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  ...إلى قارئ ھذا الكتاب ، تحية طيبة وبعد 

حقيقياً في عالم يعج بالأبحاث والكتب والمعلومات، وأصبح العلم معياراً نعيش لقد أصبحنا 
حلاً شبه  بدورهوقد أمسى لتفاضل الأمم والدول والمؤسسات والأشخاص على حدٍّ سواء، 

، فالبيئة تبحث عن حلول، وصحة الإنسان تبحث عن دة وخطورةاكل العالم حوحيدٍ لأكثر مش
الطاقة والغذاء حلول، والموارد التي تشكل حاجة أساسية للإنسان تبحث عن حلول كذلك، و

فأين نحن من . ويحاول أن يجد الحلول لھاالآن والماء جميعھا تحديات يقف العلم في وجھھا 
   ھذا العلم ؟ وأين ھو منا؟

ن نوفر بين أيدي كل من حمل لأ www.4electron.comسعى في موقع عالم الإلكترون ن
من أدوات تساعده في ھذا الدرب، من  ما نستطيعالتحديات لى عاتقه مسيرة درب تملؤه ع

ء والأفكار العلمية مواضيع علمية، ومراجع أجنبية بأحدث إصداراتھا، وساحات لتبادل الآرا
والمرتبطة بحياتنا الھندسية، وشروحٍ لأھم برمجيات الحاسب التي تتداخل مع تطبيقات الحياة 
الأكاديمية والعملية، ولكننا نتوقع في نفس الوقت أن نجد بين الطلاب والمھندسين والباحثين 

مجتمعٍ يساھم  من يسعى مثلنا لتحقيق النفع والفائدة للجميع، ويحلم أن يكون عضواً في
   بتحقيق بيئة خصبة للمواھب والإبداعات والتألق، فھل تحلم بذلك ؟

رأيتھا في إحدى المواضيع حاول أن تساھم بفكرة، بومضة من خواطر تفكيرك العلمي، بفائدة 
تأكد بأنك ستلتمس الفائدة في كل . جانب مضيء لمحته خلف ثنايا مفھوم ھندسي ماالعلمية، ب

  ...رى غيرك يخطوھا معك خطوة تخطوھا، وت

، أخي القارئ، نرجو أن يكون ھذا الكتاب مقدمة لمشاركتك في عالمنا العلمي التعاوني
بكل الإمكانيات المتوفرة لديه جاھزاً  ww.4electron.com سيكون موقعكم عالم الإلكترونو

، أو طالب في علوم الھندسة قع الذي يبحث عنه كل باحثالبيئة والوا على الدوام لأن يحقق
  . ويسعى فيه للإفادة كل ساعٍ ، فأھلاً وسھلاً بكم 

  مع تحيات إدارة الموقع وفريق عمله
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Abstract—Time-frequency methods are capable of analyzing and/or pro-
cessing nonstationary signals and systems in an intuitively appealing and
physically meaningful manner. This tutorial paper presents an overview of
some time-frequency methods for the analysis and processing of nonstation-
ary random signals, with emphasis placed on time-varying power spectra
and techniques for signal estimation and detection.

We discuss two major definitions of time-dependent power spectra—
the generalized Wigner-Ville spectrum and the generalized evolutionary
spectrum—and show their approximate equivalence for underspread ran-
dom processes. Time-dependent power spectra are then applied to nonsta-
tionary signal estimation and detection. Specifically, simple expressions and
designs of signal estimators (Wiener filters) and signal detectors in the sta-
tionary case are extended to underspread nonstationary processes. This re-
sults in time-frequency techniques for nonstationary signal estimation and
detection which are intuitively meaningful as well as efficient and stable.

I. INTRODUCTION

It is an interesting fact that most papers on time-frequency
analysis consider deterministic signals whereas a large and im-
portant group of applications require signals to be modeled as
random processes. As long as these random processes are sta-
tionary, a need for time-frequency methods does not arise since
the power spectral density1���������
	����������������������� � �! �#"

(1)

with
� � �$���%	

E &�' �$(*)+��� '-, �$(.�0/ , provides a complete and unique
description of the process’ second-order statistics and spectral
properties [1]. In particular, due to stationarity the power spec-
tral density does not change with time.

When the process under analysis is nonstationary, it is intu-
itively clear that its spectral properties change with time and,
hence, a meaningful representation of these spectral properties
must depend on a time variable. Thus, we look for a time-
dependent power spectrum of the form

� � �$(1"0���
, which can be

interpreted as a time-frequency representation of the process’
second-order statistics.

This situation is somewhat analogous (and, as we will see
presently, closely related) to the frequency-domain analysis of
linear systems. As long as the system is time-invariant, the fre-
quency response2 �3���4	 � 657��������������� � �! �#"

(2)8
Funding by FWF grant P11904-TEC.9
Throughout this paper, :�;=<�> denotes a deterministic signal or a random pro-

cess and integrals are from ?A@ to @ .

with
5A�$���

the system’s impulse response, completely and
uniquely describes the system’s frequency-domain character-
istics [2]. However, for a time-varying linear system, the
frequency-domain characteristics will be time-dependent and
we thus must look for a time-dependent frequency response of
the form

2 ��(1"����
, which can again be interpreted as a time-

frequency representation of the system.
In this tutorial paper, we will discuss time-dependent power

spectra and how they can be used for signal estimation and sig-
nal detection in nonstationary environments. In Section II, we
consider two different approaches to defining a time-dependent
power spectrum for nonstationary random processes. Section
III discusses the concept of underspread processes and shows
that the two time-dependent power spectra of Section II become
effectively equivalent in the underspread case. The estimation
(optimal filtering) and detection of nonstationary random pro-
cesses will be considered in Sections IV and V, respectively.

II. TIME-DEPENDENT POWER SPECTRA

Apart from the physical spectrum, which can be interpreted
as the expectation of the spectrogram [3–5], there are two fun-
damentally different approaches to defining a time-dependent
power spectrum for a nonstationary random process ' ��(.� .
A. Generalized Wigner-Ville Spectrum

The first group of time-dependent spectra, called generalized
Wigner-Ville spectrum [4–7], is a formally simple extension of
the stationary power spectral density

�7�������
in (1):BDCFE G� ��(1"����IH � �� CJE G� ��(1".������������� � �! �

(3)

with� CFE�G� ��(1".���KHL� �%M (�)ONAPQSRUTAV �W"�( R NAPQ ) TXV ��YZ"
(4)

where
�����$(1".(*[J�\	

E &]' ��(.� '-, �$(*[J�0/ . The parameter T_^a` is ar-
bitrary a priori. Special cases are the Wigner-Ville spectrum
( T 	cb

) [3–8] and the Rihaczek spectrum ( T 	 Ped Q ) [4,5,9].
The case T 	fb

has certain advantages over other choices of T ;

in particular,
B C=g�G� ��(1"����

is always real-valued (however, it is not
guaranteed to be everywhere nonnegative although it is approx-
imately nonnegative for the practically important underspread
processes—see Section III).

1
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Under appropriate conditions,
B CFE G� ��(1"����

can be interpreted
as the expected value of the so-called generalized Wigner dis-

tribution [10–12] (cf. (19)). For any T ,
B CFE�G� �$(1"����

reduces to
the power spectral density

� ���3���
in (1) if the process ' �$(.� is

(wide-sense) stationary.

B. Generalized Evolutionary Spectrum

The second group of time-dependent spectra, called general-
ized evolutionary spectrum [7,13], is based on an innovations
system representation of the nonstationary process ' ��(.� [14].
That is, ' ��(.� is represented as the output of a linear, time-varying
system (linear operator)

�
whose input is stationary white noise� �$(.� with normalized power spectral density:

' ��(.� 	 � � � � �$(.�W	 � ��� 5A�$(1"�( [ � � ��( [ �
! ( [ "

with
��� ��(1".(*[J� 		����( R (*[ �

and
5A�$(1"�(*[J�

denoting the impulse re-
sponse (kernel) of

�
. (In the stationary case,

�
is time-invariant

and
� � �3��� 	�
 2 ������
 �

.) The innovations system
�

is obtained
as a solution to the factorization problem

���� 	�� �
, where� �

is the correlation operator2 of the process ' ��(.� and
���

is
the adjoint of

�
. Thus,

�
is a “square root” of

� �
. This square

root is unique only up to a factor � satisfying ��� � 	�� : if
�

is a valid innovations system satisfying
���� 	�� �

and � sat-
isfies ��� � 	�� , then it is easily seen that

� [7	 � � is a valid
innovations system as well.

A “time-dependent frequency response” of
�

that extends the
frequency response of time-invariant systems in (2) is given by
the generalized Weyl symbol [15–17]

� CFE G� ��(1"����IH �  5 CFE�G �$(1"������ ������� �  ! � (5)

with 5 CFE�G �$(1"����KH 5 M ( ) N PQ\RUT V �%"�( R N PQ ) T V ��Y "
(6)

where T ^ ` . Special cases are the Weyl symbol for T 	 b
[16–21], Zadeh’s time-varying frequency response for T 	P d Q [16,17,20,22,23], and the Kohn-Nirenberg symbol (equiv-
alently, Bello’s frequency-dependent modulation function) forT 	 R P d Q [18,23,24]; the case T 	 b

has again certain ad-
vantages over other choices of T [17,18,20]. Note that the gen-
eralized Wigner-Ville spectrum in (3) is the generalized Weyl
symbol of the correlation operator

� �
, i.e.,B CFE�G� �$(1"0���
	 � CFE�G��� �$(1"0�����

The generalized evolutionary spectrum is now defined as the
squared magnitude of the generalized Weyl symbol of the inno-
vations system

�
[13]:

GES CFE�G� �$(1"0��� H �� � CFE G� ��(1"����!�� � �
Note that this definition contains a twofold ambiguity related
to the choice of TD^ ` and the choice of the innovations sys-
tem
�

for given correlation operator
� �

. Special cases are the"
The correlation operator #%$ is the positive (semi-)definite linear operator

whose kernel equals the correlation & $ ;=<('�<*) >,+ E -�:�;F<�>�: 8 ;=<*) >/. .

evolutionary spectrum ( T 	 P d Q ) [25–28] and the transitory
evolutionary spectrum ( T 	 R Ped Q ) [13,29]; furthermore, the
Weyl spectrum is obtained with T 	 b

and
�

chosen as the
positive (semi-)definite square root of

� �
(this choice has cer-

tain advantages over other choices of T and
�

) [13]. Note that
GES

CJE G� ��(1"����10 b
.

For a wide-sense stationary process ' �$(.� , the innovations sys-
tem
�

can always be chosen to be time-invariant, in which
case the generalized Weyl symbol

� CFE�G� �$(1"0���
reduces to the sys-

tem’s frequency response

2 �3���
. Hence, the generalized evo-

lutionary spectrum here reduces to the power spectral density:
GES

CJE G� ��(1"����6	2
 2 �3���3
 � 	 � � �����
.

III. UNDERSPREAD SYSTEMS AND PROCESSES

For the results obtained with the two classes of time-
dependent spectra described above, the time-frequency dis-
placements caused by the innovations system

�
and the time-

frequency correlation structure of the resulting process ' �$(.� play
an important role. A limitation of these time-frequency dis-
placements or time-frequency correlations leads to the impor-
tant concepts of underspread systems or processes, respectively.
Broadly speaking, an intuitively pleasing and meaningful inter-
pretation of time-dependent spectra is only possible for under-
spread processes.

A. Underspread Systems

The time-frequency shifts caused by a linear time-varying
system

�
are characterized by the generalized spreading func-

tion [15–17]� CFE�G� �$��"54�� H � � 5 CFE G ��(1".����� �������76 �
! (-"

(7)

with
5 CFE G ��(1".��� as defined in (6). It can be shown [15,16] that

the magnitude of
� CFE G� ����"84��

is independent of T , so that we may

write

 � CFE G� ����"84��3
�	9
 � � �$��"84���
 . Furthermore,

� CJE G� ����"84��
is the

2-D Fourier transform of the generalized Weyl symbol in (5).
The generalized spreading function

� CFE�G� �$��"54��
is the co-

efficient function of an expansion of
�

into elementary
time-frequency shifts : CFE�G

; 6 , where <=: CFE�G
; 6 '?> �$(.� 	 ' �$( R����� �����76 � � ����� CFE �A@CB�� G 6  [15–18,20,21,23,30,31]. Hence, for a

given
�$��"84��

,

 � � �$��"54��3
 indicates how much the time-frequency

shifted input signal < : CFE�G
; 6 ' > ��(.�W	 ' �$( R ����� �����76 � � ����� CJE �D@EB�� G 6 

contributes to the output signal. It follows that the time-
frequency shifts caused by a linear time-varying system are
crudely characterized by the effective support of


 � � ����"84���
 .
A system

�
is now called underspread if


 � � �$��"54��3
 is con-
centrated about the origin of the

�$��"54��
-plane, so that

�
causes

only small time-frequency shifts (mathematically precise defi-
nitions of underspread systems can be found in [16,17,30,31]).
It should be noted that underspread is not equivalent to slowly
time-varying, since slow time variation only means a limita-
tion of


 � � �$��"54��3
 with respect to
4

. In contrast, underspread
means limitations with respect to both

�
and
4

; however, the
extents of these limitations can be exchanged for one another.
Hence, a slowly time-varying system will not be underspread
if its memory (extension of


 � � ����"84���
 with respect to
�

) is too

2
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long, whereas a fast time-varying system will be underspread if
its memory is sufficiently short.

B. Underspread Processes

Quasi-stationary processes have limited spectral correlation,
while quasi-white processes have limited temporal correlation.
These two situations are generalized by the concept of under-
spread processes. We first define the expected generalized am-
biguity function [6,16] of a nonstationary process ' �$(.� as

�� CFE�G� �$��"54�� H � � � CFE�G� �$(1"������ �������76 � ! ( 	
E ����' " : CFE�G

; 6 '���� "
with

� CFE�G� ��(1".���
as in (4). The expected generalized ambiguity

function is the generalized spreading function (see (7)) of the
correlation operator

� �
, i.e.,�� CFE�G� �$��"84�� 	�� CFE�G��� �$��"54��
	

it is furthermore the 2-D Fourier transform of the generalized
Wigner-Ville spectrum in (3). It can be shown [6,16] that the
expected generalized ambiguity function

�� CFE G� �$��"54��
describes

the average correlation of all time-frequency locations separated
by

�
in time and by

4
in frequency.

A nonstationary process ' �$(.� is now called underspread if
 �� CFE�G� �$��"84���
 	 
 �� ������"84���

is concentrated about the origin of

the
����"84��

-plane, so that components of ' �$(.� that are sufficiently
separated in the time-frequency plane will be nearly uncorre-
lated (mathematically precise definitions of underspread pro-
cesses can be found in [6,7,16]; furthermore, somewhat similar
concepts of processes with limited time-frequency correlation
have been discussed in [32–35]). This underspread property is
satisfied by many nonstationary processes occurring in practice.
We emphasize that underspread should not be confused with
quasistationarity which only means a limitation of


 �� � ����"84���

with respect to

4
. In contrast, underspread means limitations

with respect to both
�

and
4

, where again the extents of these
limitations can be exchanged for one another. Hence, a quasi-
stationary process will not be underspread if its correlation time
(extension of


 �� � ����"84��3

with respect to

�
) is too long, whereas a

fast nonstationary process will be underspread if its correlation
time is sufficiently short (quasiwhite process).

The concepts of underspread systems and underspread pro-
cesses are related since

�� CFE�G� �$��"54��
is the generalized spread-

ing function of
� �

, and hence a process ' ��(.� is underspread
if and only if its correlation operator

� �
is an underspread sys-

tem. Furthermore, the time-frequency shifts caused by the inno-
vations system

�
are related to the time-frequency correlation

structure of the associated process ' �$(.� . If the innovations sys-
tem
�

is underspread, the correlation operator
� � 	 ���

is
an underspread system as well, and hence the process ' �$(.� is
itself underspread. Conversely, if ' �$(.� is underspread, then not
every innovations system

�
is underspread but an underspread�

can always be found.

C. Equivalence of Time-Dependent Spectra

The importance of the underspread property in the context of
nonstationary spectral analysis is due to the approximate equiva-

lence of all above-mentioned time-dependent spectra in the case
of underspread processes. This equivalence is based on the fol-
lowing two approximations valid for the generalized Weyl sym-
bol of underspread systems (bounds on the associated approxi-
mation errors are provided in [16,17,30]):

1. The generalized Weyl symbol of an underspread system
�

is
approximately independent of T , i.e.,

� CJE��.G� �$(1"0���� � CFE���G� �$(1"0�����
(8)

2. For an underspread system
�

, there is

� CFE�G�1��� �$(1"����� �� � CFE�G� �$(1"0��� �� � � (9)

With these approximations, we now obtain the following
equivalence results valid for an underspread process ' ��(.� :
� With

BOCFE G� ��(1"���� 	 � CFE�G��� �$(1"0��� , and since for an underspread
process

� �
is an underspread system, it follows from (8) that

the generalized Wigner-Ville spectrum is approximately inde-
pendent of T , i.e., [7,16]BDCJE��.G� �$(1"0���� BDCFE���G� �$(1"����A�
� With GES

CFE G� ��(1"����
	 �� � CFE�G� �$(1"0��� �� � , and since for an under-
spread process we can always find an underspread innovations
system

�
, it further follows from (8) that the generalized evolu-

tionary spectrum (based on an underspread innovations system�
) is approximately independent of T , i.e., [7,13,16]

GES CJE��.G� �$(1"0����
GES CFE���G� �$(1"0�����

� With GES
CFE�G� �$(1"0��� 	 �� � CFE G� ��(1"����!�� � and

B CFE�G� �$(1"0��� 	
� CJE G� � ��(1"���� 	 � CJE G�1��� �$(1"���� , and using an underspread innova-
tions system

�
, it follows from (9) that the generalized evo-

lutionary spectrum is approximately equal to the generalized
Wigner-Ville spectrum, i.e., [7,13,16]

GES CFE G� ��(1"����� BDCFE�G� �$(1"0�����
Since GES

CJE G� ��(1"�����0 b
, this also shows that the generalized

Wigner-Ville spectrum of an underspread process is approxi-
mately real-valued and nonnegative.

These equivalence results simplify the spectral analysis of
nonstationary processes a great deal: Even though there exist
infinitely many different time-dependent spectra (there are the
two distinct classes of generalized Wigner-Ville spectrum and
generalized evolutionary spectrum, plus the dependence on T
within each class), all these spectra are approximately equiva-
lent for underspread processes.

This approximate equivalence is demonstrated by Fig. 1
which compares various time-dependent spectra of an under-
spread process. It is seen that all spectra are very similar and,
furthermore, that they are smooth time-frequency functions. In
fact, the spectra of underspread processes must be smooth func-
tions since the generalized Wigner-Ville spectrum is the 2-D
Fourier transform of the expected generalized ambiguity func-
tion (which is concentrated about the origin) and the generalized

3
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( ( ( (

� � � �
�

4

(a) (b) (c) (d) (e)

Figure 1. Time-dependent spectra of an underspread process: (a) Wigner-Ville spectrum, (b) real part of Rihaczek spectrum,
(c) Weyl spectrum, (d) (transitory) evolutionary spectrum using a positive semidefinite innovations system (here, the evolutionary
spectrum equals the transitory evolutionary spectrum since the positive semidefinite innovations system is used [13]), (e) magnitude
of expected ambiguity function (the rectangle shown has area 1 and thus permits to assess the underspread property of the process).
The process was generated by means of the time-frequency synthesis technique introduced in [36]. The signal length is 256 samples.

( ( ( (

� � � �
�

4

(a) (b) (c) (d) (e)

Figure 2. Time-dependent spectra of an overspread process: (a) Wigner-Ville spectrum, (b) real part of Rihaczek spectrum, (c) Weyl
spectrum, (d) (transitory) evolutionary spectrum, (e) magnitude of expected ambiguity function. The overspread characteristic of
this process is due to strong statistical correlations between the ‘T’ and ‘F’ components. Note that the expected ambiguity function
in (e) is widely spread out beyond the rectangle with area 1.

evolutionary spectrum is similar to the generalized Wigner-Ville
spectrum.

In contrast, Fig. 2 shows that the various spectra yield dra-
matically different results for an “overspread” process (i.e., a
process whose expected generalized ambiguity function is not
sufficiently concentrated about the origin of the

�$��"84��
-plane, cf.

part (e)). Furthermore, the spectra are no longer smooth func-
tions; they contain rapidly oscillating components (cross terms)
that can be attributed to the strong statistical correlations exist-
ing between widely separated time-frequency points [7,37].

IV. NONSTATIONARY SIGNAL ESTIMATION

In the remainder of this paper, we shall show how time-
dependent spectra can be applied to nonstationary signal esti-
mation and detection. We shall use the generalized Wigner-
Ville spectrum because it has a mathematically simple struc-
ture. However, for underspread processes the generalized evolu-
tionary spectrum is approximately equivalent to the generalized
Wigner-Ville spectrum (as explained above), and hence it can
be substituted for the generalized Wigner-Ville spectrum in the
relevant equations. Other approaches to nonstationary signal es-
timation are discussed in [34,35,38–41].

The enhancement or estimation of signals corrupted by noise
or interference is important in many signal processing applica-
tions. In this section, we consider the estimation of a nonstation-
ary random signal � �$(.� from an observation ' �$(.�W	 � �$(.� ) � �$(.� ,

where � ��(.� is nonstationary noise uncorrelated with � �$(.� , by
means of a linear, time-varying system

�
. Hence, the signal

estimate is given by

�� �$(.�
	 � � ' � �$(.� 	 � � � 57��(1".( [ � ' ��( [ �
! ( [ �

The system that minimizes the mean-square error is the time-
varying Wiener filter [42–45]��� 	 ��� � ��� ) � � � �A@ "

(10)

where
���

and
� �

denote the correlation operators of signal and
noise, respectively. For stationary random processes,

�
sim-

plifies to a time-invariant system whose frequency response is
given by [1,42–46]2

� �����
	 ���e������ � ����� ) �A� �3��� " (11)

where
� � �3���

and
�D�������

denote the power spectral densities
of signal and noise, respectively. This frequency-domain ex-
pression contains simple products and reciprocals of functions
(instead of products and inverses of operators as in (10)) and
hence allows a simple design and interpretation of time-invariant
Wiener filters.

A. Time-Frequency Formulation of Time-Varying Wiener Filters

We may ask whether a similarly simple formulation as in the
stationary case can be obtained for the time-varying Wiener fil-

4
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ter
���

by introducing in (11) an explicit time dependence, i.e.,
by substituting for

2
� �3���

and for
� � ����� "��A� �3���

suitably de-
fined time-dependent frequency responses and time-dependent
power spectra. Indeed, for jointly underspread3 processes � ��(.�
and � �$(.� it can be shown [47,48] that the time-varying Wiener
filter
� �

can be decomposed into an underspread component
and an overspread component with the following properties:

� The overspread system component has negligible effect on the
system’s performance (mean-square error) and can hence be dis-
regarded.

� The underspread part, denoted as
��� �

in what follows, allows
the approximate time-frequency formulation

� CFE�G���� ��(1"����  B CFE�G� ��(1"����BDCFE�G� �$(1"0��� ) BDCJE G� ��(1"���� " (12)

where
BDCFE�G� �$(1"0���

and
BDCFE�G� �$(1"0���

denote the generalized
Wigner-Ville spectra of signal and noise, respectively.

The time-frequency formulation in (12) provides the looked-
for extension of the frequency-domain formulation (11) to the
nonstationary (underspread) case. For T 	 b

(recall thatB C g0G� �$(1"0���
is real-valued), (12) allows a simple and intuitively

appealing time-frequency interpretation of (the underspread
component of) the time-varying Wiener filter (see Fig. 3). Let� �

and
� �

denote the effective support regions of
B C g�G� ��(1"����

and
B C g0G� �$(1"����

, respectively. Regarding the action of the time-
varying Wiener filter, the following three time-frequency re-
gions can be distinguished:

� Pass region. In the “signal only” time-frequency region� ��� � �
, i.e., in the time-frequency region where only signal

energy is present, there is
� C=g�G���� �$(1"0���  P . Thus,

��� � passes
all “noise-free” observation components without attenuation or
distortion.

� Stop region. In the “noise only” time-frequency region� � � � �
where only noise energy is present, there is

� C g0G���� ��(1"����
 b

, i.e.,
��� � suppresses all observation components in time-

frequency regions where there is no signal.

� Transition region. In the “signal plus noise” time-frequency
region

� �
	 � �
where both signal energy and noise energy

are present,
� C=g�G���� �$(1"0���

assumes values approximately betweenb
and P . Here,

� � �
performs a time-frequency varying atten-

uation that depends on the relative signal and noise energy at
the respective time-frequency point. In particular, for equal
signal and noise energy, i.e., time-frequency points

�$(1"����
withB C g0G� �$(1"0���6	 B C g0G� �$(1"0���

, there is
� C=g�G���� �$(1"0���  P d Q .

�
The processes �1;F<�> and �;=<�> are said to be jointly underspread if their ex-

pected generalized ambiguity functions, ��������� ;�� '��e> and ��������� ;�� '��e> , are con-
centrated within the same region about the origin of the ;�� '��e> -plane. For ex-
ample, a quasistationary process and a quasiwhite process may be individually
underspread but not jointly underspread.

� ��� � �
� � � � �

� ��� � �

! ��" �# � � ;=<('%$ >'&)(

! �*" �# � � ;=<('+$ >,&.-

� �

� � <

$

<

$ //

00

(a) (b)

Figure 3. Time-frequency interpretation of the time-varying
Wiener filter

���
for jointly underspread signal and noise pro-

cesses: (a) Effective time-frequency support regions of signal
and noise, (b) time-frequency pass, stop, and transition regions
of the time-varying Wiener filter.

B. Time-Frequency Design of Time-Varying Wiener Filters

The time-frequency formulation (12) suggests a simple time-
frequency design of nonstationary signal estimators. Let us de-
fine the “time-frequency pseudo-Wiener filter” 1��� by setting
its generalized Weyl symbol equal to the right-hand side of (12)
[47,48]:

� CFE�G2� � ��(1"����
H BDCFE�G� �$(1"0���B CFE�G� �$(1"0��� ) B CJE G� ��(1"���� � (13)

For jointly underspread processes � �$(.� , � �$(.� where (12) is
a good approximation, combination of (12) and (13) yields� CJE G2� � �$(1"����  � CFE G�3�� �$(1"0���

, and hence the time-frequency

pseudo-Wiener filter 1��� is a close approximation to (the un-
derspread part of) the optimal Wiener filter

� �
; furthermore,

1��� will then be nearly independent of the value of T used in
(13). For processes that are not jointly underspread, however,
1� � must be expected to perform poorly.

While the time-frequency pseudo-Wiener filter 1��� is de-
signed in the time-frequency domain, the actual calculation of
the signal estimate can be performed directly in the time domain
according to

�� ��(.� 	 < 1��� ' > �$(.� 	 � ��� 45 � �$(1".( [ � ' �$( [ � ! ( [ "
where

45 � �$(1"�(*[F�
, the impulse response of 1��� , can be obtained

from
� CFE�G2� � �$(1"0���

as [15–17]

1 5 � ��(1".( [ �	 � � � CFE�G2� � M N PQ ) T V ( ) N PQ R T V ( [ "�� Y � ������� C � � � � G ! � � (14)

An efficient implementation of the time-frequency pseudo-
Wiener filter 1� � that is based on the multiwindow short-time
Fourier transform is discussed in [48,49].

Compared to the Wiener filter
� �

, the time-frequency
pseudo-Wiener filter 1� � possesses two practical advantages:

5

www.4electron.com



� Modified a priori knowledge. The calculation (design) of
� �

requires knowledge of the correlation operators
� �

and
� �

(cf.
(10)), whereas the design of 1��� requires knowledge of the gen-

eralized Wigner-Ville spectra
B CFE�G� �$(1"0���

and
B CFE�G� �$(1"0���

(cf.
(13)). Although correlation operators and generalized Wigner-
Ville spectra are mathematically equivalent due to the one-to-
one mapping (3), the generalized Wigner-Ville spectra are much
easier and more intuitive to handle than the correlation opera-
tors or correlation functions. For example, an approximate or
partial knowledge of the Wigner-Ville spectra will often suffice
for a reasonable filter design. This fact is especially important
for practical applications where the a priori knowledge has to
be estimated from the available data [49].
� Reduced computation. The calculation (design) of

� �
re-

quires a computationally intensive and potentially unstable op-
erator inversion (or, in a discrete-time setting, a matrix inver-
sion). In the time-frequency design (13), this operator inver-
sion is replaced by simple and easily controllable pointwise di-
visions of functions. Assuming discrete-time signals of length�

, the computational cost of the design of
� �

grows with
���

,
whereas that of 1� � (using divisions and FFTs) grows only with� �

log � � .

C. Robust Variations

If the actual correlations
� �

and
� �

deviate from the nominal
correlations for which the Wiener filter

� �
was designed, the

filter’s performance may degrade significantly. This sensitivity
of the performance of the Wiener filter (and also of the time-
frequency pseudo-Wiener filter) to variations of the second-
order statistics motivates the use of minimax robust Wiener fil-
ters that optimize the worst-case performance within specified
uncertainty classes of operating conditions.

Recently, the minimax robust time-invariant Wiener filters
introduced in [50–53] for stationary processes were extended
to the nonstationary case, and time-frequency designs of ro-
bust time-varying Wiener filters were proposed [54,55]. Par-
ticularly simple and intuitively appealing results were obtained
for so-called � -point uncertainty classes. Let & ��� / ��� @ ; � ;	�	�	� ; 
 be
a partition of the time-frequency plane, i.e., � 
��� @ �� 	 ` � and�� 	 � � 	��

for ���	�� . Extending the stationary case defini-
tion in [51,53], � -point uncertainty classes can be defined for
Wigner-Ville spectra as [54]

�a	�� B C g0G� ��(1"������ � ����� B C g0G� �$(1"���� ! ( ! � 	 � � " � 	 P "�� � �F"��! 
" 	�� B C g0G� ��(1"������ � � � � B C g0G� �$(1"���� ! ( ! � 	 � � " � 	 P "�� � �F"��! 7"
i.e., as the sets which contain all Wigner-Ville spectraBDC g0G� �$(1"0���

and
BOC g�G� �$(1"����

that have prescribed energies � � 0 b
and � � 0 b

in prescribed time-frequency regions
���

.
The minimax robust time-frequency Wiener filter 1�$# is now

defined as the linear, time-varying system whose Weyl symbol
minimizes a time-frequency expression of the mean-square error

for the worst-case choice of
B C g�G� ��(1"���� ^ � and

BDC=g�G� ��(1"���� ^"
[55]. The Weyl symbol of this robust time-frequency Wiener

filter is obtained as [54,55]

� C g�G2��% ��(1"����
	 
& ��� @ � �
� � ) � �(' � � �$(1"0���-"

where ' ��� �$(1"0��� is the indicator function of
� �

(i.e., ' ��� �$(1"0���6	P for
�$(1"0��� ^ � �

and 0 otherwise). Note that
� C g0G2� % �$(1"���� is

piecewise constant, expressing constant time-frequency weight-
ing in a given time-frequency region

���
. It can be shown [54,55]

that the performance of the robust time-frequency Wiener filter
1� # is approximately independent of the actual operating condi-
tions as long as they are within

�
,
"

. An intuitive and compu-
tationally efficient approximate time-frequency implementation
of 1� # in terms of the multi-window Gabor transform [56,57]
exists if the partition & �)� / corresponds to a uniform rectangular
tiling of the time-frequency plane [55].

D. Simulation Results

Fig. 4 shows the Wigner-Ville spectra and expected ambiguity
functions (with T 	 b

) of signal and noise processes � ��(.� and� �$(.� as well as the Weyl symbols of the resulting Wiener filter� �
, its underspread part

��� � , and the time-frequency pseudo-
Wiener filter 1��� . From the expected ambiguity functions in
parts (c) and (d), it is seen that the processes � ��(.� and � ��(.� are
jointly underspread. From the Weyl symbols in parts (e)–(g),
the time-frequency pass, stop, and transition regions (cf. Fig. 3)
of the filters

� �
,
� � � , and 1� � are easily recognized. It is

verified that the Weyl symbol of 1��� closely approximates that
of
� � �

. The mean SNR improvement achieved was 6.14 dB
for the Wiener filter

� �
, 6.10 dB for its underspread part

��� � ,
and 6.11 dB for the time-frequency pseudo-Wiener filter 1��� .
Hence, the performance of the time-frequency pseudo-Wiener
filter is seen to be very close to that of the Wiener filter.

To illustrate the application and performance of the robust
time-frequency Wiener filter described in Subsection IV-C, we
defined � -point uncertainty classes

�
and

"
based on

� 	+*
rectangular time-frequency regions

� �
. The regional energies � �

and � � used for the definition of
�

and
"

were derived from the

nominal Wigner-Ville spectra
BOC g0G� �$(1"����

and
BOC g�G� �$(1"����

shown

in Fig. 4(a), (b) according to � � 	-,., ��� BDC g0G� �$(1"0��� ! ( ! �
and� � 	 ,/, � � B C g0G� �$(1"���� ! ( ! �

. The Weyl symbol of the robust

time-frequency Wiener filter 1�$# obtained for these uncertainty
classes is shown in Fig. 4(h). The rectangular time-frequency re-
gions

� �
underlying the uncertainty classes are clearly visible.

Fig. 5 compares the performance (output SNR vs. input SNR) of
the ordinary Wiener filter

� �
designed for the nominal Wigner-

Ville spectra, the robust time-frequency Wiener filter 1� # , and a
trivial filter

�$0
that suppresses (passes) all signals in the case

of negative (positive) input SNR. It is seen that at nominal op-
erating conditions

� �
performs only slightly better than 1� #

but at its worst-case operating conditions
� �

performs much
worse than 1� # or even

� 0
. Hence, in this example, the robust

time-frequency Wiener filter 1�$# achieves a drastic performance
improvement over

� �
at worst-case operating conditions with

only a slight performance loss at nominal operating conditions.
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Figure 4. Time-frequency representations of signal and noise
statistics and of various Wiener-type filters: (a) Wigner-Ville
spectrum of � ��(.� , (b) Wigner-Ville spectrum of � �$(.� , (c) mag-
nitude of expected ambiguity function of � �$(.� , (d) magnitude of
expected ambiguity function of � ��(.� , (e) Weyl symbol of Wiener
filter
� �

, (f) Weyl symbol of underspread part
� � �

of
���

,
(g) Weyl symbol of time-frequency pseudo-Wiener filter 1� � ,
(h) Weyl symbol of robust time-frequency Wiener filter 1�$# . The
rectangles in parts (c) and (d) have area 1 and thus permit to
assess the underspread property of � �$(.� and � �$(.� . The processes
� �$(.� and � �$(.� were generated using the time-frequency synthesis
technique introduced in [36]. The signal length is 128 samples.

V. NONSTATIONARY SIGNAL DETECTION

Next, we discuss time-frequency methods for nonstationary
signal detection. We shall again use the generalized Wigner-
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Figure 5. Performance of the ordinary Wiener filter
� �

, the ro-
bust time-frequency Wiener filter 1�$# , and the trivial filter

� 0
.

The input SNR was varied by scaling
� �

.

Ville spectrum as time-dependent power spectrum, while keep-
ing in mind that, in the underspread case considered, the gener-
alized evolutionary spectrum can approximately be substituted
in the relevant equations.

We consider the detection of a nonstationary, Gaussian ran-
dom signal � �$(.� from a noise-contaminated observation ' �$(.� .
The hypotheses are2 g � ' ��(.� 	 � �$(.�2

@ � ' ��(.� 	 � �$(.�7) � �$(.��"
where � �$(.� is nonstationary, Gaussian noise uncorrelated with
� �$(.� . The optimal detector (likelihood ratio detector) [42–44]
forms a quadratic form of the observed signal ' �$(.� ,
� � ' � 	�� ��� ' " '�� 	 � � � � � 5 � �$(1"�( [ � ' �$( [ � ' , �$(.�

! ( ! ( [ "
(15)

with the operator
� �

given by

� � 	 � �D@� R � � � ) ����� �A@ 	 � �A@� � � � � � ) ����� �A@ "
(16)

or
� � 	 � �D@� � �

, where
� � 	�� � � � � ) � ��� �A@

is the time-
varying Wiener filter considered in Section IV. The test statistic� � ' � is then compared to a threshold to decide whether

2
g or

2
@ is in force. For stationary processes,

� � ' � can be expressed
in the frequency domain as

� � ' �
	 � � ��� �3����A��������� � � �3���7) �A��������� 
 �Z������
 � ! � "
(17)

where
�Z�����

is the Fourier transform of the observation ' �$(.� and��� �3���
and

� � �3���
are the power spectral densities of � �$(.� and� �$(.� , respectively. This frequency-domain expression involves

simple products and reciprocals of functions (instead of prod-
ucts and inverses of operators as in (16)) and hence allows a
simple interpretation and design of optimal detectors in the sta-
tionary case.
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A. Time-Frequency Formulation of Nonstationary Detectors

It is known [58–60] that the quadratic test statistic in (15) can
be rewritten as an inner product in the time-frequency domain,

� � ' � 	 � � CFE G��� " B CFE�G� � 	�� � � � � CFE�G��� �$(1"0��� B CFE�G ,� ��(1"���� ! ( ! �?�
(18)Here,B CFE�G� �$(1"0���Hf�  ' M�(�) NAPQ RUT V � Y ' , M�( R NAPQ ) T V � Y � ������� �  ! �
(19)

is the generalized Wigner distribution [10–12] of the observed
signal ' ��(.� . Thus,

� � ' � can be interpreted as a weighted integral

of
B CFE�G ,� �$(1"����

, where the time-frequency weighting function is
the generalized Weyl symbol of the operator

� �
.

In analogy to Subsection IV-A, a simplified approximate
time-frequency formulation of

� � ' � exists for jointly under-
spread processes � �$(.� and � ��(.� . Here, the operator

� �
can be

decomposed into an overspread component whose effect is neg-
ligible and an underspread component, denoted as

�)�� , whose
generalized Weyl symbol can be approximated as [60]

� CFE G�3� � �$(1"0���  B CFE�G� �$(1"����BDCFE�G� �$(1"���� � BDCFE G� ��(1"����7) BDCFE�G� �$(1"0����� � (20)

Inserting (20) in (18), we obtain the following approximate
time-frequency formulation of our test statistic,

� � ' � f� � � � BDCFE G� ��(1"���� B CFE�G ,� �$(1"����BDCJE G� ��(1"���� � BDCFE�G� �$(1"����A) BDCFE�G� �$(1"���� � ! ( ! �?�
This extends the frequency-domain expression (17) to the non-

stationary (underspread) case. For T 	 b
(note that

B C g�G� ��(1"����
and

B C g0G� �$(1"����
are real-valued), the above approximation al-

lows a simple and intuitively appealing time-frequency inter-
pretation that is analogous to the one given in Subsection IV-A
in the context of the approximation (12). In essence, the test
statistic

� � ' � picks up energy of the observation ' �$(.� in time-
frequency regions where there is large mean signal energy but
little mean noise energy, and tends to reject observation compo-
nents in time-frequency regions where there is little mean signal
energy and large mean noise energy.

B. Time-Frequency Design of Nonstationary Detectors

The time-frequency formulation (20) suggests a simple time-
frequency design of nonstationary detectors. In analogy to Sub-
section IV-B, we define the system 1� � by setting its generalized
Weyl symbol equal to the right-hand side of (20) [60]:

� CFE�G2��� �$(1"����
H BDCFE G� ��(1"����B CJE G� ��(1"���� � B CJE G� ��(1"����7) B CFE G� �$(1"���� � � (21)

Inserting in (18) yields the time-frequency designed test statistic

4� � ' � 	 � � � � B CFE G� ��(1"���� B CFE�G ,� �$(1"����B CJE G� ��(1"���� � B CFE�G� �$(1"����A) B CFE�G� �$(1"���� � ! ( ! �?�
For jointly underspread processes � �$(.� , � �$(.� where (20) is
a good approximation, combination of (20) and (21) yields� CJE G2��� ��(1"����  � CFE�G��� � ��(1"���� . Thus, 1� � is a close approximation to

(the underspread part of) the optimal operator
� �

; furthermore,
1��� will then be nearly independent of the value of T used in
(21). Hence, for jointly underspread processes the performance
of the time-frequency designed detector

4� � ' � will be similar to
that of the optimal detector

� � ' � and approximately indepen-
dent of T . For processes that are not jointly underspread, how-
ever,

4� � ' � must be expected to perform poorly.
While the detector

4� � ' � is designed in the time-frequency do-
main, it can be implemented directly in the time domain accord-
ing to (cf. (15))

4� � ' � 	 � 1� � ' " ' � 	 � � � ��� 45 � �$(1".( [ � ' �$( [ � ' , ��(.�
! ( ! ( [ "

where
45 � �$(1"�(*[F�

, the impulse response of 1��� , can be obtained

from
� CFE�G2��� �$(1"0��� by an inverse Weyl transformation (cf. (14)).

Efficient implementations of the time-frequency detector
4� � ' �

that are based on the multiwindow short-time Fourier transform
or the multiwindow spectrogram are discussed in [61].

Compared to the optimal detector
� � ' � , the time-frequency

designed detector
4� � ' � is practically advantageous because the

statistical a priori knowledge used in its design is formulated
in the intuitively accessible time-frequency domain, and be-
cause its design is computationally less intensive and numer-
ically more stable (since operator inversions are replaced by
pointwise divisions of functions). These advantages are anal-
ogous to the advantages of the time-frequency pseudo-Wiener
filter discussed in Subsection IV-B.

C. Simulation Results

Fig. 6 compares the performance of the optimal likelihood
ratio detector

� � ' � with that of the time-frequency designed de-
tector

4� � ' � for jointly underspread signal and noise processes.
It is seen that the time-frequency designed detector closely ap-
proximates the optimal detector.

In the previous example, the noise contained a strong white
component and hence the operators

� �
and
� � ) ���

(that have
to be inverted for calculating

� �
according to (16)) were non-

singular. In practice, this need not be the case. Our next exam-
ple considers the application of the optimal detector

� � ' � and
the time-frequency designed detector

4� � ' � to the detection of
knocking combustions in car engines (see [61] for background
and details). The hypotheses are2

g � ' �$(.� 	 ' g �$(.�
	 � g ��(.�7) � �$(.�2
@ � ' �$(.� 	 ' @ �$(.�
	 � @ ��(.�7) � �$(.�-"

where � g ��(.� and � @ �$(.� denote respectively the non-knocking and
knocking signal and � �$(.� is stationary white Gaussian noise.
The format of these hypotheses is different from that of our
previous hypotheses; however, the optimal detector

� � ' � and
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Figure 6. Comparison of optimal detector
� � ' � and time-frequency designed detector

4� � ' � : (a) Wigner-Ville spectrum of � �$(.� , (b)
Wigner-Ville spectrum of � �$(.� , (c) Weyl symbol of optimal operator

� �
, (d) Weyl symbol of time-frequency designed operator 1��� ,

(e) conditional probability density functions (pdf’s) of optimal test statistic
� � ' � under either hypothesis, (f) conditional pdf’s of

time-frequency designed test statistic
4� � ' � , (g) receiver operator characteristics (ROC) [43,44] of optimal detector

� � ' � , and (h)
ROC of time-frequency designed detector

4� � ' � . The performance results in (e)–(h) were obtained by Monte Carlo simulation. The
signal length is 128 samples.

the time-frequency designed detector
4� � ' � can be extended to

this more general type of hypotheses [61]. In this example,
the second-order statistics (correlations or Wigner-Ville spec-
tra) were estimated from a set of labeled training data, the opti-
mal and time-frequency designed detectors were constructed us-
ing these estimated second-order statistics, and the performance
of the detectors was evaluated by applying them to a different
set of labeled data. The calculation of the optimal detector was
made difficult by the poor conditioning of the estimated correla-
tion operators of ' g �$(.� and ' @ ��(.� (hence, pseudo-inverses were
used for implementing the necessary inversions). In contrast,
the design of

4� � ' � using the estimated Wigner-Ville spectra
merely involves divisions of functions that are easily stabilized.
Fig. 7 shows the estimated Wigner-Ville spectra of ' g �$(.� and' @ �$(.� as well as the resulting time-frequency weighting func-

tions
� C g0G��� �$(1"0��� for the optimal detector

� � ' � and
� C g0G2� � �$(1"0��� for

the time-frequency designed detector
4� � ' � (see (18)). The re-

ceiver operating characteristics of the two detectors are com-
pared in Fig. 8. It is seen that, due to its more stable design, the
time-frequency designed detector performs significantly better
than the theoretically optimal detector.

VI. CONCLUSION

We have shown that the time-frequency domain allows an ex-
tension of the spectral representation of random processes and
the frequency-domain formulation of statistical signal process-
ing techniques to the nonstationary case. However, it is im-
portant to be aware that this extension is possible only if the
processes involved are underspread. In this paper, we have
emphasized techniques for signal estimation and signal detec-
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Figure 7. Estimated Wigner-Ville spectra of the observed sig-
nal and time-frequency weighting functions of the two detec-
tors: (a) Estimated Wigner-Ville spectrum of ' g �$(.� calculated
from non-knocking training data, (b) estimated Wigner-Ville
spectrum of ' @ �$(.� calculated from knocking training data, (c)
time-frequency weighting function of the optimal detector

� � ' � ,
(d) time-frequency weighting function of the time-frequency de-
signed detector

4� � ' � . Horizontal axis: crank angle (in degrees)
which is proportional to time, vertical axis: frequency (in kHz).
The signal length is 186 samples.
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Figure 8. ROCs of the optimal detector
� � ' � (dashed line) and

the time-frequency designed detector
4� � ' � (solid line).

tion. An important aspect that has not been considered is
the problem of estimating the various time-dependent spectra
[4,5,8,27,28,62,63]. Furthermore, related results that have not
been mentioned are time-frequency techniques for the detec-
tion of deterministic signals in nonstationary noise [60,64], for
deflection-optimal detection [59,60], for subspace-based esti-
mation and detection [48,61,65], and for minimax robust sig-
nal estimation based on uncertainty models other than the � -
point model [55]. Beyond that, we emphasize that the general
approach—formally replacing the power spectral density by a
suitably defined time-dependent power spectrum—is applicable
to other fields of statistical signal processing as well.
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