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INTRODUCTION TO ASICs

An ASIC (pronounced a-sick ; bold typeface defines a new term) is an
application-specific integrated circuit at least that is what the acronym stands for.
Before we answer the question of what that means we first look at the evolution
of the silicon chip or integrated circuit (IC).

Figure 1.1(a) shows an IC package (thisis a pin-grid array, or PGA, shown
upside down; the pins will go through holesin a printed-circuit board). People
often call the package a chip, but, as you can seein Figure 1.1(b), the silicon chip
itself (more properly called adie) is mounted in the cavity under the sealed lid.
A PGA package is usually made from a ceramic material, but plastic packages
are also common.

FIGURE 1.1 An integrated
circuit (IC). (&) A pin-grid
array (PGA) package. (b) The
silicon die or chip isunder
the package lid.

The physical size of asilicon die varies from afew millimeters on aside to over
1 inch on aside, but instead we often measure the size of an IC by the number of
logic gates or the number of transistors that the |C contains. As a unit of measure
a gate equivaent corresponds to atwo-input NAND gate (acircuit that performs
thelogic function, F= A " B ). Often we just use the term gates instead of gate
equivaents when we are measuring chip size not to be confused with the gate
terminal of atransistor. For example, a 100 k-gate | C contains the equivalent of
100,000 two-input NAND gates.

The semiconductor industry has evolved from the first |Cs of the early 1970s and
matured rapidly since then. Early small-scale integration ( SSI ) 1Cs contained a
few (1 to 10) logic gates NAND gates, NOR gates, and so on amounting to afew
tens of transistors. The era of medium-scale integration ( MSl ) increased the
range of integrated logic available to counters and similar, larger scale, logic
functions. The era of large-scale integration ( LSl ) packed even larger logic



functions, such as the first microprocessors, into asingle chip. The era of very
large-scale integration ( VLS| ) now offers 64-bit microprocessors, complete with
cache memory and floating-point arithmetic units well over a million transistors
on asingle piece of silicon. As CMOS process technology improves, transistors
continue to get smaller and 1Cs hold more and more transistors. Some people
(especially in Japan) use the term ultralarge scale integration ( ULSI ), but most
people stop at the term VL SI; otherwise we have to start inventing new words.

The earliest ICs used bipolar technology and the majority of logic |Cs used either
transistor transistor logic ( TTL ) or emitter-coupled logic (ECL). Although
invented before the bipolar transistor, the metal-oxide-silicon ( MOS) transistor
was initially difficult to manufacture because of problems with the oxide
interface. As these problems were gradually solved, metal-gate n -channel MOS (
NMOS or NMOS) technology developed in the 1970s. At that time MOS
technology required fewer masking steps, was denser, and consumed |ess power
than equivalent bipolar ICs. This meant that, for a given performance, an MOS

| C was cheaper than a bipolar IC and led to investment and growth of the MOS
|C market.

By the early 1980s the aluminum gates of the transistors were replaced by
polysilicon gates, but the name MOS remained. The introduction of polysilicon
as a gate material was a magjor improvement in CM OS technology, making it
easier to make two types of transistors, n -channel MOS and p -channel MOS
transistors, on the same |C a complementary MOS ( CMOS, never cMOS)
technology. The principal advantage of CMOS over NMOS is lower power
consumption. Another advantage of a polysilicon gate was a simplification of the
fabrication process, alowing devices to be scaled down in size.

There are four CMOS transistorsin atwo-input NAND gate (and a two-input
NOR gate to0), so to convert between gates and transistors, you multiply the
number of gates by 4 to obtain the number of transistors. We can also measure an
|C by the smallest feature size (roughly half the length of the smallest transistor)
imprinted on the IC. Transistor dimensions are measured in microns (amicron, 1
m m, isamillionth of ameter). Thuswetalk abouta0.5mmICorsay anICis
built in (or with) a 0.5 m m process, meaning that the smallest transistors are 0.5
m m in length. We give a special label, | or lambda, to this smallest feature size.
Since lambdais equal to half of the smallest transistor length, 1| 20.25mmina
0.5 m m process. Many of the drawings in this book use a scale marked with
lambda for the same reason we place a scale on a map.

A modern submicron CMOS processis now just as complicated as a submicron
bipolar or BICMOS (a combination of bipolar and CMQOS) process. However,
CMOS ICs have established a dominant position, are manufactured in much
greater volume than any other technology, and therefore, because of the economy
of scale, the cost of CMOS ICsislessthan a bipolar or BICMOS IC for the same
function. Bipolar and BiCMOS ICs are still used for special needs. For example,
bipolar technology is generally capable of handling higher voltages than CMOS.
This makes bipolar and BiCMOS ICs useful in power electronics, cars, telephone



circuits, and so on.

Some digital logic ICs and their analog counterparts (analog/digital converters,
for example) are standard parts, or standard ICs. Y ou can select standard ICs
from catal ogs and data books and buy them from distributors. Systems
manufacturers and designers can use the same standard part in a variety of
different microelectronic systems (systems that use microelectronics or 1Cs).

With the advent of VLSI in the 1980s engineers began to realize the advantages
of designing an IC that was customized or tailored to a particular system or
application rather than using standard I Cs alone. Microelectronic system design
then becomes a matter of defining the functions that you can implement using
standard | Cs and then implementing the remaining logic functions (sometimes
called gluelogic ) with one or more custom ICs. As VLS| became possible you
could build a system from a smaller number of components by combining many
standard ICsinto afew custom ICs. Building a microelectronic system with
fewer |Cs alows you to reduce cost and improve reliability.

Of course, there are many situations in which it is not appropriate to use a custom
|C for each and every part of an microelectronic system. If you need alarge
amount of memory, for example, it is still best to use standard memory ICs,
either dynamic random-access memory ( DRAM or dRAM), or static RAM (
SRAM or sRAM), in conjunction with custom ICs.

One of the first conferences to be devoted to this rapidly emerging segment of the
| C industry was the |IEEE Custom Integrated Circuits Conference (CICC), and
the proceedings of this annual conference form a useful reference to the
development of custom ICs. As different types of custom |Cs began to evolve for
different types of applications, these new |Cs gave rise to a new term:
application-specific IC, or ASIC. Now we have the |EEE International ASIC
Conference , which tracks advances in ASICs separately from other types of
custom | Cs. Although the exact definition of an ASIC is difficult, we shall look at
some examples to help clarify what people in the | C industry understand by the
term.

Examples of ICsthat are not ASICs include standard parts such as. memory chips
sold as acommodity item ROMs, DRAM, and SRAM; microprocessors; TTL or
TTL-equivalent ICsat SSI, MSI, and LSl levels.

Examples of ICsthat are ASICsinclude: achip for atoy bear that talks; achip

for asatellite; a chip designed to handle the interface between memory and a
microprocessor for a workstation CPU; and a chip containing a microprocessor as
a cell together with other logic.

Asageneral rule, if you can find it in adata book, then it is probably not an
ASIC, but there are some exceptions. For example, two I Cs that might or might
not be considered ASICs are a controller chip for a PC and a chip for a modem.
Both of these examples are specific to an application (shades of an ASIC) but are
sold to many different system vendors (shades of a standard part). ASICs such as



these are sometimes called application-specific standard products ( ASSPs).

Trying to decide which members of the huge IC family are application-specific is
tricky after all, every IC has an application. For example, people do not usually
consider an application-specific microprocessor to be an ASIC. | shall describe
how to design an ASIC that may include large cells such as microprocessors, but
| shall not describe the design of the microprocessors themselves. Defining an
ASIC by looking at the application can be confusing, so we shall look at a
different way to categorize the IC family. The easiest way to recognize peopleis
by their faces and physical characteristics: tall, short, thin. The easiest
characteristics of ASICs to understand are physical onestoo, and we shall look at
these next. It isimportant to understand these differences because they affect
such factors as the price of an ASIC and the way you design an ASIC.






1.1 Types of ASICs

| Cs are made on athin (afew hundred microns thick), circular silicon wafer ,
with each wafer holding hundreds of die (sometimes people use dies or dice for
the plural of die). The transistors and wiring are made from many layers (usually
between 10 and 15 distinct layers) built on top of one another. Each successive
mask layer has a pattern that is defined using amask similar to aglass
photographic slide. The first half-dozen or so layers define the transistors. The
last half-dozen or so layers define the metal wires between the transistors (the
interconnect ).

A full-custom IC includes some (possibly al) logic cells that are customized and
all mask layersthat are customized. A microprocessor is an example of a
full-custom |IC designers spend many hours squeezing the most out of every last
sguare micron of microprocessor chip space by hand. Customizing all of the IC
featuresin this way allows designersto include analog circuits, optimized
memory cells, or mechanical structures on an IC, for example. Full-custom ICs
are the most expensive to manufacture and to design. The manufacturing lead
time (the time it takes just to make an |C not including design time) is typically
eight weeks for afull-custom IC. These specialized full-custom |ICs are often
intended for a specific application, so we might call some of them full-custom
ASICs.

We shall discuss full-custom ASICs briefly next, but the members of the IC
family that we are more interested in are semicustom ASICs, for which all of the
logic cells are predesigned and some (possibly all) of the mask layers are
customized. Using predesigned cellsfrom acell library makes our lives as
designers much, much easier. There are two types of semicustom ASICsthat we
shall cover: standard-cell based ASICs and gate-array based ASICs. Following
this we shall describe the programmable ASICs, for which all of the logic cells
are predesigned and none of the mask layers are customized. There are two types
of programmable ASICs: the programmable logic device and, the newest member
of the ASIC family, the field-programmable gate array.

1.1.1 Full-Custom ASICs

In afull-custom ASIC an engineer designs some or all of the logic cells, circuits,
or layout specifically for one ASIC. This means the designer abandons the
approach of using pretested and precharacterized cells for all or part of that
design. It makes sense to take this approach only if there are no suitable existing



cell libraries available that can be used for the entire design. This might be
because existing cell libraries are not fast enough, or the logic cells are not small
enough or consume too much power. Y ou may need to use full-custom design if
the ASIC technology is new or so specialized that there are no existing cell
libraries or because the ASIC is so specialized that some circuits must be custom
designed. Fewer and fewer full-custom |Cs are being designed because of the
problems with these special parts of the ASIC. There is one growing member of
this family, though, the mixed analog/digital ASIC, which we shall discuss next.

Bipolar technology has historically been used for precision analog functions.
There are some fundamental reasons for this. In all integrated circuits the
matching of component characteristics between chipsis very poor, while the
matching of characteristics between components on the same chip is excellent.
Suppose we have transistors T1, T2, and T3 on an analog/digital ASIC. The three
transistors are all the same size and are constructed in an identical fashion.
Transistors T1 and T2 are located adjacent to each other and have the same
orientation. Transistor T3 isthe samesizeas T1 and T2 but islocated on the
other side of the chip from T1 and T2 and has a different orientation. ICs are
made in batches called wafer lots. A wafer lot isagroup of silicon wafersthat are
all processed together. Usually there are between 5 and 30 wafersin alot. Each
wafer can contain tens or hundreds of chips depending on the size of the IC and
the wafer.

If we were to make measurements of the characteristics of transistors T1, T2, and
T3 we would find the following:

o Transistors T1 will have virtually identical characteristicsto T2 on the
same | C. We say that the transistors match well or the tracking between
devicesis excellent.

o Transistor T3 will match transistors T1 and T2 on the same IC very well,
but not as closely as T1 matches T2 on the same IC.

o Transistor T1, T2, and T3 will match fairly well with transistors T1, T2,
and T3 on adifferent |C on the same wafer. The matching will depend on
how far apart the two ICs are on the wafer.

o Transistorson ICsfrom different wafersin the sasme wafer 1ot will not
match very well.

o Transistorson ICsfrom different wafer lots will match very poorly.

For many analog designs the close matching of transistorsis crucial to circuit
operation. For these circuit designs pairs of transistors are used, located adjacent
to each other. Device physics dictates that a pair of bipolar transistors will always
match more precisely than CMOS transistors of a comparable size. Bipolar
technology has historically been more widely used for full-custom analog design
because of itsimproved precision. Despite its poorer analog properties, the use of
CMOS technology for analog functionsisincreasing. There are two reasons for
this. Thefirst reason isthat CMOS is now by far the most widely available IC
technology. Many more CMOS ASICs and CMOS standard products are now



being manufactured than bipolar 1Cs. The second reason is that increased levels
of integration require mixing analog and digital functions on the same IC: this
has forced designers to find ways to use CM OS technology to implement analog
functions. Circuit designers, using clever new techniques, have been very
successful in finding new ways to design analog CMOS circuits that can
approach the accuracy of bipolar analog designs.

1.1.2 Standard-Cell Based ASICs

A cell-based ASIC (cell-based IC, or CBIC acommon term in Japan,
pronounced sea-bick ) uses predesigned logic cells (AND gates, OR gates,
multiplexers, and flip-flops, for example) known as standard cells . We could
apply the term CBIC to any IC that uses cells, but it is generally accepted that a
cell-based ASIC or CBIC means a standard-cell based ASIC.

The standard-cell areas (also called flexible blocks) in a CBIC are built of rows
of standard cells like awall built of bricks. The standard-cell areas may be used
in combination with larger predesigned cells, perhaps microcontrollers or even
microprocessors, known as megacells . Megacells are also called megafunctions,
full-custom blocks, system-level macros (SLMs), fixed blocks, cores, or
Functional Standard Blocks (FSBS).

The ASIC designer defines only the placement of the standard cells and the
interconnect in a CBIC. However, the standard cells can be placed anywhere on
the silicon; this means that al the mask layers of a CBIC are customized and are
unique to a particular customer. The advantage of CBICsisthat designers save
time, money, and reduce risk by using a predesigned, pretested, and
precharacterized standard-cell library . In addition each standard cell can be
optimized individually. During the design of the cell library each and every
transistor in every standard cell can be chosen to maximize speed or minimize
area, for example. The disadvantages are the time or expense of designing or
buying the standard-cell library and the time needed to fabricate all layers of the
ASIC for each new design.

Figure 1.2 shows a CBIC (looking down on the die shown in Figure 1.1b, for
example). The important features of thistype of ASIC are asfollows:

« All mask layers are customized transistors and interconnect.

« Custom blocks can be embedded.

« Manufacturing lead time is about eight weeks.



FIGURE 1.2 A cell-based ASIC
(CBIC) diewithasingle
standard-cell area (aflexible
block) together with four fixed
blocks. The flexible block
contains rows of standard cells.
Thisiswhat you might see
through alow-powered
microscope looking down on the
die of Figure 1.1(b). The small
squares around the edge of the die
are bonding pads that are
connected to the pins of the ASIC
package.
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Each standard cell in the library is constructed using full-custom design methods,

but you can use these predesigned and precharacterized circuits without having to
do any full-custom design yourself. This design style gives you the same

performance and flexibility advantages of a full-custom ASIC but reduces design

time and reduces risk.

Standard cells are designed to fit together like bricksin awall. Figure 1.3 shows

an example of asimple standard cell (it issimplein the senseit is hot maximized
for density but ideal for showing you its internal construction). Power and ground
buses (VDD and GND or VSS) run horizontally on metal linesinside the cells.
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FIGURE 1.3 Looking down on the layout of a standard cell. This cell would be
approximately 25 microns wide on an ASIC with | (lambda) = 0.25 microns (a
micron is 10 & m). Standard cells are stacked like bricks in awall; the abutment
box (AB) definesthe edges of the brick. The difference between the bounding
box (BB) and the AB isthe area of overlap between the bricks. Power supplies
(labeled VDD and GND) run horizontally inside a standard cell on a metal layer
that lies above the transistor layers. Each different shaded and labeled pattern
represents a different layer. This standard cell has center connectors (the three
squares, labeled A1, B1, and Z) that allow the cell to connect to others. The
layout was drawn using ROSE, a symbolic layout editor developed by Rockwell
and Compass, and then imported into Tanner Research s L-Edit.

Standard-cell design allows the automation of the process of assembling an
ASIC. Groups of standard cellsfit horizontally together to form rows. The rows
stack vertically to form flexible rectangular blocks (which you can reshape
during design). Y ou may then connect aflexible block built from several rows of
standard cells to other standard-cell blocks or other full-custom logic blocks. For
example, you might want to include a custom interface to a standard, predesigned
microcontroller together with some memory. The microcontroller block may be a
fixed-size megacell, you might generate the memory using a memory compiler,
and the custom logic and memory controller will be built from flexible
standard-cell blocks, shaped to fit in the empty spaces on the chip.

Both cell-based and gate-array ASICs use predefined cells, but thereisa
difference we can change the transistor sizesin a standard cell to optimize speed
and performance, but the device sizesin agate array are fixed. Thisresultsin a
trade-off in performance and areain a gate array at the silicon level. The trade-off
between area and performance is made at the library level for a standard-cell
ASIC.

Modern CMOS ASICs use two, three, or more levels (or layers) of metal for
interconnect. This allows wiresto cross over different layersin the same way that
we use copper traces on different layers on a printed-circuit board. In atwo-level
metal CM OS technology, connections to the standard-cell inputs and outputs are
usually made using the second level of metal ( metal2 , the upper level of metal)
at the tops and bottoms of the cells. In athree-level metal technology,
connections may be internal to thelogic cell (asthey arein Figure 1.3). This
allows for more sophisticated routing programs to take advantage of the extra
metal layer to route interconnect over the top of the logic cells. We shall cover
the details of routing ASICsin Chapter 17.

A connection that needs to cross over arow of standard cells uses a feedthrough.
The term feedthrough can refer either to the piece of metal that is used to pass a
signal through a cell or to a space in a cell waiting to be used as a feedthrough
very confusing. Figure 1.4 shows two feedthroughs. onein cell A.14 and onein
cell A.23.



In both two-level and three-level metal technology, the power buses (VDD and
GND) inside the standard cells normally use the lowest (closest to the transistors)
layer of metal ( metall ). The width of each row of standard cellsis adjusted so
that they may be aligned using spacer cells. The power buses, or rails, are then
connected to additional vertical power rails using row-end cells at the aligned
ends of each standard-cell block. If the rows of standard cells are long, then
vertical power rails can also be run in metal 2 through the cell rows using specia
power cells that just connect to VDD and GND. Usually the designer manually
controls the number and width of the vertical power rails connected to the
standard-cell blocks during physical design. A diagram of the power distribution
scheme for a CBIC is shown in Figure 1.4.
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FIGURE 1.4 Routing the CBIC (cell-based IC) shown in Figure 1.2. The use of
regularly shaped standard cells, such asthe onein Figure 1.3, from alibrary
allows ASICs like this to be designed automatically. This ASIC uses two
separate layers of metal interconnect (metal 1 and metal 2) running at right angles
to each other (like traces on a printed-circuit board). Interconnections between
logic cells uses spaces (called channels) between the rows of cells. ASICs may
have three (or more) layers of metal allowing the cell rows to touch with the
interconnect running over the top of the cells.

All the mask layers of a CBIC are customized. This allows megacells (SRAM, a
SCSI controller, or an MPEG decoder, for example) to be placed on the same IC
with standard cells. Megacells are usually supplied by an ASIC or library
company complete with behavioral models and some way to test them (atest
strategy). ASIC library companies also supply compilers to generate flexible
DRAM, SRAM, and ROM blocks. Since all mask layers on a standard-cell
design are customized, memory design is more efficient and denser than for gate
arrays.



For logic that operates on multiple signals across a data bus a datapath ( DP) the
use of standard cells may not be the most efficient ASIC design style. Some
ASIC library companies provide a datapath compiler that automatically generates
datapath logic . A datapath library typically contains cells such as adders,
subtracters, multipliers, and ssmple arithmetic and logical units (ALUs). The
connectors of datapath library cells are pitch-matched to each other so that they
fit together. Connecting datapath cells to form a datapath usually, but not always,
results in faster and denser layout than using standard cells or agate array.

Standard-cell and gate-array libraries may contain hundreds of different logic
cells, including combinational functions (NAND, NOR, AND, OR gates) with
multiple inputs, as well as latches and flip-flops with different combinations of
reset, preset and clocking options. The ASIC library company provides designers
with a data book in paper or electronic form with all of the functional
descriptions and timing information for each library element.

1.1.3 Gate-Array Based ASICs

In agate array (sometimes abbreviated to GA) or gate-array based ASIC the
transistors are predefined on the silicon wafer. The predefined pattern of
transistors on agate array isthe base array , and the smallest element that is
replicated to make the base array (like an M. C. Escher drawing, or tileson a
floor) is the base cell (sometimes called a primitive cell ). Only the top few layers
of metal, which define the interconnect between transistors, are defined by the
designer using custom masks. To distinguish this type of gate array from other
types of gate array, it is often called a masked gate array ( MGA ). The designer
chooses from a gate-array library of predesigned and precharacterized logic cells.
Thelogic cellsin agate-array library are often called macros . The reason for this
Isthat the base-cell layout is the same for each logic cell, and only the
interconnect (inside cells and between cells) is customized, so that thereisa
similarity between gate-array macros and a software macro. Inside IBM,
gate-array macros are known as books (so that books are part of alibrary), but
unfortunately this descriptive term is not very widely used outside IBM.

We can compl ete the diffusion steps that form the transistors and then stockpile
wafers (sometimes we call agate array a prediffused array for this reason). Since
only the metal interconnections are unigue to an MGA, we can use the stockpiled
wafers for different customers as needed. Using wafers prefabricated up to the
metallization steps reduces the time needed to make an MGA, the turnaround
time, to afew days or at most a couple of weeks. The costs for all the initial
fabrication steps for an MGA are shared for each customer and this reduces the
cost of an MGA compared to afull-custom or standard-cell ASIC design.

There are the following different types of MGA or gate-array based ASICs:
o Channeled gate arrays.
o Channelless gate arrays.



 Structured gate arrays.

The hyphenation of these terms when they are used as adjectives explains their
construction. For example, in theterm channeled gate-array architecture, the
gate array is channeled , as will be explained. There are two common ways of
arranging (or arraying) the transistors on aMGA: in a channeled gate array we
leave space between the rows of transistors for wiring; the routing on a
channelless gate array uses rows of unused transistors. The channeled gate array
was the first to be developed, but the channelless gate-array architecture is now
more widely used. A structured (or embedded) gate array can be either channeled
or channelless but it includes (or embeds) a custom block.

1.1.4 Channeled Gate Array

Figure 1.5 shows a channeled gate array . The important features of this type of
MGA are:

« Only the interconnect is customized.
« Theinterconnect uses predefined spaces between rows of base cells.
« Manufacturing lead time is between two days and two weeks.

FIGURE 1.5 A channeled gate-array die.
The spaces between rows of the base cells
are set aside for interconnect.

O000000000000000

A channeled gate array is similar to a CBIC both use rows of cells separated by
channels used for interconnect. One difference is that the space for interconnect
between rows of cells are fixed in height in a channeled gate array, whereas the
space between rows of cells may be adjusted in a CBIC.

1.1.5 Channelless Gate Array

Figure 1.6 shows a channelless gate array (also known as a channel-free gate
array , sea-of-gates array , or SOG array). The important features of this type of
MGA are asfollows:

« Only some (the top few) mask layers are customized the interconnect.
« Manufacturing lead time is between two days and two weeks.
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The key difference between a channelless gate array and channeled gate array is
that there are no predefined areas set aside for routing between cellson a
channelless gate array. Instead we route over the top of the gate-array devices.
We can do this because we customize the contact layer that defines the
connections between metal 1, the first layer of metal, and the transistors. When
we use an area of transistors for routing in a channelless array, we do not make
any contacts to the devices lying underneath; we ssmply leave the transistors
unused.

The logic density the amount of logic that can be implemented in agiven silicon
areais higher for channelless gate arrays than for channeled gate arrays. Thisis
usually attributed to the difference in structure between the two types of array. In
fact, the difference occurs because the contact mask is customized in a
channelless gate array, but is not usually customized in a channeled gate array.
Thisleads to denser cellsin the channelless architectures. Customizing the
contact layer in a channelless gate array allows us to increase the density of
gate-array cells because we can route over the top of unused contact sites.

1.1.6 Structured Gate Array

An embedded gate array or structured gate array (also known as masterslice or
masterimage ) combines some of the features of CBICs and MGAs. One of the
disadvantages of the MGA isthe fixed gate-array base cell. This makes the
implementation of memory, for example, difficult and inefficient. In an
embedded gate array we set aside some of the |C area and dedicate it to a specific
function. This embedded area either can contain a different base cell that is more
suitable for building memory cells, or it can contain a complete circuit block,
such as amicrocontroller.

Figure 1.7 shows an embedded gate array. The important features of this type of
MGA are the following:

« Only the interconnect is customized.
o Custom blocks (the same for each design) can be embedded.
« Manufacturing lead time is between two days and two weeks.
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An embedded gate array gives the improved area efficiency and increased
performance of a CBIC but with the lower cost and faster turnaround of an MGA.
One disadvantage of an embedded gate array is that the embedded function is
fixed. For example, if an embedded gate array contains an area set aside for a 32
k-bit memory, but we only need a 16 k-bit memory, then we may have to waste
half of the embedded memory function. However, this may still be more efficient
and cheaper than implementing a 32 k-bit memory using macros on a SOG array.

ASIC vendors may offer several embedded gate array structures containing
different memory types and sizes as well as a variety of embedded functions.
ASIC companies wishing to offer awide range of embedded functions must
ensure that enough customers use each different embedded gate array to give the
cost advantages over a custom gate array or CBIC (the Sun Microsystems
SPARCstation 1 described in Section 1.3 made use of LS| Logic embedded gate
arrays and the 10K and 100K series of embedded gate arrays were two of LS|
Logic s most successful products).

1.1.7 Programmable Logic Devices

Programmable logic devices ( PLDs) are standard I Csthat are available in
standard configurations from a catalog of parts and are sold in very high volume
to many different customers. However, PLDs may be configured or programmed
to create a part customized to a specific application, and so they aso belong to
the family of ASICs. PLDs use different technologies to alow programming of
the device. Figure 1.8 shows a PLD and the following important features that all
PLDs have in common:

« No customized mask layersor logic cells
 Fast design turnaround
« A singlelarge block of programmable interconnect

« A matrix of logic macrocells that usually consist of programmable array
logic followed by aflip-flop or latch
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The simplest type of programmable |C is aread-only memory ( ROM ). The most
common types of ROM use a metal fuse that can be blown permanently (a
programmable ROM or PROM ). An electrically programmable ROM , or
EPROM , uses programmable M OS transistors whose characteristics are altered
by applying a high voltage. Y ou can erase an EPROM either by using another
high voltage (an electrically erasable PROM , or EEPROM ) or by exposing the
device to ultraviolet light ( UV-erasable PROM , or UVPROM ).

There is another type of ROM that can be placed on any ASIC a
mask-programmable ROM (mask-programmed ROM or masked ROM). A
masked ROM isaregular array of transistors permanently programmed using
custom mask patterns. An embedded masked ROM isthus alarge, specialized,
logic cell.

The same programmabl e technol ogies used to make ROMs can be applied to
more flexible logic structures. By using the programmable devicesin alarge
array of AND gates and an array of OR gates, we create afamily of flexible and
programmable logic devices called logic arrays . The company Monolithic
Memories (bought by AMD) was the first to produce Programmable Array Logic
(PAL ® | aregistered trademark of AMD) devicesthat you can use, for example,
astransition decoders for state machines. A PAL can also include registers
(flip-flops) to store the current state information so that you can use a PAL to
make a compl ete state machine.

Just as we have a mask-programmable ROM, we could place alogic array asa
cell on acustom ASIC. Thistype of logic array is called a programmable logic
array (PLA). Thereisadifference between aPAL and aPLA: aPLA hasa
programmable AND logic array, or AND plane, followed by a programmable
OR logic array, or OR plane ; aPAL has a programmable AND plane and, in
contrast to aPLA, afixed OR plane.

Depending on how the PLD is programmed, we can have an erasable PLD
(EPLD), or mask-programmed PLD (sometimes called a masked PLD but usually
just PLD). Thefirst PALs, PLASs, and PLDs were based on bipolar technology
and used programmable fuses or links. CMOS PLDs usually employ
floating-gate transistors (see Section 4.3, EPROM and EEPROM Technology ).



1.1.8 Field-Programmable Gate Arrays

A step above the PLD in complexity is the field-programmable gate array (
FPGA ). Thereisvery little difference between an FPGA and aPLD an FPGA is
usually just larger and more complex than aPLD. In fact, some companies that
manufacture programmable ASICs call their products FPGAs and some call them
complex PLDs . FPGAs are the newest member of the ASIC family and are
rapidly growing in importance, replacing TTL in microelectronic systems. Even
though an FPGA is atype of gate array, we do not consider the term gate-array

based ASICsto include FPGAs. This may change as FPGAs and MGAS start to
look more alike.

Figure 1.9 illustrates the essential characteristics of an FPGA:
« None of the mask layers are customized.
« A method for programming the basic logic cells and the interconnect.

o Thecoreisaregular array of programmable basic logic cells that can
implement combinational aswell as sequential logic (flip-flops).

« A matrix of programmable interconnect surrounds the basic logic cells.
« Programmable 1/O cells surround the core.
o Design turnaround isafew hours.

We shall examine these featuresin detail in Chapters 4 8.
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1.2 Design Flow

Figure 1.10 shows the sequence of stepsto design an ASIC; we call thisa design
flow . The steps are listed below (numbered to correspond to the labelsin
Figure 1.10) with abrief description of the function of each step.
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1. Design entry. Enter the design into an ASIC design system, either using a
hardware description language ( HDL ) or schematic entry .

2. Logic synthesis. Usean HDL (VHDL or Verilog) and alogic synthesis
tool to produce anetlist adescription of the logic cells and their
connections.

o 0~ w

System partitioning. Divide alarge system into ASIC-sized pieces.

Prelayout simulation. Check to seeif the design functions correctly.
Floorplanning. Arrange the blocks of the netlist on the chip.
Placement. Decide the locations of cellsin ablock.
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1.3 Case Study

Sun Microsystems released the SPARCstation 1 in April 1989. It is now an old
design but avery important example because it was one of the first workstations
to make extensive use of ASICs to achieve the following:

« Better performance at lower cost
« Compact size, reduced power, and quiet operation
« Reduced number of parts, easier assembly, and improved reliability

The SPARCstation 1 contains about 50 | Cs on the system motherboard excluding
the DRAM used for the system memory (standard parts). The SPARCstation 1
designers partitioned the system into the nine ASICs shown in Table 1.1 and
wrote specifications for each ASIC this took about three months 1 . LSI Logic

and Fujitsu designed the SPARC integer unit (1U) and floating-point unit ( FPU )
to these specifications. The clock ASIC isafairly straightforward design and, of
the six remaining ASICs, the video controller/data buffer, the RAM controller,
and the direct memory access ( DMA ) controller are defined by the 32-bit
system bus ( SBus) and the other ASICs that they connect to. The rest of the
system is partitioned into three more ASICs: the cache controller ,
memory-management unit (MMU), and the data buffer. These three ASICs, with
the IU and FPU, have the most critical timing paths and determine the system
partitioning. The design of ASICs 3 8 in Table 1.1 took five Sun engineers six
months after the specifications were complete. During the design process, the
Sun engineers simulated the entire SPARCstation 1 including execution of the
Sun operating system (SunQS).

TABLE 1.1 The ASICsin the Sun Microsystems SPARCstation 1.

SPARCstation 1 ASIC Gates (k-gates)
1 SPARC integer unit (1U) 20

2 SPARC floating-point unit (FPU) 50

3 Cache controller 9

4 Memory-management unit (MMU) 5

5 Data buffer 3

6 Direct memory access (DMA) controller 9

7 Video controller/data buffer 4

8 RAM controller 1

9 Clock generator 1



Table 1.2 shows the software tools used to design the SPARCstation 1, many of
which are now obsolete. The important point to notice, though, isthat thereisa
lot more to microel ectronic system design than designing the ASICs less than
one-third of thetoolslisted in Table 1.2 were ASIC design tools.

TABLE 1.2 The CAD tools used in the design of the Sun Microsystems
SPARCstation 1.

Design level Function Tool 2
ASIC design ASIC physical design LSl Logic
ASIC logic synthesis Internal tools and UC Berkeley
tools
ASIC simulation LSl Logic
Board design Schematic capture Valid Logic
PCB layout Valid Logic Allegro
Timing verification _Quad Design Motive and
internal tools
Mechanical design  Case and enclosure Autocad
Thermal analysis Pacific Numerix
Structural analysis Cosmos
M anagement Scheduling Suntrac
Documentation Interleaf and FrameM aker

The SPARCstation 1 cost about $9000 in 1989 or, since it has an execution rate
of approximately 12 million instructions per second (MIPS), $750/MIPS. Using
ASIC technology reduces the motherboard to about the size of a piece of paper
8.5 inches by 11 inches with a power consumption of about 12 W. The
SPARCstation 1 pizzabox is 16 inches across and 3 inches high smaller than a
typical |1BM-compatible personal computer in 1989. This speed, power, and size
performanceis (there are still SPARCstation 1sin use) made possible by using
ASICs. We shall return to the SPARCstation 1, to look more closely at the
partitioning step, in Section 15.3, System Partitioning.

1. Some information in Section 1.3 and Section 15.3 isfrom the

SPARCstation 10 Architecture Guide May 1992, p. 2 and pp. 27 28 and from two
publicity brochures (known as sparkle sheets). Thefirst is Concept to System:
How Sun Microsystems Created SPARCstation 1 Using LS| Logic'sASIC
System Technology, A. Bechtolsheim, T. Westberg, M. Insley, and J. Ludemann
of Sun Microsystems; J-H. Huang and D. Boyle of LSl Logic. Thisisan LSl
Logic publication. The second paper is SPARCstation 1. Beyond the 3M
Horizon, A. Bechtolsheim and E. Frank, a Sun Microsystems publication. | did
not include these as references since they are impossible to obtain now, but |
would like to give credit to Andy Bechtolsheim and the Sun Microsystems and
LSl Logic engineers.



2. Names are trademarks of their respective companies.




1.4 Economics of ASICs

In this section we shall discuss the economics of using ASICsin a product and
compare the most popular types of ASICs: an FPGA, an MGA, and aCBIC. To
make an economic comparison between these alternatives, we consider the ASIC
itself as a product and examine the components of product cost: fixed costs and
variable costs. Making cost comparisons is dangerous costs change rapidly and
the semiconductor industry is notorious for keeping its costs, prices, and pricing
strategy closely guarded secrets. The figuresin the following sections are
approximate and used to illustrate the different components of cost.

1.4.1 Comparison Between ASIC
Technologies

The most obvious economic factor in making a choice between the different
ASIC typesisthe part cost . Part costs vary enormously you can pay anywhere
from afew dollars to several hundreds of dollarsfor an ASIC. In generdl,
however, FPGAs are more expensive per gate than MGAS, which are, in turn,
more expensive than CBICs. For example, a0.5 m m, 20 k-gate array might cost
0.01 0.02 centg/gate (for more than 10,000 parts) or $2 $4 per part, but an
equivalent FPGA might be $20. The price per gate for an FPGA to implement the
same function istypically 2 5 times the cost of an MGA or CBIC.

Given that an FPGA is more expensive than an MGA, which is more expensive
than a CBIC, when and why does it make sense to choose a more expensive part?
Is the increased flexibility of an FPGA worth the extra cost per part? Given that
an MGA or CBIC is specidly tailored for each customer, there are extra hidden
costs associated with this step that we should consider. To make atrue
comparison between the different ASIC technologies, we shall quantify some of
these costs.

1.4.2 Product Cost

The total cost of any product can be separated into fixed costs and variable costs :

total product cost = fixed product cost + variable product cost ¥ products

<ld (1.1

Fixed costs are independent of sales volume the number of products sold.



However, the fixed costs amortized per product sold (fixed costs divided by
products sold) decrease as sales volume increases. Variable costs include the cost
of the parts used in the product, assembly costs, and other manufacturing costs.

Let uslook more closely at the partsin a product. If we want to buy ASICsto
assemble our product, the total part cost is

total part cost = fixed part cost + variable cost per part ¥ volume of parts. (1.2)

Our fixed cost when we use an FPGA islow we just have to buy the software and
any programming equipment. The fixed part costs for an MGA or CBIC are
higher and include the costs of the masks, simulation, and test program
development. We shall discuss these extra costs in more detail in Sections 1.4.3
and 1.4.4. Figure 1.11 shows a break-even graph that compares the total part cost
for an FPGA, MGA, and a CBIC with the following assumptions:

« FPGA fixed cost is $21,800, part cost is $39.
« MGA fixed cost is $86,000, part cost is $10.
« CBIC fixed cost is $146,000, part cost is $8.

At low volumes, the MGA and the CBIC are more expensive because of their
higher fixed costs. The total part costs of two alternative types of ASIC are equal
at the break-even volume . In Figure 1.11 the break-even volume for the FPGA
and the MGA is about 2000 parts. The break-even volume between the FPGA
and the CBIC is about 4000 parts. The break-even volume between the MGA and
the CBIC is higher at about 20,000 parts.

cost of parts
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FIGURE 1.11 A break-even analysis for an FPGA, a masked gate array (MGA)
and a custom cell-based ASIC (CBIC). The break-even volume between two
technologiesis the point at which the total cost of parts are equal. These
numbers are very approximate.

We shall describe how to calculate the fixed part costs next. Following that we



shall discuss how we came up with cost per part of $39, $10, and $8 for the
FPGA, MGA, and CBIC.

1.4.3 ASIC Fixed Costs

Figure 1.12 shows a spreadsheet, Fixed Costs, that calculates the fixed part costs
associated with ASIC design.

FPGA MG A CEIC
Training: s800 £2,000 s2,000
Dzy= 2 3 3
Caost/day 400 s400 S400
Hardware 10,000 10,000 10,000
Software 1,000 £20,000 540,000
Diesign: £8,000 S20,000 S20,000
Size (gates) 10,000 10,000 10,000
Gates day S00 200 200
Day= 20 al al
Costday £400 £400 £400
Design for test: Se,00n S2,000
Days a a
Costiday £400 £400
MERE: 520,000 570,000
Masks 510,000 £50,000
Simulztion 10,000 510,000
Test program 510,000 510,000
Second source: s2,000 s2,000 52,000
Days 3 a a
Costiday 5400 5400 £400
Total fined costs Se1,500 S8E,000 5146000

FIGURE 1.12 A spreadsheet, Fixed Costs, for afield-programmable gate array
(FPGA), amasked gate array (MGA), and a cell-based ASIC (CBIC). These
costs can vary wildly.

The training cost includes the cost of the time to learn any new electronic design
automation ( EDA ) system. For example, a new FPGA design system might
require afew daysto learn; anew gate-array or cell-based design system might
require taking a course. Figure 1.12 assumes that the cost of an engineer
(including overhead, benefits, infrastructure, and so on) is between $100,000 and
$200,000 per year or $2000 to $4000 per week (in the United Statesin 1990s
dollars).

Next we consider the hardware and software cost for ASIC design. Figure 1.12
shows some typical figures, but you can spend anywhere from $1000 to
$1 million (and more) on ASIC design software and the necessary infrastructure.

We try to measure productivity of an ASIC designer in gates (or transistors) per
day. Thisisliketrying to predict how long it takes to dig a hole, and the number



of gates per day an engineer averages varies wildly. ASIC design productivity
must increase as ASIC sizes increase and will depend on experience, design
tools, and the ASIC complexity. If we are using similar design methods, design
productivity ought to be independent of the type of ASIC, but FPGA design
software is usually available as a complete bundle on a PC. Thismeansthat it is
often easier to learn and use than semicustom ASIC design tools.

Every ASIC hasto pass a production test to make sure that it works. With
modern test tools the generation of any test circuits on each ASIC that are needed
for production testing can be automatic, but it still involves a cost for design for
test . An FPGA istested by the manufacturer beforeit is sold to you and before
you program it. You are still paying for testing an FPGA, but it is a hidden cost
folded into the part cost of the FPGA. Y ou do have to pay for any programming
costs for an FPGA, but we can include these in the hardware and software cost.

The nonrecurring-engineering ( NRE ) charge includes the cost of work done by
the ASIC vendor and the cost of the masks. The production test uses sets of test
inputs called test vectors, often many thousands of them. Most ASIC vendors
require simulation to generate test vectors and test programs for production
testing, and will charge for atest-program development cost . The number of
masks required by an ASIC during fabrication can range from three or four (for a
gate array) to 15 or more (for a CBIC). Total mask costs can range from $5000 to
$50,000 or more. The total NRE charge can range from $10,000 to $300,000 or
more and will vary with volume and the size of the ASIC. If you commit to high
volumes (above 100,000 parts), the vendor may waive the NRE charge. The NRE
charge may also include the costs of software tools, design verification, and
prototype samples.

If your design does not work the first time, you have to complete a further design
pass ( turn or spin ) that requires additional NRE charges. Normally you sign a
contract (sign off adesign) with an ASIC vendor that guarantees first-pass
success this means that if you designed your ASIC according to rules specified
by the vendor, then the vendor guarantees that the silicon will perform according
to the ssimulation or you get your money back. Thisiswhy the difference between
semicustom and full-custom design stylesis so important the ASIC vendor will
not (and cannot) guarantee your design will work if you use any full-custom
design techniques.

Nowadaysit is almost routine to have an ASIC work on the first pass. However,
If your design doesfail, it islittle consolation to have a second pass for free if
your company goes bankrupt in the meantime. Figure 1.13 shows a profit model
that represents the profit flow during the product lifetime . Using this model, we
can estimate the lost profit due to any delay.
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FIGURE 1.13 A profit model. If aproduct isintroduced on time, the total sales
are $60 million (the area of the higher triangle). With a three-month (one fiscal
quarter) delay the sales decline to $25 million. The difference is shown as the
shaded area between the two triangles and amounts to alost revenue of

$35 million.

Suppose we have the following situation:
o The product lifetimeis 18 months (6 fiscal quarters).

« The product salesincrease (linearly) at $10 million per quarter
independently of when the product is introduced (we suppose thisis
because we can increase production and sales only at afixed rate).

« The product reachesits peak sales at a point in time that is independent of
when we introduce a product (because of external market factors that we
cannot contral).

« The product declinesin sales (linearly) to the end of itslife apoint in time
that is also independent of when we introduce the product (again due to
external market forces).

The simple profit and revenue model of Figure 1.13 shows us that we would lose
$35 million in sales in this situation due to a 3-month delay. Despite the obvious
problems with such a simple model (how can we introduce the same product
twice to compare the performance?), it iswidely used in marketing. In the
electronics industry product lifetimes continue to shrink. In the PC industry it is
not unusual to have a product lifetime of 18 months or less. Thismeansthat it is
critical to achieve arapid design time (or high product velocity ) with no delays.

The last fixed cost shown in Figure 1.12 corresponds to an insurance policy.
When a company buys an ASIC part, it needs to be assured that it will always
have a back-up source, or second source , in case something happensto itsfirst or
primary source. Established FPGA companies have a second source that
produces equivalent parts. With a custom ASIC you may have to do some
redesign to transfer your ASIC to the second source. However, for all ASIC
types, switching production to a second source will involve some cost.

Figure 1.12 assumes a second-source cost of $2000 for al types of ASIC (the
amount may be substantially more than this).



1.4.4 ASIC Variable Costs

Figure 1.14 shows a spreadsheet, Variable Costs, that calculates some example
part costs. This spreadsheet uses the terms and parameters defined below the

figure.

FPGA RGA CEIC Units
\afer size E E B inches
Miafer cost 1,400 1,200 1,500 5
De=ign 10,000 10,000 10,000 gates=
Density 10,000 20,000 25,000 gatessq.cm
Lkilization k0 85 JLELU R
Die zize 167 0.53 0.40 =q.cm
Diewafar 22 243 2R3
Defect density 1.10 0.40 100 defectsf=q.cm
‘ield 3] Iz a0 #
Die cast 25 7 G
Profit margin B0 45 a0
Pricedgate 0.29 0.10 0.0% cents
Part cost £29 Z10 L4

FIGURE 1.14 A spreadsheet, Variable Costs, to calculate the part cost (that is
the variable cost for a product using ASICs) for different ASIC technologies.

The wafer size increases every few years. From 1985 to 1990, 4-inch to
6-inch diameter wafers were common; equipment using 6-inch to 8-inch
wafers was introduced between 1990 and 1995; the next step isthe 300 cm
or 12-inch wafer. The 12-inch wafer will probably take usto 2005.

The wafer cost depends on the equipment costs, process costs, and
overhead in the fabrication line. A typical wafer cost is between $1000 and
$5000, with $2000 being average; the cost declines slightly during the life
of a process and increases only slightly from one process generation to the
next.

Moore s Law (after Gordon Moore of Intel) models the observation that
the number of transistors on a chip roughly doubles every 18 months. Not
al designsfollow thislaw, but a large ASIC design seemsto grow by a
factor of 10 every 5 years (close to Moore s Law). In 1990 alarge ASIC
design size was 10 k-gate, in 1995 alarge design was about 100 k-gate, in
2000 it will be 1 M-gate, in 2005 it will be 10 M-gate.

The gate density is the number of gate equivalents per unit area
(remember: a gate equivalent, or gate, corresponds to a two-input NAND
gate).

The gate utilization is the percentage of gates that are on a die that we can
use (on a gate array we waste some gate space for interconnect).

The die size is determined by the design size (in gates), the gate density,



and the utilization of the die.

The number of die per wafer depends on the die size and the wafer size
(we have to pack rectangular or square die, together with some test chips,
on to acircular wafer so some space is wasted).

The defect density is a measure of the quality of the fabrication process.
The smaller the defect density the less likely there isto be aflaw on any
onedie. A single defect on adieisamost always fatal for that die. Defect
density usually increases with the number of stepsin aprocess. A defect
density of lessthan 1 cm 2istypica and required for a submicron CMOS
process.

Theyield of aprocessisthe key to a profitable ASIC company. Theyield
Isthe fraction of die on awafer that are good (expressed as a percentage).
Yield depends on the complexity and maturity of aprocess. A process may
start out with ayield of closeto zero for complex chips, which then climbs
to above 50 percent within the first few months of production. Within a
year the yield has to be brought to around 80 percent for the average
complexity ASIC for the processto be profitable. Yields of 90 percent or
more are not uncommon.

The die cost is determined by wafer cost, number of die per wafer, and the
yield. Of these parameters, the most variable and the most critical to
control istheyield.

The profit margin (what you sell a product for, less what it costs you to
make it, divided by the cost) is determined by the ASIC company s fixed
and variable costs. ASIC vendors that make and sell custom ASICs have
huge fixed and variable costs associated with building and running
fabrication facilities (afabrication plant isafab ). FPGA companies are
typically fabless they do not own afab they must pass on the costs of the
chip manufacture (plus the profit margin of the chip manufacturer) and the
development cost of the FPGA structure in the FPGA part cost. The
profitability of any company in the ASIC business varies greatly.

The price per gate (usually measured in cents per gate) is determined by
die costs and design size. It varies with design size and declines over time.
The part cost is determined by all of the preceding factors. As such it will
vary widely with time, process, yield, economic climate, ASIC size and
complexity, and many other factors.

As an estimate you can assume that the price per gate for any process technology
falls at about 20 % per year during its life (the average life of a CMOS processis
2 4 years, and can vary widely). Beyond the life of a process, prices can increase
as demand falls and the fabrication equipment becomes harder to maintain.
Figure 1.15 shows the price per gate for the different ASICs and process
technologies using the following assumptions:

« For any new process technology the price per gate decreases by 40 % in

the first year, 30 % in the second year, and then remains constant.



A new process technology is introduced approximately every 2 years, with
feature size decreasing by afactor of two every 5 yearsasfollows: 2 mm
in 1985, 1.5mmin 1987, 1 m min 1989, 0.8 0.6 mmin 1991 1993, 0.5
0.35mmin 1996 1997, 0.25 0.18 m m in 1998 2000.

o CBICsand MGAs are introduced at approximately the same time and
price.

« The price of anew process technology isinitially 10 % above the process
that it replaces.

o FPGAsareintroduced one year after CBICs that use the same process
technology.

« Theinitia FPGA price (per gate) is 10 percent higher than the initial price
for CBICs or MGAs using the same process technol ogy.

From Figure 1.15 you can see that the successive introduction of new process
technologies every 2 years drives the price per gate down at arate close to 30
percent per year. The cost figures that we have used in this section are very
approximate and can vary widely (this means they may be off by afactor of 2 but
probably are correct within a factor of 10). ASIC companies do use spreadsheet
models like these to calculate their costs.
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FIGURE 1.15 Example price per gate figures.

Having decided if, and then which, ASIC technology is appropriate, you need to
choose the appropriate cell library. Next we shall discuss the issues surrounding
ASIC cdll libraries: the different types, their sources, and their contents.




1.5 ASIC Cell Libraries

The cdll library isthe key part of ASIC design. For a programmable ASIC the
FPGA company supplies you with alibrary of logic cellsin the form of adesign
kit , you normally do not have a choice, and the cost is usually afew thousand
dollars. For MGAs and CBICs you have three choices: the ASIC vendor (the
company that will build your ASIC) will supply acell library, or you can buy a
cell library from athird-party library vendor , or you can build your own cell
library.

Thefirst choice, using an ASIC-vendor library , requires you to use a set of
design tools approved by the ASIC vendor to enter and simulate your design.

Y ou have to buy the tools, and the cost of the cell library isfolded into the NRE.
Some ASIC vendors (especialy for MGAS) supply tools that they have
developed in-house. For some reason the more common model in Japan isto use
tools supplied by the ASIC vendor, but in the United States, Europe, and

el sewhere designers want to choose their own tools. Perhaps this has to do with
the relationship between customer and supplier being alot closer in Japan than it
IS elsawhere.

An ASIC vendor library is normally a phantom library the cells are empty boxes,
or phantoms, but contain enough information for layout (for example, you would
only see the bounding box or abutment box in a phantom version of the cell in
Figure 1.3). After you complete layout you hand off a netlist to the ASIC vendor,
who fillsin the empty boxes ( phantom instantiation ) before manufacturing your
chip.

The second and third choices require you to make a buy-or-build decision . If you
complete an ASIC design using acell library that you bought, you also own the
masks (the tooling ) that are used to manufacture your ASIC. Thisis called
customer-owned tooling ( COT , pronounced see-oh-tee). A library vendor
normally develops a cell library using information about a process supplied by an
ASIC foundry . An ASIC foundry (in contrast to an ASIC vendor) only provides
manufacturing, with no design help. If the cell library meets the foundry
specifications, we call thisa qualified cell library . These cell libraries are
normally expensive (possibly several hundred thousand dollars), but if alibrary is
qualified at several foundries this allows you to shop around for the most
attractive terms. This means that buying an expensive library can be cheaper in
the long run than the other solutions for high-volume production.

The third choice isto develop acell library in-house. Many large computer and



el ectronics companies make this choice. Most of the cell libraries designed today
are still developed in-house despite the fact that the process of library
development is complex and very expensive.

However created, each cell inan ASIC cell library must contain the following:
« A physical layout
« A behavioral model
o A Verilog/VHDL model
« A detailed timing model
o A test strategy
« A circuit schematic
« Acdlicon
« A wire-load model
« A routing model

For MGA and CBIC cell libraries we need to complete cell design and cell layout
and shall discuss thisin Chapter 2. The ASIC designer may not actually see the
layout if it is hidden inside a phantom, but the layout will be needed eventually.
In aprogrammable ASIC the cell layout is part of the programmable ASIC
design (see Chapter 4).

The ASIC designer needs a high-level, behavioral model for each cell because
simulation at the detailed timing level takes too long for a complete ASIC design.
For aNAND gate a behavioral model is simple. A multiport RAM model can be
very complex. We shall discuss behavioral models when we describe Verilog and
VHDL in Chapter 10 and Chapter 11. The designer may require Verilog and
VHDL modelsin addition to the models for a particular logic simulator.

ASIC designers also need a detailed timing model for each cell to determine the
performance of the critical pieces of an ASIC. It istoo difficult, too
time-consuming, and too expensive to build every cell in silicon and measure the
cell delays. Instead library engineers simulate the delay of each cell, a process
known as characterization . Characterizing a standard-cell or gate-array library
involves circuit extraction from the full-custom cell layout for each cell. The
extracted schematic includes al the parasitic resistance and capacitance elements.
Then library engineers perform a simulation of each cell including the parasitic
elements to determine the switching delays. The simulation models for the
transistors are derived from measurements on specia chipsincluded on awafer
called process control monitors ( PCMs) or drop-ins. Library engineers then use
the results of the circuit ssimulation to generate detailed timing models for logic
simulation. We shall cover timing modelsin Chapter 13.

All ASICs need to be production tested (programmable ASICs may be tested by
the manufacturer before they are customized, but they still need to be tested).
Simple cellsin small or medium-size blocks can be tested using automated
techniques, but large blocks such as RAM or multipliers need a planned strategy.



We shall discusstest in Chapter 14.

The cell schematic (a netlist description) describes each cell so that the cell
designer can perform simulation for complex cells. Y ou may not need the
detailed cell schematic for al cells, but you need enough information to compare
what you think is on the silicon (the schematic) with what is actually on the
silicon (the layout) thisis alayout versus schematic ( LVS) check.

If the ASIC designer uses schematic entry, each cell needs a cell icon together
with connector and naming information that can be used by design tools from
different vendors. We shall cover ASIC design using schematic entry in
Chapter 9. One of the advantages of using logic synthesis (Chapter 12) rather
than schematic design entry is eliminating the problems with icons, connectors,
and cell names. Logic synthesis also makes moving an ASIC between different
cell libraries, or retargeting , much easier.

In order to estimate the parasitic capacitance of wires before we actually
complete any routing, we need a statistical estimate of the capacitance for anet in
agiven size circuit block. Thisusually takes the form of alook-up table known as
awire-load model . We also need arouting model for each cell. Large cellsare
too complex for the physical design or layout tools to handle directly and we
need a simpler representation a phantom of the physical layout that still contains
all the necessary information. The phantom may include information that tells the
automated routing tool where it can and cannot place wires over the cell, aswell
as the location and types of the connections to the cell.




1.6 Summary

In this chapter we have looked at the difference between full-custom ASICs,
semi-custom ASICs, and programmable ASICs. Table 1.3 summarizes their
different features. ASICs use alibrary of predesigned and precharacterized logic
cells. In fact, we could define an ASIC as adesign style that uses acell library
rather than in terms of what an ASIC isor what an ASIC does.

TABLE 1.3 Types of ASIC.

ASICtype  Family member Custom mask Custom logic

layers cells
Full-custom Analog/digita All Some
Semicustom Cell-based (CBIC) All None
Masked gate array (MGA) Some None

Programmable I(:Ilzilgf\);ogrammabl egaearay None None
Programmable logic device (PLD) None None

Y ou can think of ICslike pizza. A full-custom pizzais built from scratch. You
can customize all the layers of a CBIC pizza, but from a predefined selection, and
it takes awhile to cook. An MGA pizza uses precooked crusts with fixed sizes
and you choose only from afew different standard types on a menu. This makes
MGA pizzaalittle faster to cook and alittle cheaper. An FPGA israther like a
frozen pizzayou buy it at the supermarket in alimited selection of sizes and
types, but you can put it in the microwave at home and it will be ready in afew
minutes.

In each chapter we shall indicate the key concepts. In this chapter they are
« Thedifference between full-custom and semicustom ASICs

« Thedifference between standard-cell, gate-array, and programmable
ASICs

o The ASIC design flow
« Design economicsincluding part cost, NRE, and breakeven volume
o The contents and use of an ASIC cdll library

Next, in Chapter 2, we shall take a closer look at the semicustom ASICs that
were introduced in this chapter.




1.7 Problems

1.1 (Break-even volumes, 60 min.) Y ou need a spreadsheet program (such as
Microsoft Excel) for this problem.

« a Build aspreadsheet, Break-even Analysis, to generate Figure 1.11.

b. Derive equations for the break-even volumes (there are three:
FPGA/MGA, FPGA/CBIC, and MGA/CBIC) and calculate their values.

« C. Increase the FPGA part cost by $10 and use your spreadsheet to produce
the new break-even graph. Hint: (For users of Excel-like spreadsheets) use
the XY scatter plot option. Use the first column for the x -axis data.

« d. Find the new break-even volumes (change the volume until the cost
becomes the same for two technologies).

« e. Program your spreadsheet to automatically find the break-even volumes.
Now graph the break-even volume (for a choice between FPGA and CBIC)
for values of FPGA part costs ranging from $10 $50 and CBIC costs
ranging from $2 $10 (do not change the fixed costs from Figure 1.12).

« f. Calculate the sensitivity of the break-even volumes to changesin the part
costs and fixed costs. There are three break-even volumes and each of
these is sensitive to two part costs and two fixed costs. Express your
answers in two ways. in equation form and as numbers (for the valuesin
Section 1.4.2 and Figure 1.11).

e 0. Thecostsin Figure 1.11 are not unrealistic. What can you say from your
answersif you are a defense contractor, primarily selling products in
volumes of less than 1000 parts? What if you are a PC board vendor
selling between 10,000 and 100,000 parts?

1.2 (Design productivity, 10 min.) Given the figures for the SPARCstation 1
ASICsdescribed in Section 1.3 what was the productivity measured in
transistors/day? and measured in gates/day? Compare your answers with the
figures for productivity in Section 1.4.3 and explain any differences. How
accurate do you think productivity estimates are?

1.3 (ASIC package size, 30 min.) Assuming, for this problem, a gate density of
1.0 gate/mil 2 (see Section 15.4, Estimating ASIC Size, for adetailed
explanation of thisfigure), the maximum number of gates you can put in a
package is determined by the maximum die size for each of the packages shown
in Table 1.4. The maximum die size is determined by the package cavity size;
these are package-limited ASICs. Calculate the maximum number of /O pads
that can be placed on adie for each package if the pad spacing is: (i) 5 mil, and



(ii) 10 mil. Compare your answers with the maximum numbers of pins (or leads)
on each package and comment. Now cal culate the minimum number of gates that
you can put in each package determined by the minimum die size.

TABLE 1.4 Diesizelimitsfor ASIC packages.

Package 1 Number of pinsor Maximum die size 2 Minimum die size 3

leads (mil 2) (mil 2)

PLCC 44 320 ¥ 320 94 ¥ 94

PLCC 68 420 ¥ 420 154 ¥ 154
PLCC 84 395 ¥ 395 171¥ 171
PQFP 100 338 ¥ 338 124 ¥ 124
PQFP 144 350 ¥ 350 266 ¥ 266
PQFP 160 429 ¥ 429 248 ¥ 248
PQFP 208 501 ¥ 501 427 ¥ 427
CPGA 68 480 ¥ 480 200 ¥ 200
CPGA 84 370 ¥ 370 200 ¥ 200
CPGA 120 480 ¥ 480 175¥ 175
CPGA 144 470 ¥ 470 250 ¥ 250
CPGA 223 590 ¥ 590 290 ¥ 290
CPGA 299 590 ¥ 590 470 ¥ 470
PPGA 64 230 ¥ 230 120 ¥ 120
PPGA 84 380 ¥ 380 150 ¥ 150
PPGA 100 395 ¥ 395 150 ¥ 150
PPGA 120 395 ¥ 395 190 ¥ 190
PPGA 144 660 ¥ 655 230 ¥ 230
PPGA 180 540 ¥ 540 330 ¥ 330
PPGA 208 500 ¥ 500 395 ¥ 395

1.4 (ASIC vendor costs, 30 min.) Thereis awell-known saying in the ASIC
business. We lose money on every part but we make it up in volume. Thishasa
serious side. Suppose Sumo Silicon currently has two customers. Mr. Big, who
currently buys 10,000 parts per week, and Ms. Smart, who currently buys 4800
parts per week. A new customer, Ms. Teeny (who is growing fast), wants to buy
1200 parts per week. Sumo s costs are

wafer cost = $500 + ($250,000/ W ),

where W is the number of wafer starts per week. Assume each wafer carries 200
chips (parts), al parts are identical, and the yield is

yield=70+0.2¥ (W 80) % (1.3)

Currently Sumo has a profit margin of 35 percent. Sumo is currently running at
100 wafer starts per week for Mr. Big and Ms. Smart. Sumo thinks they can get



50 cents more out of Mr. Big for his chips, but Ms. Smart won t pay any more.
We can calculate how much Sumo can afford to lose per chip if they want
Ms. Teeny sbusiness really badly.

a. What is Sumo s current yield?

b. How many good partsis Sumo currently producing per week? ( Hint: Is
this enough to supply Mr. Big and Ms. Smart?)

c. Calculate how many extrawafer starts per week we need to supply
Ms. Teeny (theyield will change what is the new yield?). Think when you
givethis answer.

d. What is Sumo sincrease in costs to supply Ms. Teeny?

e. Multiply your answer to part d by 1.35 (to account for Sumo s profit).
Thisisthe increase in revenue we need to cover our increased costs to
supply Ms. Teeny.

f. Now suppose we charge Mr. Big 50 cents more per part. How much
extrarevenue does that generate?

g. How much does Ms. Teeny s extra business reduce the wafer cost?

h. How much can Sumo Silicon afford to lose on each of Ms. Teeny s
parts, cover its costs, and still make a 35 percent profit?

1.5 (Silicon, 20 min.) How much does a 6-inch silicon wafer weigh? a 12-inch
wafer? How much does a carrier (called a boat) that holds twenty 12-inch wafers
weigh? What implications does this have for manufacturing?

a. How many die that are 1-inch on a side does a 12-inch wafer hold? If
each dieisworth $100, how much is a 20-wafer boat worth? If afactory is
processing 10 of these boats in different furnaces when the power is
interrupted and those wafers have to be scrapped, how much money is
lost?

b. The size of silicon factories (fabs or foundries) is measured in wafer
starts per week. If afactory is capable of 5000 12-inch wafer starts per
week, with an average die of 500 mil on a side that sells for $20 and 90
percent yield, what is the value in dollars/year of the factory production?
What fraction of the current gross national (or domestic) product
(GNP/GDP) of your country isthat? If the yield suddenly drops from 90
percent to 40 percent (ayield bust) how much revenue is the company
losing per day? If the company has a cash reserve of $100 million and this
revenue loss drops straight to the bottom line, how long does it take for
the company to go out of business?

c. TSMC produced 2 million 6-inch wafers in 1996, how many 500 mil die
isthat? TSMC s $500 million Camas fab in Washington is scheduled to
produce 30,000 8-inch wafers per month by the year 2000 using a 0.35 mm
process. If al Mb SRAM yields 1500 good die per 8-inch wafer and there
are 1700 gross die per wafer, what isthe yield? What is the die size? If the
SRAM cell sizeis7 mm?2, what fraction of the die is used by the cells?
What is TSMC s cost per bit for SRAM if the wafer cost is $20007? If a



16Mb DRAM on the same fab line uses a 16 mm 2 die, what is the cost per
bit for DRAM assuming the same yield?

1.6 (Simulation time, 30 min.) ... The system-level ssmulation used
approximately 4000 lines of SPARC assembly language . . . each smulation
clock was simulated in three real time seconds (Sun Technology article).

« a Witha20 MHz clock how much slower is simulated time than real
time?
« b. How long would it take to simulate all 4000 lines of test code? (Assume

one line of assembly code per cycle a good approximation compared to the
others we are making.)

The article continues: the entire system was simulated, running actual code,
including several milliseconds of SUnOS execution. Four days after power-up,
SPARCstation 1 booted SunOS and announced: ‘hello world' .

« C. How long would it take to simulate 5 ms of code?

« d. Find out how long it takes to boot a UNIX workstation in real time. How
many clock cyclesisthis?

« €. The machineis not executing boot code al thistime; you have to wait
for disk drives to spin-up, file systems checks to complete, and so on.
Make some estimates as to how much code is required to boot an operating
system (OS) and how many clock cycles this would take to execute.

The number of clock cycles you need to simulate to boot a system is somewhere
between your answers to partsd and e.

« f. From your answers make an estimate of how long it takes to simulate
booting the OS. Does this seem reasonable?

« . Could the engineers have simulated a complete boot sequence?

« h. Do you think the engineers expected the system to boot on first silicon,
given the complexity of the system and how long they would have to wait
to smulate a complete boot sequence? Explain.

1.7 (Price per gate, 5 min.) Given the assumptions of Section 1.4.4 on the price
per gate of different ASIC technologies, what has to change for the price per gate
for an FPGA to be less than that for an MGA or CBIC if all three use the same
process?

1.8 (Pentiums, 20 min.) Read the online tour of the Pentium Pro at
http://www.intel.com (adapted from a paper presented at the 1995 International
Solid-State Circuits Conference). Thisis not an ASIC design; notice the section
on full-custom circuit design. Notice also the comments on the use of 'assert'
statementsin the HDL code that described the circuits. Find out the approximate
cost of the Intel Pentium (3.3 million transistors) and Pentium Pro (5.5 million
transistors) microprocessors.

« a. Assuming there afour transistors per gate equivalent, what is the price




per gate?
« b. Find out the cost of a1 Mb, 4 Mb, 8 Mb, or 16 Mb DRAM. Assuming
one transistor per memory bit, what is the price per gate of DRAM?

« C. Considering that both have roughly the same die size, arejust as
complex to design and to manufacture, why is there such a huge difference
In price per gate between microprocessors and DRAM?

1.9 (Inverse embedded arrays, 10 min.) A relatively new cousin of the embedded
gate array, the inverse-embedded gate array , is a cell-based ASIC that contains
an embedded gate-array megacell. List the features as well as the advantages and
disadvantages of thistype of ASIC in the same way as for the other members of
the ASIC family in Section 1.1.

1.10 (0.5-gate design, 60 min.) It isagood ideato complete a 0.5-gate ASIC
design (an inverter connected between an input pad and an output pad) in the first
week (day) of class. Capture the commands in areport that shows all the steps
taken to create your chip starting from an empty directory halfgate.

1.11 (Filenames, 30 min.) Start alist of filename extensions used in ASIC design.
Table 1.5 shows an example. Expand thislist as you use more tools.

TABLE 1.5 CAD tool filename extensions.

Extension Description From To
Viewlogic startup file,
ini library Viewlogic/Viewdraw !nternal tools use
search paths, etc. other Viewlogic tools
Wir Schematic file

1. PLCC = plastic leaded chip carrier, PQFP = plastic quad flat pack, CPGA =
ceramic pin-grid array, PPGA = plastic pin-grid array.

2. Maximum die size is not standard and varies between manufacturers.

3. Minimum die size is an estimate based on bond length restrictions.
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CMOS LOGIC

A CMOS transistor (or device) has four terminals. gate , source, drain, and a
fourth terminal that we shall ignore until the next section. A CMOS transistor isa
switch. The switch must be conducting or on to alow current to flow between the
source and drain terminals (using open and closed for switchesis confusing for
the same reason we say atap ison and not that it is closed ). The transistor source
and drain terminals are equivalent as far as digital signals are concerned we do
not worry about labeling an electrical switch with two terminals.

o V ppisthepotential difference, or voltage, between nodes A and B ina
circuit; V pg ispositiveif node A is more positive than node B.

« lItalics denote variables; constants are set in roman (upright) type.
Uppercase letters denote DC, large-signal, or steady-state voltages.

« For TTL the positive power supply iscalled VCC (V ccor V ¢ ). The'C

denotes that the supply is connected indirectly to the collectors of the npn
bipolar transistors (a bipolar transistor has a collector, base, and emitter
corresponding roughly to the drain, gate, and source of an MOS
transistor).
« Following the example of TTL we used VDD (V ppor V pp ) to denote

the positive supply in an NMOS chip where the devices are all n -channel
transistors and the drains of these devices are connected indirectly to the
positive supply. The supply nomenclature for NMOS chips has stuck for
CMOS.

« VDD isthe name of the power supply node or net; V pp represents the
value (uppercase since V pp isaDC quantity). SinceV pp isavariable, it
isitalic (words and multiletter abbreviations use roman thusitisV pp , but
V drain )-

« Logic designers often call the CMOS negative supply VSSor VSS even if
itisactually ground or GND. | shall use VSS for the node and V g for the
value.

o« CMOS usespositivelogic VDD islogic'l' and VSSislogic 'O
We turn atransistor on or off using the gate terminal. There are two kinds of

CMOS transistors: n -channel transistors and p -channel transistors. An n
-channel transistor requiresalogic '1' (fromnow on | Il just say a'1l’) on the gate



to make the switch conducting (to turn the transistor on ). A p -channel transistor
requires alogic '0' (again from now on, | 1l just say a'0’) on the gate to make the
switch nonconducting (to turn the transistor off ). The p -channel transistor
symbol has a bubble on its gate to remind us that the gate hasto be a'0' to turn
the transistor on . All thisis shown in Figure 2.1(a) and (b).
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FIGURE 2.1 CMOS transistors as switches. (8) An n -channel transistor. (b) A p
-channel transistor. (c) A CMOS inverter and its symbol (an equilateral triangle

and acircle).

If we connect an n -channel transistor in series with a p -channel transistor, as
shown in Figure 2.1(c), we form an inverter . With four transistors we can form a
two-input NAND gate (Figure 2.2a). We can also make atwo-input NOR gate
(Figure 2.2b). Logic designers normally use the terms NAND gate and logic gate
(or just gate), but | shall try to use the terms NAND cell and logic cell rather than
NAND gate or logic gate in this chapter to avoid any possible confusion with the
gate terminal of atransistor.
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FIGURE 2.2 CMOS logic. (a) A two-input NAND logic cell. (b) A two-input

NOR logic cell. The n-channel and p -channel transistor switches implement the
'I'sand '0's of a Karnaugh map.
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2.1 CMOS Transistors

Figure 2.3 illustrates how electrons and holes abandon their dopant atoms leaving
adepletion region around atransistor s source and drain. The region between
source and drain is normally nonconducting. To make an n -channel transistor
conducting, we must apply a positive voltage V g (the gate voltage with respect

to the source) that is greater than the n -channel transistor threshold voltage, V

(atypical valueis 0.5V and, asfar aswe are presently concerned, is a constant).
This establishes athin (250 A) conducting channel of electrons under the gate.
MOS transistors can carry avery small current (the subthreshold current afew
microamperes or less) withV g5 <V ,, but we shall ignore this. A transistor
can be conducting (V gs>V ¢ ) without any current flowing. To make current
flow in an n -channel transistor we must also apply a positive voltage, V pg, to
the drain with respect to the source. Figure 2.3 shows these connections and the
connection to the fourth terminal of an MOS transistor the bulk ( well , tub, or
substrate ) terminal. For an n -channel transistor we must connect the bulk to the
most negative potential, GND or VSS, to reverse bias the bulk-to-drain and
bulk-to-source pn -diodes. The arrow in the four-terminal n -channel transistor
symbol in Figure 2.3 reflects the polarity of these pn -diodes.

rype e Hype
Fource electrans I:Frain Pg "'“‘j * GND ar
E'F ""E— zk @ depletion WoS
¥ region
pype mobie channel charge  feted depletion charge =

FIGURE 2.3 An n -channel MOS transistor. The gate-oxide thickness, T o , IS

approximately 100 angstroms (0.01 m m). A typical transistor length, L =21 .
The bulk may be either the substrate or awell. The diodes represent pn
-junctions that must be reverse-biased.

The current flowing in the transistor is
current (amperes) = charge (coulombs) per unit time (second). (2.1)



We can express the current in terms of the total charge in the channel, Q (imagine
taking a picture and counting the number of electronsin the channel at that
instant). If t ; (for time of flight sometimes called the transit time) is the time

that it takes an electron to cross between source and drain, the drain-to-source
current, | pgn , IS

IDSn:Q/tf(ZZ)

Weneed to find Q and t s . The velocity of the electrons v (a vector) is given by
the equation that forms the basis of Ohm s law:

where m , is the electron mobility ( m , is the hole mobility ) and E isthe electric
field (with unitsVm 1).

Typical carrier mobility valuesarem , =500 1000cm2V 1s 1and m =100
400cm?2V 1s 1, Equation 2.3 isavector equation, but we shall ignore the
vertical electric field and concentrate on the horizontal electric field, E  , that

moves the electrons between source and drain. The horizontal component of the
electricfieldisE, = V pg/ L, directed from the drain to the source, whereL is

the channel length (see Figure 2.3). The electrons travel a distance L with
horizontal velocity v, = m,E,, sothat

L L2
ti= = (2.49)
Vy mpVps

Next we find the channel charge, Q . The channel and the gate form the plates of
a capacitor, separated by an insulator the gate oxide. We know that the charge on
alinear capacitor, C,isQ =CV . Our lower plate, the channel, is not alinear
conductor. Charge only appears on the lower plate when the voltage between the
gate and the channel, V ¢ , exceeds the n -channel thresnold voltage. For our

nonlinear capacitor we need to modify the equation for alinear capacitor to the
following:

Q=C(Vgc Vin)-(25)

The lower plate of our capacitor isresistive and conducting current, so that the
potential in the channel, V ¢, varies. Infact, V gc =V gg at the source and V
cc =V gs V pséat thedrain. What we really should do is find an expression for
the channel charge as a function of channel voltage and sum (integrate) the
charge all the way across the channel, from x = 0 (at the source) to x = L (at the
drain). Instead we shall assume that the channel voltage, V g¢ (X ), isalinear

function of distance from the source and take the average value of the charge,
which isthus



Q=C[(Vgs Vin) 05V ps].(2.6)

The gate capacitance, C, is given by the formulafor a parallel-plate capacitor
with length L , width W, and plate separation equal to the gate-oxide thickness,
T ox - Thusthe gate capacitanceis

WL e o
C = = WLC OX (27)
T (0).4

where e, is the gate-oxide dielectric permittivity. For silicon dioxide, S0, , € 5y

2345¥%10 11 Fm 1, so that, for atypical gate-oxide thicknessof 100A (1A =1
angstrom = 0.1 nm), the gate capacitance per unit area, C ,, 23f Fmm 2,

Now we can express the channel charge in terms of the transistor parameters,
Q=WLCux[(Vas Vin) 05V ps].(28)

Finally, the drain source current is

| psn=Q/ t¢
=(WIL)M Co[(Vgs Vin) 05V ps]Vps
=(WL)k [ (Vs Vin) 05VpslVps. (29)

The constant k' , is the process transconductance parameter (or intrinsic
transconductance ):

K'n=m,C . (2.10)

We also define b ,, the transistor gain factor (or just gain factor ) as

b=k, (WIL).(2.11)

The factor W/L (transistor width divided by length) is the transistor shape factor .

Equation 2.9 describes the linear region (or triode region) of operation. This
equationisvalid until V pg=V g5 V {,and then predictsthat | Hg decreases

with increasing V pg, which does not make physical sense. AtV pg=V gg V¢
n=V Dbs (sa) (the saturation voltage ) there is no longer enough voltage between

the gate and the drain end of the channel to support any channel charge. Clearly a
small amount of charge remains or the current would go to zero, but with very
little free charge the channel resistance in a small region close to the drain
increases rapidly and any further increasein V pgis dropped over this region.
ThusforV pg>V gg V ¢ (the saturation region, or pentode region, of

operation) the drain current IDS remains approximately constant at the saturation



current, | pgn (sar) » Where
| bsn(sat) = (0n/2(V s Vin)2: Ves>Vin (212

Figure 2.4 shows the n -channel transistor | g V pg characteristics for a generic

0.5 mm CMOS process that we shall call G5 . We can fit Eq. 2.12 to the
long-channel transistor characteristics (W =60 mm, L =6 mm) in Figure 2.4(a).
If | psn (sat) = 2.5 MA (WithV pg=3.0V,V gg=3.0V,V 13 =065V, T o

=100 A), the intrinsic transconductance is
2(L/W) | psn (sat)

k' = (2.13)
(Vs Vin)?

2 (6/60) (2.5¥ 10 3)

(3.0 0.65)2

=9.05¥10°AV 2

or approximately 90 m AV 2. Thisvalueof k' ,, calculated in the saturation
region, will be different (typically lower by afactor of 2 or more) from the value
of k', measured in the linear region. We assumed the mobility, m ,, and the
threshold voltage, V ¢ ,, , are constants neither of which istrue, aswe shall seein
Section 2.1.2.

For the p -channel transistor in the G5 process, | pgy (sa) = 850 MA (V pg=
30V,Vgs=30V,Vi,= 08V, W=60mm,L=6mm). Then

2(L/W) (1 psp (sar))
K'p= (2.14)

(VGS th)2

2 (6/60) (850 ¥ 10 6)

(3.0 (0.85))2

=3.68¥10°AV 2

The next section explainsthe signsin Eq. 2.14.
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2.1.1 P-Channel Transistors

The source and drain of CMOS transistors ook identical; we have to know which
way the current is flowing to distinguish them. The source of an n -channel
transistor islower in potential than the drain and vice versafor ap -channel
transistor. In an n -channel transistor the threshold voltage, V ¢ , , isnormally

positive, and the terminal voltagesV pgand V ggare also usually positive. Inap
-channel transistor V ¢ , is normally negative and we have a choice: We can write

everything in terms of the magnitudes of the voltages and currents or we can use
negative signsin a consistent fashion.

Here are the equations for a p -channel transistor using negative signs.



Ko (WIL)[(Vas Vig) 05Vps]lVps: Vps>V

I psp(saty= bp/2(Ves Vip)?: Vos<Ves Vip-

In these two equations V  , is negative, and the terminal voltagesV pgand V gg
are also normally negative (and 3V < 2V, for example). The current | pg is

then negative, corresponding to conventional current flowing from source to
drain of ap -channel transistor (and hence the negative sign for | pgy (sa) IN

Eq. 2.14).

2.1.2 Velocity Saturation

For a deep submicron transistor, Eg. 2.12 may overestimate the drain source
current by afactor of 2 or more. There are three reasons for this error. First, the
threshold voltage is not constant. Second, the actual length of the channel (the
electrical or effective length, often written asL ; ) isless than the drawn (mask)

length. The third reason isthat Eq. 2.3 isnot valid for high electric fields. The
electrons cannot move any faster than about v 5 n = 105 ms 1 when the electric

field isabove 106 Vm 1 (reached when 1V is dropped across 1 m m); the
electrons become velocity saturated . Inthiscasets =L g / V max n» thedrain

source saturation current is independent of the transistor length, and Eq. 2.12
becomes

WVmaxnCox (Ves Vin): Vs>V ps s (Velocity (2.16)

We can see this behavior for the short-channel transistor characteristicsin
Figure 2.4(a) and (c).

Transistor current is often specified per micron of gate width because of the form
of Eq. 2.16. Asan example, suppose | pg, (sat) /W =300mA mm 1forthen
-channel transistorsin our G5 process (withV pg=3.0V,V =30V, V =
0.65V,L gs=05mmand T, =100A). ThenE, 2(3 0.65)V/05mmasV

mm1,
| bsn (sat) /W

V max n = (2.17)
Cox(V GS th)

(300¥10 6) (1¥106)

(3.45¥ 10 3) (3 0.65)



=37,000ms 1
andt{30.5mm/37,000 ms 1213 ps.

Thevauefor v 5 n iSlower than the 10> ms 1 we expected because the carrier

velocity is also lowered by mobility degradation due the vertical electric field
which we have ignored. This vertical field forces the carriersto keep bumping
in to the interface between the silicon and the gate oxide, slowing them down.

2.1.3 SPICE Models

The simulation program SPICE (which stands for Simulation Program with
Integrated Circuit Emphasis) is often used to characterize logic cells. Table 2.1
shows atypical set of model parameters for our G5 process. The SPICE
parameter KP (giveninm AV 2) correspondstok ', (andk ). SPICE

parameters VTO and TOX correspondto V ¢, (and V ¢y ), and T o, . SPICE

parameter UO (givenincm?2V 1s 1) correspondsto theideal bulk mobility
values, m , (and m ;). Many of the other parameters model velocity saturation

and mobility degradation (and thus the effective value of k" pand k"5 ).

TABLE 2.1 SPICE parameters for ageneric 0.5 m m process, G5 (0.6 mm
drawn gate length). The n-channel transistor characteristics are shown in
Figure 2.4.

.MODEL CMOSN NMOS LEVEL=3 PHI=0.7 TOX=10E-09 XJ=0.2U TPG=1
VTO=0.65 DELTA=0.7

+ LD=5E-08 KP=2E-04 UO=550 THETA=0.27 RSH=2 GAMMA=0.6
NSUB=1.4E+17 NFS=6E+11

+ VMAX=2E+05 ETA=3.7E-02 KAPPA=2.9E-02 CGDO=3.0E-10
CGSO=3.0E-10 CGBO=4.0E-10

+ CJ=5.6E-04 MJ=0.56 CISW=5E-11 MJIJSW=0.52 PB=1

.MODEL CMOSP PMOS LEVEL=3 PHI=0.7 TOX=10E-09 XJ=0.2U TPG=-1
VTO=-0.92 DELTA=0.29

+ LD=3.5E-08 KP=4.9E-05 UO=135 THETA=0.18 RSH=2 GAMMA=0.47
NSUB=8.5E+16 NFS=6.5E+11

+ VMAX=2.5E+05 ETA=2.45E-02 KAPPA=7.96 CGDO=2.4E-10
CGS0=2.4E-10 CGBO=3.8E-10

+ CJ=9.3E-04 MJ=0.47 CISW=2.9E-10 MISW=0.505 PB=1

2.1.4 Logic Levels

Figure 2.5 shows how to use transistors as logic switches. The bulk connection
for the n -channel transistor in Figure 2.5(ab) isap -well. The bulk connection
for the p -channel transistor is an n -well. The remaining connections show what
happens when we try and pass alogic signal between the drain and source
terminals.
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FIGURE 2.5 CMOSIogic levels. (a) A strong '0'. (b) A weak '1'. (c) A weak '0f
(d) A strong'1'. (V { ,ispositiveand V ¢ , is negative.) The depth of the

channelsis greatly exaggerated.

In Figure 2.5(a) we apply alogic '1' (or VDD | shall use these interchangeably)
to the gate and alogic '0' ( V gg ) to the source (we know it is the source since
electrons must flow from this point, since V gg is the lowest voltage on the chip).
The application of these voltages makes the n -channel transistor conduct current,
and electrons flow from source to drain.

Supposethedrainisinitialy at logic '1'; then the n -channel transistor will begin
to discharge any capacitance that is connected to its drain (due to another logic
cell, for example). Thiswill continue until the drain terminal reaches alogic 'O,
and at that timeV gp and V gg are both equal toV pp , afull logic '1'. The

transistor is strongly conducting now (with alarge channel charge, Q , but there



is no current flowing sinceV pg =0 V). The transistor will strongly object to

attempts to change its drain terminal from alogic '0'. We say that the logic level
at thedrainisastrong '0'.

In Figure 2.5(b) we apply alogic '1' to the drain (it must now be the drain since
electrons have to flow toward alogic '1). The situation is now quite different the
transistor isstill on but V g is decreasing as the source voltage approaches its

fina value. In fact, the source terminal never getsto alogic '1' the source will
stop increasing in voltage when V ggreachesV  , . At this point the transistor is
very nearly off and the source voltage creeps slowly uptoV pp V {, . Because
the transistor is very nearly off, it would be easy for alogic cell connected to the
source to change the potential there, since there is so little channel charge. The
logic level at the sourceisaweak '1'. Figure 2.5(c d) show the state of affairsfor
ap -channel transistor is the exact reverse or complement of the n -channel
transistor situation.

In summary, we have the following logic levels:
« Ann -channel transistor provides astrong '0', but aweak ‘1.
« A p-channel transistor provides astrong '1', but aweak '0'.
Sometimes we refer to the weak versions of '0" and '1' as degraded logic levels .

In CMOS technology we can use both types of transistor together to produce
strong 'O’ logic levels aswell as strong '1' logic levels.




2.2 The CMOS Process

Figure 2.6 outlines the steps to create an integrated circuit. The starting material
issilicon, Si, refined from quartzite (with less than 1 impurity in 1010 silicon
atoms). We draw a single-crystal silicon boule (or ingot) from a crucible
containing a melt at approximately 1500 °C (the melting point of silicon at 1 atm.
pressureis 1414 °C). This method is known as Czochralski growth. Acceptor ( p
-type) or donor ( n -type) dopants may be introduced into the melt to alter the
type of silicon grown.

The bouleis sawn to form thin circular wafers (6, 8, or 12 inches in diameter, and
typically 600 m m thick), and aflat is ground (the primary flat), perpendicular to
the <110> crystal axisasa thisedge down indication. The boule is drawn so
that the wafer surface is either in the (111) or (100) crystal planes. A smaller
secondary flat indicates the wafer crystalline orientation and doping type. A
typical submicron CMOS processes uses p -type (100) wafers with aresistivity of
approximately 10 W cm this type of wafer has two flats, 90° apart. Wafers are
made by chemical companies and sold to the |C manufacturers. A blank 8-inch
wafer costs about $100.

To begin IC fabrication we place a batch of wafers (awafer lot ) on aboat and
grow alayer (typically afew thousand angstroms) of silicon dioxide, SiO 5,
using afurnace. Silicon is used in the semiconductor industry not so much for the
properties of silicon, but because of the physical, chemical, and electrical
properties of its native oxide, SIO , . An |C fabrication process contains a series

of masking steps (that in turn contain other steps) to create the layers that define
the transistors and metal interconnect.
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FIGURE 2.6 IC fabrication. Grow crystalline silicon (1); make awafer (2 3);
grow asilicon dioxide (oxide) layer in afurnace (4); apply liquid photoresist
(resist) (5); mask exposure (6); a cross-section through awafer showing the
developed resist (7); etch the oxide layer (8); ion implantation (9 10); strip the
resist (11); strip the oxide (12). Steps similar to 4 12 are repeated for each layer
(typically 12 20 times for a CMOS process).

T

Each masking step starts by spinning athin layer (approximately 1 m m) of liquid
photoresist ( resist ) onto each wafer. The wafers are baked at about 100 °C to
remove the solvent and harden the resist before being exposed to ultraviolet (UV)
light (typically less than 200 nm wavelength) through amask . The UV light
alters the structure of the resist, allowing it to be removed by developing. The
exposed oxide may then be etched (removed). Dry plasma etching etchesin the
vertical direction much faster than it does horizontally (an anisotropic etch). Wet
etch techniques are usually isotropic . The resist functions as a mask during the
etch step and transfers the desired pattern to the oxide layer.

Dopant ions are then introduced into the exposed silicon areas. Figure 2.6
Illustrates the use of ion implantation . Anion implanter isacross between a TV
and a mass spectrometer and fires dopant ions into the silicon wafer. lons can
only penetrate materials to a depth (the range , normally a few microns) that
depends on the closely controlled implant energy (measured in keV usually
between 10 and 100 keV; an electron volt, 1 eV, is 1.6 ¥ 10 19 J). By using layers
of resist, oxide, and polysilicon we can prevent dopant ions from reaching the
silicon surface and thus block the silicon from receiving an implant . We control
the doping level by counting the number of ions we implant (by integrating the
ion-beam current). The implant dose is measured in atoms/cm 2 (typical doses are
from 1013t0 1015 cm 2). Asan aternative to ion implantation we may instead
strip the resist and introduce dopants by diffusion from a gaseous sourcein a
furnace.

Once we have completed the transistor diffusion layers we can deposit layers of
other materials. Layers of polycrystalline silicon (polysilicon or poly ), SO, ,
and silicon nitride (Si 3 N 4 ), for example, may be deposited using chemical



vapor deposition ( CVD ). Metal layers can be deposited using sputtering . All
these layers are patterned using masks and similar photolithography steps to

those shown in Figure 2.6.

TABLE 2.2 CMOS process layers.

Derivation from

Mask/layer name

drawn layers
n -well =nwdl 1
p -well = pwell 1
active = pdiff + ndiff
polysilicon = poly
n -diffusion implant .
5 = grow (ndiff)
g-diffusi on implant _ grow (pdiff)
contact = contact
metal 1 =ml
metal 2 =m2
via2 =via2
metal 3 =m3
glass = glass

Alternative names for
mask/layer

bulk, substrate, tub, n
-tub, moat

bulk, substrate, tub, p
-tub, moat

thin oxide, thinox, island,
gate oxide
poly, gate

ndiff, n -select, nplus, n+

pdiff, p -select, pplus, pt+

contact cut, poly contact,
diffusion contact

first-level meta
second-level meta

metal 2/metal 3 via,
m2/m3 via

third-level metal

passivation, overglass,
pad

MOSIS mask
label

CWN
CWP

CAA
CPG
CSN

CSP

CCPand
CCA3

CMF
CMS

CVS
CMT
COG

Table 2.2 shows the mask layers (and their relation to the drawn layers) for a
submicron, silicon-gate, three-level metal, self-aligned, CMOS process . A
process in which the effective gate length islessthan 1 m misreferred to as a
submicron process . Gate lengths below 0.35 m m are considered in the

deep-submicron regime.

Figure 2.7 shows the layers that we draw to define the masks for the logic cell of
Figure 1.3. Potential confusion arises because we like to keep layout simple but
maintain a what you seeiswhat you get (WY SIWY G) approach. This means
that the drawn layers do not correspond directly to the masksin all cases.
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FIGURE 2.7 The standard cell shown in Figure 1.3. (@) (i) The drawn layers that
define the masks. The active mask is the union of the ndiff and pdiff drawn
layers. The n -diffusion implant and p -diffusion implant masks are bloated
versions of the ndiff and pdiff drawn layers. (j) The complete cell layout. (k) The
phantom cell layout. Often an ASIC vendor hides the details of the internal cell
construction. The phantom cell is used for layout by the customer and then

instantiated by the ASIC vendor after layout is complete. This layout uses
grayscale stipple patterns to distinguish between layers.

We can construct wellsin a CMOS process in severa ways. In an n-well process
, the substrate is p -type (the wafer itself) and we use an n -well mask to build the
n-well. We do not need a p -well mask because there are no p -wellsin ann
-well process the n -channel transistors al sit in the substrate (the wafer) but we
often draw the p -well layer asthough it existed. In ap-well processwe useap
-well mask to make the p -wells and the n -wells are the substrate. In a twin-tub
(or twin-well ) process, we create individual wells for both types of transistors,



and neither well is the substrate (which may be either n -type or p -type). There
are even triple-well processes used to achieve even more control over the
transistor performance. Whatever process that we use we must connect al the n
-wells to the most positive potential on the chip, normally VDD, and all the p
-wellsto VSS; otherwise we may forward bias the bulk to source/drain pn
-junctions. The bulk connections for CMOS transistors are not usually drawnin
digital circuit schematics, but these substrate contacts ( well contacts or tub ties)
are very important. After we make the well(s), we grow alayer (approximately
1500 A) of Si 3 N 4 over the wafer. The active mask (CAA) leaves this nitride

layer only in the active areas that will later become transistors or substrate
contacts. Thus

CAA (mask) = ndiff (drawn) ( pdiff (drawn) , (2.18)

the ( symbol represents OR (union) of the two drawn layers, ndiff and pdiff.
Everything outside the active areas is known as the field region, or just field .

Next we implant the substrate to prevent unwanted transistors from forming in
the field region thisis the field implant or channel-stop implant . The nitride over
the active areas acts as an implant mask and we may use another field-implant
mask at this step also. Following this we grow athick (approximately 5000 A)
layer of SO, , thefield oxide ( FOX ). The FOX will not grow over the nitride

areas. When we strip the nitride we are left with FOX in the areas we do not want
to dope the silicon. Following this we deposit, dope, mask, and etch the poly gate
material, CPG (mask) = poly (drawn). Next we create the doped regions that
form the sources, drains, and substrate contacts using ion implantation. The poly
gate functions like masking tape in these steps. One implant (using phosphorous
or arsenic ions) forms the n -type source/drain for the n -channel transistors and n
-type substrate contacts (CSN). A second implant (using boron ions) formsthe p
-type source drain for the p -channel transistors and p -type substrate contacts
(CSP). These implants are masked as follows

CSN (mask) = grow (ndiff (drawn)), (2.19)
CSP (mask) = grow (pdiff (drawn)), (2.20)

where grow means that we expand or bloat the drawn ndiff and drawn pdiff
layers dlightly (usually by afew I ).

During implantation the dopant ions are blocked by the resist pattern defined by
the CSN and CSP masks. The CSN mask thus prevents the n -type regions being
implanted with p -type dopants (and vice versafor the CSP mask). Aswe shall
see, the CSN and CSP masks are not intended to define the edges of the n -type
and p -type regions. Instead these two masks function more like newspaper that
prevents paint from spraying everywhere. The dopant ions are also blocked from
reaching the silicon surface by the poly gates and this aligns the edge of the
source and drain regions to the edges of the gates (we call this a self-aligned
process ). In addition, the implants are blocked by the FOX and this defines the
outside edges of the source, drain, and substrate contact regions.



The only areas of the silicon surface that are doped n -type are
n -diffusion (silicon) = (CAA (mask) ' CSN (mask)) ' ( y CPG (mask)) ; (2.21)

where the ' symbol represents AND (the intersection of two layers); and the y
symbol represents NOT.

Similarly, the only regions that are doped p -type are
p -diffusion (silicon) = (CAA (mask) ' CSP (mask)) ' (Y CPG (mask)) . (2.22)

If the CSN and CSP masks do not overlap, it is possible to save a mask by using
one implant mask (CSN or CSP) for the other type (CSP or CSN). We can do this
by using a positive resist (the pattern of resist remaining after developing is the
same as the dark areas on the mask) for one implant step and a negative resist
(vice versa) for the other step. However, because of the poor resolution of
negative resist and because of difficultiesin generating the implant masks
automatically from the drawn diffusions (especially when opposite diffusion
types are drawn close to each other or touching), it is now common to draw both
implant masks as well as the two diffusion layers.

It isimportant to remember that, even though poly is above diffusion, the
polysilicon is deposited first and acts like masking tape. It israther like
airbrushing a stripe you use masking tape and spray everywhere without
worrying about making straight lines. The edges of the pattern will align to the
edge of the tape. Here the analogy ends because the poly isleft in place. Thus,

n -diffusion (silicon) = (ndiff (drawn)) ' (y poly (drawn)) and (2.23)
p -diffusion (silicon) = (pdiff (drawn)) ' (y poly (drawn)) .  (2.24)

In the ASIC industry the names nplus, n +, and n -diffusion (as well asthe p -type
equivalents) are used in various ways. These names may refer to either the drawn
diffusion layer (that we call ndiff), the mask (CSN), or the doped region on the
silicon (the intersection of the active and implant mask that we call n -diffusion)
very confusing.

The source and drain are often formed from two separate implants. Thefirstisa
light implant close to the edge of the gate, the second a heavier implant that
formsthe rest of the source or drain region. The separate diffusions reduce the
electric field near the drain end of the channel. Tailoring the device
characteristics in this fashion is known as drain engineering and a process
including these stepsis referred to asan LDD process, for lightly doped drain ;
the first light implant is known asan LDD diffusion or LDD implant.



FIGURE 2.8 Drawn layers and
an example set of
black-and-white stipple patterns
for aCMOS process. On top are
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Figure 2.8 shows a stipple-pattern matrix for a CMOS process. When we draw
layout you can see through the layers al the stipple patterns are OR ed together.
Figure 2.9 shows the transistor layers as they appear in layout (drawn using the
patterns from Figure 2.8) and as they appear on the silicon. Figure 2.10 shows the
same thing for the interconnect layers.
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FIGURE 2.9 The transistor layers. (a) A p -channel transistor as drawn in layout.
(b) The corresponding silicon cross section (the heavy linesin part a show the
cuts). Thisis how ap -channel transistor would look just after completing the
source and drain implant steps.



FIGURE 2.10 The interconnect
layers. (a) Metal layers as drawn
in layout. (b) The corresponding
structure (as it might appear in a
scanning-electron micrograph).
The insulating layers between
the metal layers are not shown.
Contact is made to the
underlying silicon through a
platinum barrier layer. Each via
consists of atungsten plug. Each
metal layer consists of a
titanium tungsten and aluminum

copper sandwich. Most deep
submicron CMOS processes use
metal structures similar to this.
The scale, rounding, and
irregularity of the features are
realistic.

2.2.1 Sheet Resistance
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Tables 2.3 and 2.4 show the sheet resistance for each conducting layer (in
decreasing order of resistance) for two different generations of CMOS process.

TABLE 2.3 Sheet resistance (1 mm

CMOS).
Sheet |
Layer _ Units
resistance
n -well 1.15+ 0.25 KW/
square
W/
poly 35120 square
n-diffuson 75+ 20 W/
square
o-diffusion 14040 W/
square
m1/2 70+ 6 mW/
square
m3 30+ 3 mwW/
square

TABLE 2.4 Sheet resistance (0.35 m

m CMQYS).
Layer
n-well
poly

n -diffusion
p -diffusion
m1/2/3

metal4

Sheet |
_ Units
resistance
1+04 KXW/
square
10+40 W/
square
35+20 W/
square
25+15 W/
square
0t MW/
square
30+3 MW/
square

The diffusion layers, n -diffusion and p -diffusion, both have a high resistivity
typically from 1 100 W /square. We measure resistance in W / square (ohms per
square) because for afixed thickness of materia it does not matter what the size



of asguare isthe resistance is the same. Thus the resistance of arectangular
shape of a sheet of material may be calculated from the number of squaresit
contains times the sheet resistancein W / square. We can use diffusion for very
short connections inside alogic cell, but not for interconnect between logic cells.
Poly has the next highest resistance to diffusion. Most submicron CMOS
processes use a silicide material (a metallic compound of silicon) that has much
lower resistivity (at several W /square) than the poly or diffusion layers aone.
Examples are tantalum silicide, TaSi; tungsten silicide, WSi; or titanium silicide,
TiSi. The stoichiometry of these deposited silicides varies. For example, for
tungsten silicide W:Si 21:2.6.

There are two types of silicide process. In asilicide process only the gate is
silicided. This reduces the poly sheet resistance, but not that of the source drain.
In aself-aligned silicide ( salicide ) process, both the gate and the source drain
regions are silicided. In some processes silicide can be used to connect adjacent
poly and diffusion (we call thisfeature LI , white metal, local interconnect,
metal0, or m0). LI is useful to reduce the area of ASIC RAM cdlls, for example.

Interconnect uses metal layers with resistivities of tens of m W /square, severad
orders of magnitude less than the other layers. There are usually several layers of
metal in aCMOS ASIC process, each separated by an insulating layer. The metal
layer above the poly gate layer isthe first-level metal ( m1 or metall), the next is
the second-level metal ( m2 or metal2), and so on. We can make connections
from m1 to diffusion using diffusion contacts or to the poly using polysilicon
contacts .

After we etch the contact holes a thin barrier metal (typically platinum) is
deposited over the silicon and poly. Next we form contact plugs ( via plugs for
connections between metal layers) to reduce contact resistance and the likelihood
of breaks in the contacts. Tungsten is commonly used for these plugs. Following
this we form the metal layers as sandwiches. The middle of the sandwichisa
layer (usually from 3000 A to 10,000 A) of aluminum and copper. The top and
bottom layers are normally titanium tungsten (TiW, pronounced tie-tungsten ).
Submicron processes use chemical mechanical polishing ( CMP ) to smooth the
wafers flat before each metal deposition step to help with step coverage.

An insulating glass, often sputtered quartz (SO 5 ), though other materials are

also used, is deposited between metal layersto help create a smooth surface for
the deposition of the metal. Design rules may refer to thisinsulator as an
intermetal oxide (IMO ) whether they are in fact oxides or not, or interlevel
dielectric (ILD ). The IMO may be a spin-on polymer; boron-doped
phosphosilicate glass (BPSG); Si 3 N 4 ; or sandwiches of these materials
(oxynitrides, for example).

We make the connections between m1 and m2 using metal vias, cuts, or just
vias . We cannot connect m2 directly to diffusion or poly; instead we must make
these connections through m1 using avia. Most processes allow contacts and vias
to be placed directly above each other without restriction, arrangements known as



stacked vias and stacked contacts . We call a process with m1 and m2 atwo-level
metal ( 2LM ) technology. A 3LM process includes athird-level metal layer ( m3
or metal 3), and some processes include more metal layers. In this case a
connection between m1 and m2 will use an m1/m2 via, or vial ; aconnection
between m2 and m3 will use an m2/m3 via, or via2 , and so on.

The minimum spacing of interconnects, the metal pitch , may increase with
successive metal layers. The minimum metal pitch is the minimum spacing
between the centers of adjacent interconnects and is equal to the minimum metal
width plus the minimum metal spacing.

Aluminum interconnect tends to break when carrying a high current density.
Collisions between high-energy electrons and atoms move the metal atoms over a
long period of time in a process known as electromigration . Copper is added to
the aluminum to help reduce the problem. The other solution isto reduce the
current density by using wider than minimum-width metal lines.

Tables 2.5 and 2.6 show maximum specified contact resistance and via resistance
for two generations of CMOS processes. Notice that am1 contact in either
process is equal in resistance to severa hundred squares of metal.

TABLE 2.5 Contact resistance (1 mm  TABLE 2.6 Contact resistance (0.35m

CMOS). m CMOS).

Contact/viatype Res stance Contact/viatype Res stance
(maximum) (maximum)

m2/m3via(via2) 5W m2/m3via(via2) 6W

ml/m2via(vial) 2W ml/m2via(vial) 6W

m1/ p -diffusion 20W ml/ p -diffusion 20W

contact contact

m1/ n -diffusion 20W m1/ n -diffusion 0W

contact contact

ml/poly contact 20W ml/poly contact 20W

1. If only one well layer is drawn, the other mask may be derived from the drawn
layer. For example, p -well (mask) = not (nwell (drawn)). A single-well process
requires only one well mask.

2. The implant masks may be derived or drawn.

3. Largely for historical reasons the contacts to poly and contacts to active have
different layer names. In the past this allowed a different sizing or process bias to
be applied to each contact type when the mask was made.




2.3 CMOS Design Rules

Figure 2.11 defines the design rules for a CMOS process using pictures. Arrows
between objects denote a minimum spacing, and arrows showing the size of an
object denote a minimum width. Rule 3.1, for example, is the minimum width of
poly (21). Each of the rule numbers may have different values for different
manufacturers there are no standards for design rules. Tables 2.7 2.9 show the
MOSIS scalable CMOS rules. Table 2.7 shows the layer rules for the process
front end , which isthe front end of the line (asin production line) or FEOL .
Table 2.8 shows the rules for the process back end ( BEOL ), the metal
interconnect, and Table 2.9 shows the rules for the pad layer and glass layer.
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FIGURE 2.11 The MOSIS scalable CMOS design rules (rev. 7). Dimensions are
inl . Rule numbers are in parentheses (missing rule sets 11 13 are extensions to

this basic process).

TABLE 2.7 MOSI S scalable CMOS rules version 7 the process front end.

Layer Rule Explanation
well (CWN, CWP) 1.1  minimum width
12 minimum space (different potential, a hot
well)
1.3  minimum space (same potential)
1.4  minimum space (different well type)
active (CAA) 2.1/2.2 minimum width/space
2.3 source/drain active to well edge space
24 substrate/well contact active to well edge
Space
o5 _minimum space between active (different
' implant type)
poly (CPG) 3.1/3.2 minimum width/space
3.3  minimum gate extension of active
3.4  minimum active extension of poly
3.5  minimum field poly to active space

sdlect (CSN, CSP) 4.1

4.2
4.3
4.4

poly contact (CCP) 5.1.a
5.2a
5.3a

active contact (CCA) 6.1.a
6.2.a
6.3.a

minimum select spacing to channel of
transistor 1

minimum select overlap of active
minimum select overlap of contact
minimum select width and spacing 2

exact contact size
minimum poly overlap
minimum contact spacing

exact contact size
minimum active overlap
minimum contact spacing

Value/l
10

9
Oor6

Oor4

R W NN

N PN W

2¥2
1.5

2¥2
1.5



6.4.a minimum space to gate of transistor 2
TABLE 2.8 MOSIS scalable CMOS rules version 7 the process back end.

Layer Rule Explanation Vaue/l
metall (CMF) 7.1 minimum width 3
7.2.aminimum space 3
7.2.b minimum space (for minimum-width wires only) 2
7.3 minimum overlap of poly contact 1
7.4 minimum overlap of active contact 1
vial (CVA) 8.1 exactsize 2¥2
8.2 minimum via spacing 3
8.3 minimum overlap by metal1 1
8.4 minimum spacing to contact 2
8.5 minimum spacing to poly or active edge 2
metal2 (CMS) 9.1 minimum width 3
9.2.a minimum space 4
9.2.b minimum space (for minimum-width wires only) 3
9.3 minimum overlap of vial 1
via2 (CVS) 14.1 exact size 2¥%2
14.2 minimum space 3
14.3 minimum overlap by metal2 1
14.4 minimum spacing to vial 2
metal3 (CMT) 15.1 minimum width 6
15.2 minimum space 4
15.3 minimum overlap of via2 2

TABLE 2.9 MOSIS scalable CMOS rules version 7 the pads and overglass
(passivation).

Layer Rule Explanation Value
glass (COG) 10.1 minimum bonding-pad width 10 mm¥100m
10.2 minimum probe-pad width SmMmm¥75mm
10.3 pad overlap of glass opening 6mm
10.4 Minimum pad spacing to unrelated metal 2 30mm
(or metal3)
10,5 MinimMum pad spacing to unrelated 15mm

metal 1, poly, or active

Therulesin Table 2.7 and Table 2.8 are given as multiples of | . If we use
lambda-based rules we can move between successive process generations just by
changing the value of | . For example, we can scale 0.5 mm layouts (1 =0.25 m
m) by afactor of 0.175/0.25 for a0.35 m m process (| = 0.175 m m) at least in



theory. Y ou may get an inkling of the practical problems from the fact that the
values for pad dimensions and spacing in Table 2.9 are given in microns and not
inl . Thisis because bonding to the pads is an operation that does not scale well.
Often companies have two sets of design rules: onein | (with fractional | rules)
and the other in microns. Ideally we would like to express all of the design rules
ininteger multiplesof | . Thiswastrue for revisions 4 6, but not revision 7 of the
MOSISrules. Inrevision 7 rules 5.2a/6.2a are noninteger. The original Mead
Conway NMOS rules include anoninteger 1.5 rule for the implant layer.

1. To ensure source and drain width.

2. Different select types may touch but not overlap.




2.4 Combinational Logic Cells

The AND-OR-INVERT (AOI) and the OR-AND-INVERT (OAIl) logic cellsare
particularly efficient in CMOS. Figure 2.12 shows an AOI221 and an OAI321
logic cell (thelogic symbolsin Figure 2.12 are not standards, but are widely
used). All indices (the indices are the numbers after AOI or OAl) in thelogic cell
name greater than 1 correspond to the inputs to the first level or stage the AND
gate(s) in an AOI cdll, for example. Anindex of '1' corresponds to a direct input
to the second-stage cell. We write indices in descending order; so it isAOI221
and not AOI122 (but both are equivalent cells), and AOI32 not AOI23. If we
have more than one direct input to the second stage we repeat the '1'; thus an
AOI211 cell performsthe function Z = (A.B + C + D)". A three-input NAND cell
isan OAI111, but calling it that would be very confusing. These rules are not
standard, but form a convention that we shall adopt and one that is widely used in
the ASIC industry.

There are many ways to represent the logical operator, AND. | shall usethe
middle dot and write A - B (rather than AB, A.B, or A ' B); occasionally | may
use AND(A, B). Similarly | shall write A + B aswell as OR(A, B). | shall use an
apostrophe like this, A', to denote the complement of A rather than A since
sometimes it is difficult or inappropriate to use an overbar ( vinculum) or
diacritical mark (macron). It is possible to misinterpret AB' as A B rather than
AB (but the former aternative would be A - B' in my convention). | shall be
careful in these situations.

FIGURE 2.12 Naming and
numbering complex CMOS AOI221 0AlZ21

combinational cells. (a) An lﬁhll:l OF [INVERT lIIIH AND|INVERT
AND-OR-INVERT cell, an
7

—= A ::E
AOI221. (b) An & > z
OR-AND-INVERT c€ll, an e [ L E
OAI321. Numbering is =E nm321|+ F
awaysin descending order. A%t (b}

We can express the function of the AOI221 cell in Figure 2.12(a) as
Z=(A-B+C-D+E).(225)

We can also write this equation unambiguously as Z = OAI221(A, B, C, D, E),
just aswe might write X = NAND (I, J, K) to describe the logic function

X=(-J-K).



This notation is useful because, for example, if we write OAI321(P, Q, R, S, T,
U) we immediately know that U (the sixth input) is the (only) direct input
connected to the second stage. Sometimes we need to refer to particular inputs
without listing them all. We can adopt another convention that |etters of the input
names change with the index position. Now we can refer to input B2 of an
AOI321 cell, for example, and know which input we are talking about without
writing

Z=A0I321(A1, A2, A3,B1,B2,C).(2.26)

Table 2.10 showsthe AOI family of logic cells with three indices (with branches
in the family for AOI, OAI, AO, and OA cells). There are 5 types and 14 separate
members of each branch of thisfamily. There are thus 4 ¥ 14 = 56 cells of the
type X abc where X = { OAI, AOI, OA, AO} and each of theindexesa, b, and c
can range from 1 to 3. We form the AND-OR (AQO) and OR-AND (OA) cells by
adding an inverter to the output of an AOI or OAI cell.

TABLE 2.10 The AQI family of cells with three index numbers or less.

Celltypel Cdls Number of unique cells
Xal X21, X31 2

Xall X211, X311 2

Xab X22, X33, X32 3

Xabl X221, X331, X321 3

Xabc X222, X333, X332, X322 4

Total 14

2.4.1 Pushing Bubbles

The AOI and OAI logic cells can be built using asingle stage in CMOS using
series parallel networks of transistors called stacks. Figure 2.13 illustrates the
procedure to build the n -channel and p -channel stacks, using the AOI221 cell as
an example.
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FIGURE 2.13 Constructinga CMOS logic cell an AOI221. (a) First build the
dual icon by using de Morgan stheoremto push inversion bubblesto the
inputs. (b) Next build the n -channel and p -channel stacks from series and
parallel combinations of transistors. (c) Adjust transistor sizes so that the n-
channel and p -channel stacks have equal strengths.

Here are the steps to construct any single-stage combinational CMOS logic cell:

1. Draw aschematic icon with an inversion (bubble) on the last cell (the
bubble-out schematic). Use de Morgan stheorems A NAND isan OR
with inverted inputs and a NOR is an AND with inverted inputs to push
the output bubble back to the inputs (this the dual icon or bubble-in
schematic).

2. Form the n -channel stack working from the inputs on the bubble-out
schematic: OR translates to a parallel connection, AND trandatesto a
series connection. If you have a bubble at an input, you need an inverter.

3. Form the p -channel stack using the bubble-in schematic (ignore the
inversions at the inputs the bubbles on the gate terminals of the p -channel
transistors take care of these). If you do not have a bubble at the input gate
terminals, you need an inverter (these will be the same input gate terminals
that had bubbles in the bubble-out schematic).

The two stacks are network duals (they can be derived from each other by
swapping series connections for parallel, and parallel for series connections). The
n -channel stack implements the strong '0's of the function and the p -channel
stack providesthe strong '1's. The final step isto adjust the drive strength of the
logic cell by sizing the transistors.

2.4.2 Drive Strength

Normally we ratio the sizes of the n -channel and p -channel transistorsin an
inverter so that both types of transistors have the same resistance, or drive
strength . That is, we makeb , = b, . At low dopant concentrations and low



electric fieldsm , isabout twice m , . To compensate we make the shape factor,

WI/L, of the p -channel transistor in an inverter about twice that of the n -channel
transistor (we say the logic has aratio of 2). Since the transistor lengths are
normally equal to the minimum poly width for both types of transistors, theratio
of the transistor widthsis also equal to 2. With the high dopant concentrations
and high electric fields in submicron transistors the difference in mobilitiesis less
typically between 1 and 1.5.

Logic cellsin alibrary have arange of drive strengths. We normally call the
minimum-size inverter a 1X inverter. The drive strength of alogic cell is often
used as a suffix; thusa 1X inverter has acell name such asINVX1 or INVD1. An
inverter with transistors that are twice the size will be an INV X 2. Drive strengths
are normally scaled in a geometric ratio, so we have 1X, 2X, 4X, and
(sometimes) 8X or even higher, drive-strength cells. We can sizealogic cell
using these basic rules:

« Any string of transistors connected between a power supply and the output
in acell with 1X drive should have the same resistance as the n -channel
transistor in a 1X inverter.

« A transistor with shape factor W 1 /L 1 has aresistance proportional to L 4
/W 1 (so the larger W 4 is, the smaller the resistance).

« Twotransistorsin parallel with shape factorsW /L ; and W, /L , are
equivalent to asingle transistor (W /L 1 + W5 /L 5 )/1. For example, a2/1
in parallel witha 3/1isa5/1.

« Two transistors, with shape factorsW ; /L ,and W, /L 5, in seriesare
equivalenttoasingle /(L ; /W 1 + L 5 /W 5, ) transistor.

For example, atransistor with shape factor 3/1 (we shall call this a3/1) in series
with another 3/1 is equivalent to a 1/((1/3) + (1/3)) or a3/2. We can use the
following method to calculate equivalent transistor sizes:

« Toaddtransistorsin parallel, make all the lengths 1 and add the widths.
« Toaddtransistorsin series, make all the widths 1 and add the lengths.

We have to be careful to keep W and L reasonable. For example, a 3/1in series
with a2/1isequivalent to a 1/((1/3) + (1/2)) or 1/0.83. Since we cannot make a
device 2| wide and 1.66 | long, a1/0.83 is more naturally written as 3/2.5. We
like to keep both W and L as integer multiples of 0.5 (equivalent to making W
and L integer multiples of | ), but W and L must be greater than 1.

In Figure 2.13(c) the transistors in the AOI221 cell are sized so that any string
through the p -channel stack has a drive strength equivalent to a 2/1 p -channel
transistor (we choose the worst case, if more than one transistor in parallel is
conducting then the drive strength will be higher). The n -channel stack is sized
so that it has adrive strength of a 1/1 n -channel transistor. Theratio in this
library isthus 2.



If we were to use four drive strengths for each of the AOI family of cells shown
in Table 2.10, we would have atotal of 224 combinational library cellsjust for

the AOI family. The synthesis tools can handle this number of cells, but we may
not be able to design this many cells in areasonable amount of time. Section 3.3,
Logical Effort, will help us choose the most logically efficient cells.

2.4.3 Transmission Gates

Figure 2.14(a) and (b) shows a CMOS transmission gate ( TG, TX gate, pass
gate, coupler). We connect a p -channel transistor (to transmit astrong '1') in
parallel with an n -channel transistor (to transmit a strong '0").
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FIGURE 2.14 CMOS transmission gate (TG). (a) An n- channel and p -channel
transistor in parallel formaTG. (b) A common symbol for aTG. (¢) The
charge-sharing problem.

We can express the function of a TG as
Z=TG(A,YS),(2.27)

but thisis ambiguous if we write TG(X, Y), how do we know if X is connected to
the gates or sources/drains of the TG? We shall always define TG(X, Y) when we
useit. It istempting to write TG(A, S) = A - S, but what isthe value of Z when S
='0"in Figure 2.14(a), since Z is then left floating? A TG isaswitch, not an AND
logic cell.

Thereisapotentia problem if we use a TG as a switch connecting a node Z that
has alarge capacitance, C g , to an input node A that has only a small

capacitance C g a | (See Figure 2.14c). If theinitial voltageat A isV gyalL
and theinitial voltage at Z isV g|g , when we close the TG (by setting S="1') the
final voltage on both nodes A and Z is

CgicVBictCsauaLL V smaLL
V= . (2.28)
Cgic*tCamaLL
Imagine we want to drive a'0' onto node Z from node A. Suppose C g, = 0.2 pF

(about 10 standard loadsin a 0.5 m m process) and C gya . = 0.02 pF, V g =0
V and V SMALL = 5V; then



(0.2¥10 12) (0) + (0.02 ¥ 10 12) (5)
Vgs= =045V . (2.29)
(0.2¥10 12) + (0.02 ¥ 10 12)

Thisis not what we want at all, the big capacitor has forced node A to avoltage
closeto a'0'. Thistype of problem is known as charge sharing . We should make
sure that either (1) node A is strong enough to overcome the big capacitor, or (2)
insulate node A from node Z by including a buffer (an inverter, for example)
between node A and node Z. We must not use charge to drive another logic cell
only alogic cell can drivealogic cell.

If we omit one of the transistorsin a TG (usually the p -channel transistor) we
have a pass transistor . There is abranch of full-custom VLSI design that uses
pass-transistor logic. Much of thisis based on relay-based logic, since asingle
transistor switch looks like arelay contact. There are many problems associated
with pass-transistor logic related to charge sharing, reduced noise margins, and
the difficulty of predicting delays. Though pass transistors may appear in an
ASIC cell inside alibrary, they are not used by ASIC designers.
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FIGURE 2.15 The CMOS multiplexer (MUX). (a) A noninverting 2:1 MUX
using transmission gates without buffering. (b) A symbol for aMUX (note how
the inputs are labeled). (c) An IEEE standard symbol for aMUX. (d) A
nonstandard, but very common, |EEE symbol for aMUX. (e) Aninverting
MUX with output buffer. (f) A noninverting buffered MUX.

We can use two TGs to form amultiplexer (or multiplexor people use both
orthographies) as shown in Figure 2.15(a). We often shorten multiplexer to MUX
. The MUX function for two datainputs, A and B, with aselect signal S, is

Z=TG(A, S) + TG(B, S) . (2.30)

We canwritethisasZ=A -S + B - S, since node Z is always connected to one
or other of the inputs (and we assume both are driven). Thisis atwo-input MUX
(2-to-1 MUX or 2:1 MUX). Unfortunately, we can also write the MUX function
asZ=A-S+B:S, soitisdifficult to write the MUX function unambiguously
asZ =MUX(X, Y, Z). For example, isthe select input X, Y, or Z? We shall
define the function MUX(X, Y, Z) each time we use it. We must also be careful
to label aMUX if we use the symbol shown in Figure 2.15(b). Symbolsfor a



MUX are shown in Figure 2.15(b d). In the IEEE notation 'G' specifiesan AND
dependency. Thus, in Figure 2.15(c), G ='1' selects the input labeled '1'.

Figure 2.15(d) uses the common control block symbol (the notched rectangle).
Here, G1 ="1' selectstheinput '1', and G1 ='0' selectstheinput ' 1. Strictly this
form of IEEE symbol should be used only for elements with more than one
section controlled by common signals, but the symbol of Figure 2.15(d) is used
often for a2:1 MUX.

The MUX shown in Figure 2.15(a) works, but there is a potential charge-sharing
problem if we cascade MUXes (connect them in series). Instead most ASIC
libraries use MUX cells built with a more conservative approach. We could
buffer the output using an inverter (Figure 2.15e), but then the MUX becomes
inverting. To build asafe, noninverting MUX we can buffer the inputs and output
(Figure 2.15f) requiring 12 transistors, or 3 gate equivalents (only the gate
equivalent counts are shown from now on).

Figure 2.16 shows how to use an OAI22 logic cell (and an inverter) to implement
an inverting MUX. The implementation in equation form (2.5 gates) is
ZN=A"-S+B'-S

=[(A"-S)-(B"-9T

=[(A+S)-(B+93S)]

= OAI22[A, S, B, NOT(9)] . (2.31)
(both A" and NOT(A) represent an inverter, depending on which representation is

most convenient they are equivalent). | often use an equation to describe a cell
implementation.
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FIGURE 2.16 Aninverting 2:1 MUX based on an

OAI22 cell. ;Eiﬁ

The following factors will determine which MUX implementation is best:

1. Do we want to minimize the delay between the select input and the output
or between the data inputs and the output?

2. Do we want an inverting or noninverting MUX?

3. Do we object to having any logic cell inputstied directly to the
source/drain diffusions of atransmission gate? (Some companies forbid
such transmission-gate inputs since some simulation tools cannot handle
them.)

4. Do we object to any logic cell outputs being tied to the source/drain of a



transmission gate? (Some companies will not alow this because of the
dangers of charge sharing.)

5. What drive strength do we require (and is size or speed more important)?

A minimum-size TG is alittle slower than a minimum-size inverter, so thereis
not much difference between the implementations shown in Figure 2.15 and
Figure 2.16, but the difference can become important for 4:1 and larger MUXes.

2.4.4 Exclusive-OR Cell

The two-input exclusive-OR ( XOR , EXOR, not-equivalence, ring-OR) function
IS
Al A2=XOR(A1,A2)=A1-A2 + Al -A2.(2.32)

We are now using multiletter symbols, but there should be no doubt that A1’
means anything other than NOT(A1). We can implement a two-input XOR using
aMUX and an inverter as follows (2 gates):

XOR(A1, A2) = MUX[NOT(A1), A1, A2] , (2.33)

where
MUX(A,B,S=A-S+B-S"'.(2.34)

Thisimplementation only buffers one input and does not buffer the MUX output.
We can use inverter buffers (3.5 gatestotal) or an inverting MUX so that the
XOR cell does not have any external connections to source/drain diffusions as
follows (3 gates total):

XOR(A1, A2) = NOT[MUX(NOT[NOT(A1)], NOT(A1), A2)] . (2.35)

We can aso implement atwo-input XOR using an AOI21 (and aNOR cell),
since
XOR(A1,A2)=A1-A2 + Al - A2

=[ (A1-A2) + (A1l+A2)']

=AOI21[A1, A2, NOR(A1, A2)], (2.36)

(2.5 gates). Similarly we can implement an exclusive-NOR (XNOR, equivalence)
logic cell using an inverting MUX (and two inverters, total 3.5 gates) or an
OAI21 logic cell (and aNAND cell, total 2.5 gates) as follows (using the MUX
function of Eq. 2.34):
XNOR(AL1, A2)=Al1-A2+NOT(A1) - NOT(A2

=NOT[NOT[MUX(AL, NOT (A1), A2]]

= OAI21[A1, A2, NAND(A1, A2)] . (2.37)

1. Xabc: X ={AQI, AO, OAI, OA}; a, b,c={2, 3};{ } means choose one.



2.5 Sequential Logic Cells

There are two main approaches to clocking in VLSI design: multiphase clocks or
asingle clock and synchronous design . The second approach has the following
key advantages:. (1) it allows automated design, (2) it is safe, and (3) it permits
vendor signoff (a guarantee that the ASIC will work as simulated). These
advantages of synchronous design (especially the last one) usually outweigh
every other consideration in the choice of a clocking scheme. The vast mgjority
of ASICsuse arigid synchronous design style.

2.5.1 Latch

Figure 2.17(a) shows a sequential logic cell alatch . The internal clock signals,
CLKN (N for negative) and CLKP (P for positive), are generated from the system
clock, CLK, by two inverters (14 and I5) that are part of every latch cell itis
usually too dangerous to have these signals supplied externally, even though it
would save space.
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FIGURE 2.17 CMOS latch. (a) A positive-enable latch using transmission gates
without output buffering, the enable (clock) signal is buffered inside the latch.
(b) A positive-enable latch is transparent while the enable is high. (c) Thelatch
stores the last value at D when the enable goes low.

To emphasize the difference between a latch and flip-flop, sometimes people
refer to the clock input of alatch as an enable . This makes sense when we look
at Figure 2.17(b), which shows the operation of alatch. When the clock input is
high, the latch is transparent changes at the D input appear at the output Q (quite
different from aflip-flop as we shall see). When the enable (clock) goes low
(Figure 2.17c), inverters |2 and |13 are connected together, forming a storage loop



that holds the last value on D until the enable goes high again. The storage loop
will hold its state as long as power is on; we call thisa static latch. A sequential
logic cell is different from a combinational cell because it has this feature of
storage or memory.

Notice that the output Q is unbuffered and connected directly to the output of 12
(and the input of 13), which isastorage node. Inan ASIC library we are
conservative and add an inverter to buffer the output, isolate the sensitive storage
node, and thus invert the sense of Q. If we want both Q and QN we have to add
two inverters to the circuit of Figure 2.17(a). This means that alatch requires
seven inverters and two TGs (4.5 gates).

The latch of Figure 2.17(a) is a positive-enable D latch, active-high D latch, or
transparent-high D latch (sometimes people also call this a D-type latch). A
negative-enable (active-low) D latch can be built by inverting all the clock
polaritiesin Figure 2.17(a) (swap CLKN for CLKP and vice-versa).

2.5.2 Flip-Flop

Figure 2.18(a) shows a flip-flop constructed from two D latches: a master latch
(thefirst one) and adlave latch . Thisflip-flop contains atotal of nineinverters
and four TGs, or 6.5 gates. In thisflip-flop design the storage node Sis buffered
and the clock-to-Q delay will be oneinverter delay less than the clock-to-QON
delay.
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FIGURE 2.18 CMOS flip-flop. (a) This negative-edge triggered flip-flop
consists of two latches: master and slave. (b) While the clock is high, the master
latch isloaded. (c) Asthe clock goes low, the slave latch loads the value of the
master latch. (d) Waveforms illustrating the definition of the flip-flop setup time
t gy, holdtimet  , and propagation delay from clock to Q, t pp .

In Figure 2.18(b) the clock input is high, the master latch is transparent, and node
M (for master) will follow the D input. Meanwhile the slave latch is disconnected
from the master latch and is storing whatever the previous value of Q was. Asthe
clock goes low (the negative edge) the slave latch is enabled and will update its
state (and the output Q) to the value of node M at the negative edge of the clock.
The dave latch will then keep this value of M at the output Q, despite any
changes at the D input while the clock is low (Figure 2.18c). When the clock
goes high again, the slave latch will store the captured value of M (and we are
back where we started our explanation).

The combination of the master and slave latches acts to capture or sample the D
input at the negative clock edge, the active clock edge . Thistype of flip-flopisa



negative-edge triggered flip-flop and its behavior is quite different from alatch.
The behavior is shown on the IEEE symbol by using atriangular notch to
denote an edge-sensitive input. A bubble shows the input is sensitive to the
negative edge. To build a positive-edge triggered flip-flop we invert the polarity
of all the clocks aswe did for alatch.

The waveforms in Figure 2.18(d) show the operation of the flip-flop as we have
described it, and illustrate the definition of setup time (t gy ), holdtime (t ),

and clock-to-Q propagation delay ( t pp ). We must keep the data stable (a fixed
logic '1' or '0") for atimet g prior to the active clock edge, and stable for atimet
y after the active clock edge (during the decision window shown).

In Figure 2.18(d) times are measured from the points at which the waveforms
cross 50 percent of V pp . We say the trip point is 50 percent or 0.5. Common

choices are 0.5 or 0.65/0.35 (asignal hasto reach 0.65V pp to bea'l’, and reach
0.35V pp tobea'd’), or 0.1/0.9 (thereis no standard way to write atrip point).

Some vendors use different trip points for the input and output waveforms
(especialy in 1/O cells).

Theflip-flop in Figure 2.18(a) isa D flip-flop and is by far the most widely used
type of flip-flop in ASIC design. There are other types of flip-flops JK, T
(toggle), and S-R flip-flops that are provided in some ASIC cell libraries mainly
for compatibility with TTL design. Some people use the term register to mean an
array (more than one) of flip-flops or latches (on adata bus, for example), but
some people use register to mean asingle flip-flop or alatch. Thisis confusing
since flip-flops and latches are quite different in their behavior. When | am
talking about logic cells, | use the term register to mean more than one flip-flop.

To add an asynchronous set (Q to '1') or asynchronous reset (Q to '0’) to the
flip-flop of Figure 2.18(a), we replace one inverter in both the master and slave
latches with two-input NAND cells. Thus, for an active-low set, we replace |2
and 17 with two-input NAND cells, and, for an active-low reset, we replace |3
and 16. For both set and reset we replace al four inverters: 12,13, 16, and 17.
Some TTL flip-flops have dominant reset or dominant set , but thisis difficult
(and dangerous) to do in ASIC design. An input that forces Q to '1' is sometimes
also called preset . The IEEE logic symbols use 'P' to denote an input with a
presetting action. An input that forces Q to '0' is often also called clear . The

| EEE symbols use 'R’ to denote an input with aresetting action.

2.5.3 Clocked Inverter

Figure 2.19 shows how we can derive the structure of a clocked inverter from the
series combination of an inverter and aTG. The arrowsin Figure 2.19(b)
represent the flow of current when the inverter ischarging (| g ) or discharging (

| ) aload capacitance through the TG. We can break the connection between the
inverter cells and use the circuit of Figure 2.19(c) without substantially affecting



the operation of the circuit. The symbol for the clocked inverter shownin
Figure 2.19(d) is common, but by no means a standard.
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FIGURE 2.19 Clocked inverter. (a) An inverter plus transmission gate (TG).
(b) The current flow in the inverter and TG allows usto break the connection
between the transistors in the inverter. (c) Breaking the connection forms a
clocked inverter. (d) A common symbol.

We can use the clocked inverter to replace the inverter TG pairsin latches and
flip-flops. For example, we can replace one or both of the inverters11 and I3
(together with the TGs that follow them) in Figure 2.17(a) by clocked inverters.
There is not much to choose between the different implementations in this case,
except that layout may be easier for the clocked inverter versions (since thereis
one less connection to make).

More interesting is the flip-flop design: We can only replace invertersii, I3, and
|7 (and the TGs that follow them) in Figure 2.18(a) by clocked inverters. We
cannot replace inverter 16 because it is not directly connected to a TG. We can
replace the TG attached to node M with a clocked inverter, and thiswill invert
the sense of the output Q, which thus becomes QN. Now the clock-to-Q delay
will be slower than clock-to-QN, since Q (which was QN) now comes one
inverter later than QN.

If we wish to build aflip-flop with afast clock-to-QN delay it may be better to
build it using clocked inverters and use inverters with TGs for aflip-flop with a
fast clock-to-Q delay. In fact, since we do not always use both Q and QN outputs
of aflip-flop, some librariesinclude Q only or QN only flip-flops that are slightly
smaller than those with both polarity outputs. It is slightly easier to layout
clocked inverters than an inverter plusa TG, so flip-flops in commercia libraries
include a mixture of clocked-inverter and TG implementations.




2.6 Datapath Logic Cells

Suppose we wish to build an n -bit adder (that adds two n -bit numbers) and to exploit
the regularity of thisfunction in the layout. We can do so using a datapath structure.

The following two functions, SUM and COUT, implement the sum and carry out for a
full adder ( FA ) with two datainputs (A, B) and acarry in, CIN:

SUM =A « B+ CIN = SUM(A, B, CIN) = PARITY(A, B, CIN) , (2.38)

COUT=A-B+A -CIN+B-CIN=MAJA, B, CIN). (2.39)

The sum uses the parity function (‘1' if there are an odd numbers of '1'sin the inputs).
The carry out, COUT, uses the 2-of-3 magority function (‘1" if the majority of the inputs
are'l"). We can combine these two functionsin asingle FA logic cell, ADD(A[ i ], B[ i
], CIN, § i ], COUT), shown in Figure 2.20(a), where

S[i]=SUM (A[i],B[i],CIN), (2.40)

COUT =MAJ(A[i],B[i], CIN) . (2.41)

Now we can build a 4-bit ripple-carry adder ( RCA ) by connecting four of these ADD
cellstogether as shown in Figure 2.20(b). Thei th ADD cell is arranged with the
following: two businputsA[ i ], B[ i ]; one busoutput § i ]; an input, CIN, that isthe
carry infrom stage (i 1) below and is also passed up to the cell above as an output;
and an output, COUT, that isthe carry out to stage (1 + 1) above. In the 4-bit adder
shown in Figure 2.20(b) we connect the carry input, CIN[0], to VSS and use COUTI[3]
and COUT([ 2] to indicate arithmetic overflow (in Section 2.6.1 we shall see why we
may need both signals). Notice that we build the ADD cell so that COUT[2] is
available at the top of the datapath when we need it.

Figure 2.20(c) shows alayout of the ADD cell. The A inputs, B inputs, and S outputs
al use ml interconnect running in the horizontal direction we call these data signals.
Other signals can enter or exit from the top or bottom and run vertically across the
datapath in m2 we call these control signals. We can also use m1 for control and m2 for
data, but we normally do not mix these approaches in the same structure. Control
signals aretypically clocks and other signals common to elements. For example, in
Figure 2.20(c) the carry signals, CIN and COUT, run vertically in m2 between cells. To
build a4-bit adder we stack four ADD cells creating the array structure shown in
Figure 2.20(d). In this case the A and B data bus inputs enter from the left and bus S,
the sum, exits at the right, but we can connect A, B, and Sto either side if we want.

The layout of buswide logic that operates on data signalsin thisfashioniscalled a
datapath . The module ADD is a datapath cell or datapath element . Just as we do for
standard cells we make al the datapath cellsin alibrary the same height so we can abut



other datapath cells on either side of the adder to create a more complex datapath.
When people talk about a datapath they always assume that it is oriented so that
Increasing the size in bits makes the datapath grow in height, upwardsin the vertical
direction, and adding different datapath elements to increase the function makes the
datapath grow in width, in the horizontal direction but we can rotate and position a
completed datapath in any direction we want on a chip.
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FIGURE 2.20 A datapath adder. (a) A full-adder (FA) cell with inputs (A and B), a
carry in, CIN, sum output, S, and carry out, COUT. (b) A 4-bit adder. (c) The layout,
using two-level metal, with datain m1 and control in m2. In this example the wiring is
completed outside the cell; it is aso possible to design the datapath cells to contain the
wiring. Using three levels of metal, it is possible to wire over the top of the datapath
cells. (d) The datapath layout.

What is the difference between using a datapath, standard cells, or gate arrays? Cells
are placed together in rows on a CBIC or an MGA, but there is no generally no
regularity to the arrangement of the cells within the rows we let software arrange the
cells and complete the interconnect. Datapath layout automatically takes care of most
of the interconnect between the cells with the following advantages:

« Regular layout produces predictable and equal delay for each bit.
« Interconnect between cells can be built into each cell.

There are some disadvantages of using a datapath:

« Theoverhead (buffering and routing the control signals, for example) can make a
narrow (small number of bits) datapath larger and slower than a standard-cell (or
even gate-array) implementation.

« Datapath cells have to be predesigned (otherwise we are using full-custom
design) for use in awide range of datapath sizes. Datapath cell design can be
harder than designing gate-array macros or standard cells.

» Software to assemble a datapath is more complex and not as widely used as
software for assembling standard cells or gate arrays.

There are some newer standard-cell and gate-array tools that can take advantage of
regularity in adesign and position cells carefully. The problem isin finding the
regularity if it is not specified. Using a datapath is one way to specify regularity to
ASIC design tools.



2.6.1 Datapath Elements

Figure 2.21 shows some typical datapath symbolsfor an adder (people rarely use the
|EEE standardsin ASIC datapath libraries). | use heavy lines (they are 1.5 point wide)
with a stroke to denote a data bus (that flows in the horizontal direction in a datapath),
and regular lines (0.5 point) to denote the control signals (that flow vertically ina
datapath). At the risk of adding confusion where there is none, this stroke to indicate a
data bus has nothing to do with mixed-logic conventions. For abus, A[31:0] denotes a
32-bit bus with A[31] asthe leftmost or most-significant bit or MSB , and A[0] asthe
least-significant bit or LSB . Sometimes we shall use A[MSB] or A[LSB] to refer to
these bits. Notice that if we have an n -bit busand LSB =0, then MSB =n 1. Also, for
example, A[4] isthefifth bit on the bus (from the LSB). Weusea'S' or 'ADD' inside
the symbol to denote an adder instead of '+', so we can attach ' ' or '+/ ' to the inputs for
a subtracter or adder/subtracter.
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FIGURE 2.21 Symbols for a datapath adder. (a) A data busis shown by a heavy line
(1.5 point) and a bus symbol. If the busis n -bitswidethen MSB =n 1. (b) An
alternative symbol for an adder. (c) Control signals are shown as lightweight (0.5
point) lines.

Some schematic datapath symbols include only data signals and omit the control
signals but we must not forget them. In Figure 2.21, for example, we may need to
explicitly tie CIN[0] to VSS and use COUT[MSB] and COUT[MSB 1] to detect
overflow. Why might we need both of these control signals? Table 2.11 shows the
process of simple arithmetic for the different binary number representations, including
unsigned, signed magnitude, ones complement, and two s complement.

TABLE 2.11 Binary arithmetic.
Binary Number Representation

Operation Signed Ones Two s
Unsigned _
magnitude complement complement
If positive ” Vethen flio if vethen (i
then MSB = 0 if negativethen flip if negative then {flip
no change bits bits; add 1}
elseMSB =1
3= 0011 0011 0011 0011
3= NA 1011 1100 1101

zero = 0000 0000 or 1000 1111 or 0000 0000



max.
positive =
max.

negative =
addition =

S=A+B

= addend +

augend

SG(A) =
signof A
addition
result:
oV =
overflow,

OR = out
of range

SG(S) =
signof S

S=A+B

subtraction

D=A B

= minuend

subtrahend
subtraction

result :

QV =
overflow,

OR = out
of range

1111 =15

0000=0

S=A+B

OR =

COUT[MSB]

COUT is
carry out

NA

OR =

BOUT[MSB]

BOUT is

borrow out

0111=7 0111=7
1111= 7  1000= 7

if SG(A) = )

SG(B) then S S=

=A+B A+B+

dse{ if B <A COUT[MSB]
thenS=A B

dseS=B  couTiscary out
A}

if SG(A) =

SG(B) then _

ov = oV =

COUT[MSB] XOR(COUT[MSB],
COUT[MSB 1))

elseOV =0
(impossible)

if SG(A) =
SG(B) then
SG(S) =
SG(A)

dse{ if B<A NA
then SG(S) =
SG(A)

else SG(S) =
SG(B)}

SG(B) =
NOT(SG(B));

D=A+B DT A*Z

asin addition asin addition

Z = B (negate);

0111=7

1000 = 8

S=A+B

oV =

XOR(COUT[MSB],
COUT[MSB 1))

NA

Z = B (negate);
D=A+Z

asin addition



negation : Z=A;

7= A NA SG(Z) = Z = NOT(A) Z =NOT(A) + 1
(negate) NOT(SG(A))
2.6.2 Adders

We can view addition in terms of generate, G[ i ], and propagate, P[ i ], signals.

method 1 method 2

G[i] = A[i] - BJi] G[i]=A[i]-B[i] (2.42)
Pli]=A[i]*BJi Pli]=A[i]+B[i] (2.43)
Cli]=C[i]+P[i]-C[i C[i]=C[i]+P[i] -C[i 1] (244)
Si]=Pi]C[i 1] Si]=A[i]B[i]C[i 1] (2.45)

where C[ i ] isthe carry-out signal from stagei , equal to the carry in of stage (i + 1).
Thus, C[ 1] =COUT[ i] =CINJ[ i + 1]. We need to be careful because C[0] might
represent either the carry in or the carry out of the LSB stage. For an adder we set the
carry in to thefirst stage (stage zero), C[ 1] or CIN[0], to '0'. Some people use delete
(D) or kill (K) invarious ways for the complements of G[i] and PJi], but unfortunately
othersuse C for COUT and D for CIN so | avoid using any of these. Do not confuse the
two different methods (both of which are used) in Egs. 2.42 2.45 when forming the
sum, since the propagate signal, P[ i ] , is different for each method.

Figure 2.22(a) shows a conventional RCA. The delay of an n -bit RCA is proportiona
to n and islimited by the propagation of the carry signal through al of the stages. We
can reduce delay by using pairs of go-faster bubblesto change AND and OR gatesto
fast two-input NAND gates as shown in Figure 2.22(a). Alternatively, we can write the
equations for the carry signal in two different ways:

either C[i]=A[i]-B[i]+P[i]-C[i 1] (2.46)
or  Cli]=(A[i]+B[i])-(P[i]'+C[i 1]),(2.47)

where P[ 1 ]'=NOT(F[ i ]). Equations 2.46 and 2.47 allow us to build the carry chain
from two-input NAND gates, one per cell, using different logic in even and odd stages
(Figure 2.22b):

even stages odd stages

Ciil'=F[i]-C3[i 1]-C4[i 1 C3[i]'=Hi]-C1[i 1]-CZ[i 1] (2.48)
C2[i]=A[i] +BJi] CAli]'=A[i] -B[i] (2.49)
Cli]=C1[i]-C2i ] Cli]=C3[i]"+C4[i] (2.50)

(the carry inputs to stage zero are C3[ 1] = C4[ 1] ='0"). We can use the RCA of
Figure 2.22(b) in a datapath, with standard cells, or on a gate array.

Instead of propagating the carries through each stage of an RCA, Figure 2.23 shows a
different approach. A carry-save adder ( CSA ) cell CSA(AL1[i],A2[i],A3[i], CIN,
Si[i],S2[i], COUT) has three outputs:

S1[i]=CIN, (2.51)
S2[i]=A1i]*AZ2[i]A3[i]=PARITY(A1[i],A2[i],A3[i]), (2.52)



COUT=AL[i]-AZ2[i]+[(Ai]+A2[i]) -A3[i]]=MAJAL[i], AZ[i],
: (2.53)
A3[i]).
Theinputs, Al, A2, and A3; and outputs, S1 and S2, are buses. The input, CIN, isthe
carry from stage (i 1). The carry in, CIN, is connected directly to the output bus S1
indicated by the schematic symbol (Figure 2.23a). We connect CIN[0] to VSS. The
output, COUT, isthe carry out to stage (1 + 1).

A 4-bit CSA isshown in Figure 2.23(b). The arithmetic overflow signal for ones
complement or two s complement arithmetic, OV, is XOR(COUT[MSB], COUT[MSB

1]) as shown in Figure 2.23(c). In a CSA the carries are saved at each stage and
shifted left onto the bus S1. There isthus no carry propagation and the delay of a CSA
Is constant. At the output of a CSA we still need to add the S1 bus (all the saved
carries) and the S2 bus (all the sums) to get an n -bit result using afinal stage that is not
shown in Figure 2.23(c). We might regard the n -bit sum as being encoded in the two
buses, S1 and S2, in the form of the parity and majority functions.

We can use a CSA to add multiple inputs as an example, an adder with four 4-bit inputs
Isshown in Figure 2.23(d). The last stage sums two input buses using a carry-propagate
adder ( CPA ). We have used an RCA as the CPA in Figure 2.23(d) and (e), but we can
use any type of adder. Notice in Figure 2.23(e) how the two CSA cells and the RCA

cell abut together horizontally to form a bit slice (or slice) and then the slices are
stacked vertically to form the datapath.
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FIGURE 2.22 The carry-save adder (CSA). (a) A CSA cell. (b) A 4-bit CSA.

(c) Symbol for aCSA. (d) A four-input CSA. (e) The datapath for a four-input, 4-bit
adder using CSAswith aripple-carry adder (RCA) asthe final stage. (f) A pipelined
adder. (g) The datapath for the pipelined version showing the pipeline registers as well
asthe clock control lines that use m2.

We can register the CSA stages by adding vectors of flip-flops as shown in

Figure 2.23(f). This reduces the adder delay to that of the slowest adder stage, usualy
the CPA. By using registers between stages of combinational logic we use pipelining to
Increase the speed and pay a price of increased area (for the registers) and introduce
latency . It takes afew clock cycles (the latency, equal to n clock cyclesfor an n -stage
pipeline) to fill the pipeline, but once it isfilled, the answers emerge every clock cycle.
Ferris wheels work much the same way. When the fair opens it takes a while (Iatency)
to fill the wheel, but once it isfull the people can get on and off every few seconds.
(We can also pipeline the RCA of Figure 2.20. We add i registerson the A and B
inputs before ADD[ i ] andadd ( n 1) registers after the output § i ], with asingle
register beforeeach C[ i ].)

The problem with an RCA isthat every stage has to wait to make its carry decision, C[
I ], until the previous stage has calculated C[ i 1]. If we examine the propagate signals
we can bypass this critical path. Thus, for example, to bypass the carries for bits4 7
(stages 5 8) of an adder we can compute BY PASS = P[4].P[5].P[6].P[7] and then use a
MUX asfollows:

C[7] = (G[7] + P[7] - C[6]) - BYPASS + C[3] - BYPASS. (2.54)

Adders based on this principle are called carry-bypass adders ( CBA ) [Sato et dl.,
1992]. Large, custom adders employ Manchester-carry chains to compute the carries
and the bypass operation using TGs or just pass transistors [Weste and Eshraghian,
1993, pp. 530 531]. These types of carry chains may be part of a predesigned ASIC
adder cell, but are not used by ASIC designers.

Instead of checking the propagate signals we can check the inputs. For example we can
compute SKIP=(A[i 1] B[i 1])+(A[i]*B[i])andthenusea2:1 MUX to
select C[ i ]. Thus,

CSKIP[i]=(G[i]+P[i]-C[i 1) -SKIP+C[i 2]-SKIP.(2.55)

Thisisacarry-skip adder [Keutzer, Malik, and Saldanha, 1991; Lehman, 1961].
Carry-bypass and carry-skip adders may include redundant logic (since the carry is
computed in two different ways we just take the first signal to arrive). We must be
careful that the redundant logic is not optimized away during logic synthesis.

If we evaluate Eq. 2.44 recursively for i = 1, we get the following:
C[1] = G[1] + P{1] - C[C]
=G[1] + 1] - (G[O] + P[1] - C[ 1])
=G[1] + F[1] - G[(] . (2.56)
Thisresult means that we can look ahead by two stages and calculate the carry into

the third stage (bit 2), which is C[1], using only the first-stage inputs (to calculate G[0])
and the second-stage inputs. Thisis a carry-lookahead adder ( CLA ) [MacSorley,



1961]. If we continue expanding Eq. 2.44, we find:
C[2]=G[2] + P[2] - G[1] + F[2] - P[1] - G[O] ,

C[3] =G[3] + P[2] - G[2] + P[2] - P[1] - G[1] + P[3] - P[2] - F[1] - G[C] . (2.57)

Aswe look ahead further these equations become more complex, take longer to
calculate, and the logic becomes less regular when implemented using cellswith a
limited number of inputs. Datapath layout must fit in a bit slice, so the physical and
logical structure of each bit must be similar. In a standard cell or gate array we are not
so concerned about aregular physical structure, but aregular logical structure
simplifies design. The Brent Kung adder reduces the delay and increases the regularity
of the carry-lookahead scheme [Brent and Kung, 1982]. Figure 2.24(a) shows aregular
4-bit CLA, using the carry-lookahead generator cell (CLG) shown in Figure 2.24(b).
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FIGURE 2.23 The Brent Kung carry-lookahead adder (CLA). (a) Carry generationin a
4-bit CLA. (b) A cell to generate the lookahead terms, C[0] C[3]. (c) CellsL1, L2, and
L3 arerearranged into atree that has less delay. Cell L4 is added to calculate C[2] that
islost in the trandation. (d) and (e) Simplified representations of partsaand c. (f) The
lookahead logic for an 8-bit adder. The inputs, 0 7, are the propagate and carry terms
formed from the inputs to the adder. (g) An 8-bit Brent Kung CLA. The outputs of the
lookahead logic are the carry bits that (together with the inputs) form the sum. One
advantage of this adder is that delays from the inputs to the outputs are more nearly
equal than in other adders. This tends to reduce the number of unwanted and
unnecessary switching events and thus reduces power dissipation.

In acarry-select adder we duplicate two small adders (usually 4-bit or 8-bit adders
often CLAS) for the cases CIN ='0" and CIN ="1"' and then use aMUX to select the
case that we need wasteful, but fast [Bedrij, 1962]. A carry-select adder is often used as
the fast adder in a datapath library because its layout is regular.

We can use the carry-select, carry-bypass, and carry-skip architectures to split a 12-bit
adder, for example, into three blocks. The delay of the adder is then partly dependent
on the delays of the MUX between each block. Suppose the delay due to 1-bit in an
adder block (we shall call thisabit delay) is approximately equal to the MUX delay. In
this case may be faster to make the blocks 3, 4, and 5-bitslong instead of being equal in
size. Now the delays into the final MUX are equal 3 bit-delays plus 2 MUX delays for
the carry signal from bits 0 6 and 5 bit-delays for the carry from bits 7 11. Adjusting
the block size reduces the delay of large adders (more than 16 bits).

We can extend the idea behind a carry-select adder as follows. Suppose we have an n
-bit adder that generates two sums. One sum assumes a carry-in condition of '0', the
other sum assumes a carry-in condition of '1'. We can split this n -bit adder into an i -bit
adder for thei LSBsand an (n i )-bit adder for then i MSBs. Both of the smaller
adders generate two conditional sums as well as true and complement carry signals.
The two (true and complement) carry signals from the L SB adder are used to select
between thetwo (n i + 1)-bit conditional sumsfrom the MSB adder using2(n i + 1)
two-input MUXes. Thisis a conditional-sum adder (also often abbreviated to CSA)
[Sklansky, 1960]. We can recursively apply this technique. For example, we can split a
16-bit adder using i = 8 and n = 8; then we can split one or both 8 bit adders again and
SO on.

Figure 2.25 shows the simplest form of an n -bit conditional-sum adder that uses n
single-hit conditional adders, H (each with four outputs. two conditional sums, true
carry, and complement carry), together with atree of 2:1 MUXes (Qi_j). The
conditional-sum adder is usually the fastest of all the adders we have discussed (it isthe
fastest when logic cell delay increases with the number of inputsthisistrue for al
ASICs except FPGAS).
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FIGURE 2.24 The conditional-sum adder. (a) A 1-bit conditional adder that calculates
the sum and carry out assuming the carry iniseither '1' or '0". (b) The multiplexer that
selects between sums and carries. () A 4-bit conditional-sum adder with carry input,

c[ol.

2.6.3 A Simple Example

How do we make and use datapath elements? What does a design look like? We may
use predesigned cells from alibrary or build the elements ourselves from logic cells
using a schematic or adesign language. Table 2.12 shows an 8-bit conditional-sum
adder intended for an FPGA. This Verilog implementation uses the same structure as
Figure 2.25, but the equations are collapsed to use four or five variables. A basic logic
cell in certain Xilinx FPGAS, for example, can implement two equations of the same
four variables or one equation with five variables. The equations shown in Table 2.12
requires three levels of FPGA logic cells (so, for example, if each FPGA logic cell has
a5 nsdelay, the 8-bit conditional-sum adder delay is 15 ns).

TABLE 2.12 An 8-hit conditional-sum adder (the notation is described in Figure 2.25).



module m8hitCSum (CO0, a, b, s, C8); // Verilog conditional-sum adder for an FPGA
input [7:0] CO, a, b; output [7:0] s; output C8;

wire
A7,A6,A5A4,A3A2A1A0B7,B6,B5B4,B3B2B1,B0,S8,57,56,55,54,53,52,51,0;

wireC0,C2,C4 2 0,C4 2 1,S5 4 0,S5 4 1,C6,C6 4 0,C6 4 1, C8;
assign {A7,A6,A5A4,A3A2A1,A0} = & assign {B7,B6,85,84,83,82,B1,B0} = b;
assign s={ S7,56,55,54,53,52,S1,50 };

assign SO = A0"BO"CO ; // start of level 1: & = AND, = XOR, | = OR, ! = NOT
assign S1 = A1"B1"(A0& BO|(AO|B0)& CO) ;

assign C2 = A1& B1|(A1|B1)& (A0& BO|(A0|B0)& CO) ;

assign C4 2 0= A3&B3|(A3B3)& (A2&B2) ; assign C4 2 1=
A3&B3|(A3|B3)&(A2|B2) ;

assign S5 4 0= A5'B5\(A4&B4) ; assign S5 4 1= A5"B5NA4|B4) ;

assign C6_4 0= A5& B5|(A5|B5)& (A4&B4) ; assign C6 4 1=
A5& B5|(A5|B5)& (A4|B4) ;

assign S2 = A2"B2"C2; |/ start of level 2

assign S3=A3"B3"(A2&B2|(A2|B2)&C2) ;

assign $4 = A4"B4"C4 2 0|C4 2 1&C2);

assign S5=S5 4 0& !(C4_2 0|C4 2 1&C2)|S5 4 1&(C4 2 0|C4 2 1&C2);
assign C6=C6_4 0|C6_4 1&(C4 2 0|C4_2 1&C2);

assign S6 = A6"B6°C6 ; // start of level 3

assign S7 = A7"B7"(A6&B6|(A6|B6)& C6) ;

assign C8 = A7&B7|(A7|B75)& (A6&B6|(A6|B6)&CH) ;

endmodule

Figure 2.26 shows the normalized delay and area figures for a set of predesigned
datapath adders. The datain Figure 2.26 is from a series of ASIC datapath cell libraries
(Compass Passport) that may be synthesized together with test vectors and simulation
models. We can combine the different adder techniques, but the adders then lose
regularity and become less suited to a datapath implementation.
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FIGURE 2.25 Datapath adders. This dataisfrom a series of submicron datapath
libraries. (a) Delay normalized to atwo-input NAND logic cell delay (approximately
equal to 250 psin a0.5 m m process). For example, a 64-bit ripple-carry adder (RCA)
has a delay of approximately 30 nsin a 0.5 m m process. The spread in delay is due to
variation in delays between different inputs and outputs. An n -bit RCA has adelay
proportional to n. The delay of an n -bit carry-select adder is approximately
proportional to log , n . The carry-save adder delay is constant (but requires a

carry-propagate adder to complete an addition). (b) In a datapath library the area of all
adders are proportional to the bit size.

There are other adders that are not used in datapaths, but are occasionally useful in
ASIC design. A seria adder is smaller but slower than the parallel adders we have
described [Denyer and Renshaw, 1985]. The carry-completion adder is a variable delay
adder and rarely used in synchronous designs [ Sklansky, 1960].

2.6.4 Multipliers

Figure 2.27 shows a symmetric 6-bit array multiplier (an n -bit multiplier multiplies
two n -bit numbers; we shall use n -bit by m -bit multiplier if the lengths are different).
Adders a0 fO may be eliminated, which then eliminates adders al a6, leaving an
asymmetric CSA array of 30 (5 ¥ 6) adders (including one half adder). An n -bit array
multiplier has adelay proportional to n plus the delay of the CPA (addersb6 f6in
Figure 2.27). There are two items we can attack to improve the performance of a
multiplier: the number of partial products and the addition of the partial products.
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FIGURE 2.26 Multiplication. A 6-bit array multiplier using afinal carry-propagate
adder (full-adder cells a6 6, aripple-carry adder). Apart from the generation of the
summands this multiplier uses the same structure as the carry-save adder of

Figure 2.23(d).

Suppose we wish to multiply 15 (the multiplicand ) by 19 (the multiplier ) mentally. It
Iseasier to calculate 15 ¥ 20 and subtract 15. In effect we compl ete the multiplication
as15¥ (20 1) and we could writethisas15¥ 2 1, with the overbar representing a
minus sign. Now suppose we wish to multiply an 8-bit binary number, A, by B =
00010111 (decima 16 + 4 + 2+ 1 = 23). It iseasier to multiply A by the canonical
signed-digit vector ( CSD vector ) D = 0010 1 001 (decimal 32 8 + 1 = 23) sincethis
requires only three add or subtract operations (and a subtraction is as easy as an
addition). We say B has aweight of 4 and D has aweight of 3. By using D instead of B
we have reduced the number of partial productsby 1 (=4 3).

We can recode (or encode) any binary number, B, asa CSD vector, D, asfollows
(canonical means thereis only one CSD vector for any number):

Di=Bij+Cj 2Cj.1,(258)



where C; , ; isthecarry fromthesumof B ;. ; + B + C; (we start with C ;= 0).
As another example, if B=011(B,=0,B 1 =1, By=1; decimal 3), then, using
Eq. 2.58,

Dog=Bg+Cqy 2C;=1+0 2=1,

D;=B;+C; 2C,=1+1 2=0,

D,=B,+C, 2C3=0+1 0=1, (259

sothat D =101 (decima 4 1= 3). CSD vectors are useful to represent fixed
coefficientsin digital filters, for example.

We can recode using aradix other than 2. Suppose B isan ( n + 1)-digit two s
complement number,

B=Bg+B,2+B,22+...+B;2i+...+B, 12" 1 B,2".(2.60)

We can rewrite the expression for B using the following sleight-of-hand:
B=Bp+(Bg By)2+...+(B; 1 B;)2i+...+B, 12n 1 B,

2n

=(2B1+B)20+(2B3+B,+B)22+...

+(2Bi+Bj 1+Bj 2)2! 1+(2Bj,2+Bj,1+Bj)2i+1+. ..
+(2B,+B; {+B; »)2n 1, (2.61)

2B B=

Thisisvery useful. Consider B = 101001 (decimal 9 32 = 23, n=5),
B =101001
=(2B1+B()20+(2B3+B,+B1)22+(2B5+B,4+B3)24
(2¥0)+1)20+((2¥1)+0+0)22+((2¥1)+0+1)24. (262

Equation 2.61 tells us how to encode B as aradix-4 signed digit, E= 12 1 (decimal 16
8+ 1= 23). Tomultiply by B encoded as E we only have to perform a multiplication
by 2 (a shift) and three add/subtract operations.

Using Eqg. 2.61 we can encode any number by taking groups of three bits at a time and
calculating

EJ :ZBi'l'Bi 1+Bi 2,

Ej+1: ZBi+2+Bi+l+Bi""’(2'63)

where each 3-bit group overlaps by one bit. We pad B withazero,B,...B1B 30, to
match the first term in Eq. 2.61. If B has an odd number of bits, then we extend the
sgn:B,B,...B1B0. For example, B = 01011 (eleven), encodesto E=1 11 (16
4 1);andB =101isE=11. Thisiscaled Booth encoding and reduces the number of

partial products by afactor of two and thus considerably reduces the areaas well as
increasing the speed of our multiplier [Booth, 1951].

Next we turn our attention to improving the speed of addition in the CSA array.



Figure 2.28(a) shows a section of the 6-bit array multiplier from Figure 2.27. We can
collapse the chain of adders a0 5 (5 adder delays) to the Wallace tree consisting of
adders 5.1 5.4 (4 adder delays) shown in Figure 2.28(b).
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FIGURE 2.27 Tree-based multiplication. (a) The portion of Figure 2.27 that calculates
the sum bit, P, using a chain of adders (cells a0 f5). (b) We can collapse this chain to

aWallacetree (cells 5.1 5.5). (c) The stages of multiplication.

Figure 2.28(c) pictorialy represents multiplication as a sort of golf course. Each link
corresponds to an adder. The holes or dots are the outputs of one stage (and the inputs
of the next). At each stage we have the following three choices: (1) sum three outputs
using afull adder (denoted by a box enclosing three dots); (2) sum two outputs using a
half adder (a box with two dots); (3) pass the outputs directly to the next stage. The two
outputs of an adder are joined by adiagonal line (full adders use black dots, half adders
white dots). The object of the game isto choose (1), (2), or (3) at each stage to
maximize the performance of the multiplier. In tree-based multipliers there are two
ways to do this working forward and working backward.

In aWallace-tree multiplier we work forward from the multiplier inputs, compressing
the number of signals to be added at each stage [Wallace, 1960]. We can view an FA as
a 3:2 compressor or (3, 2) counter it counts the number of '1's on the inputs. Thus, for
example, an input of 101" (two '1's) resultsin an output '10' (2). A half adder isa (2, 2)
counter . To form P in Figure 2.29 we must add 6 summands (Sgs, S14,S23, S50,
S41,and Sgy) and 4 carries from the P 4, column. We add these in stages 1 7,

compressing from 6:3:2:2:3:1:1. Notice that we wait until stage 5 to add the last carry



from column P4, and this means we expand (rather than compress) the number of

signals (from 2 to 3) between stages 3 and 5. The maximum delay through the CSA
array of Figure 2.29 is 6 adder delays. To thiswe must add the delay of the 4-bit (9
inputs) CPA (stage 7). There are 26 adders (6 half adders) plus the 4 addersin the CPA.
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FIGURE 2.28 A 6-bit Wallace-tree multiplier. The carry-save adder (CSA) requires 26
adders (cells 1 26, six are half adders). The final carry-propagate adder (CPA) consists
of 4 adder cells (27 30). The delay of the CSA is 6 adders. The delay of the CPA is4
adders.

In a Dadda multiplier (Figure 2.30) we work backward from the fina product [Dadda,
1965]. Each stage has amaximum of 2, 3, 4, 6, 9, 13, 19, . . . outputs (each successive
stageis 3/2 times larger rounded down to an integer). Thus, for example, in

Figure 2.28(d) we require 3 stages (with 3 adder delays plus the delay of a 10-bit output
CPA) for a6-bit Dadda multiplier. There are 19 adders (4 half adders) in the CSA plus
the 10 adders (2 half adders) in the CPA. A Dadda multiplier is usually faster and
smaller than a Wallace-tree multiplier.
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FIGURE 2.29 The 6-bit Dadda multiplier. The carry-save adder (CSA) requires 20
adders (cells 1 20, four are half adders). The carry-propagate adder (CPA, cells 21 30)
iIsaripple-carry adder (RCA). The CSA issmaller (20 versus 26 adders), faster (3
adder delays versus 6 adder delays), and more regular than the Wallace-tree CSA of
Figure 2.29. The overall speed of thisimplementation is approximately the same as the
Wallace-tree multiplier of Figure 2.29; however, the speed may be increased by
substituting a faster CPA.

In general, the number of stages and thus delay (in units of an FA delay excluding the
CPA) for an n -bit tree-based multiplier using (3, 2) countersis
log;sn=logjpn/logip1.5=10g10n/0.176.(2.64)

Figure 2.31(a) shows how the partial-product array is constructed in a conventional
4-bit multiplier. The Ferrari Stefanelli multiplier (Figure 2.31b) nests multipliersthe
2-bit submultipliers reduce the number of partial products [Ferrari and Stefanelli,
1969].
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FIGURE 2.30 Ferrari Stefanelli multiplier. (a) A conventional 4-bit array multiplier
using AND gates to cal culate the summands with (2, 2) and (3, 2) counters to sum the
partial products. (b) A 4-bit Ferrari Stefanelli multiplier using 2-bit submultipliersto
construct the partial product array. (c) A circuit implementation for an inverting 2-bit
submultiplier.



There are several issuesin deciding between parallel multiplier architectures:

1. Sinceitiseaser to fold triangles rather than trapezoids into squares, a
Wallace-tree multiplier is more suited to full-custom layout, but is slightly larger,
than a Dadda multiplier both are less regular than an array multiplier. For
cell-based ASICs, a Dadda multiplier is smaller than a Wallace-tree multiplier.

2. Theoverall multiplier speed does depend on the size and architecture of the final
CPA, but this may be optimized independently of the CSA array. Thismeansa
Dadda multiplier is aways at |east as fast as the Wallace-tree version.

3. The low-order bits of any parallel multiplier settle first and can be added in the
CPA before the remaining bits settle. This allows multiplication and the fina
addition to be overlapped in time.

4. Any of the parallel multiplier architectures may be pipelined. We may also use a
variably pipelined approach that tailors the register locations to the size of the
multiplier.

5. Using (4, 2), (5, 3), (7, 3), or (15, 4) counters increases the stage compression
and permits the size of the stages to be tuned. Some ASIC cell libraries contain a
(7, 3) counter a 2-bit full-adder . A (15, 4) counter is a 3-bit full adder. Thereisa
trade-off in using these counters between the speed and size of the logic cells and
the delay aswell as area of the interconnect.

6. Power dissipation is reduced by the tree-based structures. The simplified
carry-save logic produces fewer signal transitions and the tree structures produce
fewer glitches than a chain.

7. None of the multiplier structures we have discussed take into account the
possibility of staggered arrival times for different bits of the multiplicand or the
multiplier. Optimization then requires a logic-synthesis tool.

2.6.5 Other Arithmetic Systems

There are other schemes for addition and multiplication that are useful in special
circumstances. Addition of numbers using redundant binary encoding avoids carry
propagation and is thus potentially very fast. Table 2.13 shows the rules for addition
using an intermediate carry and sum that are added without the need for carry. For
example,

binary decimal redundant binary CSD vector

1010111 87 10101001 10101001 addend
+ 1100101 101 + 11100111 + 01100101  augend
01001110 = 11001100 intermediate sum

11000101 11000000 intermediate carry
=10111100=188 111000100 101001100 sum

TABLE 2.13 Redundant binary addition.

I ntermediate Intermediate
A[T1]B[i]A[I 1] B[i 1]

sum carry
1 1 X X 0 1

1 0 A[i 1=0/1andB[i 1]=0/11 0



0 1 Ali 1]=1lorB[i 1]=1 1 1
1 1 X X 0 0
1 1 X X 0 0
0 0 X X 0 0
0 1 A[i 1]=0/1andB[i 1]=0/1 1 1
1 0 A[i 1]=1orB[i 1]=1 1 0
1 1 X X 0 1

The redundant binary representation is not unique. We can represent 101 (decimal), for
example, by 1100101 (binary and CSD vector) or 1 1 100111. As another example, 188
(decimal) can be represented by 10111100 (binary), 1 1 1000 1 00, 101 00 1 100, or 10
1 000 1 00 (CSD vector). Redundant binary addition of binary, redundant binary, or
CSD vectors does not result in a unigue sum, and addition of two CSD vectors does not
result in a CSD vector. Each n -bit redundant binary number requires a rather wasteful
2 n -bit binary number for storage. Thus 10 1 is represented as 010010, for example
(using sign magnitude). The other disadvantage of redundant binary arithmetic is the
need to convert to and from binary representation.

Table 2.14 shows the (5, 3) residue number system . Asan example, 11 (decimal) is
represented as [1, 2] residue (5, 3) since 11R5=11mod5=1and 11R 3 =11 mod 3 =
2. The size of this systemisthus 3 ¥ 5 = 15. We add, subtract, or multiply residue
numbers using the modulus of each bit position without any carry. Thus:

4 4,1 122,00 3 [3,0]

+ 7 +[2,1] 4-[4,1 ¥ 4¥% [4,1]]

=11=[1,2]=8=[3,2]=12=[2,0]

TABLE 2.14 The 5, 3 residue number system.
nresidue 5residue 3nresidue 5residue 3n residue 5residue 3

00 0 50 2 100 1
11 1 61 0 111 2
22 2 72 1 122 0
33 0 83 2 133 1
44 1 94 0 144 2

The choice of moduli determines the system size and the computing complexity. The
most useful choices are relative primes (such as 3 and 5). With p prime, numbers of the
form2Pand 2P 1 areparticularly useful (2P 1 are Mersenne s numbers) [Waser and
Flynn, 1982].

2.6.6 Other Datapath Operators

Figure 2.32 shows symbols for some other datapath elements. The combinational
datapath cells, NAND, NOR, and so on, and sequential datapath cells (flip-flops and
latches) have standard-cell equivalents and function identically. | use abold outline (1
point) for datapath cellsinstead of the regular (0.5 point) line | use for scalar symbols.
We call aset of identical cells avector of datapath elements in the same way that a bold
symbol, A , represents a vector and A represents a scalar.
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FIGURE 2.31 Symbols for datapath elements. (a) An array or vector of flip-flops (a
register). (b) A two-input NAND cell with databus inputs. (¢) A two-input NAND cell
with a control input. (d) A buswide MUX. (e) An incrementer/decrementer. (f) An
all-zeros detector. (g) An all-ones detector. (h) An adder/subtracter.

A subtracter is similar to an adder, except in afull subtracter we have aborrow-in
signal, BIN; aborrow-out signal, BOUT; and a difference signal, DIFF:

DIFF =A « NOT(B) » NOT( BIN)
SUM(A, NOT(B), NOT(BIN)) (2.65)
NOT(BOUT) =A - NOT(B) + A - NOT(BIN) + NOT(B) - NOT(BIN)
MAJNOT(A), B, NOT(BIN)) (2.66)

These equations are the same as those for the FA (Egs. 2.38 and 2.39) except that the B
input isinverted and the sense of the carry chainisinverted. To build a subtracter that
calculates (A B) weinvert the entire B input bus and connect the BIN[O] input to
VDD (not to VSS aswe did for CIN[Q] in an adder). As an example, to subtract B =
'0011' from A ='1001' we calculate '1001' + '1100" + '1' ='0110". Aswith an adder, the
true overflow is XOR(BOUT[MSB], BOUT[MSB 1])).

We can build aripple-borrow subtracter (atype of borrow-propagate subtracter), a
borrow-save subtracter, and a borrow-select subtracter in the same way we built these
adder architectures. An adder/subtracter has a control signal that gates the A input with
an exclusive-OR cell (forming a programmable inversion) to switch between an adder
or subtracter. Some adder/subtracters gate both inputs to allow usto compute (A B).
We must be careful to connect the input to the LSB of the carry chain (CIN[Q] or
BIN[0]) when changing between addition (connect to VSS) and subtraction (connect to
VDD).

A barrel shifter rotates or shifts an input bus by a specified amount. For example if we
have an eight-input barrel shifter with input '1111 0000' and we specify a shift of

‘0001 0000' (3, coded by bhit position) the right-shifted 8-bit output is'0001 1110'. A
barrel shifter may rotate left or right (or switch between the two under a separate
control). A barrel shifter may also have an output width that is smaller than the input.
To use asimple example, we may have an 8-hit input and a 4-bit output. This situation
Is equivalent to having a barrel shifter with two 4-bit inputs and a 4-bit output. Barrel
shifters are used extensively in floating-point arithmetic to align (we call this normalize
and denormalize) floating-point numbers (with sign, exponent, and mantissa).



A leading-one detector is used with anormalizing (left-shift) barrel shifter to align
mantissas in floating-point numbers. Theinput isan n -bit bus A, the output is an n -bit
bus, S, with asingle'l' in the bit position corresponding to the most significant '1' in
the input. Thus, for example, if theinput is A ='0000 0101 the leading-one detector
output is S ="0000 0100, indicating the leading onein A isin bit position 2 (bit 7 isthe
MSB, bit zero isthe LSB). If we feed the output, S, of the leading-one detector to the
shift select input of anormalizing (left-shift) barrel shifter, the shifter will normalize
theinput A. In our example, with an input of A ='0000 0101', and a left-shift of S=
‘0000 0100, the barrel shifter will shift A left by five bits and the output of the shifter is
Z ='1010 0000'. Now that Z is aligned (with the MSB equal to '1") we can multiply Z
with another normalized number.

The output of a priority encoder is the binary-encoded position of the leading onein an
input. For example, with an input A ='0000 0101' the leading 1 isin bit position 3
(MSB ishit position 7) so the output of a 4-bit priority encoder would be Z ='0011' (3).
In some cell libraries the encoding is reversed so that the MSB has an output code of
zero, inthis case Z ='0101' (5). This second, reversed, encoding schemeis useful in
floating-point arithmetic. If A isamantissaand we normalize A to '1010 0000' we have
to subtract 5 from the exponent, this exponent correction is equal to the output of the
priority encoder.

An accumulator is an adder/subtracter and aregister. Sometimes these are combined
with amultiplier to form amultiplier accumulator (MAC ). An incrementer adds 1 to
theinput bus, Z = A + 1, so we can use this function, together with aregister, to negate
atwo s complement number for example. The implementationisZ[ i ] = XOR(A[ i ],
CIN[i]),and COUT[i] =AND(A[ i ], CIN[ i ]). The carry-in control input, CIN[O],
thus acts as an enable: If it isset to '0' the output is the same as the inpui.

The implementation of arithmetic cellsis often alittle more complicated than we have
explained. CMOS logic is naturally inverting, so that it is faster to implement an
incrementer as

Z[ i (even)] = XOR(A[ i ], CIN[ i ]) and COUT] i (even)] = NAND(A[ i ], CIN[ i ).

Thisinverts COUT, so that in the following stage we must invert it again. If we push an
inverting bubble to the input CIN we find that:

Z[ i (odd)] = XNOR(A[ i ], CIN[ i ]) and COUT] i (even)] = NOR(NOT(A[ i ]), CIN[ i
D-

In many datapath implementations all odd-bit cells operate on inverted carry signals,
and thus the odd-bit and even-bit datapath elements are different. In fact, all the adder
and subtracter datapath elements we have described may use this technique. Normally
thisis completely hidden from the designer in the datapath assembly and any output
control signals are inverted, if necessary, by inserting buffers.

A decrementer subtracts 1 from the input bus, the logical implementationisZ[ i ] =
XOR(A[1],CIN[i]) and COUT[i] =AND(NOT(A[i]),CIN[i]). The
implementation may invert the odd carry signals, with CIN[Q] again acting as an
enable.

An incrementer/decrementer has a second control input that gates the input, inverting



the input to the carry chain. This has the effect of selecting either the increment or
decrement function.

Using the all-zeros detectors and all-ones detectors , remember that, for a 4-bit number,
for example, zero in ones complement arithmeticis'1111' or ‘0000, and that zero in
signed magnitude arithmetic is '1000' or ‘0000

A register file (or scratchpad memory) is abank of flip-flops arranged across the bus;
sometimes these have the option of multiple ports (multiport register files) for read and
write. Normally these register files are the densest logic and hardest to fit in a datapath.
For large register filesit may be more appropriate to use a multiport memory. We can
add control logic to aregister file to create afirst-in first-out register ( FIFO ), or last-in
first-out register (LIFO).

In Section 2.5 we saw that the standard-cell version and gate-array macro version of the
sequentia cells (latches and flip-flops) each contain their own clock buffers. The
reason for thisisthat (without intelligent placement software) we do not know where a
standard cell or a gate-array macro will be placed on a chip. We also have no idea of
the condition of the clock signal coming into a sequential cell. The ability to place the
clock buffers outside the sequential cellsin a datapath gives us more flexibility and
saves space. For example, we can place the clock buffersfor all the clocked elements at
the top of the datapath (together with the buffers for the control signals) and river route
(inriver routing the interconnect lines all flow in the same direction on the same layer)
the connections to the clock lines. This saves space and allows us to guarantee the
clock skew and timing. It may mean, however, that there is a fixed overhead associated
with a datapath. For example, it might make no sense to build a 4-bit datapath if the
clock and control buffers take up twice the space of the datapath logic. Some tools
allow usto design logic using a portable netlist . After we complete the design we can
decide whether to implement the portable netlist in a datapath, standard cells, or even a
gate array, based on area, speed, or power considerations.




2.7 1/0 Cells

Figure 2.33 shows a three-state bidirectional output buffer (Tri-State® isa
registered trademark of National Semiconductor). When the output enable (OE)
signal is high, the circuit functions as a noninverting buffer driving the value of
DATAIn onto the I/O pad. When OE is low, the output transistors or drivers, M1
and M2, are disconnected. This allows multiple drivers to be connected on a bus.
It is up to the designer to make sure that a bus never has two drivers a problem
known as contention .

In order to prevent the problem opposite to contention a bus floating to an
intermediate voltage when there are no bus drivers we can use a bus keeper or
bus-hold cell (TI callsthis Bus-Friendly logic). A bus keeper normally acts like
two weak (low drive-strength) cross-coupled inverters that act as alatch to retain
the last logic state on the bus, but the latch is weak enough that it may be driven
easily to the opposite state. Even though bus keepers act like latches, and will
simulate like latches, they should not be used as latches, since their drive strength
IS weak.

Transistors M1 and M2 in Figure 2.33 have to drive large off-chip loads. If we
wish to change the voltage on aC = 200 pF load by 5V in5 ns (aslew rate of 1
Vns 1) wewill require acurrent in the output transistors of | pg=C(dV /dt) =

(200¥ 10 12) (5/5¥ 10 9) = 0.2 A or 200 mA.

Such large currents flowing in the output transistors must aso flow in the power
supply bus and can cause problems. There is always some inductance in series
with the power supply, between the point at which the supply entersthe ASIC
package and reaches the power bus on the chip. The inductance is due to the bond
wire, lead frame, and package pin. If we have a power-supply inductance of 2 nH
and a current changing from zeroto 1 A (32 1/0 cells on a bus switching at 30
mA each) in 5 ns, we will have a voltage spike on the power supply (called
power-supply bounce) of L (d1/dt)=(2¥10 9)(1/(5¥10 %)) =04 V.

We do several things to alleviate this problem: We can limit the number of
simultaneously switching outputs (SSOs), we can limit the number of 1/O drivers
that can be attached to any one VDD and GND pad, and we can design the output
buffer to limit the slew rate of the output (we call these slew-rate limited 1/0
pads). Quiet-1/0 cells also use two separate power supplies and two sets of 1/0
drivers: an AC supply (clean or quiet supply) with small AC driversfor thel/O
circuits that start and stop the output slewing at the beginning and end of a output
transition, and a DC supply (noisy or dirty supply) for the transistors that handle



large currents as they slew the output.

The three-state buffer allows us to employ the same pad for input and output
bidirectional I/0 . When we want to use the pad as an input, we set OE low and
take the datafrom DATAIN. Of courseg, it is not necessary to have all these
features on every pad: We can build output-only or input-only pads.

Iﬁl:-rp core VoD
FIGURE 2.32 A three-state bidirectional L:EE'L., MO M
output buffer. When the output enable, :)-3—4 v
I2
NE

OE, is'1' the output section is enabled Shable

and drivesthe /O pad. When OE is'0' q
the output buffer isplaced in a

high-impedance state. e HRT L

-_y—
to cave I
logic:

We can also use many of these output cell features for input cells that have to
drive large on-chip loads (a clock pad cell, for example). Some gate arrays
simply turn an output buffer around to drive a grid of interconnect that supplies a
clock signal internally. With atypical interconnect capacitance of 0.2pFcm 1, a
grid of 100 cm (consisting of 10 by 10 lines running all the way acrossa 1 cm
chip) presents aload of 20 pF to the clock buffer.

Some librariesinclude I/O cells that have passive pull-ups or pull-downs
(resistors) instead of the transistors, M1 and M2 (the resistors are normally still
constructed from transistors with long gate lengths). We can also omit one of the
driver transistors, M1 or M2, to form open-drain outputs that require an externa
pull-up or pull-down. We can design the output driver to produce TTL output
levels rather than CMOS logic levels. We may also add input hysteresis (using a
Schmitt trigger) to the input buffer, 11 in Figure 2.33, to accept input data signals
that contain glitches (from bouncing switch contacts, for example) or that are
slow rising. The input buffer can aso include alevel shifter to accept TTL input
levels and shift the input signal to CMOS levels.

The gate oxide in CMOS transistors is extremely thin (100 A or less). This leaves
the gate oxide of the I/O cell input transistors susceptible to breakdown from
static electricity ( electrostatic discharge, or ESD ). ESD arises when we or
machines handle the package leads (like the shock | sometimes get when | touch
a doorknob after walking across the carpet at work). Sometimes this problem is
called electrical overstress (EOS) since most ESD-related failures are caused not
by gate-oxide breakdown, but by the thermal stress (melting) that occurs when
the n -channel transistor in an output driver overheats (melts) dueto the large
current that can flow in the drain diffusion connected to a pad during an ESD
event.



To protect the 1/0 cells from ESD, the input pads are normally tied to device
structures that clamp the input voltage to below the gate breakdown voltage
(which can be aslow as 10 V with a 100 A gate oxide). Some /O cells use
transistors with a special ESD implant that increases breakdown voltage and
provides protection. 1/O driver transistors can also use elongated drain structures
(ladder structures) and large drain-to-gate spacing to help limit current, but in a
salicide process that lowers the drain resistance thisis difficult. One solutionisto
mask the 1/0O cells during the salicide step. Another solution isto use pnpn and
npnp diffusion structures called silicon-controlled rectifiers (SCRs) to clamp
voltages and divert current to protect the I/O circuits from ESD.

There are several ways to model the capability of an 1/O cell to withstand EOS.
The human-body model ( HBM ) represents ESD by a 100 pF capacitor
discharging through a 1.5 k W resistor (thisis an International Electrotechnical
Committee, IEC, specification). Typical voltages generated by the human body
areintherange of 2 4 kV, and we often see an 1/0 pad cell rated by the voltage it
can withstand using the HBM. The machine model ( MM ) represents an ESD
event generated by automated machine handlers. Typical MM parameters use a
200 pF capacitor (typically charged to 200 V) discharged through a 25 W
resistor, corresponding to apeak initial current of nearly 10 A. The charge-device
model ( CDM , aso called device charge discharge) represents the problem when
an |C package is charged, in a shipping tube for example, and then grounded. If
the maximum charge on a package is 3 nC (atypical measured figure) and the
package capacitance to ground is 1.5 pF, we can simulate this event by charging a
1.5 pF capacitor to 2 kV and discharging it through a 1 W resistor.

If the diffusion structuresin the 1/O cells are not designed with care, it is possible
to construct an SCR structure unwittingly, and instead of protecting the
transistors the SCR can enter amode where it is latched on and conducting large
enough currents to destroy the chip. Thisfailure modeis called latch-up .
Latch-up can occur if the pn -diodes on a chip become forward-biased and inject
minority carriers (electronsin p -type material, holesin n -type material) into the
substrate. The source substrate and drain substrate diodes can become
forward-biased due to power-supply bounce or output undershoot (the cell
outputs fall below V gg) or overshoot (outputs rise to greater than V pp ) for

example. These injected minority carriers can travel fairly large distances and
interact with nearby transistors causing latch-up. 1/O cells normally surround the
I/O transistors with guard rings (a continuous ring of n -diffusion in an n -well
connected to VDD, and aring of p -diffusion in ap -well connected to VSS) to
collect these minority carriers. Thisis a problem that can aso occur in the logic
core and thisis one reason that we normally include substrate and well
connections to the power suppliesin every cell.




2.8 Cell Compilers

The process of hand crafting circuits and layout for afull-custom IC is atedious,
time-consuming, and error-prone task. There are two types of automated layout
assembly tools, often known as a silicon compilers . Thefirst type produces a
specific kind of circuit,aRAM compiler or multiplier compiler , for example.
The second type of compiler is more flexible, usually providing a programming
language that assembles or tiles layout from an input command file, but thisis
full-custom IC design.

We can build aregister file from latches or flip-flops, but, at 4.5 6.5 gates (18 26
transistors) per bit, thisis an expensive way to build memory. Dynamic RAM
(DRAM) can use acell with only one transistor, storing charge on a capacitor
that has to be periodically refreshed as the charge leaks away. ASIC RAM is
invariably static (SRAM), so we do not need to refresh the bits. When we refer to
RAM in an ASIC environment we amost aways mean SRAM. Most ASIC
RAMs use asix-transistor cell (four transistors to form two cross-coupled
inverters that form the storage loop, and two more transistors to allow us to read
from and write to the cell). RAM compilers are available that produce single-port
RAM (asingle shared bus for read and write) as well as dual-port RAMs, and
multiport RAMs. In amulti-port RAM the compiler may or may not handle the
problem of address contention (attempts to read and write to the same RAM
address simultaneously). RAM can be asynchronous (the read and write cycles
are triggered by control and/or address transitions asynchronous to a clock) or
synchronous (using the system clock).

In addition to producing layout we also need a model compiler so that we can
verify the circuit at the behavioral level, and we need a netlist from a netlist
compiler so that we can simulate the circuit and verify that it works correctly at
the structural level. Silicon compilers are thus complex pieces of software. We
assume that a silicon compiler will produce working silicon even if every
configuration has not been tested. Thisis still ASIC design, but now we are
relying on the fact that the tool works correctly and therefore the compiled blocks
are correct by construction .




2.9 Summary

The most important concepts that we covered in this chapter are the following:
« Theuse of transistors as switches
« The difference between flip-flop and a latch
« Themeaning of setup time and hold time
« Pipelinesand latency
« The difference between datapath, standard-cell, and gate-array logic cells
« Strong and weak logic levels
« Pushing bubbles
« Ratioof logic
« Resistance per square of layers and their relative valuesin CMOS
o Designrulesand |




2.10 Problems

* = Difficult,** = Very difficult, *** = Extremely difficult

2.1 (Switches, 20 min.) (a) Draw acircuit schematic for atwo-way light switch:
flipping the switch at the top or bottom of the stairs reverses the state of two light
bulbs, one at the top and one at the bottom of the stairs. Y our schematic should
show and label al the cables, switches, and bulbs. (b) Repeat the problem for
three switches and one light in awarehouse.

2.2 (Logic, 10 min.) The queen wished to choose her successor wisely. She
blindfolded and then placed a crown on each of her three children, explaining that
there were three red and two blue crowns, and they must deduce the color of their
own crown. With blindfolds removed the children could see the two other
crowns, but not their own. After awhile Anne said: My crownisred. How did
she know?

2.3 (Minus signs, 20 min.) The channel charge in an n -channel transistor is
negative. (a8) Should there not be aminus signin Eg. 2.5 to account for this? (b)

If so, then where in the derivation of Section 2.1 does the minus sign disappear
to arrive at Eg. 2.9 for the current in an n -channel transistor? (c) The equations
for the current in ap -channel transistor (Eg. 2.15) have the opposite sign to those
for an n -channd transistor. Where in the derivation in Section 2.1 does the extra
minus sign arise?

I 0.2pm, 20,20 mch.
1
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FIGURE 2.33 Transistor characteristics for a Ay
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2.4 (Transistor curves, 20 min.) Figure 2.34 showsthe measured | ps V pg

characteristics for a 20/20 n -channel transistor in a0.3 m m (effective gate
length) process from an ASIC foundry. Derive as much information as you can
from thisfigure.

2.5 (Body effect, 20 min). The equations for the drain source current (2.9, 2.12,



and 2.15) do not contain V g , the source voltage with respect to the bulk,

because we assumed that it was zero. Thisis not true for the n -channel transistor
whose drain is connected to the output in atwo-input NAND gate, for example.
A reverse substrate bias (or back-gate bias; V gg > 0 for an n -channel transistor)

makes the bulk act like a second gate (the back gate) and modifies an n -channel
transistor threshold voltage as follows:

Vin=Viwontdl (fotVss) fol.(267)

whereV ; g ,ismeasured withV qg = 0 V; f  is called the surface potential; and
g (gamma) is the body-effect coefficient (back-gate bias coefficient),

gd= (2geg N )/C . (2.68)

There are severa aternative names and symbolsfor f o ( phi, apositive quantity
for an n -channel transistor, typically between 0.6 0.7 V) you may also seef , (for
bulk potential) or 2 f  (twice the Fermi potential, a negative quantity). In

Eqg. 2.68,eg =ege, =1.053¥ 10 10 Fm 1isthe permittivity of silicon (the
permittivity of avacuum e 5 =8.85¥ 10 12 Fm 1 and the relative permittivity of
siliconise, =11.7); N , isthe acceptor doping concentration in the bulk (for p
-type substrate or well N p for the donor concentration in an n -type substrate or
well); and C , isthe gate capacitance per unit area given by

Cox=€ox /T ox - (2.69)
. a Calculate the theoretical valueof gfor N o =1016cm 3, T ,, = 100 A.

« b. Calculate and plot V ¢ , for V gg ranging from 0 V to 5V in increments
of 1V assumingvaluesof =05V 05, f,=06V,andV x, =05V
obtained from transistor characteristics.

o C.Fitalinear approximationtoV .

« d. RecognizingV g £0V, rewrite Eq. 2.67 for ap -channel device.

« e. (Harder) What effect does the back-gate bias effect have on CMOS logic
circuits?

Answer: (a) 0.17V 05(b) 0.50 1.3V.

2.6 (Sizing layout, 10 min.) Stating clearly whatever assumptions you make and
describing the tools and methods you use, estimate the size (in| ) of the standard
cell shown in Figure 1.3. Estimate the size of each of the transistors, giving their
channel lengths and widths (stating clearly which iswhich).

2.7 (CMOS process) (20 min.) Table 2.15 shows the major stepsinvolved in a
typical deep submicron CMOS process. There are approximately 100 major steps
in the process.

. a |If each mgjor step hasayield of 0.9, what is the overall processyield?



b. If the process yield is 90 % (not uncommon), what is the average yield
at each mgjor step?

c. If each of the mgjor stepsin Table 2.15 consists of an average of five
other microtasks, what is the average yield of each of the 500 microtasks.

d. Suppose, for example, an operator loads and unloads a furnace five
times aday as a microtask, how many days must the operator work without
making a mistake to achieve this microtask yield?

e. Does this seem reasonable? What is wrong with our model?

f. (**60 min.) Draw the process cross-section showing, in particular, the
poly, FOX, gate oxide, IMOs and metal layers. Y ou may have to make
some assumptions about the meanings and functions of the various steps
and layers. Assume all layers are deposited on top of each other according
to the thicknesses shown (do not attempt to correct for the silicon
consumed during oxidation even if you understand what this means). The
abbreviationsin Table 2.15 are as follows: dep. = deposition; LPCVD =
low-pressure chemical vapor deposition (for growing oxide and poly);
LDD = lightly doped drain (away to improve transistor characteristics);
SOG = silicon overglass (a deposited quartz to help with step coverage
between metal layers).

TABLE 2.15 CMOS process steps (Problem 2.7). 1

Step Depth  Step Depth  Step Depth
1 substrate 32 resist strip 63 m1 mask
2 oxideldep. 500 33WS anned 64 ml etch
3 g'etg'de 1 1500 34nLDD mask 65 resist strip
4 n-well mask 35nLDD implant 66 3? oxide a0
5 n-well etch 36 resist strip 67 SOG coatl/2 3000
n-well SOG
6 {mplant 37 pLDD mask 68 ey 4000
7 resist strip 38 pLDD implant 69 ggg oxide 4509
g DIOCKINg 5404 39 resist strip 70 vial mask
oxide dep.
g Nitricel ap P OXIde 5500 71 viatetch 2500
strip dep.
10 P-well 41 WSi anneal 72 resist rip
implant
11 p-well drive 42 SD oxidedep 200 73 TiW dep. 2000
12 active oxide 250 43t mask 74 AlICU/TIW 4000

dep. dep.



nitride 2

13 dep 1500 44 n+ implant 75 m2 mask
14 active mask 45 resist strip 76 m2 etch
15 active etch 46 ESD mask 77 resist strip
16 resist strip 47 ESD implant 78 3? oxide  ga0g
17 field mask 48 resist strip 79 SOG coat 1/2 3000
o SOG
18 field implant 49 p+ mask 0 cureletch 4000
19 resist strip 50 p+ implant 81 g‘zg oxide 4000
20 g:'pd oxide 5500 51 resist strip 82 via2 mask
210" I'Ode 2 52 implant anneal 83via2etch 2500
gpsrificial o) s LPCVD oxide 150, g4 et sirip
oxide dep. dep.
Vt adjust BPSG |
23| o 5 Gep/densify 000 85TiWdep. 2000
24 ACOXITE gy 5p ontact mask g6 MCUTIW 4600
dep. dep.
25 LPCVD 1500 56 contact etch 2500 87 m3 mask
poly dep.
26 deglaze 57 resist strip 88 m3 etch
27 WS dep. 1500 58 Pt dep. 200 89resist strip
2g-PCVD 25y 5o bt sinter 9oxidedep. 4000
oxide dep.
29 poly mask 60 Pt strip 92 nitridedep. 10,000
30 oxide etch 61 TiW dep. 2000 93 pad mask
31 gtoc'%’ cide 62 AICWTiW dep. 4000 94 pad etch

Answer: (a) Zero. (b) 0.999. (c) 0.9998. (d) 3 years.

2.8 (Stipple patterns, 30 min.)

« a. Check the stipple patternsin Figure 2.9. Using ruled paper draw 8-by-8
stipple patterns for al the combinations of layers shown.

o b. Repeat part afor Figure 2.10.
2.9 (Select, 20 min.) Can you draw a design-rule correct (according to the design

rulesin Tables 2.7 2.9) layout with a piece of select that has a minimum width of
21 (rule4.4)?



2.10 (*Inverter layout, 60 min.) Using 1/4-inch ruled paper (or similar) draw a
minimum-size inverter (W/L = 1 for both p -channel and n -channel transistors).
Use ascale of one squareto 2 | and the design rulesin Table 2.7 Table 2.9. Do
not use m2 or m3 only m1. Draw the nwell, pwell, ndiff, and pdiff layers, but not
the implant layers or the active layer. Include connections to the input, output,
VDD, and VSSin ml. There must be at least one well connection to each well ( n
-well to VDD, and p -well to VSS). Minimize the size of your cell BB. Draw the
BB outline and writeitssizein | 2 on your drawing. Use green diagonal stripes
for ndiff, brown diagonal stripesfor pdiff, red diagonal stripesfor poly, blue
diagonal stripesfor m1, solid black for contact). Include akey on your drawing,
and clearly label the input, output, VDD, and VSS contacts.

2.11 (*AOI221 Layout, 120 min.) Layout the AOI221 shown in Figure 2.13 with
the design rules of Tables 2.7 2.9 and using Figure 1.3 asaguide. Label clearly
the m1 corresponding to the inputs, output, VDD bus, and GND (VSS) bus.
Remember to include substrate contacts. What isthe size of your BB in| 2 ?

2.12 (Resistance, 20 min.)

« a Using the values for sheet resistance shown in Table 2.3, calculate the
resistance of a200 | long (in the direction of current flow) by 3| wide
piece of each of the layers.

« b. Estimate the resistance of an 8-inch, 10 W cm, p -type, <100> wafer,
measured (i) from edge to edge across a diameter and (ii) from face center
to the face center on the other side.

2.13 (*Layout graphics, 120 min.) Write atutorial for capturing layout. As an
example:

To capture EPSF (encapsulated PostScript format) from Tanner Research s
L-Edit for documentation, Macintosh version... Create a black-and-white
technology file, use Setup, Layers..., in L-Edit. The method described here does
not work well for grayscale or color. Use File, Print..., Destination check button
Fileto print from L-Edit to an EPS (encapsul ated PostScript) file. After you
choose Save, adialog box appears. Select Format: EPS Enhanced Mac Preview,
ASCII, Level 1 Compatible, Font Inclusion: None. Save the file. Switch to
Frame. Create an Anchored Frame. Use File, Import, File... to bring up adialog
box. Check button Copy into Document, select Format: EPSF. Import the EPS
file that will appear asa page image . Grab the graphic inside the Anchored
Frame and move the page image around. There will be afooter with text on the
page image that you may want to hide by using the Anchored Frame edges to
crop the image.

Y our instructions should be precise, concise, assume nothing, and use the names
of menu items, buttons and so on exactly as they appear to the user. Most of the
layout figures in this book were created using L-Edit running on a Macintosh,
with labels added in FrameMaker. Most of the layouts use the Compass |ayout
editor.



2.14 (Transistor resistance, 20 min.) Calculate | o5 and the resistance (the DC
valueV pg/ | pgaswell asthe ACvalue V pg/ | pgasappropriate) of

long-channel transistors with the following parameters, under the specified
conditions. In each case state whether the transistor is in the saturation region,
linear region, or off:

(i) n-channel: V {,=05V,b,=40mAV 2:

Vgs=33ViaVps=33Vh Vps=00VeVgs=00V,V ps=33V
(i) p-channel: V { ,= 06V, b,=20mAV 2:
Vgs=00V:aVps=00Vh.Vps=50VcVgs=50V,Vps= 50V

2.15 (Circuit theory, 15 min.) You accidentally created the inverter shownin
Figure 2.35 on afull-custom ASIC currently being fabricated. Will it work? Y our
manager wants ayes or no answer. Y our group is alittle more understanding:

Y ou are to make a presentation to them to explain the problems ahead. Prepare
two foilsaswell as aone page list of alternatives and recommendations.

VDD
FIGURE 2.34 A CMOS inverter with n-channel and p
-channel transistors swapped (Problem 2.15). iij F

2.16 (Mask resolution, 10 min.) People use LaserWriters to make printed-circuit
boards al the time.

o a Doyouthink it is possible to make an IC mask using a 600 dpi (dots per
inch) LaserWriter and atransparency?

e« b. What would | be?

 C. (Harder) Seeif you can use a microscope to look at the dot and the
rectangular bars (serifs) of aletter 'i' from the output of a LaserWriter on
paper (most are 300 dpi or 600 dpi). Estimate | . What is causing the
problem? Why is there no rush to generate 1200 dpi LaserWriters for
paper? Put a page of this textbook under the microscope: can you see the
difference? What are the similar problems printing patterns on awafer?

2.17 (Lambda, 10 min.) Estimate |
. a foryour TV screen,
« b. for your computer monitor,
 C. (harder) a photograph.

2.18 (Pass-transistor logic, 10 min.)



a. In Figure 2.36 supposewe set A =B =C =D ="1', what is the value of
F?

b. What isthe logic strength of the signal at F?
c.IfVpp=5VandV,,=0.6V, what would the voltage at the source
and drain terminals of M1, M2, and M3 be?

d. Will thiscircuit still work if V pp =3V?

e. At what point does it stop working?

FIGURE 2.35 LM he W
_ _ LT

FIGURE 2.36 A pass transistor chain (Problem TTT

2.18). E C D

2.19 (Transistor parameters, 20 min.) Calculate the (a) electron and (b) hole
mobility for the transistor parameters givenin Section2.1if k' ;=80 mA V 2

andk' ,=40mA YV 2.
Answer: () 0.023m2V 1s1,

2.20 (Quantum behavior, 10 min.) The average thermal energy of an electron is
approximately kT , wherek = 1.38 ¥ 10 2 JK lisBoltzmannsconstant and T is
the absolute temperature in kelvin.

« a. Thekinetic energy of an electronis (1/2) mv 2, wherev isdueto
random thermal motion, and m = 9.11 ¥ 10 31 kg isthe rest mass. What is
v at 300 K?

« b. Theelectron wavelengthl =h/p,whereh=6.62%¥ 10 34 Jsisthe
Planck constant, and p = m v is the electron momentum. What is| at 25
C?

o C. Compare the thermal velocity with the saturation velocity.

« d. Compare the electron wavelength with the MOS channel length and
with the gate-oxide thicknessin a0.25 m m process and a 0.1 m m process.

2.21 (Gallium arsenide, 5 min.) The electron mobility in GaAs is about 8500 cm 2
V 1s1;thehole mobility isabout 400cm2V 1s 1. If we could make
complementary n -channel and p -channel GaAs transistors (the same way that
we do in aCMOS process) what would the ratio of a GaAs inverter be to equalize
rise and fall times? About how much faster would you expect GaAs transistors to
be than silicon for the same transistor sizes?

2.22 (Margaret of Anjou, 5min.)
« a Why isit ones complement but two s complement?
o b. Why Queen s University, Belfast but Queens College, Cambridge?



2.23 (Logic cell equations, 5 min.) Show that Eq. 2.31, 2.36, and 2.37 are correct.

2.24 (Carry-lookahead equations, 10 min.)

« a. Derive the carry-lookahead equations for i = 8. Write them in the same
form as Eq. 2.56.

« b. Derivethe equations for the Brent Kung structure for i = 8.

2.25 (OAlI cells, 20 min.) Draw acircuit schematic, including transistor sizes, for
(@ an OAI321 cdll, (b) an AOI321 cell. (c) Which do you think will be larger?

2.26 (**Making stipple patterns) Construct a set of black-and-white, transparent,
8-by-8 stipple patterns for a CMOS process in which we draw both well layers,
the active layer, poly, and both diffusion implant layers separately. Consider only
the layers up to m1 (but include m1 and the contact layer). One useful tool isthe
Apple Macintosh Control Panel, ‘General Controls," that changes the Mac desktop
pattern.

« a. (60 min.) Create a set of patterns with which you can detect any errors
(for example, n -well and p -well overlap, or n -implant and p -implant
overlap).

o b. (60 min.+) Using alayout of an inverter as an example, find a set of
patterns that allows you to trace transistors and connections (a very
qualitative goal).

« C. (Dayst) Find aset of grayscale stipple patterns that allow you to

produce layouts that ook nice in areport (much, much harder than it
sounds).

2.27 (AOI and OAI cells, 10 min.). Draw the circuit schematics for an AOI22 and
an OAI122 cell. Clearly label each transistor as on or off for each cell for an input
vector of (Al, A2, B1, B2) = (0101).

2.28 (Flip-flops and latches, 10 min.) In no more than 20 words describe the
difference between aflip-flop and alatch.

2.29 (** An old argument) Should setup and hold times appear under maximum,
minimum, or typical in a data sheet? (From Peter Alfke.)

2.30 (***Setup, 20 min.) Thereis no such thing as a setup and hold time, just
two setup timesfor a'1l' and for a'0’. Comment. (From Clemenz Portmann.)

2.31 (Subtracter, 20 min.) Show that you can rewrite the equations for afull
subtracter (Egs. 2.65 2.66) to be the same as afull adder except that A isinverted
in the borrow out equation, as follows:
DIFF =A +B+BIN

SUM(A, B, BIN) , (2.70)
BOUT =NOT(A) - B+ NOT(A) - BIN + B - BIN

MAJNOT(A), B, CIN) . (2.71)



Explain very carefully why we need to connect BIN[0] to VSS. Show that for a
subtracter implemented by inverting the B input of an adder and setting CIN[O] =
'1', the true overflow for ones complement or two s complement representations
ISXOR(CIN[MSB], CIN[MSB 1]). Does this hold for the above subtracter?

2.32 (Complex CMOS cells) Logic synthesis has completely changed the nature
of combinational logic design. Synthesis tools like to see a huge selection of cells
from which to choose in order to optimize speed or area.

e a (20 min.) How many AQOI nnnn cells are there, if the maximum value of
n=47

« b. (30 min.) Consider cells of the form AOI nnnn where n can be negative
indicating a set of inputs are inverted. Thus, an AOI-22 (where the hyphen
"' indicates the following input is inverted) isaNOR(NOR(A, B), AND(C,
D)), for example. How many logically different cells of the AOI xxxx
family arethereif x can be'-2', -1', '1', or '2' with no more than four
Inputs? Remember the AOI family includes OAI, AO, and OA cellsas
well asjust AOI. List them using an extension to the notation for a cell
with mixed-sign inputs: for example, an AO(1-1)1 cell is
NOT(NOR(AND(A, NOT(B)), C)). Hint: Be very careful because some
cellswith negative inputs are logically equivalent to others with positive
Inputs.

e C. (10 min.) If weinclude NAND and NOR cellswith inverting inputsin a
library, how many different cellsin the NAND family are there with four
or fewer inputs (the NAND family includes NOR, AND, and OR cells)?

 d. (30 min.) How many cellsin the AOI and NAND families are there with
four inputs or less that use fewer than eight transistors? Include cells that
are logically equivaent but have different physical implementations. For
example, aNAND1-1 cell, requiring six transistors, islogically equivalent
to an OR1-1 cell that requires eight transistors. The OR1-1 implementation
may be useful because the output inverter can easily be sized to produce an
OR1-1 cell with higher drive.

e € (**60 min.) How many cells are there with fewer than four inputs that
do not fit into the AOI or NAND families? Hint: Thereis an inverter, a
buffer, a half-adder, and the three-input maority function, for example.

o f.(***) Recommend a better, user-friendly, naming system (which isalso
CAD tool compatible) for combinational cells.

2.33 (**Design rules, 60 min.) A typical set of deep submicron CMOS design
rulesis shown in Table 2.16. Design rules are often confusing and use the
following buzz-words, perhapsto prevent others from understanding them.

« Theend cap isthe extension of poly gate beyond the active or diffusion.

« Overlap . Normally one material is completely contained within the other,
overlap is then the amount of the surround.

« Extension refersto the extension of diffusion beyond the poly gate.



Same (in a spacing rule) means the space to the same type of diffusion or
implant.
Opposite refers to the space to the opposite type of diffusion or implant.

A dogbone is the area surrounding a contact. Often the spacing to a
dogbone contact is allowed be dlightly less than to an isolated line.

Field isthe area outside the active regions. The field oxide (sandwiched
between the diffusion layers and the poly or m1 layers) is thicker than the
gate oxide and separates transistors.

Exact refers to contacts that are all the same size to ssimplify fabrication.

A butting contact consists of two adjacent diffusions of the opposite type
(connected with metal). This occurs when awell contact is placed next to a
source contact.

Fat metal . Some design rules use different spacing for metal linesthat are
wider than a certain amount.

a. Draw a copy of the MOSI S rules as shown in Figure 2.11, but using the
rule numbers and valuesin microns and | from Table 2.16.

b. How compatible are the two sets of rules?

TABLE 2.16 ASIC design rules (Problem 2.33). Absolute valuesin
microns are given for [ = 0.2 mm.

Layer Rule 2 mml| Layer Rule mm I
nwell N.1width 2 10 implant 1.1 width 0.6 3
N.2 sp.
(same) 1 5 1.2 sp. (same) 0.6 3
diff D.iwidth 05 25 35 todiff 55 55
(same)
D.2
transistor 0.6 3 AP0 0 0
width g
D3%. g6 3 l4ov.of diff 025 1.5
(same)
DAsp.  5g 4 |.55p. topaly 25
(opposite) on active
D.5p+
(nwell)to 2.4 12 '(f S%Sj g 03 15
n+ (pwell) PP
|.7 sp. to
D&nwell ¢ 5 butting 0 0
ov. of n+ )
implant
D.7 nwell 0.6 3 contact Clsze 04 2

sp. to p+ (exact)



D.8

extenson 06 3 C.2sp. 0.6 3
over gate
D.9 nwell
ov. of p+ 12 6 C.3polyov. 0.3 1.5
D.10 nwell C.4diff ov. (2
5. 10 N+ 12 6 sides/others) 0.25/0.35 1.25/1.75
poly P.1lwidth 04 2 C.5metal ov. 0.25 1.25
P2gae 04 2 C.6 sp. topoly 0.3 1.5
P.3 sp.
(over 06 3 C.7 poly . 05 2.5
: contact to diff
active)
P.4 sp. :
: 05 25 ml Mn.1lwidth  0.6/0.7/1.0 3/3.5/4
(over field)
P.5 short
+ Mn.2 sp. (fat
sp. 0.45 2.25 m2m3 > 251is51) 0.6/0.7/1.0 3/3.5/4
(dogbone)
Mn.3 sp.
P.6 end cap 0.45 2.25 (dogbone) 0.5 2.5
P.7 sp. to Vn.lsize
diffuson %2 1 Y1 (exact) 0.4 2
+v2/v3 Vn.2 sp. 0.8 4
Vn.3 meta 0.5 195
ov.

2.34 (ESD, 10 min.)
« a. Explain carefully why a CMOS device can withstand a 2000 V ESD

event when the gate breakdown voltageisonly 5 10 V, but that shorting a
device pintoa 10V supply can destroy it.

b. Explain why an electric shock from a 240 VAC supply can kill you, but
an 3000 VDC shock from a static charge (walking across a nylon carpet
and touching a metal doorknob) only gives you a surprise.

2.35 (*Stacksin CMOS cells, 60 min.)
o a Given aCMOS cdll of theform AOQI ijk or OAI ijk (i, j, k> 0) derive an

equation for the height (the number of transistorsin series) and the width
(the number of transistor in paralel) of the n -channel and p -channel
stacks.

b. Suppose we increase the number of indicesto four, i.e. AOI ijkl . How
do your equations change?

c. If the stack height cannot be greater than three, which three-index AOI
ijk and OAl ijk cells areillegal? Often limiting the stack height to three or
four isadesign rule for radiation-hard libraries useful for satellites.



2.36 (Duals, 20 min.) Draw the n -channel stack (including device sizes,
assuming aratio of 2) that complements the p -channel stack shown in
Figure 2.37.

AL wC

FIGURE 2.37 A p -channel stack using a bridge | Ij

device, E (Problem 2.36). —L e 7

2.37 (***FPGA conditional-sum adder, days+) A Xilinx application-note (M.
Klein, Conditional sum adder adds 16 bitsin 33 ns, Xilinx Application Brief,
Xilinx data book, 1992, p. 6-26) describes a 16-bit conditional-sum adder using
41 CLBsin three stages of addition; see also [Sklansky, 1960]. A Xilinx XC3000
or XC4000 CLB can perform any logic function of five variables, or two
functions of (the same) four variables. Can you find a solution with fewer CLBs
in three stages? Hint: R. P. Halverson of the University of Hawaii produced a
solution with 36 CLBs.

2.38 (Encoding, 10 min.) Booth s algorithm was suggested by a shortcut used by
operators of decimal calculating machines that required turning a handle. To
multiply 5 by 23 you set the levers to 5 and turned the handle three times, change
gears and turn twice more.

o a What istheequivalent of 142343 7?
« b. How many turns do we save using the shortcut?

2.39 (CSD, 20 min.)

« a Show how to convert 1010111 (decimal 87) to the CSD vector 10101
001.

o b. Convert 1000101 to the CSD vector.

e C.How doyou know that 1 1 10011 1 (decimal 101) is not the CSD vector
representation of 1100101 (decimal 101)?

1. Depths of layers are in angstroms (negative val ues are etch depths). For
abbreviations used, see Problem 2.7.

2. Sp. = space; ov. = overlap; same = same diffusion or implant type; opposite =
opposite implant or diffusion type;

diff = p+ or n+; p+ = p+ diffusion; n+ = n+ diffusion; implant = p+ or n+ implant
select.
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following conferences. Proceedings of the Symposium on Computer Arithmetic
(QA76.9.C62.595a, ISSN 1063-6889), |EEE International Conference on
Computer Design (TK7888.4.135a, ISSN 1063-6404), and the | EEE International
Solid-State Circuits Conference (TK7870.158; ISSN 0074-8587, 1960-68; | SSN
0193-6530, 1969 ). Papers on arithmetic and agorithms that are more theoretical



in nature can be found in the Journal of the Association of Computing Machinery
. Online ACM journal articles can be found at http://www.acm.org .
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ASIC LIBRARY DESIGN

Once we have decided to use an ASIC design style using predefined and
precharacterized cells from alibrary we need to design or buy acell library. Even

though it is not necessary a knowledge of ASIC library design makesit easier to
use library cells effectively.






3.1 Transistors as Resistors

In Section 2.1, CMOS Transistors, we modeled transistors using ideal switches. If this model were
accurate, logic cellswould have no delay.
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FIGURE 3.1 A model for CMOS logic delay. (a) A CMOS inverter with aload capacitance, C

. (b) Input, v(inl) , and output, v(outl) , waveforms showing the definition of the falling
propagation delay, t pps . [N this case delay is measured from the input trip point of 0.5. The output

trip points are 0.35 (falling) and 0.65 (rising). The model predictst ppt *R pg (€ + C gt )-
(c) The model for the inverter includes: the input capacitance, C ; the pull-up resistance (R )
and pull-down resistance ( R 4 ); and the parasitic output capacitance, C , .

The ramp input, v(inl) , to theinverter in Figure 3.1 (a) rises quickly fromzerotoV pp . In
response the output, v(outl) , fallsfrom V pp to zero. In Figure 3.1 (b) we measure the
propagation delay of the inverter, t pp , using an input trip point of 0.5 and output trip points of
0.35 (falling, t pps ) and 0.65 (rising, t pp, ). Initialy the n -channel transistor, m1 , is off . Asthe
input rises, m1 turns on in the saturation region (V ps>V gs V) before entering the linear
region (V ps<V gs Vn). Wemodel transistor m1 with aresistor, R oy (Figure 3.1 c); thisis
the pull-down resistance . The equivalent resistance of m2 is the pull-up resistance , R, .

Delay is created by the pull-up and pull-down resistances, R nq and R, , together with the parasitic
capacitance at the output of the cell, C , (the intrinsic output capacitance ) and the load capacitance
(or extrinsic output capacitance), C o (Figure 3.1 c). If we assume a constant value for R q , the
output reaches alower trip point of 0.35 when (Figure 3.1 b),

U pof
035V DD =V DD €Xp . (31)
de(Cout"'Cp)

An output trip point of 0.35 is convenient because In (1/0.35) = 1.04 21 and thus
tppf = de(Cout+Cp) In(1/0-35)ade(Cout+Cp) (3.2

The expression for the rising delay (with a 0.65 output trip point) isidentical in form. Delay thus
increases linearly with the load capacitance. We often measure load capacitance in terms of a



standard load the input capacitance presented by a particular cell (often an inverter or two-input
NAND cell).

We may adjust the delay for different trip points. For example, for output trip points of 0.1/0.9 we
multiply Eq. 3.2 by In(0.1) = 2.3, because exp ( 2.3) = 0.100.

Figure 3.2 showsthe DC characteristics of a CMOS inverter. To form Figure 3.2 (b) we take the n

-channel transistor surface (Figure 2.4b) and add that for a p -channel transistor (rotated to account
for the connections). Seen from above, the intersection of the two surfacesis the static transfer
curve of Figure 3.2 (a) aong this path the transistor currents are equal and there is no output

current to change the output voltage. Seen from one side, the intersection is the curve of Figure 3.2

(©).
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FIGURE 3.2 CMOS inverter characteristics. (a) This nalose, Josl MA - gy
static inverter transfer curve is traced as the inverter 41
switches slowly enough to be in equilibrium at all times "
. equilibrium
(1 psn= | psp)- (b) This surface corresponds to the path
current flowing in the n -channel transistor (falling 02 ] lose=—'og
delay) and p -channel transistor (rising delay) for any
trajectory. (c) The current that flows through both
transistors as the inverter switches along the equilibrium
path. 0.0 : : :
0 i z E
wiinl]SY

The input waveform, v(inl) , and the output load (which determines the transistor currents) dictate
the path we take on the surface of Figure 3.2 (b) asthe inverter switches. We can thus see that the
currents through the transistors (and thus the pull-up and pull-down resistance values) will vary in a
nonlinear way during switching. Deriving theoretical values for the pull-up and pull-down
resistance values is difficult instead we work the problem backward by picking the trip points,
simulating the propagation delays, and then cal culating resistance values that fit the model.
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FIGURE 3.3 Delay. (a) LogicWorks schematic for invertersdriving 1, 2, 4, and 8 standard |oads
(1 standard load = 0.034 pF in this case). (b) Transient response (falling delay only) from PSpice.
The postprocessor Probe was used to mark each waveform asit crossesits trip point (0.5 for the

input, 0.35 for the outputs). For example v(outl_4) (4 standard loads) crosses 1.0467 V (20.35V

pp ) a t =169.93 ps. () Faling and rising delays as a function of load. The slopesin pspF 1

corresponds to the pull-up resistance (1281 W ) and pull-down resistance (817 W ).
(d) Comparison of the delay model (valid for t > 20 ps) and simulation (4 standard loads). Both are

equal at the 0.35 trip point.

Figure 3.3 shows a simulation experiment (using the G5 process SPICE parameters from

Table 2.1). From the resultsin Figure 3.3 (c) we can seethat R pg =817 W and R ,,, = 1281 W for
thisinverter (with shape factors of 6/0.6 for the n -channel transistor and 12/0.6 for the p -channel)
using 0.5 (input) and 0.35/0.65 (output) trip points. Changing the trip points would give different
resistance values.

We can check that 817 W is areasonable value for the pull-down resistance. In the saturation
region | pg (sy) i (to first order) independent of V pg . For an n -channel transistor from our

generic 0.5 m m process (G5 from Section 2.1) with shape factor W/L = 6/0.6, | pgp (saty = 2.5 MA
(atV gg=3V and V pg=3V). The pull-down resistance, R 1 , that would give the same drain
source current is

R,=30V/(25¥10 3A)=1200W . (3.3)

Thisvalueis greater than, but not too different from, our measured pull-down resistance of 817 W .
We might expect this result since Figure 3.2b shows that the pull-down resistance reachesits



maximum value at V gg= 3V, V pg=3V. We could adjust the ratio of the logic so that the rising
and falling delays were equal; then R = R ,q = Ry, isthe pull resistance .

Next, we check our model against the simulation results. The model predicts
"
v(outl) 2V pp exp fort'>0.(3.4)
de(Cout"'Cp)

(t"ismeasured from the point at which the input crosses the 0.5 trip point, t' = 0 at t = 20 ps). With
C p = 4 standard loads = 4 ¥ 0.034 pF = 0.136 pF,

R pa (Cou + C ) = (38 + 817 (0.136)) ps = 149.112 ps.. (3.5)

To make a comparison with the simulation we need to use In (1/0.35) = 1.04 and not approximately
1 as we have assumed, so that (with all timesin ps)
"
v(outl) @ 3.0 exp \%
149.112/1.04

(t 20)
=3.0exp fort>20ps. (3.6)
1434

Equation 3.6 isplotted in Figure 3.3 (d). For v(outl) = 1.05V (equal to the 0.35 output trip point),
Eq. 3.6 predictst =20 + 149.112 2169 ps and agrees with Figure 3.3 (b) it should because we
derived the model from these results!

Now we find C , . From Figure 3.3 (c) and Eq. 3.2
tppr = (52 +1281 C o) ps thus C = 52/1281 = 0.041 pF (rising),

t ppf = (38 + 817 C ) ps thus C = 38/817 = 0.047 pF (falling) . (3.7)

These intrinsic parasitic capacitance values depend on the choice of output trip points, even though
C pf R par and C r R gy are constant for agiven input trip point and waveform, because the pull-up
and pull-down resistances depend on the choice of output trip points. We take a closer look at
parasitic capacitance next.




3.2 Transistor Parasitic
Capacitance

Logic-cell delay results from transistor resistance, transistor (intrinsic) parasitic
capacitance, and load (extrinsic) capacitance. When one logic cell drives another, the
parasitic input capacitance of the driven cell becomes the load capacitance of the driving
cell and thiswill determine the delay of the driving cell.

Figure 3.4 shows the components of transistor parasitic capacitance. SPICE prints all of
the MOS parameter values for each transistor at the DC operating point. The following
values were printed by PSpice (v5.4) for the simulation of Figure 3.3:
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FIGURE 3.4 Transistor parasitic capacitance. (a) An n -channel MOS transistor with
(drawn) gate length L and width W. (b) The gate capacitance is split into: the constant
overlap capacitances C g5oy , C gpov » and C ggoy and the variable capacitances C gg

, C g, and C gp , which depend on the operating region. (c) A view showing how the
different capacitances are approximated by planar components ( T gox IS the field-oxide
thickness). (d) C ggand C gp arethe sum of thearea ( C gg3, C gpy), Sidewall (C

Bssw  C Bpsw ). and channel edge ( C gsy gate » C Bpa caTE ) Capacitances. (€) (f) The
dimensions of the gate, overlap, and sidewall capacitances (L  isthe lateral diffusion).

NAME m1 m2

MODEL CMOSN CMOSP
ID 7.49E-11 -7.49E-11

V GS 0.00E+00 -3.00E+00
VDS 3.00E+00 -4.40E-08
VBS 0.00E+00 0.00E+00
VTH 4.14E-01 -8.96E-01
VDSAT 3.51E-02 -1.78E+00
GM 1.75E-09 2.52E-11
GDS 1.24E-10 1.72E-03
GMB 6.02E-10 7.02E-12
CBD 2.06E-15 1.71E-14
CBS4.45E-151.71E-14
CGSOV 1.80E-15 2.88E-15
CGDOQV 1.80E-15 2.88E-15
CGBOV 2.00E-16 2.01E-16
CGS 0.00E+00 1.10E-14
CGD 0.00E+00 1.10E-14
CGB 3.88E-15 0.00E+00

The parametersID (| ps), VGS, VDS, VBS, VTH (V ), and VDSAT (V ps (sa) ) &€
DC parameters. The parameters GM , GDS, and GMB are small-signal conductances
(correspondingto | ps/ V gs, | ps/ V psg.and | pg/ V gg, respectively). The
remaining parameters are the parasitic capacitances. Table 3.1 shows the calculation of
these capacitance values for the n -channel transistor m1 (withW=6mmandL = 0.6 m
m) in Figure 3.3 (a).

TABLE 3.1 Calculations of parasitic capacitances for an n-channel MOS transistor.

l = =
PSpice  Equation Vaues!forVGS=0V,VDS=3V,

VSB =0V
CBD Cpgp=Cpgps+Cgrpsw 52536—:1805?; ;O 13+204¥10 16
Cppy+tApCy(1+Vpg/fg) ™ (f Cpgp;=(4.032¥10 15)(1+ (3/1))
B=PB) 056=1.86¥%¥10 15 F
Ceosw=PpCwsw(@+Vpg/fp)
mJSW C gpsw = (4.2¥10 16)(1 + (3/1)) 05
(Pp may or may not include channel ~ =2.04¥10 16 F

edge)



Cre=4.032¥1015+42¥10 16=
CBS Cpgs=CpggtChrssw BS

445%10 B F
AgC; ;=(72¥1015)(5.6¥10 4) =
CeauytAsCy(1l+V ggl/fg)m™ S~
590 *AsCy (17 Vs /1) 403¥1015 F
CBSSVV:PSCJS\N(1+VSB/fB) PSCJS\N:(84¥106)(5¥10 11)
mJSW =42¥1016 F
C =W C W =W = 6 10y =1.
CGSOy - GSov EFF & GSO EFF Cosoy =(6¥10°)(3¥10 10)=18
2W p ¥10 16 F
C =(6¥10 6)(3¥10 10) =
CGDovV C =WegeeC GDOV
GDOV EFF © GSO 18¥10 15 F
cagoy Coeov =L errCeoiLerr=L 2L Copov =(05¥10 ©)(4¥10 10) =
D 2¥10 16 F

C 6s/C o =0(off), 0.5 (lin.), 0.66 (Sa.) C o= (6¥10 6)(0.5% 10 6
- 14
CGS  C (oxide capacitance) = W g L gree )(0.00345) = 1.03¥ 10 *4 F
OX/TOX CGS:O'OF
CGD CGD /COZO(Off),OS (||n),0(91) CGDZOOF
Cgg=0(on),=CqinserieswithCgg C5z=3.88¥1015 F,Cg=

ccB (off) depletion capacitance
.MODEL CMOSN NMOS LEVEL=3 PHI=0.7 TOX=10E-09 XJ=0.2U TPG=1
VTO=0.65 DELTA=0.7
+ LD=5E-08 KP=2E-04 UO=550 THETA=0.27 RSH=2 GAMMA=0.6

1 Input NSUB=1.4E+17 NFS=6E+11

+ VMAX=2E+05 ETA=3.7E-02 KAPPA=2.9E-02 CGDO=3.0E-10
CGS0=3.0E-10 CGBO=4.0E-10

+ CJ=5.6E-04 MJ=0.56 CISW=5E-11 MJSW=0.52 PB=1

m1 outl inl 0 0 cmosn W=6U L=0.6U AS=7.2P AD=7.2P PS=8.4U PD=8.4U

3.2.1 Junction Capacitance

The junction capacitances, C gp and C gg, consist of two parts: junction area and

sidewall; both have different physical characteristics with parameters. CJand MJfor the
junction, CISW and MJSW for the sidewall, and PB is common. These capacitances
depend on the voltage across the junction (V pg and V gg ). The calculationsin Table

3.1 assume both source and drain regions are 6 m m ¥ 1.2 m m rectangles, so that A p =
A g=7.2(mm)2, and the perimeters (excluding the 1.2 m m channel edge) are Pp = P
s=6+ 1.2+ 1.2=38.4mm. We exclude the channel edge because the sidewalls facing
the channel (corresponding to C gy gate and C gpygaTe iN Figure 3.4) are different

from the sidewalls that face the field. There is no standard method to allow for this. Itisa
mistake to exclude the gate edge assuming it is accounted for in the rest of the model it is
not. A pessimistic simulation includes the channel edge in P and P g (but atrue

worst-case analysis would use more accurate models and worst-case model parameters).
In HSPICE there is a separate mechanism to account for the channel edge capacitance
(using parameters ACM and CJGATE ). In Table 3.1 we have neglected C j gaTE -



For the p -channel transistor m2 (W =12 mm and L = 0.6 m m) the source and drain
regionsare 12 mm ¥ 1.2 m mrectangles, sothat A p = A 5214 (mm) 2, and the
perimetersare Pp = Pg=12 + 1.2 + 1.2 214 m m (these parameters are rounded to two
significant figures solely to simplify the figures and tables).

In passing, notice that a 1.2 m m strip of diffusionina0.6 mm process (| =0.3mm)is
only 4 | wide wide enough to place a contact only with aggressive spacing rules. The
conservative rulesin Figure 2.11 would require a diffusion width of at least 2 (rule 6.4a)
+2(rule6.3a) + 1.5 (rule 6.2a) =5.51 .

3.2.2 Overlap Capacitance

The overlap capacitance calculations for C 5oy and C gpoy in Table 3.1 account for

lateral diffusion (the amount the source and drain extend under the gate) using SPICE
parameter LD = 5E-08 or L p = 0.05 m m. Not all versions of SPICE use the equivalent

parameter for width reduction, WD (assumed zero in Table 3.1), in calculating C gpov
and not al versions subtract W p to form W ger .

3.2.3 Gate Capacitance

The gate capacitance calculationsin Table 3.1 depend on the operating region. The gate
source capacitance C gg varies from zero when the transistor is off to 0.5C o (0.5 ¥
1.035¥ 10 15=5.18¥ 10 16 F) in the linear region to (2/3)C  in the saturation region
(6.9 ¥ 10 16 F). The gate drain capacitance C gp, varies from zero (off) to 0.5C g (linear
region) and back to zero (saturation region).

The gate bulk capacitance C g may be viewed as two capacitorsin series: the fixed
gate-oxide capacitance, Co =W grp L gep € ox / T ox » @nd the variable depletion
capacitance, C =W g L gpp € g/ X g, formed by the depletion region that extends
under the gate (with varying depth x ). Asthetransistor turns on the conducting channel
appears and shields the bulk from the gate and at this point C g fallsto zero. Even with
V g5 =0V, the depletion width under the gate is finite and thus C g 24 ¥ 10 15 Fisless
than C 5210 16 F. Infact, sinceC ;g 20.5C,wecantdl thaatV og=0V,C523Cqo

Figure 3.5 showsthe variation of the parasitic capacitance values.
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FIGURE 3.5 The variation of n-channel transistor parasitic capacitance. Values were
obtained from a series of DC simulations using PSpice v5.4, the parameters shown in
Table 3.1 (LEVEL=3), and by varying the input voltage, v(inl) , of theinverter in
Figure 3.3 (a). Data points are joined by straight lines. Note that CGSOV = CGDOV .

3.2.4 Input Slew Rate

Figure 3.6 shows an experiment to monitor the input capacitance of an inverter asit
switches. We have introduced another variable the delay of the input ramp or the slew
rate of the input.

In Figure 3.6 (b) theinput ramp is 40 pslong with aslew rate of 3V/ 40 psor 75 GVs 1
asin our previous experiments and the output of the inverter hardly moves before the
input has changed. The input capacitance varies from 20 to 40 fF with an average value
of approximately 34 fF for both transitions we can measure the average value in Probe by
plotting AVG(-i(Vin)) .
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FIGURE 3.6 Theinput capacitance of an inverter. (a) Input capacitance is measured by
monitoring the input current to the inverter, i(Vin) . (b) Very fast switching. The current,
iI(Vin) , ismultiplied by the input ramp delay ( D t = 0.04 ns) and divided by the voltage
swing (D V =V pp = 3V) to give the equivalent input capacitance, C=iDt/D V..
Thus an adjusted input current of 40 fA corresponds to an input capacitance of 40 fF.
The current, i(Vin) , is positive for the rising edge of the input and negative for the
falling edge. (c) Very slow switching. The input capacitance is now equal for both
transitions.

In Figure 3.6 (c) theinput ramp is slow enough (300 ns) that we are switching under

almost equilibrium conditions at each voltage we allow the output to find its level on the
static transfer curve of Figure 3.2 (a). The switching waveforms are quite different. The

average input capacitance is now approximately 0.04 pF (a 20 percent difference). The
propagation delay (using an input trip point of 0.5 and an output trip point of 0.35) is
negative and approximately 150 127 = 23 ns. By changing the input slew rate we have
broken our model. For the moment we shall ignore this problem and proceed.

The calculationsin Table 3.1 and behavior of Figures 3.5 and 3.6 are very complex.
How can we find the value of the parasitic capacitance, C , to fit the model of Figure 3.1

? Once again, aswe did for pull resistance and the intrinsic output capacitance, instead of
trying to derive atheoretical value for C, we adjust the value to fit the model. Before we
formulate another experiment we should bear in mind the following gquestions that the
experiment of Figure 3.6 raises: Isit valid to replace the nonlinear input capacitance with

alinear component? Isit valid to use alinear input ramp when the normal waveforms are
so nonlinear?

Figure 3.7 shows an experiment crafted to answer these questions. The experiment has
the following two steps:
1. Adjust c2 to model the input capacitance of m5/6 ; then C = ¢2 = 0.0335 pF.

2. Remove all the parasitic capacitances for inverter m9/10 except for the gate
capacitances C g5, C gp , and C gg and then adjust ¢3 (0.01 pF) and c4 (0.025

pF) to model the effect of these missing parasitics.



(@ ©

Pl T 108 IV | A
+ D0 Dor Y 5 Ira 3 3ra B

1.5m L. 1.0
ol Sy v ooy v Sl
Tim

Orw
= = = = = = ool 5

(b)

Almrare] e Vel L={3] Dl ] ' By L]
iy hﬂ-?.!' =TE by + il 4R Al | 4R
+ FE=PA) Fo=B] + e HI PO 1 -

Mﬂnlﬂhmmﬂmﬂ 1

i

m‘. 1. |Brm 1.
oudabl ) mudukidl + ubw B30t bi )
Fllﬂl.lﬂ'lmﬂ1 Im [ TR T Timm
T 20w [V 2.1 T B Y]+ Ael] D]

+ = [ FTl]

| . 20w

FIGURE 3.7 Parasitic capacitance. (a) All devicesin thiscircuit include parasitic
capacitance. (b) Thiscircuit uses linear capacitors to model the parasitic
capacitance of m9/10 . The load formed by the inverter ( m5 and m6 ) is modeled
by a0.0335 pF capacitor ( c2); the parasitic capacitance due to the overlap of the
gates of m3 and m4 with their source, drain, and bulk terminalsis modeled by a
0.01 pF capacitor ( c3); and the effect of the parasitic capacitance at the drain
terminals of m3 and m4 is modeled by a 0.025 pF capacitor ( c4 ). (c) Thetwo
circuits compared. The delay shown (1.22 1.135=0.085 ns) isequal tot pps for

the inverter m3/4 . (d) An exact match would have both waveforms equal at the
0.35 trip point (1.05 V).

We can summarize our findings from this and previous experiments as follows:

1. Sincethe waveformsin Figure 3.7 match, we can model the input capacitance of a

logic cell with alinear capacitor. However, we know the input capacitance may
vary (by up to 20 percent in our example) with the input slew rate.

2. Theinput waveform to the inverter m3/m4 in Figure 3.7 isfrom another inverter

not alinear ramp. The difference in slew rate causes an error. The measured delay
is 85 ps (0.085 ns), whereas our model (Eq. 3.7 ) predicts

t por = (38 + 817 C o ) pS= ( 38 + (817)-(0.0355) ) ps= 65 ps.. (3.8)

3. Thetotal gate-oxide capacitance in our inverter with T 4, = 100A is
CO:(V\/nl-n'|'vvp|—p)eoxTox
= (34.5¥ 10 4)(6)-( (0.6) + (12)-(0.6) ) pF = 0.037 pF . (3.9)

4. All the transistor parasitic capacitances excluding the gate capacitance contribute
0.01 pF of the 0.0335 pF input capacitance about 30 percent. The gate capacitances
contribute the rest 0.025 pF (about 70 percent).

The last two observations are useful. Since the gate capacitances are nonlinear, we only



see about 0.025/0.037 or 70 percent of the 0.037 pF gate-oxide capacitance, C o, in the
input capacitance, C . This means that it happens by chance that the total gate-oxide
capacitance is also a rough estimate of the gate input capacitance, C2C 5. Using L and
W rather than L g and W g in Eq. 3.9 helps this estimate. The accuracy of this
estimate depends on the fact that the junction capacitances are approximately one-third of
the gate-oxide capacitance which happens to be true for many CMOS processes for the

shapes of transistors that normally occur in logic cells. In the next section we shall use
this estimate to help us design logic cells.




3.3 Logical Effort

In this section we explore a delay model based on logical effort, aterm coined by
Ivan Sutherland and Robert Sproull [1991], that has as its basi s the time-constant
analysis of Carver Mead, Chuck Seitz, and others.

Weadd a catch al nonideal component of delay, t 4, to Eq. 3.2 that includes:

(1) delay due to internal parasitic capacitance; (2) the time for the input to reach
the switching threshold of the cell; and (3) the dependence of the delay on the
slew rate of the input waveform. With these assumptions we can express the
delay asfollows:

tpp =R (CoitCp) +tq.(3.10)

(The input capacitance of thelogic cell isC, but we do not need it yet.)

We will use a standard-céll library for a3.3V, 0.5 mm (0.6 m m drawn)
technology (from Compass) to illustrate our model. We call this technology C5;
it isalmost identical to the G5 process from Section 2.1 (the Compass library
uses a more accurate and more complicated SPICE model than the generic
process). The equation for the delay of a 1X drive, two-input NAND cell isin the
form of Eq. 3.10 ( C o iSin pF):

t pp = (0.07 +1.46 C , ;s + 0.15) ns. (3.11)

The delay due to the intrinsic output capacitance (0.07 ns, equal to RC ;) and the
nonideal delay ('t 4 = 0.15 ns) are specified separately. The nonideal delay isa

considerable fraction of the total delay, so we may hardly ignore it. If data books
do not specify these components of delay separately, we have to estimate the
fractions of the constant part of a delay equation to assignto RC ; and t 4 (here

theratio RC , / t 4 is approximately 2).

The data book tells us the input trip point is 0.5 and the output trip points are 0.35
and 0.65. We can use Eq. 3.11 to estimate the pull resistance for thiscell asR @
1.46 nspF 1 or about 1.5k W . Equation 3.11 isfor the falling delay; the data

book equation for the rising delay gives slightly different values (but within 10
percent of the falling delay values).

We can scale any logic cell by ascaling factor s (transistor gates become s times
wider, but the gate lengths stay the same), and as aresult the pull resistance R
will decrease to R/ s and the parasitic capacitance C , will increaseto sC , .



Sincet 4 isnonideal, by definition it is hard to predict how it will scale. We shall
assumethat t  scaleslinearly with sfor all cells. The total cell delay then scales
asfollows:

tpp=(R/S)(Cou+SCp)+stq-(3.12)

For example, the delay equation for a2X drive ( s= 2), two-input NAND cell is
tpp =(0.03+0.75C o + 0.51) ns. (3.13)

Compared to the 1X version (Eq. 3.11), the output parasitic delay has decreased

to 0.03 ns (from 0.07 ns), whereas we predicted it would remain constant (the
difference is because of the layout); the pull resistance has decreased by a factor
of 2from 1.5k W to 0.75 k W , aswe would expect; and the nonideal delay has
increased to 0.51 ns (from 0.15 ns). The differences between our predictions and
the actual values give us a measure of the model accuracy.

We rewrite Eq. _3.12 using the input capacitance of the scaled logic cell, C;,=s
C,

C out

C in
Finally we normalize the delay using the time constant formed from the pull
resistance R j,, and the input capacitance C ;,,, of a minimum-size inverter:

(RC)(Cout/Cin)"'RCp"'Stq

d= =f+p+q.(3.15
t

The time constant tau ,

t=Rin Cinv.(3.16)

iIsabasic property of any CMOS technology. We shall measure delaysin terms
of t.

The delay equation for a 1X (minimum-size) inverter in the C5 library is
U ppt =de(Cout+Cp) In(llo-35)ade(Cout+Cp) .(3.17)

Thustqi,, =0.1nsand R,, = 1.60 k W . The input capacitance of the 1X
inverter (the standard load for thislibrary) is specified in the databook as C i, =
0.036 pF; thust = (0.036 pF)(1.60 k W) = 0.06 nsfor the C5 technology.

The use of logical effort consists of rearranging and understanding the meaning
of thevarioustermsin Eq. 3.15. The delay equation is the sum of three terms,



d=f+p+q.(3.18)

We give these terms special names as follows:
delay = effort delay + parasitic delay + nonideal delay . (3.19)

The effort delay f we write as a product of logical effort, g, and electrical effort,
h:

f=gh.(3.20)

So we can further partition delay into the following terms:
delay = logical effort ¥ electrical effort + parasitic delay + nonideal delay . (3.21)

Thelogical effort g isafunction of the type of logic cell,
g=RC/t.(3.22)

What size of logic cell do the R and C refer to? It does not matter because the R
and C will change aswe scale alogic cell, but the RC product stays the same the
logical effort isindependent of the size of alogic cell. We can find the logical
effort by scaling down the logic cell so that it has the same drive capability asthe
1X minimum-size inverter. Then the logical effort, g, istheratio of the input
capacitance, C, , of the 1X version of the logic cell to C ;,,, (see Figure 3.8).
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FIGURE 3.8 Logical effort. (a) The input capacitance, C ;,, , looking into the

input of a minimum-size inverter in terms of the gate capacitance of a
minimum-size device. (b) Sizing alogic cell to have the same drive strength asa
minimum-size inverter (assuming alogic ratio of 2). The input capacitance
looking into one of the logic-cell terminalsisthen C;, . (c) Thelogica effort of
acdlisC;,/ C;,, - For atwo-input NAND cell, the logical effort, g = 4/3.

The electrical effort h depends only on the load capacitance C ; connected to
the output of the logic cell and the input capacitance of the logic cell, C, ; thus



h=Cou/Cin-(3.23

The parasitic delay p depends on the intrinsic parasitic capacitance C , of the
logic cell, so that

p=RC,/t.(3.24)

Table 3.2 showsthelogical effortsfor single-stage logic cells. Suppose the
minimum-size inverter has an n -channel transistor with W/L =1 and ap

-channel transistor with W/L = 2 (logic ratio, r , of 2). Then each two-input
NAND logic cell input is connected to an n -channel transistor with W/L =2 and
ap -channel transistor with W/L = 2. The input capacitance of the two-input
NAND logic cell divided by that of the inverter isthus 4/3. Thisisthe logical
effort of atwo-input NAND whenr = 2. Logical effort depends on the ratio of the
logic. For an n -input NAND cell withratior , the p -channel transistors are W/L
=r /1, and the n -channel transistors are W/L = n /1. For aNOR cell then
-channel transistors are 1/1 and the p -channel transistors are nr /1.

TABLE 3.2 Cédll effort, parasitic delay, and nonideal delay (in unitsof t) for
single-stage CMOS cells.

Cdll effort Cdll effort :
cdll Parasitic delay/ t onideal delay/
(logicratio=2) (logicratio=r) t
(b (b
inverter 1 (by definition) 1 (by definition) géli‘i"ni(tizn) . j;ivni(tiﬁn) )
- t
&A”Illpg (n+2)/3 (N+r)(r+1) NPiny NQiny
- t
a(')%p“ 2n+1)3 (nr+1)/(r+1) NPiny NQiny

The parasitic delay arises from parasitic capacitance at the output node of a
single-stage logic cell and most (but not al) of thisis due to the source and drain
capacitance. The parasitic delay of aminimum-size inverter is

Pinv=Cp/Cin - (3.25

The parasitic delay is a constant, for any technology. For our C5 technology we
know RC ,, = 0.06 ns and, using Eq. 3.17 for aminimum-size inverter, we can

caculate p i, = RC,/t=0.06/0.06 = 1 (thisis purely a coincidence). ThusC
is about equal to C ;,,, and is approximately 0.036 pF. Thereisalarge error in
calculating p j,,, from extracted delay values that are so small. Often we can
calculate p j,,, more accurately from estimating the parasitic capacitance from
layout.

Because RC ,, is constant, the parasitic delay is equal to theratio of parasitic
capacitance of alogic cell to the parasitic capacitance of aminimum-size



inverter. In practice thisratio is very difficult to calculate it depends on the
layout. We can approximate the parasitic delay by assuming it is proportional to
the sum of the widths of the n -channel and p -channel transistors connected to
the output. Table 3.2 shows the parasitic delay for different cellsin termsof p i,

The nonideal delay g is hard to predict and depends mainly on the physical size
of the logic cell (proportional to the cell areain general, or width in the case of a
standard cell or agate-array macro),

q=stq/t.(3.26)

We define q i, in the same way we defined p j,, - Ann -input cell is

approximately n times larger than an inverter, giving the values for nonideal
delay shownin Table 3.2 . For our C5 technology, from Eq. 3.17, qjpy =t g iny/

t=0.1ng/0.06 ns=1.7.

3.3.1 Predicting Delay

As an example, let us predict the delay of athree-input NOR logic cell with 2X
drive, driving a net with afanout of four, with atotal load capacitance
(comprising the input capacitance of the four cells we are driving plus the
interconnect) of 0.3 pF.

From Table 3.2weseep=3p;, andq=3q;,, for thiscell. We can calculate
C i, from the fact that the input gate capacitance of a 1X drive, three-input NOR
logic cell isequal to gC ,, , and for a2X logic cell, C;,=29C - Thus,

Cout 9-(0.3pF) (0.3pF)
gh=g = = .(3.27)

Cin 29Ciny  (2)-(0.036 pF)

(Notice that g cancels out in this equation, we shall discuss thisin the next
section.)

The delay of the NOR logic cell, in unitsof t, isthus

0.3 ¥ 10 12
d=gh+p+q= +(3)(D) + (3)-(1.7)
(2)(0.036 ¥ 10 12)

= 41666667 + 3 + 5.1
= 12.266667 t . (3.28)

equivalent to an absolute delay, t pp 212.3 ¥ 0.06 ns= 0.74 ns.

The delay for a2X drive, three-input NOR logic cell inthe C5 library is



t pp=(0.03+0.72 C ,; + 0.60) ns.. (3.29)

With C o = 0.3 pF,
t pp = 0.03 + (0.72)-(0.3) + 0.60 = 0.846 ns . (3.30)

compared to our prediction of 0.74 ns. Almost all of the error here comes from
the inaccuracy in predicting the nonideal delay. Logical effort gives us a method
to examine relative delays and not accurately calculate absolute delays. More
important isthat logical effort gives us an insight into why logic has the delay it
does.

3.3.2 Logical Area and Logical Efficiency

Figure 3.9 shows a single-stage OR-AND-INVERT cell that has different logical

efforts at each input. Thelogical effort for the OAI221 isthe logical-effort vector
g = (7/3, 713, 5/3). For example, the first element of this vector, 7/3, isthe logical
effort of inputs A and B in Figure 3.9.

FIGURE 3.9 An OAI221 logic

cell with different logical il
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logical squares.

We can calculate the area of the transistorsin alogic cell (ignoring the routing
area, drain area, and source aread) in units of aminimum-size n -channel transistor
we call these units logical squares. We call the transistor areathe logical area .
For example, the logical area of a 1X drive cell, OAI221X1, is calculated as
follows:

o n-channel transistor sizes: 3/1 + 4 ¥ (3/1)

e P -channel transistor sizes. 2/1 + 4 ¥ (4/1)

o total logical area=2+ (4 ¥ 4) + (5 ¥ 3) = 33 logical squares
Figure 3.10 shows a single-stage AOI221 cell, with g = (8/3, 8/3, 6/3). The
calculation of thelogical area (for aAOI221X1) isasfollows:

o N -channel transistor sizes. 1/1 + 4 ¥ (2/1)



o p-channel transistor sizes. 6/1 + 4 ¥ (6/1)
o logical area=1+ (4¥2) + (5¥6) =39 logical squares

Woo
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These calculations show us that the single-stage AOI 221, with an area of 33
logical squares and logical effort of (7/3, 7/3, 5/3), ismore logically efficient than
the single-stage OAI1221 logic cell with alarger area of 39 logical squares and
larger logical effort of (8/3, 8/3, 6/3).

3.3.3 Logical Paths

When we calculated the delay of the NOR logic cell in Section 3.3.1, the answer
did not depend on the logical effort of the cell, g (it cancelled out in Egs. 3.27

and 3.28). Thisis because g is ameasure of the input capacitance of a 1X drive

logic cell. Since we were not driving the NOR logic cell with another logic cell,
the input capacitance of the NOR logic cell had no effect on the delay. Thisis
what we do in a data book we measure logic-cell delay using an ideal input
waveform that is the same no matter what the input capacitance of the cell.
Instead |et us calculate the delay of alogic cell when itisdriven by a
minimum-size inverter. To do this we need to extend the notion of logical effort.

So far we have only considered a single-stage logic cell, but we can extend the
idea of logical effort to achain of logic cells or logical path . Consider the logic
path when we use aminimum-sizeinverter (gg=1,pg=1,qo=1.7) todrive

one input of a2X drive, three-input NOR logic cell withg ; =(nr+ 1)/(r+ 1), p
1=3,01 =3, and aload equal to four standard loads. If the logic ratioisr = 1.5,
theng,=5.5/25=2.2.

The delay of the inverter is

d=09oho*Po*+0d0=(D)-(291) - (Cin /Ciny) +1+1.7(3.31)
=222 +1+1.7
=7.1.



Of this 7.1 t delay we can attribute 4.4 t to the loading of the NOR logic cell input
capacitance, whichis2 g4 Ci,, - Thedelay of the NOR logic cell is, as before, d

1=91h1+pq1+0gq =123, making thetotal delay 7.1 + 12.3 = 19.4, so the
absolute delay is(19.4)(0.06 ns) = 1.164 ns, or about 1.2 ns.

We can see that the path delay D is the sum of the logical effort, parasitic delay,
and nonideal delay at each stage. In general, we can write the path delay as

D= gihi+ (pi+di).(3.32
| path | path

3.3.4 Multistage Cells

Consider the following function (a multistage AOI221 logic cell):
ZN(Al,A2,B1,B2 C)

=NOT(NAND(NAND(A1, A2), AOI21(B1, B2, C)))

=(((A1-A2)' - (B1-B2 + C))")'

=(A1-A2+B1-B2 + C)'

=AOQI221(Al1,A2,B1,B2C). (3.33)

Figure 3.11 (a) shows thisimplementation with each input driven by a
minimum-size inverter so we can measure the effect of the cell input capacitance.
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FIGURE 3.11 Logical paths. (a) An AOI221 logic cell constructed as a
multistage cell from smaller cells. (b) A single-stage AOI221 logic cell.



Thelogical efforts of each of thelogic cellsin Figure 3.11 (a) are asfollows:

90=094=9(NOT)=1,
01=9(A0I21)=(2,(2r+1)/(r+1))=(2,4/25) =(2,1.6),
02=093=9g(NAND2) =(r+2)/(r+1)=(35/(25)=14. (3.34)

Each of thelogic cellsin Figure 3.11 hasa 1X drive strength. This means that
the input capacitance of each logic cell is given, as shown in the figure, by gC i,

Using Eqg. 3.32 we can calculate the delay from the input of the inverter driving
A1l to the output ZN as
di=(1-(14)+1+17+(14)-(1)+2+34

+(14)(0.7)+2+34+()-C_ +1+1.7

—(20+C,). (3.35)

In Eq. _3.35 we have normalized the output load, C | , by dividing it by a
standard load (equal to C j,,, ). We can calculate the delays of the other paths
similarly.
More interesting is to compare the multistage implementation with the
single-stage version. In our C5 technology, with alogic ratio, r = 1.5, we can
calculate the logical effort for asingle-stage AOI221 logic cell as
g(AOI221) =(Br+2/(r+1),(3r+2)/(r+1), Br+1/(r+1)
=(6.5/2.5, 6.5/2.5, 5.5/2.5)
=(2.6,2.6,2.2). (3.36)

This givesthe delay from an inverter driving the A input to the output ZN of the
single-stage logic cell as

d1=((1)(2.6) + 1+ 1.7+ (1)-C | +5+85)
=188+C/ . (3.37)

The single-stage delay is very close to the delay for the multistage version of this
logic cell. In some ASIC libraries the AOI221 is implemented as a multistage
logic cell instead of using a single stage. It raises the question: Can we make the
multistage logic cell any faster by adjusting the scale of the intermediate logic
cells?

3.3.5 Optimum Delay

Before we can attack the question of how to optimize delay in alogic path, we
shall need some more definitions. The path logical effort G isthe product of
logical efforts on a path:



G= gi -(3.38)

| path
The path electrical effort H is the product of the electrical efforts on the path,
C out
H= h; , (3.39)
i path C in

where C ,; isthe last output capacitance on the path (the load) and C , isthe
first input capacitance on the path.

The path effort F is the product of the path electrical effort and logical efforts,
F=GH . (3.40)

The optimum effort delay for each stage is found by minimizing the path delay D
by varying the electrical efforts of each stage h; , while keeping H , the path

electrical effort fixed. The optimum effort delay is achieved when each stage
operates with equal effort,

fAi=g;hi=FUN (3.41)

Thisauseful result. The optimum path delay is then
DA"=NFVYN=N(GH)VYN+P+Q, (342

where P + Q isthe sum of path parasitic delay and nonideal delay,
P+Q= pi+h;.(343)
I path

We can use these results to improve the AOI1221 multistage implementation of
Figure 3.11 (a). Assume that we need a1X cell, so the output inverter (cell 4)

must have 1X drive strength. This fixes the capacitance we must drive as C ; =
Cinv (the capacitance at the input of thisinverter). The input inverters are

included to measure the effect of the cell input capacitance, so we cannot cheat
by altering these. This fixesthe input capacitanceas C , = C,, - Inthiscase H =

1.

Thelogic cells that we can scale on the path from the A input to the output are
NAND logic cellslabeled as 2 and 3. In this case

G=go¥g,¥g3=1¥14¥14=195.(344)

Thus F = GH = 1.95 and the optimum stage effort is 1.95 (1/3) = 1.25, so that the
optimum delay NF V' N = 3,75, From Figure 3.11 (a) we see that



goh0+gzh2+ggh3=1.4+1.3+1=3.8.(3_45)

This means that even if we scale the sizes of the cells to their optimum values, we
only save afraction of at (3.8 3.75=0.05). Thisisauseful result (and one that
Istrue in general) the delay is not very sensitive to the scale of the cells. In this
case it means that we can reduce the size of the two NAND cellsin the multicell
implementation of an AOI221 without sacrificing speed. We can use logical
effort to predict what the change in delay will be for any given cell sizes.

We can use logical effort in the design of logic cells and in the design of logic
that useslogic cells. If we do have the flexibility to continuously size each logic
cell (which in ASIC design we normally do not, we usually have to choose from
1X, 2X, 4X drive strengths), each logic stage can be sized using the equation for
theindividual stage electrical efforts,

FUN
= .(3.46)
gi

For example, even though we know that it will not improve the delay by much,
let ussizethe cellsin Figure 3.11 (a). We shall work backward starting at the

fixed load capacitance at the input of the last inverter.

For NAND cell 3, gh = 1.25; thus (sinceg=1.4), h=C ,;:/ C,=0.893. The
output capacitance, C ; , for this NAND cell is the input capacitance of the
inverter fixed as 1 standard load, C i, . Thisfixesthe input capacitance, C , , of

NAND cell 3 at 1/0.893 = 1.12 standard loads. Thus, the scale of NAND cell 3is
1.12/1.4 or 0.8X.

Now for NAND cell 2, gh=1.25; C ,; for NAND cell 2 isthe C;,, of NAND
cell 3. Thus C,, for NAND cell 2is1.12/0.893 = 1.254 standard loads. This
means the scale of NAND cell 2is1.254/1.4 or 0.9X.

The optimum sizes of the NAND cells are not very different from 1X in this case
because H = 1 and we are only driving aload no bigger than the input
capacitance. This raises the question: What is the optimum stage effort if we have
todrivealargeload, H >> 1? Notice that, so far, we have only calculated the
optimum stage effort when we have a fixed number of stages, N . We have said
nothing about the situation in which we are free to choose, N , the number of
stages.

3.3.6 Optimum Number of Stages
Suppose we have achain of N inverters each with equal stage effort, f =gh .

Neglecting parasitic and nonideal delay, the total path delay is Nf = Ngh = Nh,
since g = 1 for an inverter. Suppose we need to drive a path electrical effort H ;



thenhN=H ,orNInh=InH.Thusthedelay, Nn=hInH/Inh.SincelnH s
fixed, we can only vary h/In ( h). Figure 3.12 shows that thisis avery shallow
function withaminimum at h = e22.718. At this point In h = 1 and the total
delayisN e=elnH . Thisresult is particularly useful in driving large loads
either on-chip (the clock, for example) or off-chip (I/0O pad drivers, for example).

Deby of N inere r stages diving

delaypdln H) a path effot of H=C_ 4G,

FIGURE 3.12 Stage effort. =

h h/(In h)
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5 3.1 stage electical effor, b - HYN
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Figure 3.12 shows us how to minimize delay regardless of area or power and
neglecting parasitic and nonideal delays. More complicated equations can be
derived, including nonideal effects, when we wish to trade off delay for smaller
area or reduced power.

1. For the Compass 0.5 m m technology (C5): piw =10,9in =17, Ry =15
kW, Ci, = 0.036 pF.




3.4 Library-Cell Design

The optimum cell layout for each process generation changes because the design
rules for each ASIC vendor s process are always dightly different even for the
same generation of technology. For example, two companies may have very
similar 0.35 m m CMOS process technologies, but the third-level metal spacing
might be dightly different. If acell library isto be used with both processes, we
could construct the library by adopting the most stringent rules from each
process. A library constructed in this fashion may not be competitive with one
that is constructed specifically for each process. Even though ASIC vendors prize
their design rules as secret, it turns out that they are ssimilar except for afew
details. Unfortunately, it is the details that stop us moving designs from one
process to another. Unless we are a very large customer it is difficult to have an
ASIC vendor change or waive design rules for us. We would like all vendors to
agree on acommon set of design rules. Thisis, in fact, easier than it sounds. The
reason that most vendors have similar rules is because most vendors use the same
manufacturing equipment and a similar process. It is possible to construct a
highest common denominator library that extracts the most from the current
manufacturing capability. Some library companies and the large Japanese ASIC
vendors are adopting this approach.

Layout of library cellsis either hand-crafted or uses some form of symbolic
layout . Symbolic layout is usually performed in one of two ways: using either
interactive graphics or atext layout language. Shapes are represented by simple
lines or rectangles, known as sticks or logs, in symbolic layout. The actual
dimensions of the sticks or logs are determined after layout is completed in a
postprocessing step. An alternative to graphical symbolic layout uses a text
layout language, similar to a programming language such as C, that directs a
program to assemble layout. The spacing and dimensions of the layout shapes are
defined in terms of variables rather than constants. These variables can be
changed after symbolic layout is complete to adjust the layout spacing to a
specific process.

Mapping symbolic layout to a specific process technology uses 10 20 percent
more area than hand-crafted layout (though this can then be further reduced to 5
10 percent with compaction). Most symbolic layout systems do not allow 45°
layout and this introduces a further area penalty (my experience showsthisis
about 5 15 percent). As libraries get larger, and the capability to quickly move
libraries and ASIC designs between different generations of process technologies
becomes more important, the advantages of symbolic layout may outweigh the
disadvantages.



3.5 Library Architecture

Figure 3.13 (a) shows cell use data from over 150 CMOS gate array designs.
These results are remarkably similar to that from other ASIC designs using
different libraries and different technologies and show that typically 80 percent of
an ASIC uses less than 20 percent of the cell library.
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We can use the datain Figure 3.13 (@) to derive some useful conclusions about the
number and types of cellsto beincluded in alibrary. Before we do this, afew



words of caution are in order. First, the data shown in Figure 3.13 (a) tells us about

cellsthat are included alibrary. This data cannot tell us anything about cells that
are not (and perhaps should be) included in alibrary. Second, the type of design
entry we use and the type of ASIC we are designing can dramatically affect the
profile of the use of different cell types. For example, if we use a high-level design
language, together with logic synthesis, to enter an ASIC design, thiswill favor the
use of the complex combinational cells (cells of the AOI family that are
particularly area efficient in CMOS, but are difficult to work with when we design
by hand).

Figure 3.13 (a) tells us which cells we use most often, but does not take into
account the cell area. What we really want to know are which cells are most
important in determining the area of an ASIC. Figure 3.13 (b) shows the area of
the cells normalized to the area of a minimum-size inverter. If we take the datain
Figure 3.13 (a) and multiply by the cell areas, we can derive a new measure of the
contribution of each cell in alibrary (Figure 3.13c). This new measure, cell
importance, is ameasure of how much area each cell in alibrary contributesto a
typical ASIC. For example, we can see from Figure 3.13 (c) that aD flip-flop
(with a cell importance of 3.5) contributes 3.5 times as much area on a typical
ASIC than does an inverter (with acell importance of 1).

Figure 3.13 (c) shows cell importance ordered by the cell frequency of use and
normalized to an inverter. We can rearrange this data in terms of cell importance,
as shown in Figure 3.13 (d), and normalized so that now the most important cell, a
D flip-flop, has a cell importance of 1. Figure 3.13 (e) includes the cell use data on
the same scale as the cell importance data. Both show roughly the same shape,
reflecting that both measures obey an 80 20 rule. Roughly 20 percent of the cellsin
alibrary correspond to 80 percent of the ASIC area and 80 percent of the cellswe
use (but not the same 20 percent that is why cell importance is useful).

Figure 3.13 (e) shows us that the most important cells, measured by their
contribution to the area of an ASIC, are not necessarily the cells that we use most
often. If we wish to build or buy a dense library, we must concentrate on the area
of those cells that have the highest cell importance not the most common cells.




3.6 Gate-Array Design

Each logic cell or macro in agate-array library is predesigned using fixed tiles of
transistors known as the gate-array base cell (or just base cell ). We call the
arrangement of base cells across awhole chip in acomplete gate array the
gate-array base (or just base ). ASIC vendors offer a selection of bases, with a
different total numbers of transistors on each base. For example, if our ASIC
design uses 48k equivalent gates and the ASIC vendor offers gate arrays bases
with 50k-, 75k-, and 100k-gates, we will probably have to use the 75k-gate base
(because it is unlikely that we can use 48/50 or 96 percent of the transistors on
the 50k-gate base).

We isolate the transistors on a gate array from one another either with thick field
oxide (in the case of oxide-isolated gate arrays) or by using other transistors that
are wired permanently off (in gate-isolated gate arrays). Channeled and
channelless gate arrays may use either gate isolation or oxide isolation.

Figure 3.14 (a) shows a base cell for a gate-isolated gate array . This base cell
has two transistors: one p -channel and one n -channel. When these base cells are
placed next to each other, the n -diffusion and p -diffusion layers form continuous
strips that run across the entire chip broken only at the poly gates that cross at
regularly spaced intervals (Figure 3.14b). The metal interconnect spacing
determines the separation of the transistors. The metal spacing is determined by
the design rules for the metal and contacts. In Figure 3.14 (c) we have shown all
possible locations for a contact in the base cell. Thereisroom for 21 contactsin
this cell and thus room for 21 interconnect lines running in a horizontal direction
(we use m1 running horizontally). We say that there are 21 horizontal tracksin
this cell or that the cell is 21 tracks high. In asimilar fashion the space that we
need for a vertical interconnect (m2) is called avertical track . The horizontal and
vertical track widths are not necessarily equal, because the design rules for m1
and m2 are not always equal.

Weisolate logic cells from each other in gate-isolated gate arrays by connecting
transistor gates to the supply bus hence the name, gate isolation . If we connect
the gate of an n -channel transistor to V g5, weisolate the regions of n -diffusion
on each side of that transistor (we call this an isolator transistor or device, or just
isolator). Similarly if we connect the gate of a p -channel transistor toV pp , we

isolate adjacent p -diffusion regions.
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FIGURE 3.14 The construction of a gate-isolated gate array. (a) The
one-track-wide base cell containing one p -channel and one n -channel transistor.
(b) Three base cells: the center base cell is being used to isolate the base cellson
either side from each other. (c) A base cell including all possible contact
positions (there isroom for 21 contactsin the vertical direction, showing the
base cell has aheight of 21 tracks).

Oxide-isolated gate arrays often contain four transistors in the base cell: the two n
-channel transistors share an n -diffusion strip and the two p -channel transistors
share ap -diffusion strip. This means that the two n -channel transistorsin each
base cell are electrically connected in series, as are the p -channel transistors. The
base cells are isolated from each other using oxide isolation . During the
fabrication process alayer of the thick field oxide isleft in place between each
base cell and this separates the p -diffusion and n -diffusion regions of adjacent
base cells.

Figure 3.15 shows an oxide-isolated gate array . This cell contains eight
transistors (which occupy six vertical tracks) plus one-half of asingle track that
contains the well contacts and substrate connections that we can consider to be
shared by each base cell.
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FIGURE 3.15 An oxide-isolated gate-array base cell. The figure shows two base
cells, each containing eight transistors and two well contacts. The p -channel and
n -channel transistors are each 4 tracks high (corresponding to the width of the
transistor). The leftmost vertical track of the left base cell includes all 12
possible contact positions (the height of the cell is 12 tracks). As outlined here,
the base cell is 7 tracks wide (we could also consider the base cell to be half this
width).

Figure 3.16 shows a base cell in which the gates of the n -channel and p -channel
transistors are connected on the polysilicon layer. Connecting the gatesin poly
saves contacts and a metal interconnect in the center of the cell where
interconnect is most congested. The drawback of the preconnected gatesis aloss
in flexibility in cell design. Implementing memory and logic based on
transmission gates will be less efficient using this type of base cell, for example.



e L e L I Ll nowell comtae
S A, o I e A

poly crossunder

I E i il i gl E n-well
w 7227772 WA Bl il s il Do
1 Ak ; g gl N I 37
11 .
(12) ! < oo e A Y B poly
13 B ol AN e A | e ::%m‘
- T e L e e e Rl e

1 2 3 4

FIGURE 3.16 Thisoxide-isolated gate-array base cell is 14 tracks high and 4
tracks wide. VDD (tracks 3 and 4) and GND (tracks 11 and 12) are each 2 tracks
wide. The metal lines to the left of the cell indicate the 10 horizontal routing
tracks (tracks 1, 2, 5 10, 13, 14). Notice that the p -channel and n -channel
polysilicon gates are tied together in the center of the cell. The well contacts are
short, leaving room for a poly cross-under in each base cell.

Figure 3.17 shows the metal personalization for aD flip-flop macroin a
gate-isolated gate array using a base cell similar to that shown in Figure 3.14 (a).
This macro uses 20 base cells, for atotal of 40 transistors, equivalent to 10 gates.
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FIGURE 3.17 An example of aflip-flop macro in a gate-isolated gate-array
library. Only the first-level metallization and contact pattern (the
personalization) is shown on the right, but thisis enough information to derive
the schematic. The base cell is shown on the left. This macro is 20 tracks wide.

The gates of the base cells shown in Figures 3.14 3.16 are bent. The bent gate
allows contacts to the gates to be placed on the same grid as the contacts to
diffusion. The polysilicon gates run in the space between adjacent metal
interconnect lines. This saves space and aso simplifies the routing software.

There are many trade-offs that determine the gate-array base cell height. One
factor isthe number of wiresthat can be run horizontally through the base cell.
Thiswill determine the capacity of the routing channel formed from an unused
row of base cells. The base cell height also determines how easy it isto wire the
logic macros since it determines how much space for wiring is available inside
the macros.

There are other factors that determine the width of the base-cell transistors. The
widths of the p -channel and n -channel transistors are dlightly different in Figure
3.14 (a). The p -channel transistors are 6 tracks wide and the n -channel
transistors are 5 tracks wide. Theratio for this gate-array library isthus
approximately 1.2. Most gate-array libraries are approaching aratio of 1.

ASIC designers are using ever-increasing amounts of RAM on gate arrays. It is
inefficient to use the normal base cell for a static RAM cell and the size of RAM
on an embedded gate array isfixed. As an alternative we can change the design
of the base cell. A base cell designed for use as RAM has extratransistors (either
four two n -channel and two p -channel or two n -channel; usually minimum



width) allowing a six-transistor RAM cell to be built using one base cell instead
of the two or three that we would normally need. Thisis one of the advantages of
the CBA (cell-based array) base cell shown in Figure 3.18 .

FIGURE 3.18 The SIARC/Synopsys cell-based array (CBA) basic cell.




3.7 Standard-Cell Design

Figure 3.19 shows the components of the standard cell from Figure 1.3. Each
standard cell in alibrary isrectangular with the same height but different widths. The
bounding box ( BB ) of alogic cell isthe smallest rectangle that encloses al of the
geometry of the cell. The cell BB isnormally determined by the well layers. Cell
connectors or terminals (the logical connectors) must be placed on the cell abutment
box ( AB ). The physical connector (the piece of metal to which we connect wires)
must normally overlap the abutment box slightly, usually by at least 11 , to assure
connection without leaving atiny space between the ends of two wires. The standard
cells are constructed so they can all be placed next to each other horizontally with the
cell ABstouching (we abut two cells).
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FIGURE 3.19 (@) The standard cell shown in Figure 1.3. (b) Diffusion, poly, and

contact layers. (c) m1 and contact layers. (d) The equivalent schematic.

A standard cell (a D flip-flop with clear) is shown in Figure 3.20 and illustrates the
following features of standard-cell layouit:

Layout using 45° angles. This can save 10% 20% in area compared to a cell
that uses only Manhattan or 90° geometry. Some ASIC vendors do not allow
transistors with 45° angles; others do not allow 45° angles at all.

Connectors are at the top and bottom of the cell on m2 on arouting grid equal
to the vertical (m2) track spacing. Thisis adouble-entry cell intended for a
two-level metal process. A standard cell designed for a three-level metal
process has connectors in the center of the cell.

Transistor sizes vary to optimize the area and performance but maintain afixed
ratio to balance rise times and fall times.

The cell heightis64 | (all cellsin the library are the same height) with a
horizontal (m1) track spacing of 81 . Thisis close to the minimum height that
can accommodate the most complex cellsin alibrary.

The power rails are placed at the top and bottom, maintaining a certain width
inside the cell and abut with the power railsin adjacent cells.

The well contacts (substrate connections) are placed inside the cell at regular
intervals. Additional well contacts may be placed in spacers between cells.

In this case both wells are drawn. Some libraries minimize the well or moat
areato reduce leakage and parasitic capacitance.

Most commercial standard cells use m1 for the power rails, m1 for internal
connections, and avoid using m2 where possible except for cell connectors.



FIGURE 3.20 A D flip-flop standard cell. The wide power buses and
transistors show thisis a performance-optimized cell. This double-entry cell is
intended for atwo-level metal process and channel routing. The five
connectors run vertically through the cell on m2 (the extra short vertical metal
lineisan interna crossover).

When alibrary developer creates a gate-array, standard-cell, or datapath library, there
is atrade-off between using wide, high-drive transistors that result in large cells with
high-speed performance and using smaller transistors that result in smaller cells that
consume less power. A performance-optimized library with large cells might be used
for ASICsin a high-performance workstation, for example. An area-optimized library
might be used in an ASIC for a battery-powered portable computer.




3.8 Datapath-Cell Design

Figure 3.21 shows a datapath flip-flop. The primary, thicker, power buses run
vertically on m2 with thinner, internal power running horizontally on m1. The
control signals (clock in this case) run vertically through the cell on m2. The
control signals that are common to the cells above and below are connected
directly in m2. The other signals (data, g, and gbar in this example) are brought
out to the wiring channel between the rows of datapath cells.
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FIGURE 3.21 A datapath D flip-flop cell.

Figure 3.22 isthe schematic for Figure 3.21 . Thisflip-flop uses apair of

cross-coupled inverters for storage in both the master and slave latches. This
leads to a smaller and potentially faster layout than the flip-flop circuits that we



use in gate-array and standard-cell ASIC libraries. The device sizes of the
invertersin the data-path flip-flops are adjusted so that the state of the latches
may be changed. Normally using this type of circuit is dangerousin an
uncontrolled environment. However, because the datapath structure is regular and
known, the parasitic capacitances that affect the operation of the logic cell are
also known. Thisis another advantage of the datapath structure.
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FIGURE 3.22 The schematic of the datapath D flip-flop cell shown in Figure
3.21.

Figure 3.23 shows an example of a datapath. Figure 3.23 (@) depicts atwo-level
metal version showing the space between rows or slices of the datapath. In this
case there are many connections to be brought out to the right of the datapath,
and this causes the routing channel to be larger than normal and thus easily seen.
Figure 3.23 (b) shows athree-level metal version of the same datapath. In this

case more of the routing is completed over the top of the datapath slices, reducing
the size of the routing channel.

FIGURE 3.23 A datapath. (a)
Implemented in atwo-level
metal process. (b) Implemented (b)
in athree-level metal process.




3.9 Summary

In this chapter we covered ASIC libraries. cell design, layout, and
characterization. The most important concepts that we covered in this chapter

were
« Tau, logical effort, and the prediction of delay
« Sizesof cells, and their drive strengths
o Cdl importance

« The difference between gate-array macros, standard cells, and datapath
cells




3.10 Problems

* = difficult, ** = very difficult, *** = extremely difficult

3.1 (Pull resistance, 10 min.)
« a Show that, for smal V pg, an n -channel transistor looks like aresistor, R =
ﬂ(bn(VDD th))-
e b.1fVgs=Vpp,Vps=0adk ,,=200mAV 2 (equa to the n -channel

transistor SPICE parameter KP in Table 2.1), find the pull resistance, R , for a
6/0.6 transistor in the linear region.

Answer: (b) 213 W .

3.2 (Inversion layer depth, 15 min.) In the absence of surface charge, Gauss s law
demands continuity of the electric displacement vector, D = e E, at the silicon surface,
sothate  E o =€g Eg,Wheree, =39, eq=117.
« a Assuming the potential at the surfaceisV g5 V=25V, calculate E ,, and
Egif To=100A.
o b. Assumethat carrier density exp ( g f /kT), wheref isthe potential; calculate

the distance below the surface at which the inversion charge density fallsto 10
percent of its value at the surface.

« C. Comment on the accuracy of your answers.
Answer: (a) 25¥108Vvm 1,0.833¥108Vm 1. (b) 7.16 A.

3.3 (Depletion layer depth, 15 min.) The depth of the depletion region under the gate is
givenby X y=+[(2eq f5)/(ON o )], wheref ;=2V 1 In(N 5 /n; ) isthe surface
potential at strong inversion. Calculatef ¢ and x 4 assuming: e g =1.0359 ¥ 10 10 Fm 1
, the substrate doping, N o = 1.4 ¥ 1017 cm 3, theintrinsic carrier concentration n; =
1.45¥ 1010 ¢m 3 (at room temperature), and the thermal voltage V 1 = kT/q =25.9
mV.

Answer; 0.833V, 900 A.

3.4 (Logical effort, 45 min.) Calculate the logical effort at each input of an AOI122
cell. Find an expression that allows you to calculate the logical effort for each input of
an AOI nnnncell forn=1, 2, 3.

3.5 (Gate-array macro design, 120 min.) Draw a 1X drive, two-input NAND cell using
the gate-array base cells shown in Figures 3.14 (a) 3.16 (lay a piece of thin paper over
the figures and draw the contacts and metal personalization only). Label the inputs and
outputs. Lay out a 1X drive, four-input NAND cell using the same base array cells.



Now lay out a2X drive, four-input NAND cell (think about this one). Make sure that
you size your transistors properly to balance rise times and fall times.

3.6 (Flip-flop library, 20 min.) Suppose we wish to build alibrary of flip-flops. We
want to have flops with: positive-edge and negative-edge triggering: clear, preset
(either, both, or neither); synchronous or asynchronous reset and preset controls if
present (but not mixed on the same flip-flop); al flip-flops with or without scan as an
option; flip-flops with Q and Qbar (either or both). How many flip-flopsis that?
(***) How would you attempt to prioritize which flip-flops to include in alibrary?

3.7 (AOQI and OAI cell ratios, 30 min.) In Figure 2.13(c) we adjusted the sizes of the
transistors assuming that there was only one path through the n -channel and p
-channel stacks. Suppose that p -channel transistors A, B, C, and D are all on and p
-channel transistor E turns on. What is the equivalent resistance of the p -channel stack
in this case?

3.8 (**Eight-input AND, 60 min.) This question is an example in the paper by
Sutherland and Sproull [1991] on logical effort. Figure 3.24 shows three different
ways to design an eight-input AND cell, ussing NAND and NOR cells.

« a Findthelogical effort at each input for A, B, C. Assume alogic ratio of 2.

b. Find the parasitic delay for A, B, C. Assume the parasitic delay of an inverter
1S 0.6.

« C. Show that the path delays are given by the following equations where H is the
path electrical effort, if we ignore the nonideal delays:

e ()2 (3.33H)05+ 54 (aternative A)

o (ii) 2(3.33H) 05 + 3.6 (aternative B)

o (iii) 4 (2.96 H) 025 + 4.2 (aternative C)

o d. Usethese equationsto determine the best alternative for H = 2 and H = 32.
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3.9 (Specidl logic cells, 30 min.) Many ASIC cell libraries contain special logic cells.
For example the Compass libraries contain atwo-input NAND cell with an inverted
input, FNO1 = (A + B'). This savesrouting area, is faster than using two separate cells,
and is useful because the combination of atwo-input NAND gate with one inverted
input is heavily used by synthesistools. Other special cellsinclude:

« FNO2=MAJ3=(A-B+A-C+B-C)

« FNO3=AO0I2-2=((A"B") +(C:D))'=(A +B)(C' + D") = 0OA2-2
« FNO4=0AI2-2

FNO5=A-B'=(A"'+B)'

a. Draw schematics for these célls.



« b. Calculatethelogical effort and logical areafor each cell.
« C. Canyou explain where and why these cells might be useful ?

3.10 (Euler paths, 60 min.) There are several ways to arrange the stacksin the AOI211
cell shownin Figure 3.25. For example, the n -channel transistor A can be below B
without altering the function. Which arrangement would you predict gives afaster
delay from A to Z and why? The p -channel transistors A and B can be above or below
transistors C and D. How many distinct ways of arranging the transistors are there for
this cell? What effect do the different arrangements have on layout? What effects do
these different arrangements have on the cell performance?
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FIGURE 3.25 There are severa waysto arrange the transistorsin this AOI211 cell
(Problem 3.10).

3.11 (*AOQI and OAI cell efficiency, 60 min.) A standard-cell library data book
contains the following data:

e AOI221: tR=1.061.15ns, t=1.091.55ns, C;,=0.210.28 pF; W - = 28.8
mm

o OAIZ221: tgR=0.77105ns tg=0.81096ns, C;,=0.250.39pF W =224
mm

(W ¢ isthecel width, the cell height is 25.6 m m.) Calculate the (a) logical effort and
(b) logical areafor the AOI221 and OAI221 cells.

The implementation of the OAI221 in this library uses a single stage,
OAI1221 = OAI221(al, a2, bl, b2, c),

whereas the AOI221 uses the following multistage implementation:
AOI221 = NOT(NAND(NAND(a1, a2), AOI21(b1, b2, c))).

(c) What are the alternative implementations for these two cells? (d) From your
answers attempt to explain the implementations chosen.

3.12 (**Logical efficiency, 60 min.) Extending Problem 3.11 , let us compare an
AOI33 with an OAI33 cell. () Calculatethelogical effort and (b) logical areas for
these cells.



The AOI33 uses a single-stage implementation as follows:
AOI33 = a0i33(al, a2, a3, b1, b2, b3).

The OAI33 uses the following multistage implementation:
OAI33 = not[nor[nor(al, a2, a3), nor(bl, b2, b3)]].

(c) Calculatethe path delay, D , as afunction of path electrical effort, H , for both of
these implementations ignoring parasitic and nonideal delays. (d) Use Eq. 3.42to
calculate the optimum path delay for these cells. () Compare and explain the

differences between your answersto partsd and efor H =1, 2, 4, and 8.
The timing data from the data book is as follows (the cell height is 25.6 m m):

e AOI33:tR=0.701.06ns, t=0.721.15ns, C;,=0.210.28 pF; W -=35.2
mm

. OAI33:tR=106170ns tg=142198ns C;,=0.310.36pF; W =48m
m

(f) How does this data compare with your theoretical analysis?

3.13 (EXOR cellsand logical effort, 60 min.) Show how to implement a two-input
EXOR cdll using an AOI22 and two inverters. Using logical effort, compare this with
an implementation using an AOI21 cell and aNOR cell.

3.14 (***XNOR cells, 60 min.) Table 3.3 shows the implementation of XNOR cells
in a standard-cell library. Analyze this data using the concept of logical effort.
TABLE 3.3 Implementations of XNOR cellsin CMOS (Problem 3.14).

Cdl Implementation

Library 1:

XNOB2D1 nand[or(al,a2),nand(al,a2)]

Ly Z NOT[NOT[MUX[aL, NOT(a1),a2)]]

Ly L NOT[NOT[MUX (a1,NOT(al),a2)]]

Library 2:

NOROD? nand[or(al,a2),nand(al, a2)]

Library 1:

XNOBAD1 NOT[NOT[MUX (al, NOT(al), NOT(MUX (a3, NOT(a3),a2)))]]
Library 1:

YNORAD? NOT[NOT[MUX (a1, NOT(al), NOT(MUX (a3, NOT(a3),a2)))]]

3.15 (***Extensionsto logical effort, 60 min.) The path branching effort B isthe
product of branching efforts:

B= b; .(3.47)
I path



The branching effort isthe ratio of the on-path plus off-path capacitance to the on-path
capacitance. The path effort F becomes the product of the path electrical effort, path
branching effort, and path logical effort:

F = GBH . (3.48)

Show that the path delay D is

D= gibihi+ p|(349)
i path I path

(***) Show that the optimum path delay isthen
DA"=NFVYN=N(GBH)VN+ P, (3.50)

3.16 (*Circuitsfrom layout, 120 min.) Figure 3.26 shows aD flip-flop with clear
from a 1.0 m m standard-cell library. Figure 3.27 shows two layout views of thisD
flip-flop. Construct the circuit diagram for this flip-flop, 1abeling the nodes and
transistors as shown. Include the transistor sizes use estimates for transistors with 45°
gates you only need W/L values, you can assume the gate lengthsareal L =21, equal
to the minimum feature size. Label the inputs and outputs to the cell and identify their
functions.

FIGURE 3.26 A D flip-flop from a 1.0 m m standard-cell library (Problem 3.16).

3.17 (Flip-flop circuits, 30 min.) Draw the circuit schematic for a positive-edge
triggered D flip-flop with active-high set and reset (base your schematic on

Figure 2.18a, a negative-edge triggered D flip-flop). Describe the problem when both
SET and RESET are high.



H B
(TR BN |

a b [+ d =]
| | | = | 5
u B contact ]
VoD [ | | u [ |
1 [ ™ ™ |
l ||
me | || | ] .?'
[ | 4 H 50 H BN H HEE ] d
g B
=) | |
=] c m7
I ? = P B
n- B [ |
I via i B -
B
5 | | | | ——
] [ |
. vas i -
| o I | |

FIGURE 3.27 (Top) A standard cell showing the diffusion ( n -diffusion and p
-diffusion), poly, and contact layers (the n -well and p -well are not shown).
(Bottom) Shows the m1, contact, m2, and vialayers. Problem 3.16 traces this circuit

for this cell.

If we want an active-high set or reset we can: (1) use an inverter on the set or reset
signal or (2) we can substitute NOR cells. Since NOR cells are slower than NAND
cells, which we do depends on whether we want to optimize for speed or area.

Thus, the largest flip-flop would be one with both Q and QN outputs, active high set
and reset requiring four TX gates, three inverters (four of the seven we normally need
are replaced with NAND cells), four NAND cells, and two invertersto invert the set
and reset, making a total of 34 transistors, or 8.5 gates.

3.18 (Set and reset, 10 min.) Show how to add a synchronous set or a synchronous
reset to the flip-flop of Figure 2.18(a) using atwo-input MUX.

3.19 (Clocked inverters, 45 min.) Using PSpice compare the delay of an inverter with
transmission gate with that of a clocked inverter using the G5 process SPICE
parameters from Table 2.1.



3.20 (SR, T, JK flip-flops, 30 min.) The characteristic equation for aD flip-flopis Q
t+1 = D. The characteristic equation for a K flip-flopis Q. = JQ¢)' + K'Qy .
« a. Show how you can build a JK flip-flop using a D flip-flop.
« b. The characteristic equation for a T flip-flop (toggle flip-flop) isQ 1 = (Q¢)' -
Show how to build aT flip-flop using a D flip-flop.

« C. The characteristic equation does not show the timing behavior of a sequential
element the characteristic equation for aD latch isthe same as that for aD
flip-flop. The characteristic equation for an S-R latch and an S-R flip-flopisQ

t+1 = S+ R'Q¢. An SR flip-flop is sometimes called a pul se-triggered flip-flop.

Find out the behavior of an S-R latch and an SR flip-flop and describe the
differences between these elements and a D latch and a D flip-flop.

« d. Explain why it is probably not agood ideato use an S-R flip-flopinan ASIC
design.

3.21 (**Optimum logic, 60 min.) Suppose we have afixed logic path of lengthn ; .

We want to know how many (if any) buffer stages we should add at the output of this
path to optimize the total path delay given the output load capacitance.

« a If thetotal number of stagesisN (logic path of lengthn ; plusN n 4
inverters), show that the total path delay is

nj
DA=NF YN+ (Pi+di)+(N ny)(Pinv+dinv) - (3.51)
i=1

The optimum number of stagesis given by the solution to the following equation:
DVN = /N(NFUYN+(N nq)(pin+din))=0.(352)

« b. Show that the solutions to this equation can be written in terms of F 2/ N" (the
optimum stage effort) where N” is the optimum number of stages:

FUNY(L InFUN")+(pipy +qiny) =0. (353

3.22 (XOR and XNOR cells, 60 min.) Table 3.4 shows the implementations of two-

and three-input XOR cellsin an ASIC standard-cell library (D1 are the 1X drive célls,
and D2 are the 2X drive versions). Can you explain the choices for the two-input XOR
cell and complete the table for the three-input XOR cell?

TABLE 3.4 Implementations of XOR cells (Problem 3.22).

Cdl Actual implementation 1 Alternative implementation(s)

XOR2D1 A0I21[al, a2, NOR(al,a2)] not[mux(al, not(al), a2)]
aoni22(al, a2, not(al), not(a2))

XOR2D2 NOT[MUX(al, not(al), a2)] aoi2l[al, a2, nor(al, a2)]

aoni22(al, a2, not(al), not(a2))



NOT[MUX[al, not(al), not(mux(a3, not(a3), .,
a2))]] '
NOT[MUX[al, not(al), not(mux(a3, not(a3), 5
a2))1] '

3.23 (Library density, 10 min.) Derive an upper limit on cell density as follows:
Assume a chip consists only of two-input NAND cells with no routing channels
between rows (often achievable in a 3LM process with over-the-cell routing).

« a. Explain how many vertical tracks you need to connect to atwo-input NAND
cell, assuming each connection requires a separate track.

o b.If the NAND cell is64 | high with avertical track width of 81, calculate the
NAND cell area, carefully explaining any assumptions.

o C. Calculatethe cell density (in gate/mil 2) for a0.35 m m process, | =0.175 m
m.

XOR3D1

XOR3D2

Answer: 3 tracks, 47 mm2, 13.7 gates/mil 2 or 21 ¥ 103 gatesmm 2.

3.24 (Gate-array density, 20 min.) The LSl Logic 10k and 100k gate arrays use a
four-transistor base cell, equivalent to 1 gate, that is 12 tracks high and 3 tracks wide.

« a lf ametal track is8l, wherel = 0.75 m m for a 1.5 m m technology, calculate
the area of the LSI Logic base cell A | inmil 2,

« b. If we could use every base cell in the gate array, the cell density would be D g
=1 A | . Assume that, because of routing area and inefficiency of the gate
array, we can use only 50 percent of the base cells for logic. What isD ¢ for the
LSl Logic 1.5m m array?

« C. Chipcell density D g isabout 1.0 gate/mil 2 for a1 m m technology (a

two-input NAND cell occupies an area 25 m m on a side in atechnology whose
transistors are 1 m m long). This can change by afactor of 2 or more for a
gate-array/standard-cell ASIC or high-density/high-performance library.
Assumethat cell density D g scales ideally with technology. If the minimum

feature size of atechnology is2l,thenD ¢ 1/12. Thus, for example,al.5mm

technology should have acell density of roughly (1/1.5) 2 gates/mil 2. How does
this agree with your estimate for the LS| Logic array?

3.25 (SIArc RAM, 10 min.) Suppose we need 16 k-bit of SRAM and 20 k-gate of
random logic on a channelless gate array. Assume a base cell with four transistors and
that we can build a RAM cell using two of these base cells. The RAM bits will require
32k base cells and the random logic will require 20k base cells. Suppose the base cell
areais 12 tracks high, 3 tracks wide, and the horizontal and vertical track spacing is
equal at 81 .

« a Calculate thetotal area of the base cells we need. Now suppose we redesign
the gate-array base cell so that we can build aRAM bit cell using asingle base
cell that is 20 tracks high, 3 tracks wide, and has 4 logic cell transistors and 4
RAM cell transistors. Assume that since the base cell now contains 8 transistors
we only need 12 k base cells to implement 20 k-gate of random logic (the new
base cell isless efficient than the old cell for implementing random logic).



« b. Calculate the base cell area using the new base cell design.
o C. Comment.

Answer: 1.2¥10812,1.1¥10812.

3.26 (***Gate-array base cell, 60 min.) Figure 3.28 shows a simple gate-array base

cell. Use the design rules shown in Table 2.16 (Problem 2.33) to calculate the
minimum size of this base cell. Do this by determining which design rules apply to the
labels shown adjacent to each space or width in the figure. In most cases each of the
spaces is determined by asingle rule related to the region labeled, for example, the
contact width labeled 'cc' is 2 | determined by rule C.1, the exact contact size. Thereis
one exception, shown in the figure. Space 'aa’ (bounding box, BB, to edge of pdiff) and
width 'bb' (edge of pdiff to edge of contact) are determined by the minimum space
labeled 'xx' (bounding box, BB, to poly edge) and width 'yy' (edge of poly to edge of
contact). Space 'xx' isone half of the poly to poly spacing over field (rule P.4) because
two base cells abut as shown in the figure. Width 'yy' is equal to the minimum poly
overlap of contact (rule C.3). The distance 'aa + bb' is thus determined by the minimum
distance 'xx + yy', as shown. The other distances are more straightforward to
determine.

Answer: 40| high by 26.25 | wide.
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FIGURE 3.28 A simple gate-array base cell (Problem 3.26).

3.27 (CIF, 15 min.) Hereisthe part of the CIF for a standard cell that describes the n
-well (CWN) and p -well (CWP) structure. The statement B length height xCenter,



yCenter is CIF for abox (CIF dimensions are in centimicrons, 0.01 m m):
DS1;LCWN;B6000
1560 13600,3660;B2480 60 11840,2850;B2320 60 15440,2850;L CWP;B680 60

13740,2730;B6000 1380 13600,2010;
« a Draw thewellsand BB. Label the dimensionsin micronsand| (I=0.4mm) .

o b. Thisisadouble-entry cell with m2 connectors at top and bottom. For this cell
library the cell AB is 31 (120 centimicrons, determined by the well rules) inside
the cell BB on al sides. What is the size of the cell AB in micronsand | ?

« C. Thevertical (m2) routing pitch (the distance between centers of adjacent
vertical m2 interconnect lines) is equal to the vertical track spacing and is 8|
(320 centimicrons). How many vertical tracks are therein this cell?

3.28 (CIF, 60 min.) Figure 3.29 shows an example of CIF that describesasingle
rectangle (box) of m1 with an accompanying label.

(CIF written by the Tanner Research layout editor: L-Edit);
(TECHNOLOGY : VLSIcmn6);

(DATE: Thu, Jun 27, 1996);

(FABCELL: NONE);

(SCALING: 1 CIF Unit = /120 Lambda, 1 Lambda = 3/10
Microns);

DS128;

9 CdlO;

94 Label Text 60 180 CM;

LCM;

B 240 120 120 300;

DF:; +
E

FIGURE 3.29 A simple CIF example (Problem 3.28).

LabelT ext

The CIF code has the following meaning:
e Lines15 are CIF comments.

« Line6isadefinition start for symbol 1 and marks the beginning of a symbol
definition (a symbol is a piece of layout, symbol numbers are unique identifiers).
The integers 2 and 8 define a scaling factor 2/8 (= 0.25) to be applied to distance
measurements (the CIF unit, after scaling, isacentimicron or 0.01 m m).

« Line7isauser extension or expansion (all extensions begin with adigit). L-Edit
uses user extension 9 for cell names ( CellO in this case).

o Line8isauser extension for acell label located on layer CM (first-level metal
In this technology) located at x = 60 units, y = 180 units (60, 180). Applying the
scaling factor of 0.25, this trandates to (15, 45) in centimicronsor (0.5, 1.5) in
lambda.

» Line9isalayer specification or command (beginswith L ).

« Line10isabox command and describes a box with (in order) length, L , of 240
units; width, W, of 120 units; and center at x = 120 unitsand y = 300 units.



Applying the DS scaling factor of 0.25 gives L = 60, W = 30, center = (30,
75)(centimicrons) or L =2, W = 1, center = (1, 2.5) in lambda.

o Line 1l isthedefinition finish ( DS and DF must be paired).
e Linel2istheend command .

Y ou receive a CIF file whose mask-layer names are different from those in the
technology file that you are using. The mapping between layer namesis shown in
Table 35.

« a. Write an awk or sed script (or use another automated editing technique) to
change the layer names. At this point you realize that there are several layer
names (LTRAN , LESD ) intheinput file that are not required (or recognized)
by your layout software (these particular examples are for software to recognize
unused transistorsin a gate array, and for an ESD implant in 1/0O devices).

e b. (**) Enhance your script to completely remove an unwanted layer from the
CIF file. There are some comments and CIF constructs that are not supported by
your editor. Here is one example:

(BB: 39.2,82.6 72.8,122.5 in lambda);

Commentsin this format specify the AB and BB for the cell. Other CIF user
extensions, not recognized by your software, are used for labels for power supplies and
connectors:

4A 1680 3360 2800 4844;

4M a1 2292 4028 2356 4092 CM 2;
4M z 4 2639 4090 2703 4154 CM 2,
4X vdd 2 2800 4774 180 * * metal,

e C.(**) Add codeto remove all these constructs from the CIF file.
TABLE 3.5 Mapping CIF layer names (Problem 3.28 ). 2
Input mask MOSIS mask Input mask MOSIS mask Input mask MOSIS mask

|abel label |abel |abel |abel |abel

LCNW CWN LCND3 CSN LCM2 CMS
LCPW CWP LCPD 2 CSP LCC2 CVsS
none 4 CAA LCCS5 CCA LCM3 CMT
LCP CPG LCM CMF none COG

1. MUX(a b, c) =a-c + b

2. Thismapping is for input to alayout editor; the CIF may have to be modified again
when written out from the layout editor.

3. Map the input diffusion layers to the implant select layers. On output from the
layout editor these layers should be sized up to generate the real implant select layers.

4. Thereisno active layer in the input. Instead use the diffusion layers.

5. Thereis only one contact layer in the input; map all contactsto CAA.Thereisno
easy way to generate the MOSIS CCP layer. This prevents handling of poly and
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PROGRAMMABLE ASICs

There are two types of programmable ASICs. programmable logic devices
(PLDs) and field-programmable gate arrays (FPGAS). The distinction between
the two isblurred. The only real differenceistheir heritage. PLDs started as
small devicesthat could replace ahandful of TTL parts, and they have grown to
look very much like their younger relations, the FPGAs. We shall group both
types of programmable ASICs together as FPGAS.

An FPGA isachip that you, as a systems designer, can program yourself. AnIC
foundry produces FPGAs with some connections missing. Y ou perform design
entry and simulation. Next, special software creates a string of bits describing the
extra connections required to make your design the configuration file . Y ou then
connect a computer to the chip and program the chip to make the necessary
connections according to the configuration file. There is no customization of any
mask level for an FPGA, allowing the FPGA to be manufactured as a standard
part in high volume.

FPGA s are popular with microsystems designers because they fill a gap between
TTL and PLD design and modern, complex, and often expensive ASICs. FPGASs
areideal for prototyping systems or for low-volume production. FPGA vendors
do not need an IC fabrication facility to produce the chips; instead they contract
|C foundries to produce their parts. Being fabless relieves the FPGA vendors of
the huge burden of building and running a fabrication plant (a new submicron fab
costs hundreds of millions of dollars). Instead FPGA companies put their effort
into the FPGA architecture and the software, where it is much easier to make a
profit than building chips. They often sell the chips through distributors, but sell
design software and any necessary programming hardware directly.

All FPGAs have certain key elementsin common. All FPGAs have aregular
array of basic logic cells that are configured using a programming technology .
The chip inputs and outputs use special I/O logic cells that are different from the
basic logic cells. A programmable interconnect scheme forms the wiring between
the two types of logic cells. Finally, the designer uses custom software, tailored
to each programming technology and FPGA architecture, to design and
implement the programmable connections. The programming technology in an
FPGA determines the type of basic logic cell and the interconnect scheme. The
logic cells and interconnection scheme, in turn, determine the design of the input
and output circuits as well as the programming scheme.



The programming technology may or may not be permanent. Y ou cannot undo
the permanent programming in one-time programmable ( OTP) FPGAs.
Reprogrammable or erasable devices may be reused many times. We shall
discuss the different programming technologies in the following sections.



4.1 The Antifuse

An antifuse is the opposite of aregular fuse an antifuse is normally an open
circuit until you force a programming current through it (about 5 mA). In apoly
diffusion antifuse the high current density causes alarge power dissipationin a
small area, which melts athin insulating dielectric between polysilicon and
diffusion electrodes and forms a thin (about 20 nm in diameter), permanent, and
resistive silicon link . The programming process also drives dopant atoms from
the poly and diffusion electrodes into the link, and the final level of doping
determines the resistance value of the link. Actel callsits antifuse a
programmabl e low-impedance circuit element ( PLICE ).

Figure 4.1 shows a poly diffusion antifuse with an oxide nitride oxide ( ONO )
dielectric sandwich of: silicon dioxide (SO, ) grown over the n -type antifuse
diffusion, asilicon nitride (S 3 N 4 ) layer, and another thin SO , layer. The

layered ONO dielectric resultsin atighter spread of blown antifuse resistance

values than using a single-oxide dielectric. The effective electrical thicknessis
equivalent to 10nm of SO, (Si 3 N 4 has a higher dielectric constant than SIO 5 ,

so the actual thicknessisless than 10 nm). Sometimes this deviceis called afuse
even though it is an anti fuse, and both terms are often used interchangeably.
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FIGURE 4.1 Actel antifuse. (a) A cross section. (b) A ssimplified drawing. The
ONO (oxide nitride oxide) dielectric isless than 10 nm thick, so thisdiagramis
not to scale. (c) From above, an antifuse is approximately the same sizeasa
contact.

The fabrication process and the programming current control the average
resistance of a blown antifuse, but values vary as shownin Figure4.2 . Ina
particular technology a programming current of 5 mA may result in an average
blown antifuse resistance of about 500 W . Increasing the programming current
to 15 mA might reduce the average antifuse resistance to 100 W . Antifuses



separate interconnect wires on the FPGA chip and the programmer blows an
antifuse to make a permanent connection. Once an antifuse is programmed, the
process cannot be reversed. Thisis an OTP technology (and radiation hard). An
Actel 1010, for example, contains 112,000 antifuses (see Table 4.1), but we

typically only need to program about 2 percent of the fuses on an Actel chip.

TABLE4.1

Number of percentags
antifuses on Actel 100
FPGAs.

Device Antifuses
A1010 112,000
A1020 186,000 I
Al1225 250,000 antii.l‘;eresis‘t_anmf!!
A1240 400,000
A1280 750,000

250
ano
730
000
250
1500

FIGURE 4.2 Theresistance of blown Actel antifuses. The
average antifuse resi stance depends on the programming
current. The resistance values shown here are typical for a
programming current of 5 mA.

To design and program an Actel FPGA, designers iterate between design entry
and ssmulation. When they are satisfied the design is correct they plug the chip
Into a socket on a special programming box, called an Activator , that generates
the programming voltage. A PC downloads the configuration file to the Activator
Instructing it to blow the necessary antifuses on the chip. When the chip is
programmed it may be removed from the Activator without harming the
configuration data and the chip assembled into a system. One disadvantage of
this procedure is that modern packages with hundreds of thin metal leads are
susceptible to damage when they are inserted and removed from sockets. The
advantage of other programming technologiesis that chips may be programmed
after they have been assembled on a printed-circuit board a feature known as
In-system programming ( ISP).

The Actel antifuse technology uses a modified CMOS process. A double-metal,
single-poly CMOS process typically uses about 12 masks the Actel process
requires an additional three masks. The n- type antifuse diffusion and antifuse
polysilicon require an extratwo masks and a 40 nm (thicker than normal) gate
oxide (for the high-voltage transistors that handle 18 V to program the antifuses)
uses one more masking step. Actel and Data General performed theinitia
experiments to develop the PLICE technology and Actel haslicensed the
technology to Texas Instruments (T1).

The programming time for an ACT 1 deviceis5 to 10 minutes. Improvementsin
programming make the programming time for the ACT 2 and ACT 3 devices



about the same asthe ACT 1. A 5-day work week, with 8-hour days, contains
about 2400 minutes. Thisis enough time to program 240 to 480 Actel parts per
week with 100 percent efficiency and no hardware down time. A production
schedule of more than 1000 parts per month requires multiple or gang
programmers.

4.1.1 Metal Metal Antifuse

Figure 4.3 shows a QuickL ogic metal metal antifuse ( ViaLink ). Thelink isan
alloy of tungsten, titanium, and silicon with a bulk resistance of about 500 mwW
cm.
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FIGURE 4.3 Metal metal antifuse. () An idealized (but to scale) cross section
of a QuickLogic metal metal antifuse in atwo-level metal process. (b) A metal
metal antifuse in athree-level metal process that uses contact plugs. The
conductive link usually forms at the corner of the viawhere the electric field is
highest during programming.

There are two advantages of ametal metal antifuse over a poly diffusion antifuse.
Thefirst isthat connections to a metal metal antifuse are direct to metal the
wiring layers. Connections from a poly diffusion antifuse to the wiring layers
require extra space and create additional parasitic capacitance. The second
advantage is that the direct connection to the low-resistance metal layers makesit
easier to use larger programming currents to reduce the antifuse resistance. For
example, the antifuse resistance R « 0.8/ | , with the programming current | in mA
and Rin W, for the QuickL ogic antifuse. Figure 4.4 shows that the average
QuickL ogic metal metal antifuse resistance is approximately 80 W (with a
standard deviation of about 10 W ) using a programming current of 15 mA as
opposed to an average antifuse resistance of 500 W (with a programming current
of 5mA) for apoly diffusion antifuse.



FIGURE 4.4 Resistance valuesfor
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The size of an antifuse is limited by the resolution of the lithography equipment
used to makes ICs. The Actel antifuse connects diffusion and polysilicon, and
both these materials are too resistive for use as signal interconnects. To connect
the antifuse to the metal layers requires contacts that take up more space than the
antifuse itself, reducing the advantage of the small antifuse size. However, the
antifuse is so small that it is normally the contact and metal spacing design rules
that limit how closely the antifuses may be packed rather than the size of the
antifuse itself.

An antifuse is resistive and the addition of contacts adds parasitic capacitance.
The intrinsic parasitic capacitance of an antifuse is small (approximately 1 2 fFin
almm CMOS process), but to this we must add the extrinsic parasitic
capacitance that includes the capacitance of the diffusion and poly electrodes (in
apoly diffusion antifuse) and connecting metal wires (approximately 10 fF).
These unwanted parasitic elements can add considerable RC interconnect delay if
the number of antifuses connected in seriesis not kept to an absolute minimum.
Clever routing techniques are therefore crucial to antifuse-based FPGASs.

The long-term reliability of antifusesis an important issue since thereisa
tendency for the antifuse properties to change over time. There have been some
problemsin this area, but as a result we now know an enormous amount about
this failure mechanism. There are many failure mechanismsin ICs
electromigration is a classic example and engineers have learned to deal with
these problems. Engineers design the circuits to keep the failure rate below
acceptable limits and systems designers accept the statistics. All the FPGA
vendors that use antifuse technology have extensive information on long-term
reliability in their data books.




4.2 Static RAM

An example of static RAM ( SRAM ) programming technology is shown in
Figure 4.5 . This Xilinx SRAM configuration cell is constructed from two
cross-coupled inverters and uses a standard CM OS process. The configuration
cell drives the gates of other transistors on the chip either turning pass transistors
or transmission gates on to make a connection or off to break a connection.

FIGURE 4.5 The Xilinx SRAM

(static RAM) configuration cell.

The outputs of the cross-coupled -

inverter (configuration control) coniguration
are connected to the gates of RE AD of —°<]——" g *
pass transistors or transmission ~ 'WRITE
gates. The cell is programmed DeT e 1 D*
using the WRITE and DATA

lines.

The advantages of SRAM programming technology are that designers can reuse
chips during prototyping and a system can be manufactured using ISP. This
programming technology is also useful for upgrades a customer can be sent a
new configuration file to reprogram a chip, not a new chip. Designers can also
update or change a system on the fly in reconfigurable hardware .

The disadvantage of using SRAM programming technology is that you need to
keep power supplied to the programmable ASIC (at alow level) for the volatile
SRAM to retain the connection information. Alternatively you can load the
configuration data from a permanently programmed memory (typicaly a
programmabl e read-only memory or PROM ) every time you turn the system on.
The total size of an SRAM configuration cell plus the transistor switch that the
SRAM cdll drivesisalso larger than the programming devices used in the
antifuse technologies.




4.3 EPROM and EEPROM
Technology

AlteraMAX 5000 EPLDs and Xilinx EPLDs both use UV -erasable electrically
programmabl e read-only memory ( EPROM ) cells as their programming
technology. Altera's EPROM cell isshown in Figure 4.6 . The EPROM cell is
amost as small as an antifuse. An EPROM transistor looks like a normal MOS
transistor except it has a second, floating, gate (gatel in Figure 4.6 ). Applying a
programming voltage V pp (usually greater than 12 V) to the drain of the n-
channel EPROM transistor programs the EPROM cell. A high electric field
causes electrons flowing toward the drain to move so fast they jump acrossthe
Insulating gate oxide where they are trapped on the bottom, floating, gate. We say
these energetic electrons are hot and the effect is known as hot-electron injection
or avalanche injection . EPROM technology is sometimes called floating-gate
avalanche MOS ( FAMOS).
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FIGURE 4.6 An EPROM transistor. (a) With ahigh (> 12 V) programming
voltage, V pp, applied to the drain, electrons gain enough energy to jump onto

the floating gate (gatel). (b) Electrons stuck on gatel raise the threshold voltage
so that the transistor is always off for normal operating voltages. (c) Ultraviolet
light provides enough energy for the electrons stuck on gatel to jump back to
the bulk, allowing the transistor to operate normally.

Electrons trapped on the floating gate raise the threshold voltage of the n-

channel EPROM transistor ( Figure 4.6 b). Once programmed, an n- channel
EPROM device remains off even with VDD applied to the top gate. An
unprogrammed n- channel device will turn on as normal with atop-gate voltage
of VDD . The programming voltage is applied either from a special programming



box or by using on-chip charge pumps. Exposure to an ultraviolet (UV) lamp will
erase the EPROM cell ( Figure 4.6 ¢). An absorbed light quantum gives an
electron enough energy to jump from the floating gate. To erase a part we place it
under aUV lamp (Xilinx specifies one hour within 1 inch of 212,000 m Wcm 2
source for its EPLDs). The manufacturer provides a software program that checks
to seeif apart iserased. You can buy an EPLD part in awindowed package for
development, erase it, and use it again, or buy it in a nonwindowed package and
program (or burn) the part once only for production. The packages get hot while
they are being erased, so that windowed option is available with only ceramic
packages, which are more expensive than plastic packages.

Programming an EEPROM transistor is similar to programming an UV -erasable
EPROM transistor, but the erase mechanism is different. In an EEPROM
transistor an electric field is aso used to remove electrons from the floating gate
of aprogrammed transistor. Thisis faster than using a UV lamp and the chip does
not have to be removed from the system. If the part contains circuits to generate
both program and erase voltages, it may use | SP.




4.4 Practical Issues

System companies often select an ASIC technology first, which narrows the
choice of software design tools. The software then influences the choice of
computer. Most computer-aided engineering ( CAE ) software for FPGA design
uses some type of security. For workstations this usually means floating licenses
(any of n users on a network can use the tools) or node-locked licenses (only n
particular computers can use the tools) using the hostid (or host I.D., a serid
number unique to each computer) in the boot EPROM (a chip containing start-up
instructions). For PCsthisis a hardware key, similar to the Viewlogic key
illustrated in Figure 4.7 . Some keys use the serial port (requiring extra cables and
adapters); most now use the parallel port. There are often conflicts between keys
and other hardware/software. For example, for awhile some security keys did not
work with the serial-port driver on Intel motherboards users had to buy another
seria-port 1/O card.

FIGURE 4.7 CAE companies use hardware security keys that fit
at the back of a PC (this one is shown at about one-half the real
size). Each piece of software requires a separate key, so that a
typical design system may have a half dozen or more keys
daisy-chained on one socket. This presents both mechanical and
software conflict problems. Software will not run without a key,
so it iseasily possible to have $60,000 worth of keys attached to
asingle PC.

Most FPGA vendors offer software on multiple platforms. The performance

difference between workstations and PCs is becoming blurred, but the time taken

for the place-and-route step for Actel and Xilinx designs seemsto remain

constant typically taking tens of minutes to over an hour for alarge design
bounded by designers tolerances.

A great deal of time during FPGA design is spent in schematic entry, editing
files, and documentation. This often requires moving between programs and this
isdifficult on IBM-compatible PC platforms. Currently most large CAD and
CAE programs completely take over the PC; for example you cannot always run
third-party design entry and the FPGA vendor design systems simultaneously.

There are many other factors to be considered in choosing hardware:
« Software packages are normally less expensive on a PC.
« Peripherals are less expensive and easier to configure on a PC.



« Maintenance contracts are usually necessary and expensive for
workstations.

« Thereisamuch larger network of usersto provide support for PC users.
« Itiseasier to upgrade a PC than a workstation.

4.4.1 FPGAS In Use

| once placed an order for asmall number of FPGAs for prototyping and received
a sales receipt with a scheduled shipping date three months away. Apparently,
two customers had recently disrupted the vendor s product planning by placing
large orders. Companies buying parts from suppliers often keep an inventory to
cover emergencies such as a defective lot or manufacturing problems. For
example, assume that a company keeps two months of inventory to ensure that it
has parts in case of unforeseen problems. Thisrisk inventory or safety supply, at
a sales volume of 2000 parts per month, is 4000 parts, which, at an ASIC price of
$5 per part, costs the company $20,000. FPGAs are normally sold through
distributors, and, instead of keeping arisk inventory, a company can order parts
asit needsthem using ajust-in-time ( JIT ) inventory system. This means that the
distributors rather than the customer carry inventory (though the distributors wish
to minimize inventory as well). The downside is that other customers may change
their demands, causing unpredictable supply difficulties.

There are no standards for FPGAs equivalent to thoseinthe TTL and PLD
worlds; there are no standard pin assignments for VDD or GND, and each FPGA
vendor uses different power and signal I/O pin arrangements. Most FPGA
packages are intended for surface-mount printed-circuit boards ( PCBSs).
However, surface mounting requires more expensive PCB test equipment and
vapor soldering rather than bed-of-nails testers and surface-wave soldering. An
alternative isto use socketed parts. Several FPGA vendors publish
socket-reliability tests in their data books.

Using sockets raises its own set of problems. First, it is difficult to find wire-wrap
sockets for surface-mount parts. Second, sockets may change the pin
configuration. For example, when you use an FPGA in a PLCC package and plug
it into a socket that has a PGA footprint, the resulting arrangement of pinsis
different from the same FPGA in a PGA package. This means you cannot use the
same board layout for a prototype PCB (which uses the socketed PL CC part) as
for the production PCB (which uses the PGA part). The same problem occurs
when you use through-hole mounted parts for prototyping and surface-mount
parts for production. To deal with thisyou can add a small piece to your
prototype board that you use as a converter. This can be sawn off on the
production boards saving a board iteration.

Pin assignment can also cause a problem if you plan to convert an FPGA design
to an MGA or CBIC. In most cases it is desirable to keep the same pin
assignment as the FPGA (thisis known as pin locking or 1/O locking ), so that the



same PCB can be used in production for both types of devices. There are often
restrictions for custom gate arrays on the number and location of power pads and

package pins. Systems designers must consider these problems before designing
the FPGA and PCB.




4.5 Specifications

All FPGA manufactures are continually improving their products to increase
performance and reduce price. Often this means changing the design of an FPGA
or moving a part from one process generation to the next without changing the
part number (and often without changing the specifications).

FPGA companies usually explain their part history in their data books. 1 The

following history of Actel FPGA ACT 1 part numbersillustrates changes typical
throughout the IC industry as products devel op and mature:

o TheActel ACT 1 A1010/A1020 used a2 m m process.
o TheActel A1010A/A1020A used a 1.2 m m process.

o TheActel A1020B was adierevision (including ashrinktoal.0 mm
process). At this time the A1020, A1020A, and A1020B all had different
Speeds.

» Actel graded partsinto three speed bins as they phased in new processes,
dropping the distinction between the different die suffixes.

« At the sametime asthetransition to dierev. 'B', Actel began specifying
timing at worst-case commercia conditions rather than at typical
conditions.

From this history we can see that it is often possible to have parts from the same
family that use different circuit designs, processes, and die sizes, are
manufactured in different locations, and operate at very different speeds. FPGA
companies ensure that their products always meet the current published
worst-case specifications, but there is no guarantee that the average performance
follows the typical specifications, and there are usually no best-case
specifications.

There are also situations in which two parts with identical part numbers can have
different performance when different ASIC foundries produce the same parts.
Since FPGA companies are fabless, second sourcing is very common. For
example, Tl began making the TPC1010A/1020A to be equivalent to the original
Actel ACT 1 parts produced elsewhere. The Tl timing information for the
TPC1010A/1020A was the same as the 2 m m Actel specifications, but Tl used a
faster 1.2 m m process. This meant that equivalent parts with the same part
numbers were much faster than a designer expected. Often this type of
information can only be obtained by large customers in the form of a
qualification kit from FPGA vendors.



A similar situation arises when the FPGA manufacturer adjusts its product mix
by selling fast parts under a slower part number in a procedure known as
down-binning . Thisis not a problem for synchronous designs that always work
when parts are faster than expected, but is another reason to avoid asynchronous
designs that may not always work when parts are much faster than expected.

1. See, for example, p.1-8 of the Xilinx 1994 data book.




4.6 PREP Benchmarks

Which type of FPGA isbest? Thisis an impossible question to answer. The
Programmabl e Electronics Performance Company ( PREP ) is a nonprofit
organization that organized a series of benchmarks for programmable ASICs.
The nine PREP benchmark circuitsin the version 1.3 suite are:

1. An 8-hit datapath consisting of 4:1 MUX, register, and shift-register

2. An 8-bit timer counter consisting of two registers, a4:1 MUX, a counter
and a comparator

3. A small state machine (8 states, 8 inputs, and 8 outputs)

4. A larger state machine (16 states, 8 inputs, and 8 outputs)

An ALU consisting of a4 ¥ 4 multiplier, an 8-bit adder, and an 8-bit
register

6. A 16-bit accumulator

7. A 16-bit counter with synchronous load and enable

8. A 16-bit prescaled counter with load and enable

9. A 16-bit address decoder

o

The data for these benchmarks is archived at http://www.prep.org . PREP s
online information includes Verilog and VHDL source code and test benches
(provided by Synplicity) aswell as additional synthesis benchmarksincluding a
bit-slice processor, multiplier, and R4000 MIPS RISC microprocessor.

One problem with the FPGA benchmark suite is that the examples are small,
allowing FPGA vendors to replicate multiple instances of the same circuit on an
FPGA. This does not reflect the way an FPGA is used in practice. Another
problem is that the FPGA vendors badly misused the results. PREP made the data
available in a spreadsheet form and thus inadvertently challenged the marketing
department of each FPGA vendor to find away that company could claim to win
the benchmarks (usually by manipulating the data using a complicated weighting
scheme). The PREP benchmarks do demonstrate the large variation in
performance between different FPGA architectures that results from differences
in the type and mix of logic. This shows that designers should be careful in
evaluating others results and performing their own experiments.




4.7 FPGA Economics

FPGA vendors offer awide variety of packaging, speed, and qualification
(military, industrial, or commercial) options in each family. For example, there
are severa hundred possible part combinations for the Xilinx LCA series.

Figure 4.8 shows the Xilinx part-naming convention, which is similar to that used
by other FPGA vendors.
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FIGURE 4.8 Xilinx part-naming E temperature range
convention. num bar of pins
package
speaed
device type

Table 4.2 shows the various codes used by manufacturers in their FPGA part

numbers. Not all possible part combinations are available, not al packaging
combinations are available, and not all 1/0 options are available in all packages.
For example, it is quite common for an FPGA vendor to offer a chip that has
more /O cells than pins on the package. This allows the use of cheaper plastic
packages without having to produce separate chip designs for each different
package. Thus a customer can buy an Actel A1020 that has 69 I/0O cellsin an
inexpensive 44-pin PLCC package but uses only 34 pinsfor /O the other 10 (=
44 34) pins are required for programming and power: three for GND, four for
VDD, one for MODE (apin that controls four other multifunction pins), and one
for VPP (the programming voltage). A designer who needs al 69 |I/Os can buy
the A1020 in a bigger package. Tables in the FPGA manufacturers data books
show the availability, and these matrices change constantly.

TABLE 4.2 Programmable ASIC part codes.

[tem Code Description Code  Description
Manufacturer s A Actel ATT  AT&T (Lucent)
code XC Xilinx isp Lattice Logic
EPM  AlteraMAX M5 ﬁ}';"(?ev'\i"CAeCH Sison
EPF AlteraFLEX QL QuickLogic

CY7C  Cypress

plastic J-leaded very thin quad flatpack,
Package PLOPC hip carrier, PLce Y@ vorp



type PO plastic quad TQ thin plastic flatpack,
flatpack, PQFP TQFP
ceramic quad plastic pin-grid array,
CQOrCB fapack, COFP ™~ PPGA
ceramic pin-grid o
PG array, PGA WB, PB ball-grid array, BGA
Application C commercia B MIL-STD-883
I industrial E extended
M military

TABLE 4.3 1992 base Actel
FPGA prices.

Actel part 1H92 base price
A1010A-PL44C $23.25
A1020A-PL44C $43.30
A1225-PQ100C $105.00
A1240-PQ144C $175.00
A1280-PQ160C $305.00

TABLE 4.4 1992 base Xilinx XC3000
FPGA prices.

Xilinx part 1H92 base price
X C3020-50PC68C $26.00

X C3030-50PC44C $34.20

X C3042-50PC84C $52.00

X C3064-50PC84C $87.00

X C3090-50PC84C $133.30

4.7.1 FPGA Pricing

Asking How much do FPGAs cost? israther like asking How much does a car
cost? Prices of cars are published, but pricing schemes used by semiconductor
manufactures are closely guarded secrets. Many FPGA companies use a pricing
strategy based on a cost model that uses a series of multipliers or adders for each
part option to calculate the suggested price for their distributors. Although the
FPGA companies will not divulge their methods, it is possible to reverse engineer
these factorsto create a pricing matrix.

Many FPGA vendors sell parts through distributors. This can introduce some
problems for the designer. For example, in 1992 the Xilinx XC3000 series
offered the following part options:

TABLE 4.5 Actel price adjustment factors.

Purchase quantity, all types

19 (10 99) (100 999)

100 %

96 % 84 %

Purchase time, in (100 999) quantity
1H92 2H92 93

100 %

80 95 % 60 80 %



Qualification type, same package
Commercia Industrial  Military 883-B

100 % 120 % 150% 230300 %
Speed bin 1
ACT 1-Std ACT1-1  ACT 1-2 ACT 2-Std ACT 2-1
100 %
115 % 140% 100 % 120 %
Package type
A1010: PL44, 64, 84 PQ100 PG84
100 % 125% 400 %
A1020: PL44,64,84PQ100 JQ44,68,84PG84  CQ84
100 % 125% 270% 275% 400 %
A1225: PQ100 PG100
100 % 175 %
A1240: PQ144 PG132
100 % 140 %
A1280: PQ160 PG176 CQ172
100 % 145% 160 %

« Fivedifferent size parts. XC30{ 20, 30, 42, 64, 90}
« Three different speed grades or bins. {50, 70, 100}

« Tendifferent packages: { PC68, PC84, PG84, PQ100, CQ100, PP132,
PG132, CQ184, PP175, PG175}

« Four application ranges or qualification types. {C, |, M, B}
where {} means Choose one.

Thisrange of options gave atotal of 600 possible X C3000 products, of which
127 were actually available from Xilinx, each with a different part code. If a
designer is uncertain as to exact size, speed, or package required, then they might
easily need price information on several dozen different part numbers.
Distributors know the price information it is given to each distributor by the
FPGA vendors. Sometimes the distributors are reluctant to give pricing
information out for the same reason car salespeople do not aways like to
advertise the pricing scheme for cars. However, pricing of the components of a
microelectronics system is a vital factor in making decisions such as whether to
use FPGAs or some alternative technology. Designers would like to know how
FPGAs are priced and how prices may change.



4.7.2 Pricing Examples

Table 4.3 shows the prices of the |east-expensive version of the Actel ACT 1 and
ACT 2 FPGA families, the base prices, in the first half of 1992 (1H92).

Table 4.4 shows the 1H92 base prices for the Xilinx XC3000 FPGA family.
Current FPGA prices are much lower. As an example, the |east-expensive
XC3000 part, the XC3020A-7PC68C, was $13.75 in 1996 nearly half the 1992
price.

Using historical prices helps prevent accusations of bias or distortion, but still
realistically illustrates the pricing schemes that are used. We shall use these base
prices to illustrate how to estimate the sticker price of an FPGA by adding
options as we might for a car. To estimate the price of any part, multiply the base
prices by the adjustment factors (shown in Table 4.5 for the Actel parts).

The adjustment factorsin Table 4.5 were calculated by taking averages across a

matrix of prices. Not all combinations of product types are available (for
example, there was no military version of an A1280-1 in 1H92). The dependence
of price over timeis especially variable. An example price calculation for an
Actel partisshown in Table 4.6 . Many FPGA vendors use similar pricing

models.

TABLE 4.6 Example Actel part-price calculation using the base prices of
Table 4.3 and the adjustment factors of Table 4.5.

Example: A1020A-2-PQ100I in (100 999) quantity, purchased 1H92,

Factor Example Value
Base price A1020A $43.30
Quantity 100 999 84 %
Time 1H92 100 %
Qualification type Industrial (1) 120 %
Speed bin 2 2 140 %
Package

PQ100 125 %
Estimated price (1H92) $76.38
Actual Actel price (1H92) $75.60

Some distributors now include FPGA prices and availability online (for example,
Marshall at http://marshall.com for Xilinx parts) so that is possible to complete
an up-to-date analysis at any time. Most distributors carry only one FPGA
vendor; not all of the distributors publish prices; and not all FPGA vendors sell
through distributors. Currently Hamilton-Avnet, at http://www.hh.avnet.com,
carries Xilinx; and Wyle, at http://www.wyle.com , carries Actel and Altera.




1. Actel speed bins are: Std = standard speed grade; 1 = medium speed grade; 2 =
fastest speed grade.

2. The speed bin isamanufacturer s code (usually a number) that follows the
family part number and indicates the maximum operating speed of the device.




4.8 Summary

In this chapter we have covered FPGA programming technologies including
antifuse, SRAM, and EPROM technol ogies; the programming technology is
linked to all the other aspects of a programmable ASIC. Table 4.7 summarizes
the programming technol ogies and the fabrication processes used by
programmable ASIC vendors.

TABLE 4.7 Programmable ASIC technologies.

Programming
technology

Size of
programming
element

Process

Programming
method

Programming
technology

Size of
programming

element

Actel

Xilinx LCA 1 AlteraEPLD  Xilinx EPLD

Poly diffusion Erasable
antifuse, SRAM
PLICE ISP

Small but Two inverters

: plus pass and
requires :

switch
contacts to :
metal devices.

Largest.
Specidl:
CMOSplus Standard
three extra CMOS
masks.

: PC card,
Specia PROM, or
hardware :

seria port
QuickLogic  Crosspoint
Metal metal Meta
antifuse, polysilicon
ViaLink antifuse
Smallest Small

UV-erasable

EPROM (MAX

5K)

EEPROM
(MAX 7/9K)

UV-erasable
EPROM

Onen - channel One n - channé

EPROM
device.

Medium.

Standard
EPROM and
EEPROM

ISP (MAX 9Kk)
or EPROM
programmer

Atmel

Erasable
SRAM.

|SP.

Two inverters
plus pass and
switch devices.
Largest.

EPROM
device.

Medium.

Standard
EPROM

EPROM
programmer

Altera FLEX

Erasable
SRAM.

|SP.

Two inverters
plus pass and
switch devices.
Largest.



Specidl, Specidl,

Process CMOSplus CMOS plus gt'anggr d
VialLink antifuse
Programming  Specidl Specia PC card,
PROM, or
method hardware hardware :
seria port

All FPGAs have the following key elements:
« The programming technology
o Thebasiclogic cells
Thel/Ologic cells
Programmabl e interconnect
Software to design and program the FPGA

Standard
CMOS

PC card,
PROM, or
serial port

1. Lucent (formerly AT&T) FPGAs have amost identical properties to the Xilinx

LCA family.




4.9 Problems

* = Difficult, ** = Very difficult, *** = Extremely difficult

4.1 (Antifuse properties, 20 min.) In this problem we examine some of the
physical and electrical features of the antifuse programming process.

« a. If the programming current of an antifuseis5 mA and the link diameter
that isformed is 20 nm, what is the current density during programming?

« b. If the average antifuse resistance is 500 W after programming is
complete and the programming current is5 mA, what is the voltage across
the antifuse at completion of programming?

o C. What power is dissipated in the antifuse link at the end of programming?

« d. Suppose we wish to reduce the antifuse resistance from 500 W to 50 W .
If the antifuse link isatall, thin cylinder, what is the diameter of a50 W
antifuse?

« €. Assume we need to keep the power dissipated per unit volume of the
antifuse link the same at the end of the programming process for both 500
W and 50 W antifuses. What current density is required to program a50 W
antifuse?

« f. With these assumptions what is the required programming current for a
50 W antifuse? Comment on your answer and the assumptions that you
have made.

4.2 (Actel antifuse programming, 20 min.) In this problem we examine the time
taken to program an antifuse-based FPGA.

« a We have stated that it takes about 5 to 10 minutes to program an Actel
part. Given the number of antifuses on the smallest Actel part, and the
number of antifuses that need to be blown on average, work out the
eguivalent time it takes to blow one antifuse. Does this seem reasonabl e?

« b. Because of afailure process known as electromigration, the current
density in ametal wire on achipislimited to about 50 k Acm 2. You can
exceed this current for a short time as long as the time average does not
exceed the limit. Suppose we want to use a minimum metal width to
connect the programming transistors: Would these facts help explain your
answer to part a?

« C. What other factors might be involved in the process of blowing antifuses
that may help explain your answer to part a?

4.3 (* Xilinx cell) Estimate the area components of a Xilinx cell asfollows:



o a (30 min.) Assume the two inverters in the cross-coupled SRAM cell are
minimum size (they are not, the p- channels or n- channels in one inverter
need to be weak long and narrow but ignore this). Assume the read write
deviceis minimum size. Estimate the size of the SRAM cell including an
allowance for wiring (state your assumptions clearly).

« b. (15 min.) Assume asingle n- channel pass transistor is connected to the
SRAM cdll and has an on-resistance of 500 W (equal to the average Actel
ACT 1 antifuse resistance for comparison; the actual Xilinx pass
transistors have closer to 1 k W on-resistance). Estimate the transistor size.
Assume the gate voltage of the passtransistor isat 5V, and the source and
drain voltages are both at 0 V (the best case). Hint: Use the parameters
from Section 3.1, Transistors as Resistors.

 C. (15min.) Compare your total area estimates of the cell with other FPGA
technologies. Explain why the assumptions you made may be too ssimple,
and suggest ways to make more accurate estimates.

4.4 (FPGA vendors, 60 min.) Update the information shown in Table 4.7 using
the online information provided by FPGA vendors.

4.5 (Prices) Adjustment factors, calculated from averages across the Xilinx price
matrix, are shown in Table 4.8 (the adjustment factors for the Xilinx military and

MIL-STD parts vary so wildly that it is not possible to use asimple model to
predict these prices).
« a (5min.) Estimate the price of a XC3042-70PG132I in 100+ quantity,
purchased in 1H92.
e b. (30min.) Usethe 1992 pricesin Figure 4.9 to derive as much of the
information shown in Table 4.8 as you can, explaining your methods,

2042 i1—24) {25-94) {100+

SOPCS4C £52.00 £47 30 54005
FIGURE 4.9 SOFCadl 567,30 L6125 55180
Xilinx XC3042  7orcsac £56.50 £51.40 543 .50
prices(1992).  rckt U -
Problem 4.5 125PC84 0 £114.00 510375 827 .80
reconstructs part  soppizzc 5124 .50 511330 £95.35
of Table 4.8 SOFEI00C SE0.40

. SOPGSAC 516150

fromthis data. S0CAI00C £134 .50

SOPGIZ2C 519120

TABLE 4.8 Xilinx price adjustment factors (1992) for Problem 4.5
Purchase quantity, all types

(124) (2599) (100+) (5000+)

100 % 91 % 7% 70%

Purchase time, in (100 999) quantity



1H92 +18 months

100% 60%

Qualification type, same package

Commercial Industrial Military 883-B

100%
130% varies varies
Speed bin
50 70 100 125
100 %
110 % 130% 220%
Package type
3020: PC68 PC84 PQ100 PG84 CQ100
100 % 106 % 127 % 340 % 490 %
3030: PC44 PC68 PC84 PQ100PG84
100 % 107% 113% 135% 330 %
3042 PC84 PQ100 PP132 PG84 PG132 CQ100
100 % 175% 240% 310% 370% 375 %
3064: PC84 PQ160 PP132 PG132
100 % 150% 190% 260 %
3090: PC84 PQ160 PP175 PG175CQ164
100 % 130% 150% 230 % 240 %

 C. (Hours) Construct atable (using the format of Table 4.8) for a current

FPGA family. Y ou may haveto be creative in capturing the HTML and
filtering it into a spreadsheet. Hint: In Microsoft Word 5.0 you can select
columns of text by holding down the Option key.

Answer: () $211.85 (the actual Xilinx price was $210.20).

4.6 (PREP benchmarks, 60min.) Download the PREP 1.3 benchmark results as
spreadsheets from http://www.prep.org . Split the participating companies among
groups and challenge each group to produce an averaging or analysis scheme that
shows the group s assigned company asa winner. For hints on this problem,
consult advertisements in past issues of EE Times.

4.7 (FPGA patents) Patents are a good place to find information on FPGAS.

o a Find U.S. Patent 5,440,245, Galbraith et al. Logic module with
configurable combinational and sequential blocks. Find and explain a
method to paste the figures into a report.

« b. Conduct a patent search on FPGAs. Good places to start are the U.S.
Patent and Trademark Office ( PTO) at http://www.uspto.gov and the IBM

patent resource at http://patent.womplex.ibm.com . Until 1996 the full text




of recent U.S. patents was available at http://www.town.hall.org/patent ;
thisis still agood site to visit for references to other locations. Table 4.9

lists the patents awarded to the major FPGA companies up until 1996 (in
the case of Actel and Alterathe list includes only patents issued after 1990,
corresponding roughly to patent numbers greater than number 5,000,000,
which was issued in March 1990).

4.8 (**Maskworks, days) If you really want to find out about FPGA technology
you tear chips apart. There is another way. Most U.S. companies register their
chips as atype of copyright called a Maskwork . You will often see alittle circle
containing an M on achip in the same way that a copyright signisacircle
surrounding the letter C . Companies that require a Maskwork are required to
deposit plots and samples of the chips with a branch of the Library of Congress.
These plots are open for public inspection in Washington, D.C. It is perfectly
legal to use thisinformation. You have to sign avisitors book, and most of the
names in the book are Japanese. Research Maskworks and write a summary of its
implications, the protection it provides, and (if you can find them) the rules for
the materials that must be deposited with the authorities.

TABLE 4.9 FPGA Patents (U.S).
QuickLogic Xilinx 5,329,181 4,713,557 5,308,795 5,008,855

5,416,367 5,436,575 5,329,174 4,706,216 5,304,871
5,397,939 5,432,719 5,329,181 4,695,740 5,299,150 Altera
5,396,127 5,430,687 5,321,704 4,642,487 5,286,992 5,477,474 5,280,203
5,362,676 5,430,390 5,319,254 5,272,388 5,473,266 5,274,581
5,319,238 5,426,379 5,319,252 Actel 5,272,101 5,463,328 5,272,368
5,302,546 5,426,378 5,302,866 5,479,113 5,266,829 5,444,394 5,268,598
5,220,213 5,422,833 5,295,090 5,477,165 5,254,886 5,438,295 5,260,611
5,196,724 5,414,377 5,291,079 5,469,396 5,223,792 5,436,575 5,260,610
5,410,194 5,245,277 5,464,790 5,208,530 5,436,574 5,258,668
Intel 5,410,189 5,224,056 5,457,644 5,198,705 5,434,514 5,247,478
4,543,594 1 5,399,925 5,166,858 5,451,887 5,194,759 5,432,467 5,247,477
5,399,924 5,155,432 5,449,947 5,191,241 5,414,312 5,243,233
Crosspoint 5,394,104 5,148,390 5,448,185 5,187,393 5,399,922 5,241,224
5,440,453 5,386,154 5,068,603 5,440,245 5,181,096 5,384,499 5,237,219
5,394,103 5,367,207 5,047,710 5,432,441 5,172,014 5,376,844 5,220,533
5,365,125 5,028,821 5,414,364 5,171,715 5,371,422 5,220,214




5,384,481
5,322,812
5,313,119
5,233,217
5,221,865

Concurrent
5,218,240
5,144,166
5,089,973

PlusLogic
5,028,821
5,023,606
5,012,135
4,967,107
4,940,909

5,362,999 5,023,606 5,412,244 5,163,180 5,369,314 5,200,920
5,361,229 5,012,135 5,411,917 5,134,457 5,359,243 5,166,604
5,360,747 4,967,107 5,404,029 5,132,571 5,359,242 5,162,680
5,359,536 4,940,909 5,391,942 5,130,777 5,353,248 5,144,167
5,349,691 4,902,910 5,387,812 5,126,282 5,352,940 5,138,576
5,349,250 4,870,302 5,373,169 5,111,262 5,350,954 5,128,565
5,349,249 4,855,669 5,371,414 5,107,146 5,349,255 5,121,006
5,349,248 4,855,619 5,369,054 5,095,228 5,341,308 5,111,423
5,343,406 4,847,612 5,367,208 5,087,958 5,341,048 5,097,208
5,337,255 4,835,418 5,365,165 5,083,083 5,341,044 5,091,661
5,349,248 4,821,233 5,341,092 5,073,729 5,329,487 5,066,873
5,343,406 4,820,937 5,341,043 5,070,384 5,317,210 5,045,772
5,337,255 4,783,607 5,341,030 5,057,451 5,315,172

5,332,929 4,758,985 5,317,698 5,055,718 5,301,416

5,331,226 4,750,155 5,316,971 5,017,813 5,294,975

5,331,220 4,746,822 5,309,091 5,015,885 5,285,153

1. Mohsen s patent on the antifuse structure.




4.10 Bibliography

Books by Ukeiley [ 1993], Chan [ 1994], and Trimberger [ 1994] are dedicated to
FPGAs and their uses. The International Workshop on Field-Programmable
Logic and Applications describes the latest devel opments and applications of
FPGASs [Griunbacher and Hartenstein, 1992; Hartenstein and Servit, 1994; Moore
and Luk, 1995; Hartenstein and Glesner, 1996]. Many of the FPGA vendors have
Web sites that include white papers and technical documentation. The annual
|EEE International Electron Devices Meeting (IEDM, ISSN 0163-1918, TK
7801.153) isaforum for presenting new device and | C technology including new
FPGA programming technologies. The IEEE Transaction on Electron Devices
(ISSN 0018-9383) is the archival source for developments in device technology.

Thereisalarge U.S. patent literature on FPGAS (see Table 4.9 ). Sometimes the

FPGA vendors hide the basic low-level structures from the user to simplify their
description or to prevent the competition from understanding their secrets.
Patents have to explain the details of operation (otherwise they will not be
awarded or cannot be enforced), so sometimesit can be useful to at least know
where to look. One place to start is the front or back of the data book, which
often contains alist of the manufacturer s patents.
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PROGRAMMABLE
ASIC LOGIC
CELLS

All programmable ASICs or FPGAs contain abasic logic cell replicated in a
regular array across the chip (analogousto abase cell inan MGA). There are the
following three different types of basic logic cells: (1) multiplexer based, (2)
look-up table based, and (3) programmable array logic. The choice among these
depends on the programming technology. We shall see examples of each in this

chapter.




5.1 Actel ACT

The basic logic cellsin the Actel ACT family of FPGAs are called Logic
Modules. The ACT 1 family uses just one type of Logic Module and the ACT 2
and ACT 3 FPGA families both use two different types of Logic Module.

5.1.1 ACT 1 Logic Module

The functional behavior of the Actel ACT 1 Logic Module is shown in Figure 5.1
(@). Figure 5.1 (b) represents a possible circuit-level implementation. We can
build alogic function using an Actel Logic Module by connecting logic signalsto
some or all of the Logic Module inputs, and by connecting any remaining Logic
Module inputsto VDD or GND. As an example, Figure 5.1 (c) shows the
connections to implement the function F=A - B + B' - C + D. How did we know
what connections to make? To understand how the Actel Logic Module works,
we take a detour via multiplexer logic and some theory.

Logic MModule Logic: Madule Logic Module

m =

F=i&-B)+(B -0+
m) (<) ()
FIGURE 5.1 The Actel ACT architecture. (a) Organization of the basic logic

cells. (b) The ACT 1 Logic Module. (c) An implementation using pass
transistors (without any buffering). (d) An example logic macro. (Source: Actel.)



5.1.2 Shannon s Expansion Theorem

In logic design we often have to deal with functions of many variables. We need
amethod to break down these large functions into smaller pieces. Using the
Shannon expansion theorem, we can expand a Boolean logic function F in terms
of (or with respect to) aBoolean variable A,

F=A-FA=1)+A"-F(A="0),5.2
where F (A = 1) represents the function F evaluated with A set equal to '1'.

For example, we can expand the following function F with respect to (I shall use
the abbreviation wrt ) A,

F=A"-B+A-B-C'+A'-B'-C
=A-(B-C)+A'-(B+B'-C).(5.2)

We have split F into two smaller functions. Wecal F (A ='1) =B - C' the
cofactor of Fwrt A in Eq. 5.2. | shall sometimes write the cofactor of Fwrt A as

F A (the cofactor of Fwrt A'isF 5+ ). We may expand afunction wrt any of its
variables. For example, if we expand F wrt B instead of A,

F=A'""B+A-B-C+A"-B'-C
=B-(A'+A-C)+B'-(A"-C).(5.3)

We can continue to expand a function as many times as it has variables until we
reach the canonical form (a unique representation for any Boolean function that
uses only minterms. A minterm is a product term that contains all the variables of
FsuchasA - B'-C). Expanding Eq. 5.3 again, thistime wrt C, gives

F=C-(A"-B+A'-B)+C -(A-B+A'-B).(54)

As another example, we will use the Shannon expansion theorem to implement
the following function using the ACT 1 Logic Module:

F=(A-B)+(B'-C) +D.(55)
First we expand F wrt B:
F=B-(A+D)+B'-(C+D)
=B -F2+B'-FL(5.6)

Equation 5.6 describesa 2:1 MUX, with B selecting between two inputs. F (A =
1) and F (A ='0). Infact Eq. 5.6 also describes the output of the ACT 1 Logic
Modulein Figure 5.1 ! Now we need to split up F1 and F2 in Eq. 5.6 . Suppose
weexpand F2=Fg wrt A, and F1 = F g wrt C:

F2=A+D=(A 1)+ (A" -D),(5.7)



F1=C+D=(C-1)+(C -D).(5.8)

From Egs. 5.6 5.8 we seethat we may implement F by arranging for A, B, C to

appear on the select linesand '1' and D to be the data inputs of the MUXes in the
ACT 1 Logic Module. Thisisthe implementation shown in Figure 5.1 (d), with

connections: AO=D,A1="1,B0=D,B1="1,SA=C,SB=A,S0="0,and S1
= B.

Now that we know that we can implement Boolean functions using MUXes, how
do we know which functions we can implement and how to implement them?

5.1.3 Multiplexer Logic as Function
Generators

Figure 5.2 illustrates the 16 different waysto arrange 1 s on a Karnaugh map

corresponding to the 16 logic functions, F (A, B), of two variables. Two of these
functions are not very interesting (F ='0', and F ='1"). Of the 16 functions,
Table 5.1 shows the 10 that we can implement using just one 2:1 MUX. Of these

10 functions, the following six are useful :
« INV.The MUX actsasan inverter for one input only.
« BUF. The MUX just passes one of the MUX inputs directly to the output.
« AND. A two-input AND.
« OR. A two-input OR.
« ANDI1-1. A two-input AND gate with inverted input, equivalent to an

NOR-11.
« NORI1-1. A two-input NOR gate with inverted input, equivalent to an
AND-11.
F F F
e o e o e o
FIGURE 5.2 The ool o (oo ot
logic functions of two 1 (0] 1 (1)1 1 (1[0
variables. 4 way=sto B waysto 4 way=sto
attange attange attange
ane 1! two f's ane 1

14 tinctions of 2 wanables (and F='0 F="1"makes= 1E&)

TABLE 5.1 Boolean functionsusing a2:1 MUX.

Canonical Minterms Minterm Function M1 4
form 1 code2  number3 AQA1SA

10 ‘00 none 0000 0 0 0O

Function, F F=



NOR1-1(A, frA

2 A-B 1 0010 2 B O A
B) e
B)
3 NOT(A) A’ ﬁ.:g 01 0011 3 01 A
4 ANDLIA, A g 0100 4 A O B
B) B
5 NOT(B) B’ AB[B’LAo,z 0101 5 01 B
6 BUF(B) B AB'BJ’A 1,3 1010 6 0B 1
7 AND(A, B) Q'A-B 3 1000 8 0B A
8 BUF(A) A .AB'B tA 53 1100 9 0 A1
A AB+A
9 OR(A, B) B'+A- 1,2,3 1110 13 B 1 A
+BB
A B+
11 111 A|B+A
10'1 r T N 0123 a1 111
B

Figure 5.3 (a) shows how we might view a2:1 MUX as afunction wheel , a

three-input black box that can generate any one of the six functions of two-input
variables: BUF, INV, AND-11, AND1-1, OR, AND. We can write the output of
afunction wheel as

F1=WHEEL1 (A, B).(5.9)

where | define the wheel function as follows:

WHEEL1 (A, B) = MUX (A0, A1, SA).(5.10)

The MUX function is not unique; we shall defineit as
MUX (A0, Al, SA) = A0 -SA'+ Al - SA.(5.11)
Theinputs (AO, A1, SA) are described using the notation
A0, Al, SA ={A, B, 0, '1}(5.12)

to mean that each of the inputs (A0, A1, and SA) may be any of the values: A, B,
‘0, or '1'. | chose the name of the wheel function because it israther like adial
that you set to your choice of function. Figure 5.3 (b) shows that the ACT 1
Logic Module is afunction generator built from two function wheels, a2:1
MUX, and atwo-input OR gate.
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Al and 6. WHEEL The ACT1 Logic Module can
implem ent these Lnctons,

el ik

FIGURE 5.3 The ACT 1 Logic Module as a Boolean function generator. (a) A
2:1 MUX viewed as afunction wheel. (b) The ACT 1 Logic Module viewed as
two function wheels, an OR gate, and a2:1 MUX.

We can describe the ACT 1 Logic Module in terms of two WHEEL functions:
F=MUX [ WHEEL1, WHEEL2, OR (S0, S1) ](5.13)

Now, for example, to implement atwo-input NAND gate, F= NAND (A, B) =
(A -B)', using an ACT 1 Logic Module we first express F as the output of a2:1
MUX. To split up F we expand it wrt A (or wrt B; since F is symmetricin A and
B):

F=A-(B)+A'(1)(5.14)

Thus to make atwo-input NAND gate we assign WHEEL 1 to implement INV
(B), and WHEEL 2 to implement '1'. We must also set the select input to the
MUX connecting WHEEL 1 and WHEEL 2, SO + S1 = A we can do thiswith SO =
A,S1="1.

Before we get too carried away, we need to realize that we do not have to worry
about how to use Logic Modules to construct combinational logic functions this
has already been done for us. For example, if we need atwo-input NAND gate,
we just use aNAND gate symbol and software takes care of connecting the
inputsin the right way to the Logic Module.

How did Actel design its Logic Modules? One of Actel s engineers wrote a
program that cal culates how many functions of two, three, and four variables a
given circuit would provide. The engineers tested many different circuits and
chose the best one: asmall, logically efficient circuit that implemented many
functions. For example, the ACT 1 Logic Module can implement all two-input
functions, most functions with three inputs, and many with four inputs.

Apart from being able to implement a wide variety of combinational logic



functions, the ACT 1 module can implement sequential logic cellsin aflexible
and efficient manner. For example, you can use one ACT 1 Logic Module for a
transparent latch or two Logic Modules for aflip-flop. The use of latches rather
than flip-flops does require a shift to a two-phase clocking scheme using two
nonoverlapping clocks and two clock trees. Two-phase synchronous design using
latchesis efficient and fast but, to handle the timing complexities of two clocks
requires changes to synthesis and simulation software that have not occurred.
This means that most people still use flip-flopsin their designs, and these require
two Logic Modules.

5.1.4 ACT 2 and ACT 3 Logic Modules

Using two ACT 1 Logic Modules for aflip-flop also requires added interconnect
and associated parasitic capacitance to connect the two Logic Modules. To
produce an efficient two-module flip-flop macro we could use extra antifusesin
the Logic Module to cut down on the parasitic connections. However, the extra
antifuses would have an adverse impact on the performance of the Logic Module
in other macros. The alternative is to use a separate flip-flop module, reducing
flexibility and increasing layout complexity. In the ACT 1 family Actel choseto
use just onetype of Logic Module. The ACT 2 and ACT 3 architectures use two
different types of Logic Modules, and one of them does include the equivalent of
aD flip-flop.

Figure 5.4 showsthe ACT 2 and ACT 3 Logic Modules. The ACT 2 C-Moduleis
similar to the ACT 1 Logic Module but is capable of implementing five-input
logic functions. Actel callsits C-module a combinatorial module even though the
modul e implements combinational logic. John Wakerly blames MMI for the
introduction of the term combinatorial [Wakerly, 1994, p. 404].

The use of MUXes in the Actel Logic Modules (and in other places) can cause
confusion in using and creating logic macros. For the Actel library, setting S="'0'
selectsinput A of atwo-input MUX. For other libraries setting S="1" selects
input A. This can lead to some very hard to find errors when moving schematics
between libraries. Similar problems arise in flip-flops and latches with MUX
inputs. A safer way to label the inputs of atwo-input MUX iswith'0' and ‘1,
corresponding to the input selected when the select input is'1' or '0". This notation
can be extended to bigger MUXes, but in Figure 5.4 , does the input combination
S0 ="1"and S1 ="0" select input D10 or input DO1? These problems are not
caused by Actel, but by failure to use the |EEE standard symbolsin this area.

The S-Module ( sequential module ) contains the same combinational function
capability asthe C-Module together with a sequential element that can be
configured as a flip-flop. Figure 5.4 (d) shows the sequential element

implementation in the ACT 2 and ACT 3 architectures.
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FIGURE 5.4 The Actel ACT 2 and ACT 3 Logic Modules. () The C-Module
for combinational logic. (b) The ACT 2 S-Module. (c) The ACT 3 S-Module.
(d) The equivalent circuit (without buffering) of the SE (sequential element).
(e) The sequential element configured as a positive-edge triggered D flip-flop.
(Source: Actel.)

5.1.5 Timing Model and Critical Path

Figure 5.5 (@) shows the timing model for the ACT family.2 Thisisasimple
timing model since it deals only with logic buried inside a chip and allows us
only to estimate delays. We cannot predict the exact delays on an Actel chip until
we have performed the place-and-route step and know how much delay is
contributed by the interconnect. Since we cannot determine the exact delay
before physical layout is complete, we call the Actel architecture
nondeterministic .

Even though we cannot determine the preroute delays exactly, it is still important
to estimate the delay on alogic path. For example, Figure 5.5 (a) shows atypical
situation deep inside an ASIC. Internal signal 11 may be from the output of a
register (flip-flop). We then pass through some combinational logic, C1, through
aregister, S1, and then another register, S2. The register-to-register delay
consists of aclock Q delay, plus any combinational delay between registers, and



the setup time for the next flip-flop. The speed of our system will depend on the
slowest register register delay or critical path between registers. We cannot make
our clock period any longer than this or the signal will not reach the second
register in time to be clocked.

Figure 5.5 (a) shows an internal logic signal, 11, that is an input to a C-module,
C1. Clisdrawnin Figure 5.5 (a) as abox with a symbol comprising the
overlapping letters C and L (borrowed from carpenters who use this symbol to
mark the centerline on a piece of wood). We use this symbol to describe
combinational logic. For the standard-speed grade ACT 3 (we shall ook at speed
grading in Section 5.1.6 ) the delay between the input of a C-module and the
output is specified in the data book as a parameter, t pp , with a maximum value

of 3.0ns.

The output of C1 isan input to an S-Module, S1, configured to implement
combinational logic and a D flip-flop. The Actel data book specifies the
minimum setup time for this D flip-flop ast g;p = 0.8 ns. This means we need to

get the datato the input of S1 at least 0.8 ns before the rising clock edge (for a
positive-edge triggered flip-flop). If we do this, then thereis still enough time for
the data to go through the combinational logic inside S1 and reach the input of
the flip-flop inside S1 in time to be clocked. We can guarantee that this will work
because the combinational logic delay inside S1 isfixed.
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FIGURE 5.5 The Actel ACT timing model. () Timing parameters for a'Std'
speed grade ACT 3. (Source: Actel.) (b) Flip-flop timing. (c) An example of
flip-flop timing based on ACT 3 parameters.

The S-Module seems like good value we get all the combinational logic functions
of a C-module (with delay t pp of 3 ns) aswell as the setup time for aflip-flop for

only 0.8 ns? &not really. Next | will explain why not.

Figure 5.5 (b) shows what is happening inside an S-Module. The setup and hold
times, as measured inside (not outside) the S-Module, of the flip-flop aret' p
and t' 4 (a prime denotes parameters that are measured inside the S-Module). The
clock Q propagation delay ist' oo . The parameterst' gyp , t'y , and t' o are

measured using the internal clock signal CLKi. The propagation delay of the
combinational logic inside the S-Moduleist' pp . The delay of the combinational

logic that drives the flip-flop clock signal (Figure 5.4 d) ist' ¢ kp -



From outside the S-Module, with reference to the outside clock signal CLK 1.
tsup=tsupt+(t'pp t'cLkD)

th=tw+{t'pp t'cLkp)

tco=tcottcLkp -(5.15)

Figure 5.5 (c) shows an example of flip-flop timing. We have no way of knowing
what the internal flip-flop parameterst' gp , t' , and t' oo actually are, but we
can assume some reasonable values (just for illustration purposes):

t'gup=04nst'y=0.1nst' -o=0.4ns.(5.16)

We do know the delay, t' pp , Of the combinational logic inside the S-Module. It
is exactly the same as the C-Module delay, so t' pp = 3 nsfor the ACT 3. We do
not know t' ¢ kp ; We shall assume areasonable value of t' | kp = 2.6 ns (the
exact value does not matter in the following argument).

Next we calcul ate the external S-Module parameters from Eq. 5.15 asfollows:
t sSuD = 0.8ns, t H= 0.5ns, t co-= 3.0 nS(517)

These are the same as the ACT 3 S-Module parameters shown in Figure 5.5 (a),
and | choset' | kp and the valuesin Eg. 5.16 so that they would be the same. So

now we see where the combinational logic delay of 3.0 ns has gone: 0.4 ns went
into increasing the setup time and 2.6 ns went into increasing the clock output

delay, t Cco -

From the outside we can say that the combinational logic delay isburied in the
flip-flop setup time. FPGA vendors will point this out as an advantage that they
have. Of course, we are not getting something for nothing here. It islike
borrowing money you have to pay it back.

5.1.6 Speed Grading

Most FPGA vendors sort chips according to their speed ( the sorting is known as
speed grading or speed binning , because parts are automatically sorted into
plastic bins by the production tester). Y ou pay more for the faster parts. In the
case of the ACT family of FPGAS, Actel measures performance with a special
binning circuit , included on every chip, that consists of an input buffer driving a
string of buffers or inverters followed by an output buffer. The parts are sorted
from measurements on the binning circuit according to Logic Module
propagation delay. The propagation delay, t pp , is defined as the average of the

rising (t p ) and falling (t py ) propagation delays of aLogic Module

tpp = (tpp + TPy )/2.(5.18)



Since the transistor properties match so well across a chip, measurements on the
binning circuit closely correlate with the speed of the rest of the Logic Modules
on the die. Since the speeds of die on the same wafer also match well, most of the
good die on awafer fall into the same speed bin. Actel speed grades are: a'Std'
speed grade, a'l' speed grade that is approximately 15 percent faster, a'2' speed
grade that is approximately 25 percent faster than 'Std', and a'3' speed grade that
Is approximately 35 percent faster than 'Std'.

5.1.7 Worst-Case Timing

If you use fully synchronous design techniques you only have to worry about
how slow your circuit may be not how fast. Designers thus need to know the
maximum delays they may encounter, which we call the worst-case timing .
Maximum delaysin CMOS logic occur when operating under minimum voltage,
maximum temperature, and slow slow process conditions. (A slow slow process
refersto a process variation, or process corner , which resultsin slow p -channel
transistors and slow n -channel transistors we can also have fast fast, slow fast,
and fast slow process corners.)

Electronic equipment has to survive in avariety of environmentsand ASIC
manufacturers offer several classes of qualification for different applications:

o Commercia. VDD =5V 5%, T 5 (ambient) = 0 to +70 °C.
o Industrial. VDD =5V =10 %, T 5 (ambient) = 40to +85 °C.
Military: VDD =5V = 10%, T ¢ (case) = 55to +125 °C.
Military: Standard MIL-STD-883C Class B.

« Military extended: Unmanned spacecraft.

ASICsfor commercial application are cheapest; ASICs for the Cruise missile are
very, very expensive. Notice that commercial and industrial application parts are
specified with respect to the ambient temperature T 5 (room temperature or the

temperature inside the box containing the ASIC). Military specifications are
relative to the package case temperature, T . What isreally important is the

temperature of the transistors on the chip, the junction temperature, T 5, whichis
aways higher than T 5 (unless we dissipate zero power). For most applications
that dissipate afew hundred mW, T jisonly 510 °C higherthan T 5 . To
calculate the value of T jwe need to know the power dissipated by the chip and

the thermal properties of the package we shall return to thisin Section 6.6.1,
Power Dissipation.

Manufacturers have to specify their operating conditions with respect to T jand
not T » , since they have no idea how much power purchasers will dissipate in
their designs or which package they will use. Actel used to specify timing under



nominal operating conditions; VDD =5.0V, and T 5= 25 °C. Actel and most

other manufacturers now specify parameters under worst-case commercial
conditions: VDD =4.75V,and T ;= +70 °C.

Table 5.2 showsthe ACT 3 commercial worst-case timing. € In thistable Actel
has included some estimates of the variable routing delay shown in Figure 5.5

(@). These delay estimates depend on the number of gates connected to a gate
output (the fanout).

When you design microelectronic systems (or design anything ) you must use
worst-case figures ( just as you would design abridge for the worst-case load).
To convert nominal or typical timing figures to the worst case (or best case), we
use measured, or empirically derived, constants called derating factors that are
expressed either as atable or a graph. For example, Table 5.3 showsthe ACT 3

derating factors from commercial worst-case to industrial worst-case and military
worst-case conditions (assuming T ;=T 5 ). The ACT 1 and ACT 2 derating

factors are approximately the same. 7
TABLE 5.2 ACT 3timing parameters. 8

Fanout
Family Delay® 1 2 3 4 8
ACT 3-3 (databook) tpp 29 32 34 37 48
ACT3-2 (calculated) tpp/0.853.413.764.00 4.355.65
ACT3-1 (calculated) tpp/0.753.87 4.27 4.534.936.40

ACT3-Std (calculated) t pp /0.65 4.46 4.92 5.23 5.69 7.38
Source: Actdl.

TABLE 5.3 ACT 3 derating factors. 10
Temperature T 5( junction) / °C

Vpp/V5 40 0 25 70 8 125
4.5 0.720.76 0.850.90 1.04 1.07 1.17
4.75 0.700.730.82 0.87 1.00 1.03 1.12
5.00 0.68 0.71 0.79 0.84 0.97 1.00 1.09
5.25 0.66 0.69 0.77 0.82 0.94 0.97 1.06
55 0.63 0.66 0.74 0.79 0.90 0.93 1.01
Source: Actel.

As an example of atiming calculation, suppose we have aLogic Module on a
'Std' speed grade A1415A (an ACT 3 part) that drives four other Logic Modules
and we wish to estimate the delay under worst-case industrial conditions. From
the datain Table 5.2 we see that the Logic Module delay for an ACT 3 'Std' part

with afanout of four ist pp = 5.7 ns (commercial worst-case conditions,



assuming T 3=T p ).

If this were the slowest path between flip-flops (very unlikely since we have only
one stage of combinational logic in this path), our estimated critical path delay
between registers, t cgy1 , Would be the combinational logic delay plus the

flip-flop setup time plus the clock output delay:

tCRlT (W-C CommerCial) =t PD + tSUD +t cO

=5.7ns+0.8ns+ 3.0ns=9.5ns.(5.19)

(I use w-c as an abbreviation for worst-case.) Next we need to adjust the timing
to worst-case industrial conditions. The appropriate derating factor is 1.07 (from
Table 5.3); so the estimated delay is

t criT (W-cindustrial) = 1.07 ¥ 9.5 ns= 10.2 ns .(5.20)

Let us jump ahead alittle and assume that we can calculatethat T ;=T 5 + 20 °C

=105 °C in our application. To find the derating factor at 105 °C we linearly
Interpolate between the values for 85 °C (1.07) and 125 °C (1.17) from Table 5.3

). The interpolated derating factor is 1.12 and thus
t criT (W-cindustrial, T ;=105 °C) = 1.12 ¥ 9.5 ns= 10.6 ns ,(5.21)

giving us an operating frequency of just less than 100 MHz.

It may seem unfair to calculate the worst-case performance for the slowest speed
grade under the harshest industrial conditions but the examples in the data books
are always for the fastest speed grades under less stringent commercial
conditions. If we want to illustrate the use of derating, then the delays can only
get worse than the data book values! The ultimate word on logic delays for all
FPGAs s the timing analysis provided by the FPGA design tools. However, you
should be able to calculate whether or not the answer that you get from such a
tool is reasonable.

5.1.8 Actel Logic Module Analysis

The sizes of the ACT family Logic Modules are close to the size of the base cell
of an MGA. We say that the Actel ACT FPGAs use afine-grain architecture .. An
advantage of afine-grain architecture is that, whatever the mix of combinational
logic to flip-flops in your application, you can probably still use 90 percent of an
Actel FPGA. Another advantage is that synthesis software has an easier time
mapping logic efficiently to the ssmple Actel modules.

The physical symmetry of the ACT Logic Modules greatly simplifies the
place-and-route step. In many cases the router can swap equivaent pinson
opposite sides of the module to ease channel routing. The design of the Actel
Logic Modulesis a balance between efficiency of implementation and efficiency



of utilization. A ssimple Logic Module may reduce performance in some areas as |
have pointed out but alows the use of fast and robust place-and-route software.
Fast, robust routing is an important part of Actel FPGAS (see Section 7.1, Actel
ACT).

1. The minterm numbers are formed from the product terms of the canonical
form. For example, A - B'=10= 2,

2. The minterm code is formed from the minterms. A '1' denotes the presence of
that minterm.

3. The function number isthe decimal version of the minterm code.

4. Connections to atwo-input MUX: A0 and Al are the data inputs and SA isthe
select input (see Eq. 5.11).

5. 1994 data book, p. 1-101.
6. ACT 3: May 1995 data sheet, p. 1-173. ACT 2: 1994 data book, p. 1-51.

7. 1994 data book, p. 1-12 (ACT 1), p. 1-52 (ACT 2), May 1995 data shest,

p. 1-174 (ACT 3).

8.V pp=4.75V, T j(junction) = 70 °C. Logic module plus routing delay. All
propagation delays in nanoseconds.

9. The Actel '1' speed grade is 15 % faster than 'Std'; '2' is 25 % faster than 'Std';
'3'is 35 % faster than 'Std'.

10. Worst-case commercia: V pp =4.75V, T 5 (ambient) = +70 °C.
Commercid: V pp =5V £ 5%, T 5 (ambient) = 0to +70 °C. Industrial: V pp =
5V £10%, T 5 (ambient) = 40to +85 °C. Military V pp =5V £10%, T ¢
(case) = 55t0 +125 °C.



5.2 Xilinx LCA

Xilinx LCA (atrademark, denoting logic cell array) basic logic cells,
configurable logic blocks or CLBs, are bigger and more complex than the Actel
or QuickLogic cells. The Xilinx LCA basic logic cell is an example of a
coarse-grain architecture . The Xilinx CLBs contain both combinational logic and
flip-flops.

5.2.1 XC3000 CLB

The XC3000 CLB, shownin Figure 5.6 , hasfive logic inputs (A E), acommon
clock input (K), an asynchronous direct-reset input (RD), and an enable (EC).
Using programmable M UXes connected to the SRAM programming cells, you
can independently connect each of the two CLB outputs (X and Y) to the output
of the flip-flops (QX and QY)) or to the output of the combinational logic (F and
G).
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FIGURE 5.6 The Xilinx XC3000 CLB (configurable logic block). (Source:
Xilinx.)



A 32-bit look-up table (LUT ), stored in 32 bits of SRAM, provides the ability to
implement combinational logic. Suppose you need to implement the function F =
A -B-C-D-E (afive-input AND). You set the contents of LUT cell number 31
(with address'11111") in the 32-bit SRAM to a'l’; all the other SRAM cells are
set to '0'. When you apply the input variables as an address to the 32-bit SRAM,
only when ABCDE ='11111" will the output F be a'1". This means that the CLB
propagation delay is fixed, equal to the LUT access time, and independent of the
logic function you implement.

There are seven inputs for the combinational logic in the XC3000 CLB: thefive
CLB inputs (A E), and the flip-flop outputs (QX and QY). There are two outputs
fromthe LUT (F and G). Since a 32-bit LUT requires only five variables to form
aunique address (32 = 2°), there are several waysto usethe LUT:

« You can usefive of the seven possible inputs (A E, QX, QY) with the
entire 32-bit LUT. The CLB outputs (F and G) are then identical.

« You can split the 32-bit LUT in half to implement two functions of four
variables each. Y ou can choose four input variables from the seven inputs
(A E, QX, QY). You have to choose two of the inputs from the five CLB
inputs (A E); then one function output connects to F and the other output
connectsto G.

« You can split the 32-bit LUT in half, using one of the seven input variables
asaselectinput toa2:1 MUX that switches between F and G. This allows
you to implement some functions of six and seven variables.

5.2.2 XC4000 Logic Block

Figure 5.7 shows the CLB used in the XC4000 series of Xilinx FPGAs. Thisisa

fairly complicated basic logic cell containing 2 four-input LUTs that feed a
three-input LUT. The XC4000 CLB aso has special fast carry logic hard-wired
between CLBs. MUX control logic maps four control inputs (C1 C4) into the
four inputs: LUT input H1, direct in (DIN), enable clock (EC), and a set / reset
control (S/R) for the flip-flops. The control inputs (C1 C4) can also be used to
control the use of the F and G' LUTs as 32 bits of SRAM.
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FIGURE 5.7 The Xilinx XC4000 family CLB (configurable logic block). (
Source: Xilinx.)

5.2.3 XC5200 Logic Block

Figure 5.8 shows the basic logic cell, aLogic Cell or LC, used in the XC5200
family of Xilinx LCA FPGAs.1TheLC issimilar to the CLBsin the

X C2000/3000/4000 CLBs, but smpler. Xilinx retained the term CLB in the
XC5200 to mean a group of four LCs (LCO LC3).

The XC5200 LC contains afour-input LUT, aflip-flop, and MUXes to handle
signal switching. The arithmetic carry logic is separate from the LUTs. A limited
capability to cascade functionsis provided (using the MUX labeled F5_MUX in
logic cellsLCO and LC2in Figure 5.8 ) to gang two LCsin parallel to provide the

equivalent of afive-input LUT.
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FIGURE 5.8 The Xilinx XC5200 family LC (Logic Cell) and CLB
(configurable logic block). (Source: Xilinx.)

5.2.4 Xilinx CLB Analysis

Theuseof aLUT inaXilinx CLB to implement combinational logic is both an
advantage and a disadvantage. It means, for example, that an inverter is as slow
asafive-input NAND. On the other hand aLUT simplifies timing of
synchronous logic, simplifies the basic logic cell, and matches the Xilinx SRAM
programming technology well. A LUT also provides the possibility, used in the
XC4000, of using the LUT directly as SRAM. Y ou can configure the XC4000
CLB asamemory either two 16 ¥ 1 SRAMsor a32 ¥ 1 SRAM, but thisis
expensive RAM.

Figure 5.9 shows the timing model for Xilinx LCA FPGAs. 2 Xilinx uses two
speed-grade systems. The first uses the maximum guaranteed toggle rate of a
CLB flip-flop measured in MHz as a suffix so higher is faster. For example a
Xilinx XC3020-125 has atoggle frequency of 125 MHz. The other Xilinx
naming system (which supersedes the old scheme, since toggle frequency is
rather meaningless) uses the approximate delay time of the combinational logic
in a CLB in nanoseconds so lower isfaster in this case. Thus, for example, an
XC4010-6 hast | o = 6.0 ns (the correspondence between speed gradeand t | o

isfairly accurate for the XC2000, XC4000, and XC5200 but is less accurate for
the XC3000).



FIGURE 5.9 The Xilinx
LCA timing model. The
paths show different uses
of CLBs (configurable
logic blocks). The
parameters shown are for
an XC5210-6. ( Source:
Xilinx.)

ook Ioko tlo ik, Toko

zetup  chokto combinational setwp chck to

tin & output  logic delay tin e output delay

delay

03ns S8ns SkEns 23nz  3.Ens

— — —
intemnal
signial CLE1 CL B2 CLEZ
[E— e |pde P12
CLEC CLEC

B] B]

@ intemnal clock

[E]= wariable routing delay

The inclusion of flip-flops and combinational logic inside the basic logic cell
leads to efficient implementation of state machines, for example. The
coarse-grain architecture of the Xilinx CLBs maximizes performance given the
size of the SRAM programming technology element. As aresult of the increased
complexity of the basic logic cell we shall see (in Section 7.2, Xilinx LCA ) that
the routing between cells is more complex than other FPGAs that use a simpler

basic logic cell.

1. Xilinx decided to use Logic Cell as atrademark in 1995 rather asif IBM were
to use Computer as atrademark today. Thus we should now only talk of a Xilinx
Logic Cell (with capital letters) and not Xilinx logic cells.

2. October 1995 (Version 3.0) data sheet.




5.3 Altera FLEX

Figure 5.10 showsthe basic logic cell, aLogic Element ( LE ), that Alterausesin
its FLEX 8000 series of FPGAs. Apart from the cascade logic (which is slightly
simpler in the FLEX LE) the FLEX cell resembles the XC5200 L C architecture
shown in Figure 5.8 . Thisis not surprising since both architectures are based on
the same SRAM programming technology. The FLEX LE uses afour-input LUT,
aflip-flop, cascade logic, and carry logic. Eight LEs are stacked to form aLogic
Array Block (the same term as used in the MAX series, but with a different
meaning).
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