
INTRODUCTION TO ASICs
An ASIC (pronounced �a-sick�; bold typeface defines a new term) is an
application-specific integrated circuit �at least that is what the acronym stands for.
Before we answer the question of what that means we first look at the evolution
of the silicon chip or integrated circuit (IC).

Figure 1.1(a) shows an IC package (this is a pin-grid array, or PGA, shown
upside down; the pins will go through holes in a printed-circuit board). People
often call the package a chip, but, as you can see in Figure 1.1(b), the silicon chip
itself (more properly called a die) is mounted in the cavity under the sealed lid.
A PGA package is usually made from a ceramic material, but plastic packages
are also common.

FIGURE 1.1 An integrated
circuit (IC). (a) A pin-grid
array (PGA) package. (b) The
silicon die or chip is under
the package lid.

The physical size of a silicon die varies from a few millimeters on a side to over
1 inch on a side, but instead we often measure the size of an IC by the number of
logic gates or the number of transistors that the IC contains. As a unit of measure
a gate equivalent corresponds to a two-input NAND gate (a circuit that performs
the logic function, F = A " B). Often we just use the term gates instead of gate
equivalents when we are measuring chip size�not to be confused with the gate
terminal of a transistor. For example, a 100 k-gate IC contains the equivalent of
100,000 two-input NAND gates.

The semiconductor industry has evolved from the first ICs of the early 1970s and
matured rapidly since then. Early small-scale integration (SSI) ICs contained a
few (1 to 10) logic gates�NAND gates, NOR gates, and so on�amounting to a few
tens of transistors. The era of medium-scale integration (MSI) increased the
range of integrated logic available to counters and similar, larger scale, logic
functions. The era of large-scale integration (LSI) packed even larger logic

Last Edited by SP 14112004

functions, such as the first microprocessors, into a single chip. The era of very
large-scale integration (VLSI) now offers 64-bit microprocessors, complete with
cache memory and floating-point arithmetic units�well over a million transistors
�on a single piece of silicon. As CMOS process technology improves, transistors
continue to get smaller and ICs hold more and more transistors. Some people
(especially in Japan) use the term ultralarge scale integration (ULSI), but most
people stop at the term VLSI; otherwise we have to start inventing new words.

The earliest ICs used bipolar technology and the majority of logic ICs used either
transistor�transistor logic (TTL) or emitter-coupled logic (ECL). Although
invented before the bipolar transistor, the metal-oxide-silicon (MOS) transistor
was initially difficult to manufacture because of problems with the oxide
interface. As these problems were gradually solved, metal-gate n -channel MOS (
nMOS or NMOS) technology developed in the 1970s. At that time MOS
technology required fewer masking steps, was denser, and consumed less power
than equivalent bipolar ICs. This meant that, for a given performance, an MOS
IC was cheaper than a bipolar IC and led to investment and growth of the MOS
IC market.

By the early 1980s the aluminum gates of the transistors were replaced by
polysilicon gates, but the name MOS remained. The introduction of polysilicon
as a gate material was a major improvement in CMOS technology, making it
easier to make two types of transistors, n -channel MOS and p -channel MOS
transistors, on the same IC�a complementary MOS (CMOS , never cMOS)
technology. The principal advantage of CMOS over NMOS is lower power
consumption. Another advantage of a polysilicon gate was a simplification of the
fabrication process, allowing devices to be scaled down in size.

There are four CMOS transistors in a two-input NAND gate (and a two-input
NOR gate too), so to convert between gates and transistors, you multiply the
number of gates by 4 to obtain the number of transistors. We can also measure an
IC by the smallest feature size (roughly half the length of the smallest transistor)
imprinted on the IC. Transistor dimensions are measured in microns (a micron, 1
m m, is a millionth of a meter). Thus we talk about a 0.5 m m IC or say an IC is
built in (or with) a 0.5 m m process, meaning that the smallest transistors are 0.5
m m in length. We give a special label, l or lambda , to this smallest feature size.
Since lambda is equal to half of the smallest transistor length, l ª 0.25 m m in a
0.5 m m process. Many of the drawings in this book use a scale marked with
lambda for the same reason we place a scale on a map.

A modern submicron CMOS process is now just as complicated as a submicron
bipolar or BiCMOS (a combination of bipolar and CMOS) process. However,
CMOS ICs have established a dominant position, are manufactured in much
greater volume than any other technology, and therefore, because of the economy
of scale, the cost of CMOS ICs is less than a bipolar or BiCMOS IC for the same
function. Bipolar and BiCMOS ICs are still used for special needs. For example,
bipolar technology is generally capable of handling higher voltages than CMOS.
This makes bipolar and BiCMOS ICs useful in power electronics, cars, telephone

circuits, and so on.

Some digital logic ICs and their analog counterparts (analog/digital converters,
for example) are standard parts , or standard ICs. You can select standard ICs
from catalogs and data books and buy them from distributors. Systems
manufacturers and designers can use the same standard part in a variety of
different microelectronic systems (systems that use microelectronics or ICs).

With the advent of VLSI in the 1980s engineers began to realize the advantages
of designing an IC that was customized or tailored to a particular system or
application rather than using standard ICs alone. Microelectronic system design
then becomes a matter of defining the functions that you can implement using
standard ICs and then implementing the remaining logic functions (sometimes
called glue logic) with one or more custom ICs . As VLSI became possible you
could build a system from a smaller number of components by combining many
standard ICs into a few custom ICs. Building a microelectronic system with
fewer ICs allows you to reduce cost and improve reliability.

Of course, there are many situations in which it is not appropriate to use a custom
IC for each and every part of an microelectronic system. If you need a large
amount of memory, for example, it is still best to use standard memory ICs,
either dynamic random-access memory (DRAM or dRAM), or static RAM (
SRAM or sRAM), in conjunction with custom ICs.

One of the first conferences to be devoted to this rapidly emerging segment of the
IC industry was the IEEE Custom Integrated Circuits Conference (CICC), and
the proceedings of this annual conference form a useful reference to the
development of custom ICs. As different types of custom ICs began to evolve for
different types of applications, these new ICs gave rise to a new term:
application-specific IC, or ASIC. Now we have the IEEE International ASIC
Conference , which tracks advances in ASICs separately from other types of
custom ICs. Although the exact definition of an ASIC is difficult, we shall look at
some examples to help clarify what people in the IC industry understand by the
term.

Examples of ICs that are not ASICs include standard parts such as: memory chips
sold as a commodity item�ROMs, DRAM, and SRAM; microprocessors; TTL or
TTL-equivalent ICs at SSI, MSI, and LSI levels.

Examples of ICs that are ASICs include: a chip for a toy bear that talks; a chip
for a satellite; a chip designed to handle the interface between memory and a
microprocessor for a workstation CPU; and a chip containing a microprocessor as
a cell together with other logic.

As a general rule, if you can find it in a data book, then it is probably not an
ASIC, but there are some exceptions. For example, two ICs that might or might
not be considered ASICs are a controller chip for a PC and a chip for a modem.
Both of these examples are specific to an application (shades of an ASIC) but are
sold to many different system vendors (shades of a standard part). ASICs such as

these are sometimes called application-specific standard products (ASSPs).

Trying to decide which members of the huge IC family are application-specific is
tricky�after all, every IC has an application. For example, people do not usually
consider an application-specific microprocessor to be an ASIC. I shall describe
how to design an ASIC that may include large cells such as microprocessors, but
I shall not describe the design of the microprocessors themselves. Defining an
ASIC by looking at the application can be confusing, so we shall look at a
different way to categorize the IC family. The easiest way to recognize people is
by their faces and physical characteristics: tall, short, thin. The easiest
characteristics of ASICs to understand are physical ones too, and we shall look at
these next. It is important to understand these differences because they affect
such factors as the price of an ASIC and the way you design an ASIC.

1.1 Types of ASICs
ICs are made on a thin (a few hundred microns thick), circular silicon wafer ,
with each wafer holding hundreds of die (sometimes people use dies or dice for
the plural of die). The transistors and wiring are made from many layers (usually
between 10 and 15 distinct layers) built on top of one another. Each successive
mask layer has a pattern that is defined using a mask similar to a glass
photographic slide. The first half-dozen or so layers define the transistors. The
last half-dozen or so layers define the metal wires between the transistors (the
interconnect).

A full-custom IC includes some (possibly all) logic cells that are customized and
all mask layers that are customized. A microprocessor is an example of a
full-custom IC�designers spend many hours squeezing the most out of every last
square micron of microprocessor chip space by hand. Customizing all of the IC
features in this way allows designers to include analog circuits, optimized
memory cells, or mechanical structures on an IC, for example. Full-custom ICs
are the most expensive to manufacture and to design. The manufacturing lead
time (the time it takes just to make an IC�not including design time) is typically
eight weeks for a full-custom IC. These specialized full-custom ICs are often
intended for a specific application, so we might call some of them full-custom
ASICs.

We shall discuss full-custom ASICs briefly next, but the members of the IC
family that we are more interested in are semicustom ASICs , for which all of the
logic cells are predesigned and some (possibly all) of the mask layers are
customized. Using predesigned cells from a cell library makes our lives as
designers much, much easier. There are two types of semicustom ASICs that we
shall cover: standard-cell�based ASICs and gate-array�based ASICs. Following
this we shall describe the programmable ASICs , for which all of the logic cells
are predesigned and none of the mask layers are customized. There are two types
of programmable ASICs: the programmable logic device and, the newest member
of the ASIC family, the field-programmable gate array.

1.1.1 Full-Custom ASICs
In a full-custom ASIC an engineer designs some or all of the logic cells, circuits,
or layout specifically for one ASIC. This means the designer abandons the
approach of using pretested and precharacterized cells for all or part of that
design. It makes sense to take this approach only if there are no suitable existing

cell libraries available that can be used for the entire design. This might be
because existing cell libraries are not fast enough, or the logic cells are not small
enough or consume too much power. You may need to use full-custom design if
the ASIC technology is new or so specialized that there are no existing cell
libraries or because the ASIC is so specialized that some circuits must be custom
designed. Fewer and fewer full-custom ICs are being designed because of the
problems with these special parts of the ASIC. There is one growing member of
this family, though, the mixed analog/digital ASIC, which we shall discuss next.

Bipolar technology has historically been used for precision analog functions.
There are some fundamental reasons for this. In all integrated circuits the
matching of component characteristics between chips is very poor, while the
matching of characteristics between components on the same chip is excellent.
Suppose we have transistors T1, T2, and T3 on an analog/digital ASIC. The three
transistors are all the same size and are constructed in an identical fashion.
Transistors T1 and T2 are located adjacent to each other and have the same
orientation. Transistor T3 is the same size as T1 and T2 but is located on the
other side of the chip from T1 and T2 and has a different orientation. ICs are
made in batches called wafer lots. A wafer lot is a group of silicon wafers that are
all processed together. Usually there are between 5 and 30 wafers in a lot. Each
wafer can contain tens or hundreds of chips depending on the size of the IC and
the wafer.

If we were to make measurements of the characteristics of transistors T1, T2, and
T3 we would find the following:

Transistors T1 will have virtually identical characteristics to T2 on the
same IC. We say that the transistors match well or the tracking between
devices is excellent.

●

Transistor T3 will match transistors T1 and T2 on the same IC very well,
but not as closely as T1 matches T2 on the same IC.

●

Transistor T1, T2, and T3 will match fairly well with transistors T1, T2,
and T3 on a different IC on the same wafer. The matching will depend on
how far apart the two ICs are on the wafer.

●

Transistors on ICs from different wafers in the same wafer lot will not
match very well.

●

Transistors on ICs from different wafer lots will match very poorly.●

For many analog designs the close matching of transistors is crucial to circuit
operation. For these circuit designs pairs of transistors are used, located adjacent
to each other. Device physics dictates that a pair of bipolar transistors will always
match more precisely than CMOS transistors of a comparable size. Bipolar
technology has historically been more widely used for full-custom analog design
because of its improved precision. Despite its poorer analog properties, the use of
CMOS technology for analog functions is increasing. There are two reasons for
this. The first reason is that CMOS is now by far the most widely available IC
technology. Many more CMOS ASICs and CMOS standard products are now

being manufactured than bipolar ICs. The second reason is that increased levels
of integration require mixing analog and digital functions on the same IC: this
has forced designers to find ways to use CMOS technology to implement analog
functions. Circuit designers, using clever new techniques, have been very
successful in finding new ways to design analog CMOS circuits that can
approach the accuracy of bipolar analog designs.

1.1.2 Standard-Cell�Based ASICs
A cell-based ASIC (cell-based IC, or CBIC �a common term in Japan,
pronounced �sea-bick�) uses predesigned logic cells (AND gates, OR gates,
multiplexers, and flip-flops, for example) known as standard cells . We could
apply the term CBIC to any IC that uses cells, but it is generally accepted that a
cell-based ASIC or CBIC means a standard-cell�based ASIC.

The standard-cell areas (also called flexible blocks) in a CBIC are built of rows
of standard cells�like a wall built of bricks. The standard-cell areas may be used
in combination with larger predesigned cells, perhaps microcontrollers or even
microprocessors, known as megacells . Megacells are also called megafunctions,
full-custom blocks, system-level macros (SLMs), fixed blocks, cores, or
Functional Standard Blocks (FSBs).

The ASIC designer defines only the placement of the standard cells and the
interconnect in a CBIC. However, the standard cells can be placed anywhere on
the silicon; this means that all the mask layers of a CBIC are customized and are
unique to a particular customer. The advantage of CBICs is that designers save
time, money, and reduce risk by using a predesigned, pretested, and
precharacterized standard-cell library . In addition each standard cell can be
optimized individually. During the design of the cell library each and every
transistor in every standard cell can be chosen to maximize speed or minimize
area, for example. The disadvantages are the time or expense of designing or
buying the standard-cell library and the time needed to fabricate all layers of the
ASIC for each new design.

Figure 1.2 shows a CBIC (looking down on the die shown in Figure 1.1b, for
example). The important features of this type of ASIC are as follows:

All mask layers are customized�transistors and interconnect.●

Custom blocks can be embedded.●

Manufacturing lead time is about eight weeks.●

FIGURE 1.2 A cell-based ASIC
(CBIC) die with a single
standard-cell area (a flexible
block) together with four fixed
blocks. The flexible block
contains rows of standard cells.
This is what you might see
through a low-powered
microscope looking down on the
die of Figure 1.1(b). The small
squares around the edge of the die
are bonding pads that are
connected to the pins of the ASIC
package.

Each standard cell in the library is constructed using full-custom design methods,
but you can use these predesigned and precharacterized circuits without having to
do any full-custom design yourself. This design style gives you the same
performance and flexibility advantages of a full-custom ASIC but reduces design
time and reduces risk.

Standard cells are designed to fit together like bricks in a wall. Figure 1.3 shows
an example of a simple standard cell (it is simple in the sense it is not maximized
for density�but ideal for showing you its internal construction). Power and ground
buses (VDD and GND or VSS) run horizontally on metal lines inside the cells.

FIGURE 1.3 Looking down on the layout of a standard cell. This cell would be
approximately 25 microns wide on an ASIC with l (lambda) = 0.25 microns (a
micron is 10 �6 m). Standard cells are stacked like bricks in a wall; the abutment
box (AB) defines the �edges� of the brick. The difference between the bounding
box (BB) and the AB is the area of overlap between the bricks. Power supplies
(labeled VDD and GND) run horizontally inside a standard cell on a metal layer
that lies above the transistor layers. Each different shaded and labeled pattern
represents a different layer. This standard cell has center connectors (the three
squares, labeled A1, B1, and Z) that allow the cell to connect to others. The
layout was drawn using ROSE, a symbolic layout editor developed by Rockwell
and Compass, and then imported into Tanner Research�s L-Edit.

Standard-cell design allows the automation of the process of assembling an
ASIC. Groups of standard cells fit horizontally together to form rows. The rows
stack vertically to form flexible rectangular blocks (which you can reshape
during design). You may then connect a flexible block built from several rows of
standard cells to other standard-cell blocks or other full-custom logic blocks. For
example, you might want to include a custom interface to a standard, predesigned
microcontroller together with some memory. The microcontroller block may be a
fixed-size megacell, you might generate the memory using a memory compiler,
and the custom logic and memory controller will be built from flexible
standard-cell blocks, shaped to fit in the empty spaces on the chip.

Both cell-based and gate-array ASICs use predefined cells, but there is a
difference�we can change the transistor sizes in a standard cell to optimize speed
and performance, but the device sizes in a gate array are fixed. This results in a
trade-off in performance and area in a gate array at the silicon level. The trade-off
between area and performance is made at the library level for a standard-cell
ASIC.

Modern CMOS ASICs use two, three, or more levels (or layers) of metal for
interconnect. This allows wires to cross over different layers in the same way that
we use copper traces on different layers on a printed-circuit board. In a two-level
metal CMOS technology, connections to the standard-cell inputs and outputs are
usually made using the second level of metal (metal2 , the upper level of metal)
at the tops and bottoms of the cells. In a three-level metal technology,
connections may be internal to the logic cell (as they are in Figure 1.3). This
allows for more sophisticated routing programs to take advantage of the extra
metal layer to route interconnect over the top of the logic cells. We shall cover
the details of routing ASICs in Chapter 17.

A connection that needs to cross over a row of standard cells uses a feedthrough.
The term feedthrough can refer either to the piece of metal that is used to pass a
signal through a cell or to a space in a cell waiting to be used as a feedthrough
�very confusing. Figure 1.4 shows two feedthroughs: one in cell A.14 and one in
cell A.23.

In both two-level and three-level metal technology, the power buses (VDD and
GND) inside the standard cells normally use the lowest (closest to the transistors)
layer of metal (metal1). The width of each row of standard cells is adjusted so
that they may be aligned using spacer cells . The power buses, or rails, are then
connected to additional vertical power rails using row-end cells at the aligned
ends of each standard-cell block. If the rows of standard cells are long, then
vertical power rails can also be run in metal2 through the cell rows using special
power cells that just connect to VDD and GND. Usually the designer manually
controls the number and width of the vertical power rails connected to the
standard-cell blocks during physical design. A diagram of the power distribution
scheme for a CBIC is shown in Figure 1.4.

FIGURE 1.4 Routing the CBIC (cell-based IC) shown in Figure 1.2. The use of
regularly shaped standard cells, such as the one in Figure 1.3, from a library
allows ASICs like this to be designed automatically. This ASIC uses two
separate layers of metal interconnect (metal1 and metal2) running at right angles
to each other (like traces on a printed-circuit board). Interconnections between
logic cells uses spaces (called channels) between the rows of cells. ASICs may
have three (or more) layers of metal allowing the cell rows to touch with the
interconnect running over the top of the cells.

All the mask layers of a CBIC are customized. This allows megacells (SRAM, a
SCSI controller, or an MPEG decoder, for example) to be placed on the same IC
with standard cells. Megacells are usually supplied by an ASIC or library
company complete with behavioral models and some way to test them (a test
strategy). ASIC library companies also supply compilers to generate flexible
DRAM, SRAM, and ROM blocks. Since all mask layers on a standard-cell
design are customized, memory design is more efficient and denser than for gate
arrays.

For logic that operates on multiple signals across a data bus�a datapath (DP)�the
use of standard cells may not be the most efficient ASIC design style. Some
ASIC library companies provide a datapath compiler that automatically generates
datapath logic . A datapath library typically contains cells such as adders,
subtracters, multipliers, and simple arithmetic and logical units (ALUs). The
connectors of datapath library cells are pitch-matched to each other so that they
fit together. Connecting datapath cells to form a datapath usually, but not always,
results in faster and denser layout than using standard cells or a gate array.

Standard-cell and gate-array libraries may contain hundreds of different logic
cells, including combinational functions (NAND, NOR, AND, OR gates) with
multiple inputs, as well as latches and flip-flops with different combinations of
reset, preset and clocking options. The ASIC library company provides designers
with a data book in paper or electronic form with all of the functional
descriptions and timing information for each library element.

1.1.3 Gate-Array�Based ASICs
In a gate array (sometimes abbreviated to GA) or gate-array�based ASIC the
transistors are predefined on the silicon wafer. The predefined pattern of
transistors on a gate array is the base array , and the smallest element that is
replicated to make the base array (like an M. C. Escher drawing, or tiles on a
floor) is the base cell (sometimes called a primitive cell). Only the top few layers
of metal, which define the interconnect between transistors, are defined by the
designer using custom masks. To distinguish this type of gate array from other
types of gate array, it is often called a masked gate array (MGA). The designer
chooses from a gate-array library of predesigned and precharacterized logic cells.
The logic cells in a gate-array library are often called macros . The reason for this
is that the base-cell layout is the same for each logic cell, and only the
interconnect (inside cells and between cells) is customized, so that there is a
similarity between gate-array macros and a software macro. Inside IBM,
gate-array macros are known as books (so that books are part of a library), but
unfortunately this descriptive term is not very widely used outside IBM.

We can complete the diffusion steps that form the transistors and then stockpile
wafers (sometimes we call a gate array a prediffused array for this reason). Since
only the metal interconnections are unique to an MGA, we can use the stockpiled
wafers for different customers as needed. Using wafers prefabricated up to the
metallization steps reduces the time needed to make an MGA, the turnaround
time , to a few days or at most a couple of weeks. The costs for all the initial
fabrication steps for an MGA are shared for each customer and this reduces the
cost of an MGA compared to a full-custom or standard-cell ASIC design.

There are the following different types of MGA or gate-array�based ASICs:

Channeled gate arrays.●

Channelless gate arrays.●

Structured gate arrays.●

The hyphenation of these terms when they are used as adjectives explains their
construction. For example, in the term �channeled gate-array architecture,� the
gate array is channeled , as will be explained. There are two common ways of
arranging (or arraying) the transistors on a MGA: in a channeled gate array we
leave space between the rows of transistors for wiring; the routing on a
channelless gate array uses rows of unused transistors. The channeled gate array
was the first to be developed, but the channelless gate-array architecture is now
more widely used. A structured (or embedded) gate array can be either channeled
or channelless but it includes (or embeds) a custom block.

1.1.4 Channeled Gate Array
Figure 1.5 shows a channeled gate array . The important features of this type of
MGA are:

Only the interconnect is customized.●

The interconnect uses predefined spaces between rows of base cells.●

Manufacturing lead time is between two days and two weeks.

FIGURE 1.5 A channeled gate-array die.
The spaces between rows of the base cells
are set aside for interconnect.

●

A channeled gate array is similar to a CBIC�both use rows of cells separated by
channels used for interconnect. One difference is that the space for interconnect
between rows of cells are fixed in height in a channeled gate array, whereas the
space between rows of cells may be adjusted in a CBIC.

1.1.5 Channelless Gate Array
Figure 1.6 shows a channelless gate array (also known as a channel-free gate
array , sea-of-gates array , or SOG array). The important features of this type of
MGA are as follows:

Only some (the top few) mask layers are customized�the interconnect.●

Manufacturing lead time is between two days and two weeks.●

FIGURE 1.6 A channelless gate-array or
sea-of-gates (SOG) array die. The core
area of the die is completely filled with an
array of base cells (the base array).

The key difference between a channelless gate array and channeled gate array is
that there are no predefined areas set aside for routing between cells on a
channelless gate array. Instead we route over the top of the gate-array devices.
We can do this because we customize the contact layer that defines the
connections between metal1, the first layer of metal, and the transistors. When
we use an area of transistors for routing in a channelless array, we do not make
any contacts to the devices lying underneath; we simply leave the transistors
unused.

The logic density�the amount of logic that can be implemented in a given silicon
area�is higher for channelless gate arrays than for channeled gate arrays. This is
usually attributed to the difference in structure between the two types of array. In
fact, the difference occurs because the contact mask is customized in a
channelless gate array, but is not usually customized in a channeled gate array.
This leads to denser cells in the channelless architectures. Customizing the
contact layer in a channelless gate array allows us to increase the density of
gate-array cells because we can route over the top of unused contact sites.

1.1.6 Structured Gate Array
An embedded gate array or structured gate array (also known as masterslice or
masterimage) combines some of the features of CBICs and MGAs. One of the
disadvantages of the MGA is the fixed gate-array base cell. This makes the
implementation of memory, for example, difficult and inefficient. In an
embedded gate array we set aside some of the IC area and dedicate it to a specific
function. This embedded area either can contain a different base cell that is more
suitable for building memory cells, or it can contain a complete circuit block,
such as a microcontroller.

Figure 1.7 shows an embedded gate array. The important features of this type of
MGA are the following:

Only the interconnect is customized.●

Custom blocks (the same for each design) can be embedded.●

Manufacturing lead time is between two days and two weeks.●

FIGURE 1.7 A structured or
embedded gate-array die showing
an embedded block in the upper
left corner (a static random-access
memory, for example). The rest of
the die is filled with an array of
base cells.

An embedded gate array gives the improved area efficiency and increased
performance of a CBIC but with the lower cost and faster turnaround of an MGA.
One disadvantage of an embedded gate array is that the embedded function is
fixed. For example, if an embedded gate array contains an area set aside for a 32
k-bit memory, but we only need a 16 k-bit memory, then we may have to waste
half of the embedded memory function. However, this may still be more efficient
and cheaper than implementing a 32 k-bit memory using macros on a SOG array.

ASIC vendors may offer several embedded gate array structures containing
different memory types and sizes as well as a variety of embedded functions.
ASIC companies wishing to offer a wide range of embedded functions must
ensure that enough customers use each different embedded gate array to give the
cost advantages over a custom gate array or CBIC (the Sun Microsystems
SPARCstation 1 described in Section 1.3 made use of LSI Logic embedded gate
arrays�and the 10K and 100K series of embedded gate arrays were two of LSI
Logic�s most successful products).

1.1.7 Programmable Logic Devices
Programmable logic devices (PLDs) are standard ICs that are available in
standard configurations from a catalog of parts and are sold in very high volume
to many different customers. However, PLDs may be configured or programmed
to create a part customized to a specific application, and so they also belong to
the family of ASICs. PLDs use different technologies to allow programming of
the device. Figure 1.8 shows a PLD and the following important features that all
PLDs have in common:

No customized mask layers or logic cells●

Fast design turnaround●

A single large block of programmable interconnect●

A matrix of logic macrocells that usually consist of programmable array
logic followed by a flip-flop or latch

●

FIGURE 1.8 A programmable
logic device (PLD) die. The
macrocells typically consist of
programmable array logic
followed by a flip-flop or latch.
The macrocells are connected
using a large programmable
interconnect block.

The simplest type of programmable IC is a read-only memory (ROM). The most
common types of ROM use a metal fuse that can be blown permanently (a
programmable ROM or PROM). An electrically programmable ROM , or
EPROM , uses programmable MOS transistors whose characteristics are altered
by applying a high voltage. You can erase an EPROM either by using another
high voltage (an electrically erasable PROM , or EEPROM) or by exposing the
device to ultraviolet light (UV-erasable PROM , or UVPROM).

There is another type of ROM that can be placed on any ASIC�a
mask-programmable ROM (mask-programmed ROM or masked ROM). A
masked ROM is a regular array of transistors permanently programmed using
custom mask patterns. An embedded masked ROM is thus a large, specialized,
logic cell.

The same programmable technologies used to make ROMs can be applied to
more flexible logic structures. By using the programmable devices in a large
array of AND gates and an array of OR gates, we create a family of flexible and
programmable logic devices called logic arrays . The company Monolithic
Memories (bought by AMD) was the first to produce Programmable Array Logic
(PAL ® , a registered trademark of AMD) devices that you can use, for example,
as transition decoders for state machines. A PAL can also include registers
(flip-flops) to store the current state information so that you can use a PAL to
make a complete state machine.

Just as we have a mask-programmable ROM, we could place a logic array as a
cell on a custom ASIC. This type of logic array is called a programmable logic
array (PLA). There is a difference between a PAL and a PLA: a PLA has a
programmable AND logic array, or AND plane , followed by a programmable
OR logic array, or OR plane ; a PAL has a programmable AND plane and, in
contrast to a PLA, a fixed OR plane.

Depending on how the PLD is programmed, we can have an erasable PLD
(EPLD), or mask-programmed PLD (sometimes called a masked PLD but usually
just PLD). The first PALs, PLAs, and PLDs were based on bipolar technology
and used programmable fuses or links. CMOS PLDs usually employ
floating-gate transistors (see Section 4.3, �EPROM and EEPROM Technology�).

1.1.8 Field-Programmable Gate Arrays
A step above the PLD in complexity is the field-programmable gate array (
FPGA). There is very little difference between an FPGA and a PLD�an FPGA is
usually just larger and more complex than a PLD. In fact, some companies that
manufacture programmable ASICs call their products FPGAs and some call them
complex PLDs . FPGAs are the newest member of the ASIC family and are
rapidly growing in importance, replacing TTL in microelectronic systems. Even
though an FPGA is a type of gate array, we do not consider the term gate-array
�based ASICs to include FPGAs. This may change as FPGAs and MGAs start to
look more alike.

Figure 1.9 illustrates the essential characteristics of an FPGA:

None of the mask layers are customized.●

A method for programming the basic logic cells and the interconnect.●

The core is a regular array of programmable basic logic cells that can
implement combinational as well as sequential logic (flip-flops).

●

A matrix of programmable interconnect surrounds the basic logic cells.●

Programmable I/O cells surround the core.●

Design turnaround is a few hours.●

We shall examine these features in detail in Chapters 4�8.

FIGURE 1.9 A field-programmable
gate array (FPGA) die. All FPGAs
contain a regular structure of
programmable basic logic cells
surrounded by programmable
interconnect. The exact type, size,
and number of the programmable
basic logic cells varies
tremendously.

1.2 Design Flow
Figure 1.10 shows the sequence of steps to design an ASIC; we call this a design
flow . The steps are listed below (numbered to correspond to the labels in
Figure 1.10) with a brief description of the function of each step.

FIGURE 1.10 ASIC design flow.

Design entry. Enter the design into an ASIC design system, either using a
hardware description language (HDL) or schematic entry .

1.

Logic synthesis. Use an HDL (VHDL or Verilog) and a logic synthesis
tool to produce a netlist �a description of the logic cells and their
connections.

2.

System partitioning. Divide a large system into ASIC-sized pieces.3.

Prelayout simulation. Check to see if the design functions correctly.4.

Floorplanning. Arrange the blocks of the netlist on the chip.5.

Placement. Decide the locations of cells in a block.6.

1.1.8 Field-Programmable Gate Arrays
A step above the PLD in complexity is the field-programmable gate array (
FPGA). There is very little difference between an FPGA and a PLD�an FPGA is
usually just larger and more complex than a PLD. In fact, some companies that
manufacture programmable ASICs call their products FPGAs and some call them
complex PLDs . FPGAs are the newest member of the ASIC family and are
rapidly growing in importance, replacing TTL in microelectronic systems. Even
though an FPGA is a type of gate array, we do not consider the term gate-array
�based ASICs to include FPGAs. This may change as FPGAs and MGAs start to
look more alike.

Figure 1.9 illustrates the essential characteristics of an FPGA:

None of the mask layers are customized.●

A method for programming the basic logic cells and the interconnect.●

The core is a regular array of programmable basic logic cells that can
implement combinational as well as sequential logic (flip-flops).

●

A matrix of programmable interconnect surrounds the basic logic cells.●

Programmable I/O cells surround the core.●

Design turnaround is a few hours.●

We shall examine these features in detail in Chapters 4�8.

FIGURE 1.9 A field-programmable
gate array (FPGA) die. All FPGAs
contain a regular structure of
programmable basic logic cells
surrounded by programmable
interconnect. The exact type, size,
and number of the programmable
basic logic cells varies
tremendously.

1.3 Case Study
Sun Microsystems released the SPARCstation 1 in April 1989. It is now an old
design but a very important example because it was one of the first workstations
to make extensive use of ASICs to achieve the following:

Better performance at lower cost●

Compact size, reduced power, and quiet operation●

Reduced number of parts, easier assembly, and improved reliability●

The SPARCstation 1 contains about 50 ICs on the system motherboard�excluding
the DRAM used for the system memory (standard parts). The SPARCstation 1
designers partitioned the system into the nine ASlCs shown in Table 1.1 and
wrote specifications for each ASIC�this took about three months 1 . LSI Logic
and Fujitsu designed the SPARC integer unit (IU) and floating-point unit (FPU)
to these specifications. The clock ASIC is a fairly straightforward design and, of
the six remaining ASICs, the video controller/data buffer, the RAM controller,
and the direct memory access (DMA) controller are defined by the 32-bit
system bus (SBus) and the other ASICs that they connect to. The rest of the
system is partitioned into three more ASICs: the cache controller ,
memory-management unit (MMU), and the data buffer. These three ASICs, with
the IU and FPU, have the most critical timing paths and determine the system
partitioning. The design of ASICs 3�8 in Table 1.1 took five Sun engineers six
months after the specifications were complete. During the design process, the
Sun engineers simulated the entire SPARCstation 1�including execution of the
Sun operating system (SunOS).

TABLE 1.1 The ASICs in the Sun Microsystems SPARCstation 1.
SPARCstation 1 ASIC Gates (k-gates)
1 SPARC integer unit (IU) 20
2 SPARC floating-point unit (FPU) 50
3 Cache controller 9
4 Memory-management unit (MMU) 5
5 Data buffer 3
6 Direct memory access (DMA) controller 9
7 Video controller/data buffer 4
8 RAM controller 1
9 Clock generator 1

Table 1.2 shows the software tools used to design the SPARCstation 1, many of
which are now obsolete. The important point to notice, though, is that there is a
lot more to microelectronic system design than designing the ASICs�less than
one-third of the tools listed in Table 1.2 were ASIC design tools.

TABLE 1.2 The CAD tools used in the design of the Sun Microsystems
SPARCstation 1.

Design level Function Tool 2

ASIC design ASIC physical design LSI Logic

 ASIC logic synthesis
Internal tools and UC Berkeley
tools

 ASIC simulation LSI Logic
Board design Schematic capture Valid Logic
 PCB layout Valid Logic Allegro

 Timing verification
Quad Design Motive and
internal tools

Mechanical design Case and enclosure Autocad
 Thermal analysis Pacific Numerix
 Structural analysis Cosmos
Management Scheduling Suntrac
 Documentation Interleaf and FrameMaker

The SPARCstation 1 cost about $9000 in 1989 or, since it has an execution rate
of approximately 12 million instructions per second (MIPS), $750/MIPS. Using
ASIC technology reduces the motherboard to about the size of a piece of paper
�8.5 inches by 11 inches�with a power consumption of about 12 W. The
SPARCstation 1 �pizza box� is 16 inches across and 3 inches high�smaller than a
typical IBM-compatible personal computer in 1989. This speed, power, and size
performance is (there are still SPARCstation 1s in use) made possible by using
ASICs. We shall return to the SPARCstation 1, to look more closely at the
partitioning step, in Section 15.3, �System Partitioning.�

1. Some information in Section 1.3 and Section 15.3 is from the
SPARCstation 10 Architecture Guide�May 1992, p. 2 and pp. 27�28 and from two
publicity brochures (known as �sparkle sheets�). The first is �Concept to System:
How Sun Microsystems Created SPARCstation 1 Using LSI Logic's ASIC
System Technology,� A. Bechtolsheim, T. Westberg, M. Insley, and J. Ludemann
of Sun Microsystems; J-H. Huang and D. Boyle of LSI Logic. This is an LSI
Logic publication. The second paper is �SPARCstation 1: Beyond the 3M
Horizon,� A. Bechtolsheim and E. Frank, a Sun Microsystems publication. I did
not include these as references since they are impossible to obtain now, but I
would like to give credit to Andy Bechtolsheim and the Sun Microsystems and
LSI Logic engineers.

2. Names are trademarks of their respective companies.

1.4 Economics of ASICs
In this section we shall discuss the economics of using ASICs in a product and
compare the most popular types of ASICs: an FPGA, an MGA, and a CBIC. To
make an economic comparison between these alternatives, we consider the ASIC
itself as a product and examine the components of product cost: fixed costs and
variable costs. Making cost comparisons is dangerous�costs change rapidly and
the semiconductor industry is notorious for keeping its costs, prices, and pricing
strategy closely guarded secrets. The figures in the following sections are
approximate and used to illustrate the different components of cost.

1.4.1 Comparison Between ASIC
Technologies
The most obvious economic factor in making a choice between the different
ASIC types is the part cost . Part costs vary enormously�you can pay anywhere
from a few dollars to several hundreds of dollars for an ASIC. In general,
however, FPGAs are more expensive per gate than MGAs, which are, in turn,
more expensive than CBICs. For example, a 0.5 m m, 20 k-gate array might cost
0.01�0.02 cents/gate (for more than 10,000 parts) or $2�$4 per part, but an
equivalent FPGA might be $20. The price per gate for an FPGA to implement the
same function is typically 2�5 times the cost of an MGA or CBIC.

Given that an FPGA is more expensive than an MGA, which is more expensive
than a CBIC, when and why does it make sense to choose a more expensive part?
Is the increased flexibility of an FPGA worth the extra cost per part? Given that
an MGA or CBIC is specially tailored for each customer, there are extra hidden
costs associated with this step that we should consider. To make a true
comparison between the different ASIC technologies, we shall quantify some of
these costs.

1.4.2 Product Cost
The total cost of any product can be separated into fixed costs and variable costs :

total product cost = fixed product cost + variable product cost ¥ products
sold

(1.1)

Fixed costs are independent of sales volume �the number of products sold.

However, the fixed costs amortized per product sold (fixed costs divided by
products sold) decrease as sales volume increases. Variable costs include the cost
of the parts used in the product, assembly costs, and other manufacturing costs.

Let us look more closely at the parts in a product. If we want to buy ASICs to
assemble our product, the total part cost is

total part cost = fixed part cost + variable cost per part ¥ volume of parts. (1.2)

Our fixed cost when we use an FPGA is low�we just have to buy the software and
any programming equipment. The fixed part costs for an MGA or CBIC are
higher and include the costs of the masks, simulation, and test program
development. We shall discuss these extra costs in more detail in Sections 1.4.3
and 1.4.4. Figure 1.11 shows a break-even graph that compares the total part cost
for an FPGA, MGA, and a CBIC with the following assumptions:

FPGA fixed cost is $21,800, part cost is $39.●

MGA fixed cost is $86,000, part cost is $10.●

CBIC fixed cost is $146,000, part cost is $8.●

At low volumes, the MGA and the CBIC are more expensive because of their
higher fixed costs. The total part costs of two alternative types of ASIC are equal
at the break-even volume . In Figure 1.11 the break-even volume for the FPGA
and the MGA is about 2000 parts. The break-even volume between the FPGA
and the CBIC is about 4000 parts. The break-even volume between the MGA and
the CBIC is higher�at about 20,000 parts.

FIGURE 1.11 A break-even analysis for an FPGA, a masked gate array (MGA)
and a custom cell-based ASIC (CBIC). The break-even volume between two
technologies is the point at which the total cost of parts are equal. These
numbers are very approximate.

We shall describe how to calculate the fixed part costs next. Following that we

shall discuss how we came up with cost per part of $39, $10, and $8 for the
FPGA, MGA, and CBIC.

1.4.3 ASIC Fixed Costs
Figure 1.12 shows a spreadsheet, �Fixed Costs,� that calculates the fixed part costs
associated with ASIC design.

FIGURE 1.12 A spreadsheet, �Fixed Costs,� for a field-programmable gate array
(FPGA), a masked gate array (MGA), and a cell-based ASIC (CBIC). These
costs can vary wildly.

The training cost includes the cost of the time to learn any new electronic design
automation (EDA) system. For example, a new FPGA design system might
require a few days to learn; a new gate-array or cell-based design system might
require taking a course. Figure 1.12 assumes that the cost of an engineer
(including overhead, benefits, infrastructure, and so on) is between $100,000 and
$200,000 per year or $2000 to $4000 per week (in the United States in 1990s
dollars).

Next we consider the hardware and software cost for ASIC design. Figure 1.12
shows some typical figures, but you can spend anywhere from $1000 to
$1 million (and more) on ASIC design software and the necessary infrastructure.

We try to measure productivity of an ASIC designer in gates (or transistors) per
day. This is like trying to predict how long it takes to dig a hole, and the number

of gates per day an engineer averages varies wildly. ASIC design productivity
must increase as ASIC sizes increase and will depend on experience, design
tools, and the ASIC complexity. If we are using similar design methods, design
productivity ought to be independent of the type of ASIC, but FPGA design
software is usually available as a complete bundle on a PC. This means that it is
often easier to learn and use than semicustom ASIC design tools.

Every ASIC has to pass a production test to make sure that it works. With
modern test tools the generation of any test circuits on each ASIC that are needed
for production testing can be automatic, but it still involves a cost for design for
test . An FPGA is tested by the manufacturer before it is sold to you and before
you program it. You are still paying for testing an FPGA, but it is a hidden cost
folded into the part cost of the FPGA. You do have to pay for any programming
costs for an FPGA, but we can include these in the hardware and software cost.

The nonrecurring-engineering (NRE) charge includes the cost of work done by
the ASIC vendor and the cost of the masks. The production test uses sets of test
inputs called test vectors , often many thousands of them. Most ASIC vendors
require simulation to generate test vectors and test programs for production
testing, and will charge for a test-program development cost . The number of
masks required by an ASIC during fabrication can range from three or four (for a
gate array) to 15 or more (for a CBIC). Total mask costs can range from $5000 to
$50,000 or more. The total NRE charge can range from $10,000 to $300,000 or
more and will vary with volume and the size of the ASIC. If you commit to high
volumes (above 100,000 parts), the vendor may waive the NRE charge. The NRE
charge may also include the costs of software tools, design verification, and
prototype samples.

If your design does not work the first time, you have to complete a further design
pass (turn or spin) that requires additional NRE charges. Normally you sign a
contract (sign off a design) with an ASIC vendor that guarantees first-pass
success�this means that if you designed your ASIC according to rules specified
by the vendor, then the vendor guarantees that the silicon will perform according
to the simulation or you get your money back. This is why the difference between
semicustom and full-custom design styles is so important�the ASIC vendor will
not (and cannot) guarantee your design will work if you use any full-custom
design techniques.

Nowadays it is almost routine to have an ASIC work on the first pass. However,
if your design does fail, it is little consolation to have a second pass for free if
your company goes bankrupt in the meantime. Figure 1.13 shows a profit model
that represents the profit flow during the product lifetime . Using this model, we
can estimate the lost profit due to any delay.

FIGURE 1.13 A profit model. If a product is introduced on time, the total sales
are $60 million (the area of the higher triangle). With a three-month (one fiscal
quarter) delay the sales decline to $25 million. The difference is shown as the
shaded area between the two triangles and amounts to a lost revenue of
$35 million.

Suppose we have the following situation:

The product lifetime is 18 months (6 fiscal quarters).●

The product sales increase (linearly) at $10 million per quarter
independently of when the product is introduced (we suppose this is
because we can increase production and sales only at a fixed rate).

●

The product reaches its peak sales at a point in time that is independent of
when we introduce a product (because of external market factors that we
cannot control).

●

The product declines in sales (linearly) to the end of its life�a point in time
that is also independent of when we introduce the product (again due to
external market forces).

●

The simple profit and revenue model of Figure 1.13 shows us that we would lose
$35 million in sales in this situation due to a 3-month delay. Despite the obvious
problems with such a simple model (how can we introduce the same product
twice to compare the performance?), it is widely used in marketing. In the
electronics industry product lifetimes continue to shrink. In the PC industry it is
not unusual to have a product lifetime of 18 months or less. This means that it is
critical to achieve a rapid design time (or high product velocity) with no delays.

The last fixed cost shown in Figure 1.12 corresponds to an �insurance policy.�
When a company buys an ASIC part, it needs to be assured that it will always
have a back-up source, or second source , in case something happens to its first or
primary source. Established FPGA companies have a second source that
produces equivalent parts. With a custom ASIC you may have to do some
redesign to transfer your ASIC to the second source. However, for all ASIC
types, switching production to a second source will involve some cost.
Figure 1.12 assumes a second-source cost of $2000 for all types of ASIC (the
amount may be substantially more than this).

1.4.4 ASIC Variable Costs
Figure 1.14 shows a spreadsheet, �Variable Costs,� that calculates some example
part costs. This spreadsheet uses the terms and parameters defined below the
figure.

FIGURE 1.14 A spreadsheet, �Variable Costs,� to calculate the part cost (that is
the variable cost for a product using ASICs) for different ASIC technologies.

The wafer size increases every few years. From 1985 to 1990, 4-inch to
6-inch diameter wafers were common; equipment using 6-inch to 8-inch
wafers was introduced between 1990 and 1995; the next step is the 300 cm
or 12-inch wafer. The 12-inch wafer will probably take us to 2005.

●

The wafer cost depends on the equipment costs, process costs, and
overhead in the fabrication line. A typical wafer cost is between $1000 and
$5000, with $2000 being average; the cost declines slightly during the life
of a process and increases only slightly from one process generation to the
next.

●

Moore�s Law (after Gordon Moore of Intel) models the observation that
the number of transistors on a chip roughly doubles every 18 months. Not
all designs follow this law, but a �large� ASIC design seems to grow by a
factor of 10 every 5 years (close to Moore�s Law). In 1990 a large ASIC
design size was 10 k-gate, in 1995 a large design was about 100 k-gate, in
2000 it will be 1 M-gate, in 2005 it will be 10 M-gate.

●

The gate density is the number of gate equivalents per unit area
(remember: a gate equivalent, or gate, corresponds to a two-input NAND
gate).

●

The gate utilization is the percentage of gates that are on a die that we can
use (on a gate array we waste some gate space for interconnect).

●

The die size is determined by the design size (in gates), the gate density,●

and the utilization of the die.

The number of die per wafer depends on the die size and the wafer size
(we have to pack rectangular or square die, together with some test chips,
on to a circular wafer so some space is wasted).

●

The defect density is a measure of the quality of the fabrication process.
The smaller the defect density the less likely there is to be a flaw on any
one die. A single defect on a die is almost always fatal for that die. Defect
density usually increases with the number of steps in a process. A defect
density of less than 1 cm �2 is typical and required for a submicron CMOS
process.

●

The yield of a process is the key to a profitable ASIC company. The yield
is the fraction of die on a wafer that are good (expressed as a percentage).
Yield depends on the complexity and maturity of a process. A process may
start out with a yield of close to zero for complex chips, which then climbs
to above 50 percent within the first few months of production. Within a
year the yield has to be brought to around 80 percent for the average
complexity ASIC for the process to be profitable. Yields of 90 percent or
more are not uncommon.

●

The die cost is determined by wafer cost, number of die per wafer, and the
yield. Of these parameters, the most variable and the most critical to
control is the yield.

●

The profit margin (what you sell a product for, less what it costs you to
make it, divided by the cost) is determined by the ASIC company�s fixed
and variable costs. ASIC vendors that make and sell custom ASICs have
huge fixed and variable costs associated with building and running
fabrication facilities (a fabrication plant is a fab). FPGA companies are
typically fabless �they do not own a fab�they must pass on the costs of the
chip manufacture (plus the profit margin of the chip manufacturer) and the
development cost of the FPGA structure in the FPGA part cost. The
profitability of any company in the ASIC business varies greatly.

●

The price per gate (usually measured in cents per gate) is determined by
die costs and design size. It varies with design size and declines over time.

●

The part cost is determined by all of the preceding factors. As such it will
vary widely with time, process, yield, economic climate, ASIC size and
complexity, and many other factors.

●

As an estimate you can assume that the price per gate for any process technology
falls at about 20 % per year during its life (the average life of a CMOS process is
2�4 years, and can vary widely). Beyond the life of a process, prices can increase
as demand falls and the fabrication equipment becomes harder to maintain.
Figure 1.15 shows the price per gate for the different ASICs and process
technologies using the following assumptions:

For any new process technology the price per gate decreases by 40 % in
the first year, 30 % in the second year, and then remains constant.

●

A new process technology is introduced approximately every 2 years, with
feature size decreasing by a factor of two every 5 years as follows: 2 m m
in 1985, 1.5 m m in 1987, 1 m m in 1989, 0.8�0.6 m m in 1991�1993, 0.5
�0.35 m m in 1996�1997, 0.25�0.18 m m in 1998�2000.

●

CBICs and MGAs are introduced at approximately the same time and
price.

●

The price of a new process technology is initially 10 % above the process
that it replaces.

●

FPGAs are introduced one year after CBICs that use the same process
technology.

●

The initial FPGA price (per gate) is 10 percent higher than the initial price
for CBICs or MGAs using the same process technology.

●

From Figure 1.15 you can see that the successive introduction of new process
technologies every 2 years drives the price per gate down at a rate close to 30
percent per year. The cost figures that we have used in this section are very
approximate and can vary widely (this means they may be off by a factor of 2 but
probably are correct within a factor of 10). ASIC companies do use spreadsheet
models like these to calculate their costs.

FIGURE 1.15 Example price per gate figures.

Having decided if, and then which, ASIC technology is appropriate, you need to
choose the appropriate cell library. Next we shall discuss the issues surrounding
ASIC cell libraries: the different types, their sources, and their contents.

1.5 ASIC Cell Libraries
The cell library is the key part of ASIC design. For a programmable ASIC the
FPGA company supplies you with a library of logic cells in the form of a design
kit , you normally do not have a choice, and the cost is usually a few thousand
dollars. For MGAs and CBICs you have three choices: the ASIC vendor (the
company that will build your ASIC) will supply a cell library, or you can buy a
cell library from a third-party library vendor , or you can build your own cell
library.

The first choice, using an ASIC-vendor library , requires you to use a set of
design tools approved by the ASIC vendor to enter and simulate your design.
You have to buy the tools, and the cost of the cell library is folded into the NRE.
Some ASIC vendors (especially for MGAs) supply tools that they have
developed in-house. For some reason the more common model in Japan is to use
tools supplied by the ASIC vendor, but in the United States, Europe, and
elsewhere designers want to choose their own tools. Perhaps this has to do with
the relationship between customer and supplier being a lot closer in Japan than it
is elsewhere.

An ASIC vendor library is normally a phantom library �the cells are empty boxes,
or phantoms , but contain enough information for layout (for example, you would
only see the bounding box or abutment box in a phantom version of the cell in
Figure 1.3). After you complete layout you hand off a netlist to the ASIC vendor,
who fills in the empty boxes (phantom instantiation) before manufacturing your
chip.

The second and third choices require you to make a buy-or-build decision . If you
complete an ASIC design using a cell library that you bought, you also own the
masks (the tooling) that are used to manufacture your ASIC. This is called
customer-owned tooling (COT , pronounced �see-oh-tee�). A library vendor
normally develops a cell library using information about a process supplied by an
ASIC foundry . An ASIC foundry (in contrast to an ASIC vendor) only provides
manufacturing, with no design help. If the cell library meets the foundry
specifications, we call this a qualified cell library . These cell libraries are
normally expensive (possibly several hundred thousand dollars), but if a library is
qualified at several foundries this allows you to shop around for the most
attractive terms. This means that buying an expensive library can be cheaper in
the long run than the other solutions for high-volume production.

The third choice is to develop a cell library in-house. Many large computer and

electronics companies make this choice. Most of the cell libraries designed today
are still developed in-house despite the fact that the process of library
development is complex and very expensive.

However created, each cell in an ASIC cell library must contain the following:

A physical layout●

A behavioral model●

A Verilog/VHDL model●

A detailed timing model●

A test strategy●

A circuit schematic●

A cell icon●

A wire-load model●

A routing model●

For MGA and CBIC cell libraries we need to complete cell design and cell layout
and shall discuss this in Chapter 2. The ASIC designer may not actually see the
layout if it is hidden inside a phantom, but the layout will be needed eventually.
In a programmable ASIC the cell layout is part of the programmable ASIC
design (see Chapter 4).

The ASIC designer needs a high-level, behavioral model for each cell because
simulation at the detailed timing level takes too long for a complete ASIC design.
For a NAND gate a behavioral model is simple. A multiport RAM model can be
very complex. We shall discuss behavioral models when we describe Verilog and
VHDL in Chapter 10 and Chapter 11. The designer may require Verilog and
VHDL models in addition to the models for a particular logic simulator.

ASIC designers also need a detailed timing model for each cell to determine the
performance of the critical pieces of an ASIC. It is too difficult, too
time-consuming, and too expensive to build every cell in silicon and measure the
cell delays. Instead library engineers simulate the delay of each cell, a process
known as characterization . Characterizing a standard-cell or gate-array library
involves circuit extraction from the full-custom cell layout for each cell. The
extracted schematic includes all the parasitic resistance and capacitance elements.
Then library engineers perform a simulation of each cell including the parasitic
elements to determine the switching delays. The simulation models for the
transistors are derived from measurements on special chips included on a wafer
called process control monitors (PCMs) or drop-ins . Library engineers then use
the results of the circuit simulation to generate detailed timing models for logic
simulation. We shall cover timing models in Chapter 13.

All ASICs need to be production tested (programmable ASICs may be tested by
the manufacturer before they are customized, but they still need to be tested).
Simple cells in small or medium-size blocks can be tested using automated
techniques, but large blocks such as RAM or multipliers need a planned strategy.

We shall discuss test in Chapter 14.

The cell schematic (a netlist description) describes each cell so that the cell
designer can perform simulation for complex cells. You may not need the
detailed cell schematic for all cells, but you need enough information to compare
what you think is on the silicon (the schematic) with what is actually on the
silicon (the layout)�this is a layout versus schematic (LVS) check.

If the ASIC designer uses schematic entry, each cell needs a cell icon together
with connector and naming information that can be used by design tools from
different vendors. We shall cover ASIC design using schematic entry in
Chapter 9. One of the advantages of using logic synthesis (Chapter 12) rather
than schematic design entry is eliminating the problems with icons, connectors,
and cell names. Logic synthesis also makes moving an ASIC between different
cell libraries, or retargeting , much easier.

In order to estimate the parasitic capacitance of wires before we actually
complete any routing, we need a statistical estimate of the capacitance for a net in
a given size circuit block. This usually takes the form of a look-up table known as
a wire-load model . We also need a routing model for each cell. Large cells are
too complex for the physical design or layout tools to handle directly and we
need a simpler representation�a phantom �of the physical layout that still contains
all the necessary information. The phantom may include information that tells the
automated routing tool where it can and cannot place wires over the cell, as well
as the location and types of the connections to the cell.

1.6 Summary
In this chapter we have looked at the difference between full-custom ASICs,
semi-custom ASICs, and programmable ASICs. Table 1.3 summarizes their
different features. ASICs use a library of predesigned and precharacterized logic
cells. In fact, we could define an ASIC as a design style that uses a cell library
rather than in terms of what an ASIC is or what an ASIC does.

TABLE 1.3 Types of ASIC.

ASIC type Family member
Custom mask
layers

Custom logic
cells

Full-custom Analog/digital All Some
Semicustom Cell-based (CBIC) All None
 Masked gate array (MGA) Some None

Programmable
Field-programmable gate array
(FPGA)

None None

 Programmable logic device (PLD) None None

You can think of ICs like pizza. A full-custom pizza is built from scratch. You
can customize all the layers of a CBIC pizza, but from a predefined selection, and
it takes a while to cook. An MGA pizza uses precooked crusts with fixed sizes
and you choose only from a few different standard types on a menu. This makes
MGA pizza a little faster to cook and a little cheaper. An FPGA is rather like a
frozen pizza�you buy it at the supermarket in a limited selection of sizes and
types, but you can put it in the microwave at home and it will be ready in a few
minutes.

In each chapter we shall indicate the key concepts. In this chapter they are

The difference between full-custom and semicustom ASICs●

The difference between standard-cell, gate-array, and programmable
ASICs

●

The ASIC design flow●

Design economics including part cost, NRE, and breakeven volume●

The contents and use of an ASIC cell library●

Next, in Chapter 2, we shall take a closer look at the semicustom ASICs that
were introduced in this chapter.

1.7 Problems
1.1 (Break-even volumes, 60 min.) You need a spreadsheet program (such as
Microsoft Excel) for this problem.

a. Build a spreadsheet, �Break-even Analysis,� to generate Figure 1.11.●

b. Derive equations for the break-even volumes (there are three:
FPGA/MGA, FPGA/CBIC, and MGA/CBIC) and calculate their values.

●

c. Increase the FPGA part cost by $10 and use your spreadsheet to produce
the new break-even graph. Hint: (For users of Excel-like spreadsheets) use
the XY scatter plot option. Use the first column for the x -axis data.

●

d. Find the new break-even volumes (change the volume until the cost
becomes the same for two technologies).

●

e. Program your spreadsheet to automatically find the break-even volumes.
Now graph the break-even volume (for a choice between FPGA and CBIC)
for values of FPGA part costs ranging from $10�$50 and CBIC costs
ranging from $2�$10 (do not change the fixed costs from Figure 1.12).

●

f. Calculate the sensitivity of the break-even volumes to changes in the part
costs and fixed costs. There are three break-even volumes and each of
these is sensitive to two part costs and two fixed costs. Express your
answers in two ways: in equation form and as numbers (for the values in
Section 1.4.2 and Figure 1.11).

●

g. The costs in Figure 1.11 are not unrealistic. What can you say from your
answers if you are a defense contractor, primarily selling products in
volumes of less than 1000 parts? What if you are a PC board vendor
selling between 10,000 and 100,000 parts?

●

1.2 (Design productivity, 10 min.) Given the figures for the SPARCstation 1
ASICs described in Section 1.3 what was the productivity measured in
transistors/day? and measured in gates/day? Compare your answers with the
figures for productivity in Section 1.4.3 and explain any differences. How
accurate do you think productivity estimates are?

1.3 (ASIC package size, 30 min.) Assuming, for this problem, a gate density of
1.0 gate/mil 2 (see Section 15.4, �Estimating ASIC Size,� for a detailed
explanation of this figure), the maximum number of gates you can put in a
package is determined by the maximum die size for each of the packages shown
in Table 1.4. The maximum die size is determined by the package cavity size;
these are package-limited ASICs. Calculate the maximum number of I/O pads
that can be placed on a die for each package if the pad spacing is: (i) 5 mil, and

(ii) 10 mil. Compare your answers with the maximum numbers of pins (or leads)
on each package and comment. Now calculate the minimum number of gates that
you can put in each package determined by the minimum die size.

TABLE 1.4 Die size limits for ASIC packages.

Package 1 Number of pins or
leads

Maximum die size 2
(mil 2)

Minimum die size 3
(mil 2)

PLCC 44 320 ¥ 320 94 ¥ 94
PLCC 68 420 ¥ 420 154 ¥ 154
PLCC 84 395 ¥ 395 171 ¥ 171
PQFP 100 338 ¥ 338 124 ¥ 124
PQFP 144 350 ¥ 350 266 ¥ 266
PQFP 160 429 ¥ 429 248 ¥ 248
PQFP 208 501 ¥ 501 427 ¥ 427
CPGA 68 480 ¥ 480 200 ¥ 200
CPGA 84 370 ¥ 370 200 ¥ 200
CPGA 120 480 ¥ 480 175 ¥ 175
CPGA 144 470 ¥ 470 250 ¥ 250
CPGA 223 590 ¥ 590 290 ¥ 290
CPGA 299 590 ¥ 590 470 ¥ 470
PPGA 64 230 ¥ 230 120 ¥ 120
PPGA 84 380 ¥ 380 150 ¥ 150
PPGA 100 395 ¥ 395 150 ¥ 150
PPGA 120 395 ¥ 395 190 ¥ 190
PPGA 144 660 ¥ 655 230 ¥ 230
PPGA 180 540 ¥ 540 330 ¥ 330
PPGA 208 500 ¥ 500 395 ¥ 395

1.4 (ASIC vendor costs, 30 min.) There is a well-known saying in the ASIC
business: �We lose money on every part�but we make it up in volume.� This has a
serious side. Suppose Sumo Silicon currently has two customers: Mr. Big, who
currently buys 10,000 parts per week, and Ms. Smart, who currently buys 4800
parts per week. A new customer, Ms. Teeny (who is growing fast), wants to buy
1200 parts per week. Sumo�s costs are

wafer cost = $500 + ($250,000/ W),

where W is the number of wafer starts per week. Assume each wafer carries 200
chips (parts), all parts are identical, and the yield is

yield = 70 + 0.2 ¥ (W � 80) % (1.3)

Currently Sumo has a profit margin of 35 percent. Sumo is currently running at
100 wafer starts per week for Mr. Big and Ms. Smart. Sumo thinks they can get

50 cents more out of Mr. Big for his chips, but Ms. Smart won�t pay any more.
We can calculate how much Sumo can afford to lose per chip if they want
Ms. Teeny�s business really badly.

a. What is Sumo�s current yield?●

b. How many good parts is Sumo currently producing per week? (Hint: Is
this enough to supply Mr. Big and Ms. Smart?)

●

c. Calculate how many extra wafer starts per week we need to supply
Ms. Teeny (the yield will change�what is the new yield?). Think when you
give this answer.

●

d. What is Sumo�s increase in costs to supply Ms. Teeny?●

e. Multiply your answer to part d by 1.35 (to account for Sumo�s profit).
This is the increase in revenue we need to cover our increased costs to
supply Ms. Teeny.

●

f. Now suppose we charge Mr. Big 50 cents more per part. How much
extra revenue does that generate?

●

g. How much does Ms. Teeny�s extra business reduce the wafer cost?●

h. How much can Sumo Silicon afford to lose on each of Ms. Teeny�s
parts, cover its costs, and still make a 35 percent profit?

●

1.5 (Silicon, 20 min.) How much does a 6-inch silicon wafer weigh? a 12-inch
wafer? How much does a carrier (called a boat) that holds twenty 12-inch wafers
weigh? What implications does this have for manufacturing?

a. How many die that are 1-inch on a side does a 12-inch wafer hold? If
each die is worth $100, how much is a 20-wafer boat worth? If a factory is
processing 10 of these boats in different furnaces when the power is
interrupted and those wafers have to be scrapped, how much money is
lost?

●

b. The size of silicon factories (fabs or foundries) is measured in wafer
starts per week. If a factory is capable of 5000 12-inch wafer starts per
week, with an average die of 500 mil on a side that sells for $20 and 90
percent yield, what is the value in dollars/year of the factory production?
What fraction of the current gross national (or domestic) product
(GNP/GDP) of your country is that? If the yield suddenly drops from 90
percent to 40 percent (a yield bust) how much revenue is the company
losing per day? If the company has a cash reserve of $100 million and this
revenue loss drops �straight to the bottom line,� how long does it take for
the company to go out of business?

●

c. TSMC produced 2 million 6-inch wafers in 1996, how many 500 mil die
is that? TSMC�s $500 million Camas fab in Washington is scheduled to
produce 30,000 8-inch wafers per month by the year 2000 using a 0.35 mm
process. If a 1 Mb SRAM yields 1500 good die per 8-inch wafer and there
are 1700 gross die per wafer, what is the yield? What is the die size? If the
SRAM cell size is 7 mm 2 , what fraction of the die is used by the cells?
What is TSMC�s cost per bit for SRAM if the wafer cost is $2000? If a

●

16Mb DRAM on the same fab line uses a 16 mm 2 die, what is the cost per
bit for DRAM assuming the same yield?

1.6 (Simulation time, 30 min.) �. . . The system-level simulation used
approximately 4000 lines of SPARC assembly language . . . each simulation
clock was simulated in three real time seconds� (Sun Technology article).

a. With a 20 MHz clock how much slower is simulated time than real
time?

●

b. How long would it take to simulate all 4000 lines of test code? (Assume
one line of assembly code per cycle�a good approximation compared to the
others we are making.)

●

The article continues: �the entire system was simulated, running actual code,
including several milliseconds of SunOS execution. Four days after power-up,
SPARCstation 1 booted SunOS and announced: 'hello world' .�

c. How long would it take to simulate 5 ms of code?●

d. Find out how long it takes to boot a UNIX workstation in real time. How
many clock cycles is this?

●

e. The machine is not executing boot code all this time; you have to wait
for disk drives to spin-up, file systems checks to complete, and so on.
Make some estimates as to how much code is required to boot an operating
system (OS) and how many clock cycles this would take to execute.

●

The number of clock cycles you need to simulate to boot a system is somewhere
between your answers to parts d and e.

f. From your answers make an estimate of how long it takes to simulate
booting the OS. Does this seem reasonable?

●

g. Could the engineers have simulated a complete boot sequence?●

h. Do you think the engineers expected the system to boot on first silicon,
given the complexity of the system and how long they would have to wait
to simulate a complete boot sequence? Explain.

●

1.7 (Price per gate, 5 min.) Given the assumptions of Section 1.4.4 on the price
per gate of different ASIC technologies, what has to change for the price per gate
for an FPGA to be less than that for an MGA or CBIC�if all three use the same
process?

1.8 (Pentiums, 20 min.) Read the online tour of the Pentium Pro at
http://www.intel.com (adapted from a paper presented at the 1995 International
Solid-State Circuits Conference). This is not an ASIC design; notice the section
on full-custom circuit design. Notice also the comments on the use of 'assert'
statements in the HDL code that described the circuits. Find out the approximate
cost of the Intel Pentium (3.3 million transistors) and Pentium Pro (5.5 million
transistors) microprocessors.

a. Assuming there a four transistors per gate equivalent, what is the price●

per gate?

b. Find out the cost of a 1 Mb, 4 Mb, 8 Mb, or 16 Mb DRAM. Assuming
one transistor per memory bit, what is the price per gate of DRAM?

●

c. Considering that both have roughly the same die size, are just as
complex to design and to manufacture, why is there such a huge difference
in price per gate between microprocessors and DRAM?

●

1.9 (Inverse embedded arrays, 10 min.) A relatively new cousin of the embedded
gate array, the inverse-embedded gate array , is a cell-based ASIC that contains
an embedded gate-array megacell. List the features as well as the advantages and
disadvantages of this type of ASIC in the same way as for the other members of
the ASIC family in Section 1.1.

1.10 (0.5-gate design, 60 min.) It is a good idea to complete a 0.5-gate ASIC
design (an inverter connected between an input pad and an output pad) in the first
week (day) of class. Capture the commands in a report that shows all the steps
taken to create your chip starting from an empty directory� halfgate .

1.11 (Filenames, 30 min.) Start a list of filename extensions used in ASIC design.
Table 1.5 shows an example. Expand this list as you use more tools.

TABLE 1.5 CAD tool filename extensions.
Extension Description From To

.ini
Viewlogic startup file,
library
search paths, etc.

Viewlogic/Viewdraw Internal tools use

other Viewlogic tools
.wir Schematic file

1. PLCC = plastic leaded chip carrier, PQFP = plastic quad flat pack, CPGA =
ceramic pin-grid array, PPGA = plastic pin-grid array.

2. Maximum die size is not standard and varies between manufacturers.

3. Minimum die size is an estimate based on bond length restrictions.

1.8 Bibliography
The Addison-Wesley VLSI Design Series covers all aspects of VLSI design.
Mead and Conway [1980] is an introduction to VLSI design. Glasser and
Dobberpuhl [1985] deal primarily with NMOS technology, but their book is still
a valuable circuit design reference. Bakoglu�s book [1990] concentrates on
system interconnect issues. Both editions of Weste and Eshraghian [1993]
describe full-custom VLSI design.

Other books on CMOS design include books by Kang and Leblebici [1996],
Wolf [1994], Price [1994], Hurst [1992], and Shoji [1988]. Alvarez [1993] covers
BiCMOS, but concentrates more on technology than design. Embabi, Bellaouar,
and Elmasry [1993] also cover BiCMOS design from a similar perspective.
Elmasry�s book [1994] contains a collection of papers on BiCMOS design.
Einspruch and Hilbert [1991]; Huber and Rosneck [1991]; and Veendrick [1992]
are introductions to ASIC design for nontechnical readers. Long and Butner
[1990] cover gallium arsenide (GaAs) IC design. Most books on CMOS and
ASIC design are classified in the TK7874 section of the Library of Congress
catalog (T is for technology).

Several journals and magazines publish articles on ASICs and ASIC design. The
IEEE Transactions on Very Large Scale Integration (VLSI) Systems (ISSN
1063-8210, TK7874.I3273, 1993�) is dedicated to VLSI design. The IEEE
Custom Integrated Circuits Conference (ISSN 0886-5930, TK7874.C865, 1979�)
and the IEEE International ASIC Conference (TK7874.6.I34a, 1988�1991;
TK7874.6.I35, ISSN 1063-0988, 1991�) both cover the design and use of ASICs.
EE Times (ISSN 0192-1541, http://techweb.cmp.com/eet) is a newsletter that
includes a wide-ranging coverage of system design, ASICs, and ASIC design.
Integrated System Design (ISSN 1080-2797), formerly ASIC & EDA) is a
monthly publication that includes ASIC design topics. High Performance
Systems (ISSN 0887-9664), formerly VLSI Design (ISSN 0279-2834), deals
with system design including the use of ASICs. EDN (ISSN 0012-7515,
http://www.ednmag.com) has broader coverage of the electronics industry,
including articles on VLSI and systems design. Computer Design (ISSN
0010-4566) is targeted at systems-level design but includes coverage of ASICs
(for example, a special issue in August 1996 was devoted to ASIC design).

The Electronic Industries Association (EIA) has produced a standard,
JESD12-1B, �Terms and definitions for gate arrays and cell-based digital
integrated circuits,� to define terms and definitions.

University Video Communication (http://www.uvc.com) produces several
videotapes on computer science and engineering topics including ASIC design.
Maly�s book [1987] is a picture book containing drawings and cross-sections of
devices, and shows how a transistor is fabricated.

It is difficult to obtain detailed technical information from ASIC companies and
vendors apart from the glossy brochures (sparkle sheets). It used to be possible
to obtain data books on cell libraries (now these are large and difficult to
produce, and are often only available in electronic form) as well as design
guidelines and handbooks. Fortunately there are now many resources available
on the World Wide Web, which are, of course, constantly changing. EDAC
(Electronic Design Automation Companies) has a Web page (
http://www.edac.org) with links to most of the EDA companies. The Electrical
Engineering page on the World Wide Web (E2W3) (http://www.e2w3.com)
contains links to many ASIC related areas, including distributors, ASIC
companies, and semiconductor companies. SEMATECH (Semiconductor
Manufacturing Technology) is a nonprofit consortium of U.S. semiconductor
companies and has a Web page (http://www.sematech.org) that includes links to
major semiconductor manufacturers. The MIT Semiconductor Subway (
http://www-mtl.mit.edu) is more oriented toward devices, processes, and
materials but contains links to other VLSI industrial and academic areas. There is
a list of EDA companies at http://www.yahoo.com under
Business_and_Economy in
Companies/Computers/Software/Graphics/CAD/IC_Design .

The MOS Implementation Service (MOSIS), located at the Information Sciences
Institute (ISI) at the University of Southern California (USC), is a �silicon broker�
for universities in the United States and also provides commercial access to
fabrication facilities (http://www.isi.edu). Professor Don Bouldin maintains The
Microelectronic Systems Newsletter, formerly the MOSIS Users Group (MUG)
Newsletter, at http://www-ece.engr.utk.edu/ece .

NASA (http://nppp.jpl.nasa.gov/dmg/jpl/loc/asic) has an extensive online ASIC
guide, developed by the Office of Safety and Mission Assurance, that covers
ASIC management, vendor evaluation, design, and part acceptance.

1.9 References
Alvarez, A. R. (Ed.). 1993. BiCMOS Technology and Applications. Norwell,
MA: Kluwer. ISBN 0-7923-9384-8. TK7871.99.M44.

Bakoglu, H. B. 1990. Circuits, Interconnections, and Packaging for VLSI.
Reading, MA: Addison-Wesley, 527 p. ISBN 0-86341-165-7. TK7874.B345.
Based on a Stanford Ph.D. thesis and contains chapters on: devices and
interconnections, packaging, transmission lines, cross talk, clocking of
high-speed systems, system level performance.

Einspruch N. G., and J. L. Hilbert (Eds.). 1991. Application Specific Integrated
Circuit (ASIC) Technology. San Diego, CA: Academic Press. ISBN
0122341236. TK7874.V56 vol. 23. Includes: �Introduction to ASIC technology,�
Hilbert; �Market dynamics of the ASIC revolution,� Collett; �Marketing ASICs,�
Chakraverty; �Design and architecture of ASIC products,� Hickman et al.; �Model
and library development,� Lubhan; �Computer-aided design tools and systems,�
Rowson; �ASIC manufacturing,� Montalbo; �Test and testability of ASICs,�
Rosqvist; �Electronic packaging for ASICs,� Herrell and Prokop; �Application and
selection of ASICs,� Mitchell; �Designing with ASICs,� Wilkerson; �Quality and
reliability,� Young.

Elmasry, M. I. 1994. BiCMOS Integrated Circuit Design: with Analog, Digital,
and Smart Power Applications. New York: IEEE Press, ISBN 0780304306.
TK7871.99.M44.B53.

Embabi, S. H. K., A. Bellaouar, and M. I. Elmasry. 1993. Digital BiCMOS
Integrated Circuit Design. Norwell: MA: Kluwer, 398 p. ISBN 0-7923-9276-0.
TK7874.E52.

Glasser, L. A., and D. W. Dobberpuhl. 1985. The Design and Analysis of VLSI
Circuits. Reading, MA: Addison-Wesley, 473 p. ISBN 0-201-12580-3.
TK7874.G573. Detailed analysis of circuits, but largely nMOS.

Huber, J. P., and M. W. Rosneck. 1991. Successful ASIC Design the First Time
Through. New York: Van Nostrand Reinhold, 200 p. ISBN 0-442-00312-9.
TK7874.H83.

Hurst, S. L. 1992. Custom VLSI Microelectronics. Englewood Cliffs, NJ:
Prentice-Hall, 466 p. ISBN 0-13-194416-9. TK7874.H883.

Kang, S-M, and Y. Leblebici. 1996. CMOS Digital Integrated Circuits: Analysis
and Design. New York: McGraw-Hill, 614 p. ISBN 0070380465.

Long, S. I., and S. E. Butner. 1990. Gallium Arsenide Digital Integrated Circuit
Design. New York: McGraw-Hill, 486 p. ISBN 0-07-038687-0. TK7874.L66.

Maly, W. 1987. Atlas of IC Technologies: An Introduction to VLSI Processes.
Menlo Park, CA: Benjamin-Cummings, 340 p. ISBN 0-8053-6850-7.
TK7874.M254. Cross-sectional drawings showing construction of nMOS and
CMOS processes.

Mead, C. A., and L. A. Conway. 1980. Introduction to VLSI Systems. Reading,
MA: Addison-Wesley, 396 p. ISBN 0-201-04358-0. TK7874.M37.

Price, T. E. 1994. Introduction to VLSI Technology. Englewood Cliffs, NJ:
Prentice-Hall, 280 p. ISBN 0-13-500422-5. TK7874.P736.

Shoji, M. 1988. CMOS Digital Circuit Technology. Englewood Cliffs, NJ:
Prentice-Hall, 434 p. ISBN 0131388436. TK7871.99.M44. See also Shoji, M.,
High Speed Digital Circuits, Reading, MA: Addison-Wesley, 1996, 360 p., ISBN
0-201-63483-X, TK7874.65.S56

Weste, N. H. E., and K. Eshraghian. 1993. Principles of CMOS VLSI Design: A
Systems Perspective. 2nd ed. Reading, MA: Addison-Wesley, 713 p. ISBN
0-201-53376-6. TK7874.W46. Concentrates on full-custom design.

Wolf, W. H. 1994. Modern VLSI Design: A Systems Approach. Englewood
Cliffs, NJ: Prentice-Hall, 468 p. ISBN 0-13-588377-6. TK7874.65.W65.

Veendrick, H. J. M. 1992. MOS ICs from Basics to ASICs. New York: VCH,
ISBN 1-56081197-8. TK7874.V397.

CMOS LOGIC
A CMOS transistor (or device) has four terminals: gate , source , drain , and a
fourth terminal that we shall ignore until the next section. A CMOS transistor is a
switch. The switch must be conducting or on to allow current to flow between the
source and drain terminals (using open and closed for switches is confusing�for
the same reason we say a tap is on and not that it is closed). The transistor source
and drain terminals are equivalent as far as digital signals are concerned�we do
not worry about labeling an electrical switch with two terminals.

V AB is the potential difference, or voltage, between nodes A and B in a
circuit; V AB is positive if node A is more positive than node B.

●

Italics denote variables; constants are set in roman (upright) type.
Uppercase letters denote DC, large-signal, or steady-state voltages.

●

For TTL the positive power supply is called VCC (V CC or V CC). The 'C'
denotes that the supply is connected indirectly to the collectors of the npn
bipolar transistors (a bipolar transistor has a collector, base, and emitter
�corresponding roughly to the drain, gate, and source of an MOS
transistor).

●

Following the example of TTL we used VDD (V DD or V DD) to denote
the positive supply in an NMOS chip where the devices are all n -channel
transistors and the drains of these devices are connected indirectly to the
positive supply. The supply nomenclature for NMOS chips has stuck for
CMOS.

●

VDD is the name of the power supply node or net; V DD represents the
value (uppercase since V DD is a DC quantity). Since V DD is a variable, it
is italic (words and multiletter abbreviations use roman�thus it is V DD , but
V drain).

●

Logic designers often call the CMOS negative supply VSS or VSS even if
it is actually ground or GND. I shall use VSS for the node and V SS for the
value.

●

CMOS uses positive logic �VDD is logic '1' and VSS is logic '0'.●

We turn a transistor on or off using the gate terminal. There are two kinds of
CMOS transistors: n -channel transistors and p -channel transistors. An n
-channel transistor requires a logic '1' (from now on I�ll just say a '1') on the gate

Last Edited by SP 14112004

to make the switch conducting (to turn the transistor on). A p -channel transistor
requires a logic '0' (again from now on, I�ll just say a '0') on the gate to make the
switch nonconducting (to turn the transistor off). The p -channel transistor
symbol has a bubble on its gate to remind us that the gate has to be a '0' to turn
the transistor on . All this is shown in Figure 2.1(a) and (b).

FIGURE 2.1 CMOS transistors as switches. (a) An n -channel transistor. (b) A p
-channel transistor. (c) A CMOS inverter and its symbol (an equilateral triangle
and a circle).

If we connect an n -channel transistor in series with a p -channel transistor, as
shown in Figure 2.1(c), we form an inverter . With four transistors we can form a
two-input NAND gate (Figure 2.2a). We can also make a two-input NOR gate
(Figure 2.2b). Logic designers normally use the terms NAND gate and logic gate
(or just gate), but I shall try to use the terms NAND cell and logic cell rather than
NAND gate or logic gate in this chapter to avoid any possible confusion with the
gate terminal of a transistor.

FIGURE 2.2 CMOS logic. (a) A two-input NAND logic cell. (b) A two-input
NOR logic cell. The n -channel and p -channel transistor switches implement the
'1's and '0's of a Karnaugh map.

2.1 CMOS Transistors
2.2 The CMOS Process
2.3 CMOS Design Rules
2.4 Combinational Logic Cells
2.5 Sequential Logic Cells
2.6 Datapath Logic Cells
2.7 I/O Cells
2.8 Cell Compilers
2.9 Summary

2.10 Problems
2.11 Bibliography
2.12 References

2.1 CMOS Transistors
Figure 2.3 illustrates how electrons and holes abandon their dopant atoms leaving
a depletion region around a transistor�s source and drain. The region between
source and drain is normally nonconducting. To make an n -channel transistor
conducting, we must apply a positive voltage V GS (the gate voltage with respect
to the source) that is greater than the n -channel transistor threshold voltage , V t n
(a typical value is 0.5 V and, as far as we are presently concerned, is a constant).
This establishes a thin (ª 50 Å) conducting channel of electrons under the gate.
MOS transistors can carry a very small current (the subthreshold current �a few
microamperes or less) with V GS < V t n , but we shall ignore this. A transistor
can be conducting (V GS > V t n) without any current flowing. To make current
flow in an n -channel transistor we must also apply a positive voltage, V DS , to
the drain with respect to the source. Figure 2.3 shows these connections and the
connection to the fourth terminal of an MOS transistor�the bulk (well , tub , or
substrate) terminal. For an n -channel transistor we must connect the bulk to the
most negative potential, GND or VSS, to reverse bias the bulk-to-drain and
bulk-to-source pn -diodes. The arrow in the four-terminal n -channel transistor
symbol in Figure 2.3 reflects the polarity of these pn -diodes.

FIGURE 2.3 An n -channel MOS transistor. The gate-oxide thickness, T OX , is
approximately 100 angstroms (0.01 m m). A typical transistor length, L = 2 l .
The bulk may be either the substrate or a well. The diodes represent pn
-junctions that must be reverse-biased.

The current flowing in the transistor is

current (amperes) = charge (coulombs) per unit time (second). (2.1)

We can express the current in terms of the total charge in the channel, Q (imagine
taking a picture and counting the number of electrons in the channel at that
instant). If t f (for time of flight �sometimes called the transit time) is the time
that it takes an electron to cross between source and drain, the drain-to-source
current, I DSn , is

I DSn = Q / t f . (2.2)

We need to find Q and t f . The velocity of the electrons v (a vector) is given by
the equation that forms the basis of Ohm�s law:

v = � m n E , (2.3)

where m n is the electron mobility (m p is the hole mobility) and E is the electric

field (with units Vm �1).

Typical carrier mobility values are m n = 500�1000 cm 2 V �1 s �1 and m p = 100

�400 cm 2 V �1 s �1 . Equation 2.3 is a vector equation, but we shall ignore the
vertical electric field and concentrate on the horizontal electric field, E x , that
moves the electrons between source and drain. The horizontal component of the
electric field is E x = � V DS / L, directed from the drain to the source, where L is
the channel length (see Figure 2.3). The electrons travel a distance L with
horizontal velocity v x = � m n E x , so that

 L L 2

t f = ��� = ������� . (2.4)

 v x m n V DS

Next we find the channel charge, Q . The channel and the gate form the plates of
a capacitor, separated by an insulator�the gate oxide. We know that the charge on
a linear capacitor, C, is Q = C V . Our lower plate, the channel, is not a linear
conductor. Charge only appears on the lower plate when the voltage between the
gate and the channel, V GC , exceeds the n -channel threshold voltage. For our
nonlinear capacitor we need to modify the equation for a linear capacitor to the
following:

Q = C (V GC � V t n) . (2.5)

The lower plate of our capacitor is resistive and conducting current, so that the
potential in the channel, V GC , varies. In fact, V GC = V GS at the source and V

GC = V GS � V DS at the drain. What we really should do is find an expression for
the channel charge as a function of channel voltage and sum (integrate) the
charge all the way across the channel, from x = 0 (at the source) to x = L (at the
drain). Instead we shall assume that the channel voltage, V GC (x), is a linear
function of distance from the source and take the average value of the charge,
which is thus

Q = C [(V GS � V t n) � 0.5 V DS] . (2.6)

The gate capacitance, C , is given by the formula for a parallel-plate capacitor
with length L , width W , and plate separation equal to the gate-oxide thickness,
T ox . Thus the gate capacitance is

 WL e ox

C = ������ = WLC ox , (2.7)

 T ox

where e ox is the gate-oxide dielectric permittivity. For silicon dioxide, Si0 2 , e ox

ª 3.45 ¥ 10 �11 Fm �1 , so that, for a typical gate-oxide thickness of 100 Å (1 Å = 1
angstrom = 0.1 nm), the gate capacitance per unit area, C ox ª 3 f F m m �2 .

Now we can express the channel charge in terms of the transistor parameters,

Q = WL C ox [(V GS � V t n) � 0.5 V DS] . (2.8)

Finally, the drain�source current is

I DSn = Q/ t f

 = (W/L) m n C ox [(V GS � V t n) � 0.5 V DS] V DS

 = (W/L)k ' n [(V GS � V t n) � 0.5 V DS] V DS . (2.9)

The constant k ' n is the process transconductance parameter (or intrinsic
transconductance):

k ' n = m n C ox . (2.10)

We also define b n , the transistor gain factor (or just gain factor) as

b n = k ' n (W/L) . (2.11)

The factor W/L (transistor width divided by length) is the transistor shape factor .

Equation 2.9 describes the linear region (or triode region) of operation. This
equation is valid until V DS = V GS � V t n and then predicts that I DS decreases
with increasing V DS , which does not make physical sense. At V DS = V GS � V t
n = V DS (sat) (the saturation voltage) there is no longer enough voltage between
the gate and the drain end of the channel to support any channel charge. Clearly a
small amount of charge remains or the current would go to zero, but with very
little free charge the channel resistance in a small region close to the drain
increases rapidly and any further increase in V DS is dropped over this region.
Thus for V DS > V GS � V t n (the saturation region , or pentode region, of
operation) the drain current IDS remains approximately constant at the saturation

current , I DSn (sat) , where

I DSn (sat) = (b n /2)(V GS � V t n) 2 ; V GS > V t n . (2.12)

Figure 2.4 shows the n -channel transistor I DS �V DS characteristics for a generic
0.5 m m CMOS process that we shall call G5 . We can fit Eq. 2.12 to the
long-channel transistor characteristics (W = 60 m m, L = 6 m m) in Figure 2.4(a).
If I DSn (sat) = 2.5 mA (with V DS = 3.0 V, V GS = 3.0 V, V t n = 0.65 V, T ox
=100 Å), the intrinsic transconductance is

 2(L/W) I DSn (sat)

k ' n = ������������������� (2.13)

 (V GS � V t n) 2

 2 (6/60) (2.5 ¥ 10 �3)

 = ������������������

 (3.0 � 0.65) 2

 = 9.05 ¥ 10 �5 AV �2

or approximately 90 m AV �2 . This value of k ' n , calculated in the saturation
region, will be different (typically lower by a factor of 2 or more) from the value
of k ' n measured in the linear region. We assumed the mobility, m n , and the
threshold voltage, V t n , are constants�neither of which is true, as we shall see in
Section 2.1.2.

For the p -channel transistor in the G5 process, I DSp (sat) = �850 m A (V DS =
�3.0 V, V GS = �3.0 V, V t p = �0.85 V, W = 60 m m, L = 6 m m). Then

 2 (L/W) (� I DSp (sat))

k ' p = ������������������� (2.14)

 (V GS � V t p) 2

 2 (6/60) (850 ¥ 10 �6)

 = ������������������

 (�3.0 � (�0.85)) 2

 = 3.68 ¥ 10 �5 AV �2

The next section explains the signs in Eq. 2.14.

(a) (b)

FIGURE 2.4 MOS n -channel
transistor characteristics for a generic
0.5 m m process (G5). (a) A
short-channel transistor, with W = 6 m
m and L = 0.6 m m (drawn) and a
long-channel transistor (W = 60 m m,
L = 6 m m) (b) The 6/0.6
characteristics represented as a
surface. (c) A long-channel transistor
obeys a square-law characteristic
between I DS and V GS in the
saturation region (V DS = 3 V). A
short-channel transistor shows a more
linear characteristic due to velocity
saturation. Normally, all of the
transistors used on an ASIC have short
channels.

(c)

2.1.1 P-Channel Transistors

The source and drain of CMOS transistors look identical; we have to know which
way the current is flowing to distinguish them. The source of an n -channel
transistor is lower in potential than the drain and vice versa for a p -channel
transistor. In an n -channel transistor the threshold voltage, V t n , is normally
positive, and the terminal voltages V DS and V GS are also usually positive. In a p
-channel transistor V t p is normally negative and we have a choice: We can write
everything in terms of the magnitudes of the voltages and currents or we can use
negative signs in a consistent fashion.

Here are the equations for a p -channel transistor using negative signs:

I DSp =
�k ' p (W/L) [(V GS � V t p) � 0.5 V DS] V DS ; V DS > V GS
� V t p

(2.15)

I DSp (sat) = � b p /2 (V GS � V t p) 2 ; V DS < V GS � V t p .

In these two equations V t p is negative, and the terminal voltages V DS and V GS
are also normally negative (and �3 V < �2 V, for example). The current I DSp is
then negative, corresponding to conventional current flowing from source to
drain of a p -channel transistor (and hence the negative sign for I DSp (sat) in
Eq. 2.14).

2.1.2 Velocity Saturation

For a deep submicron transistor, Eq. 2.12 may overestimate the drain�source
current by a factor of 2 or more. There are three reasons for this error. First, the
threshold voltage is not constant. Second, the actual length of the channel (the
electrical or effective length, often written as L eff) is less than the drawn (mask)
length. The third reason is that Eq. 2.3 is not valid for high electric fields. The
electrons cannot move any faster than about v max n = 10 5 ms �1 when the electric

field is above 10 6 Vm �1 (reached when 1 V is dropped across 1 m m); the
electrons become velocity saturated . In this case t f = L eff / v max n , the drain
�source saturation current is independent of the transistor length, and Eq. 2.12
becomes

I DSn (sat) =
Wv max n C ox (V GS � V t n) ; V DS > V DS (sat) (velocity
saturated).

(2.16)

We can see this behavior for the short-channel transistor characteristics in
Figure 2.4(a) and (c).

Transistor current is often specified per micron of gate width because of the form
of Eq. 2.16. As an example, suppose I DSn (sat) / W = 300 m A m m �1 for the n
-channel transistors in our G5 process (with V DS = 3.0 V, V GS = 3.0 V, V t n =
0.65 V, L eff = 0.5 m m and T ox = 100 Å). Then E x ª (3 � 0.65) V / 0.5 m m ª 5 V

m m �1 ,

 I DSn (sat) /W

v max n = ��������������� (2.17)

 C ox (V GS � V t n)

 (300 ¥ 10 �6) (1 ¥ 10 6)

 = ������������������

 (3.45 ¥ 10 �3) (3 � 0.65)

 = 37,000 ms �1

and t f ª 0.5 m m/37,000 ms �1 ª 13 ps.

The value for v max n is lower than the 10 5 ms �1 we expected because the carrier
velocity is also lowered by mobility degradation due the vertical electric field
�which we have ignored. This vertical field forces the carriers to keep �bumping�
in to the interface between the silicon and the gate oxide, slowing them down.

2.1.3 SPICE Models

The simulation program SPICE (which stands for Simulation Program with
Integrated Circuit Emphasis) is often used to characterize logic cells. Table 2.1
shows a typical set of model parameters for our G5 process. The SPICE
parameter KP (given in m AV �2) corresponds to k ' n (and k ' p). SPICE
parameters VT0 and TOX correspond to V t n (and V t p), and T ox . SPICE

parameter U0 (given in cm 2 V �1 s �1) corresponds to the ideal bulk mobility
values, m n (and m p). Many of the other parameters model velocity saturation

and mobility degradation (and thus the effective value of k ' n and k ' p).

TABLE 2.1 SPICE parameters for a generic 0.5 m m process, G5 (0.6 m m
drawn gate length). The n-channel transistor characteristics are shown in
Figure 2.4.
.MODEL CMOSN NMOS LEVEL=3 PHI=0.7 TOX=10E-09 XJ=0.2U TPG=1
VTO=0.65 DELTA=0.7
+ LD=5E-08 KP=2E-04 UO=550 THETA=0.27 RSH=2 GAMMA=0.6
NSUB=1.4E+17 NFS=6E+11
+ VMAX=2E+05 ETA=3.7E-02 KAPPA=2.9E-02 CGDO=3.0E-10
CGSO=3.0E-10 CGBO=4.0E-10
+ CJ=5.6E-04 MJ=0.56 CJSW=5E-11 MJSW=0.52 PB=1
.MODEL CMOSP PMOS LEVEL=3 PHI=0.7 TOX=10E-09 XJ=0.2U TPG=-1
VTO=-0.92 DELTA=0.29
+ LD=3.5E-08 KP=4.9E-05 UO=135 THETA=0.18 RSH=2 GAMMA=0.47
NSUB=8.5E+16 NFS=6.5E+11
+ VMAX=2.5E+05 ETA=2.45E-02 KAPPA=7.96 CGDO=2.4E-10
CGSO=2.4E-10 CGBO=3.8E-10
+ CJ=9.3E-04 MJ=0.47 CJSW=2.9E-10 MJSW=0.505 PB=1

2.1.4 Logic Levels

Figure 2.5 shows how to use transistors as logic switches. The bulk connection
for the n -channel transistor in Figure 2.5(a�b) is a p -well. The bulk connection
for the p -channel transistor is an n -well. The remaining connections show what
happens when we try and pass a logic signal between the drain and source
terminals.

FIGURE 2.5 CMOS logic levels. (a) A strong '0'. (b) A weak '1'. (c) A weak '0'.
(d) A strong '1'. (V t n is positive and V t p is negative.) The depth of the
channels is greatly exaggerated.

In Figure 2.5(a) we apply a logic '1' (or VDD �I shall use these interchangeably)
to the gate and a logic '0' (V SS) to the source (we know it is the source since
electrons must flow from this point, since V SS is the lowest voltage on the chip).
The application of these voltages makes the n -channel transistor conduct current,
and electrons flow from source to drain.

Suppose the drain is initially at logic '1'; then the n -channel transistor will begin
to discharge any capacitance that is connected to its drain (due to another logic
cell, for example). This will continue until the drain terminal reaches a logic '0',
and at that time V GD and V GS are both equal to V DD , a full logic '1'. The
transistor is strongly conducting now (with a large channel charge, Q , but there

is no current flowing since V DS = 0 V). The transistor will strongly object to
attempts to change its drain terminal from a logic '0'. We say that the logic level
at the drain is a strong '0'.

In Figure 2.5(b) we apply a logic '1' to the drain (it must now be the drain since
electrons have to flow toward a logic '1'). The situation is now quite different�the
transistor is still on but V GS is decreasing as the source voltage approaches its
final value. In fact, the source terminal never gets to a logic '1'�the source will
stop increasing in voltage when V GS reaches V t n . At this point the transistor is
very nearly off and the source voltage creeps slowly up to V DD � V t n . Because
the transistor is very nearly off, it would be easy for a logic cell connected to the
source to change the potential there, since there is so little channel charge. The
logic level at the source is a weak '1'. Figure 2.5(c�d) show the state of affairs for
a p -channel transistor is the exact reverse or complement of the n -channel
transistor situation.

In summary, we have the following logic levels:

An n -channel transistor provides a strong '0', but a weak '1'.●

A p -channel transistor provides a strong '1', but a weak '0'.●

Sometimes we refer to the weak versions of '0' and '1' as degraded logic levels .
In CMOS technology we can use both types of transistor together to produce
strong '0' logic levels as well as strong '1' logic levels.

2.2 The CMOS Process
Figure 2.6 outlines the steps to create an integrated circuit. The starting material
is silicon, Si, refined from quartzite (with less than 1 impurity in 10 10 silicon
atoms). We draw a single-crystal silicon boule (or ingot) from a crucible
containing a melt at approximately 1500 °C (the melting point of silicon at 1 atm.
pressure is 1414 °C). This method is known as Czochralski growth. Acceptor (p
-type) or donor (n -type) dopants may be introduced into the melt to alter the
type of silicon grown.

The boule is sawn to form thin circular wafers (6, 8, or 12 inches in diameter, and
typically 600 m m thick), and a flat is ground (the primary flat), perpendicular to
the <110> crystal axis�as a �this edge down� indication. The boule is drawn so
that the wafer surface is either in the (111) or (100) crystal planes. A smaller
secondary flat indicates the wafer crystalline orientation and doping type. A
typical submicron CMOS processes uses p -type (100) wafers with a resistivity of
approximately 10 W cm�this type of wafer has two flats, 90° apart. Wafers are
made by chemical companies and sold to the IC manufacturers. A blank 8-inch
wafer costs about $100.

To begin IC fabrication we place a batch of wafers (a wafer lot) on a boat and
grow a layer (typically a few thousand angstroms) of silicon dioxide , SiO 2 ,
using a furnace. Silicon is used in the semiconductor industry not so much for the
properties of silicon, but because of the physical, chemical, and electrical
properties of its native oxide, SiO 2 . An IC fabrication process contains a series
of masking steps (that in turn contain other steps) to create the layers that define
the transistors and metal interconnect.

FIGURE 2.6 IC fabrication. Grow crystalline silicon (1); make a wafer (2�3);
grow a silicon dioxide (oxide) layer in a furnace (4); apply liquid photoresist
(resist) (5); mask exposure (6); a cross-section through a wafer showing the
developed resist (7); etch the oxide layer (8); ion implantation (9�10); strip the
resist (11); strip the oxide (12). Steps similar to 4�12 are repeated for each layer
(typically 12�20 times for a CMOS process).

Each masking step starts by spinning a thin layer (approximately 1 m m) of liquid
photoresist (resist) onto each wafer. The wafers are baked at about 100 °C to
remove the solvent and harden the resist before being exposed to ultraviolet (UV)
light (typically less than 200 nm wavelength) through a mask . The UV light
alters the structure of the resist, allowing it to be removed by developing. The
exposed oxide may then be etched (removed). Dry plasma etching etches in the
vertical direction much faster than it does horizontally (an anisotropic etch). Wet
etch techniques are usually isotropic . The resist functions as a mask during the
etch step and transfers the desired pattern to the oxide layer.

Dopant ions are then introduced into the exposed silicon areas. Figure 2.6
illustrates the use of ion implantation . An ion implanter is a cross between a TV
and a mass spectrometer and fires dopant ions into the silicon wafer. Ions can
only penetrate materials to a depth (the range , normally a few microns) that
depends on the closely controlled implant energy (measured in keV�usually
between 10 and 100 keV; an electron volt, 1 eV, is 1.6 ¥ 10 �19 J). By using layers
of resist, oxide, and polysilicon we can prevent dopant ions from reaching the
silicon surface and thus block the silicon from receiving an implant . We control
the doping level by counting the number of ions we implant (by integrating the
ion-beam current). The implant dose is measured in atoms/cm 2 (typical doses are
from 10 13 to 10 15 cm �2). As an alternative to ion implantation we may instead
strip the resist and introduce dopants by diffusion from a gaseous source in a
furnace.

Once we have completed the transistor diffusion layers we can deposit layers of
other materials. Layers of polycrystalline silicon (polysilicon or poly), SiO 2 ,
and silicon nitride (Si 3 N 4), for example, may be deposited using chemical

vapor deposition (CVD). Metal layers can be deposited using sputtering . All
these layers are patterned using masks and similar photolithography steps to
those shown in Figure 2.6.

TABLE 2.2 CMOS process layers.

Mask/layer name
Derivation from
drawn layers

Alternative names for
mask/layer

MOSIS mask
label

n -well = nwell 1 bulk, substrate, tub, n
-tub, moat

CWN

p -well = pwell 1
bulk, substrate, tub, p
-tub, moat

CWP

active = pdiff + ndiff
thin oxide, thinox, island,
gate oxide

CAA

polysilicon = poly poly, gate CPG
n -diffusion implant
2 = grow (ndiff) ndiff, n -select, nplus, n+ CSN

p -diffusion implant
2

= grow (pdiff) pdiff, p -select, pplus, p+ CSP

contact = contact
contact cut, poly contact,
diffusion contact

CCP and
CCA 3

metal1 = m1 first-level metal CMF
metal2 = m2 second-level metal CMS

via2 = via2
metal2/metal3 via,
m2/m3 via

CVS

metal3 = m3 third-level metal CMT

glass = glass
passivation, overglass,
pad

COG

Table 2.2 shows the mask layers (and their relation to the drawn layers) for a
submicron, silicon-gate, three-level metal, self-aligned, CMOS process . A
process in which the effective gate length is less than 1 m m is referred to as a
submicron process . Gate lengths below 0.35 m m are considered in the
deep-submicron regime.

Figure 2.7 shows the layers that we draw to define the masks for the logic cell of
Figure 1.3. Potential confusion arises because we like to keep layout simple but
maintain a �what you see is what you get� (WYSIWYG) approach. This means
that the drawn layers do not correspond directly to the masks in all cases.

(a) nwell (b) pwell (c) ndiff (d) pdiff

(e) poly (f) contact (g) m1 (h) via

(i) m2 (j) cell (k) phantom

FIGURE 2.7 The standard cell shown in Figure 1.3. (a)�(i) The drawn layers that
define the masks. The active mask is the union of the ndiff and pdiff drawn
layers. The n -diffusion implant and p -diffusion implant masks are bloated
versions of the ndiff and pdiff drawn layers. (j) The complete cell layout. (k) The
phantom cell layout. Often an ASIC vendor hides the details of the internal cell
construction. The phantom cell is used for layout by the customer and then
�instantiated� by the ASIC vendor after layout is complete. This layout uses
grayscale stipple patterns to distinguish between layers.

We can construct wells in a CMOS process in several ways. In an n-well process
, the substrate is p -type (the wafer itself) and we use an n -well mask to build the
n -well. We do not need a p -well mask because there are no p -wells in an n
-well process�the n -channel transistors all sit in the substrate (the wafer)�but we
often draw the p -well layer as though it existed. In a p-well process we use a p
-well mask to make the p -wells and the n -wells are the substrate. In a twin-tub
(or twin-well) process, we create individual wells for both types of transistors,

and neither well is the substrate (which may be either n -type or p -type). There
are even triple-well processes used to achieve even more control over the
transistor performance. Whatever process that we use we must connect all the n
-wells to the most positive potential on the chip, normally VDD, and all the p
-wells to VSS; otherwise we may forward bias the bulk to source/drain pn
-junctions. The bulk connections for CMOS transistors are not usually drawn in
digital circuit schematics, but these substrate contacts (well contacts or tub ties)
are very important. After we make the well(s), we grow a layer (approximately
1500 Å) of Si 3 N 4 over the wafer. The active mask (CAA) leaves this nitride
layer only in the active areas that will later become transistors or substrate
contacts. Thus

CAA (mask) = ndiff (drawn) (pdiff (drawn) , (2.18)

the (symbol represents OR (union) of the two drawn layers, ndiff and pdiff.
Everything outside the active areas is known as the field region, or just field .

Next we implant the substrate to prevent unwanted transistors from forming in
the field region�this is the field implant or channel-stop implant . The nitride over
the active areas acts as an implant mask and we may use another field-implant
mask at this step also. Following this we grow a thick (approximately 5000 Å)
layer of SiO 2 , the field oxide (FOX). The FOX will not grow over the nitride
areas. When we strip the nitride we are left with FOX in the areas we do not want
to dope the silicon. Following this we deposit, dope, mask, and etch the poly gate
material, CPG (mask) = poly (drawn). Next we create the doped regions that
form the sources, drains, and substrate contacts using ion implantation. The poly
gate functions like masking tape in these steps. One implant (using phosphorous
or arsenic ions) forms the n -type source/drain for the n -channel transistors and n
-type substrate contacts (CSN). A second implant (using boron ions) forms the p
-type source�drain for the p -channel transistors and p -type substrate contacts
(CSP). These implants are masked as follows

CSN (mask) = grow (ndiff (drawn)), (2.19)
CSP (mask) = grow (pdiff (drawn)), (2.20)

where �grow� means that we expand or bloat the drawn ndiff and drawn pdiff
layers slightly (usually by a few l).

During implantation the dopant ions are blocked by the resist pattern defined by
the CSN and CSP masks. The CSN mask thus prevents the n -type regions being
implanted with p -type dopants (and vice versa for the CSP mask). As we shall
see, the CSN and CSP masks are not intended to define the edges of the n -type
and p -type regions. Instead these two masks function more like newspaper that
prevents paint from spraying everywhere. The dopant ions are also blocked from
reaching the silicon surface by the poly gates and this aligns the edge of the
source and drain regions to the edges of the gates (we call this a self-aligned
process). In addition, the implants are blocked by the FOX and this defines the
outside edges of the source, drain, and substrate contact regions.

The only areas of the silicon surface that are doped n -type are

n -diffusion (silicon) = (CAA (mask) ' CSN (mask)) ' (ÿ CPG (mask)) ; (2.21)

where the ' symbol represents AND (the intersection of two layers); and the ÿ
symbol represents NOT.

Similarly, the only regions that are doped p -type are

p -diffusion (silicon) = (CAA (mask) ' CSP (mask)) ' (ÿ CPG (mask)) . (2.22)

If the CSN and CSP masks do not overlap, it is possible to save a mask by using
one implant mask (CSN or CSP) for the other type (CSP or CSN). We can do this
by using a positive resist (the pattern of resist remaining after developing is the
same as the dark areas on the mask) for one implant step and a negative resist
(vice versa) for the other step. However, because of the poor resolution of
negative resist and because of difficulties in generating the implant masks
automatically from the drawn diffusions (especially when opposite diffusion
types are drawn close to each other or touching), it is now common to draw both
implant masks as well as the two diffusion layers.

It is important to remember that, even though poly is above diffusion, the
polysilicon is deposited first and acts like masking tape. It is rather like
airbrushing a stripe�you use masking tape and spray everywhere without
worrying about making straight lines. The edges of the pattern will align to the
edge of the tape. Here the analogy ends because the poly is left in place. Thus,

n -diffusion (silicon) = (ndiff (drawn)) ' (ÿ poly (drawn)) and (2.23)
p -diffusion (silicon) = (pdiff (drawn)) ' (ÿ poly (drawn)) . (2.24)

In the ASIC industry the names nplus, n +, and n -diffusion (as well as the p -type
equivalents) are used in various ways. These names may refer to either the drawn
diffusion layer (that we call ndiff), the mask (CSN), or the doped region on the
silicon (the intersection of the active and implant mask that we call n -diffusion)
�very confusing.

The source and drain are often formed from two separate implants. The first is a
light implant close to the edge of the gate, the second a heavier implant that
forms the rest of the source or drain region. The separate diffusions reduce the
electric field near the drain end of the channel. Tailoring the device
characteristics in this fashion is known as drain engineering and a process
including these steps is referred to as an LDD process , for lightly doped drain ;
the first light implant is known as an LDD diffusion or LDD implant.

FIGURE 2.8 Drawn layers and
an example set of
black-and-white stipple patterns
for a CMOS process. On top are
the patterns as they appear in
layout. Underneath are the
magnified 8-by-8 pixel patterns.
If we are trying to simplify
layout we may use solid black or
white for contact and vias. If we
have contacts and vias placed on
top of one another we may use
stipple patterns or other means
to help distinguish between
them. Each stipple pattern is
transparent, so that black shows
through from underneath when
layers are superimposed. There
are no standards for these
patterns.

Figure 2.8 shows a stipple-pattern matrix for a CMOS process. When we draw
layout you can see through the layers�all the stipple patterns are OR�ed together.
Figure 2.9 shows the transistor layers as they appear in layout (drawn using the
patterns from Figure 2.8) and as they appear on the silicon. Figure 2.10 shows the
same thing for the interconnect layers.

FIGURE 2.9 The transistor layers. (a) A p -channel transistor as drawn in layout.
(b) The corresponding silicon cross section (the heavy lines in part a show the
cuts). This is how a p -channel transistor would look just after completing the
source and drain implant steps.

FIGURE 2.10 The interconnect
layers. (a) Metal layers as drawn
in layout. (b) The corresponding
structure (as it might appear in a
scanning-electron micrograph).
The insulating layers between
the metal layers are not shown.
Contact is made to the
underlying silicon through a
platinum barrier layer. Each via
consists of a tungsten plug. Each
metal layer consists of a
titanium�tungsten and aluminum
�copper sandwich. Most deep
submicron CMOS processes use
metal structures similar to this.
The scale, rounding, and
irregularity of the features are
realistic.

2.2.1 Sheet Resistance

Tables 2.3 and 2.4 show the sheet resistance for each conducting layer (in
decreasing order of resistance) for two different generations of CMOS process.

TABLE 2.3 Sheet resistance (1 m m
CMOS).

TABLE 2.4 Sheet resistance (0.35 m
m CMOS).

Layer
Sheet

resistance
Units Layer

Sheet

resistance
Units

n -well 1.15 ± 0.25
k W /
square

 n -well 1 ± 0.4
k W /
square

poly 3.5 ± 2.0
W /
square

 poly 10 ± 4.0
W /
square

n -diffusion 75 ± 20
W /
square

 n -diffusion 3.5 ± 2.0
W /
square

p -diffusion 140 ± 40
W /
square

 p -diffusion 2.5 ± 1.5
W /
square

m1/2 70± 6
m W /
square

 m1/2/3 60 ± 6
m W /
square

m3 30± 3
m W /
square

 metal4 30 ± 3
m W /
square

The diffusion layers, n -diffusion and p -diffusion, both have a high resistivity
�typically from 1�100 W /square. We measure resistance in W / square (ohms per
square) because for a fixed thickness of material it does not matter what the size

of a square is�the resistance is the same. Thus the resistance of a rectangular
shape of a sheet of material may be calculated from the number of squares it
contains times the sheet resistance in W / square. We can use diffusion for very
short connections inside a logic cell, but not for interconnect between logic cells.
Poly has the next highest resistance to diffusion. Most submicron CMOS
processes use a silicide material (a metallic compound of silicon) that has much
lower resistivity (at several W /square) than the poly or diffusion layers alone.
Examples are tantalum silicide, TaSi; tungsten silicide, WSi; or titanium silicide,
TiSi. The stoichiometry of these deposited silicides varies. For example, for
tungsten silicide W:Si ª 1:2.6.

There are two types of silicide process. In a silicide process only the gate is
silicided. This reduces the poly sheet resistance, but not that of the source�drain.
In a self-aligned silicide (salicide) process, both the gate and the source�drain
regions are silicided. In some processes silicide can be used to connect adjacent
poly and diffusion (we call this feature LI , white metal, local interconnect,
metal0, or m0). LI is useful to reduce the area of ASIC RAM cells, for example.

Interconnect uses metal layers with resistivities of tens of m W /square, several
orders of magnitude less than the other layers. There are usually several layers of
metal in a CMOS ASIC process, each separated by an insulating layer. The metal
layer above the poly gate layer is the first-level metal (m1 or metal1), the next is
the second-level metal (m2 or metal2), and so on. We can make connections
from m1 to diffusion using diffusion contacts or to the poly using polysilicon
contacts .

After we etch the contact holes a thin barrier metal (typically platinum) is
deposited over the silicon and poly. Next we form contact plugs (via plugs for
connections between metal layers) to reduce contact resistance and the likelihood
of breaks in the contacts. Tungsten is commonly used for these plugs. Following
this we form the metal layers as sandwiches. The middle of the sandwich is a
layer (usually from 3000 Å to 10,000 Å) of aluminum and copper. The top and
bottom layers are normally titanium�tungsten (TiW, pronounced �tie-tungsten�).
Submicron processes use chemical�mechanical polishing (CMP) to smooth the
wafers flat before each metal deposition step to help with step coverage.

An insulating glass, often sputtered quartz (SiO 2), though other materials are
also used, is deposited between metal layers to help create a smooth surface for
the deposition of the metal. Design rules may refer to this insulator as an
intermetal oxide (IMO) whether they are in fact oxides or not, or interlevel
dielectric (ILD). The IMO may be a spin-on polymer; boron-doped
phosphosilicate glass (BPSG); Si 3 N 4 ; or sandwiches of these materials
(oxynitrides, for example).

We make the connections between m1 and m2 using metal vias , cuts , or just
vias . We cannot connect m2 directly to diffusion or poly; instead we must make
these connections through m1 using a via. Most processes allow contacts and vias
to be placed directly above each other without restriction, arrangements known as

stacked vias and stacked contacts . We call a process with m1 and m2 a two-level
metal (2LM) technology. A 3LM process includes a third-level metal layer (m3
or metal3), and some processes include more metal layers. In this case a
connection between m1 and m2 will use an m1/m2 via, or via1 ; a connection
between m2 and m3 will use an m2/m3 via, or via2 , and so on.

The minimum spacing of interconnects, the metal pitch , may increase with
successive metal layers. The minimum metal pitch is the minimum spacing
between the centers of adjacent interconnects and is equal to the minimum metal
width plus the minimum metal spacing.

Aluminum interconnect tends to break when carrying a high current density.
Collisions between high-energy electrons and atoms move the metal atoms over a
long period of time in a process known as electromigration . Copper is added to
the aluminum to help reduce the problem. The other solution is to reduce the
current density by using wider than minimum-width metal lines.

Tables 2.5 and 2.6 show maximum specified contact resistance and via resistance
for two generations of CMOS processes. Notice that a m1 contact in either
process is equal in resistance to several hundred squares of metal.

TABLE 2.5 Contact resistance (1 m m
CMOS).

TABLE 2.6 Contact resistance (0.35 m
m CMOS).

Contact/via type
Resistance
(maximum)

 Contact/via type
Resistance
(maximum)

m2/m3 via (via2) 5 W m2/m3 via (via2) 6 W
m1/m2 via (via1) 2 W m1/m2 via (via1) 6 W
m1/ p -diffusion
contact

20 W
m1/ p -diffusion
contact

20 W

m1/ n -diffusion
contact

20 W
m1/ n -diffusion
contact

20 W

m1/poly contact 20 W m1/poly contact 20 W

1. If only one well layer is drawn, the other mask may be derived from the drawn
layer. For example, p -well (mask) = not (nwell (drawn)). A single-well process
requires only one well mask.

2. The implant masks may be derived or drawn.

3. Largely for historical reasons the contacts to poly and contacts to active have
different layer names. In the past this allowed a different sizing or process bias to
be applied to each contact type when the mask was made.

2.3 CMOS Design Rules
Figure 2.11 defines the design rules for a CMOS process using pictures. Arrows
between objects denote a minimum spacing, and arrows showing the size of an
object denote a minimum width. Rule 3.1, for example, is the minimum width of
poly (2 l). Each of the rule numbers may have different values for different
manufacturers�there are no standards for design rules. Tables 2.7�2.9 show the
MOSIS scalable CMOS rules. Table 2.7 shows the layer rules for the process
front end , which is the front end of the line (as in production line) or FEOL .
Table 2.8 shows the rules for the process back end (BEOL), the metal
interconnect, and Table 2.9 shows the rules for the pad layer and glass layer.

FIGURE 2.11 The MOSIS scalable CMOS design rules (rev. 7). Dimensions are
in l . Rule numbers are in parentheses (missing rule sets 11�13 are extensions to
this basic process).

TABLE 2.7 MOSIS scalable CMOS rules version 7�the process front end.
Layer Rule Explanation Value / l
well (CWN, CWP) 1.1 minimum width 10

 1.2
minimum space (different potential, a hot
well)

9

 1.3 minimum space (same potential) 0 or 6
 1.4 minimum space (different well type) 0

active (CAA) 2.1/2.2 minimum width/space 3
 2.3 source/drain active to well edge space 5

 2.4
substrate/well contact active to well edge
space

3

 2.5
minimum space between active (different
implant type)

0 or 4

poly (CPG) 3.1/3.2 minimum width/space 2
 3.3 minimum gate extension of active 2
 3.4 minimum active extension of poly 3
 3.5 minimum field poly to active space 1

select (CSN, CSP) 4.1
minimum select spacing to channel of
transistor 1 3

 4.2 minimum select overlap of active 2
 4.3 minimum select overlap of contact 1

 4.4 minimum select width and spacing 2 2

poly contact (CCP) 5.1.a exact contact size 2 ¥ 2
 5.2.a minimum poly overlap 1.5
 5.3.a minimum contact spacing 2

active contact (CCA) 6.1.a exact contact size 2 ¥ 2
 6.2.a minimum active overlap 1.5
 6.3.a minimum contact spacing 2

 6.4.a minimum space to gate of transistor 2

TABLE 2.8 MOSIS scalable CMOS rules version 7�the process back end.
Layer Rule Explanation Value / l
metal1 (CMF) 7.1 minimum width 3
 7.2.a minimum space 3
 7.2.b minimum space (for minimum-width wires only) 2
 7.3 minimum overlap of poly contact 1
 7.4 minimum overlap of active contact 1
via1 (CVA) 8.1 exact size 2 ¥ 2
 8.2 minimum via spacing 3
 8.3 minimum overlap by metal1 1
 8.4 minimum spacing to contact 2
 8.5 minimum spacing to poly or active edge 2
metal2 (CMS) 9.1 minimum width 3
 9.2.a minimum space 4
 9.2.b minimum space (for minimum-width wires only) 3
 9.3 minimum overlap of via1 1
via2 (CVS) 14.1 exact size 2 ¥ 2
 14.2 minimum space 3
 14.3 minimum overlap by metal2 1
 14.4 minimum spacing to via1 2
metal3 (CMT) 15.1 minimum width 6
 15.2 minimum space 4
 15.3 minimum overlap of via2 2

TABLE 2.9 MOSIS scalable CMOS rules version 7�the pads and overglass
(passivation).
Layer Rule Explanation Value

glass (COG) 10.1 minimum bonding-pad width
100 m m ¥ 100 m
m

 10.2 minimum probe-pad width 75 m m ¥ 75 m m
 10.3 pad overlap of glass opening 6 m m

 10.4
minimum pad spacing to unrelated metal2
(or metal3)

30 m m

 10.5
minimum pad spacing to unrelated
metal1, poly, or active

15 m m

The rules in Table 2.7 and Table 2.8 are given as multiples of l . If we use
lambda-based rules we can move between successive process generations just by
changing the value of l . For example, we can scale 0.5 m m layouts (l = 0.25 m
m) by a factor of 0.175 / 0.25 for a 0.35 m m process (l = 0.175 m m)�at least in

theory. You may get an inkling of the practical problems from the fact that the
values for pad dimensions and spacing in Table 2.9 are given in microns and not
in l . This is because bonding to the pads is an operation that does not scale well.
Often companies have two sets of design rules: one in l (with fractional l rules)
and the other in microns. Ideally we would like to express all of the design rules
in integer multiples of l . This was true for revisions 4�6, but not revision 7 of the
MOSIS rules. In revision 7 rules 5.2a/6.2a are noninteger. The original Mead
�Conway NMOS rules include a noninteger 1.5 l rule for the implant layer.

1. To ensure source and drain width.

2. Different select types may touch but not overlap.

2.4 Combinational Logic Cells
The AND-OR-INVERT (AOI) and the OR-AND-INVERT (OAI) logic cells are
particularly efficient in CMOS. Figure 2.12 shows an AOI221 and an OAI321
logic cell (the logic symbols in Figure 2.12 are not standards, but are widely
used). All indices (the indices are the numbers after AOI or OAI) in the logic cell
name greater than 1 correspond to the inputs to the first �level� or stage�the AND
gate(s) in an AOI cell, for example. An index of '1' corresponds to a direct input
to the second-stage cell. We write indices in descending order; so it is AOI221
and not AOI122 (but both are equivalent cells), and AOI32 not AOI23. If we
have more than one direct input to the second stage we repeat the '1'; thus an
AOI211 cell performs the function Z = (A.B + C + D)'. A three-input NAND cell
is an OAI111, but calling it that would be very confusing. These rules are not
standard, but form a convention that we shall adopt and one that is widely used in
the ASIC industry.

There are many ways to represent the logical operator, AND. I shall use the
middle dot and write A · B (rather than AB, A.B, or A ' B); occasionally I may
use AND(A, B). Similarly I shall write A + B as well as OR(A, B). I shall use an
apostrophe like this, A', to denote the complement of A rather than A since
sometimes it is difficult or inappropriate to use an overbar (vinculum) or
diacritical mark (macron). It is possible to misinterpret AB' as A B rather than
AB (but the former alternative would be A · B' in my convention). I shall be
careful in these situations.

FIGURE 2.12 Naming and
numbering complex CMOS
combinational cells. (a) An
AND-OR-INVERT cell, an
AOI221. (b) An
OR-AND-INVERT cell, an
OAI321. Numbering is
always in descending order.

We can express the function of the AOI221 cell in Figure 2.12(a) as

Z = (A · B + C · D + E)' . (2.25)

We can also write this equation unambiguously as Z = OAI221(A, B, C, D, E),
just as we might write X = NAND (I, J, K) to describe the logic function
X = (I · J · K)'.

This notation is useful because, for example, if we write OAI321(P, Q, R, S, T,
U) we immediately know that U (the sixth input) is the (only) direct input
connected to the second stage. Sometimes we need to refer to particular inputs
without listing them all. We can adopt another convention that letters of the input
names change with the index position. Now we can refer to input B2 of an
AOI321 cell, for example, and know which input we are talking about without
writing

Z = AOI321(A1, A2, A3, B1, B2, C) . (2.26)

Table 2.10 shows the AOI family of logic cells with three indices (with branches
in the family for AOI, OAI, AO, and OA cells). There are 5 types and 14 separate
members of each branch of this family. There are thus 4 ¥ 14 = 56 cells of the
type X abc where X = {OAI, AOI, OA, AO} and each of the indexes a , b , and c
can range from 1 to 3. We form the AND-OR (AO) and OR-AND (OA) cells by
adding an inverter to the output of an AOI or OAI cell.

TABLE 2.10 The AOI family of cells with three index numbers or less.
Cell type 1 Cells Number of unique cells

Xa1 X21, X31 2
Xa11 X211, X311 2
Xab X22, X33, X32 3
Xab1 X221, X331, X321 3
Xabc X222, X333, X332, X322 4
Total 14

2.4.1 Pushing Bubbles

The AOI and OAI logic cells can be built using a single stage in CMOS using
series�parallel networks of transistors called stacks. Figure 2.13 illustrates the
procedure to build the n -channel and p -channel stacks, using the AOI221 cell as
an example.

FIGURE 2.13 Constructing a CMOS logic cell�an AOI221. (a) First build the
dual icon by using de Morgan�s theorem to �push� inversion bubbles to the
inputs. (b) Next build the n -channel and p -channel stacks from series and
parallel combinations of transistors. (c) Adjust transistor sizes so that the n-
channel and p -channel stacks have equal strengths.

Here are the steps to construct any single-stage combinational CMOS logic cell:

Draw a schematic icon with an inversion (bubble) on the last cell (the
bubble-out schematic). Use de Morgan�s theorems ��A NAND is an OR
with inverted inputs and a NOR is an AND with inverted inputs��to push
the output bubble back to the inputs (this the dual icon or bubble-in
schematic).

1.

Form the n -channel stack working from the inputs on the bubble-out
schematic: OR translates to a parallel connection, AND translates to a
series connection. If you have a bubble at an input, you need an inverter.

2.

Form the p -channel stack using the bubble-in schematic (ignore the
inversions at the inputs�the bubbles on the gate terminals of the p -channel
transistors take care of these). If you do not have a bubble at the input gate
terminals, you need an inverter (these will be the same input gate terminals
that had bubbles in the bubble-out schematic).

3.

The two stacks are network duals (they can be derived from each other by
swapping series connections for parallel, and parallel for series connections). The
n -channel stack implements the strong '0's of the function and the p -channel
stack provides the strong '1's. The final step is to adjust the drive strength of the
logic cell by sizing the transistors.

2.4.2 Drive Strength

Normally we ratio the sizes of the n -channel and p -channel transistors in an
inverter so that both types of transistors have the same resistance, or drive
strength . That is, we make b n = b p . At low dopant concentrations and low

electric fields m n is about twice m p . To compensate we make the shape factor,
W/L, of the p -channel transistor in an inverter about twice that of the n -channel
transistor (we say the logic has a ratio of 2). Since the transistor lengths are
normally equal to the minimum poly width for both types of transistors, the ratio
of the transistor widths is also equal to 2. With the high dopant concentrations
and high electric fields in submicron transistors the difference in mobilities is less
�typically between 1 and 1.5.

Logic cells in a library have a range of drive strengths. We normally call the
minimum-size inverter a 1X inverter. The drive strength of a logic cell is often
used as a suffix; thus a 1X inverter has a cell name such as INVX1 or INVD1. An
inverter with transistors that are twice the size will be an INVX2. Drive strengths
are normally scaled in a geometric ratio, so we have 1X, 2X, 4X, and
(sometimes) 8X or even higher, drive-strength cells. We can size a logic cell
using these basic rules:

Any string of transistors connected between a power supply and the output
in a cell with 1X drive should have the same resistance as the n -channel
transistor in a 1X inverter.

●

A transistor with shape factor W 1 /L 1 has a resistance proportional to L 1
/W 1 (so the larger W 1 is, the smaller the resistance).

●

Two transistors in parallel with shape factors W 1 /L 1 and W 2 /L 2 are
equivalent to a single transistor (W 1 /L 1 + W 2 /L 2)/1. For example, a 2/1
in parallel with a 3/1 is a 5/1.

●

Two transistors, with shape factors W 1 /L 2 and W 2 /L 2 , in series are
equivalent to a single 1/(L 1 /W 1 + L 2 /W 2) transistor.

●

For example, a transistor with shape factor 3/1 (we shall call this �a 3/1�) in series
with another 3/1 is equivalent to a 1/((1/3) + (1/3)) or a 3/2. We can use the
following method to calculate equivalent transistor sizes:

To add transistors in parallel, make all the lengths 1 and add the widths.●

To add transistors in series, make all the widths 1 and add the lengths.●

We have to be careful to keep W and L reasonable. For example, a 3/1 in series
with a 2/1 is equivalent to a 1/((1/3) + (1/2)) or 1/0.83. Since we cannot make a
device 2 l wide and 1.66 l long, a 1/0.83 is more naturally written as 3/2.5. We
like to keep both W and L as integer multiples of 0.5 (equivalent to making W
and L integer multiples of l), but W and L must be greater than 1.

In Figure 2.13(c) the transistors in the AOI221 cell are sized so that any string
through the p -channel stack has a drive strength equivalent to a 2/1 p -channel
transistor (we choose the worst case, if more than one transistor in parallel is
conducting then the drive strength will be higher). The n -channel stack is sized
so that it has a drive strength of a 1/1 n -channel transistor. The ratio in this
library is thus 2.

If we were to use four drive strengths for each of the AOI family of cells shown
in Table 2.10, we would have a total of 224 combinational library cells�just for
the AOI family. The synthesis tools can handle this number of cells, but we may
not be able to design this many cells in a reasonable amount of time. Section 3.3,
�Logical Effort,� will help us choose the most logically efficient cells.

2.4.3 Transmission Gates

Figure 2.14(a) and (b) shows a CMOS transmission gate (TG , TX gate, pass
gate, coupler). We connect a p -channel transistor (to transmit a strong '1') in
parallel with an n -channel transistor (to transmit a strong '0').

FIGURE 2.14 CMOS transmission gate (TG). (a) An n- channel and p -channel
transistor in parallel form a TG. (b) A common symbol for a TG. (c) The
charge-sharing problem.

We can express the function of a TG as

Z = TG(A, S) , (2.27)

but this is ambiguous�if we write TG(X, Y), how do we know if X is connected to
the gates or sources/drains of the TG? We shall always define TG(X, Y) when we
use it. It is tempting to write TG(A, S) = A · S, but what is the value of Z when S
='0' in Figure 2.14(a), since Z is then left floating? A TG is a switch, not an AND
logic cell.

There is a potential problem if we use a TG as a switch connecting a node Z that
has a large capacitance, C BIG , to an input node A that has only a small
capacitance C SMALL (see Figure 2.14c). If the initial voltage at A is V SMALL
and the initial voltage at Z is V BIG , when we close the TG (by setting S = '1') the
final voltage on both nodes A and Z is

 C BIG V BIG + C SMALL V SMALL

V F = ������������������������� . (2.28)

 C BIG + C SMALL

Imagine we want to drive a '0' onto node Z from node A. Suppose C BIG = 0.2 pF
(about 10 standard loads in a 0.5 m m process) and C SMALL = 0.02 pF, V BIG = 0
V and V SMALL = 5 V; then

 (0.2 ¥ 10 �12) (0) + (0.02 ¥ 10 �12) (5)

V F = ���������������������������� = 0.45 V . (2.29)

 (0.2 ¥ 10 �12) + (0.02 ¥ 10 �12)

This is not what we want at all, the �big� capacitor has forced node A to a voltage
close to a '0'. This type of problem is known as charge sharing . We should make
sure that either (1) node A is strong enough to overcome the big capacitor, or (2)
insulate node A from node Z by including a buffer (an inverter, for example)
between node A and node Z. We must not use charge to drive another logic cell
�only a logic cell can drive a logic cell.

If we omit one of the transistors in a TG (usually the p -channel transistor) we
have a pass transistor . There is a branch of full-custom VLSI design that uses
pass-transistor logic. Much of this is based on relay-based logic, since a single
transistor switch looks like a relay contact. There are many problems associated
with pass-transistor logic related to charge sharing, reduced noise margins, and
the difficulty of predicting delays. Though pass transistors may appear in an
ASIC cell inside a library, they are not used by ASIC designers.

FIGURE 2.15 The CMOS multiplexer (MUX). (a) A noninverting 2:1 MUX
using transmission gates without buffering. (b) A symbol for a MUX (note how
the inputs are labeled). (c) An IEEE standard symbol for a MUX. (d) A
nonstandard, but very common, IEEE symbol for a MUX. (e) An inverting
MUX with output buffer. (f) A noninverting buffered MUX.

We can use two TGs to form a multiplexer (or multiplexor�people use both
orthographies) as shown in Figure 2.15(a). We often shorten multiplexer to MUX
. The MUX function for two data inputs, A and B, with a select signal S, is

Z = TG(A, S') + TG(B, S) . (2.30)

We can write this as Z = A · S' + B · S, since node Z is always connected to one
or other of the inputs (and we assume both are driven). This is a two-input MUX
(2-to-1 MUX or 2:1 MUX). Unfortunately, we can also write the MUX function
as Z = A · S + B · S', so it is difficult to write the MUX function unambiguously
as Z = MUX(X, Y, Z). For example, is the select input X, Y, or Z? We shall
define the function MUX(X, Y, Z) each time we use it. We must also be careful
to label a MUX if we use the symbol shown in Figure 2.15(b). Symbols for a

MUX are shown in Figure 2.15(b�d). In the IEEE notation 'G' specifies an AND
dependency. Thus, in Figure 2.15(c), G = '1' selects the input labeled '1'.
Figure 2.15(d) uses the common control block symbol (the notched rectangle).
Here, G1 = '1' selects the input '1', and G1 = '0' selects the input ' 1 '. Strictly this
form of IEEE symbol should be used only for elements with more than one
section controlled by common signals, but the symbol of Figure 2.15(d) is used
often for a 2:1 MUX.

The MUX shown in Figure 2.15(a) works, but there is a potential charge-sharing
problem if we cascade MUXes (connect them in series). Instead most ASIC
libraries use MUX cells built with a more conservative approach. We could
buffer the output using an inverter (Figure 2.15e), but then the MUX becomes
inverting. To build a safe, noninverting MUX we can buffer the inputs and output
(Figure 2.15f)�requiring 12 transistors, or 3 gate equivalents (only the gate
equivalent counts are shown from now on).

Figure 2.16 shows how to use an OAI22 logic cell (and an inverter) to implement
an inverting MUX. The implementation in equation form (2.5 gates) is

ZN = A' · S' + B' · S
 = [(A' · S')' · (B' · S)']'
 = [(A + S) · (B + S')]'
 = OAI22[A, S, B, NOT(S)] . (2.31)

(both A' and NOT(A) represent an inverter, depending on which representation is
most convenient�they are equivalent). I often use an equation to describe a cell
implementation.

FIGURE 2.16 An inverting 2:1 MUX based on an
OAI22 cell.

The following factors will determine which MUX implementation is best:

Do we want to minimize the delay between the select input and the output
or between the data inputs and the output?

1.

Do we want an inverting or noninverting MUX?2.

Do we object to having any logic cell inputs tied directly to the
source/drain diffusions of a transmission gate? (Some companies forbid
such transmission-gate inputs �since some simulation tools cannot handle
them.)

3.

Do we object to any logic cell outputs being tied to the source/drain of a4.

transmission gate? (Some companies will not allow this because of the
dangers of charge sharing.)

What drive strength do we require (and is size or speed more important)?5.

A minimum-size TG is a little slower than a minimum-size inverter, so there is
not much difference between the implementations shown in Figure 2.15 and
Figure 2.16, but the difference can become important for 4:1 and larger MUXes.

2.4.4 Exclusive-OR Cell

The two-input exclusive-OR (XOR , EXOR, not-equivalence, ring-OR) function
is

A1 • A2 = XOR(A1, A2) = A1 · A2' + A1' · A2 . (2.32)

We are now using multiletter symbols, but there should be no doubt that A1'
means anything other than NOT(A1). We can implement a two-input XOR using
a MUX and an inverter as follows (2 gates):

XOR(A1, A2) = MUX[NOT(A1), A1, A2] , (2.33)

where

MUX(A, B, S) = A · S + B · S ' . (2.34)

This implementation only buffers one input and does not buffer the MUX output.
We can use inverter buffers (3.5 gates total) or an inverting MUX so that the
XOR cell does not have any external connections to source/drain diffusions as
follows (3 gates total):

XOR(A1, A2) = NOT[MUX(NOT[NOT(A1)], NOT(A1), A2)] . (2.35)

We can also implement a two-input XOR using an AOI21 (and a NOR cell),
since

XOR(A1, A2) = A1 · A2' + A1' · A2
 = [(A1 ·A2) + (A1 + A2)']'
 = AOI21[A1, A2, NOR(A1, A2)], (2.36)

(2.5 gates). Similarly we can implement an exclusive-NOR (XNOR, equivalence)
logic cell using an inverting MUX (and two inverters, total 3.5 gates) or an
OAI21 logic cell (and a NAND cell, total 2.5 gates) as follows (using the MUX
function of Eq. 2.34):

XNOR(A1, A2) = A1 · A2 + NOT(A1) · NOT(A2
 = NOT[NOT[MUX(A1, NOT (A1), A2]]
 = OAI21[A1, A2, NAND(A1, A2)] . (2.37)

1. Xabc: X = {AOI, AO, OAI, OA}; a, b, c = {2, 3}; { } means �choose one.�

2.5 Sequential Logic Cells
There are two main approaches to clocking in VLSI design: multiphase clocks or
a single clock and synchronous design . The second approach has the following
key advantages: (1) it allows automated design, (2) it is safe, and (3) it permits
vendor signoff (a guarantee that the ASIC will work as simulated). These
advantages of synchronous design (especially the last one) usually outweigh
every other consideration in the choice of a clocking scheme. The vast majority
of ASICs use a rigid synchronous design style.

2.5.1 Latch

Figure 2.17(a) shows a sequential logic cell�a latch . The internal clock signals,
CLKN (N for negative) and CLKP (P for positive), are generated from the system
clock, CLK, by two inverters (I4 and I5) that are part of every latch cell�it is
usually too dangerous to have these signals supplied externally, even though it
would save space.

FIGURE 2.17 CMOS latch. (a) A positive-enable latch using transmission gates
without output buffering, the enable (clock) signal is buffered inside the latch.
(b) A positive-enable latch is transparent while the enable is high. (c) The latch
stores the last value at D when the enable goes low.

To emphasize the difference between a latch and flip-flop, sometimes people
refer to the clock input of a latch as an enable . This makes sense when we look
at Figure 2.17(b), which shows the operation of a latch. When the clock input is
high, the latch is transparent �changes at the D input appear at the output Q (quite
different from a flip-flop as we shall see). When the enable (clock) goes low
(Figure 2.17c), inverters I2 and I3 are connected together, forming a storage loop

that holds the last value on D until the enable goes high again. The storage loop
will hold its state as long as power is on; we call this a static latch. A sequential
logic cell is different from a combinational cell because it has this feature of
storage or memory.

Notice that the output Q is unbuffered and connected directly to the output of I2
(and the input of I3), which is a storage node. In an ASIC library we are
conservative and add an inverter to buffer the output, isolate the sensitive storage
node, and thus invert the sense of Q. If we want both Q and QN we have to add
two inverters to the circuit of Figure 2.17(a). This means that a latch requires
seven inverters and two TGs (4.5 gates).

The latch of Figure 2.17(a) is a positive-enable D latch, active-high D latch, or
transparent-high D latch (sometimes people also call this a D-type latch). A
negative-enable (active-low) D latch can be built by inverting all the clock
polarities in Figure 2.17(a) (swap CLKN for CLKP and vice-versa).

2.5.2 Flip-Flop

Figure 2.18(a) shows a flip-flop constructed from two D latches: a master latch
(the first one) and a slave latch . This flip-flop contains a total of nine inverters
and four TGs, or 6.5 gates. In this flip-flop design the storage node S is buffered
and the clock-to-Q delay will be one inverter delay less than the clock-to-QN
delay.

FIGURE 2.18 CMOS flip-flop. (a) This negative-edge�triggered flip-flop
consists of two latches: master and slave. (b) While the clock is high, the master
latch is loaded. (c) As the clock goes low, the slave latch loads the value of the
master latch. (d) Waveforms illustrating the definition of the flip-flop setup time
t SU , hold time t H , and propagation delay from clock to Q, t PD .

In Figure 2.18(b) the clock input is high, the master latch is transparent, and node
M (for master) will follow the D input. Meanwhile the slave latch is disconnected
from the master latch and is storing whatever the previous value of Q was. As the
clock goes low (the negative edge) the slave latch is enabled and will update its
state (and the output Q) to the value of node M at the negative edge of the clock.
The slave latch will then keep this value of M at the output Q, despite any
changes at the D input while the clock is low (Figure 2.18c). When the clock
goes high again, the slave latch will store the captured value of M (and we are
back where we started our explanation).

The combination of the master and slave latches acts to capture or sample the D
input at the negative clock edge, the active clock edge . This type of flip-flop is a

negative-edge�triggered flip-flop and its behavior is quite different from a latch.
The behavior is shown on the IEEE symbol by using a triangular �notch� to
denote an edge-sensitive input. A bubble shows the input is sensitive to the
negative edge. To build a positive-edge�triggered flip-flop we invert the polarity
of all the clocks�as we did for a latch.

The waveforms in Figure 2.18(d) show the operation of the flip-flop as we have
described it, and illustrate the definition of setup time (t SU), hold time (t H),
and clock-to-Q propagation delay (t PD). We must keep the data stable (a fixed
logic '1' or '0') for a time t SU prior to the active clock edge, and stable for a time t

H after the active clock edge (during the decision window shown).

In Figure 2.18(d) times are measured from the points at which the waveforms
cross 50 percent of V DD . We say the trip point is 50 percent or 0.5. Common
choices are 0.5 or 0.65/0.35 (a signal has to reach 0.65 V DD to be a '1', and reach
0.35 V DD to be a '0'), or 0.1/0.9 (there is no standard way to write a trip point).
Some vendors use different trip points for the input and output waveforms
(especially in I/O cells).

The flip-flop in Figure 2.18(a) is a D flip-flop and is by far the most widely used
type of flip-flop in ASIC design. There are other types of flip-flops�J-K, T
(toggle), and S-R flip-flops�that are provided in some ASIC cell libraries mainly
for compatibility with TTL design. Some people use the term register to mean an
array (more than one) of flip-flops or latches (on a data bus, for example), but
some people use register to mean a single flip-flop or a latch. This is confusing
since flip-flops and latches are quite different in their behavior. When I am
talking about logic cells, I use the term register to mean more than one flip-flop.

To add an asynchronous set (Q to '1') or asynchronous reset (Q to '0') to the
flip-flop of Figure 2.18(a), we replace one inverter in both the master and slave
latches with two-input NAND cells. Thus, for an active-low set, we replace I2
and I7 with two-input NAND cells, and, for an active-low reset, we replace I3
and I6. For both set and reset we replace all four inverters: I2, I3, I6, and I7.
Some TTL flip-flops have dominant reset or dominant set , but this is difficult
(and dangerous) to do in ASIC design. An input that forces Q to '1' is sometimes
also called preset . The IEEE logic symbols use 'P' to denote an input with a
presetting action. An input that forces Q to '0' is often also called clear . The
IEEE symbols use 'R' to denote an input with a resetting action.

2.5.3 Clocked Inverter

Figure 2.19 shows how we can derive the structure of a clocked inverter from the
series combination of an inverter and a TG. The arrows in Figure 2.19(b)
represent the flow of current when the inverter is charging (I R) or discharging (
I F) a load capacitance through the TG. We can break the connection between the
inverter cells and use the circuit of Figure 2.19(c) without substantially affecting

the operation of the circuit. The symbol for the clocked inverter shown in
Figure 2.19(d) is common, but by no means a standard.

FIGURE 2.19 Clocked inverter. (a) An inverter plus transmission gate (TG).
(b) The current flow in the inverter and TG allows us to break the connection
between the transistors in the inverter. (c) Breaking the connection forms a
clocked inverter. (d) A common symbol.

We can use the clocked inverter to replace the inverter�TG pairs in latches and
flip-flops. For example, we can replace one or both of the inverters I1 and I3
(together with the TGs that follow them) in Figure 2.17(a) by clocked inverters.
There is not much to choose between the different implementations in this case,
except that layout may be easier for the clocked inverter versions (since there is
one less connection to make).

More interesting is the flip-flop design: We can only replace inverters I1, I3, and
I7 (and the TGs that follow them) in Figure 2.18(a) by clocked inverters. We
cannot replace inverter I6 because it is not directly connected to a TG. We can
replace the TG attached to node M with a clocked inverter, and this will invert
the sense of the output Q, which thus becomes QN. Now the clock-to-Q delay
will be slower than clock-to-QN, since Q (which was QN) now comes one
inverter later than QN.

If we wish to build a flip-flop with a fast clock-to-QN delay it may be better to
build it using clocked inverters and use inverters with TGs for a flip-flop with a
fast clock-to-Q delay. In fact, since we do not always use both Q and QN outputs
of a flip-flop, some libraries include Q only or QN only flip-flops that are slightly
smaller than those with both polarity outputs. It is slightly easier to layout
clocked inverters than an inverter plus a TG, so flip-flops in commercial libraries
include a mixture of clocked-inverter and TG implementations.

2.6 Datapath Logic Cells
Suppose we wish to build an n -bit adder (that adds two n -bit numbers) and to exploit
the regularity of this function in the layout. We can do so using a datapath structure.

The following two functions, SUM and COUT, implement the sum and carry out for a
full adder (FA) with two data inputs (A, B) and a carry in, CIN:

SUM = A • B • CIN = SUM(A, B, CIN) = PARITY(A, B, CIN) , (2.38)

COUT = A · B + A · CIN + B · CIN = MAJ(A, B, CIN). (2.39)

The sum uses the parity function ('1' if there are an odd numbers of '1's in the inputs).
The carry out, COUT, uses the 2-of-3 majority function ('1' if the majority of the inputs
are '1'). We can combine these two functions in a single FA logic cell, ADD(A[i], B[i
], CIN, S[i], COUT), shown in Figure 2.20(a), where

S[i] = SUM (A[i], B[i], CIN) , (2.40)

COUT = MAJ (A[i], B[i], CIN) . (2.41)

Now we can build a 4-bit ripple-carry adder (RCA) by connecting four of these ADD
cells together as shown in Figure 2.20(b). The i th ADD cell is arranged with the
following: two bus inputs A[i], B[i]; one bus output S[i]; an input, CIN, that is the
carry in from stage (i � 1) below and is also passed up to the cell above as an output;
and an output, COUT, that is the carry out to stage (i + 1) above. In the 4-bit adder
shown in Figure 2.20(b) we connect the carry input, CIN[0], to VSS and use COUT[3]
and COUT[2] to indicate arithmetic overflow (in Section 2.6.1 we shall see why we
may need both signals). Notice that we build the ADD cell so that COUT[2] is
available at the top of the datapath when we need it.

Figure 2.20(c) shows a layout of the ADD cell. The A inputs, B inputs, and S outputs
all use m1 interconnect running in the horizontal direction�we call these data signals.
Other signals can enter or exit from the top or bottom and run vertically across the
datapath in m2�we call these control signals. We can also use m1 for control and m2 for
data, but we normally do not mix these approaches in the same structure. Control
signals are typically clocks and other signals common to elements. For example, in
Figure 2.20(c) the carry signals, CIN and COUT, run vertically in m2 between cells. To
build a 4-bit adder we stack four ADD cells creating the array structure shown in
Figure 2.20(d). In this case the A and B data bus inputs enter from the left and bus S,
the sum, exits at the right, but we can connect A, B, and S to either side if we want.

The layout of buswide logic that operates on data signals in this fashion is called a
datapath . The module ADD is a datapath cell or datapath element . Just as we do for
standard cells we make all the datapath cells in a library the same height so we can abut

other datapath cells on either side of the adder to create a more complex datapath.
When people talk about a datapath they always assume that it is oriented so that
increasing the size in bits makes the datapath grow in height, upwards in the vertical
direction, and adding different datapath elements to increase the function makes the
datapath grow in width, in the horizontal direction�but we can rotate and position a
completed datapath in any direction we want on a chip.

FIGURE 2.20 A datapath adder. (a) A full-adder (FA) cell with inputs (A and B), a
carry in, CIN, sum output, S, and carry out, COUT. (b) A 4-bit adder. (c) The layout,
using two-level metal, with data in m1 and control in m2. In this example the wiring is
completed outside the cell; it is also possible to design the datapath cells to contain the
wiring. Using three levels of metal, it is possible to wire over the top of the datapath
cells. (d) The datapath layout.

What is the difference between using a datapath, standard cells, or gate arrays? Cells
are placed together in rows on a CBIC or an MGA, but there is no generally no
regularity to the arrangement of the cells within the rows�we let software arrange the
cells and complete the interconnect. Datapath layout automatically takes care of most
of the interconnect between the cells with the following advantages:

Regular layout produces predictable and equal delay for each bit.●

Interconnect between cells can be built into each cell.●

There are some disadvantages of using a datapath:

The overhead (buffering and routing the control signals, for example) can make a
narrow (small number of bits) datapath larger and slower than a standard-cell (or
even gate-array) implementation.

●

Datapath cells have to be predesigned (otherwise we are using full-custom
design) for use in a wide range of datapath sizes. Datapath cell design can be
harder than designing gate-array macros or standard cells.

●

Software to assemble a datapath is more complex and not as widely used as
software for assembling standard cells or gate arrays.

●

There are some newer standard-cell and gate-array tools that can take advantage of
regularity in a design and position cells carefully. The problem is in finding the
regularity if it is not specified. Using a datapath is one way to specify regularity to
ASIC design tools.

2.6.1 Datapath Elements

Figure 2.21 shows some typical datapath symbols for an adder (people rarely use the
IEEE standards in ASIC datapath libraries). I use heavy lines (they are 1.5 point wide)
with a stroke to denote a data bus (that flows in the horizontal direction in a datapath),
and regular lines (0.5 point) to denote the control signals (that flow vertically in a
datapath). At the risk of adding confusion where there is none, this stroke to indicate a
data bus has nothing to do with mixed-logic conventions. For a bus, A[31:0] denotes a
32-bit bus with A[31] as the leftmost or most-significant bit or MSB , and A[0] as the
least-significant bit or LSB . Sometimes we shall use A[MSB] or A[LSB] to refer to
these bits. Notice that if we have an n -bit bus and LSB = 0, then MSB = n � 1. Also, for
example, A[4] is the fifth bit on the bus (from the LSB). We use a ' S ' or 'ADD' inside
the symbol to denote an adder instead of '+', so we can attach '�' or '+/�' to the inputs for
a subtracter or adder/subtracter.

FIGURE 2.21 Symbols for a datapath adder. (a) A data bus is shown by a heavy line
(1.5 point) and a bus symbol. If the bus is n -bits wide then MSB = n � 1. (b) An
alternative symbol for an adder. (c) Control signals are shown as lightweight (0.5
point) lines.

Some schematic datapath symbols include only data signals and omit the control
signals�but we must not forget them. In Figure 2.21, for example, we may need to
explicitly tie CIN[0] to VSS and use COUT[MSB] and COUT[MSB � 1] to detect
overflow. Why might we need both of these control signals? Table 2.11 shows the
process of simple arithmetic for the different binary number representations, including
unsigned, signed magnitude, ones� complement, and two�s complement.

TABLE 2.11 Binary arithmetic.

Operation

Binary Number Representation

Unsigned
Signed

magnitude

Ones�

complement

Two�s

complement

 no change

if positive
then MSB = 0

else MSB = 1

if negative then flip
bits

if negative then {flip
bits; add 1}

3 = 0011 0011 0011 0011
�3 = NA 1011 1100 1101
zero = 0000 0000 or 1000 1111 or 0000 0000

max.
positive =

1111 = 15 0111 = 7 0111 = 7 0111 = 7

max.
negative =

0000= 0 1111 = �7 1000 = �7 1000 = �8

addition =

S = A + B

= addend +
augend

SG(A) =
sign of A

S = A + B

if SG(A) =
SG(B) then S
= A + B

else { if B < A
then S = A � B

else S = B �
A}

S =

A + B +
COUT[MSB]

COUT is carry out

S = A + B

addition
result:

OV =
overflow,

OR = out
of range

OR =
COUT[MSB]

COUT is
carry out

if SG(A) =
SG(B) then
OV =
COUT[MSB]

else OV = 0
(impossible)

OV =

XOR(COUT[MSB],
COUT[MSB�1])

OV =

XOR(COUT[MSB],
COUT[MSB � 1])

SG(S) =
sign of S

S = A + B

NA

if SG(A) =
SG(B) then
SG(S) =
SG(A)

else { if B < A
then SG(S) =
SG(A)

else SG(S) =
SG(B)}

NA NA

subtraction
=

D = A � B

= minuend

�
subtrahend

D = A � B

SG(B) =
NOT(SG(B));

D = A + B

Z = �B (negate);

D = A + Z

Z = �B (negate);

D = A + Z

subtraction
result :

OV =
overflow,

OR = out
of range

OR =
BOUT[MSB]

BOUT is
borrow out

as in addition as in addition as in addition

negation :

Z = �A
(negate)

NA

Z = A;

SG(Z) =
NOT(SG(A))

Z = NOT(A) Z = NOT(A) + 1

2.6.2 Adders

We can view addition in terms of generate , G[i], and propagate , P[i], signals.

method 1 method 2
G[i] = A[i] · B[i] G[i] = A[i] · B[i] (2.42)
P[i] = A[i] • B[i P[i] = A[i] + B[i] (2.43)
C[i] = G[i] + P[i] · C[i �1] C[i] = G[i] + P[i] · C[i �1] (2.44)
S[i] = P[i] • C[i �1] S[i] = A[i] • B[i] • C[i �1] (2.45)

where C[i] is the carry-out signal from stage i , equal to the carry in of stage (i + 1).
Thus, C[i] = COUT[i] = CIN[i + 1]. We need to be careful because C[0] might
represent either the carry in or the carry out of the LSB stage. For an adder we set the
carry in to the first stage (stage zero), C[�1] or CIN[0], to '0'. Some people use delete
(D) or kill (K) in various ways for the complements of G[i] and P[i], but unfortunately
others use C for COUT and D for CIN�so I avoid using any of these. Do not confuse the
two different methods (both of which are used) in Eqs. 2.42�2.45 when forming the
sum, since the propagate signal, P[i] , is different for each method.

Figure 2.22(a) shows a conventional RCA. The delay of an n -bit RCA is proportional
to n and is limited by the propagation of the carry signal through all of the stages. We
can reduce delay by using pairs of �go-faster� bubbles to change AND and OR gates to
fast two-input NAND gates as shown in Figure 2.22(a). Alternatively, we can write the
equations for the carry signal in two different ways:

either C[i] = A[i] · B[i] + P[i] · C[i � 1] (2.46)
or C[i] = (A[i] + B[i]) · (P[i]' + C[i � 1]), (2.47)

where P[i]'= NOT(P[i]). Equations 2.46 and 2.47 allow us to build the carry chain
from two-input NAND gates, one per cell, using different logic in even and odd stages
(Figure 2.22b):

even stages odd stages
C1[i]' = P[i] · C3[i � 1] · C4[i � 1] C3[i]' = P[i] · C1[i � 1] · C2[i � 1] (2.48)
C2[i] = A[i] + B[i] C4[i]' = A[i] · B[i] (2.49)
C[i] = C1[i] · C2[i] C[i] = C3[i] ' + C4[i]' (2.50)

(the carry inputs to stage zero are C3[�1] = C4[�1] = '0'). We can use the RCA of
Figure 2.22(b) in a datapath, with standard cells, or on a gate array.

Instead of propagating the carries through each stage of an RCA, Figure 2.23 shows a
different approach. A carry-save adder (CSA) cell CSA(A1[i], A2[i], A3[i], CIN,
S1[i], S2[i], COUT) has three outputs:

S1[i] = CIN , (2.51)
S2[i] = A1[i] • A2[i] • A3[i] = PARITY(A1[i], A2[i], A3[i]) , (2.52)

COUT = A1[i] · A2[i] + [(A1[i] + A2[i]) · A3[i]] = MAJ(A1[i], A2[i],
A3[i]) .

(2.53)

The inputs, A1, A2, and A3; and outputs, S1 and S2, are buses. The input, CIN, is the
carry from stage (i � 1). The carry in, CIN, is connected directly to the output bus S1
�indicated by the schematic symbol (Figure 2.23a). We connect CIN[0] to VSS. The
output, COUT, is the carry out to stage (i + 1).

A 4-bit CSA is shown in Figure 2.23(b). The arithmetic overflow signal for ones�
complement or two�s complement arithmetic, OV, is XOR(COUT[MSB], COUT[MSB
� 1]) as shown in Figure 2.23(c). In a CSA the carries are �saved� at each stage and
shifted left onto the bus S1. There is thus no carry propagation and the delay of a CSA
is constant. At the output of a CSA we still need to add the S1 bus (all the saved
carries) and the S2 bus (all the sums) to get an n -bit result using a final stage that is not
shown in Figure 2.23(c). We might regard the n -bit sum as being encoded in the two
buses, S1 and S2, in the form of the parity and majority functions.

We can use a CSA to add multiple inputs�as an example, an adder with four 4-bit inputs
is shown in Figure 2.23(d). The last stage sums two input buses using a carry-propagate
adder (CPA). We have used an RCA as the CPA in Figure 2.23(d) and (e), but we can
use any type of adder. Notice in Figure 2.23(e) how the two CSA cells and the RCA
cell abut together horizontally to form a bit slice (or slice) and then the slices are
stacked vertically to form the datapath.

FIGURE 2.22 The carry-save adder (CSA). (a) A CSA cell. (b) A 4-bit CSA.
(c) Symbol for a CSA. (d) A four-input CSA. (e) The datapath for a four-input, 4-bit
adder using CSAs with a ripple-carry adder (RCA) as the final stage. (f) A pipelined
adder. (g) The datapath for the pipelined version showing the pipeline registers as well
as the clock control lines that use m2.

We can register the CSA stages by adding vectors of flip-flops as shown in
Figure 2.23(f). This reduces the adder delay to that of the slowest adder stage, usually
the CPA. By using registers between stages of combinational logic we use pipelining to
increase the speed and pay a price of increased area (for the registers) and introduce
latency . It takes a few clock cycles (the latency, equal to n clock cycles for an n -stage
pipeline) to fill the pipeline, but once it is filled, the answers emerge every clock cycle.
Ferris wheels work much the same way. When the fair opens it takes a while (latency)
to fill the wheel, but once it is full the people can get on and off every few seconds.
(We can also pipeline the RCA of Figure 2.20. We add i registers on the A and B
inputs before ADD[i] and add (n � i) registers after the output S[i], with a single
register before each C[i].)

The problem with an RCA is that every stage has to wait to make its carry decision, C[
i], until the previous stage has calculated C[i � 1]. If we examine the propagate signals
we can bypass this critical path. Thus, for example, to bypass the carries for bits 4�7
(stages 5�8) of an adder we can compute BYPASS = P[4].P[5].P[6].P[7] and then use a
MUX as follows:

C[7] = (G[7] + P[7] · C[6]) · BYPASS' + C[3] · BYPASS . (2.54)

Adders based on this principle are called carry-bypass adders (CBA) [Sato et al.,
1992]. Large, custom adders employ Manchester-carry chains to compute the carries
and the bypass operation using TGs or just pass transistors [Weste and Eshraghian,
1993, pp. 530�531]. These types of carry chains may be part of a predesigned ASIC
adder cell, but are not used by ASIC designers.

Instead of checking the propagate signals we can check the inputs. For example we can
compute SKIP = (A[i � 1] • B[i � 1]) + (A[i] • B[i]) and then use a 2:1 MUX to
select C[i]. Thus,

CSKIP[i] = (G[i] + P[i] · C[i � 1]) · SKIP' + C[i � 2] · SKIP . (2.55)

This is a carry-skip adder [Keutzer, Malik, and Saldanha, 1991; Lehman, 1961].
Carry-bypass and carry-skip adders may include redundant logic (since the carry is
computed in two different ways�we just take the first signal to arrive). We must be
careful that the redundant logic is not optimized away during logic synthesis.

If we evaluate Eq. 2.44 recursively for i = 1, we get the following:

C[1] = G[1] + P[1] · C[0]
 = G[1] + P[1] · (G[0] + P[1] · C[�1])
 = G[1] + P[1] · G[0] . (2.56)

This result means that we can �look ahead� by two stages and calculate the carry into
the third stage (bit 2), which is C[1], using only the first-stage inputs (to calculate G[0])
and the second-stage inputs. This is a carry-lookahead adder (CLA) [MacSorley,

1961]. If we continue expanding Eq. 2.44, we find:

C[2] = G[2] + P[2] · G[1] + P[2] · P[1] · G[0] ,

C[3] = G[3] + P[2] · G[2] + P[2] · P[1] · G[1] + P[3] · P[2] · P[1] · G[0] . (2.57)

As we look ahead further these equations become more complex, take longer to
calculate, and the logic becomes less regular when implemented using cells with a
limited number of inputs. Datapath layout must fit in a bit slice, so the physical and
logical structure of each bit must be similar. In a standard cell or gate array we are not
so concerned about a regular physical structure, but a regular logical structure
simplifies design. The Brent�Kung adder reduces the delay and increases the regularity
of the carry-lookahead scheme [Brent and Kung, 1982]. Figure 2.24(a) shows a regular
4-bit CLA, using the carry-lookahead generator cell (CLG) shown in Figure 2.24(b).

FIGURE 2.23 The Brent�Kung carry-lookahead adder (CLA). (a) Carry generation in a
4-bit CLA. (b) A cell to generate the lookahead terms, C[0]�C[3]. (c) Cells L1, L2, and
L3 are rearranged into a tree that has less delay. Cell L4 is added to calculate C[2] that
is lost in the translation. (d) and (e) Simplified representations of parts a and c. (f) The
lookahead logic for an 8-bit adder. The inputs, 0�7, are the propagate and carry terms
formed from the inputs to the adder. (g) An 8-bit Brent�Kung CLA. The outputs of the
lookahead logic are the carry bits that (together with the inputs) form the sum. One
advantage of this adder is that delays from the inputs to the outputs are more nearly
equal than in other adders. This tends to reduce the number of unwanted and
unnecessary switching events and thus reduces power dissipation.

In a carry-select adder we duplicate two small adders (usually 4-bit or 8-bit adders
�often CLAs) for the cases CIN = '0' and CIN = '1' and then use a MUX to select the
case that we need�wasteful, but fast [Bedrij, 1962]. A carry-select adder is often used as
the fast adder in a datapath library because its layout is regular.

We can use the carry-select, carry-bypass, and carry-skip architectures to split a 12-bit
adder, for example, into three blocks. The delay of the adder is then partly dependent
on the delays of the MUX between each block. Suppose the delay due to 1-bit in an
adder block (we shall call this a bit delay) is approximately equal to the MUX delay. In
this case may be faster to make the blocks 3, 4, and 5-bits long instead of being equal in
size. Now the delays into the final MUX are equal�3 bit-delays plus 2 MUX delays for
the carry signal from bits 0�6 and 5 bit-delays for the carry from bits 7�11. Adjusting
the block size reduces the delay of large adders (more than 16 bits).

We can extend the idea behind a carry-select adder as follows. Suppose we have an n
-bit adder that generates two sums: One sum assumes a carry-in condition of '0', the
other sum assumes a carry-in condition of '1'. We can split this n -bit adder into an i -bit
adder for the i LSBs and an (n � i)-bit adder for the n � i MSBs. Both of the smaller
adders generate two conditional sums as well as true and complement carry signals.
The two (true and complement) carry signals from the LSB adder are used to select
between the two (n � i + 1)-bit conditional sums from the MSB adder using 2(n � i + 1)
two-input MUXes. This is a conditional-sum adder (also often abbreviated to CSA)
[Sklansky, 1960]. We can recursively apply this technique. For example, we can split a
16-bit adder using i = 8 and n = 8; then we can split one or both 8�bit adders again�and
so on.

Figure 2.25 shows the simplest form of an n -bit conditional-sum adder that uses n
single-bit conditional adders, H (each with four outputs: two conditional sums, true
carry, and complement carry), together with a tree of 2:1 MUXes (Qi_j). The
conditional-sum adder is usually the fastest of all the adders we have discussed (it is the
fastest when logic cell delay increases with the number of inputs�this is true for all
ASICs except FPGAs).

FIGURE 2.24 The conditional-sum adder. (a) A 1-bit conditional adder that calculates
the sum and carry out assuming the carry in is either '1' or '0'. (b) The multiplexer that
selects between sums and carries. (c) A 4-bit conditional-sum adder with carry input,
C[0].

2.6.3 A Simple Example

How do we make and use datapath elements? What does a design look like? We may
use predesigned cells from a library or build the elements ourselves from logic cells
using a schematic or a design language. Table 2.12 shows an 8-bit conditional-sum
adder intended for an FPGA. This Verilog implementation uses the same structure as
Figure 2.25, but the equations are collapsed to use four or five variables. A basic logic
cell in certain Xilinx FPGAs, for example, can implement two equations of the same
four variables or one equation with five variables. The equations shown in Table 2.12
requires three levels of FPGA logic cells (so, for example, if each FPGA logic cell has
a 5 ns delay, the 8-bit conditional-sum adder delay is 15 ns).

TABLE 2.12 An 8-bit conditional-sum adder (the notation is described in Figure 2.25).

module m8bitCSum (C0, a, b, s, C8); // Verilog conditional-sum adder for an FPGA

input [7:0] C0, a, b; output [7:0] s; output C8;

wire
A7,A6,A5,A4,A3,A2,A1,A0,B7,B6,B5,B4,B3,B2,B1,B0,S8,S7,S6,S5,S4,S3,S2,S1,S0;

wire C0, C2, C4_2_0, C4_2_1, S5_4_0, S5_4_1, C6, C6_4_0, C6_4_1, C8;

assign {A7,A6,A5,A4,A3,A2,A1,A0} = a; assign {B7,B6,B5,B4,B3,B2,B1,B0} = b;

assign s = { S7,S6,S5,S4,S3,S2,S1,S0 };

assign S0 = A0^B0^C0 ; // start of level 1: & = AND, ^ = XOR, | = OR, ! = NOT

assign S1 = A1^B1^(A0&B0|(A0|B0)&C0) ;

assign C2 = A1&B1|(A1|B1)&(A0&B0|(A0|B0)&C0) ;

assign C4_2_0 = A3&B3|(A3|B3)&(A2&B2) ; assign C4_2_1 =
A3&B3|(A3|B3)&(A2|B2) ;

assign S5_4_0 = A5^B5^(A4&B4) ; assign S5_4_1 = A5^B5^(A4|B4) ;

assign C6_4_0 = A5&B5|(A5|B5)&(A4&B4) ; assign C6_4_1 =
A5&B5|(A5|B5)&(A4|B4) ;

assign S2 = A2^B2^C2 ; // start of level 2

assign S3 = A3^B3^(A2&B2|(A2|B2)&C2) ;

assign S4 = A4^B4^(C4_2_0|C4_2_1&C2) ;

assign S5 = S5_4_0& !(C4_2_0|C4_2_1&C2)|S5_4_1&(C4_2_0|C4_2_1&C2) ;

assign C6 = C6_4_0|C6_4_1&(C4_2_0|C4_2_1&C2) ;

assign S6 = A6^B6^C6 ; // start of level 3

assign S7 = A7^B7^(A6&B6|(A6|B6)&C6) ;

assign C8 = A7&B7|(A7|B7s)&(A6&B6|(A6|B6)&C6) ;

endmodule

Figure 2.26 shows the normalized delay and area figures for a set of predesigned
datapath adders. The data in Figure 2.26 is from a series of ASIC datapath cell libraries
(Compass Passport) that may be synthesized together with test vectors and simulation
models. We can combine the different adder techniques, but the adders then lose
regularity and become less suited to a datapath implementation.

FIGURE 2.25 Datapath adders. This data is from a series of submicron datapath
libraries. (a) Delay normalized to a two-input NAND logic cell delay (approximately
equal to 250 ps in a 0.5 m m process). For example, a 64-bit ripple-carry adder (RCA)
has a delay of approximately 30 ns in a 0.5 m m process. The spread in delay is due to
variation in delays between different inputs and outputs. An n -bit RCA has a delay
proportional to n . The delay of an n -bit carry-select adder is approximately
proportional to log 2 n . The carry-save adder delay is constant (but requires a
carry-propagate adder to complete an addition). (b) In a datapath library the area of all
adders are proportional to the bit size.

There are other adders that are not used in datapaths, but are occasionally useful in
ASIC design. A serial adder is smaller but slower than the parallel adders we have
described [Denyer and Renshaw, 1985]. The carry-completion adder is a variable delay
adder and rarely used in synchronous designs [Sklansky, 1960].

2.6.4 Multipliers

Figure 2.27 shows a symmetric 6-bit array multiplier (an n -bit multiplier multiplies
two n -bit numbers; we shall use n -bit by m -bit multiplier if the lengths are different).
Adders a0�f0 may be eliminated, which then eliminates adders a1�a6, leaving an
asymmetric CSA array of 30 (5 ¥ 6) adders (including one half adder). An n -bit array
multiplier has a delay proportional to n plus the delay of the CPA (adders b6�f6 in
Figure 2.27). There are two items we can attack to improve the performance of a
multiplier: the number of partial products and the addition of the partial products.

FIGURE 2.26 Multiplication. A 6-bit array multiplier using a final carry-propagate
adder (full-adder cells a6�f6, a ripple-carry adder). Apart from the generation of the
summands this multiplier uses the same structure as the carry-save adder of
Figure 2.23(d).

Suppose we wish to multiply 15 (the multiplicand) by 19 (the multiplier) mentally. It
is easier to calculate 15 ¥ 20 and subtract 15. In effect we complete the multiplication
as 15 ¥ (20 � 1) and we could write this as 15 ¥ 2 1 , with the overbar representing a
minus sign. Now suppose we wish to multiply an 8-bit binary number, A, by B =
00010111 (decimal 16 + 4 + 2 + 1 = 23). It is easier to multiply A by the canonical
signed-digit vector (CSD vector) D = 0010 1 001 (decimal 32 � 8 + 1 = 23) since this
requires only three add or subtract operations (and a subtraction is as easy as an
addition). We say B has a weight of 4 and D has a weight of 3. By using D instead of B
we have reduced the number of partial products by 1 (= 4 � 3).

We can recode (or encode) any binary number, B, as a CSD vector, D, as follows
(canonical means there is only one CSD vector for any number):

D i = B i + C i � 2C i + 1 , (2.58)

where C i + 1 is the carry from the sum of B i + 1 + B i + C i (we start with C 0 = 0).

As another example, if B = 011 (B 2 = 0, B 1 = 1, B 0 = 1; decimal 3), then, using
Eq. 2.58,

D 0 = B 0 + C 0 � 2C 1 = 1 + 0 � 2 = 1 ,

D 1 = B 1 + C 1 � 2C 2 = 1 + 1 � 2 = 0,

D 2 = B 2 + C 2 � 2C 3 = 0 + 1 � 0 = 1, (2.59)

so that D = 10 1 (decimal 4 � 1 = 3). CSD vectors are useful to represent fixed
coefficients in digital filters, for example.

We can recode using a radix other than 2. Suppose B is an (n + 1)-digit two�s
complement number,

B = B 0 + B 1 2 + B 2 2 2 + . . . + B i 2 i + . . . + B n � 1 2 n � 1 � B n 2 n . (2.60)

We can rewrite the expression for B using the following sleight-of-hand:

2B � B =
B = �B 0 + (B 0 � B 1)2 + . . . + (B i � 1 � B i)2 i + . . . + B n � 1 2 n � 1 � B n

2 n

 = (�2B 1 + B 0)2 0 + (�2B 3 + B 2 + B 1)2 2 + . . .

 + (�2B i + B i � 1 + B i � 2)2 i � 1 + (�2B i + 2 + B i + 1 + B i)2 i + 1 + . . .

 + (�2B n + B i � 1 + B i � 2)2 n � 1 . (2.61)

This is very useful. Consider B = 101001 (decimal 9 � 32 = �23, n = 5),

B = 101001

 = (�2B 1 + B 0)2 0 + (�2B 3 + B 2 + B 1)2 2 + (�2B 5 + B 4 + B 3)2 4

 ((�2 ¥ 0) + 1)2 0 + ((�2 ¥ 1) + 0 + 0)2 2 + ((�2 ¥ 1) + 0 + 1)2 4 . (2.62)

Equation 2.61 tells us how to encode B as a radix-4 signed digit, E = 12 1 (decimal �16
� 8 + 1 = �23). To multiply by B encoded as E we only have to perform a multiplication
by 2 (a shift) and three add/subtract operations.

Using Eq. 2.61 we can encode any number by taking groups of three bits at a time and
calculating

E j = �2B i + B i � 1 + B i � 2 ,

E j + 1 = �2B i + 2 + B i + 1 + B i , . . . , (2.63)

where each 3-bit group overlaps by one bit. We pad B with a zero, B n . . . B 1 B 0 0, to
match the first term in Eq. 2.61. If B has an odd number of bits, then we extend the
sign: B n B n . . . B 1 B 0 0. For example, B = 01011 (eleven), encodes to E = 1 11 (16 �
4 � 1); and B = 101 is E = 1 1. This is called Booth encoding and reduces the number of
partial products by a factor of two and thus considerably reduces the area as well as
increasing the speed of our multiplier [Booth, 1951].

Next we turn our attention to improving the speed of addition in the CSA array.

Figure 2.28(a) shows a section of the 6-bit array multiplier from Figure 2.27. We can
collapse the chain of adders a0�f5 (5 adder delays) to the Wallace tree consisting of
adders 5.1�5.4 (4 adder delays) shown in Figure 2.28(b).

FIGURE 2.27 Tree-based multiplication. (a) The portion of Figure 2.27 that calculates
the sum bit, P 5 , using a chain of adders (cells a0�f5). (b) We can collapse this chain to
a Wallace tree (cells 5.1�5.5). (c) The stages of multiplication.

Figure 2.28(c) pictorially represents multiplication as a sort of golf course. Each link
corresponds to an adder. The holes or dots are the outputs of one stage (and the inputs
of the next). At each stage we have the following three choices: (1) sum three outputs
using a full adder (denoted by a box enclosing three dots); (2) sum two outputs using a
half adder (a box with two dots); (3) pass the outputs directly to the next stage. The two
outputs of an adder are joined by a diagonal line (full adders use black dots, half adders
white dots). The object of the game is to choose (1), (2), or (3) at each stage to
maximize the performance of the multiplier. In tree-based multipliers there are two
ways to do this�working forward and working backward.

In a Wallace-tree multiplier we work forward from the multiplier inputs, compressing
the number of signals to be added at each stage [Wallace, 1960]. We can view an FA as
a 3:2 compressor or (3, 2) counter �it counts the number of '1's on the inputs. Thus, for
example, an input of '101' (two '1's) results in an output '10' (2). A half adder is a (2, 2)
counter . To form P 5 in Figure 2.29 we must add 6 summands (S 05 , S 14 , S 23 , S 32 ,
S 41 , and S 50) and 4 carries from the P 4 column. We add these in stages 1�7,
compressing from 6:3:2:2:3:1:1. Notice that we wait until stage 5 to add the last carry

from column P 4 , and this means we expand (rather than compress) the number of
signals (from 2 to 3) between stages 3 and 5. The maximum delay through the CSA
array of Figure 2.29 is 6 adder delays. To this we must add the delay of the 4-bit (9
inputs) CPA (stage 7). There are 26 adders (6 half adders) plus the 4 adders in the CPA.

FIGURE 2.28 A 6-bit Wallace-tree multiplier. The carry-save adder (CSA) requires 26
adders (cells 1�26, six are half adders). The final carry-propagate adder (CPA) consists
of 4 adder cells (27�30). The delay of the CSA is 6 adders. The delay of the CPA is 4
adders.

In a Dadda multiplier (Figure 2.30) we work backward from the final product [Dadda,
1965]. Each stage has a maximum of 2, 3, 4, 6, 9, 13, 19, . . . outputs (each successive
stage is 3/2 times larger�rounded down to an integer). Thus, for example, in
Figure 2.28(d) we require 3 stages (with 3 adder delays�plus the delay of a 10-bit output
CPA) for a 6-bit Dadda multiplier. There are 19 adders (4 half adders) in the CSA plus
the 10 adders (2 half adders) in the CPA. A Dadda multiplier is usually faster and
smaller than a Wallace-tree multiplier.

FIGURE 2.29 The 6-bit Dadda multiplier. The carry-save adder (CSA) requires 20
adders (cells 1�20, four are half adders). The carry-propagate adder (CPA, cells 21�30)
is a ripple-carry adder (RCA). The CSA is smaller (20 versus 26 adders), faster (3
adder delays versus 6 adder delays), and more regular than the Wallace-tree CSA of
Figure 2.29. The overall speed of this implementation is approximately the same as the
Wallace-tree multiplier of Figure 2.29; however, the speed may be increased by
substituting a faster CPA.

In general, the number of stages and thus delay (in units of an FA delay�excluding the
CPA) for an n -bit tree-based multiplier using (3, 2) counters is

log 1.5 n = log 10 n /log 10 1.5 = log 10 n /0.176 . (2.64)

Figure 2.31(a) shows how the partial-product array is constructed in a conventional
4-bit multiplier. The Ferrari�Stefanelli multiplier (Figure 2.31b) �nests� multipliers�the
2-bit submultipliers reduce the number of partial products [Ferrari and Stefanelli,
1969].

FIGURE 2.30 Ferrari�Stefanelli multiplier. (a) A conventional 4-bit array multiplier
using AND gates to calculate the summands with (2, 2) and (3, 2) counters to sum the
partial products. (b) A 4-bit Ferrari�Stefanelli multiplier using 2-bit submultipliers to
construct the partial product array. (c) A circuit implementation for an inverting 2-bit
submultiplier.

There are several issues in deciding between parallel multiplier architectures:

Since it is easier to fold triangles rather than trapezoids into squares, a
Wallace-tree multiplier is more suited to full-custom layout, but is slightly larger,
than a Dadda multiplier�both are less regular than an array multiplier. For
cell-based ASICs, a Dadda multiplier is smaller than a Wallace-tree multiplier.

1.

The overall multiplier speed does depend on the size and architecture of the final
CPA, but this may be optimized independently of the CSA array. This means a
Dadda multiplier is always at least as fast as the Wallace-tree version.

2.

The low-order bits of any parallel multiplier settle first and can be added in the
CPA before the remaining bits settle. This allows multiplication and the final
addition to be overlapped in time.

3.

Any of the parallel multiplier architectures may be pipelined. We may also use a
variably pipelined approach that tailors the register locations to the size of the
multiplier.

4.

Using (4, 2), (5, 3), (7, 3), or (15, 4) counters increases the stage compression
and permits the size of the stages to be tuned. Some ASIC cell libraries contain a
(7, 3) counter�a 2-bit full-adder . A (15, 4) counter is a 3-bit full adder. There is a
trade-off in using these counters between the speed and size of the logic cells and
the delay as well as area of the interconnect.

5.

Power dissipation is reduced by the tree-based structures. The simplified
carry-save logic produces fewer signal transitions and the tree structures produce
fewer glitches than a chain.

6.

None of the multiplier structures we have discussed take into account the
possibility of staggered arrival times for different bits of the multiplicand or the
multiplier. Optimization then requires a logic-synthesis tool.

7.

2.6.5 Other Arithmetic Systems

There are other schemes for addition and multiplication that are useful in special
circumstances. Addition of numbers using redundant binary encoding avoids carry
propagation and is thus potentially very fast. Table 2.13 shows the rules for addition
using an intermediate carry and sum that are added without the need for carry. For
example,

binary decimal redundant binary CSD vector
1010111 87 10101001 10 1 0 1 00 1 addend
+ 1100101 101 + 11100111 + 01100101 augend
 01001110 = 11 00 1 100 intermediate sum
 1 1 00010 1 11000000 intermediate carry
= 10111100 = 188 1 1 1000 1 00 10 1 00 1 100 sum

TABLE 2.13 Redundant binary addition.

A[i] B[i] A[i � 1] B[i � 1]
Intermediate

sum

Intermediate

carry
1 1 x x 0 1
1 0 A[i � 1]=0/1 and B[i � 1]=0/1 1 0

0 1 A[i � 1]= 1 or B[i � 1]= 1 1 1
1 1 x x 0 0
1 1 x x 0 0
0 0 x x 0 0
0 1 A[i � 1]=0/1 and B[i � 1]=0/1 1 1
1 0 A[i � 1]= 1 or B[i � 1]= 1 1 0
1 1 x x 0 1

The redundant binary representation is not unique. We can represent 101 (decimal), for
example, by 1100101 (binary and CSD vector) or 1 1 100111. As another example, 188
(decimal) can be represented by 10111100 (binary), 1 1 1000 1 00, 10 1 00 1 100, or 10
1 000 1 00 (CSD vector). Redundant binary addition of binary, redundant binary, or
CSD vectors does not result in a unique sum, and addition of two CSD vectors does not
result in a CSD vector. Each n -bit redundant binary number requires a rather wasteful
2 n -bit binary number for storage. Thus 10 1 is represented as 010010, for example
(using sign magnitude). The other disadvantage of redundant binary arithmetic is the
need to convert to and from binary representation.

Table 2.14 shows the (5, 3) residue number system . As an example, 11 (decimal) is
represented as [1, 2] residue (5, 3) since 11R 5 = 11 mod 5 = 1 and 11R 3 = 11 mod 3 =
2. The size of this system is thus 3 ¥ 5 = 15. We add, subtract, or multiply residue
numbers using the modulus of each bit position�without any carry. Thus:

4 [4, 1] 12 [2, 0] 3 [3, 0]
+ 7 + [2, 1] � 4 - [4, 1] ¥ 4 ¥ [4, 1]
= 11 = [1, 2] = 8 = [3, 2] = 12 = [2, 0]

TABLE 2.14 The 5, 3 residue number system.
n residue 5 residue 3 n residue 5 residue 3 n residue 5 residue 3
0 0 0 5 0 2 10 0 1
1 1 1 6 1 0 11 1 2
2 2 2 7 2 1 12 2 0
3 3 0 8 3 2 13 3 1
4 4 1 9 4 0 14 4 2

The choice of moduli determines the system size and the computing complexity. The
most useful choices are relative primes (such as 3 and 5). With p prime, numbers of the
form 2 p and 2 p � 1 are particularly useful (2 p � 1 are Mersenne�s numbers) [Waser and
Flynn, 1982].

2.6.6 Other Datapath Operators

Figure 2.32 shows symbols for some other datapath elements. The combinational
datapath cells, NAND, NOR, and so on, and sequential datapath cells (flip-flops and
latches) have standard-cell equivalents and function identically. I use a bold outline (1
point) for datapath cells instead of the regular (0.5 point) line I use for scalar symbols.
We call a set of identical cells a vector of datapath elements in the same way that a bold
symbol, A , represents a vector and A represents a scalar.

FIGURE 2.31 Symbols for datapath elements. (a) An array or vector of flip-flops (a
register). (b) A two-input NAND cell with databus inputs. (c) A two-input NAND cell
with a control input. (d) A buswide MUX. (e) An incrementer/decrementer. (f) An
all-zeros detector. (g) An all-ones detector. (h) An adder/subtracter.

A subtracter is similar to an adder, except in a full subtracter we have a borrow-in
signal, BIN; a borrow-out signal, BOUT; and a difference signal, DIFF:

DIFF = A • NOT(B) • NOT(BIN)
 SUM(A, NOT(B), NOT(BIN)) (2.65)
NOT(BOUT) = A · NOT(B) + A · NOT(BIN) + NOT(B) · NOT(BIN)
 MAJ(NOT(A), B, NOT(BIN)) (2.66)

These equations are the same as those for the FA (Eqs. 2.38 and 2.39) except that the B
input is inverted and the sense of the carry chain is inverted. To build a subtracter that
calculates (A � B) we invert the entire B input bus and connect the BIN[0] input to
VDD (not to VSS as we did for CIN[0] in an adder). As an example, to subtract B =
'0011' from A = '1001' we calculate '1001' + '1100' + '1' = '0110'. As with an adder, the
true overflow is XOR(BOUT[MSB], BOUT[MSB � 1]).

We can build a ripple-borrow subtracter (a type of borrow-propagate subtracter), a
borrow-save subtracter, and a borrow-select subtracter in the same way we built these
adder architectures. An adder/subtracter has a control signal that gates the A input with
an exclusive-OR cell (forming a programmable inversion) to switch between an adder
or subtracter. Some adder/subtracters gate both inputs to allow us to compute (�A � B).
We must be careful to connect the input to the LSB of the carry chain (CIN[0] or
BIN[0]) when changing between addition (connect to VSS) and subtraction (connect to
VDD).

A barrel shifter rotates or shifts an input bus by a specified amount. For example if we
have an eight-input barrel shifter with input '1111 0000' and we specify a shift of
'0001 0000' (3, coded by bit position) the right-shifted 8-bit output is '0001 1110'. A
barrel shifter may rotate left or right (or switch between the two under a separate
control). A barrel shifter may also have an output width that is smaller than the input.
To use a simple example, we may have an 8-bit input and a 4-bit output. This situation
is equivalent to having a barrel shifter with two 4-bit inputs and a 4-bit output. Barrel
shifters are used extensively in floating-point arithmetic to align (we call this normalize
and denormalize) floating-point numbers (with sign, exponent, and mantissa).

A leading-one detector is used with a normalizing (left-shift) barrel shifter to align
mantissas in floating-point numbers. The input is an n -bit bus A, the output is an n -bit
bus, S, with a single '1' in the bit position corresponding to the most significant '1' in
the input. Thus, for example, if the input is A = '0000 0101' the leading-one detector
output is S = '0000 0100', indicating the leading one in A is in bit position 2 (bit 7 is the
MSB, bit zero is the LSB). If we feed the output, S, of the leading-one detector to the
shift select input of a normalizing (left-shift) barrel shifter, the shifter will normalize
the input A. In our example, with an input of A = '0000 0101', and a left-shift of S =
'0000 0100', the barrel shifter will shift A left by five bits and the output of the shifter is
Z = '1010 0000'. Now that Z is aligned (with the MSB equal to '1') we can multiply Z
with another normalized number.

The output of a priority encoder is the binary-encoded position of the leading one in an
input. For example, with an input A = '0000 0101' the leading 1 is in bit position 3
(MSB is bit position 7) so the output of a 4-bit priority encoder would be Z = '0011' (3).
In some cell libraries the encoding is reversed so that the MSB has an output code of
zero, in this case Z = '0101' (5). This second, reversed, encoding scheme is useful in
floating-point arithmetic. If A is a mantissa and we normalize A to '1010 0000' we have
to subtract 5 from the exponent, this exponent correction is equal to the output of the
priority encoder.

An accumulator is an adder/subtracter and a register. Sometimes these are combined
with a multiplier to form a multiplier�accumulator (MAC). An incrementer adds 1 to
the input bus, Z = A + 1, so we can use this function, together with a register, to negate
a two�s complement number for example. The implementation is Z[i] = XOR(A[i],
CIN[i]), and COUT[i] = AND(A[i], CIN[i]). The carry-in control input, CIN[0],
thus acts as an enable: If it is set to '0' the output is the same as the input.

The implementation of arithmetic cells is often a little more complicated than we have
explained. CMOS logic is naturally inverting, so that it is faster to implement an
incrementer as

Z[i (even)] = XOR(A[i], CIN[i]) and COUT[i (even)] = NAND(A[i], CIN[i]).

This inverts COUT, so that in the following stage we must invert it again. If we push an
inverting bubble to the input CIN we find that:

Z[i (odd)] = XNOR(A[i], CIN[i]) and COUT[i (even)] = NOR(NOT(A[i]), CIN[i
]).

In many datapath implementations all odd-bit cells operate on inverted carry signals,
and thus the odd-bit and even-bit datapath elements are different. In fact, all the adder
and subtracter datapath elements we have described may use this technique. Normally
this is completely hidden from the designer in the datapath assembly and any output
control signals are inverted, if necessary, by inserting buffers.

A decrementer subtracts 1 from the input bus, the logical implementation is Z[i] =
XOR(A[i], CIN[i]) and COUT[i] = AND(NOT(A[i]), CIN[i]). The
implementation may invert the odd carry signals, with CIN[0] again acting as an
enable.

An incrementer/decrementer has a second control input that gates the input, inverting

the input to the carry chain. This has the effect of selecting either the increment or
decrement function.

Using the all-zeros detectors and all-ones detectors , remember that, for a 4-bit number,
for example, zero in ones� complement arithmetic is '1111' or '0000', and that zero in
signed magnitude arithmetic is '1000' or '0000'.

A register file (or scratchpad memory) is a bank of flip-flops arranged across the bus;
sometimes these have the option of multiple ports (multiport register files) for read and
write. Normally these register files are the densest logic and hardest to fit in a datapath.
For large register files it may be more appropriate to use a multiport memory. We can
add control logic to a register file to create a first-in first-out register (FIFO), or last-in
first-out register (LIFO).

In Section 2.5 we saw that the standard-cell version and gate-array macro version of the
sequential cells (latches and flip-flops) each contain their own clock buffers. The
reason for this is that (without intelligent placement software) we do not know where a
standard cell or a gate-array macro will be placed on a chip. We also have no idea of
the condition of the clock signal coming into a sequential cell. The ability to place the
clock buffers outside the sequential cells in a datapath gives us more flexibility and
saves space. For example, we can place the clock buffers for all the clocked elements at
the top of the datapath (together with the buffers for the control signals) and river route
(in river routing the interconnect lines all flow in the same direction on the same layer)
the connections to the clock lines. This saves space and allows us to guarantee the
clock skew and timing. It may mean, however, that there is a fixed overhead associated
with a datapath. For example, it might make no sense to build a 4-bit datapath if the
clock and control buffers take up twice the space of the datapath logic. Some tools
allow us to design logic using a portable netlist . After we complete the design we can
decide whether to implement the portable netlist in a datapath, standard cells, or even a
gate array, based on area, speed, or power considerations.

2.7 I/O Cells
Figure 2.33 shows a three-state bidirectional output buffer (Tri-State ® is a
registered trademark of National Semiconductor). When the output enable (OE)
signal is high, the circuit functions as a noninverting buffer driving the value of
DATAin onto the I/O pad. When OE is low, the output transistors or drivers , M1
and M2, are disconnected. This allows multiple drivers to be connected on a bus.
It is up to the designer to make sure that a bus never has two drivers�a problem
known as contention .

In order to prevent the problem opposite to contention�a bus floating to an
intermediate voltage when there are no bus drivers�we can use a bus keeper or
bus-hold cell (TI calls this Bus-Friendly logic). A bus keeper normally acts like
two weak (low drive-strength) cross-coupled inverters that act as a latch to retain
the last logic state on the bus, but the latch is weak enough that it may be driven
easily to the opposite state. Even though bus keepers act like latches, and will
simulate like latches, they should not be used as latches, since their drive strength
is weak.

Transistors M1 and M2 in Figure 2.33 have to drive large off-chip loads. If we
wish to change the voltage on a C = 200 pF load by 5 V in 5 ns (a slew rate of 1
Vns �1) we will require a current in the output transistors of I DS = C (d V /d t) =

(200 ¥ 10 �12) (5/5 ¥ 10 �9) = 0.2 A or 200 mA.

Such large currents flowing in the output transistors must also flow in the power
supply bus and can cause problems. There is always some inductance in series
with the power supply, between the point at which the supply enters the ASIC
package and reaches the power bus on the chip. The inductance is due to the bond
wire, lead frame, and package pin. If we have a power-supply inductance of 2 nH
and a current changing from zero to 1 A (32 I/O cells on a bus switching at 30
mA each) in 5 ns, we will have a voltage spike on the power supply (called
power-supply bounce) of L (d I /d t) = (2 ¥ 10 �9)(1/(5 ¥ 10 �9)) = 0.4 V.

We do several things to alleviate this problem: We can limit the number of
simultaneously switching outputs (SSOs), we can limit the number of I/O drivers
that can be attached to any one VDD and GND pad, and we can design the output
buffer to limit the slew rate of the output (we call these slew-rate limited I/O
pads). Quiet-I/O cells also use two separate power supplies and two sets of I/O
drivers: an AC supply (clean or quiet supply) with small AC drivers for the I/O
circuits that start and stop the output slewing at the beginning and end of a output
transition, and a DC supply (noisy or dirty supply) for the transistors that handle

large currents as they slew the output.

The three-state buffer allows us to employ the same pad for input and output�
bidirectional I/O . When we want to use the pad as an input, we set OE low and
take the data from DATAin. Of course, it is not necessary to have all these
features on every pad: We can build output-only or input-only pads.

FIGURE 2.32 A three-state bidirectional
output buffer. When the output enable,
OE, is '1' the output section is enabled
and drives the I/O pad. When OE is '0'
the output buffer is placed in a
high-impedance state.

We can also use many of these output cell features for input cells that have to
drive large on-chip loads (a clock pad cell, for example). Some gate arrays
simply turn an output buffer around to drive a grid of interconnect that supplies a
clock signal internally. With a typical interconnect capacitance of 0.2pFcm �1 , a
grid of 100 cm (consisting of 10 by 10 lines running all the way across a 1 cm
chip) presents a load of 20 pF to the clock buffer.

Some libraries include I/O cells that have passive pull-ups or pull-downs
(resistors) instead of the transistors, M1 and M2 (the resistors are normally still
constructed from transistors with long gate lengths). We can also omit one of the
driver transistors, M1 or M2, to form open-drain outputs that require an external
pull-up or pull-down. We can design the output driver to produce TTL output
levels rather than CMOS logic levels. We may also add input hysteresis (using a
Schmitt trigger) to the input buffer, I1 in Figure 2.33, to accept input data signals
that contain glitches (from bouncing switch contacts, for example) or that are
slow rising. The input buffer can also include a level shifter to accept TTL input
levels and shift the input signal to CMOS levels.

The gate oxide in CMOS transistors is extremely thin (100 Å or less). This leaves
the gate oxide of the I/O cell input transistors susceptible to breakdown from
static electricity (electrostatic discharge , or ESD). ESD arises when we or
machines handle the package leads (like the shock I sometimes get when I touch
a doorknob after walking across the carpet at work). Sometimes this problem is
called electrical overstress (EOS) since most ESD-related failures are caused not
by gate-oxide breakdown, but by the thermal stress (melting) that occurs when
the n -channel transistor in an output driver overheats (melts) due to the large
current that can flow in the drain diffusion connected to a pad during an ESD
event.

To protect the I/O cells from ESD, the input pads are normally tied to device
structures that clamp the input voltage to below the gate breakdown voltage
(which can be as low as 10 V with a 100 Å gate oxide). Some I/O cells use
transistors with a special ESD implant that increases breakdown voltage and
provides protection. I/O driver transistors can also use elongated drain structures
(ladder structures) and large drain-to-gate spacing to help limit current, but in a
salicide process that lowers the drain resistance this is difficult. One solution is to
mask the I/O cells during the salicide step. Another solution is to use pnpn and
npnp diffusion structures called silicon-controlled rectifiers (SCRs) to clamp
voltages and divert current to protect the I/O circuits from ESD.

There are several ways to model the capability of an I/O cell to withstand EOS.
The human-body model (HBM) represents ESD by a 100 pF capacitor
discharging through a 1.5 k W resistor (this is an International Electrotechnical
Committee, IEC, specification). Typical voltages generated by the human body
are in the range of 2�4 kV, and we often see an I/O pad cell rated by the voltage it
can withstand using the HBM. The machine model (MM) represents an ESD
event generated by automated machine handlers. Typical MM parameters use a
200 pF capacitor (typically charged to 200 V) discharged through a 25 W
resistor, corresponding to a peak initial current of nearly 10 A. The charge-device
model (CDM , also called device charge�discharge) represents the problem when
an IC package is charged, in a shipping tube for example, and then grounded. If
the maximum charge on a package is 3 nC (a typical measured figure) and the
package capacitance to ground is 1.5 pF, we can simulate this event by charging a
1.5 pF capacitor to 2 kV and discharging it through a 1 W resistor.

If the diffusion structures in the I/O cells are not designed with care, it is possible
to construct an SCR structure unwittingly, and instead of protecting the
transistors the SCR can enter a mode where it is latched on and conducting large
enough currents to destroy the chip. This failure mode is called latch-up .
Latch-up can occur if the pn -diodes on a chip become forward-biased and inject
minority carriers (electrons in p -type material, holes in n -type material) into the
substrate. The source�substrate and drain�substrate diodes can become
forward-biased due to power-supply bounce or output undershoot (the cell
outputs fall below V SS) or overshoot (outputs rise to greater than V DD) for
example. These injected minority carriers can travel fairly large distances and
interact with nearby transistors causing latch-up. I/O cells normally surround the
I/O transistors with guard rings (a continuous ring of n -diffusion in an n -well
connected to VDD, and a ring of p -diffusion in a p -well connected to VSS) to
collect these minority carriers. This is a problem that can also occur in the logic
core and this is one reason that we normally include substrate and well
connections to the power supplies in every cell.

2.8 Cell Compilers
The process of hand crafting circuits and layout for a full-custom IC is a tedious,
time-consuming, and error-prone task. There are two types of automated layout
assembly tools, often known as a silicon compilers . The first type produces a
specific kind of circuit, a RAM compiler or multiplier compiler , for example.
The second type of compiler is more flexible, usually providing a programming
language that assembles or tiles layout from an input command file, but this is
full-custom IC design.

We can build a register file from latches or flip-flops, but, at 4.5�6.5 gates (18�26
transistors) per bit, this is an expensive way to build memory. Dynamic RAM
(DRAM) can use a cell with only one transistor, storing charge on a capacitor
that has to be periodically refreshed as the charge leaks away. ASIC RAM is
invariably static (SRAM), so we do not need to refresh the bits. When we refer to
RAM in an ASIC environment we almost always mean SRAM. Most ASIC
RAMs use a six-transistor cell (four transistors to form two cross-coupled
inverters that form the storage loop, and two more transistors to allow us to read
from and write to the cell). RAM compilers are available that produce single-port
RAM (a single shared bus for read and write) as well as dual-port RAMs , and
multiport RAMs . In a multi-port RAM the compiler may or may not handle the
problem of address contention (attempts to read and write to the same RAM
address simultaneously). RAM can be asynchronous (the read and write cycles
are triggered by control and/or address transitions asynchronous to a clock) or
synchronous (using the system clock).

In addition to producing layout we also need a model compiler so that we can
verify the circuit at the behavioral level, and we need a netlist from a netlist
compiler so that we can simulate the circuit and verify that it works correctly at
the structural level. Silicon compilers are thus complex pieces of software. We
assume that a silicon compiler will produce working silicon even if every
configuration has not been tested. This is still ASIC design, but now we are
relying on the fact that the tool works correctly and therefore the compiled blocks
are correct by construction .

2.9 Summary
The most important concepts that we covered in this chapter are the following:

The use of transistors as switches●

The difference between flip-flop and a latch●

The meaning of setup time and hold time●

Pipelines and latency●

The difference between datapath, standard-cell, and gate-array logic cells●

Strong and weak logic levels●

Pushing bubbles●

Ratio of logic●

Resistance per square of layers and their relative values in CMOS●

Design rules and l●

2.10 Problems
* = Difficult,** = Very difficult, *** = Extremely difficult

2.1 (Switches, 20 min.) (a) Draw a circuit schematic for a two-way light switch:
flipping the switch at the top or bottom of the stairs reverses the state of two light
bulbs, one at the top and one at the bottom of the stairs. Your schematic should
show and label all the cables, switches, and bulbs. (b) Repeat the problem for
three switches and one light in a warehouse.

2.2 (Logic, 10 min.) The queen wished to choose her successor wisely. She
blindfolded and then placed a crown on each of her three children, explaining that
there were three red and two blue crowns, and they must deduce the color of their
own crown. With blindfolds removed the children could see the two other
crowns, but not their own. After a while Anne said: �My crown is red.� How did
she know?

2.3 (Minus signs, 20 min.) The channel charge in an n -channel transistor is
negative. (a) Should there not be a minus sign in Eq. 2.5 to account for this? (b)
 If so, then where in the derivation of Section 2.1 does the minus sign disappear
to arrive at Eq. 2.9 for the current in an n -channel transistor? (c) The equations
for the current in a p -channel transistor (Eq. 2.15) have the opposite sign to those
for an n -channel transistor. Where in the derivation in Section 2.1 does the extra
minus sign arise?

FIGURE 2.33 Transistor characteristics for a
0.3 m m process (Problem 2.4).

2.4 (Transistor curves, 20 min.) Figure 2.34 shows the measured I DS � V DS
characteristics for a 20/20 n -channel transistor in a 0.3 m m (effective gate
length) process from an ASIC foundry. Derive as much information as you can
from this figure.

2.5 (Body effect, 20 min). The equations for the drain�source current (2.9, 2.12,

and 2.15) do not contain V SB , the source voltage with respect to the bulk,
because we assumed that it was zero. This is not true for the n -channel transistor
whose drain is connected to the output in a two-input NAND gate, for example.
A reverse substrate bias (or back-gate bias; V SB > 0 for an n -channel transistor)
makes the bulk act like a second gate (the back gate) and modifies an n -channel
transistor threshold voltage as follows:

V tn = V t0 n + g [�(f 0 + V SB) � � f 0] , (2.67)

where V t 0 n is measured with V SB = 0 V; f 0 is called the surface potential; and
g (gamma) is the body-effect coefficient (back-gate bias coefficient),

g = �(2q e Si N A)/C ox . (2.68)

There are several alternative names and symbols for f 0 (�phi,� a positive quantity
for an n -channel transistor, typically between 0.6�0.7 V)�you may also see f b (for
bulk potential) or 2 f F (twice the Fermi potential, a negative quantity). In

Eq. 2.68, e Si = e 0 e r = 1.053 ¥ 10 �10 Fm �1 is the permittivity of silicon (the

permittivity of a vacuum e 0 = 8.85 ¥ 10 �12 Fm �1 and the relative permittivity of
silicon is e r = 11.7); N A is the acceptor doping concentration in the bulk (for p
-type substrate or well� N D for the donor concentration in an n -type substrate or
well); and C ox is the gate capacitance per unit area given by

C ox = e ox /T ox . (2.69)

a. Calculate the theoretical value of g for N A = 10 16 cm �3 , T ox = 100 Å.●

b. Calculate and plot V t n for V SB ranging from 0 V to 5 V in increments

of 1 V assuming values of g = 0.5 V 0.5 , f 0 = 0.6 V, and V t0 n = 0.5 V
obtained from transistor characteristics.

●

c. Fit a linear approximation to V t n .●

d. Recognizing V SB £ 0 V, rewrite Eq. 2.67 for a p -channel device.●

e. (Harder) What effect does the back-gate bias effect have on CMOS logic
circuits?

●

Answer: (a) 0.17 V 0.5 (b) 0.50 � 1.3 V.

2.6 (Sizing layout, 10 min.) Stating clearly whatever assumptions you make and
describing the tools and methods you use, estimate the size (in l) of the standard
cell shown in Figure 1.3. Estimate the size of each of the transistors, giving their
channel lengths and widths (stating clearly which is which).

2.7 (CMOS process) (20 min.) Table 2.15 shows the major steps involved in a
typical deep submicron CMOS process. There are approximately 100 major steps
in the process.

a. If each major step has a yield of 0.9, what is the overall process yield?●

b. If the process yield is 90 % (not uncommon), what is the average yield
at each major step?

●

c. If each of the major steps in Table 2.15 consists of an average of five
other microtasks, what is the average yield of each of the 500 microtasks.

●

d. Suppose, for example, an operator loads and unloads a furnace five
times a day as a microtask, how many days must the operator work without
making a mistake to achieve this microtask yield?

●

e. Does this seem reasonable? What is wrong with our model?●

f. (**60 min.) Draw the process cross-section showing, in particular, the
poly, FOX, gate oxide, IMOs and metal layers. You may have to make
some assumptions about the meanings and functions of the various steps
and layers. Assume all layers are deposited on top of each other according
to the thicknesses shown (do not attempt to correct for the silicon
consumed during oxidation�even if you understand what this means). The
abbreviations in Table 2.15 are as follows: dep. = deposition; LPCVD =
low-pressure chemical vapor deposition (for growing oxide and poly);
LDD = lightly doped drain (a way to improve transistor characteristics);
SOG = silicon overglass (a deposited quartz to help with step coverage
between metal layers).

TABLE 2.15 CMOS process steps (Problem 2.7). 1

 Step Depth Step Depth Step Depth
1 substrate 32 resist strip 63 m1 mask
2 oxide 1 dep. 500 33 WSi anneal 64 m1 etch

3
nitride 1
dep.

1500 34 nLDD mask 65 resist strip

4 n-well mask 35 nLDD implant 66
base oxide
dep.

6000

5 n-well etch 36 resist strip 67 SOG coat1/2 3000

6
n-well
implant

 37 pLDD mask 68
SOG
cure/etch

�4000

7 resist strip 38 pLDD implant 69
cap oxide
dep.

4000

8
blocking
oxide dep.

2000 39 resist strip 70 via1 mask

9
nitride 1
strip

 40
spacer oxide
dep.

3000 71 via1 etch �2500

10
p-well
implant

 41 WSi anneal 72 resist strip

11 p-well drive 42 SD oxide dep 200 73 TiW dep. 2000

12
active oxide
dep.

250 43 n+ mask 74
AlCu/TiW
dep.

4000

●

13
nitride 2
dep.

1500 44 n+ implant 75 m2 mask

14 active mask 45 resist strip 76 m2 etch
15 active etch 46 ESD mask 77 resist strip

16 resist strip 47 ESD implant 78
base oxide
dep.

6000

17 field mask 48 resist strip 79 SOG coat 1/2 3000

18 field implant 49 p+ mask 80
SOG
cure/etch

�4000

19 resist strip 50 p+ implant 81
cap oxide
dep.

4000

20
field oxide
dep.

5000 51 resist strip 82 via2 mask

21
nitride 2
strip

 52 implant anneal 83 via2 etch �2500

22
sacrificial
oxide dep.

300 53
LPCVD oxide
dep.

1500 84 resist strip

23
Vt adjust
implant

 54
BPSG
dep./densify

4000 85 TiW dep. 2000

24
gate oxide
dep.

80 55 contact mask 86
AlCu/TiW
dep.

4000

25
LPCVD
poly dep.

1500 56 contact etch �2500 87 m3 mask

26 deglaze 57 resist strip 88 m3 etch
27 WSi dep. 1500 58 Pt dep. 200 89 resist strip

28
LPCVD
oxide dep.

750 59 Pt sinter 90 oxide dep. 4000

29 poly mask 60 Pt strip 92 nitride dep. 10,000
30 oxide etch 61 TiW dep. 2000 93 pad mask

31
polycide
etch

 62 AlCu/TiW dep. 4000 94 pad etch

Answer: (a) Zero. (b) 0.999. (c) 0.9998. (d) 3 years.

2.8 (Stipple patterns, 30 min.)

a. Check the stipple patterns in Figure 2.9. Using ruled paper draw 8-by-8
stipple patterns for all the combinations of layers shown.

●

b. Repeat part a for Figure 2.10.●

2.9 (Select, 20 min.) Can you draw a design-rule correct (according to the design
rules in Tables 2.7�2.9) layout with a piece of select that has a minimum width of
2 l (rule 4.4)?

2.10 (*Inverter layout, 60 min.) Using 1/4-inch ruled paper (or similar) draw a
minimum-size inverter (W/L = 1 for both p -channel and n -channel transistors).
Use a scale of one square to 2 l and the design rules in Table 2.7�Table 2.9. Do
not use m2 or m3�only m1. Draw the nwell, pwell, ndiff, and pdiff layers, but not
the implant layers or the active layer. Include connections to the input, output,
VDD, and VSS in m1. There must be at least one well connection to each well (n
-well to VDD, and p -well to VSS). Minimize the size of your cell BB. Draw the
BB outline and write its size in l 2 on your drawing. Use green diagonal stripes
for ndiff, brown diagonal stripes for pdiff, red diagonal stripes for poly, blue
diagonal stripes for m1, solid black for contact). Include a key on your drawing,
and clearly label the input, output, VDD, and VSS contacts.

2.11 (*AOI221 Layout, 120 min.) Layout the AOI221 shown in Figure 2.13 with
the design rules of Tables 2.7�2.9 and using Figure 1.3 as a guide. Label clearly
the m1 corresponding to the inputs, output, VDD bus, and GND (VSS) bus.
Remember to include substrate contacts. What is the size of your BB in l 2 ?

2.12 (Resistance, 20 min.)

a. Using the values for sheet resistance shown in Table 2.3, calculate the
resistance of a 200 l long (in the direction of current flow) by 3 l wide
piece of each of the layers.

●

b. Estimate the resistance of an 8-inch, 10 W cm, p -type, <100> wafer,
measured (i) from edge to edge across a diameter and (ii) from face center
to the face center on the other side.

●

2.13 (*Layout graphics, 120 min.) Write a tutorial for capturing layout. As an
example:

To capture EPSF (encapsulated PostScript format) from Tanner Research�s
L-Edit for documentation, Macintosh version... Create a black-and-white
technology file, use Setup, Layers..., in L-Edit. The method described here does
not work well for grayscale or color. Use File, Print..., Destination check button
File to print from L-Edit to an EPS (encapsulated PostScript) file. After you
choose Save, a dialog box appears. Select Format: EPS Enhanced Mac Preview,
ASCII, Level 1 Compatible, Font Inclusion: None. Save the file. Switch to
Frame. Create an Anchored Frame. Use File, Import, File... to bring up a dialog
box. Check button Copy into Document, select Format: EPSF. Import the EPS
file that will appear as a �page image�. Grab the graphic inside the Anchored
Frame and move the �page image� around. There will be a footer with text on the
�page image� that you may want to hide by using the Anchored Frame edges to
crop the image.

Your instructions should be precise, concise, assume nothing, and use the names
of menu items, buttons and so on exactly as they appear to the user. Most of the
layout figures in this book were created using L-Edit running on a Macintosh,
with labels added in FrameMaker. Most of the layouts use the Compass layout
editor.

2.14 (Transistor resistance, 20 min.) Calculate I DS and the resistance (the DC
value V DS / I DS as well as the AC value � V DS / �I DS as appropriate) of
long-channel transistors with the following parameters, under the specified
conditions. In each case state whether the transistor is in the saturation region,
linear region, or off:

(i) n -channel: V t n = 0.5 V, b n = 40 m AV �2 :

V GS = 3.3V: a. V DS = 3.3 V b. V DS = 0.0 V c. V GS = 0.0 V, V DS = 3.3 V

(ii) p -channel: V t p = �0.6 V, b p = 20 m AV �2 :

V GS = 0.0 V: a. V DS = 0.0 V b. V DS = �5.0 V c. V GS = �5.0 V, V DS = �5.0 V

2.15 (Circuit theory, 15 min.) You accidentally created the �inverter� shown in
Figure 2.35 on a full-custom ASIC currently being fabricated. Will it work? Your
manager wants a yes or no answer. Your group is a little more understanding:
You are to make a presentation to them to explain the problems ahead. Prepare
two foils as well as a one page list of alternatives and recommendations.

FIGURE 2.34 A CMOS �inverter� with n -channel and p
-channel transistors swapped (Problem 2.15).

2.16 (Mask resolution, 10 min.) People use LaserWriters to make printed-circuit
boards all the time.

a. Do you think it is possible to make an IC mask using a 600 dpi (dots per
inch) LaserWriter and a transparency?

●

b. What would l be?●

c. (Harder) See if you can use a microscope to look at the dot and the
rectangular bars (serifs) of a letter 'i' from the output of a LaserWriter on
paper (most are 300 dpi or 600 dpi). Estimate l . What is causing the
problem? Why is there no rush to generate 1200 dpi LaserWriters for
paper? Put a page of this textbook under the microscope: can you see the
difference? What are the similar problems printing patterns on a wafer?

●

2.17 (Lambda, 10 min.) Estimate l

a. for your TV screen,●

b. for your computer monitor,●

c. (harder) a photograph.●

2.18 (Pass-transistor logic, 10 min.)

a. In Figure 2.36 suppose we set A = B = C = D = '1', what is the value of
F?

●

b. What is the logic strength of the signal at F?●

c. If V DD = 5 V and V t n = 0.6 V, what would the voltage at the source
and drain terminals of M1, M2, and M3 be?

●

d. Will this circuit still work if V DD = 3 V?●

e. At what point does it stop working?

FIGURE 2.35

FIGURE 2.36 A pass transistor chain (Problem
2.18).

●

2.19 (Transistor parameters, 20 min.) Calculate the (a) electron and (b) hole
mobility for the transistor parameters given in Section 2.1 if k ' n = 80 mA V �2

and k ' p = 40 mA V �2 .

Answer: (a) 0.023 m 2 V �1 s �1 .

2.20 (Quantum behavior, 10 min.) The average thermal energy of an electron is
approximately kT , where k = 1.38 ¥ 10 �23 JK �1 is Boltzmann�s constant and T is
the absolute temperature in kelvin.

a. The kinetic energy of an electron is (1/2) m v 2 , where v is due to
random thermal motion, and m = 9.11 ¥ 10 �31 kg is the rest mass. What is
v at 300 K?

●

b. The electron wavelength l = h / p , where h = 6.62 ¥ 10�34 Js is the
Planck constant, and p = m v is the electron momentum. What is l at 25 �
C?

●

c. Compare the thermal velocity with the saturation velocity.●

d. Compare the electron wavelength with the MOS channel length and
with the gate-oxide thickness in a 0.25 m m process and a 0.1 m m process.

●

2.21 (Gallium arsenide, 5 min.) The electron mobility in GaAs is about 8500 cm 2

V �1 s �1 ; the hole mobility is about 400 cm 2 V �1 s �1 . If we could make
complementary n -channel and p -channel GaAs transistors (the same way that
we do in a CMOS process) what would the ratio of a GaAs inverter be to equalize
rise and fall times? About how much faster would you expect GaAs transistors to
be than silicon for the same transistor sizes?

2.22 (Margaret of Anjou, 5 min.)

a. Why is it ones� complement but two�s complement?●

b. Why Queen�s University, Belfast but Queens� College, Cambridge?●

2.23 (Logic cell equations, 5 min.) Show that Eq. 2.31, 2.36, and 2.37 are correct.

2.24 (Carry-lookahead equations, 10 min.)

a. Derive the carry-lookahead equations for i = 8. Write them in the same
form as Eq. 2.56.

●

b. Derive the equations for the Brent�Kung structure for i = 8.●

2.25 (OAI cells, 20 min.) Draw a circuit schematic, including transistor sizes, for
(a) an OAI321 cell, (b) an AOI321 cell. (c) Which do you think will be larger?

2.26 (**Making stipple patterns) Construct a set of black-and-white, transparent,
8-by-8 stipple patterns for a CMOS process in which we draw both well layers,
the active layer, poly, and both diffusion implant layers separately. Consider only
the layers up to m1 (but include m1 and the contact layer). One useful tool is the
Apple Macintosh Control Panel, 'General Controls,' that changes the Mac desktop
pattern.

a. (60 min.) Create a set of patterns with which you can detect any errors
(for example, n -well and p -well overlap, or n -implant and p -implant
overlap).

●

b. (60 min.+) Using a layout of an inverter as an example, find a set of
patterns that allows you to trace transistors and connections (a very
qualitative goal).

●

c. (Days+) Find a set of grayscale stipple patterns that allow you to
produce layouts that �look nice� in a report (much, much harder than it
sounds).

●

2.27 (AOI and OAI cells, 10 min.). Draw the circuit schematics for an AOI22 and
an OAI22 cell. Clearly label each transistor as on or off for each cell for an input
vector of (A1, A2, B1, B2) = (0101).

2.28 (Flip-flops and latches, 10 min.) In no more than 20 words describe the
difference between a flip-flop and a latch.

2.29 (**An old argument) Should setup and hold times appear under maximum,
minimum, or typical in a data sheet? (From Peter Alfke.)

2.30 (***Setup, 20 min.) �There is no such thing as a setup and hold time, just
two setup times�for a '1' and for a '0'.� Comment. (From Clemenz Portmann.)

2.31 (Subtracter, 20 min.) Show that you can rewrite the equations for a full
subtracter (Eqs. 2.65�2.66) to be the same as a full adder�except that A is inverted
in the borrow out equation, as follows:

DIFF = A • B • BIN
 SUM(A, B, BIN) , (2.70)
BOUT = NOT(A) · B + NOT(A) · BIN + B · BIN
 MAJ(NOT(A), B, CIN) . (2.71)

Explain very carefully why we need to connect BIN[0] to VSS. Show that for a
subtracter implemented by inverting the B input of an adder and setting CIN[0] =
'1', the true overflow for ones� complement or two�s complement representations
is XOR(CIN[MSB], CIN[MSB � 1]). Does this hold for the above subtracter?

2.32 (Complex CMOS cells) Logic synthesis has completely changed the nature
of combinational logic design. Synthesis tools like to see a huge selection of cells
from which to choose in order to optimize speed or area.

a. (20 min.) How many AOI nnnn cells are there, if the maximum value of
n = 4?

●

b. (30 min.) Consider cells of the form AOI nnnn where n can be negative
�indicating a set of inputs are inverted. Thus, an AOI-22 (where the hyphen
'-' indicates the following input is inverted) is a NOR(NOR(A, B), AND(C,
D)), for example. How many logically different cells of the AOI xxxx
family are there if x can be '-2', '-1', '1', or '2' with no more than four
inputs? Remember the AOI family includes OAI, AO, and OA cells as
well as just AOI. List them using an extension to the notation for a cell
with mixed-sign inputs: for example, an AO(1-1)1 cell is
NOT(NOR(AND(A, NOT(B)), C)). Hint: Be very careful because some
cells with negative inputs are logically equivalent to others with positive
inputs.

●

c. (10 min.) If we include NAND and NOR cells with inverting inputs in a
library, how many different cells in the NAND family are there with four
or fewer inputs (the NAND family includes NOR, AND, and OR cells)?

●

d. (30 min.) How many cells in the AOI and NAND families are there with
four inputs or less that use fewer than eight transistors? Include cells that
are logically equivalent but have different physical implementations. For
example, a NAND1-1 cell, requiring six transistors, is logically equivalent
to an OR1-1 cell that requires eight transistors. The OR1-1 implementation
may be useful because the output inverter can easily be sized to produce an
OR1-1 cell with higher drive.

●

e. (**60 min.) How many cells are there with fewer than four inputs that
do not fit into the AOI or NAND families? Hint: There is an inverter, a
buffer, a half-adder, and the three-input majority function, for example.

●

f. (***) Recommend a better, user-friendly, naming system (which is also
CAD tool compatible) for combinational cells.

●

2.33 (**Design rules, 60 min.) A typical set of deep submicron CMOS design
rules is shown in Table 2.16. Design rules are often confusing and use the
following �buzz-words,� perhaps to prevent others from understanding them.

The end cap is the extension of poly gate beyond the active or diffusion.●

Overlap . Normally one material is completely contained within the other,
overlap is then the amount of the �surround.�

●

Extension refers to the extension of diffusion beyond the poly gate.●

Same (in a spacing rule) means the space to the same type of diffusion or
implant.

●

Opposite refers to the space to the opposite type of diffusion or implant.●

A dogbone is the area surrounding a contact. Often the spacing to a
dogbone contact is allowed be slightly less than to an isolated line.

●

Field is the area outside the active regions. The field oxide (sandwiched
between the diffusion layers and the poly or m1 layers) is thicker than the
gate oxide and separates transistors.

●

Exact refers to contacts that are all the same size to simplify fabrication.●

A butting contact consists of two adjacent diffusions of the opposite type
(connected with metal). This occurs when a well contact is placed next to a
source contact.

●

Fat metal . Some design rules use different spacing for metal lines that are
wider than a certain amount.

●

a. Draw a copy of the MOSIS rules as shown in Figure 2.11, but using the
rule numbers and values in microns and l from Table 2.16.

●

b. How compatible are the two sets of rules?

TABLE 2.16 ASIC design rules (Problem 2.33). Absolute values in
microns are given for l = 0.2 m m.

Layer Rule 2 m m l Layer Rule m m l

nwell N.1 width 2 10 implant I.1 width 0.6 3

N.2 sp.
(same)

1 5 I.2 sp. (same) 0.6 3

diff D.1 width 0.5 2.5
I.3 sp. to diff
(same)

0.55 2.75

D.2
transistor
width

0.6 3
I.4 sp. to
butting diff

0 0

D.3 sp.
(same)

0.6 3 I.4 ov. of diff 0.25 1.25

D.4 sp.
(opposite)

0.8 4
I.5 sp. to poly
on active

0.5 2.5

D.5 p+
(nwell) to
n+ (pwell)

2.4 12
I.6 sp.
(opposite)

0.3 1.5

D.6 nwell
ov. of n+

0.6 3
I.7 sp. to
butting
implant

0 0

D.7 nwell
sp. to p+

0.6 3 contact
C.1 size
(exact)

0.4 2

●

D.8
extension
over gate

0.6 3 C.2 sp. 0.6 3

D.9 nwell
ov. of p+

1.2 6 C.3 poly ov. 0.3 1.5

D.10 nwell
sp. to n+

1.2 6
C.4 diff ov. (2
sides/others)

0.25/0.35 1.25/1.75

poly P.1 width 0.4 2 C.5 metal ov. 0.25 1.25
 P.2 gate 0.4 2 C.6 sp. to poly 0.3 1.5

P.3 sp.
(over
active)

0.6 3
C.7 poly
contact to diff

0.5 2.5

P.4 sp.
(over field)

0.5 2.5 m1 Mn.1 width 0.6/0.7/1.0 3/3.5/4

P.5 short
sp.
(dogbone)

0.45 2.25
+
m2/m3

Mn.2 sp. (fat
> 25 l is 5 l)

0.6/0.7/1.0 3/3.5/4

 P.6 end cap 0.45 2.25
Mn.3 sp.
(dogbone)

0.5 2.5

P.7 sp. to
diffusion

0.2 1 v1
Vn.1 size
(exact)

0.4 2

 +v2/v3 Vn.2 sp. 0.8 4

Vn.3 metal
ov.

0.25 1.25

2.34 (ESD, 10 min.)

a. Explain carefully why a CMOS device can withstand a 2000 V ESD
event when the gate breakdown voltage is only 5�10 V, but that shorting a
device pin to a 10 V supply can destroy it.

●

b. Explain why an electric shock from a 240 VAC supply can kill you, but
an 3000 VDC shock from a static charge (walking across a nylon carpet
and touching a metal doorknob) only gives you a surprise.

●

2.35 (*Stacks in CMOS cells, 60 min.)

a. Given a CMOS cell of the form AOI ijk or OAI ijk (i, j, k > 0) derive an
equation for the height (the number of transistors in series) and the width
(the number of transistor in parallel) of the n -channel and p -channel
stacks.

●

b. Suppose we increase the number of indices to four, i.e. AOI ijkl . How
do your equations change?

●

c. If the stack height cannot be greater than three, which three-index AOI
ijk and OAI ijk cells are illegal? Often limiting the stack height to three or
four is a design rule for radiation-hard libraries�useful for satellites.

●

2.36 (Duals, 20 min.) Draw the n -channel stack (including device sizes,
assuming a ratio of 2) that complements the p -channel stack shown in
Figure 2.37.

FIGURE 2.37 A p -channel stack using a bridge
device, E (Problem 2.36).

2.37 (***FPGA conditional-sum adder, days+) A Xilinx application-note (M.
Klein, �Conditional sum adder adds 16 bits in 33 ns,� Xilinx Application Brief,
Xilinx data book, 1992, p. 6-26) describes a 16-bit conditional-sum adder using
41 CLBs in three stages of addition; see also [Sklansky, 1960]. A Xilinx XC3000
or XC4000 CLB can perform any logic function of five variables, or two
functions of (the same) four variables. Can you find a solution with fewer CLBs
in three stages? Hint: R. P. Halverson of the University of Hawaii produced a
solution with 36 CLBs.

2.38 (Encoding, 10 min.) Booth�s algorithm was suggested by a shortcut used by
operators of decimal calculating machines that required turning a handle. To
multiply 5 by 23 you set the levers to 5 and turned the handle three times, change
gears and turn twice more.

a. What is the equivalent of 1 423 4 3 ?●

b. How many turns do we save using the shortcut?●

2.39 (CSD, 20 min.)

a. Show how to convert 1010111 (decimal 87) to the CSD vector 10 1 0 1
00 1 .

●

b. Convert 1000101 to the CSD vector.●

c. How do you know that 1 1 10011 1 (decimal 101) is not the CSD vector
representation of 1100101 (decimal 101)?

●

1. Depths of layers are in angstroms (negative values are etch depths). For
abbreviations used, see Problem 2.7.

2. sp. = space; ov. = overlap; same = same diffusion or implant type; opposite =
opposite implant or diffusion type;

diff = p+ or n+; p+ = p+ diffusion; n+ = n+ diffusion; implant = p+ or n+ implant
select.

2.11 Bibliography
The topics of this chapter are covered in more detail in Weste and Eshraghian
[1993]. The simulator SPICE was developed at UC Berkeley and now has many
commercial derivatives including Meta Software�s HSPICE and Microsim�s
PSpice. Mead [1989] gives a description of MOS transistor operation in the
subthreshold region of operation. Muller and Kamins provide an introduction to
device physics [1977 and 1986]. Sze [1988]; Chang and Sze [1996]; and
Campbell [1996] cover process technology in detail at an advanced level. Rabaey
[1996] describes full-custom CMOS datapath circuit design, Chandrakasan and
Brodersen [1995] describe low-power datapath design. Books by Brodersen
[1992] and Gajski [1988] cover silicon compilers. Mukherjee [1986] covers
CMOS process and fabrication issues at an introductory level. Texts on analog
ASIC design include Haskard and May [1988], and Trontelj [1989]. J. Y. Chen
[1990] and Uyemura [1992] provide an analysis of combinational and sequential
logic design. The book by Diaz [1995] contains hard to find material on I/O cell
design for ESD protection. The patent literature is the only source for often
proprietary high-speed and quiet I/O design. Wakerly [1994] and Katz [1994] are
basic references for CMOS logic design (including sequential logic and binary
arithmetic) though they emphasize PLDs rather than ASICs. Advanced material
on computer arithmetic can be found in books by Hwang [1979]; Waser and
Flynn [1982]; Cavanagh [1984]; and C. H. Chen [1992].

A large number of papers on digital arithmetic were published in the 1960s. In
ASIC design we work at the architectural level and not at the transistor level and
so this early work is useful. Many of these early papers appeared in the IRE
Transactions on Computers that changed to IRE Transactions on Electronic
Computers (ISSN 0367-7508, 1963�67) and then to the IEEE Transactions on
Computers (ISSN 0018-9340, 1967�). A series of important papers on multipliers
appeared in Alta Frequenza (ISSN 0002-6557, 1932�89; ISSN 1120-1908, 1989�)
[Dadda, 1965; Dadda and Ferrari, 1968]. Copies of these papers may be obtained
through interlibrary loans (in the United States from Texas A&M library, for
example). The two volumes by Swartzlander [1990] contain reprints of some of
these articles. Ranganathan [1993] contains reprints of more recent articles.
Papers on CMOS logic and arithmetic may be found in the reports of the
following conferences: Proceedings of the Symposium on Computer Arithmetic
(QA76.9.C62.S95a, ISSN 1063-6889), IEEE International Conference on
Computer Design (TK7888.4.I35a, ISSN 1063-6404), and the IEEE International
Solid-State Circuits Conference (TK7870.I58; ISSN 0074-8587, 1960-68; ISSN
0193-6530, 1969�). Papers on arithmetic and algorithms that are more theoretical

in nature can be found in the Journal of the Association of Computing Machinery
. Online ACM journal articles can be found at http://www.acm.org .

2.12 References
Page numbers in brackets after a reference indicate its location in the chapter
body.

Bedrij, O. 1962. �Carry select adder.� IRE Transactions on Electronic Computers ,
vol. 11, pp. 340�346. Original reference to carry-select adder. See also [Weste,
1993] p. 532. [p. 84]

Booth, A. 1951. �A signed binary multiplication technique.� Quarterly Journal of
Mechanics and Applied Mathematics, vol. 4, pt. 2, pp. 236�240. Original
reference for the Booth-encoded multiplier. See also Swartzlander [1990] and
Weste [1993, pp. 547�554]. [p. 91]

Brent, R., and H. T. Kung. 1982. �A regular layout for parallel adders.� IEEE
Transactions on Computers, vol. 31, no. 3, pp. 260�264. Describes a regular
carry-lookahead adder. [p. 84]

Brodersen, R. (Ed.). 1992. Anatomy of a Silicon Compiler. Boston: Kluwer, 362
p. ISBN 0-7923-9249-3. TK7874.A59.

Campbell, S. 1996. The Science and Engineering of Microelectronic Fabrication.
New York: Oxford University Press, 536 p. ISBN 0-19-510508-7.
TK7871.85.C25. [p. 116]

Cavanagh, J. J. F. 1984. Digital Computer Arithmetic Design and
Implementation . New York: McGraw-Hill, 468 p. QA76.9.C62.C38. ISBN
0070102821.

Chandrakasan A. P., and R. Brodersen. 1995. Low Power Digital CMOS Design .
Boston: Kluwer, 424 p. ISBN 0-7923-9576-X. TK7871.99.M44C43.

Chang, C. Y., and S. M. Sze. 1996. ULSI Technology. New York: McGraw-Hill,
726 p. ISBN 0070630623.

Chen, C. H. (Ed.). 1992. Computer Engineering Handbook. New York:
McGraw-Hill. ISBN 0-07-010924-9. TK7888.3.C652. Chapter 4, �Computer
arithmetic,� by E. E. Swartzlander, pp. 20, contains descriptions of adder,
multiplier, and divider architectures.

Chen, J. Y. 1990. CMOS Devices and Technology for VLSI. Englewood Cliffs,
NJ: Prentice-Hall, 348 p. ISBN 0-13-138082-6. TK7874.C523.

Dadda, L. 1965. �Some schemes for parallel multipliers.� Alta Frequenza , vol.

34, pp. 349�356. The original reference to the Dadda multiplier. This paper
contains some errors in the diagrams for the multipliers; some remain in the
reprint in Swartzlander [1990, vol. 1]. See also sequel papers: L. Dadda and D.
Ferrari, �Digital multipliers: a unified approach,� Alta Frequenza, vol. 37, pp.
1079�1086, 1968; and L. Dadda, �On parallel digital multipliers,� Alta Frequenza,
vol. 45, pp. 574�580, 1976. [p. 92]

Denyer, P. B., and D. Renshaw. 1985. VLSI Signal Processing: A Bit-Serial
Approach. Reading, MA: Addison-Wesley, 312 p. ISBN 0201144042.
TK7874.D46. See also P. B. Denyer and S. G. Smith, Serial-Data Computation.
Boston: Kluwer, 1988, 239 p. ISBN 089838253X. TK7874.S623. [p. 88]

Diaz, C. H., et al. 1995. Modeling of Electrical Overstress in Integrated Circuits.
Norwell, MA: Kluwer Academic, 148 p. ISBN 0-7923-9505-0. TK7874.D498.
Includes 101 references. Introduction to ESD problems and models.

Ferrari, D., and R. Stefanelli. 1969. �Some new schemes for parallel multipliers.�
Alta Frequenza, vol. 38, pp. 843�852. The original reference for the Ferrari
�Stefanelli multiplier. Describes the use of 2-bit and 3-bit submultipliers to
generate the product array. Contains tables showing the number of stages and
delay for different configurations. [p. 93]

Gajski, D. D. (Ed.). 1988. Silicon Compilation. Reading, MA: Addison-Wesley,
450 p. ISBN 0-201-109915-2. TK7874.S52.

Goldberg, D. 1990. �Computer arithmetic.� In D. A. Patterson and J. L. Hennessy,
Computer Architecture: A Quantitative Approach. San Mateo, CA: Morgan
Kaufmann, 2nd ed., 1995. QA76.9.A73. P377. ISBN 1-55860-329-8. See also the
first edition of this book (1990).

Haskard, M. R., and I. C. May. 1988. Analog VLSI Design: nMOS and CMOS.
Englewood Cliffs, NJ: Prentice-Hall, 243 p. ISBN 0-13-032640-2.
TK7874.H392.

Hwang, K. 1979. Computer Arithmetic: Principles, Architecture, and Design.
New York: Wiley, 423 p. ISBN 0471034967. TK7888.3.H9.

Katz, R. H., 1994. Contemporary Logic Design. Reading, MA: Addison-Wesley,
699 p. ISBN 0-8053-2703-7.

Keutzer, K., S. Malik, and A. Saldanha. 1991. �Is redundancy necessary to reduce
delay?� IEEE Transactions on Computer-Aided Design, vol. 10, no. 4, pp. 427
�435. Describes the carry-skip adder. The paper describes the redundant logic that
is added in a carry-skip adder and how to remove it without changing the
function or delay of the circuit. [p. 83]

Lehman, M., and N. Burla. 1961. �Skip techniques for high-speed
carry-propagation in binary arithmetic units.� IRE Transactions on Electronic
Computers, vol. 10, pp. 691�698. Original reference to carry-skip adder. [p. 83]

MacSorley, O. L. 1961. �High speed arithmetic in binary computers.� IRE
Proceedings, vol. 49, pp. 67�91. Early reference to carry-lookahead adder.
Reprinted in Swartzlander [1990, vol. 1]. See also Weste [1993, pp. 526�529].
[p. 84]

Mead, C. A. 1989. Analog VLSI and Neural Systems. Reading, MA:
Addison-Wesley, p.371. ISBN 0-201-05992-4. QA76.5.M39. Includes a
description of MOS device operation.

Muller, R. S., and T. I. Kamins. 1977. Device Electronics for Integrated Circuits.
New York: Wiley, p. 404. ISBN 0-471-62364-4. TK7871.85.M86. See also the
second edition of this book (1986).

Mukherjee, A. 1986. Introduction to nMOS and CMOS VLSI Systems Design.
Englewood Cliffs, NJ: Prentice-Hall, 370 p. ISBN 0-13-490947-X. TK7874.M86.

Rabaey, J. 1996. Digital Integrated Circuits: A Design Perspective. Englewood
Cliffs, NJ: Prentice-Hall, pp. 700. ISBN 0-13-178609-1. TK7874.65.R33.
Chapters 4 and 7 describe the design of full-custom CMOS datapath circuits.

Ranganathan, N. (Ed.). 1993. VLSI Algorithms and Architectures: Fundamentals.
New York: IEEE Press, 305 p. ISBN 0-8186-4390-0. TK7874.V5554. See also
N. Ranganathan (Ed.), 1993. VLSI Algorithms and Architectures: Advanced
Concepts. New York: IEEE Press, 303 p. ISBN 0-8186-4400-1. TK7874.V555.
Collections of articles mostly from Computer and IEEE Transactions on
Computers.

Sato, T., et al . 1992. �An 8.5 ns 112-b transmission gate adder with a
conflict-free bypass circuit.� IEEE Journal of Solid-State Circuits, vol. 27, no. 4,
pp. 657�659. Describes an implementation of a carry-bypass adder. [p. 82]

Sklansky, J. 1960. �Conditional-sum addition logic.� IRE Transactions on
Electronic Computers, vol. 9, pp. 226�231. Original reference to conditional-sum
adder. Several texts have propagated an error in the spelling of Sklansky (two k
�s). See also [Weste, 1993] pp. 532�533; A. Rothermel et al ., �Realization of
transmission-gate conditional-sum (TGCS) adders with low latency time,� IEEE
Journal of Solid-State Circuits, vol. 24, no. 3, 1989, pp. 558�561; each of these
are examples of adders based on Sklansky�s design. [p. 86]

Swartzlander, E. E., Jr. 1990. Computer Arithmetic. Los Alamitos, CA: IEEE
Computer Society Press, vols. 1 and 2. ISBN 0818689315 (vol. 1).
QA76.6.C633. Volume 1 is a reprint (originally published: Stroudsberg, PA:
Dowden, Hutchinson & Ross). Volume 2 is a sequel. Contains reprints of many
of the early (1960�1970) journal articles on adder and multiplier architectures.

Sze, S. (Ed.). 1988. VLSI Technology. New York: McGraw-Hill, 676 p. ISBN
0-07-062735-5. TK7874.V566. Edited book on fabrication technology.

Trontelj, J., et al. 1989. Analog Digital ASIC Design. New York: McGraw-Hill,
249 p. ISBN 0-07-707300-2. TK7874.T76.

Uyemura, J. P. 1992. Circuit Design for CMOS VLSI. Boston: Kluwer, 450 p.
ISBN 0-7923-9184-5. TK7874.U93. See also: J. P. Uyemura, 1988,
Fundamentals of MOS Digital Integrated Circuits, Reading, MA:
Addison-Wesley, 624 p. ISBN 0-201-13318-0. TK7874.U94. Includes basic
circuit equations related to NMOS and CMOS logic design.

Wakerly, J. F. 1994. Digital Design: Principles and Practices . 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 840 p. ISBN 0-13-211459-3.
TK7874.65.W34. Undergraduate level introduction to logic design covering:
binary arithmetic, CMOS and TTL, combinational logic, PLDs, sequential logic,
memory, and the IEEE standard logic symbols.

Wallace, C. S. 1960. �A suggestion for a fast multiplier.� IEEE Transactions on
Electronic Computers, vol. 13, pp. 14�17. Original reference to Wallace-tree
multiplier. Reprinted in Swartzlander [1990, vol. 1]. [p. 91]

Waser, S., and M. J. Flynn. 1982. Introduction to Arithmetic for Digital Systems
Designers . New York: Holt, Rinehart, and Winston, 308 p. ISBN 0030605717.
TK7895.A65.W37. [p. 116]

Weste, N. H. E., and K. Eshraghian. 1993. Principles of CMOS VLSI Design: A
Systems Perspective. 2nd ed. Reading, MA: Addison-Wesley, 713 p. ISBN
0-201-53376-6. TK7874.W46. Chapter 5 covers CMOS logic gate design.
Chapter 8 covers datapath elements. See also the first edition of this book. [p. 82]

ASIC LIBRARY DESIGN
Once we have decided to use an ASIC design style�using predefined and
precharacterized cells from a library�we need to design or buy a cell library. Even
though it is not necessary a knowledge of ASIC library design makes it easier to
use library cells effectively.

Last Edited by SP 14112004

3.1 Transistors as Resistors
In Section 2.1, �CMOS Transistors,� we modeled transistors using ideal switches. If this model were
accurate, logic cells would have no delay.

FIGURE 3.1 A model for CMOS logic delay. (a) A CMOS inverter with a load capacitance, C out
. (b) Input, v(in1) , and output, v(out1) , waveforms showing the definition of the falling
propagation delay, t PDf . In this case delay is measured from the input trip point of 0.5. The output
trip points are 0.35 (falling) and 0.65 (rising). The model predicts t PDf ª R pd (C p + C out).
(c) The model for the inverter includes: the input capacitance, C ; the pull-up resistance (R pu)
and pull-down resistance (R pd); and the parasitic output capacitance, C p .

The ramp input, v(in1) , to the inverter in Figure 3.1 (a) rises quickly from zero to V DD . In
response the output, v(out1) , falls from V DD to zero. In Figure 3.1 (b) we measure the
propagation delay of the inverter, t PD , using an input trip point of 0.5 and output trip points of
0.35 (falling, t PDf) and 0.65 (rising, t PDr). Initially the n -channel transistor, m1 , is off . As the
input rises, m1 turns on in the saturation region (V DS > V GS � V t n) before entering the linear
region (V DS < V GS � V t n). We model transistor m1 with a resistor, R pd (Figure 3.1 c); this is
the pull-down resistance . The equivalent resistance of m2 is the pull-up resistance , R pu .

Delay is created by the pull-up and pull-down resistances, R pd and R pu , together with the parasitic
capacitance at the output of the cell, C p (the intrinsic output capacitance) and the load capacitance
(or extrinsic output capacitance), C out (Figure 3.1 c). If we assume a constant value for R pd , the
output reaches a lower trip point of 0.35 when (Figure 3.1 b),

 � t PDf

0.35 V DD = V DD exp ����������������� . (3.1)

 R pd (C out + C p)

An output trip point of 0.35 is convenient because ln (1/0.35) = 1.04 ª 1 and thus

t PDf = R pd (C out + C p) ln (1/0.35) ª R pd (C out + C p) . (3.2)

The expression for the rising delay (with a 0.65 output trip point) is identical in form. Delay thus
increases linearly with the load capacitance. We often measure load capacitance in terms of a

standard load �the input capacitance presented by a particular cell (often an inverter or two-input
NAND cell).

We may adjust the delay for different trip points. For example, for output trip points of 0.1/0.9 we
multiply Eq. 3.2 by �ln(0.1) = 2.3, because exp (�2.3) = 0.100.

Figure 3.2 shows the DC characteristics of a CMOS inverter. To form Figure 3.2 (b) we take the n
-channel transistor surface (Figure 2.4b) and add that for a p -channel transistor (rotated to account
for the connections). Seen from above, the intersection of the two surfaces is the static transfer
curve of Figure 3.2 (a)�along this path the transistor currents are equal and there is no output
current to change the output voltage. Seen from one side, the intersection is the curve of Figure 3.2
(c).

(a) (b)

FIGURE 3.2 CMOS inverter characteristics. (a) This
static inverter transfer curve is traced as the inverter
switches slowly enough to be in equilibrium at all times
(I DSn = � I DSp). (b) This surface corresponds to the
current flowing in the n -channel transistor (falling
delay) and p -channel transistor (rising delay) for any
trajectory. (c) The current that flows through both
transistors as the inverter switches along the equilibrium
path.

(c)

The input waveform, v(in1) , and the output load (which determines the transistor currents) dictate
the path we take on the surface of Figure 3.2 (b) as the inverter switches. We can thus see that the
currents through the transistors (and thus the pull-up and pull-down resistance values) will vary in a
nonlinear way during switching. Deriving theoretical values for the pull-up and pull-down
resistance values is difficult�instead we work the problem backward by picking the trip points,
simulating the propagation delays, and then calculating resistance values that fit the model.

(a)

(b)

(c)

(d)

FIGURE 3.3 Delay. (a) LogicWorks schematic for inverters driving 1, 2, 4, and 8 standard loads
(1 standard load = 0.034 pF in this case). (b) Transient response (falling delay only) from PSpice.
The postprocessor Probe was used to mark each waveform as it crosses its trip point (0.5 for the
input, 0.35 for the outputs). For example v(out1_4) (4 standard loads) crosses 1.0467 V (ª 0.35 V

DD) at t = 169.93 ps. (c) Falling and rising delays as a function of load. The slopes in pspF �1

corresponds to the pull-up resistance (1281 W) and pull-down resistance (817 W).
(d) Comparison of the delay model (valid for t > 20 ps) and simulation (4 standard loads). Both are
equal at the 0.35 trip point.

Figure 3.3 shows a simulation experiment (using the G5 process SPICE parameters from
Table 2.1). From the results in Figure 3.3 (c) we can see that R pd = 817 W and R pu = 1281 W for
this inverter (with shape factors of 6/0.6 for the n -channel transistor and 12/0.6 for the p -channel)
using 0.5 (input) and 0.35/0.65 (output) trip points. Changing the trip points would give different
resistance values.

We can check that 817 W is a reasonable value for the pull-down resistance. In the saturation
region I DS (sat) is (to first order) independent of V DS . For an n -channel transistor from our
generic 0.5 m m process (G5 from Section 2.1) with shape factor W/L = 6/0.6, I DSn (sat) = 2.5 mA
(at V GS = 3V and V DS = 3V). The pull-down resistance, R 1 , that would give the same drain
�source current is

R 1 = 3.0 V / (2.5 ¥ 10 �3 A) = 1200 W . (3.3)

This value is greater than, but not too different from, our measured pull-down resistance of 817 W .
We might expect this result since Figure 3.2b shows that the pull-down resistance reaches its

maximum value at V GS = 3V, V DS = 3V. We could adjust the ratio of the logic so that the rising
and falling delays were equal; then R = R pd = R pu is the pull resistance .

Next, we check our model against the simulation results. The model predicts

 � t'

v(out1) ª V DD exp ������������� for t ' > 0 . (3.4)

 R pd (C out + C p)

(t' is measured from the point at which the input crosses the 0.5 trip point, t' = 0 at t = 20 ps). With
C p = 4 standard loads = 4 ¥ 0.034 pF = 0.136 pF,

R pd (C out + C p) = (38 + 817 (0.136)) ps = 149.112 ps . (3.5)

To make a comparison with the simulation we need to use ln (1/0.35) = 1.04 and not approximately
1 as we have assumed, so that (with all times in ps)

 � t'
v(out1) ª 3.0 exp ����������� V
 149.112/1.04

 �(t � 20)
 = 3.0 exp ��������� for t > 20 ps . (3.6)
 143.4

Equation 3.6 is plotted in Figure 3.3 (d). For v(out1) = 1.05 V (equal to the 0.35 output trip point),
Eq. 3.6 predicts t = 20 + 149.112 ª 169 ps and agrees with Figure 3.3 (b)�it should because we
derived the model from these results!

Now we find C p . From Figure 3.3 (c) and Eq. 3.2

t PDr = (52 + 1281 C out) ps thus C pr = 52/1281 = 0.041 pF (rising) ,

t PDf = (38 + 817 C out) ps thus C pf = 38/817 = 0.047 pF (falling) . (3.7)

These intrinsic parasitic capacitance values depend on the choice of output trip points, even though
C pf R pdf and C pr R pdr are constant for a given input trip point and waveform, because the pull-up
and pull-down resistances depend on the choice of output trip points. We take a closer look at
parasitic capacitance next.

3.2 Transistor Parasitic
Capacitance
Logic-cell delay results from transistor resistance, transistor (intrinsic) parasitic
capacitance, and load (extrinsic) capacitance. When one logic cell drives another, the
parasitic input capacitance of the driven cell becomes the load capacitance of the driving
cell and this will determine the delay of the driving cell.

Figure 3.4 shows the components of transistor parasitic capacitance. SPICE prints all of
the MOS parameter values for each transistor at the DC operating point. The following
values were printed by PSpice (v5.4) for the simulation of Figure 3.3 :

FIGURE 3.4 Transistor parasitic capacitance. (a) An n -channel MOS transistor with
(drawn) gate length L and width W. (b) The gate capacitance is split into: the constant
overlap capacitances C GSOV , C GDOV , and C GBOV and the variable capacitances C GS
, C GB , and C GD , which depend on the operating region. (c) A view showing how the
different capacitances are approximated by planar components (T FOX is the field-oxide
thickness). (d) C BS and C BD are the sum of the area (C BSJ , C BDJ), sidewall (C

BSSW , C BDSW), and channel edge (C BSJ GATE , C BDJ GATE) capacitances. (e)�(f) The
dimensions of the gate, overlap, and sidewall capacitances (L D is the lateral diffusion).

NAME m1 m2
MODEL CMOSN CMOSP
ID 7.49E-11 -7.49E-11
VGS 0.00E+00 -3.00E+00
VDS 3.00E+00 -4.40E-08
VBS 0.00E+00 0.00E+00
VTH 4.14E-01 -8.96E-01
VDSAT 3.51E-02 -1.78E+00
GM 1.75E-09 2.52E-11
GDS 1.24E-10 1.72E-03
GMB 6.02E-10 7.02E-12
CBD 2.06E-15 1.71E-14
CBS 4.45E-15 1.71E-14
CGSOV 1.80E-15 2.88E-15
CGDOV 1.80E-15 2.88E-15
CGBOV 2.00E-16 2.01E-16
CGS 0.00E+00 1.10E-14
CGD 0.00E+00 1.10E-14
CGB 3.88E-15 0.00E+00

The parameters ID (I DS), VGS , VDS , VBS , VTH (V t), and VDSAT (V DS (sat)) are
DC parameters. The parameters GM , GDS , and GMB are small-signal conductances
(corresponding to � I DS /� V GS , � I DS /� V DS , and � I DS /� V BS , respectively). The
remaining parameters are the parasitic capacitances. Table 3.1 shows the calculation of
these capacitance values for the n -channel transistor m1 (with W = 6 m m and L = 0.6 m
m) in Figure 3.3 (a).

TABLE 3.1 Calculations of parasitic capacitances for an n-channel MOS transistor.

PSpice Equation Values 1 for VGS = 0V, VDS = 3V,
VSB = 0V

CBD C BD = C BDJ + C BDSW
C BD = 1.855 ¥ 10 �13 + 2.04 ¥ 10 �16

= 2.06 ¥ 10 �13 F

C BDJ + A D C J (1 + V DB / f B) �mJ (f

B = PB)
C BDJ = (4.032 ¥ 10 �15)(1 + (3/1))
�0.56 = 1.86 ¥ 10 �15 F

C BDSW = P D C JSW (1 + V DB / f B)
�mJSW

(P D may or may not include channel
edge)

C BDSW = (4.2 ¥ 10 �16)(1 + (3/1)) �0.5

= 2.04 ¥ 10 �16 F

CBS C BS = C BSJ + C BSSW
C BS = 4.032 ¥ 10 �15 + 4.2 ¥ 10 �16 =

4.45 ¥ 10 �15 F

 C BSJ + A S C J (1 + V SB / f B) �mJ A S C J = (7.2 ¥ 10 �15)(5.6 ¥ 10 �4) =

4.03 ¥ 10 �15 F

 C BSSW = P S C JSW (1 + V SB / f B)
�mJSW

P S C JSW = (8.4 ¥ 10 �6)(5 ¥ 10 �11)

= 4.2 ¥ 10 �16 F

CGSOV
C GSOV = W EFF C GSO ; W EFF = W �
2W D

C GSOV = (6 ¥ 10 �6)(3 ¥ 10 �10) = 1.8

¥ 10 �16 F

CGDOV C GDOV = W EFF C GSO
C GDOV = (6 ¥ 10 �6)(3 ¥ 10 �10) =

1.8 ¥ 10 �15 F

CGBOV
C GBOV = L EFF C GBO ; L EFF = L � 2L
D

C GDOV = (0.5 ¥ 10 �6)(4 ¥ 10 �10) =

2 ¥ 10 �16 F

CGS

C GS /C O = 0 (off), 0.5 (lin.), 0.66 (sat.)

C O (oxide capacitance) = W EF L EFF e

ox / T ox

C O = (6 ¥ 10 �6)(0.5 ¥ 10 �6

)(0.00345) = 1.03 ¥ 10 �14 F

C GS = 0.0 F

CGD C GD /C O = 0 (off), 0.5 (lin.), 0 (sat.) C GD = 0.0 F

CGB
C GB = 0 (on), = C O in series with C GS
(off)

C GB = 3.88 ¥ 10 �15 F , C S =
depletion capacitance

1 Input

.MODEL CMOSN NMOS LEVEL=3 PHI=0.7 TOX=10E-09 XJ=0.2U TPG=1
VTO=0.65 DELTA=0.7
+ LD=5E-08 KP=2E-04 UO=550 THETA=0.27 RSH=2 GAMMA=0.6
NSUB=1.4E+17 NFS=6E+11
+ VMAX=2E+05 ETA=3.7E-02 KAPPA=2.9E-02 CGDO=3.0E-10
CGSO=3.0E-10 CGBO=4.0E-10
+ CJ=5.6E-04 MJ=0.56 CJSW=5E-11 MJSW=0.52 PB=1
m1 out1 in1 0 0 cmosn W=6U L=0.6U AS=7.2P AD=7.2P PS=8.4U PD=8.4U

3.2.1 Junction Capacitance

The junction capacitances, C BD and C BS , consist of two parts: junction area and
sidewall; both have different physical characteristics with parameters: CJ and MJ for the
junction, CJSW and MJSW for the sidewall, and PB is common. These capacitances
depend on the voltage across the junction (V DB and V SB). The calculations in Table
3.1 assume both source and drain regions are 6 m m ¥ 1.2 m m rectangles, so that A D =

A S = 7.2 (m m) 2 , and the perimeters (excluding the 1.2 m m channel edge) are P D = P

S = 6 + 1.2 + 1.2 = 8.4 m m. We exclude the channel edge because the sidewalls facing
the channel (corresponding to C BSJ GATE and C BDJ GATE in Figure 3.4) are different
from the sidewalls that face the field. There is no standard method to allow for this. It is a
mistake to exclude the gate edge assuming it is accounted for in the rest of the model�it is
not. A pessimistic simulation includes the channel edge in P D and P S (but a true
worst-case analysis would use more accurate models and worst-case model parameters).
In HSPICE there is a separate mechanism to account for the channel edge capacitance
(using parameters ACM and CJGATE). In Table 3.1 we have neglected C J GATE .

For the p -channel transistor m2 (W = 12 m m and L = 0.6 m m) the source and drain
regions are 12 m m ¥ 1.2 m m rectangles, so that A D = A S ª 14 (m m) 2 , and the
perimeters are P D = P S = 12 + 1.2 + 1.2 ª 14 m m (these parameters are rounded to two
significant figures solely to simplify the figures and tables).

In passing, notice that a 1.2 m m strip of diffusion in a 0.6 m m process (l = 0.3 m m) is
only 4 l wide�wide enough to place a contact only with aggressive spacing rules. The
conservative rules in Figure 2.11 would require a diffusion width of at least 2 (rule 6.4a)
+ 2 (rule 6.3a) + 1.5 (rule 6.2a) = 5.5 l .

3.2.2 Overlap Capacitance

The overlap capacitance calculations for C GSOV and C GDOV in Table 3.1 account for
lateral diffusion (the amount the source and drain extend under the gate) using SPICE
parameter LD = 5E-08 or L D = 0.05 m m. Not all versions of SPICE use the equivalent
parameter for width reduction, WD (assumed zero in Table 3.1), in calculating C GDOV
and not all versions subtract W D to form W EFF .

3.2.3 Gate Capacitance

The gate capacitance calculations in Table 3.1 depend on the operating region. The gate
�source capacitance C GS varies from zero when the transistor is off to 0.5C O (0.5 ¥

1.035 ¥ 10 �15 = 5.18 ¥ 10 �16 F) in the linear region to (2/3)C O in the saturation region

(6.9 ¥ 10 �16 F). The gate�drain capacitance C GD varies from zero (off) to 0.5C O (linear
region) and back to zero (saturation region).

The gate�bulk capacitance C GB may be viewed as two capacitors in series: the fixed
gate-oxide capacitance, C O = W EFF L EFF e ox / T ox , and the variable depletion
capacitance, C S = W EFF L EFF e Si / x d , formed by the depletion region that extends
under the gate (with varying depth x d). As the transistor turns on the conducting channel
appears and shields the bulk from the gate�and at this point C GB falls to zero. Even with

V GS = 0 V, the depletion width under the gate is finite and thus C GB ª 4 ¥ 10 �15 F is less

than C O ª 10 �16 F. In fact, since C GB ª 0.5 C O , we can tell that at V GS = 0 V, C S ª C O
.

Figure 3.5 shows the variation of the parasitic capacitance values.

FIGURE 3.5 The variation of n -channel transistor parasitic capacitance. Values were
obtained from a series of DC simulations using PSpice v5.4, the parameters shown in
Table 3.1 (LEVEL=3), and by varying the input voltage, v(in1) , of the inverter in
Figure 3.3 (a). Data points are joined by straight lines. Note that CGSOV = CGDOV .

3.2.4 Input Slew Rate

Figure 3.6 shows an experiment to monitor the input capacitance of an inverter as it
switches. We have introduced another variable�the delay of the input ramp or the slew
rate of the input.

In Figure 3.6 (b) the input ramp is 40 ps long with a slew rate of 3 V/ 40 ps or 75 GVs �1

�as in our previous experiments�and the output of the inverter hardly moves before the
input has changed. The input capacitance varies from 20 to 40 fF with an average value
of approximately 34 fF for both transitions�we can measure the average value in Probe by
plotting AVG(-i(Vin)) .

(a)

(b)

(c)

FIGURE 3.6 The input capacitance of an inverter. (a) Input capacitance is measured by
monitoring the input current to the inverter, i(Vin) . (b) Very fast switching. The current,
i(Vin) , is multiplied by the input ramp delay (D t = 0.04 ns) and divided by the voltage
swing (D V = V DD = 3 V) to give the equivalent input capacitance, C = i D t / D V .
Thus an adjusted input current of 40 fA corresponds to an input capacitance of 40 fF.
The current, i(Vin) , is positive for the rising edge of the input and negative for the
falling edge. (c) Very slow switching. The input capacitance is now equal for both
transitions.

In Figure 3.6 (c) the input ramp is slow enough (300 ns) that we are switching under
almost equilibrium conditions�at each voltage we allow the output to find its level on the
static transfer curve of Figure 3.2 (a). The switching waveforms are quite different. The
average input capacitance is now approximately 0.04 pF (a 20 percent difference). The
propagation delay (using an input trip point of 0.5 and an output trip point of 0.35) is
negative and approximately 150 � 127 = �23 ns. By changing the input slew rate we have
broken our model. For the moment we shall ignore this problem and proceed.

The calculations in Table 3.1 and behavior of Figures 3.5 and 3.6 are very complex.
How can we find the value of the parasitic capacitance, C , to fit the model of Figure 3.1
? Once again, as we did for pull resistance and the intrinsic output capacitance, instead of
trying to derive a theoretical value for C, we adjust the value to fit the model. Before we
formulate another experiment we should bear in mind the following questions that the
experiment of Figure 3.6 raises: Is it valid to replace the nonlinear input capacitance with
a linear component? Is it valid to use a linear input ramp when the normal waveforms are
so nonlinear?

Figure 3.7 shows an experiment crafted to answer these questions. The experiment has
the following two steps:

Adjust c2 to model the input capacitance of m5/6 ; then C = c2 = 0.0335 pF.1.

Remove all the parasitic capacitances for inverter m9/10 �except for the gate
capacitances C GS , C GD , and C GB �and then adjust c3 (0.01 pF) and c4 (0.025
pF) to model the effect of these missing parasitics.

2.

(a) (c)

(b)
(d)

FIGURE 3.7 Parasitic capacitance. (a) All devices in this circuit include parasitic
capacitance. (b) This circuit uses linear capacitors to model the parasitic
capacitance of m9/10 . The load formed by the inverter (m5 and m6) is modeled
by a 0.0335 pF capacitor (c2); the parasitic capacitance due to the overlap of the
gates of m3 and m4 with their source, drain, and bulk terminals is modeled by a
0.01 pF capacitor (c3); and the effect of the parasitic capacitance at the drain
terminals of m3 and m4 is modeled by a 0.025 pF capacitor (c4). (c) The two
circuits compared. The delay shown (1.22 � 1.135 = 0.085 ns) is equal to t PDf for
the inverter m3/4 . (d) An exact match would have both waveforms equal at the
0.35 trip point (1.05 V).

We can summarize our findings from this and previous experiments as follows:

Since the waveforms in Figure 3.7 match, we can model the input capacitance of a
logic cell with a linear capacitor. However, we know the input capacitance may
vary (by up to 20 percent in our example) with the input slew rate.

1.

The input waveform to the inverter m3/m4 in Figure 3.7 is from another inverter
�not a linear ramp. The difference in slew rate causes an error. The measured delay
is 85 ps (0.085 ns), whereas our model (Eq. 3.7) predicts

t PDr = (38 + 817 C out) ps = (38 + (817)·(0.0355)) ps = 65 ps . (3.8)

2.

The total gate-oxide capacitance in our inverter with T ox = 100Å is

C O = (W n L n + W p L p) e ox T ox

 = (34.5 ¥ 10 �4)·(6)·((0.6) + (12)·(0.6)) pF = 0.037 pF . (3.9)

3.

All the transistor parasitic capacitances excluding the gate capacitance contribute
0.01 pF of the 0.0335 pF input capacitance�about 30 percent. The gate capacitances
contribute the rest�0.025 pF (about 70 percent).

4.

The last two observations are useful. Since the gate capacitances are nonlinear, we only

see about 0.025/0.037 or 70 percent of the 0.037 pF gate-oxide capacitance, C O , in the
input capacitance, C . This means that it happens by chance that the total gate-oxide
capacitance is also a rough estimate of the gate input capacitance, C ª C O . Using L and
W rather than L EFF and W EFF in Eq. 3.9 helps this estimate. The accuracy of this
estimate depends on the fact that the junction capacitances are approximately one-third of
the gate-oxide capacitance�which happens to be true for many CMOS processes for the
shapes of transistors that normally occur in logic cells. In the next section we shall use
this estimate to help us design logic cells.

3.3 Logical Effort
In this section we explore a delay model based on logical effort, a term coined by
Ivan Sutherland and Robert Sproull [1991], that has as its basis the time-constant
analysis of Carver Mead, Chuck Seitz, and others.

We add a �catch all� nonideal component of delay, t q , to Eq. 3.2 that includes:
(1) delay due to internal parasitic capacitance; (2) the time for the input to reach
the switching threshold of the cell; and (3) the dependence of the delay on the
slew rate of the input waveform. With these assumptions we can express the
delay as follows:

t PD = R (C out + C p) + t q . (3.10)

(The input capacitance of the logic cell is C , but we do not need it yet.)

We will use a standard-cell library for a 3.3 V, 0.5 m m (0.6 m m drawn)
technology (from Compass) to illustrate our model. We call this technology C5 ;
it is almost identical to the G5 process from Section 2.1 (the Compass library
uses a more accurate and more complicated SPICE model than the generic
process). The equation for the delay of a 1X drive, two-input NAND cell is in the
form of Eq. 3.10 (C out is in pF):

t PD = (0.07 + 1.46 C out + 0.15) ns . (3.11)

The delay due to the intrinsic output capacitance (0.07 ns, equal to RC p) and the
nonideal delay (t q = 0.15 ns) are specified separately. The nonideal delay is a
considerable fraction of the total delay, so we may hardly ignore it. If data books
do not specify these components of delay separately, we have to estimate the
fractions of the constant part of a delay equation to assign to RC p and t q (here
the ratio RC p / t q is approximately 2).

The data book tells us the input trip point is 0.5 and the output trip points are 0.35
and 0.65. We can use Eq. 3.11 to estimate the pull resistance for this cell as R ª
1.46 nspF �1 or about 1.5 k W . Equation 3.11 is for the falling delay; the data
book equation for the rising delay gives slightly different values (but within 10
percent of the falling delay values).

We can scale any logic cell by a scaling factor s (transistor gates become s times
wider, but the gate lengths stay the same), and as a result the pull resistance R
will decrease to R / s and the parasitic capacitance C p will increase to sC p .

Since t q is nonideal, by definition it is hard to predict how it will scale. We shall
assume that t q scales linearly with s for all cells. The total cell delay then scales
as follows:

t PD = (R / s)·(C out + sC p) + st q . (3.12)

For example, the delay equation for a 2X drive (s = 2), two-input NAND cell is

t PD = (0.03 + 0.75 C out + 0.51) ns . (3.13)

Compared to the 1X version (Eq. 3.11), the output parasitic delay has decreased
to 0.03 ns (from 0.07 ns), whereas we predicted it would remain constant (the
difference is because of the layout); the pull resistance has decreased by a factor
of 2 from 1.5 k W to 0.75 k W , as we would expect; and the nonideal delay has
increased to 0.51 ns (from 0.15 ns). The differences between our predictions and
the actual values give us a measure of the model accuracy.

We rewrite Eq. 3.12 using the input capacitance of the scaled logic cell, C in = s
C ,

 C out

t PD = RC ������ + RC p + st q . (3.14)

 C in

Finally we normalize the delay using the time constant formed from the pull
resistance R inv and the input capacitance C inv of a minimum-size inverter:

 (RC) (C out / C in) + RC p + st q

d = ������������������������������� = f + p + q . (3.15)
 t

The time constant tau ,

t = R inv C inv , (3.16)

is a basic property of any CMOS technology. We shall measure delays in terms
of t .

The delay equation for a 1X (minimum-size) inverter in the C5 library is

t PDf = R pd (C out + C p) ln (1/0.35) ª R pd (C out + C p) . (3.17)

Thus tq inv = 0.1 ns and R inv = 1.60 k W . The input capacitance of the 1X
inverter (the standard load for this library) is specified in the data book as C inv =
0.036 pF; thus t = (0.036 pF)(1.60 k W) = 0.06 ns for the C5 technology.

The use of logical effort consists of rearranging and understanding the meaning
of the various terms in Eq. 3.15 . The delay equation is the sum of three terms,

d = f + p + q . (3.18)

We give these terms special names as follows:

delay = effort delay + parasitic delay + nonideal delay . (3.19)

The effort delay f we write as a product of logical effort, g , and electrical effort,
h:

f = gh . (3.20)

So we can further partition delay into the following terms:

delay = logical effort ¥ electrical effort + parasitic delay + nonideal delay . (3.21)

The logical effort g is a function of the type of logic cell,

g = RC/ t . (3.22)

What size of logic cell do the R and C refer to? It does not matter because the R
and C will change as we scale a logic cell, but the RC product stays the same�the
logical effort is independent of the size of a logic cell. We can find the logical
effort by scaling down the logic cell so that it has the same drive capability as the
1X minimum-size inverter. Then the logical effort, g , is the ratio of the input
capacitance, C in , of the 1X version of the logic cell to C inv (see Figure 3.8).

FIGURE 3.8 Logical effort. (a) The input capacitance, C inv , looking into the
input of a minimum-size inverter in terms of the gate capacitance of a
minimum-size device. (b) Sizing a logic cell to have the same drive strength as a
minimum-size inverter (assuming a logic ratio of 2). The input capacitance
looking into one of the logic-cell terminals is then C in . (c) The logical effort of
a cell is C in / C inv . For a two-input NAND cell, the logical effort, g = 4/3.

The electrical effort h depends only on the load capacitance C out connected to
the output of the logic cell and the input capacitance of the logic cell, C in ; thus

h = C out / C in . (3.23)

The parasitic delay p depends on the intrinsic parasitic capacitance C p of the
logic cell, so that

p = RC p / t . (3.24)

Table 3.2 shows the logical efforts for single-stage logic cells. Suppose the
minimum-size inverter has an n -channel transistor with W/L = 1 and a p
-channel transistor with W/L = 2 (logic ratio, r , of 2). Then each two-input
NAND logic cell input is connected to an n -channel transistor with W/L = 2 and
a p -channel transistor with W/L = 2. The input capacitance of the two-input
NAND logic cell divided by that of the inverter is thus 4/3. This is the logical
effort of a two-input NAND when r = 2. Logical effort depends on the ratio of the
logic. For an n -input NAND cell with ratio r , the p -channel transistors are W/L
= r /1, and the n -channel transistors are W/L = n /1. For a NOR cell the n
-channel transistors are 1/1 and the p -channel transistors are nr /1.

TABLE 3.2 Cell effort, parasitic delay, and nonideal delay (in units of t) for
single-stage CMOS cells.

Cell
Cell effort

(logic ratio = 2)

Cell effort

(logic ratio = r)
Parasitic delay/ t

Nonideal delay/
t

inverter 1 (by definition) 1 (by definition)
p inv (by
definition) 1

q inv (by

definition) 1

n -input
NAND

(n + 2)/3 (n + r)/(r + 1) n p inv n q inv

n -input
NOR

(2 n + 1)/3 (nr + 1)/(r + 1) n p inv n q inv

The parasitic delay arises from parasitic capacitance at the output node of a
single-stage logic cell and most (but not all) of this is due to the source and drain
capacitance. The parasitic delay of a minimum-size inverter is

p inv = C p / C inv . (3.25)

The parasitic delay is a constant, for any technology. For our C5 technology we
know RC p = 0.06 ns and, using Eq. 3.17 for a minimum-size inverter, we can
calculate p inv = RC p / t = 0.06/0.06 = 1 (this is purely a coincidence). Thus C p
is about equal to C inv and is approximately 0.036 pF. There is a large error in
calculating p inv from extracted delay values that are so small. Often we can
calculate p inv more accurately from estimating the parasitic capacitance from
layout.

Because RC p is constant, the parasitic delay is equal to the ratio of parasitic
capacitance of a logic cell to the parasitic capacitance of a minimum-size

inverter. In practice this ratio is very difficult to calculate�it depends on the
layout. We can approximate the parasitic delay by assuming it is proportional to
the sum of the widths of the n -channel and p -channel transistors connected to
the output. Table 3.2 shows the parasitic delay for different cells in terms of p inv
.

The nonideal delay q is hard to predict and depends mainly on the physical size
of the logic cell (proportional to the cell area in general, or width in the case of a
standard cell or a gate-array macro),

q = st q / t . (3.26)

We define q inv in the same way we defined p inv . An n -input cell is
approximately n times larger than an inverter, giving the values for nonideal
delay shown in Table 3.2 . For our C5 technology, from Eq. 3.17 , q inv = t q inv /
t = 0.1 ns/0.06 ns = 1.7.

3.3.1 Predicting Delay

As an example, let us predict the delay of a three-input NOR logic cell with 2X
drive, driving a net with a fanout of four, with a total load capacitance
(comprising the input capacitance of the four cells we are driving plus the
interconnect) of 0.3 pF.

From Table 3.2 we see p = 3 p inv and q = 3 q inv for this cell. We can calculate
C in from the fact that the input gate capacitance of a 1X drive, three-input NOR
logic cell is equal to gC inv , and for a 2X logic cell, C in = 2 gC inv . Thus,

 C out g ·(0.3 pF) (0.3 pF)

gh = g ����� = ����������� = ������������ . (3.27)

 C in 2 g C inv (2)·(0.036 pF)

(Notice that g cancels out in this equation, we shall discuss this in the next
section.)

The delay of the NOR logic cell, in units of t , is thus

 0.3 ¥ 10 �12

d = gh + p + q = �������������������� + (3)·(1) + (3)·(1.7)

 (2)·(0.036 ¥ 10 �12)

 = 4.1666667 + 3 + 5.1
 = 12.266667 t . (3.28)

equivalent to an absolute delay, t PD ª 12.3 ¥ 0.06 ns = 0.74 ns.

The delay for a 2X drive, three-input NOR logic cell in the C5 library is

t PD = (0.03 + 0.72 C out + 0.60) ns . (3.29)

With C out = 0.3 pF,

t PD = 0.03 + (0.72)·(0.3) + 0.60 = 0.846 ns . (3.30)

compared to our prediction of 0.74 ns. Almost all of the error here comes from
the inaccuracy in predicting the nonideal delay. Logical effort gives us a method
to examine relative delays and not accurately calculate absolute delays. More
important is that logical effort gives us an insight into why logic has the delay it
does.

3.3.2 Logical Area and Logical Efficiency

Figure 3.9 shows a single-stage OR-AND-INVERT cell that has different logical
efforts at each input. The logical effort for the OAI221 is the logical-effort vector
g = (7/3, 7/3, 5/3). For example, the first element of this vector, 7/3, is the logical
effort of inputs A and B in Figure 3.9 .

FIGURE 3.9 An OAI221 logic
cell with different logical
efforts at each input. In this
case g = (7/3, 7/3, 5/3). The
logical effort for inputs A and
B is 7/3, the logical effort for
inputs C and D is also 7/3, and
for input E the logical effort is
5/3. The logical area is the sum
of the transistor areas, 33
logical squares.

We can calculate the area of the transistors in a logic cell (ignoring the routing
area, drain area, and source area) in units of a minimum-size n -channel transistor
�we call these units logical squares . We call the transistor area the logical area .
For example, the logical area of a 1X drive cell, OAI221X1, is calculated as
follows:

n -channel transistor sizes: 3/1 + 4 ¥ (3/1)●

p -channel transistor sizes: 2/1 + 4 ¥ (4/1)●

total logical area = 2 + (4 ¥ 4) + (5 ¥ 3) = 33 logical squares●

Figure 3.10 shows a single-stage AOI221 cell, with g = (8/3, 8/3, 6/3). The
calculation of the logical area (for a AOI221X1) is as follows:

n -channel transistor sizes: 1/1 + 4 ¥ (2/1)●

p -channel transistor sizes: 6/1 + 4 ¥ (6/1)●

logical area = 1 + (4 ¥ 2) + (5 ¥ 6) = 39 logical squares

FIGURE 3.10 An
AND-OR-INVERT cell,
an AOI221, with
logical-effort vector, g =
(8/3, 8/3, 7/3). The
logical area is 39 logical
squares.

●

These calculations show us that the single-stage AOI221, with an area of 33
logical squares and logical effort of (7/3, 7/3, 5/3), is more logically efficient than
the single-stage OAI221 logic cell with a larger area of 39 logical squares and
larger logical effort of (8/3, 8/3, 6/3).

3.3.3 Logical Paths

When we calculated the delay of the NOR logic cell in Section 3.3.1, the answer
did not depend on the logical effort of the cell, g (it cancelled out in Eqs. 3.27
and 3.28). This is because g is a measure of the input capacitance of a 1X drive
logic cell. Since we were not driving the NOR logic cell with another logic cell,
the input capacitance of the NOR logic cell had no effect on the delay. This is
what we do in a data book�we measure logic-cell delay using an ideal input
waveform that is the same no matter what the input capacitance of the cell.
Instead let us calculate the delay of a logic cell when it is driven by a
minimum-size inverter. To do this we need to extend the notion of logical effort.

So far we have only considered a single-stage logic cell, but we can extend the
idea of logical effort to a chain of logic cells or logical path . Consider the logic
path when we use a minimum-size inverter (g 0 = 1, p 0 = 1, q 0 = 1.7) to drive
one input of a 2X drive, three-input NOR logic cell with g 1 = (nr + 1)/(r + 1), p

1 = 3, q 1 =3, and a load equal to four standard loads. If the logic ratio is r = 1.5,
then g 1 = 5.5/2.5 = 2.2.

The delay of the inverter is

d = g 0 h 0 + p 0 + q 0 = (1) · (2g 1) · (C inv /C inv) +1 + 1.7 (3.31)

 = (1)(2)(2.2) + 1 + 1.7
 = 7.1 .

Of this 7.1 t delay we can attribute 4.4 t to the loading of the NOR logic cell input
capacitance, which is 2 g 1 C inv . The delay of the NOR logic cell is, as before, d

1 = g 1 h 1 + p 1 + q 1 = 12.3, making the total delay 7.1 + 12.3 = 19.4, so the
absolute delay is (19.4)(0.06 ns) = 1.164 ns, or about 1.2 ns.

We can see that the path delay D is the sum of the logical effort, parasitic delay,
and nonideal delay at each stage. In general, we can write the path delay as

D = � g i h i + � (p i + q i) . (3.32)

 i � path i � path

3.3.4 Multistage Cells

Consider the following function (a multistage AOI221 logic cell):

 ZN(A1, A2, B1, B2, C)
= NOT(NAND(NAND(A1, A2), AOI21(B1, B2, C)))
= (((A1·A2)' · (B1·B2 + C)')')'
= (A1·A2 + B1·B2 + C)'
= AOI221(A1, A2, B1, B2, C) . (3.33)

Figure 3.11 (a) shows this implementation with each input driven by a
minimum-size inverter so we can measure the effect of the cell input capacitance.

FIGURE 3.11 Logical paths. (a) An AOI221 logic cell constructed as a
multistage cell from smaller cells. (b) A single-stage AOI221 logic cell.

The logical efforts of each of the logic cells in Figure 3.11 (a) are as follows:

g 0 = g 4 = g (NOT) = 1 ,

g 1 = g (AOI21) = (2, (2 r + 1)/(r + 1)) = (2, 4/2.5) = (2, 1.6) ,

g 2 = g 3 = g (NAND2) = (r + 2)/(r + 1) = (3.5)/(2.5) = 1.4 . (3.34)

Each of the logic cells in Figure 3.11 has a 1X drive strength. This means that
the input capacitance of each logic cell is given, as shown in the figure, by gC inv
.

Using Eq. 3.32 we can calculate the delay from the input of the inverter driving
A1 to the output ZN as

d 1 = (1)·(1.4) + 1 + 1.7 + (1.4)·(1) + 2 + 3.4

 + (1.4)·(0.7) + 2 + 3.4 + (1)· C L + 1 + 1.7

 = (20 + C L) . (3.35)

In Eq. 3.35 we have normalized the output load, C L , by dividing it by a
standard load (equal to C inv). We can calculate the delays of the other paths
similarly.

More interesting is to compare the multistage implementation with the
single-stage version. In our C5 technology, with a logic ratio, r = 1.5, we can
calculate the logical effort for a single-stage AOI221 logic cell as

g (AOI221) = ((3 r + 2)/(r + 1), (3 r + 2)/(r + 1), (3 r + 1)/(r + 1))
 = (6.5/2.5, 6.5/2.5, 5.5/2.5)
 = (2.6, 2.6, 2.2) . (3.36)

This gives the delay from an inverter driving the A input to the output ZN of the
single-stage logic cell as

d1 = ((1)·(2.6) + 1 + 1.7 + (1)· C L + 5 + 8.5)

 = 18.8 + C L . (3.37)

The single-stage delay is very close to the delay for the multistage version of this
logic cell. In some ASIC libraries the AOI221 is implemented as a multistage
logic cell instead of using a single stage. It raises the question: Can we make the
multistage logic cell any faster by adjusting the scale of the intermediate logic
cells?

3.3.5 Optimum Delay

Before we can attack the question of how to optimize delay in a logic path, we
shall need some more definitions. The path logical effort G is the product of
logical efforts on a path:

 G = � g i . (3.38)

 i � path

The path electrical effort H is the product of the electrical efforts on the path,

 C out

 H = � h i ����� , (3.39)

 i � path C in

where C out is the last output capacitance on the path (the load) and C in is the
first input capacitance on the path.

The path effort F is the product of the path electrical effort and logical efforts,

 F = GH . (3.40)

The optimum effort delay for each stage is found by minimizing the path delay D
by varying the electrical efforts of each stage h i , while keeping H , the path
electrical effort fixed. The optimum effort delay is achieved when each stage
operates with equal effort,

 f^ i = g i h i = F 1/ N . (3.41)

This a useful result. The optimum path delay is then

 D^ = NF 1/ N = N (GH) 1/ N + P + Q , (3.42)

where P + Q is the sum of path parasitic delay and nonideal delay,

P + Q = � p i + h i . (3.43)

 i � path

We can use these results to improve the AOI221 multistage implementation of
Figure 3.11 (a). Assume that we need a 1X cell, so the output inverter (cell 4)
must have 1X drive strength. This fixes the capacitance we must drive as C out =
C inv (the capacitance at the input of this inverter). The input inverters are
included to measure the effect of the cell input capacitance, so we cannot cheat
by altering these. This fixes the input capacitance as C in = C inv . In this case H =
1.

The logic cells that we can scale on the path from the A input to the output are
NAND logic cells labeled as 2 and 3. In this case

G = g 0 ¥ g 2 ¥ g 3 = 1 ¥ 1.4 ¥ 1.4 = 1.95 . (3.44)

Thus F = GH = 1.95 and the optimum stage effort is 1.95 (1/3) = 1.25, so that the
optimum delay NF 1/ N = 3.75. From Figure 3.11 (a) we see that

g 0 h 0 + g 2 h 2 + g 3 h 3 = 1.4 + 1.3 + 1 = 3.8 . (3.45)

This means that even if we scale the sizes of the cells to their optimum values, we
only save a fraction of a t (3.8 � 3.75 = 0.05). This is a useful result (and one that
is true in general)�the delay is not very sensitive to the scale of the cells. In this
case it means that we can reduce the size of the two NAND cells in the multicell
implementation of an AOI221 without sacrificing speed. We can use logical
effort to predict what the change in delay will be for any given cell sizes.

We can use logical effort in the design of logic cells and in the design of logic
that uses logic cells. If we do have the flexibility to continuously size each logic
cell (which in ASIC design we normally do not, we usually have to choose from
1X, 2X, 4X drive strengths), each logic stage can be sized using the equation for
the individual stage electrical efforts,

 F 1/ N

 h^ i = ������ . (3.46)

 g i

For example, even though we know that it will not improve the delay by much,
let us size the cells in Figure 3.11 (a). We shall work backward starting at the
fixed load capacitance at the input of the last inverter.

For NAND cell 3, gh = 1.25; thus (since g = 1.4), h = C out / C in = 0.893. The
output capacitance, C out , for this NAND cell is the input capacitance of the
inverter�fixed as 1 standard load, C inv . This fixes the input capacitance, C in , of
NAND cell 3 at 1/0.893 = 1.12 standard loads. Thus, the scale of NAND cell 3 is
1.12/1.4 or 0.8X.

Now for NAND cell 2, gh = 1.25; C out for NAND cell 2 is the C in of NAND
cell 3. Thus C in for NAND cell 2 is 1.12/0.893 = 1.254 standard loads. This
means the scale of NAND cell 2 is 1.254/1.4 or 0.9X.

The optimum sizes of the NAND cells are not very different from 1X in this case
because H = 1 and we are only driving a load no bigger than the input
capacitance. This raises the question: What is the optimum stage effort if we have
to drive a large load, H >> 1? Notice that, so far, we have only calculated the
optimum stage effort when we have a fixed number of stages, N . We have said
nothing about the situation in which we are free to choose, N , the number of
stages.

3.3.6 Optimum Number of Stages

Suppose we have a chain of N inverters each with equal stage effort, f = gh .
Neglecting parasitic and nonideal delay, the total path delay is Nf = Ngh = Nh ,
since g = 1 for an inverter. Suppose we need to drive a path electrical effort H ;

then h N = H , or N ln h = ln H . Thus the delay, Nh = h ln H /ln h . Since ln H is
fixed, we can only vary h /ln (h). Figure 3.12 shows that this is a very shallow
function with a minimum at h = e ª 2.718. At this point ln h = 1 and the total
delay is N e = e ln H . This result is particularly useful in driving large loads
either on-chip (the clock, for example) or off-chip (I/O pad drivers, for example).

FIGURE 3.12 Stage effort.

 h h/(ln h)
 1.5 3.7
 2 2.9
 2.7 2.7
 3 2.7
 4 2.9
 5 3.1
 10 4.3

Figure 3.12 shows us how to minimize delay regardless of area or power and
neglecting parasitic and nonideal delays. More complicated equations can be
derived, including nonideal effects, when we wish to trade off delay for smaller
area or reduced power.

1. For the Compass 0.5 m m technology (C5): p inv = 1.0, q inv = 1.7, R inv = 1.5
k W , C inv = 0.036 pF.

3.4 Library-Cell Design
The optimum cell layout for each process generation changes because the design
rules for each ASIC vendor�s process are always slightly different�even for the
same generation of technology. For example, two companies may have very
similar 0.35 m m CMOS process technologies, but the third-level metal spacing
might be slightly different. If a cell library is to be used with both processes, we
could construct the library by adopting the most stringent rules from each
process. A library constructed in this fashion may not be competitive with one
that is constructed specifically for each process. Even though ASIC vendors prize
their design rules as secret, it turns out that they are similar�except for a few
details. Unfortunately, it is the details that stop us moving designs from one
process to another. Unless we are a very large customer it is difficult to have an
ASIC vendor change or waive design rules for us. We would like all vendors to
agree on a common set of design rules. This is, in fact, easier than it sounds. The
reason that most vendors have similar rules is because most vendors use the same
manufacturing equipment and a similar process. It is possible to construct a
highest common denominator library that extracts the most from the current
manufacturing capability. Some library companies and the large Japanese ASIC
vendors are adopting this approach.

Layout of library cells is either hand-crafted or uses some form of symbolic
layout . Symbolic layout is usually performed in one of two ways: using either
interactive graphics or a text layout language. Shapes are represented by simple
lines or rectangles, known as sticks or logs , in symbolic layout. The actual
dimensions of the sticks or logs are determined after layout is completed in a
postprocessing step. An alternative to graphical symbolic layout uses a text
layout language, similar to a programming language such as C, that directs a
program to assemble layout. The spacing and dimensions of the layout shapes are
defined in terms of variables rather than constants. These variables can be
changed after symbolic layout is complete to adjust the layout spacing to a
specific process.

Mapping symbolic layout to a specific process technology uses 10�20 percent
more area than hand-crafted layout (though this can then be further reduced to 5
�10 percent with compaction). Most symbolic layout systems do not allow 45°
layout and this introduces a further area penalty (my experience shows this is
about 5�15 percent). As libraries get larger, and the capability to quickly move
libraries and ASIC designs between different generations of process technologies
becomes more important, the advantages of symbolic layout may outweigh the
disadvantages.

3.5 Library Architecture
Figure 3.13 (a) shows cell use data from over 150 CMOS gate array designs.
These results are remarkably similar to that from other ASIC designs using
different libraries and different technologies and show that typically 80 percent of
an ASIC uses less than 20 percent of the cell library.

(a) (b)

(c) (d)

FIGURE 3.13 Cell library statistics.

(e)

We can use the data in Figure 3.13 (a) to derive some useful conclusions about the
number and types of cells to be included in a library. Before we do this, a few

words of caution are in order. First, the data shown in Figure 3.13 (a) tells us about
cells that are included a library. This data cannot tell us anything about cells that
are not (and perhaps should be) included in a library. Second, the type of design
entry we use�and the type of ASIC we are designing�can dramatically affect the
profile of the use of different cell types. For example, if we use a high-level design
language, together with logic synthesis, to enter an ASIC design, this will favor the
use of the complex combinational cells (cells of the AOI family that are
particularly area efficient in CMOS, but are difficult to work with when we design
by hand).

Figure 3.13 (a) tells us which cells we use most often, but does not take into
account the cell area. What we really want to know are which cells are most
important in determining the area of an ASIC. Figure 3.13 (b) shows the area of
the cells�normalized to the area of a minimum-size inverter. If we take the data in
Figure 3.13 (a) and multiply by the cell areas, we can derive a new measure of the
contribution of each cell in a library (Figure 3.13c). This new measure, cell
importance , is a measure of how much area each cell in a library contributes to a
typical ASIC. For example, we can see from Figure 3.13 (c) that a D flip-flop
(with a cell importance of 3.5) contributes 3.5 times as much area on a typical
ASIC than does an inverter (with a cell importance of 1).

Figure 3.13 (c) shows cell importance ordered by the cell frequency of use and
normalized to an inverter. We can rearrange this data in terms of cell importance,
as shown in Figure 3.13 (d), and normalized so that now the most important cell, a
D flip-flop, has a cell importance of 1. Figure 3.13 (e) includes the cell use data on
the same scale as the cell importance data. Both show roughly the same shape,
reflecting that both measures obey an 80�20 rule. Roughly 20 percent of the cells in
a library correspond to 80 percent of the ASIC area and 80 percent of the cells we
use (but not the same 20 percent�that is why cell importance is useful).

Figure 3.13 (e) shows us that the most important cells, measured by their
contribution to the area of an ASIC, are not necessarily the cells that we use most
often. If we wish to build or buy a dense library, we must concentrate on the area
of those cells that have the highest cell importance�not the most common cells.

3.6 Gate-Array Design
Each logic cell or macro in a gate-array library is predesigned using fixed tiles of
transistors known as the gate-array base cell (or just base cell). We call the
arrangement of base cells across a whole chip in a complete gate array the
gate-array base (or just base). ASIC vendors offer a selection of bases, with a
different total numbers of transistors on each base. For example, if our ASIC
design uses 48k equivalent gates and the ASIC vendor offers gate arrays bases
with 50k-, 75k-, and 100k-gates, we will probably have to use the 75k-gate base
(because it is unlikely that we can use 48/50 or 96 percent of the transistors on
the 50k-gate base).

We isolate the transistors on a gate array from one another either with thick field
oxide (in the case of oxide-isolated gate arrays) or by using other transistors that
are wired permanently off (in gate-isolated gate arrays). Channeled and
channelless gate arrays may use either gate isolation or oxide isolation.

Figure 3.14 (a) shows a base cell for a gate-isolated gate array . This base cell
has two transistors: one p -channel and one n -channel. When these base cells are
placed next to each other, the n -diffusion and p -diffusion layers form continuous
strips that run across the entire chip broken only at the poly gates that cross at
regularly spaced intervals (Figure 3.14b). The metal interconnect spacing
determines the separation of the transistors. The metal spacing is determined by
the design rules for the metal and contacts. In Figure 3.14 (c) we have shown all
possible locations for a contact in the base cell. There is room for 21 contacts in
this cell and thus room for 21 interconnect lines running in a horizontal direction
(we use m1 running horizontally). We say that there are 21 horizontal tracks in
this cell or that the cell is 21 tracks high. In a similar fashion the space that we
need for a vertical interconnect (m2) is called a vertical track . The horizontal and
vertical track widths are not necessarily equal, because the design rules for m1
and m2 are not always equal.

We isolate logic cells from each other in gate-isolated gate arrays by connecting
transistor gates to the supply bus�hence the name, gate isolation . If we connect
the gate of an n -channel transistor to V SS , we isolate the regions of n -diffusion
on each side of that transistor (we call this an isolator transistor or device, or just
isolator). Similarly if we connect the gate of a p -channel transistor to V DD , we
isolate adjacent p -diffusion regions.

FIGURE 3.14 The construction of a gate-isolated gate array. (a) The
one-track-wide base cell containing one p -channel and one n -channel transistor.
(b) Three base cells: the center base cell is being used to isolate the base cells on
either side from each other. (c) A base cell including all possible contact
positions (there is room for 21 contacts in the vertical direction, showing the
base cell has a height of 21 tracks).

Oxide-isolated gate arrays often contain four transistors in the base cell: the two n
-channel transistors share an n -diffusion strip and the two p -channel transistors
share a p -diffusion strip. This means that the two n -channel transistors in each
base cell are electrically connected in series, as are the p -channel transistors. The
base cells are isolated from each other using oxide isolation . During the
fabrication process a layer of the thick field oxide is left in place between each
base cell and this separates the p -diffusion and n -diffusion regions of adjacent
base cells.

Figure 3.15 shows an oxide-isolated gate array . This cell contains eight
transistors (which occupy six vertical tracks) plus one-half of a single track that
contains the well contacts and substrate connections that we can consider to be
shared by each base cell.

FIGURE 3.15 An oxide-isolated gate-array base cell. The figure shows two base
cells, each containing eight transistors and two well contacts. The p -channel and
n -channel transistors are each 4 tracks high (corresponding to the width of the
transistor). The leftmost vertical track of the left base cell includes all 12
possible contact positions (the height of the cell is 12 tracks). As outlined here,
the base cell is 7 tracks wide (we could also consider the base cell to be half this
width).

Figure 3.16 shows a base cell in which the gates of the n -channel and p -channel
transistors are connected on the polysilicon layer. Connecting the gates in poly
saves contacts and a metal interconnect in the center of the cell where
interconnect is most congested. The drawback of the preconnected gates is a loss
in flexibility in cell design. Implementing memory and logic based on
transmission gates will be less efficient using this type of base cell, for example.

FIGURE 3.16 This oxide-isolated gate-array base cell is 14 tracks high and 4
tracks wide. VDD (tracks 3 and 4) and GND (tracks 11 and 12) are each 2 tracks
wide. The metal lines to the left of the cell indicate the 10 horizontal routing
tracks (tracks 1, 2, 5�10, 13, 14). Notice that the p -channel and n -channel
polysilicon gates are tied together in the center of the cell. The well contacts are
short, leaving room for a poly cross-under in each base cell.

Figure 3.17 shows the metal personalization for a D flip-flop macro in a
gate-isolated gate array using a base cell similar to that shown in Figure 3.14 (a).
This macro uses 20 base cells, for a total of 40 transistors, equivalent to 10 gates.

FIGURE 3.17 An example of a flip-flop macro in a gate-isolated gate-array
library. Only the first-level metallization and contact pattern (the
personalization) is shown on the right, but this is enough information to derive
the schematic. The base cell is shown on the left. This macro is 20 tracks wide.

The gates of the base cells shown in Figures 3.14 � 3.16 are bent. The bent gate
allows contacts to the gates to be placed on the same grid as the contacts to
diffusion. The polysilicon gates run in the space between adjacent metal
interconnect lines. This saves space and also simplifies the routing software.

There are many trade-offs that determine the gate-array base cell height. One
factor is the number of wires that can be run horizontally through the base cell.
This will determine the capacity of the routing channel formed from an unused
row of base cells. The base cell height also determines how easy it is to wire the
logic macros since it determines how much space for wiring is available inside
the macros.

There are other factors that determine the width of the base-cell transistors. The
widths of the p -channel and n -channel transistors are slightly different in Figure
3.14 (a). The p -channel transistors are 6 tracks wide and the n -channel
transistors are 5 tracks wide. The ratio for this gate-array library is thus
approximately 1.2. Most gate-array libraries are approaching a ratio of 1.

ASIC designers are using ever-increasing amounts of RAM on gate arrays. It is
inefficient to use the normal base cell for a static RAM cell and the size of RAM
on an embedded gate array is fixed. As an alternative we can change the design
of the base cell. A base cell designed for use as RAM has extra transistors (either
four�two n -channel and two p -channel�or two n -channel; usually minimum

width) allowing a six-transistor RAM cell to be built using one base cell instead
of the two or three that we would normally need. This is one of the advantages of
the CBA (cell-based array) base cell shown in Figure 3.18 .

FIGURE 3.18 The SiARC/Synopsys cell-based array (CBA) basic cell.

3.7 Standard-Cell Design
Figure 3.19 shows the components of the standard cell from Figure 1.3. Each
standard cell in a library is rectangular with the same height but different widths. The
bounding box (BB) of a logic cell is the smallest rectangle that encloses all of the
geometry of the cell. The cell BB is normally determined by the well layers. Cell
connectors or terminals (the logical connectors) must be placed on the cell abutment
box (AB). The physical connector (the piece of metal to which we connect wires)
must normally overlap the abutment box slightly, usually by at least 1 l , to assure
connection without leaving a tiny space between the ends of two wires. The standard
cells are constructed so they can all be placed next to each other horizontally with the
cell ABs touching (we abut two cells).

(a)

(b)

(c) (d)

FIGURE 3.19 (a) The standard cell shown in Figure 1.3. (b) Diffusion, poly, and
contact layers. (c) m1 and contact layers. (d) The equivalent schematic.

A standard cell (a D flip-flop with clear) is shown in Figure 3.20 and illustrates the
following features of standard-cell layout:

Layout using 45° angles. This can save 10%�20% in area compared to a cell
that uses only Manhattan or 90° geometry. Some ASIC vendors do not allow
transistors with 45° angles; others do not allow 45° angles at all.

●

Connectors are at the top and bottom of the cell on m2 on a routing grid equal
to the vertical (m2) track spacing. This is a double-entry cell intended for a
two-level metal process. A standard cell designed for a three-level metal
process has connectors in the center of the cell.

●

Transistor sizes vary to optimize the area and performance but maintain a fixed
ratio to balance rise times and fall times.

●

The cell height is 64 l (all cells in the library are the same height) with a
horizontal (m1) track spacing of 8 l . This is close to the minimum height that
can accommodate the most complex cells in a library.

●

The power rails are placed at the top and bottom, maintaining a certain width
inside the cell and abut with the power rails in adjacent cells.

●

The well contacts (substrate connections) are placed inside the cell at regular
intervals. Additional well contacts may be placed in spacers between cells.

●

In this case both wells are drawn. Some libraries minimize the well or moat
area to reduce leakage and parasitic capacitance.

●

Most commercial standard cells use m1 for the power rails, m1 for internal
connections, and avoid using m2 where possible except for cell connectors.

●

FIGURE 3.20 A D flip-flop standard cell. The wide power buses and
transistors show this is a performance-optimized cell. This double-entry cell is
intended for a two-level metal process and channel routing. The five
connectors run vertically through the cell on m2 (the extra short vertical metal
line is an internal crossover).

When a library developer creates a gate-array, standard-cell, or datapath library, there
is a trade-off between using wide, high-drive transistors that result in large cells with
high-speed performance and using smaller transistors that result in smaller cells that
consume less power. A performance-optimized library with large cells might be used
for ASICs in a high-performance workstation, for example. An area-optimized library
might be used in an ASIC for a battery-powered portable computer.

3.8 Datapath-Cell Design
Figure 3.21 shows a datapath flip-flop. The primary, thicker, power buses run
vertically on m2 with thinner, internal power running horizontally on m1. The
control signals (clock in this case) run vertically through the cell on m2. The
control signals that are common to the cells above and below are connected
directly in m2. The other signals (data, q, and qbar in this example) are brought
out to the wiring channel between the rows of datapath cells.

FIGURE 3.21 A datapath D flip-flop cell.

Figure 3.22 is the schematic for Figure 3.21 . This flip-flop uses a pair of
cross-coupled inverters for storage in both the master and slave latches. This
leads to a smaller and potentially faster layout than the flip-flop circuits that we

use in gate-array and standard-cell ASIC libraries. The device sizes of the
inverters in the data-path flip-flops are adjusted so that the state of the latches
may be changed. Normally using this type of circuit is dangerous in an
uncontrolled environment. However, because the datapath structure is regular and
known, the parasitic capacitances that affect the operation of the logic cell are
also known. This is another advantage of the datapath structure.

FIGURE 3.22 The schematic of the datapath D flip-flop cell shown in Figure
3.21 .

Figure 3.23 shows an example of a datapath. Figure 3.23 (a) depicts a two-level
metal version showing the space between rows or slices of the datapath. In this
case there are many connections to be brought out to the right of the datapath,
and this causes the routing channel to be larger than normal and thus easily seen.
Figure 3.23 (b) shows a three-level metal version of the same datapath. In this
case more of the routing is completed over the top of the datapath slices, reducing
the size of the routing channel.

FIGURE 3.23 A datapath. (a)
Implemented in a two-level
metal process. (b) Implemented
in a three-level metal process.

(a)

(b)

3.9 Summary
In this chapter we covered ASIC libraries: cell design, layout, and
characterization. The most important concepts that we covered in this chapter
were

Tau, logical effort, and the prediction of delay●

Sizes of cells, and their drive strengths●

Cell importance●

The difference between gate-array macros, standard cells, and datapath
cells

●

3.10 Problems
* = difficult, ** = very difficult, *** = extremely difficult

3.1 (Pull resistance, 10 min.)

a. Show that, for small V DS , an n -channel transistor looks like a resistor, R =
1/(b n (V DD � V t n)).

●

b. If V GS = V DD , V DS = 0, and k ' n = 200 m AV �2 (equal to the n -channel
transistor SPICE parameter KP in Table 2.1), find the pull resistance, R , for a
6/0.6 transistor in the linear region.

●

Answer: (b) 213 W .

3.2 (Inversion layer depth, 15 min.) In the absence of surface charge, Gauss�s law
demands continuity of the electric displacement vector, D = e E , at the silicon surface,
so that e ox E ox = e Si E Si , where e ox = 3.9, e Si = 11.7.

a. Assuming the potential at the surface is V GS � V t = 2.5 V, calculate E ox and
E Si if T ox = 100 Å.

●

b. Assume that carrier density � exp (�q f /kT), where f is the potential; calculate
the distance below the surface at which the inversion charge density falls to 10
percent of its value at the surface.

●

c. Comment on the accuracy of your answers.●

Answer: (a) 2.5 ¥ 10 8 Vm �1 , 0.833 ¥ 10 8 Vm �1 . (b) 7.16 Å.

3.3 (Depletion layer depth, 15 min.) The depth of the depletion region under the gate is
given by x d = ÷[(2 e Si f s)/(qN A)], where f s = 2V T ln(N A /n i) is the surface

potential at strong inversion. Calculate f s and x d assuming: e Si =1.0359 ¥ 10 �10 Fm �1

, the substrate doping, N A = 1.4 ¥ 10 17 cm �3 , the intrinsic carrier concentration n i =

1.45 ¥ 10 10 cm �3 (at room temperature), and the thermal voltage V T = kT/q = 25.9
mV.

Answer: 0.833 V, 900 Å.

3.4 (Logical effort, 45 min.) Calculate the logical effort at each input of an AOI122
cell. Find an expression that allows you to calculate the logical effort for each input of
an AOI nnnn cell for n = 1, 2, 3.

3.5 (Gate-array macro design, 120 min.) Draw a 1X drive, two-input NAND cell using
the gate-array base cells shown in Figures 3.14 (a)� 3.16 (lay a piece of thin paper over
the figures and draw the contacts and metal personalization only). Label the inputs and
outputs. Lay out a 1X drive, four-input NAND cell using the same base array cells.

Now lay out a 2X drive, four-input NAND cell (think about this one). Make sure that
you size your transistors properly to balance rise times and fall times.

3.6 (Flip-flop library, 20 min.) Suppose we wish to build a library of flip-flops. We
want to have flops with: positive-edge and negative-edge triggering: clear, preset
(either, both, or neither); synchronous or asynchronous reset and preset controls if
present (but not mixed on the same flip-flop); all flip-flops with or without scan as an
option; flip-flops with Q and Qbar (either or both). How many flip-flops is that?
(***) How would you attempt to prioritize which flip-flops to include in a library?

3.7 (AOI and OAI cell ratios, 30 min.) In Figure 2.13(c) we adjusted the sizes of the
transistors assuming that there was only one path through the n -channel and p
-channel stacks. Suppose that p -channel transistors A, B, C, and D are all on and p
-channel transistor E turns on. What is the equivalent resistance of the p -channel stack
in this case?

3.8 (**Eight-input AND, 60 min.) This question is an example in the paper by
Sutherland and Sproull [1991] on logical effort. Figure 3.24 shows three different
ways to design an eight-input AND cell, using NAND and NOR cells.

a. Find the logical effort at each input for A, B, C. Assume a logic ratio of 2.●

b. Find the parasitic delay for A, B, C. Assume the parasitic delay of an inverter
is 0.6.

●

c. Show that the path delays are given by the following equations where H is the
path electrical effort, if we ignore the nonideal delays:

●

(i) 2 (3.33 H) 0.5 + 5.4 (alternative A)●

(ii) 2 (3.33 H) 0.5 + 3.6 (alternative B)●

(iii) 4 (2.96 H) 0.25 + 4.2 (alternative C)●

d. Use these equations to determine the best alternative for H = 2 and H = 32.

FIGURE 3.24
An eight-input
AND cell
(Problem 3.8
).

●

3.9 (Special logic cells, 30 min.) Many ASIC cell libraries contain �special� logic cells.
For example the Compass libraries contain a two-input NAND cell with an inverted
input, FN01 = (A + B'). This saves routing area, is faster than using two separate cells,
and is useful because the combination of a two-input NAND gate with one inverted
input is heavily used by synthesis tools. Other �special� cells include:

FN02 = MAJ3 = (A·B + A·C + B·C)'●

FN03 = AOI2-2 = ((A'·B') + (C·D))' = (A + B)(C' + D') = OA2-2●

FN04 = OAI2-2●

FN05 = A·B' = (A' + B)'●

a. Draw schematics for these cells.●

b. Calculate the logical effort and logical area for each cell.●

c. Can you explain where and why these cells might be useful?●

3.10 (Euler paths, 60 min.) There are several ways to arrange the stacks in the AOI211
cell shown in Figure 3.25 . For example, the n -channel transistor A can be below B
without altering the function. Which arrangement would you predict gives a faster
delay from A to Z and why? The p -channel transistors A and B can be above or below
transistors C and D. How many distinct ways of arranging the transistors are there for
this cell? What effect do the different arrangements have on layout? What effects do
these different arrangements have on the cell performance?

FIGURE 3.25 There are several ways to arrange the transistors in this AOI211 cell
(Problem 3.10).

3.11 (*AOI and OAI cell efficiency, 60 min.) A standard-cell library data book
contains the following data:

AOI221: t R = 1.06�1.15 ns; t F = 1.09�1.55 ns; C in = 0.21�0.28 pF; W C = 28.8
m m

●

OAI221: t R = 0.77�1.05 ns; t F = 0.81�0.96 ns; C in = 0.25�0.39 pF; W C = 22.4
m m

●

(W C is the cell width, the cell height is 25.6 m m.) Calculate the (a) logical effort and
(b) logical area for the AOI221 and OAI221 cells.

The implementation of the OAI221 in this library uses a single stage,

OAI221 = OAI221(a1, a2, b1, b2, c),

whereas the AOI221 uses the following multistage implementation:

AOI221 = NOT(NAND(NAND(a1, a2), AOI21(b1, b2, c))).

(c) What are the alternative implementations for these two cells? (d) From your
answers attempt to explain the implementations chosen.

3.12 (**Logical efficiency, 60 min.) Extending Problem 3.11 , let us compare an
AOI33 with an OAI33 cell. (a) Calculate the logical effort and (b) logical areas for
these cells.

The AOI33 uses a single-stage implementation as follows:

AOI33 = aoi33(a1, a2, a3, b1, b2, b3).

The OAI33 uses the following multistage implementation:

OAI33 = not[nor[nor(a1, a2, a3), nor(b1, b2, b3)]].

(c) Calculate the path delay, D , as a function of path electrical effort, H , for both of
these implementations ignoring parasitic and nonideal delays. (d) Use Eq. 3.42 to
calculate the optimum path delay for these cells. (e) Compare and explain the
differences between your answers to parts d and e for H = 1, 2, 4, and 8.

The timing data from the data book is as follows (the cell height is 25.6 m m):

AOI33: t R = 0.70�1.06 ns; t F = 0.72�1.15 ns; C in = 0.21�0.28 pF; W C = 35.2
m m

●

OAI33: t R = 1.06�1.70 ns; t F = 1.42�1.98 ns; C in = 0.31�0.36 pF; W C = 48 m
m

●

(f) How does this data compare with your theoretical analysis?

3.13 (EXOR cells and logical effort, 60 min.) Show how to implement a two-input
EXOR cell using an AOI22 and two inverters. Using logical effort, compare this with
an implementation using an AOI21 cell and a NOR cell.

3.14 (***XNOR cells, 60 min.) Table 3.3 shows the implementation of XNOR cells
in a standard-cell library. Analyze this data using the concept of logical effort.

TABLE 3.3 Implementations of XNOR cells in CMOS (Problem 3.14).

Cell Implementation
Library 1:
XNOR2D1

nand[or(a1,a2),nand(a1,a2)]

Library 2:
XNOR2D1

NOT[NOT[MUX[a1, NOT(a1),a2)]]

Library 1:
XNOR2D2

NOT[NOT[MUX(a1,NOT(a1),a2)]]

Library 2:
XNOR2D2

nand[or(a1,a2),nand(a1,a2)]

Library 1:
XNOR3D1

NOT[NOT[MUX(a1, NOT(a1), NOT(MUX(a3, NOT(a3),a2)))]]

Library 1:
XNOR3D2

NOT[NOT[MUX(a1, NOT(a1), NOT(MUX(a3, NOT(a3),a2)))]]

3.15 (***Extensions to logical effort, 60 min.) The path branching effort B is the
product of branching efforts:

 B = � b i . (3.47)

 i � path

The branching effort is the ratio of the on-path plus off-path capacitance to the on-path
capacitance. The path effort F becomes the product of the path electrical effort, path
branching effort, and path logical effort:

 F = GBH . (3.48)

Show that the path delay D is

D = � g i b i h i + � p i . (3.49)

 i � path i � path

(***) Show that the optimum path delay is then

 D^ = NF 1/ N = N (GBH) 1/ N + P . (3.50)

3.16 (*Circuits from layout, 120 min.) Figure 3.26 shows a D flip-flop with clear
from a 1.0 m m standard-cell library. Figure 3.27 shows two layout views of this D
flip-flop. Construct the circuit diagram for this flip-flop, labeling the nodes and
transistors as shown. Include the transistor sizes�use estimates for transistors with 45°
gates�you only need W/L values, you can assume the gate lengths are all L = 2 l , equal
to the minimum feature size. Label the inputs and outputs to the cell and identify their
functions.

FIGURE 3.26 A D flip-flop from a 1.0 m m standard-cell library (Problem 3.16).

3.17 (Flip-flop circuits, 30 min.) Draw the circuit schematic for a positive-edge
�triggered D flip-flop with active-high set and reset (base your schematic on
Figure 2.18a, a negative-edge�triggered D flip-flop). Describe the problem when both
SET and RESET are high.

FIGURE 3.27 (Top) A standard cell showing the diffusion (n -diffusion and p
-diffusion), poly, and contact layers (the n -well and p -well are not shown).
(Bottom) Shows the m1, contact, m2, and via layers. Problem 3.16 traces this circuit
for this cell.

If we want an active-high set or reset we can: (1) use an inverter on the set or reset
signal or (2) we can substitute NOR cells. Since NOR cells are slower than NAND
cells, which we do depends on whether we want to optimize for speed or area.

Thus, the largest flip-flop would be one with both Q and QN outputs, active high set
and reset�requiring four TX gates, three inverters (four of the seven we normally need
are replaced with NAND cells), four NAND cells, and two inverters to invert the set
and reset, making a total of 34 transistors, or 8.5 gates.

3.18 (Set and reset, 10 min.) Show how to add a synchronous set or a synchronous
reset to the flip-flop of Figure 2.18(a) using a two-input MUX.

3.19 (Clocked inverters, 45 min.) Using PSpice compare the delay of an inverter with
transmission gate with that of a clocked inverter using the G5 process SPICE
parameters from Table 2.1.

3.20 (S-R, T, J-K flip-flops, 30 min.) The characteristic equation for a D flip-flop is Q

t+1 = D. The characteristic equation for a J-K flip-flop is Q t+1 = J(Q t)' + K'Q t .

a. Show how you can build a J-K flip-flop using a D flip-flop.●

b. The characteristic equation for a T flip-flop (toggle flip-flop) is Q t+1 = (Q t)' .
Show how to build a T flip-flop using a D flip-flop.

●

c. The characteristic equation does not show the timing behavior of a sequential
element�the characteristic equation for a D latch is the same as that for a D
flip-flop. The characteristic equation for an S-R latch and an S-R flip-flop is Q

t+1 = S + R'Q t . An S-R flip-flop is sometimes called a pulse-triggered flip-flop.
Find out the behavior of an S-R latch and an S-R flip-flop and describe the
differences between these elements and a D latch and a D flip-flop.

●

d. Explain why it is probably not a good idea to use an S-R flip-flop in an ASIC
design.

●

3.21 (**Optimum logic, 60 min.) Suppose we have a fixed logic path of length n 1 .
We want to know how many (if any) buffer stages we should add at the output of this
path to optimize the total path delay given the output load capacitance.

a. If the total number of stages is N (logic path of length n 1 plus N � n 1
inverters), show that the total path delay is

 n 1

D^ = NF 1/ N + � (p i + q i) + (N � n 1)(p inv + q inv) . (3.51)

 i = 1

●

The optimum number of stages is given by the solution to the following equation:

� D^/�N = � /�N (NF 1/ N + (N � n 1)(p inv + q inv)) = 0 . (3.52)

b. Show that the solutions to this equation can be written in terms of F 1/ N^ (the
optimum stage effort) where N^ is the optimum number of stages:

F 1/ N^ (1 � ln F 1/ N^) + (p inv + q inv) = 0 . (3.53)

●

3.22 (XOR and XNOR cells, 60 min.) Table 3.4 shows the implementations of two-
and three-input XOR cells in an ASIC standard-cell library (D1 are the 1X drive cells,
and D2 are the 2X drive versions). Can you explain the choices for the two-input XOR
cell and complete the table for the three-input XOR cell?

TABLE 3.4 Implementations of XOR cells (Problem 3.22).

Cell Actual implementation 1 Alternative implementation(s)

XOR2D1 AOI21[a1, a2, NOR(a1,a2)] not[mux(a1, not(a1), a2)]
 aoi22(a1, a2, not(a1), not(a2))
XOR2D2 NOT[MUX(a1, not(a1), a2)] aoi21[a1, a2, nor(a1, a2)]
 aoi22(a1, a2, not(a1), not(a2))

XOR3D1
NOT[MUX[a1, not(a1), not(mux(a3, not(a3),
a2))]]

?

XOR3D2
NOT[MUX[a1, not(a1), not(mux(a3, not(a3),
a2))]]

?

3.23 (Library density, 10 min.) Derive an upper limit on cell density as follows:
Assume a chip consists only of two-input NAND cells with no routing channels
between rows (often achievable in a 3LM process with over-the-cell routing).

a. Explain how many vertical tracks you need to connect to a two-input NAND
cell, assuming each connection requires a separate track.

●

b. If the NAND cell is 64 l high with a vertical track width of 8 l , calculate the
NAND cell area, carefully explaining any assumptions.

●

c. Calculate the cell density (in gate/mil 2) for a 0.35 m m process, l = 0.175 m
m.

●

Answer: 3 tracks, 47 m m 2 , 13.7 gates/mil 2 or 21 ¥ 103 gates/mm 2 .

3.24 (Gate-array density, 20 min.) The LSI Logic 10k and 100k gate arrays use a
four-transistor base cell, equivalent to 1 gate, that is 12 tracks high and 3 tracks wide.

a. If a metal track is 8l, where l = 0.75 m m for a 1.5 m m technology, calculate
the area of the LSI Logic base cell A L in mil 2 .

●

b. If we could use every base cell in the gate array, the cell density would be D G
= 1/ A L . Assume that, because of routing area and inefficiency of the gate
array, we can use only 50 percent of the base cells for logic. What is D G for the
LSI Logic 1.5 m m array?

●

c. Chip cell density D G is about 1.0 gate/mil 2 for a 1 m m technology (a
two-input NAND cell occupies an area 25 m m on a side in a technology whose
transistors are 1 m m long). This can change by a factor of 2 or more for a
gate-array/standard-cell ASIC or high-density/high-performance library.
Assume that cell density D G scales ideally with technology. If the minimum

feature size of a technology is 2l, then D G � 1/ l 2 . Thus, for example, a 1.5 m m

technology should have a cell density of roughly (1/1.5) 2 gates/mil 2 . How does
this agree with your estimate for the LSI Logic array?

●

3.25 (SiArc RAM, 10 min.) Suppose we need 16 k-bit of SRAM and 20 k-gate of
random logic on a channelless gate array. Assume a base cell with four transistors and
that we can build a RAM cell using two of these base cells. The RAM bits will require
32k base cells and the random logic will require 20k base cells. Suppose the base cell
area is 12 tracks high, 3 tracks wide, and the horizontal and vertical track spacing is
equal at 8 l .

a. Calculate the total area of the base cells we need. Now suppose we redesign
the gate-array base cell so that we can build a RAM bit cell using a single base
cell that is 20 tracks high, 3 tracks wide, and has 4 logic cell transistors and 4
RAM cell transistors. Assume that since the base cell now contains 8 transistors
we only need 12 k base cells to implement 20 k-gate of random logic (the new
base cell is less efficient than the old cell for implementing random logic).

●

b. Calculate the base cell area using the new base cell design.●

c. Comment.●

Answer: 1.2 ¥ 108 l 2 , 1.1 ¥ 108 l 2 .

3.26 (***Gate-array base cell, 60 min.) Figure 3.28 shows a simple gate-array base
cell. Use the design rules shown in Table 2.16 (Problem 2.33) to calculate the
minimum size of this base cell. Do this by determining which design rules apply to the
labels shown adjacent to each space or width in the figure. In most cases each of the
spaces is determined by a single rule related to the region labeled, for example, the
contact width labeled 'cc' is 2 l determined by rule C.1, the exact contact size. There is
one exception, shown in the figure. Space 'aa' (bounding box, BB, to edge of pdiff) and
width 'bb' (edge of pdiff to edge of contact) are determined by the minimum space
labeled 'xx' (bounding box, BB, to poly edge) and width 'yy' (edge of poly to edge of
contact). Space 'xx' is one half of the poly to poly spacing over field (rule P.4) because
two base cells abut as shown in the figure. Width 'yy' is equal to the minimum poly
overlap of contact (rule C.3). The distance 'aa + bb' is thus determined by the minimum
distance 'xx + yy', as shown. The other distances are more straightforward to
determine.

Answer: 40 l high by 26.25 l wide.

FIGURE 3.28 A simple gate-array base cell (Problem 3.26).

3.27 (CIF, 15 min.) Here is the part of the CIF for a standard cell that describes the n
-well (CWN) and p -well (CWP) structure. The statement B length height xCenter,

yCenter is CIF for a box (CIF dimensions are in centimicrons, 0.01 m m):

DS1;LCWN;B6000

1560 13600,3660;B2480 60 11840,2850;B2320 60 15440,2850;LCWP;B680 60

13740,2730;B6000 1380 13600,2010;

a. Draw the wells and BB. Label the dimensions in microns and l (l = 0.4 m m) .●

b. This is a double-entry cell with m2 connectors at top and bottom. For this cell
library the cell AB is 3 l (120 centimicrons, determined by the well rules) inside
the cell BB on all sides. What is the size of the cell AB in microns and l ?

●

c. The vertical (m2) routing pitch (the distance between centers of adjacent
vertical m2 interconnect lines) is equal to the vertical track spacing and is 8 l
(320 centimicrons). How many vertical tracks are there in this cell?

●

3.28 (CIF, 60 min.) Figure 3.29 shows an example of CIF that describes a single
rectangle (box) of m1 with an accompanying label.

(CIF written by the Tanner Research layout editor: L-Edit);
(TECHNOLOGY: VLSIcmn6);
(DATE: Thu, Jun 27, 1996);
(FABCELL: NONE);
(SCALING: 1 CIF Unit = 1/120 Lambda, 1 Lambda = 3/10
Microns);
DS1 2 8;
9 Cell0;
94 LabelText 60 180 CM;
LCM;
B 240 120 120 300;
DF;
E

FIGURE 3.29 A simple CIF example (Problem 3.28).

The CIF code has the following meaning:

Lines 1�5 are CIF comments.●

Line 6 is a definition start for symbol 1 and marks the beginning of a symbol
definition (a symbol is a piece of layout, symbol numbers are unique identifiers).
The integers 2 and 8 define a scaling factor 2/8 (= 0.25) to be applied to distance
measurements (the CIF unit, after scaling, is a centimicron or 0.01 m m).

●

Line 7 is a user extension or expansion (all extensions begin with a digit). L-Edit
uses user extension 9 for cell names (Cell0 in this case).

●

Line 8 is a user extension for a cell label located on layer CM (first-level metal
in this technology) located at x = 60 units, y = 180 units (60, 180). Applying the
scaling factor of 0.25, this translates to (15, 45) in centimicrons or (0.5, 1.5) in
lambda.

●

Line 9 is a layer specification or command (begins with L).●

Line 10 is a box command and describes a box with (in order) length, L , of 240
units; width, W , of 120 units; and center at x = 120 units and y = 300 units.

●

Applying the DS scaling factor of 0.25 gives L = 60, W = 30, center = (30,
75)(centimicrons) or L = 2, W = 1, center = (1, 2.5) in lambda.

Line 11 is the definition finish (DS and DF must be paired).●

Line 12 is the end command .●

You receive a CIF file whose mask-layer names are different from those in the
technology file that you are using. The mapping between layer names is shown in
Table 3.5 .

a. Write an awk or sed script (or use another automated editing technique) to
change the layer names. At this point you realize that there are several layer
names (LTRAN , LESD) in the input file that are not required (or recognized)
by your layout software (these particular examples are for software to recognize
unused transistors in a gate array, and for an ESD implant in I/O devices).

●

b. (**) Enhance your script to completely remove an unwanted layer from the
CIF file. There are some comments and CIF constructs that are not supported by
your editor. Here is one example:

●

(BB: 39.2,82.6 72.8,122.5 in lambda);

Comments in this format specify the AB and BB for the cell. Other CIF user
extensions, not recognized by your software, are used for labels for power supplies and
connectors:

4A 1680 3360 2800 4844;
4M a 1 2292 4028 2356 4092 CM2;
4M z 4 2639 4090 2703 4154 CM2;
4X vdd 2 2800 4774 180 * * metal;

c. (**) Add code to remove all these constructs from the CIF file.

TABLE 3.5 Mapping CIF layer names (Problem 3.28). 2

Input mask
label

MOSIS mask
label

Input mask
label

MOSIS mask
label

Input mask
label

MOSIS mask
label

LCNW CWN LCND 3 CSN LCM2 CMS

LCPW CWP LCPD 2 CSP LCC2 CVS

none 4 CAA LCC 5 CCA LCM3 CMT

LCP CPG LCM CMF none COG

●

1. MUX(a, b, c) = a·c + b·c'

2. This mapping is for input to a layout editor; the CIF may have to be modified again
when written out from the layout editor.

3. Map the input diffusion layers to the implant select layers. On output from the
layout editor these layers should be sized up to generate the �real� implant select layers.

4. There is no active layer in the input. Instead use the diffusion layers.

5. There is only one contact layer in the input; map all contacts to CAA.There is no
easy way to generate the MOSIS CCP layer. This prevents handling of poly and

3.11 Bibliography
The first part of this chapter is covered in greater detail in Weste and Eshraghian
[1993]. The experiments presented in this chapter may be reproduced using
PSpice and Probe from MicroSim (http://www.microsim.com). A free
CD-ROM is available from MicroSim containing PC versions of their software
together with reference manuals in Adobe Acrobat format that are readable on all
platforms. Other PSpice and Probe versions are available online including the
Apple Macintosh version used in this book (which requires a math coprocessor).
Mukherjee [1986] covers CMOS process and fabrication issues. Analog ASIC
design is covered by Haskard and May [1988] and Trontelj et al. [1989]. Chen
[1990] and Uyemura [1992] provide more depth on analysis of combinational
and sequential logic design. The book by Diaz [1995] includes material on I/O
cell design for ESD protection that is hard to find. The patent literature is the best
reference for high-speed and quiet I/O design. Wakerly�s book [1994] on digital
design is an excellent reference for logic design in general (including sequential
logic, metastability, and binary arithmetic), though it emphasizes PLDs rather
than ASICs.

3.12 References
Chen, J. Y. 1990. CMOS Devices and Technology for VLSI. Englewood Cliffs,
NJ: Prentice-Hall, 348 p. ISBN 0-13-138082-6. TK7874.C523.

Diaz, C. H., et al. 1995. Modeling of Electrical Overstress in Integrated Circuits.
Norwell, MA: Kluwer Academic, 148 p. ISBN 0-7923-9505-0. TK7874.D498.
Includes 101 references. Good introduction to ESD problems and models. Most
of the book deals with thermal analysis and thermal stress modeling.

Haskard, M. R., and I. C. May. 1988. Analog VLSI Design: nMOS and CMOS.
Englewood Cliffs, NJ: Prentice-Hall, 243 p. ISBN 0-13-032640-2.
TK7874.H392.

Mukherjee, A. 1986. Introduction to nMOS and CMOS VLSI Systems Design.
Englewood Cliffs, NJ: Prentice-Hall, 370 p. ISBN 0-13-490947-X. TK7874.M86.

Sutherland, I. E., and R. F. Sproull. 1991. �Logical effort: designing for speed on
the back of an envelope.� In Proceedings of the Advanced Research in VLSI,
Santa Cruz, CA, pp. 1�16. This reference may be hard to find, but similar
treatments (without the terminology of logical effort) are given in Mead and
Conway, or Weste and Eshraghian.

Trontelj, J., et al. 1989. Analog Digital ASIC Design. New York: McGraw-Hill,
249 p. ISBN 0-07-707300-2. TK7874.T76.

Uyemura, J. P. 1992. Circuit Design for CMOS VLSI. Boston: Kluwer Academic
Publishers, 450 p. ISBN 0-7923-9184-5. TK7874.U93. See also: J. P. Uyemura,
Fundamentals of MOS Digital Integrated Circuits, Reading, MA:
Addison-Wesley, 1988, 624 p. ISBN 0-201-13318-0. TK7874.U94. Reference for
basic circuit equations related to NMOS and CMOS logic design.

Wakerly, J. F. 1994. Digital Design: Principles and Practices. 2nd ed. Englewood
Cliffs, NJ: Prentice-Hall, 840 p. ISBN 0-13-211459-3. TK7874.65.W34.
Introduction to logic design covering: binary arithmetic, CMOS and TTL,
combinational logic, PLDs, sequential logic, memory, and the IEEE standard
logic symbols.

Weste, N. H. E., and K. Eshraghian. 1993. Principles of CMOS VLSI Design: A
Systems Perspective . 2nd ed. Reading, MA: Addison-Wesley, 713 p. ISBN
0-201-53376-6. TK7874.W46. See also the first edition of this book.

PROGRAMMABLE ASICs
There are two types of programmable ASICs: programmable logic devices
(PLDs) and field-programmable gate arrays (FPGAs). The distinction between
the two is blurred. The only real difference is their heritage. PLDs started as
small devices that could replace a handful of TTL parts, and they have grown to
look very much like their younger relations, the FPGAs. We shall group both
types of programmable ASICs together as FPGAs.

An FPGA is a chip that you, as a systems designer, can program yourself. An IC
foundry produces FPGAs with some connections missing. You perform design
entry and simulation. Next, special software creates a string of bits describing the
extra connections required to make your design�the configuration file . You then
connect a computer to the chip and program the chip to make the necessary
connections according to the configuration file. There is no customization of any
mask level for an FPGA, allowing the FPGA to be manufactured as a standard
part in high volume.

FPGAs are popular with microsystems designers because they fill a gap between
TTL and PLD design and modern, complex, and often expensive ASICs. FPGAs
are ideal for prototyping systems or for low-volume production. FPGA vendors
do not need an IC fabrication facility to produce the chips; instead they contract
IC foundries to produce their parts. Being fabless relieves the FPGA vendors of
the huge burden of building and running a fabrication plant (a new submicron fab
costs hundreds of millions of dollars). Instead FPGA companies put their effort
into the FPGA architecture and the software, where it is much easier to make a
profit than building chips. They often sell the chips through distributors, but sell
design software and any necessary programming hardware directly.

All FPGAs have certain key elements in common. All FPGAs have a regular
array of basic logic cells that are configured using a programming technology .
The chip inputs and outputs use special I/O logic cells that are different from the
basic logic cells. A programmable interconnect scheme forms the wiring between
the two types of logic cells. Finally, the designer uses custom software, tailored
to each programming technology and FPGA architecture, to design and
implement the programmable connections. The programming technology in an
FPGA determines the type of basic logic cell and the interconnect scheme. The
logic cells and interconnection scheme, in turn, determine the design of the input
and output circuits as well as the programming scheme.

Last Edited by SP 14112004

The programming technology may or may not be permanent. You cannot undo
the permanent programming in one-time programmable (OTP) FPGAs.
Reprogrammable or erasable devices may be reused many times. We shall
discuss the different programming technologies in the following sections.

4.1 The Antifuse
An antifuse is the opposite of a regular fuse�an antifuse is normally an open
circuit until you force a programming current through it (about 5 mA). In a poly
�diffusion antifuse the high current density causes a large power dissipation in a
small area, which melts a thin insulating dielectric between polysilicon and
diffusion electrodes and forms a thin (about 20 nm in diameter), permanent, and
resistive silicon link . The programming process also drives dopant atoms from
the poly and diffusion electrodes into the link, and the final level of doping
determines the resistance value of the link. Actel calls its antifuse a
programmable low-impedance circuit element (PLICE �).

Figure 4.1 shows a poly�diffusion antifuse with an oxide�nitride�oxide (ONO)
dielectric sandwich of: silicon dioxide (SiO 2) grown over the n -type antifuse
diffusion, a silicon nitride (Si 3 N 4) layer, and another thin SiO 2 layer. The
layered ONO dielectric results in a tighter spread of blown antifuse resistance
values than using a single-oxide dielectric. The effective electrical thickness is
equivalent to 10nm of SiO 2 (Si 3 N 4 has a higher dielectric constant than SiO 2 ,
so the actual thickness is less than 10 nm). Sometimes this device is called a fuse
even though it is an anti fuse, and both terms are often used interchangeably.

FIGURE 4.1 Actel antifuse. (a) A cross section. (b) A simplified drawing. The
ONO (oxide�nitride�oxide) dielectric is less than 10 nm thick, so this diagram is
not to scale. (c) From above, an antifuse is approximately the same size as a
contact.

The fabrication process and the programming current control the average
resistance of a blown antifuse, but values vary as shown in Figure 4.2 . In a
particular technology a programming current of 5 mA may result in an average
blown antifuse resistance of about 500 W . Increasing the programming current
to 15 mA might reduce the average antifuse resistance to 100 W . Antifuses

separate interconnect wires on the FPGA chip and the programmer blows an
antifuse to make a permanent connection. Once an antifuse is programmed, the
process cannot be reversed. This is an OTP technology (and radiation hard). An
Actel 1010, for example, contains 112,000 antifuses (see Table 4.1), but we
typically only need to program about 2 percent of the fuses on an Actel chip.

 TABLE 4.1

Number of
antifuses on Actel
FPGAs.

Device Antifuses
A1010 112,000
A1020 186,000
A1225 250,000
A1240 400,000
A1280 750,000

FIGURE 4.2 The resistance of blown Actel antifuses. The
average antifuse resistance depends on the programming
current. The resistance values shown here are typical for a
programming current of 5 mA.

To design and program an Actel FPGA, designers iterate between design entry
and simulation. When they are satisfied the design is correct they plug the chip
into a socket on a special programming box, called an Activator , that generates
the programming voltage. A PC downloads the configuration file to the Activator
instructing it to blow the necessary antifuses on the chip. When the chip is
programmed it may be removed from the Activator without harming the
configuration data and the chip assembled into a system. One disadvantage of
this procedure is that modern packages with hundreds of thin metal leads are
susceptible to damage when they are inserted and removed from sockets. The
advantage of other programming technologies is that chips may be programmed
after they have been assembled on a printed-circuit board�a feature known as
in-system programming (ISP).

The Actel antifuse technology uses a modified CMOS process. A double-metal,
single-poly CMOS process typically uses about 12 masks�the Actel process
requires an additional three masks. The n- type antifuse diffusion and antifuse
polysilicon require an extra two masks and a 40 nm (thicker than normal) gate
oxide (for the high-voltage transistors that handle 18 V to program the antifuses)
uses one more masking step. Actel and Data General performed the initial
experiments to develop the PLICE technology and Actel has licensed the
technology to Texas Instruments (TI).

The programming time for an ACT 1 device is 5 to 10 minutes. Improvements in
programming make the programming time for the ACT 2 and ACT 3 devices

about the same as the ACT 1. A 5-day work week, with 8-hour days, contains
about 2400 minutes. This is enough time to program 240 to 480 Actel parts per
week with 100 percent efficiency and no hardware down time. A production
schedule of more than 1000 parts per month requires multiple or gang
programmers.

4.1.1 Metal�Metal Antifuse
Figure 4.3 shows a QuickLogic metal�metal antifuse (ViaLink �). The link is an
alloy of tungsten, titanium, and silicon with a bulk resistance of about 500 mW
cm.

FIGURE 4.3 Metal�metal antifuse. (a) An idealized (but to scale) cross section
of a QuickLogic metal�metal antifuse in a two-level metal process. (b) A metal
�metal antifuse in a three-level metal process that uses contact plugs. The
conductive link usually forms at the corner of the via where the electric field is
highest during programming.

There are two advantages of a metal�metal antifuse over a poly�diffusion antifuse.
The first is that connections to a metal�metal antifuse are direct to metal�the
wiring layers. Connections from a poly�diffusion antifuse to the wiring layers
require extra space and create additional parasitic capacitance. The second
advantage is that the direct connection to the low-resistance metal layers makes it
easier to use larger programming currents to reduce the antifuse resistance. For
example, the antifuse resistance R • 0.8/ I , with the programming current I in mA
and R in W , for the QuickLogic antifuse. Figure 4.4 shows that the average
QuickLogic metal�metal antifuse resistance is approximately 80 W (with a
standard deviation of about 10 W) using a programming current of 15 mA as
opposed to an average antifuse resistance of 500 W (with a programming current
of 5 mA) for a poly�diffusion antifuse.

FIGURE 4.4 Resistance values for
the QuickLogic metal�metal
antifuse. A higher programming
current (about 15 mA), made
possible partly by the direct
connections to metal, has reduced
the antifuse resistance from the
poly�diffusion antifuse resistance
values shown in Figure 4.2 .

The size of an antifuse is limited by the resolution of the lithography equipment
used to makes ICs. The Actel antifuse connects diffusion and polysilicon, and
both these materials are too resistive for use as signal interconnects. To connect
the antifuse to the metal layers requires contacts that take up more space than the
antifuse itself, reducing the advantage of the small antifuse size. However, the
antifuse is so small that it is normally the contact and metal spacing design rules
that limit how closely the antifuses may be packed rather than the size of the
antifuse itself.

An antifuse is resistive and the addition of contacts adds parasitic capacitance.
The intrinsic parasitic capacitance of an antifuse is small (approximately 1�2 fF in
a 1 m m CMOS process), but to this we must add the extrinsic parasitic
capacitance that includes the capacitance of the diffusion and poly electrodes (in
a poly�diffusion antifuse) and connecting metal wires (approximately 10 fF).
These unwanted parasitic elements can add considerable RC interconnect delay if
the number of antifuses connected in series is not kept to an absolute minimum.
Clever routing techniques are therefore crucial to antifuse-based FPGAs.

The long-term reliability of antifuses is an important issue since there is a
tendency for the antifuse properties to change over time. There have been some
problems in this area, but as a result we now know an enormous amount about
this failure mechanism. There are many failure mechanisms in ICs
�electromigration is a classic example�and engineers have learned to deal with
these problems. Engineers design the circuits to keep the failure rate below
acceptable limits and systems designers accept the statistics. All the FPGA
vendors that use antifuse technology have extensive information on long-term
reliability in their data books.

4.2 Static RAM
An example of static RAM (SRAM) programming technology is shown in
Figure 4.5 . This Xilinx SRAM configuration cell is constructed from two
cross-coupled inverters and uses a standard CMOS process. The configuration
cell drives the gates of other transistors on the chip�either turning pass transistors
or transmission gates on to make a connection or off to break a connection.

FIGURE 4.5 The Xilinx SRAM
(static RAM) configuration cell.
The outputs of the cross-coupled
inverter (configuration control)
are connected to the gates of
pass transistors or transmission
gates. The cell is programmed
using the WRITE and DATA
lines.

The advantages of SRAM programming technology are that designers can reuse
chips during prototyping and a system can be manufactured using ISP. This
programming technology is also useful for upgrades�a customer can be sent a
new configuration file to reprogram a chip, not a new chip. Designers can also
update or change a system on the fly in reconfigurable hardware .

The disadvantage of using SRAM programming technology is that you need to
keep power supplied to the programmable ASIC (at a low level) for the volatile
SRAM to retain the connection information. Alternatively you can load the
configuration data from a permanently programmed memory (typically a
programmable read-only memory or PROM) every time you turn the system on.
The total size of an SRAM configuration cell plus the transistor switch that the
SRAM cell drives is also larger than the programming devices used in the
antifuse technologies.

4.3 EPROM and EEPROM
Technology
Altera MAX 5000 EPLDs and Xilinx EPLDs both use UV-erasable electrically
programmable read-only memory (EPROM) cells as their programming
technology. Altera's EPROM cell is shown in Figure 4.6 . The EPROM cell is
almost as small as an antifuse. An EPROM transistor looks like a normal MOS
transistor except it has a second, floating, gate (gate1 in Figure 4.6). Applying a
programming voltage V PP (usually greater than 12 V) to the drain of the n-
channel EPROM transistor programs the EPROM cell. A high electric field
causes electrons flowing toward the drain to move so fast they �jump� across the
insulating gate oxide where they are trapped on the bottom, floating, gate. We say
these energetic electrons are hot and the effect is known as hot-electron injection
or avalanche injection . EPROM technology is sometimes called floating-gate
avalanche MOS (FAMOS).

FIGURE 4.6 An EPROM transistor. (a) With a high (> 12 V) programming
voltage, V PP , applied to the drain, electrons gain enough energy to �jump� onto
the floating gate (gate1). (b) Electrons stuck on gate1 raise the threshold voltage
so that the transistor is always off for normal operating voltages. (c) Ultraviolet
light provides enough energy for the electrons stuck on gate1 to �jump� back to
the bulk, allowing the transistor to operate normally.

Electrons trapped on the floating gate raise the threshold voltage of the n-
channel EPROM transistor (Figure 4.6 b). Once programmed, an n- channel
EPROM device remains off even with VDD applied to the top gate. An
unprogrammed n- channel device will turn on as normal with a top-gate voltage
of VDD . The programming voltage is applied either from a special programming

box or by using on-chip charge pumps. Exposure to an ultraviolet (UV) lamp will
erase the EPROM cell (Figure 4.6 c). An absorbed light quantum gives an
electron enough energy to jump from the floating gate. To erase a part we place it
under a UV lamp (Xilinx specifies one hour within 1 inch of a 12,000 m Wcm �2

source for its EPLDs). The manufacturer provides a software program that checks
to see if a part is erased. You can buy an EPLD part in a windowed package for
development, erase it, and use it again, or buy it in a nonwindowed package and
program (or burn) the part once only for production. The packages get hot while
they are being erased, so that windowed option is available with only ceramic
packages, which are more expensive than plastic packages.

Programming an EEPROM transistor is similar to programming an UV-erasable
EPROM transistor, but the erase mechanism is different. In an EEPROM
transistor an electric field is also used to remove electrons from the floating gate
of a programmed transistor. This is faster than using a UV lamp and the chip does
not have to be removed from the system. If the part contains circuits to generate
both program and erase voltages, it may use ISP.

4.4 Practical Issues
System companies often select an ASIC technology first, which narrows the
choice of software design tools. The software then influences the choice of
computer. Most computer-aided engineering (CAE) software for FPGA design
uses some type of security. For workstations this usually means floating licenses
(any of n users on a network can use the tools) or node-locked licenses (only n
particular computers can use the tools) using the hostid (or host I.D., a serial
number unique to each computer) in the boot EPROM (a chip containing start-up
instructions). For PCs this is a hardware key, similar to the Viewlogic key
illustrated in Figure 4.7 . Some keys use the serial port (requiring extra cables and
adapters); most now use the parallel port. There are often conflicts between keys
and other hardware/software. For example, for a while some security keys did not
work with the serial-port driver on Intel motherboards�users had to buy another
serial-port I/O card.

FIGURE 4.7 CAE companies use hardware security keys that fit
at the back of a PC (this one is shown at about one-half the real
size). Each piece of software requires a separate key, so that a
typical design system may have a half dozen or more keys
daisy-chained on one socket. This presents both mechanical and
software conflict problems. Software will not run without a key,
so it is easily possible to have $60,000 worth of keys attached to
a single PC.

Most FPGA vendors offer software on multiple platforms. The performance
difference between workstations and PCs is becoming blurred, but the time taken
for the place-and-route step for Actel and Xilinx designs seems to remain
constant�typically taking tens of minutes to over an hour for a large design
�bounded by designers� tolerances.

A great deal of time during FPGA design is spent in schematic entry, editing
files, and documentation. This often requires moving between programs and this
is difficult on IBM-compatible PC platforms. Currently most large CAD and
CAE programs completely take over the PC; for example you cannot always run
third-party design entry and the FPGA vendor design systems simultaneously.

There are many other factors to be considered in choosing hardware:

Software packages are normally less expensive on a PC.●

Peripherals are less expensive and easier to configure on a PC.●

Maintenance contracts are usually necessary and expensive for
workstations.

●

There is a much larger network of users to provide support for PC users.●

It is easier to upgrade a PC than a workstation.●

4.4.1 FPGAs in Use
I once placed an order for a small number of FPGAs for prototyping and received
a sales receipt with a scheduled shipping date three months away. Apparently,
two customers had recently disrupted the vendor�s product planning by placing
large orders. Companies buying parts from suppliers often keep an inventory to
cover emergencies such as a defective lot or manufacturing problems. For
example, assume that a company keeps two months of inventory to ensure that it
has parts in case of unforeseen problems. This risk inventory or safety supply, at
a sales volume of 2000 parts per month, is 4000 parts, which, at an ASIC price of
$5 per part, costs the company $20,000. FPGAs are normally sold through
distributors, and, instead of keeping a risk inventory, a company can order parts
as it needs them using a just-in-time (JIT) inventory system. This means that the
distributors rather than the customer carry inventory (though the distributors wish
to minimize inventory as well). The downside is that other customers may change
their demands, causing unpredictable supply difficulties.

There are no standards for FPGAs equivalent to those in the TTL and PLD
worlds; there are no standard pin assignments for VDD or GND, and each FPGA
vendor uses different power and signal I/O pin arrangements. Most FPGA
packages are intended for surface-mount printed-circuit boards (PCBs).
However, surface mounting requires more expensive PCB test equipment and
vapor soldering rather than bed-of-nails testers and surface-wave soldering. An
alternative is to use socketed parts. Several FPGA vendors publish
socket-reliability tests in their data books.

Using sockets raises its own set of problems. First, it is difficult to find wire-wrap
sockets for surface-mount parts. Second, sockets may change the pin
configuration. For example, when you use an FPGA in a PLCC package and plug
it into a socket that has a PGA footprint, the resulting arrangement of pins is
different from the same FPGA in a PGA package. This means you cannot use the
same board layout for a prototype PCB (which uses the socketed PLCC part) as
for the production PCB (which uses the PGA part). The same problem occurs
when you use through-hole mounted parts for prototyping and surface-mount
parts for production. To deal with this you can add a small piece to your
prototype board that you use as a converter. This can be sawn off on the
production boards�saving a board iteration.

Pin assignment can also cause a problem if you plan to convert an FPGA design
to an MGA or CBIC. In most cases it is desirable to keep the same pin
assignment as the FPGA (this is known as pin locking or I/O locking), so that the

same PCB can be used in production for both types of devices. There are often
restrictions for custom gate arrays on the number and location of power pads and
package pins. Systems designers must consider these problems before designing
the FPGA and PCB.

4.5 Specifications
All FPGA manufactures are continually improving their products to increase
performance and reduce price. Often this means changing the design of an FPGA
or moving a part from one process generation to the next without changing the
part number (and often without changing the specifications).

FPGA companies usually explain their part history in their data books. 1 The
following history of Actel FPGA ACT 1 part numbers illustrates changes typical
throughout the IC industry as products develop and mature:

The Actel ACT 1 A1010/A1020 used a 2 m m process.●

The Actel A1010A/A1020A used a 1.2 m m process.●

The Actel A1020B was a die revision (including a shrink to a 1.0 m m
process). At this time the A1020, A1020A, and A1020B all had different
speeds.

●

Actel graded parts into three speed bins as they phased in new processes,
dropping the distinction between the different die suffixes.

●

At the same time as the transition to die rev. 'B', Actel began specifying
timing at worst-case commercial conditions rather than at typical
conditions.

●

From this history we can see that it is often possible to have parts from the same
family that use different circuit designs, processes, and die sizes, are
manufactured in different locations, and operate at very different speeds. FPGA
companies ensure that their products always meet the current published
worst-case specifications, but there is no guarantee that the average performance
follows the typical specifications, and there are usually no best-case
specifications.

There are also situations in which two parts with identical part numbers can have
different performance�when different ASIC foundries produce the same parts.
Since FPGA companies are fabless, second sourcing is very common. For
example, TI began making the TPC1010A/1020A to be equivalent to the original
Actel ACT 1 parts produced elsewhere. The TI timing information for the
TPC1010A/1020A was the same as the 2 m m Actel specifications, but TI used a
faster 1.2 m m process. This meant that �equivalent� parts with the same part
numbers were much faster than a designer expected. Often this type of
information can only be obtained by large customers in the form of a
qualification kit from FPGA vendors.

A similar situation arises when the FPGA manufacturer adjusts its product mix
by selling fast parts under a slower part number in a procedure known as
down-binning . This is not a problem for synchronous designs that always work
when parts are faster than expected, but is another reason to avoid asynchronous
designs that may not always work when parts are much faster than expected.

1. See, for example, p.1-8 of the Xilinx 1994 data book.

4.6 PREP Benchmarks
Which type of FPGA is best? This is an impossible question to answer. The
Programmable Electronics Performance Company (PREP) is a nonprofit
organization that organized a series of benchmarks for programmable ASICs.
The nine PREP benchmark circuits in the version 1.3 suite are:

An 8-bit datapath consisting of 4:1 MUX, register, and shift-register1.

An 8-bit timer�counter consisting of two registers, a 4:1 MUX, a counter
and a comparator

2.

A small state machine (8 states, 8 inputs, and 8 outputs)3.

A larger state machine (16 states, 8 inputs, and 8 outputs)4.

An ALU consisting of a 4 ¥ 4 multiplier, an 8-bit adder, and an 8-bit
register

5.

A 16-bit accumulator6.

A 16-bit counter with synchronous load and enable7.

A 16-bit prescaled counter with load and enable8.

A 16-bit address decoder9.

The data for these benchmarks is archived at http://www.prep.org . PREP�s
online information includes Verilog and VHDL source code and test benches
(provided by Synplicity) as well as additional synthesis benchmarks including a
bit-slice processor, multiplier, and R4000 MIPS RISC microprocessor.

One problem with the FPGA benchmark suite is that the examples are small,
allowing FPGA vendors to replicate multiple instances of the same circuit on an
FPGA. This does not reflect the way an FPGA is used in practice. Another
problem is that the FPGA vendors badly misused the results. PREP made the data
available in a spreadsheet form and thus inadvertently challenged the marketing
department of each FPGA vendor to find a way that company could claim to win
the benchmarks (usually by manipulating the data using a complicated weighting
scheme). The PREP benchmarks do demonstrate the large variation in
performance between different FPGA architectures that results from differences
in the type and mix of logic. This shows that designers should be careful in
evaluating others� results and performing their own experiments.

4.7 FPGA Economics
FPGA vendors offer a wide variety of packaging, speed, and qualification
(military, industrial, or commercial) options in each family. For example, there
are several hundred possible part combinations for the Xilinx LCA series.
Figure 4.8 shows the Xilinx part-naming convention, which is similar to that used
by other FPGA vendors.

FIGURE 4.8 Xilinx part-naming
convention.

Table 4.2 shows the various codes used by manufacturers in their FPGA part
numbers. Not all possible part combinations are available, not all packaging
combinations are available, and not all I/O options are available in all packages.
For example, it is quite common for an FPGA vendor to offer a chip that has
more I/O cells than pins on the package. This allows the use of cheaper plastic
packages without having to produce separate chip designs for each different
package. Thus a customer can buy an Actel A1020 that has 69 I/O cells in an
inexpensive 44-pin PLCC package but uses only 34 pins for I/O�the other 10 (=
44 � 34) pins are required for programming and power: three for GND, four for
VDD, one for MODE (a pin that controls four other multifunction pins), and one
for VPP (the programming voltage). A designer who needs all 69 I/Os can buy
the A1020 in a bigger package. Tables in the FPGA manufacturers� data books
show the availability, and these matrices change constantly.

TABLE 4.2 Programmable ASIC part codes.
Item Code Description Code Description
Manufacturer�s

code

A Actel ATT AT&T (Lucent)

XC Xilinx isp Lattice Logic

 EPM Altera MAX M5
AMD MACH 5 is on
the device

 EPF Altera FLEX QL QuickLogic
 CY7C Cypress

Package PL or PC
plastic J-leaded
chip carrier, PLCC

 VQ
very thin quad flatpack,
VQFP

type PQ
plastic quad
flatpack, PQFP

 TQ
thin plastic flatpack,
TQFP

 CQ or CB
ceramic quad
flatpack, CQFP

 PP
plastic pin-grid array,
PPGA

 PG
ceramic pin-grid
array, PGA

 WB, PB ball-grid array, BGA

Application C commercial B MIL-STD-883
 I industrial E extended
 M military

TABLE 4.3 1992 base Actel
FPGA prices.

TABLE 4.4 1992 base Xilinx XC3000
FPGA prices.

Actel part 1H92 base price Xilinx part 1H92 base price
A1010A-PL44C $23.25 XC3020-50PC68C $26.00
A1020A-PL44C $43.30 XC3030-50PC44C $34.20
A1225-PQ100C $105.00 XC3042-50PC84C $52.00
A1240-PQ144C $175.00 XC3064-50PC84C $87.00
A1280-PQ160C $305.00 XC3090-50PC84C $133.30

4.7.1 FPGA Pricing
Asking �How much do FPGAs cost?� is rather like asking �How much does a car
cost?� Prices of cars are published, but pricing schemes used by semiconductor
manufactures are closely guarded secrets. Many FPGA companies use a pricing
strategy based on a cost model that uses a series of multipliers or adders for each
part option to calculate the suggested price for their distributors. Although the
FPGA companies will not divulge their methods, it is possible to reverse engineer
these factors to create a pricing matrix.

Many FPGA vendors sell parts through distributors. This can introduce some
problems for the designer. For example, in 1992 the Xilinx XC3000 series
offered the following part options:

TABLE 4.5 Actel price adjustment factors.
Purchase quantity, all types
(1�9) (10�99) (100�999)
100 %

96 % 84 %

Purchase time, in (100�999) quantity
1H92 2H92 93
100 %

80�95 % 60�80 %

Qualification type, same package
Commercial Industrial Military 883-B
100 % 120 % 150 % 230�300 %
Speed bin 1

ACT 1-Std ACT 1-1 ACT 1-2 ACT 2-Std ACT 2-1
100 %

115 % 140 % 100 % 120 %

Package type
A1010: PL44, 64, 84 PQ100 PG84
 100 % 125 % 400 %
A1020: PL44, 64, 84 PQ100 JQ44, 68, 84 PG84 CQ84
 100 % 125 % 270 % 275 % 400 %
A1225: PQ100 PG100
 100 % 175 %
A1240: PQ144 PG132
 100 % 140 %
A1280: PQ160 PG176 CQ172
 100 % 145 % 160 %

Five different size parts: XC30{20, 30, 42, 64, 90}●

Three different speed grades or bins: {50, 70, 100}●

Ten different packages: {PC68, PC84, PG84, PQ100, CQ100, PP132,
PG132, CQ184, PP175, PG175}

●

Four application ranges or qualification types: {C, I, M, B}●

where {} means �Choose one.�

This range of options gave a total of 600 possible XC3000 products, of which
127 were actually available from Xilinx, each with a different part code. If a
designer is uncertain as to exact size, speed, or package required, then they might
easily need price information on several dozen different part numbers.
Distributors know the price information�it is given to each distributor by the
FPGA vendors. Sometimes the distributors are reluctant to give pricing
information out�for the same reason car salespeople do not always like to
advertise the pricing scheme for cars. However, pricing of the components of a
microelectronics system is a vital factor in making decisions such as whether to
use FPGAs or some alternative technology. Designers would like to know how
FPGAs are priced and how prices may change.

4.7.2 Pricing Examples
Table 4.3 shows the prices of the least-expensive version of the Actel ACT 1 and
ACT 2 FPGA families, the base prices , in the first half of 1992 (1H92).
Table 4.4 shows the 1H92 base prices for the Xilinx XC3000 FPGA family.
Current FPGA prices are much lower. As an example, the least-expensive
XC3000 part, the XC3020A-7PC68C, was $13.75 in 1996�nearly half the 1992
price.

Using historical prices helps prevent accusations of bias or distortion, but still
realistically illustrates the pricing schemes that are used. We shall use these base
prices to illustrate how to estimate the sticker price of an FPGA by adding
options�as we might for a car. To estimate the price of any part, multiply the base
prices by the adjustment factors (shown in Table 4.5 for the Actel parts).

The adjustment factors in Table 4.5 were calculated by taking averages across a
matrix of prices. Not all combinations of product types are available (for
example, there was no military version of an A1280-1 in 1H92). The dependence
of price over time is especially variable. An example price calculation for an
Actel part is shown in Table 4.6 . Many FPGA vendors use similar pricing
models.

TABLE 4.6 Example Actel part-price calculation using the base prices of
Table 4.3 and the adjustment factors of Table 4.5 .

Example: A1020A-2-PQ100I in (100�999) quantity, purchased 1H92.

Factor Example Value
Base price A1020A $43.30
Quantity 100�999 84 %
Time 1H92 100 %
Qualification type Industrial (I) 120 %
Speed bin 2 2 140 %

Package

PQ100 125 %

Estimated price (1H92) $76.38
Actual Actel price (1H92) $75.60

Some distributors now include FPGA prices and availability online (for example,
Marshall at http://marshall.com for Xilinx parts) so that is possible to complete
an up-to-date analysis at any time. Most distributors carry only one FPGA
vendor; not all of the distributors publish prices; and not all FPGA vendors sell
through distributors. Currently Hamilton-Avnet, at http://www.hh.avnet.com ,
carries Xilinx; and Wyle, at http://www.wyle.com , carries Actel and Altera.

1. Actel speed bins are: Std = standard speed grade; 1 = medium speed grade; 2 =
fastest speed grade.

2. The speed bin is a manufacturer�s code (usually a number) that follows the
family part number and indicates the maximum operating speed of the device.

4.8 Summary
In this chapter we have covered FPGA programming technologies including
antifuse, SRAM, and EPROM technologies; the programming technology is
linked to all the other aspects of a programmable ASIC. Table 4.7 summarizes
the programming technologies and the fabrication processes used by
programmable ASIC vendors.

TABLE 4.7 Programmable ASIC technologies.

Actel
Xilinx LCA 1 Altera EPLD Xilinx EPLD

Programming
technology

Poly�diffusion
antifuse,
PLICE

Erasable
SRAM

ISP

UV-erasable
EPROM (MAX
5k)

EEPROM
(MAX 7/9k)

UV-erasable
EPROM

Size of
programming
element

Small but
requires
contacts to
metal

Two inverters
plus pass and
switch
devices.
Largest.

One n - channel
EPROM
device.

Medium.

One n - channel
EPROM
device.

Medium.

Process

Special:
CMOS plus
three extra
masks.

Standard
CMOS

Standard
EPROM and
EEPROM

Standard
EPROM

Programming
method

Special
hardware

PC card,
PROM, or
serial port

ISP (MAX 9k)
or EPROM
programmer

EPROM
programmer

 QuickLogic Crosspoint Atmel Altera FLEX

Programming
technology

Metal�metal
antifuse,
ViaLink

Metal
�polysilicon
antifuse

Erasable
SRAM.

ISP.

Erasable
SRAM.

ISP.

Size of
programming

element

Smallest Small

Two inverters
plus pass and
switch devices.
Largest.

Two inverters
plus pass and
switch devices.
Largest.

Process
Special,
CMOS plus
ViaLink

Special,
CMOS plus
antifuse

Standard
CMOS

Standard
CMOS

Programming
method

Special
hardware

Special
hardware

PC card,
PROM, or
serial port

PC card,
PROM, or
serial port

All FPGAs have the following key elements:

The programming technology●

The basic logic cells●

The I/O logic cells●

Programmable interconnect●

Software to design and program the FPGA●

1. Lucent (formerly AT&T) FPGAs have almost identical properties to the Xilinx
LCA family.

4.9 Problems
* = Difficult, ** = Very difficult, *** = Extremely difficult

4.1 (Antifuse properties, 20 min.) In this problem we examine some of the
physical and electrical features of the antifuse programming process.

a. If the programming current of an antifuse is 5 mA and the link diameter
that is formed is 20 nm, what is the current density during programming?

●

b. If the average antifuse resistance is 500 W after programming is
complete and the programming current is 5 mA, what is the voltage across
the antifuse at completion of programming?

●

c. What power is dissipated in the antifuse link at the end of programming?●

d. Suppose we wish to reduce the antifuse resistance from 500 W to 50 W .
If the antifuse link is a tall, thin cylinder, what is the diameter of a 50 W
antifuse?

●

e. Assume we need to keep the power dissipated per unit volume of the
antifuse link the same at the end of the programming process for both 500
W and 50 W antifuses. What current density is required to program a 50 W
antifuse?

●

f. With these assumptions what is the required programming current for a
50 W antifuse? Comment on your answer and the assumptions that you
have made.

●

4.2 (Actel antifuse programming, 20 min.) In this problem we examine the time
taken to program an antifuse-based FPGA.

a. We have stated that it takes about 5 to 10 minutes to program an Actel
part. Given the number of antifuses on the smallest Actel part, and the
number of antifuses that need to be blown on average, work out the
equivalent time it takes to blow one antifuse. Does this seem reasonable?

●

b. Because of a failure process known as electromigration, the current
density in a metal wire on a chip is limited to about 50 k Acm �2 . You can
exceed this current for a short time as long as the time average does not
exceed the limit. Suppose we want to use a minimum metal width to
connect the programming transistors: Would these facts help explain your
answer to part a?

●

c. What other factors might be involved in the process of blowing antifuses
that may help explain your answer to part a?

●

4.3 (*Xilinx cell) Estimate the area components of a Xilinx cell as follows:

a. (30 min.) Assume the two inverters in the cross-coupled SRAM cell are
minimum size (they are not, the p- channels�or n- channels�in one inverter
need to be weak�long and narrow�but ignore this). Assume the read�write
device is minimum size. Estimate the size of the SRAM cell including an
allowance for wiring (state your assumptions clearly).

●

b. (15 min.) Assume a single n- channel pass transistor is connected to the
SRAM cell and has an on-resistance of 500 W (equal to the average Actel
ACT 1 antifuse resistance for comparison; the actual Xilinx pass
transistors have closer to 1 k W on-resistance). Estimate the transistor size.
Assume the gate voltage of the pass transistor is at 5 V, and the source and
drain voltages are both at 0 V (the best case). Hint: Use the parameters
from Section 3.1 , � Transistors as Resistors .�

●

c. (15min.) Compare your total area estimates of the cell with other FPGA
technologies. Explain why the assumptions you made may be too simple,
and suggest ways to make more accurate estimates.

●

4.4 (FPGA vendors, 60 min.) Update the information shown in Table 4.7 using
the online information provided by FPGA vendors.

4.5 (Prices) Adjustment factors, calculated from averages across the Xilinx price
matrix, are shown in Table 4.8 (the adjustment factors for the Xilinx military and
MIL-STD parts vary so wildly that it is not possible to use a simple model to
predict these prices).

a. (5 min.) Estimate the price of a XC3042-70PG132I in 100+ quantity,
purchased in 1H92.

●

b. (30min.) Use the 1992 prices in Figure 4.9 to derive as much of the
information shown in Table 4.8 as you can, explaining your methods.

FIGURE 4.9
Xilinx XC3042
prices (1992).
Problem 4.5
reconstructs part
of Table 4.8
from this data.

TABLE 4.8 Xilinx price adjustment factors (1992) for Problem 4.5

Purchase quantity, all types
(1�24) (25�99) (100+) (5000+)
100 % 91 % 77 % 70 %
Purchase time, in (100�999) quantity

●

1H92 +18 months
100% 60%
Qualification type, same package
Commercial Industrial Military 883-B
100%

130% varies varies

Speed bin
50 70 100 125
100 %

110 % 130 % 220 %

Package type
3020: PC68 PC84 PQ100 PG84 CQ100
 100 % 106 % 127 % 340 % 490 %
3030: PC44 PC68 PC84 PQ100 PG84
 100 % 107 % 113 % 135 % 330 %
3042: PC84 PQ100 PP132 PG84 PG132 CQ100
 100 % 175 % 240 % 310 % 370 % 375 %
3064: PC84 PQ160 PP132 PG132
 100 % 150 % 190 % 260 %
3090: PC84 PQ160 PP175 PG175 CQ164
 100 % 130 % 150 % 230 % 240 %

c. (Hours) Construct a table (using the format of Table 4.8) for a current
FPGA family. You may have to be creative in capturing the HTML and
filtering it into a spreadsheet. Hint: In Microsoft Word 5.0 you can select
columns of text by holding down the Option key.

●

Answer: (a) $211.85 (the actual Xilinx price was $210.20).

4.6 (PREP benchmarks, 60min.) Download the PREP 1.3 benchmark results as
spreadsheets from http://www.prep.org . Split the participating companies among
groups and challenge each group to produce an averaging or analysis scheme that
shows the group�s assigned company as a �winner.� For hints on this problem,
consult advertisements in past issues of EE Times .

4.7 (FPGA patents) Patents are a good place to find information on FPGAs.

a. Find U.S. Patent 5,440,245, Galbraith et al. �Logic module with
configurable combinational and sequential blocks.� Find and explain a
method to paste the figures into a report.

●

b. Conduct a patent search on FPGAs. Good places to start are the U.S.
Patent and Trademark Office (PTO) at http://www.uspto.gov and the IBM
patent resource at http://patent.womplex.ibm.com . Until 1996 the full text

●

of recent U.S. patents was available at http://www.town.hall.org/patent ;
this is still a good site to visit for references to other locations. Table 4.9
lists the patents awarded to the major FPGA companies up until 1996 (in
the case of Actel and Altera the list includes only patents issued after 1990,
corresponding roughly to patent numbers greater than number 5,000,000,
which was issued in March 1990).

4.8 (**Maskworks, days) If you really want to find out about FPGA technology
you tear chips apart. There is another way. Most U.S. companies register their
chips as a type of copyright called a Maskwork . You will often see a little circle
containing an �M� on a chip in the same way that a copyright sign is a circle
surrounding the letter �C�. Companies that require a Maskwork are required to
deposit plots and samples of the chips with a branch of the Library of Congress.
These plots are open for public inspection in Washington, D.C. It is perfectly
legal to use this information. You have to sign a visitors� book, and most of the
names in the book are Japanese. Research Maskworks and write a summary of its
implications, the protection it provides, and (if you can find them) the rules for
the materials that must be deposited with the authorities.

TABLE 4.9 FPGA Patents (U.S.).
QuickLogic

5,416,367

5,397,939

5,396,127

5,362,676

5,319,238

5,302,546

5,220,213

5,196,724

Intel

4,543,594 1

Crosspoint

5,440,453

5,394,103

Xilinx

5,436,575

5,432,719

5,430,687

5,430,390

5,426,379

5,426,378

5,422,833

5,414,377

5,410,194

5,410,189

5,399,925

5,399,924

5,394,104

5,386,154

5,367,207

5,365,125

5,329,181

5,329,174

5,329,181

5,321,704

5,319,254

5,319,252

5,302,866

5,295,090

5,291,079

5,245,277

5,224,056

5,166,858

5,155,432

5,148,390

5,068,603

5,047,710

5,028,821

4,713,557

4,706,216

4,695,740

4,642,487

Actel

5,479,113

5,477,165

5,469,396

5,464,790

5,457,644

5,451,887

5,449,947

5,448,185

5,440,245

5,432,441

5,414,364

5,308,795

5,304,871

5,299,150

5,286,992

5,272,388

5,272,101

5,266,829

5,254,886

5,223,792

5,208,530

5,198,705

5,194,759

5,191,241

5,187,393

5,181,096

5,172,014

5,171,715

5,008,855

Altera

5,477,474

5,473,266

5,463,328

5,444,394

5,438,295

5,436,575

5,436,574

5,434,514

5,432,467

5,414,312

5,399,922

5,384,499

5,376,844

5,371,422

5,280,203

5,274,581

5,272,368

5,268,598

5,260,611

5,260,610

5,258,668

5,247,478

5,247,477

5,243,233

5,241,224

5,237,219

5,220,533

5,220,214

5,384,481

5,322,812

5,313,119

5,233,217

5,221,865

Concurrent

5,218,240

5,144,166

5,089,973

Plus Logic

5,028,821

5,023,606

5,012,135

4,967,107

4,940,909

5,362,999

5,361,229

5,360,747

5,359,536

5,349,691

5,349,250

5,349,249

5,349,248

5,343,406

5,337,255

5,349,248

5,343,406

5,337,255

5,332,929

5,331,226

5,331,220

5,023,606

5,012,135

4,967,107

4,940,909

4,902,910

4,870,302

4,855,669

4,855,619

4,847,612

4,835,418

4,821,233

4,820,937

4,783,607

4,758,985

4,750,155

4,746,822

5,412,244

5,411,917

5,404,029

5,391,942

5,387,812

5,373,169

5,371,414

5,369,054

5,367,208

5,365,165

5,341,092

5,341,043

5,341,030

5,317,698

5,316,971

5,309,091

5,163,180

5,134,457

5,132,571

5,130,777

5,126,282

5,111,262

5,107,146

5,095,228

5,087,958

5,083,083

5,073,729

5,070,384

5,057,451

5,055,718

5,017,813

5,015,885

5,369,314

5,359,243

5,359,242

5,353,248

5,352,940

5,350,954

5,349,255

5,341,308

5,341,048

5,341,044

5,329,487

5,317,210

5,315,172

5,301,416

5,294,975

5,285,153

5,200,920

5,166,604

5,162,680

5,144,167

5,138,576

5,128,565

5,121,006

5,111,423

5,097,208

5,091,661

5,066,873

5,045,772

1. Mohsen�s patent on the antifuse structure.

4.10 Bibliography
Books by Ukeiley [1993], Chan [1994], and Trimberger [1994] are dedicated to
FPGAs and their uses. The International Workshop on Field-Programmable
Logic and Applications describes the latest developments and applications of
FPGAs [Grünbacher and Hartenstein, 1992; Hartenstein and Servit, 1994; Moore
and Luk, 1995; Hartenstein and Glesner, 1996]. Many of the FPGA vendors have
Web sites that include white papers and technical documentation. The annual
IEEE International Electron Devices Meeting (IEDM, ISSN 0163-1918, TK
7801.I53) is a forum for presenting new device and IC technology including new
FPGA programming technologies. The IEEE Transaction on Electron Devices
(ISSN 0018-9383) is the archival source for developments in device technology.

There is a large U.S. patent literature on FPGAs (see Table 4.9). Sometimes the
FPGA vendors hide the basic low-level structures from the user to simplify their
description or to prevent the competition from understanding their secrets.
Patents have to explain the details of operation (otherwise they will not be
awarded or cannot be enforced), so sometimes it can be useful to at least know
where to look. One place to start is the front or back of the data book, which
often contains a list of the manufacturer�s patents.

4.11 References

Chan, P. K., and S. Mourad. 1994. Digital Design Using Field Programmable
Gate Arrays. Englewood Cliffs, NJ: Prentice-Hall, 233 p. ISBN 0-13-319021-8.
TK7888.4.C43.

Grünbacher, H., and R. W. Hartenstein. (Eds.). 1993. International Workshop on
Field-Programmable Logic and Applications (2nd: 1992: Vienna). Berlin; New
York: Springer-Verlag. ISBN 0387570918. TK7895.G36.I48.

Hartenstein, R. W., and M. Glesner (Eds.). 1996. International Workshop on
Field-Programmable Logic and Applications (6th: 1996: Darmstadt). Berlin; New
York: Springer-Verlag. ISBN 3540617302. TK7868.L6.I56.

Hartenstein, R. W., and M. Z. Servit. (Eds.). 1994. International Workshop on
Field-Programmable Logic and Applications (4th: 1994: Prague). Berlin; New
York: Springer-Verlag. ISBN 0387584196. TK7868.L6.I56.

Moore, W., and W. Luk. (Eds.). 1995. International Workshop on
Field-Programmable Logic and Applications (5th: 1995: Oxford). Berlin; New
York: Springer-Verlag. ISBN 3540602941. TK7895.G36.I48.

Trimberger, S. M. (Ed.). 1994. Field-Programmable Gate Array Technology .
Boston: Kluwer Academic Publishers. ISBN 0-7923-9419-4. TK7895.G36.F54.

Ukeiley, R. L. 1993. Field Programmable Gate Arrays (FPGAs): The 3000
Series. Englewood Cliffs, NJ: Prentice-Hall, 173 p. ISBN 0-13-319468-X.
TK7895.G36.U44.

PROGRAMMABLE
ASIC LOGIC
CELLS
All programmable ASICs or FPGAs contain a basic logic cell replicated in a
regular array across the chip (analogous to a base cell in an MGA). There are the
following three different types of basic logic cells: (1) multiplexer based, (2)
look-up table based, and (3) programmable array logic. The choice among these
depends on the programming technology. We shall see examples of each in this
chapter.

Last Edited by SP 14112004

5.1 Actel ACT
The basic logic cells in the Actel ACT family of FPGAs are called Logic
Modules . The ACT 1 family uses just one type of Logic Module and the ACT 2
and ACT 3 FPGA families both use two different types of Logic Module.

5.1.1 ACT 1 Logic Module
The functional behavior of the Actel ACT 1 Logic Module is shown in Figure 5.1
(a). Figure 5.1 (b) represents a possible circuit-level implementation. We can
build a logic function using an Actel Logic Module by connecting logic signals to
some or all of the Logic Module inputs, and by connecting any remaining Logic
Module inputs to VDD or GND. As an example, Figure 5.1 (c) shows the
connections to implement the function F = A · B + B' · C + D. How did we know
what connections to make? To understand how the Actel Logic Module works,
we take a detour via multiplexer logic and some theory.

FIGURE 5.1 The Actel ACT architecture. (a) Organization of the basic logic
cells. (b) The ACT 1 Logic Module. (c) An implementation using pass
transistors (without any buffering). (d) An example logic macro. (Source: Actel.)

5.1.2 Shannon�s Expansion Theorem
In logic design we often have to deal with functions of many variables. We need
a method to break down these large functions into smaller pieces. Using the
Shannon expansion theorem, we can expand a Boolean logic function F in terms
of (or with respect to) a Boolean variable A,

F = A · F (A = '1') + A' · F (A = '0'),(5.1)

where F (A = 1) represents the function F evaluated with A set equal to '1'.

For example, we can expand the following function F with respect to (I shall use
the abbreviation wrt) A,

F = A' · B + A · B · C' + A' · B' · C

= A · (B · C') + A' · (B + B' · C).(5.2)

We have split F into two smaller functions. We call F (A = '1') = B · C' the
cofactor of F wrt A in Eq. 5.2 . I shall sometimes write the cofactor of F wrt A as
F A (the cofactor of F wrt A' is F A'). We may expand a function wrt any of its
variables. For example, if we expand F wrt B instead of A,

F = A' · B + A · B · C' + A' · B' · C

= B · (A' + A · C') + B' · (A' · C).(5.3)

We can continue to expand a function as many times as it has variables until we
reach the canonical form (a unique representation for any Boolean function that
uses only minterms. A minterm is a product term that contains all the variables of
F�such as A · B' · C). Expanding Eq. 5.3 again, this time wrt C, gives

F = C · (A' · B + A' · B') + C' · (A · B + A' · B).(5.4)

As another example, we will use the Shannon expansion theorem to implement
the following function using the ACT 1 Logic Module:

F = (A · B) + (B' · C) + D.(5.5)

First we expand F wrt B:

F = B · (A + D) + B' · (C + D)

= B · F2 + B' · F1.(5.6)

Equation 5.6 describes a 2:1 MUX, with B selecting between two inputs: F (A =
'1') and F (A = '0'). In fact Eq. 5.6 also describes the output of the ACT 1 Logic
Module in Figure 5.1 ! Now we need to split up F1 and F2 in Eq. 5.6 . Suppose
we expand F2 = F B wrt A, and F1 = F B' wrt C:

F2 = A + D = (A · 1) + (A' · D),(5.7)

F1 = C + D = (C · 1) + (C' · D).(5.8)

From Eqs. 5.6 � 5.8 we see that we may implement F by arranging for A, B, C to
appear on the select lines and '1' and D to be the data inputs of the MUXes in the
ACT 1 Logic Module. This is the implementation shown in Figure 5.1 (d), with
connections: A0 = D, A1 = '1', B0 = D, B1 = '1', SA = C, SB = A, S0 = '0', and S1
= B.

Now that we know that we can implement Boolean functions using MUXes, how
do we know which functions we can implement and how to implement them?

5.1.3 Multiplexer Logic as Function
Generators
Figure 5.2 illustrates the 16 different ways to arrange �1�s on a Karnaugh map
corresponding to the 16 logic functions, F (A, B), of two variables. Two of these
functions are not very interesting (F = '0', and F = '1'). Of the 16 functions,
Table 5.1 shows the 10 that we can implement using just one 2:1 MUX. Of these
10 functions, the following six are useful:

INV. The MUX acts as an inverter for one input only.●

BUF. The MUX just passes one of the MUX inputs directly to the output.●

AND. A two-input AND.●

OR. A two-input OR.●

AND1-1. A two-input AND gate with inverted input, equivalent to an
NOR-11.

●

NOR1-1. A two-input NOR gate with inverted input, equivalent to an
AND-11.

FIGURE 5.2 The
logic functions of two
variables.

TABLE 5.1 Boolean functions using a 2:1 MUX.

Function, F F =
Canonical
form

Minterms
1

Minterm
code 2

Function
number 3

M1 4

A0 A1 SA
1 '0' '0' '0' none 0000 0 0 0 0

●

2
NOR1-1(A,
B)

(A
+
B')'

A' · B 1 0010 2 B 0 A

3 NOT(A) A'
A' · B' +
A' · B

0, 1 0011 3 0 1 A

4
AND1-1(A,
B)

A ·
B'

A · B' 2 0100 4 A 0 B

5 NOT(B) B'
A' · B' + A
· B'

0, 2 0101 5 0 1 B

6 BUF(B) B
A' · B + A
· B

1, 3 1010 6 0 B 1

7 AND(A, B)
A ·
B

A · B 3 1000 8 0 B A

8 BUF(A) A
A · B' + A
· B

2, 3 1100 9 0 A 1

9 OR(A, B)
A
+ B

A' · B + A
· B' + A ·
B

1, 2, 3 1110 13 B 1 A

10 '1' '1'

A' · B' +
A' · B + A
· B' + A ·
B

0, 1, 2, 3 1111 15 1 1 1

Figure 5.3 (a) shows how we might view a 2:1 MUX as a function wheel , a
three-input black box that can generate any one of the six functions of two-input
variables: BUF, INV, AND-11, AND1-1, OR, AND. We can write the output of
a function wheel as

F1 = WHEEL1 (A, B).(5.9)

where I define the wheel function as follows:

WHEEL1 (A, B) = MUX (A0, A1, SA).(5.10)

The MUX function is not unique; we shall define it as

MUX (A0, A1, SA) = A0 · SA' + A1 · SA.(5.11)

The inputs (A0, A1, SA) are described using the notation

A0, A1, SA = {A, B, '0', '1'}(5.12)

to mean that each of the inputs (A0, A1, and SA) may be any of the values: A, B,
'0', or '1'. I chose the name of the wheel function because it is rather like a dial
that you set to your choice of function. Figure 5.3 (b) shows that the ACT 1
Logic Module is a function generator built from two function wheels, a 2:1
MUX, and a two-input OR gate.

FIGURE 5.3 The ACT 1 Logic Module as a Boolean function generator. (a) A
2:1 MUX viewed as a function wheel. (b) The ACT 1 Logic Module viewed as
two function wheels, an OR gate, and a 2:1 MUX.

We can describe the ACT 1 Logic Module in terms of two WHEEL functions:

F = MUX [WHEEL1, WHEEL2, OR (S0, S1)](5.13)

Now, for example, to implement a two-input NAND gate, F = NAND (A, B) =
(A · B)', using an ACT 1 Logic Module we first express F as the output of a 2:1
MUX. To split up F we expand it wrt A (or wrt B; since F is symmetric in A and
B):

F = A · (B') + A' · ('1')(5.14)

Thus to make a two-input NAND gate we assign WHEEL1 to implement INV
(B), and WHEEL2 to implement '1'. We must also set the select input to the
MUX connecting WHEEL1 and WHEEL2, S0 + S1 = A�we can do this with S0 =
A, S1 = '1'.

Before we get too carried away, we need to realize that we do not have to worry
about how to use Logic Modules to construct combinational logic functions�this
has already been done for us. For example, if we need a two-input NAND gate,
we just use a NAND gate symbol and software takes care of connecting the
inputs in the right way to the Logic Module.

How did Actel design its Logic Modules? One of Actel�s engineers wrote a
program that calculates how many functions of two, three, and four variables a
given circuit would provide. The engineers tested many different circuits and
chose the best one: a small, logically efficient circuit that implemented many
functions. For example, the ACT 1 Logic Module can implement all two-input
functions, most functions with three inputs, and many with four inputs.

Apart from being able to implement a wide variety of combinational logic

functions, the ACT 1 module can implement sequential logic cells in a flexible
and efficient manner. For example, you can use one ACT 1 Logic Module for a
transparent latch or two Logic Modules for a flip-flop. The use of latches rather
than flip-flops does require a shift to a two-phase clocking scheme using two
nonoverlapping clocks and two clock trees. Two-phase synchronous design using
latches is efficient and fast but, to handle the timing complexities of two clocks
requires changes to synthesis and simulation software that have not occurred.
This means that most people still use flip-flops in their designs, and these require
two Logic Modules.

5.1.4 ACT 2 and ACT 3 Logic Modules
Using two ACT 1 Logic Modules for a flip-flop also requires added interconnect
and associated parasitic capacitance to connect the two Logic Modules. To
produce an efficient two-module flip-flop macro we could use extra antifuses in
the Logic Module to cut down on the parasitic connections. However, the extra
antifuses would have an adverse impact on the performance of the Logic Module
in other macros. The alternative is to use a separate flip-flop module, reducing
flexibility and increasing layout complexity. In the ACT 1 family Actel chose to
use just one type of Logic Module. The ACT 2 and ACT 3 architectures use two
different types of Logic Modules, and one of them does include the equivalent of
a D flip-flop.

Figure 5.4 shows the ACT 2 and ACT 3 Logic Modules. The ACT 2 C-Module is
similar to the ACT 1 Logic Module but is capable of implementing five-input
logic functions. Actel calls its C-module a combinatorial module even though the
module implements combinational logic. John Wakerly blames MMI for the
introduction of the term combinatorial [Wakerly, 1994, p. 404].

The use of MUXes in the Actel Logic Modules (and in other places) can cause
confusion in using and creating logic macros. For the Actel library, setting S = '0'
selects input A of a two-input MUX. For other libraries setting S = '1' selects
input A. This can lead to some very hard to find errors when moving schematics
between libraries. Similar problems arise in flip-flops and latches with MUX
inputs. A safer way to label the inputs of a two-input MUX is with '0' and '1',
corresponding to the input selected when the select input is '1' or '0'. This notation
can be extended to bigger MUXes, but in Figure 5.4 , does the input combination
S0 = '1' and S1 = '0' select input D10 or input D01? These problems are not
caused by Actel, but by failure to use the IEEE standard symbols in this area.

The S-Module (sequential module) contains the same combinational function
capability as the C-Module together with a sequential element that can be
configured as a flip-flop. Figure 5.4 (d) shows the sequential element
implementation in the ACT 2 and ACT 3 architectures.

FIGURE 5.4 The Actel ACT 2 and ACT 3 Logic Modules. (a) The C-Module
for combinational logic. (b) The ACT 2 S-Module. (c) The ACT 3 S-Module.
(d) The equivalent circuit (without buffering) of the SE (sequential element).
(e) The sequential element configured as a positive-edge�triggered D flip-flop.
(Source: Actel.)

5.1.5 Timing Model and Critical Path
Figure 5.5 (a) shows the timing model for the ACT family. 5 This is a simple
timing model since it deals only with logic buried inside a chip and allows us
only to estimate delays. We cannot predict the exact delays on an Actel chip until
we have performed the place-and-route step and know how much delay is
contributed by the interconnect. Since we cannot determine the exact delay
before physical layout is complete, we call the Actel architecture
nondeterministic .

Even though we cannot determine the preroute delays exactly, it is still important
to estimate the delay on a logic path. For example, Figure 5.5 (a) shows a typical
situation deep inside an ASIC. Internal signal I1 may be from the output of a
register (flip-flop). We then pass through some combinational logic, C1, through
a register, S1, and then another register, S2. The register-to-register delay
consists of a clock�Q delay, plus any combinational delay between registers, and

the setup time for the next flip-flop. The speed of our system will depend on the
slowest register�register delay or critical path between registers. We cannot make
our clock period any longer than this or the signal will not reach the second
register in time to be clocked.

Figure 5.5 (a) shows an internal logic signal, I1, that is an input to a C-module,
C1. C1 is drawn in Figure 5.5 (a) as a box with a symbol comprising the
overlapping letters �C� and �L� (borrowed from carpenters who use this symbol to
mark the centerline on a piece of wood). We use this symbol to describe
combinational logic. For the standard-speed grade ACT 3 (we shall look at speed
grading in Section 5.1.6) the delay between the input of a C-module and the
output is specified in the data book as a parameter, t PD , with a maximum value
of 3.0 ns.

The output of C1 is an input to an S-Module, S1, configured to implement
combinational logic and a D flip-flop. The Actel data book specifies the
minimum setup time for this D flip-flop as t SUD = 0.8 ns. This means we need to
get the data to the input of S1 at least 0.8 ns before the rising clock edge (for a
positive-edge�triggered flip-flop). If we do this, then there is still enough time for
the data to go through the combinational logic inside S1 and reach the input of
the flip-flop inside S1 in time to be clocked. We can guarantee that this will work
because the combinational logic delay inside S1 is fixed.

FIGURE 5.5 The Actel ACT timing model. (a) Timing parameters for a 'Std'
speed grade ACT 3. (Source: Actel.) (b) Flip-flop timing. (c) An example of
flip-flop timing based on ACT 3 parameters.

The S-Module seems like good value�we get all the combinational logic functions
of a C-module (with delay t PD of 3 ns) as well as the setup time for a flip-flop for
only 0.8 ns? ¬ really. Next I will explain why not.

Figure 5.5 (b) shows what is happening inside an S-Module. The setup and hold
times, as measured inside (not outside) the S-Module, of the flip-flop are t' SUD
and t' H (a prime denotes parameters that are measured inside the S-Module). The
clock�Q propagation delay is t' CO . The parameters t' SUD , t' H , and t' CO are
measured using the internal clock signal CLKi. The propagation delay of the
combinational logic inside the S-Module is t' PD . The delay of the combinational
logic that drives the flip-flop clock signal (Figure 5.4 d) is t' CLKD .

From outside the S-Module, with reference to the outside clock signal CLK1:

t SUD = t' SUD + (t' PD � t' CLKD),

t H = t' H + (t' PD � t' CLKD),

t CO = t' CO + t' CLKD .(5.15)

Figure 5.5 (c) shows an example of flip-flop timing. We have no way of knowing
what the internal flip-flop parameters t' SUD , t' H , and t' CO actually are, but we
can assume some reasonable values (just for illustration purposes):

t' SUD = 0.4 ns, t' H = 0.1 ns, t' CO = 0.4 ns.(5.16)

We do know the delay, t' PD , of the combinational logic inside the S-Module. It
is exactly the same as the C-Module delay, so t' PD = 3 ns for the ACT 3. We do
not know t' CLKD ; we shall assume a reasonable value of t' CLKD = 2.6 ns (the
exact value does not matter in the following argument).

Next we calculate the external S-Module parameters from Eq. 5.15 as follows:

t SUD = 0.8 ns, t H = 0.5 ns, t CO = 3.0 ns.(5.17)

These are the same as the ACT 3 S-Module parameters shown in Figure 5.5 (a),
and I chose t' CLKD and the values in Eq. 5.16 so that they would be the same. So
now we see where the combinational logic delay of 3.0 ns has gone: 0.4 ns went
into increasing the setup time and 2.6 ns went into increasing the clock�output
delay, t CO .

From the outside we can say that the combinational logic delay is buried in the
flip-flop setup time. FPGA vendors will point this out as an advantage that they
have. Of course, we are not getting something for nothing here. It is like
borrowing money�you have to pay it back.

5.1.6 Speed Grading
Most FPGA vendors sort chips according to their speed (the sorting is known as
speed grading or speed binning , because parts are automatically sorted into
plastic bins by the production tester). You pay more for the faster parts. In the
case of the ACT family of FPGAs, Actel measures performance with a special
binning circuit , included on every chip, that consists of an input buffer driving a
string of buffers or inverters followed by an output buffer. The parts are sorted
from measurements on the binning circuit according to Logic Module
propagation delay. The propagation delay, t PD , is defined as the average of the
rising (t PLH) and falling (t PHL) propagation delays of a Logic Module

t PD = (t PLH + t PHL)/2.(5.18)

Since the transistor properties match so well across a chip, measurements on the
binning circuit closely correlate with the speed of the rest of the Logic Modules
on the die. Since the speeds of die on the same wafer also match well, most of the
good die on a wafer fall into the same speed bin. Actel speed grades are: a 'Std'
speed grade, a '1' speed grade that is approximately 15 percent faster, a '2' speed
grade that is approximately 25 percent faster than 'Std', and a '3' speed grade that
is approximately 35 percent faster than 'Std'.

5.1.7 Worst-Case Timing
If you use fully synchronous design techniques you only have to worry about
how slow your circuit may be�not how fast. Designers thus need to know the
maximum delays they may encounter, which we call the worst-case timing .
Maximum delays in CMOS logic occur when operating under minimum voltage,
maximum temperature, and slow�slow process conditions. (A slow�slow process
refers to a process variation, or process corner , which results in slow p -channel
transistors and slow n -channel transistors�we can also have fast�fast, slow�fast,
and fast�slow process corners.)

Electronic equipment has to survive in a variety of environments and ASIC
manufacturers offer several classes of qualification for different applications:

Commercial. VDD = 5 V ± 5 %, T A (ambient) = 0 to +70 °C.●

Industrial. VDD = 5 V ± 10 %, T A (ambient) = �40 to +85 °C.●

Military: VDD = 5 V ± 10 %, T C (case) = �55 to +125 °C.●

Military: Standard MIL-STD-883C Class B.●

Military extended: Unmanned spacecraft.●

ASICs for commercial application are cheapest; ASICs for the Cruise missile are
very, very expensive. Notice that commercial and industrial application parts are
specified with respect to the ambient temperature T A (room temperature or the
temperature inside the box containing the ASIC). Military specifications are
relative to the package case temperature , T C . What is really important is the
temperature of the transistors on the chip, the junction temperature , T J , which is
always higher than T A (unless we dissipate zero power). For most applications
that dissipate a few hundred mW, T J is only 5�10 °C higher than T A . To
calculate the value of T J we need to know the power dissipated by the chip and
the thermal properties of the package�we shall return to this in Section 6.6.1,
�Power Dissipation.�

Manufacturers have to specify their operating conditions with respect to T J and
not T A , since they have no idea how much power purchasers will dissipate in
their designs or which package they will use. Actel used to specify timing under

nominal operating conditions: VDD = 5.0 V, and T J = 25 °C. Actel and most
other manufacturers now specify parameters under worst-case commercial
conditions: VDD = 4.75 V, and T J = +70 °C.

Table 5.2 shows the ACT 3 commercial worst-case timing. 6 In this table Actel
has included some estimates of the variable routing delay shown in Figure 5.5
(a). These delay estimates depend on the number of gates connected to a gate
output (the fanout).

When you design microelectronic systems (or design anything) you must use
worst-case figures (just as you would design a bridge for the worst-case load).
To convert nominal or typical timing figures to the worst case (or best case), we
use measured, or empirically derived, constants called derating factors that are
expressed either as a table or a graph. For example, Table 5.3 shows the ACT 3
derating factors from commercial worst-case to industrial worst-case and military
worst-case conditions (assuming T J = T A). The ACT 1 and ACT 2 derating

factors are approximately the same. 7

TABLE 5.2 ACT 3 timing parameters. 8

 Fanout

Family Delay 9 1 2 3 4 8

ACT 3-3 (data book) t PD 2.9 3.2 3.4 3.7 4.8

ACT3-2 (calculated) t PD /0.85 3.41 3.76 4.00 4.35 5.65

ACT3-1 (calculated) t PD /0.75 3.87 4.27 4.53 4.93 6.40

ACT3-Std (calculated) t PD /0.65 4.46 4.92 5.23 5.69 7.38

Source: Actel.

TABLE 5.3 ACT 3 derating factors. 10

 Temperature T J (junction) / °C

V DD / V �55 �40 0 25 70 85 125

4.5 0.72 0.76 0.85 0.90 1.04 1.07 1.17
4.75 0.70 0.73 0.82 0.87 1.00 1.03 1.12
5.00 0.68 0.71 0.79 0.84 0.97 1.00 1.09
5.25 0.66 0.69 0.77 0.82 0.94 0.97 1.06
5.5 0.63 0.66 0.74 0.79 0.90 0.93 1.01
Source: Actel.

As an example of a timing calculation, suppose we have a Logic Module on a
'Std' speed grade A1415A (an ACT 3 part) that drives four other Logic Modules
and we wish to estimate the delay under worst-case industrial conditions. From
the data in Table 5.2 we see that the Logic Module delay for an ACT 3 'Std' part
with a fanout of four is t PD = 5.7 ns (commercial worst-case conditions,

assuming T J = T A).

If this were the slowest path between flip-flops (very unlikely since we have only
one stage of combinational logic in this path), our estimated critical path delay
between registers , t CRIT , would be the combinational logic delay plus the
flip-flop setup time plus the clock�output delay:

t CRIT (w-c commercial) = t PD + t SUD + t CO

= 5.7 ns + 0.8 ns + 3.0 ns = 9.5 ns .(5.19)

(I use w-c as an abbreviation for worst-case.) Next we need to adjust the timing
to worst-case industrial conditions. The appropriate derating factor is 1.07 (from
Table 5.3); so the estimated delay is

t CRIT (w-c industrial) = 1.07 ¥ 9.5 ns = 10.2 ns .(5.20)

Let us jump ahead a little and assume that we can calculate that T J = T A + 20 °C
= 105 °C in our application. To find the derating factor at 105 °C we linearly
interpolate between the values for 85 °C (1.07) and 125 °C (1.17) from Table 5.3
). The interpolated derating factor is 1.12 and thus

t CRIT (w-c industrial, T J = 105 °C) = 1.12 ¥ 9.5 ns = 10.6 ns ,(5.21)

giving us an operating frequency of just less than 100 MHz.

It may seem unfair to calculate the worst-case performance for the slowest speed
grade under the harshest industrial conditions�but the examples in the data books
are always for the fastest speed grades under less stringent commercial
conditions. If we want to illustrate the use of derating, then the delays can only
get worse than the data book values! The ultimate word on logic delays for all
FPGAs is the timing analysis provided by the FPGA design tools. However, you
should be able to calculate whether or not the answer that you get from such a
tool is reasonable.

5.1.8 Actel Logic Module Analysis
The sizes of the ACT family Logic Modules are close to the size of the base cell
of an MGA. We say that the Actel ACT FPGAs use a fine-grain architecture . An
advantage of a fine-grain architecture is that, whatever the mix of combinational
logic to flip-flops in your application, you can probably still use 90 percent of an
Actel FPGA. Another advantage is that synthesis software has an easier time
mapping logic efficiently to the simple Actel modules.

The physical symmetry of the ACT Logic Modules greatly simplifies the
place-and-route step. In many cases the router can swap equivalent pins on
opposite sides of the module to ease channel routing. The design of the Actel
Logic Modules is a balance between efficiency of implementation and efficiency

of utilization. A simple Logic Module may reduce performance in some areas�as I
have pointed out�but allows the use of fast and robust place-and-route software.
Fast, robust routing is an important part of Actel FPGAs (see Section 7.1, �Actel
ACT�).

1. The minterm numbers are formed from the product terms of the canonical
form. For example, A · B' = 10 = 2.

2. The minterm code is formed from the minterms. A '1' denotes the presence of
that minterm.

3. The function number is the decimal version of the minterm code.

4. Connections to a two-input MUX: A0 and A1 are the data inputs and SA is the
select input (see Eq. 5.11).

5. 1994 data book, p. 1-101.

6. ACT 3: May 1995 data sheet, p. 1-173. ACT 2: 1994 data book, p. 1-51.

7. 1994 data book, p. 1-12 (ACT 1), p. 1-52 (ACT 2), May 1995 data sheet,
p. 1-174 (ACT 3).

8. V DD = 4.75 V, T J (junction) = 70 °C. Logic module plus routing delay. All
propagation delays in nanoseconds.

9. The Actel '1' speed grade is 15 % faster than 'Std'; '2' is 25 % faster than 'Std';
'3' is 35 % faster than 'Std'.

10. Worst-case commercial: V DD = 4.75 V, T A (ambient) = +70 °C.
Commercial: V DD = 5 V ± 5 %, T A (ambient) = 0 to +70 °C. Industrial: V DD =
5 V ± 10 %, T A (ambient) = �40 to +85 °C. Military V DD = 5 V ± 10 %, T C
(case) = �55 to +125 °C.

5.2 Xilinx LCA
Xilinx LCA (a trademark, denoting logic cell array) basic logic cells,
configurable logic blocks or CLBs , are bigger and more complex than the Actel
or QuickLogic cells. The Xilinx LCA basic logic cell is an example of a
coarse-grain architecture . The Xilinx CLBs contain both combinational logic and
flip-flops.

5.2.1 XC3000 CLB
The XC3000 CLB, shown in Figure 5.6 , has five logic inputs (A�E), a common
clock input (K), an asynchronous direct-reset input (RD), and an enable (EC).
Using programmable MUXes connected to the SRAM programming cells, you
can independently connect each of the two CLB outputs (X and Y) to the output
of the flip-flops (QX and QY) or to the output of the combinational logic (F and
G).

FIGURE 5.6 The Xilinx XC3000 CLB (configurable logic block). (Source:
Xilinx.)

A 32-bit look-up table (LUT), stored in 32 bits of SRAM, provides the ability to
implement combinational logic. Suppose you need to implement the function F =
A · B · C · D · E (a five-input AND). You set the contents of LUT cell number 31
(with address '11111') in the 32-bit SRAM to a '1'; all the other SRAM cells are
set to '0'. When you apply the input variables as an address to the 32-bit SRAM,
only when ABCDE = '11111' will the output F be a '1'. This means that the CLB
propagation delay is fixed, equal to the LUT access time, and independent of the
logic function you implement.

There are seven inputs for the combinational logic in the XC3000 CLB: the five
CLB inputs (A�E), and the flip-flop outputs (QX and QY). There are two outputs
from the LUT (F and G). Since a 32-bit LUT requires only five variables to form
a unique address (32 = 2 5), there are several ways to use the LUT:

You can use five of the seven possible inputs (A�E, QX, QY) with the
entire 32-bit LUT. The CLB outputs (F and G) are then identical.

●

You can split the 32-bit LUT in half to implement two functions of four
variables each. You can choose four input variables from the seven inputs
(A�E, QX, QY). You have to choose two of the inputs from the five CLB
inputs (A�E); then one function output connects to F and the other output
connects to G.

●

You can split the 32-bit LUT in half, using one of the seven input variables
as a select input to a 2:1 MUX that switches between F and G. This allows
you to implement some functions of six and seven variables.

●

5.2.2 XC4000 Logic Block
Figure 5.7 shows the CLB used in the XC4000 series of Xilinx FPGAs. This is a
fairly complicated basic logic cell containing 2 four-input LUTs that feed a
three-input LUT. The XC4000 CLB also has special fast carry logic hard-wired
between CLBs. MUX control logic maps four control inputs (C1�C4) into the
four inputs: LUT input H1, direct in (DIN), enable clock (EC), and a set / reset
control (S/R) for the flip-flops. The control inputs (C1�C4) can also be used to
control the use of the F' and G' LUTs as 32 bits of SRAM.

FIGURE 5.7 The Xilinx XC4000 family CLB (configurable logic block). (
Source: Xilinx.)

5.2.3 XC5200 Logic Block
Figure 5.8 shows the basic logic cell, a Logic Cell or LC, used in the XC5200
family of Xilinx LCA FPGAs. 1 The LC is similar to the CLBs in the
XC2000/3000/4000 CLBs, but simpler. Xilinx retained the term CLB in the
XC5200 to mean a group of four LCs (LC0�LC3).

The XC5200 LC contains a four-input LUT, a flip-flop, and MUXes to handle
signal switching. The arithmetic carry logic is separate from the LUTs. A limited
capability to cascade functions is provided (using the MUX labeled F5_MUX in
logic cells LC0 and LC2 in Figure 5.8) to gang two LCs in parallel to provide the
equivalent of a five-input LUT.

FIGURE 5.8 The Xilinx XC5200 family LC (Logic Cell) and CLB
(configurable logic block). (Source: Xilinx.)

5.2.4 Xilinx CLB Analysis
The use of a LUT in a Xilinx CLB to implement combinational logic is both an
advantage and a disadvantage. It means, for example, that an inverter is as slow
as a five-input NAND. On the other hand a LUT simplifies timing of
synchronous logic, simplifies the basic logic cell, and matches the Xilinx SRAM
programming technology well. A LUT also provides the possibility, used in the
XC4000, of using the LUT directly as SRAM. You can configure the XC4000
CLB as a memory�either two 16 ¥ 1 SRAMs or a 32 ¥ 1 SRAM, but this is
expensive RAM.

Figure 5.9 shows the timing model for Xilinx LCA FPGAs. 2 Xilinx uses two
speed-grade systems. The first uses the maximum guaranteed toggle rate of a
CLB flip-flop measured in MHz as a suffix�so higher is faster. For example a
Xilinx XC3020-125 has a toggle frequency of 125 MHz. The other Xilinx
naming system (which supersedes the old scheme, since toggle frequency is
rather meaningless) uses the approximate delay time of the combinational logic
in a CLB in nanoseconds�so lower is faster in this case. Thus, for example, an
XC4010-6 has t ILO = 6.0 ns (the correspondence between speed grade and t ILO
is fairly accurate for the XC2000, XC4000, and XC5200 but is less accurate for
the XC3000).

FIGURE 5.9 The Xilinx
LCA timing model. The
paths show different uses
of CLBs (configurable
logic blocks). The
parameters shown are for
an XC5210-6. (Source:
Xilinx.)

The inclusion of flip-flops and combinational logic inside the basic logic cell
leads to efficient implementation of state machines, for example. The
coarse-grain architecture of the Xilinx CLBs maximizes performance given the
size of the SRAM programming technology element. As a result of the increased
complexity of the basic logic cell we shall see (in Section 7.2, �Xilinx LCA�) that
the routing between cells is more complex than other FPGAs that use a simpler
basic logic cell.

1. Xilinx decided to use Logic Cell as a trademark in 1995 rather as if IBM were
to use Computer as a trademark today. Thus we should now only talk of a Xilinx
Logic Cell (with capital letters) and not Xilinx logic cells.

2. October 1995 (Version 3.0) data sheet.

5.3 Altera FLEX
Figure 5.10 shows the basic logic cell, a Logic Element (LE), that Altera uses in
its FLEX 8000 series of FPGAs. Apart from the cascade logic (which is slightly
simpler in the FLEX LE) the FLEX cell resembles the XC5200 LC architecture
shown in Figure 5.8 . This is not surprising since both architectures are based on
the same SRAM programming technology. The FLEX LE uses a four-input LUT,
a flip-flop, cascade logic, and carry logic. Eight LEs are stacked to form a Logic
Array Block (the same term as used in the MAX series, but with a different
meaning).

FIGURE 5.10 The Altera FLEX architecture. (a) Chip floorplan. (b) LAB
(Logic Array Block). (c) Details of the LE (Logic Element). (Source: Altera
(adapted with permission).)

5.4 Altera MAX
Suppose we have a simple two-level logic circuit that implements a sum of products
as shown in Figure 5.11 (a). We may redraw any two-level circuit using a regular
structure (Figure 5.11 b): a vector of buffers, followed by a vector of AND gates
(which construct the product terms) that feed OR gates (which form the sums of the
product terms). We can simplify this representation still further (Figure 5.11 c), by
drawing the input lines to a multiple-input AND gate as if they were one horizontal
wire, which we call a product-term line . A structure such as Figure 5.11 (c) is called
programmable array logic , first introduced by Monolithic Memories as the PAL
series of devices.

FIGURE 5.11 Logic arrays. (a) Two-level logic. (b) Organized sum of products.
(c) A programmable-AND plane. (d) EPROM logic array. (e) Wired logic.

Because the arrangement of Figure 5.11 (c) is very similar to a ROM, we sometimes

call a horizontal product-term line, which would be the bit output from a ROM, the bit
line . The vertical input line is the word line . Figure 5.11 (d) and (e) show how to
build the programmable-AND array (or product-term array) from EPROM transistors.
The horizontal product-term lines connect to the vertical input lines using the EPROM
transistors as pull-downs at each possible connection. Applying a '1' to the gate of an
unprogrammed EPROM transistor pulls the product-term line low to a '0'. A
programmed n -channel transistor has a threshold voltage higher than V DD and is
therefore always off . Thus a programmed transistor has no effect on the product-term
line.

Notice that connecting the n -channel EPROM transistors to a pull-up resistor as
shown in Figure 5.11 (e) produces a wired-logic function�the output is high only if all
of the outputs are high, resulting in a wired-AND function of the outputs. The
product-term line is low when any of the inputs are high. Thus, to convert the
wired-logic array into a programmable-AND array, we need to invert the sense of the
inputs. We often conveniently omit these details when we draw the schematics of
logic arrays, usually implemented as NOR�NOR arrays (so we need to invert the
outputs as well). They are not minor details when you implement the layout, however.

Figure 5.12 shows how a programmable-AND array can be combined with other logic
into a macrocell that contains a flip-flop. For example, the widely used 22V10 PLD,
also called a registered PAL, essentially contains 10 of the macrocells shown in
Figure 5.12 . The part number, 22V10, denotes that there are 22 inputs (44 vertical
input lines for both true and complement forms of the inputs) to the programmable
AND array and 10 macrocells. The PLD or registered PAL shown in Figure 5.12 has
an 2 i ¥ jk programmable-AND array.

FIGURE 5.12 A registered PAL with i inputs, j product terms, and k macrocells.

5.4.1 Logic Expanders
The basic logic cell for the Altera MAX architecture, a macrocell, is a descendant of
the PAL. Using the logic expander , shown in Figure 5.13 to generate extra logic

terms, it is possible to implement functions that require more product terms than are
available in a simple PAL macrocell. As an example, consider the following function:

F = A' · C · D + B' · C · D + A · B + B · C'.(5.22)

This function has four product terms and thus we cannot implement F using a
macrocell that has only a three-wide OR array (such as the one shown in Figure 5.13
). If we rewrite F as a �sum of (products of products)� like this:

F = (A' + B') · C · D + (A + C') · B

= (A · B)' (C · D) + (A' · C)' · B ;(5.23)

we can use logic expanders to form the expander terms (A · B)' and (A' · C)' (see
Figure 5.13). We can even share these extra product terms with other macrocells if
we need to. We call the extra logic gates that form these shareable product terms a
shared logic expander , or just shared expander .

FIGURE 5.13 Expander logic and programmable inversion. An expander increases
the number of product terms available and programmable inversion allows you to
reduce the number of product terms you need.

The disadvantage of the shared expanders is the extra logic delay incurred because of
the second pass that you need to take through the product-term array. We usually do
not know before the logic tools assign logic to macrocells (logic assignment)
whether we need to use the logic expanders. Since we cannot predict the exact timing
the Altera MAX architecture is not strictly deterministic . However, once we do know
whether a signal has to go through the array once or twice, we can simply and
accurately predict the delay. This is a very important and useful feature of the Altera
MAX architecture.

The expander terms are sometimes called helper terms when you use a PAL. If you
use helper terms in a 22V10, for example, you have to go out to the chip I/O pad and
then back into the programmable array again, using two-pass logic .

FIGURE 5.14 Use of programmed inversion to simplify logic: (a) The function F =
A · B' + A · C' + A · D' + A' · C · D requires four product terms (P1�P4) to implement
while (b) the complement, F ' = A · B · C · D + A' · D' + A' · C' requires only three
product terms (P1�P3).

Another common feature in complex PLDs, also used in some PLDs, is shown in
Figure 5.13 . Programming one input of the XOR gate at the macrocell output allows
you to choose whether or not to invert the output (a '1' for inversion or to a '0' for no
inversion). This programmable inversion can reduce the required number of product
terms by using a de Morgan equivalent representation instead of a conventional
sum-of-products form, as shown in Figure 5.14 .

As an example of using programmable inversion, consider the function

F = A · B' + A · C' + A · D' + A' · C · D ,(5.24)

which requires four product terms�one too many for a three-wide OR array.

If we generate the complement of F instead,

F ' = A · B · C · D + A' · D' + A' · C' ,(5.25)

this has only three product terms. To create F we invert F ', using programmable
inversion.

Figure 5.15 shows an Altera MAX macrocell and illustrates the architectures of
several different product families. The implementation details vary among the
families, but the basic features: wide programmable-AND array, narrow fixed-OR
array, logic expanders, and programmable inversion�are very similar. 1 Each family
has the following individual characteristics:

A typical MAX 5000 chip has: 8 dedicated inputs (with both true and
complement forms); 24 inputs from the chipwide interconnect (true and
complement); and either 32 or 64 shared expander terms (single polarity). The
MAX 5000 LAB looks like a 32V16 PLD (ignoring the expander terms).

●

The MAX 7000 LAB has 36 inputs from the chipwide interconnect and 16
shared expander terms; the MAX 7000 LAB looks like a 36V16 PLD.

●

The MAX 9000 LAB has 33 inputs from the chipwide interconnect and 16 local
feedback inputs (as well as 16 shared expander terms); the MAX 9000 LAB
looks like a 49V16 PLD.

●

FIGURE 5.15 The Altera MAX architecture. (a) Organization of logic and
interconnect. (b) A MAX family LAB (Logic Array Block). (c) A MAX family
macrocell. The macrocell details vary between the MAX families�the functions
shown here are closest to those of the MAX 9000 family macrocells.

FIGURE 5.16 The timing model for the Altera MAX architecture. (a) A direct
path through the logic array and a register. (b) Timing for the direct path.
(c) Using a parallel expander. (d) Parallel expander timing. (e) Making two
passes through the logic array to use a shared expander. (f) Timing for the
shared expander (there is no register in this path). All timing values are in
nanoseconds for the MAX 9000 series, '15' speed grade. (Source: Altera.)

5.4.2 Timing Model
Figure 5.16 shows the Altera MAX timing model for local signals. 2 For example, in
Figure 5.16 (a) an internal signal, I1, enters the local array (the LAB interconnect with
a fixed delay t 1 = t LOCAL = 0.5 ns), passes through the AND array (delay t 2 = t LAD
= 4.0 ns), and to the macrocell flip-flop (with setup time, t 3 = t SU = 3.0 ns, and clock
�Q or register delay , t 4 = t RD = 1.0 ns). The path delay is thus: 0.5 + 4 +3 + 1 = 8.5
ns.

Figure 5.16 (c) illustrates the use of a parallel logic expander . This is different from
the case of the shared expander (Figure 5.13), which required two passes in series
through the product-term array. Using a parallel logic expander, the extra product term

is generated in an adjacent macrocell in parallel with other product terms (not in series
�as in a shared expander).

We can illustrate the difference between a parallel expander and a shared expander
using an example function that we have used before (Eq. 5.22),

F = A' · C · D + B' · C · D + A · B + B · C' .(5.26)

This time we shall use macrocell M1 in Figure 5.16 (d) to implement F1 equal to the
sum of the first three product terms in Eq. 5.26 . We use F1 (using the parallel
expander connection between adjacent macrocells shown in Figure 5.15) as an input
to macrocell M2. Now we can form F = F1 + B · C' without using more than three
inputs of an OR gate (the MAX 5000 has a three-wide OR array in the macrocell, the
MAX 9000, as shown in Figure 5.15 , is capable of handling five product terms in one
macrocell�but the principle is the same). The total delay is the same as before, except
that we add the delay of a parallel expander, t PEXP = 1.0 ns. Total delay is then 8.5 +
1 = 9.5 ns.

Figure 5.16 (e) and (f) shows the use of a shared expander�similar to Figure 5.13 .

The Altera MAX macrocell is more like a PLD than the other FPGA architectures
discussed here; that is why Altera calls the MAX architecture a complex PLD. This
means that the MAX architecture works well in applications for which PLDs are most
useful: simple, fast logic with many inputs or variables.

5.4.3 Power Dissipation in Complex PLDs
A programmable-AND array in any PLD built using EPROM or EEPROM transistors
uses a passive pull-up (a resistor or current source), and these macrocells consume
static power . Altera uses a switch called the Turbo Bit to control the current in the
programmable-AND array in each macrocell. For the MAX 7000, static current varies
between 1.4 mA and 2.2 mA per macrocell in high-power mode (the current depends
on the part�generally, but not always, the larger 7000 parts have lower operating
currents) and between 0.6 mA and 0.8 mA in low-power mode. For the MAX 9000,
the static current is 0.6 mA per macrocell in high-current mode and 0.3 mA in
low-power mode, independent of the part size. 3 Since there are 16 macrocells in a
LAB and up to 35 LABs on the largest MAX 9000 chip (16 ¥ 35 = 560 macrocells),
just the static power dissipation in low-power mode can be substantial (560 ¥ 0.3 mA
¥ 5 V = 840 mW). If all the macrocells are in high-power mode, the static power will
double. This is the price you pay for having an (up to) 114-wide AND gate delay of a
few nanoseconds (t LAD = 4.0 ns) in the MAX 9000. For any MAX 9000 macrocell in
the low-power mode it is necessary to add a delay of between 15 ns and 20 ns to any
signal path through the local interconnect and logic array (including t LAD and t PEXP
).

1. 1995 data book p. 274 (5000), p. 160 (7000), p. 126 (9000).

2. March 1995 data sheet, v2.

5.5 Summary
Table 5.4 is a look-up table to Tables 5.5 � 5.9 , which summarize the features of the
logic cells used by the various FPGA vendors.

TABLE 5.4 Logic cell tables.
Programmable ASIC family Programmable ASIC family

Table 5.5

Actel (ACT 1)

Xilinx (XC3000)

Actel (ACT 2)

Xilinx (XC4000)

 Table 5.8

Actel (ACT 3)

Xilinx LCA (XC5200)

Altera FLEX (8000/10k)

Table 5.6

Altera MAX (EPM 5000)

Xilinx EPLD (XC7200/7300)

QuickLogic (pASIC 1)

 Table 5.9

AMD MACH 5

Actel 3200DX

Altera MAX (EPM 9000)

Table 5.7

Crosspoint (CP20K)

Altera MAX (EPM 7000)

Atmel (AT6000)

TABLE 5.5 Logic cells used by programmable ASICs.

Actel
ACT 1

Xilinx
XC3000

Actel ACT 2 Xilinx XC4000

Basic
logic cell

Logic
module
(LM)

CLB
(Configurable
Logic Block)

C-Module
(combinatorial-module)
and S-Module
(sequential module)

CLB
(Configurable
Logic Block)

Logic cell
contents

Three
2:1MUXes
plus OR
gate

32-bit LUT, 2
D flip-flops, 9
MUXes

C-Module: 4:1 MUX,
2-input OR, 2-input
AND

S-Module: 4-input
MUX, 2-input OR,
latch or D flip-flop

32-bit LUT, 2 D
flip-flops, 10
MUXes,
including fast
carry logic

E-suffix parts
contain dual-port
RAM.

Logic path
delay

Fixed
Fixed with
ability to
bypass FF

Fixed
Fixed with
ability to bypass
FF

Combinational
logic
functions

Most
3-input,
many
4-input
functions
(total 702
macros)

All 5-input
functions plus
2 D flip-flops

Most 3- and 4-input
functions (total 766
macros)

Two 4-input
LUTs plus
combiner with
ninth input

CLB as 32-bit
SRAM (except
D-suffix parts)

Flip-flop (FF)

implementation

1 LM
required
for latch, 2
LMs
required
for
flip-flops

2 D-flip-flops
per CLB,
latches can be
built from
pre-FF logic.

1 S-Module per D
flip-flop; some FFs
require 2 modules.

2 D flip-flops
per CLB

Basic logic
cells
in each chip

LMs:

 A1010:
352 (8R
¥ 44C)

 = 295 +
57 I/O

 A1020:
616 (14
R ¥ 44C)

 = 547 +
69 I/O

 64
(XC3020/A/L,
XC3120/A)

100
(XC3030/A/L,
XC3130/A)

144
(XC3042/A/L,
XC3142/A)

224
(XC3064/A/L,
XC3164/A)

320
(XC3090/A/L,
XC3190/A)

484
(XC3195/A)

A1225:

 451 = 231 S + 220 C

A1240:

 684 = 348 S + 336 C

A1280:

 1232 = 624 S + 608 C

64 (XC4002A)

100
(XC4003/A/E/H)

144 (XC4004A)

196
(XC4005/A/E/H)

256 (XC4006/E)

324 (XC4008/E)

400
(XC4010/D/E)

576
(XC4013/D/E)

784 (XC4020/E)

1024
(XC4025/E)

TABLE 5.6 Logic cells used by programmable ASICs.

 Altera MAX 5000 Xilinx XC7200/7300
QuickLogic
pASIC 1

Basic
logic cell

16 macrocells in a LAB
(Logic Array Block)
except EPM5032,
which has 32
macrocells in a single
LAB

9 macrocells within a
FB (Functional Block),
fast FBs (FFBs) omit
ALU

Logic Cell (LC)

Logic cell
contents

Macrocell: 64
�106-wide AND,
3-wide OR array, 1
flip-flop, 2 MUXes,
programmable
inversion. 32�64 shared
logic expander OR
terms.

LAB looks like a
32V16 PLD.

Macrocell: 21-wide
AND, 16-wide OR
array, 1 flip-flop,
1ALU

FB looks like 21V9
PLD.

Four 2-input and
two 6-input AND,
three 2:1 MUXes
and one D flip-flop

Logic path
delay

Fixed (unless using
shared logic expanders)

Fixed Fixed

Combinational
logic functions
per logic cell

Wide input functions
with ability to share
product terms

Wide input functions
with added 2-input
ALU

All 3-input
functions

Flip-flop (FF)

implementation

1 D flip-flop or latch
per macrocell. More
can be constructed in
arrays.

1 D flip-flop or latch
per macrocell

1 D flip-flop per
LC. LCs for other
flip-flops not
specified.

Basic logic cells
in each chip

LABs:

 32 (EPM5032)

 64 (EPM5064)

 128 (EPM5128)

 128 (EPM5130)

 192 (EPM5192)

FBs:

 4 (XC7236A)

 8 (XC7272A)

 2 (XC7318)

 4 (XC7336)

 6 (XC7354)

 8 (XC7372)

 12 (XC73108)

 16 (XC73144)

48 (QL6X8)

96 (QL8X12)

192 (QL12X16)

384 (QL16X24)

TABLE 5.7 Logic cells used by programmable ASICs.
 Crosspoint CP20K Altera MAX 7k Atmel AT6000

Basic
logic cell

Transistor-pair tile
(TPT), RAM-logic
Tile (RLT)

16 macrocells in a
LAB (Logic Array
Block)

Cell

Logic cell
contents

TPT: 2 transistors
(0.5 gate). RLT: 3
inverters, two 3-input
NANDs, 2-input
NAND, 2-input
AND.

Macrocell: wide
AND, 5-wide OR
array, 1 flip-flop, 3
MUXes,
programmable
inversion. 16 shared
logic expander OR
terms, plus parallel
logic expander.

LAB looks like a
36V16 PLD.

Two 5:1 MUXes, two
4:1 MUXes, 3:1
MUX, three 2:1
MUXes, 6 pass gates,
four 2-input gates, 1
D flip-flop

Logic path
delay

Variable
Fixed (unless using
shared logic
expanders)

Variable

Combinational
functions
per logic cell

TPT is smaller than a
gate, approx. 2 TPTs
= 1 gate.

Wide input functions
with ability to share
product terms

1-, 2-, and 3-input
combinational
configurations:

44 logical states and
72 physical states

Flip-flop (FF)

implementation

D flip-flop requires 2
RLTs and 9 TPTs

1 D flip-flop or latch
per macrocell. More
can be constructed in
arrays.

1 D flip-flop per cell

Basic logic cells
in each chip

TPTs:

 1760 (20220)

 15,876 (22000)

RLTs:

 440 (20220)

 3969 (22000)

Macrocells:

 32 (EPM7032/V)

 64 (EPM7064)

 96 (EPM7096)

 128 (EPM70128E)

 160 (EPM70160E)

 192 (EPM70192E)

 256 (EPM70256E)

1024 (AT6002)

1600 (AT6003)

3136 (AT6005)

6400(AT6010)

TABLE 5.8 Logic cells used by programmable ASICs.

 Actel ACT 3 Xilinx XC5200
Altera FLEX
8000/10k

Basic
logic cell

2 types of Logic

Module:
C-Module and

S-Module
(similar but not
identical to
ACT 2)

4 Logic Cells (LC)
in a CLB
(Configurable Logic
Block)

8 Logic Elements
(LE) in a Logic Array
Block (LAB)

Logic cell contents

(LUT = look-up table)

C-Module: 4:1
MUX, 2-input
OR, 2-input
AND.

S-Module: 4:1
MUX, 2-input
OR, latch or D
flip-flop.

LC has 16-bit LUT,
1 flip-flop (or latch),
4 MUXes

16-bit LUT,
1 programmable
flip-flop or latch,
MUX logic for
control, carry logic,
cascade logic

Logic path delay Fixed Fixed
Fixed with ability to
bypass FF

Combinational
functions
per logic cell

Most 3- and
4-input
functions (total
766 macros)

One 4-input LUT
per LC may be
combined with
adjacent LC to form
5-input LUT

4-input LUT may be
cascaded with
adjacent LE

Flip-flop (FF)

implementation

1 D flip-flop (or
latch) per
S-Module; some
FFs require 2
modules.

1 D flip-flop (or
latch) per LC (4 per
CLB)

1 D flip-flop (or latch)
per LE

Basic logic cells
in each chip

A1415: 104 S +
96 C

A1425: 160 S +
150 C

A1440: 288 S +
276 C

A1460: 432 S +
416 C

A14100: 697 S

64 CLB (XC5202)

120 CLB (XC5204)

196 CLB (XC5206)

324 CLB (XC5210)

484 CLB (XC5215)

LEs:

 208 (EPF8282/V/A
/AV)

 336 (EPF8452/A)

 504 (EPF8636A)

 672 (EPF8820/A)

 1008 (EPF81188/A)

 1296 (EPF81500/A)

 576 (EPF10K10)

 1152 (EPF10K20)

 1728 (EPF10K30)

+ 680 C
 2304 (EPF10K40)

 2880 (EPF10K50)

 3744 (EPF10K70)

 4992 (EPF10K100)

TABLE 5.9 Logic cells used by programmable ASICs.
 AMD MACH 5 Actel 3200DX Altera MAX 9000

Basic
logic cell

4 PAL Blocks in a
Segment, 16
macrocells in a PAL
Block

Based on ACT 2,
plus D-module
(decode) and
dual-port SRAM

16 macrocells in a
LAB (Logic Array
Block)

Logic cell
contents

20-bit to 32-bit wide
OR array, switching
logic, XOR gate,
programmable
flip-flop

C-Module: 4:1
MUX, 2-input
OR, 2-input
AND

S-Module:
4-input MUX,
2-input OR, latch
or D flip-flop

D-module:
7-input AND,
2-input XOR

Macrocell: 114-wide
AND, 5-wide OR
array, 1 flip-flop, 5
MUXes,
programmable
inversion. 16 shared
logic expander OR
terms, plus parallel
logic expander.

LAB looks like a
49V16 PLD.

Logic path
delay

Fixed Fixed
Fixed (unless using
expanders)

Combinational
functions per logic
cell

Wide input functions

Most 3- and
4-input functions
(total 766
macros)

Wide input functions
with ability to share
product terms

Flip-flop (FF)

implementation

1 D flip-flop or latch
per macrocell

1 D flip-flop or
latch per
S-Module; some
FFs require 2
modules.

1 D flip-flop or latch
per macrocell. More
can be constructed in
arrays.

Basic logic cells
in each chip

128 (M5-128)

192 (M5-192)

256 (M5-256)

320 (M5-320)

384 (M5-384)

512 (M5-512)

A3265DX: 510 S
+ 475 C + 20 D

A32100DX: 700
S + 662 C + 20 D
+ 2 kSRAM

A32140D): 954 S
+ 912 C + 24 D

A32200DX:
1 230 S + 1 184
C + 24 D + 2.5
kSRAM

A32300DX:
1 888 S + 1 833
C + 28 D +
3kSRAM

A32400DX:
2 526 S + 2 466
C + 28 D + 4
kSRAM

Macrocells:

 320 (EPM9320) 4
¥ 5

 LABs

 400 (EPM9400) 5
¥ 5

 LABs

 480 (EPM9480) 6
¥ 5

 LABs

 560 (EPM9560) 7
¥ 5

 LABs

The key points in this chapter are:

The use of multiplexers, look-up tables, and programmable logic arrays●

The difference between fine-grain and coarse-grain FPGA architectures●

Worst-case timing design●

Flip-flop timing●

Timing models●

Components of power dissipation in programmable ASICs●

Deterministic and nondeterministic FPGA architectures●

Next, in Chapter 6, we shall examine the I/O cells used by the various programmable
ASIC families.

5.6 Problems
* = Difficult, ** = Very difficult, *** = Extremely difficult

5.1 (Using the ACT 1 Logic Module, 30 min.) Consider the Actel ACT 1 Logic
Module shown in Figure 5.1 . Show how to implement: (a) a three-input NOR
gate, (b) a three-input majority function gate, (c) a 2:1 MUX, (d) a half adder,
(e) a three-input XOR gate, and (f) a four-input MUX.

5.2 (Worst-case and best-case timing, 10 min.) Seasoned digital CMOS designers
do not worry too much when their designs stop working when they get too hot or
when they reduce the supply voltage, but an ASIC that stops working either when
increasing the supply voltage above normal or when it gets cold causes panic.
Why?

5.3 (Typical to worst-case variation, 10 min.) The 1994 Actel data book (p. 1-5)
remarks that: �the total derating factor from typical to worst-case for a standard
ACT 1 array is only 1.19:1, compared to 2:1 for a masked gate array.�

a. Can you explain why this is when the basic ACT 1 CMOS process is
identical to a CMOS process for masked gate arrays?

●

b. There is a price to pay for the reduced spread in timing delays from
typical to worst-case in an ACT 1 array. What is this disadvantage of the
ACT 1 array over a masked gate array?

●

5.4 (ACT 2/3 sequential element, 30 min.). Show how the Actel ACT 2 and
ACT 3 sequential element of Figure 5.4 (used in the S-Module) can be wired to
implement:

a. a positive-edge�triggered flip-flop with clear,●

b. a negative-edge�triggered flip-flop with clear,●

c. a transparent-high latch,●

d. a transparent-low latch, and●

e. how it can be made totally transparent.●

5.5 (*ACT 1 logic functions, 40 min.+)

a. How many different combinational functions of four logic variables are
there?

●

b. of n variables? Hint: Consider the truth table.●

c. The ACT 1 module can implement 213 of the 256 functions with three
variables. How many of the 43 three-input functions that it cannot

●

implement can you find?

d. (harder) Show that if you have access to both the true and complement
form of the input variables you can implement all 256 logic functions of
three variables with the ACT 1 Logic Module.

●

5.6 (Actel and Xilinx, 10 min.) The Actel Logic Modules (ACT 1, ACT 2, and
ACT 3) have eight inputs and can implement most three-input logic functions and
a few logic functions with four input variables. In contrast, the Xilinx XC5200
CLB, for example, has only four inputs but can implement all logic functions
with four or fewer variables. Why would Actel choose these logic cell designs
and how can they be competitive with the Xilinx FPGA (which they are)?

5.7 (Actel address decoders, 10 min.) The maximum number of inputs that the
ACT 1 Logic Module can handle is four. The ACT 2/ACT 3 C-module increases
this to five.

a. How many ACT 1 Logic Modules do you need to implement a 32-bit
wide address decoder (a 32-input AND gate)?

●

b. How many ACT 2/ACT 3 C-modules do you need?●

5.8 (Altera shared logic expanders, 30 min.) Consider an Altera MAX 5000 logic
array with three product-term lines. You cannot directly implement the function
Z = A · B · C + A · B' · C' + A' · B · C' + A' · B' · C with a programmable array
logic macrocell that has only three product-term lines, since Z has four product
terms.

a. How many Boolean functions of three variables are there that cannot be
implemented with a programmable array logic macrocell that has only
three product terms? Hint: Use a Karnaugh map to consider how many
Boolean functions of three variables have more than three product terms in
their sum-of-products representation.

●

b. Show how to use shared logic expanders that feed terms back into the
product-term array to implement the function Z using a macrocell with
three product terms.

●

c. How many shared expander lines do you need to add to be able to
implement all the Boolean functions of three variables?

●

d. What is the largest number of product terms that you need to implement
a Boolean function with n variables?

●

5.9 (Splitting the XC3000 CLB, 20 min.) In Section 5.2.1 we noted �You can split
the (XC3000) 32-bit LUT in half, using one of the seven input variables to switch
between the F and G outputs. This technique can implement some functions of
six and seven variables.�

a. Show which functions of six and seven variables can, and●

b. which functions cannot, be implemented using this method.●

5.10 (Programmable inversion, 20 min.) Section 5.4 described how the Altera

MAX series logic cells can use programmable inversion to reduce the number of
product terms needed to implement a function. Give another example of a
function of four variables that requires four product terms. Is there a way to tell
how many product terms a function may require?

5.11 (Table look-up mapping, 20 min.) Consider a four-input LUT (used in the
CLB in the Xilinx XC2000, the first generation of Xilinx FPGAs, and in the
XC5200 LE). This CLB can implement any Boolean function of four variables.
Consider the function

Z = (A · (B + C)) + (B · D) + (E · F · G · H · I) .(5.27)

We can use four CLBs to implement Z as follows:

CLB1: Z = Z1 + (B · D) + Z3 ,

CLB2: Z1 = A · (B + C) ,

CLB3: Z3 = E · F · G · Z5 ,

CLB4: Z5 = H · I .(5.28)

What is the length of the critical path? Find a better assignment in terms of area
and critical path.

5.12 (Multiplexer mapping, 10 min.) Consider the function:

F = (A · B) + (B' · C) + D .(5.29)

Use Shannon�s expansion theorem to expand F wrt B:

F = B · F1 + B' · F2 .(5.30)

In other words express F in terms of B, B', F1, and F2 (Hint: F1 is a function of
A and D only, F2 is a function of C and D only). Now expand F1 wrt A, and F2
wrt C. Using your answer, implement F using a single ACT 1 Logic Module.

5.13 (*Xilinx hazards, 10 min.) Explain why the outputs of the Xilinx CLBs are
hazard-free for input changes in only one variable. Is this important?

5.14 (**Actel S-Modules, 10 min.) Notice that CLR is tied to the input
corresponding to B0 of the C-module in the ACT 2 S-Module but the CLR input
is separate from the B0 input in the ACT 3 version. Why?

5.15 (**Timing estimates, 60 min.) Using data book values for an FPGA
architecture that you choose, and explaining your calculations carefully, estimate
the (worst-case commercial) delay for the following functions: (a) 16-bit address
decoder, (b) 8-bit ripple-carry adder, (c) 8-bit ripple-carry counter. Give your
answers in terms of the data book symbols, and using actual parameters, for a
speed grade that you specify, give an example calculation with the delay in ns.

5.16 (Actel logic. 30 min.) Table 5.10 shows how to use the Actel ACT 1 Logic

Module to implement some of the 16 functions of two input variables. Complete
this table.

TABLE 5.10 Boolean functions using the ACT 1 Logic Module (Problem 5.16).

Function, F F = Canonical form Minterms
M1 M2 OR1
A0 A1 SA B0 B1 SB S0 S1

1 0 0 0 � 0 0 0
2 AND(A, B) A · B A · B 3 0 B A

3 AND1-1(A, B)
A ·
B'

A · B' 2 A 0 B

4 NOR(A, B)
A +
B

A' · B' 0

5 NOR1-1(A, B)
A +
B'

A' · B 1 B 0 A

6 A A A · B' + A · B 2, 3 0 A 1
7 B B A' · B + A · B 1, 3 0 B 1
8 NOT(A) A' A' · B' + A' · B 0, 1 0 1 A
9 NOT(B) B' A' · B' + A · B' 0, 2 0 1 B

10 EXOR(A, B)
A •
B

A' · B + A · B' 1, 2

11 EXNOR(A, B)
(A •
B)

A' · B' + A · B 0, 3

12 OR(A, B)
A +
B

A' · B + A · B' +
A · B

1, 2, 3 B 1 A

13 OR1-1(A, B)
A +
B'

A' · B' + A · B'
+ A · B

0, 2, 3

14 NAND(A, B)
(A ·
B)'

A' · B' + A' · B
+ A · B'

0, 1, 2

15 NAND1-1(A, B)
(A ·
B')'

A' · B' + A' · B
+ A · B

0, 1, 3

16 1 1
A' · B' + A' · B
+ A · B' + A · B

0, 1, 2, 3 1 1 1

5.17 (ACT 1 module implementation, 120 min.)

a. Show that the circuit shown in Figure 5.17 , with buffered inputs and
outputs, is equivalent to the one shown in Figure 5.1 .

●

FIGURE 5.17 An alternative
implementation of the ACT 1
Logic Module shown in
Figure 5.1 (Problem 5.17).

b. Show that the circuit for the ACT 1 Logic Module shown in Figure 5.18
is also the same.

●

c. Convert the circuit of Figure 5.18 to one that uses more efficient CMOS
gates: inverters, AOI, and NAND gates.

●

d. (harder) Assume that the ACT 1 Logic Module has the equivalent of a
2X drive and the logic ratio is close to one. Compare your answer to part c
against Figure 5.17 in terms of logical efficiency and logical area.

FIGURE 5.18
A schematic
equivalent of
the Actel
ACT 1 Logic
Module
(Problem
5.17).

●

5.18 (**Xilinx CLB analysis, 60 min.) Table 5.11 shows some information
derived from a die photo in the AT&T ATT3000 series data book that shows the
eight by eight CLB matrix on an ATT3020 (equivalent to a XC3020) clearly. By
measuring the die size in the photo and knowing the actual die size we can
calculate the size of a CLB matrix element (ME) that includes a single XC3000
CLB as approximately 277 mil 2 . The ME includes interconnect, SRAM,
programming, and other resources as well as a CLB.

TABLE 5.11 ATT3020 die information (Problem 5.18). 1

Parameter Data book Die photo Calculated
3020 die width 183.5 mil 4.1 cm �

3020 die height 219.3 mil 4.9 cm �
3000 ME width � 0.325 cm 14.55 mil = 370 m m
3000 ME height � 0.425 cm 19.02 mil = 483 m m

3000 ME area � � 277 mil 2

3020 pad pitch � 1.6 mm / pad 7.21 mil / pad

a. The minimum feature size in the AT&T Holmdel twin-tub V process
used for the ATT3000 family is 0.9 m m. Using a value of l = 0.45 m m,
calculate the Xilinx XC3000 ME size in l 2 .

●

b. Estimate, explaining your assumptions, the area of the XC4000 ME, and
the XC5200 ME (both in l 2).

●

c. Table 5.12 shows the ATT3000 die information. Using a value of 277
mil 2 for the ATT/XC3000 ME area, complete this table.

TABLE 5.12 ATT3000 die information (Problem 5.18). 2

Die
Die height

mil

Die width

mil
Die area mil 2

Die
area

cm2

CLBs

ME
area

mil 2

ME
area

cm2

3020 219.3 183.5 40,242 0.26 8 ¥ 8
3030 259.8 215.0 55,857 0.36 10 ¥ 10
3042 295.3 242.5 71,610 0.46 12 ¥ 12
3064 270.9 366.5 99,285 0.64 16 ¥ 14
3090 437.0 299.2 130,750 0.84 16 ¥ 20

●

1. Data from AT&T data book, July 1992, p. 3-76, MN92-024FPGA

2. Data from AT&T data book, July 1992, p. 3-75, MN92-024FPGA. 1 mil 2 = 10
�6 in 2 = 2.54 2 ¥ 10 �6 cm 2 = 6.452 ¥ 10 �6 cm 2

5.7 Bibliography
The book by Brown et al. [1992] on FPGAs deals with commercially available
FPGAs and logic block architecture. There are several easily readable articles on
FPGAs in the July 1993 issue of the IEEE Proceedings including articles by Rose
et al. [1993] and Greene et al. [1993]. Greene�s article is a good place to start
digging deeper into the Actel FPGA architecture and gives an idea of the very
complex problem of programming antifuses, something we have not discussed.
Trimberger, who works at Xilinx, has edited a book on FPGAs [1994]. For those
wishing to understand even more about the trade-offs in the different
programmable ASIC architectures, a student of Stanford Professor Abbas El
Gamal (one of the cofounders of Actel) has completed a Ph.D. on this topic
[Kouloheris, 1993]. The best resources for information on FPGAs and their logic
cells are the manufacturer�s data sheets, data books, and application notes. The
data books change every year or so as new products are released, so it is difficult
to give specific references, but Xilinx, Actel, and Altera currently produce huge
volumes complete with excellent design guides and application notes�you should
obtain each of these even if you are not currently using that particular technology.
Many of these are also online in Adobe Acrobat and PostScript format as well as
in CD-ROM format (see also the bibliography in Chapter 4).

5.8 References
Brown, S. D., et al. 1992. Field-Programmable Gate Arrays. Norwell, MA:
Kluwer Academic. 206 p. ISBN 0-7923-9248-5. TK7872.L64F54. Introduction
to FPGAs, Commercially Available FPGAs, Technology Mapping for FPGAs,
Logic Block Architecture, Routing for FPGAs, Flexibility of FPGA Routing
Resources, A Theoretical Model for FPGA Routing. Includes an introduction to
commercially available FPGAs. The rest of the book covers research on logic
synthesis for FPGAs and FPGA architectures, concentrating on LUT-based
architectures.

Greene, J., et al. 1993. �Antifuse field programmable gate arrays.� Proceedings of
the IEEE, vol. 81, no. 7, pp. 1042�1056. Review article describing the Actel
FPGAs. (Included in the Actel 1994 data book.)

Kouloheris, J. L. 1993. �Empirical study of the effect of cell granularity on FPGA
density and performance.� Ph.D. Thesis, Stanford, CA. 114 p. Detailed research
study of the different FPGA architectures concentrating on structures similar to
the Actel and Altera FPGAs.

Rose, J., et al. 1993. �A classification and survey of field-programmable gate
array architectures.� Proceedings of the IEEE, vol. 81, no. 7.

Trimberger, S. M. (Ed.). 1994. Field-Programmable Gate Array Technology.
Boston: Kluwer Academic Publishers. ISBN 0-7923-9419-4. TK7895.G36.F54.

PROGRAMMABLE
ASIC I/O CELLS
All programmable ASICs contain some type of input/output cell (I/O cell).
These I/O cells handle driving logic signals off-chip, receiving and conditioning
external inputs, as well as handling such things as electrostatic protection. This
chapter explains the different types of I/O cells that are used in programmable
ASICs and their functions.

The following are different types of I/O requirements.

DC output. Driving a resistive load at DC or low frequency (less than 1
MHz). Example loads are light-emitting diodes (LEDs), relays, small
motors, and such. Can we supply an output signal with enough voltage,
current, power, or energy?

●

AC output. Driving a capacitive load with a high-speed (greater than 1
MHz) logic signal off-chip. Example loads are other logic chips, a data or
address bus, ribbon cable. Can we supply a valid signal fast enough?

●

DC input. Example sources are a switch, sensor, or another logic chip. Can
we correctly interpret the digital value of the input?

●

AC input. Example sources are high-speed logic signals (higher than 1
MHz) from another chip. Can we correctly interpret the input quickly
enough?

●

Clock input. Examples are system clocks or signals on a synchronous bus.
Can we transfer the timing information from the input to the appropriate
places on the chip correctly and quickly enough?

●

Power input. We need to supply power to the I/O cells and the logic in the
core, without introducing voltage drops or noise. We may also need a
separate power supply to program the chip.

●

These issues are common to all FPGAs (and all ICs) so that the design of FPGA
I/O cells is driven by the I/O requirements as well as the programming
technology.

Last Edited by SP 14112004

6.1 DC Output
Figure 6.1 shows a robot arm driven by three small motors together with switches
to control the motors. The motor armature current varies between 50 mA and
nearly 0.5 A when the motor is stalled. Can we replace the switches with an
FPGA and drive the motors directly?

FIGURE 6.1 A robot arm.
(a) Three small DC motors drive
the arm. (b) Switches control
each motor.

Figure 6.2 shows a CMOS complementary output buffer used in many FPGA I/O
cells and its DC characteristics. Data books typically specify the output
characteristics at two points, A (V OHmin , I OHmax) and B (V OLmax , I OLmax),
as shown in Figure 6.2 (d). As an example, values for the Xilinx XC5200 are as
follows 1 :

V OLmax = 0.4 V, low-level output voltage at I OLmax = 8.0 mA.●

V OHmin = 4.0 V, high-level output voltage at I OHmax = �8.0 mA.●

By convention the output current , I O , is positive if it flows into the output.
Input currents, if there are any, are positive if they flow into the inputs. The
Xilinx XC5200 specifications show that the output buffer can force the output
pad to 0.4 V or lower and sink no more than 8 mA if the load requires it. CMOS
logic inputs that may be connected to the pad draw minute amounts of current,
but bipolar TTL inputs can require several milliamperes. Similarly, when the
output is 4 V, the buffer can source 8 mA. It is common to say that V OLmax = 0.4
V and V OHmin = 4.0 V for a technology�without referring to the current values at
which these are measured�strictly this is incorrect.

FIGURE 6.2 (a) A CMOS complementary output buffer. (b) Pull-down
transistor M2 (M1 is off) sinks (to GND) a current I OL through a pull-up
resistor, R 1 . (c) Pull-up transistor M1 (M2 is off) sources (from VDD) current
�I OH (I OH is negative) through a pull-down resistor, R 2 . (d) Output
characteristics.

If we force the output voltage , V O , of an output buffer, using a voltage supply,
and measure the output current, IO , that results, we find that a buffer is capable
of sourcing and sinking far more than the specified I OHmax and I OLmax values.
Most vendors do not specify output characteristics because they are difficult to
measure in production. Thus we normally do not know the value of I OLpeak or I

OHpeak ; typical values range from 50 to 200 mA.

Can we drive the motors by connecting several output buffers in parallel to reach
a peak drive current of 0.5 A? Some FPGA vendors do specifically allow you to
connect adjacent output cells in parallel to increase the output drive. If the output
cells are not adjacent or are on different chips, there is a risk of contention.
Contention will occur if, due to delays in the signal arriving at two output cells,
one output buffer tries to drive an output high while the other output buffer is
trying to drive the same output low. If this happens we essentially short VDD to
GND for a brief period. Although contention for short periods may not be
destructive, it increases power dissipation and should be avoided. 2

It is thus possible to parallel outputs to increase the DC drive capability, but it is
not a good idea to do so because we may damage or destroy the chip (by
exceeding the maximum metal electromigration limits). Figure 6.3 shows an
alternative�a simple circuit to boost the drive capability of the output buffers. If
we need more power we could use two operational amplifiers (op-amps)
connected as voltage followers in a bridge configuration. For even more power
we could use discrete power MOSFETs or power op-amps.

FIGURE 6.3 A circuit to drive
a small electric motor (0.5 A)
using ASIC I/O buffers. Any
npn transistors with a
reasonable gain (b ª 100) that
are capable of handling the
peak current (0.5 A) will work
with an output buffer that is
capable of sourcing more than
5 mA. The 470 W resistors
drop up to 5 V if an output
buffer current approaches 10
mA, reducing the drive to the
output transistors.

6.1.1 Totem-Pole Output
Figure 6.4 (a) and (b) shows a totem-pole output buffer and its DC
characteristics. It is similar to the TTL totem-pole output from which it gets its
name (the totem-pole circuit has two stacked transistors of the same type,
whereas a complementary output uses transistors of opposite types). The
high-level voltage, V OHmin , for a totem pole is lower than VDD . Typically V

OHmin is in the range of 3.5 V to 4.0 V (with VDD = 5 V), which makes rising
and falling delays more symmetrical and more closely matches TTL voltage
levels. The disadvantage is that the totem pole will typically only drive the output
as high as 3�4 V; so this would not be a good choice of FPGA output buffer to
work with the circuit shown in Figure 6.3 .

FIGURE 6.4 Output buffer characteristics. (a) A CMOS totem-pole output stage
(both M1 and M2 are n -channel transistors). (b) Totem-pole output
characteristics. (c) Clamp diodes, D1 and D2, in an output buffer (these diodes
are present in all output buffers�totem-pole or complementary). (d) The clamp
diodes start to conduct as the output voltage exceeds the supply voltage bounds.

6.1.2 Clamp Diodes
Figure 6.4 (c) show the connection of clamp diodes (D1 and D2) that prevent the
I/O pad from voltage excursions greater than V DD and less than V SS . Figure 6.4
(d) shows the resulting characteristics.

1. XC5200 data sheet, October 1995 (v. 3.0).

2. Actel specifies a maximum I/O current of ± 20 mA for ACT3 family (1994
data book, p. 1-93) and its ES family. Altera specifies the maximum DC output
current per pin, for example ± 25 mA for the FLEX 10k (July 1995, v. 1 data
sheet, p. 42).

6.2 AC Output
Figure 6.5 shows an example of an off-chip three-state bus. Chips that have inputs and
outputs connected to a bus are called bus transceivers . Can we use FPGAs to perform
the role of bus transceivers? We will focus on one bit, B1, on bus BUSA, and we shall
call it BUSA.B1. We need unique names to refer to signals on each chip; thus
CHIP1.OE means the signal OE inside CHIP1. Notice that CHIP1.OE is not
connected to CHIP2.OE.

FIGURE 6.5 A three-state bus. (a) Bus parasitic capacitance. (b) The output buffers
in each chip. The ASIC CHIP1 contains a bus keeper, BK1.

Figure 6.6 shows the timing of part of a bus transaction (a sequence of signals on a
bus):

Initially CHIP2 drives BUSA.B1 high (CHIP2.D1 is '1' and CHIP2.OE is '1').1.

The buffer output enable on CHIP2 (CHIP2.OE) goes low, floating the bus. The
bus will stay high because we have a bus keeper, BK1.

2.

The buffer output enable on CHIP3 (CHIP3.OE) goes high and the buffer drives
a low onto the bus (CHIP3.D1 is '0').

3.

We wish to calculate the delays involved in driving the off-chip bus in Figure 6.6 . In
order to find t float , we need to understand how Actel specifies the delays for its I/O
cells. Figure 6.7 (a) shows the circuit used for measuring I/O delays for the ACT
FPGAs. These measurements do not use the same trip points that are used to
characterize the internal logic (Actel uses input and output trip points of 0.5 for

internal logic delays).

FIGURE 6.6 Three-state bus timing for
Figure 6.5 . The on-chip delays, t 2OE
and t 3OE , for the logic that generates
signals CHIP2.E1 and CHIP3.E1 are
derived from the timing models
described in Chapter 5 (the minimum
values for each chip would be the
clock-to-Q delay times).

FIGURE 6.7 (a) The test circuit for characterizing the ACT 2 and ACT 3 I/O delay
parameters. (b) Output buffer propagation delays from the data input to PAD (output
enable, E, is high). (c) Three-state delay with D low. (d) Three-state delay with D
high. Delays are shown for ACT 2 'Std' speed grade, worst-case commercial
conditions (R L = 1 k W , C L = 50 pF, V OHmin = 2.4 V, V OLmax = 0.5 V). (The
Actel three-state buffer is named TRIBUFF, an input buffer INBUF, and the output
buffer, OUTBUF.)

Notice in Figure 6.7 (a) that when the output enable E is '0' the output is three-stated (
high-impedance or hi-Z). Different companies use different polarity and naming
conventions for the �output enable� signal on a three-state buffer. To measure the
buffer delay (measured from the change in the enable signal, E) Actel uses a resistor

load (R L = 1 k W for ACT 2). The resistor pulls the buffer output high or low
depending on whether we are measuring:

t ENZL , when the output switches from hi-Z to '0'.●

t ENLZ , when the output switches from '0' to hi-Z.●

t ENZH , when the output switches from hi-Z to '1'.●

t ENHZ , when the output switches from '1' to hi-Z.●

Other vendors specify the time to float a three-state output buffer directly (t fr and t ff
in Figure 6.7 c and d). This delay time has different names (and definitions): disable
time , time to begin hi-Z , or time to turn off .

Actel does not specify the time to float but, since R L C L = 50 ns, we know t RC = � R

L C L ln 0.9 or approximately 5.3 ns. Now we can estimate that

t fr = t ENLZ � t RC = 11.1 � 5.3 = 5.8 ns, and t ff = 9.4 � 5.3 = 4.1 ns,

and thus the Actel buffer can float the bus in t float = 4.1 ns (Figure 6.6).

The Xilinx FPGA is responsible for the second part of the bus transaction. The time to
make the buffer CHIP2.B1 active is t active . Once the buffer is active, the output
transistors turn on, conducting a current I peak . The output voltage V O across the load
capacitance, C BUS , will slew or change at a steady rate, d V O / d t = I peak / C BUS ;
thus t slew = C BUS D V O / I peak , where D V O is the change in output voltage.

Vendors do not always provide enough information to calculate t active and t slew
separately, but we can usually estimate their sum. Xilinx specifies the time from the
three-state input switching to the time the �pad is active and valid� for an XC3000-125
switching with a 50 pF load, to be t active = t TSON = 11 ns (fast option), and 27 ns

(slew-rate limited option). 1 If we need to drive the bus in less than one clock cycle
(30 ns), we will definitely need to use the fast option.

A supplement to the XC3000 timing data specifies the additional fall delay for
switching large capacitive loads (above 50 pF) as R fall = 0.06 nspF �1 (falling) and R

rise = 0.12 nspF �1 (rising) using the fast output option. 2 We can thus estimate that

I peak ª (5 V)/(�0.06 ¥ 10 3 sF �1) ª �84 mA (falling)

and I peak ª (5 V)/(0.12 ¥ 10 3 sF �1) ª 42 mA (rising).

Now we can calculate,

t slew = R fall (C BUS � 50 pF) = (90 pF � 50 pF) (0.06 nspF �1) or 2.4 ns ,

for a total falling delay of 11 + 2.4 = 13.4 ns. The rising delay is slower at 11 + (40
pF)(0.12 nspF �1) or 15.8 ns. This leaves (30 � 15.8) ns, or about 14 ns worst-case, to
generate the output enable signal CHIP2.OE (t 3OE in Figure 6.6) and still leave time t

spare before the bus data is latched on the next clock edge. We can thus probably use a

XC3000 part for a 30 MHz bus transceiver, but only if we use the fast slew-rate
option.

An aside: Our example looks a little like the PCI bus used on Pentium and PowerPC
systems, but the bus transactions are simplified. PCI buses use a sustained three-state
system (s / t / s). On the PCI bus an s / t / s driver must drive the bus high for at least
one clock cycle before letting it float. A new driver may not start driving the bus until
a clock edge after the previous driver floats it. After such a turnaround cycle a new
driver will always find the bus parked high.

6.2.1 Supply Bounce
Figure 6.8 (a) shows an n -channel transistor, M1, that is part of an output buffer
driving an output pad, OUT1; M2 and M3 form an inverter connected to an input pad,
IN1; and M4 and M5 are part of another output buffer connected to an output pad,
OUT2. As M1 sinks current pulling OUT1 low (V o 1 in Figure 6.8 b), a substantial
current I OL may flow in the resistance, R S , and inductance, L S , that are between the
on-chip GND net and the off-chip, external ground connection.

FIGURE 6.8 Supply bounce. (a) As the pull-down device, M1, switches, it causes
the GND net (value V SS) to bounce. (b) The supply bounce is dependent on the
output slew rate. (c) Ground bounce can cause other output buffers to generate a logic
glitch. (d) Bounce can also cause errors on other inputs.

The voltage drop across R S and L S causes a spike (or transient) on the GND net,
changing the value of V SS , leading to a problem known as supply bounce . The
situation is illustrated in Figure 6.8 (a), with V SS bouncing to a maximum of V OLP .
This ground bounce causes the voltage at the output, V o 2 , to bounce also. If the
threshold of the gate that OUT2 is driving is a TTL level at 1.4 V, for example, a
ground bounce of more than 1.4 V will cause a logic high glitch (a momentary
transition from one logic level to the opposite logic level and back again).

Ground bounce may also cause problems at chip inputs. Suppose the inverter M2/M3

is set to have a TTL threshold of 1.4 V and the input, IN1, is at a fixed voltage equal
to 3 V (a respectable logic high for bipolar TTL). In this case a ground bounce of
greater than 1.6 V will cause the input, IN1, to see a logic low instead of a high and a
glitch will be generated on the inverter output, I1. Supply bounce can also occur on
the VDD net, but this is usually less severe because the pull-up transistors in an output
buffer are usually weaker than the pull-down transistors. The risk of generating a
glitch is also greater at the low logic level for TTL-threshold inputs and TTL-level
outputs because the low-level noise margins are smaller than the high-level noise
margins in TTL.

Sixteen SSOs, with each output driving 150 pF on a bus, can generate a ground
bounce of 1.5 V or more. We cannot simulate this problem easily with FPGAs
because we are not normally given the characteristics of the output devices. As a rule
of thumb we wish to keep ground bounce below 1 V. To help do this we can limit the
maximum number of SSOs, and we can limit the number of I/O buffers that share
GND and VDD pads.

To further reduce the problem, FPGAs now provide options to limit the current
flowing in the output buffers, reducing the slew rate and slowing them down. Some
FPGAs also have quiet I/O circuits that sense when the input to an output buffer
changes. The quiet I/O then starts to change the output using small transistors; shortly
afterwards the large output transistors �drop-in.� As the output approaches its final
value, the large transistors �kick-out,� reducing the supply bounce.

6.2.2 Transmission Lines
Most of the problems with driving large capacitive loads at high speed occur on a bus,
and in this case we may have to consider the bus as a transmission line. Figure 6.9 (a)
shows how a transmission line appears to a driver, D1, and receiver, R1, as a constant
impedance, the characteristic impedance of the line, Z 0 . For a typical PCB trace, Z 0
is between 50 W and 100 W .

FIGURE 6.9 Transmission lines. (a) A printed-circuit board (PCB) trace is a
transmission (TX) line. (b) A driver launches an incident wave, which is reflected at
the end of the line. (c) A connection starts to look like a transmission line when the
signal rise time is about equal to twice the line delay (2 t f).

The voltages on a transmission line are determined by the value of the driver source
resistance, R 0 , and the way that we terminate the end of the transmission line. In
Figure 6.9 (a) the termination is just the capacitance of the receiver, C in . As the
driver switches between 5 V and 0 V, it launches a voltage wave down the line, as
shown in Figure 6.9 (b). The wave will be Z 0 / (R 0 + Z 0) times 5 V in magnitude,
so that if R 0 is equal to Z 0 , the wave will be 2.5 V.

Notice that it does not matter what is at the far end of the line. The bus driver sees
only Z 0 and not C in . Imagine the transmission line as a tunnel; all the bus driver can
see at the entrance is a little way into the tunnel�it could be 500 m or 5 km long. To
find out, we have to go with the wave to the end, turn around, come back, and tell the
bus driver. The final result will be the same whether the transmission line is there or
not, but with a transmission line it takes a little longer for the voltages and currents to
settle down. This is rather like the difference between having a conversation by
telephone or by post.

The propagation delay (or time of flight), t f , for a typical PCB trace is approximately
1 ns for every 15 cm of trace (the signal velocity is about one-half the speed of light).
A voltage wave launched on a transmission line takes a time t f to get to the end of the
line, where it finds the load capacitance, C in . Since no current can flow at this point,
there must be a reflection that exactly cancels the incident wave so that the voltage at
the input to the receiver, at V 2 , becomes exactly zero at time t f . The reflected wave
travels back down the line and finally causes the voltage at the output of the driver, at
V 1 , to be exactly zero at time 2 t f . In practice the nonidealities of the driver and the
line cause the waves to have finite rise times. We start to see transmission line
behavior if the rise time of the driver is less than 2 t f , as shown in Figure 6.9 (c).

There are several ways to terminate a transmission line. Figure 6.10 illustrates the
following methods:

Open-circuit or capacitive termination. The bus termination is the input
capacitance of the receivers (usually less than 20 pF). The PCI bus uses this
method.

●

Parallel resistive termination. This requires substantial DC current (5 V / 100 W
= 50 mA for a 100 W line). It is used by bipolar logic, for example
emitter-coupled logic (ECL), where we typically do not care how much power
we use.

●

Thévenin termination. Connecting 300 W in parallel with 150 W across a 5 V
supply is equivalent to a 100 W termination connected to a 1.6 V source. This
reduces the DC current drain on the drivers but adds a resistance directly across
the supply.

●

Series termination at the source. Adding a resistor in series with the driver so
that the sum of the driver source resistance (which is usually 50 W or even less)
and the termination resistor matches the line impedance (usually around 100 W
). The disadvantage is that it generates reflections that may be close to the
switching threshold.

●

Parallel termination with a voltage bias. This is awkward because it requires a●

third supply and is normally used only for a specialized high-speed bus.

Parallel termination with a series capacitance. This removes the requirement for
DC current but introduces other problems.

FIGURE 6.10 Transmission line termination. (a) Open-circuit or capacitive
termination. (b) Parallel resistive termination. (c) Thévenin termination.
(d) Series termination at the source. (e) Parallel termination using a voltage
bias. (f) Parallel termination with a series capacitor.

●

Until recently most bus protocols required strong bipolar or BiCMOS output buffers
capable of driving all the way between logic levels. The PCI standard uses weaker
CMOS drivers that rely on reflection from the end of the bus to allow the intermediate
receivers to see the full logic value. Many FPGA vendors now offer complete PCI
functions that the ASIC designer can �drop in� to an FPGA [PCI, 1995].

An alternative to using a transmission line that operates across the full swing of the
supply voltage is to use current-mode signaling or differential signals with
low-voltage swings. These and other techniques are used in specialized bus structures
and in high-speed DRAM. Examples are Rambus, and Gunning transistor logic (GTL
). These are analog rather than digital circuits, but ASIC methods apply if the interface
circuits are available as cells, hiding some of the complexity from the designer. For
example, Rambus offers a Rambus access cell (RAC) for standard-cell design (but
not yet for an FPGA). Directions to more information on these topics are in the
bibliography at the end of this chapter.

1. 1994 data book, p. 2-159.

2. Application Note XAPP 024.000, Additional XC3000 Data, 1994 data book
p. 8-15.

6.3 DC Input
Suppose we have a pushbutton switch connected to the input of an FPGA as shown in
Figure 6.11 (a). Most FPGA input pads are directly connected to a buffer. We need to
ensure that the input of this buffer never floats to a voltage between valid logic levels
(which could cause both n -channel and p -channel transistors in the buffer to turn on,
leading to oscillation or excessive power dissipation) and so we use the optional pull-up
resistor (usually about 100 k W) that is available on many FPGAs (we could also
connect a 1 k W pull-up or pull-down resistor externally).

Contacts may bounce as a switch is operated (Figure 6.11 b). In the case of a Xilinx
XC4000 the effective pull-up resistance is 5�50 k W (since the specified pull-up current is
between 0.2 and 2.0 mA) and forms an RC time constant with the parasitic capacitance of
the input pad and the external circuit. This time constant (typically hundreds of
nanoseconds) will normally be much less than the time over which the contacts bounce
(typically many milliseconds). The buffer output may thus be a series of pulses extending
for several milliseconds. It is up to you to deal with this in your logic. For example, you
may want to debounce the waveform in Figure 6.11 (b) using an SR flip-flop.

FIGURE 6.11 A switch input. (a) A
pushbutton switch connected to an
input buffer with a pull-up resistor.
(b) As the switch bounces several
pulses may be generated.

A bouncing switch may create a noisy waveform in the time domain, we may also have
noise in the voltage level of our input signal. The Schmitt-trigger inverter in Figure 6.12
(a) has a lower switching threshold of 2 V and an upper switching threshold of 3 V. The
difference between these thresholds is the hysteresis , equal to 1 V in this case. If we
apply the noisy waveform shown in Figure 6.12 (b) to an inverter with no hysteresis,
there will be a glitch at the output, as shown in Figure 6.12 (c). As long as the noise on
the waveform does not exceed the hysteresis, the Schmitt-trigger inverter will produce
the glitch-free output of Figure 6.12 (d).

Most FPGA input buffers have a small hysteresis (the 200 mV that Xilinx uses is a
typical figure) centered around 1.4 V (for compatibility with TTL), as shown in
Figure 6.12 (e). Notice that the drawing inside the symbol for a Schmitt trigger looks like
the transfer characteristic for a buffer, but is backward for an inverter. Hysteresis in the
input buffer also helps prevent oscillation and noise problems with inputs that have slow

rise times, though most FPGA manufacturers still have a restriction that input signals
must have a rise time faster than several hundred nanoseconds.

FIGURE 6.12 DC input. (a) A Schmitt-trigger inverter. (b) A noisy input signal.
(c) Output from an inverter with no hysteresis. (d) Hysteresis helps prevent glitches.
(e) A typical FPGA input buffer with a hysteresis of 200 mV centered around a threshold
of 1.4 V.

6.3.1 Noise Margins
Figure 6.13 (a) and (b) show the worst-case DC transfer characteristics of a CMOS
inverter. Figure 6.13 (a) shows a situation in which the process and device sizes create
the lowest possible switching threshold. We define the maximum voltage that will be
recognized as a '0' as the point at which the gain (V out / V in) of the inverter is �1. This
point is V ILmax = 1V in the example shown in Figure 6.13 (a). This means that any input
voltage that is lower than 1V will definitely be recognized as a '0', even with the most
unfavorable inverter characteristics. At the other worst-case extreme we define the
minimum voltage that will be recognized as a '1' as V IHmin = 3.5V (for the example in
Figure 6.13 b).

FIGURE 6.13 Noise margins. (a) Transfer characteristics of a CMOS inverter with the
lowest switching threshold. (b) The highest switching threshold. (c) A graphical
representation of CMOS logic thresholds. (d) Logic thresholds at the inputs and outputs
of a logic gate or an ASIC. (e) The switching thresholds viewed as a plug and socket.
(f) CMOS plugs fit CMOS sockets and the clearances are the noise margins.

Figure 6.13 (c) depicts the following relationships between the various voltage levels at
the inputs and outputs of a logic gate:

A logic '1' output must be between V OHmin and V DD .●

A logic '0' output must be between V SS and V OLmax .●

A logic '1' input must be above the high-level input voltage , V IHmin .●

A logic '0' input must be below the low-level input voltage , V ILmax .●

Clamp diodes prevent an input exceeding V DD or going lower than V SS .●

The voltages, V OHmin , V OLmax , V IHmin , and V ILmax , are the logic thresholds for a
technology. A logic signal outside the areas bounded by these logic thresholds is �bad��an
unrecognizable logic level in an electronic no-man�s land. Figure 6.13 (d) shows typical
logic thresholds for a CMOS-compatible FPGA. The V IHmin and V ILmax logic
thresholds come from measurements in Figure 6.13 (a) and (b) and V OHmin and V OLmax
come from the measurements shown in Figure 6.2 (c).

Figure 6.13 (d) illustrates how logic thresholds form a plug and socket for any gate,
group of gates, or even a chip. If a plug fits a socket, we can connect the two components
together and they will have compatible logic levels. For example, Figure 6.13 (e) shows
that we can connect two CMOS gates or chips together.

FIGURE 6.14 TTL and CMOS logic thresholds. (a) TTL logic thresholds. (b) Typical
CMOS logic thresholds. (c) A TTL plug will not fit in a CMOS socket. (d) Raising V

OHmin solves the problem.

Figure 6.13 (f) shows that we can even add some noise that shifts the input levels and the
plug will still fit into the socket. In fact, we can shift the plug down by exactly V OHmin �
V IHmin (4.5 � 3.5 = 1 V) and still maintain a valid '1'. We can shift the plug up by V ILmax
� V OLmax (1.0 � 0.5 = 0.5 V) and still maintain a valid '0'. These clearances between plug
and socket are the noise margins :

V NMH = V OHmin � V IHmin and V NML = V ILmax � V OLmax . (6.1)

For two logic systems to be compatible, the plug must fit the socket. This requires both
the high-level noise margin (V NMH) and the low-level noise margin (V NML) to be
positive. We also want both noise margins to be as large as possible to give us maximum
immunity from noise and other problems at an interface.

Figure 6.14 (a) and (b) show the logic thresholds for TTL together with typical CMOS
logic thresholds. Figure 6.14 (c) shows the problem with trying to plug a TTL chip into a
CMOS input level�the lowest permissible TTL output level, V OHmin = 2.7 V, is too low
to be recognized as a logic '1' by the CMOS input. This is fixed by most FPGA
manufacturers by raising V OHmin to around 3.8�4.0 V (Figure 6.14 d). Table 6.1 lists the
logic thresholds for several FPGAs.

6.3.2 Mixed-Voltage Systems
To reduce power consumption and allow CMOS logic to be scaled below 0.5 m m it is
necessary to reduce the power supply voltage below 5 V. The JEDEC 8 [JEDEC I/O]
series of standards sets the next lower supply voltage as 3.3 ± 0.3 V. Figure 6.15 (a) and
(b) shows that the 3 V CMOS I/O logic-thresholds can be made compatible with 5 V
systems. Some FPGAs can operate on both 3 V and 5 V supplies, typically using one
voltage for internal (or core) logic, V DDint and another for the I/O circuits, V DDI/O (
Figure 6.15 c).

TABLE 6.1 FPGA logic thresholds.

 I/O options Input levels
Output levels (high
current)

Output levels (low
current)

 Input Output
V IH

(min)

V IL

(max)

V OH

(min)

I OH

(max)

V OL

(max)

I OL

(max)

V OH

(min)

I OH

(max)

VOL

(max)

I OL

(max)

XC3000 1 TTL 2.0 0.8 3.86 �4.0 0.40 4.0

 CMOS 3.85
2

0.9 3 3.86 �4.0 0.40 4.0

XC3000L 2.0 0.8 2.40 �4.0 0.40 4.0 2.80
4

�0.1 0.2 0.1

XC4000 5 2.0 0.8 2.40 �4.0 0.40 12.0

XC4000H
6 TTL TTL 2.0 0.8 2.40 �4.0 0.50 24.0

 CMOS CMOS 3.85
2

0.9 3 4.00
7

�1.0 0.50 24.0

XC8100 8 TTL R 2.0 0.8 3.86 �4.0 0.50 24.0

 CMOS C 3.85
2

0.9 3 3.86 �4.0 0.40 4.0

ACT 2/3 2.0 0.8 2.4 �8.0 0.50 12.0 3.84 �4.0 0.33 6.0
FLEX10k
9

 3V/5V 2.0 0.8 2.4 �4.0 0.45 12.0

There is one problem when we mix 3 V and 5 V supplies that is shown in Figure 6.15 (d).
If we apply a voltage to a chip input that exceeds the power supply of a chip, it is possible
to power a chip inadvertently through the clamp diodes. In the worst case this may cause
a voltage as high as 2.5 V (= 5.5 V � 3.0 V) to appear across the clamp diode, which will
cause a very large current (several hundred milliamperes) to flow. One way to prevent
damage is to include a series resistor between the chips, typically around 1 k W . This
solution does not work for all chips in all systems. A difficult problem in ASIC I/O
design is constructing 5 V-tolerant I/O . Most solutions may never surface (there is little
point in patenting a solution to a problem that will go away before the patent is granted).

Similar problems can arise in several other situations:

when you connect two ASICs with �different� 5 V supplies;●

when you power down one ASIC in a system but not another, or one ASIC powers
down faster than another;

●

on system power-up or system reset.

FIGURE 6.15
Mixed-voltage systems.
(a) TTL levels.
(b) Low-voltage CMOS
levels. (c) A
mixed-voltage ASIC.
(d) A problem when
connecting two chips
with different supply
voltages�caused by the
input clamp diodes.

●

1. XC2000, XC3000/A have identical thresholds. XC3100/A thresholds are identical to
XC3000 except for ±8 mA source�sink current. XC5200 thresholds are identical to
XC3100A.

2. Defined as 0.7 V DD , calculated with V DD max = 5.5 V.

3. Defined as 0.2 V DD , calculated with V DD min = 4.5 V.

4. Defined as V DD � 0.2 V, calculated with V DD min = 3.0 V.

5. XC4000, XC4000A have identical I/O thresholds except XC4000A has �24 mA sink
current.

6. XC4000H/E have identical I/O thresholds except XC4000E has �12 mA sink current.
Options are independent.

7. Defined as VDD � 0.5 V, calculated with VDD min = 4.5 V.

8. Input and output options are independent.

9. MAX 9000 has identical thresholds to FLEX 10k.

Note: All voltages in volts, all currents in milliamperes.

6.4 AC Input
Suppose we wish to connect an input bus containing sampled data from an
analog-to-digital converter (A/D) that is running at a clock frequency of 100 kHz
to an FPGA that is running from a system clock on a bus at 10 MHz (a NuBus).
We are to perform some filtering and calculations on the sampled data before
placing it on the NuBus. We cannot just connect the A/D output bus to our FPGA,
because we have no idea when the A/D data will change. Even though the A/D
data rate (a sample every 10 m s or every 100 NuBus clock cycles) is much lower
than the NuBus clock, if the data happens to arrive just before we are due to place
an output on the NuBus, we have no time to perform any calculations. Instead we
want to register the data at the input to give us a whole NuBus clock cycle (100
ns) to perform the calculations. We know that we should have the A/D data at the
flip-flop input for at least the flip-flop setup time before the NuBus clock edge.
Unfortunately there is no way to guarantee this; the A/D converter clock and the
NuBus clock are completely independent. Thus it is entirely possible that every
now and again the A/D data will change just before the NuBus clock edge.

6.4.1 Metastability
If we change the data input to a flip-flop (or a latch) too close to the clock edge
(called a setup or hold-time violation), we run into a problem called metastability
, illustrated in Figure 6.16. In this situation the flip-flop cannot decide whether its
output should be a '1' or a '0' for a long time. If the flip-flop makes a decision, at a
time t r after the clock edge, as to whether its output is a '1' or a '0', there is a
small, but finite, probability that the flip-flop will decide the output is a '1' when it
should have been a '0' or vice versa. This situation, called an upset , can happen
when the data is coming from the outside world and the flip-flop can�t determine
when it will arrive; this is an asynchronous signal , because it is not synchronized
to the chip clock.

FIGURE 6.16 Metastability.
(a) Data coming from one
system is an asynchronous
input to another. (b) A
flip-flop has a very narrow
decision window bounded
by the setup and hold times.
If the data input changes
inside this decision window,
the output may be
metastable�neither '1' or '0'.

Experimentally we find that the probability of upset , p , is

p = T 0 exp � t r / t c , (6.2)

(per data event, per clock edge, in one second, with units Hz �1 ·Hz �1 ·s �1) where t
r is the time a sampler (flip-flop or latch) has to resolve the sampler output; T 0
and t c are constants of the sampler circuit design. Let us see how serious this
problem is in practice. If t r = 5 ns, t c = 0.1 ns, and T 0 = 0.1 s, Eq. 6.2 gives the
upset probability as

 �5 ¥ 10 �19

p = 0.1 exp �������������� = 2 ¥ 10 �23 s , (6.3)

 0.1 ¥ 10 �9

which is very small, but the data and clock may be running at several MHz,
causing the sampler plenty of opportunities for upset.

The mean time between upsets (MTBU , similar to MTBF�mean time between
failures) is

 1 exp t r / t c

MTBU = �������������� = �������������� , (6.4)

 pf clock f data f clock f data

where f clock is the clock frequency and f data is the data frequency.

If t r = 5 ns, t c = 0.1 ns, T 0 = 0.1 s (as in the previous example), f clock = 100

MHz, and f data = 1 MHz, then

 exp (5 ¥ 10 �9 /0.1 ¥ 10 �9)

MTBU = ��������������������� = 5.2 ¥ 10 8 seconds , (6.5)

 (100 ¥ 10 6)(1 ¥ 10 6)(0.1)

or about 16 years (10 8 seconds is three years, and a day is 10 5 seconds). An
MTBU of 16 years may seem safe, but suppose we have a 64-bit input bus using
64 flip-flops. If each flip-flop has an MTBU of 16 years, our system-level MTBF
is three months. If we ship 1000 systems we would have an average of 10 systems
failing every day. What can we do?

The parameter t c is the inverse of the gain�bandwidth product , GB , of the
sampler at the instant of sampling. It is a constant that is independent of whether
we are sampling a positive or negative data edge. It may be determined by a
small-signal analysis of the sampler at the sampling instant or by measurement. It
cannot be determined by simulating the transient response of the flip-flop to a
metastable event since the gain and bandwidth both normally change as a function
of time. We cannot change t c .

The parameter T 0 (units of time) is a function of the process technology and the
circuit design. It may be different for sampling a positive or negative data edge,
but normally only one value of T 0 is given. Attempts have been made to calculate
T 0 and to relate it to a physical quantity. The best method is by measurement or
simulation of metastable events. We cannot change T 0 .

Given a good flip-flop or latch design, t c and T 0 should be similar for
comparable CMOS processes (so, for example, all 0.5 m m processes should have
approximately the same t c and T 0). The only parameter we can change when
using a flip-flop or latch from a cell library is t r , and we should allow as much
resolution time as we can after the output of a latch before the signal is clocked
again. If we use a flip-flop constructed from two latches in series (a master�slave
design), then we are sampling the data twice. The resolution time for the first
sample t r is fixed, it is half the clock cycle (if the clock is high and low for equal
times�we say the clock has a 50 percent duty cycle , or equal mark�space ratio).
Using such a flip-flop we need to allow as much time as we can before we clock
the second sample by connecting two flip-flops in series, without any
combinational logic between them, if possible. If you are really in trouble, the
next step is to divide the clock so you can extend the resolution time even further.

TABLE 6.2 Metastability parameters for FPGA flip-flops. These figures are not
guaranteed by the vendors.

FPGA T 0 / s t c / s

Actel ACT 1 1.0E�09 2.17E�10
Xilinx XC3020-70 1.5E�10 2.71E�10

QuickLogic QL12x16-0 2.94E�11 2.91E�10
QuickLogic QL12x16-1 8.38E�11 2.09E�10
QuickLogic QL12x16-2 1.23E�10 1.85E�10
Xilinx XC8100 2.15E-12 4.65E�10
Xilinx XC8100 synchronizer 1.59E-17 2.07E�10
Altera MAX 7000 2.98E�17 2.00E�10
Altera FLEX 8000 1.01E�13 7.89E�11

Sources: Actel April 1992 data book, p. 5-1, gives C1 = T 0 = 10 �9 Hz �1 , C2 = 1/

t c = 4.6052 ns �1 , or t c = 2.17E�10 s and T 0 = 1.0E�09 s. Xilinx gives K1 = T 0 =
1.5E�10 s and K2 = 1/ t c = 3.69E9 s�1, t c = 2.71E�10 s, for the XC3020-70
(p. 8-20 of 1994 data book). QuickLogic pASIC 1 QL12X16: t c = 0.2 ns to 0.3
ns, T 0 = 0.3E�10 s to 1.2E�10 s (1994 data book, p. 5-25, Fig. 2). Xilinx XC8100
data, t c = 4.65E�10 s and T 0 = 2.15E�12 s, is from October 1995 (v. 1.0) data
sheet, Fig.17 (the XC8100 was discontinued in August 1996). Altera 1995 data
book p. 437, Table 1.

Table 6.2 shows flip-flop metastability parameters and Figure 6.17 graphs the
metastability data for f clock = 10 MHz and f data = 1 MHz. From this graph we
can see the enormous variation in MTBF caused by small variations in t c . For

example, in the QuickLogic pASIC 1 series the range of T 0 from 0.3 to 1.2 ¥ 10
�10 s is 4:1, but it is the range of t c = 0.2 � 0.3 ns (a variation of only 1:1.5) that is
responsible for the enormous variation in MTBF (nearly four orders of magnitude
at t r = 5 ns). The variation in t c is caused by the variation in GB between the
QuickLogic speed grades. Variation in the other vendors� parts will be similar, but
most vendors do not show this information. To be safe, build a large safety
margin for MTBF into any design�it is not unreasonable to use a margin of four
orders of magnitude.

FIGURE 6.17 Mean time between failures (MTBF) as a function of resolution
time. The data is from FPGA vendors� data books for a single flip-flop with clock
frequency of 10 MHz and a data input frequency of 1 MHz (see Table 6.2).

Some cell libraries include a synchronizer , built from two flip-flops in cascade,
that greatly reduces the effective values of t c and T 0 over a single flip-flop. The
penalty is an extra clock cycle of latency.

To compare discrete TTL parts with ASIC flip-flops, the 74AS4374 TTL
metastable-hardened dual flip-flops , from TI, have t c = 0.42 ns and T 0 = 4 ns.
The parameter T 0 ranges from about 10 s for the 74LS74 (a regular flip-flop) to 4
ns for the 74AS4374 (over nine orders of magnitude different); t c only varies
from 0.42 ns (74AS374) to 1.3 ns (74LS74), but this small variation in t c is just
as important.

6.5 Clock Input
When we bring the clock signal onto a chip, we may need to adjust the logic level
(clock signals are often driven by TTL drivers with a high current output
capability) and then we need to distribute the clock signal around the chip as it is
needed. FPGAs normally provide special clock buffers and clock networks. We
need to minimize the clock delay (or latency), but we also need to minimize the
clock skew.

6.5.1 Registered Inputs
Some FPGAs provide a flip-flop or latch that you can use as part of the I/O
circuit (registered I/O). For other FPGAs you have to use a flip-flop or latch
using the basic logic cell in the core. In either case the important parameter is the
input setup time. We can measure the setup with respect to the clock signal at the
flip-flop or the clock signal at the clock input pad. The difference between these
two parameters is the clock delay.

FIGURE 6.18 Clock input. (a) Timing model with values for a Xilinx
XC4005-6. (b) A simplified view of clock distribution. (c) Timing diagram.
Xilinx eliminates the variable internal delay t PG , by specifying a pin-to-pin
setup time, t PSUFmin = 2 ns.

Figure 6.18 shows part of the I/O timing model for a Xilinx XC40005-6. 1

t PICK is the fixed setup time for a flip-flop relative to the flip-flop clock.●

t skew is the variable clock skew , the signed delay between two clock
edges.

●

t PG is the variable clock delay or latency .●

To calculate the flip-flop setup time (t PSUFmin) relative to the clock pad (which
is the parameter system designers need to know), we subtract the clock delay, so
that

t PSUF = t PICK � t PG . (6.6)

The problem is that we cannot easily calculate t PG , since it depends on the clock
distribution scheme and where the flip-flop is on the chip. Instead Xilinx
specifies t PSUFmin directly, measured from the data pad to the clock pad; this
time is called a pin-to-pin timing parameter . Notice t PSUF min = 2 ns ` t PICK � t

PG max = �1 ns.

Figure 6.19 shows that the hold time for a XC4005-6 flip-flop (t CKI) with
respect to the flip-flop clock is zero. However, the pin-to-pin hold time including
the clock delay is t PHF = 5.5 ns. We can remove this inconvenient hold-time
restriction by delaying the input signal. Including a programmable delay allows
Xilinx to guarantee the pin-to-pin hold time (t PH) as zero. The penalty is an
increase in the pin-to-pin setup time (t PSU) to 21 ns (from 2 ns) for the
XC4005-6, for example.

FIGURE 6.19 Programmable input delay. (a) Pin-to-pin timing model with
values from an XC4005-6. (b) Timing diagrams with and without programmable
delay.

We also have to account for clock delay when we register an output. Figure 6.20
shows the timing model diagram for the clock-to-output delay.

FIGURE 6.20
Registered output.
(a) Timing model with
values for an XC4005-6
programmed with the
fast slew-rate option.
(b) Timing diagram.

1. The Xilinx XC4005-6 timing parameters are from the 1994 data book p. 2-50
to p. 2-53.

6.6 Power Input
The last item that we need to bring onto an FPGA is the power. We may need
multiple VDD and GND power pads to reduce supply bounce or separate VDD
pads for mixed-voltage supplies. We may also need to provide power for on-chip
programming (in the case of antifuse or EPROM programming technology). The
package type and number of pins will determine the number of power pins,
which, in turn, affects the number of SSOs you can have in a design.

6.6.1 Power Dissipation
As a general rule a plastic package can dissipate about 1 W, and more expensive
ceramic packages can dissipate up to about 2 W. Table 6.3 shows the thermal
characteristics of common packages. In a high-speed (high-power) design the
ASIC power consumption may dictate your choice of packages. Actel provides a
formula for calculating typical dynamic chip power consumption of their FPGAs.
The formula for the ACT 2 and ACT 3 FPGAs are complex; therefore we shall
use the simpler formula for the ACT 1 FPGAs as an example 1 :

TABLE 6.3 Thermal characteristics of ASIC packages.

Package 2 Pin count Max. power P max /W
q JA /°CW �1

(still air) 3 , 4

q JA /°CW �1

(still air) 5

CPGA 84 33 32�38
CPGA 100 35
CPGA 132 30
CPGA 175 25 16
CPGA 207 22
CPGA 257 15
CQFP 84 40
CQFP 172 25
PQFP 100 1.0 55 56�75
PQFP 160 1.75 33 30�33
PQFP 208 2.0 33 27-32
VQFP 80 68
PLCC 44 52 44
PLCC 68 45 28�35

PLCC 84 1.5 44
PPGA 132 33�34

Total chip power = 0.2 (N ¥ F1) + 0.085 (M ¥ F2) + 0.8 (P ¥ F3) mW (6.7)

where

F1 = average logic module switching rate in MHz

F2 = average clock pin switching rate in MHz

F3 = average I/O switching rate in MHz

M = number of logic modules connected to the clock pin

N = number of logic modules used on the chip

P = number of I/O pairs used (input + output), with 50 pF load

As an example of a power-dissipation calculation, consider an Actel 1020B-2
with a 20 MHz clock. We shall initially assume 100 percent utilization of the 547
Logic Modules and assume that each switches at an average speed of 5 MHz. We
shall also initially assume that we use all of the 69 I/O Modules and that each
switches at an average speed of 5 MHz. Using Eq. 6.7 , the Logic Modules
dissipate

P LM = (0.2)(547)(5) = 547 mW , (6.8)

and the I/O Module dissipation is

P IO = (0.8)(69)(5) = 276 mW . (6.9)

If we assume the clock buffer drives 20 percent of the Logic Modules, then the
additional power dissipation due to the clock buffer is

P CLK = (0.085)(547)(0.2)(5) = 46.495 mW . (6.10)

The total power dissipation is thus

P D = (547 + 276 + 46.5) = 869.5 mW , (6.11)

or about 900 mW (with an accuracy of certainly no better than ± 100 mW).

Suppose we intend to use a very thin quad flatpack (VQFP) with no cooling
(because we are trying to save area and board height). From Table 6.3 the thermal
resistance, q JA , is approximately 68 °CW �1 for an 80-pin VQFP. Thus the
maximum junction temperature under industrial worst-case conditions (T A = 85
°C) will be

T J = (85 + (0.87)(68)) = 144.16 °C , (6.12)

(with an accuracy of no better than 10 °C). Actel specifies the maximum junction
temperature for its devices as T Jmax = 150 °C (T Jmax for Altera is also 150 °C,
for Xilinx T Jmax = 125°C). Our calculated value is much too close to the rated
maximum for comfort; therefore we need to go back and check our assumptions
for power dissipation. At or near 100 percent module utilization is not
unreasonable for an Actel device, but more questionable is that all nodes and I/Os
switch at 5 MHz.

Our real mistake is trying to use a VQFP package with a high q JA for a
high-speed design. Suppose we use an 84-pin PLCC package instead. From
Table 6.3 the thermal resistance, q JA , for this alternative package is

approximately 44 °CW �1 . Now the worst-case junction temperature will be a
more reasonable

T J = (85 + (0.87)(44)) = 123.28 °C , (6.13)

It is possible to estimate the power dissipation of the Actel architecture because
the routing is regular and the interconnect capacitance is well controlled (it has to
be since we must minimize the number of series antifuses we use). For most
other architectures it is much more difficult to estimate power dissipation. The
exception, as we saw in Section 5.4 �Altera MAX,� are the programmable ASICs
based on programmable logic arrays with passive pull-ups where a substantial
part of the power dissipation is static.

6.6.2 Power-On Reset
Each FPGA has its own power-on reset sequence. For example, a Xilinx FPGA
configures all flip-flops (in either the CLBs or IOBs) as either SET or RESET.
After chip programming is complete, the global SET/RESET signal forces all
flip-flops on the chip to a known state. This is important since it may determine
the initial state of a state machine, for example.

1. 1994 data book, p.1-9

2. CPGA = ceramic pin-grid array; CQFP = ceramic quad flatpack; PQFP =
plastic quad flatpack; VQFP = very thin quad flatpack; PLCC = plastic leaded
chip carrier; PPGA = plastic pin-grid array.

3. q JA varies with die size.

4. Data from Actel 1994 data book p. 1-9, p. 1-45, and p. 1-94.

5. Data from Xilinx 1994 data book p. 4-26 and p. 4-27.

6.7 Xilinx I/O Block
The Xilinx I/O cell is the input/output block (IOB) . Figure 6.21 shows the Xilinx
XC4000 IOB, which is similar to the IOB in the XC2000, XC3000, and XC5200 but
performs a superset of the options in these other Xilinx FPGAs.

FIGURE 6.21 The Xilinx XC4000 family IOB (input/output block). (Source:
Xilinx.)

The outputs contain features that allow you to do the following:

Switch between a totem-pole and a complementary output (XC4000H).●

Include a passive pull-up or pull-down (both n -channel devices) with a typical
resistance of about 50 k W .

●

Invert the three-state control (output enable OE or three-state, TS).●

Include a flip-flop, or latch, or a direct connection in the output path.●

Control the slew rate of the output.●

The features on the inputs allow you to do the following:

Configure the input buffer with TTL or CMOS thresholds.●

Include a flip-flop, or latch, or a direct connection in the input path.●

Switch in a delay to eliminate an input hold time.●

FIGURE 6.22 The Xilinx LCA (Logic Cell Array) timing model. The paths
show different uses of CLBs (Configurable Logic Blocks) and IOBs
(Input/Output Blocks). The parameters shown are for an XC5210-6. (Source:
Xilinx.)

Figure 6.22 shows the timing model for the XC5200 family. 1 It is similar to the
timing model for all the other Xilinx LCA FPGAs with one exception�the XC5200
does not have registers in the I/O cell; you go directly to the core CLBs to include a
flip-flop or latch on an input or output.

6.7.1 Boundary Scan
Testing PCBs can be done using a bed-of-nails tester. This approach becomes very
difficult with closer IC pin spacing and more sophisticated assembly methods using
surface-mount technology and multilayer boards. The IEEE implemented
boundary-scan standard 1149.1 to simplify the problem of testing at the board level.
The Joint Test Action Group (JTAG) developed the standard; thus the terms JTAG
boundary scan or just JTAG are commonly used.

Many FPGAs contain a standard boundary-scan test logic structure with a four-pin
interface. By using these four signals, you can program the chip using ISP, as well as
serially load commands and data into the chips to control the outputs and check the
inputs. This is a great improvement over bed-of-nails testing. We shall cover
boundary scan in detail in Section 14.6, �Scan Test.�

1. October 1995 (v. 3.0) data sheet.

6.8 Other I/O Cells
The Altera MAX 5000 and 7000 use the I/O Control Block (IOC) shown in
Figure 6.23 . In the MAX 5000, all inputs pass through the chipwide
interconnect. The MAX 7000E has special fast inputs that are connected directly
to macrocell registers in order to reduce the setup time for registered inputs.

FIGURE 6.23 A simplified
block diagram of the Altera
I/O Control Block (IOC)
used in the MAX 5000 and
MAX 7000 series. The I/O
pin feedback allows the I/O
pad to be isolated from the
macrocell. It is thus
possible to use a LAB
without using up an I/O pad
(as you often have to do
using a PLD such as a
22V10). The PIA is the
chipwide interconnect.

The FLEX 8000 and 10k use the I/O Element (IOE) shown in Figure 6.24 (the
MAX 9000 IOC is similar). The interface to the IOE is directly to the chipwide
interconnect rather than the core logic. There is a separate bus, the Peripheral
Control Bus , for the IOE control signals: clock, preset, clear, and output enable.

FIGURE 6.24 A simplified
block diagram of the Altera I/O
Element (IOE), used in the
FLEX 8000 and 10k series. The
MAX 9000 IOC (I/O Cell) is
similar. The FastTrack
Interconnect bus is the chipwide
interconnect. The PCB is used
for control signals common to
each IOE.

The AMD MACH 5 family has some I/O features not currently found on other
programmable ASICs. The MACH 5 family has 3.3 V and 5 V versions that are
both suitable for mixed-voltage designs. The 3 V versions accept 5 V inputs, and
the outputs of the 3 V versions do not drive above 3.3 V. You can apply a voltage
up to 5.5 V to device inputs before you connect VDD (this is known as hot
insertion or hot switching, allowing you to swap cards with power still applied
without causing latch-up). During power-up and power-down, all I/Os are
three-state, and there is no I/O current during power-down, allowing power-down
while connected to an active bus. All MACH 5 devices in the same package have
the same pin configuration, so you can increase or reduce the size of device after
completing the board layout.

6.9 Summary
Among the options available in I/O cells are: different drive strengths,
TTL-compatibility, registered or direct inputs, registered or direct outputs,
pull-up resistors, over-voltage protection, slew-rate control, and boundary-scan.
Table 6.4 shows a list of features. Interfacing an ASIC with a system starts at the
outputs where you check the voltage levels first, then the current levels. Table 6.5
is a look-up table for Tables 6.6 and 6.7 , which show the I/O resources present in
each type of programmable ASIC (using the abbreviations of Table 6.4).

TABLE 6.4 I/O options for programmable ASICs.

Code 1 I/O Option Function

IT/C TTL/CMOS input Programmable input buffer threshold
OT/C TTL/CMOS output Complementary or totem-pole output

nSNK Sink capability
Maximum current sink ability (e.g., 12SNK is I 0 =
12 mA sink)

nSRC Source capability
Maximum current source ability (e.g., 12SRC is I 0
= �12 mA source)

5/3 5V/3V Separate I/O and core voltage supplies
OD Open drain/collector Programmable open-drain at the output buffer
TS Three-state Output buffer with three-state control

SR Slew-rate control
Fast or slew-rate limited output buffer to reduce
ground bounce

PD Pull-down
Programmable pull-down device or resistor at the
I/O pad

PU Pull-up
Programmable pull-up device or resistor at the I/O
pad

EP Enable polarity
Driver control can be positive (three-state) or
negative (enable).

RI Registered input Inputs may be registered in I/O cell.
RO Registered output Outputs may be registered in I/O cell.

RIO Registered I/O
Both inputs and outputs may be registered in I/O
cell.

ID Input delay Input delay to eliminate input hold time
JTAG JTAG Boundary-scan test
SCH Schmitt trigger Schmitt trigger or input hysteresis

HOT Hot insertion Inputs protected from hot insertion

PCI PCI compliant
Output buffer characteristics comply with PCI
specifications.

Important points that we covered in this chapter are the following:

Outputs can typically source or sink 5�10 mA continuously into a DC load,
and 50�200 mA transiently into an AC load.

●

Input buffers can be CMOS (threshold at 0.5 V DD) or TTL (1.4 V).●

Input buffers normally have a small hysteresis (100�200 mV).●

CMOS inputs must never be left floating.●

Clamp diodes to GND and VDD are present on every pin.●

Inputs and outputs can be registered or direct.●

I/O registers can be in the I/O cell or in the core.●

Metastability is a problem when working with asynchronous inputs.●

1. These codes are used in Tables 6.6 and 6.7 .

6.10 Problems
* = Difficult, ** = Very difficult, *** = Extremely difficult

6.1 (I/O resources, 60 min.) Obtain the specifications for the latest version of your
choice of FPGA vendor from a data book or online data sheet and complete a
table in the same format as Tables 6.6 and 6.7 .

TABLE 6.5 I/O Cell Tables.
Programmable ASIC family Table Programmable ASIC family Table
Actel (ACT 1)

Xilinx (XC3000)

Actel (ACT 2)

Altera MAX (EPM 5k)

Xilinx EPLD (XC7200/7300)

QuickLogic (pASIC 1)

Crosspoint (CP20K)

Altera MAX (EPM 7000)

Atmel (AT6000)

Table 6.6

Actel (ACT 3)

Xilinx LCA (XC5200)

Altera FLEX (8000/10k)

AMD MACH 5

Actel 3200DX

Altera MAX (EPM 9000)

Xilinx (XC8100)

AT&T ORCA (2C)

Xilinx (XC4000)

Table 6.7

6.2 (I/O timing, 60 min.) On-chip delays are only half the battle in a typical
design. Using data book parameters for an FPGA that you choose, estimate
(worst-case commercial) how long it takes to bring a signal on-chip; through an
input register (a flip-flop); through a combinational function (assume an inverter);
and back off chip again through another (flip-flop) register. Give your answer in
three parts:

TABLE 6.6 Programmable ASIC I/O logic resources.
 Actel (ACT 1) Xilinx (XC3000) Actel (ACT 2)

I/O cell name I/O module
IOB (Input/Output
Block)

I/O module

I/O cell
functions 1

TS, 10SRC,
10SNK

TS, RIO, IT/C, PU,
4SRC, 4SNK, 8SRC
(3100), 8SNK (3100)

TS, (RIO) 2 , 10SRC,
10SNK

Number of I/O
cells

Max. I/O:

57 (1010)

69 (1020)

Max. I/O:

64 (3020)

144 (3090)

Max. I/O:

83 (1225)

140 (1280)

 Altera MAX 5000 Xilinx EPLD
QuickLogic
(pASIC 1)

I/O cell name I/O control block I/O block
Bidirectional
input/output cell &
dedicated input cell

I/O cell
functions

TS, 4SRC, 8SNK (TS), (RI) 3 , 5/3,
4SRC, 12SNK

TS

Number of I/O
cells

8 (5016)

�64 (5192)

38 (7336)�156 (73144)

36 (7236)

�72 (7272)

32 (QL6X8) 4

�104 (QL16X24)

Crosspoint
(CP20K)

Altera MAX 7000 Atmel (AT6000)

I/O cell name I/O cell
IOC (I/O Control
Block)

Entrance and exit
cells

I/O cell
functions

TS, SR, IC/T ,
JTAG, SCH

TS, SR, 5/3, PCI,
4SRC, 12SNK

TS, SR, PU, OD,
IT/C, 16SRC, 16SNK

Number of I/O
cells

91 (20220)

�270 (22000)

36 (7032)

�164 (7256)

96 (6002)

�160 (6010)

TABLE 6.7 Programmable ASIC I/O logic resources (contd.).

 Actel (ACT 3) Xilinx LCA (XC5200)
Altera FLEX
(8000/10k)

I/O cell name I/O Module IOB (I/O Block) IOE (I/O Element)

I/O cell
functions 5

TS, SR, (RIO) 6 ,
8SRC, 12SNK

TS, PU, PD, JTAG
TS, SR, RI or RO,
JTAG, PCI(8k),
4SRC, 12SNK

Number of I/O
cells

80 (1415)

�228 (14100)

84 (5202)

�244 (5215)

78 (8282)�208
(81500)

150 (10K10)

�406 (10K100)

 AMD MACH 5 Actel 3200DX
Altera MAX
(EPM 9000)

I/O cell name I/O Cell I/O Module IOE (I/O Element)

I/O cell
functions

TS, 3.2SRC,
16SNK, PCI

Same as ACT 2
TS, SR, 5/3, PCI,
JTAG, 4SRC, 8SNK

Number of I/O
cells

120 (M5-128)

�256 (M5-512)

126 (A3265DX)

�292 (A32400DX)

168 (9320)

�216 (9560)

Xilinx
(XC8100) 7

AT&T ORCA 2C Xilinx (XC4000)

I/O cell name I/O Cell
PIC (Programmable
input/output cells)

IOB (I/O Block)

I/O cell
functions

TS, PU, IT/C
(global), JTAG,
PCI, 4SRC,
4/24SNK 8

TS, IT/C, ID, PU, PD,
OD, JTAG, PCI, (6SRC
and 12SNK) or (3SRC
and 6SNK), SCH

TS, RIO, JTAG, ID,
IT/C, OT/C, PU,
PD, 4SRC, 12SNK,
24SNK (4000A/H)

Number of I/O
cells

32 (8100)

�208 (8109)

160 (2C04)

�480 (2C40)

80 (4003)

�256 (4025)

a. The delay from a CMOS-level pad input (trip-point of 0.5) to the D input
of the input register plus the flip-flop setup time.

●

b. The delay (measured from the clock, so include the clock-to-Q delay)
through the inverter to the output register plus the setup time.

●

c. The delay from the output register (measured from the clock edge) to the
output pad (trip point of 0.5) with a 50 pF load.

●

In each case give your answers: (i) Using data book symbols (specify which
symbols and where in the data books you found them); and (ii) as calculated
values, in nanoseconds, using a speed grade that you specify. State and explain
very clearly any assumptions that you need to make about the clock to determine
the setup times.

6.3 (Clock timing, 30 min.) When we calculate FPGA timing we need to include
the time it takes to bring the clock onto the chip. For an FPGA you choose,
estimate (worst-case commercial) the delay from the clock pad (0.5 trip-point) to
the clock pin of an internal flip-flop

a. in terms of data book symbols (specify which and where you found them
� t AB on p. 2-32 of the ABC 1994 data book, for example), and

●

b. as calculated values in nanoseconds.●

6.4 (**Bipolar drivers, 60 min.) The circuit in Figure 6.3 uses npn transistors.

a. Design a similar circuit that uses pnp transistors.●

b. The pnp circuit may work better, why?●

c. Design an even better circuit that uses npn and pnp transistors.●

d. Explain why your circuit is even better.●

e. Draw a diagram for a controller using op-amps instead of bipolar●

transistors.

6.5 (Xilinx output buffers, 15 min.) For the Xilinx XC2000 and XC3000 series 9 :
I OLpeak = 120 mA and I OHpeak = 80 mA; for the XC4000 family: I OLpeak = 160
mA and I OHpeak = 130 mA; and for the XC7300 series: I OLpeak = 100 mA and I

OHpeak = 65 mA. For a typical 0.8�1.0 m m process:

p -channel (20/1): I DS = 3.0�5.0 mA with V DS = �5 V, V GS = �5 V

n -channel (20/1): I DS = 7.5�10.0 mA with V DS = 5 V, V GS = 5 V

a. Calculate the effective sizes of the transistors in the Xilinx output buffer.●

b. Why might these only be �effective� sizes?●

c. The Xilinx data book gives values for �source current and output high
impedance� shown in Table 6.8 . Graph the buffer characteristics when
sourcing current.

●

d. Explain which parts in Table 6.8 use complementary output buffers and
which use totem-pole outputs and explain how you can tell.

●

e. Can you explain how Xilinx arrived at the figures for impedance?●

f. Comment on the method that Xilinx used.●

g. Suggest and calculate a better measure of impedance.

TABLE 6.8 Xilinx output buffer characteristics.

 V O (output voltage) 10 / V

Part 4 3 2 Impedance/ W
IO (2018) �30 �52 �60 30
IO (3020) �35 �60 �75 30
IO (4005) 0 �12 �50 25
IO (73108) 0 �10 �26 40

●

6.6 (Xilinx logic levels, 10 min.) Most manufacturers measure V OLmax with V

DD set to its minimum value, Xilinx measures V OLmax at V DDmax . For example,

for the Xilinx XC4000 11 : V OLmax = 0.4 V at I OLmax = 12 mA and V DDmax . A
footnote also explains that V OLmax is measured with �50 % of the outputs
simultaneously sinking 12 mA.�

a. Can you explain why Xilinx measures V OLmax this way?●

b. What information do you need to know to estimate V OLmax if all the
other outputs were not sourcing or sinking any current.

●

6.7 (Output levels, 10 min.) In Figure 6.7 (b�d) the PAD signal is labeled with
different levels: In Figure 6.7 (b) the PAD high and low levels are V OHmin and V

OLmax respectively, in Figure 6.7 (c) they are V DD and V OLmax , and in
Figure 6.7 (c) they are V OHmin and V SS .

a. Explain why this is.●

b. In no more than 20 words explain the difference between V DD and V

OHmin as well as the difference between V OLmax and V SS .
●

6.8 (TTL and CMOS outputs, 10 min.) The ACT 2 figures for t DLH and t DHL in
Figure 6.7 are for the CMOS levels. For TTL levels the figures are (with the
CMOS figures in parentheses): t DLH = 10.6 ns (13.5 ns), and t DHL = 13.4 ns
(11.2 ns). The output buffer is the same in both cases, but the delays are measured
using different levels. Explain the differences in these delays quantitatively.

6.9 (Bus-keeper contention, 30 min.) Figure 6.25 shows a three-state bus, similar
to Figure 6.5 , that has a bus keeper on CHIP1 and a pull-up resistor that is part of
a Xilinx IOB on CHIP2�we have a type of bus-keeper contention. For the XC3000
the pull-up current is 0.02�0.17 mA and thus RL1 is between 5 and 50 k W (1994
data book, p. 2-155).

a. Explain what might happen when both the bus drivers turn off.●

b. Have you considered all possibilities?●

c. Is bus-keeper contention a problem?●

d. In the PCI specification control signals are required to be sustained
three-state. A driver must deassert a control signal to the inactive state
(high for the PCI control signals) for at least one clock cycle before
three-stating the line. This means that a driver has to �put the signal back
where it found it.� Does this affect your answers?

●

e. Suggest a �fix� that stops you having to worry about any potential
problems.

FIGURE 6.25
A bus keeper,
BK1, and
pull-up
resistor, RL1,
on the same
bus.

●

6.10 (Short-circuit, 10 min.) What happens if you short-circuit the output of a
complementary output buffer to (a) GND and (b) VDD? (c) What difference
does it make if the output buffer is complementary or a totem-pole?

6.11 (Transmission line bias, 10 min.)

a. Why do we adjust the resistors in Figure 6.10 (c) so that the Thévenin
equivalent voltage source is 1.6 V?

●

b. What current does a driver have to sink if we want V OLmax = 0.4 V?●

c. What current does a driver have to source if we want V OHmin = 2.4 V?●

6.12 (Ground resistance, 10 min.) Calculate the resistance of an aluminum GND
net that is 0.5 mm long and 10 m m wide.

6.13 (*Temperature) (a) (30 min.) You are about to ship a product and you have
a problem with an FPGA. A high case temperature is causing it to be slower than
you thought. You calculated the power dissipation, but you forgot that the InLet
microprocessor is toasting the next door FPGA. You have no easy way to
calculate T J now, so we need to measure it in order to redesign the FPGA with
fixed I/O locations. You remember that a diode forward voltage has a temperature
coefficient of about �2 mV°C �1 and there are clamp diodes on the FPGA I/O.
Explain, using circuit diagrams, how to measure the T J of an FPGA in-circuit
using: a voltage supply, DVM, thermometer, resistors, spoon, and a coffee maker.
(b) (**120 min.) Try it.

6.14 (Delay measurement, 10 min.) Sumo Silicon has a new process ready before
we do and Sumo�s data book timing figures are much better than ours. Explain
how to reduce our logic delays by changing our measurement circuits and trip
points.

6.15 (Data sheets, 10 min.) In the 1994 data book Xilinx specifies V ILmin = 0.3 V
(and V ILmax = 0.8 V) for the XC2000L. Why does this surprise you and what do
you think the value for VILmin really is? FPGA vendors produce thousands of
pages of data every year with virtually no errors. It is important to have the
confidence to question a potential error.

6.16 (GTL, 60 min.) Find the original reference to Gunning transistor logic. Write
a one-page summary of its uses and how it works.

6.17 (Thresholds, 10 min.) With some FPGAs it is possible to configure an output
at TTL thresholds and an input (on the same pad) at CMOS thresholds. Can you
think of a reason why you might want to do this?

6.18 (Input levels, 10 min.) When we define V IHmin = 0.7 V DD , why do we
calculate the minimum value of V IH using V DDmax = 5.5 V?

6.19 (Metastability equations, 30 min.)

a. From Eq. 6.4 show that if we make two measurements of t r and MTBF
then:

 t r 1 � t r 2

t c = ������������������ , (6.14)

 ln MTBF 1 � ln MTBF 2

 exp t r 1 / t c

T 0 = ������������������ . (6.15)

●

 ln MTBF 1 f c f d

b. MTBU is extremely sensitive to variations in t c , show that:

 d MTBU � t r

 -�������� = ����� . (6.16)

 d t c t c 2

●

c. Show that the variation in MTBU is related to the variation in t c by the
following expression:

 D MTBU � t r Dt c

 -������ = ������� . (6.17)

 MTBU t c 2

●

6.20 (***Alternative metastability solutions, 120 min.) Write a minitutorial on
metastability solutions. The best sources for this type of information are usually
application notes written by FPGA and TTL manufacturers, many of which are
available on the Web (TI is a good source on this topic).

6.21 (Altera 8000 I/O, 10 min) Figure 6.26 shows the Altera FLEX 8000 I/O
characteristics. Determine as much as you are able to from these figures.

FIGURE 6.26 (a) Altera FLEX 8000 I/O characteristics operating at 5 V.
(b) EPF8282V I/O operating at 3.3 V. (c) Characteristics with mixed 5V and 3.3
V I/O operation.

6.22 (Power calculation, 60 min.) Suppose we wish to limit power dissipation on
an ACT 1 A1020 chip to below 1 W for a 44-pin PLCC package.

a. Derive an equation for the number of logic modules, number of I/O
modules, number of modules connected to the clock and system clock
frequency in terms of the package parameters and the worst-case T A .

●

b. Assume:●

100 percent utilization of I/Os,

50 percent are outputs connected to a 50 pF load,

100 percent utilization of logic modules,

10 percent of the logic modules are connected to the clock,

20 percent of the logic modules toggle every clock cycle,

20 percent of the I/Os toggle every clock cycle.

Determine an upper limit on clock frequency.

c. Next vary each of the assumptions you made in part b. Draw graphs
showing the variation of clock frequency as you vary each of the above
parameters, including the power dissipation limit (a spreadsheet will help).

●

d. Can you draw any conclusions from this exercise?●

6.23 (Switch debounce, 30 min) Design a logic circuit to �debounce� the output
from a buffer whose input is connected to a bounce-prone switch. Your system
operates at a clock frequency of 1 MHz.

6.24 (Plugs and sockets, 30 min.) Draw the plugs and sockets (to scale) for the
technologies in Table 6.9 .

TABLE 6.9 TTL-compatible CMOS logic thresholds (Problems 6.24 and 6.25).
12

 Input levels Output levels driving TTL Output levels driving CMOS
13

Family V
IHmin

V
ILmax

V
OHmin

I
OHmax

V
OLmax

I
OLmax

V
OHmin

I
OHmax

V
OLmax

I
OLmax

74HCT 2.0 0.8 3.84 �4.0 0.33 4.0 4.4 �0.02 0.1 0.02
74HC 3.85 1.35 3.84 �4.0 0.33 4.0 4.4 �0.02 0.1 0.02
74ACT 2.0 0.8 3.76 �24.0 0.37 24.0 4.4 �0.05 0.1 0.05
74AC 3.85 1.35 3.76 �24.0 0.37 24.0 4.4 �0.05 0.1 0.05

6.25 (TTL compatibility, 30 min.) Explain very carefully, giving an example
using actual figures from the tables, how you would determine the compatibility
between the TTL and CMOS logic thresholds shown in Table 6.9 and Table 6.10
and the FPGA logic thresholds in Table 6.1 .

TABLE 6.10 TTL logic thresholds (Problem 6.25). 14

TTL Family 15 V IHmin V ILmax V OHmin I OHmax V OLmax I OLmax I IHmax I ILmax

74S 2.0 0.8 2.7 �1.0 0.5 20.0 0.05 �2.0
74LS 2.0 0.8 2.7 �0.4 0.5 8.0 0.02 �0.4
74ALS 2.0 0.8 2.7 �0.4 0.5 8.0 0.02 �0.2
74AS 2.0 0.8 2.7 �2.0 0.5 20.0 0.02 �0.5
74F 2.0 0.8 2.7 �1.0 0.5 20.0 0.02 �0.6
74FCT 2.0 0.8 2.4 �15.0 0.5 48.0 ±0.005 ±0.005
74FCT-T 2.0 0.8 2.4 �8.0 0.5 48.0 ±0.005 ±0.005

6.26 (ECL, 30 min.) Emitter-coupled logic (ECL) uses a positive supply, V CC =
0 V, and a negative supply, V EE = �5.2 V. The highest logic voltage allowed is
�0.81 V and the lowest is �1.85 V. Table 6.11 shows the ECL 10K thresholds.

a. Calculate the high-level and low-level noise margins.●

b. Find out the 100K thresholds and●

c. calculate the 100K noise margins.

TABLE 6.11 ECL logic thresholds (Problem 6.26).

 V IHmin / V V ILmax / V V OHmin / V V OLmax / V

ECL10K �1.105 �1.475 �0.980 �1.630
ECL100K

●

6.27 (Schmitt trigger, 30 min.) Find out the typical hysteresis for a TTL Schmitt
trigger. What are the advantages and disadvantages of changing the hysteresis?

6.28 (Hysteresis, 20 min.)

a. Draw the transfer curve for an inverting buffer with very high gain that
has a switching threshold centered at 2.2 V and 300 mV hysteresis.

●

b. If the center of the characteristic shifts by �0.3 V and +0.4 V and the
hysteresis varies from 260 mV to 350 mV, calculate V IHmin and V ILmax .

●

6.29 (Driving an LED, 30 min.) Find out the typical current and voltage drive
required by an LED and design a circuit to drive it. List your sources of
information.

6.30 (**Driving TTL, 60 min.) Find out the input current requirements of
different TTL families and write a minitutorial on the I/O requirements (in
particular the current) when driving high and low levels onto a bus.

1. Code definitions are listed in Table 6.4 .

2. ACT 2 I/O Module is separate from the I/O Pad Driver.

3. Xilinx EPLD uses a mixture of I/O blocks, input-only blocks, and output-only
blocks. The I/O blocks and input only blocks contain the equivalent of a D
flip-flop (configured to be a flip-flop or latch).

4. 8 I/O are dedicated inputs on all parts.

5. Code definitions are listed in Table 6.4 .

6. ACT 3 I/O Module is separate from the I/O Pad Driver.

7. Discontinued August 1986.

8. Two output modes: Capacitive (4SNK) and Resistive (24SNK).

9. 1994 databook, p. 8-15 and p. 9-23.

10. Currents in milliamperes.

11. Xilinx 1994 data book, p. 2-48.

12. All voltages in volts, all currents in milliamperes.

13. I IHmax = ±0.001 mA, I ILmax = ±0.001 mA for all families.

14. All voltages in volts, all currents in milliamperes

15. Other (older) TTL and CMOS logic families include 4000, 74, 74H, and 74L

6.11 Bibliography
Wakerly�s [1994] book describes TTL and CMOS logic thresholds as well as
noise margins. The specification of digital I/O interfaces (voltage and current
levels) is defined by the JEDEC (part of the Electronic Industries Association,
EIA) JC-16 committee standards [JEDEC I/O]. Standards for ESD measurement
are not as well defined; companies use a range of specifications: MIL-STD-883,
EIAJ, a published model used by AT&T (see, for example, p. 5-13 to p. 5-19 in
the AT&T 1995 FPGA data book) as well as JEDEC and ANSI/IEEE standards
[JEDEC I/O, JEDEC ESD, ANSI/IEEE ESD]. You are not likely to find any of
these standards at the library, but they are available through specialist technical
document distributors (typical 1996 costs were about $25 for the JEDEC
documents; catalogs are generally free of charge). These standards are not
technical reports, most only contain a few pages, but they are the source of the
parameters that you see in data sheets.

6.12 References
Page numbers in brackets after a reference indicate its location in the chapter
body.

[JEDEC I/O] [reference location] In numerical (not chronological) order the
relevant JEDEC standards for I/O are:

JESD8-A. Interface Standard for Nominal 3 V/3.3 V Supply Digital Integrated
Circuits (June 1994). This standard replaces JEDEC Standards 8, 8-1, and 8-1-A
and defines the DC interface parameters for digital circuits operating from a
power supply of nominal 3 V/3.3 V.

JESD8-2. Standard for Operating Voltages and Interface Levels for Low Voltage
Emitter-Coupled Logic (ECL) Integrated Circuits (March 1993). Describes 300K
ECL (voltage and temperature compensated, with threshold levels compatible
with 100K ECL).

JESD8-3. Gunning Transceiver Logic (GTL) Low-Level, High-Speed Interface
Standard for Digital Integrated Circuits (Nov. 1993). Defines the DC input and
output specifications for a low-level, high-speed interface for integrated circuits.

JESD8-4. Center-Tap-Terminated (CTT) Low-Level, High-Speed Interface
Standard for Digital Integrated Circuits (Nov. 1993). Defines the DC I/O
specifications for a low-level, high-speed interface for integrated circuits that can
be a superset of LVCMOS and LVTTL.

JESD8-5. 2.5 V +/� 0.2 V (Normal Range), and 1.8 V�2.7 V (Wide Range) Power
Supply Voltage and Interface Standard for Nonterminated Digital Integrated
Circuit (Oct. 1995). Defines power supply voltage ranges, DC interface
parameters for a high-speed, low-voltage family of nonterminated digital circuits.

JESD8-6. High Speed Transceiver Logic (HSTL): A 1.5 V Output Buffer Supply
Voltage Based Interface Standard for Digital Integrated Circuits (Aug. 1995).
Describes a 1.5 V high-performance CMOS interface suitable for high I/O count
CMOS and BiCMOS devices operating at over 200 MHz.

JESD12-6. Interface Standard for Semicustom Integrated Circuits (March 1991).
Defines logic interface levels for CMOS, TTL, and ECL inputs and outputs for 5
V operation.

[JEDEC ESD, ANSI/IEEE ESD] The JEDEC and IEEE standards for ESD are:

JESD22-C101. Field Induced Charged Device Model Test Method for
Electrostatic Discharge Withstand Thresholds of Microelectronic Components
(May 1995). Describes Charged Device Model that simulates
charging/discharging events that occur in production equipment and processes.
Potential for CDM ESD events occur with metal-to-metal contact in
manufacturing.

ANSI/EOS/ESD S5.1-1993. Electrostatic Discharge (ESD) Sensitivity Testing,
Human Body Model (HBM), Component Level.

ANSI/IEEE C62.47-1992. Guide on Electrostatic Discharge (ESD):
Characterization of the ESD Environment.

ANSI/IEEE 1181-1991. Latchup Test Methods for CMOS and BiCMOS
Integrated Circuit Process Characterization.

PCI Local Bus Specification, Revision 2.1, June 1, 1995. Available from PCI
Special Interest Group, PO Box 14070, Portland OR 97214. (800) 433-5177
(U.S.), (503)797-4207 (International). 282 p. Detailed description of the electrical
and mechanical requirements for the PCI Bus written for engineers who already
understand the basic operation of the bus protocol. [reference location]

Wakerly, J. F. 1994. Digital Design: Principles and Practices. 2nd ed. Englewood
Cliffs, NJ: Prentice-Hall, 840 p. ISBN 0-13-211459-3. TK7874.65.W34. [
reference location]

PROGRAMMABLE
ASIC
INTERCONNECT
All FPGAs contain some type of programmable interconnect . The structure and
complexity of the interconnect is largely determined by the programming
technology and the architecture of the basic logic cell. The raw material that we
have to work with in building the interconnect is aluminum-based metallization,
which has a sheet resistance of approximately 50 m W /square and a line
capacitance of 0.2 pFcm �1 . The first programmable ASICs were constructed
using two layers of metal; newer programmable ASICs use three or more layers
of metal interconnect.

Last Edited by SP 14112004

7.1 Actel ACT
The Actel ACT family interconnect scheme shown in Figure 7.1 is similar to a
channeled gate array. The channel routing uses dedicated rectangular areas of
fixed size within the chip called wiring channels (or just channels). The
horizontal channels run across the chip in the horizontal direction. In the vertical
direction there are similar vertical channels that run over the top of the basic logic
cells, the Logic Modules. Within the horizontal or vertical channels wires run
horizontally or vertically, respectively, within tracks . Each track holds one wire.
The capacity of a fixed wiring channel is equal to the number of tracks it
contains. Figure 7.2 shows a detailed view of the channel and the connections to
each Logic Module�the input stubs and output stubs .

FIGURE 7.1 The interconnect architecture used in an Actel ACT family FPGA.
(Source: Actel.)

FIGURE 7.2 ACT 1 horizontal and vertical channel architecture. (Source:
Actel.)

In a channeled gate array the designer decides the location and length of the
interconnect within a channel. In an FPGA the interconnect is fixed at the time of
manufacture. To allow programming of the interconnect, Actel divides the fixed
interconnect wires within each channel into various lengths or wire segments. We
call this segmented channel routing, a variation on channel routing. Antifuses
join the wire segments. The designer then programs the interconnections by
blowing antifuses and making connections between wire segments; unwanted
connections are left unprogrammed. A statistical analysis of many different
layouts determines the optimum number and the lengths of the wire segments.

7.1.1 Routing Resources
The ACT 1 interconnection architecture uses 22 horizontal tracks per channel for
signal routing with three tracks dedicated to VDD, GND, and the global clock
(GCLK), making a total of 25 tracks per channel. Horizontal segments vary in
length from four columns of Logic Modules to the entire row of modules (Actel
calls these long segments long lines).

Four Logic Module inputs are available to the channel below the Logic Module
and four inputs to the channel above the Logic Module. Thus eight vertical tracks
per Logic Module are available for inputs (four from the Logic Module above the
channel and four from the Logic Module below). These connections are the input

stubs.

The single Logic Module output connects to a vertical track that extends across
the two channels above the module and across the two channels below the
module. This is the output stub. Thus module outputs use four vertical tracks per
module (counting two tracks from the modules below, and two tracks from the
modules above each channel). One vertical track per column is a long vertical
track (LVT) that spans the entire height of the chip (the 1020 contains some
segmented LVTs). There are thus a total of 13 vertical tracks per column in the
ACT 1 architecture (eight for inputs, four for outputs, and one for an LVT).

Table 7.1 shows the routing resources for both the ACT 1 and ACT 2 families.
The last two columns show the total number of antifuses (including antifuses in
the I/O cells) on each chip and the total number of antifuses assuming the wiring
channels are fully populated with antifuses (an antifuse at every horizontal and
vertical interconnect intersection). The ACT 1 devices are very nearly fully
populated.

TABLE 7.1 Actel FPGA routing resources.

Horizontal
tracks per
channel, H

Vertical
tracks per
column, V

Rows, R Columns, C

Total

antifuses

on each
chip

H ¥ V ¥ R
¥ C

A1010 22 13 8 44 112,000 100,672
A1020 22 13 14 44 186,000 176,176
A1225A 36 15 13 46 250,000 322,920
A1240A 36 15 14 62 400,000 468,720
A1280A 36 15 18 82 750,000 797,040

If the Logic Module at the end of a net is less than two rows away from the driver
module, a connection requires two antifuses, a vertical track, and two horizontal
segments. If the modules are more than two rows apart, a connection between
them will require a long vertical track together with another vertical track (the
output stub) and two horizontal tracks. To connect these tracks will require a total
of four antifuses in series and this will add delay due to the resistance of the
antifuses. To examine the extent of this delay problem we need some help from
the analysis of RC networks.

7.1.2 Elmore�s Constant
Figure 7.3 shows an RC tree �representing a net with a fanout of two. We shall
assume that all nodes are initially charged to V DD = 1 V, and that we short node
0 to ground, so V 0 = 0 V, at time t = 0 sec. We need to find the node voltages, V

1 to V 4 , as a function of time. A similar problem arose in the design of

wideband vacuum tube distributed amplifiers in the 1940s. Elmore found a
measure of delay that we can use today [Rubenstein, Penfield, and Horowitz,
1983].

FIGURE 7.3 Measuring the delay of a net. (a) An RC tree. (b) The waveforms
as a result of closing the switch at t = 0.

The current in branch k of the network is

 d V k

i k = � C k ��� . (7.1)

 d t

The linear superposition of the branch currents gives the voltage at node i as

 n d V k

V i = � S R ki C k ��� , (7.2)

 k = 1 d t

where R ki is the resistance of the path to V 0 (ground in this case) shared by node
k and node i . So, for example, R 24 = R 1 , R 22 = R 1 + R 2 , and R 31 = R 1 .

Unfortunately, Eq. 7.2 is a complicated set of coupled equations that we cannot
easily solve. We know the node voltages have different values at each point in
time, but, since the waveforms are similar, let us assume the slopes (the time
derivatives) of the waveforms are related to each other. Suppose we express the
slope of node voltage V k as a constant, a k , times the slope of V i ,

 d V k d V i

 ��� = a k ��� . (7.3)

 d t d t

Consider the following measure of the error, E , of our approximation:

 n

E = � S R ki C k . (7.4)

 k = 1

The error, E , is a minimum when a k = 1 since initially V i (t = 0) = V k (t = 0)
= 1 V (we normalized the voltages) and V i (t = ") = V k (t = ") = 0.

Now we can rewrite Eq. 7.2 , setting a k = 1, as follows:

 n d V i

V i = � S R ki C k ��� , (7.5)

 k = 1 d t

This is a linear first-order differential equation with the following solution:

 n
V i (t) = exp (� t / t Di) ; t Di = S R ki C k . (7.6)

 k = 1

The time constant t D i is often called the Elmore delay and is different for each
node. We shall refer to t D i as the Elmore time constant to remind us that, if we
approximate V i by an exponential waveform, the delay of the RC tree using
0.35/0.65 trip points is approximately t Di seconds.

7.1.3 RC Delay in Antifuse Connections
Suppose a single antifuse, with resistance R 1 , connects to a wire segment with
parasitic capacitance C 1 . Then a connection employing a single antifuse will
delay the signal passing along that connection by approximately one time
constant, or R 1 C 1 seconds. If we have more than one antifuse, we need to use
the Elmore time constant to estimate the interconnect delay.

FIGURE 7.4 Actel routing model. (a) A four-antifuse connection. L0 is an
output stub, L1 and L3 are horizontal tracks, L2 is a long vertical track (LVT),
and L4 is an input stub. (b) An RC-tree model. Each antifuse is modeled by a
resistance and each interconnect segment is modeled by a capacitance.

For example, suppose we have the four-antifuse connection shown in Figure 7.4 .
Then, from Eq. 7.6 ,

t D 4 = R 14 C 1 + R 24 C 2 + R 14 C 1 + R 44 C 4

 =
(R 1 + R 2 + R 3 + R 4) C 4 + (R 1 + R 2 + R 3) C 3 + (R 1 + R 2) C 2 +
R 1 C 1

If all the antifuse resistances are approximately equal (a reasonably good
assumption) and the antifuse resistance is much larger than the resistance of any
of the metal lines, L1�L5, shown in Figure 7.4 (a very good assumption) then R 1
= R 2 = R 3 = R 4 = R , and the Elmore time constant is

t D 4 = 4 RC 4 + 3 RC 3 + 2 RC 2 + RC 1 (7.7)

Suppose now that the capacitance of each interconnect segment (including all the
antifuses and programming transistors that may be attached) is approximately
constant, and equal to C . A connection with two antifuses will generate a 3 RC
time constant, a connection with three antifuses a 6 RC time constant, and a
connection with four antifuses gives a 10 RC time constant. This analysis is
disturbing�it says that the interconnect delay grows quadratically (� n 2) as we
increase the interconnect length and the number of antifuses, n . The situation is
worse when the intermediate wire segments have larger capacitance than that of
the short input stubs and output stubs. Unfortunately, this is the situation in an
Actel FPGA where the horizontal and vertical segments in a connection may be
quite long.

7.1.4 Antifuse Parasitic Capacitance
We can determine the number of antifuses connected to the horizontal and
vertical lines for the Actel architecture. Each column contains 13 vertical signal
tracks and each channel contains 25 horizontal tracks (22 of these are used for
signals). Thus, assuming the channels are fully populated with antifuses,

An input stub (1 channel) connects to 25 antifuses.●

An output stub (4 channels) connects to 100 (25 ¥ 4) antifuses.●

An LVT (1010, 8 channels) connects to 200 (25 ¥ 8) antifuses.●

An LVT (1020, 14 channels) connects to 350 (25 ¥ 14) antifuses.●

A four-column horizontal track connects to 52 (13 ¥ 4) antifuses.●

A 44-column horizontal track connects to 572 (13 ¥ 44) antifuses.●

A connection to the diffusion of an Actel antifuse has a parasitic capacitance due
to the diffusion junction. The polysilicon of the antifuse has a parasitic
capacitance due to the thin oxide. These capacitances are approximately equal.
For a 2 m m CMOS process the capacitance to ground of the diffusion is 200 to
300 aF m m �2 (area component) and 400 to 550 aF m m �1 (perimeter

component). Thus, including both area and perimeter effects, a 16 m m 2

diffusion contact (consisting of a 2 m m by 2 m m opening plus the required
overlap) has a parasitic capacitance of 10�14 f F. If we assume an antifuse has a
parasitic capacitance of approximately 10 fF in a 1.0 or 1.2 m m process, we can
calculate the parasitic capacitances shown in Table 7.2 .

TABLE 7.2 Actel interconnect parameters.
Parameter A1010/A1020 A1010B/A1020B
Technology 2.0 m m, l = 1.0 m m 1.2 m m, l = 0.6 m m
Die height (A1010) 240 mil 144 mil
Die width (A1010) 360 mil 216 mil

Die area (A1010) 86,400 mil 2 = 56 M l 2 31,104 mil 2 = 56 M l 2

Logic Module (LM)
height (Y1)

180 m m = 180 l 108 m m = 180 l

LM width (X) 150 m m = 150 l 90 m m = 150 l

LM area (X ¥ Y1) 27,000 m m 2 = 27 k l 2 9,720 m m 2 = 27 k l 2

Channel height (Y2) 25 tracks = 287 m m 25 tracks = 170 m m
Channel area per LM
(X ¥ Y2) 43,050 m m 2 = 43 k l 2 15,300 m m 2 = 43 k l 2

LM and routing area
(X ¥ Y1 + X ¥ Y2) 70,000 m m 2 = 70 k l 2 25,000 m m 2 = 70 k l 2

Antifuse capacitance � 10 fF

Metal capacitance 0.2 pFmm �1 0.2 pFmm �1

Output stub length

(spans 3 LMs + 4
channels)

4 channels = 1688 m m 4 channels = 1012 m m

Output stub metal
capacitance

0.34 pF 0.20 pF

Output stub antifuse
connections

100 100

Output stub antifuse
capacitance

� 1.0 pF

Horiz. track length
4�44 cols. = 600�6600 m
m

4�44 cols. = 360�3960 m m

Horiz. track metal
capacitance

0.1�1.3 pF 0.07�0.8 pF

Horiz. track antifuse
connections

52�572 antifuses 52�572 antifuses

Horiz. track antifuse
capacitance

� 0.52�5.72 pF

Long vertical track
(LVT)

8�14 channels = 3760
�6580 m m

8�14 channels = 2240�3920 m m

LVT metal
capacitance

0.08�0.13 pF 0.45�0.8 pF

LVT track antifuse
connections

200�350 antifuses 200�350 antifuses

LVT track antifuse
capacitance

 2�3.5 pF

Antifuse resistance
(ACT 1)

 0.5 k W (typ.), 0.7 k W (max.)

We can use the figures from Table 7.2 to estimate the interconnect delays. First
we calculate the following resistance and capacitance values:

The antifuse resistance is assumed to be R = 0.5 k W .1.

C 0 = 1.2 pF is the sum of the gate output capacitance (which we shall
neglect) and the output stub capacitance (1.0 pF due to antifuses, 0.2 pF
due to metal). The contribution from this term is zero in our calculation
because we have neglected the pull resistance of the driving gate.

2.

C 1 = C 3 = 0.59 pF (0.52 pF due to antifuses, 0.07 pF due to metal)
corresponding to a minimum-length horizontal track.

3.

C 2 = 4.3 pF (3.5 pF due to antifuses, 0.8 pF due to metal) corresponding to
a LVT in a 1020B.

4.

The estimated input capacitance of a gate is C 4 = 0.02 pF (the exact value
will depend on which input of a Logic Module we connect to).

5.

From Eq. 7.7 , the Elmore time constant for a four-antifuse connection is

t D 4 = 4(0.5)(0.02) + 3(0.5)(0.59) + 2(0.5)(4.3) + (0.5)(0.59) (7.8)

 = 5.52 ns .

This matches delays obtained from the Actel delay calculator. For example, an
LVT adds between 5�10 ns delay in an ACT 1 FPGA (6�12 ns for ACT 2, and 4
�14 ns for ACT 3). The LVT connection is about the slowest connection that we
can make in an ACT array. Normally less than 10 percent of all connections need
to use an LVT and we see why Actel takes great care to make sure that this is the
case.

7.1.5 ACT 2 and ACT 3 Interconnect
The ACT 1 architecture uses two antifuses for routing nearby modules, three
antifuses to join horizontal segments, and four antifuses to use a horizontal or
vertical long track. The ACT 2 and ACT 3 architectures use increased
interconnect resources over the ACT 1 device that we have described. This

reduces further the number of connections that need more than two antifuses.
Delay is also reduced by decreasing the population of antifuses in the channels,
and by decreasing the antifuse resistance of certain critical antifuses (by
increasing the programming current).

The channel density is the absolute minimum number of tracks needed in a
channel to make a given set of connections (see Section 17.2.2, �Measurement of
Channel Density�). Software to route connections using channeled routing is so
efficient that, given complete freedom in location of wires, a channel router can
usually complete the connections with the number of tracks equal or close to the
theoretical minimum, the channel density. Actel�s studies on segmented channel
routing have shown that increasing the number of horizontal tracks slightly (by
approximately 10 percent) above density can lead to very high routing
completion rates.

The ACT 2 devices have 36 horizontal tracks per channel rather than the 22
available in the ACT 1 architecture. Horizontal track segments in an ACT 3
device range from a module pair to the full channel length. Vertical tracks are:
input (with a two channel span: one up, one down); output (with a four-channel
span: two up, two down); and long (LVT). Four LVTs are shared by each column
pair. The ACT 2/3 Logic Modules can accept five inputs, rather than four inputs
for the ACT 1 modules, and thus the ACT 2/3 Logic Modules need an extra two
vertical tracks per channel. The number of tracks per column thus increases from
13 to 15 in the ACT 2/3 architecture.

The greatest challenge facing the Actel FPGA architects is the resistance of the
polysilicon-diffusion antifuse. The nominal antifuse resistance in the ACT 1�2 1�2
m m processes (with a 5 mA programming current) is approximately 500 W and,
in the worst case, may be as high as 700 W . The high resistance severely limits
the number of antifuses in a connection. The ACT 2/3 devices assign a special
antifuse to each output allowing a direct connection to an LVT. This reduces the
number of antifuses in a connection using an LVT to three. This type of antifuse
(a fast fuse) is blown at a higher current than the other antifuses to give them
about half the nominal resistance (about 0.25 k W for AC T 2) of a normal
antifuse. The nominal antifuse resistance is reduced further in the ACT 3 (using a
0.8 m m process) to 200 W (Actel does not state whether this value is for a
normal or fast fuse). However, it is the worst-case antifuse resistance that will
determine the worst-case performance.

7.2 Xilinx LCA
Figure 7.5 shows the hierarchical Xilinx LCA interconnect architecture.

The vertical lines and horizontal lines run between CLBs.●

The general-purpose interconnect joins switch boxes (also known as magic
boxes or switching matrices).

●

The long lines run across the entire chip. It is possible to form internal buses
using long lines and the three-state buffers that are next to each CLB.

●

The direct connections (not used on the XC4000) bypass the switch matrices and
directly connect adjacent CLBs.

●

The Programmable Interconnection Points (PIP s) are programmable pass
transistors that connect the CLB inputs and outputs to the routing network.

●

The bidirectional (BIDI) interconnect buffers restore the logic level and logic
strength on long interconnect paths.

FIGURE 7.5 Xilinx LCA interconnect. (a) The LCA architecture (notice the
matrix element size is larger than a CLB). (b) A simplified representation of the
interconnect resources. Each of the lines is a bus.

●

Table 7.3 shows the interconnect data for an XC3020, a typical Xilinx LCA FPGA,
that uses two-level metal interconnect. Figure 7.6 shows the switching matrix.
Programming a switch matrix allows a number of different connections between the

general-purpose interconnect.

TABLE 7.3 XC3000 interconnect parameters.
Parameter XC3020
Technology 1.0 m m, l = 0.5 m m
Die height 220 mil
Die width 180 mil

Die area 39,600 mil 2 = 102 M l 2

CLB matrix height (Y) 480 m m = 960 l
CLB matrix width (X) 370 m m = 740 l

CLB matrix area (X ¥ Y) 17,600 m m 2 = 710 k l 2

Matrix transistor resistance, R P1 0.5�1k W

Matrix transistor parasitic capacitance, C P1 0.01�0.02 pF

PIP transistor resistance, R P2 0.5�1k W

PIP transistor parasitic capacitance, C P2 0.01�0.02 pF

Single-length line (X, Y) 370 m m, 480 m m
Single-length line capacitance: C LX , C LY 0.075 pF, 0.1 pF

Horizontal Longline (8X) 8 cols. = 2960 m m
Horizontal Longline metal capacitance, C LL 0.6 pF

In Figure 7.6 (d), (g), and (h):

FIGURE 7.6 Components of interconnect delay in a Xilinx LCA array. (a) A portion
of the interconnect around the CLBs. (b) A switching matrix. (c) A detailed view
inside the switching matrix showing the pass-transistor arrangement. (d) The
equivalent circuit for the connection between nets 6 and 20 using the matrix. (e) A
view of the interconnect at a Programmable Interconnection Point (PIP). (f) and
(g) The equivalent schematic of a PIP connection. (h) The complete RC delay path.

C1 = 3CP1 + 3CP2 + 0. 5C LX is the parasitic capacitance due to the switch
matrix and PIPs (F4, C4, G4) for CLB1, and half of the line capacitance for the
double-length line adjacent to CLB1.

●

C P1 and R P1 are the switching-matrix parasitic capacitance and resistance.●

C P2 and R P2 are the parasitic capacitance and resistance for the PIP connecting
YQ of CLB1 and F4 of CLB3.

●

C2 = 0. 5CLX + CLX accounts for half of the line adjacent to CLB1 and the line
adjacent to CLB2.

●

C 3 = 0. 5C LX accounts for half of the line adjacent to CLB3.●

C 4 = 0. 5C LX + 3C P2 + C LX + 3C P1 accounts for half of the line adjacent to
CLB3, the PIPs of CLB3 (C4, G4, YQ), and the rest of the line and switch
matrix capacitance following CLB3.

●

We can determine Elmore�s time constant for the connection shown in Figure 7.6 as

t D = R P2 (C P2 + C 2 + 3C P1) + (R P2 + R P1)(3C P1 + C 3 + C P2) (7.9)

 + (2R P2 + R P1)(C P2 + C 4) .

If RP1 = RP2 , and CP1 = CP2 , then

t D = (15 + 21)R P C P + (1.5 + 1 + 4.5)R P C LX . (7.10)

We need to know the pass-transistor resistance RP . For example, suppose RP = 1k W .

If k ' n = 50 m AV �2 , then (with Vt n = 0.65 V and V DD = 3.3 V)

 1 1
W/L = ���������� = �������������������������� = 7.5 . (7.11)

 k ' n R p (V DD � V t n) (50 ¥ 10 �6)(1 ¥ 10 3)(3.3 � 0.65)

If L = 1 m m, both source and drain areas are 7.5 m m long and approximately 3 m m
wide (determined by diffusion overlap of contact, contact width, and contact-to-gate
spacing, rules 6.1a + 6.2a + 6.4a = 5.5 l in Table 2.7). Both drain and source areas are
thus 23 m m 2 and the sidewall perimeters are 14 m m (excluding the sidewall facing
the channel). If we have a diffusion capacitance of 140 aF m m �2 (area) and 500 aF m
m �1 (perimeter), typical values for a 1.0 m m process, the parasitic source and drain
capacitance is

C P = (140 ¥ 10 �18)(23) + (500 ¥ 10 �18)(14) (7.12)

 = 1.022 ¥ 10 �14 F .

If we assume CP = 0.01 pF and CLX = 0.075 pF (Table 7.3),

t D = (36)(1)(0.01) + (7)(1)(0.075) (7.13)

 = 0.885 ns .

A delay of approximately 1 ns agrees with the typical values from the XACT delay
calculator and is about the fastest connection we can make between two CLBs.

FIGURE 7.7 The Xilinx EPLD UIM (Universal Interconnection Module). (a) A
simplified block diagram of the UIM. The UIM bus width, n , varies from 68
(XC7236) to 198 (XC73108). (b) The UIM is actually a large programmable AND
array. (c) The parasitic capacitance of the EPROM cell.

7.3 Xilinx EPLD
The Xilinx EPLD family uses an interconnect bus known as Universal
Interconnection Module (UIM) to distribute signals within the FPGA. The UIM,
shown in Figure 7.7 , is a programmable AND array with constant delay from
any input to any output. In Figure 7.7 :

C G is the fixed gate capacitance of the EPROM device.●

C D is the fixed drain parasitic capacitance of the EPROM device.●

C B is the variable horizontal bus (�bit� line) capacitance.●

C W is the variable vertical bus (�word� line) capacitance.●

Figure 7.7 shows the UIM has 21 output connections to each FB. 1 Thus the
XC7272 UIM (with a 4 ¥ 2 array of eight FBs as shown in Figure 7.7) has 168 (8
¥ 21) output connections. Most (but not all) of the nine I/O cells attached to each
FB have two input connections to the UIM, one from a chip input and one
feedback from the macrocell output. For example, the XC7272 has 18 I/O cells
that are outputs only and thus have only one connection to the UIM, so n = (18 ¥
8) � 18 = 126 input connections. Now we can calculate the number of tracks in the
UIM: the XC7272, for example, has H = 126 tracks and V = 168/2 = 84 tracks.
The actual physical height, V , of the UIM is determined by the size of the FBs,
and is close to the die height.

The UIM ranges in size with the number of FBs. For the smallest XC7236 (with a
2 ¥ 2 array of four FBs), the UIM has n = 68 inputs and 84 outputs. For the
XC73108 (with a 6 ¥ 2 array of 12 FBs), the UIM has n = 198 inputs. The UIM is
a large array with large parasitic capacitance; it employs a highly optimized
structure that uses EPROM devices and a sense amplifier at each output. The
signal swing on the UIM uses less than the full V DD = 5 V to reduce the
interconnect delay.

1. 1994 data book p. 3-62 and p. 3-78.

7.4 Altera MAX 5000 and 7000
Altera MAX 5000 devices (except the EPM5032, which has only one LAB) and
all MAX 7000 devices use a Programmable Interconnect Array (PIA), shown in
Figure 7.8 . The PIA is a cross-point switch for logic signals traveling between
LABs. The advantages of this architecture (which uses a fixed number of
connections) over programmable interconnection schemes (which use a variable
number of connections) is the fixed routing delay. An additional benefit of the
simpler nature of a large regular interconnect structure is the simplification and
improved speed of the placement and routing software.

FIGURE 7.8 A simplified block diagram of the Altera MAX interconnect
scheme. (a) The PIA (Programmable Interconnect Array) is deterministic�delay
is independent of the path length. (b) Each LAB (Logic Array Block) contains a
programmable AND array. (c) Interconnect timing within a LAB is also fixed.

Figure 7.8 (a) illustrates that the delay between any two LABs, t PIA , is fixed.
The delay between LAB1 and LAB2 (which are adjacent) is the same as the
delay between LAB1 and LAB6 (on opposite corners of the die). It may seem
rather strange to slow down all connections to the speed of the longest possible
connection�a large penalty to pay to achieve a deterministic architecture.
However, it gives Altera the opportunity to highly optimize all of the connections
since they are completely fixed.

7.5 Altera MAX 9000
Figure 7.9 shows the Altera MAX 9000 interconnect architecture. The size of the
MAX 9000 LAB arrays varies between 4 ¥ 5 (rows ¥ columns) for the EPM9320
and 7 ¥ 5 for the EPM9560. The MAX 9000 is an extremely coarse-grained
architecture, typical of complex PLDs, but the LABs themselves have a finer
structure. Sometimes we say that complex PLDs with arrays (LABs in the Altera
MAX family) that are themselves arrays (of macrocells) have a dual-grain
architecture .

FIGURE 7.9 The Altera
MAX 9000 interconnect
scheme. (a) A 4 ¥ 5
array of Logic Array
Blocks (LABs), the same
size as the EMP9400
chip. (b) A simplified
block diagram of the
interconnect architecture
showing the connection
of the FastTrack buses to
a LAB.

In Figure 7.9 (b), boxes A, B, and C represent the interconnection between the
FastTrack buses and the 16 macrocells in each LAB:

Box A connects a macrocell to one row channel.●

Box B connects three column channels to two row channels.●

Box C connects a macrocell to three column channels.●

7.6 Altera FLEX
Figure 7.10 shows the interconnect used in the Altera FLEX family of complex
PLDs. Altera refers to the FLEX interconnect and MAX 9000 interconnect by the
same name, FastTrack, but the two are different because the granularity of the
logic cell arrays is different. The FLEX architecture is of finer grain than the
MAX arrays�because of the difference in programming technology. The FLEX
horizontal interconnect is much denser (at 168 channels per row) than the vertical
interconnect (16 channels per column), creating an aspect ratio for the
interconnect of over 10:1 (168:16). This imbalance is partly due to the aspect
ratio of the die, the array, and the aspect ratio of the basic logic cell, the LAB.

FIGURE 7.10 The Altera FLEX interconnect scheme. (a) The row and column
FastTrack interconnect. The chip shown, with 4 rows ¥ 21 columns, is the same
size as the EPF8820. (b) A simplified diagram of the interconnect architecture
showing the connections between the FastTrack buses and a LAB. Boxes A, B,
and C represent the bus-to-bus connections.

As an example, the EPF8820 has 4 rows and 21 columns of LABs (Figure 7.10
a). Ignoring, for simplicity�s sake, what happens at the edge of the die we can
total the routing channels as follows:

Horizontal channels = 4 rows ¥ 168 channels/row = 672 channels.●

Vertical channels = 21 rows ¥ 16 channels/row = 336 channels.●

It appears that there is still approximately twice (672:336) as much interconnect
capacity in the horizontal direction as the vertical. If we look inside the boxes A,
B, and C in Figure 7.10 (b) we see that for individual lines on each bus:

Box A connects an LE to two row channels.●

Box B connects two column channels to a row channel.●

Box C connects an LE to two column channels.●

There is some dependence between boxes A and B since they contain MUXes
rather than direct connections, but essentially there are twice as many
connections to the column FastTrack as the row FastTrack, thus restoring the
balance in interconnect capacity.

7.7 Summary
The RC product of the parasitic elements of an antifuse and a pass transistor are not
too different. However, an SRAM cell is much larger than an antifuse which leads to
coarser interconnect architectures for SRAM-based programmable ASICs. The
EPROM device lends itself to large wired-logic structures. These differences in
programming technology lead to different architectures:

The antifuse FPGA architectures are dense and regular.●

The SRAM architectures contain nested structures of interconnect resources.●

The complex PLD architectures use long interconnect lines but achieve
deterministic routing.

●

Table 7.4 is a look-up table for Tables 7.5 and 7.6 , which summarize the features of
the logic cells used by the various FPGA vendors.

TABLE 7.4 I/O Cell Tables.
Table Programmable ASIC family Table Programmable ASIC family

Table 7.5

Actel (ACT 1)

Xilinx (XC3000)

Actel (ACT 2)

Xilinx (XC4000)

Altera MAX (EPM 5000)

Xilinx EPLD (XC7200/7300)

Actel (ACT 3)

QuickLogic (pASIC 1)

Crosspoint (CP20K)

Altera MAX (EPM 7000)

Atmel (AT6000)

Xilinx LCA (XC5200)

 Table 7.6

Xilinx (XC8100)

Lucent ORCA (2C)

Altera FLEX (8000/10k)

AMD MACH 5

Actel 3200DX

Altera MAX (EPM 9000)

TABLE 7.5 Programmable ASIC interconnect.

 Actel (ACT 1) Xilinx (XC3000) Actel (ACT 2)
Xilinx
(XC4000)

Interconnect
between
logic cells
(tracks =
trks)

Channeled array
with segmented
routing, long lines:

25 trks/ch. (horiz.);
13 trks/ch. (vert.);

< 4 antifuses/path

Switch box, PIPs
(Programmable
Interconnect
Points), 3-state
internal bus, and
long lines

Channeled
array with
segmented
routing, long
lines:

36 trks/ch.
(horiz.); 15
trks/ch.
(vert.);

< 4
antifuses/path

Switch box,
PIPs
(Programmable
Interconnect
Points), 3-state
internal bus,
and long lines

Interconnect
delay

Variable Variable Variable Variable

Interconnect
inside logic
cells

Poly�diffusion
antifuse

32-bit SRAM LUT
Poly�diffusion
antifuse

32-bit SRAM

LUT

 Altera (MAX 5000) Xilinx EPLD
QuickLogic
(pASIC 1)

Actel (ACT 3)

Interconnect
between
logic cells

Cross-bar PIA

(Programmable
Interconnect
Architecture) using
EPROM
programmable-AND
array

UIM (Universal
Interconnect Matrix)
using EPROM
programmable-AND
array

Programmable

fully
populated

antifuse
matrix

Channeled
array with
segmented
routing, long
lines: <4
antifuses/path

Interconnect
delay

Fixed Fixed Variable Variable

Interconnect
inside logic
cells

EPROM EPROM
Metal�metal
antifuse

Poly�diffusion
antifuse

 Crosspoint (CP20K)
Altera MAX

(MAX 7000)

Atmel
(AT6000)

Xilinx LCA
(XC5200)

Interconnect
between
logic cells

Programmable
highly

interconnected
matrix

Fixed cross-bar PIA
(Programmable
Interconnect
Architecture)

Programmable
regular, local,
and express
bus scheme
with line
repeaters

Switch box,
PIPs
(Programmable
Interconnect
Points), 3-state
internal bus,
and long lines

Interconnect
delay

Variable Fixed Variable Variable

Interconnect
inside logic
cells

Metal�metal

antifuse
EEPROM SRAM

16-bit SRAM

LUT

TABLE 7.6 Programmable ASIC interconnect (continued).

 Xilinx (XC8100) Lucent ORCA 2C
Altera FLEX
8000/10k

Interconnect
between logic
cells

Channeled array with

segmented routing,
long lines.
Programmable fully
populated antifuse
matrix.

Switch box, SRAM
programmable
interconnect, 3-state
internal bus, and long
lines

Row and column
FastTrack between
LABs

Interconnect delay Variable Variable
Fixed with small
variation in delay in
row FastTrack

Interconnect
inside logic cells

Antifuse
SRAM LUTs and
MUXs

LAB local
interconnect between
LEs. 16-bit SRAM
LUT in LE.

 AMD MACH 5 Actel 3200DX Altera MAX 9000

Interconnect
between logic
cells

EPROM
programmable array

Channeled gate array

with segmented
routing, long lines

Row and column
FastTrack between
LABs

Interconnect delay Fixed Variable Fixed

Interconnect
inside logic cells

EPROM
Poly�diffusion
antifuse

Programmable AND
array inside LAB,
EEPROM MUXes

The key points covered in this chapter are:

The difference between deterministic and nondeterministic interconnect●

Estimating interconnect delay●

Elmore�s constant●

Next, in Chapter 8, we shall cover the software you need to design with the various

7.8 Problems
* = Difficult, ** = Very difficult, *** = Extremely difficult

7.1 (*Xilinx interconnect, 120 min.)

a. Write a minitutorial (one or two pages) explaining what you need to
know to run and use the XACT delay calculator. Explain how to choose
the part, set the display preferences, make connections to CLBs and the
interconnect, and obtain timing figures.

●

b. Use the XACT editor to determine typical delays using the longlines, a
switch matrix, the PIPs, and BIDI buffers (see the Xilinx data book for
more detailed explanations of the interconnect structure). Draw six
different typical paths using these elements and show the components of
delay. Include screen shots showing the layout of the paths and cells with
detailed explanations of the figures.

●

c. Construct a path using the TBUFs, the three-state buffers, driving a
longline (do not forget the pull-up). Show the XACT calculated delay for
your path and explain the number from data book parameters (list them
and the page number from the data book).

●

d. Extend one simple path to the I/O and explain the input and output
timing, again using the data book.

●

e. Include screen shots from the layout editor showing you example paths.●

f. Bury all the ASCII (but not binary) files you used and the tools produced
inside your report using �Hidden Text.� Include explanations as to what
these files are and which parts of the report they go with. This includes any
schematic files, netlist files, and all files produced by the Xilinx tools. Use
a separate directory for this problem and make a list in your report of all
files (binary and ASCII) with explanations of what each file is.

●

7.2 (*Actel interconnect, 120 min.) Use the Actel chip editor to explore the

properties of the interconnect scheme in a similar fashion to Problem 7.1 with
the following changes: in part b make at least six different paths using various
antifuse connections and explain the numbers from the delay calculator. Omit
part c.

7.3 (*Altera MAX interconnect, 120 min.) Use the Altera tools to determine the
properties of the MAX or FLEX interconnect in a similar fashion to Problem 7.1
with the following changes: In parts b and c construct at least six example circuits
that show the various paths through the FastTrack or PIA chip-level interconnect,

the local LAB array, the LAB, and the macrocells.

7.4 (**Custom ASICs, 120 min.)

a. Write a minitutorial (one or two pages) explaining how to run an ASIC
tool (Compass/Mentor/Cadence/Tanner). Enter a simple circuit (using
schematic entry or synthesis and cells from a cell library) and obtain a
delay estimate.

●

b. Construct at least six example circuits that show various logic paths
using various logic cells (for example: an inverter, a full adder).

●

c. Perform a timing simulation (either using a static timing verifier or using
a logic simulator). Compare your results with those from a data book.

●

d. Extract the circuit to include the parasitic capacitances from layout in
your circuit netlist and run a simulation to predict the delays.

●

e. Compare the results that include routing capacitance with the data book
values for the logic cell delays and with the values predicted before
routing.

●

f. Extend one simple path to the outputs of the chip by including I/O pads
in your circuit and explain the input and output timing predictions.

●

g. Bury the ASCII files you used and the tools produced inside your report.●

7.5 (**Actel stubs, 60 min.)

a. Which metal layers do you think Actel assigns to the horizontal and
vertical interconnect in the ACT 1�3 architectures and why?

●

b. Why do the ACT 1�3 input stubs not extend over more than two
channels above and below the Logic Modules, since this would reduce the
need for LVTs?

●

c. The ACT 2 data sheet describes the output stubs as �twisted� (or
interwoven) so that they occupy only four tracks. Show that the stubs
occupy four vertical tracks whether they are twisted or not.

●

d. Suggest the real reason for the twisted stubs.●

7.6 (A three-input NAND in ACT 1, 30 min.) The macros that require two
ACT 1 modules include the three-input NAND (others include four-input NAND,
AND, NOR).

a. What is the problem with trying to implement a three-input NAND gate
using the Actel ACT 1 Logic Module?

●

b. Suggest a modification to the ACT 1 Logic Module that would allow the
implementation of a three-input NAND using one of your new Logic
Modules.

●

c. Can you think of a reason why Actel did not use your modification to its
Logic Module design? Hi nt: The modification has to do with routing, and
not the logic itself.

●

7.7 (*Actel architecture, 60 min.) This is a long but relatively straightforward

problem that �reverse-engineers� the Actel architecture. If you measured the chip
photo on the front of the April 1990 Actel data book, you would find the
following:

Die height (scribe to scribe) = 170 mm.1.

Channel height = 8 mm (there are 7 full-height and 2 half-height channels).2.

Logic Module height = 5 mm (there are 8 rows of Logic Modules).3.

Column (Logic Module) width = 4.2 mm.4.

(The scribe line is an area at the edge of a die where a cut is made by a diamond
saw when the dice are separated.) An Actel 1010 die in 2 m m technology is 240
mil high by 360 mil wide (p. 4-17 in the 1990 data book). Assuming these data
book dimensions are scribe to scribe, calculate (a) the Logic Module height, (b)
 the channel height, and (c) the column (Logic Module) width.

Given that there are 25 tracks per horizontal channel, and 13 tracks per column in
the vertical direction, calculate (d) the horizontal channel track spacing and (e)
the vertical channel track spacing. (f) Using the fact that each output stub spans
two channels above and below the Logic Module, calculate the height of the
output stub.

We can now estimate the capacitance of the Logic Module stubs and
interconnect. Assume the interconnect capacitance is 0.2 pFmm �1 . (g) Calculate
the capacitance of an output stub and an input stub. (h) Calculate the width and
thus the capacitance of the horizontal tracks that are from four columns to 44
columns long.

You should not have to make any other assumptions to calculate these figures,
but if you do, state them clearly. The figures you have calculated are summarized
in Table 7.2 .

7.8 (Xilinx bank shots, 20 min.) Figure 7.11 shows a magic box. Explain how to
use a �bank shot� to enter one side of the box, bounce off another, and exit on a
third side. What is the delay involved in this maneuver?

FIGURE 7.11 A Xilinx magic box showing one set of
connections from connection 1 (Problem 7.8).

7.9 Bibliography
The paper by Greene et al. [1993] (reprinted in the 1994 Actel data book) is a
good description of the Actel interconnect. The 1995 AT&T data book contains a
very detailed account of the routing for the ORCA series of FPGAs, which is
similar to the Xilinx LCA interconnect. You can learn a great deal about the
details of the Lucent and Xilinx interconnect architecture from the AT&T data
book. The Xilinx data book gives a good high-level overview of SRAM-based
FPGA interconnect. The best way to learn about any FPGA interconnect is to use
the software tools provided by the vendor. The Xilinx XACT editor that shows
point-to-point routing delays on a graphical representation of the chip layout is an
easy way to become familiar with the interconnect properties. The book by
Brown et al. [1992] covers FPGA interconnect from a theoretical point of view,
concentrating on routing for LUT based FPGAs, and also describes specialized
routing algorithms for FPGAs.

7.10 References
Brown, S. D., et al. 1992. Field-Programmable Gate Arrays. Norwell, MA:
Kluwer Academic, 206 p. ISBN 0-7923-9248-5. TK7872.L64F54. Contents:
Introduction to FPGAs, Commercially Available FPGAs, Technology Mapping
for FPGAs, Logic Block Architecture, Routing for FPGAs, Flexibility of FPGA
Routing Resources, A Theoretical Model for FPGA Routing. Includes an
introduction to commercially available FPGAs. The rest of the book covers
research on logic synthesis for FPGAs and FPGA architectures, concentrating on
LUT-based architectures.

Greene, J., et al. 1993. �Antifuse field programmable gate arrays.� Proceedings of
the IEEE, vol. 81, no. 7, pp. 1042�1056, 1993. Review article describing the Actel
FPGAs. (Included in the Actel 1994 data book.)

Rubenstein, J., P. Penfield, and M. A. Horowitz. 1983. �Signal delay in RC tree
networks.� IEEE Transactions on CAD, vol. CAD-2, no. 3, July 1983, pp. 202
�211. Derives bounds for the response of RC networks excited by an input step
voltage.

PROGRAMMABLE
ASIC DESIGN
SOFTWARE
There are five components of a programmable ASIC or FPGA: (1) the
programming technology, (2) the basic logic cell, (3) the I/O cell, (4) the
interconnect, and (5) the design software that allows you to program the ASIC.
The design software is much more closely tied to the FPGA architecture than is
the case for other types of ASICs.

Last Edited by SP 14112004

8.1 Design Systems
The sequence of steps for FPGA design is similar to the sequence discussed in
Section 1.2 , � Design Flow .� As for any ASIC a designer needs design-entry
software, a cell library, and physical-design software. Each of the FPGA vendors
sells design kits that include all the software and hardware that a designer needs.
Many of these kits use design-entry software produced by a different company.
Often designers buy that software from the FPGA vendor. This is called an
original equipment manufacturer (OEM) arrangement�similar to buying a car
with a stereo manufactured by an electronics company but labeled with the
automobile company�s name. Design entry uses cell libraries that are unique to
each FPGA vendor. All of the FPGA vendors produce their own physical-design
software so they can tune the algorithms to their own architecture.

Unfortunately, there are no standards in FPGA design. Thus, for example, Xilinx
calls its 2:1 MUX an M2_1 with inputs labeled D0 , D1 , and S0 with output O .
Actel calls a 2:1 MUX an MX2 with inputs A , B , and S with output Y . This
problem is not peculiar to Xilinx and Actel; each ASIC vendor names its logic
cells, buffers, pads, and so on in a different manner. Consequently designers may
not be able to transfer a netlist using one ASIC vendor library to another. Worse
than this, designers may not even be able to transfer a design between two FPGA
families made by the same FPGA vendor!

One solution to the lack of standards for cell libraries is to use a generic cell
library, independent from any particular FPGA vendor. For example, most of the
FPGA libraries include symbols that are equivalent to TTL 7400 logic series
parts. The FPGA vendor�s own software automatically handles the conversion
from schematic symbols to the logic cells of the FPGA.

Schematic entry is not the only method of design entry for FPGAs. Some
designers are happier describing control logic and state machines in terms of state
diagrams and logic equations. A solution to some of the problems with schematic
entry for FPGA design is to use one of several hardware description languages (
HDL s) for which there are some standards. There are two sets of languages in
common use. One set has evolved from the design of programmable logic
devices (PLDs). The ABEL (pronounced �able�), CUPL (�cupple�), and PALASM
(�pal-azzam�) languages are simple and easy to learn. These languages are useful
for describing state machines and combinational logic. The other set of HDLs
includes VHDL and Verilog, which are higher-level and are more complex but
are capable of describing complete ASICs and systems.

After completing design entry and generating a netlist, the next step is simulation.
Two types of simulators are normally used for FPGA design. The first is a logic
simulator for behavioral, functional, and timing simulation. This tool can catch
any design errors. The designer provides input waveforms to the simulator and
checks to see that the outputs are as expected. At this point, using a
nondeterministic architecture, logic path delays are only estimates, since the
wiring delays will not be known until after physical design (place-and-route) is
complete. Designers then add or back-annotate the postlayout timing information
to the postlayout netlist (also called a back-annotated netlist). This is followed by
a postlayout timing simulation.

The second type of simulator, the type most often used in FPGA design, is a
timing-analysis tool. A timing analyzer is a static simulator and removes the need
for input waveforms. Instead the timing analyzer checks for critical paths that
limit the speed of operation�signal paths that have large delays caused, say, by a
high fanout net. Designers can set a certain delay restriction on a net or path as a
timing constraint; if the actual delay is longer, this is a timing violation. In most
design systems we can return to design entry and tag critical paths with attributes
before completing the place-and-route step again. The next time we use the
place-and-route software it will pay special attention to those signals we have
labeled as critical in order to minimize the routing delays associated with those
signals. The problem is that this iterative process can be lengthy and sometimes
nonconvergent. Each time timing violations are fixed, others appear. This is
especially a problem with place-and-route software that uses random algorithms
(and forms a chaotic system). More complex (and expensive) logic synthesizers
can automate this iterative stage of the design process. The critical path
information is calculated in the logic synthesizer, and timing constraints are
created in a feedforward path (this is called forward-annotation) to direct the
place-and-route software.

Although some FPGAs are reprogrammable, it is not a good idea to rely on this
fact. It is very tempting to program the FPGA, test it, make changes to the netlist,
and then keep programming the device until it works. This process is much more
time consuming and much less reliable than performing thorough simulation. It is
quite possible, for example, to get a chip working in an experimental fashion
without really knowing why. The danger here is that the design may fail under
some other set of operating conditions or circumstances. Simulation is the proper
way to catch and correct these potential disasters.

8.1.1 Xilinx
Figure 8.1 shows the Xilinx design system. Using third-party design-entry
software, the designer creates a netlist that forms the input to the Xilinx software.
Utility software (pin2xnf for FutureNet DASH and wir2xnf for Viewlogic, for
example) translate the netlist into a Xilinx netlist format (XNF) file. In the next
step the Xilinx program xnfmap takes the XNF netlist and maps the logic into the

Xilinx Logic Cell Array (LCA) architecture. The output from the mapping step
is a MAP file. The schematic MAP file may then be merged with other MAP files
using xnfmerge . This technique is useful to merge different pieces of a design,
some created using schematic entry and others created, for example, using logic
synthesis. A translator program map2lca translates from the logic gates (NAND
gates, NOR gates, and so on) to the required CLB configurations and produces an
unrouted LCA file. The Xilinx place-and-route software (apr or ppr) takes the
unrouted LCA file and performs the allocation of CLBs and completes the
routing. The result is a routed LCA file. A control program xmake (that works
like the make program in C) can automatically handle the mapping, merging, and
place-and-route steps. Following the place-and-route step, the logic and wiring
delays are known and the postlayout netlist may be generated. After a postlayout
simulation the download file or BIT file used to program the FPGA (or a PROM
that will load the FPGA) is generated using the Xilinx makebits program.

FIGURE 8.1 The Xilinx FPGA design flow. The numbers next to the steps in
the flow correspond to those in the general ASIC design flow of Figure 1.10 .

Xilinx also provides a software program (Xilinx design editor, XDE) that permits
manual control over the placement and routing of a Xilinx FPGA. The designer
views a graphical representation of the FPGA, showing all the CLBs and

interconnect, and can make or alter connections by pointing and clicking. This
program is useful to check an automatically generated layout, or to explore
critical routing paths, or to change and hand tune a critical connection, for
example.

Xilinx uses a system called X-BLOX for creating regular structures such as
vectored instances and datapaths. This system works with the Xilinx XNF netlist
format. Other vendors, notably Actel and Altera, use a standard called
Relationally Placed Modules (RPM), based on the EDIF standard, that ensures
that the pieces of an 8-bit adder, for example, are treated as a macro and stay
together during placement.

8.1.2 Actel
Actel FPGA design uses third-party design entry and simulators. After creating a
netlist, a designer uses the Actel software for the place-and-route step. The Actel
design software, like other FPGA and ASIC design systems, employs a large
number of file formats with associated filename extensions. Table 8.1 shows
some of the Actel file extensions and their meanings.

TABLE 8.1 File types used by Actel design software.
ADL Main design netlist
IPF Partial or complete pin assignment for the design
CRT Net criticality
VALIDATED Audit information
COB List of macros removed from design
VLD Information, warning, and error messages
PIN Complete pin assignment for the design
DFR Information about routability and I/O assignment quality

LOC
Placement of non-I/O macros, pin swapping, and freeway
assignment

PLI Feedback from placement step
SEG Assignment of horizontal routing segments
STF Back-annotation timing
RTI Feedback from routing step
FUS Fuse coordinates (column-track, row-track)
DEL Delays for input pins, nets, and I/O modules
AVI Fuse programming times and currents for last chip programmed

Actel software can also map hardware description files from other programmable
logic design software into the Actel FPGA architecture. As an example, Table 8.2
shows a text description of a state machine using an HDL from a company called
LOG/iC. You can then convert the LOG/iC code to the PALASM code shown in

Table 8.2 . The Actel software can take the PALASM code and merge it with
other PALASM files or netlists.

TABLE 8.2 FPGA state-machine language.
LOG/iC state-machine language PALASM version
*IDENTIFICATION

sequence detector

LOG/iC code

*X-NAMES

X; !input

*Y-NAMES

D; !output, D = 1 when three 1's appear on X

*FLOW-TABLE

;State, X input, Y output, next state

S1, X1, Y0, F2;

S1, X0, Y0, F1;

S2, X1, Y0, F3;

S2, X0, Y0, F1;

S3, X1, Y0, F4;

S3, X0, Y0, F1;

S4, X1, Y1, F4;

S4, X0, Y0, F1;

*STATE-ASSIGNMENT

BINARY;

*RUN-CONTROL

PROGFORMAT = P-EQUATIONS;

*END

TITLE sequence detector

CHIP MEALY USER

CLK Z QQ2 QQ1 X

EQUATIONS

Z = X * QQ2 * QQ1

QQ2 := X * QQ1 + X * QQ2

QQ1 := X * QQ2 + X * /QQ1

8.1.3 Altera
Altera uses a self-contained design system for its complex PLDs that performs
design entry, simulation, and programming of the parts. Altera also provides an
input and output interface to EDIF so that designers may use third-party
schematic entry or a logic synthesizer. We have seen that the interconnect
scheme in the Altera complex PLDs is nearly deterministic, simplifying the
physical-design software as well as eliminating the need for back-annotation and
a postlayout simulation. As Altera FPGAs become larger and more complex,
there are some exceptions to this rule. Some special cases require signals to make
more than one pass through the routing structures or travel large distances across
the Altera FastTrack interconnect. It is possible to tell if this will be the case only
by trying to place and route an Altera device.

8.2 Logic Synthesis
Designers are increasingly using logic synthesis as a replacement for schematic
entry. As microelectronic systems and their ASICs become more complex, the
use of schematics becomes less practical. For example, a complex ASIC that
contains over 10,000 gates might require hundreds of pages of schematics at the
gate level. As another example, it is easier to write A = B + C than to draw a
schematic for a 32-bit adder at the gate level.

The term logic synthesis is used to cover a broad range of software and software
capabilities. Many logic synthesizers are based on logic minimization. Logic
minimization is usually performed in one of two ways, either using a set of rules
or using algorithms. Early logic-minimization software was designed using
algorithms for two-level logic minimization and developed into multilevel
logic-optimization software. Two-level and multilevel logic minimization is well
suited to random logic that is to be implemented using a CBIC, MGA, or PLD. In
these technologies, two-level logic can be implemented very efficiently. Logic
minimization for FPGAs, including complex PLDs, is more difficult than other
types of ASICs, because of the complex basic logic cells in FPGAs.

There are two ways to use logic synthesis in the design of FPGAs. The first and
simplest method takes a hardware description, optimizes the logic, and then
produces a netlist. The netlist is then passed to software that maps the netlist to an
FPGA architecture. The disadvantage of this method is the inefficiency of
decoupling the logic optimization from the mapping step. The second, more
complicated, but more efficient method, takes the hardware description and
directly optimizes the logic for a specific FPGA architecture.

Some logic synthesizers produce files in PALASM, ABEL, or CUPL formats.
Software provided by the FPGA vendor then take these files and maps the logic
to the FPGA architecture. The FPGA mapping software requires detailed
knowledge of the FPGA architecture. This makes it difficult for third-party
companies to create logic synthesis software that can map directly to the FPGA.

A problem with design-entry systems is the difficulty of moving netlists between
different FPGA vendors. Once you have completed a design using an FPGA cell
library, for example, you are committed to using that type of FPGA unless you
repeat design entry using a different cell library. ASIC designers do not like this
approach since it exposes them to the mercy of a single ASIC vendor. Logic
synthesizers offer a degree of independence from FPGA vendors (universally
referred to vendor independence, but this should, perhaps, be designer

independence) by delaying the point in the design cycle at which designers need
to make a decision on which FPGA to use. Of course, now designers become
dependent on the synthesis software company.

8.2.1 FPGA Synthesis
For low-level logic synthesis, PALASM is a de facto standard as the
lowest-common-denominator interchange format. Most FPGA design systems are
capable of converting their own native formats into a PALASM file. The most
common programmable logic design systems are ABEL from Data I/O, CUPL
from P-CAD, LOG/iC from IsData, PALASM2 from AMD, and PGA-Designer
from Minc. At a higher level, CAD companies (Cadence, Compass, Mentor, and
Synopsys are examples) support most FPGA cell libraries. This allows you to
map from a VHDL or Verilog description to an EDIF netlist that is compatible
with FPGA design software. Sometimes you have to buy the cell library from the
software company, sometimes from the FPGA vendor.

TABLE 8.3 The VHDL code for the sequence detector of Table 8.2 .

entity detector is port (X, CLK: in BIT; Z : out BIT); end;

architecture behave of SEQDET is

type STATES is (S1, S2, S3, S4);

signal current, next: STATES;

begin

combinational: process begin

case current is

when S1 =>

if X = '1' then Z <= '0'; next <= S3; else Z <= '0'; next <= S1; end if;

when S2 =>

if X = '1' then Z <= '0'; next <= S2; else Z <= '0'; next <= S1; end if;

when S3 =>

if X = '1' then Z <= '0'; next <= S2; else Z <= '0'; next <= S1; end if;

when S4 =>

if X = '1' then Z <= '1'; next <= S4; else Z <= '0'; next <= S1; end if

end case;

end process

sequential: process begin

wait until CLK'event and CLK = '1'; current <= next ;

end process;

end behave;

As an example, Table 8.3 shows a VHDL model for a pattern detector to check
for a sequence of three '1's (excluding the code for the I/O pads). Table 8.4 shows
a script or command file that runs the Synopsys software to generate an EDIF
netlist from this VHDL that targets the TI version of the Actel FPGA parts. A
script is a recipe that tells the software what to do. If we wanted to retarget this
design to another type of FPGA or an MGA or CBIC ASIC, for example, we may
only need a new set of cell libraries and to change the script (if we are lucky). In
practice, we shall probably find we need to make a few changes in the VHDL
code (in the areas of I/O pads, for example, that are different for each kind of
ASIC). We now have a portable design and a measure of vendor independence.
We have also introduced some dependence on the Synopsys software since the
code in Table 8.3 might be portable, but the script (which is just as important a
part of the design) in Table 8.4 may only be used with the Synopsys software.
Nevertheless, using logic synthesis results in a more portable design than using
schematic entry.

TABLE 8.4 The Synopsys script for the VHDL code of Table 8.3 .

/design checking/

search_path = .

/use the TI cell libraries/

link_library = tpc10.db

target_library = tpc10.db

symbol_library = tpc10.sdb

read -f vhdl detector.vhd

current_design = detector

write -n -f db -hierarchy -0 detector.db

check_design > detector.rpt

report_design > detector.rpt

/optimize for area/

max_area 0.0

compile

write -h -f db -o detector_opt.db

report -area -cell -timing > detector.rpt

free -all

/write EDIF netlist/

write -h -f edif -0

exit

8.3 The Halfgate ASIC
This section illustrates FPGA design using a very simple ASIC�a single inverter. The hidden details of the design
and construction of this �halfgate FPGA� are quite complicated. Fortunately, most of the inner workings of the
design software are normally hidden from the designer. However, when software breaks, as it sometimes does, it is
important to know how things work in order to fix the problem. The formats, filenames, and flow will change, but
the information needed at each stage and the order in which it is conveyed will stay much the same.

8.3.1 Xilinx
Table 8.5 shows an FPGA design flow using Compass and Xilinx software. On the left of Table 8.5 is a script for
the Compass programs�scripts for Cadence, Mentor, and Synopsys software are similar, but not all design software
has the capability to be run on autopilot using scripts and a command language. The diagrams in Table 8.5
illustrate what is happening at each of the design steps. The following numbered comments, corresponding to the
labels in Table 8.5 , highlight the important steps:

TABLE 8.5 Design flow for the Xilinx implementation of the halfgate ASIC.
Script Design flow

#
halfgate.xilinx.inp

shell setdef

path working
xc4000d xblox
cmosch000x

quit

asic

open [v]halfgate

synthesize

save
[nls]halfgate_p

quit

fpga

set tag xc4000

set opt area

optimize
[nls]halfgate_p

quit

qtv

open
[nls]halfgate_p

trace critical

print trace
[txt]halfgate_p

quit

shell vuterm

exec xnfmerge -p
4003PC84
halfgate_p >
/dev/null

exec xnfprep
halfgate_p >
/dev/null

exec ppr
halfgate_p >
/dev/null

exec makebits -w
halfgate_p >
/dev/null

exec lca2xnf -g -v
halfgate_p
halfgate_b >
/dev/null

quit

manager notice

utility netlist

open
[xnf]halfgate_b

save
[nls]halfgate_b

save
[edf]halfgate_b

quit

qtv

open
[nls]halfgate_b

trace critical

print trace
[txt]halfgate_b

quit

TABLE 8.6 The Xilinx files for the halfgate ASIC.
Verilog file (halfgate.v)

Preroute XNF file (halfgate_p.xnf)

LCA file (halfgate_p.lca)

Postroute XNF file (halfgate_b.xnf)

The Verilog code, in halfgate.v , describes a single inverter.1.

The script runs the logic synthesizer that converts the Verilog description to an inverter (using elements
from the Xilinx XC4000 library) and saves the result in a netlist, halfgate_p.nls (a Compass internal format).

2.

The script next runs the logic optimizer for FPGAs. This program also adds the I/O pads. In this case, logic
optimization implements the inverter by using an inverting output pad. The software writes out the netlist as
halfgate_p.xnf .

3.

A timing simulation is run on the netlist halfgate_p.nls (the Compass format netlist). This netlist uses the
default delays�every gate has a delay of 1 ns.

4.

At this point the script has run all of the Xilinx programs required to complete the place-and-route step. The
Xilinx programs have created several files, the most important of which is halfgate_p.lca , which describes
the FPGA layout. This postroute netlist is converted to halfgate_b.nls (the added suffix 'b' stands for
back-annotation). Next a timing simulation is performed on the postroute netlist, which now includes
delays, to find the delay from the input (myInput) to the output (myOutput). This is the critical�and only
�path. The simulation (not shown) reveals that the delay is 2.8 ns (for the input buffer) plus 11.6 ns (for the
output buffer), for a total delay of 14.4 ns (this is for a XC4003 in a PC84 package, and default speed grade
'4').

5.

Table 8.6 shows the key Xilinx files that are created. The preroute file, halfgate_p.xnf , describes the IBUF and
OBUF library cells but does not contain any delays. The LCA file, halfgate_p.lca , contains all the physical design
information, including the locations of the pads and I/O cells on the FPGA (PAD61 for myInput and PAD1 for
myOutput), as well as the details of the programmable connections between these I/O Cells. The postroute file,
halfgate_b.xnf , is similar to the preroute version except that now the delays are included. Xilinx assigns delays to
a pin (connector or terminal of a cell). In this case 2.8 ns is assigned to the output of the input buffer, 8.6 ns is
assigned to the input of the output buffer, and finally 3.0 ns is assigned to the output of the output buffer.

8.3.2 Actel
The key Actel files for the halfgate design are the netlist file, halfgate_io.adl, and the STF delay file for
back-annotation, halfgate_io.stf. Both of these files are shown in Table 8.7 (the STF file is large and only the last
few lines, which contain the delay information, are shown in the table).

TABLE 8.7 The Actel files for the halfgate ASIC.
ADL file STF file

; HEADER

; FILEID ADL ./halfgate_io.adl 85e8053b

; CHECKSUM 85e8053b

; PROGRAM certify

; VERSION 23/1

; ALSMAJORREV 2

; ALSMINORREV 3

; ALSPATCHREV .1

; NODEID 72705192

; VAR FAMILY 1400

; ENDHEADER

DEF halfgate_io; myInput, myOutput.

USE ADLIB:INBUF; INBUF_2.

USE ADLIB:OUTBUF; OUTBUF_3.

USE ADLIB:INV; u2.

NET DEF_NET_8; u2:A, INBUF_2:Y.

NET DEF_NET_9; myInput, INBUF_2:PAD.

NET DEF_NET_11; OUTBUF_3:D, u2:Y.

NET DEF_NET_12; myOutput, OUTBUF_3:PAD.

END.

; HEADER

; FILEID STF ./halfgate_io.stf c96ef4d8

... lines omitted ... (126 lines total)

DEF halfgate_io.

USE ; INBUF_2/U0;

TPADH:'11:26:37',

TPADL:'13:30:41',

TPADE:'12:29:41',

TPADD:'20:48:70',

TYH:'8:20:27',

TYL:'12:28:39'.

PIN u2:A;

RDEL:'13:31:42',

FDEL:'11:26:37'.

USE ; OUTBUF_3/U0;

TPADH:'11:26:37',

TPADL:'13:30:41',

TPADE:'12:29:41',

TPADD:'20:48:70',

TYH:'8:20:27',

TYL:'12:28:39'.

PIN OUTBUF_3/U0:D;

RDEL:'14:32:45',

FDEL:'11:26:37'.

END.

8.3.3 Altera
Because Altera complex PLDs use a deterministic routing structure, they can be designed more easily using a
self-contained software package�an �all-in-one� software package using a single interface. We shall assume that we
can generate a netlist that the Altera software can accept using Cadence, Mentor, or Compass software with an
Altera design kit (the most convenient format is EDIF).

Table 8.8 shows the EDIF preroute netlist in a format that the Altera software can accept. This netlist file describes
a single inverter (the line 'cellRef not'). The majority of the EDIF code in Table 8.8 is a standard template to pass
information about how the VDD and VSS nodes are named, which libraries are used, the name of the design, and
so on. We shall cover EDIF in Chapter 9 .

TABLE 8.8 EDIF netlist in Altera format for the halfgate ASIC.

Table 8.9 shows a small part of the reports generated by the Altera software after completion of the
place-and-route step. This report tells us how the software has used the basic logic cells, interconnect, and I/O
cells to implement our design. With practice it is possible to read the information from reports such as Table 8.9
directly, but it is a little easier if we also look at the netlist. The EDIF version of postroute netlist for this example
is large. Fortunately, the Altera software can also generate a Verilog version of the postroute netlist. Here is the
generated Verilog postroute netlist, halfgate_p.vo (not '.v'), for the halfgate design:

TABLE 8.9 Report for the halfgate ASIC fitted to an Altera MAX 7000 complex PLD.
** INPUTS **

Shareable

Expanders Fan-In Fan-Out

Pin LC LAB Primitive Code Total Shared n/a INP FBK OUT FBK Name

43 - - INPUT 0 0 0 0 0 0 1 myInput
** OUTPUTS **

Shareable

Expanders Fan-In Fan-Out

Pin LC LAB Primitive Code Total Shared n/a INP FBK OUT FBK Name

41 17 B OUTPUT t 0 0 0 1 0 0 0 myOutput
** LOGIC CELL INTERCONNECTIONS **

Logic Array Block 'B':

+- LC17 myOutput

|

LC | | A B | Name

Pin

43 -> * | - * | myInput

* = The logic cell or pin is an input to the logic cell (or LAB) through the PIA.

- = The logic cell or pin is not an input to the logic cell (or LAB).

// halfgate_p (EPM7032LC44) MAX+plus II Version 5.1 RC6 10/03/94

// Wed Jul 17 04:07:10 1996

`timescale 100 ps / 100 ps

module TRI_halfgate_p(IN, OE, OUT); input IN; input OE; output OUT;

bufif1 (OUT, IN, OE);

specify

specparam TTRI = 40; specparam TTXZ = 60; specparam TTZX = 60;

(IN => OUT) = (TTRI,TTRI);

(OE => OUT) = (0,0, TTXZ, TTZX, TTXZ, TTZX);

endspecify

endmodule

module halfgate_p (myInput, myOutput);

input myInput; output myOutput; supply0 gnd; supply1 vcc;

wire B1_i1, myInput, myOutput, N_8, N_10, N_11, N_12, N_14;

TRI_halfgate_p tri_2 (.OUT(myOutput), .IN(N_8), .OE(vcc));

TRANSPORT transport_3 (N_8, N_8_A);

defparam transport_3.DELAY = 10;

and delay_3 (N_8_A, B1_i1);

xor xor2_4 (B1_i1, N_10, N_14);

or or1_5 (N_10, N_11);

TRANSPORT transport_6 (N_11, N_11_A);

defparam transport_6.DELAY = 60;

and and1_6 (N_11_A, N_12);

TRANSPORT transport_7 (N_12, N_12_A);

defparam transport_7.DELAY = 40;

not not_7 (N_12_A, myInput);

TRANSPORT transport_8 (N_14, N_14_A);

defparam transport_8.DELAY = 60;

and and1_8 (N_14_A, gnd);

endmodule

The Verilog model for our ASIC, halfgate_p , is written in terms of other models: and , xor , or , not ,
TRI_halfgate_p , TRANSPORT . The first four of these are primitive models for basic logic cells and are built into
the Verilog simulator. The model for TRI_halfgate_p is generated together with the rest of the code. We also need
the following model for TRANSPORT, which contains the delay information for the Altera MAX complex PLD.
This code is part of a file (alt_max2.vo) that is generated automatically.

// MAX+plus II Version 5.1 RC6 10/03/94 Wed Jul 17 04:07:10 1996

`timescale 100 ps / 100 ps

module TRANSPORT(OUT, IN); input IN; output OUT; reg OUTR;

wire OUT = OUTR; parameter DELAY = 0;

`ifdef ZeroDelaySim

always @IN OUTR <= IN;

`else

always @IN OUTR <= #DELAY IN;

`endif

`ifdef Silos

initial #0 OUTR = IN;

`endif

endmodule

The Altera software can also write the following VHDL postroute netlist:

-- halfgate_p (EPM7032LC44) MAX+plus II Version 5.1 RC6 10/03/94

-- Wed Jul 17 04:07:10 1996

LIBRARY IEEE; USE IEEE.std_logic_1164.all;

ENTITY n_tri_halfgate_p IS

GENERIC (ttri: TIME := 1 ns; ttxz: TIME := 1 ns; ttzx: TIME := 1 ns);

PORT (in0 : IN X01Z; oe : IN X01Z; out0: OUT X01Z);

END n_tri_halfgate_p;

ARCHITECTURE behavior OF n_tri_halfgate_p IS

BEGIN

PROCESS (in0, oe) BEGIN

IF oe'EVENT THEN

IF oe = '0' THEN out0 <= TRANSPORT 'Z' AFTER ttxz;

ELSIF oe = '1' THEN out0 <= TRANSPORT in0 AFTER ttzx;

END IF;

ELSIF oe = '1' THEN out0 <= TRANSPORT in0 AFTER ttri;

END IF;

END PROCESS;

END behavior;

LIBRARY IEEE; USE IEEE.std_logic_1164.all; USE work.n_tri_halfgate_p;

ENTITY n_halfgate_p IS

PORT (myInput : IN X01Z; myOutput : OUT X01Z);

END n_halfgate_p;

ARCHITECTURE EPM7032LC44 OF n_halfgate_p IS

SIGNAL gnd : X01Z := '0'; SIGNAL vcc : X01Z := '1';

SIGNAL n_8, B1_i1, n_10, n_11, n_12, n_14 : X01Z;

COMPONENT n_tri_halfgate_p

GENERIC (ttri, ttxz, ttzx: TIME);

PORT (in0, oe : IN X01Z; out0 : OUT X01Z);

END COMPONENT;

BEGIN

PROCESS(myInput) BEGIN ASSERT myInput /= 'X' OR Now = 0 ns

REPORT "Unknown value on myInput" SEVERITY Warning;

END PROCESS;

n_tri_2: n_tri_halfgate_p

GENERIC MAP (ttri => 4 ns, ttxz => 6 ns, ttzx => 6 ns)

PORT MAP (in0 => n_8, oe => vcc, out0 => myOutput);

n_delay_3: n_8 <= TRANSPORT B1_i1 AFTER 1 ns;

n_xor_4: B1_i1 <= n_10 XOR n_14;

n_or_5: n_10 <= n_11;

n_and_6: n_11 <= TRANSPORT n_12 AFTER 6 ns;

n_not_7: n_12 <= TRANSPORT NOT myInput AFTER 4 ns;

n_and_8: n_14 <= TRANSPORT gnd AFTER 6 ns;

END EPM7032LC44;

LIBRARY IEEE; USE IEEE.std_logic_1164.all; USE work.n_halfgate_p;

ENTITY halfgate_p IS

PORT (myInput : IN std_logic; myOutput : OUT std_logic);

END halfgate_p;

ARCHITECTURE EPM7032LC44 OF halfgate_p IS

COMPONENT n_halfgate_p PORT (myInput : IN X01Z; myOutput : OUT X01Z);

END COMPONENT;

BEGIN

n_0: n_halfgate_p

PORT MAP (myInput => TO_X01Z(myInput), myOutput => myOutput);

END EPM7032LC44;

The VHDL is a little harder to decipher than the Verilog, so the schematic for the VHDL postroute netlist is shown
in Figure 8.2 . This VHDL netlist is identical in function to the Verilog netlist, but the net names and component
names are different. Compare Figure 8.2 with Figure 5.15 (c) in Section 5.4 , � Altera MAX ,� which shows the
Altera basic logic cell and Figure 6.23 in Section 6.8, �Other I/O Cells,� which describes the Altera I/O cell. The
software has fixed the inputs to the various elements in the Altera MAX device to implement a single inverter.

FIGURE 8.2 The VHDL version of the postroute Altera MAX 7000 schematic for the halfgate ASIC. Compare
this with Figure 5.15(c) and Figure 6.23.

8.3.4 Comparison
The halfgate ASIC design illustrates the differences between a nondeterministic coarse-grained FPGA (Xilinx
XC4000), a nondeterministic fine-grained FPGA (Actel ACT 3), and a deterministic complex PLD (Altera MAX
7000). These differences, summarized as follows, were apparent even in the halfgate design:

The Xilinx LCA architecture does not permit an accurate timing analysis until after place and route. This is
because of the coarse-grained nondeterministic architecture.

1.

The Actel ACT architecture is nondeterministic, but the fine-grained structure allows fairly accurate
preroute timing prediction.

2.

The Altera MAX complex PLD requires logic to be fitted to the product steering and programmable array
logic. The Altera MAX 7000 has an almost deterministic architecture, which allows accurate preroute
timing.

3.

8.4 Summary
The important concepts covered in this chapter are:

FPGA design flow: design entry, simulation, physical design, and
programming

●

Schematic entry, hardware design languages, logic synthesis●

PALASM as a common low-level hardware description●

EDIF, Verilog, and VHDL as vendor-independent netlist standards●

8.5 Problems
* = Difficult, ** = Very difficult, *** = Extremely difficult

8.1 (Files, 60 min.) Create a version of Table 8.1 for your design system.

8.2 (Scripts, 60 min.) Create a version of Table 8.5 for your design system.

8.3 (Halfgate, 60 min.)

a. Using an FPGA of your choice, estimate the preroute delay of a single
inverter (including I/O delays).

●

b. Complete a halfgate design and explain the postroute delays (make sure
you know what conditions are being used�worst-case commercial, for
example).

●

8.4 (***Xilinx die analysis, 120 min.) The data in Table 8.10 shows some
information derived from a die photo of an ATT3020 (equivalent to a Xilinx
3020) in the AT&T data book. The die photo shows the CLBs clearly enough that
we can measure their size. Then, knowing the actual die size, we can calculate
the CLB size and other parameters. From your knowledge of the contents of the
XC3020 CLB, as well as the programming and interconnect structures, make an
estimate (showing all of your approximations and explaining all of your
assumptions) of the CLB area and compare this to the value of 277 mils 2 shown
in Table 8.10 . You will need to calculate the number of logic gates in each CLB
including the LUT resources. Estimate how many pass transistors and memory
elements are required as well as calculate how many routing resources are
assigned to each CLB. Hint: You may need to use the Xilinx software, look at the
Xilinx data books, or even the AT&T (Lucent) Orca documentation.

TABLE 8.10 ATT3020 die information (Problem 8.4).

Parameter
Specified in data
book

Measured on die
photo

Calculated from die
photo

3020 die width 183.5 mil 4.1 cm �
3020 die height 219.3 mil 4.9 cm �
3000 CLB width � 0.325 cm 14.55 mil = 370 m m
3000 CLB height � 0.425 cm 19.02 mil = 483 m m

3000 CLB area � � 277 mils 2

3020 pad pitch � 1.61 mm/pad 7.21 mil/pad
Source: AT&T Data Book, July 1992, p. 3-76, MN92-024FPGA.

8.5 (***FPGA process, 120 min.) Table 8.11 describes AT&T�s 0.9 m m
twin-tub V CMOS process, with 0.75 m m minimum design rules and 0.6 m m
effective channel length and silicided (TiS 2) poly, source, and drain. This is the
process used by AT&T to second-source the Xilinx XC3000 family of FPGAs.
Calculate the parasitic resistance and capacitance parameters for the interconnect.

TABLE 8.11 ATT3000 0.9 m m twin-tub V CMOS process (Problem 8.5).
Parameter Value
Die thickness, t die 21 mil

Wafer diameter, W D 5 inch

Wafer thickness, W t 25 mil

Minimum feature size, 2 l 0.75 m m
Effective gate length, L eff (n -channel and p -channel) 0.6 m m

First-level metal, m1 Ti/AlCuSi
Second-level metal, m2 AlCuSi
m1 width 0.9 m m
m2 width 1.2 m m
m1 thickness 0.5 m m
m2 thickness 1.0 m m
m1 spacing 1.0 m m
m2 spacing 1.3 m m
D1 dielectric thickness, boron/phosphorus doped glass 3500 Å
D2 dielectric thickness, undoped glass 9000 Å
Minimum contact size 1.0 m m
Minimum via size 1.2 m m
Isolation oxide, FOX 3500 Å
Gate oxide 150 Å
Source: AT&T Data Book, July 1992, p. 2-37 and p. 3-76, MN92-024FPGA.

8.6 (Xilinx die costs, 10 min.) Table 8.12 shows the AT&T ATT3000 series die
information. Assume a 6-inch wafer that costs $2000 to fabricate and has a 90
percent yield. (a) What are the die costs? (b) Compare these figures to the costs
of XC3020 parts in 1992 and comment.

TABLE 8.12 ATT3000 die information (Problem 8.6).

Die
Die
height
/mils

Die
width
/mils

Die area
/mils 2

Die
area
/cm2

CLBs
Die perimeter
/mils

I/O
pads

3020 219.3 183.5 40,242 0.26 8 ¥ 8 806 74
3030 259.8 215.0 55,857 0.36 10 ¥ 10 950 98
3042 295.3 242.5 71,610 0.46 12 ¥ 12 1076 118

3064 270.9 366.5 99,285 0.64 16 ¥ 14 1275 142
3090 437.0 299.2 130,750 0.84 16 ¥ 20 1472 166

Source: AT&T Data Book, July 1992, p. 3-75, MN92-024FPGA. 1 mil 2 = 2.54 2

¥ 10 �6 cm 2 = 6.452 ¥ 10 �6 cm 2 .

8.7 (Pad density) Table 8.12 shows the number of pads on each of the
AT&T 3000 (equivalent to the Xilinx XC3000) die. Calculate the pad densities in
mil/pad for each part and compare with the figure for the ATT3020 in Table 8.10
.

8.8 (Xilinx HardWire, 10 min.) Xilinx manufactures nonprogrammable versions
of its LCA family of FPGAs. These HardWire chips are useful when a customer
wishes to convert to high-volume production. The Xilinx 1996 Product overview
(p. 16) shows two die photographs: one, an XC3090 (with the four quadrants of 8
¥ 10 CLB matrices visible), which is 32 mm ¥ 47 mm; the other shows the
HardWire version (24 mm ¥ 29 mm). Estimate the die size of the HardWire
version from the data in Table 8.12 and estimate the percentage of a Xilinx LCA
that is taken up by SRAM.

Answer: 60,500 mils 2 ; 50 %.

8.9 (Xilinx XDE, 10 min.) During his yearly appraisal Dewey explains to you
how he improved three Xilinx designs last year and managed to use 100 percent
of the CLBs on these LCA chips by means of the XDE manual place-and-route
program. As Dewey�s boss, rank Dewey from 1 (bad) to 5 (outstanding) and
explain your ranking in a space that has room for no more than 20 words.

8.10 (Clocks, 60 min) (From a discussion on an Internet newsgroup including
comments from Peter Alfke of Xilinx) �Xilinx guarantees that the minimum value
for any delay parameter is always more than 25 % of the maximum value for that
same parameter, as published for the fastest speed grade offered at any time.
Many parameters have been reduced significantly over the years, but the clock
delay has not. For example, comparing the fastest available XC3020-70 in 1988
with the fastest available XC3020A-6 (1996):

logic delay (t ILO) decreased from 9 ns to 4.1 ns●

output-to-pad delay decreased from 10 ns to 5 ns●

internal-clock-to-output pad delay decreased from 13 ns to 7 ns●

The internal speed has more than doubled, but the worst-case clock distribution
delay specification has only changed from 6.0 ns (1988) to 5.7 ns (1996).�

Comment on the reasons for these changes and their repercussions.

8.11 (State-machine design)

a. (10 min.) Draw the state diagram for the LOG/iC code in Table 8.2 .●

b. (10 min.) Show, using an example input sequence, that the detector●

works.

c. (10 min.) Show that the state equations and the encoding for the
PALASM code in Table 8.2 correctly describe the sequence detector state
machine.

●

d. (30 min.) Convert this design to a different format of your choice:
schematic, low-level design language, or HDL.

●

e. (30 min.) Simulate and test your design.●

8.12 (FPGA software, 60 min.) Write a minitutorial (less than 2 pages) on using
your FPGA design system. An example set of instructions for the Altera
MAX PLUS II software on a Unix system are shown below:

Setup:

Copy ~altera/M+2/maxplus2.ini into ~you/yourDirectory (call this the
working directory).

1.

Edit maxplus2.ini and point the DESIGN_NAME to your design2.

Copy ~altera/M+2/compass.lmf and ~altera/M+2/compass.edc into your
working directory.

3.

Copy ~altera/M+2/foo.acf into your working directory and rename it
mydesign.acf if your design name is mydesign.edf .

4.

Set the environment as follows:5.

setenv LM_LICENSE_FILE ~altera/maxplus2/adm/license.altera

set path=($path ~altera/maxplus5.1/bin)

and run the programs in batch mode: maxplus2 -c mydesign.edf . Add to this
information on any peculiarities of the system you are using (handling of
overwriting of files, filename extensions and when they are created, arguments
required to run the programs, and so on).

8.13 (Help, 20 min.) Print the �help� for the key programs in your FPGA system
and form it into a condensed �cheat-sheet.� Most programs echo help instruction
when called with a '-help' or '?' argument (this ought to be a standard). For
example, in the Actel system the key programs are edn2adl, adl2edn, and als (in
newer versions adl2edn is now an option to als). Hint: Actel does not use '-help'
argument, but you can get instructions on the syntax for each option individually.
Table 8.13 shows an example for the Xilinx xdelay program.

TABLE 8.13 Xilinx xdelay arguments.

usage: xdelay [<options>] [<lcafile> ..]

where <options> are:

-help Print this help.

-timespec Do timespec based delay analysis.

-s Write short xdelay report.

-x Write long xdelay report.

-t <template file> Read <template file>.

-r Use two letter style block names in output.

-o <file> Send output to file.

-w Write design file, after retiming net delays.

-u <speed> Use the <speed> speed grade.

-d Don't trace delay paths.

-convert <input .lca file> <new part type> <output .lca file>

Convert the input design to a new part type.

Specify no arguments to run xdelay in interactive mode.

To Select Report Specify Option

------------------------- ---------------------------

TimeSpec summary -timespec

Short path details -s

Long path details -x

Analyze summary none of -s, -x or -timespec

A template file can be specified with the -t option to further filter the selected
report. Only those template commands relevant to the selected report will be
used.

Using -w and -d options together will insert delay information into the design
file(s), without tracing any paths.

The -convert option may not be used with any other options.

8.6 Bibliography
There are few books on FPGA design software. Skahill�s book [1996] covers
PLD and FPGA design with Cypress FPGAs and the Cypress Warp design
system. Connor has written two articles in EDN describing a complete FPGA
design project [1992]. Most of the information on design software is available
from the software companies themselves�increasingly in online form. There is
still some material that is only available through the BBS or from a file-transfer
protocol (ftp) site. There is also a great deal of valuable material available in data
books printed between 1990 and 1995, prior to the explosion of the use of the
Internet in the late-1990s. I have included pointers to these sources in the
following sections.

8.6.1 FPGA Vendors
Actel (http://www.actel.com) has a Frequently Asked Questions (FAQ) guide
that is an indication of the most common problems with FPGA design:

Software versions, installation, and security, and not having enough
computer memory

●

X11, Motif, and OpenWindows�problems with paths and fonts.
Compatibility problems with Windows 95 and NT

●

Including I/O pads in a design using schematic entry and logic synthesis
�problems with the commands and the exact syntax to use

●

Using third-party software for schematic entry or logic synthesis and
libraries�problems with versions and paths

●

EDIF netlist issues●

It seems most of these problems never go away�they just keep resurfacing. If you
design a halfgate ASIC, an inverter, start-to-finish, as soon as you get a new set
of software, this will alert you to most of the problems you are likely to
encounter.

The May 1989 Actel data book contains details of the early antifuse experiments.
The Actel April 1990 data book has a chip photo of the Actel 1010 on the cover
(from which some useful information may be derived). Reliability reports and
article reprints are now included in the data books (see, for example, [Actel,
1996]). There is PowerPoint presentation on FPGAs (architec.exe) and the Actel
FPGA architecture at its Web site.

The Xilinx data book (see, for example, [Xilinx, 1996]) contains several hundred
pages of information on LCA parts. Xilinx produced a separate User Guide and
Tutorials book that contains over 600 pages of application notes, guides, and
tutorials on designing with FPGAs and Xilinx FPGAs in particular. XCELL is
the quarterly Xilinx Newsletter, first published in 1988. It is available online and
contains useful tips and pointers to new application notes. There is an extensive
set of Xilinx Application Notes at http://www.xilinx.com/apps . A 250 -page
guide to using the Synopsys software (hdl_dg.pdf) covers many of the problems
users experience in using any logic synthesizer for FPGA design.

Xilinx provides design kits for its EPLD FPGAs for third-party software such as
the Viewlogic design entry and simulation programs. The interconnect
architecture in the Xilinx EPLD FPGA is deterministic and so postlayout timing
results are close to prelayout estimates.

AMD, before it sold its stake in Xilinx, published the 1989/1990 Programmable
Data Array Book, which was distinct from the Xilinx data book. The AMD data
book contains useful information and code for programs to download
configuration files to Xilinx FPGAs from a PC that are still useful.

Altera publishes a series of loose-leaf application notes on a variety of topics,
some of them are in the data book (see, for example [Altera, 1996]), but some are
not. Most of these application notes are available as the AN series of documents
at http://www.altera.com/html/literature . This includes guides on using Cadence,
Mentor, Viewlogic, and Synopsys software. The 100-page Synopsys guide (
as_sig.pdf) explains many of the limitations of logic synthesizers for FPGA
design and includes the complete VHDL source code for a voice-mail machine as
an example.

Atmel has a series of data sheets and application notes for its PLD logic at
http://www.atmel.com . Some of the data sheets (for the ATV2500, for example,
available as doc156.pdf) also include examples of the use of CUPL and ABEL.
An application note in Atmel�s data book (available as doc168.pdf) includes the
ABEL source code for a video frame grabber and a description of the NTSC
video format. Atmel offers a review of its links to third-party software in a
section �PLD Software Tools Overview� in its data book (available online as
doc150.pdf at http://www.atmel.com/atmel/products). Atmel uses an
IBM-compatible PC-based system based on the Viewlogic software. Schematic
entry uses Viewdraw and simulation uses Viewsim. Atmel provides a separate
program, a fitter, to optimize a schematic for its FPGA architecture. The output
from this software generates an optimized schematic. The place-and-route
software then works with this new schematic. Atmel provides an interactive
editor similar to the Xilinx design editor that allows the designer to perform
placement manually. Atmel also supports PLD design software such as Synario
from Data I/O.

The QuickLogic design kit uses the ECS (Engineering Capture System)

developed by the CAD/CAM Group and now part of DATA I/O. Simulation uses
X-SIM, a product of Silicon Automation Systems.

Cypress has a low-cost design system (for QuickLogic and its own series of
complex PLDs) called Warp that uses VHDL for design entry.

8.6.2 Third-Party Software
There is a bewildering array of software and software companies that make, sell,
and develop products for PLD and FPGA design. These are referred to as
third-party vendors . In the remainder of this section we shall describe (in
alphabetical order) some of the available third-party software. This list changes
frequently and for more information you might search the EE sites from the
Bibliography in Chapter 1.

Accel (http://www.edac.org/EDAC/Companies) produces Tango and P-CAD
(which used to belong to Personal CAD Systems) that are a low-cost and popular
schematic-entry and PCB layout software for PCs. Currently there are no FPGA
vendors that support P-CAD or Tango directly. The missing ingredient is a set of
libraries with the appropriate schematic symbols for the logic macros and cells
used by the FPGA vendor.

AMD (http://www.amd.com) produces the Mach series of PLDs and is also the
owner of PALASM. All of the FPGA vendors use the PALASM and PALASM2
languages as interchange formats. Using PALASM is an easy way to incorporate
a PLD into an FPGA.

Antares (http://www.anteresco.com) is a spin-off from Mentor Corporation
formed from Exemplar Logic, a company specializing in synthesis software for
PLDs and FPGAs, and Model Technology, who produce a VHDL and Verilog
simulator using a common kernel.

Cadence (http://www.cadence.com) is one of the largest EDA companies. They
offer design kits for PLD and FPGA design with its schematic-entry (Composer)
and logic-synthesis (Concept) software. The Cadence Web site has some pictures
of ASIC and FPGA design flow in its third-party support area. To find these,
search for �FPGA� from the main menu.

Compass Design Automation (http://www.compass-da.com) is a spin-off from
VLSI Technology that specializes in ASIC design software and cell libraries. As
part of its system design software, this vendor includes compilers and libraries
for Xilinx, Actel, and Altera FPGAs.

Data I/O (http://www.data-io.com) makes the FutureNet DASH schematic-entry
program primarily for IBM-compatible PCs. Version 5 also has an EDIF 2 0 0
netlist writer, and an optional program PLDlinx to convert designs to ABEL.
Data I/O's ABEL is a very widely used PLD design standard. Most FPGA

software allows the merging of ABEL files with netlists from schematic-entry
programs. Usually you have to translate ABEL to PALASM first and then merge
the PALASM file with any netlists that you created from schematics. ABEL is
available on SUN workstations, IBM-compatible PC-DOS, and Macintosh
platforms. The Macintosh version is available through Capilano Computing,
using its DesignWorks program. Data I/O has extended its ABEL language for
use with FPGA design. ABEL-FPGA is a set of software that can accept
hardware descriptions in ABEL-HDL. ABEL-HDL is an extension of the ABEL
language which is optimized for programmable logic. One of the features of
ABEL-HDL is a set of naming extensions, dot extensions, which allow the
designer to specify how certain signals will be mapped into an FPGA.

Data I/O also makes a number of programmers. For example, the Unisite PROM
programmer can be used to program Actel, Altera MAX, and Xilinx EPLD
devices.

Data I/O has recently launched a separate division called Synario Design
Automation (http://www.synario.com) that has taken over ABEL and produces
a new series of PLD and FPGA design software under the Synario banner.

Exemplar, now part of Antares, writes many of the software modules for logic
synthesis used by other companies in their FPGA synthesis software. Exemplar
provides a software package that allows you to enter hardware descriptions in
ABEL, PALASM, CUPL, or Minc formats.

ISDATA produces a system called LOG/iC that can be used for FPGA design.
LOG/iC produces JEDEC fusemap files, which can be converted and merged
with netlists created with other vendors� software. An evaluation diskette contains
LOG/iC software that programs the Lattice GAL16V8. ISDATA also makes a
program called STATE/view for design using state diagrams and flow charts and
works with LOG/iC and ABEL. HINT is a program that accepts a subset of
VHDL and compiles to the LOG/iC language.

Logical Devices (http://www.logicaldevices.com) acquired CUPL, a widely
used programming language for PLDs, from Personal CAD Systems in 1987.
Most FPGA vendors allow you to use files in CUPL format indirectly. Usually
you translate to the PALASM format first in order to incorporate any logic you
design with CUPL. Logical Devices also sells EPROM programming hardware.
They manufacture programmers for FPGAs.

Mentor Graphics Corporation (http://www.mentorg.com) is a large EDA
company. Mentor produces schematic-entry and logic-synthesis software, IDEA
Station and FPGA Station, that interface to the major FPGA vendors (see also
Antares).

Minc�s PLDesigner software allows the entry of PLD designs using a mixture of
truth tables, waveforms, Minc's Design Synthesis Language (DSL), schematic
entry, or a netlist (in EDIF format). Another Minc program PGADesigner

includes the ability to target FPGAs as well as PLDs. This program is compatible
with the OrCAD, P-CAD, and FutureNet DASH schematic-entry programs.

OrCAD (http://www.orcad.com) is a popular low-cost PC schematic-entry
program supported directly by a number of FPGA vendors.

Simucad (http://www.simucad.com) produces PC-SILOS, a low-cost
logic-simulation program for PCs machines. Xilinx used to bundle Simucad with
FutureNet DASH in its least expensive, entry-level design kit.

Synopsys (http://www.synopsys.com) sells logic-synthesis software. There are
two main products: the Design Compiler for ASIC design and the FPGA
Compiler for FPGA design. FPGA Express is a PC-based FPGA logic
synthesizer. There is an extensive on-line help system available for Synopsys
customers.

Tanner Research (http://www.tanner.com) offers a variety of ASIC design
software and a �burning service�; you send them the download files to program
the FPGAs and Tanner Research programs the parts and ships them to you.
Tanner Research also offers an Actel schematic library for its schematic-entry
program S-Edit.

Texas Instruments (TI) and Minc produces mapping software between TI's gate
arrays and FPGAs (TI�s relationship with Actel is somewhere between a
second-source and a partner). Mapping software allows designers to design for a
TI gate array, for example, but prototype in FPGAs. Alternatively you could take
an existing FPGA design and map it into a TI gate array. This type of design flow
is popular with vendors such as AT&T (Lucent), TI, and Motorola who would
like you to prototype with their FPGAs before transferring any high-volume
products to their ASICs.

Viewlogic (http://www.viewlogic.com) produces the Workview and
PRODesigner systems that are sets of ASIC design programs available on a
variety of platforms. The Workview software consists of a schematic-entry
program Viewdraw; two simulators: Viewsim and Viewfault; a synthesis tool,
Viewgen; Viewplace for layout interface; Viewtrace for simulation analysis; and
Viewwave for graphical display. There is also a package, Viewbase, that is a set
of software routines enabling programmers to access Viewlogic's database in
order to create EDIF, VHDL, and CFI (CAD Framework Initiative) interfaces.
Most of the FPGA vendors have a means to incorporate Viewlogic�s schematic
netlists using Viewlogic�s WIR netlist format. Viewlogic provides a number of
applications notes (TECHniques) and includes a list of bug fixes, software
limitations, and workarounds online.

8.7 References
Page numbers in brackets after a reference indicate its location in the chapter
body.

Actel. 1996. FPGA Data Book and Design Guide. No catalog information.
Available from Actel Corporation, 955 East Arques Avenue, Sunnyvale, CA
94086-4533, (408) 739-1010. Contains design guides and applications notes,
including: Estimating Capacity and Performance for ACT 2 FPGA Designs
(describes circuits to connect FPGAs to PALs); Binning Circuit of Actel FPGAs
(describes circuits and data for performance measurement); Global Clock
Networks (describes clock distribution schemes); Fast On and Off Chip Delays
with ACT 2 I/O Latches (describes techniques to improve I/O performance);
Board Level Considerations for Actel FPGAs (describes ground bounce and SSO
problems); A Power-On Reset (POR) Circuit for Actel Devices (describes
problems caused by slowly rising supply voltage); Implementing Load (sic)
Latency Fast Counters with ACT 2 FPGAs; Oscillators for Actel FPGAs
(describes crystal and RC oscillators); Designing a DRAM Controller Using
Language-Based Synthesis (a detailed Verilog description of a 4 MB DRAM
controller including refresh). See also the Actel Web site. [reference location]

Altera. 1996. Data Book. No catalog information. Available from Altera
Corporation, 2610 Orchard Parkway, San Jose, CA 95134-2020, (408) 944-0952.
Contains information on the FLEX 10k and 8000 complex PLDs; MAX 9000,
7000, and 5000 complex PLDs; FLASHlogic; and EPLDs. A limited number of
application notes are also included. More information may be found at the Altera
Web site. [reference location]

Connor, D. 1992. �Taking the first steps.� EDN, April 9, p. 98. ISSN 0012-7515.
The second part of this article, �Migrating to FPGAs: Any designer can do it,� was
published in EDN, April 23, 1992, p. 120. See also http://www.ednmag.com .
Both articles are reprinted in the 1994 Actel Data Book. A description of
designing, simulating, and testing a voicemail system using Viewlogic software. [
reference location]

Skahill, K. 1996. VHDL for Programmable Logic. Menlo Park, CA:
Addison-Wesley, 593 p. ISBN 0-201-89573-0. TK7885.7.S55. Covers VHDL
design for PLDs using Cypress Warp design system. [reference location]

Xilinx. 1996. The Programmable Logic Data Book. No catalog information.
Available from Xilinx Corporation, 2100 Logic Drive, San Jose, CA 95124-3400,

(408) 559-7778. Contains details of XC9500, XC7300, and XC7200 CPLDs;
XC5200, XC4000, XC3000 LCA FPGAs; and XC6200 sea-of-gates FPGAs.
Earlier editions of this data book (the 1994 edition, for example) contained a
section titled �Best of XCELL� that contained extremely useful design
information. Much of this design material is now only available online, at the
Xilinx Web site. [reference location]

LOW-LEVEL
DESIGN ENTRY
The purpose of design entry is to describe a microelectronic system to a set of
electronic-design automation (EDA) tools. Electronic systems used to be, and
many still are, constructed from off-the-shelf components, such as TTL ICs.
Design entry for these systems now usually consists of drawing a picture, a
schematic . The schematic shows how all the components are connected together,
the connectivity of an ASIC. This type of design-entry process is called
schematic entry , or schematic capture . A circuit schematic describes an ASIC in
the same way an architect�s plan describes a building.

The circuit schematic is a picture, an easy format for us to understand and use,
but computers need to work with an ASCII or binary version of the schematic
that we call a netlist . The output of a schematic-entry tool is thus a netlist file
that contains a description of all the components in a design and their
interconnections.

Not all the design information may be conveyed in a circuit schematic or netlist,
because not all of the functions of an ASIC are described by the connectivity
information. For example, suppose we use a programmable ASIC for some
random logic functions. Part of the ASIC might be designed using a text
language. In this case design entry also includes writing the code. What if an
ASIC in our system contains a programmable memory (PROM)? Is the PROM
microcode, the '1's and '0's, part of design entry? The operation of our system is
certainly dependent on the correct programming of the PROM. So perhaps the
PROM code ought to be considered part of design entry. On the other hand
nobody would consider the operating-system code that is loaded into a RAM on
an ASIC to be a part of design entry. Obviously, then, there are several different
forms of design entry. In each case it is important to make sure that you have
completely specified the system�not only so that it can be correctly constructed,
but so that someone else can understand how the system is put together. Design
entry is thus an important part of documentation .

Until recently most ASIC design entry used schematic entry. As ASICs have
become more complex, other design-entry methods are becoming common.
Alternative design-entry methods can use graphical methods, such as a
schematic, or text files, such as a programming language. Using a hardware
description language (HDL) for design entry allows us to generate netlists
directly using logic synthesis . We will concentrate on low-level design-entry
methods together with their advantages and disadvantages in this chapter.

Last Edited by SP 14112004

9.1 Schematic Entry
Schematic entry is the most common method of design entry for ASICs and is
likely to be useful in one form or another for some time. HDLs are replacing
conventional gate-level schematic entry, but new graphical tools based on
schematic entry are now being used to create large amounts of HDL code.

Circuit schematics are drawn on schematic sheets . Standard schematic sheet
sizes (Table 9.1) are ANSI A�E (more common in the United States) and ISO
A4�A0 (more common in Europe). Usually a frame or border is drawn around the
schematic containing boxes that list the name and number of the schematic page,
the designer, the date of the drawing, and a list of any modifications or changes.

TABLE 9.1 ANSI (American National Standards Institute) and ISO
(International Standards Organization) schematic sheet sizes.

ANSI sheet Size (inches) ISO sheet Size (cm)
A 8.5 ¥ 11 A5 21.0 ¥ 14.8
B 11 ¥ 17 A4 29.7 ¥ 21.0
C 17 ¥ 22 A3 42.0 ¥ 29.7
D 22 ¥ 34 A2 59.4 ¥ 42.0
E 34 ¥ 44 A1 84.0 ¥ 59.4
 A0 118.9 ¥ 84.0

Figure 9.1 shows the � spades� and � shovels,� the recognized symbols for AND,
NAND, OR, and NOR gates. One of the problems with these recommendations is
that the corner points of the shapes do not always lie on a grid point (using a
reasonable grid size).

FIGURE 9.1 IEEE-recommended dimensions and their construction for
logic-gate symbols. (a) NAND gate (b) exclusive-OR gate (an OR gate is a
subset).

Figure 9.2 shows some pictorial definitions of objects you can use in a simple
schematic. We shall discuss the different types of objects that might appear in an
ASIC schematic first and then discuss the different types of connections.

FIGURE 9.2 Terms used in circuit schematics.

Schematic-entry tools for ASIC design are similar to those for printed-circuit
board (PCB) design. The basic object on a PCB schematic is a component or
device �a TTL IC or resistor, for example. There may be several hundred
components on a typical PCB. If we think of a logic gate on an ASIC as being
equivalent to a component on a PCB, then a large ASIC contains hundreds of
thousands of components. We can normally draw every component on a few
schematic sheets for a PCB, but drawing every component on an ASIC schematic
is impractical.

9.1.1 Hierarchical Design

Hierarchy reduces the size and complexity of a schematic. Suppose a building
has 10 floors and contains several hundred offices but only three different basic
office plans. Furthermore, suppose each of the floors above the ground floor that
contains the lobby is identical. Then the plans for the whole building need only
show detailed plans for the ground floor and one of the upper floors. The plans
for the upper floor need only show the locations of each office and the office
type. We can then use a separate set of three detailed plans for each of the
different office types. All these different plans together form a nested structure
that is a hierarchical design . The plan for the whole building is the top-level
plan. The plans for the individual offices are the lowest level. To clarify the
relationship between different levels of hierarchy we say that a subschematic (an
office) is a child of the parent schematic (the floor containing offices). An
electrical schematic can contain subschematics. The subschematic, in turn, may

contain other subschematics. Figure 9.3 illustrates the principles of schematic
hierarchical design.

FIGURE 9.3 Schematic example showing hierarchical design. (a) The
schematic of a half-adder, the subschematic of cell HADD. (b) A schematic
symbol for the half adder. (c) A schematic that uses the half-adder cell. (d) The
hierarchy of cell HADD.

The alternative to hierarchical design is to draw all of the ASIC components on
one giant schematic, with no hierarchy, in a flat design . For a modern ASIC
containing thousands or more logic gates using a flat design or a flat schematic
would be hopelessly impractical. Sometimes we do use flat netlists though.

9.1.2 The Cell Library

Components in an ASIC schematic are chosen from a library of cells. Library
elements for all types of ASICs are sometimes also known as modules .
Unfortunately the term module will have a very specific meaning when we come
to discuss hardware description languages. To avoid any chance of confusion I
use the term cell to mean either a cell, a module, a macro, or a book from an
ASIC library. Library cells are equivalent to the offices in our office building.

Most ASIC companies provide a schematic library of primitive gates to be used
for schematic entry. The first problem with ASIC schematic libraries is that there
are no naming conventions. For example, a primitive two-input NAND gate in a
Xilinx FPGA library does not have the same name as the two-input NAND gate

in an LSI Logic gate-array library. This means that you cannot take a schematic
that you used to create a prototype product using a Xilinx FPGA and use that
schematic to create an LSI Logic gate array for production (something you might
very likely want to do). As soon as you start entering a schematic using a library
from an ASIC vendor, you are, to some extent, making a commitment to use that
vendor�s ASIC. Most ASIC designers are much happier maintaining a large
degree of vendor independence.

A second problem with ASIC schematic libraries is that there are no standards for
cell behavior. For example, a two-input MUX in an Actel library operates so that
the input labeled A is selected when the MUX select input S = '0'. A two-input
MUX in a VLSI Technology library operates in the reverse fashion, so that the
input labeled B is selected when S = '0'. These types of differences can cause
hard-to-find problems when trying to convert a schematic from one vendor to
another by hand. These problems make changing or retargeting schematics from
one vendor to another difficult. This process is sometimes known as porting a
design.

Library cells that represent basic logic gates, such as a NAND gate, are known as
primitive cells , usually referred to just as cells. In a hierarchical ASIC design a
cell may be a NAND gate, a flip-flop, a multiplier, or even a microprocessor, for
example. To use the office building analogy again, each of the three basic office
types is a primitive cell. However, the plan for the second floor is also a cell. The
second-floor cell is a subschematic of the schematic for the whole building. Now
we see why the commonly accepted use of the term cell in schematic entry can be
so confusing. The term cell is used to represent both primitive cells and
subschematics. These are two different, but closely related, things.

There are two types of macros for MGAs and programmable ASICs. The most
common type of macro is a hard macro that includes placement information. A
hard macro can change in position and orientation, but the relative location of the
transistors, other layout, and wiring inside the macro is fixed. A soft macro
contains only connection information (between transistors for a gate array or
between logic cells for a programmable ASIC). Thus the placement and wiring
for a soft macro can vary. This means that the timing parameters for a soft macro
can only be determined after you complete the place-and-route step. For this
reason the basic library elements for MGAs and programmable ASICs, such as
NAND gates, flip-flops, and so on, are hard macros.

A standard cell contains layout information on all mask levels. An MGA hard
macro contains layout information on just the metal, contact, and via layers. An
MGA soft macro or programmable ASIC macro does not contain any layout
information at all, just the details of connections to be made inside the macro.

We can stretch the office building analogy to explain the difference between hard
and soft macros. A hard macro would be an office with fixed walls in which you
are not allowed to move the furniture. A soft macro would be an office with
partitions in which you can move the furniture around and you can also change

the shape of your office by moving the partitions.

9.1.3 Names

Each of the cells, primitive or not, that you place on an ASIC schematic has a cell
name . Each use of a cell is a different instance of that cell, and we give each
instance a unique instance name . A cell instance is somewhere between a copy
and a reference to a cell in a library. An analogy would be the pictures of
hamburgers on the wall in a fast-food restaurant. The pictures are somewhere
between a copy and a reference to a real hamburger.

We represent each cell instance by a picture or icon , also known as a symbol .
We can represent primitive cells, such as NAND and NOR gates, with familiar
icons that look like spades and shovels. Some schematic editors offer the option
of switching between these familiar icons and using the rectangular IEEE
standard symbols for logic gates. Unfortunately the term icon is also often used to
refer to any of the pictures on a schematic, including those that represent
subschematics. There is no accepted way to differentiate between an icon that
represents a primitive cell and one that represents a subschematic that may be in
turn a collection of primitive cells. In fact, there is usually no easy way to tell by
looking at a schematic which icons represent primitive cells and which represent
subschematics.

We will have three different icons for each of the three different primitive offices
in the imaginary office building example of Section 9.1.1 . We also will have
icons to represent the ground floor and the plan for the other floors. We shall call
the common plan for the second through tenth floors, Floor . Then we say that the
second floor is an instance of the cell name Floor . The third through tenth floors
are also instances of the cell name Floor . The same icon will be used to represent
the second through tenth floors, but each will have a unique instance name. We
shall give them instance names: FloorTwo , FloorThree , ... , FloorTen . We say
that FloorTwo through FloorTen are unique instance names of the cell name
Floor .

At the risk of further confusion I should point out that, strictly speaking, the
definition of a primitive cell depends on the type of library being used.
Schematic-entry libraries for the ASIC designer stop at the level of NAND gates
and other similar low-level logic gates. Then, as far as the ASIC designer is
concerned, the primitive cells are these logic gates. However, from the view of
the library designer there is another level of hierarchy below the level of logic
gates. The library designer needs to work with libraries that contain schematics of
the gates themselves, and so at this level the primitive cells are transistors.

Let us look at the building analogy again to understand the subtleties of primitive
cells. A building contractor need only concern himself with the plans for our
office building down to the level of the offices. To the building contractor the
primitive cells are the offices. Suppose that the first of the three different office

types is a corner office, the second office type has a window, and a third office
type is without a window. We shall call these office cells: CornerOffice ,
WindowOffice , and NoWindowOffice . These cells are primitive cells as far as
the contractor is concerned. However, when discussing the plans with a client,
the architect of our building will also need to see how each offices is furnished.
The architect needs to see a level of detail of each office that is more complicated
than needed by the building contractor. The architect needs to see the cells that
represent the tables, chairs, and desks that make up each type of office. To the
architect the primitive cells are a library containing cells such as chair , table ,
and desk .

9.1.4 Schematic Icons and Symbols

Most schematic-entry programs allow the designer to draw special or custom
icons. In addition, the schematic-entry tool will also usually create an icon
automatically for a subschematic that is used in a higher-level schematic. This is
a derived icon , or derived symbol . The external connections of the subschematic
are automatically attached to the icon, usually a rectangle.

Figure 9.4 (c) shows what a derived icon for a cell, DLAT , might look like (we
could also have drawn this by hand). The subschematic for DLAT is shown in
Figure 9.4 (b). We say that the inverter with the instance name inv1 in the
subschematic is a subcell (or submodule) of the cell DLAT . Alternatively we say
that cell instance inv1 is a child of the cell DLAT , and cell DLAT is a parent of
cell instance inv1 .

FIGURE 9.4 A cell and its subschematic. (a) A schematic library containing
icons for the primitive cells. (b) A subschematic for a cell, DLAT, showing the
instance names for the primitive cells. (c) A symbol for cell DLAT.

Figure 9.5 (a) shows a more complex subschematic for a 4-bit latch. Each
primitive cell instance in this schematic must have a unique name. This can get
very tiresome for large circuits. Instead of creating complex, but repetitive,
subschematics for complex cells we can use hierarchy.

FIGURE 9.5 A 4-bit latch: (a) drawn as a flat schematic from gate-level
primitives, (b) drawn as four instances of the cell symbol DLAT, (c) drawn
using a vectored instance of the DLAT cell symbol with cardinality of 4,
(d) drawn using a new cell symbol with cell name FourBit.

Figure 9.5 (b) shows a hierarchical subschematic for a cell FourBit , which in
turn uses four instances of the cell DLAT . The four instances of DLAT in
Figure 9.5 (b) have different instance names: L1 , L2 , L3 , and L4 . Notice that
we cannot use just one name for the four instances of DLAT to indicate that they
are all the same cell. If we did, we could not differentiate between L1 and L2 , for
example.

The vertical row of instances in Figure 9.5 (b) looks like a vector of elements.
Figure 9.5 (c) shows a vectored instance representing four copies of the DLAT
cell. We say the cardinality of this instance is 4. Tools normally use bold lines or
some other distinguishing feature to represent a vectored instance. The
cardinality information is often shown as a vector. Thus L[1:4] represents four
instances: L[1] , L[2] , L[3] , L[4] . This is convenient because now we can see
that all subcells are identical copies of L , but we have a unique name for each.

Finally, as shown in Figure 9.5 (d) we can create a new symbol for the 4-bit
latch, FourBit . The symbol for FourBit has a 4-bit-wide input bus for the four D
inputs, and a 4-bit wide output bus for the four Q outputs. The subschematic for
FourBit could be either Figure 9.5 (a), (b), or (c) (though the exact naming of the
inputs and outputs and their attachment to the buses may be different in each
case).

We need a convention to distinguish, for example, between the inverter subcells,
inv1 , which are children of the cell DLAT , which are in turn children of the cell
FourBit . Most schematic-entry tools do this by combining the instance names of
the subcells in a hierarchical manner using a special character as a delimiter. For
example, if we drew the subschematic as in Figure 9.5 (b), the four inverters in
FourBit might be named L1.inv1 , L2.inv1 , L3.inv1 , and L4.inv1 . Once again
this makes it clear that the inverters, inv1 , are identical in all four subcells.

In our office building example, the offices are subcells of the cell Floor . Suppose
you and I both have corner offices. Mine is on the second floor and yours is
above mine on the third floor. My office is 211 and your office is 311. Another
way to name our offices on a building plan might be FloorTwo.11 for my office
and FloorThree.11 for your office. This shows that FloorTwo.11 is a subcell of
FloorTwo and also makes it clear that, apart from being on different floors, your
office and mine are identical. Both our offices have instance names 11 and are
instances of cell name Corner .

9.1.5 Nets

The schematics shown in Figure 9.4 contain both local nets and external nets . An
example of a local net in Figure 9.4 (b) is n1 , the connection between the output
terminal of the AND cell and1 to the OR cell or1 . When the four copies of this
circuit are placed in the parent cell FourBit in Figure 9.5 (d), four copies of net n1
are created. Since the four nets named n1 are not actually electrically connected,
even though they have the same name at the lowest hierarchical level, we must
somehow find a way to uniquely identify each net.

The usual convention for naming nets in a hierarchical schematic uses the parent
cell instance name as a prefix to the local net name. A special character (':' '/' '$'
'#' for example) that is not allowed to appear in names is used as a delimiter to
separate the net name from the cell instance name. Supposing that we drew the
subschematic for cell FourBit as shown in Figure 9.5 (b), the four different nets
labeled n1 might then become:

FourBit .L1:n1 FourBit .L2:n1 FourBit .L3:n1 FourBit .L4:n1

This naming is usually done automatically by the schematic-entry tool.

The schematic DLAT also contains three external nets: D, EN, and Q . The
terminals on the symbol DLAT connect these nets to other nets in the hierarchical
level above. For example, the signal Trigger:flag in Figure 9.4 (c) is also
Trigger.DLAT:Q . Each schematic tool handles this situation differently, and life
becomes especially difficult when we need to refer to these nodes from a
simulator outside the schematic tool, for example. HDLs such as VHDL and
Verilog have a very precise and well-defined standard for naming nets in
hierarchical structures.

9.1.6 Schematic Entry for ASICs and PCBs

A symbol on a schematic may represent a component, which may contain
component parts. You are more likely to come across the use of components in a
PCB schematic. A component is slightly different from an ASIC library cell. A
simple example of a component would be a TTL gate, an SN74LS00N, that
contains four 2-input NAND gates. We call an SN74LS00N a component and
each of the individual NAND gates inside is a component part. Another common
example of a component would be a resistor pack�a single package that contains
several identical resistors.

In PCB design language a component label or name is a reference designator . A
reference designator is a unique name attribute, such as R99 , attached to each
component. A reference designator, such as R99 , has two pieces: an alpha prefix
R and a numerical suffix 99 . To understand the difference between reference
designators and instance names, we need to look at the special requirements of
PCB design.

PCBs usually contain packaged ASICs and other ICs that have pins that are
soldered to a board. For rectangular, dual-in-line (DIP) packages the pins are
numbered counterclockwise from the upper-left corner looking down on the
package.

IC symbols have a pin number for each part in the package. For example, the
TTL 74174 hex D flip-flop with clear, contains six parts: six identical D
flip-flops. The IC symbol representing this device has six PinNumber attribute
entries for the D input corresponding to the six possible input pins. They are pins
3, 4, 6, 11, 13, and 14.

When we need a flip-flop in our design, we use a symbol for a 74174 from a
schematic library, suppose the symbol name is dffClr . We shall assign a unique
instance name to the symbol, CarryFF . Now suppose we need another, identical,
flip-flop and we call this BitFF . We do not mind which of the six flip-flop parts
in a 74174 we use for CarryFF and BitFF . In fact they do not even have to be in
the same package. We shall delay the choice of assigning CarryFF and BitFF to
specific packages until we get to the PCB routing step. So at this point on our
schematic we do not even know the pin numbers for CarryFF and BitFF . For
example the D input to CarryFF could be pin 3, 4, 6, 11, 13, or 14.

The number of wire crossings on a PCB is minimized by careful assignment of
components to packages and choice of parts within a package. So the
placement-and-routing software may decide which part of which package to use
for CarryFF and BitFF depending on which is easier to route. Then, only after the
placement and routing is complete, are unique reference designators assigned to
the component parts. Only at this point do we know where CarryFF is actually
located on the PCB by referring to the reference designator, which points to a
specific part in a specific package. Thus CarryFF might be located in IC4 on our
PCB. At this point we also know which pins are used for each symbol. So we

now know, for example, that the D-input to CarryFF is pin 3 of IC4 .

There is no process in ASIC design directly equivalent to the process of part
assignment described above and thus no need to use reference designators. The
reference-designator naming convention quickly becomes unwieldy if there are a
large number of components in a design. For example, how will we find a NAND
gate named X3146 in an ASIC schematic with 100 pages? Instead, for ASICs, we
use a naming scheme based on hierarchy.

In large hierarchical ASIC designs it is difficult to provide a unique reference
designator to each element. For this reason ASIC designs use instance names to
identify the individual components. Meaningful names can be assigned to
low-level components and also the symbols that represent hierarchy. We derive
the component names by joining all of the higher level cell names together. A
special character is used as a delimiter and separates each level.

Examples of hierarchical instance names are:

cpu.alu.adder.and01

MotherBoard:Cache:RAM4:ReadBit4:Inverter2

9.1.7 Connections

Cell instances have terminals that are the inputs and outputs of the cell. Terminals
are also known as pins , connectors , or signals . The term pin is widely used, but
we shall try to use terminal, and reserve the term pin for the metal leads on an
ASIC package. The term pin is used in schematic entry and routing programs that
are primarily intended for PCB design.

FIGURE 9.6 An example of the use of a bus to simplify a schematic. (a) An
address decoder without using a bus. (b) A bus with bus rippers simplifies the
schematic and reduces the possibility of making a mistake in creating and
reading the schematic.

Electrical connections between cell instances use wire segments or nets . We can
group closely related nets, such as the 32 bits of a 32-bit digital word, together

into a bus or into buses (not busses). If signals on a bus are not closely related,
we usually use the term bundle or array instead of bus. An example of a bundle
might be a bus for a SCSI disk system, containing not only data bits but
handshake and control signals too. Figure 9.6 shows an example of a bus in a
schematic. If we need to access individual nets in a bus or a bundle, we use a
breakout (also known as a ripper , an EDIF term, or extractor). For example, a
breakout is used to access bits 0�7 of a 32-bit bus. If we need to rearrange bits on
a bus, some schematic editors offer something called a swizzle . For example, we
might use a swizzle to reorder the bits on an 8-bit bus so that the MSB becomes
the LSB and so on down to the LSB, which now becomes the MSB. Swizzles can
be useful. For example, we can multiply or divide a number by 2 by swizzling all
the bits up or down one place on a bus.

9.1.8 Vectored Instances and Buses

So far the naming conventions are fairly standard and easy to follow. However,
when we start to use vectored instances and buses (as is now common in large
ASICs), there are potential areas of difficulty and confusion. Figure 9.7 (a) shows
a schematic for a 16-bit latch that uses multiple copies of the cell FourBit . The
buses are labeled with the appropriate bits. Figure 9.7 (b) shows a new cell
symbol for the 16-bit latch with 16-bit wide buses for the inputs, D, and outputs,
Q.

FIGURE 9.7 A 16-bit latch: (a) drawn as four instances of cell FourBit; (b)
 drawn as a cell named SixteenBit; (c) drawn as four multiple instances of cell
FourBit.

Figure 9.7 (c) shows an alternative representation of the 16-bit latch using a
vectored instance of FourBit with cardinality 4. Suppose we wish to make a
connection to expressly one bit, D1 (we have used D1 as the first bit rather than
the more conventional D0 so that numbering is easier to follow). We also wish to
make a connection to bits D9�D12, represented as D[9:12]. We do this using a
bus ripper. Now we have the rather awkward situation of bus naming shown in
Figure 9.7 (c). Problems arise when we have �buses of buses� because the
numbers for the bus widths do not match on either side of a ripper. For this
reason it is best to use the single-bus approach shown in Figure 9.7 (b) rather than
the vectored-bus approach of Figure 9.7 (c).

9.1.9 Edit-in-Place

Figure 9.7 (b) shows a symbol SixteenBit , which uses the subschematic shown
in Figure 9.7 (a) containing four copies of FourBit , named NB1 , NB2 , NB3 ,
and NB4 (the NB stands for nibble, which is half of a word; a nibble is 4 bits for
8-bit words). Suppose we use the schematic-entry program to edit the subcell
NB1.L1 , which is an instance of DLAT inside NB1 . Perhaps we wish to change
the D latch to a D latch with a reset, for example. If the schematic editor supports
edit-in-place , we can edit a cell instance directly. After we edit the cell, the
program will update all the DLAT subcells in the cell that is currently loaded to
reflect the changes that have been made.

To see how edit-in-place works, consider our office building again. Suppose we
wish to change some of the offices on each floor from offices without windows to
offices with windows. We select the cell instance FloorTwo �that is, an instance
of cell Floor . Now we choose the edit mode in the schematic-entry program. But
wait! Do we want to edit the cell Floor , or do we want to edit the cell instance
FloorTwo ? If we edit the cell Floor , we will be making changes to all of the
floors that use cell name Floor �that is, instances FloorTwo through FloorTen . If
we edit the cell instance FloorTwo , then the second floor will become different
from all the other floors. It will no longer be an instance of cell name Floor and
we will have to create another cell name for the cell used by instance FloorTwo .
This is like the difference between ordering just one hamburger without pickles
and changing the picture on the wall that will change all future hamburgers.

Using edit-in-place we can edit the cell Floor . Suppose we change some of the
cell instances of cell name NoWindowOffice to instances of cell name
WindowOffice . When we finish editing and save the cell Floor , we have
effectively changed all of the floors that contain instances of this cell.

Instead of editing a cell in place, you may really want to edit just one instance of
a cell and leave any other instances unchanged. In this case you must create a
new cell with a new symbol and new, unique cell name. It might also be wise to
change the instance name of the new cell to avoid any confusion.

For example, we might change the third-floor plan of our office to be different
from the other upper floors. Suppose the third floor is now an instance of cell
name FloorVIP instead of Floor . We could continue to call the third floor cell
instance FloorThree , but it would be better to rename the instance differently,
FloorSpecial for example, to make it clear that it is different from all the other
floors.

Some tools have the ability to alias nets. Aliasing creates a net name from the
highest level in the design. Local names are net names at the lowest level such as
D , and Q in a flip-flop cell. These local names are automatically replaced by the
appropriate top-level names such as Clock1 , or Data2 , using a dictionary . This
greatly speeds tracing of signals through a design containing many levels of
hierarchy.

9.1.10 Attributes

You can attach a name , also known as an identifier or label , to a component, cell
instance, net, terminal, or connector. You can also attach an attribute , or property
, which describes some aspect of the component, cell instance, net, or connector.
Each attribute has a name, and some attributes also have values. The most
common problems in working with schematics and netlists, especially when you
try to exchange schematic information between different tools, are problems in
naming.

Since cells and their contents have to be stored in a database, a cell name
frequently corresponds (or is mapped to) a filename. This then raises the
problems of naming conventions including: case sensitivity, name-collision
resolution, dictionaries, handling of �common� special characters (such as
embedded blanks or underscores), other special characters (such as characters in
foreign alphabets), first-character restrictions, name-length problems (only 28
characters are permitted on an NFS compatible filename), and so on.

9.1.11 Netlist Screener

A surprising number of problems can be found by checking a schematic for
obviously fatal errors. A program that analyzes a schematic netlist for simple
errors is sometimes called a schematic screener or netlist screener . Errors that
can be found by a netlist screener include:

unconnected cell inputs,●

unconnected cell outputs,●

nets not driven by any cells,●

too many nets driven by one cell,●

nets driven by more than one cell.●

The screener can work continuously as the designer is creating the schematic or
can be run as a separate program independently from schematic entry. Usually

the designer provides attributes that give the screener the information necessary
to perform the checks. A few of the typical attributes that schematic-entry
programs use are described next.

A screener usually generates a list of errors together with the locations of the
problem on the schematic where appropriate. Some editors associate an identifier,
or handle , to every piece of a schematic, including comments and every net.
Normally there is some convention to the assigned names such as a grid on a
schematic. This works like the locator codes on a map, so that a net with A1 as
part of the name is in the upper-left-hand corner, for example. This allows you to
quickly and uniquely find any problems found by a screener. The term handle is a
computer programming term that is used in referring to a location in memory.
Each piece of information on a schematic is stored in lists in memory. This
technique breaks down completely when we move to HDLs.

Most schematic-entry programs work on a grid. The designer can control the size
of the grid and whether it is visible or not. When you place components or wires
you can instruct the editor to force your drawing to snap to grid . This means that
drawing a schematic is like drawing on graph paper. You can only locate
symbols, wires, and connections on grid points. This simplifies the internal
mechanics of the schematic-entry program. It also makes the transfer of
schematics between different EDA systems more manageable. Finally, it allows
the designer to produce schematic diagrams that are cleaner in appearance and
thus easier to read.

Most schematic-entry programs allow you to find components by instance name
or cell name. The editor may either jump to the component location and center
the graphic window on the component or highlight the component. More
sophisticated options allow more complex searches, perhaps using wildcard
matching. For example, to find all three-input NAND gates (primitive cell name
ND3) or three-input NOR gates (primitive cell name NO3), you could search for
cell name N*3, where * is a wildcard symbol standing for any character. The
editor may generate a list of components, perhaps with page number and
coordinate locations. Extensive find features are useful for large schematics
where it quickly becomes impossible to find individual components.

Some schematic editors can complete automatic naming of reference designators
or instance names to the schematic symbols either as the editor is running or as a
postprocessing step. A component attribute, called a prefix, defines the prefix for
the name for each type of component. For example, the prefix for all resistor
component types may be R . Each time a prefix is found or a new instance is
placed, the number in the reference designator or name is automatically
incremented. Thus if the last resistor component type you placed was R99 , the
next time you place a resistor it would automatically be named R100 .

For large schematics it is useful to be able to generate a report on the used and
unused reference designators. An example would be:

Reference designator prefix: R

Unused reference designator numbers: 153, 154

Last used reference designator number: 180

If you need this feature, you probably are not using enough hierarchy to simplify
your design.

During schematic entry of an ASIC design you will frequently need multiple
copies of components. This often occurs during datapath design, where
operations are carried out across multiple signals on a bus. A common example
would be multiple copies of a latch, one for each signal on a bus. It is tedious and
inefficient to have to draw and label the same cell many times on a schematic. To
simplify this task, most editors allow you to place a special vectored cell instance
of a cell. A vectored cell instance, or vectored instance for short, uses the same
icon for a single instance but with a special attribute, the cell cardinality , that
denotes the number of copies of the cell. Connections between signals on a bus
and vectored instances should be handled automatically. The width or cardinality
of the bus and the cell cardinality must match, and the design-entry tool should
issue a warning if this is not the case.

A schematic-entry program can use a terminal attribute to determine which cell
terminals are output terminals and which terminals are input terminals. This
attribute is usually called terminal polarity or terminal direction . Possible values
for terminal polarity might be: input , output , and bidirectional . Checking the
terminal polarity of the terminals on a net can help find problems such as a net
with all input terminals or all output terminals.

The fanout of a cell measures the driving capability of an output terminal. The
fanin of a cell measures the number of input terminals. Fanout is normally
measured using a standard load. A standard load is the load presented by one
input of a primitive cell, usually a two-input NAND. For example, a library cell
Counter may have an input terminal, Clock , that is connected to the input
terminals of five primitive cells. The loading at this terminal is then five standard
loads. We say that the fanout of Clock is five. In a similar fashion, we say that if
a cell Buffer is capable of driving the inputs of three primitive cells, the fanout of
Buffer is three. Using the fanin and fanout attributes a netlist screener can check
to see if the fanout driving a net is greater than the sum of all loads on that net.
(See Figure 9.2 on page 329.)

9.1.12 Schematic-Entry tools

Some editors offer icon edit-in-place in a similar fashion as schematic
edit-in-place for cells. Often you have to toggle editing modes in the
schematic-entry program to switch between editing cells and editing cell icons. A
schematic-entry program must keep track of when cells are edited. Normally this
is done by using a timestamp or datestamp for each cell. This is a text field within

the data file for each cell that holds the date and time that the cell was last
modified. When a new schematic or cell is loaded, the program needs to compare
its timestamp with the timestamps of any subcells. If any of the subcell
timestamps are more recent, then the designer needs to be alerted. Usually a
message appears to inform you that changes have been made to subcells since the
last time the cell currently loaded was saved. This may be what you expect or it
may be a warning that somehow a subcell has been changed inadvertently
(perhaps someone else changed it) since you last loaded that cell.

Normally the primitive cells in a library are locked and cannot be edited. If you
can edit a primitive cell, you have to make a copy, edit the copy, and rename it.
Normally the ASIC designer cannot do this and does not want to. For example, to
edit a primitive NAND gate stored in an ASIC schematic library would require
that the subschematic of the primitive cell be available (usually not the case) and
also that the next lower level primitives (symbols for the transistors making up
the NAND gate) also be available to the designer (also usually not the case).

What do you do if somehow changes were made to a cell by mistake, perhaps by
someone else, and you don�t want the new cell, you want the old version? Most
schematic-entry and other EDA tools keep old versions of files as a back-up in
case this kind of problem occurs. Most EDA software automatically keeps track
of the different versions of a file by appending a version number to each file.
Usually this is transparent to the designer. Thus when you edit a cell named Floor
, the file on disk might be called Floor.6 . When you save the changes, the
software will not overwrite Floor.6 , but write out a new file and automatically
name it Floor.7 .

Some design-entry tools are more sophisticated and allow users to create their
own libraries as they complete an ASIC design. Designers can then control
access to libraries and the cells that they build during a design. This normally
requires that a schematic editor, for example, be part of a larger EDA system or
framework rather than work as a stand-alone tool. Sometimes the process of
library control operates as a separate tool, as a design manager or library manager
. Often there is a program similar to the UNIX make command that keeps track of
all files, their dependencies, and the tools that are necessary to create and update
each file.

You can normally set the number of back-up versions of files that EDA software
keeps. The version history controls the number of files the software will keep. If
you accidentally update, overwrite, or delete a file, there is usually an option to
select and revert to an earlier version. More advanced systems have check-out
services (which work just as in source control systems in computer programming
databases) that prevent these kinds of problems when many people are working
on the same design. Whenever possible, the management of design files and
different versions should be left under software control because the process can
become very complicated. Reverting to an earlier version of a cell can have
drastic consequences for other cells that reference the cell you are working with.
Attempts to manually edit files by changing version numbers and timestamps can

quickly lead to chaos.

Most schematic-entry programs allow you to undo commands. This feature may
be restricted to simply undoing the last command that you entered, or may be an
unlimited undo and redo, allowing you to back up as many commands as you
want in the current editing session.

You can spend a lot of time in a schematic editor placing components and
drawing the connections between them. Features that simplify initial entry and
allow modifications to be made easily can make an enormous difference to the
efficiency of the schematic-entry process.

Most schematic editors allow you to make connections by dragging the cursor
with the wire following behind, in a process known as rubber banding . The
connection snaps to a right angle when the connection is completed. For wire
connections that require more than two line segments, an automatic wiring
feature is useful. This allows you to define the wire path roughly using mouse
clicks and have the editor complete the connection.

It is exceedingly painful to move components if you have to rewire connections
each time. Most schematic editors allow you to move the components and drag
any wires along with them.

One of the most annoying problems that can arise in schematic entry is to think
that you have joined two wires on a schematic but find that in reality they do not
quite meet. This error can be almost impossible to find. A good editing program
will have a way of avoiding this problem. Some editors provide a visual (flash) or
audible (beep) feedback when the designer draws a wire that makes an electrical
connection with another. Some editors will also automatically insert a dot at a �T�
connection to show that an electrical connection is present. Other editors refuse
to allow four-way connections to be made, so there can be no ambiguity when
wires cross each other if an electrical connection is present or not.

A cell library or a collection of libraries is a key part of the schematic-entry
process. The ability to handle and control these libraries is an important feature of
any schematic editor. It should be easy to select components from the library to
be placed on a schematic.

In large schematics it is necessary to continue large nets and signals across
several pages of schematics. Signals such as power and ground, VDD and GND,
can be connected using global nets or special connectors . Global nets allow the
designer to label a net with the same name at different places on a schematic page
or on different pages without having to draw a connection explicitly. The
schematic editor treats these nets as though they were electrically connected.
Special connector symbols can be used for connections that cross schematic
pages. An off-page connector or multipage connector is a special symbol that will
show and label a connection to different schematic pages. More sophisticated
editors can automatically label these connectors with the page numbers of the
destination connectors.

9.1.13 Back-Annotation

After you enter a schematic you simulate the design to make sure it works as
expected. This completes the logical design. Next you move to ASIC physical
design and complete the layout. Only after you complete the layout do you know
the parasitic capacitance and therefore the delay associated with the interconnect.
This postroute delay information must be returned to the schematic in a process
known as back-annotation . Then you can complete a final, postlayout simulation
to make sure that the specifications for the ASIC are met. Chapter 13 covers
simulation, and the physical design steps are covered in Chapters 15 to 17.

9.2 Low-Level Design
Languages
Schematics can be a very effective way to convey design information because
pictures are such a powerful medium. There are two major problems with
schematic entry, however. The first problem is that making changes to a
schematic can be difficult. When you need to include an extra few gates in the
middle of a schematic sheet, you may have to redraw the whole sheet. The
second problem is that for many years there were no standards on how symbols
should be drawn or how the schematic information should be stored in a netlist.
These problems led to the development of design-entry tools based on text rather
than graphics. As TTL gave way to PLDs, these text-based design tools became
increasingly popular as de facto standards began to emerge for the format of the
design files.

PLDs are closely related to FPGAs. The major advantage of PLD tools is their
low cost, their ease of use, and the tremendous amount of knowledge and number
of designs, application notes, textbooks, and examples that have been built up
over years of their use. It is natural then that designers would want to use PLD
development systems and languages to design FPGAs and other ASICs. For
example, there is a tremendous amount of PLD design expertise and working
designs that can be reused.

In the case of ASIC design it is important to use the right tool for the job. This
may mean that you need to convert from a low-level design medium you have
used for PLD design to one more appropriate for ASIC design. Often this is
because you are merging several PLDs into a single, much larger, ASIC. The
reason for covering the PLD design languages here is not to try and teach you
how to use them, but to allow you to read and understand a PLD language and, if
necessary, convert it to a form that you can use in another ASIC design system.

9.2.1 ABEL

ABEL is a PLD programming language from Data I/O. Table 9.2 shows some
examples of the ABEL statements. The following example code describes a 4:1
MUX (equivalent to the LS153 TTL part):

TABLE 9.2 ABEL.
Statement Example Comment
Module module MyModule You can have multiple modules.

Title title 'Title in a String'
A string is a character series between
quotes.

Device
MYDEV device '22V10'
;

MYDEV is Device ID for
documentation.

22V10 is checked by the compiler.

Comment

"comments go between
double quotes"

"end of line is end of
comment

The end of a line signifies the end of
a comment; there is no need for an
end quote.

@ALTERNATE
@ALTERNATE "use
alternate symbols

operator alternate default

AND

OR

NOT

XOR

XNOR

*

+

/

:+:

:*:

&

#

!

$

!$

Pin declaration

MYINPUT pin 2; I3, I4
pin 3, 4 ;

/MYOUTPUT pin 22;
IO3,IO4 pin 21,20 ;

Pin 22 is the IO for input on pin 2 for
a 22V10.

MYOUTPUT is active-low at the
chip pin.

Signal names must start with a letter.
Equations equations Defines combinational logic.

IO4 = HELPER ;
HELPER = /I4 ;

Two-pass logic

Assignments
MYOUTPUT =
/MYINPUT ;

Equals '=' is unlocked assignment.

 IO3 := I4 ;
Clocked assignment operator
(registered IO)

Signal sets
D = [D0, D1, D2, D3] ;
Q = [Q0, Q1, Q2, Q3];

A signal set, an ABEL bus

 Q := D ; 4-bit-wide register

Suffix
MYOUTPUT.RE = CLR
;

Register reset

MYOUTPUT.PR = PRE
;

Register preset

Addition
COUNT = [D0, D1, D2];

COUNT := COUNT + 1;

Can�t use @ALTERNATE

if you use '+' to add.

Enable
ENABLE IO3 = IO2;

IO3 = MYINPUT;

Three-state enable (ENABLE is a
keyword).

IO3 must be a three-state pin.
Constants K = [1, 0, 1] ; K is 5.
Relational IO# = D == K5 ; Operators: == != < > <= >=
End end MyModule Last statement in module

module MUX4

title '4:1 MUX'

MyDevice device 'P16L8' ;

@ALTERNATE

"inputs

A, B, /P1G1, /P1G2 pin 17,18,1,6 "LS153 pins 14,2,1,15

P1C0, P1C1, P1C2, P1C3 pin 2,3,4,5 "LS153 pins 6,5,4,3

P2C0, P2C1, P2C2, P2C3 pin 7,8,9,11 "LS153 pins 10,11,12,13

"outputs

P1Y, P2Y pin 19, 12 "LS153 pins 7,9

equations

P1Y = P1G*(/B*/A*P1C0 + /B*A*P1C1 + B*/A*P1C2 + B*A*P1C3);

P1Y = P1G*(/B*/A*P1C0 + /B*A*P1C1 + B*/A*P1C2 + B*A*P1C3);

end MUX4

9.2.2 CUPL

CUPL is a PLD design language from Logical Devices. We shall review the
CUPL 4.0 language here. The following code is a simple CUPL example
describing sequential logic:

SEQUENCE BayBridgeTollPlaza {

PRESENT red

IF car NEXT green OUT go; /* conditional synchronous output */

DEFAULT NEXT red; /* default next state */

PRESENT green

NEXT red; } /* unconditional next state */

This code describes a state machine with two states. Table 9.3 shows the different
state machine assignment statements.

TABLE 9.3 CUPL statements for state-machine entry.
Statement Description
IF NEXT Conditional next state transition

IF NEXT OUT
Conditional next state transition with synchronous
output

 NEXT Unconditional next state transition

 NEXT OUT
Unconditional next state transition with asynchronous
output

 OUT Unconditional asynchronous output
IF OUT Conditional asynchronous output
DEFAULT NEXT Default next state transition
DEFAULT OUT Default asynchronous output
DEFAULT NEXT OUT Default next state transition with synchronous output

You may also encode state machines as truth tables in CUPL. Here is another
simple example:

FIELD input = [in1..0];

FIELD output = [out3..0];

TABLE input => output {00 => 01; 01 => 02; 10 => 04; 11 => 08; }

The advantage of the CUPL language, and text-based PLD languages in general,
is now apparent. First, we do not have to enter the detailed logic for the state
decoding ourselves�the software does it for us. Second, to make changes only
requires simple text editing�fast and convenient.

Table 9.4 shows some examples of CUPL statements. In CUPL Boolean
equations may use variables that contain a suffix, or an extension , as in the
following example:

output.ext = (Boolean expression);

TABLE 9.4 CUPL.
Statement Example Comment
Boolean
expression

A = !B; Logical negation

 A = B & C; Logical AND
 A = B # C; Logical OR
 A = B $ C; Logical exclusive-OR
Comment A = B & C /* comment */
Pin declaration PIN 1 = CLK; Device dependent

 PIN = CLK; Device independent
Node declaration NODE A; Number automatically assigned
 NODE [B0..7]; Array of buried nodes
Pinnode
declaration

PINNODE 99 = A; Node assigned by designer

 PINNODE [10..17] = [B0..7]; Array of pinnodes
Bit-field
declaration

FIELD Address = [B0..7]; 8-bit address field

Bit-field
operations

add_one = Address:FF; True if Address = OxFF

 add_zero = !(Address:&); True if Address = Ox00

add_range =
Address:[0F..FF];

True if 0F.LE.Address.LE.FF

The extensions steer the software, known as a fitter , in assigning the logic. For
example, a signal-name suffix of .OE marks that signal as an output enable.

Here is an example of a CUPL file for a 4-bit counter placed in an ATMEL PLD
part that illustrates the use of some common extensions:

Name 4BIT; Device V2500B;

/* inputs */

pin 1 = CLK; pin 3 = LD_; pin 17 = RST_;

pin [18,19,20,21] = [I0,I1,I2,I3];

/* outputs */

pin [4,5,6,7] = [Q0,Q1,Q2,Q3];

field CNT = [Q3,Q2,Q1,Q0];

/* equations */

Q3.T = (!Q2 & !Q1 & !Q0) & LD_ & RST_ /* count down */

Q3 & !RST_ /* ReSeT */

(Q3 $ I3) & !LD_; /* LoaD*/

Q2.T = (!Q1 & !Q0) & LD_ & RST_ # Q2 & !RST_ # (Q2 $ I2) & !LD_;

Q1.T = !Q0 & LD_ & RST_ # Q1 & !RST_ # (Q1 $ I1) & !LD_;

Q0.T = LD_ & RST_ # Q0 & !RST_ # (Q0 $ I0) & !LD_;

CNT.CK = CLK; CNT.OE = 'h'F; CNT.AR = 'h'0; CNT.SP = 'h'0;

In this example the suffix extensions have the following effects: .CK marks the

clock; .T configures sequential logic as T flip-flops; .OE (wired high) is the
output enable; .AR (wired low) is the asynchronous reset; and .SP (wired low) is
the synchronous preset. Table 9.5 shows the different CUPL extensions.

TABLE 9.5 CUPL 4.0 extensions.
Extension 1 Explanation Extension Explanation

D L
D input to a D
register

 DFB R
D register feedback of

combinational output

L L L input to a latch LFB R
Latched feedback of

combinational output

J, K L
J-K-input to a J-K
register

 TFB R
T register feedback of

combinational output

S, R L
S-R input to an
S-R register

 INT R Internal feedback

T L
T input to a T
register

 IO R
Pin feedback of registered
output

DQ R
D output of an
input D register

 IOD/T R
D/T register on pin feedback
path selection

LQ R
Q output of an
input latch

 IOL R
Latch on pin feedback path

selection

AP, AR L
Asynchronous
preset/reset

IOAP,
IOAR

L
Asynchronous preset/reset of

register on feedback path

SP, SR L
Synchronous
preset/reset

 IOSP, IOSR L
Synchronous preset/reset of

register on feedback path

CK L
Product clock term
(async.)

 IOCK L
Clock for pin feedback
register

OE L
Product-term
output enable

APMUX,
ARMUX

L
Asynchronous preset/reset

multiplexor selection
CA L Complement array CKMUX L Clock multiplexor selector

PR L
Programmable
preload

 LEMUX L
Latch enable multiplexor
selector

CE L
CE input of a
D-CE register

 OEMUX L
Output enable multiplexor

selector

LE L
Product-term latch
enable

 IMUX L
Input multiplexor selector of

two pins

OBS L
Programmable
observability of
buried nodes

 TEC L
Technology-dependent fuse
selection

BYP L
Programmable
register bypass

 T1 L T1 input of 2-T register

The 4-bit counter is a very simple example of the use of the Atmel ATV2500B.
This PLD is quite complex and has many extra �buried� features. In order to use
these features in CUPL (and ABEL) you need to refer to special pin numbers and
node numbers that are given in tables in the manufacturer�s data sheets. You may
need the pin-number tables to reverse engineer or convert a complicated CUPL
(or ABEL) design from one format to another.

Atmel also gives skeleton headers and pin declarations for their parts in their data
sheets. Table 9.6 shows the headers and pin declarations in ABEL and CUPL
format for the ATMEL ATV2500B.

TABLE 9.6 ABEL and CUPL pin declarations for an ATMEL ATV2500B.
ABEL CUPL
device_id device 'P2500B';

"device_id used for JEDEC filename

I1,I2,I3,I17,I18 pin 1,2,3,17,18;

O4,O5 pin 4,5 istype 'reg_d,buffer';

O6,O7 pin 6,7 istype 'com';

O4Q2,O7Q2 node 41,44 istype
'reg_d';

O6F2 node 43 istype 'com';

O7Q1 node 220 istype 'reg_d';

device V2500B;

pin [1,2,3,17,18] = [I1,I2,I3,I17,I18];

pin [7,6,5,4] = [O7,O6,O5,O4];

pinnode [41,65,44] = [O4Q2,O4Q1,O7Q2];

pinnode [43,68] = [O6Q2,O7Q1];

9.2.3 PALASM

PALASM is a PLD design language from AMD/MMI. Table 9.7 shows the
format of PALASM statements. The following simple example (a video shift
register) shows the most basic features of the PALASM 2 language:

TABLE 9.7 PALASM 2.
Statement Example Comment
Chip CHIP abc 22V10 Specific PAL type
 CHIP xyz USER Free-form equation entry

Pinlist
CLK /LD D0 D1 D2 D3 D4
GND NC Q4 Q3 Q2 Q1 Q0
/RST VCC

Part of CHIP statement; PAL
pins in numerical order starting
with pin 1

String STRING string_name 'text'
Before EQUATIONS
statement

Equations EQUATIONS After CHIP statement
 A = /B Logical negation
 A = B * C Logical AND
 A = B + C Logical OR
 A = B :+: C Logical exclusive-OR
 A = B :*: C Logical exclusive-NOR
Polarity inversion /A = /(B + C) Same as A = B + C
Assignment A = B + C Combinational assignment
 A := B + C Registered assignment
Comment A = B + C ; comment Comment
Functional equation name.TRST Output enable control
 name.CLKF Register clock control
 name.RSTF Register reset control
 name.SETF Register set control

TITLE video ; shift register

CHIP video PAL20X8

CK /LD D0 D1 D2 D3 D4 D5 D6 D7 CURS GND NC REV Q7 Q6 Q5 Q4 Q3
Q2 Q1 Q0 /RST VCC

STRING Load 'LD*/REV*/CURS*RST' ; load data

STRING LoadInv 'LD*REV*/CURS*RST' ; load inverted of data

STRING Shift '/LD*/CURS*/RST' ; shift data from MSB to LSB

EQUATIONS

/Q0 := /D0*Load+D0*LoadInv:+:/Q1*Shift+RST

/Q1 := /D1*Load+D1*LoadInv:+:/Q2*Shift+RST

/Q2 := /D2*Load+D2*LoadInv:+:/Q3*Shift+RST

/Q3 := /D3*Load+D3*LoadInv:+:/Q4*Shift+RST

/Q4 := /D4*Load+D4*LoadInv:+:/Q5*Shift+RST

/Q5 := /D5*Load+D5*LoadInv:+:/Q6*Shift+RST

/Q6 := /D6*Load+D6*LoadInv:+:/Q7*Shift+RST

/Q7 := /D7*Load+D7*LoadInv:+:Shift+RST;

The order of the pin numbers in the previous example is important; the order

must correspond to the order of pins for the DEVICE . This means that you
probably need the device data sheet in order to be able to translate a design from
PALASM to another format by hand. The alternative is to use utilities that many
PLD and FPGA companies offer that automatically translate from PALASM to
their own formats.

1. L means that the extension is used only on the LHS of an equation; R means
that the extension is used only on the RHS of an equation.

9.3 PLA Tools
We shall use the Berkeley PLA tools to illustrate logic minimization using an
example to minimize the logic required to implement the following three logic
functions:

F1 = A|B|!C; F2 = !B&C; F3 = A&B|C;

These equations are in eqntott input format. The eqntott (for �equation to truth
table�) program converts the input equations into a tabular format. Table 9.8
shows the truth table and eqntott output for functions F1 , F2 , and F3 that use the
six minterms: A , B , !C , !B&C , A&B , C .

TABLE 9.8 A PLA tools example.
Input (6 minterms): F1 = A|B|!C; F2 = !B&C; F3 = A&B|C;
A B C F1 F2 F3 eqntott output espresso output

0 0 0 1 0 0 .i 3

.o 3

.p 6

--0 100

--1 001

-01 010

-1- 100

1-- 100

11- 001

.e

 .i 3

.o 3

.p 6

1-- 100

11- 001

--0 100

-01 011

-11 101

.e

0 0 1 0 1 1

0 1 0 1 0 0

0 1 1 1 0 1

1 0 0 1 0 0

1 0 1 1 1 1

1 1 0 1 0 1

1 1 1 1 0 1

Output (5 minterms): F1 = A|!C|(B&C); F2 = !B&C; F3 = A&B|(!B&C)|(B&C);

This eqntott output is not really a truth table since each line corresponds to a
minterm. The output forms the input to the espresso logic-minimization program.
Table 9.9 shows the format for espresso input and output files. Table 9.10
explains the format of the input and output planes of the espresso input and
output files. The espresso output in Table 9.8 corresponds to the eqntott logic
equations on the next page.

TABLE 9.9 The format of the input and output files used by the PLA design
tool espresso.
Expression Explanation
comment # must be first character on a line.
[d] Decimal number
[s] Character string
.i [d] Number of input variables
.o [d] Number of output variables
.p [d] Number of product terms

.ilb [s1] [s2]... [sn]
Names of the binary-valued variables must be after .i
and .o .

.ob [s1] [s2]... [sn] Names of the output functions must be after .i and .o .

.type f Following table describes the ON set; DC set is empty.

.type fd Following table describes the ON set and DC set.

.type fr Following table describes the ON set and OFF set.

.type fdr
Following table describes the ON set, OFF set, and DC
set.

.e Optional, marks the end of the PLA description.

TABLE 9.10 The format of the plane part of the input and output files for
espresso.
Plane Character Explanation
I 1 The input literal appears in the product term.
I 0 The input literal appears complemented in the product term.
I - The input literal does not appear in the product term.
O 1 or 4 This product term appears in the ON set.
O 0 This product term appears in the OFF set.
O 2 or - This product term appears in the don�t care set.
O 3 or ~ No meaning for the value of this function.

F1 = A|!C|(B&C); F2 = !B&C; F3 = A&B|(!B&C)|(B&C);

We see that espresso reduced the original six minterms to these five: A , A&B ,
!C , !B&C , B&C .

The Berkeley PLA tools were widely used in the 1980s. They were important
stepping stones to modern logic synthesis tools. There are so many testbenches,
examples, and old designs that used these tools that we occasionally need to
convert files in the Berkeley PLA format to formats used in new tools.

9.4 EDIF
An ASIC designer spends an increasing amount of time forcing different tools to
communicate. One standard for exchanging information between EDA tools is
the electronic design interchange format (EDIF). We will describe EDIF version
2 0 0. The most important features added in EDIF 3 0 0 were to handle buses, bus
rippers, and buses across schematic pages. EDIF 4 0 0 includes new extensions
for PCB and multichip module (MCM) data. The Library of Parameterized
Modules (LPM) standard is also based on EDIF. The newer versions of EDIF
have a richer feature set, but the ASIC industry seems to have standardized on
EDIF 2 0 0. Most EDA companies now support EDIF. The FPGA companies
Altera and Actel use EDIF as their netlist format, and Xilinx has announced its
intention to switch from its own XNF format to EDIF. We only have room for a
brief description of the EDIF format here. A complete description of the EDIF
standard is contained in the Electronic Industries Association (EIA) publication,
Electronic Design Interchange Format Version 2 0 0 (ANSI/EIA Standard
548-1988) [EDIF, 1988].

9.4.1 EDIF Syntax

The structure of EDIF is similar to the Lisp programming language or the
Postscript printer language. This makes EDIF a very hard language to read and
almost impossible to write by hand. EDIF is intended as an exchange format
between tools, not as a design-entry language. Since EDIF is so flexible each
company reads and writes different �flavors� of EDIF. Inevitably EDIF from one
company does not quite work when we try and use it with a tool from another
company, though this situation is improving with the gradual adoption of
EDIF 3 0 0. We need to know just enough about EDIF to be able to fix these
problems.

FIGURE 9.8 The hierarchical nature of an EDIF
file.

Figure 9.8 illustrates the hierarchy of the EDIF file. Within an EDIF file are one
or more libraries of cell descriptions. Each library contains technology
information that is used in describing the characteristics of the cells it contains.
Each cell description contains one or more user-named views of the cell. Each
view is defined as a particular viewType and contains an interface description
that identifies where the cell may be connected to and, possibly, a contents
description that identifies the components and related interconnections that make
up the cell.

The EDIF syntax consists of a series of statements in the following format:

(keywordName {form})

A left parenthesis (round bracket) is always followed by a keyword name ,
followed by one or more EDIF forms (a form is a sequence of identifiers,
primitive data, symbolic constants, or EDIF statements), ending with a right
parenthesis. If you have programmed in Lisp or Postscript, you may understand
that EDIF uses a �define it before you use it� approach and why there are so many
parentheses in an EDIF file.

The semantics of EDIF are defined by the EDIF keywords . Keywords are the
only types of name that can immediately follow a left parenthesis. Case is not
significant in keywords.

An EDIF identifier represents the name of an object or group of data. Identifiers
are used for name definition, name reference, keywords, and symbolic constants.
Valid EDIF identifiers consist of alphanumeric or underscore characters and must
be preceded by an ampersand (&) if the first character is not alphabetic. The
ampersand is not considered part of the name. The length of an identifier is from
1 to 255 characters and case is not significant. Thus &clock , Clock , and clock
all represent the same EDIF name (very confusing).

Numbers in EDIF are 32-bit signed integers. Real numbers use a special EDIF
format. For example, the real number 1.4 is represented as (e 14 -1) . The e form
requires a mantissa (14) and an exponent (-1). Reals are restricted to the range

± 1 ¥ 10 ± 35 . Numbers in EDIF are dimensionless and the units are determined
according to where the number occurs in the file. Coordinates and line widths are
units of distance and must be related to meters. Each coordinate value is
converted to meters by applying a scale factor . Each EDIF library has a
technology section that contains a required numberDefinition . The scale
keyword is used with the numberDefinition to relate EDIF numbers to physical
units.

Valid EDIF strings consist of sequences of ASCII characters enclosed in double
quotes. Any alphanumeric character is allowed as well as any of the following
characters: ! # $ & ' () * + , - . / : ; < = > ? @ [\] ^ _ ` { | } ~ . Special
characters, such as " and % are entered as escape sequences: %number% , where
number is the integer value of the ASCII character. For example, "A quote is %
34 %" is a string with an embedded double-quote character. Blank, tab, line feed,
and carriage-return characters (white space) are used as delimiters in EDIF.
Blank and tab characters are also significant when they appear in strings.

The rename keyword can be used to create a new EDIF identifier as follows:

(cell (rename TEST_1 "test$1") ...

In this example the EDIF string contains the original name, test$1, and a new
name, TEST_1 , is created as an EDIF identifier.

9.4.2 An EDIF Netlist Example

Table 9.11 shows an EDIF netlist. This EDIF description corresponds to the
halfgate example in Chapter 8 and describes an inverter. We shall explain the
functions of the EDIF in Table 9.11 by showing a piece of the code at a time
followed by an explanation.

TABLE 9.11 EDIF file for the halfgate netlist from Chapter 8.

(edif halfgate_p

(edifVersion 2 0 0) (edifLevel 0) (keywordMap (keywordLevel 0))

(status (written (timeStamp 1996 7 10 22 5 10)

(program "COMPASS Design Automation -- EDIF Interface"

(version "v9r1.2 last updated 26-Mar-96")) (author "mikes")))

Every EDIF file must have an edif form. The edif form must have a name , an
edifVersion , an edifLevel , and a keywordMap . The edifVersion consists of
three integers describing the major (first number) and minor version of EDIF.
The keywordMap must have a keywordLevel . The optional status can contain a
written form that must have a timeStamp and, optionally, author or program
forms.

(library xc4000d (edifLevel 0) (technology

(The unbalanced parentheses are deliberate since we are showing segments of the
EDIF code.) The library form must have a name , edifLevel and technology . The
edifLevel is normally 0. The xc4000d library contains the cells we are using in
our schematic.

(numberDefinition) (simulationInfo (logicValue H) (logicValue L)))

The simulationInfo form is used by simulation tools; we do not need that
information for netlist purposes for this cell. We shall discuss numberDefinition
in the next example. It is not needed in a netlist.

(cell (rename INV "inv") (cellType GENERIC)

This cell form defines the name and type of a cell inv that we are going to use in
the schematic.

(view COMPASS_mde_view (viewType NETLIST)

(interface (port I (direction INPUT)) (port O (direction OUTPUT))

(designator "@@Label")))))

The NETLIST view of this inverter cell has an input port I and an output port O .
There is also a place holder "@@Label" for the instance name of the cell.

(library working...

This begins the description of our schematic that is in our library working. The
lines that follow this library form are similar to the preamble for the cell library
xc4000d that we just explained.

(cell (rename HALFGATE_P "halfgate_p")(cellType GENERIC)

(view COMPASS_nls_view (viewType NETLIST)

This cell form is for our schematic named halfgate_p.

(interface (port myInput (direction INPUT))

(port myOutput (direction OUTPUT))

The interface form defines the names of the ports that were used in our
schematic, myInput and myOutput. At this point we have not associated these
ports with the ports of the cell INV in the cell library.

(designator "@@Label")) (contents (instance B1_i1

This gives an instance name B1_i1 to the cell in our schematic.

(viewRef COMPASS_mde_view (cellRef INV (libraryRef xc4000d))))

The cellRef form links the cell instance name B1_i1 in our schematic to the cell
INV in the library xc4000d.

(net myInput (joined (portRef myInput)

(portRef I (instanceRef B1_i1))))

The net form for myInput (and the one that follows it for myOutput) ties the net
names in our schematic to the ports I and O of the library cell INV .

(net VDD (joined)) (net VSS (joined))))))

These forms for the global VDD and VSS nets are often handled differently by
different tools (one company might call the negative supply GND instead of VSS

, for example). This section is where you most often have to edit the EDIF.

(design HALFGATE_P (cellRef HALFGATE_P (libraryRef working))))

The design form names and places our design in library working, and completes
the EDIF description.

9.4.3 An EDIF Schematic Icon

EDIF is capable of handling many different representations. The next EDIF
example is another view of an inverter that describes how to draw the icon (the
picture that appears on the printed schematic or on the screen) shown in
Figure 9.9 . We shall examine the EDIF created by the CAD/CAM Group�s
Engineering Capture System (ECS) schematic editor.

FIGURE 9.9 An EDIF view of an inverter icon. The coordinates shown are in
EDIF units. The crosses that show the text location origins and the dotted
bounding box do not print as part of the icon.

This time we shall give more detailed explanations after each piece of EDIF
code. We shall also maintain balanced parentheses to make the structure easier to
follow. To shorten the often lengthy EDIF code, we shall use an ellipsis (...) to
indicate any code that has been left out.

(edif ECS

(edifVersion 2 0 0)

(edifLevel 0)

(keywordMap (keywordLevel 0))

(status

(written

(timeStamp 1987 8 20 0 50 23)

(program "CAD/CAM Group, Inc. ECS" (Version "1"))))

(library USER ...

)

...

)

This preamble is virtually identical to the previous netlist example (and
demonstrates that EDIF is useful to store design information as software tools
come and go over many years). The first line of the file defines the name of the
file. This is followed by lines that identify the version of EDIF being used and the
highest EDIF level used in the file (each library may use its own level up to this
maximum). EDIF level 0 supports only literal constants and basic constructs.
Higher EDIF levels support parameters, expressions, and flow control constructs.
EDIF keywords may be mapped to aliases, and keyword macros may be defined
within the keywordMap form. These features are not often used in ASIC design
because of a lack of standardization. The keywordLevel 0 indicates these
capabilities are not used here. The status construct is used for administration:
when the file was created, the software used to create the file, and so on.
Following this preamble is the main section of the file, which contains design
information.

(library USER (edifLevel 0)

(technology

(numberDefinition

(scale 4 (e 254 -5) (unit distance)))

(figureGroup NORMAL

(pathWidth 0) (borderWidth 0)

(textHeight 5))

(figureGroup WIDE

(pathWidth 1) (borderWidth 1)

(textHeight 5)))

(cell 7404 ...

)

)

The technology form has a numberDefinition that defines the scaling information
(we did not use this form for a netlist, but the form must be present). The first
numberValue after scale represents EDIF numbers and the second numberValue
represents the units specified by the unit form. The EDIF unit for distance is the
meter. The numberValue can be an integer or an exponential number. The e form

has a mantissa and an exponent. In this example, within the USER library, a
distance of 4 EDIF units equals 254 ¥ 10 �5 meters (or 4 EDIF units equals 0.1
inch).

After the numberDefinition in the technology form there are one or more
figureGroup definitions. A figureGroup defines drawing information such as
pathWidth , borderWidth , color , fillPattern , borderPattern , and textHeight .
The figureGroup form must have a name, which will be used later in the library
to refer back to these definitions. In this example the USER library has one
figureGroup (NORMAL) for lines and paths of zero width (the actual width will
be implementation dependent) and another figureGroup (WIDE) that will be used
for buses with a wider width (for bold lines). The borderWidth is used for
drawing filled areas such as rectangles, circles, and polygons. The pathWidth is
used for open figures such as lines (paths) and open arcs.

Following the technology section the cell forms each represent a symbol. The cell
form has a name that will appear in the names of any files produced. The
cellType form GENERIC type is required by this schematic editor. The property
form is used to list properties of the cell.

(cell 7404 (cellType GENERIC)

(property SymbolType (string "GATE"))

(view PCB_Symbol (viewType SCHEMATIC)

(interface ...

)

)

)

The SymbolType property is used to distinguish between purely graphical
symbols that do not occur in the parts list (a ground connection, for example),
gate or component symbols, and block or cell symbols (for hierarchical
schematics). The SymbolType property is a string that may be COMPONENT ,
GATE , CELL , BLOCK , or GRAPHIC . Each cell may contain view forms and
each view must have a name. Following the name of the view must be a
viewType that is either GRAPHIC or SCHEMATIC . Following the viewType is
the interface form, which contains the symbol and terminal information. The
interface form contains the actual symbol data.

(interface

(port Pin_1

(designator "2")

(direction OUTPUT)

(dcMaxFanout 50))

(port Pin_2

(designator "1")

(direction INPUT)

(dcFanoutLoad 8)

(property Cap

(string "22")))

(property Value

(string "45"))

(symbol ...

)

If the symbol has terminals, they are listed before the symbol form. The port form
defines each terminal. The required port name is used later in the symbol form to
refer back to the port. Since this example is from a PCB design, the terminals
have pin numbers that correspond to the IC package leads. The pin numbers are
defined in the designator form with the pin number as a string. The polarity of the
pin is indicated by the direction form, which may be INPUT , OUTPUT , or
INOUT . If the pin is an output pin, its Drive can be represented by dcMaxFanout
and if it is an input pin its Load can be represented by dcFanoutLoad . The port
form can also contain forms unused , dcMaxFanin , dcFaninLoad , acLoad , and
portDelay . All other attributes for pins besides PinNumber , Polarity , Load , and
Drive are contained in the property form.

An attribute string follows the name of the property in the string form. In this
example port Pin_2 has a property Cap whose value is 22. This is the input
capacitance of the inverter, but the interpretation and use of this value depends on
the tools. In ASIC design pins do not have pin numbers, so designator is not used.
Instead, the pin names use the property form. So (property NetName (string "1"))
would replace the (designator "1") in this example on Pin_2 . The interface form
may also contain attributes of the symbol.

Symbol attributes are similar to pin attributes. In this example the property name
Value has an attribute string "45" . The names occurring in the property form
may be referenced later in the interface under the symbol form to refer back to
the property .

(symbol

(boundingBox (rectangle (pt 0 0) (pt 76 -32)))

(portImplementation Pin_1

(connectLocation (figure NORMAL (dot (pt 60 -16)))))

(keywordDisplay designator

(display NORMAL

(justify LOWERCENTER) (origin (pt 60 -14)))))

(portImplementation Pin_2

(connectLocation (figure NORMAL (dot (pt 0 -16)))))

(keywordDisplay designator

(display NORMAL

(justify LOWERCENTER) (origin (pt 0 -14)))))

(keywordDisplay cell

(display NORMAL (justify CENTERLEFT) (origin (pt 25 -5))))

(keywordDisplay instance

(display NORMAL

(justify CENTERLEFT) (origin (pt 36 -28))))

(keywordDisplay designator

(display (figureGroupOverride NORMAL (textHeight 7))

(justify CENTERLEFT) (origin (pt 13 -16))))

(propertyDisplay Value

(display (figureGroupOverride NORMAL (textHeight 9))

(justify CENTERRIGHT) (origin (pt 76 -24))))

(figure ...)

)

The interface contains a symbol that contains the pin locations and graphical
information about the icon. The optional boundingBox form encloses all the
graphical data. The x- and y-locations of two opposite corners of the bounding
rectangle use the pt form. The scale section of the numberDefinition from the
technology section of the library determines the units of these coordinates. The pt
construct is used to specify coordinate locations in EDIF. The keyword pt must
be followed by the x-location and the y-location. For example: (pt 100 200) is at
x = 100, y = 200.

Each pin in the symbol is given a location using a portImplementation .●

The portImplementation refers back to the port defined in the
interface .

●

The connectLocation defines the point to connect to the pin.●

The connectLocation is specified as a figure , a dot with a single pt for its
location.

●

(symbol

(...

(figure WIDE

(path (pointList (pt 12 0) (pt 12 -32)))

(path (pointList (pt 12 -32) (pt 44 -16)))

(path (pointList (pt 12 0) (pt 44 -16))))

(figure NORMAL

(path (pointList (pt 48 -16) (pt 60 -16)))

(circle (pt 44 -16) (pt 48 -16))

(path (pointList (pt 0 -16) (pt 12 -16))))

(annotate

(stringDisplay "INV"

(display NORMAL

(justify CENTERLEFT) (origin (pt 12 -12)))))

)

The figure form has either a name, previously defined as a figureGroup in the
technology section, or a figureGroupOverride form. The figure has all the
attributes (pathWidth , borderWidth , and so on) that were defined in the
figureGroup unless they are specifically overridden with a figureGroupOverride .

Other objects that may appear in a figure are: circle , openShape , path , polygon ,
rectangle , and shape . Most schematic editors use a grid, and the pins are only
allowed to occur on grid .

A portImplementation can contain a keywordDisplay or a propertyDisplay for the
location to display the pin number or pin name. For a GATE or COMPONENT ,
keywordDisplay will display the designator (pin number), and designator is the
only keyword that can be displayed. For a BLOCK or CELL , propertyDisplay
will display the NetName . The display form displays text in the same way that
the figure displays graphics. The display must have either a name previously
defined as a figureGroup in the technology section or a figureGroupOverride

form. The display will have all the attributes (textHeight for example) defined in
the figureGroup unless they are overridden with a figureGroupOverride .

A symbolic constant is an EDIF name with a predefined meaning. For example,
LOWERLEFT is used to specify text justification. The display form can contain
a justify to override the default LOWERLEFT . The display can also contain an
orientation that overrides the default R0 (zero rotation). The choices for
orientation are rotations (R0, R90, R180, R270), mirror about axis (MX, MY),
and mirror with rotation (MXR90, MYR90). The display can contain an origin
to override the default (pt 0 0) .

The symbol itself can have either keywordDisplay or propertyDisplay forms such
as the ones in the portImplementation . The choices for keywordDisplay are: cell
for attribute Type , instance for attribute InstName , and designator for attribute
RefDes . In the preceding example an attribute window currently mapped to
attribute Value is displayed at location (76, �24) using right-justified text, and a
font size is set with (textHeight 9) .

The graphical data in the symbol are contained in figure forms. The path form
must contain pointList with two or more points. The figure may also contain a
rectangle or circle . Two points in a rectangle define the opposite corners. Two
points in a circle represent opposite ends of the diameter. In this example a figure
from figureGroup WIDE has three lines representing the triangle of the inverter
symbol.

Arcs use the openShape form. The openShape must contain a curve that contains
an arc with three points. The three points in an arc correspond to the starting
point, any point on the arc, and the end point. For example, (openShape (curve
(arc (pt - 5 0) (pt 0 5) (pt 5 0)))) is an arc with a radius of 5, centered at the
origin. Arcs and lines use the pathWidth from the figureGroup or
figureGroupOverride ; circles and rectangles use borderWidth .

The fixed text for a symbol uses annotate forms. The stringDisplay in annotate
contains the text as a string. The stringDisplay contains a display with the
textHeight , justification , and location . The symbol form can contain multiple
figure and annotate forms.

9.4.4 An EDIF Example

In this section we shall illustrate the use of EDIF in translating a cell library from
one set of tools to another�from a Compass Design Automation cell library to the
Cadence schematic-entry tools. The code in Table 9.12 shows the EDIF
description of the symbol for a two-input AND gate, an02d1, from the Compass
cell library.

TABLE 9.12 EDIF file for a Compass standard-cell schematic icon.

The Cadence schematic tools do contain a procedure, EDIFIN, that reads the
Compass EDIF files. This procedure works, but, as we shall see, results in some
problems when you use the icons in the Cadence schematic-entry tool. Instead we
shall make some changes to the original files before we use EDIFIN to transfer
the information to the Cadence database, cdba .

The original Compass EDIF file contains a figureGroup for each of the following
four EDIF cell symbols:

connector_FG icon_FG instance_FG net_FG bus_FG

The EDIFIN application translates each figureGroup to a Cadence layer�purpose
pair definition that must be defined in the Cadence technology file associated
with the library. If we use the original EDIF file with EDIFIN this results in the
automatic modification of the Cadence technology file to define layer names,
purposes, and the required properties to enable use of the figureGroup names.

This results in non-Cadence layer names in the Cadence database.

First then, we need to modify the EDIF file to use the standard Cadence layer
names shown in Table 9.13 . These layer names and their associated purposes
and properties are defined in the default Cadence technology file, default.tf .
There is one more layer name in the Compass files (bus_FG figureGroup), but
since this is not used in the library we can remove this definition from the EDIF
input file.

TABLE 9.13 Compass and corresponding Cadence figureGroup names.
Compass name Cadence name Compass name Cadence name
connector_FG pin net_FG wire
icon_FG device bus_FG not used
instance_FG instance

Internal scaling differences lead to giant characters in the Cadence tools if we use
the textHeight of 30 defined in the EDIF file. Reducing the textHeight to 5 results
in a reasonable text height.

The EDIF numberDefinition construct, together with the scale construct, defines
measurement scaling in an EDIF file. In a Cadence schematic EDIF file the
numberDefinition and scale construct is determined by an entry in the associated
library technology file that defines the edifUnit to userUnit ratio. This ratio
affects the printed size of an icon.

For example, the distance defined by the following path construct is 10 EDIF
units:

(path (pointlist (pt 0 0) (pt 0 10)))

What is the length of 10 EDIF units? The numberDefinition and scale construct
associates EDIF units with a physical dimension. The following construct

(numberDefinition (scale 100 (e 25400 -6) unit DISTANCE))

specifies that 100 EDIF units equal 25400 ¥ 10 �6 m or approximately 1 inch.
Cadence defines schematic measurements in inches by defining the userUnit
property of the affected viewType or viewName as inch in the Cadence
technology file. The Compass EDIF files do not provide values for the
numberDefinition and scale construct, and the Cadence tools default to a value of
160 EDIF units to 1 user unit. We thus need to add a numberDefinition and scale
construct to the Compass EDIF file to control the printed size of icons.

The EDIF file defines blank label placeholders for each cell using the EDIF
property construct. Cadence EDIFIN does recognize and translate EDIF
properties, but to attach a label property to a cellview object it must be defined
(not blank) and identified as a property using the EDIF owner construct in the
EDIF file. Since the intent of a placeholder is to hold an empty spot for later use
and since Cadence Composer (the schematic-entry tool) supports label additions

to instantiated icons, we can remove the EDIF label property construct in each
cell and the associated propertyDisplay construct from the Compass file.

There is a problem that we need to resolve with naming. This is a problem that
sooner or later everyone must tackle in ASIC design� case sensitivity .

In EDIF, input and output pins are called ports and they are identified using
portImplementation constructs. In order that the ports of a particular cell
icon_view are correctly associated with the ports in the related functional, layout,
and abstract views, they must all have the same name. The Cadence tools are case
sensitive in this respect. The Verilog and CIF files corresponding to each cell in
the Compass library use lowercase names for each port of a given cell, whereas
the EDIF file uses uppercase. The EDIFIN translator allows the case of cell,
view, and port names to be automatically changed on translation. Thus pin names
such as ' A1 ' become ' a1 ' and the original view name ' Icon_view ' becomes '
icon_view '.

The boundingBox construct defines a bounding box around a symbol (icon).
Schematic-capture tools use this to implement various functions. The Cadence
Composer tool, for example, uses the bounding box to control the wiring between
cells and as a highlight box when selecting components of a schematic. Compass
uses a large boundingBox definition for the cells to allow space for long
hierarchical names. Figure 9.10 (a) shows the original an02d1 cell bounding box
that is larger than the cell icon.

FIGURE 9.10 The bounding box problem. (a) The original bounding box for the
an02d1 icon. (b) Problems in Cadence Composer due to overlapping bounding
boxes. (c) A �shrink-wrapped� bounding box created using SKILL.

Icons with large bounding boxes create two problems in Composer. Highlighting
all or part of a complex design consisting of many closely spaced cells results in
a confusion of overlapped highlight boxes. Also, large boxes force strange wiring
patterns between cells that are placed too closely together when Composer's
automatic routing algorithm is used. Figure 9.10 (b) shows an example of this
problem.

There are two solutions to the bounding-box problem. We could modify each
boundingBox definition in the original EDIF file before translation to conform to
the outline of the icon. This involves identifying the outline of each icon in the
EDIF file and is difficult. A simpler approach is to use the Cadence tool

programming language, SKILL. SKILL provides direct access to the Cadence
database, cdba , in order to modify and create objects. Using SKILL you can use
a batch file to call functions normally accessed interactively. The solution to the
bounding box problem is:

Use EDIFIN to create the views in the Cadence database, cdba .1.

Use the schCreateInstBox() command on each icon_view object to
eliminate the original bounding box and create a new, minimum-sized,
bounding box that is �shrink-wrapped� to each icon.

2.

Figure 9.10 (c) shows the results of this process. This modification fixes the
problems with highlighting and wiring in Cadence Composer.

This completes the steps required to translate the schematic icons from one set of
tools to another. The process can be automated in three ways:

Write UNIX sed and awk scripts to make the changes to the EDIF file
before using EDIFIN and SKILL.

●

Write custom C programs to make the changes to the EDIF file and then
proceed as in the first option.

●

Perform all the work using SKILL.●

The last approach is the most elegant and most easily maintained but is the most
difficult to implement (mostly because of the time required to learn SKILL). The
whole project took several weeks (including the time it took to learn how to use
each of the tools). This is typical of the problems you face when trying to convert
data from one system to another.

9.5 CFI Design Representation
The CAD Framework Initiative (CFI) is an independent nonprofit organization
working on the creation of standards for the electronic CAD industry. One of the
areas in which CFI is working is the definition of standards for design
representation (DR). The CFI 1.0 standard [CFI, 1992] has tackled the
problems of ambiguity in the area of definitions and terms for schematics by
defining an information model (IM) for electrical connectivity information.

What this means is that a group of engineers got together and proposed a standard
way of using the terms and definitions that we have discussed. There are good
things and bad things about standards, and one aspect of the CFI 1.0 DR standard
illustrates this point. A good thing about the CFI 1.0 DR standard is that it
precisely defines what we mean by terms and definitions in schematics, for
example. A bad thing about the CFI DR standard is that in order to be precise it
introduces yet more terms that are difficult to understand. A very brief discussion
of the CFI 1.0 DR standard is included here, at the end of this chapter, for several
reasons:

It helps to solidify the concepts of the terms and definitions such as cell,
net, and instance that we have already discussed. However, there are
additional new concepts and terms to define in order to present the
standard model, so this is not a good way to introduce schematic
terminology.

●

The ASIC design engineer is becoming more of a programmer and less of
a circuit designer. This trend shows no sign of stopping as ASICs grow
larger and systems more complex. A precise understanding of how tools
operate and interact is becoming increasingly important.

●

9.5.1 CFI Connectivity Model

The CFI connectivity model is defined using the EXPRESS language and its
graphical equivalent EXPRESS-G . EXPRESS is an International Standards
Organization (ISO) standard [EXPRESS, 1991]. EDIF 3 0 0 and higher also use
EXPRESS as the internal formal description of the language. EXPRESS is used
to define objects and their relationships. Figure 9.11 shows some simple
examples of the EXPRESS-G notation.

FIGURE 9.11 Examples of EXPRESS-G. (a) Each day in January has a number
from 1 to 31. (b) A shopping list may contain a list of items. (c) An EXPRESS-G
model for a family.

The following EXPRESS code (a schema) is equivalent to the EXPRESS-G
family model shown in Figure 9.11 (c):

SCHEMA family_model;

ENTITY person

ABSTRACT SUPERTYPE OF (ONEOF (man, woman, child));

name: STRING;

date of birth: STRING;

END_ENTITY;

ENTITY man

SUBTYPE OF (person);

wife: SET[0:1] OF woman;

children: SET[0:?] OF child;

END_ENTITY;

ENTITY woman

SUBTYPE OF (person);

husband: SET[0:1] OF man;

children: SET[0:?] OF child;

END_ENTITY;

ENTITY child

SUBTYPE OF (person);

father: man;

mother: woman;

END_ENTITY;

END_SCHEMA;

This EXPRESS description is a formal way of saying the following:

�Men, women, and children are people.�●

�A man can have one woman as a wife, but does not have to.�●

�A wife can have one man as a husband, but does not have to.�●

�A man or a woman can have several children.�●

�A child has one father and one mother.�●

Computers can deal more easily with the formal language version of these
statements. The formal language and graphical forms are more precise for very
complex models.

Figure 9.12 shows the basic structure of the CFI 1.0.0 Base Connectivity Model (
BCM). The actual EXPRESS-G diagram for the BCM defined in the CFI 1.0.0
standard is only a little more complicated than Figure 9.12 (containing 21 boxes
or types rather than just six). The extra types are used for bundles (a group of
nets) and different views of cells (other than the netlist view).

FIGURE 9.12 The original �five-box� model of electrical connectivity. There are
actually six boxes or types in this figure; the Library type was added later.

Figure 9.12 says the following (�presents� as used in Figure 9.12 is the Express
jargon for �have�):

�A library contains cells.�●

�Cells have ports, contain nets, and can contain other cells.�●

�Cell instances are copies of a cell and have port instances.�●

�A port instance is a copy of the port in the library cell.�●

�You connect to a port using a net.�●

�Nets connect port instances together.�●

Once you understand Figure 9.12 you will see that it replaces the first half of this
chapter. Unfortunately you have to read the first half of this chapter to understand
Figure 9.12 .

9.6 Summary
The important concepts that we covered in this chapter are:

Schematic entry using a cell library●

Cells and cell instances, nets and ports●

Bus naming, vectored instances in datapath●

Hierarchy●

Editing cells●

PLD languages: ABEL, PALASM, and CUPL●

Logic minimization●

The functions of EDIF●

CFI representation of design information●

9.7 Problems
9.1 (EDIF description)

a. (5 min.) Write an EDIF description for an icon for an inverter (just the
input and output wires, a triangle, and a bubble). What problems do you
face and what assumptions did you make?

●

b. (30 min.+) Try and import your symbol into your schematic-entry tool.
If you fail (as you might) explain what the problem is and suggest a
direction of attack. Hint: If you can, try Problem 9.2 first.

●

9.2 (EDIF inverter, 15 min.) If you have access to a tool that generates EDIF for
the icons, write out the EDIF for an inverter icon. Explain the code.

9.3 (EDIF netlist, 20 min.) Starting with an empty directory and using a
schematic editor (such as Viewlogic) draw a schematic with a single inverter
(from any cell library).

a. List the files that are created in the directory.●

b. Print each one (check first to make sure it is ASCII, not binary).●

c. Try and explain the contents.●

9.4 (Minitutorial, 60 min.) Write a minitutorial (no more than five pages) that
explains how to set up your system (location and nature of any start-up files such
as .ini files for Viewlogic and so on); how to choose or change a library (for cell
icons); how to choose cells, instantiate, label, and connect them; how to select,
copy and delete symbols; and how to save a schematic. Use a single inverter
connected to an input and output pad as an example.

9.5 (Icons, 30 min.) With an example show how to edit and create a symbol icon.
Make a triangular icon (the same size as an inverter in your library but without a
bubble) for a series connection of two inverters and call it myBuffer .

9.6 (Buses, 30 min.)

a. Create an example of a 16-bit bus: connect 8 inverters to bit zero (the
MSB or leftmost bit) and bits 10�16 (as if we were taking the sign bit, bit
zero, and the seven least-significant bits from a 16-bit signed number).
Name the inverter connected to the sign bit, SIGN . Name the other
inverters BIT0 through BIT7 .

●

b. Write the netlist as an EDIF file, number the lines, and explain the
contents by referencing line numbers.

●

9.7 (VDD and VSS, 30 min.) Using a simple example of two inverters (one with
input connected to VDD, the other with input connected to VSS or GND) explain
how your schematic-entry system handles global power and ground nets and their
connection to cell pins. Can you connect VDD or VSS to an output pin in your
system? If your schematic software has a netlist screener, try it on this example.

9.8 (Hierarchy, 30 min.) Create a very simple hierarchical cell. The lowest level,
named bottom , contains a single inverter (named invB). The highest level,
called top , contains another inverter, invT , whose input is connected to the
output of cell bottom . Write out the netlist (in internal and EDIF format) and
explain how the tool labels a hierarchical cell.

9.9 (Vectored instances, 30 min.) Create a vectored instance of eight inverters,
inv0 through inv7 . Write the netlist in internal and EDIF form and explain the
contents.

9.10 (Dangling wires, 30 min.) Create a cell, dangle1 , containing two inverters,
inv1 and inv2 . Connect the input of inv1 to an external connector, in1 , and the
output of inv2 to an external connector out2 . Write the netlist and explain what
happens to the unlabeled and unused nets. If you have a netlist screener, run it on
this example.

9.11 (PLD languages, 60 min.) Conduct a Web search on ABEL, CUPL, or
PALASM (start by searching for �Logical Devices� not �ABEL�). Try and find
examples of these files and write an explanation of their function using the
descriptions of these languages in this chapter.

9.12 (EDIF 3 0 0, 10 min.) Download the EDIF 3 0 0 example schematic file
from http://www.edif.org/edif/workshop.edf and see if your EDIF reader will
accept it. What is it?

9.13 (EXPRESS-G, 15 min.) Draw an EXPRESS-G diagram for the government
of your country. For example, in the United States you would start with the
president and the White House and work down through the House and Senate,
showing the senators and congressional representatives. In the United Kingdom
you would draw the prime minister, the House of Commons, and House of Lords
with the various MPs.

9.14 (ABEL PCI Target) (10 min.) Download the Xilinx Application Note,
Designing Flexible PCI Interfaces with Xilinx EPLDs, January 1995 (
pci_epld.pdf at www.xilinx.com). The Appendix of this App. Note contains the
ABEL source code for a PCI Bus Interface Target. The code is long but
straightforward; most of it describes the next-state transitions for the
bus-controller state machine. Extract the ABEL source code using Adobe
Acrobat. Hint: This is not easy; Acrobat does a poor job of selecting text; you
will lose many semicolons at the end of lines that you will have to add by hand.
Use Replace... to search for end-of-line, "^p" , and replace by " ; ^p" in Word. (60
min.+) Try to convert this code to a system where you can compile it. You may
need conversion utilities to do this. For example Altera (www.altera.com) has

utilities (EAU018.EXE and EAU019.EXE located at ftp.altera.com/pub) to
convert from ABEL 4.0 to AHDL.

9.15 (CUPL, 60 min.) Download and install the CUPL demonstration package
from http://www.protel.com/download.htm . Write a two-page help sheet on what
you did, where the software is installed, and how to run it.

9.16 (PALASM) (30 min.) Download and install PALASM4 v1.5 from the AMD
Web site at ftp://ftp.amd.com/pub/pld/software/palasm .

9.17 (CUPL)

a. (15 min.) Check the equations in the CUPL code for the 4-bit counter in
Section 9.2 .

●

b. (10 min.) Add a count-enable signal to the code.●

c. (30 min.) If you have access to CUPL, compile your answer.●

9.18 (EDIF)

a. (30 min.) Using the syntax definitions below and the example schematic
icon shown in Table 9.12 to help you, �stitch� back together the EDIF
definition for the 7404 inverter symbol used as an example in Section 9.4.3
.

●

b. (60 min.+) Try to import the EDIF into your schematic entry system.
Comment on any problems and how you attempted to resolve them
(including failures).

●

The EDIF Reference Manual [EDIF, 1988] uses the following metasyntax rules:

[optional] <at most once> {may be repeated zero or more times}

{this|that} indicates any number of this or that in any order

syntactic names are italic

literal words are bold

SYMBOLIC constants are uppercase

IdentifierNameDef means the name is being defined

IdentifierNameRef means the name is being referenced

The syntax definitions of the most common EDIF constructs for schematics are
as follows:

(edif edifFileNameDef

edifVersion

edifLevel

keywordMap

{<status>|external|library|design|comment|userdata})

(library libraryNameDef

edifLevel

technology

{<status>|cell|comment|userdata})

(technology numberDefinition

{figureGroup|fabricate|

<simulationInfos>|<physicalDesignRule>|comment|userdata})

(cell cellNameDef

cellType

{<status>|view|<viewMap>|property|comment|userdata})

(view viewNameDef

viewType

interface

{<status>|<contents>|comment|property|userdata})

(interface

{port|portBundle|<symbol>|<protectionFrame>|

<arrayRelatedInfo>|parameter|joined|mustJoin|weakJoined|

permutable|timing|simulate|<designator>|property|comment|userdata})

(contents

{instance|offPageConnector|figure|section|

net|netBundle|page|commentGraphics|portImplementation|

timing|simulate|when|follow|logicPort|<boundingBox>|

comment|userdata})

(viewMap

{portMap|portBackAnnotate|instanceMap|instanceBackAnnotate|

netMap|netBackAnnotate|comment|userdata})

9.8 Bibliography

The data books from AMD, Atmel, and other PLD manufacturers are excellent
sources of tutorials, examples, and information on PLD design. The EDIF
tutorials produced by the EIA [EDIF, 1988, 1989] are hard to find, but there are
few other texts or sources that explain EDIF. EDIF does have a World Wide Web
site at http://www.edif.org . The EDIF Technical Centre at the University of
Manchester (http://www.cs.man.ac.uk/cad , I shall refer to this as ~EDIF) serves
as a resource center for EDIF, including the formal information models of the
EDIF language in EXPRESS format and the BNF definitions of the language
syntax. There is a hypertext version of an EDIF 3 0 0 schematic file with
hypertext links at ~EDIF/EDIFTechnicalCenter/software . CFI has a home page
and links to other sites at http://www.cfi.org .

PALASM4 v1.5 is available as �freeware� from AMD at
ftp://ftp.amd.com/pub/pld/software/palasm . The Data I/O home page at
http://www.data-io.com is devoted mainly to Synario. The Viewlogic home page
is http://www.viewlogic.com . Capilano Computing has a Web page at
http://www.capilano.com with DesignWorks and MacABEL software. Protel (
http://www.protel.com/download.htm) has Windows-based schematic-entry
tools for FPGAs and a CUPL demonstration package. Logical Devices has a site
at http://www.logicaldevices.com . Atmel has several demonstration and code
examples for ABEL and CUPL at ftp://www.atmel.com/pub/atmel .

9.9 References
Page numbers in brackets after a reference indicate its location in the chapter
body.

CFI Standards for Electronic Design Automation Release 1.0. 1992. CFI
published a four-volume set in 1992, ISBN 1-882750-00-4 (set). The first
volume, ISBN 1-882750-01-2, is approximately 300 pages and contains a brief
introduction (approximately 10 pages) and the Electrical Connectivity model.
Unfortunately two of the volumes were labeled as volume three. The (first) third
volume is the Tool Encapsulation Specification, ISBN 1-882750-03-09
(approximately 100 pages). The (second) third volume, ISBN 1-882750-02-0,
covers the Inter-Tool Communication Programming Interface (approximately
150 pages). The fourth volume, ISBN 1-882750-04-7, is approximately 100
pages long and covers the Computing Environment Services requirement [
reference location].

EDIF is maintained by the EIA, EIA Standards Sales Office, 2001 Pennsylvania
Ave., N.W., Washington, DC 20006, (202) 457-4966 [reference location]:

EDIF Steering Committee. 1988. EDIF Reference Manual Version 2.0.0.
Washington, DC: Electronic Industries Association. ISBN 0-7908-0000-4.

EDIF Steering Committee. 1988. Introduction to EDIF. Washington, DC:
Electronic Industries Association. ISBN 0-7908-0001-2.

EDIF Steering Committee. 1989. EDIF Connectivity. Washington, DC:
Electronic Industries Association. ISBN 0-7908-0002-0.

EDIF Schematic Technical Subcommittee. 1989. Using EDIF 2.0.0 for
Schematic Transfer. Washington, DC: Electronic Industries Association.

EXPRESS Language Reference Manual. ISO TC184/SC4/WG5 Document N14,
March 29, 1991 [reference location].

CHAPTER 10
VHDL

The U.S. Department of Defense (DoD) supported the development of VHDL
(VHSIC hardware description language) as part of the VHSIC (very high-speed
IC) program in the early 1980s. The companies in the VHSIC program found
they needed something more than schematic entry to describe large ASICs, and
proposed the creation of a hardware description language. VHDL was then
handed over to the Institute of Electrical and Electronics Engineers (IEEE) in
order to develop and approve the IEEE Standard 1076-1987. 1 As part of its
standardization process the DoD has specified the use of VHDL as the
documentation, simulation, and verification medium for ASICs (MIL-STD-454).
Partly for this reason VHDL has gained rapid acceptance, initially for description
and documentation, and then for design entry, simulation, and synthesis as well.

The first revision of the 1076 standard was approved in 1993. References to the
VHDL Language Reference Manual (LRM) in this chapter--[VHDL 87LRM2.1,
93LRM2.2] for example--point to the 1987 and 1993 versions of the LRM [IEEE,
1076-1987 and 1076-1993]. The prefixes 87 and 93 are omitted if the references
are the same in both editions. Technically 1076-1987 (known as VHDL-87) is
now obsolete and replaced by 1076-1993 (known as VHDL-93). Except for code
that is marked 'VHDL-93 only' the examples in this chapter can be analyzed
(the VHDL word for "compiled") and simulated using both VHDL-87 and
VHDL-93 systems.

1. Some of the material in this chapter is reprinted with permission from IEEE
Std 1076-1993, © 1993 IEEE. All rights reserved.

Last Edited by SP 14112004

10.1 A Counter
The following VHDL model describes an electrical "black box" that contains a 50 MHz clock generator and a
counter. The counter increments on the negative edge of the clock, counting from zero to seven, and then begins
at zero again. The model contains separate processes that execute at the same time as each other. Modeling
concurrent execution is the major difference between HDLs and computer programming languages such as C.

entity Counter_1 is end; -- declare a "black box" called Counter_1
library STD; use STD.TEXTIO.all; -- we need this library to print
architecture Behave_1 of Counter_1 is -- describe the "black box"
-- declare a signal for the clock, type BIT, initial value '0'
 signal Clock : BIT := '0';
-- declare a signal for the count, type INTEGER, initial value 0
 signal Count : INTEGER := 0;
begin
 process begin -- process to generate the clock
 wait for 10 ns; -- a delay of 10 ns is half the clock cycle
 Clock <= not Clock;
 if (now > 340 ns) then wait; end if; -- stop after 340 ns
 end process;
-- process to do the counting, runs concurrently with other processes
 process begin
-- wait here until the clock goes from 1 to 0
 wait until (Clock = '0');
-- now handle the counting
 if (Count = 7) then Count <= 0;
 else Count <= Count + 1;
 end if;
 end process;
 process (Count) variable L: LINE; begin -- process to print
 write(L, now); write(L, STRING'(" Count="));
 write(L, Count); writeline(output, L);
 end process;
end;

Throughout this book VHDL keywords (reserved words that are part of the language) are shown in bold type in
code examples (but not in the text). The code examples use the bold keywords to improve readability. VHDL
code is often lengthy and the code in this book is always complete wherever possible. In order to save space
many of the code examples do not use the conventional spacing and formatting that is normally considered
good practice. So "Do as I say and not as I do."

The steps to simulate the model and the printed results for Counter_1 using the Model Technology
V-System/Plus common-kernel simulator are as follows:

> vlib work
> vcom Counter_1.vhd
Model Technology VCOM V-System VHDL/Verilog 4.5b
-- Loading package standard
-- Compiling entity counter_1
-- Loading package textio
-- Compiling architecture behave_1 of counter_1
> vsim -c counter_1
Loading /../std.standard
Loading /../std.textio(body)
Loading work.counter_1(behave_1)
VSIM 1> run 500
0 ns Count=0
20 ns Count=1
(...15 lines omitted...)
340 ns Count=1
VSIM 2> quit

10.2 A 4-bit Multiplier
This section presents a more complex VHDL example to motivate the study of the syntax and semantics of VHDL in the rest of this chapter.

10.2.1 An 8-bit Adder

Table 10.1 shows a VHDL model for the full adder that we described in Section 2.6, "Datapath Logic Cells." Table 10.2 shows a VHDL
model for an 8-bit ripple-carry adder that uses eight instances of the full adder.

TABLE 10.1 A full adder.

entity Full_Adder is
 generic (TS : TIME := 0.11 ns; TC : TIME := 0.1 ns);
 port (X, Y, Cin: in BIT; Cout, Sum: out BIT);
end Full_Adder;
architecture Behave of Full_Adder is
begin
Sum <= X xor Y xor Cin after TS;
Cout <= (X and Y) or (X and Cin) or (Y and Cin) after TC;
end;

Timing:

TS (Input to Sum) = 0.1 1 ns

TC (Input to Cout) = 0.1 ns

TABLE 10.2 An 8-bit ripple-carry adder.

entity Adder8 is
 port (A, B: in BIT_VECTOR(7 downto 0);
 Cin: in BIT; Cout: out BIT;
 Sum: out BIT_VECTOR(7 downto 0));
end Adder8;
architecture Structure of Adder8 is
component Full_Adder
port (X, Y, Cin: in BIT; Cout, Sum: out BIT);
end component;
signal C: BIT_VECTOR(7 downto 0);
begin
Stages: for i in 7 downto 0 generate
 LowBit: if i = 0 generate
 FA:Full_Adder port map (A(0),B(0),Cin,C(0),Sum(0));
 end generate;
 OtherBits: if i /= 0 generate
 FA:Full_Adder port map
 (A(i),B(i),C(i-1),C(i),Sum(i));
 end generate;
end generate;
Cout <= C(7);
end;

10.2.2 A Register Accumulator

Table 10.3 shows a VHDL model for a positive-edge-triggered D flip-flop with an active-high asynchronous clear. Table 10.4 shows an 8-bit
register that uses this D flip-flop model (this model only provides the Q output from the register and leaves the QN flip-flop outputs
unconnected).

TABLE 10.3 Positive-edge-triggered D flip-flop with asynchronous clear.

entity DFFClr is
 generic(TRQ : TIME := 2 ns; TCQ : TIME := 2 ns);
 port (CLR, CLK, D : in BIT; Q, QB : out BIT);
end;
architecture Behave of DFFClr is
signal Qi : BIT;
begin QB <= not Qi; Q <= Qi;
process (CLR, CLK) begin
 if CLR = '1' then Qi <= '0' after TRQ;
 elsif CLK'EVENT and CLK = '1'
 then Qi <= D after TCQ;
 end if;
end process;
end;

Timing:

TRQ (CLR to Q/QN) = 2 ns

TCQ (CLK to Q/QN) = 2 ns

TABLE 10.4 An 8-bit register.

entity Register8 is
 port (D : in BIT_VECTOR(7 downto 0);
 Clk, Clr: in BIT ; Q : out BIT_VECTOR(7 downto 0));
end;
architecture Structure of Register8 is
 component DFFClr
 port (Clr, Clk, D : in BIT; Q, QB : out BIT);
 end component;
 begin
 STAGES: for i in 7 downto 0 generate
 FF: DFFClr port map (Clr, Clk, D(i), Q(i), open);
 end generate;
end;

8-bit register. Uses

DFFClr positive edge-triggered flip-flop
model.

Table 10.5 shows a model for a datapath multiplexer that consists of eight 2:1 multiplexers with a common select input (this select signal
would normally be a control signal in a datapath). The multiplier will use the register and multiplexer components to implement a register
accumulator.

TABLE 10.5 An 8-bit multiplexer.

entity Mux8 is
 generic (TPD : TIME := 1 ns);
 port (A, B : in BIT_VECTOR (7 downto 0);
 Sel : in BIT := '0'; Y : out BIT_VECTOR (7 downto 0));
end;
architecture Behave of Mux8 is
begin
 Y <= A after TPD when Sel = '1' else B after TPD;
end;

Eight 2:1 MUXs with

single select input.

Timing:

TPD (input to Y) = 1 ns

10.2.3 Zero Detector

Table 10.6 shows a model for a variable-width zero detector that accepts a bus of any width and will produce a single-bit output of '1' if all
input bits are zero.

TABLE 10.6 A zero detector.

entity AllZero is
 generic (TPD : TIME := 1 ns);
 port (X : BIT_VECTOR; F : out BIT);
end;
architecture Behave of AllZero is
begin process (X) begin F <= '1' after TPD;
 for j in X'RANGE loop
 if X(j) = '1' then F <= '0' after TPD; end if;
 end loop;
end process;
end;

Variable-width zero detector.

Timing:

TPD (X to F) = 1 ns

10.2.4 A Shift Register

Table 10.7 shows a variable-width shift register that shifts (left or right under input control, DIR) on the positive edge of the clock, CLK ,
gated by a shift enable, SH . The parallel load, LD , is synchronous and aligns the input LSB to the LSB of the output, filling unused MSBs
with zero. Bits vacated during shifts are zero filled. The clear, CLR , is asynchronous.

TABLE 10.7 A variable-width shift register.

entity ShiftN is
 generic (TCQ : TIME := 0.3 ns; TLQ : TIME := 0.5 ns;
 TSQ : TIME := 0.7 ns);
 port(CLK, CLR, LD, SH, DIR: in BIT;
 D: in BIT_VECTOR; Q: out BIT_VECTOR);
 begin assert (D'LENGTH <= Q'LENGTH)
 report "D wider than output Q" severity Failure;
end ShiftN;
architecture Behave of ShiftN is

 begin Shift: process (CLR, CLK)
 subtype InB is NATURAL range D'LENGTH-1 downto 0;
 subtype OutB is NATURAL range Q'LENGTH-1 downto 0;
 variable St: BIT_VECTOR(OutB);
 begin
 if CLR = '1' then
 St := (others => '0'); Q <= St after TCQ;
 elsif CLK'EVENT and CLK='1' then
 if LD = '1' then
 St := (others => '0');
 St(InB) := D;
 Q <= St after TLQ;
 elsif SH = '1' then
 case DIR is
 when '0' => St := '0' & St(St'LEFT downto 1);
 when '1' => St := St(St'LEFT-1 downto 0) & '0';
 end case;
 Q <= St after TSQ;
 end if;
 end if;
 end process;
end;

CLK Clock

CLR Clear, active
high

LD Load, active
high

SH Shift, active
high

DIR Direction, 1 =
left

D Data in

Q Data out

Variable-width
shift register. Input
width must be less
than output width.
Output is
left-shifted or
right-shifted under
control of DIR.
Unused MSBs are
zero-padded during
load. Clear is
asynchronous. Load
is synchronous.

Timing:

TCQ (CLR to Q) =
0.3 ns

TLQ (LD to Q) =
0.5 ns

TSQ (SH to Q) = 0.
7 ns

10.2.5 A State Machine

To multiply two binary numbers A and B , we can use the following algorithm:

If the LSB of A is '1', then add B into an accumulator.

Shift A one bit to the right and B one bit to the left.

Stop when all bits of A are zero.

Table 10.8 shows the VHDL model for a Moore (outputs depend only on the state) finite-state machine for the multiplier, together with its
state diagram.

TABLE 10.8 A Moore state machine for the multiplier.

entity SM_1 is
 generic (TPD : TIME := 1 ns);
 port(Start, Clk, LSB, Stop, Reset: in BIT;
 Init, Shift, Add, Done : out BIT);
end;
architecture Moore of SM_1 is
type STATETYPE is (I, C, A, S, E);
signal State: STATETYPE;
begin
Init <= '1' after TPD when State = I
 else '0' after TPD;
Add <= '1' after TPD when State = A
 else '0' after TPD;
Shift <= '1' after TPD when State = S
 else '0' after TPD;
Done <= '1' after TPD when State = E
 else '0' after TPD;
process (CLK, Reset) begin
 if Reset = '1' then State <= E;

 elsif CLK'EVENT and CLK = '1' then
 case State is
 when I => State <= C;
 when C =>
 if LSB = '1' then State <= A;
 elsif Stop = '0' then State <= S;
 else State <= E;
 end if;
 when A => State <= S;
 when S => State <= C;
 when E =>
 if Start = '1' then State <= I; end if;
 end case;
 end if;
end process;
end;

State Function

E End of multiply cycle.

I Initialize: clear output

register and load input

registers.

C Check if LSB of register A

is zero.

A Add shift register B to

accumulator.

S Shift input register A right

and input register B left.

10.2.6 A Multiplier

Table 10.9 shows a schematic and the VHDL code that describes the interconnection of all the components for the multiplier. Notice that the
schematic comprises two halves: an 8-bit-wide datapath section (consisting of the registers, adder, multiplexer, and zero detector) and a
control section (the finite-state machine). The arrows in the schematic denote the inputs and outputs of each component. As we shall see in
Section 10.7, VHDL has strict rules about the direction of connections.

TABLE 10.9 A 4-bit by 4-bit multiplier.

entity Mult8 is
port (A, B: in BIT_VECTOR(3 downto 0); Start, CLK, Reset: in BIT;
Result: out BIT_VECTOR(7 downto 0); Done: out BIT); end Mult8;
architecture Structure of Mult8 is use work.Mult_Components.all;
signal SRA, SRB, ADDout, MUXout, REGout: BIT_VECTOR(7 downto 0);
signal Zero, Init, Shift, Add, Low: BIT := '0'; signal High: BIT := '1';
signal F, OFL, REGclr: BIT;
begin
REGclr <= Init or Reset; Result <= REGout;
SR1 : ShiftN port map(CLK=>CLK,CLR=>Reset,LD=>Init,SH=>Shift,DIR=>Low ,D=>A,Q=>SRA);
SR2 : ShiftN port map(CLK=>CLK,CLR=>Reset,LD=>Init,SH=>Shift,DIR=>High,D=>B,Q=>SRB);
Z1 : AllZero port map(X=>SRA,F=>Zero);
A1 : Adder8 port map(A=>SRB,B=>REGout,Cin=>Low,Cout=>OFL,Sum=>ADDout);
M1 : Mux8 port map(A=>ADDout,B=>REGout,Sel=>Add,Y=>MUXout);
R1 : Register8 port map(D=>MUXout,Q=>REGout,Clk=>CLK,Clr=>REGclr);
F1 : SM_1 port map(Start,CLK,SRA(0),Zero,Reset,Init,Shift,Add,Done);
end;

10.2.7 Packages and Testbench

To complete and test the multiplier design we need a few more items. First we need the following "components list" for the items in
Table 10.9:

package Mult_Components is
component Mux8 port (A,B:BIT_VECTOR(7 downto 0);
 Sel:BIT;Y:out BIT_VECTOR(7 downto 0));end component;
component AllZero port (X : BIT_VECTOR;
 F:out BIT);end component;

component Adder8 port (A,B:BIT_VECTOR(7 downto 0);Cin:BIT;
 Cout:out BIT;Sum:out BIT_VECTOR(7 downto 0));end component;
component Register8 port (D:BIT_VECTOR(7 downto 0);
 Clk,Clr:BIT; Q:out BIT_VECTOR(7 downto 0));end component;
component ShiftN port (CLK,CLR,LD,SH,DIR:BIT;D:BIT_VECTOR;
 Q:out BIT_VECTOR);end component;
component SM_1 port (Start,CLK,LSB,Stop,Reset:BIT;
 Init,Shift,Add,Done:out BIT);end component;
end;

Next we need some utility code to help test the multiplier. The following VHDL generates a clock with programmable "high" time (HT)
and "low" time (LT):

package Clock_Utils is
procedure Clock (signal C: out Bit; HT, LT:TIME);
end Clock_Utils;
package body Clock_Utils is
procedure Clock (signal C: out Bit; HT, LT:TIME) is
begin
 loop C<='1' after LT, '0' after LT + HT; wait for LT + HT;
 end loop;
end;
end Clock_Utils;

Finally, the following code defines two functions that we shall also use for testing--the functions convert an array of bits to a number and vice
versa:

package Utils is
 function Convert (N,L: NATURAL) return BIT_VECTOR;
 function Convert (B: BIT_VECTOR) return NATURAL;
end Utils;
package body Utils is
 function Convert (N,L: NATURAL) return BIT_VECTOR is
 variable T:BIT_VECTOR(L-1 downto 0);
 variable V:NATURAL:= N;
 begin for i in T'RIGHT to T'LEFT loop
 T(i) := BIT'VAL(V mod 2); V:= V/2;
 end loop; return T;
 end;
 function Convert (B: BIT_VECTOR) return NATURAL is
 variable T:BIT_VECTOR(B'LENGTH-1 downto 0) := B;
 variable V:NATURAL:= 0;
 begin for i in T'RIGHT to T'LEFT loop
 if T(i) = '1' then V:= V + (2**i); end if;
 end loop; return V;
 end;
end Utils;

The following code tests the multiplier model. This is a testbench (this simple example is not a comprehensive test). First we reset the logic
(line 17) and then apply a series of values to the inputs, A and B . The clock generator (line 14) supplies a clock with a 20 ns period. The
inputs are changed 1 ns after a positive clock edge, and remain stable for 20 ns through the next positive clock edge.

entity Test_Mult8_1 is end; -- runs forever, use break!!
architecture Structure of Test_Mult8_1 is
use Work.Utils.all; use Work.Clock_Utils.all;
 component Mult8 port
 (A, B : BIT_VECTOR(3 downto 0); Start, CLK, Reset : BIT;
 Result : out BIT_VECTOR(7 downto 0); Done : out BIT);
 end component;
signal A, B : BIT_VECTOR(3 downto 0);
signal Start, Done : BIT := '0';
signal CLK, Reset : BIT;
signal Result : BIT_VECTOR(7 downto 0);
signal DA, DB, DR : INTEGER range 0 to 255;
begin
C: Clock(CLK, 10 ns, 10 ns);
UUT: Mult8 port map (A, B, Start, CLK, Reset, Result, Done);
DR <= Convert(Result);
Reset <= '1', '0' after 1 ns;
process begin
 for i in 1 to 3 loop for j in 4 to 7 loop
 DA <= i; DB <= j;
 A<=Convert(i,A'Length);B<=Convert(j,B'Length);
 wait until CLK'EVENT and CLK='1'; wait for 1 ns;
 Start <= '1', '0' after 20 ns; wait until Done = '1';
 wait until CLK'EVENT and CLK='1';
 end loop; end loop;
 for i in 0 to 1 loop for j in 0 to 15 loop
 DA <= i; DB <= j;

 A<=Convert(i,A'Length);B<=Convert(j,B'Length);
 wait until CLK'EVENT and CLK='1'; wait for 1 ns;
 Start <= '1', '0' after 20 ns; wait until Done = '1';
 wait until CLK'EVENT and CLK='1';
 end loop; end loop;
 wait;
end process;
end;

Here is the signal trace output from the Compass Scout simulator:

 Time(fs) + Cycle da db dr
---------------------- ------------ ------------ ------------
 0+ 0: 0 0 0
 0+ 1: * 1 * 4 * 0
...
 92000000+ 3: 1 4 * 4
...
 150000000+ 1: * 1 * 5 4
...
 193000000+ 3: 1 5 * 0
...
 252000000+ 3: 1 5 * 5
...
 310000000+ 1: * 1 * 6 5
...
 353000000+ 3: 1 6 * 0
...
 412000000+ 3: 1 6 * 6

Positive clock edges occur at 10, 30, 50, 70, 90, ... ns. You can see that the output (dr) changes from '0' to '4' at 92 ns, after five clock
edges (with a 2 ns delay due to the output register, R1).

10.3 Syntax and Semantics of VHDL
We might define the syntax of a very small subset of the English language in Backus-Naur form
(BNF) using constructs as follows:

sentence ::= subject verb object.
subject ::= The|A noun
object ::= [article] noun {, and article noun}
article ::= the|a
noun ::= man|shark|house|food
verb ::= eats|paints

::= means "can be replaced by"
| means "or"
[] means "contents optional"
{} means "contents can be left out, used once, or repeated"

The following two English sentences are correct according to these syntax rules:

A shark eats food.
The house paints the shark, and the house, and a man.

We need semantic rules to tell us that the second sentence does not make much sense. Most of the
VHDL LRM is dedicated to the definition of the language semantics. Appendix A of the LRM
(which is not officially part of the standard) explains the complete VHDL syntax using BNF.

The rules that determine the characters you can use (the "alphabet" of VHDL), where you can put
spaces, and so on are lexical rules [VHDL LRM13]. Any VHDL description may be written using
a subset of the VHDL character set:

basic_character ::= upper_case_letter|digit|special_character
 |space_character|format_effector

The two space characters are: space (SP) and the nonbreaking space (NBSP). The five format
effectors are: horizontal tabulation (HT), vertical tabulation (VT), carriage return (CR), line
feed (LF), and form feed (FF). The characters that are legal in VHDL constructs are defined
as the following subsets of the complete character set:

graphic_character ::=
 upper_case_letter|digit|special_character|space_character
 |lower_case_letter|other_special_character
special_character ::= " # & ' () * + , - . / : ; < = > [] _ |

The 11 other special characters are: ! $ % @ ? \ ^ ` { } ~ , and (in VHDL-93 only) 34
other characters from the ISO Latin-1 set [ISO, 1987]. If you edit code using a word processor,
you either need to turn smart quotes off or override this feature (use Tools... Preferences... General
in MS Word; and use CTRL-' and CTRL-" in Frame).

When you learn a language it is difficult to understand how to use a noun without using it in a
sentence. Strictly this means that we ought to define a sentence before we define a noun and so on.
In this chapter I shall often break the "Define it before you use it" rule and use code examples and
BNF definitions that contain VHDL constructs that we have not yet defined. This is often
frustrating. You can use the book index and the table of important VHDL constructs at the end of
this chapter (Table 10.28) to help find definitions if you need them.

We shall occasionally refer to the VHDL BNF syntax definitions in this chapter using

references--BNF [10.1], for example. Only the most important BNF constructs for VHDL are
included here in this chapter, but a complete description of the VHDL language syntax is
contained in Appendix A.

10.4 Identifiers and Literals
Names (the "nouns" of VHDL) are known as identifiers [VHDL LRM13.3]. The correct "spelling" of an identifier is defined
in BNF as follows:

identifier ::=
 letter {[underline] letter_or_digit}
 |\graphic_character{graphic_character}\

In this book an underline in VHDL BNF marks items that are new or that have changed in VHDL-93 from VHDL-87. The
following are examples of identifiers:

s -- A simple name.
S -- A simple name, the same as s. VHDL is not case sensitive.
a_name -- Imbedded underscores are OK.
-- Successive underscores are illegal in names: Ill__egal
-- Names can't start with underscore: _Illegal
-- Names can't end with underscore: Illegal_
Too_Good -- Names must start with a letter.
-- Names can't start with a number: 2_Bad
\74LS00\ -- Extended identifier to break rules (VHDL-93 only).
VHDL \vhdl\ \VHDL\ -- Three different names (VHDL-93 only).
s_array(0) -- A static indexed name (known at analysis time).
s_array(i) -- A non-static indexed name, if i is a variable.

You may not use a reserved word as a declared identifier, and it is wise not to use units, special characters, and function
names: ns , ms , FF , read , write, and so on. You may attach qualifiers to names as follows [VHDL LRM6]:

CMOS.all -- A selected or expanded name, all units in library CMOS.
Data'LEFT(1) -- An attribute name, LEFT is the attribute designator.
Data(24 downto 1) -- A slice name, part of an array: Data(31 downto 0)
Data(1) -- An indexed name, one element of an array.

Comments follow two hyphens '--' and instruct the analyzer to ignore the rest of the line. There are no multiline comments
in VHDL. Tabs improve readability, but it is best not to rely on a tab as a space in case the tabs are lost or deleted in
conversion. You should thus write code that is still legal if all tabs are deleted.

There are various forms of literals (fixed-value items) in VHDL [VHDL LRM13.4-13.7]. The following code shows some
examples:

entity Literals_1 is end;
architecture Behave of Literals_1 is
begin process
 variable I1 : integer; variable Rl : real;
 variable C1 : CHARACTER; variable S16 : STRING(1 to 16);
 variable BV4: BIT_VECTOR(0 to 3);
 variable BV12 : BIT_VECTOR(0 to 11);
 variable BV16 : BIT_VECTOR(0 to 15);
 begin
-- Abstract literals are decimal or based literals.
-- Decimal literals are integer or real literals.
-- Integer literal examples (each of these is the same):
 I1 := 120000; Int := 12e4; Int := 120_000;
-- Based literal examples (each of these is the same):
 I1 := 2#1111_1111#; I1 := 16#FFFF#;
-- Base must be an integer from 2 to 16:
 I1 := 16:FFFF:; -- you may use a : if you don't have #
-- Real literal examples (each of these is the same):
 Rl := 120000.0; Rl := 1.2e5; Rl := 12.0E4;
-- Character literal must be one of the 191 graphic characters.
-- 65 of the 256 ISO Latin-1 set are non-printing control characters
 C1 := 'A'; C1 := 'a'; -- different from each other
-- String literal examples:
 S16 := " string" & " literal"; -- concatenate long strings
 S16 := """Hello,"" I said!"; -- doubled quotes
 S16 := % string literal%; -- can use % instead of "
 S16 := %Sale: 50%% off!!!%; -- doubled %
-- Bit-string literal examples:
 BV4 := B"1100"; -- binary bit-string literal

 BV12 := O"7777"; -- octal bit-string literal
 BV16 := X"FFFF"; -- hex bit-string literal
wait; end process; -- the wait prevents an endless loop
end;

10.5 Entities and Architectures
The highest-level VHDL construct is the design file [VHDL LRM11.1]. A design file contains design units that contain one or
more library units. Library units in turn contain: entity, configuration, and package declarations (primary units); and
architecture and package bodies (secondary units).

design_file ::=
 {library_clause|use_clause} library_unit
 {{library_clause|use_clause} library_unit}
library_unit ::= primary_unit|secondary_unit
primary_unit ::=
 entity_declaration|configuration_declaration|package_declaration
secondary_unit ::= architecture_body|package_body

Using the written language analogy: a VHDL library unit is a "book," a VHDL design file is a "bookshelf," and a VHDL
library is a collection of bookshelves. A VHDL primary unit is a little like the chapter title and contents that appear on the first
page of each chapter in this book and a VHDL secondary unit is like the chapter contents (though this is stretching our analogy
a little far).

I shall describe the very important concepts of entities and architectures in this section and then cover libraries, packages, and
package bodies. You define an entity, a black box, using an entity declaration [VHDL LRM1.1]. This is the BNF definition:

entity_declaration ::=
entity identifier is
 [generic (formal_generic_interface_list);]
 [port (formal_port_interface_list);]
 {entity_declarative_item}
 [begin
 {[label:] [postponed] assertion ;
 |[label:] [postponed] passive_procedure_call ;
 |passive_process_statement}]
end [entity] [entity_identifier] ;

The following is an example of an entity declaration for a black box with two inputs and an output:

entity Half_Adder is
 port (X, Y : in BIT := '0'; Sum, Cout : out BIT); -- formals
end;

Matching the parts of this code with the constructs in BNF [10.7] you can see that the identifier is Half_Adder and
that (X, Y: in BIT := '0'; Sum, Cout: out BIT) corresponds to (port_interface_list) in the BNF.
The ports X, Y, Sum, and Cout are formal ports or formals. This particular entity Half_Adder does not use any of the other
optional constructs that are legal in an entity declaration.

The architecture body [VHDL LRM1.2] describes what an entity does, or the contents of the black box (it is architecture body
and not architecture declaration).

architecture_body ::=
 architecture identifier of entity_name is
 {block_declarative_item}
 begin
 {concurrent_statement}
 end [architecture] [architecture_identifier] ;

For example, the following architecture body (I shall just call it an architecture from now on) describes the contents of the
entity Half_Adder :

architecture Behave of Half_Adder is
 begin Sum <= X xor Y; Cout <= X and Y;
end Behave;

We use the same signal names (the formals: Sum , X , Y , and Cout) in the architecture as we use in the entity (we say the
signals of the "parent" entity are visible inside the architecture "child"). An architecture can refer to other entity-architecture
pairs--so we can nest black boxes. We shall often refer to an entity-architecture pair as entity(architecture). For
example, the architecture Behave of the entity Half_Adder is Half_Adder(Behave).

Why would we want to describe the outside of a black box (an entity) separately from the description of its contents (its
architecture)? Separating the two makes it easier to move between different architectures for an entity (there must be at least
one). For example, one architecture may model an entity at a behavioral level, while another architecture may be a structural
model.

A structural model that uses an entity in an architecture must declare that entity and its interface using a component declaration

as follows [VHDL LRM4.5]:

component_declaration ::=
 component identifier [is]
 [generic (local_generic_interface_list);]
 [port (local_port_interface_list);]
 end component [component_identifier];

For example, the following architecture, Netlist , is a structural version of the behavioral architecture, Behave :

architecture Netlist of Half_Adder is
component MyXor port (A_Xor,B_Xor : in BIT; Z_Xor : out BIT);
end component; -- component with locals
component MyAnd port (A_And,B_And : in BIT; Z_And : out BIT);
end component; -- component with locals
begin
 Xor1: MyXor port map (X, Y, Sum);
-- instance with actuals
 And1 : MyAnd port map (X, Y, Cout);
-- instance with actuals
end;

Notice that:

We declare the components: MyAnd, MyXor and their local ports (or locals): A_Xor, B_Xor, Z_Xor, A_And,
B_And, Z_And.

●

We instantiate the components with instance names: And1 and Xor1.●

We connect instances using actual ports (or actuals): X, Y , Sum , Cout.●

Next we define the entities and architectures that we shall use for the components MyAnd and MyXor . You can think of an
entity-architecture pair (and its formal ports) as a data-book specification for a logic cell; the component (and its local ports)
corresponds to a software model for the logic cell; and an instance (and its actual ports) is the logic cell.

We do not need to write VHDL code for MyAnd and MyXor ; the code is provided as a technology library (also called an
ASIC vendor library because it is often sold or distributed by the ASIC company that will manufacture the chip--the ASIC
vendor--and not the software company):

-- These definitions are part of a technology library:
entity AndGate is
 port (And_in_1, And_in_2 : in BIT; And_out : out BIT); -- formals
end;
architecture Simple of AndGate is
 begin And_out <= And_in_1 and And_in_2;
end;
entity XorGate is
 port (Xor_in_1, Xor_in_2 : in BIT; Xor_out : out BIT); -- formals
end;
architecture Simple of XorGate is
 begin Xor_out <= Xor_in_1 xor Xor_in_2;
end;

If we keep the description of a circuit's interface (the entity) separate from its contents (the architecture), we need a
way to link or bind them together. A configuration declaration [VHDL LRM1.3] binds entities and architectures.

configuration_declaration ::=
 configuration identifier of entity_name is
 {use_clause|attribute_specification|group_declaration}
 block_configuration
 end [configuration] [configuration_identifier] ;

An entity-architecture pair is a design entity. The following configuration declaration defines which design entities we wish to
use and associates the formal ports (from the entity declaration) with the local ports (from the component declaration):

configuration Simplest of Half_Adder is
use work.all;
 for Netlist
 for And1 : MyAnd use entity AndGate(Simple)
 port map -- association: formals => locals
 (And_in_1 => A_And, And_in_2 => B_And, And_out =>
Z_And);
 end for;
 for Xor1 : MyXor use entity XorGate(Simple)
 port map
 (Xor_in_1 => A_Xor, Xor_in_2 => B_Xor, Xor_out => Z_Xor);
 end for;

 end for;
end;

Figure 10.1 diagrams the use of entities, architectures, components, and configurations. This figure seems very complicated,
but there are two reasons that VHDL works this way:

Separating the entity, architecture, component, and configuration makes it easier to reuse code and change libraries. All
we have to do is change names in the port maps and configuration declaration.

●

We only have to alter and reanalyze the configuration declaration to change which architectures we use in a
model--giving us a fast debug cycle.

●

FIGURE 10.1 Entities, architectures, components, ports, port maps, and configurations.

You can think of design units, the analyzed entity-architecture pairs, as compiled object-code modules. The configuration then
determines which object-code modules are linked together to form executable binary code.

You may also think of an entity as a block diagram, an architecture for an entity a more detailed circuit schematic for the block
diagram, and a configuration as a parts list of the circuit components with their part numbers and manufacturers (also known as
a BOM for bill of materials, rather like a shopping list). Most manufacturers (including the U.S. DoD) use schematics and
BOMs as control documents for electronic systems. This is part of the rationale behind the structure of VHDL.

10.6 Packages and Libraries
After the VHDL tool has analyzed entities, architectures, and configurations, it stores the resulting design units in a
library. Much of the power of VHDL comes from the use of predefined libraries and packages. A VHDL design library
[VHDL LRM11.2] is either the current working library (things we are currently analyzing) or a predefined resource
library (something we did yesterday, or we bought, or that came with the tool). The working library is named work and
is the place where the code currently being analyzed is stored. Architectures must be in the same library (but they do not
have to be in the same physical file on disk) as their parent entities.

You can use a VHDL package [VHDL LRM2.5-2.6] to define subprograms (procedures and functions), declare special
types, modify the behavior of operators, or to hide complex code. Here is the BNF for a package declaration:

package_declaration ::=
package identifier is
{subprogram_declaration | type_declaration | subtype_declaration
 | constant_declaration | signal_declaration | file_declaration
 | alias_declaration | component_declaration
 | attribute_declaration | attribute_specification
 | disconnection_specification | use_clause
 | shared_variable_declaration | group_declaration
 | group_template_declaration}
 end [package] [package_identifier] ;

You need a package body if you declare any subprograms in the package declaration (a package declaration and its body
do not have to be in the same file):

package_body ::=
 package body package_identifier is
{subprogram_declaration | subprogram_body
 | type_declaration | subtype_declaration
 | constant_declaration | file_declaration | alias_declaration
 | use_clause
 | shared_variable_declaration | group_declaration
 | group_template_declaration}
 end [package body] [package_identifier] ;

To make a package visible [VHDL LRM10.3] (or accessible, so you can see and use the package and its contents), you
must include a library clause before a design unit and a use clause either before a design unit or inside a unit, like this:

library MyLib; -- library clause
use MyLib.MyPackage.all; -- use clause
-- design unit (entity + architecture, etc.) follows:

The STD and WORK libraries and the STANDARD package are always visible. Things that are visible to an entity are
visible to its architecture bodies.

10.6.1 Standard Package

The VHDL STANDARD package [VHDL LRM14.2] is defined in the LRM and implicitly declares the following
implementation dependent types: TIME , INTEGER , REAL . We shall use uppercase for types defined in an IEEE
standard package. Here is part of the STANDARD package showing the explicit type and subtype declarations:

package Part_STANDARD is
type BOOLEAN
 is (FALSE, TRUE); type BIT
 is ('0', '1');
type SEVERITY_LEVEL
 is (NOTE, WARNING, ERROR, FAILURE);
subtype NATURAL
 is INTEGER range 0 to INTEGER'HIGH;
subtype POSITIVE
 is INTEGER range 1 to INTEGER'HIGH;
type BIT_VECTOR
 is array (NATURAL range <>) of BIT;
type STRING
 is array (POSITIVE range <>) of CHARACTER;
-- the following declarations are VHDL-93 only:

attribute FOREIGN: STRING; -- for links to other languages
subtype DELAY_LENGTH is TIME range 0 fs to TIME'HIGH;
type FILE_OPEN_KIND is (READ_MODE,WRITE_MODE,APPEND_MODE);
type FILE_OPEN_STATUS is
(OPEN_OK,STATUS_ERROR,NAME_ERROR,MODE_ERROR);
end Part_STANDARD;

Notice that a STRING array must have a positive index. The type TIME is declared in the STANDARD package as
follows:

type TIME is range implementation_defined -- and varies with software
 units fs; ps = 1000 fs; ns = 1000 ps; us = 1000 ns; ms = 1000 us;
 sec = 1000 ms; min = 60 sec; hr = 60 min; end units;

The STANDARD package also declares the function now that returns the current simulation time (with type TIME in
VHDL-87 and subtype DELAY_LENGTH in VHDL-93).

In VHDL-93 the CHARACTER type declaration extends the VHDL-87 declaration (the 128 ASCII characters):

type Part_CHARACTER is (-- 128 ASCII characters in VHDL-87
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL, -- 33 control characters
 BS, HT, LF, VT, FF, CR, SO, SI, -- including:
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB, -- format effectors:
CAN, EM, SUB, ESC, FSP, GSP, RSP, USP, -- horizontal tab = HT
' ', '!', '"', '#', '$', '%', '&', ''', -- line feed = LF
'(', ')', '*', '+', ',', '-', '.', '/', -- vertical tab = VT
'0', '1', '2', '3', '4', '5', '6', '7', -- form feed = FF
'8', '9', ':', ';', '<', '=', '>', '?', -- carriage return = CR
'@', 'A', 'B', 'C', 'D', 'E', 'F', 'G', -- and others:
'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', -- FSP, GSP, RSP, USP use P
'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', -- suffix to avoid conflict
'X', 'Y', 'Z', '[', '\', ']', '^', '_', -- with TIME units
'`', 'a', 'b', 'c', 'd', 'e', 'f', 'g',
'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',
'p', 'q', 'r', 's', 't', 'u', 'v', 'w',
'x', 'y', 'z', '{', '|', '}', '~', DEL -- delete = DEL
-- VHDL-93 includes 96 more Latin-1 characters, like ¥ (Yen) and
-- 32 more control characters, better not to use any of them.
);

The VHDL-87 character set is the 7-bit coded ISO 646-1983 standard known as the ASCII character set. Each of the
printable ASCII graphic character codes (there are 33 nonprintable control codes, like DEL for delete) is represented by a
graphic symbol (the shapes of letters on the keyboard, on the display, and that actually print). VHDL-93 uses the 8-bit
coded character set ISO 8859-1:1987(E), known as ISO Latin-1. The first 128 characters of the 256 characters in ISO
Latin-1 correspond to the 128-character ASCII code. The graphic symbols for the printable ASCII characters are well
defined, but not part of the standard (for example, the shape of the graphic symbol that represents 'lowercase a' is
recognizable on every keyboard, display, and font). However, the graphic symbols that represent the printable characters
from other 128-character codes of the ISO 8-bit character set are different in various fonts, languages, and computer
systems. For example, a pound sterling sign in a U.K. character set looks like this-'£', but in some fonts the same
character code prints as '#' (known as number sign, hash, or pound). If you use such characters and want to share your
models with people in different countries, this can cause problems (you can see all 256 characters in a character set by
using Insert... Symbol in MS Word).

10.6.2 Std_logic_1164 Package

VHDL does not have a built-in logic-value system. The STANDARD package predefines the type BIT with two logic
values, '0' and '1' , but we normally need at least two more values: 'X' (unknown) and 'Z' (high-impedance).
Unknown is a metalogical value because it does not exist in real hardware but is needed for simulation purposes. We
could define our own logic-value system with four logic values:

type MVL4 is ('X', '0', '1', 'Z'); -- a four-value logic system

The proliferation of VHDL logic-value systems prompted the creation of the Std_logic_1164 package (defined in IEEE
Std 1164-1993) that includes functions to perform logical, shift, resolution, and conversion functions for types defined in
the Std_logic_1164 system. To use this package in a design unit, you must include the following library clause
(before each design unit) and a use clause (either before or inside the unit):

library IEEE; use IEEE.std_logic_1164.all;

This Std_Logic_1164 package contains definitions for a nine-value logic system. The following code and comments
show the definitions and use of the most important parts of the package 1:

package Part_STD_LOGIC_1164 is
type STD_ULOGIC is
('U', -- Uninitialized
 'X', -- Forcing Unknown
 '0', -- Forcing 0
 '1', -- Forcing 1
 'Z', -- High Impedance
 'W', -- Weak Unknown
 'L', -- Weak 0
 'H', -- Weak 1
 '-' -- Don't Care);
type STD_ULOGIC_VECTOR is array (NATURAL range <>) of STD_ULOGIC;
function resolved (s : STD_ULOGIC_VECTOR) return STD_ULOGIC;
subtype STD_LOGIC is resolved STD_ULOGIC;
type STD_LOGIC_VECTOR is array (NATURAL range <>) of STD_LOGIC;
subtype X01 is resolved STD_ULOGIC range 'X' to '1';
subtype X01Z is resolved STD_ULOGIC range 'X' to 'Z';
subtype UX01 is resolved STD_ULOGIC range 'U' to '1';
subtype UX01Z is resolved STD_ULOGIC range 'U' to 'Z';
-- Vectorized overloaded logical operators:
function "and" (L : STD_ULOGIC; R : STD_ULOGIC) return UX01;
-- Logical operators not, and, nand, or, nor, xor, xnor (VHDL-93),
-- overloaded for STD_ULOGIC STD_ULOGIC_VECTOR STD_LOGIC_VECTOR.
-- Strength strippers and type conversion functions:
-- function To_T (X : F) return T;
-- defined for types, T and F, where
-- F=BIT BIT_VECTOR STD_ULOGIC STD_ULOGIC_VECTOR STD_LOGIC_VECTOR
-- T=types F plus types X01 X01Z UX01 (but not type UX01Z)
-- Exclude _'s in T in name: TO_STDULOGIC not TO_STD_ULOGIC
-- To_XO1 : L->0, H->1 others->X
-- To_XO1Z: Z->Z, others as To_X01
-- To_UX01: U->U, others as To_X01
-- Edge detection functions:
function rising_edge (signal s: STD_ULOGIC) return BOOLEAN;
function falling_edge (signal s: STD_ULOGIC) return BOOLEAN;
-- Unknown detection (returns true if s = U, X, Z, W):
-- function Is_X (s : T) return BOOLEAN;
-- defined for T = STD_ULOGIC STD_ULOGIC_VECTOR STD_LOGIC_VECTOR.
end Part_STD_LOGIC_1164;

Notice:

The type STD_ULOGIC has nine logic values. For this reason IEEE Std 1164 is sometimes referred to as
MVL9--multivalued logic nine. There are simpler, but nonstandard, MVL4 and MVL7 packages, as well as
packages with more than nine logic values, available. Values 'U' , 'X' , and 'W' are all metalogical values.

●

There are weak and forcing logic-value strengths. If more than one logic gate drives a node (there is more than one
driver) as in wired-OR logic or a three-state bus, for example, the simulator checks the driver strengths to resolve
the actual logic value of the node using the resolution function, resolved , defined in the package.

●

The subtype STD_LOGIC is the resolved version of the unresolved type STD_ULOGIC. Since subtypes are
compatible with types (you can assign one to the other) you can use either STD_LOGIC or STD_ULOGIC for a
signal with a single driver, but it is generally safer to use STD_LOGIC.

●

The type STD_LOGIC_VECTOR is the resolved version of unresolved type STD_ULOGIC_VECTOR. Since these
are two different types and are not compatible, you should use STD_LOGIC_VECTOR. That way you will not run
into a problem when you try to connect a STD_LOGIC_VECTOR to a STD_ULOGIC_VECTOR.

●

The don't care logic value '-' (hyphen), is principally for use by synthesis tools. The value '-' is almost always
treated the same as 'X'.

●

The 1164 standard defines (or overloads) the logical operators for the STD_LOGIC types but not the arithmetic
operators (see Section 10.12).

●

10.6.3 Textio Package

You can use the textio package, which is part of the library STD , for text input and output [VHDL LRM14.3]. The
following code is a part of the TEXTIO package header and, together with the comments, shows the declarations of
types, subtypes, and the use of the procedures in the package:

package Part_TEXTIO is -- VHDL-93 version.

type LINE is access STRING; -- LINE is a pointer to a STRING value.
type TEXT is file of STRING; -- File of ASCII records.
type SIDE is (RIGHT, LEFT); -- for justifying output data.
subtype WIDTH is NATURAL; -- for specifying widths of output fields.
file INPUT : TEXT open READ_MODE is "STD_INPUT"; -- Default input file.
file OUTPUT : TEXT open WRITE_MODE is "STD_OUTPUT"; -- Default output.
-- The following procedures are defined for types, T, where
-- T = BIT BIT_VECTOR BOOLEAN CHARACTER INTEGER REAL TIME STRING
-- procedure READLINE(file F : TEXT; L : out LINE);
-- procedure READ(L : inout LINE; VALUE : out T);
-- procedure READ(L : inout LINE; VALUE : out T; GOOD: out BOOLEAN);
-- procedure WRITELINE(F : out TEXT; L : inout LINE);
-- procedure WRITE(
-- L : inout LINE;
-- VALUE : in T;
-- JUSTIFIED : in SIDE:= RIGHT;
-- FIELD:in WIDTH := 0;
-- DIGITS:in NATURAL := 0; -- for T = REAL only
-- UNIT:in TIME:= ns); -- for T = TIME only
-- function ENDFILE(F : in TEXT) return BOOLEAN;
end Part_TEXTIO;

Here is an example that illustrates how to write to the screen (STD_OUTPUT):

library std; use std.textio.all; entity Text is end;
architecture Behave of Text is signal count : INTEGER := 0;
begin count <= 1 after 10 ns, 2 after 20 ns, 3 after 30 ns;
process (count) variable L: LINE; begin
if (count > 0) then
 write(L, now); -- Write time.
 write(L, STRING'(" count=")); -- STRING' is a type qualification.
 write(L, count); writeline(output, L);
end if; end process; end;
10 ns count=1
20 ns count=2
30 ns count=3

10.6.4 Other Packages

VHDL does not predefine arithmetic operators on types that hold bits. Many VHDL simulators provide one or more
arithmetic packages that allow you to perform arithmetic operations on std_logic_1164 types. Some companies also
provide one or more math packages that contain functions for floating-point algebra, trigonometry, complex algebra,
queueing, and statistics (see also [IEEE 1076.2, 1996]).

Synthesis tool companies often provide a special version of an arithmetic package, a synthesis package, that allows you
to synthesize VHDL that includes arithmetic operators. This type of package may contain special instructions (normally
comments that are recognized by the synthesis software) that map common functions (adders, subtracters, multipliers,
shift registers, counters, and so on) to ASIC library cells. I shall introduce the IEEE synthesis package in Section 10.12.

Synthesis companies may also provide component packages for such cells as power and ground pads, I/O buffers, clock
drivers, three-state pads, and bus keepers. These components may be technology-independent (generic) and are mapped
to primitives from technology-dependent libraries after synthesis.

10.6.5 Creating Packages

It is often useful to define constants in one central place rather than using literals wherever you need a specific value in
your code. One way to do this is by using VHDL packaged constants [VHDL LRM4.3.1.1] that you define in a package.
Packages that you define are initially part of the working library, work . Here are two example packages [VHDL
LRM2.5-2.7]:

package Adder_Pkg is -- a package declaration
 constant BUSWIDTH : INTEGER := 16;
end Adder_Pkg;
use work.Adder_Pkg.all; -- a use clause
entity Adder is end Adder;
architecture Flexible of Adder is -- work.Adder_Pkg is visible here
 begin process begin
 MyLoop : for j in 0 to BUSWIDTH loop -- adder code goes here

 end loop; wait; -- the wait prevents an endless cycle
 end process;
end Flexible;
package GLOBALS is
 constant HI : BIT := '1'; constant LO: BIT := '0';
end GLOBALS;

Here is a package that declares a function and thus requires a package body:

package Add_Pkg_Fn is
function add(a, b, c : BIT_VECTOR(3 downto 0)) return BIT_VECTOR;
end Add_Pkg_Fn;
package body Add_Pkg_Fn is
function add(a, b, c : BIT_VECTOR(3 downto 0)) return BIT_VECTOR is
 begin return a xor b xor c; end;
end Add_Pkg_Fn;

The following example is similar to the VITAL (VHDL Initiative Toward ASIC Libraries) package that provides two
alternative methods (procedures or functions) to model primitive gates (I shall describe functions and procedures in more
detail in Section 10.9.2):

package And_Pkg is
 procedure V_And(a, b : BIT; signal c : out BIT);
 function V_And(a, b : BIT) return BIT;
end;
package body And_Pkg is
 procedure V_And(a, b : BIT; signal c : out BIT) is
 begin c <= a and b; end;
 function V_And(a, b : BIT) return BIT is
 begin return a and b; end;
end And_Pkg;

The software determines where it stores the design units that we analyze. Suppose the package Add_Pkg_Fn is in
library MyLib . Then we need a library clause (before each design unit) and use clause with a selected name to use the
package:

library MyLib; -- use MyLib.Add_Pkg.all; -- use all the package
use MyLib.Add_Pkg_Fn.add; -- just function 'add' from the package
entity Lib_1 is port (s : out BIT_VECTOR(3 downto 0) := "0000"); end;
architecture Behave of Lib_1 is begin process
begin s <= add ("0001", "0010", "1000"); wait; end process; end;

The VHDL software dictates how you create the library MyLib from the library work and the actual name and directory
location for the physical file or directory on the disk that holds the library. The mechanism to create the links between
the file and directory names in the computer world and the library names in the VHDL world depends on the software.
There are three common methods:

Use a UNIX environment variable (SETENV MyLib ~/MyDirectory/
MyLibFile , for example).

●

Create a separate file that establishes the links between the filename known to the operating system and the library
name known to the VHDL software.

●

Include the links in an initialization file (often with an '.ini' suffix).●

1. The code in this section is adapted with permission from IEEE Std 1164-1993, © Copyright IEEE. All rights reserved.

10.7 Interface Declarations
An interface declaration declares interface objects that may be interface constants, signals, variables, or files [VHDL 87LRM4.3.3,
93LRM4.3.2]. Interface constants are generics of a design entity, a component, or a block, or parameters of subprograms. Interface
signals are ports of a design entity, component, or block, and parameters of subprograms. Interface variables and interface files are
parameters of subprograms.

Each interface object has a mode that indicates the direction of information flow. The most common modes are in (the default), out ,
inout , and buffer (a fifth mode, linkage , is used to communicate with other languages and is infrequently used in ASIC
design). The restrictions on the use of objects with these modes are listed in Table 10.10. An interface object is read when you use it
on the RHS of an assignment statement, for example, or when the object is associated with another interface object of modes in ,
inout (or linkage). An interface object is updated when you use it on the LHS side of an assignment statement or when the object
is associated with another interface object of mode out , buffer , inout (or linkage). The restrictions on reading and updating
objects generate the diagram at the bottom of Table 10.10 that shows the 10 allowed types of interconnections (these rules for modes
buffer and inout are the same). The interface objects (Inside and Outside) in the example in this table are ports (and thus
interface signals), but remember that interface objects may also be interface constants, variables, and files.

TABLE 10.10 Modes of interface objects and their properties.

entity E1 is port (Inside : in BIT); end; architecture Behave of E1 is begin end;
entity E2 is port (Outside : inout BIT := '1'); end; architecture Behave of E2 is
component E1 port (Inside: in BIT); end component; signal UpdateMe : BIT; begin
I1 : E1 port map (Inside => Outside); -- formal/local (mode in) => actual (mode
inout)
UpdateMe <= Outside; -- OK to read Outside (mode inout)
Outside <= '0' after 10 ns; -- and OK to update Outside (mode inout)
end;

Possible modes of interface object, Outside in (default) out inout buffer

Can you read Outside (RHS of assignment)? Yes No Yes Yes

Can you update Outside (LHS of assignment)? No Yes Yes Yes

Modes of Inside that Outside may connect to (see below) 1 in out any any

There are other special-case rules for reading and updating interface signals, constants, variables, and files that I shall cover in the
following sections. The situation is like the spelling rule, "i before e except after c." Table 10.10 corresponds to the rule "i before e."

10.7.1 Port Declaration

Interface objects that are signals are called ports [VHDL 93LRM1.1.1.2]. You may think of ports as "connectors" and you must
declare them as follows:

port (port_interface_list)
interface_list ::=
 port_interface_declaration {; port_interface_declaration}

A port interface declaration is a list of ports that are the inputs and outputs of an entity, a block, or a component declaration:

interface_declaration ::=
 [signal]
 identifier {, identifier}:[in|out|inout|buffer|linkage]
 subtype_indication [bus] [:= static_expression]

Each port forms an implicit signal declaration and has a port mode. I shall discuss bus , which is a signal kind, in Section 10.13.1.
Here is an example of an entity declaration that has five ports:

entity Association_1 is
 port (signal X, Y : in BIT := '0'; Z1, Z2, Z3 : out BIT);
end;

In the preceding declaration the keyword signal is redundant (because all ports are signals) and may be omitted. You may also omit
the port mode in because it is the default mode. In this example, the input ports X and Y are driven by a default value (in general a

default expression) of '0' if (and only if) the ports are left unconnected or open. If you do leave an input port open, the port must
have a default expression.

You use a port map and either positional association or named association to connect the formals of an entity with the locals of a
component. Port maps also associate (connect) the locals of a component with the actuals of an instance. For an example of formal,
local, and actual ports, and explanation of their function, see Section 10.5, where we declared an entity AndGate. The following
example shows how to bind a component to the entity AndGate (in this case we use the default binding) and associate the ports.
Notice that if we mix positional and named association then all positional associations must come first.

use work.all; -- makes analyzed design entity AndGate(Simple) visible.
architecture Netlist of Association_1 is
-- The formal port clause for entity AndGate looks like this:
-- port (And_in_1, And_in_2: in BIT; And_out : out BIT); -- Formals.
component AndGate port
 (And_in_1, And_in_2 : in BIT; And_out : out BIT); -- Locals.
end component;
begin
-- The component and entity have the same names: AndGate.
-- The port names are also the same: And_in_1, And_in_2, And_out,
-- so we can use default binding without a configuration.
-- The last (and only) architecture for AndGate will be used: Simple.
A1:AndGate port map (X, Y, Z1); -- positional association
A2:AndGate port map (And_in_2=>Y, And_out=>Z2, And_in_1=>X);
-- named
A3:AndGate port map (X, And_out => Z3, And_in_2 => Y);
-- both
end;

The interface object rules of Table 10.10 apply to ports. The rule that forbids updating an interface object of mode in prevents
modifying an input port (by placing the input signal on the left-hand side of an assignment statement, for example). Less obviously,
you cannot read a port of mode out (that is you cannot place an output signal on the right-hand side of an assignment statement). This
stops you from accidentally reading an output signal that may be connected to a net with multiple drivers. In this case the value you
would read (the unresolved output signal) might not be the same as the resolved signal value. For example, in the following code, since
Clock is a port of mode out , you cannot read Clock directly. Instead you can transfer Clock to an intermediate variable and read
the intermediate variable instead:

entity ClockGen_1 is port (Clock : out BIT); end;
architecture Behave of ClockGen_1 is
begin process variable Temp : BIT := '1';
 begin
-- Clock <= not Clock; -- Illegal, you cannot read Clock (mode out),
 Temp := not Temp; -- use a temporary variable instead.
 Clock <= Temp after 10 ns; wait for 10 ns;
 if (now > 100 ns) then wait; end if; end process;
end;

TABLE 10.11 Properties of ports.

Example entity declaration:

entity E is port (F_1:BIT; F_2:out BIT; F_3:inout BIT; F_4:buffer BIT); end; --
formals

Example component declaration:

component C port (L_1:BIT; L_2:out BIT; L_3:inout BIT; L_4:buffer BIT); -- locals
end component;

Example component instantiation:

I1 : C port map
(L_1 => A_1, L_2 => A_2, L_3 => A_3, L_4 => A_4); -- locals => actuals

Example configuration:

for I1 : C use entity E(Behave) port map
(F_1 => L_1, F_2 => L_2, F_3 => L_3, F_4 => L_4); -- formals => locals

Interface object, port F F_1 F_2 F_3 F_4

Mode of F in (default) out inout buffer

Can you read attributes of F?

[VHDL LRM4.3.2]

Yes, but not the attributes:

'STABLE

'QUIET

'DELAYED

'TRANSACTION

Yes, but not the attributes:

'STABLE 'QUIET

'DELAYED

'TRANSACTION

'EVENT 'ACTIVE

'LAST_EVENT

'LAST_ACTIVE

'LAST_VALUE

Yes, but not the attributes:

'STABLE

'QUIET

'DELAYED

'TRANSACTION

Yes

Table 10.10 lists the restrictions on reading and updating interface objects including interface signals that form ports. Table 10.11 lists
additional special rules for reading and updating the attributes of interface signals.

There is one more set of rules that apply to port connections [VHDL LRM 1.1.1.2]. If design entity E2 contains an instance, I1 , of
design entity E1 , then the formals (of design entity E1) are associated with actuals (of instance I1). The actuals (of instance I1) are
themselves formal ports (of design entity E2). The restrictions illustrated in Table 10.12 apply to the modes of the port connections
from E1 to E2 (looking from the inside to the outside).

Notice that the allowed connections diagrammed in Table 10.12 (looking from inside to the outside) are a superset of those of
Table 10.10 (looking from the outside to the inside). Only the seven types of connections shown in Table 10.12 are allowed between
the ports of nested design entities. The additional rule that ports of mode buffer may only have one source, together with the
restrictions on port mode interconnections, limits the use of ports of mode buffer .

TABLE 10.12 Connection rules for port modes.

 entity E1 is port (Inside : in BIT); end; architecture Behave of E1 is begin end;
entity E2 is port (Outside : inout BIT := '1'); end; architecture Behave of E2 is
component E1 port (Inside : in BIT); end component; begin
I1 : E1 port map (Inside => Outside);
-- formal/local (mode in) => actual (mode inout)
end;

Possible modes of interface object, Inside in (default) out inout buffer

Modes of Outside that Inside may connect to (see below) in inout buffer out inout inout 2 buffer 3

10.7.2 Generics

Ports are signals that carry changing information between entities. A generic is similar to a port, except generics carry constant, static
information [VHDL LRM1.1.1.1]. A generic is an interface constant that, unlike normal VHDL constants, may be given a value in a
component instantiation statement or in a configuration specification. You declare generics in an entity declaration and you use
generics in a similar fashion to ports. The following example uses a generic parameter to alter the size of a gate:

entity AndGateNWide is
 generic (N : NATURAL := 2);
 port (Inputs : BIT_VECTOR(1 to N); Result : out BIT);
end;

Notice that the generic interface list precedes the port interface list. Generics are useful to carry timing (delay) information, as in the
next example:

entity AndT is
 generic (TPD : TIME := 1 ns);
 port (a, b : BIT := '0'; q: out BIT);
end;
architecture Behave of AndT is
 begin q <= a and b after TPD;
end;
entity AndT_Test_1 is end;
architecture Netlist_1 of AndT_Test_1 is
 component MyAnd

 port (a, b : BIT; q : out BIT);
 end component;
 signal a1, b1, q1 : BIT := '1';
 begin
 And1 : MyAnd port map (a1, b1, q1);
end Netlist_1;
configuration Simplest_1 of AndT_Test_1 is use work.all;
 for Netlist_1 for And1 : MyAnd
 use entity AndT(Behave) generic map (2 ns);
 end for; end for;
end Simplest_1;

The configuration declaration, Simplest_1, changes the default delay (equal to 1 ns, declared as a default expression in the entity)
to 2 ns. Techniques based on this method are useful in ASIC design. Prelayout simulation uses the default timing values.
Back-annotation alters the delay in the configuration for postlayout simulation. When we change the delay we only need to reanalyze
the configuration, not the rest of the ASIC model.

There was initially no standard in VHDL for how timing generics should be used, and the lack of a standard was a major problem for
ASIC designers. The IEEE 1076.4 VITAL standard addresses this problem (see Section 13.5.5).

1. There are additional rules for interface objects that are signals (ports)--see Tables 10.11 and 10.12.

2. A signal of mode inout can be updated by any number of sources [VHDL 87LRM4.3.3, 93LRM4.3.2].

3. A signal of mode buffer can be updated by at most one source [VHDL LRM1.1.1.2].

10.8 Type Declarations
In some programming languages you must declare objects to be integer, real, Boolean, and so on.
VHDL (and ADA, the DoD programming language to which VHDL is related) goes further: You must
declare the type of an object, and there are strict rules on mixing objects of different types. We say
VHDL is strongly typed. For example, you can use one type for temperatures in Centigrade and a
different type for Fahrenheit, even though both types are real numbers. If you try to add a temperature
in Centigrade to a temperature in Fahrenheit, VHDL catches your error and tells you that you have a
type mismatch.

This is the formal (expanded) BNF definition of a type declaration:

type_declaration ::=
 type identifier ;
| type identifier is
(identifier|'graphic_character' {, identifier|'graphic_character'}) ;
| range_constraint ; | physical_type_definition ;
| record_type_definition ; | access subtype_indication ;
| file of type_name ; | file of subtype_name ;
| array index_constraint of element_subtype_indication ;
| array
 (type_name|subtype_name range <>
 {, type_name|subtype_name range <>}) of
 element_subtype_indication ;

There are four type classes in VHDL [VHDL LRM3]: scalar types, composite types, access types, and
file types. The scalar types are: integer type, floating-point type, physical type, and enumeration type.
Integer and enumeration types are discrete types. Integer, floating-point, and physical types are
numeric types. The range of an integer is implementation dependent but is guaranteed to include
-2147483647 to +2147483647. Notice the integer range is symmetric and equal to -(231- 1) to (231- 1).
Floating-point size is implementation dependent, but the range includes the bounds -1.0E38 and
+1.0E38, and must include a minimum of six decimal digits of precision. Physical types correspond to
time, voltage, current, and so on and have dimensions--a unit of measure (seconds, for example).
Access types are pointers, useful in abstract data structures, but less so in ASIC design. File types are
used for file I/O.

You may also declare a subset of an existing type, known as a subtype, in a subtype declaration. We
shall discuss the different treatment of types and subtypes in expressions in Section 10.12.

Here are some examples of scalar type [VHDL LRM4.1] and subtype declarations [VHDL LRM4.2]:

entity Declaration_1 is end; architecture Behave of Declaration_1 is
type F is range 32 to 212; -- Integer type, ascending range.
type C is range 0 to 100; -- Range 0 to 100 is the range constraint.
subtype G is INTEGER range 9 to 0; -- Base type INTEGER, descending.
-- This is illegal: type Bad100 is INTEGER range 0 to 100;
-- don't use INTEGER in declaration of type (but OK in subtype).
type Rainbow is (R, O, Y, G, B, I, V); -- An enumeration type.
-- Enumeration types always have an ascending range.
type MVL4 is ('X', '0', '1', 'Z');
-- Note that 'X' and 'x' are different character literals.
-- The default initial value is MVL4'LEFT = 'X'.
-- We say '0' and '1' (already enumeration literals
-- for predefined type BIT) are overloaded.
-- Illegal enumeration type: type Bad4 is ("X", "0", "1", "Z");
-- Enumeration literals must be character literals or identifiers.
begin end;

The most common composite type is the array type [VHDL LRM3.2.1]. The following examples
illustrate the semantics of array declarations:

entity Arrays_1 is end; architecture Behave of Arrays_1 is
type Word is array (0 to 31) of BIT; -- a 32-bit array, ascending
type Byte is array (NATURAL range 7 downto 0) of BIT; -- descending
type BigBit is array (NATURAL range <>) of BIT;
-- We call <> a box, it means the range is undefined for now.
-- We call BigBit an unconstrained array.
-- This is OK, we constrain the range of an object that uses
-- type BigBit when we declare the object, like this:
subtype Nibble is BigBit(3 downto 0);
type T1 is array (POSITIVE range 1 to 32) of BIT;
-- T1, a constrained array declaration, is equivalent to a type T2
-- with the following three declarations:
subtype index_subtype is POSITIVE range 1 to 32;
type array_type is array (index_subtype range <>) of BIT;
subtype T2 is array_type (index_subtype);
-- We refer to index_subtype and array_type as being
-- anonymous subtypes of T1 (since they don't really exist).
begin end;

You can assign values to an array using aggregate notation [VHDL LRM7.3.2]:

entity Aggregate_1 is end; architecture Behave of Aggregate_1 is
type D is array (0 to 3) of BIT; type Mask is array (1 to 2) of BIT;
signal MyData : D := ('0', others => '1'); -- positional aggregate
signal MyMask : Mask := (2 => '0', 1 => '1'); -- named aggregate
begin end;

The other composite type is the record type that groups elements together:

entity Record_2 is end; architecture Behave of Record_2 is
type Complex is record real : INTEGER; imag : INTEGER; end record;
signal s1 : Complex := (0, others => 1); signal s2: Complex;
begin s2 <= (imag => 2, real => 1); end;

10.9 Other Declarations
A declaration is one of the following [VHDL LRM4]:

declaration ::=
 type_declaration | subtype_declaration | object_declaration
| interface_declaration | alias_declaration | attribute_declaration
| component_declaration | entity_declaration
| configuration_declaration | subprogram_declaration
| package_declaration
| group_template_declaration | group_declaration

I discussed entity, configuration, component, package, interface, type, and subtype declarations in Sections 10.5-10.8. Next I shall
discuss the other types of declarations (except for groups or group templates [VHDL 93LRM4.6-4.7], new to VHDL-93, that are
not often used in ASIC design).

10.9.1 Object Declarations

There are four object classes in VHDL: constant, variable, signal, and file [VHDL LRM 4.3.1.1-4.3.1.3]. You use a constant
declaration, signal declaration, variable declaration, or file declaration together with a type. Signals can only be declared in the
declarative region (before the first begin) of an architecture or block, or in a package (not in a package body). Variables can
only be declared in the declarative region of a process or subprogram (before the first begin). You can think of signals as
representing real wires in hardware. You can think of variables as memory locations in the computer. Variables are more efficient
than signals because they require less overhead.

You may assign an (explicit) initial value when you declare a type. If you do not provide initial values, the (implicit) default initial
value of a type or subtype T is T'LEFT (the leftmost item in the range of the type). For example:

entity Initial_1 is end; architecture Behave of Initial_1 is
type Fahrenheit is range 32 to 212;
-- Default initial value is 32.
type Rainbow is (R, O, Y, G, B, I, V);
-- Default initial value is R.
type MVL4 is ('X', '0', '1', 'Z');
-- MVL4'LEFT = 'X'.
begin end;

The details of initialization and assignment of initial values are important--it is difficult to implement the assignment of initial
values in hardware--instead it is better to mimic the hardware and use explicit reset signals.

Here are the formal definitions of constant and signal declarations:

constant_declaration ::= constant
identifier {, identifier}:subtype_indication [:= expression] ;
signal_declaration ::= signal
identifier {, identifier}:subtype_indication [register|bus] [:=expression];

I shall explain the use of signals of kind register or bus in Section 10.13.1. Signal declarations are explicit signal declarations
(ports declared in an interface declaration are implicit signal declarations). Here is an example that uses a constant and several
signal declarations:

entity Constant_2 is end;
library IEEE; use IEEE.STD_LOGIC_1164.all;
architecture Behave of Constant_2 is
constant Pi : REAL := 3.14159;
-- A constant declaration.
signal B : BOOLEAN; signal s1, s2: BIT;
signal sum : INTEGER range 0 to 15;
-- Not a new type.
signal SmallBus : BIT_VECTOR (15 downto 0);
-- 16-bit bus.
signal GBus : STD_LOGIC_VECTOR (31 downto 0); bus; -- A guarded signal.
begin end;

Here is the formal definition of a variable declaration:

variable_declaration ::= [shared] variable
identifier {, identifier}:subtype_indication [:= expression] ;

A shared variable can be used to model a varying quantity that is common across several parts of a model, temperature, for
example, but shared variables are rarely used in ASIC design. The following examples show that variable declarations belong
inside a process statement, after the keyword process and before the first appearance of the keyword begin inside a
process:

library IEEE; use IEEE.STD_LOGIC_1164.all; entity Variables_1 is end;
architecture Behave of Variables_1 is begin process
 variable i : INTEGER range 1 to 10 := 10; -- Initial value = 10.
 variable v : STD_LOGIC_VECTOR (0 to 31) := (others => '0');
 begin wait; end process; -- The wait stops an endless cycle.
end;

10.9.2 Subprogram Declarations

VHDL code that you use several times can be declared and specified as subprograms (functions or procedures) [VHDL LRM2.1].
A function is a form of expression, may only use parameters of mode in , and may not contain delays or sequence events during
simulation (no wait statements, for example). Functions are useful to model combinational logic. A procedure is a form of
statement and allows you to control the scheduling of simulation events without incurring the overhead of defining several
separate design entities. There are thus two forms of subprogram declaration: a function declaration or a procedure declaration.

subprogram_declaration ::= subprogram_specification ; ::=
 procedure
 identifier|string_literal [(parameter_interface_list)]
| [pure|impure] function
 identifier|string_literal [(parameter_interface_list)]
return type_name|subtype_name;

Here are a function and a procedure declaration that illustrate the difference:

function add(a, b, c : BIT_VECTOR(3 downto 0)) return BIT_VECTOR is
-- A function declaration, a function can't modify a, b, or c.
procedure Is_A_Eq_B (signal A, B : BIT; signal Y : out BIT);
-- A procedure declaration, a procedure can change Y.

Parameter names in subprogram declarations are called formal parameters (or formals). During a call to a subprogram, known as
subprogram invocation, the passed values are actual parameters (or actuals). An impure function, such as the function now or a
function that writes to or reads from a file, may return different values each time it is called (even with the same actuals). A pure
function (the default) returns the same value if it is given the same actuals. You may call subprograms recursively. Table 10.13
shows the properties of subprogram parameters.

TABLE 10.13 Properties of subprogram parameters.

Example subprogram declarations:

 function my_function(Ff) return BIT is -- Formal function parameter, Ff.
procedure my_procedure(Fp); -- Formal procedure parameter, Fp.

Example subprogram calls:

 my_result := my_function(Af); -- Calling a function with an actual parameter, Af.
MY_LABEL:my_procedure(Ap); -- Using a procedure with an actual parameter, Ap.

Mode of Ff or Fp (formals) in out inout No mode

Permissible classes for Af

(function actual parameter)

constant (default)

signal
Not allowed Not allowed file

Permissible classes for Ap

(procedure actual parameter)

constant (default)

variable

signal

constant

variable (default)

signal

constant

variable (default)

signal

file

Can you read attributes of

Ff or Fp (formals)?

Yes, except:

 'STABLE

 'QUIET

 'DELAYED

 'TRANSACTION

of a signal

Yes, except:

 'STABLE 'QUIET

 'DELAYED

 'TRANSACTION

 'EVENT 'ACTIVE

 'LAST_EVENT

 'LAST_ACTIVE

 'LAST_VALUE

of a signal

Yes, except:

 'STABLE

 'QUIET

 'DELAYED

 'TRANSACTION

of a signal

A subprogram declaration is optional, but a subprogram specification must be included in the subprogram body (and must be
identical in syntax to the subprogram declaration--see BNF [10.19]):

subprogram_body ::=
 subprogram_specification is

 {subprogram_declaration|subprogram_body
 |type_declaration|subtype_declaration
 |constant_declaration|variable_declaration|file_declaration
 |alias_declaration|attribute_declaration|attribute_specification
 |use_clause|group_template_declaration|group_declaration}
 begin
 {sequential_statement}
 end [procedure|function] [identifier|string_literal] ;

You can include a subprogram declaration or subprogram body in a package or package body (see Section 10.6) or in the
declarative region of an entity or process statement. The following is an example of a function declaration and its body:

function subset0(sout0 : in BIT) return BIT_VECTOR -- declaration
-- Declaration can be separate from the body.
function subset0(sout0 : in BIT) return BIT_VECTOR is -- body
variable y : BIT_VECTOR(2 downto 0);
begin
if (sout0 = '0') then y := "000"; else y := "100"; end if;
return result;
end;
procedure clockGen (clk : out BIT)
-- Declaration
procedure clockGen (clk : out BIT) is
-- Specification
begin -- Careful this process runs forever:
 process begin wait for 10 ns; clk <= not clk; end process;
end;

One reason for having the optional (and seemingly redundant) subprogram declaration is to allow companies to show the
subprogram declarations (to document the interface) in a package declaration, but to hide the subprogram bodies (the actual code)
in the package body. If a separate subprogram declaration is present, it must conform to the specification in the subprogram body
[VHDL 93LRM2.7]. This means the specification and declaration must be almost identical; the safest method is to copy and paste.
If you define common procedures and functions in packages (instead of in each entity or architecture, for example), it will be
easier to reuse subprograms. In order to make a subprogram included in a package body visible outside the package, you must
declare the subprogram in the package declaration (otherwise the subprogram is private).

You may call a function from any expression, as follows:

entity F_1 is port (s : out BIT_VECTOR(3 downto 0) := "0000"); end;
architecture Behave of F_1 is begin process
function add(a, b, c : BIT_VECTOR(3 downto 0)) return BIT_VECTOR is
begin return a xor b xor c; end;
begin s <= add("0001", "0010", "1000"); wait; end process; end;
package And_Pkg is
 procedure V_And(a, b : BIT; signal c : out BIT);
 function V_And(a, b : BIT) return BIT;
end;
package body And_Pkg is
 procedure V_And(a,b : BIT; signal c : out BIT) is
 begin c <= a and b; end;
 function V_And(a,b : BIT) return BIT is
 begin return a and b; end;
end And_Pkg;
entity F_2 is port (s: out BIT := '0'); end;
use work.And_Pkg.all; -- use package already analyzed
architecture Behave of F_2 is begin process begin
s <= V_And('1', '1'); wait; end process; end;

I shall discuss the two different ways to call a procedure in Sections 10.10.4 and 10.13.3.

10.9.3 Alias and Attribute Declarations

An alias declaration [VHDL 87LRM4.3.4, 93LRM4.3.3] names parts of a type:

alias_declaration ::=
alias
 identifier|character_literal|operator_symbol [:subtype_indication]
 is name [signature] ;

(the subtype indication is required in VHDL-87, but not in VHDL-93).

Here is an example of alias declarations for parts of a floating-point number:

entity Alias_1 is end; architecture Behave of Alias_1 is
begin process variable Nmbr: BIT_VECTOR (31 downto 0);

-- alias declarations to split Nmbr into 3 pieces :
alias Sign : BIT is Nmbr(31);
alias Mantissa : BIT_VECTOR (23 downto 0) is Nmbr (30 downto 7);
alias Exponent : BIT_VECTOR (6 downto 0) is Nmbr (6 downto 0);
begin wait; end process; end; -- the wait prevents an endless cycle

An attribute declaration [VHDL LRM4.4] defines attribute properties:

attribute_declaration ::=
 attribute identifier:type_name ; | attribute identifier:subtype_name ;

Here is an example:

entity Attribute_1 is end; architecture Behave of Attribute_1 is
begin process type COORD is record X, Y : INTEGER; end record;
attribute LOCATION : COORD; -- the attribute declaration
begin wait ; -- the wait prevents an endless cycle
end process; end;

You define the attribute properties in an attribute specification (the following example specifies an attribute of a component label).
You probably will not need to use your own attributes very much in ASIC design.

attribute LOCATION of adder1 : label is (10,15);

You can then refer to your attribute as follows:

positionOfComponent := adder1'LOCATION;

10.9.4 Predefined Attributes

The predefined attributes for scalar and array types in VHDL-93 are shown in Table 10.14 [VHDL 93LRM14.1]. There are two
attributes, 'STRUCTURE and 'BEHAVIOR , that are present in VHDL-87, but removed in VHDL-93. Both of these attributes
apply to architecture bodies. The attribute name A'BEHAVIOR is TRUE if the architecture A does not contain component
instantiations. The attribute name A'STRUCTURE is TRUE if the architecture A contains only passive processes (those with no
assignments to signals) and component instantiations. These two attributes were not widely used. The attributes shown in
Table 10.14, however, are used extensively to create packages and functions for type conversion and overloading operators, but
should not be needed by an ASIC designer. Many of the attributes do not correspond to "real" hardware and cannot be
implemented by a synthesis tool.

TABLE 10.14 Predefined attributes for scalar and array types.

Attribute Kind 1
Prefix

T, A, E 2
Parameter X or N 3 Result type 3 Result

T'BASE T any base(T) base(T), use only with other attribute

T'LEFT V scalar T Left bound of T

T'RIGHT V scalar T Right bound of T

T'HIGH V scalar T Upper bound of T

T'LOW V scalar T Lower bound of T

T'ASCENDING V scalar BOOLEAN True if range of T is ascending 4

T'IMAGE(X) F scalar base(T) STRING String representation of X in T 4

T'VALUE(X) F scalar STRING base(T) Value in T with representation X 4

T'POS(X) F discrete base(T) UI Position number of X in T (starts at 0)

T'VAL(X) F discrete UI base(T) Value of position X in T

T'SUCC(X) F discrete base(T) base(T) Value of position X in T plus one

T'PRED(X) F discrete base(T) base(T) Value of position X in T minus one

T'LEFTOF(X) F discrete base(T) base(T) Value to the left of X in T

T'RIGHTOF(X) F discrete base(T) base(T) Value to the right of X in T

A'LEFT[(N)] F array UI T(Result) Left bound of index N of array A

A'RIGHT[(N)] F array UI T(Result) Right bound of index N of array A

A'HIGH[(N)] F array UI T(Result) Upper bound of index N of array A

A'LOW[(N)] F array UI T(Result) Lower bound of index N of array A

A'RANGE[(N)] R array UI T(Result) Range A'LEFT(N) to A'RIGHT(N) 5

A'REVERSE_RANGE[(N)] R array UI T(Result) Opposite range to A'RANGE[(N)]

A'LENGTH[(N)] V array UI UI
Number of values in index N of array
A

A'ASCENDING[(N)] V array UI BOOLEAN True if index N of A is ascending 4

E'SIMPLE_NAME V name STRING Simple name of E 4

E'INSTANCE_NAME V name STRING Path includes instantiated entities 4

E'PATH_NAME V name STRING Path excludes instantiated entities 4

The attribute 'LEFT is important because it determines the default initial value of a type. For example, the default initial value
for type BIT is BIT'LEFT , which is '0' . The predefined attributes of signals are listed in Table 10.15. The most important
signal attribute is 'EVENT , which is frequently used to detect a clock edge. Notice that Clock'EVENT , for example, is a
function that returns a value of type BOOLEAN , whereas the otherwise equivalent not(Clock'STABLE) , is a signal. The
difference is subtle but important when these attributes are used in the wait statement that treats signals and values differently.

TABLE 10.15 Predefined attributes for signals.

Attribute Kind 6 Parameter T 7 Result type 8 Result/restrictions

S'DELAYED [(T)] S TIME base(S) S delayed by time T

S'STABLE [(T)] S TIME BOOLEAN TRUE if no event on S for time T

S'QUIET [(T)] S TIME BOOLEAN TRUE if S is quiet for time T

S'TRANSACTION S BIT Toggles each cycle if S becomes active

S'EVENT F BOOLEAN TRUE when event occurs on S

S'ACTIVE F BOOLEAN TRUE if S is active

S'LAST_EVENT F TIME Elapsed time since the last event on S

S'LAST_ACTIVE F TIME Elapsed time since S was active

S'LAST_VALUE F base(S) Previous value of S, before last event 9

S'DRIVING F BOOLEAN TRUE if every element of S is driven 10

S'DRIVING_VALUE F base(S) Value of the driver for S in the current process 10

1. T = Type, F = Function, V = Value, R = Range.

2. any = any type or subtype, scalar = scalar type or subtype, discrete = discrete or physical type or subtype, name = entity name =
identifier, character literal, or operator symbol.

3. base(T) = base type of T, T = type of T, UI = universal_integer, T(Result) = type of object described in result column.

4. Only available in VHDL-93. For 'ASCENDING all enumeration types are ascending.

5. Or reverse for descending ranges.

6. F = function, S = signal.

7. Time T >= 0 ns. The default, if T is not present, is T = 0 ns.

8. base(S) = base type of S.

9. VHDL-93 returns last value of each signal in array separately as an aggregate, VHDL-87 returns the last value of the composite
signal.

10. VHDL-93 only.

10.10 Sequential Statements
A sequential statement [VHDL LRM8] is defined as follows:

sequential_statement ::=
 wait_statement | assertion_statement
| signal_assignment_statement
| variable_assignment_statement
| procedure_call_statement
| if_statement | case_statement | loop_statement
| next_statement | exit_statement
| return_statement | null_statement | report_statement

Sequential statements may only appear in processes and subprograms. In the following sections I shall describe each of these different types of sequential statements in turn.

10.10.1 Wait Statement

The wait statement is central to VHDL, here are the BNF definitions [VHDL 93LRM8.1]:

wait_statement ::= [label:] wait [sensitivity_clause]
 [condition_clause] [timeout_clause] ;
sensitivity_clause ::= on sensitivity_list
sensitivity_list ::= signal_name { , signal_name }
condition_clause ::= until condition
condition ::= boolean_expression
timeout_clause ::= for time_expression

A wait statement suspends (stops) a process or procedure (you cannot use a wait statement in a function). The wait statement may be made sensitive to events (changes) on static signals (the value of the signal must be
known at analysis time) that appear in the sensitivity list after the keyword on . These signals form the sensitivity set of a wait statement. The process will resume (restart) when an event occurs on any signal (and only signals)
in the sensitivity set.

A wait statement may also contain a condition to be met before the process resumes. If there is no sensitivity clause (there is no keyword on) the sensitivity set is made from signals (and only signals) from the condition
clause that appears after the keyword until (the rules are quite complicated [VHDL 93LRM8.1]).

Finally a wait statement may also contain a timeout (following the keyword for) after which the process will resume. Here is the expanded BNF definition, which makes the structure of the wait statement easier to see (but
we lose the definitions of the clauses and the sensitivity list):

wait_statement ::= [label:]

 wait
 [on signal_name {, signal_name}]
 [until boolean_expression]
 [for time_expression] ;

For example, the statement, wait on light , makes you wait until a traffic light changes (any change). The statement, wait until light = green , makes you wait (even at a green light) until the traffic signal
changes to green. The statement,

if light = (red or yellow) then wait
until light = green;
end
if;

accurately describes the basic rules at a traffic intersection.

The most common use of the wait statement is to describe synchronous logic, as in the following model of a D flip-flop:

entity DFF is port (CLK, D : BIT; Q : out BIT); end;
architecture Behave of DFF is
process begin wait
until C
lk = '1'; Q <= D ; end process;
end;

Notice that the statement in line 3 above, wait until C lk = '1', is equivalent to wait on Clk until C lk = '1', and detects a clock edge and not the clock level. Here are some more complex examples of the use of the
wait statement:

entity Wait_1 is port (Clk, s1, s2 :in BIT); end;
architecture Behave of Wait_1 is
signal x : BIT_VECTOR (0 to 15);
 begin process variable v : BIT; begin
 wait; -- Wait forever, stops simulation.
 wait on s1 until s2 = '1'; -- Legal, but s1, s2 are signals so
 -- s1 is in sensitivity list, and s2 is not in the sensitivity set.
 -- Sensitivity set is s1 and process will not resume at event on s2.
 wait on s1, s2; -- resumes at event on signal s1 or s2.
 wait on s1 for 10 ns; -- resumes at event on s1 or after 10 ns.
 wait on x; -- resumes when any element of array x has an event.
-- wait on x(1 to v); -- Illegal, nonstatic name, since v is a variable.
end process;
end;
entity Wait_2 is port (Clk, s1, s2:in BIT); end;
architecture Behave of Wait_2 is
 begin process variable v : BIT; begin
 wait on Clk; -- resumes when Clk has an event: rising or falling.
 wait until Clk = '1'; -- resumes on rising edge.
 wait on Clk until Clk = '1'; -- equivalent to the last statement.
 wait on Clk until v = '1';
 -- The above is legal, but v is a variable so
 -- Clk is in sensitivity list, v is not in the sensitivity set.
 -- Sensitivity set is Clk and process will not resume at event on v.
 wait on Clk until s1 = '1';
 -- The above is legal, but s1 is a signal so
 -- Clk is in sensitivity list, s1 is not in the sensitivity set.
 -- Sensitivity set is Clk, process will not resume at event on s1.
 end process;
end;

You may only use interface signals that may be read (port modes in , inout , and buffer --see Section 10.7) in the sensitivity list of a wait statement.

10.10.2 Assertion and Report Statements

You can use an assertion statement to conditionally issue warnings. The report statement (VHDL-93 only) prints an expression and is useful for debugging.

assertion_statement ::= [label:] assert
boolean_expression [report expression] [severity expression] ;
report_statement
::= [label:] report expression [severity expression] ;

Here is an example of an assertion statement:

entity Assert_1 is port (I:INTEGER:=0); end;
architecture Behave of Assert_1 is
 begin process begin
 assert (I > 0) report "I is negative or zero"; wait;
 end process;
end;

The expression after the keyword report must be of type STRING (the default is "Assertion violation" for the assertion statement), and the expression after the keyword severity must be of type
SEVERITY_LEVEL (default ERROR for the assertion statement, and NOTE for the report statement) defined in the STANDARD package. The assertion statement prints if the assertion condition (after the keyword
assert) is FALSE . Simulation normally halts for severity of ERROR or FAILURE (you can normally control this threshold in the simulator).

10.10.3 Assignment Statements

There are two sorts of VHDL assignment statements: one for signals and one for variables [VHDL 93LRM8.4-8.5]. The difference is in the timing of the update of the LHS. A variable assignment statement is the closest
equivalent to the assignment statement in a computer programming language. Variable assignment statements are always sequential statements and the LHS of a variable assignment statement is always updated immediately.
Here is the definition and an example:

variable_assignment_statement ::=
 [label:] name|aggregate := expression ;
entity Var_Assignment is end;
architecture Behave of Var_Assignment is
 signal s1 : INTEGER := 0;
 begin process variable v1,v2 : INTEGER := 0; begin
 assert (v1/=0) report "v1 is 0" severity note ; -- this prints
 v1 := v1 + 1; -- after this statement v1 is 1
 assert (v1=0) report "v1 isn't 0" severity note ; -- this prints
 v2 := v2 + s1; -- signal and variable types must match
 wait;
 end process;
end;

This is the output from Cadence Leapfrog for the preceding example:

ASSERT/NOTE (time 0 FS) from :$PROCESS_000 (design unit WORK.VAR_ASSIGNMENT:BEHAVE)
v1 is 0
ASSERT/NOTE (time 0 FS) from :$PROCESS_000 (design unit WORK.VAR_ASSIGNMENT:BEHAVE)
v1 isn't 0

A signal assignment statement schedules a future assignment to a signal:

signal_assignment_statement::=
 [label:] target <=
 [transport | [reject time_expression] inertial] waveform ;

The following example shows that, even with no delay, a signal is updated at the end of a simulation cycle after all the other assignments have been scheduled, just before simulation time is advanced:

entity Sig_Assignment_1 is end;
architecture Behave of Sig_Assignment_1 is
 signal s1,s2,s3 : INTEGER := 0;
 begin process variable v1 : INTEGER := 1; begin
 assert (s1 /= 0) report "s1 is 0" severity note ; -- this prints.
 s1 <= s1 + 1; -- after this statement s1 is still 0.
 assert (s1 /= 0) report "s1 still 0" severity note ; -- this prints.
 wait;
 end process;
end;
ASSERT/NOTE (time 0 FS) from :$PROCESS_000 (design unit WORK.SIG_ASSIGNMENT_1:BEHAVE)
s1 is 0
ASSERT/NOTE (time 0 FS) from :$PROCESS_000 (design unit WORK.SIG_ASSIGNMENT_1:BEHAVE)
s1 still 0

Here is an another example to illustrate how time is handled:

entity Sig_Assignment_2 is end;
architecture Behave of Sig_Assignment_2 is
 signal s1, s2, s3 : INTEGER := 0;
 begin process variable v1 : INTEGER := 1; begin
 -- s1, s2, s3 are initially 0; now consider the following:
 s1 <= 1 ; -- schedules updates to s1 at end of 0 ns cycle.
 s2 <= s1; -- s2 is 0, not 1.
 wait for 1 ns;
 s3 <= s1; -- now s3 will be 1 at 1 ns.
 wait;
 end process;
end;

The Compass simulator produces the following trace file for this example:

 Time(fs) + Cycle s1 s2 s3
---------------------- ------------ ------------ ------------
 0+ 0: 0 0 0
 0+ 1: * 1 * 0 0
...
 1000000+ 1: 1 0 * 1

Time is indicated in femtoseconds for each simulation cycle plus the number of delta cycles (we call this delta time, measured in units of delta) needed to calculate all transactions on signals. A transaction consists of a new
value for a signal (which may be the same as the old value) and the time delay for the value to take effect. An asterisk '*' before a value in the preceding trace indicates that a transaction has occurred and the corresponding
signal updated at that time. A transaction that does result in a change in value is an event. In the preceding simulation trace for Sig_Assignment_2:Behave

At 0 ns + 0 delta: all signals are 0 .

At 0 ns + 1 delta: s1 is updated to 1 , s2 is updated to 0 (not to 1).

At 1 ns + 1 delta: s3 is updated to a 1 .

The following example shows the behavior of the different delay models: transport and inertial (the default):

entity Transport_1 is end;
architecture Behave of Transport_1 is
signal s1, SLOW, FAST, WIRE : BIT := '0';
 begin process begin
 s1 <= '1' after 1 ns, '0' after 2 ns, '1' after 3 ns ;
 -- schedules s1 to be '1' at t+1 ns, '0' at t+2 ns,'1' at t+3 ns
 wait; end process;
-- inertial delay: SLOW rejects pulsewidths less than 5ns:
process (s1) begin SLOW <= s1 after 5 ns ; end process;
-- inertial delay: FAST rejects pulsewidths less than 0.5ns:
process (s1) begin FAST <= s1 after 0.5 ns ; end process;
-- transport delay: WIRE passes all pulsewidths...
process (s1) begin WIRE <= transport s1 after 5 ns ; end process;
end;

Here is the trace file from the Compass simulator:

 Time(fs) + Cycle s1 slow fast wire
---------------------- ---- ---- ---- ----
 0+ 0: '0' '0' '0' '0'
 500000+ 0: '0' '0' *'0' '0'
 1000000+ 0: *'1' '0' '0' '0'
 1500000+ 0: '1' '0' *'1' '0'
 2000000+ 0: *'0' '0' '1' '0'
 2500000+ 0: '0' '0' *'0' '0'
 3000000+ 0: *'1' '0' '0' '0'
 3500000+ 0: '1' '0' *'1' '0'
 5000000+ 0: '1' '0' '1' *'0'
 6000000+ 0: '1' '0' '1' *'1'
 7000000+ 0: '1' '0' '1' *'0'
 8000000+ 0: '1' *'1' '1' *'1'

Inertial delay mimics the behavior of real logic gates, whereas transport delay more closely models the behavior of wires. In VHDL-93 you can also add a separate pulse rejection limit for the inertial delay model as in the
following example:

process (s1) begin RJCT <= reject 2 ns s1 after 5 ns ; end process;

10.10.4 Procedure Call

A procedure call in VHDL corresponds to calling a subroutine in a conventional programming language [VHDL LRM8.6]. The parameters in a procedure call statement are the actual procedure parameters (or actuals); the
parameters in the procedure definition are the formal procedure parameters (or formals). The two are linked using an association list, which may use either positional or named association (association works just as it does for

ports--see Section 10.7.1):

procedure_call_statement ::=
 [label:] procedure_name [(parameter_association_list)];

Here is an example:

package And_Pkg is
 procedure V_And(a, b : BIT; signal c : out BIT);
 function V_And(a, b : BIT) return BIT;
end;
package body And_Pkg is
 procedure V_And(a, b : BIT; signal c: out BIT) is
 begin c <= a and b; end;
 function V_And(a, b: BIT) return BIT is
 begin return a and b; end;
end And_Pkg;
use work.And_Pkg.all; entity Proc_Call_1 is end;
architecture Behave of Proc_Call_1 is signal A, B, Y: BIT := '0';
 begin process begin V_And (A, B, Y); wait; end process;
end;

Table 10.13 on page 416 explains the rules for formal procedure parameters. There is one other way to call procedures, which we shall cover in Section 10.13.3.

10.10.5 If Statement

An if statement evaluates one or more Boolean expressions and conditionally executes a corresponding sequence of statements [VHDL LRM8.7].

if_statement ::=
 [if_label:] if boolean_expression then {sequential_statement}
 {elsif boolean_expression then {sequential_statement}}
 [else {sequential_statement}]
 end if [if_label];

The simplest form of an if statement is thus:

if boolean_expression then {sequential_statement} end if;

Here are some examples of the if statement:

entity If_Then_Else_1 is end;
architecture Behave of If_Then_Else_1 is signal a, b, c: BIT :='1';
 begin process begin
 if c = '1' then c <= a ; else c <= b; end if; wait;
 end process;
end;
entity If_Then_1 is end;
architecture Behave of If_Then_1 is signal A, B, Y : BIT :='1';
 begin process begin
 if A = B then Y <= A; end if; wait;
 end process;
end;

10.10.6 Case Statement

A case statement [VHDL LRM8.8] is a multiway decision statement that selects a sequence of statements by matching an expression with a list of (locally static [VHDL LRM7.4.1]) choices.

case_statement ::=
[case_label:] case expression is
 when choice {| choice} => {sequential_statement}
 {when choice {| choice} => {sequential_statement}}
end case [case_label];

Case statements are useful to model state machines. Here is an example of a Mealy state machine with an asynchronous reset:

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity sm_mealy is
 port (reset, clock, i1, i2 : STD_LOGIC; o1, o2 : out STD_LOGIC);
end sm_mealy;
architecture Behave of sm_mealy is
type STATES is (s0, s1, s2, s3); signal current, new : STATES;
begin
synchronous : process (clock, reset) begin
 if To_X01(reset) = '0' then current <= s0;
 elsif rising_edge(clock) then current <= new; end if;
end process;
combinational : process (current, i1, i2) begin
case current is
 when s0 =>
 if To_X01(i1) = '1' then o2 <='0'; o1 <='0'; new <= s2;
 else o2 <= '1'; o1 <= '1'; new <= s1; end if;
 when s1 =>
 if To_X01(i2) = '1' then o2 <='1'; o1 <='0'; new <= s1;
 else o2 <='0'; o1 <='1'; new <= s3; end if;
 when s2 =>
 if To_X01(i2) = '1' then o2 <='0'; o1 <='1'; new <= s2;
 else o2 <= '1'; o1 <= '0'; new <= s0; end if;
 when s3 => o2 <= '0'; o1 <= '0'; new <= s0;
 when others => o2 <= '0'; o1 <= '0'; new <= s0;
end case;
end process;
end Behave;

Each possible value of the case expression must be present once, and once only, in the list of choices (or arms) of the case statement (the list must be exhaustive). You can use '|' (that means 'or') or 'to' to denote a range in
the expression for choice . You may also use the keyword others as the last, default choice (even if the list is already exhaustive, as in the preceding example).

10.10.7 Other Sequential Control Statements

A loop statement repeats execution of a series of sequential statements [VHDL LRM8.9]:

loop_statement ::=
[loop_label:]
[while boolean_expression|for identifier in discrete_range]
loop
 {sequential_statement}
end loop [loop_label];

If the loop variable (after the keyword for) is used, it is only visible inside the loop. A while loop evaluates the Boolean expression before each execution of the sequence of statements; if the expression is TRUE , the
statements are executed. In a for loop the sequence of statements is executed once for each value of the discrete range.

package And_Pkg is function V_And(a, b : BIT) return BIT; end;
package body And_Pkg is function V_And(a, b : BIT) return BIT is
 begin return a and b; end; end And_Pkg;
entity Loop_1 is port (x, y : in BIT := '1'; s : out BIT := '0'); end;
use work.And_Pkg.all;
architecture Behave of Loop_1 is
 begin loop
 s <= V_And(x, y); wait on x, y;
 end loop;
end;

The next statement [VHDL LRM8.10] forces completion of the current iteration of a loop (the containing loop unless another loop label is specified). Completion is forced if the condition following the keyword then is TRUE
(or if there is no condition).

next_statement ::=
[label:] next [loop_label] [when boolean_expression];

An exit statement [VHDL LRM8.11] forces an exit from a loop.

exit_statement ::=
 [label:] exit [loop_label] [when condition] ;

As an example:

loop wait on Clk; exit when Clk = '0'; end loop;
-- equivalent to: wait until Clk = '0';

The return statement [VHDL LRM8.12] completes execution of a procedure or function.

return_statement ::= [label:] return [expression];

A null statement [VHDL LRM8.13] does nothing (but is useful in a case statement where all choices must be covered, but for some of the choices you do not want to do anything).

null_statement ::= [label:] null;

10.11 Operators
Table 10.16 shows the predefined VHDL operators, listed by their (increasing) order of precedence
[VHDL 93LRM7.2]. The shift operators and the xnor operator were added in VHDL-93.

TABLE 10.16 VHDL predefined operators (listed by increasing order of precedence). 1

logical_operator 2 ::= and | or | nand | nor | xor | xnor

relational_operator ::= = | /= | < | <= | > | >=

shift_operator 2 ::= sll | srl | sla | sra | rol | ror

adding_operator ::= + | - | &

sign ::= + | -

multiplying_operator ::= * | / | mod | rem

miscellaneous_operator ::= ** | abs | not

 The binary logical operators (and , or , nand , nor , xor , xnor) and the unary not logical operator
are predefined for types BIT or BOOLEAN and one-dimensional arrays whose element type is BIT or
BOOLEAN . The operands must be of the same base type for the binary logical operators and the same
length if they are arrays. Both operands of relational operators must be of the same type and the result
type is BOOLEAN . The equality operator and inequality operator ('=' and '/=') are defined for all
types (other than file types). The remaining relational operators, ordering operators, are predefined for any
scalar type, and for any one-dimensional array whose elements are of a discrete type (enumeration or
integer type).

The left operand of the shift operators (VHDL-93 only) is a one-dimensional array with element type of
BIT or BOOLEAN ; the right operand must be INTEGER .

The adding operators ('+' and '-') are predefined for any numeric type. You cannot use the adding
operators on BIT or BIT_VECTOR without overloading. The concatenation operator '&' is predefined
for any one-dimensional array type. The signs ('+' and '-') are defined for any numeric type.

The multiplying operators are: '*' , '/' , mod , and rem . The operators '*' and '/' are predefined
for any integer or floating-point type, and the operands and the result are of the same type. The operators
mod and rem are predefined for any integer type, and the operands and the result are of the same type. In
addition, you can multiply an INTEGER or REAL by any physical type and the result is the physical type.
You can also divide a physical type by REAL or INTEGER and the result is the physical type. If you
divide a physical type by the same physical type, the result is an INTEGER (actually type
UNIVERSAL_INTEGER , which is a predefined anonymous type [VHDL LRM7.5]). Once again--you
cannot use the multiplying operators on BIT or BIT_VECTOR types without overloading the operators.

The exponentiating operator, '**' , is predefined for integer and floating-point types. The right operand,
the exponent, is type INTEGER . You can only use a negative exponent with a left operand that is a
floating-point type, and the result is the same type as the left operand. The unary operator abs (absolute
value) is predefined for any numeric type and the result is the same type. The operators abs , '**' , and
not are grouped as miscellaneous operators.

Here are some examples of the use of VHDL operators:

entity Operator_1 is end; architecture Behave of Operator_1 is
begin process
variable b : BOOLEAN; variable bt : BIT := '1'; variable i : INTEGER;
variable pi : REAL := 3.14; variable epsilon : REAL := 0.01;
variable bv4 : BIT_VECTOR (3 downto 0) := "0001";
variable bv8 : BIT_VECTOR (0 to 7);
begin

b := "0000" < bv4; -- b is TRUE, "0000" treated as BIT_VECTOR.
b := 'f' > 'g'; -- b is FALSE, 'dictionary' comparison.
bt := '0' and bt; -- bt is '0', analyzer knows '0' is BIT.
bv4 := not bv4; -- bv4 is now "1110".
i := 1 + 2; -- Addition, must be compatible types.
i := 2 ** 3; -- Exponentiation, exponent must be integer.
i := 7/3; -- Division, L/R rounded towards zero, i=2.
i := 12 rem 7; -- Remainder, i=5. In general:
 -- L rem R = L-((L/R)*R).
i := 12 mod 7; -- modulus, i=5. In general:
 -- L mod R = L-(R*N) for an integer N.
-- shift := sll | srl | sla | sra | rol | ror (VHDL-93 only)
bv4 := "1001" srl 2; -- Shift right logical, now bv4="0100".
-- Logical shift fills with T'LEFT.
bv4 := "1001" sra 2; -- Shift right arithmetic, now bv4="0111".
-- Arithmetic shift fills with element at end being vacated.
bv4 := "1001" ror 2; -- Rotate right, now bv4="0110".
-- Rotate wraps around.
-- Integer argument to any shift operator may be negative or zero.
if (pi*2.718)/2.718 = 3.14 then wait; end if; -- This is unreliable.
if (abs(((pi*2.718)/2.718)-3.14)<epsilon) then wait; end if; -- Better.
bv8 := bv8(1 to 7) & bv8(0); -- Concatenation, a left rotation.
wait; end process;
end;

1. The not operator is a logical operator but has the precedence of a miscellaneous operator. 2. Underline
means "new to VHDL-93."

10.12 Arithmetic
The following example illustrates type checking and type conversion in VHDL arithmetic operations [VHDL 93LRM7.3.4-7.3.5]:

entity Arithmetic_1 is end; architecture Behave of Arithmetic_1 is
 begin process
 variable i : INTEGER := 1; variable r : REAL := 3.33;
 variable b : BIT := '1';
 variable bv4 : BIT_VECTOR (3 downto 0) := "0001";
 variable bv8 : BIT_VECTOR (7 downto 0) := B"1000_0000";
 begin
-- i := r; -- you can't assign REAL to INTEGER.
-- bv4 := bv4 + 2; -- you can't add BIT_VECTOR and INTEGER.
-- bv4 := '1'; -- you can't assign BIT to BIT_VECTOR.
-- bv8 := bv4; -- an error, the arrays are different sizes.
r := REAL(i); -- OK, uses a type conversion.
i := INTEGER(r); -- OK (0.5 rounds up or down).
bv4 := "001" & '1'; -- OK, you can mix an array and a scalar.
bv8 := "0001" & bv4; -- OK, if arguments are the correct lengths.
wait; end process; end;

The next example shows arithmetic operations between types and subtypes, and also illustrates range checking during analysis and simulation:

entity Arithmetic_2 is end; architecture Behave of Arithmetic_2 is
type TC is range 0 to
100;
-- Type INTEGER.
type TF is range 32 to
212;
-- Type INTEGER.
subtype STC is INTEGER range 0 to
100;
-- Subtype of type INTEGER.
subtype STF is INTEGER range 32 to
212;
-- Base type is INTEGER.
begin process
variable t1 : TC := 25; variable t2 : TF := 32;
variable st1 : STC := 25; variable st2 : STF := 32;
begin
-- t1 := t2; -- Illegal, different types.
-- t1 := st1; -- Illegal, different types and
subtypes.
 st2 := st1; -- OK to use same base types.
 st2 := st1 + 1; -- OK to use subtype and base type.
-- st2 := 213; -- Error, outside range at analysis
time.
-- st2 := 212 + 1; -- Error, outside range at analysis
time.
 st1 := st1 + 100; -- Error, outside range at
initialization.
wait; end process; end;

The MTI simulator, for example, gives the following informative error message during simulation of the preceding model:

** Fatal: Value 25 is out of range 32 to 212
Time: 0 ns Iteration: 0 Instance:/
Stopped at Arithmetic_2.vhd line 12
Fatal error at Arithmetic_2.vhd line 12

The assignment st2 := st1 causes this error (since st1 is initialized to 25).

Operations between array types and subtypes are a little more complicated as the following example illustrates:

entity Arithmetic_3 is end; architecture Behave of Arithmetic_3 is
type TYPE_1 is array (INTEGER range 3 downto 0) of BIT;
type TYPE_2 is array (INTEGER range 3 downto 0) of BIT;
subtype SUBTYPE_1 is BIT_VECTOR (3 downto 0);
subtype SUBTYPE_2 is BIT_VECTOR (3 downto 0);
begin process
variable bv4 : BIT_VECTOR (3 downto 0) := "0001";
variable st1 : SUBTYPE_1 := "0001"; variable t1 : TYPE_1 := "0001";
variable st2 : SUBTYPE_2 := "0001"; variable t2 : TYPE_2 := "0001";
begin
 bv4 := st1; -- OK, compatible type and subtype.
-- bv4 := t1; -- Illegal, different types.
 bv4 := BIT_VECTOR(t1); -- OK, type conversion.
 st1 := bv4; -- OK, compatible subtype and base type.
-- st1 := t1; -- Illegal, different types.
 st1 := SUBTYPE_1(t1); -- OK, type conversion.
-- t1 := st1; -- Illegal, different types.
-- t1 := bv4; -- Illegal, different types.
 t1 := TYPE_1(bv4); -- OK, type conversion.
-- t1 := t2; -- Illegal, different types.
 t1 := TYPE_1(t2); -- OK, type conversion.
 st1 := st2; -- OK, compatible subtypes.
wait; end process; end;

The preceding example uses BIT and BIT_VECTOR types, but exactly the same considerations apply to STD_LOGIC and STD_LOGIC_VECTOR types or other arrays. Notice the use of type
conversion, written as type_mark'(expression), to convert between closely related types. Two types are closely related if they are abstract numeric types (integer or floating-point) or arrays with the
same dimension, each index type is the same (or are themselves closely related), and each element has the same type [VHDL 93LRM7.3.5].

10.12.1 IEEE Synthesis Packages

The IEEE 1076.3 standard synthesis packages allow you to perform arithmetic on arrays of the type BIT and STD_LOGIC . 1 The NUMERIC_BIT package defines all of the operators in
Table 10.16 (except for the exponentiating operator '**') for arrays of type BIT . Here is part of the package header, showing the declaration of the two types UNSIGNED and SIGNED , and an
example of one of the function declarations that overloads the addition operator '+' for UNSIGNED arguments:

package Part_NUMERIC_BIT is
type UNSIGNED is array (NATURAL range <>) of BIT;
type SIGNED is array (NATURAL range <>) of BIT;
function "+" (L, R : UNSIGNED) return UNSIGNED;
-- other function definitions that overload +, -, = , >, and so on.
end Part_NUMERIC_BIT;

The package bodies included in the 1076.3 standard define the functionality of the packages. Companies may implement the functions in any way they wish--as long as the results are the same as

those defined by the standard. Here is an example of the parts of the NUMERIC_BIT package body that overload the addition operator '+' for two arguments of type UNSIGNED (even with my
added comments the code is rather dense and terse, but remember this is code that we normally never see or need to understand):

package body Part_NUMERIC_BIT is
constant NAU : UNSIGNED(0 downto 1) := (others =>'0'); -- Null array.
constant NAS : SIGNED(0 downto 1):=(others => '0'); -- Null array.
constant NO_WARNING : BOOLEAN := FALSE; -- Default to emit warnings.
function MAX (LEFT, RIGHT : INTEGER) return INTEGER is
begin -- Internal function used to find longest of two inputs.
if LEFT > RIGHT then return LEFT; else return RIGHT; end if; end MAX;
function ADD_UNSIGNED (L, R : UNSIGNED; C: BIT) return UNSIGNED is
constant L_LEFT : INTEGER := L'LENGTH-1; -- L, R must be same length.
alias XL : UNSIGNED(L_LEFT downto 0) is L; -- Descending alias,
alias XR : UNSIGNED(L_LEFT downto 0) is R; -- aligns left ends.
variable RESULT : UNSIGNED(L_LEFT downto 0); variable CBIT : BIT := C;
begin for I in 0 to L_LEFT loop -- Descending alias allows loop.
RESULT(I) := CBIT xor XL(I) xor XR(I); -- CBIT = carry, initially = C.
CBIT := (CBIT and XL(I)) or (CBIT and XR(I)) or (XL(I) and XR(I));
end loop; return RESULT; end ADD_UNSIGNED;
function RESIZE (ARG : UNSIGNED; NEW_SIZE : NATURAL) return UNSIGNED is
constant ARG_LEFT : INTEGER := ARG'LENGTH-1;
alias XARG : UNSIGNED(ARG_LEFT downto 0) is ARG; -- Descending range.
variable RESULT : UNSIGNED(NEW_SIZE-1 downto 0) := (others => '0');
begin -- resize the input ARG to length NEW_SIZE
 if (NEW_SIZE < 1) then return NAU; end if; -- Return null array.
 if XARG'LENGTH = 0 then return RESULT; end if; -- Null to empty.
 if (RESULT'LENGTH < ARG'LENGTH) then -- Check lengths.
 RESULT(RESULT'LEFT downto 0) := XARG(RESULT'LEFT downto 0);
 else -- Need to pad the result with some '0's.
 RESULT(RESULT'LEFT downto XARG'LEFT + 1) := (others => '0');
 RESULT(XARG'LEFT downto 0) := XARG;
 end if; return RESULT;
end RESIZE;
function "+" (L, R : UNSIGNED) return UNSIGNED is -- Overloaded '+'.
constant SIZE : NATURAL := MAX(L'LENGTH, R'LENGTH);
begin -- If length of L or R < 1 return a null array.
if ((L'LENGTH < 1) or (R'LENGTH < 1)) then return NAU; end if;
return ADD_UNSIGNED(RESIZE(L, SIZE), RESIZE(R, SIZE), '0'); end "+";
end Part_NUMERIC_BIT;

The following conversion functions are also part of the NUMERIC_BIT package:

function TO_INTEGER (ARG : UNSIGNED) return NATURAL;
function TO_INTEGER (ARG : SIGNED) return INTEGER;
function TO_UNSIGNED (ARG, SIZE : NATURAL) return UNSIGNED;
function TO_SIGNED (ARG : INTEGER; SIZE : NATURAL) return SIGNED;
function RESIZE (ARG : SIGNED; NEW_SIZE : NATURAL) return SIGNED;
function RESIZE (ARG : UNSIGNED; NEW_SIZE : NATURAL) return UNSIGNED;
-- set XMAP to convert unknown values, default is 'X'->'0'
function TO_01(S : UNSIGNED; XMAP : STD_LOGIC := '0') return UNSIGNED;
function TO_01(S : SIGNED; XMAP : STD_LOGIC := '0') return SIGNED;

The NUMERIC_STD package is almost identical to the NUMERIC_BIT package except that the UNSIGNED and SIGNED types are declared in terms of the STD_LOGIC type from the
Std_Logic_1164 package as follows:

library IEEE; use IEEE.STD_LOGIC_1164.all;
package Part_NUMERIC_STD is
type UNSIGNED is array (NATURAL range <>) of STD_LOGIC;
type SIGNED is array (NATURAL range <>) of STD_LOGIC;
end Part_NUMERIC_STD;

The NUMERIC_STD package body is similar to NUMERIC_BIT with the addition of a comparison function called STD_MATCH , illustrated by the following:

-- function STD_MATCH (L, R: T) return BOOLEAN;
-- T = STD_ULOGIC UNSIGNED SIGNED STD_LOGIC_VECTOR STD_ULOGIC_VECTOR

The STD_MATCH function uses the following table to compare logic values:

type BOOLEAN_TABLE is array(STD_ULOGIC, STD_ULOGIC) of BOOLEAN;
constant MATCH_TABLE : BOOLEAN_TABLE := (

-- U X 0 1 Z W L H -

(FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE, TRUE), -- | U |
(FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE, TRUE), -- | X |
(FALSE,FALSE, TRUE,FALSE,FALSE,FALSE, TRUE,FALSE, TRUE), -- | 0 |
(FALSE,FALSE,FALSE, TRUE,FALSE,FALSE,FALSE, TRUE, TRUE), -- | 1 |
(FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE, TRUE), -- | Z |
(FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE, TRUE), -- | W |
(FALSE,FALSE, TRUE,FALSE,FALSE,FALSE, TRUE,FALSE, TRUE), -- | L |
(FALSE,FALSE,FALSE, TRUE,FALSE,FALSE,FALSE, TRUE, TRUE), -- | H |
(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE));-- | - |

Thus, for example (notice we need type conversions):

IM_TRUE = STD_MATCH(STD_LOGIC_VECTOR ("10HLXWZ-"),
 STD_LOGIC_VECTOR ("HL10----")) -- is TRUE

The following code is similar to the first simple example of Section 10.1, but illustrates the use of the Std_Logic_1164 and NUMERIC_STD packages:

entity Counter_1 is end;
 library STD; use STD.TEXTIO.all;
 library IEEE; use IEEE.STD_LOGIC_1164.all;
use work.NUMERIC_STD.all;
architecture Behave_2 of Counter_1 is
 signal Clock : STD_LOGIC := '0';
 signal Count : UNSIGNED (2 downto 0) := "000";
 begin
 process begin
 wait for 10 ns; Clock <= not Clock;
 if (now > 340 ns) then wait;
 end if;
 end process;
 process begin
 wait until (Clock = '0');
 if (Count = 7)
 then Count <= "000";
 else Count <= Count + 1;
 end if;
 end process;
 process (Count) variable L: LINE; begin write(L, now);

 write(L, STRING'(" Count=")); write(L, TO_INTEGER(Count));
 writeline(output, L);
 end process;
end;

The preceding code looks similar to the code in Section 10.1 (and the output is identical), but there is more going on here:

Line 3 is a library clause and a use clause for the std_logic_1164 package, so you can use the STD_LOGIC type and the NUMERIC_BIT package.●

Line 4 is a use clause for NUMERIC_BIT package that was previously analyzed into the library work . If the package is instead analyzed into the library IEEE , you would use the name
IEEE.NUMERIC_BIT.all here. The NUMERIC_BIT package allows you to use the type UNSIGNED .

●

Line 6 declares Clock to be type STD_LOGIC and initializes it to '0' , instead of the default initial value STD_LOGIC'LEFT (which is 'U').●

Line 7 declares Count to be a 3-bit array of type UNSIGNED from NUMERIC_BIT and initializes it using a bit-string literal.●

Line 10 uses the overloaded 'not' operator from std_logic_1164 .●

Line 15 uses the overloaded '=' operator from std_logic_1164 .●

Line 16 uses the overloaded '=' operator from NUMERIC_BIT .●

Line 17 requires a bit-string literal, you cannot use Count <= 0 here.●

Line 18 uses the overloaded '+' operator from NUMERIC_BIT .●

Line 22 converts Count , type UNSIGNED , to type INTEGER .●

1. IEEE Std 1076.3-1997 was approved by the IEEE Standards Board on 20 March 1997. The synthesis package code on the following pages is reprinted with permission from IEEE Std
1076.3-1997, Copyright © 1997 IEEE. All rights reserved.

10.13 Concurrent Statements
A concurrent statement [VHDL LRM9] is one of the following statements:

concurrent_statement ::=
 block_statement
 | process_statement
 | [label :] [postponed] procedure_call ;
 | [label :] [postponed] assertion ;
 | [label :] [postponed] conditional_signal_assignment
 | [label :] [postponed] selected_signal_assignment
 | component_instantiation_statement
 | generate_statement

The following sections describe each of these statements in turn.

10.13.1 Block Statement

A block statement has the following format [VHDL LRM9.1]:

block_statement ::=
 block_label: block [(guard_expression)] [is]
 [generic (generic_interface_list);
 [generic map (generic_association_list);]]
 [port (port_interface_list);
 [port map (port_association_list);]]
 {block_declarative_item}
 begin
 {concurrent_statement}
 end block [block_label] ;

Blocks may have their own ports and generics and may be used to split an architecture into several hierarchical parts
(blocks can also be nested). As a very general rule, for the same reason that it is better to split a computer program
into separate small modules, it is usually better to split a large architecture into smaller separate entity-architecture
pairs rather than several nested blocks.

A block does have a unique feature: It is possible to specify a guard expression for a block. This creates a special
signal, GUARD , that you can use within the block to control execution [VHDL LRM9.5]. It also allows you to
model three-state buses by declaring guarded signals (signal kinds register and bus).

When you make an assignment statement to a signal, you define a driver for that signal. If you make assignments to
guarded signals in a block, the driver for that signal is turned off, or disconnected, when the GUARD signal is FALSE
. The use of guarded signals and guarded blocks can become quite complicated, and not all synthesis tools support
these VHDL features.

The following example shows two drivers, A and B , on a three-state bus TSTATE , enabled by signals OEA and OEB
. The drivers are enabled by declaring a guard expression after the block declaration and using the keyword
guarded in the assignment statements. A disconnect statement [VHDL LRM5.3] models the driver delay from
driving the bus to the high-impedance state (time to "float").

library ieee; use ieee.std_logic_1164.all;
entity bus_drivers is end;
architecture Structure_1 of bus_drivers is
signal TSTATE: STD_LOGIC bus; signal A, B, OEA, OEB : STD_LOGIC:= '0';
begin
process begin OEA <= '1' after 100 ns, '0' after 200 ns;
OEB <= '1' after 300 ns; wait; end process;
B1 : block (OEA = '1')
disconnect all : STD_LOGIC after 5 ns; -- Only needed for float time.
begin TSTATE <= guarded not A after 3 ns; end block;
B2 : block (OEB = '1')
disconnect all : STD_LOGIC after 5 ns; -- Float time = 5 ns.
begin TSTATE <= guarded not B after 3 ns; end block;
end;

 1 2 3 4 5 6 7
 Time(fs) + Cycle tstate a b oea oeb b1.GUARD b2.GUARD
---------------------- ------ ---- ---- ---- ---- -------- --------
 0+ 0: 'U' '0' '0' '0' '0' FALSE FALSE
 0+ 1: * 'Z' '0' '0' '0' '0' FALSE FALSE
 100000000+ 0: 'Z' '0' '0' *'1' '0' * TRUE FALSE
 103000000+ 0: * '1' '0' '0' '1' '0' TRUE FALSE
 200000000+ 0: '1' '0' '0' *'0' '0' * FALSE FALSE
 200000000+ 1: * 'Z' '0' '0' '0' '0' FALSE FALSE
 300000000+ 0: 'Z' '0' '0' '0' *'1' FALSE * TRUE
 303000000+ 0: * '1' '0' '0' '0' '1' FALSE TRUE

Notice the creation of implicit guard signals b1.GUARD and b2.GUARD for each guarded block. There is another,
equivalent, method that uses the high-impedance value explicitly as in the following example:

architecture Structure_2 of bus_drivers is
signal TSTATE : STD_LOGIC; signal A, B, OEA, OEB : STD_LOGIC := '0';
begin
process begin
OEA <= '1' after 100 ns, '0' after 200 ns; OEB <= '1' after 300 ns; wait; end
process;
process(OEA, OEB, A, B) begin
 if (OEA = '1') then TSTATE <= not A after 3 ns;
 elsif (OEB = '1') then TSTATE <= not B after 3 ns;
 else TSTATE <= 'Z' after 5 ns;
 end if;
end process;
end;

This last method is more widely used than the first, and what is more important, more widely accepted by synthesis
tools. Most synthesis tools are capable of recognizing the value 'Z' on the RHS of an assignment statement as a
cue to synthesize a three-state driver. It is up to you to make sure that multiple drivers are never enabled
simultaneously to cause contention.

10.13.2 Process Statement

A process statement has the following format [VHDL LRM9.2]:

process_statement ::=
[process_label:]
[postponed] process [(signal_name {, signal_name})]
[is] {subprogram_declaration | subprogram_body
 | type_declaration | subtype_declaration
 | constant_declaration | variable_declaration
 | file_declaration | alias_declaration
 | attribute_declaration | attribute_specification
 | use_clause
 | group_declaration | group_template_declaration}
begin
 {sequential_statement}
end [postponed] process [process_label];

The following process models a 2:1 MUX (combinational logic):

entity Mux_1 is port (i0, i1, sel : in BIT := '0'; y : out BIT); end;
architecture Behave of Mux_1 is
 begin process (i0, i1, sel) begin -- i0, i1, sel = sensitivity set
 case sel is when '0' => y <= i0; when '1' => y <= i1; end case;
end process; end;

This process executes whenever an event occurs on any of the signals in the process sensitivity set (i0, i1, sel). The
execution of a process occurs during a simulation cycle--a delta cycle. Assignment statements to signals may trigger
further delta cycles. Time advances when all transactions for the current time step are complete and all signals
updated.

The following code models a two-input AND gate (combinational logic):

entity And_1 is port (a, b : in BIT := '0'; y : out BIT); end;
architecture Behave of And_1 is
begin process (a, b) begin y <= a and b; end process; end;

The next example models a D flip-flop (sequential logic). The process statement is executed whenever there is
an event on clk . The if statement updates the output q with the input d on the rising edge of the signal clk . If
the if statement condition is false (as it is on the falling edge of clk), then the assignment statement q <= d will
not be executed, and q will keep its previous value. The process thus requires the value of q to be stored between
successive process executions, and this implies sequential logic.

entity FF_1 is port (clk, d: in BIT := '0'; q : out BIT); end;
architecture Behave of FF_1 is
begin process (clk) begin
 if clk'EVENT and clk = '1' then q <= d; end if;
end process; end;

The behavior of the next example is identical to the previous model. Notice that the wait statement is at the end of
the equivalent process with the signals in the sensitivity set (in this case just one signal, clk) included in the
sensitivity list (that follows the keyword on).

entity FF_2 is port (clk, d: in BIT := '0'; q : out BIT); end;
architecture Behave of FF_2 is
begin process begin -- The equivalent process has a wait at the end:
 if clk'event and clk = '1' then q <= d; end if; wait on clk;
end process; end;

If we use a wait statement in a process statement, then we may not use a process sensitivity set (the reverse is
true: If we do not have a sensitivity set for a process, we must include a wait statement or the process will execute
endlessly):

entity FF_3 is port (clk, d: in BIT := '0'; q : out BIT); end;
architecture Behave of FF_3 is
begin process begin -- No sensitivity set with a wait statement.
 wait until clk = '1'; q <= d;
end process; end;

If you include ports (interface signals) in the sensitivity set of a process statement, they must be ports that can be
read (they must be of mode in , inout , or buffer , see Section 10.7).

10.13.3 Concurrent Procedure Call

A concurrent procedure call appears outside a process statement [VHDL LRM9.3]. The concurrent procedure call
is a shorthand way of writing an equivalent process statement that contains a procedure call (Section 10.10.4):

package And_Pkg is procedure V_And(a,b:BIT; signal c:out BIT); end;
package body And_Pkg is procedure V_And(a,b:BIT; signal c:out BIT) is
 begin c <= a and b; end; end And_Pkg;
use work.And_Pkg.all; entity Proc_Call_2 is end;
architecture Behave of Proc_Call_2 is signal A, B, Y : BIT := '0';
 begin V_And (A, B, Y); -- Concurrent procedure call.
process begin wait; end process; -- Extra process to stop.
end;

10.13.4 Concurrent Signal Assignment

There are two forms of concurrent signal assignment statement. A selected signal assignment statement is equivalent
to a case statement inside a process statement [VHDL LRM9.5.2]:

selected_signal_assignment ::=
 with expression select
 name|aggregate <= [guarded]
 [transport|[reject time_expression] inertial]
 waveform when choice {| choice}
 {, waveform when choice {| choice} } ;

The following design unit, Selected_1, uses a selected signal assignment. The equivalent unit, Selected_2, uses a
case statement inside a process statement.

entity Selected_1 is end; architecture Behave of Selected_1 is

signal y,i1,i2 : INTEGER; signal sel : INTEGER range 0 to 1;
begin with sel select y <= i1 when 0, i2 when 1; end;
entity Selected_2 is end; architecture Behave of Selected_2 is
signal i1,i2,y : INTEGER; signal sel : INTEGER range 0 to 1;
begin process begin
 case sel is when 0 => y <= i1; when 1 => y <= i2; end case;
 wait on i1, i2;
end process; end;

The other form of concurrent signal assignment is a conditional signal assignment statement that, in its most general
form, is equivalent to an if statement inside a process statement [VHDL LRM9.5.1]:

conditional_signal_assignment ::=
 name|aggregate <= [guarded]
 [transport|[reject time_expression] inertial]
 {waveform when boolean_expression else}
 waveform [when boolean_expression];

Notice that in VHDL-93 the else clause is optional. Here is an example of a conditional signal assignment,
followed by a model using the equivalent process with an if statement:

entity Conditional_1 is end; architecture Behave of Conditional_1 is
signal y,i,j : INTEGER; signal clk : BIT;
begin y <= i when clk = '1' else j; -- conditional signal assignment
end;
entity Conditional_2 is end; architecture Behave of Conditional_2 is
signal y,i : INTEGER; signal clk : BIT;
begin process begin
 if clk = '1' then y <= i; else y <= y ; end if; wait on clk;
end process; end;

A concurrent signal assignment statement can look just like a sequential signal assignment statement, as in the
following example:

entity Assign_1 is end; architecture Behave of Assign_1 is
signal Target, Source : INTEGER;
 begin Target <= Source after 1 ns; -- looks like signal assignment
end;

However, outside a process statement, this statement is a concurrent signal assignment and has its own equivalent
process statement. Here is the equivalent process for the example:

entity Assign_2 is end; architecture Behave of Assign_2 is
signal Target, Source : INTEGER;
begin process begin
 Target <= Source after 1 ns; wait on Source;
end process; end;

Every process is executed once during initialization. In the previous example, an initial value will be scheduled to be
assigned to Target even though there is no event on Source . If, for some reason, you do not want this to
happen, you need to rewrite the concurrent assignment statement as a process statement with a wait statement
before the assignment statement:

entity Assign_3 is end; architecture Behave of Assign_3 is
signal Target, Source : INTEGER; begin process begin
 wait on Source; Target <= Source after 1 ns;
end process; end;

10.13.5 Concurrent Assertion Statement

A concurrent assertion statement is equivalent to a passive process statement (without a sensitivity list) that
contains an assertion statement followed by a wait statement [VHDL LRM9.4].

concurrent_assertion_statement
::= [label :] [postponed] assertion ;

If the assertion condition contains a signal, then the equivalent process statement will include a final wait
statement with a sensitivity clause. A concurrent assertion statement with a condition that is static expression is
equivalent to a process statement that ends in a wait statement that has no sensitivity clause. The equivalent
process will execute once, at the beginning of simulation, and then wait indefinitely.

10.13.6 Component Instantiation

A component instantiation statement in VHDL is similar to placement of a component in a schematic--an
instantiated component is somewhere between a copy of the component and a reference to the component. Here is
the definition [VHDL LRM9.6]:

component_instantiation_statement ::=
instantiation_label:
 [component] component_name
|entity entity_name [(architecture_identifier)]
|configuration configuration_name
 [generic map (generic_association_list)]
 [port map (port_association_list)] ;

We examined component instantiation using a component_name in Section 10.5. If we instantiate a component in
this way we must declare the component (see BNF [10.9]). To bind a component to an entity-architecture pair we
can use a configuration, as illustrated in Figure 10.1, or we can use the default binding as described in Section 10.7.
In VHDL-93 we have another alternative--we can directly instantiate an entity or configuration. For example:

entity And_2 is port (i1, i2 : in BIT; y : out BIT); end;
architecture Behave of And_2 is begin y <= i1 and i2; end;
entity Xor_2 is port (i1, i2 : in BIT; y : out BIT); end;
architecture Behave of Xor_2 is begin y <= i1 xor i2; end;
entity Half_Adder_2 is port (a,b : BIT := '0'; sum, cry : out BIT); end;
architecture Netlist_2 of Half_Adder_2 is
use work.all; -- need this to see the entities Xor_2 and And_2
begin
 X1 : entity Xor_2(Behave) port map (a, b, sum); -- VHDL-93 only
 A1 : entity And_2(Behave) port map (a, b, cry); -- VHDL-93 only
end;

10.13.7 Generate Statement

A generate statement [VHDL LRM9.7] simplifies repetitive code:

generate_statement ::=
generate_label: for generate_parameter_specification
 |if boolean_expression
generate [{block_declarative_item} begin]
 {concurrent_statement}
end generate [generate_label] ;

Here is an example (notice the labels are required):

entity Full_Adder is port (X, Y, Cin : BIT; Cout, Sum: out BIT); end;
architecture Behave of Full_Adder is begin Sum <= X xor Y xor Cin;
Cout <= (X and Y) or (X and Cin) or (Y and Cin); end;
entity Adder_1 is
 port (A, B : in BIT_VECTOR (7 downto 0) := (others => '0');
 Cin : in BIT := '0'; Sum : out BIT_VECTOR (7 downto 0);
 Cout : out BIT); end;
architecture Structure of Adder_1 is use work.all;
component Full_Adder port (X, Y, Cin: BIT; Cout, Sum: out BIT);
end component;
signal C : BIT_VECTOR(7 downto 0);
begin AllBits : for i in 7 downto 0 generate
 LowBit : if i = 0 generate
 FA : Full_Adder port map (A(0), B(0), Cin, C(0), Sum(0));
 end generate;
 OtherBits : if i /= 0 generate
 FA : Full_Adder port map (A(i), B(i), C(i-1), C(i), Sum(i));
 end generate;
end generate;
Cout <= C(7);
end;

The instance names within a generate loop include the generate parameter. For example for i=6 ,
FA'INSTANCE_NAME is

:adder_1(structure):allbits(6):otherbits:fa:

10.14 Execution
Two successive statements may execute in either a concurrent or sequential fashion depending on where the statements appear.

statement_1; statement_2;

In sequential execution, statement_1 in this sequence is always evaluated before statement 2 . In concurrent execution, statement_1 and
statement_2 are evaluated at the same time (as far as we are concerned--obviously on most computers exactly parallel execution is not possible).
Concurrent execution is the most important difference between VHDL and a computer programming language. Suppose we have two signal assignment
statements inside a process statement. In this case statement_1 and statement_2 are sequential assignment statements:

entity Sequential_1 is end; architecture Behave of Sequential_1 is
signal s1, s2 : INTEGER := 0;
begin
 process begin
 s1 <= 1; -- sequential signal assignment 1
 s2 <= s1 + 1; -- sequential signal assignment 2
 wait on s1, s2 ;
 end process;
end;
 Time(fs) + Cycle s1 s2
---------------------- ------------ ------------
 0+ 0: 0 0
 0+ 1: * 1 * 1
 0+ 2: * 1 * 2
 0+ 3: * 1 * 2

If the two statements are outside a process statement they are concurrent assignment statements, as in the following example:

entity Concurrent_1 is end; architecture Behave of Concurrent_1 is
signal s1, s2 : INTEGER := 0; begin
 L1 : s1 <= 1; -- concurrent signal assignment 1
 L2 : s2 <= s1 + 1; -- concurrent signal assignment 2
end;
 Time(fs) + Cycle s1 s2
---------------------- ------------ ------------
 0+ 0: 0 0
 0+ 1: * 1 * 1
 0+ 2: 1 * 2

The two concurrent signal assignment statements in the previous example are equivalent to the two processes, labeled as P1 and P2 , in the following
model.

entity Concurrent_2 is end; architecture Behave of Concurrent_2 is
signal s1, s2 : INTEGER := 0; begin
 P1 : process begin s1 <= 1; wait on s2 ; end process;
 P2 : process begin s2 <= s1 + 1; wait on s1 ; end process;
end;
 Time(fs) + Cycle s1 s2
---------------------- ------------ ------------
 0+ 0: 0 0
 0+ 1: * 1 * 1
 0+ 2: * 1 * 2
 0+ 3: * 1 2

Notice that the results are the same (though the trace files are slightly different) for the architectures Sequential_1, Concurrent_1, and
Concurrent_2. Updates to signals occur at the end of the simulation cycle, so the values used will always be the old values. So far things seem fairly
simple: We have sequential execution or concurrent execution. However, variables are updated immediately, so the variable values that are used are always
the new values. The examples in Table 10.17 illustrate this very important difference.

TABLE 10.17 Variables and signals in VHDL.

Variables Signals

entity Execute_1 is end;
architecture Behave of Execute_1 is
begin
 process
 variable v1 : INTEGER := 1;
 variable v2 : INTEGER := 2;
 begin
 v1 := v2; -- before: v1 = 1, v2 = 2
 v2 := v1; -- after: v1 = 2, v2 = 2
 wait;
 end process;
end;

entity Execute_2 is end;
architecture Behave of Execute_2 is
signal s1 : INTEGER := 1;
signal s2 : INTEGER := 2;
begin
 process
 begin
 s1 <= s2; -- before: s1 = 1, s2 = 2
 s2 <= s1; -- after: s1 = 2, s2 = 1
 wait;
 end process;
end;

The various concurrent and sequential statements in VHDL are summarized in Table 10.18.

TABLE 10.18 Concurrent and sequential statements in VHDL.

Concurrent [VHDL LRM9] Sequential [VHDL LRM8]

block

process

concurrent_procedure_call

concurrent_assertion

concurrent_signal_assignment

component_instantiation

generate

wait

assertion

signal_assignment

variable_assignment

procedure_call

if

case

loop

next

exit

return

null

10.15 Configurations and Specifications
The difference between, the interaction, and the use of component/configuration declarations and specifications is probably the most
confusing aspect of VHDL. Fortunately this aspect of VHDL is not normally important for ASIC design. The syntax of
component/configuration declarations and specifications is shown in Table 10.19.

TABLE 10.19 VHDL binding.

configuration
declaration 1
[VHDL LRM1.3]

configuration identifier of entity_name is
 {use_clause|attribute_specification|group_declaration}
 block_configuration
end [configuration] [configuration_identifier];

block
configuration
[VHDL LRM1.3.1]

for architecture_name
 |block_statement_label
 |generate_statement_label [(index_specification)]
{use selected_name {, selected_name};}
{block_configuration|component_configuration}
end for ;

configuration
specification 1
[VHDL LRM5.2]

for
 instantiation_label{,instantiation_label}:component_name
 |others:component_name
 |all:component_name
[use
 entity entity_name [(architecture_identifier)]
 |configuration configuration_name
 |open]
[generic map (generic_association_list)]
[port map (port_association_list)];

component
declaration 1
[VHDL LRM4.5]

component identifier [is]
 [generic (local_generic_interface_list);]
 [port (local_port_interface_list);]
end component [component_identifier];

component
configuration 1
[VHDL LRM1.3.2]

for
instantiation_label {, instantiation_label}:component_name
|others:component_name
|all:component_name
[[use
 entity entity_name [(architecture_identifier)]
 |configuration configuration_name
 |open]
 [generic map (generic_association_list)]
 [port map (port_association_list)];]
[block_configuration]
end for;

A configuration declaration defines a configuration--it is a library unit and is one of the basic units of VHDL code.●

A block configuration defines the configuration of a block statement or a design entity. A block configuration appears inside a
configuration declaration, a component configuration, or nested in another block configuration.

●

A configuration specification may appear in the declarative region of a generate statement, block statement, or architecture body.●

A component declaration may appear in the declarative region of a generate statement, block statement, architecture body, or
package.

●

A component configuration defines the configuration of a component and appears in a block configuration.●

Table 10.20 shows a simple example (identical in structure to the example of Section 10.5) that illustrates the use of each of the preceding
constructs.

TABLE 10.20 VHDL binding examples.

entity AD2 is port (A1, A2: in BIT; Y: out BIT); end;
architecture B of AD2 is begin Y <= A1 and A2; end;
entity XR2 is port (X1, X2: in BIT; Y: out BIT); end;
architecture B of XR2 is begin Y <= X1 xor X2; end;

component
declaration
 configuration
 specification

entity Half_Adder is port (X, Y: BIT; Sum, Cout: out BIT); end;
architecture Netlist of Half_Adder is use work.all;
component MX port (A, B: BIT; Z :out BIT);end component;
component MA port (A, B: BIT; Z :out BIT);end component;
for G1:MX use entity XR2(B) port map(X1 => A,X2 => B,Y => Z);
begin
 G1:MX port map(X, Y, Sum); G2:MA port map(X, Y, Cout);
end;

configuration
declaration
 block
 configuration
 component
 configuration

configuration C1 of Half_Adder is
use work.all;
 for Netlist
 for G2:MA
 use entity AD2(B) port map(A1 => A,A2 => B,Y => Z);
 end for;
 end for;
end;

1. Underline means "new to VHDL-93".

10.16 An Engine Controller
This section describes part of a controller for an automobile engine. Table 10.21 shows a temperature converter that converts
digitized temperature readings from a sensor from degrees Centigrade to degrees Fahrenheit.

TABLE 10.21 A temperature converter.

library IEEE;
use IEEE.STD_LOGIC_1164.all; -- type STD_LOGIC, rising_edge
use IEEE.NUMERIC_STD.all ; -- type UNSIGNED, "+", "/"
entity tconv is generic TPD : TIME:= 1 ns;
 port (T_in : in UNSIGNED(11 downto 0);
 clk, rst : in STD_LOGIC; T_out : out UNSIGNED(11 downto 0));
end;
architecture rtl of tconv is
signal T : UNSIGNED(7 downto 0);
constant T2 : UNSIGNED(1 downto 0) := "10" ;
constant T4 : UNSIGNED(2 downto 0) := "100" ;
constant T32 : UNSIGNED(5 downto 0) := "100000" ;
begin
 process(T) begin T_out <= T + T/T2 + T/T4 + T32 after TPD;
 end process;
end rtl;

T_in = temperature in
degC

T_out = temperature in
degF

The conversion formula
from Centigrade to
Fahrenheit is:

T(degF) = (9/5) x
T(degC) + 32

This converter uses the
approximation:

9/5 = 1.75 = 1 + 0.5 +
0.25

To save area the temperature conversion is approximate. Instead of multiplying by 9/5 and adding 32 (so 0 degC becomes 32 degF
and 100 degC becomes 212 degF) we multiply by 1.75 and add 32 (so 100 degC becomes 207 degF). Since 1.75 = 1 + 0.5 + 0.25,
we can multiply by 1.75 using shifts (for divide by 2, and divide by 4) together with a very simple constant addition (since 32 =
"100000"). Using shift to multiply and divide by powers of 2 is free in hardware (we just change connections to a bus). For large
temperatures the error approaches 0.05/1.8 or approximately 3 percent. We play these kinds of tricks often in hardware
computation. Notice also that temperatures measured in degC and degF are defined as unsigned integers of the same width. We
could have defined these as separate types to take advantage of VHDL's type checking.

Table 10.22 describes a digital filter to compute a "moving average" over four successive samples in time (i(0), i(1), i(2), and i(3),
with i(0) being the first sample).

TABLE 10.22 A digital filter.

library IEEE;
use IEEE.STD_LOGIC_1164.all; -- STD_LOGIC type, rising_edge
use IEEE.NUMERIC_STD.all; -- UNSIGNED type, "+" and "/"
entity filter is
 generic TPD : TIME := 1 ns;
 port (T_in : in UNSIGNED(11 downto 0);
 rst, clk : in STD_LOGIC;
 T_out: out UNSIGNED(11 downto 0));
end;
architecture rtl of filter is
type arr is array (0 to 3) of UNSIGNED(11 downto 0);
signal i : arr ;
constant T4 : UNSIGNED(2 downto 0) := "100";
begin
 process(rst, clk) begin
 if (rst = '1') then
 for n in 0 to 3 loop i(n) <= (others =>'0') after TPD;
 end loop;
 else
 if(rising_edge(clk)) then
 i(0) <= T_in after TPD;i(1) <= i(0) after TPD;
 i(2) <= i(1) after TPD;i(3) <= i(2) after TPD;
 end if;
 end if;
 end process;
 process(i) begin
 T_out <= (i(0) + i(1) + i(2) + i(3))/T4 after TPD;
 end process;

The filter
computes
a moving
average
over four
successive
samples
in time.

Notice

i(0) i(1)
i(2) i(3)

are each
12 bits
wide.

Then the
sum

i(0) + i(1)
+ i(2) +
i(3)

is 14 bits
wide, and

end rtl; the

average

(i(0) +
i(1) + i(2)
+ i(3)
)/T4

is 12 bits
wide.

All delays
are
generic
TPD .

The filter uses the following formula:

T_out <= (i(0) + i(1) + i(2) + i(3))/T4

Division by T4 = "100" is free in hardware. If instead, we performed the divisions before the additions, this would reduce the
number of bits to be added for two of the additions and saves us worrying about overflow. The drawback to this approach is
round-off errors. We can use the register shown in Table 10.23 to register the inputs.

TABLE 10.23 The input register.

library IEEE;
use IEEE.STD_LOGIC_1164.all; -- type STD_LOGIC, rising_edge
use IEEE.NUMERIC_STD.all ; -- type UNSIGNED
entity register_in is
generic (TPD : TIME := 1 ns);
port (T_in : in UNSIGNED(11 downto 0);
clk, rst : in STD_LOGIC; T_out : out UNSIGNED(11 downto 0)); end;
architecture rtl of register_in is
begin
 process(clk, rst) begin
 if (rst = '1') then T_out <= (others => '0') after TPD;
 else
 if (rising_edge(clk)) then T_out <= T_in after TPD; end if;
 end if;
 end process;
end rtl ;

12-bit-wide
register for the
temperature
input

signals.

If the input is
asynchronous
(from an A/D

converter with a
separate clock,
for example),
we would need
to worry about
metastability.

All delays are
generic TPD .

Table 10.24 shows a first-in, first-out stack (FIFO). This allows us to buffer the signals coming from the sensor until the
microprocessor has a chance to read them. The depth of the FIFO will depend on the maximum amount of time that can pass
without the microcontroller being able to read from the bus. We have to determine this with statistical simulations taking into
account other traffic on the bus.

TABLE 10.24 A first-in, first-out stack (FIFO).

library IEEE; use IEEE.NUMERIC_STD.all ; -- UNSIGNED type
use ieee.std_logic_1164.all; -- STD_LOGIC type, rising_edge
entity fifo is
 generic (width : INTEGER := 12; depth : INTEGER := 16);
 port (clk, rst, push, pop : STD_LOGIC;
 Di : in UNSIGNED (width-1 downto 0);
 Do : out UNSIGNED (width-1 downto 0);
 empty, full : out STD_LOGIC);
end fifo;
architecture rtl of fifo is
subtype ptype is INTEGER range 0 to (depth-1);
signal diff, Ai, Ao : ptype; signal f, e : STD_LOGIC;
type a is array (ptype) of UNSIGNED(width-1 downto 0);
signal mem : a ;
function bump(signal ptr : INTEGER range 0 to (depth-1))
return INTEGER is begin
 if (ptr = (depth-1)) then return 0;
 else return (ptr + 1);
 end if;
end;
begin
 process(f,e) begin full <= f ; empty <= e; end process;
 process(diff) begin
 if (diff = depth -1) then f <= '1'; else f <= '0'; end if;
 if (diff = 0) then e <= '1'; else e <= '0'; end if;
 end process;
 process(clk, Ai, Ao, Di, mem, push, pop, e, f) begin
 if(rising_edge(clk)) then
 if(push='0')and(pop='1')and(e = '0') then Do <= mem(Ao); end if;
 if(push='1')and(pop='0')and(f = '0') then mem(Ai) <= Di; end if;
 end if ;
 end process;
 process(rst, clk) begin
 if(rst = '1') then Ai <= 0; Ao <= 0; diff <= 0;
 else if(rising_edge(clk)) then
 if (push = '1') and (f = '0') and (pop = '0') then
 Ai <= bump(Ai); diff <= diff + 1;
 elsif (pop = '1') and (e = '0') and (push = '0') then
 Ao <= bump(Ao); diff <= diff - 1;
 end if;
 end if;
 end if;
 end process;
end;

FIFO
(first-in,
first-out)
register

Reads (pop =
1) and writes
(push = 1)
are
synchronous
to the rising
edge of the
clock.

Read and
write should
not occur at
the same
time. The
width
(number of
bits in each
word) and
depth
(number of
words) are
generics.

External
signals:

clk , clock

rst , reset
active-high

push , write
to FIFO

pop , read
from FIFO

Di , data in

Do , data out

empty ,
FIFO flag

full , FIFO
flag

Internal
signals:

diff ,
difference
pointer

Ai , input
address

Ao , output
address

f , full flag

e , empty
flag

No delays in
this model.

The FIFO has flags, empty and full , that signify its state. It uses a function to increment two circular pointers. One pointer
keeps track of the address to write to next, the other pointer tracks the address to read from. The FIFO memory may be implemented
in a number of ways in hardware. We shall assume for the moment that it will be synthesized as a bank of flip-flops.

Table 10.25 shows a controller for the two FIFOs. The controller handles the reading and writing to the FIFO. The microcontroller
attached to the bus signals which of the FIFOs it wishes to read from. The controller then places the appropriate data on the bus. The
microcontroller can also ask for the FIFO flags to be placed in the low-order bits of the bus on a read cycle. If none of these actions
are requested by the microcontroller, the FIFO controller three-states its output drivers.

Table 10.25 shows the top level of the controller. To complete our model we shall use a package for the component declarations:

TABLE 10.25 A FIFO controller.

library IEEE;use IEEE.STD_LOGIC_1164.all;use IEEE.NUMERIC_STD.all;
entity fifo_control is generic TPD : TIME := 1 ns;
 port(D_1, D_2 : in UNSIGNED(11 downto 0);
 sel : in UNSIGNED(1 downto 0) ;
 read , f1, f2, e1, e2 : in STD_LOGIC;
 r1, r2, w12 : out STD_LOGIC; D : out UNSIGNED(11 downto 0)) ;
end;
architecture rtl of fifo_control is
 begin process
 (read, sel, D_1, D_2, f1, f2, e1, e2)
 begin
 r1 <= '0' after TPD; r2 <= '0' after TPD;
 if (read = '1') then
 w12 <= '0' after TPD;
 case sel is
 when "01" => D <= D_1 after TPD; r1 <= '1' after TPD;
 when "10" => D <= D_2 after TPD; r2 <= '1' after TPD;
 when "00" => D(3) <= f1 after TPD; D(2) <= f2 after TPD;
 D(1) <= e1 after TPD; D(0) <= e2 after TPD;
 when others => D <= "ZZZZZZZZZZZZ" after TPD;
 end case;
 elsif (read = '0') then
 D <= "ZZZZZZZZZZZZ" after TPD; w12 <= '1' after TPD;
 else D <= "ZZZZZZZZZZZZ" after TPD;
 end if;
 end process;
end rtl;

This handles the
reading and writing
to the FIFOs under
control of the
processor (mpu).
The mpu can ask for
data from either
FIFO or for status
flags to be placed on
the bus.

Inputs:

 D_1

 data in from
FIFO1

 D_2

 data in from
FIFO2

 sel

 FIFO select from
mpu

 read

 FIFO read from
mpu

 f1,f2,e1,e2

 flags from FIFOs

Outputs:

 r1, r2

 read enables for
FIFOs

 w12

 write enable for
FIFOs

 D

 data out to mpu
bus

TABLE 10.26 Top level of temperature controller.

library IEEE; use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD.all;
entity T_Control is port (T_in1, T_in2 : in UNSIGNED (11 downto 0);
 sensor: in UNSIGNED(1 downto 0);
 clk, RD, rst : in STD_LOGIC; D : out UNSIGNED(11 downto 0));
end;
architecture structure of T_Control is use work.TC_Components.all;
signal F, E : UNSIGNED (2 downto 1);
signal T_out1, T_out2, R_out1, R_out2, F1, F2, FIFO1, FIFO2 : UNSIGNED(11 downto 0);
signal RD1, RD2, WR: STD_LOGIC ;
begin
RG1 : register_in generic map (1ns) port map (T_in1,clk,rst,R_out1);
RG2 : register_in generic map (1ns) port map (T_in2,clk,rst,R_out2);
TC1 : tconv generic map (1ns) port map (R_out1, T_out1);
TC2 : tconv generic map (1ns) port map (R_out2, T_out2);
TF1 : filter generic map (1ns) port map (T_out1, rst, clk, F1);
TF2 : filter generic map (1ns) port map (T_out2, rst, clk, F2);
FI1 : fifo generic map (12,16) port map (clk, rst, WR, RD1, F1, FIFO1, E(1), F(1));
FI2 : fifo generic map (12,16) port map (clk, rst, WR, RD2, F2, FIFO2, E(2), F(2));
FC1 : fifo_control port map
(FIFO1, FIFO2, sensor, RD, F(1), F(2), E(1), E(2), RD1, RD2, WR, D);
end structure;

package TC_Components is
component register_in generic (TPD : TIME := 1 ns);
port (T_in : in UNSIGNED(11 downto 0);
clk, rst : in STD_LOGIC; T_out : out UNSIGNED(11 downto 0));
end component;
component tconv generic (TPD : TIME := 1 ns);
port (T_in : in UNSIGNED (7 downto 0);
 clk, rst : in STD_LOGIC; T_out : out UNSIGNED(7 downto 0));
end component;
component filter generic (TPD : TIME := 1 ns);
port (T_in : in UNSIGNED (7 downto 0);
 rst, clk : in STD_LOGIC; T_out : out UNSIGNED(7 downto 0));
end component;
component fifo generic (width:INTEGER := 12; depth : INTEGER := 16);
 port (clk, rst, push, pop : STD_LOGIC;
 Di : UNSIGNED (width-1 downto 0);
 Do : out UNSIGNED (width-1 downto 0);
 empty, full : out STD_LOGIC);
end component;
component fifo_control generic (TPD:TIME := 1 ns);
 port (D_1, D_2 : in UNSIGNED(7 downto 0);
 select : in UNSIGNED(1 downto 0); read, f1, f2, e1, e2 : in STD_LOGIC;
 r1, r2, w12 : out STD_LOGIC; D : out UNSIGNED(7 downto 0)) ;
end component;
end;

The following testbench completes a set of reads and writes to the FIFOs:

library IEEE;
use IEEE.std_logic_1164.all; -- type STD_LOGIC
use IEEE.numeric_std.all; -- type UNSIGNED
entity test_TC is end;
architecture testbench of test_TC is
component T_Control port (T_1, T_2 : in UNSIGNED(11 downto 0);
 clk : in STD_LOGIC; sensor: in UNSIGNED(1 downto 0) ;
 read : in STD_LOGIC; rst : in STD_LOGIC;
 D : out UNSIGNED(7 downto 0)); end component;
signal T_1, T_2 : UNSIGNED(11 downto 0);
signal clk, read, rst : STD_LOGIC;
signal sensor : UNSIGNED(1 downto 0);
signal D : UNSIGNED(7 downto 0);
begin TT1 : T_Control port map (T_1, T_2, clk, sensor, read, rst, D);
process begin
rst <= '0'; clk <= '0';
wait for 5 ns; rst <= '1'; wait for 5 ns; rst <= '0';
T_in1 <= "000000000011"; T_in2 <= "000000000111"; read <= '0';
 for i in 0 to 15 loop -- fill the FIFOs
 clk <= '0'; wait for 5 ns; clk <= '1'; wait for 5 ns;
 end loop;
 assert (false) report "FIFOs full" severity NOTE;

 clk <= '0'; wait for 5 ns; clk <= '1'; wait for 5 ns;
read <= '1'; sensor <= "01";
 for i in 0 to 15 loop -- empty the FIFOs
 clk <= '0'; wait for 5ns; clk <= '1'; wait for 5 ns;
 end loop;
 assert (false) report "FIFOs empty" severity NOTE;
 clk <= '0'; wait for 5ns; clk <= '1'; wait;
end process;
end;

10.17 Summary
Table 10.27 shows the essential elements of the VHDL language. Table 10.28 shows the most
important BNF definitions and their locations in this chapter. The key points covered in this chapter
are as follows:

The use of an entity and an architecture●

The use of a configuration to bind entities and their architectures●

The compile, elaboration, initialization, and simulation steps●

Types, subtypes, and their use in expressions●

The logic systems based on BIT and Std_Logic_1164 types●

The use of the IEEE synthesis packages for BIT arithmetic●

Ports and port modes●

Initial values and the difference between simulation and hardware●

The difference between a signal and a variable●

The different assignment statements and the timing of updates●

The process and wait statements●

VHDL is a "wordy" language. The examples in this chapter are complete rather than code
fragments. To write VHDL "nicely," with indentation and nesting of constructs, requires a large
amount of space. Some of the VHDL code examples in this chapter are deliberately dense (with
reduced indentation and nesting), but the bold keywords help you to see the code structure. Most of
the time, of course, we do not have the luxury of bold fonts (or color) to highlight code. In this case,
you should add additional space, indentation, nesting, and comments.

TABLE 10.27 VHDL summary.

VHDL feature Example Book 93LRM

Comments -- this is a comment 10.3 13.8

Literals
(fixed-value
items)

12 1.0E6 '1' "110" 'Z'

2#1111_1111# "Hello world"

STRING'("110")

10.4 13.4

Identifiers

(case-insensitive,
start with letter)

a_good_name Same same

2_Bad bad_ _bad very__bad
10.4 13.3

Several basic
units of code

entity architecture configuration 10.5 1.1-1.3

Connections
made through
ports

port (signal in i : BIT; out o : BIT); 10.7 4.3

Default
expression

port (i : BIT := '1');
-- i='1' if left open

10.7 4.3

No built-in
logic-value
system.

BIT and
BIT_VECTOR
(STD).

type BIT is ('0', '1'); -- predefined

 signal myArray: BIT_VECTOR (7 downto 0);
10.8 14.2

Arrays myArray(1 downto 0) <= ('0', '1'); 10.8 3.2.1

Two basic types
of logic signals

a signal corresponds to a real wire

a variable is a memory location in RAM
10.9

4.3.1.2

4.3.1.3

Types and
explicit
initial/default
value

signal ONE : BIT := '1' ; 10.9 4.3.2

Implicit
initial/default
value

BIT'LEFT = '0' 10.9 4.3.2

Predefined
attributes

clk'EVENT, clk'STABLE 10.9.4 14.1

Sequential
statements inside

processes model
things that
happen one after
another and
repeat

process begin

wait until alarm = ring;
eat; work; sleep;

end process;

10.10 8

Timing with
wait statement

wait for 1 ns; -- not wait 1 ns

wait on light until light = green;
10.10.1 8.1

Update to
signals occurs at
the end of a
simulation cycle

signal <= 1; -- delta time delay

signal <= variable1 after 2 ns;
10.10.3 8.3

Update to
variables is
immediate

variable := 1; -- immediate update 10.10.3 8.4

Processes and
concurrent

statements
model things
that happen at
the same time

process begin rain ; end process ;

process begin sing ; end process ;

process begin dance; end process ;

10.13 9.2

IEEE
Std_Logic_1164

(defines logic
operators on
1164 types)

 STD_ULOGIC
, STD_LOGIC
, STD_ULOGIC_VECTOR
, and STD_LOGIC_VECTOR

type STD_ULOGIC is
('U','X','0','1','Z','W','L','H','-');

10.6 --

IEEE
Numeric_Bit
and
Numeric_Std

(defines
arithmetic
operators on BIT
and 1164 types)

UNSIGNED and SIGNED

X <= "10" * "01"
-- OK with numeric pkgs.

10.12 --

TABLE 10.28 VHDL definitions.

Structure Page BNF Structure Page BNF

alias declaration 418 10.21 next statement 429 10.32

architecture body 394 10.8 null statement 430 10.35

assertion statement 423 10.25 package declaration 398 10.11

attribute declaration 418 10.22 port interface declaration 406 10.13

block statement 438 10.37 port interface list 406 10.12

case statement 428 10.30 primary unit 393 10.5

component declaration 395 10.9 procedure call statement 427 10.28

component instantiation 444 10.42 process statement 440 10.38

concurrent statement 438 10.36 return statement 430 10.34

conditional signal assignment 442 10.40 secondary unit 393 10.6

configuration declaration 396 10.10 selected signal assignment 442 10.39

constant declaration 414 10.16 sequential statement 419 10.23

declaration 413 10.15 signal assignment statement 424 10.27

design file 393 10.4 signal declaration 414 10.17

entity declaration 394 10.7 special character 391 10.2

exit statement 430 10.33 subprogram body 416 10.20

generate statement 444 10.43 subprogram declaration 415 10.19

graphic character 391 10.1 type declaration 411 10.14

identifier 392 10.3 variable assignment statement 424 10.26

if statement 427 10.29 variable declaration 415 10.18

loop statement 429 10.31 wait statement 421 10.24

Appendix A contains more detailed definitions and technical reference material.

10.18 Problems
* = Difficult ** = Very difficult *** = Extremely difficult

10.1 (Hello World, 10 min.) Set up a new, empty, directory (use mkdir VHDL , for example) to run your VHDL simulator
(the exact details will depend on your computer and simulator). Copy the code below to a file called hw_1.vhd in your
VHDL directory (leave out comments to save typing). Hint: Use the vi editor (i inserts text, x deletes text, dd deletes a
line, ESC :w writes the file, ESC :q quits) or use cat > hw_1.vhd and type in the code (use CTRL-D to end typing) on
a UNIX machine. Remember to save in 'Text Only' mode (Frame or MS Word) on an IBM PC or Apple Macintosh.

Analyze, elaborate, and simulate your model (include the output in your answer). Comment on how easy or hard it was to
follow the instructions to use the software and suggest improvements.

entity HW_1 is end; architecture Behave of HW_1 is
constant M : STRING := "hello, world"; signal Ch : CHARACTER := ' ';
begin process begin
 for i in M'RANGE loop Ch <= M(i); wait for 1 ns; end loop; wait;
end process; end;

10.2 (Running a VHDL simulation, 20 min.) Copy the example from Section 10.1 into a file called Counter1.vhd in your
VHDL directory (leave out the comments to save typing). Complete the compile (analyze), elaborate (build), and execute
(initialize and simulate) or other equivalent steps for your simulator. After each step list the contents of your directory VHDL
and any subdirectories and files that are created (use ls -alR on a UNIX system).

10.3 (Simulator commands, 10 min.) Make a "cheat sheet" for your simulator, listing the commands that can be used to control
simulation.

10.4 (BNF addresses, 10 min.) Create a BNF description of a name including: optional title (Prof., Dr., Mrs., Mr., Miss, or
Ms.), optional first name and middle initials (allow up to two), and last name (including unusual hyphenated and foreign
names, such as Miss A-S. de La Salle, and Prof. John T. P. McTavish-f Fiennes). The lowest level constructs are
letter ::= a-Z , '.' (period) and '-' (hyphen). Add BNF productions for a postal address in the form: company name,
mail stop, street address, address lines (1 to 4), and country.

10.5 (BNF e-mail, 10 min.) Create a BNF description of a valid internet e-mail address in terms of letters, '@' , '.' , 'gov'
, 'com ', 'org ', and 'edu' . Create a state diagram that "parses" an e-mail address for validity.

10.6 (BNF equivalence) Are the following BNF productions exactly equivalent? If they are not, produce a counterexample that
shows a difference.

 term ::= factor { multiplying_operator factor }
 term ::= factor | term multiplying_operator factor

10.7 (Environment, 20 min.) Write a simple VHDL model to check and demonstrate that you can get to the IEEE library and
have the environment variables, library statements, and such correctly set up for your simulator.

10.8 (Work, 20 min.) Write simple VHDL models to demonstrate that you can retrieve and use previously analyzed design
units from the library work and that you can also remove design units from work . Explain how your models prove that
access to work is functioning correctly.

10.9 (Packages, 60 min.) Write a simple package (use filename PackH.vhd) and package body (filename PackB.vhd).
Demonstrate that you can store your package (call it MyPackage) in the library work . Then store, move, or rename (the
details will depend on your software) your package to a library called MyLibrary in a directory called MyDir , and use its
contents with a library clause (library MyLibrary) and a use clause (use MyLibrary.MyPackage.all) in a
testbench called PackTest (filename PackT.vhd) in another directory MyWork . You may or may not be amazed at how
complicated this can be and how poorly most software companies document this process.

10.10 (***IEEE Std 1164, 60 min.) Prior to VHDL-93 the xnor function was not available, and therefore older versions of
the std_logic_1164 library did not provide the xnor function for STD_LOGIC types either (it was actually included but
commented out). Write a simple model that checks to see if you have the newer version of std_logic_1164 . Can you do
this without crashing the simulator?

You are an engineer on a very large project and find that your design fails to compile because your design must use the xnor
function and the library setup on your company's system still points to the old IEEE std_logic_1164 library, even though
the new library was installed. You are apparently the first person to realize the problem. Your company has a policy that any
time a library is changed all design units that use that library must be rebuilt from source. This might require days or weeks of
work. Explain in detail, using code, the alternative solutions. What will you recommend to your manager?

10.11 (**VHDL-93 test, 20 min.) Write a simple test to check if your simulator is a VHDL-87 or VHDL-93
environment--without crashing the simulator.

10.12 (Declarations, 10 min.) Analyze the following changes to the code in Section 10.8 and include the simulator output in
your answers:

Uncomment the declarations for Bad100 and Bad4 in Declaration _1 .

Add the following to Constant_2:

signal wacky : wackytype (31 downto 0); -- wacky

Remove the library and use clause in Constant_2.

10.13 (STRING type, 10 min.) Replace the write statement that prints the string " count=" in Text(Behave) in
Section 10.6.3 with the following, compile it, and explain the result:

write(L, " count="); -- No type qualification.

10.14 (Sequential statements, 10 min.) Uncomment the following line in Wait_1(Behave) in Section 10.10, analyze the code,
and explain the result:

wait on x(1 to v); -- v is a variable.

10.15 (VHDL logical operators, 10 min.)

Explain the problem with the following VHDL statement:

Z <= A nand B nand C;

Explain why this problem does not occur with this statement:

Z <= A and B and C;

What can you say about the logical operators: and , or , nand , nor , xnor , xor ?

Is the following code legal?

Z <= A and B or C;

10.16 (*Initialization, 45 min.) Consider the following code:

entity DFF_Plain is port (Clk, D : in BIT; Q : out BIT); end;
architecture Bad of DFF_Plain is begin process (Clk) begin
 if Clk = '0' and Clk'EVENT then Q <= D after 1 ns; end if;
end process; end;

Analyze and simulate this model using a testbench.

Rewrite architecture Bad using an equivalent process including a wait statement. Simulate this equivalent model and
confirm the behaviors are identical.

What is the behavior of the output Q during initial execution of the process?

Why does this happen?

Why does this not happen with the following code:

architecture Good of DFF_Plain is
begin process begin wait until Clk = '0'; Q <= D after 1 ns;
end process; end;

10.17 (Initial and default values, 20 min.) Use code examples to explain the difference between: default expression, default
value, implicit default value, initial value, initial value expression, and default initial value.

10.18 (Enumeration types, 20 min.) Explain the analysis results for the following:

type MVL4 is ('X', '0', '1', 'Z'); signal test : MVL4;
process begin
 test <= 1; test <= Z; test <= z; test <= '1'; test <= 'Z';
end process;

Alter the type declaration to the following, analyze your code again, and comment:

type Mixed4 is (X , '0', '1', Z);

10.19 (Type declarations, 10 min.) Correct these declarations:

type BadArray is array (0 to 7) of BIT_VECTOR;
type Byte is array (NATURAL range 7 downto 0) of BIT;
subtype BadNibble is Byte(3 downto 0);
type BadByte is array (range 7 downto 0) of BIT;

10.20 (Procedure parameters, 10 min.) Analyze the following package; explain and correct the error. Finally, build a testbench
to check your solution.

package And_Pkg_Bad is procedure V_And(a, b : BIT; c: out BIT); end;
package body And_Pkg_Bad is
procedure V_And(a,b : BIT;c : out BIT) is begin c <= a and b;end;
end And_Pkg_Bad;

10.21 (Type checking, 20 min.) Test the following code and explain the results:

type T is INTEGER range 0 to 32; variable a: T;
a := (16 + 17) - 12; a := 16 - 12 + 17; a := 16 + (17 - 12);

10.22 (Debugging VHDL code, 30 min.) Find and correct the errors in the following code. Create a testbench for your code to
check that it works correctly.

entity UpDownCount_Bad is
port(clock, reset, up: STD_LOGIC; D: STD_LOGIC_VECTOR (7 to 0));
end UpDownCount_Bad;
architecture Behave of UpDownCount_Bad is
begin process (clock, reset, up); begin
if (reset = '0') then D <= '0000000';
elseif (rising_edge(clock)) then
if (up = 1) D <= D+1; else D <= D-1; end if;
end if; end process; end Behave;

10.23 (Subprograms, 20 min.) Write and test subprograms for these declarations:

function Is_X_Zero (signal X : in BIT) return BIT;
procedure Is_A_Eq_B (signal A, B : BIT; signal Y : out BIT);

10.24 (Simulator error messages, 10 min.) Analyze and attempt to simulate Arithmetic_2(Behave) from Section 10.12 and
compare the error message you receive with that from the MTI simulator (not all simulators are as informative). There are no
standards for error messages.

10.25 (Exhaustive property of case statement, 30 min.) Write and simulate a testbench for the state machine of Table 10.8 and
include your results. Is every state transition tested by your program and is every transition covered by an assignment
statement in the code? (Hint: Think very carefully.) Repeat this exercise for the state machine in Section 10.10.6.

10.26 (Default values for inputs, 20 min.) Replace the interface declaration for entity Half_Adder in Section 10.5 with the
following (to remove the default values):

port (X, Y: in BIT ; Sum, Cout: out BIT);

Attempt to compile, elaborate, and simulate configuration Simplest (the other entities needed, AndGate and XorGate , must
already be in work or in the same file). You should get an error at some stage (different systems find this error at different
points--just because an entity compiles, that does not mean it is error-free).

The LRM says "... A port of mode in may be unconnected ...only if its declaration includes a default expression..." [VHDL
93LRM1.1.1.2].

We face a dilemma here. If we do not drive inputs with test signals and leave an input port unconnected, we can compile the
model (since it is syntactically correct) but the model is not semantically correct. On the other hand, if we give the inputs
default values, we might accidentally forget to make a connection and not notice.

10.27 (Adder generation, 10 min.) Draw the schematic for Adder_1(Structure) of Section 10.13.7, labeling each instance with
the VHDL instance name.

10.28 (Generate statement, 20 min.) Draw a schematic corresponding to the following code (label the cells with their instance
names):

B1: block begin L1 : C port map (T, B, A(0), B(0)) ;
L2: for i in 1 to 3 generate L3 : for j in 1 to 3 generate
L4: if i+j > 4 generate L5: C port map (A(i-1), B(j-1), A(i), B(j)) ;
end generate; end generate; end generate;
L6: for i in 1 to 3 generate L7: for j in 1 to 3 generate
L8: if i+j < 4 generate L9: C port map (A(i+1), B(j+1), A(i), B(j)) ;
end generate; end generate; end generate;
end block B1;

Rewrite the code without generate statements. How would you prove that your code really is exactly equivalent to the
original?

10.29 (Case statement, 20 min.) Create a package (my_equal) that overloads the equality operator so that 'X' = '0'
and 'X' = '1' are both TRUE . Test your package. Simulate the following design unit and explain the result.

entity Case_1 is end; architecture Behave of Case_1 is
signal r : BIT; use work.my_equal.all;
begin process variable twobit:STD_LOGIC_VECTOR(1 to 2); begin
 twobit := "X0";
 case twobit is
 when "10" => r <= '1';
 when "00" => r <= '1';
 when others => r <= '0';
 end case; wait;

end process; end;

10.30 (State machine) Create a testbench for the state machine of Section 10.2.5.

10.31 (Mealy state machine, 60 min.) Rewrite the state machine of Section 10.2.5 as a Mealy state machine (the outputs
depend on the inputs and on the current state).

10.32 (Gate-level D flip-flop, 30 min.) Draw the schematic for the following D flip-flop model. Create a testbench (check for
correct operation with combinations of Clear , Preset , Clock , and Data). Have you covered all possible modes of
operation? Justify your answer of yes or no.

architecture RTL of DFF_To_Test is
signal A, B, C, D, QI, QBarI : BIT; begin
A <= not (Preset and D and B) after 1 ns;
B <= not (A and Clear and Clock) after 1 ns;
C <= not (B and Clock and D) after 1 ns;
D <= not (C and Clear and Data) after 1 ns;
QI <= not (Preset and B and QBarI) after 1 ns;
QBarI <= not (QI and Clear and C) after 1 ns;
Q <= QI; QBar <= QBarI;
end;

10.33 (Flip-flop model, 20 min.) Add an asynchronous active-low preset to the D flip-flop model of Table 10.3. Generate a
testbench that includes interaction of the preset and clear inputs. What issue do you face and how did you solve it?

10.34 (Register, 45 min.) Design a testbench for the register of Table 10.4. Adapt the 8-bit register design to a 4-bit version
with the following interface declaration:

entity Reg4 is port (D : in STD_LOGIC_VECTOR(7 downto 0);
Clk,Pre,Clr : in STD_LOGIC;Q,QB : out STD_LOGIC_VECTOR(7 downto 0));
end Reg8;

Create a testbench for your 4-bit register with the following component declaration:

 component DFF
port(Preset,Clear,Clock,Data:STD_LOGIC;Q,QBar:out STD_LOGIC_VECTOR);
end component;

10.35 (*Conversion functions, 30 min.) Write a conversion function from
NATURAL to STD_LOGIC_VECTOR using the following declaration:

function Convert (N, L: NATURAL) return STD_LOGIC_VECTOR;
-- N is NATURAL, L is length of STD_LOGIC_VECTOR

Write a similar conversion function from STD_LOGIC_VECTOR to NATURAL:

function Convert (B: STD_LOGIC_VECTOR) return NATURAL;

Create a testbench to test your functions by including them in a package.

10.36 (Clock procedure, 20 min.) Design a clock procedure for a two-phase clock (C1, C2) with variable high times (HT1 ,
HT2) and low times (LT1 , LT2) and the following interface. Include your procedure in a package and write a model to test
it.

procedure Clock (C1, C2 : out STD_LOGIC; HT1, HT2, LT1, LT2 : TIME);

10.37 (Random number, 20 min.) Design a testbench for the following procedure:

procedure uniform (seed : inout INTEGER range 0 to 15) is
 variable x : INTEGER;
 begin x := (seed*11) + 7; seed := x mod 16;
end uniform;

10.38 (Full-adder, 30 min.) Design and test a behavioral model of a full adder with the following interface:

entity FA is port (X, Y, Cin : STD_LOGIC; Cout, Sum : out STD_LOGIC);
end;

Repeat the exercise for inputs and outputs of type UNSIGNED .

10.39 (8-bit adder testbench, 60 min.) Write out the code corresponding to the generate statements of Adder_1 (Structure
) in Section 10.13.7. Write a testbench to check your adder. What problems do you encounter? How thorough do you believe
your tests are?

10.40 (Shift-register testbench, 60 min.) Design a testbench for the shift register of Table 10.4. Convert this model to use
STD_LOGIC types with the following interface:

entity ShiftN is
port (CLK, CLR, LD, SH, DIR : STD_LOGIC;
 D : STD_LOGIC_VECTOR; Q : out STD_LOGIC_VECTOR);
end;

10.41 (Multiplier, 60 min.) Design and test a multiplier with the following interface:

entity Mult8 is
port (A, B : STD_LOGIC_VECTOR(3 downto 0);
Start, CLK, Reset : in STD_LOGIC;
Result : out STD_LOGIC_VECTOR(7 downto 0); Done : out BIT);
end;

Create testbench code to check your model.

Catalog each compile step with the syntax errors as you debug your code.

Include a listing of the first code you write together with the final version.

An interesting class project is to collect statistics from other students working on this problem and create a table showing the
types and frequency of syntax errors made with each compile step, and the number of compile steps required. Does this
information suggest ways that you could improve the compiler, or suggest a new type of tool to use when writing VHDL?

10.42 (Port maps, 5 min.) What is wrong with this VHDL statement?

U1 : nand2 port map (a <= set, b <= qb, c <= q);

10.43 (DRIVING_VALUE, 15 min.) Use the VHDL-93 attribute Clock'DRIVING_VALUE to rewrite the following clock
generator model without using a temporary variable.

entity ClockGen_2 is port (Clock : out BIT); end;
architecture Behave of ClockGen_2 is
begin process variable Temp : BIT := '1'; begin
 Temp := not Temp ; Clock <= Temp after 10 ns; wait for 10 ns;
 if (now > 100 ns) then wait; end if; end process;
end;

10.44 (Records, 15 min.) Write an architecture (based on the following skeleton) that uses the record structure shown:

entity Test_Record_1 is end; architecture Behave of Test_Record_1 is
begin process type Coordinate is record X, Y : INTEGER; end record;
-- a record declaration for an attribute declaration:
attribute Location:Coordinate; -- an attribute declaration
begin wait; end process; end Behave;

10.45 (**Communication between processes, 30 min.) Explain and correct the problem with the following skeleton code:

variable v1 : INTEGER := 1; process begin v1 := v1+3; wait; end process;
process variable v2 : INTEGER := 2; begin v2 := v1 ; wait; end process;

10.46 (*Resolution, 30 min.) Explain and correct the problems with the following:

entity R_Bad_1 is port (i : in BIT; o out BIT); end;
architecture Behave of R_Bad_1 is
begin o <= not i after 1 ns; o <= i after 2 ns; end;

10.47 (*Inputs, 30 min.) Analyze the following and explain the result:

entity And2 is port (A1, A2: in BIT; ZN: out BIT); end;
architecture Simple of And2 is begin ZN <= A1 and A2; end;
entity Input_Bad_1 is end; architecture Netlist of Input_Bad_1 is
component And2 port (A1, A2 : in BIT; ZN : out BIT); end component;
signal X, Z : BIT begin G1 : And2 port map (X, X, Z); end;

10.48 (Association, 15 min.) Analyze the following and explain the problem:

entity And2 is port (A1, A2 : in BIT; ZN : out BIT); end;
architecture Simple of And2 is begin ZN <= A1 and A2; end;
entity Assoc_Bad_1 is port (signal X, Y : in BIT; Z : out BIT); end;
architecture Netlist of Assoc_Bad_1 is
component And2 port (A1, A2 : in BIT; ZN : out BIT); end component;
begin
G1: And2 port map (X, Y, Z);
G2: And2 port map (A2 => Y, ZN => Z, A1 => X);
G3: And2 port map (X, ZN => Z, A2 => Y);
end;

10.49 (Modes, 30 min.) Analyze and explain the errors in the following:

entity And2 is port (A1, A2 : in BIT; ZN : out BIT); end;
architecture Simple of And2 is begin ZN <= A1 and A2; end;
entity Mode_Bad_1 is port (X : in BIT; Y : out BIT; Z : inout BIT); end;
architecture Netlist of Mode_Bad_1 is
component And2 port (A1, A2 : in BIT; ZN : out BIT); end component;

begin G1 : And2 port map (X, Y, Z); end;
entity Mode_Bad_2 is port (X : in BIT; Y : out BIT; Z : inout BIT); end;
architecture Netlist of Mode_Bad_1 is
component And2 port (A1, A2 : in BIT; ZN : inout BIT); end component;
begin G1 : And2 port map (X, Y, Z); end;

10.50 (*Mode association, 60 min.) Analyze and explain the errors in the following code. The number of errors, types of error,
and the information in the error messages given by different simulators vary tremendously in this area.

entity Allmode is port
(I : in BIT; O : out BIT; IO : inout BIT; B : buffer BIT);
end;
architecture Simple of Allmode is begin O<=I; IO<=I; B<=I; end;
entity Mode_1 is port
(I : in BIT; O : out BIT; IO : inout BIT; B : buffer BIT);
end;
architecture Netlist of Mode_1 is
component Allmode port
(I : in BIT; O : out BIT; IO : inout BIT; B : buffer BIT); end component;
begin
G1:Allmode port map (I , O , IO, B);
G2:Allmode port map (O , IO, B , I);
G3:Allmode port map (IO, B , I , O);
G4:Allmode port map (B , I , O , IO);
end;

10.51 (**Declarations, 60 min.) Write a tutorial (approximately two pages of text, five pages with code) with examples
explaining the difference between: a component declaration, a component configuration, a configuration declaration, a
configuration specification, and a block configuration.

10.52 (**Guards and guarded signals, 60 min.) Write some simple models to illustrate the use of guards, guarded signals, and
the disconnect statement. Include an experiment that shows and explains the use of the implicit signal GUARD in assignment
statements.

10.53 (** Std_logic_1164 , 120 min.) Write a short (two pages of text) tutorial, with (tested) code examples, explaining
the std_logic_1164 types, their default values, the difference between the 'ulogic' and 'logic' types, and their
vector forms. Include an example that shows and explains the problem of connecting a std_logic_vector to a
std_ulogic_vector.

10.54 (Data swap, 20 min.) Consider the following code:

library ieee; use ieee.std_logic_1164.all;
package config is
type type1 is record
f1 : std_logic_vector(31 downto 0); f2 : std_logic_vector(3 downto 0);
end record;
type type2 is record
f1 : std_logic_vector(31 downto 0); f2 : std_logic_vector(3 downto 0);
end record;
end config;
library ieee; use ieee.STD_LOGIC_1164.all; use work.config.all;
entity Swap_1 is
port (Data1 : type1; Data2 : type2; sel : STD_LOGIC;
Data1Swap : out type1; Data2Swap : out type2); end Swap_1;
architecture Behave of Swap_1 is begin
Swap: process (Data1, Data2, sel) begin case sel is
when '0' => Data1Swap <= Data1; Data2Swap <= Data2;
when others => Data1Swap <= Data2; Data2Swap <= Data1;
end case; end process Swap; end Behave;

Compile this code. What is the problem? Suggest a fix. Now write a testbench and test your code. Have you considered all
possibilities?

10.55 (***RTL, 30 min.) "RTL stands for register-transfer level. ...when referencing VHDL, the term means that the
description includes only concurrent signal assignment statements and possibly block statements. In particular, VHDL data
flow descriptions explicitly do not contain either process statements (which describe behavior) or component instantiation
statements (which describe structure)" (Dr. VHDL from VHDL International).

With your knowledge of process statements and components, comment on Dr. VHDL's explanation.

In less than 100 words offer your own definition of the difference between RTL, data flow, behavioral, and structural models.

10.56 (*Operators mod and rem , 20 min.) Confirm and explain the following:

 i1 := (-12) rem 7;

-- i1 = -5
 i2 := 12 rem (-7);
-- i2 = 5
 i3 := (12) rem (-7);
-- i3 = -5
 i4 := 12 mod 7;
-- i4 = 5
 i5 := (-12) mod 7;
-- i5 = 2
 i6 := 12 mod (-7);
-- i6 = -2
 i7 := (12) mod (-7);
-- i7 = -5

Evaluate -5 rem 2 and explain the result.

10.57 (***Event and stable, 60 min.) Investigate the differences between clk'EVENT and clk'STABLE . Write a
minitutorial (in the form of a "cheat sheet") with examples showing the differences and potential dangers of using
clk'STABLE .

10.58 (PREP benchmark #2, 60 min.) The following code models a benchmark circuit used by PREP to measure the capacity
of FPGAs. Rewrite the concurrent signal assignment statements (labeled mux and comparator) as equivalent processes. Draw a
datapath schematic corresponding to PREP2(Behave_1). Write a testbench for the model. Finally (for extra credit) rewrite the
model and testbench to use STD_LOGIC instead of BIT types.

library ieee; use ieee.STD_LOGIC_1164.all;
use ieee.NUMERIC_BIT.all; use ieee.NUMERIC_STD.all;
entity PREP2 is
port(CLK,Reset,Sel,Ldli,Ldhi : BIT; D1,D2 : STD_LOGIC_VECTOR(7 downto 0);
 DQ:out STD_LOGIC_VECTOR(7 downto 0));
end;
architecture Behave_1 of PREP2 is
signal EQ : BIT; signal y,lo,hi,Q_i : STD_LOGIC_VECTOR(7 downto 0);
begin
outputDriver: Q <= Q_i;
mux: with Sel select y <= hi when '0', D1 when '1';
comparator: EQ <= '1' when Q_i = lo else '0';
 register: process(Reset, CLK) begin
 if Reset = '1' then hi <= "00000000"; lo <= "00000000";
 elsif CLK = '1' and CLK'EVENT then
 if Ldhi='1' then hi<=D2;end if;if Ldlo='1' then lo<=D2;end
if;
 end if;
 end process register;
 counter: process(Reset, CLK) begin
 if Reset = '1' then Q_i <= "00000000";
 elsif CLK = '1' and CLK'EVENT then
 if EQ = '1' then Q_i <= y;
 elsif EQ = '0' then Q_i <= Q_i + "00000001";
 end if;
 end if;
 end process counter;
end;

10.59 (PREP #3, state machine) Draw the state diagram for the following PREP benchmark (see Problem 10.58). Is this a
Mealy or Moore machine? Write a testbench and test this code.

library ieee; use ieee.STD_LOGIC_1164.all;
entity prep3_1 is port(Clk, Reset: STD_LOGIC;
 I : STD_LOGIC_VECTOR(7 downto 0); O : out STD_LOGIC_VECTOR(7 downto 0));
end prep3_1;
architecture Behave of prep3_1 is
 type STATE_TYPE is (sX,s0,sa,sb,sc,sd,se,sf,sg);
 signal state : STATE_TYPE; signal Oi : STD_LOGIC_VECTOR(7 downto 0);
begin
 O <= Oi;
 process (Reset, Clk) begin
 if (Reset = '1') then state <= s0; Oi <= (others => '0');
 elsif rising_edge(Clk) then
 case state is
 when s0 =>

 if (I = X"3c") then state <= sa; Oi <= X"82";
 else state <= s0; Oi <= (others => '0');
 end if;
 when sa =>
 if (I = X"2A") then state <= sc; Oi <= X"40";
 elsif (I = X"1F") then state <= sb; Oi <=
X"20";
 else state <= sa; Oi <= X"04";
 end if;
 when sb =>
 if (I = X"AA") then state <= se; Oi <= X"11";
 else state <= sf; Oi <= X"30";
 end if;
 when sc => state <= sd; Oi <= X"08";
 when sd => state <= sg; Oi <= X"80";
 when se => state <= s0; Oi <= X"40";
 when sf => state <= sg; Oi <= X"02";
 when sg => state <= s0; Oi <= X"01";
 when others => state <= sX; Oi <= (others => 'X');
 end case;
 end if;
 end process;
end;

10.60 (Edge detection, 30 min) Explain the construction of the IEEE 1164 function to detect the rising edge of a signal,
rising_edge(s) . List all the changes in signal s that correspond to a rising edge.

 function rising_edge (signal s : STD_ULOGIC) return BOOLEAN is
 begin return
 (s'EVENT and (To_X01(s) = '1') and (To_X01(s'LAST_VALUE) = '0')); end;

10.61 (*Real, 10 min.) Determine the smallest real in your VHDL environment.

10.62 (*Stop, 30 min.) How many ways are there to stop a VHDL simulator?

10.63 (*Arithmetic package, 60 min.) Write a function for an arithmetic package to subtract two's complement numbers.
Create a test bench to check your function. Your declarations in the package header should look like this:

type TC is array (INTEGER range <>) of STD_LOGIC;
function "-"(L : TC; R : TC) return TC;

10.64 (***Reading documentation, hours) There are a few gray areas in the interpretation of the VHDL-87 LRM some of
which were clarified in the VHDL-93 revision. One VHDL system has a "compatibility mode" that allows alternative
interpretations. For each of the following "issues" taken from the actual tool documentation try to interpret what was meant,
determine the interpretation taken by your own software, and then rewrite the explanation clearly using examples.

* "Unassociated variable and signal parameters. Compatibility mode allows variable and signal parameters to subprograms to
be unassociated if they have a default value. Otherwise, an error is generated."

Example answer: Consider the following code:

package Util_2 is
procedure C(signal Clk : out BIT; signal P : TIME := 10 ns);
end Util_2;
package body Util_2 is
procedure C(signal Clk : out BIT; signal P : TIME := 10 ns) is
begin loop Clk <= '1' after P/2, '0' after P;
wait for P; end loop; end; end Util_2;
entity Test_Compatibility_1 is end; use work.Util_2.all;
architecture Behave of Test_Compatibility_1 is
signal v,w,x,y,z : BIT; signal s : TIME := 5 ns;
begin process variable v : TIME := 5 ns; begin
C(v, s); -- parameter s is OK
since P is declared as signal
-- C(w, v); -- would be OK if P
is declared as variable instead
-- C(x, 5 ns); -- would be OK if P
is declared as constant instead
-- C(y); -- unassociated, an
error if P is signal or variable
-- C(z,open); -- open, an error if
P is signal or variable
end process; end;

The Compass Scout simulator (which does not have a compatibility mode) generates an error during analysis if a signal or
variable subprogram parameter is open or unassociated (a constant subprogram parameter may be unassociated or open).

* "Allow others in an aggregate within a record aggregate. The LRM [7.3.2.2] defines nine situations where others may
appear in an aggregate. In compatibility mode, a tenth case is added. In this case, others is allowed in an aggregate that
appears as an element association in a record element."

* " BIT'('1') parsed as BIT ' ('1') . The tick (') character is being used twice in this example. In the first case as
an attribute indicator, in the second case, to form a character literal. Without the compatibility option, the analyzer adopts a
strict interpretation of the LRM, and without white space around the first tick, the fragment is parsed as BIT '('1') , that
is, the left parenthesis ('(') is the character literal."

** "Generate statement declarative region. Generate statements form their own declarative region. In compatibility mode,
configuration specifications will apply to items being instantiated within a generate statement."

** "Allow type conversion functions on open parameters. If a parameter is specified as open, it indicates a parameter without
an explicit association. In such cases, the presence of a type conversion function is meaningless. Compatibility mode allows
the type conversion functions."

*** "Entity class flexibility. Section [3.1.2] of the LRM defines the process of creating a new integer type. The type name
given is actually assigned to a subtype name, related to an anonymous base type. This implies that the entity class used during
an attribute specification [LRM 5.1] should indicate subtype, rather than type. Because the supplied declaration was type rather
than subtype, compatibility mode allows type."

*** "Allowing declarations beyond an all/others specification. Section [5.1] of the LRM states that the first occurrence of the
reserved word all or others in an attribute specification terminates the declaration of the related entity class. The LRM
declares that the entity/architecture and package/package body library units form single declaration regions [LRM 10.1] that
are the concatenation of the two individual library declarative regions. For example, if a signal attribute specification with all
or others was specified in the entity, it would be impossible to declare a signal in the architecture. In compatibility mode,
this LRM limitation is removed."

*** "User-defined attributes on overloaded functions. In compatibility mode, user-defined attributes are allowed to be
associated with overloaded functions. Note: Even in compatibility mode, there is no way to retrieve the different attributes."

10.65 (*1076 interpretations, 30 min.) In a DAC paper, the author writes: `It was experienced that (company R) might have
interpreted IEEE 1076 differently than (company S) did, e.g. concatenations (&) are not allowed in "case selector" expressions
for (company S).' Can you use concatenation in your VHDL tool for either the expression or choices for a case
statement?

10.66 (**Interface declarations, 15 min.) Analyze the following and comment:

entity Interface_1 is
 generic (I : INTEGER; J : INTEGER := I; K, L : INTEGER);
 port (A : BIT_VECTOR; B : BIT_VECTOR(A'RANGE); C : BIT_VECTOR (K to L));
 procedure X(P, Q : INTEGER; R : INTEGER range P to Q);
 procedure Y(S : INTEGER range K to L);
end Interface_1;

10.67 (**Wait statement, 10 min.) Construct the sensitivity set and thus the sensitivity list for the following wait statement
(that is, rewrite the wait statement in the form wait on sensitivity_list until condition).

entity Complex_Wait is end;
architecture Behave of Complex_Wait is
 type A is array (1 to 5) of BOOLEAN;
 function F (P : BOOLEAN) return BOOLEAN;
 signal S : A; signal i, j : INTEGER range 1 to 5;
 begin process begin
 wait until F(S(3)) and (S(i) or S(j));
 end process;
end;

10.68 (**Shared variables, 20 min.) Investigate the following code and comment:

architecture Behave of Shared_1 is
subtype S is INTEGER range 0 to 1; shared variable C : S := 0; begin
process begin C := C + 1; wait; end process;
process begin C := C - 1; wait; end process;
end;

10.69 (Undocumented code and ranges, 20 min.) Explain the purpose of the following function (part of a package from a
well-known synthesis company) with a parameter of type SIGNED. Write a testbench to check your explanation. Investigate
what happens when you call this function with a string-literal argument, for example with the statement X <= IM("11100").
What is the problem and why does it happen? Rewrite the code, including documentation, to avoid this problem.

type SIGNED is array (NATURAL range <>) of BIT;
function IM (L : SIGNED) return INTEGER is variable M : INTEGER;

begin M := L'RIGHT-1;
 for i in L'LEFT-1 downto L'RIGHT loop
 if (L(i) = (not L(L'LEFT))) then M := i; exit; end if;
 end loop; return M;
end;

10.70 (Timing parameters, 20 min.) Write a model and a testbench for a two-input AND gate with separate rising (tpLH) and
falling (tpHL) delays using the following interface:

entity And_Process is
generic (tpLH, tpHL : TIME); port (a, b : BIT; z : out BIT) end;

10.71 (Passive code in entities, 30 min.) Write a procedure (CheckTiming, part of a package Timing_Pkg) to check that two
timing parameters (tPLH and tPHL) are both greater than zero. Include this procedure in a two-input AND gate model (
And_Process). Write a testbench to show your procedure and gate model both work. Rewrite the entity for
And_Process to include the timing check as part of the entity declaration. You are allowed to include passive code (no
assignments to signals and so on) directly in each entity. This avoids having to include the timing checks in each architecture.

10.72 (Buried code, 30 min.) Some companies bury instructions to the software within their packages. Here is an example of
part of the arithmetic package from an imaginary company called SissyN:

function UN_plus(A, B : UN) return UN is
variable CRY : STD_ULOGIC; variable X,SUM : UN (A'LEFT downto 0);
-- pragma map_to_operator ADD_UNS_OP
-- pragma type_function LEFT_UN_ARG
-- pragma return_port_name Z
begin
-- sissyn synthesis_off
if (A(A'LEFT) = 'X' or B(B'LEFT) = 'X') then SUM := (others => 'X');
return(SUM);
end if;
-- sissyn synthesis_on
CRY := '0'; X := B;
for i in 0 to A'LEFT loop
SUM(i) := A(i) xor X(i) xor carry;
CRY := (A(i) and X(i)) or (A(i) and CRY) or (CRY and X(i));
end loop; return SUM;
end;

Explain what this function does. Can you now hazard a guess at what each of the comments means? What are the
repercussions of using comments in this fashion?

10.73 (*Deferred constants, 15 min.) "If the assignment symbol ':=' followed by an expression is not present in a constant
declaration, then the declaration declares a deferred constant. Such a constant declaration may only appear in a package
declaration. The corresponding full constant declaration, which defines the value of the constant, must appear in the body of
the package" [VHDL 93LRM4.3.1.1].

package Constant is constant s1, s2 : BIT_VECTOR; end Constant;
package body Constant is
constant s0 : BIT_VECTOR := "00"; constant s1 : BIT_VECTOR := "01";
end Constant;

It is tempting to use deferred constants to hide information. However, there are problems with this approach. Analyze the
following code, explain the results, and correct the problems:

entity Deferred_1 is end; architecture Behave of Deferred_1 is
use work.all; signal y,i1,i2 : INTEGER; signal sel : INTEGER range 0 to 1;
begin with sel select y <= i1 when s0, i2 when s1; end;

10.74 (***Viterbi code, days) Convert the Verilog model of the Viterbi decoder in Chapter 11 to VHDL. This problem is
tedious without the help of some sort of Verilog to VHDL conversion process. There are two main approaches to this problem.
The first uses a synthesis tool to read the behavioral Verilog and write structural VHDL (the Compass ASIC Synthesizer can
do this, for example). The second approach uses conversion programs (Alternative System Concepts Inc. at
http://www.ascinc.com is one source). Some of these companies allow you to e-mail code to them and they will
automatically return a translated version.

10.75 (*Wait statement, 30 min.) Rewrite the code below using a single wait statement and write a testbench to prove that
both approaches are exactly equivalent:

entity Wait_Exit is port (Clk : in BIT); end;
architecture Behave of Wait_Exit is
 begin process begin
 loop wait on Clk; exit when Clk = '1'; end loop;
 end process;
end;

10.76 (Expressions, 10 min.) Explain and correct the problems with the following:

variable b : BOOLEAN; b := "00" < "11";
variable bv8 : BIT_VECTOR (7 downto 0) := "1000_0000";

10.77 (Combinational logic using case statement, 10 min.) A Verilog user suggests the following method to model
combinational logic. What are the problems with this approach? Can you get it to work?

entity AndCase is port (a, b : BIT; y : out BIT); end;
architecture Behave of AndCase is begin process (a , b) begin
 case a & b is
 when '1'&'1' => y <= '1'; when others => y <= '0';
 end case;
end process; end;

10.78 (*Generics and back-annotation, 60 min.)

Construct design entities And_3(Behave), a two-input AND gate, and Xor_3(Behave) , a two-input XOR gate. Include
generic constants to model the propagation delay from each input to the output separately. Use the following entity declaration
for And_3:

entity And_3 is port (I1, I2 : BIT; O : out BIT);
 generic (I1toO, I2toO : DELAY_LENGTH := 0.4 ns); end;

Create and test a package, P_1, that contains And_3 and Xor_3 as components.

Create and test a design entity Half_Adder_3 (Structure_3) that uses P_1, with the following interface:

entity Half_Adder_3 is port (X, Y : BIT; Sum, Carry : out BIT); end;

Modify and test the architecture Structure_3 for Half_Adder_3 so that you can use the following configuration:

configuration Structure_3 of Half_Adder_3 is
for Structure_3
for L1 : XOR generic map (0.66 ns,0.69 ns); end for;
for L2 : AND generic map (0.5 ns, 0.6 ns) port map (I2 => HI); end for;
end for; end;

10.79 (SNUG'95, *60 min.) In 1995 John Cooley organized a contest between VHDL and Verilog for ASIC designers. The
goal was to design the fastest 9-bit counter in under one hour using Synopsys synthesis tools and an LSI Logic vendor
technology library. The VHDL interface is as follows:

library ieee; use ieee.std_logic_1164.all;
-- use ieee.std_logic_arith.all; -- substitute your package here
entity counter is port (
data_in : in std_logic_vector(8 downto 0);
up : in std_logic;
down : in std_logic;
clock : in std_logic;
count_out : inout std_logic_vector(8 downto 0);
carry_out : out std_logic;
borrow_out : out std_logic;
parity_out : out std_logic); end counter;
architecture example of counter is begin
-- insert your design here
end example;

The counter is positive-edge triggered, counts up with up = '1' and down with down = '1' . The contestants had the
advantage of a predefined testbench with a set of test vectors, you do not. Design a model for the counter and a testbench. How
confident are you that you have thoroughly tested your model? (In the real contest none of the VHDL contestants managed to
even complete a working design in under one hour. In addition, the VHDL experts that had designed the testbench omitted a
test case for one of the design specifications.)

10.80 (*A test procedure, 45 min.) Write a procedure all (for a package test) that serially generates all possible input
values for a signal spaced in time by a delay, dly . Use the following interface:

library ieee; use ieee.std_logic_1164.all; package test is
procedure all (signal SLV : out STD_LOGIC_VECTOR; dly : in TIME);
end package test ;

10.81 (Direct instantiation, 20 min.) Write an architecture for a full-adder, entity Full_Adder_2, that directly instantiates units
And_2(Behave) and Xor_2(Behave). This is only possible in a VHDL-93 environment.

entity And_2 is port (i1, i2 : BIT; y : out BIT); end;
entity Xor_2 is port (i1, i2 : BIT; y : out BIT); end;
entity Full_Adder_2 is port (a, b, c : BIT ; sum, cout : out BIT); end;

10.82 (**Shift operators for 1164, 60 min.) Write a package body to implement the VHDL-93 shift operators, sll and srl, for
the type STD_LOGIC_VECTOR. Use the following package header:

package 1164_shift is
function "sll"(x : STD_LOGIC_VECTOR; n : INTEGER)
 return STD_LOGIC_VECTOR;
function "srl"(x : STD_LOGIC_VECTOR; n : INTEGER)
 return STD_LOGIC_VECTOR;
end package 1164_shift;

10.83 (**VHDL wait statement, 60 min.) What is the problem with the following VHDL code? Hint: You may need to
consult the VHDL LRM.

procedure p is begin wait on b; end;
process (a) is begin procedure p; end process;

10.84 (**Null range, 45 min.) A range such as 1 to -1 or 0 downto 1 is a null range (0 to 0 is a legal range). Write
a one-page summary on null ranges, including code examples. Is a null range treated as an ascending or descending range?

10.85 (**Loops, 45 min.) Investigate the following issues with loops, including code examples and the results of analysis and
simulation:

Try to alter the loop parameter within a loop. What happens?

What is the type of the loop parameter?

Can the condition inside a loop depend on a loop parameter?

What happens in a for loop if the range is null?

Can you pass a loop parameter out of a procedure as a procedure parameter?

10.86 (Signals and variables, 30 min.) Write a summary on signals and variables, including code examples.

10.87 (Type conversion, 60 min.) There are some very subtle rules involving type conversion, [VHDL 93LRM7.3.5]. Does the
following work? Explain the type conversion rules.

BV <= BIT_VECTOR("1111");

10.19 Bibliography
The definitive reference guide to VHDL is the IEEE VHDL LRM [IEEE,
1076-1993]. The LRM is initially difficult to read because it is concise and
precise (the LRM is intended for tool builders and experienced tool users, not as
a tutorial). The LRM does form a useful reference--as does a dictionary for
serious users of any language. You might think of the LRM as a legal contract
between you and the company that sells you software that is compliant with the
standard. VHDL software uses the terminology of the LRM for error messages,
so it is necessary to understand the terms and definitions of the LRM. The
WAVES standard [IEEE 1029.1-1991] deals with the problems of interfacing
VHDL testbenches to testers.

VHDL International maintains VIUF (VHDL International Users' Forum)
Internet Services (http:/www.vhdl.org) and links to other groups
working on VHDL including the IEEE synthesis packages, IEEE WAVES
packages, and IEEE VITAL packages (see also Appendix A).

The frequently asked questions (FAQ) list for the VHDL newsgroup
comp.lang.vhdl is a useful starting point (the list is archived at
gopher://kona.ee.pitt.edu/h0/NewsGroupArchives).
Information on character sets and the problems of exchanging information across
national boundaries can be found at
ftp://watsun.cc.columbia.edu/kermit/charsets .

10.20 References
Page numbers in brackets after the reference indicate the location in the chapter
body.

IEEE 1029.1-1991. IEEE Standard for Waveform and Vector Exchange
(WAVES). IEEE Std 1029.1-1991. The Institute of Electrical and Electronics
Engineers, Inc., New York. Available from The Institute of Electrical and
Electronics Engineers, Inc., 345 East 47th Street, New York, NY 10017 USA.

IEEE 1076-1993. IEEE Standard VHDL Language Reference Manual (ANSI).
IEEE Std. 1076-1993. The Institute of Electrical and Electronics Engineers, Inc.,
New York. Available from The Institute of Electrical and Electronics Engineers,
Inc., 345 East 47th Street, New York, NY 10017 USA. [p. 380]

IEEE 1076.2-1996. Standard VHDL Language Mathematical Packages. IEEE
Ref. AD129-NYF. Approved by IEEE Standards Board on 19 September 1996.
[p. 404].

ISO 8859-1. 1987 (E). Information Processing--8-bit single-byte coded graphic
character sets--Part 1: Latin Alphabet No. 1. American National Standards
Institute, Hackensack, NJ; 1987. Available from Sales Department, American
National Standards Institute, 105-111 South State Street, Hackensack, NJ 07601
USA. [p. 391]

IEEE Language Reference Manual project

This material is an experimental project to link ASICs... the book with the IEEE
VHDL Language Reference Manual. The VHDL-93 LRM was published on
CD-ROM in 1997, but contained errors. The VHDL LRM and the CD-ROM are
both copyright material, and vigorously protected by the IEEE. This project is not
intended for public distribution and access is therefore protected.

The first part of the project was to find/eliminate the errors in the
CD-ROM version of VHDL-93 LRM (these have been found and
corrected).

1.

The second part was to link the LRM with the text (this is complete, see
the index of chapters in HTML format)

2.

The third part is to merge educational material developed by the US
Department of Defence (DoD) DARPA sponsored RASSP project with the
LRM and ASICs... the book. Without the support of the IEEE or DARPA,
and with no easy resolution to copyright problems, it is currently
impossible to complete this project.

3.

LRM Table of Contents●

LRM Section 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14●

LRM Annex A B C D E●

LRM Index●

Some notes for people working on and with this
project material

References to the IEEE LRM in my HTML pages are of the form:

93LRM2.2]

to turn these off (so that people cannot access the LRM, for example) you need to
insert comment tags around the HTML reference tags:

<!----> and <!---->

Search and replace for HTML (grep format for BBEdit)

search for: </PRE>/r<PRE CLASS="Computer[a-zA-z]+">

replace with: null

search for: (<PRE CLASS="Computer[^"]+">)

replace with: \1

search for: /r
replace with:

search for: <TABLE>
replace with: <TABLE BORDER="1" CELLSPACING="2"
CELLPADDING="2">

search for: <SUB CLASS="Subscript">
replace with: <SUB>

search for: <P CLASS="Symbol">([a-zA-z])</P>
replace with: \1

search for: <P CLASS="Symbol">¥</P>
replace with: ¥

Some of the material in this website is protected using access control.

The IEEE VHDL LRM material on which the LRM project is based is copyright
and therefore access is protected with the following .htaccess file:
<Limit GET>
order deny,allow
deny from all
allow from .eng.hawaii.edu
allow from 128.171.61
</Limit>

Web-page access control

In order to control access to Web pages, NCSA and Apache servers (and many
others) look for a file named .htaccess in each directory along the path to a
Web page. The lowest level .htaccess file (i.e. that closest to the Web page)
determines access. There are two styles of access control.

Domain-name based access control

The first and simplest type of access control restricts access to machines which
have a hostname that match a pattern. For example placing these lines in a file
named .htaccess in a directory

Options All
<Limit GET>
order deny,allow
deny from all
allow from .edu
</Limit>

restricts access to that directory to those hostnames whose domain names end in
.edu.

Password-based access control

To implement password access control, an .htaccess file looks like this

Options All
AuthType Basic
AuthName [message]
AuthUserFile .passwd
<Limit GET>
require valid-user
</Limit>

You need a copy of the htpasswd program to establish user names and assign
passwords.

The message in the square brackets is a text string that will be displayed to the
user when they are prompted for the password. The password file does not have
to located in the same directory as the .htaccess file.

For more information, see the NCSA HTTPd access configuration
documentation.

Errors in IEEE VHDL CD-ROM

Document titles

The documents all have titles:

VHDL LRM- Introduction

(sometimes this is repeated multiple times) except 1076_TOC.HTM which has the
title:

1076 -- Table of Contents

Broken links

20 missing or broken links (from Adobe PageMill 2.0):

Broken links:

Problem: In 3.1.4 and 3.1.4.1 (see below) there are four bad links attached to

the number '1.0'.

Fix: remove the links.

3.1.4 Floating point types

...

An implementation may restrict the bounds of the range constraint of floating point
types other than type universal_real. However, an implementation must allow the
declaration of any floating point type whose range is wholly contained within the
bounds - 1.0 E38 and + 1.0 E38 inclusive. The representation of floating point
types must include a minimum of six decimal digits of precision.

NOTE--An implementation is not required to detect errors in the execution of a
predefined floating point arithmetic operation, since the detection of overflow
conditions resulting from such operations may not be easily accomplished on many
host systems.

3.1.4.1 Predefined floating point types

The only predefined floating point type is the type REAL. The range of REAL is
host-dependent, but it is guaranteed to include the range - 1.0 E38 to + 1.0 E38
inclusive. It is defined with an ascending range.

Problem: Bad link in
Index (1076_INA.HTM)

Fix: change to

Note: Reference to object is quite far into Section 14.2. It would be better to
add another anchor, but this is the simplext fix.

Problem: Bad link in Index
(1076_INA.HTM)

Fix: Line 2189 in 1076_14.HTM change

NOTES

to

NOTES

Problem: Line 1670 in Index (1076_INA.HTM)

Fix: change to

Problem: bad link in Index (1076_INA.HTM)

Fix: change to

Problem: bad link in Index (1076_INA.HTM)

Fix: change to

Problem: bad link in Index (1076_INA.HTM)

Fix: change to

Problem: multiple bad links in Index (1076_INA.HTM)

Fix: change all to

Problem: bad link in Index (1076_INA.HTM)

Fix: change to

Problem: multiple bad links in Index (1076_INA.HTM)

Fix: change all to

Problem: bad link in Index (1076_INA.HTM)

Fix: change to

Problem: bad link in Index (1076_INA.HTM)

Fix: change to

Problem: bad link in Index (1076_INA.HTM)

Fix: change to

Problem: bad link in Index (1076_INA.HTM)

Fix: change to

Problem: bad link in Index (1076_INA.HTM)

Fix: change to

Problem: in 1076_9.HTM (see 2.6.4

Fix: change to (see 12.6.4

Problem: in 1076_AXD.HTM 4.3.4

Fix: change to 4.3.4

Note: There is a Section 4.3.4 Alias Declaration in 1076-87 there is no
Section 4.3.4 in 1076-93. There is a Section 4.3.3 Alias declarations in
1076-93.

Problem: in 1076_AXB.HTM 7.5.2

Fix: change to 7.4.2

Note: There is no Section 7.5.2. Section 7.4.2 Globally static primaries parts
g and h deal with aggregates.

Problem: in 1076_2.HTM 8.1.4

Fix: Until I can find out what this is supposed to be, I'll leave it alone.

Note: There is no Section 8.1.4.

Problem: in 1076_AXD.HTM 8.3.1

Fix: change to 8.3.1

Note: There is no Section 8.3.1 in 1076-93. There is a Section 8.3.1 Updating
a Projected Output Waveform in 1076-87.

Error in formatting and content in Section 8.

What it currently looks like:

What it should look like:

Minor errors in formatting and content in the Index

CHAPTER 11
VERILOG HDL

In this chapter we look at the Verilog hardware description language. Gateway
Design Automation developed Verilog as a simulation language. The use of the
Verilog-XL simulator is discussed in more detail in Chapter 13. Cadence
purchased Gateway in 1989 and, after some study, placed the Verilog language in
the public domain. Open Verilog International (OVI) was created to develop the
Verilog language as an IEEE standard. The definitive reference guide to the
Verilog language is now the Verilog LRM, IEEE Std 1364-1995 [1995]. 1 This
does not mean that all Verilog simulators and tools adhere strictly to the IEEE
Standard--we must abide by the reference manual for the software we are using.
Verilog is a fairly simple language to learn, especially if you are familiar with the
C programming language. In this chapter we shall concentrate on the features of
Verilog applied to high-level design entry and synthesis for ASICs.

1. Some of the material in this chapter is reprinted with permission from IEEE
Std 1364-1995, © Copyright 1995 IEEE. All rights reserved.

Last Edited by SP 14112004

11.1 A Counter
The following Verilog code models a "black box" that contains a 50 MHz clock (period 20 ns), counts from 0 to 7, resets,
and then begins counting at 0 again:

`timescale 1ns/1ns // Set the units of time to be nanoseconds.
module counter;
 reg clock; // Declare a reg data type for the clock.
 integer count; // Declare an integer data type for the count.
initial // Initialize things; this executes once at t=0.
 begin
 clock = 0; count = 0; // Initialize signals.
 #340 $finish; // Finish after 340 time ticks.
 end
/* An always statement to generate the clock; only one statement follows the always
so we don't need a begin and an end. */
always #10 clock = ~ clock; // Delay (10ns) is set to half the clock cycle.
/* An always statement to do the counting; this executes at the same time
(concurrently) as the preceding always statement. */
always begin // Wait here until the clock goes from 1 to 0.
 @ (negedge clock);
 // Now handle the counting.
 if (count == 7)
 count = 0;
 else count = count + 1;
 $display("time = ",$time," count = ", count);
 end
endmodule

Verilog keywords (reserved words that are part of the Verilog language) are shown in bold type in the code listings (but not
in the text). References in this chapter such as [Verilog LRM 1.1] refer you to the IEEE Verilog LRM.

The following output is from the Cadence Verilog-XL simulator. This example includes the system input so you can see
how the tool is run and when it is finished. Some of the banner information is omitted in the listing that follows to save
space (we can use "quiet" mode using a '-q' flag, but then the version and other useful information is also suppressed):

> verilog counter.v
VERILOG-XL 2.2.1 Apr 17, 1996 11:48:18
 ... Banner information omitted here...
Compiling source file "counter.v"
Highest level modules:
counter
time = 20 count = 1
time = 40 count = 2
(... 12 lines omitted...)
time = 300 count = 7
time = 320 count = 0
L10 "counter.v": $finish at simulation time 340
223 simulation events
CPU time: 0.6 secs to compile + 0.2 secs to link + 0.0 secs in simulation
End of VERILOG-XL 2.2.1 Apr 17, 1996 11:48:20
>

Here is the output of the VeriWell simulator from the console window (future examples do not show all of the compiler
output-- just the model output):

Veriwell -k VeriWell.key -l VeriWell.log -s :counter.v
... banner information omitted

Memory Available: 0
Entering Phase I...
Compiling source file : :counter.v
The size of this model is [1%, 1%] of the capacity of the free version
Entering Phase II...
Entering Phase III...
No errors in compilation
Top-level modules:
 counter
C1> .
time = 20 count = 1
time = 40 count = 2
(... 12 lines omitted...)
time = 300 count = 7
time = 320 count = 0
Exiting VeriWell for Macintosh at time 340
0 Errors, 0 Warnings, Memory Used: 29468
Compile time = 0.6, Load time = 0.7, Simulation time = 4.7
Normal exit
Thank you for using VeriWell for Macintosh

11.2 Basics of the Verilog Language
A Verilog identifier [Verilog LRM2.7], including the names of variables, may contain any sequence of letters, digits, a
dollar sign '$' , and the underscore '_' symbol. The first character of an identifier must be a letter or underscore; it
cannot be a dollar sign '$' , for example. We cannot use characters such as '-' (hyphen), brackets, or '#' (for
active-low signals) in Verilog names (escaped identifiers are an exception). The following is a shorthand way of saying
the same thing:

identifier ::= simple_identifier | escaped_identifier
simple_identifier ::= [a-zA-Z][a-zA-Z_$]
escaped_identifier ::=
 \ {Any_ASCII_character_except_white_space} white_space
white_space ::= space | tab | newline

If we think of '::=' as an equal sign, then the preceding "equation" defines the syntax of an identifier. Usually we use
the Backus-Naur form (BNF) to write these equations. We also use the BNF to describe the syntax of VHDL. There is an
explanation of the BNF in Appendix A. Verilog syntax definitions are given in Appendix B. In Verilog all names,
including keywords and identifiers, are case-sensitive. Special commands for the simulator (a system task or a system
function) begin with a dollar sign '$' [Verilog LRM 2.7]. Here are some examples of Verilog identifiers:

module identifiers;
/* Multiline comments in Verilog
 look like C comments and // is OK in here. */
// Single-line comment in Verilog.
reg legal_identifier,two__underscores;
reg _OK,OK_,OK_$,OK_123,CASE_SENSITIVE, case_sensitive;
reg \/clock ,\a*b ; // Add white_space after escaped identifier.
//reg $_BAD,123_BAD; // Bad names even if we declare them!
initial begin
legal_identifier = 0; // Embedded underscores are OK,
two__underscores = 0; // even two underscores in a row.
_OK = 0; // Identifiers can start with underscore
OK_ = 0; // and end with underscore.
OK$ = 0; // $ sign is OK, but beware foreign keyboards.
OK_123 =0; // Embedded digits are OK.
CASE_SENSITIVE = 0; // Verilog is case-sensitive (unlike VHDL).
case_sensitive = 1;
\/clock = 0; // An escaped identifier with \ breaks rules,
\a*b = 0; // but be careful to watch the spaces!
$display("Variable CASE_SENSITIVE= %d",CASE_SENSITIVE);
$display("Variable case_sensitive= %d",case_sensitive);
$display("Variable \/clock = %d",\/clock);
$display("Variable \\a*b = %d",\a*b);
end endmodule

The following is the output from this model (future examples in this chapter list the simulator output directly after the
Verilog code).

Variable CASE_SENSITIVE= 0
Variable case_sensitive= 1
Variable /clock = 0
Variable \a*b = 0

11.2.1 Verilog Logic Values
Verilog has a predefined logic-value system or value set [Verilog LRM 3.1] that uses four logic values: '0' , '1' ,
'x' , and 'z' (lowercase 'x' and lowercase 'z'). The value 'x' represents an uninitialized or an unknown logic
value--an unknown value is either '1' , '0' , 'z' , or a value that is in a state of change. The logic value 'z'
represents a high-impedance value, which is usually treated as an 'x' value. Verilog uses a more complicated internal
logic-value system in order to resolve conflicts between different drivers on the same node. This hidden logic-value
system is useful for switch-level simulation, but for most ASIC simulation and synthesis purposes we do not need to
worry about the internal logic-value system.

11.2.2 Verilog Data Types
There are several data types in Verilog--all except one need to be declared before we can use them. The two main data
types are nets and registers [Verilog LRM 3.2]. Nets are further divided into several net types. The most common and
important net types are: wire and tri (which are identical); supply1 and supply0 (which are equivalent to the positive
and negative power supplies respectively). The wire data type (which we shall refer to as just wire from now on) is
analogous to a wire in an ASIC. A wire cannot store or hold a value. A wire must be continuously driven by an
assignment statement (see Section 11.5). The default initial value for a wire is 'z' [Verilog LRM3.6]. There are also
integer, time, event, and real data types.

module declarations_1;
wire pwr_good, pwr_on, pwr_stable; // Explicitly declare wires.
integer i; // 32-bit, signed (2's complement).
time t; // 64-bit, unsigned, behaves like a 64-bit reg.
event e; // Declare an event data type.
real r; // Real data type of implementation defined size.
// An assign statement continuously drives a wire:
assign pwr_stable = 1'b1; assign pwr_on = 1; // 1 or 1'b1
assign pwr_good = pwr_on & pwr_stable;
initial begin
i = 123.456; // There must be a digit on either side
r = 123456e-3; // of the decimal point if it is present.
t = 123456e-3; // Time is rounded to 1 second by default.
$display("i=%0g",i," t=%6.2f",t," r=%f",r);
#2 $display("TIME=%0d",$time," ON=",pwr_on,
 " STABLE=",pwr_stable," GOOD=",pwr_good);
$finish; end
endmodule
i=123 t=123.00 r=123.456000
TIME=2 ON=1 STABLE=1 GOOD=1

A register data type is declared using the keyword reg and is comparable to a variable in a programming language. On
the LHS of an assignment a register data type (which we shall refer to as just reg from now on) is updated immediately
and holds its value until changed again. The default initial value for a reg is 'x' . We can transfer information directly
from a wire to a reg as shown in the following code:

module declarations_2;
reg Q, Clk; wire D;
// Drive the wire (D):
assign D = 1;
// At a +ve clock edge assign the value of wire D to the reg Q:
always @(posedge Clk) Q = D;
initial Clk = 0; always #10 Clk = ~ Clk;
initial begin #50; $finish; end
always begin
$display("T=%2g", $time," D=",D," Clk=",Clk," Q=",Q); #10; end
endmodule
T= 0 D=z Clk=0 Q=x
T=10 D=1 Clk=1 Q=x
T=20 D=1 Clk=0 Q=1
T=30 D=1 Clk=1 Q=1

T=40 D=1 Clk=0 Q=1

We shall discuss assignment statements in Section 11.5. For now, it is important to recognize that a reg is not always
equivalent to a hardware register, flip-flop, or latch. For example, the following code describes purely combinational
logic:

module declarations_3;
reg a,b,c,d,e;
initial begin
 #10; a = 0;b = 0;c = 0;d = 0; #10; a = 0;b = 1;c = 1;d = 0;
 #10; a = 0;b = 0;c = 1;d = 1; #10; $stop;
end
always begin
 @(a or b or c or d) e = (a|b)&(c|d);
 $display("T=%0g",$time," e=",e);
end
endmodule
T=10 e=0
T=20 e=1
T=30 e=0

A single-bit wire or reg is a scalar (the default). We may also declare a wire or reg as a vector with a range of
bits [Verilog LRM 3.3]. In some situations we may use implicit declaration for a scalar wire ; it is the only data type we
do not always need to declare. We must use explicit declaration for a vector wire or any reg . We may access (or
expand) the range of bits in a vector one at a time, using a bit-select, or as a contiguous subgroup of bits (a continuous
sequence of numbers--like a straight in poker) using a part-select [Verilog LRM 4.2]. The following code shows some
examples:

module declarations_4;
wire Data; // A scalar net of type wire.
wire [31:0] ABus, DBus; // Two 32-bit-wide vector wires:
// DBus[31] = leftmost = most-significant bit = msb
// DBus[0] = rightmost = least-significant bit = lsb
// Notice the size declaration precedes the names.
// wire [31:0] TheBus, [15:0] BigBus; // This is illegal.
reg [3:0] vector; // A 4-bit vector register.
reg [4:7] nibble; // msb index < lsb index is OK.
integer i;
initial begin
i = 1;
vector = 'b1010; // Vector without an index.
nibble = vector; // This is OK too.
#1; $display("T=%0g",$time," vector=", vector," nibble=", nibble);
#2; $display("T=%0g",$time," Bus=%b",DBus[15:0]);
end
assign DBus [1] = 1; // This is a bit-select.
assign DBus [3:0] = 'b1111; // This is a part-select.
// assign DBus [0:3] = 'b1111; // Illegal : wrong direction.
endmodule
T=1 vector=10 nibble=10
T=3 Bus=zzzzzzzzzzzz1111

There are no multidimensional arrays in Verilog, but we may declare a memory data type as an array of registers
[Verilog LRM 3.8]:

module declarations_5;
reg [31:0] VideoRam [7:0]; // An 8-word by 32-bit wide memory.
initial begin
VideoRam[1] = 'bxz; // We must specify an index for a memory.
VideoRam[2] = 1;
VideoRam[7] = VideoRam[VideoRam[2]]; // Need 2 clock cycles for this.

VideoRam[8] = 1; // Careful! the compiler won't complain about this!
// Verify what we entered:
$display("VideoRam[0] is %b",VideoRam[0]);
$display("VideoRam[1] is %b",VideoRam[1]);
$display("VideoRam[2] is %b",VideoRam[2]);
$display("VideoRam[7] is %b",VideoRam[7]);
end
endmodule
VideoRam[0] is xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
VideoRam[1] is xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxz
VideoRam[2] is 00000000000000000000000000000001
VideoRam[7] is xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxz

We may also declare an integer array or time array in the same way as an array of reg , but there are no real arrays
[Verilog LRM 3.9]:

module declarations_6;
integer Number [1:100]; // Notice that size follows name
time Time_Log [1:1000]; // - as in an array of reg.
// real Illegal [1:10]; // Illegal. There are no real arrays.
endmodule

11.2.3 Other Wire Types
There are the following other Verilog wire types (rarely used in ASIC design) [Verilog LRM 3.7]:

wand , wor , triand , and trior model wired logic. Wiring, or dotting, the outputs of two gates generates a
logic function (in emitter-coupled logic, ECL, or in an EPROM, for example). This is one area in which the logic
values 'z' and 'x' are treated differently.

●

tri0 and tri1 model resistive connections to VSS or VDD.●

trireg is like a wire but associates some capacitance with the net, so it can model charge storage.●

There are also other keywords that may appear in declarations:

scalared and vectored are properties of vectors [Verilog LRM 3.3].●

small , medium , and large model the charge strength of trireg connections [Verilog LRM 7].●

11.2.4 Numbers
Constant numbers are integer or real constants [Verilog LRM 2.5]. Integer constants are written as

width'radix value

where width and radix are optional. The radix (or base) indicates the type of number: decimal (d or D), hex (h
or H), octal (o or O), or binary (b or B). A number may be sized or unsized. The length of an unsized number is
implementation dependent. We can use '1' and '0' as numbers since they cannot be identifiers, but we must write
1'bx and 1'bz for 'x' and 'z' . A number may be declared as a parameter [Verilog LRM 3.10]. A parameter
assignment belongs inside a module declaration and has local scope [Verilog LRM3.11]. Real constants are written
using decimal (100.0) or scientific notation (1e2) and follow IEEE Std 754-1985 for double-precision floating-point
numbers. Reals are rounded to the nearest integer, ties (numbers that end in .5) round away from zero [Verilog LRM
3.9], but not all implementations follow this rule (the output from the following code is from VeriWell, which rounds
ties toward zero for negative integers).

module constants;
parameter H12_UNSIZED = 'h 12; // Unsized hex 12 = decimal 18.
parameter H12_SIZED = 6'h 12; // Sized hex 12 = decimal 18.
// Note: a space between base and value is OK.
// Note: `' (single apostrophes) are not the same as the ' character.
parameter D42 = 8'B0010_1010; // bin 101010 = dec 42
// OK to use underscores to increase readability.
parameter D123 = 123; // Unsized decimal (the default).
parameter D63 = 8'o 77; // Sized octal, decimal 63.
// parameter ILLEGAL = 1'o9; // No 9's in octal numbers!

// A = 'hx and B = 'ox assume a 32 bit width.
parameter A = 'h x, B = 'o x, C = 8'b x, D = 'h z, E = 16'h ????;
// Note the use of ? instead of z, 16'h ???? is the same as 16'h zzzz.
// Also note the automatic extension to a width of 16 bits.
reg [3:0] B0011,Bxxx1,Bzzz1; real R1,R2,R3; integer I1,I3,I_3;
parameter BXZ = 8'b1x0x1z0z;
initial begin
B0011 = 4'b11; Bxxx1 = 4'bx1; Bzzz1 = 4'bz1; // Left padded.
R1 = 0.1e1; R2 = 2.0; R3 = 30E-01; // Real numbers.
I1 = 1.1; I3 = 2.5; I_3 = -2.5; // IEEE rounds away from 0.
end initial begin #1;
$display
("H12_UNSIZED, H12_SIZED (hex) = %h, %h",H12_UNSIZED, H12_SIZED);
$display("D42 (bin) = %b",D42," (dec) = %d",D42);
$display("D123 (hex) = %h",D123," (dec) = %d",D123);
$display("D63 (oct) = %o",D63);
$display("A (hex) = %h",A," B (hex) = %h",B);
$display("C (hex) = %h",C," D (hex) = %h",D," E (hex) = %h",E);
$display("BXZ (bin) = %b",BXZ," (hex) = %h",BXZ);
$display("B0011, Bxxx1, Bzzz1 (bin) = %b, %b, %b",B0011,Bxxx1,Bzzz1);
$display("R1, R2, R3 (e, f, g) = %e, %f, %g", R1, R2, R3);
$display("I1, I3, I_3 (d) = %d, %d, %d", I1, I3, I_3);
end
endmodule
H12_UNSIZED, H12_SIZED (hex) = 00000012, 12
D42 (bin) = 00101010 (dec) = 42
D123 (hex) = 0000007b (dec) = 123
D63 (oct) = 077
A (hex) = xxxxxxxx B (hex) = xxxxxxxx
C (hex) = xx D (hex) = zzzzzzzz E (hex) = zzzz
BXZ (bin) = 1x0x1z0z (hex) = XZ
B0011, Bxxx1, Bzzz1 (bin) = 0011, xxx1, zzz1
R1, R2, R3 (e, f, g) = 1.000000e+00, 2.000000, 3
I1, I3, I_3 (d) = 1, 3, -2

11.2.5 Negative Numbers
Integer numbers are signed (two's complement) or unsigned. The following example illustrates the handling of negative
constants [Verilog LRM 3.2 , 4.1]:

module negative_numbers;
parameter PA = -12, PB = -'d12, PC = -32'd12, PD = -4'd12;
integer IA , IB , IC , ID ; reg [31:0] RA , RB , RC , RD ;
initial begin #1;
IA = -12; IB = -'d12; IC = -32'd12; ID = -4'd12;
RA = -12; RB = -'d12; RC = -32'd12; RD = -4'd12; #1;
$display(" parameter integer reg[31:0]");
$display ("-12 =",PA,IA,,,RA);
$displayh(" ",,,,PA,,,,IA,,,,,RA);
$display ("-'d12 =",,PB,IB,,,RB);
$displayh(" ",,,,PB,,,,IB,,,,,RB);
$display ("-32'd12 =",,PC,IC,,,RC);
$displayh(" ",,,,PC,,,,IC,,,,,RC);
$display ("-4'd12 =",,,,,,,,,,PD,ID,,,RD);
$displayh(" ",,,,,,,,,,,PD,,,,ID,,,,,RD);
end
endmodule
 parameter integer reg[31:0]
-12 = -12 -12 4294967284
 fffffff4 fffffff4 fffffff4
-'d12 = 4294967284 -12 4294967284
 fffffff4 fffffff4 fffffff4

-32'd12 = 4294967284 -12 4294967284
 fffffff4 fffffff4 fffffff4
-4'd12 = 4 -12 4294967284
 4 fffffff4 fffffff4

Verilog only "keeps track" of the sign of a negative constant if it is (1) assigned to an integer or (2) assigned to a
parameter without using a base (essentially the same thing). In other cases (even though the bit representations may
be identical to the signed number--hexadecimal fffffff4 in the previous example), a negative constant is treated as an
unsigned number. Once Verilog "loses" the sign, keeping track of signed numbers becomes your responsibility (see also
Section 11.3.1).

11.2.6 Strings
The code listings in this book use Courier font. The ISO/ANSI standard for the ASCII code defines the characters, but
not the appearance of the graphic symbol in any particular font. The confusing characters are the quote and accent
characters:

module characters; /*
" is ASCII 34 (hex 22), double quote.
' is ASCII 39 (hex 27), tick or apostrophe.
/ is ASCII 47 (hex 2F), forward slash.
\ is ASCII 92 (hex 5C), back slash.
` is ASCII 96 (hex 60), accent grave.
| is ASCII 124 (hex 7C), vertical bar.
There are no standards for the graphic symbols for codes above 128.
´ is 171 (hex AB), accent acute in almost all fonts.
" is 210 (hex D2), open double quote, like 66 (in some fonts).
" is 211 (hex D3), close double quote, like 99 (in some fonts).
` is 212 (hex D4), open single quote, like 6 (in some fonts).
' is 213 (hex D5), close single quote, like 9 (in some fonts).
*/ endmodule

Here is an example showing the use of string constants [Verilog LRM 2.6]:

module text;
parameter A_String = "abc"; // string constant, must be on one line
parameter Say = "Say \"Hey!\"";
// use escape quote \" for an embedded quote
parameter Tab = "\t"; // tab character
parameter NewLine = "\n"; // newline character
parameter BackSlash = "\\"; // back slash
parameter Tick = "\047"; // ASCII code for tick in octal
// parameter Illegal = "\500"; // illegal - no such ASCII code
initial begin$display("A_String(str) = %s ",A_String," (hex) = %h ",A_String);
$display("Say = %s ",Say," Say \"Hey!\"");
$display("NewLine(str) = %s ",NewLine," (hex) = %h ",NewLine);
$display("\\(str) = %s ",BackSlash," (hex) = %h ",BackSlash);
$display("Tab(str) = %s ",Tab," (hex) = %h ",Tab,"1 newline...");
$display("\n");
$display("Tick(str) = %s ",Tick," (hex) = %h ",Tick);
#1.23; $display("Time is %t", $time);
end
endmodule
A_String(str) = abc (hex) = 616263
Say = Say \"Hey!\" Say "Hey!"
NewLine(str) = \n (hex) = 0a
\(str) = \\ (hex) = 5c
Tab(str) = \t (hex) = 09 1 newline...

Tick(str) = ' (hex) = 27
Time is 1

Instead of parameters you may use a define directive that is a compiler directive, and not a statement [Verilog
LRM 16]. The define directive has global scope:

module define;
define G_BUSWIDTH 32 // Bus width parameter (G_ for global).
/* Note: there is no semicolon at end of a compiler directive. The character ` is
ASCII 96 (hex 60), accent grave, it slopes down from left to right. It is not the
tick or apostrophe character ' (ASCII 39 or hex 27)*/
wire [`G_BUSWIDTH:0]MyBus; // A 32-bit bus.
endmodule

11.3 Operators
An expression uses any of the three types of operators: unary operators, binary operators, and a single
ternary operator [Verilog LRM 4.1]. The Verilog operators are similar to those in the C programming
language--except there is no autoincrement (++) or autodecrement (--) in Verilog. Table 11.1 shows
the operators in their (increasing) order of precedence and Table 11.2 shows the unary operators. Here is
an example that illustrates the use of the Verilog operators:

TABLE 11.1 Verilog operators (in increasing order of precedence).

?: (conditional) [legal for real; associates right to left (others associate left to right)]

|| (logical or) [A smaller operand is zero-filled from its msb (0-fill); legal for real]

&& (logical and)[0-fill, legal for real]

| (bitwise or) ~| (bitwise nor) [0-fill]

^ (bitwise xor) ^~ ~^ (bitwise xnor, equivalence) [0-fill]

& (bitwise and) ~& (bitwise nand) [0-fill]

== (logical) != (logical) === (case) !== (case) [0-fill, logical versions are legal for real]

< (lt) <= (lt or equal) > (gt) >= (gt or equal) [0-fill, all arelegal for real]

<< (shift left) >> (shift right) [zero fill; no -ve shifts; shift by x or z results in unknown]

+ (addition) - (subtraction) [if any bit is x or z for + - * / % then entire result is unknown]

* (multiply) / (divide) % (modulus) [integer divide truncates fraction; + - * / legal for real]

Unary operators: ! ~ & ~& | ~| ^ ~^ ^~ + - [see Table 11.2 for precedence]

TABLE 11.2 Verilog unary operators.

Operator Name Examples

! logical negation !123 is 'b0 [0, 1, or x for ambiguous; legal for real]

~ bitwise unary negation ~1'b10xz is 1'b01xx

& unary reduction and & 4'b1111 is 1'b1, & 2'bx1 is 1'bx, & 2'bz1 is 1'bx

~& unary reduction nand ~& 4'b1111 is 1'b0, ~& 2'bx1 is 1'bx

| unary reduction or Note:

~| unary reduction nor Reduction is performed left (first bit) to right

^ unary reduction xor Beware of the non-associative reduction operators

~^ ^~ unary reduction xnor z is treated as x for all unary operators

+ unary plus +2'bxz is +2'bxz [+m is the same as m; legal for real]

- unary minus -2'bxz is x [-m is unary minus m; legal for real]

module operators;
parameter A10xz = {1'b1,1'b0,1'bx,1'bz}; // Concatenation and
parameter A01010101 = {4{2'b01}}; // replication, illegal for real.

// Arithmetic operators: +, -, *, /, and modulus %
parameter A1 = (3+2) %2; // The sign of a % b is the same as sign of a.
// Logical shift operators: << (left), >> (right)
parameter A2 = 4 >> 1; parameter A4 = 1 << 2; // Note: zero fill.
// Relational operators: <, <=, >, >=
initial if (1 > 2) $stop;
// Logical operators: ! (negation), && (and), || (or)
parameter B0 = !12; parameter B1 = 1 && 2;
reg [2:0] A00x; initial begin A00x = 'b111; A00x = !2'bx1; end
parameter C1 = 1 || (1/0); /* This may or may not cause an
error: the short-circuit behavior of && and || is undefined. An
evaluation including && or || may stop when an expression is known
to be true or false. */
// == (logical equality), != (logical inequality)
parameter Ax = (1==1'bx); parameter Bx = (1'bx!=1'bz);
parameter D0 = (1==0); parameter D1 = (1==1);
// === case equality, !== (case inequality)
// The case operators only return true (1) or false (0).
parameter E0 = (1===1'bx); parameter E1 = 4'b01xz === 4'b01xz;
parameter F1 = (4'bxxxx === 4'bxxxx);
// Bitwise logical operators:
// ~ (negation), & (and), | (inclusive or),
// ^ (exclusive or), ~^ or ^~ (equivalence)
parameter A00 = 2'b01 & 2'b10;
// Unary logical reduction operators:
// & (and), ~& (nand), | (or), ~| (nor),
// ^ (xor), ~^ or ^~ (xnor)
parameter G1= & 4'b1111;
// Conditional expression f = a ? b : c [if (a) then f=b else f=c]
// if a=(x or z), then (bitwise) f=0 if b=c=0, f=1 if b=c=1, else f=x
reg H0, a, b, c; initial begin a=1; b=0; c=1; H0=a?b:c; end
reg[2:0] J01x, Jxxx, J01z, J011;
initial begin Jxxx = 3'bxxx; J01z = 3'b01z; J011 = 3'b011;
J01x = Jxxx ? J01z : J011; end // A bitwise result.
initial begin #1;
$display("A10xz=%b",A10xz," A01010101=%b",A01010101);
$display("A1=%0d",A1," A2=%0d",A2," A4=%0d",A4);
$display("B1=%b",B1," B0=%b",B0," A00x=%b",A00x);
$display("C1=%b",C1," Ax=%b",Ax," Bx=%b",Bx);
$display("D0=%b",D0," D1=%b",D1);
$display("E0=%b",E0," E1=%b",E1," F1=%b",F1);
$display("A00=%b",A00," G1=%b",G1," H0=%b",H0);
$display("J01x=%b",J01x); end
endmodule
A10xz=10xz A01010101=01010101
A1=1 A2=2 A4=4
B1=1 B0=0 A00x=00x
C1=1 Ax=x Bx=x
D0=0 D1=1
E0=0 E1=1 F1=1
A00=00 G1=1 H0=0
J01x=01x

11.3.1 Arithmetic
Arithmetic operations on n-bit objects are performed modulo 2n in Verilog,

module modulo; reg [2:0] Seven;
initial begin
#1 Seven = 7; #1 $display("Before=", Seven);
#1 Seven = Seven + 1; #1 $display("After =", Seven);
end
endmodule
Before=7
After =0

Arithmetic operations in Verilog (addition, subtraction, comparison, and so on) on vectors (reg or
wire) are predefined (Tables 11.1 and 11.2 show which operators are legal for real). This is a very
important difference for ASIC designers from the situation in VHDL. However, there are some subtleties
with Verilog arithmetic and negative numbers that are illustrated by the following example (based on an
example in the LRM [Verilog LRM4.1]):

module LRM_arithmetic;
integer IA, IB, IC, ID, IE; reg [15:0] RA, RB, RC;
initial begin
IA = -4'd12; RA = IA / 3; // reg is treated as unsigned.
RB = -4'd12; IB = RB / 3; //
IC = -4'd12 / 3; RC = -12 / 3; // real is treated as signed
ID = -12 / 3; IE = IA / 3; // (two's complement).
end
initial begin #1;
$display(" hex default");
$display("IA = -4'd12 = %h%d",IA,IA);
$display("RA = IA / 3 = %h %d",RA,RA);
$display("RB = -4'd12 = %h %d",RB,RB);
$display("IB = RB / 3 = %h%d",IB,IB);
$display("IC = -4'd12 / 3 = %h%d",IC,IC);
$display("RC = -12 / 3 = %h %d",RC,RC);
$display("ID = -12 / 3 = %h%d",ID,ID);
$display("IE = IA / 3 = %h%d",IE,IE);
end
endmodule
 hex default
IA = -4'd12 = fffffff4 -12
RA = IA / 3 = fffc 65532
RB = -4'd12 = fff4 65524
IB = RB / 3 = 00005551 21841
IC = -4'd12 / 3 = 55555551 1431655761
RC = -12 / 3 = fffc 65532
ID = -12 / 3 = fffffffc -4
IE = IA / 3 = fffffffc -4

We might expect the results of all these divisions to be - 4 = -12/3. For integer assignments, the results are
correctly signed (ID and IE). Hex fffc (decimal 65532) is the 16-bit two's complement of - 4, so RA
and RC are also correct if we keep track of the signs ourselves. The integer result IB is incorrect because
Verilog treats RB as an unsigned number. Verilog also treats -4'd12 as an unsigned number in the
calculation of IC . Once Verilog "loses" a sign, it cannot get it back (see also Section 11.2.5).

11.4 Hierarchy
The module is the basic unit of code in the Verilog language [Verilog LRM 12.1],

module holiday_1(sat, sun, weekend);
 input sat, sun; output weekend;
 assign weekend = sat | sun;
endmodule

We do not have to explicitly declare the scalar wires: saturday , sunday , weekend
because, since these wires appear in the module interface, they must be declared in an input ,
output , or inout statement and are thus implicitly declared. The module interface provides
the means to interconnect two Verilog modules using ports [Verilog LRM 12.3]. Each port must
be explicitly declared as one of input, output, or inout. Table 11.3 shows the characteristics of
ports. Notice that a reg cannot be an input port or an inout port. This is to stop us trying to
connect a reg to another reg that may hold a different value.

TABLE 11.3 Verilog ports.

Verilog port input output inout

Characteristics wire (or other net)

reg or wire (or other net)

We can read an output port inside a
module

wire (or other net)

Within a module we may instantiate other modules, but we cannot declare other modules. Ports
are linked using named association or positional association,

`timescale 100s/1s // Units are 100 seconds with precision of 1s.
module life; wire [3:0] n; integer days;
 wire wake_7am, wake_8am; // Wake at 7 on weekdays else at 8.
 assign n = 1 + (days % 7); // n is day of the week (1-7)
always@(wake_8am or wake_7am)
 $display("Day=",n," hours=%0d ",($time/36)%24," 8am = ",
 wake_8am," 7am = ",wake_7am," m2.weekday = ", m2.weekday);
 initial days = 0;
 initial begin #(24*36*10);$finish; end // Run for 10 days.
 always #(24*36) days = days + 1; // Bump day every 24hrs.
 rest m1(n, wake_8am); // Module instantiation.
// Creates a copy of module rest with instance name m1,
// ports are linked using positional notation.
 work m2(.weekday(wake_7am), .day(n));
// Creates a copy of module work with instance name m2,
// Ports are linked using named association.
endmodule
module rest(day, weekend); // Module definition.

// Notice the port names are different from the parent.
 input [3:0] day; output weekend; reg weekend;
 always begin #36 weekend = day > 5; end // Need a delay here.
endmodule
module work(day, weekday);
 input [3:0] day; output weekday; reg weekday;
 always begin #36 weekday = day < 6; end // Need a delay here.
endmodule
Day= 1 hours=0 8am = 0 7am = 0 m2.weekday = 0
Day= 1 hours=1 8am = 0 7am = 1 m2.weekday = 1
Day= 6 hours=1 8am = 1 7am = 0 m2.weekday = 0
Day= 1 hours=1 8am = 0 7am = 1 m2.weekday = 1

The port names in a module definition and the port names in the parent module may be different.
We can associate (link or map) ports using the same order in the instantiating statement as we
use in the module definition--such as instance m1 in module life . Alternatively we can
associate the ports by naming them--such as instance m2 in module life (using a period '.'
before the port name that we declared in the module definition). Identifiers in a module have
local scope. If we want to refer to an identifier outside a module, we use a hierarchical name
[Verilog LRM12.4] such as m1.weekend or m2.weekday (as in module life), for
example. The compiler will first search downward (or inward) then upward (outward) to resolve
a hierarchical name [Verilog LRM 12.4-12.5].

11.5 Procedures and Assignments
A Verilog procedure [Verilog LRM 9.9] is an always or initial statement, a task , or a function . The
statements within a sequential block (statements that appear between a begin and an end) that is part of a
procedure execute sequentially in the order in which they appear, but the procedure executes concurrently with other
procedures. This is a fundamental difference from computer programming languages. Think of each procedure as a
microprocessor running on its own and at the same time as all the other microprocessors (procedures). Before I
discuss procedures in more detail, I shall discuss the two different types of assignment statements:

continuous assignments that appear outside procedures●

procedural assignments that appear inside procedures●

To illustrate the difference between these two types of assignments, consider again the example used in Section 11.4:

module holiday_1(sat, sun, weekend);
 input sat, sun; output weekend;
 assign weekend = sat | sun; // Assignment outside a procedure.
endmodule

We can change weekend to a reg instead of a wire , but then we must declare weekend and use a procedural
assignment (inside a procedure--an always statement, for example) instead of a continuous assignment. We also
need to add some delay (one time tick in the example that follows); otherwise the computer will never be able to get
out of the always procedure to execute any other procedures:

module holiday_2(sat, sun, weekend);
 input sat, sun; output weekend; reg weekend;
 always #1 weekend = sat | sun; // Assignment inside a procedure.
endmodule

We shall cover the continuous assignment statement in the next section, which is followed by an explanation of
sequential blocks and procedural assignment statements. Here is some skeleton code that illustrates where we may use
these assignment statements:

module assignments
//... Continuous assignments go here.
always // beginning of a procedure
 begin // beginning of sequential block
 //... Procedural assignments go here.
 end
endmodule

Table 11.4 at the end of Section 11.6 summarizes assignment statements, including two more forms of
assignment--you may want to look at this table now.

11.5.1 Continuous Assignment Statement
A continuous assignment statement [Verilog LRM 6.1] assigns a value to a wire in a similar way that a real
logic gate drives a real wire,

module assignment_1();
wire pwr_good, pwr_on, pwr_stable; reg Ok, Fire;
assign pwr_stable = Ok & (!Fire);
assign pwr_on = 1;
assign pwr_good = pwr_on & pwr_stable;
initial begin Ok = 0; Fire = 0; #1 Ok = 1; #5 Fire = 1; end
initial begin $monitor("TIME=%0d",$time," ON=",pwr_on, " STABLE=",

 pwr_stable," OK=",Ok," FIRE=",Fire," GOOD=",pwr_good);
 #10 $finish; end
endmodule
TIME=0 ON=1 STABLE=0 OK=0 FIRE=0 GOOD=0
TIME=1 ON=1 STABLE=1 OK=1 FIRE=0 GOOD=1
TIME=6 ON=1 STABLE=0 OK=1 FIRE=1 GOOD=0

The assignment statement in this next example models a three-state bus:

module assignment_2; reg Enable; wire [31:0] Data;
/* The following single statement is equivalent to a declaration and continuous
assignment. */
wire [31:0] DataBus = Enable ? Data : 32'bz;
assign Data = 32'b10101101101011101111000010100001;
 initial begin
 $monitor("Enable=%b DataBus=%b ", Enable, DataBus);
 Enable = 0; #1; Enable = 1; #1; end
endmodule
Enable = 0 DataBus =zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
Enable = 1 DataBus =10101101101011101111000010100001

11.5.2 Sequential Block
A sequential block [Verilog LRM 9.8] is a group of statements between a begin and an end. We may declare new
variables within a sequential block, but then we must name the block. A sequential block is considered a statement, so
that we may nest sequential blocks.

A sequential block may appear in an always statement [Verilog LRM9.9.2], in which case the block executes
repeatedly. In contrast, an initial statement [Verilog LRM9.9.1] executes only once, so a sequential block within an
initial statement only executes once--at the beginning of a simulation. It does not matter where the initial
statement appears--it still executes first. Here is an example:

module always_1; reg Y, Clk;
always // Statements in an always statement execute repeatedly:
begin: my_block // Start of sequential block.
 @(posedge Clk) #5 Y = 1; // At +ve edge set Y=1,
 @(posedge Clk) #5 Y = 0; // at the NEXT +ve edge set Y=0.
end // End of sequential block.
always #10 Clk = ~ Clk; // We need a clock.
initial Y = 0; // These initial statements execute
initial Clk = 0; // only once, but first.
initial $monitor("T=%2g",$time," Clk=",Clk," Y=",Y);
initial #70 $finish;
endmodule
T= 0 Clk=0 Y=0
T=10 Clk=1 Y=0
T=15 Clk=1 Y=1
T=20 Clk=0 Y=1
T=30 Clk=1 Y=1
T=35 Clk=1 Y=0
T=40 Clk=0 Y=0
T=50 Clk=1 Y=0
T=55 Clk=1 Y=1
T=60 Clk=0 Y=1

11.5.3 Procedural Assignments
A procedural assignment [Verilog LRM 9.2] is similar to an assignment statement in a computer programming
language such as C. In Verilog the value of an expression on the RHS of an assignment within a procedure (a
procedural assignment) updates a reg (or memory element) on the LHS. In the absence of any timing controls (see
Section 11.6), the reg is updated immediately when the statement executes. The reg holds its value until changed
by another procedural assignment. Here is the BNF definition:

blocking_assignment ::= reg-lvalue = [delay_or_event_control] expression

(Notice this BNF definition is for a blocking assignment--a type of procedural assignment--see Section 11.6.4.) Here
is an example of a procedural assignment (notice that a wire can only appear on the RHS of a procedural
assignment):

module procedural_assign; reg Y, A;
always @(A)
 Y = A; // Procedural assignment.
initial begin A=0; #5; A=1; #5; A=0; #5; $finish; end
initial $monitor("T=%2g",$time,,"A=",A,,,"Y=",Y);
endmodule
T= 0 A=0 Y=0
T= 5 A=1 Y=1
T=10 A=0 Y=0

11.6 Timing Controls and Delay
The statements within a sequential block are executed in order, but, in the absence of any delay, they all execute at the same
simulation time--the current time step. In reality there are delays that are modeled using a timing control.

11.6.1 Timing Control
A timing control is either a delay control or an event control [Verilog LRM 9.7]. A delay control delays an assignment by a
specified amount of time. A timescale compiler directive is used to specify the units of time followed by the precision used
to calculate time expressions,

`timescale 1ns/10ps // Units of time are ns. Round times to 10 ps.

Time units may only be s , ns , ps , or fs and the multiplier must be 1, 10, or 100. We can delay an assignment in two
different ways:

Sample the RHS immediately and then delay the assignment to the LHS.●

Wait for a specified time and then assign the value of the LHS to the RHS.●

Here is an example of the first alternative (an intra-assignment delay):

x = #1 y; // intra-assignment delay

The second alternative is delayed assignment:
#1 x = y; // delayed assignment

These two alternatives are not the same. The intra-assignment delay is equivalent to the following code:

begin // Equivalent to intra-assignment delay.
hold = y; // Sample and hold y immediately.
#1; // Delay.
x = hold; // Assignment to x. Overall same as x = #1 y.
end

In contrast, the delayed assignment is equivalent to a delay followed by an assignment as follows:

begin // Equivalent to delayed assignment.
#1; // Delay.
x = y; // Assign y to x. Overall same as #1 x = y.
end

The other type of timing control, an event control, delays an assignment until a specified event occurs. Here is the formal
definition:

event_control ::= @ event_identifier | @ (event_expression)
event_expression ::= expression | event_identifier
 | posedge expression | negedge expression
 | event_expression or event_expression

(Notice there are two different uses of 'or' in this simplified BNF definition--the last one, in bold, is part of the Verilog
language, a keyword.) A positive edge (denoted by the keyword posedge) is a transition from '0' to '1' or 'x' , or a
transition from 'x' to '1 '. A negative edge (negedge) is a transition from '1' to '0' or 'x' , or a transition from
'x' to '0'. Transitions to or from 'z' do not count. Here are examples of event controls:

module delay_controls; reg X, Y, Clk, Dummy;
always #1 Dummy=!Dummy; // Dummy clock, just for graphics.
// Examples of delay controls:
always begin #25 X=1;#10 X=0;#5; end
// An event control:
always @(posedge Clk) Y=X; // Wait for +ve clock edge.
always #10 Clk = !Clk; // The real clock.
initial begin Clk = 0;
 $display("T Clk X Y");

 $monitor("%2g",$time,,,Clk,,,,X,,Y);
 $dumpvars;#100 $finish; end
endmodule
T Clk X Y
 0 0 x x
10 1 x x
20 0 x x
25 0 1 x
30 1 1 1
35 1 0 1
40 0 0 1
50 1 0 0
60 0 0 0
65 0 1 0
70 1 1 1
75 1 0 1
80 0 0 1
90 1 0 0

The dummy clock in delay_controls helps in the graphical waveform display of the results (it provides a one-time-tick timing
grid when we zoom in, for example). Figure 11.1 shows the graphical output from the Waves viewer in VeriWell (white is
used to represent the initial unknown values). The assignment statements to 'X' in the always statement repeat (every 25 +
10 + 5 = 40 time ticks).

FIGURE 11.1 Output from the module delay_controls
.

Events can be declared (as named events), triggered, and detected as follows:

module show_event;
reg clock;
event event_1, event_2; // Declare two named events.
always @(posedge clock) -> event_1; // Trigger event_1.
always @ event_1
begin $display("Strike 1!!"); -> event_2; end // Trigger event_2.
always @ event_2 begin $display("Strike 2!!");
$finish; end // Stop on detection of event_2.
always #10 clock = ~ clock; // We need a clock.
initial clock = 0;
endmodule
Strike 1!!
Strike 2!!

11.6.2 Data Slip
Consider this model for a shift register and the simulation output that follows:

module data_slip_1 (); reg Clk, D, Q1, Q2;
/************* bad sequential logic below ***************/
always @(posedge Clk) Q1 = D;
always @(posedge Clk) Q2 = Q1; // Data slips here!
/************* bad sequential logic above ***************/
initial begin Clk = 0; D = 1; end always #50 Clk = ~Clk;
initial begin $display("t Clk D Q1 Q2");
$monitor("%3g",$time,,Clk,,,,D,,Q1,,,Q2); end
initial #400 $finish; // Run for 8 cycles.
initial $dumpvars;
endmodule
t Clk D Q1 Q2
 0 0 1 x x
 50 1 1 1 1
100 0 1 1 1
150 1 1 1 1
200 0 1 1 1

250 1 1 1 1
300 0 1 1 1
350 1 1 1 1

The first clock edge at t = 50 causes Q1 to be updated to the value of D at the clock edge (a '1'), and at the same time Q2
is updated to this new value of Q1 . The data, D , has passed through both always statements. We call this problem data
slip.

If we include delays in the always statements (labeled 3 and 4) in the preceding example, like this--

always @(posedge Clk) Q1 = #1 D; // The delays in the assignments
always @(posedge Clk) Q2 = #1 Q1; // fix the data slip.

--we obtain the correct output:

t Clk D Q1 Q2
 0 0 1 x x
 50 1 1 x x
 51 1 1 1 x
100 0 1 1 x
150 1 1 1 x
151 1 1 1 1
200 0 1 1 1
250 1 1 1 1
300 0 1 1 1
350 1 1 1 1

11.6.3 Wait Statement
The wait statement [Verilog LRM9.7.5] suspends a procedure until a condition becomes true. There must be another
concurrent procedure that alters the condition (in this case the variable Done --in general the condition is an expression) in
the following wait statement; otherwise we are placed on "infinite hold":

wait (Done) $stop; // Wait until Done = 1 then stop.

Notice that the Verilog wait statement does not look for an event or a change in the condition; instead it is level-sensitive--it
only cares that the condition is true.

module test_dff_wait;
reg D, Clock, Reset; dff_wait u1(D, Q, Clock, Reset);
initial begin D=1; Clock=0;Reset=1'b1; #15 Reset=1'b0; #20 D=0; end
always #10 Clock = !Clock;
initial begin $display("T Clk D Q Reset");
 $monitor("%2g",$time,,Clock,,,,D,,Q,,Reset); #50 $finish; end
endmodule
module dff_wait(D, Q, Clock, Reset);
output Q; input D, Clock, Reset; reg Q; wire D;
always @(posedge Clock) if (Reset !== 1) Q = D;
always begin wait (Reset == 1) Q = 0; wait (Reset !== 1); end
endmodule
T Clk D Q Reset
 0 0 1 0 1
10 1 1 0 1
15 1 1 0 0
20 0 1 0 0
30 1 1 1 0
35 1 0 1 0
40 0 0 1 0

We must include wait statements in module dff_wait above to wait for both Reset==1 and Reset==0 . If we were to
omit the wait statement for Reset==0 , as in the following code:

module dff_wait(D,Q,Clock,Reset);
output Q; input D,Clock,Reset; reg Q; wire D;
always @(posedge Clock) if (Reset !== 1) Q = D;
// We need another wait statement here or we shall spin forever.
always begin wait (Reset == 1) Q = 0; end
endmodule

the simulator would cycle endlessly, and we would need to press the 'Stop' button or 'CTRL-C' to halt the simulator.
Here is the console window in VeriWell:

C1> .
T Clk D Q Reset <- at this point nothing happens, so press CTRL-C
Interrupt at time 0
C1>

11.6.4 Blocking and Nonblocking Assignments
If a procedural assignment in a sequential block contains a timing control, then the execution of the following statement is
delayed or blocked. For this reason a procedural assignment statement is also known as a blocking procedural assignment
statement [Verilog LRM 9.2]. We covered this type of statement in Section 11.5.3. The nonblocking procedural
assignment statement allows execution in a sequential block to continue and registers are all updated together at the end of
the current time step. Both types of procedural assignment may contain timing controls. Here is an artificially complicated
example that illustrates the different types of assignment:

module delay;
reg a,b,c,d,e,f,g,bds,bsd;
initial begin
a = 1; b = 0; // No delay control.
#1 b = 1; // Delayed assignment.
c = #1 1; // Intra-assignment delay.
#1; // Delay control.
d = 1; //
e <= #1 1; // Intra-assignment delay, nonblocking assignment
#1 f <= 1; // Delayed nonblocking assignment.
g <= 1; // Nonblocking assignment.
end
initial begin #1 bds = b; end // Delay then sample (ds).
initial begin bsd = #1 b; end // Sample then delay (sd).
initial begin $display("t a b c d e f g bds bsd");
$monitor("%g",$time,,a,,b,,c,,d,,e,,f,,g,,bds,,,,bsd); end
endmodule
t a b c d e f g bds bsd
0 1 0 x x x x x x x
1 1 1 x x x x x 1 0
2 1 1 1 x x x x 1 0
3 1 1 1 1 x x x 1 0
4 1 1 1 1 1 1 1 1 0

Many synthesis tools will not allow us to use blocking and nonblocking procedural assignments to the same reg within the
same sequential block.

11.6.5 Procedural Continuous Assignment
A procedural continuous assignment statement [Verilog LRM 9.3] (sometimes called a quasicontinuous assignment
statement) is a special form of the assign statement that we use within a sequential block. For example, the following
flip-flop model assigns to q depending on the clear, clr_, and preset, pre_, inputs (in general it is considered very bad form to
use a trailing underscore to signify active-low signals as I have done to save space; you might use " _n " instead).

module dff_procedural_assign;
reg d,clr_,pre_,clk; wire q; dff_clr_pre dff_1(q,d,clr_,pre_,clk);
always #10 clk = ~clk;
initial begin clk = 0; clr_ = 1; pre_ = 1; d = 1;
 #20; d = 0; #20; pre_ = 0; #20; pre_ = 1; #20; clr_ = 0;
 #20; clr_ = 1; #20; d = 1; #20; $finish; end
initial begin
 $display("T CLK PRE_ CLR_ D Q");
 $monitor("%3g",$time,,,clk,,,,pre_,,,,clr_,,,,d,,q); end
endmodule
module dff_clr_pre(q,d,clear_,preset_,clock);
output q; input d,clear_,preset_,clock; reg q;
always @(clear_ or preset_)
 if (!clear_) assign q = 0; // active-low clear
 else if(!preset_) assign q = 1; // active-low preset

 else deassign q;
always @(posedge clock) q = d;
endmodule
T CLK PRE_ CLR_ D Q
 0 0 1 1 1 x
 10 1 1 1 1 1
 20 0 1 1 0 1
 30 1 1 1 0 0
 40 0 0 1 0 1
 50 1 0 1 0 1
 60 0 1 1 0 1
 70 1 1 1 0 0
 80 0 1 0 0 0
 90 1 1 0 0 0
100 0 1 1 0 0
110 1 1 1 0 0
120 0 1 1 1 0
130 1 1 1 1 1

We have now seen all of the different forms of Verilog assignment statements. The following skeleton code shows where
each type of statement belongs:

module all_assignments
//... continuous assignments.
always // beginning of procedure
 begin // beginning of sequential block
 //... blocking procedural assignments.
 //... nonblocking procedural assignments.
 //... procedural continuous assignments.
 end
endmodule

Table 11.4 summarizes the different types of assignments.

TABLE 11.4 Verilog assignment statements.

Type of Verilog
assignment Continuous assignment statement

Procedural
assignment
statement

Nonblocking
procedural
assignment
statement

Procedural
continuous
assignment
statement

Where it can
occur

outside an always or initial
statement, task, or function

inside an always or
initial statement,
task, or function

inside an always or
initial statement,
task, or function

always or initial
statement, task, or
function

Example
wire [31:0] DataBus;
assign DataBus =
 Enable ? Data : 32'bz

reg Y;
always
@(posedge
clock) Y = 1;

reg Y;
always Y <=
1;

always
@(Enable)
if(Enable)
assign Q = D;
else deassign
Q;

Valid LHS of
assignment

net
register or memory
element

register or memory
element

net

Valid RHS of
assignment

<expression>

net, reg or memory element

<expression>

net, reg or memory
element

<expression>

net, reg or memory
element

<expression>

net, reg or memory
element

Book 11.5.1 11.5.3 11.6.4 11.6.5

Verilog LRM 6.1 9.2 9.2.2 9.3

11.7 Tasks and Functions
A task [Verilog LRM 10.2] is a type of procedure, called from another procedure. A task has both
inputs and outputs but does not return a value. A task may call other tasks and functions. A
function [Verilog LRM 10.3] is a procedure used in any expression, has at least one input, no
outputs, and returns a single value. A function may not call a task. In Section 11.5 we covered all
of the different Verilog procedures except for tasks and functions. Now that we have covered
timing controls, we can explain the difference between tasks and functions: Tasks may contain
timing controls but functions may not. The following two statements help illustrate the difference
between a function and a task:

Call_A_Task_And_Wait (Input1, Input2, Output);
Result_Immediate = Call_A_Function (All_Inputs);

Functions are useful to model combinational logic (rather like a subroutine):

module F_subset_decode; reg [2:0]A, B, C, D, E, F;
initial begin A = 1; B = 0; D = 2; E = 3;
 C = subset_decode(A, B); F = subset_decode(D,E);
 $display("A B C D E F"); $display(A,,B,,C,,D,,E,,F); end
function [2:0] subset_decode; input [2:0] a, b;
 begin if (a <= b) subset_decode = a; else subset_decode = b; end
endfunction
endmodule
A B C D E F
1 0 0 2 3 2

11.8 Control Statements
In this section we shall discuss the Verilog if , case , loop , disable , fork , and join statements that control the
flow of code execution.

11.8.1 Case and If Statement
An if statement [Verilog LRM 9.4] represents a two-way branch. In the following example, switch has to be true to
execute 'Y = 1' ; otherwise 'Y = 0' is executed:

if(switch) Y = 1; else Y = 0;

The case statement [Verilog LRM 9.5] represents a multiway branch. A controlling expression is matched with case
expressions in each of the case items (or arms) to determine a match,

module test_mux; reg a, b, select; wire out;
mux mux_1(a, b, out, select);
initial begin #2; select = 0; a = 0; b = 1;
 #2; select = 1'bx; #2; select = 1'bz; #2; select = 1; end
initial $monitor("T=%2g",$time," Select=",select," Out=",out);
initial #10 $finish;
endmodule
module mux(a, b, mux_output, mux_select); input a, b, mux_select;
output mux_output; reg mux_output;
always begin
case(mux_select)
 0: mux_output = a;
 1: mux_output = b;
 default mux_output = 1'bx; // If select = x or z set output to x.
endcase
#1; // Need some delay, otherwise we'll spin forever.
end
endmodule
T= 0 Select=x Out=x
T= 2 Select=0 Out=x
T= 3 Select=0 Out=0
T= 4 Select=x Out=0
T= 5 Select=x Out=x
T= 6 Select=z Out=x
T= 8 Select=1 Out=x
T= 9 Select=1 Out=1

Notice that the case statement must be inside a sequential block (inside an always statement). Because the case
statement is inside an always statement, it needs some delay; otherwise the simulation runs forever without advancing
simulation time. The casex statement handles both 'z' and 'x' as don't care (so that they match any bit value), the casez
statement handles 'z' bits, and only 'z' bits, as don't care. Bits in case expressions may be set to '?' representing don't
care values, as follows:

casex (instruction_register[31:29])
 3b'??1 : add;
 3b'?1? : subtract;
 3b'1?? : branch;
endcase

11.8.2 Loop Statement
A loop statement [Verilog LRM 9.6] is a for, while, repeat, or forever statement. Here are four examples, one for each
different type of loop statement, each of which performs the same function. The comments with each type of loop statement

illustrate how the controls work:

module loop_1;
integer i; reg [31:0] DataBus; initial DataBus = 0;
initial begin
/************** Insert loop code after here. ******************/
/* for(Execute this assignment once before starting loop; exit loop if this
expression is false; execute this assignment at end of loop before the check for end
of loop.) */
for(i = 0; i <= 15; i = i+1) DataBus[i] = 1;
/*************** Insert loop code before here. ****************/
end
initial begin
$display("DataBus = %b",DataBus);
#2; $display("DataBus = %b",DataBus); $finish;
end
endmodule

Here is the while statement code (to replace line 4 in module loop_1):

i = 0;
/* while(Execute next statement while this expression is true.) */
while(i <= 15) begin DataBus[i] = 1; i = i+1; end

Here is the repeat statement code (to replace line 4 in module loop_1):

i = 0;
/* repeat(Execute next statement the number of times corresponding to the evaluation
of this expression at the beginning of the loop.) */
repeat(16) begin DataBus[i] = 1; i = i+1; end

Here is the forever statement code (to replace line 4 in module loop_1):

i = 0;
/* A forever statement loops continuously. */
forever begin : my_loop
 DataBus[i] = 1;
 if (i == 15) #1 disable my_loop; // Need to let time advance to exit.
 i = i+1;
end

The output for all four forms of looping statement is the same:

DataBus = 00000000000000000000000000000000
DataBus = 00000000000000001111111111111111

11.8.3 Disable
The disable statement [Verilog LRM 11] stops the execution of a labeled sequential block and skips to the end of the block:

forever
begin: microprocessor_block // Labeled sequential block.
 @(posedge clock)
 if (reset) disable microprocessor_block; // Skip to end of block.
 else Execute_code;
end

Use the disable statement with caution in ASIC design. It is difficult to implement directly in hardware.

11.8.4 Fork and Join
The fork statement and join statement [Verilog LRM 9.8.2] allows the execution of two or more parallel threads in a
parallel block:

module fork_1
event eat_breakfast, read_paper;
initial begin

 fork
 @eat_breakfast; @read_paper;
 join
end
endmodule

This is another Verilog language feature that should be used with care in ASIC design, because it is difficult to implement in
hardware.

11.9 Logic-Gate Modeling
Verilog has a set of built-in logic models and you may also define your own models.

11.9.1 Built-in Logic Models
Verilog's built-in logic models are the following primitives [Verilog LRM7]:

and, nand, nor, or, xor, xnor●

You may use these primitives as you use modules. For example:

module primitive;
nand (strong0, strong1) #2.2
 Nand_1(n001, n004, n005),
 Nand_2(n003, n001, n005, n002);
nand (n006, n005, n002);
endmodule

This module models three NAND gates (Figure 11.2). The first gate (line 3) is a two-input gate
named Nand_1 ; the second gate (line 4) is a three-input gate named Nand_2 ; the third gate
(line 5) is unnamed. The first two gates have strong drive strengths [Verilog LRM3.4] (these
are the defaults anyway) and 2.2 ns delay; the third gate takes the default values for drive
strength (strong) and delay (zero). The first port of a primitive gate is always the output port.
The remaining ports for a primitive gate (any number of them) are the input ports.

FIGURE 11.2 An example schematic (drawn with Capilano's DesignWorks) to illustrate the
use of Verilog primitive gates.

Table 11.5 shows the definition of the and gate primitive (I use lowercase 'and' as the name
of the Verilog primitive, rather than 'AND' , since Verilog is case-sensitive). Notice that if one
input to the primitive 'and' gate is zero, the output is zero, no matter what the other input is.

TABLE 11.5 Definition of the Verilog primitive 'and' gate.

'and' 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

11.9.2 User-Defined Primitives
We can define primitive gates (a user-defined primitive or UDP) using a truth-table
specification [Verilog LRM8]. The first port of a UDP must be an output port, and this must
be the only o utput port (we may not use vector or inout ports):

primitive Adder(Sum, InA, InB);
output Sum; input Ina, InB;
table
// inputs : output
00 : 0;
01 : 1;
10 : 1;
11 : 0;
endtable
endprimitive

We may only specify the values '0' , '1' , and 'x' as inputs in a UDP truth table. Any
'z' input is treated as an 'x' . If there is no entry in a UDP truth table that exactly matches a
set of inputs, the output is 'x' (unknown).

We can construct a UDP model for sequential logic by including a state in the UDP truth-table
definition. The state goes between an input and an output in the table and the output then
represents the next state. The following sequential UDP model also illustrates the use of
shorthand notation in a UDP truth table:

primitive DLatch(Q, Clock, Data);
output Q; reg Q; input Clock, Data;
table
//inputs : present state : output (next state)
1 0 : ? : 0; // ? represents 0,1, or x (input or present state).
1 1 : b : 1; // b represents 0 or 1 (input or present state).
1 1 : x : 1; // Could have combined this with previous line.
0 ? : ? : -; // - represents no change in an output.
endtable
endprimitive

Be careful not to confuse the '?' in a UDP table (shorthand for '0' , '1' , or 'x') with the
'?' in a constant that represents an extension to 'z' (Section 11.2.4) or the '?' in a case
statement that represents don't care values (Section 11.8.1).

For sequential UDP models that need to detect edge transitions on inputs, there is another
special truth-table notation (ab) that represents a change in logic value from a to b . For
example, (01) represents a rising edge. There are also shorthand notations for various edges:

* is (??)●

r is (01)●

f is (10)●

p is (01), (0x), or (x1)●

n is (10), (1x), or (x0)●

primitive DFlipFlop(Q, Clock, Data);
output Q; reg Q; input Clock, Data;
table
//inputs : present state : output (next state)
r 0 : ? : 0 ; // rising edge, next state = output = 0
r 1 : ? : 1 ; // rising edge, next state = output = 1
(0x) 0 : 0 : 0 ; // rising edge, next state = output = 0
(0x) 1 : 1 : 1 ; // rising edge, next state = output = 1
(?0) ? : ? : - ; // falling edge, no change in output
? (??) : ? : - ; // no clock edge, no change in output
endtable
endprimitive

11.10 Modeling Delay
Verilog has a set of built-in methods to define delays. This is very important in ASIC physical
design. Before we start layout, we can use ASIC cell library models written in Verilog that include
logic delays as a function of fanout and estimated wiring loads. After we have completed layout,
we can extract the wiring capacitance, allowing us to calculate the exact delay values. Using the
techniques described in this section, we can then back-annotate our Verilog netlist with postlayout
delays and complete a postlayout simulation.

We can complete this back-annotation process in a standard fashion since delay specification is
part of the Verilog language. This makes working with an ASIC cell library and the ASIC foundry
that will fabricate our ASIC much easier. Typically an ASIC library company might sell us a cell
library complete with Verilog models that include all the minimum, typical, and maximum delays
as well as the different values for rising and falling transitions. The ASIC foundry will provide us
with a delay calculator that calculates the net delays (this is usually proprietary technology) from
the layout. These delays are held in a separate file (the Standard Delay Format, SDF, is widely
used) and then mapped to parameters in the Verilog models. If we complete back-annotation and a
postlayout simulation using an approved cell library, the ASIC foundry will "sign off" on our
design. This is basically a guarantee that our chip will work according to the simulation. This
ability to design sign-off quality ASIC cell libraries is very important in the ASIC design process.

11.10.1 Net and Gate Delay
We saw how to specify a delay control for any statement in Section 11.6. In fact, Verilog allows
us to specify minimum, typical, and maximum values for the delay as follows [Verilog LRM7.15]:

#(1.1:1.3:1.7) assign delay_a = a; // min:typ:max

We can also specify the delay properties of a wire in a similar fashion:

wire #(1.1:1.3:1.7) a_delay; // min:typ:max

We can specify delay in a wire declaration together with a continuous assignment as in the
following example:

wire #(1.1:1.3:1.7) a_delay = a; // min:typ:max

but in this case the delay is associated with the driver and not with the wire .

In Section 11.9.1 we explained that we can specify a delay for a logic primitive. We can also
specify minimum, typical, and maximum delays as well as separate delays for rising and falling
transitions for primitives as follows [Verilog LRM4.3]:

nand #3.0 nd01(c, a, b);
nand #(2.6:3.0:3.4) nd02(d, a, b); // min:typ:max
nand #(2.8:3.2:3.4, 2.6:2.8:2.9) nd03(e, a, b);

// #(rising, falling) delay

The first NAND gate, nd01 , has a delay of 3 ns (assuming we specified nanoseconds as the
timescale) for both rising and falling delays. The NAND gate nd02 has a triplet for the delay; this
corresponds to a minimum (2.6 ns), typical (3.0 ns), and a maximum delay (3.4 ns). The NAND
gate nd03 has two triplets for the delay: The first triplet specifies the min/typ/max rising delay (
'0' or 'x' or 'z' to '1'), and the second triplet specifies the min/typ/max falling delay (
'1' or 'x' or 'z' to '0').

Some primitives can produce a high-impedance output, 'z' . In this case we can specify a triplet
of delay values corresponding to rising transition, falling transition, and the delay to transition to
'z' (from '0' or '1' to 'z' --this is usually the delay for a three-state driver to turn off or
float). We can do the same thing for net types,

wire #(0.5,0.6,0.7) a_z = a; // rise/fall/float delays

11.10.2 Pin-to-Pin Delay
The specify block [Verilog LRM 13] is a special construct in Verilog that allows the definition of
pin-to-pin delays across a module. The use of a specify block can include the use of built-in
system functions to check setup and hold times, for example. The following example illustrates
how to specify pin-to-pin timing for a D flip-flop. We declare the timing parameters first followed
by the paths. This example uses the UDP from Section 11.9.2, which does not include preset and
clear (so only part of the flip-flop function is modeled), but includes the timing for preset and clear
for illustration purposes.

module DFF_Spec; reg D, clk;
DFF_Part DFF1 (Q, clk, D, pre, clr);
initial begin D = 0; clk = 0; #1; clk = 1; end
initial $monitor("T=%2g", $time," clk=", clk," Q=", Q);
endmodule
module DFF_Part(Q, clk, D, pre, clr);
 input clk, D, pre, clr; output Q;
 DFlipFlop(Q, clk, D); // No preset or clear in this UDP.
 specify
 specparam
 tPLH_clk_Q = 3, tPHL_clk_Q = 2.9,
 tPLH_set_Q = 1.2, tPHL_set_Q = 1.1;
 (clk => Q) = (tPLH_clk_Q, tPHL_clk_Q);
 (pre, clr *> Q) = (tPLH_set_Q, tPHL_set_Q);
 endspecify
endmodule
T= 0 clk=0 Q=x
T= 1 clk=1 Q=x
T= 4 clk=1 Q=0

There are the following two ways to specify paths (module DFF_part above uses both) [Verilog
LRM13.3]:

x => y specifies a parallel connection (or parallel path) between x and y (x and y must
have the same number of bits).

●

x *> y specifies a full connection (or full path) between x and y (every bit in x is
connected to y) . In this case x and y may be different sizes.

●

The delay of some logic cells depends on the state of the inputs. This can be modeled using a

state-dependent path delay. Here is an example:

`timescale 1 ns / 100 fs
module M_Spec; reg A1, A2, B; M M1 (Z, A1, A2, B);
initial begin A1=0;A2=1;B=1;#5;B=0;#5;A1=1;A2=0;B=1;#5;B=0; end
initial
 $monitor("T=%4g",$realtime," A1=",A1," A2=",A2," B=",B," Z=",Z);
endmodule
`timescale 100 ps / 10 fs
module M(Z, A1, A2, B); input A1, A2, B; output Z;
or (Z1, A1, A2); nand (Z, Z1, B); // OAI21
/*A1 A2 B Z Delay=10*100 ps unless indicated in the table below.
 0 0 0 1
 0 0 1 1
 0 1 0 1 B:0->1 Z:1->0 delay=t2
 0 1 1 0 B:1->0 Z:0->1 delay=t1
 1 0 0 1 B:0->1 Z:1->0 delay=t4
 1 0 1 0 B:1->0 Z:0->1 delay=t3
 1 1 0 1
 1 1 1 0 */
specify specparam t1 = 11, t2 = 12; specparam t3 = 13, t4 = 14;
 (A1 => Z) = 10; (A2 => Z) = 10;
 if (~A1) (B => Z) = (t1, t2); if (A1) (B => Z) = (t3, t4);
endspecify
endmodule
T= 0 A1=0 A2=1 B=1 Z=x
T= 1 A1=0 A2=1 B=1 Z=0
T= 5 A1=0 A2=1 B=0 Z=0
T= 6.1 A1=0 A2=1 B=0 Z=1
T= 10 A1=1 A2=0 B=1 Z=1
T= 11 A1=1 A2=0 B=1 Z=0
T= 15 A1=1 A2=0 B=0 Z=0
T=16.3 A1=1 A2=0 B=0 Z=1

11.11 Altering Parameters
Here is an example of a module that uses a parameter [Verilog LRM3.10, 12.2]:

module Vector_And(Z, A, B);
 parameter CARDINALITY = 1;
 input [CARDINALITY-1:0] A, B;
 output [CARDINALITY-1:0] Z;
 wire [CARDINALITY-1:0] Z = A & B;
endmodule

We can override this parameter when we instantiate the module as follows:

module Four_And_Gates(OutBus, InBusA, InBusB);
 input [3:0] InBusA, InBusB; output [3:0] OutBus;
 Vector_And #(4) My_AND(OutBus, InBusA, InBusB); // 4 AND gates
endmodule

The parameters of a module have local scope, but we may override them using a defparam
statement and a hierarchical name, as in the following example:

module And_Gates(OutBus, InBusA, InBusB);
 parameter WIDTH = 1;
 input [WIDTH-1:0] InBusA, InBusB; output [WIDTH-1:0] OutBus;
 Vector_And #(WIDTH) My_And(OutBus, InBusA, InBusB);
endmodule
module Super_Size; defparam And_Gates.WIDTH = 4; endmodule

11.12 A Viterbi Decoder
This section describes an ASIC design for a Viterbi decoder using Verilog. Christeen Gray completed the
original design as her MS thesis at the University of Hawaii (UH) working with VLSI Technology, using
the Compass ASIC Synthesizer and a VLSI Technology cell library. The design was mapped from VLSI
Technology design rules to Hewlett-Packard design rules; prototypes were fabricated by Hewlett-Packard
(through Mosis) and tested at UH.

11.12.1 Viterbi Encoder
Viterbi encoding is widely used for satellite and other noisy communications channels. There are two
important components of a channel using Viterbi encoding: the Viterbi encoder (at the transmitter) and
the Viterbi decoder (at the receiver). A Viterbi encoder includes extra information in the transmitted
signal to reduce the probability of errors in the received signal that may be corrupted by noise.

I shall describe an encoder in which every two bits of a data stream are encoded into three bits for
transmission. The ratio of input to output information in an encoder is the rate of the encoder; this is a
rate 2/3 encoder. The following equations relate the three encoder output bits (Yn

2 , Yn
1 , and Yn

0) to the

two encoder input bits (Xn
2 and Xn

1) at a time nT:

Yn
2 = Xn

2

Yn
1 = Xn

1 xor Xn-2
1

Yn
0 = Xn-1

1

We can write the input bits as a single number. Thus, for example, if Xn
2 = 1 and Xn

2 = 0 , we can write
Xn = 2 . Equation 11.1 defines a state machine with two memory elements for the two last input values for

Xn
1 : Xn-1

1 and Xn-2
1 . These two state variables define four states: {Xn-1

1, Xn-2
1 } , with S0 = { 0, 0}, S1

= {1, 0}, S2 = {0, 1}, and S3 = {1, 1}. The 3-bit output Yn is a function of the state and current 2-bit input
Xn .

The following Verilog code describes the rate 2/3 encoder. This model uses two D flip-flops as the state
register. When reset (using active-high input signal res) the encoder starts in state S0 . In Verilog I

represent Yn
2 by Y2N , for example.

/**/
/* module viterbi_encode */
/**/
/* This is the encoder. X2N (msb) and X1N form the 2-bit input
message, XN. Example: if X2N=1, X1N=0, then XN=2. Y2N (msb), Y1N, and
Y0N form the 3-bit encoded signal, YN (for a total constellation of 8
PSK signals that will be transmitted). The encoder uses a state
machine with four states to generate the 3-bit output, YN, from the
2-bit input, XN. Example: the repeated input sequence XN = (X2N, X1N)
= 0, 1, 2, 3 produces the repeated output sequence YN = (Y2N, Y1N,
Y0N) = 1, 0, 5, 4. */
module viterbi_encode(X2N,X1N,Y2N,Y1N,Y0N,clk,res);
input X2N,X1N,clk,res; output Y2N,Y1N,Y0N;

wire X1N_1,X1N_2,Y2N,Y1N,Y0N;
dff dff_1(X1N,X1N_1,clk,res); dff dff_2(X1N_1,X1N_2,clk,res);
assign Y2N=X2N; assign Y1N=X1N ^ X1N_2; assign Y0N=X1N_1;
endmodule

Figure 11.3 shows the state diagram for this encoder. The first four rows of Table 11.6 show the four
different transitions that can be made from state S0 . For example, if we reset the encoder and the input is

Xn = 3 (Xn
2 = 1 and Xn

1 = 1), then the output will be Yn = 6 (Yn
2 = 1 , Yn

1 = 1 , Yn
0 = 0) and the next

state will be S1 .

FIGURE 11.3 A state diagram for a rate 2/3 Viterbi encoder. The inputs and outputs are shown in
binary as Xn

2 Xn
1 / Yn

2Yn
1Yn

0 , and in decimal as Xn/ Yn .

TABLE 11.6 State table for the rate 2/3 Viterbi encoder.

Present state

 Outputs

 Inputs State variables Yn
2 Yn

1 Yn
0 Next state

 Xn
2 Xn

1 Xn-1
1 Xn-2

1 Xn
2 = Xn

1 xor Xn-2
1 = Xn-1

1 {Xn-1
1, Xn-2

1}

S0 0 0 0 0 0 0 0 00 S0

S0 0 1 0 0 0 1 0 10 S1

S0 1 0 0 0 1 0 0 00 S0

S0 1 1 0 0 1 1 0 10 S1

S1 0 0 1 0 0 0 1 01 S2

S1 0 1 1 0 0 1 1 11 S3

S1 1 0 1 0 1 0 1 01 S2

S1 1 1 1 0 1 1 1 11 S3

S2 0 0 0 1 0 1 0 00 S0

S2 0 1 0 1 0 0 0 10 S1

S2 1 0 0 1 1 1 0 00 S0

S2 1 1 0 1 1 0 0 10 S1

S3 0 0 1 1 0 1 1 01 S2

S3 0 1 1 1 0 0 1 11 S3

S3 1 0 1 1 1 1 1 01 S2

S3 1 1 1 1 1 0 1 11 S3

As an example, the repeated encoder input sequence Xn = 0, 1, 2, 3, ... produces the encoder output
sequence Yn = 1, 0, 5, 4, ... repeated. Table 11.7 shows the state transitions for this sequence, including
the initialization steps.

FIGURE 11.4 The signal constellation for an 8 PSK (phase-shift keyed)
code.

TABLE 11.7 A sequence of transmitted signals for the rate 2/3 Viterbi encoder

Time

ns

Inputs State variables Outputs
Present state Next state

Xn
2 Xn

1 Xn-1
1 Xn-2

1 Yn
2 Yn

1 Yn
0

0 1 1 x x 1 x x S? S?

10 1 1 0 0 1 1 0 S0 S1

50 0 0 1 0 0 0 1 S1 S2

150 0 1 0 1 0 0 0 S2 S1

250 1 0 1 0 1 0 1 S1 S2

350 1 1 0 1 1 0 0 S2 S1

450 0 0 1 0 0 0 1 S1 S2

550 0 1 0 1 0 0 0 S2 S1

650 1 0 1 0 1 0 1 S1 S2

750 1 1 0 1 1 0 0 S2 S1

850 0 0 1 0 0 0 1 S1 S2

950 0 1 0 1 0 0 0 S2 S1

Next we transmit the eight possible encoder outputs (Yn = 0-7) as signals over our noisy communications
channel (perhaps a microwave signal to a satellite) using the signal constellation shown in Figure 11.4.
Typically this is done using phase-shift keying (PSK) with each signal position corresponding to a
different phase shift in the transmitted carrier signal.

11.12.2 The Received Signal
The noisy signal enters the receiver. It is now our task to discover which of the eight possible signals were
transmitted at each time step. First we calculate the distance of each received signal from each of the
known eight positions in the signal constellation. Table 11.8 shows the distances between signals in the

8PSK constellation. We are going to assume that there is no noise in the channel to illustrate the operation
of the Viterbi decoder, so that the distances in Table 11.8 represent the possible distance measures of our
received signal from the 8PSK signals.

The distances, X, in the first column of Table 11.8 are the geometric or algebraic distances. We measure
the Euclidean distance, E = X2 shown as B (the binary quantized value of E) in Table 11.8. The
rounding errors that result from conversion to fixed-width binary are quantization errors and are
important in any practical implementation of the Viterbi decoder. The effect of the quantization error is to
add a form of noise to the received signal.

The following code models the receiver section that digitizes the noisy analog received signal and
computes the binary distance measures. Eight binary-distance measures, in0-in7 , are generated each
time a signal is received. Since each of the distance measures is 3 bits wide, there are a total of 24 bits (8
∞ 3) that form the digital inputs to the Viterbi decoder.

TABLE 11.8 Distance measures for Viterbi encoding (8PSK).

Signal
Algebraic
distance from
signal 0

X = Distance
from signal 0

Euclidean
distance

E = X2

B = binary
quantized
value of E

D =
decimal
value of B

Quantization error

Q = D - 1.75 E

0
2 sin (0 π /
8)

0.00 0.00 000 0 0

1
2 sin (1 π /
8)

0.77 0.59 001 1 -0.0325

2
2 sin (2 π /
8)

1.41 2.00 100 4 0.5

3
2 sin (3 π /
8)

1.85 3.41 110 6 0.0325

4
2 sin (4 π /
8)

2.00 4.00 111 7 0

5
2 sin (5 π /
8)

1.85 3.41 110 6 0.0325

6
2 sin (6 π /
8)

1.41 2.00 100 4 0.5

7
2 sin (7 π /
8)

0.77 0.59 001 1 -0.0325

/**/
/* module viterbi_distances */
/**/
/* This module simulates the front end of a receiver. Normally the
received analog signal (with noise) is converted into a series of
distance measures from the known eight possible transmitted PSK
signals: s0,...,s7. We are not simulating the analog part or noise in
this version, so we just take the digitally encoded 3-bit signal, Y,
from the encoder and convert it directly to the distance measures.
d[N] is the distance from signal = N to signal = 0
d[N] = (2*sin(N*PI/8))**2 in 3-bit binary (on the scale 2=100)
Example: d[3] = 1.85**2 = 3.41 = 110
inN is the distance from signal = N to encoder signal.
Example: in3 is the distance from signal = 3 to encoder signal.
d[N] is the distance from signal = N to encoder signal = 0.
If encoder signal = J, shift the distances by 8-J positions.
Example: if signal = 2, in0 is d[6], in1 is D[7], in2 is D[0], etc. */

module viterbi_distances
 (Y2N,Y1N,Y0N,clk,res,in0,in1,in2,in3,in4,in5,in6,in7);
input clk,res,Y2N,Y1N,Y0N; output in0,in1,in2,in3,in4,in5,in6,in7;
reg [2:0] J,in0,in1,in2,in3,in4,in5,in6,in7; reg [2:0] d [7:0];
initial begin d[0]='b000;d[1]='b001;d[2]='b100;d[3]='b110;
d[4]='b111;d[5]='b110;d[6]='b100;d[7]='b001; end
always @(Y2N or Y1N or Y0N) begin
J[0]=Y0N;J[1]=Y1N;J[2]=Y2N;
J=8-J;in0=d[J];J=J+1;in1=d[J];J=J+1;in2=d[J];J=J+1;in3=d[J];
J=J+1;in4=d[J];J=J+1;in5=d[J];J=J+1;in6=d[J];J=J+1;in7=d[J];
end endmodule

As an example, Table 11.9 shows the distance measures for the transmitted encoder output sequence Yn =
1, 0, 5, 4, ... (repeated) corresponding to an encoder input of Xn = 0, 1, 2, 3, ... (repeated).

TABLE 11.9 Receiver distance measures for an example transmission sequence.

Time

ns

Input

Xn
Output Yn Present state Next state in0 in1 in2 in3 in4 in5 in6 in7

0 3 x S? S? x x x x x x x x

10 3 6 S0 S1 4 6 7 6 4 1 0 1

50 0 1 S1 S2 1 0 1 4 6 7 6 4

150 1 0 S2 S1 0 1 4 6 7 6 4 1

250 2 5 S1 S2 6 7 6 4 1 0 1 4

350 3 4 S2 S1 7 6 4 1 0 1 4 6

450 0 1 S1 S2 1 0 1 4 6 7 6 4

550 1 0 S2 S1 0 1 4 6 7 6 4 1

650 2 5 S1 S2 6 7 6 4 1 0 1 4

750 3 4 S2 S1 7 6 4 1 0 1 4 6

850 0 1 S1 S2 1 0 1 4 6 7 6 4

950 1 0 S2 S1 0 1 4 6 7 6 4 1

11.12.3 Testing the System
Here is a testbench for the entire system: encoder, receiver front end, and decoder:

/***/
/* module viterbi_test_CDD */
/***/
/* This is the top-level module, viterbi_test_CDD, that models the
communications link. It contains three modules: viterbi_encode,
viterbi_distances, and viterbi. There is no analog and no noise in
this version. The 2-bit message, X, is encoded to a 3-bit signal, Y.
In this module the message X is generated using a simple counter.
The digital 3-bit signal Y is transmitted, received with noise as an
analog signal (not modeled here), and converted to a set of eight
3-bit distance measures, in0, ..., in7. The distance measures form
the input to the Viterbi decoder that reconstructs the transmitted
signal Y, with an error signal if the measures are inconsistent.

CDD = counter input, digital transmission, digital reception */
module viterbi_test_CDD;
wire Error; // decoder out
wire [2:0] Y, Out; // encoder out, decoder out
reg [1:0] X; // encoder inputs
reg Clk, Res; // clock and reset
wire [2:0] in0,in1,in2,in3,in4,in5,in6,in7;
always #500 $display("t Clk X Y Out Error");
initial $monitor("%4g",$time,,Clk,,,,X,,Y,,Out,,,,Error);
initial $dumpvars; initial #3000 $finish;
always #50 Clk = ~Clk; initial begin Clk = 0;
X = 3; // No special reason to start at 3.
#60 Res = 1;#10 Res = 0; end // Hit reset after inputs are stable.
always @(posedge Clk) #1 X = X + 1; // Drive the input with a counter.
viterbi_encode v_1
 (X[1],X[0],Y[2],Y[1],Y[0],Clk,Res);
viterbi_distances v_2
 (Y[2],Y[1],Y[0],Clk,Res,in0,in1,in2,in3,in4,in5,in6,in7);
viterbi v_3
 (in0,in1,in2,in3,in4,in5,in6,in7,Out,Clk,Res,Error);
endmodule

The Viterbi decoder takes the distance measures and calculates the most likely transmitted signal. It does
this by keeping a running history of the previously received signals in a path memory. The path-memory
length of this decoder is 12. By keeping a history of possible sequences and using the knowledge that the
signals were generated by a state machine, it is possible to select the most likely sequences.

TABLE 11.10 Output from the Viterbi testbench

t Clk X Y Out Error
 0 0 3 x x 0
 50 1 3 x x 0
 51 1 0 x x 0
 60 1 0 0 0 0
100 0 0 0 0 0
150 1 0 0 0 0
151 1 1 2 0 0

t Clk X Y Out Error
1351 1 1 0 0 0
1400 0 1 0 0 0
1450 1 1 0 0 0
1451 1 2 5 2 0
1500 0 2 5 2 0
1550 1 2 5 2 0
1551 1 3 4 5 0

Table 11.10 shows part of the simulation results from the testbench, viterbi_test_CDD, in tabular form.
Figure 11.5 shows the Verilog simulator output from the testbench (displayed using VeriWell from
Wellspring).

FIGURE 11.5 Viterbi encoder testbench simulation results. (Top) Initialization and the start of the
encoder output sequence 2, 5, 4, 1, 0, ... on Y[2:0] at t = 151. (Bottom) The appearance of the same
encoder output sequence at the output of the decoder, Out[2:0], at t = 1451, 1300 time units (13 positive
clock edges) later.

The system input or message, X[1:0] , is driven by a counter that repeats the sequence 0, 1, 2, 3, ...
incrementing by 1 at each positive clock edge (with a delay of one time unit), starting with X equal to 3 at
t = 0. The active-high reset signal, Res , is asserted at t = 60 for 10 time units. The encoder output,
Y[2:0] , changes at t = 151, which is one time unit (the positive-edge-triggered D flip-flop model
contains a one-time-unit delay) after the first positive clock edge (at t = 150) following the deassertion of
the reset at t = 70. The encoder output sequence beginning at t = 151 is 2, 5, 4, 1, 0, ... and then the
sequence 5, 4, 1, 0, ... repeats. This encoder output sequence is then imagined to be transmitted and
received. The receiver module calculates the distance measures and passes them to the decoder. After 13
positive clock-edges (1300 time ticks) the transmitted sequence appears at the output, Out[2:0] ,
beginning at t = 1451 with 2, 5, 4, 1, 0, ..., exactly the same as the encoder output.

11.12.4 Verilog Decoder Model
The Viterbi decoder model presented in this section is written for both simulation and synthesis. The
Viterbi decoder makes extensive use of vector D flip-flops (registers). Early versions of Verilog-XL did
not support vector instantiations of modules. In addition the inputs of UDPs may not be vectors and there
are no primitive D flip-flops in Verilog. This makes instantiation of a register difficult other than by
writing a separate module instance for each flip-flop.

The first solution to this problem is to use flip-flop models supplied with the synthesis tool such as the
following:

asDff #(3) subout0(in0, sub0, clk, reset);

The asDff is a model in the Compass ASIC Synthesizer standard component library. This statement
triggers the synthesis of three D flip-flops, with an input vector ina (with a range of three) connected to
the D inputs, an output vector sub0 (also with a range of three) connected to the Q flip-flop outputs, a
common scalar clock signal, clk , and a common scalar reset signal. The disadvantage of this
approach is that the names, functional behavior, and interfaces of the standard components are different
for every software system.

The second solution, in new versions of Verilog-XL and other tools that support the IEEE standard, is to
use vector instantiation as follows [LRM 7.5.1, 12.1.2]:

myDff subout0[0:2] (in0, sub0, clk, reset);

This instantiates three copies of a user-defined module or UDP called my Dff . The disadvantage of this
approach is that not all simulators and synthesizers support vector instantiation.

The third solution (which is used in the Viterbi decoder model) is to write a model that supports vector
inputs and outputs. Here is an example D flip-flop model:

/**/

/* module dff */
/**/
/* A D flip-flop module. */
module dff(D,Q,Clock,Reset); // N.B. reset is active-low.
output Q; input D,Clock,Reset;
parameter CARDINALITY = 1; reg [CARDINALITY-1:0] Q;
wire [CARDINALITY-1:0] D;
always @(posedge Clock) if (Reset !== 0) #1 Q = D;
always begin wait (Reset == 0); Q = 0; wait (Reset == 1); end
endmodule

We use this model by defining a parameter that specifies the bus width as follows:

dff #(3) subout0(in0, sub0, clk, reset);

The code that models the entire Viterbi decoder is listed below (Figure 12.6 on page 578 shows the block
digram). Notice the following:

Comments explain the function of each module.●

Each module is about a page or less of code.●

Each module can be tested by itself.●

The code is as simple as possible avoiding clever coding techniques.●

The code is not flexible, because bit widths are fixed rather than using parameters. A model with
parameters for rate, signal constellation, distance measure resolution, and path memory length is
considerably more complex. We shall use this Viterbi decoder design again when we discuss logic
synthesis in Chapter 12, test in Chapter 14, floorplanning and placement in Chapter 16, and routing in
Chapter 17.

/* Verilog code for a Viterbi decoder. The decoder assumes a rate
2/3 encoder, 8 PSK modulation, and trellis coding. The viterbi module
contains eight submodules: subset_decode, metric, compute_metric,
compare_select, reduce, pathin, path_memory, and output_decision.
 The decoder accepts eight 3-bit measures of ||r-si||**2 and, after
an initial delay of thirteen clock cycles, the output is the best
estimate of the signal transmitted. The distance measures are the
Euclidean distances between the received signal r (with noise) and
each of the (in this case eight) possible transmitted signals s0 to s7.
 Original by Christeen Gray, University of Hawaii. Heavily modified
by MJSS; any errors are mine. Use freely. */
/**/
/* module viterbi */
/**/
/* This is the top level of the Viterbi decoder. The eight input
signals {in0,...,in7} represent the distance measures, ||r-si||**2.
The other input signals are clk and reset. The output signals are
out and error. */
module viterbi
 (in0,in1,in2,in3,in4,in5,in6,in7,
 out,clk,reset,error);
input [2:0] in0,in1,in2,in3,in4,in5,in6,in7;
output [2:0] out; input clk,reset; output error;
wire sout0,sout1,sout2,sout3;
wire [2:0] s0,s1,s2,s3;
wire [4:0] m_in0,m_in1,m_in2,m_in3;
wire [4:0] m_out0,m_out1,m_out2,m_out3;
wire [4:0] p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3;
wire ACS0,ACS1,ACS2,ACS3;
wire [4:0] out0,out1,out2,out3;

wire [1:0] control;
wire [2:0] p0,p1,p2,p3;
wire [11:0] path0;
 subset_decode u1(in0,in1,in2,in3,in4,in5,in6,in7,
 s0,s1,s2,s3,sout0,sout1,sout2,sout3,clk,reset);
 metric u2(m_in0,m_in1,m_in2,m_in3,m_out0,
 m_out1,m_out2,m_out3,clk,reset);
 compute_metric u3(m_out0,m_out1,m_out2,m_out3,s0,s1,s2,s3,
 p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3,error);
 compare_select u4(p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3,
 out0,out1,out2,out3,ACS0,ACS1,ACS2,ACS3);
 reduce u5(out0,out1,out2,out3,
 m_in0,m_in1,m_in2,m_in3,control);
 pathin u6(sout0,sout1,sout2,sout3,
 ACS0,ACS1,ACS2,ACS3,path0,clk,reset);
 path_memory u7(p0,p1,p2,p3,path0,clk,reset,
 ACS0,ACS1,ACS2,ACS3);
 output_decision u8(p0,p1,p2,p3,control,out);
endmodule
/**/
/* module subset_decode */
/**/
/* This module chooses the signal corresponding to the smallest of
each set {||r-s0||**2,||r-s4||**2}, {||r-s1||**2, ||r-s5||**2},
{||r-s2||**2,||r-s6||**2}, {||r-s3||**2,||r-s7||**2}. Therefore
there are eight input signals and four output signals for the
distance measures. The signals sout0, ..., sout3 are used to control
the path memory. The statement dff #(3) instantiates a vector array
of 3 D flip-flops. */
module subset_decode
 (in0,in1,in2,in3,in4,in5,in6,in7,
 s0,s1,s2,s3,
 sout0,sout1,sout2,sout3,
 clk,reset);
input [2:0] in0,in1,in2,in3,in4,in5,in6,in7;
output [2:0] s0,s1,s2,s3;
output sout0,sout1,sout2,sout3;
input clk,reset;
wire [2:0] sub0,sub1,sub2,sub3,sub4,sub5,sub6,sub7;
 dff #(3) subout0(in0, sub0, clk, reset);
 dff #(3) subout1(in1, sub1, clk, reset);
 dff #(3) subout2(in2, sub2, clk, reset);
 dff #(3) subout3(in3, sub3, clk, reset);
 dff #(3) subout4(in4, sub4, clk, reset);
 dff #(3) subout5(in5, sub5, clk, reset);
 dff #(3) subout6(in6, sub6, clk, reset);
 dff #(3) subout7(in7, sub7, clk, reset);
 function [2:0] subset_decode; input [2:0] a,b;
 begin
 subset_decode = 0;
 if (a<=b) subset_decode = a; else subset_decode = b;
 end
 endfunction
 function set_control; input [2:0] a,b;
 begin
 if (a<=b) set_control = 0; else set_control = 1;
 end
 endfunction

assign s0 = subset_decode (sub0,sub4);
assign s1 = subset_decode (sub1,sub5);
assign s2 = subset_decode (sub2,sub6);
assign s3 = subset_decode (sub3,sub7);
assign sout0 = set_control(sub0,sub4);
assign sout1 = set_control(sub1,sub5);
assign sout2 = set_control(sub2,sub6);
assign sout3 = set_control(sub3,sub7);
endmodule
/**/
/* module compute_metric */
/**/
/* This module computes the sum of path memory and the distance for
each path entering a state of the trellis. For the four states,
there are two paths entering it; therefore eight sums are computed
in this module. The path metrics and output sums are 5 bits wide.
The output sum is bounded and should never be greater than 5 bits
for a valid input signal. The overflow from the sum is the error
output and indicates an invalid input signal.*/
module compute_metric
 (m_out0,m_out1,m_out2,m_out3,
 s0,s1,s2,s3,p0_0,p2_0,
 p0_1,p2_1,p1_2,p3_2,p1_3,p3_3,
 error);
 input [4:0] m_out0,m_out1,m_out2,m_out3;
 input [2:0] s0,s1,s2,s3;
 output [4:0] p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3;
 output error;
 assign
 p0_0 = m_out0 + s0,
 p2_0 = m_out2 + s2,
 p0_1 = m_out0 + s2,
 p2_1 = m_out2 + s0,
 p1_2 = m_out1 + s1,
 p3_2 = m_out3 + s3,
 p1_3 = m_out1 + s3,
 p3_3 = m_out3 + s1;
 function is_error; input x1,x2,x3,x4,x5,x6,x7,x8;
 begin
 if (x1||x2||x3||x4||x5||x6||x7||x8) is_error = 1;
 else is_error = 0;
 end
 endfunction
 assign error = is_error(p0_0[4],p2_0[4],p0_1[4],p2_1[4],
 p1_2[4],p3_2[4],p1_3[4],p3_3[4]);
endmodule
/**/
/* module compare_select */
/**/
/* This module compares the summations from the compute_metric
module and selects the metric and path with the lowest value. The
output of this module is saved as the new path metric for each
state. The ACS output signals are used to control the path memory of
the decoder. */
module compare_select
 (p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3,
 out0,out1,out2,out3,
 ACS0,ACS1,ACS2,ACS3);

 input [4:0] p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3;
 output [4:0] out0,out1,out2,out3;
 output ACS0,ACS1,ACS2,ACS3;
 function [4:0] find_min_metric; input [4:0] a,b;
 begin
 if (a <= b) find_min_metric = a; else find_min_metric = b;
 end
 endfunction
 function set_control; input [4:0] a,b;
 begin
 if (a <= b) set_control = 0; else set_control = 1;
 end
 endfunction
assign out0 = find_min_metric(p0_0,p2_0);
assign out1 = find_min_metric(p0_1,p2_1);
assign out2 = find_min_metric(p1_2,p3_2);
assign out3 = find_min_metric(p1_3,p3_3);
assign ACS0 = set_control (p0_0,p2_0);
assign ACS1 = set_control (p0_1,p2_1);
assign ACS2 = set_control (p1_2,p3_2);
assign ACS3 = set_control (p1_3,p3_3);
endmodule
/**/
/* module path */
/**/
/* This is the basic unit for the path memory of the Viterbi
decoder. It consists of four 3-bit D flip-flops in parallel. There
is a 2:1 mux at each D flip-flop input. The statement dff #(12)
instantiates a vector array of 12 flip-flops. */
module path(in,out,clk,reset,ACS0,ACS1,ACS2,ACS3);
input [11:0] in; output [11:0] out;
input clk,reset,ACS0,ACS1,ACS2,ACS3; wire [11:0] p_in;
dff #(12) path0(p_in,out,clk,reset);
 function [2:0] shift_path; input [2:0] a,b; input control;
 begin
 if (control == 0) shift_path = a; else shift_path = b;
 end
 endfunction
assign p_in[11:9] = shift_path(in[11:9],in[5:3],ACS0);
assign p_in[8:6] = shift_path(in[11:9],in[5:3],ACS1);
assign p_in[5:3] = shift_path(in[8: 6],in[2:0],ACS2);
assign p_in[2:0] = shift_path(in[8: 6],in[2:0],ACS3);
endmodule
/**/
/* module path_memory */
/**/
/* This module consists of an array of memory elements (D
flip-flops) that store and shift the path memory as new signals are
added to the four paths (or four most likely sequences of signals).
This module instantiates 11 instances of the path module. */
module path_memory
 (p0,p1,p2,p3,
 path0,clk,reset,
 ACS0,ACS1,ACS2,ACS3);
output [2:0] p0,p1,p2,p3; input [11:0] path0;
input clk,reset,ACS0,ACS1,ACS2,ACS3;
wire [11:0]out1,out2,out3,out4,out5,out6,out7,out8,out9,out10,out11;
 path x1 (path0,out1 ,clk,reset,ACS0,ACS1,ACS2,ACS3),

 x2 (out1, out2 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x3 (out2, out3 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x4 (out3, out4 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x5 (out4, out5 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x6 (out5, out6 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x7 (out6, out7 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x8 (out7, out8 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x9 (out8, out9 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x10(out9, out10,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x11(out10,out11,clk,reset,ACS0,ACS1,ACS2,ACS3);
assign p0 = out11[11:9];
assign p1 = out11[8:6];
assign p2 = out11[5:3];
assign p3 = out11[2:0];
endmodule
/**/
/* module pathin */
/**/
/* This module determines the input signal to the path for each of
the four paths. Control signals from the subset decoder and compare
select modules are used to store the correct signal. The statement
dff #(12) instantiates a vector array of 12 flip-flops. */
module pathin
 (sout0,sout1,sout2,sout3,
 ACS0,ACS1,ACS2,ACS3,
 path0,clk,reset);
 input sout0,sout1,sout2,sout3,ACS0,ACS1,ACS2,ACS3;
 input clk,reset; output [11:0] path0;
 wire [2:0] sig0,sig1,sig2,sig3; wire [11:0] path_in;
 dff #(12) firstpath(path_in,path0,clk,reset);
 function [2:0] subset0; input sout0;
 begin
 if(sout0 == 0) subset0 = 0; else subset0 = 4;
 end
 endfunction
 function [2:0] subset1; input sout1;
 begin
 if(sout1 == 0) subset1 = 1; else subset1 = 5;
 end
 endfunction
 function [2:0] subset2; input sout2;
 begin
 if(sout2 == 0) subset2 = 2; else subset2 = 6;
 end
 endfunction
 function [2:0] subset3; input sout3;
 begin
 if(sout3 == 0) subset3 = 3; else subset3 = 7;
 end
 endfunction
 function [2:0] find_path; input [2:0] a,b; input control;
 begin
 if(control==0) find_path = a; else find_path = b;
 end
 endfunction
assign sig0 = subset0(sout0);
assign sig1 = subset1(sout1);
assign sig2 = subset2(sout2);

assign sig3 = subset3(sout3);
assign path_in[11:9] = find_path(sig0,sig2,ACS0);
assign path_in[8:6] = find_path(sig2,sig0,ACS1);
assign path_in[5:3] = find_path(sig1,sig3,ACS2);
assign path_in[2:0] = find_path(sig3,sig1,ACS3);
endmodule
/**/
/* module metric */
/**/
/* The registers created in this module (using D flip-flops) store
the four path metrics. Each register is 5 bits wide. The statement
dff #(5) instantiates a vector array of 5 flip-flops. */
module metric
 (m_in0,m_in1,m_in2,m_in3,
 m_out0,m_out1,m_out2,m_out3,
 clk,reset);
input [4:0] m_in0,m_in1,m_in2,m_in3;
output [4:0] m_out0,m_out1,m_out2,m_out3;
input clk,reset;
 dff #(5) metric3(m_in3, m_out3, clk, reset);
 dff #(5) metric2(m_in2, m_out2, clk, reset);
 dff #(5) metric1(m_in1, m_out1, clk, reset);
 dff #(5) metric0(m_in0, m_out0, clk, reset);
endmodule
/**/
/* module output_decision */
/**/
/* This module decides the output signal based on the path that
corresponds to the smallest metric. The control signal comes from
the reduce module. */
module output_decision(p0,p1,p2,p3,control,out);
 input [2:0] p0,p1,p2,p3; input [1:0] control; output [2:0] out;
 function [2:0] decide;
 input [2:0] p0,p1,p2,p3; input [1:0] control;
 begin
 if(control == 0) decide = p0;
 else if(control == 1) decide = p1;
 else if(control == 2) decide = p2;
 else decide = p3;
 end
 endfunction
assign out = decide(p0,p1,p2,p3,control);
endmodule
/**/
/* module reduce */
/**/
/* This module reduces the metrics after the addition and compare
operations. This algorithm selects the smallest metric and subtracts
it from all the other metrics. */
module reduce
 (in0,in1,in2,in3,
 m_in0,m_in1,m_in2,m_in3,
 control);
 input [4:0] in0,in1,in2,in3;
 output [4:0] m_in0,m_in1,m_in2,m_in3;
 output [1:0] control; wire [4:0] smallest;
 function [4:0] find_smallest;
 input [4:0] in0,in1,in2,in3; reg [4:0] a,b;

 begin
 if(in0 <= in1) a = in0; else a = in1;
 if(in2 <= in3) b = in2; else b = in3;
 if(a <= b) find_smallest = a;
 else find_smallest = b;
 end
 endfunction
 function [1:0] smallest_no;
 input [4:0] in0,in1,in2,in3,smallest;
 begin
 if(smallest == in0) smallest_no = 0;
 else if (smallest == in1) smallest_no = 1;
 else if (smallest == in2) smallest_no = 2;
 else smallest_no = 3;
 end
 endfunction
assign smallest = find_smallest(in0,in1,in2,in3);
assign m_in0 = in0 - smallest;
assign m_in1 = in1 - smallest;
assign m_in2 = in2 - smallest;
assign m_in3 = in3 - smallest;
assign control = smallest_no(in0,in1,in2,in3,smallest);
endmodule

11.13 Other Verilog Features
This section covers some of the more advanced Verilog features. System tasks and functions are defined as part of the
IEEE Verilog standard [Verilog LRM14].

11.13.1 Display Tasks
The following code illustrates the display system tasks [Verilog LRM 14.1]:

module test_display; // display system tasks:
initial begin $display ("string, variables, or expression");
/* format specifications work like printf in C:
 %d=decimal %b=binary %s=string %h=hex %o=octal
 %c=character %m=hierarchical name %v=strength %t=time format
 %e=scientific %f=decimal %g=shortest
examples: %d uses default width %0d uses minimum width
 %7.3g uses 7 spaces with 3 digits after decimal point */
// $displayb, $displayh, $displayo print in b, h, o formats
// $write, $strobe, $monitor also have b, h, o versions
$write("write"); // as $display, but without newline at end of line
$strobe("strobe"); // as $display, values at end of simulation cycle
$monitor(v); // disp. @change of v (except v= $time,$stime,$realtime)
$monitoron; $monitoroff; // toggle monitor mode on/off
end endmodule

11.13.2 File I/O Tasks
The following example illustrates the file I/O system tasks [Verilog LRM 14.2]:

module file_1; integer f1, ch; initial begin f1 = $fopen("f1.out");
if(f1==0) $stop(2); if(f1==2)$display("f1 open");
ch = f1|1; $fdisplay(ch,"Hello"); $fclose(f1); end endmodule
> vlog file_1.v
> vsim -c file_1
Loading work.file_1
VSIM 1> run 10
f1 open
Hello
VSIM 2> q
> more f1.out
Hello
>

The $fopen system task returns a 32-bit unsigned integer called a multichannel descriptor (f1 in this example)
unique to each file. The multichannel descriptor contains 32 flags, one for each of 32 possible channels or files (subject
to limitations of the operating system). Channel 0 is the standard output (normally the screen), which is always open.
The first call to $fopen opens channel 1 and sets bit 1 of the multichannel descriptor. Subsequent calls set higher bits.
The file I/O system tasks: $fdisplay , $fwrite , $fmonitor , and $fstrobe ; correspond to their display
counterparts. The first parameter for the file system tasks is a multichannel descriptor that may have multiple bits set.
Thus, the preceding example writes the string "Hello" to the screen and to file1.out . The task $fclose closes a
file and allows the channel to be reused.

The file I/O tasks $readmemb and $readmemh read a text file into a memory. The file may contain only spaces, new
lines, tabs, form feeds, comments, addresses, and binary (for $readmemb) or hex (for $readmemh) numbers, as in
the following example:

mem.dat
@2 1010_1111 @4 0101_1111 1010_1111 // @address in hex
x1x1_zzzz 1111_0000 /* x or z is OK */
module load; reg [7:0] mem[0:7]; integer i; initial begin
$readmemb("mem.dat", mem, 1, 6); // start_address=1, end_address=6
for (i= 0; i<8; i=i+1) $display("mem[%0d] %b", i, mem[i]);
end endmodule
> vsim -c load
Loading work.load
VSIM 1> run 10
** Warning: $readmem (memory mem) file mem.dat line 2:
More patterns than index range (hex 1:6)
Time: 0 ns Iteration: 0 Instance:/
mem[0] xxxxxxxx
mem[1] xxxxxxxx
mem[2] 10101111
mem[3] xxxxxxxx
mem[4] 01011111
mem[5] 10101111
mem[6] x1x1zzzz
mem[7] xxxxxxxx
VSIM 2> q
>

11.13.3 Timescale, Simulation, and Timing-Check Tasks
There are two timescale tasks, $printtimescale and $timeformat [Verilog LRM 14.3]. The $timeformat
specifies the %t format specification for the display and file I/O system tasks as well as the time unit for delays entered
interactively and from files. Here are examples of the timescale tasks:

// timescale tasks:
module a; initial $printtimescale(b.c1); endmodule
module b; c c1 (); endmodule
`timescale 10 ns / 1 fs
module c_dat; endmodule
`timescale 1 ms / 1 ns
module Ttime; initial $timeformat(-9, 5, " ns", 10); endmodule
/* $timeformat [(n, p, suffix , min_field_width)] ;
units = 1 second ** (-n), n = 0->15, e.g. for n = 9, units = ns
p = digits after decimal point for %t e.g. p = 5 gives 0.00000
suffix for %t (despite timescale directive)
min_field_width is number of character positions for %t */

The simulation control tasks are $stop and $finis h [Verilog LRM 14.4]:

module test_simulation_control; // simulation control system tasks:
initial begin $stop; // enter interactive mode (default parameter 1)
$finish(2); // graceful exit with optional parameter as follows:
// 0 = nothing 1 = time and location 2 = time, location, and statistics
end endmodule

The timing-check tasks [Verilog LRM 14.5] are used in specify blocks. The following code and comments illustrate the
definitions and use of timing-check system tasks. The arguments to the tasks are defined and explained in Table 11.11.

TABLE 11.11 Timing-check system task parameters.

Timing task argument Description of argument Type of argument

reference_event
to establish reference time

module input or inout

(scalar or vector net)

data_event
signal to check against reference_event

module input or inout

(scalar or vector net)

limit
time limit to detect timing violation on data_event

constant expression

or specparam

threshold
largest pulse width ignored by timing check $width

constant expression

or specparam

notifier

flags a timing violation (before -> after):

x->0, 0->1, 1->0, z->z
register

module timing_checks (data, clock, clock_1,clock_2);
input data,clock,clock_1,clock_2; reg tSU,tH,tHIGH,tP,tSK,tR;
specify // timing check system tasks:
/* $setup (data_event, reference_event, limit [, notifier]);
violation = (T_reference_event)-(T_data_event) < limit */
$setup(data, posedge clock, tSU);
/* $hold (reference_event, data_event, limit [, notifier]);
violation =
 (time_of_data_event)-(time_of_reference_event) < limit */
$hold(posedge clock, data, tH);
/* $setuphold (reference_event, data_event, setup_limit,
 hold_limit [, notifier]);
parameter_restriction = setup_limit + hold_limit > 0 */
$setuphold(posedge clock, data, tSU, tH);
/* $width (reference_event, limit, threshold [, notifier]);
violation =
 threshold < (T_data_event) - (T_reference_event) < limit
reference_event = edge
data_event = opposite_edge_of_reference_event */
$width(posedge clock, tHIGH);
/* $period (reference_event, limit [, notifier]);
violation = (T_data_event) - (T_reference_event) < limit
reference_event = edge
data_event = same_edge_of_reference event */
$period(posedge clock, tP);
/* $skew (reference_event, data_event, limit [, notifier]);
violation = (T_data_event) - (T_reference_event) > limit */
$skew(posedge clock_1, posedge clock_2, tSK);
/* $recovery (reference_event, data_event, limit, [, notifier]);
violation = (T_data_event) - (T_reference_event) < limit */
$recovery(posedge clock, posedge clock_2, tR);
/* $nochange (reference_event, data_event, start_edge_offset,
 end_edge_offset [, notifier]);
reference_event = posedge | negedge
violation = change while reference high (posedge)/low (negedge)
+ve start_edge_offset moves start of window later
+ve end_edge_offset moves end of window later */
$nochange (posedge clock, data, 0, 0);
endspecify endmodule

You can use edge specifiers as parameters for the timing-check events (except for the reference event in $nochange):

edge_control_specifier ::= edge [edge_descriptor {, edge_descriptor}]
edge_descriptor ::= 01 | 0x | 10 | 1x | x0 | x1

For example, 'edge [01, 0x, x1] clock' is equivalent to 'posedge clock' . Edge transitions with 'z'
are treated the same as transitions with 'x' .

Here is a D flip-flop model that uses timing checks and a notifier register. The register, notifier, is changed when a
timing-check task detects a violation and the last entry in the table then sets the flip-flop output to unknown.

primitive dff_udp(q, clock, data, notifier);
output q; reg q; input clock, data, notifier;
table // clock data notifier:state: q
 r 0 ? : ? : 0 ;
 r 1 ? : ? : 1 ;
 n ? ? : ? : - ;
 ? * ? : ? : - ;

 ? ? * : ? : x ; endtable // notifier
endprimitive
`timescale 100 fs / 1 fs
module dff(q, clock, data); output q; input clock, data; reg notifier;
dff_udp(q1, clock, data, notifier); buf(q, q1);
specify
 specparam tSU = 5, tH = 1, tPW = 20, tPLH = 4:5:6, tPHL = 4:5:6;
 (clock *> q) = (tPLH, tPHL);
 $setup(data, posedge clock, tSU, notifier); // setup: data to clock
 $hold(posedge clock, data, tH, notifier); // hold: clock to data
 $period(posedge clock, tPW, notifier); // clock: period
endspecify
endmodule

11.13.4 PLA Tasks
The PLA modeling tasks model two-level logic [Verilog LRM 14.6]. As an example, the following eqntott logic
equations can be implemented using a PLA:

b1 = a1 & a2; b2 = a3 & a4 & a5 ; b3 = a5 & a6 & a7;

The following module loads a PLA model for the equations above (in AND logic) using the array format (the array
format allows only '1' or '0' in the PLA memory, or personality array). The file array.dat is similar to the
espresso input plane format.

array.dat
1100000
0011100
0000111
module pla_1 (a1,a2,a3,a4,a5,a6,a7,b1,b2,b3);
input a1, a2, a3, a4, a5, a6, a7 ; output b1, b2, b3;
reg [1:7] mem[1:3]; reg b1, b2, b3;
initial begin
 $readmemb("array.dat", mem);
 #1; b1=1; b2=1; b3=1;
 $async$and$array(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3});
end
initial $monitor("%4g",$time,,b1,,b2,,b3);
endmodule

The next example illustrates the use of the plane format, which allows '1' , '0' , as well as '?' or 'z' (either may
be used for don't care) in the personality array.

b1 = a1 & !a2; b2 = a3; b3 = !a1 & !a3; b4 = 1;
module pla_2; reg [1:3] a, mem[1:4]; reg [1:4] b;
initial begin
 $async$and$plane(mem,{a[1],a[2],a[3]},{b[1],b[2],b[3],b[4]});
 mem[1] = 3'b10?; mem[2] = 3'b??1; mem[3] = 3'b0?0; mem[4] = 3'b???;
 #10 a = 3'b111; #10 $displayb(a, " -> ", b);
 #10 a = 3'b000; #10 $displayb(a, " -> ", b);
 #10 a = 3'bxxx; #10 $displayb(a, " -> ", b);
 #10 a = 3'b101; #10 $displayb(a, " -> ", b);
end endmodule
111 -> 0101
000 -> 0011
xxx -> xxx1
101 -> 1101

11.13.5 Stochastic Analysis Tasks
The stochastic analysis tasks model queues [Verilog LRM 14.7]. Each of the tasks return a status as shown in
Table 11.12.

TABLE 11.12 Status values for the stochastic analysis tasks.

Status value Meaning

0 OK

1 queue full, cannot add

2 undefined q_id

3 queue empty, cannot remove

4 unsupported q_type , cannot create queue

5 max_length <= 0, cannot create queue

6 duplicate q_id , cannot create queue

7 not enough memory, cannot create queue

The following module illustrates the interface and parameters for these tasks:

module stochastic; initial begin // stochastic analysis system tasks:
/* $q_initialize (q_id, q_type, max_length, status) ;
q_id is an integer that uniquely identifies the queue
q_type 1=FIFO 2=LIFO
max_length is an integer defining the maximum number of entries */
$q_initialize (q_id, q_type, max_length, status) ;
/* $q_add (q_id, job_id, inform_id, status) ;
job_id = integer input
inform_id = user-defined integer input for queue entry */
$q_add (q_id, job_id, inform_id, status) ;
/* $q_remove (q_id, job_id, inform_id, status) ; */
$q_remove (q_id, job_id, inform_id, status) ;
/* $q_full (q_id, status) ;
status = 0 = queue is not full, status = 1 = queue full */
$q_full (q_id, status) ;
/* $q_exam (q_id, q_stat_code, q_stat_value, status) ;
q_stat_code is input request as follows:
1=current queue length 2=mean inter-arrival time 3=max. queue length
4=shortest wait time ever
5=longest wait time for jobs still in queue 6=ave. wait time in queue
q_stat_value is output containing requested value */
$q_exam (q_id, q_stat_code, q_stat_value, status) ;
end endmodule

11.13.6 Simulation Time Functions
The simulation time functions return the time as follows [Verilog LRM 14.8]:

module test_time; initial begin // simulation time system functions:
$time ;
// returns 64-bit integer scaled to timescale unit of invoking module
$stime ;
// returns 32-bit integer scaled to timescale unit of invoking module
$realtime ;
// returns real scaled to timescale unit of invoking module
end endmodule

11.13.7 Conversion Functions
The conversion functions for reals handle real numbers [Verilog LRM 14.9]:

module test_convert; // conversion functions for reals:
integer i; real r; reg [63:0] bits;
initial begin #1 r=256;#1 i = $rtoi(r);
#1; r = $itor(2 * i) ; #1 bits = $realtobits(2.0 * r) ;
#1; r = $bitstoreal(bits) ; end
initial $monitor("%3f",$time,,i,,r,,bits); /*

$rtoi converts reals to integers w/truncation e.g. 123.45 -> 123
$itor converts integers to reals e.g. 123 -> 123.0
$realtobits converts reals to 64-bit vector
$bitstoreal converts bit pattern to real
Real numbers in these functions conform to IEEE Std 754. Conversion rounds to the
nearest valid number. */
endmodule
0.000000 x 0 x
1.000000 x 256 x
2.000000 256 256 x
3.000000 256 512 x
4.000000 256 512 4652218415073722368
5.000000 256 1024 4652218415073722368

Here is an example using the conversion functions in port connections:

module test_real;wire [63:0]a; driver d (a); receiver r (a);
initial $monitor("%3g",$time,,a,,d.r1,,r.r2); endmodule
module driver (real_net);
output real_net; real r1; wire [64:1] real_net = $realtobits(r1);
initial #1 r1 = 123.456; endmodule
module receiver (real_net);
input real_net; wire [64:1] real_net; real r2;
initial assign r2 = $bitstoreal(real_net);
endmodule
0 0 0 0
1 4638387860618067575 123.456 123.456

11.13.8 Probability Distribution Functions
The probability distribution functions are as follows [Verilog LRM 14.10]:

module probability; // probability distribution functions:
/* $random [(seed)] returns random 32-bit signed integer
seed = register, integer, or time */
reg [23:0] r1,r2; integer r3,r4,r5,r6,r7,r8,r9;
integer seed, start, \end , mean, standard_deviation;
integer degree_of_freedom, k_stage;
initial begin seed=1; start=0; \end =6; mean=5;
standard_deviation=2; degree_of_freedom=2; k_stage=1; #1;
r1 = $random % 60; // random -59 to 59
r2 = {$random} % 60; // positive value 0-59
r3=$dist_uniform (seed, start, \end) ;
r4=$dist_normal (seed, mean, standard_deviation) ;
r5=$dist_exponential (seed, mean) ;
r6=$dist_poisson (seed, mean) ;
r7=$dist_chi_square (seed, degree_of_freedom) ;
r8=$dist_t (seed, degree_of_freedom) ;
r9=$dist_erlang (seed, k_stage, mean) ; end
initial #2 $display ("%3f",$time,,r1,,r2,,r3,,r4,,r5);
initial begin #3; $display ("%3f",$time,,r6,,r7,,r8,,r9); end
/* All parameters are integer values.
Each function returns a pseudo-random number
e.g. $dist_uniform returns uniformly distributed random numbers
mean, degree_of_freedom, k_stage
(exponential, poisson, chi-square, t, erlang) > 0.
seed = inout integer initialized by user, updated by function
start, end ($dist_uniform) = integer bounding return values */
endmodule
2.000000 8 57 0 4 9
3.000000 7 3 0 2

11.13.9 Programming Language Interface
The C language Programming Language Interface (PLI) allows you to access the internal Verilog data structure
[Verilog LRM17-23, A-E]. For example, you can use the PLI to implement the following extensions to a Verilog
simulator:

C language delay calculator for a cell library●

C language interface to a Verilog-based or other logic or fault simulator●

Graphical waveform display and debugging●

C language simulation models●

Hardware interfaces●

There are three generations of PLI routines (see Appendix B for an example):

Task/function (TF) routines (or utility routines), the first generation of the PLI, start with 'tf_' .●

Access (ACC) routines, the second generation of the PLI, start with the characters 'acc_' and access delay and
logic values. There is some overlap between the ACC routines and TF routines.

●

Verilog Procedural Interface (VPI) routines, the third generation of the PLI, start with the characters 'vpi_' and
are a superset of the TF and ACC routines.

●

11.14 Summary
Table 11.13 lists the key features of Verilog HDL. The most important concepts
covered in this chapter are:

TABLE 11.13 Verilog on one page.

 Verilog feature Example

Comments
a = 0; // comment ends with newline
/* This is a multiline or block
comment */

Constants: string
and numeric

parameter BW = 32 // local, use BW
`define G_BUS 32 // global, use `G_BUS
4'b2 1'bx

Names
(case-sensitive,
start with letter or
'_')

_12name A_name $BAD NotSame notsame

Two basic types
of logic signals:
wire and reg

wire myWire; reg myReg;

Use a continuous
assignment
statement with
wire

assign myWire = 1;

Use a procedural
assignment
statement with
reg

always myReg = myWire;

Buses and vectors
use square
brackets

reg [31:0] DBus; DBus[12] = 1'bx;

We can perform
arithmetic on bit
vectors

reg [31:0] DBus; DBus = DBus + 2;

Arithmetic is
performed
modulo 2 n reg [2:0] R; R = 7 + 1; // now R = 0

Operators: as in C
(but not ++ or - -)

Fixed logic-value
system 1, 0, x (unknown), z (high-impedance)

Basic unit of code
is the module

module bake (chips, dough, cookies);
input chips, dough; output cookies;
assign cookies = chips & dough;
endmodule

Ports
input or input/output ports are wire

output ports are wire or reg

Procedures model
things that happen
at the same time

and may be
sensitive to an
edge, posedge,
negedge,

or to a level.

always @rain sing; always @rain dance;
always @(posedge clock) D = Q; // flop
always @(a or b) c = a & b; // and gate

Sequential blocks
model repeating
things:

always: executes
forever

initial: executes
once only at start
of simulation

initial born;
always @alarm_clock begin : a_day
metro=commute; bulot=work; dodo=sleep;
end

Functions and
tasks

function ... endfunction
task ... endtask

Output
$display("a=%f",a);$dumpvars;$monitor(a)

Control
simulation $stop; $finish // sudden or gentle halt

Compiler
directives

`timescale 1ns/1ps // units/resolution

Delay
#1 a = b; // delay then sample b

a = #1 b; // sample b then delay

Concurrent processes and sequential execution●

Difference between a reg and a wire , and between a scalar and a vector●

Arithmetic operations on reg and wire●

Data slip●

Delays and events●

11.15 Problems
* = Difficult, ** = Very difficult, *** = Extremely difficult

11.1 (Counter, 30 min.) Download the VeriWell simulator from http://www. wellspring.com and simulate the counter from Section 11.1 (exclude the comments to
save typing). Include the complete input and output listings in your report.

11.2 (Simulator, 30 min.) Build a "cheat sheet" for your simulator, listing the commands for running the simulator and using it in interactive mode.

11.3 (Verilog examples, 10 min.) The Cadence Verilog-XL simulator comes with a directory examples . Make a list of the examples from the README files in the various
directories.

11.4 (Gotchas, 60 min.) Build a "most common Verilog mistakes" file. Start with:

Extra or missing semicolon ';'●

Forgetting to declare a reg●

Using a reg instead of a wire for an input or inout port●

Bad declarations: reg bus[0:31] instead of reg [31:0]bus●

Mixing vector declarations: wire [31:0]BusA, [15:0]BusB●

The case-sensitivity of Verilog●

No delay in an always statement (simulator loops forever)●

Mixing up ` (accent grave) for `define and ' (tick or apostrophe) for 1'b1 with ´ (accent acute) or ` (open single quote) or ' (close single quote)●

Mixing " (double quote) with " (open quotes) or " (close quotes)●

11.5 (Sensitivity, 10 min.) Explore and explain what happens if you write this:

always @(a or b or c) e = (a|b)&(c|d);

11.6 (Verilog if statement, 10 min.) Build test code to simulate the following Verilog fragment. Explain what is wrong and fix the problem.

if (i > 0)
 if (i < 2) $display ("i is 1");
else $display ("i is less than 0");

11.7 (Effect of delay, 30 min.). Write code to test the four different code fragments shown in Table 11.14 and print the value of 'a' at time = 0 and time = 1 for each case.
Explain the differences in your simulation results.

TABLE 11.14 Code fragments for Problem 11.7.

 (a) (b) (c) (d)

Code fragment

reg a;
initial
begin
a = 0;
a = a + 1;
end

reg a;
initial
begin
#0 a = 0;
#0 a = a + 1;
end

reg a;
initial
begin
a <= 0;
a <= a + 1;
end

reg a;
initial
begin
#1 a = 0;
#1 a = a + 1;
end

11.8 (Verilog events, 10 min.). Simulate the following and explain the results:

event event_1, event_2;
always @ event_1 -> event_2;
initial @event_2 $stop;
initial -> event_1;

11.9 (Blocking and nonblocking assignment statements, 30 min.). Write code to test the different code fragments shown in Table 11.15 and print the value of 'outp' at time =
0 and time = 10 for each case. Explain the difference in simulation results.

TABLE 11.15 Code fragments for Problem 11.9.

 (a) (b) (c) (d)

Code fragment

reg outp;
always
begin
#10 outp = 0;
#10 outp = 1;
end

reg outp;
always
begin
outp <= #10 1;
outp <= #10 0;
end

reg outp;
always
begin
#10 outp = 0;
#10 outp <= 1;
end

reg outp;
always
begin
#10 outp <= 0;
#10 outp = 1;
end

11.10 (Verilog UDPs, 20 min.). Use this primitive to build a half adder:

primitive Adder(Sum, InA, InB); output Sum; input Ina, InB;
table 00 : 0; 01 : 1; 10 : 1; 11 : 0; endtable
endprimitive

Apply unknowns to the inputs. What is the output?

11.11 (Verilog UDPs, 30 min.). Use the following primitive model for a D latch:

primitive DLatch(Q, Clock, Data); output Q; reg Q; input Clock, Data;
table 1 0 : ? : 0; 1 1 : ? : 1; 0 1 : ? : -; endtable
endprimitive

Check to see what happens when you apply unknown inputs (including clock transitions to unknown). What happens if you apply high-impedance values to the inputs (again
including transitions)?

11.12 (Propagation of unknowns in primitives, 45 min.) Use the following primitive model for a D flip-flop:

primitive DFF(Q, Clock, Data); output Q; reg Q; input Clock, Data;
table
r 0 : ? : 0 ;
r 1 : ? : 1 ;
(0x) 0 : 0 : 0 ;
(0x) 1 : 1 : 1 ;
(?0) ? : ? : - ;
? (??) : ? : - ;
endtable
endprimitive

Check to see what happens when you apply unknown inputs (including a clock transition to an unknown value). What happens if you apply high-impedance values to the inputs
(again including transitions)?

11.13 (D flip-flop UDP, 60 min.) Table 11.16 shows a UDP for a D flip-flop with QN output and asynchronous reset and set.

TABLE 11.16 D flip-flop UDP for Problem 11.13.

primitive DFlipFlop2(QN, Data, Clock, Res, Set);
output QN; reg QN; input Data, Clock, Res, Set;
table
// Data Clock Res Set :state :next state
 1 (01) 0 0 :? :0; // line 1
 1 (01) 0 x :? :0;
 ? ? 0 x :0 :0;
 0 (01) 0 0 :? :1;
 0 (01) x 0 :? :1;
 ? ? x 0 :1 :1;
 1 (x1) 0 0 :0 :0;
 0 (x1) 0 0 :1 :1;
 1 (0x) 0 0 :0 :0;
 0 (0x) 0 0 :1 :1;
 ? ? 1 ? :? :1;
 ? ? 0 1 :? :0;
 ? n 0 0 :? :-;
 * ? ? ? :? :-;
 ? ? (?0) ? :? :-;
 ? ? ? (?0) :? :-;
 ? ? ? ? :? :x; // line 17
endtable
endprimitive

a. Explain the purpose of each line in the truth table.

b. Write a module to test each line of the UDP.

c. Can you find any errors, omissions, or other problems in this UDP?

11.14 (JK flip-flop, 30 min.) Test the following model for a JK flip-flop:

module JKFF (Q, J, K, Clk, Rst);
parameter width = 1, reset_value = 0;
input [width-1:0] J, K; output [width-1:0] Q; reg [width-1:0] Q;
input Clk, Rst; initial Q = {width{1'bx}};
always @ (posedge Clk or negedge Rst)
if (Rst==0) Q <= #1 reset_value;
else Q <= #1 (J & ~K) | (J & K & ~Q) | (~J & ~K & Q);
endmodule

11.15 (Overriding Verilog parameters, 20 min.) The following module has a parameter specification that allows you to change the number of AND gates that it models (the
cardinality or width):

module Vector_AND(Z, A, B);
 parameter card = 2; input [card-1:0] A,B; output [card-1:0] Z;
 wire [card-1:0] Z = A & B;
endmodule

The next module changes the parameter value by specifying an overriding value in the module instantiation:

module Four_AND_Gates(OutBus, InBusA, InBusB);
 input [3:0] InBusA, InBusB; output [3:0] OutBus;
 Vector_AND #(4) My_AND(OutBus, InBusA, InBusB);
endmodule

These next two modules change the parameter value by using a defparam statement, which overrides the declared parameter value:

module X_AND_Gates(OutBus, InBusA, InBusB);
 parameter X = 2;input [X-1:0] InBusA, InBusB;output [X-1:0] OutBus;
 Vector_AND #(X) My_AND(OutBus, InBusA, InBusB);
endmodule
module size; defparam X_AND_Gates.X = 4; endmodule

a. Check that the two alternative methods of specifying parameters are equivalent by instantiating the modules Four_AND_Gates and X_AND_Gates in another module and
simulating.

b. List and comment on the advantages and disadvantages of both methods.

11.16 (Default Verilog delays, 10 min.). Demonstrate, using simulation, that the following NAND gates have the delays you expect:

nand (strong0, strong1) #1
 Nand_1(n001, n004, n005),
 Nand_2(n003, n001, n005, n002);
nand (n006, n005, n002);

11.17 (Arrays of modules, 30 min.) Newer versions of Verilog allow the instantiating of arrays of modules (in this book we usually call this a vector since we are only allowed
one row). You specify the number in the array by using a range after the instance name as follows:

nand #2 nand_array[0:7](zn, a, b);

Create and test a model for an 8-bit register using an array of flip-flops.

11.18 (Assigning Verilog real to integer data types, 10 min.). What is the value of ImInteger in the following code?

real ImReal; integer ImInteger;
initial begin ImReal = -1.5; ImInteger = ImReal; end

11.19 (BNF syntax, 10 min.) Use the BNF syntax definitions in Appendix B to answer the following questions. In each case explain how you arrive at the answer:

a. What is the highest-level construct?

b. What is the lowest-level construct?

c. Can you nest begin and end statements?

d. Where is a legal place for a case statement?

e. Is the following code legal: reg [31:0] rega, [32:1] regb;

f. Where is it legal to include sequential statements?

11.20 (Old syntax definitions, 10 min.) Prior to the IEEE LRM, Verilog BNF was expressed using a different notation. For example, an event expression was defined as follows:

<event_expression> ::= <expression>
 or <<posedge or negedge> <SCALAR_EVENT_EXPRESSION>>
 or <<event_expression> or <event_expression>>

Notice that we are using 'or' as part of the BNF to mean "alternatively" and also ' or ' as a Verilog keyword. The keyword ' or ' is in bold--the difference is fairly
obvious. Here is an alternative definition for an event expression:

<event_expression> ::= <expression>
||= posedge <SCALAR_EVENT_EXPRESSION>
||= negedge <SCALAR_EVENT_EXPRESSION>
||= <event_expression> <or <event_expression>>*

Are these definitions equivalent (given, of course, that we replaced ||= with or in the simplified syntax)? Explain carefully how you would attempt to prove that they are the
same.

11.21 (Operators, 20 min.) Explain Table 11.17 (see next page).

TABLE 11.17 Unary operators (Problem 11.21).

 (a) (b) (c) (d)

Code

module unary;
reg [4:0] u;
initial u=!'b011z;
initial $display("%b",u);
endmodule

module unary;
wire u;
assign u=!'b011z;
initial $display("%b",u);
endmodule

module unary;
wire u;
assign u=!'b011z;
initial #1 $display("%b",u);
endmodule

module unary;
wire u;
assign u=&'b1;
initial #1 $display("%b",u);
endmodule

Output
0000x z x 0

11.22 (Unary reduction, 10 min.) Complete Table 11.18 (see next page).

TABLE 11.18 Unary reduction (Problem 11.22).

Operand & ~& | ~| ^ ~^

4'b0000

4'b1111

4'b01x0

4'bz000

11.23 (Coerced ports, 20 min.) Perform some experiments to test the behavior of your Verilog simulator in the following situation: "NOTE--A port that is declared as input
(output) but used as an output (input) or inout may be coerced to inout. If not coerced to inout, a warning must be issued" [Verilog LRM 12.3.6].

11.24 (*Difficult delay code, 20 min.) Perform some experiments to explain what this difficult to interpret statement does:

#2 a <= repeat(2) @(posedge clk) d;

11.25 (Fork-join, 20 min.) Write some test code to compare the behavior of the code fragments shown in Table 11.19.

TABLE 11.19 Fork-and-join examples for Problem 11.25.

 (a) (b) (c) (d)

Code fragment
fork
a = b;
b = a;
join

fork
a <= b;
b <= a;
join

fork
#1 a = b;
#1 b = a;
join

fork
a = #1 b;
b = #1 a;
join

11.26 (Blocking and nonblocking assignments, 20 min.) Simulate the following code and explain the results:

module nonblocking; reg Y;
 always begin Y <= #10 1;Y <= #20 0;#10; end
 always begin $display($time,,"Y=",Y); #10; end
 initial #100 $finish;
endmodule

11.27 (*Flip-flop code, 10 min.) Explain why this flip-flop does not work:

module Dff_Res_Bad(D,Q,Clock,Reset);
output Q; input D,Clock,Reset; reg Q; wire D;
always @(posedge Clock) if (Reset !== 1) Q = D; always if (Reset == 1) Q = 0;
end endmodule

11.28 (D flip-flop, 10 min.) Test the following D flip-flop model:

module DFF (D, Q, Clk, Rst);
parameter width = 1, reset_value = 0;
input [width-1:0] D; output [width-1:0] Q; reg [width-1:0] Q;
input Clk,Rst;
initial Q = {width{1'bx}};
always @ (posedge Clk or negedge Rst)
if (Rst == 0) Q <= #1 reset_value; else Q <= #1 D;
endmodule

11.29 (D flip-flop with scan, 10 min.) Explain the following model:

module DFFSCAN (D, Q, Clk, Rst, ScEn, ScIn, ScOut);
parameter width = 1, reset_value = 0;
input [width-1:0] D; output [width-1:0] Q; reg [width-1:0] Q;
input Clk,Rst,ScEn,ScIn; output ScOut;
initial Q = {width{1'bx}};
always @ (posedge Clk or negedge Rst) begin
 if (Rst == 0) Q <= #1 reset_value;
 else if (ScEn) Q <= #1 {Q,ScIn};
 else Q <= #1 D;
end
assign ScOut=Q[width-1];
endmodule

11.30 (Pads, 30 min.) Test the following model for a bidirectional I/O pad:

module PadBidir (C, Pad, I, Oen); // active low enable
parameter width=1, pinNumbers="", \strength =1, level="CMOS",
pull="none", externalVdd=5;
output [width-1:0] C; inout [width-1:0] Pad; input [width-1:0] I;
input Oen;
assign #1 Pad = Oen ? {width{1'bz}} : I;
assign #1 C = Pad;
endmodule

Construct and test a model for a three-state pad from the above.

11.31 (Loops, 15 min.) Explain and correct the problem in the following code:

module Loop_Bad; reg [3:0] i; reg [31:0] DBus;
initial DBus = 0;
initial begin #1; for (i=0; i<=15; i=i+1) DBus[i]=1; end
initial begin
$display("DBus = %b",DBus); #2; $display("DBus = %b",DBus); $stop;
end endmodule

11.32 (Arithmetic, 10 min.) Explain the following:

integer IntA;
IntA = -12 / 3; // result is -4
IntA = -'d 12 / 3; // result is 1431655761

Determine and explain the values of intA and regA after each assignment statement in the following code:

integer intA; reg [15:0] regA;
intA = -4'd12; regA = intA/3; regA = -4'd12;
intA = regA/3; intA = -4'd12/3; regA = -12/3;

11.33 (Arithmetic overflow, 30 min.) Consider the following:

reg [7:0] a, b, sum; sum = (a + b) >> 1;

The intent is to add a and b , which may cause an overflow, and then shift sum to keep the carry bit. However, because all operands in the expression are of an 8-bit width, the
expression (a + b) is only 8 bits wide, and we lose the carry bit before the shift. One solution forces the expression (a + b) to use at least 9 bits. For example, adding an
integer value of 0 to the expression will cause the evaluation to be performed using the bit size of integers [LRM 4.4.2]. Check to see if the following alternatives produce the
intended result:

sum = (a + b + 0) >> 1;
sum = {0,a} + {0,b} >> 1;

11.34 (*Data slip, 60 min.) Table 11.20 shows several different ways to model the connection of a 2-bit shift register. Determine which of these models suffer from data slip. In
each case show your simulation results.

TABLE 11.20 Data slip (Problem 11.34).

 Alternative Data slip?

1
always @(posedge Clk) begin Q2 = Q1; Q1 = D1; end

2
always @(posedge Clk) begin Q1 = D1; Q2 = Q1; end

3
always @(posedge Clk) begin Q1 <= #1 D1; Q2 <= #1 Q1; end

4
always @(posedge Clk) Q1 = D1; always @(posedge Clk) Q2 = Q1;

Y

5
always @(posedge Clk) Q1 = #1 D1; always @(posedge Clk) Q2 = #1 Q1;

N

6
always @(posedge Clk) #1 Q1 = D1; always @(posedge Clk) #1 Q2 = Q1;

7
always @(posedge Clk) Q1 <= D1; always @(posedge Clk) Q2 <= Q1;

8 module FF_1 (Clk, D1, Q1); always @(posedge Clk) Q1 = D1; endmodule
module FF_2 (Clk, Q1, Q2); always @(posedge Clk) Q2 = Q1; endmodule

9 module FF_1 (Clk, D1, Q1); always @(posedge Clk) Q1 <= D1; endmodule
module FF_2 (Clk, Q1, Q2); always @(posedge Clk) Q2 <= Q1; endmodule

11.35 (**Timing, 30 min.) What does a simulator display for the following?

assign p = q; initial begin q = 0; #1 q = 1; $display(p); end

What is the problem here? Conduct some experiments to illustrate your answer.

11.36 (Port connections, 10 min.) Explain the following declaration:

module test (.a(c), .b(c));

11.37 (**Functions and tasks, 30 min.) Experiment to determine whether invocation of a function (or task) behaves as a blocking or nonblocking assignment.

11.38 (Nonblocking assignments, 10 min.) Predict the output of the following model:

module e1; reg a, b, c;
initial begin a = 0; b = 1; c = 0; end
always c = #5 ~c; always @(posedge c) begin a <= b; b <= a; end
endmodule

11.39 (Assignment timing, 20 min.) Predict the output of the following module and explain the timing of the assignments:

module e2; reg a, b, c, d, e, f;
initial begin a = #10 1; b = #2 0; c = #4 1; end
initial begin d <= #10 1; e <= #2 0; f <= #4 1; end
endmodule

11.40 (Swap, 10 min.) Explain carefully what happens in the following code:

module e3; reg a, b;
initial begin a = 0; b = 1; a <= b; b <= a; end
endmodule

11.41 (*Overwriting, 30 min.) Explain the problem in the following code, determine what happens, and conduct some experiments to explore the problem further:

module m1; reg a;
initial a = 1;
initial begin a <= #4 0; a <= #4 1; end
endmodule

11.42 (*Multiple assignments, 30 min.) Explain what happens in the following:

module m2; reg r1; reg [2:0] i;
initial begin
r1 = 0; for (i = 0; i <= 5; i = i+1) r1 <= # (i*10) i[0]; end
endmodule

11.43 (Timing, 30 min) Write a model to mimic the behavior of a traffic light signal. The clock input is 1 MHz. You are to drive the lights as follows (times that the lights are on
are shown in parentheses): green (60 s), yellow (1 s), red (60 s).

11.44 (Port declarations, 30 min.) The rules for port declarations are as follows: "The port expression in the port definition can be one of the following:

a simple identifier●

a bit-select of a vector declared within the module●

a part-select of a vector declared within the module●

a concatenation of any of the above●

Each port listed in the module definition's list of ports shall be declared in the body of the module as an input, output, or inout (bidirectional). This is in addition to any other
declaration for a particular port--for example, a reg, or wire. A port can be declared in both a port declaration and a net or register declaration. If a port is declared as a vector, the
range specification between the two declarations of a port shall be identical" [Verilog LRM 12.3.2].

Compile the following and comment (you may be surprised at the results):

module stop (); initial #1 $finish; endmodule
module Outs_1 (a); output [3:0] a; reg [3:0] a;
initial a <= 4'b10xz; endmodule
module Outs_2 (a); output [2:0] a; reg [3:0] a;
initial a <= 4'b10xz; endmodule
module Outs_3 (a); output [3:0] a; reg [2:0] a;
initial a <= 4'b10xz; endmodule
module Outs_4 (a); output [2:0] a; reg [2:0] a;
initial a <= 4'b10xz; endmodule
module Outs_5 (a); output a; reg [3:0] a;
initial a <= 4'b10xz; endmodule
module Outs_6 (a[2:0]); output [3:0] a; reg [3:0] a;
initial a <= 4'b10xz; endmodule
module Outs_7 (a[1]); output [3:0] a; reg [3:0] a;
initial a <= 4'b10xz; endmodule
module Outs_8 (a[1]); output a; reg [3:0] a;
always a <= 4'b10xz; endmodule

11.45 (Specify blocks, 30 min.)

a. Describe the pin-to-pin timing of the following module. Build a testbench to demonstrate your explanation.

module XOR_spec (a, b, z); input a, b: output z; xor x1 (z, a, b);
specify
 specparam tnr = 1, tnf = 2 specparam tir = 3, tif = 4;
 if (a)(b => z) = (tir, tif); if (b)(a => z) = (tir, tif);
 if (~a)(b => z) = (tnr, tnf); if (~b)(a => z) = (tnr, tnf);

endspecify
endmodule

b. Write and test a module for a 2:1 MUX with inputs A0 , A1 , and sel ; output Z ; and the following delays: A0 to Z : 0.3 ns (rise) and 0.4 ns (fall); A1 to Z : 0.2 ns (rise) and
0.3 ns (fall); sel to Z = 0.5 ns.

11.46 (Design contest, **60 min.) In 1995 John Cooley organized a contest between VHDL and Verilog for ASIC designers. The goal was to design the fastest 9-bit counter in
under one hour using Synopsys synthesis tools and an LSI Logic vendor technology library. The Verilog interface is as follows:

module counter (data_in, up, down, clock,
 count_out, carry_out, borrow_out, parity_out);
output [8:0] count_out;
output carry_out, borrow_out, parity_out;
input [8:0] data_in; input clock, up, down;
reg [8:0] count_out; reg carry_out, borrow_out, parity_out;
// Insert your design here.
endmodule

The counter is positive-edge triggered, counts up with up='1' and down with down='1' . The contestants had the advantage of a predefined testbench with a set of test
vectors; you do not. Design a model for the counter and a testbench.

11.47 (Timing checks, ***60 min.+) Flip-flops with preset and clear require more complex timing-check constructs than those described in Section 11.13.3. The following BNF
defines a controlled timing-check event:

controlled_timing_check_event ::= timing_check_event_control
specify_terminal_descriptor [&&& timing_check_condition]
timing_check_condition ::=
 scalar_expression | ~scalar_expression
| scalar_expression == scalar_constant
| scalar_expression === scalar_constant
| scalar_expression != scalar_constant
| scalar_expression !== scalar_constant

The scalar expression that forms the conditioning signal must be a scalar net, or else the least significant bit of a vector net or a multibit expression value is used. The
comparisons in the timing check condition may be deterministic (using === , !== , ~ , or no operator) or nondeterministic (using == or !=). For deterministic comparisons,
an 'x' result disables the timing check. For nondeterministic comparisons, an 'x' result enables the timing check.

As an example the following unconditioned timing check,

$setup(data, posedge clock, 10);

performs a setup timing check on every positive edge of clock , as was explained in Section 11.13.3. The following controlled timing check is enabled only when clear is
high, which is what is required in a flip-flop model, for example.

$setup(data, posedge clock &&& clear, 10);

The next example shows two alternative ways to enable a timing check only when clear is low. The second method uses a nondeterministic operator.

$setup(data,posedge clock &&&(~clear),10); // clear=x disables check
$setup(data,posedge clock &&&(clear==0),10); // clear=x enables check

To perform the setup check only when clear and preset signals are high, you can add a gate outside the specify block, as follows:

and g1(clear_and_preset, clear, set);

A controlled timing check event can then use this clear_and_preset signal:

$setup(data, posedge clock &&& clear_and_preset, 10);

Use the preceding techniques to expand the D flip-flop model, dff_udp, from Section 11.13.3 to include asynchronous active-low preset and clear signals as well as an output,
qbar . Use the following module interface:

module dff(q, qbar, clock, data, preset, clear);

11.48 (Verilog BNF, 30 min.) Here is the "old" BNF definition of a sequential block (used in the Verilog reference manuals and the OVI LRM). Are there any differences from
the "new" version?

<sequential_block> ::=
 begin <statement>* end
 or
 begin: <block_IDENTIFIER> <block_declaration>*
 <statement>*
 end
<block_declaration> ::= parameter <list_of_param_assignment>;
 or reg <range>? <attribute_decl>*
 <list_of_register_variable>;
 or integer <attribute_decl>* <list_of_register_variable>;
 or real <attribute_decl>* <list_of_variable_IDENTIFIER>;
 or time <attribute_decl>* <list_of_register_variable>;
 or event <attribute_decl>* <list_of_event_IDENTIFIER>;
<statement> ::=
 <blocking_assignment>;
 or <non-blocking_assignment>;
 or if(<expression>) <statement_or_null>
 <else <statement_or_null> >?
 or <case or casez or casex>
 (<expression>) <case item>+ endcase
 or forever <statement>
 or repeat(<expression>) <statement>
 or while(<expression>) <statement>
 or for(<assignment>;
 <expression>; <assignment>) <statement>
 or wait(<expression>) <statement_or_null>
 or disable <task_IDENTIFIER>;
 or disable <block_IDENTIFIER>;
 or force <assignment>; or release <value>;

 or <timing_control> <statement_or_null>
 or -> <event_IDENTIFIER>;
 or <sequential_block> or <parallel_block>
 or <task_enable> or <system_task_enable>

11.49 (Conditional compiler directives, 30 min.) The conditional compiler directives: `define , `ifdef , `else , `endif , and `undef ; work much as in C. Write and
compile a module that models an AND gate as 'z = a&b' if the variable behavioral is defined. If behavioral is not defined, then model the AND gate as 'and a1 (z, a, b)'.

11.50 (*Macros, 30 min.) According to the IEEE Verilog LRM [16.3.1] you can create a macro with parameters using `define , as the following example illustrates. This is a
particularly difficult area of compliance. Does your software allow the following? You may have to experiment considerably to get this to work. Hint: Check to see if your
software is substituting for the macro text literally or if it does in fact substitute for parameters.

`define M_MAX(a, b)((a) > (b) ? (a) : (b))
`define M_ADD(a,b) (a+b)
module macro;
reg m1, m2, m3, s0, s1;
`define var_nand(delay) nand #delay
`var_nand (2) g121 (q21, n10, n11);
`var_nand (3) g122 (q22, n10, n11);
initial begin s0=0; s1=1;
m1 = `M_MAX (s0, s1); m2 = `M_ADD (s0,s1); m3 = s0 > s1 ? s0 : s1;
end
initial #1 $display(" m1=",m1," m2=",m2," m3=",m3);
endmodule

11.51 (**Verilog hazards, 30 min.) The MTI simulator, VSIM, is capable of detecting the following kinds of Verilog hazards:

WRITE/WRITE: Two processes writing to the same variable at the same time.1.

READ/WRITE: One process reading a variable at the same time it is being written to by another process. VSIM calls this a READ/WRITE hazard if it executed the read
first.

2.

WRITE/READ: Same as a READ/WRITE hazard except that VSIM executed the write first.3.

For example, the following log shows how to simulate Verilog code in hazard mode for the example in Section 11.6.2:

> vlib work
> vlog -hazards data_slip_1.v
> vsim -c -hazards data_slip_1
...(lines omitted)...
100 0 1 1 x
** Error: Write/Read hazard detected on Q1 (ALWAYS 3 followed by ALWAYS 4)
Time: 150 ns Iteration: 1 Instance:/
150 1 1 1 1
...(lines omitted)...

There are a total of five hazards in the module data_slip_1, four are on Q1, but there is another. If you correct the code as suggested in Section 11.6.2 and run VSIM, you will
find this fifth hazard. If you do not have access to MTI's simulator, can you spot this additional read/write hazard? Hint: It occurs at time zero on Clk. Explain.

11.15.1 The Viterbi Decoder
11.52 (Understanding, 20 min.) Calculate the values shown in Table 11.8 if we use 4 bits for the distance measures instead of 3.

11.53 (Testbenches)

a. (30 min.) Write a testbench for the encoder, viterbi_encode, in Section 11.12 and reproduce the results of Table 11.7.

b. (30 min.) Write a testbench for the receiver front-end viterbi_distances and reproduce the results of Table 11.9 (you can write this stand-alone or use the answer to part a to
generate the input). Hint: You will need a model for a D flip-flop. The sequence of results is more important than the exact timing. If you do have timing differences, explain
them carefully.

11.54 (Things go wrong, 60 min.) Things do not always go as smoothly as the examples in this book might indicate. Suppose you accidentally invert the sense of the reset for the
D flip-flops in the encoder. Simulate the output of the faulty encoder with an input sequence X n = 0, 1, 2, 3, ... (in other words run the encoder with the flip-flops being reset
continually). The output sequence looks reasonable (you should find that it is Y n = 0, 2, 4, 6, ...). Explain this result using the state diagram of Figure 11.3. If you had constructed
a testbench for the entire decoder and did not check the intermediate signals against expected values you would probably never find this error.

11.55 (Subset decoder) Table 11.21 shows the inputs and outputs from the first-stage of the Viterbi decoder, the subset decoder. Calculate the expected output and then confirm
your predictions using simulation.

TABLE 11.21 Subset decoder (Problem 11.55).

input in0 in1 in2 in3 in4 in5 in6 in7 s0 s1 s2 s3 sout0 sout1 sout2 sout3

5 6 7 6 4 1 0 1 4 1 0 1 4

4 7 6 4 1 0 1 4 6 0 1 4 1

1 1 0 1 4 6 7 6 4 1 0 1 4

0 0 1 4 6 7 6 4 1 0 1 4 1

11.16 Bibliography
The IEEE Verilog LRM [1995] is less intimidating than the IEEE VHDL LRM,
because it is based on the OVI LRM, which in turn was based on the Verilog-XL
simulator reference manual. Thus it has more of a "User's Guide" flavor and is
required reading for serious Verilog users. It is the only source for detailed
information on the PLI.

Phil Moorby was one of the original architects of the Verilog language. The
Thomas and Moorby text is a good introduction to Verilog [1991]. The code
examples from this book can be obtained from the World Wide Web. Palnitkar's
book includes an example of the use of the PLI routines [1996].

Open Verilog International (OVI) has a Web site maintained by Chronologic (
http://www.chronologic.com/ovi) with membership information and
addresses and an ftp site maintained by META-Software (
ftp://ftp.metasw.com in /pub/OVI/). OVI sells reference material,
including proceedings from the International Verilog HDL Conference.

The newsgroup comp.lang.verilog (with a FAQ--frequently asked
questions) is accessible from a number of online sources. The FAQ includes a list
of reference materials and book reviews. Cray Research maintained an archive
for comp.lang.verilog going back to 1993 but this was lost in January
1997 and is still currently unavailable. Cadence has a discussion group at
talkverilog@cadence.com . Wellspring Solutions offers VeriWell, a
no-cost, limited capability, Verilog simulator for UNIX, PC, and Macintosh
platforms.

There is a free, "copylefted" Verilog simulator, vbs , written by Jimen Ching and
Lay Hoon Tho as part of their Master's theses at the University of Hawaii, which
is part of the comp.lang.verilog archive. The package includes
explanations of the mechanics of a digital event-driven simulator, including event
queues and time wheels.

More technical references are included as part of Appendix B.

11.17 References
IEEE Std 1364-95, Verilog LRM. 1995. The Institute of Electrical and
Electronics Engineers. Available from The Institute of Electrical and Electronics
Engineers, Inc., 345 East 47th Street, New York, NY 10017 USA. [cited on
p. 479]

Palnitkar, S. 1996. Verilog HDL: A Guide to Digital Design and Synthesis.
Upper Saddle River, NJ: Prentice-Hall, 396 p. ISBN 0-13-451675-3.

Thomas, D. E., and P. Moorby. 1991. The Verilog Hardware Description
Language. 1st ed. Dordrecht, Netherlands: Kluwer, 223 p. ISBN 0-7923-9126-8,
TK7885.7.T48 (1st ed.). ISBN 0-7923-9523-9 (2nd ed.).

 `timescale 1ns/1ns
 module counter;
 reg clock; // declare reg data type for the clock
 integer count; // declare integer data type for the count
 initial // initialize things - this executes once at start
 begin
 clock = 0; count = 0; // initialize signals
 #340 $finish; // finish after 340 time ticks
 end
 /* an always statement to generate the clock, only one statement follows the
always so we don't need a begin and an end */
 always
 #10 clock = ~ clock; // delay is set to half the clock cycle
 /* an always statement to do the counting, runs at the same time (concurrently) as
the other always statement */
 always
 begin
 // wait here until the clock goes from 1 to 0
 @ (negedge clock);
 // now handle the counting
 if (count == 7)
 count = 0;
 else
 count = count + 1;
 $display("time = ",$time," count = ", count);
 end
 endmodule

 module identifiers;
 /* multi-line comments in Verilog
 look like C comments and // is OK in here */
 // single-line comment in Verilog
 reg legal_identifier,two__underscores;
 reg _OK,OK_,OK_$,OK_123,CASE_SENSITIVE, case_sensitive;
 reg \/clock ,\a*b ; // white_space after escaped identifier
 //reg $_BAD,123_BAD; // bad names even if we declare them!
 initial begin
 legal_identifier =0; // embedded underscores are OK
 two__underscores =0; // even two underscores in a row
 _OK = 0; // identifiers can start with underscore
 OK_ = 0; // and end with underscore
 OK$ = 0; // $ sign is OK: beware foreign keyboards
 OK_123 =0; // embedded digits are OK
 CASE_SENSITIVE =0; // Verilog is case-sensitive
 case_sensitive =1;
 \/clock =0; // escaped identifier with \ breaks rules
 \a*b =0; // but be careful! watch the spaces
 $display("Variable CASE_SENSITIVE= %d",CASE_SENSITIVE);
 $display("Variable case_sensitive= %d",case_sensitive);
 $display("Variable \/clock = %d",\/clock);
 $display("Variable \\a*b = %d",\a*b);
 end
 endmodule

 module declarations_1;
 wire pwr_good,pwr_on,pwr_stable; // Explicitly declare wires
 integer i; // 32-bit, signed (2's complement)
 time t; // 64-bit, unsigned, behaves like a 64-bit reg
 event e; // Declare an event data type
 real r; // Real data type of implementation defined size
 // assign statement continuously drives a wire...
 assign pwr_stable = 1'b1; assign pwr_on = 1; // 1 or 1'b1
 assign pwr_good = pwr_on & pwr_stable;
 initial begin
 i = 123.456; // There must be a digit on either side

 r = 123456e-3; // of the decimal point if it is present.
 t = 123456e-3; // Time is rounded to 1 second by default.
 $display("i=%0g",i," t=%6.2f",t," r=%f",r);
 #2 $display("TIME=%0d",$time," ON=",pwr_on,
 " STABLE=",pwr_stable," GOOD=",pwr_good);
 $finish; end
 endmodule

 module declarations_2;
 reg Q, Clk; wire D;
 // drive the wire (D)
 assign D = 1;
 // at +ve clock edge assign the value of wire D to the reg Q:
 always @(posedge Clk) Q = D;
 initial Clk = 0; always #10 Clk = ~ Clk;
 initial begin #50; $finish; end
 always begin
 $display("T=%2g", $time," D=",D," Clk=",Clk," Q=",Q); #10; end
 endmodule

 module declarations_3;
 reg a,b,c,d,e;
 initial begin
 #10; a=0;b=0;c=0;d=0; #10; a=0;b=1;c=1;d=0;
 #10; a=0;b=0;c=1;d=1; #10; $stop;
 end
 always begin
 @(a or b or c or d) e = (a|b)&(c|d);
 $display("T=%0g",$time," e=",e);
 end
 endmodule

 module declarations_4;
 wire Data; // a scalar net of type wire
 wire [31:0] ABus, DBus; // two 32-bit wide vector wires...
 // DBus[31] = left-most = most-significant bit = msb
 // DBus[0] = right-most = least-significant bit = lsb
 // Notice the size declaration precedes the names
 // wire [31:0] TheBus, [15:0] BigBus; // illegal
 reg [3:0] vector; // a 4-bit vector register
 reg [4:7] nibble; // msb index < lsb index
 integer i;
 initial begin
 i = 1;
 vector = 'b1010; // vector without an index
 nibble = vector; // this is OK too
 #1; $display("T=%0g",$time," vector=", vector," nibble=", nibble);
 #2; $display("T=%0g",$time," Bus=%b",DBus[15:0]);
 end
 assign DBus [1] = 1; // this is a bit-select
 assign DBus [3:0] = 'b1111; // this is a part-select
 // assign DBus [0:3] = 'b1111; // illegal - wrong direction
 endmodule

 module declarations_5;
 reg [31:0] VideoRam [7:0]; // a 8-word by 32-bit wide memory
 initial begin
 VideoRam[1] = 'bxz; // must specify an index for a memory
 VideoRam[2] = 1;
 VideoRam[7] = VideoRam[VideoRam[2]]; // need 2 clock cycles for this
 VideoRam[8] = 1; // careful! the compiler won't complain!
 // Verify what we entered:
 $display("VideoRam[0] is %b",VideoRam[0]);

 $display("VideoRam[1] is %b",VideoRam[1]);
 $display("VideoRam[2] is %b",VideoRam[2]);
 $display("VideoRam[7] is %b",VideoRam[7]);
 end
 endmodule

 module declarations_6;
 integer Number [1:100]; // Notice that size follows name
 time Time_Log [1:1000]; // - as in array of reg
 // real Illegal [1:10]; // ***no real arrays***
 endmodule

 module constants;
 parameter H12_UNSIZED = 'h 12; // unsized hex 12 = decimal 18
 parameter H12_SIZED = 6'h 12; // sized hex 12 = decimal 18
 // Notice that a space between base and value is OK
 /* '' (single apostrophes) are not the same as the ' character */
 parameter D42 = 8'B0010_1010; // bin 101010 = dec 42
 // ...we can use underscores to increase readability.
 parameter D123 = 123; // unsized decimal (default)
 parameter D63 = 8'o 77; // sized octal, decimal 63
 // parameter ILLEGAL = 1'o9; // no 9's in octal numbers!
 /* A = 'hx and B = 'ox assume a 32 bit width */
 parameter A = 'h x, B = 'o x, C = 8'b x, D = 'h z, E = 16'h ????;
 // ...we can use ? instead of z, same as E = 16'h zzzz
 // ...note automatic extension to 16 bits
 reg [3:0] B0011,Bxxx1,Bzzz1; real R1,R2,R3; integer I1,I3,I_3;
 parameter BXZ = 8'b1x0x1z0z;
 initial begin
 B0011 = 4'b11; Bxxx1 = 4'bx1; Bzzz1 = 4'bz1; // left padded
 R1 = 0.1e1; R2 = 2.0; R3 = 30E-01; // real numbers
 I1 = 1.1; I3 = 2.5; I_3 = -2.5; // IEEE rounds away from 0
 end
 initial begin #1;
 $display
 ("H12_UNSIZED, H12_SIZED (hex) = %h, %h",H12_UNSIZED, H12_SIZED);
 $display("D42 (bin) = %b",D42," (dec) = %d",D42);
 $display("D123 (hex) = %h",D123," (dec) = %d",D123);
 $display("D63 (oct) = %o",D63);
 $display("A (hex) = %h",A," B (hex) = %h",B);
 $display("C (hex) = %h",C," D (hex) = %h",D," E (hex) = %h",E);
 $display("BXZ (bin) = %b",BXZ," (hex) = %h",BXZ);
 $display("B0011, Bxxx1, Bzzz1 (bin) = %b, %b, %b",B0011,Bxxx1,Bzzz1);
 $display("R1, R2, R3 (e, f, g) = %e, %f, %g", R1, R2, R3);
 $display("I1, I3, I_3 (d) = %d, %d, %d", I1, I3, I_3);
 end
 endmodule

 module negative_numbers;
 parameter PA = -12, PB = -'d12, PC = -32'd12, PD = -4'd12;
 integer IA , IB , IC , ID ; reg [31:0] RA , RB , RC , RD ;
 initial begin #1;
 IA = -12; IB = -'d12; IC = -32'd12; ID = -4'd12;
 RA = -12; RB = -'d12; RC = -32'd12; RD = -4'd12; #1;
 $display(" parameter integer reg[31:0]");
 $display ("-12 =",PA,IA,,,RA);
 $displayh(" ",,,,PA,,,,IA,,,,,RA);
 $display ("-'d12 =",,PB,IB,,,RB);
 $displayh(" ",,,,PB,,,,IB,,,,,RB);
 $display ("-32'd12 =",,PC,IC,,,RC);
 $displayh(" ",,,,PC,,,,IC,,,,,RC);
 $display ("-4'd12 =",,,,,,,,,,PD,ID,,,RD);
 $displayh(" ",,,,,,,,,,,PD,,,,ID,,,,,RD);
 end

 endmodule

 module characters; /*
 " is ASCII 34 (hex 22), double quote
 ' is ASCII 39 (hex 27), tick or apostrophe
 / is ASCII 47 (hex 2F), forward slash
 \ is ASCII 92 (hex 5C), back slash
 ` is ASCII 96 (hex 60), accent grave
 | is ASCII 124 (hex 7C), vertical bar
 no standards for the graphic symbols for codes above 128...
 ´ is 171 (hex AB), accent acute in almost all fonts
 " is 210 (hex D2), open double quote, like 66 (some fonts)
 " is 211 (hex D3), close double quote, like 99 (some fonts)
 ' is 212 (hex D4), open single quote, like 6 (some fonts)
 ' is 213 (hex D5), close single quote, like 9 (some fonts)
 */ endmodule

 module text;
 parameter A_String = "abc"; // string constant, must be on one line
 parameter Say = "Say \"Hey!\"";
 // use escape quote \" for an embedded quote
 parameter Tab = "\t"; // tab character
 parameter NewLine = "\n"; // newline character
 parameter BackSlash = "\\"; // back slash
 parameter Tick = "\047"; // ASCII code for tick in octal
 // parameter Illegal = "\500"; // illegal - no such ASCII code
 initial begin
 $display("A_String(str) = %s ",A_String," (hex) = %h ",A_String);
 $display("Say = %s ",Say," Say \"Hey!\"");
 $display("NewLine(str) = %s ",NewLine," (hex) = %h ",NewLine);
 \\ Following changed in 3rd printing to clarify use of backslash
 \\ $display("\(str) = %s ",BackSlash," (hex) = %h ",BackSlash);
 $display("\\(str) = %s ",BackSlash," (hex) = %h ",BackSlash);
 $display("Tab(str) = %s ",Tab," (hex) = %h ",Tab,"1 newline...");
 $display("\n");
 $display("Tick(str) = %s ",Tick," (hex) = %h ",Tick);
 #1.23; $display("Time is %t", $time);
 end
 endmodule

 module define;
 `define G_BUSWIDTH 32 // bus width parameter (G_ for global)
 /* Note: there is no semicolon at end of a compiler directive. The character ` is
ASCII 96 (hex 60), accent grave, it slopes down from left to right. It is not the
tick or apostrophe character ' (ASCII 39 or hex 27)*/
 wire [`G_BUSWIDTH:0]MyBus; // 32-bit bus
 endmodule

 module operators;
 parameter A10xz = {1'b1,1'b0,1'bx,1'bz}; // concatenation
 parameter A01010101 = {4{2'b01}}; // replication
 // arithmetic operators: +, -, *, /, and modulus %
 parameter A1 = (3+2) %2; // result of % takes sign of argument #1
 // logical shift operators: << (left), >> (right)
 parameter A2 = 4 >> 1; parameter A4 = 1 << 2; // zero fill
 // relational operators: <, <=, >, >=
 initial if (1 > 2) $stop;
 // logical operators: ! (negation), && (and), || (or)
 parameter B0 = !12; parameter B1 = 1 && 2;
 reg [2:0] A00x; initial begin A00x = 'b111; A00x = !2'bx1; end
 parameter C1 = 1 || (1/0); /* this may or may not cause an
 error: the short-circuit behavior of && and || is undefined. An
 evaluation including && or || may stop when an expression is known
 to be true or false */

 // == (logical equality), != (logical inequality)
 parameter Ax = (1==1'bx); parameter Bx = (1'bx!=1'bz);
 parameter D0 = (1==0); parameter D1 = (1==1);
 // === case equality, !== (case inequality)
 // case operators only return true or false
 parameter E0 = (1===1'bx); parameter E1 = 4'b01xz === 4'b01xz;
 parameter F1 = (4'bxxxx === 4'bxxxx);
 // bitwise logical:
 // ~ (negation), & (and), | (inclusive or),
 // ^ (exclusive or), ~^ or ^~ (equivalence)
 parameter A00 = 2'b01 & 2'b10;
 // unary logical reduction:
 // & (and), ~& (nand), | (or), ~| (nor),
 // ^ (xor), ~^ or ^~ (xnor)
 parameter G1= & 4'b1111;
 // conditional expression x = a ? b : c
 // if (a) then x = b else x = c
 reg H0, a, b, c; initial begin a=1; b=0; c=1; H0=a?b:c; end
 reg[2:0] J01x, Jxxx, J01z, J011;
 initial begin Jxxx = 3'bxxx; J01z = 3'b01z; J011 = 3'b011;
 J01x = Jxxx ? J01z : J011; end // bitwise result
 initial begin #1;
 $display("A10xz=%b",A10xz," A01010101=%b",A01010101);
 $display("A1=%0d",A1," A2=%0d",A2," A4=%0d",A4);
 $display("B1=%b",B1," B0=%b",B0," A00x=%b",A00x);
 $display("C1=%b",C1," Ax=%b",Ax," Bx=%b",Bx);
 $display("D0=%b",D0," D1=%b",D1);
 $display("E0=%b",E0," E1=%b",E1," F1=%b",F1);
 $display("A00=%b",A00," G1=%b",G1," H0=%b",H0);
 $display("J01x=%b",J01x); end
 endmodule

 module modulo; reg [2:0] Seven;
 initial begin
 #1 Seven = 7; #1 $display("Before=", Seven);
 #1 Seven = Seven + 1; #1 $display("After =", Seven);
 end
 endmodule
 Before=7
 After =0

 module LRM_arithmetic;
 integer IA, IB, IC, ID, IE; reg [15:0] RA, RB, RC;
 initial begin
 IA = -4'd12; RA = IA / 3;
 RB = -4'd12; IB = RB / 3;
 IC = -4'd12 / 3; RC = -12 / 3;
 ID = -12 / 3; IE = IA / 3;
 end
 initial begin #1;
 $display(" hex default");
 $display("IA = -4'd12 = %h%d",IA,IA);
 $display("RA = IA / 3 = %h %d",RA,RA);
 $display("RB = -4'd12 = %h %d",RB,RB);
 $display("IB = RB / 3 = %h%d",IB,IB);
 $display("IC = -4'd12 / 3 = %h%d",IC,IC);
 $display("RC = -12 / 3 = %h %d",RC,RC);
 $display("ID = -12 / 3 = %h%d",ID,ID);
 $display("IE = IA / 3 = %h%d",IE,IE);
 end
 endmodule

 module holiday_1(sat, sun, weekend);
 input sat, sun; output weekend;

 assign weekend = sat | sun;
 endmodule

 `timescale 100s/1s // units are 100 seconds with precision of 1s
 module life; wire [3:0] n; integer days;
 wire wake_7am, wake_8am; // wake at 7 on weekdays else at 8
 assign n = 1 + (days % 7); // n is day of the week (1-6)
 always@(wake_8am or wake_7am)
 $display("Day=",n," hours=%0d ",($time/36)%24," 8am = ",
 wake_8am," 7am = ",wake_7am," m2.weekday = ", m2.weekday);
 initial days = 0;
 initial begin #(24*36*10);$finish; end // run for 10 days
 always #(24*36) days = days + 1; // bump day every 24hrs
 rest m1(n, wake_8am); // module instantiation
 // creates a copy of module rest with instance name m1
 // ports are linked using positional notation
 work m2(.weekday(wake_7am), .day(n));
 // creates a copy of module work with instance name m2
 // ports are linked using named association
 endmodule

 module rest(day, weekend); // module definition
 // notice the port names are different from parent
 input [3:0] day; output weekend; reg weekend;
 always begin #36 weekend = day > 5; end // need delay
 endmodule

 module work(day, weekday);
 input [3:0] day; output weekday; reg weekday;
 always begin #36 weekday = day < 6; end // need delay
 endmodule

 module holiday_1(sat, sun, weekend);
 input sat, sun; output weekend;
 assign weekend = sat | sun; // outside a procedure
 endmodule

 module holiday_2(sat, sun, weekend);
 input sat, sun; output weekend; reg weekend;
 always #1 weekend = sat | sun; // inside a procedure
 endmodule

module assignment_1();
 wire pwr_good,pwr_on,pwr_stable; reg Ok,Fire;
 assign pwr_stable = Ok&(!Fire);
 assign pwr_on = 1;
 assign pwr_good = pwr_on & pwr_stable;
 initial begin Ok=0;Fire=0; #1 Ok=1; #5 Fire=1;end
 initial begin $monitor("TIME=%0d",$time," ON=",pwr_on, " STABLE=",
 pwr_stable," OK=",Ok," FIRE=",Fire," GOOD=",pwr_good);
 #10 $finish; end
 endmodule

 module assignment_2; reg Enable; wire [31:0] Data;
 /* the following single statement is equivalent to a declaration and continuous
assignment */
 wire [31:0] DataBus = Enable ? Data : 32'bz;
 assign Data = 32'b10101101101011101111000010100001;
 initial begin
 $monitor("Enable=%b DataBus=%b ", Enable, DataBus);
 Enable = 0; #1; Enable = 1; #1; end
 endmodule

 module always_1; reg Y, Clk;
 always // statements in an always statement execute repeatedly...
 begin: my_block // start of sequential block
 @(posedge Clk) #5 Y = 1; // at +ve edge set Y=1
 @(posedge Clk) #5 Y = 0; // at the NEXT +ve edge set Y=0
 end // end of sequential block
 always #10 Clk = ~ Clk; // ...we need a clock
 initial Y = 0; // these initial statements execute
 initial Clk = 0; // only once, but first...
 initial $monitor("T=%2g",$time," Clk=",Clk," Y=",Y);
 initial #70 $finish;
 endmodule

 module procedural_assign; reg Y, A;
 always @(A)
 Y = A; // procedural assignment
 initial begin A=0; #5; A=1; #5; A=0; #5; $finish; end
 initial $monitor("T=%2g",$time,,"A=",A,,,"Y=",Y);
 endmodule

 module delay_controls; reg X,Y,Clk,Dummy;
 always #1 Dummy=!Dummy; // dummy clock, just for graphics
 // examples of delay controls...
 always begin #25 X=1;#10 X=0;#5; end
 // an event control:
 always @(posedge Clk) Y=X; // wait for +ve clock edge
 always #10 Clk = !Clk; // the real clock
 initial begin Clk = 0;
 $display("T Clk X Y");
 $monitor("%2g",$time,,,Clk,,,,X,,Y);
 $dumpvars;#100 $finish; end
 endmodule

 module show_event;
 reg clock;
 event event_1, event_2; // declare two named events
 always @(posedge clock) -> event_1; // trigger event_1
 always @ event_1
 begin $display("Strike 1!!"); -> event_2; end // trigger event_2
 always @ event_2 begin $display("Strike 2!!");
 $finish; end // stop on detection of event_2
 always #10 clock = ~ clock; // we need a clock
 initial clock = 0;
 endmodule

 module data_slip_1 (); reg Clk,D,Q1,Q2;
 /************* bad sequential logic below ***************/
 always @(posedge Clk) Q1 = D;
 always @(posedge Clk) Q2 = Q1; // data slips here!
 /************* bad sequential logic above ***************/
 initial begin Clk=0; D=1; end always #50 Clk=~Clk;
 initial begin $display("t Clk D Q1 Q2");
 $monitor("%3g",$time,,Clk,,,,D,,Q1,,,Q2); end
 initial #400 $finish; // run for 8 cycles
 initial $dumpvars;
 endmodule

 module test_dff_wait;
 reg D,Clock,Reset; dff_wait u1(D,Q,Clock,Reset);

 initial begin D=1;Clock=0;Reset=1'b1;#15 Reset=1'b0;#20 D=0;end
 always #10 Clock=!Clock;
 initial begin $display("T Clk D Q Reset");
 $monitor("%2g",$time,,Clock,,,,D,,Q,,Reset); #50 $finish; end
 endmodule
 module dff_wait(D,Q,Clock,Reset);
 output Q; input D,Clock,Reset; reg Q; wire D;
 always @(posedge Clock) if (Reset!==1) Q=D;
 always begin wait (Reset==1) Q=0; wait (Reset!==1); end
 endmodule

 module dff_wait(D,Q,Clock,Reset);
 output Q; input D,Clock,Reset; reg Q; wire D;
 always @(posedge Clock) if (Reset!==1) Q=D;
 // we need another wait statement here or we shall spin forever
 always begin wait (Reset==1) Q=0; end
 endmodule

 module delay;
 reg a,b,c,d,e,f,g,bds,bsd;
 initial begin
 a = 1; b = 0; // no delay
 #1 b = 1; // delayed assignment
 c = #1 1; // intra-assignment delay
 #1; //
 d = 1; //
 e <= #1 1; // intra-assignment, non-blocking
 #1 f <= 1; // delayed non-blocking
 g <= 1; // non-blocking
 end
 initial begin #1 bds = b; end // delay then sample (ds)
 initial begin bsd = #1 b; end // sample then delay (sd)
 initial begin $display("t a b c d e f g bds bsd");
 $monitor("%g",$time,,a,,b,,c,,d,,e,,f,,g,,bds,,,,bsd); end
 endmodule

 module dff_procedural_assign;
 reg d,clr_,pre_,clk; wire q; dff_clr_pre dff_1(q,d,clr_,pre_,clk);
 always #10 clk = ~clk;
 initial begin clk = 0; clr_ = 1; pre_ = 1; d = 1;
 #20; d = 0; #20; pre_ = 0; #20; pre_ = 1; #20; clr_ = 0;
 #20; clr_ = 1; #20; d = 1; #20; $finish; end
 initial begin
 $display("T CLK PRE_ CLR_ D Q");
 $monitor("%3g",$time,,,clk,,,,pre_,,,,clr_,,,,d,,q); end
 endmodule

 module dff_clr_pre(q,d,clear_,preset_,clock);
 output q; input d,clear_,preset_,clock; reg q;
 always @(clear_ or preset_)
 if (!clear_) assign q = 0; // active low clear
 else if(!preset_) assign q = 1; // active low preset
 else deassign q;
 always @(posedge clock) q = d;
 endmodule

 module F_subset_decode; reg [2:0]A,B,C,D,E,F;
 initial begin A=1;B=0;D=2;E=3;
 C=subset_decode(A,B); F=subset_decode(D,E);
 $display("A B C D E F");$display(A,,B,,C,,D,,E,,F); end
 function [2:0] subset_decode; input [2:0] a,b;
 begin if (a<=b) subset_decode=a; else subset_decode=b; end

 endfunction
 endmodule

 module test_mux; reg a,b,select; wire out;
 mux mux_1(a,b,out,select);
 initial begin #2; select = 0; a = 0; b = 1;
 #2; select = 1'bx; #2; select = 1'bz; #2; select = 1; end
 initial $monitor("T=%2g",$time," Select=",select," Out=",out);
 initial #10 $finish;
 endmodule

 module mux(a, b, mux_output, mux_select); input a, b, mux_select;
 output mux_output; reg mux_output;
 always begin
 case(mux_select)
 0: mux_output = a;
 1: mux_output = b;
 default mux_output = 1'bx; // if select = x or z set output to x
 endcase
 #1; // need some delay, otherwise we'll spin forever
 end
 endmodule

 module loop_1;
 integer i; reg [31:0] DataBus; initial DataBus = 0;
 initial begin
 /************** insert loop code after here ******************/
 /* for(execute this <assignment> once before starting loop; exit loop if this
<expression> is false; execute this <assignment> at end of loop before the check for
end of loop) */
 for(i=0; i<=15; i=i+1) DataBus[i]=1;
 /*************** insert loop code before here ****************/
 end
 initial begin
 $display("DataBus = %b",DataBus);
 #2; $display("DataBus = %b",DataBus); $finish;
 end
 endmodule

 module fork
 event a,b;
 initial
 fork
 @eat_breakfast; @read_paper;
 join
 end
 endmodule

 module primitive;
 nand (strong0, strong1) #2.2
 Nand_1(n001, n004, n005),
 Nand_2(n003, n001, n005, n002);
 nand (n006, n005, n002);
 endmodule

 primitive Adder(Sum, InA, InB);
 output Sum; input Ina, InB;
 table
 // inputs : output
 00 : 0;
 01 : 1;

 10 : 1;
 11 : 0;
 endtable
 endprimitive

 primitive DLatch(Q, Clock, Data);
 output Q; reg Q; input Clock, Data;
 table
 //inputs : present state : output (next state)
 1 0 : ? : 0; // ? represents 0,1, or x input
 1 1 : b : 1; // b represents 0 or 1 input
 1 1 : x : 1; // could have combined this with previous line
 // The following line is as it appeared in printing 1 and 2.
 // 0 1 : ? : -; // - represents no change in an output
 // Changed as follows by Mike Smith, 10/11/97, for printing 3.
 0 ? : ? : -; // - represents no change in an output
 //
 // Explanation: I had never intended that this example to be
 // a complete and correct model of a latch, it was meant only
 // to illustrate UDP truth-table declaration. However, the
 // problem with the original code (a missing truth-table
 // specification for the case Clock=0 and Data equal to anything
 // other than 1) looks like an error. It could cause confusion
 // if someone was either (a) trying to figure out how this
 // state-dependent UDP modeled a latch or (b) just blindly
 // copied the code from the book text and used it.
 // So, I have changed it.
 //
 endtable
 endprimitive

 primitive DFlipFlop(Q, Clock, Data);
 output Q; reg Q; input Clock, Data;
 table
 //inputs : present state : output (next state)
 r 0 : ? : 0 ; // rising edge, next state = output = 0
 r 1 : ? : 1 ; // rising edge, next state = output = 1
 (0x) 0 : 0 : 0 ; // rising edge, next state = output = 0
 (0x) 1 : 1 : 1 ; // rising edge, next state = output = 1
 (?0) ? : ? : - ; // falling edge, no change in output
 ? (??) : ? : - ; // no clock edge, no change in output
 endtable
 endprimitive

 module DFF_Spec; reg D, clk;
 DFF_Part DFF1 (Q, clk, D, pre, clr);
 initial begin D = 0; clk = 0; #1; clk = 1; end
 initial $monitor("T=%2g",$time," clk=",clk," Q=",Q);
 endmodule
 module DFF_Part(Q, clk, D, pre, clr);
 input clk, D, pre, clr; output Q;
 DFlipFlop(Q, clk, D); // no preset or clear in this UDP
 specify
 specparam
 tPLH_clk_Q = 3, tPHL_clk_Q = 2.9,
 tPLH_set_Q = 1.2, tPHL_set_Q = 1.1;
 (clk => Q) = (tPLH_clk_Q, tPHL_clk_Q);
 (pre, clr *> Q) = (tPLH_set_Q, tPHL_set_Q);
 endspecify
 endmodule

 `timescale 1 ns / 100 fs
 module M_Spec; reg A1, A2, B; M M1 (Z, A1, A2, B);

 initial begin A1=0;A2=1;B=1;#5;B=0;#5;A1=1;A2=0;B=1;#5;B=0;end
 initial
 $monitor("T=%4g",$realtime," A1=",A1," A2=",A2," B=",B," Z=",Z);
 endmodule

 `timescale 100 ps / 10 fs
 module M(Z, A1, A2, B); input A1, A2, B; output Z;
 or (Z1, A1, A2); nand (Z, Z1, B); // OAI21
 /*A1 A2 B Z delay=10*100 ps unless shown below...
 0 0 0 1
 0 0 1 1
 0 1 0 1 B:0->1 Z:1->0 delay=t2
 0 1 1 0 B:1->0 Z:0->1 delay=t1
 1 0 0 1 B:0->1 Z:1->0 delay=t4
 1 0 1 0 B:1->0 Z:0->1 delay=t3
 1 1 0 1
 1 1 1 0 */
 specify specparam t1=11,t2=12; specparam t3=13,t4=14;
 (A1 => Z) = 10; (A2 => Z) = 10;
 if (~A1) (B => Z) = (t1, t2); if (A1) (B => Z) = (t3, t4);
 endspecify
 endmodule

 module Vector_And(Z,A,B);
 parameter CARDINALITY = 1;
 input [CARDINALITY-1:0] A,B;
 output [CARDINALITY-1:0] Z;
 wire [CARDINALITY-1:0] Z = A & B;
 endmodule

 module Four_And_Gates(OutBus, InBusA, InBusB);
 input [3:0] InBusA, InBusB; output [3:0] OutBus;
 Vector_And #(4) My_AND(OutBus, InBusA, InBusB); // 4 AND gates
 endmodule

 module And_Gates(OutBus, InBusA, InBusB);
 parameter WIDTH = 1;
 input [WIDTH-1:0] InBusA, InBusB; output [WIDTH-1:0] OutBus;
 Vector_And #(WIDTH) My_And(OutBus, InBusA, InBusB);
 endmodule
 module Super_Size; defparam And_Gates.WIDTH = 4; endmodule

 /**/
 /* module viterbi_encode */
 /**/
 /* This is the encoder. X2N (msb) and X1N form the 2-bit input
 message, XN. Example: if X2N=1, X1N=0, then XN=2. Y2N (msb), Y1N, and
 Y0N form the 3-bit encoded signal, YN (for a total constellation of 8
 PSK signals that will be transmitted). The encoder uses a state
 machine with four states to generate the 3-bit output, YN, from the
 2-bit input, XN. Example: the repeated input sequence XN = (X2N, X1N)
 = 0, 1, 2, 3 produces the repeated output sequence YN = (Y2N, Y1N,
 Y0N) = 1, 0, 5, 4. */
 module viterbi_encode(X2N,X1N,Y2N,Y1N,Y0N,clk,res);
 input X2N,X1N,clk,res; output Y2N,Y1N,Y0N;
 wire X1N_1,X1N_2,Y2N,Y1N,Y0N;
 dff dff_1(X1N,X1N_1,clk,res); dff dff_2(X1N_1,X1N_2,clk,res);
 assign Y2N=X2N; assign Y1N=X1N ^ X1N_2; assign Y0N=X1N_1;
 endmodule

 /**/

 /* module viterbi_distances */
 /**/
 /* This module simulates the front-end of a receiver. Normally the
 received analog signal (with noise) is converted into a series of
 distance measures from the known eight possible transmitted PSK
 signals: s1,...s7. We are not simulating the analog part or noise in
 this version so we just take the digitally encoded 3-bit signal, Y,
 from the encoder and convert it directly to the distance measures.
 d[N] is the distance from signal=N to signal=0
 d[N] = (2*sin(N*PI/8))**2 in 3-bit binary (on the scale 2=100)
 Example: d[3] = 1.85**2 = 3.41 = 110
 inN is the distance from signal=N to encoder signal.
 Example: in3 is the distance from signal=3 to encoder signal.
 d[N] is the distance from signal=N to encoder signal=0.
 If encoder signal=J, shift the distances by 8-J positions.
 Example: if signal=2, in0 is d[6], in1 is D[7], in2 is D[0], etc. */
 module viterbi_distances
 (Y2N,Y1N,Y0N,clk,res,in0,in1,in2,in3,in4,in5,in6,in7);
 input clk,res,Y2N,Y1N,Y0N; output in0,in1,in2,in3,in4,in5,in6,in7;
 reg [2:0] J,in0,in1,in2,in3,in4,in5,in6,in7; reg [2:0] d [7:0];
 initial begin d[0]='b000;d[1]='b001;d[2]='b100;d[3]='b110;
 d[4]='b111;d[5]='b110;d[6]='b100;d[7]='b001; end
 always @(Y2N or Y1N or Y0N) begin
 J[0]=Y0N;J[1]=Y1N;J[2]=Y2N;
 J=8-J;in0=d[J];J=J+1;in1=d[J];J=J+1;in2=d[J];J=J+1;in3=d[J];
 J=J+1;in4=d[J];J=J+1;in5=d[J];J=J+1;in6=d[J];J=J+1;in7=d[J];
 end endmodule

 /***/
 /* module viterbi_test_CDD */
 /***/
 /* This is the top level module, viterbi_test_CDD, that models the
 communications link. It contains three modules: viterbi_encode,
 viterbi_distances, and viterbi. There is no analog and no noise in
 this version. The 2-bit message, X, is encoded to a 3-bit signal, Y.
 In this module the message X is generated using a simple counter.
 The digital 3-bit signal Y is transmitted, received with noise as an
 analog signal (not modeled here), and converted to a set of eight
 3-bit distance measures, in0, ..., in7. The distance measures form
 the input to the Viterbi decoder that reconstructs the transmitted
 signal Y, with an error signal if the measures are inconsistent.
 CDD = counter input, digital transmission, digital reception */
 module viterbi_test_CDD;
 wire Error; // decoder out
 wire [2:0] Y,Out; // encoder out, decoder out
 reg [1:0] X; // encoder inputs
 reg Clk, Res; // clock and reset
 wire [2:0] in0,in1,in2,in3,in4,in5,in6,in7;
 always #500 $display("t Clk X Y Out Error");
 initial $monitor("%4g",$time,,Clk,,,,X,,Y,,Out,,,,Error);
 initial $dumpvars; initial #3000 $finish;
 always #50 Clk=~Clk; initial begin Clk=0;
 X=3; // no special reason to start at 3
 #60 Res=1;#10 Res=0;end // hit reset after inputs are stable
 always @(posedge Clk) #1 X=X+1; // drive input with counter
 viterbi_encode v_1
 (X[1],X[0],Y[2],Y[1],Y[0],Clk,Res);
 viterbi_distances v_2
 (Y[2],Y[1],Y[0],Clk,Res,in0,in1,in2,in3,in4,in5,in6,in7);
 viterbi v_3
 (in0,in1,in2,in3,in4,in5,in6,in7,Out,Clk,Res,Error);
 endmodule

 /**/
 /* module dff */
 /**/

 /* A D flip-flop module. */
 module dff(D,Q,Clock,Reset); // N.B. reset is active-low
 output Q; input D,Clock,Reset;
 parameter CARDINALITY = 1; reg [CARDINALITY-1:0] Q;
 wire [CARDINALITY-1:0] D;
 always @(posedge Clock) if (Reset!==0) #1 Q=D;
 always begin wait (Reset==0); Q=0; wait (Reset==1); end
 endmodule

 /* Verilog code for a Viterbi decoder. The decoder assumes a rate
 2/3 encoder, 8 PSK modulation, and trellis coding. The viterbi module
 contains eight submodules: subset_decode, metric, compute_metric,
 compare_select, reduce, pathin, path_memory, and output_decision.
 The decoder accepts eight 3-bit measures of ||r-si||**2 and, after
 an initial delay of twelve clock cycles, the output is the best
 estimate of the signal transmitted. The distance measures are the
 Euclidean distances between the received signal r (with noise) and
 each of the (in this case eight) possible transmitted signals s0-s7.
 Original by Christeen Gray, University of Hawaii. Heavily modified
 by MJSS, any errors are mine. Use freely. */
 /**/
 /* module viterbi */
 /**/
 /* This is the top level of the Viterbi decoder. The eight input
 signals {in0,...,in7} represent the distance measures, ||r-si||**2.
 The other input signals are clk and reset. The output signals are
 out and error. */
 module viterbi
 (in0,in1,in2,in3,in4,in5,in6,in7,
 out,clk,reset,error);
 input [2:0] in0,in1,in2,in3,in4,in5,in6,in7;
 output [2:0] out; input clk,reset; output error;
 wire sout0,sout1,sout2,sout3;
 wire [2:0] s0,s1,s2,s3;
 wire [4:0] m_in0,m_in1,m_in2,m_in3;
 wire [4:0] m_out0,m_out1,m_out2,m_out3;
 wire [4:0] p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3;
 wire ACS0,ACS1,ACS2,ACS3;
 wire [4:0] out0,out1,out2,out3;
 wire [1:0] control;
 wire [2:0] p0,p1,p2,p3;
 wire [11:0] path0;
 subset_decode u1(in0,in1,in2,in3,in4,in5,in6,in7,
 s0,s1,s2,s3,sout0,sout1,sout2,sout3,clk,reset);
 metric u2(m_in0,m_in1,m_in2,m_in3,m_out0,
 m_out1,m_out2,m_out3,clk,reset);
 compute_metric u3(m_out0,m_out1,m_out2,m_out3,s0,s1,s2,s3,
 p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3,error);
 compare_select u4(p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3,
 out0,out1,out2,out3,ACS0,ACS1,ACS2,ACS3);
 reduce u5(out0,out1,out2,out3,
 m_in0,m_in1,m_in2,m_in3,control);
 pathin u6(sout0,sout1,sout2,sout3,
 ACS0,ACS1,ACS2,ACS3,path0,clk,reset);
 path_memory u7(p0,p1,p2,p3,path0,clk,reset,
 ACS0,ACS1,ACS2,ACS3);
 output_decision u8(p0,p1,p2,p3,control,out);
 endmodule
 /**/
 /* module subset_decode */
 /**/
 /* This module chooses the signal corresponding to the smallest of
 each set {||r-s0||**2,||r-s4||**2}, {||r-s1||**2, ||r-s5||**2},
 {||r-s2||**2,||r-s6||**2}, {||r-s3||**2,||r-s7||**2}. Therefore
 there are eight input signals and four output signals for the
 distance measures. The signals sout0, ..., sout3 are used to control
 the path memory. The statement dff #(3) instantiates a vector array

 of 3 D flip-flops. */
 module subset_decode
 (in0,in1,in2,in3,in4,in5,in6,in7,
 s0,s1,s2,s3,
 sout0,sout1,sout2,sout3,
 clk,reset);
 input [2:0] in0,in1,in2,in3,in4,in5,in6,in7;
 output [2:0] s0,s1,s2,s3;
 output sout0,sout1,sout2,sout3;
 input clk,reset;
 wire [2:0] sub0,sub1,sub2,sub3,sub4,sub5,sub6,sub7;
 dff #(3) subout0(in0, sub0, clk, reset);
 dff #(3) subout1(in1, sub1, clk, reset);
 dff #(3) subout2(in2, sub2, clk, reset);
 dff #(3) subout3(in3, sub3, clk, reset);
 dff #(3) subout4(in4, sub4, clk, reset);
 dff #(3) subout5(in5, sub5, clk, reset);
 dff #(3) subout6(in6, sub6, clk, reset);
 dff #(3) subout7(in7, sub7, clk, reset);
 function [2:0] subset_decode; input [2:0] a,b;
 begin
 subset_decode = 0;
 if (a<=b) subset_decode = a; else subset_decode = b;
 end
 endfunction
 function set_control; input [2:0] a,b;
 begin
 if (a<=b) set_control = 0; else set_control = 1;
 end
 endfunction
 assign s0 = subset_decode (sub0,sub4);
 assign s1 = subset_decode (sub1,sub5);
 assign s2 = subset_decode (sub2,sub6);
 assign s3 = subset_decode (sub3,sub7);
 assign sout0 = set_control(sub0,sub4);
 assign sout1 = set_control(sub1,sub5);
 assign sout2 = set_control(sub2,sub6);
 assign sout3 = set_control(sub3,sub7);
 endmodule
 /**/
 /* module compute_metric */
 /**/
 /* This module computes the sum of path memory and the distance for
 each path entering a state of the trellis. For the four states,
 there are two paths entering it, therefore eight sums are computed
 in this module. The path metrics and output sums are 5-bits wide.
 The output sum is bounded and should never be greater than 5-bits
 for a valid input signal. The overflow from the sum is the error
 output and indicates an invalid input signal.*/
 module compute_metric
 (m_out0,m_out1,m_out2,m_out3,
 s0,s1,s2,s3,p0_0,p2_0,
 p0_1,p2_1,p1_2,p3_2,p1_3,p3_3,
 error);
 input [4:0] m_out0,m_out1,m_out2,m_out3;
 input [2:0] s0,s1,s2,s3;
 output [4:0] p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3;
 output error;
 assign
 p0_0 = m_out0 + s0,
 p2_0 = m_out2 + s2,
 p0_1 = m_out0 + s2,
 p2_1 = m_out2 + s0,
 p1_2 = m_out1 + s1,
 p3_2 = m_out3 + s3,
 p1_3 = m_out1 + s3,
 p3_3 = m_out3 + s1;
 function is_error; input x1,x2,x3,x4,x5,x6,x7,x8;
 begin

 if (x1||x2||x3||x4||x5||x6||x7||x8) is_error = 1;
 else is_error = 0;
 end
 endfunction
 assign error = is_error(p0_0[4],p2_0[4],p0_1[4],p2_1[4],
 p1_2[4],p3_2[4],p1_3[4],p3_3[4]);
 endmodule
 /**/
 /* module compare_select */
 /**/
 /* This module compares the summations from the compute_metric
 module and selects the metric and path with the lowest value. The
 output of this module is saved as the new path metric for each
 state. The ACS output signals are used to control the path memory of
 the decoder. */
 module compare_select
 (p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3,
 out0,out1,out2,out3,
 ACS0,ACS1,ACS2,ACS3);
 input [4:0] p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3;
 output [4:0] out0,out1,out2,out3;
 output ACS0,ACS1,ACS2,ACS3;
 function [4:0] find_min_metric; input [4:0] a,b;
 begin
 if (a<=b) find_min_metric=a; else find_min_metric=b;
 end
 endfunction
 function set_control; input [4:0] a,b;
 begin
 if (a<=b) set_control=0; else set_control=1;
 end
 endfunction
 assign out0=find_min_metric(p0_0,p2_0);
 assign out1=find_min_metric(p0_1,p2_1);
 assign out2=find_min_metric(p1_2,p3_2);
 assign out3=find_min_metric(p1_3,p3_3);
 assign ACS0 = set_control (p0_0,p2_0);
 assign ACS1 = set_control (p0_1,p2_1);
 assign ACS2 = set_control (p1_2,p3_2);
 assign ACS3 = set_control (p1_3,p3_3);
 endmodule
 /**/
 /* module path */
 /**/
 /* This is the basic unit for the path memory of the Viterbi
 decoder. It consists of four 3-bit D flip-flops in parallel. There
 is a 2:1 mux at each D flip-flop input. The statement dff #(12)
 instantiates a vector array of 12 flip-flops. */
 module path(in,out,clk,reset,ACS0,ACS1,ACS2,ACS3);
 input [11:0] in; output [11:0] out;
 input clk,reset,ACS0,ACS1,ACS2,ACS3; wire [11:0] p_in;
 dff #(12) path0(p_in,out,clk,reset);
 function [2:0] shift_path; input [2:0] a,b; input control;
 begin
 if (control == 0) shift_path = a; else shift_path = b;
 end
 endfunction
 assign p_in[11:9]=shift_path(in[11:9],in[5:3],ACS0);
 assign p_in[8:6]=shift_path(in[11:9],in[5:3],ACS1);
 assign p_in[5:3]=shift_path(in[8: 6],in[2:0],ACS2);
 assign p_in[2:0]=shift_path(in[8: 6],in[2:0],ACS3);
 endmodule
 /**/
 /* module path_memory */
 /**/
 /* This module consists of an array of memory elements (D
 flip-flops) that store and shift the path memory as new signals are
 added to the four paths (or four most likely sequences of signals).

 This module instantiates 11 instances of the path module. */
 module path_memory
 (p0,p1,p2,p3,
 path0,clk,reset,
 ACS0,ACS1,ACS2,ACS3);
 output [2:0] p0,p1,p2,p3; input [11:0] path0;
 input clk,reset,ACS0,ACS1,ACS2,ACS3;
 wire [11:0]out1,out2,out3,out4,out5,out6,out7,out8,out9,out10,out11;
 path x1 (path0,out1 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x2 (out1, out2 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x3 (out2, out3 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x4 (out3, out4 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x5 (out4, out5 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x6 (out5, out6 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x7 (out6, out7 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x8 (out7, out8 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x9 (out8, out9 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x10(out9, out10,clk,reset,ACS0,ACS1,ACS2,ACS3),
 x11(out10,out11,clk,reset,ACS0,ACS1,ACS2,ACS3);
 assign p0=out11[11:9];
 assign p1=out11[8:6];
 assign p2=out11[5:3];
 assign p3=out11[2:0];
 endmodule
 /**/
 /* module pathin */
 /**/
 /* This module determines the input signal to the path for each of
 the four paths. Control signals from the subset decoder and compare
 select modules are used to store the correct signal. The statement
 dff #(12) instantiates a vector array of 12 flip-flops. */
 module pathin
 (sout0,sout1,sout2,sout3,
 ACS0,ACS1,ACS2,ACS3,
 path0,clk,reset);
 input sout0,sout1,sout2,sout3,ACS0,ACS1,ACS2,ACS3;
 input clk,reset; output [11:0] path0;
 wire [2:0] sig0,sig1,sig2,sig3; wire [11:0] path_in;
 dff #(12) firstpath(path_in,path0,clk,reset);
 function [2:0] subset0; input sout0;
 begin
 if(sout0 == 0) subset0 = 0; else subset0 = 4;
 end
 endfunction
 function [2:0] subset1; input sout1;
 begin
 if(sout1 == 0) subset1 = 1; else subset1 = 5;
 end
 endfunction
 function [2:0] subset2; input sout2;
 begin
 if(sout2 == 0) subset2 = 2; else subset2 = 6;
 end
 endfunction
 function [2:0] subset3; input sout3;
 begin
 if(sout3 == 0) subset3 = 3; else subset3 = 7;
 end
 endfunction
 function [2:0] find_path; input [2:0] a,b; input control;
 begin
 if(control==0) find_path = a; else find_path = b;
 end
 endfunction
 assign sig0 = subset0(sout0);
 assign sig1 = subset1(sout1);
 assign sig2 = subset2(sout2);
 assign sig3 = subset3(sout3);
 assign path_in[11:9] = find_path(sig0,sig2,ACS0);

 assign path_in[8:6] = find_path(sig2,sig0,ACS1);
 assign path_in[5:3] = find_path(sig1,sig3,ACS2);
 assign path_in[2:0] = find_path(sig3,sig1,ACS3);
 endmodule
 /**/
 /* module metric */
 /**/
 /* The registers created in this module (using D flip-flops) store
 the four path metrics. Each register is 5 bits wide. The statement
 dff #(5) instantiates a vector array of 5 flip-flops. */
 module metric
 (m_in0,m_in1,m_in2,m_in3,
 m_out0,m_out1,m_out2,m_out3,
 clk,reset);
 input [4:0] m_in0,m_in1,m_in2,m_in3;
 output [4:0] m_out0,m_out1,m_out2,m_out3;
 input clk,reset;
 dff #(5) metric3(m_in3, m_out3, clk, reset);
 dff #(5) metric2(m_in2, m_out2, clk, reset);
 dff #(5) metric1(m_in1, m_out1, clk, reset);
 dff #(5) metric0(m_in0, m_out0, clk, reset);
 endmodule
 /**/
 /* module output_decision */
 /**/
 /* This module decides the output signal based on the path that
 corresponds to the smallest metric. The control signal comes from
 the reduce module. */
 module output_decision(p0,p1,p2,p3,control,out);
 input [2:0] p0,p1,p2,p3; input [1:0] control; output [2:0] out;
 function [2:0] decide;
 input [2:0] p0,p1,p2,p3; input [1:0] control;
 begin
 if(control == 0) decide = p0;
 else if(control == 1) decide = p1;
 else if(control == 2) decide = p2;
 else decide = p3;
 end
 endfunction
 assign out = decide(p0,p1,p2,p3,control);
 endmodule
 /**/
 /* module reduce */
 /**/
 /* This module reduces the metrics after the addition and compare
 operations. This algorithm selects the smallest metric and subtracts
 it from the other three metrics. */
 module reduce
 (in0,in1,in2,in3,
 m_in0,m_in1,m_in2,m_in3,
 control);
 input [4:0] in0,in1,in2,in3;
 output [4:0] m_in0,m_in1,m_in2,m_in3;
 output [1:0] control; wire [4:0] smallest;
 function [4:0] find_smallest;
 input [4:0] in0,in1,in2,in3; reg [4:0] a,b;
 begin
 if(in0<=in1) a=in0; else a=in1;
 if(in2<=in3) b=in2; else b=in3;
 if(a<=b) find_smallest = a;
 else find_smallest = b;
 end
 endfunction
 function [1:0] smallest_no;
 input [4:0] in0,in1,in2,in3,smallest;
 begin
 if(smallest == in0) smallest_no = 0;
 else if (smallest == in1) smallest_no = 1;

 else if (smallest == in2) smallest_no = 2;
 else smallest_no = 3;
 end
 endfunction
 assign smallest = find_smallest(in0,in1,in2,in3);
 assign m_in0 = in0 - smallest;
 assign m_in1 = in1 - smallest;
 assign m_in2 = in2 - smallest;
 assign m_in3 = in3 - smallest;
 assign control = smallest_no(in0,in1,in2,in3,smallest);
 endmodule

 module test_display; // display system tasks...
 initial begin $display ("string, variables, or expression");
 /* format specifications work like printf in C...
 %d=decimal %b=binary %s=string %h=hex %o=octal
 %c=character %m=hierarchical name %v=strength %t=time format
 %e=scientific %f=decimal %g=shortest
 examples: %d uses default width %0d uses minimum width
 %7.3g uses 7 spaces with 3 digits after decimal point */
 // $displayb, $displayh, $displayo print in b, h, o formats
 // $write, $strobe, $monitor also have b, h, o versions
 $write("write"); // as $display, but without newline at end of line
 $strobe("strobe"); // as $display, values at end of simulation cycle
 $monitor(v); // disp. @change of v (except v= $time,$stime,$realtime)
 $monitoron; $monitoroff; // toggle monitor mode on/off
 end endmodule

 module file_1; integer f1, ch; initial begin f1 = $fopen("f1.out");
 if(f1==0) $stop(2); if(f1==2)$display("f1 open");
 ch = f1|1; $fdisplay(ch,"Hello"); $fclose(f1); end endmodule

 module load; reg [7:0] mem[0:7]; integer i; initial begin
 $readmemb("mem.dat", mem, 1, 6); // start_address=1, end_address=6
 for (i= 0; i<8; i=i+1) $display("mem[%0d] %b", i, mem[i]);
 end endmodule

 // timescale tasks...
 module a; initial $printtimescale(b.c1); endmodule
 module b; c c1 (); endmodule
 `timescale 10 ns / 1 fs
 module c_dat; endmodule
 `timescale 1 ms / 1 ns
 module Ttime; initial $timeformat(-9, 5, " ns", 10); endmodule
 /* $timeformat [(n, p, suffix , min_field_width)] ;
 units = 1 second ** (-n), n=0->15, e.g. for n=9, units = ns
 p = digits after decimal point for %t e.g. p=5 gives 0.00000
 suffix for %t (despite timescale directive)
 min_field_width is number of character positions for %t */

 module test_simulation_control; // simulation control system tasks...
 initial begin $stop; // enter interactive mode (default parameter 1)
 $finish(2); // graceful exit with optional parameter as follows...
 // 0=nothing 1=time and location 2=time, location, and statistics
 end endmodule

module timing_checks (data, clock, clock_1,clock_2);
 input data,clock,clock_1,clock_2;reg tSU,tH,tHIGH,tP,tSK,tR;
 specify // timing check system tasks...
 /* $setup (data_event, reference_event, limit [, notifier]);
 violation = (T_reference_event)-(T_data_event) < limit */

 $setup(data, posedge clock, tSU);
 /* $hold (reference_event, data_event, limit [, notifier]);
 violation =
 (time_of_data_event)-(time_of_reference_event) < limit */
 $hold(posedge clock, data, tH);
 /* $setuphold (reference_event, data_event, setup_limit,
 hold_limit [, notifier]);
 parameter_restriction = setup_limit + hold_limit > 0 */
 $setuphold(posedge clock, data, tSU, tH);
 /* $width (reference_event, limit, threshold [, notifier]);
 violation =
 threshold < (T_data_event) - (T_reference_event) < limit
 reference_event = edge
 data_event = opposite_edge_of_reference_event */
 $width(posedge clock, tHIGH);
 /* $period (reference_event, limit [, notifier]);
 violation = (T_data_event) - (T_reference_event) < limit
 reference_event = edge
 data_event = same_edge_of_reference event */
 $period(posedge clock, tP);
 /* $skew (reference_event, data_event, limit [, notifier]);
 violation = (T_data_event) - (T_reference_event) > limit */
 $skew(posedge clock_1, posedge clock_2, tSK);
 /* $recovery (reference_event, data_event, limit, [, notifier]);
 violation = (T_data_event) - (T_reference_event) < limit */
 $recovery(posedge clock, posedge clock_2, tR);
 /* $nochange (reference_event, data_event, start_edge_offset,
 end_edge_offset [, notifier]);
 reference_event = posedge | negedge
 violation = change while reference high (posedge)/low (negedge)
 +ve start_edge_offset moves start of window later
 +ve end_edge_offset moves end of window later */
 $nochange (posedge clock, data, 0, 0);
 endspecify endmodule

 primitive dff_udp(q, clock, data, notifier);
 output q; reg q; input clock, data, notifier;
 table //clock data notifier:state:q
 r 0 ? : ? :0 ;
 r 1 ? : ? :1 ;
 n ? ? : ? :- ;
 ? * ? : ? :- ;
 ? ? * : ? :x ; endtable // ...notifier
 endprimitive

 `timescale 100 fs / 1 fs
 module dff(q, clock, data);output q; input clock, data; reg notifier;
 dff_udp(q1, clock, data, notifier); buf(q, q1);
 specify
 specparam tSU = 5, tH = 1, tPW = 20, tPLH = 4:5:6, tPHL = 4:5:6;
 (clock *> q) = (tPLH, tPHL);
 $setup(data, posedge clock, tSU, notifier); // setup: data to clock
 $hold(posedge clock, data, tH, notifier); // hold: clock to data
 $period(posedge clock, tPW, notifier); // clock: period
 endspecify
 endmodule

 module pla_1 (a1,a2,a3,a4,a5,a6,a7,b1,b2,b3);
 input a1, a2, a3, a4, a5, a6, a7 ; output b1, b2, b3;
 reg [1:7] mem[1:3]; reg b1, b2, b3;
 initial begin
 $readmemb("array.dat", mem);
 #1; b1=1; b2=1; b3=1;
 $async$and$array(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3});
 end

 initial $monitor("%4g",$time,,b1,,b2,,b3);
 endmodule

 module pla_2; reg [1:3] a, mem[1:4]; reg [1:4] b;
 initial begin
 $async$and$plane(mem,{a[1],a[2],a[3]},{b[1],b[2],b[3],b[4]});
 mem[1] = 3'b10?; mem[2] = 3'b??1; mem[3] = 3'b0?0; mem[4] = 3'b???;
 #10 a = 3'b111; #10 $displayb(a, " -> ", b);
 #10 a = 3'b000; #10 $displayb(a, " -> ", b);
 #10 a = 3'bxxx; #10 $displayb(a, " -> ", b);
 #10 a = 3'b101; #10 $displayb(a, " -> ", b);
 end endmodule

 module stochastic; initial begin // stochastic analysis system tasks...
 /* $q_initialize (q_id, q_type, max_length, status) ;
 q_id is an integer that uniquely identifies the queue
 q_type 1=FIFO 2=LIFO
 max_length is an integer defining the maximum number of entries */
 $q_initialize (q_id, q_type, max_length, status) ;
 /* $q_add (q_id, job_id, inform_id, status) ;
 job_id=integer input
 inform_id= user-defined integer input for queue entry */
 $q_add (q_id, job_id, inform_id, status) ;
 /* $q_remove (q_id, job_id, inform_id, status) ; */
 $q_remove (q_id, job_id, inform_id, status) ;
 /* $q_full (q_id, status) ;
 status = 0 = queue is not full, status = 1 = queue full */
 $q_full (q_id, status) ;
 /* $q_exam (q_id, q_stat_code, q_stat_value, status) ;
 q_stat_code is input request as follows...
 1=current queue length 2=mean inter-arrival time 3=max. queue length
 4=shortest wait time ever
 5=longest wait time for jobs still in queue 6=ave. wait time in queue
 q_stat_value is output containing requested value */
 $q_exam (q_id, q_stat_code, q_stat_value, status) ;
 end endmodule

 module test_time;initial begin // simulation time system functions...
 $time ;
 // returns 64-bit integer scaled to timescale unit of invoking module
 $stime ;
 // returns 32-bit integer scaled to timescale unit of invoking module
 $realtime ;
 // returns real scaled to timescale unit of invoking module
 end endmodule

 module test_convert; // conversion functions for reals...
 integer i; real r; reg [63:0] bits;
 initial begin #1 r=256;#1 i = $rtoi(r);
 #1; r = $itor(2*i) ; #1 bits = $realtobits(2.0*r) ;
 #1; r = $bitstoreal(bits) ; end
 initial $monitor("%3f",$time,,i,,r,,bits); /*
 $rtoi converts reals to integers w/truncation e.g. 123.45 -> 123
 $itor converts integers to reals e.g. 123 -> 123.0
 $realtobits converts reals to 64-bit vector
 $bitstoreal converts bit pattern to real
 ...real numbers in these functions conform to IEEE 754. Conversion rounds to the
nearest valid number. */
 endmodule

 module test_real;wire [63:0]a;driver d (a);receiver r (a);

 initial $monitor("%3g",$time,,a,,d.r1,,r.r2); endmodule
 module driver (real_net);
 output real_net; real r1; wire [64:1] real_net = $realtobits(r1);
 initial #1 r1 = 123.456; endmodule
 module receiver (real_net);
 input real_net; wire [64:1] real_net; real r2;
 initial assign r2 = $bitstoreal(real_net);
 endmodule

 module probability; // probability distribution functions...
 /* $random [(seed)] returns random 32-bit signed integer
 seed = register, integer, or time */
 reg [23:0] r1,r2; integer r3,r4,r5,r6,r7,r8,r9;
 integer seed, start, \end , mean, standard_deviation;
 integer degree_of_freedom, k_stage;
 initial begin seed=1; start=0; \end =6; mean=5;
 standard_deviation=2; degree_of_freedom=2; k_stage=1; #1;
 r1 = $random % 60; // random -59 to 59
 r2 = {$random} % 60; // positive value 0-59
 r3=$dist_uniform (seed, start, \end) ;
 r4=$dist_normal (seed, mean, standard_deviation) ;
 r5=$dist_exponential (seed, mean) ;
 r6=$dist_poisson (seed, mean) ;
 r7=$dist_chi_square (seed, degree_of_freedom) ;
 r8=$dist_t (seed, degree_of_freedom) ;
 r9=$dist_erlang (seed, k_stage, mean) ;end
 initial #2 $display ("%3f",$time,,r1,,r2,,r3,,r4,,r5);
 initial begin #3; $display ("%3f",$time,,r6,,r7,,r8,,r9); end
 /* All parameters are integer values.
 Each function returns a pseudo-random number
 e.g. $dist_uniform returns uniformly distributed random numbers
 mean, degree_of_freedom, k_stage
 (exponential, poisson, chi-square, t, erlang) > 0.
 seed = inout integer initialized by user, updated by function
 start, end ($dist_uniform) = integer bounding return values */
 endmodule

Spell-checked by MJSS on
Last modified by MJSS on 01/02/98

1.1 Objectives of this document
The intent of this document is to serve as a complete specification of the Verilog
Hardware Description Language (HDL). This document contains:

The formal syntax and semantics of all Verilog HDL constructs.●

Simulation system tasks and functions, such as text output display
commands.

●

Compiler directives such as text substitution macros and simulation time
scaling.

●

The Programming Language Interface (PLI) binding mechanism.●

The formal syntax and semantics of Access routines, Task/Function
routines, and Verilog Procedural Interface routines.

●

Non-normative usage examples.●

Listings of header files for PLI.●

2.7 Identifiers, keywords, and system
names
An identifier is used to give an object a unique name so it can be referenced. An identifier shall
be any sequence of letters, digits, dollar signs ($), and the underscore characters (_).

The first character of an identifier shall not be a digit or $; it can be a letter or an underscore.
Identifiers shall be case sensitive.

Examples:

shiftreg_abusa_index error_condition merge_ab_bus3n$657

NOTE--Implementations may set a limit on the maximum length of identifiers, but shall at least
be 1024 characters. If an identifier exceeds implementation specified length limit, an error shall
be reported.

Escaped identifiers

Escaped identifiers shall start with the backslash character (\) and end with white space
(space, tab, newline). They provide a means of including any of the printable ASCII characters in
an identifier (the decimal values 33 through 126, or 21 through 7E in hexadecimal).

Neither the leading back-slash character nor the terminating white space is considered to be part
of the identifier. Therefore, an escaped identifier \cpu3 is treated same as a non-escaped
identifier cpu3 .

Examples:

\busa+index\-clock***error-condition***\net1/\net2\{a,b}\a*(b+c)

Keywords

Keywords are predefined non-escaped identifiers that are used to define the language constructs.
A Verilog HDL keyword preceded by an escape character is not interpreted as a keyword.

All keywords are defined in lowercase only. Annex B gives a list of all keywords defined.

The $keyword construct

The $ character introduces a language construct that enables development of user-defined tasks
and functions. A name following the $ is interpreted as a system task or a system function .

The syntax for a system task or function is as follows:

system_task_or_function ::=

$system_task_
identifier [(list_of_arguments)] ;

| $system_function_
identifier [(list_of_arguments)] ;

list_of_arguments ::=

argument { , [argument] }

argument ::=

expression

Syntax 2-2: Syntax for system tasks and functions

The $identifier system task or function may be defined in three places:

A standard set of $identifier system tasks and functions as defined in Section 14.●

Additional $identifier system tasks and functions defined using the Programming
Language Interface, as described in Section 17.

●

Additional $identifier system tasks and functions defined by software implementations.●

Any valid identifier, including keywords already in use in contexts other than this construct can
be used as a system task or function name. The system tasks and functions described in Section
14 are part of the IEEE 1364 Verilog HDL standard. Additional system tasks and functions with
the $identifier construct are not part of the Verilog HDL standard.

Examples:

$display ("display a message");$finish;

The `keyword construct

The ` character (the ASCII value 60, called open quote or accent grave) introduces a language
construct used to implement compiler directives. The compiler behavior dictated by a compiler
directive shall take effect as soon as the compiler reads the directive. The directive shall remain
in effect for the rest of the compilation unless a different compiler directive specifies otherwise.
A compiler directive in one description file can therefore control compilation behavior in
multiple description files.

The `identifier compiler directive construct may be defined in two places:

A standard set of `identifier compiler directives defined in Section 16.●

Additional `identifier compiler directives defined by software implementations.●

Any valid identifier, including keywords already in use in contexts other than this construct can
be used as a compiler directive name. The compiler directives described in Section 16 are part of
the IEEE 1364 Verilog HDL standard. Additional compiler directives with the `identifier
construct are not part of theVerilog HDL standard.

Example:

`define wordsize 8

3.1 Value set
The Verilog HDL value set consists of four basic values:

0 - represents a logic zero, or false condition
1 - represents a logic one, or true condition
x - represents an unknown logic value
z - represents a high-impedance state

The values 0 and 1 are logical complements of one another.

When the z value is present at the input of a gate, or when it is encountered in an
expression, the effect is usually the same as an x value. Notable exceptions are
the MOS primitives, which can pass the z value.

Almost all of the data types in the Verilog HDL store all four basic values. The
exceptions are the event type (see section 9.7.3), which has no storage, and the
trireg net data type (see 3.7.3), which retains its first state when all of its drivers
go to the high impedance value (z). All bits of vectors can be independently set
to one of the four basic values.

The language includes strength information in addition to the basic value
information for net variables. This is described in detail in Section 7.

3.2 Nets and registers
There are two main groups of data types: the register data types and the net data types. These two groups differ in the way that they are assigned and hold
values. They also represent different hardware structures.

Nets

The net data types shall represent physical connections between structural entities, such as gates. A net shall not store a value (except for the trireg net).
Instead, its value shall be determined by the value of its driver, such as a continuous assignment or a gate. See Section 6 and Section 7 for definitions of
these constructs. If no driver is connected to a net, its value shall be high-impedance (z)--unless the net is a trireg, in which case, it shall hold the
previously driven value.

The syntax for net declarations is as follows:

net_declaration ::= net_type [vectored | scalared] [range] [delay3]
list_of_net_identifiers ; | trireg [vectored | scalared] [charge_strength] [range]
[delay3] list_of_net_identifiers ;| net_type [vectored | scalared]
[drive_strength] [range] [delay3]
 list_of_net_decl_assignments
;

net_type ::= wire | tri | tri1 | supply0 | wand | triand | tri0 | supply1 | wor |
trior

range ::= [msb_constant_expression : lsb_constant_expression]

drive_strength ::= (strength0 , strength1) | (strength1 , strength0)| (
strength0 , highz1)| (strength1 , highz0)| (highz1 , strength0)| (highz0 ,
strength1)

strength0 ::= supply0 | strong0 | pull0 | weak0

strength1 ::= supply1 | strong1 | pull1 | weak1

charge_strength ::= (small) | (medium) | (large)

delay3 ::= # delay_value | # (delay_value [, delay_value [, delay_value]])

delay_value ::= unsigned_number | parameter
_identifier | constant_mintypmax_expression

list_of_net_decl_assignments ::= net_decl_assignment { , net_decl_assignment }

net_decl_assignment ::= net_identifier = expression

list_of_net_identifiers ::= net_identifier { , net_identifier }

Syntax 3-1: Syntax for net declaration

The first two forms of net declaration are described in this section. The third form, called net assignment, is described in Section 6.

Registers

A register is an abstraction of a data storage element. The keyword for the register data type is reg. A register shall store a value from one assignment to
the next. An assignment statement in a procedure acts as a trigger that changes the value in the data storage element. The default initialization value for a
reg data type shall be the unknown value, x .

The syntax for reg declarations is as follows:

reg_declaration ::= reg [range] list_of_register_identifiers ;

time_declaration ::= time list_of_register_identifiers ;

integer_declaration ::= integer list_of_register_identifiers ;

real_declaration ::= real real_identifier { , real_identifier } ;

realtime_declaration ::= realtime real_identifier { , real_identifier } ;

list_of_register_identifiers ::= register_name { , register_name }

register_name ::= register_identifier | memory_identifier [
upper_limit_constant_expression : lower_limit_constant_expression]

Syntax 3-2: Syntax for reg declaration

If a set of nets or registers share the same characteristics, they can be declared in the same declaration statement.

CAUTION

Registers can be assigned negative values, but, when a register is an operand in an expression, its value shall be treated as an unsigned (positive) value. For
example, a minus one (-1) in a four-bit register shall function as the number 15 if the register is an expression operand. See 4.1.3 for more information on
Numeric Conventions in Expressions.

Numeric Conventions in Expressions.

3.6 Net initialization
The default initialization value for a net shall be the value z . Nets with drivers
shall assume the output value of their drivers. The trireg net is an exception. The
trireg net shall default to the value x , with the strength specified in the net
declaration (small, medium, or large).

3.3 Vectors
A net or reg declaration without a range specification shall be considered one bit wide and is known as a
scalar . Multiple bit net and reg data type shall be declared by specifying a range, and is known as a vector
.

Specifying vectors

The range specification gives addresses to the individual bits in a multi-bit net or register. The most
significant bit specified by msb constant expression is the left-hand value in the range and the least
significant bit lsb constant expression is the right-hand value in the range.

Both msb constant expression and lsb constant expression shall be constant expressions. The msb and lsb
constant expressions can be any value--positive, negative, or zero, and lsb constant expression can be a
greater, equal, or lesser value than msb constant expression.

Vector nets and registers shall obey laws of arithmetic modulo 2 to the power n (2n), where n is the number
of bits in the vector. Vector nets and registers shall be treated as unsigned quantities.

examples:

 wand w; // a scalar net of type 'wand'
 tri [15:0] busa; // a tri-state 16-bit bus
 trireg (small) storeit; // a charge storage node of strength small
 reg a; // a scalar register
 reg [3:0] v; // a 4-bit vector register made up of (from most to
 // least significant) v[3], v[2], v[1] and v[0]
 reg [-1:4] b; // a 6-bit vector register
 wire w1, w2; // declares 2 wires
 reg [4:0] x, y, z; // declares 3 5-bit registers

NOTES

1) --Implementations may set a limit on the maximum length of a vector, but will at least be 65536
(216) bits.

2) --Implementations do not have to detect overflow of integer operations.

Vector net accessibility

Vectored and scalared shall be optional advisory keywords to be used in vector net or reg declaration. If
these keywords are implemented, certain operations on vectors may be restricted. If the keyword vectored
is used, bit and part selects and strength specifications may not be permitted, and the PLI may consider the
object unexpanded . If the keyword scalared is used, bit and part selects of the object shall be permitted
and the PLI shall consider the object expanded .

Examples:

tri1 scalared [63:0] bus64; // a bus that will be expanded
tri vectored [31:0] data; //a bus that will not be expanded

4.2 Operands
As stated before, there are several types of operands that can be specified in expressions. The simplest type is a
reference to a net or register in its complete form--that is, just the name of the net or register is given. In this case, all of
the bits making up the net or register value shall be used as the operand.

If a single bit of a vector net or register is required, then a bit-select operand shall be used. A part-select operand shall
be used to reference a group of adjacent bits in a vector net or register.

A memory element can be referenced as an operand. A concatenation of other operands, (including nested
concatenations) can be specified as an operand. A function call is an operand.

Net and register bit-select and part-select addressing

Bit-selects extract a particular bit from a vector net or register. The bit can be addressed using an expression. If the bit
select is out of the address bounds or the bit-select is x or z , then the value returned by the reference shall be x .

Several contiguous bits in a vector register or net can be addressed, and are known as part-selects . A part-select of a
vector register or net is given with the following syntax:

vect[msb_expr:lsb_expr]

Both expressions must be constant expressions. The first expression must address a more significant bit than the second
expression. If the part-select is out of the address bounds or the part-select is x or z , then the value returned by the
reference shall be x .

The bit-select or part-select of a variable declared as real and realtime shall be considered illegal.

1. The following example specifies the single bit of acc vector that is addressed by the operand index .

acc[index]

The actual bit that is accessed by an address is, in part, determined by the declaration of acc . For instance, each of the
declarations of acc shown in the next example causes a particular value of index to access a different bit:

reg[15:0] acc;
reg [1:16] acc;

2. The next example and the bullet items that follow it illustrate the principles of bit addressing. The code declares an
8-bit register called vect and initializes it to a value of 4. The bullet items describe how the separate bits of that vector
can be addressed.

reg [7:0] vect;
vect = 4; // fills vect with the pattern 00000100
 // msb is bit 7, lsb is bit 0

if the value of addr is 2, then vect[addr] returns 1●

if the value of addr is out of bounds, then vect[addr] returns x●

if addr is 0, 1, or 3 through 7, vect[addr] returns 0●

vect[3:0] returns the bits 0100●

vect[5:1] returns the bits 00010●

vect[expression that returns x] returns x●

vect[expression that returns z] returns x●

if any bit of addr is x/z , then the value of addr is x●

NOTES

1) --Part-select Indices that evaluate to x or z may be flagged as a compile time error.

2) --Bit-select or Part-select indices that are outside of the declared range may be flagged as a compile time error.

Memory addressing

Declaration of memory is discussed in section 3.8. This section discusses memory addressing.

The next example declares a memory of 1024 8-bit words:

reg [7:0] mem_name[0:1023];

The syntax for a memory address shall consist of the name of the memory and an expression for the address--specified
with the following format:

mem_name[addr_expr]

The addr_expr can be any expression; therefore, memory indirections can be specified in a single expression. The
next example illustrates memory indirection:

mem_name[mem_name[3]]

In the above example, mem_name[3] addresses word three of the memory called mem_name . The value at word
three is the index into mem_name that is used by the memory address mem_name[mem_name[3]] . As with
bit-selects, the address bounds given in the declaration of the memory determine the effect of the address expression. If
the index is out of the address bounds or if any bit in the address is x or z , then the value of the reference shall be x .

NOTE--There is no mechanism to express bit-selects or part-selects of memory elements directly. If this is required,
then the memory element has to be first transferred to an appropriately sized temporary register.

Strings

String operands shall be treated as constant numbers consisting of a sequence of 8-bit ASCII codes, one per character.
Any Verilog HDL operator can manipulate string operands. The operator shall behave as though the entire string were
a single numeric value.

When a variable is larger than required to hold the value being assigned, the contents after the assignment shall be
padded on the left with zeros. This is consistent with the padding that occurs during assignment of non-string values.

The following example declares a string variable large enough to hold 14 characters and assigns a value to it. The
example then manipulates the string using the concatenation operator.

module string_test;
reg [8*14:1] stringvar;
initial
 begin
 stringvar = "Hello world";
 $display ("%s is stored as %h", stringvar, stringvar);
 stringvar = {stringvar,"!!!"};
 $display ("%s is stored as %h", stringvar, stringvar);
end
endmodule

The result of simulating the above description is:

Hello world is stored as 00000048656c6c6f20776f726c64Hello world!!! is stored as
48656c6c6f20776f726c64212121

String operations

The common string operations copy, concatenate, and compare are supported by Verilog HDL operators. Copy is
provided by simple assignment. Concatenation is provided by the concatenation operator. Comparison is provided by
the equality operators.

When manipulating string values in vector variables, at least 8*n bits shall be required in the vector, where n is the
number of characters in the string.

String value padding and potential problems

When strings are assigned to variables, the values stored shall be padded on the left with zeros. Padding can affect the
results of comparison and concatenation operations. The comparison and concatenation operators shall not distinguish
between zeros resulting from padding and the original string characters.

The following example illustrates the potential problem.

reg [8*10:1] s1, s2;
initial begin
 s1 = "Hello"; s2 = " world!";
 if ({s1,s2} == "Hello world!") $display ("strings are equal");
end

The comparison in the example above fails because during the assignment the string variables get padded as illustrated
in the next example:

s1 = 000000000048656c6c6fs2 = 00000020776f726c6421

The concatenation of s1 and s2 includes the zero padding, resulting in the following value:

000000000048656c6c6f00000020776f726c6421

Since the string "Hello world!" contains no zero padding, the comparison fails, as shown below:

The above comparison yields a result of zero, which is equivalent to false.

Null string handling

The null string ("") shall be considered equivalent to the ASCII value zero (0), which is different from a string "0" .

3.8 Memories
An array of registers can be used to model read-only memories (ROMs), random access
memories (RAMs), and register files. Each register in the array is known as an element or word
and is addressed by a single array index. There shall be no arrays with multiple dimensions.

Memories shall be declared in register declaration statements by specifying the element address
range after the declared identifier. See 3.2.2. The expressions that specify the indices of the array
shall be constant expressions. The value of the constant expression can be a positive integer, a
negative integer, or zero.

One declaration statement can be used for declaring both registers and memories This makes it
convenient to declare both a memory and some registers that will hold data to be read from and
written to the memory in the same declaration statement.

An n-bit register can be assigned a value in a single assignment, but a complete memory cannot.
To assign a value to a memory element, an index shall be specified. The index can be an
expression. This option provides a mechanism to reference different memory elements,
depending on the value of other registers and nets in the circuit. For example, a program counter
register could be used to index into a RAM.

Examples:

1. Memory declaration:

reg [7:0] mema[0:255]; // declares a memory mema of 256 eight-bit
// registers. The indices are 0 to 255
parameter
// parameters are run-time constants - see 3.10
wordsize = 16,
memsize = 256;
// Declare 256 words of 16-bit memory plus two regs
reg [wordsize-1:0] writereg, // equivalent to [15:0]
readreg,
mem [memsize-1:0];// equivalent to [255:0]

2. A memory of n 1-bit registers is different from an n -bit vector register

reg [1:n] rega; // An n-bit register is not the same
reg mema [1:n]; // as a memory of n 1-bit registers

3. Assignment to memory elements

rega = 0; // Legal Syntax
mema = 0; // Illegal Syntax
mema[1] = 0; // Assigns 0 to the first element of mema

NOTE--Implementations may limit the maximum size of a register array, but will at least be
16777216 (224).

3.9 Integers, reals, times and realtimes
In addition to modeling hardware, there are other uses for registers in an HDL model. Although reg variables
can be used for general purposes such as counting the number of times a particular net changes value, the
integer and time register data types are provided for convenience and to make the description more
self-documenting.

The syntax for declaring integer, time, real and realtime registers is as follows (from Syntax 3-2):

integer_declaration ::= integer list_of_register_identifiers ;

time_declaration ::= time list_of_register_identifiers ;

real_declaration ::= real real_identifier { , real_identifier } ;

realtime_declaration ::= realtime real_identifier { , real_identifier } ;

Syntax 3-3: Syntax for Integer, time, real and realtime declarations

The syntax for list of register variables is defined in section 3.2.2.

An integer is a general purpose register used for manipulating quantities that are not regarded as hardware
registers.

A time register is used for storing and manipulating simulation time quantities in situations where timing
checks are required and for diagnostics and debugging purposes. This data type is typically used in
conjunction with the $time system function (see Section 14).

Arrays of integer and time registers shall be declared in the same manner as arrays of reg type (section 3.8).

The integer and time registers shall be assigned values in the same manner as reg. Procedural assignments
shall be used to trigger their value changes.

The time registers shall behave the same as a register of at least 64 bits. They shall be unsigned quantities,
and unsigned arithmetic shall be performed on them. In contrast, integer registers shall be treated as signed
quantities. Arithmetic operations performed on integer registers shall produce 2's complement results.

The Verilog HDL supports real number constants and real register data type in addition to integer and time
register data types. Except for the following restrictions, registers declared as real can be used in the same
places that integers and time registers are used:

Not all Verilog HDL operators can be used with real number values. See Table 4-3 in section 4.1 for
lists of valid and invalid operators for real numbers and real registers.

●

Real registers shall not use range in the declaration●

Real registers shall default to an initial value of zero.●

The realtime declarations shall be treated synonymous with real declarations, and can be used
interchangeably.

Examples:

integer a[1:64]; // an array of 64 integer values
time chng_hist[1:1000]; // an array of 1000 time values

real float ; // a register to store real value

realtime rtime ; // a register to store time as a real value

NOTE--Implementations may limit the maximum size of an integer variable, but shall at least be 32 bits.

Operators and real numbers

The result of using logical or relational operators on real numbers and real registers is a single-bit scalar
value. Not all Verilog HDL operators can be used with expression involving real numbers and real registers.
Table 4-3 in 4.1 lists the valid operators for use with real numbers and real registers. Real number constants
and real registers are also prohibited in the following cases:

edge descriptors (posedge, negedge) applied to real registers●

bit-select or part-select references of variables declared as real●

real number index expressions of bit-select or part-select references of vectors●

declaration of memories (arrays of real registers)●

Conversion

Real numbers shall be converted to integers by rounding the real number to the nearest integer, rather than by
truncating it. Implicit conversion shall take place when a real number is assigned to an integer. The ties shall
be rounded away from zero.

Implicit conversion shall take place when a net or register is assigned to a real. Individual bits that are x or z
in the net or the register shall be treated as zero upon conversion.

See Section 14 for a discussion of system tasks that perform explicit conversion.

3.7 Net types
There are several distinct types of nets as shown in Table 3-1.

Table 3-1: Net Types

wire tri tri0 supply0
wand triand tri1 supply1
wor trior trireg

Wire and tri nets

The wire and tri nets connect elements. The net types wire and tri shall be
identical in their syntax and functions; two names are provided so that the name
of a net can indicate the purpose of the net in that model. A wire net can be used
for nets that are driven by a single gate or continuous assignment. The tri net type
can be used where multiple drivers drive a net.

Logical conflicts from multiple sources on a wire or a tri net result in unknown
values unless the net is controlled by logic strength.

Table 3-2 is a truth table for wire and tri nets. Note that it assumes equal
strengths for both drivers. Please refer to 7.10 for a discussion of logic strength
modeling.

Table 3-2:
Truth table for

wire and tri
nets

wire/
tri 0 1 x z

0 0 x x 0

1 x 1 x 1

x x x x x

z 0 1 x z

Wired nets

Wired nets are of type wor , wand , trior , and triand , and are used to model
wired logic configurations. Wired nets resolve the conflicts that result when
multiple drivers drive the same net. The wor and trior nets shall create wired or
configurations, such that when any of the drivers is 1 , the resulting value of the

net is 1 . The wand and triand nets shall create wired and configurations, such
that if any driver is 0 , the value of the net is 0 .

The net types wor and trior shall be identical in their syntax and functionality.
The net types wand and triand shall be identical in their syntax and functionality.
Table 3-3 and Table 3-4 gives the truth tables for wired nets. Note that it assumes
equal strengths for both drivers. See 7.10 for a discussion of logic strength
modeling.

Table 3-3:
Truth tables for

wand and
triand nets

wand/
triand 0 1 x z

0 0 0 0 0

1 0 1 x 1

x 0 x x x

z 0 1 x z

Table 3-4:
Truth tables
for wor and

trior nets

wor/
trior 0 1 x z

0 0 1 x 0

1 1 1 1 1

x x 1 x x

z 0 1 x z

Trireg net

The trireg net stores a value and is used to model charge storage nodes. A trireg
net can be in one of two states:

driven state When at least one driver of a trireg net has a value of 1 , 0 , or x ,
the resolved value propagates into the trireg net and is the trireg net's driven
value.

capacitive state When all the drivers of a trireg net are at the high impedance
value (z), the trireg net retains its last driven value; the high impedance value
does not propagate from the driver to the trireg.

The strength of the value on the trireg net in the capacitive state can be small,

medium, or large, depending on the size specified in the declaration of the trireg
net. The strength of a trireg net in the driven state can be supply, strong, pull,
or weak depending on the strength of the driver.

Example:

Figure 3-1 shows a schematic that includes a trireg net whose size is medium, its
driver, and the simulation results.

Figure 3-1: Simulation values of a trireg and its driver

a) At simulation time 0, wire a and wire b have a value of 1 . A value of
1 with a strong strength propagates from the and gate through the nmos
switches connected to each other by wire c , into trireg net d .

b) At simulation time 10, wire a changes value to 0 , disconnecting wire
c from the and gate. When wire c is no longer connected to the and gate,
value of wire c changes to HiZ . The value of wire b remains 1 so wire c
remains connected to trireg net d through the nmos2 switch. The HiZ
value does not propagate from wire c into trireg net d . Instead, trireg net d
enters the capacitive state, storing its last driven value of 1 . It stores the 1
with a medium strength.

Capacitive networks

A capacitive network is a connection between two or more trireg nets. In a
capacitive network whose trireg nets are in the capacitive state, logic and strength
values can propagate between trireg nets.

Examples:

Figure 3-2 shows a capacitive network in which the logic value of some trireg
nets change the logic value of other trireg nets of equal or smaller size.

Figure 3-2: Simulation results of a capacitive network

In Figure 3-2, capacitive strength of trireg_la net is large , trireg_me1
and trireg_me2 are medium , and trireg_sm is small . Simulation
reports the following sequence of events:

a) At simulation time 0, wire a and wire b have a value of 1 . The wire c
drives a value of 1 into trireg_la and trireg_sm , wire d drives a
value of 1 into trireg_me1 and trireg_me2 .

b) At simulation time 10, value of wire b changes to 0 , disconnecting
trireg_sm and trireg_me2 from their drivers. These trireg nets enter
the capacitive state and store the value 1 , their last driven value.

c) At simulation time 20, wire c drives a value of 0 into trireg_la .

d) At simulation time 30, wire d drives a value of 0 into trireg_me1 .

e) At simulation time 40, value of wire a changes to 0 , disconnecting
trireg_la and trireg_me1 from their drivers. These trireg nets enter

the capacitive state and store the value 0 .

f) At simulation time 50, the value of wire b changes to 1 .

This change of value in wire b connects trireg_sm to trireg_la ;
these trireg nets have different sizes and stored different values. This
connection causes the smaller trireg net to store the larger trireg net's value
and trireg_sm now stores a value of 0 .

This change of value in wire b also connects trireg_me1 to
trireg_me2 ; these trireg nets have the same size and stored different
values. The connection causes both trireg_me1 and trireg_me2 to
change value to x .

In a capacitive network, charge strengths propagate from a larger trireg net to a
smaller trireg net. Figure 3-3 shows a capacitive network and its simulation
results.

Figure 3-3: Simulation results of charge sharing

In Figure 3-3, capacitive strength of trireg_la is large and capacitive
strength of trireg_sm is small. Simulation reports the following results:

a) At simulation time 0, the value of wire a , wire b , and wire c is 1 and
wire a drives a strong 1 into trireg_la and trireg_sm .

b) At simulation time 10, value of wire b changes to 0 , disconnecting
trireg_la and trireg_sm from wire a . The trireg_la and
trireg_sm nets enter the capacitive state. Both trireg nets share the
large charge of trireg_la because they remain connected through
tranif1_2 .

c) At simulation time 20, value of wire c changes to 0 , disconnecting
trireg_sm from trireg_la . The trireg_sm no longer shares
large charge of trireg_la and now stores a small charge.

d) At simulation time 30, value of wire c changes to 1 , connecting the
two trireg nets. These trireg nets now share the same charge.

e) At simulation time 40, value of wire c changes again to 0 ,
disconnecting trireg_sm from trireg_la . Once again,
trireg_sm no longer shares large charge of trireg_la and now
stores a small charge.

Ideal capacitive state and charge decay

A trireg net can retain its value indefinitely or its charge can decay over time.
The simulation time of charge decay is specified in the trireg net's delay
specification. See section 7.15.2 for charge decay explanation.

Tri0 and tri1 nets

The tri0 and tri1 nets model nets with resistive pulldown and resistive pullup
devices on them. When no driver drives a tri0 net, its value is 0 . When no driver
drives a tri1 net, its value is 1 . The strength of this value is pull. See Section 7
for a description of strength modeling.

A truth table for tri0 is shown in Table 3-5. A truth table for tri1 is shown in
Table 3-6.

Table 3-5:
Truth table
for tri0 net

tri0 0 1 x z
0 0 x x 0

1 x 1 x 1

x x x x x

z 0 1 x 0

Table 3-6:
Truth table
for tri1 net

tri1 0 1 x z

0 0 x x 0

1 x 1 x 1

x x x x x

z 0 1 x 1

Supply nets

The supply0 and supply1 nets may be used to model the power supplies in a
circuit. These nets shall have supply strengths.

5 Numbers
Constant numbers can be specified as integer constants or real constants.

number ::= decimal_number | octal_number| binary_number| hex_number| real_number

decimal_number ::= [sign] unsigned_number| [size] decimal_base unsigned_number

binary_number ::= [size] binary_base binary_digit { _ | binary_digit }

octal_number ::= [size] octal_base octal_digit { _ | octal_digit }

hex_number ::= [size] hex_base hex_digit { _ | hex_digit }

real_number ::= [sign] unsigned_number . unsigned_number
 | [sign] unsigned_number [. unsigned_number] e [sign]
unsigned_number
 | [sign] unsigned_number [. unsigned_number] E [sign]
unsigned_number

sign ::= + | -
size ::= unsigned_number

unsigned_number ::= decimal_digit { _ | decimal_digit }

decimal_base ::= 'd | 'D
binary_base ::= 'b | 'B
octal_base ::= 'o | 'O
hex_base ::= 'h | 'H
decimal_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
binary_digit ::= x | X | z | Z | 0 | 1
octal_digit ::= x | X | z | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
hex_digit ::= x | X | z | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d |
e | f | A | B | C | D | E | F

Syntax 2-1: Syntax for integer and real numbers

Integer constants

Integer constants can be specified in decimal, hexadecimal, octal, or binary format.

There are two forms to express integer constants. The first form is a simple decimal number which shall be specified as a
sequence of digits 0 through 9 , optionally starting with a plus or minus unary operator. The second form specifies a sized
constant , which shall be composed of up to three tokens - an optional size constant, a single quote followed by a base format
character, and the digits representing the value of the number.

The first token, a size constant, shall specify the size of the constant in terms of its exact number of bits. It shall be specified as
an unsigned decimal number. For example, the size specification for two hexadecimal digits is 8, because one hexadecimal
digit requires four bits.

The second token, a base_format, shall consist of a letter specifying the base for the number, preceded by the single quote
character ('). Legal base specifications are d , D , h , H , o , O , b, or B , for the bases decimal, hexadecimal, octal, and
binary respectively.

The use of x and z in defining the value of a number is case insensitive.

The single quote and the base format character shall not be separated by any white space.

The third token, an unsigned number, shall consist of digits that are legal for the specified base format. The unsigned number
token shall immediately follow the base format, optionally preceded by white space. The hexadecimal digits a to f shall be
case insensitive.

Simple decimal numbers without the size and the base format shall be treated as signed integers , whereas the numbers
specified with the base format shall be treated as unsigned integers .

A plus or a minus operator preceding the size constant is a sign for the constant number; the size constant does not take a sign.
A plus or minus operator between the base format and the number is an illegal syntax.

Negative numbers shall be represented in 2's complement form.

An x represents the unknown value in hexadecimal, octal, and binary constants . A z represents the high impedance value.
See section 3.1 for a discussion of the Verilog HDL value set. An x shall set four bits to unknown in the hexadecimal base,
three bits in the octal base, and one bit in the binary base. Similarly, a z shall set four, three, and one bit, respectively, to the
high impedance value.

If the size of the unsigned number is smaller than the size specified for the constant, the unsigned number shall be padded to
the left with zeros. If the left most bit in the unsigned number is an x or a z , then an x or a z shall be used to pad to the left
respectively.

When used in a number, the question mark (?) character is a Verilog HDL alternative for the z character. It sets four bits to
the high impedance value in hexadecimal numbers, three in octal, and one in binary. The question mark can be used to enhance
readability in cases where the high impedance value is a don't-care condition. See the discussion of casez and casexin
section 9.5.1. The question mark character is also used in user defined primitive state table. See section 8.1.4.

The underscore character (_) shall be legal anywhere in a number except as the first or the last character. This feature can be
used to break up long numbers for readability purposes.

Examples:

Unsized constant numbers

659 // is a decimal number
'h 837FF // is a hexadecimal number
'o7460 // is an octal number
4af // is illegal (hexadecimal format requires 'h)

Sized constant numbers

4'b1001 // is a 4-bit binary number
5 'D 3 // is a 5-bit decimal number
3'b01x // is a 3-bit number with the least
// significant bit unknown
12'hx // is a 12-bit unknown number
16'hz // is a 16-bit high impedance number

Using sign with constant numbers

8 'd -6 // this is illegal syntax
-8 'd 6 // this defines the two's complement of 6,
 // held in 8 bits--equivalent to -(8'd 6)

Automatic left padding

reg [11:0] a, b, c, d;
initial begin
a = 'h x; // yields xxx
b = 'h 3x; // yields 03x
c = 'h z3; // yields zz3
d = 'h 0z3; // yields 0z3
end

Using underscore character in numbers

27_195_000
16'b0011_0101_0001_1111
32 'h 12ab_f001

NOTES

1) --A sized negative number is not sign-extended when assigned to a register data type.

2) --Each of the three tokens for specifying a number may be macro substituted.

3) --The number of bits that make up an unsized number (which is a simple decimal number or a number without the
size specification) shall be at least 32.

Real constants

The real constant numbers shall be represented as described by IEEE STD-754-1985, an IEEE standard for double precision
floating point numbers.

Real numbers can be specified in either decimal notation (for example, 14.72) or in scientific notation (for example, 39e8,
which indicates 39 multiplied by 10 to the 8th power). Real numbers expressed with a decimal point shall have at least one
digit on each side of the decimal point.

Examples:

1.2 0.1 2394.26331 1.2E12 (the exponent symbol can be e or E) 1.30e-2 0.1e-0 23E10
29E-2 236.123_763_e-12 (underscores are ignored)

The following are invalid forms of real numbers because they do not have at least one digit on each side of the decimal point:

.12 9.4.E3 .2e-7

Conversion

Real numbers shall be converted to integers by rounding the real number to the nearest integer, rather than by truncating it.
Implicit conversion shall take place when a real number is assigned to an integer. The ties shall be rounded away from zero.

Examples:

The real numbers 35.7 and 35.5 both become 36 when converted to an integer and 35.2 becomes 35.

Converting -1.5 to integer yields -2, converting 1.5 to integer yields 2.

3.10 Parameters
Verilog HDL parameters do not belong to either the register or the net group. Parameters are not
variables, they are constants.

The syntax for parameter declarations is as follows:

parameter_declaration ::= parameter list_of_param_assignments ;

list_of_param_assignments ::= param_assignment { , param_assignment }

param_assignment ::= parameter_identifier = constant_expression

Syntax 3-4: Syntax for parameter_declaration

The list of param assignments shall be a comma-separated list of assignments, where the right-hand side
of the assignment shall be a constant expression, that is, an expression containing only constant numbers
and previously defined parameters.

Parameters represent constants, hence it is illegal to modify their value at runtime. However, parameters
can be modified at compilation time to have values that are different from those specified in the
declaration assignment. This allows customization of module instances. A parameter can be modified
with the defparam statement, or in the module instance statement. Typical uses of parameters are to
specify delays and width of variables. See Section 12, for details on parameter value assignment.

Examples:

 parameter msb = 7; // defines msb as a constant value 7
 parameter e = 25, f = 9; // defines two constant numbers
 parameter r = 5.7; // declares r as a real parameter
 parameter byte_size = 8, byte_mask = byte_size - 1;
 parameter average_delay = (r + f) / 2;

4.1 Operators
The symbols for the Verilog HDL operators are similar to those in the C programming language.
Table 4-1 lists these operators.

Table 4-1: Operators in Verilog HDL

{}, {{}} concatenation, replication

+ - * / arithmetic

% modulus

> >= < <= relational

! logical negation

&& logical and

|| logical or

== logical equality

!= logical inequality

=== case equality

!== case inequality

~ bit-wise negation

& bit-wise and

| bit-wise inclusive or

^ bit-wise exclusive or

^~ or ~^ bit-wise equivalence

& reduction and

~& reduction nand

| reduction or

~| reduction nor

^ reduction xor

~^ or ^~ reduction xnor

<< left shift

>> right shift

? : conditional

Operators with real operands

The operators shown in Table 4-2 shall be legal when applied to real operands. All other operators
shall be considered illegal when used with real operands.

Table 4-2: Legal operators for use

in real expressions

unary + unary - unary operators

+ - * / arithmetic

> >= < <= relational

! && || logical

== != logical equality

?: conditional

or event

The result of using logical or relational operators on real numbers is a single-bit scalar value.

Table 4-3 lists operators that shall not be used to operate on real numbers.

Table 4-3: Operators not allowed
for real expressions

{}, {{}} concatenate, replicate

% modulus

=== !== case equality

~ & |
^ ^~ ~^

bit-wise

^ ^~ ~^
& ~& | ~|

reduction

<< >> shift

See section 3.9.1 for more information on use of real numbers.

Binary operator precedence

The precedence order of binary operators and the conditional operator (?:) is shown below in
Table 4-4. Verilog HDL has two equality operators. They are discussed in section 4.1.8.

Table 4-4: Precedence rules for operators

+ - ! ~ (unary) highest precedence

* / %

+ - (binary)

<< >>

< <= > >=

 == != === !==

 & ~&

 ^ ^~

 | ~|

 &&

 ||

 ?: (conditional operator) lowest precedence

Operators shown on the same row in Table 4-4 shall have the same precedence. Rows are arranged
in order of decreasing precedence for the operators. For example, *, /, and % all have the same
precedence, which is higher than that of the binary + and - operators.

All operators shall associate left to right with the exception of the conditional operator which shall
associate right to left. Associativity refers to the order in which the operators having the same
precedence are evaluated. Thus, in the following example B is added to A and then C is subtracted
from the result of A+B .

A + B - C

When operators differ in precedence, the operators with higher precedence shall associate first. In
the following example, B is divided by C (division has higher precedence than addition) and then
the result is added to A .

A + B / C

Parentheses can be used to change the operator precedence.

(A + B) / C // not the same as A + B / C

Using integer numbers in expressions

Integer numbers can be used as operands in expressions. An integer number can be expressed as

an unsized, unbased integer (e.g. 12)●

an unsized, based integer (e.g. `d12)●

a sized, based integer (e.g. 16'd12)●

A negative value for an integer with no base specifier shall be interpreted differently than for an
integer with a base specifier. An integer with no base specifier shall be interpreted as a signed
value in two's complement form. An integer with a base specifier shall be interpreted as an
unsigned value in two's complement form.

This example shows two ways to write the expression "minus 12 divided by 3". Note that -12 and
-'d12 both evaluate to the same two's complement bit pattern but in an expression, the -'d12
loses its identity as a signed negative number.

integer IntA;
IntA = -12 / 3; // The result is -4
IntA = -'d 12 / 3; // The result is 1431655761.

Expression evaluation order

The operators shall follow the associativity rules while evaluating an expression as described in
section 4.1.2. However, if the final result of an expression can be determined early, the entire
expression need not be evaluated. This is called short-circuiting an expression evaluation.

reg regA, regB, regC, result ;
result = regA & (regB | regC) ;

If regA is known to be zero, the result of the expression can be determined as zero without
evaluating the sub-expression regB | regC .

Arithmetic operators

The binary arithmetic operators are the following:

Table 4-5: Arithmetic
operators defined

a + b a plus b

a - b a minus b

a * b a multiply by b

a / b a divide by b

a % b a modulo b

The integer division shall truncate any fractional part. The modulus operator, for example y % z
, gives the remainder when the first operand is divided by the second, and thus is zero when z
divides y exactly. The result of a modulus operation shall take the sign of the first operand.

The unary arithmetic operators shall take precedence over the binary operators. The unary
operators are the following:

Table 4-6: Unary operators
defined

+m unary plus m (same as m)

-m unary minus m

For the arithmetic operators, if any operand bit value is the unknown value x , or high impedance
value z , then the entire result value shall be x .

Table 4-7 gives examples of modulus operations.

Table 4-7: Examples of modulus operations

Modulus Expression Result Comments

10 % 3 1 10/3 yields a remainder of 1

11 % 3 2 11/3 yields a remainder of 2

12 % 3 0 12/3 yields no remainder

-10 % 3 -1 the result takes the sign of the first operand

11 % -3 2 the result takes the sign of the first operand

-4'd12 % 3 1
-4'd12 is seen as a large, positive number that leaves a remainder
of 1 when divided by 3

Arithmetic expressions with registers and integers

An arithmetic operation on a reg type register shall be treated differently than an arithmetic
operation on an integer data type. A reg data type shall be treated as an unsigned value and an
integer data type shall be treated as a signed value. Thus, if a sized constant with a negative value
is stored in a reg type register, a positive constant which is a two's complement of the sized
constant shall be the value stored in the reg type register. When this register is used in an
arithmetic expression, the positive constant shall be used as the value of the register. In contrast, if
a sized constant with a negative value is stored in an integer type register and used in an arithmetic
expression, the expression shall evaluate using signed arithmetic.

Table 4-8 lists how arithmetic operators interpret each data type

Table 4-8: Data type interpretation by
arithmetic operators

Data Type Interpretation

net unsigned

reg unsigned

integer signed, two's complement

time unsigned

real, realtime signed, floating point

The example below shows various ways to divide "minus twelve by three"--using integer and reg
data types in expressions.

integer intA;
reg [15:0] regA;

intA = -4'd12;
regA = intA / 3; // expression result is -4,
 // intA is an integer data type

regA = -4'd12; // regA is 65524

intA = regA / 3; // expression result is 21841,
 // regA is a reg data type.

intA = -4'd12 / 3; // expression result is 1431655761.
 // -4'd12 is effectively a reg data type

regA = -12 / 3; // expression result is -4, -12 is effectively
 // an integer data type. regA is 65532

Relational operators

Table 4-9 lists and defines the relational operators.

Table 4-9: The relational operators
defined

a < b a less than b

a > b a greater than b

a <= b a less than or equal to b

a >= b a greater than or equal to b

An expression using these relational operators shall yield the scalar value 0 if the specified
relation is false , or the value 1 if it is true . If, due to unknown or high impedance bits in the
operands, the relation is ambiguous , then the result shall be one bit unknown value (x) .

When two operands of unequal bit-lengths are used, the smaller operand shall be zero filled on the
most significant bit side to extend to the size of the larger operand.

All the relational operators shall have the same precedence. Relational operators shall have lower

precedence than arithmetic operators.

The following examples illustrate the implications of this precedence rule:

a < foo - 1 // this expression is the same as
a < (foo - 1) // this expression, but . . .
foo - (1 < a) // this one is not the same as
foo - 1 < a // this expression

When foo - (1 < a) evaluates, the relational expression evaluates first and then either zero
or one is subtracted from foo . When foo - 1 < a evaluates, the value of foo operand is
reduced by one and then compared with a .

Equality operators

The equality operators shall rank lower in precedence than the relational operators. Table 4-10
lists and defines the equality operators.

Table 4-10: The equality operators defined

a === b a equal to b, including x and z

a !== b a not equal to b, including x and z

a == b a equal to b, result may be unknown

a != b a not equal to b, result may be unknown

All four equality operators shall have the same precedence. These four operators compare
operands bit for bit, with zero filling if the two operands are of unequal bit-length. As with the
relational operators, the result shall be 0 if comparison fails, 1 if it succeeds.

For the logical equality and logical inequality operators (== and !=), if either operand contains
an x or a z , then the result shall be the unknown value (x).

For the case equality and case inequality operators(=== and !==), the comparison shall be done
just as it is in the procedural case statement (see 9.5). Bits which are x or z shall be included in
the comparison and must match for the result to be true. The result of these operators shall always
be a known value, either 1 or 0 .

Logical operators

The operators logical and (&&) and logical or (||) are logical connectives. The result of the
evaluation of a logical comparison shall be 1 (defined as true), 0 (defined as false), or, if the result
is ambiguous, then the result shall be the unknown value (x). The precedence of && is greater
than that of || , and both are lower than relational and equality operators.

A third logical operator is the unary logical negation operator ! . The negation operator converts a
non-zero or true operand into 0 and a zero or false operand into 1 . An ambiguous truth value
remains as x .

1. If register alpha holds the integer value 237 and beta holds the value zero, then the
following examples perform as described:

regA = alpha && beta; // regA is set to 0
regB = alpha || beta; // regB is set to 1

2. The following expression performs a logical and of three sub-expressions without needing any
parentheses:

a < size-1 && b != c && index != lastone

However, it is recommended for readability purposes that parentheses be used to show very

clearly the precedence intended, as in the following rewrite of the above example:

(a < size-1) && (b != c) && (index != lastone)

3. A common use of ! is in constructions like the following:

if (!inword)

In some cases, the preceding construct makes more sense to someone reading the code than the
equivalent construct shown below:

if (inword == 0)

Constructs like if (! inword) read quite nicely (if not inword), but more complicated ones
can be hard to understand.

Bit-wise operators

The bit-wise operators shall perform bit-wise manipulations on the operands--that is, the operator
shall combine a bit in one operand with its corresponding bit in the other operand to calculate one
bit for the result. The logic tables below show the results for each possible calculation.

Table 4-11:
Bit-wise

binary and
operator

& 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

Table 4-12:
Bit-wise
binary

exclusive or
operator

^ 0 1 x z

0 0 1 x x

1 1 0 x x

x x x x x

z x x x x

Table 4-13:
Bit-wise
binary

exclusive or
operator

^ 0 1 x z

0 0 1 x x

1 1 0 x x

x x x x x

z x x x x

Table 4-14:
Bit-wise binary
exclusive nor

operator

^~

~^
0 1 x z

0 1 0 x x

1 0 1 x x

x x x x x

z x x x x

Table 4-15:
Bit-wise
unary
negation
operator

~

0 1

1 0

x x

z x

When the operands are of unequal bit length, the shorter operand is zero-filled in the most
significant bit positions.

Reduction operators

The unary reduction operators shall perform a bit-wise operation on a single operand to produce a
single bit result. The first step of the operation shall apply the operator between the first bit of the
operand and the second--using the logic tables shown below. The second and subsequent steps
shall apply the operator between the one-bit result of the prior step and the next bit of the operand
using the same logic table.

Table 4-16:
Reduction unary
and operator

& 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

Table 4-17:
Reduction
unary or
operator

| 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

z x 1 x x

Table 4-18:
Reduction unary
nand operator

& 0 1 x z

0 1 1 1 1

1 1 0 x x

x 1 x x x

z 1 x x x

Table 4-19:
Reduction

unary
 exclusive nor

operator

| 0 1 x z

0 1 0 x x

1 0 1 1 1

x x x x x

z x x x x

Table 4-23 shows the results of applying reduction operators on different operands.

Table 4-23: Results of unary reduction operations

Operand & ~& | ~| ^ ~^ comments

4'b0000 0 1 0 1 0 1 No bits set

4'b1111 1 0 1 0 0 1 all bits set

4'b0110 0 1 1 0 0 1 even number of bits set

4'b1000 0 1 1 0 1 0 odd number of bits set

Shift operators

The shift operators , << and >>, shall perform left and right shifts of their left operand by the

number of bit positions given by the right operand. Both shift operators shall fill the vacated bit
positions with zeroes. If the right operand has an unknown or high impedance value then the result
shall be unknown. If the right operand is negative, the result shall remain the same as the left
operand--that is, the left operand shall not be shifted.

module shift;
reg [3:0] start, result;
initial begin
 start = 1;
 result = (start << 2);
end
endmodule

In this example, the register result is assigned the binary value 0100 , which is 0001 shifted
to the left two positions and zero filled.

Conditional operator

The conditional operator , also known as ternary operator , shall be right associative and shall be
constructed using three operands separated by two operators in the following format:

conditional_expression ::= expression1 ? expression2 : expression3

Syntax 4-1: Syntax for conditional expression

The evaluation of a conditional expression shall begin with the evaluation of expression1. If
expression1 evaluates to false (0), then expression3 shall be evaluated and used as the result of the
conditional expression. If expression1 evaluates to true (known value other than 0), then
expression2 is evaluated and used as the result. If expression1 evaluates to ambiguous value (x
or z), then both expression2 and expression3 shall be evaluated and their results shall be
combined, bit by bit, using Table 4-24 to calculate the final result. If the lengths of the operands
are different, the shorter operand shall be lengthened to match the longer and zero filled from the
left (the high-order end).

Table 4-24:
Ambiguous
condition
results for
conditional

operator

?: 0 1 x z

0 0 x x x

1 x 1 x x

x x x x x

z x x x x

The following example of a tri-state output bus illustrates a common use of the conditional
operator.

wire [15:0] busa = drive_busa ? data : 16'bz;

The bus called data is driven onto busa when drive_busa is 1 . If drive_busa is
unknown, then an unknown value is driven onto busa . Otherwise, busa is not driven.

Concatenations

A concatenation is the joining together of bits resulting from two or more expressions. The

concatenation shall be expressed using the brace characters { and }, with commas separating the
expressions within.

Unsized constant numbers shall not be allowed in concatenations. This is because the size of each
operand in the concatenation is needed to calculate the complete size of the concatenation.

The next example concatenates four expressions:

{a, b[3:0], w, 3'b101}

and it is equivalent to the following example:

{a, b[3], b[2], b[1], b[0], w, 1'b1, 1'b0, 1'b1}

Concatenations can be expressed using a repetition multiplier as shown in the next example.

{4{w}} // This is equivalent to {w, w, w, w}

If a repetition multiplier is used on a function call operand, the function need not be evaluated
multiple times. For example,

result = {4{func(w)}}

may be computed as

result = {func(w), func(w), func(w), func(w)}

or

y = func(w) ;result = {y, y, y, y}

This is another form of expression evaluation short-circuiting.

The next example illustrates nested concatenations.

{b, {3{a, b}}} // This is equivalent to {b, a, b, a, b, a, b}

The repetition multiplier must be a constant expression.

2.6 Strings
A string is a sequence of characters enclosed by double quotes ("") and contained on a
single line. Strings used as operands in expressions and assignments shall be treated as
unsigned integer constants represented by a sequence of eight-bit ASCII values, with one
eight bit ASCII value representing one character.

String variable declaration

String variables are variables of register type (see section 3.2) with width equal to the
number of characters in the string multiplied by 8.

Example:

To store the twelve characters string "Hello world!" requires a register 8*12, or 96
bits wide

reg [8*12:1] stringvar;
initial begin
 stringvar = "Hello world!";
end

String manipulation

Strings can be manipulated using the Verilog HDL operators. The value being
manipulated by the operator is the sequence of 8-bit ASCII values.

Example:

module string_test;
reg [8*14:1] stringvar;
initial
 begin stringvar = "Hello world";
 $display("%s is stored as %h", stringvar,stringvar);
 stringvar = {stringvar,"!!!"};
 $display("%s is stored as %h", stringvar,stringvar);
end
endmodule

The output is:

Hello world is stored as 00000048656c6c6f20776f726c64
Hello world!!! is stored as 48656c6c6f20776f726c64212121

NOTE--When a variable is larger than required to hold a value being assigned, the
contents on the left are padded with zeros after the assignment. This is consistent with the
padding that occurs during assignment of non-string values. If a string is larger than the
destination string variable, the string is truncated to the left and the left most characters
will be lost.

Special characters in strings

Certain characters can only be used in strings when preceded by an introductory character
called an escape character. Table 2-1 lists these characters in the right-hand column with
the escape sequence that represents the character in the left-hand column.

Table 2-1: Specifying special characters in
string

Escape
String

Character Produced by
Escape String

\n new line character

\t tab character

\\ \ character

\" " character

\ddd
a character specified in 1-3 octal digits
(0 <= d <= 7)

4.3 Minimum, typical, maximum
delay expressions
Verilog HDL delay expressions can be specified as three expressions separated by colons.
This triple is intended to represent minimum, typical, and maximum values--in that order.
The syntax is as follows:

mintypmax_expression ::= expression
 | expression : expression : expression

Syntax 4-2: Syntax for mintypmax expression

Verilog HDL models typically specify three values for delay expressions. The three values
allow a design to be tested with minimum, typical, or maximum delay values.

Values expressed in min:typ:max format can be used in expressions. The min:typ:max
format can be used wherever expressions can appear.

1. This example shows an expression that defines a single triplet of delay values. The
minimum value is the sum of a+d ; the typical value is b+e ; the maximum value is c+f ,
as follows:

(a:b:c) + (d:e:f)

3. The next example shows some typical expressions that are used to specify
min:typ:max format values:

val - (32'd 50: 32'd 75: 32'd 100)

LOGIC
SYNTHESIS
Logic synthesis provides a link between an HDL (Verilog or VHDL) and a netlist
similarly to the way that a C compiler provides a link between C code and
machine language. However, the parallel is not exact. C was developed for use
with compilers, but HDLs were not developed for use with logic-synthesis tools.
Verilog was designed as a simulation language and VHDL was designed as a
documentation and description language. Both Verilog and VHDL were
developed in the early 1980s, well before the introduction of commercial
logic-synthesis software. Because these HDLs are now being used for purposes
for which they were not intended, the state of the art in logic synthesis falls far
short of that for computer-language compilers. Logic synthesis forces designers
to use a subset of both Verilog and VHDL. This makes using logic synthesis
more difficult rather than less difficult. The current state of synthesis software is
rather like learning a foreign language, and then having to talk to a five-year-old.
When talking to a logic-synthesis tool using an HDL, it is necessary to think like
hardware, anticipating the netlist that logic synthesis will produce. This situation
should improve in the next five years, as logic synthesizers mature.

Designers use graphic or text design entry to create an HDL behavioral model ,
which does not contain any references to logic cells. State diagrams, graphical
datapath descriptions, truth tables, RAM/ROM templates, and gate-level
schematics may be used together with an HDL description. Once a behavioral
HDL model is complete, two items are required to proceed: a logic synthesizer
(software and documentation) and a cell library (the logic cells�NAND gates and
such) that is called the target library . Most synthesis software companies
produce only software. Most ASIC vendors produce only cell libraries. The
behavioral model is simulated to check that the design meets the specifications
and then the logic synthesizer is used to generate a netlist, a structural model ,
which contains only references to logic cells. There is no standard format for the
netlists that logic synthesis produces, but EDIF is widely used. Some
logic-synthesis tools can also create structural HDL (Verilog, VHDL, or both).
Following logic synthesis the design is simulated again, and the results are
compared with the earlier behavioral simulation. Layout for any type of ASIC
may be generated from the structural model produced by logic synthesis.

Last Edited by SP 14112004

12.1 A Logic-Synthesis
Example
As an example of logic synthesis, we will compare two implementations of the
Viterbi decoder described in Chapter 11. Both versions used logic cells from a
VLSI Technology cell library. The first ASIC was designed by hand using
schematic entry and a data book. The second version of the ASIC (the one that
was fabricated) used Verilog for design entry and a logic synthesizer. Table 12.1
compares the two versions. The synthesized ASIC is 16 percent smaller and 13
percent faster than the hand-designed version.

How does logic synthesis generate smaller and faster circuits? Figure 12.1 shows
the schematic for a hand-designed comparator and MUX used in the Viterbi
decoder ASIC, called here the comparator/MUX example. The Verilog code and
the schematic in Figure 12.1 describe the same function. The comparison, in
Table 12.2 , of the two design approaches shows that the synthesized version is
smaller and faster than the hand design, even though the synthesized design uses
more cells.

TABLE 12.1 A comparison of hand design with synthesis (using a 1.0 m m
VLSI Technology cell library).

Path
delay/
ns (1)

No. of
standard cells

No. of transistors
Chip area/
mils 2 (2)

Hand design 41.6 1,359 16,545 21,877
Synthesized design 36.3 1,493 11,946 18,322

// comp_mux.v

module comp_mux(a,
b, outp);

input [2:0] a, b;

output [2:0] outp;

function [2:0]
compare;

input [2:0] ina, inb;

begin

if (ina <= inb)
compare = ina;

else compare = inb;

end

endfunction

assign outp =
compare(a, b);

endmodule
FIGURE 12.1 Schematic and HDL design entry.
TABLE 12.2 Comparison of the comparator/MUX designs using a 1.0 m m
standard-cell library.

 Delay /ns No. of standard cells
No. of
transistors

Area
/mils 2

Hand design 4.3 12 116 68.68
Synthesized 2.9 15 66 46.43

1. These delays are under nominal operating conditions with no wiring
capacitance. This is the only stage at which a comparison could be made because
the hand design was not completed.

2. Both figures are initial layout estimates using default power-bus and signal
routing widths.

12.2 A Comparator/MUX
With the Verilog behavioral model of Figure 12.1 as the input, logic-synthesis software generates logic that
performs the same function as the Verilog. The software then optimizes the logic to produce a structural model,
which references logic cells from the cell library and details their connections.

`timescale 1ns / 10ps

module comp_mux_u (a, b, outp);

input [2:0] a; input [2:0] b;

output [2:0] outp;

supply1 VDD; supply0 VSS;

in01d0 u2 (.I(b[1]), .ZN(u2_ZN));

nd02d0 u3 (.A1(a[1]), .A2(u2_ZN), .ZN(u3_ZN));

in01d0 u4 (.I(a[1]), .ZN(u4_ZN));

nd02d0 u5 (.A1(u4_ZN), .A2(b[1]), .ZN(u5_ZN));

in01d0 u6 (.I(a[0]), .ZN(u6_ZN));

nd02d0 u7 (.A1(u6_ZN), .A2(u3_ZN), .ZN(u7_ZN));

nd02d0 u8 (.A1(b[0]), .A2(u3_ZN), .ZN(u8_ZN));

nd03d0 u9 (.A1(u5_ZN), .A2(u7_ZN), .A3(u8_ZN), .ZN(u9_ZN));

in01d0 u10 (.I(a[2]), .ZN(u10_ZN));

nd02d0 u11 (.A1(u10_ZN), .A2(u9_ZN), .ZN(u11_ZN));

nd02d0 u12 (.A1(b[2]), .A2(u9_ZN), .ZN(u12_ZN));

nd02d0 u13 (.A1(u10_ZN), .A2(b[2]), .ZN(u13_ZN));

nd03d0 u14 (.A1(u11_ZN), .A2(u12_ZN), .A3(u13_ZN), .ZN(u14_ZN));

nd02d0 u15 (.A1(a[2]), .A2(u14_ZN), .ZN(u15_ZN));

in01d0 u16 (.I(u14_ZN), .ZN(u16_ZN));

nd02d0 u17 (.A1(b[2]), .A2(u16_ZN), .ZN(u17_ZN));

nd02d0 u18 (.A1(u15_ZN), .A2(u17_ZN), .ZN(outp[2]));

nd02d0 u19 (.A1(a[1]), .A2(u14_ZN), .ZN(u19_ZN));

nd02d0 u20 (.A1(b[1]), .A2(u16_ZN), .ZN(u20_ZN));

nd02d0 u21 (.A1(u19_ZN), .A2(u20_ZN), .ZN(outp[1]));

nd02d0 u22 (.A1(a[0]), .A2(u14_ZN), .ZN(u22_ZN));

nd02d0 u23 (.A1(b[0]), .A2(u16_ZN), .ZN(u23_ZN));

nd02d0 u24 (.A1(u22_ZN), .A2(u23_ZN), .ZN(outp[0]));

endmodule
FIGURE 12.2 The comparator/MUX after logic synthesis, but before logic optimization. This figure shows the
structural netlist, comp_mux_u.v , and its derived schematic.

`timescale 1ns / 10ps

module comp_mux_o (a, b, outp);

input [2:0] a; input [2:0] b;

output [2:0] outp;

supply1 VDD; supply0 VSS;

in01d0 B1_i1 (.I(a[2]), .ZN(B1_i1_ZN));

in01d0 B1_i2 (.I(b[1]), .ZN(B1_i2_ZN));

oa01d1 B1_i3 (.A1(a[0]), .A2(B1_i4_ZN), .B1(B1_i2_ZN),
.B2(a[1]), .ZN(B1_i3_Z;

fn05d1 B1_i4 (.A1(a[1]), .B1(b[1]), .ZN(B1_i4_ZN));

fn02d1 B1_i5 (.A(B1_i3_ZN), .B(B1_i1_ZN), .C(b[2]),
.ZN(B1_i5_ZN));

mx21d1 B1_i6 (.I0(a[0]), .I1(b[0]), .S(B1_i5_ZN), .Z(outp[0]));

mx21d1 B1_i7 (.I0(a[1]), .I1(b[1]), .S(B1_i5_ZN), .Z(outp[1]));

mx21d1 B1_i8 (.I0(a[2]), .I1(b[2]), .S(B1_i5_ZN), .Z(outp[2]));

endmodule

FIGURE 12.3 The comparator/MUX after logic synthesis and logic optimization with the default settings. This
figure shows the structural netlist, comp_mux_o.v , and its derived schematic.

Before running a logic synthesizer, it is necessary to set up paths and startup files (synopsys_dc.setup ,
compass.boo , view.ini , or similar). These files set the target library and directory locations. Normally it is
easier to run logic synthesis in text mode using a script. A script is a text file that directs a software tool to
execute a series of synthesis commands (we call this a synthesis run). Figure 12.2 shows a structural netlist,
comp_mux_u.v , and the derived schematic after logic synthesis, but before any logic optimization . A derived
schematic is created by software from a structural netlist (as opposed to a schematic drawn by hand).
shows the structural netlist, comp_mux_o.v , and the derived schematic after logic optimization is performed
(with the default settings). Figures 12.2 and 12.3 show the results of the two separate steps: logic synthesis and
logic optimization. Confusingly, the whole process, which includes synthesis and optimization (and other steps
as well), is referred to as logic synthesis . We also refer to the software that performs all of these steps (even if
the software consists of more than one program) as a logic synthesizer .

Logic synthesis parses (in a process sometimes called analysis) and translates (sometimes called elaboration)
the input HDL to a data structure. This data structure is then converted to a network of generic logic cells. For
example, the network in Figure 12.2 uses NAND gates (each with three or fewer inputs in this case) and
inverters. This network of generic logic cells is technology-independent since cell libraries in any technology
normally contain NAND gates and inverters. The next step, logic optimization , attempts to improve this
technology-independent network under the controls of the designer. The output of the optimization step is an
optimized, but still technology-independent, network. Finally, in the logic-mapping step, the synthesizer maps
the optimized logic to a specified technology-dependent target cell library. Figure 12.3 shows the results of

using a standard-cell library as the target.

Text reports such as the one shown in Table 12.3 may be the only output that the designer sees from the
logic-synthesis tool. Often, synthesized ASIC netlists and the derived schematics containing thousands of logic
cells are far too large to follow. To make things even more difficult, the net names and instance names in
synthesized netlists are automatically generated. This makes it hard to see which lines of code in the HDL
generated which logic cells in the synthesized netlist or derived schematic.

TABLE 12.3 Reports from the logic synthesizer for the Verilog version of the comparator/MUX.

Command Synthesizer output 1

> synthesize

 Num Gate Count Tot Gate Width Total

Cell Name Insts Per Cell Count Per Cell Width

--------- ----- ---------- -------- -------- --------

in01d0 5 .8 3.8 7.2 36.0

nd02d0 16 1.0 16.0 9.6 153.6

nd03d0 2 1.3 2.5 12.0 24.0

--------- ----- ---------- -------- -------- --------

Totals: 23 22.2 213.6

> optimize

 Num Gate Count Tot Gate Width Total

Cell Name Insts Per Cell Count Per Cell Width

--------- ----- ---------- -------- -------- --------

fn02d1 1 1.8 1.8 16.8 16.8

fn05d1 1 1.3 1.3 12.0 12.0

in01d0 2 .8 1.5 7.2 14.4

mx21d1 3 2.2 6.8 21.6 64.8

oa01d1 1 1.5 1.5 14.4 14.4

--------- ----- ---------- -------- -------- --------

Totals: 8 12.8 122.4

> report timing

instance name

inPin --> outPin incr arrival trs rampDel cap cell

 (ns) (ns) (ns) (pf)

--

a[1] .00 .00 R .00 .04 comp_m...

B1_i4

A1 --> ZN .33 .33 R .17 .03 fn05d1

B1_i3

A2 --> ZN .39 .72 F .33 .06 oa01d1

B1_i5

A --> ZN 1.03 1.75 R .67 .11 fn02d1

B1_i6

S --> Z .68 2.43 R .09 .02 mx21d1

In the comparator/MUX example the derived schematics are simple enough that, with hindsight, it is clear that
the XOR logic cell used in the hand design is logically inefficient. Using XOR logic cells does, however, result
in the simple schematic of Figure 12.1 . The synthesized version of the comparator/MUX in Figure 12.3 uses
complex combinational logic cells that are logically efficient, but the schematic is not as easy to read. Of course,
the computer does not care about this�and neither do we since we usually never see the schematic.

Which version is best�the hand-designed or the synthesized version? Table 12.3 shows statistics generated by
the logic synthesizer for the comparator/MUX. To calculate the performance of each circuit that it evaluates
during synthesis, there is a timing-analysis tool (also known as a timing engine) built into the logic synthesizer.
The timing-analysis tool reports that the critical path in the optimized comparator/MUX is 2.43 ns. This critical
path is highlighted on the derived schematic of Figure 12.3 and consists of the following delays:

0.33 ns due to cell fn05d1 , instance name B1_i4 , a two-input NOR cell with an inverted input. We might
call this a NOR1-1 or (A + B')' logic cell.

●

0.39 ns due to cell oa01d1 , instance name B1_i3 , an OAI22 logic cell.●

1.03 ns due to logic cell fn02d1 , instance name B1_i5 , a three-input majority function, MAJ3 (A, B, C).●

0.68 ns due to logic cell mx21d1 , instance name B1_i6 , a 2:1 MUX.●

(In this cell library the 'd1' suffix indicates normal drive strength.)

TABLE 12.4 Logic cell comparisons between the two comparator/MUX designs.

Cell type
Library
cell
name 2

3
tPLH
/ns

tPHL
/ns

Gate
equivalents
in cell 4

Cells
used
in
hand

design

Cells used
in

synthesized
design

Gate
equivalents
used

by hand
design

Gate
equivalents
used in

synthesized
design

Width
of
cell 5
/ m m

Width
used
by

hand
design
/ m m

Width of
synthesized

design / m
m

Inverter in01d0 0.37 0.36 0.8 2 2 1.6 1.6 7.2 14.4 14.4
2-input
XOR

xo02d1 0.93 0.62 1.8 3 � 5.3 � 16.8 50.4 �

2-input
AND

an02d1 0.34 0.46 1.3 1 � 1.3 � 12.0 12.0 �

3-input
AND

an03d1 0.38 0.52 1.5 1 � 1.5 � 14.4 14.4 �

4-input
AND

an04d1 0.41 0.98 1.8 1 � 1.8 � 16.8 16.8 �

3-input
OR

or03d1 0.60 0.44 1.8 1 � 1.8 � 16.8 16.8 �

2-input
MUX

mx21d1 0.69 0.68 2.2 3 3 6.6 6.6 21.6 64.8 64.8

AOI22 oa01d1 0.51 0.42 1.5 � 1 � 1.5 14.4 � 14.4
MAJ3 fn02d1 0.84 0.81 1.8 � 1 � 1.8 16.8 � 16.8

NOR1-1=
(A' + B)'

fn05d1
6 0.42 0.46 1.3 � 1 � 1.3 12.0 � 12.0

Totals 12 8 19.8 12.8 189.6 122.4

Table 12.4 lists the name, type, the number of transistors, the area, and the delay of each logic cell used in the
hand-designed and synthesized comparator/MUX. We could have performed this analysis by hand using the
cell-library data book and a calculator or spreadsheet, but it would have been tedious work�especially
calculating the delays. The computer is excellent at this type of bookkeeping. We can think of the timing engine
of a logic synthesizer as a logic calculator.

We see from Table 12.4 that the sum of the widths of all the cells used in the synthesized design (122.4 m m) is
less than for the hand design (189.6 m m). All the standard cells in a library are the same height, 72 l or 21.6 m
m, in this case. Thus the synthesized design is smaller. We could estimate the critical path of the hand design
using the information from the cell-library data book (summarized in Table 12.4). Instead we will use the

timing engine in the logic synthesizer as a logic calculator to extract the critical path for the hand-designed
comparator/MUX.

Table 12.5 shows a timing analysis obtained by loading the hand-designed schematic netlist into the logic
synthesizer. Table 12.5 shows that the hand-designed (critical path 2.42 ns) and synthesized versions (critical
path 2.43 ns) of the comparator/MUX are approximately the same speed. Remember, though, that we used the
default settings during logic optimization. Section 12.11 shows that the logic synthesizer can do much better.

TABLE 12.5 Timing report for the hand-designed version of the comparator/MUX using the logic
synthesizer to calculate the critical path (compare with Table 12.3).

Command Synthesizer output 7

> report timing

instance name

inPin --> outPin incr arrival trs rampDel cap cell

 (ns) (ns) (ns) (pf)

--

a[1] .00 .00 F .00 .04 comp_mux

B1_i4

A1 --> ZN .61 .61 F .14 .03 xo02d1

B1_i3

A2 --> ZN .85 1.46 F .19 .05 an04d1

B1_i5

A --> ZN .42 1.88 F .23 .09 or03d1

B1_i6

S --> Z .54 2.42 R .09 .02 mx21d1

outp[0] .00 2.42 R .00 .00 comp_mux

12.2.1 An Actel Version of the Comparator/MUX
Figure 12.4 shows the results of targeting the comparator/MUX design to the Actel ACT 2/3 FPGA architecture.
(The EDIF converter prefixes all internal nodes in this netlist with 'block_0_DEF_NET_' . This prefix was
replaced with 'n_' in the Verilog file, comp_mux_actel_o_adl_e.v , derived from the .adl netlist.) As can be seen
by comparing the netlists and schematics in Figures 12.3 and 12.4 , the results are very different between a
standard-cell library and the Actel library. Each of the symbols in the schematic in Figure 12.4 represents the
eight-input ACT 2/3 C-Module (see Figure 5.4 a). The logic synthesizer, during the technology-mapping step,
has decided which connections should be made to the inputs to the combinational logic macro, CM8 . The CM8
names and the ACT2/3 C-Module names (in parentheses) correspond as follows: S00(A0) , S01(B0) , S10(A1) ,
S11(A2) , D0(D00) , D1(D01) , D2(D10) , D3(D11) , and Y(Y) .

`timescale 1 ns/100 ps

module comp_mux_actel_o (a, b, outp);

input [2:0] a, b; output [2:0] outp;

wire n_13, n_17, n_19, n_21, n_23, n_27, n_29, n_31, n_62;

CM8 I_5_CM8(.D0(n_31), .D1(n_62), .D2(a[0]), .D3(n_62), .S00(n_62),
.S01(n_13), .S10(n_23), .S11(n_21), .Y(outp[0]));

CM8 I_2_CM8(.D0(n_31), .D1(n_19), .D2(n_62), .D3(n_62),
.S00(n_62), .S01(b[1]), .S10(n_31), .S11(n_17), .Y(outp[1]));

CM8 I_1_CM8(.D0(n_31), .D1(n_31), .D2(b[2]), .D3(n_31), .S00(n_62),

.S01(n_31), .S10(n_31), .S11(a[2]), .Y(outp[2]));

VCC VCC_I(.Y(n_62));

CM8 I_4_CM8(.D0(a[2]), .D1(n_31), .D2(n_62), .D3(n_62), .S00(n_62),
.S01(b[2]), .S10(n_31), .S11(a[1]), .Y(n_19));

CM8 I_7_CM8(.D0(b[1]), .D1(b[2]), .D2(n_31), .D3(n_31), .S00(a[2]),
.S01(b[1]), .S10(n_31), .S11(a[1]), .Y(n_23));

CM8 I_9_CM8(.D0(n_31), .D1(n_31), .D2(a[1]), .D3(n_31), .S00(n_62),
.S01(b[1]), .S10(n_31), .S11(b[0]), .Y(n_27));

CM8 I_8_CM8(.D0(n_29), .D1(n_62), .D2(n_31), .D3(a[2]), .S00(n_62),
.S01(n_27), .S10(n_31), .S11(b[2]), .Y(n_13));

CM8 I_3_CM8(.D0(n_31), .D1(n_31), .D2(a[1]), .D3(n_31), .S00(n_62),
.S01(a[2]), .S10(n_31), .S11(b[2]), .Y(n_17));

CM8 I_6_CM8(.D0(b[2]), .D1(n_31), .D2(n_62), .D3(n_62), .S00(n_62),
.S01(a[2]), .S10(n_31), .S11(b[0]), .Y(n_21));

CM8 I_10_CM8(.D0(n_31), .D1(n_31), .D2(b[0]), .D3(n_31),
.S00(n_62), .S01(n_31), .S10(n_31), .S11(a[2]), .Y(n_29));

GND GND_I(.Y(n_31));

endmodule

FIGURE 12.4 The Actel version of the comparator/MUX after logic optimization. This figure shows the s
tructural netlist, comp_mux_actel_o_adl_e.v , and its derived schematic.

1. Cell Name = cell name from the ASIC library (Compass Passport, 0.6 m m high-density, 5 V standard-cell
library, cb60hd230); Num Insts = number of cell instances; Gate Count Per Cell = equivalent gates with
two-input NAND = 1 gate (with number of transistors ª equivalent gates ¥ 4); Width Per Cell = width in m m
(cell height in this library is 72 l or 21.6 m m); incr = incremental delay time due to logic cell delay; trs
 = transition; R = rising; F = falling; rampDel = ramp delay; cap = capacitance at node or cell output pin.

2. 0.6 m m, 5 V, high-density Compass standard-cell library, cb60hd230.

3. Average over all inputs with load capacitance equal to two standard loads (one standard load = 0.016 pF).

4. 2-input NAND = 1 gate equivalent.

5. Cell height is 72 l (21.6 m m).

6. Rise and fall delays are different for the two inputs, A and B, of this cell: t PLHA = 0.48 ns; t PLHB = 0.36 ns; t

PHLA = 0.59 ns; t PHLB = 0.33 ns.

7. See footnote 1 in Table 12.3 for explanations of the abbreviations used in this table.

12.3 Inside a Logic Synthesizer
The logic synthesizer parses the Verilog of Figure 12.1 and builds an internal
data structure (usually a graph represented by linked lists). Such an abstract
representation is not easy to visualize, so we shall use pictures instead. The first
Karnaugh map in Figure 12.5 (a) is a picture that represents the sel signal
(labeled as the input to the three MUXes in the schematic of Figure 12.1) for the
case when the inputs are such that a[2]b[2] = 00 . The signal sel is responsible for
steering the smallest input, a or b , to the output of the comparator/MUX. We
insert a '1' in the Karnaugh map (which will select the input b to be the output)
whenever b is smaller than a . When a = b we do not care whether we select a or
b (since a and b are equal), so we insert an 'x' , a don�t care logic value, in the
Karnaugh map of Figure 12.5 (a). There are four Karnaugh maps for the signal
sel , one each for the values a[2]b[2] = 00 , a[2]b[2] = 01 , a[2]b[2] = 10 , and
a[2]b[2] = 11 .

FIGURE 12.5 Logic maps for the comparator/MUX. (a) If the input b is less
than a , then sel is '1' . If a = b , then sel = 'x' (don�t care). (b) A cover for sel .

Next, logic minimization tries to find a minimum cover for the Karnaugh maps
�the smallest number of the largest possible circles to cover all the '1' s. One
possible cover is shown in Figure 12.5 (b).

In order to understand the steps that follow we shall use some notation from the
Berkeley Logic Interchange Format (BLIF) and from the Berkeley tools misII
and sis . We shall use the logic operators (in decreasing order of their
precedence): '!' (negation), '*' (AND), '+' (OR). We shall also abbreviate Verilog
signal names; writing a[2] as a2 , for example. We can write equations for sel and
the output signals of the comparator/MUX in the format that is produced by sis ,
as follows (this is the same format as input file for the Berkeley tool eqntott):

sel = a1*!b1*!b2 + a0*!b1*!b2 + a0*a1*!b2 + a1*!b1*a2 + a0*!b1*a2 +
a0*a1*a2 + a2*!b2;[12.1]

outp2 = !sel*a2 + sel*b2;[12.2]

outp1 = !sel*a1 + sel*b1;[12.3]

outp0 = !sel*a0 + sel*b0;[12.4]

Equations 12.1 � 12.4 describe the synthesized network . There are seven product
terms in Eq. 12.1 �the logic equation for sel (numbered and labeled in the
drawing of the cover for sel in Figure 12.5). We shall keep track of the sel signal
separately even though this is not exactly the way the logic synthesizer works�the
synthesizer looks at all the signals at once.

Logic optimization uses a series of factoring, substitution, and elimination steps
to simplify the equations that represent the synthesized network. A simple
analogy would be the simplification of arithmetic expressions. Thus, for example,
we can simplify 189 / 315 to 0.6 by factoring the top and bottom lines and
eliminating common factors as follows: (3 ¥ 7 ¥ 9) / (5 ¥ 7 ¥ 9) = 3 / 5. Boolean
algebra is more complicated than ordinary algebra. To make logic optimization
tractable, most tools use algorithms based on algebraic factors rather than
Boolean factors.

Logic optimization attempts to simplify the equations in the hope that this will
also minimize area and maximize speed. In the synthesis results presented in
Table 12.3 , we accepted the default optimization settings without setting any
constraints. Thus only a minimum amount of logic optimization is attempted that
did not alter the synthesized network in this case.

The technology-decomposition step builds a generic network from the optimized
logic network. The generic network is usually simple NAND gates (sis uses
either AND, or NOR gates, or both). This generic network is in a
technology-independent form. To build this generic network involves creating
intermediate nodes. The program sis labels these intermediate nodes [n] , starting
at n = 100 .

sel = [100] * [101] * [102] ;[12.5]

[100] = !(!a2 * [103]);

[101] = !(b2 * [103]);

[102] = !(!a2 * b2);

[103] = !([104] * [105] * [106]);

[104] = !(!a1 * b1);

[105] = !(b0 * [107]);

[106] = !(a0' * [107]);

[107] = !(a1 * !b1);

outp2 = !([108] * [109]);[12.6]

[108] = !(a2 * !sel);

[109] = !(sel * b2);

There are two other sets of equations, similar to Eq. 12.6 , for outp1 and outp0 .
Notice the polarity of the sel signal in Eq. 12.5 is correct and represents an AND
gate (a consequence of labeling sel as the MUX select input in Table 12.1).

Next, the technology-mapping step (or logic-mapping step) implements the
technology-independent network by matching pieces of the network with the
logic cells that are available in a technology-dependent cell library (an FPGA or
standard-cell library, for example). While performing the logic mapping, the
algorithms attempt to minimize area (the default constraint) while meeting any
other user constraints (timing or power constraints, for example).

Working backward from the outputs the logic mapper recognizes that each of the
three output nodes (outp2 , outp1 , and outp0) may be mapped to a MUX. (We
are using the term �node mapping to a logic cell� rather loosely here�an exact
parallel is a compiler mapping patterns of source code to object code.) Here is the
equation that shows the mapping for outp2 :

outp2 = MUX(a, b, c) = ac + b!c[12.7]

a = b2 ; b = a2 ; c = sel

The equations for outp1 and outp0 are similar.

The node sel can be mapped to the three-input majority function as follows:

sel = MAJ3(w, x, y) = !(wx + wy + xy) [12.8]

w = !a2 ; x = b2 ; y = [103] ;

Next node [103] is mapped to an OAI22 cell,

[103] = OAI22(w, x, y, z) = ! ((w + x)(y + z)) = (!w!x + !y!z) [12.9]

w = a0 ; x = a1 ; y = !b1 z = [107] ;

Finally, node [107] is mapped to a two-input NOR with one inverted input,

[107] = !(b1 + !a1) ; [12.10]

Putting Equations 12.7 � 12.10 together describes the following optimized logic
network (corresponding to the structural netlist and schematic shown in
Figure 12.3):

sel = !(((!a0 * !(a1&!b1) | (b1*!a1)) * (!a2|b2)) | (!a2*b2)) ;[12.11]

outp2 = !sel * a2 | sel * b2;

outp1 = !sel * a1 | sel * b1;

outp0 = !sel * a0 | sel * b0;

The comparator/MUX example illustrates how logic synthesis takes the
behavioral model (the HDL input) and, in a series of steps, converts this to a
structural model describing the connections of logic cells from a cell library.

When we write a C program we almost never think of the object code that will
result. When we write HDL it is always necessary to consider the hardware. In C
there is not much difference between i*j and i/j . In an HDL, if i and j are 32-bit
numbers, i*j will take up a large amount of silicon. If j is a constant, equal to 2,
then i*j take up hardly any space at all. Most logic synthesizers cannot even
produce logic to implement i/j . In the following sections we shall examine the
Verilog and VHDL languages as a way to communicate with a logic synthesizer.
Using one of these HDLs we have to tell the logic synthesizer what hardware we
want�we imply A. The logic synthesizer then has to figure out what we want�it
has to infer B. The problem is making sure that we write the HDL code such that
A = B. As will become apparent, the more clearly we imply what we mean, the
easier the logic synthesizer can infer what we want.

12.11 Performance-Driven
Synthesis
Many logic synthesizers allow the use of directives. The pseudocomment in the
following code directs the logic synthesizer to minimize the delay of an addition:

module add_directive (a, b, z); input [3:0] a, b; output [3:0] z;

//compass maxDelay 2 ns

//synopsys and so on.

assign z = a + b;

endmodule

These directives become complicated when we need to describe complex timing
constraints. Figure 12.7 (a) shows an example of a more flexible method to
measure and specify delay using timing arcs (or timing paths). Suppose we wish
to improve the performance of the comparator/MUX example from Section 12.2 .
First we define a pathcluster (a group of circuit nodes�see Figure 12.7 b). Next,
we specify the required time for a signal to reach the output nodes (the end set)
as 2 ns. Finally, we specify the arrival time of the signals at all the inputs as 0 ns.
We have thus constrained the delay of the comparator/MUX to be 2 ns�measured
between any input and any output. The logic-optimization step will simplify the
logic network and then map it to a cell library while attempting to meet the
timing constraints.

FIGURE 12.7 Timing constraints. (a) A pathcluster. (b) Defining constraints.

Table 12.11 shows the results of a timing-driven logic optimization for the
comparator/MUX. Comparing these results with the default optimization results
shown in Table 12.3 reveals that the timing has dramatically improved (critical
path delay was 2.43 ns with default optimization settings, and the delay varies
between 0.31 ns and 1.64 ns for the timing-driven optimization).

TABLE 12.11 Timing-driven synthesis reports for the comparator/MUX
example of Section 12.2 .

Command Synthesizer output 1

> set pathcluster pc1

> set requiredTime 2 outp[0] outp[1] outp[2] -pathcluster pc1

> set arrivalTime 0 * -pathcluster pc1

> optimize

 Num Gate Count Tot Gate Width Total

Cell Name Insts Per Cell Count Per Cell Width

--------- ----- ---------- -------- -------- --------

an02d1 1 1.3 1.3 12.0 12.0

in01d0 2 .8 1.5 7.2 14.4

mx21d1 2 2.2 4.5 21.6 43.2

nd02d0 2 1.0 2.0 9.6 19.2

oa03d1 1 1.8 1.8 16.8 16.8

oa04d1 1 1.3 1.3 12.0 12.0

--------- ----- ---------- -------- -------- --------

Totals: 9 12.2 117.6

> report timing

-allpaths

path cluster name: pc1

path type: maximum

--

end node current required slack

--

outp[1] 1.64 2.00 .36 MET

outp[0] 1.64 2.00 .36 MET

outp[2] .31 2.00 1.69 MET

Figure 12.8 shows that timing-driven optimization and the subsequent mapping
have simplified the logic considerably. For example, the logic for outp[2] has
been reduced to a two-input AND gate. Using sis reveals how optimization works
in this case. Table 12.12 shows the equations for the intermediate signal sel and
the three comparator/MUX outputs in the BLIF. Thus, for example, the following
line of the BLIF code in Table 12.12 (the first line following .names a0 b0 a1 b1
a2 b2 sel) includes the term a0·b0'·a1'·b1'·a2'·b2' in the equation for sel :

100000 1

There are six similar lines that describe the six other product terms for sel . These
seven product terms form a cover for sel in the Karnaugh maps of Figure 12.5 .

`timescale 1ns / 10ps

module comp_mux_o (a, b, outp);

input [2:0] a; input [2:0] b;

output [2:0] outp;

supply1 VDD; supply0 VSS;

mx21d1 B1_i1 (.I0(a[0]), .I1(b[0]),
.S(B1_i6_ZN), .Z(outp[0]));

oa03d1 B1_i2 (.A1(B1_i9_ZN), .A2(a[2]),
.B1(a[0]), .B2(a[1]), .C(B1_i4_ZN),
.ZN(B1_i2_ZN));

nd02d0 B1_i3 (.A1(a[1]), .A2(a[0]),

.ZN(B1_i3_ZN));

nd02d0 B1_i4 (.A1(b[1]), .A2(B1_i3_ZN),
.ZN(B1_i4_ZN));

mx21d1 B1_i5 (.I0(a[1]), .I1(b[1]),
.S(B1_i6_ZN), .Z(outp[1]));

oa04d1 B1_i6 (.A1(b[2]), .A2(B1_i7_ZN),
.B(B1_i2_ZN), .ZN(B1_i6_ZN));

in01d0 B1_i7 (.I(a[2]), .ZN(B1_i7_ZN));

an02d1 B1_i8 (.A1(b[2]), .A2(a[2]),
.Z(outp[2]));

in01d0 B1_i9 (.I(b[2]), .ZN(B1_i9_ZN));

endmodule

FIGURE 12.8 The comparator/MUX example of Section 12.2 after logic
optimization with timing constraints. The figure shows the structural netlist,
comp_mux_o2.v , and its derived schematic. Compare this with Figures 12.2 and
12.3 .

In addition sis must be informed of the don�t care values (called the external don�t
care set) in these Karnaugh maps. This is the function of the PLA-format input
that follows the .exdc line. Now sis can simplify the equations including the don�t
care values using a standard script, rugged.script , that contains a sequence of sis
commands. This particular script uses a series of factoring and substitution steps.
The output (Table 12.12) reveals that sis finds the same equation for outp[2]
(named outp2 in the sis equations):

{outp2} = a2 b2

The other logic equations in Table 12.12 that sis produces are also equivalent to
the logic in Figure 12.8 . The technology-mapping step hides the exact details of
the conversion between the internal representation and the optimized logic.

TABLE 12.12 Optimizing the comparator/MUX equations using sis .
sis input file (BLIF) sis results

.model comp_mux

.inputs a0 b0 a1 b1 a2 b2

.outputs outp0 outp1 outp2

.names a0 b0 a1 b1 a2 b2 sel

100000 1

101100 1

--1000 1

----10 1

100011 1

101111 1

--1011 1

.names sel a0 b0 outp0

1-1 1

01- 1

.names sel a1 b1 outp1

1-1 1

01- 1

.names sel a2 b2 outp2

1-1 1

01- 1

.exdc

.names a0 b0 a1 b1 a2 b2 sel

000000 1

110000 1

001100 1

111100 1

000011 1

110011 1

</usr/user1/msmith/sis> sis

UC Berkeley, SIS Development Version

(compiled 11-Oct-95 at 11:50 AM)

sis> read_blif comp_mux.blif

sis> print

{outp0} = a0 sel' + b0 sel

{outp1} = a1 sel' + b1 sel

{outp2} = a2 sel' + b2 sel

sel = a0 a1 a2 b0' b1 b2

+ a0 a1 a2' b0' b1 b2'

+ a0 a1' a2 b0' b1' b2

+ a0 a1' a2' b0' b1' b2'

+ a1 a2 b1' b2

+ a1 a2' b1' b2'

+ a2 b2'

sis> source script.rugged

sis> print

{outp0} = a0 sel' + b0 sel

{outp1} = a1 sel' + b1 sel

{outp2} = a2 b2

sel = [9] a2 b0'

+ [9] b0' b2'

+ a1 a2 b1'

+ a1 b1' b2'

+ a2 b2'

[9] = a1 + b1'

sis> quit

001111 1

111111 1

.end

</usr/user1/msmith/sis>

1. See footnote 1 in Table 12.3 for explanations of the abbreviations used in this
table.

12.4 Synthesis of the Viterbi
Decoder
In this section we return to the Viterbi decoder from Chapter 11. After an initial
synthesis run that shows how logic synthesis works with a real example, we step
back and study some of the issues and problems of using HDLs for logic
synthesis.

12.4.1 ASIC I/O
Some logic synthesizers can include I/O cells automatically, but the designer may
have to use directives to designate special pads (clock buffers, for example). It
may also be necessary to use commands to set I/O cell features such as selection
of pull-up resistor, slew rate, and so on. Unfortunately there are no standards in
this area. Worse, there is currently no accepted way to set these parameters from
an HDL. Designers may also use either generic technology-independent I/O
models or instantiate I/O cells directly from an I/O cell library. Thus, for
example, in the Compass tools the statement

asPadIn #(3,"1,2,3") u0 (in0, padin0);

uses a generic I/O cell model, asPadIn . This statement will generate three input
pads (with pin numbers "1" , "2" , and "3") if in0 is a 3-bit-wide bus.

The next example illustrates the use of generic I/O cells from a
standard-component library. These components are technology independent (so
they may equally well be used with a 0.6 m m or 0.35 m m technology).

module allPads(padTri, padOut, clkOut, padBidir, padIn, padClk);

output padTri, padOut, clkOut; inout padBidir;

input [3:0] padIn; input padClk; wire [3:0] in;

//compass dontTouch u*

// asPadIn #(W, N, L, P) I (toCore, Pad) also asPadInInv

// asPadOut #(W, N, L, P) I (Pad, frCore)

// asPadTri #(W, N, S, L, P) I (Pad, frCore, OEN)

// asPadBidir #(W, N, S, L, P) I (Pad, toCore, frCore, OEN)

// asPadClk #(N, S, L) I (Clk, Pad) also asPadClkInv

// asPadVxx #(N, subnet) I (Vxx)

// W = width, integer (default=1)

// N = pin number string, e.g. "1:3,5:8"

// S = strength = {2, 4, 8, 16} in mA drive

// L = level = {cmos, ttl, schmitt} (default = cmos)

// P = pull-up resistor = {down, float, none, up}

// Vxx = {Vss, Vdd}

// subnet = connect supply to {pad, core, both}

asPadIn #(4,"1:4","","none") u1 (in, padIn);

asPadOut #(1,"5",13) u2 (padOut, d);

asPadTri #(1,"6",11) u3 (padTri, in[1], in[0]);

asPadBidir #(1,"7",2,"","") u4 (d, padBidir, in[3], in[2]);

asPadClk #(8) u5 (clk, padClk);

asPadOut #(1, "9") u6 (clkOut, clk);

asPadVdd #("10:11","pads") u7 (vddr);

asPadVss #("12,13","pads") u8 (vssr);

asPadVdd #("14","core") u9 (vddc);

asPadVss #("15","core") u10 (vssc);

asPadVdd #("16","both") u11 (vddb);

asPadVss #("17","both") u12 (vssb);

endmodule

The following code is an example of the contents of a generic model for a
three-state I/O cell (provided in a standard-component library or in an I/O cell
library):

module PadTri (Pad, I, Oen); // active-low output enable

parameter width = 1, pinNumbers = "", \strength = 1,

level = "CMOS", externalVdd = 5;

output [width-1:0] Pad; input [width-1:0] I; input Oen;

assign #1 Pad = (Oen ? {width{1'bz}} : I);

endmodule

The module PadTri can be used for simulation and as the basis for synthesizing
an I/O cell. However, the synthesizer also has to be told to synthesize an I/O cell
connected to a bonding pad and the outside world and not just an internal
three-state buffer. There is currently no standard mechanism for doing this, and
every tool and every ASIC company handles it differently.

The following model is a generic model for a bidirectional pad. We could use this
model as a basis for input-only and output-only I/O cell models.

module PadBidir (C, Pad, I, Oen); // active-low output enable

parameter width = 1, pinNumbers = "", \strength = 1,

level = "CMOS", pull = "none", externalVdd = 5;

output [width-1:0] C; inout [width-1:0] Pad;

input [width-1:0] I; input Oen;

assign #1 Pad = Oen ? {width{1'bz}} : I; assign #1 C = Pad;

endmodule

In Chapter 8 we used the halfgate example to demonstrate an FPGA design flow
�including I/O. If the synthesis tool is not capable of synthesizing I/O cells, then
we may have to instantiate them by hand; the following code is a
hand-instantiated version of lines 19 � 22 in module allPads :

pc5o05 u2_2 (.PAD(padOut), .I(d));

pc5t04r u3_2 (.PAD(padTri), .I(in[1]), .OEN(in[0]));

pc5b01r u4_3 (.PAD(padBidir), .I(in[3]), .CIN(d), .OEN(in[2]));

pc5d01r u5_in_1 (.PAD(padClk), .CIN(u5toClkBuf[0]));

The designer must find the names of the I/O cells (pc5o05 and so on), and the
names, positions, meanings, and defaults for the parameters from the cell-library
documentation.

I/O cell models allow us to simulate the behavior of the synthesized logic inside
an ASIC �all the way to the pads.� To simulate �outside the pads� at a system level,
we should use these same I/O cell models. This is important in ASIC design. For
example, the designers forgot to put pull-up resistors on the outputs of some of
the SparcStation ASICs. This was one of the very few errors in a complex
project, but an error that could have been caught if a system-level simulation had
included complete I/O cell models for the ASICs.

12.4.2 Flip-Flops
In Chapter 11 we used this D flip-flop model to simulate the Viterbi decoder:

module dff(D,Q,Clock,Reset); // N.B. reset is active-low

output Q; input D,Clock,Reset;

parameter CARDINALITY = 1; reg [CARDINALITY-1:0] Q;

wire [CARDINALITY-1:0] D;

always @(posedge Clock) if (Reset!==0) #1 Q=D;

always begin wait (Reset==0); Q=0; wait (Reset==1); end

endmodule

Most simulators cannot synthesize this model because there are two wait
statements in one always statement (line 6). We could change the code to use
flip-flops from the synthesizer standard-component library by using the following
code:

asDff ff1 (.Q(y), .D(x), .Clk(clk), .Rst(vdd));

Unfortunately we would have to change all the flip-flop models from 'dff' to
'asDff' and the code would become dependent on a particular synthesis tool.
Instead, to maintain independence from vendors, we shall use the following D
flip-flop model for synthesis and simulation:

module dff(D, Q, Clk, Rst); // new flip-flop for Viterbi decoder

parameter width = 1, reset_value = 0; input [width - 1 : 0] D;

output [width - 1 : 0] Q; reg [width - 1 : 0] Q; input Clk, Rst;

initial Q <= {width{1'bx}};

always @ (posedge Clk or negedge Rst)

if (Rst == 0) Q <= #1 reset_value; else Q <= #1 D;

endmodule

12.4.3 The Top-Level Model
The following code models the top-level Viterbi decoder and instantiates (with
instance name v_1) a copy of the Verilog module viterbi from Chapter 11. The
model uses generic input, output, power, and clock I/O cells from the
standard-component library supplied with the synthesis software. The synthesizer
will take these generic I/O cells and map them to I/O cells from a

technology-specific library. We do not need three-state I/O cells or bidirectional
I/O cells for the Viterbi ASIC.

/* This is the top-level module, viterbi_ASIC.v */

module viterbi_ASIC

(padin0, padin1, padin2, padin3, padin4, padin5, padin6, padin7,

padOut, padClk, padRes, padError);

input [2:0] padin0, padin1, padin2, padin3,

padin4, padin5, padin6, padin7;

input padRes, padClk; output padError; output [2:0] padOut;

wire Error, Clk, Res; wire [2:0] Out; // core

wire padError, padClk, padRes; wire [2:0] padOut;

wire [2:0] in0,in1,in2,in3,in4,in5,in6,in7; // core

wire [2:0]

padin0, padin1,padin2,padin3,padin4,padin5,padin6,padin7;

// Do not let the software mess with the pads.

//compass dontTouch u*

asPadIn #(3,"1,2,3") u0 (in0, padin0);

asPadIn #(3,"4,5,6") u1 (in1, padin1);

asPadIn #(3,"7,8,9") u2 (in2, padin2);

asPadIn #(3,"10,11,12") u3 (in3, padin3);

asPadIn #(3,"13,14,15") u4 (in4, padin4);

asPadIn #(3,"16,17,18") u5 (in5, padin5);

asPadIn #(3,"19,20,21") u6 (in6, padin6);

asPadIn #(3,"22,23,24") u7 (in7, padin7);

asPadVdd #("25","both") u25 (vddb);

asPadVss #("26","both") u26 (vssb);

asPadClk #("27") u27 (Clk, padClk);

asPadOut #(1,"28") u28 (padError, Error);

asPadin #(1,"29") u29 (Res, padRes);

asPadOut #(3,"30,31,32") u30 (padOut, Out);

// Here is the core module:

viterbi v_1

(in0,in1,in2,in3,in4,in5,in6,in7,Out,Clk,Res,Error);

endmodule

At this point we are ready to begin synthesis. In order to demonstrate how
synthesis works, I am cheating here. The code that was presented in Chapter 11
has already been simulated and synthesized (requiring several iterations to
produce error-free code). What I am doing is a little like the Galloping Gourmet�s
television presentation: �And then we put the soufflé in the oven . . . and look at
the soufflé that I prepared earlier.� The synthesis results for the Viterbi decoder
are shown in Table 12.6 . Normally the worst thing we can do is prepare a large
amount of code, put it in the synthesis oven, close the door, push the �synthesize
and optimize� button, and wait. Unfortunately, it is easy to do. In our case it
works (at least we may think so at this point) because this is a small ASIC by
today�s standards�only a few thousand gates. I made the bus widths small and
chose this example so that the code was of a reasonable size. Modern ASICs may
be over one million gates, hundreds of times more complicated than our Viterbi
decoder example.

TABLE 12.6 Initial synthesis results of the Viterbi decoder ASIC.

Command Synthesizer output 1 , 2

> optimize

 Num Gate Count Tot Gate Width Total

Cell Name Insts Per Cell Count Per Cell Width

--------- ----- ---------- -------- -------- --------

pc5c01 1 315.4 315.4 100.8 100.8

pc5d01r 26 315.4 8200.4 100.8 2620.8

pc5o06 4 315.4 1261.6 100.8 403.2

pv0f 1 315.4 315.4 100.8 100.8

pvdf 1 315.4 315.4 100.8 100.8

viterbi_p 1 1880.0 1880.0 18048.0 18048.0

The derived schematic for the synthesized core logic is shown in Figure 12.6 .
There are eight boxes in Figure 12.6 that represent the eight modules in the
Verilog code. The schematics for each of these eight blocks are too complex to
be useful. With practice it is possible to �see� the synthesized logic from reports
such as Table 12.6 . First we check the following cells at the top level:

FIGURE 12.6 The core logic of the Viterbi decoder ASIC. Bus names are
abbreviated in this figure for clarity. For example the label m_out0-3 denotes the
four buses: m_out0, m_out1, m_out2, and m_out3.

pc5c01 is an I/O cell that drives the clock node into the logic core. ASIC
designers also call an I/O cell a pad cell , and often refer to the pad cells
(the bonding pads and associated logic) as just �the pads .� From the library
data book we find this is a �core-driven, noninverting clock buffer capable
of driving 125 pF.� This is a large logic cell and does not have a bonding
pad, but is placed in a pad site (a slot in the ring of pads around the
perimeter of the die) as if it were an I/O cell with a bonding pad.

●

pc5d01r is a 5V CMOS input-only I/O cell with a bus repeater.
Twenty-four of these I/O cells are used for the 24 inputs (in0 to in7). Two
more are used for Res and Clk . The I/O cell for Clk receives the clock
signal from the bonding pad and drives the clock buffer cell (pc5c01).
The pc5c01 cell then buffers and drives the clock back into the core. The
power-hungry clock buffer is placed in the pad ring near the VDD and
VSS pads.

●

pc5o06 is a CMOS output-only I/O cell with 6X drive strength (6 mA AC
drive and 4 mA DC drive). There are four output pads: three pads for the
signal outputs, outp[2:0], and one pad for the output signal, error .

●

pv0f is a power pad that connects all VSS power buses on the chip.●

pvdf is a power pad that connects all VDD power buses on the chip.●

viterbi_p is the core logic. This cell takes its name from the top-level
Verilog module (viterbi). The software has appended a "_p" suffix (the
default) to prevent input files being accidentally overwritten.

●

The software does not tell us any of this directly. We learn what is going on by
looking at the names and number of the synthesized cells, reading the synthesis
tool documentation, and from experience. We shall learn more about I/O pads
and the layout of power supply buses in Chapter 16.

Next we examine the cells used in the logic core. Most synthesis tools can
produce reports, such as that shown in Table 12.7 , which lists all the synthesized
cells. The most important types of cells to check are the sequential elements:
flip-flops and latches (I have omitted all but the sequential logic cells in
Table 12.7). One of the most common mistakes in synthesis is to accidentally
leave variables unassigned in all situations in the HDL. Unassigned variables
require memory and will generate unnecessary sequential logic. In the Viterbi
decoder it is easy to identify the sequential logic cells that should be present in
the synthesized logic because we used the module dff explicitly whenever we
required a flip-flop. By scanning the code in Chapter 11 and counting the
references to the dff model, we can see that the only flip-flops that should be
inferred are the following:

24 (3 ¥ 8) D flip-flops in instance subset_decode●

132 (11 ¥ 12) D flip-flops in instance path_memory that contains 11
instances of path (12 D flip-flops in each instance of path)

●

12 D flip-flops in instance pathin●

20 (5 ¥ 4) D flip-flops in instance metric●

The total is 24 + 132 + 12 + 20 = 188 D flip-flops, which is the same as the
number of dfctnb cell instances in Table 12.7 .

TABLE 12.7 Number of synthesized flip-flops in the Viterbi ASIC.

Command Synthesizer output 3

> report area -flat

Num Gate Count Tot Gate Width Total

Cell Name Insts Per Cell Count Per Cell Width

--------- ----- ---------- -------- -------- --------

...

dfctnb 188 5.8 1081.0 55.2 10377.6

...

--------- ----- ---------- -------- -------- --------

Totals: 1383 12716.5 25485.6

Table 12.6 gives the total width of the standard cells in the logic core after logic
optimization as 18,048 m m. Since the standard-cell height for this library is 72 l
(21.6 m m), we can make a first estimate of the total logic cell area as

(18,048 m m) (21.6 m m) = 390 k(m m) 2 (12.12)

 390 k(m m) 2 mil 2

 ª ��������������

 (25.4 m m) 2

 ª 600 mil 2

In the physical layout we shall need additional space for routing. The ratio of
routing to logic cell area is called the routing factor . The routing factor depends
primarily on whether we use two levels or three levels of metal. With two levels
of metal the routing factor is typically between 1 and 2. With three levels of
metal, where we may use over-the-cell routing, the routing factor is usually zero
to 1. We thus expect a logic core area of 600�1000 mils 2 for the Viterbi decoder
using this cell library.

From Table 12.6 we see the I/O cells in this library are 100.8 m m wide or
approximately 4 mil (the width of a single pad site). From the I/O cell data book
we find the I/O cell height is 650 m m (actually 648.825 m m) or approximately
26 mil. Each I/O cell thus occupies 104 mil 2 . Our 33 pad sites will thus require
approximately 3400 mil 2 which is larger than the estimated core logic area.

Let us go back and take a closer look at what it usually takes to get to this point.
Remember we used an already prepared Verilog model for the Viterbi decoder.

1. See footnote 1 in Table 12.3 for explanations of the abbreviations used in this
table.

2. I/O cell height (I/O cells have prefixes pc5 and pv) is approximately 650 m m
in this cell library.

3. See footnote 1 in Table 12.3 for explanations of the abbreviations used in this
table. Logic cell dfctnb is a D flip-flop with clear in this standard-cell library.

12.5 Verilog and Logic
Synthesis
A top-down design approach using Verilog begins with a single module at the top
of the hierarchy to model the input and output response of the ASIC:

module MyChip_ASIC(); ... (code to model ASIC I/O) ... endmodule ;

This top-level Verilog module is used to simulate the ASIC I/O connections and
any bus I/O during the earliest stages of design. Often the reason that designs fail
is lack of attention to the connection between the ASIC and the rest of the
system.

As a designer, you proceed down through the hierarchy as you add lower-level
modules to the top-level Verilog module. Initially the lower-level modules are
just empty placeholders, or stubs , containing a minimum of code. For example,
you might start by using inverters just to connect inputs directly to the outputs.
You expand these stubs before moving down to the next level of modules.

module MyChip_ASIC()

// behavioral "always", etc. ...

SecondLevelStub1 port mapping

SecondLevelStub2 port mapping

... endmodule

module SecondLevelStub1() ... assign Output1 = ~Input1; endmodule

module SecondLevelStub2() ... assign Output2 = ~Input2;

endmodule

Eventually the Verilog modules will correspond to the various component pieces
of the ASIC.

12.5.1 Verilog Modeling
Before we could start synthesis of the Viterbi decoder we had to alter the model
for the D flip-flop. This was because the original flip-flop model contained
syntax (multiple wait statements in an always statement) that was acceptable to

the simulation tool but not by the synthesis tool. This example was artificial
because we had already prepared and tested the Verilog code so that it was
acceptable to the synthesis software (we say we created synthesizable code).
However, finding ourselves with nonsynthesizable code arises frequently in logic
synthesis. The original OVI LRM included a synthesis policy , a set of guidelines
that outline which parts of the Verilog language a synthesis tool should support
and which parts are optional. Some EDA vendors call their synthesis policy a
modeling style . There is no current standard on which parts of an HDL (either
Verilog or VHDL) a synthesis tool should support.

It is essential that the structural model created by a synthesis tool is functionally
identical , or functionally equivalent , to your behavioral model. Hopefully, we
know this is true if the synthesis tool is working properly. In this case the logic is
�correct by construction.� If you use different HDL code for simulation and for
synthesis, you have a problem. The process of formal verification can prove that
two logic descriptions (perhaps structural and behavioral HDL descriptions) are
identical in their behavior. We shall return to this issue in Chapter 13.

Next we shall examine Verilog and VHDL from the following viewpoint: �How
do I write synthesizable code?�

12.5.2 Delays in Verilog
Synthesis tools ignore delay values. They must�how can a synthesis tool
guarantee that logic will have a certain delay? For example, a synthesizer cannot
generate hardware to implement the following Verilog code:

module Step_Time(clk, phase);

input clk; output [2:0] phase; reg [2:0] phase;

always @(posedge clk) begin

phase <= 4'b0000;

phase <= #1 4'b0001; phase <= #2 4'b0010;

phase <= #3 4'b0011; phase <= #4 4'b0100;

end

endmodule

We can avoid this type of timing problem by dividing a clock as follows:

module Step_Count (clk_5x, phase);

input clk_5x; output [2:0] phase; reg [2:0] phase;

always @(posedge clk_5x)

case (phase)

0:phase = #1 1; 1:phase = #1 2; 2:phase = #1 3; 3:phase = #1 4;

default : phase = #1 0;

endcase

endmodule

12.5.3 Blocking and Nonblocking
Assignments
There are some synthesis limitations that arise from the different types of Verilog
assignment statements. Consider the following shift-register model:

module race(clk, q0); input clk, q0; reg q1, q2;

always @(posedge clk) q1 = #1 q0; always @(posedge clk) q2 = #1 q1;

endmodule

This example has a race condition (or a race) that occurs as follows. The
synthesizer ignores delays and the two always statements are procedures that
execute concurrently. So, do we update q1 first and then assign the new value of
q1 to q2 ? or do we update q2 first (with the old value of q1), and then update q1
? In real hardware two signals would be racing each other�and the winner is
unclear. We must think like the hardware to guide the synthesis tool. Combining
the assignment statements into a single always statement, as follows, is one way
to solve this problem:

module no_race_1(clk, q0, q2); input clk, q0; output q2; reg q1, q2;

always @(posedge clk) begin q2 = q1; q1 = q0; end

endmodule

Evaluation is sequential within an always statement, and the order of the
assignment statements now ensures q2 gets the old value of q1 �before we update
q1 .

We can also avoid the problem if we use nonblocking assignment statements,

module no_race_2(clk, q0, q2); input clk, q0; output q2; reg q1, q2;

always @(posedge clk) q1 <= #1 q0; always @(posedge clk) q2 <= #1 q1;

endmodule

This code updates all the registers together, at the end of a time step, so q2
always gets the old value of q1 .

12.5.4 Combinational Logic in Verilog
To model combinational logic, the sensitivity list of a Verilog always statement
must contain only signals with no edges (no reference to keywords posedge or
negedge). This is a level-sensitive sensitivity list�as in the following example that
implies a two-input AND gate:

module And_Always(x, y, z); input x,y; output z; reg z;

always @(x or y) z <= x & y; // combinational logic method 1

endmodule

Continuous assignment statements also imply combinational logic (notice that z
is now a wire rather than a reg),

module And_Assign(x, y, z); input x,y; output z; wire z;

assign z <= x & y; // combinational logic method 2 = method 1

endmodule

We may also use concatenation or bit reduction to synthesize combinational logic
functions,

module And_Or (a,b,c,z); input a,b,c; output z; reg [1:0]z;

always @(a or b or c) begin z[1]<= &{a,b,c}; z[2]<= |{a,b,c}; end

endmodule

module Parity (BusIn, outp); input [7:0] BusIn; output outp; reg outp;

always @(BusIn) if (^Busin == 0) outp = 1; else outp = 0;

endmodule

The number of inputs, the types, and the drive strengths of the synthesized
combinational logic cells will depend on the speed, area, and load requirements
that you set as constraints.

You must be careful if you reference a signal (reg or wire) in a level-sensitive
always statement and do not include that signal in the sensitivity list. In the
following example, signal b is missing from the sensitivity list, and so this code
should be flagged with a warning or an error by the synthesis tool�even though
the code is perfectly legal and acceptable to the Verilog simulator:

module And_Bad(a, b, c); input a, b; output c; reg c;

always @(a) c <= a & b; // b is missing from this sensitivity list

endmodule

It is easy to write Verilog code that will simulate, but that does not make sense to
the synthesis software. You must think like the hardware. To avoid this type of
problem with combinational logic inside an always statement you should either:

include all variables in the event expression or●

assign to the variables before you use them●

For example, consider the following two models:

module CL_good(a, b, c); input a, b; output c; reg c;

always @(a or b)

begin c = a + b; d = a & b; e = c + d; end // c, d: LHS before RHS

endmodule

module CL_bad(a, b, c); input a, b; output c; reg c;

always @(a or b)

begin e = c + d; c = a + b; d = a & b; end // c, d: RHS before LHS

endmodule

In CL_bad , the signals c and d are used on the right-hand side (RHS) of an
assignment statement before they are defined on the left-hand side (LHS) of an
assignment statement. If the logic synthesizer produces combinational logic for
CL_bad , it should warn us that the synthesized logic may not match the
simulation results.

When you are describing combinational logic you should be aware of the
complexity of logic optimization. Some combinational logic functions are too
difficult for the optimization algorithms to handle. The following module,
Achilles , and large parity functions are examples of hard-to-synthesize functions.
This is because most logic-optimization algorithms calculate the complement of
the functions at some point. The complements of certain functions grow
exponentially in the number of their product terms.

// The complement of this function is too big for synthesis.

module Achilles (out, in); output out; input [30:1] in;

assign out = in[30]&in[29]&in[28] | in[27]&in[26]&in[25]

| in[24]&in[23]&in[22] | in[21]&in[20]&in[19]

| in[18]&in[17]&in[16] | in[15]&in[14]&in[13]

| in[12]&in[11]&in[10] | in[9] & in[8]&in[7]

| in[6] & in[5]&in[4] | in[3] & in[2]&in[1];

endmodule

In a case like this you can isolate the problem function in a separate module.
Then, after synthesis, you can use directives to tell the synthesizer not to try and
optimize the problem function.

12.5.5 Multiplexers In Verilog
We imply a MUX using a case statement, as in the following example:

module Mux_21a(sel, a, b, z); input sel, a , b; output z; reg z;

always @(a or b or sel)

begin case (sel) 1'b0: z <= a; 1'b1: z <= b; end

endmodule

Be careful using 'x' in a case statement. Metalogical values (such as 'x') are not
�real� and are only valid in simulation (and they are sometimes known as simbits
for that reason). For example, a synthesizer cannot make logic to model the
following and will usually issue a warning to that effect:

module Mux_x(sel, a, b, z); input sel, a, b; output z; reg z;

always @(a or b or sel)

begin case (sel) 1'b0: z <= 0; 1'b1: z <= 1; 1'bx: z <= 'x'; end

endmodule

For the same reason you should avoid using casex and casez statements.

An if statement can also be used to imply a MUX as follows:

module Mux_21b(sel, a, b, z); input sel, a, b; output z; reg z;

always @(a or b or sel) begin if (sel) z <= a else z <= b; end

endmodule

However, if you do not always assign to an output, as in the following code, you
will get a latch:

module Mux_Latch(sel, a, b, z); input sel, a, b; output z; reg z;

always @(a or sel) begin if (sel) z <= a; end

endmodule

It is important to understand why this code implies a sequential latch and not a
combinational MUX. Think like the hardware and you will see the problem.
When sel is zero, you can pass through the always statement whenever a change

occurs on the input a without updating the value of the output z . In this situation
you need to �remember� the value of z when a changes. This implies sequential
logic using a as the latch input, sel as the active-high latch enable, and z as the
latch output.

The following code implies an 8:1 MUX with a three-state output:

module Mux_81(InBus, sel, OE, OutBit);

input [7:0] InBus; input [2:0] Sel;

input OE; output OutBit; reg OutBit;

always @(OE or sel or InBus)

begin

if (OE == 1) OutBit = InBus[sel]; else OutBit = 1'bz;

end

endmodule

When you synthesize a large MUX the required speed and area, the output load,
as well as the cells that are available in the cell library will determine whether the
synthesizer uses a large MUX cell, several smaller MUX cells, or equivalent
random logic cells. The synthesized logic may also use different logic cells
depending on whether you want the fastest path from the select input to the MUX
output or from the data inputs to the MUX output.

12.5.6 The Verilog Case Statement
Consider the following model:

module case8_oneHot(oneHot, a, b, c, z);

input a, b, c; input [2:0] oneHot; output z; reg z;

always @(oneHot or a or b or c)

begin case (oneHot) //synopsys full_case

3'b001: z <= a; 3'b010: z <= b; 3'b100: z <= c;

default: z <= 1'bx; endcase

end

endmodule

By including the default choice, the case statement is exhaustive . This means
that every possible value of the select variable (oneHot) is accounted for in the
arms of the case statement. In some synthesizers (Synopsys, for example) you

may indicate the arms are exhaustive and imply a MUX by using a compiler
directive or synthesis directive . A compiler directive is also called a
pseudocomment if it uses the comment format (such as //synopsys full_case).
The format of pseudocomments is very specific. Thus, for example, //synopys
may be recognized but // synopys (with an extra space) or //SynopSys
(uppercase) may not. The use of pseudocomments shows the problems of using
an HDL for a purpose for which it was not intended. When we start �extending�
the language we lose the advantages of a standard and sacrifice portability. A
compiler directive in module case8_oneHot is unnecessary if the default choice is
included. If you omit the default choice and you do not have the ability to use the
full_case directive (or you use a different tool), the synthesizer will infer latches
for the output z .

If the default in a case statement is 'x' (signifying a synthesis don�t care value),
this gives the synthesizer flexibility in optimizing the logic. It does not mean that
the synthesized logic output will be unknown when the default applies. The
combinational logic that results from a case statement when a don�t care ('x') is
included as a default may or may not include a MUX, depending on how the
logic is optimized.

In case8_oneHot the choices in the arms of the case statement are exhaustive and
also mutually exclusive . Consider the following alternative model:

module case8_priority(oneHot, a, b, c, z);

input a, b, c; input [2:0] oneHot; output z; reg z;

always @(oneHot or a or b or c) begin

case (1'b1) //synopsys parallel_case

oneHot[0]: z <= a;

oneHot[1]: z <= b;

oneHot[2]: z <= c;

default: z <= 1'bx; endcase

end

endmodule

In this version of the case statement the choices are not necessarily mutually
exclusive (oneHot[0] and oneHot[2] may both be equal to 1'b1 , for example).
Thus the code implies a priority encoder. This may not be what you intended.
Some logic synthesizers allow you to indicate mutually exclusive choices by
using a directive (//synopsys parallel_case , for example). It is probably wiser
not to use these �outside-the-language� directives if they can be avoided.

12.5.7 Decoders In Verilog
The following code models a 4:16 decoder with enable and three-state output:

module Decoder_4To16(enable, In_4, Out_16); // 4-to-16 decoder

input enable; input [3:0] In_4; output [15:0] Out_16;

reg [15:0] Out_16;

always @(enable or In_4)

begin Out_16 = 16'hzzzz;

if (enable == 1)

begin Out_16 = 16'h0000; Out_16[In_4] = 1; end

end

endmodule

In line 7 the binary-encoded 4-bit input sets the corresponding bit of the 16-bit
output to '1' . The synthesizer infers a three-state buffer from the assignment in
line 5 . Using the equality operator, '==' , rather than the case equality operator,
'===' , makes sense in line 6 , because the synthesizer cannot generate logic that
will check for enable being 'x' or 'z' . So, for example, do not write the following
(though some synthesis tools will still accept it):

if (enable === 1) // can't make logic to check for enable = x or z

12.5.8 Priority Encoder in Verilog
The following Verilog code models a priority encoder with three-state output:

module Pri_Encoder32 (InBus, Clk, OE, OutBus);

input [31:0]InBus; input OE, Clk; output [4:0]OutBus;

reg j; reg [4:0]OutBus;

always @(posedge Clk)

begin

if (OE == 0) OutBus = 5'bz ;

else

begin OutBus = 0;

for (j = 31; j >= 0; j = j - 1)

begin if (InBus[j] == 1) OutBus = j; end

end

end

endmodule

In lines 9 � 11 the binary-encoded output is set to the position of the
lowest-indexed '1' in the input bus. The logic synthesizer must be able to unroll
the loop in a for statement. Normally the synthesizer will check for fixed (or
static) bounds on the loop limits, as in line 9 above.

12.5.9 Arithmetic in Verilog
You need to make room for the carry bit when you add two numbers in Verilog.
You may do this using concatenation on the LHS of an assignment as follows:

module Adder_8 (A, B, Z, Cin, Cout);

input [7:0] A, B; input Cin; output [7:0] Z; output Cout;

assign {Cout, Z} = A + B + Cin;

endmodule

In the following example, the synthesizer should recognize '1' as a carry-in bit of
an adder and should synthesize one adder and not two:

module Adder_16 (A, B, Sum, Cout);

input [15:0] A, B; output [15:0] Sum; output Cout;

reg [15:0] Sum; reg Cout;

always @(A or B) {Cout, Sum} = A + B + 1;

endmodule

It is always possible to synthesize adders (and other arithmetic functions) using
random logic, but they may not be as efficient as using datapath synthesis (see
Section 12.5.12).

A logic sythesizer may infer two adders from the following description rather
than shaping a single adder.

module Add_A (sel, a, b, c, d, y);

input a, b, c, d, sel; output y; reg y;

always @(sel or a or b or c or d)

begin if (sel == 0) y <= a + b; else y <= c + d; end

endmodule

To imply the presence of a MUX before a single adder we can use temporary
variables. For example, the synthesizer should use only one adder for the
following code:

module Add_B (sel, a, b, c, d, y);

input a, b, c, d, sel; output y; reg t1, t2, y;

always @(sel or a or b or c or d) begin

if (sel == 0) begin t1 = a; t2 = b; end // Temporary

else begin t1 = c; t2 = d; end // variables.

y = t1 + t2; end

endmodule

If a synthesis tool is capable of performing resource allocation and resource
sharing in these situations, the coding style may not matter. However we may
want to use a different tool, which may not be as advanced, at a later date�so it is
better to use Add_B rather than Add_A if we wish to conserve area. This
example shows that the simplest code (Add_A) does not always result in the
simplest logic (Add_B).

Multiplication in Verilog assumes nets are unsigned numbers:

module Multiply_unsigned (A, B, Z);

input [1:0] A, B; output [3:0] Z;

assign Z <= A * B;

endmodule

To multiply signed numbers we need to extend the multiplicands with their sign
bits as follows (some simulators have trouble with the concatenation '{}'
structures, in which case we have to write them out �long hand�):

module Multiply_signed (A, B, Z);

input [1:0] A, B; output [3:0] Z;

// 00 -> 00_00 01 -> 00_01 10 -> 11_10 11 -> 11_11

assign Z = { { 2{A[1]} }, A} * { { 2{B[1]} }, B};

endmodule

How the logic synthesizer implements the multiplication depends on the

software.

12.5.10 Sequential Logic in Verilog
The following statement implies a positive-edge�triggered D flip-flop:

always @(posedge clock) Q_flipflop = D; // A flip-flop.

When you use edges (posedge or negedge) in the sensitivity list of an always
statement, you imply a clocked storage element. However, an always statement
does not have to be edge-sensitive to imply sequential logic. As another example
of sequential logic, the following statement implies a level-sensitive transparent
latch:

always @(clock or D) if (clock) Q_latch = D; // A latch.

On the negative edge of the clock the always statement is executed, but no
assignment is made to Q_latch . These last two code examples concisely illustrate
the difference between a flip-flop and a latch.

Any sequential logic cell or memory element must be initialized. Although you
could use an initial statement to simulate power-up, generating logic to mimic an
initial statement is hard. Instead use a reset as follows:

always @(posedge clock or negedge reset)

A problem now arises. When we use two edges, the synthesizer must infer which
edge is the clock, and which is the reset. Synthesis tools cannot read any
significance into the names we have chosen. For example, we could have written

always @(posedge day or negedge year)

�but which is the clock and which is the reset in this case?

For most synthesis tools you must solve this problem by writing HDL code in a
certain format or pattern so that the logic synthesizer may correctly infer the
clock and reset signals. The following examples show one possible pattern or
template . These templates and their use are usually described in a synthesis style
guide that is part of the synthesis software documentation.

always @(posedge clk or negedge reset) begin // template for reset:

if (reset == 0) Q = 0; // initialize,

else Q = D; // normal clocking

end

module Counter_With_Reset (count, clock, reset);

input clock, reset; output count; reg [7:0] count;

always @ (posedge clock or negedge reset)

if (reset == 0) count = 0; else count = count + 1;

endmodule

module DFF_MasterSlave (D, clock, reset, Q); // D type flip-flop

input D, clock, reset; output Q; reg Q, latch;

always @(posedge clock or posedge reset)

if (reset == 1) latch = 0; else latch = D; // the master.

always @(latch) Q = latch; // the slave.

endmodule

The synthesis tool can now infer that, in these templates, the signal that is tested
in the if statement is the reset, and that the other signal must therefore be the
clock.

12.5.11 Component Instantiation in
Verilog
When we give an HDL description to a synthesis tool, it will synthesize a netlist
that contains generic logic gates. By generic we mean the logic is
technology-independent (it could be CMOS standard cell, FPGA, TTL, GaAs, or
something else�we have not decided yet). Only after logic optimization and
mapping to a specific ASIC cell library do the speed or area constraints
determine the cell choices from a cell library: NAND gates, OAI gates, and so
on.

The only way to ensure that the synthesizer uses a particular cell, 'special' for
example, from a specific library is to write structural Verilog and instantiate the
cell, 'special' , in the Verilog. We call this hand instantiation . We must then
decide whether to allow logic optimization to replace or change 'special' . If we
insist on using logic cell 'special' and do not want it changed, we flag the cell
with a synthesizer command. Most logic synthesizers currently use a
pseudocomment statement or set an attribute to do this.

For example, we might include the following statement to tell the Compass
synthesizer��Do not change cell instance my_inv_8x .� This is not a standard
construct, and it is not portable from tool to tool either.

//Compass dontTouch my_inv_8x or // synopsys dont_touch

INVD8 my_inv_8x(.I(a), .ZN(b));

(some compiler directives are trademarks). Notice, in this example, instantiation

involves declaring the instance name and defining a structural port mapping.

There is no standard name for technology-independent models or components�we
shall call them soft models or standard components . We can use the standard
components for synthesis or for behavioral Verilog simulation. Here is an
example of using standard components for flip-flops (remember there are no
primitive Verilog flip-flop models�only primitives for the elementary logic cells):

module Count4(clk, reset, Q0, Q1, Q2, Q3);

input clk, reset; output Q0, Q1, Q2, Q3; wire Q0, Q1, Q2, Q3;

// Q , D , clk, reset

asDff dff0(Q0, ~Q0, clk, reset); // The asDff is a

asDff dff1(Q1, ~Q1, Q0, reset); // standard component,

asDff dff2(Q2, ~Q2, Q1, reset); // unique to one set of tools.

asDff dff3(Q3, ~Q3, Q2, reset);

endmodule

The asDff and other standard components are provided with the synthesis tool.
The standard components have specific names and interfaces that are part of the
software documentation. When we use a standard component such as asDff we
are saying: �I want a D flip-flop, but I do not know which ASIC technology I
want to use�give me a generic version. I do not want to write a Verilog model for
the D flip-flop myself because I do not want to bother to synthesize each and
every instance of a flip-flop. When the time comes, just map this generic flip-flop
to whatever is available in the technology-dependent (vendor-specific) library.�

If we try and simulate Count4 we will get an error,

:Count4.v: L5: error: Module 'asDff' not defined

(and three more like this) because asDff is not a primitive Verilog model. The
synthesis tool should provide us with a model for the standard component. For
example, the following code models the behavior of the standard component,
asDff :

module asDff (D, Q, Clk, Rst);

parameter width = 1, reset_value = 0;

input [width-1:0] D; output [width-1:0] Q; reg [width-1:0] Q;

input Clk,Rst; initial Q = {width{1'bx}};

always @ (posedge Clk or negedge Rst)

if (Rst==0) Q <= #1 reset_value; else Q <= #1 D;

endmodule

When the synthesizer compiles the HDL code in Count4 , it does not parse the
asDff model. The software recognizes asDff and says �I see you want a flip-flop.�
The first steps that the synthesis software and the simulation software take are
often referred to as compilation, but the two steps are different for each of these
tools.

Synopsys has an extensive set of libraries, called DesignWare , that contains
standard components not only for flip-flops but for arithmetic and other complex
logic elements. These standard components are kept protected from optimization
until it is time to map to a vendor technology. ASIC or EDA companies that
produce design software and cell libraries can tune the synthesizer to the silicon
and achieve a more efficient mapping. Even though we call them standard
components, there are no standards that cover their names, use, interfaces, or
models.

12.5.12 Datapath Synthesis in Verilog
Datapath synthesis is used for bus-wide arithmetic and other bus-wide operations.
For example, synthesis of a 32-bit multiplier in random logic is much less
efficient than using datapath synthesis. There are several approaches to datapath
synthesis:

Synopsys VHDL DesignWare. This models generic arithmetic and other
large functions (counters, shift registers, and so on) using standard
components. We can either let the synthesis tool map operators (such as '+'
) to VHDL DesignWare components, or we can hand instantiate them in
the code. Many ASIC vendors support the DesignWare libraries. Thus, for
example, we can instantiate a DesignWare counter in VHDL and map that
to a cell predesigned and preoptimized by Actel for an Actel FPGA.

●

Compiler directives. This approach uses synthesis directives in the code to
steer the mapping of datapath operators either to specific components (a
two-port RAM or a register file, for example) or flags certain operators to
be implemented using a certain style ('+' to be implemented using a
ripple-carry adder or a carry-lookahead adder, for example).

●

X-BLOX is a system from Xilinx that allows us to keep the logic of certain
functions (counters, arithmetic elements) together. This is so that the
layout tool does not splatter the synthesized CLBs all over your FPGA,
reducing the performance of the logic.

●

LPM (library of parameterized modules) and RPM (relationally placed
modules) are other techniques used principally by FPGA companies to
keep logic that operates on related data close together. This approach is
based on the use of the EDIF language to describe the modules.

●

In all cases the disadvantage is that the code becomes specific to a certain piece

of software. Here are two examples of datapath synthesis directives:

module DP_csum(A1,B1,Z1); input [3:0] A1,B1; output Z1; reg [3:0] Z1;

always @(A1 or B1) Z1 <= A1 + B1;//Compass adder_arch cond_sum_add

endmodule

module DP_ripp(A2,B2,Z2); input [3:0] A2,B2; output Z2; reg [3:0] Z2;

always @(A2 or B2) Z2 <= A2 + B2;//Compass adder_arch ripple_add

endmodule

These directives steer the synthesis of a conditional-sum adder (usually the
fastest adder implementation) or a ripple-carry adder (small but slow).

There are some limitations to datapath synthesis. Sometimes, complex operations
are not synthesized as we might expect. For example, a datapath library may
contain a subtracter that has a carry input; however, the following code may
synthesize to random logic, because the synthesizer may not be able to infer that
the signal CarryIn is a subtracter carry:

module DP_sub_A(A,B,OutBus,CarryIn);

input [3:0] A, B ; input CarryIn ;

output OutBus ; reg [3:0] OutBus ;

always @(A or B or CarryIn) OutBus <= A - B - CarryIn ;

endmodule

If we rewrite the code and subtract the carry as a constant, the synthesizer can
more easily infer that it should use the carry-in of a datapath subtracter:

module DP_sub_B (A, B, CarryIn, Z) ;

input [3:0] A, B, CarryIn ; output [3:0] Z; reg [3:0] Z;

always @(A or B or CarryIn) begin

case (CarryIn)

1'b1 : Z <= A - B - 1'b1;

default : Z <= A - B - 1'b0; endcase

end

endmodule

This is another example of thinking like the hardware in order to help the
synthesis tool infer what we are trying to imply.

12.6 VHDL and Logic Synthesis
Most logic synthesizers insist we follow a set of rules when we use a logic
system to ensure that what we synthesize matches the behavioral description.
Here is a typical set of rules for use with the IEEE VHDL nine-value system:

You can use logic values corresponding to states '1' , 'H' , '0' , and 'L' in any
manner.

●

Some synthesis tools do not accept the uninitialized logic state 'U' .●

You can use logic states 'Z' , 'X' , 'W' , and '-' in signal and variable
assignments in any manner. 'Z' is synthesized to three-state logic.

●

The states 'X' , 'W' , and '-' are treated as unknown or don�t care values.●

The values 'Z' , 'X' , 'W' , and '-' may be used in conditional clauses such as the
comparison in an if or case statement. However, some synthesis tools will ignore
them and only match surrounding '1' and '0' bits. Consequently, a synthesized
design may behave differently from the simulation if a stimulus uses 'Z' , 'X' , 'W'
or '-' . The IEEE synthesis packages provide the STD_MATCH function for
comparisons.

12.6.1 Initialization and Reset
You can use a VHDL process with a sensitivity list to synthesize clocked logic
with a reset, as in the following code:

process (signal_1, signal_2) begin

if (signal_2'EVENT and signal_2 = '0')

then -- Insert initialization and reset statements.

elsif (signal_1'EVENT and signal_1 = '1')

then -- Insert clocking statements.

end if ;

end process ;

Using a specific pattern the synthesizer can infer that you are implying a
positive-edge clock (signal_1) and a negative-edge reset (signal_2). In order to
be able to recognize sequential logic in this way, most synthesizers restrict you to
using a maximum of two edges in a sensitivity list.

12.6.2 Combinational Logic Synthesis in
VHDL
In VHDL a level-sensitive process is a process statement that has a sensitivity list
with signals that are not tested for event attributes ('EVENT or 'STABLE , for
example) within the process . To synthesize combinational logic we use a VHDL
level-sensitive process or a concurrent assignment statement. Some synthesizers
do not allow reference to a signal inside a level-sensitive process unless that
signal is in the sensitivity list. In this example, signal b is missing from the
sensitivity list:

entity And_Bad is port (a, b: in BIT; c: out BIT); end And_Bad;

architecture Synthesis_Bad of And_Bad is

begin process (a) -- this should be process (a, b)

begin c <= a and b;

end process ;

end Synthesis_Bad;

This situation is similar but not exactly the same as omitting a variable from an
event control in a Verilog always statement. Some logic synthesizers accept the
VHDL version of And_Bad but not the Verilog version or vice versa. To ensure
that the VHDL simulation will match the behavior of the synthesized logic, the
logic synthesizer usually checks the sensitivity list of a level-sensitive process
and issues a warning if signals seem to be missing.

12.6.3 Multiplexers in VHDL
Multiplexers can be synthesized using a case statement (avoiding the VHDL
reserved word 'select'), as the following example illustrates:

entity Mux4 is port

(i: BIT_VECTOR(3 downto 0); sel: BIT_VECTOR(1 downto 0); s: out BIT);

end Mux4;

architecture Synthesis_1 of Mux4 is

begin process (sel, i) begin

case sel is

when "00" => s <= i(0); when "01" => s <= i(1);

when "10" => s <= i(2); when "11" => s <= i(3);

end case ;

end process ;

end Synthesis_1;

The following code, using a concurrent signal assignment is equivalent:

architecture Synthesis_2 of Mux4 is

begin with sel select s <=

i(0) when "00", i(1) when "01", i(2) when "10", i(3) when "11";

end Synthesis_2;

In VHDL the case statement must be exhaustive in either form, so there is no
question of any priority in the choices as there may be in Verilog.

For larger MUXes we can use an array, as in the following example:

library IEEE; use ieee.std_logic_1164. all ;

entity Mux8 is port

(InBus : in STD_LOGIC_VECTOR(7 downto 0);

Sel : in INTEGER range 0 to 7;

OutBit : out STD_LOGIC);

end Mux8;

architecture Synthesis_1 of Mux8 is

begin process (InBus, Sel)

begin OutBit <= InBus(Sel);

end process ;

end Synthesis_1;

Most synthesis tools can infer that, in this case, Sel requires three bits. If not, you
have to declare the signal as a STD_LOGIC_VECTOR ,

Sel : in STD_LOGIC_VECTOR(2 downto 0);

and use a conversion routine from the STD_NUMERIC package like this:

OutBit <= InBus(TO_INTEGER (UNSIGNED (Sel))) ;

At some point you have to convert from an INTEGER to BIT logic anyway,

since you cannot connect an INTEGER to the input of a chip! The VHDL case ,
if , and select statements produce similar results. Assigning don�t care bits ('x')
in these statements will make it easier for the synthesizer to optimize the logic.

12.6.4 Decoders in VHDL
The following code implies a decoder:

library IEEE;

use IEEE.STD_LOGIC_1164. all ; use IEEE.NUMERIC_STD. all ;

entity Decoder is port (enable : in BIT;

Din: STD_LOGIC_VECTOR (2 downto 0);

Dout: out STD_LOGIC_VECTOR (7 downto 0));

end Decoder;

architecture Synthesis_1 of Decoder is

begin

with enable select Dout <=

STD_LOGIC_VECTOR

(UNSIGNED'

(shift_left

("00000001", TO_INTEGER (UNSIGNED(Din))

)

)

)

when '1',

"11111111" when '0', "00000000" when others ;

end Synthesis_1;

There are reasons for this seemingly complex code:

Line 1 declares the IEEE library. The synthesizer does not parse the VHDL
code inside the library packages, but the synthesis company should be able
to guarantee that the logic will behave exactly the same way as a
simulation that uses the IEEE libraries and does parse the code.

●

Line 2 declares the STD_LOGIC_1164 package, for STD_LOGIC types,●

and the NUMERIC_STD package for conversion and shift functions. The
shift operators (sll and so on�the infix operators) were introduced in
VHDL-93, they are not defined for STD_LOGIC types in the 1164
standard. The shift functions defined in NUMERIC_STD are not operators
and are called shift_left and so on. Some synthesis tools support
NUMERIC_STD , but not VHDL-93.

Line 10 performs a type conversion to STD_LOGIC_VECTOR from
UNSIGNED .

●

Line 11 is a type qualification to tell the software that the argument to the
type conversion function is type UNSIGNED .

●

Line 12 is the shift function, shift_left , from the NUMERIC_STD
package.

●

Line 13 converts the STD_LOGIC_VECTOR , Din , to UNSIGNED
before converting to INTEGER . We cannot convert directly from
STD_LOGIC_VECTOR to INTEGER .

●

The others clause in line 18 is required by the logic synthesizer even
though type BIT may only be '0' or '1' .

●

If we model a decoder using a process, we can use a case statement inside the
process. A MUX model may be used as a decoder if the input bits are set at '1'
(active-high decoder) or at '0' (active-low decoder), as in the following example:

library IEEE;

use IEEE.NUMERIC_STD. all ; use IEEE.STD_LOGIC_1164. all ;

entity Concurrent_Decoder is port (

enable : in BIT;

Din : in STD_LOGIC_VECTOR (2 downto 0);

Dout : out STD_LOGIC_VECTOR (7 downto 0));

end Concurrent_Decoder;

architecture Synthesis_1 of Concurrent_Decoder is

begin process (Din, enable)

variable T : STD_LOGIC_VECTOR(7 downto 0);

begin

if (enable = '1') then

T := "00000000"; T(TO_INTEGER (UNSIGNED(Din))) := '1';

Dout <= T ;

else Dout <= (others => 'Z');

end if ;

end process ;

end Synthesis_1;

Notice that T must be a variable for proper timing of the update to the output.
The else clause in the if statement is necessary to avoid inferring latches.

12.6.5 Adders in VHDL
To add two n -bit numbers and keep the overflow bit, we need to assign to a
signal with more bits, as follows:

library IEEE;

use IEEE.NUMERIC_STD. all ; use IEEE.STD_LOGIC_1164. all ;

entity Adder_1 is

port (A, B: in UNSIGNED(3 downto 0); C: out UNSIGNED(4 downto 0));

end Adder_1;

architecture Synthesis_1 of Adder_1 is

begin C <= ('0' & A) + ('0' & B);

end Synthesis_1;

Notice that both A and B have to be SIGNED or UNSIGNED as we cannot add
STD_LOGIC_VECTOR types directly using the IEEE packages. You will get an
error if a result is a different length from the target of an assignment, as in the
following example (in which the arguments are not resized):

adder_1: begin C <= A + B;

Error : Width mis-match: right expression is 4 bits wide, c is 5 bits wide

The following code may generate three adders stacked three deep:

z <= a + b + c + d;

Depending on how the expression is parsed, the first adder may perform x = a + b
, a second adder y = x + c , and a third adder z = y + d . The following code
should generate faster logic with three adders stacked only two deep:

z <= (a + b) + (c + d);

12.6.6 Sequential Logic in VHDL
Sensitivity to an edge implies sequential logic in VHDL. A synthesis tool can
locate edges in VHDL by finding a process statement that has either:

no sensitivity list with a wait until statement●

a sensitivity list and test for 'EVENT plus a specific level●

Any signal assigned in an edge-sensitive process statement should also be reset
�but be careful to distinguish between asynchronous and synchronous resets. The
following example illustrates these points:

library IEEE; use IEEE.STD_LOGIC_1164. all ; entity DFF_With_Reset is

port (D, Clk, Reset : in STD_LOGIC; Q : out STD_LOGIC);

end DFF_With_Reset;

architecture Synthesis_1 of DFF_With_Reset is

begin process (Clk, Reset) begin

if (Reset = '0') then Q <= '0'; -- asynchronous reset

elsif rising_edge(Clk) then Q <= D;

end if ;

end process ;

end Synthesis_1;

architecture Synthesis_2 of DFF_With_Reset is

begin process begin

wait until rising_edge(Clk);

-- This reset is gated with the clock and is synchronous:

if (Reset = '0') then Q <= '0'; else Q <= D; end if ;

end process ;

end Synthesis_2;

Sequential logic results when we have to �remember� something between
successive executions of a process statement. This occurs when a process
statement contains one or more of the following situations:

A signal is read but is not in the sensitivity list of a process statement.●

A signal or variable is read before it is updated.●

A signal is not always updated.●

There are multiple wait statements.●

Not all of the models that we could write using the above constructs will be
synthesizable. Any models that do use one or more of these constructs and that
are synthesizable will result in sequential logic.

12.6.7 Instantiation in VHDL
The easiest way to find out how to hand instantiate a component is to generate a
structural netlist from a simple HDL input�for example, the following Verilog
behavioral description (VHDL could have been used, but the Verilog is shorter):

`timescale 1ns/1ns

module halfgate (myInput, myOutput);

input myInput; output myOutput; wire myOutput;

assign myOutput = ~myInput;

endmodule

We synthesize this module and generate the following VHDL structural netlist:

library IEEE; use IEEE.STD_LOGIC_1164. all ;

library COMPASS_LIB; use COMPASS_LIB.COMPASS. all ;

--compass compile_off -- synopsys etc.

use COMPASS_LIB.COMPASS_ETC. all ;

--compass compile_on -- synopsys etc.

entity halfgate_u is

--compass compile_off -- synopsys etc.

generic (

myOutput_cap : Real := 0.01;

INSTANCE_NAME : string := "halfgate_u");

--compass compile_on -- synopsys etc.

port (myInput : in Std_Logic := 'U';

myOutput : out Std_Logic := 'U');

end halfgate_u;

architecture halfgate_u of halfgate_u is

component in01d0

port (I : in Std_Logic; ZN : out Std_Logic); end component ;

begin

u2: in01d0 port map (I => myInput, ZN => myOutput);

end halfgate_u;

--compass compile_off -- synopsys etc.

library cb60hd230d;

configuration halfgate_u_CON of halfgate_u is

for halfgate_u

for u2 : in01d0 use configuration cb60hd230d.in01d0_CON

generic map (

ZN_cap => 0.0100 + myOutput_cap,

INSTANCE_NAME => INSTANCE_NAME&"/u2")

port map (I => I, ZN => ZN);

end for ;

end for ;

end halfgate_u_CON;

--compass compile_on -- synopsys etc.

This gives a template to follow when hand instantiating logic cells. Instantiating a
standard component requires the name of the component and its parameters:

component ASDFF

generic (WIDTH : POSITIVE := 1;

RESET_VALUE : STD_LOGIC_VECTOR := "0");

port (Q : out STD_LOGIC_VECTOR (WIDTH-1 downto 0);

D : in STD_LOGIC_VECTOR (WIDTH-1 downto 0);

CLK : in STD_LOGIC;

RST : in STD_LOGIC);

end component ;

Now you have enough information to be able to instantiate both logic cells from a

cell library and standard components. The following model illustrates
instantiation:

library IEEE, COMPASS_LIB;

use IEEE.STD_LOGIC_1164. all ; use COMPASS_LIB.STDCOMP. all ;

entity Ripple_4 is

port (Trig, Reset: STD_LOGIC; QN0_5x: out STD_LOGIC;

Q : inout STD_LOGIC_VECTOR(0 to 3));

end Ripple_4;

architecture structure of Ripple_4 is

signal QN : STD_LOGIC_VECTOR(0 to 3);

component in01d1

port (I : in Std_Logic; ZN : out Std_Logic); end component ;

component in01d5

port (I : in Std_Logic; ZN : out Std_Logic); end component ;

begin

--compass dontTouch inv5x -- synopsys dont_touch etc.

-- Named association for hand-instantiated library cells:

inv5x: IN01D5 port map (I=>Q(0), ZN=>QN0_5x);

inv0 : IN01D1 port map (I=>Q(0), ZN=>QN(0));

inv1 : IN01D1 port map (I=>Q(1), ZN=>QN(1));

inv2 : IN01D1 port map (I=>Q(2), ZN=>QN(2));

inv3 : IN01D1 port map (I=>Q(3), ZN=>QN(3));

-- Positional association for standard components:

-- Q D Clk Rst

d0: asDFF port map (Q (0 to 0), QN(0 to 0), Trig, Reset);

d1: asDFF port map (Q (1 to 1), QN(1 to 1), Q(0), Reset);

d2: asDFF port map (Q (2 to 2), QN(2 to 2), Q(1), Reset);

d3: asDFF port map (Q (3 to 3), QN(3 to 3), Q(2), Reset);

end structure;

Lines 5 and 8 . Type STD_LOGIC_VECTOR must be used for standard
component ports, because the standard components are defined using this
type.

●

Line 5 . Mode inout has to be used for Q since it has to be read/write and
this is a structural model. You cannot use mode buffer since the formal
outputs of the standard components are declared to be of mode out .

●

Line 14 . This synthesis directive prevents the synthesis tool from
removing the 5X drive strength inverter inv5x . This statement ties the
code to a particular synthesis tool.

●

Lines 16 � 20 . Named association for the hand-instantiated library cells.
The names (IN01D5 and IN01D1) and port names (I and ZN) come
from the cell library data book or from a template (such as the one created
for the IN01D1 logic cell). These statements tie the code to a particular cell
library.

●

Lines 23 � 26 . Positional port mapping of the standard components. The
port locations are from the synthesis standard component library
documentation. These asDFF standard components will be mapped to D
flip-flop library cells. These statements tie the code to a particular
synthesis tool.

●

You would receive the following warning from the logic synthesizer when it
synthesizes this input code (entity Ripple_4):

Warning : Net has more than one driver: d3_Q[0]; connected to: ripple_4_p.q[3],
inv3.I, d3.Q

There is potentially more than one driver on a net because Q was declared as
inout . There are a total of four warnings of this type for each of the flip-flop
outputs. You can check the output netlist to make sure that you have the logic
you expected as follows (the Verilog netlist is shorter and easier to read):

`timescale 1ns / 10ps

module ripple_4_u (trig, reset, qn0_5x, q);

input trig; input reset; output qn0_5x; inout [3:0] q;

wire [3:0] qn; supply1 VDD; supply0 VSS;

in01d5 inv5x (.I(q[0]),.ZN(qn0_5x));

in01d1 inv0 (.I(q[0]),.ZN(qn[0]));

in01d1 inv1 (.I(q[1]),.ZN(qn[1]));

in01d1 inv2 (.I(q[2]),.ZN(qn[2]));

in01d1 inv3 (.I(q[3]),.ZN(qn[3]));

dfctnb d0(.D(qn[0]),.CP(trig),.CDN(reset),.Q(q[0]),.QN(\d0.QN));

dfctnb d1(.D(qn[1]),.CP(q[0]),.CDN(reset),.Q(q[1]),.QN(\d1.QN));

dfctnb d2(.D(qn[2]),.CP(q[1]),.CDN(reset),.Q(q[2]),.QN(\d2.QN));

dfctnb d3(.D(qn[3]),.CP(q[2]),.CDN(reset),.Q(q[3]),.QN(\d3.QN));

endmodule

12.6.8 Shift Registers and Clocking in
VHDL
The following code implies a serial-in/parallel-out (SIPO) shift register:

library IEEE;

use IEEE.STD_LOGIC_1164. all ; use IEEE.NUMERIC_STD. all ;

entity SIPO_1 is port (

Clk : in STD_LOGIC;

SI : in STD_LOGIC; -- serial in

PO : buffer STD_LOGIC_VECTOR(3 downto 0)); -- parallel out

end SIPO_1;

architecture Synthesis_1 of SIPO_1 is

begin process (Clk) begin

if (Clk = '1') then PO <= SI & PO(3 downto 1); end if ;

end process ;

end Synthesis_1;

Here is the Verilog structural netlist that results (dfntnb is a positive-edge
�triggered D flip-flop without clear or reset):

module sipo_1_u (clk, si, po);

input clk; input si; output [3:0] po;

supply1 VDD; supply0 VSS;

dfntnb po_ff_b0 (.D(po[1]),.CP(clk),.Q(po[0]),.QN(\po_ff_b0.QN));

dfntnb po_ff_b1 (.D(po[2]),.CP(clk),.Q(po[1]),.QN(\po_ff_b1.QN));

dfntnb po_ff_b2 (.D(po[3]),.CP(clk),.Q(po[2]),.QN(\po_ff_b2.QN));

dfntnb po_ff_b3 (.D(si),.CP(clk),.Q(po[3]),.QN(\po_ff_b3.QN));

endmodule

The synthesized design consists of four flip-flops. Notice that (line 6 in the
VHDL input) signal PO is of mode buffer because we cannot read a signal of
mode out inside a process. This is acceptable for synthesis but not usually a good
idea for simulation models. We can modify the code to eliminate the buffer port
and at the same time we shall include a reset signal, as follows:

library IEEE;

use IEEE.STD_LOGIC_1164. all ; use IEEE.NUMERIC_STD. all ;

entity SIPO_R is port (

clk : in STD_LOGIC ; res : in STD_LOGIC ;

SI : in STD_LOGIC ; PO : out STD_LOGIC_VECTOR(3 downto 0));

end ;

architecture Synthesis_1 of SIPO_R is

signal PO_t : STD_LOGIC_VECTOR(3 downto 0);

begin

process (PO_t) begin PO <= PO_t; end process ;

process (clk, res) begin

if (res = '0') then PO_t <= (others => '0');

elsif (rising_edge(clk)) then PO_t <= SI & PO_t(3 downto 1);

end if ;

end process ;

end Synthesis_1;

Notice the following:

Line 10 uses a temporary signal, PO_t , to avoid using a port of mode
buffer for the output signal PO . We could have used a variable instead of a
signal and the variable would consume less overhead during simulation.
However, we must complete an assignment to a variable inside the clocked
process (not in a separate process as we can for the signal). Assignment
between a variable and a signal inside a single process creates its own set
of problems.

●

Line 11 is sensitive to the clock, clk , and the reset, res . It is not sensitive
to PO_t or SI and this is what indicates the sequential logic.

●

Line 13 uses the rising_edge function from the STD_LOGIC_1164
package.

●

The software synthesizes four positive-edge�triggered D flip-flops for design
entity SIPO_R(Synthesis_1) as it did for design entity SIPO_1(Synthesis_1) .
The difference is that the synthesized flip-flops in SIPO_R have active-low
resets. However, the simulation behavior of these two design entities will be
different. In SIPO_R , the function rising_edge only evaluates to TRUE for a
transition from '0' or 'L' to '1' or 'H' . In SIPO_1 we only tested for Clk = '1' .
Since nearly all synthesis tools now accept rising_edge and falling_edge , it is
probably wiser to use these functions consistently.

12.6.9 Adders and Arithmetic Functions
If you wish to perform BIT_VECTOR or STD_LOGIC_VECTOR arithmetic you
have three choices:

Use a vendor-supplied package (there are no standard vendor packages
�even if a company puts its own package in the IEEE library).

●

Convert to SIGNED (or UNSIGNED) and use the IEEE standard
synthesis packages (IEEE Std 1076.3-1997).

●

Use overloaded functions in packages or functions that you define
yourself.

●

Here is an example of addition using a ripple-carry architecture:

library IEEE;

use IEEE.STD_LOGIC_1164. all ; use IEEE.NUMERIC_STD. all ;

entity Adder4 is port (

in1, in2 : in BIT_VECTOR(3 downto 0) ;

mySum : out BIT_VECTOR(3 downto 0)) ;

end Adder4;

architecture Behave_A of Adder4 is

function DIY(L,R: BIT_VECTOR(3 downto 0)) return BIT_VECTOR is

variable sum:BIT_VECTOR(3 downto 0); variable lt,rt,st,cry: BIT;

begin cry := '0';

for i in L'REVERSE_RANGE loop

lt := L(i); rt := R(i); st := lt xor rt;

sum(i):= st xor cry; cry:= (lt and rt) or (st and cry);

end loop ;

return sum;

end ;

begin mySum <= DIY (in1, in2); -- do it yourself (DIY) add

end Behave_A;

This model results in random logic.

An alternative is to use UNSIGNED or UNSIGNED from the IEEE
NUMERIC_STD or NUMERIC_BIT packages as in the following example:

library IEEE;

use IEEE.STD_LOGIC_1164. all ; use IEEE.NUMERIC_STD. all ;

entity Adder4 is port (

in1, in2 : in UNSIGNED(3 downto 0) ;

mySum : out UNSIGNED(3 downto 0)) ;

end Adder4;

architecture Behave_B of Adder4 is

begin mySum <= in1 + in2; -- This uses an overloaded '+'.

end Behave_B;

In this case, the synthesized logic will depend on the logic synthesizer.

12.6.10 Adder/Subtracter and Don�t
Cares
The following code models a 16-bit sequential adder and subtracter. The input
signal, xin , is added to output signal, result , when signal addsub is high;
otherwise result is subtracted from xin . The internal signal addout temporarily
stores the result until the next rising edge of the clock:

library IEEE;

use IEEE.STD_LOGIC_1164. all ; use IEEE.NUMERIC_STD. all ;

entity Adder_Subtracter is port (

xin : in UNSIGNED(15 downto 0);

clk, addsub, clr: in STD_LOGIC;

result : out UNSIGNED(15 downto 0));

end Adder_Subtracter;

architecture Behave_A of Adder_Subtracter is

signal addout, result_t: UNSIGNED(15 downto 0);

begin

result <= result_t;

with addsub select

addout <= (xin + result_t) when '1',

(xin - result_t) when '0',

(others => '-') when others ;

process (clr, clk) begin

if (clr = '0') then result_t <= (others => '0');

elsif rising_edge(clk) then result_t <= addout;

end if ;

end process ;

end Behave_A;

Notice the following:

Line 11 is a concurrent assignment to avoid using a port of mode buffer .●

Lines 12 � 15 define an exhaustive list of choices for the selected signal
assignment statement. The default choice sets the result to '-' (don�t care) to
allow the synthesizer to optimize the logic.

●

Line 18 includes a reference to signal addout that could be eliminated by moving
the selected signal assignment statement inside the clocked process as follows:

architecture Behave_B of Adder_Subtracter is

signal result_t: UNSIGNED(15 downto 0);

begin

result <= result_t;

process (clr, clk) begin

if (clr = '0') then result_t <= (others => '0');

elsif rising_edge(clk) then

case addsub is

when '1' => result_t <= (xin + result_t);

when '0' => result_t <= (xin - result_t);

when others => result_t <= (others => '-');

end case ;

end if ;

end process ;

end Behave_B;

This code is simpler than architecture Behave_A , but the synthesized logic
should be identical for both architectures. Since the logic that results is an
adder/subtracter followed by a register (bank of flip-flops) the Behave_A model
more clearly reflects the hardware.

12.7 Finite-State Machine
Synthesis
There are three ways to synthesize a finite-state machine (FSM):

Omit any special synthesis directives and let the logic synthesizer operate
on the state machine as though it were random logic. This will prevent any
reassignment of states or state machine optimization. It is the easiest
method and independent of any particular synthesis tool, but is the most
inefficient approach in terms of area and performance.

1.

Use directives to guide the logic synthesis tool to improve or modify state
assignment. This approach is dependent on the software that you use.

2.

Use a special state-machine compiler, separate from the logic synthesizer,
to optimize the state machine. You then merge the resulting state machine
with the rest of your logic. This method leads to the best results but is
harder to use and ties your code to a particular set of software tools, not
just the logic synthesizer.

3.

Most synthesis tools require that you write a state machine using a certain style�a
special format or template. Synthesis tools may also require that you declare an
FSM, the encoding, and the state register using a synthesis directive or special
software command. Common FSM encoding options are:

Adjacent encoding assigns states by the minimum logic difference in the
state transition graph. This normally reduces the amount of logic needed to
decode each state. The minimum number of bits in the state register for an
FSM with n states is log 2 n . In some tools you may increase the state
register width up to n to generate encoding based on Gray codes.

●

One-hot encoding sets one bit in the state register for each state. This
technique seems wasteful. For example, an FSM with 16 states requires 16
flip-flops for one-hot encoding but only four if you use a binary encoding.
However, one-hot encoding simplifies the logic and also the interconnect
between the logic. One-hot encoding often results in smaller and faster
FSMs. This is especially true in programmable ASICs with large amounts
of sequential logic relative to combinational logic resources.

●

Random encoding assigns a random code for each state.●

User-specified encoding keeps the explicit state assignment from the HDL.●

Moore encoding is useful for FSMs that require fast outputs. A Moore state
machine has outputs that depend only on the current state (Mealy state

●

machine outputs depend on the current state and the inputs).

You need to consider how the reset of the state register will be handled in the
synthesized hardware. In a programmable ASIC there are often limitations on the
polarity of the flip-flop resets. For example, in some FPGAs all flip-flop resets
must all be of the same polarity (and this restriction may or may not be present or
different for the internal flip-flops and the flip-flops in the I/O cells). Thus, for
example, if you try to assign the reset state as '0101' , it may not be possible to set
two flip-flops to '0' and two flip-flops to '1' at the same time in an FPGA. This
may be handled by assigning the reset state, resSt , to '0000' or '1111' and
inverting the appropriate two bits of the state register wherever they are used.

You also need to consider the initial value of the state register in the synthesized
hardware. In some reprogrammable FPGAs, after programming is complete the
flip-flops may all be initialized to a value that may not correspond to the reset
state. Thus if the flip-flops are all set to '1' at start-up and the reset state is '0000' ,
the initial state is '1111' and not the reset state. For this reason, and also to ensure
fail-safe behavior, it is important that the behavior of the FSM is defined for
every possible value of the state register.

12.7.1 FSM Synthesis in Verilog
The following FSM model uses paired processes . The first process synthesizes to
sequential logic and the second process synthesizes to combinational logic:

`define resSt 0

`define S1 1

`define S2 2

`define S3 3

module StateMachine_1 (reset, clk, yOutReg);

input reset, clk; output yOutReg;

reg yOutReg, yOut; reg [1:0] curSt, nextSt;

always @(posedge clk or posedge reset)

begin :Seq //Compass statemachine oneHot curSt

if (reset == 1)

begin yOut = 0; yOutReg = yOut; curSt = `resSt; end

else begin

case (curSt)

`resSt:yOut = 0;`S1:yOut = 1;`S2:yOut = 1;`S3:yOut = 1;

default :yOut = 0;

endcase

yOutReg = yOut; curSt = nextSt; // ... update the state.

end

end

always @(curSt or yOut) // Assign the next state:

begin :Comb

case (curSt)

`resSt:nextSt = `S3; `S1:nextSt = `S2;

`S2:nextSt = `S1; `S3:nextSt = `S1;

default :nextSt = `resSt;

endcase

end

endmodule

Synopsys uses separate pseudocomments to define the states and state vector as
in the following example:

module StateMachine_2 (reset, clk, yOutReg);

input reset, clk; output yOutReg; reg yOutReg, yOut;

parameter [1:0] //synopsys enum states

resSt = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;

reg [1:0] /* synopsys enum states */ curSt, nextSt;

//synopsys state_vector curSt

always @(posedge clk or posedge reset) begin

if (reset == 1)

begin yOut = 0; yOutReg = yOut; curSt = resSt; end

else begin

case (curSt) resSt:yOut = 0;S1:yOut = 1;S2:yOut = 1;S3:yOut = 1;

default :yOut = 0; endcase

yOutReg = yOut; curSt = nextSt; end

end

always @(curSt or yOut) begin

case (curSt)

resSt:nextSt = S3; S1:nextSt = S2; S2:nextSt = S1; S3:nextSt = S1;

default :nextSt = S1; endcase

end

endmodule

To change encoding we can assign states explicitly by altering lines 3 � 4 to the
following, for example:

parameter [3:0] //synopsys enum states

resSt = 4'b0000, S1 = 4'b0010, S2 = 4'b0100, S3 = 4'b1000;

12.7.2 FSM Synthesis in VHDL
The first architecture that follows is a template for a Moore state machine:

library IEEE; use IEEE.STD_LOGIC_1164. all ;

entity SM1 is

port (aIn, clk : in Std_logic; yOut: out Std_logic);

end SM1;

architecture Moore of SM1 is

type state is (s1, s2, s3, s4);

signal pS, nS : state;

begin

process (aIn, pS) begin

case pS is

when s1 => yOut <= '0'; nS <= s4;

when s2 => yOut <= '1'; nS <= s3;

when s3 => yOut <= '1'; nS <= s1;

when s4 => yOut <= '1'; nS <= s2;

end case ;

end process ;

process begin

-- synopsys etc.

--compass Statemachine adj pS

wait until clk = '1'; pS <= nS;

end process ;

end Moore;

An example input, aIn , is included but not used in the next state assignments. A
reset is also omitted to further simplify this example.

An FSM compiler extracts the state machine. Some companies use FSM
compilers that are separate from the logic synthesizers (and priced separately)
because the algorithms for FSM optimization are different from those for
optimizing combinational logic. We can see what is happening by asking the
Compass synthesizer to write out intermediate results. The synthesizer extracts
the FSM and produces the following output in a state-machine language used by
the tools:

sm sm1_ps_sm;

inputs; outputs yout_smo; clock clk;

STATE S1 { let yout_smo=0 ; } --> S4;

STATE S2 { let yout_smo=1 ; } --> S3;

STATE S3 { let yout_smo=1 ; } --> S1;

STATE S4 { let yout_smo=1 ; } --> S2;

end

You can use this language to modify the FSM and then use this modified code as
an input to the synthesizer if you wish. In our case, it serves as documentation
that explains the FSM behavior.

Using one-hot encoding generates the following structural Verilog netlist (dfntnb
is positive-edge�triggered D flip-flop, and nd03d0 is a three-input NAND):

dfntnb sm_ps4(.D(sm_ps1_Q),.CP(clk),.Q(sm_ps4_Q),.QN(sm_ps4_QN));

dfntnb sm_ps3(.D(sm_ps2_Q),.CP(clk),.Q(sm_ps3_Q),.QN(sm_ps3_QN));

dfntnb sm_ps2(.D(sm_ps4_Q),.CP(clk),.Q(sm_ps2_Q),.QN(sm_ps2_QN));

dfntnb sm_ps1(.D(sm_ps3_Q),.CP(clk),.Q(sm_ps1_Q),.QN(\sm_ps1.QN));

nd03d0 i_6(.A1(sm_ps4_QN),.A2(sm_ps3_QN),.A3(sm_ps2_QN),
.ZN(yout_smo));

(Each example shows only the logic cells and their interconnection in the Verilog
structural netlists.) The synthesizer has assigned one flip-flop to each of the four
states to form a 4-bit state register. The FSM output (renamed from yOut to
yout_smo by the software) is taken from the output of the three-input NAND gate
that decodes the outputs from the flip-flops in the state register.

Using adjacent encoding gives a simpler result,

dfntnb sm_ps2(.D(i_4_ZN),.CP(clk), .Q(\sm_ps2.Q),.QN(sm_ps2_QN));

dfntnb sm_ps1(.D(sm_ps1_QN),.CP(clk),.Q(\sm_ps1.Q),.QN(sm_ps1_QN));

oa04d1 i_4(.A1(sm_ps1_QN),.A2(sm_ps2_QN),.B(yout_smo),.ZN(i_4_ZN));

nd02d0 i_5(.A1(sm_ps2_QN), .A2(sm_ps1_QN), .ZN(yout_smo));

(oa04d1 is an OAI21 logic cell, nd02d0 is a two-input NAND). In this case
binary encoding for the four states uses only two flip-flops. The two-input
NAND gate decodes the states to produce the output. The OAI21 logic cell
implements the logic that determines the next state. The combinational logic in
this example is only slightly more complex than that for the one-hot encoding,
but, in general, combinational logic for one-hot encoding is simpler than the other
forms of encoding.

Using the option 'moore' for Moore encoding, we receive the following message
from the FSM compiler:

The states were assigned these codes:

0?? : S1 100 : S2 101 : S3 110 : S4

The FSM compiler has assigned three bits to the state register. The first bit in the
state register is used as the output. We can see more clearly what has happened
by looking at the Verilog structural netlist:

dfntnb sm_ps3(.D(i_6_ZN),.CP(clk),.Q(yout_smo),.QN(sm_ps3_QN));

dfntnb sm_ps2(.D(sm_ps3_QN),.CP(clk),.Q(sm_ps2_Q),.QN(\sm_ps2.QN));

dfntnb sm_ps1(.D(i_5_ZN),.CP(clk),.Q(sm_ps1_Q),.QN(\sm_ps1.QN));

nr02d0 i_5(.A1(sm_ps3_QN),.A2(sm_ps2_Q),.ZN(i_5_ZN));

nd02d0 i_6(.A1(sm_ps1_Q),.A2(yout_smo),.ZN(i_6_ZN));

The output, yout_smo , is now taken directly from a flip-flop. This means that the
output appears after the clock edge with no combinational logic delay (only the
clock-to-Q delay). This is useful for FSMs that are required to produce outputs as

soon as possible after the active clock edge (in PCI bus controllers, for example).

The following code is a template for a Mealy state machine:

library IEEE; use IEEE.STD_LOGIC_1164. all ;

entity SM2 is

port (aIn, clk : in Std_logic; yOut: out Std_logic);

end SM2;

architecture Mealy of SM2 is

type state is (s1, s2, s3, s4);

signal pS, nS : state;

begin

process (aIn, pS) begin

case pS is

when s1 => if (aIn = '1')

then yOut <= '0'; nS <= s4;

else yOut <= '1'; nS <= s3;

end if ;

when s2 => yOut <= '1'; nS <= s3;

when s3 => yOut <= '1'; nS <= s1;

when s4 => if (aIn = '1')

then yOut <= '1'; nS <= s2;

else yOut <= '0'; nS <= s1;

end if ;

end case ;

end process ;

process begin

wait until clk = '1' ;

--Compass Statemachine oneHot pS

pS <= nS;

end process ;

12.8 Memory Synthesis
There are several approaches to memory synthesis:

Random logic using flip-flops or latches1.

Register files in datapaths2.

RAM standard components3.

RAM compilers4.

The first approach uses large vectors or arrays in the HDL code. The synthesizer
will map these elements to arrays of flip-flops or latches depending on how the
timing of the assignments is handled. This approach is independent of any
software or type of ASIC and is the easiest to use but inefficient in terms of area.
A flip-flop may take up 10 to 20 times the area of a six-transistor static RAM
cell.

The second approach uses a synthesis directive or hand instantiation to synthesize
a memory to a datapath component. Usually the datapath components are
constructed from latches in a regular array. These are slightly more efficient than
a random arrangement of logic cells, but the way we create the memory then
depends on the software and the ASIC technology we are using.

The third approach uses standard components supplied by an ASIC vendor. For
example, we can instantiate a small RAM using CLBs in a Xilinx FPGA. This
approach is very dependent on the technology. For example, we could not easily
transfer a design that uses Xilinx CLBs as SRAM to an Actel FPGA.

The last approach, using a custom RAM compiler, is the most area-efficient
approach. It depends on having the capability to call a compiler from within the
synthesis tool or to instantiate a component that has already been compiled.

12.8.1 Memory Synthesis in Verilog
Most synthesizers implement a Verilog memory array, such as the one shown in
the following code, as an array of latches or flip-flops.

reg [31:0] MyMemory [3:0]; // a 4 x 32-bit register

For example, the following code models a small RAM, and the synthesizer maps
the memory array to sequential logic:

module RAM_1(A, CEB, WEB, OEB, INN, OUTT);

input [6:0] A; input CEB,WEB,OEB; input [4:0]INN;

output [4:0] OUTT;

reg [4:0] OUTT; reg [4:0] int_bus; reg [4:0] memory [127:0];

always @(negedge CEB) begin

if (CEB == 0) begin

if (WEB == 1) int_bus = memory[A];

else if (WEB == 0) begin memory[A] = INN; int_bus = INN; end

else int_bus = 5'bxxxxx;

end

end

always @(OEB or int_bus) begin

case (OEB) 0 : OUTT = int_bus;

default : OUTT = 5'bzzzzz; endcase

end

endmodule

Memory synthesis using random control logic and transparent latches for each bit
is reasonable only for small, fast register files, or for local RAM on an MGA or
CBIC. For large RAMs synthesized memory becomes very expensive and instead
you should normally use a dedicated RAM compiler.

Typically there will be restrictions on synthesizing RAM with multiple
read/writes:

If you write to the same memory in two different processes, be careful to
avoid address contention.

●

You need a multiport RAM if you read or write to multiple locations
simultaneously.

●

If you write and read the same memory location, you have to be very
careful. To mimic hardware you need to read before you write so that you
read the old memory value. If you attempt to write before reading, the
difference between blocking and nonblocking assignments can lead to
trouble.

●

You cannot make a memory access that depends on another memory access in
the same clock cycle. For example, you cannot do this:

memory[i + 1] = memory[i]; // needs two clock cycles

or this:

pointer = memory[memory[i]]; // needs two clock cycles

For the same reason (but less obviously) we cannot do this:

pc = memory[addr1]; memory[addr2] = pc + 1; // not on the same cycle

12.8.2 Memory Synthesis in VHDL
VHDL allows multidimensional arrays so that we can synthesize a memory as an
array of latches by declaring a two-dimensional array as follows:

type memStor is array(3 downto 0) of integer ; -- This is OK.

subtype MemReg is STD_LOGIC_VECTOR(15 downto 0); -- So is this.

type memStor is array(3 downto 0) of MemReg;

-- other code...

signal Mem1 : memStor;

As an example, the following code models a standard-cell RAM:

library IEEE;

use IEEE.STD_LOGIC_1164. all ;

package RAM_package is

constant numOut : INTEGER := 8;

constant wordDepth: INTEGER := 8;

constant numAddr : INTEGER := 3;

subtype MEMV is STD_LOGIC_VECTOR(numOut-1 downto 0);

type MEM is array (wordDepth-1 downto 0) of MEMV;

end RAM_package;

library IEEE;

use IEEE.STD_LOGIC_1164. all ; use IEEE.NUMERIC_STD. all ;

use work.RAM_package. all ;

entity RAM_1 is

port (signal A : in STD_LOGIC_VECTOR(numAddr-1 downto 0);

signal CEB, WEB, OEB : in STD_LOGIC;

signal INN : in MEMV;

signal OUTT : out MEMV);

end RAM_1;

architecture Synthesis_1 of RAM_1 is

signal i_bus : MEMV; -- RAM internal data latch

signal mem : MEM; -- RAM data

begin

process begin

wait until CEB = '0';

if WEB = '1' then i_bus <= mem(TO_INTEGER(UNSIGNED(A)));

elsif WEB = '0' then

mem(TO_INTEGER(UNSIGNED(A))) <= INN;

i_bus <= INN;

else i_bus <= (others => 'X');

end if ;

end process ;

process (OEB, int_bus) begin -- control output drivers:

case (OEB) is

when '0' => OUTT <= i_bus;

when '1' => OUTT <= (others => 'Z');

when others => OUTT <= (others => 'X');

end case ;

end process ;

end Synthesis_1;

12.9 The Multiplier
This section looks at the messages that result from attempting to synthesize the
VHDL code from Section 10.2, �A 4-bit Multiplier.� The following examples use
the line numbers that were assigned in the comments at the end of each line of
code in Tables 10.1�10.9. The first problem arises in the following code (line 7 of
the full adder in Table 10.1):

Sum <= X xor Y xor Cin after TS;

Warning : AFTER clause in a waveform element is not supported

This is not a serious problem if you are using a synchronous design style. If you
are, then your logic will work whatever the delays (it may run slowly but it will
work).

The next problem is from lines 3 � 4 of the 8-bit MUX in Table 10.5,

port (A, B : in BIT_VECTOR (7 downto 0); Sel : in BIT := '0'; Y : out
BIT_VECTOR (7 downto 0));

Warning : Default values on interface signals are not supported

The synthesis tool cannot mimic the behavior of a default value on a port in the
software model. The default value is the value given to an input if nothing is
connected ('open' in VHDL). In hardware either an input is connected or it is not.
If it is connected, there will be a voltage on the wire. If it is not connected, the
node will be floating. Default values are useful in VHDL�without a default value
on an input port, an entity�architecture pair will not compile. The default value
may be omitted in this model because this input port is connected at the next
higher level of hierarchy.

The next problem illustrates what happens when a designer fails to think like the
hardware (from line 3 of the zero-detector in Table 10.6),

port (X:BIT_VECTOR; F:out BIT);

Error : An index range must be specified for this data type

This code has the advantage of being flexible, but the synthesizer needs to know
exactly how wide the bus will be. There are two other similar errors in shiftn, the
variable-width shift register (from lines 4�5 in Table 10.7). There are also three
more errors generated by the same problem in the component statement for
AllZero (from lines 4�5 of package Mult_Components) and the component

statement for shiftn (from lines 10�11 of package Mult_Components).

All of these index range problems may be fixed by sacrificing the flexible nature
of the code and specifying an index range explicitly, as in the following example:

port (X:BIT_VECTOR(7 downto 0); F:out BIT);

Table 12.8 shows the synthesizable version of the shift-register model. The
constrained index ranges in lines 6 , 7 , 11 , 18 , 22 , and 23 fix the problem, but
are rather ugly. It would be better to use generic parameters for the input and
output bus widths. However, a shift register with different input and output
widths is not that common so, for now, we will leave the code as it is.

TABLE 12.8 A synthesizable version of the shift register shown in
Table 10.7.

entity ShiftN is

generic (TCQ:TIME := 0.3 ns;
TLQ:TIME := 0.5 ns;

TSQ:TIME := 0.7 ns);

port (

CLK, CLR, LD, SH, DIR: in BIT;

D: in BIT_VECTOR(3 downto 0);

Q: out BIT_VECTOR(7 downto 0)
);

end ShiftN;

architecture Behave of ShiftN is

begin Shift: process (CLR, CLK)

variable St: BIT_VECTOR(7
downto 0);

begin

if CLR = '1' then

St := (others => '0'); Q <= St after
TCQ;

elsif CLK'EVENT and CLK='1'
then

if LD = '1' then

St := (others => '0');

CLK Clock

CLR Clear, active high

LD Load, active high

SH Shift, active high

DIR Direction, 1=left

D Data in

Q Data out

Shift register. Input width = 4. Output

St(3 downto 0) := D;

Q <= St after TLQ;

elsif SH = '1' then

case DIR is

when '0'=>St:='0' & St(7 downto 1);

when '1'=>St:=St(6 downto 0) & '0';

end case ;

Q <= St after TSQ;

end if ;

end if ;

end process ;

end ;

width = 8. Output is left-shifted or
right-shifted under control of DIR. Unused
MSBs are zero-padded during load. Clear
is asynchronous. Load is synchronous.

Timing:

TCQ (CLR to Q) = 0.3 ns

TLQ (LD to Q) = 0.5 ns

TSQ (SH to Q) =0. 7 ns

The next problem occurs because VHDL is not a synthesis language (from lines 6
�7 of the variable-width shift register in Table 10.7),

begin assert (D'LENGTH <= Q'LENGTH)

report "D wider than output Q" severity Failure;

Warning : Assertion statements are ignored

Error : Statements in entity declarations are not supported

The synthesis tool warns us it does not know how to generate hardware that
writes to our screen to implement an assertion statement. The error occurs
because a synthesis tool cannot support any of the passive statements (no
assignments to signals, for example) that VHDL allows in an entity declaration.
Synthesis software usually provides a way around these problems by providing
switches to turn the synthesizer on and off. For example, we might be able to
write the following:

//Compass compile_off

begin assert (D'LENGTH <= Q'LENGTH)

report "D wider than output Q" severity Failure;

//Compass compile_on

The disadvantage of this approach is that the code now becomes tied to a
particular synthesis tool. The alternative is to move the statement to the
architecture to eliminate the error, and ignore the warning.

The next error message is, at first sight, confusing (from lines 15�16 of the
variable-width shift register in Table 10.7),

if CLR = '1' then St := (others => '0'); Q <= St after TCQ;

Error : Illegal use of aggregate with the choice "others": the derived subtype of
an array aggregate that has a choice "others" must be a constrained array subtype

This error message is precise and uses the terminology of the LRM but does not
reveal the source of the problem. To discover the problem we work backward
through the model. We declared variable St as follows (lines 12�13 of
Table 10.7):

subtype OutB is NATURAL range Q'LENGTH-1 downto 0;

variable St: BIT_VECTOR(OutB);

(to keep the model flexible). Continuing backward we see Q is declared as type
BIT_VECTOR with no index range as follows (lines 4�5 of Table 10.7):

port(CLK, CLR, LD, SH, DIR: in BIT;

D: in BIT_VECTOR; Q: out BIT_VECTOR);

The error is thus linked to the previous problem (undeclared bus widths) in this
entity�architecture pair. Because the synthesizer does not know the width of Q , it
does not know how many '0' s to put in St when it has to implement St := (others
=> '0') . There is one more error like this one in the second assignment to St (line
19 in Table 10.7). Again the problem may be solved by sacrificing flexibility and
constraining the width of Q to be a fixed value.

The next warning involves names (line 5 in Table 10.9),

signal SRA, SRB, ADDout, MUXout, REGout: BIT_VECTOR(7 downto 0);

Warning : Name is reserved word in VHDL-93: sra

This problem can be fixed by (a) changing the signal name, (b) using an escaped
name, or (c) accepting that this code will not work in a VHDL-93 environment.

Finally, there is the following warning (line 6 in Table 10.9):

signal Zero, Init, Shift, Add, Low: BIT := '0'; signal High: BIT := '1';

Warning : Initial values on signals are only for simulation and setting the value
of undriven signals in synthesis. A synthesized circuit can not be guaranteed to be
in any known state when the power is turned on.

Signals Low and High are used to tie inputs to a logic '0' and to a logic '1' ,
respectively. This is because VHDL-87 does not allow '1' or '0' , which are
literals, as actual parameters. Thus one way to solve this problem is to change to
a VHDL-93 environment, where this restriction was lifted. Some synthesis

systems handle VDD and GND nets in a specific fashion. For example, VDD and
GND may be declared as constants in a synthesis package. It does not really
matter how inputs are connected to VDD and GND as long as they are connected
in the synthesized logic.

12.9.1 Messages During Synthesis
After fixing the error and warning messages, we can synthesize the multiplier.
During synthesis we see these messages:

These unused instances are being removed: in full_adder_p_dup8: u5, u2, u3, u4

These unused instances are being removed: in dffclr_p_dup1: u2

and seven more similar to this for dffclr_p_dup2: u2 to dffclr_p_dup8: u2 . We
are suspicious because we did not include any redundant or unused logic in our
input code. Let us dig deeper.

Turning to the second set of messages first, we need to discover the locations of
dffclr_p_dup1: u2 and the other seven similarly named unused instances. We can
ask the synthesizer to produce the following hierarchy map of the design:

************* Hierarchy of cell "mult8_p" *************

mult8_p

adder8_p

| full_adder_p [x8]

allzero_p

mux8_p

register8_p

| dffclr_p [x8]

shiftn_p [x2]

sm_1_p

The eight unused instances in question are inside the 8-bit shift register,
register8_p . The only models in this shift register are eight copies of the D
flip-flop model, DFFClr . Let us look more closely at the following code:

architecture Behave of DFFClr is

signal Qi : BIT;

begin QB <= not Qi; Q <= Qi;

process (CLR, CLK) begin

if CLR = '1' then Qi <= '0' after TRQ;

elsif CLK'EVENT and CLK = '1' then Qi <= D after TCQ;

end if ;

end process ;

end ;

The synthesizer infers an inverter from the first statement in line 3 (
QB <= not Qi). What we meant to imply (A) was: �I am trying to describe the
function of a D flip-flop and it has two outputs; one output is the complement of
the other.� What the synthesizer inferred (B) was: �You described a D flip-flop
with an inverter connected to Q.� Unfortunately A does not equal B.

Why were four cell instances (u5 , u2 , u3 , u4) removed from inside a cell with
instance name full_adder_p_dup8 ? The top-level cell mult8_p contains cell
adder8_p , which in turn contains full_adder_p [x8] . This last entry in the
hierarchy map represents eight occurrences or instances of cell full_adder_p . The
logic synthesizer appends the suffix '_p' by default to the names of the design
units to avoid overwriting any existing netlists (it also converts all names to
lowercase). The synthesizer has then added the suffix 'dup8' to create the instance
name full_adder_p_dup8 for the eighth copy of cell full_adder_p .

What is so special about the eighth instance of full_adder_p inside cell adder8_p
? The following (line 13 in Table 10.9) instantiates Adder8 :

A1:Adder8 port map
(A=>SRB,B=>REGout,Cin=>Low,Cout=>OFL,Sum=>ADDout);

The signal OFL is declared but not used. This means that the formal port name
Cout for the entity Adder8 in Table 10.2 is unconnected in the instance
full_adder_p_dup8 . Since the carry-out bit is unused, the synthesizer deletes
some logic. Before dismissing this message as harmless, let us look a little closer.
In the architecture for entity Adder8 we wrote:

Cout <= (X and Y) or (X and Cin) or (Y and Cin) after TC;

In one of the instances of Adder8 , named full_adder_p_dup8 , this statement is
redundant since we never use Cout in that particular cell instance. If we look at
the synthesized netlist for full_adder_p_dup8 before optimization, we find four
NAND cells that produce the signal Cout . During logic optimization the
synthesizer removes these four instances. Their instance names are
full_adder_p_dup8:u2, u3, u4, u5 .

12.10 The Engine Controller
This section returns to the example from Section 10.16, �An Engine Controller.�
This ASIC gathers sampled temperature measurements from sensors, converts the
temperature values from Fahrenheit to Centigrade, averages them, and stores
them in a FIFO before passing the values to a microprocessor on a three-state
bus. We receive the following message from the logic synthesizer when we use
the FIFO-controller code shown in Table 10.25:

Warning: Made latches to store values on: net d(4), d(5), d(6), d(7), d(8), d(9),
d(10), d(11), in module fifo_control

This message often indicates that we forgot to initialize a variable.

Here is the part of the code from Table 10.25 that assigns to the vector D (the
error message for d is in lowercase�remember VHDL is case insensitive):

case sel is

when "01" => D <= D_1 after TPD; r1 <= '1' after TPD;

when "10" => D <= D_2 after TPD; r2 <= '1' after TPD;

when "00" => D(3) <= f1 after TPD; D(2) <= f2 after TPD;

D(1) <= e1 after TPD; D(0) <= e2 after TPD;

when others => D <= "ZZZZZZZZZZZZ" after TPD;

end case ;

When sel = "00" , there is no assignment to D(4) through D(11) . This did not
matter in the simulation, but to reproduce the exact behavior of the HDL code the
logic synthesizer generates latches to remember the values of D(4) through D(11)
.

This problem may be corrected by replacing the "00" choice with the following:

when "00" => D(3) <= f1 after TPD; D(2) <= f2 after TPD;

D(1) <= e1 after TPD; D(0) <= e2 after TPD;

D(11 downto 4) <= "ZZZZZZZZ" after TPD;

The synthesizer recognizes the assignment of the high-impedance logic value 'Z'
to a signal as an indication to implement a three-state buffer. However, there are

two kinds of three-state buffers: core logic three-state buffers and three-state I/O
cells. We want a three-state I/O cell containing a bonding pad and not a
three-state buffer located in the core logic. If we synthesize the code in
Table 10.25, we get a three-state buffer in the core. Table 12.9 shows the
modified code that will synthesize to three-state I/O cells. The signal OE_b
drives the output enable (active-low) of the three-state buffers. Table 12.10
shows the top-level code including all the I/O cells.

TABLE 12.9 A modified version of the FIFO controller to drive three-state
I/O cells.

library IEEE; use IEEE.STD_LOGIC_1164. all ; use IEEE.NUMERIC_STD.
all ;

entity fifo_control is generic TPD:TIME := 1 ns;

port (D_1, D_2: in UNSIGNED(11 downto 0);

sel : in UNSIGNED(1 downto 0) ;

read , f1, f2, e1, e2 : in STD_LOGIC;

r1, r2, w12: out STD_LOGIC; D: out UNSIGNED(11 downto 0);

OE: out STD_LOGIC) ;

end ;

architecture rtl of fifo_control is

begin process (read, sel, D_1, D_2, f1, f2, e1, e2)

begin

r1 <= '0' after TPD; r2 <= '0' after TPD; OE_b <= '0' after TPD;

if (read = '1') then

w12 <= '0' after TPD;

case sel is

when "01" => D <= D_1 after TPD; r1 <= '1' after TPD;

when "10" => D <= D_2 after TPD; r2 <= '1' after TPD;

when "00" => D(3) <= f1 after TPD; D(2) <= f2 after TPD;

D(1) <= e1 after TPD; D(0) <= e2 after TPD;

D(11 downto 4) <= "00000000" after TPD;

when others => OE_b <= '1' after TPD;

end case ;

elsif (read = '0') then

OE_b <= '0' after TPD; w12 <= '1' after TPD;

else OE_b <= '0' after TPD;

end if ;

end process ;

end rtl;

TABLE 12.10 The top-level VHDL code for the engine controller ASIC.
library COMPASS_LIB, IEEE ;

use IEEE.STD. all ; use IEEE.NUMERIC_STD. all ;

use COMPASS_LIB.STDCOMP. all ; use COMPASS_LIB.COMPASS. all ;

entity t_control_ASIC is port (

PadTri : out STD_LOGIC_VECTOR (11 downto 0) ;

PadClk, PadInreset, PadInreadv : in STD_LOGIC_VECTOR (0 downto 0) ;

PadInp1, PadInp2 : in STD_LOGIC_VECTOR (11 downto 0) ;

PadInSens : in STD_LOGIC_VECTOR (1 downto 0)) ;

end t_control_ASIC ;

architecture structure of t_control_ASIC is

for all : asPadIn use entity COMPASS_LIB.aspadIn(aspadIn) ;

for all : asPadClk use entity COMPASS_LIB.aspadClk(aspadClk);

for all : asPadTri use entity COMPASS_LIB.aspadTri(aspadTri) ;

for all : asPadVdd use entity COMPASS_LIB.aspadVdd(aspadVdd) ;

for all : asPadVss use entity COMPASS_LIB.aspadVss(aspadVss) ;

component pc3c01 port (cclk : in STD_LOGIC; cp : out STD_LOGIC); end
component ;

component t_control port(T_in1, T_in2 : in UNSIGNED(11 downto 0);

SENSOR: in UNSIGNED(1 downto 0) ; clk, rd, rst : in STD_LOGIC;

D : out UNSIGNED(11 downto 0); oe_b : out STD_LOGIC); end component

;

signal T_in1_sv, T_in2_sv : STD_LOGIC_VECTOR(11 downto 0) ;

signal T_in1_un, T_in2_un : UNSIGNED(11 downto 0) ;

signal sensor_sv : STD_LOGIC_VECTOR(1 downto 0) ;

signal sensor_un : UNSIGNED(1 downto 0) ;

signal clk_sv, rd_fifo_sv, reset_sv : STD_LOGIC_VECTOR (0 downto 0) ;

signal clk_core, oe_b : STD_LOGIC ;

signal D_un : UNSIGNED(11 downto 0) ; signal D_sv :
STD_LOGIC_VECTOR(11 downto 0) ;

begin --compass dontTouch u* -- synopsys dont_touch etc.

u1 : asPadIn generic map (12,"2:13") port map (t_in1_sv,PadInp1) ;

u2 : asPadIn generic map (12,"14:25") port map (t_in2_sv,PadInp2) ;

u3 : asPadIn generic map (2,"26:27") port map (sensor_sv, PadInSens) ;

u4 : asPadIn generic map (1,"29") port map (rd_fifo_sv, PadInReadv) ;

u5 : asPadIn generic map (1,"30") port map (reset_sv, PadInreset) ;

u6 : asPadIn generic map (1,"32") port map (clk_sv, PadClk) ;

u7 : pc3c01 port map (clk_sv(0), clk_core) ;

u8 : asPadTri generic map (12,"35:38,41:44,47:50") port map
(PadTri,D_sv,oe_b);

u9 : asPadVdd generic map ("1,31,34,40,45,52") port map (Vdd) ;

u10: asPadVss generic map ("28,33,39,46,51,53") port map (Vss) ;

T_in1_un <= UNSIGNED(T_in1_sv) ; T_in2_un <= UNSIGNED(T_in2_sv) ;

sensor_un <= UNSIGNED(sensor_sv) ; D_sv <=
STD_LOGIC_VECTOR(D_un) ;

v_1 : t_control port map

(T_in1_un,T_in2_un,sensor_un, Clk_core, rd_fifo_sv(0), reset_sv(0),D_un,
oe_b) ;

end ;

12.12 Optimization of the
Viterbi Decoder
Returning to the Viterbi decoder example (from Section 12.4), we first set the
environment for the design using the following worst-case conditions: a die
temperature of 25 � C (fastest logic) to 120 � C (slowest logic); a power supply
voltage of V DD = 5.5 V (fastest logic) to V DD = 4.5 V (slowest logic); and worst
process (slowest logic) to best process (fastest logic). Assume that this ASIC
should run at a clock frequency of at least 33 MHz (clock period of 30 ns). An
initial synthesis run gives a critical path delay at nominal conditions (the default
setting) of about 25 ns and nearly 35 ns under worst-case conditions using a
high-density 0.6 m m standard-cell target library.

Estimates (using simulation and calculation) show that data arrives at the input
pins 5 ns (worst-case) after the rising edge of the clock. The reset signal arrives
10 ns (worst-case) after the rising edge of the clock. The outputs of the Viterbi
decoder must be stable at least 4 ns before the rising edge of the clock. This
allows these signals to be driven to another ASIC in time to be clocked. These
timing constraints are particularly devastating. Together they effectively reduce
the clock period that is available for use by 9 ns. However, these figures are
typical for board-level delays.

The initial synthesis runs reveal the critical path is through the following six
modules:

subset_decode -> compute_metric ->
compare_select -> reduce -> metric -> output_decision

The logic synthesizer can do little or no optimization across these module
boundaries. The next step, then, is to rearrange the design hierarchy for synthesis.
Flattening (merging or ungrouping) the six modules into a new cell, called
critical , allows the synthesizer to reduce the critical path delay by optimizing one
large module.

At present the last module in the critical path is output_decision . This
combinational logic adds 2�3 ns to the output delay requirement of 4 ns (this
means the outputs of the module metric must be stable 6�7 ns before the rising
clock edge). Registering the output reduces this overhead and removes the
module output_decision from the critical path. The disadvantage is an increase in
latency by one clock cycle, but the latency is already 12 clock cycles in this

design. If registering the output decreases the critical path delay by more than a
factor of 12 / 13, performance will still improve.

To register the output, alter the code (on pages 575�576) as follows:

module viterbi_ASIC

...

wire [2:0] Out, Out_r; // Change: add Out_r.

...

asPadOut #(3,"30,31,32") u30 (padOut, Out_r); // Change: Out_r.

Outreg o_1 (Out, Out_r, Clk, Res); // Change: add output register.

...

endmodule

module Outreg (Out, Out_r, Clk, Res); // Change: add this module.

input [2:0] Out; input Clk, Rst; output [2:0] Out_r;

dff #(3) reg1(Out, Out_r, Clk, Res);

endmodule

These changes move the performance closer to the target. Prelayout estimates
indicate the die perimeter required for the I/O pads will allow more than enough
area to hold the core logic. Since there is unused area in the core, it makes sense
to switch to a high-performance standard-cell library with a slightly larger cell
height (96 l versus 72 l). This cell library is less dense, but faster.

Typically, at this point, the design is improved by altering the HDL, the
hierarchy, and the synthesis controls in an iterative manner until the desired
performance is achieved. However, remember there is still no information from
the layout. The best that can be done is to estimate the contribution of the
interconnect using wire-load models. As soon as possible the netlist should be
passed to the floorplanner (or the place-and-route software in the absence of a
floorplanner) to generate better estimates of interconnect delays.

TABLE 12.13 Critical-path timing report for the Viterbi decoder.

Instance name Delay information 1

v_1.u100

u1.subout5.Q_ff_b0

B1_i67

B1_i66

B1_i64

B1_i68

B1_i316

u3.add_rip1.u4

u5.sub_rip1.u6

u5.sub_rip1.u8

B1_i301

u2.metric3.Q_ff_b4

inPin --> outPin incr arrival trs rampDel cap(pF) cell

CP --> QN 1.65 1.65 F .20 .10 dfctnb

A1 --> ZN .63 2.27 R .14 .08 ao01d1

B --> ZN .84 3.12 F .15 .08 ao04d1

B2 --> ZN .91 4.03 F .35 .17 fn03d1

I --> ZN .39 4.43 R .23 .12 in01d1

S --> Z .91 5.33 F .34 .17 mx21d1

B0 --> CO 2.20 7.54 F .24 .14 ad02d1

... 28 other cell instances omitted ...

B0 --> CO 2.25 23.17 F .23 .13 ad02d1

CI --> CO .53 23.70 F .21 .09 ad01d1

A1 --> Z .69 24.39 R .19 .07 xo02d1

setup: D --> CP .17 24.56 R .00 .00 dfctnb

slack: MET .44

Table 12.13 is a timing report for the Viterbi decoder, which shows the critical
path starts at a sequential logic cell (a D flip-flop in the present example), ends at
a sequential logic cell (another D flip-flop), with 37 other combinational logic
cells in-between. The first delay is the clock-to-Q delay of the first flip-flop. The
last delay is the setup time of the last flip-flop. The critical path delay is 24.56 ns,
which gives a slack of 0.44 ns from the constraint of 25 ns (reduced from 30 ns to
give an extra margin). We have met the timing constraint (otherwise we say it is
violated).

In Table 12.13 all instances in the critical path are inside instance v_1.u100 .
Instance name u100 is the new cell (cell name critical) formed by merging six
blocks in module viterbi (instance name v_1).

The second column in Table 12.13 shows the timing arc of the cell involved on
the critical path. For example, CP --> QN represents the path from the clock pin,
CP , to the flip-flop output pin, QN , of a D flip-flop (cell name dfctnb). The pin
names and their functions come from the library data book. Each company adopts
a different naming convention (in this case CP represents a positive clock edge,

for example). The conventions are not always explicitly shown in the data books
but are normally easy to discover by looking at examples. As another example,
B0 --> CO represents the path from the B input to the carry output of a 2-bit full
adder (cell name ad02d1).

The third column (incr) represents the incremental delay contribution of the
logic cell to the critical path.

The fourth column (arrival) shows the arrival time of the signal at the output pin
of the logic cell. This is the cumulative delay to that point on the critical path.

The fifth column (trs) describes whether the transition at the output node is
rising (R) or falling (F). The timing analyzer examines each possible
combination of rising and falling delays to find the critical path.

The sixth column (rampDel) is a measure of the input slope (ramp delay, or
slew rate). In submicron ASIC design this is an important contribution to delay.

The seventh column (Cap) is the capacitance at the output node of the logic cell.
This determines the logic cell delay and also the signal slew rate at the node.

The last column (cell) is the cell name (from the cell-library data book). In this
library suffix 'd1' represents normal drive strength with 'd0' , 'd2 ', and 'd5' being
the other available strengths.

1. See the text for explanations of the column headings.

12.13 Summary
A logic synthesizer may contain over 500,000 lines of code. With such a complex
system, complex inputs, and little feedback at the output there is a danger of the
�garbage in, garbage out� syndrome. Ask yourself �What do I expect to see at the
output?� and �Does the output make sense?� If you cannot answer these questions,
you should simplify the input (reduce the width of the buses, simplify or partition
the code, and so on). The worst thing you can do is write and simulate a huge
amount of code, read it into the synthesis tool, and try and optimize it all at once
with the default settings.

With experience it is possible to recognize what the logic synthesizer is doing by
looking at the number of cells, their types, and the drive strengths. For example,
if there are many minimum drive strength cells on the critical path it is usually an
indication that the synthesizer has room to increase speed by substituting cells
with stronger drive. This is not always true, sometimes a higher-drive cell may
actually slow down the circuit. This is because adding the larger cell increases
load capacitance, but not enough drive to make up for it. This is why logical
effort is a useful measure.

Because interconnect delay is increasingly dominant, it is important to begin the
physical design steps as early as possible. Ideally floorplanning and logic
synthesis should be completed at the same time. This ensures that the estimated
interconnect delays are close to the actual delays after routing is complete.

12.14 Problems
* = Difficult, ** = Very difficult, *** = Extremely difficult

12.1 (Comparator/MUX)

a. (30 min.) Build a DesignWorks (or use another tool) model for the
schematic in Figure 12.1 and simulate the operation of this circuit to check
that it performs the same function as the Verilog code. Hint: You could
also use VeriWell to simulate the Verilog netlist.

●

b. (30 min.) Simulate the schematic (or the Verilog netlist) shown in
Figure 12.2 and check that it performs the comparator/MUX function
correctly.

●

c. (30 min.) Simulate the schematic (or the Verilog netlist) of Figure 12.3 .
If you have access to a logic synthesizer and cell library, you might
resynthesize the comparator/MUX and compare the results with those
shown in Figures 12.2 and 12.3 .

●

d. (20 min.) Build a schematic (or Verilog model) for macro cm8 in
Figure 12.4 .

●

e. (30 min.) Simulate the schematic (or Verilog netlist) shown in
Figure 12.4 .

●

12.2 (*Verilog assignments, 15 min.) Simulate and test the following model
paying attention to initialization. Attempt to synthesize it. Explain your results.

module dff (D, Q, Clk, Rst);

parameter width = 1, reset_value = 0; input [width - 1 : 0] D;

output [width - 1 : 0] Q; reg [width - 1 : 0] Q; input Clk,Rst;

initial Q = {width{1'bx}};

always @ (posedge Clk or negedge Rst)

if (Rst == 0) Q <= #1 reset_value; else Q <= #1 D;

endmodule

12.3 (Digital filter) (30 min.) Write HDL code to model the following filter:

y0 <= c(0) * x(0) + c(1) * x(1) + b(2) * x(2) ;

Use c(0) = -4 , c(0) = +5 , c(0) = -3 , but make your code flexible so that these
coefficients may be changed. (120 min.) Simulate, test, and synthesize your
model. Hint: You should use the transfer equation in your code (Verilog or
VHDL).

12.4 (Hand design, 60 min.) Use hand calculation and gate delay values obtained
from a data book to estimate the critical path of the comparator/MUX shown in
Figure 12.1 . Assume the critical path (the one with the longest delay) is from the
a[2] input (the input with the largest load) -> XOR -> inverter -> four-input
NAND -> three-input OR -> select input of two-input MUX (the symbol ->
means �through the�). You will need to find the t PHL (falling) and t PLH (rising)
propagation delays for each gate used in the critical path. Do not adjust the delays
for the loading (fanout) at the output of each gate on the critical path, assume a
loading equal to one input of a two-input NAND gate. Change the AND�NOR
gate combination to a NAND�NAND gate combination and recalculate the
critical path delay.

12.5 (Critical path, 30 min.) Enter the schematic shown in Figure 12.1 and, using
a gate-level simulator or a timing analyzer, obtain the delays from the a and b
inputs to the outputs. What is the critical path?

12.6 (Verilog sensitivity list, 30 min.) Simulate the following Verilog module
with the test pattern shown and explain your results.

module and2_bad(a, b, c); input a, b; output c; reg c;

// test pattern: (a b) = (1 1) (0 1) (0 0) (1 0) (1 1)

always @(a) c <= a & b;

endmodule

Can you synthesize this module as it is? What is the error message if you get
one? If you can synthesize this module as it is, simulate the synthesized logic and
compare the output with the Verilog simulation.

12.7 (Verilog decoder, 30 min.) Synthesize the following Verilog module with
minimum-area constraint and then with maximum-speed constraint. Compare the
resulting logic in each case.

module Decoder4_to_16(Enable, In_4, Out_16);

input Enable; input [3:0] In_4; output [15:0] Out_16;

reg [15:0] Out_16;

always @(Enable or In_4)

begin

Out_16 = 16'hzzzz;

if (Enable == 1) begin Out_16 = 16'h0000; Out_16[In_4] = 1; end

end

endmodule

What happens if you change the if statement to if (Enable === 1) ?

12.8 (Verilog eight-input MUX, 20 min.) Synthesize the following code with
maximum-speed constraint and then minimum-area constraint. Compare the
results.

module Mux8_to_1(InBus, Select, OutEnable, OutBit);

input [7:0] InBus; input [2:0] Select; input OutEnable;

output OutBit; reg OutBit;

always @(OutEnable or Select or InBus)

begin

if (OutEnable == 1) OutBit = InBus[Select]; else OutBit = 1'bz;

end

endmodule

12.9 (Verilog parity generator, 30 min.) Synthesize the following code with
maximum-speed constraint and then minimum-area constraint. Compare the
results.

module Parity (BusIn, ParityB);

input [8:0] BusIn; output ParityB; reg ParityB;

always @(BusIn) if (^Busin == 0) ParityB = 1; else ParityB = 0;

endmodule

12.10 (Verilog edges and levels, 30 min.) What is the function of the following
model? List the cells produced by a logic synthesizer, their function, and an
explanation of why they were synthesized.

module DD(D, C, R, Q, QB); input D, C, R; output Q, QB; reg Q, QB, L;

always @(posedge C or posedge R) if (R == 1) L = 0; else L = D;

always @(L) begin Q = L; QB = ~L; end

endmodule

12.11 (Verilog adders, 120 min.) Synthesize the following code with
maximum-speed constraint and then minimum-area constraint. What type of
adder architecture does the synthesis tool produce in each case (ripple-carry,

lookahead, etc.)? Show exactly how you reached your conclusion. If you can, use
either synthesis tool directives, shell commands, or standard components
(Synopsys DesignWare or Xilinx X-BLOX, for example) to direct the synthesis
tool to a specific adder implementation. Check that when you optimize the
synthesized logic the adder architecture is not broken up. Next, if you can, find a
way to make the synthesis tool break up the adder and reoptimize the logic. Does
anything change?

module adder1(a, a, outp);

input [3:0] a; input [3:0] b; output [3:0] outp; reg [3:0] outp;

// if you can, change the next line to drive your synthesis tool

// pragma|compass|synopsys|whatever max_delay constraint

begin

outp <= a + b; // Map me to DesignWare, X-Blox etc., if you can.

end

endmodule

12.12 (Elementary gates in Verilog, 60 min.) Synthesize and optimize the
following (you will have to write some more code to go around these statements):

And3 = &{In1,In2,In3}; Or3 = |{In1,In2,In3}; Xor3 = ^{In1,In2,In3};

This should produce three-input AND, OR, and XOR gates. Now synthesize and
optimize eight-input AND, OR, and XOR gates in the same way with
minimum-area constraint and then maximum-speed constraint. Compare your
results. How and why do the synthesis results and your answers change if you
place a large capacitive load on the outputs. Hint: Try a load equivalent to 16
minimum-size inverters. Can you explain these results using logical effort?

12.13 (Synthesizable VHDL, 20 min.) Complete the following code fragment and
try to synthesize the VHDL:

process begin

wait until Clk = '1';

Phase <= "0" after 0 ns; Phase <= "1" after 10 ns;

end process ;

What is the error message? Synthesize this code, and explain the results:

process begin

wait until Clk_x_2 = '1';

case (Phase) is

when '0' => Phase <= '1'; when others => Phase <= '0';

end case ;

end process ;

12.14 (VHDL and process sensitivity list, 15 min.) Simulate the following code
with the test input vectors shown:

entity AND2 is port (a, b in : BIT; c out : BIT); end AND2;

architecture Bad_behavior of AND2 is begin

test inputs: (a b) = (1 1) (0 1) (0 0) (1 0) (1 1)

process (a) begin c <= a and b; end process ;

end ;

Now try to synthesize this code. Do you get an error message? If not, try
simulating the synthesized logic and compare with your earlier simulation results.

12.15 (MUX logic, 20 min.) Synthesize the following VHDL:

entity MuxLogic is

port (InBus : in BIT_VECTOR(3 downto 0);

Sel : in BIT_VECTOR(1 downto 0);

OutBit : out BIT);

end MuxLogic;

architecture Synthesis_1 of MuxLogic is

begin process (Sel, InBus)

begin

case Sel is

when "00" => OutBit <= not (InBus(0));

when "01" => OutBit <= InBus(1) and InBus(2);

when "10" => OutBit <= InBus(2) or InBus(1);

when "11" => OutBit <= InBus(3) xor InBus(0);

end case ;

end process ;

end Synthesis_1;

Does the synthesizer implement the case statement using a MUX? Explain your
answer carefully by using the synthesis reports and the synthesized netlist. Try
synthesizing again with minimum-area constraint and then maximum-speed
constraint. Does this alter the implementation chosen by the synthesis tool?
Explain.

12.16 (Arithmetic overflow in VHDL) Synthesize the following model (you will
need arithmetic packages):

entity Adder1 is port (InBusA,

InBusB : in Std_logic_vector(3 downto 0);

OutBus : out Std_logic_vector(3 downto 0));

end Adder1;

architecture Behavior of Adder1 is begin OutBus <= InBusA + InBusB;

end Behavior;

Repeat the synthesis with the following modification and explain the difference:

OutBus : out Std_logic_vector(4 downto 0));

Finally, make the following additional modification and explain all your results:

OutBus <= ("0" & InBusA) + ("0" & InBusB) ;

12.17 (Verilog integers, 30 min.) Consider the following Verilog module:

module TestIntegers (clk, out)

integer i; reg [1:0] out; input clk; output out;

always @(posedge clk) begin i = i + 1; out = i; end

endmodule

Write a test module for TestIntegers and simulate the behavior. Try to synthesize
TestIntegers and explain what happens.

12.18 (Verilog shift register, 30 min.) Consider this code for a shift register:

module Shift1 (clk, q0, q1, q2)

input clk, q0; output q2, q1; reg q2, q1;

always (@ posedge clk) q1 = q0; always (@ posedge clk) q2 = q1;

endmodule

Write a module Test to exercise this module. Does it simulate correctly? Can you

synthesize your code for Shift1 as it is? Change the body of the code as follows
(call this module Shift2):

always (@ posedge clk) q1 = #1 q0; always (@ posedge clk) q2 = #1 q1;

Does this simulate correctly? Now change the code as follows (Shift3):

always (@ posedge clk) begin q1 = q0; q2 = q1; end

Does this simulate correctly? Can you synthesize Shift3 ? Finally, change the
code to the following (Shift4):

always (@ posedge clk) q1 <= q0; always (@ posedge clk) q2 <= q1

Does this simulate correctly? Can you synthesize Shift4 ?

12.19 (Reset, 20 min.) Use simulation results to explain the difference between:

always (@ posedge clk) if (clr) Q = 0;

always (@ posedge clk) if (rst) Q = 1;

and

always (@ posedge clk) begin if (clr) Q = 0; if (rst) Q = 1; end

12.20 (Verilog assignments, 30 min.) Consider the following Verilog module:

module TestAssign1(sel) input sel; reg outp;

always @sel begin outp <= 1; if (sel) outp <= 0; end

endmodule

Write a module to drive TestAssign1 and simulate your code. Now consider the
following modification (call this TestAssign2):

if (sel) outp <= 0; else outp <= 1;

Simulate TestAssign2 and compare your results. Try to synthesize TestAssign1
and TestAssign2 . Comment on any problems you have and how you resolved
them. Compare the behavior of the synthesized logic with the simulations.

12.21 (VHDL sequential logic, 60 min.) Consider the following processes:

S1: process (clk) begin

if clk'EVENT and clk = '1' then count <= count + inc; end if ;

end process ;

S2: process (clk) begin

if rst = '1' then count <= 0;

elsif clk'EVENT and clk = '1' then count <= count + inc;

end if ;

end process ;

S3: process (clk, rst) begin

if rst = '1' then count <= 0; elsif clk'EVENT and clk = '1' then

count <= count + inc; sum <= count + sum;

end if ;

end process ;

S4: process (clk) begin

if clk'EVENT and clk = '1' then if rst = '1' then count <= 0;

else count <= count + inc; end if ;

end if ;

end process ;

S5: process (clk, rst) begin

if rst = '1' then count <= 0;

elsif clk'EVENT and clk = '1' then count <= count + inc;

else count <= count + 1;

end if ;

end process ;

S6: process (clk, rst) begin

if rst = '1' then count <= 0;

elsif clk'EVENT and clk = '1' then count <= count + inc;

end if ; inc <= not dec;

end process ;

Write code to drive each of these processes and simulate them. Explain any errors
or problems you encounter. Try to synthesize your code and check that the results
behave correctly and match the simulation results. Explain any differences in
behavior or any problems you encounter.

12.22 (Verilog signed multiplication, 30 min.) Show, by simulation, that the
following code performs signed multiplication. Synthesize the code and compare

the results with the simulation.

module Smpy (in1, in2, out); input [2:0] in1, in2; output [5:0] out;

assign out = {{3{in1[2]}},in1}*{{3{in2[2]}},in2};

endmodule

12.23 (Verilog arithmetic, 30 min.) Synthesize the following code and explain in
detail the implementation that results:

module Arithmetic (in_4, out_2, out_3, out_7, out_14);

input [3:0] in_4; output [7:0] out_2, out_3, out_7, out_14;

assign out_2 = in_4*2; assign out_3 = in_4*3; assign out_7 = in_4*7;

assign out_14 = in_4 * 4'b1110;

endmodule

12.24 (Verilog overflow bit, 15 min.) Synthesize the following code and explain
the implementation that results:

module Overflow (a, b, sum, cout);

input [7:0] a, b; output [7:0] sum; output cout;

assign {cout, sum} = a + b;

endmodule

12.25 (*VHDL latches, 60 min.) Consider the following two architectures:

entity latch1 is port (data: in BIT_VECTOR(1 to 4);

reset: in BIT; delay: out BIT_VECTOR(1 to 4));

end latch1;

architecture Synthesis_1 of latch1 is

begin S1: process (data, reset) variable hold : BIT_VECTOR (1 to 4);

begin

if reset = '1' then hold := "0000"; end if ;

delay <= hold; hold := data;

end process ;

end Synthesis_1;

architecture Synthesis_2 of latch1 is

begin S2: process (data, enable, reset)

variable hold : BIT_VECTOR (1 to 4);

begin

if enable = '1' then hold := data; end if ;

delay <= hold;

if reset = '0' then hold := "0000";

end process ;

end Synthesis_2;

Try to synthesize both versions. Does the synthesizer accept the code? Hint: It
should not. Explain any problems that you encounter, and how to correct them.
Resynthesize your working code.

12.26 (*VHDL data slip, 60 min.) Consider the following process, a shift register
core:

S1: process (data, enable) begin

if enable = '1' then Q <= Q(7 downto 0) & data; end if ;

end process ;

Complete the VHDL code and simulate to ensure your model operates correctly.
Try to synthesize your code and compare the operation of the resulting
implementation with the simulation results. Explain any problems you encounter.

12.27 (**Synchronous logic, hours) Investigate the following alternative ways to
synthesize synchronous logic in VHDL. Hint: A few of these methods are illegal
in both VHDL-87 and VHDL-93, some methods are only illegal in VHDL-87.
Create a table for Q1-Q17 that summarizes your results. Assume all signals are
STD_LOGIC . Can you create any more methods (positive-edge only)?

-- Let me count the ways to count.

-- Using wait statement:

process begin wait on clk; Q1 <= D; end process ; -- 2 edges

process begin wait on clk until clk = '1'; Q2 <= D; end process ;

process begin wait until clk = '1'; Q3 <= D; end process ;

process begin wait until clk = '1' and clk'EVENT; Q4 <= D;

end process ;

-- Using process and sensitivity list:

process (clk) begin if clk'EVENT and clk = '1' then Q5 <= D; end if ;

end process ;

process (clk) begin if not clk'STABLE and clk = '1' then Q6 <= D;

end if ; end process ;

process (clk) begin

if clk'LAST_VALUE = '0' and clk = '1' then Q7 <= D; end if ;

end process ;

-- Using rising_edge function from STD_LOGIC_1164:

process (clk) begin if rising_edge(clk) then Q8 <= D; end if ;

end process ;

process begin wait until rising_edge(clk); Q9 <= D; end process ;

process begin wait on rising_edge(clk); Q10 <= D; end process ;

-- rising_edge expanded:

process (clk) begin

if clk'EVENT and To_X01(clk) = '1'

and To_X01(clk'LAST_VALUE) = '0' then Q11 <= D; end if ;

end process ;

-- Using concurrent signal assignments:

Q12 <= D when clk'EVENT and clk = '1'; -- VHDL-93 only (...else)

Q13 <= D when clk'EVENT and clk = '1' else Q13; -- need buffer

Q14 <= D when clk'EVENT and clk = '1' else unaffected ; -- VHDL-93

Q15 <= D when clk'EVENT and clk = '1'

else Q15'DRIVING_VALUE; -- VHDL-93

-- Using blocks:

F1: block (not clk'STABLE and clk = '1')

begin Q16 <= guarded D; end block ;

F2: block (clk'EVENT and clk = '1')

begin Q17 <= guarded D; end block ;

-- The bizarre and variations using '0', 'L', 'H', and '1':

process (clk) begin

if clk'LAST_VALUE = 'L' and clk = 'H' or clk = '1' then Q18 <= D;

end if ; end process ;

process begin wait until clk = 'H' or clk = '1';

Q19 <= D; end process ;

-- More?

12.28 (*State assignment, 30 min) If we have a state machine with r states and S
0 variables, how many different state assignments are there, for S 0 = 1 and r = 2?
List the different state assignments with S 0 = 2, r = 3 and for S 0 = 2, r = 4. How
many of these are distinct? For five states and three state variables there are 6720
different state assignments, of which 140 are distinct. For nine states and four
state variables there are over 4 ¥ 10 9 different possible state assignments and
nearly 11 million of these are distinct. This makes the task of performing
sequential logic synthesis by exhaustively considering all possible state
assignments virtually impossible. Hint: McCluskey�s book discusses the problem
of state assignment [1965, pp. 266�267].

12.29 (*Synthesis scripts, hours) Write and document a script to synthesize the
Viterbi decoder using a logic synthesizer of your choice.

12.30 (*Floorplanning, hours) Write and document a script to perform
timing-driven synthesis and floorplanning for the Viterbi decoder.

12.31 (***Patents, 120 min.) Obtain a copy of U.S. Patent 5,530,841 �Method for
converting a hardware independent user description of a logic circuit into
hardware components.� This patent caused controversy during the approval of the
IEEE synthesis packages. Research this topic (including a visit to the Web site of
the synthesis package working group and checking other synthesis patents). Do
you feel (as an engineer) that the IEEE should be concerned?

12.15 Bibliography
One way to learn more about logic synthesis is to obtain a copy of misII or sis (or
their newest derivatives) from the University of California at Berkeley (UCB).
These tools form the basis of most commercially available logic-synthesis
software. Included with the sis distribution is a PostScript copy of a tutorial paper
(available also as ERL Memorandum UCB/ERL M92/41) on logic synthesis by
the UCB synthesis group. The internal help in sis explains the theory and purpose
of each command. In addition each logic-synthesis step is available separately so
it is possible to see the logic being synthesized, optimized, and mapped.

Programmable ASIC vendors, Xilinx, Altera, and Actel have each produced
reports explaining how to use Synopsys, Mentor, Cadence, and other synthesis
tools with their products. These are available on these companies� Web sites.

Brayton [1984] describes the detailed operation of espresso , one of the first
logic-minimization programs, and the foundation of most modern commercial
logic-synthesis tools. Edited books by Birtwistle and Subrahmanyam [1988] and
Dutton [1991] contain a collection of papers on logic synthesis. The book by
Thomas et al. [1990] describes an early logic-synthesis system. A tutorial paper
by Brayton, Hachtel, and Sangiovanni-Vincentelli [1990] is an advanced
description of multilevel logic optimization. In this chapter we have focused on
RTL synthesis; the edited books by Camposano and Wolf [1991]; Walker and
Camposano [1991]; and Michel, Lauther, and Duzy [1992] contain papers on
higher-level, or behavioral-level synthesis. Edwards provides an overview of
synthesis including references to earlier work [1992]. Gebotys and Elmasry
[1992] cover system-level synthesis. Sasao [1993] is a selection of papers from a
conference on logic synthesis. Kurup and Abbasi [1995] describe the Synopsys
logic-synthesis tools. The book by Murgai et al. [1995] focuses on logic
synthesis for FPGAs. De Micheli�s book [1994] is a detailed work on
logic-synthesis algorithms. Ashar et al. [1992] and Lavagno and
Sangiovanni-Vincentelli [1993] cover sequential logic synthesis in their books.
The book by Airiau, Berge, and Olive [1994] covers VHDL-93 from the
perspective of logic synthesis. A book by Knapp [1996], describing the Synopsys
behavioral compiler, is the closest to this book�s treatment of logic synthesis, and
includes several practical examples.

I have included references for a number of books (some not yet published) that I
was unable to obtain before this book went to press including titles by Rushton
[1995] on logic synthesis using VHDL; Saucier [1995] on architectural synthesis;
Hachtel and Somenzi [1996] on verification; Romdhane, Madisetti, and Hines
 [1996] on behavioral synthesis; and Villa et al. [1997] on FSM synthesis. I have
included as much information as possible for these references including the LOC
catalog information (it is possible to obtain an ISBN before publication).

12.16 References
Airiau, R., J.-M. Berge, and V. Olive. 1994. Circuit Synthesis with VHDL.
Boston, 221 p. ISBN 0792394291. TK7885.7.A37.

Ashar, P. et al. 1992. Sequential Logic Synthesis. Norwell, MA: Kluwer, 225 p.
ISBN 0-7923-9187-X. TK7868.L6.A84.

Birtwistle, G., and P. A. Subrahmanyam (Ed.). 1988. VLSI Specification,
Verification, and Synthesis. Boston: Kluwer, 404 p. ISBN 0898382467.
TK7874.V564. A collection of papers presented at a workshop held in Calgary,
Canada, Jan. 1987.

Brayton, R. K. 1984. Logic Minimization Algorithms for VLSI Synthesis.
Boston: Kluwer, 193 p. ISBN 0-89838-164-9. TK7868.L6L626. Includes an
extensive bibliography. A complete description of espresso, the basis of virtually
all commercial logic-synthesis tools. Difficult to read at first, but an excellent and
clear description of the development of the algorithms used for two-level logic
minimization.

Brayton, R. K., G. D. Hachtel, and A. L. Sangiovanni-Vincentelli. 1990.
�Multilevel logic synthesis.� Proceedings of the IEEE, Vol. 78, no. 2, pp. 264�300.

Camposano, R., and W. Wolf (Ed.). 1991. High-level VLSI Synthesis. Boston:
Kluwer, 390 p. ISBN 0792391594. TK7874.H5243.

De Micheli, G. 1994. Synthesis and Optimization of Digital Circuits. New York:
McGraw-Hill, 579 p. ISBN 0070163332. TK7874.65.D4.

Dutton, R. W. (Ed.). 1991. VLSI Logic Synthesis and Design. IOS Press. ISBN
905199046-4.

Edwards, M. D. 1992. Automated Logic Synthesis Techniques for Digital
Systems. New York: McGraw-Hill, 186 p. ISBN 0-07-019417-3. TK7874.6.E34.
Also Macmillan Press, Basingstoke, England, 1992. Includes an introduction to
logic minimization and synthesis, and the topic of synthesis and testing.

Gebotys, C. H., and M. I. Elmasry. 1992. Optimal VLSI Architectural Synthesis:
Area, Performance, and Testability. Boston, 289 p. ISBN 079239223X.
QA76.9.A73.G42.

Hachtel, G. D., and F. Somenzi. 1996. Logic Synthesis and Verification
Algorithms. Boston: Kluwer, 564 p. ISBN 0792397460. TK7874.75.H33.16
pages of references.

Knapp, D. W. 1996. Behavioral Synthesis: Digital System Design using the
Synopsys Behavioral Compiler. Upper Saddle River, NJ: Prentice-Hall, 231 p.
ISBN 0-13-569252-0. A description of the Synopsys software. Includes the
following code examples: FIR and IIR filters; Inverse Discrete Cosine
Transform; random logic for a Data Encryption Standard (DES) ASIC; and a
packet router. Appendix A contains a description of the details of creating
DesignWare components. Appendix B describes the subsets of VHDL and
Verilog that are understood by the Synopsys compiler. Includes a diskette
containing the code from the book.

Kurup, P., and T. Abbasi. 1995. Logic Synthesis Using Synopsys. Boston:
Kluwer, 304 p. ISBN 0-7923-9582-4. TK7874.6.K87. Hints, tips, and problems
with Synopsys synthesis tools. Synopsys has a technical support site on the
World Wide Web for registered users of their tools. See also 2nd ed., 1997 ISBN
079239786X.

Lavagno, L., and A. Sangiovanni-Vincentelli. 1993. Algorithms for Synthesis
and Testing of Asynchronous Circuits. Boston: Kluwer, 339 p. ISBN
0792393643. TK7888.4 .L38.

McCluskey, E. J. 1965. Introduction to the Theory of Switching Circuits. New
York: McGraw-Hill, 318 p. TK7888.3.M25.

Michel, P., U. Lauther, and P. Duzy (Ed.). 1992. The Synthesis Approach to
Digital System Design . Norwell: Kluwer, 415 p. ISBN 0792391993.
TK7868.D5.S96. Includes 30 pages of references.

Murgai, R., et al. 1995. Logic Synthesis for Field-Programmable Gate Arrays.
Boston: Kluwer, 427 p. ISBN 0-7923-9596-4. TK7895.G36M87.

Romdhane, M. S. B., V. K. Madisetti, and J. W. Hines. 1996. Quick-Turnaround
ASIC Design in VHDL: Core-Based Behavioral Synthesis. Boston: Kluwer, 180
p. ISBN 0792397444. TK7874.6.R66. Includes 6 pages of references.

Rushton, A. 1995. VHDL for Logic Synthesis: An Introductory Guide for
Achieving Design Requirements. New York: McGraw-Hill, 254 p. ISBN
0077090926. TK7885.7.R87.

Sasao, T. (Ed.). 1993. Logic Synthesis and Optimization. Boston: Kluwer. ISBN
0-7923-9308-2. TK7868.L6 L627. Papers from the International Symposium on
Logic Synthesis and Microprocessor Architecture, Iizuka, Japan, July 1992.

Saucier, G. 1995. Logic and Architecture Synthesis. New York: Chapman &
Hall. ISBN 0412726904. Not cataloged by the Library of Congress at the time of
this book's publication.

Thomas, D. E., et al. 1990. Algorithmic and Register-Transfer Level Synthesis:
The System Architect's Workbench. Boston: Kluwer. ISBN 0792390539.
TK7874.A418.

Villa, T., et al. 1997. Synthesis of Finite State Machines: Logic Optimization.
Boston: Kluwer. ISBN 0792398920. TK7868.L6.S944. In Library of Congress
catalog, but was not available at the time of this book�s publication.

Walker, R. A., and R. Camposano (Ed.). 1991. A Survey of High-Level Synthesis
Systems. Boston: Kluwer, 182 p. ISBN 0792391586. TK7874.S857.

SIMULATION
Engineers used to prototype systems to check their designs, often using a
breadboard with connector holes, allowing them to plug in ICs and wires.
Breadboarding was feasible when it was possible to construct systems from a few
off-the-shelf TTL parts. It is impractical for prototyping an ASIC. Instead most
ASIC design engineers turn to simulation as the modern equivalent of
breadboarding.

Last Edited by SP 14112004

13.1 Types of Simulation
Simulators are usually divided into the following categories or simulation modes
:

Behavioral simulation●

Functional simulation●

Static timing analysis●

Gate-level simulation●

Switch-level simulation●

Transistor-level or circuit-level simulation●

This list is ordered from high-level to low-level simulation (high-level being
more abstract, and low-level being more detailed). Proceeding from high-level to
low-level simulation, the simulations become more accurate, but they also
become progressively more complex and take longer to run. While it is just
possible to perform a behavioral-level simulation of a complete system, it is
impossible to perform a circuit-level simulation of more than a few hundred
transistors.

There are several ways to create an imaginary simulation model of a system. One
method models large pieces of a system as black boxes with inputs and outputs.
This type of simulation (often using VHDL or Verilog) is called behavioral
simulation . Functional simulation ignores timing and includes unit-delay
simulation , which sets delays to a fixed value (for example, 1 ns). Once a
behavioral or functional simulation predicts that a system works correctly, the
next step is to check the timing performance. At this point a system is partitioned
into ASICs and a timing simulation is performed for each ASIC separately
(otherwise the simulation run times become too long). One class of timing
simulators employs timing analysis that analyzes logic in a static manner,
computing the delay times for each path. This is called static timing analysis
because it does not require the creation of a set of test (or stimulus) vectors (an
enormous job for a large ASIC). Timing analysis works best with synchronous
systems whose maximum operating frequency is determined by the longest path
delay between successive flip-flops. The path with the longest delay is the critical
path .

Logic simulation or gate-level simulation can also be used to check the timing
performance of an ASIC. In a gate-level simulator a logic gate or logic cell
(NAND, NOR, and so on) is treated as a black box modeled by a function whose

variables are the input signals. The function may also model the delay through
the logic cell. Setting all the delays to unit value is the equivalent of functional
simulation. If the timing simulation provided by a black-box model of a logic
gate is not accurate enough, the next, more detailed, level of simulation is
switch-level simulation which models transistors as switches�on or off.
Switch-level simulation can provide more accurate timing predictions than
gate-level simulation, but without the ability to use logic-cell delays as
parameters of the models. The most accurate, but also the most complex and
time-consuming, form of simulation is transistor-level simulation . A
transistor-level simulator requires models of transistors, describing their
nonlinear voltage and current characteristics.

Each type of simulation normally uses a different software tool. A mixed-mode
simulator permits different parts of an ASIC simulation to use different
simulation modes. For example, a critical part of an ASIC might be simulated at
the transistor level while another part is simulated at the functional level. Be
careful not to confuse mixed-level simulation with a mixed analog/digital
simulator, these are mixed-level simulators .

Simulation is used at many stages during ASIC design. Initial prelayout
simulations include logic-cell delays but no interconnect delays. Estimates of
capacitance may be included after completing logic synthesis, but only after
physical design is it possible to perform an accurate postlayout simulation .

13.2 The Comparator/MUX
Example
As an example we borrow the model from Section 12.2, �A Comparator/MUX,�

// comp_mux.v

module comp_mux(a, b, outp); input [2:0] a, b; output [2:0] outp;

function [2:0] compare; input [2:0] ina, inb;

begin if (ina <= inb) compare = ina; else compare = inb; end

endfunction

assign outp = compare(a, b);

endmodule

We can use the following testbench to generate a sequence of input values (we
call these input vectors) that test or exercise the behavioral model, comp_mux.v :

// testbench.v

module comp_mux_testbench;

integer i, j;

reg [2:0] x, y, smaller; wire [2:0] z;

always @(x) $display("t x y actual calculated");

initial $monitor("%4g",$time,,x,,y,,z,,,,,,,smaller);

initial $dumpvars; initial #1000 $finish;

initial

begin

for (i = 0; i <= 7; i = i + 1)

begin

for (j = 0; j <= 7; j = j + 1)

begin

x = i; y = j; smaller = (x <= y) ? x : y;

#1 if (z != smaller) $display("error");

end

end

end

comp_mux v_1 (x, y, z);

endmodule

The results from the behavioral simulation are as follows:

t x y actual calculated

0 0 0 0 0

1 0 1 0 0

... 60 lines omitted...

 62 7 6 6 6

63 7 7 7 7

We included a delay of one Verilog time unit in line 15 of the testbench model
(allowing time to progress), but we did not specify the units�they could be
nanoseconds or days. Thus, behavioral simulation can only tell us if our design
does not work; it cannot tell us that real hardware will work.

13.2.1 Structural Simulation
We use logic synthesis to produce a structural model from a behavioral model.
The following comparator/MUX model is adapted from the example in
Section 12.11 , � Performance-Driven Synthesis � (optimized for a 0.6 m m
standard-cell library):

`timescale 1ns / 10ps // comp_mux_o2.v

module comp_mux_o (a, b, outp);

input [2:0] a; input [2:0] b;

output [2:0] outp;

supply1 VDD; supply0 VSS;

mx21d1 b1_i1 (.i0(a[0]), .i1(b[0]), .s(b1_i6_zn), .z(outp[0]));

oa03d1 b1_i2 (.a1(b1_i9_zn), .a2(a[2]), .b1(a[0]), .b2(a[1]),

.c(b1_i4_zn), .zn(b1_i2_zn));

nd02d0 b1_i3 (.a1(a[1]), .a2(a[0]), .zn(b1_i3_zn));

nd02d0 b1_i4 (.a1(b[1]), .a2(b1_i3_zn), .zn(b1_i4_zn));

mx21d1 b1_i5 (.i0(a[1]), .i1(b[1]), .s(b1_i6_zn), .z(outp[1]));

oa04d1 b1_i6 (.a1(b[2]), .a2(b1_i7_zn), .b(b1_i2_zn),

.zn(b1_i6_zn));

in01d0 b1_i7 (.i(a[2]), .zn(b1_i7_zn));

an02d1 b1_i8 (.a1(b[2]), .a2(a[2]), .z(outp[2]));

in01d0 b1_i9 (.i(b[2]), .zn(b1_i9_zn));

endmodule

Logic simulation requires Verilog models for the following six logic cells:
mx21d1 (2:1 MUX), oa03d1 (OAI221), nd02d0 (two-input NAND), oa04d1
(OAI21), in01d0 (inverter), and an02d1 (two-input AND). These models are part
of an ASIC library (often encoded so that they cannot be seen) and thus, from this
point on, the designer is dependent on a particular ASIC library company. As an
example of this dependence, notice that some of the names in the preceding code
have changed from uppercase (in Figure 12.8 on p. 624) to lowercase. Verilog is
case sensitive and we are using a cell library that uses lowercase. Most
unfortunately, there are no standards for names, cell functions, or the use of case
in ASIC libraries.

The following code (a simplified model from a 0.8 m m standard-cell library)
models a 2:1 MUX and uses fixed delays:

`timescale 1 ns / 10 ps

module mx21d1 (z, i0, i1, s); input i0, i1, s; output z;

not G3(N3, s);

and G4(N4, i0, N3), G5(N5, s, i1), G6(N6, i0, i1);

or G7(z, N4, N5, N6);

specify

(i0*>z) = (0.279:0.504:0.900, 0.276:0.498:0.890);

(i1*>z) = (0.248:0.448:0.800, 0.264:0.476:0.850);

(s*>z) = (0.285:0.515:0.920, 0.298:0.538:0.960);

endspecify

endmodule

This code uses Verilog primitive models (not , and , or) to describe the behavior
of a MUX, but this is not how the logic cell is implemented.

To simulate the optimized structural model, module comp_mux_o2.v , we use the
library cell models (module mx21d1 and the other five that are not shown here)
together with the following new testbench model:

`timescale 1 ps / 1 ps // comp_mux_testbench2.v

module comp_mux_testbench2;

integer i, j; integer error;

reg [2:0] x, y, smaller; wire [2:0] z, ref;

always @(x) $display("t x y derived reference");

// initial $monitor("%8.2f",$time/1e3,,x,,y,,z,,,,,,,,ref);

initial $dumpvars;

initial begin

error = 0; #1e6 $display("%4g", error, " errors");

$finish;

end

initial begin

for (i = 0; i <= 7; i = i + 1) begin

for (j = 0; j <= 7; j = j + 1) begin

x = i; y = j; #10e3;

$display("%8.2f",$time/1e3,,x,,y,,z,,,,,,,,ref);

if (z != ref)

begin $display("error"); error = error + 1; end

end

end

end

comp_mux_o v_1 (x, y, z); // comp_mux_o2.v

reference v_2 (x, y, ref);

endmodule

// reference.v

module reference(a, b, outp);

input [2:0] a, b; output [2:0] outp;

assign outp = (a <= b) ? a : b; // different from comp_mux

endmodule

In this testbench we have instantiated two models: a reference model (module
reference) and a derived model (module comp_mux_o , the optimized structural
model). The high-level behavioral model that represents the initial system
specification (module reference) may be different from the model that we use as
input to the logic-synthesis tool (module comp_mux). Which is the real
reference model? We postpone this question until we discuss formal verification
in Section 13.8 . For the moment, we shall simply perform simulations to check
the reference model against the derived model. The simulation results are as
follows:

t x y derived reference

10.00 0 0 0 0

20.00 0 1 0 0

... 60 lines omitted...

 630.00 7 6 6 6

640.00 7 7 7 7

0 errors

(A summary is printed at the end of the simulation to catch any errors.) The next
step is to examine the timing of the structural model (by switching the leading '//'
from line 6 to 16 in module comp_mux_testbench2). It is important to simulate
using the worst-case delays by using a command-line switch as follows: verilog
+maxdelays . We can then find the longest path delay by searching through the
simulator output, part of which follows:

t x y derived reference

... lines omitted...

 260.00 3 2 1 2

260.80 3 2 3 2

260.85 3 2 2 2

270.00 3 3 2 3

270.80 3 3 3 3

280.00 3 4 3 3

280.85 3 4 0 3

283.17 3 4 3 3

... lines omitted...

At time 280 ns, the input vectors, x and y , switch from (x = 3 , y = 3) to (x = 3
, y = 4). The output of the derived model (which should be equal to the smaller
of x and y) is the same for both of these input vectors and should remain
unchanged. In fact there is a glitch at the output of the derived model, as it
changes from 3 to 0 and back to 3 again, taking 3.17 ns to settle to its final value
(this is the longest delay that occurs using this testbench). The glitch occurs
because one of the input vectors (input y) changes from '011' (3 in decimal) to
'100' (decimal 4). Changing several input bits simultaneously causes the output to
vacillate.

Notice that the nominal and worst-case simulations will not necessarily give the
same longest path delay. In addition the longest path delay found using this
testbench is not necessarily the critical path delay. For example, the longest, and
therefore critical, path delay might result from a transition from x = 3 , y = 4 to x
= 4 , y = 3 (to choose a random but possible candidate set of input vectors). This
testbench does not include tests with such transitions. To find the critical path
using logic simulation requires simulating all possible input transitions (64 ¥ 64 =
4096) and then sifting through the output to find the critical path.

Vector-based simulation (or dynamic simulation) can show us that our design
functions correctly�hence the name functional simulation. However, functional
simulation does not work well if we wish to find the critical path. For this we turn
to a different type of simulation�static simulation or static timing analysis.

TABLE 13.1 Timing analysis of the comparator/MUX structural model,
comp_mux_o2.v , from Figure 12.8 .

Command Timing analyzer/logic synthesizer output 1 1

> report timing

instance name

inPin --> outPin incr arrival trs rampDel cap cell

 (ns) (ns) (ns) (pf)

--

a[0] .00 .00 R .00 .12 comp_m...

b1_i3

A2 --> ZN .31 .31 F .23 .08 nd02d0

b1_i4

A2 --> ZN .41 .72 R .26 .07 nd02d0

b1_i2

C --> ZN 1.36 2.08 F .13 .07 oa03d1

b1_i6

B --> ZN .94 3.01 R .24 .14 oa04d1

b1_i5

S --> Z 1.04 4.06 F .08 .04 mx21d1

outp[0] .00 4.06 F .00 .00 comp_m...

13.2.2 Static Timing Analysis
A timing analyzer answers the question: �What is the longest delay in my circuit?�
Table 13.1 shows the timing analysis of the comparator/MUX structural model,
module comp_mux_o2.v . The longest or critical path delay is 4.06 ns under the
following worst-case operating conditions: worst-case process, V DD = 4.75 V,
and T = 70 � C (the same conditions as used for the library data book delay
values). The timing analyzer gives us only the critical path and its delay. A
timing analyzer does not give us the input vectors that will activate the critical
path. In fact input vectors may not exist to activate the critical path. For example,
it may be that the decimal values of the input vectors to the comparator/MUX
may never differ by more than four, but the timing-analysis tool cannot use this
information. Future timing-analysis tools may consider such factors, called
Boolean relations , but at present they do not.

Section 13.2.1 explained why dynamic functional simulation does not necessarily
find the critical path delay. Nevertheless, the difference between the longest path
delay found using functional simulation, 3.17 ns, and the critical path delay
reported by the static timing-analysis tool, 4.06 ns, is surprising. This difference

occurs because the timing analysis accounts for the loading of each logic cell by
the input capacitance of the logic cells that follow, but the simplified Verilog
models used for functional simulation in Section 13.2.1 did not include the
effects of capacitive loading. For example, in the model for the logic cell mx21d1
, the (rising) delay from the i0 input to the output z , was fixed at 0.900 ns worst
case (the maximum delay value is the third number in the first triplet in line 7 of
module mx21d1). Normally library models include another portion that adjusts
the timing of each logic cell�this portion was removed to simplify the model
mx21d1 shown in Section 13.2.1 .

Most timing analyzers do not consider the function of the logic when they search
for the critical path. Thus, for example, the following code models z = NAND(a,
NOT(a)) , which means that the output, z , is always '1' .

module check_critical_path_1 (a, z);

input a; output z; supply1 VDD; supply0 VSS;

nd02d0 b1_i3 (.a1(a), .a2(b), .zn(z)); // 2-input NAND

in01d0 b1_i7 (.i(a), .zn(b)); // inverter

endmodule

A timing-analyzer report for this model might show the following critical path:

inPin --> outPin incr arrival trs rampDel cap cell

 (ns) (ns) (ns) (pf)

--

a .00 .00 R .00 .08 check_...

b1_i7

I --> ZN .38 .38 F .30 .07 in01d0

b1_i3

A2 --> ZN .28 .66 R .13 .04 nd02d0

z .00 .66 R .00 .00 check_...

Paths such as this, which are impossible to activate, are known as false paths .
Timing analysis is essential to ASIC design but has limitations. A timing-analysis
tool is more logic calculator than logic simulator.

13.2.3 Gate-Level Simulation
To illustrate the differences between functional simulation, timing analysis, and
gate-level simulation, we shall simulate the comparator/MUX critical path (the
path is shown in Table 13.1). We start by trying to find vectors that activate this
critical path by working forward from the beginning of the critical path, the input
a[0] , toward the end of the critical path, output outp[0] , as follows:

Input a[0] to the two-input NAND, nd02d0 , cell instance b1_i3 , changes
from a '0' to a '1' . We know this because there is an 'R' (for rising) under
the trs (for transition) heading on the first line of the critical path timing
analysis report in Table 13.1 .

1.

Input a[1] to the two-input NAND, nd02d0 , cell instance b1_i3 , must be a
'1' . This allows the change on a[0] to propagate toward the output, outp[0]
.

2.

Similarly, input b[1] to the two-input NAND, cell instance b1_i4 , must be
a '1' .

3.

We skip over the required inputs to cells b1_i2 and b1_i6 for the moment.4.

From the last line of Table 13.1 we know the output of MUX, mx21d1 ,
cell instance b1_i5 , changes from '1' to a '0' . From the previous line in
Table 13.1 we know that the select input of this MUX changes from '0' to a
'1' . This means that the final value of input b[0] (the i1 input, selected
when the select input is '1') must be '0' (since this is the final value that
must appear at the MUX output). Similarly, the initial value of a[0] must
be a '1' .

5.

We have now contradicted ourselves. In step 1 we saw that the initial value of
a[0] must be a '0' . The critical path is thus a false path. Nevertheless we shall
proceed. We set the initial input vector to (a = '110' , b = '111') and then to (a =
'111' , b = '110'). These vectors allow the change on a[0] to propagate to the
select signal of the MUX, mx21d1 , cell instance b1_i5 . In decimal we are
changing a from 6 to 7, and b from 7 to 6; the output should remain unchanged at
6. The simulation results from the gate-level simulator we shall use (
CompassSim) can be displayed graphically or in the text form that follows:

...

The calibration was done at Vdd=4.65V, Vss=0.1V, T=70 degrees C

Time = 0:0 [0 ns]

a = 'D6 [0] (input)(display)

b = 'D7 [0] (input)(display)

outp = 'Buuu ('Du) [0] (display)

outp --> 'B1uu ('Du) [.47]

outp --> 'B11u ('Du) [.97]

outp --> 'D6 [4.08]

a --> 'D7 [10]

b --> 'D6 [10]

outp --> 'D7 [10.97]

outp --> 'D6 [14.15]

Time = 0:0 +20ns [20 ns]

The code 'Buuu denotes that the output is initially, at t = 0 ns, a binary vector of
three unknown or unsettled signals. The output bits become valid as follows:
outp[2] at 0.47 ns, outp[1] at 0.97 ns, and outp[0] at 4.08 ns. The output is stable
at 'D6 (decimal 6) or '110' at t = 10 ns when the input vectors are changed in an
attempt to activate the critical path. The output glitches from 'D6 ('110') to 'D7 (
'111') at t = 10.97 ns and back to 'D6 again at t = 14.15 ns. Thus, the output bit,
outp[0] , takes a total of 4.15 ns to settle.

Can we explain this behavior? The data book entry for the mx21d1 logic cell
gives the following equation for the rising delay as a function of Cld (the load
capacitance, excluding the output capacitance of the logic cell itself, expressed in
picofarads):

tI0Z (IO->Z) = 0.90 + 0.07 + (1.76 ¥ Cld) ns (13.1)

tI0Z (IO->Z) = 0.90 + 0.07 + (1.76 ¥ Cld) ns (13.1)

The capacitance, Cld , at the output of each MUX is zero (because nothing is
connected to the outputs). From Eq. 13.1 , the path delay from the input, a[0] , to
the output, outp[0] , is thus 0.97 ns. This explains why the output, outp[0] ,
changes from '0' to '1' at t = 10.97 ns, 0.97 ns after a change occurs on a[0] .

The gate-level simulation predicts that the input, a[0] , to the MUX will change
before the changes on the inputs have time to propagate to the MUX select.
Finally, at t = 14.15 ns, the MUX select will change and switch the output,
outp[0] , back to '0' again. The total delay for this input vector stimulus is thus
4.15 ns. Even though this path is a false path (as far as timing analysis is
concerned), it is a critical path. It is indeed necessary to wait for 4.15 ns before
using the output signal of this circuit. A timing analyzer can only offer us a
guarantee that there is no other path that is slower than the critical path.

13.2.4 Net Capacitance
The timing analyzer predicted a critical path delay of 4.06 ns compared to the
gate-level simulation prediction of 4.15 ns. We can check our results by using
another gate-level simulator (QSim) which uses a slightly different algorithm.

Here is the output (with the same input vectors as before):

@nodes

a R10 W1; a[2] a[1] a[0]

b R10 W1; b[2] b[1] b[0]

outp R10 W1; outp[2] outp[1] outp[0]

@data

.00 a -> 'D6

.00 b -> 'D7

.00 outp -> 'Du

.53 outp -> 'Du

.93 outp -> 'Du

4.42 outp -> 'D6

10.00 a -> 'D7

10.00 b -> 'D6

11.03 outp -> 'D7

14.43 outp -> 'D6

END OF SIMULATION TIME = 20 ns

@end

The output is similar but gives yet another value, 4.43 ns, for the path delay. Can
this be explained? The simulator prints the following messages as a clue:

defCapacitance = .1E-01 pF

incCapacitance = .1E-01 pF/pin

The simulator is adding capacitance to the outputs of each of the logic cells to
model the parasitic net capacitance (interconnect capacitance or wire
capacitance) that will be present in the physical layout. The simulator adds 0.01
pF (defCapacitance) on each node and another 0.01 pF (incCapacitance) for
each pin (logic cell input) attached to a node. The model that predicts these
values is known as a wire-load model , wire-delay model , or interconnect model
. Changing the wire-load model parameters to zero and repeating the simulation
changes the critical-path delay to 4.06 ns, which agrees exactly with the
logic-synthesizer timing analysis. This emphasizes that the net capacitance may
contribute a significant delay.

The library data book (VLSI Technology, vsc450) lists the cell input and output
capacitances. For example, the values for the nd02d0 logic cell are as follows:

Cin (inputs, a1 and a2) = 0.042 pF Cout (output, zn) = 0.038 pF (13.2)

Cin (inputs, a1 and a2) = 0.042 pF Cout (output, zn) = 0.038 pF
(13.2)

Armed with this information, let us return to the timing analysis report of Table
13.1 (the part of this table we shall focus on follows) and examine how a timing
analyzer handles net capacitance.

inPin --> outPin incr arrival trs rampDel cap cell

 (ns) (ns) (ns) (pf)

a[0] .00 .00 R .00 .12 comp_m...

b1_i3

A2 --> ZN .31 .31 F .23 .08 nd02d0

...

The total capacitance at the output node of logic cell instance b1_i3 is 0.08 pF.
This figure is the sum of the logic cell (nd02d0) output capacitance of cell
instance b1_i3 (equal to 0.038 pF) and Cld , the input capacitance of the next cell,
b1_i2 (also an nd02d0), equal to 0.042 pF.

The capacitance at the input node, a[0] , is equal to the sum of the input
capacitances of the logic cells connected to that node. These capacitances (and
their sources) are as follows:

0.042 pF (the a2 input of the two-input NAND, instance b1_i3 , cell
nd02d0)

1.

0.038 pF (the i0 input of the 2:1 MUX, instance b1_i1 , cell mx21d1)2.

0.038 pF (the b1 input of the OAI221, instance b1_i2 , cell oa03d1)3.

The sum of these capacitances is the 0.12 pF shown in the timing-analysis report.

Having explained the capacitance figures in the timing-analysis report, let us turn
to the delay figures. The fall-time delay equation for a nd02d0 logic cell (again
from the vsc450 library data book) is as follows:

tD (AX->ZN) = 0.08 + 0.11 + (2.89 ¥ Cld) ns (13.3)

tD (AX->ZN) = 0.08 + 0.11 + (2.89 ¥ Cld) ns (13.3)

Notice 0.11 ns = 2.89 nspF�1 ¥ 0.038 pF, and this figure in Eq. 13.3 is the part of
the cell delay attributed to the cell output capacitance. The ramp delay in the

timing analysis (under the heading rampDel in Table 13.1) is the sum of the last
two terms in Eq. 13.3 . Thus, the ramp delay is 0.11 + (2.89 ¥ 0.042) = 0.231 ns
(since Cld is 0.042 pF). The total delay (under incr in Table 13.1) is 0.08 + 0.231
= 0.31 ns.

There are thus the following four figures for the critical path delay:

4.06 ns from a static timing analysis using the logic-synthesizer timing
engine (worst-case process, V DD = 4.50 V, and T = 70 � C). No wire
capacitance.

1.

4.15 ns from a gate-level functional simulation (worst-case process, V SS =
0.1 V, V DD = 4.65 V, and T = 70 � C). No wire capacitance.

2.

4.43 ns from a gate-level functional simulation. Default wire-capacitance
model (0.01 pF + 0.01 pF / pin).

3.

4.06 ns from a gate-level functional simulation. No wire capacitance.4.

Normally we do not check our simulation results this thoroughly. However, we
can only trust the tools if we understand what they are doing, how they work,
their limitations, and we are able to check that the results are reasonable.

1. 1Using a 0.8 m m standard-cell library, VLSI Technology vsc450. Worst-case
environment: worst-case process, V DD = 4.75 V, and T = 70 °C. No wire
capacitance, no input or output capacitance, prop�ramp timing model. The
structural model was synthesized and optimized using a 0.6 m m library, but this
timing analysis was performed using the 0.8 m m library. This is because the
library models are simpler for the 0.8 m m library and thus easier to explain in
the text.

13.3 Logic Systems
Digital signals are actually analog voltage (or current) levels that vary
continuously as they change. Digital simulation assumes that digital signals may
only take on a set of logic values (or logic states �here we will consider the two
terms equivalent) from a logic system . A logic system must be chosen carefully.
Too many values will make the simulation complicated and slow. With too few
values the simulation may not accurately reflect the hardware performance.

A two-value logic system (or two-state logic system) has a logic value '0'
corresponding to a logic level 'zero' and a logic value '1' corresponding to a logic
level 'one'. However, when the power to a system is initially turned on, we do not
immediately know whether the logic value of a flip-flop output is '1' or '0' (it will
be one or the other, but we do not know which). To model this situation we
introduce a logic value 'X' , with an unknown logic level, or unknown . An
unknown can propagate through a circuit. For example, if the inputs to a
two-input NAND gate are logic values '1' and 'X' , the output is logic value 'X' or
unknown. Next, in order to model a three-state bus, we need a high-impedance
state . A high-impedance state may have a logic level of 'zero' or 'one', but it is
not being driven�we say it is floating. This will occur if none of the gates
connected to a three-state bus is driving the bus. A four-value logic system is
shown in Table 13.2 .

TABLE 13.2 A four-value logic system.
Logic state Logic level Logic value
0 zero zero
1 one one
X zero or one unknown
Z zero, one, or neither high impedance

13.3.1 Signal Resolution
What happens if multiple drivers try to drive different logic values onto a bus?
Table 13.3 shows a signal-resolution function for a four-value logic system that
will predict the result.

TABLE 13.3 A resolution function R {A, B} that predicts the result of two
drivers simultaneously attempting to drive signals with values A and B onto a
bus.

R {A, B} B = 0 B = 1 B = X B = Z
A = 0 0 X X 0
A = 1 X 1 X 1
A = X X X X X
A = Z 0 1 X Z

A resolution function, R {A, B}, must be commutative and associative . That is,

R {A, B} = R {B, A} and R {R {A, B}, C} = R {A, R {B, C}}. (13.4)

R {A, B} = R {B, A} and R {R {A, B}, C} = R {A, R {B, C}}.(13.4)

Equation 13.4 ensures that, if we have three (or more) signals to resolve, it does
not matter in which order we resolve them. Suppose we have four drivers on a
bus driving values '0' , '1' , 'X' , and 'Z' . If we use Table 13.3 three times to
resolve these signals, the answer is always 'X' whatever order we use.

13.3.2 Logic Strength
In CMOS logic we use n -channel transistors to produce a logic level 'zero' (with
a forcing strength) and we use p -channel transistors to force a logic level 'one'.
An n -channel transistor provides a weak logic level 'one'. This is a new logic
value, a resistive 'one' , which has a logic level of 'one', but with resistive strength
. Similarly, a p -channel transistor produces a resistive 'zero' . A resistive strength
is not as strong as a forcing strength. At a high-impedance node there is nothing
to keep the node at any logic level. We say that the logic strength is high
impedance . A high-impedance strength is the weakest strength and we can treat
it as either a very high-resistance connection to a power supply or no connection
at all.

TABLE 13.4 A 12-state logic system.
 Logic level
Logic strength zero unknown one

strong S0 SX S1
weak W0 WX W1
high impedance Z0 ZX Z1
unknown U0 UX U1

With the introduction of logic strength, a logic value may now have two
properties: level and strength. Suppose we were to measure a voltage at a node N
with a digital voltmeter (with a very high input impedance). Suppose the
measured voltage at node N was 4.98 V (and the measured positive supply, V DD
= 5.00 V). We can say that node N is a logic level 'one', but we do not know the
logic strength. Now suppose you connect one end of a 1 k W resistor to node N ,
the other to GND, and the voltage at N changes to 4.95 V. Now we can say that

whatever is driving node N has a strong forcing strength. In fact, we know that
whatever is driving N is capable of supplying a current of at least 4.95 V / 1 k W
• 5 mA. Depending on the logic-value system we are using, we can assign a logic
value to N . If we allow all possible combinations of logic level with logic
strength, we end up with a matrix of logic values and logic states. Table 13.4
shows the 12 states that result with three logic levels (zero, one, unknown) and
four logic strengths (strong, weak, high-impedance, and unknown). In this logic
system, node N has logic value S1 �a logic level of 'one' with a logic strength of
'strong'.

The Verilog logic system has three logic levels that are called '1' , '0' , and 'x' ;
and the eight logic strengths shown in Table 13.5 . The designer does not
normally see the logic values that result�only the three logic levels.

TABLE 13.5 Verilog logic strengths.
Logic strength Strength number Models Abbreviation
supply drive 7 power supply supply Su

strong drive 6
default gate and assign output
strength

strong St

pull drive 5 gate and assign output strength pull Pu
large capacitor 4 size of trireg net capacitor large La
weak drive 3 gate and assign output strength weak We
medium capacitor 2 size of trireg net capacitor medium Me
small capacitor 1 size of trireg net capacitor small Sm
high impedance 0 not applicable highz Hi

The IEEE Std 1164-1993 logic system defines a variable type, std_ulogic , with
the nine logic values shown in Table 13.6 . When we wish to simulate logic cells
using this logic system, we must define the primitive-gate operations. We also
need to define the process of VHDL signal resolution using VHDL
signal-resolution functions . For example, the function in the IEEE
Std_Logic_1164 package that defines the and operation is as follows 1 :

TABLE 13.6 The nine-value logic system, IEEE Std 1164-1993.
Logic state Logic value Logic state Logic value
'0' strong low 'X' strong unknown
'1' strong high 'W' weak unknown
'L' weak low 'Z' high impedance
'H' weak high '-' don�t care
 'U' uninitialized

function "and"(l,r : std_ulogic_vector) return std_ulogic_vector is

alias lv : std_ulogic_vector (1 to l'LENGTH) is l;

alias rv : std_ulogic_vector (1 to r'LENGTH) is r;

variable result : std_ulogic_vector (1 to l'LENGTH);

constant and_table : stdlogic_table := (

--| U X 0 1 Z W L H - | |

 ('U', 'U', '0', 'U', 'U', 'U', '0', 'U', 'U'), -- | U |

 ('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X'), -- | X |

 ('0', '0', '0', '0', '0', '0', '0', 'U', '0'), -- | 0 |

 ('U', 'X', '0', '1', 'X', 'X', '0', '1', 'X'), -- | 1 |

 ('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X'), -- | Z |

 ('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X'), -- | W |

 ('0', '0', '0', '0', '0', '0', '0', '0', '0'), -- | L |

 ('U', 'X', '0', '1', 'X', 'X', '0', '1', 'X'), -- | H |

 ('U', 'X', '0', 'X', 'X', 'X', '0', 'X', 'X'), -- | - |);

begin

if (l'LENGTH /= r'LENGTH) then assert false report

"arguments of overloaded 'and' operator are not of the same

length"

severity failure;

else

for i in result'RANGE loop

result(i) := and_table (lv(i), rv(i));

end loop;

end if;

return result;

end "and";

If a = 'X' and b = '0' , then (a and b) is '0' no matter whether a is, in fact, '0' or '1' .

1. IEEE Std 1164-1993, © Copyright 1993 IEEE. All rights reserved.

13.8 Formal Verification
Using logic synthesis we move from a behavioral model to a structural model.
How are we to know (other than by trusting the logic synthesizer) that the two
representations are the same? We have already seen that we may have to alter the
original reference model because the HDL acceptable to a synthesis tool is a
subset of HDL acceptable to simulators. Formal verification can prove, in the
mathematical sense, that two representations are equivalent. If they are not, the
software can tell us why and how two representations differ.

13.8.1 An Example
We shall use the following VHDL entity with two architectures as an example: 1

entity Alarm is

port (Clock, Key, Trip : in bit; Ring : out bit);

end Alarm;

The following behavioral architecture is the reference model :

architecture RTL of Alarm is

type States is (Armed, Off, Ringing); signal State : States;

begin

process (Clock) begin

if Clock = '1' and Clock'EVENT then

case State is

when Off => if Key = '1' then State <= Armed; end if ;

when Armed => if Key = '0' then State <= Off;

elsif Trip = '1' then State <= Ringing;

end if ;

when Ringing => if Key = '0' then State <= Off; end if ;

end case ;

end if ;

end process ;

Ring <= '1' when State = Ringing else '0';

end RTL;

The following synthesized structural architecture is the derived model :

library cells; use cells. all ; // ...contains logic cell models

architecture Gates of Alarm is

component Inverter port (i : in BIT;z : out BIT) ; end component ;

component NAnd2 port (a,b : in BIT;z : out BIT) ; end component ;

component NAnd3 port (a,b,c : in BIT;z : out BIT) ; end component ;

component DFF port(d,c : in BIT; q,qn : out BIT) ; end component ;

signal State, NextState : BIT_VECTOR(1 downto 0);

signal s0, s1, s2, s3 : BIT;

begin

g2: Inverter port map (i => State(0), z => s1);

g3: NAnd2 port map (a => s1, b => State(1), z => s2);

g4: Inverter port map (i => s2, z => Ring);

g5: NAnd2 port map (a => State(1), b => Key, z => s0);

g6: NAnd3 port map (a => Trip, b => s1, c => Key, z => s3);

g7: NAnd2 port map (a => s0, b => s3, z => NextState(1));

g8: Inverter port map (i => Key, z => NextState(0));

state_ff_b0: DFF port map

(d => NextState(0), c => Clock, q => State(0), qn => open);

state_ff_b1: DFF port map

(d => NextState(1), c => Clock, q => State(1), qn => open);

end Gates;

To compare the reference and the derived models (two representations), formal
verification performs the following steps: (1) the HDL is parsed, (2) a finite-state
machine compiler extracts the states present in any sequential logic, (3) a proof
generator automatically generates formulas to be proved, (4) the theorem prover

attempts to prove the formulas. The results from the last step are as follows:

formulas to be proved: 8

formulas proved VALID: 8

By constructing and then proving formulas the software tells us that architecture
RTL implies architecture Gates (implication is the default proof mechanism�we
could also have asked if the architectures are exactly equivalent). Next, we shall
explore what this means and how formal verification works.

13.8.2 Understanding Formal
Verification
The formulas to be proved are generated in a separate file of proof statements :

axioms

Let Axiom_ref = Axioms Of alarm-rtl

Let Axiom_der = Axioms Of alarm-gates

ProveNotAlwaysFalse (Axiom_ref)

Prove (Axiom_ref => Axiom_der)

assertions

Let Assert_ref = Asserts Of alarm-rtl

Let Assert_der = Asserts Of alarm-gates

Prove (Axiom_ref => (Assert_ref => Assert_der))

clocks

Let ClockEvents_ref = Clocks Of alarm-rtl

Let ClockEvents_der = Clocks Of alarm-gates

Let Master__clock_event_ref =

Value (master__clock'event Of alarm-rtl)

Prove (Axiom_ref => (ClockEvents_ref <=> ClockEvents_der))

next state of memories

Prove ((Axiom_ref And Master__clock_event_ref) =>

(Transition (state(1) Of alarm-rtl) <=>

Transition (state_ff_b1.t Of alarm-gates)))

Prove ((Axiom_ref And Master__clock_event_ref) =>

(Transition (state(0) Of alarm-rtl) <=>

Transition (state_ff_b0.t Of alarm-gates)))

validity value of outbuses

Prove (Axiom_ref => (Domain (ring Of alarm-rtl) <=>

Domain (ring Of alarm-gates)))

Prove (Axiom_ref => (Domain (ring Of alarm-rtl) =>

(Value (ring Of alarm-rtl) <=>

Value (ring Of alarm-gates))))

Formal verification makes strict use of the terms axiom and assertion . An axiom
is an explicit or implicit fact. For example, if a VHDL signal is declared to be
type BIT , an implicit axiom is that this signal may only take the logic values '0'
and '1' . An assertion is derived from a statement placed in the HDL code. For
example, the following VHDL statement is an assertion:

assert Key /= '1' or Trip /= '1' or NextState = Ringing

report "Alarm on and tripped but not ringing";

A VHDL assert statement prints only if the condition is FALSE . We know from
de Morgan�s theorem that (A + B + C)' = A'B'C' . Thus, this statement checks for
a burglar alarm that does not ring when it is on and we are burgled.

In the proof statements the symbol '=>' means implies . In logic calculus we write
A Ò B to mean A implies B . The symbol '<=>' means equivalence , and this is
stricter than implication. We write A ¤ B to mean: A is equivalent to B .
Table 13.13 show the truth tables for these two logic operators.

TABLE 13.13 Implication and equivalence.
A B A Ò B A ¤ B
F F T T
F T T F
T F F F
T T T T

13.8.3 Adding an Assertion
If we include the assert statement from the previous section in architecture RTL
and repeat formal verification, we get the following message from the FSM
compiler:

<E> Assertion may be violated

SEVERITY: ERROR

REPORT: Alarm on and tripped but not ringing

FILE: .../alarm-rtl3.vhdl

FSM: alarm-rtl3

STATEMENT or DECLARATION: line8

.../alarm-rtl3.vhdl (line 8)

Context of the message is:

(key And trip And memoryofdriver__state(0))

This message tells us that the assert statement that we included may be triggered
under a certain condition: (key And trip And state(0)) . The prefix
'memoryofdriver__' is used by the theorem prover to refer to the memory element
used for state(0) . The state 'off' in the reference model corresponds to state(0) in
the encoding that the finite-state machine compiler has used (and also to state(0)
in the derived model). From this message we can isolate the problem to the
following case statement (the line numbers follow the original code in
architecture RTL):

case State is

when Off => if Key = '1' then State <= Armed; end if ;

when Armed => if Key = '0' then State <= Off;

elsif Trip = '1' then State <= Ringing;

end if ;

when Ringing => if Key = '0' then State <= Off; end if ;

end case ;

When we start in state Off and the two inputs are Trip = '1' and Key = '1' , we go
to state Armed , and not to state Ringing . On the subsequent clock cycle we will
go state Ringing , but only if Trip does not change. Since we have all seen
�Mission Impossible� and the burglar who exits the top-secret computer room at
the Pentagon at the exact moment the alarm is set, we know this is perfectly
possible and the software is warning us of this fact. Continuing on, we get the
following results from the theorem prover:

Prove (Axiom_ref => (Assert_ref => Assert_der))

Formula is NOT VALID

But is VALID under Assert Context of alarm-rtl3

We included the assert statement in the reference model (architecture RTL) but
not in the derived model (architecture Gates). Now we are really mixed up: The
assertion statement in the reference model says one thing, but the case statement
in the reference model describes another. The theorem prover retorts: �The
axioms of the reference model do not imply that the assertions of the reference
model imply the assertions of the derived model.� Translation: �These two
architectures differ in some way.� However, if we assume that the assertion is true
(despite what the case statement says) then the formula is true. The prover is also
saying: �Make up your mind, you cannot have it both ways.� The prover goes on
to explain the differences between the two representations:

***Difference is:

(Not state(1) And key And state(0) And trip)

There are 1 cubes and 4 literals in the complete equation

***Local Variable Assert_der is:

Not key Or Not state(0) Or Not trip

There are 3 cubes and 3 literals in the complete equation

***Local Variable Assert_ref is: 1

***Local Variable Axiom_ref is:

Not state(1) Or Not state(0)

There are 2 cubes and 2 literals in the complete equation

formulas to be proved: 8

formulas proved VALID: 7

formulas VALID under assert context of der.model: 1

Study these messages hard and you will see that the differences between the two
models are consistent with our explanation.

13.8.4 Completing a Proof
To fix the problem we change the code as follows:

...

case State is

when Off => if Key = '1' then

if Trip = '1' then NextState <= Ringing;

else NextState <= Armed;

end if ;

end if ;

when Armed => if Key = '0' then NextState <= Off;

elsif Trip = '1' then NextState <= Ringing;

end if ;

when Ringing => if Key = '0' then NextState <= Off; end if ;

end case ;

...

This results in a minor change in the synthesized netlist,

g2: Inverter port map (i => State(0), z => s1);

g3: NAnd2 port map (a => s1, b => State(1), z => s2);

g4: Inverter port map (i => s2, z => Ring);

g5: NAnd2 port map (a => State(1), b => Key, z => s0);

g6: NAnd3 port map (a => Trip, b => s1, c => Key, z => s3);

g7: NAnd2 port map (a => s0, b => s3, z => NextState(1));

g8: Inverter port map (i => Key, z => NextState(0));

state_ff_b0: DFF port map (d => NextState(0), c => Clock, q => State(0), qn =>
open);

state_ff_b1: DFF port map (d => NextState(1), c => Clock, q => State(1), qn =>
open);

Repeating the formal verification confirms and formally proves that the derived
model will operate correctly. Strictly, we say that the operation of the derived

model is implied by the reference model.

1. By one of the architects of the Compass VFormal software, Erich Marschner.

13.4 How Logic Simulation
Works
The most common type of digital simulator is an event-driven simulator . When a
circuit node changes in value the time, the node, and the new value are
collectively known as an event . The event is scheduled by putting it in an event
queue or event list . When the specified time is reached, the logic value of the
node is changed. The change affects logic cells that have this node as an input.
All of the affected logic cells must be evaluated , which may add more events to
the event list. The simulator keeps track of the current time, the current time step
, and the event list that holds future events. For each circuit node the simulator
keeps a record of the logic state and the strength of the source or sources driving
the node. When a node changes logic state, whether as an input or as an output of
a logic cell, this causes an event.

An interpreted-code simulator uses the HDL model as data, compiling an
executable model as part of the simulator structure, and then executes the model.
This type of simulator usually has a short compile time but a longer execution
time compared to other types of simulator. An example is Verilog-XL. A
compiled-code simulator converts the HDL model to an intermediate form
(usually C) and then uses a separate compiler to create executable binary code
(an executable). This results in a longer compile time but shorter execution time
than an interpreted-code simulator. A native-code simulator converts the HDL
directly to an executable and offers the shortest execution time.

The logic cells for each of these types of event-driven simulator are modeled
using a primitive modeling language (primitive in the sense of �fundamental�).
There are no standards for this primitive modeling language. For example, the
following code is a primitive model of a two-input NAND logic cell:

model nd01d1 (a, b, zn)

function (a, b) !(a & b); function end

model end

The model has three ports: a , b , and zn . These ports are connected to nodes
when a NAND gate is instantiated in an input structural netlist,

nand nd01d1(a2, b3, r7)

An event occurs when one of the circuit nodes a2 or b3 changes, and the function

defined in the primitive model is called. For example, when a2 changes, it affects
the port a of the model. The function will be called to set zn to the logical NAND
of a and b . The implementation of the primitive functions is unique to each
simulator and carefully coded to reduce execution time.

The data associated with an event consists of the affected node, a new logic value
for the node, a time for the change to take effect, and the node that caused the
event. Written in C, the data structure for an event might look like the following:

struct Event {

event_ptr fwd_link, back_link; /* event list */

event_ptr node_link; /* list of node events */

node_ptr event_node; /* node for the event */

node_ptr cause; /* node causing event */

port_ptr port; /* port which caused this event */

long event_time; /* event time, in units of delta */

char new_value; /* new value: '1' '0' etc. */

};

The event list keeps track of logic cells whose outputs are changing and the new
values for each output. The evaluation list keeps track of logic cells whose inputs
have changed. Using separate event and evaluation lists avoids any dependence
on the order in which events are processed, since the evaluations occur only after
all nodes have been updated. The sequence of event-list processing followed by
the evaluation-list processing is called a simulation cycle , or an event�evaluation
cycle (or event�eval cycle for short).

Delays are tracked using a time wheel divided into ticks or slots, with each slot
representing a unit of time. A software pointer marks the current time on the
timing wheel. As simulation progresses, the pointer moves forward by one slot
for each time step. The event list tracks the events pending and, as the pointer
moves, the simulator processes the event list for the current time.

13.4.1 VHDL Simulation Cycle
We shall use VHDL as an example to illustrate the steps in a simulation cycle
(which is precisely defined in the LRM). In VHDL, before simulation begins, the
design hierarchy is first elaborated . This means all the pieces of the model code
(entities, architectures, and configurations) are put together. Then the nets in the
model are initialized just before simulation starts. The simulation cycle is then
continuously repeated during which processes are executed and signals are
updated. A VHDL simulation cycle consists of the following steps:

The current time, t c is set equal to t n .1.

Each active signal in the model is updated and events may occur as a
result.

2.

For each process P, if P is currently sensitive to a signal S, and an event
has occurred on signal S in this simulation cycle, then process P resumes.

3.

Each resumed process is executed until it suspends.4.

The time of the next simulation cycle, t n , is set to the earliest of:5.

 a. the next time at which a driver becomes active or

 b. the next time at which a process resumes

If t n = t c , then the next simulation cycle is a delta cycle .1.

Simulation is complete when we run out of time (t n = TIME'HIGH) and there
are no active drivers or process resumptions at t n (there are some slight
modifications to these rules involving postponed processes�which we rarely use
in ASIC design).

Time in an event-driven simulator has two dimensions. A delta cycle takes delta
time , which does not result in a change in real time. Each event that occurs at the
same time step executes in delta time. Only when all events have been completed
and signals updated does real time advance to the next time step.

13.4.2 Delay
In VHDL you may assign a delay mechanism to an assignment statement.
Transport delay is characteristic of wires and transmission lines that exhibit
nearly infinite frequency response and will transmit any pulse, no matter how
short. Inertial delay more closely models the real behavior of logic cells.
Typically, a logic cell will not transmit a pulse that is shorter than the switching
time of the circuit, and this is the default pulse-rejection limit . If we explicitly
specify a pulse-rejection limit, the assignment will not transmit a pulse shorter
than the limit. As an example, the following three assignments are equivalent to
each other:

Op <= Ip after 10 ns;

Op <= inertial Ip after 10 ns;

Op <= reject 10 ns inertial Ip after 10 ns;

Every assignment that uses transport delay can be written using inertial delay
with a pulse-rejection limit, as the following examples illustrate.

-- Assignments using transport delay:

Op <= transport Ip after 10 ns;

Op <= transport Ip after 10 ns, not Ip after 20 ns;

-- Their equivalent assignments:

Op <= reject 0 ns inertial Ip after 10 ns;

Op <= reject 0 ns inertial Ip after 10 ns, not Ip after 10 ns;

13.5 Cell Models
There are several different kinds of logic cell models:

Primitive models , which are produced by the ASIC library company and
describe the function and properties of each logic cell (NAND, D flip-flop,
and so on) using primitive functions.

●

Verilog and VHDL models that are produced by an ASIC library company
from the primitive models.

●

Proprietary models produced by library companies that describe either
small logic cells or larger functions such as microprocessors.

●

A logic cell model is different from the cell delay model, which is used to
calculate the delay of the logic cell, from the power model , which is used to
calculate power dissipation of the logic cell, and from the interconnect timing
model , which is used to calculate the delays between logic cells (we return to
these in Section 13.6).

13.5.1 Primitive Models
The following is an example of a primitive model from an ASIC library company
(Compass Design Automation). This particular model (for a two-input NAND
cell) is complex because it is intended for a 0.35 m m process and has some
advanced delay modeling features. The contents are not important to an ASIC
designer, but almost all of the information about a logic cell is derived from the
primitive model. The designer does not normally see this primitive model; it may
only be used by an ASIC library company to generate other models�Verilog or
VHDL, for example.

Function

(timingModel = oneOf("ism","pr"); powerModel = oneOf("pin");)

Rec

Logic = Function (A1; A2;)Rec ZN = not (A1 AND A2); End; End;

miscInfo = Rec Title = "2-Input NAND, 1X Drive"; freq_fact = 0.5;

tml = "nd02d1 nand 2 * zn a1 a2";

MaxParallel = 1; Transistors = 4; power = 0.179018;

Width = 4.2; Height = 12.6; productName = "stdcell35"; libraryName =
"cb35sc"; End;

Pin = Rec

A1 = Rec input; cap = 0.010; doc = "Data Input"; End;

A2 = Rec input; cap = 0.010; doc = "Data Input"; End;

ZN = Rec output; cap = 0.009; doc = "Data Output"; End; End;

Symbol = Select

timingModel

On pr Do Rec

tA1D_fr = |(Rec prop = 0.078; ramp = 2.749; End);

tA1D_rf = |(Rec prop = 0.047; ramp = 2.506; End);

tA2D_fr = |(Rec prop = 0.063; ramp = 2.750; End);

tA2D_rf = |(Rec prop = 0.052; ramp = 2.507; End); End

On ism Do Rec

tA1D_fr = |(Rec A0 = 0.0015; dA = 0.0789; D0 = -0.2828;

dD = 4.6642; B = 0.6879; Z = 0.5630; End);

tA1D_rf = |(Rec A0 = 0.0185; dA = 0.0477; D0 = -0.1380;

dD = 4.0678; B = 0.5329; Z = 0.3785; End);

tA2D_fr = |(Rec A0 = 0.0079; dA = 0.0462; D0 = -0.2819;

dD = 4.6646; B = 0.6856; Z = 0.5282; End);

tA2D_rf = |(Rec A0 = 0.0060; dA = 0.0464; D0 = -0.1408;

dD = 4.0731; B = 0.6152; Z = 0.4064; End); End; End;

Delay = |(Rec from = pin.A1; to = pin.ZN;

edges = Rec fr = Symbol.tA1D_fr; rf = Symbol.tA1D_rf; End; End, Rec from =
pin.A2; to = pin.ZN; edges = Rec fr = Symbol.tA2D_fr; rf = Symbol.tA2D_rf;
End; End);

MaxRampTime = |(Rec check = pin.A1; riseTime = 3.000; fallTime = 3.000;
End, Rec check = pin.A2; riseTime = 3.000; fallTime = 3.000; End, Rec check =
pin.ZN; riseTime = 3.000; fallTime = 3.000; End);

DynamicPower = |(Rec rise = { ZN }; val = 0.003; End); End; End

This primitive model contains the following information:

The logic cell name, the logic cell function expressed using primitive
functions, and port names.

●

A list of supported delay models (ism stands for input-slope delay model,
and pr for prop�ramp delay model�see Section 13.6).

●

Miscellaneous data on the logic cell size, the number of transistors and so
on�primarily for use by logic-synthesis tools and for data book generation.

●

Information for power dissipation models and timing analysis.●

13.5.2 Synopsys Models
The ASIC library company may provide vendor models in formats unique to each
CAD tool company. The following is an example of a Synopsys model derived
from a primitive model similar to the example in Section 13.5.1 . In a Synopsys
library, each logic cell is part of a large file that also contains wire-load models
and other characterization information for the cell library.

cell (nd02d1) {

/* title : 2-Input NAND, 1X Drive */

/* pmd checksum : 'HBA7EB26C */

area : 1;

pin(a1) { direction : input; capacitance : 0.088;

fanout_load : 0.088; }

pin(a2) { direction : input; capacitance : 0.087;

fanout_load : 0.087; }

pin(zn) { direction : output; max_fanout : 1.786;

max_transition : 3; function : "(a1 a2)'";

timing() {

timing_sense : "negative_unate"

intrinsic_rise : 0.24 intrinsic_fall : 0.17

rise_resistance : 1.68 fall_resistance : 1.13

related_pin : "a1" }

timing() { timing_sense : "negative_unate"

intrinsic_rise : 0.32 intrinsic_fall : 0.18

rise_resistance : 1.68 fall_resistance : 1.13

related_pin : "a2"

} } } /* end of cell */

This file contains the only information the Synopsys logic synthesizer, simulator,
and other design tools use. If the information is not in this model, the tools cannot
produce it. You can see that not all of the information from a primitive model is
necessarily present in a vendor model.

13.5.3 Verilog Models
The following is a Verilog model for an inverter (derived from a primitive
model):

`celldefine

`delay_mode_path

`suppress_faults

`enable_portfaults

`timescale 1 ns / 1 ps

module in01d1 (zn, i); input i; output zn; not G2(zn, i);

specify specparam

InCap$i = 0.060, OutCap$zn = 0.038, MaxLoad$zn = 1.538,

R_Rampizn = 0.542:0.980:1.750, F_Rampizn = 0.605:1.092:1.950;

specparam cell_count = 1.000000; specparam Transistors = 4 ;

specparam Power = 1.400000; specparam MaxLoadedRamp = 3 ;

(i => zn) = (0.031:0.056:0.100, 0.028:0.050:0.090);

endspecify

endmodule

`nosuppress_faults

`disable_portfaults

`endcelldefine

This is very similar in form to the model for the MUX of Section 13.2.1 , except
that this model includes additional timing parameters (at the beginning of the
specify block). These timing parameters were omitted to simplify the model of

Section 13.2.1 (see Section 13.6 for an explanation of their function).

There are no standards on writing Verilog logic cell models. In the Verilog
model, in01d1 , fixed delays (corresponding to zero load capacitance) are
embedded in a specify block. The parameters describing the delay equations for
the timing model and other logic cell parameters (area, power-model parameters,
and so on) are specified using the Verilog specparam feature. Writing the model
in this way allows the model information to be accessed using the Verilog PLI
routines. It also allows us to back-annotate timing information by overriding the
data in the specify block.

The following Verilog code tests the model for logic cell in01d1 :

`timescale 1 ns / 1 ps

module SDF_b; reg A; in01d1 i1 (B, A);

initial begin A = 0; #5; A = 1; #5; A = 0; end

initial $monitor("T=%6g",$realtime," A=",A," B=",B);

endmodule

T= 0 A=0 B=x

T= 0.056 A=0 B=1

T= 5 A=1 B=1

T= 5.05 A=1 B=0

T= 10 A=0 B=0

T=10.056 A=0 B=1

In this case the simulator has used the fixed, typical timing delays (0.056 ns for
the rising delay, and 0.05 ns for the falling delay�both from line 12 in module
in01d1). Here is an example SDF file (filename SDF_b.sdf) containing
back-annotation timing delays:

(DELAYFILE

(SDFVERSION "3.0") (DESIGN "SDF.v") (DATE "Aug-13-96")

(VENDOR "MJSS") (PROGRAM "MJSS") (VERSION "v0")

(DIVIDER .) (TIMESCALE 1 ns)

(CELL (CELLTYPE "in01d1")

(INSTANCE SDF_b.i1)

(DELAY (ABSOLUTE

(IOPATH i zn (1.151:1.151:1.151) (1.363:1.363:1.363))

))

)

)

(Notice that since Verilog is case sensitive, the instance names and node names in
the SDF file are also case sensitive.) This SDF file describes the path delay
between input (pin i) and output (pin zn) as 1.151 ns (rising delay�minimum,
typical, and maximum are identical in this simple example) and 1.363 ns (falling
delay). These delays are calculated by a delay calculator . The delay calculator
may be a stand-alone tool or part of the simulator. This tool calculates the delay
values by using the delay parameters in the logic cell model (lines 8 � 9 in module
in01d1).

We call a system task, $sdf_annotate , to perform back-annotation,

`timescale 1 ns / 1 ps

module SDF_b; reg A; in01d1 i1 (B, A);

initial begin

$sdf_annotate ("SDF_b.sdf", SDF_b, , "sdf_b.log", "minimum", ,);

A = 0; #5; A = 1; #5; A = 0; end

initial $monitor("T=%6g",$realtime," A=",A," B=",B);

endmodule

Here is the output (from MTI V-System/Plus) including back-annotated timing:

T= 0 A=0 B=x

T= 1.151 A=0 B=1

T= 5 A=1 B=1

T= 6.363 A=1 B=0

T= 10 A=0 B=0

T=11.151 A=0 B=1

The delay information from the SDF file has been passed to the simulator.

Back-annotation is not part of the IEEE 1364 Verilog standard, although many
Verilog-compatible simulators do support the $sdf_annotate system task. Many
ASIC vendors require the use of Verilog to complete a back-annotated timing
simulation before they will accept a design for manufacture. Used in this way
Verilog is referred to as a golden simulator , since an ASIC vendor uses Verilog

to judge whether an ASIC design fabricated using its process will work.

13.5.4 VHDL Models
Initially VHDL did not offer a standard way to perform back-annotation. Here is
an example of a VHDL model for an inverter used to perform a back-annotated
timing simulation using an Altera programmable ASIC:

library IEEE; use IEEE.STD_LOGIC_1164. all ;

library COMPASS_LIB; use COMPASS_LIB.COMPASS_ETC. all ;

entity bknot is

generic (derating : REAL := 1.0; Z1_cap : REAL := 0.000;

INSTANCE_NAME : STRING := "bknot");

port (Z2 : in Std_Logic; Z1 : out STD_LOGIC);

end bknot;

architecture bknot of bknot is

constant tplh_Z2_Z1 : TIME := (1.00 ns + (0.01 ns * Z1_Cap)) * derating;

constant tphl_Z2_Z1 : TIME := (1.00 ns + (0.01 ns * Z1_Cap)) * derating;

begin

process (Z2)

variable int_Z1 : Std_Logic := 'U';

variable tplh_Z1, tphl_Z1, Z1_delay : time := 0 ns;

variable CHANGED : BOOLEAN;

begin

int_Z1 := not (Z2);

if Z2'EVENT then

tplh_Z1 := tplh_Z2_Z1; tphl_Z1 := tphl_Z2_Z1;

end if ;

Z1_delay := F_Delay(int_Z1, tplh_Z1, tphl_Z1);

Z1 <= int_Z1 after Z1_delay;

end process ;

end bknot;

configuration bknot_CON of bknot is for bknot end for ;

end bknot_CON;

This model accepts two generic parameters: load capacitance, Z1_cap , and a
derating factor, derating , used to adjust postlayout timing delays. The
proliferation of different VHDL back-annotation techniques drove the VHDL
community to develop a standard method to complete back-annotation�VITAL.

13.5.5 VITAL Models
VITAL is the VHDL Initiative Toward ASIC Libraries, IEEE Std 1076.4 [1995].
1 VITAL allows the use of sign-off quality ASIC libraries with VHDL
simulators. Sign-off is the transfer of a design from a customer to an ASIC
vendor. If the customer has completed simulation of a design using sign-off
quality models from an approved cell library and a golden simulator, the
customer and ASIC vendor will sign off the design (by signing a contract) and
the vendor guarantees that the silicon will match the simulation.

VITAL models, like Verilog models, may be generated from primitive models.
Here is an example of a VITAL-compliant model for an inverter,

library IEEE; use IEEE.STD_LOGIC_1164. all ;

use IEEE.VITAL_timing. all ; use IEEE.VITAL_primitives. all ;

entity IN01D1 is

generic (

tipd_I : VitalDelayType01 := (0 ns, 0 ns);

tpd_I_ZN : VitalDelayType01 := (0 ns, 0 ns));

port (

I : in STD_LOGIC := 'U';

ZN : out STD_LOGIC := 'U');

attribute VITAL_LEVEL0 of IN01D1 : entity is TRUE;

end IN01D1;

architecture IN01D1 of IN01D1 is

attribute VITAL_LEVEL1 of IN01D1 : architecture is TRUE;

signal I_ipd : STD_LOGIC := 'X';

begin

WIREDELAY: block

begin VitalWireDelay(I_ipd, I, tipd_I); end block ;

VITALbehavior : process (I_ipd)

variable ZN_zd : STD_LOGIC;

variable ZN_GlitchData : VitalGlitchDataType;

begin

ZN_zd := VitalINV(I_ipd);

VitalPathDelay01(

OutSignal => ZN,

OutSignalName => "ZN",

OutTemp => ZN_zd,

Paths => (0 => (I_ipd'LAST_EVENT, tpd_I_ZN, TRUE)),

GlitchData => ZN_GlitchData,

DefaultDelay => VitalZeroDelay01,

Mode => OnEvent,

MsgOn => FALSE,

XOn => TRUE,

MsgSeverity => ERROR);

end process ;

end IN01D1;

The following testbench, SDF_testbench , contains an entity, SDF , that in turn
instantiates a copy of an inverter, in01d1 :

library IEEE; use IEEE.STD_LOGIC_1164. all ;

entity SDF is port (A : in STD_LOGIC; B : out STD_LOGIC);

end SDF;

architecture SDF of SDF is

component in01d1 port (I : in STD_LOGIC; ZN : out STD_LOGIC);

end component ;

begin i1: in01d1 port map (I => A, ZN => B);

end SDF;

library STD; use STD.TEXTIO. all ;

library IEEE; use IEEE.STD_LOGIC_1164. all ;

entity SDF_testbench is end SDF_testbench;

architecture SDF_testbench of SDF_testbench is

component SDF port (A : in STD_LOGIC; B : out STD_LOGIC);

end component ;

signal A, B : STD_LOGIC := '0';

begin

SDF_b : SDF port map (A => A, B => B);

process begin

A <= '0'; wait for 5 ns; A <= '1';

wait for 5 ns; A <= '0'; wait ;

end process ;

process (A, B) variable L: LINE; begin

write(L, now, right, 10, TIME'(ps));

write(L, STRING'(" A=")); write(L, TO_BIT(A));

write(L, STRING'(" B=")); write(L, TO_BIT(B));

writeline(output, L);

end process ;

end SDF_testbench;

Here is an SDF file (SDF_b.sdf) that contains back-annotation timing
information (min/typ/max timing values are identical in this example):

(DELAYFILE

(SDFVERSION "3.0") (DESIGN "SDF.vhd") (DATE "Aug-13-96")

(VENDOR "MJSS") (PROGRAM "MJSS") (VERSION "v0")

(DIVIDER .) (TIMESCALE 1 ns)

(CELL (CELLTYPE "in01d1")

(INSTANCE i1)

(DELAY (ABSOLUTE

(IOPATH i zn (1.151:1.151:1.151) (1.363:1.363:1.363))

(PORT i (0.021:0.021:0.021) (0.025:0.025:0.025))

))

)

)

(VHDL is case insensitive, but to allow the use of an SDF file with both Verilog
and VHDL we must maintain case.) As in the Verilog example in Section 13.5.3
the logic cell delay (from the input pin of the inverter, i , to the output pin, zn)
follows the IOPATH keyword. In this example there is also an interconnect delay
that follows the PORT keyword. The interconnect delay has been placed, or
lumped, at the input of the inverter. In order to include back-annotation timing
using the SDF file, SDF_b.sdf , we use a command-line switch to the simulator.
In the case of MTI V-System/Plus the command is as follows:

<msmith/MTI/vital> vsim -c -sdfmax /sdf_b=SDF_b.sdf sdf_testbench

...

0 ps A=0 B=0

0 ps A=0 B=0

1176 ps A=0 B=1

5000 ps A=1 B=1

6384 ps A=1 B=0

10000 ps A=0 B=0

11176 ps A=0 B=1

We have to explain to the simulator where in the design hierarchy to apply the
timing information in the SDF file. The situation is like giving someone
directions �Go North on the M1 and turn left at the third intersection,� but where
do we start? London or Birmingham? VHDL needs much more precise
directions. Using VITAL we say we back-annotate to a region . The switch
/sdf_b=SDF_b.sdf specifies that all instance names in the SDF file, SDF_b.sdf ,
are relative to the region /sdf_b . The region refers to instance name sdf_b (line 9
in entity SDF_testbench), which is an instance of component SDF . Component
SDF in turn contains an instance of a component, in01d1 , with instance name i1
(line 7 in architecture SDF). Through this rather (for us) difficult-to-follow set of
directions, the simulator knows that

... (CELL (CELLTYPE "in01d1") (INSTANCE i1) ...

refers to (SDF) cell or (VHDL) component in01d1 with instance name i1 in
instance SDF_b of the compiled model sdf_testbench .

Notice that we cannot use an SDF file of the following form (as we did for the
Verilog version of this example):

... (CELL (CELLTYPE "in01d1") (INSTANCE SDF_b.i1) ...

There is no instance in the VHDL model �higher� than instance name SDF_b that
we can use as a starting point for VITAL back-annotation. In the Verilog SDF
file we can refer to the name of the top-level module (SDF_b in line 2 in module
SDF_b). We cannot do this in VHDL; we must name an instance. The result is
that, unless you are careful in constructing the hierarchy of your VHDL design,
you may not be able to use the same SDF file for back-annotating both VHDL
and Verilog.

13.5.6 SDF in Simulation
SDF was developed to handle back-annotation, but it is also used to describe
forward-annotation of timing constraints from logic synthesis. Here is an
example of an SDF file that contains the timing information for the halfgate
ASIC design:

(DELAYFILE

(SDFVERSION "1.0")

(DESIGN "halfgate_ASIC_u")

(DATE "Aug-13-96")

(VENDOR "Compass")

(PROGRAM "HDL Asst")

(VERSION "v9r1.2")

(DIVIDER .)

(TIMESCALE 1 ns)

(CELL (CELLTYPE "in01d0")

(INSTANCE v_1.B1_i1)

(DELAY (ABSOLUTE

(IOPATH I ZN (1.151:1.151:1.151) (1.363:1.363:1.363))

))

)

(CELL (CELLTYPE "pc5o06")

(INSTANCE u1_2)

(DELAY (ABSOLUTE

(IOPATH I PAD (1.216:1.216:1.216) (1.249:1.249:1.249))

))

)

(CELL (CELLTYPE "pc5d01r")

(INSTANCE u0_2)

(DELAY (ABSOLUTE

(IOPATH PAD CIN (.169:.169:.169) (.199:.199:.199))

))

)

)

This SDF file describes the delay due to the input pad (cell pc5d01r , instance
name u0_2), our inverter (cell in01d0 , instance name v_1.B1_i1), and the
output pad (cell pc5o06 , instance name u1_2). Since this SDF file was produced
before any physical layout, there are no estimates for interconnect delay. The
following partial SDF file illustrates how interconnect delay can be specified in
SDF.

(DELAYFILE

...

(PROCESS "FAST-FAST")

(TEMPERATURE 0:55:100)

(TIMESCALE 100ps)

(CELL (CELLTYPE "CHIP")

(INSTANCE TOP)

(DELAY (ABSOLUTE

(INTERCONNECT A.INV8.OUT B.DFF1.Q (:0.6:) (:0.6:))

)))

This SDF file specifies an interconnect delay (using the keyword
INTERCONNECT) of 60 ps (0.6 units with a timescale of 100 ps per unit)
between the output port of an inverter with instance name A.INV8 (note that '.' is
the hierarchy divider) in block A and the Q input port of a D flip-flop (instance
name B.DFF1) in block B.

The triplet notation (min : typ : max) in SDF corresponds to minimum, typical,
and maximum values of a parameter. Specifying two triplets corresponds to
rising (the first triplet) and falling delays. A single triplet corresponds to both. A
third triplet corresponds to turn-off delay (transitions to or from 'Z'). You can
also specify six triplets (rising, falling, '0' to 'Z' , 'Z' to '1' , '1' to 'Z' , and 'Z' to '0'
). When only the typical value is specified, the minimum and maximum are set
equal to the typical value.

Logic cell delays can use several models in SDF. Here is one example:

(INSTANCE B.DFF1)

(DELAY (ABSOLUTE

(IOPATH (POSEDGE CLK) Q (12:14:15) (11:13:15))))

The IOPATH construct specifies a delay between the input pin and the output pin
of a cell. In this example the delay is between the positive edge of the clock
(input port) and the flip-flop output.

The following example SDF file is for an AO221 logic cell:

(DELAYFILE

(DESIGN "MYDESIGN")

(DATE "26 AUG 1996")

(VENDOR "ASICS_INC")

(PROGRAM "SDF_GEN")

(VERSION "3.0")

(DIVIDER .)

(VOLTAGE 3.6:3.3:3.0)

(PROCESS "-3.0:0.0:3.0")

(TEMPERATURE 0.0:25.0:115.0)

(TIMESCALE)

(CELL

(CELLTYPE "AOI221")

(INSTANCE X0)

(DELAY (ABSOLUTE

(IOPATH A1 Y (1.11:1.42:2.47) (1.39:1.78:3.19))

(IOPATH A2 Y (0.97:1.30:2.34) (1.53:1.94:3.50))

(IOPATH B1 Y (1.26:1.59:2.72) (1.52:2.01:3.79))

(IOPATH B2 Y (1.10:1.45:2.56) (1.66:2.18:4.10))

(IOPATH C1 Y (0.79:1.04:1.91) (1.36:1.62:2.61))

))))

1. IEEE Std 1076.4-1995, © 1995 IEEE. All rights reserved.

13.6 Delay Models
We shall use the term timing model to describe delays outside logic cells and the
term delay model to describe delays inside logic cells. These terms are not
standard and often people use them interchangeably. There are also different
terms for various types of delay:

A pin-to-pin delay is a delay between an input pin and an output pin of a
logic cell. This usually represents the delay of the logic cell excluding any
delay contributed by interconnect.

●

A pin delay is a delay lumped to a certain pin of a logic cell (usually an
input). This usually represents the delay of the interconnect, but may also
represent the delay of the logic cell.

●

A net delay or wire delay is a delay outside a logic cell. This always
represents the delay of interconnect.

●

In this section we shall focus on delay models and logic cell delays. In Chapter 3
we modeled logic cell delay as follows (Eq. 3.10):

t PD = R (C out + C p) + t q . (13.5)

A linear delay model is also known as a prop�ramp delay model , because the
delay comprises a fixed propagation delay (the intrinsic delay) and a ramp delay
(the extrinsic delay). As an example, the data book entry for the inverter, cell
in01d0 , in a 0.8 m m standard-cell library gives the following delay information
(with delay measured in nanoseconds and capacitance in picofarads):

RISE = 0.10 + 0.07 + (1.75 ¥ Cld) FALL = 0.09 + 0.07 + (1.95 ¥ Cld) (13.6)

RISE = 0.10 + 0.07 + (1.75 ¥ Cld) FALL = 0.09 + 0.07 + (1.95 ¥ Cld) (13.5)

The first two terms in each of these equations represents the intrinsic delay, with
the last term in each equation representing the extrinsic delay. We see that the
Cld corresponds to C out , R pu = 1.75 k W , and R pd = 1.95 k W (R pu is the
pull-up resistance and R pd is the pull-down resistance) .

From the data book the pin capacitances for this logic cell are as follows:

pin I (input) = 0.060 pF pin ZN (output) = 0.038 pF (13.7)

pin I (input) = 0.060 pF pin ZN (output) = 0.038 pF (13.6)

Thus, C p = 0.038 pF and we can calculate the component of the intrinsic delay

due to the output pin capacitance as follows:

C p ¥ R pu = 0.038 ¥ 1.75 = 0.0665 ns and C p ¥ R pd = 0.038 ¥ 1.95 =
0.0741 ns

(13.8)

C p ¥ R pu = 0.038 ¥ 1.75 = 0.0665 ns and C p ¥ R pd = 0.038 ¥ 1.95 = 0.0741
ns(13.7)

Suppose t qr and t qf are the parasitic delays for the rising and falling waveforms
respectively. By comparing the data book equations for the rise and fall delays
with Eq. and 13.7 , we can identify t qr = 0.10 ns and t qf = 0.09 ns.

Now we can explain the timing section of the in01d0 model (Section 13.5.3),

specify specparam

InCap$i = 0.060, OutCap$zn = 0.038, MaxLoad$zn = 1.538,

R_Rampizn = 0.542:0.980:1.750, F_Rampizn = 0.605:1.092:1.950;

specparam cell_count = 1.000000; specparam Transistors = 4 ;

specparam Power = 1.400000; specparam MaxLoadedRamp = 3 ;

(i=>zn)=(0.031:0.056:0.100, 0.028:0.050:0.090);

The parameter OutCap$zn is C p . The maximum value of the parameter
R_Rampizn is R pu , and the maximum value of parameter F_Rampizn is R

pd . Finally, the maximum values of the fixed-delay triplets correspond to t qr and
t qf .

13.6.1 Using a Library Data Book
ASIC library data books typically contain two types of information for each cell
in the library�capacitance loading and delay. Table 13.7 shows the input
capacitances for the inverter family for both an area-optimized library (small) and
a performance-optimized library (fast).

From Table 13.7 , the input capacitance of the small library version of the inv1 (a
1X inverter gate) is 0.034 pF. Any logic cell that is driving an inv1 from the
small library sees this as a load capacitance. This capacitance consists of the gate
capacitance of a p -channel transistor, the gate capacitance of an n -channel
transistor, and the internal cell routing. Similarly, 0.145 pF is the input
capacitance of a fast inv1 . We can deduce that the transistors in the fast library
are approximately 0.145 / 0.034 • 4 times larger than those in the small version.
The small library and fast library may not have the same cell height (they usually
do not), so that we cannot mix cells from different libraries in the same
standard-cell area.

TABLE 13.7 Input capacitances for an inverter family (pF).1

Library inv1 invh 1 invs inv8 inv12

Area 0.034 0.067 0.133 0.265 0.397
Performance 0.145 0.292 0.584 1.169 1.753

The delay table for a 2:1 MUX is shown in Table 13.8 . For example, DO/ to Z/ ,
indicates the path delay from the DO input rising to the Z output rising. Rising
delay is denoted by '/' and falling delay by '\' .

TABLE 13.8 Delay information for a 2:1 MUX.
 Propagation delay
 Area Performance

From input 2 To output
Extrinsic /
nspF �1

Intrinsic /
ns

Extrinsic /
ns

Intrinsic /
ns

D0\ Z\ 2.10 1.42 0.5 0.8
D0/ Z/ 3.66 1.23 0.68 0.70
D1\ Z\ 2.10 1.42 0.50 0.80
D1/ Z/ 3.66 1.23 0.68 0.70
SD\ Z\ 2.10 1.42 0.50 0.80
SD\ Z/ 3.66 1.09 0.70 0.73
SD/ Z\ 2.10 2.09 0.5 1.09
SD/ Z/ 3.66 1.23 0.68 0.70

Both intrinsic delay and extrinsic delay values are given in Table 13.8 . For
example, the delay t PD (from DO\ to Z \) of a 2:1 MUX from the small library is

t PD = 1.42 ns + (2.10 ns/pF) ¥ C L (pF) . (13.9)

ASIC cell libraries may be characterized and the delay information presented in
several ways in a data book. Some manufacturers simulate under worst-case slow
conditions (4.5 V, 100 °C, and slow process conditions, for example) and then
derate each delay value to convert delays to nominal conditions (5.0 V, 25 °C,
and nominal process). This allows nominal delays to be used in the data book
while maintaining accurate predictions for worst-case behavior. Other
manufacturers characterize using nominal conditions and include worst-case
values in the data book. In either case, we always design with worst-case values.
Data books normally include process, voltage, and temperature derating factors
as tables or graphs such as those shown in Tables 13.9 and 13.10 .

For example, suppose we are measuring the performance of an ASIC on the
bench and the lab temperature (25 °C) and the power supply voltage (5 V)
correspond to nominal operating conditions. We shall assume, in the absence of
other information, that we have an ASIC from a nominal process lot. We have
data book values given as worst case (worst-case temperature, 100 °C; worst-case

voltage, 4.5 V; slow process) and we wish to find nominal values for delay to
compare them with our measured results. From Table 13.9 the derating factor
from nominal process to slow process is 1.31. From Table 13.10 the derating
factor from 100 °C and 4.5 V to nominal (25 °C and 5 V) is 1.60. The derating
factor from nominal to worst-case (data book values) is thus:

worst-case = nominal ¥ 1.31 (slow process) ¥ 1.60 (4.5 V, 100 °C). (13.10)

worst-case = nominal ¥ 1.31 (slow process) ¥ 1.60 (4.5 V, 100 °C).(13.8)

To get from the data book values to nominal operating conditions we use the
following equation:

nominal = worst-case/(1.31 ¥ 1.60) = 0.477 ¥ worst-case. (13.11)

nominal = worst-case/(1.31 ¥ 1.60) = 0.477 ¥ worst-case. (13.9)

TABLE 13.9
Process derating
factors.

 TABLE 13.10 Temperature and voltage derating factors.

Process
Derating
factor

 Supply voltage

Slow 1.31 Temperature/°C 4.5V 4.75V 5.00V 5.25V 5.50V
Nominal 1.0 �40 0.77 0.73 0.68 0.64 0.61
Fast 0.75 0 1.00 0.93 0.87 0.82 0.78
 25 1.14 1.07 1.00 0.94 0.90
 85 1.50 1.40 1.33 1.26 1.20
 100 1.60 1.49 1.41 1.34 1.28
 125 1.76 1.65 1.56 1.47 1.41

13.6.2 Input-Slope Delay Model
It is increasingly important for submicron technologies to account for the effects
of the rise (and fall) time of the input waveforms to a logic cell. The nonlinear
delay model described in this section was developed by Mike Misheloff at VLSI
Technology and then at Compass. There are, however, no standards in this area
�each ASIC company has its own, often proprietary, model.

We begin with some definitions:

D t 0 is the time from the beginning of the input to beginning of the output.●

D t 1 is the time from the beginning of the input to the end of the output.●

I R is the time from the beginning to the end of the input ramp.●

In these definitions �beginning� and �end� refer to the projected intersections of the
input waveform or the output waveform with V DD and V SS as appropriate. Then

we can calculate the delay, D (measured with 0.5 trip points at input and output),
and output ramp, O R , as follows:

 D = (D t 1 + D t 0 � I R) / 2 (13.12)

and O R = D t 1 � D t 0 . (13.13)

Experimentally we find that the times, D t 0 and D t 1 , are accurately modeled by
the following equations:

D t 0 = A 0 + D 0 C L + B ¥ min (I R , C R) + Z ¥ max (0, I R � C R) (13.14)

and
D t 1 = A 1 + B I R + D 1 C L . (13.15)

C R is the critical ramp that separates two regions of operation, we call these slow
ramp and fast ramp. A sensible definition for C R is the point at which the end of
the input ramp occurs at the same time the output reaches the 0.5 trip point. This
leads to the following equation for C R :

 A 0 + A 1 + (D 0 + D 1) C L

C R = ���������������������� (13.16)

 2 (1 � B)

It is convenient to define two more parameters:

d A = A 1 � A 0 and d D = D 1 � D 0 . (13.17)

In the region that C R > I R , we can simplify Eqs. 13.14 and by using the
definitions in Eq. 13.17 , as follows:

D = (D t 1 + D t 0 � I R)/2 = A 0 + D 0 C L + d A /2 + d D C L /2 (13.18)

and
O R = D t 1 � D t 0 = d A + d D C L . (13.19)

Now we can understand the timing parameters in the primitive model in
Section 13.5.1 . For example, the following parameter, tA1D_fr , models the
falling input to rising output waveform delay for the logic cell (the units are a
consistent set: all times are measured in nanoseconds and capacitances in
picofarads):

A0 = 0.0015;dA = 0.0789;D0 = -0.2828;dD = 4.6642;B = 0.6879;Z = 0.5630;

The input-slope model predicts delay in the fast-ramp region, D ISM (50 %, FR),
as follows (0.5 trip points):

D ISM (50 %, FR)

= A 0 + D 0 C L + 0.5 O R = A 0 + D 0 C L + d A /2 + d D C L /2

= 0.0015 + 0.5 ¥ 0.0789 + (�0.2828 + 0.5 ¥ 4.6642) C L

= 0.041 + 2.05 C L . (13.20)

We can adjust this delay to 0.35/0.65 trip points as follows:

D ISM (65 %, FR)

= A 0 + D 0 C L + 0.65 O R

= 0.0015 + 0.65 ¥ 0.0789 + (�0.2828 C L + 0.65 ¥ 4.6642) C L

= 0.053 + 2.749 C L . (13.21)

We can now compare Eq. 13.21 with the prop�ramp model. The prop�ramp
parameters for this logic cell (from the primitive model in Section 13.5.1) are:

tA1D_fr = |(Rec prop = 0.078; ramp = 2.749; End);

These parameters predict the following prop�ramp delay (0.35/0.65 trip points):

D PR (65 %) = 0.078 + 2.749 C L . (13.22)

The input-slope delay model and the prop�ramp delay model predict similar
delays in the fast-ramp region, but for slower inputs the differences can become
significant.

13.6.3 Limitations of Logic Simulation
Table 13.11 shows the switching characteristics of a two-input NAND gate (1X
drive) from a commercial 1 m m gate-array family. The difference in propagation
delay (with FO = 0) between the inputs A and B is

(0.25 � 0.17) ¥ 2 / (0.25 + 0.17) = 38 %.

This difference is taken into account only by a pin-to-pin delay model.

TABLE 13.11 Switching characteristics of a two-input NAND gate.

 Fanout 3

Symbol Parameter
FO = 0

/ns

FO = 1

/ns

FO = 2

/ns

FO = 4

/ns

FO = 8

/ns

K

/nspF �1

t PLH Propagation delay, A to X 0.25 0.35 0.45 0.65 1.05 1.25

t PHL Propagation delay, B to X 0.17 0.24 0.30 0.42 0.68 0.79

t r Output rise time, X 1.01 1.28 1.56 2.10 3.19 3.40

t f Output fall time, X 0.54 0.69 0.84 1.13 1.71 1.83

Timing information for most gate-level simulators is calculated once, before
simulation, using a delay calculator. This works as long as the logic cell delays
and signal ramps do not change. There are some cases in which this is not true.
Table 13.12 shows the switching characteristics of a half adder. In addition to
pin-to-pin timing differences there is a timing difference depending on state. For
example, the pin-to-pin timing from input pin A to the output pin S depends on
the state of the input pin B. Depending on whether B = '0' or B = '1' the difference
in propagation delay (at FO = 0) is

(0.93 � 0.58) ¥ 2 / (0.93 + 0.58) = 46 %.

This state-dependent timing is not taken into account by simple pin-to-pin delay
models and is not accounted for by most gate-level simulators.

TABLE 13.12 Switching characteristics of a half adder.

 Fanout 4

Symbol Parameter
FO = 0

/ns

FO = 1

/ns

FO = 2

/ns

FO = 4

/ns

FO = 8

/ns

K

/nspF �1

t PLH Delay, A to S (B = '0') 0.58 0.68 0.78 0.98 1.38 1.25

t PHL Delay, A to S (B = '1') 0.93 0.97 1.00 1.08 1.24 0.48

t PLH Delay, B to S (B = '0') 0.89 0.99 1.09 1.29 1.69 1.25

t PHL Delay, B to S (B = '1') 1.00 1.04 1.08 1.15 1.31 0.48

t PLH Delay, A to CO 0.43 0.53 0.63 0.83 1.23 1.25

t PHL Delay, A to CO 0.59 0.63 0.67 0.75 0.90 0.48

t r Output rise time, X 1.01 1.28 1.56 2.10 3.19 3.40

t f Output fall time, X 0.54 0.69 0.84 1.13 1.71 1.83

1. 1Suffix '1' denotes normal drive strength, suffix 'h' denotes high-power drive
strength (approximately ¥ 2) , suffix 's' denotes superpower drive strength
(approximately ¥ 4), and a suffix ' m ' (m =8 or 12) denotes inverter blocks
containing m inverters.

2. / = rising and \ = falling.

3. FO = fanout in standard loads (one standard load = 0.08 pF). Nominal
conditions: V DD = 5 V, T A = 25 °C.

4. FO = fanout in standard loads (one standard load = 0.08 pF). Nominal
conditions: V DD = 5 V, T A = 25 °C.

13.7 Static Timing Analysis

We return to the comparator/MUX example to see how timing analysis is applied
to sequential logic. We shall use the same input code (comp_mux.v in
Section 13.2), but this time we shall target the design to an Actel FPGA.

Before routing we obtain the following static timing analysis:

Instance name in pin-->out pin tr total incr cell

--

END_OF_PATH

outp_2_ R 27.26

OUT1 : D--->PAD R 27.26 7.55 OUTBUF

I_1_CM8 : S11--->Y R 19.71 4.40 CM8

I_2_CM8 : S11--->Y R 15.31 5.20 CM8

I_3_CM8 : S11--->Y R 10.11 4.80 CM8

IN1 : PAD--->Y R 5.32 5.32 INBUF

a_2_ R 0.00 0.00

BEGIN_OF_PATH

The estimated prelayout critical path delay is nearly 30 ns including the I/O-cell
delays (ACT 3, worst-case, standard speed grade). This limits the operating
frequency to 33 MHz (assuming we can get the signals to and from the chip pins
with no further delays�highly unlikely). The operating frequency can be increased
by pipelining the design as follows (by including three register stages: at the
inputs, the outputs, and between the comparison and the select functions):

// comp_mux_rrr.v

module comp_mux_rrr(a, b, clock, outp);

input [2:0] a, b; output [2:0] outp; input clock;

reg [2:0] a_r, a_rr, b_r, b_rr, outp; reg sel_r;

wire sel = (a_r <= b_r) ? 0 : 1;

always @ (posedge clock) begin a_r <= a; b_r <= b; end

always @ (posedge clock) begin a_rr <= a_r; b_rr <= b_r; end

always @ (posedge clock) outp <= sel_r ? b_rr : a_rr;

always @ (posedge clock) sel_r <= sel;

endmodule

Following synthesis we optimize module comp_mux_rrr for maximum speed.
Static timing analysis gives the following preroute critical paths:

---------------------INPAD to SETUP longest path---------------------

Rise delay, Worst case

Instance name in pin-->out pin tr total incr cell

--

END_OF_PATH

D.a_r_ff_b2 R 4.52 0.00 DF1

INBUF_24 : PAD--->Y R 4.52 4.52 INBUF

a_2_ R 0.00 0.00

BEGIN_OF_PATH

---------------------CLOCK to SETUP longest path---------------------

Rise delay, Worst case

Instance name in pin-->out pin tr total incr cell

--

END_OF_PATH

D.sel_r_ff R 9.99 0.00 DF1

I_1_CM8 : S10--->Y R 9.99 0.00 CM8

I_3_CM8 : S00--->Y R 9.99 4.40 CM8

a_r_ff_b1 : CLK--->Q R 5.60 5.60 DF1

BEGIN_OF_PATH

---------------------CLOCK to OUTPAD longest path--------------------

Rise delay, Worst case

Instance name in pin-->out pin tr total incr cell

--

END_OF_PATH

outp_2_ R 11.95

OUTBUF_31 : D--->PAD R 11.95 7.55 OUTBUF

outp_ff_b2 : CLK--->Q R 4.40 4.40 DF1

BEGIN_OF_PATH

The timing analyzer has examined the following:

Paths that start at an input pad and end on the data input of a sequential
logic cell (the D input to a D flip-flop, for example). We might call this an
entry path (or input-to-D path) to a pipelined design. The longest entry
delay (or input-to-setup delay) is 4.52 ns.

1.

Paths that start at a clock input to a sequential logic cell and end at the data
input of a sequential logic cell. This is a stage path (register-to-register
path or clock-to-D path) in a pipeline stage. The longest stage delay (
clock-to-D delay) is 9.99 ns.

2.

Paths that start at a sequential logic cell output and end at an output pad.
This is an exit path (clock-to-output path) from the pipeline. The longest
exit delay (clock-to-output delay) is 11.95 ns.

3.

By pipelining the design we added three clock periods of latency, but we
increased the estimated operating speed. The longest prelayout critical path is
now an exit delay, approximately 12 ns�more than doubling the maximum
operating frequency. Next, we route the registered version of the design. The
Actel software informs us that the postroute maximum stage delay is 11.3 ns
(close to the preroute estimate of 9.99 ns). To check this figure we can perform
another timing analysis. This time we shall measure the stage delays (the start
points are all clock pins, and the end points are all inputs to sequential cells, in
our case the D input to a D flip-flop). We need to define the sets of nodes at
which to start and end the timing analysis (similar to the path clusters we used to
specify timing constraints in logic synthesis). In the Actel timing analyzer we can
use predefined sets 'clock' (flip-flop clock pins) and 'gated' (flip-flop inputs) as
follows:

timer> startset clock

timer> endset gated

timer> longest

1st longest path to all endpins

Rank Total Start pin First Net End Net End pin

0 11.3 a_r_ff_b2:CLK a_r_2_ block_0_OUT1 sel_r_ff:D

1 6.6 sel_r_ff:CLK sel_r DEF_NET_50 outp_ff_b0:D

... 8 similar lines omitted ...

We could try to reduce the long stage delay (11.3 ns), but we have already seen
from the preroute timing estimates that an exit delay may be the critical path.
Next, we check some other important timing parameters.

13.7.1 Hold Time
Hold-time problems can occur if there is clock skew between adjacent flip-flops,
for example. We first need to check for the shortest exit delays using the same
sets that we used to check stage delays,

timer> shortest

1st shortest path to all endpins

Rank Total Start pin First Net End Net End pin

0 4.0 b_rr_ff_b1:CLK b_rr_1_ DEF_NET_48 outp_ff_b1:D

1 4.1 a_rr_ff_b2:CLK a_rr_2_ DEF_NET_46 outp_ff_b2:D

... 8 similar lines omitted ...

The shortest path delay, 4 ns, is between the clock input of a D flip-flop with
instance name b_rr_ff_b1 (call this X) and the D input of flip-flop instance name
outp_ff_b1 (Y). Due to clock skew, the clock signal may not arrive at both
flip-flops simultaneously. Suppose the clock arrives at flip-flop Y 3 ns earlier
than at flip-flop X . The D input to flip-flop Y is only stable for (4 � 3) = 1 ns
after the clock edge. To check for hold-time violations we thus need to find the
clock skew corresponding to each clock-to-D path. This is tedious and normally
timing-analysis tools check hold-time requirements automatically, but we shall
show the steps to illustrate the process.

13.7.2 Entry Delay
Before we can measure clock skew, we need to analyze the entry delays,
including the clock tree. The synthesis tools automatically add I/O pads and the
clock cells. This means that extra nodes are automatically added to the netlist
with automatically generated names. The EDIF conversion tools may then
modify these names. Before we can perform an analysis of entry delays and the
clock network delay, we need to find the input node names. By looking for the
EDIF 'rename' construct in the EDIF netlist we can associate the input and output
node names in the behavioral Verilog model, comp_mux_rrr , and the EDIF
names,

piron% grep rename comp_mux_rrr_o.edn

(port (rename a_2_ "a[2]") (direction INPUT))

... 8 similar lines renaming ports omitted ...

(net (rename a_rr_0_ "a_rr[0]") (joined

... 9 similar lines renaming nets omitted ...

piron%

Thus, for example, the EDIF conversion program has renamed input port a[2] to
a_2_ because the design tools do not like the Verilog bus notation using square
brackets. Next we find the connections between the ports and the added I/O cells
by looking for 'PAD' in the Actel format netlist, which indicates a connection to a
pad and the pins of the chip, as follows:

piron% grep PAD comp_mux_rrr_o.adl

NET DEF_NET_148; outp_2_, OUTBUF_31:PAD.

NET DEF_NET_151; outp_1_, OUTBUF_32:PAD.

NET DEF_NET_154; outp_0_, OUTBUF_33:PAD.

NET DEF_NET_127; a_2_, INBUF_24:PAD.

NET DEF_NET_130; a_1_, INBUF_25:PAD.

NET DEF_NET_133; a_0_, INBUF_26:PAD.

NET DEF_NET_136; b_2_, INBUF_27:PAD.

NET DEF_NET_139; b_1_, INBUF_28:PAD.

NET DEF_NET_142; b_0_, INBUF_29:PAD.

NET DEF_NET_145; clock, CLKBUF_30:PAD.

piron%

This tells us, for example, that the node we called clock in our behavioral model
has been joined to a node (with automatically generated name) called
CLKBUF_30:PAD , using a net (connection) named DEF_NET_145 (again
automatically generated). This net is the connection between the node clock that
is dangling in the behavioral model and the clock-buffer pad cell that the
synthesis tools automatically added.

13.7.3 Exit Delay
We now know that the clock-pad input is CLKBUF_30:PAD , so we can find the
exit delays (the longest path between clock-pad input and an output) as follows
(using the clock-pad input as the start set):

timer> startset clockpad

Working startset 'clockpad' contains 0 pins.

timer> addstart CLKBUF_30:PAD

Working startset 'clockpad' contains 2 pins.

I shall explain why this set contains two pins and not just one presently. Next, we
define the end set and trace the longest exit paths as follows:

timer> endset outpad

Working endset 'outpad' contains 3 pins.

timer> longest

1st longest path to all endpins

Rank Total Start pin First Net End Net End pin

0 16.1 CLKBUF_30/U0:PAD DEF_NET_144 DEF_NET_154
OUTBUF_33:PAD

1 16.0 CLKBUF_30/U0:PAD DEF_NET_144 DEF_NET_151
OUTBUF_32:PAD

2 16.0 CLKBUF_30/U0:PAD DEF_NET_144 DEF_NET_148
OUTBUF_31:PAD

3 pins

This tells us we have three paths from the clock-pad input to the three output pins
(outp[0] , outp[1] , and outp[2]). We can examine the longest exit delay in more
detail as follows:

timer> expand 0

1st longest path to OUTBUF_33:PAD (rising) (Rank: 0)

Total Delay Typ Load Macro Start pin Net name

16.1 3.7 Tpd 0 OUTBUF OUTBUF_33:D DEF_NET_154

12.4 4.5 Tpd 1 DF1 outp_ff_b0:CLK DEF_NET_1530

7.9 7.9 Tpd 16 CLKEXT_0 CLKBUF_30/U0:PAD DEF_NET_144

The input-to-clock delay, t IC , due to the clock-buffer cell (or macro)
CLKEXT_0 , instance name CLKBUF_30/U0 , is 7.9 ns. The clock-to-Q delay, t

CQ , of flip-flop cell DF1 , instance name outp_ff_b0 , is 4.5 ns. The delay, t QO ,
due to the output buffer cell OUTBUF , instance name OUTBUF_33 , is 3.7 ns.
The longest path between clock-pad input and the output, t CO , is thus

t CO = t IC + t CQ + t QO = 16.1 ns . (13.23)

This is the critical path and limits the operating frequency to (1 / 16.1 ns) ª 62
MHz.

When we created a start set using CLKBUF_30:PAD , the timing analyzer told us
that this set consisted of two pins. We can list the names of the two pins as
follows:

timer> showset clockpad

Pin name Net name Macro name

CLKBUF_30/U0:PAD <no net> CLKEXT_0

CLKBUF_30/U1:PAD DEF_NET_145 CLKTRI_0

2 pins

The clock-buffer instance name, CLKBUF_30/U0 , is hierarchical (with a '/'
hierarchy separator). This indicates that there is more than one instance inside the
clock-buffer cell, CLKBUF_30 . Instance CLKBUF_30/U0 is the input driver,
instance CLKBUF_30/U1 is the output driver (which is disabled and unused in
this case).

13.7.4 External Setup Time
Each of the six chip data inputs must satisfy the following set-up equation:

t SU (external) > t SU (internal) � (clock delay) + (data delay (13.24)

(where both clock and data delays end at the same flip-flop instance). We find the

clock delays in Eq. 13.24 using the clock input pin as the start set and the end set
'clock' . The timing analyzer tells us all 16 clock path delays are the same at 7.9
ns in our design, and the clock skew is thus zero. Actel�s clock distribution
system minimizes clock skew, but clock skew will not always be zero. From the
discussion in Section 13.7.1 , we see there is no possibility of internal hold-time
violations with a clock skew of zero.

Next, we find the data delays in Eq, 13.24 using a start set of all input pads and
an end set of 'gated' ,

timer> longest

... lines omitted ...

 1st longest path to all endpins

Rank Total Start pin First Net End Net End pin

10 10.0 INBUF_26:PAD DEF_NET_1320 DEF_NET_1320 a_r_ff_b0:D

11 9.7 INBUF_28:PAD DEF_NET_1380 DEF_NET_1380 b_r_ff_b1:D

12 9.4 INBUF_25:PAD DEF_NET_1290 DEF_NET_1290 a_r_ff_b1:D

13 9.3 INBUF_27:PAD DEF_NET_1350 DEF_NET_1350 b_r_ff_b2:D

14 9.2 INBUF_29:PAD DEF_NET_1410 DEF_NET_1410 b_r_ff_b0:D

15 9.1 INBUF_24:PAD DEF_NET_1260 DEF_NET_1260 a_r_ff_b2:D

16 pins

We are only interested in the last six paths of this analysis (rank 10�15) that
describe the delays from each data input pad (a[0] , a[1] , a[2] , b[0] , b[1] , b[2]
) to the D input of a flip-flop. The maximum data delay, 10 ns, occurs on input
buffer instance name INBUF_26 (pad 26); pin INBUF_26:PAD is node a_0_ in
the EDIF file or input a[0] in our behavioral model. The six t SU (external)
equations corresponding to Eq, 13.24 may be reduced to the following
worst-case relation:

t SU (external) max > t SU (internal) � 7.9 ns + max (9.1 ns, 10.0 ns)

 > t SU (internal) + 2.1 ns (13.25)

We calculated the clock and data delay terms in Eq. 13.24 separately, but timing
analyzers can normally perform a single analysis as follows:

t SU (external) max > t SU (internal) � (clock delay � data delay) min . (13.26)

Finally, we check that there is no external hold-time requirement. That is to say,
we must check that t SU (external) is never negative or

t SU (external) min > t SU (internal) � (clock delay � data delay) max > 0

 > t SU (internal) + 1.2 ns > 0 . (13.27)

Since t SU (internal) is always positive on Actel FPGAs, t SU (external) min is
always positive for this design. In large ASICs, with large clock delays, it is
possible to have external hold-time requirements on inputs. This is the reason that
some FPGAs (Xilinx, for example) have programmable delay elements that
deliberately increase the data delay and eliminate irksome external hold-time
requirements.

13.9 Switch-Level Simulation
The switch-level simulator is a more detailed level of simulation than we have
discussed so far. Figure 13.1 shows the circuit schematic of a true single-phase
flip-flop using true single-phase clocking (TSPC). TSPC has been used in some
full-custom ICs to attempt to save area and power.

(a)
(b)

FIGURE 13.1 A TSPC (true single-phase
clock) flip-flop. (a) The schematic (all
devices are W/L = 3/2) created using a
Compass schematic-entry tool. (b) The
switch-level simulation results (Compass
MixSim). The parameter chargeDecayTime
sets the time after which the simulator sets
an undriven node to an invalid logic level
(shown shaded).

In a CMOS logic cell every node is driven to a strong '1' or a strong '0' . This is
not true in TSPC, some nodes are left floating, so we ask the switch-level
simulator to model charge leakage or charge decay (normally we need not worry
about this low-level device issue). Figure 13.1 shows the waveform results. After
five clock cycles, or 100 ns, we set the charge decay time to 5 ns. We notice two
things. First, some of the node waveforms have values that are between logic '0'
and '1' . Second, there are shaded areas on some node waveforms that represent
the fact that, during the period of time marked, the logic value of the node is
unknown. We can see that initially, before t = 100 ns (while we neglect the
effects of charge decay), the circuit functions as a flip-flop. After t = 100 ns
(when we begin including the effects of charge decay), the simulator tells us that
this circuit may not function correctly. It is unlikely that all the charge would leak

from a node in 5 ns, but we could not stop the clock in a design that uses a TSPC
flip-flop. In ASIC design we do not use dangerous techniques such as TSPC and
therefore do not normally need to use switch-level simulation.

A switch-level simulator keeps track of voltage levels as well as logic levels, and
it may do this in several ways. The simulator may use a large possible set of
discrete values or the value of a node may be allowed to vary continuously.

13.10 Transistor-Level
Simulation
Sometimes we need to simulate a logic circuit with more accuracy than provided
by switch-level simulation. In this case we turn to simulators that can solve
circuit equations exactly, given models for the nonlinear transistors, and predict
the analog behavior of the node voltages and currents in continuous time. This
type of transistor-level simulation or circuit-level simulation is costly in computer
time. It is impossible to simulate more than a few hundred logic cells using a
circuit-level simulator. Virtually all circuit-level simulators used for ASIC design
are commercial versions of the SPICE (or Spice , Simulation Program with
Integrated Circuit Emphasis) developed at UC Berkeley.

FIGURE 13.2 Output
buffer (OB.IN) schematic
(created using Capilano�s
DesignWorks)

13.10.1 A PSpice Example
Figure 13.2 shows the schematic for the output section of a CMOS I/O buffer
driving a 10 pF output capacitor representing an off-chip load. The PSpice input
file that follows is called a deck (from the days of punched cards):

OB September 5, 1996 17:27

.TRAN/OP 1ns 20ns

.PROBE

cl output Ground 10pF

VIN input Ground PWL(0us 5V 10ns 5V 12ns 0V 20ns 0V)

VGround 0 Ground DC 0V

Vdd +5V 0 DC 5V

m1 output input Ground Ground NMOS W=100u L=2u

m2 output input +5V +5V PMOS W=200u L=2u

.model nmos nmos level=2 vto=0.78 tox=400e-10 nsub=8.0e15 xj=-0.15e-6

+ ld=0.20e-6 uo=650 ucrit=0.62e5 uexp=0.125 vmax=5.1e4 neff=4.0

+ delta=1.4 rsh=37 cgso=2.95e-10 cgdo=2.95e-10 cj=195e-6 cjsw=500e-12

+ mj=0.76 mjsw=0.30 pb=0.80

.model pmos pmos level=2 vto=-0.8 tox=400e-10 nsub=6.0e15 xj=-0.05e-6

+ ld=0.20e-6 uo=255 ucrit=0.86e5 uexp=0.29 vmax=3.0e4 neff=2.65

+ delta=1 rsh=125 cgso=2.65e-10 cgdo=2.65e-10 cj=250e-6 cjsw=350e-12

+ mj=0.535 mjsw=0.34 pb=0.80

.end

Figure 13.3 shows the input and output waveforms as well as the current flowing
in the devices.We can quickly check our circuit simulation results as follows. The
total charge transferred to the 10 pF load capacitor as it charges from 0 V to 5 V
is 50 pC (equal to 5 V ¥ 10 pF). This total charge should be very nearly equal to
the integral of the drain current of the pull-up (p -channel) transistor I L (m2).
We can get a quick estimate of the integral of the current by approximating the
area under the waveform for id(m2) in Figure 13.3 as a triangle�half the base
(about 12 ns) multiplied by the height (about 8 mA), so that

 22 ns

Ú I L (m2) d t = 0.5 (8 mA) (12 ns) (13.28)

 10 ns
 ª 50 pC
 ª 5 (10 pF)

Notice that the two estimates for the transferred charge are equal.

FIGURE 13.3 Output Buffer (OB.IN). (Top) The input and output voltage
waveforms. (Bottom) The current flowing in the drains of the output devices.

Next, we can check the time derivative of the pull-up current. (We can also do
this by using the Probe program and requesting a plot of did(m2) ; the symbol dn
represents the time derivative of quantity n for Probe. The symbol id(m2)
requests Probe to plot the drain current of m2 .) The maximum derivative should
be roughly equal to the maximum change of the drain current (D I L (m 2) = 8
mA) divided by the time taken for that change (about D t = 2 ns from Figure 13.3
) or

| D I L (m2) | 8 mA

��������� = ������ = 4 ¥ 10 6 As �1 (13.29)

D t 2 ns

The large time derivative of the device current, here 4 MAs �1 , causes problems
in high-speed CMOS I/O. This sharp change in current must flow in the supply
leads to the chip, and through the inductance associated with the bonding wires to
the chip which may be of the order of 10 nanohenrys. An electromotive force

(emf), V P , will be generated in the inductance as follows,

 d I
V P = � L ��� (13.30)

 d t

 = �10 nH (4 ¥ 10 6) As �1

 = �40 mV

The result is a glitch in the power supply voltage during the buffer output
transient. This is known as supply bounce or ground bounce . To limit the amount
of bounce we may do one of two things:

Limit the power supply lead inductance (minimize L)1.

Reduce the current pulse (minimize dI/dt)2.

We can work on the first solution by careful design of the packages and by using
parallel bonding wires (inductors add in series, reduce in parallel).

13.10.2 SPICE Models
Table 13.14 shows the SPICE parameters for the typical 0.5 m m CMOS process
(0.6 m m drawn gate length), G5, that we used in Section 2.1 . These LEVEL = 3
parameters may be used with Spice3, PSpice, and HSPICE (see also Table 2.1
and Figure 2.4).

TABLE 13.14 SPICE transistor model parameters (LEVEL = 3).

SPICE
parameter 1

n-channel

value

p-channel

value

(if different)

Units 2 Explanation

CGBO 4.0E-10 3.8E-10 Fm �1
Gate�bulk overlap capacitance
(CGBoh, not CGBzero)

CGDO 3.0E-10 2.4E-10 Fm �1
Gate�drain overlap capacitance
(CGDoh, not CGDzero)

CGSO 3.0E-10 2.4E-10 Fm �1
Gate�source overlap capacitance
(CGSoh, not CGSzero)

CJ 5.6E-4 9.3E-4 Fm �2 Junction area capacitance

CJSW 5E-11 2.9E-10 Fm �1 Junction sidewall capacitance

DELTA 0.7 0.29 m
Narrow-width factor for
adjusting threshold voltage

ETA 3.7E-2 2.45E-2 1
Static-feedback factor for
adjusting threshold voltage

GAMMA 0.6 0.47 V 0.5 Body-effect factor

KAPPA 2.9E-2 8 V �1
Saturation-field factor
(channel-length modulation)

KP 2E-4 4.9E-5 AV �2
Intrinsic transconductance (m
Cox , not 0.5 m Cox)

LD 5E-8 3.5E-8 m Lateral diffusion into channel
LEVEL 3 none Empirical model
MJ 0.56 0.47 1 Junction area exponent
MJSW 0.52 0.50 1 Junction sidewall exponent

NFS 6E11 6.5E11 cm �2 V �1 Fast surface-state density

NSUB 1.4E17 8.5E16 cm �3 Bulk surface doping

PB 1 1 V Junction area contact potential
PHI 0.7 V Surface inversion potential

RSH 2
W /
square

Sheet resistance of source and
drain

THETA 0.27 0.29 V �1 Mobility-degradation factor

TOX 1E-8 m Gate-oxide thickness
TPG 1 -1 none Type of polysilicon gate

U0 550 135
cm 2 V �1

s �1
Low-field bulk carrier mobility
(Uzero, not Uoh)

XJ 0.2E-6 m Junction depth

VMAX 2E5 2.5E5 ms �1 Saturated carrier velocity

VTO 0.65 -0.92 V
Zero-bias threshold voltage
(VTzero, not VToh)

There are several levels of the SPICE MOSFET models, the following is a
simplified overview (a huge number of confusing variations, fixes, and options
have been added to these models�see Meta Software�s HSPICE User�s Manual,
Vol. II, for a comprehensive description [1996]):

LEVEL = 1 (Schichman�Hodges model) uses the simple square-law I DS �
V DS relation we derived in Section 2.1 (Eqs. 2.9 and 2.12).

1.

LEVEL = 2 (Grove�Frohman model) uses the 3/2 power equations that
result if we include the variation of threshold voltage across the channel.

2.

LEVEL = 3 (empirical model) uses empirical equations.3.

The UCB BSIM1 model (~1984, PSpice LEVEL = 4 , HSPICE LEVEL =
13) focuses on modeling observed device data rather than on device
physics. A commercial derivative (HSPICE LEVEL = 28) is widely used
by ASIC vendors.

4.

The UCB BSIM2 model (~1991, the commercial derivative is HSPICE
LEVEL = 39) improves modeling of subthreshold conduction.

5.

The UCB BSIM3 model (~1995, the commercial derivative is HSPICE
LEVEL = 49) corrects potential nonphysical behavior of earlier models.

TABLE 13.15 PSpice parameters for process G5 (PSpice LEVEL = 4). 3

.MODEL NM1 NMOS LEVEL=4

+ VFB=-0.7, LVFB=-4E-2,
WVFB=5E-2

+ PHI=0.84, LPHI=0, WPHI=0

+ K1=0.78, LK1=-8E-4,
WK1=-5E-2

+ K2=2.7E-2, LK2=5E-2,
WK2=-3E-2

+ ETA=-2E-3, LETA=2E-02,
WETA=-5E-3

+ MUZ=600, DL=0.2, DW=0.5

+ U0=0.33, LU0=0.1, WU0=-0.1

+ U1=3.3E-2, LU1=3E-2,
WU1=-1E-2

+ X2MZ=9.7, LX2MZ=-6,
WX2MZ=7

+ X2E=4.4E-4, LX2E=-3E-3,
WX2E=9E-4

+ X3E=-5E-5, LX3E=-2E-3,
WX3E=-1E-3

+ X2U0=-1E-2, LX2U0=-1E-3,
WX2U0=5E-3

+ X2U1=-1E-3, LX2U1=1E-3,
WX2U1=-7E-4

+ MUS=700, LMUS=-50,
WMUS=7

+ X2MS=-6E-2, LX2MS=1,
WX2MS=4

+ X3MS=9, LX3MS=2,
WX3MS=-6

+ X3U1=9E-3, LX3U1=2E-4,
WX3U1=-5E-3

.MODEL PM1 PMOS LEVEL=4

+ VFB=-0.2, LVFB=4E-2,
WVFB=-0.1

+ PHI=0.83, LPHI=0, WPHI=0

+ K1=0.35, LK1=-7E-02, WK1=0.2

+ K2=-4.5E-2, LK2=9E-3,
WK2=4E-2

+ ETA=-1E-2, LETA=2E-2,
WETA=-4E-4

+ MUZ=140, DL=0.2, DW=0.5

+ U0=0.2, LU0=6E-2, WU0=-6E-2

+ U1=1E-2, LU1=1E-2, WU1=7E-4

+ X2MZ=7, LX2MZ=-2, WX2MZ=1

+ X2E= 5E-5, LX2E=-1E-3,
WX2E=-2E-4

+ X3E=8E-4, LX3E=-2E-4,
WX3E=-1E-3

+ X2U0=9E-3, LX2U0=-2E-3,
WX2U0=2E-3

+ X2U1=6E-4, LX2U1=5E-4,
WX2U1=3E-4

+ MUS=150, LMUS=10, WMUS=4

+ X2MS=6, LX2MS=-0.7,
WX2MS=2

+ X3MS=-1E-2, LX3MS=2,
WX3MS=1

+ X3U1=-1E-3, LX3U1=-5E-4,
WX3U1=1E-3

+ TOX=1E-2, TEMP=25, VDD=5

6.

+ TOX=1E-2, TEMP=25, VDD=5

+ CGDO=3E-10, CGSO=3E-10,
CGBO=4E-10

+ XPART=1

+ N0=1, LN0=0, WN0=0

+ NB=0, LNB=0, WNB=0

+ ND=0, LND=0, WND=0

* n+ diffusion

+ RSH=2.1, CJ=3.5E-4,
CJSW=2.9E-10

+ JS=1E-8, PB=0.8, PBSW=0.8

+ MJ=0.44, MJSW=0.26, WDF=0

*, DS=0

+ CGDO=2.4E-10, CGSO=2.4E-10,
CGBO=3.8E-10

+ XPART=1

+ N0=1, LN0=0, WN0=0

+ NB=0, LNB=0, WNB=0

+ ND=0, LND=0, WND=0

* p+ diffusion

+ RSH=2, CJ=9.5E-4, CJSW=2.5E-10

+ JS=1E-8, PB=0.85, PBSW=0.85

+ MJ=0.44, MJSW=0.24, WDF=0

*, DS=0

Table 13.15 shows the BSIM1 parameters (in the PSpice LEVEL = 4 format) for
the G5 process. The Berkeley short-channel IGFET model (BSIM) family
models capacitance in terms of charge. In Sections 2.1 and 3.2 we treated the gate
�drain capacitance, C GD , for example, as if it were a reciprocal capacitance , and
could be written assuming there was charge associated with the gate, Q G , and
the drain, Q D , as follows:

 -� Q G -� Q D

C GD = ���� = C DG = ���� (13.31)

 � V D � V G

Equation 13.31 (the Meyer model) would be true if the gate and drain formed a
parallel plate capacitor and Q G = � Q D , but they do not. In general, Q G ` � Q D
and Eq. 13.31 is not true. In an MOS transistor we have four regions of charge:
Q G (gate), Q D (channel charge associated with the drain), Q S (channel charge
associated with the drain), and Q B (charge in the bulk depletion region). These
charges are not independent, since

Q G + Q D + Q S + Q B = 0 (13.32)

We can form a 4 ¥ 4 matrix, M , whose entries are � Q i /� V j , where V j = V G ,
V S , V D , and V B . Then C ii = M ii are the terminal capacitances; and C ij = � M

ij , where i ` j , is a transcapacitance . Equation 13.32 forces the sum of each
column of M to be zero. Since the charges depend on voltage differences, there

are only three independent voltages (V GB , V DB , and V SB , for example) and
each row of M must sum to zero. Thus, we have nine (= 16 � 7) independent
entries in the matrix M . In general, C ij is not necessarily equal to C ji . For
example, using PSpice and a LEVEL = 4 BSIM model, there are nine
independent partial derivatives, printed as follows:

Derivatives of gate (dQg/dVxy) and bulk (dQb/dVxy) charges

DQGDVGB 1.04E-14

DQGDVDB -1.99E-15

DQGDVSB -7.33E-15

DQDDVGB -1.99E-15

DQDDVDB 1.99E-15

DQDDVSB 0.00E+00

DQBDVGB -7.51E-16

DQBDVDB 0.00E+00

DQBDVSB -2.72E-15

From these derivatives we may compute six nonreciprocal capacitances :

C GB = � Q G /� V GB + � Q G /� V DB + � Q G /� V SB (13.33)

C BG = �� Q B /� V GB

C GS = �� Q G /� V SB

C SG = � Q G /� V GB + � Q B /� V GB + � Q D /� V GB

C GD = �� Q G /� V DB

C DG = �� Q D /� V GB

and three terminal capacitances:

C GG = � Q G /� V GB (13.34)

C DD = � Q D /� V DB

C SS = �(� Q G /� V SB + � Q B /� V SB + � Q D /� V SB)

Nonreciprocal transistor capacitances cast a cloud over our analysis of gate
capacitance in Section 3.2, but the error we made in neglecting this effect is small
compared to the approximations we made in the sections that followed. Even
though we now find the theoretical analysis was simplified, the conclusions in
our treatment of logical effort and delay modeling are still sound. Sections 7.3
and 9.2 in the book on transistor modeling by Tsividis [1987] describe
nonreciprocal capacitance in detail. Pages 15-42 to 15-44 in Vol. II of Meta

Software�s HSPICE User Manual [1996] also gives an explanation of
transcapacitance.

1. Meta Software�s HSPICE User�s Manual [1996], p. 15-36 and pp.16-13 to
16-15, explains these parameters.

2. Note that m or M both represent milli or 10 �3 in SPICE, not mega or 10 6 (u or
U = micro or 10 �6 and so on).

3. PSpice LEVEL = 4 is almost exactly equivalent to the UCB BSIM1 model,
and closely equivalent to the HSPICE LEVEL = 13 model (see Table 14-1 and
pp. 16�86 to 16-89 in Meta Software�s HSPICE User�s Manual [1996].

13.11 Summary
We discussed the following types of simulation (from high level to low level):

Behavioral simulation includes no timing information and can tell you only
if your design will not work.

●

Prelayout simulation of a structural model can give you estimates of
performance, but finding a critical path is difficult because you need to
construct input vectors to exercise the model.

●

Static timing analysis is the most widely used form of simulation. It is
convenient because you do not need to create input vectors. Its limitations
are that it can produce false paths�critical paths that may never be
activated.

●

Formal verification is a powerful adjunct to simulation to compare two
different representations and formally prove if they are equal. It cannot
prove your design will work.

●

Switch-level simulation is required to check the behavior of circuits that
may not always have nodes that are driven or that use logic that is not
complementary.

●

Transistor-level simulation is used when you need to know the analog,
rather than the digital, behavior of circuit voltages.

●

There is a trade-off in accuracy against run time. The high-level simulators are
fast but are less accurate.

13.12 Problems
* = Difficult, ** = Very difficult, *** = Extremely difficult

13.1 (Errors, 30 min.) Change a <= b to a >= b in line 4 in module reference in
Section 13.2.1 . Simulate the testbench (write models for the five logic cell models not
shown in Section 13.2.1). How many errors are there, and why? Answer: 56.

13.2 (False paths, 15 min.) The following code forces an output pin to a constant value.
Perform a timing analysis on this model and comment on the results.

module check_critical_path_2 (a, z);

input a; output z; supply1 VDD; supply0 VSS;

nd02d0 b1_i3 (.a1(a), .a2(VSS), .zn(z)); // 2-input NAND

endmodule

13.3 (Timing loops, 30 min.) The following code models a set�reset latch with feedback to
implement a memory element. Perform a timing analysis on this model and comment on the
results.

module check_critical_path_3 (s, r, q, qn);

input s, r; output q, qn; supply1 VDD; supply0 VSS;

nr02d0 b1_i1 (.a1(s), .a2(qn), .zn(q)); // 2-input NOR

nr02d0 b1_i2 (.a1(r), .a2(q), .zn(qn)); // 2-input NOR

endmodule

13.4 (Simulation script, 30 min.) Perform a gate-level simulation of the comparator/MUX in
Section 13.2.3 . Write a script to set input values and so on.

13.5 (Verilog loops, 30 min.) Change the index from integer to reg (width three) in each
loop in testbench.v from Section 13.2 . Explain the simulation result.

13.6 (Verilog time, 30 min.) Remove '#1' from line 15 in testbench.v from Section 13.2 .
Explain carefully the simulation result.

13.7 (Infinite loops, 30 min.) Construct an HDL program that loops infinitely on a UNIX
machine (with no output file!) and explain how the following helps:

<293> ps

PID TT STAT TIME COMMAND

...

28920 p1 R 0:30 verilog infinite_loop.v

...

<294> kill -9 28920

13.8 (Verilog graphics, 30 min.) Experiment with graphical waveform dumps from Verilog.
For example, in VeriWell you need to include the following statement:

initial $dumpvars;

The file Dump file veriwell.dmp should appear. Next, select File... , then
Convert Dumpvar... Write a cheat sheet on how to use and display simulation results from a
hierarchical model.

13.9 (Unknowns, 30 min.) Explain, using truth tables, the function of primitive G6 in
module mx21d1 from Section 13.2.1 . Hint: Consider unknown propagation. Eliminate
primitive G6 as follows and use simulation to compare the two models:

not G3(N3,s); and G4(N4,i0,N3), G5(N5,s,i1); or G7(z,N4,N5);

13.10 (Data books, 10 min.) Explain carefully what you safely can and cannot deduce from
the data book figures in Table 13.16 .

TABLE 13.16 Input capacitances�AOIabcd family (Problem 13.10).

 1X drive 2X drive 4X drive
Area 0.034 pF 0.069 pF 0.138 pF
Performance 0.145 pF 0.294 pF 0.588 pF

13.11 (Synthesis, 30 min.) Synthesize comp_mux_rrr.v in Section 13.7 . What type and how
many sequential elements result? Answer: 16.

13.12 (Place and route, 60 min.) Route both comp_mux.v (Section 13.2) and
comp_mux_rrr.v (Section 13.7) using an FPGA. What fraction of the chip is used?
Answer: For an Actel 1415 FPGA, comp_mux_rrr.v uses about 10 percent of the available
logic.

13.13 (Timing analysis, 60 min.) Perform timing analysis on a routed version of
comp_mux.v from Section 13.2 . Use worst-case commercial conditions.

13.14 (***NAND gate delay, 120 min.) The following example of a six-input NAND gate
illustrates the difference between transistor-level and other levels of simulation. A designer
once needed a delay element (do not ask why!). Looking at the data book they found a
six-input NAND gate had the right delay, but they did not know what to do with the other
five inputs. So they tied all six inputs together. This is a horrendous error, but why? Hint:
You might have to simulate a structural model using both digital simulation and a
circuit-level simulation in order to explain.

13.15 (Logic systems, 30 min.) Compare the 12 value system of Table 13.5 with the
IEEE 1164 standard and explain: Which logic values are equivalent in both systems, which
logic values have no equivalents, and why there is a difference in the number of values (12
versus 9) when both systems have the same number of logic levels and logic strengths?

13.16 (VHDL overloaded functions, 30 min.) Write a definition for the type stdlogic_table
used in the and function in Section 13.3.2 ,

constant and_table:stdlogic_table

Compile, simulate, and test the and function.

13.17 (**Scheduling transactions in VHDL, 60 min.) (From an example in the VHDL
LRM.) Consider this assignment to an integer S in a VHDL process:

S <= reject 15 ns inertial 12 after 20 ns, 18 after 41 ns;

Assume that at the time this signal assignment is executed, the driver for S in the process
has the following contents (the first entry is the current driving value):

1 2 2 12 5 8

now +3ns +12ns +13ns +20ns +42ns

This is called the projected output waveform (times are relative to the current time). The
LRM states the rule for updating a projected output waveform consists of the deletion of
zero or more previously computed transactions (called old transactions) from the projected
output waveform, and the addition of the new transactions, as follows:

All old transactions that are projected to occur at or after the time at which the earliest
new transaction is projected to occur are deleted from the projected output waveform.

1.

The new transactions are then appended to the projected output waveform in the order
of their projected occurrence.

2.

If the initial delay is inertial delay, the projected output waveform is further modified as
follows:

All of the new transactions are marked.1.

An old transaction is marked if the time at which it is projected to occur is less than
the time at which the first new transaction is projected to occur minus the pulse
rejection limit.

2.

For each remaining unmarked, old transaction, the old transaction is marked if it
immediately precedes a marked transaction and its value component is the same as
that of the marked transaction.

3.

The transaction that determines the current value of the driver is marked.4.

All unmarked transactions (all of which are old transactions) are deleted from the
projected output waveform.

5.

For the purposes of marking transactions, any two successive null transactions in a projected
output waveform are considered to have the same value component. Using these rules
compute the new projected output waveform.

13.18 (*** awk , 120 min.) Write an awk program with the following specification to
compare two simulations:

program to check two files with the format:

time signal value

to check agreement within time tolerance delta (by default 0.1)

#

Use: check file1 file2 [delta]

13.19 (VITAL, 60 min.) Simulate the model, sdf_testbench , shown in Section 13.5.5 , with
and without back-annotation timing information in SDF_b.sdf .

13.20 (Formal verification, 60 min.) Write a cheat sheet explaining how to run your formal
verification tool. Repeat the example in Section 13.8.1 .

13.21 (***Beetle problem) (Based on a problem by Seitz.) A planet has many geological
gem mazes: A maze covers a square km or so, on a 10 mm grid; a maze cell is 10 mm by 10
mm and gems lie at cell centers; there is a path from every maze cell to every other; on
average one in 64 cells has an overhead opening; on average one in seven cells has a single
gem; there are no gems under overhead openings.

You are to design a gem-mining beetle ASIC with the following inputs: a nominal 1 MHz
single-phase clock, CLK ; wall sensors: WL , WR , WF , WB (wall to
left/right/forward/behind); light sensors: LL , LR , LF , LB (light left/right/forward/behind);
low-battery indicator: BLOW ; gem sensor: GEM (directly over a gem); opening sensor:
OPEN (when under an opening).

All signals are active high and the light sensor outputs are mutually exclusive. The beetle
ASIC must produce the following (mutually exclusive) signals: move forward, MF ; move
backward, MB ; turn 90 degrees clockwise, TC ; turn 90 degrees anticlockwise, TA ; pick
up a gem, PICKUP ; throw gem up and out of overhead opening, THROWUP ; jump up to
surface and shut down, SHUTUP .

The beetle specifications and limitations are as follows: Beetles are dropped into the maze
to find the gems; beetles must find gems and carry them to an opening; beetles can eject
gems through openings; beetles can carry only one gem at a time.

A beetle move is one of the following: taking one step (moving to an adjacent cell), turning
90 degrees, picking up a gem, ejecting a gem, jumping out of opening�all take the same time
and energy. A battery can provide energy for about 200 moves before the low-battery signal
comes on. After the low-battery warning is signaled the battery has energy for 50 moves to
find an overhead opening, and the beetle must then eject itself for recharging. The cost of
the beetle determines that we would like the probability of losing a beetle be below 0.01.

The following describes a state machine to drive a beetle. Jim Rowson used a state-machine
language that he developed�along with the first CAD tool that could automatically create
state machines:

Jim Rowson's beetle

sm smbtl;

clock clk;

reset res --> resetState;

inputs WL WL WR WB GEM LF LL LR LB OPEN BLOW;

outputs MF=0 MB=0 TC=0 TA=0 PICKUP=0 THROWUP=0 SHUTUP=0;

outputs haveAgem SHUTUP;

let getout = (BLOW|haveAgem) & (LL|LF|LR|LB);

state resetState --> searchState haveAgem=0 SHUTUP=0;

state searchState

BLOW & OPEN --> jumpState,

haveAgem & OPEN --> ejectstate,

getout & LL --> turnLstate,

getout & LF --> goFwdState,

getout & LR --> turnRstate,

getout & LB --> turnAroundState,

!haveAgem & GEM --> getGemState,

!WL --> turnLState,

!WF --> goFwdState,

!WR --> turnRState,

!WB --> turnAroundState;

state goFwdState --> MF searchState;

state turnLState --> TA goFwdState;

state turnRState --> TC goFwdState;

state turnAroundState --> TC turnAgainState;

state ejectState --> THROWUP !haveAgem searchState;

state jumpState --> SHUTUP shutdownState;

state getGemState --> PICKUP haveAgem searchState;

state shutDownState --> SHUTUP shutDownState;

state turnAgainState --> TC searchState;

end

a. (120 min.) Draw Jim�s state machine diagram and translate it to an HDL.●

b. (120 min.) Build a model for the maze that will work with Jim�s design.●

c. (120 min.) Simulate the operation of Jim�s beetle using your maze model.●

d. (Hours) Can you do better than Jim?●

13.22 (Switch-level simulation, 120 min.) Perform the switch-level simulation shown in
Section 13.9 .

13.23 (**Simulation, 60 min.) (From a question posed by Ray Ryan to the VITAL timing
group.) Suppose we have a two-input NAND gate (inputs I1 and I2, and output Q) with
separate path delays from I1 to Q and from I2 to Q with delays as follows:

tpd_I1_Q =>

(tr01 => 10 ns, -- falling I1 -> rising Q

tr10 => 7 ns) -- rising I1 -> falling Q

tpd_I2_Q =>

(tr01 => 5 ns, -- falling I2 -> rising Q

tr10 => 3 ns) -- rising I1 -> falling Q

a. For inputs: (I1:0->1, 9 ns; I2:0->1, 10 ns), should Q fall at:●

12 ns, 13 ns, 16 ns, 17 ns or other?

b. For inputs: (I2:0->1, 9 ns; I1:0->1, 10 ns), should Q fall at:●

12 ns, 13 ns, 16 ns, 17 ns or other?

c. For inputs: (I2:0->1, 10 ns; I1:0->1, 10 ns), should Q fall at:●

13 ns, 15 ns, 17 ns, 20 ns or other?

d. For inputs: (I1:1->0, 9 ns; I2:1->0, 10 ns), should Q rise at:●

14 ns, 15 ns, 19 ns, 20 ns or other?

e. For inputs: (I2:1->0, 9 ns; I1:1->0, 10 ns), should Q rise at:●

14 ns, 15 ns, 19 ns, 20 ns or other?

f. For inputs: (I1:0->1, 10 ns; I2:0->1, 10 ns), should Q fall at:●

13 ns, 15 ns, 17 ns, 20 ns or other?

In each case explain your answer using actual simulation results to help you.

13.24 (VHDL trace, 30 min.) Write a simple testbench and trace through the following
VHDL behavioral simulation.

library IEEE;

use IEEE.std_logic_1164. all ; use IEEE.NUMERIC_STD. all ;

entity comp_mux is

generic (TPD : TIME := 1 ns);

port (A, B : in STD_LOGIC_VECTOR (2 downto 0);

Y : out STD_LOGIC_VECTOR (2 downto 0));

end ;

architecture Behave of comp_mux is

begin

Y <= A after TPD when (A <= B) else B after TPD;

end ;

13.25 (VHDL simulator, 30 min.) Explain the steps in using your VHDL simulator. Are
there separate compile, analyze, elaborate, initialization, and simulate phases. Where and
when do they occur. How do you know?

13.26 (Debugging VHDL, 60 min.) Correct the errors in the following code:

entity counter8 is port (

rset, updn, clock : in bit; carry : out bit; count : buffer integer range 0 to 255);

end counter8;

architecture behave of counter8 is

begin process

begin

wait until clock'event and clock = '1';

if (rset = '1') then count <= 0; carry <= '0';

else case updn

when '1' => count <= count + 1;

if (count = 255) then carry <= '1'; else carry <= '0'; end if;

when '0' => count <= count - 1;

if (count = 0) then carry <= 1; else carry <= 0; end if;

end case;

end if;

end process;

end behave;

13.27 (***VITAL flip-flop) The following VITAL code models a D flip-flop:

LIBRARY ieee; USE ieee.Std_Logic_1164.all;

USE ieee.Vital_Timing.all; USE ieee.Vital_Primitives.all;

ENTITY dff IS

GENERIC (

TimingChecksOn : BOOLEAN := TRUE;

XGenerationOn : BOOLEAN := TRUE;

InstancePath : STRING := "*";

tipd_Clock : DelayType01 := (0 ns, 0 ns);

tipd_Data : DelayType01 := (0 ns, 0 ns);

tsetup_Data_Clock : DelayType01 := (0 ns, 0 ns);

thold_Data_Clock : DelayType01 := (0 ns, 0 ns);

tpd_Clock_Q : DelayType01 := (0 ns, 0 ns);

tpd_Clock_Qbar : DelayType01 := (0 ns, 0 ns));

PORT (Clock, Data: Std_Logic; Q,Qbar:OUT Std_Logic);

END dff;

ARCHITECTURE Gate OF dff IS

ATTRIBUTE Vital_Level1 of gate : ARCHITECTURE IS TRUE;

SIGNAL Clock_ipd : Std_Logic := 'X';

SIGNAL Data_ipd : Std_Logic := 'X';

BEGIN

Wire_Delay:BLOCK BEGIN -- INPUT PATH DELAYs

VitalPropagateWireDelay

(Clock_ipd, Clock, VitalExtendToFillDelay(tipd_Clock));

VitalPropagateWireDelay

(Data_ipd, Data, VitalExtendToFillDelay(tipd_Data));

END BLOCK;

VitalBehavior : PROCESS (Clock_ipd, Data_ipd)

CONSTANT Dff_tab:VitalStateTableType:= (

--Vio CLOCK DATA IQ Q QBAR

('X', '-', '-', '-', 'X', 'X'), -- Timing Violation

('-', '\', '0', '-', '0', '1'), -- Active Clock Edge

('-', '\', '1', '-', '1', '0'),

('-', '\', 'X', '-', 'X', 'X'),

('-', '-', '0', '0', '0', '1'), -- X Reduction

('-', '-', '1', '1', '1', '0'),

('-', 'D', '-', '-', 'X', 'X'), -- X Generation

('-', 'B', '-', '-', 'S', 'S'), -- Non-Active Clock Edge

('-', 'X', '-', '-', 'S', 'S'));

-- Anything else generates X on Q and QBAR

-- Timing Check Results

VARIABLE Tviol_Data_Clock : X01 := '0';

VARIABLE Tmkr_Data_Clock : TimeMarkerType;

-- Functionality Results

VARIABLE Violation:X01:='0';

VARIABLE PrevData:Std_Logic_Vector(1 to 3):=(OTHERS=>'X');

VARIABLE Results:Std_Logic_Vector(1 to 2):=(OTHERS =>'X');

ALIAS Q_zd:Std_Logic IS Results(1);

ALIAS Qbar_zd:Std_Logic IS Results(2);

-- Output Glitch Detection Variables

VARIABLE Q_GlitchData : GlitchDataType;

VARIABLE Qbar_GlitchData : GlitchDataType;

BEGIN -- Timing Check Section

IF (TimingChecksOn) THEN

VitalTimingCheck (

Data_ipd, "Data", Clock_ipd, "Clock",

t_setup_hi => tsetup_Data_Clock(tr01),

t_setup_lo => tsetup_Data_Clock(tr10),

t_hold_hi => thold_Data_Clock(tr01),

t_hold_lo => thold_Data_Clock(tr10),

CheckEnabled => TRUE,

RefTransition => (Clock_ipd = '0'),

HeaderMsg => InstancePath & "/DFF",

TimeMarker => Tmkr_Data_Clock,

Violation => Tviol_Data_Clock);

END IF;

-- Functionality Section

Violation := Tviol_Data_Clock ;

VitalStateTable(StateTable => Dff_tab,

DataIn => (Violation, Clock_ipd, Data_ipd),

NumStates => 1,

Result => Results,

PreviousDataIn => PrevData);

-- Path Delay Section

VitalPropagatePathDelay (Q, "Q", Q_zd,

Paths => (0 => (Clock_ipd'LAST_EVENT,

VitalExtendToFillDelay(tpd_Clock_Q), TRUE),

1 => (Clock_ipd'LAST_EVENT,

VitalExtendToFillDelay(tpd_Clock_Q), TRUE)),

GlitchData => Q_GlitchData,

GlitchMode => MessagePlusX,

GlitchKind => OnEvent);

VitalPropagatePathDelay (Qbar, "Qbar", Qbar_zd,

Paths => (0 => (Clock_ipd'LAST_EVENT,

VitalExtendToFillDelay(tpd_Clock_Qbar), TRUE),

1 => (Clock_ipd'LAST_EVENT,

VitalExtendToFillDelay(tpd_Clock_Qbar), TRUE)),

GlitchData => Qbar_GlitchData,

GlitchMode => MessagePlusX,

GlitchKind => OnEvent);

END PROCESS;

END Gate;

a. (120 min.) Build a testbench for this model.●

b. (30 min.) Simulate and check the model using your testbench.●

c. (60 min.) Explain the function of each line.●

d. (60 min.) Explain the glitch detection.●

e. (120 min.) Explain the unknown propagation behavior.●

13.28 (VCD, 30 min.) Verilog can create a value change dump (VCD) file:

module waves; reg clock; integer count;

initial begin clock = 0; count = 0; $dumpvars; #340 $finish; end

always #10 clock = ~ clock;

always begin @ (negedge clock); if (count == 7) count = 0;

else count = count + 1; end

endmodule

A VCD file contains header information, variable definitions, and the value changes for
variables [Verilog LRM 15]. Try and explain the format of the file that results.

13.29 (*Formal verification, 60 min.) (Based on an example by Browne, Clarke, Dill, and
Mishra.) A designer needs to fold an 8-bit ripple-carry adder into a small space on an ASIC
and check the circuit extracted from the layout. With two 8-bit inputs, A and B , and a 1-bit
carry Cin , exhaustively testing all possible inputs requires 2 17 or over 128,000 input
vectors. Instead the designer selects a subset of tests. The three tests in Table 13.17 check
that all the bits of the output can be '0' or '1' . The two tests in Table 13.18 make sure that
the carry propagates through the adder, and that the adder can handle the largest numbers.
The designer then repeats all of these five tests with the carry-in Cin set to '1' instead of '0' .
Next the designer performs a series of 24 tests using the three patterns shown in Table 13.19

, with all eight possible combinations of '0' and '1' for x , y , and z . These patterns test each
full adder in isolation for all possible sum inputs (A and B) and carry input (Cin). These
tests appear comprehensive and reduce the number of vectors required from over 128,000 to
34. Confident, the designer releases the chip for fabrication. Unfortunately, the chip does
not work. Which connections between adders did the designer�s tests fail to check?

TABLE 13.17 Test to check for output toggling
(Problem 13.29).

TABLE 13.18 Test to check for carry
propagation (Problem 13.29).

A 00000000 00000000 01010101 A 00000001 11111111
B 00000000 11111111 10101010 B 11111111 11111111
Cin 0 0 0 Cin 0 0
Sum 000000000 011111111 011111111 Sum 100000000 111111110

TABLE 13.19 Test with all possible combinations of '0' and '1' for x , y , and z (Problem
13.29).

A xz0xz0xz z0xz0xz0 0xz0xz0x
B yz0yz0yz z0yz0yz0 0yz0yz0y
C 0 z z
Sum cs0cs0cs0 z0cs0cs0z 0cs0cs0cs

13.30 (*BSIM1 parameters, 120 min.) SPICE models are tangled webs. For example, there
are two formats for the 69 UCB BSIM1 transistor parameters: (1) using parameter names (
Table 13.15); and (2) without parameter names (Table 13.20). MOSIS uses format (2).
The first 58 parameters starting with VFB (19 rows of 3 parameters plus one, XPART) are
the same order in format (1) and (2). Format (2) uses two dummy parameters (zero)
following XPART . The final nine parameters (N0 to WND) are the same order in both
formats. There are 10 additional parameters that follow the n - and p -channel transistor
parameters that model the n - and p -diffusion, respectively (in the same order in both
formats). To complicate things further: (i) HSPICE, SPICE, and PSpice use different names
for some parameters (for example PSpice uses VFB , HSPICE uses VFB0); (ii) HSPICE
accepts names for the dummy parameters (DUM1 and DUM2), but PSpice does not; (iii)
HSPICE accepts the final parameter DS (though it is ignored), but PSpice does not (DS
models mask bias and can be neglected without too much fear).

Convert the models shown in Table 13.20 to format (2) for your chosen simulator (PSpice
LEVEL = 4 , HSPICE LEVEL = 13). Compare the resulting I DS � V DS characteristics with
the LEVEL = 3 parameters (Table 13.14) and the (PSpice) LEVEL = 4 parameters (
Table 13.15) for the G5 process. MOSIS has stored the results of its process runs in the
format shown in Table 13.20 .

TABLE 13.20 MOSIS SPICE parameters (Problem 13.30). 1

*NMOS PARAMETERS

-7.05628E-01,-3.86432E-02, 4.98790E-02

8.41845E-01, 0.00000E+00, 0.00000E+00

7.76570E-01,-7.65089E-04,-4.83494E-02

2.66993E-02, 4.57480E-02,-2.58917E-02

-1.94480E-03, 1.74351E-02,-5.08914E-03

5.75297E+02,1.70587E-001,4.75746E-001

3.30513E-01, 9.75110E-02,-8.58678E-02

3.26384E-02, 2.94349E-02,-1.38002E-02

9.73293E+00,-5.62944E+00, 6.55955E+00

4.37180E-04,-3.07010E-03, 8.94355E-04

-5.05012E-05,-1.68530E-03,-1.42701E-03

-1.11542E-02,-9.58423E-04, 4.61645E-03

-1.04401E-03, 1.29001E-03,-7.10095E-04

6.92716E+02,-5.21760E+01, 7.00912E+00

-6.41307E-02, 1.37809E+00, 4.15455E+00

8.86387E+00, 2.06021E+00,-6.19817E+00

9.02467E-03, 2.06380E-04,-5.20218E-03

9.60000E-003, 2.70000E+01, 5.00000E+00

3.60204E-010,3.60204E-010,4.37925E-010

1.00000E+000,0.00000E+000,0.00000E+000

1.00000E+000,0.00000E+000,0.00000E+000

0.00000E+000,0.00000E+000,0.00000E+000

0.00000E+000,0.00000E+000,0.00000E+000

*N+ diffusion::

2.1, 3.5e-04, 2.9e-10, 1e-08, 0.8

0.8, 0.44, 0.26, 0, 0

*PMOS PARAMETERS

-2.02610E-01, 3.59493E-02,-1.10651E-01

8.25364E-01, 0.00000E+00, 0.00000E+00

3.54162E-01,-6.88193E-02, 1.52476E-01

-4.51065E-02, 9.41324E-03, 3.52243E-02

-1.07507E-02, 1.96344E-02,-3.51067E-04

1.37992E+02,1.92169E-001,4.68470E-001

1.89331E-01, 6.30898E-02,-6.38388E-02

1.31710E-02, 1.44096E-02, 6.92372E-04

6.57709E+00,-1.56096E+00, 1.13564E+00

4.68478E-05,-1.09352E-03,-1.53111E-04

7.76679E-04,-1.97213E-04,-1.12034E-03

8.71439E-03,-1.92306E-03, 1.86243E-03

5.98941E-04, 4.54922E-04, 3.11794E-04

1.49460E+02, 1.36152E+01, 3.55246E+00

6.37235E+00,-6.63305E-01, 2.25929E+00

-1.21135E-02, 1.92973E+00, 1.00182E+00

-1.16599E-03,-5.08278E-04, 9.56791E-04

9.60000E-003, 2.70000E+01, 5.00000E+00

4.18427E-010,4.18427E-010,4.33943E-010

1.00000E+000,0.00000E+000,0.00000E+000

1.00000E+000,0.00000E+000,0.00000E+000

0.00000E+000,0.00000E+000,0.00000E+000

0.00000E+000,0.00000E+000,0.00000E+000

*P+ diffusion::

2, 9.4529e-04, 2.4583e-10, 1e-08, 0.85

0.85, 0.439735, 0.237251, 0, 0

13.31 (**Nonreciprocal capacitance, 120 min.)

a. Starting from the equation for transient current flowing into the gate,

 � Q G d V D � Q G d V G

i G = ��� ��� + ��� ���

 � V D d t � V G d t

●

 � Q G d V S � Q G d V B

 + ��� ��� + ��� ��� , (13.35)

 � V S d t � V B d t

(where d Q i / d V j are elements of matrix M), show

 d V D d V G

i G = � C GD ��� + C GG ���

 d t d t

 d V S d V B

 � C GS ��� � C GB ��� (13.36)

 d t d t

 (13.10)

and thus that the rows of M sum to zero by showing that

C GG = C GD + C GS + C GB (13.37)

and three other similar equations for C DD , C SS , and C BB .

b. Show

 d V DB d V GB

i G = � C GD ��� + C GG ���

 d t d t

 d V SB

 � C GS ��� (13.38)

 d t

●

and derive similar equations for the transient currents i S , i D , and i B .

c. Using the fact that i G + i S + i D + i B = 0, show

C GG = C DG + C SG + C BG (13.39)

●

and, by deriving similar expressions for C DD , C SS , and C BB , show that the columns of
M sum to zero.

1. Source: MOSIS, process = HP-NID, technology = scn05h, run = n5bo, wafer = 42, date =
1-Feb-1996.

13.13 Bibliography
Capilano Computing produces books (including software) that explain its
schematic editor and logic simulators, LogicWorks and DesignWorks, for PC and
Macintosh platforms [1995], as well as its Verilog interface [1997]. The book by
Ciccarelli [1995] includes a circuit simulator, BreadBoard, with a
schematic-entry program.

Miczo [1994] covers digital simulation in general. Arora [1993] covers MOS
models in detail. Carey et al. [1996] cover the mathematical aspects of circuit and
device modeling. Cheng and Agrawal [1989] cover vector generation from the
perspective of testing. Hëorbst�s edited book contains papers on simulation [
1986]. Hill and Coelho [1987] cover mixed-level or multilevel simulation.
Tuinenga [1988], Banzhaf [1989], Morris [1991], Fenical [1992], Conant
[1993], Nilsson and Riedel [1993], Kielkowski [1994], and Lamey [1995] are all
introductory books on simulation using the SPICE or PSpice. The book by
Al-Hashimi [1995] on PSpice covers both digital and analog simulation.
Massobrio and Antognetti [1993] cover the internal details of the SPICE and
PSpice models. Meta Software�s HSPICE User Manual is very detailed and an
essential companion for serious users of any flavor of the SPICE [1996].
McCalla [1988] covers the mathematical principles of circuit simulation.
Ogrodzki [1994] covers simulation algorithms. Pillage et al. [1994] cover newer
circuit and system simulation methods as alternatives to the SPICE including
asymptotic waveform evaluation (AWE). Rao et al. [1989] cover switch-level
simulation. White and Sangiovanni-Vincentelli [1987] cover waveform
relaxation simulation. Zukowski [1986] is an advanced text on bounding
approach to simulation. Divekar [1988] covers device modeling. Fjeldly,
Ytterdal, and Shur [1997] cover device modeling and simulation. Two books by
Tsividis cover device modeling: the first [1987] is an advanced treatment of the
MOS transistor; the second [1996] includes an introduction to the problems of
device modeling.

13.14 References
Al-Hashimi, B. 1995. The Art of Simulation Using PSpice: Analog and Digital .
Boca Raton, FL: CRC Press, 249 p. ISBN 0849378958. TK454.A454.

Arora, N. 1993. MOSFET Models for VLSI Circuit Simulation: Theory and
Practice. New York: Springer-Verlag, 605 p. ISBN 321182395-6, ISBN
0-387-82395-6. TK7871.95.A76.

Banzhaf, W. 1989. Computer-Aided Circuit Analysis Using SPICE. Englewood
Cliffs, NJ: Prentice-Hall. ISBN 0131625799. TK454.B33.

Capilano Computing. 1995. LogicWorks 3.0 for Windows and the Macintosh.
Menlo Park, CA: Addison-Wesley, 454 p. ISBN 0-8053-1319-2.
TK7874.65.L65.

Capilano Computing. 1997. LogicWorks Verilog Modeler: Interactive Circuit
Simulation Software for Windows and Macintosh. Menlo Park, CA: Capilano
Computing, 102 p. ISBN 0201895854. TK7888.4.L64.

Carey, G. F., et al. 1996. Circuit, Device, and Process Simulation: Mathematical
and Numerical Aspects. New York: Wiley, 425 p. ISBN 0471960195.
TK7867.C4973. 31 pages of references.

Cheng, K.-T., and V. D. Agrawal. 1989. Unified Methods for VLSI Simulation
and Test Generation. Norwell, MA: Kluwer, 148 p. ISBN 0-7923-9025-3.
TK7874.C525. 377 references. The first three chapters give a good introduction
to fault simulation and test-vector generation.

Ciccarelli, F. A. 1995. Circuit Modeling: Exercises and Software. 3rd ed.
Englewood Cliffs: Prentice-Hall, 190 p. ISBN 0023224738. TK454.C59.
Includes BreadBoard, an IBM-PC compatible circuit analysis computer program.

Conant, R. 1993. Engineering Circuit Analysis with PSpice and Probe:
Macintosh Version. New York: McGraw-Hill, 176 p. ISBN 0079116795.
TK454.C674.

Divekar, D. 1988. FET Modeling for Circuit Simulation. Boston: Kluwer, 183 p.
ISBN 0898382645. TK7871.95.D58. 12 pages of references.

Fenical, L. H. 1992. PSpice: A Tutorial. Englewood Cliffs, NJ: Prentice-Hall,
344 p. ISBN 0136811493. TK454.F46.

Fjeldly, T. A., T. Ytterdal, and M. Shur. 1997. Introduction to Device Modeling

and Circuit Simulation. New York: Wiley, ISBN 0471157783. TK7871.85.F593.

Hëorbst, E. (Ed.). 1986. Logic Design and Simulation. New York: Elsevier
Science. ISBN 0-444-87892-0. TK7868.L6L624.

Hill, D. D., and D. R. Coelho. 1987. Multi-Level Simulation for VLSI Design.
Boston: Kluwer, 206 p. ISBN 0-89838-184-3. TK7874.H525.

IEEE 1076.4-1995. IEEE Standard VITAL Application-Specific Integrated
Circuit (ASIC) Modeling Specification. 96p. ISBN 1-55937-691-0. IEEE Ref.
SH94382-NYF. The Institute of Electrical and Electronics Engineers. Available
from The IEEE, 345 East 47th Street, New York, NY 10017 USA. [cited on
reference location of this chapter]

Kielkowski, R. M. 1994. Inside SPICE: Overcoming the Obstacles of Circuit
Simulation. New York: McGraw-Hill, 188 p. ISBN 0-07-911525-X. TK454.K48.

Lamey, R. 1995. The Illustrated Guide to PSpice. Albany, NY: Delmar, 219 p.
ISBN 0827365241. TK454.L35.

Massobrio, G., and P. Antognetti. 1993. Semiconductor Device Modeling with
SPICE. New York: McGraw-Hill, 479 p. ISBN 0-07-002469-3.
TK7871.85.S4454. Contains a more detailed analysis of the SPICE models than
other introductory texts.

McCalla, W. J. 1988. Fundamentals of Computer-Aided Circuit Simulation.
Boston: Kluwer, 175 p. ISBN 0-89838-248-3. TK7874.M355.

Meta Software. 1996. HSPICE User�s Manual. No catalog information. Available
from Customer Service, 1300 White Oaks Road, Campbell, CA 95008,
cs@metasw.com . This is a three-volume paperback set that is available
separately from the HSPICE program. Volume I, Simulation and Analysis,
explains the operation of the HSPICE program. Volume II, Elements and Device
Models, contains a comprehensive description of all device models used in
HSPICE. Volume III, Analysis and Methods, details input control, types of
analysis, output format, optimization, filter and system design, statistical and
worst-case analysis, characterization, behavioral applications, and signal integrity
(packaging). [cited on reference location , reference location , reference location ,
reference location of this chapter]

Miczo, A. 1994. Digital Logic Testing and Simulation. New York: Harper &
Row, 414 p. ISBN 0-06-044444-4. TK7868.D5M49.

Morris, J. F. 1991. Introduction to PSpice with Student Exercise Disk. Boston:
Houghton Mifflin, 145 p. ISBN 0395571073. TK454.M66. To accompany text,
Basic Circuit Analysis, Cunningham and Stuller.

Nilsson, J. W., and S. A. Riedel. 1993. Introduction to PSpice. Reading, MA:
Addison-Wesley, 154 p. ISBN 0201513188. TK454.N54. This is a supplement to
the book Electric Circuits, fourth edition, but is also very useful as a stand-alone

text.

Ogrodzki, J. 1994. Circuit Simulation Methods and Algorithms. Boca Raton, FL:
CRC Press, 465 p. ISBN 0-8493-7894-X. TK7867.O33.

Pillage, L., et al. 1994. Electronic Circuit and System Simulation Methods. New
York: McGraw-Hill, 392 p. ISBN 0-07-050169-6. TK7874.P52.

Rao, V. B., et al. 1989. Switch-Level Timing Simulation of MOS VLSI Circuits.
Boston: Kluwer, 209 p. ISBN 0-89838-302-1. TK7874.S87. Fairly mathematical
treatment of network partitioning techniques for switch-level simulators.

Tsividis, Y. P. 1987. Operation and Modeling of the MOS Transistor. New York:
McGraw-Hill, 505 p. ISBN 0-07-065381-X. TK7871.99.M44.T77. [cited on
reference location of this chapter]

Tsividis, Y. P. 1996. Mixed Analog-Digital VLSI Devices and Technology: An
Introduction. New York: McGraw-Hill, 284 p. ISBN 0-07-065402-6.
TK7874.75.T78.

Tuinenga, P. W. 1988. SPICE: A Guide to Circuit Simulation and Analysis using
PSpice. Englewood Cliffs, NJ: Prentice-Hall, 200 p. ISBN 0-13-834607-0.
TK454.T85.

White, J. K., and A. Sangiovanni-Vincentelli. 1987. Relaxation Techniques for
the Simulation of VLSI Circuits. Boston: Kluwer, 202 p. ISBN 0-89838-186-X.
TK7874.W48. Contents: Introduction; The Circuit Simulation Problem;
Numerical Techniques; Waveform Relaxation; The Implementation of WR.

Zukowski, C. A. 1986. The Bounding Approach to VLSI Circuit Simulation.
Norwell, MA: Kluwer, 220 p. ISBN 0-89838-176-2. TK7874.Z85. Based on an
MIT Ph.D. thesis. Uses bounds on transient response of RC-networks to simplify
circuit simulation. Contents: Introduction, VLSI Circuit Simulation; Simulation
with Bounds; The VLSI Circuit Model; Bound Relaxation; Algorithms and
Experimental Results; Conclusion.

TEST
ASICs are tested at two stages during manufacture using production tests . First,
the silicon die are tested after fabrication is complete at wafer test or wafer sort .
Each wafer is tested, one die at a time, using an array of probes on a probe card
that descend onto the bonding pads of a single die. The production tester applies
signals generated by a test program and measures the ASIC test response . A test
program often generates hundreds of thousands of different test vectors applied at
a frequency of several megahertz over several hundred milliseconds. Chips that
fail are automatically marked with an ink spot. Production testers are large
machines that take up their own room and are very expensive (typically well over
$1 million). Either the customer, or the ASIC manufacturer, or both, develops the
test program.

A diamond saw separates the die, and the good die are bonded to a lead carrier
and packaged. A second, final test is carried out on the packaged ASIC (usually
with the same test vectors used at wafer sort) before the ASIC is shipped to the
customer. The customer may apply a goods-inward test to incoming ASICs if the
customer has the resources and the product volume is large enough. Normally,
though, parts are directly assembled onto a bare printed-circuit board (PCB or
board) and then the board is tested. If the board test shows that an ASIC is bad at
this point, it is difficult to replace a surface-mounted component soldered on the
board, for example. If there are several board failures due to a particular ASIC,
the board manufacturer typically ships the defective chips back to the ASIC
vendor. ASIC vendors have sophisticated failure analysis departments that take
packaged ASICs apart and can often determine the failure mechanism. If the
ASIC production tests are adequate, failures are often due to the soldering
process, electrostatic damage during handling, or other problems that can occur
between the part being shipped and board test. If the problem is traced to
defective ASIC fabrication, this indicates that the test program may be
inadequate. As we shall see, failure and diagnosis at the board level is very
expensive. Finally, ASICs may be tested and replaced (usually by swapping
boards) either by a customer who buys the final product or by servicing�this is
field repair . Such system-level diagnosis and repair is even more expensive.

Programmable ASICs (including FPGAs) are a special case. Each programmable
ASIC is tested to the point that the manufacturer can guarantee with a high
degree of confidence that if your design works, and if you program the FPGA
correctly, then your ASIC will work. Production testing is easier for some
programmable ASIC architectures than others. In a reprogrammable technology
the manufacturer can test the programming features. This cannot be done for a

Last Edited by SP 14112004

one-time programmable antifuse technology, for example. A programmable
ASIC is still tested in a similar fashion to any other ASIC and you are still paying
for test development and design. Programmable ASICs also have similar test,
defect, and manufacturing problems to other members of the ASIC family.
Finally, once a programmable ASIC is soldered to a board and part of a system, it
looks just like any other ASIC. As you will see in the next section, considering
board-level and system-level testing is a very important part of ASIC design.

14.1 The Importance of Test
One measure of product quality is the defect level . If the ABC Company sells
100,000 copies of a product and 10 of these are defective, then we say the defect
level is 0.1 percent or 100 ppm. The average quality level (AQL) is equal to one
minus the defect level (ABC�s AQL is thus 99.9 percent).

Suppose the semiconductor division of ABC makes an ASIC, the bASIC, for the
PC division. The PC division buys 100,000 bASICs, tested by the semiconductor
division, at $10 each. The PC division includes one surface-mounted bASIC on
each PC motherboard it assembles for the aPC computer division. The aPC
division tests the finished motherboards. Rejected boards due to defective
bASICs incur an average $200 board repair cost. The board repair cost as a
function of the ASIC defect level is shown in Table 14.1 . A defect level of 5
percent in bASICs costs $1 million dollars in board repair costs (the same as the
total ASIC part cost). Things are even worse at the system level, however.

TABLE 14.1 Defect levels in printed-circuit boards (PCB). 1

ASIC defect level Defective ASICs Total PCB repair cost
5% 5000 $1million
1% 1000 $200,000
0.1% 100 $20,000
0.01% 10 $2,000

Suppose the ABC Company sells its aPC computers for $5,000, with a profit of
$500 on each. Unfortunately the aPC division also has a defect level. Suppose
that 10 percent of the motherboards that contain defective bASICs that passed the
chip test also manage to pass the board tests (10 percent may seem high, but
chips that have hard-to-test faults at the chip level may be very hard to find at the
board level�catching 90 percent of these rogue chips would be considered good).
The system-level repair cost as a function of the bASIC defect level is shown in
Table 14.2 . In this example a 5 percent defect level in a $10 bASIC part now
results in a $5 million cost at the system level. From Table 14.2 we can see it
would be worth spending $4 million (i.e., $5 million � $1 million) to reduce the
bASIC defect density from 5 percent to 1 percent.

TABLE 14.2 Defect levels in systems. 2

ASIC defect level Defective ASICs Defective boards
Total repair cost at

system level

5% 5000 500 $5 million
1% 1000 100 $1 million
0.1% 100 10 $100 ,000
0.01% 10 1 $10,000

1. Assumptions: The number of parts shipped is 100,000; part price is $10; total
part cost is $1 million; the cost of a fault in an assembled PCB is $200.

2. Assumptions: The number of systems shipped is 100,000; system cost is
$5,000; total cost of systems shipped is $500 million; the cost of repairing or
replacing a system due to failure is $10,000; profit on 100,000 systems is $50
million.

14.2 Boundary-Scan Test
It is possible to test ICs in dual-in-line packages (DIPs) with 0.1 inch (2.5 mm) lead spacing on low-density boards using a bed-of-nails tester with probes that contact test points
underneath the board. Mechanical testing becomes difficult with board trace widths and separations below 0.1 mm or 100 mm, package-pin separations of 0.3 mm or less, packages
with 200 or more pins, surface-mount packages on both sides of the board, and multilayer boards [Scheiber, 1995].

In 1985 a group of European manufacturers formed the Joint European Test Action Group (JETAG) to study board testing. With the addition of North American companies,
JETAG became the Joint Test Action Group (JTAG) in 1986. The JTAG 2.0 test standard formed the basis of the IEEE Standard 1149.1 Test Port and Boundary-Scan
Architecture [IEEE 1149.1b, 1994], approved in February 1990 and also approved as a standard by the American National Standards Institute (ANSI) in August 1990 [Bleeker, v.
d. Eijnden, and de Jong, 1993; Maunder and Tulloss, 1990; Parker, 1992]. The IEEE standard is still often referred to as JTAG, although there are important differences between
the last JTAG specification (version 2.0) and the IEEE 1149.1 standard.

Boundary-scan test (BST) is a method for testing boards using a four-wire interface (five wires with an optional master reset signal). A good analogy would be the RS-232
interface for PCs. The BST standard interface was designed to test boards, but it is also useful to test ASICs. The BST interface provides a standard means of communicating with
test circuits on-board an ASIC. We do need to include extra circuits on an ASIC in order to use BST. This is an example of increasing the cost and complexity (as well as
potentially reducing the performance) of an ASIC to reduce the cost of testing the ASIC and the system.

FIGURE 14.1 IEEE 1149.1 boundary scan. (a) Boundary scan is intended to check for shorts or opens between ICs mounted on a board. (b) Shorts and opens may also occur
inside the IC package. (c) The boundary-scan architecture is a long chain of shift registers allowing data to be sent over all the connections between the ICs on a board.

Figure 14.1 (a) illustrates failures that may occur on a PCB due to shorts or opens in the copper traces on the board. Less frequently, failures in the ASIC package may also arise
from shorts and opens in the wire bonds between the die and the package frame (Figure 14.1 b). Failures in an ASIC package that occur during ASIC fabrication are caught by the
ASIC production test, but stress during automated handling and board assembly may cause package failures. Figure 14.1 (c) shows how a group of ASICs are linked together in
boundary-scan testing. To detect the failures shown in Figure 14.1 (a) or (b) manufacturers use boundary scan to test every connection between ASICs on a board. During boundary
scan, test data is loaded into each ASIC and then driven onto the board traces. Each ASIC monitors its inputs, captures the data received, and then shifts the captured data out. Any
defects in the board or ASIC connections will show up as a discrepancy between expected and actual measured continuity data.

In order to include BST on an ASIC, we add a special logic cell to each ASIC I/O pad. These cells are joined together to form a chain and create a boundary-scan shift register that
extends around each ASIC. The input to a boundary-scan shift register is the test-data input (TDI). The output of a boundary-scan shift register is the test-data output (TDO).
These boundary-scan shift registers are then linked in a serial fashion with the boundary-scan shift registers on other ASICs to form one long boundary-scan shift register. The
boundary-scan shift register in each ASIC is one of several test-data registers (TDR) that may be included in each ASIC. All the TDRs in an ASIC are connected directly between
the TDI and TDO ports. A special register that decodes instructions provides a way to select a particular TDR and control operation of the boundary-scan test process.

Controlling all of the operations involved in selecting registers, loading data, performing a test, and shifting out results are the test clock (TCK) and test-mode select (TMS). The
boundary-scan standard specifies a four-wire test interface using the four signals: TDI, TDO, TCK, and TMS. These four dedicated signals, the test-access port (TAP), are
connected to the TAP controller inside each ASIC. The TAP controller is a state machine clocked on the rising edge of TCK, and with state transitions controlled by the TMS
signal. The test-reset input signal (TRST* , nTRST , or TRST �always an active-low signal) is an optional (fifth) dedicated interface pin to reset the TAP controller.

Normally the boundary-scan shift-register cells at each ASIC I/O pad are transparent, allowing signals to pass between the I/O pad and the core logic. When an ASIC is put into
boundary-scan test mode, we first tell the TAP controller which TDR to select. The TAP controller then tells each boundary-scan shift register in the appropriate TDR either to
capture input data, to shift data to the neighboring cell, or to output data.

There are many acronyms in the IEEE 1149.1 standard (referred to as � dot one �); Table 14.3 provides a list of the most common terms.

TABLE 14.3 Boundary-scan terminology.
Acronym Meaning Explanation
BR Bypass register A TDR, directly connects TDI and TDO, bypassing BSR
BSC Boundary-scan cell Each I/O pad has a BSC to monitor signals
BSR Boundary-scan register A TDR, a shift register formed from a chain of BSCs
BST Boundary-scan test Not to be confused with BIST (built-in self-test)
IDCODE Device-identification register Optional TDR, contains manufacturer and part number
IR Instruction register Holds a BST instruction, provides control signals
JTAG Joint Test Action Group The organization that developed boundary scan
TAP Test-access port Four- (or five-)wire test interface to an ASIC
TCK Test clock A TAP wire, the clock that controls BST operation
TDI Test-data input A TAP wire, the input to the IR and TDRs
TDO Test-data output A TAP wire, the output from the IR and TDRs
TDR Test-data register Group of BST registers: IDCODE, BR, BSR
TMS Test-mode select A TAP wire, together with TCK controls the BST state
TRST* or nTRST Test-reset input signal Optional TAP wire, resets the TAP controller (active-low)

14.2.1 BST Cells
Figure 14.2 shows a data-register cell (DR cell) that may be used to implement any of the TDRs. The most common DR cell is a boundary-scan cell (BS cell , or BSC), or
boundary-register cell (this last name is not abbreviated to BR cell, since this term is reserved for another type of cell) [IEEE 1149.1b-1994, p. 10-18, Fig. 10-16].

A BSC contains two sequential elements. The capture flip-flop or capture register is part of a shift register formed by series connection of BSCs. The update flip-flop , or update
latch , is normally drawn as an edge-triggered D flip-flop, though it may be a transparent latch. The inputs to a BSC are: scan in (serial in or SI); data in (parallel in or PI); and a
control signal, mode (also called test / normal). The BSC outputs are: scan out (serial out or SO); data out (parallel out or PO). The BSC in Figure 14.2 is reversible and can be
used for both chip inputs and outputs. Thus data_in may be connected to a pad and data_out to the core logic or vice versa.

entity DR_cell is port (mode, data_in, shiftDR, scan_in, clockDR, updateDR: BIT;

data_out, scan_out: out BIT); end DR_cell;

architecture behave of DR_cell is signal q1, q2 : BIT; begin

CAP : process (clockDR) begin if clockDR = '1' then

if shiftDR = '0' then q1 <= data_in; else q1 <= scan_in; end if ; end if ;

end process ;

UPD : process (updateDR) begin if updateDR = '1' then q2 <= q1; end if ; end process ;

data_out <= data_in when mode = '0' else q2; scan_out <= q1;

end behave;

FIGURE 14.2 A DR (data register) cell. The most common use of this cell is as a boundary-scan cell (BSC).

The IEEE 1149.1 standard shows the sequential logic in a BSC controlled by the gated clocks: clockDR (whose positive edge occurs at the positive edge of TCK) and updateDR
(whose positive edge occurs at the negative edge of TCK). The IEEE 1149.1 schematics illustrate the standard but do not define how circuits should be implemented. The function
of the circuit in Figure 14.2 (and its model) follows the IEEE 1149.1 standard and many other published schematics, but this is not necessarily the best, or even a safe,
implementation. For example, as drawn here, signals clockDR and updateDR are gated clocks�normally to be avoided if possible. The update sequential element is shown as an
edge-triggered D flip-flop but may be implemented using a latch.

Figure 14.3 [IEEE 1149.1b-1994, Chapter 9] shows a bypass-register cell (BR cell). The BR inputs and outputs, scan in (serial in, SI) and scan out (serial out, SO), have the same
names as the DR cell ports, but DR cells and BR cells are not directly connected.

entity BR_cell is port (

 clockDR,shiftDR,scan_in : BIT; scan_out : out BIT);

end BR_cell;

architecture behave of BR_cell is

signal t1 : BIT; begin t1 <= shiftDR and scan_in;

process (clockDR) begin

if (clockDR = '1') then scan_out <= t1; end if ;

end process ;

end behave;

FIGURE 14.3 A BR (bypass register) cell.

Figure 14.4 shows an instruction-register cell (IR cell) [IEEE 1149.1b-1994, Chapter 6]. The IR cell inputs are: scan_in , data_in ; as well as clock, shift, and update signals (with
names and functions similar to those of the corresponding signals in the BSC). The reset signals are nTRST and reset_bar (active-low signals often use an asterisk, reset* for
example, but this is not a legal VHDL name). The two LSBs of data_in must permanently be set to '01' (this helps in checking the integrity of the scan chain during testing). The
remaining data_in bits are status bits under the control of the designer. The update sequential element (sometimes called the shadow register) in each IR cell may be set or reset
(depending on reset_value). The IR cell outputs are: data_out (the instruction bit passed to the instruction decoder) and scan_out (the data passed to the next IR cell in the IR).

entity IR_cell is port (

shiftIR, data_in, scan_in, clockIR, updateIR, reset_bar, nTRST, reset_value : BIT;

data_out, scan_out : out BIT); end IR_cell;

architecture behave of IR_cell is signal q1, SR : BIT; begin

scan_out <= q1; SR <= reset_bar and nTRST;

CAP: process (clockIR) begin

if (clockIR = '1') then

if (shiftIR = '0') then q1 <= data_in; else q1 <= scan_in; end if ;

end if ;

end process ;

UPD: process (updateIR, SR) begin

if (SR = '0') then data_out <= reset_value;

elsif ((updateIR = '1') and updateIR'EVENT) then data_out <= q1;

end if ;

end process ;

end behave;

FIGURE 14.4 An IR (instruction register) cell.

14.2.2 BST Registers
Figure 14.5 shows a boundary-scan register (BSR), which consists of a series connection, or chain, of BSCs. The BSR surrounds the ASIC core logic and is connected to the I/O
pad cells. The BSR monitors (and optionally controls) the inputs and outputs of an ASIC. The direction of information flow is shown by an arrow on each of the BSCs in
Figure 14.5 . The control signal, mode , is decoded from the IR. Signal mode is drawn as common to all cells for the BSR in Figure 14.5 , but that is not always the case.

entity BSR is

generic (width : INTEGER := 3);

port (shiftDR, clockDR, updateDR, mode, scan_in : BIT;

scan_out : out BIT;

data_in : BIT_VECTOR(width-1 downto 0);

data_out : out BIT_VECTOR(width-1 downto 0));

end BSR;

architecture structure of BSR is

component DR_cell port (

mode, data_in, shiftDR, scan_in, clockDR, updateDR : BIT;

data_out, scan_out : out BIT);

end component ;

for all : DR_cell use entity WORK.DR_cell(behave);

signal int_scan : BIT_VECTOR (data_in'RANGE);

begin

BSR : for i in data_in'LOW to data_in'HIGH generate

RIGHT : if (i = 0) generate

BSR_LSB : DR_cell port map (mode, data_in(i), shiftDR,

int_scan(i), clockDR, updateDR, data_out(i), scan_out);

end generate ;

MIDDLE : if ((i > 0) and (i < data_in'HIGH)) generate

BSR_i : DR_cell port map (mode, data_in(i), shiftDR,

int_scan(i), clockDR, updateDR, data_out(i), int_scan(i-1));

end generate ;

LFET : if (i = data_in'HIGH) generate

BSR_MSB : DR_cell port map (mode, data_in(i), shiftDR,

scan_in, clockDR, updateDR, data_out(i), int_scan(i-1));

end generate ;

end generate ;

end structure;

FIGURE 14.5 A BSR (boundary-scan register). An example of the component data-register (DR) cells (used as boundary-scan cells) is shown in Figure 14.2 .

Figure 14.6 shows an instruction register (IR), which consists of at least two IR cells connected in series. The IEEE 1149.1 standard specifies that the IR cell is reset to '00...01'
(the optional IDCODE instruction). If there is no IDCODE TDR, then the IDCODE instruction defaults to the BYPASS instruction.

entity IR is generic (width : INTEGER := 4); port (

shiftIR, clockIR, updateIR, reset_bar, nTRST, scan_in : BIT; scan_out : out BIT;

data_in : BIT_VECTOR (width-1 downto 0) ;

data_out : out BIT_VECTOR (width-1 downto 0));

end IR;

architecture structure of IR is

component IR_cell port (shiftIR, data_in, scan_in, clockIR,

updateIR, reset_bar, nTRST, reset_value : BIT ; data_out, scan_out : out BIT);

end component ;

for all : IR_cell use entity WORK.IR_cell(behave);

signal int_scan : BIT_VECTOR (data_in'RANGE);

signal Vdd : BIT := '1'; signal GND : BIT := '0';

begin

IRGEN : for i in data_in'LOW to data_in'HIGH generate

FIRST : if (i = 0) generate

IR_LSB: IR_cell port map (shiftIR, Vdd, int_scan(i),

clockIR, updateIR, reset_bar, nTRST, Vdd, data_out(i), scan_out);

end generate ;

SECOND : if ((i = 1) and (data_in'HIGH > 1)) generate

IR1 : IR_cell port map (shiftIR, GND, int_scan(i),

clockIR, updateIR, reset_bar, nTRST, Vdd, data_out(i), int_scan(i-1));

end generate ;

MIDDLE : if ((i < data_in'HIGH) and (i > 1)) generate

IRi : IR_cell port map (shiftIR, data_in(i), int_scan(i),

clockIR, updateIR, reset_bar, nTRST, Vdd, data_out(i), int_scan(i-1));

end generate ;

LAST : if (i = data_in'HIGH) generate

IR_MSB : IR_cell port map (shiftIR, data_in(i), scan_in,

clockIR, updateIR, reset_bar, nTRST, Vdd, data_out(i), int_scan(i-1));

end generate ; end generate ;

end structure;

FIGURE 14.6 An IR (instruction register).

14.2.3 Instruction Decoder
Table 14.4 shows an instruction decoder . This model is capable of decoding the following minimum set of boundary-scan instructions:

EXTEST , external test. Drives a known value onto each output pin to test connections between ASICs.1.

SAMPLE/PRELOAD (often abbreviated to SAMPLE). Performs two functions: first sampling the present input value from input pad during capture; and then preloading the
BSC update register output during update (in preparation for an EXTEST instruction, for example).

2.

IDCODE . An optional instruction that allows the device-identification register (IDCODE) to be shifted out. The IDCODE TDR is an optional register that allows the tester
to query the ASIC for the manufacturer�s name, part number, and other data that is shifted out on TDO. IDCODE defaults to the BYPASS instruction if there is no IDCODE
TDR.

3.

BYPASS . Selects the single-cell bypass register (instead of the BSR) and allows data to be quickly shifted between ASICs.4.

The IEEE 1149.1 standard predefines additional optional instructions and also defines the implementation of custom instructions that may use additional TDRs.

TABLE 14.4 An IR (instruction register) decoder.
entity IR_decoder is generic (width : INTEGER := 4); port (

shiftDR, clockDR, updateDR : BIT; IR_PO : BIT_VECTOR (width-1 downto 0) ;

test_mode, selectBR, shiftBR, clockBR, shiftBSR, clockBSR, updateBSR : out BIT);

end IR_decoder;

architecture behave of IR_decoder is

type INSTRUCTION is (EXTEST, SAMPLE_PRELOAD, IDCODE, BYPASS);

signal I : INSTRUCTION;

begin process (IR_PO) begin case BIT_VECTOR'(IR_PO(1), IR_PO(0)) is

when "00" => I <= EXTEST; when "01" => I <= SAMPLE_PRELOAD;

when "10" => I <= IDCODE; when "11" => I <= BYPASS;

end case ; end process ;

test_mode <= '1' when I = EXTEST else '0';

selectBR <= '1' when (I = BYPASS or I = IDCODE) else '0';

shiftBR <= shiftDR;

clockBR <= clockDR when (I = BYPASS or I = IDCODE) else '1';

shiftBSR <= shiftDR;

clockBSR <= clockDR when (I = EXTEST or I = SAMPLE_PRELOAD) else '1';

updateBSR <= updateDR when (I = EXTEST or I = SAMPLE_PRELOAD) else '0';

end behave;

14.2.4 TAP Controller
Figure 14.7 shows the TAP controller finite-state machine. The 16-state diagram contains some symmetry: states with suffix '_DR' operate on the data registers and those with
suffix '_IR' apply to the instruction register. All transitions between states are determined by the TMS (test mode select) signal and occur at the rising edge of TCK , the
boundary-scan clock. An optional active-low reset signal, nTRST or TRST* , resets the state machine to the initial state, Reset . If the dedicated nTRST is not used, there must be a
power-on reset signal (POR)�not an existing system reset signal.

The outputs of the TAP controller are not shown in Figure 14.7 , but are derived from each TAP controller state. The TAP controller operates rather like a four-button digital watch
that cycles through several states (alarm, stopwatch, 12 hr / 24 hr, countdown timer, and so on) as you press the buttons. Only the shaded states in Figure 14.7 affect the ASIC core
logic; the other states are intermediate steps. The pause states let the controller jog in place while the tester reloads its memory with a new set of test vectors, for example.

use work.TAP. all ; entity TAP_sm_states is

port (TMS, TCK, nTRST : in BIT; S : out TAP_STATE); end TAP_sm_states;

architecture behave of TAP_sm_states is

type STATE_ARRAY is array (TAP_STATE, 0 to 1) of TAP_STATE;

constant T : STATE_ARRAY := ((Run_Idle, Reset),

(Run_Idle, Select_DR), (Capture_DR, Select_IR), (Shift_DR, Exit1_DR),

(Shift_DR, Exit1_DR), (Pause_DR, Update_DR), (Pause_DR, Exit2_DR),

(Shift_DR, Update_DR), (Run_Idle, Select_DR), (Capture_IR, Reset),

(Shift_IR, Exit1_IR), (Shift_IR, Exit1_IR), (Pause_IR, Update_IR),

(Pause_IR, Exit2_IR), (Shift_IR, Update_IR), (Run_idle, Select_DR));

begin process (TCK, nTRST) variable S_i: TAP_STATE; begin

if (nTRST = '0') then S_i := Reset;

elsif (TCK = '1' and TCK'EVENT) then -- transition on +VE clock edge

if (TMS = '1') then S_i := T(S_i, 1); else S_i := T(S_i, 0); end if ;

end if ; S <= S_i; -- update signal with already updated internal variable

end process ;

end behave;

FIGURE 14.7 The TAP (test-access port) controller state machine.

Table 14.5 shows the output control signals generated by the TAP state machine. I have taken the unusual step of writing separate entities for the state machine and its outputs.
Normally this is bad practice because it makes it difficult for synthesis tools to extract and optimize the logic, for example. This separation of functions reflects the fact that the
operation of the TAP controller state machine is precisely defined by the IEEE 1149.1 standard�independent of the implementation of the register cells and number of instructions
supported. The model in Table 14.5 contains the following combinational, registered, and gated output signals and will change with different implementations:

reset_bar . Resets the IR to IDCODE (or BYPASS in absence of IDCODE TDR).●

selectIR . Connects a register, the IR or a TDR, to TDO .●

enableTDO . Enables the three-state buffer that drives TDO . This allows data to be shifted out of the ASIC on TDO , either from the IR or from the DR, in states shift_IR or
shift_DR respectively.

●

shiftIR . Selects the serial input to the capture flip-flop in the IR cells.●

clockIR . Causes data at the input of the IR to be captured or the contents of the IR to be shifted toward TDO (depending on shiftIR) on the negative edge of TCK following
the entry to the states shift_IR or capture_IR . This is a dirty signal.

●

updateIR . Clocks the update sequential element on the positive edge of TCK at the same time as the exit from state update_IR . This is a dirty signal.●

shiftDR , clockDR , and updateDR . Same functions as corresponding IR signals applied to the TDRs. These signals may be gated to the appropriate TDR by the instruction
decoder.

●

The signals reset_bar , enableTDO , shiftIR , and shiftDR are registered or clocked by TCK (on the positive edge of TCK). We say these signals are clean (as opposed to being
dirty gated clocks).

TABLE 14.5 The TAP (test-access port) control. 1

Reset Run_Idle Select_DR Capture_DR Shift_DR Exit1_DR Pause_DR Exit2_DR Update_DR Select_IR Capture_IR Shift_IR Exit1_IR Pause_IR Exit2_IR Update_IR

reset_bar 0R
selectIR 1 1 1 1 1 1 1 1 1
enableTDO 1R 1R
shiftIR 1R
clockIR 0G 0G
updateIR 1G
shiftDR 1R
clockDR 0G 0G
updateDR 1G

use work.TAP. all ; entity TAP_sm_output is

port (TCK : in BIT; S : in TAP_STATE; reset_bar, selectIR, enableTDO, shiftIR,

clockIR, updateIR, shiftDR, clockDR, updateDR : out BIT);

end TAP_sm_output;

architecture behave_1 of TAP_sm_output is begin -- registered outputs

process (TCK) begin if ((TCK = '0') and TCK'EVENT) then

if S = Reset then reset_bar <= '0'; else reset_bar <= '1'; end if ;

if S = Shift_IR or S = Shift_DR then enableTDO <= '1'; else enableTDO <= '0'; end if ;

if S = Shift_IR then ShiftIR <= '1'; else shiftIR <= '0'; end if ;

if S = Shift_DR then ShiftDR <= '1'; else shiftDR <= '0'; end if ;

end if ;

end process ;

process (TCK) begin -- dirty outputs gated with not(TCK)

if (TCK = '0' and (S = Capture_IR or S = Shift_IR))

then clockIR <= '0'; else clockIR <= '1'; end if ;

if (TCK = '0' and (S = Capture_DR or S = Shift_DR))

then clockDR <= '0'; else clockDR <= '1'; end if ;

if TCK = '0' and S=Update_IR then updateIR <= '1'; else updateIR <= '0'; end if ;

if TCK = '0' and S=Update_DR then updateDR <= '1'; else updateDR <= '0'; end if ;

end process ;

selectIR <= '1' when (S = Reset or S = Run_Idle or S = Capture_IR or S = Shift_IR

or S = Exit1_IR or S = Pause_IR or S = Exit2_IR or S = Update_IR) else '0';

end behave_1;

14.2.5 Boundary-Scan Controller
Figure 14.8 shows a boundary-scan controller. It contains the following four parts:

library IEEE; use IEEE.std_logic_1164. all ; use work.TAP. all ;

entity Control is generic (width : INTEGER := 2); port (TMS, TCK, TDI, nTRST : BIT;

TDO: out STD_LOGIC; BSR_SO : BIT; BSR_PO : BIT_VECTOR (width-1 downto 0);

shiftBSR, clockBSR, updateBSR, test_mode : out BIT); end Control;

architecture mixed of Control is use work.BST_components. all ;

signal reset_bar, selectIR, enableTDO, shiftIR, clockIR, updateIR, shiftDR,

clockDR, updateDR, IR_SO, BR_SO, TDO_reg, TDO_data, TDR_SO, selectBR,

clockBR, shiftBR : BIT;

signal IR_PI, IR_PO : BIT_VECTOR (1 downto 0); signal S : TAP_STATE;

begin

IR_PI <= "01";

TDO <= TO_STDULOGIC(TDO_reg) when enableTDO = '1' else 'Z';

R1 : process (TCK) begin if (TCK='0') then TDO_reg <= TDO_data; end if ; end process ;

TDO_data <= IR_SO when selectIR = '1' else TDR_SO;

TDR_SO <= BR_SO when selectBR = '1' else BSR_SO;

TC1 : TAP_sm_states port map (TMS, TCK, nTRST, S);

TC2 : TAP_sm_output port map (TCK, S, reset_bar, selectIR, enableTDO,

shiftIR, clockIR, updateIR, shiftDR, clockDR, updateDR);

IR1 : IR generic map (width => 2) port map (shiftIR, clockIR, updateIR,

reset_bar, nTRST, TDI, IR_SO, IR_PI, IR_PO);

DEC1 : IR_decoder generic map (width => 2) port map (shiftDR, clockDR, updateDR,

IR_PO, test_mode, selectBR, shiftBR, clockBR, shiftBSR, clockBSR, updateBSR);

BR1 : BR_cell port map (clockBR, shiftBR, TDI, BR_SO);

end mixed;

FIGURE 14.8 A boundary-scan controller.

Bypass register.1.

TDO output circuit. The data to be shifted out of the ASIC on TDO is selected from the serial outputs of bypass register (BR_SO), instruction register (IR_SO), or
boundary-scan register (BSR_SO). Notice the registered output means that data appears on TDO at the negative edge of TCK . This prevents race conditions between
ASICs.

2.

Instruction register and instruction decoder.3.

TAP controller.4.

The BSR (and other optional TDRs) are connected to the ASIC core logic outside the BST controller.

14.2.6 A Simple Boundary-Scan Example
Figure 14.9 shows an example of a simple ASIC (our comparator/MUX example) containing boundary scan. The following two packages define the TAP states and the components
(these are not essential to understanding what follows, but are included so that the code presented here forms a complete BST model):

entity Core is port (a, b : BIT_VECTOR (2 downto 0);

outp : out BIT_VECTOR (2 downto 0)); end Core;

architecture behave of Core is begin outp <= a when a < b else b;

end behave;

library IEEE; use IEEE.std_logic_1164. all ;

entity BST_ASIC is port (TMS, TCK, TDI, nTRST : BIT; TDO : out STD_LOGIC;

a_PAD, b_PAD : BIT_VECTOR (2 downto 0); z_PAD : out BIT_VECTOR (2 downto 0));

end BST_ASIC;

architecture structure of BST_ASIC is use work.BST_components. all ;

component Core port (a, b: BIT_VECTOR (2 downto 0);

outp: out BIT_VECTOR (2 downto 0)); end component ;

for all : Core use entity work.Core(behave);

constant BSR_width : INTEGER := 9;

signal BSR_SO, test_mode, shiftBSR, clockBSR, updateBSR : BIT;

signal BSR_PI, BSR_PO : BIT_VECTOR (BSR_width-1 downto 0);

signal a, b, z : BIT_VECTOR (2 downto 0);

begin BSR_PI <= a_PAD & b_PAD & z ;

a <= BSR_PO(8 downto 6); b <= BSR_PO(5 downto 3); z_pad <= BSR_PO(2 downto 0);

CORE1 : Core port map (a, b, z);

C1 : Control generic map (width => BSR_width) port map (TMS, TCK, TDI, nTRST,

TDO, BSR_SO, BSR_PO, shiftBSR, clockBSR, updateBSR, test_mode);

BSR1 : BSR generic map (width => BSR_width) port map (shiftBSR, clockBSR,

updateBSR, test_mode, TDI, BSR_SO, BSR_PI, BSR_PO);

end structure;

FIGURE 14.9 A boundary-scan example.

package TAP is

type TAP_STATE is (reset, run_idle, select_DR, capture_DR,

shift_DR, exit1_DR, pause_DR, exit2_DR, update_DR, select_IR,

capture_IR, shift_IR, exit1_IR, pause_IR, exit2_IR, update_IR);

end TAP;

use work.TAP. all ; library IEEE; use IEEE.std_logic_1164. all ;

package BST_Components is

component DR_cell port (

mode, data_in, shiftDR, scan_in, clockDR, updateDR: BIT;

data_out, scan_out : out BIT);

end component ;

component IR_cell port (

shiftIR, data_in, scan_in, clockIR, updateIR, reset_bar,

nTRST, reset_value : BIT; data_out, scan_out : out BIT);

end component ;

component BR_cell port (

clockDR,shiftDR,scan_in : BIT; scan_out: out BIT);

end component ;

component BSR

generic (width : INTEGER := 5); port (

shiftDR, clockDR, updateDR, mode, scan_in : BIT;

scan_out : out BIT;

data_in : BIT_VECTOR(width-1 downto 0);

data_out : out BIT_VECTOR(width-1 downto 0));

end component ;

component IR generic (width : INTEGER := 4); port (

shiftIR, clockIR, updateIR, reset_bar, nTRST,

scan_in : BIT; scan_out : out BIT;

data_in : BIT_VECTOR (width-1 downto 0) ;

data_out : out BIT_VECTOR (width-1 downto 0));

end component ;

component IR_decoder generic (width : INTEGER := 4); port (

shiftDR, clockDR, updateDR : BIT;

IR_PO : BIT_VECTOR (width-1 downto 0);

test_mode, selectBR, shiftBR, clockBR, shiftBSR, clockBSR,

updateBSR: out BIT);

end component ;

component TAP_sm_states port (

TMS, TCK, nTRST : in BIT; S : out TAP_STATE); end component ;

component TAP_sm_output port (

TCK: BIT; S : TAP_STATE; reset_bar, selectIR,

enableTDO, shiftIR, clockIR, updateIR, shiftDR, clockDR,

updateDR : out BIT);

end component ;

component Control generic (width : INTEGER := 2); port (

TMS, TCK, TDI, nTRST : BIT; TDO : out STD_LOGIC;

BSR_SO : BIT; BSR_PO : BIT_VECTOR (width-1 downto 0);

shiftBSR, clockBSR, updateBSR, test_mode : out BIT);

end component ;

component BST_ASIC port (

TMS, TCK, TDI : BIT; TDO : out STD_LOGIC;

a_PAD, b_PAD : BIT_VECTOR (2 downto 0);

z_PAD : out BIT_VECTOR (2 downto 0));

end component ;

end ;

The following testbench, Test_BST , performs these functions:

Resets the TAP controller at t = 10 ns using nTRST .1.

Continuously clocks the BST clock, TCK , at a frequency of 10 MHz. Rising edges of TCK occur at 100 ns, 200 ns, and so on.2.

Drives a series of values onto the TAP inputs TDI and TMS . The sequence shifts in instruction code‡ '01' (SAMPLE/PRELOAD),‡followed by '00' (EXTEST).3.

library IEEE; use IEEE.std_logic_1164. all ;

library STD; use STD.TEXTIO. all ;

entity Test_BST is end ;

architecture behave of Test_BST is

component BST_ASIC port (TMS, TCK, TDI, nTRST: BIT;

TDO : out STD_LOGIC; a_PAD, b_PAD : BIT_VECTOR (2 downto 0);

z_PAD : out BIT_VECTOR (2 downto 0));

end component ;

for all : BST_ASIC use entity work.BST_ASIC(behave);

signal TMS, TCK, TDI, nTRST : BIT; signal TDO : STD_LOGIC;

signal TDI_TMS : BIT_VECTOR (1 downto 0);

signal a_PAD, b_PAD, z_PAD : BIT_VECTOR (2 downto 0);

begin

TDI <= TDI_TMS(1) ; TMS <= TDI_TMS(0) ;

ASIC1 : BST_ASIC port map

(TMS, TCK, TDI, nTRST, TDO, a_PAD, b_PAD, z_PAD);

nTRST_DRIVE : process begin

nTRST <= '1', '0' after 10 ns, '1' after 20 ns; wait ;

PAD_DRIVE : process begin

a_PAD <= ('0', '1', '0'); b_PAD <= ('0', '1', '1'); wait ;

end process ;

end process ;

TCK_DRIVE : process begin -- rising edge at 100 ns

TCK <= '0' after 50 ns, '1' after 100 ns; wait for 100 ns;

if (now > 3000 ns) then wait ; end if ;

end process ;

BST_DRIVE : process begin TDI_TMS <=

-- State after +VE edge:

('0', '1') after 0 ns, -- Reset

('0', '0') after 101 ns, -- Run_Idle

('0', '1') after 201 ns, -- Select_DR

('0', '1') after 301 ns, -- Select_IR

('0', '0') after 401 ns, -- Capture_IR

('0', '0') after 501 ns, -- Shift_IR

('1', '0') after 601 ns, -- Shift_IR

('0', '1') after 701 ns, -- Exit1_IR

('0', '1') after 801 ns, -- Update_IR, 01 = SAMPLE/PRELOAD

('0', '1') after 901 ns, -- Select_DR

('0', '0') after 1001 ns, -- Capture_DR

('0', '0') after 1101 ns, -- Shift_DR

-- shift 111111101 into BSR, TDI(time) = 101111111 starting now

('1', '0') after 1201 ns, -- Shift_DR

('0', '0') after 1301 ns, -- Shift_DR

('1', '0') after 1401 ns, -- Shift_DR -- shift 4 more 1's

('1', '0') after 1901 ns, -- Shift_DR -- in-between

('1', '1') after 2001 ns, -- Exit1_DR

('0', '1') after 2101 ns, -- Update_DR

('0', '1') after 2201 ns, -- Select_DR

('0', '1') after 2301 ns, -- Select_IR

('0', '0') after 2401 ns, -- Capture_IR

('0', '0') after 2501 ns, -- Shift_IR

('0', '0') after 2601 ns, -- Shift_IR

('0', '1') after 2701 ns, -- Exit1_IR

('0', '1') after 2801 ns, -- Update_IR, 00=EXTEST

('0', '0') after 2901 ns; -- Run_Idle

wait ;

end process ;

process (TDO, a_pad, b_pad, z_pad) variable L : LINE; begin

write (L, now, RIGHT, 10); write (L, STRING'(" TDO="));

if TDO = 'Z' then write (L, STRING'("Z")) ;

else write (L, TO_BIT(TDO)); end if ;

write (L, STRING'(" PADS=")); write (L, a_pad & b_pad & z_pad);

writeline (output, L);

end process ;

end behave;

Here is the output from this testbench:

0 ns TDO=0 PADS=000000000

0 ns TDO=Z PADS=010011000

0 ns TDO=Z PADS=010011010

650 ns TDO=1 PADS=010011010

750 ns TDO=0 PADS=010011010

850 ns TDO=Z PADS=010011010

1250 ns TDO=0 PADS=010011010

1350 ns TDO=1 PADS=010011010

1450 ns TDO=0 PADS=010011010

1550 ns TDO=1 PADS=010011010

1750 ns TDO=0 PADS=010011010

1950 ns TDO=1 PADS=010011010

2050 ns TDO=0 PADS=010011010

2150 ns TDO=Z PADS=010011010

2650 ns TDO=1 PADS=010011010

2750 ns TDO=0 PADS=010011010

2850 ns TDO=Z PADS=010011010

2950 ns TDO=Z PADS=010011101

This trace shows the following activities:

All changes to TDO and at the pads occur at the negative edge of TCK .●

The core logic output is z_pad = '010' and appears at the I/O pads at t = 0 ns. This is the smaller of the two inputs, a_pad = '010' and b_pad = '011' , and the correct output
when the pads are connected to the core logic.

●

At t = 650 ns the IDCODE instruction '01' is shifted out on TDO (with '1' appearing first). If we had multiple ASICs in the boundary-scan chain, this would show us that the
chain was intact.

●

At t = 850 ns the TDO output is floated (to 'Z') as we exit the shift_IR state.●

At t = 1200 ns the TAP controller begins shifting the serial data input from TDI ('111111101') into the BSR.●

At t = 1250 ns the BSR data starts shifting out. This is data that was captured during the SAMPLE/PRELOAD instruction from the device input pins, a_pad and b_pad , as
well as the driver of the output pins, z_pad . The data appears as the pattern '010011010' . This pattern consists of a_pad = '010' , b_pad = '011' , followed by z_pad = '010'
(notice that TDO does not change at t = 1650 ns or 1850 ns).

●

At t = 2150 ns, TDO is floated after we exit the shift_DR state.●

At t = 2650 ns the IDCODE instruction '01' (loaded into the IR as we passed through capture_IR the second time) is again shifted out as we shift the EXTEST instruction
from TDI into the IR.

●

At t = 2650 ns the TDO output is floated after we exit the shift_IR state.●

At t = 2950 ns the output, z_pad , is driven with '101' . The inputs a_pad and b_pad remain unchanged since they are driven from outside the chip. The change on z_pad
occurs on the negative edge of TCK because the IR is loaded with the instruction EXTEST on the negative edge of TCK . When this instruction is decoded, the signal mode
changes (this signal controls the MUX at the output of the BSCs).

●

Figure 14.10 shows a signal trace from the MTI simulator for the last four negative edges of TCK . Notice that we shifted in the test pattern on TDI in the order '101111111' . The
output z_pad (3 bits wide) is last in the BSR (nearest TDO) and thus is driven with the first 3 bits of this pattern, '101' . Forcing '101' onto the ASIC output pins would allow us to
check that this pattern is correctly received at inputs of other connected ASICs through the bonding wires and board traces. In a later test cycle we can force '010' onto z_pad to
check that both logic levels can be transmitted and received. We may also capture other signals (which are similarly being forced onto the outputs of neighboring ASICs) at the
inputs.

FIGURE 14.10 Results from the MTI simulator for the boundary-scan testbench.

14.2.7 BSDL
The boundary-scan description language (BSDL) is an extension of IEEE 1149.1 but without any overlap. BSDL uses a subset of VHDL. The BSDL for an ASIC is part of an
imaginary data sheet; it is not intended for simulation and does not include models for any boundary-scan components. BSDL is a standard way to describe the features and
behavior of an ASIC that includes IEEE 1149.1 boundary scan and a standard way to pass information to test-generation software. Using BSDL, test software can also check that
the BST features are correct. As an example, test software can use the BSDL to check that the ASIC uses the correct boundary-scan cells for the instructions that claim to be
supported. BSDL cannot prove that an implementation works, however.

The following example BSDL description corresponds to our halfgate ASIC example with BST (this code was generated automatically by the Compass tools):

entity asic_p is

generic (PHYSICAL_PIN_MAP : STRING := "DUMMY_PACKAGE");

port (

pad_a: in BIT_VECTOR (0 to 0);

pad_z: buffer BIT_VECTOR (0 to 0);

TCK: in BIT;

TDI: in BIT;

TDO: out BIT;

TMS: in BIT;

TRST: in BIT);

use STD_1149_1_1994. all ;

attribute PIN_MAP of asic_p : entity is PHYSICAL_PIN_MAP;

-- CUSTOMIZE package pin mapping.

constant DUMMY_PACKAGE : PIN_MAP_STRING :=

"pad_a:(1)," &

"pad_z:(2)," &

"TCK:3," &

"TDI:4," &

"TDO:5," &

"TMS:6," &

"TRST:7";

attribute TAP_SCAN_IN of TDI : signal is TRUE;

attribute TAP_SCAN_MODE of TMS : signal is TRUE;

attribute TAP_SCAN_OUT of TDO : signal is TRUE;

attribute TAP_SCAN_RESET of TRST : signal is TRUE;

-- CUSTOMIZE TCK max freq and safe stop state.

attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, BOTH);

attribute INSTRUCTION_LENGTH of asic_p : entity is 3;

attribute INSTRUCTION_OPCODE of asic_p : entity is

"IDCODE (001)," &

"STCTEST (101)," &

"INTEST (100)," &

"BYPASS (111)," &

"SAMPLE (010)," &

"EXTEST (000)";

attribute INSTRUCTION_CAPTURE of asic_p : entity is "001";

-- attribute INSTRUCTION_DISABLE of asic_p : entity is " "

-- attribute INSTRUCTION_GUARD of asic_p : entity is " "

-- attribute INSTRUCTION_PRIVATE of asic_p : entity is " "

attribute IDCODE_REGISTER of asic_p : entity is

"0000" & -- 4-bit version

"0000000000000000" & -- 16-bit part number

"00000101011" & -- 11-bit manufacturer

"1"; -- mandatory LSB

-- attribute USERCODE_REGISTER of asic_p : entity is " "

attribute REGISTER_ACCESS of asic_p : entity is

"BOUNDARY (STCTEST)";

attribute BOUNDARY_CELLS of asic_p : entity is

"BC_1, BC_2";

attribute BOUNDARY_LENGTH of asic_p : entity is 2;

attribute BOUNDARY_REGISTER of asic_p : entity is

-- num cell port function safe [ccell disval rslt]

" 1 (BC_2, pad_a(0), input, X)," &

" 0 (BC_1, pad_z(0), output2, X)";

-- " 98 (BC_1, OE, input, X), " &

-- " 98 (BC_1, *, control, 0), " &

-- " 99 (BC_1, myport(0), output3, X, 98, 0, Z);

end asic_p;

The functions of the lines of this BSDL description are as follows:

Line 2 refers to the ASIC package. We can have the same part (with identical pad numbers on the silicon die) in different ASIC packages. We include the name of the ASIC
package in line 2 and the pin mapping between bonding pads and ASIC package pins in lines 14 � 21 .

●

Lines 3 � 10 describe the signal names of inputs and outputs, the TAP pins, and the optional fifth TAP reset signal. The BST signals do not have to be given the names used in
the standard: TCK, TDI, and so on.

●

Line 11 refers to the VHDL package, STD_1149_1_1994 . This is a small VHDL package (just over 100 lines) that contains definitions of the constants, types, and attributes
used in a BSDL description. It does not contain any models for simulation.

●

Lines 22 � 25 attach signal names to the required TAP pins and the optional fifth TAP reset signal.●

Lines 26 � 27 refer to the maximum test clock frequency in hertz, and whether the clock may be stopped in both states or just the low state (just the high state is not valid).●

Line 28 describes a 3-bit IR (in the comparator/MUX example we used a 2-bit IR). Length must be greater than or equal to 2.●

Lines 29 � 35 describe the three required instruction opcodes and mnemonics (BYPASS, SAMPLE, EXTEST) and three optional instructions: IDCODE, STCTEST (which
is a scan test mode), and INTEST (which supports internal testing in the same fashion as EXTEST supports external testing). EXTEST must be all ones; BYPASS must be all
zeros. A mnemonic may have more than one opcode (and opcodes may be specified using 'x'). Other instructions that may appear here include CLAMP and HIGHZ , both
optional instructions that were added to 1149.1 (see Supplement A, 1149.1a). String concatenation is used in BSDL to avoid line-break problems.

●

Lines 37 � 39 include instruction attributes INSTRUCTION_DISABLE (for HIGHZ), INSTRUCTION_GUARD (for CLAMP), as well as INSTRUCTION_PRIVATE (for
user-defined instructions) that are not used in this example.

●

Lines 40 � 44 describe the IDCODE TDR. The 11-bit manufacturer number is determined from codes assigned by JEDEC Publication 106-A.●

Line 45 describes the USERCODE TDR in a similar fashion to IDCODE, but is not used here.●

Lines 46 � 47 describe the TDRs for user-defined instructions. In this case the existing BOUNDARY TDR is inserted between TDI and TDO during STCTEST . User-defined●

instructions listed here may use the other existing IDCODE and BYPASS TDRs or define new TDRs.

Lines 48 � 49 list the boundary-scan cells used in the ASIC. These may be any of the following cells defined in the 1149.1 standard and defined in the VHDL package,
STD_1149_1_1994 : BC_1 (Figs. 10-18, 10-29, 10-31c, 10-31d, and 10-33c), BC_2 (Figs. 10-14, 10-30, 10-32c, 10-32d, 10-35c), BC_3 (Fig. 10-15), BC_4 (Figs. 10-16,
10-17), BC_5 (Fig. 10-41c), BC_6 (Fig. 10-34d). The figure numbers in parentheses here refer to the IEEE 1149.1 standard [IEEE 1149.1b-1994]. Alternatively the cells
may be user-defined (and must then be declared in a package).

●

Line 50 must be an integer greater than zero and match the number defined by the following register description.●

Lines 51 � 54 are an array of records, numbered by cell, with seven fields: four required and three that only appear for certain cells. Field 1 specifies the scan cell name as
defined in the STD_1149_1_1994 or user-defined package. Field 2 is the port name, with a subscript if the type is BIT_VECTOR . An '*' denotes no connection. Field 3 is
one of the following cell functions (with figure or page numbers from the IEEE standard [IEEE 1149.1b-1994]): input (Fig. 10-18), clock (Fig. 10-17), output2 (two-state
output, Fig. 10-29), output3 (three-state, Fig. 10-31d), internal (p. 33, 1149.1b), control (Fig. 10-31c), controlr (Fig. 10-33c), bidir_in (a reversible cell acting as an input,
Fig. 10-34d), bidir_out (a reversible cell acting as an output, Fig. 10-34d). Field 4, safe , contains the safe value to be loaded into the update flip-flop when otherwise
unspecified, with 'X' as a don�t care value.

●

Lines 55 � 57 illustrate the use of the optional three fields. Field 5, ccell or control cell, refers to the cell number (98 in this example) of the cell that controls an output or
bidirectional cell. The control cell number 98 is a merged cell in this example with an input cell, input signal name OE , also labeled as cell number 98. The ASIC input OE
(for output enable) thus directly controls (enables) the ASIC three-state output, myport(0) .

●

The boundary-scan standard may seem like a complicated way to test the connections outside an ASIC. However, the IEEE 1149.1 standard also gives us a method to communicate
with test circuits inside an ASIC. Next, we turn our attention from problems at the board level to problems that may occur within the ASIC.

1. Outputs: G = gated with �TCK, R = registered on falling edge of TCK. Only active levels are shown in the table.

14.3 Faults
Fabrication of an ASIC is a complicated process requiring hundreds of processing
steps. Problems may introduce a defect that in turn may introduce a fault (Sabnis [
1990] describes defect mechanisms). Any problem during fabrication may prevent a
transistor from working and may break or join interconnections. Two common types
of defects occur in metallization [Rao, 1993]: either underetching the metal (a
problem between long, closely spaced lines), which results in a bridge or short circuit
(shorts) between adjacent lines, or overetching the metal and causing breaks or open
circuits (opens). Defects may also arise after chip fabrication is complete�while
testing the wafer, cutting the die from the wafer, or mounting the die in a package.
Wafer probing, wafer saw, die attach, wire bonding, and the intermediate handling
steps each have their own defect and failure mechanisms. Many different materials are
involved in the packaging process that have different mechanical, electrical, and
thermal properties, and these differences can cause defects due to corrosion, stress,
adhesion failure, cracking, and peeling. Yield loss also occurs from human error�using
the wrong mask, incorrectly setting the implant dose�as well as from physical sources:
contaminated chemicals, dirty etch sinks, or a troublesome process step. It is possible
to repeat or rework some of the reversible steps (a lithography step, for example�but
not etching) if there are problems. However, reliance on rework indicates a poorly
controlled process.

14.3.1 Reliability
It is possible for defects to be nonfatal but to cause failures early in the life of a
product. We call this infant mortality . Most products follow the same kinds of trend
for failures as a function of life. Failure rates decrease rapidly to a low value that
remains steady until the end of life when failure rates increase again; this is called a
bathtub curve . The end of a product lifetime is determined by various wearout
mechanisms (usually these are controlled by an exponential energy process). Some of
the most important wearout mechanisms in ASICs are hot-electron wearout,
electromigration, and the failure of antifuses in FPGAs.

We can catch some of the products that are susceptible to early failure using burn-in .
Many failure mechanisms have a failure rate proportional to exp (� E a /kT). This is the
Arrhenius equation , where E a is a known activation energy (k is Boltzmann�s

constant, 8.62 ¥ 10 �5 eVK -1 , and T the absolute temperature). Operating an ASIC at
an elevated temperature accelerates this type of failure mechanism. Depending on the
physics of the failure mechanism, additional stresses, such as elevated current or
voltage, may also accelerate failures. The longer and harsher the burn-in conditions,
the more likely we are to find problems, but the more costly the process and the more

costly the parts.

We can measure the overall reliability of any product using the mean time between
failures (MTBF) for a repairable product or mean time to failure (MTTF) for a fatal
failure. We also use failures in time (FITs) where 1 FIT equals a single failure in 10 9

hours. We can sum the FITs for all the components in a product to determine an
overall measure for the product reliability. Suppose we have a system with the
following components:

Microprocessor (standard part) 5 FITs●

100 TTL parts, 50 parts at 10 FITs, 50 parts at 15 FITs●

100 RAM chips, 6 FITs●

The overall failure rate for this system is 5 + 50 ¥ 10 + 50 ¥ 15 + 100 ¥ 6 = 1855 FITs.
Suppose we could reduce the component count using ASICs to the following:

Microprocessor (custom) 7 FITs●

9 ASICs, 10 FITs●

5 SIMMs, 15 FITs●

The failure rate is now 10 + 9 ¥ 10 + 5 ¥ 15 = 175 FITs, or about an order of
magnitude lower. This is the rationale behind the Sun SparcStation 1 design described
in Section 1.3 , � Case Study .�

14.3.2 Fault Models
Table 14.6 shows some of the causes of faults. The first column shows the fault level
�whether the fault occurs in the logic gates on the chip or in the package. The second
column describes the physical fault . There are too many of these and we need a way
to reduce and simplify their effects�by using a fault model.

There are several types of fault model . First, we simplify things by mapping from a
physical fault to a logical fault . Next, we distinguish between those logical faults that
degrade the ASIC performance and those faults that are fatal and stop the ASIC from
working at all. There are three kinds of logical faults in Table 14.6 : a degradation
fault, an open-circuit fault, and a short-circuit fault.

TABLE 14.6 Mapping physical faults to logical faults.
 Logical fault
Fault
level

Physical fault Degradation fault Open-circuit fault Short-circuit fault

Chip

Leakage or short
between package
leads

" "

Broken, misaligned,
or poor wire bonding

 "

Surface
contamination,
moisture

"

Metal migration,
stress, peeling

 " "

Metallization (open or
short)

 " "

Gate
 Contact opens "

Gate to S/D junction
short

" "

Field-oxide parasitic
device

" "

Gate-oxide
imperfection, spiking

" "

 Mask misalignment " "

A degradation fault may be a parametric fault or delay fault (timing fault). A
parametric fault might lead to an incorrect switching threshold in a TTL/CMOS level
converter at an input, for example. We can test for parametric faults using a
production tester. A delay fault might lead to a critical path being slower than
specification. Delay faults are much harder to test in production. An open-circuit fault
results from physical faults such as a bad contact, a piece of metal that is missing or
overetched, or a break in a polysilicon line. These physical faults all result in failure to
transmit a logic level from one part of a circuit to another�an open circuit. A
short-circuit fault results from such physical faults as: underetching of metal; spiking,
pinholes or shorts across the gate oxide; and diffusion shorts. These faults result in a
circuit being accidentally connected�a short circuit. Most short-circuit faults occur in
interconnect; often we call these bridging faults (BF). A BF usually results from metal
coverage problems that lead to shorts. You may see reference to feedback bridging
faults and nonfeedback bridging faults , a useful distinction when trying to predict the
results of faults on logic operation. Bridging faults are a frequent problem in CMOS
ICs.

FIGURE 14.11 Defects and physical faults. Many types of defects occur during
fabrication. Defects can be of any size and on any layer. Only a few small sample
defects are shown here using a typical standard cell as an example. Defect density for
a modern CMOS process is of the order of 1 cm �2 or less across a whole wafer. The
logic cell shown here is approximately 64 ¥ 32 l 2 , or 250 m m 2 for a l = 0.25 m m
process. We would thus have to examine approximately 1 cm �2 /250 m m 2 or
400,000 such logic cells to find a single defect.

F1 is a short between m1 lines and connects node n1 to VSS.●

F2 is an open on the poly layer and disconnects the gate of transistor t1 from the
rest of the circuit.

●

F3 is an open on the poly layer and disconnects the gate of transistor t3 from the
rest of the circuit.

●

F4 is a short on the poly layer and connects the gate of transistor t4 to the gate
of transistor t5.

●

F5 is an open on m1 and disconnects node n4 from the output Z1.●

F6 is a short on m1 and connects nodes p5 and p6.●

F7 is a nonfatal defect that causes necking on m1.●

 14.3.3 Physical Fults
 Figure 14.11 shows the following examples of physical faults in a logic cell:

Once we have reduced the large number of physical faults to fewer logical faults, we
need a model to predict their effect. The most common model is the stuck-at fault
model .

14.3.4 Stuck-at Fault Model
The single stuck-at fault (SSF) model assumes that there is just one fault in the logic
we are testing. We use a single stuck-at fault model because a multiple stuck-at fault
model that could handle several faults in the logic at the same time is too complicated
to implement. We hope that any multiple faults are caught by single stuck-at fault tests
[Agarwal and Fung, 1981; Hughes and McCluskey, 1986]. In practice this seems to be
true.

There are other fault models. For example, we can assume that faults are located in the
transistors using a stuck-on fault and stuck-open fault (or stuck-off fault). Fault
models such as these are more realistic in that they more closely model the actual
physical faults. However, in practice the simple SSF model has been found to work
�and work well. We shall concentrate on the SSF model.

In the SSF model we further assume that the effect of the physical fault (whatever it
may be) is to create only two kinds of logical fault. The two types of logical faults or
stuck-at faults are: a stuck-at-1 fault (abbreviated to SA1 or s@1) and a stuck-at-0
fault (SA0 or s@0). We say that we place faults (inject faults , seed faults , or apply
faults) on a node (or net), on an input of a circuit, or on an output of a circuit. The
location at which we place the fault is the fault origin .

A net fault forces all the logic cell inputs that the net drives to a logic '1' or '0' . An
input fault attached to a logic cell input forces the logic cell input to a '1' or '0' , but
does not affect other logic cell inputs on the same net. An output fault attached to the
output of a logic cell can have different strengths. If an output fault is a
supply-strength fault (or rail-strength fault) the logic-cell output node and every other
node on that net is forced to a '1' or '0' �as if all these nodes were connected to one of
the supply rails. An alternative assigns the same strength to the output fault as the
drive strength of the logic cell. This allows contention between outputs on a net
driving the same node. There is no standard method of handling output-fault strength ,
and no standard for using types of stuck-at faults. Usually we do not inject net faults;
instead we inject only input faults and output faults. Some people use the term node
fault �but in different ways to mean either a net fault, input fault, or output fault.

We usually inject stuck-at faults to the inputs and outputs, the pins, of logic cells
(AND gates, OR gates, flip-flops, and so on). We do not inject faults to the internal
nodes of a flip-flop, for example. We call this a pin-fault model and say the fault level
is at the structural level , gate level, or cell level. We could apply faults to the internal
logic of a logic cell (such as a flip-flop) and (the fault level would then be at the
transistor level or switch level. We do not use transistor-level or switch-level fault
models because there is often no need. From experience, but not from any theoretical
reason, it turns out that using a fault model that applies faults at the logic-cell level is
sufficient to catch the bad chips in a production test.

When a fault changes the circuit behavior, the change is called the fault effect . Fault
effects travel through the circuit to other logic cells causing other fault effects. This
phenomenon is fault propagation . If the fault level is at the structural level, the
phenomenon is structural fault propagation . If we have one or more large functional
blocks in a design, we want to apply faults to the functional blocks only at the inputs
and outputs of the blocks. We do not want to place (or cannot place) faults inside the
blocks, but we do want faults to propagate through the blocks. This is behavioral fault
propagation .

Designers adjust the fault level to the appropriate level at which they think there may
be faults. Suppose we are performing a fault simulation on a board and we have
already tested the chips. Then we might set the fault level to the chip level, placing
faults only at the chip pins. For ASICs we use the logic-cell level. You have to be
careful, though, if you mix behavioral level and structural level models in a
mixed-level fault simulation . You need to be sure that the behavioral models
propagates faults correctly. In particular, if the behavioral model responds to faults on
its inputs by propagating too many unknown 'X' values to its outputs, this will
decrease the fault coverage, because the model is hiding the logic beyond it.

14.3.5 Logical Faults
Figure 14.12 and the following list show how the defects and physical faults of
Figure 14.11 translate to logical faults (not all physical faults translate to logical faults
�most do not):

F1 translates to node n1 being stuck at 0, equivalent to A1 being stuck at 1.●

F2 will probably result in node n1 remaining high, equivalent to A1 being stuck
at 0.

●

F3 will affect half of the n -channel pull-down stack and may result in a
degradation fault, depending on what happens to the floating gate of T3. The
cell will still work, but the fall time at the output will approximately double. A
fault such as this in the middle of a chain of logic is extremely hard to detect.

●

F4 is a bridging fault whose effect depends on the relative strength of the
transistors driving this node. The fault effect is not well modeled by a stuck-at
fault model.

●

F5 completely disables half of the n -channel pulldown stack and will result in a
degradation fault.

●

F6 shorts the output node to VDD and is equivalent to Z1 stuck at 1.●

Fault F7 could result in infant mortality. If this line did break due to
electromigration the cell could no longer pull Z1 up to VDD. This would
translate to a Z1 stuck at 0. This fault would probably be fatal and stop the
ASIC working.

●

FIGURE 14.12 Fault models. (a) Physical faults at the layout level (problems
during fabrication) shown in Figure 14.11 translate to electrical problems on
the detailed circuit schematic. The location and effect of fault F1 is shown. The
locations of the other fault examples from Figure 14.11 (F2�F6) are shown, but
not their effect. (b) We can translate some of these faults to the simplified
transistor schematic. (c) Only a few of the physical faults still remain in a
gate-level fault model of the logic cell. (d) Finally at the functional-level fault
model of a logic cell, we abandon the connection between physical and logical
faults and model all faults by stuck-at faults. This is a very poor model of the
physical reality, but it works well in practice.

14.3.6 IDDQ Test
When they receive a prototype ASIC, experienced designers measure the resistance
between VDD and GND pins. Providing there is not a short between VDD and GND,
they connect the power supplies and measure the power-supply current. From
experience they know that a supply current of more than a few milliamperes indicates
a bad chip. This is exactly what we want in production test: Find the bad chips
quickly, get them off the tester, and save expensive tester time. An IDDQ (IDD stands
for the supply current, and Q stands for quiescent) test is one of the first production
tests applied to a chip on the tester, after the chip logic has been initialized [Gulati
and Hawkins, 1993; Rajsuman, 1994]. High supply current can result from bridging
faults that we described in Section 14.3.2 . For example, the bridging fault F4 in
Figure 14.11 and Figure 14.12 would cause excessive IDDQ if node n1 and input B1
are being driven to opposite values.

14.3.7 Fault Collapsing
Figure 14.13 (a) shows a test for a stuck-at-1 output of a two-input NAND gate.
Figure 14.13 (b) shows tests for other stuck-at faults. We assume that the NAND gate
still works correctly in the bad circuit (also called the faulty circuit or faulty machine)
even if we have an input fault. The input fault on a logic cell is presumed to arise
either from a fault from a preceding logic cell or a fault on the connection to the input.

Stuck-at faults attached to different points in a circuit may produce identical fault
effects. Using fault collapsing we can group these equivalent faults (or
indistinguishable faults) into a fault-equivalence class . To save time we need only
consider one fault, called the prime fault or representative fault , from a
fault-equivalence class. For example, Figure 14.13 (a) and (b) show that a stuck-at-0
input and a stuck-at-1 output are equivalent faults for a two-input NAND gate. We
only need to check for one fault, Z1 (output stuck at 1), to catch any of the equivalent
faults.

Suppose that any of the tests that detect a fault B also detects fault A, but only some of
the tests for fault A also detect fault B. W say A is a dominant fault , or that fault A
dominates fault B (this the definition of fault dominance that we shall use, some texts
say fault B dominates fault A in this situation). Clearly to reduce the number of tests
using dominant fault collapsing we will pick the test for fault B. For example,
Figure 14.13 (c) shows that the output stuck at 0 dominates either input stuck at 1 for
a two-input NAND. By testing for fault A1, we automatically detect the fault Z1.
Confusion over dominance arises because of the difference between focusing on faults
(Figure 14.13 d) or test vectors (Figure 14.13 e).

Figure 14.13 (f) shows the six stuck-at faults for a two-input NAND gate. We can
place SA1 or SA0 on each of the two input pins (four faults in total) and SA1 or SA0
on the output pins. Using fault equivalence (Figure 14.13 g) we can collapse six faults
to four: SA1 on each input, and SA1 or SA0 on the output. Using fault dominance (
Figure 14.13 h) we can collapse six faults to three. There is no way to tell the
difference between equivalent faults, but if we use dominant fault collapsing we may
lose information about the fault location.

FIGURE 14.13 Fault dominance and fault equivalence. (a) We can test for fault Z0
(Z stuck at 0) by applying a test vector that makes the bad (faulty) circuit produce a
different output than the good circuit. (b) Some test vectors provide tests for more
than one fault. (c) A test for A stuck at 1 (A1) will also test for Z stuck at 0; Z0
dominates A1. The fault effects of faults: A0, B0 and Z1 are the same. These faults
are equivalent. (d) There are six sets of input vectors that test for the six stuck-at
faults. (e) We only need to choose a subset of all test vectors that test for all faults.
(f) The six stuck-at faults for a two-input NAND logic cell. (g) Using fault
equivalence we can collapse six faults to four. (h) Using fault dominance we can
collapse six faults to three.

14.3.8 Fault-Collapsing Example
Figure 14.14 shows an example of fault collapsing. Using the properties of logic cells
to reduce the number of faults that we need to consider is called gate collapsing . We
can also use node collapsing by examining the effect of faults on the same node.
Consider two inverters in series. An output fault on the first inverter collapses with the
node fault on the net connecting the inverters. We can collapse the node fault in turn
with the input fault of the second inverter. The details of fault collapsing depends on
whether the simulator uses net or pin faults, the fanin and fanout of nodes, and the
output fault-strength model used.

FIGURE 14.14 Fault collapsing for A'B + BC. (a) A pin-fault model. Each pin has
stuck-at-0 and stuck-at-1 faults. (b) Using fault equivalence the pin faults at the input
pins and output pins of logic cells are collapsed. This is gate collapsing. (c) We can
reduce the number of faults we need to consider further by collapsing equivalent
faults on nodes and between logic cells. This is node collapsing. (d) The final circuit
has eight stuck-at faults (reduced from the 22 original faults). If we wished to use
fault dominance we could also eliminate the stuck-at-0 fault on Z. Notice that in a
pin-fault model we cannot collapse the faults U4.A1.SA1 and U3.A2.SA1 even
though they are on the same net.

14.4 Fault Simulation
We use fault simulation after we have completed logic simulation to see what
happens in a design when we deliberately introduce faults. In a production test
we only have access to the package pins�the primary inputs (PIs) and primary
outputs (POs). To test an ASIC we must devise a series of sets of input patterns
that will detect any faults. A stimulus is the application of one such set of inputs
(a test vector) to the PIs of an ASIC. A typical ASIC may have several hundred
PIs and therefore each test vector is several hundred bits long. A test program
consists of a set of test vectors. Typical ASIC test programs require tens of
thousands and sometimes hundreds of thousands of test vectors.

The test-cycle time is the period of time the tester requires to apply the stimulus,
sense the POs, and check that the actual output is equal to the expected output.
Suppose the test cycle time is 100 ns (corresponding to a test frequency of 10
MHz), in which case we might sense (or strobe) the POs at 90 ns after the
beginning of each test cycle. Using fault simulation we mimic the behavior of the
production test. The fault simulator deliberately introduces all possible faults into
our ASIC, one at a time, to see if the test program will find them. For the moment
we dodge the problem of how to create the thousands of test vectors required in a
typical test program and focus on fault simulation.

As each fault is inserted, the fault simulator runs our test program. If the fault
simulation shows that the POs of the faulty circuit are different than the PIs of the
good circuit at any strobe time, then we have a detected fault ; otherwise we have
an undetected fault . The list of fault origins is collected in a file and as the faults
are inserted and simulated, the results are recorded and the faults are marked
according to the result. At the end of fault simulation we can find the fault
coverage ,

fault coverage = detected faults / detectable faults. (14.1)

Detected faults and detectable faults will be defined in Section 14.4.5 , after the
description of fault simulation. For now assume that we wish to achieve close to
100 percent fault coverage. How does fault coverage relate to the ASIC defect
level?

Table 14.7 shows the results of a typical experiment to measure the relationship
between single stuck-at fault coverage and AQL. Table 14.7 completes a circle
with test and repair costs in Table 14.1 and defect levels in Table 14.2 . These
experimental results are the only justification (but a good one) for our

assumptions in adopting the SSF model. We are not quite sure why this model
works so well, but, being engineers, as long as it continues to work we do not
worry too much.

TABLE 14.7 Average quality level as a function of single stuck-at fault
coverage.
Fault coverage Average defect level Average quality level (AQL)
50% 7% 93%
90% 3% 97%
95% 1% 99%
99% 0.1% 99.9%
99.9% 0.01% 99.99%

There are several algorithms for fault simulation: serial fault simulation, parallel
fault simulation, and concurrent fault simulation. Next, we shall discuss each of
these types of fault simulation in turn.

14.4.1 Serial Fault Simulation
Serial fault simulation is the simplest fault-simulation algorithm. We simulate
two copies of the circuit, the first copy is a good circuit. We then pick a fault and
insert it into the faulty circuit. In test terminology, the circuits are called
machines , so the two copies are a good machine and a faulty machine . We shall
continue to use the term circuit here to show the similarity between logic and
fault simulation (the simulators are often the same program used in different
modes). We then repeat the process, simulating one faulty circuit at a time. Serial
simulation is slow and is impractical for large ASICs.

14.4.2 Parallel Fault Simulation
Parallel fault simulation takes advantage of multiple bits of the words in
computer memory. In the simplest case we need only one bit to represent either a
'1' or '0' for each node in the circuit. In a computer that uses a 32-bit word
memory we can simulate a set of 32 copies of the circuit at the same time. One
copy is the good circuit, and we insert different faults into the other copies. When
we need to perform a logic operation, to model an AND gate for example, we can
perform the operation across all bits in the word simultaneously. In this case,
using one bit per node on a 32-bit machine, we would expect parallel fault
simulation to be about 32 times faster than serial simulation. The number of bits
per node that we need in order to simulate each circuit depends on the number of
states in the logic system we are using. Thus, if we use a four-state system with
'1' , '0' , 'X' (unknown), and 'Z' (high-impedance) states, we need two bits per
node.

Parallel fault simulation is not quite as fast as our simple prediction because we

have to simulate all the circuits in parallel until the last fault in the current set is
detected. If we use serial simulation we can stop as soon as a fault is detected and
then start another fault simulation. Parallel fault simulation is faster than serial
fault simulation but not as fast as concurrent fault simulation. It is also difficult to
include behavioral models using parallel fault simulation.

14.4.3 Concurrent Fault Simulation
Concurrent fault simulation is the most widely used fault-simulation algorithm
and takes advantage of the fact that a fault does not affect the whole circuit. Thus
we do not need to simulate the whole circuit for each new fault. In concurrent
simulation we first completely simulate the good circuit. We then inject a fault
and resimulate a copy of only that part of the circuit that behaves differently (this
is the diverged circuit). For example, if the fault is in an inverter that is at a
primary output, only the inverter needs to be simulated�we can remove
everything preceding the inverter.

Keeping track of exactly which parts of the circuit need to be diverged for each
new fault is complicated, but the savings in memory and processing that result
allow hundreds of faults to be simulated concurrently. Concurrent simulation is
split into several chunks, you can usually control how many faults (usually
around 100) are simulated in each chunk or pass . Each pass thus consists of a
series of test cycles. Every circuit has a unique fault-activity signature that
governs the divergence that occurs with different test vectors. Thus every circuit
has a different optimum setting for faults per pass . Too few faults per pass will
not use resources efficiently. Too many faults per pass will overflow the memory.

14.4.4 Nondeterministic Fault
Simulation
Serial, parallel, and concurrent fault-simulation algorithms are forms of
deterministic fault simulation . In each of these algorithms we use a set of test
vectors to simulate a circuit and discover which faults we can detect. If the fault
coverage is inadequate, we modify the test vectors and repeat the fault
simulation. This is a very time-consuming process.

As an alternative we give up trying to simulate every possible fault and instead,
using probabilistic fault simulation , we simulate a subset or sample of the faults
and extrapolate fault coverage from the sample.

In statistical fault simulation we perform a fault-free simulation and use the
results to predict fault coverage. This is done by computing measures of
observability and controllability at every node.

We know that a node is not stuck if we can make the node toggle�that is, change
from a '0' to '1' or vice versa. A toggle test checks which nodes toggle as a result

of applying test vectors and gives a statistical estimate of vector quality , a
measure of faults detected per test vector. There is a strong correlation between
high-quality test vectors, the vectors that will detect most faults, and the test
vectors that have the highest toggle coverage . Testing for nodes toggling simply
requires a single logic simulation that is much faster than complete fault
simulation.

We can obtain a considerable improvement in fault simulation speed by putting
the high-quality test vectors at the beginning of the simulation. The sooner we
can detect faults and eliminate them from having to be considered in each
simulation, the faster the simulation will progress. We take the same approach
when running a production test and initially order the test vectors by their
contribution to fault coverage. This assumes that all faults are equally likely. Test
engineers can then modify the test program if they discover vectors late in the test
program that are efficient in detecting faulty chips.

14.4.5 Fault-Simulation Results
The output of a fault simulator separates faults into several fault categories . If we
can detect a fault at a location, it is a testable fault . A testable fault must be
placed on a controllable net , so that we can change the logic level at that location
from '0' to '1' and from '1' to '0' . A testable fault must also be on an observable
net , so that we can see the effect of the fault at a PO. This means that
uncontrollable nets and unobservable nets result in faults we cannot detect. We
call these faults untested faults , untestable faults , or impossible faults .

If a PO of the good circuit is the opposite to that of the faulty circuit, we have a
detected fault (sometimes called a hard-detected fault or a definitely detected
fault). If the POs of the good circuit and faulty circuit are identical, we have an
undetected fault . If a PO of the good circuit is a '1' or a '0' but the corresponding
PO of the faulty circuit is an 'X' (unknown, either '0' or '1'), we have a possibly
detected fault (also called a possible-detected fault , potential fault , or
potentially detected fault).

If the PO of the good circuit changes between a '1' and a '0' while the faulty
circuit remains at 'X' , then we have a soft-detected fault . Soft-detected faults are
a subset of possibly detected faults. Some simulators keep track of these
soft-detected faults separately. Soft-detected faults are likely to be detected on a
real tester if this sequence occurs often. Most fault simulators allow you to set a
fault-drop threshold so that the simulator will remove faults from further
consideration after soft-detecting or possibly detecting them a specified number
of times. This is called fault dropping (or fault discarding). The more often a
fault is possibly detected, the more likely it is to be detected on a real tester.

A redundant fault is a fault that makes no difference to the circuit operation. A
combinational circuit with no such faults is irredundant . There are close links
between logic-synthesis algorithms and redundancy. Logic-synthesis algorithms

can produce combinational logic that is irredundant and 100 % testable for single
stuck-at faults by removing redundant logic as part of logic minimization.

If a fault causes a circuit to oscillate, it is an oscillatory fault . Oscillation can
occur within feedback loops in combinational circuits with zero-delay models. A
fault that affects a larger than normal portion of the circuit is a hyperactive fault .
Fault simulators have settings to prevent such faults from using excessive
amounts of computation time. It is very annoying to run a fault simulation for
several days only to discover that the entire time was taken up by simulating a
single fault in a RS flip-flop or on the clock net, for example. Figure 14.15 shows
some examples of fault categories.

FIGURE 14.15 Fault categories. (a) A detectable fault requires the ability to
control and observe the fault origin. (b) A net that is fixed in value is
uncontrollable and therefore will produce one undetected fault. (c) Any net that
is unconnected is unobservable and will produce undetected faults. (d) A net that
produces an unknown 'X' in the faulty circuit and a '1' or a '0' in the good circuit
may be detected (depending on whether the 'X' is in fact a '0' or '1'), but we
cannot say for sure. At some point this type of fault is likely to produce a
discrepancy between good and bad circuits and will eventually be detected. (e) A
redundant fault does not affect the operation of the good circuit. In this case the
AND gate is redundant since AB + B' = A + B'.

14.4.6 Fault-Simulator Logic Systems
In addition to the way the fault simulator counts faults in various fault categories,
the number of detected faults during fault simulation also depends on the logic
system used by the fault simulator. As an example, Cadence�s VeriFault
concurrent fault simulator uses a logic system with the six logic values: '0' , '1' ,

'Z' , 'L' , 'H' , 'X' . Table 14.8 shows the results of comparing the faulty and the
good circuit simulations.

From Table 14.8 we can deduce that, in this logic system:

Fault detection is possible only if the good circuit and the bad circuit both
produce either a '1' or a '0' .

●

If the good circuit produces a 'Z' at a three-state output, no faults can be
detected (not even a fault on the three-state output).

●

If the good circuit produces anything other than a '1' or '0' , no faults can be
detected.

●

A fault simulator assigns faults to each of the categories we have described. We
define the fault coverage as:

fault coverage = detected faults / detectable faults. (14.2)

The number of detectable faults excludes any undetectable fault categories
(untestable or redundant faults). Thus,

detectable faults = faults � undetectable faults, (14.3)

undetectable faults = untested faults + redundant faults. (14.4)

The fault simulator may also produce an analysis of fault grading . This is a
graph, histogram, or tabular listing showing the cumulative fault coverage as a
function of the number of test vectors. This information is useful to remove dead
test cycles , which contain vectors that do not add to fault coverage. If you
reinitialize the circuit at regular intervals, you can remove vectors up to an
initialization without altering the function of any vectors after the initialization.
The list of faults that the simulator inserted is the fault list. In addition to the fault
list, a fault dictionary lists the faults with their corresponding primary outputs
(the faulty output vector). The set of input vectors and faulty output vectors that
uniquely identify a fault is the fault signature . This information can be useful to
test engineers, allowing them to work backward from production test results and
pinpoint the cause of a problem if several ASICs fail on the tester for the same
reasons.

TABLE 14.8 The VeriFault concurrent fault simulator logic system. 1

 Faulty circuit
 0 1 Z L H X

Good circuit

0 U D P P P P
1 D U P P P P
Z U U U U U U
L U U U U U U
H U U U U U U
X U U U U U U

14.4.7 Hardware Acceleration
Simulation engines or hardware accelerators use computer architectures that are
tuned to fault-simulation algorithms. These special computers allow you to add
multiple simulation boards in one chassis. Since each board is essentially a
workstation produced in relatively low volume and there are between 2 and 10
boards in one accelerator, these machines are between one and two orders of
magnitude more expensive than a workstation. There are two ways to use
multiple boards for fault simulation. One method runs good circuits on each
board in parallel with the same stimulus and generates faulty circuits
concurrently with other boards. The acceleration factor is less than the number of
boards because of overhead. This method is usually faster than distributing a
good circuit across multiple boards. Some fault simulators allow you to use
multiple circuits across multiple machines on a network in distributed fault
simulation .

 Fault Type

1 Vectors
(hex)

Good

output

Bad

output
 F1 SA1 3 0 1
 F2 SA1 0, 4 0, 0 1, 1
 F3 SA1 4, 5 0, 0 1, 1
 F4 SA1 3 0 1
 F5 SA1 2 1 0
 F6 SA1 7 1 0

 F7 SA1
0, 1, 3, 4,
5

0, 0, 0,
0, 0

1, 1, 1,
1, 1

 F8 SA0 2, 6, 7 1, 1, 1 0, 0, 0

1 Test vector format:

 3 = 011, so that CBA = 011: C =
'0', B = '1', A = '1'

FIGURE 14.16 Fault simulation of A'B + BC. The simulation results for fault
F1 (U2 output stuck at 1) with test vector value hex 3 (shown in bold in the
table) are shown on the LogicWorks schematic. Notice that the output of U2 is 0
in the good circuit and stuck at 1 in the bad circuit.

14.4.8 A Fault-Simulation Example
Figure 14.16 illustrates fault simulation using the circuit of Figure 14.14 . We
have used all possible inputs as a test vector set in the following order: {000, 001,
010, 011, 100, 101, 110, 111} . There are eight collapsed SSFs in this circuit, F1
�F8. Since the good circuit is irredundant, we have 100 percent fault coverage.
The following fault-simulation results were derived from a logic simulator rather
than a fault simulator, but are presented in the same format as output from an
automated test system.

Total number of faults: 22

Number of faults in collapsed fault list: 8

Test Vector Faults detected Coverage/% Cumulative/%

----------- --------------- ---------- ------------

000 F2, F7 25.0 25.0

001 F7 12.5 25.0

010 F5, F8 25.0 62.5

011 F1, F4, F7 37.5 75.0

100 F2, F3, F7 37.5 87.5

101 F3, F7 25.0 87.5

110 F8 12.5 100.0

111 F6, F8 25.0 100.0

Total number of vectors : 8

 Noncollapsed Collapsed

Fault counts:

Detected 16 8

Untested 0 0

------ ------

Detectable 16 8

Redundant 0 0

Tied 0 0

FAULT COVERAGE 100.00 % 100.00 %

Fault simulation tells us that we need to apply seven test vectors in order to
achieve full fault coverage. The highest-quality test vectors are {011} and {100}
. For example, test vector {011} detects three faults (F1, F4, and F7) out of eight.
This means if we were to reduce the test set to just {011} the fault coverage
would be 3/8, or 37 percent. Proceeding in this fashion we reorder the test vectors
in terms of their contribution to cumulative test coverage as follows: {011, 100,
010, 111, 000, 001, 101, 110} . This is a hard problem for large numbers of test
vectors because of the interdependencies between the faults detected by the
different vectors. Repeating the fault simulation gives the following fault
grading:

Test Vector Faults detected Coverage/% Cumulative/%

----------- --------------- ---------- ------------

011 F1, F4, F7 37.5 37.5

100 F2, F3, F7 37.5 62.5

010 F5, F8 25.0 87.5

111 F6, F8 25.0 100.0

000 F2, F7 25.0 100.0

001 F7 12.5 100.0

101 F3, F7 25.0 100.0

110 F8 12.5 100.0

Now, instead of using seven test vectors, we need only apply the first four vectors
from this set to achieve 100 percent fault coverage, cutting the expensive
production test time nearly in half. Reducing the number of test vectors in this
fashion is called test-vector compression or test-vector compaction .

The fault signatures for faults F1�F8 for the last test sequence, {011, 100, 010,
111, 000, 001, 101, 110} , are as follows:

fail good bad

-- ---- ---- -------- --------

F1 10000000 00110001 10110001

F2 01001000 00110001 01111001

F3 01000010 00110001 01110011

F4 10000000 00110001 10110001

F5 00100000 00110001 00010001

F6 00010000 00110001 00100001

F7 11001110 00110001 11111111

F8 00110001 00110001 00000000

The first pattern for each fault indicates which test vectors will fail on the tester
(we say a test vector fails when it successfully detects a faulty circuit during a
production test). Thus, for fault F1, pattern '10000000' indicates that only the first
test vector will fail if fault F1 is present. The second and third patterns for each
fault are the POs of the good and bad circuits for each test vector. Since we only
have one PO in our simple example, these patterns do not help further distinguish
between faults. Notice, that as far as an external view is concerned, faults F1 and
F4 have identical fault signatures and are therefore indistinguishable. Faults F1
and F4 are said to be structurally equivalent . In general, we cannot detect
structural equivalence by looking at the circuit. If we apply only the first four test
vectors, then faults F2 and F3 also have identical fault signatures. Fault
signatures are only useful in diagnosing fault locations if we have one, or a very
few faults.

Not all fault simulators give all the information we have described. Most fault
simulators drop hard-detected faults from consideration once they are detected to
increase the speed of simulation. With dropped hard-detected faults we cannot
independently grade each vector and we cannot construct a fault dictionary. This
is the reason we used a logic simulator to generate the preceding results.

14.4.9 Fault Simulation in an ASIC
Design Flow
At the beginning of this section we dodged the issue of test-vector generation. It
is possible to automatically generate test vectors and test programs (with certain
restrictions), and we shall discuss these methods in Section 14.5 . A by-product
of some of these automated systems is a measure of fault coverage. However,
fault simulation is still used for the following reasons:

Test-generation software is expensive, and many designers still create test
programs manually and then grade the test vectors using fault simulation.

●

Automatic test programs are not yet at the stage where fault simulation can
be completely omitted in an ASIC design flow. Usually we need fault
simulation to add some vectors to test logic not covered automatically, to
check that test logic has been inserted correctly, or to understand and
correct fault coverage problems.

●

It is far too expensive to use a production tester to debug a production test.
One use of a fault simulator is to perform this function off line.

●

The reuse and automatic generation of large cells is essential to decrease
the complexity of large ASIC designs. Megacells and embedded blocks (an

●

embedded microcontroller, for example) are normally provided with
canned test vectors that have already been fault simulated and fault graded.
The megacell has to be isolated during test to apply these vectors and
measure the response. Cell compilers for RAM, ROM, multipliers, and
other regular structures may also generate test vectors. Fault simulation is
one way to check that the various embedded blocks and their vectors have
been correctly glued together with the rest of the ASIC to produce a
complete set of test vectors and a test program.

Production testers are very expensive. There is a trend away from the use
of test vectors to include more of the test function on an ASIC. Some
internal test logic structures generate test vectors in a random or
pseudorandom fashion. For these structures there is no known way to
generate the fault coverage. For these types of test structures we will need
some type of fault simulation to measure fault coverage and estimate
defect levels.

●

1. L = 0 or Z; H = 1 or Z; Z = high impedance; X = unknown; D = detected; P =
potentially detected; U = undetected.

14.5 Automatic Test-Pattern
Generation
In this section we shall describe a widely used algorithm, PODEM, for automatic
test-pattern generation (ATPG) or automatic test-vector generation (ATVG). Before
we can explain the PODEM algorithm we need to develop a shorthand notation and
explain some terms and definitions using a simpler ATPG algorithm.

FIGURE 14.17 The D-calculus. (a) We need a way to represent the behavior of the
good circuit and the bad circuit at the same time. (b) The composite logic value D (for
detect) represents a logic '1' in the good circuit and a logic '0' in the bad circuit. We can
also write this as D = 1/0. (c) The logic behavior of simple logic cells using the
D-calculus. Composite logic values can propagate through simple logic gates if the
other inputs are set to their enabling values.

14.5.1 The D-Calculus
Figure 14.17 (a) and (b) shows a shorthand notation, the D-calculus , for tracing faults.
The D-calculus was developed by Roth [1966] together with an ATPG algorithm, the
D-algorithm . The symbol D (for detect) indicates the value of a node is a logic '0' in the

good circuit and a logic '1' in the bad circuit. We can also write this as D = 0/1. In
general we write g/b, a composite logic value , to indicate a node value in the good
circuit is g and b in the bad circuit (by convention we always write the good circuit
value first and the faulty circuit value second). The complement of D is D = 1/0 (D is
rarely written as D' since D is a logic value just like '1' and '0'). Notice that D does not
mean not detected, but simply that we see a '0' in the good circuit and a '1' in the bad
circuit. We can apply Boolean algebra to the composite logic values D and D as shown
in Figure 14.17 (c). The composite values 1/1 and 0/0 are equivalent to '1' and '0'
respectively. We use the unknown logic value 'X' to represent a logic value that is one of
'0', '1', D, or D , but we do not know or care which.

If we wish to propagate a signal from one or more inputs of a logic cell to the logic cell
output, we set the remaining inputs of that logic cell to what we call the enabling value .
The enabling value is '1' for AND and NAND gates and '0' for OR and NOR gates.
Figure 14.17 (c) illustrates the use of enabling values. In contrast, setting at least one
input of a logic gate to the controlling value , the opposite of the enabling value for that
gate, forces or justifies the output node of that logic gate to a fixed value. The
controlling value of '0' for an AND gate justifies the output to '0' and for a NAND gate
justifies the output to '1'. The controlling values of '1' justifies the output of an OR gate
to '1' and justifies the output of a NOR gate to '0'. To find controlling and enabling
values for more complex logic cells, such as AOI and OAI logic cells, we can use their
simpler AND, OR, NAND, and NOR gate representations.

FIGURE 14.18 A basic ATPG (automatic test-pattern generation) algorithm for A'B +
BC. (a) We activate a fault, U2.ZN stuck at 1, by setting the pin or node to '0', the
opposite value of the fault. (b) We work backward from the fault origin to the PIs
(primary inputs) by recursively justifying signals at the output of logic cells. (c) We
then work forward from the fault origin to a PO (primary output), setting inputs to gates
on a sensitized path to their enabling values. We propagate the fault until the D-frontier
reaches a PO. (d) We then work backward from the PO to the PIs recursively justifying
outputs to generate the sensitized path. This simple algorithm always works, providing
signals do not branch out and then rejoin again.

14.5.2 A Basic ATPG Algorithm
A basic algorithm to generate test vectors automatically is shown in Figure 14.18 . We
detect a fault by first activating (or exciting the fault). To do this we must drive the
faulty node to the opposite value of the fault. Figure 14.18 (a) shows a stuck-at-1 fault at
the output pin, ZN, of the inverter U2 (we call this fault U2.ZN.SA1). To create a test
for U2.ZN.SA1 we have to find the values of the PIs that will justify node U2.ZN to '0' .
We work backward from node U2.ZN justifying each logic gate output until we reach a
PI. In this case we only have to justify U2.ZN to '0' , and this is easily done by setting
the PI A = '0'. Next we work forward from the fault origin and sensitize a path to a PO
(there is only one PO in this example). This propagates the fault effect to the PO so that
it may be observed . To propagate the fault effect to the PO Z, we set U3.A2 = '1' and
then U5.A2 = '1'.

We can visualize fault propagation by supposing that we set all nodes in a circuit to
unknown, 'X'. Then, as we successively propagate the fault effect toward the POs, we
can imagine a wave of D�s and D �s, called the D-frontier , that propagates from the fault
origin toward the POs. As a value of D or D reaches the inputs of a logic cell whose
other inputs are 'X', we add that logic cell to the D-frontier. Then we find values for the
other inputs to propagate the D-frontier through the logic cell to continue the process.

This basic algorithm of justifying and then propagating a fault works when we can
justify nodes without interference from other nodes. This algorithm breaks down when
we have reconvergent fanout . Figure 14.19 (a) shows another example of justifying and
propagating a fault in a circuit with reconvergent fanout. For direct comparison
Figure 14.19 (b) shows an irredundant circuit, similar to part (a), except the fault signal,
B stuck at 1, branches and then reconverges at the inputs to gate U5. The reconvergent
fanout in this new circuit breaks our basic algorithm. We now have two sensitized paths
that propagate the fault effect to U5. These paths combine to produce a constant '1' at Z,
the PO. We have a multipath sensitization problem.

FIGURE 14.19 Reconvergent fanout. (a) Signal B branches and then reconverges at
logic gate U5, but the fault U4.A1 stuck at 1 can still be excited and a path sensitized
using the basic algorithm of Figure 14.18 . (b) Fault B stuck at 1 branches and then
reconverges at gate U5. When we enable the inputs to both gates U3 and U4 we create
two sensitized paths that prevent the fault from propagating to the PO (primary output).
We can solve this problem by changing A to '0', but this breaks the rules of the
algorithm illustrated in Figure 14.18 . The PODEM algorithm solves this problem.

14.5.3 The PODEM Algorithm
The path-oriented decision making (PODEM) algorithm solves the problem of
reconvergent fanout and allows multipath sensitization [Goel, 1981]. The method is
similar to the basic algorithm we have already described except PODEM will retry a
step, reversing an incorrect decision. There are four basic steps that we label: objective ,
backtrace , implication , and D-frontier . These steps are as follows:

Pick an objective to set a node to a value. Start with the fault origin as an
objective and all other nodes set to 'X'.

1.

Backtrace to a PI and set it to a value that will help meet the objective.2.

Simulate the network to calculate the effect of fixing the value of the PI (this step
is called implication). If there is no possibility of sensitizing a path to a PO, then
retry by reversing the value of the PI that was set in step 2 and simulate again.

3.

Update the D-frontier and return to step 1. Stop if the D-frontier reaches a PO.4.

Figure 14.20 shows an example that uses the following iterations of the four steps in the
PODEM algorithm:

We start with activation of the fault as our objective, U3.A2 = '0'. We backtrace to
J. We set J = '1'. Since K is still 'X', implication gives us no further information.
We have no D-frontier to update.

1.

The objective is unchanged, but this time we backtrace to K. We set K = '1'.
Implication gives us U2.ZN = '1' (since now J = '1' and K = '1') and therefore
U7.ZN = '1'. We still have no D-frontier to update.

2.

We set U3.A1 = '1' as our objective in order to propagate the fault through U3.
We backtrace to M. We set M = '1'. Implication gives us U2.ZN = '1' and U3.ZN
= D. We update the D-frontier to reflect that U4.A2 = D and U6.A1 = D, so the
D-frontier is U4 and U6.

3.

We pick U6.A2 = '1' as an objective in order to propagate the fault through U6.
We backtrace to N. We set N = '1'. Implication gives us U6.ZN = D . We update

4.

the D-frontier to reflect that U4.A2 = D and U8.A1 = D , so the D-frontier is U4
and U8.

We pick U8.A1 = '1' as an objective in order to propagate the fault through U8.
We backtrace to L. We set L = '0'. Implication gives us U5.ZN = '0' and therefore
U8.ZN = '0' (this node is Z, the PO). There is then no possible sensitized path to
the PO Z. We must have made an incorrect decision, we retry and set L = '1'.
Implication now gives us U8.ZN = D and we have propagated the D-frontier to a
PO.

Iteration Objective Backtrace 1 Implication D-frontier

1 U3.A2 = 0 J = 1
2 U3.A2 = 0 K = 1 U7.ZN = 1
3 U3.A1 = 1 M = 1 U3.ZN = D U4, U6
4 U6.A2 = 1 N = 1 U6.ZN = D U4, U8
5a U8.A1 = 1 L = 0 U8.ZN = 1 U4, U8
5b Retry L = 1 U8.ZN = D A
1 Backtrace is not the same as retry or backtrack.

FIGURE 14.20 The PODEM (path-oriented decision making) algorithm.

5.

We can see that the PODEM algorithm proceeds in two phases. In the first phase,
iterations 1 and 2 in Figure 14.20 , the objective is fixed in order to activate the fault. In
the second phase, iterations 3�5, the objective changes in order to propagate the fault. In
step 3 of the PODEM algorithm there must be at least one path containing unknown
values between the gates of the D-frontier and a PO in order to be able to complete a
sensitized path to a PO. This is called the X-path check .

You may wonder why there has been no explanation of the backtrace mechanism or how
to decide a value for a PI in step 2 of the PODEM algorithm. The decision tree shown in
Figure 14.20 shows that it does not matter. PODEM conducts an implicit binary search
over all the PIs. If we make an incorrect decision and assign the wrong value to a PI at
some step, we will simply need to retry that step. Texts, programs, and articles use the
term backtrace as we have described it, but then most use the term backtrack to describe
what we have called a retry, which can be confusing. I also did not explain how to
choose the objective in step 1 of the PODEM algorithm. The initial objective is to
activate the fault. Subsequently we select a logic gate from the D-frontier and set one of

its inputs to the enabling value in an attempt to propagate the fault.

We can use intelligent procedures, based on controllability and observability , to guide
PODEM and reduce the number of incorrect decisions. PODEM is a development of the
D-algorithm, and there are several other ATPG algorithms that are developments of
PODEM. One of these is FAN (fanout-oriented test generation) that removes the need
to backtrace all the way to a PI, reducing the search time [Fujiwara and Shimono, 1983;
Schulz, Trischler, and Sarfert, 1988]. Algorithms based on the D-algorithm, PODEM,
and FAN are the basis of many commercial ATPG systems.

14.5.4 Controllability and Observability
In order for an ATPG system to provide a test for a fault on a node it must be possible to
both control and observe the behavior of the node. There are both theoretical and
practical issues involved in making sure that a design does not contain buried circuits
that are impossible to observe and control. A software program that measures the
controllability (with three l� s) and observability of nodes in a circuit is useful in
conjunction with ATPG software.

There are several different measures for controllability and observability [Butler and
Mercer, 1992]. We shall describe one of the first such systems called SCOAP (Sandia
Controllability/Observability Analysis Program) [Goldstein, 1979]. These measures are
also used by ATPG algorithms.

Combinational controllability is defined separately from sequential controllability . We
also separate zero-controllability and one-controllability . For example, the
combinational zero-controllability for a two-input AND gate, Y = AND (X 1 , X 2), is
recursively defined in terms of the input controllability values as follows:

CC0 (Y) = min { CC0 (X 1), CC0 (X 2) } + 1 . (14.5)

We choose the minimum value of the two-input controllability values to reflect the fact
that we can justify the output of an AND gate to '0' by setting any input to the control
value of '0'. We then add one to this value to reflect the fact that we have passed through
an additional level of logic. Incrementing the controllability measures for each level of
logic represents a measure of the logic distance between two nodes.

We define the combinational one-controllability for a two-input AND gate as

CC1 (Y) = CC1(X 1) + CC1 (X 2) + 1 . (14.6)

This equation reflects the fact that we need to set all inputs of an AND gate to the
enabling value of '1' to justify a '1' at the output. Figure 14.21 (a) illustrates these
definitions.

FIGURE 14.21 Controllability measures. (a) Definition of combinational
zero-controllability, CC0, and combinational one-controllability, CC1, for a two-input
AND gate. (b) Examples of controllability calculations for simple gates, showing
intermediate steps. (c) Controllability in a combinational circuit.

An inverter, Y = NOT (X), reverses the controllability values:

CC1 (Y) = CC0 (X) + 1 and CC0 (Y) = CC1 (X) + 1 . (14.7)

Since we can construct all other logic cells from combinations of two-input AND gates
and inverters we can use Eqs. 14.5 � 14.7 to derive their controllability equations. When
we do this we only increment the controllability by one for each primitive gate. Thus for
a three-input NAND with an inverting input, Y = NAND (X 1 , X 2 , NOT (X 3)):

CC0 (Y) = CC1 (X 1) + CC1 (X 2) + CC0 (X 3) + 1 ,

CC1 (Y) = min { CC0 (X 1), CC0 (X 2), CC1 (X 3) } + 1 . (14.8)

For a two-input NOR, Y = NOR (X 1 , X 2) = NOT (AND (NOT (X 1), NOT (X 2)):

CC1 (Y) = min { CC1 (X 1), CC1 (X 2) } + 1 ,

CC0 (Y) = CC0 (X 1) + CC0 (X 2) + 1 . (14.9)

Figure 14.21 (b) shows examples of controllability calculations. A bubble on a logic
gate at the input or output swaps the values of CC1 and CC0. Figure 14.21 (c) shows
how controllability values for a combinational circuit are calculated by working forward
from each PI that is defined to have a controllability of one.

We define observability in terms of the controllability measures. The combinational
observability , OC (X 1), of input X 1 of a two-input AND gate can be expressed in
terms of the controllability of the other input CC1 (X 2) and the combinational
observability of the output, OC (Y):

OC (X 1) = CC1 (X 2) + OC (Y) + 1 . (14.10)

If a node X 1 branches (has fanout) to nodes X 2 and X 3 we choose the most observable
of the branches:

OC (X 1) = min { O (X 2) + O (X 3) } . (14.11)

Figure 14.22 (a) and (b) show the definitions of observability. Figure 14.22 (c)
illustrates calculation of observability at a three-input NAND; notice we sum the CC1
values for the other inputs (since the enabling value for a NAND gate is one, the same as
for an AND gate). Figure 14.22 (d) shows the calculation of observability working back
from the PO which, by definition, has an observability of zero.

FIGURE 14.22 Observability measures. (a) The combinational observability, OC(X 1),
of an input, X 1 , to a two-input AND gate defined in terms of the controllability of the
other input and the observability of the output. (b) The observability of a fanout node is
equal to the observability of the most observable branch. (c) Example of an
observability calculation at a three-input NAND gate. (d) The observability of a
combinational network can be calculated from the controllability measures, CC0:CC1.
The observability of a PO (primary output) is defined to be zero.

Sequential controllability and observability can be measured using similar equations to
the combinational measures except that in the sequential measures (SC1, SC0, and OS)
we measure logic distance in terms of the layers of sequential logic, not the layers of
combinational logic.

14.6 Scan Test
Sequential logic poses a very difficult ATPG problem. Consider the example of a
32-bit counter with a final carry. If the designer included a reset, we have to
clock the counter 2 32 (approximately 4 ¥ 10 9) times to check the carry logic.
Using a 1 MHz tester clock this requires 4 ¥ 10 3 seconds, 1 hour, or (at
approximately $0.25 per second) $1,000 of tester time. Consider a 16-bit state
machine implemented using a one-hot state register with 16 D flip-flops. If the
designer did not include a reset we have a very complicated initialization
problem. A sequential ATPG algorithm must consider over 2000 states when
constructing sequential test vectors. In an ad hoc approach to testing we could
construct special reset circuits or create manual test vectors to deal with these
special situations, one at a time, as they arise. Instead we can take a structured
test approach (also called design for test , though this term covers a wider field).

We can automatically generate test vectors for combinational logic, but ATPG is
much harder for sequential logic. Therefore the most common sequential
structured test approach converts sequential logic to combinational logic. In
full-scan design we replace every sequential element with a scan flip-flop. The
result is an internal form of boundary scan and, if we wish, we can use the IEEE
1149.1 TAP to access (and the boundary-scan controller to control) an
internal-scan chain.

Table 14.9 shows a VHDL model and schematic symbols for a scan flip-flop.
There is an area and performance penalty to pay for scan design. The scan MUX
adds the delay of a 2:1 MUX to the setup time of the flip-flop; this will directly
subtract from the critical path delay. The 2:1 MUX and any separate driver for
the scan output also adds approximately 10 percent to the area of the flip-flop
(depending on the features present in the original flip-flop). The scan chain must
also be routed, and this complicates physical design and adds to the interconnect
area. In ASIC design the benefits of eliminating complex sequential ATPG and
the addition of observability and controllability usually outweigh these
disadvantages.

TABLE 14.9 Scan flip-flop.

library IEEE; use IEEE.STD_LOGIC_1164. all ;

entity DFFSCAN is

generic (reset_value : STD_LOGIC := '0');

port (Q : out STD_LOGIC ; D, CLK, RST : in STD_LOGIC;

SCOUT : out STD_LOGIC; SCIN, SCEN : in STD_LOGIC);

end DFFSCAN;

architecture behave of DFFSCAN is

signal RST_IN, CLK_IN , SCEN_IN , SCIN_IN, D_IN : STD_LOGIC ;

begin

RST_IN <= to_X01(RST); CLK_IN <= to_X01(CLK);

SCEN_IN <= to_X01(SCEN); SCIN_IN <= to_X01(SCIN); D_IN <=
to_X01(D);

DFSCAN : process (CLK_IN, RST_IN) begin

if RST_IN = '0' then Q <= reset_value; SCOUT <= reset_value;

elsif RST_IN = '1' and rising_edge (CLK_IN) then

if SCEN_IN = '1' then Q <= SCIN_IN; SCOUT <= SCIN_IN;

end if ;

elsif SCEN_IN = '0' then Q <= D_IN; SCOUT <= D_IN;

else Q <= 'X' ; SCOUT <= 'X';

end if ;

elsif RST_IN = 'X' or CLK_IN = 'X' or SCEN_IN = 'X' then Q <= 'X'; SCOUT
<= 'X';

end if ;

end process DFSCAN;

end behave;

The highly structured nature of full scan allows test software (usually called a test
compiler) to perform automatic scan insertion . Using scan design we turn the
output of each flip-flop into a pseudoprimary input and the input to each flip-flop
into a pseudoprimary output . ATPG software can then generate test vectors for
the combinational logic between scan flip-flops.

There are other approaches to scan design. In partial scan we replace a subset of
the sequential elements with scan flip-flops. We can choose this subset using
heuristic procedures to allow the remaining sequential logic to be tested using
sequential ATPG techniques. In destructive scan we remove the values at the
outputs of the flip-flops during the scan process (this is the usual form of scan
design). In nondestructive scan we keep the flip-flop outputs intact so that we can
shift out the scan chain and then resume where we left off. Level-sensitive scan
design (LSSD) is a form of scan design developed at IBM that uses separate
clock phases to drive scan elements.

We shall describe scan design, automated scan insertion, and test-program
generation with several examples. First, though, we describe another important
structured-test technique.

14.7 Built-in Self-test
The trend to include more test logic on an ASIC has already been mentioned.
Built-in self-test (BIST) is a set of structured-test techniques for combinational
and sequential logic, memories, multipliers, and other embedded logic blocks. In
each case the principle is to generate test vectors, apply them to the circuit under
test (CUT) or device under test (DUT), and then check the response.

14.7.1 LFSR
Figure 14.23 shows a linear feedback shift register (LFSR). The exclusive-OR
gates and shift register act to produce a pseudorandom binary sequence (PRBS) at
each of the flip-flop outputs. By correctly choosing the points at which we take the
feedback from an n -bit shift register (see Section 14.7.5), we can produce a PRBS
of length 2 n � 1, a maximal-length sequence that includes all possible patterns (or
vectors) of n bits, excluding the all-zeros pattern.

FIGURE 14.23 A linear feedback shift register
(LFSR). A 3-bit maximal-length LFSR
produces a repeating string of seven
pseudorandom binary numbers: 7, 3, 1, 4, 2, 5,
6.

Table 14.10 shows the maximal-length sequence, with length 2 3 � 1 = 7, for the
3-bit LFSR shown in Figure 14.23 . Notice that the first (clock tick 1) and last rows
(clock tick 8) are identical. Rows following the seventh row repeat rows 1�7, so
that the length of this 3-bit LFSR sequence is 7 = 2 3 � 1, the maximal length. The
shaded regions show how bits are shifted from one clock cycle to the next. We
assume the register is initialized to the all-ones state, but any initial state will work
and produce the same PRBS, as long as the initial state is not all zeros (in which
case the LFSR will stay stuck at all zeros).

TABLE 14.10 LFSR example of Figure 14.23 .

Clock tick, t = Q0 t+1 = Q1 t • Q2 t Q1 t+1 = Q0 t Q2 t+1 = Q1 t Q0Q1Q2

1 1 1 1 7
2 0 1 1 3

3 0 0 1 1
4 1 0 0 4
5 0 1 0 2
6 1 0 1 5
7 1 1 0 6
8 1 1 1 7

14.7.2 Signature Analysis
Figure 14.24 shows the LFSR of Figure 14.23 with an additional XOR gate used in
the first stage of the shift register. If we apply a binary input sequence to IN , the
shift register will perform data compaction (or compression) on the input
sequence. At the end of the input sequence the shift-register contents, Q0Q1Q2 ,
will form a pattern that we call a signature . If the input sequence and the
serial-input signature register (SISR) are long enough, it is unlikely (though
possible) that two different input sequences will produce the same signature. If the
input sequence comes from logic that we wish to test, a fault in the logic will cause
the input sequence to change. This causes the signature to change from a known
good value and we shall then know that the circuit under test is bad. This
technique, called signature analysis , was developed by Hewlett-Packard to test
equipment in the field in the late 1970s.

FIGURE 14.24 A 3-bit serial-input
signature register (SISR) using an LFSR
(linear feedback shift register). The LFSR
is initialized to Q1Q2Q3 = '000' using the
common RES (reset) signal. The
signature, Q1Q2Q3, is formed from
shift-and-add operations on the sequence
of input bits (IN).

14.7.3 A Simple BIST Example
We can combine the PRBS generator of Figure 14.23 together with the signature
register of Figure 14.24 to form the simple BIST structure shown in Figure 14.25
(a). LFSR1 generates a maximal-length (2 3 � 1 = 7 cycles) PRBS. LFSR2
computes the signature ('011' for the good circuit) of the CUT. LFSR1 is initialized
to '100' (Q0 = 1, Q1 = 0, Q2 = 0) and LFSR2 is initialized to '000'. The schematic
in Figure 14.25 (a) shows the bit sequences in the circuit, both for a good circuit
and for a bad circuit with a stuck-at-1 fault, F1. Figure 14.25 (b) shows how the bit
sequences are calculated in the good circuit. The signature is formed as R0R1R2
seven clock edges (on the eighth clock cycle) after the active-low reset is taken
high. Figure 14.26 shows the waveforms in the good and bad circuit. The bad

circuit signature, '000', differs from the good circuit and the signature can either be
compared with the known good signature on-chip or the signature may be shifted
out and compared off-chip (both approaches are used in practice).

(a)

(b)

Q0 t+1 =

Q1 t • Q2 t

Q1 t+1 =
Q0 t

Q2 t+1 =
Q1 t

Z =

Q0'.Q1 + Q1.Q2

R0 t+1 =

Z t • R0 t •
R2 t

R1 t+1 =
R0 t

R2 t+1 =
R1 t

1 0 0 0 0 0 0
0 1 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 1 1 0
1 1 1 1 1 1 1
0 1 1 1 1 1 1
0 0 1 0 1 1 1
1 0 0 0 0 1 1

FIGURE 14.25 BIST example. (a) A simple BIST structure showing bit
sequences for both good and bad circuits. (b) Bit sequence calculations for the
good circuit. The signature appears on the eighth clock cycle (after seven positive
clock edges) and is R0 = '0', R1 = '1', R2 = '1'; with R2 as the MSB this is '011' or
hex 3.

(a)

(b)

(c)

FIGURE 14.26 The waveforms of the BIST circuit of Figure 14.25 . (a) The
good-circuit response. The waveforms Q1 and Q2, as well as R1 and R2, are
delayed by one clock cycle as they move through each stage of the shift registers.
(b) The same good-circuit response with the register outputs Q0�Q2 and R0�R2
grouped and their values displayed in hexadecimal (Q0 and R0 are the MSBs).
The signature hex 3 or '011' (R0 = 0, R1 = 1, R2 = 1) in R appears seven positive
clock edges after the reset signal is taken high. This is one clock cycle after the
generator completes its first sequence (hex pattern 4, 2, 5, 6, 7, 3, 1). (b) The
response of the bad circuit with fault F1 and fault signature hex 0 (circled).

14.7.4 Aliasing
In Figure 14.26 the good and bad circuits produced different signatures. There is a
small probability that the signature of a bad circuit will be the same as a good
circuit. This problem is known as aliasing or error masking . For the example in
Figure 14.25 , the bit stream input to the signature analysis register is 7 bits long.
There are 2 7 or 128 possible 7-bit-long bit-stream patterns. We assume that each

of these 128 bit-stream patterns is equally likely to produce any of the eight
(all-zeros is an allowed pattern in a signature register) possible 3-bit signatures. It
turns out that this is a good assumption. Thus there are 128 / 8 or 16 bit-streams
that produce the good signature, one of these belongs to the good circuit, the
remaining 15 cause aliasing. Since there are a total of 128 � 1 = 127 bit-streams due
to bad circuits, the fraction of bad-circuit bit-streams that cause aliasing is 15 / 127,
or 0.118. If all bad circuit bit-streams are equally likely (and this is a poor
assumption) then 0.118 is also the probability of aliasing.

In general, if the length of the test sequence is L and the length of the signature
register is R the probability p of aliasing (not detecting an error) is

 2 L � R � 1
 p = ��������� (14.12)
 2 L � 1

Thus, for the example in Figure 14.25 , L = 7 and R = 3, and the probability of
aliasing is p = (2 (7 � 3) � 1) / (2 7 � 1) = 15 / 127 = 0.118, as we have just calculated.
This is a very high probability of error and we would not use such a short test
sequence and such a short signature register in practice.

For L >> R the error probability is

 p ª 2 �R (14.13)

For example, if R = 16, p ª 0.0000152 corresponding to an error coverage (1 � p) of
approximately 99.9984 percent. Unfortunately, these equations for error coverage
are rather meaningless since there is no easy way to relate the error coverage to
fault coverage. The problem lies in our assumption that all bad-circuit bit-streams
are equally likely, and this is not true in practice (for example, bit-stream outputs
of all ones or all zeros are more likely to occur as a result of faults). Nevertheless
signature analysis with high error-coverage rates is found to produce high fault
coverage.

14.7.5 LFSR Theory
The operation of LFSRs is related to the mathematics of polynomials and
Galois-field theory. The properties and behavior of these polynomials are well
known and they are also used extensively in coding theory. Every LFSR has a
characteristic polynomial that describes its behavior. The characteristic
polynomials that cause an LFSR to generate a maximum-length PRBS are called
primitive polynomials. Consider the primitive polynomial

 P(x) = 1 • x 1 • x 3 , (14.14)

where a • b represents the exclusive-OR of a and b . The order of this polynomial is
three, and the corresponding LFSR will generate a PRBS of length 2 3 � 1 = 7. For
a primitive polynomial of order n , the length of the PRBS is 2 n � 1. Figure 14.27

shows the nonzero coefficients of some primitive polynomials [Golomb et al.,
1982].

n s Octal Binary
1 0, 1 3 11

 For n = 3 and s = 0, 1, 3: c 0 = 1, c 1 = 1, c 2 = 0,
c 3 = 1

2
0,
1, 2

7 111

3
0,
1, 3

13 1011

4
0,
1, 4

3 10011

5
0,
2, 5

45 100101

6
0,
1, 6

103 1000011

7
0,
1, 7

211 10001001

8

0,
1,
5,
6, 8

435 100011101

9
0,
4, 9

1021 1000010001

10
0,
3,
10

2011 10000001001

FIGURE 14.27 Primitive polynomial coefficients for LFSRs (linear feedback
shift registers) that generate a maximal-length PRBS (pseudorandom binary
sequence). A schematic for a type 1 LFSR is shown.

Any primitive polynomial can be written as

 P(x) = c 0 • c 1 x 1 • ... c n x n , (14.15)

where c 0 and c n are always one. Thus for example, from Figure 14.27 for n = 3,
we see s = 0, 1, 3; and thus the nonzero coefficients are c 0 , c 1 , and c 3 . This

corresponds to the primitive polynomial P(x) = 1 • x 1 • x 3 . There is no easy way
to determine the coefficients of primitive polynomials, especially for large n .
There are many primitive polynomials for each n , but Figure 14.27 lists the one
with the fewest nonzero coefficients.

The schematic in Figure 14.27 shows how the feedback taps on a LFSR correspond
to the nonzero coefficients of the primitive polynomial. If the i th coefficient c i is
1, then we include a feedback connection and an XOR gate in that position. If c i is
zero, there is no feedback connection and no XOR gate in that position.

The reciprocal of a primitive polynomial, P*(x) , is also primitive, where

 P*(x) = x n P*(x �1) . (14.16)

For example, by taking the reciprocal of the primitive polynomial P(x) = 1 • x 1 • x
3 from Eq. 14.17 , we can form

 P*(x) = 1 • x 3 • x 4 , (14.17)

which is also a primitive polynomial.

This means that there are two possible LFSR implementations for every P(x) . Or,
looked at another way, for every LFSR implementation, the characteristic
polynomial can be written in terms of two primitive polynomials, P(x) and P*(x) ,
that are reciprocals of each other.

FIGURE 14.28 For every primitive polynomial there are four linear feedback
shift registers (LFSRs). There are two types of LFSR; one type uses external XOR
gates (type 1) and the other type uses internal XOR gates (type 2). For each type
the feedback taps can be constructed either from the polynomial P(x) or from its
reciprocal, P*(x). The LFSRs in this figure correspond to P(x) = 1 • x • x 3 and
P*(x)= 1 • x 2 • x 3 . Each LFSR produces a different pseudorandom sequence, as
shown. The binary values of the LFSR seen as a register, with the bit labeled as
zero being the MSB, are shown in hexadecimal. The sequences shown are for each
register initialized to '111', hex 7. (a) Type 1, P*(x). (b) Type 1, P(x). (c) Type 2,
P(x). (d) Type 1, P*(x).

We may also implement an LFSR by using XOR gates in series with each flip-flop
output rather than external to the shift register. The external-XOR LFSR is called a
type 1 LFSR and the internal-XOR LFSR is called a type 2 LFSR (this is a
nomenclature that most follow). Figure 14.28 shows the four different LFSRs that

may be constructed for each primitive polynomial, P(x) .

There are differences between the four different LFSRs for each polynomial. Each
gives a different output sequence. The outputs for the type 1 LFSRs, taken from
the Q outputs of each flip-flop, are identical, but delayed by one clock cycle from
the previous output. This is a problem when we use the parallel output from an
LFSR to test logic because of the strong correlation between the test signals. The
type 2 LFSRs do not have this problem. The type 2 LFSRs also are capable of
higher-frequency operation since there are fewer series XOR gates in the signal
path than in the corresponding type 1 LFSR. For these reasons, the type 2 LFSRs
are usually used in BIST structures. The type 1 LFSR does have the advantage that
it can be more easily constructed using register structures that already exist on an
ASIC.

Table 14.11 shows primitive polynomial coefficients for higher values of n than
Figure 14.27 . Test length grows quickly with the size of the LFSR. For example, a
32-bit generator will produce a sequence with 2 32 = 4,294,967,296 ª 4.3 ¥ 10 9

bits. With a 100 MHz clock (with 10 ns cycle time), the test time of 43 seconds
would be impractical.

TABLE 14.11 Nonzero coefficients of primitive polynomials for LFSRs (linear
feedback shift registers) that generate a maximal-length PRBS (pseudorandom
binary sequence).
n s n s n s n s
1 0, 1 11 0, 2, 11 21 0, 2, 21 31 0, 3, 31
2 0, 1, 2 12 0, 3, 4, 7, 12 22 0, 1, 22 32 0, 1, 27, 28, 32
3 0, 1, 3 13 0, 1, 3, 4, 13 23 0, 5, 23 40 0, 2, 19, 21, 40
4 0, 1, 4 14 0, 1, 11, 12, 14 24 0, 1, 3, 4, 24 50 0, 1, 26, 27, 50
5 0, 2, 5 15 0, 1, 15 25 0, 3, 25 60 0, 1, 60
6 0, 1, 6 16 0, 2, 3, 5, 16 26 0, 1, 7, 26 70 0, 1, 15, 16, 70
7 0, 1, 7 17 0, 3, 17 27 0, 1, 7, 27 80 0, 1, 37, 38, 80
8 0, 1, 5, 6, 8 18 0, 7, 18 28 0, 3, 28 90 0, 1, 18, 19, 90
9 0, 4, 9 19 0, 1, 5, 6, 19 29 0, 2, 29 100 0, 37, 100
10 0, 3, 10 20 0, 3, 20 30 0, 1, 15, 16, 30 256 0, 1, 3, 16, 256

There is confusion over naming, labeling, and drawing of LFSRs in texts and test
programs. Looking at the schematic in Figure 14.27 , we can draw the LFSR with
signals flowing from left to right or vice versa (two ways), we can name the
leftmost flip-flop output Q 0 or Q n (two more ways), and we can name the
coefficient that goes with Q 0 either c 0 or c n � 1 (two more ways). There are thus at

least 2 3 ¥ 4 different ways to draw an LFSR for a given polynomial. Four of these
are distinct. You can connect the LFSR feedback in the reverse order and the LFSR
will still work�you will, however, get a different sequence. Usually this does not
matter.

14.7.6 LFSR Example
We can use a cell compiler to produce LFSR and signature register BIST
structures. For example, we might complete a property sheet as follows:

property name value property name value

------------------ ----- ------------------ -----

LFSR_is_bilbo false LFSR_configuration generator

LFSR_length 3 LFSR_init_hex_value 4

LFSR_scan false LFSR_mux_data false

LFSR_mux_output false LFSR_xor_hex_function max_length

LFSR_zero_state false LFSR_signature_inputs 1

The Verilog structural netlist for the compiled type 2 LFSR generator is shown in
Table 14.12 . According to our notation and the primitive polynomials in
Figure 14.27 , the corresponding primitive polynomial is P*(x) = 1 • x 2 • x 3 . The
LFSR has both serial and parallel outputs (taken from the inverted flip-flop outputs
with inverting buffers, cell names in02d1). The clock and reset inputs are buffered
(with noninverting buffers, cell names ni01d1) since these inputs would normally
have to drive a load of more than 3 bits. Looking in the cell data book we find that
the flip-flop corresponding to the MSB, instance FF0 with cell name dfptnb , has
an active-low set input SDN . The remaining flip-flops, cell name dfctnb , have
active-low clears, CDN . This gives us the initial value '100'.

Table 14.13 shows the serial-input signature register compiled using the reciprocal
polynomial. Again the compiler has included buffers. All the flip-flops, cell names
dfctnb , have active-low clear so that the initial content of the register is '000'.

TABLE 14.12 Compiled LFSR generator, using P*(x) = 1 • x 2 • x 3 .
module lfsr_generator (OUT, SERIAL_OUT, INITN, CP);

output [2:0] OUT; output SERIAL_OUT; input INITN, CP;

dfptnb FF2 (.D(FF0_Q), .CP(u4_Z), .SDN(u2_Z), .Q(FF2_Q), .QN(FF2_QN));

dfctnb FF1 (.D(XOR0_Z), .CP(u4_Z), .CDN(u2_Z), .Q(FF1_Q), .QN(FF1_QN));

dfctnb FF0 (.D(FF1_Q), .CP(u4_Z), .CDN(u2_Z), .Q(FF0_Q), .QN(FF0_QN));

ni01d1 u2 (.I(u3_Z), .Z(u2_Z)); ni01d1 u3 (.I(INITN), .Z(u3_Z));

ni01d1 u4 (.I(u5_Z), .Z(u4_Z)); ni01d1 u5 (.I(CP), .Z(u5_Z));

xo02d1 XOR0 (.A1(FF2_Q), .A2(FF0_Q), .Z(XOR0_Z));

in02d1 INV2X0 (.I(FF0_QN), .ZN(OUT[0]));

in02d1 INV2X1 (.I(FF1_QN), .ZN(OUT[1]));

in02d1 INV2X2 (.I(FF2_QN), .ZN(OUT[2]));

in02d1 INV2X3 (.I(FF0_QN), .ZN(SERIAL_OUT));

endmodule

TABLE 14.13 Compiled serial-input signature register, using P(x) = 1 • x • x 3 .
module lfsr_signature (OUT, SERIAL_OUT, INITN, CP, IN);

output [2:0] OUT; output SERIAL_OUT; input INITN, CP; input [0:0] IN;

dfctnb FF2 (.D(XOR1_Z), .CP(u4_Z), .CDN(u2_Z), .Q(FF2_Q), .QN(FF2_QN));

dfctnb FF1 (.D(FF2_Q), .CP(u4_Z), .CDN(u2_Z), .Q(FF1_Q), .QN(FF1_QN));

dfctnb FF0 (.D(XOR0_Z), .CP(u4_Z), .CDN(u2_Z), .Q(FF0_Q), .QN(FF0_QN));

ni01d1 u2 (.I(u3_Z), .Z(u2_Z)); ni01d1 u3 (.I(INITN), .Z(u3_Z));

ni01d1 u4 (.I(u5_Z), .Z(u4_Z)); ni01d1 u5 (.I(CP), .Z(u5_Z));

xo02d1 XOR1 (.A1(IN[0]), .A2(FF0_Q), .Z(XOR1_Z));

xo02d1 XOR0 (.A1(FF1_Q), .A2(FF0_Q), .Z(XOR0_Z));

in02d1 INV2X1 (.I(FF1_QN), .ZN(OUT[1]));

in02d1 INV2X2 (.I(FF2_QN), .ZN(OUT[2]));

in02d1 INV2X3 (.I(FF0_QN), .ZN(SERIAL_OUT));

in02d1 INV2X0 (.I(FF0_QN), .ZN(OUT[0]));

endmodule

14.7.7 MISR
A serial-input signature register can only be used to test logic with a single output.
We can extend the idea of a serial-input signature register to the multiple-input
signature register (MISR) shown in Figure 14.29 . There are several ways to
connect the inputs to both types (type 1 and type 2) of LFSRs to form an MISR.
Since the XOR operation is linear and associative, so that (A • B) • C = A • (B • C
), as long as the result of the additions are the same then the different
representations are equivalent. If we have an n -bit long MISR we can
accommodate up to n inputs to form the signature. If we use m < n inputs we do
not need the extra XOR gates in the last n � m positions of the MISR.

FIGURE 14.29 Multiple-input signature register (MISR). This MISR is formed
from the type 2 LFSR (with P*(x) = 1 • x 2 • x 3) shown in Figure 14.28 (d) by
adding XOR gates xor_i1, xor_i2, and xor_i3. This 3-bit MISR can form a
signature from logic with three outputs. If we only need to test two outputs then
we do not need XOR gate, xor_i3, corresponding to input in[2].

There are several types of BIST architecture based on the MISR. By including
extra logic we can reconfigure an MISR to be an LFSR or a signature register; this
is called a built-in logic block observer (BILBO). By including the logic that we
wish to test in the feedback path of an MISR, we can construct circular BIST
structures. One of these is known as the circular self-test path (CSTP).

We can test compiled blocks including RAM, ROM, and datapath elements using
an LFSR generator and a MISR. To generate all 2 n address values for a RAM or
ROM we can modify the LFSR feedback path to force entrance and exit from the
all-zeros state. This is known as a complete LFSR . The pattern generator does not
have to be an LFSR or exhaustive.

For example, if we were to apply an exhaustive test to a 4-bit by 4-bit multiplier
this would require 2 8 or 256 vectors. An 8-bit by 8-bit multiplier requires 65,536
vectors and, if it were possible to test a 32-bit by 32-bit multiplier exhaustively, it
would require 1.8 ¥ 10 19 vectors. Table 14.14 shows two sets of nonexhaustive
test patterns, {SA} and {SAE}, if A and B are both 4 bits wide. The test sequences
{SA} and {SAE} consist of nested sequences of walking 1�s and walking 0�s (S1
and S1B), walking pairs (S2 and S2B), and triplets (S3, S3B). The sequences are
extended for larger inputs, so that, for example, {S2} is a sequence of seven
vectors for an 8-bit input and so on. Intermediate sequences {SX} and {SXB} are
concatenated from S1, S2, and S3; and from S1B, S2B, and S3B respectively.
These sequences are chosen to exercise as many of the add-and-carry functions
within the multiplier as possible.

TABLE 14.14 Multiplier test patterns. 1

Sequence

{SX}

Sequence

{SXB}
Sequence {SA}

Sequence

{SAE}

S1= {1000 0100
0010 0001}

S2 = {1100 0110
0011}

S3 = {1110 0111}

SX = { {S1} {S2}
{S3}}

S1B = {0111 1011
1101 0111}

S2B = {0011 1001
1100}

S3B = {0001 1000}

SXB = { {S1B}
{S2B} {S3B} }

{

A B= {S1, SX}

}

{ { AB = {S1, SX} }

{ AB = {S1B, SXB}
}

{ AB = {S2, SX} }

{ AB = {S2B, SXB}
}

{ A B= {S3, SX} }

{ AB = {S3B, SXB}
}

}

Total = 3(X � 1) = 9,
X = 4

Total = 3(X � 1) = 9,
X = 4

Total = 4 ¥ 9

= 3A(B � 1) = 36

Total = 3(2A � 1)(3B
� 2)

= 3 ¥ 7 ¥ 10 = 210

The sequence length of {SA} is 3A (B � 1), and 3(2A � 1)(3B � 2) for {SAE}, where
A and B are the sizes of the multiplier inputs. For example, {SA} is 168 vectors for
A = B = 8 and 2976 vectors for A = B = 32; {SAE} is 990 vectors (A = B = 8) and
17,766 vectors (A = B = 32). From fault simulation, the stuck-at fault coverage is
93 percent for sequence {SA} and 97 percent for sequence {SAE}.

Figure 14.30 shows an MISR with a scan chain. We can now include the BIST
logic as part of a boundary-scan chain, this approach is called scanBIST .

FIGURE 14.30 Multiple-input signature register (MISR) with scan generated
from the MISR of Figure 14.29 .

1. {AB = {S1, SB} } means for each value of A in the sequence {S1} set B equal
to all the values in {SB}.

14.8 A Simple Test Example
As an example, we will describe automatic test generation using boundary scan together with internal scan. We
shall use the function Z = A'B + BC for the core logic and register the three inputs using three flip-flops. We
shall test the resulting sequential logic using a scan chain. The simple logic will allow us to see how the test
vectors are generated.

14.8.1 Test-Logic Insertion
Figure 14.31 shows a structural Verilog model of the logic core. The three flip-flops (cell name dfctnb)
implement the input register. The combinational logic implements the function, outp = a_r[0]'.a_r[1] +
a_r[1].a_r[2]. This is the same function as Figure 14.14 and Figure 14.16 .

module core_p (outp, reset, a, clk);

output outp; input reset, clk; input [2:0] a; wire [2:0] a_r;

dfctnb a_r_ff_b0 (.D(a[0]), .CP(clk), .CDN(reset), .Q(a_r[0]), .QN(\a_r_ff_b0.QN));

dfctnb a_r_ff_b1 (.D(a[1]), .CP(clk), .CDN(reset), .Q(a_r[1]), .QN(\a_r_ff_b1.QN));

dfctnb a_r_ff_b2 (.D(a[2]), .CP(clk), .CDN(reset), .Q(a_r[2]), .QN(\a_r_ff_b2.QN));

in01d0 u2 (.I(a_r[0]), .ZN(u2_ZN));

nd02d0 u3 (.A1(u2_ZN), .A2(a_r[1]), .ZN(u3_ZN));

nd02d0 u4 (.A1(a_r[1]), .A2(a_r[2]), .ZN(u4_ZN));

nd02d0 u5 (.A1(u3_ZN), .A2(u4_ZN), .ZN(outp));

endmodule

FIGURE 14.31 Core of the Threegates ASIC.

Table 14.15 shows the structural Verilog for the top-level logic of the Threegates ASIC including the I/O pads.
There are nine pad cells. Three instances (up1_b0 , up1_b1 , and up1_b2) are the data-input pads, and one
instance, up2_1 , is the output pad. These were vectorized pads (even for the output that had a range of 1), so the
synthesizer has added suffixes ('_1' and so on) to the pad instance names. Two pads are for power, one each for
ground and the positive supply, instances up11 and up12 . One pad, instance up3_1 , is for the reset signal.
There are two pad cells for the clock. Instance up4_1 is the clock input pad attached to the package pin and
instance up6 is the clock input buffer.

The next step is to insert the boundary-scan logic and the internal-scan logic. Some synthesis tools can create
test logic as they synthesize, but for most tools we need to perform test-logic insertion as a separate step.
Normally we complete a parameter sheet specifying the type of test logic (boundary scan with internal scan in
this case), as well as the ordering of the scan chain. In our example, we shall include all of the sequential cells in
the boundary-scan register and order the boundary-scan cells using the pad numbers (in the original behavioral

input). Figure 14.32 shows the modified core logic. The test software has changed all the flip-flops (cell names
dfctnb) to scan flip-flops (with the same instance names, but the cell names are changed to mfctnb). The test
software also adds a noninverting buffer to drive the scan-select signal to all the scan flip-flops.

The test software also adds logic to the top level. We do not need a detailed understanding of the automatically
generated logic, but later in the design flow we will need to understand what has been done. Figure 14.33 shows
a high-level view of the Threegates ASIC before and after test-logic insertion.

TABLE 14.15 The top level of the Threegates ASIC before test-logic insertion.
module asic_p (pad_outp, pad_a, pad_reset, pad_clk);

output [0:0] pad_outp; input [2:0] pad_a; input [0:0] pad_reset, pad_clk;

wire [0:0] reset_sv, clk_sv, outp_sv; wire [2:0] a_sv; supply1 VDD; supply0 VSS;

core_p uc1 (.outp(outp_sv[0]), .reset(reset_sv[0]), .a(a_sv[2:0]), .clk(clk_bit));

pc3o07 up2_1 (.PAD(pad_outp[0]), .I(outp_sv[0]));

pc3c01 up6 (.CCLK(clk_sv[0]), .CP(clk_bit));

pc3d01r up3_1 (.PAD(pad_reset[0]), .CIN(reset_sv[0]));

pc3d01r up4_1 (.PAD(pad_clk[0]), .CIN(clk_sv[0]));

pc3d01r up1_b0 (.PAD(pad_a[0]), .CIN(a_sv[0]));

pc3d01r up1_b1 (.PAD(pad_a[1]), .CIN(a_sv[1]));

pc3d01r up1_b2 (.PAD(pad_a[2]), .CIN(a_sv[2]));

pv0f up11 (.VSS(VSS));

pvdf up12 (.VDD(VDD));

endmodule

module core_p_ta (a_r_2, outp, a_r_ff_b0_DA, taDriver12_I, a, clk, reset);

output a_r_2, outp; input a_r_ff_b0_DA, taDriver12_I;

input [2:0] a; input clk, reset; wire [1:0] a_r; supply1 VDD; supply0 VSS;

ni01d5 taDriver12 (.I(taDriver12_I), .Z(taDriver12_Z));

mfctnb a_r_ff_b0 (.DA(a_r_ff_b0_DA), .DB(a[0]), .SA(taDriver12_Z), .CP(clk),

.CDN(reset), .Q(a_r[0]), .QN(\a_r_ff_b0.QN));

mfctnb a_r_ff_b1 (.DA(a_r[0]), .DB(a[1]), .SA(taDriver12_Z), .CP(clk), .CDN(reset),

.Q(a_r[1]), .QN(\a_r_ff_b1.QN));

mfctnb a_r_ff_b2 (.DA(a_r[1]), .DB(a[2]), .SA(taDriver12_Z), .CP(clk), .CDN(reset),

.Q(a_r_2), .QN(\a_r_ff_b2.QN));

in01d0 u2 (.I(a_r[0]), .ZN(u2_ZN));

nd02d0 u3 (.A1(u2_ZN), .A2(a_r[1]), .ZN(u3_ZN));

nd02d0 u4 (.A1(a_r[1]), .A2(a_r_2), .ZN(u4_ZN));

nd02d0 u5 (.A1(u3_ZN), .A2(u4_ZN), .ZN(outp));

endmodule

FIGURE 14.32 The core of the Threegates ASIC after test-logic insertion.

FIGURE 14.33 The Threegates ASIC. (a) Before test-logic insertion. (b) After test-logic insertion.

14.8.2 How the Test Software Works
The structural Verilog for the Threegates ASIC is lengthy, so Figure 14.34 shows only the essential parts. The
following main blocks are labeled in Figure 14.34 :

This block is the logic core shown in Figure 14.32 . The Verilog module header shows the �local� and
�formal� port names. Arrows indicate whether each signal is an input or an output.

1.

This is the main body of logic added by the test software. It includes the boundary-scan controller and
clock control.

2.

This block groups together the buffers that the test software has added at the top level to drive the control
signals throughout the boundary-scan logic.

3.

This block is the first boundary-scan cell in the BSR. There are six boundary-scan cells: three input cells
for the data inputs, one output cell for the data output, one input cell for the reset, and one input cell for
the clock. Only the first (the boundary-scan input cell for a[0]) and the last boundary-scan cells are
shown. The others are similar.

4.

This is the last boundary-scan cell in the BSR, the output cell for the clock.5.

This is the clock pad (with input connected to the ASIC package pin). The cell itself is unchanged by the
test software, but the connections have been altered.

6.

This is the clock-buffer cell that has not been changed.7.

The test software adds five I/O pads for the TAP. Four are input pad cells for TCK, TMS, TDO, and
TRST. One is a three-state output pad cell for TDO.

8.

The power pad cells remain unchanged.9.

The remaining I/O pad cells for the three data inputs, the data output, and reset remain unchanged, but the
connections to the core logic are broken and the boundary-scan cells inserted.

10.

The numbers in Figure 14.34 link the signals in each block to the following explanations:

The control signals for the input BSCs are C_0, C_1, C_2, and C_4 and these are all buffered, together
with the test clock TCK . The single output BSC also requires the control signal C_3 and this is driven
from the BST controller.

1.

The clock enters the ASIC package through the clock pad as .PAD(clk[0]) and exits the clock pad cell as
.CIN(up_4_1_CIN1) . The test software routes this to the data input of the last boundary-scan cell as
.PI(up_4_1_CIN1) and the clock exits as .PO(up_4_1_cin) . The clock then passes through the clock
buffer, as before.

2.

The serial input of the first boundary-scan cell comes from the controller as
.bst_control_BST_SI(test_logic_bst_control_BST_SI) .

3.

The serial output of the last boundary-scan cell goes to the controller as .bst_control_BST(up4_1_bst_SO)
.

4.

The beginning of the BSR is the first scan flip-flop in the core, which is connected to the TDI input as
.a_r_ff_b0_DA(ta_TDI_CIN) .

5.

The end of the scan chain leaves the core as .a_r_2(uc1_a_r_2) and enters the controller as
.bst_control_scan_SO(uc1_a_r_2) .

6.

The scan-enable signal .bst_control_C_9(test_logic_bst_control_C_9) is generated by the boundary-scan
controller, and connects to the core as .taDriver12_I(test_logic_bst_control_C_9) .

FIGURE 14.34 The top level of the Threegates ASIC after test-logic insertion.

7.

The added test logic is shown in Figure 14.35 . The blocks are as follows:

This is the module declaration for the test logic in the rest of the diagram, it corresponds to block B in
Table 14.34 .

1.

This block contains buffers and clock control logic.2.

This is the boundary-scan controller.3.

This is the first of 26 IDR cells. In this implementation the IDCODE register is combined with the BSR.
Since there are only six BSR cells we need (32 � 6) or 26 IDR cells to complete the 32-bit IDR.

4.

This is the last IDR cell.5.

FIGURE 14.35 Test logic inserted in the Threegate ASIC.

TABLE 14.16 The TAP (test-access port) control. 1

TAP state C_0 C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 2 C_9

Reset x x xxxx0xx xxxx0xx xxxx0xx xxxx0xx xxxx1xx xxxx0xx xxxx0xx xxxx0xx
Run_Idle 00x0xxx 11x1xxx 0 1001011 0001011 0000010 1 0000001 0000000 0000000
Select_DR 00x0xxx 11x1xxx 0 1001011 0001011 0000010 1 0000001 0000000 0000000
Capture_DR 00x01xx 00x00xx 0 1001011 0001011 0000010 1 0000001 000000T 0000000
Shift_DR 11x11xx 11x11xx 0 1001011 0001011 0000010 1111101 0000001 000000T 0000001
Exit1_DR 00x00xx 11x11xx 0 1001011 0001011 0000010 1 0000001 0000000 0000000
Pause_DR 00x00xx 11x11xx 0 1001011 0001011 0000010 1 0000001 0000000 0000000
Exit2_DR 00x00xx 11x11xx 0 1001011 0001011 0000010 1 0000001 0000000 0000000
Update_DR 00x0xxx 11x1xxx 110100 1001011 0001011 0 1111101 0000001 0000000 0000000
Select_IR x x 0 1001011 0001011 00000x0 11111x1 0000001 0000000 0000000
Capture_IR x x 0 1001011 0001011 00000x0 11111x1 0000001 0000000 0000000
Shift_IR x x 0 1001011 0001011 00000x0 11111x1 0000001 0000000 0000000
Exit1_IR x x 0 1001011 0001011 00000x0 11111x1 0000001 0000000 0000000
Pause_IR x x 0 1001011 0001011 00000x0 11111x1 0000001 0000000 0000000
Exit2_IR x x 0 1001011 0001011 00000x0 11111x1 0000001 0000000 0000000
Update_IR x x 0 1001011 0001011 00000x0 1111101 0000001 0000000 0000000

The numbers in Figure 14.35 refer to the following explanations:

The system clock (CLK, not the test clock TCK) from the top level (after passing through the
boundary-scan cell) is fed through a MUX so that CLK may be controlled during scan.

1.

The signal bst_control_BST is the end (output) of the boundary-scan cells and the start (input) to the ID
register only cells.

2.

The signal id_reg_0_SO is the end (output) of the ID register.3.

The signal bst_control_BST_SI is the start of the boundary-scan chain.4.

The job of the boundary-scan controller is to produce the control signals (C_1 through C_9) for each of the 16
TAP controller states (reset through update_IR) for each different instruction. In this BST implementation
there are seven instructions: the required EXTEST , SAMPLE , and BYPASS ; IDCODE ; INTEST (which is
the equivalent of EXTEST , but for internal test); RUNBIST (which allows on-chip test structures to operate);
and SCANM (which controls the internal-scan chains). The boundary-scan controller outputs are shown in
Table 14.16 .

There are two very important differences between this controller and the one described in Table 14.5 . The first,
and most obvious, is that the control signals now depend on the instruction. This is primarily because INTEST
requires the control signal at the output of the BSCs to be in different states for the input and output cells. The
second difference is that the logic for the boundary-scan cell control signals is now purely combinational�we
have removed the gated clocks. For example, Figure 14.36 shows the input boundary-scan cell. The clock for
the shift flip-flop is now TCK and not a gated clock as it was in Table 14.5 . We can do this because the output
of the flip-flop, SO , the scan output, is added as input to the MUX that feeds the flip-flop data input. Thus,
when we wish to hold the state of the flip-flop, the control signals select SO to be connected from the output to
the input. This is called a polarity-hold flip-flop . Unfortunately, we have little choice but to gate the system
clock if we make the scan chain part of the BSR. We cannot have one clock for part of the BSR and another for
the rest. The costly alternative is to change every scan flip-flop to a scanned polarity-hold flip-flop.

module mybs1cela0 (SO, PO, C_0, TCK, SI, C_1, C_2, C_4, PI);

output SO, PO; input C_0, C_1, C_2, C_4, TCK, SI, PI;

in01d1 inv_0 (.I(C_0), .ZN(iv0_ZN));

in01d1 inv_1 (.I(C_1), .ZN(iv1_ZN));

oa03d1 oai221_1 (.A1(C_0), .A2(SO), .B1(iv0_ZN), .B2(SI), .C(C_1), .ZN(oa1_ZN));

nd02d1 nand2_1 (.A1(na2_ZN), .A2(oa1_ZN), .ZN(na1_ZN));

nd03d1 nand3_1 (.A1(PO), .A2(iv0_ZN), .A3(iv1_ZN), .ZN(na2_ZN));

mx21d1 mux21_1 (.I0(PI), .I1(upo), .S(C_4), .Z(PO));

dfntnb dff_1 (.D(na1_ZN), .CP(TCK), .Q(SO), .QN(\so.QN));

lantnb latch_1 (.E(C_2), .D(SO), .Q(upo), .QN(\upo.QN));

endmodule

FIGURE 14.36 Input boundary-scan cell (BSC) for the Threegates ASIC. Compare this to the generic
data-register (DR) cell (used as a BSC) shown in Figure 14.2 .

14.8.3 ATVG and Fault Simulation
Table 14.17 shows the results of running the Compass ATVG software on the Threegates ASIC. We might ask:
Why so many faults? and why is the fault coverage so poor? First we look at the details of the test software
output. We notice the following:

Line 2 . The backtrace limit is 30. We do not have any deep complex combinational logic so that this●

should not cause a problem.

Lines 4 � 6 . An uncollapsed fault count of 184 indicates the test software has inserted faults on
approximately 100 nodes, or at most 50 gates assuming a fanout of 1, less gates with any realistic fanout.
Clearly this is less than all of the test logic that we have inserted.

TABLE 14.17 ATVG (automatic test-vector generation) report for the Threegates ASIC.
CREATE: Output vector database cell defaulted to [svf]asic_p_ta

CREATE: Backtrack limit defaulted to 30

CREATE: Minimal compression effort: 10 (default)

Fault list generation/collapsing

Total number of faults: 184

Number of faults in collapsed fault list: 80

Vector generation

#

VECTORS FAULTS FAULT COVER

processed

#

5 184 60.54%

#

Total number of backtracks: 0

Highest backtrack : 0

Total number of vectors : 5

#

STAR RESULTS summary

Noncollapsed Collapsed

Fault counts:

Aborted 0 0

Detected 89 43

Untested 58 20

------ ------

Total of detectable 147 63

#

Redundant 6 2

Tied 31 15

#

FAULT COVERAGE 60.54 % 68.25 %

#

Fault coverage = nb of detected faults / nb of detectable faults

Vector/fault list database [svf]asic_p_ta created.

●

To discover why the fault coverage is 68.25 percent we must examine each of the fault categories. First,

Table 14.18 shows the undetected faults.

TABLE 14.18 Untested faults (not observable) for the Threegates ASIC.
Faults Explanation
TADRIVER4.ZN sa0

TA_TRST.1.CIN sa0

TDI.O sa0 sa1

UP1_B0.1.CIN sa0 sa1

UP3_1.1.CIN sa0

UP4_1.1.CIN sa0 sa1

Total number: 20

Internal driver for BST control bundle (seven more faults like this).

BST reset TRST is active-low and tied high during test.

TDI is BST serial input.

Data input pad (two more faults like this one).

System reset is active-low and tied high during test.

System clock input pad.

The ATVG program is generating tests for the core using internal scan. We cannot test the BST logic itself, for
example. During the production test we shall test the BST logic first, separately from the core�this is often called
a flush test . Thus we can ignore any faults from the BST logic for the purposes of internal-scan testing.

Next we find two redundant faults: TA_TDO.1.I sa0 and sa1 . Since TDO is three-stated during the test, it
makes no difference to the function of the logic if this node is tied high or low�hence these faults are redundant.
Again we should ensure these faults will be caught during the flush test. Finally, Table 14.19 shows the tied
faults.

TABLE 14.19 Tied faults.
Fault(s) Explanation
TADRIVER1.ZN sa0

TA_TMS.1.CIN sa0

TA_TRST.1.CIN sa1

TEST_LOGIC.BST_CONTROL.U1.ZN sa1

UP1_B0_BST.U1.A2 sa0

UP3_1.1.CIN sa1

Total number: 15

Internal BST buffer (seven more faults like this one).

TMS input tied low.

TRST input tied high.

Internal BST logic.

Input pad (two more faults like this).

Reset input pad tied high.

Now that we can explain all of the undetectable faults, we examine the detected faults. Table 14.20 shows only
the detected faults in the core logic. Faults F1�F8 in the first part of Table 14.20 correspond to the faults in
Figure 14.16 . The fault list in the second part of Table 14.20 shows each fault in the core and whether it was
detected (D) or collapsed and detected as an equivalent fault (CD). There are no undetected faults (U) in the
logic core.

TABLE 14.20 Detected core-logic faults in the Threegates ASIC.
Fault(s) Explanation
UC1.U2.ZN sa1

UC1.U3.A2 sa1

UC1.U3.ZN sa1

UC1.U4.A1 sa1

UC1.U4.ZN sa1

UC1.U5.ZN sa0

UC1.U5.ZN sa1

UC1.A_R_FF_B2.Q.O sa1

F1

F2

F5

F3

F6

F8

F7

F4

Fault list

UC1.A_R_FF_B0.Q: (O) CD CD

UC1.A_R_FF_B1.Q: (O) D D

UC1.A_R_FF_B2.Q: (O) CD D

UC1.U2: (I) CD CD (ZN) CD D

UC1.U3: (A1) CD CD (A2) CD D (ZN) CD D

UC1.U4: (A1) CD D (A2) CD CD (ZN) CD D

UC1.U5: (A1) CD CD (A2) CD CD (ZN) D D

SA0 and SA1 collapsed to U3.A1

SA0 and SA1 detected.

SA0 collapsed to U2. SA1 is F4.

I.SA1/0 collapsed to O.SA1/0. O. SA1 is F1.

A1.SA1 collapsed to U2.ZN.SA1.

A2.SA1 collapsed to A_R_FF_B2.Q.SA1.

A1.SA1 collapsed to U3.ZN.SA1

14.8.4 Test Vectors
Next we generate the test vectors for the Threegates ASIC. There are three types of vectors in scan testing.
Serial vectors are the bit patterns that we shift into the scan chain. We have three flip-flops in the scan chain plus
six boundary-scan cells, so each serial vector is 9 bits long. There are serial input vectors that we apply as a
stimulus and serial output vectors that we expect as a response. Parallel vectors are applied to the pads before we
shift the serial vectors into the scan chain. We have nine input pads (three core data, one core clock, one core
reset, and four input TAP pads� TMS , TCK , TRST , and TDI) and two outputs (one core data output and TDO
). Each parallel vector is thus 11 bits long and contains 9 bits of stimulus and 2 bits of response. A test program
consists of applying the stimulus bits from one parallel vector to the nine input pins for one test cycle. In the
next nine test cycles we shift a 9-bit stimulus from a serial vector into the scan chain (and receive a 9-bit
response, the result of the previous tests, from the scan chain). We can generate the serial and parallel vectors
separately, or we can merge the vectors to give a set of broadside vectors . Each broadside vector corresponds to
one test cycle and can be used for simulation. Some testers require broadside vectors; others can generate them
from the serial and parallel vectors.

TABLE 14.21 Serial test vectors
Serial-input scan data
#1 1 1 1 0 1 0 1 1 0

#2 1 0 1 1 0 1 0 0 1

#3 1 1 0 1 1 1 0 1 0

#4 0 0 0 1 0 0 0 0 0

#5 0 1 0 0 1 1 1 0 1

 ^UC1.A_R_FF_B0.Q ^UP1_B2_BST.SO.Q ^UP2_1_BST.SO.Q

 ^UC1.A_R_FF_B1.Q ^UP1_B1_BST.SO.Q ^UP3_1_BST.SO.Q

 ^UC1.A_R_FF_B2.Q ^UP1_B0_BST.SO.Q ^UP4_1_BST.SO.Q
Fault Fault number Vector number Core input
UC1.U2.ZN sa1

UC1.U3.A2 sa1

UC1.U3.ZN sa1

UC1.U4.A1 sa1

UC1.U4.ZN sa1

UC1.U5.ZN sa0

UC1.U5.ZN sa1

UC1.A_R_FF_B2.Q.O sa1

F1

F2

F5

F3

F6

F8

F7

F4

3

4

5

2

1

1

2

2

011

000

010

101

111

111

101

101

Table 14.21 shows the serial test vectors for the Threegates ASIC. The third serial test vector is '110111010' .
This test vector is shifted into the BSR, so that the first three bits in this vector end up in the first three bits of the
BSR. The first three bits of the BSR, nearest TDI , are the scan flip-flops, the other six bits are boundary-scan
cells). Since UC1.A_R_FF_B0.Q is a_r[0] and so on, the third test vector will set a_r = 011 where a_r[2] = 0.
This is the vector we require to test the function a_r[0]'.a_r[1] + a_r[1].a_r[2] for fault UC1.U2.ZN sa1 in the
Threegates ASIC. From Figure 14.31 we see that this is a stuck-at-1 fault on the output of the inverter whose
input is connected to a_r[0] . This fault corresponds to fault F1 in the circuit of Figure 14.16 . The fault
simulation we performed earlier told us the vector ABC = 011 is a test for fault F1 for the function A'B + BC.

14.8.5 Production Tester Vector Formats
The final step in test-program generation is to format the test vectors for the production tester. As an example
the following shows the Sentry tester file format for testing a D flip-flop. For an average ASIC there would be
thousands of vectors in this file.

Pin declaration: pin names are separated by semi-colons (all pins

on a bus must be listed and separated by commas)

pre_; clr_; d; clk; q; q_;

Pin declarations are separated from test vectors by $

$

The first number on each line is the time since start in ns,

followed by space or a tab.

The symbols following the time are the test vectors

(in the same order as the pin declaration)

an "=" means don't do anything

an "s" means sense the pin at the beginning of this time point

(before the input changes at this time point have any effect)

#

pcdcqq

rlal _

ertk

__a

00 1010== # clear the flip-flop

10 1110ss # d=1, clock=0

20 1111ss # d=1, clock=1

30 1110ss # d=1, clock=0

40 1100ss # d=0, clock=0

50 1101ss # d=0, clock=1

60 1100ss # d=0, clock=0

70 ====ss

14.8.6 Test Flow
Normally we leave test-vector generation and the production-test program generation until the very last step in
ASIC design after physical design is complete. All of the steps have been described before the discussion of
physical design, because it is still important to consider test very early in the design flow. Next, as an example
of considering test as part of logical design, we shall return to our Viterbi decoder example.

TABLE 14.22 Timing effects of test-logic insertion for the Viterbi decoder.
Timing of critical paths before test-logic insertion
Slack(ns) Num Paths

-3.3826 1 *

-1.7536 18 *******

-.1245 4 **

1.5045 1 *

3.1336 0 *

4.7626 0 *

6.3916 134 **

8.0207 6 ***

9.6497 3 **

11.2787 0 *

12.9078 24 ********
instance name

inPin --> outPin incr arrival trs rampDel cap cell

(ns) (ns) (ns) (pf)

v_1.u100.u1.subout6.Q_ff_b0

CP --> QN 1.73 1.73 R .20 .10 dfctnb

...

v_1.u100.u2.metric0.Q_ff_b4

setup: D --> CP .16 21.75 F .00 .00 dfctnh

After test-logic insertion
-4.0034 1 *

-1.9835 18 *****

.0365 4 **

2.0565 1 *

4.0764 0 *

6.0964 138 *******************************

8.1164 2 *

10.1363 3 **

12.1563 24 ******

14.1763 0 *

16.1963 187 **
v_1.u100.u1.subout7.Q_ff_b1

CP --> Q 1.40 1.40 R .28 .13 mfctnb

...

v_1.u100.u2.metric0.Q_ff_b4

setup: DB --> CP .39 21.98 F .00 .00 mfctnh

1. Outputs are specified for each instruction as 0123456, where: 0 = EXTEST, 1 = SAMPLE, 2 = BYPASS, 3 =
INTEST, 4 = IDCODE, 5 = RUNBIST, 6 = SCANM.

2. T denotes gated clock TCK.

14.9 The Viterbi Decoder
Example
Table 14.22 shows the timing analysis for the Viterbi decoder before and after
test insertion. The Compass test software inserts internal scan and boundary scan
exactly as in the Threegates example. The timing analysis is in the form of
histograms showing the distributions of the timing delays for all paths. In this
analysis we set an aggressive constraint of 20 ns (50 MHz) for the clock. The
critical path before test insertion is 21.75 ns (the slack is thus negative at �1.75
ns). The path starts at u1.subout6.Q_ff_b0 and ends at u2.metric0.Q_ff_b4 , both
flip-flops inside the flattened block, v_1.u100 , that we created during synthesis
in an attempt to improve speed. The first flip-flop in the path is a dfctnb ; the last
flip-flop is a dfctnh . The suffix 'b' denotes 1X drive and suffix 'h' denotes 2X
drive.

After test insertion the critical path is 21.98 ns. The end point is identical, but the
start point is now subout7.Q_ff_b1 . This is not too surprising. What is happening
is that there are a set of paths of nearly equal length. Changing the flip-flops to
their scan versions (mfctnb and mfctnh) increases the delay slightly. The exact
delay depends on the capacitive load at the output, the path (clock-to-Q,
clock-to-QN, or setup), and the input signal rise time.

Adding test logic has not increased the critical path delay substantially. Almost as
important is that the distribution of delays has not changed substantially. Also
very important is the fact that the distributions show that there are only
approximately 20 paths with delays close to the critical path delay. This means
that we should be able to constrain these paths during physical design and
achieve a performance after routing that is close to our preroute predictions.

TABLE 14.23 Fault coverage for the Viterbi decoder.

Fault list generation/collapsing

Total number of faults: 8846

Number of faults in collapsed fault list: 3869

Vector generation

#

VECTORS FAULTS FAULT COVER

processed

#

20 7515 82.92%

40 8087 89.39%

60 8313 91.74%

80 8632 95.29%

87 8846 96.06%

Total number of backtracks: 3000

Highest backtrack : 30

Total number of vectors : 87

STAR RESULTS summary

Noncollapsed Collapsed

Fault counts:

Aborted 178 85

Detected 8427 3680

Untested 168 60

------ ------

Total of detectable 8773 3825

#

Redundant 10 6

Tied 63 38

#

FAULT COVERAGE 96.06 % 96.21 %

Next we check the logic for fault coverage. Table 14.23 shows that the ATPG
software has inserted nearly 9000 faults, which is reasonable for the size of our
design. Fault coverage is 96 percent. Most of the untested and tied faults arise
from the BST logic exactly as we have already described in the Threegates
example. If we had not completed this small test case first, we might not have
noticed this. The aborted faults are almost all within the large flattened block,
v_1.u100 . If we assume the approximately 60 faults due to the BST logic are
covered by a flush test, our fault coverage increases to 3740/3825 or 98 percent.
To improve upon this figure, some, but not all, of the aborted faults can be
detected by substantially increasing the backtrack limit from the default value of
30. To discover the reasons for the remaining aborted faults, we could use a
controllability/observability program. If we wish to increase the fault coverage
even further, we either need to change our test approach or change the design
architecture. In our case we believe that we can probably obtain close to 99
percent stuck-at fault coverage with the existing architecture and thus we are
ready to move on to physical design.

14.10 Summary
The primary reason to consider test early during ASIC design is that it can
become very expensive if we do not. The important points we covered in this
chapter are:

Boundary scan●

Single stuck-at fault model●

Controllability and observability●

ATPG using test vectors●

BIST with no test vectors●

14.11 Problems
* = Difficult, ** = Very difficult, *** = Extremely difficult

14.1 (Acronyms, 10 min.) Translate the following excerpt from a MOSIS report:
�Chip description: DLX RISC ASIC with DFT, IEEE 1149 BST, and BIST using
PRBS LFSR and MISR. Test results: compaction shorted words.�

14.2 (Economics of defect levels, 15 min.) You are the product manager for a
new workstation. You use 10 similar ASICs as the key component in a computer
that sells for $10,000 with a profit margin of 20 percent. You buy the ASICs for
$10 each, and the shipping defect level is certified to be 0.1 percent by the ASIC
vendor. You are having a problem with a large number of field failures, which
you have traced to one of the ASICs. In the first nine months of shipment you
have sold 49,500 computers, but 51 have failed in the field, 26 due to the ASIC.
Finance estimates that all the field failures have cost at least $1 million in
revenue and goodwill. You do not have the time, money, or capability to improve
your incoming inspection or assembly tests. You estimate the product lifetime is
another 18 months, in which time you will sell another 50,000 units at roughly
the same price and profit margin. At an emergency meeting, the ASIC vendor�s
test engineer proposes to reduce the ASIC defect level to 0.01 percent
immediately by improving the test program, but at a cost. You suggest a coffee
break. With the information that you have, you have 15 minutes to estimate just
how much extra you are prepared to pay for each ASIC.

14.3 (Defect level, 10 min.) In a series of experiments a customer of Zycad,
which makes hardware fault-simulation accelerators, tested 10,000 parts from a
lot with 30 percent yield. Each experiment used a different fraction of the test
vector set. Fit the data in Table 14.24 to a model.

TABLE 14.24 Defect level as a function of fault coverage (Problem 14.3).

Fault coverage/% Rejects Defective parts Defect level/%
50 6773 227 7
90 6877 133 3
99 6910 90 1
99.99 6997 3 0.01

14.4 (Test cost, 5 min.) Suppose, in the example of Section 14.1 , reducing the
bASIC defect level to 0.1 percent added an extra cost of $1 to each part. Now
what is the best way to build the system?

14.5 (Defects, 5 min.) Finding defects in an ASIC is a hard problem. The average
defect density for a submicron process is 1 cm �2 or less.

a. On average how many defects are there on a 1 cm chip?●

b. If the average defect is 1 l 2 , and l = 0.25 m m, what is defect area/chip
area?

●

c. Estimate the ratio of needle volume to haystack volume and comment.●

14.6 (Faults and nodes, 10 min.)

a. How many faults are there in a circuit with n nodes?●

b. Considering fanout how many collapsed faults are there?●

c. Estimate how many test cycles a fault simulator needs to find these
faults.

●

d. With a 10 MHz clock, how long is a 100 k-gate test (with your
estimates)?

●

e. Using a 100 MHz computer, how long does this fault simulation take?
(Assume simulation time is four orders of magnitude slower than real
time.)

●

14.7 (PRBS, 10 min.) What are the first three patterns for a 4-bit maximal-length
LFSR, given a seed of '0001'? Hint: Is there more than one answer?

14.8 (Test time, 10 min.)

a. How long does a 16-bit shift-register test take at a clock speed of 1
MHz?

●

b. Estimate how long it takes to test a 64 k-bit static RAM using a walking
1�s (or marching 1�s) pattern.

●

14.9 (Test time, 10 min.) A modern production tester costs $5�10 million. This
cost is depreciated over the life of the tester (usually five years in the United
States due to Internal Revenue Service guidelines).

a. If the tester is in use 24 hours a day, 365 days a year, how much does 1
second of test time cost?

●

b. If, due to down time (maintenance, operator sick time and so on) a $10
million tester is actually in use 50 percent of the time for chip testing and
test time is 2 seconds, how much does test add to the cost of an ASIC?

●

c. Suppose the ASIC die is 300 mils on a side, is fabricated on a 6-inch
wafer whose fabrication cost is $1750, and the yield is 68 percent. What is
the fraction of test cost to total die cost (fabrication plus test costs)?
Assume that the number of die per wafer is equal to wafer area divided by
chip area.

●

14.10 (Fault collapsing, 10 min.) Draw up tables to show how input and output
faults collapse using gate collapsing for the following primitive logic gates:
AND, OR, NAND, NOR, and EXOR (assume two-input logic cells in each case

with inputs A, B and output F); a two-input MUX (inputs S0, S1, and SEL0;
output F).

14.11 (Fault simulation, 15 min.) Mentor Graphic Corporation�s QuickFault
concurrent fault simulator uses a 12-state logic system with three logic values ('0',
'1', 'X') and four strengths (strong = S, resistive = R, high impedance = Z,
I = indeterminate). Complete Table 14.25 using D = detected fault, P = possibly
detected fault, and '�' = undetected fault. Give two values, 1/2, for each cell: The
first value is for the default fault model in which a tester cannot tell the difference
between Z/S/R; the second value is for testers that can differentiate between Z
and S/R. Hint: One line of the table has been completed as an example.

TABLE 14.25 The logic system used by Mentor Graphic Corporation�s fault
simulator, QuickFault (Problem 14.11). 1

 Faulty circuit
 0I XI 1I 0Z XZ 1Z 0R XR 1R 0S XS 1S

Good circuit

0I
XI
1I
0Z
XZ
1Z �/P �/P �/P � � � �/D �/D �/D �/D �/D �/D
0R
XR
1R
0S
XS
1S

14.12 (Finding faults, 30 min.)

a. List all the possible stuck-at faults for the circuit in Figure 14.37 using
node faults.

●

b. Find all of the equivalent fault classes using node collapsing.●

c. List the prime faults.●

d. List all possible stuck-at faults using input and output faults (use A1.B
and A2.B to distinguish between different inputs and outputs on the same
net).

●

FIGURE 14.37 An example
circuit for fault collapsing
(Problem 14.12).

e. List the fault-equivalence classes using gate collapsing.●

f. List the prime faults.●

14.13 (Blind faith, 10 min.) Consider the following code: a = b && f(c) . Verilog
stops executing an expression as soon as it determines that the expression is false,
whereas VeriFault does not. What effect does this have?

14.14 (Fault collapsing, 10 min.) Draw the Karnaugh maps including stuck-at
faults for four-input NAND, AND, OR, and NOR gates.

14.15 (Fault dominance, 10 min.) If T x is the set of test vectors that test for fault
x and T b Õ T a , what can you say about faults a and b ?

14.16 (*Fault dominance, 10 min.) Consider the network C = AND (A, B), D =
NOT (B). List the PIs, POs, and faults under a pin-fault model. For each fault,
state whether it is an equivalent fault, dominant fault, or dominated fault. Now
consider this more formal definition of fault dominance: Fault a dominates b if
and only if a and b are equivalent under the set of tests T for b . Two faults are
equivalent under a test T if and only if the circuit response of the two faulty
circuits is identical. Hint: Consider the fault at the input of the inverter very
carefully.

14.17 (Japanese TVs, 20 min.) As an experiment a Japanese manufacturer
decided not to perform any testing of its TVs before turning them on at the end of
the production line. They achieved over a 90 percent turn-on rate. Build a cost
model for this approach to testing. Make a one-page list of its advantages and
disadvantages.

14.18 (Test costs, 20 min.) The CEO of an ASIC vendor called a meeting and
asked the production manager to bring all wafers queued for rework. The CEO
produced a hammer and smashed the several hundred wafers on the boardroom
table. Construct a model around the following assumptions: 2 percent of
wafers-in-process currently require rework after each of the 12 photo steps in the
process, wafer cost is $2 ,000, 30 percent of the wafer costs are in the photo
steps; current process yield is 85 percent, 30 percent of the reworked wafers have
to be scrapped. Explain why you were not as shocked by this episode as the
production manager and how it helped you to explain to the CEO the need to add
time to your ASIC design schedule to include design for test.

14.19 (ZyCAD RP, 10 min.) The ZyCAD Paradigm RP rapid prototyping system
consists of a set of emulation boards. Each emulation board contains 18

Xilinx 3090 chips and 16 Xilinx 4010 chips. The Xilinx 4010 chips are mounted
on eight daughterboards, and the 3090 chips are mounted directly on the
motherboard. The Xilinx 4010 chips are used for logic block emulation and the
Xilinx 3090 chips are used for crossbar routing. Each daughterboard has 288 I/O
pins that are available to the crossbar chips for routing. Each Xilinx 4010 device
has the capability to interface with any other 4010 device on the emulation board.
The Xilinx 4010 devices have 400 Configurable Logic Blocks (CLBs) per device
and 160 programmable I/O's. Estimate the size of an ASIC that you could
prototype with this system.

14.20 (IDDQ testing, 10 min.) In the six-shorts-per-transistor fault model for
IDDQ testing we model six shorts per transistor. What are they?

14.21 (PRBS) Consider Table 14.26 .

a. (15 min.) What is the autocorrelation function for a maximal-length
pseudorandom binary sequence?

●

b. ** (30 min.) Suppose we apply a pseudorandom sequence to a linear
system. What is its response?

●

c. *** (60 min.) Suppose we correlate this response with the original
pseudorandom sequence delayed by n cycles. What is this correlation
function?

TABLE 14.26 Autocorrelation of pseudorandom binary sequences
(Problem 14.21).

 Delay (clock ticks)
 0 1 2 3 4 5 6

 Q2 t Q2 t � 1 Q2 t � 2 Q2 t � 3 Q2 t � 4 Q2 t � 5 Q2 t � 6

 1 0 1 0 0 1 1
 1 1 0 1 0 0 1
 1 1 1 0 1 0 0
 0 1 1 1 0 1 0
 0 0 1 1 1 0 1
 1 0 0 1 1 1 0
 0 1 0 0 1 1 1

Correlation with Q2 t 4 2 2 2 2 2 2

●

14.22 (Sentry, 20 min.) Write a Sentry test file to check the preset of a D
flip-flop.

14.23 (Synthesis, 20 min.) Consider the following equations:

f1 = x1'x2' + y3; f2 = x1x2' + x1'x2 = y2; f3 = x1x2y2' + x1'x2' = y3

How many untestable stuck-at faults are there in this network? Suppose we

simplify the logic to the following:

f1* = y2'; f2* = x1x2' + x1'x2

How many untestable stuck-at faults are there? Hint: If you are stuck, see
[Bartlett et al., 1988; Brayton, Hachtel, and Sangiovanni-Vincentelli, 1990].

14.24 (Threegates, 30 min.) Recreate the Threegates example.

14.25 (LFSR) Determine the pattern sequence generated by the 4-bit LFSR
shown in Figure 14.38 . Use the same format as Table 14.10 .

FIGURE 14.38 A 4-bit linear
feedback shift register (LFSR)
(Problem 14.25).

14.26 (BIST, 15 min.) Find the signature if the CUT of Figure 14.25 is Z = A'B
+ AC.

1. D = detected; P = possibly detected; '�' = undetected; x/y means x is the result
of the default detection mechanism and y is the result when three-state detection
is enabled (allowing the detection of the difference between Z and R/S strength).

14.12 Bibliography
Books by Feugate and McIntyre [1988], Cheng and Agrawal [1989], and
Fritzemeier, Nagle, and Hawkins [1989] contain explanations of basic testing
terms and techniques. The book by Abramovici, Breuer, and Friedman [1990] is
an advanced undergraduate and graduate-level review of test techniques.
Needham�s [1991] book reviews wafer and package testing. The text by Russell
and Sayers [1989] is an undergraduate-level text with explanations of test
algorithms. Turino�s [1990] book covers a wide range of testing topics.

There are a number of books with collections of research papers on test,
including works by Eichelberger, Lindblom, Waicukauski, and Williams [1991];
Lombardi and Sami [1987]; Williams [1986]; and Zobrist [1993]. Tsui�s book
contains a review of scan test and a large bibliography [1987]. The book by
Ghosh, Devadas, and Newton [1992] describes test-generation algorithms for
state machines at a level intended for CAD researchers. Bardell, McAnney, and
Savir [1987] focus on pseudorandom BIST. A book by Yarmolik [1990] covers
BIST and signature analysis; a second book by Yarmolik and Kachan [1993]
concentrates on self-test. Books by Lavagno and Sangiovanni-Vincentelli [1993]
and by Lee [1997] are advanced works on the integration of test synthesis and
logic synthesis. The text by Jha and Kundu [1990] covers reliability in design.
The book by Bhattacharya and Hayes [1990] covers modeling for testing (and
includes a good description of the D and PODEM algorithms). There are
alternative ASIC test techniques that we have not covered. For example, Chandra
�s paper describes the CrossCheck architecture for gate arrays [1993]. A book by
Chakradhar, Agrawal, and Bushnell [1991] covers neural models for testing.

The major conferences in the area of test are the International Test Conference,
known as the ITC (TK7874.I593, ISSN 0743-1686), the International Test
Symposium (TK7874.I3274, ISBN depends on year), and the European Design
and Test Conference (TK7888.4.E968, 1994: ISBN 0-8186-5410-4). The IEEE
International Workshop on Memory Technology, Design, and Testing
(TK7895.M4.I334) is a conference on memory testing. US DoD standard
procedure 5012 of Mil-Std-883 sets requirements for simulation algorithms, fault
collapsing, undetectable faults, potential detection, and detection strobing (see
also IEEE Design & Test Magazine, Sept. 1993, pp. 68�79).

The IEEE has published a series of tutorials on test: VLSI Support Technologies:
Computer-Aided Design, Testing, and Packaging, TK7874.T886, 1982; VLSI
Testing & Validation Techniques, ISBN 0818606681, TK7874.T8855, 1985;
Test Generation for VLSI Chips, ISBN 081868786X, TK7874.T8857, 1988.

The Waveform and Vector Exchange Specification (WAVES), IEEE Std
1029.1-1991 [IEEE 1029.1-1991], is a standard representation for digital
stimulus and response for both design and test and allows digital stimulus and
response information to be exchanged between different simulation and test tools.
The syntax of WAVES is a subset of VHDL. WAVES was developed by the
WAVES Analysis and Standardization Group (WASG). The WASG was jointly
sponsored by the Automatic Test Program Generation (ATPG) subcommittee of
the Standards Coordination Committee 20 (SCC20) and the Design Automation
Standards Subcommittee (DASS) of the Computer Society.

14.13 References
Page numbers in brackets after the reference indicate the location in the chapter
body.

Abramovici, M., M. A. Breuer, and A. D. Friedman. 1990. Digital Systems
Testing and Testable Design. New York: W. H. Freeman, 653 p. ISBN
0-7167-8179-4. TK7874.A23. Introduction to testing and BIST. See also Breuer,
M. A., and A. D. Friedman, 1976. Diagnosis and Reliable Design of Digital
Systems. 2nd ed. Potomac, MD: Computer Science Press, ISBN 0-914894-57-9.
TK7868.D5B73. [reference location]

Agarwal, V. K., and A. S. F. Fung. 1981. �Multiple fault testing of large circuits
by single fault test sets.� IEEE Transactions on Computing, Vol. C-30, no. 11, pp.
855�865. [reference location]

Bardell, P. H., W. H. McAnney, and J. Savir. 1987. Built-In Test for VLSI:
Pseudorandom Techniques. New York: Wiley, 354 p. ISBN 0-471-62463-2.
TK7874.B374. [reference location]

Bartlett, K., et al. 1988. �Multilevel logic minimization using implicit don�t cares,�
IEEE Transactions on Computer-Aided Design, Vol. CAD-7, no. 6, pp. 723�740.
[reference location]

Bhattacharya, D., and J. P. Hayes. 1990. Hierarchical Modeling for VLSI Circuit
Testing. Boston: Kluwer, 159 p. ISBN 079239058X. TK7874.B484. Contains a
good description of the D and PODEM algorithms. [reference location]

Bleeker, H., P. v. d. Eijnden, and F. de Jong. 1993. Boundary-Scan Test: A
Practical Approach. Boston: Kluwer, 225 p. ISBN 0-7923-9296-5. [reference
location]

Brayton, R. K., G. D. Hachtel, and A. L. Sangiovanni-Vincentelli. 1990.
�Multilevel logic synthesis.� Proceedings of the IEEE, Vol. 78, no. 2, pp. 264�300.
[reference location]

Butler, K. M., and M. R. Mercer. 1992. Assessing Fault Model and Test Quality.
Norwell, MA: Kluwer, 125 p. ISBN 0-7923-9222-1. TK7874.B85. Introductory
level discussion of test terminology, fault models and their limitations.
Research-level discussion of the use of BDDs, ATPG, and
controllability/observability. [reference location]

Chandra, S., et al. 1993. �CrossCheck: an innovative testability solution.� IEEE
Design & Test of Computers, Vol. 10, no. 2, pp. 56�68. Describes a gate-array
test architecture used by Sony, for example. [reference location]

Chakradhar, S. T., V. D. Agrawal, and M. L. Bushnell. 1991. Neural Models and
Algorithms for Digital Testing. Boston: Kluwer, 184 p. ISBN 0792391659.
TK7868.L6.C44. [reference location]

Cheng, K.-T., and V. D. Agrawal. 1989. Unified Methods for VLSI Simulation
and Test Generation. Norwell, MA: Kluwer, 148 p. ISBN 0-7923-9025-3.
TK7874.C525. 377 references. The first three chapters give a good introduction
to fault simulation and test vector generation. [reference location]

Eichelberger, E. B., E. Lindblom, J. A. Waicukauski, and T. W. Williams. 1991.
Structured Logic Testing. Englewood Cliffs, NJ: Prentice-Hall, 183 p. ISBN
0-13-8536805. TK7868.L6S78. Includes material printed in 19 articles by the
authors from 1987 to 1989. [reference location]

Feugate Jr., R. J., and S. M. McIntyre. 1988. Introduction to VLSI Testing.
Englewood Cliffs, NJ: Prentice-Hall, 226 p. ISBN 0134988663. TK7874 .F48.
Chapters on: Automated Testing Overview; IC Fabrication and Device
Specifications; Testing Integrated Circuits: Parametric Tests; Functional Tests;
Example of a Functional Test Program; Characterization testing; Developing Test
Patterns; Special Testing Problems: Memories; Special Testing Problems:
Microcontrollers; Design for Testability; LSTL Language Summary; Example of
a Production Test program; The D-Algorithm. [reference location]

Fujiwara, H., and T. Shimono. 1983. �On the acceleration of test generation
algorithms.� IEEE Transactions on Computers, Vol. C-32, no. 12, pp. 1137�1144.
Describes the FAN ATPG algorithm. [reference location]

Fritzemeier, R. R., H. T. Nagle, and C. F. Hawkins. 1989. �Fundamentals of
testability�a tutorial.� IEEE Transactions on Industrial Electronics, Vol. 36, no. 2,
pp. 117�128. 54 refs. A review of testing, failure mechanisms, fault models, fault
simulation, testability analysis, and test-generation methods for CMOS VLSI
circuits. [reference location]

Ghosh, A., S. Devadas, and A. R. Newton. 1992. Sequential Logic Testing and
Verification. Norwell, MA: Kluwer, 214 p. ISBN 0-7923-91888.
TK7868.L6G47. Describes test generation algorithms for state machines at a
level intended for CAD researchers. [reference location]

Goel, P. 1981. �An implicit enumeration algorithm to generate tests for
combinational logic circuits.� IEEE Transactions on Computers, Vol. C-30, no. 3,
pp. 215�222. [reference location]

Goldstein, L. H. 1979. �Controllability/observability analysis of digital circuits.�
IEEE Transactions on Circuits and Systems, Vol. CAS-26, no. 9, pp. 685�693.

Describes SCOAP measures. [reference location]

Golomb, S. W., et al. 1982. Shift Register Sequences. 2nd ed. Laguna Hills, CA:
Aegean Park Press, 247 p. ISBN 0-89412-048-4. QA267.5.S4 G6. See also:
Golomb, S. W., Shift Register Sequences (with portions co-authored by L. R.
Welch, R. M. Goldstein and A. W. Hales). San Francisco: Holden-Day (1967),
224 p. QA267.5.S4 G6. The second edition has a long bibliography. [reference
location]

Gulati, R. K., and C. F. Hawkins. (Ed.). 1993. IDDQ Testing of VLSI Circuits.
Boston: Kluwer, 120 p. ISBN 0792393155. TK7874.I3223. [reference location]

Hughes, J. L. A., and E. J. McCluskey. 1986. �Multiple stuck-at fault coverage of
single stuck-at fault test sets.� In Proceedings of the IEEE International Test
Conference, pp. 368�374. [reference location]

IEEE 1029.1. 1991. IEEE Standard for Waveform and Vector Exchange
(WAVES) (ANSI). 96 p. IEEE reference numbers: [1-55937-195-1]
[SH15032-NYF]. [reference location]

IEEE 1149.1b. 1994. IEEE Std 1149.1-1990 Access Port and Boundary-Scan
Architecture. 176 p. The first part of this updated standard includes supplement
1149.1a-1993. IEEE reference numbers: [1-55937-350-4] [SH16626-NYK] The
second part of this standard is includes 1149.1b-1994 Supplement to IEEE Std
1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan Architecture
(ANSI) (available separately). 80 p. IEEE reference numbers: [1-55937-497-7]
[SH94256-NYK]. [reference location , reference location , reference location ,
reference location , reference location , reference location]

Jha, N. K., and S. Kundu. 1990. Testing and Reliable Design of CMOS Circuits.
Boston: Kluwer, 231 p. ISBN 0792390563. TK7871.99.M44.J49. [reference
location]

Lavagno, L., and A. Sangiovanni-Vincentelli. 1993. Algorithms for Synthesis
and Testing of Asynchronous Circuits. Boston: Kluwer, 339 p. ISBN
0792393643. TK7888.4.L38. [reference location]

Lee, M. T.-C. 1997. High-Level Test Synthesis of Digital VLSI Circuits. Boston:
Artech House, ISBN 0890069077. TK7874.75.L44. [reference location]

Lombardi, F., and M. Sami (Ed.). 1987. Testing and Diagnosis of VLSI and
ULSI. Norwell, MA: Kluwer, 533 p. ISBN 90-247-3794-X. TK7874.N345. A
series of 20 research-level papers presented at a NATO advanced Study Institute.
Contents: Trends in Design for Testability; Statistical Testing; Fault Models;
Fault Detection and Design for Testability of CMOS Logic Circuits; Parallel
Computer Systems Testing and Integration; Analog Fault Diagnosis; Spectral
Techniques for Digital Testing; Logic Verification, Testing and Their
Relationships to Logic Synthesis; Proving the Next Stage from Simulation; Petri

Nets and Their Relation to Design Validation and Testing; Functional Test of
ASICs and Boards; Fault Simulation Techniques � Theory and Practical
Examples; Threshold-Value Simulation and Test Generation; Behavioral Testing
of Programmable Systems; Testing of Processing Arrays; Old and New
Approaches for the Repair of Redundant Memories; Reconfiguration of
Orthogonal Arrays by Front Deletion; Device Testing and SEM Testing Tools;
Advances in Electron Beam Testing. [reference location]

Maunder, C. M., and R. E. Tulloss (Ed.). 1990. The Test Access Port and
Boundary-Scan Architecture. Washington, DC: IEEE Computer Society Press.
ISBN 0-8186-9070-4. TK867.T39. [reference location]

Needham, W. M. 1991. Designer's Guide to Testable ASIC Devices. New York:
Van Nostrand Reinhold, 284 p. ISBN 0-442-00221-1. TK7874.N385. Practical
review of wafer and package testing. Includes summary of features and test file
formats used by logic testers. [reference location]

Parker, K. P. 1992. The Boundary-Scan Handbook. Norwell, MA: Kluwer, 262 p.
ISBN 0-7923-9270-1. TK7868.P7 P3. Describes BSDL. [reference location]

Rajsuman, R. 1994. Iddq Testing for CMOS VLSI. Boston: Artech House, 193 p.
ISBN 0-89006-726-0. TK7871.99.M44R35. [reference location]

Rao, G. K. 1993. Multilevel Interconnect Technology. New York: McGraw-Hill.
ISBN 0-07-051224-8. Covers the design of a multilevel interconnect process, and
manufacturing and reliability issues. [reference location]

Roth, J. P. 1966. �Diagnosis of automata failures: A calculus and a method.� IBM
Journal of Research and Development, Vol. 10, no. 4, pp. 278�291. Describes the
D-calculus and the D-algorithm. [reference location]

Russell, G., and I. L. Sayers. 1989. Advanced Simulation and Test
Methodologies for VLSI Design. London: Van Nostrand Reinhold
(International), 378 p. ISBN 0-7476-0001-5. TK7874.R89. Good explanations
with a simple example of the D-algorithm. [reference location]

Sabnis, A. G. (Ed.). 1990. VLSI Reliability. San Diego: Academic Press. ISBN
0-12-234122-8. Covers ESD, electromigration, packaging issues, quality
assurance, failure analysis, radiation damage. [reference location]

Scheiber, S.F. 1995. Building a Successful Board-Test Strategy. Boston:
Butterworth�Heineman, 286 p. ISBN 0-7506-9432-7. TK7868.P7S33. Practical
description from a management point of view of board-level testing. [reference
location]

Schulz, M. H., E. Trischler, and T. M. Sarfert. 1988. �SOCRATES: a highly
efficient automatic test pattern generation system.� IEEE Transactions on
Computer-Aided Design, Vol. 7, no. 1, pp. 126�137. [reference location]

Turino, J. 1990. Design to Test�A Definitive Guide for Electronic Design,
Manufacture and Service. 2nd ed. New York: Van Nostrand Reinhold, 368 p.
ISBN 0-442-00170-3. TK7874.T83. A small encyclopedia of testing. Includes a
general introduction to testability, and guidelines for: system-level, analog, and
general circuit testing; board-level guidelines, boundary scan, built-in test,
testability buses, mechanical issues, surface-mount technology, test software,
documentation, implementation, ad-hoc test techniques and strategies, testability
checklists, and a testability rating system. [reference location]

Tsui, F. F. 1987. LSI/VLSI Testability Design. New York: McGraw-Hill, 700 p.
ISBN 0-07-065341-0. TK7874.T78. Extensive review of scan-test techniques.
Approximately 100-page bibliography of papers published on test from 1962
�1986. [reference location]

Williams, T. W. (Ed.). 1986. VLSI Testing. Amsterdam: Elsevier Science, 275 p.
ISBN 0-444-87895-5 (part of set 0-444-87890-4). TK7874.V5666. Seven papers
on fault modeling, test generation, and fault simulation, testable PLA designs,
design for testability, memory testing, semiconductor test equipment, and board
level test equipment. [reference location]

Yarmolik, V. N. 1990. Fault Diagnosis of Digital Circuits. New York: Wiley.
Translated from Russian text. Covers D-algorithm, LSSD, random and
pseudorandom testing and analysis, and signature analysis. [reference location]

Yarmolik, V. N., and I. V. Kachan. 1993. Self-Testing VLSI Design. New York:
Elsevier, 345 p. ISBN 0-444-89640-6. TK7874.I16. Extensive reference on
pseudorandom testing techniques. Includes description of pseudorandom
sequence generators and polynomials. [reference location]

Zobrist, G.W. (Ed.). 1993. VLSI Fault Modeling and Testing Techniques.
Norwood, NJ: Ablex, 199 p. ISBN 0-89391-781-8. TK7874.V5625. Includes six
research-level papers on physical fault modeling, testing of CMOS open faults,
testing bridging faults, BIST for PLAs, design for testability, and synthesis
methods for testable circuits. [reference location]

ASIC
CONSTRUCTION
A town planner works out the number, types, and sizes of buildings in a
development project. An architect designs each building, including the
arrangement of the rooms in each building. Then a builder carries out the
construction according to the architect�s drawings. Electrical wiring is one of the
last steps in the construction of each building. The physical design of ASICs is
normally divided into system partitioning, floorplanning, placement, and routing.
A microelectronic system is the town and the ASICs are the buildings. System
partitioning corresponds to town planning, ASIC floorplanning is the architect�s
job, placement is done by the builder, and the routing is done by the electrician.
We shall design most, but not all, ASICs using these design steps.

Last Edited by SP 14112004

15.1 Physical Design
Figure 15.1 shows part of the design flow, the physical design steps, for an ASIC
(omitting simulation, test, and other logical design steps that have already been
covered). Some of the steps in Figure 15.1 might be performed in a different
order from that shown. For example, we might, depending on the size of the
system, perform system partitioning before we do any design entry or synthesis.
There may be some iteration between the different steps too.

FIGURE 15.1 Part of an ASIC design
flow showing the system partitioning,
floorplanning, placement, and routing
steps. These steps may be performed
in a slightly different order, iterated or
omitted depending on the type and size
of the system and its ASICs. As the
focus shifts from logic to interconnect,
floorplanning assumes an increasingly
important role. Each of the steps
shown in the figure must be performed
and each depends on the previous step.
However, the trend is toward
completing these steps in a parallel
fashion and iterating, rather than in a
sequential manner.

We must first apply system partitioning to divide a microelectronics system into
separate ASICs. In floorplanning we estimate sizes and set the initial relative
locations of the various blocks in our ASIC (sometimes we also call this chip
planning). At the same time we allocate space for clock and power wiring and
decide on the location of the I/O and power pads. Placement defines the location
of the logic cells within the flexible blocks and sets aside space for the
interconnect to each logic cell. Placement for a gate-array or standard-cell design
assigns each logic cell to a position in a row. For an FPGA, placement chooses
which of the fixed logic resources on the chip are used for which logic cells.

Floorplanning and placement are closely related and are sometimes combined in
a single CAD tool. Routing makes the connections between logic cells. Routing
is a hard problem by itself and is normally split into two distinct steps, called
global and local routing. Global routing determines where the interconnections
between the placed logic cells and blocks will be situated. Only the routes to be
used by the interconnections are decided in this step, not the actual locations of
the interconnections within the wiring areas. Global routing is sometimes called
loose routing for this reason. Local routing joins the logic cells with
interconnections. Information on which interconnection areas to use comes from
the global router. Only at this stage of layout do we finally decide on the width,
mask layer, and exact location of the interconnections. Local routing is also
known as detailed routing.

15.2 CAD Tools
In order to develop a CAD tool it is necessary to convert each of the physical
design steps to a problem with well-defined goals and objectives. The goals for
each physical design step are the things we must achieve. The objectives for each
step are things we would like to meet on the way to achieving the goals. Some
examples of goals and objectives for each of the ASIC physical design steps are
as follows:

System partitioning:

Goal. Partition a system into a number of ASICs.●

Objectives. Minimize the number of external connections between the
ASICs. Keep each ASIC smaller than a maximum size.

●

Floorplanning:

Goal. Calculate the sizes of all the blocks and assign them locations.●

Objective. Keep the highly connected blocks physically close to each
other.

●

Placement:

Goal. Assign the interconnect areas and the location of all the logic cells
within the flexible blocks.

●

Objectives. Minimize the ASIC area and the interconnect density.●

Global routing:

Goal. Determine the location of all the interconnect.●

Objective. Minimize the total interconnect area used.●

Detailed routing:

Goal. Completely route all the interconnect on the chip.●

Objective. Minimize the total interconnect length used.●

There is no magic recipe involved in the choice of the ASIC physical design
steps. These steps have been chosen simply because, as tools and techniques have
developed historically, these steps proved to be the easiest way to split up the
larger problem of ASIC physical design. The boundaries between the steps are
not cast in stone. For example, floorplanning and placement are often thought of
as one step and in some tools placement and routing are performed together.

15.2.1 Methods and Algorithms
A CAD tool needs methods or algorithms to generate a solution to each problem
using a reasonable amount of computer time. Often there is no best solution
possible to a particular problem, and the tools must use heuristic algorithms, or
rules of thumb, to try and find a good solution. The term algorithm is usually
reserved for a method that always gives a solution.

We need to know how practical any algorithm is. We say the complexity of an
algorithm is O (f (n)) (read as order f (n)) if there are constants k and n 0 so
that the running time of the algorithm T (n) is less than k f (n) for all n > n 0 [
Sedgewick, 1988]. Here n is a measure of the size of the problem (number of
transistors, number of wires, and so on). In ASIC design n is usually very large.
We have to be careful, though. The notation does not specify the units of time.
An algorithm that is O (n 2) nanoseconds might be better than an algorithm that
is O (n) seconds, for quite large values of n . The notation O (n) refers to an
upper limit on the running time of the algorithm. A practical example may take
less running time�it is just that we cannot prove it. We also have to be careful of
the constants k and n 0 . They can hide overhead present in the implementation
and may be large enough to mask the dependence on n , up to large values of n .
The function f (n) is usually one of the following kinds:

f (n) = constant. The algorithm is constant in time. In this case, steps of the
algorithm are repeated once or just a few times. It would be nice if our
algorithms had this property, but it does not usually happen in ASIC
design.

●

f (n) = log n . The algorithm is logarithmic in time. This usually happens
when a big problem is (possibly recursively) transformed into a smaller
one.

●

f (n) = n . The algorithm is linear in time. This is a good situation for an
ASIC algorithm that works with n objects.

●

f (n) = n log n . This type of algorithm arises when a large problem is
split into a number of smaller problems, each solved independently.

●

f (n) = n 2 . The algorithm is quadratic in time and usually only practical
for small ASIC problems.

●

If the time it takes to solve a problem increases with the size of the problem at a
rate that is polynomial but faster than quadratic (or worse in an exponential
fashion), it is usually not appropriate for ASIC design. Even after subdividing the
ASIC physical design problem into smaller steps, each of the steps still results in
problems that are hard to solve automatically. In fact, each of the ASIC physical
design steps, in general, belongs to a class of mathematical problems known as
NP-complete problems. This means that it is unlikely we can find an algorithm to
solve the problem exactly in polynomial time.

Suppose we find a practical method to solve our problem, even if we can find a

solution we now have a dilemma. How shall we know if we have a good solution
if, because the problem is NP-complete, we cannot find the optimum or best
solution to which to compare it? We need to know how close we are to the
optimum solution to a problem, even if that optimum solution cannot be found
exactly. We need to make a quantitative measurement of the quality of the
solution that we are able to find. Often we combine several parameters or metrics
that measure our goals and objectives into a measurement function or objective
function. If we are minimizing the measurement function, it is a cost function. If
we are maximizing the measurement function, we call the function a gain
function (sometimes just gain).

Now we are ready to solve each of the ASIC physical design steps with the
following items in hand: a set of goals and objectives, a way to measure the goals
and objectives, and an algorithm or method to find a solution that meets the goals
and objectives. As designers attempt to achieve a desired ASIC performance they
make a continuous trade-off between speed, area, power, and several other
factors. Presently CAD tools are not smart enough to be able to do this alone. In
fact, current CAD tools are only capable of finding a solution subject to a few,
very simple, objectives.

15.3 System Partitioning
Microelectronic systems typically consist of many functional blocks. If a
functional block is too large to fit in one ASIC, we may have to split, or partition,
the function into pieces using goals and objectives that we need to specify. For
example, we might want to minimize the number of pins for each ASIC to
minimize package cost. We can use CAD tools to help us with this type of system
partitioning.

Figure 15.2 shows the system diagram of the Sun Microsystems SPARCstation 1.
The system is partitioned as follows; the numbers refer to the labels in
Figure 15.2 . (See Section 1.3, �Case Study� for the sources of infomation in this
section.)

Nine custom ASICs (1�9)●

Memory subsystems (SIMMs, single-in-line memory modules): CPU
cache (10), RAM (11), memory cache (12, 13)

●

Six ASSPs (application-specific standard products) for I/O (14�19)●

An ASSP for time of day (20)●

An EPROM (21)●

Video memory subsystem (22)●

One analog/digital ASSP DAC (digital-to-analog converter) (23)●

Table 15.1 shows the details of the nine custom ASICs used in the
SPARCstation 1. Some of the partitioning of the system shown in Figure 15.2 is
determined by whether to use ASSPs or custom ASICs. Some of these design
decisions are based on intangible issues: time to market, previous experience with
a technology, the ability to reuse part of a design from a previous product. No
CAD tools can help with such decisions. The goals and objectives are too poorly
defined and finding a way to measure these factors is very difficult. CAD tools
cannot answer a question such as: �What is the cheapest way to build my system?�
but can help the designer answer the question: �How do I split this circuit into
pieces that will fit on a chip?� Table 15.2 shows the partitioning of the
SPARCstation 10 so you can compare it to the SPARCstation 1. Notice that the
gate counts of nearly all of the SPARCstation 10 ASICs have increased by a
factor of 10, but the pin counts have increased by a smaller factor.

FIGURE 15.2 The Sun Microsystems SPARCstation 1 system block diagram.
The acronyms for the various ASICs are listed in Table 15.1 .

TABLE 15.1 System partitioning for the Sun Microsystems SPARCstation 1.

 SPARCstation 1 ASIC
Gates

/k-gate

Pins
 Package Type

1 SPARC IU (integer unit) 20 179 PGA CBIC
2 SPARC FPU (floating-point unit) 50 144 PGA FC
3 Cache controller 9 160 PQFP GA
4 MMU (memory-management unit) 5 120 PQFP GA
5 Data buffer 3 120 PQFP GA

6
DMA (direct memory access)
controller

 9 120 PQFP GA

7 Video controller/data buffer 4 120 PQFP GA
8 RAM controller 1 100 PQFP GA
9 Clock generator 1 44 PLCC GA
Abbreviations:
 PGA = pin-grid array CBIC = LSI Logic cell-based ASIC
 PQFP = plastic quad flat pack GA = LSI Logic channelless gate array
 PLCC = plastic leaded chip carrier FC = full custom

15.4 Estimating ASIC Size
Table 15.3 shows some useful numbers for estimating ASIC die size. Suppose we
wish to estimate the die size of a 40 k-gate ASIC in a 0.35 m m gate array,
three-level metal process with 166 I/O pads. For this ASIC the minimum feature
size is 0.35 m m. Thus l (one-half the minimum feature size) = 0.35 m m/2 =
0.175 m m. Using our data and Table 15.3 , we can derive the following
information. We know that 0.35 m m standard-cell density is roughly 5 ¥ 10 �4

gate/ l 2 . From this we can calculate the gate density for a 0.35 m m gate array:

gate density = 0.35 m m standard-cell density ¥ (0.8 to 0.9)

 = 4 ¥ 10 �4 to 4.5 ¥ 10 �4 gate/ l 2 . (15.1)

This gives the core size (logic and routing only) as

(4 ¥ 10 4 gates/gate density) ¥ routing factor ¥ (1/gate-array utilization)

 =
4 ¥ 10 4 /(4 ¥ 10 �4 to 4.5 ¥ 10 �4) ¥ (1 to 2) ¥ 1/(0.8 to 0.9) = 10 8 to 2.5
¥ 10 8 l 2

 = 4840 to 11,900 mil 2 . (15.2)

TABLE 15.2 System partitioning for the Sun Microsystems SPARCstation 10.
 SPARCstation 10 ASIC Gates Pins Package Type
1 SuperSPARC Superscalar SPARC 3 M-transistors 293 PGA FC
2 SuperCache cache controller 2 M-transistors 369 PGA FC
3 EMC memory control 40 k-gate 299 PGA GA
4 MSI MBus�SBus interface 40 k-gate 223 PGA GA
5 DMA2 Ethernet, SCSI, parallel port 30 k-gate 160 PQFP GA
6 SEC SBus to 8-bit bus 20 k-gate 160 PQFP GA
7 DBRI dual ISDN interface 72 k-gate 132 PQFP GA
8 MMCodec stereo codec 32 k-gate 44 PLCC FC
Abbreviations:
 PGA = pin-grid array GA = channelless gate array
 PQFP = plastic quad flat pack FC = full custom
 PLCC = plastic leaded chip carrier

We shall need to add (0.175/0.5) ¥ 2 ¥ (15 to 20) = 10.5 to 21 mil (per side) for
the pad heights (we included the effects of scaling in this calculation). With a pad
pitch of 5 mil and roughly 166/4 = 42 I/Os per side (not counting any power

pads), we need a die at least 5 ¥ 42 = 210 mil on a side for the I/Os. Thus the die
size must be at least 210 ¥ 210 = 4.4 ¥ 10 4 mil 2 to fit 166 I/Os. Of this die area
only 1.19 ¥ 10 4 /(4.4 ¥ 10 4) = 27 % (at most) is used by the core logic. This is a
severely pad-limited design and we need to rethink the partitioning of this
system.

Table 15.4 shows some typical areas for datapath elements. You would use many
of these datapath elements in floating-point arithmetic (these elements are large
�you should not use floating-point arithmetic unless you have to):

A leading-one detector with barrel shifter normalizes a mantissa.●

A priority encoder corrects exponents due to mantissa normalization.●

A denormalizing barrel shifter aligns mantissas.●

A normalizing barrel shifter with a leading-one detector normalizes
mantissa subtraction.

TABLE 15.3 Some useful numbers for ASIC estimates, normalized to a 1
m m technology unless noted.

Parameter Typical value Comment 1 Scaling

Lambda, l
0.5 m m = 0.5
(minimum
feature size)

In a 1 m m technology, l
ª 0.5 m m.

NA

CAD pitch

1 micron = 10 �6

m = 1 m m

= minimum
feature size

Not to be confused with
minimum CAD grid size
(which is usually less
than 0.01 m m).

l

Effective gate length 0.25 to 1.0 m m
Less than drawn gate
length, usually by about
10 percent.

l

I/O-pad width (pitch)

5 to 10 mil

= 125 to 250 m
m

For a 1 m m technology,
2LM (l = 0.5 m m).
Scales less than linearly
with l .

l

I/O-pad height

15 to 20 mil

= 375 to 500 m
m

For a 1 m m technology,
2LM (l = 0.5 m m).
Scales approximately
linearly with l .

l

Large die
1000 mil/side, 10
6 mil 2

Approximately constant 1

Small die
100 mil/side, 10 4

mil 2
Approximately constant 1

●

Standard-cell density

1.5 ¥ 10 �3 gate/
m m 2

= 1.0 gate/mil 2

For 1 m m, 2LM, library

= 4 ¥ 10 �4 gate /l 2
(independent of scaling).

1/ l 2

Standard-cell density

8 ¥ 10 �3 gate/ m
m 2

= 5.0 gate/mil 2

For 0.5 m m, 3LM,
library

= 5 ¥ 10 �4 gate/ l 2
(independent of scaling).

1/ l 2

Gate-array utilization 60 to 80 %
For 2LM, approximately
constant

1

 80 to 90 %
For 3LM, approximately
constant

1

Gate-array density
(0.8 to 0.9) ¥
standard cell
density

For the same process as
standard cells

1

Standard-cell routing
factor = (cell area +
route area)/cell area

1.5 to 2.5 (2LM)

1.0 to 2.0 (3LM)
Approximately constant 1

Package cost
$0.01/pin, �penny
per pin�

Varies widely, figure is
for low-cost plastic
package, approximately
constant

1

Wafer cost
$1 k to $5 k

average $2 k

Varies widely, figure is
for a mature, 2LM
CMOS process,
approximately constant

1

TABLE 15.4 Area estimates for datapath functions. 2

Datapath function
Area per
bit/ l 2

Area/ l 2
(32-bit)

Area/ l 2
(64-bit)

High-speed comparator (4�32 bit) 24,000 7.7E + 05 1.5E + 06
High-speed comparator (32�128 bit) 28,800 9.2E + 05 1.8E + 06

Leading-one detector (n -bit) 7200 log 2 n 1.2E + 06 2.8E + 06

All-ones detector (n -bit)
6000 + 800
log 2 n 3.2E + 05 6.9E + 05

Priority encoder (n -bit)
19,000 +
1400 log 2 (
n � 2)

8.4E + 05 1.8E + 06

Zero detector (n -bit)
5500 + 800
log 2 n 3.0E + 05 6.6E + 05

Barrel shifter/rotator (n- by m -bit)
19,000 +
1000 n +
1600 m

3.4E + 06 1.2E + 07

Carry-save adder 24,000 7.7E + 05 1.5E + 06

Digital delay line (n delay stages, t
output taps)

12,000 +
6000 n +
8400 t

1.5E + 07 6.0E + 07

Synchronous FIFO (n -bit)
34,000 +
9600 n

1.1E + 07 4.1E + 07

Multiplier-accumulator (n -bit)
190,000 +
18,000 n

2.4E + 07 8.5E + 07

Unsigned multiplier (n- by m -bit)
54,000 +
18,000 (n �
2)

1.9E + 07 7.4E + 07

2:1 MUX 7200 2.3E + 05 4.6E + 05
8:1 MUX 29,000 9.2E + 05 1.8E + 06
Low-speed adder 28,000 8.8E + 05 1.8E + 06
2901 ALU 41,000 1.3E + 06 2.6E + 06
Low-speed adder/subtracter 30,000 9.6E + 05 1.9E + 06
Sync. up�down counter with sync.
load and clear

43,000 1.4E + 06 2.8E + 06

Low-speed decrementer 14,000 4.6E + 05 9.2E + 05
Low-speed incrementer 14,000 4.6E + 05 9.2E + 05
Low-speed incrementer/decrementer 20,000 6.5E + 05 1.3E + 06

Most datapath elements have an area per bit that depends on the number of bits in
the datapath (the datapath width). Sometimes this dependency is linear (for the
multipliers and the barrel shifter, for example); in other elements it depends on
the logarithm (to base 2) of the datapath width (the leading one, all ones, and zero
detectors, for example). In some elements you might expect there to be a
dependency on datapath width, but it is small (the comparators are an example).

The area estimates given in Table 15.4 can be misleading. The exact size of an
adder, for example, depends on the architecture: carry-save, carry-select,
carry-lookahead, or ripple-carry (which depends on the speed you require). These
area figures also exclude the routing between datapath elements, which is
difficult to predict�it will depend on the number and size of the datapath
elements, their type, and how much logic is random and how much is datapath.

Figure 15.3 (a) shows the typical size of SRAM constructed on an ASIC. These
figures are based on the use of a RAM compiler (as opposed to building memory
from flip-flops or latches) using a standard CMOS ASIC process, typically using
a six-transistor cell. The actual size of a memory will depend on (1) the required
access time, (2) the use of synchronous or asynchronous read or write, (3) the

number and type of ports (read�write), (4) the use of special design rules, (5) the
number of interconnect layers available, (6) the RAM architecture (number of
devices in RAM cell), and (7) the process technology (active pull-up devices or
pull-up resistors).

(a) (b)

FIGURE 15.3 (a) ASIC memory size. These figures are for static RAM
constructed using compilers in a 2LM ASIC process, but with no special
memory design rules. The actual area of a RAM will depend on the speed and
number of read�write ports. (b) Multiplier size for a 2LM process. The actual
area will depend on the multiplier architecture and speed.

The maximum size of SRAM in Figure 15.3 (a) is 32 k-bit, which occupies
approximately 6.0 ¥ 10 7 l 2 . In a 0.5 m m process (with l = 0.25 m m), the area
of a 32 k-bit SRAM is 6.0 ¥ 10 7 ¥ 0.25 ¥ 0.25 = 3.75 ¥ 10 6 m m 2 (or about 2
mm on a side�a large piece of silicon). If you need an SRAM that is larger than
this, you probably need to consult with your ASIC vendor to determine the best
way to implement a large on-chip memory. Figure 15.3 (b) shows the typical
sizes for multipliers. Again the actual multiplier size will depend on the
architecture (Booth encoding, Wallace tree, and so on), the process technology,
and design rules. Table 15.5 shows some estimated gate counts for medium-size
functions corresponding to some popular ASSP devices.

TABLE 15.5 Gate size estimates for popular ASSP functions.
ASSP
device

Function Gate estimate

8251A
Universal synchronous/asynchronous
receiver/transmitter (USART)

2900

8253 Programmable interval timer 5680
8255A Programmable peripheral interface 784�1403
8259 Programmable interrupt controller 2205
8237 Programmable DMA controller 5100
8284 Clock generator/driver 99
8288 Bus controller 250

8254 Programmable interval timer 3500
6845 CRT controller 2843
87030 SCSI controller 3600
87012 Ethernet controller 3900
2901 4 bit ALU 917
2902 Carry-lookahead ALU 33
2904 Status and shift control 500
2910 12- bit microprogram controller 1100
Source: Fujitsu channelless gate-array data book, AU and CG21 series.

1. 2LM = two-level metal; 3LM = three-level metal.

2. Area estimates are for a two-level metal (2 LM) process. Areas for a
three-level metal (3LM) process are approximately 0.75 to 1.0 times these
figures.

15.5 Power Dissipation
Power dissipation in CMOS logic arises from the following sources:

Dynamic power dissipation due to switching current from charging and
discharging parasitic capacitance.

●

Dynamic power dissipation due to short-circuit current when both n
-channel and p -channel transistors are momentarily on at the same time.

●

Static power dissipation due to leakage current and subthreshold current.●

15.5.1 Switching Current
When the p -channel transistor in an inverter is charging a capacitance, C , at a
frequency, f , the current through the transistor is C (d V /d t). The power
dissipation is thus CV (d V /d t) for one-half the period of the input, t = 1/(2 f).
The power dissipated in the p -channel transistor is thus

1/(2f) d V V DD

Ú CV �� d t = Ú CV d V
0 d t 0

 = 0.5 CV DD 2 (15.3)

When the n -channel transistor discharges the capacitor, the power dissipation is
equal, making the total power dissipation

P 1 = fCV 2 DD (15.4)

Most of the power dissipation in a CMOS ASIC arises from this source�the
switching current. The best way to reduce power is to reduce V DD (because it
appears as a squared term in Eq. 15.4), and to reduce C , the amount of
capacitance we have to switch. A rough estimate is that 20 percent of the nodes
switch (or toggle) in a circuit per clock cycle. To determine more accurately the
power dissipation due to switching, we need to find out how many nodes toggle
during typical circuit operation using a dynamic logic simulator. This requires
input vectors that correspond to typical operation, which can be difficult to
produce. Using a digital simulator also will not take into account the effect of
glitches, which can be significant. Power simulators are usually a hybrid between
SPICE transistor-level simulators and digital event-driven simulators [Najm,

1994].

15.5.2 Short-Circuit Current
The short-circuit current or crowbar current can be particularly important for
output drivers and large clock buffers. For a CMOS inverter (see Problem 15.17)
the power dissipation due to the crowbar current is

P 2 = (1/12) b f t rf (V DD � 2 V t n) 3 (15.5)

where we assume the following: We ratio the p -channel and n -channel transistor
sizes so that b = (W/L) m C ox is the same for both p - and n -channel
transistors, the magnitude of the threshold voltages V t n are assumed equal for
both transistor types, and t rf is the rise and fall time (assumed equal) of the input
signal [Veendrick, 1984]. For example, consider an output buffer that is capable
of sinking 12 mA at an output voltage of 0.5 V. From Eq. 2.9 we can derive the
transistor gain factor that we need as follows:

 I DS

b = ������������������������ (15.6)

 [(V GS � V t n) -0.5 V DS] V DS

 12 ¥ 10 �3

 = �������������������������
 [(3.3 � 0.65) � (0.5) (0.5)] (0.5)

 = 0.01 AV �1

If the output buffer is switching at 100 MHz and the input rise time to the buffer
is 2 ns, we can calculate the power dissipation due to short-circuit current as

P 2 = (1/12) b f t rf (V DD � 2 V t n) 3 (15.7)

 = (0.01) (100 ¥ 106) (2 ¥ 10 �9) (3.3 � (2)(0.65)) 3

 = 0.00133W or about 1 mW .

If the output load is 10 pF, the dissipation due to switching current is

P 1 = fCV 2 DD

 = (100 ¥ 10 6) (10 ¥ 10 �12)(3.3) 2

 = 0.01089 W or about 10 mW .

As a general rule, if we adjust the transistor sizes so that the rise times and fall
times through a chain of logic are approximately equal (as they should be), the
short-circuit current is typically less than 20 percent of the switching current.

For the example output buffer, we can make a rough estimate of the output-node
switching time by assuming the buffer output drive current is constant at 12 mA.
This current will cause the voltage on the output load capacitance to change
between 3.3 V and 0 V at a constant slew rate d V /d t for a time

 C D V (10 ¥ 10 �12) (3.3)

D t = ����� = ���������������� (15.8)

 I (12 ¥ 10 �3)

This is close to the input rise time of 2 ns. So our estimate of the short-circuit
current being less than 20 percent of the switching current assuming equal input
rise time and output rise time is valid in this case.

15.5.3 Subthreshold and Leakage
Current
Despite the claim made in Section 2.1, a CMOS transistor is never completely off
. For example, a typical specification for a 0.5 m m process for the subthreshold
current (per micron of gate width for V GS = 0 V) is less than 5 pA m m �1 , but
not zero. With 10 million transistors on a large chip and with each transistor 10 m
m wide, we will have a total subthreshold current of 0.1 mA; high, but
reasonable. The problem is that the subthreshold current does not scale with
process technology.

When the gate-to-source voltage, V GS , of an MOS transistor is less than the
threshold voltage, V t , the transistor conducts a very small subthreshold current
in the subthreshold region

 Ê q V GS Æ

I DS = I 0 exp Á ����� � 1 Ü (15.9)

 Ë nkT ¯

where I 0 is a constant, and the constant, n, is normally between 1 and 2.

The slope, S, of the transistor current in the subthreshold region is

 �nkT nkT

S = ���� log 10 e = 2.3 ���� V/decade . (15.10)

 q q

For example, at a junction temperature, T = 125 °C (ª 400 K) and assuming n ª
1.5, S = 120 mV/decade (q = 1.6 ¥ 10 �19 Fm �1 , k = 1.38 ¥ 10 �23 JK �1), which
does not scale. The constant value of S = 120 mV/decade means it takes 120 mV
to reduce the subthreshold current by a factor of 10 in any process. If we reduce
the threshold voltages to 0.36 V in a deep-submicron process, for example, this

means at V GS = 0 V we can only reduce I DS to 0.001 times its value at V GS = V

t . This problem can lead to large static currents.

Transistor leakage is caused by the fact that a reverse-biased diode conducts a
very small leakage current. The sources and drains of every transistor, as well as
the junctions between the wells and substrate, form parasitic diodes. The
parasitic-diode leakage currents are strongly dependent on the type and quality of
the process as well as temperature. The parasitic diodes have two components in
parallel: an area diode and a perimeter diode. The ideal parasitic diode currents
are given by the following equation:

 Ê q V D Æ

I = I s exp Á ����� � 1 Ü (15.11)

 Ë nkT ¯

 .(15.1)

Table 15.6 shows specified maximum leakage currents of junction parasitic
diodes as well as the leakage currents of the field transistors (the parasitic MOS
transistors formed when poly crosses over the thick oxide, or field oxide) in a
typical 0.5 m m process.

TABLE 15.6 Diffusion leakage currents (at 25 °C) for a typical 0.5 m m (l =
0.25 m m) CMOS process.
Junction Diode type Leakage (max.) Unit

n -diffusion/ p -substrate area 0.6
fA m m �2

V �1

n -diffusion/ p -substrate perimeter 2.0
fA m m �1

V �1

p -diffusion/ n -well area 0.6
fA m m �2

V �1

p -diff/ n -well perimeter 3.0
fA m m �1

V �1

n -well / p -substrate area 1.0
fA m m �2

V �1

Field NMOS transistor 100 fA m m �1

Field PMOS transistor 30 fA m m �1

For example, if we have an n -diffusion region at a potential of 3.3 V that is 10 m
m by 4 m m in size, the parasitic leakage current due to the area diode would be

 40 m m 2 ¥ 3.3 V ¥ 0.6 fA m m �2 V �1

 = (40) (3.3) (0.6 ¥ 10 �15)

 = 7.92 ¥ 10 �14 A ,

or approximately 80 fA.

The perimeter of this drain region is 28 m m, so that the leakage current due to
the perimeter diode is

 28 m m ¥ 3.3 V ¥ 2.0 fA m m �1 V �1

 = (28) (3.3) (2.0 ¥ 10 �15)

 = 2.848 ¥ 10 �13 A ,

or approximately 0.2 pA, over twice as large as the area-diode leakage current.

As a very rough estimate, if we have 100,000 transistors each with a source and a
drain 10 m m by 4 m m, and half of them are biased at 3.3 V, then the total
leakage current would be

 (100 ¥ 10 5) (2) (0.5) (280 ¥ 10 �15)

 = 2.8 ¥ 10 �6 A , (15.12)

or approximately 3 m A. This is the same order of magnitude (a few
microamperes) as the quiescent leakage current, I DDQ , that we expect to
measure when we test an ASIC with power applied, but with no signal activity. A
measurement of more current than this in a nonactive CMOS ASIC indicates a
problem with the chip manufacture or the design. We use this measurement to
test an ASIC using an IDDQ test.

15.6 FPGA Partitioning
In Section 15.3 we saw how many different issues have to be considered when
partitioning a complex system into custom ASICs. There are no commercial tools that
can help us with all of these issues�a spreadsheet is the best tool in this case. Things are a
little easier if we limit ourselves to partitioning a group of logic cells into FPGAs�and
restrict the FPGAs to be all of the same type.

15.6.1 ATM Simulator
In this section we shall examine a hardware simulator for Asynchronous Transfer Mode
(ATM). ATM is a signaling protocol for many different types of traffic including
constant bit rates (voice signals) as well as variable bit rates (compressed video). The
ATM Connection Simulator is a card that is connected to a computer. Under computer
control the card monitors and corrupts the ATM signals to simulate the effects of real
networks. An example would be to test different video compression algorithms.
Compressed video is very bursty (brief periods of very high activity), has very strict
delay constraints, and is susceptible to errors. ATM is based on ATM cells (packets).
Each ATM cell has 53 bytes: a 5-byte header and a 48-byte payload; Figure 15.4 shows
the format of the ATM packet. The ATM Connection Simulator looks at the entire
header as an address.

FIGURE 15.4 The asynchronous transfer mode (ATM) cell format. The ATM protocol
uses 53-byte cells or packets of information with a data payload and header information
for routing and error control.

Figure 15.5 shows the system block diagram of the ATM simulator designed by Craig
Fujikami at the University of Hawaii. Now produced by AdTech, the simulator emulates

the characteristics of a single connection in an ATM network and models ATM traffic
policing, ATM cell delays, and ATM cell errors. The simulator is partitioned into the
three major blocks, shown in Figure 15.5 , and connected to an IBM-compatible PC
through an Intel 80186 controller board together with an interface board. These three
blocks are

FIGURE 15.5
An
asynchronous
transfer mode
(ATM)
connection
simulator.

The traffic policer, which regulates the input to the simulator.●

The delay generator, which delays ATM cells, reorders ATM cells, and inserts
ATM cells with valid ATM cell headers.

●

The error generator, which produces bit errors and four random variables that are
needed by the other two blocks.

●

The error generator performs the following operations on ATM cells:

Payload bit error ratio generation. The user specifies the Bernoulli probability, p
BER , of the payload bit error ratio.

1.

Random-variable generation for ATM cell loss, misinsertion, reordering, and2.

deletion.

The delay generator delays, misinserts, and reorders the target ATM cells. Finally, the
traffic policer performs the following operations:

Performs header screening and remapping.1.

Checks ATM cell conformance.2.

Deletes selected ATM cells.3.

Table 15.7 shows the partitioning of the ATM board into 12 Lattice Logic FPGAs
(ispLSI 1048) corresponding to the 12 blocks shown in Figure 15.5 . The Lattice Logic
ispLSI 1048 has 48 GLBs (generic logic blocks) on each chip. This system was
partitioned by hand�with difficulty. Tools for automatic partitioning of systems like this
will become increasingly important. In Section 15.6.2 we shall briefly look at some
examples of such tools, before examining the partitioning methods that are used in
Section 15.7 .

TABLE 15.7 Partitioning of the ATM board using Lattice Logic ispLSI 1048 FPGAs.
Each FPGA contains 48 generic logic blocks (GLBs).
Chip # Size Chip # Size
1 42 GLBs 7 36 GLBs
2 64 k-bit ¥ 8 SRAM 8 22 GLBs
3 38 GLBs 9 256 k-bit ¥ 16 SRAM
4 38 GLBs 10 43 GLBs
5 42 GLBs 11 40 GLBs
6 64 k-bit ¥ 16 SRAM 12 30 GLBs

15.6.2 Automatic Partitioning with FPGAs
Some vendors of programmable ASICs provide partitioning software. For example,
Altera uses its own software system for design. You can perform design entry using an
HDL, schematic entry, or using the Altera hardware design language (AHDL)�similar to
PALASM or ABEL. In AHDL you can direct the partitioner to automatically partition
logic into chips within the same family, using the AUTO keyword:

DEVICE top_level IS AUTO; % the partitioner assign logic

You can use the CLIQUE keyword to keep logic together (this is not quite the same as a
clique in a graph�more on this in Section 15.7.3):

CLIQUE fast_logic

BEGIN

|shift_register: MACRO; % keep this in one device

END;

An additional option, to reserve space on a device, is very useful for making last minute
additions or changes.

15.9 Problems
* = Difficult, ** = Very difficult, *** = Extremely difficult

15.1 (Complexity, 10 min.) Suppose the workstations we use to design ASICs
increase in power (measured in MIPS�a million instructions per second) by a
factor of 2 every year. If we want to keep the length of time to solve an ASIC
design problem fixed, calculate how much larger chips can get each year if
constrained by an algorithm with the following complexities:

a. O (k).●

b. O (n).●

c. O(log n).●

d. O(n log n).●

e. O(n 2).●

15.2 (Complexity, 10 min.) In a film the main character looks 12 moves ahead to
win a chess championship.

a. Estimate (stating your assumptions) the number of possible chess moves
looking 12 moves ahead.

●

b. How long would it take to evaluate all these moves on a modern
workstation?

●

15.3 (Chips and towns, 20 min.) This problem is adapted from an analogy
credited to Chuck Seitz. Complete the entries in Table 15.8 , which shows the
progression of integrated circuit complexity using the analogy of town and city
planning. If l is half the minimum feature size, assume that a transistor is a square
2 l on a side and is equivalent to a city block (which we estimate at 200 m on a
side).

TABLE 15.8 Complexity of ASICs (Problems 15.3 and 15.4).

Year l / m m

Chip
size

(mm on
a side)

Transistor size

(m m on a side)

Transistors = city
blocks

City size

(km on a
side,

1 block =
200m)

Example

1970 50 5 200 25 ¥ 25 = 625 5 Palo Alto

1980 5 10 20
500 ¥ 500 = 25 ¥
10 3

1990 0.5 20 1
1,000 ¥ 1,000 = 1 ¥
10 6

2000 0.05 40 0.2
20,000 ¥ 20,000 =
400 ¥ 10 6

15.4 (Polygons, 10 min.) Estimate (stating and explaining all your assumptions)
how many polygons there are on the layouts for each of the chips in Table 15.8 .

15.5 (Algorithm complexity, 10 min.) I think of a number between 1 and 100.
You guess the number and I shall tell you whether you are high or low. We then
repeat the process. If you were to write a computer program to play this game,
what would be the complexity of your algorithm?

15.6 (Algorithms, 60 min.) For each of these problems write or find (stating your
source) an algorithm to solve the problem:

a. An algorithm to sort n numbers.●

b. An algorithm to discover whether a number n is prime.●

c. An algorithm to generate a random number between 1 and n .●

List the algorithm using a sequence of steps, pseudocode, or a flow chart. What is
the complexity of each algorithm?

15.7 (Measurement, 30 min.) The traveling-salesman problem is a well-known
example of an NP-complete problem (you have a list of cities and their locations
and you have to find the shortest route between them, visiting each only once).
Propose a simple measure to estimate the length of the solution. If I had to visit
the 50 capitals of the United States, what is your estimate of my frequent-flyer
mileage?

15.8 (Construction, 30 min.) Try and make a quantitative comparison (stating and
explaining all your assumptions) of the difficulty and complexity of construction
(for example, how many components in each?) for each of the following: a
Boeing 747 jumbo jet, the space shuttle, and an Intel Pentium microprocessor.
Which, in your estimation, is the most complex and why? Smailagic [1995]
proposes measures of design and construction complexity in a description of the
wearable computer project at Carnegie-Mellon University.

15.9 (Productivity, 20 min.). If I have six months to design an ASIC:

a. What is the productivity (in transistors/day) required for each of the
chips in Table 15.8 ?

●

b. What does this translate to in terms of a productivity increase (measured
in percent increase in productivity per month)?

●

c. Moore�s Law says that chip sizes double every 18 months. What does
this correspond to in terms of a percentage increase per month?

●

d. Comment on your answers.●

15.10 (Graphs and edges, 30 min.) We know a net with two connections requires
a single edge in the network graph, a net with three connections requires three
edges, and a net with four connections requires six edges.

a. Can you guess a formula for the number of edges in the network graph
corresponding to a net with n connections?

●

b. Can you prove the formula you guessed in part a? Hint: How many
edges are there from one node to n � 1 other nodes?

●

c. Large nets cause problems for partitioning algorithms based on a
connectivity matrix (edges rather than wires). Suppose we have a 50-net
connection that is no more critical for timing than any other net. Suggest a
way to fool the partitioning algorithm so this net does not drag all its logic
cells into one partition.

●

Most CAD programs treat large nets (like the clock, reset, or power nets)
separately, but the nets are required to have special names and you only can have
a limited number of them. The average net in an ASIC has between two and four
connections and as a rule of thumb 80 percent of nets have a fanout of 4 or less (a
fanout of 4 means a gate drives four others, making a total of five connections on
the net).

15.11 (PC partitioning, 60 min.) Open an IBM-compatible PC, Apple Macintosh,
or PowerPC that has a motherboard that you can see easily. Make a list of the
chips (manufacturer and type), their packages, and pin counts. Make intelligent
guesses as to the function of most of the chips. Obviously manufacturer�s logos
and chip identification markings help�perhaps they are in a data book. Identify the
types of packages (pin-grid array, quad flat pack). Look for nearby components
that may give a hint�crystals for clock generators or the video subsystem. Where
are the chips located on the board�are they near the connectors for the floppy disk
subsystem, the modem or serial port, or video output? To help you, Table 15.9
shows an example�a list of the first row of chips on an old H-P Vectra ES/12
motherboard. Use the same format for your list.

TABLE 15.9 A list of the chips on the first row of an HP Vectra PC (Problem
15.11).

Manufacturer Chip Package Function Comment
HP 87411AAE 24-pin DIP
Intel L7220048 40-pin DIP EPROM (9/3/87) Boot commands

Chips 7014-0093
80-pin quad
flat pack

Custom ASIC

Intel 80286-12
68-pin
package

Microprocessor CPU

TI AS00 14-pin DIP
Quad 2-input NAND
gate

Addressing

 S74F08D 14-pin DIP Quad 2-input AND gate Addressing
 F74F51 14-pin DIP AOI gate Addressing

15.12 (Estimates, 60 min.) System partitioning is not exact science. Estimate:

a. The power developed by a grasshopper, in watts (from a Cambridge
University entrance exam).

●

b. The number of doors in New York City.●

c. The number of grains of sand on Hawaii�s beaches.●

d. The total length of the roads in the continental United States in
kilometers.

●

In each case: (i) Provide an equation that depends on parameters and symbols that
you define. (ii) List the parameters in your equation, and the values that you
assume with their uncertainty. (iii) Give the answer as a number (with units where
necessary). (iv) Include a numerical estimate of the uncertainty in your answer.

15.13 (Pad-limited and core-limited die, 10 min.) As the number of I/O pads
increases, an ASIC can become pad-limited. The spacing between I/O pads is
determined by mechanical limitations of the equipment used for bonding�usually
2�5 mil (a mil is a thousandth of an inch). In a pad-limited design the number of
pads around the outer edge of the die determines the die size, not the number of
gates (see Figure 15.12). For the pad-limited design, shown in Figure 15.12 (a),
the price per I/O pad is more important than the price per gate. When we have a
lot of logic but few I/O pads, we have a core-limited design�the opposite of a
pad-limited ASIC�as shown in Figure 15.12 (b). For a given number of I/O pads
and a pad-limited design, all the different ASIC types will have the same die size,
determined by a graph such as the one shown in Figure 15.12 (c). If I/O pad
spacing is 5 mil and gate density is 1.0 gate/mil 2 , when does an ASIC becomes
pad-limited? Express your answer as a function of the number of gates, G , and
the number of I/Os, I .

FIGURE 15.12 Die size. (a) A pad-limited die, the die size is determined by the
number of I/O pads. (b) A core-limited die, the die size is limited by the amount
of logic in the core. (c) For a given pad spacing we can determine the die size for
a pad-limited die.

15.14 (Estimating ASIC size, 120 min.) Let us pretend we are going to build a
laptop SPARCstation. We need to drastically reduce the number of chips used in
the desktop system. Focus on the I/O subsystems in Figure 15.2 (chip labels are

shown in parentheses): LANCE Ethernet controller (14), 3C90 SCSI controller
(15), 85C30 serial port controller (16, 17), 79C30 ISDN interface (18), and 82072
floppy-disk controller (19). Consider combining these functions into a single
custom ASIC.

a. Collect as much data as you can on the ASSP chips (14�19) that are
currently used in the SPARCstation 1, similar to that presented in
Table 15.5 . National Semiconductor, Texas Instruments, AMD, Intel, and
Motorola produce these or similar chips. You will need one or more of
their ASSP data books. Try to find the pin count, power dissipation, and
gate count for each chip. If you can�t find one of these parameters, make an
estimate and explain your assumptions.

●

b. Using your data, make an estimate of the size, power dissipation, and pin
count of the ASIC to replace chips 14�19 in Figure 15.2 .

●

c. As a sanity check compare your results with the DMA2 Ethernet, SCSI,
and parallel port chip in the SPARCstation 10 (see Table 15.2). This is a
30 k-gate array in a 160-pin quad flat pack.

●

15.15 (Power dissipation, 20 min.) If a Pentium microprocessor dissipates 5 W
and, on average, 20 percent of the circuit nodes toggle every clock cycle

a. Calculate the total capacitance of all the circuit nodes in picofarads if the
clock frequency is 100 MHz and V DD = 5 V.

●

b. If half of this is due to interconnect capacitance at 2 pFcm �1 , what is the
total length of interconnect?

●

c. If there are 100 I/Os driving an average of 20 pF load off-chip at an
average frequency of 50 MHz, what is the power dissipation in the I/Os?

●

d. A Pentium chip contains about 3 ¥ 10 6 transistors. How many gates is
this?

●

e. How many gates are switching on average every clock cycle?●

15.16 (Parasitic power dissipation, 20 min.) Consider the following arguments:
The energy stored in a capacitor is 1/2(CV 2) (measured in joules). Suppose we
charge and discharge a capacitance C between zero and V volts at a frequency f .
We have to replace this energy f times per second and we shall dissipate a power
(measured in watts) equal to

P = 0.5 f CV DD 2 (15.23)

When the p -channel transistor in an inverter is charging a capacitance, C , at a
frequency, f , the current through the transistor is C (d V /d t), the power
dissipation is CV (d V /d t) for one-half the period of the input, t = 1/(2 f). The
power dissipated in the p -channel transistor is thus

 1/(2f) d V

P = f Ú CV �� d t = 0.5 fCV DD 2 (15.24)

 0 d t

During the second half-period of the input signal the p -channel transistor is off,
so that there can be no power dissipation in the power supply. The power
dissipation that occurs in the n -channel transistor must come from the stored
energy in the capacitor�which is accounted for in the equation. In both cases the
total power dissipation should be 1/2(fCV 2), not (fCV 2) as we have stated in
Eq. 15.4 . Point out the errors in both of these arguments. (If you are interested in
situations in which these equations do hold, you can search for the term adiabatic
logic.)

15.17 (Short-circuit power dissipation, 30 min.) Prove Eq. 15.5 as follows: The
input to a CMOS inverter is a linear ramp with rise time t rf . Calculate the n
-channel transistor current as a function of the input voltage, V in , assuming the n
-channel transistor turns on when V in = V t n and the current reaches a maximum
when V in = V DD / 2 at t = t rf / 2.

The transistor current is given by Eq. 2.9. Assume b = (W/L) m Cox is the same
for both p - and n -channel transistors, the magnitude of the threshold voltages | V

t n | are assumed equal for both transistor types, and t is the rise time and fall time
(assumed equal) of the input signal.

Show that for a CMOS inverter (Eq. 15.5):

P 2 = (1/12) b f t rf (V DD � 2 V t n) 3 (15.25)

where b = (W/L) m Cox is the same for both p - and n -channel transistors, the
magnitude of the threshold voltages | V t n | are assumed equal for both transistors,
and t is the rise time and fall time (assumed equal) of the input signal [Veendrick,
1984].

15.18 (Connectivity matrix, 10 min.) Find the connectivity matrix for the ATM
Connection Simulator shown in Figure 15.5 . Use the following scheme to
number the blocks and ordering of the matrix rows and columns: 1 = Personal
Computer, 2 = Intel 80186, 3 = UTOPIA receiver, 4 = UTOPIA transmitter, 5 =
Header remapper and screener, 6 = Remapper SRAM, . . . 15 = Random-number
and bit error rate generator, 16 = Random-variable generator. All buses are
labeled with their width except for two single connections (the arrows).

15.19 (K�L algorithm, 15 min.)

a. Draw the network graph for the following connectivity matrix:

 0 0 0 0 0 0 1 0 0 0
 0 0 0 0 0 1 0 1 0 0
 0 0 0 1 0 0 0 1 0 0
 0 0 1 0 1 0 0 0 1 0
C = 0 0 0 1 0 0 0 0 0 0 (15.26)

●

 0 1 0 0 0 0 0 0 1 0
 1 0 0 0 0 0 0 0 1 0
 0 1 1 0 0 0 0 0 1 0
 0 0 0 1 0 0 1 1 0 1
 0 0 0 0 0 0 0 0 1 0

b. Draw the partitioned network graph for C with nodes 1�5 in partition A
and nodes 6�10 in partition B. What is the cut weight?

●

c. Improve the initial partitioning using the K�L algorithm. Show the gains
at each stage. What problems did you find in following the algorithm and
how do you resolve them?

●

15.20 (The gain graph in the K�L algorithm, 20 min.). Continue with the K�L
algorithm for the network that we started to partition in Figure 15.9 (a).

a. Show that choices of logic cells to swap and the gains correspond to the
graph of Figure 15.9 (b).

●

b. Notice that G 5 = 0. In fact G m (where there are 2 m nodes to be
partitioned) will always be zero. Can you explain why?

●

15.21 (Look-ahead gain in the K�L algorithm, 20 min.) In the K�L algorithm we
have to compute the gain each time we consider swapping one pair of nodes:

g 1 = D a + D b � 2 c ab . (15.27)

If we swap two pairs of nodes (a 1 and b 1 followed by a 2 and b 2), show that the
gain is

g 1 =
D a 2 + D b 2 � 2 c a 2 b 2 � 2 c a 2 a 1 � 2 c a 2 b 1 � 2 c b 2 a 1 + 2 c b 2 b
1 .

(15.28)

15.22 (FPGA partitioning, 30 min.) Table 15.10 shows some data on FPGAs
from company Z.

TABLE 15.10 FPGAs from company Z (Problem 15.22).

FPGA size Die area / cm 2 Average gate count Package pins Cost

S 0.26 1500 68 $26
M 0.36 2300 44 $35
L 0.46 2800 84 $50
XL 0.64 4700 84 $90
XXL 0.84 6200 84 $130

a. Notice that the FPGAs come in different package sizes. To eliminate the
effect of package price, multiply the price for the S chip by 106 percent,
and the M chip by 113 percent. Now all prices are normalized for an 84-pin
plastic package. All the chips are the same speed grade; if they were not,
we could normalize for this too (a little harder to justify though).

●

b. Plot the normalized chip prices vs. gate count. What is the cost per gate?●

c. The part cost ought to be related to the yield, which is directly related to
die area. If the cost of a 6-inch-diameter wafer is fixed (approximately
$1000), calculate the cost per die, assuming a yield Y (in percent), as a
function of the die area, A (in cm 2). Assume you completely fill the wafer
and you can have fractional die (i.e., do not worry about packing square die
into a circular wafer).

●

d. There are many models for the yield of a process, Y . Two common
models are

Y = exp [� ÷ (AD)] . (15.29)

●

and

 Ê 1 � exp (� AD) Æ 2
Y = Á ����������� Ü (15.30)
 Ë AD ¯

Parameter A is the die area in cm 2 and D is the spot defect density in defects/cm 2

and is usually around 1.0 defects/cm 2 for a good submicron CMOS process
(above 5.0 defects/cm 2 is unusual). The most important thing is the yield;
anything below about 50 percent good die per wafer is usually bad news for an
ASIC foundry. Does the FPGA cost data fit either model?

e. Now disregard the current pricing strategy of company Z. If you had to
bet that physics would determine the true price of the chip, how much
worse or better off are you using two small FPGAs rather than one larger
FPGA (assume the larger die is exactly twice the area of the smaller one)
under these two yield models?

●

f. What assumptions are inherent in the calculation you made in part
e? How much do you think they might affect your answer, and what else
would affect your judgment?

●

g. Give some reasons why you might select two smaller FPGAs rather than
a larger FPGA, even if the larger FPGA is a cheaper solution.

●

h. Give some reasons why you would select a larger FPGA rather than two
smaller FPGAs, even if the smaller FPGAs were a cheaper solution.

●

15.23 (Constructive partitioning, 30 min.) We shall use the simple network with
12 blocks shown in Figure 15.7 to experiment with constructive partitioning. This
example is topologically equivalent to that used in [Goto and Matsud, 1986].

a. We shall use a gain function, g(m) , calculated as follows: Sum the
number of the nets (not connections) from the selected logic cell, m , that
connect to the current partition�call this P(m). Now calculate the number of
nets that connect logic cell m to logic cells which are not yet in partitions
�call this N(m). Then g(m) = P(m) � N(m) is the gain of adding the logic
cell m to the partition currently being filled.

●

b. Partition the network using the seed growth algorithm with logic cell C
as the seed. Show how this choice of seed can lead to the partitioning
shown in Figure 15.7 (c). Use a table like Table 15.11 as a bookkeeping aid
(a spreadsheet will help too). Each row corresponds to a pass through the
algorithm. Fill in the measures, P(m) � N(m), equal to the gain, g(m). Once
a logic cell is assigned to a partition, fill in the name of the partition (X, Y,
or Z) in that column. The first row shows you how logic cell L is selected;
proceed from there. What problems do you encounter while completing the
algorithm, and how do you resolve them?

●

c. Now partition using logic cell F as the seed instead�the logic cell with
the highest number of nets. When you have a tie between logic cells with
the same gain, or you are starting a new partition, pick the logic cell with
the largest P(m) . Use a copy of Table 15.12 as a bookkeeping aid. How
does your partition compare with those we have already made (summarized
in Table 15.13)?

●

d. Comment on your results.●

Table 15.14 will help in constructing the gain function at each step of the
algorithm.

TABLE 15.11 Bookkeeping table for Problem 15.23 (b).

Pass Gain A B C D E F G H I J K L

1
P � N
= g

0 � 2
= �2

1 � 2
= �1

X
0 � 2
= �2

1 � 4
= �3

0 � 5
= �5

0 � 2
= �2

0 � 2
= �2

0 � 3
= �3

0 � 3
= �3

0 � 2
= �2

0 � 1
= �1

2 X X X

TABLE 15.12 Bookkeeping table for Problem 15.23 (c).

Pass Gain A B C D E F G H I J K L

1 P � N = g
1 � 2
= �1

0 � 2
= �2

1 � 1
= 0

1 � 1
= 0

1 � 3
= �2

X
0 � 2
= �2

1 � 2
= �1

2 � 2
= 0

0 � 3
= �3

0 � 2
= �2

0 � 1
= �1

2 X X

TABLE 15.13 Different partitions for the network shown in Figure 15.7
(Problem 15.23 c).

Partitioning
Total external
connections

Partition
contents

X, Y, Z

Connections to each

partition

Figure 15.7 (b)
5

(2, 4, 5, 6, 8)

X = (A, B, C,
L)

Y = (D, F, H,
I)

Z = (E, G, J,
K)

3

3

4

Figure 15.7 (c)
7

(2, 3, 5, 7, 9, 11, 12)

X = (A, B, F,
D)

Y = (H, I, J, K)

Z = (C, E, G,
L)

5

5

4

TABLE 15.14 An aid to calculating the gains for Problem 15.23 .

Logic cell Connects to: Number of nets
Number of

connections
A B, F 2 2
B A, (C, E) 2 3
C (B, E) 1 2
D F, H 2 2
E (B, C), F, (G, L), J 4 6
F A, D, E, (H, I1), I2 5 6
G (E, L), (J, K) 2 4
H D, (F, I) 2 3
I F1, (F2, H), (J, K) 3 5
J E, (G, K1), (I, K2) 3 5
K (G, J1), (I, J2) 2 4
L (E, G) 1 2

15.24 (Simulated annealing, 15 min.) If you have a fixed amount of time to solve
a partitioning problem, comment on the following alternatives and choose one:

i. Run a single simulated annealing cycle using a slow cooling schedule.

ii. Run several (faster) min-cut based partitionings, using different seeds, and pick
the best one.

iii. Run several simulated annealing cycles using a faster cooling schedule, and
pick the best result.

15.25 (Net weights, 15 min.) Figure 15.13 shows a small part of a system and
will help illustrate some potential problems when you weight nets for
partitioning. Nets s1�s3 are critical, nets c1�c4 are not. Assume that all nets are
weighted by a cost of one unless the special net weight symbol is attached.

a. Explain the problem with the net weights as shown in Figure 15.13 (a).●

b. Figure 15.13 (b) shows a different way to assign weights. What
problems might this cause in the rest of the system?

●

c. Figure 15.13 (c) shows another possible solution. Discuss the
advantages of this approach.

●

d. Can you think of another way to solve the problem?●

This situation represents a very real problem with using net weights and tools that
use min-cut algorithms. As soon as you get one critical net right, the tool makes
several other nets too long and they become critical. The problem is worse during
system partitioning when the blocks are big and there are many different nets with
differing importance attached to each block�but it can happen during
floorplanning and placement also.

FIGURE 15.13 (For Problem 15.25 .) An example of a problem in weighting
nets. The symbols attached to the nets apply a weight or cost to that net during
partitioning. Nets c1�c4 are control lines�they are not critical for timing purposes.
Nets s1�s3 are signal lines that are critical�they must be kept short. The figure
shows three different ways to handle this using net weights.

15.26 (Cost, 60 min.) You have three chip sizes available for your part of project
�DreamOn� (a new video game): S, M, and L. The L chip has twice the logic of
the M chip. The M chip has twice the logic of the S chip. The L chip costs $16,
which is 4 times as much as the M chip and 16 times as much as the S chip. There
are two speed grades available: fast (F) and turbocharged (T). The T chip costs
twice as much as the F version. Using a partitioning program, you find you need
the equivalent of 1.8 of the L chips, but only a third of your logic needs a T chip.

a. What is the cheapest way to build �DreamOn�?●

b. During prototyping you find you can use 90 percent of the S and M type
chips, but for reliable routing you can only count on a maximum utilization
of 85 percent for the L chip. You also find that, to maximize performance,
you need to keep all of the logic that requires the turbo speed on one chip.
Our ASIC vendor, Xactera, promises us that the chip prices will fall by the
time we go into production in one year. The estimates are that the prices
will be almost proportional to chip size: The L chip will cost 2.2 times the
M chip and 4.4 times whatever is the cost of the S chip by then (but
Xactera will not commit to a future price for the S chip, only the present
price). You predict the price of the S chip will fall 20 percent in one year

●

(this is about average for the annual rate of price decrease for
semiconductors). Xactera says the turbocharged speed grade will stay about
twice the cost of the fast grade. How does this information affect your
decision?

c. Some time later, as you are ready to go on vacation, the production
department tells you that the board cost is about the same as the chip cost!
The board area does not make much difference to the price, but there is an
extra charge per package pin to reflow solder the surface-mount chips. We
only need each chip to have the minimum size package�a 44-pin quad
plastic package. Production has two price quotes: Boards-R-Us charges $5
per board plus $0.01 per pin, and PCB Inc. quotes at $0.05 per pin. What
should we do? The CEO needs a recommendation today.

●

d. You come back from holiday and find out from your e-mail that we went
with your recommendation on the board vendor but now we have other
problems. The test company is charging per chip pin on the board since we
are using an old style bed-of-nails tester. The cost is about $0.01 per chip
pin. You can go back and add a test interface to all the chips, which is the
equivalent of adding 10 percent of a small chip (type S) on each chip (S, M,
or L). This would eliminate the bed-of-nails test, and reduce board test cost
to $1 per board. Xactera also just lowered their prices: L chips are now $4,
M chips are $2, and S chips are $0.95. There is also a new Xactera XL chip
that has twice the capacity of the L chips and costs $8 (but you do not
know what utilization to expect). These prices are for the fast speed grades,
the turbo versions are now 2.5 times more expensive.

●

e. There are some serious consequences to making any design changes now
(including schedule slips). We have an emergency meeting with
production, finance, marketing, and the CEO this afternoon in the
boardroom. I have to prepare a presentation outlining our past decisions
and the advantages and disadvantages of each of our options (with
quantitative estimates of their effect). Can you prepare four foils for me,
and a one-page spreadsheet that will allow us to make some rapid �what-if�
decisions in the meeting? Print the foils and the one-page spreadsheet.

●

f. A year later we are in full production and all is well. We are reviewing
your performance on project �DreamOn.� What did you learn from this
project and how would you do things differently next time? (You only have
room for 100 words on your review form.)

●

15.7 Partitioning Methods
System partitioning requires goals and objectives, methods and algorithms to find
solutions, and ways to evaluate these solutions. We start with measuring
connectivity, proceed to an example that illustrates the concepts of system
partitioning and then to the algorithms for partitioning.

Assume that we have decided which parts of the system will use ASICs. The goal
of partitioning is to divide this part of the system so that each partition is a single
ASIC. To do this we may need to take into account any or all of the following
objectives:

A maximum size for each ASIC●

A maximum number of ASICs●

A maximum number of connections for each ASIC●

A maximum number of total connections between all ASICs●

We know how to measure the first two objectives. Next we shall explain ways to
measure the last two.

15.7.1 Measuring Connectivity
To measure connectivity we need some help from the mathematics of graph
theory. It turns out that the terms, definitions, and ideas of graph theory are
central to ASIC construction, and they are often used in manuals and books that
describe the knobs and dials of ASIC design tools.

FIGURE 15.6 Networks, graphs, and partitioning. (a) A network containing
circuit logic cells and nets. (b) The equivalent graph with vertexes and edges.
For example: logic cell D maps to node D in the graph; net 1 maps to the edge
(A, B) in the graph. Net 3 (with three connections) maps to three edges in the
graph: (B, C), (B, F), and (C, F). (c) Partitioning a network and its graph. A
network with a net cut that cuts two nets. (d) The network graph showing the
corresponding edge cut. The net cutset in c contains two nets, but the
corresponding edge cutset in d contains four edges. This means a graph is not an
exact model of a network for partitioning purposes.

Figure 15.6 (a) shows a circuit schematic, netlist, or network. The network
consists of circuit modules A�F. Equivalent terms for a circuit module are a cell,
logic cell, macro, or a block. A cell or logic cell usually refers to a small logic
gate (NAND etc.), but can also be a collection of other cells; macro refers to
gate-array cells; a block is usually a collection of gates or cells. We shall use the
term logic cell in this chapter to cover all of these.

Each logic cell has electrical connections between the terminals (connectors or
pins). The network can be represented as the mathematical graph shown in
Figure 15.6 (b). A graph is like a spider�s web: it contains vertexes (or vertices) A
�F (also known as graph nodes or points) that are connected by edges. A graph
vertex corresponds to a logic cell. An electrical connection (a net or a signal)
between two logic cells corresponds to a graph edge.

Figure 15.6 (c) shows a network with nine logic cells A�I. A connection, for

example between logic cells A and B in Figure 15.6 (c), is written as net (A, B).
Net (A, B) is represented by the single edge (A, B) in the network graph, shown
in Figure 15.6 (d). A net with three terminals, for example net (B, C, F), must be
modeled with three edges in the network graph: edges (B, C), (B, F), and (C, F).
A net with four terminals requires six edges and so on. Figure 15.6 illustrates the
differences between the nets of a network and the edges in the network graphs.
Notice that a net can have more than two terminals, but a terminal has only one
net.

If we divide, or partition, the network shown in Figure 15.6 (c) into two parts,
corresponding to creating two ASICs, we can divide the network�s graph in the
same way. Figure 15.6 (d) shows a possible division, called a cutset. We say that
there is a net cutset (for the network) and an edge cutset (for the graph). The
connections between the two ASICs are external connections, the connections
inside each ASIC are internal connections.

Notice that the number of external connections is not modeled correctly by the
network graph. When we divide the network into two by drawing a line across
connections, we make net cuts. The resulting set of net cuts is the net cutset. The
number of net cuts we make corresponds to the number of external connections
between the two partitions. When we divide the network graph into the same
partitions we make edge cuts and we create the edge cutset. We have already
shown that nets and graph edges are not equivalent when a net has more than two
terminals. Thus the number of edge cuts made when we partition a graph into two
is not necessarily equal to the number of net cuts in the network. As we shall see
presently the differences between nets and graph edges is important when we
consider partitioning a network by partitioning its graph [Schweikert and
Kernighan, 1979].

15.7.2 A Simple Partitioning Example
Figure 15.7 (a) shows a simple network we need to partition [Goto and Matsud,
1986]. There are 12 logic cells, labeled A�L, connected by 12 nets (labeled 1�12).
At this level, each logic cell is a large circuit block and might be RAM, ROM, an
ALU, and so on. Each net might also be a bus, but, for the moment, we assume
that each net is a single connection and all nets are weighted equally. The goal is
to partition our simple network into ASICs. Our objectives are the following:

Use no more than three ASICs.●

Each ASIC is to contain no more than four logic cells.●

Use the minimum number of external connections for each ASIC.●

Use the minimum total number of external connections.●

Figure 15.7 (b) shows a partitioning with five external connections; two of the
ASICs have three pins; the third has four pins.We might be able to find this
arrangement by hand, but for larger systems we need help.

(a)
(b)

FIGURE 15.7 Partitioning
example. (a) We wish to
partition this network into three
ASICs with no more than four
logic cells per ASIC. (b) A
partitioning with five external
connections (nets 2, 4, 5, 6, and
8)�the minimum number. (c) A
constructed partition using
logic cell C as a seed. It is
difficult to get from this local
minimum, with seven external
connections (2, 3, 5, 7,
9,11,12), to the optimum
solution of b.

(c)

Splitting a network into several pieces is a network partitioning problem. In the
following sections we shall examine two types of algorithms to solve this
problem and describe how they are used in system partitioning. Section 15.7.3
describes constructive partitioning, which uses a set of rules to find a solution.
Section 15.7.4 describes iterative partitioning improvement (or iterative
partitioning refinement), which takes an existing solution and tries to improve it.
Often we apply iterative improvement to a constructive partitioning. We also use
many of these partitioning algorithms in solving floorplanning and placement
problems that we shall discuss in Chapter 16.

15.7.3 Constructive Partitioning
The most common constructive partitioning algorithms use seed growth or cluster
growth. A simple seed-growth algorithm for constructive partitioning consists of
the following steps:

Start a new partition with a seed logic cell.1.

Consider all the logic cells that are not yet in a partition. Select each of2.

these logic cells in turn.

Calculate a gain function, g(m) , that measures the benefit of adding logic
cell m to the current partition. One measure of gain is the number of
connections between logic cell m and the current partition.

3.

Add the logic cell with the highest gain g(m) to the current partition.4.

Repeat the process from step 2. If you reach the limit of logic cells in a
partition, start again at step 1.

5.

We may choose different gain functions according to our objectives (but we have
to be careful to distinguish between connections and nets). The algorithm starts
with the choice of a seed logic cell (seed module, or just seed). The logic cell
with the most nets is a good choice as the seed logic cell. You can also use a set
of seed logic cells known as a cluster. Some people also use the term clique
�borrowed from graph theory. A clique of a graph is a subset of nodes where each
pair of nodes is connected by an edge�like your group of friends at school where
everyone knows everyone else in your clique . In some tools you can use
schematic pages (at the leaf or lowest hierarchical level) as a starting point for
partitioning. If you use a high-level design language, you can use a Verilog
module (different from a circuit module) or VHDL entity/architecture as seeds
(again at the leaf level).

15.7.4 Iterative Partitioning
Improvement
The most common iterative improvement algorithms are based on interchange
and group migration. The process of interchanging (swapping) logic cells in an
effort to improve the partition is an interchange method. If the swap improves the
partition, we accept the trial interchange; otherwise we select a new set of logic
cells to swap.

There is a limit to what we can achieve with a partitioning algorithm based on
simple interchange. For example, Figure 15.7 (c) shows a partitioning of the
network of part a using a constructed partitioning algorithm with logic cell C as
the seed. To get from the solution shown in part c to the solution of part b, which
has a minimum number of external connections, requires a complicated swap.
The three pairs: D and F, J and K, C and L need to be swapped�all at the same
time. It would take a very long time to consider all possible swaps of this
complexity. A simple interchange algorithm considers only one change and
rejects it immediately if it is not an improvement. Algorithms of this type are
greedy algorithms in the sense that they will accept a move only if it provides
immediate benefit. Such shortsightedness leads an algorithm to a local minimum
from which it cannot escape. Stuck in a valley, a greedy algorithm is not prepared
to walk over a hill to see if there is a better solution in the next valley. This type
of problem occurs repeatedly in CAD algorithms.

Group migration consists of swapping groups of logic cells between partitions.
The group migration algorithms are better than simple interchange methods at
improving a solution but are more complex. Almost all group migration methods
are based on the powerful and general Kernighan�Lin algorithm (K�L algorithm)
that partitions a graph [Kernighan and Lin, 1970]. The problem of dividing a
graph into two pieces, minimizing the nets that are cut, is the min-cut problem�a
very important one in VLSI design. As the next section shows, the K�L algorithm
can be applied to many different problems in ASIC design. We shall examine the
algorithm next and then see how to apply it to system partitioning.

15.7.5 The Kernighan�Lin Algorithm
Figure 15.8 illustrates some of the terms and definitions needed to describe the K
�L algorithm. External edges cross between partitions; internal edges are
contained inside a partition. Consider a network with 2 m nodes (where m is an
integer) each of equal size. If we assign a cost to each edge of the network graph,
we can define a cost matrix C = c ij , where c ij = c ji and c ii = 0. If all
connections are equal in importance, the elements of the cost matrix are 1 or 0,
and in this special case we usually call the matrix the connectivity matrix. Costs
higher than 1 could represent the number of wires in a bus, multiple connections
to a single logic cell, or nets that we need to keep close for timing reasons.

FIGURE 15.8 Terms used by the Kernighan�Lin partitioning algorithm. (a) An
example network graph. (b) The connectivity matrix, C; the column and rows are
labeled to help you see how the matrix entries correspond to the node numbers in
the graph. For example, C 17 (column 1, row 7) equals 1 because nodes 1 and 7
are connected. In this example all edges have an equal weight of 1, but in
general the edges may have different weights.

Suppose we already have split a network into two partitions, A and B , each with
m nodes (perhaps using a constructed partitioning). Our goal now is to swap
nodes between A and B with the objective of minimizing the number of external
edges connecting the two partitions. Each external edge may be weighted by a
cost, and our objective corresponds to minimizing a cost function that we shall

call the total external cost, cut cost, or cut weight, W :

W = S c ab (15.13)

 a � A , b � B

In Figure 15.8 (a) the cut weight is 4 (all the edges have weights of 1).

In order to simplify the measurement of the change in cut weight when we
interchange nodes, we need some more definitions. First, for any node a in
partition A , we define an external edge cost, which measures the connections
from node a to B ,

E a = S c ay

 y � B (15.14)

For example, in Figure 15.8 (a) E 1 = 1, and E 3 = 0. Second, we define the
internal edge cost to measure the internal connections to a ,

I a = S c az

 z � A (15.15)

 .(15.2)

So, in Figure 15.8 (a), I 1 = 0, and I 3 = 2. We define the edge costs for partition
B in a similar way (so E 8 = 2, and I 8 = 1). The cost difference is the difference
between external edge costs and internal edge costs,

D x = E x � I x . (15.16)

Thus, in Figure 15.8 (a) D 1 = 1, D 3 = � 2, and D 8 = 1. Now pick any node in A ,
and any node in B . If we swap these nodes, a and b, we need to measure the
reduction in cut weight, which we call the gain, g . We can express g in terms of
the edge costs as follows:

g = D a + D b � 2 c ab . (15.17)

The last term accounts for the fact that a and b may be connected. So, in
Figure 15.8 (a), if we swap nodes 1 and 6, then g = D 1 + D 6 � 2 c 16 = 1 + 1. If
we swap nodes 2 and 8, then g = D 2 + D 8 � 2 c 28 = 1 + 2 � 2.

The K�L algorithm finds a group of node pairs to swap that increases the gain
even though swapping individual node pairs from that group might decrease the
gain. First we pretend to swap all of the nodes a pair at a time. Pretend swaps are
like studying chess games when you make a series of trial moves in your head.

This is the algorithm:

Find two nodes, a i from A , and b i from B , so that the gain from1.

swapping them is a maximum. The gain is

g i = D ai + D bi � 2 c aibi . (15.18)

Next pretend swap a i and b i even if the gain g i is zero or negative, and do
not consider a i and b i eligible for being swapped again.

2.

Repeat steps 1 and 2 a total of m times until all the nodes of A and B have
been pretend swapped. We are back where we started, but we have ordered
pairs of nodes in A and B according to the gain from interchanging those
pairs.

3.

Now we can choose which nodes we shall actually swap. Suppose we only
swap the first n pairs of nodes that we found in the preceding process. In
other words we swap nodes X = a 1 , a 2 ,&, a n from A with nodes Y = b

1 , b 2 ,&, b n from B. The total gain would be

 n
G n = S g i . (15.19)

 i = 1

4.

We now choose n corresponding to the maximum value of G n .5.

If the maximum value of G n > 0, then we swap the sets of nodes X and Y and
thus reduce the cut weight by G n . We use this new partitioning to start the
process again at the first step. If the maximum value of G n = 0, then we cannot
improve the current partitioning and we stop. We have found a locally optimum
solution.

Figure 15.9 shows an example of partitioning a graph using the K�L algorithm.
Each completion of steps 1 through 5 is a pass through the algorithm. Kernighan
and Lin found that typically 2�4 passes were required to reach a solution. The
most important feature of the K�L algorithm is that we are prepared to consider
moves even though they seem to make things worse. This is like unraveling a
tangled ball of string or solving a Rubik�s cube puzzle. Sometimes you need to
make things worse so they can get better later. The K�L algorithm works well for
partitioning graphs. However, there are the following problems that we need to
address before we can apply the algorithm to network partitioning:

FIGURE 15.9 Partitioning a graph using the Kernighan�Lin algorithm.
(a) Shows how swapping node 1 of partition A with node 6 of partition B results
in a gain of g = 1. (b) A graph of the gain resulting from swapping pairs of
nodes. (c) The total gain is equal to the sum of the gains obtained at each step.

It minimizes the number of edges cut, not the number of nets cut.●

It does not allow logic cells to be different sizes.●

It is expensive in computation time.●

It does not allow partitions to be unequal or find the optimum partition
size.

●

It does not allow for selected logic cells to be fixed in place.●

The results are random.●

It does not directly allow for more than two partitions.●

To implement a net-cut partitioning rather than an edge-cut partitioning, we can

just keep track of the nets rather than the edges [Schweikert and Kernighan,
1979]. We can no longer use a connectivity or cost matrix to represent
connections, though. Fortunately, several people have found efficient data
structures to handle the bookkeeping tasks. One example is the Fiduccia
�Mattheyses algorithm to be described shortly.

To represent nets with multiple terminals in a network accurately, we can extend
the definition of a network graph. Figure 15.10 shows how a hypergraph with a
special type of vertex, a star, and a hyperedge, represents a net with more than
two terminals in a network.

FIGURE 15.10 A hypergraph. (a) The network contains a net y with three
terminals. (b) In the network hypergraph we can model net y by a single
hyperedge (B, C, D) and a star node. Now there is a direct correspondence
between wires or nets in the network and hyperedges in the graph.

In the K�L algorithm, the internal and external edge costs have to be calculated
for all the nodes before we can select the nodes to be swapped. Then we have to
find the pair of nodes that give the largest gain when swapped. This requires an
amount of computer time that grows as n 2 log n for a graph with 2n nodes. This
n 2 dependency is a major problem for partitioning large networks. The Fiduccia
�Mattheyses algorithm (the F�M algorithm) is an extension to the K�L algorithm
that addresses the differences between nets and edges and also reduces the
computational effort [Fiduccia and Mattheyses, 1982]. The key features of this
algorithm are the following:

Only one logic cell, the base logic cell, moves at a time. In order to stop
the algorithm from moving all the logic cells to one large partition, the
base logic cell is chosen to maintain balance between partitions. The
balance is the ratio of total logic cell size in one partition to the total logic
cell size in the other. Altering the balance allows us to vary the sizes of the
partitions.

●

Critical nets are used to simplify the gain calculations. A net is a critical
net if it has an attached logic cell that, when swapped, changes the number
of nets cut. It is only necessary to recalculate the gains of logic cells on
critical nets that are attached to the base logic cell.

●

The logic cells that are free to move are stored in a doubly linked list. The
lists are sorted according to gain. This allows the logic cells with
maximum gain to be found quickly.

●

These techniques reduce the computation time so that it increases only slightly
more than linearly with the number of logic cells in the network, a very important
improvement [Fiduccia and Mattheyses, 1982].

Kernighan and Lin suggested simulating logic cells of different sizes by
clumping s logic cells together with highly weighted nets to simulate a logic cell
of size s . The F�M algorithm takes logic-cell size into account as it selects a logic
cell to swap based on maintaining the balance between the total logic-cell size of
each of the partitions. To generate unequal partitions using the K�L algorithm, we
can introduce dummy logic cells with no connections into one of the partitions.
The F�M algorithm adjusts the partition size according to the balance parameter.

Often we need to fix logic cells in place during partitioning. This may be because
we need to keep logic cells together or apart for reasons other than connectivity,
perhaps due to timing, power, or noise constraints. Another reason to fix logic
cells would be to improve a partitioning that you have already partially
completed. The F�M algorithm allows you to fix logic cells by removing them
from consideration as the base logic cells you move. Methods based on the K�L
algorithm find locally optimum solutions in a random fashion. There are two
reasons for this. The first reason is the random starting partition. The second
reason is that the choice of nodes to swap is based on the gain. The choice
between moves that have equal gain is arbitrary. Extensions to the K�L algorithm
address both of these problems. Finding nodes that are naturally grouped or
clustered and assigning them to one of the initial partitions improves the results
of the K�L algorithm. Although these are constructive partitioning methods, they
are covered here because they are closely linked with the K�L iterative
improvement algorithm.

15.7.6 The Ratio-Cut Algorithm
The ratio-cut algorithm removes the restriction of constant partition sizes. The cut
weight W for a cut that divides a network into two partitions, A and B , is given
by

W = S c ab

 a � A , b � B (15.20)

The K�L algorithm minimizes W while keeping partitions A and B the same size.
The ratio of a cut is defined as

 W
R = ������� (15.21)
 | A | | B |

In this equation | A | and | B | are the sizes of partitions A and B . The size of a
partition is equal to the number of nodes it contains (also known as the set
cardinality). The cut that minimizes R is called the ratio cut. The original
description of the ratio-cut algorithm uses ratio cuts to partition a network into
small, highly connected groups. Then you form a reduced network from these
groups�each small group of logic cells forms a node in the reduced network.
Finally, you use the F�M algorithm to improve the reduced network [Cheng and
Wei, 1991].

15.7.7 The Look-ahead Algorithm
Both the K�L and F�M algorithms consider only the immediate gain to be made
by moving a node. When there is a tie between nodes with equal gain (as often
happens), there is no mechanism to make the best choice. This is like playing
chess looking only one move ahead. Figure 15.11 shows an example of two
nodes that have equal gains, but moving one of the nodes will allow a move that
has a higher gain later.

FIGURE 15.11 An example of network partitioning that shows the need to look
ahead when selecting logic cells to be moved between partitions. Partitionings
(a), (b), and (c) show one sequence of moves, partitionings (d), (e), and (f) show
a second sequence. The partitioning in (a) can be improved by moving node 2
from A to B with a gain of 1. The result of this move is shown in (b). This
partitioning can be improved by moving node 3 to B, again with a gain of 1. The
partitioning shown in (d) is the same as (a). We can move node 5 to B with a
gain of 1 as shown in (e), but now we can move node 4 to B with a gain of 2.

We call the gain for the initial move the first-level gain. Gains from subsequent
moves are then second-level and higher gains. We can define a gain vector that
contains these gains. Figure 15.11 shows how the first-level and second-level
gains are calculated. Using the gain vector allows us to use a look-ahead
algorithm in the choice of nodes to be swapped. This reduces both the mean and
variation in the number of cuts in the resulting partitions.

We have described algorithms that are efficient at dividing a network into two
pieces. Normally we wish to divide a system into more than two pieces. We can
do this by recursively applying the algorithms. For example, if we wish to divide
a system network into three pieces, we could apply the F�M algorithm first, using
a balance of 2:1, to generate two partitions, with one twice as large as the other.
Then we apply the algorithm again to the larger of the two partitions, with a
balance of 1:1, which will give us three partitions of roughly the same size.

15.7.8 Simulated Annealing
A different approach to solving large graph problems (and other types of
problems) that arise in VLSI layout, including system partitioning, uses the
simulated-annealing algorithm [Kirkpatrick et al., 1983]. Simulated annealing
takes an existing solution and then makes successive changes in a series of
random moves. Each move is accepted or rejected based on an energy function,
calculated for each new trial configuration. The minimums of the energy function
correspond to possible solutions. The best solution is the global minimum.

So far the description of simulated annealing is similar to the interchange
algorithms, but there is an important difference. In an interchange strategy we
accept the new trial configuration only if the energy function decreases, which
means the new configuration is an improvement. However, in the
simulated-annealing algorithm, we accept the new configuration even if the
energy function increases for the new configuration�which means things are
getting worse. The probability of accepting a worse configuration is controlled by
the exponential expression exp(�D E / T), where D E is the resulting increase in
the energy function. The parameter T is a variable that we control and
corresponds to the temperature in the annealing of a metal cooling (this is why
the process is called simulated annealing).

We accept moves that seemingly take us away from a desirable solution to allow
the system to escape from a local minimum and find other, better, solutions. The
name for this strategy is hill climbing. As the temperature is slowly decreased,
we decrease the probability of making moves that increase the energy function.
Finally, as the temperature approaches zero, we refuse to make any moves that
increase the energy of the system and the system falls and comes to rest at the
nearest local minimum. Hopefully, the solution that corresponds to the minimum
we have found is a good one.

The critical parameter governing the behavior of the simulated-annealing
algorithm is the rate at which the temperature T is reduced. This rate is known as
the cooling schedule. Often we set a parameter a that relates the temperatures, T i
and T i + 1 , at the i th and i + 1th iteration:

T i +1 = a T i . (15.22)

To find a good solution, a local minimum close to the global minimum, requires a
high initial temperature and a slow cooling schedule. This results in many trial
moves and very long computer run times [Rose, Klebsch, and Wolf, 1990]. If we
are prepared to wait a long time (forever in the worst case), simulated annealing
is useful because we can guarantee that we can find the optimum solution.
Simulated annealing is useful in several of the ASIC construction steps and we
shall return to it in Section 16.2.7.

15.7.9 Other Partitioning Objectives
In partitioning a real system we need to weight each logic cell according to its
area in order to control the total areas of each ASIC. This can be done if the area
of each logic cell can either be calculated or estimated. This is usually done as
part of floorplanning, so we may need to return to partitioning after
floorplanning.

There will be many objectives or constraints that we need to take into account
during partitioning. For example, certain logic cells in a system may need to be
located on the same ASIC in order to avoid adding the delay of any external
interconnections. These timing constraints can be implemented by adding
weights to nets to make them more important than others. Some logic cells may
consume more power than others and you may need to add power constraints to
avoid exceeding the power-handling capability of a single ASIC. It is difficult,
though, to assign more than rough estimates of power consumption for each logic
cell at the system planning stage, before any simulation has been completed.
Certain logic cells may only be available in a certain technology�if you want to
include memory on an ASIC, for example. In this case, technology constraints
will keep together logic cells requiring similar technologies. We probably want to
impose cost constraints to implement certain logic cells in the lowest cost
technology available or to keep ASICs below a certain size in order to use a

low-cost package. The type of test strategy you adopt will also affect the
partitioning of logic. Large RAM blocks may require BIST circuitry; large
amounts of sequential logic may require scan testing, possibly with a
boundary-scan interface. One of the objects of testability is to maintain
controllability and observability of logic inside each ASIC. In order to do this,
test constraints may require that we force certain connections to be external. No
automated partitioning tools can take into account all of these constraints. The
best CAD tool to help you with these decisions is a spreadsheet.

15.8 Summary
The construction or physical design of ASICs in a microelectronics system is a
very large and complex problem. To solve the problem we divide it into several
steps: system partitioning, floorplanning, placement, and routing. To solve each
of these smaller problems we need goals and objectives, measurement metrics, as
well as algorithms and methods.

System partitioning is the first step in ASIC assembly. An example of the
SPARCstation 1 illustrated the various issues involved in partitioning. Presently
commercial CAD tools are able to automatically partition systems and chips only
at a low level, at the level of a network or netlist. Partitioning for FPGAs is
currently the most advanced. Next we discussed the methods to use for system
partitioning. We saw how to represent networks as graphs, containing nets and
edges, and how the mathematics of graph theory is useful in system partitioning
and the other steps of ASIC assembly. We covered methods and algorithms for
partitioning and explained that most are based on the Kernighan�Lin min-cut
algorithm.

The important points in this chapter are

The goals and objectives of partitioning●

Partitioning as an art not a science●

The simple nature of the algorithms necessary for VLSI-sized problems●

The random nature of the algorithms we use●

The controls for the algorithms used in ASIC design●

15.10 Bibliography
Many of the references in the bibliography in Chapter 1 are also sources for
information on the physical design of ASICs. The European Conference on
Design Automation is known as EuroDAC (TK7867.E93, ISBN and cataloging
varies with year). Another European conference, EuroASIC, was absorbed by
EuroDAC (TK7874.6.E88, ISSN 1066-1409 and ISSN 1064-5322, cataloging
varies).

Preas and Lorenzetti�s book [1988] contains an overview chapter on partitioning
and placement. To dig a little deeper see the review article by Goto and Matsud
[1986]. If you want to explore further the detailed workings of partitioning
algorithms, Sherwani�s book [1993] catalogs physical design algorithms,
including those for partitioning. To learn more about simulated annealing see
Sechen�s book [1988]. Partitioning is an important part of high-level synthesis,
and the book by Gajski et al. [1992] contains a chapter on partitioning for
allocation and scheduling as well as system partitioning�including a description
of clustering methods, which are not well covered elsewhere.This book describes
SpecSyn, a tool that allows you to enter a design using a behavioral description
with a graphical tool. SpecSyn can then partition the design given area, timing,
and cost specifications. System partitioning at the behavioral level (architectural
partitioning) is an area of current research (see [Lagnese and Thomas, 1991] for
a description of the APARTY system). This means we partition a design based on
a hardware design language rather than a schematic or other physical description.
Papers published in the Proceedings of the Design Automation Conference
(DAC) and articles in the IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems form a point at which to start working back
through the recent research literature on system partitioning, an example is [
Kucukcakar and Parker, 1991].

The Proceedings of the 32nd Design Automation Conference (1995) describe a
special session on the design of the Sun Microsystems UltraSPARC-I (albeit
from more of a systems perspective), which forms an interesting comparison to
the SPARCstation 1 and SPARCstation 10 designs.

15.11 References
Page numbers in brackets after the reference indicate the location in the chapter
body.

Cheng, C.-K., and Y.-C. A. Wei. 1991. �An improved two-way partitioning
algorithm with stable performance.� IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 10, no. 12, pp. 1502�1511.
Describes the ratio-cut algorithm. [reference location]

Fiduccia, C. M., and R. M. Mattheyses. 1982. �A linear-time heuristic for
improving network partitions.� In Proceedings of the 19th Design Automation
Conference, pp. 175�181. Describes modification to Kernighan-Lin algorithm to
reduce computation time. [reference location]

Gajski, D. D., N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin. 1992. High-Level
Synthesis: Introduction to Chip and System Design. Norwell, MA: Kluwer. ISBN
0-7923-9194-2. TK7874.H52422. Chapter 6, Partitioning, is an introduction to
system-level partitioning algorithms. It also includes a description of the system
partitioning features of SpecSyn, a research tool developed at UC-Irvine. [
reference location]

Goto, S., and T. Matsud. 1986. �Partitioning, assignment and placement.� In
Layout Design and Verification. Vol. 4 of Advances in CAD for VLSI (T.
Ohtsuki, Ed.) pp. 55�97, New York: Elsevier. [reference location]

Kernighan, B. W., and S. Lin. 1970. �An efficient heuristic procedure for
partitioning graphs.� Bell Systems Technical Journal, Vol. 49, no. 2, February,
pp. 291�307. The original description of the Kernighan�Lin partitioning
algorithm. [reference location]

Kirkpatrick, S., et al. 1983. �Optimization by simulated annealing.� Science, Vol.
220, no. 4598, pp. 671�680. [reference location]

Kucukcakar, K., and A. C. Parker, 1991. �CHOP: A constraint-driven
system-level partitioner.� In Proceedings of the 28th Design Automation
Conference, pp. 514�519. [reference location]

Lagnese, E., and D. Thomas. 1991. �Architectural partitioning for system level
synthesis of integrated circuits.� IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 10, no. 7, pp. 847�860. [reference
location]

Najm, F. N. 1994. �A survey of power estimation techniques in VLSI circuits.�
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 2, no.
4, pp. 446�455. 43 refs. [reference location]

Preas, B. T., and P. G. Karger, 1988. �Placement, assignment and floorplanning.�
In Physical Design Automation of VLSI Systems (B. T. Preas and M. J.
Lorenzetti, Eds.), pp. 87�155. Menlo Park, CA: Benjamin-Cummings. ISBN
0-8053-0412-9. TK7874.P47. [reference location]

Rose, J., W. Klebsch, and J. Wolf, 1990. �Temperature measurement and
equilibrium dynamics of simulated annealing placements.� IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 9, no. 3, pp.
253�259. Discusses ways to speed up simulated annealing. [reference location]

Schweikert, D. G., and B. W. Kernighan. 1979. �A proper model for the
partitioning of electrical circuits.� In Proceedings of the 9th Design Automation
Workshop. Points out the difference between nets and edges. [reference location
, reference location]

Sechen, C. 1988. VLSI Placement and Global Routing Using Simulated
Annealing. New York: Kluwer. Introduction; The Simulated Annealing
Algorithm; Placement and Global Routing of Standard Cell Integrated Circuits;
Macro/Custom Cell Chip-Planning, Placement, and Global Routing; Average
Interconnection Length Estimation; Interconnect-Area Estimation for Macro Cell
Placements; An Edge-Based Channel Definition Algorithm for Rectilinear Cells;
A Graph-Based Global Router Algorithm; Conclusion; Island-Style Gate Array
Placement. [reference location]

Sedgewick, R. 1988. Algorithms. Reading, MA: Addison-Wesley. ISBN
0-201-06673-4. QA76.6.S435. Reference for basic sorting and graph-searching
algorithms. [reference location]

Sherwani, N. A. 1993. Algorithms for VLSI Physical Design Automation.
Norwell, MA: Kluwer. ISBN 0-7923-9294-9. TK874.S455. [reference location]

Smailagic, A., et al. 1995. �Benchmarking an interdisciplinary concurrent design
methodology for electronic/mechanical systems.� In Proceedings of the 32nd
Design Automation Conference. San Francisco. Describes the evolution of the
VuMan wearable computer. Includes some interesting measures of the
complexity of system design. [reference location]

Veendrick, H. J. M. 1984. �Short-circuit dissipation of static CMOS circuitry and
its impact on the design of buffer circuits.� IEEE Journal of Solid-State Circuits,
Vol. SC-19, no. 4, pp. 468�473. [reference location , reference location]

FLOORPLANNING
AND
PLACEMENT
The input to the floorplanning step is the output of system partitioning and design
entry�a netlist. Floorplanning precedes placement, but we shall cover them
together. The output of the placement step is a set of directions for the routing
tools.

At the start of floorplanning we have a netlist describing circuit blocks, the logic
cells within the blocks, and their connections. For example, Figure 16.1 shows
the Viterbi decoder example as a collection of standard cells with no room set
aside yet for routing. We can think of the standard cells as a hod of bricks to be
made into a wall. What we have to do now is set aside spaces (we call these
spaces the channels) for interconnect, the mortar, and arrange the cells.
Figure 16.2 shows a finished wall�after floorplanning and placement steps are
complete. We still have not completed any routing at this point�that comes later
�all we have done is placed the logic cells in a fashion that we hope will minimize
the total interconnect length, for example.

Last Edited by SP 14112004

FIGURE 16.1 The starting point for the floorplanning and placement steps for
the Viterbi decoder (containing only standard cells). This is the initial display of
the floorplanning and placement tool. The small boxes that look like bricks are
the outlines of the standard cells. The largest standard cells, at the bottom of the
display (labeled dfctnb) are 188 D flip-flops. The '+' symbols represent the
drawing origins of the standard cells�for the D flip-flops they are shifted to the
left and below the logic cell bottom left-hand corner. The large box surrounding
all the logic cells represents the estimated chip size. (This is a screen shot from
Cadence Cell Ensemble.)

FIGURE 16.2 The Viterbi Decoder (from Figure 16.1) after floorplanning and
placement. There are 18 rows of standard cells separated by 17 horizontal
channels (labeled 2�18). The channels are routed as numbered. In this example,
the I/O pads are omitted to show the cell placement more clearly. Figure 17.1
shows the same placement without the channel labels. (A screen shot from
Cadence Cell Ensemble.)

16.1 Floorplanning
Figure 16.3 shows that both interconnect delay and gate delay decrease as we
scale down feature sizes�but at different rates. This is because interconnect
capacitance tends to a limit of about 2 pFcm �1 for a minimum-width wire while
gate delay continues to decrease (see Section 17.4, �Circuit Extraction and DRC�).
Floorplanning allows us to predict this interconnect delay by estimating
interconnect length.

FIGURE 16.3 Interconnect
and gate delays. As feature
sizes decrease, both average
interconnect delay and
average gate delay decrease
�but at different rates. This is
because interconnect
capacitance tends to a limit
that is independent of
scaling. Interconnect delay
now dominates gate delay.

16.1.1 Floorplanning Goals and
Objectives
The input to a floorplanning tool is a hierarchical netlist that describes the
interconnection of the blocks (RAM, ROM, ALU, cache controller, and so on);
the logic cells (NAND, NOR, D flip-flop, and so on) within the blocks; and the
logic cell connectors (the terms terminals , pins , or ports mean the same thing as
connectors). The netlist is a logical description of the ASIC; the floorplan is a
physical description of an ASIC. Floorplanning is thus a mapping between the
logical description (the netlist) and the physical description (the floorplan).

The goals of floorplanning are to:

arrange the blocks on a chip,●

decide the location of the I/O pads,●

decide the location and number of the power pads,●

decide the type of power distribution, and●

decide the location and type of clock distribution.●

The objectives of floorplanning are to minimize the chip area and minimize
delay. Measuring area is straightforward, but measuring delay is more difficult
and we shall explore this next.

16.1.2 Measurement of Delay in
Floorplanning
Throughout the ASIC design process we need to predict the performance of the
final layout. In floorplanning we wish to predict the interconnect delay before we
complete any routing. Imagine trying to predict how long it takes to get from
Russia to China without knowing where in Russia we are or where our
destination is in China. Actually it is worse, because in floorplanning we may
move Russia or China.

To predict delay we need to know the parasitics associated with interconnect: the
interconnect capacitance (wiring capacitance or routing capacitance) as well as
the interconnect resistance. At the floorplanning stage we know only the fanout (
FO) of a net (the number of gates driven by a net) and the size of the block that
the net belongs to. We cannot predict the resistance of the various pieces of the
interconnect path since we do not yet know the shape of the interconnect for a
net. However, we can estimate the total length of the interconnect and thus
estimate the total capacitance. We estimate interconnect length by collecting
statistics from previously routed chips and analyzing the results. From these
statistics we create tables that predict the interconnect capacitance as a function
of net fanout and block size. A floorplanning tool can then use these
predicted-capacitance tables (also known as interconnect-load tables or wire-load
tables). Figure 16.4 shows how we derive and use wire-load tables and illustrates
the following facts:

FIGURE 16.4 Predicted capacitance. (a) Interconnect lengths as a function of
fanout (FO) and circuit-block size. (b) Wire-load table. There is only one
capacitance value for each fanout (typically the average value). (c) The
wire-load table predicts the capacitance and delay of a net (with a considerable
error). Net A and net B both have a fanout of 1, both have the same predicted net
delay, but net B in fact has a much greater delay than net A in the actual layout
(of course we shall not know what the actual layout is until much later in the
design process).

Typically between 60 and 70 percent of nets have a FO = 1.●

The distribution for a FO = 1 has a very long tail, stretching to
interconnects that run from corner to corner of the chip.

●

The distribution for a FO = 1 often has two peaks, corresponding to a
distribution for close neighbors in subgroups within a block, superimposed
on a distribution corresponding to routing between subgroups.

●

We often see a twin-peaked distribution at the chip level also,
corresponding to separate distributions for interblock routing (inside
blocks) and intrablock routing (between blocks).

●

The distributions for FO > 1 are more symmetrical and flatter than for FO
= 1.

●

The wire-load tables can only contain one number, for example the average
net capacitance, for any one distribution. Many tools take a worst-case
approach and use the 80- or 90-percentile point instead of the average.

●

Thus a tool may use a predicted capacitance for which we know 90 percent
of the nets will have less than the estimated capacitance.

We need to repeat the statistical analysis for blocks with different sizes.
For example, a net with a FO = 1 in a 25 k-gate block will have a different
(larger) average length than if the net were in a 5 k-gate block.

●

The statistics depend on the shape (aspect ratio) of the block (usually the
statistics are only calculated for square blocks).

●

The statistics will also depend on the type of netlist. For example, the
distributions will be different for a netlist generated by setting a constraint
for minimum logic delay during synthesis�which tends to generate large
numbers of two-input NAND gates�than for netlists generated using
minimum-area constraints.

●

There are no standards for the wire-load tables themselves, but there are some
standards for their use and for presenting the extracted loads (see Section 16.4).
Wire-load tables often present loads in terms of a standard load that is usually the
input capacitance of a two-input NAND gate with a 1X (default) drive strength.

TABLE 16.1 A wire-load table showing average interconnect lengths (mm). 1

 Fanout
Array (available gates) Chip size (mm) 1 2 4
3 k 3.45 0.56 0.85 1.46
11 k 5.11 0.84 1.34 2.25
105 k 12.50 1.75 2.70 4.92

Table 16.1 shows the estimated metal interconnect lengths, as a function of die
size and fanout, for a series of three-level metal gate arrays. In this case the
interconnect capacitance is about 2 pFcm �1 , a typical figure.

Figure 16.5 shows that, because we do not decrease chip size as we scale down
feature size, the worst-case interconnect delay increases. One way to measure the
worst-case delay uses an interconnect that completely crosses the chip, a
coast-to-coast interconnect . In certain cases the worst-case delay of a 0.25 m m
process may be worse than a 0.35 m m process, for example.

FIGURE 16.5
Worst-case
interconnect delay.
As we scale circuits,
but avoid scaling the
chip size, the
worst-case
interconnect delay
increases.

16.1.3 Floorplanning Tools
Figure 16.6 (a) shows an initial random floorplan generated by a floorplanning
tool. Two of the blocks, A and C in this example, are standard-cell areas (the chip
shown in Figure 16.1 is one large standard-cell area). These are flexible blocks
(or variable blocks) because, although their total area is fixed, their shape (aspect
ratio) and connector locations may be adjusted during the placement step. The
dimensions and connector locations of the other fixed blocks (perhaps RAM,
ROM, compiled cells, or megacells) can only be modified when they are created.
We may force logic cells to be in selected flexible blocks by seeding . We choose
seed cells by name. For example, ram_control* would select all logic cells whose
names started with ram_control to be placed in one flexible block. The special
symbol, usually ' * ', is a wildcard symbol . Seeding may be hard or soft. A hard
seed is fixed and not allowed to move during the remaining floorplanning and
placement steps. A soft seed is an initial suggestion only and can be altered if
necessary by the floorplanner. We may also use seed connectors within flexible
blocks�forcing certain nets to appear in a specified order, or location at the
boundary of a flexible block.

FIGURE 16.6 Floorplanning a cell-based ASIC. (a) Initial floorplan generated
by the floorplanning tool. Two of the blocks are flexible (A and C) and contain
rows of standard cells (unplaced). A pop-up window shows the status of block
A. (b) An estimated placement for flexible blocks A and C. The connector
positions are known and a rat�s nest display shows the heavy congestion below
block B. (c) Moving blocks to improve the floorplan. (d) The updated display
shows the reduced congestion after the changes.

The floorplanner can complete an estimated placement to determine the positions
of connectors at the boundaries of the flexible blocks. Figure 16.6 (b) illustrates a
rat's nest display of the connections between blocks. Connections are shown as
bundles between the centers of blocks or as flight lines between connectors.
Figure 16.6 (c) and (d) show how we can move the blocks in a floorplanning tool
to minimize routing congestion .

We need to control the aspect ratio of our floorplan because we have to fit our
chip into the die cavity (a fixed-size hole, usually square) inside a package.
Figure 16.7 (a)�(c) show how we can rearrange our chip to achieve a square
aspect ratio. Figure 16.7 (c) also shows a congestion map , another form of
routability display. There is no standard measure of routability. Generally the
interconnect channels , (or wiring channels�I shall call them channels from now
on) have a certain channel capacity ; that is, they can handle only a fixed number
of interconnects. One measure of congestion is the difference between the
number of interconnects that we actually need, called the channel density , and
the channel capacity. Another measure, shown in Figure 16.7 (c), uses the ratio of

channel density to the channel capacity. With practice, we can create a good
initial placement by floorplanning and a pictorial display. This is one area where
the human ability to recognize patterns and spatial relations is currently superior
to a computer program�s ability.

FIGURE 16.7 Congestion analysis. (a) The initial floorplan with a 2:1.5 die
aspect ratio. (b) Altering the floorplan to give a 1:1 chip aspect ratio. (c) A trial
floorplan with a congestion map. Blocks A and C have been placed so that we
know the terminal positions in the channels. Shading indicates the ratio of
channel density to the channel capacity. Dark areas show regions that cannot be
routed because the channel congestion exceeds the estimated capacity.
(d) Resizing flexible blocks A and C alleviates congestion.

FIGURE 16.8 Routing a T-junction between two channels in two-level metal.
The dots represent logic cell pins. (a) Routing channel A (the stem of the T) first
allows us to adjust the width of channel B. (b) If we route channel B first (the
top of the T), this fixes the width of channel A. We have to route the stem of a
T-junction before we route the top.

16.1.4 Channel Definition
During the floorplanning step we assign the areas between blocks that are to be
used for interconnect. This process is known as channel definition or channel
allocation . Figure 16.8 shows a T-shaped junction between two rectangular
channels and illustrates why we must route the stem (vertical) of the T before the
bar. The general problem of choosing the order of rectangular channels to route is
channel ordering .

FIGURE 16.9 Defining the channel routing order for a slicing floorplan using a
slicing tree. (a) Make a cut all the way across the chip between circuit blocks.
Continue slicing until each piece contains just one circuit block. Each cut divides
a piece into two without cutting through a circuit block. (b) A sequence of cuts:
1, 2, 3, and 4 that successively slices the chip until only circuit blocks are left.
(c) The slicing tree corresponding to the sequence of cuts gives the order in
which to route the channels: 4, 3, 2, and finally 1.

Figure 16.9 shows a floorplan of a chip containing several blocks. Suppose we
cut along the block boundaries slicing the chip into two pieces (Figure 16.9 a).
Then suppose we can slice each of these pieces into two. If we can continue in
this fashion until all the blocks are separated, then we have a slicing floorplan (
Figure 16.9 b). Figure 16.9 (c) shows how the sequence we use to slice the chip
defines a hierarchy of the blocks. Reversing the slicing order ensures that we
route the stems of all the channel T-junctions first.

FIGURE 16.10 Cyclic constraints. (a) A nonslicing floorplan with a cyclic
constraint that prevents channel routing. (b) In this case it is difficult to find a
slicing floorplan without increasing the chip area. (c) This floorplan may be
sliced (with initial cuts 1 or 2) and has no cyclic constraints, but it is inefficient
in area use and will be very difficult to route.

Figure 16.10 shows a floorplan that is not a slicing structure. We cannot cut the
chip all the way across with a knife without chopping a circuit block in two. This
means we cannot route any of the channels in this floorplan without routing all of
the other channels first. We say there is a cyclic constraint in this floorplan. There
are two solutions to this problem. One solution is to move the blocks until we
obtain a slicing floorplan. The other solution is to allow the use of L -shaped,
rather than rectangular, channels (or areas with fixed connectors on all sides�a
switch box). We need an area-based router rather than a channel router to route L
-shaped regions or switch boxes (see Section 17.2.6, �Area-Routing Algorithms�).

Figure 16.11 (a) displays the floorplan of the ASIC shown in Figure 16.7 . We
can remove the cyclic constraint by moving the blocks again, but this increases
the chip size. Figure 16.11 (b) shows an alternative solution. We merge the
flexible standard cell areas A and C. We can do this by selective flattening of the
netlist. Sometimes flattening can reduce the routing area because routing between
blocks is usually less efficient than routing inside the row-based blocks.
Figure 16.11 (b) shows the channel definition and routing order for our chip.

FIGURE 16.11 Channel definition and ordering. (a) We can eliminate the cyclic
constraint by merging the blocks A and C. (b) A slicing structure.

16.1.5 I/O and Power Planning
Every chip communicates with the outside world. Signals flow onto and off the
chip and we need to supply power. We need to consider the I/O and power
constraints early in the floorplanning process. A silicon chip or die (plural die,
dies, or dice) is mounted on a chip carrier inside a chip package . Connections are
made by bonding the chip pads to fingers on a metal lead frame that is part of the
package. The metal lead-frame fingers connect to the package pins . A die
consists of a logic core inside a pad ring . Figure 16.12 (a) shows a pad-limited
die and Figure 16.12 (b) shows a core-limited die . On a pad-limited die we use
tall, thin pad-limited pads , which maximize the number of pads we can fit
around the outside of the chip. On a core-limited die we use short, wide
core-limited pads . Figure 16.12 (c) shows how we can use both types of pad to
change the aspect ratio of a die to be different from that of the core.

FIGURE 16.12 Pad-limited and core-limited die. (a) A pad-limited die. The
number of pads determines the die size. (b) A core-limited die: The core logic
determines the die size. (c) Using both pad-limited pads and core-limited pads
for a square die.

Special power pads are used for the positive supply, or VDD, power buses (or
power rails) and the ground or negative supply, VSS or GND. Usually one set of
VDD/VSS pads supplies one power ring that runs around the pad ring and
supplies power to the I/O pads only. Another set of VDD/VSS pads connects to a
second power ring that supplies the logic core. We sometimes call the I/O power
dirty power since it has to supply large transient currents to the output transistors.
We keep dirty power separate to avoid injecting noise into the internal-logic
power (the clean power). I/O pads also contain special circuits to protect against
electrostatic discharge (ESD). These circuits can withstand very short
high-voltage (several kilovolt) pulses that can be generated during human or
machine handling.

Depending on the type of package and how the foundry attaches the silicon die to

the chip cavity in the chip carrier, there may be an electrical connection between
the chip carrier and the die substrate. Usually the die is cemented in the chip
cavity with a conductive epoxy, making an electrical connection between
substrate and the package cavity in the chip carrier. If we make an electrical
connection between the substrate and a chip pad, or to a package pin, it must be
to VDD (n -type substrate) or VSS (p -type substrate). This substrate connection
(for the whole chip) employs a down bond (or drop bond) to the carrier. We have
several options:

We can dedicate one (or more) chip pad(s) to down bond to the chip
carrier.

●

We can make a connection from a chip pad to the lead frame and down
bond from the chip pad to the chip carrier.

●

We can make a connection from a chip pad to the lead frame and down
bond from the lead frame.

●

We can down bond from the lead frame without using a chip pad.●

We can leave the substrate and/or chip carrier unconnected.●

Depending on the package design, the type and positioning of down bonds may
be fixed. This means we need to fix the position of the chip pad for down
bonding using a pad seed .

A double bond connects two pads to one chip-carrier finger and one package pin.
We can do this to save package pins or reduce the series inductance of bond
wires (typically a few nanohenries) by parallel connection of the pads. A
multiple-signal pad or pad group is a set of pads. For example, an oscillator pad
usually comprises a set of two adjacent pads that we connect to an external
crystal. The oscillator circuit and the two signal pads form a single logic cell.
Another common example is a clock pad . Some foundries allow a special form
of corner pad (normal pads are edge pads) that squeezes two pads into the area at
the corners of a chip using a special two-pad corner cell , to help meet bond-wire
angle design rules (see also Figure 16.13 b and c).

To reduce the series resistive and inductive impedance of power supply networks,
it is normal to use multiple VDD and VSS pads. This is particularly important
with the simultaneously switching outputs (SSOs) that occur when driving buses
off-chip [Wada, Eino, and Anami, 1990]. The output pads can easily consume
most of the power on a CMOS ASIC, because the load on a pad (usually tens of
picofarads) is much larger than typical on-chip capacitive loads. Depending on
the technology it may be necessary to provide dedicated VDD and VSS pads for
every few SSOs. Design rules set how many SSOs can be used per VDD/VSS
pad pair. These dedicated VDD/VSS pads must �follow� groups of output pads as
they are seeded or planned on the floorplan. With some chip packages this can
become difficult because design rules limit the location of package pins that may
be used for supplies (due to the differing series inductance of each pin).

Using a pad mapping we translate the logical pad in a netlist to a physical pad

from a pad library . We might control pad seeding and mapping in the
floorplanner. The handling of I/O pads can become quite complex; there are
several nonobvious factors that must be considered when generating a pad ring:

Ideally we would only need to design library pad cells for one orientation.
For example, an edge pad for the south side of the chip, and a corner pad
for the southeast corner. We could then generate other orientations by
rotation and flipping (mirroring). Some ASIC vendors will not allow
rotation or mirroring of logic cells in the mask file. To avoid these
problems we may need to have separate horizontal, vertical, left-handed,
and right-handed pad cells in the library with appropriate logical to
physical pad mappings.

●

If we mix pad-limited and core-limited edge pads in the same pad ring, this
complicates the design of corner pads. Usually the two types of edge pad
cannot abut. In this case a corner pad also becomes a pad-format changer ,
or hybrid corner pad .

●

In single-supply chips we have one VDD net and one VSS net, both global
power nets . It is also possible to use mixed power supplies (for example,
3.3 V and 5 V) or multiple power supplies (digital VDD, analog VDD).

●

Figure 16.13 (a) and (b) are magnified views of the southeast corner of our
example chip and show the different types of I/O cells. Figure 16.13 (c) shows a
stagger-bond arrangement using two rows of I/O pads. In this case the design
rules for bond wires (the spacing and the angle at which the bond wires leave the
pads) become very important.

FIGURE 16.13 Bonding pads. (a) This chip uses both pad-limited and
core-limited pads. (b) A hybrid corner pad. (c) A chip with stagger-bonded pads.
(d) An area-bump bonded chip (or flip-chip). The chip is turned upside down
and solder bumps connect the pads to the lead frame.

Figure 16.13 (d) shows an area-bump bonding arrangement (also known as
flip-chip, solder-bump or C4, terms coined by IBM who developed this
technology [Masleid, 1991]) used, for example, with ball-grid array (BGA)
packages. Even though the bonding pads are located in the center of the chip, the
I/O circuits are still often located at the edges of the chip because of difficulties
in power supply distribution and integrating I/O circuits together with logic in the
center of the die.

In an MGA the pad spacing and I/O-cell spacing is fixed�each pad occupies a
fixed pad slot (or pad site). This means that the properties of the pad I/O are also
fixed but, if we need to, we can parallel adjacent output cells to increase the
drive. To increase flexibility further the I/O cells can use a separation, the
I/O-cell pitch , that is smaller than the pad pitch . For example, three 4 mA driver
cells can occupy two pad slots. Then we can use two 4 mA output cells in parallel
to drive one pad, forming an 8 mA output pad as shown in Figure 16.14 . This
arrangement also means the I/O pad cells can be changed without changing the

base array. This is useful as bonding techniques improve and the pads can be
moved closer together.

FIGURE 16.14 Gate-array I/O pads. (a) Cell-based ASICs may contain pad
cells of different sizes and widths. (b) A corner of a gate-array base. (c) A
gate-array base with different I/O cell and pad pitches.

FIGURE 16.15 Power distribution. (a) Power distributed using m1 for VSS and
m2 for VDD. This helps minimize the number of vias and layer crossings needed
but causes problems in the routing channels. (b) In this floorplan m1 is run
parallel to the longest side of all channels, the channel spine. This can make
automatic routing easier but may increase the number of vias and layer
crossings. (c) An expanded view of part of a channel (interconnect is shown as
lines). If power runs on different layers along the spine of a channel, this forces
signals to change layers. (d) A closeup of VDD and VSS buses as they cross.
Changing layers requires a large number of via contacts to reduce resistance.

Figure 16.15 shows two possible power distribution schemes. The long direction
of a rectangular channel is the channel spine . Some automatic routers may
require that metal lines parallel to a channel spine use a preferred layer (either
m1, m2, or m3). Alternatively we say that a particular metal layer runs in a
preferred direction . Since we can have both horizontal and vertical channels, we
may have the situation shown in Figure 16.15 , where we have to decide whether
to use a preferred layer or the preferred direction for some channels. This may or
may not be handled automatically by the routing software.

16.1.6 Clock Planning
Figure 16.16 (a) shows a clock spine (not to be confused with a channel spine)
routing scheme with all clock pins driven directly from the clock driver. MGAs
and FPGAs often use this fish bone type of clock distribution scheme.
Figure 16.16 (b) shows a clock spine for a cell-based ASIC. Figure 16.16 (c)
shows the clock-driver cell, often part of a special clock-pad cell. Figure 16.16
(d) illustrates clock skew and clock latency . Since all clocked elements are
driven from one net with a clock spine, skew is caused by differing interconnect
lengths and loads. If the clock-driver delay is much larger than the interconnect
delays, a clock spine achieves minimum skew but with long latency.

FIGURE 16.16 Clock distribution. (a) A clock spine for a gate array. (b) A
clock spine for a cell-based ASIC (typical chips have thousands of clock nets).
(c) A clock spine is usually driven from one or more clock-driver cells. Delay in
the driver cell is a function of the number of stages and the ratio of output to
input capacitance for each stage (taper). (d) Clock latency and clock skew. We
would like to minimize both latency and skew.

Clock skew represents a fraction of the clock period that we cannot use for
computation. A clock skew of 500 ps with a 200 MHz clock means that we waste
500 ps of every 5 ns clock cycle, or 10 percent of performance. Latency can
cause a similar loss of performance at the system level when we need to
resynchronize our output signals with a master system clock.

Figure 16.16 (c) illustrates the construction of a clock-driver cell. The delay
through a chain of CMOS gates is minimized when the ratio between the input
capacitance C 1 and the output (load) capacitance C 2 is about 3 (exactly e ª 2.7,
an exponential ratio, if we neglect the effect of parasitics). This means that the
fastest way to drive a large load is to use a chain of buffers with their input and
output loads chosen to maintain this ratio, or taper (we use this as a noun and a
verb). This is not necessarily the smallest or lowest-power method, though.

Suppose we have an ASIC with the following specifications:

40,000 flip-flops●

Input capacitance of the clock input to each flip-flop is 0.025 pF●

Clock frequency is 200 MHz●

V DD = 3.3 V●

Chip size is 20 mm on a side●

Clock spine consists of 200 lines across the chip●

Interconnect capacitance is 2 pFcm �1●

In this case the clock-spine capacitance C L = 200 ¥ 2 cm ¥ 2 pFcm �1 = 800 pF.
If we drive the clock spine with a chain of buffers with taper equal to e ª 2.7, and
with a first-stage input capacitance of 0.025 pF (a reasonable value for a 0.5 m m
process), we will need

 800 ¥ 10 �12

 log ����������� or 11 stages. (16.1)

 0.025 ¥ 10 �12

The power dissipated charging the input capacitance of the flip-flop clock is fCV
2 or

P 1 1 = (4 ¥ 10 4) (200 MHz) (0.025 pF) (3.3 V) 2 = 2.178 W . (16.2)

or approximately 2 W. This is only a little larger than the power dissipated
driving the 800 pF clock-spine interconnect that we can calculate as follows:

P 2 1 = (200) (200 MHz) (20 mm) (2 pFcm �1)(3.3 V) 2 = 1.7424 W . (16.3)

All of this power is dissipated in the clock-driver cell. The worst problem,
however, is the enormous peak current in the final inverter stage. If we assume
the needed rise time is 0.1 ns (with a 200 MHz clock whose period is 5 ns), the
peak current would have to approach

 (800 pF) (3.3 V)
I = ������������� ª 25 A . (16.4)
 0.1 ns

Clearly such a current is not possible without extraordinary design techniques.
Clock spines are used to drive loads of 100�200 pF but, as is apparent from the
power dissipation problems of this example, it would be better to find a way to
spread the power dissipation more evenly across the chip.

We can design a tree of clock buffers so that the taper of each stage is e • 2.7 by
using a fanout of three at each node, as shown in Figure 16.17 (a) and (b). The
clock tree , shown in Figure 16.17 (c), uses the same number of stages as a clock
spine, but with a lower peak current for the inverter buffers. Figure 16.17 (c)
illustrates that we now have another problem�we need to balance the delays
through the tree carefully to minimize clock skew (see Section 17.3.1, �Clock
Routing�).

FIGURE 16.17 A clock tree. (a) Minimum delay is achieved when the taper of
successive stages is about 3. (b) Using a fanout of three at successive nodes.
(c) A clock tree for the cell-based ASIC of Figure 16.16 b. We have to balance
the clock arrival times at all of the leaf nodes to minimize clock skew.

Designing a clock tree that balances the rise and fall times at the leaf nodes has
the beneficial side-effect of minimizing the effect of hot-electron wearout . This
problem occurs when an electron gains enough energy to become �hot� and jump
out of the channel into the gate oxide (the problem is worse for electrons in n
-channel devices because electrons are more mobile than holes). The trapped
electrons change the threshold voltage of the device and this alters the delay of
the buffers. As the buffer delays change with time, this introduces unpredictable
skew. The problem is worst when the n -channel device is carrying maximum
current with a high voltage across the channel�this occurs during the rise-and
fall-time transitions. Balancing the rise and fall times in each buffer means that
they all wear out at the same rate, minimizing any additional skew.

A phase-locked loop (PLL) is an electronic flywheel that locks in frequency to
an input clock signal. The input and output frequencies may differ in phase,
however. This means that we can, for example, drive a clock network with a PLL
in such a way that the output of the clock network is locked in phase to the
incoming clock, thus eliminating the latency of the clock network . A PLL can
also help to reduce random variation of the input clock frequency, known as jitter
, which, since it is unpredictable, must also be discounted from the time available
for computation in each clock cycle. Actel was one of the first FPGA vendors to
incorporate PLLs, and Actel�s online product literature explains their use in ASIC
design.

1. Interconnect lengths are derived from interconnect capacitance data.
Interconnect capacitance is 2 pFcm �1 .

16.2 Placement
After completing a floorplan we can begin placement of the logic cells within the
flexible blocks. Placement is much more suited to automation than floorplanning.
Thus we shall need measurement techniques and algorithms. After we complete
floorplanning and placement, we can predict both intrablock and interblock
capacitances. This allows us to return to logic synthesis with more accurate estimates
of the capacitive loads that each logic cell must drive.

16.2.1 Placement Terms and Definitions
CBIC, MGA, and FPGA architectures all have rows of logic cells separated by the
interconnect�these are row-based ASICs . Figure 16.18 shows an example of the
interconnect structure for a CBIC. Interconnect runs in horizontal and vertical
directions in the channels and in the vertical direction by crossing through the logic
cells. Figure 16.18 (c) illustrates the fact that it is possible to use over-the-cell routing
(OTC routing) in areas that are not blocked. However, OTC routing is complicated by
the fact that the logic cells themselves may contain metal on the routing layers. We
shall return to this topic in Section 17.2.7, �Multilevel Routing.� Figure 16.19 shows
the interconnect structure of a two-level metal MGA.

FIGURE 16.18 Interconnect structure. (a) The two-level metal CBIC floorplan
shown in Figure 16.11 b. (b) A channel from the flexible block A. This channel has a
channel height equal to the maximum channel density of 7 (there is room for seven
interconnects to run horizontally in m1). (c) A channel that uses OTC (over-the-cell)
routing in m2.

Most ASICs currently use two or three levels of metal for signal routing. With two
layers of metal, we route within the rectangular channels using the first metal layer for
horizontal routing, parallel to the channel spine, and the second metal layer for the
vertical direction (if there is a third metal layer it will normally run in the horizontal
direction again). The maximum number of horizontal interconnects that can be placed
side by side, parallel to the channel spine, is the channel capacity .

FIGURE 16.19 Gate-array interconnect. (a) A small two-level metal gate array
(about 4.6 k-gate). (b) Routing in a block. (c) Channel routing showing channel
density and channel capacity. The channel height on a gate array may only be
increased in increments of a row. If the interconnect does not use up all of the
channel, the rest of the space is wasted. The interconnect in the channel runs in m1 in
the horizontal direction with m2 in the vertical direction.

Vertical interconnect uses feedthroughs (or feedthrus in the United States) to cross the
logic cells. Here are some commonly used terms with explanations (there are no
generally accepted definitions):

An unused vertical track (or just track) in a logic cell is called an uncommitted
feedthrough (also built-in feedthrough , implicit feedthrough , or jumper).

●

A vertical strip of metal that runs from the top to bottom of a cell (for
double-entry cells), but has no connections inside the cell, is also called a
feedthrough or jumper.

●

Two connectors for the same physical net are electrically equivalent connectors
(or equipotential connectors). For double-entry cells these are usually at the top
and bottom of the logic cell.

●

A dedicated feedthrough cell (or crosser cell) is an empty cell (with no logic)
that can hold one or more vertical interconnects. These are used if there are no
other feedthroughs available.

●

A feedthrough pin or feedthrough terminal is an input or output that has
connections at both the top and bottom of the standard cell.

●

A spacer cell (usually the same as a feedthrough cell) is used to fill space in
rows so that the ends of all rows in a flexible block may be aligned to connect
to power buses, for example.

●

There is no standard terminology for connectors and the terms can be very confusing.
There is a difference between connectors that are joined inside the logic cell using a
high-resistance material such as polysilicon and connectors that are joined by
low-resistance metal. The high-resistance kind are really two separate alternative
connectors (that cannot be used as a feedthrough), whereas the low-resistance kind are
electrically equivalent connectors. There may be two or more connectors to a logic
cell, which are not joined inside the cell, and which must be joined by the router (
must-join connectors).

There are also logically equivalent connectors (or functionally equivalent connectors,
sometimes also called just equivalent connectors�which is very confusing). The two
inputs of a two-input NAND gate may be logically equivalent connectors. The
placement tool can swap these without altering the logic (but the two inputs may have
different delay properties, so it is not always a good idea to swap them). There can
also be logically equivalent connector groups . For example, in an OAI22
(OR-AND-INVERT) gate there are four inputs: A1, A2 are inputs to one OR gate
(gate A), and B1, B2 are inputs to the second OR gate (gate B). Then group A = (A1,
A2) is logically equivalent to group B = (B1, B2)�if we swap one input (A1 or A2)
from gate A to gate B, we must swap the other input in the group (A2 or A1).

In the case of channeled gate arrays and FPGAs, the horizontal interconnect areas�the
channels, usually on m1�have a fixed capacity (sometimes they are called
fixed-resource ASICs for this reason). The channel capacity of CBICs and channelless
MGAs can be expanded to hold as many interconnects as are needed. Normally we
choose, as an objective, to minimize the number of interconnects that use each
channel. In the vertical interconnect direction, usually m2, FPGAs still have fixed
resources. In contrast the placement tool can always add vertical feedthroughs to a
channeled MGA, channelless MGA, or CBIC. These problems become less important
as we move to three and more levels of interconnect.

16.2.2 Placement Goals and Objectives
The goal of a placement tool is to arrange all the logic cells within the flexible blocks
on a chip. Ideally, the objectives of the placement step are to

Guarantee the router can complete the routing step●

Minimize all the critical net delays●

Make the chip as dense as possible●

We may also have the following additional objectives:

Minimize power dissipation●

Minimize cross talk between signals●

Objectives such as these are difficult to define in a way that can be solved with an
algorithm and even harder to actually meet. Current placement tools use more specific
and achievable criteria. The most commonly used placement objectives are one or
more of the following:

Minimize the total estimated interconnect length●

Meet the timing requirements for critical nets●

Minimize the interconnect congestion●

Each of these objectives in some way represents a compromise.

16.2.3 Measurement of Placement Goals
and Objectives
In order to determine the quality of a placement, we need to be able to measure it. We
need an approximate measure of interconnect length, closely correlated with the final
interconnect length, that is easy to calculate.

The graph structures that correspond to making all the connections for a net are
known as trees on graphs (or just trees). Special classes of trees� Steiner trees
�minimize the total length of interconnect and they are central to ASIC routing
algorithms. Figure 16.20 shows a minimum Steiner tree. This type of tree uses
diagonal connections�we want to solve a restricted version of this problem, using
interconnects on a rectangular grid. This is called rectilinear routing or Manhattan
routing (because of the east�west and north�south grid of streets in Manhattan). We say
that the Euclidean distance between two points is the straight-line distance (�as the
crow flies�). The Manhattan distance (or rectangular distance) between two points is
the distance we would have to walk in New York.

FIGURE 16.20 Placement using trees on graphs. (a) The floorplan from Figure 16.11
b. (b) An expanded view of the flexible block A showing four rows of standard cells
for placement (typical blocks may contain thousands or tens of thousands of logic
cells). We want to find the length of the net shown with four terminals, W through Z,
given the placement of four logic cells (labeled: A.211, A.19, A.43, A.25). (c) The
problem for net (W, X, Y, Z) drawn as a graph. The shortest connection is the
minimum Steiner tree. (d) The minimum rectilinear Steiner tree using Manhattan
routing. The rectangular (Manhattan) interconnect-length measures are shown for
each tree.

The minimum rectilinear Steiner tree (MRST) is the shortest interconnect using a
rectangular grid. The determination of the MRST is in general an NP-complete
problem�which means it is hard to solve. For small numbers of terminals heuristic
algorithms do exist, but they are expensive to compute. Fortunately we only need to
estimate the length of the interconnect. Two approximations to the MRST are shown
in Figure 16.21 .

The complete graph has connections from each terminal to every other terminal [
Hanan, Wolff, and Agule, 1973]. The complete-graph measure adds all the
interconnect lengths of the complete-graph connection together and then divides by n
/2, where n is the number of terminals. We can justify this since, in a graph with n
terminals, (n � 1) interconnects will emanate from each terminal to join the other (n �
1) terminals in a complete graph connection. That makes n (n � 1) interconnects in
total. However, we have then made each connection twice. So there are one-half this
many, or n (n � 1)/2, interconnects needed for a complete graph connection. Now we
actually only need (n � 1) interconnects to join n terminals, so we have n /2 times as
many interconnects as we really need. Hence we divide the total net length of the
complete graph connection by n /2 to obtain a more reasonable estimate of minimum
interconnect length. Figure 16.21 (a) shows an example of the complete-graph
measure.

FIGURE 16.21 Interconnect-length
measures. (a) Complete-graph
measure. (b) Half-perimeter measure.

The bounding box is the smallest rectangle that encloses all the terminals (not to be
confused with a logic cell bounding box, which encloses all the layout in a logic cell).
The half-perimeter measure (or bounding-box measure) is one-half the perimeter of
the bounding box (Figure 16.21 b) [Schweikert, 1976]. For nets with two or three
terminals (corresponding to a fanout of one or two, which usually includes over 50
percent of all nets on a chip), the half-perimeter measure is the same as the minimum
Steiner tree. For nets with four or five terminals, the minimum Steiner tree is between
one and two times the half-perimeter measure [Hanan, 1966]. For a circuit with m
nets, using the half-perimeter measure corresponds to minimizing the cost function,

 1 m

f = �� S h i , (16.5)

 2 i = 1

where h i is the half-perimeter measure for net i .

It does not really matter if our approximations are inaccurate if there is a good
correlation between actual interconnect lengths (after routing) and our
approximations. Figure 16.22 shows that we can adjust the complete-graph and
half-perimeter measures using correction factors [Goto and Matsuda, 1986]. Now our
wiring length approximations are functions, not just of the terminal positions, but also
of the number of terminals, and the size of the bounding box. One practical example
adjusts a Steiner-tree approximation using the number of terminals [Chao, Nequist,
and Vuong, 1990]. This technique is used in the Cadence Gate Ensemble placement
tool, for example.

FIGURE 16.22 Correlation between total length
of chip interconnect and the half-perimeter and
complete-graph measures.

One problem with the measurements we have described is that the MRST may only
approximate the interconnect that will be completed by the detailed router. Some
programs have a meander factor that specifies, on average, the ratio of the
interconnect created by the routing tool to the interconnect-length estimate used by the
placement tool. Another problem is that we have concentrated on finding estimates to
the MRST, but the MRST that minimizes total net length may not minimize net delay
(see Section 16.2.8).

There is no point in minimizing the interconnect length if we create a placement that
is too congested to route. If we use minimum interconnect congestion as an additional
placement objective, we need some way of measuring it. What we are trying to
measure is interconnect density. Unfortunately we always use the term density to
mean channel density (which we shall discuss in Section 17.2.2, �Measurement of
Channel Density�). In this chapter, while we are discussing placement, we shall try to
use the term congestion , instead of density, to avoid any confusion.

One measure of interconnect congestion uses the maximum cut line . Imagine a
horizontal or vertical line drawn anywhere across a chip or block, as shown in
Figure 16.23 . The number of interconnects that must cross this line is the cut size (the
number of interconnects we cut). The maximum cut line has the highest cut size.

FIGURE 16.23 Interconnect congestion for the cell-based ASIC from Figure 16.11
(b). (a) Measurement of congestion. (b) An expanded view of flexible block A shows
a maximum cut line.

Many placement tools minimize estimated interconnect length or interconnect
congestion as objectives. The problem with this approach is that a logic cell may be
placed a long way from another logic cell to which it has just one connection. This
logic cell with one connection is less important as far as the total wire length is
concerned than other logic cells, to which there are many connections. However, the
one long connection may be critical as far as timing delay is concerned. As technology
is scaled, interconnection delays become larger relative to circuit delays and this
problem gets worse.

In timing-driven placement we must estimate delay for every net for every trial
placement, possibly for hundreds of thousands of gates. We cannot afford to use
anything other than the very simplest estimates of net delay. Unfortunately, the
minimum-length Steiner tree does not necessarily correspond to the interconnect path
that minimizes delay. To construct a minimum-delay path we may have to route with
non-Steiner trees. In the placement phase typically we take a simple
interconnect-length approximation to this minimum-delay path (typically the
half-perimeter measure). Even when we can estimate the length of the interconnect,
we do not yet have information on which layers and how many vias the interconnect
will use or how wide it will be. Some tools allow us to include estimates for these
parameters. Often we can specify metal usage , the percentage of routing on the
different layers to expect from the router. This allows the placement tool to estimate
RC values and delays�and thus minimize delay.

16.2.4 Placement Algorithms
There are two classes of placement algorithms commonly used in commercial CAD
tools: constructive placement and iterative placement improvement. A constructive
placement method uses a set of rules to arrive at a constructed placement. The most
commonly used methods are variations on the min-cut algorithm . The other
commonly used constructive placement algorithm is the eigenvalue method. As in
system partitioning, placement usually starts with a constructed solution and then
improves it using an iterative algorithm. In most tools we can specify the locations

and relative placements of certain critical logic cells as seed placements .

The min-cut placement method uses successive application of partitioning [Breuer,
1977]. The following steps are shown in Figure 16.24 :

Cut the placement area into two pieces.1.

Swap the logic cells to minimize the cut cost.2.

Repeat the process from step 1, cutting smaller pieces until all the logic cells are
placed.

FIGURE 16.24 Min-cut placement. (a) Divide the chip into bins using a grid.
(b) Merge all connections to the center of each bin. (c) Make a cut and swap
logic cells between bins to minimize the cost of the cut. (d) Take the cut pieces
and throw out all the edges that are not inside the piece. (e) Repeat the process
with a new cut and continue until we reach the individual bins.

3.

Usually we divide the placement area into bins . The size of a bin can vary, from a bin
size equal to the base cell (for a gate array) to a bin size that would hold several logic
cells. We can start with a large bin size, to get a rough placement, and then reduce the
bin size to get a final placement.

The eigenvalue placement algorithm uses the cost matrix or weighted connectivity
matrix (eigenvalue methods are also known as spectral methods) [Hall, 1970]. The
measure we use is a cost function f that we shall minimize, given by

 1 n

f = �� S c ij d ij 2 , (16.6)

 2 i = 1

where C = [c ij] is the (possibly weighted) connectivity matrix, and d ij is the
Euclidean distance between the centers of logic cell i and logic cell j . Since we are
going to minimize a cost function that is the square of the distance between logic

cells, these methods are also known as quadratic placement methods. This type of cost
function leads to a simple mathematical solution. We can rewrite the cost function f in
matrix form:

 1 n

f = �� S c ij (x i � x j) 2 + (y i � y j) 2

 2 i = 1

 = x T Bx + y T By . (16.7)

In Eq. 16.7 , B is a symmetric matrix, the disconnection matrix (also called the
Laplacian).

We may express the Laplacian B in terms of the connectivity matrix C ; and D , a
diagonal matrix (known as the degree matrix), defined as follows:

B = D � C ; (16.8)

 n
d ii = S c ij , i = 1, ... , ni ; d ij = 0, i À j

 i = 1

We can simplify the problem by noticing that it is symmetric in the x - and y
-coordinates. Let us solve the simpler problem of minimizing the cost function for the
placement of logic cells along just the x -axis first. We can then apply this solution to
the more general two-dimensional placement problem. Before we solve this simpler
problem, we introduce a constraint that the coordinates of the logic cells must
correspond to valid positions (the cells do not overlap and they are placed on-grid).
We make another simplifying assumption that all logic cells are the same size and we
must place them in fixed positions. We can define a vector p consisting of the valid
positions:

p = [p 1 , ..., p n] . (16.9)

For a valid placement the x -coordinates of the logic cells,

x = [x 1 , ..., x n] . (16.10)

must be a permutation of the fixed positions, p . We can show that requiring the logic
cells to be in fixed positions in this way leads to a series of n equations restricting the
values of the logic cell coordinates [Cheng and Kuh, 1984]. If we impose all of these
constraint equations the problem becomes very complex. Instead we choose just one
of the equations:

 n n

 S x i 2 = S p i 2 . (16.11)

 i = 1 i = 1

Simplifying the problem in this way will lead to an approximate solution to the

placement problem. We can write this single constraint on the x -coordinates in matrix
form:

 n

 x T x = P ; P = S p i 2 . (16.12)

 i = 1

where P is a constant. We can now summarize the formulation of the problem, with
the simplifications that we have made, for a one-dimensional solution. We must
minimize a cost function, g (analogous to the cost function f that we defined for the
two-dimensional problem in Eq. 16.7), where

g = x T Bx . (16.13)

subject to the constraint:

x T x = P . (16.14)

This is a standard problem that we can solve using a Lagrangian multiplier:

L = x T Bx � l [x T x � P] . (16.15)

To find the value of x that minimizes g we differentiate L partially with respect to x
and set the result equal to zero. We get the following equation:

[B � l I] x = 0 . (16.16)

This last equation is called the characteristic equation for the disconnection matrix B
and occurs frequently in matrix algebra (this l has nothing to do with scaling). The
solutions to this equation are the eigenvectors and eigenvalues of B . Multiplying Eq.
16.16 by x T we get:

l x T x = x T Bx . (16.17)

However, since we imposed the constraint x T x = P and x T Bx = g , then

l = g /P . (16.18)

The eigenvectors of the disconnection matrix B are the solutions to our placement
problem. It turns out that (because something called the rank of matrix B is n � 1) there
is a degenerate solution with all x -coordinates equal (l = 0)�this makes some sense
because putting all the logic cells on top of one another certainly minimizes the
interconnect. The smallest, nonzero, eigenvalue and the corresponding eigenvector
provides the solution that we want. In the two-dimensional placement problem, the x -
and y -coordinates are given by the eigenvectors corresponding to the two smallest,
nonzero, eigenvalues. (In the next section a simple example illustrates this
mathematical derivation.)

16.2.5 Eigenvalue Placement Example
Consider the following connectivity matrix C and its disconnection matrix B ,
calculated from Eq. 16.8 [Hall, 1970]:

 0 0 0 1
C = 0 0 1 1
 0 1 0 0
 1 1 0 0

 1 0 0 0 0 0 0 1 1 0 0 �1
B = 0 2 0 0 � 0 0 1 1 = 0 2 �1 �1
 0 0 1 0 0 1 0 0 0 �1 1 0
 1 1 0 0 1 1 0 0 �1 �1 0 2
 (16.19)

Figure 16.25 (a) shows the corresponding network with four logic cells (1�4) and three
nets (A�C). Here is a MatLab script to find the eigenvalues and eigenvectors of B :

FIGURE 16.25 Eigenvalue placement. (a) An example network. (b) The
one-dimensional placement.The small black squares represent the centers of the logic
cells. (c) The two-dimensional placement. The eigenvalue method takes no account
of the logic cell sizes or actual location of logic cell connectors. (d) A complete
layout. We snap the logic cells to valid locations, leaving room for the routing in the
channel.

C=[0 0 0 1; 0 0 1 1; 0 1 0 0; 1 1 0 0]

D=[1 0 0 0; 0 2 0 0; 0 0 1 0; 0 0 0 2]

B=D-C

[X,D] = eig(B)

Running this script, we find the eigenvalues of B are 0.5858, 0.0, 2.0, and 3.4142. The
corresponding eigenvectors of B are

0.6533 0.5000 0.5000 �0.2706
�0.2706 0.5000 �0.5000 �0.6533
�0.6533 0.5000 0.5000 0.2706
0.2706 0.5000 �0.5000 0.6533
 (16.20)

For a one-dimensional placement (Figure 16.25 b), we use the eigenvector (0.6533,
�0.2706, �0.6533, �0.2706) corresponding to the smallest nonzero eigenvalue (which is
0.5858) to place the logic cells along the x -axis. The two-dimensional placement (
Figure 16.25 c) uses these same values for the x -coordinates and the eigenvector (0.5,
�0.5, 0.5, �0.5) that corresponds to the next largest eigenvalue (which is 2.0) for the y
-coordinates. Notice that the placement shown in Figure 16.25 (c), which shows
logic-cell outlines (the logic-cell abutment boxes), takes no account of the cell sizes,
and cells may even overlap at this stage. This is because, in Eq. 16.11 , we discarded
all but one of the constraints necessary to ensure valid solutions. Often we use the
approximate eigenvalue solution as an initial placement for one of the iterative
improvement algorithms that we shall discuss in Section 16.2.6 .

16.2.6 Iterative Placement Improvement
An iterative placement improvement algorithm takes an existing placement and tries
to improve it by moving the logic cells. There are two parts to the algorithm:

The selection criteria that decides which logic cells to try moving.●

The measurement criteria that decides whether to move the selected cells.●

There are several interchange or iterative exchange methods that differ in their
selection and measurement criteria:

pairwise interchange,●

force-directed interchange,●

force-directed relaxation, and●

force-directed pairwise relaxation.●

All of these methods usually consider only pairs of logic cells to be exchanged. A
source logic cell is picked for trial exchange with a destination logic cell. We have
already discussed the use of interchange methods applied to the system partitioning
step. The most widely used methods use group migration, especially the Kernighan

�Lin algorithm. The pairwise-interchange algorithm is similar to the interchange
algorithm used for iterative improvement in the system partitioning step:

Select the source logic cell at random.1.

Try all the other logic cells in turn as the destination logic cell.2.

Use any of the measurement methods we have discussed to decide on whether
to accept the interchange.

3.

The process repeats from step 1, selecting each logic cell in turn as a source
logic cell.

4.

Figure 16.26 (a) and (b) show how we can extend pairwise interchange to swap more
than two logic cells at a time. If we swap l logic cells at a time and find a locally
optimum solution, we say that solution is l -optimum . The neighborhood exchange
algorithm is a modification to pairwise interchange that considers only destination
logic cells in a neighborhood �cells within a certain distance, e, of the source logic
cell. Limiting the search area for the destination logic cell to the e -neighborhood
reduces the search time. Figure 16.26 (c) and (d) show the one- and
two-neighborhoods (based on Manhattan distance) for a logic cell.

FIGURE 16.26 Interchange. (a) Swapping the source logic cell with a destination
logic cell in pairwise interchange. (b) Sometimes we have to swap more than two
logic cells at a time to reach an optimum placement, but this is expensive in
computation time. Limiting the search to neighborhoods reduces the search time.
Logic cells within a distance e of a logic cell form an e-neighborhood. (c) A
one-neighborhood. (d) A two-neighborhood.

Neighborhoods are also used in some of the force-directed placement methods .
Imagine identical springs connecting all the logic cells we wish to place. The number
of springs is equal to the number of connections between logic cells. The effect of the
springs is to pull connected logic cells together. The more highly connected the logic
cells, the stronger the pull of the springs. The force on a logic cell i due to logic cell j
is given by Hooke�s law , which says the force of a spring is proportional to its
extension:

F ij = � c ij x ij . (16.21)

The vector component x ij is directed from the center of logic cell i to the center of
logic cell j . The vector magnitude is calculated as either the Euclidean or Manhattan
distance between the logic cell centers. The c ij form the connectivity or cost matrix
(the matrix element c ij is the number of connections between logic cell i and logic

cell j). If we want, we can also weight the c ij to denote critical connections.
Figure 16.27 illustrates the force-directed placement algorithm.

FIGURE 16.27 Force-directed placement. (a) A network with nine logic cells.
(b) We make a grid (one logic cell per bin). (c) Forces are calculated as if springs
were attached to the centers of each logic cell for each connection. The two nets
connecting logic cells A and I correspond to two springs. (d) The forces are
proportional to the spring extensions.

In the definition of connectivity (Section 15.7.1, �Measuring Connectivity�) it was
pointed out that the network graph does not accurately model connections for nets
with more than two terminals. Nets such as clock nets, power nets, and global reset
lines have a huge number of terminals. The force-directed placement algorithms
usually make special allowances for these situations to prevent the largest nets from
snapping all the logic cells together. In fact, without external forces to counteract the
pull of the springs between logic cells, the network will collapse to a single point as it
settles. An important part of force-directed placement is fixing some of the logic cells
in position. Normally ASIC designers use the I/O pads or other external connections
to act as anchor points or fixed seeds.

Figure 16.28 illustrates the different kinds of force-directed placement algorithms.
The force-directed interchange algorithm uses the force vector to select a pair of logic
cells to swap. In force-directed relaxation a chain of logic cells is moved. The
force-directed pairwise relaxation algorithm swaps one pair of logic cells at a time.

FIGURE 16.28 Force-directed iterative placement improvement. (a) Force-directed
interchange. (b) Force-directed relaxation. (c) Force-directed pairwise relaxation.

We reach a force-directed solution when we minimize the energy of the system,
corresponding to minimizing the sum of the squares of the distances separating logic

cells. Force-directed placement algorithms thus also use a quadratic cost function.

16.2.7 Placement Using Simulated
Annealing
The principles of simulated annealing were explained in Section 15.7.8, �Simulated
Annealing.� Because simulated annealing requires so many iterations, it is critical that
the placement objectives be easy and fast to calculate. The optimum connection
pattern, the MRST, is difficult to calculate. Using the half-perimeter measure (
Section 16.2.3) corresponds to minimizing the total interconnect length. Applying
simulated annealing to placement, the algorithm is as follows:

Select logic cells for a trial interchange, usually at random.1.

Evaluate the objective function E for the new placement.2.

If D E is negative or zero, then exchange the logic cells. If D E is positive, then
exchange the logic cells with a probability of exp(� D E / T).

3.

Go back to step 1 for a fixed number of times, and then lower the temperature T
according to a cooling schedule: T n +1 = 0.9 T n , for example.

4.

Kirkpatrick, Gerlatt, and Vecchi first described the use of simulated annealing applied
to VLSI problems [1983]. Experience since that time has shown that simulated
annealing normally requires the use of a slow cooling schedule and this means long
CPU run times [Sechen, 1988; Wong, Leong, and Liu, 1988]. As a general rule,
experiments show that simple min-cut based constructive placement is faster than
simulated annealing but that simulated annealing is capable of giving better results at
the expense of long computer run times. The iterative improvement methods that we
described earlier are capable of giving results as good as simulated annealing, but they
use more complex algorithms.

While I am making wild generalizations, I will digress to discuss benchmarks of
placement algorithms (or any CAD algorithm that is random). It is important to
remember that the results of random methods are themselves random. Suppose the
results from two random algorithms, A and B, can each vary by ±10 percent for any
chip placement, but both algorithms have the same average performance. If we
compare single chip placements by both algorithms, they could falsely show
algorithm A to be better than B by up to 20 percent or vice versa. Put another way, if
we run enough test cases we will eventually find some for which A is better than B by
20 percent�a trick that Ph.D. students and marketing managers both know well. Even
single-run evaluations over multiple chips is hardly a fair comparison. The only way
to obtain meaningful results is to compare a statistically meaningful number of runs
for a statistically meaningful number of chips for each algorithm. This same caution
applies to any VLSI algorithm that is random. There was a Design Automation
Conference panel session whose theme was �Enough of algorithms claiming
improvements of 5 %.�

16.2.8 Timing-Driven Placement Methods
Minimizing delay is becoming more and more important as a placement objective.
There are two main approaches: net based and path based. We know that we can use
net weights in our algorithms. The problem is to calculate the weights. One method
finds the n most critical paths (using a timing-analysis engine, possibly in the
synthesis tool). The net weights might then be the number of times each net appears in
this list. The problem with this approach is that as soon as we fix (for example) the
first 100 critical nets, suddenly another 200 become critical. This is rather like trying
to put worms in a can�as soon as we open the lid to put one in, two more pop out.

Another method to find the net weights uses the zero-slack algorithm [Hauge et al.,
1987]. Figure 16.29 shows how this works (all times are in nanoseconds).
Figure 16.29 (a) shows a circuit with primary inputs at which we know the arrival
times (this is the original definition, some people use the term actual times) of each
signal. We also know the required times for the primary outputs �the points in time at
which we want the signals to be valid. We can work forward from the primary inputs
and backward from the primary outputs to determine arrival and required times at
each input pin for each net. The difference between the required and arrival times at
each input pin is the slack time (the time we have to spare). The zero-slack algorithm
adds delay to each net until the slacks are zero, as shown in Figure 16.29 (b). The net
delays can then be converted to weights or constraints in the placement. Notice that
we have assumed that all the gates on a net switch at the same time so that the net
delay can be placed at the output of the gate driving the net�a rather poor timing model
but the best we can use without any routing information.

FIGURE 16.29 The zero-slack algorithm. (a) The circuit with no net delays. (b) The
zero-slack algorithm adds net delays (at the outputs of each gate, equivalent to
increasing the gate delay) to reduce the slack times to zero.

An important point to remember is that adjusting the net weight, even for every net on
a chip, does not theoretically make the placement algorithms any more complex�we
have to deal with the numbers anyway. It does not matter whether the net weight is 1
or 6.6, for example. The practical problem, however, is getting the weight information
for each net (usually in the form of timing constraints) from a synthesis tool or timing
verifier. These files can easily be hundreds of megabytes in size (see Section 16.4).

With the zero-slack algorithm we simplify but overconstrain the problem. For
example, we might be able to do a better job by making some nets a little longer than
the slack indicates if we can tighten up other nets. What we would really like to do is
deal with paths such as the critical path shown in Figure 16.29 (a) and not just nets .
Path-based algorithms have been proposed to do this, but they are complex and not all
commercial tools have this capability (see, for example, [Youssef, Lin, and
Shragowitz, 1992]).

There is still the question of how to predict path delays between gates with only
placement information. Usually we still do not compute a routing tree but use simple
approximations to the total net length (such as the half-perimeter measure) and then
use this to estimate a net delay (the same to each pin on a net). It is not until the
routing step that we can make accurate estimates of the actual interconnect delays.

16.2.9 A Simple Placement Example
Figure 16.30 shows an example network and placements to illustrate the measures for
interconnect length and interconnect congestion. Figure 16.30 (b) and (c) illustrate the
meaning of total routing length, the maximum cut line in the x -direction, the
maximum cut line in the y -direction, and the maximum density. In this example we
have assumed that the logic cells are all the same size, connections can be made to
terminals on any side, and the routing channels between each adjacent logic cell have
a capacity of 2. Figure 16.30 (d) shows what the completed layout might look like.

FIGURE 16.30 Placement example.
(a) An example network. (b) In this
placement, the bin size is equal to the
logic cell size and all the logic cells
are assumed equal size. (c) An
alternative placement with a lower
total routing length. (d) A layout that
might result from the placement
shown in b. The channel densities
correspond to the cut-line sizes.
Notice that the logic cells are not all
the same size (which means there are
errors in the interconnect-length
estimates we made during
placement).

16.4 Information Formats
With the increasing importance of interconnect a great deal of information needs
to flow between design tools. There are some de facto standards that we shall
look at next. Some of the companies involved are working toward releasing these
formats as IEEE standards.

16.4.1 SDF for Floorplanning and
Placement
In Section 13.5.6, �SDF in Simulation,� we discussed the structure and use of the
standard delay format (SDF) to describe gate delay and interconnect delay. We
may also use SDF with floorplanning and synthesis tools to back-annotate an
interconnect delay. A synthesis tool can use this information to improve the logic
structure. Here is a fragment of SDF:

(INSTANCE B) (DELAY (ABSOLUTE

(INTERCONNECT A.INV8.OUT B.DFF1.Q (:0.6:) (:0.6:))))

In this example the rising and falling delay is 60 ps (equal to 0.6 units multiplied
by the time scale of 100 ps per unit specified in a TIMESCALE construct that is
not shown). The delay is specified between the output port of an inverter with
instance name A.INV8 in block A and the Q input port of a D flip-flop (instance
name B.DFF1) in block B. A '.' (period or fullstop) is set to be the hierarchy
divider in another construct that is not shown.

There is another way of specifying interconnect delay using NETDELAY (a
short form of the INTERCONNECT construct) as follows:

(TIMESCALE 100ps) (INSTANCE B) (DELAY (ABSOLUTE

(NETDELAY net1 (0.6)))

In this case all delays from an output port to, possibly multiple, input ports have
the same value (we can also specify the output port name instead of the net name
to identify the net). Alternatively we can lump interconnect delay at an input port:

(TIMESCALE 100ps) (INSTANCE B.DFF1) (DELAY (ABSOLUTE

(PORT CLR (16:18:22) (17:20:25))))

This PORT construct specifies an interconnect delay placed at the input port of a
logic cell (in this case the CLR pin of a flip-flop). We do not need to specify the
start of a path (as we do for INTERCONNECT).

We can also use SDF to forward-annotate path delays using timing constraints
(there may be hundreds or thousands of these in a file). A synthesis tool can pass
this information to the floorplanning and placement steps to allow them to create
better layout. SDF describes timing checks using a range of TIMINGCHECK
constructs. Here is an example of a single path constraint:

(TIMESCALE 100ps) (INSTANCE B) (TIMINGCHECK

(PATHCONSTRAINT A.AOI22_1.O B.ND02_34.O (0.8) (0.8)))

This describes a constraint (keyword PATHCONSTRAINT) for the rising and
falling delays between two ports at each end of a path (which may consist of
several nets) to be less than 80 ps. Using the SUM construct we can constrain the
sum of path delays to be less than a specific value as follows:

(TIMESCALE 100ps) (INSTANCE B) (TIMINGCHECK

(SUM (AOI22_1.O ND02_34.I1) (ND02_34.O ND02_35.I1) (0.8)))

We can also constrain skew between two paths (in this case to be less than 10 ps)
using the DIFF construct:

(TIMESCALE 100ps) (INSTANCE B) (TIMINGCHECK

(DIFF (A.I_1.O B.ND02_1.I1) (A.I_1.O.O B.ND02_2.I1) (0.1)))

In addition we can constrain the skew between a reference signal (normally the
clock) and all other ports in an instance (again in this case to be less than 10 ps)
using the SKEWCONSTRAINT construct:

(TIMESCALE 100ps) (INSTANCE B) (TIMINGCHECK

(SKEWCONSTRAINT (posedge clk) (0.1)))

At present there is no easy way in SDF to constrain the skew between a reference
signal and other signals to be greater than a specified amount.

16.4.2 PDEF
The physical design exchange format (PDEF) is a proprietary file format used
by Synopsys to describe placement information and the clustering of logic cells.
Here is a simple, but complete PDEF file:

(CLUSTERFILE

(PDEFVERSION "1.0")

(DESIGN "myDesign")

(DATE "THU AUG 6 12:00 1995")

(VENDOR "ASICS_R_US")

(PROGRAM "PDEF_GEN")

(VERSION "V2.2")

(DIVIDER .)

(CLUSTER (NAME "ROOT")

(WIRE_LOAD "10mm x 10mm")

(UTILIZATION 50.0)

(MAX_UTILIZATION 60.0)

(X_BOUNDS 100 1000)

(Y_BOUNDS 100 1000)

(CLUSTER (NAME "LEAF_1")

(WIRE_LOAD "50k gates")

(UTILIZATION 50.0)

(MAX_UTILIZATION 60.0)

(X_BOUNDS 100 500)

(Y_BOUNDS 100 200)

(CELL (NAME L1.RAM01)

(CELL (NAME L1.ALU01)

)

)

)

This file describes two clusters:

ROOT , which is the top-level (the whole chip). The file describes the size
(x - and y -bounds), current and maximum area utilization (i.e., leaving
space for interconnect), and the name of the wire-load table, '
10mm x 10mm ', to use for this block, chosen because the chip is expected
to be about 10 mm on a side.

●

LEAF_1 , a block below the top level in the hierarchy. This block is to use
predicted capacitances from a wire-load table named '50k gates' (chosen

●

because we know there are roughly 50 k-gate in this block). The LEAF_1
block contains two logic cells: L1.RAM01 and L1.ALU01 .

16.4.3 LEF and DEF
The library exchange format (LEF) and design exchange format (DEF) are
both proprietary formats originated by Tangent in the TanCell and TanGate
place-and-route tools which were bought by Cadence and now known as Cell3
Ensemble and Gate Ensemble respectively. These tools, and their derivatives, are
so widely used that these formats have become a de facto standard. LEF is used
to define an IC process and a logic cell library. For example, you would use LEF
to describe a gate array: the base cells, the legal sites for base cells, the logic
macros with their size and connectivity information, the interconnect layers and
other information to set up the database that the physical design tools need. You
would use DEF to describe all the physical aspects of a particular chip design
including the netlist and physical location of cells on the chip. For example, if
you had a complete placement from a floorplanning tool and wanted to exchange
this information with Cadence Gate Ensemble or Cell3 Ensemble, you would use
DEF.

16.3 Physical Design Flow
Historically placement was included with routing as a single tool (the term P&R
is often used for place and route). Because interconnect delay now dominates
gate delay, the trend is to include placement within a floorplanning tool and use a
separate router. Figure 16.31 shows a design flow using synthesis and a
floorplanning tool that includes placement. This flow consists of the following
steps:

Design entry. The input is a logical description with no physical
information.

1.

Synthesis. The initial synthesis contains little or no information on any
interconnect loading. The output of the synthesis tool (typically an EDIF
netlist) is the input to the floorplanner.

2.

Initial floorplan. From the initial floorplan interblock capacitances are
input to the synthesis tool as load constraints and intrablock capacitances
are input as wire-load tables.

3.

Synthesis with load constraints. At this point the synthesis tool is able to
resynthesize the logic based on estimates of the interconnect capacitance
each gate is driving. The synthesis tool produces a forward annotation file
to constrain path delays in the placement step.

4.

FIGURE 16.31 Timing-driven floorplanning and placement design flow.
Compare with Figure 15.1 on p. 806.

Timing-driven placement. After placement using constraints from the
synthesis tool, the location of every logic cell on the chip is fixed and
accurate estimates of interconnect delay can be passed back to the
synthesis tool.

5.

Synthesis with in-place optimization (IPO). The synthesis tool changes
the drive strength of gates based on the accurate interconnect delay
estimates from the floorplanner without altering the netlist structure.

6.

Detailed placement. The placement information is ready to be input to the
routing step.

7.

In Figure 16.31 we iterate between floorplanning and synthesis, continuously
improving our estimate for the interconnect delay as we do so.

16.5 Summary
Floorplanning follows the system partitioning step and is the first step in
arranging circuit blocks on an ASIC. There are many factors to be considered
during floorplanning: minimizing connection length and signal delay between
blocks; arranging fixed blocks and reshaping flexible blocks to occupy the
minimum die area; organizing the interconnect areas between blocks; planning
the power, clock, and I/O distribution. The handling of some of these factors may
be automated using CAD tools, but many still need to be dealt with by hand.
Placement follows the floorplanning step and is more automated. It consists of
organizing an array of logic cells within a flexible block. The criterion for
optimization may be minimum interconnect area, minimum total interconnect
length, or performance. There are two main types of placement algorithms: based
on min-cut or eigenvector methods. Because interconnect delay in a submicron
CMOS process dominates logic-cell delay, planning of interconnect will become
more and more important. Instead of completing synthesis before starting
floorplanning and placement, we will have to use synthesis and
floorplanning/placement tools together to achieve an accurate estimate of timing.

The key points of this chapter are:

Interconnect delay now dominates gate delay.●

Floorplanning is a mapping between logical and physical design.●

Floorplanning is the center of ASIC design operations for all types of
ASIC.

●

Timing-driven floorplanning is becoming an essential ASIC design tool.●

Placement is now an automated function.●

16.6 Problems
* = Difficult, ** = Very difficult, *** = Extremely difficult

16.1 (Wire loads, 30 min.) Table 16.2 shows a wire-load table. Since you might expect
the interconnect load to be a monotonic increasing function of fanout and block area, it
seems as though some of the data in Table 16.2 may be in error; these figures are
shown preceded by an asterisk, '*' (this table is from an ASIC vendor data book).
Using a spreadsheet, analyze the data in Table 16.2 .

a. By graphing the data, indicate any figures in Table 16.2 that you think might
be in error. If you think that there is an error, predict the correct values�either by
interpolation (for values in error in the body of the table), or by fitting the linear
model parameters, the slope and the intercept (for any values in error in the last
two columns of the table).

●

b. Including any corrections, how accurate is the model that predicts load as a
linear function of fanout for a given block size? (Use the maximum error of the
linear model expressed as a percentage of the table value.)

●

c. Can you fit a simple function to the (possibly corrected) figures in the last
column of the table and explain its form?

●

d. What did you learn about wire-load tables from this problem?

TABLE 16.2 Wire- load table. Predicted interconnect loads (measured in
standard loads) as a function of block size and fanout (Problem 16.1).

Size
(/mm
2)

Fanout
Slope Intercept

1 2 3 4 5 6 7 8 16 32 64

0.5 ¥
0.5

0.65 0.95 1.25 1.54 1.84 2.14 2.44 2.74 5.13 9.91 19.47 0.299 0.349

1 ¥ 1 0.80 1.20 1.59 1.99 2.39 2.79 3.19 3.59 6.77 13.15 25.9 0.398 0.398
2 ¥ 2 0.96 1.48 1.99 2.51 3.02 3.54 4.05 4.57 8.68 16.92 33.38 0.515 0.448
3 ¥ 3 1.20 1.83 2.46 3.09 3.72 4.35 4.98 5.61 10.66 20.75 40.94 0.631 0.564
4 ¥ 4 1.41 2.11 2.81 3.50 4.20 4.90 5.59 6.29 11.87 23.02 45.33 0.697 0.714
5 ¥ 5 1.51 2.24 2.97 3.70 4.43 5.16 5.89 6.62 12.47 24.15 47.53 0.730 0.780
6 ¥ 6 1.56 2.31 3.05 3.80 4.55 5.30 6.04 6.79 12.77 24.72 48.62 0.747 0.813
7 ¥ 7 1.83 2.62 3.42 4.22 5.01 5.81 6.61 7.40 13.78 26.53 52.02 0.797 * 1.029
8 ¥ 8 1.88 2.74 3.6 4.47 5.33 6.19 7.06 7.92 14.82 26.64 56.26 0.863 1.013
9 ¥ 9 2.01 2.94 3.87 4.80 5.73 6.66 7.59 8.52 15.95 30.83 60.57 0.930 1.079
10 ¥
10

2.01 2.98 3.94 4.90 5.86 6.83 7.79 8.75 16.45 31.86 62.67 0.963 * 1.050

●

11 ¥
11

2.46 3.46 4.45 5.45 6.44 7.44 8.44 9.43 17.4 33.33 65.20 0.996 1.465

12 ¥
12

3.04 4.1 5.17 6.23 7.3 8.35 9.42 10.48 18.8 36.03 70.00 1.063 1.964

16.2 (Trees, 20 min.) For the network graph shown in Figure 16.32 (f), draw the
following trees and calculate their Manhattan lengths:

a. The minimum Steiner tree.●

b. The chain connection .●

c. The minimum rectilinear Steiner tree.●

d. The minimum rectilinear spanning tree [Hwang, 1976].●

e. The minimum single-trunk rectilinear Steiner tree (with a horizontal or
vertical trunk).

●

f. The minimum rectilinear chain connection (easy to compute).●

g. The minimum source-to-sink connection .●

Calculate:

h. The complete-graph measure and the half-perimeter measure.●

Figure 16.32 parts (a�e) illustrate the definitions of these trees. There is no known
solution to the minimum Steiner-tree problem for nets with more than five terminals.

FIGURE 16.32 Tree routing. (a) The minimum rectilinear Steiner tree (MRST).
(b) The minimum rectilinear spanning tree. (c) The minimum single-trunk rectilinear
Steiner tree (1-MRST). (d) The minimum rectilinear chain connection. (e) The
minimum source-to-sink connection. (f) Example net for Problem 16.2 .

16.3 (Eigenvalue placement constraints, 10 min. [Cheng and Kuh, 1984]) Consider
the one-dimensional placement problem with a vector list of valid positions for the
logic cells p = [p i] and a vector list of x -coordinates for the logic cells x = [x i].

Show that for a valid placement x (where the vector elements x i are some permutation
of the vector elements p i), the following equations hold:

n n

S x i = S p i

i = 1 i = 1

n n

S x i 2 = S p i 2

i = 1 i = 1

 ...
n n

S x i n = S p i n (16.22)

i = 1 i = 1

(Hint: Consider the polynomial (x + x i) n . In our simplification to the problem, we
chose to impose only the second equation of these constraints.)

16.4 (*Eigenvalue placement, 30 min.) You will need MatLab, Mathematica, or a
similar mathematical calculus program for this problem.

a. Find the eigenvalues and eigenvectors for the disconnection matrix
corresponding to the following connection matrix:

●

C=

[0 1 1 0 0 0 1 0 0;

1 0 0 0 0 0 0 0 0;

1 0 0 1 0 0 0 1 0;

0 0 1 0 0 1 0 0 0;

0 0 0 0 0 1 0 0 1;

0 0 0 1 1 0 1 0 0;

1 0 0 0 0 1 0 0 0;

0 0 1 0 0 0 0 0 1;

0 0 0 0 1 0 0 1 0;]

(Hint: Check your answer. The smallest, nonzero, eigenvalue should be 0.5045.)

b. Use your results to place the logic cells. Plot the placement and show the
connections between logic cells (this is easy to do using an X-Y plot in an Excel
spreadsheet).

●

c. Check that the following equation holds:●

l = g /P .

16.5 (Die size, 10 min.) Suppose the minimum spacing between pad centers is W mil
(1 mil = 10 �3 inch), there are N I/O pads on a chip, and the die area (assume a square
die) is A mil 2 :

a. Derive a relationship between W , N , and A that corresponds to the point at
which the die changes from being pad-limited to core-limited.

●

b. Plot this relationship with N (ranging from 50 to 500 pads) on the x -axis, A
on the y -axis (for dies ranging in size from 1 mm to 20 mm on a side), and W
as a parameter (for W = 1, 2, 3, and 4 mil).

●

16.6 (Power buses, 20 min.) Assume aluminum metal interconnect has a resistance of
about 30 m W /square (a low value). Consider a power ring for the I/O pads. Suppose
you have a high-power chip that dissipates 5 W at V DD = 5 V, and assume that half of
the supply current (0.5 A) is due to I/O. Suppose the square die is L mil on a side, and
that the I/O current is equally distributed among the N VDD pads that are on the chip.
In the worst case, you want no more than 100 mV drop between any VDD pad and the
I/O circuits drawing power (notice that there will be an equal drop on the VSS side;
just consider the VDD drop).

a. Model the power distribution as a ring of N equally spaced pads. Each pad is
connected by a resistor equal to the aluminum VDD power-bus resistance
between two pads. Assume the I/O circuits associated with each pad can be
considered to connect to just one point on the resistors between each pad. If the
resistance between each pad is R , what is the worst-case resistance between the
I/O circuits and the supply?

●

b. Plot a graph showing L (in mil) on the x -axis, W (the required power-bus
width in microns) on the y -axis, with N as a parameter (with N = 1, 2, 5, 10).

●

c. Comment on your results.●

d. An upper limit on current density for aluminum metallization is about 50
kAcm �2 ; at current densities higher than this, failure due to electromigration
(which we shall cover in Section 17.3.2, �Power Routing�) is a problem. Assume
the metallization is 0.5 m m thick. Calculate the current density in the VDD
power bus for this chip in terms of the power-bus width and the number of pads.
Comment on your answer.

●

16.7 (Interconnect-length approximation, 10 min.) Figure 16.22 shows the correlation
between actual interconnect length and two approximations. Use this graph to derive a
correction function (together with an estimation of the error) for the complete-graph
measure and the half-perimeter measure.

16.8 (Half-perimeter measure, 10 min.) Draw a tree on a rectangular grid for which the
MRST is equal to the half-perimeter measure. Draw a tree on a rectangular grid for
which the MRST is twice the half-perimeter measure.

16.9 (***Min-cut, 120 min.) Many floorplanning and placement tools use min-cut
methods and allow you to alter the type and sequence of bisection cuts. Research and
describe the difference between: quadrature min-cut placement, bisection min-cut
placement, and slice/bisection min-cut placement.

16.10 (***Terminal propagation, 120 min.) There is a problem with the min-cut
algorithm in the way connectivity is measured. Figure 16.33 shows a situation in
which logic cells G and H are connected to other logic cells (A and F) outside the area
R1 that is currently being partitioned. The min-cut algorithm ignores connections
outside the area to be divided. Thus logic cells G and H may be placed in partition R3
rather than partition R2. Suggest solutions to this problem. Hint: See Dunlop [1983];
Hartoog [1986]; or the Barnes�Hut galaxy model.

FIGURE 16.33 (For Problem 16.10 .) A problem with the min-cut algorithm is that it
ignores connections to logic cells outside the area being partitioned. (a) We perform a
vertical cut 1 producing the areas R 1 and R 2 . (b) Next we make a horizontal cut 2,
producing L 2 and L 3 , and a cut 2', producing R 2 and R 3 . (c) The min-cut algorithm
ignores the connection from L 2 and is equally likely to produce the arrangement
shown here when we make cut 2'.

16.11 (Benchmarks and statistics, 30 min.) Your boss asks you to compare two
placement programs from companies ABC and XYZ. You run five test cases for both
on a single netlist, P1. You get results (measured in arbitrary units) of 9, 8, 9, 7, 11 for
ABC; 6, 9, 10, 13, 8 for XYZ.

a. Calculate the mean and standard deviations for these results.●

b. What confidence (in the statistical sense) do you have in these figures?●

c. What can you say about the relative performance of ABC and XYZ?●

On average each test case takes about 0.5 hours (wall clock) for both ABC and XYZ.
Next you run six test cases on another netlist, P2 with the following results: 4, 6, 7, 8,
5, 7 for ABC, and 4, 5, 3, 6, 4, 3 for XYZ. These test cases take about 0.75 hours (wall
clock) each.

d. What can you say about the P2 results?●

e. Given the P1 and P2 results together, what can you say about ABC and XYZ?●

f. How many P1 test cases should you run to get a result so that you can say
ABC is better or worse than XYZ with 90 percent confidence (i.e., you make the
right decision 9 out of 10 times)? How long would this take?

●

g. Find the same figures for the P2 netlist. Comment on your answers.●

h. Suppose you had more netlists and information about the variation of results●

from each netlist, together with the average time to run each netlist. How would
you use this information to get the most meaningful result in the shortest time?

16.12 (Linear and quadratic placement, 20 min.) [Sigl, Doll, and Johannes, 1991]
Figure 16.34 (a) shows a simple network that we will place. Figure 16.34 (b) shows
the problem. The logic cells are all the same size: 1 grid unit wide by 1 grid unit high.
Logic cells 1 and 3 are fixed at the locations shown. Logic cell 2 is movable and
placed at coordinates (for the lower-left corner) of (x 2 , y 2). The lower-left corners
of logic cells should be placed at grid locations and should not overlap.

a. What is the connection matrix c ij for this network?●

b. Calculate and draw (showing the logic-cell coordinates) the placement that
minimizes the linear cost function (or objective function) f L ,

 1 n
f L = �� S c ij d ij (16.23)

 2 j = 1

●

where d ij is the distance between logic cells i and j .

FIGURE 16.34 Problem 16.12 illustrates placement objectives. (a) An example
network for placement. (b) The placement restrictions. Logic cells 1 and 3 are fixed in
position, the placement problem is to optimize the position of logic cell 2 under
different placement objectives.

c. Calculate and draw (showing coordinates) the placement that minimizes the
quadratic cost function f Q ,

 1 n

f Q = �� S c ij d ij 2 (16.24)

 2 j = 1

●

16.13 (Placement interconnect lengths, 45 min.) Figure 16.30 (d) shows the actual
routing corresponding to a placement with an estimated routing length of 8 units (
Figure 16.30 b).

a. Draw the layout (with routing) corresponding to the placement of
Figure 16.30 (c), which has a lower estimated total routing length of 7 units.

●

b. Compare the actual total routing length for both layouts and explain why they
are different from the estimated lengths and describe the sources of the errors.

●

c. Consider flipping both logic cells A and B about the y -axis in the layout
shown in Figure 16.30 (d). How much does this shorten the total interconnect
length? Some placement algorithms consider such moves.

●

16.14 (Zero-slack algorithm, 60 min.) For the circuit of Figure 16.35 :

a. Find all of the arrival, required, and slack times (all delays are in
nanoseconds).

FIGURE 16.35 A circuit to illustrate the zero-slack algorithm (Problem 16.14
).

●

b. What is the critical path?●

c. If the gate delay of A2 is increased to 5 ns, what is the new critical path?●

d. ** Using your answer to part a find the upper bounds on net delays by means
of the zero-slack algorithm as follows:

i. Find arrival, required, and slack times on all nets.

ii. Find an input pin p with the least nonzero slack S p on a net which has not
already been selected. If there are none go to step 6.

ii. Find the path through p (may include several gates) on which all pins have
slack S p .

iv. Distribute a delay equal to the slack S p along the path assigning a fraction to
each net at the output pins of the gates on the path.

v. Work backward from p updating all the required times as necessary and
forward from p updating all the arrival times.

vi. Convert net delays to net lengths.

●

Hint: You can consult the original description of the zero-slack algorithm if this is not
clear [Hauge et al., 1987].

16.15 (World planning, 60 min.) The seven continents are (with areas in millions of
square miles): Europe�strictly a peninsula of Asia (4.1), Asia (17.2), North America
(9.4), South America (6.9), Australia (3.0), Africa (11.7), and Antarctica (5.1).
Assume the continents are flexible blocks whose aspect ratio may be adjusted.

a. Create a slicing floorplan of the world with a square aspect ratio.●

b. Draw a world connectivity graph with seven nodes and whose edges are
labeled with the distances between Moscow, Beijing, Chicago, Rio de Janeiro,

●

Sydney, Nairobi, and the South Pole.

c. Suppose you want to floorplan the world so that the difference in distances
between the centers of the continental blocks and the corresponding edges in the
world connectivity graph is minimized. How would you measure the differences
in distance? Suggest a method to minimize your measure.

●

d. Use an eigenvalue method to floorplan the world. Draw the result with
coordinates for each block and explain your approach.

●

16.7 Bibliography
There are no recent monographs or review articles on floorplanning modern
ASICs with interconnect delay dominating gate delay. Placement is a much more
developed topic. Perhaps the simplest place to dig deeper is the book by Preas
and Lorenzetti that contains a chapter titled �Placement, assignment, and
floorplanning� [Preas and Karger, 1988]. The collection edited by Ohtsuki [1986]
contains a review paper by Yoshida titled �Partitioning, assignment, and
placement.� Sangiovanni-Vincentelli�s review article [1986] complements
Ohtsuki�s edited book, but both are now dated. Sechen�s book [1988] describes
simulated annealing and its application to placement and chip-planning for
standard cell and gate array ASICs. Part III of the IEEE Press book edited by Hu
and Kuh [1983] is a collection of papers on wireability, partitioning, and
placement covering some of the earlier and fundamental work in this area. For a
more recent and detailed look at the inner workings of floorplanning and
placement tools, Lengauer�s [1990] book on algorithms contains a chapter on
graph algorithms and a chapter on placement, assignment, and floorplanning.
Most of these earlier book references deal with placement before the use of
timing as an additional objective. The tutorial paper by Benkoski and Strojwas [
1991] contains a number of references on performance-driven placement. Luk�s
book [1991] describes methods for estimating net delay during placement.

Papers and tutorials on all aspects of floorplanning and placement (with an
emphasis on algorithms) are published in IEEE Transactions on Computer-Aided
Design. The newest developments in floorplanning and placement appear every
year in the Proceedings of the ACM/IEEE Design Automation Conference
(DAC) and Proceedings of the IEEE International Conference on
Computer-Aided Design (ICCAD).

16.8 References
Page numbers in brackets after a reference indicate its location in the chapter
body.

Benkoski, J., and A. J. Strojwas. 1991. �The role of timing verification in layout
synthesis.� In Proceedings of the 28th ACM/IEEE Design Automation
Conference, San Francisco, pp. 612�619. Tutorial paper with 60 references. This
was an introduction to a session on Placement for Performance Optimization
containing five other papers on this topic. [reference location]

Breuer, M. A. 1977. �Min-cut placement.� Journal of Design Automation and
Fault Tolerant Computing, Vol. 1, no. 4, pp. 343�362. [reference location]

Chao, A. H., E. M. Nequist, and T. D. Vuong. 1990. �Direct solution of
performance constraints during placement.� In Proceedings of the IEEE Custom
Integrated Circuits Conference. Describes algorithms used in Cadence Gate
Ensemble for performance-driven placement. Wiring estimate is based on single
trunk Steiner tree with corrections for bounding rectangle aspect ratio and pin
count. [reference location]

Cheng, C.-K., and E. S. Kuh. 1984. �Module placement based on resistive
network optimization.� IEEE Transactions on Computer-Aided Design for
Integrated-Circuits and Systems, Vol. CAD-3, pp. 218�225. [reference location ,
reference location]

Dunlop, A. E., and B. W. Kernighan. 1983. �A placement procedure for polycell
VLSI circuits.� In Proceedings of the IEEE International Conference on
Computer Aided Design, Santa Clara, CA, September 13�15. Describes the
terminal propagation algorithm. [reference location]

Goto, S. and T. Matsuda. 1986. �Partitioning, assignment and placement.� In
Layout Design and Verification, T. Ohtsuki (Ed.), Vol. 4, pp. 55�97. New York:
Elsevier. ISBN 0444878947. TK 7874. L318. [reference location]

Hall, K. M. 1970. �An r-dimensional quadratic placement algorithm.�
Management Science, Vol. 17, no. 3, pp. 219�229. [reference location]

Hanan, M. 1966. �On Steiner's problem with rectilinear distance.� Journal SIAM
Applied Mathematics, Vol. 14, no. 2, pp. 255�265. [reference location]

Hanan, M., P. K. Wolff Sr., and B. J. Agule. 1973. �Some experimental results on

placement techniques.� In Proceedings of the 13th Design Automation
Conference. Reference to complete graph wire measure. [reference location]

Hartoog, M. R., 1986. �Analysis of placement procedures for VLSI standard cell
layout.� In Proceedings of the 23rd Design Automation Conference. [reference
location]

Hauge, P. S., et al. 1987. �Circuit placement for predictable performance.� In
Proceedings of the IEEE International Conference on Computer Aided Design,
pp. 88�91. Describes the zero-slack algorithm. See also: Nair, R., C. L. Berman,
P. S. Hauge, and E. J. Yoffa, �Generation of performance constraints for layout,�
IEEE Transactions on Computer Aided Design, Vol. 8, no. 8, pp. 860�874,
August 1989; and Burstein, M. and M. N. Housewife, �Timing influenced layout
design,� in Proceedings of the 22nd Design Automation Conference, 1985.
Defines required, actual, and slack times. Describes application of timing-driven
restrictions to placement using F�M algorithm and hierarchical global routing. [
reference location]

Hu, T. C., and E. S. Kuh (Eds.). 1983. VLSI Circuit Layout: Theory and Design.
New York: IEEE Press. Contains 26 papers divided into six parts; Part 1:
Overview; Part II: General; Part III: Wireability, Partitioning and Placement; Part
IV: Routing; Part V: Layout Systems; Part VI: Module Generation. ISBN
0879421932. TK7874. V5573. [reference location]

Hwang, F. K. 1976. �On Steiner minimal trees with rectilinear distance.� SIAM
Journal of Applied Mathematics, Vol. 30, pp. 104�114. See also: Hwang, F. K.,
�An O(n log n) Algorithm for Suboptimal Rectilinear Steiner Trees,� IEEE
Transactions on Circuits and Systems, Vol. CAS-26, no. 1, pp. 75�77, January
1979. Describes an algorithm to improve the rectilinear minimum spanning tree
(RMST) approximation to the minimal rectilinear Steiner tree (minimal RST).
The approximation is at most 1.5 times longer than the minimal RST, since the
RMST is at worst 1.5 times the length of the minimal RST. [reference location]

Kirkpatrick, S., C. D. Gerlatt Jr., and M. P. Vecchi. 1983. �Optimization by
simulated annealing,� Science, Vol. 220, no. 4598, pp. 671�680. [reference
location]

Lengauer, T. 1990. Combinatorial Algorithms for Integrated Circuit Layout.
Chichester, England: Wiley. ISBN 0-471-92838-0. TK7874.L36. Contains
chapters on circuit layout; optimization problems; graph algorithms; operations
research and statistics; combinatorial layout problems; circuit partitioning;
placement; assignment; floorplanning; global routing and area routing; detailed
routing; and compaction. 484 references. [reference location]

Luk, W. K. 1991. �A fast physical constraint generator for timing driven layout.�
In Proceedings of the 28th ACM/IEEE Design Automation Conference.
Introduction to timing-driven placement and net- and path-based approaches.
Describes some different methods to estimate interconnect delay during

placement. ISBN 0-89791-395-7. [reference location].

Masleid, R. P. 1991. �High-density central I/O circuits for CMOS.� IEEE Journal
of Solid-State Circuits, Vol. 26, no. 3, pp. 431�435. An I/O circuit design that
reduces the percentage of chip area occupied by I/O circuits from roughly 22
percent to under 3 percent for a 256 I/O chip. Uses IBM C4 technology that
allows package connections to be located over chip circuitry. 10 references. [
reference location]

Ohtsuki, T. (Ed.). 1986. Layout Design and Verification. New York: Elsevier.
Includes nine papers on CAD tools and algorithms: "Layout strategy,
standardisation, and CAD tools," Ueda, Kasai and Sudo; "Layout compaction,"
Mylynski and Sung; "Layout verification," Yoshida; "Partitioning, assignment
and placement," Goto and Matsuda; "Computational complexity of layout
problems," Shing and Hu; "Computational and geometry algorithms," Asano,
Sato and Ohtsuki; an excellent survey and tutorial paper by M. Burstein:
"Channel routing"; "Maze-running and line-search algorithms" an easily-readable
paper on detailed routing by Ohtsuki; and a mathematical paper, "Global
routing," by Kuh and Marek-Sadowska. ISBN 0444878947. TK7874. L318. [
reference location]

Preas, B. T., and P. G. Karger. 1988. �Placement, assignment and floorplanning.�
In Physical Design Automation of VLSI Systems, B. T. Preas and M. J.
Lorenzetti (Eds.), pp. 87�155. Menlo Park, CA: Benjamin-Cummings. ISBN
0-8053-0412-9. TK7874.P47. [reference location]

Sangiovanni-Vincentelli, A. 1986. �Automatic layout of integrated circuits.� In
Nato Advanced Study on �Logic Synthesis and Silicon Compilers for VLSI
Design�, G. De Micheli, A. Sangiovanni-Vincentelli, and A. Paolo (Eds.).
Norwell, MA: Kluwer. ISBN 90-247-2689-1, 90-247-3561-0. TK7874.N338. [
reference location]

Schweikert, D. G., 1976. �A 2-dimensional placement algorithm for the layout of
electrical circuits.� In Proceedings of the 9th Design Automation Conference.
Description of half-perimeter wire measure. [reference location]

Sechen, C. 1988. VLSI Placement and Global Routing Using Simulated
Annealing. Norwell, MA: Kluwer. Contains chapters on the simulated annealing
algorithm; placement and global routing; floorplanning; average interconnection
length estimation; interconnect-area estimation; a channel definition algorithm;
and a global router algorithm. ISBN 0898382815. TK7874. S38. [reference
location]

Sigl, G., K. Doll, and F. M. Johannes. 1991. �Analytical placement: a linear or
quadratic objective function?� In Proceedings of the 28th ACM/IEEE Design
Automation Conference. Compares quadratic and linear cost function for
placement algorithms. Explains the Gordian place-and-route system from the
Technical University of Munich. ISBN 0-89791-395-7. [reference location].

Wada, T., M. Eino, and K. Anami. 1990. �Simple noise model and low-noise
data-output buffer for ultrahigh-speed memories.� IEEE Journal of Solid-State
Circuits, Vol. 25, no. 6, pp. 1586�1588. An analytic noise model for voltage
bounce on internal VDD/VSS lines. [reference location]

Wong, D. F., H. W. Leong, and C. L. Liu. 1988. Simulated Annealing for VLSI
Design. Norwell, MA: Kluwer. Introduction; Placement; Floorplan Design;
Channel Routing; Permutation Channel Routing; PLA Folding; Gate Matrix
Layout; Array Optimization. ISBN 0898382564. TK7874. W65. [reference
location]

Youssef, H., R.-B. Lin, and E. Shragowitz. 1992. �Bounds on net delays for VLSI
circuits.� IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, Vol. 39, no. 11, pp. 315�324. An alternative to the
weight-based approach is development of delay bounds on all nets. 21 references.
[reference location].

ROUTING
Once the designer has floorplanned a chip and the logic cells within the flexible
blocks have been placed, it is time to make the connections by routing the chip.
This is still a hard problem that is made easier by dividing it into smaller
problems. Routing is usually split into global routing followed by detailed routing
.

Suppose the ASIC is North America and some travelers in California need advice
on how to drive from Stanford (near San Francisco) to Caltech (near Los
Angeles). The floorplanner has decided that California is on the left (west) side of
the ASIC and the placement tool has put Stanford in Northern California and
Caltech in Southern California. Floorplanning and placement have defined the
roads and freeways. There are two ways to go: the coastal route (using Highway
101) or the inland route (using Interstate I5, which is usually faster). The global
router specifies the coastal route because the travelers are not in a hurry and I5 is
congested (the global router knows this because it has already routed onto I5
many other travelers that are in a hurry today). Next, the detailed router looks at a
map and gives indications from Stanford onto Highway 101 south through San
Jose, Monterey, and Santa Barbara to Los Angeles and then off the freeway to
Caltech in Pasadena.

Figure 17.1 shows the core of the Viterbi decoder after the placement step. This
implementation consists entirely of standard cells (18 rows). The I/O pads are not
included in this example�we can route the I/O pads after we route the core
(though this is not always a good idea). Figure 17.2 shows the Viterbi decoder
chip after global and detailed routing. The routing runs in the channels between
the rows of logic cells, but the individual interconnections are too small to see.

Last Edited by SP 14112004

FIGURE 17.1 The core of the Viterbi decoder chip after placement (a screen
shot from Cadence Cell Ensemble). This is the same placement as shown in
Figure 16.2, but without the channel labels. You can see the rows of standard
cells; the widest cells are the D flip-flops.

FIGURE 17.2 The core of the Viterbi decoder chip after the completion of
global and detailed routing (a screen shot from Cadence Cell Ensemble). This
chip uses two-level metal. Although you cannot see the difference, m1 runs in
the horizontal direction and m2 in the vertical direction.

17.1 Global Routing
The details of global routing differ slightly between cell-based ASICs, gate
arrays, and FPGAs, but the principles are the same in each case. A global router
does not make any connections, it just plans them. We typically global route the
whole chip (or large pieces if it is a large chip) before detail routing the whole
chip (or the pieces). There are two types of areas to global route: inside the
flexible blocks and between blocks (the Viterbi decoder, although a cell-based
ASIC, only involved the global routing of one large flexible block).

17.1.1 Goals and Objectives
The input to the global router is a floorplan that includes the locations of all the
fixed and flexible blocks; the placement information for flexible blocks; and the
locations of all the logic cells. The goal of global routing is to provide complete
instructions to the detailed router on where to route every net. The objectives of
global routing are one or more of the following:

Minimize the total interconnect length.●

Maximize the probability that the detailed router can complete the routing.●

Minimize the critical path delay.●

In both floorplanning and placement, with minimum interconnect length as an
objective, it is necessary to find the shortest total path length connecting a set of
terminals . This path is the MRST, which is hard to find. The alternative, for both
floorplanning and placement, is to use simple approximations to the length of the
MRST (usually the half-perimeter measure). Floorplanning and placement both
assume that interconnect may be put anywhere on a rectangular grid, since at this
point nets have not been assigned to the channels, but the global router must use
the wiring channels and find the actual path. Often the global router needs to find
a path that minimizes the delay between two terminals�this is not necessarily the
same as finding the shortest total path length for a set of terminals.

17.1.2 Measurement of Interconnect
Delay
Floorplanning and placement need a fast and easy way to estimate the
interconnect delay in order to evaluate each trial placement; often this is a

predefined look-up table. After placement, the logic cell positions are fixed and
the global router can afford to use better estimates of the interconnect delay. To
illustrate one method, we shall use the Elmore constant to estimate the
interconnect delay for the circuit shown in Figure 17.3 .

FIGURE 17.3 Measuring the delay of a net. (a) A simple circuit with an inverter
A driving a net with a fanout of two. Voltages V 1 , V 2 , V 3 , and V 4 are the
voltages at intermediate points along the net. (b) The layout showing the net
segments (pieces of interconnect). (c) The RC model with each segment replaced
by a capacitance and resistance. The ideal switch and pull-down resistance R pd
model the inverter A.

The problem is to find the voltages at the inputs to logic cells B and C taking into
account the parasitic resistance and capacitance of the metal interconnect.
Figure 17.3 (c) models logic cell A as an ideal switch with a pull-down resistance
equal to R pd and models the metal interconnect using resistors and capacitors for
each segment of the interconnect.

The Elmore constant for node 4 (labeled V 4) in the network shown in
Figure 17.3 (c) is

 4
t D 4 = S R k 4 C k (17.1)

 k = 1

 = R 14 C 1 + R 24 C 2 + R 34 C 3 + R 44 C 4 ,

where,

R 14 = R pd + R 1 (17.2)

R 24 = R pd + R 1

R 34 = R pd + R 1 + R 3

R 44 = R pd + R 1 + R 3 + R 4

In Eq. 17.2 notice that R 24 = R pd + R 1 (and not R pd + R 1 + R 2) because R 1
is the resistance to V 0 (ground) shared by node 2 and node 4.

Suppose we have the following parameters (from the generic 0.5 m m CMOS
process, G5) for the layout shown in Figure 17.3 (b):

m2 resistance is 50 m W /square.●

m2 capacitance (for a minimum-width line) is 0.2 pFmm �1 .●

4X inverter delay is 0.02 ns + 0.5 C L ns (C L is in picofarads).●

Delay is measured using 0.35/0.65 output trip points.●

m2 minimum width is 3 l = 0.9 m m.●

1X inverter input capacitance is 0.02 pF (a standard load).●

First we need to find the pull-down resistance, R pd , of the 4X inverter. If we
model the gate with a linear pull-down resistor, R pd , driving a load C L , the
output waveform is exp � t /(C L R pd) (normalized to 1V). The output reaches
63 percent of its final value when t = C L R pd , because exp (�1) = 0.63. Then,

because the delay is measured with a 0.65 trip point, the constant 0.5 nspF �1 =
0.5 k W is very close to the equivalent pull-down resistance. Thus, R pd ª 500 W .

From the given data, we can calculate the R �s and C �s:

 (0.1 mm) (50 ¥ 10 �3 W)

R 1 = R 2 = �������������������� = 6 W

 0.9 m m

 (1 mm) (50 ¥ 10 �3 W)

R 3 = �������������������� = 56 W

 0.9 m m

 (2 mm) (50 ¥ 10 �3 W)

R 4 = �������������������� = 112 W

 0.9 m m
 (17.3)

C 1 = (0.1 mm) (0.2 ¥ pFmm �1) = 0.02 pF

C 2 = (0.1 mm) (0.2 ¥ pFmm �1) + 0.02 pF = 0.04 pF

C 3 = (1 mm) (0.2 ¥ pFmm �1) = 0.2 pF

C 4 = (2 mm) (0.2 ¥ pFmm �1) + 0.02 pF = 0.42 pF

 (17.4)

Now we can calculate the path resistance, R ki , values (notice that R ki = R ik):

R 14 = 500 W + 6 W = 506 W

R 24 = 500 W + 6 W = 506 W

R 34 = 500 W + 6 W + 56 W = 562 W

R 44 = 500 W + 6 W + 56 W + 112 W = 674 W

 (17.5)

Finally, we can calculate Elmore�s constants for node 4 and node 2 as follows:

t D 4 = R 14 C 1 + R 24 C 2 + R 34 C 3 + R 44 C 4 (17.6)

 = (506)(0.02) + (506)(0.04)
 + (562)(0.2) + (674)(0.42)
 = 425 ps .

t D 2 = R 12 C 1 + R 22 C 2 + R 32 C 3 + R 42 C 4 (17.7)

 = (R pd + R 1)(C 2 + C 3 + C 4)

 + (R pd + R 1 + R 2) C 2

 = (500 + 6 + 6)(0.04)
 + (500 + 6)(0.02 + 0.2 + 0.2)
 = 344 ps .

and t D 4 � t D 2 = (425 � 344) = 81 ps.

A lumped-delay model neglects the effects of interconnect resistance and simply
sums all the node capacitances (the lumped capacitance) as follows:

t D = R pd (C 1 + C 2 + C 3 + C 4) (17.8)

 = (500) (0.02 + 0.04 + 0.2 + 0.42)
 = 340 ps .

Comparing Eqs. 17.6 � 17.8 , we can see that the delay of the inverter can be
assigned as follows: 20 ps (the intrinsic delay, 0.2 ns, due to the cell output
capacitance), 340 ps (due to the pull-down resistance and the output capacitance),
4 ps (due to the interconnect from A to B), and 65 ps (due to the interconnect
from A to C). We can see that the error from neglecting interconnect resistance
can be important.

Even using the Elmore constant we still made the following assumptions in
estimating the path delays:

A step-function waveform drives the net.●

The delay is measured from when the gate input changes.●

The delay is equal to the time constant of an exponential waveform that
approximates the actual output waveform.

●

The interconnect is modeled by discrete resistance and capacitance
elements.

●

The global router could use more sophisticated estimates that remove some of
these assumptions, but there is a limit to the accuracy with which delay can be
estimated during global routing. For example, the global router does not know
how much of the routing is on which of the layers, or how many vias will be used
and of which type, or how wide the metal lines will be. It may be possible to
estimate how much interconnect will be horizontal and how much is vertical.
Unfortunately, this knowledge does not help much if horizontal interconnect may
be completed in either m1 or m3 and there is a large difference in parasitic
capacitance between m1 and m3, for example.

When the global router attempts to minimize interconnect delay, there is an
important difference between a path and a net. The path that minimizes the delay
between two terminals on a net is not necessarily the same as the path that
minimizes the total path length of the net. For example, to minimize the path
delay (using the Elmore constant as a measure) from the output of inverter A in
Figure 17.3 (a) to the input of inverter B requires a rather complicated algorithm
to construct the best path. We shall return to this problem in Section 17.1.6 .

17.1.3 Global Routing Methods
Global routing cannot use the interconnect-length approximations, such as the
half-perimeter measure, that were used in placement. What is needed now is the
actual path and not an approximation to the path length. However, many of the
methods used in global routing are still based on the solutions to the tree on a
graph problem.

One approach to global routing takes each net in turn and calculates the shortest
path using tree on graph algorithms�with the added restriction of using the
available channels. This process is known as sequential routing . As a sequential
routing algorithm proceeds, some channels will become more congested since
they hold more interconnects than others. In the case of FPGAs and channeled
gate arrays, the channels have a fixed channel capacity and can only hold a
certain number of interconnects. There are two different ways that a global router
normally handles this problem. Using order-independent routing , a global router
proceeds by routing each net, ignoring how crowded the channels are. Whether a
particular net is processed first or last does not matter, the channel assignment
will be the same. In order-independent routing, after all the interconnects are
assigned to channels, the global router returns to those channels that are the most
crowded and reassigns some interconnects to other, less crowded, channels.
Alternatively, a global router can consider the number of interconnects already
placed in various channels as it proceeds. In this case the global routing is order

dependent �the routing is still sequential, but now the order of processing the nets
will affect the results. Iterative improvement or simulated annealing may be
applied to the solutions found from both order-dependent and order-independent
algorithms. This is implemented in the same way as for system partitioning and
placement: A constructed solution is successively changed, one interconnect path
at a time, in a series of random moves.

In contrast to sequential global-routing methods, which handle nets one at a time,
hierarchical routing handles all nets at a particular level at once. Rather than
handling all of the nets on the chip at the same time, the global-routing problem
is made more tractable by dividing the chip area into levels of hierarchy. By
considering only one level of hierarchy at a time the size of the problem is
reduced at each level. There are two ways to traverse the levels of hierarchy.
Starting at the whole chip, or highest level, and proceeding down to the logic
cells is the top-down approach. The bottom-up approach starts at the lowest level
of hierarchy and globally routes the smallest areas first.

17.1.4 Global Routing Between Blocks
Figure 17.4 illustrates the global-routing problem for a cell-based ASIC. Each
edge in the channel-intersection graph in Figure 17.4 (c) represents a channel.
The global router is restricted to using these channels. The weight of each edge in
the graph corresponds to the length of the channel. The global router plans a path
for each interconnect using this graph.

FIGURE 17.4 Global routing for a cell-based ASIC formulated as a graph
problem. (a) A cell-based ASIC with numbered channels. (b) The channels form
the edges of a graph. (c) The channel-intersection graph. Each channel
corresponds to an edge on a graph whose weight corresponds to the channel
length.

Figure 17.5 shows an example of global routing for a net with five terminals,
labeled A1 through F1, for the cell-based ASIC shown in Figure 17.4 . If a
designer wishes to use minimum total interconnect path length as an objective,

the global router finds the minimum-length tree shown in Figure 17.5 (b). This
tree determines the channels the interconnects will use. For example, the shortest
connection from A1 to B1 uses channels 2, 1, and 5 (in that order). This is the
information the global router passes to the detailed router. Figure 17.5 (c) shows
that minimizing the total path length may not correspond to minimizing the path
delay between two points.

FIGURE 17.5 Finding paths in global routing. (a) A cell-based ASIC (from
Figure 17.4) showing a single net with a fanout of four (five terminals). We
have to order the numbered channels to complete the interconnect path for
terminals A1 through F1. (b) The terminals are projected to the center of the
nearest channel, forming a graph. A minimum-length tree for the net that uses
the channels and takes into account the channel capacities. (c) The
minimum-length tree does not necessarily correspond to minimum delay. If we
wish to minimize the delay from terminal A1 to D1, a different tree might be
better.

Global routing is very similar for cell-based ASICs and gate arrays, but there is a
very important difference between the types of channels in these ASICs. The size
of the channels in sea-of-gates arrays, channelless gate arrays, and cell-based
ASICs can be varied to make sure there is enough space to complete the wiring.
In channeled gate-arrays and FPGAs the size, number, and location of channels
are fixed. The good news is that the global router can allocate as many
interconnects to each channel as it likes, since that space is committed anyway.
The bad news is that there is a maximum number of interconnects that each
channel can hold. If the global router needs more room, even in just one channel
on the whole chip, the designer has to repeat the placement-and-routing steps and
try again (or use a bigger chip).

17.1.5 Global Routing Inside Flexible
Blocks
We shall illustrate global routing using a gate array. Figure 17.6 (a) shows the
routing resources on a sea-of-gates or channelless gate array. The gate array base
cells are arranged in 36 blocks, each block containing an array of 8-by-16
gate-array base cells, making a total of 4068 base cells.

The horizontal interconnect resources are the routing channels that are formed
from unused rows of the gate-array base cells, as shown in Figure 17.6 (b) and
(c). The vertical resources are feedthroughs. For example, the logic cell shown in
Figure 17.6 (d) is an inverter that contains two types of feedthrough. The inverter
logic cell uses a single gate-array base cell with terminals (or connectors) located
at the top and bottom of the logic cell. The inverter input pin has two electrically
equivalent terminals that the global router can use as a feedthrough. The output of
the inverter is connected to only one terminal. The remaining vertical track is
unused by the inverter logic cell, so this track forms an uncommitted
feedthrough.

You may see any of the terms landing pad (because we say that we �drop� a via to
a landing pad), pick-up point , connector , terminal , pin , or port used for the
connection to a logic cell. The term pick-up point refers to the physical pieces of
metal (or sometimes polysilicon) in the logic cell to which the router connects. In
a three-level metal process, the global router may be able to connect to anywhere
in an area�an area pick-up point . In this book we use the term connector to refer
to the physical pick-up point. The term pin more often refers to the connection on
a logic schematic icon (a dot, square box, or whatever symbol is used), rather
than layout. Thus the difference between a pin and a connector is that we can
have multiple connectors for one pin. Terminal is often used when we talk about
routing. The term port is used when we are using text (EDIF netlists or HDLs, for
example) to describe circuits.

In a gate array the channel capacity must be a multiple of the number of
horizontal tracks in the gate-array base cell. Figure 17.6 (e) shows a gate-array
base cell with seven horizontal tracks (see Section 17.2 for the factors that
determine the track width and track spacing). Thus, in this gate array, we can
have a channel with a capacity of 7, 14, 21, ... horizontal tracks�but not between
these values.

FIGURE 17.6 Gate-array global routing. (a) A small gate array. (b) An enlarged
view of the routing. The top channel uses three rows of gate-array base cells; the
other channels use only one. (c) A further enlarged view showing how the
routing in the channels connects to the logic cells. (d) One of the logic cells, an
inverter. (e) There are seven horizontal wiring tracks available in one row of
gate-array base cells�the channel capacity is thus 7.

Figure 17.7 shows the inverter macro for the sea-of-gates array shown in
Figure 17.6 . Figure 17.7 (a) shows the base cell. Figure 17.7 (b) shows how the
internal inverter wiring on m1 leaves one vertical track free as a feedthrough in a
two-level metal process (connectors placed at the top and bottom of the cell). In a
three-level metal process the connectors may be placed inside the cell abutment
box (Figure 17.7 c). Figure 17.8 shows the global routing for the sea-of-gates
array. We divide the array into nonoverlapping routing bins (or just bins , also
called global routing cells or GRCs), each containing a number of gate-array
base cells.

FIGURE 17.7 The gate-array inverter from Figure 17.6 d. (a) An oxide-isolated
gate-array base cell, showing the diffusion and polysilicon layers. (b) The metal
and contact layers for the inverter in a 2LM (two-level metal) process. (c) The
router�s view of the cell in a 3LM process.

We need an aside to discuss our use of the term cell . Be careful not to confuse
the global routing cells with gate-array base cells (the smallest element of a gate
array, consisting of a small number of n -type and p -type transistors), or with
logic cells (which are NAND gates, NOR gates, and so on).

A large routing bin reduces the size of the routing problem, and a small routing
bin allows the router to calculate the wiring capacities more accurately. Some
tools permit routing bins of different size in different areas of the chip (with
smaller routing bins helping in areas of dense routing). Figure 17.8 (a) shows a
routing bin that is 2 -by-4 gate-array base cells. The logic cells occupy the lower
half of the routing bin. The upper half of the routing bin is the channel area,
reserved for wiring. The global router calculates the edge capacities for this
routing bin, including the vertical feedthroughs. The global router then
determines the shortest path for each net considering these edge capacities. An
example of a global-routing calculation is shown in Figure 17.8 (b). The path,
described by a series of adjacent routing bins, is passed to the detailed router.

FIGURE 17.8 Global routing a gate array. (a) A single global-routing cell (GRC
or routing bin) containing 2-by-4 gate-array base cells. For this choice of routing
bin the maximum horizontal track capacity is 14, the maximum vertical track
capacity is 12. The routing bin labeled C3 contains three logic cells, two of
which have feedthroughs marked 'f'. This results in the edge capacities shown.
(b) A view of the top left-hand corner of the gate array showing 28 routing bins.
The global router uses the edge capacities to find a sequence of routing bins to
connect the nets.

17.1.6 Timing-Driven Methods
Minimizing the total pathlength using a Steiner tree does not necessarily
minimize the interconnect delay of a path. Alternative tree algorithms apply in
this situation, most using the Elmore constant as a method to estimate the delay
of a path (Section 17.1.2). As in timing-driven placement, there are two main
approaches to timing-driven routing: net-based and path-based. Path-based
methods are more sophisticated. For example, if there is a critical path from logic
cell A to B to C, the global router may increase the delay due to the interconnect
between logic cells A and B if it can reduce the delay between logic cells B and
C. Placement and global routing tools may or may not use the same algorithm to
estimate net delay. If these tools are from different companies, the algorithms are
probably different. The algorithms must be compatible, however. There is no use
performing placement to minimize predicted delay if the global router uses
completely different measurement methods. Companies that produce
floorplanning and placement tools make sure that the output is compatible with
different routing tools�often to the extent of using different algorithms to target
different routers.

17.1.7 Back-annotation
After global routing is complete it is possible to accurately predict what the
length of each interconnect in every net will be after detailed routing, probably to
within 5 percent. The global router can give us not just an estimate of the total net
length (which was all we knew at the placement stage), but the resistance and
capacitance of each path in each net. This RC information is used to calculate net
delays. We can back-annotate this net delay information to the synthesis tool for
in-place optimization or to a timing verifier to make sure there are no timing
surprises. Differences in timing predictions at this point arise due to the different
ways in which the placement algorithms estimate the paths and the way the
global router actually builds the paths.

17.2 Detailed Routing
The global routing step determines the channels to be used for each interconnect.
Using this information the detailed router decides the exact location and layers
for each interconnect. Figure 17.9 (a) shows typical metal rules. These rules
determine the m1 routing pitch (track pitch , track spacing , or just pitch). We
can set the m1 pitch to one of three values:

via-to-via (VTV) pitch (or spacing),1.

via-to-line (VTL or line-to-via) pitch, or2.

line-to-line (LTL) pitch.3.

The same choices apply to the m2 and other metal layers if they are present.
Via-to-via spacing allows the router to place vias adjacent to each other.
Via-to-line spacing is hard to use in practice because it restricts the router to
nonadjacent vias. Using line-to-line spacing prevents the router from placing a
via at all without using jogs and is rarely used. Via-to-via spacing is the easiest
for a router to use and the most common. Using either via-to-line or via-to-via
spacing means that the routing pitch is larger than the minimum metal pitch.

Sometimes people draw a distinction between a cut and a via when they talk
about large connections such as shown in Figure 17.10 (a). We split or stitch a
large via into identically sized cuts (sometimes called a waffle via). Because of
the profile of the metal in a contact and the way current flows into a contact,
often the total resistance of several small cuts is less than that of one large cut.
Using identically sized cuts also means the processing conditions during contact
etching, which may vary with the area and perimeter of a contact, are the same
for every cut on the chip.

In a stacked via the contact cuts all overlap in a layout plot and it is impossible to
tell just how many vias on which layers are present. Figure 17.10 (b�f) show an
alternative way to draw contacts and vias. Though this is not a standard, using the
diagonal box convention makes it possible to recognize stacked vias and contacts
on a layout (in any orientation). I shall use these conventions when it is
necessary.

FIGURE 17.9 The metal routing pitch. (a) An example of l -based metal design
rules for m1 and via1 (m1/m2 via). (b) Via-to-via pitch for adjacent vias.
(c) Via-to-line (or line-to-via) pitch for nonadjacent vias. (d) Line-to-line pitch
with no vias.

FIGURE 17.10 (a) A large m1 to m2 via. The black squares represent the holes
(or cuts) that are etched in the insulating material between the m1 and 2 layers.
(b) A m1 to m2 via (a via1). (c) A contact from m1 to diffusion or polysilicon (a
contact). (d) A via1 placed over (or stacked over) a contact. (e) A m2 to m3 via
(a via2) (f) A via2 stacked over a via1 stacked over a contact. Notice that the
black square in parts b�c do not represent the actual location of the cuts. The
black squares are offset so you can recognize stacked vias and contacts.

In a two-level metal CMOS ASIC technology we complete the wiring using the
two different metal layers for the horizontal and vertical directions, one layer for
each direction. This is Manhattan routing , because the results look similar to the
rectangular north�south and east�west layout of streets in New York City. Thus,
for example, if terminals are on the m2 layer, then we route the horizontal
branches in a channel using m2 and the vertical trunks using m1. Figure 17.11
shows that, although we may choose a preferred direction for each metal layer
(for example, m1 for horizontal routing and m2 for vertical routing), this may
lead to problems in cases that have both horizontal and vertical channels. In these
cases we define a preferred metal layer in the direction of the channel spine. In
Figure 17.11 , because the logic cell connectors are on m2, any vertical channel
has to use vias at every logic cell location. By changing the orientation of the
metal directions in vertical channels, we can avoid this, and instead we only need

to place vias at the intersection of horizontal and vertical channels.

FIGURE 17.11 An expanded view of part of a cell-based ASIC. (a) Both
channel 4 and channel 5 use m1 in the horizontal direction and m2 in the vertical
direction. If the logic cell connectors are on m2 this requires vias to be placed at
every logic cell connector in channel 4. (b) Channel 4 and 5 are routed with m1
along the direction of the channel spine (the long direction of the channel). Now
vias are required only for nets 1 and 2, at the intersection of the channels.

Figure 17.12 shows an imaginary logic cell with connectors. Double-entry logic
cells intended for two-level metal routing have connectors at the top and bottom
of the logic cell, usually in m2. Logic cells intended for processes with three or
more levels of metal have connectors in the center of the cell, again usually on
m2. Logic cells may use both m1 and m2 internally, but the use of m2 is usually
minimized. The router normally uses a simplified view of the logic cell called a
phantom . The phantom contains only the logic cell information that the router
needs: the connector locations, types, and names; the abutment and bounding
boxes; enough layer information to be able to place cells without violating design
rules; and a blockage map �the locations of any metal inside the cell that blocks
routing.

FIGURE 17.12 The different types of connections that can be made to a cell.
This cell has connectors at the top and bottom of the cell (normal for cells
intended for use with a two-level metal process) and internal connectors (normal
for logic cells intended for use with a three-level metal process). The
interconnect and connections are drawn to scale.

Figure 17.13 illustrates some terms used in the detailed routing of a channel. The
channel spine in Figure 17.13 is horizontal with terminals at the top and the
bottom, but a channel can also be vertical. In either case terminals are spaced
along the longest edges of the channel at given, fixed locations. Terminals are
usually located on a grid defined by the routing pitch on that layer (we say
terminals are either on-grid or off-grid). We make connections between
terminals using interconnects that consist of one or more trunks running parallel
to the length of the channel and branches that connect the trunk to the terminals.
If more than one trunk is used, the trunks are connected by doglegs . Connections
exit the channel at pseudoterminals .

FIGURE 17.13 Terms used in channel routing. (a) A channel with four
horizontal tracks. (b) An expanded view of the left-hand portion of the channel
showing (approximately to scale) how the m1 and m2 layers connect to the logic
cells on either side of the channel. (c) The construction of a via1 (m1/m2 via).

The trunk and branch connections run in tracks (equispaced, like railway tracks).
If the trunk connections use m1, the horizontal track spacing (usually just called
the track spacing for channel routing) is equal to the m1 routing pitch. The
maximum number of interconnects we need in a channel multiplied by the
horizontal track spacing gives the minimum height of a channel (see
Section 17.2.2 on how to determine the maximum number of interconnects
needed). Each terminal occupies a column . If the branches use m2, the column
spacing (or vertical track spacing) is equal to the m2 routing pitch.

17.2.1 Goals and Objectives
The goal of detailed routing is to complete all the connections between logic
cells. The most common objective is to minimize one or more of the following:

The total interconnect length and area●

The number of layer changes that the connections have to make●

The delay of critical paths●

Minimizing the number of layer changes corresponds to minimizing the number
of vias that add parasitic resistance and capacitance to a connection.

In some cases the detailed router may not be able to complete the routing in the

area provided. In the case of a cell-based ASIC or sea-of-gates array, it is
possible to increase the channel size and try the routing steps again. A channeled
gate array or FPGA has fixed routing resources and in these cases we must start
all over again with floorplanning and placement, or use a larger chip.

17.2.2 Measurement of Channel Density
We can describe a channel-routing problem by specifying two lists of nets: one
for the top edge of the channel and one for the bottom edge. The position of the
net number in the list gives the column position. The net number zero represents
a vacant or unused terminal. Figure 17.14 shows a channel with the numbered
terminals to be connected along the top and the bottom of the channel.

We call the number of nets that cross a line drawn vertically anywhere in a
channel the local density . We call the maximum local density of the channel the
global density or sometimes just channel density . Figure 17.14 has a channel
density of 4. Channel density is an important measure in routing�it tells a router
the absolute fewest number of horizontal interconnects that it needs at the point
where the local density is highest. In two-level routing (all the horizontal
interconnects run on one routing layer) the channel density determines the
minimum height of the channel. The channel capacity is the maximum number of
interconnects that a channel can hold. If the channel density is greater than the
channel capacity, that channel definitely cannot be routed (to learn how channel
density is calculated, see Section 17.2.5).

FIGURE 17.14 The definitions of local channel density and global channel
density. Lines represent the m1 and m2 interconnect in the channel to simplify
the drawing.

17.2.3 Algorithms
We start discussion of routing methods by simplifying the general
channel-routing problem. The restricted channel-routing problem limits each net
in a channel to use only one horizontal segment. In other words the channel

router uses only one trunk for each net. This restriction has the effect of
minimizing the number of connections between the routing layers. This is
equivalent to minimizing the number of vias used by the channel router in a
two-layer metal technology. Minimizing the number of vias is an important
objective in routing a channel, but it is not always practical. Sometimes
constraints will force a channel router to use jogs or other methods to complete
the routing (see Section 17.2.5). Next, though, we shall study an algorithm that
solves the restricted channel-routing problem.

17.2.4 Left-Edge Algorithm
The left-edge algorithm (LEA) is the basis for several routing algorithms [
Hashimoto and Stevens, 1971]. The LEA applies to two-layer channel routing,
using one layer for the trunks and the other layer for the branches. For example,
m1 may be used in the horizontal direction and m2 in the vertical direction. The
LEA proceeds as follows:

Sort the nets according to the leftmost edges of the net�s horizontal
segment.

1.

Assign the first net on the list to the first free track.2.

Assign the next net on the list, which will fit, to the track.3.

Repeat this process from step 3 until no more nets will fit in the current
track.

4.

Repeat steps 2�4 until all nets have been assigned to tracks.5.

Connect the net segments to the top and bottom of the channel.

6.

FIGURE 17.15 Left-edge algorithm. (a) Sorted list of segments.
(b) Assignment to tracks. (c) Completed channel route (with m1 and m2
interconnect represented by lines).

Figure 17.15 illustrates the LEA. The algorithm works as long as none of the
branches touch�which may occur if there are terminals in the same column
belonging to different nets. In this situation we have to make sure that the trunk
that connects to the top of the channel is placed above the lower trunk. Otherwise
two branches will overlap and short the nets together. In the next section we shall
examine this situation more closely.

17.2.5 Constraints and Routing Graphs
Two terminals that are in the same column in a channel create a vertical
constraint . We say that the terminal at the top of the column imposes a vertical
constraint on the lower terminal. We can draw a graph showing the vertical
constraints imposed by terminals. The nodes in a vertical-constraint graph
represent terminals. A vertical constraint between two terminals is shown by an
edge of the graph connecting the two terminals. A graph that contains
information in the direction of an edge is a directed graph . The arrow on the
graph edge shows the direction of the constraint�pointing to the lower terminal,
which is constrained. Figure 17.16 (a) shows an example of a channel, and
Figure 17.16 (b) shows its vertical constraint graph.

FIGURE 17.16 Routing graphs. (a) Channel with a global density of 4. (b) The
vertical constraint graph. If two nets occupy the same column, the net at the top
of the channel imposes a vertical constraint on the net at the bottom. For
example, net 2 imposes a vertical constraint on net 4. Thus the interconnect for
net 4 must use a track above net 2. (c) Horizontal-constraint graph. If the
segments of two nets overlap, they are connected in the horizontal-constraint
graph. This graph determines the global channel density.

We can also define a horizontal constraint and a corresponding
horizontal-constraint graph . If the trunk for net 1 overlaps the trunk of net 2, then
we say there is a horizontal constraint between net 1 and net 2. Unlike a vertical
constraint, a horizontal constraint has no direction. Figure 17.16 (c) shows an
example of a horizontal constraint graph and shows a group of 4 terminals
(numbered 3, 5, 6, and 7) that must all overlap. Since this is the largest such
group, the global channel density is 4.

If there are no vertical constraints at all in a channel, we can guarantee that the
LEA will find the minimum number of routing tracks. The addition of vertical
constraints transforms the restricted routing problem into an NP-complete
problem. There is also an arrangement of vertical constraints that none of the
algorithms based on the LEA can cope with. In Figure 17.17 (a) net 1 is above
net 2 in the first column of the channel. Thus net 1 imposes a vertical constraint
on net 2. Net 2 is above net 1 in the last column of the channel. Then net 2 also
imposes a vertical constraint on net 1. It is impossible to route this arrangement
using two routing layers with the restriction of using only one trunk for each net.
If we construct the vertical-constraint graph for this situation, shown in
Figure 17.17 (b), there is a loop or cycle between nets 1 and 2. If there is any
such vertical-constraint cycle (or cyclic constraint) between two or more nets,
the LEA will fail. A dogleg router removes the restriction that each net can use
only one track or trunk. Figure 17.17 (c) shows how adding a dogleg permits a

channel with a cyclic constraint to be routed.

FIGURE 17.17 The
addition of a dogleg, an
extra trunk, in the wiring
of a net can resolve cyclic
vertical constraints.

The channel-routing algorithms we have described so far do not allow
interconnects on one layer to run on top of other interconnects on a different
layer. These algorithms allow interconnects to cross at right angles to each other
on different layers, but not to overlap . When we remove the restriction that
horizontal and vertical routing must use different layers, the density of a channel
is no longer the lower bound for the number of tracks required. For two routing
layers the ultimate lower bound becomes half of the channel density. The
practical reasoning for restricting overlap is the parasitic overlap capacitance
between signal interconnects. As the dimensions of the metal interconnect are
reduced, the capacitance between adjacent interconnects on the same layer (
coupling capacitance) is comparable to the capacitance of interconnects that
overlap on different layers (overlap capacitance). Thus, allowing a short overlap
between interconnects on different layers may not be as bad as allowing two
interconnects to run adjacent to each other for a long distance on the same layer.
Some routers allow you to specify that two interconnects must not run adjacent to
each other for more than a specified length.

The channel height is fixed for channeled gate arrays; it is variable in discrete
steps for channelless gate arrays; it is continuously variable for cell-based ASICs.
However, for all these types of ASICs, the channel wiring is fully customized and
so may be compacted or compressed after a channel router has completed the
interconnect. The use of channel-routing compaction for a two-layer channel can
reduce the channel height by 15 percent to 20 percent [Cheng et al., 1992].

Modern channel routers are capable of routing a channel at or near the theoretical
minimum density. We can thus consider channel routing a solved problem. Most
of the difficulty in detailed routing now comes from the need to route more than
two layers and to route arbitrary shaped regions. These problems are best handled
by area routers.

17.2.6 Area-Routing Algorithms
There are many algorithms used for the detailed routing of general-shaped areas
(see the paper by Ohtsuki in [Ohtsuki, 1986]). Many of these were originally
developed for PCB wiring. The first group we shall cover and the earliest to be
used historically are the grid-expansion or maze-running algorithms. A second
group of methods, which are more efficient, are the line-search algorithms.

FIGURE 17.18 The Lee maze-running
algorithm. The algorithm finds a path from
source (X) to target (Y) by emitting a wave
from both the source and the target at the
same time. Successive outward moves are
marked in each bin. Once the target is
reached, the path is found by backtracking
(if there is a choice of bins with equal
labeled values, we choose the bin that
avoids changing direction). (The original
form of the Lee algorithm uses a single
wave.)

Figure 17.18 illustrates the Lee maze-running algorithm . The goal is to find a
path from X to Y�i.e., from the start (or source) to the finish (or target)�avoiding
any obstacles. The algorithm is often called wave propagation because it sends
out waves, which spread out like those created by dropping a stone into a pond.

Algorithms that use lines rather than waves to search for connections are more
efficient than algorithms based on the Lee algorithm. Figure 17.19 illustrates the
Hightower algorithm �a line-search algorithm (or line-probe algorithm):

Extend lines from both the source and target toward each other.1.

When an extended line, known as an escape line , meets an obstacle,
choose a point on the escape line from which to project another escape line
at right angles to the old one. This point is the escape point .

2.

Place an escape point on the line so that the next escape line just misses the
edge of the obstacle. Escape lines emanating from the source and target
intersect to form the path.

FIGURE 17.19 Hightower
area-routing algorithm. (a)
Escape lines are constructed
from source (X) and target (Y)
toward each other until they hit
obstacles. (b) An escape point
is found on the escape line so
that the next escape line
perpendicular to the original
misses the next obstacle. The
path is complete when escape
lines from source and target
meet.

3.

The Hightower algorithm is faster and requires less memory than methods based
on the Lee algorithm.

17.2.7 Multilevel Routing
Using two-layer routing , if the logic cells do not contain any m2, it is possible to
complete some routing in m2 using over-the-cell (OTC) routing. Sometimes poly
is used for short connections in the channel in a two-level metal technology; this
is known as 2.5-layer routing . Using a third level of metal in three-layer routing ,
there is a choice of approaches. Reserved-layer routing restricts all the
interconnect on each layer to flow in one direction in a given routing area (for
example, in a channel, either parallel or perpendicular to the channel spine).
Unreserved-layer routing moves in both horizontal and vertical directions on a
given layer. Most routers use reserved routing. Reserved three-level metal routing
offers another choice: Either use m1 and m3 for horizontal routing (parallel to the
channel spine), with m2 for vertical routing (HVH routing) or use VHV routing
. Since the logic cell interconnect usually blocks most of the area on the m1 layer,
HVH routing is normally used. It is also important to consider the pitch of the
layers when routing in the same direction on two different layers. Using HVH
routing it is preferable for the m3 pitch to be a simple multiple of the m1 pitch
(ideally they are the same). Some processes have more than three levels of metal.
Sometimes the upper one or two metal layers have a coarser pitch than the lower
layers and are used in multilevel routing for power and clock lines rather than for
signal interconnect.

Figure 17.20 shows an example of three-layer channel routing. The logic cells are
64 l high, the m1 routing pitch is 8 l, and the m2 and m3 routing pitch is 16 l .
The channel in Figure 17.20 is the same as the channel using two-layer metal
shown in Figure 17.13 , but using three-level metal reduces the channel height
from 40 l (= 5 ¥ 8 l) to 16 l . Submicron processes try to use the same metal
pitch on all metal layers. This makes routing easier but processing more difficult.

FIGURE 17.20 Three-level channel routing. In this diagram the m2 and m3
routing pitch is set to twice the m1 routing pitch. Routing density can be
increased further if all the routing pitches can be made equal�a difficult process
challenge.

With three or more levels of metal routing it is possible to reduce the channel
height in a row-based ASIC to zero. All of the interconnect is then completed
over the cell. If all of the channels are eliminated, the core area (logic cells plus
routing) is determined solely by the logic-cell area. The point at which this
happens depends on not only the number of metal layers and channel density, but
also the routing resources (the blockages and feedthroughs) in the logic cell. This
the cell porosity . Designing porous cells that help to minimize routing area is an
art. For example, it is quite common to be able to produce a smaller chip using
larger logic cells if the larger cells have more routing resources.

17.2.8 Timing-Driven Detailed Routing
In detailed routing the global router has already set the path the interconnect will
follow. At this point little can be done to improve timing except to reduce the
number of vias, alter the interconnect width to optimize delay, and minimize
overlap capacitance. The gains here are relatively small, but for very long
branching nets even small gains may be important. For high-frequency clock nets
it may be important to shape and chamfer (round) the interconnect to match
impedances at branches and control reflections at corners.

17.2.9 Final Routing Steps
If the algorithms to estimate congestion in the floorplanning tool accurately
perfectly reflected the algorithms used by the global router and detailed router,
routing completion should be guaranteed. Often, however, the detailed router will
not be able to completely route all the nets. These problematical nets are known
as unroutes . Routers handle this situation in one of two ways. The first method
leaves the problematical nets unconnected. The second method completes all
interconnects anyway but with some design-rule violations (the problematical
nets may be shorted to other nets, for example). Some tools flag these problems
as a warning (in fact there can be no more serious error).

If there are many unroutes the designer needs to discover the reason and return to
the floorplanner and change channel sizes (for a cell-based ASIC) or increase the
base-array size (for a gate array). Returning to the global router and changing bin
sizes or adjusting the algorithms may also help. In drastic cases it may be
necessary to change the floorplan. If just a handful of difficult nets remain to be
routed, some tools allow the designer to perform hand edits using a rip-up and
reroute router (sometimes this is done automatically by the detailed router as a
last phase in the routing procedure anyway). This capability also permits

engineering change orders (ECO)�corresponding to the little yellow wires on a
PCB. One of the last steps in routing is via removal �the detailed router looks to
see if it can eliminate any vias (which can contribute a significant amount to the
interconnect resistance) by changing layers or making other modifications to the
completed routing. Routing compaction can then be performed as the final step.

17.3 Special Routing
The routing of nets that require special attention, clock and power nets for
example, is normally done before detailed routing of signal nets. The architecture
and structure of these nets is performed as part of floorplanning, but the sizing
and topology of these nets is finalized as part of the routing step.

17.3.1 Clock Routing
Gate arrays normally use a clock spine (a regular grid), eliminating the need for
special routing (see Section 16.1.6, �Clock Planning�). The clock distribution grid
is designed at the same time as the gate-array base to ensure a minimum clock
skew and minimum clock latency�given power dissipation and clock buffer area
limitations. Cell-based ASICs may use either a clock spine, a clock tree, or a
hybrid approach. Figure 17.21 shows how a clock router may minimize clock
skew in a clock spine by making the path lengths, and thus net delays, to every
leaf node equal�using jogs in the interconnect paths if necessary. More
sophisticated clock routers perform clock-tree synthesis (automatically choosing
the depth and structure of the clock tree) and clock-buffer insertion (equalizing
the delay to the leaf nodes by balancing interconnect delays and buffer delays).

FIGURE 17.21 Clock routing. (a) A clock network for the cell-based ASIC
from Figure 16.11. (b) Equalizing the interconnect segments between CLK and
all destinations (by including jogs if necessary) minimizes clock skew.

The clock tree may contain multiply-driven nodes (more than one active element
driving a net). The net delay models that we have used break down in this case

and we may have to extract the clock network and perform circuit simulation,
followed by back-annotation of the clock delays to the netlist (for circuit
extraction, see Section 17.4) and the bus currents to the clock router. The sizes of
the clock buses depend on the current they must carry. The limits are set by
reliability issues to be discussed next.

Clock skew induced by hot-electron wearout was mentioned in Section 16.1.6,
�Clock Planning.� Another factor contributing to unpredictable clock skew is
changes in clock-buffer delays with variations in power-supply voltage due to
data-dependent activity. This activity-induced clock skew can easily be larger
than the skew achievable using a clock router. For example, there is little point in
using software capable of reducing clock skew to less than 100 ps if, due to
fluctuations in power-supply voltage when part of the chip becomes active, the
clock-network delays change by 200 ps.

The power buses supplying the buffers driving the clock spine carry direct
current (unidirectional current or DC), but the clock spine itself carries
alternating current (bidirectional current or AC). The difference between
electromigration failure rates due to AC and DC leads to different rules for sizing
clock buses. As we explained in Section 16.1.6, �Clock Planning,� the fastest way
to drive a large load in CMOS is to taper successive stages by approximately e ª
3. This is not necessarily the smallest-area or lowest-power approach, however [
Veendrick, 1984].

17.3.2 Power Routing
Each of the power buses has to be sized according to the current it will carry. Too
much current in a power bus can lead to a failure through a mechanism known as
electromigration [Young and Christou, 1994]. The required power-bus widths
can be estimated automatically from library information, from a separate power
simulation tool, or by entering the power-bus widths to the routing software by
hand. Many routers use a default power-bus width so that it is quite easy to
complete routing of an ASIC without even knowing about this problem.

For a direct current (DC) the mean time to failure (MTTF) due to
electromigration is experimentally found to obey the following equation:

MTTF = A J �2 exp � E / k T , (17.9)

where J is the current density; E is approximately 0.5 eV; k , Boltzmann�s
constant, is 8.62 ¥ 10 �5 eVK �1 ; and T is absolute temperature in kelvins.

There are a number of different approaches to model the effect of an AC
component. A typical expression is

 A J �2 exp � E / k T

MTTF = ������������������������� , (17.10)

 J | J | + k AC/DC | J | 2

where J is the average of J(t) , and | J | is the average of | J |. The constant k AC/DC
relates the relative effects of AC and DC and is typically between 0.01 and
0.0001. Electromigration problems become serious with a MTTF of less than 10 5

hours (approximately 10 years) for current densities (DC) greater than 0.5 GAm
�2 at temperatures above 150 °C.

Table 17.1 lists example metallization reliability rules �limits for the current you
can pass through a metal layer, contact, or via�for the typical 0.5 m m three-level
metal CMOS process, G5. The limit of 1 mA of current per square micron of
metal cross section is a good rule-of-thumb to follow for current density in
aluminum-based interconnect.

Some CMOS processes also have maximum metal-width rules (or fat-metal rules
). This is because stress (especially at the corners of the die, which occurs during
die attach �mounting the die on the chip carrier) can cause large metal areas to
lift. A solution to this problem is to place slots in the wide metal lines. These
rules are dependent on the ASIC vendor�s level of experience.

To determine the power-bus widths we need to determine the bus currents. The
largest problem is emulating the system�s operating conditions. Input vectors to
test the system are not necessarily representative of actual system operation.
Clock-bus sizing depends strongly on the parameter k AC/DC in Eq. 17.10 , since
the clock spine carries alternating current. (For the sources of power dissipation
in CMOS, see Section 15.5, �Power Dissipation.�)

Gate arrays normally use a regular power grid as part of the gate-array base. The
gate-array logic cells contain two fixed-width power buses inside the cell,
running horizontally on m1. The horizontal m1 power buses are then strapped in
a vertical direction by m2 buses, which run vertically across the chip. The
resistance of the power grid is extracted and simulated with SPICE during the
base-array design to model the effects of IR drops under worst-case conditions.

TABLE 17.1 Metallization reliability rules for a typical 0.5 micron (l = 0.25 m
m) CMOS process.

Layer/contact/via
Current limit
1

Metal thickness
2

Resistance 3

m1 1 mA m m �1 7000 Å 95 m W /square

m2 1 mA m m �1 7000 Å 95 m W /square

m3 2 mA m m �1 12,000 Å 48 m W /square

0.8 m m square m1 contact to
diffusion

0.7 mA 11 W

0.8 m m square m1 contact to
poly

0.7 mA 16 W

0.8 m m square m1/m2 via
(via1)

0.7 mA 3.6 W

0.8 m m square m2/m3 via
(via2)

0.7 mA 3.6 W

Standard cells are constructed in a similar fashion to gate-array cells, with power
buses running horizontally in m1 at the top and bottom of each cell. A row of
standard cells uses end-cap cells that connect to the VDD and VSS power buses
placed by the power router. Power routing of cell-based ASICs may include the
option to include vertical m2 straps at a specified intervals. Alternatively the
number of standard cells that can be placed in a row may be limited during
placement. The power router forms an interdigitated comb structure, minimizing
the number of times a VDD or VSS power bus needs to change layers. This is
achieved by routing with a routing bias on preferred layers. For example, VDD
may be routed with a left-and-down bias on m1, with VSS routed using
right-and-up bias on m2.

Three-level metal processes either use a m3 with a thickness and pitch that is
comparable to m1 and m2 (which usually have approximately the same thickness
and pitch) or they use metal that is much thicker (up to twice as thick as m1 and
m2) with a coarser pitch (up to twice as wide as m1 and m2). The factor that
determines the m3/4/5 properties is normally the sophistication of the fabrication
process.

In a three-level metal process, power routing is similar to two-level metal ASICs.
Power buses inside the logic cells are still normally run on m1. Using HVH
routing it would be possible to run the power buses on m3 and drop vias all the
way down to m1 when power is required in the cells. The problem with this
approach is that it creates pillars of blockage across all three layers.

Using three or more layers of metal for routing, it is possible to eliminate some of
the channels completely. In these cases we complete all the routing in m2 and m3
on top of the logic cells using connectors placed in the center of the cells on m1.
If we can eliminate the channels between cell rows, we can flip rows about a
horizontal axis and abut adjacent rows together (a technique known as flip and
abut). If the power buses are at the top (VDD) and bottom (VSS) of the cells in
m1 we can abut or overlap the power buses (joining VDD to VDD and VSS to
VSS in alternate rows).

Power distribution schemes are also a function of process and packaging
technology. Recall that flip-chip technology allows pads to be placed anywhere
on a chip (see Section 16.1.5, �I/O and Power Planning,� especially
Figure 16.13d). Four-level metal and aggressive stacked-via rules allow I/O pad
circuits to be placed in the core. The problems with this approach include placing
the ESD and latch-up protection circuits required in the I/O pads (normally kept
widely separated from core logic) adjacent to the logic cells in the core.

1. At 125 °C for unidirectional current. Limits for 110 °C are ¥ 1.5 higher. Limits
for 85 °C are ¥ 3 higher. Current limits for bidirectional current are ¥ 1.5 higher
than the unidirectional limits.

2. 10,000 Å (ten thousand angstroms) = 1 m m.

3. Worst case at 110 °C.

17.4 Circuit Extraction and
DRC
After detailed routing is complete, the exact length and position of each
interconnect for every net is known. Now the parasitic capacitance and resistance
associated with each interconnect, via, and contact can be calculated. This data is
generated by a circuit-extraction tool in one of the formats described next. It is
important to extract the parasitic values that will be on the silicon wafer. The
mask data or CIF widths and dimensions that are drawn in the logic cells are not
necessarily the same as the final silicon dimensions. Normally mask dimensions
are altered from drawn values to allow for process bias or other effects that occur
during the transfer of the pattern from mask to silicon. Since this is a problem
that is dealt with by the ASIC vendor and not the design software vendor, ASIC
designers normally have to ask very carefully about the details of this problem.

Table 17.2 shows values for the parasitic capacitances for a typical 1 m m CMOS
process. Notice that the fringing capacitance is greater than the parallel-plate
(area) capacitance for all layers except poly. Next, we shall describe how the
parasitic information is passed between tools.

17.4.1 SPF, RSPF, and DSPF
The standard parasitic format (SPF) (developed by Cadence [1990], now in the
hands of OVI) describes interconnect delay and loading due to parasitic
resistance and capacitance. There are three different forms of SPF: two of them (
regular SPF and reduced SPF) contain the same information, but in different
formats, and model the behavior of interconnect; the third form of SPF (detailed
SPF) describes the actual parasitic resistance and capacitance components of a
net. Figure 17.22 shows the different types of simplified models that regular and
reduced SPF support. The load at the output of gate A is represented by one of
three models: lumped-C, lumped-RC, or PI segment. The pin-to-pin delays are
modeled by RC delays. You can represent the pin-to-pin interconnect delay by an
ideal voltage source, V(A_1) in this case, driving an RC network attached to each
input pin. The actual pin-to-pin delays may not be calculated this way, however.

TABLE 17.2 Parasitic capacitances for a typical 1 m m (l = 0.5 m m)
three-level metal CMOS process. 1

Element Area / fF m m �2 Fringing / fF m m �1

poly (over gate oxide) to
substrate

1.73 NA 2

poly (over field oxide) to
substrate

0.058 0.043

m1 to diffusion or poly 0.055 0.049
m1 to substrate 0.031 0.044
m2 to diffusion 0.019 0.038
m2 to substrate 0.015 0.035
m2 to poly 0.022 0.040
m2 to m1 0.035 0.046
m3 to diffusion 0.011 0.034
m3 to substrate 0.010 0.033
m3 to poly 0.012 0.034
m3 to m1 0.016 0.039
m3 to m2 0.035 0.049
n+ junction (at 0V bias) 0.36 NA
p+ junction (at 0V bias) 0.46 NA

FIGURE 17.22 The regular and reduced standard parasitic format (SPF) models
for interconnect. (a) An example of an interconnect network with fanout. The
driving-point admittance of the interconnect network is Y (s). (b) The SPF
model of the interconnect. (c) The lumped-capacitance interconnect model.
(d) The lumped-RC interconnect model. (e) The PI segment interconnect model
(notice the capacitor nearest the output node is labeled C 2 rather than C 1). The
values of C , R , C 1 , and C 2 are calculated so that Y 1 (s), Y 2 (s), and Y 3 (s
) are the first-, second-, and third-order Taylor-series approximations to Y (s).

The key features of regular and reduced SPF are as follows:

The loading effect of a net as seen by the driving gate is represented by
choosing one of three different RC networks: lumped-C, lumped-RC, or PI
segment (selected when generating the SPF) [O�Brien and Savarino,
1989].

●

The pin-to-pin delays of each path in the net are modeled by a simple RC
delay (one for each path). This can be the Elmore constant for each path
(see Section 17.1.2), but it need not be.

●

Here is an example regular SPF file for just one net that uses the PI segment
model shown in Figure 17.22 (e):

#Design Name : EXAMPLE1

#Date : 6 August 1995

#Time : 12:00:00

#Resistance Units : 1 ohms

#Capacitance Units : 1 pico farads

#Syntax :

#N <netName>

#C <capVal>

F <from CompName> <fromPinName>

GC <conductance>

|

REQ <res>

GRC <conductance>

T <toCompName> <toPinName> RC <rcConstant> A <value>

|

RPI <res>

C1 <cap>

C2 <cap>

GPI <conductance>

T <toCompName> <toPinName> RC <rcConstant> A <value>

TIMING.ADMITTANCE.MODEL = PI

TIMING.CAPACITANCE.MODEL = PP

N CLOCK

C 3.66

F ROOT Z

RPI 8.85

C1 2.49

C2 1.17

GPI = 0.0

T DF1 G RC 22.20

T DF2 G RC 13.05

This file describes the following:

The preamble contains the file format.●

This representation uses the PI segment model (Figure 17.22 e).●

This net uses pin-to-pin timing.●

The driving gate of this net is ROOT and the output pin name is Z .●

The PI segment elements have values: C1 = 2.49 pF, C2 = 1.17 pF, RPI =
8.85 W . Notice the order of C1 and C2 in Figure 17.22 (e). The element
GPI is not normally used in SPF files.

●

The delay from output pin Z of ROOT to input pin G of DF1 is 22.20 ns.●

The delay from pin Z of ROOT to pin G of DF2 is 13.05 ns.●

The reduced SPF (RSPF) contains the same information as regular SPF, but uses
the SPICE format. Here is an example RSPF file that corresponds to the previous
regular SPF example:

* Design Name : EXAMPLE1

* Date : 6 August 1995

* Time : 12:00:00

* Resistance Units : 1 ohms

* Capacitance Units : 1 pico farads

*| RSPF 1.0

*| DELIMITER "_"

.SUBCKT EXAMPLE1 OUT IN

*| GROUND_NET VSS

* TIMING.CAPACITANCE.MODEL = PP

*|NET CLOCK 3.66PF

*|DRIVER ROOT_Z ROOT Z

*|S (ROOT_Z_OUTP1 0.0 0.0)

R2 ROOT_Z ROOT_Z_OUTP1 8.85

C1 ROOT_Z_OUTP1 VSS 2.49PF

C2 ROOT_Z VSS 1.17PF

*|LOAD DF2_G DF1 G

*|S (DF1_G_INP1 0.0 0.0)

E1 DF1_G_INP1 VSS ROOT_Z VSS 1.0

R3 DF1_G_INP1 DF1_G 22.20

C3 DF1_G VSS 1.0PF

*|LOAD DF2_G DF2 G

*|S (DF2_G_INP1 0.0 0.0)

E2 DF2_G_INP1 VSS ROOT_Z VSS 1.0

R4 DF2_G_INP1 DF2_G 13.05

C4 DF2_G VSS 1.0PF

*Instance Section

XDF1 DF1_Q DF1_QN DF1_D DF1_G DF1_CD DF1_VDD DF1_VSS DFF3

XDF2 DF2_Q DF2_QN DF2_D DF2_G DF2_CD DF2_VDD DF2_VSS DFF3

XROOT ROOT_Z ROOT_A ROOT_VDD ROOT_VSS BUF

.ENDS

.END

This file has the following features:

The PI segment elements (C1 , C2 , and R2) have the same values as the
previous example.

●

The pin-to-pin delays are modeled at each of the gate inputs with a
capacitor of value 1 pF (C3 and C4 here) and a resistor (R3 and R4)
adjusted to give the correct RC delay. Since the load on the output gate is
modeled by the PI segment it does not matter what value of capacitance is
chosen here.

●

The RC elements at the gate inputs are driven by ideal voltage sources (E1
and E2) that are equal to the voltage at the output of the driving gate.

●

The detailed SPF (DSPF) shows the resistance and capacitance of each segment
in a net, again in a SPICE format. There are no models or assumptions on
calculating the net delays in this format. Here is an example DSPF file that
describes the interconnect shown in Figure 17.23 (a):

.SUBCKT BUFFER OUT IN

* Net Section

*|GROUND_NET VSS

*|NET IN 3.8E-01PF

*|P (IN I 0.0 0.0 5.0)

*|I (INV1:A INV A I 0.0 10.0 5.0)

C1 IN VSS 1.1E-01PF

C2 INV1:A VSS 2.7E-01PF

R1 IN INV1:A 1.7E00

*|NET OUT 1.54E-01PF

*|S (OUT:1 30.0 10.0)

*|P (OUT O 0.0 30.0 0.0)

*|I (INV:OUT INV1 OUT O 0.0 20.0 10.0)

C3 INV1:OUT VSS 1.4E-01PF

C4 OUT:1 VSS 6.3E-03PF

C5 OUT VSS 7.7E-03PF

R2 INV1:OUT OUT:1 3.11E00

R3 OUT:1 OUT 3.03E00

*Instance Section

XINV1 INV:A INV1:OUT INV

.ENDS

The nonstandard SPICE statements in DSPF are comments that start with '*|' and
have the following formats:

*|I(InstancePinName InstanceName PinName PinType PinCap X Y)

*|P(PinName PinType PinCap X Y)

*|NET NetName NetCap

*|S(SubNodeName X Y)

*|GROUND_NET NetName

Figure 17.23 (b) illustrates the meanings of the DSPF terms: InstancePinName ,
InstanceName , PinName , NetName , and SubNodeName . The PinType is I (for
IN) or O (the letter 'O', not zero, for OUT). The NetCap is the total capacitance
on each net. Thus for net IN, the net capacitance is

0.38 pF = C1 + C2 = 0.11 pF + 0.27 pF.

This particular file does not use the pin capacitances, PinCap . Since the DSPF
represents every interconnect segment, DSPF files can be very large in size
(hundreds of megabytes).

FIGURE 17.23 The detailed standard parasitic format (DSPF) for interconnect
representation. (a) An example network with two m2 paths connected to a logic
cell, INV1. The grid shows the coordinates. (b) The equivalent DSPF circuit
corresponding to the DSPF file in the text.

17.4.2 Design Checks
ASIC designers perform two major checks before fabrication. The first check is a
design-rule check (DRC) to ensure that nothing has gone wrong in the process
of assembling the logic cells and routing. The DRC may be performed at two
levels. Since the detailed router normally works with logic-cell phantoms, the

first level of DRC is a phantom-level DRC , which checks for shorts, spacing
violations, or other design-rule problems between logic cells. This is principally a
check of the detailed router. If we have access to the real library-cell layouts
(sometimes called hard layout), we can instantiate the phantom cells and perform
a second-level DRC at the transistor level. This is principally a check of the
correctness of the library cells. Normally the ASIC vendor will perform this
check using its own software as a type of incoming inspection. The Cadence
Dracula software is one de facto standard in this area, and you will often hear
reference to a Dracula deck that consists of the Dracula code describing an ASIC
vendor�s design rules. Sometimes ASIC vendors will give their Dracula decks to
customers so that the customers can perform the DRCs themselves.

The other check is a layout versus schematic (LVS) check to ensure that what is
about to be committed to silicon is what is really wanted. An electrical schematic
is extracted from the physical layout and compared to the netlist. This closes a
loop between the logical and physical design processes and ensures that both are
the same. The LVS check is not as straightforward as it may sound, however.

The first problem with an LVS check is that the transistor-level netlist for a large
ASIC forms an enormous graph. LVS software essentially has to match this
graph against a reference graph that describes the design. Ensuring that every
node corresponds exactly to a corresponding element in the schematic (or HDL
code) is a very difficult task. The first step is normally to match certain key nodes
(such as the power supplies, inputs, and outputs), but the process can very
quickly become bogged down in the thousands of mismatch errors that are
inevitably generated initially.

The second problem with an LVS check is creating a true reference. The starting
point may be HDL code or a schematic. However, logic synthesis, test insertion,
clock-tree synthesis, logical-to-physical pad mapping, and several other design
steps each modify the netlist. The reference netlist may not be what we wish to
fabricate. In this case designers increasingly resort to formal verification that
extracts a Boolean description of the function of the layout and compare that to a
known good HDL description.

17.4.3 Mask Preparation
Final preparation for the ASIC artwork includes the addition of a maskwork
symbol (M inside a circle), copyright symbol (C inside a circle), and company
logos on each mask layer. A bonding editor creates a bonding diagram that will
show the connection of pads to the lead carrier as well as checking that there are
no design-rule violations (bond wires that are too close to each other or that leave
the chip at extreme angles). We also add the kerf (which contains alignment
marks, mask identification, and other artifacts required in fabrication), the scribe
lines (the area where the die will be separated from each other by a diamond
saw), and any special hermetic edge-seal structures (usually metal).

The final output of the design process is normally a magnetic tape written in
Caltech Intermediate Format (CIF , a public domain text format) or GDSII
Stream (formerly also called Calma Stream, now Cadence Stream), which is a
proprietary binary format. The tape is processed by the ASIC vendor or foundry
(the fab) before being transferred to the mask shop .

If the layout contains drawn n -diffusion and p -diffusion regions, then the fab
generates the active (thin-oxide), p -type implant, and n -type implant layers. The
fab then runs another polygon-level DRC to check polygon spacing and overlap
for all mask levels. A grace value (typically 0.01 m m) is included to prevent
false errors stemming from rounding problems and so on. The fab will then adjust
the mask dimensions for fabrication either by bloating (expanding), shrinking,
and merging shapes in a procedure called sizing or mask tooling . The exact
procedures are described in a tooling specification . A mask bias is an amount
added to a drawn polygon to allow for a difference between the mask size and the
feature as it will eventually appear in silicon. The most common adjustment is to
the active mask to allow for the bird�s beak effect , which causes an active area to
be several tenths of a micron smaller on silicon than on the mask.

The mask shop will use e-beam mask equipment to generate metal (usually
chromium) on glass masks or reticles . The e-beam spot size determines the
resolution of the mask-making equipment and is usually 0.05 m m or 0.025 m m
(the smaller the spot size, the more expensive is the mask). The spot size is
significant when we break the integer-lambda scaling rules in a deep-submicron
process. For example, for a 0.35 m m process (l = 0.175 m m), a 1.5 l separation
is 0.525 m m, which requires more expensive mask-making equipment with a
0.025 m m spot size. For critical layers (usually the polysilicon mask) the mask
shop may use optical proximity correction (OPC), which adjusts the position of
the mask edges to allow for light diffraction and reflection (the deep-UV light
used for printing mask images on the wafer has a wavelength comparable to the
minimum feature sizes).

1. Fringing capacitances are per isolated line. Closely spaced lines will have
reduced fringing capacitance and increased interline capacitance, with increased
total capacitance.

2. NA = not applicable.

17.5 Summary
The completion of routing finishes the ASIC physical design process. Routing is
a complicated problem best divided into two steps: global and detailed routing.
Global routing plans the wiring by finding the channels to be used for each path.
There are differences between global routing for different types of ASICs, but the
algorithms to find the shortest path are similar. Two main approaches to global
routing are: one net at a time, or all nets at once. With the inclusion of
timing-driven routing objectives, the routing problem becomes much harder and
requires understanding the differences between finding the shortest net and
finding the net with the shortest delay. Different types of detail routing include
channel routing and area-based or maze routing. Detailed routing with two layers
of metal is a fairly well understood problem.

The most important points in this chapter are:

Routing is divided into global and detailed routing.●

Routing algorithms should match the placement algorithms.●

Routing is not complete if there are unroutes.●

Clock and power nets are handled as special cases.●

Clock-net widths and power-bus widths must usually be set by hand.●

DRC and LVS checks are needed before a design is complete.●

17.6 Problems
*=Difficult, **=Very difficult, *** = Extremely difficult

17.1 (Routing measures, 20 min.). Channel density is a useful measure, but with the
availability of more than two layers of metal, area-based maze routers are becoming
more common. Lyle Smith, in his 1983 Stanford Ph.D. thesis, defines the Manhattan
area measure (MAM) as:

MAM = area needed/area available. (17.11)

where you calculate the area needed by assuming routing on a single layer and ignore
any interconnect overlaps. Calculate the MAM for Figure 17.14 . Once the MAM
reaches 0.5, most two-layer routers have difficulty.

17.2 (*Benchmarking routers, 30 min.) Your design team needs a new router to
complete your ASIC project. Your boss puts you in charge of benchmarking. She
wants a list of the items you will test, and a description of how you will test them.

17.3 (Timing-driven routing) (a) Calculate the delay from A to C in Figure 17.3 (b) if
the wire between V 3 and V 4 is increased to 5 mm. (b) If you want to measure the
delay to the 90 percent point, what is the skew in signal arrival time between inverters
B and C? (c) If you use the Elmore constant to characterize the delay between inverter
A and inverter C as an RC element, what is the delay (measured to the 50 percent trip
point) if you replace the step function at the output of inverter A with a linear ramp
with a fall time of 0.1 ns?

17.4 (Elmore delay, 30 min.) Recalculate t D 4 , t D 2 , and t D 4 � t D 2 for the example
in Section 17.1.2 neglecting the pull-down resistance R pd and comment on your
answers.

17.5 (Clock routing, 30 min.) Design a clock distribution system with minimum
latency given the following specifications: The clocked elements are distributed
randomly, but uniformly across the chip. The chip is 400 mil per side. There are
16,000 flip-flops to clock; each flip-flop clock input presents a load of 0.02 pF (one
standard load). There are four different types of inverting buffer available (typical for
a 0.5 m m process):

1X buffer: T D = 0.1 + 1.5 C L ns; 4X buffer: T D = 0.3 + 0.55 C L ns;

8X buffer: T D = 0.5 + 0.25 C L ns; 32X buffer: T D = 2 + 0.004 C L ns.

In these equations T D is the buffer delay (assume rise and fall times are approximately
equal) and C L is the buffer load expressed in standard loads. Electromigration limits
require a limit of 1 mA (DC) per micron metal width or 10 mA per micron for AC

signals with no DC component. No metal bus may be wider than 100 m m. The m2
line capacitance is 0.015 f F m m �2 (area) and 0.035 f F m m �1 (fringing).

17.6 (Power and ground routing, 10 min.) Calculate the parallel-plate capacitance
between a VDD power ring routed on m2 and an identical VSS ring routed on m1
directly underneath. The chip is 500 mil on a side; assume the power ring runs around
the edge of the chip. The VDD and VSS bus are capable of carrying 0.5 A and are
both 500 m m wide. Assume that m1 and m2 are separated by a SiO 2 dielectric 10,000
Å thick. This capacitance can actually be used for decoupling supplies.

17.7 (Overlap capacitance, 10 min.) Consider two interconnects, both of width W ,
separated by a layer of SiO 2 of thickness T, and that overlap for a distance L.

a. What is the overlap capacitance, assuming there are no fringing effects?●

b. Calculate the overlap capacitance if W = 1 m m, T = 0.5 m m, for L = 1, 10,
and 100 m m.

●

c. Calculate the gate capacitance of an n -channel transistor with transistor size
W / L = 2/1 (that is, W = 2 m m, L = 1 m m), with a gate oxide thickness of 200
Å (again assuming no fringing effects).

●

d. Comment on your answers.●

17.8 (Standard load, 10 min.) Calculate the size of a standard load for the 1 m m
process with the parasitic capacitance values shown in Table 17.2 . Assume the n
-channel and p -channel devices in a two-input NAND gate are all 10/1 with minimum
length.

17.9 (Fringing capacitance, 45 min) You can calculate the capacitance per unit length
(including fringing capacitance) of an interconnect with rectangular cross section
(width W , thickness T , and a distance H above a ground plane) from the approximate
formula (from [Barke, 1988]�the equation was originally proposed by van der Meijs
and Fokkema):

C = e [(W / H) + 1.064 ÷ (W / H) + 1.06 ÷ (T / H) + 0.77] , (17.12)

where e = e r e 0 is the dielectric constant of the insulator surrounding the interconnect.
The relative permittivity of a SiO 2 dielectric e r = 3.9, and the permittivity of free

space e 0 = 3.45 ¥ 10 �11 Fm �1 .

a. Calculate C for W = T = H = 1 m m.●

b. Compare this value with the parallel-plate value (assuming no fringing
capacitance).

●

c. Assume that the interconnect cross-sectional area (i.e., WH) is kept constant
as technology scales, in order to keep the resistance per unit length of the
interconnect constant. Assume that the width scales as sW , the height as sH ,
and the thickness as T / s , where s is a scaling factor from one to 0.1. Use a
spreadsheet to calculate values for different scaling factors, assuming that for s
= 1: W = T = H = 1 m m.

●

d. Plot your results (with C on the y -axis vs. s on the x -axis).●

17.10 (Coupling capacitance, 30 min.) One of the reasons to follow quasi-ideal

scaling for the physical dimensions of the interconnect is to try and reduce the
parasitic area capacitance as we scale. (The other reason is to try and keep interconnect
resistance constant.) Area capacitance scales as 1/ s by following ideal scaling rules,
but scales as 1/ s 1.5 by using quasi-ideal scaling. Using quasi-ideal scaling means
reducing the widths and horizontal spacing of the interconnect by 1/ s and the height of
the lines and their vertical separation from other layers by only 1/ s 0.5 . The effect is
rather like turning the interconnects on their sides. As a result we must consider
parasitic capacitances other than just the parallel-plate capacitance between two layers.
The parasitic capacitance between neighboring interconnects is called coupling
capacitance . Fringing capacitance results from the fact that the electric field lines spill
out from the edges of a conductor. This means the total parasitic capacitance is greater
than if we just considered the capacitance to be formed by two parallel plates.

The following equation is an approximate expression for the capacitance per unit
length of an isolated conductor of width W and thickness T , separated by a distance H
from a conducting plane, and surrounded by a medium of permittivity e [Sakurai and
Tamaru, 1983]:

C 1 / e = 1.15 (W / H) + 2.80 (T / H) 0.222] . (17.13)

This equation is of the form,

C 1 = C a + C b . (17.14)

where C a represents the contribution from two parallel plates and C b is the fringing
capacitance (for both edges). The following equation then takes into account the
coupling capacitance to a neighbor conductor separated horizontally by a gap G
between the edges of the conductors:

C 2 / e =
C 1 / e + [0.03(W / H) + 0.83 (T / H) � 0.07 (T / H) 0.222](G / H)
�1.34 .

(17.15)

This equation is of the form,

C 2 = C 1 + C c . (17.16)

where C c is the coupling capacitance from the conductor to one neighbor. For a
conductor having two neighbors (one on each side), the total capacitance will be

C 2 = C 1 + 2 C c . (17.17)

Table 17.3 shows the result of evaluating these equations for different values of T/H ,
W/H , and S/H for l = 0.5 m m.

a. Calculate the corresponding values for l = 0.125 m m assuming quasi-ideal
scaling.

TABLE 17.3 Calculated fringing capacitance (per unit length and normalized
by permittivity) using quasi-ideal scaling and the Sakurai�Tamaru equations.
Problem 17.10 completes this table.

Parameter l = 0.5 m m l = 0.125 m m
T (m m) 0.5

●

W (m m) 1.5
S (m m) 1.5
H (m m) 0.5
T / H 1
W / H , S / H 3
C 1 = Ca + Cb 6.25

C 2 = C 1 + Cc 6.44

C 3 = C 1 +2 Cc 6.63

C a = parallel plate 3.45

C b = fringe (two edges) 2.80

C c = coupling (one neighbor) 0.19

C c / C a 6%

C a / C 3 52%

C b / C 3 42%

C c / C 3 3%

Table 17.4 shows the predicted fringing and coupling capacitance for a l = 0.5 m m
process expressed in pFcm �1 .

TABLE 17.4 Predicted line capacitance including fringing and coupling capacitance
(pFcm �1) for l = 0.125 m m and using quasi-ideal scaling and the Sakurai equations.
Problem 17.10 completes this table.

Parameter
l = 0.5 m
m

l = 0.125 m m Comment

C 1 = C a + C 2.16
C 1 is capacitance of line to
ground.

C 2 = C 1 + C c 2.22
C 2 is capacitance including one
neighbor.

C 3 = C 1 + 2 C c 2.29
C 3 is capacitance including two
neighbors.

C a = plate 1.19 C a is parallel-plate capacitance.

C b = fringe 0.97 C b is fringe for both edges.

C c = coupling 0.07
C c is coupling to one neighbor
only.

b. Complete the corresponding values for l = 0.125 m m, again assuming
quasi-ideal scaling.

●

c. Comment on the difference between l = 0.5 m m and l = 0.125 m m.●

17.11 (**Routing algorithms, 60 min.) �The Lee algorithm is guaranteed to find a path
if it exists, but not necessarily the shortest path.� Do you agree with this statement?
Can you prove or disprove it?

�The Hightower algorithm is not guaranteed to find a path, even if one exists.� Do you
agree with this statement? Can you prove or disprove it? Hint: The problems occur not
with routing any one net but with routing a sequence of nets.

17.12 (Constraint graphs, 10 min.) Draw the horizontal and vertical constraint graphs
for the channel shown in Figure 17.13 (a). Explain how to handle the net that exits the
channel and its pseudoterminal.

17.13 (**Electromigration, 60 min.) You just received the first prototype of your new
ASIC. The first thing you do is measure the resistance between VDD and VSS and
find they are shorted. Horrified, you find that you added your initials on m1 instead of
m2 and shorted the supplies, next to the power pads. Your initials are only 10 m m
wide, but about 200 m m high! Fortunately only the first capital �I� is actually shorting
the supplies. The power-supply rails are approximately 100 m m wide at that point. A
thought occurs to you�maybe you can electromigrate your initial away. You remember
that electromigration obeys an equation of the form:

MTTF = A J �2 exp � E / k T , (17.18)

where MTTF is the mean time to failure, A is a constant, J is the current density, E is
an activation energy, k is Boltzmann�s constant, and T is absolute temperature. You
also remember the rule that you can have about 1 mA of current for every l of metal
width for a reasonable time to failure of more than 10 years. Since this chip is in 0.5 m
m CMOS (l = 0.25 m m), you guess that the metal is about 0.5 m m thick, and the
resistance is at least 50 m W /square.

a. How much current do you estimate you need to make your initials fail so that
you can test the chip before your boss gets back in a week�s time?

●

b. What else could you do to speed things up?●

c. How are you going to do this? (P.S. This sometimes actually works.)●

17.14 (**Routing problems, 20 min.) We have finished the third iteration on the new
game chip and are having yield problems in production. This is what we know:

1. We changed the routing on v3 by using an ECO mechanism in the detailed router
from Shortem. We just ripped up a few nets and rerouted them without changing
anything else.

2. The ASIC vendor, Meltem, is having yield problems due to long metal lines
shorting�but only in one place. It looks as though they are the metal lines we changed
in v3. Meltem blames the mask vendor�Smokem.

3. To save money we changed mask vendors after completing the prototype version
v1, so that v2 and v3 uses the new mask vendor (Smokem). Smokem confirms there is
a problem with the v3 mask�the lines we changed are shifted very slightly toward
others and have a design rule violation. However, the v2 mask was virtually identical
to v3 and there are no problems with that one, so Smokem blames the router from
Shortem.

4. Shortem checks the CIF files for us, claims the mask data is correct, and they
suggest we blame Meltem.

We do not care (yet) who is to blame, we just need the problem fixed. We need
suggestions for the source of the problem (however crazy), some possible fixes, and
some ideas to test them. Can you help?

17.15 (*Coupling capacitance, 30 min.) Suppose we have three interconnect lines
running parallel to each other on a bus. Consider the following situations (VDD = 5 V,
VSS = 0 V):

a. The center line switches from VSS to VDD. The neighbor lines are at VSS.●

b. The center line switches from VSS to VDD. At the same time the neighbor
lines switch from VDD to VSS.

●

c. The center line switches from VSS to VDD. At the same time the neighbor
lines also switch from VDD to VSS.

●

How do you define capacitance in these cases? In each case what is the effective
capacitance from the center to the neighboring lines using your definition?

17.16 (**2LM and 3LM routing, 10 min.) How would you attempt to measure the
difference in die area obtained by using the same standard-cell library with two-level
and three-level routing?

17.17 (***SPF, 60 min)

a. Write a regular SPF file for the circuit shown in Figure 17.3 (b), using the
lumped-C model and the Elmore constant for the pin-to-pin timings.

●

b. Write the equivalent RSPF file.●

c. Write a DSPF file for the same circuit.●

d. Calculate the PI segment parameters for the circuit shown in Figure 17.3 (b).
Hint: You may need to consult [O�Brien and Savarino, 1989] if you need help.

●

17.18 (***Standard-cell aspect ratio, 30 min.) How would you decide the optimum
value for the logic cell height of a standard-cell library?

17.19 (Electromigration, 20 min.)

a. What is the current density in a 1 m m wide wire that is 1 m m thick and
carries a current of 1 mA?

●

b. Using Eq. 17.9 , can you explain the temperature behavior of the parameters
in Table 17.1 ?

●

c. Using Eq. 17.10 , can you explain the dependence on current direction?●

17.20 (***SPF parameters, 120 min.). Hint: You may need help from [O�Brien and
Savarino, 1989] for this question.

a. Find an expression for Y (s), where s = jw , the driving-point admittance (the
reciprocal of the driving-point impedance), for the interconnect network shown
in Figure 17.22 (a), in terms of C A , C B , C C , R AB , and R BC .

●

b. Find the first three terms of the Taylor-series expansion for Y (s).●

c. Derive expressions for Y 1 (s), Y 2 (s), and Y 3 (s) for the lumped-C, the
lumped-RC, and the PI segment network models (Figure 17.22 b�d).

●

d. Comparing your answers to parts b and c, derive the values of the parameters●

of the lumped-C, the lumped-RC, and the PI segment network models in terms
of C A , C B , C C , R AB , and R BC .

17.21 (**Distributed-delay routing, 120 min. [Kahng and Robins, 1995]) The Elmore
constant is one measure of net delay,

t Di = S R ki C k . (17.19)

 k

The distributed delay , defined as follows, is another measure of delay in a network:

t p = S R kk C k . (17.20)

 k

We can write this equation in terms of network components as follows:

t p = S (R 0 L kn + R d) (C 3 + C n) . (17.21)

 node � k

In this equation there are two types of capacitors: those due to the interconnect, C 0 ,
and those due to the gate loads at each sink, C n . R d is the driving resistance of the
driving gate (the pull-up or pull-down resistance); R 0 is the resistance of a
one-grid-long piece of interconnect; and C 0 is the capacitance of a one-grid-long
piece of interconnect. Thus,

C k = C 0 + C n and R kn = R 0 L kn + R d , (17.22)

since every path to ground must pass through R d . L kn is the path length (in
routing-grid units) between a node k and one of the n sink nodes.

With these definitions we can expand Eq. 17.21 to the following:

t p = S C 0 R 0 L kn

 node � k

 + S C n R 0 L kn + R d C 0 + R d C n . (17.23)

 node � k

Figure 17.24 shows examples of three different types of trees. The MRST minimizes
the rectilinear path length. The shortest-path tree (SPT) minimizes the sum of path
lengths to all sinks. The quadratic minimum Steiner tree (QMST) minimizes the sum
of path lengths to all nodes (every grid-point on the tree).

a. Find the measures for the MRST, SPT, and QMST for each of the three
different tree types shown in Figure 17.24 .

●

b. Explain how to apply these trees to Eq. 17.23 .●

c. Compare Eqs. 17.19 and 17.20 for the purposes of timing-driven routing.●

FIGURE 17.24 Examples of trees for timing-driven layout. (a) The MRST.
(b) The shortest-path tree (SPT). (c) The quadratic minimum Steiner tree
(QMST). (Problem 17.21)

17.22 (**Elmore delay, 120 min.) Figure 17.25 shows an RC tree. The m th moment
of the impulse response for node i in an RC tree network with n nodes is

 n
m 1 (i) = S R ki C k ,

 k = 1

 n
m n + 1 (i) = (m + 1) S R ki C k m m (k) . (17.24)

 k = 1

FIGURE 17.25 Standard parasitic format (SPF) (Problem 17.22). (a) An RC
interconnect tree driven by a NAND gate. (b) The NAND gate modeled by an ideal
switch. (c) The NAND gate modeled with a pull-down resistance, R F , and output
capacitance, C L . (d) The PI segment model for the RC tree (the order of C p i 1 �last
�and C p i 2 is correct).

The Elmore constant is the first moment of the impulse response. We calculate the
weighted-capacitance values in Eq. 17.24 as follows:

 n
k 0 = S C k ,

 k = 1

 1 n
k m = �� S C k m m (k) . (17.25)

 m ! k = 1

We derive the PI segment parameters used in SPF from the k i as follows:

C pi 1 = k 1 2 / k 2 ; R pi 1 = k 2 2 / k 1 3 ; C pi 2 = k 0 � C pi 1 .

a. Calculate Elmore�s constant for the RC tree in Figure 17.25 (a).●

b. Derive the PI segment model shown in Figure 17.25 (d).●

c. What is the difference between using the model of Figure 17.25 (b) and the
model of Figure 17.25 (c) for the NAND gate?

●

17.7 Bibliography
The IEEE Transactions on Computer-Aided Design (TK7874.I327,
ISSN 0278-0070) contains papers and tutorials on routing (with an emphasis on
algorithms). The Proceedings of the ACM/IEEE Design Automation Conference
(DAC, TA174.D46a, ISSN 0146-7123, catalogued under various titles) and the
Proceedings of the IEEE International Conference on Computer-Aided Design (
ICCAD, TK7874.I3235a, ISSN 1063-6757 and 1092-3152) document the two
conferences at which new ideas on routing are often presented.

The edited book by Preas and Lorenzetti [1988] is the best place to learn more
about routing. Books by Sarrafzadeh and Wong [1996] and Sait and Youssef
[1995] are more recent introductions to physical design including routing. The
book Hu and Kuh [1983] edited for IEEE Press contains early papers on routing,
including an introductory paper with many references. Ohtsuki�s [1986] edited
book on layout contains tutorials on routing, including reviews of channel routing
by Burstein and area routing by Ohtsuki; a more recent edited book by Zobrist
[1994] also contains papers on routing. A good introduction to routing is
Joobanni�s thesis published as a book [1986]. New routing techniques are
becoming important for FPGAs, a recent paper describes some of these [Roy,
1993]. Books by Lengauer [1990] and Sherwani [1993] describe algorithms for
both the global and detailed routing problems. A book by Sherwani et al. [1995]
covers two-level and three-level routing. Kahng and Robins [1995] cover
timing-driven detailed routing in their book; Sapatnekar and Kang [1993] cover
timing-driven physical design in general. The book by Pillage et al. [1994]
includes a chapter on bounding and asymptotic approximations that are related to
the models used in SPF. Nakhla and Zhang [1994] and Goel [1994] cover
modeling of interconnect. The IEEE Press book edited by Friedman [1995]
covers clock distribution. Routing is often performed in parallel on several
machines; books by Banerjee [1994] and Ravikumar [1996] describe parallel
algorithms for physical design. Taylor and Russell [1992] review
knowledge-based physical design in an edited book.

Najm�s review paper covers power estimation [1994]. Books by Shenai [1991]
and Murarka [1993] cover all aspects of metallization. To learn more about the
causes of electromigration in particular, see D�Heurle�s [1971] classic paper and
a paper by Black [1969]. The edited book by Gildenblat and Schwartz [1991]
covers metallization reliability. A tutorial paper by Young and Christou [1994]
reviews current theories of the causes of electromigration. To learn more about
masks and microlithography in VLSI, see the handbook by Glendinning and
Helbert [1991].

17.8 References
Page numbers in brackets after a reference indicate its location in the chapter
body.

Banerjee, P. 1994. Parallel Algorithms for VLSI Computer-Aided Design
Applications. Englewood Cliffs, NJ: Prentice-Hall, 699 p. ISBN 0130158356.
TK7874.75.B36. [reference location]

Barke, E. 1988. �Line-to-ground capacitance calculation for VLSI: A comparison.
� IEEE Transactions on Computer-Aided Design, Vol. 7, no. 2, pp. 295�298.
Compares various equations for line to ground capacitance and finds the van der
Meijs and Fokkema equation the most accurate. [reference location]

Black, J. R. 1969. �Electromigration failure modes in aluminum metallization for
semiconductor devices.� Proceedings of the IEEE, Vol. 57, no. 9, pp. 1587�1594.
Describes mechanism and theory of electromigration. Two failure modes are
discussed: dissolution of silicon into aluminum, and condensation of aluminum
vacancies to form voids. Electromigration failures in aluminum become
important (less than 10 year lifetime) at current densities greater than 50
kA/sq.cm and temperatures greater than 150 °C. [reference location]

Cadence. 1990. �Gate Ensemble User Guide.� Product Release 2.0. Describes
gate-array place-and-route software. The algorithms for timing-driven placement
are described in A. H. Chao, E. M. Nequist, and T. D. Vuong, �Direct solution of
performance constraints during placement,� in Proceedings of the IEEE Custom
Integrated Circuits Conference, 1990. The delay models for timing analysis are
described in �Modeling the driving-point characteristic of resistive interconnect
for accurate delay estimation,� in P. R. O�Brien and T. L. Savarino, in
Proceedings of the International Conference on Computer-Aided Design, 1989. [
reference location]

Cheng, C.-K., et al. 1992. �Geometric compaction on channel routing.� IEEE
Transactions on Computer-Aided Design, Vol. 11, no. 1, pp. 115�127. [reference
location]

Chowdhury, S., and J. S. Barkatullah. 1988. �Current estimation in MOS IC logic
circuits.� In Proceedings of the International Conference on Computer-Aided
Design. Compares estimates for transient current flow for CMOS logic gates.
Algebraic models give results close to SPICE simulations. The rest of the paper
discusses the calculation of static current flow for nMOS logic gates. A model for

static current for CMOS gates is developed in terms of the nMOS models.

D�Heurle, F. M. 1971. �Electromigration and failure in electronics: an
introduction.� Proceedings of the IEEE, Vol. 59, no. 10, pp. 1409�1417. Describes
the theory behind electromigration in bulk and thin-film metals. Includes some
experimental results and reviews work by others. Describes the beneficial effects
of adding copper to aluminum metallization. [reference location]

Friedman, E. G. (Ed.). 1995. Clock Distribution Networks in VLSI Circuits and
Systems. New York: IEEE Press, ISBN 0780310586. TK7874.75.C58. [
reference location]

Gildenblat, G. S., and G. P. Schwartz (Eds.). 1991. Metallization: Performance
and Reliability Issues for VLSI and ULSI. Bellingham, WA: SPIE, the
International Society for Optical Engineering, 159 p. ISBN 0819407275.
TK7874.M437. [reference location]

Glendinning, W. B., and J. N. Helbert, (Eds.). 1991. Handbook of VLSI
Microlithography : Principles, Technology, and Applications. Park Ridge, NJ:
Noyes Publications, 649 p. ISBN 0815512813. TK7874.H3494. [reference
location]

Goel, A. K. 1994. High Speed VLSI Interconnections: Modeling, Analysis, and
Simulation. New York: Wiley-Interscience, 622 p. ISBN 0471571229.
TK7874.7.G63. 21 pages of references. [reference location]

Hashimoto, A., and J. Stevens. 1971. �Wire routing by optimal channel
assignment within large apertures.� In Proceedings of the 8th Design Automation
Workshop, pp. 155�169. [reference location]

Hu, T. C., and E. S. Kuh (Eds.). 1983. VLSI Circuit Layout: Theory and Design.
New York: IEEE Press. ISBN 0879421932. TK7874 .V5573. Contains 26 papers
divided into six chapters; Part 1: Overview (a paper written for this book with
167 references on layout and routing); Part II: General; Part III: Wireability,
Partitioning and Placement; Part IV: Routing; Part V: Layout Systems; Part VI:
Module Generation. [reference location]

Joobbani, R. 1986. An Artificial Intelligence Approach to VLSI Routing.
Hingham, MA: Kluwer. ISBN 0-89838-205-X. TK7874.J663. Ph.D thesis on the
development and testing of an intelligent router including an overview of the
detailed routing problem and the Lee and �greedy� algorithms. [reference location
]

Kahng, A. B., and G. Robins. 1995. On Optimal Interconnections for VLSI.
Norwell, MA: Kluwer. ISBN 0-7923-9483-6. TK7874.75.K34. Extensive
reference work on timing-driven detailed routing. [pp. 953, 956]

Lengauer, T. 1990. Combinatorial Algorithms for Integrated Circuit Layout.
Chichester, England: Wiley. ISBN 0-471-92838-0. TK7874.L36. Background:

Introduction to circuit layout; Optimization problems; Graph algorithms;
Operations research and statistics. Combinatorial layout problems: The layout
problem; Circuit partitioning; Placement, assignment, and floorplanning; Global
routing and area routing; Detailed routing; Compaction. 484 references. [
reference location]

Nakhla, M. S., and Q. J. Zhang (Eds.). 1994. Modeling and Simulation of High
Speed VLSI Interconnects. Boston: Kluwer, 106 p. ISBN 0792394410.
TK7874.75.M64. [reference location]

Murarka, S. P. 1993. Metallization: Theory and Practice for VLSI and ULSI.
Stoneham, MA: Butterworth-Heinemann, 250 p. ISBN 0-7506-9001-1.
TK7874.M868. Includes chapters on metal properties; crystal structure; electrical
and mechanical properties; diffusion and reaction in thin metallic films;
deposition method and techniques; pattern definition; packaging applications;
reliability. [reference location]

Najm, F. N. 1994. �A survey of power estimation techniques in VLSI circuits.�
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 2, no.
4, pp. 446�55. 43 references. [reference location]

O�Brien, P. R., and T. L. Savarino. 1989. �Modeling the driving-point
characteristic of resistive interconnect for accurate delay estimation.� In
Proceedings of the International Conference on Computer-Aided Design, pp. 512
�515. Describes SPF PI segment model. [p reference location , 974].

Ohtsuki, T. (Ed.). 1986. Layout Design and Verification. New York: Elsevier
Science, ISBN 0444878947. TK7874.L318. Includes nine papers on CAD tools
and algorithms: �Layout strategy, standardisation, and CAD tools,� Ueda, Kasai,
and Sudo; �Layout compaction,� Mylynski and Sung; �Layout verification,�
Yoshida; �Partitioning, assignment and placement,� Goto and Matsuda;
�Computational complexity of layout problems,� Shing and Hu; �Computational
and geometry algorithms,� Asano, Sato, and Ohtsuki; an excellent survey and
tutorial paper by M. Burstein � �Channel routing;� �Maze-running and line-search
algorithms,� a good, easily readable paper on detailed routing by Ohtsuki; and a
more mathematical paper, �Global routing,� by Kuh and Marek-Sadowska. [pp.
932, 957]

Pillage, L., et al. 1994. Electronic Circuit and System Simulation Methods. New
York: McGraw-Hill, 392 p. ISBN 0-07-050169-6. TK7874.P52. [reference
location]

Preas, B. T., and M. J. Lorenzetti. 1988. Physical Design Automation of VLSI
Systems. Menlo Park, CA: Benjamin-Cummings, 510 p. ISBN 0805304129.
TK7874.P47. Chapters on: physical design automation; interconnection analysis,
logic partitioning; placement, assignment and floorplanning; routing; symbolic
layout and compaction; module generation and silicon compilation; layout
analysis and verification; knowledge-based physical design automation;

combinatatorial complexity of layout problems. [reference location]

Ravikumar, C. P. 1996. Parallel Methods for VLSI Layout Design. Norwood, NJ:
Ablex, 195 p. ISBN 0893918288. TK7874.R39. [reference location]

Roy, K. 1993. �A bounded search algorithm for segmented channel routing for
FPGA�s and associated channel architecture issues.� IEEE Transactions on
Computer-Aided Design, Vol. 12, no. 11, pp. 1695�1704. [reference location].

Sait, S. M., and H. Youssef. 1995. VLSI Physical Design Automation, Theory
and Practice. New York: IEEE Press/McGraw-Hill copublication, 426 p. ISBN
0-07-707742-3. TK7874.75.S24. Covers floorplanning, placement, and routing. [
reference location]

Sakurai, T., and K. Tamaru. 1983. �Simple formulas for two- and
three-dimensional capacitances.� IEEE Transactions on Electron Devices . Vol.
30, no. 2. [reference location]

Sapatnekar, S. S., and S.-M. Kang. 1993. Design Automation for Timing-Driven
Layout Synthesis. Boston: Kluwer, 269 p. ISBN 0792392817.
TK7871.99.M44.S37. 19 pages of references. [reference location]

Sarrafzadeh, M., and C. K. Wong. 1996. An Introduction to VLSI Physical
Design. New York: McGraw-Hill, 334 p. ISBN 0070571945. TK7874.75.S27. 17
pages of references. [reference location]

Shenai, K. (Ed.). 1991. VLSI Metallization: Physics and Technologies. Boston:
Artech House, 529 p. ISBN 0890065012. TK7872.C68.V58. [reference location
]

Sherwani, N. A. 1993. Algorithms for VLSI Physical Design Automation. 2nd
ed. Norwell, MA: Kluwer, 538 p. ISBN 0-7923-9294-9. TK874.S455. See also
the first edition. [reference location]

Sherwani, N. A., et al. 1995. Routing in the Third Dimension: From VLSI Chips
to MCMs. New York: IEEE Press. ISBN 0-7803-1089-6. TK7874.75.R68.
Reviews two-layer and multilayer routing algorithms. Contains chapters on:
graphs and basic algorithms; channel routing; routing models; routing algorithms
for two- and three-layer processes and MCMs. [reference location]

Taylor, G., and G. Russell. (Eds.). 1992. Algorithmic and Knowledge Based
CAD for VLSI. London: P. Peregrinus, 273 p. ISBN 086341267X.
TK7874.A416. [reference location]

Veendrick, H. J. M. 1984. �Short-circuit dissipation of static CMOS circuitry and
its impact on the design of buffer circuits.� IEEE Journal of Solid-State Circuits,
Vol. 19, no. 4, pp. 468�473. [reference location]

Young, D., and A. Christou. 1994. �Failure mechanism models for

electromigration.� IEEE Transactions on Reliability, Vol. 43, no. 2, pp. 186�192.
A tutorial on electromigration and its relation to microstructure. [p reference
location , 957]

Zobrist, G. W. (Ed.). 1994. Routing, Placement, and Partitioning. Norwood, NJ:
Ablex, 293 p. ISBN 0893917842. TK7874.R677. [reference location]

VHDL
RESOURCES
The definitive reference for VHDL is the VHDL language reference manual (
LRM), currently IEEE Std 1076-1993. 1 References here such as [93LRM 1.1],
for example, refer to Section 1.1 of the VHDL-93 LRM [IEEE 1076-1993].
According to IEEE bylaws all standards are updated (reaffirmed, reballoted, or
dropped) every five years, and thus VHDL-87 (the original standard) is
superceded by VHDL-93. However, some software systems (and some IEEE
standards, notably VITAL) are based on VHDL-87 [IEEE 1076-1987]. Both
VHDL-93 and VHDL-87 are covered in this Appendix.

1. IEEE Std 1076-1993, © Copyright 1995 IEEE. All rights reserved. The BNF
in this appendix is derived from the IEEE copyright material with permission.

Last Edited by SP 14112004

A.1 BNF
Appendix A of the LRM describes the syntax of VHDL using keywords (or
reserved words) and characters in a shorthand notation called the BNF (Backus
�Naur form). As an example, the BNF definition given in Appendix A of the
LRM for the syntax of the wait statement is

wait_statement ::=

[label :] wait [sensitivity_clause] [condition_clause]

[timeout_clause] ;

This definition means: �The wait statement consists of the keyword, wait ,
followed by three optional parts: a sensitivity clause, a condition clause, and a
timeout clause.�

You treat the BNF as a series of equations. The left-hand side is called a
production or construct , the symbol ::= (two colons and an equal sign) represents
equivalence , the right-hand side contains the parts that comprise the production.
Parts may be keywords (in bold here). Parts may be other productions contained
in square brackets [] . This signifies that the part is optional. Parts may also have
curly brackets or braces {} . This indicates that the part is optional and may be
repeated. The BNF is hierarchical; for example, the wait statement is defined in
terms of other constructs. We can expand the wait statement definition, by
substituting the BNF for sensitivity_clause , condition_clause , and
timeout_clause :

wait_statement ::=

[label :] wait

[on signal _name { , signal _name }]

[until boolean _expression]

[for time _expression] ;

Expanding the BNF makes it easier to see the structure of the wait statement. The
expanded BNF shows that the following are valid wait statements (as far as
syntax is concerned):

wait ;

wait on a;

wait on a, b, c until count = 0 for 1 + 1 ns;

A disadvantage of expanding the BNF is that we lose the names and the
definitions of the intermediate constructs (sensitivity_clause , condition_clause ,
and timeout_clause). The VHDL-93 LRM uses 238 production rules; the
following section contains the same definitions in BNF, but in expanded form
(using 94 rules).

There is one other disadvantage of expanding the BNF syntax definitions.
Expanding the definition of a loop statement illustrates this problem:

loop_statement ::=

[loop _label :]

[iteration_scheme] loop

sequence_of_statements

end loop [loop _label] ;

The definition of sequence_of_statements is

sequence_of_statements ::= {sequential_statement}

The definition of iteration_scheme is

iteration_scheme ::= while condition | for loop _parameter_specification

The definitions of condition and parameter_specification are

condition ::= boolean _expression

parameter_specification ::= identifier in discrete_range

The definition of discrete_range is

discrete_range ::= discrete _subtype_indication | range

If we stop expanding at this level, we can write out what we have so far in our
expanded definition of a loop statement:

loop_statement ::=

[loop _label :]

[while boolean _expression

| for identifier in discrete_range]

loop

{sequential_statement}

end loop [loop _label] ;

There is (theoretically) some ambiguity in this definition as far as the choices
either side of the | symbol are concerned. Does this definition mean that we
choose between while boolean _expression and for identifier in discrete_range ?
If we were in a contrary mood, we could also interpret the BNF as indicating a
choice between boolean _expression and for . Notice that this ambiguity is also
present in the definition of iteration_scheme .

Adding angle brackets around the clauses, < while ... > | < for ... > , makes the
grouping of choices clear:

loop_statement ::=

[loop _label :]

[< while boolean _expression >

| < for identifier in discrete_range >]

loop

{ sequential_statement }

end loop [loop _label] ;

Unfortunately the symbols < and > are already valid lexical elements in VHDL.
In fact, since {} and [] are already used, and () are part of the language too, there
are no brackets left to use. We live with this inconvenience. The BNF (here or in
the LRM) does not define VHDL, but helps us understand it.

A.2 VHDL Syntax
In the rules that follow an underline (like this) indicates syntax that is present in
VHDL-93, but not in VHDL-87. A strikethrough (like this) indicates syntax that
is present in VHDL-87, but not in VHDL-93; this occurs only in the rule for
file_declaration (rule 38). This means that any VHDL-87 code that contains
keywords in or out in a file declaration will not compile in a VHDL-93
environment. Except for this one exception, VHDL-93 is a superset of VHDL-87.

The VHDL productions are in alphabetical order. The highest-level production is
the definition for design_file ; this is where you start to traverse the tree starting
at the top level. The following parts (indicated by the use of uppercase in the
BNF) are the lowest-level constructions: UPPER_CASE_LETTER (A�Z plus
accented uppercase letters), LOWER_CASE_LETTER (a�z and accented
lowercase letters, é , and so on), LETTER (either uppercase or lowercase letters,
a�Z , and all accented letters), DIGIT (0�9), SPACE_CHARACTER (' ' and
nonbreaking space), UNDERLINE ('_'), SPECIAL_CHARACTER (" # & ' () *
+ , - . / : ; < = > [] _ |), and OTHER_SPECIAL_CHARACTER (all remaining
characters such as ! $ % @ ? and so on, but not including format effectors).
Format effectors are the ISO (and ASCII) characters called horizontal tabulation,
vertical tabulation, carriage return, line feed, and form feed.

Keywords are shown in bold . Notice that the terms label, literal, and range are
keywords (label , literal , range) and are also used as the name of a part (label ,
literal , range), as they are in the LRM. Construct names that commence with
italics , such as time _expression , are intended to make the syntax definitions
easier to read. The italic part of the construct is treated as a comment. You look
up the definition for time _expression under 'e' for expression, not 't' for time.
There are no formal definitions of the italic modifiers; if you are not sure exactly
what is meant, you must look up the semantics in the body of the LRM.

actual_part ::= [93LRM 4.3.2.2] [1]

expression

| signal_ name | variable_ name | file_ name | open

| function_ name (expression | signal_ name | variable_ name | file_ name | open
)

| type_mark (expression | signal_ name | variable_ name | file_ name | open)

aggregate ::= [93LRM 7.3.2] [2]

([choice { | choice } =>] expression {, [choice { | choice } =>] expression })

alias_declaration ::= [93LRM 4.3.3] [3]

alias identifier | ' graphic_character ' | " { graphic_character } "

[: subtype_indication] is name [signature] ;

architecture_body ::= [93LRM 1.2] [4]

architecture identifier of entity_ name is

{ block_declarative_item }

begin

{ concurrent_statement }

end [architecture] [architecture_ identifier];

assertion ::= [93LRM 8.2] [5]

assert boolean_ expression [report expression] [severity expression]

association_list ::= [93LRM 4.3.2.2] [6]

[formal_part =>] actual_part {, [formal_part =>] actual_part }

attribute_declaration ::= [93LRM 4.4] attribute identifier : type_mark ; [7]

attribute_name ::= [93LRM 6.6] prefix [signature] ' attribute_ identifier [8]

[(expression)]

attribute_specification ::= [93LRM 5.1] [9]

attribute attribute_ identifier of entity_name_list : entity_class is expression ;

based_literal ::= [93LRM 13.4.2] [10]

integer # DIGIT | LETTER { [UNDERLINE] DIGIT | LETTER }

[. DIGIT | LETTER { [UNDERLINE] DIGIT | LETTER }]

[E [+] integer | E � integer]

basic_graphic_character ::= [93LRM 13.1] [11]

UPPER_CASE_LETTER | DIGIT | SPECIAL_CHARACTER |
SPACE_CHARACTER

bit_string_literal ::= [93LRM 13.7] [12]

B | O | X " [DIGIT | LETTER { [UNDERLINE] DIGIT | LETTER }]"

block_configuration ::= [93LRM 1.3.1] [13]

for architecture_ name

| block_statement_ label

| generate_statement_ label

[(discrete_ subtype_indication | range | static_ expression)]

{ use prefix . suffix {, prefix . suffix } ; }

{ block_configuration | component_configuration }

end for ;

block_declarative_item ::= [93LRM 1.2.1] [14]

subprogram_specification ; | subprogram_body | type_declaration

| subtype_declaration | constant_declaration | signal_declaration

| shared_ variable_declaration

| file_declaration | alias_declaration

| component_declaration | attribute_declaration

| attribute_specification | configuration_specification

| disconnection_specification | use_clause

| group_template_declaration | group_declaration

block_statement ::= [93LRM 9.1] [15]

block_ label :

block [(guard_ expression)] [is]

[generic (generic_ interface_list);

[generic map (generic_ association_list) ;]]

[port (port_ interface_list);

[port map (port_ association_list) ;]]

{ block_declarative_item }

begin

{ concurrent_statement }

end block [block_ label] ;

case_statement ::= [93LRM 8.8] [16]

[case_ label :] case expression is

when choice { | choice } => { sequential_statement }

{ when choice { | choice } => { sequential_statement } }

end case [case_ label] ;

choice ::= [93LRM 7.3.2] [17]

simple_expression | discrete_range | element_ identifier | others

component_configuration ::= [93LRM 1.3.2] [18]

for

instantiation_ label { , instantiation_ label } : component_ name

| others : component_ name

| all : component_ name

[[use

entity entity_ name [(architecture_ identifier)]

| configuration configuration_ name

| open]

[generic map (generic_ association_list)]

[port map (port_ association_list)] ;]

[block_configuration]

end for ;

component_declaration ::= [93LRM 4.5] [19]

component identifier [is]

[generic (local_generic_ interface_list) ;]

[port (local_port_ interface_list) ;]

end component [component_ identifier] ;

component_instantiation_statement ::= [93LRM 9.6] [20]

instantiation_ label : [component] component_ name

| entity entity_ name [(architecture_ identifier)]

| configuration configuration_ name

[generic map (generic_ association_list)]

[port map (port_ association_list)] ;

concurrent_statement ::= [93LRM 9] [21]

block_statement

| process_statement

| [label :] [postponed] procedure_call ;

| [label :] [postponed] assertion ;

| [label :] [postponed] conditional_signal_assignment

| [label :] [postponed] selected_signal_assignment

| component_instantiation_statement

| generate_statement

conditional_signal_assignment ::= [93LRM 9.5.1] [22]

name | aggregate <= [guarded] [transport | [reject time_ expression] inertial]

{ waveform when boolean_ expression else }

waveform [when boolean_ expression] ;

configuration_declaration ::= [93LRM 1.3] [23]

configuration identifier of entity_ name is

{ use prefix . suffix { , prefix . suffix } ;

| attribute_specification

| group_declaration }

block_configuration

end [configuration] [configuration_ identifier] ;

configuration_specification ::= [93LRM 5.2] [24]

for

instantiation_ label { , instantiation_ label } : component_ name

| others : component_ name

| all : component_ name

[use

entity entity_ name [(architecture_ identifier)]

| configuration configuration_ name

| open]

[generic map (generic_ association_list)]

[port map (port_ association_list)] ;

constant_declaration ::= [93LRM 4.3.1.1] [25]

constant identifier { , identifier } : subtype_indication [:= expression] ;

constraint ::= range_constraint | index_constraint [93LRM 4.2] [26]

decimal_literal ::= [93LRM 13.4.1] [27]

integer [. integer] [E [+] integer | E � integer]

design_file ::= [93LRM 11.1] [28]

{ library_clause | use_clause } library_unit

{ { library_clause | use_clause } library_unit }

disconnection_specification ::= [93LRM 5.3] [29]

disconnect guarded_ signal_list : type_mark after time_ expression ;

discrete_range ::= [93LRM 3.2.1] discrete_ subtype_indication | range [30]

entity_class ::= [93LRM 5.1][31]

entity

| architecture | configuration | procedure | function

| package | type | subtype | constant

| signal | variable | component | label

| literal | units | group | file

entity_declaration ::= [93LRM 1.1] [32]

entity identifier is

[generic (formal_generic_ interface_list) ;]

[port (formal_port_ interface_list) ;]

{ subprogram_specification ; | subprogram_body

| subtype_declaration | constant_declaration

| signal_declaration | file_declaration

| alias_declaration | attribute_declaration

| attribute_specification | type_declaration

| disconnection_specification | use_clause

| shared_ variable_declaration

| group_template_declaration | group_declaration }

[begin

{ [label :] [postponed] assertion ;

| [label :] [postponed] passive_ procedure_call ;

| passive_ process_statement }]

end [entity] [entity_ identifier] ;

entity_name_list ::= [93LRM 5.1] [33]

identifier | " { graphic_character } " | ' graphic_character ' [signature]

{ , identifier | " { graphic_character } " | ' graphic_character ' [signature] }

| others

| all

enumeration_literal ::= [93LRM 3.1.1] identifier | ' graphic_character ' [34]

exit_statement ::= [93LRM 8.11] [35]

[label :] exit [loop_ label] [when boolean_ expression] ;

expression ::= [93LRM 7.1] [36]

relation { and relation }

| relation { or relation }

| relation { xor relation }

| relation [nand relation]

| relation [nor relation]

| relation { xnor relation }

factor ::= [93LRM 7.1] primary [** primary] | abs primary | not primary [37]

file_declaration ::= [93LRM 4.3.1.4] [38]

file identifier { , identifier } : subtype_indication

[[open file_open_kind_ expression] is [in | out] string_ expression] ;

formal_part ::= [93LRM 4.3.2.2] [39]

generic_ name | port_ name | parameter_ name

| function_ name (generic_ name | port_ name | parameter_ name)

| type_mark (generic_ name | port_ name | parameter_ name)

function_call ::= [93LRM 7.3.3] function_ name [(parameter_ association_list)
] [40]

generate_statement ::= [93LRM 9.7] [41]

generate_ label :

for identifier in

discrete_ subtype_indication | range

| if boolean_ expression

generate

[{ block_declarative_item } begin]

{ concurrent_statement }

end generate [generate_ label] ;

graphic_character ::= [93LRM 13.1] [42]

basic_graphic_character | LOWER_CASE_LETTER |
OTHER_SPECIAL_CHARACTER

group_declaration ::= [93LRM 4.7] [43]

group identifier : group_template_ name

(name | ' graphic_character '

{ , name | ' graphic_character ' }) ;

group_template_declaration ::= [93LRM 4.6] [44]

group identifier is (entity_class [<>] { , entity_class [<>] }) ;

identifier ::= [93LRM 13.3] [45]

LETTER { [UNDERLINE] LETTER | DIGIT }

| \ graphic_character { graphic_character } \

if_statement ::= [93LRM 8.7] [46]

[if_ label :] if boolean_ expression then { sequential_statement }

{ elsif boolean_ expression then { sequential_statement } }

[else { sequential_statement }]

end if [if_ label] ;

index_constraint ::= [93LRM 3.2.1] (discrete_range { , discrete_range }) [47]

integer ::= [§ 13.4.1] DIGIT { [UNDERLINE] DIGIT } [48]

interface_declaration ::= [93LRM 4.3.2] [49]

[constant] identifier { , identifier }

: [in] subtype_indication [:= static_ expression]

| [signal] identifier { , identifier }

: [in | out | inout | buffer | linkage]

subtype_indication [bus] [:= static_ expression]

| [variable] identifier { , identifier }

: [in | out | inout | buffer | linkage] subtype_indication [:= static_ expression]

| file identifier { , identifier } : subtype_indication

interface_list ::= [93LRM 4.3.2.1] interface_declaration {; interface_declaration
} [50]

label ::= identifier [93LRM 9.7] [51]

library_clause ::= [93LRM 11.2] library identifier {, identifier } ; [52]

library_unit ::= [93LRM 11.1] [53]

entity_declaration | configuration_declaration | package_declaration

| architecture_body | package_body

literal ::= [93LRM 7.3.1] [54]

decimal_literal | based_literal | physical_literal

| enumeration_literal | string_literal | bit_string_literal | null

loop_statement ::= [93LRM 8.9] [55]

[loop_ label :]

[while boolean_ expression | for identifier in discrete_range]

loop

{ sequential_statement }

end loop [loop_ label] ;

name ::= [93LRM 6.1] [56]

identifier

| " { graphic_character } "

| prefix . suffix

| prefix (expression { , expression })

| prefix (discrete_range)

| attribute_name

next_statement ::= [93LRM 8.10] [57]

[label :] next [loop_ label] [when boolean_ expression] ;

null_statement ::= [93LRM 8.13] [label :] null ; [58]

package_body ::= [93LRM 2.6] [59]

package body package_ identifier is

{ subprogram_specification ; | subprogram_body | type_declaration

| subtype_declaration | constant_declaration | file_declaration

| alias_declaration | use_clause

| shared_ variable_declaration

| group_template_declaration | group_declaration }

end [package body] [package_ identifier] ;

package_declaration ::= [93LRM 2.5] [60]

package identifier is

{ subprogram_specification ; | type_declaration | subtype_declaration

| constant_declaration | signal_declaration | file_declaration

| alias_declaration | component_declaration

| attribute_declaration | attribute_specification

| disconnection_specification | use_clause

| shared_ variable_declaration

| group_template_declaration | group_declaration }

end [package] [package_ identifier] ;

physical_literal ::= [93LRM 3.1.3] [decimal_literal | based_literal] unit_ name
[61]

physical_type_definition ::= [93LRM 3.1.3] [62]

range_constraint

units identifier ;

{ identifier = physical_literal ; }

end units [physical_type_ identifier]

prefix ::= [93LRM 6.1] name | function_call [63]

primary ::= [93LRM 7.1] [64]

name | literal | aggregate | function_call

| type_mark ' (expression) | type_mark ' aggregate | type_mark (expression)

| (expression)

| new subtype_indication | new type_mark ' (expression) | new type_mark '
aggregate

procedure_call ::= [93LRM 8.6] procedure_ name [(parameter_ association_list
)] [65]

process_statement ::= [93LRM 9.2] [66]

[process_ label :]

[postponed] process [(signal_ name { , signal_ name })] [is]

{ subprogram_specification ; | subprogram_body

| type_declaration

| subtype_declaration | constant_declaration

| variable_declaration

| file_declaration | alias_declaration | attribute_declaration

| attribute_specification | use_clause

| group_template_declaration | group_declaration }

begin

{ sequential_statement }

end [postponed] process [process_ label] ;

range ::= [93LRM 3.1] [67]

range_ attribute_name

| simple_expression to | downto simple_expression

range_constraint ::= [93LRM 3.1] range range [68]

record_type_definition ::= [93LRM 3.2.2] [69]

record

identifier {, identifier } : subtype_indication ;

{ identifier {, identifier } : subtype_indication ; }

end record [record_type_ identifier]

relation ::= [93LRM 7.1] [70]

simple_expression [sll | srl | sla | sra | rol | ror simple_expression]

[= | /= | < | <= | > | >=

simple_expression [sll | srl | sla | sra | rol | ror simple_expression]]

report_statement ::= [93LRM 8.3] [71]

[label :] report expression [severity expression] ;

return_statement ::= [93LRM 8.12] [label :] return [expression] ; [72]

selected_signal_assignment ::= [93LRM 9.5.2] [73]

with expression select

name | aggregate <= [guarded]

[transport | [reject time_ expression] inertial]

waveform when choice { | choice }

{ , waveform when choice { | choice } } ;

sequential_statement ::= [93LRM 8] [74]

wait_statement

| [label :] assertion ;

| report_statement

| signal_assignment_statement

| variable_assignment_statement

| [label :] procedure_call ;

| if_statement

| case_statement

| loop_statement

| next_statement

| exit_statement

| return_statement

| null_statement

signal_assignment_statement ::= [93LRM 8.4] [75]

[label :] name | aggregate <=

[transport | [reject time_ expression] inertial] waveform ;

signal_declaration ::= [93LRM 4.3.1.2] [76]

signal identifier {, identifier } : subtype_indication

[register | bus] [:= expression] ;

signal_list ::= [93LRM 5.3] signal_ name { , signal_ name } | others | all [77]

signature ::= [93LRM 2.3.2] [78]

[[type_mark { , type_mark }] [return type_mark]]

simple_expression ::= [93LRM 7.1] [+ | -] term { + | - | & term } [79]

string_literal ::= [93LRM 13.6] " { graphic_character } " [80]

subprogram_body ::= [93LRM 2.2] [81]

subprogram_specification is

{ subprogram_specification ;

| subprogram_body

| type_declaration

| subtype_declaration

| constant_declaration

| variable_declaration

| file_declaration

| alias_declaration

| attribute_declaration

| attribute_specification

| use_clause

| group_template_declaration

| group_declaration }

begin

{ sequential_statement }

end [procedure | function]

[identifier | " { graphic_character } "] ;

subprogram_specification ::= [93LRM 2.1] [82]

procedure identifier | " { graphic_character } "

[(parameter_ interface_list)]

| [pure | impure] function identifier | " { graphic_character } "

[(parameter_ interface_list)]

return type_mark

subtype_declaration ::= [93LRM 4.2] [83]

subtype identifier is

[resolution_function_ name] type_mark [constraint] ;

subtype_indication ::= [93LRM 4.2] [84]

[resolution_function_ name] type_mark [constraint]

suffix ::= [93LRM 6.3] [85]

identifier

| ' graphic_character '

| " { graphic_character } "

| all

term ::= [93LRM 7.1] factor { * | / | mod | rem factor } [86]

type_declaration ::= [93LRM 4.1] [87]

type identifier ;

| type identifier is

(identifier | ' graphic_character '

{ , identifier | ' graphic_character ' }) ;

| range_constraint ;

| physical_type_definition ;

| record_type_definition ;

| access subtype_indication ;

| file of type_mark ;

| array index_constraint of element_ subtype_indication ;

| array (type_mark range <> { , type_mark range <> }) of

element_ subtype_indication ;

type_mark ::= [93LRM 4.2] type_ name | subtype_ name [88]

use_clause ::= [93LRM 10.4] use prefix . suffix {, prefix . suffix } ; [89]

variable_assignment_statement ::= [93LRM 8.5] [90]

[label :] name | aggregate := expression ;

variable_declaration ::= [93LRM 4.3.1.3] [91]

[shared] variable identifier {, identifier } : subtype_indication

[:= expression] ;

wait_statement ::= [93LRM 8.1] [92]

[label :] wait

[on signal_ name { , signal_ name }]

[until boolean_ expression]

[for time_ expression] ;

waveform ::= [93LRM 8.4] waveform_element { , waveform_element } |
unaffected [93]

waveform_element ::= [93LRM 8.4.1] [94]

value_ expression [after time_ expression] | null [after time_ expression]

TABLE A.1 Index to VHDL BNF rules (list of rules that reference a rule).

1 actual_part 6 48 integer 10 , 27

2 aggregate 22 , 64 , 73 , 75 , 90 49 interface_declaration 50

3
alias_declaration 14 , 32 , 59 , 60 , 66 ,
81

50 interface_list 15 , 19 , 32 , 82

4 architecture_body 53 51 label 1 (see below)

5 assertion 21 , 32 , 74 52 library_clause 28

6
association_list 15 , 18 , 20 , 24 , 40 ,
65

53 library_unit 28

7
attribute_declaration 14 , 32 , 60 , 66 ,
81

54 literal 64

8 attribute_name 56 , 67 55 loop_statement 74

9
attribute_specification 14 , 23 , 32 , 60
, 66 , 81

56 name 2 (see below)

10 based_literal 54 , 61 57 next_statement 74

11 basic_graphic_character 42 58 null_statement 74

12 bit_string_literal 54 59 package_body 53

13 block_configuration 13 , 18 , 23 60 package_declaration 53

14 block_declarative_item 4 , 15 , 41 61 physical_literal 54 , 62

15 block_statement 21 62 physical_type_definition 87

16 case_statement 74 63 prefix 8 , 13 , 23 , 56 , 89

17 choice 2 , 16 , 74 64 primary 37

18 component_configuration 13 65 procedure_call 21 , 32 , 74

19 component_declaration 14 , 60 66 process_statement 21 , 32

20 component_instantiation_statement 21 67 range 13 , 30 , 41 , 68 , 87

21 concurrent_statement 4 , 15 , 21 , 41 68 range_constraint 26 , 62 , 87

22 conditional_signal_assignment 21 69 record_type_definition 87

23 configuration_declaration 53 70 relation 36

24 configuration_specification 14 71 report_statement 74

25
constant_declaration 14 , 32 , 59 , 60 ,
66 , 81

72 return_statement 74

26 constraint 83 , 84 73 selected_signal_assignment 21

27 decimal_literal 54 , 61 74
sequential_statement 16 , 46 , 55 ,
66 , 81

28 design_file 0 75 signal_assignment_statement 74

29
disconnection_specification 14 , 32 ,
60

76 signal_declaration 14 , 32 , 60

30 discrete_range 17 , 47 , 55 , 56 , 61 77 signal_list 29

31 entity_class 9 , 44 78 signature 3 , 8 , 33

32 entity_declaration 53 79 simple_expression 17 , 67 , 70

33 entity_name_list 9 80 string_literal 54

34 enumeration_literal 54 81
subprogram_body 14 , 32 , 59 , 66
, 81

35 exit_statement 74 82
subprogram_specification 14 , 32 ,
59 , 60 , 66 , 81

36 expression 3 (see below) 83
subtype_declaration 14 , 32 , 59 ,
60 , 66 , 81

37 factor 86 84 subtype_indication 4 (see below)

38
file_declaration 14 , 32 , 59 , 60 , 66 ,
81

85 suffix 13 , 23 , 56 , 89

39 formal_part 6 86 term 79

40 function_call 63 , 64 87
type_declaration 14 , 32 , 59 , 60 ,
66 , 81

41 generate_statement 21 88
type_mark 1 , 7 , 29 , 39 , 64 , 78 ,
82 , 83 , 84 , 87

42
graphic_character 3 , 33 , 34 , 42 , 43 ,
45 , 56 , 80 , 81 , 82 , 85 , 87

89
use_clause 14 , 28 , 32 , 59 , 60 ,
66 , 81

43
group_declaration 14 , 23 , 32 , 59 , 60
, 66 , 81

90 variable_assignment_statement 74

44
group_template_declaration 14 , 32 ,
59 , 60 , 66 , 81

91
variable_declaration 14 , 32 , 59 ,
60 , 66 , 81

45 identifier 5 (see below) 92 wait_statement 74

46 if_statement 74 93 waveform 22 , 73 , 75

47 index_constraint 26 , 87 94 waveform_element 93

1. 13 , 15 , 16 , 18 , 20 , 21 , 24 , 31 , 32 , 35 , 41 , 46 , 55 , 57 , 66 , 71 , 72 , 74 ,
75 , 90 , 92

2. 1 , 3 , 4 , 13 , 18 , 20 , 22 , 23 , 24 , 39 , 40 , 43 , 61 , 63 , 64 , 65 65 , 66 , 73 ,
75 , 77 , 83 , 84 , 88 , 90 , 92

3. 1 , 2 , 5 , 8 , 9 , 13 , 15 , 16 , 17 , 22 , 25 , 29 , 35 , 39 , 41 , 46 , 49 , 55 , 56 , 57
, 64 , 67 , 70 , 71 , 72 , 73 , 75 , 76 , 79 , 90 , 91 , 92 , 94

4. 3 , 13 , 25 , 30 , 38 , 41 , 49 , 64 , 69 , 76 , 87 , 91

5. 3 , 4 , 7 , 8 , 9 , 17 , 18 , 18 , 20 , 23 , 24 , 25 , 32 , 33 , 34 , 38 , 41 , 43 , 44 , 49
, 51 , 52 , 55 , 56 , 59 , 60 , 61 , 62 , 69 , 76 , 81 , 82 , 83 , 85 , 87 , 91

A.3 BNF Index
Table A.1 is an index to the VHDL BNF productions. For example, to find the
legal positions for a process statement you would locate production rules 21 and
32 opposite process_statement in Table A.1 . These rule numbers correspond to
the productions for concurrent_statement (21) and entity_declaration (32).
Next, turning to rule 32 for entity_declaration , you will find that only a passive
_process_statement is allowed in an entity declaration. Table A.2 is a list of
VHDL keywords and an index to rules that reference a keyword.

TABLE A.2 VHDL keywords and index (list of rules that reference a keyword).
1

abs 37

access 87

after 29 , 94

alias 3

all 18 , 24 , 77 , 85

and 36

architecture 4 , 31

array 87

assert 5

attribute 7 , 9

begin 4 , 15 , 32 ,
41 , 66 , 81

disconnect 29

downto 67

else 22 , 46

elsif 46

end 4 , 13 , 15 ,
16 , 18 , 19 , 23
, 32 , 41 , 46 ,
55 , 59 , 60 , 62
, 66 , 69 , 81

entity 18 , 20 ,
24 , 31 , 32

exit 35

file 31 , 38 , 87

for 13 , 18 , 24 ,
41 , 55 , 92

inout 49

is 3 , 4 , 9 ,
15 , 16 ,
19 , 23 ,
32 , 38 ,
44 , 59 ,
60 , 66 ,
81 , 83 ,
87

label 31

library 52

linkage 49

literal 31

loop 55

map 15 ,
18 , 20 ,
24

mod 86

nand 36

package 31 ,
59 , 60

port 15 , 18 ,
19 , 20 , 24 ,
32

postponed 21 ,
32 , 66

procedure 31 ,
81 , 82

process 66

pure 82

range 68

record 69

register 76

reject 22 , 73 ,
75

sra 70

srl 70

subtype 31 , 83

then 46

to 67

transport 22 ,
73 , 75

type 31 , 87

unaffected 93

units 31 , 62

until 92

block 15

body 59

buffer 49

bus 49 , 76

case 16

component 19 , 20 ,
31

configuration 18 ,
20 , 23 , 24 , 31

constant 25 , 31 , 49

function 31 , 81
, 82

generate 41

generic 15 , 18 ,
19 , 20 , 24 , 32

group 31 , 43 ,
44

guarded 22 , 73

if 41 , 46

impure 82

in 2 41 , 49 , 55

inertial 22 , 73 ,
75

new 64

next 57

nor 36

not 37

null 54 ,
58 , 94

of 4 , 9 ,
23 , 87

on 92

open 1 , 18
, 24 , 38

or 36

others 17 ,
18 , 24 ,
33 , 77

out 3 49

rem 86

report 5 , 71

return 72 , 78 ,
82

rol 70

ror 70

select 73

severity 5 , 71

signal 31 , 49 ,
76

shared 91

sla 70

sll 70

use 13 , 18 , 23
, 24 , 89

variable 31 , 49
, 91

wait 92

when 16 , 22 ,
35 , 57 , 73

while 55

with 73

xnor 36

xor 36

1. Underlines denote VHDL-93 keywords that are not VHDL-87 keywords.

2. Excluding VHDL-87 file_declaration .

3. Excluding VHDL-87 file_declaration .

A.4 Bibliography
The book by Ashenden [1995] covers VHDL-93 in detail. Other books on VHDL
include: Coelho [1989]; Lipsett, Schaefer, and Ussery [1989]; Armstrong [1989];
Augustin et al. [1991]; Perry [1991]; Mazor and Langstraat [1992]; three books
by Bhasker [1992, 1995, 1996]; Armstrong and Gray [1993]; Baker [1993];
Navabi [1993]; Ott and Wilderotter [1994]; Airiau, Bergé, and Olive [1994]; two
books by Cohen [1995, 1997]; Pick [1996]; Jerraya et al. [1997]; Pellerin and
Taylor [1997]; Sjoholm and Lindh [1997]; and Chang [1997]. Of these, the book
by Armstrong and Gray and Perry�s books (two editions) are easy-to-read
introductions. The following books describe example VHDL models for ASICs:
Leung and Shanblatt [1989], Skahill [1996], Smith [1996]. Edited books by
Bergé et al. [1992, 1993]; Harr and Stanculescu [1991]; Mermet [1992]; and
Schoen et al. [1991] contain papers on more advanced aspects of VHDL.

There are some issues and interpretations of VHDL that are covered in a separate
IEEE document [IEEE 1076-1991]; also relevant are the IEEE standard logic
system for VHDL [IEEE 1164-1993], the WAVES standard [IEEE 1029.1-1991],
and the VITAL standard [IEEE 1076.4-1995]. The IEEE has produced a VHDL
interactive tutorial on CD-ROM [IEEE 1164-1997]. Hanna et al. [1997] cover the
IEEE WAVES standard.

Updates and extensions to VHDL are controlled by the IEEE working groups
(WG). These include study and WGs on: Object Oriented VHDL, Open
Modeling Forum, Simulation Control Language (SimCL), System Design &
Description Language, VHDL Analog Extensions (PAR 1076.1), VHDL Math
Package (PAR 1076.2), VHDL Synthesis Package (PAR 1076.3), Utility (PAR
1076.5), VHDL Shared Variables (PAR 1076; mod a), VHDL Analysis and
Standards Group (VASG) Issues Screening and Analysis Committee (ISAC),
VHDL Library, VHDL Parallel Simulation, and VHDL Test. Links to the
activities of these groups, as well as an explanation of a Project Authorization
Request (PAR) and the standards process, may be found at http://ieee.org and
http://stdsbbs.ieee.org .

A.5 References
Page numbers in brackets after a reference indicate its location in the chapter
body.

The current IEEE standards and material listed here are published by The
Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New
York, NY 10017 USA. Inside the United States, IEEE standards may be ordered
at 1-800-678-4333. See also http://ieee.org and http://stdsbbs.ieee.org .

Airiau, R., J.-M. Bergé, and V. Olive. 1994. Circuit Synthesis with VHDL.
Boston: Kluwer, 221 p. ISBN 0792394291. TK7885.7.A37. Introduction to
VHDL aimed at ASIC designers.

Armstrong, J. R. 1989. Chip-Level Modeling with VHDL. Englewood Cliffs, NJ:
Prentice-Hall, 148 p. ISBN 0131331906. TK7874.A75 1989.

Armstrong, J. R., and F. G. Gray. 1993. Structured Logic Design with VHDL.
Englewood Cliffs, NJ: Prentice-Hall, 482 p. ISBN 0138552061. TK7885.7.A76.
20 pages of references.

Ashenden, P. J. 1995. The Designer's Guide to VHDL. San Francisco: Morgan
Kaufmann, 688 p. ISBN 1-55860-270-4. TK7888.3.A863. A complete reference
to VHDL from a system design perspective.

Augustin, L. M., et al. 1991. Hardware Design and Simulation in VAL/VHDL.
Boston: Kluwer, 322 p. ISBN 0792390873. TK7885.7.H38. Two pages of
references.

Baker, L. 1993. VHDL Programming with Advanced Topics. New York: Wiley,
365 p. ISBN 0471574643. TK7885.7.B35. Basic to intermediate level coverage
of VHDL.

Bergé, J.-M., et al. (Eds.). 1992. VHDL Designer's Reference. Boston: Kluwer,
455 p. ISBN 0792317564. TK7885.7.V47. Two pages of references.

Bergé, J.-M., et al. (Eds.). 1993. VHDL '92. Boston: Kluwer, 214 p. ISBN
0792393562. TK7885.7.V46. Covers new constructs in VHDL-93.

Bhasker, J. 1992. A VHDL Primer. Englewood Cliffs, NJ: Prentice-Hall, 253 p.
ISBN 013952987X. TK7885.7.B53. See also the revised edition, ISBN
0131814478, 1995. A basic introduction to VHDL.

Bhasker, J. 1995. A Guide to VHDL Syntax: Based on the New IEEE Std

1076-1993. Englewood Cliffs, NJ: Prentice-Hall, 268 p. ISBN 0133243516.
TK7885.7.B52. Uses graphics to illustrate BNF syntax.

Bhasker, J. 1996. A VHDL Synthesis Primer. Allentown, PA: Star Galaxy, 238 p.
ISBN 0965039102. TK7885.7.B534.

Chang, K. C. 1997. Digital Design and Modeling with VHDL and Synthesis. Los
Alamitos, CA: IEEE Computer Society Press. ISBN 0818677163.
TK7874.7.C47.

Coelho, D. R. 1989. The VHDL Handbook. Boston: Kluwer, 389 p. ISBN
0792390318. TK7874.C6. A description of VHDL models, including details of
models for simple combinational and sequential logic devices and memory. Two
pages of references.

Cohen, B. 1995. VHDL Coding Styles and Methodologies. Boston: Kluwer,
365 p. ISBN 0792395980. TK7885.7.C65.

Cohen, B. 1997. VHDL Answers to Frequently Asked Questions. Boston:
Kluwer, 291 p. ISBN 0792397916. TK7885.7.C64.

Hanna, J. P., et al. 1997. Using WAVES and VHDL for Effective Design and
Testing. Boston: Kluwer, 304 p. ISBN 0792397991. TK7874.7.U87.

Harr, R. E., and A. G. Stanculescu (Eds.). 1991. Applications of VHDL to Circuit
Design. Boston: Kluwer, 232 p ISBN 0792391535. TK7867.A64.

IEEE 1076-1987. IEEE Standard VHDL Language Reference Manual. This
version of the VHDL LRM is replaced by VHDL-93; however, some systems
(and some IEEE Standards, notably VITAL) are based on VHDL-87. For
instructions on how to obtain obsolete IEEE standards (known as archive
standards), see http://stdsbbs.ieee.org . [reference location]

IEEE 1076-1991. 1076 Interpretations, 1991 IEEE Standards Interpretations:
IEEE Std 1076-1987, IEEE Standard VHDL Language Reference Manual. 208 p.
ISBN 1-55937-181-1. TK7885.7.I58. IEEE Ref. SH14894-NYF.

IEEE 1029.1-1991. IEEE Standard for Waveform and Vector Exchange
(WAVES) (ANSI). 96 p. ISBN 1-55937-195-1. IEEE Ref. SH15032-NYF.

IEEE 1164-1993. IEEE Standard Multivalue Logic System for VHDL Model
Interoperability (Std_logic_1164). 24 p. ISBN 1-55937-299-0. IEEE Ref.
SH16097-NYF.

IEEE 1076-1993. IEEE Standard VHDL Language Reference Manual (ANSI).
288 p. ISBN 1-55937-376-8. IEEE Ref. SH16840-NYF. [reference location]

IEEE 1076.4-1995. IEEE Standard VITAL Application-Specific Integrated
Circuit (ASIC) Modeling Specification. 96 p. ISBN 1-55937-691-0. IEEE Ref.
SH94382-NYF. Includes an MS-DOS diskette containing the ASCII code for the
VITAL_Timing and VITAL_Primitives packages.

IEEE 1076-1997. VHDL Interactive Tutorial. This CD-ROM tutorial is available
from IEEE by itself or with a printed version of the VHDL LRM. The CD-ROM
is available in the following formats: IBM Windows (Windows 3.1 and Windows
95), Macintosh, Sun OS, and Sun Solaris.

Jerraya, A. A., et al. 1997. Behavioral Synthesis and Component Reuse with
VHDL. Boston: Kluwer, 263 p. ISBN 0792398270. TK7874.75.B45. Eight pages
of references.

Leung, S. S., and M. A. Shanblatt. 1989. ASIC System Design with VHDL: A
Paradigm. Boston: Kluwer, 206 p. ISBN 0-7923-90932-6. TK7874.L396.
Describes VHDL models for an ASIC intended for IKS (inverse kinematic
solution) which converts cartesian space to the robot-joint space. Eight pages of
references.

Lipsett, R., C. Schaefer, and C. Ussery. 1989. VHDL: Hardware Description and
Design. Boston: Kluwer, 299 p. ISBN 079239030X. TK7887.5.L57. Intermediate
guide to VHDL.

Mazor, S., and P. Langstraat. 1992. A Guide to VHDL. Boston: Kluwer. ISBN
0792392558. TK7885.7.M39. See also 2nd ed., ISBN 0792393872, 1993. Basic
introduction to VHDL.

Mermet, J. (Ed.). 1992. VHDL for Simulation, Synthesis, and Formal Proofs of
Hardware. Boston: Kluwer. ISBN 0792392531. TK7885.7.V48.

Navabi, Z. 1993. VHDL: Analysis and Modeling of Digital Systems. New York:
McGraw-Hill, 375 p. ISBN 0070464723. TK7874.N36. Introduction to VHDL.

Ott, D. E., and T. J. Wilderotter. 1994. A Designer's Guide to VHDL Synthesis.
Boston: Kluwer. ISBN 0792394720. TK7885.7.O89.

Pellerin, D., and D. Taylor. 1997. VHDL Made Easy! Upper Saddle River, NJ:
Prentice-Hall, 419 p. ISBN 0136507638. TK7885.7.P46.

Perry, D. L. 1991. VHDL. New York: McGraw-Hill, 458 p. ISBN 0070494339.
TK7885.7.P47. See also 2nd ed., ISBN 0070494347, 1994. Good introduction to
VHDL.

Pick, J. 1996. VHDL Techniques, Experiments, and Caveats. New York:
McGraw-Hill, 382 p. ISBN 0070499063. TK7885.7.P53. A series of intermediate
to advanced examples that illustrate mistakes in VHDL.

Schoen, J. M., et al. (Eds.). 1991. Performance and Fault Modeling with VHDL.
Englewood Cliffs, NJ: Prentice-Hall, 406 p ISBN 0136588166. TK7888.4.P47.

Sjoholm, S., and L. Lindh. 1997. VHDL for Designers. Englewood Cliffs, NJ:
Prentice-Hall. ISBN 0134734149. TK7885.7.S54.

Skahill, K. 1996. VHDL for Programmable Logic. Menlo Park, CA:
Addison-Wesley, 593 p. ISBN 0-201-89573-0. TK7885.7.S55. Covers VHDL

design for PLDs using Cypress Warp.

Smith, D. J. 1996. HDL Chip Design: A Practical Guide for Designing,
Synthesizing, and Simulating ASICs and FPGAs using VHDL or Verilog.
Madison, AL: Doone Publications, 448 p. ISBN 0965193438. TK7874.6.S62.

VERILOG HDL
RESOURCES
The definitive reference for the Verilog HDL is IEEE Std 1364-1995. This
standard is known as the IEEE Verilog® HDL language reference manual (LRM
) and the 1995 version is referred to here as the 95 LRM [IEEE 1364-1995]. 1
Verilog is a registered trademark of Cadence Design Systems and Verilog-XL is
a commercial simulator.

1. IEEE Std 1364-1995, Copyright © 1995. IEEE. All rights reserved. The
Verilog HDL syntax section in this appendix is reprinted from the IEEE
copyright material with permission.

Last Edited by SP 14112004

B.1 Explanation of the Verilog
HDL BNF
Annex A of the Verilog HDL LRM describes syntax using the BNF (Backus
�Naur form). The Verilog HDL BNF is slightly different from that employed in
the VHDL LRM (see Appendix A, Section A.1, �BNF�). The BNF syntax in the
Verilog LRM is normative , which means that the syntax is part of the definition
of the language (and the complete BNF description is contained in an annex).
The BNF syntax in the VHDL LRM is informative , which means the BNF is not
part of the standard defining the language (and the complete BNF description is
contained in an appendix). The following items summarize the Verilog HDL
BNF syntax:

name (in lowercase) is a syntax construct item (term , or syntactic
category) defined by other syntax construct token items (items , parts , or
tokens) or by lexical token items.

●

NAME (in uppercase) is a lexical token item , the leaves in a tree of
definitions.

●

[name] is an optional item .●

{ name } is one or more items.●

The symbol ::= gives a syntax definition (definition , rule , construct , or
production) for an item (i.e., the symbol ::= means is equivalent to).

●

| introduces an alternative syntax definition (i.e., the symbol | means or).●

Braces and brackets, { } and [] , that are required by the syntax are set in
bold, { } [] , in the 95 LRM, despite the fact they are difficult to
distinguish from the plain versions.

●

The vertical bar, | , that represents an alternative definition is set in bold, |
, in the 95 LRM, despite being difficult to distinguish from the plain
version.

●

All other characters that are set in bold (as they are in Annex A of the 95
LRM) are literals required by the syntax (for example, a plus sign '+').

●

Italic prefixes, for example, msb _constant_expression , are comments.●

Keywords are printed in bold , as they are in Annex A of the 95 LRM.●

Definitions here are in alphabetical order (Annex A of the 95 LRM groups
definitions by function). The highest-level definition is source_text ; this is
where you start. The lowest-level items are in uppercase; these are where
you end.

●

The BNF is reproduced exactly as it appears in Annex A of the 95 LRM.
Footnotes explain a number of typographical issues.

●

References in brackets immediately following the ::= symbol form
backward-pointing links to the constructs that reference a particular item.
Thus, for example, always_construct ::= [94] indicates that construct
number 94 (module_item) references the item always_construct (see also
Table B.1 , which collects all these links together, and Table B.2 , which is
a keyword index).

●

References in brackets following the construct links refer to the 95 LRM.
Thus, for example, always_construct ::= [94] [95LRM 9.9.2] , indicates
that section 9.9.2 of the 95 LRM contains the definition for
always_construct .

●

B.2 Verilog HDL Syntax
always_construct ::= [94] [95LRM 9.9.2] always statement [1]

binary_base ::= [4] [95LRM 2.5.1] �b | �B [2]

binary_digit ::= [4] [95LRM 2.5.1] x | X | z | Z | 0 | 1 [3]

binary_number ::= [114] [95LRM 2.5.1] [4]

[size] binary_base binary_digit { _ | binary_digit }

binary_operator ::= [19, 52] [95LRM 4.1.2] [5]

+ | - | * | / | % | == | != | === | !== | && | ||

| < | <= | > | >= | & | | | ^ | ^~ | ~^ | >> | <<

blocking assignment 1 ::= [181] [95LRM 9.2.1] [6]

reg_lvalue = [delay_or_event_control] expression

block_item_declaration ::= [57, 133, 166, 190] [95LRM 9.8.1] [7]

parameter_declaration | reg_declaration

| integer_declaration | real_declaration | time_declaration

| realtime_declaration | event_declaration

case_item ::= [9] [95LRM 9.5] expression { , expression } : statement_or_null
[8]

| default [:] statement_or_null

case_statement ::= [181] [95LRM 9.5] [9]

| case (expression) case_item { case_item } endcase

| casez (expression) case_item { case_item } endcase

| casex (expression) case_item { case_item } endcase

charge_strength ::= [107] [95LRM 3.4.1] (small) | (medium) | (large) [10]

cmos_switchtype ::= [58] [95LRM 7.7] cmos | rcmos [11]

cmos_switch_instance ::= [58] [95LRM 7.1] [name_of_gate_instance] [12]

(output_terminal , input_terminal ,

ncontrol_terminal , pcontrol_terminal)

combinational_body ::= [198] [95LRM 8.1.4] [13]

table combinational_entry { combinational_entry } endtable

combinational_entry ::= [13] [95LRM 8.1.4] level_input_list : output_symbol ;
[14]

comment ::= [�] [95LRM 2.3] short_comment | long_comment [15]

comment_text ::= [88, 168] [95LRM 2.3] { Any_ASCII_character } [16]

concatenation ::= [21, 109, 146, 161] [95LRM 4.1.14] { expression { , expression
} } [17]

conditional_statement ::= [181] [95LRM 9.4] [18]

| if (expression) statement_or_null [else statement_or_null]

constant_expression ::= [see Table B.1] [95LRM 4.1] constant_primary [19]

| unary_operator constant_primary

| constant_expression binary_operator constant_expression

| constant_expression ? constant_expression : constant_expression

| string

constant_mintypmax_expression ::= [34, 74, 139] [95LRM 4.3]
constant_expression [20]

| constant_expression : constant_expression : constant_expression

constant_primary ::= [19] [95LRM 4.1] number | parameter _identifier [21]

| constant _concatenation | constant _multiple_concatenation

continuous_assign ::= [94] [95LRM 6.1] [22]

assign [drive_strength] [delay3] list_of_net_assignments ;

controlled_timing_check_event ::= [189] [95LRM 14.5.11] [23]

timing_check_event_control

specify_terminal_descriptor [&&& timing_check_condition]

current_state ::= [165] [95LRM 8.1] level_symbol [24]

data_source_expression ::= [53, 127] [95LRM 13.3.3] expression [25]

decimal_base ::= [28] [95LRM 2.5.1] �d | �D [26]

decimal_digit ::= [206] [95LRM 2.5.1] 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 [27]

decimal_number ::= [114] [95LRM 2.5.1] [sign] unsigned_number [28]

| [size] decimal_base unsigned_number

delay2 ::= [58, 202] [95LRM 7.1, 7.15] [29]

delay_value | # (delay_value [, delay_value])

delay3 ::= [22, 58, 107] [95LRM 7.1, 7.15] [30]

delay_value | # (delay_value [, delay_value [, delay_value]])

delay_control ::= [32] [95LRM 9.7, 9.7.1] [31]

delay_value | # (mintypmax_expression)

delay_or_event_control ::= [6, 112, 148] [95LRM 9.7] [32]

delay_control | event_control | repeat (expression) event_control

delay_value ::= [29, 30, 31] [95LRM 7.1.3, 7.15] [33]

unsigned_number | parameter_identifier | constant_mintypmax_expression

description ::= [173] [95LRM 8.1, 12.1] module_declaration | udp_declaration
[34]

disable_statement 2 ::= [181] [95LRM 11] [35]

| disable task _identifier ; | disable block _identifier ;

drive_strength ::= [22, 58, 107, 202] [95LRM 3.2.1, 3.4.2, 6.1.4] [36]

(strength0 , strength1) | (strength1 , strength0)

| (strength0 , highz1) | (strength1 , highz0)

| (highz1 , strength0) | (highz0 , strength1)

edge_control_specifier 3 ::= [196] [95LRM 14.5.9] edge [37]

[edge_descriptor [, edge_descriptor]]

edge_descriptor ::= [37] [95LRM 14.5.9] 01 | 10 | 0x | x1 | 1x | x0 [38]

edge_identifier ::= [53, 127] [95LRM 14.5.9] posedge | negedge [39]

edge_indicator ::= [41] [95LRM 8.1, 8.1.6, 8.4] [40]

(level_symbol level_symbol) | edge_symbol

edge_input_list ::= [167] [95LRM 8.1, 8.1.6, 8.4] [41]

{ level_symbol } edge_indicator { level_symbol }

edge_sensitive_path_declaration ::= [138, 183] [95LRM 13.3.3] [42]

parallel_edge_sensitive_path_description = path_delay_value

| full_edge_sensitive_path_description = path_delay_value

edge_symbol ::= [40] [95LRM 8.1.6] r | R | f | F | p | P | n | N | * [43]

enable_gatetype ::= [58] [95LRM 7.1] bufif0 | bufif1 | notif0 | notif1 [44]

enable_gate_instance ::= [58] [95LRM 7.1] [name_of_gate_instance] [45]

(output_terminal , input_terminal , enable_terminal)

enable_terminal ::= [45, 98, 134] [95LRM 7.1] scalar _expression [46]

escaped_identifier ::= [63] [95LRM 2.7.1] [47]

\ {Any_ASCII_character_except_white_space} white_space

event_control ::= [32] [95LRM 9.7] @ event _identifier | @ (event_expression)
[48]

event_declaration ::= [7, 95] [95LRM 9.7.3] [49]

event event _identifier { , event _identifier } ;

event_expression ::= [48, 50] [95LRM 9.7] expression | event _identifier [50]

| posedge expression | negedge expression

| event_expression or event_expression

event_trigger 4 ::= [181] [95LRM 9.7.3] | -> event _identifier ; [51]

expression ::= [see Table B.1] [95LRM 4] primary | unary_operator primary [52]

| expression binary_operator expression | expression ? expression : expression

| string

full_edge_sensitive_path_description 5 ::= [42] [95LRM 13.3.2] [53]

([edge_identifier] list_of_path_inputs *>

list_of_path_outputs

[polarity_operator] : data_source_expression))

full_path_description ::= [171] [95LRM 13.3.2, 13.3.5] [54]

(list_of_path_inputs [polarity_operator] *> list_of_path_outputs)

function_call ::= [146] [95LRM 10.3.3] [55]

function _identifier (expression { , expression})

| name_of_system_function [(expression { , expression})]

function_declaration ::= [95] [95LRM 10.3.1] [56]

function [range_or_type] function _identifier ;

function_item_declaration { function_item_declaration }

statement

endfunction

function_item_declaration ::= [56] [95LRM 10.3.1] [57]

block_item_declaration | input_declaration

gate_instantiation 6 ::= [94] [95LRM 7.1] n_input_gatetype [drive_strength]
[58]

[delay2] n_input_gate_instance { , n_input_gate_instance } ;

| n_output_gatetype [drive_strength] [delay2]

n_output_gate_instance { , n_output_gate_instance } ;

| enable_gatetype [drive_strength] [delay3]

enable_gate_instance { , enable_gate_instance} ;

| mos_switchtype [delay3]

mos_switch_instance { , mos_switch_instance } ;

| pass_switchtype pass_switch_instance { , pass_switch_instance } ;

| pass_en_switchtype [delay3]

pass_en_switch_instance { , pass_en_switch_instance } ;

| cmos_switchtype [delay3]

cmos_switch_instance { , cmos_switch_instance } ;

| pullup [pullup_strength]

pull_gate_instance { , pull_gate_instance } ;

| pulldown [pulldown_strength]

pull_gate_instance { , pull_gate_instance } ;

hex_base ::= [61] [95LRM 2.5.1] �h | �H [59]

hex_digit ::= [61] [95LRM 2.5.1] [60]

x | X | z | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

| a | b | c | d | e | f | A | B | C | D | E | F

hex_number ::= [114] [95LRM 2.5.1] [size] hex_base hex_digit { _ | hex_digit }
[61]

identifier ::= [see Table B.1] [95LRM 2.7] IDENTIFIER [{ . IDENTIFIER }]
[62]

The period in identifier may not be preceded or followed by a space.

IDENTIFIER ::= [62] [95LRM 2.7] simple_identifier | escaped_identifier [63]

initial_construct ::= [94] [95LRM 9.9.1] initial statement [64]

init_val ::= [200] [95LRM 8.1, 8.5] [65]

1�b0 | 1�b1 | 1�bx | 1�bX | 1�B0 | 1�B1 | 1�Bx | 1�BX | 1 | 0

inout_declaration ::= [95, 190] [95LRM 12.3.2] [66]

inout [range] list_of_port_identifiers ;

inout_terminal ::= [134, 137] [95LRM 7.1] [67]

terminal _identifier | terminal _identifier [constant_expression]

input_declaration ::= [57, 95, 203] [95LRM 12.3.2] [68]

input [range] list_of_port_identifiers ;

input_identifier ::= [175] [95LRM 13.3.2] [69]

input_port _identifier | inout_port _identifier

input_terminal ::= [12, 45, 98, 116, 118] [95LRM 7.1] scalar _expression [70]

integer_declaration ::= [7, 95] [95LRM 3.9] integer list_of_register_identifiers ;
[71]

level_input_list ::= [14, 167] [95LRM 8.1, 8.1.6] level_symbol { level_symbol }
[72]

level_symbol ::= [24, 40, 41, 72] [95LRM 8.1, 8.1.6] 0 | 1 | x | X | ? | b | B [73]

limit_value ::= [152] [95LRM 13.7] constant_mintypmax_expression [74]

list_of_module_connections ::= [92] [95LRM 12.1.2, 12.3.3, 12.3.4] [75]

ordered_port_connection { , ordered_port_connection }

| named_port_connection { , named_port_connection }

list_of_net_assignments ::= [22] [95LRM 3.10] net_assignment { ,
net_assignment } [76]

list_of_net_decl_assignments ::= [107] [95LRM 3.2.1] [77]

net_decl_assignment { , net_decl_assignment }

list_of_net_identifiers ::= [107] [95LRM 2.7] net _identifier { , net _identifier }
[78]

list_of_param_assignments ::= [129, 130] [95LRM 3.10] [79]

param_assignment { , param_assignment }

list_of_path_delay_expressions ::= [140] [95LRM 13.4] [80]

t _path_delay_expression

| trise _path_delay_expression , tfall _path_delay_expression

| trise _path_delay_expression , tfall _path_delay_expression , tz
_path_delay_expression

| t01 _path_delay_expression , t10 _path_delay_expression , t0z
_path_delay_expression ,

tz1 _path_delay_expression , t1z _path_delay_expression , tz0
_path_delay_expression

| t01 _path_delay_expression , t10 _path_delay_expression , t0z
_path_delay_expression ,

tz1 _path_delay_expression , t1z _path_delay_expression , tz0
_path_delay_expression ,

t0x _path_delay_expression , tx1 _path_delay_expression , t1x
_path_delay_expression ,

tx0 _path_delay_expression , txz _path_delay_expression , tzx
_path_delay_expression

list_of_path_inputs ::= [53, 54] [95LRM 13.3.2] [81]

specify_input_terminal_descriptor { , specify_input_terminal_descriptor }

list_of_path_outputs ::= [53, 54] [95LRM 13.3.2] [82]

specify_output_terminal_descriptor { , specify_output_terminal_descriptor }

list_of_ports ::= [91] [95LRM 12] (port { , port }) [83]

list_of_port_identifiers ::= [66, 68, 123] [95LRM 12.3.2] [84]

port _identifier { , port _identifier }

list_of_real_identifiers ::= [155, 156] [95LRM 2.7] [85]

real _identifier { , real _identifier }

list_of_register_identifiers ::= [71, 160, 193] [95LRM 3.2.2] [86]

register_name { , register_name }

list_of_specparam_assignments ::= [180] [95LRM 13.2] [87]

specparam_assignment { , specparam_assignment }

long_comment ::= [15] [95LRM 2.3] /* comment_text */ [88]

loop_statement ::= [181] [95LRM 9.6] [89]

| forever statement

| repeat (expression) statement

| while (expression) statement

| for (reg_assignment ; expression ; reg_assignment) statement

mintypmax_expression ::= [31, 146] [95LRM 4.3] expression [90]

| expression : expression : expression

module_declaration ::= [34] [95LRM 12.1] module_keyword module _identifier
[91]

[list_of_ports] ; {module_item } endmodule

module_instance ::= [93] [95LRM 12.1, 12.1.2] [92]

name_of_instance ([list_of_module_connections])

module_instantiation ::= [94] [95LRM 12.1.2] [93]

module _identifier [parameter_value_assignment]

module_instance { , module_instance } ;

module_item ::= [91] [95LRM 12.1] [94]

module_item_declaration | parameter_override

| continuous_assign | gate_instantiation | udp_instantiation

| module_instantiation | specify_block | initial_construct

| always_construct

module_item_declaration ::= [94] [95LRM 12.1] [95]

parameter_declaration | input_declaration

| output_declaration | inout_declaration | net_declaration

| reg_declaration | integer_declaration | real_declaration

| time_declaration | realtime_declaration | event_declaration

| task_declaration | function_declaration

module_keyword ::= [91] [95LRM 12.1] module | macromodule [96]

mos_switchtype ::= [58] [95LRM 7.1, 7.5] nmos | pmos | rnmos | rpmos [97]

mos_switch_instance ::= [58] [95LRM 7.1] [98]

[name_of_gate_instance] (output_terminal , input_terminal , enable_terminal)

multiple_concatenation 7 ::= [21, 146] [95LRM 4.1.14] [99]

{ expression { expression { , expression } } }

named_port_connection ::= [75] [95LRM 12.1.2, 12.3.4] [100]

. port _identifier ([expression])

name_of_gate_instance ::= [12, 45, 98, 116, 118, 134, 137, 151] [95LRM 7.1]
[101]

gate_instance _identifier [range]

name_of_instance ::= [92] [95LRM 12.1.2] module_instance _identifier [range]
[102]

name_of_system_function ::= [55] [95LRM 14] $ identifier [103]

Note: the $ in name_of_system_function may not be followed by a space.

name_of_udp_instance ::= [201] [95LRM 8.6] udp_instance _identifier [range]
[104]

ncontrol_terminal ::= [12] [95LRM 7.1] scalar _expression [105]

net_assignment ::= [76, 147] [95LRM 6.1, 9.3] net_lvalue = expression [106]

net_declaration ::= [95] [95LRM 3.2.1] [107]

net_type [vectored | scalared] [range] [delay3] list_of_net_identifiers ;

| trireg [vectored | scalared]

[charge_strength] [range] [delay3] list_of_net_identifiers ;

| net_type [vectored | scalared]

[drive_strength] [range] [delay3] list_of_net_decl_assignments ;

net_decl_assignment ::= [77] [95LRM 3.2.1] net _identifier = expression [108]

net_lvalue ::= [106, 147] [95LRM 6.1] [109]

net _identifier | net _identifier [expression]

| net _identifier [msb _constant_expression : lsb _constant_expression]

| net _concatenation

net_type ::= [107] [95LRM 3.2.1] [110]

wire | tri | tri1 | supply0 | wand | triand | tri0 | supply1 | wor | trior

next_state ::= [165] [95LRM 8.1, 8.1.6] output_symbol | - [111]

non-blocking assignment 8 ::= [181] [95LRM 9.2.2] [112]

reg_lvalue <= [delay_or_event_control] expression

notify_register ::= [189] [95LRM 14.5.10] register _identifier [113]

number ::= [21, 146] [95LRM 2.5] [114]

decimal_number | octal_number | binary_number | hex_number | real_number

n_input_gatetype ::= [58] [95LRM 7.1] and | nand | or | nor | xor | xnor [115]

n_input_gate_instance ::= [58] [95LRM 7.1] [116]

[name_of_gate_instance] (output_terminal , input_terminal { , input_terminal }
)

n_output_gatetype ::= [58] [95LRM 7.1] buf | not [117]

n_output_gate_instance ::= [58] [95LRM 7.1] [118]

[name_of_gate_instance] (output_terminal { , output_terminal } ,
input_terminal)

octal_base ::= [121] [95LRM 2.5.1] �o | �O [119]

octal_digit ::= [121] [95LRM 2.5.1] [120]

x | X | z | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

octal_number ::= [114] [95LRM 2.5.1] [121]

[size] octal_base octal_digit { _ | octal_digit}

ordered_port_connection ::= [75] [95LRM 12.1.2, 12.3.3] [expression] [122]

output_declaration ::= [95, 190, 203] [95LRM 12.3.2] [123]

output [range] list_of_port_identifiers ;

output_identifier ::= [177] [95LRM 13.3.2] [124]

output_port _identifier | inout_port _identifier

output_symbol ::= [14, 111] [95LRM 8.1, 8.1.6] 0 | 1 | x | X [125]

output_terminal ::= [12, 45, 98, 116, 118, 151] [95LRM 7.1] [126]

terminal _identifier | terminal _identifier [constant_expression]

parallel_edge_sensitive_path_description 9 ::= [42] [95LRM 13.3.2] [127]

([edge_identifier] specify_input_terminal_descriptor =>

specify_output_terminal_descriptor

[polarity_operator] : data_source_expression))

parallel_path_description ::= [171] [95LRM 13.3.2] [128]

(specify_input_terminal_descriptor

[polarity_operator] => specify_output_terminal_descriptor)

parameter_declaration ::= [7, 95] [95LRM 3.10] [129]

parameter list_of_param_assignments ;

parameter_override ::= [94] [95LRM 12.2] defparam list_of_param_assignments
; [130]

parameter_value_assignment ::= [93] [95LRM 12.1.2] [131]

(expression { , expression })

param_assignment ::= [79] [95LRM 3.10] parameter _identifier =
constant_expression [132]

par_block ::= [181] [95LRM 9.8.2] [133]

fork [: block _identifier { block_item_declaration }] { statement } join

pass_enable_switch_instance 10 ::= [58] [95LRM 7.1] [134]

[name_of_gate_instance] (inout_terminal , inout_terminal , enable_terminal)

pass_en_switchtype ::= [58] [95LRM 7.1] [135]

tranif0 | tranif1 | rtranif1 | rtranif0

pass_switchtype ::= [58] [95LRM 7.1] tran | rtran [136]

pass_switch_instance ::= [58] [95LRM 7.1] [137]

[name_of_gate_instance] (inout_terminal , inout_terminal)

path_declaration 11 ::= [176] [95LRM 13.3] simple_path_declaration ; [138]

| edge_sensitive_path_declaration ; | state-dependent_path_declaration ;

path_delay_expression ::= [80] [95LRM 13.4] constant_mintypmax_expression
[139]

path_delay_value ::= [42, 171] [95LRM 13.4] [140]

list_of_path_delay_expressions | (list_of_path_delay_expressions)

pcontrol_terminal ::= [12] [95LRM 7.1] scalar _expression [141]

polarity_operator ::= [53, 54, 127, 128] [95LRM 13.3.2] + | - [142]

port ::= [83] [95LRM 12.3.1] [143]

[port_expression] | . port _identifier ([port_expression])

port_expression ::= [143] [95LRM 12.3.1] [144]

port_reference | { port_reference { , port_reference } }

port_reference ::= [144] [95LRM 12.3.1] port _identifier [145]

| port _identifier [constant_expression]

| port _identifier [msb _constant_expression : lsb _constant_expression]

primary ::= [52] [95LRM 4] number | identifier | identifier [expression] [146]

| identifier [msb _constant_expression : lsb _constant_expression]

| concatenation | multiple_concatenation | function_call

| (mintypmax_expression)

procedural_continuous_assignment 12 ::= [181] [95LRM 9.3] [147]

| assign reg_assignment ;

| deassign reg_lvalue ; | force reg_assignment ;

| force net_assignment ; | release reg_lvalue ;

| release net_lvalue ;

procedural_timing_control_statement ::= [181] [95LRM 9.7] [148]

delay_or_event_control statement_or_null

pulldown_strength ::= [58] [95LRM 7.1] (strength0 , strength1) [149]

| (strength1 , strength0) | (strength0)

pullup_strength ::= [58] [95LRM 7.1] (strength0 , strength1) [150]

| (strength1 , strength0) | (strength1)

pull_gate_instance ::= [58] [95LRM 7.1] [name_of_gate_instance] (
output_terminal) [151]

pulse_control_specparam 13 ::= [179] [95LRM 13.7] [152]

PATHPULSE$ = (reject _limit_value [, error _limit_value]) ;

| PATHPULSE$ specify_input_terminal_descriptor $
specify_output_terminal_descriptor

= (reject _limit_value [, error _limit_value]) ;

range ::= [66, 68, 101, 102, 104, 107, 123, 154, 160] [95LRM 7.1.5][153]

[msb _constant_expression : lsb _constant_expression]

range_or_type ::= [56] [95LRM 10.3.1] [154]

range | integer | real | realtime | time

realtime_declaration ::= [7, 95] [95LRM 3.9] realtime list_of_real_identifiers ;
[155]

real_declaration ::= [7, 95] [95LRM 3.9] real list_of_real_identifiers ; [156]

real_number 14 ::= [114] [95LRM 2.5.1] [157]

[sign] unsigned_number . unsigned_number

| [sign] unsigned_number [. unsigned_number] e [sign] unsigned_number

| [sign] unsigned_number [. unsigned_number] e [sign] unsigned_number

register_name ::= [86] [95LRM 3.2.2] register _identifier [158]

| memory _identifier [upper_limit _constant_expression :

lower_limit _constant_expression]

reg_assignment ::= [89, 147] [95LRM 9.3] reg_lvalue = expression [159]

reg_declaration ::= [7, 95, 203] [95LRM 3.2.2] [160]

reg [range] list_of_register_identifiers ;

reg_lvalue ::= [6, 112, 147, 159] [95LRM 9.2.1] [161]

reg _identifier | reg _identifier [expression]

| reg _identifier [msb _constant_expression : lsb _constant_expression]

| reg _concatenation

scalar_constant ::= [163] [95LRM 2.5.1] [162]

1�b0 | 1�b1 | 1�B0 | 1�B1 | �b0 | �b1 | �B0 | �B1 | 1 | 0

scalar_timing_check_condition ::= [194] [95LRM 14.5.11] expression [163]

| ~ expression | expression == scalar_constant

| expression === scalar_constant

| expression != scalar_constant

| expression !== scalar_constant

sequential_body ::= [198] [95LRM 8.1, 8.1.4] [udp_initial_statement] [164]

table sequential_entry { sequential_entry } endtable

sequential_entry ::= [164] [95LRM 8.1, 8.3, 8.4] [165]

seq_input_list : current_state : next_state ;

seq_block ::= [181] [95LRM 9.8.1] begin [: block _identifier [166]

{ block_item_declaration }] { statement } end

seq_input_list ::= [165] [95LRM 8.1] level_input_list | edge_input_list [167]

short_comment ::= [15] [95LRM 2.3] // comment_text \n [168]

sign ::= [28, 157] [95LRM 2.5.1] + | - [169]

simple_identifier ::= [63] [95LRM 2.7] [a-zA-Z][a-zA-Z_$] [170]

simple_path_declaration ::= [138, 183] [95LRM 13.3.2] [171]

parallel_path_description = path_delay_value

| full_path_description = path_delay_value

size ::= [4, 28, 61, 121] [95LRM 2.5.1] unsigned_number [172]

source_text ::= [�] [95LRM 2.1] { description } [173]

specify_block ::= [94] [95LRM 13.1] specify [specify_item] endspecify [174]

specify_input_terminal_descriptor ::= [81, 127, 128, 152, 178] [95LRM 13.3.2]
[175]

input_identifier

| input_identifier [constant_expression]

| input_identifier [msb _constant_expression : lsb _constant_expression]

specify_item ::= [174] [95LRM 13.1] [176]

specparam_declaration | path_declaration | system_timing_check

specify_output_terminal_descriptor ::= [82, 127, 128, 152, 178] [95LRM
13.3.2][177]

output_identifier

| output_identifier [constant_expression]

| output_identifier [msb _constant_expression : lsb _constant_expression]

specify_terminal_descriptor ::= [23, 195] [95LRM 13.3.2] [178]

specify_input_terminal_descriptor

| specify_output_terminal_descriptor

specparam_assignment ::= [87] [95LRM 13.2] [179]

specparam _identifier = constant_expression | pulse_control_specparam

specparam_declaration ::= [176] [95LRM 13.2] [180]

specparam list_of_specparam_assignments ;

statement 15 ::= [1, 56, 64, 89, 133, 166, 182] [95LRM 9.1] [181]

blocking_assignment ; | non_blocking assignment ;

| procedural_continuous_assignments ;

| procedural_timing_control_statement | conditional_statement

| case_statement | loop_statement | wait_statement

| disable_statement | event_trigger | seq_block | par_block

| task_enable | system_task_enable

statement_or_null 16 ::= [8, 18, 148, 191, 207] [95LRM 9.1] [182]

statement | ;

state_dependent_path_declaration 17 ::= [138] [95LRM 13.3.4] [183]

if (conditional_expression) simple_path_declaration

| if (conditional_expression) edge_sensitive_path_declaration

| ifnone simple_path_declaration

strength0 ::= [36, 149, 150] [95LRM 7.10] [184]

supply0 | strong0 | pull0 | weak0

strength1 ::= [36, 149, 150] [95LRM 7.10] [185]

supply1 | strong1 | pull1 | weak1

string ::= [19] [95LRM 2.6] " { Any_ASCII_Characters_except_new_line } "
[186]

system_task_enable ::= [181] [95LRM 2.7.3] [187]

system_task_name [(expression { , expression })] ;

system_task_name ::= [187] [95LRM 2.7.3] $ identifier [188]

Note: The $ may not be followed by a space.

system_timing_check 18 ::= [176] [95LRM 14.5] [189]

$setup (timing_check_event , timing_check_event ,

timing_check_limit [, notify_register]) ;

| $hold (timing_check_event , timing_check_event ,

timing_check_limit [, notify_register]) ;

| $period (controlled_timing_check_event , timing_check_limit

[, notify_register]) ;

| $width (controlled_timing_check_event , timing_check_limit ,

constant_expression [, notify_register]) ;

| $skew (timing_check_event , timing_check_event ,

timing_check_limit [, notify_register]) ;

| $recovery (controlled_timing_check_event , timing_check_event ,

timing_check_limit [, notify_register]) ;

| $setuphold (timing_check_event , timing_check_event ,

timing_check_limit , timing_check_limit [, notify_register]) ;

task_argument_declaration 19 ::= [191?] [95LRM 10.2.1] [190]

block_item_declaration | output_declaration | inout_declaration

task_declaration 20 ::= [95] [95LRM 10.2.1] [191]

task task _identifier ; {task_item_declaration} statement_or_null endtask

task_enable ::= [181] [95LRM 10.2.2] [192]

task _identifier [(expression { , expression })] ;

time_declaration ::= [7, 95] [95LRM 3.9] time list_of_register_identifiers ; [193]

timing_check_condition ::= [23, 195] [95LRM 14.5.11] [194]

scalar_timing_check_condition | (scalar_timing_check_condition)

timing_check_event ::= [189] [95LRM 14.5] [195]

[timing_check_event_control]

specify_terminal_descriptor [&&& timing_check_condition]

timing_check_event_control ::= [23, 195] [95LRM 14.5] [196]

posedge | negedge | edge_control_specifier

timing_check_limit ::= [189] [95LRM 14.5] expression [197]

udp_body ::= [199] [95LRM 8.1] combinational_body | sequential_body [198]

udp_declaration ::= [34] [95LRM 8.1, 8.1.1] [199]

primitive udp _identifier (udp_port_list) ;

udp_port_declaration { udp_port_declaration } udp_body

endprimitive

udp_initial_statement ::= [164] [95LRM 8.1, 8.5] [200]

initial udp_output_port _identifier = init_val ;

udp_instance ::= [202] [95LRM 8.6] [201]

[name_of_udp_instance]

(output_port_connection , input_port_connection { , input_port_connection })

udp_instantiation ::= [94] [95LRM 8.6] [202]

udp _identifier [drive_strength] [delay2] udp_instance { , udp_instance } ;

udp_port_declaration ::= [199] [95LRM 8.1] [203]

output_declaration | input_declaration | reg_declaration

udp_port_list ::= [199] [95LRM 8.1, 8.1.2] [204]

output_port _identifier , input_port _identifier { , input_port _identifier }

unary_operator ::= [19, 52] [95LRM 4.1] [205]

+ | - | ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~

unsigned_number ::= [28, 33, 157, 172] [95LRM 2.5.1] [206]

decimal_digit { _ | decimal_digit }

wait_statement 21 ::= [181] [95LRM 9.7.5] [207]

| wait (expression) statement_or_null

white_space ::= [47] [95LRM 2.2] space | tab | newline [208]

1. The term blocking (space) assignment is referenced as blocking (underscore)
assignment .

2. The construct for disable_statement has a leading vertical bar, | , in Annex A of
the 95 LRM.

3. The outer brackets in term edge_control_specifier are lexical elements; the
inner brackets are an optional item.

4. The construct for event_trigger has a leading vertical bar, |, in Annex A of the
95 LRM.

5. The term full_edge_sensitive_path_description contains an unmatched right
parenthesis in Annex A and Section 13.3.3 of the 95 LRM. The examples in
Section 13.3.3 of the 95 LRM do not include the final trailing right parenthesis.

6. The term pass_en_switch_instance is defined as pass_enable_switch_instance .

7. The two sets of outer braces (four) in the term multiple_concatenation are
lexical elements; the inner braces (two) indicate an optional item.

8. The term, non (hyphen) blocking (space) assignment , is referenced as non
(underscore) blocking (space) assignment .

9. The term parallel_edge_sensitive_path_description has an unmatched right
parenthesis in Annex A and Section 13.3.3 of the 95 LRM. The examples in
Section 13.3.3 do not include the final trailing right parenthesis.

10. The term pass_enable_switch_instance is referenced as
pass_en_switch_instance .

11. The term state-dependent_path_declaration is defined as
state_dependent_path_declaration .

12. The construct for procedural_continuous_assignment has a leading vertical
bar, | , in Annex A of the 95 LRM.

13. The specparam PATHPULSE$ is shown in bold in the 95 LRM but is not a
keyword.

14. The term real_number has identical entries for the two forms of scientific
notation in Annex A of the 95 LRM. In Section 2.5 of the 95 LRM the last
alternative uses E (uppercase) instead of e (lowercase).

15. The term blocking (underscore) assignment is defined as blocking (space)

assignment . The term non (underscore) blocking (space) assignment is a single
term defined as non (hyphen) blocking (space) assignment . The term
procedural_continuous_assignments (plural) is defined as
procedural_continuous_assignment (singular).

16. The term statement_or_null is equivalent to a statement term (which, when
expanded, will be terminated by a semicolon) or the combination of nothing
(null) followed by a semicolon.

17. The term state_dependent_path_declaration is referenced as
state-dependent_path_declaration .

18. The names of the system timing check tasks are shown in bold in the 95 LRM
but are not keywords.

19. Annex A of the 95 LRM defines task_argument_declaration , which is not
referenced in Annex A; see the footnote for the term task_declaration .

20. Annex A and Section 10.2.1 of the 95 LRM define task_declaration using the
term task_item_declaration , which is not defined in Annex A. Section 10.2.1
defines task_item_declaration similarly to the Annex A definition of
task_argument_declaration , but with the addition of the alternative term
input_declaration .

21. The construct for wait_statement has a leading vertical bar, | , in Annex A of
the 95 LRM.

B.3 BNF Index
Table B.1 is an index to the 208 Verilog HDL BNF productions, as defined in
Annex A of the 95 LRM. For example, to find the legal positions of
wait_statement (rule 207) we look up 207 in Table B.1 and find rule 181 (
statement), which is in turn referenced by rules 1, 56, 64, 89, 133, 166, and 182.
Thus we know a wait statement is legal in the following places: always_construct
(1), function_declaration (56), initial_construct (64), loop_statement (89),
par_block (a parallel block, 133), seq_block (a sequential block, 166), and
anywhere statement_or_null (182) is legal. Turning again to Table B.1 (or using
the backward-pointing links in rule 182), we find statement_or_null (rule 182) is
legal in the following places: 8 (case_item), 18 (conditional_statement), 148 (
procedural_timing_control_statement), 191 (task_declaration), and 207 (
wait_statement).

TABLE B.1 Index to Verilog HDL BNF rules (list of rules that reference a
rule).

1 94 43 40 85
155,
156

127 42 169 28, 157

2 4 44 58 86
71, 160,
193

128 171 170 63

3 4 45 58 87 180 129 7, 95 171 138, 183

4 114 46
45, 98,
134

88 15 130 94 172 4, 28, 61, 121

5 19, 52 47 63 89 181 131 93 173 Highest-level
6 181 48 32 90 31, 146 132 79 174 94

7
57, 133, 166,
190

49 7, 95 91 34 133 181 175
81, 127, 128, 152,
178

8 9 50 48, 50 92 93 134 58 176 174

9 181 51 181 93 94 135 58 177
82, 127, 128, 152,
178

10 107 52
See
below

94 91 136 58 178 23, 195

11 58 53 42 95 94 137 58 179 87
12 58 54 171 96 91 138 176 180 176
13 198 55 146 97 58 139 80 181 See below

14 13 56 95 98 58 140 42, 171 182
8, 18, 148, 191,
207

15
Not
referenced

57 56 99 21, 146 141 12 183 138

16 88, 168 58 94 100 75 142
53, 54,
127,
128

184 36, 149, 150

17
21, 109, 146,
161

59 61 101
See
below

143 83 185 36, 149, 150

18 181 60 61 102 92 144 143 186 19
19 See below 61 114 103 55 145 144 187 181

20 33, 74, 139 62
See
below

104 201 146 52 188 187

21 19 63 62 105 12 147 181 189 176

22 94 64 94 106 76, 147 148 181 190
191 (See BNF
footnote)

23 189 65 200 107 95 149 58 191 95
24 165 66 95, 190 108 77 150 58 192 181

25 53, 127 67
134,
137

109
106,
147

151 58 193 7, 95

26 28 68
57, 95,
203

110 107 152 179 194 23, 195

27 206 69 175 111 165 153
See
below

195 189

28 114 70
See
below

112 181 154 56 196 23, 195

29 58, 202 71 7, 95 113 189 155 7, 95 197 189
30 22, 58, 107 72 14, 167 114 21, 146 156 7, 95 198 199

31 32 73
24, 40,
41, 72

115 58 157 114 199 34

32 6, 112, 148 74 152 116 58 158 86 200 164
33 29, 30, 31 75 92 117 58 159 89, 147 201 202

34 173 76 22 118 58 160
7, 95,
203

202 94

35 181 77 107 119 121 161
6, 112,
147,
159

203 199

36
22, 58, 107,
202

78 107 120 121 162 163 204 199

37 196 79
129,
130

121 114 163 194 205 19, 52

38 37 80 140 122 75 164 198 206 28, 33, 157, 172

39 53, 127 81 53, 54 123
95, 190,
203

165 164 207 181

40 41 82 53, 54 124 177 166 181 208 47
41 167 83 91 125 14, 111 167 165

42 138, 183 84
66, 68,
123

126
See
below

168 15

19 19, 20, 67, 109, 126, 132, 145, 146, 153, 158, 161, 175, 177, 179, 189

52
6, 8, 9, 17, 18, 25, 32, 50, 52, 55, 89, 90, 99, 100, 106, 108, 109, 112, 122,
131, 146, 159, 161, 163, 187, 192, 197, 207

62
21, 35, 48, 49, 50, 51, 55, 56, 67, 69, 78, 84, 85, 91, 93, 100, 101, 102, 103,
104, 108, 109, 113, 124, 126, 132, 133, 143, 145, 146, 158, 161, 166, 179,
188, 191, 192, 199, 200, 202, 204

70 12, 45, 98, 116, 118
101 12, 45, 98, 116, 118, 134, 137, 151
126 12, 45, 98, 116, 118, 151
153 66, 68, 101, 102, 104, 107, 123, 154, 160
181 1, 56, 64, 89, 133, 166, 182

Table B.2 is a list of the 102 Verilog HDL keywords in the 95 LRM and an index
to the rules that reference these keywords. Note the spelling of the keyword
scalared (not scalered). For example, to find out how to use the keyword
parameter to define a constant, we look up parameter in Table B.2 to find rule
129 (parameter_declaration), which includes a reference to section 3.10 of the
95 LRM. The index in this book will also help (the entry for parameter points you
to examples in Section 11.2.4, �Numbers,� in this case).

There are many Verilog tools currently available that use many versions of the
Verilog language. Most tool vendors explain which of the Verilog constructs are
supported; many use the 95 LRM BNF syntax in this explanation.

TABLE B.2 Verilog HDL keywords and index (list of rules that reference a
keyword).

always 1

and 115

assign 22, 147

begin 166

buf 117

bufif0 44

bufif1 44

case 9

casex 9

casez 9

cmos 11

deassign 147

default 8

defparam 130

disable 35

edge 37

else 18

end 166

endcase 9

endfunction 56

endmodule 91

endprimitive 199

endspecify 174

endtable 13, 164

endtask 191

event 49

for 89

force 147

forever 89

fork 133

function 56

highz0 36

highz1 36

if 18, 183

ifnone 183

initial 64, 200

inout 66

input 68

integer 71, 154

join 133

large 10

macromodule 96

medium 10

module 96

nand 115

negedge 39,
50, 196

nmos 97

nor 115

not 117

notif0 44

notif1 44

or 50, 115

output 123

parameter 129

pmos 97

posedge 39,
50, 196

primitive 199

pull0 184

pull1 185

pulldown 58

pullup 58

rcmos 11

real 154, 156

realtime 154,
155

reg 160

release 147

repeat 32, 89

rnmos 97

rpmos 97

rtran 136

rtranif0 135

rtranif1 135

scalared 107

small 10

specify 174

specparam 180

strong0 184

strong1 185

supply0 110,
184

supply1 110,
185

table 13, 164

task 191

time 154, 193

tran 136

tranif0 135

tranif1 135

tri 110

tri0 110

tri1 110

triand 110

trior 110

trireg 107

vectored 107

wait 207

wand 110

weak0 184

weak1 185

while 89

wire 110

wor 110

xnor 1115

xor 115

B.4 Verilog HDL LRM
An important feature of Verilog is the ability to extend tools by writing your own
code and integrating it with a Verilog-based tool. For example, the following
code calls a user-written system task, $hello :

initial $hello(a_reg);

Here is the C program, hello.c , that prints the full hierarchical name of the
instance in which the Verilog code containing the call to $hello is located:

#include "veriuser.h"

#include "acc_user.h"

int hello()

{ handle mod_handle; char *full_name; acc_initialize();

mod_handle = acc_handle_tfarg(1);

io_printf("Hello from: %s\n", acc_fetch_fullname(mod_handle));

acc_close(); }

The details of how to compile and link your program with the Verilog executable
depend on the particular tool; the names, functions, and parameters of ACC
routines, the header files, veriuser.h and acc_user.h (most companies include
these with their Verilog products), as well as older TF routines and the newer
VPI routines are described in detail in Sections 17�23 of the 95 LRM.

Annex F of the 95 LRM describes widely used Verilog system tasks and
functions that are not required to be supported as part of IEEE Std 1364-1995.
Table B.3 summarizes these tasks and functions. Annex G of the 95 LRM
describes additional compiler directives that are not part of IEEE Std 1364-1995
and are not often used by ASIC designers. Two directives, `default_decay_time
and `default_trireg_strength , are used to model charge decay and the strength of
high-impedance trireg nets. Four more compiler directives:
`delay_mode_distributed , `delay_mode_path , `delay_mode_unit, and
`delay_mode_zero are used to specify the delay mode for modules.

TABLE B.3 System tasks and functions (not required in IEEE Std
1364-1995).

$countdrivers (net, [net_is_forced, number_of_01x_drivers,
number_of_0_drivers,
number_of_1_drivers, number_of_x_drivers]) ;
Returns a 0 if there is no more than one driver on the net and returns a 1
otherwise (indicating contention).
$getpattern (mem_element) ; // Drive a pattern from an indexed memory.
Example: assign {i1, i2, i3, i4} = $getpattern (mem [index])
$input ("filename"); // Allows input from file rather than terminal.
$key [("filename")] ; $nokey ; // Enable/disable key file in interactive mode.
$list [(hierarchical_name)] ; // List current or specified object.
$log [("filename")] ; $nolog ; // Enable/disable log file for standard output.
$reset [(stop_value [, reset_value , [diagnostics_value]])] ; // Reset time.

$reset_count ; // Count the number of resets.

$reset_value ; // Pass information prior to reset to simulation after reset.
$save ("file_name") ; // Save simulation for later restart.

$restart ("file_name") ; // Restart simulation from saved file.

$incsave ("incremental_file_name") ; // Save only changes since last $save
$scale (hierarchical_name) ; // Convert to time units of invoking module.
$scope (hierarchical_name) ; // Sets the specified level of hierarchy as current
scope.
$showscopes [(n)]; // Show scope (n = none or zero) else show all items
below scope.
$showvars [(list_of_variables)] ; // Show status of scope or specified
variables.
$sreadmemb (mem_name , start_address , finish_address , string { , string }) ;

$sreadmemh (mem_name , start_address , finish_address , string { , string }) ;

Load data into mem_name from character string (same format as $readmemb/h
).

B.5 Bibliography
There are fewer books available on Verilog than on VHDL. The best reference
book is the IEEE Verilog HDL LRM [IEEE 1364-1995]; it is detailed as well as
containing many examples. In addition to the references given in Chapter 11, the
following books concentrate on Verilog: Sternheim, Singh, and Trivedi [1990]
(Yatin Trivedi was the technical editor for the 95 LRM); Thomas and Moorby
[1991]; Smith [1996]; and Golze and Blinzer [1996]. Capilano Computing
Systems has produced a book to accompany its Verilog Modeler product
[Capilano, 1997].

Sandstrom compiled an interesting cross-reference between Verilog and VHDL
(a 2.5 page table listing the correspondence between major constructs in both
languages) in a pull-out supplement to Integrated System Design Magazine . An
electronic version of this article is at http://www.isdmag.com (the article is
labeled January 1996, but filed under October 1995). Other online articles related
to Verilog at www.isdmag.com , include case studies of Sun Microsystems�
ULTRASparc-1 (June 1996) and Hewlett�Packard�s PA-8000 (January, February,
and March 1997); both CPUs were designed with Verilog behavioral models. The
March 1997 issue also contains an article on the recent history and the future
plans of Open Verilog International (OVI). OVI helped create IEEE Std
1364-1995 and sponsored the annual International Verilog HDL Conference
(IVC). In 1997 the IVC merged with the VHDL International Users� Forum (
VIUF) to form the IVC/VIUF Conference (see http://www.hdlcon.org).

In January of 1995 OVI reactivated the Technical Coordinating Committee (
TCC) to recommend updates and changes to Verilog HDL. The TCC comprises
technical subcommittees (TSC), which are developing a delay calculator
standard (LM-TSC), analog extensions to Verilog HDL (VA-TSC), an ASIC
library modeling standard (PS-TSC), cycle-based simulation standard (
VC-TSC), timing-constraint formats (VS-TSC), as well as Verilog language
enhancements and extensions (VD-TSC). Links and information about OVI are
available at http://www.avanticorp.com and http://www.chronologic.com . The
OVI web site is http://www.verilog.org/ovi . Information on the activities of the
OVI committees is available at the Meta-Software site, ftp://ftp.metasw.com/pub
.

The work of the OVI and IEEE groups is related. For example, the IEEE Design
Automation Standards Committee (DASC) contains the Verilog Working Group
(PAR 1364), the Circuit Delay and Power Calculation (DPC) System Study

Group (P1481), as well as the VHDL and other WGs. Thus, the OVI DC-TSC
directory contains the Standard Delay Calculation System (DCS) Specification
(v1.0) approved by OVI/CFI and currently being studied by the IEEE DPC Study
Group. DCS provides a standard system for designers to calculate chip delay and
power using the following methods: Delay Calculation Language (DCL) from
IBM and CFI, Detailed Standard Parasitic Format (DSPF) and Reduced Standard
Parasitic Format (RSPF) from Cadence Design Systems (combined into a new
Standard Parasitics Exchange Format, SPEF), and Physical Design Exchange
Format (PDEF) from Synopsys. The current IEEE standardization work is
expanding the scope to add power calculation. Thus, useful information relating
to Verilog may be found at the VHDL site, VIUF Internet Services (VIIS at
http://www.vhdl.org), as well as the OVI site.

Two usenet newsgroups are related to Verilog: comp.lang.verilog and
comp.cad.synthesis . In January of 1997 the Verilog news archive was lost due to
a disk problem. While attempts are made to restore the archive, the Verilog
Frequently Asked Questions (FAQ) list is still available at
http://www.lib.ox.ac.uk/internet/news/faq/archive/verilog-faq.html . A list of
CAD-related newsgroups (including comp.lang.verilog) is maintained at Sun
Microsystems� DACafe (
http://www.ibsystems.com/DACafe/TECHNICAL/Resources/NewsGps.html
. Sun (~/DACafe/USERSGROUPS) also maintains the following user groups
that often discuss Verilog: Cadence, Mentor Graphics, Synopsys, VeriBest, and
Viewlogic. A number of tools and resources are available on the World Wide
Web, including Verilog modes for the emacs editor; Verilog preprocessors in Perl
and C (which allow the use of `define and `ifdef with logic synthesis tools, for
example); and demonstration versions of the following simulators: Viper from
InterHDL (http://www.interhdl.com) and VeriWell from Wellspring Solutions (
http://www.wellspring.com). VeriWell now supports the Verilog PLI, including
the acc and tf routines in IEEE Std 1364-1995 (requiring Visual C++ 4.0 or
newer for the Windows version, Code Warrior 9 or newer for the Macintosh, and
GNU C 2.7.0 or newer for the Linux and Sparc versions).

Several personal Web pages focus on Verilog HDL; these change frequently but
can be found by searching. Actel has placed a number of Verilog examples
(including synthesizable code for a FIFO and a RAM) at its site:
http://wwwtest.actel.com/HLD/verimain.html . Many universities maintain Web
pages for Verilog-related classes. Examples are the Web site for the ee282 class
at Stanford (http://lummi.Stanford.EDU/class/ee282), which contains Verilog
models for the DLX processor in the second edition of Hennessy and Patterson�s
�Computer Architecture: A Quantitative Approach�; and course material for
18-360, �Introduction to Computer-Aided Digital Design,� by Prof. Don Thomas
at http://www.ece.cmu.edu .

B.6 References
Page numbers in brackets after a reference indicate its location in the chapter
body.

Capilano. 1997. LogicWorks Verilog Modeler: Interactive Circuit Simulation
Software for Windows and Macintosh. Menlo Park, CA: Capilano Computing,
102 p. ISBN 0201895854. TK7888.4.L64 (as cataloged by the LOC).
Addison-Wesley also gives the following additional ISBN numbers for this work:
ISBN 0-201-49885-5 (Windows book and software), ISBN 0-201-49884-7
(Macintosh book and software); also available bundled with LogicWorks 3:
ISBN 0-201-87436-9 (Macintosh), ISBN 0-201-87437-7 (Windows).

Golze, U., and P. Blinzer. 1996. VLSI Chip Design with the Hardware
Description Language VERILOG: An Introduction Based on a Large RISC
Processor Design. New York: Springer, 358 p. ISBN 3540600329.
TK7874.75.G65. Four pages of references. Includes a version of VeriWell from
Wellsprings Solutions.

IEEE 1364-1995. IEEE Standard Description Language Based on the Verilog®
Hardware Description Language. 688 p. ISBN 1-55937-727-5. IEEE Ref.
SH94418-NYF. Published by The IEEE, Inc., 345 East 47th Street, New York,
NY 10017, USA. Inside the United States, IEEE standards may be ordered at
1-800-678-4333. See also http://www.ieee.org and http://stdsbbs.ieee.org . This
standard was approved by the IEEE on 12 December, 1995; and approved by
ANSI on 1 August, 1996 (and thus these two organizations have different
publication dates). Contents: overview (4 pages); lexical conventions (8 pages);
data types (13 pages); expressions (18 pages); scheduling semantics (5 pages);
assignments (4 pages); gate and switch level modeling (31 pages); user-defined
primitives (11 pages); behavioral modeling (26 pages); tasks and functions (6
pages); disabling of named blocks and tasks (1 page); hierarchical structures (16
pages); specify blocks (18 pages); system tasks and functions (35 pages); value
change dump file (11 pages); compiler directives (8 pages); PLI TF and ACC
interface mechanism (6 pages); using ACC routines (36 pages); ACC routine
definitions (178 pages); using TF routines (5 pages); TF routine definitions (76
pages); using VPI routines (6 pages); VPI routine definitions (25 pages); formal
syntax definition; list of keywords; system tasks and functions; compiler
directives; acc_user.h ; veriuser.h ; vpi_user.h . [reference location]

Smith, D. J. 1996. HDL Chip Design: A Practical Guide for Designing,
Synthesizing, and Simulating ASICs and FPGAs using VHDL or Verilog.

Madison, AL: Doone Publications, 448 p. ISBN 0965193438. TK7874.6.S62.

Sternheim, E., R. Singh, and Y. Trivedi. 1990. Digital Design with Verilog HDL.
Cupertino, CA: Automata Publishing, 215 p. ISBN 0962748803. TK7885.7.S74.

Thomas, D. E., and P. Moorby. 1991. The Verilog Hardware Description
Language. Boston, MA: Kluwer, 223 p. ISBN 0-7923-9126-8, TK7885.7.T48
(1st ed.). ISBN 0-7923-9523-9 (2nd ed.). ISBN 0792397231 (3rd ed.).

12.12 Optimization of the Viterbi Decoder 625

12.13 Summary 628

12.14 Problems 629

12.15 Bibliography 638

12.16 References 639

13 SIMULATION 641
13.1 Types of Simulation 641

13.2 The Comparator/MUX Example 643

13.2.1 Structural Simulation 644

13.2.2 Static Timing Analysis 647

13.2.3 Gate-Level Simulation 648

13.2.4 Net Capacitance 650

13.3 Logic Systems 652

13.3.1 Signal Resolution 653

13.3.2 Logic Strength 653

13.4 How Logic Simulation Works 656

13.4.1 VHDL Simulation Cycle 658

13.4.2 Delay 658

13.5 Cell Models 659

13.5.1 Primitive Models 659

13.5.2 Synopsys Models 660

13.5.3 Verilog Models 661

13.5.4 VHDL Models 663

13.5.5 VITAL Models 664

13.5.6 SDF in Simulation 667

13.6 Delay Models 669

13.6.1 Using a Library Data Book 670

13.6.2 Input-Slope Delay Model 672

13.6.3 Limitations of Logic Simulation 674

13.7 Static Timing Analysis 675

13.7.1 Hold Time 678

13.7.2 Entry Delay 679

13.7.3 Exit Delay 680

13.7.4 External Setup Time 681

13.8 Formal Verification 682

13.8.1 An Example 682

13.8.2 Understanding Formal Verification 684

	INTRODUCTION TO ASICs
	1.1 Types of ASICs
	1.2 Design Flow
	1.3 Case Study
	1.4 Economics of ASICs
	1.5 ASIC Cell Libraries
	1.6 Summary
	1.7 Problems
	1.8 Bibliography
	1.9 References

	CMOS LOGIC
	2.12 References
	2.1 CMOS Transistors
	2.2 The CMOS Process
	2.3 CMOS Design Rules
	2.4 Combinational Logic Cells
	2.5 Sequential Logic Cells
	2.6 Datapath Logic Cells
	2.7 I/O Cells
	2.8 Cell Compilers
	2.9 Summary
	2.10 Problems
	2.11 Bibliography

	ASIC LIBRARY DESIGN
	3.1 Transistors as Resistors
	3.2 Transistor Parasitic Capacitance
	3.3 Logical Effort
	3.4 Library-Cell Design
	3.5 Library Architecture
	3.6 Gate-Array Design
	3.7 Standard-Cell Design
	3.8 Datapath-Cell Design
	3.9 Summary
	3.10 Problems
	3.11 Bibliography
	3.12 References

	PROGRAMMABLE ASICs
	4.1 The Antifuse
	4.2 Static RAM
	4.3 EPROM and EEPROM Technology
	4.4 Practical Issues
	4.5 Specifications
	4.6 PREP Benchmarks
	4.7 FPGA Economics
	4.8 Summary
	4.9 Problems
	4.10 Bibliography
	4.11 References

	PROGRAMMABLE ASIC LOGIC CELLS
	5.1 Actel ACT
	5.2 Xilinx LCA
	5.3 Altera FLEX
	5.4 Altera MAX
	5.5 Summary
	5.6 Problems
	5.7 Bibliography
	5.8 References

	PROGRAMMABLE ASIC I/O CELLS
	6.1 DC Output
	6.2 AC Output
	6.3 DC Input
	6.4 AC Input
	6.5 Clock Input
	6.6 Power Input
	6.7 Xilinx I/O Block
	6.8 Other I/O Cells
	6.9 Summary
	6.10 Problems
	6.11 Bibliography
	6.12 References

	PROGRAMMABLE ASIC INTERCONNECT
	7.1 Actel ACT
	7.2 Xilinx LCA
	7.3 Xilinx EPLD
	7.4 Altera MAX 5000 and 7000
	7.5 Altera MAX 9000
	7.6 Altera FLEX
	7.7 Summary
	7.8 Problems
	7.9 Bibliography
	7.10 References

	PROGRAMMABLE ASIC DESIGN SOFTWARE
	8.1 Design Systems
	8.2 Logic Synthesis
	8.3 The Halfgate ASIC
	8.3.4 Comparison
	8.4 Summary
	8.5 Problems
	8.6 Bibliography
	8.7 References

	LOW-LEVEL DESIGN ENTRY
	9.1 Schematic Entry
	9.2 Low-Level Design Languages
	9.3 PLA Tools
	9.4 EDIF
	9.5 CFI Design Representation
	9.6 Summary
	9.7 Problems
	9.8 Bibliography
	9.9 References

	VHDL
	10.1 A Counter
	10.2 A 4-bit Multiplier
	10.3 Syntax and Semantics of VHDL
	10.5 Entities and Architectures
	10.6 Packages and Libraries
	10.7 Interface Declarations
	10.8 Type Declarations
	10.9 Other Declarations
	10.10 Sequential Statements
	10.11 Operators
	10.12 Arithmetic
	10.13 Concurrent Statements
	10.14 Execution
	10.15 Configurations and Specifications
	10.16 An Engine Controller
	10.17 Summary
	10.18 Problems
	10.19 Bibliography
	10.20 References
	IEEE Language Reference Manual project

	VERILOG HDL
	11.1 A Counter
	11.2 Basics of the Verilog Language
	11.3 Operators
	11.4 Hierarchy
	11.5 Procedures and Assignments
	11.6 Timing Controls and Delay
	11.7 Tasks and Functions
	11.8 Control Statements
	11.9 Logic-Gate Modeling
	11.10 Modeling Delay
	11.11 Altering Parameters
	11.12 A Viterbi Decoder
	11.13 Other Verilog Features
	11.14 Summary
	11.15 Problems
	11.16 Bibliography
	11.17 References
	complete specification of the Verilog HDL

	LOGIC SYNTHESIS
	12.1 A Logic-Synthesis Example
	12.2 A Comparator/MUX
	12.3 Inside a Logic Synthesizer
	12.11 Performance-Driven Synthesis
	12.4 Synthesis of the Viterbi Decoder
	12.5 Verilog and Logic Synthesis
	12.6 VHDL and Logic Synthesis
	12.7 Finite-State Machine Synthesis
	12.8 Memory Synthesis
	12.9 The Multiplier
	12.10 The Engine Controller
	12.12 Optimization of the Viterbi Decoder
	12.13 Summary
	12.14 Problems
	12.15 Bibliography
	12.16 References

	SIMULATION
	13.1 Types of Simulation
	13.2 The Comparator/MUX Example
	13.3 Logic Systems
	13.4 How Logic Simulation
	13.5 Cell Models
	13.6 Delay Models
	13.7 Static Timing Analysis
	13.8 Formal Verification
	13.9 Switch-Level Simulation
	13.10 Transistor-Level Simulation
	13.11 Summary
	13.12 Problems
	13.13 Bibliography
	13.14 References

	TEST
	14.1 The Importance of Test
	14.2 Boundary-Scan Test
	14.3 Faults
	14.4 Fault Simulation
	14.5 Automatic Test-Pattern Generation
	14.6 Scan Test
	14.7 Built-in Self-test
	14.8 A Simple Test Example
	14.9 The Viterbi Decoder Example
	14.10 Summary
	14.11 Problems
	14.12 Bibliography
	14.13 References

	ASIC CONSTRUCTION
	15.1 Physical Design
	15.2 CAD Tools
	15.3 System Partitioning
	15.4 Estimating ASIC Size
	15.5 Power Dissipation
	15.6 FPGA Partitioning
	15.7 Partitioning Methods
	15.8 Summary
	15.9 Problems
	15.10 Bibliography
	15.11 References

	FLOORPLANNING AND PLACEMENT
	16.1 Floorplanning
	16.2 Placement
	16.3 Physical Design Flow
	16.4 Information Formats
	16.5 Summary
	16.6 Problems
	16.7 Bibliography
	16.8 References

	ROUTING
	17.1 Global Routing
	17.2 Detailed Routing
	17.3 Special Routing
	17.4 Circuit Extraction and DRC
	17.5 Summary
	17.6 Problems
	17.7 Bibliography
	17.8 References

	VHDL RESOURCES
	A.1 BNF
	A.2 VHDL Syntax
	A.3 BNF Index
	A.4 Bibliography
	A.5 References

	VERILOG HDL RESOURCES
	B.1 Explanation of the Verilog HDL BNF
	B.2 Verilog HDL Syntax
	B.3 BNF Index
	B.4 Verilog HDL LRM
	B.5 Bibliography
	B.6 References

