring application),
or can propagate (such as signals generated by a moving object in a tracking
application).

In general, events have a characterizable (possibly nonstationary) distribu-
tion in space and time. There are three distinct classes of events:

• the events occur as stationary points;
• the event propagates with fixed velocity (such as a moving vehicle); and
• the event propagates with fixed speed but random direction (such as a

random walk)

The processor must watch for preprogrammed wake up signals. The CPU
programs these signal conditions prior to entering the sleep state. To wake
up on its own, the node must be able to predict the arrival of the next event.
An optimistic prediction might result in the node waking up unnecessarily,
while a pessimistic strategy results in some events being missed. There are
two possible approaches:

(1) Completely disallow the state that results in missed events as the node is
not alerted.

If the sensing task is critical and events cannot be missed this state must be
disabled.

(2) Selectively disallow the state that results in missed events as the node is
not alerted.

This technique can be used if events are spatially distributed and not all
critical. Both random and deterministic approaches can be used. In the
clustering protocol, the cluster heads can have a disallowed state while
normal nodes can transition to this state. Alternatively, the scheme can be
more homogeneous. Every node that satisfies the sleep threshold condition
for the selectively disallowed node, enters sleep with a system defined by a
probability for a certain time duration.

3.6. ENERGY-EFFICIENT COMMUNICATION 81

The advantage of the algorithm is that efficient energy trade-offs can be
made with event detection probability. By increasing this probability, the
system energy consumption can be reduced, while the probability of missed
events will increase and vice versa. Therefore, the overall shut down policy
is governed by two implementation specific probability parameters.

3.6. ENERGY-EFFICIENT COMMUNICATION

A distributed network of thousands of collaborating microsensors promises
a maintenance-free, fault-tolerant platform for gathering rich, multidimen-
sional observations of the environment. Microsensor networks is a specialized
class of dedicated networks with several distinguishing characteristics: high
node density, low data rate, and an unprecedented attention to energy
consumption. Unlike laptop or palmtop devices, microsensor nodes are
expected to operate from 5 to 10 years from an amount of energy equivalent
to a battery cell, requiring innovative design methodologies to eliminate
energy inefficiencies that would have been overlooked in the past. An
area potentially ripe with inefficiencies is microsensor communication.
Building an energy-efficient protocol stack for microsensors requires a
thorough investigation of the interactions among the sensor application,
network protocol, MAC (Media Access Control) layer, and radio. Energy
consumption characteristics that are unique to this domain of wireless
systems must be addressed and exploited for maximally energy-efficient
communication.

Communication protocols for traditional dedicated networks generally
employ multihop routing to ameliorate the high path losses incurred by
radio transmission. Two general routing methodologies, source routing and
distance vector approaches, are analogous to their counterparts in wired net-
works. Source routing specifies complete, hop-by-hop paths for each packet,
while distance vector protocols maintain only next-hop information to each
destination. These protocols are typically intended for wireless IP (Internet
Protocol) applications rather than microsensor networks.

Protocols have been specifically designed for energy-constrained sensor
networks. Directed diffusion relies on local interactions among nodes to
create efficient paths for data flow. No global routing state is kept anywhere
in the system; rather, each node chooses its own source(s) from which to
receive data, leading to reasonably efficient data propagation at a global
level. LEACH (Low-Energy Adaptive Clustering Hierarchy) forms rotating
clusters of adjacent nodes, within which nodes transmit to a single cluster head
that bears the burden of a long-distance transmission. Clustering explicitly

82 POWER-AWARE WIRELESS SENSOR NETWORKS

encourages data aggregation to reduce further the transmission burden on
the network.

With the increasing interest in battery-powered wireless systems, energy
consumption has become a primary metric of wireless communication pro-
tocols, alongside traditional metrics such as throughput and fault tolerance.
However, little prior work has characterized the energy consumption of
wireless network protocols with realistic hardware models and behav-
ioral characteristics of microsensors. Transmission energy is often modeled
in µJ/bit, a model that fails to consider hardware and protocol over-
heads. Physical and MAC layer models have almost universally adopted
energy consumption and performance characteristics from IEEE 802.11b,
whose high power consumption and complexity are unsuitable for wireless
microsensors.

Reducing the energy of communication in wireless microsensors demands
that each aspect of communication, such as the protocol and MAC layers, is
tailored to the application.

A wireless node in an dedicated network traditionally seeks its nearest
neighbors as candidates for next hop transmission. However, with the high
node densities that enable the high robustness and resolution of microsen-
sor networks, the paradigm of routing through nearest neighbors must be
reconsidered.

In a model for the power consumed by multi-hop transmission as the
distance of the required transmission increases, it becomes advantageous
to increase the number of hops. However, it is clear that there is a large
range of distances for which direct transmission is more energy-efficient than
multi-hop transmission.

That model has assumed ideal multi-hop communication with no overhead.
The energy characterization must account for protocol and MAC overhead,
suboptimal node spacing, and the fact that radio receivers, not being omni-
scient to packet arrivals, must occasionally poll for packets. These sources of
overhead introduce the additional power overhead into multi-hop routing.
For thousand-node microsensor networks, these overheads are substantial.
The communication energy is a function of both transmission distance and
the transmit duty cycle.

Multi-hop routing can be beneficial is some cases. In the receive-dominant
regime, the hardware and protocol overhead of receiving packets outweighs
the energy savings of shorter radio transmissions. In the transmit-dominant
regime, both the transmission distance and the number of bits transmitted
are sufficiently large that multi-hop routing is beneficial. As intuition would
suggest, both the transmission distance and quantity of transmitted bits
determine the break point between the two regimes, a result concealed by the

3.6. ENERGY-EFFICIENT COMMUNICATION 83

simpler model. If transmit duty cycles are sufficiently small, then protocol-
free direct transmission is more energy efficient even at very large distances.
With overhead accounted for, the transmission distance at which multi-hop
transmission becomes advantageous over direct transmission is much greater
than the total transmission distance of 30 m.

This observations holds two noteworthy implications for microsensor net-
works:

• As most microsensor networks utilize a small mean distance between
nodes, nearest neighbors are often the wrong candidates for energy-efficient
next-hops.

• Large classes of applications exist for which the entire network diameter is
in the receive-dominant regime.

For these classes of networks, such as those completely enclosed within a
room, machine, or small lawn, transmission is most efficient with no multi-
hop protocol at all. In these situations, it is increasingly important to focus on
the energy dissipation characteristics of the hardware.

Presuming that the network is operating in a transmit-dominated regime,
the techniques for reducing power overhead for multi-hop wireless microsen-
sor communication are considered. Exploiting the microsensor network’s
architecture and application-specific characteristics allows for an energy-
conscious optimization in the protocol stack.

Reduction of radio receive energy is primary concern. A radio receiver that
is on and idle consumes a substantial amount of power – often as much as
transmission. Given that many nodes will likely be in the receiving range
of any node’s transmission, it is desirable to shut down the radio receiver
in the majority of idle nodes. Unfortunately, most wireless protocol and
MAC layers utilize unique addresses to route packets to specific destina-
tions, with the expectation that these destinations are actively listening for
packets. With radio shutdown, this assumption no longer holds, and routing
tables, whether they contain source routes or next-hop information, suddenly
become very unstable.

At the application level, communication in a microsensor network is one-
way, from the observer nodes to a base station. There are many data sources
and relays, but few actual sinks. As the individual relays have no need for the
data they are relaying, the entire notion of addressing a packet to a specific
relay node is unnecessary. The concern is that packets move progressively
closer to a base station.

Microsensor nodes may not utilize explicit addresses at the protocol or
MAC level, but rather a metric of their approximate distance to the nearest

84 POWER-AWARE WIRELESS SENSOR NETWORKS

base station. This metric can be propagated across the network by flooding,
with the base stations initially broadcasting a zero metric and each node
adding a constant factor to the smallest value heard.

A node with a packet destined for the base station simply broadcasts its
packet with its current distance metric. Nodes that receive the packet compare
their own distance metric to that of the packet. To minimize the number of
hops, the receiving node that is closest to the base station and farthest from
the originating node would relay the packet onward. Such behavior could be
implemented, for instance, with a delay timer proportional to the difference
between the packet’s and relay node’s distance metrics, or simply the RSSI
(Receiver Signal Strength Indication). The node with the lowest delay would
forward the packet, and the others, hearing the forward, would drop their
respective copies.

Address-free forwarding allows any active node, rather than one that
is specifically addressed, to relay a packet. This enables flexible, protocol-
independent radio receiver shutdown.

The energy consumption of a microsensor network is discussed for both
the transmit-dominant and receive-dominant regimes.

The µAMPS (micro-Adaptive Multidomain Power-Aware Sensors) develop
the enabling technologies for energy-efficient microsensor networks. The
µAMPS-1 node is the basis for the hardware energy consumption models.
The µAMPS-1 node consists of sensing, processing, and radio subsystems. The
sensing system consists of an acoustic sensor and low-power A/D converter.
Data processing, as well as some network functions, are carried out by a
StrongARM SA-1110 microprocessor. The radio transmits and receives at
1 Mbps at half-duplex in the 2.4 GHz range.

The measured energy consumption and performance of µAMPS-1 node
form the basis of the hardware model, in which node antennas are at ground
level model. The radio path loss is modeled with an empirical r3 rather than
the conventional two-ray ground wave propagation model.

When packets are extremely short, the energy required for radio startup
exceeds the energy of the actual transmission. By buffering packets at the
local nodes and transmitting many short packets in a single transmission, the
number of energy-consuming startups is reduced. By sending ten packets at
10-second intervals, for instance, less than half the total energy of immediate
transmission is used. As individual packets grow larger in size, the impact of
radio startup energy on total system energy is inherently reduced.

The trade-off is the increased latency of the buffered observations. Hence, for
applications such as short-distance, low-rate environmental sensors, exposing
the number of buffered packets as a dynamically adjustable quantity provides
an effective energy-quality trade-off. For instance, a node could choose to

3.7. POWER AWARENESS OF VLSI SYSTEMS 85

transmit observations immediately if an observed parameter fell outside a
normal range, but buffer them otherwise.

3.7. POWER AWARENESS OF VLSI SYSTEMS

Power awareness can be enhanced by using a systematic technique. This
technique is illustrated by applying it to VLSI systems at several levels
of the system hierarchy: multipliers, register files, digital filters, dynamic
voltage scaled processing and data-gathering wireless networks. The power
awareness of these systems can be significantly enhanced leading to increases
in battery lifetimes.

There are two main aims in motivating power-aware design and its emer-
gence as an important paradigm. The first is to explain the importance of
power awareness as a consequence of the increasing emphasis on making
systems more scalable. In this context, making a system scalable refers to
enabling the user to trade off system performance parameters as opposed to
hard-wiring them. Scalability allows the end user to implement operational
policy, which often varies significantly over the lifetime of the system. For
example, consider the user of a portable multimedia terminal. At times,
the user might want extremely high performance (for instance, high quality
video) at the cost of reduced battery lifetime. At other times, the opposite
might be true, the user might want bare minimum perceptual quality in return
for maximizing battery lifetime. Such trade-offs can only be optimally realized
if the system was designed in a power-aware manner. A related motivation
for power-awareness is that a well designed system must gracefully degrade
its quality and performance as the available energy resources are depleted.
Continuing the video example, this implies that as the expendable energy
decreases, the system should gracefully degrade video quality (seen by the
user as increased blockiness, for instance) instead of exhibiting a cliff-like,
all-or-none behavior (perfect video followed by no video).

While the above argues for power-awareness from a user-centric and
user-visible perspective, one can also motivate this paradigm in more funda-
mental, system-oriented terms. With burgeoning system complexity and the
accompanying increase in integration, there is more diversity in the operat-
ing scenarios than ever before. Hence, design philosophies that assume the
system to be in the worst-case operating state most of the time are prone
to yield suboptimal results. In other words, even if there is little explicit
user intervention, there is an imperative to track operational diversity and
scale power consumption accordingly. This naturally leads to the concept
of power-awareness. For instance, the embedded processor that decodes the

86 POWER-AWARE WIRELESS SENSOR NETWORKS

video stream in a portable multimedia terminal can display tremendous
workload diversity depending on the temporal correlation of the incoming
video bit stream. Hence, even if the user does not change quality criteria, the
processor must exploit this operational diversity by scaling its power as the
workload changes.

Since low energy and low power are intimately linked to power awareness,
it is important and instructive to provide a first-cut delineation of these
concepts. Power awareness as a metric and design driver does not devolve
to traditional worst-case centric low-power/low-energy design. As prelim-
inary evidence of this, consider the system architect faced with the task of
increasing the power awareness of the portable multimedia terminal alluded
to above. While the architect can claim that certain engineering reduces
worst-case dissipation and/or overall energy consumption of the terminal
and so on, these traditional measures still fall short of answering the related
but different questions:

• How well does the terminal scale its power with user or data or environment
dictated changes?

• What prevents it from being arbitrarily proficient in tracking opera-
tional diversity?

• How can we quantify the benefits of such proficiency?
• How can we systematically enhance the system’s ability to scale its power?
• What are the costs of achieving such enhancements?

The process of formally understanding power awareness uses a multiplier
as an example. The basic power-awareness formalisms using a simple system,
a 16 × 16 bit array multiplier, is developed. Consider a given system H that
performs a certain set of operations F while obeying a set of constraints C. For
the illustrative system, H is the given implementation of a 16 × 16 bit array
multiplier. While the set F ideally contains all m-bit by n-bit multiplications,
where m, n ∈ F is restricted to be set of all m-bit by m-bit multiplications
instead. The constraint may be simply one of fixed latency (i.e. H cannot take
more than a given time, t, to perform F).

We discuss how well the energy of a system H scales with changing operat-
ing scenarios. Note that the energy rather than power in the statement above
is used, because energy allows us seamlessly to include latency constraints.
Next, observe that the understanding of power awareness can only be as exact
as the understanding of operating scenarios. These scenarios can be charac-
terized with arbitrarily high detail. For instance, in the case of the multiplier,
the scenario can be defined by the precision of the current multiplicands, the

3.7. POWER AWARENESS OF VLSI SYSTEMS 87

multiplicands themselves, or even the current multiplicands and the previous
multiplicands, since the power dissipation depends on those factors. To sim-
plify this approach, the set of scenarios S is characterized by the precision of
the multiplicands. This needs a two tuple since there are two multiplicands.
However, in this case, F is only one number (the precision of the two identical
bit-width multiplicands), which characterizes the scenario. Hence, H can find
itself in one of 16 scenarios. We denote henceforth, a scenario by s and the set
of 16 scenarios by S.

After defining the scenarios, the first step is to characterize the power
awareness of H by tracing its energy behavior as it moves from one scenario
to the other. For a 16-bit multiplier, a large number of different scenarios is
executed, and the energy consumed is measured in each scenario.

The multiplier has a natural degree of power awareness even though it was
not explicitly designed for it. This is because the lower precision vectors lead
to lesser switched capacitance than do higher precision ones.

The perfectly power-aware system is a system Hperfect, which is defined
as the most power-aware system if and only if for every scenario in S,
Hperfect consumes only as much energy as its current scenario demands. More
formally, Hperfect is the most power-aware system if and only if for every
scenario in S, Hperfect consumes only as much energy as demanded by its
current operation ∈ F executing in the current scenario under constraints C.
In the multiplier example, S is constructed such that it has a one-to-one
correspondence with F and hence, the energy of a scenario executing on H
is discussed.

We need formally to capture the concept of only as much energy as a
scenario demands. To derive this energy for a given scenario, s1, a system
Hs1 is designed to execute this and only this scenario. The reasoning is that
a given system H can never consume lesser energy in a scenario compared
with Hs1 , a dedicated system that was specially designed to execute only that
scenario. We often refer to the Hsis as point systems because of their focused
construction to achieve low energy for a particular scenario (or point) in the
energy dependency. Hence, in the context of power awareness, the energy
consumed by Hs1 is in a sense, the lower bound on the dissipation of H while
executing scenario s1. Generalizing this statement, the bounds on efficiency
of tracking scenarios are discussed.

The energy consumed by a given system H while executing a scenario si

cannot be lower than that consumed by the a dedicated system Hsi constructed
to execute only that scenario si as efficiently as possible.

This leads to the next definition of Hperfect as the perfectly power aware
system. The perfect system, Hperfect, is as energy efficient as Hsi while executing
scenario si for every si ∈ S.

88 POWER-AWARE WIRELESS SENSOR NETWORKS

The energy of a perfect system is denoted by Eperfect. From a system
perspective, the perfect system behaves as if it contains a collection of
dedicated point systems, one for each scenario. When Hperfect has to execute a
scenario si, it routes the scenario to the point system Hsi . After Hsi has finished
processing, the result is routed to the common system output. This abstraction
of Hperfect as an ensemble of point systems is illustrated in Figure 3.11.

The task of identifying the scenario by looking at the data input is carried
out by the scenario-determining block. Once this block has identified the
scenario, it configures the mux (multiplexer) and de-mux (de-multiplexer)
blocks such that data is routed to, and results routed from, the point system
that corresponds to the current scenario. Note that if the energy costs of
identifying the scenario, routing to and from a point system, and activating
the right point system are zero, then the energy consumption of Hperfect will
indeed be equal to that of Hsi for every scenario si. Since these costs are
never zero in real systems, this implies that Hperfect is an abstraction and does
not correspond to a physically realizable system. Its function is to provide a
nontrivial lower bound for the energy dependency.

To construct the Eperfect dependency for the 16-bit multiplier, the ensemble
of points construction outlined above is emulated. The point systems in this
example were 16 dedicated point multipliers: 1 × 1-bit, 2 × 2-bit, . . ., 16 × 16-
bit, corresponding to Hs1 to Hs16 . When a pair of multiplicands with precision

Scenario determining
unit

H S1

H S2

H Si

H S
s

OutputInput

Dedicated point systems

D
E
M
U
X

M
U
X

Figure 3.11 The perfect system (Hperfect) can be viewed as an ensemble of
point systems.

3.7. POWER AWARENESS OF VLSI SYSTEMS 89

i came by, we diverted them to Hsi (i.e. the ixi-bit multiplier). Since Eperfect is
derived, only the energy consumed by the Hsis is taken into account.

Note that Eperfect scales extremely well with precision since the scenarios are
being executed on the best possible point systems that can be constructed. It
is essential to note that the Eperfect really depends on the kind of point system
allowed. In the case of the multiplier, any ixi-bit multiplier is allowed. The
set of point systems allowed is henceforth denoted by P. This set captures the
resources available to engineer a power-aware system. Like the scenario and
constraint sets, it can be specified with increasing rigor and detail. This new
formalism, P has two key purposes:

• P gives a more fundamental basis to Eperfect. While it is not possible to talk
about the best possible energy, it is indeed possible to talk about the best
possible energy dependency for a specified P.

• P is also important when enhancing the power awareness of H. In that
context, P specifies exactly which building blocks are available for such an
enhancement.

Enhancing the power awareness of a system is composed of two well
defined steps:

(1) Engineering the best possible point systems;
(2) Engineering the desired system using the point systems constructed in

step (1) such that power awareness is maximized.

In the context of a power aware multiplier, the first task involves engineer-
ing 1 × 1, 2 × 2, . . . , 16 × 16 bit multipliers that are as efficient as possible
while performing 1 × 1, 2 × 2, . . . , 16 × 16-bit multiplications respectively.
The second task of engineering a system using point systems is illustrated by
the multiplier shown in Figure 3.12.

Note the overall similarity between this figure and the abstraction of Hperfect
in Figure 3.11. The ensemble of point systems is used as an abstract concept in
the context of explaining energy dependency of Hperfect. A physical realization
of a system based on this concept is illustrated. The basic idea is to detect
the precision of the incoming operands using a zero detection circuit and
then route them to the most suitable point system. In the case of Hperfect, the
matching is done trivially, and multiplier operands which need a minimum
precision of i-bits are directed to a ixi-bit multiplier. Similarly, the output
of the chosen multiplier is multiplexed to the system output. However,
H

′
perfect has significant overheads. Even if the area cost of having 16-point

90 POWER-AWARE WIRELESS SENSOR NETWORKS

Zero detection circuit

1×1

2 × 2

16 × 16

X Y X·Y

Figure 3.12 The H
′
perfect system mimics the abstract Hperfect system by using an

ensemble of 16 dedicated point multipliers and a zero-detection circuit as the
scenario-detector.

multipliers was ignored, and the focus was solely on the power awareness,
the energy dependency of H

′
perfect would not be the same as Eperfect. This is

because, while the scenario execution itself is the best possible, the energy
costs of determining the scenario (the zero detection circuit), routing the
multiplicands to the right point system and routing the result to the system
output (the output mux) can be nontrivial.

A system that uses a less aggressive ensemble in an effort to reduce
the energy overhead of assembling point systems is shown in Figure 3.13.
The basic operation of this multiplier ensemble is the same. The precision
requirement of the incoming multiplicand pair is determined by the zero
detection circuitry. Unlike the previous 16-point ensemble, this four-point
ensemble is not complete and hence mapping scenarios to point systems is
not one–one. Rather, precision requirements of:

(1) �9 bits are routed to the nine-point multiplier;
(2) 10, 11 bits are routed to the 11-point multiplier;
(3) 12–14 bits are routed to the 14-point multiplier;
(4) 15, 16 bits are routed to the 16-point multiplier.

Similarly, the results are routed back from the activated multiplier to the
system output. While scenarios are no longer executed on the best possible

3.7. POWER AWARENESS OF VLSI SYSTEMS 91

Zero detection circuit

16 × 16

14 × 14

11 × 11

9 × 9

X

Y
X·Y

Figure 3.13 The four-point ensemble multiplier system.

point system (with the exception of 16-, 14-, 11- and 9-bit multiplications), this
ensemble has the advantage that energy overheads of routing are significantly
reduced over H

′
perfect. Also, while the scenario-to-point system mapping of

the four-point ensemble is not as simple as the one–one mapping, it is
important to realize two things. First, the energy dissipated by the extra
gates needed for the slightly more involved mapping in the four-point
ensemble is low relative to that dissipated in the actual multiplication.
Second, only four systems have to be informed of the mapping decision
compared with 16 earlier. This reduction further offsets the slight increase in
scenario mapping.

It is not difficult to see the basic trade-off at work here. Increasing the
number of point systems decreases the energy needed for the scenario
execution itself but increases the energy needed to coordinate these point
systems. Hence, it is intuitively reasonable to assume the existence of an
optimal ensemble of point systems that strikes the right balance.

We discuss whether a system Hoptimal can be constructed as an ensemble of
point systems drawn from P such that Hoptimal is unconditionally more power
aware than any other such constructed system. The unconditional power
awareness only leads to partial ordering. Hence, the existence of a unique

92 POWER-AWARE WIRELESS SENSOR NETWORKS

Hoptimal cannot be guaranteed. While it is possible to present a set of solutions
that are unconditionally more power aware than all other solutions, there
is no guarantee that this set will have only one member. In fact, this last
condition is highly unlikely to occur in practice, unless routing costs are very
low or very high compared with scenario execution costs (in which cases
the optimal ensembles would be the complete and single-point solutions
respectively). Hence, in general, it is futile to search for an optimal ensemble
of point systems that is unconditionally better than all other ensembles.

We discuss whether a system Hoptimal can be constructed as an ensemble of a
point systems drawn from P such that Hoptimal is more power aware than any
other such constructed system for a specified scenario dgiven. Since a specified
scenario distribution dgiven imposes a total ordering on the power awareness
of all possible subsets of P, it is easy to prove the existence of an optimal
system. Note that the proof based on total ordering is nonconstructive, i.e.
it only tells us that Hoptimal exists but does not help us determine what it is.
This is unfortunate because a brute-force search of the optimal subset of P
would require an exponential number of operations in |P|–a strategy that
takes unacceptably long even for the modestly large P.

To see if there are algorithms that can find Hoptimal in nonexponential run-
times the problem is defined more formally by using practical illustrations of
enhancing power awareness.

Enhancing power awareness by constructing ensembles of point systems
carefully chosen from P is a general technique that can be used not just
for multipliers but other systems as well. We illustrate how this ensemble
idea can be applied to enhance the power awareness of multiported register
files, digital filters, and a dynamic voltage scaled processor. In each case,
the problem is described in terms of the framework developed above and
characterizes the power awareness of the system. Then an ensemble construc-
tion is used to enhance power awareness. It is interesting to note that these
applications cover not just spatial ensembles, but purely temporal (processor
example) and spatial–temporal hybrid ensembles (register files and adaptive
digital filters) as well.

Architecture and VLSI technology trends point in the direction of increasing
energy budgets for register files. The key to enhancing the power awareness
of register files is the observation that over a typical window of operation,
a microprocessor accesses a small group of registers repeatedly, rather than
the entire register file. This locality of access is demonstrated by the 20
benchmarks comprising the SPEC92 (Systems Performance Evaluation Con-
sortium) benchmark suite that were run on a MIPS (Million Instructions Per
Second) R3000. More than 75 % of the time, no more than 16 registers were
accessed by the processor in a 60-instruction window. Equally importantly,

3.7. POWER AWARENESS OF VLSI SYSTEMS 93

there was strong locality from window to window. More than 85 % of the
time, less than five registers changed from window to window.

The number of registers the processor typically needs over a certain instruc-
tion window is considered a scenario. The smaller files have lower costs of
access because the switched bit-line capacitance is lower. Hence, from a power
awareness perspective, over any instruction window, as small as possible a
file is used.

There are significant motivations for investigating power aware filters. As
an example, consider the adaptive equalization filters that are ubiquitous in
communications ASICs (application specific integrated circuits). The filter-
ing quality requirements depend strongly on the channel conditions (line
lengths, noise and interference), the state of the system (training, continuous
adaptation, freeze, etc.), the standard dictated specifications, and the quality
of service (QoS) desired. All these considerations lead to tremendous scenario
diversity which a power-aware filtering system can exploit.

The three examples show power aware subsystems, multipliers, register
files, and digital filters. The power awareness at the next level of the system
hierarchy is a power-aware processor that scales its energy with workload.
Unlike previous examples, however, this one illustrates how an ensemble can
be realized in a purely temporal rather than a spatial manner.

It is well known that processor workloads can vary significantly and it is
highly desirable for the processor to scale its energy with the workload. A
powerful technique that allows such power awareness is dynamic frequency
and voltage scaling. The basic idea is to reduce energy in nonworst-case
workloads by extending them to use all available time, rather than simply
computing everything at the maximum clock speed and then going into an
idle or sleep state. This is because using all available time allows one to lower
the frequency of the processor which, in turn, allows scaling down of the
voltage leading to significant energy savings. In terms of the power-awareness
framework, a scenario would be characterized by the workload. The point
systems would be processors designed to manage a specific workload. As
the workload changes, we would ideally want the processor designed for
the instantaneous workload to execute it. It is clear that implementing such
an ensemble spatially is meaningless and must be done temporally using a
dynamic voltage scaling system.

Increased levels of integration and advanced low power techniques, are
enabling dedicated, wireless networks of microsensor nodes. Each node is
composed of a sensor, analog preconditioning circuitry, A/D, processing
elements (DSP, RISC, FPGA, etc.) and a radio link, all powered by a bat-
tery. Replacing high quality macrosensors with such networks has several
advantages: robustness and fault tolerance, autonomous operation for years,

94 POWER-AWARE WIRELESS SENSOR NETWORKS

S1
×

×
S0

10

1

7

2

8

3

9

5

6

4

B

R

Figure 3.14 A sensor network gathering data from a circularly observable source
(denoted by ×) residing in the region R. Live nodes are denoted by ž and dead ones
by Ž. The base station is marked B. In this example we require that at least two nodes
sense the source. When the source is at S0, nodes 1 and 7 assume the role of sensors
and nodes 2, 3, 4, 5, and 6 form the relay path for data from node 1 while nodes 7,
8, 9, 5, and 6 form the relay path for data from node 7. Data might be aggregated
into one stream at node 5. This is not the only feasible role assignment that allows the
source to be sensed. For instance, node 10 could act as the second sensor instead of
node 7 and 10, 7, 8, 4, 5, and 6 could form the corresponding relay path. Also, node 6
might aggregate the data instead of node 5, etc. The sensor, aggregator, and relay
roles must change as the source moves from S0 to S1.

enhanced data quality, and optimal cost-performance. Such data gathering
networks are expected to find wide use in remote monitoring applications,
intrusion detection, smart medicine, etc. An illustrative data gathering net-
work is shown in Figure 3.14. The network is live as long as it can guarantee
that any source in region R will be sensed and the data relayed back to a fixed
base station. To accomplish this objective, different nodes take on different
roles over the lifetime of the network as seen in the figure. A noteworthy

3.8. SUMMARY 95

point is that nodes must often change roles even if the source does not move.
This is to enable energy drain to be spread throughout the network, which
leads to increased lifetimes. An assignment of roles to nodes that leads to
data gathering is termed a feasible role assignment We also require feasible
role assignments to be nonredundant, i.e. data from a sensor should not be
routed via multiple links. A data-gathering strategy or collaborative strategy
can be completely characterized by specifying a sequence of feasible role
assignments and the time for which the assignment is sustained.

3.8. SUMMARY

The power-awareness philosophy captures more than just energy savings.
Inherent to power-awareness is an adaptability to changing environmental
conditions and resources, as well as the versatility to prioritize either system
lifetime or output quality at the user’s request. Such flexibility and adapt-
ability are essential characteristics of a microsensor node, a system subjected
to far more resource, workload, and input variability than most electronic
devices. As continuing developments in VLSI (Very Large Scale Integration)
technology reduce the size and increase the functionality of microsensor
nodes, the power-aware design methodology becomes the dominant enabler
for a practical, energy-efficient microsensor node.

The energy savings are offered by dynamic voltage scaling on an unmod-
ified commercial microprocessor using an adjustable DC–DC regulator and
a power-aware µOS. Energy scalable algorithms running under this imple-
mentation consume up to 60 % less energy with DVS than with a fixed supply
voltage. Refinements to the regulator circuit and the addition of voltage
scheduling algorithms to the µOS further increase energy savings. The DVS
enabled system, when incorporated into a complete prototype sensor node
for µAMPS, enables the energy–quality trade-offs inherent to power-aware
algorithms for distributed microsensor networks.

Wireless distributed microsensor networks have gained importance in
a wide spectrum of civil and military applications. Advances in MEMS
(MicroElectroMechanical Systems) technology, combined with low-power,
low-cost, digital signal processors (DSPs) and radio frequency (RF) circuits,
have resulted in the feasibility of inexpensive and wireless microsensor
networks. A distributed, self-configuring network of adaptive sensors has
significant benefits. They can be used for remote monitoring of inhospitable
and toxic environments. A large class of benign environments also requires the
deployment of a large number of sensors such as for intelligent patient moni-
toring, object tracking, and assembly-line sensing. The massively distributed

96 POWER-AWARE WIRELESS SENSOR NETWORKS

nature of these networks provides increased resolution and fault tolerance as
compared with a single sensor node.

The severe energy constraints on distributed microsensor networks demand
the utmost attention to all aspects of energy consumption, and the use of
energy models that are suited to the task of evaluating high-density, energy-
conscious microsensor networks. For multi-hop communication, the high
node density of microsensor networks demands receiver shutdown, which
is enabled by a distance-metric addressing scheme that takes advantage
of the network’s one-way communication from nodes to the base station.
Nodes with sufficiently little or very short-distance transmissions are most
energy efficient with direct transmission to the base station. In this regime,
inefficiencies of the hardware, such as radio startup is the concern, rather
than protocols.

While a stratified communication architecture that separates the physical,
MAC protocol, and application layers is convenient for abstraction and
instruction, energy efficiency is clearly gained by each level’s awareness of
the characteristics of the others. For microsensors, where energy matters most,
the energy is conserved by tailoring the MAC and protocol architectures to
the specific characteristics of the radio and application domain.

A key challenge in unlocking the potential of data-gathering networks is
attaining a long lifetime despite the severely energy-constrained nature of the
network. For example, networks composed of ultracompact nodes carrying
less than 2 J of battery energy might be expected to last for 5–10 years.
It is possible to address these challenges by power aware design. Data
gathering networks can be aware of the desired quality of gathered data,
of changing source behavior, of the changing state of the network, and
finally of the environment in which they reside. We focus on this last aspect,
i.e. the problem of designing a power-aware, data-gathering network that
tracks changes in the environment to maximize energy efficiency. It is well
known that the transmit power can be scaled with changing noise power
to maintain the same SNR (signal-to-noise ratio) and hence the same link
performance. A more holistic approach is to view environmental variations
as affecting changes in the energy needed to process a bit (i.e. carry out some
computation on it) versus the energy needed to communicate it. A power-
aware network is then simply one that can track changes in the computation-
to-communication energy ratio. For large ratios, i.e. high computation costs,
the network will favor unaggregated or raw sensor streams. Conversely,
for low ratios, i.e. high communication costs, aggregation will be favored.
Hence, the challenge in power-aware data gathering is to determine and
execute the collaborative strategy that assigns roles optimally for a specified
computation-to-communication energy ratio.

PROBLEMS 97

PROBLEMS

Learning Objectives

After completing this chapter you should be able to:

• demonstrate understanding of power-aware wireless sensor networks;
• discuss what is meant by distributed power-aware microsensor networks;
• explain the dynamic voltage scaling techniques for distributed microsen-

sor networks;
• demonstrate understanding of an operating system for energy scalable

wireless sensor networks;
• discuss what is meant by design integration;
• explain what dynamic power management in wireless sensor networks is;
• demonstrate understanding of energy-efficient communication for dedi-

cated wireless-sensor networks;
• discuss power awareness of VLSI systems.

Practice Problems

Problem 3.1: What is the power-aware system design?
Problem 3.2: How is energy consumption in a static CMOS-based proces-

sor classified?
Problem 3.3: What is the role of dynamic voltage scaling (DVS)?
Problem 3.4: Where does the energy scalable framework apply?
Problem 3.5: How do microsensor networks compare with the larger

macrosensor based systems?
Problem 3.6: How can the energy of computation be traded off for quality

in microsensor networks?
Problem 3.7: What are the requirements in sensing applications?
Problem 3.8: What are the requirements for sensor node in a distributed

sensing application?
Problem 3.9: How can the sensor node’s lifetime be maximized?

Problem 3.10: Why are embedded operating systems and software critical
for microsensor networks?

Problem 3.11: How can energy savings be achieved with the power supply
and operating frequency?

Problem 3.12: When is it advantageous to increase the number of hops in a
wireless sensor network?

98 POWER-AWARE WIRELESS SENSOR NETWORKS

Practice Problem Solutions

Problem 3.1:

A power-aware system design employs a system where energy consumption
adapts to constraints and variations in the environment, on board resources,
or user requests. Power-aware design methodologies offer scalable energy
savings that are ideal for the high variabilities of the microsensor environment.

Problem 3.2:

Energy consumption in a static (Complementary Metal-Oxide Semicon-
ductor) CMOS-based processor can be classified into switching and leak-
age components.

Problem 3.3:

Dynamic voltage scaling (DVS) exploits variabilities in processor workload
and latency constraints, and realizes this energy quality trade-off at the circuit
level. The switching energy of any particular computation is independent
of time. Reducing supplied voltage offers savings in switching energy at
the expense of additional propagation delay through static logic. Hence,
if the workload on the processor is light, or the latency tolerable but the
computation is high, the supplied voltage and the processor clock frequency
together can be reduced to trade-off latency for energy savings. Both switching
and leakage energy are reduced by DVS.

Problem 3.4:

The energy scalable framework enables the development and implementa-
tion of energy-agile applications. It is important that all processing in the
sensor node is energy scalable, including link level protocols, sensor network
protocols, data aggregation algorithms, and sensor signal processing.

Problem 3.5:

Compared with larger macrosensor based systems, microsensor networks
offer longevity, robustness, and ease of deployment that are ideal for envi-
ronments where maintenance or battery replacement may be inconvenient
or impossible.

Problem 3.6:

In algorithms where additional computation incrementally refines a result,
the energy of computation can be traded off for quality. In microsensor

PROBLEMS 99

networks, for instance, transmitted data can be encrypted with a key of
varying length, allowing trade-offs between computational energy and the
security of the transmission.

Problem 3.7:

Sensing applications present a wide range of requirements in terms of data
rates, computation, average transmission distance, etc., as protocols and
algorithms have to be tuned to each application.

Problem 3.8:

The fundamental idea in distributed sensor applications is to incorporate
sufficient processing power in each node such that they are self-configuring
and adaptive.

Problem 3.9:

A wireless microsensor node is typically battery operated and therefore
energy constrained. To maximize the sensor node’s lifetime after its deploy-
ment, other aspects including circuits, architecture, algorithms, and protocols
have to be energy efficient. Once the system has been designed, additional
energy savings can be attained by using dynamic power management (DMP)
where the sensor node is shut down if no events occur. Such event driven
power consumption is critical to maximum battery life. In addition, the node
should have a graceful energy quality scalability, so that the mission lifetime
can be extended if the application demands, at the cost of sensing accuracy.

Problem 3.10:

Sensing applications present a wide range of requirements in terms of
data rates, computation, and average transmission distance. Protocols and
algorithms have to be tuned for each application. Therefore embedded
operating systems and software are critical for such microsensor networks
because programmability is a necessary requirement.

Problem 3.11:

Significant energy benefits can be achieved by recognizing that peak per-
formance is not always required and therefore the processor’s operating
voltage and frequency can be dynamically adapted, based on instantaneous
processing requirement. The goal of DVS is to adapt the power supply and
operating frequency to match the workload so the visible performance loss
is negligible.

100 POWER-AWARE WIRELESS SENSOR NETWORKS

Problem 3.12:

There is a large range of distances for which direct transmission is more
energy-efficient than multi-hop transmission. However, in a model for the
power consumed by multi-hop transmission, as the distance of the required
transmission increases, it becomes advantageous to increase the number
of hops.

4
Routing in Wireless
Sensor Networks

4.1. INTRODUCTION

Sensor networks are dense wireless networks of heterogeneous nodes col-
lecting and disseminating environmental data. There are many scenarios in
which such networks might be used, for example, environmental control in
office buildings, robot control and guidance in automatic manufacturing envi-
ronments, interactive toys, the smart home providing security, identification,
and personalization, and in interactive museums.

Networking a large number of low-power mobile nodes involves routing,
addressing, and support for different classes of service at the network layer.

Self-configuring wireless sensor networks consist of hundreds or thousands
of small, cheap, battery-driven, spread-out nodes bearing a wireless modem
to accomplish a monitoring or control task jointly. An important concern is
the network lifetime: as nodes run out of power, the connectivity decreases
and the network can finally be partitioned and become dysfunctional. The
concept of altruistic nodes can be applied to the routing protocol of the pico
radio (the Energy Aware Routing protocol, EAR).

The EAR protocol is built on the principle of attribute-based addressing.
EAR and directed diffusion belong to the class of reactive routing protocols,
where the routing information between nodes is set up only on demand
and maintained only as long as it is needed. This eliminates the need
to maintain permanent routing tables. Hence, before any communication

Wireless Sensor Network Designs A. Hać
 2003 John Wiley & Sons, Ltd ISBN: 0-470-86736-1

102 ROUTING IN WIRELESS SENSOR NETWORKS

can take place, a route discovery has to be performed. Furthermore, the
consumers of data (called sinks) initiate the route discovery. In the other
types of routing protocols for sensor networks, for example, the SPIN (Sensor
Protocol Information via Negotiation) protocol, the data producer (called
source) advertises its data.

The database generic query interface for data aggregation can be applied
to dedicated networks of sensor devices. Aggregation is used as a data
reduction tool. Networking approaches have focused on application specific
solutions. The network aggregation approach is driven by a general purpose,
SQL (Structured Query Language)-style interface that can execute queries
over any type of sensor data while providing opportunities for significant
optimization.

Deployment of large networks of sensors requires tools for collecting and
querying data from these networks. Of particular interest are aggregates
whose operations summarize current sensor values in a part of, or the entire,
sensor network. For example, given a dense network of a thousand sensors
querying temperature, users want to know temperature patterns in relatively
large regions encompassing tens of sensors, as individual sensor readings are
of little value.

4.2. ENERGY-AWARE ROUTING FOR SENSOR NETWORKS

Crucial to the success of ubiquitous sensor networks is the availability of
small, lightweight, low cost network elements, called pico nodes. These
nodes must be smaller than one cubic centimeter, weigh less than 100 grams,
and cost substantially less than 1 dollar (US). Even more important, the
nodes must use ultra-low power to eliminate frequent battery replacement.
A power dissipation level below 100 microwatts would enable self-powered
nodes using energy extracted from the environment, an approach called
energy scavenging or harvesting.

Routing protocols are low power, and can be scalable with the number of
nodes, and fault tolerant to nodes that go up or down, or move in and out
of range. A more useful metric for routing protocol performance is network
survivability. The protocol should ensure that connectivity in a network is
maintained for as long as possible, and the energy status of the entire network
should be of the same order. This is in contrast to energy optimizing protocols
that find optimal paths and then burn the energy of the nodes along those
paths, leaving the network with a wide disparity in the energy levels of the
nodes, and eventually disconnected subnets. If nodes in the network burn
energy more equitably, then the nodes in the center of the network continue to

4.2. ENERGY-AWARE ROUTING FOR SENSOR NETWORKS 103

provide connectivity for longer, and the time to network partition increases.
This leads to a more graceful degradation of the network, and is the idea of
survivability of networks.

EAR protocol ensures the survivability of low energy networks. It is a
reactive protocol such as Ad Hoc On Demand Distance Vector Routing
(AODV) and directed diffusion; however, the protocol does not find a single
optimal path to use for communication. EAR keeps a set of good paths and
chooses one using a probability. This means that instead of a single path, a
communication uses different paths at different times, thus any single path
does not deplete energy. EAR is quick to respond to nodes moving in and out
of the network, and has minimal routing overhead. The network performance
improves by using this method, and the network lifetime increases.

The main functions in a sensor network are sensing, controlling and
actuating. These functions can be placed on separate nodes or located on the
same physical node. Each physical node has a logical repeater function that
helps in multihop routing. Three types of nodes are sensors, controllers, and
actuators. Based on the system description, most of the sensors and actuator
nodes remain static. Controllers, on the other hand, can be mobile, but their
speed is low, of the order of 1 to 5 m/s.

The bit rates in sensor networks are fairly low, at about a few hundred bits
per second per node. The peak bit rate supported is about 10 kb/s, which
enables simple voice messaging, but not in real time. Sensor data is highly
redundant, which means that end-to-end reliability is not required for most
data packets.

Most of the communication is fairly periodic in nature, and sensor values
are sent at regular intervals to the controllers. The network can be optimized
for such recurrent communication, while loosely optimizing for less often,
one-time cases.

The three main layers for designing the pico node are the physical, Media
Access Control (MAC), and network layers.

The physical layer handles the communication across the physical link,
which involves modulating and coding the data so that the intended receiver
can optimally decode it in the presence of channel interference.

The MAC layer’s primary functions are to provide access control, channel
assignment, neighbor list management, and power control. The MAC layer
has a location subsystem that computes the x, y and z-coordinates based on
the received signal strength of neighboring nodes, and the presence of certain
anchors in the network that know their exact positions.

The MAC coordinates channel assignment such that each node gets a locally
unique channel for transmission, while the channels are globally reused. There
is also a global broadcast channel that is used for common control messages

104 ROUTING IN WIRELESS SENSOR NETWORKS

and for waking up nodes. Each node has two radio receivers, one of which
runs at 100 % duty cycle, but has a very low bit rate and consumes very little
power. The second radio runs at a very low duty cycle (about 1 %) and is
switched on only when the node needs to receive data. This is a higher rate
radio (about 10 kbps) and consumes more power.

To send data, the MAC layer sends a wake-up signal on the broadcast
channel. The address of the node to which it needs to send data is modulated
with the wake-up. Access to the broadcast channel is CSMA/CA (Carrier
Sense Multiple Access/Collision Avoidance). On receiving the message, the
node to which this message is addressed powers on its main radio and
communication begins. Since each node has a locally unique channel, no
collisions occur during data transmission. Thus the MAC layer enables deep
sleep of the nodes, leading to substantial power savings.

The MAC layer also keeps a list of its neighbors and metrics such as the
neighbor’s position and the energy needed to reach it. This list is used heavily
by the network layer to take decisions regarding packet routing. The MAC
layer also performs power control to ensure power savings and maintain an
optimal number of neighbors.

The network layer has two primary functions: node addressing, and routing.
Traditional network addressing assigns fixed addresses to nodes, for

example, on the Internet. The advantage of such schemes is that the addresses
can be made unique. However, there is a high cost associated with assigning
and maintaining these addresses. The problem occurs in mobile networks
where the topology information keeps changing. Packet routing becomes
difficult if the node address does not provide any information about the
direction in which to route the packet. There are two approaches to solving
this problem. One is to maintain a central server that keeps up-to-date infor-
mation about the position of every node. Another way is to take the mobile IP
approach, where every node has a home agent that handles all the requests
for the node and redirects those requests to the current position of the node.

There is an important property of information flow that can be used in
sensor networks. Most of the communication in sensor networks is in the form
of, for example, ‘give me the temperature in the room’. This way, the nodes
can be addressed based on their geographical position. This information is
very useful for the routing protocol to forward the information in the right
direction. A class based addressing is used in pico radio. The address is
a triplet in the form of < location, node type, node subtype >. Location
specifies a particular point or region in space that is of interest; node type
defines which type of node is required, such as sensor, controller or actuator.
The node subtype further narrows down the scope of the address, such as
temperature sensor, humidity sensor, etc. Class-based addressing defines the

4.2. ENERGY-AWARE ROUTING FOR SENSOR NETWORKS 105

type of node in the region of space. A class-based addressing is assumed
within the network layer.

The dedicated routing protocols have to contend with the wireless medium,
i.e. low bandwidth, high error rates and burst losses, as well as the limitations
imposed by these networks, such as frequently changing topology and low
power devices. These protocols have to scale well with a large number
of nodes in the network. The dedicated protocols can be categorized into
proactive and reactive.

Proactive routing protocols have the distinguishing characteristic of attem-
pting to maintain consistent up-to-date routing information from each node
to every other node in the network. Every node maintains one or more
routing tables that store the routing information, and topology changes
are propagated throughout the network as updates, so that the network
view remains consistent. The protocols vary in the number of routing tables
maintained and the method by which the routing updates are propagated.

The Destination Sequenced Distance Vector Routing protocol (DSDV) is
proactive protocol based on the Bellman–Ford algorithm for shortest paths,
which ensures that there is no loop in the routing tables. Every node in the
network maintains the next hop and distance information to every other
node in the network. Routing table updates are periodically transmitted
throughout the network to maintain table consistency.

Link State Routing (LSR) is a proactive protocol in which each node floods
the cost of all the links to which it is connected throughout the network. Every
node then calculates the cost of reaching every other node using shortest path
algorithms. The protocol works correctly even if unidirectional links are
present, whereas DSDV assumes bidirectional links.

In contrast to proactive routing protocols, reactive routing protocols create
routes only when desired. An explicit route discovery process creates routes
only on demand. These routes can be either source initiated or destination
initiated. Source-initiated routing means that the source node begins the
discovery process, while destination-initiated routing occurs when the des-
tination begins discovery protocol. Once a route is established, the route
discovery process ends, and a maintenance procedure preserves this route
until the route breaks down or is no longer desired.

Ad Hoc On Demand Distance Vector Routing (AODV) is a routing protocol
based on the distance vector algorithm similar to DSDV, with the difference
that AODV is reactive. It is a source-initiated protocol, with the source node
broadcasting a Route Request (RREQ) when it determines that it needs a route
to a destination and does not have one available. This request is broadcast
until the destination or an intermediate node with a route to the destination
is located. Intermediate nodes record the address of the neighbor from which

106 ROUTING IN WIRELESS SENSOR NETWORKS

the first copy of the broadcast packet is received, in their route tables, thus
establishing a reverse path.

Dynamic Source Routing (DSR) is a reactive protocol that is source initiated
and based on the concept of source routing, in which the source specifies
the entire route to be taken by a packet, rather than just the next hop. If the
source node does not have a route, it floods the network with a Route Request
(RREQ). Any node that has a path to the destination can reply with a Route
Reply (RREP) to the source. This reply contains the entire path recorded in
the RREQ packet. The entire path is added to the header of every packet to
the destination.

Directed diffusion is a communication paradigm specifically for sensor
networks. It is a destination-initiated reactive protocol that is data centric
and application aware. Diffusion works well for sensor networks where
queries, for instance, ‘give me the temperature in a particular area, and query
responses’, are the most common form of communication. A destination
node (controller) requests data by sending interests for data. This interest
is flooded over the network, but each node knows only the neighbor from
which it received the request, and the node sets up a gradient to send data
to the neighbor. In this process, the interest reaches the source node (sensor),
but each node knows only its neighbor(s) who asked for the data, and does
not know the consumer of the data. If each node receives the same interest
from more than one neighbor, the data will travel to the controller node
along multiple paths. Among these paths, one high-rate path is defined, and
the remaining paths are low rate. This is achieved by sending out positive
reinforcements to increase the rate of a particular path. There is also a
mechanism for negative reinforcements to change high-rate paths to low rate,
which are used when a more efficient path emerges.

The potential problem in routing protocols is that they find the lowest
energy route and use it for all communication. This is not favorable for
the network lifetime. Using a low-energy path frequently leads to energy
depletion in the nodes along that path, and may lead to network partition.

The basic idea of EAR is to increase the survivability of networks, which
may lead to using suboptimal paths. This ensures that the optimal path does
not get depleted and the network degrades gracefully and does not become
partitioned. To achieve this, multiple paths are found between the source
and destinations, and each path is assigned a probability depending on the
energy metric. Every time the data is sent from the source to destination,
a path is randomly chosen, depending on the probability. None of the
paths is used all the time, which prevents energy depletion. Different paths
are tried continuously, improving tolerance to nodes moving around the
network.

4.2. ENERGY-AWARE ROUTING FOR SENSOR NETWORKS 107

EAR is a reactive routing protocol, and destination initiated protocol.
The consumer of data initiates the route request and maintains the route
subsequently. Multiple paths are maintained from source to destination.
EAR uses only one path at all times whereas diffusion sends data along
all the paths at regular intervals. Due to the probabilistic choice of routes,
EAR can continuously evaluate different routes and choose the probabilities
accordingly. EAR protocol has three phases:

• Set-up phase or interest propagation, in which the localized flooding occurs
to find all the routes from source to destination and their energy costs. This
occurs when routing (interest) tables are built up.

• Data communication phase or data propagation in which data is sent from
source to destination, using the information from the earlier phase. This
occurs when paths are chosen probabilistically according to the energy
costs calculated earlier.

• Route maintenance, which is minimal. Localized flooding is performed
infrequently from destination to source to keep all the paths alive.

The set-up phase is performed as in the following seven steps.

(1) The destination node initiates the connection by flooding the network in
the direction of the source node. It also sets the cost field to zero before
sending the request.

Cost(ND) = 0

(2) Every intermediate node forwards the request only to the neighbors
that are closer to the source node than itself and farther away from the
destination node. Thus at a node Ni, the request is sent only to a neighbor
Nj which satisfies:

d(Ni, NS) � d(Nj, NS)

d(Ni, ND) � d(Nj, ND)

where d(Ni, Nj) is the distance between Ni and Nj.
(3) On receiving the request, the energy metric for the neighbor that sent the

request is computed and is added to the total cost of the path. Thus, if
the request is sent from node Ni to node Nj, Nj calculates the cost of the
path as:

CNj,Ni = Cost(Ni) + Metric(Nj, Ni)

(4) Paths that have a very high cost are discarded and not added to the
forwarding table. Only the neighbors Ni with paths of low cost are added

108 ROUTING IN WIRELESS SENSOR NETWORKS

to the forwarding table FTj of Nj.

FTj = {i|CNj,Ni � α × (min
k

CNj,Nk)}
(5) Node Nj assigns a probability to each of the neighbors Ni in the forwarding

table FTj, with the probability inversely proportional to the cost.

PNj,Nk = (CNj,Ni)
−1

/ ∑
k∈FTj

(CNj,Nk)
−1

(6) Thus, each node Nj has a number of neighbors through which it can route
packets to the destination. Nj then calculates the average cost of reaching
the destination using the neighbors in the forwarding table.

Cost(Nj) =
∑
i∈FTj

PNj,Ni CNj,Ni

(7) This average cost, Cost(Nj) is set in the cost field of the request packet and
forwarded along towards the source node as in (2).

The data communication phase is performed in the following steps:

(1) The source node sends the data packet to any of the neighbors in the
forwarding table, with the probability of the neighbor being chosen being
equal to the probability in the forwarding table.

(2) Each of the intermediate nodes forwards the data packet to a randomly
chosen neighbor in its forwarding table, with the probability of the neigh-
bor being chosen being equal to the probability in the forwarding table.

(3) This continues until the data packet reaches the destination node.

The energy metric used to evaluate routes is a very important component
of the protocol. Depending on the metric, the characteristics of the protocol
can change substantially. This metric can include information about the cost
of using the path, energy health of the nodes along the path, topology of the
network, etc. EAR uses the metric;

Cij = eα
ijR

β

i

where Cij is the cost metric between nodes i and j, eij is the energy used
to transmit and receive on the link, and Ri is the residual energy at node i
normalized to the initial energy of the node. The weighting factors α and β

can be chosen to find the minimum energy path, the path with nodes having
the highest energy, or a combination of these. This metric has a deep impact
on the protocol performance and needs to be thoroughly evaluated.

4.3. ALTRUISTS OR FRIENDLY NEIGHBORS IN THE PICO RADIO SENSOR NETWORK 109

4.3. ALTRUISTS OR FRIENDLY NEIGHBORS IN THE PICO RADIO
SENSOR NETWORK

Self-configuring wireless sensor networks consist of hundreds or thousands
of small, cheap, battery-driven, spread-out nodes bearing a wireless modem
to accomplish a monitoring or control task jointly. An important concern is
the network lifetime: as nodes run out of power, the connectivity decreases
and the network can finally be partitioned and become dysfunctional. The
concept of altruistic nodes can be applied to the routing protocol of the pico
radio (the Energy Aware Routing protocol, EAR). The concept of altruists is a
lightweight approach for exploiting differences in the node capabilities. The
altruist approach can achieve significant gains in terms of network lifetime
over the already lifetime optimized EAR protocol of pico radio.

Example applications of sensor networks are microclimate control in build-
ings, environmental monitoring, home automation, distributed monitoring of
factory plants or chemical processes, interactive museums, etc. The ultimate
goal is to make sensor network nodes so small that they can be just thrown
out somewhere, or smoothly woven into other materials such as wallpapers.

Sensor nodes are typically battery driven, and the batteries are too small,
too cheap and too numerous to consider replacing or recharging. Hence,
their energy consumption is a major concern, imposing a design constraint
of utmost importance. An immediate consequence is that the transmitting
power of the nodes should be restricted to a few meters. Furthermore,
nodes should go into sleep mode as often as possible. In sleep mode, a
node switches off its radio circuitry and other subsystems. The restricted
transmit power leads to the necessity of multihop communications: if the
distance between two communicating nodes is too large, then the intermediate
nodes have to relay the packets, which in turn drains the batteries of the
relaying nodes.

To achieve a maximum network lifetime, it is mandatory to optimize the
energy consumption in all layers of the protocol stack, from the physical layer
to the application layer. The approach of jointly designing the application
and the communication related layers can be effective. The data transmitted
over the network is specified in terms of the application, for example, ‘what
is the temperature in the neighboring room?’ To respond to this request, it is
not necessary to use general purpose routing protocols. Instead, the routing
process can explicitly take geographical information into account to perform
location based routing. The routing functionality is application aware. The
needs of the application layer and the routing protocol also influence the
design of link layer, MAC layer, and physical layer. This way, the protocol
architecture for sensor networks differs from other networks.

110 ROUTING IN WIRELESS SENSOR NETWORKS

The example of temperature sensors helps to explain the notion of network
lifetime: a monitor station that wants to get the temperature is not concerned
about which sensor delivers the temperature in the room. If there are many
of these sensors in this room, at least one of them will send its data, and
this value is probably similar to those of the other sensors. As long as there
are intermediate nodes to forward data packets to the monitor, the network
can function. However, as a node becomes depleted and dies, the possible
forwarding routes may be eliminated. The network may split into two or
more clusters with no connectivity, and will no longer serve its purpose.

The ultimate design goal of pico radio is an ultra-low-power wireless
sensor network with cheap nodes (substantially less than 1 dollar), which
are small (less than 1 cubic centimeter), do not weigh much, and are battery
driven. The hardware and the software/firmware design is targeted for a
power dissipation level of below 100 microwatts, whereas a Bluetooth radio
consumes more than 100 milliwatts. The protocol stack for pico radio is
designed with the assumption that all nodes have the same capabilities
(battery, processor power) and all protocols work in a decentralized manner.

There are applications, however, where this is not necessarily true. If the
network has actuator nodes (e.g. a small motor controlling a room), the latter
will likely be connected to a regular power line, since operation of these nodes
requires significant amounts of energy. Making use of these asymmetries
causes the more capable stations to perform as altruists: they announce
their capabilities to their neighbors, and may use their services. The altruist
approach is a light-weight approach as compared with clustering schemes.
The altruist approach is applied to the data forwarding stage of the pico radio
network layer protocol, which is the EAR protocol. Specifically, a simple
process to implement altruistic add-on to EAR is considered. The experiment
presented by Willig et al. (2002) compares different performance metrics for
the unmodified EAR protocol and the altruist scheme, and shows that the
altruist scheme can achieve significant gains in terms of network lifetime.

The pico radio is a sensor network of ultra-low-powered nodes, called pico
nodes. There are three types of pico node: sensor nodes, actuator nodes,
and monitor nodes. The sensor nodes acquire data (using a built-in sensor
facility), which is typically processed by monitor nodes. The resulting output
(control actions) is sent to the actuator nodes.

Pico nodes use two channels in the 1.9-GHz band. An on–off keying scheme
is employed as the modulation scheme, providing a data rate of 10 kbit/sec
per channel. One channel is used for data packets, the other for packet
management. Pico nodes can also use a Bluetooth radio.

Pico nodes MAC layer uses a combination of CSMA with a cycled receiver
scheme, where a node goes into sleep mode periodically. Communication

4.3. ALTRUISTS OR FRIENDLY NEIGHBORS IN THE PICO RADIO SENSOR NETWORK 111

only takes place when a node is awake. A promising solution for power
savings is the wake-up radio. We assume that a node A spends most of the
time in a sleep mode. When another node, B, wants to transmit a packet to
A, it sends a wake-up signal on the wake-up radio channel, a dedicated, very
low bit rate and very low-power channel. The wake-up signal carries the
address of A. Upon reception of the signal, A wakes up, participates in the
packet exchange, and goes back to sleep when finished. Transmission and
reception on the wake-up radio channel consumes less power than on the
data and management channels. The wake-up radio is always on.

Besides the MAC layer, several different functions are performed between
physical layer and network layer:

• Allocation subsystem helps nodes to discover their geographical position
in terms of (x, y, z) coordinates within the network, using the help of so
called anchor nodes, which know their position a priori (configured during
network set-up). Nodes can determine their position using signal strength
measurements to nodes of a known position, or they infer their position
from the hop-count distance between their immediate neighbors to the
anchor nodes.

• A local address assignment protocol determines locally unique node
addresses. ‘Locally unique’ means that no node has two neighbors with
the same address x, but x can be reused in more distant parts of the net-
work. (In sensor networks globally unique node addresses like Ethernet
MAC address or IP addresses, have disadvantages, since address assign-
ment involves complex management (e.g. address resolution protocols),
specifically in the presence of mobile nodes).

• A power control and topology control algorithm is responsible for adjusting
the transmit powers of the pico nodes in order to find a proper network
topology. The goal is to find a well connected graph, and to avoid too many
neighbors per node. It is necessary to restrict the transmit power in order
to reduce the interference imposed by a node on its neighbors.

• A neighbor-list management facility maintains a table of currently reachable
neighbors of a node and their (x, y, z) coordinates. The information is
obtained directly from the topology control algorithm.

4.3.1. Energy-Aware Routing

In EAR and directed diffusion, the routing is data centric and takes the
application-layer data into account. A sink generates an interest specification

112 ROUTING IN WIRELESS SENSOR NETWORKS

(ispec), which specifies the type of data it is interested in and the geographical
location or area where this data is expected. Location is specified by using
(x, y, z) coordinates. To enable more user-centric descriptions, for instance,
the left window in the next room, another level of indirection is needed,
which maps these descriptions to spatial coordinates. It is assumed that
every node knows its own position (from the locationing subsystem) and
its (type, subtype) tuple, where the type can be sensor, actuator or monitor,
and a subtype can be a temperature sensor, light sensor, or pressure sensor.
Furthermore, every node has a locally unique node address, as determined
by the local address assignment protocol.

EAR and directed diffusion schemes distinguish between route-discovery
phase and data-transmission phase. The route discovery is initiated by the
sink. A flooding scheme (e.g. directional flooding) is used to find the source(s).
Flooding approaches tend to find not only a single route, but all the routes. A
difference between directed diffusion and EAR is that the directed diffusion
introduces a reinforcement phase, where among the several possible routes
between the source and the sink the most energy efficient route is selected by
using control messages issued by the sink. The consequence is that for a longer
lasting communication between the source and the sink, all data packets take
the same route, which may quickly deplete the node power along that route.
In contrast to this, the EAR approach keeps most of the possible routes, and
only the very inefficient routes are discarded. In the data-transmission phase
the packet route is chosen randomly from the available routes. This reduces
the load for a fixed intermediate node and increases battery lifetime.

The energy aware routing scheme (EAR) works as follows:

• The sink generates an interest message. The interest message contains
(amongst others) an interest specification (ispec), and a cost field, initialized
with 0. The sink also includes its own node specification (position, (type,
subtype) tuple, abbreviated as node spec). The interest message is sent to
those of its neighbors, which are closer to the target area (of the ispec).

• When node i receives the interest message from an upstream node j, it takes
the following actions:
– the ispec is inserted into an interest cache, along with j’s node address,

the received cost field and the sink’s node spec. If there is already an
entry with the same ispec and node spec in the interest cache, the node
does not forward the interest message any more, in order to bound
the number of interest packets. (By taking both ispec and node spec
into account, a single sink node can issue different interests at the same
time). When the received cost is already very high, the node may choose
to drop the interest.

4.3. ALTRUISTS OR FRIENDLY NEIGHBORS IN THE PICO RADIO SENSOR NETWORK 113

– When the ispec matches node i, it starts generating the requested data. In
addition, i broadcasts the interest message locally in order to propagate
it to neighboring nodes of the same type (which are potential data
sources, too).

– If the ispec does not match node i, the interest message is forwarded.
The first step is to update the cost field:

new cost field = cost field + metric(i, j),

where metric(i, j) represents the costs for node i to transmit a data
packet to node j. There are many different ways to use this field:
e.g. setting metric(i, j) = const, is equivalent to a hop-count metric, and
setting metric(i, j) to the inverse of node i’s remaining energy assigns
a costly route to a node with reduced energy. This way, a node with
reduced energy is less likely to be selected as the next data forwarder.

– The final forwarding step for node i is to send a copy of the interest
message to those neighboring nodes that are geographically closer to the
source and farther away from the sink. To do this, i uses neighborhood
information collected by the MAC layer. This information includes the
neighbor’s geographical position.

• When an intermediate node k receives a data packet not destined to itself,
k has to forward this packet towards the sink. To do so, it looks up all the
interests in the interest cache to which the data fits: the data packet contains
type and subtype fields describing the data and the node spec (position)
of the source, which are compared to the respective values of the ispecs
stored in the interest cache. The matching cache entries differ only in the
stored cost field and the node addresses of the upstream nodes. Among the
possible upstream nodes one is randomly chosen, and the probabilities are
assigned proportionally to the respective cost values.

This scheme is different from the EAR scheme in two respects. In the
original EAR scheme:

• intermediate nodes do not filter out the second and following copies of an
interest packet from the same sink, and

• for every forwarded interest packet they set the cost field to the mean value
of the costs of all routes known so far.

Hence, the EAR scheme tends to produce more copies of interest messages,
while the scheme presented above propagates only the costs of the path with
the minimum delay and the number of hops between sink and intermediate
node. Currently some further alternatives can be considered:

114 ROUTING IN WIRELESS SENSOR NETWORKS

• After getting the first copy of an interest message, an intermediate node
waits a certain amount of time for further packets. After this time it
forwards only one packet with the average cost. However, this approach
tends to increase the delays. In addition, it is hard to find good values for
the waiting time. These should be suitable for intermediate nodes close to
the sink or far away from the sink.

• The first copy of an interest message is immediately sent out. Further copies
are sent, when the accumulated average cost value differs significantly from
the last sent value.

4.3.2. Altruists or Friendly Neighbors

The altruist approach explores asymmetries in node capabilities. In a sensor
network, not all nodes are the same type. When there are actuator or monitor
nodes, these are probably attached to a permanent power source, or have
more powerful processors and more memory than other nodes. Sensors either
have batteries or a permanent power supply. While the battery driven sensors
are spread out, sensors with a permanent power supply are placed carefully
to increase the network lifetime. These asymmetries can be discussed at
different levels:

• Application level: some nodes can perform data aggregation and concen-
tration or data filtering. As a simple example, all temperature sensors in
a small geographical area deliver similar temperature values to a monitor
station. If the packets traverse the same intermediate node, it can accu-
mulate a number of packets, calculate a average temperature and forward
only a single packet with the average value to the monitor.

• Network level: restrict data forwarding to stations with more energy.
• MAC layer and link layer: A more capable node can act as a central station in

centralized MACs by scheduling transmissions to its associated nodes. A
node that has no outstanding transmission can go into a sleep mode. This
approach is explored in the IEEE 802.11 PCF (Point Coordination Function)
for power saving.

Two different approaches to exploit asymmetries are clustering schemes
and altruist schemes. In clustering schemes, the network is partitioned into
clusters. Each cluster has a cluster head, which does most of the work. Each
node is associated with, at most, one cluster head and all communications are
relayed through the cluster head. These schemes typically require protocols

4.3. ALTRUISTS OR FRIENDLY NEIGHBORS IN THE PICO RADIO SENSOR NETWORK 115

for cluster-head election and node association. In the presence of mobile
nodes, both functions have to be carried out frequently enough to maintain a
consistent network state.

In the altruist or friendly neighbor approach, a node simply broadcasts its
capabilities to its neighbors, along with its position, i.e. node address, and a
lifetime value. In this broadcast, the altruist uses an altruist announcement
packet. The lifetime value indicates how long the altruist node is willing to
do more work in the soft-state approach. The other nodes in the altruist’s
neighborhood can freely decide whether they use the service offered by the
altruist or not. Altruist protocols are lightweight as compared with cluster
approaches, since they only involve an occasional altruist announcement
packet, whereas cluster approaches need cluster-head election and association
protocols (typically implemented with two-way or three-way handshake, e.g.
in the IEEE 802.11 standard).

The altruist approach can be used in the data packet forwarding stage of the
EAR protocol. We make an assumption that only nodes with access to a power
line send altruist announcement packets, hence, a node has some facility to
query the type of its power supply. Other schemes are possible, where the
probability of a node becoming an altruist can depend on its remaining
energy, the number of altruists in its neighborhood, the time elapsed since it
was last an altruist, etc. Every node that receives an altruist announcement
packet stores the issuing node address in an altruist cache, and starts a timer
for this cache entry according to the indicated lifetime. (The size of the altruist
cache and the number of parallel timers is limited by the node’s number of
neighbors). If the timer expires, the entry is removed from the altruist cache.
When an arbitrary node receives a data packet and has to decide about the
next data forwarder, it first looks up all the possible upstream nodes j and
their respective costs cj from the interest cache. The costs cj of those upstream
nodes j that are currently altruists (according to the altruist cache) are reduced
by a fixed factor 0 � α � 1 (called cost reduction factor):

c′
j =

{
α × cj if node j is an altruist

cj if node j is not an altruist

This increases the probability that an altruist is chosen as the next data
forwarder. The EAR protocol with the altruist scheme is denoted as EAR+A.

Note that EAR+A works somewhat in opposition to the original idea of EAR
to distribute the forwarding load as smoothly as possible over all available
routes. In fact, depending on α, the EAR+A protocol favors altruistic nodes.
The problem with this is that the nodes behind the altruists also experience
an increased forwarding load as compared to EAR. This is a positive aspect as
long as these nodes are also altruists. Otherwise, these nodes are potentially

116 ROUTING IN WIRELESS SENSOR NETWORKS

depleted faster than the nodes in EAR. Furthermore, the altruist scheme tends
to increase the mean number of hops taken by a data packet.

In many applications network reliability is a critical issue. The altruist
scheme as described above is basically a soft-state scheme, since the altruist
announcements have only a limited lifetime. Furthermore, the operation of
the network does not depend critically on the altruists. If an altruist node
dies for some reason, its neighbors have inaccurate state information for a
time no longer than the announced lifetime. If this time expires, the network
returns to its normal mode. Hence, the network designer can choose whether
to accept the inaccuracy for longer lifetimes and less overhead by altruist
announcement packets.

4.3.3. Analysis of Energy Aware and Altruists
Routing Schemes

The experiment was designed to gain insight into the following questions:

• Does the presence of power unconstrained stations have an impact on
network lifetime for both the unmodified EAR and the EAR plus altruist
routing schemes?

• Does the altruist scheme have an effect on network lifetime and is there a
dependence on the percentage of altruistic nodes or on the load patterns?

The model is divided into a node model describing the internal structure
of a single pico node, and a channel model, which defines the physical
channel and the channel error behavior. The model is built with a steady
state assumption: the network initialization (localization algorithm, topology
control, local address assignment, neighbor-list determination) is already
done and is not a part of the model, furthermore, there are no mobile stations.

A node model consists of a MAC layer, a network layer, an application
layer and a node controller:

• The application layer of sink nodes generates interests for other nodes
(randomly chosen). The interests are artificially restricted to match a single
node position; the more common case of an interest specifying a larger
geographical area is foreseen but not used. A sink can issue several different
interests at the same time. When an interest matches a source node, the
source-node application layer generates data packets at a certain rate for a
certain duration. Interest (data) packets have a length of 288 (176) bits.

4.3. ALTRUISTS OR FRIENDLY NEIGHBORS IN THE PICO RADIO SENSOR NETWORK 117

• The network layer implements the EAR protocol and the EAR+A scheme
on top of it. The cost metric metric(i, j) is inversely proportional to node’s i
remaining energy ri, i.e., metric (i, j) = 1/ri.

• On the MAC layer the experiment used a simple nonpersistent CSMA
(Carrier Sense Multiple Access) protocol where the backoff times are
drawn uniformly from a fixed interval (0 to 100 ms). The carrier sense
operation is assumed to indicate a carrier when at the node position
the composite signal level from other node transmissions is above a
certain threshold.

• The node controller is essentially an abstraction of a node’s energy supply.
For battery driven nodes the experiment uses negligible computation costs
as compared to the cost of transmitting or receiving packets. A node spends
energy on transmitting a packet and on receiving a packet destined for
it (i.e. with its own node address or the broadcast address). The latter
assumption corresponds to the wake-up radio scheme. Transmitting needs
4 milliwatts, and receiving needs 3 milliwatts in the pico nodes. If a battery
powered node i has less than 1 % remaining energy ri, it is considered dead
and does not communicate any more. A certain percentage of nodes has
infinite power.

The channel model considers only mutual interference, which is computed
by a simple path loss model: for an isotropic antenna, a transmit power of PT,
and a distance of d meters to the destination node, the received power at the
destination node is given by

PR = PT × g × dγ

where g is a scaling factor (incorporating antenna gains and wavelength) and
is the path loss exponent. The experiment uses the optimistic assumption of
γ = 2 (this exponent varies typically between 2 and 5, from ideal free-space
propagation to attenuation on obstacles). For d < 1 meter, the experiment
takes PR = PT × g. Beyond a certain distance depending on PT and g the
signal is below a prespecified threshold and is considered undetectable.
The channel model computes the overall signal level at some geographical
location by adding the received power coming from all ongoing transmissions
at this point. This computation is invoked at the start and end of packet
transmissions.

The channel model is also responsible for generating packet errors. The
strategy is simple: it marks a packet as erroneous, if the ratio of the packet’s
signal strength at the receiver as compared with all the interference is
below some threshold, called minimum signal to interference ratio (SIR). The

118 ROUTING IN WIRELESS SENSOR NETWORKS

experiment uses an SIR of 10 so that parallel transmissions can be successful, if
their distance is large enough. Only the data channel is used, the management
channel is not modeled. The data channel has a bit rate of 10 kbit/sec.

An experiment with the Large-Scale Office Scenario (LSOSC) is meant to
resemble a microclimate control application in a large scale office (20 × 30 m
as shown in Figure 4.1). The node placement is nonuniform; close to the
windows the density is much higher than in the middle of the room (there
is a total of 121 nodes). A single monitor station in a corner is the only sink
in this network. Only the monitor node generates interests for randomly

T L T

T

T

T

T
T

T

L

L L

L
L

H

H
H

H

T L T

T

T

T

T
T

T

T

T T

T

T

L

L L

L
L

H

H
H

H

T L T

T

T

T

T
T

T

L

L L

L
L

H

H
H

H

T L T

T

T

T

T
T

T

L

L L

L
L

H

H
H

H

TI TI

TI TI
TI

TI

TI

TI

TI

TI
TI

TI

TI

TI

TI

TI

TI TI TITI TI

TI
TI

TI
TI

TI

TI TI
H H H

H

H

H

H

H

H

H

H

H

HHH

H

H

H

H

H

H

H

H

H = Humidity
M M = Monitor

L = Light
T = Temperature

Figure 4.1 Large-scale office scenario.

4.3. ALTRUISTS OR FRIENDLY NEIGHBORS IN THE PICO RADIO SENSOR NETWORK 119

chosen sensors, at most one interest is active at any time. Besides the monitor,
some strategically placed temperature sensors have an infinite power supply
(marked as TI in Figure 4.1). A node can transmit over 6 meters. For the altruist
announcements, α = 0.01 and a lifetime of 10 000 s. A source generates data
packets every 3 seconds.

The focus is on the network lifetime. This experiment is based on the
time that 50 % out of the total number of nodes needs to die due to energy
depletion. (A similar measure, the 50 % lethal dose LD50 is used in medicine
to assess the efficiency of toxins). Other possible measures are the time until
the first node dies or the time before the network of the alive nodes is
partitioned the first time (i.e. loses its full connectivity). However, the 50 %
metric can be applied to both scenarios, since in LSOSC the network cannot
get disconnected (due to the chosen placement of nodes with infinite power
supply and the transmission range of 6 meters), as opposed to USC.

Results for uniform scenario discuss the mean 50 % nodes dead time versus
the percentage of nodes with unconstrained power supply.

• Both EAR and EAR+A protocols can take advantage of nodes with uncon-
strained power supply, even despite the fear that nodes in the neighborhood
of unconstrained nodes get depleted faster. Due to the energy metric used
(costs inversely proportional to remaining energy), packets tend to go more
and more over the unconstrained nodes, when the other nodes run out of
energy. This takes the forwarding burden from the other nodes.

• The EAR+A scheme gives in the main some advantage over EAR, and
the gain increases with the percentage of unconstrained nodes. However,
the altruist scheme is not always better, since with fixed unconstrained
node percentage there are some random seeds for which EAR gives better
network lifetime.

The mean interest answer time (as taken over all interests and all needs)
is defined as the time between a node issuing an interest and getting the
first data packet. For EAR+A the mean interest answer time is higher than
for EAR. This can be attributed to the tendency of EAR+A to favor altruists,
which may well not be the shortest path.

The comparably high mean interest-answer times are determined by con-
tributions with high values, primarily from the first phase of the network
lifetime, when all nodes are alive. We consider the time needed for an interest
to reach the source node. The source node immediately starts generating data
packets. The problem here lies in the combination of directional flooding
and the nonpersistent CSMA protocol: for a single interest a large number
of interest packets is generated successively as the interest moves towards

120 ROUTING IN WIRELESS SENSOR NETWORKS

the source (flooding). At the time when the first interest packet reaches the
source, many copies of the same interest are stored in upstream nodes. This
means that at the time the first interest packet reaches the source, the area
around the source is congested by additional interest packets. Data packets
have to penetrate this congested area, which may take a long time due to the
CSMA operation and lack of packet priorities. The MAC throughput does not
increase by reducing the backoff window size.

In the LSOSC, the experiment uses the mean 50 % nodes dead time against
the interest lifetime and data generation period. This corresponds to varying
the ratio between data packets and interest packets. The larger the interest
lifetime, the more data packets are transmitted per single interest.

• For both EAR and EAR+A, the network lifetime increases with an increased
interest lifetime. This permits the conclusion that actual interest propaga-
tion (which uses directional flooding) is expensive as compared with data
transmission.

• The altruist scheme significantly increases the network lifetime. The altruist
scheme is specifically designed to improve the data transmission phase
while not affecting the interest propagation phase.

The high relative costs of the interest propagation phase can be explained
by the comparably large number of interest packets a single node receives.
This number is for the LSOSC scenario directly reflected by the interest
cache length, which varies typically between 10 and 20. Hence, a power
constrained node burns energy for between 10 and 20 packet receptions and
one packet transmission per interest, while not involved in the corresponding
data transmission phase. This suggests that the altruist concept can also be
applied to the interest propagation phase.

The altruistic nodes can be used in the pico radio sensor network. This
scheme is applied to the data forwarding stage of the pico radio EAR
protocol, and it shows up that significant improvements in network lifetime
can be achieved as compared to the already lifetime optimized EAR protocol.
This holds true specifically for the case where much more bandwidth is spent
on data transmission than on interest propagation.

4.4. AGGREGATE QUERIES IN SENSOR NETWORKS

The database generic query interface for data aggregation can be applied
to dedicated networks of sensor devices. Aggregation is used as a data

4.4. AGGREGATE QUERIES IN SENSOR NETWORKS 121

reduction tool. Networking approaches have focused on application specific
solutions. The network aggregation approach is driven by a general purpose,
SQL (Structured Query Language)-style interface that can execute queries
over any type of sensor data while providing opportunities for significant
optimization.

Advances in computing technology have led to the production of a new
class of computing device: the wireless, battery-powered, smart sensor.
Unlike traditional sensors deployed throughout buildings, laboratories, and
equipment everywhere, these new sensors are not merely passive devices
that modulate a voltage based on some environmental parameter: they
are fully fledged computers, capable of filtering, sharing, and combining
sensor readings.

Small sensor devices are called motes. Motes are equipped with a radio, a
processor, and a suite of sensors. An operating system makes it possible to
deploy dedicated networks of sensors that can locate each other and route
data without any detailed knowledge of network topology.

Of particular interest are aggregates, whose operations, as stated earlier,
summarize current sensor values in part of, or the entire, sensor network, and
when users want to know temperature patterns in relatively large regions,
individual sensor readings are of little value.

Sensor networks are limited in external bandwidth, i.e. how much data
they can deliver to an outside system. In many cases the externally avail-
able bandwidth is a small fraction of the aggregate internal bandwidth.
Thus computing aggregates in-network is also attractive from a network
performance and longevity standpoint: extracting all data over all time
from all sensors will consume large amounts of time and power as each
individual sensor’s data is independently routed through the network. Stud-
ies have shown that aggregation dramatically reduces the amount of data
routed through the network, increasing throughput and extending the life
of battery-powered sensor networks as less load is placed on power-limited
radios.

Networking research considered aggregation to be application specific
technique that can be used to reduce the amount of data that must be sent
over a network. Database community views aggregates as a generic technique
that can be applied to any data, irrespective of the application. The system
provides a generic aggregation interface that allows aggregate queries to
be posed over networks of sensors. The benefits of this approach over the
traditional network solution are as follows:

• By defining the language that users use to express aggregates, we can
significantly optimize their computation.

122 ROUTING IN WIRELESS SENSOR NETWORKS

• The same aggregation language can be applied to all data types, thus,
the programmers can issue declarative, SQL (Structured Query Language)
style queries rather than implement custom networking protocols to extract
the data they need from the network.

Basic database aggregates (COUNT, MIN, MAX, SUM, and AVERAGE)
can be implemented in special networks of sensors. This generic approach
leads to significant power savings. Sensor network queries can be structured
as time series of aggregates, and adapted to the changing network structure.

Motes are equipped with a 4-MHz Atmel microprocessor with 512 bytes
of RAM (random access memory) and 8 kb of code space, a 917 MHz RFM
(Radio Frequency Module) radio running at 10 kb/s, and 32 kb of EEPROM
(Electronically Erasable Programmable read only). An expansion slot accom-
modates a variety of sensor boards by exposing a number of analog input
lines as well as chip-to-chip serial buses. The sensor options include: light,
temperature, magnetic field, acceleration (and vibration), sound, and power.

The radio hardware uses a single channel, and on–off keying. It provides
an unbuffered bit-level interface; the rest of the communication stack (up to
message layer) is implemented by operating-system software. Like all single-
channel radios, it offers only a half duplex channel. This implementation
uses a CSMA (Carrier Sense Multiple Access) media access protocol with
random backoff scheme. Message delivery is unreliable by default, though
applications can build up an acknowledgement layer. Often, a message
acknowledgement can be obtained.

Power is supplied via a free hanging battery pack or a coin-cell attached
through the expansion slot.

The effective lifetime of the sensor is determined by its power supply.
The power consumption of each sensor node is dominated by the cost
of transmitting and receiving messages, including processor cost, where
sending a single bit of data requires about 4000 nJ of energy, whereas a
single instruction on a 5-mW processor running at 4 MHz consumes only
5 nJ. Thus, in terms of power consumption, transmitting a single bit of data is
equivalent to 800 instructions. This energy trade-off between communication
and computation implies that many applications will benefit by processing the
data inside the network rather than simply transmitting the sensor readings.

The operating system provides a number of services greatly to simplify
writing programs that capture and process sensor data and transmit messages
over the radio. The API (application programming interface) can send and
receive messages and read from sensors. The messaging and networking
aspects of the operating system and wireless sensors are the most relevant to
aggregation.

4.4. AGGREGATE QUERIES IN SENSOR NETWORKS 123

Radio is a broadcast medium, where a sensor within hearing distance can
hear any message, irrespective of whether or not this sensor is the intended
recipient. The radio links are typically symmetric: if sensor α can hear sensor
β, we assume sensor β can also hear sensor α. Note that this may not be a
valid assumption in some cases: if α’s signal strength is higher, because its
batteries are fresher or its signal is more amplified, β will be able to hear α

but not to reply to it.
Each 30-byte message type has a message id (identifier) that distinguishes it

from other types of messages. Sensor programmers write message-ID specific
handlers that are invoked by the operating system when a message of the
appropriate ID is heard on the radio. Each sensor has a unique sensor ID
that distinguishes it from other sensors. All messages specify their recipient
(or broadcast, meaning all available recipients), allowing sensors to ignore
messages not intended for them, although nonbroadcast messages must still
be received by all sensors within range, unintended recipients simply drop
messages not addressed to them.

The sensors route data by building a routing tree. This is one of many
possible techniques that can be used. A tree can be built and maintained
efficiently in the presence of a changing network topology. One sensor is
dedicated as a root. The root is the point from which the routing tree will
be built, and upon which aggregated data will converge. Thus, the root is
typically the sensor that interfaces the querying user with the rest of the
network. The root broadcasts a message asking sensors to organize into a
routing tree; in that message it specifies its own ID and its level, or distance
from the root, which is zero. Any sensor that hears this message assigns its
own level to be the level in the message plus one, if its current level is not
already less than or equal to the level in the message. The sensor also chooses
the sender of the message as its parent, through which it will route messages
to the root. Each of these sensors then rebroadcasts the routing message,
inserting their own identifiers and levels. The routing message floods down
the tree, with each node rebroadcasting the message until all nodes have been
assigned a level and a parent. Nodes that hear multiple parents choose one
arbitrarily. Multiple parents can be used to improve the quality of aggregates.
These routing messages are periodically broadcast from the root, so that the
process of topology discovery goes on continuously. This constant topology
maintenance makes it relatively easy to adapt to network changes caused by
mobility of certain nodes, or to the addition or deletion of sensors: each sensor
simply looks at the history of received routing messages, and chooses the best
parent, while ensuring that no routing cycles are created with that decision.

This approach makes it possible to route data efficiently towards the root.
When a sensor wishes to send a message to the root, it sends the message to its

124 ROUTING IN WIRELESS SENSOR NETWORKS

parent, which in turn forwards the message on to its own parent, and so on,
eventually reaching the root. This application does not address point-to-point
routing. Flooding aggregation request, and routing replies up the tree to the
root, is acceptable. As data is routed towards the root, it can be combined with
data from other sensors so as to combine routing and aggregation efficiently.

Aggregation in SQL (Structured Query Language)-based database sys-
tems is defined by an aggregate function and a grouping predicate. The
aggregate function specifies how a set of values should be combined to
compute an aggregate; the standard set of SQL (Structured Query Language)
aggregate functions is COUNT, MIN, MAX, AVERAGE, and SUM. These
compute the obvious functions; for example, the SQL (Structured Query
Language) statement:

SELECT AVERAGE (temp) FROM sensors

computes the average temperature from a table of sensors, which represents
a set of sensor readings that have been read into the system. Similarly, the
COUNT function counts the number of items in a set, the MIN and MAX
functions compute minimal and maximal values, and SUM calculates the
total of all values. Additionally, most database systems allow user-defined
functions (UDFs) that specify more complex aggregates.

Grouping is also a standard feature of database systems. Rather than
merely computing a single aggregate value over the entire set of data values,
a grouping predicate partitions the values into groups based on an attribute.
For example, the query:

SELECT TRUNC (temp/10), AVERAGE (light)

FROM sensors

GROUP BY TRUNC (temp/10)

HAVING AVERAGE (light) � 50

partitions sensor readings into groups according to their temperature reading
and computes the average light reading within each group. The HAVING
clause excludes groups whose average light readings are less than 50.

Users are often interested in viewing aggregates as sequences of changing
values over time. The user is stationed at a desktop class PC (Personal
Computer) with ample memory. Despite the simple appearances of this
architecture, there are a number of difficulties presented by the limited
capabilities of the sensors.

Throughout the following analyses, the focus is on reducing the total num-
ber of messages required to compute an aggregate; this is because message

4.4. AGGREGATE QUERIES IN SENSOR NETWORKS 125

transmission costs typically dominate energy consumption of sensors, espe-
cially when performing only simple computation such as the five standard
database aggregates.

4.4.1. Aggregation Techniques

A possible implementation of sensor network aggregation would be to use
a centralized, server-based approach where all sensor readings are sent to
the host PC, which then computes the aggregates. However, a distributed,
in-network approach where aggregates are partially or fully computed by
the sensors themselves as readings are routed through the network towards
the host PC, can be considerably more efficient. The in-network approach,
if properly implemented, has the potential of both lower latency and lower
power than the server-based approach.

To illustrate the potential advantages of the in-network approach, a simple
example of computing an aggregate over a group of sensors arranged is shown
in Figure 4.2. Dotted lines represent connections between sensors, solid lines

1

2

3 3 3

4

f (c, d, f (a, b))

c d

a

(a) (b)

f (a, b)

Figure 4.2 Server-based (a) versus in-network (b) aggregation. In (a), each node is
labeled with the number of messages required to get data to the host PC: a total of 16
messages is required. In (b), only one message is sent along each edge as aggregation
is performed by the sensors.

126 ROUTING IN WIRELESS SENSOR NETWORKS

represent the routing tree imposed on top of this graph (as discussed above)
to allow sensors to propagate data to the root along a single path. In the
centralized approach, each sensor value must be routed to the root of the
network; for a node at depth n, this requires n − 1 messages to be transmitted
per sensor. The sensors in Figure 4.2(a) have been labeled with their distance
from the root; adding these numbers gives a total of 16 messages required
to route all aggregation information to the root. The sensors in Figure 4.2(b),
with no children, simply transmit their readings to their parents. Intermediate
nodes (with children) combine their own readings with the readings of their
children via the aggregation function and propagate the partial aggregate,
along with any extra data required to update the aggregate, up the tree.

The amount of data transmitted in this solution depends on the aggregate.
In the AVERAGE function at each intermediate node n, the sum and count
of all children’s sensor readings are needed to compute the average of sensor
readings of the subtree rooted at n. We assume that, in the case of AVERAGE,
both pieces of information will easily fit into a single 30-byte message. Thus,
a total of five messages needs to be sent for the average function. In the
case of the other standard SQL (Structured Query Language) aggregates, no
additional state is required: COUNT, MIN, MAX, and SUM can be computed
by a parent node, given sensor or partial aggregate values at all of the
child nodes.

A class of aggregation predicates is particularly well suited to the in-
network regime. Such aggregates can be expressed as an aggregate function
over the sets a and b such that:

• The basic SQL (Structured Query Language) aggregates all exhibit the
above property, and the problems with this substructure map easily onto
the underlying network.

• Aggregation queries are pushed down into a sensor network and the
results are returned to the user. We assume that aggregate queries do not
specify groups.

Computing an aggregate consists of two phases: a propagation phase,
in which aggregate queries are pushed down into sensor networks, and
an aggregation phase, where the aggregate values are propagated up from
children to parents. The most basic approach to propagation works just like
the network discovery algorithm described above, except that leaf nodes
(nodes with no children) must discover that they are leaves and propagate
singular aggregates up to their parents. Thus, when a sensor p receives an
aggregate a, either from another sensor or from the user, it transmits a and
begins listening. If p has any children, it will hear those children retransmit

4.4. AGGREGATE QUERIES IN SENSOR NETWORKS 127

to their children, and will know it is not a leaf. If, after some time interval t, p
has heard no children, it concludes it is a leaf and transmits its current sensor
value up the routing tree. If p has children, it assumes they will all report
within time t, and so after time t it computes the value of a applied to its own
value and the values of its children and forwards this partial aggregate to
its parent.

Notice that choosing too short a duration for t can lead to missed reports
from children, and also that the proper value of t varies depending on the
depth of the routing tree. We assume that t is set to be long enough for the
message to have time to propagate down to all leaves below and back, or,
numerically:

t = 2 × (dp − dtree) × (txmit + tprocess)

where txmit is the time to send a message and tprocess is the time to process
an aggregation request. Empirical studies suggest that (txmit + tprocess) needs
to be 200 or more milliseconds. The time to transmit a 30-byte message on
a 10-kbit radio is about 50 ms: each nibble must be DC balanced (have the
same number of ones and zeros), costing extra bits, and simple forward error
correction is used, meaning that for every byte, 18 bits must be transmitted;
18 × 30 bytes/10 000 bits/sec = 50 ms. Computation time is small, but signif-
icantly more than 50 ms must be allocated per hop to account for differences
in clock synchronization between sensors, and random collision detection
back-off in which those sensors engage. Thus, for a deep sensor network,
computing a single aggregate can take several seconds. The unreliable com-
munication inherent to sensor networks, coupled with such long computation
times, makes this simple in-network approach undesirable.

Sensor networks are inherently unreliable: individual radio transmission
can fail, nodes can move, and so on. Thus, it is very hard to guarantee
that a significant portion of a sensor network was not detached during
a particular aggregate computation. For example, what happens when a
sensor, p, broadcasts a and its only child, c, somehow misses the message
(perhaps because it was garbled during transmission). P will never hear c
rebroadcast, and will assume that it has no children and that it should forward
only its own sensor value. The entire network below p is thus excluded from
the aggregation computation, and the end result is probably incorrect. Indeed,
when any subtree of the graph can fail in this way, it is impossible to give
any guarantees about the accuracy of the result.

One solution to this problem is to double check aggregates by computing
them multiple times. The simplest way to do this would be to request
the aggregate be computed multiple times at the root of the network; by
observing the common case value of the aggregate, the client could make a
reasonable guess as to its true value. The problem with this technique is that

128 ROUTING IN WIRELESS SENSOR NETWORKS

it requires retransmitting the aggregate request down the network multiple
times, at a significant message overhead, and the user must wait for the entire
aggregation interval for each additional result.

Pipelined aggregates are propagated into the network as described above.
However, in the pipelined approach, time is divided into intervals of duration
i. During each interval, every sensor that has heard the request to aggregate
transmits a partial aggregate by applying a to its local reading and to the
values its children reported during the previous interval. Thus, after the first
interval, the root hears from sensors one radio-hop away. After the second,
it hears aggregates of sensors one and two hops away, and so on. In order
to include sensors which missed the request to begin aggregation, a sensor
that hears another sensor reporting its aggregate value can assume that it too
should begin reporting its aggregate value.

In addition to tending to include nodes that would have been excluded from
a single pass aggregation, the pipelined solution has a number of interesting
properties: first, after aggregates have propagated up from leaves, a new
aggregate arrives every i seconds. Note that the value of i can be quite small,
about the time it takes for a single sensor to produce and transmit a sensor
reading, versus the value of t in the simple multiround solution proposed
above, which is roughly depthtree-times larger. Second, the total time for an
aggregation request to propagate down to the leaves and back to the root is
roughly t, but the user begins to see approximations of the aggregate after
the first interval has elapsed; in very deep networks, this additional feedback
may be a useful approximation while waiting for the true value to propagate
out and back. These two properties provide users with a stream of aggregate
values that changes as sensor readings and the underlying network change.
As discussed above, such continuous results are often more useful than a
single, isolated aggregate, as they allow users to understand how the network
performs over time. Figure 4.3 illustrates a simple pipelined aggregate in a
small sensor network.

The most significant drawback with this approach is that a number of
additional messages is transmitted to extract the first aggregate over all
sensors. In the example shown in Figure 4.3, 22 messages are sent, since
each aggregating node transmits once per time interval. The comparable
nonpipelined aggregate requires only 10 messages, one down and one back
along each edge. In this example, after the initial 12-message overhead, each
additional aggregate arrives at a cost of only five messages and at a rate of
one update per time interval. Still, it is useful to consider optimizations to
reduce this overhead. One option is that sensors could transmit only when
the value of the aggregate computed over their subtree changes, and parents
could assume that their children’s aggregate values are unchanged unless

4.4. AGGREGATE QUERIES IN SENSOR NETWORKS 129

1

2

3

4
5

6
t=

 0

1

2

3

4
5

6C
ou

nt
: 1

t=
 1

f(
1)

1

2

3

4
5

6C
ou

nt
: 2

t=
 2

f(
1,

 2
)

1

2

3

4
5

6C
ou

nt
: 3

t=
 4

f(
1,

2,
3)

f(
3,

4,
5)

1

2

3

4
5

6C
ou

nt
: 2

t=
 3

f(
1,

 2
)

f(
2,

 3
)

f(
2,

 3
)

1

2

3

4
5

6C
ou

nt
: 3

t=
 5

f(
1,

 2
, 3

)

f(
3,

 4
, 5

)

f(
2,

 3
) f(

5,
 6

)

1

2

3

4
5

6C
ou

nt
: 5

t=
 6

f(
1,

2,
3,

4,
5)

f(
3,

 4
, 5

, 6
)

f(
2,

 3
, 4

, 5
)

f(
5,

 6
)

A
gg

re
ga

tio
n

R
eq

ue
st

 c
ou

nt
: 0

A
gg

re
ga

tin
g

no
de

N
on

-a
gg

re
ga

tin
g

no
de

Fi
g

ur
e

4.
3

P
ip

e
lin

e
d

c
o

m
p

u
ta

tio
n

o
fa

g
g

re
g

a
te

s.

130 ROUTING IN WIRELESS SENSOR NETWORKS

they hear differently. In such a scheme, far fewer messages will be sent, but
some of the ability to incorporate nodes that failed to hear the initial request
to aggregate will also be lost, as there will be fewer aggregate reports for
those nodes to snoop on.

A hybrid pipeline scheme significantly improves the robustness of aggre-
gates by tending to incorporate nodes that lose initial aggregation requests.
Pipelining also improves throughput, which can be important when a single
aggregate requires seconds to compute.

In aggregation algorithms, sensors communicate over a shared radio chan-
nel. Every message is effectively broadcast to all other sensors within range,
which enables a number of optimizations that can significantly reduce the
number of messages transmitted, and hence increase the accuracy of aggre-
gates in the face of transmission failures.

A shared channel can be used to increase message efficiency when a sensor
misses an initial request to begin aggregation: it can initiate aggregation even
after missing the start request by snooping on the network traffic of nearby
sensors. When it sees another sensor reporting an aggregate, it can assume
that it too should be aggregating.

This technique is not only beneficial for improving the number of sensors
participating in any aggregate; it also substantially reduces the number of
messages that must be sent when using the pipelined aggregation scheme.
Because nodes assume they should begin aggregation any time they hear
an aggregate reported, a sensor does not need to explicitly tell its children
to begin aggregation. It can simply report its value to its parents, which its
children will also hear. The children will assume they missed the start request
and initiate aggregation locally. For the simple example in Figure 4.3, none
of the messages associated with black arrows actually need to be sent. This
reduces the total messages required to compute the first full aggregate of the
network from 22 to 17, a total saving of 23 %.

Of course, for later rounds in the aggregation, when no messages are sent
from parents to children, this saving is no longer available. Snooping can,
however, be used to reduce the number of messages sent for certain classes
of aggregates. Consider computing a maximum over a group of sensors:
if a sensor hears a peer reporting a maximum value greater than its local
maximum, it can elect to not send its own value and be assured of not
affecting the value of the final aggregate.

In addition to reducing the number of messages that must be sent, the
inherently broadcast nature of radio also offers communications redundancy,
which improves reliability. Consider a sensor with two parents: instead of
sending its aggregate value to just one parent, it can send it to both parents. It
is easy for a node to discover that it has multiple parents, since it can simply

4.4. AGGREGATE QUERIES IN SENSOR NETWORKS 131

build a list of nodes it has heard that are one step closer to the root. Of course,
for aggregates other than MIN and MAX, sending to multiple parents has
the undesirable effect of causing the node to be counted several times. The
solution to this is to send part of the aggregate to one parent and the rest to the
other. Consider a COUNT; a sensor with (c − 1) children and two parents can
send a COUNT of c/2 to both parents instead of a count of c to a single parent.
A simple statistical analysis reveals the advantage of doing this: assume that a
message is transmitted with probability p, and that losses are independent, so
that if a message m from sensor s is lost in transition to parent P1, it is no more
likely to be lost in transit to P2. (Although failure independence is not always
a valid assumption, it will occur when a hidden node garbles communication
to P1 but not to P2, or when one parent is forwarding a message and another
is not). First, consider the case where s sends c to a single parent; the expected
value of the transmitted count is p × c [0 with probability (p − 1) and c with
probability p], and the variance is c2 × p × (1 − p), since these are standard
Bernoulli trials with a probability of success multiplied by a constant c. For
the case where s sends c/2 to both parents, linearity of expectation allows the
expected value to be the sum of the expected value through each parent, or
2 × p × c/2. Similarly, the sum of variances through each parent computes:

var = 2 × (c/2)2 × p × (1 − p) = c2/2 × p × (1 − p)

Thus, the variance of the multiple parent COUNT is much less, although its
expected value is the same. This is because it is much less likely (assuming
independence) for the message to both parents to be lost, and a single loss will
less dramatically affect the computed value. Note that the probability that no
data is lost is actually lower with multiple parents (p2 versus p), suggesting
that this may not always be a useful technique. However, since losses are
almost assured of happening occasionally when aggregating, the users will
prefer that their aggregates be closer to the correct answer more often than
exactly right.

This technique applies equally well for SUM and AVERAGE aggregates
or for any aggregate which is a linear combination of a number of values.
For rank-based aggregates, like mode and median, this technique cannot
be applied.

The efficiency of aggregates can be increased by rephrasing aggregates as
hypotheses dramatically to reduce the number of sensors required to respond
to any aggregate.

Although the above techniques offer significant gains in terms of the number
of messages transmitted and robustness with respect to naive approaches,
these techniques still require input from every node in a network in order to
compute an aggregate. We only need to hear from a particular sensor if that

132 ROUTING IN WIRELESS SENSOR NETWORKS

sensor’s value will affect the end value of the aggregate. For some aggregates,
this can significantly reduce the number of nodes that need to report.

When computing a MAX or MIN, a sensor can snoop on the values its
peers report and omit its own value if it knows it cannot affect the final value
of the aggregate. This technique can be generalized to an approach called
hypothesis testing. If a node is presented with a guess as to the proper value
of an aggregate, either by snooping on another sensor’s aggregate value
or by explicitly being presented with a hypothesis by the user or root of
the network, it can decide locally whether contributing its reading and the
readings of its children will affect the value of the aggregate.

For MAX, MIN and other top n aggregates, this technique is directly
applicable. There are a number of ways it can be applied and the snooping
approach is one. As another example, the root of the network seeking a MIN
sensor value might compute the value of the aggregate over the top k levels of
the network (using the pipelined approach described above), and then abort
the aggregate and issue a new request asking for only those sensor values
less than the minimum observed in the top k levels. In this approach, leaf
nodes will be required to send no message if their value is greater than the
minimum observed over the top levels (intermediate nodes must forward
the request to aggregate, so they must still send messages.) If the sensor
values are independent and randomly distributed (a big assumption!), then
a particular leaf note must transmit with probability (1/bk), where b is the
branching factor of the tree and bk is the number of sensors in the top k levels,
which is quite low for even small values of k. Since, in a balanced tree, half
the nodes are in the bottom-most level, this can reduce the total number of
messages that must be sent almost by a factor of two.

For other aggregates that accumulate a total, such as SUM and COUNT,
this technique will never be applicable. For the third class of statistical
aggregates, such as AVERAGE or variance, this technique can reduce the
number of messages, although not as drastically. To obtain any benefit from
such aggregates, the user must define an error bound to be tolerated over
the value of the aggregate. Given this error bound, the same approach as for
top n aggregates can be applied. Consider the case of an average: any sensor
that is within the error bound of the approximate answer need not answer,
its parent can assume that its value is the same as the approximate answer
and count it accordingly (this scheme requires parents to know how many
children they have.) The total computed average will not deviate from the
actual average by more than the error bound, and leaf sensors with values
close to the average will not be required to report. Obviously, the value of
this scheme depends greatly on the distribution of sensor values. If values
are uniformly distributed, the fraction of leaves that does need to report will

4.4. AGGREGATE QUERIES IN SENSOR NETWORKS 133

approximate the size of the error bound. If values are normally distributed,
a much larger percentage of leaves will not report. Thus, the value of this
scheme depends on the expected distribution of values and the tolerance of
the user to inaccurate error bounds.

In-network aggregation is used to compute aggregates. By pipelining
aggregates, the throughput is increased and smoothed over intermittent
losses inherent in radio communication. This basic approach is improved
with several other techniques: snooping over the radio to reduce message
load and improve accuracy of aggregates, and hypothesis testing to invert
problems and further reduce the number of messages sent.

4.4.2. Grouping

Grouping computes aggregates over partitions of sensor readings. The basic
technique for grouping is to push down a set of predicates that specify group
membership, ask sensors to choose the group they belong to, and then, as
answers flow back, update the aggregate values in the appropriate groups.

Group predicates are appended to requests to begin aggregation. If sending
all predicates requires more storage than will fit into a single message, multi-
ple messages are sent. Each group predicate specifies a group id (identifier),
a sensor attribute (e.g. light, temperature), and a range of sensor values that
defines membership in the group. Groups are assumed to be disjointed and
defined over the same attribute, which is typically not the attribute being
aggregated. Because the number of groups can be so large that information
about all groups does not fit into the RAM of any one sensor, sensors pick the
group they belong to as messages defining group predicates flow past and
discard information about other groups.

Messages containing sensed values are propagated just as in the pipelined
approach described above. When a sensor is a leaf, it simply tags the sensor
value with its group number. When a sensor receives a message from a child,
it checks the group number. If the child is in the same group as the sensor, it
combines the two values just as above. If it is in a different group, it stores the
value of the child’s group along with its own value for forwarding in the next
interval. If another child message arrives with a value in either group, the
sensor updates the appropriate aggregate. During the next interval, the sensor
will send out the value of all the groups about which it collected information
during the previous interval, combining information about multiple groups
into a single message as long as the message size permits. Figure 4.4 shows an
example of computing a query, grouped by temperature, that selects average
light readings. In this snapshot, data is assumed to have filled the pipeline,
such that results from the bottom of the tree have reached the root.

134 ROUTING IN WIRELESS SENSOR NETWORKS

1

2

3

4

5

6

1

2

3

4

5

6

Temp: 10
Light: 15

Temp: 30
Light: 25

Temp: 10
Light: 15

Temp: 10
Light: 5

Temp: 20
Light: 10

Temp: 20
Light: 50 Aggregate

Groups

Group
1 10 (6, 5)

()
()−

−2
3

AVG

Group
1 10

30
25

(6, 5, 2)
(3, 1)
(4)

2
3

AVG

Group
1 10

50
25

2
3

AVG

10 (6, 5)
()
(4)25

−

Group
1
2
3

AVG

3 : 20 < temp ≤ 30

1 : 0 < temp ≤ 10
2 : 10 < temp ≤ 20

AVG(light)

Figure 4.4 A sensor network (left) with an in-network, grouped aggregate applied to
it (right). Parenthesized numbers represent the sensors that contributed to the average,
but the sensors do not track this information.

Recall that SQL (Structured Query Language) queries also contain a HAV-
ING clause that constrains the set of groups in the final query result by
applying a filtration predicate to each group’s aggregate value. This predicate
may be passed into the network along with partitions. The predicate is only
sent into the network if, potentially, it can be used to reduce the number
of messages that must be sent: for example, if the predicate is of the form
MAX(attr) < x, then information about groups with MAX(attr) > x need not
be transmitted up the tree, and so the predicate is sent down into the network.
However, other HAVING predicates, such as those filtering AVERAGE aggre-
gates, or of the form MAX(attr) > x, cannot be applied in the network because
they can only be evaluated when the final group aggregate value is known.

Because the number of groups can exceed available storage on any one
sensor, a way to evict groups is needed. Once an eviction victim is selected,
it is forwarded to the sensor’s parent, which may choose to hold on to
the group or continue to forward it up the tree. Because groups can be
evicted, the user workstation at the top of the network may be called upon
to combine partial groups to form an accurate aggregate value. Evicting
partially computed groups is known as partial preaggregation, as described
in the database literature.

There are a number of possible policies for choosing which group to evict.
The policies which incur a significant storage overhead (more than a few
bits per group) are undesirable because they reduce the number of groups

4.5. SUMMARY 135

that can be stored and increase the number of messages that must be sent.
Evicting groups with low membership is probably a good policy, as those are
the groups that are least likely to be combined with other sensor readings,
and so are the groups that benefit the least from in-network aggregation.

Evicting groups forces information about the current time interval into
higher level nodes in the tree. In the standard pipelined scheme, the aggregates
are computed over values from the previous time interval, which presents an
inconsistency, but does not dramatically effect the aggregates.

This method shows how to partition sensor readings into a number of
groups and properly compute aggregates over those groups, even when the
amount of group information exceeds available storage in a sensor.

With respect to aggregation, the semantics used here are largely a part of
the SQL (Structured Query Language) standard. The partial preaggregation
techniques used to enable group eviction were proposed as a technique to
deal with very large numbers of groups to improve the efficiency of hash
joins and other bucket-based database operators.

When computing multiple simultaneous aggregates over a single sen-
sor network, it should be possible for sensors to accommodate multiple
queries (just as they handle multiple groups) up to some small number
of queries. There may be an eviction option, as with grouping, but there
may also be a point at which the in-network approach is so slow that the
server-based approach again becomes viable. The implementation issues
associated with simultaneous aggregates must be explored before these in-
network approaches can be implemented in a database system that supports
concurrent queries.

This approach offers the ability to query arbitrary data in a sensor network
without custom building applications. By pipelining the flow of data through
the sensor network, the aggregates are robustly computed while providing
rapid and continuous updates of their value to the user. Finally, by snooping
on messages in the shared channel and applying techniques for hypothesis
testing, the performance of basic approach is improved.

SQL (Structured Query Language), as it has developed over many years, has
proven to work well in the context of database systems. A similar language,
when properly applied to sensor networks, will offer similar benefits to SQL:
ease of use, expressiveness, and a standard on which research and industry
can build.

4.5. SUMMARY

EAR is a reactive routing protocol, and destination initiated protocol. The con-
sumer of data initiates the route request and maintains the route subsequently.

136 ROUTING IN WIRELESS SENSOR NETWORKS

Multiple paths are maintained from source to destination. EAR uses only one
path at all times whereas diffusion sends data along all the paths at regular
intervals. Due to the probabilistic choice of routes, EAR can continuously
evaluate different routes and choose the probabilities accordingly.

The pico radio is a sensor network of ultra low powered nodes, called pico
nodes. There are three types of pico node: sensor nodes, actuator nodes, and
monitor nodes. The sensor nodes acquire data (using a built in sensor facility),
which is typically processed by monitor nodes. The resulting output (control
actions) is sent to the actuator nodes.

The altruistic nodes can be used in the pico radio sensor network. This
scheme is applied to the data forwarding stage of the pico radio EAR
protocol, and it shows up that significant improvements in network lifetime
can be achieved as compared to the already lifetime-optimized EAR protocol.
This holds true specifically for the case where much more bandwidth is spent
for data transmission than for interest propagation.

In-network aggregation is used to compute aggregates. By pipelining
aggregates, the throughput is increased and smoothed over intermittent
losses inherent in radio communication. This basic approach is improved
with several other techniques: snooping over the radio to reduce message
load and improve accuracy of aggregates, and hypothesis testing to invert
problems and further reduce the number of messages sent.

The partial preaggregation techniques can be used to deal with very large
numbers of groups to improve the efficiency of the database operators.

The implementation issues associated with simultaneous aggregates must
be explored before the in-network approaches discussed can be implemented
in a database system that supports concurrent queries. By pipelining the
flow of data through the sensor network, the aggregates can be robustly
computed and provide rapid and continuous updates to the user. Snooping
on messages in the shared channel and applying techniques for hypothesis
testing can improve the performance of the basic approach.

SQL has proven to work well in the context of database systems and a
similar language, could offer similar benefits.

PROBLEMS

Learning Objectives

After completing this chapter you should be able to:

• demonstrate understanding of routing in wireless sensor networks;
• discuss what is meant by energy aware routing for sensor networks;

PROBLEMS 137

• explain what altruists or friendly neighbors in the pico radio sensor network
are;

• explain the role of aggregate queries in sensor networks;
• demonstrate understanding of aggregation techniques.

Practice Problems

Problem 4.1: What is a useful metric for the performance of a rout-
ing protocol?

Problem 4.2: What are the main layers for designing the pico node?
Problem 4.3: What is the function of the physical layer in the pico node?
Problem 4.4: What is the function of the MAC layer in the pico node?
Problem 4.5: What is the function of the network layer in the pico node?
Problem 4.6: What are the categories of dedicated protocols?
Problem 4.7: What is the characteristic of proactive routing protocols?
Problem 4.8: What is the characteristic of reactive routing protocols?
Problem 4.9: What is the potential problem of using the lowest energy route

for communication?
Problem 4.10: How the maximum network lifetime can be achieved?
Problem 4.11: How does the altruist or friendly neighbor approach work?
Problem 4.12: What are motes?

Practice Problem Solutions

Problem 4.1:

A useful metric for routing protocol performance is network survivability.
The protocol should ensure that connectivity in a network is maintained for
as long as possible, and the energy status of the entire network should be of
the same order.

Problem 4.2:

The three main layers for designing the pico node are the physical, media
access control (MAC), and network layers.

Problem 4.3:

The physical layer in the pico node handles the communication across
the physical link, which involves modulating and coding the data so that

138 ROUTING IN WIRELESS SENSOR NETWORKS

the intended receiver can optimally decode it in the presence of channel
interference.

Problem 4.4:

The MAC layer’s primary functions in the pico node are to provide access
control, channel assignment, neighbor list management, and power control.

Problem 4.5:

The network layer in the pico node has two primary functions: node address-
ing, and routing.

Problem 4.6:

The dedicated protocols are categorized into proactive and reactive.

Problem 4.7:

Proactive routing protocols have the distinguishing characteristic of attempt-
ing to maintain consistent up to date routing information from each node to
every other node in the network. Every node maintains one or more routing
tables that store the routing information, and topology changes are propa-
gated throughout the network as updates so that the network view remains
consistent. The protocols vary in the number of routing tables maintained
and the method by which the routing updates are propagated.

Problem 4.8:

Reactive routing protocols create routes only when desired. An explicit route
discovery process creates routes initiated only on demand. These routes can be
either source initiated or destination initiated. Source-initiated routing means
that the source node begins the discovery process, while destination-initiated
routing occurs when the destination begins discovery protocol. Once a route
is established, the route discovery process ends, and a maintenance procedure
preserves this route until the route breaks down or is no longer desired.

Problem 4.9:

The potential problem in routing protocols is that they find the lowest energy
route and use it for all communication. This is not favorable for the network
lifetime. Using a low-energy path frequently leads to energy depletion in the
nodes along that path, and may lead to network partition.

PROBLEMS 139

Problem 4.10:

To achieve a maximum network lifetime, it is mandatory to optimize the
energy consumption in all layers of the protocol stack, from the physical layer
to the application layer. The approach of jointly designing the application
and the communication related layers can be effective.

Problem 4.11:

In the altruist or friendly neighbor approach, a node simply broadcasts its
capabilities to its neighbors, along with its position, i.e. node address, and a
lifetime value. In this broadcast, the altruist uses an altruist announcement
packet. The lifetime value indicates for how long the altruist node is willing
to do more work in the soft-state approach. The other nodes in the altruists
neighborhood can freely decide whether they use the service offered by the
altruist or not.

Problem 4.12:

Small sensor devices are called motes. Motes are equipped with a radio, a
processor, and a suite of sensors. An operating system makes it possible to
deploy dedicated networks of sensors that can locate each other and route
data without any advance knowledge of network topology.

5
Distributed Sensor Networks

5.1. INTRODUCTION

Ubiquitous computing envisages everyday objects as being augmented with
computation and communication capabilities. While such artifacts retain their
original use and appearance, their augmentation can seamlessly enhance and
extend their usage, opening up novel interaction patterns and applications.

Bluetooth supports the paradigm of spontaneous networking, wherein
nodes can engage in communications without advance knowledge of each
other. A procedure-named inquiry can be used to discover which other
Bluetooth units are within communication range and connections are then
established, based on information exchanged during the inquiry. Once a
unit has discovered another unit, connection is established very fast, since
information exchanged in the inquiry procedure can be exploited.

Networks of wireless sensors are the result of rapid convergence of three
key technologies: digital circuitry, wireless communications, and Micro-
ElectroMechanical Systems (MEMS). Advances in hardware technology and
engineering design have led to reductions in size, power consumption,
and cost. This has enabled compact, autonomous nodes, each containing
one or more sensors, computation and communication capabilities, and a
power supply.

The millimeter-scale nodes, called smart dust, explore the limits on size
and power consumption in autonomous sensor nodes. Size reduction is
paramount in making the nodes inexpensive and easy to deploy. Smart
dust incorporates the requisite sensing, communication, and computing

Wireless Sensor Network Designs A. Hać
 2003 John Wiley & Sons, Ltd ISBN: 0-470-86736-1

142 DISTRIBUTED SENSOR NETWORKS

hardware, along with a power supply, in a volume of no more than a few
cubic millimeters, while still achieving good performance in terms of sensor
functionality and communications capability.

5.2. BLUETOOTH IN THE DISTRIBUTED SENSOR NETWORK

Ubiquitous computing devices experience special communication with other
smart devices by using minimal power and possibly without the help of a
central infrastructure. Wireless communication technologies lack robustness,
consume too much energy, or require an infrastructure to become viable
candidates. To evaluate the suitability of the Bluetooth standard for such
communication requirements, Kasten and Langheinrich (2001) integrated
a Bluetooth module into the prototype of a distributed sensor network
node, developed within the European Smart-Its research project. While
Bluetooth offers robust and convenient dedicated communication, exper-
iments suggest that the Bluetooth standard could benefit from improved
support for symmetric communication establishment and slave-to-slave
communication.

The goal of the Smart-Its project is to attach small, unobtrusive computing
devices, so-called Smart-Its, to established real-world objects. While a single
Smart-It is able to perceive context information from its integrated sensors,
a number of special connected Smart-Its can gain collective awareness by
sharing this information.

Sharing information requires a suitable communication technology, which
preferably should be wireless in order to be in line with the unobtrusive
nature of the devices. Since there is no central authority in a Smart-Its
sensor network, nodes within the network must also be able to communicate
without an advance knowledge of each other, and without the help of a
background infrastructure, though they may utilize services when available.
Moreover, the communication technology must be robust, scale well, and use
the limited energy of the autonomous device efficiently. The communication
technology employed should adhere to a broadly used standard to lever
from existing communication services in the environment. These needs have
prompted a search for a suitable communication technology for the Smart-Its
sensor network.

Bluetooth is a communication standard that provides special configura-
tion of master/slave piconets with the maximum of eight active units. It
supports spontaneous connections between devices without their requir-
ing detailed knowledge about each other. Bluetooth allows data transfers
between units over distances of, nominally, up to 10 meters. The gross data

5.2. BLUETOOTH IN THE DISTRIBUTED SENSOR NETWORK 143

rates of 1 Mbps is shared among all participants of a piconet. Bluetooth oper-
ates in the license-free 2.4 GHz ISM (Industry Scientific Medical) spectrum
(2.400–2.484 GHz) and uses Frequency Hopping Spread Spectrum (FHSS) to
minimize interference. The technology is geared toward low energy consump-
tion, and targets the consumer mass market with world-wide availability and
low price.

The Smart-Its embeds computation into real-world objects by attaching
small, unobtrusive, and autonomous computing devices to them. These
devices, the Smart-Its, integrate sensing, processing, and communication
capabilities, which can be customized to the objects to which they are attached.

While a single Smart-It is able to perceive context information from the
integrated sensors, a number of dedicated connected Smart-Its can gain
collective awareness by sharing this information. A group of Smart-Its aug-
mented objects can thus establish a common context that can be exploited by
applications and services located in the environment.

Examples of application scenarios of collective awareness of Smart-Its are
an anti-credit-card-theft mode, where a Smart-It-enabled credit card only
functions if a sufficient number of Smart-It-enabled personal artifacts, such
as clothes or car keys, are thus around, thus rendering the card useless when
lost or stolen.

The device should be easy to use, program, and debug. At the same time,
it should be small enough to serve as a demonstrator for a Smart-It sensor
node, but large enough for easy handling.

To facilitate rapid prototyping, the Smart-It unit implements a limited
functional core, which includes a processor, memory, and Bluetooth com-
munications. The sensing capabilities are not included. A versatile external
interface, with analog and digital I/O, is provided that allows for integra-
tion of single sensors or even a daughter board for sensing. These diverse
interfaces, ranging from simple analog output over serial interfaces to bus
systems, such as I2C (Inter Integrated Circuit), allow for identifying appropri-
ate sensors and sensing algorithms for use within a Smart-Its environment.
The RS232 serial port is used mainly for debugging purposes.

Keeping in line with the unobtrusive nature of the ubiquitous computing
paradigm, the Smart-Its devices should be able to operate autonomously for
extended periods of time. This includes consciously choosing the components
regarding their power consumption, as well as providing a suitable power
source. For easy handling, the device is powered from an externally attached
rechargeable battery pack, rather than having a battery housing mounted on
the device. This way the small batteries are attached for normal operation,
while still being able to operate the device using bulky but more powerful
batteries for extended testing.

144 DISTRIBUTED SENSOR NETWORKS

For easy layout of the circuit board, Kasten and Langheinrich (2001) chose
a single voltage plane and an overall low component count. The system is
in-circuit programmable to minimize turnaround times.

5.2.1. Bluetooth Components and Devices

Commercial Bluetooth solutions are available as self-contained transceiver
modules. These are shielded subsystems designed to be used as add-on
peripherals. They feature an embedded CPU (Central Processor Unit) and
different types of memory, as well as baseband and radio circuits. The
modules offer a generic Host Controller Interface (HCI) to the lower layers
of the Bluetooth protocol stack, while the higher layers of the protocol, as
well as applications, must be implemented on the host system. Since the
in-system CPU and memory are not available for installing user specific
implementations, even a minimal stand-alone Bluetooth node needs an
additional host CPU in order to execute applications and the corresponding
higher layers of the Bluetooth protocol. Transport layers for communication
between the Bluetooth module and the host system are standardized for
UART (Universal Asynchronous Receiver/Transmitter), RS232, and USB
(Universal Serial Bus).

To run the higher Bluetooth protocol layers and applications, Kasten and
Langheinrich chose the Atmel ATmega 103L microcontroller as the host CPU.
The unit is in-system programmable, and features an 8-bit RISC (Reduced
Instruction Set Computer) core with up to 4 MIPS (Millions of Instructions
per Second) at 4 MHz, a serial UART as well as several power modes.
The embedded memory consists of 128 kbytes flash memory and 4 kbytes
of internal SRAM (Static RAM). The data memory can be extended up to
64 kbytes, requiring only two external components, the SRAM (Static RAM)
and an address latch. The external memory is directly addressable by the 16-
bit data-memory address bus, i.e. without paging. A more powerful system
is used to allow more complex on-board preprocessing even though a less
powerful processor with less memory could, potentially, have delivered
sensor data to the Bluetooth module.

A Smart-Its prototype is placed on top of a battery pack (mostly hidden
behind the board) used for testing and evaluation. All components are
mounted onto a 4 × 6 cm two-layer printed circuit board. The unit has
several external interfaces. A serial UART port is available for data transfer
and debugging at speeds up to 57.6 kbps. There are two 8-bit general-purpose
I/O ports, eight 10-bit analog-to-digital converters, and two edge or level
triggered interrupt lines to interface external sensors or other components.

5.2. BLUETOOTH IN THE DISTRIBUTED SENSOR NETWORK 145

Four LEDs (Light Emitting Diode) can be used for debugging and status
information. For example, one LED can be used to flash a heart beat signal
when the unit is operational. A voltage regulator is used to supply the
necessary operating voltage of 3.3 V from the battery pack.

Jumpers providing access to each of the main component’s individual
power supply lines allow for exact monitoring of power consumption and
duty cycles. The connector is the in-circuit system programming interface
(SPI) of the MCU (MicroController Unit). The Bluetooth module and an
external 2.4 GHz antenna are mounted on top of a plane, to shield the system
from RF interference.

The Bluetooth module is attached to the microcontroller unit by a UART im-
plemented in software (shown in Figure 5.1). Kasten and Langheinrich (2001)
do not use the hardware UART (universal asynchronous receiver/trans-
mitter) provided by the microcontroller, as that would have required
additional circuitry for multiplexing pins shared between the UART and
the in-circuit programming ports. Therefore Kasten and Langheinrich imple-
mented a second software UART in the C programming language. Timing
constraints prohibit data transfers exceeding 9.6 kbps, effectively limiting the
gross data rate of Bluetooth. Kasten and Langheinrich valued low component
count and low circuit complexity over higher data rates.

The system software is implemented in the C programming language,
providing low-level drivers, a simple scheduler (which supports event-driven
scheduling of application tasks), and the host portion of the Bluetooth protocol
stack. There are system dependent drivers for both UART ports, analog-to-
digital converters, general purpose I/O, random number generator, system
clock, and sensors.

An open source and several commercial implementations of the host
portion of the Bluetooth stack are available. The commercially available

Bluetooth
module

RS232 ATMega103L
microcontroller

SPI Analog I/O

RS232

LEDs

Power
supply

Clock/timer GPIO

Figure 5.1 System overview.

146 DISTRIBUTED SENSOR NETWORKS

software stacks make very high demands on the system, both in terms
of required operating system features (particularly multithreading) as well
as program and data memory provisions. Experiences with the software
had shown that about 2 kbytes of data memory would be sufficient for a
minimal implementation, most of which is used as buffer space. Kasten
and Langheinrich (2001) used the open source implementation due to its
immediate availability.

Kasten and Langheinrich ported the host portion of the Bluetooth protocol
stack from the open source Linux implementation to the microcontroller
environment. Supported layers are HCI and the Logical Link Control and
Adaptation Protocol (L2CAP). The Linux version of the Bluetooth stack
requires multithreading capabilities and access to the serial port. In this
system, these functions are taken care of by the scheduler and the low-level
drivers. The main obstacle in porting is the limited memory capacity of the
microcontroller.

5.2.2. Bluetooth Communication and Networking

Bluetooth is the standard for ad hoc networking. It was originally conceived
as a cable replacement technology and may serve well in that applica-
tion domain. However, its particular design makes it less suited for other
applications in the domain of dedicated networking.

Bluetooth has been optimized to support a large number of communications
taking place in the same area at the same time. It organizes all communications
into piconets, each piconet serving up to eight participants. Multiple piconets
with overlapping coverage areas are referred to as scatternets. It is possible
to interconnect piconets by using the units participating in different piconets
on a time-division multiplex basis. However, since the radio can only tune to
a single piconet carrier at any instant in time, a unit can only communicate in
one piconet at a time.

Piconets are managed by a single master that implements centralized
control over channel access. All other participants in a piconet are designated
slaves. Communication is strictly slave-to-master (or vice versa), but can
never be slave-to-slave. During the existence of a piconet, master and slave
roles can be switched. This is desirable, for example, when a slave wants to
take over an existing piconet fully. Likewise, a slave in an existing piconet
may want to set up a new piconet, establishing itself as its master and the
current piconet master as slave. The latter case implies a double role for
the original piconet master; it becomes a slave in the new piconet while still
maintaining the original piconet as master. A unit can be slave in two piconets
or be master in one, and slave in another piconet.

5.2. BLUETOOTH IN THE DISTRIBUTED SENSOR NETWORK 147

The limit of eight nodes in a piconet is inadequate for setting up a densely
connected sensor network. To communicate with more than eight nodes at the
same time requires some sort of time multiplexing, where additional nodes
have to be parked and unparked repeatedly. Setting up additional piconets
requires gateway nodes to alternate between their respective piconets, since
Bluetooth only supports units in one active piconet at a time.

Applications usually need slave-to-slave communication, which is not pro-
vided in the Bluetooth standard. To channel all slave-to-slave traffic through
the master increases both traffic and energy consumption. Alternatively, a
slave can switch roles with the master, or set up an additional piconet. These
solutions incur substantial communication and configuration overhead. The
communication protocols may alleviate some of this overhead, and lessen its
impact on communication and power usage.

The default state of a Bluetooth unit is standby. In this state, the unit is in
a low-power mode, with all components but the internal clock shut off. In
standby there can be no connections open.

When there is an active connection to a Bluetooth unit, it is said to be in
connect state. In connect state, Bluetooth knows four different power modes:
active, sniff, hold, and park. In active mode, the Bluetooth unit actively partic-
ipates on the channel. Data transmission can start almost instantaneously, but
at the expense of increased power consumption (compared to the remaining
three modes).

When low-power operation is favored over short response times, units
can make use of one of the three power-saving modes: sniff, hold, and
park. All low-power modes reduce the duty cycle of different units within a
piconet. In sniff mode, slave units only listen in on the channel at specified
times, agreed upon with the master. Hence, transmissions can only start at
these times. The connections of a piconet can also be put on hold. In hold
mode, every participant (including the master) can take some time off for
sleeping. Prior to entering hold mode, master and slaves agree on a time
when to return to active mode again. The time off can also be used for
conducting other business, such as attending other piconets, or scanning for
other units.

The park mode is a special mode for slaves that do not need to participate in
a piconet, but nevertheless want to remain connected to avoid going through
the connection establishment procedure again. Parked slaves do not count as
regular, i.e. active, piconet members. In addition to the maximum of eight
active members, there may be up to 255 parked slaves within a piconet.

Low-power modes are a trade-off between power consumption and
response time. Increasing sleep time reduces power consumption but pro-
longs time before access can be made, and vice versa. Low-power modes

148 DISTRIBUTED SENSOR NETWORKS

are a powerful tool offering a range of options to applications when the
transmission pattern is known in advance. When data traffic commences at
a regular schedule, the sniff and park modes seem to be appropriate. For
example, a Smart-Its node may want to dispense its sensor readings every
10-second to a node in the background infrastructure (implementing the
master). That node would set itself up for sniff mode with a 10-second sleep
cycle. Similarly, the hold mode serves applications communicating on a more
irregular, yet predictable schedule.

If, however, time critical data transmissions start spontaneously, an appli-
cation has no other option than to keep the Bluetooth module in an active
mode. The example here may be a Smart-It node using a background ser-
vice for processing audio clues. Transmission of the data would need to
start immediately after observing the audio clue since buffering on the local
Smart-Its device is not feasible.

The dominant component in a Smart-It, with respect to power consumption,
is the Bluetooth module. Since the Bluetooth modules are engineering samples
that do not implement low-power modes, no data is available on how
these would alleviate the significant power usage of the modules in active
mode. The improved Bluetooth products should reduce power consumption
considerably since the system design allows for easy replacement of the
Bluetooth transceiver module.

Bluetooth supports the paradigm of spontaneous networking, where nodes
can engage in communications without advance knowledge of each other. A
procedure-named inquiry can be used to discover which other Bluetooth units
are within communication range. Connections are then established based on
information exchanged during inquiry. Once a unit has discovered another
unit, connection establishment is very fast, since information exchanged in
the inquiry procedure can be exploited.

Inquiry is an asymmetric procedure, in which the inquiring unit and the
inquired unit need to be in complementary modes, called inquiry and inquiry-
scan. When a Bluetooth unit has been set to inquiry mode, it continuously
sends out inquiry messages to probe for other units. Inquiry mode continues
for a previously specified time, until a previously specified number of units
have been discovered, or until stopped explicitly. Likewise, other Bluetooth
units only listen (and reply) to inquiry messages when they have been
explicitly set into inquiry-scan mode. In a unit, inquiry and inquiry-scan
modes are mutually exclusive at any time.

When a unit in inquiry-scan mode recognizes an inquiry message, it replies
to the inquirer. Thus, the complete inquiry procedure requires one broadcast
message to be sent from the inquirer, and one message from every inquired
unit back to the inquirer.

5.2. BLUETOOTH IN THE DISTRIBUTED SENSOR NETWORK 149

If an inquiry is initiated periodically, then the interval between two inquiry
instances must be determined randomly, to avoid two Bluetooth units
synchronizing their inquiry procedures in lock step. In a scenario where
units are peers, i.e. when there is no dedicated inquirer, application software
carries the burden of breaking the symmetry.

The power consumption increases considerably during inquiry. This is
due to the asymmetric nature of the Bluetooth inquiry procedure, where
the burden of expending power is mostly placed on the unit conducting
the inquiry.

To save power, a unit in inquiry-scan mode does not continuously listen
to inquiry messages. Instead, it only listens for a very short period of
time (11.25 ms by default), which, under regular conditions, suffices for the
inquiry message to get through with sufficiently high probability. Then the
unit enters idle mode for a much longer interval (typically 1.28 s). However,
the inquiring unit needs to send inquiry messages (and alternately listen for
potential replies) during the entire interval, since it cannot know when the
target unit is actually listening.

According to Salonidis et al. (2000), the expected delay for link formation
(i.e., inquiry plus connection establishment) of peer units is 1 s when both
units alternate between inquiry and inquiry-scan modes following uniform
distribution. In the link-formation delay, device discovery is by far the dom-
inating factor. However, Kasten and Langheinrich (2001) came to different,
much higher time results for device discovery, both in theory as well as in
experiments. The Salonidis et al. results do not include the fact that units
in inquiry-scan mode only pay attention to inquiry messages for 11.25 ms
out of 1.28 s, that is less than 1 % of the time. Therefore, we need to add
(1.28 s − 11.25 ms)/2 to the expected delay. Also, the Salonidis et al. results
assume an ideal, error-free environment, where messages are never lost.

Kasten and Langheinrich’s experiments show that device discovery is
much slower in real settings and often takes several seconds to complete. The
experimental set-up consisted of two immobile Bluetooth evaluation boards,
using the same Ericsson ROK 101 007 modules as the Smart-It prototypes,
which were placed at a distance of about 1 meter. One unit was constantly
set to inquiry-scan mode, while the other unit was dedicated to inquiry, both
using Bluetooth default settings.

Instead of using two of the Smart-It units directly, Kasten and Langhein-
rich (2001) used the evaluation boards (where the host portion of the inquiring
unit’s stack was run on a Linux machine) since it offered a much finer timer
granularity than what would have been possible using the Smart-Its pro-
totype. In every test, the dedicated inquirer was conducting inquiry for
exactly 12.8 seconds, even if the target device was discovered in less than

150 DISTRIBUTED SENSOR NETWORKS

12.8 seconds. Prior to carrying out the next test the inquirer went back to
standby mode for a time uniformly distributed between 0 and 12.8 seconds
to avoid synchronization artifacts. The experiment was set in a typical office
environment with little traffic from an IEEE 802.11 wireless LAN and no
Bluetooth traffic.

The results of the experiments are as follows:

• The average inquiry delay is 2221 ms
• After 1910 ms, 4728 ms, and 5449 ms, the target unit had been found in 50,

95, and 99 % of all tests, respectively.

A possible reason for the high discovery delay may be that inquiry messages
and replies to inquiry messages are lost or are not being recognized as such.
Differences in the local clocks and the frequency hopping scheme may be
reasons for the latter case.

The Bluetooth inquiry model in general seems to be geared toward settings
where a dedicated unit is responsible for discovering a set of other units,
e.g. a laptop computer periodically scanning for periphery. It seems less
appropriate for truly symmetrical nodes. Also, in the laptop setting, a delay
of several seconds for connection establishment would be tolerable. In dis-
tributed sensor networks such as the Smart-Its network, the nodes are mobile.
An example is sports gear augmented with Smart-Its, e.g. bikes, skateboards,
or a football. Based on the experienced mean discovery delay of 2221 ms, two
Bluetooth devices traveling at a relative speed of 12.5 km/h (4.5 m/s) could
set up a connection before moving out of communication range again. The
lengthy connection establishment effectively prevents the use of Bluetooth in
fast moving settings.

The inquiry message broadcast by an inquiring unit does not contain
any information about the source. Instead, the inquired unit gives away
information required for connection establishment, such as the unique device
ID (identifier), in the inquiry response. Thus the inquired unit must reveal
information about itself without knowing who is inquiring. This inquiry
scheme may become a privacy concern, where personal belongings such as
children’s toys may be augmented with Smart-Its.

Because of power consumption, Bluetooth’s inquiry is probably less suited
for low-power nodes that will frequently have to scan their surroundings
to discover new nodes or background services. On the other hand, this
poses no problem for more powerful devices such as laptop computers:
placing the power burden on the inquiring unit may be a desired feature
in an asymmetrical communication setting, where it would relieve mobile
low-power periphery.

5.2. BLUETOOTH IN THE DISTRIBUTED SENSOR NETWORK 151

Many commercial Bluetooth modules do not offer the full functionality of
the specification, for example, Ericsson ROK 101 007 modules have several
features missing.

Most importantly, the units do not implement point-to-multipoint connec-
tions. Therefore, piconets are limited to just two devices and interconnected
piconets cannot be established. Consequently, broadcast and master–slave
role switching has not been implemented either, since it only makes sense
for piconets of three or more participants. When in connect state, the units
cannot actively inquire other devices, nor can they be inquired, regardless
of any traffic over that connection. In addition to the very high power con-
sumption of the module, none of the low power modes (hold, sniff, and park)
are supported.

Besides important features not being implemented, a number of other
difficulties arose during the development of the first Smart-It prototypes.
The Bluetooth modules were hard to obtain and came at a rather high price
($US 80 per piece). Secondly, product information, such as unimplemented
features, and mechanical and electrical specifications were unavailable until
the modules were shipped. For the assembly of the Smart-Its devices, a
placement machine was required. Whereas all other components could be
soldered manually, the ball grid array of the SMD (Surface Mount Device)-
packaged Bluetooth unit could not. This meant that the assembly of only a
few Smart-Its already required production-scale facilities solely due to the
packaging of the Bluetooth units, thus greatly increasing cost.

Although this is not a particular problem in using Bluetooth in general,
it indicates that experimentation and development for researchers without
direct access to production scale facilities is made difficult.

5.2.3. Different Technologies

In the Smart Dust project at Berkeley, similar sized prototypes have already
been built. However, instead of aiming for a sticker-sized form factor, Smart
Dust is ultimately aiming at much smaller size of only a single cubic millime-
ter, i.e. dust-sized. Also, instead of radio communication, smart dust pursues
active and passive optical communications for ultra-low-power consumption.
While passive communication is very power conservative, it requires a central
authority (Base Station Transceiver, BTS) that initiates communication with
a modulated beam laser. Individual nodes reflect a constant laser beam from
the BTS and use a deflectable mirror built in MEMS technology to modulate
the reply onto the beam. Active communication scenarios using a built-in
laser are also investigated.

152 DISTRIBUTED SENSOR NETWORKS

Smart-Its are envisaged as providing a substantial amount of preprocessing,
for example in the area of audio and video sensor data, not only on a single
unit basis, but particularly as a collective, distributed processor made up
of a Smart-Its. Consequently, Smart-Its aim at providing complex context
information, while Smart Dust focuses on relaying direct sensor data to a
more powerful central processor.

Within the Smart-Dust project, a range of prototypes has also been built
that uses different communication technologies apart from optical communi-
cation. The weC Mote uses a custom protocol over a 916.5 MHz transceiver
with a range of 20 meters and transmission rates of up to 5 kbps. It runs
a custom micro-threaded operating system called Tiny OS, features various
different on-board sensors and is used in the UCLA (University of California
at Los Angeles) habitat monitoring project as part of a tiered environmental
monitoring system.

Next to the Bluetooth technology, a number of comparable communica-
tion technologies exist that support some or all required communication
aspects.

IEEE 802.11 for Wireless Local Area Networks (WLAN) and HiperLAN/2,
offer dedicated (ad hoc) modes for peer-to-peer communication. Because
802.11 requires a dedicated access point (AP) for many features such as QoS
(Quality of Service) or power saving, its ad hoc mode is very limited. In
HiperLAN/2, mobile terminals take over the role of APs when being in ad hoc
mode and thus can continue to support QoS (Quality of Service) and power
saving. Since these technologies are mainly intended for scenarios where
mobile clients communicate through base stations, their transmission power
is considerably higher than that of Bluetooth (10–300 mW, compared to 1 mW
in Bluetooth). WLAN devices that support transmit power control (TPC)
might be a suitable alternative.

A standardization of IEEE 802.15 defines a Personal Area Network (PAN)
standard. Its first incarnation (802.15.1) is based on Bluetooth and improves
and extends the existing specification. IEEE 802.15.3 aims for high data rates
of 20 Mbps or more, at low cost and low power consumption. IEEE 802.15.4
supplements a low data rate (10 kbps) standard, but using ultra-low power,
complexity and cost.

The XI Spike communication platform, developed by Eleven Engineering
in Canada, has stirred interest as a viable competitor to Bluetooth, operat-
ing at both the 915 MHz and 2.4 GHz ISM bands using frequency hopping
and Direct Sequence Spread Spectrum (DSSS). Originally developed for the
gaming industry (connecting game controllers to consoles), it: offers multiple
data rates of up to 844 kbps using a transmission power of 0.75 mW; sup-
ports both peer-to-peer and broadcast communication; allows its embedded

5.2. BLUETOOTH IN THE DISTRIBUTED SENSOR NETWORK 153

RISC (Reduced Instruction Set Computer) processor to be used for user
applications; and comes at a much lower price ($US 6.25) than any available
Bluetooth module.

Several factors have contributed to the significant attention Bluetooth has
received. One of the first international standards available, it greatly simplifies
dedicated networking using the piconet communication paradigm. By using
the freely available ISM band, Bluetooth devices can be used world wide
without alterations. The frequency hopping technology makes transmissions
robust against narrowband interferences (which might be frequent within the
ISM band). Even though Bluetooth modules are rather expensive, prices are
expected to drop to about $US 5 per unit once mass production is running
full scale.

Originally intended as a cable replacement technology, Bluetooth modules
(i.e. built fully to specification) are well suited for scenarios where a pow-
erful master device (usually a laptop, PDA (Personal Digital Assistant) or
mobile phone) connects seamlessly to a number of peripherals (e.g. a printer,
keyboard, or mouse). With data rates of up to 1 Mbps, Bluetooth also offers
more than enough bandwidth for ubiquitous computing applications such
as simple sensor networks. However, scenarios involving a large number of
identical low-power devices using dedicated networking in a true peer-to-
peer fashion still experience the following obstacles when using Bluetooth as
their communication technology:

• Asymmetrical communication set-up. Finding new communication part-
ners requires one node to be in inquiry mode and the other in inquiry scan
mode at the same time.

• Master–slave communication paradigm. Communication in piconets must
always be conducted between master and slave, and two slaves must
always involve the master node in order to communicate.

• Piconet concept. No more than seven slaves can be active in a piconet at
any time; if more nodes need to be added, other active nodes must be
put in the park mode. In the park mode, however, nodes cannot actively
communicate.

• Scatternet concept. Even though nodes can be in more than one piconet
at a time, they can only be active in one of them at a time; meanwhile
communications within other piconets must be suspended.

• Power consumption. Even if the power consumption of current pre-series
modules can be cut significantly, centralized control of the piconet as well
as the asymmetric nature of inquiry and connection establishment, puts
the burden of expending power onto a single device. Low-power modes
may help but they do not apply to every situation.

154 DISTRIBUTED SENSOR NETWORKS

Using a custom radio solution might render communication sensitive to
interference unless spread spectrum solutions such as frequency hopping are
used. Also, error correction, transmission power adaptation, and fundamental
quality of service options that are already part of the Bluetooth standard
would need to be reimplemented when using a custom solution.

5.3. MOBILE NETWORKING FOR SMART-DUST

Networking nodes must consume extremely low power, communicate at bit
rates measured in kilobits per second, and potentially need to operate in high
volumetric densities. These requirements need novel ad hoc routing and media
access solutions. Smart dust enables range of applications, from sensor-rich
smart spaces to self-identification and history tracking for virtually any kind
of physical object.

5.3.1. Smart-Dust Technology

A smart dust mote is illustrated in Figure 5.2. Integrated into a single package
are MEMS sensors, a semiconductor laser diode and MEMS beam-steering
mirror for active optical transmission, a MEMS corner-cube retroreflector
for passive optical transmission, an optical receiver, signal processing and
control circuitry, and a power source based on thick-film batteries and solar
cells. This self-powered package has the ability to sense and communicate.

These functions are incorporated while maintaining very low power con-
sumption, thereby maximizing operating life given the limited volume
available for energy storage. Within the design goal of 1 mm3 volume,
using the best available battery technology, the total stored energy is on the
order of 1 joule. If this energy is consumed continuously over a day, the dust
mote power consumption cannot exceed roughly 10 microwatts. The Smart-
Dust functionality can be achieved only if the total power consumption of a
dust mote is limited to microwatt levels, and if careful power management
strategies are utilized, i.e. the various parts of the dust mote are powered
on only when necessary. To enable dust motes to function over a span of
days, solar cells could be employed to scavenge energy when the sun shines
(roughly 1 joule per day) or when room lights are turned on (about 1 millijoule
per day).

A communications architecture for ultra-low power can use communi-
cation technologies based on radio frequency (RF) or optical transmission
techniques. Each technique has its advantages and disadvantages. RF presents

5.3. MOBILE NETWORKING FOR SMART-DUST 155

Thick-film battery

Solar cell

Analog I/O, DSP, control

Power capacitor

Active transmitter with laser
diode and beam steering

1–2 mm

Receiver with photodetectorSensors

Passive transmitter with
corner-cube retroreflector

Figure 5.2 Smart-dust mote, containing microfabricated sensors, optical receiver,
passive and active optical transmitters, signal processing and control circuitry, and
power sources.

a problem because dust motes offer very limited space for antennas, and are
demanding extremely short-wavelength (i.e. high-frequency) transmission.
Communication in this regime may not be compatible with low-power oper-
ation. Furthermore, radio transceivers are relatively complex circuits, making
it difficult to reduce their power consumption to the required microwatt lev-
els. They require modulation, band-pass filtering and demodulation circuitry,
and additional circuitry is required if the transmissions of a large number
of dust motes are to be multiplexed using time-, frequency- or code-division
multiple access.

An alternative is to employ free-space optical transmission. Kahn et al.’s
(1999, 2000) studies have shown that when a line-of-sight path is available,

156 DISTRIBUTED SENSOR NETWORKS

well-designed free-space optical links require significantly lower energy per
bit than their RF counterparts. There are several reasons for the power
advantage of optical links. Optical transceivers require only simple base-
band analog and digital circuitry; no modulators, active bandpass filters
or demodulators are needed. The short wavelength of visible or near-
infrared light (of the order of 1 µm) makes it possible for a millimeter-scale
device to emit a narrow beam (i.e. high antenna gain can be achieved). As
another consequence of this short wavelength, a Base-Station Transceiver
(BTS) equipped with a compact imaging receiver can decode the simul-
taneous transmissions from a large number of dust motes at different
locations within the receiver field of view, which is a form of space-division
multiplexing.

Successful decoding of these simultaneous transmissions requires that dust
motes do not block one another’s line of sight to the BTS. Such blockage is
unlikely, in view of the dust motes’ small size. A second requirement for
decoding of simultaneous transmission is that the images of different dust
motes be formed on different pixels in the BTS imaging receiver.

Another advantage of free-space optical transmission is that a special MEMS
structure makes it possible for dust motes to use passive optical transmission
techniques, i.e. to transmit modulated optical signals without supplying any
optical power. This structure is a Corner-Cube Retroreflector, or CCR. It
comprises three mutually perpendicular mirrors of gold-coated polysilicon.
The CCR has the property that any incident ray of light is reflected back
to the source (provided that it is incident within a certain range of angles
centered about the cube’s body diagonal). If one of the mirrors is misaligned,
this retroreflection property is spoiled. The microfabricated CCR includes an
electrostatic actuator that can deflect one of the mirrors at kilohertz rates. A
CCR illuminated by an external light source can transmit back a modulated
signal at kilobits per second. Since the dust mote itself does not emit light,
the passive transmitter consumes little power. Using a microfabricated CCR,
Chu et al. (1997) have demonstrated data transmission at a bit rate of up to
1 kilobit per second, and over a range up to 150 meters, using a 5-milliwatt
illuminating laser.

CCR-based passive optical links require an uninterrupted line-of-sight path.
Moreover, a CCR-based passive transmitter is inherently directional; a CCR
can transmit to the BTS only when the CCR body diagonal happens to point
directly toward the BTS, within a few tenths of degrees. A passive transmitter
can be made more omnidirectional by employing several CCRs oriented in
different directions, at the expense of increased dust-mote size. If a dust mote
employs only one or a few CCRs, the lack of omnidirectional transmission
has important implications for feasible network routing strategies.

5.3. MOBILE NETWORKING FOR SMART-DUST 157

Modulated downlink data or
unmodulated interrogation

beam for uplink

Lens Photo detector

Downlink
data out

Uplink
data in

Corner-cube
retroreflector

Dust mote

Modulated reflected
beam for uplink

Downlink
data in

Signal selection
and processing

Uplink
data
out1

Uplink
data
outN

CCD
image
sensor
array

Base-station transceiver

Laser

. . .

Lens

Figure 5.3 Design of a free-space optical network in which a base station transceiver
communicates simultaneously with a collection of many dust motes (only one dust
mote is shown). A single laser at the base station supplies optical power for the downlink
and the uplink.

Figure 5.3 illustrates a free-space optical network utilizing the CCR-based
passive uplink. The BTS contains a laser whose beam illuminates an area
containing dust motes. This beam can be modulated with downlink data,
including commands to wake up and query the dust motes. When the
illuminating beam is not modulated, the dust motes can use their CCRs
to transmit uplink data back to the base station. A high-frame-rate CCD
video camera at the BTS sees these CCR signals as lights blinking on and
off. It decodes these blinking images to yield the uplink data. Kahn et al.’s
analysis shows that this uplink scheme achieves several kilobits per second
over hundreds of meters in full sunlight. At night, in clear, still air, the range
should extend to several kilometers. The camera uses an imaging process
to separate the simultaneous transmissions from dust motes at different
locations by using space-division multiplexing. The ability of a video camera
to resolve these transmissions is a consequence of the short wavelength of
visible or near-infrared light. This does not require any coordination among
the dust motes, and thus does not complicate their design.

When the application requires dust motes to use active optical transmitters,
MEMS technology can be used to assemble a semiconductor laser, a colli-
mating lens and a beam-steering micromirror, as shown in Figure 5.2. Active
transmitters make possible peer-to-peer communication between dust motes,

158 DISTRIBUTED SENSOR NETWORKS

provided there exists a line-of-sight path between them. Power consumption
imposes a trade-off between bandwidth and range. The dust motes can
communicate over longer ranges (tens of kilometers) at low data rates or
higher bit rates (megabits per second) over shorter distances. The relatively
high power consumption of semiconductor lasers (of the order of 1 milli-
watt) means that these active transmitters should be used for short-duration,
burst-mode communication only. Sensor networks using active dust-mote
transmitters require a protocol for dust motes to aim their beams toward the
receiving parties.

Development of mobile networking protocols for Smart Dust involves
critical limitations as follows:

• the free-space optical links require uninterrupted line-of-sight paths;
• the passive and active dust mote transmitters have directional characteris-

tics that must be considered in system design, and
• there are trade-offs between bit rate, energy per bit, distance and direction-

ality in these energy-limited, free-space optical links.

An unbroken line-of-sight path is normally required for operation of free-
space optical links for smart dust. These links cannot operate reliably using
non-line-of-sight propagation, which would rely on reflections from one or
more objects between the transmitter and receiver.

A fixed dust mote without a line-of-sight path to the BTS can communicate
with the BTS via multi-hop routing, provided that a suitable multi-hop path
exists. The existence of such a path is more likely when the dust mote
density is higher. Multi-hop routing increases latency, and requires dust
motes to be equipped with active optical transmitters. Constraints on size
and power consumption of the dust mote digital circuitry dictate the need for
low-complexity dedicated multi-hop routing algorithms.

In most smart dust systems, the BTS interrogating-beam angular spread
should be matched to the field of view of the BTS imaging receiver. These two
should be matched in all systems using passive dust mote transmitters, and
in systems using active dust mote transmitters when the application involves
frequent bidirectional transmission between the BTS and dust motes.

An active dust mote transmitter is based on a laser diode. It should
employ a narrow beam width, typically of the order of a few degrees
or less. This necessitates equipping the dust mote with an active beam-
steering mechanism.

The dust mote’s transmitter and receiver have different angular spreads.
This leads to nonreciprocal link characteristics, wherein a dust mote may
receive from another node, but be unable to transmit to it, or vice versa. As

5.3. MOBILE NETWORKING FOR SMART-DUST 159

a consequence, a dust mote may receive queries from other nodes, and may
attempt to answer them, unaware that its transmissions are in vain. When dust
motes are fixed, in order to conserve dust mote power, the other nodes should
acknowledge this dust mote’s transmissions, and this dust mote should not
answer further queries from nodes that do not acknowledge its transmissions.

It is known that in free-space optical networks, nonreciprocity can lead to
hidden nodes, which can cause collisions during medium access. For example,
this effect is observed in networks having a shared-bus physical topology,
and using MAC protocols based on random time-division multiplexing, such
as CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) with
RTS/CTS (Request to Send/Clear to Send). In Smart-Dust networks, the
uplink (dust mote to BTS) uses space-division multiplexing. Uplink collisions
will not occur as long as the dust motes are sufficiently separated that their
transmissions are detected by different pixels in the BTS imaging receiver.
Collisions during active peer-to-peer communications are a potential problem
in smart dust networks. A peer-to-peer collision avoidance scheme must cope
with a dynamic network configuration, while not introducing excessive
complexity or latency.

5.3.2. Communication and Networking

The application in sensor networks is primarily sensor read-out, the key
protocol issues are to perform read-out from a large volume of sensors co-
located within a potentially small area. Random access to the medium is both
energy consuming and bandwidth inefficient. It is useful to exploit passive
and broadcast-oriented techniques when possible. The free-space approach
supports multiple simultaneous read-out of sensors, mixes active and passive
approaches using demand access techniques, and provides efficient and
low-latency response to areas of a sensor network that are undergoing
frequent changes.

A single wide beam from the BTS can simultaneously probe many dust
motes. The imaging receiver at the BTS receives multiple reflected beams
from the motes, as long as they are sufficiently separated in space as to be
resolved by the receiver’s pixel array. The probe beam sweeps the three-
dimensional space covered by the base station on a regular basis, most likely
determined by the nature of the application and its need for moment-by-
moment sensor readings.

To save transmit power, if the mote must use active communications,
then it is best to use the active transmitter in a high-bit-rate, short-burst
mode. Demand access methods can be used to combine the low latency

160 DISTRIBUTED SENSOR NETWORKS

advantages of active communications with the low-power advantages of the
passive approach.

When the mote needs to transmit information, it actively transmits a short-
duration burst signal to the BTS. The BTS, detecting this signal, then probes in
the general geographical area from which the burst was detected. Assuming
that the passive transmitter (i.e. CCR) is properly oriented toward the BTS,
the mote can respond by modulating the reflected probe beam with the data
it needs to transmit.

This communications structure has much in common with cellular and
satellite networks. The paging channel is acquired using contention access
techniques. The BTS grants a channel to the node requesting attention. In a
cellular network, this is accomplished by assigning a frequency, time-slot,
and/or code to the node. In the scheme described for dust motes, the channel
is granted by the incident probe beam.

There are as many channels (paging or data) as there are resolvable pixels
at the BTS. The BTS has no way of distinguishing between simultaneously
communicating dust motes if they fall within the same pixel in the imaging
array. One possible way to deal with this is to introduce the time-slotted
techniques found in Time Division Multiple Access (TDMA) communications
systems. A wide-aperture beam from the BTS can be modulated to offer a
common time base by which to synchronize the motes. The BTS can then
signal to an individual mote the particular time slot it has assigned to it for
communication. The mote must await its time slot to communicate, whether
it uses an active or a passive transmitter.

Probe beam revisit rates could be determined in an application-specific
manner. The areas where changes are happening most rapidly should be
revisited most frequently. If sensor readings are not changing much, then
occasional samples are sufficient to obtain statistically significant results. It
is better to spend probe dwell time on those sensors that are experiencing
the most rapid reading changes, and for which infrequent visits lead to the
greatest divergence from the current sensor values.

It is useful for sensors to operate in ensembles. Rather than implementing
a broad range of sensors in a single integrated circuit, it is possible simply to
deploy a mixture of different sensors in a given geographical area and allow
them to self-organize.

Sensors are typically specialized for detecting certain signatures. One kind
detects motion, another heat, and a third sound. When one sensor detects its
critical event signature, it makes other nearby sensors aware of its detection.
They then orient their sensing function in a particular, signature-specific way.
For example, a simple motion-detecting sensor might cue more sophisticated
sensors detecting thermal or other radiation properties.

5.3. MOBILE NETWORKING FOR SMART-DUST 161

A cuing system can be designed in a centralized scheme. The motion sensor
communicates with the BTS, which in turn communicates with a nearby heat
sensor. If passive communications techniques can be used, this may well be
the most power-efficient way to propagate the detection information.

The centralized/passive schemes cannot be used if the line-of-sight path
is blocked, or if the probe revisit rate is too infrequent to meet detection
latency constraints. In these cases, the detecting mote must employ an active
transmitter. If the line-of-sight path is blocked, then the mote will need to
use special, multi-hop techniques to communicate with the BTS or nearby
sensor nodes.

In an special scheme, a node transmits for a short burst and waits for
an ACK (acknowledgement) response from any listening node to deter-
mine that its transmission has been received. Determining true reachability
between pairs of motes requires a full four-phase handshake. This must be
executed in the context of appropriate timeouts and made robust to dynamic
changes in the positions of the communicating nodes, which may be floating
in the air.

Routing tables can be constructed from such pairwise discovery of connec-
tivity. However, standard routing algorithms, like RIP (Routing Information
Protocol), OSPF (Open Shortest Path First), and DVMRP (Distance Vector
Multicast Routing Protocol), assume bidirectional and symmetric links. This
is not always the case for smart dust. It may be possible for mote A to
communicate with mote B, but not vice versa. Even if the communication is
bidirectional, it need not exhibit the same bandwidth or loss characteristics
in both directions. Therefore, new routing algorithms must be developed to
deal with the general case of links that are unidirectional and/or asymmetric
in their performance.

The efforts of IETF (Internet Engineering Task Force) Unidirectional Link
Routing Working Group focus on supporting high-bandwidth unidirectional
links where all nodes have at least low-bandwidth bidirectional links (e.g.
a high-bandwidth satellite link superimposed on nodes interconnected via
slow-speed telephone links).

One possible improvement is to make use of emerging MEMS technology
for on-board inertial navigation circuits to make sensors more aware of near
neighbors even as they drift out of line-of-sight of the BTS. The BTS can
determine the relative location of dust motes within its field of view. It could
then disseminate this near-neighbor information to motes able to observe
its probe beam. The on-board inertial navigation capability, combined with
these periodic relative location snapshots, could assist motes in orienting
their laser and detector optics to improve their ability to establish links with
nearby motes.

162 DISTRIBUTED SENSOR NETWORKS

Several projects have recently been initiated to investigate a variety of
communications research aspects of distributed sensor networks. The Fac-
toid Project at the Compaq Palo Alto Western Research Laboratory (WRL)
is developing a portable device small enough to be attached to a key chain.
The device collects announcements from broadcasting devices in the environ-
ment, and these can be uploaded to a user’s home-base station. The prototype
devices are much larger than smart dust motes, communication is accom-
plished via RF transmission, and the networking depends on short-range,
point-to-point links.

The Wireless Integrated Network Sensors (WINS) Project at UCLA is
developing low-power MEMS-based devices that, in addition to sensing and
actuating, can also communicate. The essential difference is that WINS has
chosen to concentrate on RF communications over short distances.

The Ultralow Power Wireless Sensor Project at MIT is another project
that focuses on low-power sensing devices that also communicate. The
primary thrust is extremely low-power operation. The prototype system
transmits over a range of data rates, from 1 bit/s to 1 megabit/s, with
transmission power levels that span from 10 microwatts to 10 milliwatts.
The RF communications subsystem is developed for the project by Analog
Devices. Optical technologies are not investigated. The design addresses the
multi-hop wireless networking protocol issues.

5.4. SUMMARY

The Smart-Its embeds computation into real-world objects by attaching small,
unobtrusive, and autonomous computing devices to them. These devices, the
Smart-Its, integrate sensing, processing, and communication capabilities,
which can be customized to the objects to which they are attached.

The dominant component in a Smart-It, with respect to power consumption,
is the Bluetooth module. Since the Bluetooth modules are engineering samples
that do not implement low-power modes, no data is available on how
these would alleviate the significant power usage of the modules in active
mode. The improved Bluetooth products should reduce power consumption
considerably since the system design allows for easy replacement of the
Bluetooth transceiver module.

Smart dust is an integrated approach to networks of millimeter-scale
sensing/communicating nodes. Smart dust can transmit passively using
novel optical reflector technology. This provides an inexpensive way to
probe a sensor or to acknowledge that information was received. Active
optical transmission is also possible, but consumes more power. It is used

PROBLEMS 163

when passive techniques cannot be used, such as when the line-of-sight path
between the dust mote and BTS is blocked.

PROBLEMS

Learning Objectives

After completing this chapter you should be able to:

• demonstrate an understanding of the distributed sensor networks;
• discuss what is meant by Bluetooth communication and networking;
• explain what mobile networking for smart dust is;
• demonstrate an understanding of smart-dust technology.

Practice Problems

Problem 5.1: How are the piconets managed?
Problem 5.2: What is the limit on the number of nodes in a piconet, and how

does it affect communication in a sensor network?
Problem 5.3: How does a unit in inquiry-scan mode save the power?
Problem 5.4: What are the limitations in development of mobile networking

protocols for smart dust?

Practice Problem Solutions

Problem 5.1:

Piconets are managed by a single master that implements centralized control
over channel access. All other participants in a piconet are designated slaves.
Communication is strictly slave-to-master (or vice versa), but can never be
slave-to-slave. During the existence of a piconet, master and slave roles can
be switched.

Problem 5.2:

The limit of eight nodes in a piconet is inadequate for setting up a densely
connected sensor network. To communicate with more than eight nodes at the
same time requires some sort of time multiplexing, where additional nodes

164 DISTRIBUTED SENSOR NETWORKS

have to be parked and unparked repeatedly. Setting up additional piconets
requires gateway nodes to alternate between their respective piconets, since
Bluetooth only supports units in one active piconet at a time.

Problem 5.3:

To save power, a unit in inquiry-scan mode does not continuously listen
to inquiry messages. Instead, it only listens for a very short period of
time (11.25 ms by default), which, under regular conditions, suffices for the
inquiry message to get through with sufficiently high probability. Then the
unit enters idle mode for a much longer interval (typically 1.28 s). However,
the inquiring unit needs to send inquiry messages (and alternately listen for
potential replies) during the entire interval, since it cannot know when the
target unit is actually listening.

Problem 5.4:

Development of mobile networking protocols for Smart Dust involves critical
limitations as follows:

• the free-space optical links require uninterrupted line-of-sight paths;
• the passive and active dust-mote transmitters have directional characteris-

tics that must be considered in system design, and
• there are trade-offs between bit rate, energy per bit, distance and direction-

ality in these energy-limited, free-space optical links.

6
Clustering Techniques
in Wireless Sensor Networks

6.1. INTRODUCTION

Advances in MEMS technology have resulted in cheap and portable devices
with formidable sensing, computing and wireless communication capabil-
ities. A network of these devices is invaluable for automated information
gathering and distributed microsensing in many civil, military and industrial
applications. The use of wireless media for communication provides a flexible
means of deploying these nodes without a fixed infrastructure, possibly in
an inhospitable terrain. Once deployed, the nodes require minimal external
support for their functioning.

Topology discovery algorithm for wireless sensor networks finds a set of
distinguished nodes to construct the approximate topology of the network.
The distinguished nodes reply to the topology discovery probes, thereby
minimizing the communication overhead. The algorithm forms a tree of clus-
ters, rooted at the monitoring node, which initiates the topology discovery
process. This organization is used for efficient data dissemination and aggre-
gation, duty cycle assignments and network state retrieval. The mechanisms
are distributed, use only local information, and are highly scalable.

The vision of ubiquitous computing is based on the idea that future
computers will merge with their environment until they become completely
invisible to the user. Distributed wireless microsensor networks are an
important component of this ubiquitous computing and small dimensions

Wireless Sensor Network Designs A. Hać
 2003 John Wiley & Sons, Ltd ISBN: 0-470-86736-1

166 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

are a design goal for microsensors. The energy supply for the sensors is a
main constraint in the intended miniaturization process. It can be reduced
only to a limited degree since energy density of conventional energy sources
increases slowly. In addition to improvements in energy density, energy
consumption can be reduced. This approach includes the use of energy-
conserving hardware. Moreover, a higher lifetime for sensor networks can
be accomplished through optimized applications, operating systems, and
communication protocols. Particular modules of the sensor hardware are
turned off when they are not needed.

Wireless distributed microsensor systems enable fault-tolerant monitor-
ing and control of a variety of applications. Due to the large number of
microsensor nodes that may be deployed and the long required system life-
times, replacing the battery is not an option. Sensor systems must utilize the
least possible energy while operating over a wide range of scenarios. These
include power-aware computation and communication component technol-
ogy, low-energy signaling and networking, system partitioning considering
computation and communication trade-offs, and a power-aware software
infrastructure.

Many dedicated network protocols (e.g. routing, service discovery, etc.)
use flooding as the basic mechanism for propagating control messages.
In flooding, a node transmits a message to all of its neighbors which, in
turn, transmit to their neighbors until the message has been propagated to
the entire network. Typically, only a subset of the neighbors is required
to forward the message in order to guarantee complete flooding of the
entire network. If the node geographic density (i.e. the number of neighbors
within a node’s radio reach) is much higher than what is strictly required to
maintain connectivity, the flooding becomes inefficient because of redundant,
superfluous forwarding. This superfluous flooding increases link overhead
and wireless medium congestion. In a large network, with a heavy load, this
extra overhead can have a severe impact on performance.

6.2. TOPOLOGY DISCOVERY AND CLUSTERS IN SENSOR
NETWORKS

Wireless sensor networks pose many challenges, primarily because the sensor
nodes are resource constrained. Energy is constrained by the limited battery
power in sensor nodes. The form factor is an important node design consid-
eration for easy operability and specified deployment of these nodes, which
limit the resources in a node. The protocols and applications designed for
sensor networks should be highly efficient and optimize the resources used.

6.2. TOPOLOGY DISCOVERY AND CLUSTERS IN SENSOR NETWORKS 167

Sensor network architectures use massively distributed and highly complex
network systems comprising hundreds of tiny sensor nodes. These nodes
experience various modes of operation while maintaining local knowledge of
the network for scalability. The nodes may also use networking functionalities
such as routing cooperatively to maintain network connectivity. The behavior
of the network is highly unpredictable because of randomness in individual
node state and network structure.

Topology discovery algorithm for sensor networks uses data dissemina-
tion and aggregation, duty-cycle assignments and network-state retrieval.
Network topology provides information about the active nodes, their con-
nectivity, and the reachability map of the system.

The topology discovery algorithm uses the wireless broadcast medium of
communication. The nodes know about the existence of other nodes in their
communication range by listening to the communication channel. The algo-
rithm finds a set of distinguished nodes, and by using their neighborhood
information constructs the approximate topology of the network. Only dis-
tinguished nodes reply to the topology discovery probes, thereby reducing
the communication overhead of the process. These distinguished nodes form
clusters comprising nodes in their neighborhood. These clusters are arranged
in a tree structure, rooted at the monitoring or the initiating node.

The tree of clusters represents a logical organization of the nodes and
provides a framework for managing sensor networks. Only local information
between adjacent clusters flows from nodes in one cluster to nodes in a
cluster at a different level in the tree of clusters. The clustering also provides
a mechanism for assigning node duty cycles so that a minimal set of nodes
is active in maintaining the network connectivity. The cluster heads incur
only minimal overhead to set up the structure and maintain local information
about its neighborhood.

Sensor networks have fundamentally different architecture than wired
data networks. Nodes are designed with a low cost and small form factor for
easy deployment in large numbers. Hence limited memory, processor and
battery power is provided. Energy constraints also limit the communication
range of these devices. These nodes have various modes of operation with
different levels of active and passive states for energy management. They
maintain only local knowledge of the network as global information storage
is not scalable, and may provide networking functionalities like routing, to
maintain cooperatively the network connectivity.

The behavior of the network can be highly unpredictable because of the
operating characteristics of the nodes and the randomness in which the
network is set up. Hence the algorithms consider failure of a network as a
rule rather than as an exception, and can handle this more efficiently.

168 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

A sensor network model incorporates the specific features as follows:

• Network topology describes the current connectivity and reachability of the
network nodes and assists routing operations and future node deployment.

• The energy map provides the energy levels of the nodes in different parts
of the network. The spatial and temporal energy gradient of the network
nodes coupled with network topology can be used to identify the low
energy areas of the network.

• The usage pattern describes node activity, data transmitted per unit of
time, and emergency tracking in the network.

• The cost model provides equipment cost, energy cost, and human cost for
maintaining the network at desired performance level.

• Network models take into account that sensor networks are highly unpre-
dictable and unreliable.

The above models form the Management Information Base (MIB) for
sensor networks. To update the MIB with the current state of the network, a
monitoring node measures various network parameters. Measurements have
spatial and temporal error, and the measurement probes have to operate at a
finer granularity. A probe uses energy from the system, and in this way can
change the state of the network.

Themodelsareused for different network management functionsas follows:

• Sensors are deployed randomly with little or no prior knowledge of the
terrain. Future deployment of sensors depends upon the network state.

• Setting network operating parameters involves routing tables, node duty
cycles, timeout values of various events, position estimation, etc.

• Monitoring network states using network models involves periodic mea-
surements to obtain various states like network connectivity, energy
maps, etc.

• Reactive network maintenance is served by monitoring the network when
the regions of low network performance are traced to identify the reasons
for poor performance. Corrective measures like deployment of new sensors
or directing network traffic around those regions are useful.

• Proactive network maintenance allows predicting of future network states
from periodic measurement of network states to determine the dynamic
behavior of the network, and to predict the future state. This is useful for
predicting network failures and for taking a preventive action.

• Design of sensor-network models with cost factor and usage patterns is
used for design of sensor network architectures.

6.2. TOPOLOGY DISCOVERY AND CLUSTERS IN SENSOR NETWORKS 169

6.2.1. Topology Discovery Algorithm

The topology discovery algorithm used in sensor networks constructs the
topology of the entire network from the perspective of a single node. The
algorithm has three stages of execution as follows:

• A monitoring node requires the topology of the network to initiate a
topology discovery request.

• This request diverges throughout the network reaching all active nodes.
• A response action is set up that converges back to the initiating node with

the topology information.

The request divergence is through controlled flooding so that each node
forwards exactly one topology discovery request. Note that each node should
send out at least one packet for other nodes to know its existence. This also
ensures that all nodes receive a packet if they are connected. Various methods
may be employed for the response action.

When topology discovery request diverges, every node receives the infor-
mation about neighboring nodes. In the response action, each node can reply
with its neighborhood list. To illustrate the response action of these methods,
the network in Figure 6.1 is presented with node A as the initiating node. The
topology discovery request reaches node B from node A, and nodes C and D
from node B. Requests are forwarded only once so that no action takes place
even though node C and D may hear requests from each other.

In the direct response approach we flood the entire network with the
topology discovery request. When a node receives a topology discovery
request it forwards this message and sends back a response to the node
from which the request was received. The response action for the nodes in
Figure 6.1 is as follows:

• node B replies to node A;
• node C replies to node B; node B forwards the reply to node A;

A

B

C D

Figure 6.1 An example illustrating topology discovery.

170 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

• node D replies to node B; node B forwards the reply to node A;
• node A gets the complete topology.

Note that even though parent nodes can hear the children while they
forward a request (for example, node A knows about node B when node
B forwards), this is not useful because its neighborhood information is
incomplete. Hence an exclusive response packet is needed for sending the
neighborhood information.

In an aggregated response, all active nodes send a topology discovery
request but wait for the children nodes to respond before sending their
own responses. After forwarding a topology discovery request, a node
gets to know its neighborhood list and children nodes by listening to the
communication channel. Once this is set up, the node waits for responses
from its children nodes. Upon receiving the responses, the node aggregates
the data and sends it to its own parent. The response action for the nodes in
Figure 6.1 is as follows:

• nodes C and D forward request; node B listens to these nodes and deduces
them to be its children;

• node C replies to node B; Node D replies to node B;
• node B aggregates information from nodes C, D and itself; node B forwards

the reply to node A;
• node A gets the complete topology.

In a clustered-response approach, the network is divided into set of clusters.
Each cluster is represented by one node (called the cluster head) and each
node is part of at least one cluster. Thus each node is in the range of at least
one cluster head. The response action is generated only by the cluster heads,
which send the information about the nodes in its cluster. Similarly to the
aggregated response method, the cluster heads can aggregate information
from other cluster heads before sending the response. The response action
for the nodes in Figure 6.1 is as follows:

• assume that node B is a cluster head and nodes C and D are in its cluster;
• nodes C and D do not reply;
• only node B replies to node A;
• node A does not receive the information about the link C ←→ D.

The information may be incomplete in using the clustered response
approach. Direct and aggregated response methods provide an accurate

6.2. TOPOLOGY DISCOVERY AND CLUSTERS IN SENSOR NETWORKS 171

view of the network topology. The clustered response creates a reachability
map in which all reachable cluster heads allow all other nodes to be reachable
from at least one cluster head.

The overhead incurred in topology discovery by the clustered-response
approach is significantly lower than the direct or aggregated-response
approaches.

6.2.2. Clusters in Sensor Networks

The communication overhead for the clustered response approach depends
on the number of clusters that are formed and the length of the path connecting
the clusters. Thus, to achieve the minimum communication overhead, the
following problems need to solved:

• Set cover problem: to find a minimum cardinality set of cluster heads, which
have to reply.

• The Steiner tree problem: to form a minimal tree with the set of the clus-
ter heads.

These are the combinatorial optimization problems. Moreover, for an
optimal solution we need to have global information about the network
whereas the nodes only have local information. Thus, a heuristics approach
is used, which provides an approximate solution to the problems. The
algorithm is simple and completely distributed, and can thus be applied to
sensor networks.

The topology discovery algorithm for finding the cluster heads is based on
the simple greedy log(n)-approximation algorithm for finding the set cover.
At each stage a node is chosen from the discovered nodes that cover the
maximum remaining undiscovered nodes. In the case of topology discovery,
the neighborhood sets and vertices in the graph are not known at runtime,
thus the implementation of the algorithm is not straightforward. Instead the
neighborhood sets have to be generated as the topology discovery request
propagates through the network. Two different node-coloring approaches
are used to find the set of cluster heads during request propagation: the first
approach uses three colors and the second approach uses four colors. The
response generation mechanism is the same in both cases.

In the request propagation with three colors, all nodes, which receive
a topology discovery request packet and are alive, are considered to be
discovered nodes. The node coloring describes the node state as follows:

• White is an undiscovered node, or node that has not received a topology
discovery packet.

172 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

• Black is a cluster head node, which replies to topology discovery request
with its neighborhood set.

• Grey is a node that is covered by at least one black node, i.e. it is a neighbor
of a black node.

Initially all nodes are white. When the topology discovery request propa-
gates, each node is colored black or gray according to its state in the network.
At the end of the initial phase of the algorithm, each node in the network is
either a black node or the neighbor of a black node (i.e. grey node). All nodes
broadcast a topology discovery request packet exactly once in the initial
phase of the algorithm. Thus all nodes have the neighborhood information
by listening to these transmissions. The nodes have the neighborhood lists
available before the topology acknowledgment is returned.

Two heuristics are used to find the next neighborhood set determined by
a new black node, which covers the maximum number of uncovered nodes.
The first heuristic uses a node coloring mechanism to find the required set
of nodes. The second heuristic applies a forwarding delay that is inversely
proportional to the distance between the receiving and sending nodes. These
heuristics provide a solution quite near to the centralized greedy set cover
solution. The process is as follows:

• The node that initiates the topology discovery request is assigned the color
black and broadcasts a topology discovery request packet.

• All white nodes become grey nodes when they receive a packet from a
black node. Each grey node broadcasts the request to all its neighbors with
a random delay inversely proportional to its distance from the black node
from which it received the packet.

• When a white node receives a packet from a grey node, it becomes a
black node with some random delay. If, in the meantime, that white node
receives a packet from a black node, it becomes a grey node. The random
delay is inversely proportional to the distance from that grey node from
which the request was received.

• Once nodes are grey or black, they ignore other topology discovery
request packets.

A new black node is chosen to cover the maximum number of as-yet
uncovered elements. This is achieved by having a forwarding delay inversely
proportional to the distance between the sending and receiving nodes. The
heuristic behind having a forwarding delay inversely proportional to distance
from the sending node is explained as follows.

6.2. TOPOLOGY DISCOVERY AND CLUSTERS IN SENSOR NETWORKS 173

The coverage region of each node is the circular area centered at the
node with radius equal to its communication range. The number of nodes
covered by a single node is proportional to its coverage area times the local
node density. The number of new nodes covered by a forwarding node is
proportional to its coverage area minus the already-covered area. This is
illustrated in Figure 6.2 where node A makes nodes B and C grey. Node B
forwards a packet before node C does, so that more new nodes can receive
the request. The delay makes node D more likely to be black than is node
E. The intermediate node between two black nodes (node B in Figure 6.2) is
always within the range of both the black nodes since three colors were used
for their formation.

In the request propagation with four colors, all nodes that receive a topology
discovery request packet and are alive, are considered to be discovered nodes.
The node coloring describes the node state as follows:

• White is an undiscovered node, or nodes, that has not received a topology
discovery packet.

• Black is a cluster head node that replies to a topology discovery request
with its neighborhood set.

• Grey is a node that is covered by at least one black node, i.e. it is a neighbor
of a black node.

• Dark grey is a discovered node that is not currently covered by any
neighboring black node and is hence two hops away from a black node.
The white node changes to dark grey on receiving a request from a
grey node.

This method propagates in similar fashion to the three-color method.
Initially all nodes are white. When the topology discovery request propagates,

C A
B

E

D

Figure 6.2 Illustration of the delay heuristic for three colors.

174 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

each node is colored black, gray or dark grey according to their state in the
network. Thus at the end all nodes in the network are either black nodes or
neighbors of black nodes (i.e. gray nodes) as follows:

• The node that initiates the topology discovery request is assigned color
black and broadcasts a topology discovery request packet.

• All white nodes become grey nodes when they receive a packet from a
black node. These grey nodes broadcast the request to all their neighbors
with a delay inversely proportional to its distance to the black node from
which they received the request.

• When a white node receives a packet from grey node it becomes dark grey.
It broadcasts this request to all its neighbors and starts a timer to become a
black node. The forwarding delay is inversely proportional to its distance
from the grey node from which it received this request.

• When a white node receives a packet from dark grey node, it becomes a
black node with some random delay. If, in the meantime, that white node
receives a packet from a black node, it becomes a grey node.

• A dark grey node waits for a limited time for one of its neighbors to become
black. When the timer expires, the dark grey node becomes a black node
because there is no black node to cover it.

• Once nodes are grey or black they ignore other topology discovery
request packets.

The heuristic behind having four colors for the algorithm is explained
by using Figure 6.3. A new black node should be chosen so that it covers
the maximum number of as-yet uncovered elements. The black nodes are
separated from each other by two hops so that nodes belong to only one black
node neighborhood (for instance, nodes A and D). This may not be possible
in all cases and some black nodes are formed just one hop away from another

A
B

E

C

D

Figure 6.3 Illustration of the delay heuristic for four colors.

6.2. TOPOLOGY DISCOVERY AND CLUSTERS IN SENSOR NETWORKS 175

(for instance, node E). The heuristic behind the forwarding delay principle is
similar to the three color heuristic.

The number of clusters formed by the four color heuristic is slightly lower
than by the three color heuristic. In four color heuristic the clusters are formed
with lesser overlap. There are some solitary black nodes, created from dark
grey nodes that timed out to become black, which do not need to cover any of
their neighbors. Thus, even though the number of black nodes is similar to the
three color heuristic, the number of bytes transmitted is lower. However, the
three-coloring approach generates a tree of clusters, which is more amenable
to the network management applications.

In the topology discovery algorithm response mechanism, the first phase
of the algorithm is to set up the node colors. The initiating node becomes
the root of the black node tree where the parent black nodes are at most two
hops away (using four colors) and one hop away (using three colors) from its
children black node. Each node has the following information:

• A cluster is identified by the black node, which heads the cluster.
• A grey node knows its cluster ID (identifier).
• Each node knows its parent black node, which is the last black node from

which the topology discovery was forwarded to reach this node.
• Each black node knows the default node to which it forwards packets in

order to reach the parent black node. This node is essentially the node from
which the black node received the topology discovery request.

• All nodes have their neighborhood information.

Using the above information, the steps for topology discovery algorithm
response are described as follows:

• When a node becomes black, it sets up a timer to reply to the discovery
request. Each black node waits for this time period during which it receives
responses from its children black nodes.

• The node aggregates all neighborhood lists from its children and itself,
and when its time period for acknowledgment expires, it forwards the
aggregated neighborhood list to the default node the next hop to its parent.

• All forwarding nodes in between black nodes may also add their adjacency
lists to the list to black nodes.

For the algorithm to work properly, timeouts of acknowledgments should
be properly set. For example, the timeouts of children black nodes should
always expire before a parent black node. Thus, timeout value is set inversely

176 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

proportional to the number of hops a black node is away from the monitoring
node. An upper bound on the number of hops between extreme nodes
is required. If the extent of deployment region and communication range
of nodes is known initially, the maximum number of hops can be easily
calculated. However, if that information is not available to the nodes, the
topology discovery runs in stages where it discovers only a certain extent
of the area at each stage. A typical tree of clusters obtained by the topology
discovery algorithm is shown in Figure 6.4. The example shows a 100 × 100
square meters area with 200 nodes and communication range of 20 meters.
The arrow represents the initiating node. The characteristics of the clusters
are as follows:

• The total surface area and the communication range of nodes bound the
maximum number of black nodes formed.

• The number of nodes in each cluster depends on the local density
of network.

• The depth of the tree is bounded.
• Routing paths are near optimal for data flow between source (sensor nodes)

and sink (monitoring node).

Figure 6.4 Illustration of a tree of clusters with 200 nodes and 20 meters range.

6.2. TOPOLOGY DISCOVERY AND CLUSTERS IN SENSOR NETWORKS 177

These algorithms assume a zero error rate for channels. However, minor
adjustments to the protocols are needed to account for dropped packets due
to channel errors.

The topology discovery initially floods the entire network. Hence channel
error is not a problem as long as topology discovery requests reach a node
from any path. Since the sensor networks under consideration here are dense,
with many paths existing between source and destination, channel error does
not create a significant impact. The number of black nodes formed may be
increased due to packet losses.

However, topology acknowledgment packets are returned through single
prescribed paths and hence packets may be lost. Also, the algorithm decreases
the redundancy of topology information propagated among different packets,
and the loss of a packet may be significant. As the packets are aggregated
while moving up the cluster tree, the magnitude of loss may increase.

This problem has a simple solution if all links are symmetrical. If node
A can listen to node B when node B is transmitting, then node B can listen
to node A when node A transmits. When a topology discovery response
has to be sent from node A, it forwards the packet to its default node (say
node B). Node B, upon receiving this packet, will again forward it to its
own default node, the next hop to the parent. Now node A can listen to
any packet forwarded by node B and hence node A would know whether
node B forwarded the same packet. If node A does not hear such a packet, it
retransmits the packet assuming that node B never received the packet due
to channel error.

Eavesdropping can be used as an indirect acknowledgment mechanism for
reliable transmission. The only added overhead for this simple method is
that every forwarded packet has to be stored at a node until the packet is
reliably transmitted. The node uses energy while listening to transmissions
and cannot switch itself off immediately after forwarding a packet.

6.2.3. Applications of Topology Discovery

The main purpose of the topology discovery process is to provide the network
administrator with the network topology as follows:

• Connectivity map. The direct response and the aggregated response mecha-
nisms provide the entire connectivity map of the region. Note that clustered
response methods cannot provide this information.

• Reachability map. The topology discovery algorithm mechanism provides
a reachability map of the region. The connectivity map is a superset of the
reachability map.

178 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

• Energy model. When a node forwards the topology discovery request, it can
include its available energy in the packet. Each node can cache the energy
information of all its neighbors. If a node does not become black, it can
discard the cached value. Thus all black nodes have energy information
about all their neighbors, which can be sent as part of the reply. A black
node can also estimate the energy consumption of nodes in its cluster by
listening to the transmitted packets.

• Usage model. As in the previous case, each node can transmit the number
of bytes received and transmitted by this node during the last several
minutes. A black node will have this information cached at the time it
sends its response.

This way the topology discovery algorithm provides different views of the
network to the user.

We assume that in a sensor network the information flows from a sensor
to the monitoring node with some control information transmitted from
monitoring node to the sensors. The topology discovery process sets up a tree
of clusters rooted at the initiating node. Thus, any data flow from a sensor to
the monitoring node has to flow up the tree of clusters.

Each cluster has a minimal number of nodes, which are active to transfer
packets between a parent and child cluster pair. Whenever a sensor needs
to send some data to the monitor, it can just wake up and broadcast. The
duty cycle assignment mechanism ensures that at least one node is active and
responsible for forwarding the data to the next cluster. There is also at least
one node in the next cluster active to receive this packet.

Each black node covers a region given by its communication range. The
parent black node, logically, also covers the area covered by its children black
nodes. Thus the area covered propagates up the tree and the monitor covers
the entire area. The area covered by each black node may be cached during the
topology response phase. The parent black node receives such areas from its
children and, in turn, makes the larger area to approximate to its logical cover-
age region. Region based queries from the monitor node can be channeled to
the appropriate region by the black nodes using their coverage information.
On the return path the data may be aggregated at the black nodes.

The duty cycle of nodes for data forwarding is set up as follows. Each node
in a cluster has at least the following information: the cluster ID (identifier)
and the parent black node, which is the last black node from which the
topology discovery request was forwarded. In each cluster, by using this
information, the sets of nodes between two clusters are chosen to forward
packets between clusters. At least one node in each set is active at a given
time to maintain a link between a parent and child cluster pair.

6.2. TOPOLOGY DISCOVERY AND CLUSTERS IN SENSOR NETWORKS 179

In the assignment with location information, the nodes have knowledge
about their geographical location. After a black node has sent a topology
acknowledgment, it has knowledge of both its parent black node and the
children black nodes. By using this information, the sets of nodes for each
parent and child pair, need to be set up, so that in any set only one node
needs to be active to transfer or receive packets from the clusters.

Figure 6.5 shows a general case in which a cluster (with black node B) may
be formed as child of another cluster (with black node A). Since three colors
are used to set up the tree of clusters, there is an intermediate node between
the clusters (node C).

The communication range of nodes is equal to R. In a circular area with
radius R/2, shown by the dotted circle, nodes always form a completely
connected graph, as each node is within communication range of other
nodes. This region is centered at the midpoint (point P) of a parent and child
cluster pair. If there is at least one node active in both clusters inside this
region, then a packet can be forwarded from one cluster to the other cluster.
The algorithm to set up the sets of nodes is as follows.

• Black nodes send a packet with information about its parent cluster and
children clusters to all its neighbors. This packet also contains the location
information about the black nodes, which are the heads of the respec-
tive clusters.

• Nodes decide to be a part of the packet forwarding set by considering a
circular region of radius R/2 centered at midpoint of the particular pair of
black nodes.

• If a node is inside such region for a particular packet pair, this node becomes
an active forwarding node for that cluster pair with some random delay.

• When the node becomes a forwarding node it sends a packet to signal
this event. All other nodes go to the sleep mode for this pair of clusters.
However, they may be in an active mode for the other pairs of clusters.

A B

C

P

Figure 6.5 Assigning up the duty cycle with location information.

180 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

• A node may give up its active state for a cluster pair after this node
has spent a certain amount of energy. The node sends a signal so that
one of the other sleeping nodes can become active. When the active node
receives a response signal from another node it goes to sleep mode for that
cluster pair.

• Although the circular region of radius R/2 overlaps two clusters, there may
not be other nodes in both clusters. Since all nodes can receive transmission
from each other in this region, when an active node in a cluster receives a
signal about activation of another node in the other cluster, it signals the
black node that there exists at least one node in each cluster and the overlap
regions may be used for packet forwarding.

• The intermediate node between two black nodes is used for forwarding if
the overlap region does not have the other nodes in both clusters.

• During forwarding, the black node listens to all packets and forwards only
the packets from the sending node which is out of range for the active
forwarding node.

Figure 6.6 illustrates how a packet is forwarded between clusters. There
are two clusters with black nodes A and B. The respective forwarding nodes
in the overlap regions are node C and node D. When node P sends a packet,
node A determines if node P is within the range of node C. If it is not,
then node A forwards the packet to node C. Otherwise, node C can listen
to the packet from node P. Node C forwards the packet in the overlapping
region where node D receives it. Note that since node C is in the range of
node P, the black node A does not need to forward this packet.

In the assignment without location information, the nodes do not have
information about their location. The three-color cluster tree has the property
that any parent and child pair is, at the most, one hop away from each other.
This means that there is, at most, one intermediate node between any two
black nodes.

P

A

C
B

D

Figure 6.6 Node forwarding between clusters.

6.3. ADAPTIVE CLUSTERING WITH DETERMINISTIC CLUSTER-HEAD SELECTION 181

A B

C

Figure 6.7 Assigning up the duty cycle without location information.

In the algorithm discussed, the locations of black nodes were known, and
the actual mid point was calculated. The nodes inside a circular region of
radius R/2 centered at this point, were considered for forwarding. This is
only possible with location information.

In the approach without location information, a circle of radius R/2 is
centered at the intermediate node between two black nodes. Figure 6.7
illustrates the mechanism.

The intermediate node C sends out a message to set up the forwarding
nodes. Nodes within a distance of R/2 (shown by dotted circle) from this
intermediate node consider themselves for forwarding between a particular
pair of clusters. The remaining procedure is exactly the same as the approach
with location information.

Due to lack of location information, a black node cannot decide the reach-
ability of packets between forwarding nodes. The black node, instead of
forwarding a packet immediately, waits for a random amount of time
before forwarding the packet. In the meantime, if the black node hears
that the active forwarding node forwarded the same packet, it does not
forward this packet.

6.3. ADAPTIVE CLUSTERING WITH DETERMINISTIC
CLUSTER-HEAD SELECTION

Reducing the power consumption of wireless microsensor networks increases
the network lifetime. A communication protocol LEACH (Low-Energy Adap-
tive Clustering Hierarchy) can be extended from stochastic cluster-head
selection algorithm to include a deterministic component. This way, depend-
ing on the network configuration an increase of network lifetime can be
accomplished. Lifetime of microsensor networks is defined by using three
metrics FND (First Node Dies), HNA (Half of the Nodes Alive), and LND
(Last Node Dies).

182 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

LEACH is a communication protocol for microsensor networks. It is used
to collect data from distributed microsensors and transmit it to a base
station. LEACH uses the following clustering-model: some of the nodes elect
themselves as cluster-heads, which collect sensor data from other nodes in
the vicinity and transfer the aggregated data to the base station. Since data
transfers to the base station dissipate much energy, the nodes take turns with
the transmission by rotating the cluster-heads, which leads to balanced energy
consumption of all nodes and hence to a longer lifetime of the network.

Modification of LEACH’s cluster-head selection algorithm reduces energy
consumption. For a microsensor network the following assumptions are
made:

• the base station (BS) is located far from the sensors and is immobile;
• all nodes in the network are homogeneous and energy constrained;
• all nodes are able to reach the BS;
• nodes have no location information;
• the propagation channel is symmetric;
• cluster-heads perform data compression.

The energy needed for the transmission of one bit of data from node A to
node B, is the same as to transmit one bit from node B to node A because
of the symmetric propagation channel. Cluster-heads collect nk-bit messages
from n adjacent nodes and compress the data to (c × n) k-bit messages, which
are transmitted to the BS, with c � 1 as the compression coefficient.

The operation of LEACH is divided into rounds, each of which consists of
a set-up and a steady-state phase. During the set-up phase, cluster-heads are
determined and the clusters are organized. During the steady-state phase,
data transfers to the base station occur.

LEACH cluster-heads are stochastically selected by each node n determin-
ing a random number between 0 and 1. If the number is less than a threshold
T(n), the node becomes a cluster-head for the current round.

Considering a single round of LEACH, a stochastic cluster-head selection
will not automatically lead to minimum energy consumption during data
transfer for a given set of nodes. All cluster-heads can be located near the
edges of the network or adjacent nodes can become cluster-heads. In these
cases some nodes have to bridge long distances in order to reach a cluster-
head. However, considering two or more rounds, a selection of favorable
cluster-heads results in an unfavorable cluster-head selection in later rounds,
since LEACH tries to distribute energy consumption among all nodes. An
example case is shown in Figure 6.8. In the bad-case scenario, cluster-heads

6.3. ADAPTIVE CLUSTERING WITH DETERMINISTIC CLUSTER-HEAD SELECTION 183

Round 0

LEACH / good-case scenario

LEACH / bad-case scenario

Round 1

Round 0

Cluster-border

Node that has been cluster-head in the last 1/P rounds

Cluster-head node

Node

Round 1

Figure 6.8 LEACH network with P = 0.2, n = 20, and network dimension of 100 × 100
meters. Above, cluster-heads are placed in proximity to each other and near the
edges which leads to high energy consumption since nodes have to transmit over
long distances. Below, energy is saved by uniformly distributing cluster-heads over the
network. The set of nodes that have not been cluster-heads in round 0 and 1 is equal
for both cases.

are selected unfavorably near the edges, in round 0 on the right-hand side
and in round 1 on the left-hand side of the network. In the good-case scenario
cluster-heads are not distributed optimally across the network, but better
than in the bad-case scenario. A selection of favorable cluster-heads will not
automatically lead to a higher energy consumption in later rounds.

184 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

A selection of favorable cluster-heads in earlier rounds does not result in an
unfavorable cluster-head selection in later rounds. Therefore, energy savings
from earlier rounds will not be consumed by higher energy dissipation in
later rounds. Regarding energy consumption, a deterministic cluster-head
selection algorithm can out perform a stochastic algorithm.

The definition of the lifetime of a microsensor network is determined
by the kind of service it provides. Hence, three approaches to defining
lifetime are considered. In some cases it is necessary for all nodes to stay
alive as long as possible, since network quality decreases considerably as
soon as one node dies. Scenarios for this case include intrusion or fire
detection. In these scenarios it is important to know when the first node
dies. The metric First Node Dies (FND) denotes an estimated value for
this event in a specific network configuration. Furthermore, sensors can
be placed in proximity to each other. Thus, adjacent sensors could record
related or identical data. Hence, the loss of a single or a few nodes does not
automatically diminish the quality of service in the network. In this case,
the metric Half of the Nodes Alive (HNA) denotes an estimated value for
the half-life period of a microsensor network. Finally, the metric Last Node
Dies (LND) gives an estimated value for the overall lifetime of a microsensor
network.

For a cluster-based algorithm like LEACH, the metric LND is not interesting
since more than one node is necessary to perform the clustering algorithm.
The discussion of algorithms includes the metrics FND and HNA.

An approach to increasing the lifetime of a LEACH network is to include
the remaining energy level available in each node. This can be achieved
by reducing the threshold relative to the node’s remaining energy. This
modification of the cluster-head threshold can increase the lifetime of a
LEACH microsensor network by 30 % for FND and by more than 20 % for
HNA.

A modification of the threshold equation by the remaining energy has a
crucial disadvantage, in that after a certain number of rounds the sensor
network cannot perform, although there are still nodes available with enough
energy to transmit data to the base station. The reason for this is a cluster-
head threshold that is too low, because the remaining nodes have a very low
energy level.

A possible solution of this problem is a further modification of the threshold
equation, which is expanded by a factor that increases the threshold for any
node that has not been cluster-head for a certain number of rounds. The
chance of this node becoming a cluster-head increases because of a higher
threshold. A possible blockade of the network is solved. This way the data is
transmitted to the base station as long as the nodes are alive.

6.4. SENSOR CLUSTERS’ PERFORMANCE 185

6.4. SENSOR CLUSTERS’ PERFORMANCE

The goals of a wireless sensor network are to detect events of interest and
estimate parameters that characterize these events. The resulting information
is transmitted to one or more locations outside the network. For example, a
typical scenario might include a number of sensors spread over an outdoor
area for the purpose of determining vehicle traffic. The first step is to
determine if there is a vehicle present, and the second step is to classify the
type of vehicle. Parameters such as speed, direction, and cargo are of interest.
Figure 6.9 shows a conceptual diagram of the three layers in the physical
system. The cluster layer is where the collaborative signal processing occurs,
while the wireless Mobile Ad hoc Network (MANET) is responsible for routing
and dissemination of the information. Note that conceptually, the wireless
network is larger than the sensor network, because it includes additional
nodes.

The issues in designing a sensor network include:

• selection of the collaborative signal processing algorithms run at each
sensor node;

• selection of multi-hop networking algorithms, and
• optimal matching of sensor requirements with communications perfor-

mance.

Sensor clusters

Sensor network

Wireless network

In
fo

rm
at

io
n

flo
w

Figure 6.9 The conceptual layers in wireless sensor network.

186 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

For military networks, additional issues are:

• low probability of detection and exploitation;
• resistance to jamming, reliability of data;
• latency;
• survivability of the system.

To make the design and optimization efforts tractable, the problem should
be decomposed as much as possible. This is done by clearly defining interfaces
between the different layers containing the various sensor, networking, and
communication processes. Moreover, the wireless sensor network must be
coupled with the environment and the target(s); there are two or more
transmission media, one for the radio propagation and the other for the
propagation of the sensor input (acoustic, seismic, etc.).

To reduce the amount of power spent on long distance radio transmissions,
the sensor nodes are aggregated into clusters. This concept is especially useful
when the ranges of the sensors are relatively short. During the process of
distributed detection, estimation and data fusion, the radio transmissions
are among nodes within a cluster, under the control of a cluster-head or
master node. While it is quite possible that all the nodes in a cluster are
identical, it may be more desirable to provide the cluster-head with more
functionality. Location awareness using GPS (Global Positioning System) and
a longer-range radio are two useful additions.

Figure 6.10 shows the processing occurring at different layers in the proto-
col stack for such a cluster-based system. A short range radio (Radio 1) is used
to communicate among the sensors in a cluster. The sensor layer is respon-
sible for the collaborative signal processing, which processing can include
beamforming, as well as distributed detection, estimation and data fusion.
The system operates by using an emitter which generates observations at one
or more sensors. In the figure, only node A receives a particular observation.
The sensor layer processes the observation and makes a tentative decision,
thereby performing data reduction down to a few bits. (For beamforming,
either the raw data or a finely quantized version thereof is transmitted instead,
requiring significantly more bandwidth.) This information is placed in a very
short data packet that is to be sent to all other nodes in the cluster (Nodes
Bi and Node C), assumed to be within one hop. Therefore, the packet can
bypass the transport and network layers and go directly to the MAC layer for
transmission at the appropriate time.

Upon reception of the packet, the other nodes update their tentative
decisions. These decisions may then be re-broadcast to all nodes in the
cluster. The number of iterations depends on the distributed algorithm, and

6.4. SENSOR CLUSTERS’ PERFORMANCE 187

Emitter

Observation

Sensor

Transport

Network

MAC

PHY

Sensor

Transport

Network

MAC

PHY

Radio 1 Radio 1 Radio 2

Node A Nodes Bi Node C

Cluster
head

Sensor

Transport

Network

MAC MAC

PHY PHY

Figure 6.10 The movement of data through the different protocol layers in a clus-
ter-based wireless sensor network.

eventually convergence is achieved. A number of parameters, such as the
decision and a confidence measure, now need to be transmitted from the
cluster to a remote location using the larger mobile ad-hoc network.

A summary packet is generated and sent down to the network layer,
as shown in the figure by the solid lines in the right side of node C.
The network layer uses its routing protocol to select the next hop in the
MANET. The network packet is encapsulated by the MAC and transmitted.
The actual transmission may use the same radio system as used for cluster-
based processing, albeit with increased power and changes in other radio
parameters. For example, the virtual subnet approach uses different channels
for intracluster and intercluster communications. However, it is also possible
to use a completely different radio, as shown in Figure 6.10.

6.4.1. Distributed Sensor Processing

In distributed detection, a number of independent sensors each make a local
decision, often a binary one, and then these decisions are combined at a fusion

188 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

center to generate a global decision. In the Neyman–Pearson formulation, a
bound on the global probability of false alarm is assumed, and the goal is to
determine the optimum decision rules at the sensors and at the fusion center
that maximize the global probability of detection. Alternatively, the Bayesian
formulation can be used, and the global probability of error be computed. If
the communication network is able to handle the increased load, performance
can be improved through the use of decision feedback.

Swaszek and Willet (1995) proposed an extensive feedback approach that
they call ‘parleying’. The basic idea is that each sensor makes an initial binary
decision that is then distributed to all the other sensors. The goal is to achieve a
consensus on the given hypothesis through multiple iterations. The algorithm
constrains the consensus to be optimum in that it matches the performance
of a centralized processor having access to all the data. The main algorithmic
performance issue is the number of parleys (iterations) required to reach this
consensus. An extension to the parley algorithm uses soft decisions in order
to reduce both the number of channel accesses required and the total number
of bits transmitted. The parley algorithm leads to the same global decision
being made at each node in the cluster.

When classifying a target, the true misclassification probability is the main
metric of interest. For any parameter, the maximum likelihood (or maximum
a posteriori, if possible) estimate of these parameters is desired, along with the
variance of the estimate. Additionally, the total energy expended in making
the detection decision and doing any parameter estimation and classification
is important.

While the use of decision feedback in a sensor cluster can certainly improve
performance, there is an additional cost in the complexity of the sensor nodes
and a possible increase in transmission energy requirements. Advances in
integrated circuitry mitigate the first problem, and the use of short range
transmissions helps with the second one. In general, the trend is to put
more signal processing in the node in order to reduce the number of trans-
missions. Cluster-based collaborative signal processing provides a good
trade-off between improved performance and low energy use. Within a node,
multispectral or multimode sets of colocated sensors, combined in a kind of
local data fusion, may be used to improve the performance. This type of data
fusion is generally different from the data fusion that may occur at a fusion
center (cluster-head).

The overall utility of the sensor network may be improved if each sensor
is context-aware, that is, it has some knowledge of its environment. Schmidt
et al. (1999) studied the use of context awareness for adapting the operating
parameters of a GSM (Global Standard for Mobile) cellular phone and a
personal digital assistant, and proposed a four-layer architecture. The lowest

6.4. SENSOR CLUSTERS’ PERFORMANCE 189

layer is the sensor layer, which consists of the actual hardware sensors. For
each sensor, a number of cues is created. Cues are abstractions of a sensor,
and they allow calibration and post-processing; when a sensor is replaced by
one of a different type, only the cues must be modified.

Typical cues include:

• the average of the sensor data over a given interval;
• the standard deviation over the same interval;
• distance between the first and third quartiles;
• first derivative of the sensor data.

Multiple sets of contexts can be defined from the cues. For example, a single
context is the terrain surrounding the sensor node, such as forest, urban area,
open field, etc. Here, the choices are mutually exclusive, but this is not a
requirement. Another context is the number of other sensor nodes with direct
(single-hop) radio connectivity. A third context is the required level of trans-
mission security or stealth. Determining the cue to context mapping is, in gen-
eral, a difficult challenge. Once the sensor’s context is known, parameters such
as transmit power, waveform, distributed detection algorithm, etc., can be set.

Regardless of the application, there are certain critical features that can
determine the efficiency and effectiveness of a dedicated network. These
features can be categorized into quantitative features and qualitative features.
Quantitative features include:

• Network settling time: the time required for a collection of mobile wireless
nodes to organize itself automatically and transmit the first message
reliably.

• Network join time: the time required for an entering node or group of nodes
to become integrated into the special network.

• Network depart time: the time required for the network to recognize the loss
of one or more nodes, and reorganize itself to route around the departed
nodes.

• Network recovery time: the time required for a collapsed portion of the
network, due to traffic overload or node failures, to become functional
again once the load is reduced or the nodes become operational.

• Frequency of updates (overhead): the number of control packets required in a
given period to maintain proper network operation.

• Memory requirement: the storage space requirements in bytes, including
routing tables and other management tables.

• Network scalability: the number of nodes that the dedicated network can
scale to and reliably preserve communication.

190 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

Qualitative critical features include:

• Knowledge of nodal locations: does the routing algorithm require local or
global knowledge of the network?

• Effect of topology changes: does the routing algorithm need complete restruc-
turing or only incremental updates?

• Adaptation to radio communication environment: do nodes use estimated
knowledge of fading, shadowing, or multi-user interference on links in
their routing decisions?

• Power consciousness: does the network employ routing mechanisms that
consider the remaining battery life of a node?

• Single or multichannel: does the routing algorithm utilize a separate control
channel? In some applications, multichannel execution may make the
network vulnerable to counter measures.

• Bidirectional or unidirectional links: does the routing algorithm perform
efficiently on unidirectional links, e.g. if bidirectional links become unidi-
rectional?

• Preservation of network security: do routing and MAC layer policies support
the survivability of the network, in terms of low probability of detection,
low probability of intercept, and security?

• QoS routing and handling of priority messages: does the routing algorithm
support priority messaging and reduction of latency for delay sensitive
real-time traffic? Can the network send priority messages and voice even
when it is overloaded with routine traffic levels?

• Real-time voice and video services: can the network support simultaneous
real-time multicast voice or video while supporting traffic loads associated
with situation awareness, and other routine services?

Thread-task level metrics include average power expended in a given time
period to complete a thread (task), including power expended in transmit-
ting control messages and information packets, and task completion time.
Diagnostic metrics, which characterize network behavior at the packet level,
include end-to-end throughput (average successful transmission rate) and
delay, average link utilization, and packet loss rate.

The performance of the sensor network depends on the routing of the under-
lying dedicated network. MANET routing algorithms include the dynamic
source routing protocol (DSR) and the ad-hoc on-demand distance vector rout-
ing protocol (AODV), either of which can be used as basis for the underlying
wireless network. Perhaps of more relevance is the zone routing protocol

6.4. SENSOR CLUSTERS’ PERFORMANCE 191

(ZRP), which is a hybrid of proactive and reactive routing protocols. This
means that the network is partitioned into zones, and the routes from a
node to all other nodes in its zone are determined. Routes to nodes in other
zones are found as needed. ZRP may allow the sensor network to implement
decision feedback among all nodes in a zone in a straightforward manner.

As an example, consider the sensor network shown in Figure 6.11. The
sensors have been placed along the roads, with the greatest concentration at
the fork. The Linked Cluster Algorithm (LCA) was used to self-organize the
network, leading to the creation of four clusters. Clusters 1 and 2 overlap, as

Cluster 2

Cluster 3

Cluster 1

Cluster 0

Figure 6.11 Self-organized sensor network. The cluster heads are squares, the gateway
nodes are diamonds, and the ordinary sensor nodes are circles. The transmission areas
of the four cluster heads are indicated by the four large circles.

192 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

do clusters 1 and 3, so only a single gateway node is used to connect each
pair. Since clusters 0 and 1 do not overlap, a pair of gateways is created; the
resulting backbone network that connects the cluster heads is shown in the
illustration.

The numbering of the nodes in the LCA determines which nodes become
cluster-heads and gateways. Since the initial topology is known, four specific
nodes are assigned the highest node numbers, thereby ensuring that they
would become cluster-heads. Essentially, by choosing the cluster-heads in
advance, the clusters have shapes that are well suited to collaborative signal
processing. To decompose a cluster further into subclusters, for example,
cluster 1 could easily be divided into two or three sensor groups for the
purpose of distributed detection. Once a decision is reached in a subcluster,
it would be sent to the cluster-head for dissemination.

6.5. POWER-AWARE FUNCTIONS IN WIRELESS
SENSOR NETWORKS

The design of micropower wireless sensor systems has gained increasing
importance for a variety of civil and military applications. With advances in
MEMS technology and its associated interfaces, signal processing, and RF
circuitry, the focus has shifted away from limited macrosensors communi-
cating with base stations, to creating wireless networks of communicating
microsensors that aggregate complex data to provide rich, multidimensional
pictures of the environment. While individual microsensor nodes are not
as accurate as their macrosensor counterparts, the networking of a large
number of nodes enables high quality sensing networks with the additional
advantages of easy deployment and fault tolerance. These are the character-
istics that make microsensors ideal for deployment in otherwise inaccessible
environments, where maintenance would be inconvenient or impossible.

The unique operating environment and performance requirements of dis-
tributed microsensor networks require fundamentally new approaches to
system design. As an example, consider the expected performance versus
longevity of the microsensor node, compared with battery-powered portable
devices. The node, complete with sensors, DSP (Digital Signal Processing),
and radio, is capable of a tremendous diversity of functionality. Through-
out its lifetime, a node may be called upon to be a data gatherer, a signal
processor, and a relay station. Its lifetime, however, must be of the order of
months to years, since battery replacement for thousands of nodes is not an
option. In contrast, much less capable devices, such as cellular telephones, are
only expected to run for days on a single battery charge. High diversity also

6.5. POWER-AWARE FUNCTIONS IN WIRELESS SENSOR NETWORKS 193

exists within the environment and user demands upon the sensor network.
Ambient noise in the environment, the rate of event arrival, and the user’s
quality requirements of the data may vary considerably over time.

A long node lifetime under diverse operating conditions demands power-
aware system design. In a power-aware design, the node’s energy consump-
tion displays a graceful scalability in energy consumption at all levels of
the system hierarchy, including the signal processing algorithms, operat-
ing system, network protocols, and even the integrated circuits themselves.
Computation and communication are partitioned and balanced for mini-
mum energy consumption. Software that understands the energy–quality
tradeoff collaborates with hardware that scales its own energy consumption
accordingly.

Once the power-aware microsensor nodes are incorporated into the frame-
work of a larger network, additional power-aware methodologies emerge at
the network level. Decisions about local computation versus radio communi-
cation, the partitioning of computation across nodes, and error correction on
the link layer offer a diversity of operational points for the network.

A network protocol layer for wireless sensors allows for sensor collabora-
tion. Sensor collaboration is important for two reasons. First, data collected
from multiple sensors can offer valuable inferences about the environment.
For example, large sensor arrays have been used for target detection, clas-
sification and tracking. Second, sensor collaboration can provide trade-offs
in communication versus computation energy. Since it is likely that the data
acquired from one sensor are highly correlated with data from its neighbors,
data aggregation can reduce the redundant information transmitted within
the network. When the distance to the base station is large, there is a large
advantage in using local data aggregation (e.g. beamforming) rather than
direct communication. Since wireless sensors are energy constrained, it is
important to exploit such trade-offs to increase system lifetimes and improve
energy efficiency.

The energy-efficient network protocol LEACH (Low Energy Adaptive
Clustering Hierarchy) utilizes clustering techniques that greatly reduce the
energy dissipated by a sensor system. In LEACH, sensor nodes are organized
into local clusters. Within the cluster is a rotating cluster-head. The cluster-
head receives data from all other sensors in the cluster, performs data
aggregation, and transmits the aggregate data to the end-user. This greatly
reduces the amount of data that is sent to the end-user for increased energy
efficiency. LEACH can achieve reduction in energy of up to a factor of 8
over conventional routing protocols such as multi-hop routing. However,
the effectiveness of a clustering network protocol is highly dependent on the
performance of the algorithms used for data aggregation and communication.

194 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

It is important to design and implement energy-efficient sensor algorithms
for data aggregation and link-level protocols for the wireless sensors.

Beamforming algorithms is one class of algorithms that can be used to
combine data. Beamforming can enhance the source signal and remove
uncorrelated noise or interference. Since many types of beamforming algo-
rithms exist, it is important to make a careful selection based upon their
computation energy and beamforming quality.

Algorithm implementations for a sensor network can take advantage of the
network’s inherent capability for parallel processing to reduce energy further.
Partitioning a computation among multiple sensor nodes and performing the
computation in parallel permits a greater allowable latency per computation,
allowing energy savings through frequency and voltage scaling.

As an example, consider a target tracking application that requires sensor
data to be transformed into the frequency domain through 1024-point FFT
(Fast Fourier Transform). The FFT (Fast Fourier Transform) results are phase
shifted and summed in a frequency-domain beamformer to calculate signal
energies in 12 uniform directions, and the Line-Of-Bearing (LOB) is esti-
mated as the direction with the most signal energy. By intersecting multiple
LOBs at the base station, the source’s location can be determined. Figure 6.12
demonstrates the tracking application performed with traditional clustering
techniques for a seven sensor cluster. The sensors (S1–S6) collect data and
transmit the data directly to the cluster-head (S7), where the FFT, beamform-
ing and LOB estimation are performed. Measurements on the SA-1100 at an
operating voltage of 1.5 V and frequency of 206 MHz show that the tracking
application dissipates 27.27 mJ of energy.

A/D

A/D

A/D

FFT BF LOB

Sensor 1

Sensor 2

Sensor 6 Sensor 7

Cluster -head

Figure 6.12 Approach 1: All computation is done at the cluster-head.

6.5. POWER-AWARE FUNCTIONS IN WIRELESS SENSOR NETWORKS 195

Distributing the FFT computation among the sensors reduces energy dis-
sipation. In the distributed processing scenario of Figure 6.13, the sensors
collect data and perform the FFTs before transmitting the FFT results to the
cluster-head. At the cluster-head, the FFT results are beamformed and the
LOB estimate is found. Since the seven FFTs are done in parallel, the supply
voltage and frequency can be reduced without sacrificing latency. When the
FFTs are performed at 0.9 V, and the beamforming and LOB estimation at the
cluster-head are performed at 1.3 V, then the tracking application dissipates
15.16 mJ, a 44 % improvement in energy dissipation.

Energy–quality trade-offs appear at the link layer as well. One of the
primary functions of the link layer is to ensure that data is transmitted reliably.
Thus, the link layer is responsible for some basic form of error detection and
correction. Most wireless systems utilize a fixed error correction scheme
to minimize errors and may add more error protection than necessary to
the transmitted data. In a energy-constrained system, the extra computation
becomes an important concern. Thus, by adapting the error correction scheme
used at the link layer, energy consumption can be scaled while maintaining
the Bit Error Rate (BER) requirements of the user.

Error control can be provided by various algorithms and techniques, such
as convolutional coding, BCH (Bose–Chaudhuri–Hocquenghem) coding,
and turbo coding. The encoding and decoding energy consumed by the
various algorithms can differ considerably. As the code rate increases, the
algorithm’s energy also increases. Hence, given bit error rate and latency
requirements, the lowest power FEC (Forward Error Control) algorithm that
satisfies these needs should continuously be chosen. Power consumption can

A/D FFT

A/D FFT

A/D FFT

Sensor 2 Sensor 1

Sensor 6 Sensor 7

Cluster-head

LOBBF

Figure 6.13 Approach 2: Distribute the FFT computation among all sensors.

196 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

be further reduced by controlling the transmit power of the physical radio.
For a given bit error rate, FEC lowers the transmit power required to send
a given message. However, FEC also requires additional processing at the
transmitter and receiver, increasing both the latency and processing energy.
This is another computation versus communication trade-off that divides
available energy between the transmit power and coding processing to best
minimize total system power.

6.5.1. Power Aware Software

The overall energy efficiency of wireless sensor networks crucially depends
on the software that runs on them. Although dedicated circuits can be sub-
stantially more energy efficient, the flexibility offered by general purpose
processors and DSPs have engineered a shift towards programmable solu-
tions. Power consumption can be substantially reduced by improving the
control software and the application software.

The embedded operating system can dynamically reduce system power
consumption by controlling shutdown, the powering down of all or parts
of the node when no interesting events occur, and dynamic voltage scaling.
Dynamic power management using node shutdown, in general, is a nontrivial
problem. The sensor node consists of different blocks, each characterized by
various low power modes and overheads to transition to them. The node
sleep states are a combination of various block shutdown modes. If the
overheads in transitioning to sleep states were negligible, then a simple
greedy algorithm could make the system go into the deepest sleep state as
soon as it is idle. However, in reality, transitioning to a sleep state and waking
up has a latency and energy overhead. Therefore, implementing the right
policy for transitioning to the available sleep states is critical.

It is highly desirable to structure the algorithms and software such that
computational accuracy can be traded off with energy consumption. Trans-
forming software such that most significant computations are accomplished
first improves the energy–quality scalability can be improved. Consider an
example of a sensor node performing an FIR filtering operation. If the energy
availability to the node were reduced, the algorithm may be terminated
early to reduce the computational energy. In an unscalable software imple-
mentation, this would result in severe quality degradation. By accumulating
the partial products corresponding to the most significant coefficients first
(by sorting them in decreasing order of magnitude), the scalable algorithm
produces far more accurate results at lower energies.

An application programming interface is an abstraction that hides the
underlying complexity of the system from the end-user. Hence, a wireless

6.5. POWER-AWARE FUNCTIONS IN WIRELESS SENSOR NETWORKS 197

sensor network API is a key enabler in allowing end-users to manage the
tremendous operational complexity of such networks. While end-users are
experts in their respective application domains (say, remote climate monitor-
ing), they are not necessarily experts in distributed wireless networking and
do not wish to be bothered with the internal network operation. By defining
high-level objects, a functional interface and the associated semantics, APIs
make the task of application development significantly easier.

An API consists of a functional interface, object abstractions, and detailed
behavioral semantics. Together, these elements of an API define the ways
in which an application developer can use the system. Key abstractions in a
wireless sensor network API are the nodes, base station, links, messages, etc.
The functional interface itself is divided into the following:

• functions that gather the state (of the nodes, part of a network, a link
between two nodes, etc.);

• functions that set the state (of the nodes, of a cluster or the behavior of a
protocol);

• functions that allow data exchange between nodes and the base station;
• functions that capture the desired operating point from the user at the base

station;
• functions that help visualize the current network state;
• functions that allow users to incorporate their own models (for energy,

delay, etc.).

An API is much more than the sum of its functional interface and object
abstractions. This is because of the (often implicit) application development
paradigm associated with it. The API is especially crafted to promote appli-
cation development based on certain philosophies which the designers of the
network consider to be optimal in the sense of correctness, robustness and
performance. For example, a good overall application framework for wireless
sensor networks is the Get-Optimize-Set paradigm. This paradigm basically
implies collecting the network state, using this state information along with
the knowledge of the desired operating point to compute the new optimal
state, and then setting the network to this state. The entire application code is
based on this template.

Power aware computation and communication is the key to achieving
long network lifetimes due to the energy constrained nature of the nodes.
An important responsibility of the API is not only to allow the end-user to
construct the system in a power-aware manner but also to encourage such an
approach. For starters, functions in a high quality network API have explicit

198 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

energy, quality, latency and operating point annotations. Hence, instead of
demanding a certain function from the network, one can demand a certain
function subject to constraints (energy, delay, quality, etc.). Next, the API
has basic energy modeling allowing the end-user to calibrate the energy
efficiency of the various parts of the application. For users requiring models
beyond the level of sophistication that the API offers, there are modeling
interfaces that allow users to register arbitrarily complex models. Next, a
good wireless sensor API allows what have come to be known in the software
community as thick and thin clients. These adjectives refer to the complexity
and overhead of typical application layers. Finally, the Get-Optimize-Set
paradigm promulgated by the API allows the network to beat the optimal
operating point thus enhancing energy efficiency.

6.6. EFFICIENT FLOODING WITH PASSIVE CLUSTERING

Clustering and route aggregation techniques have been proposed to reduce
the flooding overhead. These techniques operate in a proactive, background
mode. They use explicit control packets to elect a small set of nodes (cluster-
heads, gateways or flood-forwarding nodes), and restrict to such a set the
flood forwarding function. These proactive schemes cause traffic overhead in
the network.

A flooding mechanism based on passive, on-demand clustering reduces
flooding overhead without loss of network performance. Passive clustering is
an on-demand protocol which dynamically partitions the network into clus-
ters interconnected by gateways. Passive clustering exploits data packets for
cluster formation, and is executed only when there is user data traffic. Passive
clustering has the following advantages compared with active clustering and
route aggregation techniques.

(1) Passive clustering eliminates cluster set-up latency and extra control
overhead (by exploiting on-going packets).

(2) Passive clustering uses an efficient gateway selection heuristic to elect
the minimum number of forwarding nodes (thus reducing superfluous
flooding).

(3) Passive clustering reduces node power consumption by eliminating the
periodic, background control packet exchange.

Multi-hop ad hoc networks (MANETs) are self-creating, self-organizing
and self-administrating without deploying any kind of infrastructure. They

6.6. EFFICIENT FLOODING WITH PASSIVE CLUSTERING 199

offer special benefits and versatility for wide applications in military (e.g.
battlefields, sensor networks, etc.), commercial (e.g. distributed mobile
computing, disaster discovery systems, etc.), and educational (e.g. confer-
ences, conventions, etc.) environments, where fixed infrastructure is not
easily acquired. With the absence of pre-established infrastructure (e.g. no
router, no access point, etc.), two nodes communicate with one another in
a peer-to-peer fashion. Two nodes communicate directly if they are within
transmission range of each other. Otherwise, nodes can communicate via a
multi-hop route with the cooperation of other nodes. To find such a multi-hop
path to another node, each MANET node widely use flooding or broadcast
(e.g. hello messages). Many ad hoc routing protocols, multicast schemes, or
service discovery programs depend on massive flooding.

In flooding, a node transmits a message to all neighbors. The neighbors in
turn relay the message to their neighbors until the message has been propa-
gated to the entire network. This is blind flooding with performance related
to the average number of neighbors (neighbor degree) in the CSMA/CA
network. As the neighbor degree becomes higher, the blind flooding suffers
from the increases in:

• redundant and superfluous packets;

• the probability of collision, and

• congestion in wireless medium.

When topology or neighborhood information is available, only a subset of
neighbors is required to participate in flooding to guarantee the complete
flooding of the network. This is efficient flooding. The characteristics of
MANETs (e.g. node mobility, the limited bandwidth and resource), however,
make collecting topological information very difficult. It generally needs extra
overhead due to the periodic message exchanges or event driven updates
with optional deployment of GPS (Global Positioning System). For this reason,
many on-demand dedicated routing schemes and service discovery protocols
use blind flooding. With periodic route table exchanges, proactive ad-hoc
routing schemes, unlike on-demand routing methods, can gather topological
information without a significant overhead (through piggybacking topology
information or learning neighbors). Thus, a few proactive ad hoc routing
mechanisms use route aggregation methods so that the route information is
propagated by only a subset of nodes in the network.

Passive clustering is an efficient flooding suitable for on-demand protocols,
and does not require the deployment of GPS or explicit periodic control mes-
sages. This scheme has several contributions compared with other efficient

200 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

flooding mechanisms (such as multipoint relay, neighbor coverage, etc.) as
follows:

(1) Passive clustering does not need any periodic messages, instead, it exploits
existing traffic to piggyback its small control messages. Based on passive
clustering technique, it is very resource efficient regardless of the degree
of neighbor nodes or the size of the network. Passive clustering provides
scalability and practicality for choosing the minimal number of forward-
ing nodes in the presence of dynamic topology changes. Therefore, it
can be easily applied to on-demand routing schemes to improve the
performance and scalability.

(2) Passive clustering does not have any set-up latency, and it saves energy
with no traffic.

(3) Passive clustering maintenance is well adaptive to dynamic topology and
resource availability changes.

The problem of finding a subset of dominant forwarding nodes in MANETs
is NP-complete. Thus, the work on efficient flooding focuses on developing
efficient heuristics that select a suboptimal dominant set with low forwarding
overhead.

There are several heuristics to reduce rebroadcasts. Upon receiving a
flooding packet, a node decides whether it relays the packet to its neighbor
or not, by using one of following heuristics:

• probabilistic scheme where this node rebroadcasts the packet with the
randomly chosen probability;

• counter-based scheme where this node rebroadcasts if the number of
received duplicate packets is less than a threshold;

• distance-based scheme that uses the relative distance between hosts to
make the decision;

• location-based scheme based on pre-acquired location information of neigh-
bors;

• cluster-based scheme where only cluster-heads and gateways forward the
packet.

The passive clustering is different from those ideas in that it provides
a platform of efficient flooding based on locally collected information (e.g.
neighbor information, cluster states, etc.). Each node participates in flooding
based on the role or state in the cluster structure.

Another approach to efficient flooding is to exploit topological information.
With the node mobility and the absence of pre-existing infrastructure in the

6.6. EFFICIENT FLOODING WITH PASSIVE CLUSTERING 201

ad-hoc network, all works use the periodic hello message exchange method to
collect topological information. Passive clustering does not require periodic
control messages to collect topological information. Instead, it exploits on-
going data packets to exchange cluster-related information.

The two schemes are called self pruning and dominant pruning. Self prun-
ing is similar to the neighbor-coverage scheme. With self-pruning schemes,
each forwarding node piggybacks the list of its own neighbors on the out-
going packet. A node rebroadcasts (becomes a forwarding node) only when
this node has neighbors not covered by forwarding nodes. While the self-
pruning heuristic utilizes information of directly connected neighbors only,
the dominant-pruning scheme extends the range of neighbor information to
two-hop-away neighbors. The dominant-pruning scheme is similar to Multi-
point Relay (MPR) scheme in which a node periodically exchanges a list of
adjacent nodes with its neighbors so that each node can collect the information
of two-hop-away neighbors. Each node, based on the gathered information,
selects the minimal subset of forwarding neighbors, which covers all neigh-
bors within two hops. Each sender piggybacks its chosen forwarding nodes
(MPRNs) onto the outgoing broadcast packet. Moreover, based on topolog-
ical information, many schemes choose a dominant set. They still depend
on the periodic hello messages to collect topological information. The extra
hello messages, however, consume resources and drop the network through-
put in MANETs. The extra traffic brings about congestion and collision as
geographic density increases. The collision probability of hello messages in
a single-hop and a two-hop network as the number of neighbors increases
shows that the neighbor degree increases the collision probability of broad-
cast (the collision probability is more than 0.1 with more than 15 neighbors),
and hidden terminals aggravate the collision in the multi-hop network. We
assume there is no other traffic except for hello messages in the network.
With user-data packets, the collision probability of hello messages increases.
Thus, it is very difficult to collect the complete neighbor topology using hello
messages.

These schemes (e.g. neighbor-coverage, MPR, etc.) are not scalable to offered
load and the number of neighbors.

Clustering selects forwarding nodes, and groups nodes into clusters. A
representative of each group (cluster) is named a cluster-head and a node
belonging to more than two clusters at the same time is a gateway. Other
members are the ordinary nodes. The transmission area of the cluster-head
defines a cluster. Two-hop clustering is used where any node in a cluster
can reach any other node in the same cluster with, at most, two hops. With
clustering, nonordinary nodes can be the dominant forwarding nodes as
shown in Figure 6.14.

202 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

S

S

Cluster-head

Gateway

Ordinary node

Flooding

Source

Figure 6.14 An example of efficient flooding with clustering. Only cluster-heads and
gateways rebroadcast and ordinary nodes stop forwarding.

Flooding tree algorithm Clustering

A source

Rebroadcast nodes

Link

Cluster-head

Gateway

Ordinary node

Figure 6.15 In flooding tree algorithms, every neighbor of a source has to rebroadcast
since each neighbor is, at most, one adjacent node of some node. In clustering,
however, ordinary nodes are not forwarding nodes.

Figure 6.15 illustrates the difference between clustering and the MPR
scheme. Clustering partitions the network into several groups based on
the radio range of a cluster head. The network topology, therefore, does
not have a serious impact on the clustering performance. MPR, on the other
hand, chooses the dominant set using topological information so that the
performance of MPR is closely related to the network topology.

Clustering in ad-hoc networks includes hierarchical routing schemes, the
master election algorithms, power control, reliable broadcast, and efficient

6.6. EFFICIENT FLOODING WITH PASSIVE CLUSTERING 203

broadcast. The cluster architecture has also been used for efficient flooding.
Some clustering schemes are based on the complete knowledge of the neigh-
bors. However, the complete knowledge of neighbor information in such
networks is difficult to collect and requires a control overhead caused by
periodic exchanges of hello messages. The clustering algorithms use a large
number of gateways in the dense network and do not use a gateway reduction
mechanism to select a minimal number of gateways. The clustering incurs a
maintenance cost in case of a high mobility.

The three important observations are as follows:

(1) The selection mechanism to choose the dominant set should be efficient
and dynamic. Otherwise, the scheme cannot be used effectively and
practically.

(2) In a MANET, collecting accurate topological information is very difficult
and carries an overhead.

(3) Clustering scheme is independent of the network topology unlike the
route aggregation protocols (e.g. MPR).

6.6.1. Passive Clustering

Passive clustering is an on-demand protocol. It constructs and maintains the
cluster architecture only when there are on-going data packets that piggyback
cluster-related information (e.g. the state of a node in a cluster, the IP (Internet
Protocol) address of the node). Each node collects neighbor information
through packet receptions. Passive clustering, therefore, eliminates set-up
latency and major control overhead of clustering protocols.

Passive clustering has the following mechanisms for the cluster formation:

• First Declaration Wins rule, and
• Gateway Selection Heuristic.

With the First Declaration Wins rule, a node that first claims to be a cluster-
head rules the remaining nodes in its clustered area (radio coverage). There is
no waiting period (to make sure all the neighbors have been checked) unlike
that in all the weight-driven clustering mechanisms. The Gateway Selection
Heuristic provides a procedure to elect the minimal number of gateways
(including distributed gateways) required to maintain the connectivity in a
distributed manner.

Passive clustering maintains clusters using implicit timeout. A node
assumes that some nodes are out of locality if they have not sent any

204 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

data for longer than timeout duration. With reasonable offered load, a node
can respond to dynamic topology changes.

When a node joins the network, it sets the cluster state to initial. Moreover,
the state of a floating node (a node that does not belong to a cluster yet)
also sets to initial. Because passive clustering exploits on-going packets, the
implementation of passive clustering resides between layers 3 and 4.

The IP option field for cluster information is as follows:

• Node ID (identifier) is the IP (Internet Protocol) address of the sender node.
This is different from the source address of the IP packet;

• state of the cluster is the cluster state of the sender node;

• if a sender node is a gateway, then it tags two IP addresses of cluster heads
which are reachable from the gateway;

The passive clustering algorithm is as follows:

• Cluster states. There are six possible states; initial, cluster-head, ordinary node,
gateway, cluster-head gateway, gateway ready, and distributed gateway.

• The packet handling. Upon sending a packet, each node piggybacks cluster-
related information. Upon a packet reception, each node extracts cluster-
related information of neighbors and updates the neighbor information
table.

• A cluster-head declaration is done by a node in initial state which changes
its state to cluster-head ready (a candidate cluster-head) when a packet
arrives from another node that is not a cluster-head. With outgoing packet,
a cluster-head ready node can declare as a cluster-head. This helps the
connectivity because it reduces isolated clusters.

• A node becomes a member of a cluster once it has heard or overheard a
message from any cluster head. A member node can serve as a gateway
or an ordinary node depending on the collected neighbor information.
A member node can settle as an ordinary node only after it has learned
enough neighbor gateways. In passive clustering, however, the existence
of a gateway can be found only by overhearing a packet from that gateway.
Thus, another internal state is gateway ready, for a candidate gateway node
that has not yet discovered enough neighbor gateways. A gateway selection
mechanism is developed to reduce the total gateways in the network. A
candidate gateway finalizes its role as a gateway upon sending a packet
(announcing the gateway’s role). A candidate gateway node can become
an ordinary node any time with the detection of enough gateways.

6.6. EFFICIENT FLOODING WITH PASSIVE CLUSTERING 205

A gateway is a bridge node that connects two adjacent clusters. Thus, a
node that belongs to more than two clusters at the same time is eligible to
be a gateway. Only one gateway is needed for each pair of two adjacent
clusters. The gateway selection mechanism allows only one gateway for
each pair of two neighboring cluster-heads. However, it is possible that
there is no potential gateway between two adjacent clusters, that is, two
cluster-heads are not mutually reachable via a two-hop route. If there is
a three-hop route between two nodes, then the clustering scheme selects
those intermediate nodes as distributed gateways. Without the knowledge
of complete two-hop neighbors’ information, choosing a minimal number of
distributed gateways is difficult. Topological knowledge carries an overhead
and works inefficiently, thus, a counter-based distributed gateway selection
mechanism is considered.

The gateway selection mechanism can be summarized as follows:

• Gateway means that a node belonging to more than two clusters at the
same time becomes a candidate gateway. Upon sending a packet, a potential
gateway chooses two cluster-heads from among known cluster-heads. This
node will serve as an intermediate node between those cluster-heads.
This node cannot be an intermediate node of two cluster-heads that were
announced by another neighbor gateway node. If the node finds two cluster-
heads, then it finalizes its role as a gateway and announces two cluster-
heads to neighbors. If a gateway has received a packet from another
gateway that has announced the same pair of cluster-heads, then this node
compares the node ID of itself with that of the sender. If this node has the
lower ID, it keeps its role as the gateway. Otherwise, it chooses a different
pair of cluster-heads or changes its state. If this node can find another pair
of neighbor cluster-heads that is not announced by any other gateway, then
it keeps its state as gateway for the new pair of cluster-heads, otherwise it
changes its state to ordinary node.

• Passive clustering allows one distributed gateway for each cluster-head
and each node. A node that belongs to only one cluster can be an ordinary
node when at least two (distributed) gateways are known to this node.
Otherwise, it keeps the candidate gateway state. A candidate gateway node
can be a distributed gateway if there is no neighbor-distributed gateway
that also belongs to the same cluster. If an ordinary node has received a
packet from a distributed gateway and no gateway is a neighbor node of
that node, then this node changes to a distributed gateway.

Figure 6.16 shows an example of cluster architecture developed by passive
clustering. With moderate on-going traffic, passive clustering allows only one
gateway for each pair of clusters and enough distributed gateway nodes.

206 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

8

9

2

10

37

1 4

5

6

(1,4)

(4,5)(1,7)

Cluster-head

Gateway

Ordinary node

GW_READY node

Initial node; potential cluster-head

Distributed gateway

(5,7)

Figure 6.16 An example of a gateway selection heuristic. There is at most one gate-
way between any pair of two cluster-heads. A gateway can survive only when this
node is the only gateway for an announced pair of cluster-heads or this node has
the lowest ID among contention gateways (who announced the same pair of cluster
heads).

The overhead and flooding efficiency of passive clustering needs to be
analyzed. For the message overhead, passive clustering adds 8 bytes or
16 bytes to each outgoing packet. In analysis control, message overhead is
considered, as the number of messages is more important than the size of
each packet in dedicated networks using IEEE 802.11 DCF protocol.

Passive clustering mechanisms are more efficient than distributed tree
algorithms in respect of processing overhead. The computational overhead
of passive clustering is O(Avg Neighbor) where Avg Neighbor denotes the
number of active neighbors. Upon receiving a packet, each node updates its
neighbor table and changes its state if necessary. A cluster-head only updates
its neighbor table. A member node, in addition, adjusts its state based
on gateway selection heuristic. Each node computes with O(Avg Neighbor)
computational complexity upon receiving a packet. With an outgoing packet,
each node simply piggybacks cluster-related information. The complexity
is O(1).

6.7. SUMMARY 207

Tx

Tx

Ty

Ty

R

R

R

R/Root (2)

Figure 6.17 The average and most dense case of cluster architecture.

Passive clustering divides nodes into several groups based on the trans-
mission range of the representative node (cluster-head). Thus, the number
of forwarding nodes is stable regardless of the geographical density of the
network. The reduction rate improves in proportion to the geographical
density.

Figure 6.17 illustrates the most dense and average case of cluster construc-
tion with the assumption that there are infinite number of nodes placed
randomly, and the network size is (Tx × Ty) where Tx is the horizontal size
and Ty is the vertical size of the network area.

6.7. SUMMARY

Routing and data dissemination in sensor networks requires a simple and
scalable solution.

208 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

The topology discovery algorithm for wireless-sensor networks selects
a set of distinguished nodes, and constructs a reachability map based on
their information. The topology discovery algorithm logically organizes the
network in the form of clusters and forms a tree of clusters rooted at the
monitoring node. We discussed the applications of tree of clusters for efficient
data dissemination and aggregation, duty-cycle assignments and network-
state retrieval. The topology discovery algorithm is completely distributed,
uses only local information, and is highly scalable.

To achieve optimal performance in a wireless sensor network, it is impor-
tant to consider the interactions among the algorithms operating at the
different layers of the protocol stack. While there has been much research on
partitioning a MANET into clusters, most of this work has focused on doing
so for routing and resource allocation purposes. For sensor networks, a key
addition is how the self-organization of the network into clusters affects the
sensing performance.

Distributed microsensor networks hold great promise in applications
ranging from medical monitoring and diagnosis to target detection, home
automation, hazard detection, and automotive and industrial control. How-
ever, even within a single application, the tremendous operational and
environmental diversity inherent to the microsensor network demand an
ability to make trade-offs between quality and energy dissipation. Hooks
for energy–quality scalability are necessary not only at the component level,
but also throughout the node’s algorithms and the network’s communication
protocols. Distributed sensor networks designed with built-in power aware-
ness and scalable energy consumption will achieve maximal system lifetime
in the most challenging and diverse environments.

Passive clustering can reduce redundant flooding with negligible extra
protocol overhead. Moreover, passive clustering can be applied to reactive,
on-demand routing protocols with substantial performance gains.

Performance of blind flooding is severely impaired especially in large and
dense networks.

PROBLEMS

Learning Objectives

After completing this chapter you should be able to:

• demonstrate understanding of the clustering techniques in wireless sensor
networks;

PROBLEMS 209

• discuss what is meant by topology discovery in wireless sensor networks;
• explain what the clusters in sensor networks are;
• demonstrate understanding of adaptive clustering with deterministic

cluster-head selection;
• explain what the power-aware functions in wireless sensor networks are;
• explain what efficient flooding with passive clustering is;
• demonstrate understanding of passive clustering.

Practice Problems

Problem 6.1: What are the functions of clustering techniques?
Problem 6.2: What are the stages of execution in the topology discovery

algorithm?
Problem 6.3: What heuristics are used in a node coloring mechanism?
Problem 6.4: What are the design issues in sensor network?
Problem 6.5: What are cues?
Problem 6.6: What is passive clustering?
Problem 6.7: What are the advantages of passive clustering?

Practice Problem Solutions

Problem 6.1:

A tree of clusters represents a logical organization of the nodes and provides
a framework for managing sensor networks. Only local information between
adjacent clusters flows from nodes in one cluster to nodes in a cluster at a
different level in the tree of clusters. The clustering also provides a mechanism
for assigning node duty cycles so that a minimal set of nodes is active in
maintaining the network connectivity. The cluster-heads incur only minimal
overhead to set up the structure and maintain local information about its
neighborhood.

Problem 6.2:

The topology discovery algorithm used in sensor networks constructs the
topology of the entire network from the perspective of a single node. The
algorithm has three stages of execution as follows:

• a monitoring node requires the topology of the network to initiate a
topology discovery request;

210 CLUSTERING TECHNIQUES IN WIRELESS SENSOR NETWORKS

• this request diverges throughout the network reaching all active nodes;
• a response action is set up which converges back to the initiating node with

the topology information.

Problem 6.3:

Two heuristics are used to find the next neighborhood set determined by a
new black node, which covers the maximum number of uncovered nodes.
The first heuristic uses a node-coloring mechanism to find the required set of
nodes. The second heuristic applies a forwarding delay inversely proportional
to the distance between receiving and sending node. These heuristics provide
a solution quite near to the centralized greedy set cover solution.

Problem 6.4:

The issues in designing a sensor network include:

(1) selection of the collaborative signal processing algorithms run at each
sensor node;

(2) selection of the multi-hop networking algorithms, and
(3) optimal matching of sensor requirements with communications perfor-

mance.

For military networks, additional issues are: low probability of detection
and exploitation, resistance to jamming, reliability of data, latency, and
survivability of the system.

Problem 6.5:

Cues are abstractions of a sensor, and they allow calibration and post-
processing; when a sensor is replaced by one of a different type, only the cues
must be modified. Typical cues include:

• the average of the sensor data over a given interval;
• the standard deviation over the same interval;
• distance between the first and third quartiles;
• first derivative of the sensor data.

Problem 6.6:

Passive clustering is an on-demand protocol that dynamically partitions the
network into clusters interconnected by gateways. Passive clustering exploits

PROBLEMS 211

data packets for cluster formation, and is executed only when there is user
data traffic.

Problem 6.7:

Passive clustering has the following advantages:

(1) it eliminates cluster set-up latency and extra control overhead (by exploit-
ing on-going packets);

(2) it uses an efficient gateway selection heuristic to elect the minimum
number of forwarding nodes (thus reducing superfluous flooding);

(3) it reduces node power consumption by eliminating the periodic, back-
ground control-packet exchange.

7
Security Protocols for Wireless
Sensor Networks

7.1. INTRODUCTION

Thousands to millions of small sensors form self-organizing wireless net-
works. Security for these sensor networks is not easy since these sensors have
limited processing power, storage, bandwidth, and energy.

A set of Security Protocols for Sensor Networks, SPINS, explores the
challenges for security in sensor networks. SPINS include µTESLA (the
micro version of the Timed, Efficient, Streaming, Loss-tolerant Authenti-
cation protocol), providing authenticated streaming broadcast, and SNEP
(Secure Network Encryption Protocol), which provides data confidentiality,
two-party data authentication, and data freshness, with low overhead. An
authenticated routing protocol uses SPINS building blocks.

A sensor network should not leak sensor readings to neighboring networks.
In many applications (e.g. key distribution), nodes communicate highly
sensitive data. The standard approach for keeping sensitive data secret is to
encrypt the data with a secret key that only intended receivers possess, hence
achieving confidentiality. Given the observed communication patterns, secure
channels are set up between nodes and base stations, and later bootstrap other
secure channels as necessary.

Authenticated broadcast requires an asymmetric mechanism, otherwise any
compromised receiver could forge messages from the sender. Asymmetric
cryptographic mechanisms have high computation, communication, and

Wireless Sensor Network Designs A. Hać
 2003 John Wiley & Sons, Ltd ISBN: 0-470-86736-1

214 SECURITY PROTOCOLS

storage overhead, which makes their usage on resource-constrained devices
impractical. µTESLA overcomes this problem by introducing asymmetry
through a delayed disclosure of symmetric keys, which results in an efficient
broadcast authentication scheme.

Wireless networks, in general, are more vulnerable to security attacks than
wired networks, due to the broadcast nature of the transmission medium.
Furthermore, wireless sensor networks have an additional vulnerability
because nodes are often placed in a hostile or dangerous environment where
they are not physically protected.

In a target tracking application, nodes that detect a target in an area
exchange messages containing a timestamp, the location of the sending node,
and other application-specific information. When one of the nodes acquires
a certain number of messages such that the location of the target can be
approximately determined, the node sends the location of the target to
the user.

7.2. SECURITY PROTOCOLS IN SENSOR NETWORKS

Small sensor devices are inexpensive, low-power devices. They have lim-
ited computational and communication resources. The sensors form a
self-organizing wireless network in a multi-hop routing topology. Typical
applications may periodically transmit sensor readings for processing.

The network consists of nodes (small battery-powered devices) that com-
municate with a more powerful base station, which in turn is connected to an
outside network. The energy source on the devices is a small battery. Com-
munication over radio is the most energy-consuming function performed by
these devices, so that the communications overhead needs to be minimized.
The limited energy supplies create limits for security, hence security needs
to limit consumption of processor power. However, limited power supply
limits the lifetime of keys. Base stations differ from nodes in having longer-
lived energy supplies and having additional communications connections to
outside networks.

These constraints make it impractical to use secure algorithms designed for
powerful workstations. For example, the working memory of a sensor node is
insufficient even to hold the variables (of sufficient length to ensure security)
that are required in asymmetric cryptographic algorithms, let alone perform
operations with them.

Asymmetric digital signatures for authentication are impractical for sensor
networks for a number of reasons, such as, long signatures with a high
communication overhead of 50–1000 bytes per packet, a very high overhead

7.2. SECURITY PROTOCOLS IN SENSOR NETWORKS 215

to create and verify the signature. Also, symmetric solutions for broadcast
authentication are impractical: an improved k-time signature scheme requires
over 300 bytes per packet. TESLA protocol adapted for sensor networks to
become practical for broadcast authentication is called µTESLA.

Adding security to a highly resource-constrained sensor network is feasible.
The security building blocks facilitate the implementation of a security
solution for a sensor network by using an authenticated routing protocol and
a two-party key agreement protocol. The choice of cryptographic primitives
and the security protocols in the sensor networks is affected by the severe
hardware and energy constraints.

A general security infrastructure that is applicable to a variety of sensor
networks needs to define the system architecture and the trust requirements.

Generally, the sensor nodes communicate using RF (Radio Frequency),
thus broadcast is the fundamental communication primitive. The baseline
protocols account for this property, which affects the trust assumptions, and
is exploited to minimize energy usage.

The sensor network forms around one or more base stations, which interface
the sensor network to the outside network. The sensor nodes establish
a routing forest, with a base station at the root of every tree. Periodic
transmission of beacons allows nodes to create a routing topology. Each node
can forward a message towards a base station, recognize packets addressed to
it, and handle message broadcasts. The base station accesses individual nodes
using source routing. The base station has capabilities similar to the network
nodes, except that it has enough battery power to surpass the lifetime of all
sensor nodes, sufficient memory to store cryptographic keys, and means for
communicating with outside networks.

In the sensor applications there is limited local exchange and data process-
ing. The communication patterns within the network fall into three categories:

• node to base station communication, e.g. sensor readings;
• base station to node communication, e.g. specific requests;
• base station to all nodes, e.g. routing beacons, queries or reprogramming

of the entire network.

The security goal is primarily to address these communication patterns,
and to adapt the baseline protocols to other communication patterns, i.e. node
to node or node broadcast.

The sensor networks may be deployed in untrusted locations. While it
may be possible to guarantee the integrity of each node through dedicated
secure microcontrollers, such an architecture may be too restrictive and
does not generalize to the majority of sensor networks. Perrig et al. (2001b)

216 SECURITY PROTOCOLS

assume that individual sensors are untrusted. The SPINS key setup prevents
compromising of one node spreading to other nodes.

Basic wireless communication is not secure. Because it is broadcast, any
adversary can eavesdrop on the traffic, and inject new messages or replay and
change old messages. Hence, SPINS does not place any trust assumptions on
the communication infrastructure, except that messages are delivered to the
destination with nonzero probability.

Since the base station is the gateway for the nodes to communicate with the
outside world, compromising the base station can render the entire sensor
network useless. Thus the base stations are a necessary part of the trusted
computing base. All sensor nodes trust the base station: at creation time, each
node is given a master key which is shared with the base station. All other
keys are derived from this key.

Each node trusts itself and, in particular, the local clock is trusted to be
accurate, i.e. to have a small drift. This is necessary for the authenticated
broadcast protocol.

7.2.1. Sensor Network Security Requirements

Message authentication is important for many applications in sensor net-
works. Within the building sensor network, authentication is necessary for
many administrative tasks (e.g. network reprogramming or controlling sensor
node duty cycle). At the same time, an adversary can easily inject messages,
so the receiver needs to make sure that the data used in any decision-making
process originates from the correct source. Informally, data authentication
allows a receiver to verify that the data really was sent by the claimed sender.

In the case of two-party communication, data authentication can be
achieved through a purely symmetric mechanism: the sender and the receiver
share a secret key to compute a Message Authentication Code (MAC) for
all communicated data. When a message with a correct MAC arrives, the
receiver knows that it must have been originated by the sender.

This style of authentication cannot be applied to a broadcast setting without
placing much stronger trust assumptions on the network nodes. If one
sender wants to send authentic data to mutually untrusted receivers, using
a symmetric MAC is insecure. A receiver knows the MAC key, and hence
could impersonate the sender and forge messages to other receivers. Hence,
an asymmetric mechanism is needed to achieve authenticated broadcast.
Authenticated broadcast can also be constructed from symmetric primitives,
and asymmetry be introduced with delayed key disclosure and one-way
function key chains.

7.2. SECURITY PROTOCOLS IN SENSOR NETWORKS 217

In communication, data integrity ensures the receiver that the received data
is not altered in transit by an adversary. In SPINS, data integrity is achieved
through data authentication, which is a stronger property.

Since all the sensor networks stream some forms of time-varying measure-
ment, and they are guaranteed confidentiality and authentication, we also
must ensure that each message is fresh. Informally, data freshness implies that
the data is recent, and it ensures that no adversary has replayed old messages.
Two types of freshness are defined: weak freshness, which provides partial
message ordering, but carries no delay information, and strong freshness,
which provides a total order on a request–response pair, and allows for delay
estimation. Weak freshness is required by sensor measurements, while strong
freshness is useful for time synchronization within the network.

The following notation is used to describe security protocols and crypto-
graphic operations:

• A, B are principals, such as communicating nodes;
• NA is a nonce generated by A (a nonce is an unpredictable bit string, usually

used to achieve freshness);
• M1|M2 denotes the concatenation of messages M1 and M2;
• KAB denotes the secret (symmetric) key which is shared between A and B;
• {M}KAB is the encryption of message M with the symmetric key shared by

A and B;
• {M}(KAB,IV), denotes the encryption of message M, with key KAB, and

the initialization vector IV which is used in encryption modes such as
cipher-block chaining (CBC), output feedback mode (OFB), or counter
mode (CTR);

• secure channel is a channel that offers confidentiality, data authentication,
integrity, and freshness.

Security requirements are achieved by using two security building blocks:
SNEP and µTESLA. SNEP provides data confidentiality, two-party data
authentication, integrity, and freshness. µTESLA provides authentication for
data broadcast. The security for both mechanisms is bootstrapped with a
shared secret key between each node and the base station. The trust to node-
to-node interactions can be extended from the node-to-base-station trust.

SNEP has low communication overhead since it only adds bytes per
message. SNEP, like many cryptographic protocols, uses a counter, but trans-
mitting the counter value is avoided by keeping state at both end points. SNEP
achieves semantic security, a strong security property that prevents eaves-
droppers from inferring the message content from the encrypted message.

218 SECURITY PROTOCOLS

The same simple and efficient protocol also gives us data authentication,
replay protection, and weak message freshness.

Data confidentiality is one of the most basic security primitives and it
is used in almost every security protocol. A simple form of confidentiality
can be achieved through encryption, but pure encryption is not sufficient.
Another important security property is semantic security, which ensures that
an eavesdropper has no information about the plain text, even if it sees
multiple encryptions of the same plain text. For example, even if an attacker
has an encryption of a 0 bit and an encryption of a 1 bit, it will not help
it distinguish whether a new encryption is an encryption of 0 or 1. The
basic technique for achieving this is randomization: before encrypting the
message with a chaining encryption function (i.e. DES-CBC (Data Encryption
Standard – Cipher Block Chaining)), the sender precedes the message with
a random bit string. This prevents the attacker from inferring the plain text
of encrypted messages if it knows plain text-cipher text pairs encrypted with
the same key.

However, sending the randomized data over the RF channel requires
more energy. A cryptographic mechanism achieves semantic security with
no additional transmission overhead. A shared counter is used between the
sender and the receiver for the block cipher in counter mode (CTR). Since
the communicating parties share the counter and increment it after each
block, the counter does not need to be sent with the message. To achieve
two-party authentication and data integrity, a message authentication code
(MAC) is used.

The combination of these mechanisms forms the Sensor Network Encryp-
tion Protocol (SNEP). The encrypted data has the following format: E =
{D}(Kencr,C), where D is the data, the encryption key is Kencr, and the counter
is C. The MAC is M = MAC(Kmac, C|E). The keys Kencr and Kmac are derived
from the master secret key K. The complete message that A sends to B is:

A → B : {D}(Kencr,C), MAC(Kmac, C|{D}(Kencr,C)).

SNEP offers the following properties:

• Semantic security: Since the counter value is incremented after each mes-
sage, the same message is encrypted differently each time. The counter
value is long enough never to repeat within the lifetime of the node.

• Data authentication: If the MAC verifies correctly, a receiver can be assured
that the message originated from the claimed sender.

• Replay protection: The counter value in the MAC prevents replaying of
old messages. Note that if the counter were not present in the MAC, an
adversary could easily replay messages.

7.2. SECURITY PROTOCOLS IN SENSOR NETWORKS 219

• Weak freshness: If the message verified correctly, a receiver knows that
the message must have been sent after the previous message it received
correctly (that had a lower counter value). This enforces a message ordering
and yields weak freshness.

• Low communication overhead: The counter state is kept at each end point
and does not need to be sent in each message. (In case the MAC does not
match, the receiver can try out a fixed, small number of counter increments
to recover from message loss. In case the optimistic resynchronization fails,
the two parties engage in a counter exchange protocol, which uses the
strong freshness protocol).

Plain SNEP only provides weak data freshness, because it only enforces a
sending order on the messages within node B, but no absolute assurance to
node A that a message was created by B in response to an event in node A.

Node A achieves strong data freshness for a response from node B through
a nonce NA (which is a random number sufficiently long such that it is
unpredictable). Node A generates NA randomly and sends it along with a
request message RA to node B. The simplest way to achieve strong freshness
is for B to return the nonce with the response message RB in an authenticated
protocol. However, instead of returning the nonce to the sender, the process
can be optimized by using the nonce implicitly in the MAC computation. The
entire SNEP protocol providing strong freshness for B’s response is:

A → B : NA, RA

B → A : {RB}(Kencr,C), MAC(Kmac, NA|C|{RB}(Kencr,C)).

If the MAC verifies correctly, node A knows that node B generated the
response after it sent the request. The first message can also use plain SNEP
if confidentiality and data authentication are needed.

7.2.2. Authenticated Broadcast

Asymmetric digital signatures for authentication are impractical for multiple
reasons. They require long signatures with a high communication overhead
of 50–1000 bytes per packet, and a very high overhead to create and verify
the signature. One-time signature schemes that are based on symmetric
cryptography (one-way functions without trap doors) have a high overhead:
Gennaro and Rohatgi’s broadcast signature based on Lamport’s one-time
signature requires over 1 kbyte of authentication information per packet,
and Rohatgi’s improved k-time signature scheme requires over 300 bytes
per packet.

220 SECURITY PROTOCOLS

TESLA protocol provides efficient authenticated broadcast. However,
TESLA is not designed for such limited computing environments as are
encountered in sensor networks. TESLA authenticates the initial packet with
a digital signature, which is too expensive to compute on sensor nodes since
even fitting the code into the memory is a major challenge. For the same
reason, one-time signatures are a challenge for use on sensor nodes.

Standard TESLA has an overhead of approximately 24 bytes per packet.
For networks connecting workstations this is usually not significant. Sensor
nodes, however, send very small messages that are around 30 bytes long. It
is simply impractical to disclose the TESLA key for the previous intervals
with every packet: with 64-bit keys and MACs, the TESLA-related part of the
packet would constitute over 50 % of the packet.

The one-way key chain does not fit into the memory of a sensor node, so
pure TESLA is not practical for a node to broadcast authenticated data.

The µTESLA solves the following inadequacies of TESLA in sensor net-
works:

• TESLA authenticates the initial packet with a digital signature, which is too
expensive for sensor nodes. µTESLA uses only symmetric mechanisms.

• Disclosing a key in each packet requires too much energy for sending and
receiving. µTESLA discloses the key once per epoch.

• It is expensive to store a one-way key chain in a sensor node. µTESLA
restricts the number of authenticated senders.

The µTESLA is discussed for the case where the base station broad-
casts authenticated information to the nodes, and the case where a node is
the sender.

µTESLA requires that the base station and nodes are loosely time synchro-
nized, and each node knows an upper bound on the maximum synchroniza-
tion error. To send an authenticated packet, the base station simply computes
a MAC on the packet with a key that is secret at that point in time. When a
node gets a packet, it can verify that the corresponding MAC key has not yet
been disclosed by the base station (based on its loosely synchronized clock,
its maximum synchronization error, and the time schedule at which keys are
disclosed). Since a receiving node is assured that the MAC key is known only
by the base station, the receiving node is assured that no adversary could
have altered the packet in transit. The node stores the packet in a buffer, and
at the time of key disclosure, the base station broadcasts the verification key
to all receivers. When a node receives the disclosed key, it can easily verify
the correctness of the key. If the key is correct, the node can now use it to
authenticate the packet stored in its buffer.

7.2. SECURITY PROTOCOLS IN SENSOR NETWORKS 221

P1

K0

F

K1 K2 K3 K4

P7P2 P3 P4 P6P5

F F F

Time

Figure 7.1 Using a time-released key chain for source authentication.

Each MAC key is one in a key chain, generated by a public one-way
function F. To generate the one-way key chain, the sender chooses the last
key Kn of the chain randomly, and repeatedly applies F to compute all other
keys: Ki = F(Ki+1). Each node can easily perform time synchronization and
retrieve an authenticated key of the key chain for the commitment in a secure
and authenticated manner, using the SNEP building block.

Figure 7.1 shows an example of µTESLA. Each key of the key chain
corresponds to a time interval and all packets sent within one time interval
are authenticated with the same key. The time until keys of a particular
interval are disclosed is two time intervals in this example. The receiver node
is assumed to be loosely time synchronized and knows K0 (a commitment
to the key chain) in an authenticated way. Packets P1 and P2 sent in interval
one, contain a MAC with key K1. Packet P3 has a MAC using key K2. So far,
the receiver cannot authenticate any packets yet. Let us assume that packets
P4, P5, and P6 are all lost, as well as the packet that discloses key K1, so the
receiver can still not authenticate P1, P2, or P3. In interval four, the base station
broadcasts key K2, which the node authenticates by verifying K0 = F(F(K2)),
and hence knows also K1 = F(K2), so it can authenticate packets P1, P2 with
K1, and P3 with K2.

Instead of adding a disclosed key to each data packet, the key disclosure
is independent of the packets broadcast, and is tied to time intervals. Within
the context of µTESLA, the sender broadcasts the current key periodically in
a special packet.

µTESLA has multiple phases: sender set-up, sending authenticated pack-
ets, bootstrapping new receivers, and authenticating packets. For simplicity,
µTESLA is explained for the case where the base station broadcasts authenti-
cated information, and the case where nodes send authenticated broadcasts.

During the sender set-up, the sender first generates a sequence of secret
keys (or a key chain). To generate a one-way key chain of length, the
sender chooses the last key Kn randomly, and generates the remaining values
by successively applying a one-way function F [e.g. a cryptographic hash
function such as MD5 (Message Digest 5)]: Kj = F(Kj+1). Because F is a
one-way function, anybody can compute forward, e.g. compute K0, . . . , Kj

222 SECURITY PROTOCOLS

given Kj+1, but nobody can compute backward, e.g. compute Kj+1 given only
K0, . . . , Kj, due to the one-way generator function. This is similar to the S/Key
(Secret Key) one-time password system.

During broadcasting of authenticated packets, the time is divided into
intervals and the sender associates each key of the one-way key chain with
one time interval. In time interval t, the sender uses the key of the current
interval, Kt, to compute the MAC of packets in that interval. The sender will
then reveal key Kt after a delay of δ intervals after the end of the time interval
t. The key disclosure time delay δ is of the order of a few time intervals, as
long as it is greater than any reasonable round-trip time between the sender
and the receivers.

During bootstrapping of a new receiver, the important property of the
one-way key chain is that once the receiver has an authenticated key of the
chain, subsequent keys of the chain are self-authenticating, which means that
the receiver can easily and efficiently authenticate subsequent keys of the
one-way key chain using the one authenticated key. For example, if a receiver
has an authenticated value Ki of the key chain, it can easily authenticate
Ki+1, by verifying Ki = F(Ki+1). Therefore to bootstrap µTESLA, each receiver
needs to have one authentic key of the one-way key chain as a commitment
to the entire chain. Another requirement of µTESLA is that the sender and
receiver are loosely time synchronized, and that the receiver knows the key
disclosure schedule of the keys of the one-way key chain. Both the loose time
synchronization, as well as the authenticated key chain commitment, can
be established with a mechanism that provides strong freshness and point-
to-point authentication. A receiver sends a nonce in the request message to
the sender. The sender replies with a message containing its current time
TS (for time synchronization), a key Ki of the one-way key chain used in a
past interval i (the commitment to the key chain), and the starting time Ti of
interval i, the duration Tint of a time interval, and the disclosure delay δ (the
last three values describe the key disclosure schedule).

M → S : NM

S → M : TS|Ki|Ti|Tint|δMAC(KMS, NM|TS|Ki|Ti|Tint|δ)
Since the confidentiality is not needed, the sender does not need to encrypt

the data. The MAC uses the secret key shared by the node and base sta-
tion to authenticate the data, the nonce NM allows the node to verify
freshness. Instead of using a digital signature scheme as in µTESLA, the
node-to-base-station authenticated channel is used to bootstrap the authenti-
cated broadcast.

During authenticating of the broadcast packets, when a receiver receives
the packets with the MAC, it needs to ensure that the packet could not

7.2. SECURITY PROTOCOLS IN SENSOR NETWORKS 223

have been spoofed by an adversary. The threat is that the adversary already
knows the disclosed key of a time interval and so it could forge the packet
since it knows the key used to compute the MAC. Hence the receiver needs
to be sure that the sender has not yet disclosed the key that corresponds
to an incoming packet, implying that no adversary could have forged the
contents. This is called the security condition, which receivers check for all
incoming packets. Therefore, the sender and receivers need to be loosely time
synchronized and the receivers need to know the key disclosure schedule. If
the incoming packet satisfies the security condition, the receiver stores the
packet (it can only verify it once the corresponding key is disclosed). If the
security condition is violated (the packet had an unusually long delay), the
receiver needs to drop the packet, since an adversary might have altered it.

As soon as the node receives a key Kj of a previous time interval, it
authenticates the key by checking that it matches the last authentic key for
which it knows Ki, using a small number of applications of the one-way
function F : Ki = Fj−i(Kj). If the check is successful, the new key Kj is authentic
and the receiver can authenticate all packets that were sent within the time
intervals i to j. The receiver also replaces the stored Ki with Kj.

When the nodes broadcast authenticated data, there are additional new
problems. Since the node is severely memory limited, it cannot store the
keys of a one-way key chain. Moreover, recomputing each key from the
initial generating key Kn is computationally expensive. Another issue is that
the node might not share a key with each receiver, hence sending out the
authenticated commitment to the key chain would involve an expensive
node-to-node key agreement. Broadcasting the disclosed keys to all receivers
can also be expensive for the node and drain precious battery energy.

The two viable approaches for addressing this problem are as follows:

• The node broadcasts the data through the base station. It uses SNEP to send
the data in an authenticated way to the base station, which subsequently
broadcasts it.

• The node broadcasts the data. However, the base station keeps the one-way
key chain and sends keys to the broadcasting node as needed. To conserve
energy for the broadcasting node, the base station can also broadcast the
disclosed keys, and/or perform the initial bootstrapping procedure for
new receivers.

7.2.3. Applications

Secure protocols can be built out of the SPINS secure building blocks with an
authenticated routing application, and a two-party key agreement protocol.

224 SECURITY PROTOCOLS

Using the µTESLA protocol, a lightweight, authenticated, dedicated (ad hoc)
routing protocol builds an authenticated routing topology. Ad-hoc routing
does not offer authenticated routing messages, hence, it is potentially easy for
a malicious user to take over the network by injecting erroneous, replaying
old, or advertising incorrect routing information.

The authenticated routing scheme assumes bidirectional communication
channels, i.e. if node A hears node B, then node B hears node A. The route
discovery depends on periodic broadcast of beacons. Every node, upon
reception of a beacon packet, checks whether or not it has already received a
beacon (which is a normal packet with a globally unique sender ID (identifier)
and current time at base station, protected by a MAC to ensure integrity and
that the data is authentic) in the current epoch. (Epoch means the interval
of a routing updates.) If a node hears the beacon within the epoch, it does
not take any further action. Otherwise, the node accepts the sender of the
beacon as its parent to route towards the base station. Additionally, the
node would repeat the beacon with the sender ID changed to itself. This
route discovery resembles a distributed, breadth first search algorithm, and
produces a routing topology.

However, in the above algorithm, the route discovery depends only on the
receipt of a route packet, not on its contents. It is easy for any node to claim to
be a valid base station. The µTESLA key disclosure packets can easily function
as routing beacons. Only the sources of authenticated beacons are accepted
as valid parents. Reception of a µTESLA packet guarantees that that packet
originated at the base station, and that it is fresh. For each time interval, the
parent is accepted as the first node sending a packet that is later successfully
authenticated. Combining µTESLA key disclosure with the distribution of
routing beacons allows us to charge the costs of the to transmission of the
keys to network maintenance, rather than to the encryption system.

This scheme leads to a lightweight authenticated routing protocol. Since
each node accepts only the first authenticated packet as the one to use in
routing, it is impossible for an attacker to re-route arbitrary links within the
sensor network. Furthermore, each node can easily verify that the parent
forwarded the message: by our assumption of bidirectional connectivity, if
the parent of a node forwarded the message, the node must have heard that.

The authenticated routing scheme above is just one way to build authenti-
cated ad-hoc routing protocol using µTESLA. In protocols where base stations
are not involved in route construction, µTESLA can still be used for security.
In these cases, the initiating node will temporarily act as base station and
beacons authenticated route updates. However, the node here will need to
have significantly more memory resource than the sensor nodes explored
here in order to store the key chain.

7.3. COMMUNICATION SECURITY IN SENSOR NETWORKS 225

A convenient method to bootstrap secure connections is public-key
cryptography protocols for symmetric-key set-up. Unfortunately, resource-
constrained sensor nodes prevent us from using computationally expensive
public-key cryptography. Therefore, the protocols are used solely from
symmetric-key algorithms. Hence symmetric protocol that uses the base
station is applied as a trusted agent for key set-up.

Assume that node A wants to establish a shared secret session key SKAB
with node B. Since A and B do not share any secrets, they need to use a trusted
third party S, which is the base station in our case. In our trust set-up, both
A and B share a secret key with the base station, KAS and KBS, respectively.
The following protocol achieves secure key agreement as well as strong key
freshness:

A → B : NA, A

B → S : NA, NB, A, B, MAC(KBS, NA|NB|A|B)

S → A : {SKAB}KAS, MAC(K
′
AS, NA|B|{SKAB}KAS)

S → B : {SKAB}KBS, MAC(K
′
BS, NB|A|{SKAB}KBS)

This protocol uses SNEP protocol with strong freshness. The nonces NA
and NB ensure strong key freshness to both A and B. The SNEP protocol
is responsible for ensuring confidentiality (through encryption with the
keys KAS and KBS) of the established session key SKAB, as well as message
authentication (through the MAC using keys K

′
AS and K

′
BS) to make sure that

the key was really generated by the base station. Note that the MAC in the
second protocol message helps to defend the base station from denial-of-
service attacks, so the base station only sends two messages to A and B if it
received a legitimate request from one of the nodes.

A nice feature of the above protocol is that the base station performs most
of the transmission work. Other protocols usually involve a ticket that the
server sends to one of the parties, who forwards it to the other node, which
requires more energy for the nodes to forward the message. The Kerberos key
agreement protocol achieves similar properties, except that it does not provide
strong key freshness. However, it would be straightforward to implement it
with strong key freshness by using SNEP with strong freshness.

7.3. COMMUNICATION SECURITY IN SENSOR NETWORKS

Application messages are exchanged through the network, and the mobile
code is sent from node to node. Because the security of mobile code greatly

226 SECURITY PROTOCOLS

affects the security of the network, protection of the messages containing
mobile code is an important part of communication security scheme.

The possible threats to a network if communication security is compromised
are as follows:

(1) Insertion of malicious code is the most dangerous attack that can occur.
Malicious code injected into the network could spread to all nodes,
potentially destroying the whole network or, even worse, taking over the
network on behalf of an adversary. A seized sensor network can either
send false observations about the environment to a legitimate user or
send observations about the monitored area to a malicious user.

(2) Interception of the messages containing the physical locations of sensor
nodes allows an attacker to locate the nodes and destroy them. The
significance of hiding the location information from an attacker lies in
the fact that the sensor nodes have small dimensions and their location
cannot be trivially traced. Thus, it is important to hide the locations of the
nodes. In the case of static nodes, the location information does not age
and must be protected through the lifetime of the network.

(3) Besides the locations of sensor nodes, an adversary can observe the appli-
cation specific content of messages including message IDs, time stamps
and other fields. Confidentiality of those fields in our example application
is less important than confidentiality of location information, because the
application-specific data does not contain sensitive information, and the
lifetime of such data is significantly shorter.

(4) An adversary can inject false messages that give incorrect information
about the environment to the user. Such messages also consume the
scarce energy resources of the nodes. This type of attack is called sleep
deprivation torture.

In the security scheme, the security levels are based on private key cryp-
tography utilizing group keys. Applications and system software access the
security API as a part of the middleware defined by the sensor network
architecture. Since data contain some confidential information, the content of
all messages in the network is encrypted.

The sensor nodes in the network are assumed to be allowed to access the
content of any message.

The deployment of security mechanisms in a sensor network creates addi-
tional overhead. The latency increases due to the execution of the security
related procedures, and the consumed energy directly decreases the lifetime
of the network. To minimize the security related costs, the security overhead,

7.3. COMMUNICATION SECURITY IN SENSOR NETWORKS 227

and consequently the energy consumption, should relate to the sensitivity of
the encrypted information. Following the taxonomy of the types of data in
the network, three security levels are defined:

• security level I is reserved for mobile code, the most sensitive information
sent through the network;

• security level II is dedicated to the location information conveyed in
messages;

• the security level III mechanism is applied to the application specific
information.

The strength of the encryption for each of the security levels corresponds
to the sensitivity of the encrypted information. Therefore, the encryption
applied at level I is stronger than the encryption applied at level II, while the
encryption on level II is stronger than the one applied at level III.

Different security levels are implemented either by using various algorithms
or by using the same algorithm with adjustable parameters that change its
strength and corresponding computational overhead. Using one algorithm
with adjustable parameters has the advantage of occupying less memory
space.

RC6 (symmetric block cipher) is suitable for modification of its security
strength because it has an adjustable parameter (number of rounds) that
directly affects its strength. The overhead for the RC6 encryption algorithm
increases with the strength of the encryption measured by the number of
rounds.

The multicast model of communication inherent for the sensor network
architecture suggests deployment of group keys. Otherwise, if each pair of
nodes would require a key or a pair of keys, communication between the
nodes would have to be unicast based. This would significantly increase the
number of messages. Since the addition of security in a sensor network must
not require the change of the whole sensor network architecture, group keys
are utilized.

All nodes in the network share an initial set of master keys, and the number
of keys depends on the estimated lifetime of the network. The longer the
lifetime, the more keys are needed in order to expose less material for a known
cipher text attack. The alternative approach, where the keys are established
dynamically and propagated through the network, is not acceptable. A
protocol that guarantees that all nodes received a key is required. Such a
requirement is not feasible in a network where the nodes do not keep track
of their neighbors.

228 SECURITY PROTOCOLS

One of the keys from the list of master keys is active at any moment.
The algorithm for the selection of a particular key is based on a pseudo-
random generator running at each node with the same seed. Periodically and
synchronously on each node, a new random number is generated and used
to provide and index an entry in the table of available master keys. This
entry contains the active master key. The keys for three levels of security
corresponding to the three types of data are then derived from the active
master key.

In security level I, the messages containing mobile code are less frequent
than messages that the application instances on different nodes exchange.
This allows us to use strong encryption in spite of the resulting overhead. For
information protected at this security level, nodes use the current master key.
The set of master keys, the corresponding pseudo-random number generator,
and a seed are credentials that a potential user must have in order to access
the network. Once the user obtains those credentials, he/she can insert any
code into the network. If a malicious user breaks the encryption on this level
using a brute force attack, he/she can insert harmful code into the network.

In security level II (data that contains locations of sensor nodes) a security
mechanism is provided that isolates parts of the network, so that breach of
security in one part of the network does not affect the rest of the network.

According to the assumptions about the applications expected to run in
sensor networks, the locations of sensor nodes are likely to be included
in the majority of messages. Thus, the overhead that corresponds to the
encryption of the location information significantly influences the overall
security overhead in the network. This must be taken into account when the
strength of the encryption at this level is determined. Since the protection level
is lower for the location information than for mobile code, the probability
that the key for level II can be broken is higher. Having the key, an adversary
could potentially locate all nodes in the network. To constrain the damage to
only one part of the network, the following security mechanism is proposed.
Sensor nodes use location-based keys for level II encryption. The location-
based keys enable separation between the regions where the location of nodes
are compromised and those areas where nodes continue to operate safely.

The area covered by a sensor network is divided into cells. Nodes within
one cell share a common location-based key, which is a function of a fixed
location in the cell and the current master key. Between the cells, there is
a bordering region whose width is equal to the transmission range. Nodes
belonging to those regions have the keys for all adjacent cells. This ensures
that two nodes within a transmission range from each other have a common
key. The dimensions of the cells must be big enough for the localized nature
of the algorithms in the network to ensure that the traffic among the cells is

7.3. COMMUNICATION SECURITY IN SENSOR NETWORKS 229

relatively low, compared with overall traffic. The areas can be of an arbitrary
shape with the only requirement that the whole sensor terrain is covered.
A division of the area in uniformly sized cells is the most appropriate
solution, because it allows a fast and easy way for a node to determine its cell
membership. The network is divided into hexagonal cells, since it ensures
that the gateway nodes have at most three keys.

Part of the bootstrapping mechanism for sensor nodes is the process of
determining their cell membership. In this process, the notion of extended
cell is used. An extended cell is a hexagonal cell having the same center as the
original cell, and the distance between its sides and the sides of the original
cell is equal to the transmission range of the sensor nodes. The extended cell
contains the original cell and corresponding bordering regions. Figure 7.2
shows three neighboring cells and their corresponding extended cells. Each
node compares its location against each extended cell and determines whether
it is in an extended cell or not. If a node is within the extended cell of Cx, it
will have the key of Cx, KCx. The nodes within the bordering regions (shaded
areas) have multiple keys. For example, the nodes that are adjacent to cells
C1 and C2 have two keys: KC1 and KC2, respectively.

In security level III, the application specific data is encrypted using a weaker
encryption than the one used for the two other types of data. The weaker
encryption requires a lower computational overhead for application specific
data. Additionally, the high frequency of messages with application specific
data prevents the use of stronger and resource consuming encryption. There-
fore, an encryption algorithm demanding fewer computational resources is
applied with a corresponding decrease in the strength of security.

The key used for the encryption of level III information is derived from the
current master key. The MD5 (Message Digest 5) hash function accepts the
master key and generates a key for level III. Since the master key is periodically
changed, the corresponding key at this level follows those changes.

C3

C1

C2

Cell

Extended cell

KC1, KC2

KC2, KC3

KC1, KC3

KC1, KC2,
KC3

Figure 7.2 Cells, extended cells, and areas with multiple keys.

230 SECURITY PROTOCOLS

The major assumptions of security schemes are that the sensor nodes are
perfectly time synchronized and have exact knowledge of their location. It is
realistic for the nodes to be synchronized up to microseconds.

7.4. SUMMARY

As sensor networks deployment becomes widespread, security issues become
a central concern. A suite of security building blocks is optimized for resource-
constrained environments and wireless communication. SPINS (Security
Protocol for Sensor Networks) has two secure building blocks: SNEP (Secure
Network Encryption Protocol) and µTESLA (the micro version of the Timed,
Efficient, Streaming, Loss-tolerant Authentication protocol). SNEP provides
the following important baseline security primitives: data confidentiality,
two-party data authentication, and data freshness. Efficient broadcast authen-
tication is an important mechanism for sensor networks. µTESLA is a protocol
that provides authenticated broadcast for severely resource-constrained envi-
ronments. These protocols are practical even on minimal hardware: the
performance of the protocol suite easily matches the data rate of the network.
The suite of security building blocks can be used for building higher level
protocols.

In the security scheme, the security levels are based on private key cryp-
tography utilizing group keys. Applications and system software access the
security API as a part of the middleware defined by the sensor network
architecture. Since data contain some confidential information, the content of
all messages in the network is encrypted.

PROBLEMS

Learning Objectives

After completing this chapter you should be able to:

• demonstrate understanding of the security protocols in sensor networks;
• discuss what is meant by design integration;
• explain what sensor network security requirements are;
• explain what an authenticated broadcast is;
• discuss communication security in sensor networks.

PROBLEMS 231

Practice Problems

Problem 7.1: How feasible is adding security to a sensor network?
Problem 7.2: What communication patterns should be considered by secu-

rity?
Problem 7.3: What are the SPINS assumptions regarding security in wireless

communication?
Problem 7.4: How is the base station considered in security of the network?
Problem 7.5: What is data freshness?
Problem 7.6: What is a secure channel?
Problem 7.7: What are the properties of SNEP?
Problem 7.8: What are the phases in µTESLA?

Practice Problem Solutions

Problem 7.1:

Adding security to a highly resource-constrained sensor network is feasible.
The security building blocks facilitate the implementation of a security
solution for a sensor network by using an authenticated routing protocol and
a two-party key agreement protocol. The choice of cryptographic primitives
and the security protocols in the sensor networks is affected by the severe
hardware and energy constraints.

Problem 7.2:

The security goal is to adapt the baseline protocols to communication patterns,
i.e. node to node or node broadcast, and to address primarily the following
communication patterns:

• node-to-base-station communication, e.g. sensor readings;
• base-station-to-node communication, e.g. specific requests;
• Base station to all nodes, e.g. routing beacons, queries or reprogramming

of the entire network.

Problem 7.3:

Basic wireless communication is not secure. Because it is broadcast, any
adversary can eavesdrop on the traffic, and inject new messages or replay
and change old messages. Hence, SPINS does not place any trust assumptions
on the communication infrastructure, except that messages are delivered to
the destination with nonzero probability.

232 SECURITY PROTOCOLS

Problem 7.4:

The base station is the gateway for the nodes to communicate with the
outside world, hence, compromising the base station can render the entire
sensor network useless. Thus, the base stations are a necessary part of the
trusted computing base. All sensor nodes trust the base station: at creation
time, each node is given a master key which is shared with the base station.
All other keys are derived from this key.

Problem 7.5:

Informally, data freshness implies that the data is recent, and it ensures that
no adversary has replayed old messages. Weak freshness provides partial
message ordering, but carries no delay information. Strong freshness provides
a total order on a request–response pair, and allows for delay estimation.
Weak freshness is required by sensor measurements, while strong freshness
is useful for time synchronization within the network.

Problem 7.6:

A secure channel is a channel that offers confidentiality, data authentication,
integrity, and freshness.

Problem 7.7:

SNEP offers the following properties:

• Semantic security: Since the counter value is incremented after each mes-
sage, the same message is encrypted differently each time. The counter
value is long enough never to repeat within the lifetime of the node.

• Data authentication: If the MAC verifies correctly, a receiver can be assured
that the message originated from the claimed sender.

• Replay protection: The counter value in the MAC prevents replaying of
old messages. Note that if the counter were not present in the MAC, an
adversary could easily replay messages.

• Weak freshness: If the message is verified correctly, a receiver knows that
the message must have been sent after the previous correctly received
message (that had a lower counter value). This enforces message ordering
and yields weak freshness.

• Low communication overhead: The counter state is kept at each end point
and does not need to be sent in each message. (In case the MAC does not
match, the receiver can try out a fixed, small number of counter increments
to recover from message loss. In case the optimistic resynchronization fails,

PROBLEMS 233

the two parties engage in a counter-exchange protocol, which uses the
strong freshness protocol).

Problem 7.8:

µTESLA has multiple phases: Sender set-up, sending authenticated packets,
bootstrapping new receivers, and authenticating packets.

8
Operating Systems
for Embedded Applications

8.1. INTRODUCTION

Inferno is a well-designed, economical operating system that accommodates
various providers of content and services from the equally varied transport
and presentation platforms.

The goals of another Operating System (OS), Pebble, are flexibility, safety,
and performance. Pebble’s architecture includes:

• a minimal privileged mode nucleus, responsible for switching between
protection domains;

• implementation of all system services by replaceable user-level compo-
nents with minimal privileges (including the scheduler and all device
drivers) that run in separate protection domains enforced by hardware
memory protection;

• generation of code specialized for each possible cross-domain transfer.

The combination of these techniques results in a system with inexpensive
cross-domain calls that makes it well-suited for efficiently specializing the
operating system on a per-application basis and for supporting modern
component-based applications.

The Pebble operating system supports complex embedded applications.
This is accomplished through two key features:

Wireless Sensor Network Designs A. Hać
 2003 John Wiley & Sons, Ltd ISBN: 0-470-86736-1

236 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

• safe extensibility, so that the system can be constructed from untrusted
components and reconfigured while running;

• low interrupt latency, which ensures that the system can react quickly to
external events.

Embedded systems are subject to tight power and energy constraints.
The operating system has a significant impact on the energy efficiency
of the embedded system. Conventional approaches to energy analysis of
the OS and embedded software, in general, require the application soft-
ware to be completely developed and integrated with the system software,
and either that measurement on a hardware prototype or detailed simu-
lation of the entire system be performed. This process requires significant
design effort, and high-level or architectural optimizations on the embedded
software.

8.2. THE INFERNO OPERATING SYSTEM

Inferno is an operating system for creating and supporting distributed ser-
vices, developed at Lucent Technologies by Dorward et al. (1997). Inferno
is used in a variety of network environments, for example those support-
ing advanced telephones, hand-held devices, TV set-top boxes attached to
cable or satellite systems, and inexpensive Internet computers, as well as in
conjunction with traditional computing systems.

Inferno’s definitive strength lies in its portability and versatility across
several dimensions:

• Portability across processors: it runs on Intel, Sparc, MIPS (Millions of Instruc-
tions Per Second), ARM, HP-PA (Hewlett Packard Precision Architecture),
and PowerPC architectures, and is readily portable to others.

• Portability across environments: it runs as a stand-alone operating system
on small terminals, and also as a user application under Windows NT,
Windows 95, Unix (IRIX (a UNIX-based operating system from Silicon
Graphics), Solaris, FreeBSD, Linux, AIX (a trademark of IBM, UNIX compat-
ible operating system), HP-UX (Hewlett Packard UNIX operating system))
and Plan 9. In all of these environments, Inferno applications see the
identical interface.

• Distributed design: the identical environment is established at the user’s
terminal and at the server, and each may import the resources (for
example, the attached I/O devices or networks) of the other. Aided by

8.2. THE INFERNO OPERATING SYSTEM 237

the communications facilities of the run-time system, applications may be
split easily (and even dynamically) between client and server.

• Minimal hardware requirements: it runs useful applications stand-alone on
machines with as little as 1 Mb of memory, and does not require memory-
mapping hardware.

• Portable applications: Inferno applications are written in the type-safe lan-
guage Limbo, whose binary representation is identical over all platforms.

• Dynamic adaptability: applications may, depending on the hardware or
other resources available, load different program modules to perform a
specific function. For example, a video player application might use any of
several different decoder modules.

The role of the Inferno system is to create several standard interfaces for its
applications:

• Applications use various resources internal to the system, such as a con-
sistent virtual machine that runs the application programs, together with
library modules that perform services as simple as string manipulation
through more sophisticated graphics services for dealing with text, pictures,
higher-level toolkits, and video.

• Applications exist in an external environment containing resources, such as
data files that can be read and manipulated, together with objects that are
named and manipulated, like files but more active. Devices (for example,
a hand-held remote control, an MPEG decoder or a network interface)
present themselves to the application as files.

• Standard protocols exist for communication within and between separate
machines running Inferno, so that applications can cooperate.

Inferno uses interfaces supplied by an existing environment, either bare
hardware or standard operating systems and protocols.

An Inferno-based service consists of many inexpensive terminals running
Inferno as a native system, and a smaller number of large machines running
Inferno as a hosted system. On these server machines Inferno interfaces to
databases, transaction systems, existing OA&M (Operation, Administration,
and Maintenance) facilities, and other resources provided under the native
operating system. The Inferno applications themselves run either on the client
or server machines, or both.

The purpose of most Inferno applications is to present information to the
user, thus applications must locate the information sources in the network
and construct a local representation of them. The user’s terminal is also

238 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

an information source and its devices represent resources to applications.
Inferno uses the design of the Plan 9 operating system to present resources to
these applications.

This design has the three following principles:

• All resources are named and accessed like files in a forest of hierarchical
file systems.

• The disjoint resource hierarchies provided by different services are joined
together into a single private hierarchical name space.

• A communication protocol, called Styx, is applied uniformly to access these
resources, whether local or remote.

In practice, most applications see a fixed set of files organized as a directory
tree. Some of the files contain ordinary data, but others represent more active
resources. Devices are represented as files, and device drivers attached to
a particular hardware box present themselves as small directories. These
directories typically contain two files, data and control, which respectively
perform actual device input/output and control operations. System services
also use file names.

The device drivers and other internal resources respond to the procedural
version of Styx protocol. The Inferno kernel implements a mount driver that
transforms file system operations into remote procedure calls for transport
over a network. On the other side of the connection, a server unwraps the Styx
messages and implements them using resources local to it. Thus, it is possible
to import parts of the name space (and thus resources) from other machines.

The Styx protocol lies above, and is independent of, the communications
transport layer and is readily carried over various modem transport protocols.

Inferno applications are written in the programming language Limbo,
which was designed specifically for the Inferno environment. Its syntax is
influenced by the programming languages C and Pascal, and it supports
the standard data types common to them, together with several higher-level
data types such as lists, tuples, strings, dynamic arrays, and simple abstract
data types.

In addition, Limbo supplies several advanced constructs carefully inte-
grated into the Inferno virtual machine. In particular, a communication
mechanism, called a channel, is used to connect different Limbo tasks on
the same machine or across the network. A channel transports typed data in
a machine-independent fashion, so that complex data structures (including
channels themselves) may be passed between Limbo tasks or attached to files
in the name space for language-level communication between machines.

8.2. THE INFERNO OPERATING SYSTEM 239

Multi-tasking is supported directly by the Limbo language: independently
scheduled threads of control may be spawned, and an alt statement is
used to coordinate the channel communication between tasks (that is, alt is
used to select one of several channels that are ready to communicate). By
building channels and tasks into the language and its virtual machine, Inferno
encourages a communication style that is easy to use and safe.

Limbo programs are built of modules, which are self-contained units with
a well-defined interface containing functions (methods), abstract data types,
and constants defined by the module and visible outside it. Modules are
accessed dynamically, that is, when one module wishes to make use of
another, it dynamically executes a load statement naming the desired module
and uses a returned handle to access the new module. When the module is
no longer in use, its storage and code will be released. The flexibility of the
modular structure contributes to the small size of typical Inferno applications,
and also to their adaptability.

Limbo is fully type checked at compile- and run-time; for example, pointers,
besides being more restricted than in the C programming language, are
checked before being dereferenced, and the type-consistency of a dynamically
loaded module is checked when it is loaded. Limbo programs run safely on
a machine without memory-protection hardware. Moreover, all Limbo data
and program objects are subject to a garbage collector, built deeply into the
Limbo run-time system. All system data objects are tracked by the virtual
machine and freed as soon as they become unused.

Limbo programs are compiled into byte-codes representing instructions
for a virtual machine called Dis. The architecture of the arithmetic part of
Dis is a simple three-address machine, supplemented with a few specialized
operations for handling some of the higher-level data types like arrays
and strings. Garbage collection is handled below the level of the machine
language, and the scheduling of tasks is similarly hidden. When loaded
into memory for execution, the byte-codes are expanded into a format more
efficient for execution; there is also an optional on-the-fly compiler that turns
a Dis instruction stream into native machine instructions for the appropriate
real hardware. This can be done efficiently because Dis instructions match
well with the instruction-set architecture of today’s machines. The resulting
code executes at a speed approaching that of compiled C.

Underlying Dis is the Inferno kernel, which contains the interpreter and
on-the-fly compiler, memory management, scheduling, device drivers, and
protocol stacks. The kernel also contains the core of the file system (the
name evaluator and the code that turns file system operations into remote
procedure calls over communications links) as well as the small file systems
implemented internally.

240 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

Inferno creates a standard environment for applications. Identical appli-
cation programs can run under any instance of this environment, even in
distributed fashion, and see the same resources. Depending on the environ-
ment in which Inferno itself is implemented, there are several versions of the
Inferno kernel, Dis/Limbo interpreter, and device driver set.

When running as the native operating system, the kernel includes the
interrupt handlers, graphics and other device drivers, needed to imple-
ment the abstractions presented to applications. For a hosted system, for
example under Unix, Windows NT or Windows 95, Inferno runs as a set of
ordinary processes. Instead of mapping its device-control functionality to
real hardware, it adapts to the resources provided by the operating system
under which it runs. For example, under Unix, the graphics library might
be implemented using the X window system and the networking using the
socket interface; under Windows, it uses the native Windows graphics and
Winsock calls.

Inferno is largely written in the standard C programming language, and
most of its components are independent of the many operating systems that
can host it.

Inferno provides security of communication, resource control, and sys-
tem integrity. Each external communication channel may be transmitted
in the clear, accompanied by message digests to prevent corruption, or
encrypted to prevent corruption and interception. Once communication is
set up, the encryption is transparent to the application. Key exchange is
provided through standard public-key mechanisms; after key exchange,
message digesting and line encryption likewise use standard symmetric
mechanisms.

Inferno is secure against erroneous or malicious applications, and encour-
ages safe collaboration between mutually suspicious service providers and
clients. The resources available to applications appear exclusively in the name
space of the application, and standard protection modes are available. This
applies to data, to communication resources, and to the executable modules
that constitute the applications. Security-sensitive resources of the system
are accessible only by calling the modules that provide them; in particular,
adding new files and servers to the name space is controlled and is an
authenticated operation. For example, if the network resources are removed
from an application’s name space, then it is impossible for it to establish new
network connections.

Authentication and digital signatures are performed using public key
cryptography. Public keys are certified by Inferno-based or other certifying
authorities that sign the public keys with their own private key.

8.2. THE INFERNO OPERATING SYSTEM 241

Inferno uses encryption for:

• mutual authentication of communicating parties;
• authentication of messages between these parties, and
• encryption of messages between these parties.

The encryption algorithms provided by Inferno include the SHA (Secure
Hash Algorithm), MD4 (Message Digest 4), and MD5 (Message Digest 5)
secure hashes; Elgamal public key signatures and signature verification; RC4
(symmetric key stream cipher) encryption; DES (Data Encryption Standard)
encryption; and public key exchange based on the Diffie–Hellman scheme.
The public key signatures use keys with moduli up to 4096 bits, 512 bits
by default.

There is no generally accepted national or international authority for storing
or generating public or private encryption keys. Thus Inferno includes tools
for using or implementing a trusted authority, but it does not itself provide
the authority, which is an administrative function. Thus an organization using
Inferno (or any other security and key-distribution scheme) must design its
system to suit its own needs, and in particular decide whom to trust as a
Certifying Authority (CA). However, the Inferno design is sufficiently flexible
and modular to accommodate the protocols likely to be attractive in practice.

The certifying authority that signs a user’s public key determines the size
of the key and the public key algorithm used. Tools provided with Inferno
use these signatures for authentication. Library interfaces are provided for
Limbo programs to sign and verify signatures.

Generally authentication is performed using public key cryptography.
Parties register by having their public keys signed by the CA. The signature
covers a secure hash (SHA, Secure Hash Algorithm; MD4, Message Digest 4;
or MD5, Message Digest 5) of the name of the party, its public key, and an
expiration time. The signature, which contains the name of the signer, along
with the signed information, is termed a certificate.

When parties communicate, they use the Station-to-Station (STS) protocol
to establish the identities of the two parties and to create a mutually known
secret. This STS protocol uses the Diffie–Hellman algorithm to create this
shared secret. The protocol is protected against replay attacks by choosing
new random parameters for each conversation. It is secured against ‘man
in the middle’ attacks by having the parties exchange certificates and then
digitally signing key parts of the protocol. To masquerade as another party
an attacker would have to be able to forge that party’s signature.

242 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

A network conversation can be secured against modification alone or
against both modification and snooping. To secure against modification,
Inferno can append a secure MD5 or SHA hash (called a digest),

hash(secret, message, messageid)

to each message, where messageid is a 32 bit number that starts at 0 and
is incremented by one for each message sent. Thus messages can be neither
changed, removed, reordered or inserted into the stream without knowing
the secret or breaking the secure hash algorithm.

To secure against snooping, Inferno supports encryption of the complete
conversation using either RC4 (symmetric key stream cipher) or DES (Data
Encryption Standard) with either DES Cipher Block Chaining (DES-CBC) and
Electronic Code Book (DES-ECB).

The strength of cryptographic algorithms depends in part on the strength
of the random numbers used for choosing keys, Diffie–Hellman parameters,
initialization vectors, etc. Inferno achieves this in two steps: a slow (100 to
200 bit per second) random bit stream comes from sampling the low order
bits of a free running counter whenever a clock ticks. The clock must be
unsynchronized, or at least poorly synchronized, with the counter. This
generator is then used to alter the state of a faster pseudo-random number
generator. Both the slow and fast generators were tested on a number of
architectures using self correlation, random walk, and repeatability tests.

8.3. THE PEBBLE COMPONENT-BASED OPERATING SYSTEM

Specialized systems or embedded systems run on microcontrollers in cars
and microwaves, and on high-performance general purpose processors as
found in routers, laser printers, and hand-held computing devices.

Safety is important in mobile code and component-based applications.
Although safe programming languages such as Java and Limbo can be used
for many applications, hardware memory protection is important when code
is written in unsafe programming languages such as C and C++.

High performance cannot be sacrificed to provide safety and flexibility.
Systems are chosen primarily for their performance characteristics, and
safety and flexibility come in the second place. Any system structure added
to support flexibility and safety cannot come at a significant decrease in
performance.

To maximize system flexibility, OS Pebble runs as little code as possible in
its privileged mode nucleus. If a piece of functionality can be run at the user

8.3. THE PEBBLE COMPONENT-BASED OPERATING SYSTEM 243

level, it is removed from the nucleus. This approach makes it easy to replace,
layer, and offer alternative versions of operating system services.

Each user-level component runs in its own protection domain, bounded by
hardware memory. All communication between protection domains is done
by using interrupt handlers, called portals. Only if a portal exists between
protection domain A and protection domain B can A invoke a service offered
by B. Each protection domain has its own portal table. By restricting the set of
portals available to a protection domain, threads in that domain are efficiently
isolated from services to which they should not have access.

Portals are the basis for flexibility and safety in Pebble, and the key to
its high performance. Specialized, tamper-proof code can be generated for
each portal, using a simple interface definition language. The portal code
can be optimized for its portal, saving and restoring the minimum necessary
state, or encapsulating and compiling out demultiplexing decisions and
run-time checks.

Pebble has the same general structure as classical microkernel operating
systems such as Mach, Chorus, and Windows NT, consisting of a privileged
mode kernel and a collection of user level servers. Pebble’s protected mode
nucleus is much smaller and has fewer responsibilities than the kernels
of these systems, and in that way is much more like the L4 microkernel
(second generation microkernel designed and developed by Jochen Liedtke,
running on i486 and Pentium CPUs). L4 and Pebble share a common phi-
losophy of running as little code in privileged mode as possible. Where L4
implements IPC (InterProcess Communication) and minimal virtual memory
management in privileged mode, Pebble’s nucleus includes only code for
transferring threads from one protection domain to another and a small
number of support functions that require kernel mode.

Liedtke (1995), in his work on L4, espoused the philosophy of a minimal
privileged mode kernel that includes only support for IPC (InterProcess
communication), and key VM (Virtual Memory) primitives. Pebble goes one
step further than L4, removing VM as well (except for TLB fault handling,
which is done in software on MIPS).

OS Mach provides a facility for intercepting system calls and servicing
them at user level. Pebble’s portal mechanism, which was designed for
high-performance cross-protection-domain transfer, can be used in a sim-
ilar way, taking an existing application component and interposing one
or more components between the application component and the services
it uses.

Pebble’s architecture is similar to the nested process architecture of Fluke.
Fluke provides an architecture in which virtual operating systems can be
layered, with each layer only affecting the performance of the subset of the

244 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

operating system, which interface it implements. For example, the presence
of multiple virtual memory management nesters, which provide demand
paging, distributed shared memory, and persistence, would have no effect
on the cost of invoking file system operations such as read and write.
The Fluke model requires that system functionality be replaced in groups; a
memory management nester must implement all of the functions in the virtual
memory interface specification. Pebble portals can be replaced piecemeal,
which permits finer-grained extensibility.

The Exokernel attempts to exterminate all OS abstractions, leaving the
privileged mode kernel in charge of protecting resources, but leaving abstrac-
tion of resources to user level application code. As with the Exokernel
approach, Pebble moves the implementation of operating system abstrac-
tions to user level, but instead of leaving the development of OS abstractions
to application writers, Pebble provides a set of OS abstractions, imple-
mented by user-level OS components. Pebble OS components can be added
or replaced, allowing alternate OS abstractions to coexist or override the
default set.

The Exokernel model attempts to remove all OS abstractions, with the
privileged-mode kernel in charge of protecting resources, but leaving resource
abstraction to user-level application code. As with the Exokernel approach,
Pebble moves the implementation of resource abstractions to user level, but
unlike the Exokernel, Pebble provides a set of abstractions, implemented
by user-level operating system components. Pebble OS components can be
added or replaced, allowing alternate OS abstractions to coexist or override
the default set.

Pebble can use the interposition technique to wrap a sandbox around
untrusted code. Several extensible operating system projects have studied
the use of software techniques, such as safe programming languages and
software fault isolation, for this purpose. Where software techniques require
faith in the safety of a compiler, interpreter, or software fault isolation
tool, a sandbox implemented by portal interposition and hardware memory
protection provides isolation at the hardware level, which may be simpler to
verify than software techniques.

The Pebble approach to sandboxing is similar to that provided by the Plan
9 operating system. In Plan 9, nearly all resources are modeled as files, and
each process has its own file name space. By restricting the name space of a
process, it can be effectively isolated from resources to which it should not
have access. In contrast with Plan 9, Pebble can restrict access to any service,
not just those represented by files.

The Pebble architecture provides low interrupt latency and low-cost inter-
component communication.

8.3. THE PEBBLE COMPONENT-BASED OPERATING SYSTEM 245

(1) The privileged-mode nucleus is as small as possible. Most executions occur at the
user level.

The privileged-mode nucleus is responsible for switching between protec-
tion domains, and it is the only part of the system that must be run with
the interrupts disabled. By reducing the length of time the interrupts are
disabled, the maximum interrupt latency is reduced.

In a perfect world, Pebble would include only one privileged-mode instruc-
tion, which would transfer control from one protection domain to the next.
By minimizing the work done in privileged mode, the Pebble’s designers
reduce both the amount of privileged code and the time needed to perform
essential privileged mode services.

(2) Each component is implemented by a separate protection domain. The cost of
transferring control from one protection domain to another should be small
enough that there is no performance-related reason to co-locate components.

Microkernel systems used coarse-grained user level servers, in part because
the cost of transferring between protection domains was high. By keeping
this cost low, Pebble enables the factoring of the operating system, and
application, into smaller components with small performance penalty.

For example, the cost of using hardware memory protection on the Intel x86
can be made extremely small. Pebble can perform a one-way interprotection
domain call in 114 machine cycles on a MIPS R5000 processor.

(3) The operating system is built from fine-grained replaceable components, isolated
through the use of hardware memory protection.

The functionality of the operating system is implemented by trusted
user-level components. The components can be replaced, augmented, or
layered. For example, Pebble does not handle scheduling decisions, and the
user-replaceable scheduler is responsible for all scheduling and synchroniza-
tion operations.

The architecture of Pebble is based on the availability of hardware memory
protection, and it requires a memory management unit.

(4) Transferring control between protection domains is done by a generalization of
hardware interrupt handling, that is, portal traversal. Portal code is generated
dynamically and performs portal-specifications.

Hardware interrupts, interprotection domain calls, and the Pebble equiva-
lent of system calls, are all handled by the portal mechanism. Pebble generates

246 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

specialized code for each portal to improve run-time efficiency. The portal
mechanism provides two important features: abstract communication facil-
ities, which allow components to be isolated from their configuration, and
per-connection code specialization, which enables the application of many
otherwise unavailable optimizations.

8.3.1. Protection Domains and Portals

Each component runs in its own Protection Domain (PD). A PD consists
of a set of pages, represented by a page table, and a set of portals, which
are generalized interrupt handlers, stored in the protection domain’s portal
table. A PD may share both memory pages and portals with other protection
domains. Figure 8.1 illustrates the Pebble architecture.

A parent protection domain may share its portal table with its child. In this
case, any changes to the portal table will be reflected in both parent and child.
Alternatively, a parent protection domain may create a child domain with a
copy of the parent’s portal table at the time when the child was created. Both
copying and sharing portal tables are efficient, since portal tables contain
pointers to the actual portal code. No copying of portal code is needed in
either case.

A thread belonging to protection domain A (the protection domain in
which component A is running) can invoke a service of protection domain B
only if A has successfully opened a portal to B. Protection domain B, which
exports the service, controls which protection domains may open portals to
B, and hence which component scan invoke B’s service. Protection domain B

Nucleus

S
erver

A
pplication

F
ile system

D
evice

driver

S
cheduler

Interrupt
dispatcher

n ()

Figure 8.1 Pebble architecture. Arrows denote portal traversals. On the right, an
interrupt causes a device driver’s semaphore to be incremented, unblocking the
device driver’s thread.

8.3. THE PEBBLE COMPONENT-BASED OPERATING SYSTEM 247

may delegate the execution of its access-control policy to a third party, such
as a directory server or a name-space server.

To transfer control to B, A’s thread executes a trap instruction, which
transfers control to the nucleus. The nucleus determines which portal A
wishes to invoke, looks up the address of the associated portal code, and
transfers control to the portal code. The portal code is responsible for saving
registers, copying arguments, changing stacks, and mapping pages shared
between the domains. The portal code then transfers control to component B.
Figure 8.2 shows an example of portal transfer.

When a thread passes through a portal, no scheduling decision is made;
the thread continues to run, with the same priority, in the invoked protec-
tion domain.

Portals are used to handle both hardware interrupts and software traps,
and exceptions. The existence of a portal from PDA to PDB means that a thread
running in PDA can invoke a specific entry point of PDB, and then return.
Associated with each portal is code to transfer a thread from the invoking
domain to the invoked domain. Portal code copies arguments, changes stacks,
and maps pages shared between the domains. Portal code is specific to its
portal, which allows several important optimizations to be performed.

Portals are usually generated in pairs. The call portal transfers control from
domain PDA to PDB, and the return portal allows PDB to return to PDA.

Portals are generated when resources are created, for instance, semaphores,
and when clients connect to servers, for instance, when files are opened.
Interrupt and exception handling portals are created at the system initializa-
tion time.

A scheduling priority, a stack, and a machine context are associated with
each Pebble thread. When a thread traverses a portal, no scheduling decision
is made; the thread continues to run, with the same priority, in the invoked

A B

User-level

Nucleus

A's portal table A→B portal code

1001011
0101101
1110010

Figure 8.2 Portal transfer. Protection domain A invokes protection domain B via a
portal transfer. Protection domain A transfers indirectly through its portal table to the
portal code specific to this communication path. The portal code transfers control to
protection domain B.

248 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

protection domain. Once the thread executes in the invoked domain, it may
access all of the resources available in the invoked domain, while it can no
longer access the resources of the invoking domain. Several threads may
execute in the same protection domain at the same time, which means that
they share the same portal table and all other resources.

As part of a portal traversal, the portal code can manipulate the page tables
of the invoking and/or invoked protection domains. This most commonly
occurs when a thread wishes to map, for the duration of the portal invocation,
a region of memory belonging to the invoking protection domain into the
virtual address space of the invoked protection domain; this gives the thread
a window into the address space of the invoking protection domain while
running in the invoked protection domain. When the thread returns, the
window is closed.

Such a memory window can be used to save the cost of copying data
between protection domains. Variations include:

• windows that remain open to share pages between protection domains;
• windows that transfer pages from the invoking domain to the invoked

domain to implement tear-away write;
• windows that transfer pages from the invoked domain to the invoking

domain to implement tear-away read.

Although the portal code may modify Virtual Memory (VM) data struc-
tures, only the VM manager and the portal manager, which generates portal
code, share the knowledge about these data structures. The Pebble nucleus
itself is oblivious to those data structures.

Portal code may never block calling threads, and may not contain loops.
This is essential to ensure that the portal can be traversed in a small, finite
amount of time. If the portal has to block a calling thread (that is, the invoked
domain’s stacks queue is empty), then the portal code transfers control to the
scheduler, inside which the calling thread is waiting for the resource.

Specialized portal code is generated on the fly when a portal is opened. This
allows portal code to take advantage of the semantics and trust relationships
of the portal. For example, if the caller trusts the callee, the caller may allow
the callee to use the caller’s stack, rather than to allocate a new one. If this
level of trust does not exist, the caller can require that the callee allocate a
new stack. Although sharing stacks decreases the level of isolation between
the caller and callee, it can improve performance.

Pebble implements a safe execution environment by a combination of
hardware memory protection that prevents access to memory outside the
protection domain, and by limiting the access to the domain’s portal table.

8.3. THE PEBBLE COMPONENT-BASED OPERATING SYSTEM 249

A protection domain may access only the portals it inherited from its parent
and new portals that were generated on its behalf by the portal manager. The
portal manager may restrict access to new portals in conjunction with the
name server. A protection domain cannot transfer a portal it has in its portal
table to an unrelated domain. Moreover, the parent domain may intercept all
of its child portal calls, including calls that indirectly manipulate the child’s
portal table.

In Pebble, system services are provided by operating-system server compo-
nents, which run in the user mode protection domains. Unlike applications,
server components are trusted, so they may be granted limited privileges
not afforded to application components. For example, the scheduler runs
with interrupts disabled, device drivers have device registers mapped into
their memory region, and the portal manager may add portals to protection
domains (a protection domain cannot modify its portal table directly).

There are advantages in implementing services at user level. First, from a
software-engineering standpoint, it is guaranteed that a server component
will use only the exported interface of other components. Second, because each
server component is only given the privileges that it needs, a programming
error in one component will not directly affect other components. If a critical
component such as VM fails, the system as a whole will be affected, but a bug
in console device driver will not overwrite page tables.

In addition, as user-level servers can be interrupted at any time, this
approach has the possibility of offering lower interrupt latency time. Given
that server components run at user level (including interrupt-driven threads),
they can use blocking synchronization primitives, which simplifies their
design. This is in contrast with handlers that run at interrupt level, which
must not block, and require careful coding to synchronize with the upper
parts of device drivers.

The portal manager is the operating system component responsible for
instantiating and managing portals. The portal manager is privileged because
it is the only component that is permitted to modify portal tables.

Portal instantiation is a two-step process. First, the server (which can be a
Pebble system component or an application component) registers the portal
with the portal manager, specifying the entry point, the interface definition,
and the name of the portal. Second, a client component requests that a portal
with a given name be opened. The portal manager may call the name server
to identify the portal and to verify that the client is permitted to open the
portal. If the name server approves the access, the portal manger generates
the code for the portal, and installs the portal in the client’s portal table. The
portal number of the newly generated portal is returned to the client. A client
may also inherit a portal from its parent.

250 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

To invoke the portal, a thread running in the client loads the portal number
into a register and traps to the nucleus. The trap handler uses the portal
number as an index into the portal table and jumps to the code associated with
the portal. The portal code transfers the thread from the invoking protection
domain to the invoked protection domain and returns to user level.

Portal interfaces are written using an interface definition language. Each
portal argument may be processed or transformed by the portal code. The
argument transformation may involve a function of the nucleus state, such
as inserting the identity of the calling thread or the current time. The argu-
ment transformation may also involve other servers. For example, a portal
argument may specify the address of a memory window to be mapped into
the receiver’s address space. This transformation requires the manipulation
of data structures in the virtual memory server.

The design of the portal mechanism presents the following conflict: to be
efficient, the argument transformation code in the portal may need to have
access to private data structures of a trusted server, that is, the virtual memory
system. On the other hand, however, trusted servers should be allowed to
keep their internal data representations private.

The solution is to allow trusted servers, such as the virtual memory
manager, to register argument transformation code templates with the portal
manager. Portals registered by untrusted services are required to use the
standard argument types. When the portal manager instantiates a portal
that uses such an argument, the appropriate type-specific code is generated
as part of the portal. This technique allows portal code to be both efficient
by in-lining code that transforms arguments, and encapsulated by allowing
servers to keep their internal representations private. Although the portal
code that runs in kernel mode has access to server-specific data structures,
these data structures cannot be accessed by other servers. The portal manager
supports argument transformation code of a single trusted server, the virtual
memory server.

8.3.2. Scheduling and Synchronization

Pebble’s scheduler implements all actions that may change the calling thread’s
state, that is, run → blocked or blocked → ready. Threads cannot block other
threads anywhere except inside the scheduler. In particular, Pebble’s syn-
chronization primitives are managed entirely by the user-level scheduler.
When a thread running in a protection domain creates a semaphore, two
portals that invoke the scheduler (for P and V operations) are added to the
protection domain’s portal table. The thread invokes P in order to acquire
the semaphore. If the P succeeds, the scheduler grants the calling protection

8.3. THE PEBBLE COMPONENT-BASED OPERATING SYSTEM 251

domain the semaphore, and returns. If the semaphore is held by another
protection domain, the P fails, the scheduler marks the thread as blocked,
and then schedules another thread. A V operation works analogously; if the
operation unblocks a thread that has higher priority than the invoker, the
scheduler can block the invoking thread and run the newly-awakened thread.

The scheduler runs with interrupts disabled, in order to simplify its imple-
mentation. Work on the use of lock-free data structures has shown that, with
appropriate hardware support, it is possible to implement the data struc-
tures used by Pebble’s scheduling and synchronization component without
locking. Such an implementation would allow the scheduler to run with
interrupts enabled which would reduce interrupt latency even further.

Each hardware device in the system has an associated semaphore used to
communicate between the interrupt dispatcher component and the device
driver component for the specific device.

In the portal table of each protection domain there are entries for the
portals that correspond to the machine’s hardware interrupts. The Pebble
nucleus includes a short trampoline function that handles all exceptions and
interrupts. This code first determines the portal table of the current thread
and then transfers control to the address that is taken from the corresponding
entry in this portal table. The nucleus is oblivious to the specific semantics of
the portal that is being invoked. The portal that handles the interrupt starts
by saving the processor state on the invocation stack, then it switches to
the interrupt stack and jumps to the interrupt dispatcher. This mechanism
converts interrupts to portal calls.

The interrupt dispatcher determines which device generated the interrupt,
and performs a V operation on the device’s semaphore. Typically, the device
driver would have left a thread blocked on that semaphore. The V operation
unblocks this thread, and if the now-runnable thread has higher priority than
the currently running thread, it gains control of the CPU (Central Processor
Unit), and the interrupt is handled immediately. Typically, the priority of the
interrupt handling threads corresponds to the hardware interrupt priority
in order to support nested interrupts. The priority of the interrupt handling
threads is higher than all other threads to ensure short handling latencies. In
this way, Pebble unifies interrupt priority with thread priority, and handles
both in the scheduler.

Pebble invokes the interrupt dispatcher promptly for all interrupts, includ-
ing low priority interrupts. However, the interrupt handling thread is
scheduled only if its priority is higher than the running thread.

Only a small portion of Pebble runs with interrupts disabled, namely portal
code, the interrupt dispatcher, and the scheduler. This is necessary to avoid
race conditions due to nested exceptions.

252 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

Figure 8.3 shows the interrupt handling in Pebble. Each hardware device in
the system is associated with a semaphore that used to communicate between
the interrupt dispatcher component and the device driver component for the
specific device. Typically, the device driver will have left a thread blocked on
the semaphore.

The portal table of each protection domain contains entries for the machine’s
hardware interrupts. When an interrupt occurs, portal 1 saves the context
of the currently running thread, and the contents of the entire register set.
Portal 1 then switches the stack pointer to the interrupt stack and calls the
interrupt dispatcher, which identifies the device that generated the interrupt.
The interrupt dispatcher calls the scheduler to perform a V operation on the
device’s semaphore via portal 2. This portal saves only a few registers and
allows the scheduler to share the same stack as the interrupt dispatcher. The
V operation unblocks the handler thread. If the handler thread has a higher
priority than the thread that was running at the time when the interrupt
was received, the scheduler calls portal 3 with the identity of the handler
thread. Portal 3 restores the context of the handler thread, including registers
and stack, and the interrupt is handled immediately. Otherwise, the handler
thread is added to the ready queue and the scheduler selects resumption of
the thread that was running previously by calling portal 3 with the identity
of this thread. Portal 3 performs the actual context switch. The scheduler
supplies the identity of the next thread to run.

Pebble does not rely on hardware interrupt priorities to schedule interrupt
handler threads. The interrupt dispatcher is called promptly for all interrupts,
and the Pebble scheduler decides whether or not to run the associated handler
thread. Pebble unifies interrupt priority with thread priority, and handles
both in the scheduler.

P
ortal 1

P
ortal 2

P
ortal 3

H
andler

thread

S
cheduler

Interrupt
dispatcher

D
om

ain A
(preem

pted) User level

External
interrupt

Nucleus

V

Figure 8.3 Interrupt handling. An interrupt causes a portal call to the interrupt dis-
patcher, which calls the scheduler to performs a V operation on the device’s
semaphore. The scheduler wakes up the handler thread that waits on this semaphore.

8.3. THE PEBBLE COMPONENT-BASED OPERATING SYSTEM 253

8.3.3. Implementation
Portal definitions are written using a simple interface definition language.
The portal manager dynamically generates specialized code when a por-
tal is created. The interface definition specifies which registers to save,
whether to share a stack with the receiving domain, and how to process each
argument.

Simple arguments (e.g. integers) are not processed at all; more complex
argument types may require more work. For example, an argument may
specify the address of a memory window that should be mapped into the
receiver’s address space, or a capability that must be transformed before
being transferred. The transformation code, to be efficient, may need to
have access to private data structures of a trusted server (e.g. the virtual
memory system or the capability system). On the other hand, however, the
trusted servers should be allowed to keep their internal data representations
private.

The solution is to allow trusted services to register argument transformation
code templates with the portal manager. When the portal manager instan-
tiates a portal that uses such an argument, the code template is used when
generating the portal. This technique allows portal code to be both efficient
(by in-lining code that transforms arguments) and encapsulated (by allowing
servers to keep their internal representations private). Although portal code
that runs in kernel mode has access to server-specific data structures, these
data structures cannot be accessed by other servers.

In some cases the amount of work done is so small that the portal code itself
can implement the service. A short-circuit portal does not actually transfer
the invoking thread to a new protection domain, but instead performs the
requested action in line, in the portal code. Examples include simple system
calls to get the current thread’s ID (identifier) and to obtain the time of day. The
TLB (Translation Lookaside Buffer) miss handler, which is in software on the
MIPS (Millions of Instructions Per Second) architecture, is also implemented
as a short-circuit portal.

Pebble’s design includes support for capabilities, which are the abstract
tokens that represent access rights. The capability manager, a trusted user-
level server, keeps track of the capabilities available to each protection
domain. Additionally, it registers a capability argument type and associ-
ated transformation code with the portal manager. When a capability is
passed through a portal, the portal code adds the capability to the receiving
protection domain’s capability list, and transforms the sending protection
domain’s external representation of the capability to that of the receiving
domain. The standard capability operations include revocation, use-once,
nontransferability, reduction in strength, etc.

254 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

Thread
data structure

Currently
running
thread

User
stack

Interrupt
stack

Invocation
stack

Portal
table

Figure 8.4 Pebble nucleus data structures.

The Pebble nucleus maintains a number of data structures, which are
illustrated in Figure 8.4. Each thread is associated with a thread data struc-
ture, which contains pointer to the thread’s current portal table, user stack,
interrupt stack, and invocation stack.

The user stack is a regular stack used by the user mode code.
The interrupt stack is used whenever an interrupt or exception occurs while

the thread is executing. The interrupt portal switches to the interrupt stack,
saves state on the invocation stack and calls the interrupt dispatcher server.

The invocation stack keeps track of portal traversals and processor state. The
portal call code saves the invoking domain’s state, and the address of the
corresponding return portal, on the invocation stack. The portal return code
restores the state from the invocation stack.

The portal table pointer in the thread data structure is the portal table of the
domain in which the thread is executing. This table is changed by the portal
call and restored by the portal return.

The virtual memory manager is responsible for maintaining the page tables,
which are accessed by the TLB miss handler and by the memory window
manipulation code in portals. The virtual memory manager is the only
component that has access to the entire physical memory. Pebble does not
support demand-paged virtual memory.

Pebble implementation uses the MIPS tagged memory architecture. Each
protection domain is allocated a unique ASID (Address Space Identifier),
which avoids TLB and cache flushes during context switches. Portal calls and
returns also load the mapping of the current stack into TLB entry 0 to avoid
a certain TLB miss.

8.3. THE PEBBLE COMPONENT-BASED OPERATING SYSTEM 255

Pebble components run in separate protection domains in user mode, which
requires careful memory allocation and cache flushes whenever a component
must commit values to the physical memory. For example, the portal manager
must generate portal code so that it is placed in contiguous physical memory.

The portal code that opens a memory window updates an access data
structure that contains a vector of counters, one counter for each protection
domain in the system. The vector is addressed by the ASID of the correspond-
ing domain. The counter keeps track of the number of portal traversals into
the corresponding domain that passed this page in a memory window. This
counter is incremented by one for each portal call, and is decremented by one
for each portal return. The page is accessible if the counter for the domain
is greater than zero. Because the same page may be handed to the same
domain by multiple concurrent threads, the counters are used to maintain
page access rights.

The page table contains a pointer to the corresponding access data structure,
and only shared pages have a dedicated access data structure.

The TLB miss handler consults the counter vector to verify the access rights
to the memory window page. The portal code does not load the TLB with the
mapping of the memory window page. This design saves time if the shared
window is passed to another domain without being touched by the current
domain. The portal return code must remove the corresponding TLB entry
when the counter reaches zero.

The portal call may implement stack sharing, which does not require any
stack manipulation. The invoked domain uses the current thread’s stack.

If the portal call requires a new stack, it obtains one from the invoked
domain’s stack queue. The invoked protection domain must preallocate one
or more stacks and notify the portal manger to place them in the domain’s
stack queue. The portal call de-queues a new stack from the invoked domain’s
stack queue. If the stack’s queue is empty, the portal calls the scheduler and
waits until a stack becomes available. The portal return enqueues the released
stack back into the stack queue. If there are any threads waiting for the stack,
the portal return calls the scheduler to pick the first waiting thread and allow
it to proceed in its portal code.

The portal than calls the interrupt dispatcher after an interrupt switches
the stack to the interrupt stack, which is always available in every thread.

The Pebble nucleus and the essential components (interrupt dispatcher,
scheduler, portal manager, real-time clock, console driver, and the idle task)
can fit into about 70 pages (8 kb each). Pebble does not support shared
libraries, which cause code duplication among components. Each user thread
has three stacks (user, interrupt, and invocation) which require three pages,
although the interrupt and invocation stacks could be placed on the same

256 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

page to reduce memory consumption. In addition, fixed size pages inherently
waste memory. This could be alleviated on segmented architectures.

An important aspect of component-based system is the ability to interpose
code between a client and its servers. The interposed code can modify the
operation of the server, enforce safety policies, enable logging and error
recovery services, or even implement protocol stacks and other layered
system services.

Pebble implements low-overhead interposition by modifying the portal
table of the controlled domain. Since all interactions between the domain
and its surroundings are implemented by portal traversals, it is possible to
place the controlled domain in a comprehensive sandbox by replacing the
domain’s portal table. All of the original portals are replaced with portal
stubs, which transfer to the interposed controlling domain. The controlling
domain intercepts each portal traversal that takes place, performs whatever
actions it deems necessary, and then calls the original portal. Portal stubs pass
their parameters in the same way as the original portals, which is necessary
to maintain the semantics of the parameter passing (e.g. Windows). Portal
stubs are regular portals that pass the corresponding portal index in their first
argument. The controlling domain does not have to be aware of the particular
semantics of the intercepted portals; it can implement a transparent sandbox
by passing portal parameters verbatim.

The top diagram of Figure 8.5 illustrates the configuration of the original
portal table without interposition, where the domain calls its servers directly.
The bottom diagram shows the operation of portal interposition. In this case,
all the portals in the controlled domain call the controlling domain, which
makes the calls to the servers.

However, one-time modification of the controlled domain’s portal table is
not sufficient. Many servers create new portals dynamically in their client’s
portal table, and then return an index to the newly created portal back to the
client. Since the controlling domain calls the server, the server creates new
portals in the controlling domain’s table. The controlling domain is notified
by the portal manager that a new portal was created in its portal table. The
notification portal completes the process by creating a portal stub in the
controlled domain’s table with the same index as it has in the controlling
domain table.

The portal stub calls the controlling domain and passes the parameters
in the same way as the original portal. In this way, the controlling domain
implements a robust sandbox around the controlled domain, without actually
understanding the semantics of the controlled domain portals.

The controlled domain cannot detect that its portals are diverted nor can it
thwart the interposition in any way. This mechanism is similar to the Unix

8.3. THE PEBBLE COMPONENT-BASED OPERATING SYSTEM 257

Server A

Server B

Server C

Server D

Domain

Portal
table

Create portal

Server A

Server B

Server C

Server D

Controlled
domain

Controlling
domain

Portal
table

Portal table

Notification

Intercept

Create
portal

Create
portal

Figure 8.5 Original portal configuration (above) and with portal interposition (below).

I/O redirection, in which a child process accesses standard file descriptor
(e.g. 0, 1 and 2), which is redirected by the parent process. Portal interposition
is more comprehensive than the Unix I/O redirection, since all interactions
between the controlled domain and its environment are controlled. The
interposition can be recursive: a controlling domain interposes the portals of
a child domain, which does the same to its child, and so on.

Pebble provides a new engineering trade-off for the construction of effi-
cient component-based systems, using hardware memory management to
enforce protection domain boundaries, and reducing the cross domain trans-
fer time by synthesizing custom portal code. Pebble enhances flexibility by

258 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

maintaining a private portal table for each domain. This table can be used
to provide different implementations of system services, servers and portal
interposition for each domain. Portal interposition allows running untrusted
code in a robust sandbox with an acceptable overhead while using unsafe
programming languages such as C.

Having a small nucleus with minimal functionality enhances system
modularity, while it enables nonstop systems to modify their behavior by
integrating new servers on-the-fly.

Pebble is much faster than Open BSD (Berkeley Software Distribution) for
a limited set of system-related micro-benchmarks. Pebble efficiency does not
stem from clever, low-level, highly optimized code; rather it is a natural con-
sequence of custom portal synthesis, judicious processor state manipulations
at portal traversals, encapsulating state in portal code, and direct transfer of
control from clients to their servers without scheduler intervention.

Pebble can be used to build flexible, safe, and high performance systems.

8.3.4. Embedded Applications

Pebble operating system architecture is used as a platform for high-end,
embedded, communicating devices constructed from reusable software com-
ponents. A component-based approach to building applications uses software
components with clean, abstract interfaces, which allow code to be combined
and reused in many different ways. The cost of development can be amortized
by using many diverse applications.

The approaches to isolate the components from one another are as follows:

• to provide no protection between components;
• to provide software protection;
• to provide hardware protection.

Each method has its drawbacks. With no protection, a component can
compromise the integrity of the system, as it has access to all data and
resources of the system. Software protection typically requires that the
system be written in a special, safe programming language, which may not be
acceptable to all developers. Hardware protection schemes have traditionally
exhibited poor performance, due to the cost of switching protection domains
when performing an interprotection-domain call.

In Pebble architecture, the operating system services are implemented by a
collection of fine-grained, replaceable user-level components. The techniques
applied to operating system components are also used by component-based

8.3. THE PEBBLE COMPONENT-BASED OPERATING SYSTEM 259

applications running on Pebble, and applications share in the performance
benefit provided by these techniques. The performance improvements are
significant: for example, on Pebble, a one-way interprotection domain call
takes about 120 machine cycles, which is within an order of magnitude of
the cost of performing a function call; an equivalent call when running Open
BSD (Berkeley Software Distribution), on the same hardware, takes about
1000–2000 machine cycles.

Under the Pebble operating system, an application can dynamically con-
figure the services provided by the system, and safely load new, untrusted
components, written in an unsafe programming language, into the system
while the system is running. Moreover, old servers may be retired gracefully
when new versions of the service are introduced without disrupting the oper-
ation of the system. This capability is essential for high-availability systems
that must operate continuously.

Communication devices, such as PDA-cell phone hybrids, set-top boxes,
and routers require this type of dynamic method of configuration and the
ability to run untrusted code safely. This approach is valuable for building
embedded systems.

Component-based systems that use software protection schemes are typ-
ically written in a type-safe byte-coded programming language, such as
Java, and the Limbo programming language of the Inferno operating system.
Components run in a single hardware protection domain, but the run-time
environment implements, in effect, a software protection domain. These
systems are designed to meet the following goals:

(1) to provide an architecture-independent distribution format for code;
(2) to ensure that resources, such as memory, are returned to the system

when they are no longer needed;
(3) to ensure that the component does not view or modify data to which it

has not been granted access.

In case of Java, these goals are satisfied by (1) the machine-independent Java
byte-code, (2) the garbage collector provided by Java run-time environments,
and (3) the run-time Java byte-code verifier.

Java byte-code offers a hardware-architecture-neutral distribution format
for software components. However, such an architecture-neutral format
could also be used for untrusted code. Most compiler front-ends generate
a machine-independent intermediate form, which is then compiled by a
machine-specific back-end. Such an intermediate form could be used as a
distribution format for components written in any programming language,
trusted or untrusted.

260 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

With the software protection, having all software-protected components in
the same address space makes it hard to find a buggy component that is not
caught by the type system or the garbage collector.

Hardware protection schemes run each component in a separate hardware
protection domain. As an example, a traditional operating system such as
Unix, could be thought of as a hardware-protected, component-based system,
where the components are programs, and the protection is provided by the
operating system working with the hardware memory management unit,
such components can be composed using Unix pipes.

Typically, hardware schemes do not provide an architecture-independent
distribution format for code since components are distributed in the machine
language of the target hardware. Resources, such as memory, are returned to
the system when no longer needed through careful bookkeeping: the system
keeps track of the resources assigned to each component (process), and when
the component (process) terminates, the resources are returned to the system.
The component does not view or modify data to which it has not been granted
access by using hardware memory protection: each component is run in a
separate address space. If a component attempts to view or modify data
outside its address space, a hardware trap is invoked and the component
(process) is terminated.

By running multiple Java virtual machines on top of hardware protection,
the components can be separated in a way that makes it easier to identify
buggy components.

Software schemes are the only option when hardware protection is unavail-
able, such as low-end processors without memory management units. For
this reason, the designers of the Inferno operating system and Limbo pro-
gramming language chose a software protection scheme.

Hardware schemes are used when component code is written in an unsafe
programming language, such as C or C++. Although Java provides many
facilities unavailable in C and C++, there are often good reasons for running
code written in an unsafe programming language. A component may include
legacy code that would be difficult or costly to reimplement in a safe program-
ming language. A component may also include a hand-tuned assembler code
that uses hardware specific features, for example, a computation-intensive
algorithm, such as an MPEG (Motion Pictures Experts Group) decoder, which
uses special hardware instructions.

The garbage collection offered by systems such as Java assures program-
mers and software testers that all allocated resources are eventually freed.
Storage leaks are usually hard to find, and automated garbage collection sim-
plifies the task of writing robust code. However, when building applications
have fixed latency requirements, the free memory pool may become empty at

8.3. THE PEBBLE COMPONENT-BASED OPERATING SYSTEM 261

any time, and any memory allocation could trigger garbage collection, which
makes estimating the cost (in terms of time) of memory allocation, a stochas-
tic, rather than deterministic, process. In a real-time embedded system, the
uncertainty introduced by the presence of a garbage collector may not be
beneficial. This is the reason why some systems, such as the operating system
Inferno, ensure that garbage collection does not delay critical functions.

The cost of making transfers between components under a hardware pro-
tection scheme is much higher than it is under a software protection scheme.
In the Pebble operating system, the cost of cross-component communication
under a hardware scheme is within one order of magnitude of the cost of a
function call.

Portals can be used to model code and data. A set of portals can be used to
represent an open file descriptor. In Pebble, an open call creates three portals
in the invoking protection domain, which are for read, write, and seek,
on the corresponding file. A read call transfers directly to the appropriate
routine, thus, no run-time demultiplexing is needed to determine the type of
underlying object, and the appropriate code for a disk file, socket, etc., will
be invoked. Additionally, a pointer to its control block can be embedded in
the portal code and passed directly to the service routine, thus there is no
need to perform a run-time validation of the file pointer. The portal code
cannot be modified by the client, and the control block pointer passed to the
server can be trusted to be valid. Thus, the server can access the particular
file immediately. There is no need for a separate file descriptor table; the data
normally associated with the tables is found in the dynamically generated
portal code.

Bruno et al. (1999) measured the operation of Pebble for several micro-
benchmarks on three different test hardware platforms, named LOW, MID
and HIGH, representing low-, medium- and high-end embedded system
configurations. All three platforms included MIPS processors from QED
(Quantum Effect Design) RM5230 and RM7000, and IDT (Integrated Device
Technology) R5000. All motherboards were manufactured by Algorithmics,
a developer of systems for embedded applications.

The LOW platform is representative of low-cost, hand-held devices, which
have a single-level cache hierarchy and small memory. The MID platform
is representative of more powerful appliances, such as a set-top box, which
contain a more powerful processor, two-level cache hierarchy and larger
memory. The HIGH platform is representative of high-end systems, which
contain top-of-the-line processors with large caches.

The cache in all targets can be accessed in a single machine cycle, and does
not cause any pipeline delay. Access to higher levels of the memory hierarchy
causes a delay.

262 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

The operations are simple communication or synchronization building
blocks:

• The measured time of short-circuit portal to return the identity of the calling
domain. This is the equivalent of the UNIX null system call. A short-circuit
portal performs the action and returns to the caller immediately without a
context switch.

• The measured time of an interprotection domain call between two domains,
which is implemented by a portal traversal. The portal passes four integer
parameters in the machine registers. No parameter manipulation is per-
formed by the portal code. The portal allocates a new stack in the target
domain and frees the stack on return. The one leg of interprotection domain
call time is constant for a chain of interprotection domain calls through a
sequence of domains.

• The measured thread yield operation, in which the current thread calls
the scheduler and requests the next thread to be run with a higher or
equal priority. There is one active thread in each domain. The time is a
single context switch time (total time divided by total number of yields by
all threads).

• The measured time to pass a token around a ring of n threads, each running
in a separate domain. Each thread shares one semaphore with its left
neighbor and one semaphore with its right neighbor. The thread waits on
its left neighbor. Once the left semaphore is released, the thread releases its
right semaphore and repeats the process. There is one active thread in each
domain. The time is that taken to pass the token once, which is the time for
a single pair of semaphore acquire/release.

The performance degrades with the number of active threads, which is
expected due to more frequent cache misses. Performance degrades the most
with LOW platform, and the least with HIGH platform, which has a large
cache to hold the entire working set of the test.

The HIGH platform is not significantly faster than the LOW and MID
platforms for short-circuit portal, interprotection domain call, and semaphore
acquire/release thread, although it has a dual-issue pipeline and much larger
caches. This is because these tests do not cause too many cache misses, and
the portal code is dominated by sequences of load and store instructions that
cannot be executed in parallel.

When an interrupt is generated, there are two factors that control the delay
before the interrupt is handled. First, there can be a delay before the system
is notified that an interrupt has been received, if the processor is running

8.3. THE PEBBLE COMPONENT-BASED OPERATING SYSTEM 263

with interrupts disabled. Second, there may be a delay between the time the
interrupt is delivered and the time the device is serviced. The sum of these
two delay components is the interrupt latency.

The first delay component, DF, is bounded by the length of path through
the system where interrupts are disabled. The length, in this context, refers to
the amount of time it takes to process the instruction sequence. Intuitively, it
can be expected to be proportional to the length, in instructions, of the code
path. In particular, the delay DF is determined by the portal code and by the
scheduler, which are the only frequently used portions of the system that run
with interrupts disabled.

The second delay component, DS, is bounded by the minimum amount
of time required to deliver the interrupt to the interrupt handler. Thus the
interrupt latency will range from [DS, DS + DF], provided that interrupt
handling does not generate many additional cache misses, such as in the MID
and HIGH platforms.

The interrupt latency is measured by computing the difference between
the time that an interrupt was generated and the time that a user thread
that waited for this interrupt actually woke up. To accomplish this, Bruno
et al. (1999) had the measurement thread sleep for some randomly chosen
duration, and compared the time at which it is woken up with the time it
expected to be woken up. The difference between the two is the interrupt
latency.

This test is very precise: each of the test platforms includes a high-resolution
timer that is incremented every other processor cycle, and the ability to
schedule timer interrupts with the same granularity.

To estimate interrupt latencies under various loads, Bruno et al. (1999) ran
the measurement thread concurrently with a background task that repeat-
edly performed a specific operation. Different operations exercise different
interrupt-disabled paths of the system, and hence have different interrupt
latency characteristics. The background threads tested were:

• A background thread that spins in a tight loop on a particular variable in
user mode. The idle task can be preempted at any time. The value reported
for this case is an estimate of the lower bound of the interrupt latency.

• A background task that calls that implemented by a short-circuit portal
routine repetitively. Interrupts are disabled while executing this portal.

• A background thread that repeatedly performs an interprotection domain
call to the protection domain in which the measurement thread is running.
The portal code associated with this portal is only transferring control, and
the call returns immediately. Interrupts are disabled during each leg of the

264 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

interprotection domain call return, and are enabled when executing in the
caller and called domains.

• A background thread that repeatedly calls the scheduler to yield control. As
there is one active thread in the system, the scheduler returns to the calling
thread. Interrupts are disabled during the portal call to the scheduler, inside
the scheduler, and during the portal return to the thread.

• A pair of background threads, which pass a token both ways. Each thread
runs in separate protection domain. Interrupts are disabled during the
semaphore operations.

The interrupt latency is bounded by the sum of a platform-specific constant
plus a time which is proportional to the longest interrupt-disabled path in
the background task. The platform-specific constant is the minimal interrupt
response time, which is the median value of the idle test. The measurements
indicate that the interrupts are served immediately.

The maximal interrupt latency on the MID and HIGH platforms is very
close to the 99th percentile on these platforms, which means that the system
performance is highly predictable. However, the maximal interrupt latency
on the LOW platform is up to 60 % higher than the 99 % percentile latency.
This is the result of the small cache size of LOW, which causes exces-
sive cache misses due to infrequent background events, such as the timer
interrupt.

The interrupt latencies for the MID and HIGH systems are quite close, and
much lower than those for LOW. Although the cache architectures of the two
differ, both MID and HIGH have more effective caches than LOW.

The cost of hardware protection of components and system services is very
low and that interrupt latency on Pebble is quite low, with a lower bound of
1200–1300 cycles (6.1 µs to 9.0 µs) depending on the target architecture.

8.4. EMBEDDED OPERATING SYSTEM ENERGY ANALYSIS

Tan et al. (2002a) recognized the need to provide embedded software design-
ers with feedback about the effect of different OS services on energy
consumption early in the design cycle. They presented a systematic method-
ology for performing energy analysis and macro-modeling of an embedded
OS. Their energy macro-models provide software architects and developers
with an intuitive model for OS energy effects, since they directly associate
energy consumption with OS services and primitives that are visible to the
application software. This methodology consists of:

8.4. EMBEDDED OPERATING SYSTEM ENERGY ANALYSIS 265

• an analysis stage to identify a set of energy components, called energy
characteristics, which are useful to the designer in making OS-related
design trade-offs;

• a subsequent macro-modeling stage, where the data is collected for the iden-
tified energy components and macro-models for them are automatically
derived.

The methodology is validated by deriving energy macro-models for two
embedded OSs, C/OS and Linux OS.

Embedded operating systems form a critical part of a wide range of complex
embedded systems, and provide benefits ranging from hardware abstraction
and resource management, to real-time behavior. The energy effects of the OS
have great bearing on the energy efficiency of the overall embedded system.
Most of the embedded OS-related investigations center around performance
issues. Also, OS-related issues concerning energy consumption of embedded
software are studied. The energy consumption overhead of the OS is called
OS energy characterization. Also, the effects of using different OSs or different
uses of an OS on energy consumption are important.

An embedded system consists of many components, one of which may
be a microprocessor that hosts all the software tasks. The software tasks
use an OS as the run-time engine. A conceptual diagram for this system is
shown in Figure 8.6. An example software for this embedded system has the
task configuration shown in the figure. Task T1 through task T4 perform
background processing such as managing the memory, controlling the LCD,
etc. Task T5 looks out for new data coming from the A/D converter, performs
some preprocessing, and passes the data to task T4. Given this multi-task
specification, there are different ways to implement the system. In particular,
for task T5, there are two options:

• Task T5 is implemented as an actual software process. After perform-
ing preprocessing, it passes the data to task T4 through interprocess
communication (IPC).

• Task T5 is implemented as an Interrupt Service Routine (ISR) or signal
handler for task T4. The ISR or signal handler is activated periodically
using a hardware timer. Since tasks T4 and T5 share the same process space,
passing data from task T5 to task T4 does not incur any IPC overhead.

The second implementation has lower overhead in terms of delay and
energy, compared with the first implementation. However, the first imple-
mentation is a easier to program as compared with the second. Therefore,

266 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

DSP core Program
RAM

Program
RAMmP core

Hardware
components

High-speed
HW

accelerators

Glue logic

Data
RAM

Host interface

A/D
and
D/A

T1

T2

T3

T4

T5

HW
interface

System bus

Process
manager

IPC

Virtual
file
system

Timer

Memory
manager

Networking

System SW

OS-App.
interface Application

Implement as software
process or ISR

Design consideration 1

Design consideration 2

Which IPC ?

Figure 8.6 Building blocks of an embedded system.

some trade-off has to be made. Apart from that, choosing the actual mecha-
nism for IPC also requires a trade-off between various objectives. A decision
can be made when the energy overhead is quantified. To quantify the energy
overhead of first over second implementation, both implementations are run
and compared. Another way is to use energy characteristic data for the chosen
operating system to compare them more efficiently. The energy characteristic
data can be provided in the form of energy macro-models.

Figure 8.7 illustrates the overall methodology for OS energy characteriza-
tion. The following steps are involved:

(1) Energy effect analysis step, in which the essential components of the
embedded OS are characterized.

(2) Directed test programs that isolate these components from each other
are generated.

(3) The test program is compiled and linked with the OS, and fed into
an energy simulation tool. This step requires a low-level energy simu-
lation framework that is capable of executing the application software

8.4. EMBEDDED OPERATING SYSTEM ENERGY ANALYSIS 267

Energy
effect

analysis

Test
program

generation

Energy
simulation

Model
fitting

1

2

3

4

Energy
components

OS source

Test
program

Execution
profiles

Macro-model
templates

Energy
macro-model

Energy
profiles

Figure 8.7 A flow diagram for energy characterization of an operating system.

together with the OS and reporting the energy consumption on a function
instance basis.

(4) The execution and energy profiles generated from the previous step
are subject to further analysis and model fitting to obtain the energy
macro-models.

Step 1 is the energy analysis stage, whereas Steps 2, 3, and 4 belong to the
energy macro-modeling stage.

For the purpose of energy analysis, an OS can be seen as a multi-entry multi-
exit program. Some of the entry–exit pairs belong to system-call interfaces,
whereas others belong to implicit paths of execution within the OS, that is,
they do not directly correspond to system calls in the application code. Implicit
execution paths can be triggered by interrupts. The entry–exit pairs belonging
to the system call interfaces are called SCEEP (system call entry–exit pair),
and the entry–exit pairs belonging to implicit execution paths are called IEEP
(implicit entry–exit pair).

268 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

An SCEEP can be overloaded with a few groups of paths because the
system function it represents is overloaded with many modes of operations.
For example, the read system function in the Linux OS can be used to read
from a file, from the network, or from a terminal. These different modes
of operation correspond to very different groups of paths for the SCEEP of
the read function. Similarly, IEEP could also be overloaded in the sense that
different groups of paths may be traversed, depending on the state of the OS.

The objective of OS energy analysis is to identify a useful set of SCEEPs
and IEEPs, and to classify the paths between them into groups amenable to
macro-modeling. The energies consumed while traversing these paths are the
energy characteristics of the OS. The energy characteristic data are classified
into two categories, namely the explicit group and the implicit group.

The energy data that is directly related to the OS primitives, functions.
The explicit energy basically relates to the energy consumed while traversing
the paths between SCEEPs. An OS typically comprises many SCEEPs. A
comprehensive set of explicit energy-characteristic data should, in principle,
cover all the SCEEPs. However, in most practical applications, a selected set
of SCEEPs should be sufficient to provide useful data for the designers. For
system functions that are overloaded with multiple modes of operation, each
mode of operation should have its own energy macro-model, even though
all the modes of operation share the same SCEEP.

Making energy macro-models available for system functions allows the
designers to choose among possible alternatives, that is, system functions,
efficiently. Therefore, the significance of these energy macro-models lies not
in their ability to provide absolute estimates for actual energy consumption,
but in their ability to facilitate comparison among different alternatives.

Implicit energy characteristics are not directly related to any OS primitive.
The energy is not incurred when exercising an OS primitive, but comes as a
result of running the OS engine. This energy basically relates to the energy
consumed while traversing the paths between IEEPs. Similar to the SCEEP,
there are usually a few groups of paths for a single IEEP, each of them
requiring a separate energy macro-model. The energy consumption along
the different groups of paths between the IEEP is characteristic of an OS, and
they are called implicit energy characteristics. Some of them are as follows:

• Timer interrupt energy, which is the energy overhead incurred by the timer
interrupt tied to the scheduler.

• Scheduling energy, which is the energy overhead of performing reschedul-
ing in the preemptive scheduler.

• Context switch energy, which is the energy overhead incurred when a
context switch occurs. A call to the scheduler may not always result in

8.4. EMBEDDED OPERATING SYSTEM ENERGY ANALYSIS 269

a context switch, hence, the context switch and scheduling energy are
characterized separately.

• Signal handling energy: A signal depicts an OS emulation of a low-level
interrupt. Since it is commonly used, its energy overhead should be
characterized.

Making energy macro-models available for the above energy components
allows the designers to efficiently compute the relative energy cost of different
software architectures.

Tan et al. (2002a) adopted a white-box analysis and black-box measurement
philosophy for OS energy macro-modeling. White-box analysis refers to the
fact that they identified and analyzed the energy components by studying
the internal operation of the OS. Black-box measurement refers to the fact
that they measured the energy components by devising experiments that
isolate the OS energy by only instrumenting the application code. Black-box
measurement and macro-modeling enable the energy models to be used
without any knowledge of the OSs internal implementation.

The energy consumption of an OS primitive, that is system function, can be
characterized by repeatedly calling it in a test program. Care must be taken
to extract the pure energy cost of the system function, isolating it from the
implicit energy. For example, in measuring the cost of a message queue read,
one must make sure that the energy data collected does not include context
switch energy. This is achieved by arranging to have both read and write
parts of the experiment in the same software process. Moreover, spurious data
resulting from timer interrupt, rescheduling and preemptive context switch
must be isolated and eliminated. For example, to avoid a preemptive context
switch, the test program must not execute for more than 200 milliseconds in
the case of Linux OS.

There are a few key parameters that should be measured to obtain the
implicit energy characteristics. Measuring these parameters is not as straight-
forward as for explicit energy characteristics.

Context switch energy is a good measure of the chosen OSs ability to
perform multi-tasking with energy efficiency. Due to its importance, two
different approaches are presented for obtaining values for this key parameter.
Whether both approaches result in similar energy values is an indicator of
their accuracy.

The first approach is to arrange two separate experiments, A and B.
Experiment A consists of two tasks, connected by two separate IPC channels
going in opposite directions, with a single byte repeatedly being passed back
and forth through the two IPC channels. Since two tasks are involved in the
activity (reading and writing of the IPC channels), context switches occur

270 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

repeatedly. Experiment B consists of a similar set-up. However, in this case,
both the IPC channels are entirely in a single task. As reading and writing
of the IPC channels occur, no context switch is involved. By comparing the
differences in the energy consumptions between these two experiments, the
context switch energy can be isolated.

The second approach is quite different from the first. In this case, the test
program consists of a function that does nothing, expecting to be preempted
by the OS. This function is called a large number of times by the main
test program, and is preempted by the OS during some of these calls. The
energy consumption of this function reveals the energy incurred by the
timer interrupt, rescheduling, and context switch. Knowing the underlying
scheduling mechanism of the OS, the origin of each energy cluster can be
reduced. This approach is a white-box analysis and black-box measurement.
The first cluster is the nominal energy consumption of the function. The
second cluster is due to the timer interrupt, which arrives with a period
5 milliseconds. Every 10 milliseconds, rescheduling occurs, which results in a
third energy cluster. This cluster shows significant dispersion, pointing to the
fact that the rescheduling algorithm used in the OS is dynamic. The fourth
cluster, which has a low count, is attributed to calls to the function during
which an actual context switch occurs. To extract the context switch energy
from the histogram, the difference between the fourth and the first energy
clusters needs to be calculated. This value is very close to the value obtained
using the first approach.

Knowing that the second cluster should be attributed to the timer interrupt,
Tan et al. (2002a) obtain the timer interrupt energy to be the difference between
the second cluster and first. Similarly, the scheduling energy is the energy
difference between the third cluster and first.

Signal handling energy needs to be extracted using another experiment.
In this experiment, Tan et al. (2002a) reuse the same function. However, the
main test program also sets up an alarm that generates a signal periodically.
An alarm signal handler that does nothing (just return) is also established in
the main test program. While the function is called repeatedly by the main
test program, some invocations will be interrupted by the alarm. Knowing
that this setup is the same as the previous set up except for signal handling,
the extra cluster is attributed to signal handling.

8.5. SUMMARY

Pebble provides a new engineering trade-off for the construction of efficient
component-based systems, using hardware memory management to enforce

PROBLEMS 271

protection domain boundaries, and reducing the cross domain transfer time
by synthesizing custom portal code. Pebble enhances flexibility by main-
taining a private portal table for each domain. This table can be used to
provide different implementations of system services, servers and portal
interposition for each domain. Portal interposition allows running untrusted
code in a robust sandbox with an acceptable overhead while using unsafe
programming languages such as C.

Pebble architecture provides an efficient operating system that is easy to
modify and debug, and hardware protection for running components written
in any programming language. Components communicate via portals and
run in user mode with interrupts enabled. Through the use of portals, which
are specialized to the specific interrupt or communication they are to handle,
Pebble is able to compile out run-time decisions and lead to better performance
than other operating system implementations. In addition, a portal can be
configured to save and restore only a subset of the machine state, depending
on the calling conventions of, and the level of trust between, the client and
server. The low interrupt latency provided by Pebble architecture makes it
well suited for embedded applications.

OS energy characterization targets embedded operating systems that are
monolithic and run on a single processor. This group of OSs includes Linux,
C-Linux, C/OS, eCos, etc. Although the overall methodology should be
applicable across multiple OSs, the details of test program generation is
nevertheless implementation dependent. Tan et al. (2002a) used Linux OS as
the target OS and leveraged the approach for C/OS. They focused only on
the OS energy characterization. Though they have pointed out some possible
uses of the energy characteristic data, systematically use of this information
in a system-level software energy reduction framework is needed.

PROBLEMS

Learning Objectives

After completing this chapter you should be able to:

• demonstrate understanding of the operating systems for embedded
applications;

• explain what the Inferno operating system is;
• demonstrate understanding of the Pebble component-based operating

system;

272 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

• explain what the Pebble operating system for embedded applications is;
• discuss what is meant by embedded operating system energy analysis and

macro-modeling.

Practice Problems

Problem 8.1: How is the communication between protection domains done?
Problem 8.2: What are the characteristics of the portal code?
Problem 8.3: What is the role of the privileged-mode nucleus?
Problem 8.4: What is the cost of transferring control from one protection

domain to another?
Problem 8.5: How is the operating system implemented?
Problem 8.6: How is the control transferred between protection domains?
Problem 8.7: What is the portal manager?
Problem 8.8: What are the approaches to isolate components from one

another?
Problem 8.9: What are the design goals of component-based systems?

Practice Problem Solutions

Problem 8.1:

All communication between protection domains is done by using interrupt
handlers, named portals. Only if a portal exists between protection domain A
and protection domain B can A invoke a service offered by B. Each protection
domain has its own portal table. By restricting the set of portals available
to a protection domain, threads in that domain are efficiently isolated from
services to which they should not have access.

Problem 8.2:

Portals are the basis for flexibility and safety in Pebble, and the key to its
high performance. Specialized, tamper-proof code can be generated for each
portal, using a simple interface definition language. The portal code can
be optimized for its portal, saving and restoring the minimum necessary
state, or encapsulating and compiling out demultiplexing decisions and
run-time checks.

Problem 8.3:

The privileged-mode nucleus is as small as possible. Most executions occur
at the user level.

PROBLEMS 273

The privileged-mode nucleus is responsible for switching between protec-
tion domains, and it is the only part of the system that must be run with
the interrupts disabled. By reducing the length of time the interrupts are
disabled, the maximum interrupt latency is reduced.

In a perfect world, Pebble would include only one privileged-mode instruc-
tion, which would transfer control from one protection domain to the next.
By minimizing the work done in privileged mode, the Pebble’s designers
reduce both the amount of privileged code and the time needed to perform
essential privileged mode services.

Problem 8.4:

Each component is implemented by a separate protection domain. The cost of
transferring control from one protection domain to another should be small
enough that there is no performance-related reason to co-locate components.

Microkernel systems used coarse-grained user level servers, in part because
the cost of transferring between protection domains was high. By keeping
this cost low, Pebble enables the factoring of the operating system, and
application, into smaller components with small performance penalty.

Problem 8.5:

The operating system is built from fine-grained, replaceable components,
isolated through the use of hardware memory protection.

The functionality of the operating system is implemented by trusted
user-level components. The components can be replaced, augmented, or
layered. For example, Pebble does not handle scheduling decisions, and the
user-replaceable scheduler is responsible for all scheduling and synchroniza-
tion operations.

The architecture of Pebble is based on the availability of hardware memory
protection, and it requires a memory management unit.

Problem 8.6:

Transferring control between protection domains is done by a generalization
of hardware interrupt handling, that is, portal traversal. Portal code is
generated dynamically and performs portal specifications.

Hardware interrupts, interprotection domain calls, and the Pebble equiva-
lent of system calls are all handled by the portal mechanism. Pebble generates
specialized code for each portal to improve run-time efficiency. The portal
mechanism provides two important features: abstract communication facil-
ities, which allow components to be isolated from their configuration, and

274 OPERATING SYSTEMS FOR EMBEDDED APPLICATIONS

per-connection code specialization, which enables the application of many
otherwise unavailable optimizations.

Problem 8.7:

The portal manager is the operating system component responsible for
instantiating and managing portals. The portal manager is privileged because
it is the only component that is permitted to modify portal tables.

Problem 8.8:

The approaches to isolate the components from one another are as follows.

• to provide no protection between components;
• to provide software protection;
• to provide hardware protection.

Problem 8.9:

Component-based systems that use software protection schemes are typically
written in a type-safe, byte-coded programming language, such as Java,
and the Limbo programming language of the Inferno operating system.
Components run in a single hardware protection domain, but the run-time
environment implements, in effect, a software protection domain. These
systems are designed to meet the following goals:

(1) to provide an architecture-independent distribution format for code;
(2) to ensure that resources, such as memory, are returned to the system

when they are no longer needed;
(3) to ensure that the component does not view or modify data to which it

has not been granted access.

9
Network Support
for Embedded Applications

9.1. INTRODUCTION

Bluetooth enables seamless voice and data communication via short-range
radio links, and allows users to connect a wide range of devices easily
and quickly, without the need for cables, thus expanding communications
capabilities for mobile computers, mobile phones, and other mobile devices.
Considering a wide range of computing and communication devices such
as PDAs, notebook computers, pagers, and cellular phones with differ-
ent capabilities, Bluetooth provides a solution for access to information
and personal communication by enabling collaboration between devices in
proximity to each other where every device provides its inherent function
based on its user interface, form factor, cost and power constraints. Further-
more, Bluetooth technology enables a vast number of new usage models
for portable devices. The development of a short-range Radio Frequency
(RF) solution enables the notebook computer to connect to different vari-
eties of cellular phones and other notebook computers. The RF solution also
removes many of the wires required for audio and data exchange in cellular
handset.

The Bluetooth radio transmission uses a packet-switching protocol with
a FHSS (Frequency Hopping Spread Spectrum). The hop frequency is 1600
hops per second, the frequency spectrum is divided into 79 hops of 1 MHz
bandwidth each. The frequency hopping scheme is combined with fast

Wireless Sensor Network Designs A. Hać
 2003 John Wiley & Sons, Ltd ISBN: 0-470-86736-1

276 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

ARQ (Automatic Repeat Request), CRC (Cyclic Redundancy Check) and
FEC (Forward Error Correction). A binary radio frequency modulation and
simple link layer protocols reduce the complexity and the costs of the radio
chip.

Bluetooth provides a nominal data rate of 1 Mbit/s for a piconet. One
piconet consists of one master and up to seven slaves. The master–slave
principle is used to initiate and control the traffic between devices in a piconet.
The master is responsible for defining and synchronizing the frequency hop
pattern in its piconet. A single Bluetooth unit may send/receive at a maximum
data rate of 721 kbit/s or a maximum of three voice channels of 64 kbit/s each,
with continuous variable slope delta modulation (CVSD). Both a Synchronous
Connection Oriented (SCO) link and an Asynchronous Connectionless (ACL)
link for each master–slave pair are supported. Within the same Bluetooth
radio range, separate and independent piconets may be formed. These may
build up into scatternets to allow for a higher number of Bluetooth devices
being active and/or for a higher aggregate bandwidth.

The essence of ubiquitous computing is the creation of environments sat-
urated with computing and communication in an unobtrusive way. WWRF
(Wireless World Research Forum) and ISTAG (Information Society Tech-
nologies Advisory Group) envisage a vast number of various intelligent
devices embedded in the environment, sensing, monitoring and actuating the
physical world, communicating with each other and with humans.

The main features of the IEEE 802.15.4 standard are network flexibility,
low cost, and low power consumption. This standard is suitable for many
applications in the home that require low-data-rate communications in an ad
hoc self-organizing network.

Wireless sensor networks are used in a wide range of different applications
where numerous sensor nodes are linked to monitor and report distributed
event occurrences. In contrast to traditional communication networks, the
single major resource constraint in sensor networks is power, due to the
limited battery life of sensor devices. Data-centric methodologies can be
used to solve this problem efficiently. In data-centric storage (DCS), data
dissemination framework, all event data is stored by type at designated
nodes in the network and can later be retrieved by distributed mobile access
points in the network. Resilient Data-Centric Storage (R-DCS) is a method for
achieving scalability and resilience by replicating data at strategic locations
in the sensor network. This scheme leads to significant energy savings
in reasonably large-sized networks and scales well with increasing node
density and query rate. R-DCS realizes graceful performance degradation in
the presence of clustered as well as isolated node failures, hence making the
sensor net data robust.

9.2. BLUETOOTH ARCHITECTURE 277

9.2. BLUETOOTH ARCHITECTURE

Bluetooth enables combined usability models based on functions provided
by different devices. In a connection between a computing device like a
PDA (Personal Digital Assistant) and a communication device like a cellular
phone, by using Bluetooth, and a second connection between the cellular
phone and a cellular base station providing connectivity for both data
and voice communication, the PDA maintains its function as a computing
device and the telephone maintains its role as a communication device.
Each device provides a specific function efficiently, yet its function is used
separately, and the devices can be used independently of each other. When the
devices are close to each other they provide a useful combined function. This
function and connectivity model based on a combination of wireless access
technologies each matched to different device capabilities and requirements,
enables ubiquitous and pervasive wireless communication as in the following
examples:

• In the three-in-one phone scenario the user can use the same phone in any
place: at the office, the phone functions as an intercom; at home, it functions
as a portable phone; and outdoors, it functions as a mobile phone.

• The user can use the e-mail while the notebook is still in the briefcase.
When the notebook receives an e-mail, the user gets an alert on the mobile
phone. The user can also browse all incoming e-mails and read selected
e-mails in the mobile phone’s window.

• The automatic background synchronization keeps the user information
current. Automatic synchronization of data on the desktop, notebook,
personal digital assistant (PDA), and mobile phone allows the user entering
the office to have the address list and calendar in the notebook to be
automatically updated to agree with the one in the desktop, or vice versa.
The user can collect a business card on the phone and add it to the address
list on the user’s notebook PC.

The following system requirements are needed:

• To handle both voice and data, the protocol must support good quality
real-time voice. Voice quality is important to both end-users who are
accustomed to it, and for speech recognition engines whose accuracy
depends on it.

• To be able to establish ad hoc connections. The dynamic nature of mobil-
ity makes it impossible to make any assumptions about the operating

278 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

environment. Bluetooth units must be able to detect other compatible
units and establish connections to them. A single unit must be able to
establish multiple connections in addition to accepting new connections
while being connected. Ignoring a new connection requests while being
connected is confusing to the user and deemed unacceptable, especially in
supporting unconscious computing while retaining the ability to perform
interactive operations.

• To withstand interference from other sources in an unlicensed band. The
Bluetooth radio operates in the unlicensed 2.4 GHz band where many
other RF radiators exist. The challenge is to avoid significant degradation
in performance when other RF radiators, including other personal area
networks nearby, are in operation.

• To be used worldwide. The challenge here is very regulatory in nature with
many governments having their own set of restrictions on RF technology.
And while the 2.4 GHz band is unlicensed through most parts of the world,
it varies in range and offset in a number of different countries.

• To have a similar amount of protection compared as a cable. In addition to
the radio’s short-range nature and spread spectrum techniques, Bluetooth
link protocols also provide authentication and privacy mechanisms.

• To have a small size to accommodate integration into a variety of devices.
The Bluetooth radio module must be small enough to permit integration
into portable devices. Wearable devices in particular, such as mobile
phones, headsets, and smart badges have little space to spare for a
radio module.

• To have negligible power consumption compared with the device in which
the radio is used. Many Bluetooth devices will be battery powered, which
requires that the integration of the Bluetooth radio should not significantly
compromise the battery lifetime of the device.

• To allow for ubiquitous deployment of the technology. There is specification
defining the radio, physical, link, and higher level protocols and services
necessary to support the usage models.

Figure 9.1 outlines the application framework in the context of the radio
and protocol stack. The radio is used to send and receive modulated bit
streams. The Baseband (BB) protocol defines the timing, framing, packets,
and flow control on the link. The Link Manager (LM) assumes responsibility
for managing connection states, enforcing fairness among slaves, power
management, and other management tasks. The Logical Link Control (LLC)
handles multiplexing of higher level protocols, segmentation and reassembly
of large packets, and device discovery. Audio data is mapped directly on to the

9.2. BLUETOOTH ARCHITECTURE 279

Application programs

WAP
Interoperability

(WAP = Wireless Application
Protocol)

TCP/IP
(Address resolution, MTU

definition, multicast mapping...)
RFCOMM

(Serial cable emulation using
subset of ETSI GSM 07.10)

OSI layer 1 and 2

Covered by
Bluetooth

specification

Logical link control
(Segmentation reassembly,

multiplexing, ...)

Link manager
(Connection state management, fairness,

power management)

Baseband
(Timing, framing, packet definition, flow control on the link)

Radio
(Send and receive of modulated bitstreams)

A
ud

io

IrDA
Interoperability

(IRDA = InfraRed Data Assoc.)

Figure 9.1 Application framework for Bluetooth.

baseband while audio control is layered above the logical link control. Above
the data link layer, RFCOMM, which is an interface that allows an application
to treat a Bluetooth link in a similar way as if it were communicating over
a serial port, and network level protocols, provide different communication
abstractions. Other parts of the Bluetooth specification discuss interoperability
with other protocols and protocol stacks. Defining TCP/IP over Bluetooth
requires that bridging, address resolution, MTU (Maximum Transmission
Unit) definition, and multicast/broadcast mappings are solved. To accelerate
the number of wireless-specific applications, Bluetooth allows interoperability
with higher layer IRDA (Infrared Data Association) and WAP (Wireless
Application Protocol) protocol stacks. For example, IROBEX (Infrared Object
Exchange) defines a transport-independent format and session protocol for
object exchange and is used as the basis for a variety of applications from
exchanging files and business cards to synchronizing address book and
calendar schedules.

Bluetooth is specified and designed with emphasis on robustness and low
cost. Its implementation is based on a high-performance, low cost, integrated

280 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

radio transceiver. Bluetooth targets mobile users who need to establish a
link, or small network, between their computer, cellular phone, and other
peripherals. The required and nominal range of Bluetooth radio is set to 10
meters (with 0 dBm output power). To support other uses, for example the
home environment, the Bluetooth chip set can be augmented with an external
power amplifier to extend the range (up to 100 meters with a +20 dBm output
power). Auxiliary baseband hardware to support, for example, four or more
voice channels can also be added. These additions to the base chip set are
fully compatible with the nominal specification and may be added depending
on the application.

Bluetooth uses a dedicated piconet structure referred to as ‘scatternet’.
Bluetooth operates in the international 2.4 GHz Industrial, Scientific, and
Medical (ISM) band, at a gross data rate of 1 Mbit/s, and features low energy
consumption for use in battery operated devices. With scatternet technology,
it has been possible to achieve an aggregate throughput of over 10 Mbits/s
or 20 voice channels within a fully expanded scatternet. The structure also
makes it possible to extend the radio range by simply adding additional
Bluetooth units acting as bridges at strategic places.

A single unit can support a maximum data transfer rate of 721 kbits/s or a
maximum of three voice channels. A mixture of voice and data transfer is also
possible in order to support multimedia applications. A robust voice coding
scheme with a rate of 64 kbits/s per voice channel is used. To sustain these
transfer rates in busy radio environment, a packet-switching protocol with
frequency hopping and advanced coding techniques is employed. Bluetooth
features a graceful degradation of both voice and data transfer rates in busy
RF environments.

In the Bluetooth network, all units are peer units with identical hardware
and software interfaces distinguished by a unique 48-bit address. At the start
of a connection, the initializing unit is temporarily assigned as a master.
This assignment is valid only during this connection. The master initiates the
connection and controls the traffic on the connection. Slaves are assigned a
temporary 3-bit member address to reduce the number of addressing bits
required for active communication.

The Bluetooth network supports both point-to-point and point-to-
multipoint connections. A piconet is a network formed by a master and
one or more slaves. Each piconet is defined by a different frequency-hopping
channel. All units participating in the same piconet are synchronized to
this channel.

To achieve the highest possible robustness for noisy radio environments,
Bluetooth uses a packet-switching protocol based on a frequency hopping
scheme with 1600 hops per second. The entire available frequency spectrum

9.2. BLUETOOTH ARCHITECTURE 281

is used with 79 hops of 1 MHz bandwidth. This frequency hopping gives a
reasonable bandwidth and the best interference immunity by utilizing the
entire available spectrum of the open 2.4 GHz ISM band. Virtual channels are
defined using pseudo-random-hop sequences.

The frequency hopping scheme is combined with fast Automatic Repeat
Request (ARQ), Cyclic Redundancy Checks (CRC), and Forward Error Cor-
rection (FEC) for data. For voice a continuous variable slope delta modulation
(CVSD) scheme is used. All of this results in a very robust link for both data
and voice.

To save power and minimize radio interference problems, an RSSI (Received
Signals Strength Indicator) with a 72 dB dynamic range is employed. The RSSI
measures the signal received from different units and adapts the RF output
power to the exact requirement in each instance. That is, with a mouse or
headset, the output power can be limited to a 1-meter range, whereas a
handset may need a range of 100 meters or more.

When first establishing a network or adding components to a piconet, the
units must be identified. Units can be dynamically connected and discon-
nected from the piconet at any time. Two available options lead to connection
times of typically 0.64 and 1.28 seconds, respectively. This applies when the
unit address is known and not more than about 5 hours have elapsed since
the previous connection. A unit does not need to be connected at all times
since only a typical delay of under 1 second is required to start a transaction.
Hence, when not in use, the unit can be in a sleep state (STANDBY) most
of the time where only a Low Power Oscillator (LPO) is running. This is
beneficial for battery operation.

Before any connections are made, all units are in standby mode. In this
mode, an unconnected unit will only listen to messages every 1.28 seconds or
2.56 seconds depending on the selected option. Each time a unit wakes up, it
will listen on one of 32 hop frequencies defined for this unit.

The connect procedure is initiated by one of the units, the master. A
connection is made either by a PAGE message if the address is already
known, or by the Inquiry message followed by a subsequent PAGE message
if the address is unknown. In the initial PAGE state, the paging unit (which is
the master) will send a train of 16 identical page messages on 16 different hop
frequencies, defined for the unit to be paged (the slave). The train covers half
the sequence of frequencies in which the slave can wake up. It is repeated
128 or 256 times (1.28 or 2.56 seconds) depending on the needs of the paged
unit. If no response is received after this time, the master transmits a train
of 16 identical page messages on the remaining 16 hop frequencies in the
wake-up sequence. The maximum delay before the master reaches the slave
is twice 1.28 seconds or 2.56 seconds, if a periodicity of 1.28 seconds was

282 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

chosen for paging, and the maximum delay is 5.12 seconds with 2.56 seconds
periodicity. A trade-off between access delay and power savings exists due
to the available choices.

The hop frequencies in the first page train are based on the master’s slave
clock estimate. The train includes the estimated wake-up hop, and eight
hops before and seven hops after this hop. As a result, the estimate can be
±7 hops in error and still the master reaches the slave with the first page
train. Because the estimate is updated at each connection establishment, the
acquisition delay is shorter when a shorter time has elapsed since the units
were last connected. With a Low Power Oscillator (LPO) inaccuracy better
than ±250 ppm, the first train is still valid after a lapse of at least 5-hours with
no connection.

For a time period of at least 5 hours since the last connection, the average
acquisition times are 0.64 s and 1.28 s, respectively. If the first train does not
cover the slave’s wake-up frequency, then the second train does, and the
average acquisition delays are 1.92 s and 3.84 s.

The Inquiry message is typically used for finding public printers, fax
machines, and similar equipment with an unknown address. The Inquiry
message is very similar to the page message but may require one additional
train period to collect all the responses.

If no data needs to be transmitted, the units may be put on Hold where
only an internal timer is running. When units leave the Hold mode, data
transfer can be restarted instantaneously. Units may thus remain connected,
without data transfer, in a low power mode. Hold is typically used when
connecting several piconets. It could also be used for units where data needs
to be sent very infrequently and low power consumption is important. A
typical application would be a room thermostat which may need to transfer
data only once every minute.

Two more low-power modes are available, the Sniff mode and the Park
mode. If the modes are listed in the increasing order of power efficiency,
then the Sniff mode has the higher duty cycle, followed by the Hold mode
with a lower duty cycle, and finishing with the Park mode with the lowest
duty cycle.

Once a Bluetooth unit has been connected to a piconet, it may communicate
by means of two link types between any two members of the piconet forming
a master–slave pair. The two link types supported are: Synchronous Connec-
tion Oriented (SCO) link, and Asynchronous (or isochronous) Connectionless
(ACL) Link.

Different link types may apply between different master–slave pairs of the
same piconet and the link type may change arbitrarily during the session.
The link type defines what type of packet can be used on a particular link.

9.3. BLUETOOTH INTEROPERABILITY WITH THE INTERNET AND QUALITY OF SERVICE 283

On each link type, 16 different packet types can be used. The packets differ
in function and data-bearing capabilities. For full duplex transmissions, a
Time Division Duplex (TDD) scheme is used. Each packet is transmitted in a
different hop channel than the previous packet.

An SCO link is a point-to-point, full-duplex link between the master and a
slave. This link is established once by the master and kept alive until being
released by the master. The SCO link is typically used for a voice connection.
The master reserves the slots used for the SCO link on the channel.

The ACL link makes a momentary connection between the master and
any of the slaves for the duration of one frame (master-to-slave slot and
slave-to-master slot). No slots are reserved. The master can freely decide
which slave to address and in which order. The member sub-address in the
packet header determines the slave. A polling scheme is used to control the
traffic from the slaves to the master. The link is intended for asynchronous
or isochronous data. However, if the master uses this link to address the
same slave at regular intervals, it becomes a synchronous link. The ACL link
supports both symmetric and asymmetric modes. In addition, modes have
been defined with or without FEC, and with or without CRC and ARQ.

9.3. BLUETOOTH INTEROPERABILITY WITH THE INTERNET
AND QUALITY OF SERVICE

The main properties of Bluetooth wireless communication technology are:

• low-cost, low-power radio transceiver chip;
• implemented in hardware on small chips (0.5 square inches);
• the low price of Bluetooth module;
• a low nominal range of Bluetooth radio (10 meters) for saving bat-

tery power;
• extended range with external power amplifier (100 meters);
• operating in the globally available and unlicensed 2.4 GHz ISM (Industrial,

Scientific and Medical) frequency band.

Bluetooth radio transmission uses a packet-switching protocol with a FHSS
(Frequency Hopping Spread Spectrum). The hop frequency is 1600 hops per
second, the frequency spectrum is divided into 79 hops of 1 MHz bandwidth
each. The frequency hopping scheme is combined with fast ARQ (Automatic
Repeat Request), CRC (Cyclic Redundancy Check) and FEC (Forward Error
Correction). A binary radio frequency modulation and simple link layer
protocols reduce the complexity and the costs of the radio chip.

284 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

Bluetooth provides a nominal data rate of 1 Mbit/s for a piconet. One
piconet consists of one master and up to seven slaves. The master–slave
principle is used to initiate and control the traffic between devices in a piconet.
The master is responsible for defining and synchronizing the frequency
hop pattern in its piconet. A single Bluetooth unit may send/receive at a
maximum data rate of 721 kbit/s or a maximum of three voice channels of
64 kbit/s each, with CVSD (Continuous Variable Slope Delta Modulation).
Both a Synchronous Connection Oriented (SCO) link and an Asynchronous
Connectionless (ACL) link for each master–slave pair are supported. Within
the same Bluetooth radio range, separate and independent piconets may be
formed. These may build up into scatternets to allow for a higher number of
Bluetooth devices being active and/or for a higher aggregate bandwidth.

The state machine for establishing Bluetooth network connections is pre-
sented in Figure 9.2. When not in use, the Bluetooth unit stays in a sleep state
(Standby) with a Low Power Oscillator (LPO) still running. One unit (the

StandbyUnconnected
standby

Connecting
states

Active
states

Low power
models

Inquiry
(unknown
address)

Page
(known

address)

Connected

D
et

ac
h

HoldPark

Releases
member
address

Keeps member address

Sniff

Transmit
data

Figure 9.2 Connection state machine.

9.3. BLUETOOTH INTEROPERABILITY WITH THE INTERNET AND QUALITY OF SERVICE 285

master) then initiates the connect procedure by sending either a PAGE or an
Inquiry message. If the address is already known (e.g. most addresses in an
office environment are already known for daily use), the PAGE message is
sent. If the address is unknown (e.g. a Bluetooth unit tries to find a public
printer with an unknown address), the unit changes to the Inquiry state trying
to get response by possibly active units within radio distance.

Once connected, the unit is able to transmit and receive data. For saving
battery power, three low power modes are available: Sniff, Hold, and Park
(in increasing order of power efficiency):

• In the Sniff mode, both master and slave periodically sleep and sniff for
certain time intervals which have been previously negotiated.

• The Hold mode can be used when no data needs to be transmitted for long
time intervals (e.g. several minutes). An internal timer determines when
the unit will be reactivated.

• The Park mode releases the 3-bit member address. This mode can be chosen
when the unit does not participate in data transmission but wants to be
synchronized with the frequency hopping.

Possible user situations and networking scenarios of the Bluetooth technol-
ogy are as follows:

(1) In cordless desktop, which is the wire replacement, the Bluetooth radio
provides a simple way of connecting all peripherals to the desktop PC
without the need to use a cable.

(2) In the Internet bridge, which is the access to public networks, the Bluetooth
radio bridges the gap between portable devices and a public network via
an access point or gateway. For example, a cellular phone may be the
gateway between Bluetooth devices and the network for accessing the
Internet or the telephone network. Connecting a notebook to the Internet,
or the Instant postcard, by connecting a camera to the mobile phone, and
sending photos or video clips to remote places, are possible applications.

(3) In the three-in-one phone, where a mobile phone with Bluetooth device
may work in three modes: (i) at home it works as a portable phone,
(ii) in the office it works as an intercom, and (iii) otherwise it works as a
cellular phone.

(4) In the interactive conference, which constitutes personal ad-hoc network-
ing, a set of mobile hosts forms a wireless network without any additional
networking hardware or cable support.

286 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

In a broad or abstract sense, the scenarios for the use of Bluetooth are
categorized as follows:

• In the office environment, Bluetooth devices and technology are used in
professional networking and communication services to bridge the gap
between portable devices and a sophisticated (possibly wired) backbone of
additional equipment and services.

• In the home environment, Bluetooth technology is used to connect a variety
of different devices without cable, for example, cordless desktop, portable
phone, remote control, etc.

• In public environments, Bluetooth capable user devices (e.g. a PDA) estab-
lish access to local information services in public areas like an airport,
railway station, etc.

• In the location independent ad hoc networks, the Bluetooth technology
is used to connect devices independently and out of range of the fixed
networking equipment.

The application framework of Bluetooth achieves interoperability with
IrDA (Infrared Data Association) and WAP (Wireless Application Protocol)
and other application programs that use Bluetooth technology and protocols.

The interoperability of Bluetooth protocols and protocol interfaces with
the Internet protocol family (IP, TCP, UDP) is addressed in the application
framework of Bluetooth as shown in Figure 9.1. The WAP approach uses
TCP/UDP and IP as one option to get access to Internet based services as
WWW (World Wide Web). Furthermore, the TCP/UDP/IP protocol stack
allows a variety of applications with a high degree of flexibility to operate on
Bluetooth-capable devices over Bluetooth wireless technology (e.g. notebook
using Bluetooth Internet bridge with access to IP-based LAN (Local Area
Network) and access to all IP-based services).

To achieve Bluetooth interoperability with the Internet protocol family,
the TCP/IP over Bluetooth requires that bridging, address resolution, MTU
(Maximum Transmission Unit) definition, and multicast/broadcast mappings
are solved. For instance, a Bluetooth radio chip in a notebook that provides
access to the Internet via a mobile phone. As Internet services are based on
the TCP/IP protocol stack, the notebook has to implement this protocol stack
on top of Bluetooth. Typically, IP addresses are assigned to hosts connected
to the Internet either by globally unique addresses or dynamically chosen
local addresses. This leads to the question of does the notebook have its own
IP address and how can this IP address be mapped to the Bluetooth’s 3-bit
address assignment. Aspects of addressing of foreign IP addresses have to be

9.3. BLUETOOTH INTEROPERABILITY WITH THE INTERNET AND QUALITY OF SERVICE 287

considered. If the notebook does not have its own IP address, local address
assignment and address resolution have to be defined.

Another example is the connection of Bluetooth units to selected Internet
services via LAN access points. Let us consider a railway station with several
LAN access points providing access to Internet services like city information,
train route scheduling, etc. Once connected to a LAN access point, the
passenger may walk along the railway platform leaving the base station’s
radio distance of 10 meters. The passenger would appreciate a continuous
service, possibly provided by several access points along the platform. Here,
the question arises, how the handoff of Bluetooth devices between piconets
will be managed from the view of the network protocol IP and higher layer
protocols (e.g. the connection set-up between slave and master Bluetooth
devices requires a control message exchange, which may require a maximum
of 2.56 s or 5.12 s).

The aspects of addressing foreign IP addresses have to be defined for IP
over Bluetooth. A possible solution to this is the adaptation of Mobile IP with
respect to Bluetooth environments. IP mobility support has been defined in
RFC (Request For Comment) 2002 by the mobile IP working group of the
Internet Engineering Task Force (IETF).

A network providing mobile IP support for its roaming portable computers
has to establish an entity called ‘home agent’, whereas networks providing
access to the Internet for portables with different network addresses than its
own, have to establish an entity called foreign agent.

On arrival at a new network, a mobile host contacts the local foreign agent,
which supplies it with a care-of address, which may be the address of the
foreign agent itself. Then the mobile’s home agent is informed that all IP
datagrams destined to the mobile host must be forwarded (tunneled) to the
new care-of address in order to reach it.

A LAN which offers Bluetooth LAN access points and accepts communica-
tion with foreign Bluetooth devices may use concepts of mobile IP for address
assignment and providing access to local IP services.

Cellular IP specifies a protocol that makes routing of regular IP datagrams
to moving mobile hosts in a local network possible. Cellular IP provides local
mobility and handoff support for frequently moving hosts, which means that
mobile hosts can migrate inside a cellular IP network with little disturbance
to active data flows. Cellular IP is only intended for local area networks
and metropolitan area networks. Mobile IP is used between different cellular
IP networks.

Mobile hosts connecting to a cellular IP network are able to retain their
IP address. Cellular IP makes it possible to route IP packets to that IP
address regardless of its location in the cellular IP network and without being

288 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

influenced by a device’s foreign IP address. Thus, hosts inside the cellular IP
network are identified by their IP address, but these IP addresses have no
location significance. Hosts outside the cellular IP network do not need any
changes and they are unaware of the mobile host’s location.

Cellular IP was specifically developed for supporting frequently moving
hosts, but can also support rarely moving hosts and even static hosts. The
concepts of cellular IP may be used in a Bluetooth environment with its low
radio range of 10 meters.

The applications may use Quality of Service functions of the IP protocol fam-
ily for multimedia video/audio streaming over WWW/IP, IP telephony, etc.

The modification of the Resource Reservation Protocol (RSVP) enables
resource reservation in wireless networks. The idea is to set up passive
reservations to neighboring cells in a wireless architecture. These passive
reservations do not consume bandwidth, but they are used to set up reserva-
tion states. If the mobile moves to an adjacent cell, the new reservation can
be established much faster by using the previously set up reservation states.
This concept may work for Bluetooth multimedia applications.

A wireless subnetwork within a heterogeneous end-to-end communication
path may drastically degrade the performance of end-to-end protocols like
TCP. The error recovery and congestion control mechanisms are not appro-
priate to cope with bit errors on wireless links, and communication pauses or
increased delays during handoff.

9.4. IMPLEMENTATION ISSUES IN BLUETOOTH-BASED
WIRELESS SENSOR NETWORKS

Wireless sensor networks use small devices equipped with sensors, micro-
processors and wireless communication interfaces. Different applications,
ranging from personal health care to environmental monitoring and military
applications, are used in such networks. Various wireless technologies, like
simple RF, Bluetooth, UWB (Ultra Wide Band) or infrared can be used for
communication between sensors.

Various sensors are used as part of different devices (temperature sensors
in home or car heating system, smoke alarms, etc.) or as stand-alone devices
connected to a network, usually to monitor industrial processes, equipment
or installations.

The advancements in MEMS (Micro-Electrical-Mechanical Systems) tech-
nology, wireless communications, and electric components, have enabled
development of small, low-power and low-cost devices, called smart sen-
sor nodes, capable of performing various sensing tasks, processing data and

9.4. IMPLEMENTATION ISSUES IN BLUETOOTH-BASED WIRELESS SENSOR NETWORKS 289

communicating over wireless connections. Such devices, when organized into
a network, present a powerful platform that can be used in many applications,
like health monitoring, security systems, detection of chemical agents in air
and water, etc.

Wireless sensor networks comprise a number of small devices equipped
with a sensing unit, microprocessor, wireless communication interface and
power source. In contrast to the traditional sensor networks that are carefully
planned and deployed, wireless-sensor networks can be deployed in an
ad-hoc manner. This deployment requires communication protocols that are
able to organize the network automatically, without the need for human
intervention.

Beside self-organization capability, another important feature of wireless
sensor networks is collaboration of network nodes during the execution of
the task. In contrast to the traditional sensor networks where all sensor data
is gathered at a server and then analyzed and fused, data processing and
fusion is performed by the smart nodes themselves. Each node processes raw
measurement data in order to decrease amount of data sent over wireless links
and then forwards only relevant parts to nodes responsible for data fusion.

The data-centric nature of the network is yet another specific characteristic
of wireless sensor networks. As deployment of smart sensor nodes is not
planned in advance and the position of nodes in the field is not determined,
it is possible that some sensor nodes are placed such that they either cannot
perform the required measurement or the probability of error is high. This is
why a redundant number of smart nodes observing the same phenomenon
is deployed in the field. These nodes then communicate, collaborate and
share data, thus ensuring more accurate results. Each sensor observes its
own view of the phenomenon, and when the views from a number of
sensors are combined, a better picture of the phenomenon is compiled.
Thus, it is more reasonable for a user to send a data request to all sensors
monitoring the phenomenon than to send it to one specific sensor node.
Using a multicast routing protocol to send messages to all relevant nodes
requires a unique addressing scheme in the network. However, due to the
sheer number of sensors and user requirements (the user needs information
about the phenomenon as a whole, or does not need information about the
phenomenon from a particular sensor), the data-centric approach is used
where sensors are designated using a description of data they can provide
instead of using a unique identifier. Messages are directed to nodes using
routing protocols that can find the route based on the data description
contained in the message.

Power efficiency is one of the main requirements for all protocols and
algorithms used in sensor networks. As power resources of each node are

290 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

limited, and required lifetime for many scenarios is measured in months or
even years, it is of paramount importance to design a system in such a way
as to ensure power savings whenever possible.

From the user point of view, querying and tasking are two main services
provided by wireless sensor networks. Queries are used when the user
requires only the current value of the observed phenomenon. As wireless
sensor networks are data-centric networks, the user does not query a specific
node for the information it might provide, but defines required data (type,
location, accuracy, time, etc.) and requests it from all nodes that can provide
the answer. For example, a user can request the temperature in a specific
region, or needs to know the location of all sensors where chemical agents
are present and their level is above a certain threshold.

To execute a task is a more complex operation and is used when a
phenomenon has to be observed over a longer period of time. For example, a
user can ask a sensor network to detect a specific type of vehicle in the area
and monitor its movement. To execute the task, different types of sensors
have to collaborate: seismic to detect motion, video and audio to detect type
of vehicle, etc. Information about the vehicle trajectory is forwarded to the
user. Both queries and tasks are injected into the network by the gateway
which also collects the replies and forwards them to the users.

Smart sensor nodes scattered in the field collect data and send it to users
via a gateway using multiple hop routes as shown in Figure 9.3.

The main functions of a gateway are:

• Communication with the sensor network, where short-range wireless com-
munication is used (Bluetooth, UWB, RF, IR, etc.) to provide functions

Sensor network

Short
range

wireless
interface

Geteway
logic

Gateway

Internet

Users

Public
network
interface

Figure 9.3 A wireless sensor network.

9.4. IMPLEMENTATION ISSUES IN BLUETOOTH-BASED WIRELESS SENSOR NETWORKS 291

like discovery of smart sensor nodes, generic methods for sending and
receiving data to and from sensors, routing, etc.;

• Gateway logic, which controls gateway interfaces and data flow to and
from a sensor network. It also provides an abstraction level with the API
(Application Programming Interface) that describes the existing sensors
and their characteristics. Gateway logic provides functions for uniform
access to sensors regardless of their type, location or network topology,
injects queries and tasks and collect replies;

• Communication with the users occurs through a gateway. The gate-
way communicates with the users and the other sensor networks over
the Internet, wide area networks, satellite or a short-range communica-
tion technology.

A hierarchy of gateways can be built to connect gateways to a backbone
and then to provide a higher-level gateway that is used as a bridge to the
other networks and users.

The applications of wireless sensor networks include:

• Health monitoring. Wireless sensor networks can be used in various ways
to improve or enhance health-care services. Monitoring of patients, health
diagnostics, drug administration in hospitals, telemonitoring of human
physiological data, and tracking and monitoring doctors and patients
inside a hospital, are some of the possible scenarios.
Various sensors (blood pressure, heart monitoring, etc.) can be attached to
the patient’s body to collect physiological data that can be either stored
locally (on a PDA or home PC) or forwarded directly to the hospital server or
to the physician. There are several advantages of such monitoring: it is more
comfortable for patients, doctors can have 24-hour access to patients and
can better understand the patient’s condition, and the incurred expenses
are lower than when such tests are performed at a hospital. Wearable
sensors can also be used to track patients and doctors in the hospital or
to monitor and detect behavior and health condition of elderly persons
and children.

• Environmental monitoring. Fire detection, water pollution monitoring, track-
ing movements of birds, animals or insects, detection of chemical and
biological agents are some of the examples of environmental applications
of wireless sensor networks.
For example, numerous smart sensor nodes with temperature sensors
on board can be dropped from an aircraft over a remote forest. After a
successful landing, these devices will self-organize the network and will

292 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

monitor the temperature profile in the forest. As soon as a fire starts,
that information, along with the location of the fire, is transferred to the
command center that can act before the fire spreads to cover a large area.

• Military and security. Military applications vary from monitoring soldiers
in the field, to tracking vehicles or enemy movement.

– Sensors attached to soldiers, vehicles and equipment can gather infor-
mation about their condition and location to help planning activities on
the battlefield.

– In the case of nuclear or biological attacks, sensor fields can gather
valuable information about the intensity, radiation levels or type of
chemical agents without exposing people to danger.

– Seismic, acoustic and video sensors can be deployed to monitor critical
terrain and approach routes, or reconnaissance of enemy terrain and
forces can be carried out.

• Industrial safety. Similar to personal health care scenarios, wireless sensor
networks can be used to monitor buildings, bridges or highways. In
such scenarios, thousands of various sensors are deployed in and around
monitored objects, and relevant information is gathered and analyzed in
order to assess condition of an object after a natural or other disaster.
Similarly, sensors can be used to monitor the status of different machines
in factories, along with air pollution or fire monitoring.

• Other applications. Home automation, smart environments, environmen-
tal control in office spaces, detecting car thefts, vehicle monitoring and
tracking, and interactive toys are examples of other possible applications.

Research issues are numerous and range from hardware issues to design
of efficient communication protocols and distributed data-processing algo-
rithms. All solutions have to be power conscious as well as fault tolerant,
scalable, robust, with low production cost, etc.

Wireless sensor networks require low-power, low-cost devices that accom-
modate a powerful processor, a sensing unit, wireless communication
interface, and power source in a robust and tiny package. These devices
have to work autonomously, to require no maintenance, and to adapt to
environment. For example, the MEMS technology enables production of very
small sensing units with low power consumption.

Physical layer issues range from power efficient transceiver design to
modulation schemes.

MAC layer protocols have to support self-organization of a distributed
network and to ensure fair medium access and collision avoidance. Different
power modes have to be supported to enable nodes to save energy resources

9.4. IMPLEMENTATION ISSUES IN BLUETOOTH-BASED WIRELESS SENSOR NETWORKS 293

when possible, but without affecting network performance. Changes in
network topology due to node malfunction or mobility have to be taken into
account and dealt with automatically.

On the network level, routing protocols are required for dissemination of
user queries and tasks. Since a data-centric approach is used, the existing
routing protocols for special networks cannot be used and new solutions,
capable of routing messages based on data attributes, are required.

Another important requirement for routing protocols in sensor networks is
collaboration with data-aggregation algorithms. Data aggregation is required
to avoid network implosion, which may occur when many nodes answer the
same query and send replies towards the gateway, and overlap problems in
data-centric routing.

Based on predefined methods, responsible nodes analyze gathered data
and combine it into a set of meaningful information that is forwarded
to the user. Data aggregation reduces the amount of network load while
preserving validity and amount of information. For certain applications it
can be important to know the source of information (position) and in such
cases that information has to be forwarded as well. An example of a data
aggregation process is shown in Figure 9.4.

At the application level, a framework for attribute-based query definition,
task building and their execution at each node, as well as collection of replies,
is required.

Sensor network management protocol has to support control of individual
nodes, network configuration updates, location information data exchange,
network clustering, and data aggregation rules. The sensor network gateway
has to provide tools and functions for presentation of network topology,
services, and characteristics to the user, and to connect the network to other
networks and users.

Low-cost, low-power Bluetooth modules meet the requirements of wire-
less sensor networks. Ad-hoc connection establishment capability, reasonable

A

D

C
E

F

Gateway

B

Figure 9.4 An example of data aggregation.

294 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

throughput (up to 721 kbit/s in uplink and 56 kbit/s downlink), usage of
frequency-hopping schemes with TDD (Time Division Duplex) to minimize
the impact of interference in the ISM band of 2.4 GHz, existence of different
power-saving modes along with its availability and standardized specifica-
tion are the main advantages of Bluetooth over other wireless technologies.
However, there are several issues, like connection establishment delay and
networking functionality, that have to be solved before Bluetooth can be
deployed in large sensor networks.

A Bluetooth device has to be a member of a piconet to be able to com-
municate with other devices. A piconet is a collection of up to eight devices
that frequency-hop together. Each piconet has one master, usually the device
that initiated establishment of the piconet, and up to seven slave devices. The
master’s Bluetooth address is used for definition of the frequency-hopping
sequence. Slave devices use the master’s clock so as to synchronize their
clocks so as to be able to hop simultaneously.

When a device wants to establish a piconet, it has to perform Inquiry to
discover other Bluetooth devices, which have to perform inquiry scanning
at the same time, within the range. Inquiry procedure is defined so as to
ensure that two devices will, after some time, visit the same frequency
at the same time. When that happens, required information is exchanged
(Bluetooth address, and clock of the device that will be master of the piconet)
and devices can use paging procedure to establish connection. Time required
for communication establishment can be rather lengthy, taking on average
around 5 seconds (minimum is 0.00375 seconds and maximum is 12.8 seconds
to 33.28 seconds). This delay can be the limiting factor for applications that
require instant connection establishment.

When more than seven devices need to communicate, then one or more
devices can be put into the Park mode. Bluetooth defines three low power
modes: Sniff, Hold, and Park. When a device is in the park mode then it
disassociates from the piconet, but still maintains timing synchronization
with the piconet. The master of the piconet periodically broadcasts beacons
inviting the slave to rejoin the piconet or to allow the slave to request to
rejoin. The slave can rejoin the piconet only if there are fewer than seven
slaves already in the piconet. Otherwise, the master has to park one of the
active slaves first. All these actions cause delays and for some applications this
can be unacceptable, for example, a process control that requires immediate
response from the command center.

Another option is to build a scatternet. A scatternet consists of several
piconets connected by devices participating in multiple piconets. These
devices can be slaves in all piconets, or master in one piconet and slave
in other piconets. Using scatternets, a higher throughput is available and

9.4. IMPLEMENTATION ISSUES IN BLUETOOTH-BASED WIRELESS SENSOR NETWORKS 295

multi-hop connections between devices in different piconets are possible.
However, hardware does not support this functionality for several reasons:

• Bluetooth specification gives no way for a slave to demand park, hold or
sniff mode, but can only request it from the master so there is no guarantee
that the slave will be allowed to leave one piconet and join the other

• Each time a device switches between piconets it might lose up to two slots
for communication due to difference in the piconets’ clocks

• Scheduling switches between piconets to maintain communication links
with devices uninterrupted, is very difficult.

A possible solution, before scatternet is supported by Bluetooth hardware,
is to perform switching between piconets on the application level.

This scatternet building mechanism assumes that all nodes in the network
are peer nodes. A mitigating circumstance for sensor networks is that a gate-
way can be used to direct establishment of the scatternet. In this centralized
approach it is possible to generate close-to-optimal network topology and to
solve scheduling, bandwidth allocation and routing problems.

The additional requests for scatternets in sensor networks complicate
scatternet building. Various sensor types produce different amount of data
(video sensor and temperature sensor, for example). If too many high-output
sensors are connected to the same branch in the scatternet it can cause link
congestion or buffer overflow in intermediate nodes. Hence, parameters like
number of sensors, amount of data generated by sensor per measurement, and
buffer size, have to be taken into account during building scatternet topology.

The main goal of an implementation is to build a hardware platform and
generic software solutions that can serve as the basis and act as a testbed for
wireless sensor network protocols. The implementation supports dedicated
deployment of sensors, where sensor characteristics are automatically col-
lected and presented in a structured way, and there are no limits in terms of
sensor type and number of sensors, generic functions for querying sensors
and collecting replies, and the basis for attribute-based routing is provided.
Software architecture is designed in such a way that new protocols can be
added easily without affecting current functionality.

The sensor network consists of several smart sensor nodes and a gateway.
Each smart node can have several sensors and is equipped with a microcon-
troller and a Bluetooth radio module. Gateway has two wireless interfaces:
Bluetooth for communication with sensors, and the network protocol for
communication with users. Gateway and smart nodes are members of one
piconet, thus a maximum of seven smart nodes can exist simultaneously in
the network.

296 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

The smart sensor node comprises of three functional blocks: sensing, data
processing, and communication. One or more sensors can be attached to the
microcontroller. Temperature, heart monitor, and smart fabric sensors can
be used.

A microcontroller is responsible for the smart sensor node logic. An appli-
cation is developed that gathers data from sensors and controls the Bluetooth
module and communication with the gateway. It also stores sensors’ profiles
and data.

The gateway plays the role of the piconet’s master in the sensor network. It
controls establishment of the network, gathers information about the existing
smart sensor nodes and sensors attached to them, and provides access to them.

A set of core services is developed to take care of common procedures
and services required by all layers. Logging, scheduling, event subscrip-
tion, and services required for automatic application starting and restarting,
are supported.

The sensor network communication interface handles communication with
sensors and can also control connections to a mobile phone, or to local users
that are using Bluetooth to access the network. Depending on the available
hardware resources, more than one sensor network can be attached to the
gateway by using Bluetooth or any other communication interface.

The sensor network abstraction layer and its API are independent of the
underlying communication technology and provide information about and
access to all available sensors in the network.

Smart sensor node discovery is the first procedure that is executed upon the
gateway initialization. Its goal is to discover all sensor nodes in the area and
to build a list of sensor’s characteristics and network topology. Afterwards,
it is executed periodically to facilitate addition of new or removal of the
existing sensors.

When the gateway is initialized, it performs the Bluetooth Inquiry proce-
dure. When a new Bluetooth device is discovered, its major and minor device
classes are checked (these parameters are obtained along with the Bluetooth
address and other parameters). These parameters are set by each smart node
to define type of the device and types of attached sensors. If discovered device
is not smart node, it is discarded. Otherwise, the SDP (Service Discovery Pro-
tocol) is invoked and the service database of the discovered smart node is
searched for sensor services and for the serial port profile connection param-
eters. Once a connection string is obtained from the device, the Bluetooth link
is established and data exchange with smart node can start.

Using two types of message, a gateway can request either list of sensors
attached to the particular smart sensor node, or sensor data. Reply messages
have a very flexible structure and can relay information about any number

9.5. LOW-RATE WIRELESS PERSONAL AREA NETWORKS 297

or type of sensor. Sensor profiles are defined by sensor vendors. As all
relevant information about a sensor is contained in its profile (sensor type,
measuring unit, accuracy, manufacturer, calibration date, etc.), gateway can
automatically build knowledge of a sensor network and its characteristics,
i.e. sensors can be deployed in an ad-hoc fashion.

Bluetooth links are maintained as long as the gateway and smart sensor
node are in the range. When an event happens on the sensor side, the sensor
can send information about it to the gateway. However, the power resources
are used on maintenance of communication link, and it is not possible to have
more than seven smart nodes in one piconet.

Gateway’s abstraction layer uses sensor profiles to create a list of objects
that represents each sensor in the network. Each object provides methods
that enable sending and receiving of data to and from a sensor. Specifics of
actual data transmission are hidden from users.

Applications can access sensor objects by using queries that describe the
data. By comparing data description in the query and profiles associated with
each sensor, the gateway determines which sensors can have an answer, and
sends data requests to them using methods provided by each object.

If larger network and scatternet topology are used, then similar functionality
needs to be provided by each master in the scatternet, and appropriate
attribute-based routing solutions are required, to disseminate queries. Data
aggregation rules also need to be defined.

Bluetooth is a possible choice for data communication in sensor net-
works. Good throughput, low-power, low-cost, standardized specification
and hardware availability are Bluetooth advantages, while slow connection
establishment and lack of scatternet support are deficiencies.

9.5. LOW-RATE WIRELESS PERSONAL AREA NETWORKS

Various in-home applications can be classified as Internet connectivity, multi-
PC connectivity, audio/video networking, home automation, energy conser-
vation, and security. They are characterized by different requirements for
bandwidth, cost, and installation procedure. With the growth of the Internet,
the focus is on meeting the requirement for shared high-speed connectivity.

Other applications, such as home automation, security, and gaming, have
relaxed throughput requirements. These applications cannot handle the com-
plexity of large protocol stacks that impact power consumption and utilize
many computational resources.

As example, a temperature sensor at a window may need to report its
temperature only a few times per hour, be inconspicuous, and have a

298 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

very low selling price. This application can use a low-throughput, low-cost
wireless communications link. The use of wires (for communication or
power) is impractical because of the use of a window. Also, the wired
installation cost would exceed by several times the cost of the sensor. In this
case, extremely low power consumption is needed, since frequent battery
replacement is impractical. Both IEEE 802.11 and Bluetooth devices require
battery replacement several times per year, which is impractical if many
windows are involved in the application.

The IEEE 802.15.4 standard defines a Low-Rate Wireless Personal Area
Network (LR-WPAN) which has ultra-low complexity, cost, and power for
low data-rate wireless connectivity among inexpensive fixed, portable, and
moving devices. The IEEE 802.15.4 standard defines the physical (PHY) layer
and Media Access Control (MAC) layer specifications.

IEEE 802.15.4 is useful in a wide variety of applications, including indus-
trial control and monitoring; public safety, including sensing and location
determination at disaster sites; automotive sensing, such as tire pressure
monitoring; smart badges and tags; and precision agriculture, such as the
sensing of soil moisture, pesticide, herbicide, and pH levels. In home automa-
tion and networking applications, there are several possible market sectors:
PC peripherals, including wireless mice, keyboards, joysticks, low-end PDAs,
and games; consumer electronics, including radios, televisions, VCRs (Video
Cassette Recorders), CDs, DVDs, remote controls, and a truly universal remote
control to control them; home automation, including Heating, Ventilation,
and Air Conditioning (HVAC), security, lighting, and the control of objects
such as curtains, windows, doors, and locks; health monitoring, including
sensors, monitors, and diagnostics; and toys and games, including PC-
enhanced toys and interactive gaming between individuals and groups. The
maximum required data rate for these applications ranges from 115.2 kb/s
for PC peripherals to less than 10 kb/s for home automation. The consumer
electronics message latency ranges from approximately 15 milliseconds for
PC peripherals to 100 milliseconds or more for home automation applications.

The IEEE 802.15.4 standard encompasses the layers up to and including
portions of the Data Link Layer (DLL). Higher-layer protocols are at the
discretion of the individual applications utilized in an in-home network
environment.

The network layer is responsible for topology construction and mainte-
nance, naming and binding services, which incorporate the necessary tasks
of addressing, routing, and security. These services are challenging to imple-
ment in a wireless in-home network because of the importance of energy
conservation. A network layer implementation built on the energy conscious
IEEE 802.15.4 standard should also conserve energy. Network layers built on

9.5. LOW-RATE WIRELESS PERSONAL AREA NETWORKS 299

the standard are self-organizing and self-maintaining, to minimize total cost
to the consumer.

The IEEE 802.15.4 standard supports multiple network topologies, includ-
ing both star and peer-to-peer networks. The topology depends on the design
where applications, such as PC peripherals, may require the low-latency
connection of the star network, while others, such as perimeter security,
may require the large area coverage of peer-to-peer networking. Multiple
address types, including both physical (i.e. 64-bit IEEE) and short (i.e. 8-bit
network-assigned) are provided.

The IEEE 802 splits the DLL into two sublayers, the MAC and the Log-
ical Link Control (LLC). The LLC is standardized in 802.2 and is common
among the 802 standards such as 802.3, 802.11, and 802.15.1, while the MAC
sublayer is closer to the hardware and may vary with the physical layer
implementation. Figure 9.5 shows how IEEE 802.15.4 fits into the Open Sys-
tems Interconnection (OSI) reference model. The IEEE 802.15.4 MAC provides
services to an IEEE 802.2 type I LLC through the Service-Specific Convergence
Sublayer (SSCS), or a proprietary LLC can access the MAC services directly
without going through the SSCS. The SSCS ensures compatibility between
different LLC sublayers and allows the MAC to be accessed through a single
set of access points. By using this model, the 802.15.4 MAC provides features
not utilized by 802.2, and therefore allows more complex network topologies.

The features of the IEEE 802.15.4 MAC are association and disassociation,
acknowledged frame delivery, channel access mechanism, frame validation,
guaranteed time-slot management, and beacon management. The MAC sub-
layer provides two services to higher layers that can be accessed through
two Service Access Points (SAPs). The MAC data service is accessed through

Upper layers

Network layer

Data link layer

IEEE 802.15.4
868/915 MHz
physical layer

IEEE 802.15.4
2400 MHz

physical layer

IEEE 802.15.4
MAC

IEEE 802.2
LLC,type 1 Other

LLC

SSCS

Figure 9.5 The IEEE 802.15.4 and OSI layered network model.

300 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

the MAC common part sublayer (MCPS-SAP), and the MAC management
services are accessed through the MAC Layer Management Entity (MLME-
SAP). These two services provide an interface between the SSCS or another
LLC and the physical layer.

The MAC management service has 26 primitives. Compared to the IEEE
802.15.1 (i.e. Bluetooth), which has about 131 primitives and 32 events, the
IEEE 802.15.4 MAC has very low complexity, making it suitable for its
intended low-end applications, but at the cost of a smaller feature set than
IEEE 802.15.1 (for instance, IEEE 802.15.4 does not support synchronous
voice links).

The MAC frame structure is very flexible to accommodate the needs of
different applications and network topologies while maintaining a simple
protocol. The general format of a MAC frame is shown in Figure 9.6. The
MAC frame is called the MAC Protocol Data Unit (MPDU) and is composed
of the MAC Header (MHR), MAC Service Data Unit (MSDU), and MAC
Footer (MFR). The first field of the MAC header is the frame control field. It
indicates the type of MAC frame being transmitted, specifies the format of
the address field, and controls the acknowledgment.

The frame control field specifies how the rest of the frame is built and
what it contains. The size of the address field may vary between 0 and
20 bytes. For instance, a data frame may contain both source and destination

Address
info

Sequence
number

Frame
control Payload

MAC Protocol Data Unit (MPDU)

PHY
header

Synchronization
header PHY Service Data Unit (PSDU)

PHY Protocol Data Unit (PPDU)

MAC header (MHR) MAC Service Data
Unit (MSDU)

MAC footer
(MFR)

Bytes: 2 1 0–20 Variable 2

MAC
sublayer

PHY
layer

Frame check
sequence

Figure 9.6 The MAC frame format.

9.5. LOW-RATE WIRELESS PERSONAL AREA NETWORKS 301

information, while the return acknowledgment frame does not contain an
address information. On the other hand, a beacon frame may only contain
source address information. In addition, short 8-bit device addresses, or 64-bit
IEEE device addresses, may be used. This flexible structure helps to increase
the efficiency of the protocol by keeping the packets short.

The payload field has variable length; however, the complete MAC frame
may not exceed 127 bytes. The data contained in the payload is dependent
on the frame type. The IEEE 802.15.4 MAC has four different frame types:
the beacon frame, data frame, acknowledgment frame, and MAC command
frame. Only the data and beacon frames contain information sent by higher
layers. The acknowledgment and MAC command frames originate in the
MAC and are used for MAC peer-to-peer communication.

Other fields in a MAC frame are the sequence number and Frame Check
Sequence (FCS). The sequence number in the MAC header matches the
acknowledgment frame with the previous transmission. The transaction is
considered successful only when the acknowledgment frame contains the
same sequence number as the previously transmitted frame. The FCS helps
verify the integrity of the MAC frame. The FCS in an IEEE 802.15.4 MAC frame
is a 16-bit International Telecommunication Union – Telecommunication
Standardization Sector (ITU-T) Cyclic Redundancy Check (CRC).

Some applications may require dedicated bandwidth to achieve low laten-
cies. To accomplish these low latencies, the IEEE 802.15.4 LR-WPAN can
operate in an optional superframe mode. In a superframe, a dedicated net-
work coordinator, called the PAN coordinator, transmits superframe beacons
at predetermined intervals. These intervals can be as short as 15 milliseconds
or as long as 245 seconds. The time between two beacons is divided into 16
equal time-slots independent of the duration of the superframe. A device can
transmit at any time during a slot, but must complete its transaction before
the next superframe beacon. The channel access in the time-slots is contention
based; however, the PAN coordinator may assign time-slots to a single
device requiring dedicated bandwidth or low-latency transmissions. These
assigned time-slots are called Guaranteed Time-Slots (GTS) and together form
a contention-free period located immediately before the next beacon. The size
of the contention-free period may vary depending on demand by the asso-
ciated network devices; when GTS are employed, all devices must complete
their contention-based transactions before the contention-free period begins.
The beginning of the contention-free period and duration of the superframe
are communicated to the attached network devices by the PAN coordinator
in its beacon.

Depending on the network configuration, an LR-WPAN may use one of two
channel-access mechanisms. In a beacon-enabled network with superframes,

302 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

a slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA-
CA) mechanism is used. In networks without beacons, unslotted or standard
CSMA-CA is used. When a device wants to transmit in a nonbeacon-enabled
network, it first checks if another device is currently transmitting on the
same channel. If this is the case, the device may back off for a random
period, or indicate a transmission failure if it is unsuccessful after some
retries. Acknowledgment frames confirming a previous transmission do not
use the CSMA mechanism since they are sent immediately following the
previous packet.

In a beacon-enabled network, any device wishing to transmit during the
contention access period waits for the beginning of the next time slot and
then determines if another device is currently transmitting in the same slot.
If this is the case, the device backs off for a random number of slots, or
it indicates a transmission failure after some retries. In a beacon-enabled
network, acknowledgment frames do not use CSMA.

Successful reception and validation of data, or MAC command frame, is
confirmed with an acknowledgment. If the receiving device is unable to han-
dle the incoming message, the receipt is not acknowledged. The frame control
field indicates whether or not an acknowledgment is expected. The acknowl-
edgment frame is sent immediately after successful validation of the received
frame. Beacon frames sent by a PAN coordinator and acknowledgment
frames, are never acknowledged.

The IEEE 802.15.4 standard provides for three levels of security: no security
of any type (e.g. for advertising kiosk applications); access control lists
(noncryptographic security); and symmetric key security, employing AES-
128 (advanced encryption standard 128-bit cryptographic keys). To minimize
the cost for devices that do not require security, the key distribution method
(e.g. public key cryptography) is not specified in the standard but may be
included in the upper layers of the application.

IEEE 802.15.4 offers two physical layer options that can be combined with
the MAC to enable a broad range of networking applications. Both physi-
cal layers are based on Direct Sequence Spread Spectrum (DSSS) methods
that result in low-cost digital IC (Integrated Circuit) implementation, and
both share the same basic packet structure for low-duty-cycle, low-power
operation. The fundamental difference between the two physical layers is
the frequency band. The 2.4 GHz physical layer specifies operation in the
2.4 GHz ISM band, which has nearly worldwide availability, while the
868/915 MHz physical layer specifies operation in the 868 MHz band in
Europe and 915 MHz ISM band in the United States. The international avail-
ability of the 2.4 GHz band offers advantages in terms of larger markets and
lower manufacturing costs. On the other hand, the 868 MHz and 915 MHz

9.5. LOW-RATE WIRELESS PERSONAL AREA NETWORKS 303

bands offer an alternative to the growing congestion and other interference
(for instance, microwave ovens) associated with the 2.4 GHz band, and longer
range for a given link availability due to lower propagation losses.

A second distinguishing physical layer characteristic is the transmission
rate. The 2.4 GHz physical layer provides a transmission rate of 250 kb/s,
while the 868/915 MHz physical layer offers rates of 20 kb/s and 40 kb/s, for
its 869 MHz and 915 MHz bands, respectively. The higher rate in the 2.4 GHz
physical layer is attributed largely to a higher-order modulation scheme, in
which each data symbol represents multiple bits. The different transmission
rates can be exploited to achieve a variety of different goals, for example,
the low rate of the 868/915 MHz physical layer can be translated into better
sensitivity and larger coverage area, thus reducing the number of nodes
required to cover a given physical area, while the higher rate of the 2.4 GHz
physical layer can be used to attain higher throughput, lower latency, or
lower duty cycle.

Twenty-seven frequency channels are available across the three bands
as shown in Figure 9.7. The 868/915 MHz physical layer supports a single
channel between 868.0 and 868.6 MHz, and 10 channels between 902.0 and
928.0 MHz. Due to the regional support for these two bands, it is unlikely
that a single network will use all 11 channels. However, the two bands are
considered close enough in frequency that similar hardware can be used for
both, thus lowering manufacturing costs. The 2.4 GHz physical layer supports
16 channels between 2.4 and 2.4835 GHz with ample channel spacing (5 MHz)
aimed at easing the filter requirements for transmitting and receiving.

Since the home is likely to contain multiple types of wireless network
vying for the same frequency bands, as well as unintentional interference

Channel 0 Channels 1–10868/915
MHzPHY:

868.0 868.6 902.0 928.0
f (MHz)

f (MHz)

Channels 11−26
2.4 GHz
PHY:

2400.0 2483.5

5 MHz

2 MHz

Figure 9.7 The IEEE 802.15.4 channel structure.

304 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

from appliances, the ability to relocate within the spectrum is an important
factor. The standard allows dynamic channel selection, although the specific
selection algorithm is left to the network layer. The MAC layer includes a
scan function that steps through the list of supported channels in search of a
beacon, while the physical layers contain several lower-level functions, such
as receiver energy detection, link quality indication, and channel switching,
which enable channel assessment and frequency agility. These functions are
used by the network to establish its initial operating channel and to change
channels in response to a prolonged outage.

To maintain a common simple interface with the MAC, both physical
layers share a single packet structure as shown in Figure 9.8. Each packet,
or Physical layer Protocol Data Unit (PPDU), contains a synchronization
header (preamble plus start of packet delimiter), a physical layer header to
indicate the packet length, and the payload, or Physical layer Service Data
Unit (PSDU). The 32-bit preamble is designed for acquisition of symbol and
chip timing, and in some cases may be used for coarse frequency adjustment.
Channel equalization is not required for either physical layer due to the
combination of small coverage area and relatively low chip rates.

Within the physical layer header, 7 bits are used to specify the length
of the payload (in bytes). This supports packets of length 0–127 bytes,
although due to the MAC layer overhead, zero-length packets do not occur
in practice. Typical packet sizes for home applications such as monitoring
and control of security, lighting, air conditioning, and other appliances are
about 30–60 bytes, while more demanding applications such as interactive
games and computer peripherals, or multitop applications with more address
overhead, may require larger packet sizes. Adjusting for the transmission rates

PHY Protocol
Data Unit (PPDU)

Preamble
Start-of-
packet

delimiter

PHY
header

6 bytes ≤127 bytes

PHY packet fields:
Preamble (32 bits) synchronization
Start-of-packet delimiter (8 bits) signify end of preamble
PHY header (8 bits) specify length of PSDU
PSDU (≤127 bytes) PHY layer payload

PHY Service
Data Unit (PSDU)

Figure 9.8 The IEEE 802.15.4 physical layer packet structure.

9.5. LOW-RATE WIRELESS PERSONAL AREA NETWORKS 305

in each band, the maximum packet durations are 4.25 milliseconds for the
2.4 GHz band, 26.6 milliseconds for the 915 MHz band, and 53.2 milliseconds
for the 868 MHz band.

The 868/915 MHz physical layer uses a simple DSSS approach in which
each transmitted bit is represented by a 15-chip maximal length sequence
(m-sequence). Binary data is encoded by multiplying each m-sequence by +l
or −1, and the resulting chip sequence is modulated onto the carrier using
Binary Phase Shift Keying (BPSK). Differential data encoding is used prior to
modulation to allow low-complexity differentially coherent reception.

The 2.4 GHz physical layer employs a 16-ary quasi-orthogonal modulation
technique based on DSSS methods (with similar properties, e.g. processing
gain). Binary data are grouped into 4-bit symbols, and each symbol specifies
one of 16 nearly orthogonal 32-chip Pseudo-Noise (PN) sequences for trans-
mission. PN sequences for successive data symbols are concatenated, and the
aggregate chip sequence is modulated onto the carrier using Minimum Shift
Keying (MSK), which is equivalent to Offset Quadrature Phase Shift Key-
ing (O-QPSK) with half-sine pulse shaping. The use of a nearly orthogonal
symbol set simplifies the implementation in exchange for a relatively small
performance penalty (less than 0.5 dB).

IEEE 802.15.4 specifies receiver sensitivities of −85 dBm for the 2.4 GHz
physical layer and −92 dBm for the 868/915 MHz physical layer. These
values include sufficient margin to cover manufacturing tolerances as well
as to permit very low-cost implementation approaches. In each case, the best
devices may be of the order of 10 dB better than the specification.

The achievable range is a function of the receiver sensitivity and the
transmit power. The standard specifies that each device shall be capable
of transmitting at least 1 mW, but depending on the application needs, the
actual transmit power may be lower or higher, within regulatory limits.
Typical devices (1 mW) are expected to cover a range of 10–20 meters;
however, with good sensitivity and a moderate increase in transmit power, a
star network topology can provide complete home coverage. For applications
allowing more latency, mesh network topologies provide an alternative for
home coverage since each device needs only enough power (and sensitivity)
to communicate with its nearest neighbor.

Devices operating in the 2.4-GHz band must accept interference caused by
other services operating in this band. This is compatible with IEEE 802.15.4
applications, which have relatively low quality of service (QoS) requirements,
do not require isochronous communication, and may be expected to perform
multiple retries on occasion, to complete packet transmissions. A primary
requirement of IEEE 802.15.4 applications is excellent battery life achieved
in the standard by the use of low transmit power and very low duty-cycle

306 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

operation. IEEE 802.15.4 devices may be sleeping as much as 99.9 % of the time
they are operational, and employ low-power spread spectrum transmissions,
thus they are good neighbors in the 2.4 GHz band.

The IEEE 802.15.4 standard targets residential and industrial customers. LR-
WPAN is designed as an enabler technology. IEEE 802.15.4 is complementary
to other wireless networking technologies by occupying the lower end of the
power consumption and data throughput space.

9.6. DATA-CENTRIC STORAGE IN WIRELESS
SENSOR NETWORKS

In most communication networks, naming of nodes for low-level communi-
cation leverages topological information. An example of this is the Internet
(point-to-point communication model) where IP addresses are assigned to
each node, and these serve as unique node identifiers in IP routing. Such a
naming scheme is not very efficient in a sensor network scenario, since the
identity of individual sensor nodes is not as important as the data associated
with them. Data-centric models for sensor networks allow the sensor data
itself (as contrasted to sensor nodes) be named, based on attributes such
as event type or geographic location. In particular, data-centric routing and
data-centric storage is energy efficient in sensor networks.

Data-Centric Storage (DCS) is a data-dissemination paradigm for sensor
networks. In DCS, data is stored, according to event type, at correspond-
ing sensor-net nodes. All data of a certain event type (e.g. temperature
measurements) are stored at the same node. A significant benefit of DCS
is that queries for data of a certain type can be sent directly to the node
storing data of that type, rather than flooding the queries throughout the
network (unlike data-centric routing proposals). DCS is based on the low-
level routing functionality provided by the GPSR (Greedy Perimeter Stateless
Routing) geographic routing algorithm, and on distributed hash-table func-
tionality provided by peer-to-peer lookup algorithms. DCS offers reduced
total network load and very good network usage.

Replication of control and data information in a DCS framework is the pri-
mary mechanism for reducing data retrieval traffic and increasing resilience
to node failures. The storage of data of a particular type occurs at one of
several replica nodes in the network assigned to this type, and storage of
control and summary information pertaining to this type at geographically
distributed monitor nodes in the network. By increasing the number of nodes
where data can be stored for each event-type, as well as maintaining summary
and control information at several nodes, the average cost of storing data and
querying data is decreased.

9.6. DATA-CENTRIC STORAGE IN WIRELESS SENSOR NETWORKS 307

Resilient Data-Centric Storage (R-DCS) is a method of achieving scalability
and resilience by replicating data at strategic locations in the sensor network.
R-DCS outperforms other schemes in terms of scaling to a large number of
nodes and a large number of queries. In the case where nodes in the sensor
network are unreliable and experience random failures, R-DCS does not
experience a dramatic increase in the number of messages sent as the node
failure rate is increased. It also maintains a high query success rate in this
scenario. Hence this scheme realizes graceful performance degradation in the
presence of node failures.

Wireless sensor networks have certain unique features which must be
accounted for in any data dissemination methodology designed for such
networks. Sensor devices have significantly higher processing capabilities
and storage capabilities than available bandwidth (this is in contrast to
wired networks, where an explosion of available bandwidth has led to a
drastic reduction in its relative cost). The reason for this difference is that
sensors typically have limited battery life. Hence they must use low-power
(and consequently, low-bandwidth) wireless communication techniques to
conserve battery power. In a typical scenario, it has been estimated that
3000 instructions could be executed for the same energy cost of sending
a bit 100 meters by radio. This framework encourages the use of com-
putational techniques to reduce the total communication overhead in the
network.

The gateway through which sensor networks communicate with the
external world (e.g. a monitoring terminal or the Internet) is an access
point. ‘Access path’ refers to the set of data paths from the sensor nodes
to the access point. The access points usually have a higher communi-
cation load than other sensor-net nodes. In a high-traffic scenario, such
access points can become a bottleneck in the sensor-net (hotspot). The
peak amount of traffic flowing through these access points ought to be
minimized.

The energy constraints of wireless sensor networks are more efficiently
achieved by using an attribute-based naming system rather than topological
naming schemes (e.g. IP). Such attributes could be predefined to reduce the
overhead during communication. For example, all sensor data in an envi-
ronmental sensing network can be classified as being of types temperature,
pressure and humidity. All such data can be named by including these
predefined event attributes in the data itself.

When an event occurs, the sensors record and store the event data locally,
and name this data based on its attributes. The low-level output from sensors
(observations) is named, based on the attributes of the associated data. This
data can be handled in a number of different ways. The three methods involve

308 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

substantially different assumptions and cost–benefit trade-offs.

• External Storage (ES) in which all event data is stored at an external storage
point for processing;

• Local Storage (LS) in which all event information is stored locally (at the
detecting node), and

• Data-Centric Storage (DCS) in which all event data is stored by event-type
within the sensornet at designated nodes.

Queries are used to retrieve event information from the sensornet. It is
important to consider the ratio of query traffic to event-detection traffic
while designing a sensor network. Each of the approaches has different
relative costs for query and event traffic. Hence, depending on the function
of a sensor network, one of the approaches may be more useful than the
others.

DCS uses a Distributed Hash-Table (DHT) and offers the following
interface:

• The Put(dataName, dataValue) primitive to store the value of the data
corresponding to a certain event at the sensor-net node corresponding to
the dataName (which serves as the key in the DHT and is typically based
on the event type). The name of the data is typically based on the relevant
event type.

• The Get(dataName) primitive to retrieve the value of the data stored at the
node corresponding to the given dataName.

DCS uses the GPSR (Greedy Perimeter Stateless Routing) geographic rout-
ing algorithm for low-level routing. It then builds a DHT on top of GPSR.
Unlike the commonly used shortest path technique, geographic routing uses
the relationship between geographic position and connectivity in a wireless
network. Since GPSR needs knowledge about the geographic coordinates of
sensornet nodes to route messages, it is assumed that these nodes know their
location through the use of localization methodologies. GPSR uses greedy for-
warding to forward packets to nodes that are always progressively closer to
the destination. The sender includes the approximate coordinates of the final
destination while sending the packet. In regions where such a greedy path
does not exist, GPSR recovers by forwarding in perimeter mode, wherein a
packet traverses successively closer faces of a planar subgraph of the network
connectivity graph, until reaching a node closer to the destination, where
greedy forwarding resumes. If N is the number of nodes in the network,

9.6. DATA-CENTRIC STORAGE IN WIRELESS SENSOR NETWORKS 309

then to go from one random location to another requires O(
√

N) packet
transmissions. In contrast, a flooding algorithm sends a packet to the entire
sensor-net and requires O(N) packet transmissions.

DHT is used to hash the name of a certain event to a key (dataName)
which is a location somewhere within the boundaries of the sensor-net. The
put(dataName, dataValue) primitive sends a packet with the given payload
into the sensor-net which is routed towards the location dataName. The
get(dataName) primitive is routed to the node closest to the dataName
location, which then transmits a packet to the node originating the query
with the corresponding data. In a sensor-net with completely stationary and
reliable nodes, this approach is sufficient.

In order to make DCS resilient to node failures and mobility, there are
certain extensions to the basic scheme. The storage node for an event type
periodically routes a refresh message to all nodes which had transmitted
event data to this node. Regular GPSR routing returns these refresh messages
to the storage node along the network perimeter. In the intermittent time
interval, the nodes in the sensor network could be displaced from their
original locations. If a new node is closer to the location of the original storage
node than the original storage node itself, then this new node will become the
storage node. Timer based algorithms ensure that in case a storage node dies
in this fashion, the new storage node automatically starts generating refresh
messages. This process is called the Perimeter Refresh Protocol and is used to
accomplish replication of (key, value) pairs and their consistent placement at
the appropriate home nodes when the network topology changes. To protect
against node failure, all nodes that receive a refresh message, will cache the
data contained in it (local replication).

The Structured Replication in DCS (SR-DCS) scheme achieves load bal-
ancing in the network. SR-DCS uses a hierarchical decomposition of the
key space and associates each event-type e with a hierarchy depth d. It
hashes each event type to a root location. For a hierarchy depth d, it then
computes (4d − 1) images of the root. When an event occurs, it is stored
at the closest image node. Queries are routed to all image nodes, start-
ing at the root and continuing through the hierarchy. SR-DCS significantly
improves the scalability of DCS, and is useful for frequently detected events.
However, that SR-DCS does not involve actual replication of data. It only
stores one copy of any event-data at the closest image node. If all nodes
in a certain location fail simultaneously (clustered failures), SR-DCS might
not be able to recover the data stored at these nodes. The root node is a
single point-of-failure in the sense that if the root for event-type e fails,
one might not be able to issue any queries for event data corresponding to
this type.

310 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

The extensions to DCS are used to achieve the following:

• minimize query-retrieval traffic hence saving energy consumption;
• increase data availability, ensuring that event information is not lost even

with multiple node failures.

The original version of DCS has all events of the same type stored in one
sensor-net node. It is evident that if there are too many events of a particular
type, then this storage node will become a bottleneck point (hotspot) in
the network. The data-dissemination scheme, Resilient Data-Centric Storage
(R-DCS), overcomes these issues by a two-level replication strategy (control
and data).

In R-DCS, the coordinate space of the sensornet field is partitioned into Z
zones. The set of available zones is denoted as zj : j = 1, . . . Z. This zoning can
be done on the basis of geographical boundaries, as shown in Figure 9.9. The
zones can contain sensor nodes operating in three possible modes:

(1) Monitor mode Each zone has one monitor node for each event-type.
The monitor node stores and exchanges information in the form of
a monitoring map for each event-type. The monitoring map includes
control and summary information in the following fields:
• list of zones containing replica nodes (for forwarding event data

and queries);
• list of zones containing monitor nodes (for facilitating map exchange);

mi1

mi2

n1

z2

z4

z1

z3

ri1

mi4 ri4

mi3

2
1

Figure 9.9 Event storage in R-DCS.

9.6. DATA-CENTRIC STORAGE IN WIRELESS SENSOR NETWORKS 311

• event summaries (for facilitating summary-mode queries). The exact
nature of event summaries depends on the event-type. For example,
in a sensornet designed for temperature monitoring, the summary
information could contain the number of events detected and the
average temperature reading for each zone.

• Bloom filters (for enabling attribute-based queries). Event-data is orga-
nized in the form of a set of attributes and their values. In the
temperature monitoring case, for example, these attributes could be
event-time and temperature. A user might want to access all temper-
ature measurements conducted between 10 a.m. and 11 a.m., or all
temperature readings between 50 and 70. Bloom filters offer an effi-
cient way to support attribute-based queries. Note that this field is
optional – it is required only to support attribute-based queries.

(2) Replica mode Each zone has at most one replica node for each event type.
The replica node, if present, is always the same as the monitor node. In
addition to performing the functions of a monitor node, the replica node
actually stores event data for the given event type.

(3) Normal mode All nodes that are not monitor or replica nodes operate in
this mode. A normal node may originate or forward (i.e. route) event-data,
but is not involved in storing any event data or control information.

Let E denote the number of event types in the sensornet. Let Mi be the
total number of monitor nodes for each event type ei. Let Ri be the number of
replica nodes for each event-type ei. The following system constraints must
be satisfied for each i = 1, . . . , E:

(1) Ri � Mi � Z – This holds because each zone may have at most one replica
node and one monitor node, and all replica nodes are monitor nodes as
well. Under normal operations without clustered node failures (a majority
of nodes failing in one zone), there will be one monitor node per zone:
Mi = Z.

(2) Ri � 1 – There must be at least one replica node in the network, since all
event-data for each event type is stored at the respective replica nodes.

For the distributed hash-table, a hash function H is used, which is a function
of event type ei and zone zj. If event type ei in zone zj hashes to a location
(xij, yij) ≡ H(ei, zj), then a sensor node mij geographically closest to (xij, yij) is
the monitor node for event type i within zone j. Depending on local decision
rules, this monitor node may also serve as a replica node rij. For the purpose
of load balancing, it is desirable that the function H(ei, zj) be chosen such that
for each zone zj, different event types ei hash to distinct nodes.

312 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

A sensing node (situated in zone j) sends an event of type ei to the monitor
node in the same zone mij. If this monitor node is also the replica node rij,
then the event-data is stored at rij. If not, the data is forwarded to the closest
replica node for this event type. The closest replica node can be determined
from the information in the list of replica nodes field of the local monitoring
map. The target replica node stores the event-data and updates its local copy
of the monitoring map. This operation is illustrated in Figure 9.9.

There are three types of queries in an R-DCS system: summary, list or
attribute-based as follows.

• List: A list query for an event type is a request for all stored data for
events of this type. A querying node in zone zj sends the query for event
type ei to the local monitor (and possibly replica) node mij. The monitor
node then duplicates the query and forwards it to all other active replica
nodes rix : x = 1, . . . , Z in the sensor net. All active replica nodes reply
directly to the querying node with event data. This operation is illustrated
in Figure 9.10.

• Summary: The querying node requests a summary of event information for
an event type. A querying node in zone zj sends the query for event type ei
to the local monitor node mij. The monitor node responds with the event
summary information from the local monitoring map. This is illustrated in
Figure 9.11.

• Attribute based: An attribute-based query requests data for all events which
match certain constraints on their attribute values. A querying node in zone
zj sends the query for event-type ei to the local monitor (and possibly replica)

mi1

mi2

z2

z4

z1

z3

ri1

mi4 ri4

mi3

2

4

1

3

5

AP

Figure 9.10 Querying in R-DCS (list mode).

9.6. DATA-CENTRIC STORAGE IN WIRELESS SENSOR NETWORKS 313

mi1

mi2

z2

z4

z1

z3

ri1

mi4 ri4

mi3

AP1

2

Figure 9.11 Querying in R-DCS (summary mode).

node mij. The monitor node then duplicates the query and forwards it to all
other active replica nodes in the sensor net with Bloom filter matches. All
active replica nodes reply directly to the querying node with event-data:

When an event of type ei occurs in zone j, it updates the local monitoring
map in mij. However, for global consistency of information such as the
number of replica nodes for type ei and event-summary information, these
monitoring maps must be exchanged between the respective monitor nodes
at periodic intervals. For this purpose, all active monitor nodes for a type ei
form a logical ring as shown in Figure 9.12. Each zone has two adjacent zones.

mi1
mi2

z2

z4

z1

z3

ri1

mi4 ri4mi3

Map exchange

Figure 9.12 Logical ring in R-DCS.

314 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

When a monitor node receives a new map, it adds its own local updates
(based on events received since the last map update) and forwards it to the
next monitor node.

9.7. SUMMARY

Wireless sensor networks use small devices equipped with sensors, micro-
processors and wireless communication interfaces. Different applications,
ranging from personal health care to environmental monitoring and mili-
tary applications are used in such networks. Various wireless technologies,
like simple RF, Bluetooth, UWB or infrared can be used for communication
between sensors.

Wireless sensor networks require low-power, low-cost devices that accom-
modate powerful processor, a sensing unit, wireless communication interface
and power source, in a robust and tiny package. These devices have to work
autonomously, to require no maintenance and to adapt to environment. For
example, the MEMS technology enables production of very small sensing
units with low power consumption.

Sensor network management protocol has to support control of individual
nodes, network configuration updates, location information data exchange,
network clustering, and data aggregation rules.

The sensor network gateway has to provide tools and functions for presen-
tation of network topology, services, and characteristics to the user and to
connect the network to other networks and users.

The IEEE 802.15.4 standard defines a Low-Rate Wireless Personal Area
Network (LR-WPAN) which has ultra-low complexity, cost, and power for
low-data-rate wireless connectivity among inexpensive fixed, portable, and
moving devices. The IEEE 802.15.4 standard defines the physical (PHY) layer
and media access control (MAC) layer specifications.

The IEEE 802.15.4 standard targets the residential and industrial markets.
and LR-WPAN is designed as an enabler technology. IEEE 802.15.4 is comple-
mentary to other wireless networking technologies by occupying the lower
end of the power consumption and data-throughput space.

Data-centric storage is a data-dissemination paradigm for sensor networks.
In DCS, data is stored, according to event type, at corresponding sensor
net nodes. All data of a certain event type (e.g. temperature measurements)
are stored at the same node. A significant benefit of DCS is that queries
for data of a certain type can be sent directly to the node storing that
data, rather than flooding the queries throughout the network (unlike data-
centric routing proposals). DCS is based on low-level routing functionality

PROBLEMS 315

provided by the GPSR (Greedy Perimeter Stateless Routing) geographic
routing algorithm, and on distributed hash-table functionality provided by
peer-to-peer lookup algorithms. DCS offers reduced total network load and
very good network usage.

PROBLEMS

Learning Objectives

After completing this chapter you should be able to:

• demonstrate understanding of the Bluetooth architecture;
• discuss Bluetooth services and QoS issues;
• demonstrate understanding of the Bluetooth-based wireless sensor network

implementation;
• explain what home networking with IEEE 802.15.4 is, a standard for

low-rate wireless personal area network;
• demonstrate an understanding of codesign and reconfiguration;
• explain what resilient data-centric storage in wireless ad-hoc sensor net-

works is.

Practice Problems

Problem 9.1: How does Bluetooth operate?
Problem 9.2: What connections are supported by the Bluetooth network?
Problem 9.3: What are the links by which a Bluetooth unit communicates?
Problem 9.4: What is an SCO link?
Problem 9.5: What is an ACL link?
Problem 9.6: What is required to achieve the Bluetooth interoperability with

the Internet protocol family?
Problem 9.7: How are the sensor networks deployed?
Problem 9.8: What are the main services provided to the user by the wireless

sensor network?
Problem 9.9: When does executing of a task occur in a wireless sensor

network?

316 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

Problem 9.10: What are the main functions of a gateway?
Problem 9.11: How to the routing protocols and data aggregation algorithms

collaborate?
Problem 9.12: What are the functions of the sensor network management

protocol?
Problem 9.13: What are the functions of the sensor network gateway?
Problem 9.14: How can more than seven devices in a Bluetooth network be

accommodated?
Problem 9.15: What are the functional blocks of a smart sensor node?
Problem 9.16: What is the first procedure executed upon gateway initializa-

tion?
Problem 9.17: In which applications is the IEEE 802.15.4 standard used?
Problem 9.18: What topologies are supported by the IEEE 802.15.4 standard?
Problem 9.19: What are the sublayers of DLL in the IEEE 802.15.4 standard?
Problem 9.20: What are the features of the IEEE 802.15.4 MAC sub-layer?
Problem 9.21: What are the levels of security provided by the IEEE 802.15.4

standard?
Problem 9.22: What are the physical layer options in the IEEE 802.15.4

standard?
Problem 9.23: What is the transmission rate in the IEEE 802.15.4 standard?
Problem 9.24: What frequency channels are available in the IEEE 802.15.4

standard?
Problem 9.25: How are the energy constraints achieved in wireless sen-

sor networks?
Problem 9.26: What is data-centric storage?

Practice Problem Solutions

Problem 9.1:

Bluetooth uses an ad-hoc, piconet structure referred to as scatternet. Blue-
tooth operates in the international 2.4 GHz ISM band, at a gross data rate
of 1 Mbit/s, and features low energy consumption for use in battery oper-
ated devices. With scatternet technology, it has been possible to achieve
an aggregate throughput of over 10 Mbits/s or 20 voice channels within a
fully expanded scatternet. The structure also makes it possible to extend the

PROBLEMS 317

radio range by simply adding additional Bluetooth units to act as bridges at
strategic places.

Problem 9.2:

The Bluetooth network supports both point-to-point and point-to-multipoint
connections. A piconet is the network formed by a master and one or more
slaves. Each piconet is defined by a different frequency hopping channel. All
units participating in the same piconet are synchronized to this channel.

Problem 9.3:

Once a Bluetooth unit has been connected to a piconet it may communi-
cate by means of two link types. That is, between any two members of
the piconet forming a master–slave pair. The two link types supported
are: Synchronous Connection Oriented (SCO) link, and Asynchronous (or
isochronous) Connectionless (ACL) link.

Problem 9.4:

An SCO link is a point-to-point full-duplex link between the master and a
slave. This link is established once by the master and kept alive until being
released by the master. The SCO link is typically used for a voice connection.
The master reserves the slots used for the SCO link on the channel.

Problem 9.5:

The ACL link makes a momentary connection between the master and any
of the slaves for the duration of one frame (master-to-slave slot and slave-to-
master slot). No slots are reserved. The master can freely decide which slave
to address and in which order. The member sub-address in the packet header
determines the slave. A polling scheme is used to control the traffic from the
slaves to the master. The link is intended for asynchronous or isochronous
data. However, if the master uses this link to address the same slave at
regular intervals, it becomes a synchronous link. The ACL link supports both
symmetric and asymmetric modes. In addition, modes have been defined
with or without FEC, and with or without CRC and ARQ.

Problem 9.6:

To achieve the Bluetooth interoperability with the Internet protocol family,
the TCP/IP over Bluetooth requires that bridging, address resolution, MTU
(maximum transmission unit) definition, and multicast/broadcast mappings
are solved.

318 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

Problem 9.7:

Wireless sensor networks comprise a number of small devices equipped
with a sensing unit, microprocessor, wireless communication interface, and
power source. In contrast to the traditional sensor networks that are carefully
planned and deployed, wireless sensor networks can be deployed in an
ad-hoc manner. This deployment requires communication protocols that are
able to organize the network automatically, without the need for human
intervention.

Problem 9.8:

From the user point of view, querying and tasking are two main services
provided by wireless sensor networks. Queries are used when user requires
only the current value of the observed phenomenon.

Problem 9.9:

Executing a task is used when a phenomenon has to be observed over a
longer period of time. For example, a user can ask a sensor network to detect
a specific type of vehicle in the area and to monitor its movements. To execute
the task, different types of sensor have to collaborate: seismic to detect motion,
video and audio to detect type of vehicle, etc. Information about the vehicle
trajectory is forwarded to the user. Both queries and tasks are injected into the
network by the gateway which also collects the replies and forwards them to
the users.

Problem 9.10:

The main functions of a gateway are:

• communication with the sensor network, where short-range wireless com-
munication is used (Bluetooth, UWB, RF, IR, etc.) to provide functions
like discovery of smart sensor nodes, generic methods for sending and
receiving data to and from sensors, routing, etc.

• Gateway logic, which controls gateway interfaces and data flow to and
from sensor network. It also provides an abstraction level with the API
(Application Programming Interface) that describes the existing sensors
and their characteristics. Gateway logic provides functions for uniform
access to sensors regardless of their type, location or network topology,
injects queries and tasks and collects replies;

• Communication with the users occurs through a gateway. The gateway
communicates with the users and the other sensor networks over the

PROBLEMS 319

Internet, wide area networks, satellite or a short-range communication
technology.

Problem 9.11:

An important requirement for routing protocols in sensor networks is col-
laboration with data aggregation algorithms. Data aggregation is required to
avoid network implosion, which may occur when many nodes answer the
same query and send replies towards the gateway, and overlap problems in
data-centric routing. Based on predefined methods, responsible nodes ana-
lyze gathered data and combine it into a set of meaningful information that is
forwarded to the user. Data aggregation reduces the amount of network load
while preserving validity and amount of information. For certain applications
it can be important to know the source of information (position) and in such
cases that information has to be forwarded as well.

Problem 9.12:

Sensor network management protocol has to support control of individual
nodes, network configuration updates, location information data exchange,
network clustering, and data aggregation rules.

Problem 9.13:

A sensor network gateway has to provide tools and functions for presentation
of network topology, services, and characteristics to the user and to connect
the network to other networks and users.

Problem 9.14:

When more than seven devices need to communicate there are two options.
The first one is to put one or more devices into the park state. Bluetooth
defines three low power modes: sniff, hold and park. When a device is in
the park mode it disassociates from the piconet, but still maintains timing
synchronization with it. The master of the piconet periodically broadcasts
beacons to invite the slave to rejoin the piconet or to allow the slave to request
to rejoin. The slave can rejoin the piconet only if there are fewer than seven
slaves already in the piconet. If this is not the case, then the master has to
park one of the active slaves first. All these actions cause delays and for some
applications it can be unacceptable, for example, process control that requires
immediate response from the command center.

The other option is to build a scatternet. Scatternet consists of several
piconets connected by devices participating in multiple piconets. These
devices can be slaves in all piconets or master in one piconet and slave

320 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

in other piconets. Using scatternets, higher throughput is available and
multi-hop connections between devices in different piconets are possible.
However, hardware still does not support this functionality.

Problem 9.15:

The smart sensor node comprises three functional blocks: sensing, data
processing, and communication.

Problem 9.16:

Smart sensor node discovery is the first procedure that is executed upon
the gateway initialization. Its goal is to discover all sensor nodes in the
area and to build a list of sensor characteristics and network topology.
Afterwards, it is executed periodically to facilitate addition of new, or removal
of existing, sensors.

Problem 9.17:

IEEE 802.15.4 is useful in a wide variety of applications, including indus-
trial control and monitoring; public safety, including sensing and location
determination at disaster sites; automotive sensing, such as tire-pressure
monitoring; smart badges and tags; and precision agriculture, such as the
sensing of soil moisture, pesticide, herbicide, and pH levels.

Problem 9.18:

The IEEE 802.15.4 standard supports multiple network topologies, including
both star and peer-to-peer networks. The topology depends on the design
where applications, such as PC peripherals, may require low-latency con-
nection of a star network, while others, such as perimeter security, may
require large-area coverage of peer-to-peer networking. Multiple address
types, including both physical (i.e. 64-bit IEEE) and short (i.e. 8-bit network
assigned) are provided.

Problem 9.19:

IEEE 802 splits the DLL into two sublayers, the MAC and the logical link
control (LLC).

Problem 9.20:

The features of the IEEE 802.15.4 MAC are association and disassociation,
acknowledged frame delivery, channel access mechanism, frame valida-
tion, guaranteed time-slot management, and beacon management. The MAC

PROBLEMS 321

sub-layer provides two services to higher layers that can be accessed through
two service access points (SAPs). The MAC data service is accessed through
the MAC common part sub-layer (MCPS-SAP), and the MAC management
services are accessed through the MAC layer management entity (MLME-
SAP). These two services provide an interface between the SSCS or another
LLC and the physical layer.

Problem 9.21:

The IEEE 802.15.4 standard provides for three levels of security: no security
of any type (e.g. for advertising kiosk applications); access control lists
(noncryptographic security); and symmetric key security, employing AES-
128 (advanced encryption standard 128-bit cryptographic keys). To minimize
the cost for devices that do not require security, the key distribution method
(e.g. public key cryptography) is not specified in the standard but may be
included in the upper layers of the applications.

Problem 9.22:

The IEEE 802.15.4 offers two physical layer options that can be combined with
the MAC to enable a broad range of networking applications. Both physical
layers are based on direct sequence spread spectrum (DSSS) methods that
result in low-cost digital IC implementation, and both share the same basic
packet structure for low-duty-cycle, low-power operation. The fundamen-
tal difference between the two physical layers is the frequency band. The
2.4 GHz physical layer specifies operation in the 2.4 GHz ISM band, which
has nearly worldwide availability, while the 868/915 MHz physical layer
specifies operation in the 868 MHz band in Europe and 915 MHz ISM band
in the United States. The international availability of the 2.4 GHz band offers
advantages in terms of larger markets and lower manufacturing costs. On
the other hand, the 868 MHz and 915 MHz bands offer an alternative to the
growing congestion and other interference (for instance, from microwave
ovens) associated with the 2.4 GHz band, and longer range for a given link
availability due to lower propagation losses.

Problem 9.23:

The 2.4 GHz physical layer provides a transmission rate of 250 kb/s, while
the 868/915 MHz physical layer offers rates of 20 kb/s and 40 kb/s, for its
869 MHz and 915 MHz bands, respectively.

Problem 9.24:

Twenty-seven frequency channels are available across the three bands. The
868/915 MHz physical layer supports a single channel between 868.0 and

322 NETWORK SUPPORT FOR EMBEDDED APPLICATIONS

868.6 MHz, and 10 channels between 902.0 and 928.0 MHz. Due to the
regional support for these two bands, it is unlikely that a single network will
use all 11 channels. However, the two bands are considered close enough
in frequency for similar, if not identical, hardware to be used for both,
thus lowering manufacturing costs. The 2.4-GHz physical layer supports 16
channels between 2.4 and 2.4835 GHz with ample channel spacing (5 MHz)
aimed at easing the filter requirements to transmit and receive.

Problem 9.25:

The energy constraints of wireless sensor networks are more efficiently
achieved by using an attribute-based naming system rather than topological
naming schemes (e.g. IP). Such attributes could be predefined to reduce the
overhead during communication. For example, all sensor data in an envi-
ronmental sensing network can be classified as being of types temperature,
pressure and humidity. All such data can be named by including these
predefined event attributes in the data itself.

Problem 9.26:

Data-centric storage is a data-dissemination paradigm for sensor networks.
In DCS, data is stored, according to event type, at corresponding sensor-net
nodes. All data of a certain event type (e.g. temperature measurements) are
stored at the same node. A significant benefit of DCS is that queries for data
of a certain type can be sent directly to the node storing data of that type,
rather than flooding the queries throughout the network (unlike data-centric
routing proposals). DCS is based on the low-level routing functionality
provided by the GPSR (Greedy Perimeter Stateless Routing) geographic
routing algorithm, and on distributed hash-table functionality provided by
peer-to-peer lookup algorithms. DCS offers reduced total network load and
very good network usage.

10
Applications of Wireless
Sensor Networks

10.1. INTRODUCTION

Distributed, dynamic, and adaptive, embedded software is used in highly
constrained devices. An active message communication model is used to
build nonblocking applications and higher level networking capabilities. The
TinyOS event-driven approach is used to implement the communication
model with very limited storage and the radio channel modulated directly in
software in an energy efficient manner. The open, component-based design
allows novel relationships between system and application.

To explore the system design techniques underlying this kind of application
and the emerging technology of microscopic computing, there is a series of
small RF wireless sensor devices, a tiny operating system (TinyOS), and a net-
working infrastructure for low-power, highly constrained devices in dynamic,
self-organized, interactive environments. The severe resource constraints put
the hardware platform far beyond reach of conventional operating systems.
TinyOS is a simple, component-based operating system, which is primarily a
framework for managing concurrency in a storage- and energy-limited con-
text. A collection of modular components is built up by modulating the radio
channel and accessing sensors via ADCs (analog-to-digital converters) to an
event-driven environmental monitoring application with dynamic network
discovery and multi-hop ad hoc routing. A nonblocking discipline is carried
throughout the design and most components are re-entrant cooperating
state machines.

Wireless Sensor Network Designs A. Hać
 2003 John Wiley & Sons, Ltd ISBN: 0-470-86736-1

324 APPLICATIONS OF WIRELESS SENSOR NETWORKS

In wireless embedded systems, the communication path to the devices is a
shared channel, which must be shared effectively in the context of resource
constrained processing and ad-hoc multi-hop routing. Many applications
require that nodes have roughly equal ability to move data through the
network, regardless of position within the network topology. The low-
level TinyOS communication components are extended with an energy-
aware media access control (MAC) protocol and use a simple technique for
application specific adaptive rate control.

Rockwell Science Center has created a development environment for
Wireless Integrated Networked Sensors (WINS) that includes customizable,
sensor-laden networked nodes and both mobile and Internet-hosted user
interfaces. The WINS development system allows evaluation of the design,
deployment and usage of microsensor networks. It uses multiple sensors,
processes sensor data both autonomously and in cooperation with neigh-
boring nodes into information, and communicates this information to users
via a variety of network topologies. WINS are self-organizing and establish
and maintain the network without user intervention. Minimizing power con-
sumption is a primary concern in WINS development. Each node processes
sensor data into information, thereby reducing power-demanding commu-
nications requirements. Power minimization allows the design of integrated
WINS hardware and the creation of networking protocols specific to the needs
of microsensor networks. WINS are applied to area monitoring, surveillance,
and security, to networking of personnel and physical assets over large areas,
and to machinery and platform health and status monitoring.

In microsensor networks, large numbers of devices (e.g. more than 10) are
needed to address issues such as scalability, spatial distribution, frequency
reuse, and a number of potential application scenarios. The devices in a testbed
system need to have software and networking capabilities that support
data collection and algorithm development using results from WINS nodes
under field conditions. Microsensor nodes have limitations on computation,
memory, and communication resources caused by battery limitations.

Aggregates of sensors are used in collaborative processing tasks for sensor
networks such as tracking and localization. Sensor aggregate is defined by the
nodes in a network that satisfy a grouping predicate. The parameters of the
predicate depend on task and resource requirements. A distributed protocol
is needed for constructing sensor aggregates in the context of counting distinct
targets in a sensor field. The node processing and communication capabilities
allow implementations on resource constrained hardware.

Wireless sensor networks can be applied to real-world habitat monitoring.
A set of system design requirements covers the hardware design of the
nodes, the design of the sensor network, and the capabilities for remote

10.2. APPLICATION AND COMMUNICATION SUPPORT 325

data access and management. A system architecture uses these requirements
for habitat monitoring. The architecture presents monitoring seabird nesting
environment and behavior.

10.2. APPLICATION AND COMMUNICATION SUPPORT
FOR WIRELESS SENSOR NETWORKS

The embedded software is agile, self-organizing, resource constrained, and
communication centric on numerous small devices operating collectively.
The applications include:

• ubiquitous computing environments where numerous devices placed on
humans and things interact in a context-aware manner;

• dense in situ monitoring of life-science experiments;
• condition-based maintenance, and
• disaster management in a smart civil infrastructure.

The mode of operation is concurrency intensive for bursts of activity but
otherwise very passive, watching for a significant change or event. In the
bursts, data and events are streaming in from sensors and the network,
out to the network, and to various actuators. A mix of real-time actions
and longer-scale processing must be performed. In the remaining time, the
device must shutdown to a very low power state, yet monitor sensors and
network for important changes while perhaps restoring energy reserves. Net
accumulation of energy in the passive mode and efficiency in the active mode
determine the overall performance capability of the nodes.

TinyOS provides convenient abstractions of physical devices and highly
tuned implementations of common functions. This goal is especially challeng-
ing because of the highly constrained resource context, and the application-
specific devices.

A TinyOS application consists of a scheduler and the components. Each
component is described by its interface and its internal implementation, in
a manner similar to many hardware description languages, such as VHDL
[VHSIC (Very High Scale Integrated Circuit) Hardware Description Lan-
guage] and Verilog (a Cadence Design Systems digital simulation tool). An
interface comprises synchronous commands and asynchronous events. The
component has an upper interface, which names the commands it implements
and the events it signals, and a lower interface, which names the commands
it uses and the events it handles. The implementation is written using the

326 APPLICATIONS OF WIRELESS SENSOR NETWORKS

interface name space. A component also has internal storage, structured into
a frame, and internal concurrency, in the form of very light-weight threads,
called tasks. The command, event, and task handlers are declared explicitly in
the source. The points where an external command is called, event signaled,
or task posted, are also explicit in the static code, as are references to frame
storage. A separate application description shows how the interfaces are
wired together to form the overall application composition. An event may
be delivered to multiple components or multiple components may use the
same command. Thus, although the application is modular, the compiler has
static information to use in optimizing across the entire application, including
the operating system. In addition, the underlying run-time execution model
and storage model can be optimized for specific platforms. A typical appli-
cation graph is shown in Figure 10.1, containing a low-power radio stack,
a UART (Universal Asynchronous Receiver Transmitter) serial port stack,
sensor stacks, and higher level network discovery, and dedicated routing to
support distributed sensor data acquisition. This entire application occupies
about three kilobytes.

The TinyOS concurrency model is a two-level scheduling hierarchy, where
events preempt tasks, and the tasks do not preempt other tasks. The vast
majority of operation is in the form of nonblocking state transitions. Within a
task, commands may be called, a command may call subordinate commands,
or it may post tasks to continue working logically in parallel with its invo-
cation. By convention, all commands return a status indicating whether the
command was accepted, providing a full handshake. Since all components
have bounded storage, a component must be able to refuse commands. A
command may initiate an operation, for instance, by accessing a sensor or

Ad Hoc discovery Sensing application

Messaging layer

Radio packet UART packet

UART byteRadio byte

Application

Messaging

Packet

Byte

Bit RFM Clocks ADC I2c

Photo Temp SW

HW

Figure 10.1 A networking application component graph.

10.2. APPLICATION AND COMMUNICATION SUPPORT 327

sending a message, leaving the operation to be carried out concurrently with
other activities, by using either hardware parallelism or tasks.

Events are initiated at the lowest level by hardware interrupts. Events may
signal higher level events, call commands, or post tasks. Commands cannot
signal events. Thus, an individual event may propagate through multiple
levels of components, triggering collateral activity. Whenever the work cannot
be accomplished in a small, bounded amount of time, the component should
record continuation information in its frame and post a task to complete
the work. By convention, the lowest level hardware abstraction components
perform enough interrupt processing to re-enable interrupts before signaling
the event. Events (or tasks posted within events) typically complete the
split-phase operations initiated by commands, signaling to the higher-level
component that the operation has completed and perhaps passing it the data.

A nonblocking approach is taken throughout TinyOS. There are no locks,
and components never spin on a synchronization variable. A lock-free queue
data structure is used by the scheduler. Components perform a phase of an
operation and terminate, allowing the completion event to resume their exe-
cution. Most components are written essentially as re-entrant state machines.
TinyOS is written in the C programming language with conventional prepro-
cessor macros to highlight the key concepts. The TinyOS execution model is
implemented on a single shared stack with a static frame per component.

The communication-centric design approach in TinyOS is used to build a
networking infrastructure for self-organized, deeply embedded collections
of devices.

Active Messages (AM) is a simple, extensible paradigm for message-based
communication by using procedure calls. Each message contains the name of
a handler to be invoked on a target node upon arrival, and a data payload.
The handler function serves the dual purpose of extracting the message from
the network and either integrating the data into the computation or sending
a response. The AM communication model is event driven and specifically
designed to allow a very lean communication stack to process packets directly
off the network, while supporting a wide range of applications.

Initiating an active message involves specifying the data arguments, nam-
ing the handler, requesting the transmission, and detecting transmission
completion. Receiving AM involves invoking the specified handler on a copy
of the transmitted data.

The send message command identifies intended recipients, the handler that
will process the message on arrival, and the source output message buffer in
the local frame. A handler registry is maintained, and the identifier for the
named handler is extracted. The status handshake for this command illus-
trates the general notion of components managing their bounded resources.

328 APPLICATIONS OF WIRELESS SENSOR NETWORKS

The messaging component may refuse the send request, for example, if it is
busy transmitting or receiving a message and does not have resources with
which to queue the request. The reaction to this occurrence is application
specific.

The message arrival event is similar to other events. One key difference is
that the active-message component dispatches the event to the component
with the associated message handler. Many components may register one or
more message handlers. Additionally, the input to the handler is a reference
to a message buffer provided by the active-message component.

Managing buffer storage is a difficult problem in a communication stack
because the following issues must be addressed:

• encapsulating useful data with transport header and trailer information;
• determining when output message data storage can be reused, and
• providing an input buffer for an incoming message before the message has

been inspected, to determine where it goes.

The Tiny active-message layer provides simple primitives for resolving
these issues with no copying and very simple storage management.

The message buffer has a defined type in the frame that provides fields
for system specific encapsulation, such as routing information and error
detection. These fields are used as the packet moves down the stack, rather
than following pointers or copying. The application components refer only to
the data field or the entire buffer. References to message buffers are the only
pointers carried across component boundaries in TinyOS.

Once the send command is called, the transmit buffer is considered to be
owned by the network until the messaging component signals that trans-
mission is complete. The mechanism for tracking ownership is application
specific.

The message handler receives a reference to a system owned buffer, which
is distinct from its frame. The typical behavior is to process information in the
message and return the buffer. In general, the handler must return a reference
to a free buffer. It could retain the buffer it was given by the system and return
a different buffer, which it owns. A common special case of this scenario is a
handler that makes a small change to an incoming message and retransmits
it. We would like to avoid copying the remainder of the message, however,
we cannot retain ownership of the buffer for transmission and return the
same buffer to the system. Such a component should declare a message buffer
and a message-buffer pointer in its frame. The handler modifies the incoming
buffer and exchanges buffer ownership with the system. If its previous
transmit buffer is still busy, one of the two operations must be discarded. A

10.2. APPLICATION AND COMMUNICATION SUPPORT 329

component performing reassembly from multiple packets may own multiple
such buffers. In any case, run-time buffer-storage management is reduced to
a simple pointer swap.

The Tiny active message is used to support dynamic network discovery and
multi-hop, ad-hoc routing. Discovery can be initiated from any node, but often
it is rooted at gateway nodes that provide connectivity to conventional net-
works. Each root periodically transmits a message carrying its ID and its dis-
tance, which is equal to zero, to its neighborhood. The message handler checks
whether or not the source is the closest node from which it has heard recently
(i.e. in the current discovery phase) and, if so, records the source ID as its
multi-hop parent, increments the distance, and retransmits the message with
its own ID as the source. The discovery component utilizes the buffer swap.

The packets are routed up the tree as follows. A node transmitting data to
be routed specifies a multi-hop forwarding handler and identifies its parent
as the recipient. The handler will fire in each of its neighbors. The parent
retransmits the packet to its parent, using the buffer swap. Other neighbors
simply discard the packet. The data is thus routed hop-by-hop to the root.
Reduction operators can be formed by accumulating data from multiple
children before transmitting a packet up the tree.

The discovery algorithm is nonoptimal because of redundancy in the outgo-
ing discovery wave front and may be improved by electing cluster leaders or
retransmitting the beacon with some probability inversely related to the num-
ber of siblings. Alternatively, the discovery phase can be eliminated entirely
by piggybacking the distance information on the sensor data messages. When
a node hears a packet from a node, which is fewer hops from the base station,
it adopts the source as its parent. The root node simply transmits a packet
to itself to grow the routing tree. Nodes must also age their current distance
to adapt to changes in network topology due to movement or signal prop-
agation changes. These examples illustrate the fundamental communication
step upon which distributed algorithms for embedded wireless networks are
based: receiving a packet, transforming it, and selectively retransmitting it or
not. Squelching retransmission forms an outgoing wave front in discovery
and forms a beam on multi-hop routing. In these algorithms the data structure
for determining whether to retransmit is a cache of recent packets.

One challenge is to move the message data from the application storage
buffer to the physical modulation of the channel without making entire copies,
and similarly in the reverse direction. A common pattern that has emerged is
a cross-layer data pump. We find this at each layer of the stack in Figure 10.1.
The upper component has a unit of data partitioned into subunits. It issues a
command to request transmission of the first subunit. The lower component
acknowledges that it has accepted the subunit and when it is ready for the

330 APPLICATIONS OF WIRELESS SENSOR NETWORKS

next one, it signals a subunit event. The upper handler provides the next
unit, or indicates that no more units are forthcoming. This is done by calling
the next subunit command within the ready handler. The message layer is
effectively a packet pump. The packet layer encodes and frames the packet,
pumping it byte-by-byte into the byte layer. On the UART, the byte-by-byte
abstraction is implemented directly in hardware, whereas on the radio the
byte layer pumps the data bit-by-bit into the radio. Each of these components
utilizes the frame, command, and event framework to construct a re-entrant
software state machine.

In a multi-hop data collection network, each node transmits its own data
from time to time, and listens during the remaining time for data that it needs
to forward toward a sink.

Although active transmission is the most power intensive mode, most
radios consume a substantial fraction of the transmit energy when the radio
is on and does not receive anything. In special networks, a device transmits
for short periods of time, but must be continually listening in order to forward
data for the neighboring nodes. The total energy consumption of a device is
dominated by the RF reception cost.

Power consumption can be reduced by using periodic listening. By creating
time periods when transmitting is not permitted, the nodes must listen only
part time. This approach works well when the time scale of the invalid periods
is quite large relative to the message transmission time. The downside of this
approach is that it limits the used bandwidth.

In sensor networks, a node may act as a router or data processing point,
and may need to use the radio bandwidth fully. Low-power listening keeps
the same listener duty cycle concept, but greatly reduces the time scale.

To further reduce the average power consumption of the network, low
power listening can be combined with periodic listening. Running both
schemes simultaneously results in listening at reduced power for only a
fraction of the time, and the power reductions are multiplicative. These
techniques provide a mechanism for trading bandwidth and transmission
cost for a reduction in receive power consumption.

The hardware directly connects the central microcontroller to the radio. This
places all of the real time requirements of the radio onto the microcontroller,
which must handle every bit that is transmitted or received in real time.
Additionally, it controls the timing of each bit so that any jitter in the control
signals that it generates is propagated to the transmitted signal. The TinyOS
communication stack handles these constraints while allowing higher level
functions to continue in parallel.

At the base of the component stack is a state machine that performs the bit
timing. The RFM (RF Monolithics) component transfers a single bit at a time

10.2. APPLICATION AND COMMUNICATION SUPPORT 331

to or from the RF Monolithics radio. For a correct transmission to occur, the
transmitted bit must be placed and held on the TX (data output) line of the
radio for exactly one bit time, for instance, 100 microseconds. For reception,
the RX (data input) line of the radio must be sampled at the midpoint of the
transmission period. The radio provides no support for determining when
bit times have completed.

The interface to the RFM component forms a data pump performing a
bit-by-bit transfer from a byte-level component to the physical hardware. To
start the transmission of data, a command is issued to the RFM component
to switch into transmit mode. Then a second command is used to transfer a
single bit down to the RFM component. This bit is immediately placed onto
the transmit line. After 100 microseconds has passed, the RFM component
will signal an event to indicate that it is ready for another bit. The byte-level
component’s response is to issue another command to the RFM component
that contains the next bit. This interaction of signaling an event and receiving
the next bit continues until the entire packet is completed. The RFM layer
component abstracts the real-time deadlines of the transmission process from
the higher layer components.

During transmission, complex encoding must be done on each byte while
simultaneously meeting the strict real-time requirements of the bit layer. The
encoding operation for a single byte takes longer than the transmission time
of a single bit. To ensure that the encoded data is ready in time to meet the
bit level transmission deadline, the encoding of the next byte starts prior
to the completion of the transmission of the current byte. The TinyOS task
mechanism executes the encoding operation while simultaneously perform-
ing the transmission of previous data. By encoding data one byte in advance
of transmission, the buffering is used to decouple the bit level timing from
the byte encoding process.

Data reception takes the same form as transmission, except that the receiver
must first detect that a transmission is about to begin and then determine
the timing of the transmission. To accomplish this, when there is activ-
ity on the radio channel, the RFM layer component is set to sample bits
every 50 microseconds, double sampling each byte. These bits are handed
up one at a time to the byte-level component. The byte-level component
creates a sliding buffer of these bit values that contains the last 18 bits.
When the value of the last 18 bits received matches the designated start
symbol, the start of a packet is detected. Additionally, the timing of the
packet is determined to within half a bit time. Next, the RFM layer sam-
ples a single bit after 75 microseconds. This causes the next sample to fall
in the middle of the next bit window, half way between where the dou-
ble sampling would have occurred if the sample period had remained at

332 APPLICATIONS OF WIRELESS SENSOR NETWORKS

50 microseconds. Then the RFM samples every 100 microseconds for the
remainder of the packet.

In wireless embedded systems, the communication path to the devices is a
shared channel, which must be shared effectively in the context of resource
constrained processing and ad hoc multi-hop routing. Many applications
require that nodes have roughly equal ability to move data through the
network, regardless of their position within the network topology. The
low-level TinyOS communication components are extended with an energy-
aware Media Access Control (MAC) protocol and use a simple technique for
application specific adaptive rate control.

The MAC protocols must be performed on microcontroller concurrently
with other operations. The RF transceiver lacks support for collision detection,
thus the Carrier Sense Multiple Access (CSMA) scheme is used, where a
node listens for the channel and only transmits a packet if the channel
is idle. The mechanism for clocking in bits at the physical layer is also
used for carrier sensing. Thus, the MAC layer is implemented at both
the bit and byte level in the network stack. If consecutive sampling of
the channel discovers no signal, the channel is deemed idle and a packet
transmission is attempted. However, if the channel is busy, a random back
off occurs. The entire process repeats until the channel is idle. A simple
16-bit linear feedback shift register is used as a pseudo-random-number
generator for the back off period. The radio is turned off during back
off. Many applications collect and transmit data periodically, perhaps after
detecting a triggering event, thus traffic can be highly correlated. Detection
of a busy channel suggests that a neighboring node may indicate that the
communication patterns of the nodes are synchronized. The application uses
the failure to send as feedback and shifts it sampling phase to potentially
desynchronize.

Another common application requirement is roughly equal coverage of data
sampling over the entire network. Each node in the network should be able to
deliver fair allocation of bandwidth to the base station. With special routing
layers, nodes self organize into a spanning forest, where each node originates
and routes traffic to a base station. The competition between originated and
route-through traffic for upstream bandwidth must be balanced to meet
the fairness goal. The capacity of a multi-hop network is limited, and the
nodes must adapt their offered load to the available bandwidth, rather
than over commit the channel and waste energy in transmitting packets
that can never reach the base station. The adaptive transmission control
scheme is a local algorithm implemented above the active-message layer
and below the application level. The application has a baseline sampling
rate that determines maximum transmission rate and transmits a sample

10.2. APPLICATION AND COMMUNICATION SUPPORT 333

with a dynamically determined probability. Upon successful transmission,
the probability is increased linearly, whereas upon failure it is decreased
multiplicatively. A successful transmission can be indicated by an explicit
acknowledgment from the receiver or an implicit acknowledgment when
the sender hears its packet being forwarded by its parent. Since implicit
acknowledgment is often application specific, the application decides if the
transmission was successful and propagates the information down to the
transmission control layer. Rejection of application’s transmission command
at the transmission control level triggers the adaptation.

The TinyOS approach has proven quite effective in supporting general
purpose communication among, potentially, many devices that are highly
constrained in terms of processing, storage, bandwidth, and energy with
primitive hardware support for I/O. The event driven model facilitates inter-
leaving of the processor between multiple flows of data and between multiple
layers in the stack for each flow while still meeting the severe real-time require-
ments of servicing the radio. Since storage is very limited, it is common to
process messages incrementally at several levels, rather than buffering entire
messages and processing them level by level. However, events alone are not
sufficient, and it is essential that an event be able to hand any substantial
processing off to a task that will run outside the real-time window. This
provides logical concurrency within the stack and is used at every level
except the lowest hardware abstraction layer. By adopting a nonblocking,
event-driven approach, the traditional threads are not supported, with their
associated multiple stacks and complex synchronization.

The component approach yields robust operation despite limited debug-
ging capabilities, and facilitates experimentation. The packet components
can be swapped with a simple change to the description graph and tempo-
rary components can be interposed between existing components, without
changing any of the internal implementations. Moreover, the use of compo-
nents allows, essentially, an entire subtree of components to be replaced by
hardware and vice versa.

The Tiny active message programming model permits experiments with
numerous higher level networking layers and fine-grained distributed algo-
rithms. The nodes can be reprogrammed over the network. A node can obtain
code capsules from its neighbors or over multihop routes and assemble a
complete execution image in its EEPROM secondary store. The node can then
use this to reprogram itself. Other examples include a general purpose data
logging and acquisition capability, a facility to query nodes by schema, and
to aggregate data from a large number of nodes within the network.

Without the traditional layers of abstraction dictating what kinds of capabil-
ities are available, it is possible to foresee many novel relationships between

334 APPLICATIONS OF WIRELESS SENSOR NETWORKS

the application and the underlying system. The adaptive transmission control
scheme is a simple example; rejection of the send request causes the appli-
cation to adjust its rate of originating data. The application level forwarding
of multi-hop traffic allows the node to keep track of its changing set of
neighbors. Moreover, the radio is itself another sensor, since receive signal
strength is provided to the ADC. Thus, each packet can be accompanied by
signal strength data for use in estimating physical distance or presence of
obstructions. The radio is also an actuator, as its signal strength, and therefore
cell size, can be controlled.

The lowest layer components are synchronizing all receivers to the trans-
mitter to within a fraction of a bit. Thus, very fine grain time synchronization
information can be provided with every packet for control applications.

10.3. AREA MONITORING AND INTEGRATED VEHICLE HEALTH
MANAGEMENT APPLICATIONS

Wireless distributed microsensor networks consist of a collection of commu-
nicating nodes, where each node incorporates

• one or more sensors for measuring the environment;
• processing capability in order to process sensor data into high value

information and to accomplish local control, and
• a radio to communicate information to/from neighboring nodes and to

external users.

Ultra-low-power CMOS (Complementary Metal-Oxide Semiconductor)
chips can integrate radios for communication, digital computing, and MEMS
sensing components, on a single die produced in high volumes for low-cost.
This permits large numbers of wireless integrated networked sensors to be
easily and rapidly deployed (e.g. air dropped into battle fields or deployed
throughout an aircraft or space vehicle) to form highly redundant, self-
configuring, dedicated sensor networks. For ease of deployment, the nodes
use wireless communications, and are capable of establishing and operating
their own network. To prolong battery life, all node and network functions
are designed to consume minimal power. Highly capable and ultrareliable
systems are built out of large numbers of such nodes that are individually
inexpensive and use cooperation between nodes to produce highly reliable,
high quality information. WINS node is based on an open modular design
using widely available commercial off-the-shelf technology. The wireless

10.3. AREA MONITORING/INTEGRATED VEHICLE HEALTH MANAGEMENT 335

microsensor nodes combine sensing capabilities (such as seismic, acoustic,
and magnetic) with a commercial digital cordless telephone radio and an
embedded commercial RISC microprocessor in a small package. As these net-
works are designed for low power, embedded signal processing is performed
in order to reduce communication requirements. For example, many thou-
sands of bytes of raw time series data from a vibration sensor are reduced to a
few bytes of amplitude and frequency information using the on-board proces-
sor. Communicating only processed information reduces the power required
to convey information by orders of magnitude. WINS nodes are supporting
experiments in multi-hop data communication protocols, dynamic coopera-
tive signal processing (e.g. beamforming with randomly spaced nodes), and
distributed resource management.

The unique aspects of microsensor networks can be examined with signif-
icant numbers of prototype devices explicitly designed for this purpose, as
opposed to generic computing platforms. Some of the unique requirements
for WINS include:

• small, lightweight form factor;
• robustness to wide temperature ranges and other demanding environmen-

tal conditions;
• battery or other stand-alone power sources;
• low power operation and access to internal power control mechanisms;
• a small, low-power radio having sufficient range;
• a real-time execution environment;
• the ability to code in a high level language for rapid algorithm hosting and

testing, and
• a reasonable cost.

WINS nodes support battlefield applications, and a variety of vehicle health
management and condition-based maintenance applications on industrial,
military, and space platforms. For example, a motor and pump test bed
for developing component (e.g. bearing), process (e.g. fluid pumping), and
system-level (e.g. an overall collection of motors and pumps in a large-
scale process) monitoring and diagnostics was constructed at the Rockwell
Science Center. This test bed was instrumented with WINS nodes which
incorporate acceleration, pressure, and temperature sensors and algorithms
for machinery and process diagnostics. The signal processing algorithms
running on the individual nodes provide for incipient detection of a wide
variety of faults. The wireless networked communications provide for simple
installation and cooperative diagnostics among groups of motors, pumps,

336 APPLICATIONS OF WIRELESS SENSOR NETWORKS

and valves in the system. A web-based browser allows the entire system, and
any component within the system, to be remotely monitored.

Distributed microsensor networks use cooperative processing and low
power communication protocols. Scenarios, such as monitoring large areas,
buildings, or avenues of approach, are accomplished by positioning the sen-
sors close to the areas of interest in high densities. Close spacing permits
low-power sensing and short-range radio links. The nodes can be pre-
cisely located or dispersed in random configurations with spatial knowledge
(or lack thereof) incorporated in the signal processing and communication
algorithms. This versatility makes the nodes suitable for a wide range of
applications, for example, perimeter security and reconnaissance, monitoring
of machinery and other assets within large industrial plants, monitoring of
many subsystems on-board large vehicles.

WINS nodes communicate with the external world via an enterprise level
network, such as a factory control network and/or the Internet as shown in
Figure 10.2. Two-way communication is provided throughout the system, as
each WINS node supports bidirectional, peer-to-peer communications with its
neighbors. The WINS nodes can be static or slowly mobile. Multiple portals for
transporting information into or out of the sensor network can be established.
A portal can be extended by allowing the connection of long-range radios
to any one of the nodes or through a gateway to a wired network, such as
the Internet, allowing users to monitor and control the network remotely. A
WINS user can issue commands through a user interface hosted on a personal

Gateway Gateway

Controller

Applications

External network

Node

Node Node Node Node Node

Node Node Node

Mobile
node

Wired backbone network

WINS enterprise customer

Figure 10.2 A schematic description of a WINS system architecture.

10.3. AREA MONITORING/INTEGRATED VEHICLE HEALTH MANAGEMENT 337

or handheld computer, allowing users to control the network of nodes, for
example, setting sensor sensitivity thresholds or to reprogram the nodes over
the wireless link. The user interface can display activity at each of the sensors
along with their health status (e.g. battery level).

A digital spread spectrum radio in each WINS node provides a robust
wireless communication link, and enables data rates of 100 kb/s over ranges
in excess of 100 meters. Two-way, peer-to-peer communication among nodes
in a small neighborhood supports multi-hop data transfers, avoiding the
requirement for all nodes to be in the range of a base station. This feature
gives users a very high degree of flexibility in the deployment of the nodes,
thus enabling strategic sensor placement in the area of interest without the
constraint of line-of-sight communications to a central data collection or
gateway site. The WINS concept takes advantage of the fact that short-range
radio hops are exponentially more power efficient than larger hops covering
the same distance. Power control on each radio is further used to minimize
the transmit power needed to communicate with its neighbors.

Networking in a WINS system is distinguished from that in a conventional
wireless data network for the following reasons:

• Nodes have limited battery energy, making Time-Division Multiple Access
(TDMA) schemes attractive, but requiring special routing schemes opti-
mized for minimal power consumption.

• The sensor nodes may require synchronization for time tagging of data and
coherent signal processing that is implemented with power conserving,
network time distribution algorithms.

• Nodes may have multiple sensor types (e.g. seismic, acoustic, IR, etc.), each
with different coverage, accuracy, and power consumption, and allowing
local sensor fusion.

• The generated traffic patterns of WINS are generally predictable, allowing
efficient tuning of protocols. While traffic is created by random events (e.g.
target detections, user commands), the destinations and, hence, routes are
constrained, as are the message volumes and allowed latencies. Detection
information is forwarded to portals. There is also data summarization
along the network routing path.

• Cooperative processing, such as beamforming, requires dynamic multicast
groups of nodes that are closest to the events. Since targets or other
phenomena that cause events can be mobile, the set of nodes that are
actively sensing them will change, moving the locus of message generators.

The requirement for simple node deployment necessitates that the network
of nodes be capable of self-discovery and self-configuration. Self-organizing

338 APPLICATIONS OF WIRELESS SENSOR NETWORKS

procedures for boot-up and automatic node incorporation into the network
allow nodes to be added to an operational network for improved coverage
or replenishment. Mechanisms for recovering from node failures allow the
network to be self-healing. The WINS uses a power-efficient, time-division
multiple access scheme supporting multi-hop communication. Routing algo-
rithms avoid creating power consumption hotspots that result in sensors in a
neighborhood dissipating battery energy much more rapidly than the rest of
the network causing partitions when their energy is depleted.

Research into low-power signal processing algorithms is an integral part
of the system development effort and, for battlefield applications, is focusing
on the following:

• Target detection/classification – WINS nodes run vibration detection algo-
rithms based on energy thresholding. This technique is subject to false
alarms leading to consideration of more sophisticated spectral signature
algorithms. Low-power algorithms to classify a detected event as an impul-
sive event (e.g. either a foot-step or gun-shot) or vehicle (e.g. wheeled or
tracked, light or heavy) are used.

• On-board sensor fusion – The inclusion of multiple sensors on each of
the nodes enables fusion of different sensed phenomenologies, leading to
higher quality information and decreased false alarm rates. Algorithms for
fusing the seismic, acoustic and magnetic sensors on a single node are used.

• Multi-node sensor fusion – Algorithms utilizing the advantages of a net-
work of spatially separate nodes span a range of cooperative behaviors,
each of which trades off detection quality versus energy consumption.
Examples of cooperative fusion range from high-level decision corrobora-
tion (e.g. voting), to feature fusion, and full coherent beam formation.

10.3.1. Development Platform

The hardware in each microsensor node uses an open, modular design
that allows incorporation of a range of sensors. Board interconnection is
provided by two 40-pin miniconnectors. The connectors form a system bus
that provides power and control lines to the sensor boards, and supports
multiple open interfaces. The WINS node consists of a stack of base circuits
comprising the processor, radio and power supply, which are coupled with
the desired sensors. The hardware components are as follows:

• acoustic sensor;
• DCT (Discrete Cosine Transform) digital spread spectrum radio module;

10.3. AREA MONITORING/INTEGRATED VEHICLE HEALTH MANAGEMENT 339

• StrongARM processor module;
• multiple voltage power supply module;
• seismic sensor module;
• Mark 4 Products geophone (seismic sensor), and
• two standard 9-V batteries

The basic hardware block diagram given in Figure 10.3 shows the connec-
tivity and power distribution between the major modules within the system.

Processor Module: The processor module is built around the Intel StrongArm
SA1100 embedded controller. The SA1100 is a general-purpose, 32-bit RISC
microprocessor based on the ARM architecture. The processor offers a 16-kb
instruction cache, an 8-kb data cache, serial I/O and JTAG (Joint Test Action
Group) interface all combined in a single chip. Program and data storage are
provided by 128-kb SRAM (Static RAM) and 1-Mb of bootable flash memory.
Connection with the sensor modules is easily achieved using the four-wire
SPI (Serial Peripheral Interface). An RS232 port is added to the module for
connection to external devices. The processor has three states: normal, idle
and sleep, that can be controlled to reduce power consumption.

Radio Module: The radio module uses the Conexant Systems, Inc. RDSSS9M
Digital Cordless Telephone (DCT) chip-set which implements a 900-MHz

Accelerometer
temperature

pressure

ARM
processor

DCT radio

Microphone

Geophone

Magnetometer

Power
supply

+3.3 V +3 V

+1.5 V

RS-232 with
handshake

+3 V shutdown
+1.5 V shutdown

SPI

Figure 10.3 A hardware block diagram.

340 APPLICATIONS OF WIRELESS SENSOR NETWORKS

spread spectrum RF communications link. The chipset has an embedded
65C02 microcontroller that performs all control and monitoring functions
required for direct sequence spread-spectrum communication (12 chips/bit),
as well as data exchange, with the processor module. The radio operates on
one of 40 channels in the ISM frequency band, selectable by the controller. Pro-
gram and data storage are provided with 32-kb SRAM and 1-Mb of bootable
flash memory. Embedded firmware is developed to support multiple access
networking with minimal ARM processor support. The board also provides a
4-bit ADC for battery voltage monitoring. The RF portion of the radio is pack-
aged as a small multi-chip module, interfaces to a 50 ohm helical antenna,
and is capable of operating at multiple transmit power levels between 1 and
100 mW, enabling the use of power-optimized communication algorithms.

Seismic Sensor Module: The seismic sensor board uses a Mark IV geophone
designed for low frequency detection of seismic events. The sensitivity of
this geophone is about 15 g. The circuit employs an Analog Devices AD
7714 sigma-delta converter that results in a clean, 20-dbit signal from 1 Hz
to 400 Hz. The circuit is sufficiently repeatable to allow phase matching
between sensor nodes to support cooperative coherent processing, such as
beamforming.

Other sensor modules include:

• Acoustic Sensor. The acoustic sensor board employs a miniature micro-
phone such as a Knowles BL1785 microphone element having a low
frequency cutoff of 4 Hz. The maximum frequency of interest for acoustic
sensor applications is selected as 2 kHz. It is desirable to preserve phase
information for beamforming applications.

• Magnetometer. A magnetometer module employs the Honeywell HMC1001
and has a 10 Hz bandwidth. The rated sensitivity is 27 microgauss making
it able to detect 1 lb of iron from 6 feet.

• Accelerometer. An accelerometer board is fabricated for use in machinery
vibration monitoring. This board includes a high-speed accelerometer
sampled at 48 kHz. The WINS accelerometer board also provides inputs
for temperature and pressure sensors.

To support experimentation and algorithm development, a flexible software
environment in which applications can be written in a high-level language,
such as C, while maintaining access to low-level hardware functions, such as
power control, is essential. The key WINS software functions are organized
in the following layers:

• Monitor/Hardware Abstraction Layer (HAL). The HAL provides routines for
initialization, external communication, program loading and debugging,

10.3. AREA MONITORING/INTEGRATED VEHICLE HEALTH MANAGEMENT 341

and interrupt processing. A packet protocol interpreter routes packets
arriving from either the radio or the external RS-232 to internal tasks.
Program loading can occur either through an attached device, or through
the radio.

• Run-time environment. This real-time kernel on each node provides the
low-level distributed WINS network infrastructure. The low-level controls
for communication protocols, as well as the sensor drivers, are hosted at
this level.

• System Applications. Signal processing computations and higher layer net-
work functions (e.g. scheduling, routing) are performed and written in
a high-level programming language, such as C. New applications may
be downloaded onto sensor nodes that are deployed in the field via the
RF network.

• User interface applications hosted on PCs that allow users to perform
various tasks and to interact with the sensor network. An interface for
communicating with the network through a gateway is supported as well
as display and logging of network information.

A real-time, preemptive, multi-tasking kernel is ported to the processor
module that is based on the Micro C/OS, and designed to run on top of the
HAL. The HAL provides the three critical assembly language functions for
the Micro C/OS (real-time timer, context switching, and interrupt handler).
The relationship between the applications, the operating system and the HAL
is shown in Figure 10.4, with some details of the implementation. The OS is
used to schedule the applications, enforce interprocessor communication with
the radio and other attached intelligent modules, control higher-level power
management, control attached sensor device drivers, and handle network
messaging and related protocol functions. The HAL provides a standard
view of interrupts to the OS and low-level access to power management, code
downloads, Flash memory programming function, and JTAG debugging
interface. A standard I/O function is implemented to support C-language
debugging and a C-level interface for network messaging.

Figure 10.5 shows the overall software architecture with software entities
hosted on the ARM processor module, the DCT module, the sensor modules
and a host computer (PC). Support for a long-range radio is also provided.
Several development tools reside on the PC and the ARM for use in software
coding and debugging. The users obtain the ARM System Developers Toolkit
(SDT) or similar compiler in order to develop C-based applications.

A power-efficient TDMA scheme is implemented as the basic WINS link-
layer protocol. The TDMA scheme allows nodes to turn off their receiver
and/or transmitter when they are not scheduled to communicate. A multi-hop

342 APPLICATIONS OF WIRELESS SENSOR NETWORKS

User interface
applications

Application
processes

Long range
radio

mC/OS
kernel STDIO Message

control

Interrupt
classifier

Packet
router

Timer
ticks

Power
management

HAL/MONITOR

Figure 10.4 Runtime environment components.

User applications

User message/
command interface

User interface
application

Software
development

toolkit

PC hosted

ARM hosted

Signal processing
magnetometer

Signal processing
microphone

Long range radio

Sensor
fusion

Signal processing
geophone

Network
protocols

System control

MicroC/OS

HAL

DCT radio
driver

Geophone
driver

Microphone
driver

Magnetometer
driver

External RS232
driver

Radio
hosted DCT radio Geophone Microphone Magnetometer Sensor hosted

Figure 10.5 WINS software architecture.

10.3. AREA MONITORING/INTEGRATED VEHICLE HEALTH MANAGEMENT 343

routing scheme is also implemented so that information from distant nodes
can be forwarded to destination locations. The link layer protocols are built
on top of the digital spread spectrum radio broadcast channel and provide
a raw data rate of 100 kb/s. Various low-overhead forward error correction
schemes are also implemented.

The entire WINS sensor node consumes a peak of 1 W of power, with
the processor consuming 300 mW, the radio consuming 600 mW in transmit
mode and 300 mW in receive mode, and less than 100 mW consumed by the
sensor transducers. Proper control of the system ensures that peak power
is rarely required. An essential capability of the devices is that they can be
put into idle or sleep modes under low-level software control to increase the
system operational lifetime.

10.3.2. Applications

For military users, a primary focus has been area monitoring. WINS employs
large arrays of distributed small and capable sensors for both security and
surveillance applications. The added feature of robust, self-organizing net-
working makes WINS deployable by untrained troops in essentially any
situation. Distributed sensing has the further advantages of being able to
provide redundant and hence highly reliable information on threats as well
as the ability to localize threats by both coherent and incoherent processing
among the distributed sensor nodes. WINS is used in traditional sensor
network applications for large-area and perimeter monitoring and enables
every platoon, squad, and soldier to deploy sensor networks to accomplish
a myriad of mission and self-protection goals. For the urban terrain, WINS
dramatically improves troop safety as they clear and monitor intersections,
buildings, and rooftops by providing continuous vigilance for unknown
troop and vehicle activity.

The primary challenge facing WINS, or indeed any military area monitoring
or security system, is accurate identification of the signal being sensed.
Rockwell is developing state-of-the-art vibration, acoustic, and magnetic
signal classification algorithms to accomplish this goal. For added assurance,
Rockwell has also integrated the latest in CMOS (Complementary Metal-
Oxide Semiconductor) visible and uncooled infrared imaging into the WINS
architecture. Sensor-cued images of detected threats are rapidly relayed to
cognizant personnel and battlefield, commanders for real-time threat ID and
prosecution. These capabilities provide unparalleled safety and awareness
on the battlefield, and help to realize the goal of zero friendly force casualties,
even in the most stressful situations.

344 APPLICATIONS OF WIRELESS SENSOR NETWORKS

WINS systems are specifically tailored to the requirements for monitoring
complex machinery and processes. WINS are deployed inside factories and
on board ships for continuous health monitoring of equipment. WINS are
also being explored for use on aircraft, rotorcraft, and spacecraft as part of
an overall integrated vehicle health management system. The primary driver
in these applications is to reduce the requirement for human monitoring of
equipment and provide detailed and continuous knowledge on the operating
state of equipment such that costly, unanticipated downtime is avoided
and logistics activities are optimized. The cost savings that can be achieved
with on-line equipment monitoring are dramatic. WINS is enabling these
applications because it eliminates the high costs (e.g. economic, size, and
weight) associated with wire-line networks.

The primary challenge for WINS in machinery and process monitoring is
related to the quality of the information produced by both the individual
sensors and the distributed sensor network. Nodes located on individual
components must not only be able to provide information on the present
state of the component (e.g. a bearing or a gear box), but also predict the
remaining useful life of the component. Rockwell is developing diagnostic
algorithms for machinery vibration monitoring that differ from previous
efforts in this area in that they are designed to be generally applicable to
broad classes of components, as opposed to being tailored for a specific
component. For example, an algorithm that autonomously determines all
of the critical frequencies of a bearing (e.g. inner race, outer race, number
of balls, operating speed, etc.), and then uses the information to predict
remaining useful life, was developed and tested under a large variety
of conditions. State-of-the-art bearing diagnostic algorithms either do not
provide a comprehensive picture of bearing health, or must have a large
amount of bearing-specific data supplied as initial input. This same algo-
rithm is finding general diagnostic application for gear boxes and other
rotating machinery.

Distributed collections of WINS nodes located on machine components
and/or throughout a process provide information on the overall machine
and/or process on which they are deployed. Distributed sensing system
enables inferences from individual component data to be used to provide
diagnostics for aspects of the system that are not directly being sensed.
For example, monitoring bearing vibrations or motor currents can provide
information on not only the bearing health, but also the inception and severity
of pump cavitation. Pump cavitation, in turn, can provide information on
the state of valves located throughout a pumping process. The heart of
this capability is model-based diagnostics and Rockwell is a leader in the
development of tools and applications for model-based diagnostics.

10.4. BUILDING AND MANAGING AGGREGATES IN WIRELESS SENSOR NETWORKS 345

The dynamically reconfigurable nature of WINS is used in an application
of WINS to space vehicle health monitoring in collaboration with the Boeing
company. WINS is deployed throughout space vehicles and performs dif-
ferent missions during the different phases of the space flight. For example,
during the launch phase, WINS located on various critical components of
the spacecraft monitors vibration levels for out-of-compliance signals. Dur-
ing flight and re-entry, the WINS network monitors structural disturbances
caused by the significant temperature gradients encountered as different
portions of the vehicle are alternately exposed and shadowed from the sun
and atmosphere. This is accomplished via coherent collection and processing
of vibration and strain data. Upon landing, critical components are once
again monitored for out of compliance signals. These data are used to deter-
mine those components needing post-flight maintenance or replacement, thus
enabling faster turn-around for the space vehicle and thereby dramatically
lowering costs.

WINS was applied in an experiment demonstrating the ease with which
ultra-low-cost picosatellites can be deployed and communicated with. In
collaboration with the Aerospace Corporation, WINS-based picosatellites
were launched on two space vehicles. WINS communications and processor
modules form the heart of an experiment in which multiple satellites are
deployed from a mother satellite. These satellites communicate both with each
other and with a ground station. The cost of the WINS-based picosatellites is
less than 5000 US dollars and they are slightly larger than a deck of playing
cards. A network of Micro-Electro-Mechanical (MEMS) switches serves as the
satellite payload, thus demonstrating the efficacy of MEMS in space.

10.4. BUILDING AND MANAGING AGGREGATES IN WIRELESS
SENSOR NETWORKS

Designing and operating a sensor network requires forming and managing
aggregates of sensors for collaborative processing tasks. Consider the problem
of tracking a moving herd of zebra in wildlife habitat management. An
example of a collaboration region is defined as the set of seismic sensor
nodes that can potentially sense the movement of the animals, i.e. within the
propagation range of vibrations from the animal footsteps. Such a group of
sensors is an aggregate which collaboratively performs a specific task. For
example, these sensors can collectively estimate the size of the herd from
the intensity of the vibrations and the speed at which the herd travels from
the frequency of the signals. As the herd moves to the next region, a new

346 APPLICATIONS OF WIRELESS SENSOR NETWORKS

aggregate of sensors will have to wake up and start to track the animals,
and so on. The definition of such collaboration regions depends on the task
objectives and resource constraints. For example, some sensors may be on
critical paths of routing and their energy reserve is more likely to be depleted
than others. These sensors should participate in forming an aggregate only
when the expected gain exceeds a threshold. Moreover, the collaboration
regions are dynamically defined and updated, as the physical events of
interest, environmental conditions, or network topology change. To define
and maintain the collaboration regions adaptively is one of the key tasks in
sensor network operation.

A decentralized protocol Distributed Aggregate Management (DAM) forms
sensor aggregates for a target counting task. The protocol comprises a decision
predicate P for each node i to decide if it should participate in an aggregate,
and a message exchange scheme M about how the grouping predicate is
applied to nodes. A node determines if it belongs to an aggregate based on
the result of applying the predicate to the data of the node, as well as an infor-
mation from other nodes. Aggregates are formed when the process converges.
The protocol supports a representative collaborative signal-processing task in
sensor networks counting distinct targets in a sensor field. Sensor aggregates
defined by multiple interfering targets are considered.

Directed diffusion is an effective mechanism for coordinating information
transport in sensor networks. It uses a fine-grain data-level publish-and-
subscribe for data sources to advertise data attributes of signals they detect,
and for data sinks to express data attributes in which they are interested.
The data-source attributes and data-sink interest are propagated and met
throughout the network. Routing pathways between the sources and sinks
are established as shortest paths in the network connectivity graph.

The DAM protocol can be considered as an example of the next-level-up
coordination mechanism that defines regions of sensors in a network. Unlike
directed diffusion where data attributes are first class objects, DAM makes
grouping predicates first class entities. Directed diffusion forms data routing
and aggregation paths, while DAM forms sensor aggregates that are defined
by constraints arising from tasks, resources, or geometries of a space.

Geographic routing is a mechanism for routing data to a geographic region
instead of to a destination node specified by an address. The destination
region must be specified as a rectangle or some other regular geometric object
for computational reasons. DAM can form arbitrarily complex regions as
long as the network topology permits and the resulting aggregates can be
abstracted as geometric objects for use by geographic routing. On the other
hand, geographic routing could implement the information exchange within
the groups of sensors in DAM.

10.4. BUILDING AND MANAGING AGGREGATES IN WIRELESS SENSOR NETWORKS 347

SQL-style queries such as AVERAGE, MIN, MAX can be used for dis-
tributed sensor networks. A SQL-style database system supports an aggrega-
tion function and a grouping predicate. For example, the query

SELECT TRUNC(temp/10)

AVERAGE(light) FROM sensors

GROUP BY TRUNC(temp/10)

HAVING AVERAGE(light) � 50

forms groups of sensors according to the temperature bins, computes average
light for each group, and then excludes those groups with light values less
than 50. Collaborative signal processing applications must form aggregates
specified not just by individual node data, but also by the relations on the data
across nodes. In the target counting problem, for example, nodes exchange
and compare amplitude detection values in order to form groups belonging
to each target.

Approaches to collaborative signal processing address the formation and
management of collaboration regions in several application contexts. For
example, to track moving vehicles on the street, sensor groups are dynamically
formed, with each group responsible for collecting and processing informa-
tion about one vehicle. These collaboration patterns can be abstracted into a set
of generic schemas to support a wide class of applications for sensor networks.

We consider a task of counting multiple targets in a two-dimensional sensor
field. Targets can be stationary or moving at any time independent of the
states of the other targets.

In addition, the following assumptions are made about this network:

• Targets are point sources of signals. Target signal amplitude attenuates, as a
monotonically decreasing function of the distance from the source, accord-
ing to an inverse distance squared law (e.g. acoustic signal propagation in
free space) or exponentially.

• Each sensor has a finite sensing range. Sensors can only sense the amplitude.
Signals of two targets sum at a sensor.

• Each sensor can communicate wirelessly with other sensors within a fixed
radius larger than the mean internode distance.

• Sensors are time synchronized to a global clock.
• The main limiting factors are the on-board battery power, and the network

bandwidth and latency.

The task here is to determine the number of targets in the field, forming
an initial count and recomputing the count when targets move, enter, or

348 APPLICATIONS OF WIRELESS SENSOR NETWORKS

leave the field. For each distinct target, a sensor leader corresponding to the
target is elected. As targets move, new leaders are elected to reflect network
changes. Hence, we can obtain a target count by determining the number of
leaders elected.

Formally, a sensor network is represented as a graph G(V, E), where V
are the vertices representing sensor nodes and E edges representing one-
hop connectivity in the network. The counting protocol has the structure
(G, T, P, M), with T the targets, P the grouping predicate, and M the messaging
schema. The schema M applies P to nodes in the network to compute sensor
aggregates A{V1, . . . , Vn}, where Vi ∈ V.

When targets are well separated, sensor aggregates for the targets become
islands in the network. In other cases when the influence regions of the targets
overlap and each sensor in a region is able to separate signal components for
each target, then the network can maintain overlapping sensor aggregates,
one for each target.

Sensor networks with diverse target characteristics (velocity, moving pat-
terns, etc.) and limited network resources require a protocol with the following
characteristics:

• The protocol is distributed and autonomous for scalability.
• The leader election process converges quickly to allow fast leader re-election

for fast-moving objects.
• The protocol is designed so that minimal amount of inter-sensor commu-

nication is needed while keeping application semantics intact.
• A reasonable level of fault tolerance is supported.

As the sensors in this network can only sense amplitude, the spatial
characteristics of target signals have to be considered when multiple targets
are in close proximity of each other.

(1) When the target influence areas are well separated, leader election can
be considered as a clustering problem. Otherwise, it becomes a peak
counting problem.

(2) Target signal propagation has a large impact on target resolution. The
faster the signal attenuates with distance from the source, the easier
targets are to discern from their neighbors, based on signal amplitude
they emit.

(3) Spacing of sensors is also critical in obtaining correct target count. Sensor
density has to be high enough for sampling of target signal amplitude
provided by sensors to yield enough information for obtaining correct

10.5. HABITAT AND ENVIRONMENTAL MONITORING 349

target counts. On the other hand, too close a proximity of a sensor to its
neighbors makes its measurement redundant and wastes resources.

In the protocol design, sensors are somewhat evenly spaced with a mean
inter-sensor distance determined by the target signal attenuation characteris-
tics, sensor sensitivity to target signals and target signal strength.

Leader elections are conducted by sensors exchanging information with
their neighbors via one-hop broadcast.

Neighbors of sensor S refer to sensors that are within the transmitting
radius of sensor S, i.e. all the sensors that can hear sensor S directly.

Broadcast, in this context, refers to a multicast to all neighbors of a sensor.
There is the minimum signal amplitude that a sensor has to receive from

target(s) for it to participate in the leader election process. This value is
determined by the protocol designer, and cannot be smaller than the sensor
receiving threshold determined by the noise floor.

Protocol period is the time duration of a leader election process. The leader
election process runs every protocol period.

Sensor state is a set of parameters that a sensor keeps during each protocol
period in order to process packets from other sensors to elect leaders. There is
a field indicating if the sensor node participates in the leader election process.

The design criteria are fast convergence and minimal amount of inter-
sensor communications. They are achieved by dropping those packets that
will not become a leader at the earliest possible stage.

10.5. HABITAT AND ENVIRONMENTAL MONITORING

Habitat and environmental monitoring represent a class of sensor network
applications with enormous potential benefits for scientific communities and
society. Instrumenting natural spaces with numerous networked microsen-
sors can enable long-term data collection at scales and resolutions that are
difficult, if not impossible, to obtain otherwise. The intimate connection with
its immediate physical environment allows each sensor to provide localized
measurements and detailed information that is hard to obtain through tradi-
tional instrumentation. The integration of local processing and storage allows
sensor nodes to perform complex filtering and triggering functions, as well as
to apply application-specific or sensor-specific data compression algorithms.
The ability to communicate not only allows information and control to be
communicated across the network of nodes, but allows nodes to cooperate
in performing more complex tasks, like statistical sampling, data aggrega-
tion, and system health and status monitoring. Increased power efficiency

350 APPLICATIONS OF WIRELESS SENSOR NETWORKS

gives applications flexibility in resolving fundamental design tradeoffs, e.g.
between sampling rates and battery lifetimes. Low-power radios with well-
designed protocol stacks allow generalized communications among network
nodes, rather than point-to-point telemetry. The computing and networking
capabilities allow sensor networks to be reprogrammed or retasked after
deployment in the field. Nodes have the ability to adapt their operation over
time in response to changes in the environment, the condition of the sensor
network itself, or the scientific endeavor.

The potential impact of human presence when monitoring plants and
animals in field conditions includes changing behavioral patterns or distri-
butions. The anthropogenic disturbance can seriously reduce or even destroy
sensitive populations by increasing stress, reducing breeding success, increas-
ing predation, or causing a shift to unsuitable habitats. While the effects of
disturbance are usually immediately obvious in animals, plant populations
are sensitive to trampling by even well-intended researchers, introduction of
exotic elements through frequent visitation, and changes in local drainage
patterns through path formation.

Disturbance effects are of particular concern in small-island situations,
where it may be physically impossible for researchers to avoid some impact
on an entire population. In addition, islands often serve as refugia for species
that cannot adapt to the presence of terrestrial mammals, or may hold
fragments of once widespread populations that have been extirpated from
much of their former range.

Seabird colonies are notorious for their sensitivity to human disturbance.
Even a visit of several minutes to a cormorant colony can result in up to
20 % mortality among eggs and chicks in a given breeding year. Repeated
disturbance will lead to complete abandonment of the colony. In another
example, Leach’s storm petrels are likely to desert their nesting burrows if
they are disturbed during the first 2 weeks of incubation.

Sensor networks represent a significant advance over traditional invasive
methods of monitoring. Sensors can be deployed prior to the onset of the
breeding season or other sensitive period (in the case of animals), or while
plants are dormant or the ground is frozen (in the case of botanical studies).
Sensors can be deployed on small islets where it would be unsafe or unwise
repeatedly to attempt field studies.

10.5.1. Island Habitat Monitoring

The College of the Atlantic (COA) is field testing in-situ sensor networks
for habitat monitoring. COA has ongoing field research programs on several

10.5. HABITAT AND ENVIRONMENTAL MONITORING 351

remote islands with well established on-site infrastructure and logistical
support. Great Duck Island (GDI) (44.09◦N, 68.15◦W) is a 237 acre island
located 15 km south of Mount Desert Island, Maine. The Nature Conservancy,
the State of Maine, and the College of the Atlantic hold much of the island in
joint tenancy.

Mainwaring et al. (2002) are primarily interested in three major questions
in monitoring the Leach’s storm petrel at GDI:

(1) What is the usage pattern of nesting burrows over the 24–72-hour cycle
when one or both members of a breeding pair may alternate incubation
duties with feeding at sea?

(2) What changes can be observed in the burrow and surface environmental
parameters during the course of the approximately 7-month breeding
season (April–October)?

(3) What are the differences in the microenvironments with and without
large numbers of nesting petrels?

Each of these questions has unique data needs and suitable data acquisition
rates. Presence/absence data is most likely to be acquired through occupancy
detection and temperature differentials between burrows with adult birds
and burrows that contain eggs, chicks, or are empty. Petrels are unlikely to
enter or leave during the light phase of a 24-hour cycle, but measurements
every 5–10 minutes during the late evening and early morning are needed
to capture time of entry or exit. More general environmental differentials
between burrow and surface conditions during the extended breeding season
can be captured by records every 2–4 hours, while differences between
popular and unpopular sites benefit from hourly sampling, especially at the
beginning of the breeding season.

It is unlikely that any one parameter recorded by wireless sensors could
determine why petrels choose a specific nest site. However, by making mul-
tiple measurements of many variables predictive models can be developed.
These models will correlate which conditions seabirds prefer.

Great Duck Island requirements are as follows:

• Internet access: The sensor networks at GDI must be accessible via the
Internet. An essential aspect of habitat monitoring applications is the
ability to support remote interactions with in-situ networks.

• Hierarchical network: The field station at GDI needs sufficient resources to
host Internet connectivity and database systems. However, the habitats
of scientific interest are located up to several kilometers farther away.

352 APPLICATIONS OF WIRELESS SENSOR NETWORKS

A second tier of wireless networking provides connectivity to multiple
patches of sensor networks deployed at each of the areas of interest. Three
to four patches of 100 static (not mobile) nodes is sufficient to start.

• Sensor network longevity: Sensor networks that run for 9 months from non-
rechargeable power sources are used. Although ecological studies at GDI
span multiple field seasons, individual field seasons typically vary from 9
to 12 months. Seasonal changes as well as the plants and animals of interest
determine their durations.

• Management at-a-distance: The remoteness of the field sites requires the
ability to monitor and manage sensor networks over the Internet. The goal
is zero on-site presence for maintenance and administration during the
field season, except for installation and removal of nodes.

• Inconspicuous operation: Habitat monitoring infrastructure must be incon-
spicuous. It should not disrupt the natural processes or behaviors under
study. Removing human presence from the study areas both eliminates
a source of error and variation in data collection, as well as a significant
source of disturbance.

• System behavior: From both a systems and end-user perspective, it is critical
that sensor networks exhibit stable, predictable, and repeatable behavior
whenever possible. An unpredictable system is difficult to debug and
maintain. More importantly, predictability is essential in developing trust
in these new technologies for life scientists.

• In-situ interactions: Although the majority of interactions with the sensor
networks are expected to be via the Internet, local interactions are required
during initial deployment and during maintenance tasks, as well as during
on-site visits. PDAs serve an important role in assisting with these tasks.
They may directly query a sensor, adjust operational parameters, or simply
assist in locating devices.

• Sensors and sampling: For those particular applications, the ability to sense
light, temperature, infrared, relative humidity, and barometric pressure
provide an essential set of useful measurements. The ability to sense
additional phenomena, such as acceleration/vibration, weight, chemical
vapors, gas concentrations, pH, and noise levels is also useful.

• Data archiving: Archiving sensor readings for off-line data mining and anal-
ysis is essential. The reliable off-loading of sensor logs to databases in the
wired, powered infrastructure is an essential capability. The desire to drill-
down and explore individual sensors interactively, or a subset of sensors,
in near real-time complement log-based studies. In this mode of operation,
the timely delivery of fresh sensor data is key. Lastly, nodal data summaries
and periodic health-and-status monitoring requires timely delivery.

10.5. HABITAT AND ENVIRONMENTAL MONITORING 353

Data service

Base Station

Transit network

Internet

Base-remote link

Client data browsing
and processing

Sensor node

Gateway

Patch
network

Sensor patch

Figure 10.6 System architecture for habitat monitoring.

A tiered architecture is shown in Figure 10.6. The lowest level consists of
the sensor nodes that perform general purpose computing and networking in
addition to application-specific sensing. The sensor nodes may be deployed
in dense patches that are widely separated. The sensor nodes transmit their
data through the sensor network to the sensor network gateway. The gateway
is responsible for transmitting sensor data from the sensor patch, through a
local transit network, to the remote base station that provides WAN (Wide
Area Network) connectivity and data logging. The base station connects
to database replicas across the Internet. The data is displayed to scientists
through a user interface. Mobile devices, referred to as the ‘gizmo’, may
interact with any of the networks whether used in the field or across the
world connected to a database replica.

The lowest level of the sensing application is provided by autonomous
sensor nodes. These small, battery-powered devices are placed in areas of
interest and each collects environmental data, primarily about its immediate
surroundings. Because it is placed close to the phenomenon of interest, a
sensor can often be built using small and inexpensive individual sensors.
High spatial resolution can be achieved by dense deployment of sensor
nodes. Compared with traditional approaches, which use a few high quality
sensors with sophisticated signal processing, this architecture provides higher
robustness against occlusions and component failures.

354 APPLICATIONS OF WIRELESS SENSOR NETWORKS

The computational module is a programmable unit that provides com-
putation, storage, and bidirectional communication with other nodes in the
system. The computational module interfaces with the analog and digital
sensors on the sensor module, performs basic signal processing (e.g. simple
translations based on calibration data or threshold filters), and dispatches the
data according to the application’s needs. Compared with traditional data
logging systems, networked sensors offer two major advantages: they can be
retasked in the field and they can easily communicate with the rest of the sys-
tem. In-situ retasking allows the scientists to refocus their observations based
on the analysis of the initial results. Suppose that initially we want to collect
the absolute temperature readings; however after the initial interpretation of
the data we might realize that significant temperature changes exceeding a
defined threshold are the most interesting.

Individual sensor nodes communicate and coordinate with one another.
The sensors will typically form a multihop network by forwarding each
other’s messages, which vastly extends connectivity options. If appropriate,
the network can perform in-network aggregation (e.g. reporting the average
temperature across a region). This flexible communication structure allows
us to produce a network that delivers the required data while meeting the
energy requirements.

Ultimately, data from each sensor needs to be propagated to the Internet.
The propagated data may be raw, filtered, or processed. Bringing direct,
wide-area connectivity to each sensor path is not feasible, the equipment is
too costly, it requires too much power and the installation of all required
equipment is quite intrusive to the habitat. Instead, wide-area connectivity is
brought to a base station, adequate power and housing for the equipment is
provided. The base station may communicate with the sensor patch using a
wireless local area network. Wireless networks are particularly advantageous
since often each habitat involves monitoring several particularly interesting
areas, each with its own dedicated sensor patch.

Each sensor patch is equipped with a gateway that can communicate with
the sensor network and provide connectivity to the transit network. The
transit network may consist of a single hop link or a series of networked
wireless nodes, perhaps in a path from the gateway to the base station. Each
transit-network design has different characteristics with respect to expected
robustness, bandwidth, energy efficiency, cost, and manageability.

To provide data to remote end-users, the base station includes WAN
connectivity and persistent data storage for the collection of sensor patches.
Since many habitats of interest are quite remote, the WAN connection can
be wireless (e.g. two-way satellite). The components are reliable, enclosed in
environmentally protected housing, and provided with adequate power. In

10.5. HABITAT AND ENVIRONMENTAL MONITORING 355

many environments such conditions can be provided relatively easily at a
ranger station.

The architecture addresses the possibility of disconnection at every level.
Each layer (sensor nodes, gateways, base stations) has some persistent storage
which protects against data loss in case of power outage. Each layer also
provides data management services. At the sensor level, they take the form of
data logging. The base station offers a full-fledged relational database service.
The data management at the gateways falls somewhere in between; they offer
some database services, but over limited window of data. While many types
of communication can be unreliable, when it comes to data collection, long-
latency is preferable to data loss. For this kind of communication, a custody
transfer model, similar to SMTP (Simple Mail Transfer Protocol) messages or
bundles, may be applicable.

Users interact with the sensor network data in two ways. Remote users can
access the replica of the base-station database (in the degenerate case they
interact with the database directly). This approach allows for easy integration
with data analysis and mining tools, while masking the potential wide area
disconnections with the base stations. Remote control of the network is also
provided through the database interface. Although this control interface
is sufficient for remote users, on-site users often require a more direct
interaction with the network. A small, PDA-sized device, referred to as a
gizmo, enables such interaction. The gizmo can directly communicate with
the sensor patch, provide the user with a fresh set of readings about the
environment and monitors the network. While the gizmo will typically not
take custody of any data, it allows the user interactively to control the network
parameters by adjusting the sampling rates, power management parameters,
and other network parameters. The connectivity between any sensor node
and the gizmo does not have to rely on functioning multi-hop sensor network
routing, instead the user often communicates with the mote network directly,
relying on single-hop proximity.

10.5.2. Implementation

The motes are used as the sensor nodes. The member of the mote family,
called Mica, uses a single channel, 916 MHz radio from RF Monolithics
to provide bidirectional communication at 40 kbps, an Atmel Atmega 103
microcontroller running at 4 MHz, and considerable amount of nonvolatile
storage (512 kb). A pair of conventional AA batteries and a DC boost converter
provide a stable voltage source, though other renewable energy sources can
be easily used. The node has a small size and is approximately 2.0 × 1.5 ×
0.5 inches.

356 APPLICATIONS OF WIRELESS SENSOR NETWORKS

An environmental monitoring sensor board is used to provide measure-
ments. The Mica Weather Board provides sensors that monitor changing
environmental conditions with the same functionality as a traditional weather
station. The Mica Weather Board includes temperature, photoresistor, baro-
metric pressure, humidity, and passive infrared (thermopile) sensors.

The barometric pressure module is a digital sensor manufactured by Inter-
sema. The sensor is sensitive to 0.1 mbar of pressure and has an absolute
pressure range from 300 to 1100 mbar. The module is calibrated during man-
ufacturing and the calibration coefficients are stored in EEPROM persistent
storage. The pressure module includes a calibrated temperature sensor to
compensate raw barometric pressure readings.

The humidity sensor is manufactured by General Eastern. It is a polymer
capacitive sensor factory calibrated to within 1 picofarad (±3 % rela-
tive humidity). The sensing element consists of an electrode metallization
deposited over the humidity sensor polymer. The sensor is modulated by
a 555 CMOS timer to sense the charge in the capacitor which is filtered
through by RC circuit. The resulting voltage is amplified by an instru-
mentation amplifier for greater sensitivity over the range of 0 to 100 %
relative humidity.

The thermopile is a passive infrared sensor manufactured by Melexis. Heat
from black bodies in the sensor’s field of view causes a temperature difference
between the thermopile’s cold junction and the thermopile membrane. The
temperature difference is converted to an electric potential by the thermo-
electric effect in the thermopile junctions. The sensor does not require any
supply voltage. The thermopile includes a thermistor in the silicon mass, and
the thermistor may be used to measure the temperature of the cold junction
on the thermopile and accurately calculate the temperature of the black body.

The photoresistor is a variable resistor in a voltage divider circuit. The
divided voltage is measured by the ADC. The final temperature sensor is a
digital calibrated sensor that communicates over the I2C bus.

The unique combination of sensors can be used for a variety of aggregate
operations. The thermopile may be used in conjunction with its thermistor
and the photoresistor to detect cloud cover. The thermopile may also be
used to detect occupancy, measure the temperature of a nearby object (for
example, a bird or a nest), and sense changes in the object’s temperature
over time. If the initial altitude is known, the barometer module may be used
as an altimeter. Strategically placed sensor boards with barometric pressure
sensors can detect the wind speed and direction by modeling the wind as a
fluid flowing over a series of apertures.

An I2C analog-to-digital converter is separated from the main Mica process-
ing board to provide greater flexibility in developing components to reduce

10.5. HABITAT AND ENVIRONMENTAL MONITORING 357

power consumption. The ADC uses less power than the Atmel processor on
the Mica, may be used in parallel with processing or radio transmission on
the Mica, and can be operated in various low-power and sleep modes. Addi-
tionally, the sensor board includes an I2C 8 × 8 power switch that permits
individual components on the board to be turned on or off. Each switch can be
operated independently of the others, further reducing power consumption.

The Mica Weather Board was designed with interoperability in mind. The
Mica includes a 51-pin expansion connector. The connector has the ability to
stack sensor boards on top of each other. Instead of allowing each board to
compete for pins on the connector, an access protocol is used. The Mica will
change the value of a switch on the sensor board using the I2C bus. Changing
the value of the switch triggers the sensor board’s hardware logic to access the
Mica’s resources. When a board has access, it may use the power, interrupt,
ADC, and EEPROM lines that are directly connected to the microprocessor
and components on the Mica processing board.

Many habitat monitoring applications need to run for 9 months, the length
of a single field season. Mica runs on a pair of AA batteries, with a typical
capacity of 2.5 amperehours (Ah). A conservative estimate is that the batteries
supply 2200 mAh at 3 volts.

The system operates uniformly over the deployment period, and each node
has 8.148 mAh per day available for use. The application chooses how to
allocate this energy budget between sleep modes, sensing, local calculations
and communications. Different nodes in the network have different functions,
and they also have very different power requirements. Nodes near the
gateway need to forward all messages from a patch, whereas a node in a
nest needs to report its own readings. When the power limited nodes exhaust
their supplies, the network is disconnected and inoperable.

Minimizing power in sleep mode involves turning off the sensors, the
radio, and putting the processor into a deep sleep mode. I/O pins on the
microcontroller need to be put in a pull-up state whenever possible, as they
can contribute as much as 100 µA of leakage current. Mica architecture uses
a DC booster to provide stable voltage from degrading alkaline batteries.
With no load, the booster draws between 200 µA and 300 µA, depending on
the battery voltage. While this functionality is crucial for predictable sensor
readings and communications, it is not needed in the sleep mode. The current
draw of the microprocessor is proportional to the supply voltage.

CerfCube is a small, StrongArm-based embedded system that acts as the
sensor patch gateway. Each gateway is equipped with a Compact Flash
802.11b adapter. CerfCubes run an embedded version of Linux operating
system. Permanent storage is plentiful, and the gateway can use the IBM
MicroDrive which provides up to 1 Gb of storage. To satisfy the CerfCube

358 APPLICATIONS OF WIRELESS SENSOR NETWORKS

power requirements, a solar panel providing between 60 and 120 watts in
full sunlight is connected to a rechargeable battery with capacity between 50
and 100 watt-hours (e.g. sealed lead-acid). The CerfCube with a 12 dbi omni
directional 2.4-GHz antenna provides a range of approximately 1000 feet.

In the mote-to-mote solution, a mote is connected to the base station and
a mote is in the sensor patch. Both motes are connected to 14 dbi directional
916 MHz Yagi antennae having a range of more than 1200 feet. The differences
between the mote and the CerfCube include a different communication
frequency and power requirements, and software components. The mote’s
MAC layer does not require a bidirectional link like 802.11 b. Additionally, the
mote sends raw data with a small packet header of four bytes directly over the
radio, as opposed to overheads imposed by 802.11b and TCP/IP connections.
The mote solution for the gateway is used due to its power efficiency.

The collection of sensor network patches is connected to the Internet
through a wide-area link. On GDI, the Internet is connected through a two-
way satellite connection. The satellite system is connected to a laptop which
coordinates the sensor patches and provides a relational database service.
The base station functions as a turn key system, and runs unattended.

The database stores time-stamped readings from the sensors, health status
of individual sensors, and metadata (e.g. sensor locations). The GDI database
is replicated every 15 minutes over the wide-area satellite link.

In habitat monitoring the ultimate goal is data collection; sampling rates
and precision of measurements are often dictated by external specifications.
For every sensor there is a cost of taking a single sample. The cost of data
processing and compression is traded against the cost of data transmission.

The energy is allocated for sampling the sensors and communicating the
results, maintaining the network MAC protocols, health and status, routing
tables, and forwarding network messages. These tasks can either be tightly
scheduled or run on demand. On one extreme, the system is scheduled at
every level, from TDMA access to the channel, through scheduled adaptation
of routes and channel quality. Overhead costs are up front and fixed. A
TDMA system is expected to perform well if the network is relatively static.
On the other extreme, a low-power hailing channel can be used to create
on-demand synchronization between a sender and a receiver. The service
overhead is proportional to the use of the service. This approach can be
more robust to unexpected changes in the network, at the expense of extra
cost. Finally, a hybrid approach is possible, where each service runs in an
on-demand fashion, but the time period for when the demand can occur is
scheduled on a coarse basis.

Power efficient communication paradigms for habitat monitoring include a
set of routing algorithms, media-access algorithms, and managed hardware

10.5. HABITAT AND ENVIRONMENTAL MONITORING 359

access. The routing algorithms are tailored for efficient network communica-
tion while maintaining connectivity when required to source or relay packets.

A simple routing solution for low duty cycle sensor networks is simply
to broadcast data to a gateway during scheduled communication periods.
This method is the most efficient since data is only communicated in one
direction and there is no dependency on surrounding nodes for relaying
packets in a multi-hop manner. The routing deployed on GDI is a hierarchical
model. The sensor nodes in burrows are transmit only with a low duty
cycle and they sample about once per second. The gateway mote is fully
powered by solar power, so it is always on and relaying packets to the base
station. A multi-hop scheduled protocol is used to collect, aggregate, and
communicate data. Methods like GAF (Geographical Adaptive Fidelity) and
Span (an energy-efficient coordination algorithm for topology maintenance
in dedicated wireless networks) have been used to extend the longevity
of the network by selecting representatives to participate in the network,
thereby reducing the average per-node power consumption. Although these
methods provide factors of 2- to 3-times longer network operation, our
application requires a factor of 100-times longer network operation, since
the sensor nodes are on for at most 1.4 h per day. GAF and Span do not
account for infrequent sampling but rather continuous network connectivity
and operation. Scheduled multi-hop routing or low power MAC protocols
are augmented with GAF and/or Span to provide additional power sav-
ings. GAF and Span are independent of communication frequency, whereas
our application requires increased power savings that may be achieved by
adjusting the communication frequency.

A power efficient method for scheduling the nodes has to ensure that long
multihop paths may be used to relay the data:

• After determining an initial routing tree, set each mote’s level from the
gateway. Schedule nodes for communication on adjacent levels starting at
the leaves. As each level transmits to the next, it returns to a sleep state. The
following level is awakened, and packets are relayed for the scheduled time
period. The process continues until all levels have completed transmission
in their period. The entire network returns to a sleep mode. This process
repeats itself at a specified point in the future.

• Instead of a horizontal approach, nodes are woken along paths or subtrees
in a vertical approach. Each subtree in turn completes its communication
up the tree. This method is more resilient to network contention; however
the number of subtrees in the network will likely exceed the number of
levels in the network, and subtrees may be disjointed, allowing them to
communicate in parallel.

360 APPLICATIONS OF WIRELESS SENSOR NETWORKS

Alternatively, low power MAC protocols can be used. By determining the
duty cycle, we can calculate the frequency with which the radio samples for
a start symbol. By extending the start symbol when transmitting packets, we
can match the length of the start symbol to the sampling frequency. Other
low power MAC protocols, such as S-MAC (Sensor-MAC) and Aloha with
preamble sampling, employ similar techniques that turn off the radio during
idle periods in order to reduce power consumption. The difference between
scheduled communication and low power MACs is, instead of having a
large power and network overhead to set up a schedule, the overhead is
distributed along the lifetime of the node. Both approaches are equivalent in
power consumption, the decision as to which to use depends on the end-user
interactivity required by the application. A potential trade-off in using a
low power MAC is that transmitted packets potentially wake up every node
within the cell. Although early rejection can be applied, scheduling prevents
unneeded nodes from wasting power processing a packet’s headers.

10.6. SUMMARY

The communication-centric design approach in TinyOS is used to build a
networking infrastructure for self-organized, deeply embedded collections
of devices.

The Tiny active message is used to support dynamic network discovery
and multi-hop ad hoc routing. Discovery can be initiated from any node, but
often it is rooted at gateway nodes that provide connectivity to conventional
networks. Each root periodically transmits a message carrying its ID and its
distance, which is equal to zero, to its neighborhood. The message handler
checks whether the source is the closest node from which it has heard recently
(i.e. in the current discovery phase) and, if so, records the source ID as its
multi-hop parent, increments the distance, and retransmits the message with
its own ID as the source. The discovery component utilizes the buffer swap.

The hardware directly connects the central microcontroller to the radio. This
places all of the real-time requirements of the radio onto the microcontroller,
which must handle every bit that is transmitted or received in real time.
Additionally, it controls the timing of each bit so that any jitter in the control
signals that it generates is propagated to the transmitted signal. The TinyOS
communication stack handles these constraints while allowing higher level
functions to continue in parallel.

The TinyOS approach has proven quite effective in supporting general
purpose communication among potentially many devices that are highly
constrained in terms of processing, storage, bandwidth, and energy with

10.6. SUMMARY 361

primitive hardware support for I/O. The event-driven model facilitates
interleaving the processor between multiple flows of data and between
multiple layers in the stack for each flow while still meeting the severe
real-time requirements of servicing the radio. Since storage is very limited,
it is common to process messages incrementally at several levels, rather
than buffering entire messages and processing them level-by-level. However,
events alone are not sufficient; it is essential that an event be able to hand any
substantial processing to a task that will run outside the real-time window.
This provides logical concurrency within the stack and is used at every level
except the lowest hardware abstraction layer. By adopting a nonblocking,
event-driven approach, the traditional threads are not supported, with their
associated multiple stacks and complex synchronization.

The component approach yields robust operation despite limited debug-
ging capabilities, and facilitates experimentation. The packet components can
be swapped with a simple change to the description graph and temporary
components can be interposed between existing components, without chang-
ing any of the internal implementations. Moreover, the use of components
allows essentially an entire subtree of components to be replaced by hardware
and vice versa.

The Tiny active message programming model permits experiments with
numerous higher level networking layers and fine-grained distributed algo-
rithms. The nodes can be reprogrammed over the network. A node can obtain
code capsules from its neighbors or over multihop routes and assemble a
complete execution image in its EEPROM secondary store. The node can then
use this to reprogram itself. Other examples include a general purpose data
logging and acquisition capability, a facility to query nodes by schema, and
to aggregate data from a large number of nodes within the network.

Without the traditional layers of abstraction dictating what kinds of capa-
bility are available, it is possible to foresee many novel relationships between
the application and the underlying system. The adaptive transmission control
scheme is a simple example; rejection of the send request causes the appli-
cation to adjust its rate of originating data. The application level forwarding
of multi hop traffic allows the node to keep track of its changing set of
neighbors. Moreover, the radio is itself another sensor, since receive signal
strength is provided to the ADC. Thus, each packet can be accompanied by
signal strength data for use in estimating physical distance or presence of
obstructions. The radio is also an actuator, as its signal strength, and therefore
cell size, can be controlled.

The lowest layer components are synchronizing all receivers to the trans-
mitter to within a fraction of a bit. Thus, very fine grain time synchronization
information can be provided with every packet for control applications.

362 APPLICATIONS OF WIRELESS SENSOR NETWORKS

WINS nodes support battlefield applications, and a variety of vehicle health
management and condition-based maintenance applications on industrial,
military, and space platforms. For example, a motor and pump test bed
for developing component (e.g. bearing), process (e.g. fluid pumping), and
system-level (e.g. an overall collection of motors and pumps in a large-
scale process) monitoring and diagnostics was constructed at the Rockwell
Science Center. This test bed was instrumented with WINS nodes, which
incorporate acceleration, pressure, and temperature sensors and algorithms
for machinery and process diagnostics. The signal processing algorithms
running on the individual nodes provide for incipient detection of a wide
variety of faults. The wireless networked communications provide for simple
installation and cooperative diagnostics among groups of motors, pumps,
and valves in the system. A web-based browser allows the entire system, and
any component within the system, to be remotely monitored.

PROBLEMS

Learning Objectives

After completing this chapter you should be able to:

• demonstrate understanding of application and communication support for
wireless sensor networks;

• explain the applications of wireless sensor networks to area monitoring
and integrated vehicle health management applications;

• discuss what is meant by a WINS development platform;
• discuss building and managing aggregates in wireless sensor networks;
• demonstrate understanding of co-design and reconfiguration;
• discuss the use of wireless sensor networks in habitat and environmental

monitoring.

Practice Problems

Problem 10.1: What is the TinyOS concurrency model?
Problem 10.2: What is the role of events?
Problem 10.3: What is the nonblocking approach in TinyOS?
Problem 10.4: What is an active message?

PROBLEMS 363

Problem 10.5: Why is the managing of buffer storage difficult?
Problem 10.6: How can power consumption be reduced?
Problem 10.7: What are the node components in a wireless distributed

sensor network?
Problem 10.8: What are the requirements for WINS microsensor network?
Problem 10.9: What are the requirements for sensor node deployment?

Problem 10.10: How are the counting targets obtained?
Problem 10.11: What are the requirements for a protocols in a sensor network

with diverse target characteristics?
Problem 10.12: What is the sensor state?
Problem 10.13: What are the design criteria?
Problem 10.14: How can sensor networks be deployed?
Problem 10.15: How do the sensor nodes communicate?
Problem 10.16: How can a combination of sensors be used?

Practice Problem Solutions

Problem 10.1:

The TinyOS concurrency model is a two-level scheduling hierarchy, where
events preempt tasks, and the tasks do not preempt other tasks. The vast
majority of operation is in the form of nonblocking state transitions. Within a
task, commands may be called, a command may call subordinate commands,
or it may post tasks to continue working logically in parallel with its invo-
cation. By convention, all commands return a status indicating whether the
command was accepted, providing a full handshake. Since all components
have bounded storage, a component must be able to refuse commands. A
command may initiate an operation, for instance, accessing a sensor or send-
ing a message, leaving the operation to be carried out concurrently with other
activities, by either using hardware parallelism or tasks.

Problem 10.2:

Events are initiated at the lowest level by hardware interrupts. Events may
signal higher level events, call commands, or post tasks. Commands cannot
signal events. Thus, an individual event may propagate through multiple
levels of components, triggering collateral activity. Whenever the work cannot
be accomplished in a small, bounded amount of time, the component should
record continuation information in its frame and post a task to complete
the work. By convention, the lowest level hardware abstraction components
perform enough interrupt processing to re-enable interrupts before signaling
the event. Events (or tasks posted within events) typically complete the

364 APPLICATIONS OF WIRELESS SENSOR NETWORKS

split-phase operations initiated by commands, signaling the higher-level
component that the operation has completed and perhaps passing it the data.

Problem 10.3:

A nonblocking approach is taken throughout TinyOS. There are no locks,
and components never spin on a synchronization variable. A lock-free queue
data structure is used by the scheduler. Components perform a phase of an
operation and terminate, allowing the completion event to resume their exe-
cution. Most components are written essentially as reentrant state machines.
TinyOS is written in the C programming language with conventional prepro-
cessor macros to highlight the key concepts. The TinyOS execution model is
implemented on a single shared stack with a static frame per component.

Problem 10.4:

Active Messages (AM) is a simple, extensible paradigm for message-based
communication by using procedure calls. Each message contains the name of
a handler to be invoked on a target node upon arrival, and a data payload.
The handler function serves the dual purpose of extracting the message from
the network and either integrating the data into the computation or sending
a response. The AM communication model is event driven and specifically
designed to allow a very lean communication stack to process packets directly
off the network, while supporting a wide range of applications.

Problem 10.5:

Managing buffer storage is a difficult problem in a communication stack
because the following issues must be addressed:

• encapsulating useful data with transport header and trailer information;
• determining when output message data storage can be reused, and
• providing an input buffer for an incoming message before the message has

been inspected, to determine where it goes.

Problem 10.6:

Power consumption can be reduced by using periodic listening. By creating
time periods when transmitting is not permitted, the nodes must listen only
part time. This approach works well when the time scale of the invalid periods
is quite large relative to the message transmission time. The downside of this
approach is that it limits the used bandwidth.

PROBLEMS 365

In sensor networks, a node may act as a router or data processing point,
and may need to use the radio bandwidth fully. Low-power listening keeps
the same listener duty cycle concept, but greatly reduces the time scale.

To reduce the average power consumption of the network further, low
power listening can be combined with periodic listening. Running both
schemes simultaneously results in listening at reduced power for only a
fraction of the time. The power reductions are multiplicative. These techniques
provide a mechanism for trading bandwidth and transmission cost for a
reduction in receive power consumption.

Problem 10.7:

Wireless distributed microsensor networks consist of a collection of commu-
nicating nodes, where each node incorporates:

(a) one or more sensors for measuring the environment;
(b) processing capability in order to process sensor data into high value

information and to accomplish local control, and
(c) a radio to communicate information to/from neighboring nodes and to

external users.

Problem 10.8:

The unique aspects of microsensor networks can be examined with signif-
icant numbers of prototype devices explicitly designed for this purpose, as
opposed to generic computing platforms. Some of the unique requirements
for WINS include:

• small, lightweight form factor;
• robustness to wide temperature ranges and other demanding environmen-

tal conditions;
• battery or other stand-alone power sources;
• low power operation and access to internal power control mechanisms;
• a small, low-power radio having sufficient range;
• a real-time execution environment;
• the ability to code in a high level language for rapid algorithm hosting and

testing, and
• a reasonable cost.

Problem 10.9:

The requirement for simple node deployment necessitates that the network
of nodes be capable of self-discovery and self-configuration. Self-organizing

366 APPLICATIONS OF WIRELESS SENSOR NETWORKS

procedures for boot-up and automatic node incorporation into the network
allow nodes to be added to an operational network for improved cover-
age or replenishment. Mechanisms for recovering from node failures allow
the network to be self healing. WINS uses a power-efficient, time-division,
multiple-access scheme supporting multi-hop communication. Routing algo-
rithms avoid creating power consumption hotspots that result in sensors in a
neighborhood dissipating battery energy much more rapidly than the rest of
the network, causing partitions when their energy is depleted.

Problem 10.10:

The task here is to determine the number of targets in the field, forming
an initial count and recomputing the count when targets move, enter, or
leave the field. For each distinct target, a sensor leader corresponding to the
target is elected. As targets move, new leaders are elected to reflect network
changes. Therefore, we can obtain target count by determining the number
of leaders elected.

Problem 10.11:

Sensor networks with diverse target characteristics (velocity, moving patterns,
etc.) and limited network resources require a protocol with the following
characteristics.

• the protocol is distributed and autonomous for scalability;
• the leader election process converges quickly to allow fast leader re-election

for fast moving objects;
• the protocol is designed so that minimal amount of inter-sensor communi-

cation is needed while keeping application semantics intact;
• a reasonable level of fault tolerance is supported.

Problem 10.12:

Sensor state is a set of parameters that a sensor keeps during each protocol
period in order to process packets from other sensors to elect leaders. There is
a field to indicate if the sensor node participates in the leader election process.

Problem 10.13:

The design criteria are fast convergence and minimal amount of inter-sensor
communications. They are achieved by dropping those packets that will not
become a leader at the earliest possible stage.

PROBLEMS 367

Problem 10.14:

Sensor networks represent a significant advance over traditional invasive
methods of monitoring. Sensors can be deployed prior to the onset of the
breeding season or other sensitive period (in the case of animals) or while
plants are dormant or the ground is frozen (in the case of botanical studies).
Sensors can be deployed on small islets where it would be unsafe or unwise
repeatedly to attempt field studies.

Problem 10.15:

Individual sensor nodes communicate and coordinate with one another.
The sensors will typically form a multi-hop network by forwarding each
other’s messages, which vastly extends connectivity options. If appropriate,
the network can perform in-network aggregation (e.g. reporting the average
temperature across a region). This flexible communication structure allows
us to produce a network that delivers the required data while meeting the
energy requirements.

Problem 10.16:

The unique combination of sensors can be used for a variety of aggregate
operations. The thermopile may be used in conjunction with its thermistor
and the photoresistor to detect cloud cover. The thermopile may also be
used to detect occupancy, measure the temperature of a nearby object (for
example, a bird or a nest), and sense changes in the object’s temperature
over time. If the initial altitude is known, the barometer module may be used
as an altimeter. Strategically placed sensor boards with barometric pressure
sensors can detect the wind speed and direction by modeling the wind as a
fluid flowing over a series of apertures.

References

Accetta, M., R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young
(1986). Mach: a new kernel foundation for UNIX development. Proceedings of the
Summer 1986 USENIX Conference, pp. 93–112.

Advanced Configuration and Power Interface. URL: http://www.teleport.com/
∼acpi.

Adjie-Winoto, W., E. Schwartz, H. Balakrishnan, and J. Lilley (1999). The design and
implementation of an intentional naming system. Proceedings of the ACM Symposium
on Operating Systems Principles, pp. 186–201.

Agre, J. R., L. P. Clare, G. J. Pottie, and N. P. Romanov (1999). Development platform
for self-organizing wireless sensor networks. Proceedings of the SPIE AeroSense ’99
Conference on Digital Wireless Communication, Orlando, FL.

Akyildiz, I., J. McNair, J. Ho, H. Uzunalioglu, and W. Wang (1998). Mobility man-
agement in current and future communications networks. IEEE Network, 12 (4),
39–49.

Akyildiz, I., W. Su., Y. Sankarasubramaniam, and E. Cayirci (2002). Wireless sensor
networks: a survey. Computer Networks, 38, 393–422.

Albrecht, M., M. Frank, and P. Martini (1999). Bluetooth architecture and services
overview: the role of IP and quality of service issues. First Workshop on IP
Quality of Service for Wireless and Mobile Networks, Aachen, Germany. URL:
http://opensource.nus.edu.sg/projects/bluetooth/others/IQWiM99 reprint.pdf.

Amirtharajah, R., T. Xanthopoulos, and A. P. Chandrakasan (1999). Power scalable
processing using distributed arithmetic. Proceedings of the International IEEE Sym-
posium on Low Power Electronics and Design, pp. 170–75.

Amis, A. D., R. Prakash, T. H. P. Vuong, and D. T. Huynh (2000). Max-min d-cluster
formation in wireless ad hoc networks. Proceedings of the Annual Joint Conference of
the IEEE Computer and Communications Societies, pp. 32–41.

Wireless Sensor Network Designs A. Hać
 2003 John Wiley & Sons, Ltd ISBN: 0-470-86736-1

370 REFERENCES

ARM Ltd. ARM710T Data Sheet. URL: http://www.arm.com/documentation/data-
sheets/PDF/DDI10086B.pdf.

Asada, G., M. Dong, T. Lin, F. Newberg, G. Pottie, H. Marcy, and W. Kaiser (1998).
Wireless integrated network sensors: low power systems on a chip. Proceedings of
the 24th European Solid-State Circuits Conference, Den Hague. Elsevier, Amsterdam,
pp. 9–12.

Atmel Corporation (2000). Atmel ATmega 103/103L Datasheet.
Bagrodia, R., R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, B. Park, and H. Song

(1998). Parsec: a parallel simulation environment for complex systems. IEEE
Computer, 31 (10), 77–85.

Baker, D. J., and A. Ephremides (1981). The architectural organization of a mobile
radio network via a distributed algorithm. IEEE Transactions on Communication, 29,
1694–1701.

Bellovin, S., and M. Merritt (1992). Encrypted key exchange: password-based proto-
cols secure against dictionary attack. Proceedings of the 1992 IEEE Computer Society
Conference on Research in Security and Privacy, pp. 72–84.

Bellovin, S., and M. Merrit (1993). Augmented encrypted key exchange: a password-
based protocol secure against dictionary attacks and password file compromise.
Proceedings of the First ACM Conference on Computer and Communications Security,
pp. 244–50.

Bellows, P. and B. Hutchings (1998). JHDL – an HDL for reconfigurable systems.
Proceedings of the IEEE Symposium ond FPGAs for Custom Computing Machines,
pp. 175–84.

Benini, L., and G. D. Micheli (1997). Dynamic Power Management Design Techniques
and CAD Tools. Kluwer Academic Publishers, Norwell, MA.

Bennett, F., D. Clarke, J. B. Evans, A. Hopper, A. Jones, and D. Leask (1997). Piconet:
embedded mobile networking. IEEE Personal Communications, 4 (5), 8–15.

Bershad, B., S. Savage, P. Pardyak, E. Sirer, M. Fiuczynski, D. Becker, C. Chambers,
and S. Eggers (1995). Extensibility, safety, and performance in the SPIN oper-
ating system. Proceedings of the ACM Symposium on Operating Systems Principles,
pp. 267–84.

Bhardwaj, M., T. Garnett, and A. Chandrakasan (2001). Upper bounds on the lifetime
of sensor networks. Proceedings of the IEEE International Conference on Communica-
tions, Vol. 3, pp. 785–790.

Bhardwaj, M., R. Min, and A. Chandrakasan (2001). Quantifying and enhancing
power-awareness of VLSI systems. IEEE Transactions on Very Large Scale Integration
Systems, 9, 757–72.

Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination
function. IEEE Journal on Selected Areas in Communications, 18, 535–47.

Billinghurst, M., and T. Starner (1999). Wearable devices: new ways to manage
information. IEEE Computer, 32 (1), 57–64.

Blaze, M., J. Feigenbaum, and J. Lacy (1996). Decentralized trust management. Pro-
ceedings of the 1996 IEEE Symposium on Security and Privacy, pp. 164–73.

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13, 422–26.

REFERENCES 371

Bluetooth specification. URL: http://www.bluetooth.com.
Bonnet, P., J. Gehrke, and P. Seshadri (1987). Towards sensor database systems.

Lecture Notes in Computer Science, Springer Verlag, pp. 3–14.
Bonnet, P., J. Gehrke, and P. Seshadri (2000). Querying the physical world. IEEE

Personal Communications, 7 (5), 10–15.
Borriello, G., and R. Want (2000). Embedded computation meets the World Wide

Web. Communications of the ACM, 43 (5), 59–66.
Boser, B. (1997). Electronics for micromachined inertial sensors. Proceedings of Trans-

ducers ’97, pp. 1169–72.
Bruno, J., J. Brustoloni, E. Gabber, A. Silberschatz, and C. Small (1999). Pebble: a

component-based operating system for embedded applications. Proceedings of the
USENIX Workshop on Embedded Systems, Cambridge, MA. URP: http://www.usenix.
org/publications/library/proceedings/es99/bruno.html.

Burd, T., T. Pering, A. Stratakos, and R. Brodersen (2000). A dynamic voltage scaled
microprocessor system. Proceedings of the International IEEE Conference on Solid-State
Circuits, pp. 294–95.

Callaway, E., P. Gorday, L. Hester, J. A. Gutierrez, M. Naeve, B. Heile, and V. Bahl
(2002). Home networking with IEEE 802.15.4: a developing standard for low-rate
wireless personal area networks. IEEE Communications Magazine, 40 (8), 70–77.

Case, J. D., M. Fedor, M. L. Scholstall, and C. Davin (1990). RFC 1157: Simple network
management protocol. RFC. ITEF.

Chandrakasan, A. P., R. Amirtharajah, S. Cho, J. Goodman, G. Konduri, J. Kulik,
W. Rabiner, and A. Wang (1999). Design considerations for distributed microsen-
sor systems. Proceedings of the IEEE Custom Integrated Circuits Conference, San Diego,
pp. 279–286.

Chang, J., and L. Tassiulas (2000). Energy conserving routing in wireless ad hoc net-
works. Proceedings of the Annual Joint Conference of the IEEE Computer Communications
Societies, pp. 22–31.

Chen, B., K. Jamieson, H. Balakrishnan, and R. Morris (2001). Span: an energy-
efficient coordination algorithm for topology maintenance in ad hoc wireless
networks. Proceedings of the ACM/IEEE International Conference on Mobile Computing
and Networking, pp. 85–96.

Chu, C. H., N. R. Lo, E. C. Berg, and K. S. J. Pister (1997). Optical communication
using micro corner cube reflectors. Proceedings of the IEEE MEMS Workshop, Nagoya,
Japan, pp. 350–55.

Clausen, T., P. Jaquet, A. Laouiti, P. Minet, P. Muhlethaler, A. Qayyum, and L. Viennot
(2001). Optimized link state routing protocol. Internet draft: draft-ietf-manet-olsr-
05.txt (November).

Conway, P. and D. Hefferman. CAN and the new IEEE 1451 Smart Transducer
Interface Standard. URL: http://www.ul.ie/∼pei/pdf files/fp15.pdf.

Conway, P., D. Hefferman, B. O’Mara, P. Burton, and T. Miao (2000). IEEE 1451.2:
An interpretation and example implementation. Proceedings of the 17th IEEE Instru-
mentation and Measurement Technology Conference, Vol. 2, pp. 535–540.

Culler, D. E., J. Hill, P. Buonadonna, R. Szewczyk, and A. Woo (2001). A network cen-
tric approach to embedded software for tiny devices. First International Workshop

372 REFERENCES

on Embedded Software, Tahoe City, CA. Proceedings. Lecture Notes in Computer
Science, Springer Verlag, pp. 144–30.

Cummins, T., E. Byrne, D. Brannick, and D. A. Dempsey (1998). An IEEE 1451
standard transducer interface chip with 12-b ADD, two 12.b ADCs, 10 kb flash
EEPROM, and 8-b microcontroller. IEEE Journal of Solid-State Circuits, 33, 2112–20.

Czerwinski, S. E., B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz (1999). An
architecture for a secure service discovery service. Proceedings of the ACM/IEEE
International Conference on Mobile Computing and Networking, Seattle, Washington,
pp. 24–35.

Dasgupta, P., R. LeBlanc, M. Ahamad, and U. Ramachandran (1992). The Clouds
distributed operating system. IEEE Computer, 24 (11).

Da Silva Jr, J. L., J. Shamberger, M. J. Ammer, C. Guo, S. Li, R. Shah, T. Tuan,
M. Sheets, J. M. Rabaey, B. Nikolic, A. Sangiovanni-Vincentelli, and P. Wright
(2001). Design methodologiew for PicoRadio networks. Proceedings of the IEEE
Design Automation and Test in Europe Conference, pp. 314–23.

Deb, B., S. Bhatnagar, and B. Nath (2001). A topology discovery algorithm for sensor
networks with applications to network management. DCS Technical Report 441,
Rutgers University.

Dick, R. P., G. Lakshminarayana, A. Raghunathan, and N. K. Jha (2000). Power
analysis of embedded operating systems. Proceedings of the IEEE Conference on
Design Automation, pp. 312–15.

Dick, R. P., G. Lakshminarayana, A. Raghunathan, and N. K. Jha (2003). Analysis
of power dissipation in embedded systems using real-time operating systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22,
615–27.

Dijkstra, E. W. (1968). The structure of the multiprogramming system. Communica-
tions of the ACM, 11, 341–46.

Diniz, P. S. R. (1997). Adaptive Filtering Algorithms and Practical Implementation. Kluwer
Academic Publishing.

Dorward, S., R. Pike, and P. Winterbottom (1997). Programming in Limbo. Proceedings
of IEEE Compcon ’97, pp. 245–50.

Dorward, S., R. Pike, D. Presotto, D. Ritchie, H. Trickey, and P. Winterbottom (1997).
Inferno. Proceedings of the IEEE Compcon ’97, pp. 241–44.

Downey, A. (1999). Using pathchar to estimate Internet link characteristics. Proceed-
ings of the ADM SIGCOMM Conference, Cambridge, MA, pp. 241–50.

ECos documentation. URL: http://sourceware.cygnus.com/ecos/docs.html.
Elgamal, T. (1985). A public-key cryptosystem and a signature scheme based on

discrete logarithms. Proceedings of CRYPTO ’84, pp. 10–18.
El-Hoiydi, A. (2002). Aloha with preamble sampling for sporadic traffic in ad hoc

wireless sensor networks. Proceedings of the IEEE International Conference on Com-
munications, pp. 3418–3423.

Engler, D. (1996). VCODE: a retargetable, extensible, very fast dynamic code gen-
eration system. Proceedings of the Conference on Programming Language Design and
Implementation, pp. 160–70.

REFERENCES 373

Engler, D., M. F. Kaashoek, and J. O’Toole Jr (1995). Exokernel: an operating system
architecture for application-level resource management. Proceedings of the ACM
Symposium on Operating Systems Principles, pp. 251–66.

Estrin, D., L. Girod, G. Pottie, and M. Srivastava (2001). Instrumenting the world
with wireless sensor networks. Proceedings of the International IEEE Conference on
Acoustics, Speech, and Signal Processing, Vol. 4, pp. 2033–36.

ETSI HIPERLAN/2 Standard. URL: http://www.etsi.org/technicalactiv/hiperlan2.
htm.

Fang, Q., F. Zhao, and L. Guibas (2002). Counting targets: building and managing
aggregates in wireless sensor networks. Palo Alto Research Center Technical Report
P2002-10298.

Farkas, K. I., J. Flinn, G. Back, D. Grunwald, and J. M. Anderson (2000). Quantifying
the energy consumption of a pocket computer and a Java virtual machine. Proceed-
ings of the ACM International Conference on Measurement and Modeling of Computer
Systems, pp. 252–63.

Fleischman, J. and K. Buchenrieder (1999). Prototyping networked embedded sys-
tems. Computer, 32 (2), 116–19.

Fleischman, J., K. Buchenrieder and R. Kress (1998). A hardware/software prototyp-
ing environment for dynamically reconfigurable embedded systems. Proceedings
of the International IEEE Workshop on Hardware/Software Codesign (CODES/CASHE
’98), pp. 105–9.

Fleischman, J., K. Buchenrieder and R. Kress (1999). Java driven codesign and proto-
typing of networked embedded systems. Proceedings of the 36th IEEE Conference on
Design Automation, pp. 794–97.

Fleischman, J., K. Buchenrieder and R. Kress (1999). Codesign of embedded systems
based on Java and reconfigurable hardware components. Proceedings of the IEEE
Conference and Exhibition on Design, Automation and Test in Europe, pp. 768–9.

Flinn, J., and M. Satyanarayanan (1999). Energy-aware adaptation for mobile applica-
tions. Proceedings of the ACM Symposium on Operating Systems Principles, pp. 48–63.

Fox, A., and S. D. Gribble (1996). Security on the move: indirect authentication using
Kerberos. Proceedings of the ACM/IEEE International Conference on Mobile Computing
and Networking, White Plains, NY, pp. 155–64.

Fu, P., A. D. Hope and G. A. King (1998). An intelligent tool condition monitoring
system. The 52nd Meeting of the Society for Machinery Failure Prevention Technology,
pp. 397–406.

Gabber, E., C. Small, J. Bruno, J. Brustoloni, and A. Silberschatz (1999). The Pebble
component-based operating system. Proceedings of the 1999 USENIX Technical Con-
ference, Monterey, CA. URP: http//www.usenix.org/publications/library/pro-
ceedings/usenix99/full papers/gabber/gabber.pdf.

Gennaro, R. and P. Rohatgi (1997). How to Sign Digital Streams. In Advances in
Cryptology – CRYPTO’97. Lecture Notes in Computer Science, Vol. 1294, Springer
1997, pp. 180–197.

Gfeller, F., and W. Hirt (1998). A robust wireless infrared system with channel
reciprocity. IEEE Communications Magazine, 36 (12), 100–06.

374 REFERENCES

Ghose, A., J. Grossklags, and J. Chuang (2003). Resilient data-centric storage in wire-
less ad-hoc sensor networks. Proceedings of the Fourth International Conference on
Mobile Data Management, Melbourne, Australia, pp. 45–62.

Gong, L., and N. Shacham (1995). Multicast security and its extension to a mobile
environment. Wireless Networks, 1, 281–95.

Goodman, D. (1997). Personal Communication Systems. Addison-Wesley, Reading, MA.
Goodman, J., A. Dancy, and A. Chandrakasan (1998). An energy/security scalable

encryption processor using an embedded variable voltage DC/DC converter.
Journal of Solid State Circuits, 33, 1799–1809.

Gosling, J., B. Joy, and G. Steele (1996). The Java Language Specification. Addison-
Wesley, Reading, MA.

Gutierrez, J. A., M. Naeve, E. Callaway, M. Bourgeois, V. Mitter, and B. Heile (2001).
IEEE 802.15.4: a developing standard for low-power, low-cost wireless personal
area networks. IEEE Network, 15 (5), 12–19.

Gutnik, V., and A. P. Chandrakasan (1997). Embedded power supply for low-power
DSP. IEEE Transactions on Very Large Scale Integration Systems, 5, 425–35.

Haartsen, J., M. Naghshineh, J. Inouye, O. Joeressen, and W. Allen (1998). Bluetooth:
vision, goals, and architecture. ACM Mobile Computing and Communications Review,
2 (4), 38–45.

Haas, Z. J. (1997). A new routing protocol for the reconfigurable wireless networks.
Proceedings of the International IEEE Conference on Universal Personal Communications,
pp. 562–66.

Hac, A. (2000). Multimedia Applications Support for Wireless ATM Networks. Prentice
Hall, New Jersey.

Hac, A. (2003). Mobile Telecommunications Protocols for Data Networks. John Wiley &
Sons, New York.

Heidemann, J., F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and D. Ganesan
(2001). Building efficient wireless sensor networks with low-level naming. Pro-
ceedings of the ACM Symposium on Operating Systems Principles, Vol. 35, No. 5,
pp. 146–59.

Heinzelman, W., A. Chandrakasan, and H. Balakrishnan (2000). Energy-efficient
communication protocol for wireless microsensor networks. Proceedings of the
33rd Hawaii International Conference on System Sciences, pp. 3005–14.

Heinzelman, W., A. Chandrakasan, and H. Balakrishnan (2002). An application-
specific protocol architecture for wireless microsensor networks. IEEE Transactions
on Wireless Networking, 1, 660–70.

Heinzelman, W., J. Kulik, and H. Balakrishnan (1999). Adaptive protocols for infor-
mation dissemination in wireless sensor networks. Proceedings of the ACM/IEEE
International Conference on Mobile Computing and Networking. Seattle, Washington,
pp. 174–85.

Heinzelman, W., A. Sinha, A. Wang, and A. P. Chandrakasan (2000). Energy-scalable
algorithms and protocols for wireless microsensor networks. Proceedings of the
International IEEE Conference on Acoustics, Speech, and Signal Processing, Vol. 6,
pp. 3722–25.

REFERENCES 375

Helaihel, R. and K. Olukotun (1997). Java as a specification language for hard-
ware – software systems. Proceedings of the IEEE International Conference on
Computer-aided Design, pp. 690–97.

Hewlett Packard. Application of Industrial Ethernet. URL: http://www.hpie.com.
Hill, J., R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister (2000). System archi-

tecture directions for networked sensors. Proceedings of the Ninth ACM International
Conference on Architectural Support for Programming Languages and Operating Systems,
Cambridge, MA, pp. 93–104.

Hoare, C. A. R. (1978). Communicating sequential processes. Communications of ACM,
21, 666–77.

Holmquist, L. E., F. Mattern, B. Schiele, P. Alahuhta, M. Beigl, and H.-W. Gellersen
(2001). Smart-its friends: A technique for users to easily establish connections
between smart artefacts. Lecture Notes in Computer Science, pp. 116–22.

IEEE 802.15 Working Group for Wireless Personal Area Networks. URL: http://www.
ieee802.org/15.

IEEE Draft Standard for a Smart Transducer Interface for Sensors and Actua-
tors – Digital Communication and Transducer Electronic Data Sheet: Formats for
Distributed Multidrop Systems. IEEE Draft Standard P1451.3.

IEEE Draft Standard for a Smart Transducer Interface for Sensors and Actua-
tors – Mixed Mode Communication Protocols and Transducer Electronic Data
Sheet Formats. IEEE Draft Standard P1451.4.

IEEE Standard for a Smart Transducer Interface for Sensors and Actuators – Network
Capable Application Processor Information Model. IEEE Standard P14451.1 1999.

IEEE Standard for a Smart Transducer Interface for Sensors and Actuators – Trans-
ducer to Microprocessor Communication Protocols and Transducer Electronic Data
Sheet Formats. IEEE Standard 1451.2-1997.

Intanagonwiwat, C., R. Govindan, and D. Estrin. (2000). A sealable and robust com-
munication paradigm for sensor networks. Proceedings of the ACM/IEEE International
Conference on Mobile Computing and Networks, Boston, Mass, pp. 56–67.

Intel Strong ARM Processors. URL: http://developer.intel.com/design/strong/
sa1100.htm.

Intrinsyc Corporation, Vancouver, Canada. Cerfcube embedded Strong ARM system.
URL: http://www.intrinsic.com/products/cerfcube.

Jain, R., A. Puri, and R. Sengupta (2001). Geographical routing using partial informa-
tion for wireless ad hoc networks. IEEE Personal Communications, 8 (1), 48–57.

JavaBeans API Specification. Sun Microsystems. URL: http://java.sun.com/beans.
Johnson, R. (1997). Building plug and play networked smart transducers. Sensors,

October, pp. 40–46.
Kahn, J. H., R. H. Katz, and K. S. J. Pister (1999). Next century challenges: mobile

networking for Smart Dust. Proceedings of the ACM/IEEE International Conference on
Mobile Computing and Networking, Seattle, WA, pp. 171–78.

Kahn, J. H., R. H. Katz, and K. S. J. Pister (2000). Emerging challenges: mobile net-
working for Smart Dust. Journal of Communications and Networks, 2, 188–96.

376 REFERENCES

Kalavade, A. and P. Moghe (1998). A tool for performance estimation of networked
embedded end-systems. Proceedings of the IEEE Design Automation Conference,
pp. 257–62.

Kalavade, A. and P. A. Subramanyam (1997). Hardware/software partitioning for
multi-function systems. Proceedings of the IEEE International Conference on
Computer-Aided Design, pp. 516–21.

Karp, B., and H. T. Kung (2000). GPSR: greedy perimeter stateless routing for wireless
networks. Proceedings of the ACM/IEEE International Conference on Mobile Computing
and Networking, pp. 243–54.

Kasten, O., and M. Langheinrich (2001). First experiences with Bluetooth in the Smart-
Its distributed sensor network. Second International Workshop on Ubiquitous
Computing and Communications, in conjunction with the International Conference
on Parallel Architectures and Compilation Techniques, Barcelona, Spain. URL:
http://wwwtec.informtik.unirostock.de/RA/pact2001.

Krco, S. Bluetooth based wireless sensor networks – implementation issues and solu-
tions. URL: http://www.telfor.org.yu/radovi/4019.pdf.

Krishnamachari, B., D. Estrin, and S. Wicker (2002). Modeling data-centric routing
in wireless sensor networks. Proceedings of the Annual Joint Conference of the IEEE
Computer and Communications Societies.

Kuhn, T. and W. Rosenstiel (2000). Java-based object-oriented hardware specification
and synthesis. Proceedings of the IEEE ASP-DAC Asia and South Pacific Design and
Automation Conference, pp. 579–81.

Larson, P.-A. (2002). Data reduction by partial preaggregation. Proceedings of the
International Conference on Data Engineering, pp. 706–15.

Lauer, G. S. (1995). Packet-radio networks. In Routing in Communications Networks
(M. Steenstrup, Ed.), Prentice-Hall, Englewoods Cliffs, NJ, Chapter 11.

Law, Y. W., S. Dulman, S. Etalle, and P. Havinga. Assessing security-critical energy-
efficient sensor networks. University of Twente Technical Report TR-CTIT-2-18. URL:
http://www.ub.utwente.nl/webdocs/etit/1/00000087.pdf.

Lee, K. (2000). IEEE 1451: A standard in support of smart transducer networking.
Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference,
Vol. 2, pp. 523–28.

Lee, S.-J., W. Su, and M. Gerla (2000). On-demand multicast routing protocol for ad
hoc networks. Internet draft: draft-ietf-manet-odmrp-02.txt (January).

Lee, S., K. Yun, K. Choi, S. Hong, S. Moon and J. Lee (2000). Java-based programmable
networked embedded system architecture with multiple application support. Pro-
ceedings of IFIP Conference on Chip Design Automation. URL: http://ifip.or.at/
con2000/icda2000/icda-14-4.pdf.

Lettieri, P., C. Fragouli, and M. B. Srivastava (1997). Low power error control for wire-
less links. Proceedings of the ACM/IEEE International Conference on Mobile Computing
and Networking, pp. 139–50.

Liedtke, J. (1995). On micro-kernel construction. Proceedings of the ACM Symposium
on Operating Systems Principles, pp. 237–50.

Lin, C. R., and M. Gerla (1997). Adaptive clustering for mobile wireless networks.
IEEE Journal on Selected Areas in Communications, 15, 1265–75.

REFERENCES 377

Lindsey, S., C. Raghavendra, and K. M. Sivalingam (2002). Data gathering algorithms
in sensor networks using energy metric. IEEE Transactions on Parallel and Distributed
Systems, 13, 924–35.

Lipmaa, H., P. Rogaway, and D. Wagner. Counter mode encryption. URL: http://
csrc.nist.gov/encryption/modes.

Lorch, J. R., and A. J. Smith (1998). Software strategies for portable computer energy
management. IEEE Personal Communications, 5 (3), 60–73.

Lu, Y. H., L. Benini, and G. D. Micheli (2000). Operating-system directed power
reduction. Proceedings of the International IEEE Symposium on Low Power Electronics
and Design, pp. 37–42.

MacLellan, J., S. Lam, and X. Lee (1993). Residential indoor RF channel characteriza-
tion. Proceedings of the 43rd IEEE VTC, PP. 210–13.

Madden, S., and M. J. Franklin (2002). Fording the stream: an architecture for queries
over streaming sensor data. Proceedings of the International Conference on Data
Engineering, pp. 555–66.

Madden, S., R. Szewczyk, M. J. Franklin, and D. Culler (2002). Supporting aggregate
queries over ad-hoc wireless sensor networks. Proceedings of the Fourth IEEE
Workshop on Mobile Computing and Systems Applications, pp. 49–58.

Mainwaring, A. M., and D. E. Culler (1999). Design challenges of virtual networks:
fast, general purpose communication. Proceedings of the 1999 ACM SIGPLAN
Symposium on Principles and Practise of Parallel Programming, Vol. 34, No. 8,
pp. 119–30.

Mainwaring, A., J. Polastre, R. Szewczyk, D. Culler, and J. Anderson (2002). Wireless
sensor networks for habitat monitoring. Proceedings of the First ACM International
Workshop on Wireless Sensor Networks and Applications, Atlanta, GA, pp. 88–97.

Marcy, H. O., J. R. Agre, C. Chien, L. P. Clare, N. Romanov, and A. Twarowski (1999).
Wireless sensor networks for area monitoring and integrated vehicle health man-
agement applications. AIAA Guidance, Navigation, and Control Conference and
Exhibition, Portland, OR. Collection of Technical Papers, Vol. 1, (A99-36576 09-63)
p. 11.

Martin, T., and D. Siewiorek (1996). A power metric for mobile systems. Proceedings
of the 1996 International IEEE Symposium on Lower Power Electronics and Design,
pp. 37–42.

Mauve, M., A. Widmer, and H. Hartenstein (2001). A survey on position-based
routing in mobile ad-hoc networks. IEEE Network, 15 (6), 30–39.

Medina, A., I. Matta, and J. Byers (2000). On the origin of power laws in Internet
topologies. ACM Computer Communications Review, 30 (2), 18–28.

Menezes, A. J., P. van Oorschot, and S. Vanstone (1997). Handbook of Applied Cryptog-
raphy, CRC Press.

MEMS Technology Applications Center. URL: http://mems.mcnc.org.
Min, R., and A. Chandrakasan (2001). Energy-efficient communication for ad-hoc

wireless sensor networks. Proceedings of the 35th Asilomar Conference on Signals,
Systems, and Computers, Vol. 1, pp. 139–43.

378 REFERENCES

Min, R., M. Bhardwaj, S.-H. Cho, A. Sinha, E. Shih, A. Wang and A. Chandrakasan
(2000). An architecture for a power-aware distributed microsensor node. Proceedings
of the IEEE Workshop on Signal Processing and Systems, pp. 581–990.

Min, R., M. Bhardwaj, S. Cho, E. Shih, A. Sinha, A. Wang, and A. Chandrakasan
(2001). Low-power wireless sensor networks. Proceedings of the 14th International
Conference on VLSI Design, Bangalore, India, pp. 205–10.

Min, R., T. Furrer, and A. P. Chandrakasan (2000). Dynamic voltage scaling tech-
niques for distributed microsensor networks. Proceedings of the IEEE. Computer
Society Annual Workshop on VLSI, pp. 43–46.

MIT: AMPS Project. URL: http://www.mtl.mit.edu/research/icsystems/uamps.
Modal Shop. TEDS Developer Kit Manual, SW-0028. URL: http://www.modal-

shop.com.
Naghshineh, M., and M. Willebeek-LeMair (1997). End-to-end QoS provisioning

in multimedia wireless/mobile networks using an adaptive framework. IEEE
Communications Magazine, 35 (11), 72–81.

National Semiconductor: Napa1000 Adaptive Processor. URL: http://www.national.
com/appinfo/milaero/napa1000.

Nawab, S. H. and J. M. Winograd (1997). Approximate signal processing. Journal of
VLSI Signal Processing Systems for Signal, Image, and Video Technology, 15, 177–200.

Nicol, C. J., P. Larsson, K. Azadet, and J. H. O’Neill (1997). A low power 128-tap
digital adaptive equalizer for broadband modems. Proceedings of the International
IEEE Conference on Solid-State Circuits, pp. 94–95.

Ogier, R. G., F. L. Templin, B. Bellur, and M. G. Lewis (2001). Topology broadcast
based on reverse-path forwarding. Internet draft: draft-ietf-manet-tbrpf-03.txt
(November).

Ousterhout, J. K. (1994). Tcl and the Tk Toolkit. Addison-Wesley.
Pados, D., K. W. Halford, D. Kazakos, and P. Papantoni-Kazakos (1995). Distributed

binary hypothesis testing with feedback. IEEE Transactions on Systems, Man and
Cybernetics, 25 (1), 21–42.

Park, V. D., M. S. Corson (1997). A highly adaptive distributed routing algorithm for
mobile wireless networks. Proceedings of the Annual Joint Conference of the IEEE
Computer and Communications Societies, Vol. 3, pp. 1405–13.

Passerone, C., R. Passerone, C. Sansoe, J. Martin, A. Sangiovanni-Vincentelli, and
R. McGreer (1998). Proceedings of the International IEEE Workshop on Hard-
ware/Software Design Codesign (CODES/CASHE ’98), pp. 15–19.

Pering, T., T. Burd, and R. Brodersen (1998). The simulation and evaluation of
dynamic voltage scaling algorithms. Proceedings of the IEEE International Symposium
on Low Power Electronics and Design, pp. 76–81.

Perrig, A., R. Canetti, J. D. Tygar, and D. Song (2000). Efficient authentication and
signing of multicast streams over lossy channels. Proceedings of the IEEE Symposium
on Security and Privacy, pp. 56–73.

Perrig, A., R. Canetti, D. Song, and J. D. Tygar (2001a). Efficient and secure source
authentication for multicast. Proceedings of the Network and Distributed System
Security Symposium, pp. 35–46.

REFERENCES 379

Perrig, A., R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar (2001b). SPINS: Security
protocols for sensor networks. Proceedings of the ACM/IEEE International Conference
on Mobile Computing and Networking, Rome, Italy, pp. 189–99.

Pfleeger, C. P. (1997). Security in Computing. Prentice Hall, New York.
Pottie, G. J. (1998). Wireless sensor networks. Proceedings of the IEEE Information Theory

Workshop, Killarney, Ireland, pp. 139–40.
Pottie, G. J., and W. J. Kaiser (2000). Wireless integrated network sensors. Communi-

cations of the ACM, 43 (5), 51–58.
Probert, D., J. Bruno, and M. Karaorman (1991). SPACE: a new approach to operating

system abstractions. Proceedings of the International Workshop on Object Orientation
in Operating Systems, pp. 133–37.

Pu, C., T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana, J. Walpole,
and K. Zhang (1995). Optimistic incremental specialization: streamlining a com-
mercial operating system. Proceedings of the ACM Symposium on Operating Systems
Principles, pp. 314–24.

Rabaey, J. M., M. J. Ammer, J. L. da Silva, D. Patel, and S. Roundy (2000). PicoRadio
supports ad hoc ultra-low power wireless networking. IEEE Computer, 1 (7), 42–48.

Raghunathan, V., C. Schurgers, S. Park, and M. B. Srivastava (2002). Energy-aware
wireless microsensor networks. IEEE Signal Processing Magazine, 19 (2), 40–50.

Ratnasamy, S., P. Francis, M. Handley, R. Karp, and S. Shenker (2001). A scal-
able content-addressable network. Proceedings of the ACM SIGCOMM Conference,
Vol. 31, No. 4, pp. 161–72.

Ratnasamy, S., B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker (2002).
GHT: a geographic hash table for data-centric storage. Proceedings of the First ACM
International Workshop on Wireless Sensor Networks and Applications, pp. 78–87.

RF Monolithics, Inc. Tr1000 916.50 MHz Hybrid Transceiver. URL: http://www.rfm.
com/products/data/tr1000.pdf.

Rivest, R. L. (1992). The MD5 message-digest algorithm. Internet request for com-
ments, April, RFC 1321.

Rivest, R. L. (1995). The RC5 encryption algorithm. Proceedings of the First Workshop
on Fast Software Encryption, pp. 86–96.

Rivest, R. L., A. Shamir, and L. M. Adleman (1978). A method for obtaining digital
signatures and public-key crypto systems. Communications of the ACM, 21, 120–26.

Rodoplu, V., and T. H. Meng (1999). Minimum energy mobile wireless networks.
IEEE Journal on Selected Areas in Communications, 17, 1333–44.

Rohatgi, P. (1999). A compact and fast hybrid signature scheme for multicast packet
authentication. Proc. Sixth ACM Conference on Computer and Communications
Security (CCS’99), pp. 93–100.

Rose, B. (2001). Networks: a standard perspective. IEEE Communications Magazine, 39
(12), 78–85.

Royer, E., and C. K. Toh (1999). A review of current routing protocols for ad hoc
mobile wireless networks. IEEE Personal Communications, 6 (2), 46–55.

Rozier, M., V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrmann,
C. Kaiser, S. Langlois, P. Leonard, and W. Neuhauser (1988). Chorus distributed
operating system. Computing Systems, 1, 305–70.

380 REFERENCES

Salonidis, T., P. Bhagwat, and L. Tassiulas (2000). Proximity awareness and fast con-
nection establishment in Bluetooth. Proceedings of the ACM International Symposium
on Mobile Ad Hoc Networking and Computing, Boston, Mass., pp. 141–42.

Savarese, C., J. M. Rabaey, and J. Beutel (2001). Location in distributed ad-hoc wire-
less sensor networks. Proceedings of the International IEEE Conference on Acoustics,
Speech and Signal Processing, Vol. 4, Salt Lake City, Utah, pp. 2037–40.

Schmidt, A., K. A. Aidoo, A. Takaluoma, U. Tuomela, K. Van Laerhoven, and W. Van
de Velde (1999). Advanced interaction in context. Proceedings of the First International
Symposium on Handheld and Ubiquitous Computing, Karlsruhe, Germany, pp. 89–101.

Schneier, B. (1996). Applied Cryptography, John Wiley & Sons, New York.
Secure Microcontrollers for SmartCards. URL: http://www.atmel.com/atmel/acro-

bat/1065s.pdf.
Shah, R. C., and J. M. Rabaey (2002). Energy aware routing for low energy ad hoc

sensor networks. Proceedings of the IEEE Wireless Communications and Networking
Conference, Vol. 1, Orlando, FL, pp. 350–55.

Sharony, J. (1996). An architecture for mobile radio networks with dynamically
changing topology using virtual subnets. Mobile Networks and Applications, 1,
75–86.

Shen, C.-C., C. Srisathapornphat, and C. Jaikaeo (2001). Sensor information network-
ing architecture and applications. IEEE Personal Communications, 8 (4), 52–59.

Siep, T. M., I. C. Gifford, R. C. Braley, and R. F. Heile (2000). Paving the way for
personal area network standards: an overview of the IEEE P802.15 Working Group
for Wireless Personal Area Networks. IEEE Personal Communications, 7 (1), 37–43.

Singh, S., M. Woo, and C. S. Raghavendra (1998). Power aware routing in mobile
ad hoc networks. Proceedings of the ACM/IEEE International Conference on Mobile
Computing and Networking, pp. 181–90.

Sinha, A. and A. Chandrakasan (2000). Energy aware software. Proceedings of the
Thirteenth IEEE International Conference on VLSI Design, pp. 50–55.

Sinha, A. and A. Chandrakasan (2001). Operating system and algorithmic techniques
for energy scalable wireless sensor networks. Proceedings of the Second International
Conference on Mobile Data Management, Hong-Kong, pp. 199–209.

Sinha, A. and A. Chandrakasan (2001). Dynamic power management in wireless
sensor networks. IEEE Design and Test of Computers, 18 (2), 62–74.

Sinha, A., A. Wang, and A. Chandrakasan (2000). Algorithmic transforms for efficient
energy scalable computation. Proceedings of the International IEEE Symposium on Low
Power Electronics and Design, pp. 31–36.

Slijepcevic, S., M. Potkonjak, V. Tsiatsis, S. Zimbek, and M. B. Srivastava (2000). On
communication security in wireless ad-hoc sensor networks. Proceedings of the
Eleventh IEEE International Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pp. 139–44.

Smart-Its Project. URL: http://www.smart-its.org.
Sohrabi, K., and G. J. Pottie (1999). Performance of a novel self-organization protocol

for wireless ad-hoc sensor networks. Proceedings of the IEEE Vehicular Technology
Conference, pp. 1222–26.

REFERENCES 381

Sohrabi, K., J. Gao, V. Ailawadhi, and G. J. Pottie (2000). Protocols for self-organiza-
tion of a wireless sensor network. IEEE Personal Communications, 7 (5), 16–27.

Spike Homepage. URL: http://www.spike-wireless.com.
Stinson, D. (1996). Cryptography: Theory and Practice. CRC Press.
Stoica, I., R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan (2001). Chord: a

scalable peer-to-peer lookup service for Internet applications. Proceedings of the
ACM SIGCOMM Conference, Vol. 31, pp. 149–60.

Sukhatme, G. S., and M. J. Mataric (2000). Embedding robots into the Internet. Com-
munications of the ACM, 43 (5), 67–73.

Sun Microsystems, Inc. Embedded Java Application Environment. URL: http://java.
sun.com/products/embeddedjava.

Sun Microsystems, Inc. Java 2 SDK documentation. URL: http://java.sun.com/prod-
ucts/jdk/download-pdf-ps.html.

Swaszek, P. F., and P. Willett (1995). Parley as an approach to distributed detection.
IEEE Transactions on Aerospace and Electronic Systems, 31, 447–57.

Tan, T. K., A. Raghunathan, and N. K. Jha (2002a). Embedded operating system
energy analysis and macro-modeling. Proceedings of the IEEE Conference on Computer
Design: VLSI in Computers and Processors, pp. 515–22.

Tan, T. K., A. Raghunathan, G. Lakshminarayana, and N. K. Jha (2002b). High-level
energy macromodeling of embedded software. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 21, 1037–50.

Telenor. Telenor’s H.263 Software. URL: http://www.nta.no/brukere/DVC/
h263 software.

Tennenhouse, D. L. (2000). Proactive computing. Communications of the ACM, 43 (5),
43–50.

Tennenhouse, D. L., J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden
(1997). A survey of active network research. IEEE Communications Magazine, 35 (1),
80–86.

Toh, C. K. (2001). Maximum battery life routing to support ubiquitous mobile com-
puting in wireless ad hoc networks. IEEE Communications Magazine (June), 138–47.

Transvirtual Technologies, Kaffe Open VM. URL: http://www.transvirtual.com/
kaffe.html.

Tseng, Y.-C., S.-Y. Ni, and E.-Y. Shi (2001). Adaptive approaches to relieving broad-
cast storms in a wireless multihop mobile ad hoc network. Proceedings of the IEEE
International Conference on Distributed Computing Systems, pp. 481–88.

Unidirectional Link Routing Protocol Working Group home page. URL: http://www-
sop.inria.fr/rodeo/udlr.

US National Institute of Standards and Technology (1999). Data Encryption Standard.
Draft Federal Information Processing Standards Publication 46-3, January.

US National Institute of Standards and Technology. Advanced encryption standard
development effort. URL: http://csrc.nist.gov/encryption/aes.

Vahdat, A., A. Lebeck, and C. S. Ellis (2000). Every joule is precious: the case for
revisiting operating system design for energy efficiency. Proceedings of ACM
SIGOPS European Workshop.

382 REFERENCES

Van Dyck, R. E., and L. E. Miller (2001). Distributed sensor processing over an ad hoc
wireless network: simulation framework and performance criteria. Proceedings of
the IEEE Military Communications Conference, Washington DC, pp. 894–98.

Vasilko, M. Dynamically reconfigurable hardware. WWW Library, Bournemouth
University. URL: http://dec.Bournemouth.ac.uk/drhw lib.

Viswanathan, R., and P. K. Varshney (1997). Distributed detection with multiple
sensors I. Fundamentals. Proceedings of the IEEE, 85, 54–63.

Von Eicken, T., D. E. Culler, S. C. Goldstein, and K. E. Schauser (1992). Active mes-
sages: a mechanism for integrated communication and computation. Proceedings
of the 19th Annual International Symposium on Computer Architecture, Queensland,
Australia, pp. 256–66.

Wang, A., S.-H. Cho, C. Sodini, and A. Chandrakasan (2001). Energy efficient mod-
ulation and MAC for asymmetric RF microsensor systems. Proceedings of the
International IEEE Symposium on Low Power Electronics and Design, pp. 106–11.

Wang, A., W. Heinzelman, and A. Chandrakasan (1999). Energy-scalable protocols
for battery-operated microsensor networks. Proceedings of the IEEE Workshop on
Signal Processing and Systems, pp. 483–92.

Warneke, B., B. Atwood, and K. S. J. Pister (2001). Smart Dust mote forerunners.
Proceedings of the IEEE International Conference on MEMS, pp. 357–60.

Warneke, B., M. Last, B. Liebowitz, and K. S. J. Pister (2001). Smart dust: Communi-
cating with a cubic-millimeter computer. IEEE Computer, 34(1), 44–51.

Warrior, J. (1996) IEEE P1451 Network Capable Application Processor Information
Model. Proceedings Sensors Expo, Anaheim. Helmers Publishing, pp. 15–21.

Wei, G. and M. Horowitz (1996). A low power switching supply for self-clocked
systems. Proceedings of the International IEEE Symposium on Low Power Electronics
and Design, pp. 313–17.

Weiser, M., B. Welch, A. Demers, and S. Shenker (1994). Scheduling for reduced CPU
energy. Proceedings of the first USENIX Symposium on Operating Systems Design and
Implementation, pp. 13–23.

Weiss, K., T. Steckstor, and W. Rosenstiel (1999). Performance analysis of a RTOS
by emulation of an embedded system. Proceedings of the International Workshop on
Rapid System Prototyping, pp. 146–51.

Weste, N. and K. Eshraghian (1993). Principles of CMOS VLSI Design: A Systems
Perspective, Addison-Wesley, Reading, Mass.

Willig, A., J. Rabaey, R. Shah, and A. Wolisz (2002). Altruists in the PicoRadio sensor
network. Proceedings of the IEEE International Workshop on Factory Communication Sys-
tems, Vasteras, Sweden. URL: http://www-tkn.ee.tuberlin.de/publications/pa-
pers/andreas willig.pdf.

Wright, B. and M. Dillon. Application of IEEE P1451 Smart Transducer Interface
Standard in condition based maintenance. URL: http://www.arofe.army.mil/con-
ferences/CBM Abstract/papers/Ryback Oceana.pdf.

Xilinx, Inc. Low power documentation. URL: http://www.eilinx.com/products/
xaw/pwr/pwr doc.htm.

Xilinx, Inc. Virtex 2.5 V Field Programmable Gata Arrays Datasheet v1.9. URL:
http://www.xilinx.com/partinfo/ds003.pdf.

REFERENCES 383

Xu, Y., J. Heidemann, and D. Estrin (2001). Geography-informed energy conservation
for ad hoc routing. Proceedings of the ACM/IEEE International Conference on Mobile
Computing and Networking, Rome, Italy, pp. 70–84.

Yao, K., R. E. Hudson, C. W. Reed, D. Chen, and F. Lorenzelli (1998). Blind beam-
forming on a randomly distributed sensor array system. IEEE Journal on Selected
Areas in Communications, 16, 1555–67.

Ye, W., J. Heidemann, and D. Estrin (2002). An energy-efficient MAC protocol for
wireless sensor networks. Proceedings of the Annual Joint Conference of the IEEE
Computer and Communications Societies, Vol. 3, pp. 1567–76.

Yi, Y., M. Gerla, and T. J. Kwon (2002). Efficient flooding in ad hoc networks
using on demand (passive) cluster formation. ACM International Symposium
on Mobile Ad Hoc Networking and Computing, Lausanne, Switzerland. URL:
http://www.cs.ucla.edu/NRL/wireless/uploads/mobihoc-yiyi.pdf.

Yi, Y., T. J. Kwon, and M. Gerla (2001). Passive clustering in ad hoc networks. Internet
draft: draft-ietf-yi-manet-pac-00.txt (November).

Yip, K., and F. Zhao (1996). Spatial aggregation: theory and applications. Journal of
Artificial Intelligence Research, 5, 1–26.

Young, J. S., J. MacDonald, M. Shilman, A. Tabbara, P. Hilfinger, and A. R. Newton
(1998). Design and specification of embedded systems in Java using succes-
sive, formal refinement. Proceedings of the IEEE Design Automation Conference,
pp. 70–75.

Zhao, F., J. Shin, and J. Reich (2002). Information-driven dynamic sensor collabora-
tion. IEEE Signal Processing Magazine, 19 (2), 61–72.

Zhong, L. C., J. Rabaey, C. Guo, and R. Shah (2001). Data link layer design for wire-
less sensor networks. Proceedings of the IEEE Military Communications Conference.
Communications for Network-Centric Operations: Creating the Information Force, Vol. 1,
Washington, DC, pp. 352–56.

Zyuban, V., and P. Kogge (1997). The energy complexity of register files. Proceedings
of the International IEEE Symposium on Low Power Electronics and Design, pp. 305–10.

Index

access point (AP), 152
Active Message (AM), 327, 364
actuator, 34, 58, 110, 112
Ad Hoc On Demand Distance Vector

Routing (AODV), 103, 105, 190
address space identifier (ASID), 254, 255
Advanced Configuration and Power

Interface (ACPI), 78
AES-128 (advanced encryption standard

128-bit cryptographic keys), 302
aggregate queries, 120, 121
altruist, 109, 114, 115
analog to digital converter (ADC), 33, 35,

52, 57, 66, 323, 334, 340, 356, 357, 361
application programming interface

(API), 11, 15, 16, 24, 47, 54, 122, 197,
198, 230, 291, 196, 318

application specific integrated circuit
(ASIC), 23, 28, 93

Asynchronous Connectionless (ACL)
link, 276, 282–284, 315, 317

attribute-based addressing, 101
authenticated broadcast, 219, 222
authentication, 241
Automatic Repeat Request (ARQ), 276,

281, 283

base station (BS), 215, 225, 337
base station transceiver (BTS), 151,

156–163
Baseband (BB) protocol, 278
Berkeley Software Distribution (BSD),

258, 259
Binary Phase Shift Keying (BPSK),

305
bit error rate (BER)
Bluetooth, 110, 142, 144–153, 162, 275,

277–288, 290, 293–298, 300, 314–319
broadcasting, 84, 222

C/OS, 265, 271, 341
Carrier Sense Multiple Access (CSMA),

117, 119, 120, 122, 199, 302, 332
carrier sense multiple access / collision

avoidance (CSMA/CA), 104, 110, 159,
302

Cellular IP, 287, 288
central processor unit (CPU), 19, 79, 80,

144, 243, 251
certifying authority (CA), 241
channel interface module (CIM), 46
cipher-block chaining (CBC), 217
class-based addressing, 104, 105

Wireless Sensor Network Designs A. Hać
 2003 John Wiley & Sons, Ltd ISBN: 0-470-86736-1

386 INDEX

cluster head, 71, 72, 181–184, 198,
203–205, 207, 209

cluster, 171, 178, 185, 191, 192, 203, 208,
209

clustering, 81, 181, 198, 199, 202, 319
code generation, 20
codesign and reconfiguration, 2, 9
Complementary Metal-Oxide

Semiconductor (CMOS), 67, 68, 97, 98,
334, 343, 356

condition based maintenance, 24, 58, 325
connectivity map, 177
continuous variable slope delta

modulation (CVSD), 276, 281, 284
controller area network (CAN), 46, 47,

54, 55, 56, 59
Corner Cube Retroreflector (CCR), 156,

157, 160
cosynthesis method and prototyping

platform, 2, 4
counter mode (CTR), 217, 218
cue, 189, 343
Cyclic Redundancy Check (CRC), 276,

281, 283, 301, 317

data aggregation, 67, 70, 193, 194, 293,
319, 349

Data Encryption Standard (DES), 242
Data Encryption Standard – Cipher

Block Chaining (DES-CBC), 218, 242
data fusion, 72
data link layer (DLL), 298, 299, 320
data-centric storage (DCS), 276, 306,

308–310, 314, 322
DES cipher-block chaining (DES-CBC),

242
DES electronic code book (DES-ECB),

242
design integration, 4
Destination Sequenced Distance Vector

Routing protocol (DSDV), 105
Digital Cordless Telephone (DCT), 338,

339, 341
Digital Signal Processing (DSP), 64, 75,

93, 95, 192, 196

direct sequence spread spectrum (DSSS),
152, 302, 305, 321

directed diffusion, 81
Distance Vector Multicast Routing

Protocol (DVMRP), 161
distributed aggregate management

(DAM), 346
distributed hash-table (DHT), 308, 309
Distributed Multidrop System (DMS), 38
distributed sensor networks, 141
dynamic power management (DMP), 76,

79
Dynamic Source Routing (DSR), 190
dynamic voltage scaling (DVS), 64, 68,

69, 73–75, 79, 95, 97–99
dynamically reconfigurable

field-programmable gate array
(DPGA) board, 4–7, 10, 11, 14–19, 29

Electronically Erasable Programmable
Read Only Memory (EEPROM), 54,
122, 333, 356, 357, 361

embedded application, 235, 258, 275
embedded Cygnus operating system

(eCOS), 67, 74, 271
embedded device, 12
embedded operating system, 26, 264, 265
embedded system, 1–8, 12, 64, 261, 357
embedded systems platform, 17
encryption algorithm, 2
energy aware routing (EAR), 101–103,

106, 107, 109–113, 115–117, 119, 120,
136

energy-efficient communication, 81
energy-quality (E-Q), 64, 65, 69, 70, 76,

208
epoch, 224
Ethernet, 47, 56, 111
External Storage (ES), 308

Fast Fourier Transform (FFT), 33, 194
Field Programmable Gate Array (FPGA),

5, 9, 10, 14, 16, 17, 20, 22–30, 93
Finite Impulse Response (FIR), 17, 69
FIR filter, 17, 69, 72, 75, 196

INDEX 387

First Node Dies (FND), 181, 184
flooding, 84, 112, 198, 199, 200, 211
Forward Error Correction (FEC), 195,

196, 276, 281, 283, 317
FPGA architecture, 25
Frame Check Sequence (FCS), 301
Frequency Hopping Spread Spectrum

(FHSS), 153, 154, 275, 283
friendly neighbor, 109, 114

garbage collection, 260
gateway, 147, 198, 204, 205, 290, 291, 293,

295–297, 318, 319, 336, 359
General Purpose Interface Bus (GPIB), 35
Geographical Adaptive Fidelity (GAF),

359
global positioning system (GPS), 186, 199
Global Standard for Mobile (GSM), 188
Great Duck Island (GDI), 351, 352, 358,

359
Greedy Perimeter Stateless Routing

(GPSR), 306, 308, 309, 315, 322
grouping, 133
guaranteed time slots (GTS), 301

Half of the Nodes Alive (HNA), 181, 184
hardware abstraction layer (HAL), 340,

341
hardware and software codesign, 3
Heating, Ventilation, and Air

Conditioning (HVAC), 298
high-level synthesis (HLS), 20, 30
HiperLAN/2, 152
Host Controller Interface (HCI), 144, 146

IEEE 1451 Standards for Smart
Transducer Interface for Sensors and
Actuators, 32–49, 52, 54–61

IEEE 802.11, 82, 114, 115, 150, 152, 206,
298, 299, 358

IEEE 802.15, 152, 276, 298–306,
314–316, 320, 321

IETF Unidirectional Link Routing
Working Group, 161

implicit entry-exit pair (IEEP), 267, 268

IMT2000 (International Mobile
Telecommunication), 23, 24

in-network aggregation, 125, 133, 135
Industry Scientific Medical (ISM), 67,

143, 152, 153, 280, 281, 283, 294, 302,
316, 321, 340

Inferno operating system, 236, 239–241,
261, 274

Information Society Technologies
Advisory Group (ISTAG), 276

infrared data association (IrDA), 279,
286

infrared object exchange (IrOBEX), 279
Integrated Circuit (IC), 302
Integrated Device Technology (IDT), 261
Integrated Electronics, PiezoElectric

(IEPE), 40, 41
Inter Integrated Circuit, 143, 356, 357
International Telecommunication

Union – Telecommunication
Standardization Sector (ITU-T), 301

Internet Engineering Task Force (IETF),
161, 287

Internet Protocol (IP), 42, 203, 204,
286–288, 306, 307, 322

Internet, 4, 12, 46, 283, 317
interprocess communication (IPC), 243,

265, 266, 269, 270
interprotection domain call, 262, 264
interrupt handler, 263
interrupt latency, 263, 264
interrupt service routine (ISR), 265
interrupt, 251, 252, 254

JaCoP (Java driven codesign and
prototyping environment), 2, 12, 13,
16–18, 29

Java Beans specification, 13, 17
Java Native Interface (JNI), 11, 15, 24, 27
Java programming language, 12, 39, 259,

260
Java virtual machine (JVM), 10, 15, 19,

22, 27, 29
Joint Test Action Group (JTAG), 339

388 INDEX

Large Scale Office Scenario (LSOSC),
118, 119, 120

Laser Mirror Scanner (LMS), 70
Last Node Dies (LND), 181, 184
Light Emitting Diode (LED), 145
line-of-bearing (LOB), 194
line-of-sight, 161, 164
Link Manager (LM), 278
Link State Routing (LSR), 105
Linked Cluster algorithm (LCA), 191,

192
Linux, 11, 14, 18, 146, 149, 265, 268, 271,

357
local area network (LAN), 46, 150, 286,

287
Local Storage (LS), 308
logical link control (LLC), 278, 299, 300,

320, 321
Logical Link Control and Adaptation

Protocol (L2CAP), 146
Low Energy Adaptive Clustering

Hierarchy (LEACH), 81, 181, 182, 184,
193

Low Power Oscillator (LPO), 281, 282,
284

low-rate wireless personal area network
(LR-WPAN), 298, 301, 306, 314

Management Information Base (MIB),
168

master, 146, 153, 163, 281–285, 294–296,
317, 319

maximum transmission unit (MTU), 279,
286, 317

Media Access Control (MAC), 81, 82, 83,
96, 103, 104, 109–111, 113, 114, 116,
117, 120, 137, 159, 186, 187, 292,
298–304, 314, 320, 321, 324, 332, 358,
359, 360
MAC common part sublayer

(MCPS-SAP), 300, 321
MAC footer (MFR), 300
MAC header (MHR), 300
MAC layer management entity

(MLME-SAP), 300, 321

MAC protocol data unit (MPDU), 300
MAC service data unit (MSDU), 300

message authentication code (MAC),
216, 218–225, 232

Message Digest 4 (MD4), 241
Message Digest 5 (MD5), 221, 241, 242
Micro Controller Unit (MCU), 145
Micro Electro Mechanical Systems

(MEMS), 65, 67, 75, 95, 141, 151, 154,
157, 161, 165, 192, 288, 292, 314, 334,
345

micro-Adaptive Multi-domain
Power-aware Sensors (µAMPS), 71,
72, 73, 84, 95

micro-TESLA, 213–215, 217, 220–222,
224, 230, 231, 233

microcontroller, 35
microprocessor, 31, 58
microsensor, 35, 64, 65, 72, 77, 81, 192,

338
Million Instructions Per Second (MIPS),

92, 144, 236, 243, 245, 253, 254, 261
minimum shift keying (MSK), 305
mobile ad hoc network (MANET), 185,

187, 190, 198–201, 203, 208
Mobile IP, 287
mote, 121, 152, 156–158, 359
Motion Pictures Experts Group (MPEG),

237, 260
MPR Node (MPRN), 201
multifunction systems, 2
multimode systems, 2
Multipoint Relay (MPR), 201–103

Network Capable Application Processor
(NCAP), 36–38, 43, 45–49, 52–56, 59,
61

networked embedded system, 2, 9,
11–30

nucleus, 251, 253, 255

object-oriented design, 3, 13, 88
Offset Quadrature Phase Shift Keying

(O-QPSK), 305
Open Shortest Path First (OSPF), 161

INDEX 389

open systems interconnection (OSI)
reference model, 299

operating system (OS), 235, 236,
242–245, 264, 266–270, 273, 341

operation, administration, and
maintenance (OA&M), 237

output feedback mode (OFB), 217

passive clustering, 198–200, 203–207,
210

PC Interface (PCI), 5, 11, 15, 18, 23, 24
Pebble operating system, 235, 242–245,

252, 253, 255, 257–259, 261, 271, 273
Perimeter Refresh Protocol, 309
Personal Area Network (PAN), 152, 301,

302
Personal Computer (PC), 4, 5, 14, 18, 19,

125, 277, 285, 291, 297–299, 320, 341
personal digital assistant (PDA), 23, 24,

153, 188, 259, 275, 277, 286, 291, 298,
352, 355

Phase Lock Loop (PLL), 68, 69, 73
physical (PHY) layer, 298, 300, 314, 321
physical layer protocol data unit

(PPDU), 304
physical layer service data unit (PSDU),

304
piconet, 146, 147, 153, 282, 284, 294, 296,

316, 317, 319
Plan 9 operating system, 238, 244
plug-and-play, 58
Point Coordination Function (PCF), 114
portal manager, 253, 274
portal traversal, 248
portal, 244, 246, 247, 249, 250, 252,

255–258, 261, 271, 272, 273, 336
power management (PM), 76, 78
power-aware design, 65
power-aware wireless sensor networks,

63
Printed Circuit Board (PCB), 73
profiling, 3
programming language C++, 242, 260,

327

programming language C, 145, 238–240,
242, 258, 260, 271, 340, 341, 364

programming language Limbo, 238, 239,
240, 259

programming language Pascal, 238
protection domain (PD), 246–249, 272
Pseudo-Noise (PN), 305

Quality of Service (QoS), 2, 93, 152, 283,
305, 315

Quantum Effect Design (QED), 261

radio frequency (RF), 75, 95, 154, 162,
192, 215, 275, 278, 288, 290, 314, 318,
323, 330, 340

random access memory (RAM), 7, 18, 52,
54, 57, 58, 67, 133

reachability map, 177
Read Only Memory (ROM), 54, 67
Received Signal Strength Indicator

(RSSI), 84, 281
Reduced Instruction Set Computer

(RISC), 18, 93, 144, 153, 335, 339
request to send / clear to send

(RTS/CTS), 159
Resilient Data-Centric Storage (R-DCS),

276, 307, 310, 312
Resource Reservation Protocol (RSVP),

288
reuse library, 3
RF Module (RFM), 122
RFCOMM, 279
RFM (RF Monolithics), 330, 331, 355
Route Reply (RREP), 106
Route Request (RREQ), 105, 106
Routing Information Protocol (RIP), 161
routing, 123, 190
RS232, 143, 144, 339, 341
run-time system (RTS), 20, 22, 23
runtime management, 15

S-MAC (sensor-MAC), 360
scatternet, 153, 294, 295, 316, 319
scratch-pad memory, 7
Secure Hash Algorithm (SHA), 241, 242

390 INDEX

Secure Network Encryption Protocol
(SNEP), 213, 217–219, 221, 223, 225,
230

Security Protocols for Sensor Networks
(SPINS), 213, 216, 217, 223, 230, 231

self-configuring wireless sensor
network, 109

self-organizing wireless network, 276
semaphore, 247, 250, 262
sensor fusion, 338
Serial Peripheral Interface (SPI) protocol,

52, 339
service access point (SAP), 299, 300
Service Discovery Protocol (SDP), 296
service-specific convergence sublayer

(SSCS), 299, 300, 321
signal to interference ratio (SIR)
signal to noise ratio (SNR), 66, 96
Simple Mail Transfer Protocol (SMTP),

355
simulated annealing, 8
sink, 112, 118, 176
slave, 146, 147, 153, 163, 281–285, 294,

295, 317, 319
Small to Medium Enterprise (SME),

56
Smart Dust, 151, 152, 154, 158, 159,

164
smart sensor, 31, 34, 58, 121
Smart Transducer Interface Module

(STIM), 37–41, 43, 45–49, 51–56, 58,
61

software synthesis, 4
source, 112, 138
special function register (SFR), 57, 58
specification, 3
static RAM (SRAM), 144, 339, 340
station-to-station (STS), 241
steam-based function (SBF), 25
StrongARM, 67–69, 72, 76, 78, 84, 339,

357
Structured Query Language (SQL), 102,

121, 124, 126, 134, 135, 347
Structured Replication in DCS (SR-DCS)

scheme, 309

Styx protocol, 238
Surface Mount Device (SMD), 151
symmetric block cipher (RC6), 227
symmetric key stream cipher (RC4), 242
Synchronous Connection Oriented

(SCO) link, 276, 282–284, 315, 317
synthesis, 9
system call entry-exit pair (SCEEP), 267,

268
System Developers Toolkit (SDT), 341
system programming interface (SPI), 53,

145
Systems Performance Evaluation

Consortium (SPEC92), 92

target tracking, 214
thread, 6, 190, 248, 251, 262–264
Time Division Duplex (TDD), 283, 294
time division multiple access (TDMA),

160, 337, 341, 358
Timed, Efficient, Streaming,

Loss-tolerant Authentication Protocol
(TESLA), 215, 220

TinyOS, 152, 323, 324, 326–328, 330–333,
360, 362, 364

topology discovery, 166, 169, 171, 177,
209

Transaction Control Protocol (TCP), 288
Transaction Control Protocol/Internet

Protocol (TCP/IP), 36, 46, 279, 286,
317, 358

Transducer Bus Interface Module
(TBIM), 38, 43, 47, 48, 60

Transducer Electronic Data Sheet
(TEDS), 32, 33, 38, 39, 42–44, 47–49,
51, 54, 57–59, 60

Transducer Independent Interface (TII),
37, 49, 51, 54, 57

translation lookaside buffer (TLB), 243,
253–255

transmit power control (TPC), 152

ubiquitous computing, 325
Ultra Wide Band (UWB), 288, 290, 314,

318

INDEX 391

universal asynchronous receiver
transmitter (UART), 144, 145, 326, 330

Universal Serial Bus (USB), 144
Unix, 236, 240, 256, 257, 260, 262
untrusted location, 215
User Datagram Protocol (UDP), 286

Very Large Scale Integration (VLSI), 64,
85, 92, 95

VHDL (VHSIC Hardware Description
Language), 4, 10, 14, 22, 30, 325

VHSIC (Very High Scale Integrated
Circuit), 325

VHSIC Hardware Description Language
(VHDL), 4, 10, 14, 22, 30, 325

vibration sensors, 32–34
Video Cassette Recorder (VCR), 298
virtual memory (VM), 11, 15, 243, 248,

249, 253

VLSI systems, 64, 85, 97
voltage controlled oscillator (VCO), 68

weak freshness, 219, 232
Web-based applications, 3
wide area network (WAN), 353, 354
wireless application protocol (WAP),

279, 286
Wireless Integrated Network Sensors

(WINS), 162, 324, 334–338, 340, 341,
343–345, 362, 363, 365, 366

Wireless Local Area Network (WLAN),
150, 152

Wireless World Research Forum
(WWRF), 276

World Wide Web (WWW), 2

zone routing protocol (ZRP), 190, 191

	Wireless Sensor Network Designs
	Cover

	Contents
	Preface
	About the Author
	1 Networked Embedded Systems
	1.1. Introduction
	1.2. Object-Oriented Design
	1.3. Design Integration
	1.4. Design Optimization
	1.5. Co-design and Recon.guration
	1.6. Java-Driven Co-design and Prototyping
	1.6.1. Java-Based Co-design
	1.6.2. Run-Time Management
	1.6.3. Embedded Systems Platform

	1.7. Hardware and Software Prototyping
	1.8. Multiple Application Support
	1.8.1. FPGA-Based System Architecture

	1.9. Summary
	Problems
	Learning Objectives
	Practice Problems
	Practice Problem Solutions

	2 Smart Sensor Networks
	2.1. Introduction
	2.2. Vibration Sensors
	2.3. Smart Sensor Application to Condition Based Maintenance
	2.4. Smart Transducer Networking
	2.5. Controller Area Network
	2.6. Summary
	Problems
	Learning Objectives
	Practice Problems
	Practice Problem Solutions

	3 Power-Aware Wireless Sensor Networks
	3.1. Introduction
	3.2. Distributed Power-Aware Microsensor Networks
	3.3. Dynamic Voltage Scaling Techniques
	3.4. Operating System for Energy Scalable Wireless Sensor Networks
	3.5. Dynamic Power Management in Wireless Sensor Networks
	3.6. Energy-Ef.cient Communication
	3.7. Power Awareness of VLSI Systems
	3.8. Summary
	Problems
	Learning Objectives
	Practice Problems
	Practice Problem Solutions

	4 Routing in Wireless Sensor Networks
	4.1. Introduction
	4.2. Energy-Aware Routing for Sensor Networks
	4.3. Altruists or Friendly Neighbors in the Pico Radio Sensor Network
	4.3.1. Energy-Aware Routing
	4.3.2. Altruists or Friendly Neighbors
	4.3.3. Analysis of Energy Aware and Altruists Routing Schemes

	4.4. Aggregate Queries in Sensor Networks
	4.4.1. Aggregation Techniques
	4.4.2. Grouping

	4.5. Summary
	Problems
	Learning Objectives
	Practice Problems
	Practice Problem Solutions

	5 Distributed Sensor Networks
	5.1. Introduction
	5.2. Bluetooth in the Distributed Sensor Network
	5.2.1. Bluetooth Components and Devices
	5.2.2. Bluetooth Communication and Networking
	5.2.3. Different Technologies

	5.3. Mobile Networking for Smart-Dust
	5.3.1. Smart-Dust Technology
	5.3.2. Communication and Networking

	5.4. Summary
	Problems
	Learning Objectives
	Practice Problems
	Practice Problem Solutions

	6 Clustering Techniques in Wireless Sensor Networks
	6.1. Introduction
	6.2. Topology Discovery and Clusters in Sensor Networks
	6.2.1. Topology Discovery Algorithm
	6.2.2. Clusters in Sensor Networks
	6.2.3. Applications of Topology Discovery

	6.3. Adaptive Clustering with Deterministic Cluster-Head Selection
	6.4. Sensor Clusters?Performance
	6.4.1. Distributed Sensor Processing

	6.5. Power-Aware Functions in Wireless Sensor Networks
	6.5.1. Power Aware Software

	6.6. Ef.cient Flooding with Passive Clustering
	6.6.1. Passive Clustering

	6.7. Summary
	Problems
	Learning Objectives
	Practice Problems
	Practice Problem Solutions

	7 Security Protocols for Wireless Sensor Networks
	7.1. Introduction
	7.2. Security Protocols in Sensor Networks
	7.2.1. Sensor Network Security Requirements
	7.2.2. Authenticated Broadcast
	7.2.3. Applications

	7.3. Communication Security in Sensor Networks
	7.4. Summary
	Problems
	Learning Objectives
	Practice Problems
	Practice Problem Solutions

	8 Operating Systems for Embedded Applications
	8.1. Introduction
	8.2. The Inferno Operating System
	8.3. The Pebble Component-Based Operating System
	8.3.1. Protection Domains and Portals
	8.3.2. Scheduling and Synchronization
	8.3.3. Implementation
	8.3.4. Embedded Applications

	8.4. Embedded Operating System Energy Analysis
	8.5. Summary
	Problems
	Learning Objectives
	Practice Problems
	Practice Problem Solutions

	9 Network Support for Embedded Applications
	9.1. Introduction
	9.2. Bluetooth Architecture
	9.3. Bluetooth Interoperability with the Internet and Quality of Service
	9.4. Implementation Issues in Bluetooth-Based Wireless Sensor Networks
	9.5. Low-Rate Wireless Personal Area Networks
	9.6. Data-Centric Storage in Wireless Sensor Networks
	9.7. Summary
	Problems
	Learning Objectives
	Practice Problems
	Practice Problem Solutions

	10 Applications of Wireless Sensor Networks
	10.1. Introduction
	10.2. Application and Communication Support for Wireless Sensor Networks
	10.3. Area Monitoring and Integrated Vehicle Health Management Applications
	10.3.1. Development Platform
	10.3.2. Applications

	10.4. Building and Managing Aggregates in Wireless Sensor Networks
	10.5. Habitat and Environmental Monitoring
	10.5.1. Island Habitat Monitoring
	10.5.2. Implementation

	10.6. Summary
	Problems
	Learning Objectives
	Practice Problems
	Practice Problem Solutions

	References
	Index
	Team DDU

