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Foreword

Modern electronic technology is largely based on MOS integrated circuits containing both

analog and digital parts. In designing such circuits with high performance, a correct MOS

transistor model is a must. The designer needs a model he or she can rely on, which correctly

describes the numerous physical phenomena in MOS transistors, allowing the performance of

a circuit composed of such devices to be predicted with accuracy during circuit simulation. In

addition, for preliminary “hand” analysis and design, it is desirable to have a simple model

that makes evident the inter-relations between the various parameters, and allows the designer

to correctly identify the trade-offs involved. The EKV approach to MOS transistor modeling

combines both of these attributes.

The EKV model is the result of a large body of work by Drs C. C. Enz, F. Krummenacher,

and E. A. Vittoz, and several of their students and colleagues. The work has its origins in the

pioneering work at CEH (now CSEM), on micropower devices and circuits for watches in the

late sixties. This has given the EKV model development a unique aspect: it originated with

highly competent circuit designers, notably analog ones, and was developed by them, or at

least with constant feedback from them, every step of the way. Thus, it not only describes

the physics of the MOS transistor, but takes into account carefully what circuit designers

need. The result is a model that is accurate and predictive, correctly treats the MOSFET as a

four-terminal, nominally symmetric device, has smooth behavior without discontinuities in all

regions of operation, and correctly predicts small-signal parameters. In addition, the basic part

of the model consists of a simple set of equations that are intuitively appealing, which makes

it possible for the circuit designer to have a feel for the model and its parameters, rather than

treating the model simply as a black box in which no designer dares to tread. This helps make

circuit design a systematic process, and less a cut-and-try approach.

Drs. Enz and Vittoz, well-known for their contributions to MOS devices and circuits, have

done a great job putting together a streamlined presentation of the EKV model. The book

covers every aspect of the model, from DC large-signal I-V equations, to charge modeling,

nonquasi-static effects, small-signal modeling, noise, small-channel effects, and matching. I

have followed the work of the authors and their colleagues for many years with appreciation,

and I am delighted to see their results presented in this unified manner. This book will help

spread the understanding and use of the EKV model, as the latter certainly deserves.

Prof. Y. Tsividis

Columbia University, New-York





Preface

The aggressive downscaling of CMOS technologies that has been going on for more than

25 years has led to an increase in the number of transistors per chip and hence extend the

functionality while at the same time dramatically pushing the speed performance. Although

these tremendous speed improvements have been mainly driven by the requirements of VLSI

digital chips, they have also been exploited for analog and RF circuits. Today, ultra deep-

submicron (UDSM) technologies have caught up and even surpassed the transit frequencies

achieved by bipolar transistors. This has clearly opened the door to full CMOS highly integrated

solutions for wireless applications. Of course, in addition to high transit frequency, good noise

performance and low-power consumption are required as well. Since the noise figure also

decreases as the transit frequency is increased, it has also clearly taken advantage of the

downscaling of the transistor length. At the same time, the supply voltage has had to be

decreased progressively in order to limit high electric fields within the device and hence avoid

the related high-field effects. The threshold voltage could unfortunately not be scaled in the

same proportion without strongly increasing the drain leakage current, which is now seriously

affecting the static power consumption of digital chips. This has resulted in a decrease of the

overdrive voltage which in turn has moved the operating points of analog transistors more

and more from strong inversion to moderate inversion and even into weak inversion. From

this perspective, it is important to have a model that accurately predicts the behavior of the

MOS transistor in all regions of operation, from weak to strong inversion, through moderate

inversion, in a consistent way. This was the primary motivation for developing what today is

known as the EKV model.

The purpose of this book is to assemble and explain in a coherent manner all the know-how

and all the publications related to the particular MOS transistor modeling approach embodied

by the EKV model. This model borrows from the work of a long line of researchers, starting

in the early times of semiconductor physics. It has its roots in the search of early designers of

very low-power and low-voltage integrated circuits for a description of the transistor behavior

fulfilling their specific needs. This book focuses on this particular line of research, with no

intention to present all alternative ways of modeling the transistor. Being written by analog

circuit designers, it is clearly design-oriented with the purpose of describing the transistor as

the basic component of integrated circuits, rather than the result of a sequence of physical

processing steps. It gives to emphasis highlighting the properties of the device that can be used

by designers to build new robust circuits, or to understand existing circuits and assess their

robustness. The book is organized in three hierarchically structured parts. It firstly describes
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the basic behavior of the generic MOS transistor, then focuses on additional effects essentially

due to scaling down the device dimensions, and finally discusses the transistors to be used in

RF circuits.

Based on the charge in the channel, the EKV model describes in a continuous manner the

static, dynamic and noise characteristics of the transistor down to very low current levels. The

basic model requires a very limited set of parameters, all of them directly related to basic

independent physical parameters. Intended for analog designers, it conserves the intrinsic

source-drain symmetry of the transistor by using the substrate as the voltage reference and

by introducing the concept of forward and reverse components of the drain current. This

symmetrical approach makes it easier to understand the various modes of static operation

of the device, and to describe them by a single uncomplicated equation. The charge-based

approach lends itself naturally to a coherent description of the dynamic and noise behavior of

the transistor.

The authors want to acknowledge the numerous persons who contributed directly and

indirectly to this book. We are grateful to Dr François Krummenacher for his invaluable

contribution to the EKV model and for his many inputs and suggestions that greatly helped

us to write this book. We have benefited from the many discussions we had with Jean-Michel

Sallese and Ananda Roy who helped us to clarify many fine points along the process of writing

this book. We also would like to acknowledge the contribution of all the other members of the

EKV development team, who each brought their own contribution to the EKV model: Matthias

Bucher, Christophe Lallement, Alain-Serge Porret, Wladek Grabinski. Our gratitude also goes

to Henri Oguey and Stephan Cserveny who pioneered the work for a continuous model and

paved the way for the current EKV model.

Finally, we would like to give special thanks to our families – Dominique, Adrien, Mathilde

and Simon Enz, and Monique, Nathalie and Didier Vittoz – for their support and understanding

during this seemingly endless task.

Christian C. Enz, Eric A. Vittoz

St-Aubin-Sauges, Switzerland

Cernier, Switzerland



List of Symbols

Table 0.1 Symbols and their definitions

Symbol Description Reference

Physical parameters

q Electron charge (2.1)

k Boltzmann’s constant (2.1)

T Absolute temperature in degree Kelvin (2.1)

Tn Noise temperature in degree Kelvin (9.141)

TL Lattice temperature in degree Kelvin (9.143)

TC Carrier temperature in degree Kelvin (9.142)

ǫ0 Permittivity of free space

ǫsi Permittivity of silicon 3.1

ǫox Permittivity of SiO2 3.2

ni Intrinsic carrier concentration 3.1

µ Mobility of current carriers (4.1)

µ0 Low-field surface mobility (8.1)

µz Mobility including the effect of the vertical field (8.1)

µeff Effective mobility including the effects (9.2)

of the vertical and longitudinal fields

Process parameters

np Electron concentration (in P-type Si) (3.1)

pp Hole concentration (in P-type Si) (3.1)

Nb Doping concentration of the substrate 3.1

Ng Doping concentration of the polysilicon gate 8.4

Ndiff Doping concentration of the source and drain diffusions 4.6.1

Γb Substrate modulation factor (3.30)

Γg Depletion factor in the polysilicon gate (8.54)

vdrift Drift velocity 9.1

vsat Saturated drift velocity 9.1

continued on next page
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Symbol Description Reference

Geometry

W Channel width Figure 2.1

L Channel length Figure 2.1

LSD Distance between the source and drain metallurgical junctions Figure 4.12

Leff Effective channel length Figure 9.26

Lov Gate overlap length Figure 10.10

L f Length of a single finger Figure 11.1

Wf Width of a single finger Figure 11.1

∆LS Channel length reduction at the source Figure 4.12

∆LD Channel length reduction at the drain Figure 4.12

tox Oxide thickness Figure 2.1

x Distance from source along the channel Figure 2.1

y Distance across the channel Figure 2.1

z Distance in direction perpendicular to the surface into the bulk Figure 2.1

Voltages and potentials

UT Thermodynamic voltage (2.1)

Ψ Electrostatic potential 2.2

Ψs Surface potential [Ψs � Ψ (z = 0)] 2.2

ΨsS Surface potential at the source

ΨsD Surface potential at the drain

ΨP Pinch-off surface potential (3.37)

Ψ0 Approximation of Ψs in strong inversion at equilibrium (V = 0) (3.56)

Φms Difference between the work functions of the gate and the substrate 2.2

ΦF Fermi potential of silicon substrate 3.1

ΦFn Quasi-Fermi potential of electrons 3.1

ΦB Potential barrier of source and drain junctions at equilibrium (4.55)

VFB Flat-band voltage (3.22)

VTB Threshold function (3.33)

VT0 Equilibrium threshold voltage (3.58)

V Channel voltage Figure 2.1

VG DC gate-to-bulk voltage Figure 2.1

VS DC source-to-bulk voltage Figure 2.1

VD DC drain-to-source voltage Figure 2.1

∆VG Incremental gate-to-bulk voltage 5.1.1

∆VS Incremental source-to-bulk voltage 5.1.1

∆VD Incremental drain-to-bulk voltage 5.1.1

VP Pinch-off voltage (3.46)

Vsh Channel voltage shift (3.44), (8.100)

VDS sat Drain-to-source saturation voltage (4.12)

VM Channel-length modulation voltage (Early voltage) (5.22)

VG0 Extrapolated band gap voltage Figure 7.1

continued on next page
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Symbol Description Reference

Electric fields

Ec Critical longitudinal electric field (9.1)

Eox Electric field in the oxide Figure 2.2

Ex Electric field along the longitudinal direction 3.1

Ey Electric field along the lateral direction 3.1

Ez Electric field along the vertical direction 3.1

Ezs Electric field along the vertical direction at the surface [Ezs � Ez(z = 0)] 3.1

Currents

ID Static drain current flowing into the drain terminal Figure 2.1

IS Static source current flowing into the source terminal 5.3

IB Static bulk current flowing into the bulk terminal

IG Static gate current flowing into the gate terminal (8.107)

Ispec Specific current (4.14)

IF Static forward current (4.9)

IR Static reverse current (4.9)

ID0 Off drain current (4.38)

∆ID Incremental drain current 5.1.1

∆IS Incremental source current

∆IG Incremental gate current

∆IB Incremental bulk current

Charges

Qi Inversion mobile charge density Figure 2.2

QiS Inversion mobile charge density at the source Figure 2.2

QiD Inversion mobile charge density at the drain Figure 2.2

Qb Depletion charge density Figure 2.2

Qg Gate charge density Figure 2.2

Qfc Fixed charge density Figure 2.2

Qspec Specific charge density (3.42)

Qsi Semiconductor total charge density 2.2

QI Total channel charge (6.16), (6.19)

Resistances, conductances, and transconductances

RS Source series resistance Figure 10.1

RD Drain series resistance Figure 10.1

RG Gate series resistance Figure 10.1

RB Bulk series resistance Figure 10.1

Rsde Source and drain extension resistance Figure 10.2(b)

continued on next page
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Symbol Description Reference

Rcon Source and drain contact resistance Figure 10.2(b)

Rsal Source and drain salicide resistance Figure 10.2(b)

Rvia Source and drain via resistance Figure 10.2(b)

RDSB Source-to-drain substrate resistance Figure 11.9(c)

RBS Source-to-bulk substrate resistance Figure 11.9(c)

RBD Drain-to-bulk substrate resistance Figure 11.9(c)

Gch Channel conductance (9.116)

Gds Residual output conductance in saturation (5.22)

Gspec Specific conductance (5.6)

Gm Gate transconductance (5.2c)

Gms Source transconductance (5.2a)

Gmd Drain transconductance (5.2b)

Gmb Bulk transconductance 13.3.2

Capacitances and transcapacitances

Cox Oxide capacitance per unit area 3.2

COX Total oxide capacitance 5.2

Csi Silicon capacitance per unit area (3.23)

Cg Gate capacitance per unit area (3.25)

Cd Depletion capacitance per unit area 3.3

COX Total oxide capacitance (5.38)

CGSi Intrinsic gate-to-source capacitance Figure 5.14

CGDi Intrinsic gate-to-drain capacitance Figure 5.14

CGBi Intrinsic gate-to-bulk capacitance Figure 5.14

CBSi Intrinsic bulk-to-source capacitance Figure 5.14

CBDi Intrinsic bulk-to-drain capacitance Figure 5.14

CGGi Total intrinsic gate capacitance (11.4)

Cm Intrinsic gate transcapacitance (5.58)

Cms Intrinsic source transcapacitance (5.56)

Cmd Intrinsic drain transcapacitance (5.57)

CGSo Gate-to-source overlap capacitance Figure 10.1

CGDo Gate-to-drain overlap capacitance Figure 10.1

CGBo Gate-to-bulk overlap capacitance Figure 10.1

CGGo Total gate overlap capacitance Figure 10.1

CBSj Source-to-bulk junction capacitance 10.4

CBDj Drain-to-bulk junction capacitance 10.4

CGS Total gate-to-source capacitance (12.1)

CGD Total gate-to-drain capacitance (12.1)

CGB Total gate-to-bulk capacitance (12.1)

CBS Total bulk-to-source capacitance (12.1)

CBD Total bulk-to-drain capacitance (12.1)

CG Total gate capacitance (12.6)

Cg Local gate capacitance per unit area 3.3

continued on next page
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Symbol Description Reference

Admittances and transadmittances

YGSi Intrinsic gate-to-source admittance Figure 5.9

YGDi Intrinsic gate-to-drain admittance Figure 5.9

YGBi Intrinsic gate-to-bulk admittance Figure 5.9

YBSi Intrinsic bulk-to-source admittance Figure 5.9

YBDi Intrinsic bulk-to-drain admittance Figure 5.9

Ym Intrinsic gate transadmittance (5.36)

Yms Intrinsic source transadmittance (5.36)

Ymd Intrinsic drain transadmittance (5.36)

Ysub Substrate admittance Figure 12.4

Frequency and time constants

ωt Transit frequency (11.4)

τqs Intrinsic channel time constant (5.32)

ωqs Intrinsic channel transit frequency (5.32)

(also limit between quasi-static and

non-quasi static operation)

ωmax Extrapolated maximum frequency of oscillation (11.18)

ωspec Specific (or critical) frequency (5.33)

τspec Specific time constant (5.33)

Noise

S∆I 2
nD

Thermal noise power spectral density at the drain (6.4), (6.14)

S∆I 2
nS

Thermal noise power spectral density at the source (13.42)

S∆I 2
nG

Thermal noise power spectral density at the gate (13.42)

(induced gate noise power spectral density)

S∆I 2
nB

Thermal noise power spectral density at the bulk (13.42)

S∆InG∆I ∗
nD

Thermal noise gate-drain cross-power spectral density (13.42)

GnD Drain thermal noise conductance (6.15)

GnG Gate thermal noise conductance (13.49)

(induced gate noise thermal conductance)

δnD Thermal noise parameter at the drain (6.26)

δnG Thermal noise parameter at the gate (13.49)

γnD Thermal noise excess factor at the drain (6.30)

γnG Thermal noise excess factor at the gate (13.49)

ρGD Gate-drain thermal noise correlation factor (13.71)

Sv Input-referred thermal noise voltage power spectral density (13.13)

Si Input-referred thermal noise current power spectral density (13.13)

Rv Input-referred thermal noise voltage resistance (13.13)

G i Input-referred thermal noise current conductance (13.13)

G iu Uncorrelated part of G i (13.14)

continued on next page
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Symbol Description Reference

G ic Correlated part of G i (13.14)

Yc Noise correlation admittance (13.8)

Gc Noise correlation conductance (13.16)

Bc Noise correlation susceptance (13.16)

F Noise factor (13.17), (13.21), (13.26)

NF Noise figure (13.17)

Fmin Minimum noise factor (13.25)

NFmin Minimum noise figure (13.25)

Yopt Optimum source admittance for F = Fmin (13.24)

Gopt Optimum source conductance (13.24)

Bopt Optimum source susceptance (13.24)

Other

ρ Charge concentration (3.1)

LD Extrinsic Debye length (3.15)

Lc0 Characteristic length for DIBL (9.100)

td Thickness of the depletion layer (3.26)

n Slope factor (3.34)

nw Slope factor evaluated at pinch-off (3.68)

n0 Slope factor evaluated at V = 0 (3.73)

nq Charge slope factor (8.60)

nv Voltage slope factor (8.60)

β Transconductance factor or transfer parameter (4.7)

DS Source-to-bulk diode Figure 10.1

DD Drain-to-bulk diode Figure 10.1

Av max Maximum voltage gain in common gate (5.24), (9.115)

∆P Mismatch of parameter P (7.52)

AP Area proportionality constant of parameter P (7.52)

θ Parameter of field-dependent mobility (8.5)

zc Characteristic depth Figure 8.7

vdrift Drift velocity of carriers Figure 9.1

vsat Saturation value of vdrift Figure 9.1

λc Velocity saturation parameter (9.19)

Table 0.2 Normalization factor definition

Symbol Description Reference

L Transistor length for normalizing distance along the x-axis 2.1

UT � kT
q

Thermodynamic voltage for normalizing voltages and potentials 2.1

Ispec � 2nβU 2
T Specific current for normalizing currents (4.14)

Qspec � −2nCoxUT Specific charge density for normalizing charge densities 3.6.1

COX � W LCox Total oxide capacitance for normalizing capacitances 5.2

Gspec �
Ispec

UT
Specific admittance for normalizing admittances (5.6)

ωspec �
µnUT

L2 Specific angular frequency for normalizing angular frequency 5.2
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Table 0.3 Normalized symbols

Symbol Description Reference

ξ � x/L Normalized position along the x-axis (4.21)

ζc Normalized characteristic depth (8.24)

ν Doping ratio (8.32)

λ0 � L/Lc0 Channel length normalized to characteristic length (9.100)

vx � VX/UT Normalized voltage (3.43)

γj � (Γj/UT)2 Normalized modulation factor (3.43)

φf � ΦF/UT Normalized Fermi potential of silicon substrate 3.1

ψp � ΨP/UT Normalized pinch-off surface potential (3.37)

ψ0 � Ψ0/UT Normalized approximation of Ψs in strong inversion (3.66)

ix � IX/Ispec Normalized drain current (4.15)

IC Inversion coefficient or factor (4.26)

gx � Gx/Gspec Normalized conductance or transconductance

qx � Qx/Qspec Normalized charge density (3.41)

qs � QiS/Qspec Normalized inversion charge density at the source (5.7a)

qd � QiD/Qspec Normalized inversion charge density at the drain (5.7b)

qX � Q X/Qspec Normalized total charge

Ω � ω/ωspec Normalized frequency 13.2.2

Ωqs � ωqs/ωspec Normalized QS frequency (5.32)

cj � Cj/Cox Normalized capacitance per unit area (5.50)

cJ � CJ/COX Normalized total capacitance (5.50)





1 Introduction

This chapter explains the basic motivations for developing MOS transistor models that can be

used for the design of complementary MOS (CMOS) integrated circuits. It then gives a short

history of the EKV MOS transistor model starting from the early development, motivated by

the design of micropower circuits for watch applications, to the most recent developments.

Finally, the structure of the book is highlighted in order to help the reader organizing his

reading.

1.1 THE IMPORTANCE OF DEVICE MODELING
FOR IC DESIGN

Modern large-scale integrated circuits are essentially composed of MOS transistors and their

interconnections. Therefore, the design of such circuits requires some kind of a model for the

transistors.

For noncritical digital circuits, this model may in principle be very simple. Indeed, modeling

each transistor as an on–off switch would be sufficient to design purely logic circuits. However,

as soon as there are critical races among transitions, the model must be extended to describe the

dynamic behavior of the device, in order to obtain the rise and fall time of these transitions. This

dynamic behavior is also needed when the frequency of operation approaches its maximum

limit. With the reduction of supply voltage, more details must be introduced, such as the

residual current of blocked transistors, the importance of which is increased.

Analog circuits contain usually a smaller number of transistors, but they are even more

dependent on the exact behavior of each transistor. The design of high-performance analog

circuits therefore requires a very detailed model of the transistor. This model must include a

precise description of the voltage–current relationships, including the effect of the source that

is often not grounded, and of the dynamic behavior of the device. Its behavior with respect to

noise and to temperature variations must also be accounted for.

A transistor model intended for circuit design should serve two essential purposes:

It should first provide a good understanding of the various properties of the device to facilitate

the synthesis of optimum circuit architectures. Indeed, in order to build robust circuits, the

Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design C. Enz and E. Vittoz
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physical properties of the transistor must be exploited in a way that is minimally dependent on

temperature and process variations. For this purpose, the model should be explicit. It should

“speak to the mind,” using no complicated or chained equations. Clarity should supersede

precision and can be enhanced by means of graphical representations. This important aspect

of a model is often underestimated and overlooked. It will be emphasized in this book, in

particular in Part I, which essentially describes what can be called the core of the model.

Second, the model should be adapted to numerical simulations on a computer, embedded

in a circuit simulator. For this purpose, precision supersedes clarity, and second-order effects

must be accounted for. This can be obtained by predistorting variables, by chaining equations

and/or by providing additional layers around a core model. The model does not need to be fully

explicit, but it should be compact: it should use sufficiently simple expressions with minimum

need for numerical iterations, in order to limit the computation time.

A transistor model should include a minimum number of process-dependent device param-

eters. This is to facilitate the very heavy task of extracting and following-up the value of these

parameters, with their statistical distribution and temperature dependency.

Now, the correlation between these parameters (with process and temperature variations)

must be known, in order to avoid designing circuits for irrelevant worst cases. For this reason,

the device parameters should be explicitly based on independent and measurable process pa-

rameters. This is essential to be able to ascertain their amount of correlations while avoiding

the almost impossible task of measuring all these correlations. It also makes the model predic-

tive, allowing to foresee the characteristics of the transistor and hence the performance of the

resulting circuits even before measuring the device.

The EKV model described in this book is believed to meet all the above expectations. It

serves the two main purposes in a coherent manner. Its core requires just a few parameters

to describe all the basic properties of the long-channel intrinsic device in an explicit manner.

Layers are added to this core to account for short-channel and secondary effects.

1.2 A SHORT HISTORY OF THE EKV MOS
TRANSISTOR MODEL

The model presented in this book results from a series of direct and indirect contributions along

several decades. Its origins can be traced back to the early developments of electronic watches

at CEH (French acronym for Watchmakers Electronic Center) in Switzerland [2].

The total power consumption had to be extremely low, less than 1μW, to ensure a few

years of life to the single button-size cell battery. After the very first versions based on bipolar

transistors [3], the CMOS technology was soon identified as the best approach to implement the

digital electronic circuitry needed in a watch using a crystal resonator as the time reference.

Supply voltage had to be very low, compatible with the 1.3 V delivered by the cell, so the

development of low-threshold CMOS was a major challenge in the late 1960’s [4].

The digital circuitry was essentially an asynchronous chain of divide-by-two stages. The

main design problem was to minimize the number of node transitions in order to minimize the

dynamic power. Another one was the elimination of logic hazards to improve the robustness

against large local variations of the small gate voltage overhead, and this led to the first single

clock circuits [5–7]. For these digital circuits, MOS transistors could be considered just as

switches and hence no special model was required.
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The problem was very different for the few analog subcircuits. Most important was the

circuitry needed to sustain the oscillation of the quartz crystal resonator (the quartz oscillator).

Each transistor had to be biased at a drain current much below 1μA. Early measurements

carried out in 1967 showed that the transistor behaved in a very strange manner at these very

low current levels. Indeed, the well-known square-law transfer characteristics were replaced

by an exponential over more than 5 order of magnitude of the drain current, very similar to

bipolar transistors. This is how weak inversion popped out to the attention of micropower

circuit designers in the late 1960s.

At that time, no transistor model was available for weak inversion, but they started coming

out in subsequent years, mainly to account for what appears in digital circuits as a leakage

current of blocked transistors. In 1972, M. B. Barron published a model for the grounded source

device showing the exponential dependencies on drain voltage and on surface potential, with a

rather complex expression relating the surface potential to the gate voltage [8]. The same year,

R. M. Swanson and J. D. Meindl [9] showed that this relation could be accounted for by means

of an almost constant factor, which became the slope factor n of our model. The following

year, R. R. Troutman and S. N. Chakravarti [10] treated the case of nonzero source voltage.

Then T. Mashuhara et al. [11] showed that the current depends on a difference of exponential

functions of source and drain voltages. In the mean time, micropower analog circuit blocks

were developed at CEH. They were first published in 1976 [12, 13], together with a model

applicable for weak inversion circuit design, which was based on the previously mentioned

work. This model already included two important features of the EKV model: reference to the

(local) substrate (and not to the source) for all voltages and full source–drain symmetry. The

related small-signal model including noise was also presented [14].

A symmetrical model of the MOS transistor in strong inversion was first published by

P. Jespers in 1977 [15, 16]. Based on an idea of O. Memelink, this graphical model uses

the approximately linear relationship between the local mobile charge density and the local

“non-equilibrium” voltage in the channel. This charge-based approach has been adopted and

generalized to all levels of current in the EKV model.

Another ingredient of EKV is the representation of the drain current as the difference

between a forward and a reverse component. This idea was first introduced in 1979 by

J.-D. Châtelain [17], by similarity with the Ebers–Moll model of bipolar transistors [18].

However, his definition of these two components was different from that adopted later, and

was not applicable to weak inversion.

Even in micropower analog circuits, not all transistors should be biased in weak inversion.

There was therefore a need for a good continuous model from weak to strong inversion. Such a

model was developed at CEH by H. Oguey and S. Cserveny, and was first published in French

in 1982 [19]. The only publication in English was at a Summer Course given in 1983 [20].

This model embodied most of the basic features that were retained later. It introduced a

function of the gate voltage called control voltage, later renamed pinch-off voltage VP. A single

function of this control voltage and of either the source voltage or the drain voltage defined two

components of the drain current (which became the forward and reverse components). This

function was continuous from weak to strong inversion, using a mathematical interpolation to

best fit moderate inversion.

In the mid-1980s, the model of Oguey and Cserveny was simplified by the second author

for his undergraduate teaching at EPFL (Swiss federal Institute of Technology, Lausanne,

Switzerland), and most further developments were carried out there. They started with the

Ph.D. Thesis of the first author [21], in collaboration with F. Krummenacher. The model was
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formulated more explicitly. Noise and dynamic behavior were introduced by exploiting the

fundamental source–drain symmetry. The status of the model was presented at various Summer

Courses [22–24] and a full paper was finally published in 1995 [25]. This publication gave its

name to the model, but many important extensions were added later.

Probably the most important extension was the replacement of the current and transcon-

ductance interpolation functions between weak and strong inversion presented in [25] by a

more physical based one, derived from an explicit linearization of the inversion charge versus

the surface potential. The incremental linear relationship between inversion charge and sur-

face potential was first considered by M. Bagheri and C. Turchetti [26], but the linearization of

the inversion charge versus surface potential was originally proposed in 1987 by M. Maher and

C. Mead [27, 28]. Several years later, different groups looked at this problem. B. Iñiguez and

E. G. Moreno [29, 30] derived an approximate explicit relation between inversion charges

and surface potential which included a fitting parameter. While their first linearization was done

at the source [29], they later obtained a substrate referenced model based on the original EKV

MOSFET model approach [25], which also included some short-channel effects. A similar

approach was also proposed by Cunha et al. [31–34] who obtained an interpolated expres-

sion of the charges versus the potentials that used the basic EKV model definitions1 [25] and

was closely inspired from our approach. We also adopted the inversion charge linearization

approach, since it offers physical expressions for both the transconductance-to-current ratio

and the current that are valid from weak to strong inversion [35–38]. This gave rise to the

charge-based EKV model which is discussed in this book. The inversion charge linearization

principle was rediscovered once more in 2001 by H. K. Gummel and K. Singhal [39, 40].

Finally, a formal detailed analysis of the inversion charge linearization process and a rigorous

derivation of the EKV model was finally published by J.-M. Sallese et al. in [41].

Note that this approach actually provides voltages versus currents expressions that cannot

be explicitly inverted. It can nevertheless be easily inverted by using a straightforward Newton-

Raphson technique or by an appropriate approximation. Both these techniques have been used

in the final model implementation.

The basic long-channel charge-based EKV model was further developed by the EKV team

to include the following additional effects:

Nonuniform doping: Nonuniform doping in the vertical direction was proposed by C. Lallement

et al. in [42, 43].

Non-quasi-static model: A small-signal charge-based non-quasi-static model was presented

by J.-M. Sallese and A.-S. Porret in [38, 44].

Polysilicon depletion and quantum effects: Polysilicon depletion and quantum effects were

also added [45–47].

RF modeling: The EKV model was extended by the first author to also cover high-frequency

operation for the design of RF CMOS integrated circuits [48–52].

Thermal noise: An accurate thermal noise model accounting for short-channel effects was

developed by A. S. Roy and C. C. Enz [53–55].

1 Unfortunately, Cunha et al. did not use the same definition of the specific current we have been using. Their specific

current is actually four times smaller.
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Extrinsic components: An accurate model of the parasitic capacitances was developed by

F. Prégaldiny et al. [56].

EKV compact model: A model of the MOS transistor would be almost useless if it could not

be used by circuit designers with a circuit simulator. To this purpose, the model has to be

carefully implemented in the simulator so that it can run efficiently avoiding any convergence

problems. The early EKV model (version 2.7) was implemented by M. Bucher as a compact

model in many circuit simulators [37]. All the more recent developments were implemented

in the version 3.0 of the EKV MOS transistor compact model [57, 58].

Parameter extraction: A compact model cannot be used without an efficient parameter ex-

traction methodology. The EKV model uses an original parameter extraction methodology

presented in [59–62]. (Reference [61] can be found on line at the EKV Web site [63].)

More recently, the research of the EKV team is more oriented toward the modeling of

multigate MOS devices and more particularly on double-gate devices [64, 65].

Further parts of the model were derived by members of the team of researchers and Ph.D.

students that developed its implementation as a CAD tool at EPFL [63].

1.3 THE BOOK STRUCTURE

This book is organized in three parts, which are briefly described below:

Part I describes the basic long-channel charge-based MOS transistor model. It is the core of

the model around which all the other parts are built in a hierarchic manner following the

basic structure of the EKV MOS transistor model. This part is self-contained and the reader

can stop after it while still having a strong background in all the fundamental aspects of

the EKV MOS transistor model. It includes all the most important aspects such as basic

large-signal static model, small-signal dynamic model, noise model, and a discussion of

temperature effects and matching properties. The other parts complete the basic model by

adding more detailed descriptions of advanced aspects.

Part II presents more advanced aspects which are of utmost importance for understanding the

operation of deep-submicron devices. It starts with the modeling of several nonideal effects

that already affects long-channel devices before concentrating on short-channel effects. The

model is then extended to also include the extrinsic part of the device.

Part III discusses additional aspects which become important when increasing the operating

frequency. It presents a complete MOS transistor model, built on top of the two first parts,

which is required for designing RF CMOS integrated circuits.





Part I

The Basic Long-Channel
Intrinsic Charge-Based Model

The first part models the intrinsic part of the most basic MOS transistor. The channel is

assumed to be sufficiently long to avoid all short-channel effects. The doping concentration in

the substrate and the carrier mobility are constant. The gate is a perfect equipotential conductor,

and the gate oxide is thick enough to prevent quantum effects and tunneling current. Some

basic definitions are introduced in Chapter 2 in order to preserve the symmetry of the device.

Chapter 3 models the density of mobile charge as a function of the gate voltage and of the

local channel voltage. This function is used in Chapter 4 to obtain the drain current in function

of the source and drain voltages, and introduces the unusual concept of forward and reverse

current components. Chapter 5 then establishes the corresponding small-signal DC and AC

models. Chapter 6 is dedicated to modeling the noise, whereas Chapter 7 investigates the effect

of temperature and the problem of mismatch between devices.
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2 Definitions

This short introductory chapter starts by describing the generic structure of the N-channel MOS

transistor that will be analyzed in Part I. It defines the essential geometrical dimensions and

voltages, including the “channel voltage” V that will play an important role in the model. Sec-

tion 2.2 introduces the definition of additional important variables, in particular the density of

mobile inverted charge Qi that underlies the whole charge-based modeling approach. Symbols

for the four-terminal N- and P-channel transistors are proposed in Section 2.3, together with

sign conventions that will render all results derived for the N-channel transistor applicable to

the P-channel device.

2.1 THE N-CHANNEL TRANSISTOR STRUCTURE

The schematic cross section of a generic N-channel MOS transistor is shown in Figure 2.1.

The source S and drain D are highly doped N-type islands (N+) diffused in a P-type local

silicon substrate (or bulk) B.

In between, the active part of the transistor of length L and width W is controlled by the

gate electrode G, separated by a dielectric layer called gate oxide, since it is normally made

of silicon dioxide. The P+ diffusion is needed to ensure good ohmic contact with the lightly

doped P-type local substrate. The position along the channel is defined by x , whereas the

distance from the silicon surface is given by z. The y-axis is perpendicular to the plane of

the cross section. We shall assume for the time being that the net doping concentration Nb of

the local substrate and the oxide thickness tox are both constant along the channel. Hence, this

four-terminal device has a symmetrical structure with respect to source and drain. In order to

keep this symmetry in the model, the source voltage VS, the drain voltage VD, and the gate

voltage VG are all defined with respect to the local substrate. By definition, VS and VD are

positive when they block the corresponding junction.

As shown in Figure 2.1, the active region of the transistor located between source and drain

is limited to the gate-to-surface capacitor plus a thin layer of silicon in which the potential and

the charge distribution are modified by the effect of the gate. It is called the intrinsic part of the

transistor. All the rest is the extrinsic part. It includes the source and drain diodes, series access

Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design C. Enz and E. Vittoz
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VS
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S
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D

P-type local
substrate

x

z
Lwidth W

tox

V

N+N+P+

Intrinsic part

Figure 2.1 Schematic cross section of a MOS transistor

resistors or inductors to the four terminals, and all external parasitic capacitors, in particular

those of the D and S junctions and the direct overlap capacitors from gate electrode to source

and drain islands. This extrinsic part of the device will be discussed in Chapter 10.

Application of a voltage across the source-to-substrate and/or the drain-to-substrate junc-

tions forces electrons and holes out of equilibrium, splitting their respective quasi-Fermi po-

tential by VS at the source end of the channel and VD at the drain end. This splitting propagates

along the channel, and can be characterized by a channel voltage V that varies monotonically

from VS at x = 0 (source end) to VD at x = L (drain end).

Now, for an N-channel device in normal operation (potential increased at the surface by the

voltage applied to the gate), the quasi-Fermi potential of holes can be assumed to be constant

throughout the structure [1,66,67]. Thus V is (within a constant) the quasi-Fermi potential of

electrons in the channel.

Another important voltage is the thermodynamic voltage

UT
△= kT/q, (2.1)

where k is the Bolzmann constant and q is the elementary charge. Proportional to the absolute

temperature T, it is a measure of the thermal energy of electrons. Since it appears ubiquitously

in MOS modeling equations, it is a more natural unit of voltage for devices and circuits than

the standard unit of 1 V. Its value is 25.8 mV at 300 K or 27 ◦C.

2.2 DEFINITION OF CHARGES, CURRENT, POTENTIAL,
AND ELECTRIC FIELDS

For zero electric field at the silicon surface, the source to drain structure of Figure 2.1 corre-

sponds to two back-to-back diodes connected in series; thus, no current other than the junction

leakage current can flow as long as VS and VD are positive. The situation remains qualitatively

the same when more holes are attracted at the surface by applying a negative gate voltage VG.

On the contrary, if a positive voltage is applied to the gate, the holes are repelled from the

surface, leaving the negatively charged P-doping atoms. As shown schematically in Figure 2.2,

this corresponds to a negative charge of density Qb per unit area. This charge is fixed and

therefore cannot carry any current.

By further increasing VG, negative electrons are attracted to the surface thereby forming an

N-type channel. It is this negative mobile inversion charge, of density Qi per unit area, which

will carry the drain-to-source current by a combination of drift and diffusion mechanisms of
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Figure 2.2 Schematic representation of various local charge densities

electrons. For the N-channel device, this current ID will be defined positive if it enters the drain

terminal.

The charge-based model presented in this book will first calculate the dependency of the

density Qi of induced mobile charge on the voltages applied to the transistor. Then, it will rely

on Qi, and on its particular values QiS and QiD at the source and drain ends of the channel, to

calculate the drain current and to model all aspects of the device behavior.

The total net charge induced underneath the surface of silicon per unit area of channel is

given by

Qsi
△= Qb + Qi. (2.2)

As depicted in Figure 2.2, an additional component of charge Qfc is present at the silicon-

oxide interface. This is a fixed charge that includes the effect of charges trapped inside the

oxide and weighted by their relative distance to the interface. This charge will be assumed to

be independent of the gate voltage, although it might change very slowly in time at very high

values of gate voltage. Additional voltage-dependent charges due to fast surface state will not

be considered, since they are negligible in modern processes.

The 0-reference of electrostatic potential ψ is that of the bulk of silicon, at a distance from

the surface where it is not affected by the gate voltage. At the silicon surface (z = 0), Ψ takes

the particular value Ψs called the surface potential. The electric field Eox in the oxide depends

on VG − Ψs, but is modified by Φms, the difference between the extraction potentials of gate

and channel materials. It corresponds to the barrier of potential that would be created at their

interface if the oxide thickness tox would be zero. The electric field in the oxide is therefore

given by

Eox =
VG − Φms − Ψs

tox

. (2.3)

2.3 TRANSISTOR SYMBOL AND P-CHANNEL TRANSISTOR

In order to reflect the symmetrical structure of the MOS transistor, the symbols to be used in

circuit schematics should also be symmetrical, as shown in Figure 2.3. Figure 2.3(a) shows

the symbol of an N-channel transistor, with the definitions of voltages and current already

introduced in Figure 2.1. The arrow on the bulk (B) terminal symbolizes the bulk-to-channel

“junction,” whereas the source S and drain D terminals are symmetrical.
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Figure 2.3 Symbols and definitions for N-channel and P-channel MOS transistors

The generic structure of a P-channel transistor is similar to that of the N-channel, but the

doping types are opposite, with P+ source and drain diffusions inside an N-type local substrate

(which is usually an N-well in modern processes). Hence a negative voltage must be applied

to the gate to obtain a positive inverted charge of holes Qi, after creating a positive depletion

charge Qb.

In spite of this sign difference, all equations that will be derived for modeling the N-channel

transistor will be applicable to the P-channel device, provided the definitions of positive voltages

and currents are inverted, as shown in Figure 2.3(b). The arrow in the bulk connection is

inverted, which might be sufficient to distinguish it from the N-channel. However, since very

often the bulk connection is the same for all transistors of the same type and is therefore not

represented, a small circle is added at the gate of the P-channel device.

It should be pointed out that, except for the gate electrode, the generic structure illustrated

in Figure 2.1 is also that of an NPN lateral bipolar transistor. Indeed, this parasitic transistor

will be activated as soon as one of the two junctions is sufficiently forward biased (−VS and/or

−VD larger than a few hundred millivolts). This device may be exploited as a true bipolar

transistor, provided it is in a separate well (which becomes the base of the transistor) and the

MOS current is canceled by a negative gate voltage [68]. This special mode of operation will

not be further discussed in this book.
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This chapter is dedicated to the calculation and the modeling of the density of induced mobile

charge Qi as a function of the various voltages applied to the transistor. Section 3.1 is a repetition

of the classical one-dimensional analysis of the total charge density Qsi induced at the surface

of a long transistor channel by a nonzero surface potential. It already shows the fundamental

difference between weak and strong inversion. This difference is further highlighted by the

dependency of the surface potential on the gate voltage, which is derived in Section 3.2. Section

3.3 takes advantage of the results obtained so far to calculate the variation of the local gate

capacitance per unit area as a function of the gate voltage and the local channel voltage. Section

3.4 introduces and justifies the charge sheet approximation, which will be used throughout the

rest of the book. Using this approximation, Qi is then obtained in Section 3.5 by the difference

between the gate voltage and a threshold function VTB of the surface potential Ψs, and it

cancels at a value called pinch-off surface potential ΨP. The slope n of VTB(Ψs) will become

one of the few basic parameters of the model. In Section 3.6, an important simplification of

the model is introduced by exploiting the fact that this slope n may be considered constant,

which corresponds to a linearization of the charge versus potential relationship. Based on this

linearization, an explicit expression is obtained that relates Qi to the channel voltage V, within

a constant called pinch-off (channel) voltage VP. This expression is normalized and depends

only on process parameters through a specific charge Qspec. By using an approximation of this

expression in strong inversion, a threshold voltage (at equilibrium) VT0 is defined, by which

VP can then be directly related to the gate voltage.

3.1 POISSON’S EQUATION AND GRADUAL
CHANNEL APPROXIMATION

In the P-type substrate of an N-channel MOS transistor, the total charge concentration ρ is the

net effect of the concentrations Nb of doping atoms, of holes pp and np of electrons:

ρ = q(pp − np − Nb). (3.1)
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Far from the surface, the semiconductor is neutral, and ρ = 0. Closer to the surface, the

spatial variations of potential Ψ due to the electric field produced by the gate result in a nonzero

charge concentration according to the three-dimensional Poisson’s equation

∂
2Ψ

∂x2
+

∂
2Ψ

∂y2
+

∂
2Ψ

∂z2
= −

ρ

ǫsi

, (3.2)

where ǫsi is the dielectric constant of silicon.

The channel is long and wide compared to the oxide thickness tox, allowing the gradual

channel approximation, stating that the electric field variation in the z-direction (perpendicular

to the surface) is much larger than that in the x- and y-directions. Therefore, the second

derivative of potential Ψ in the directions parallel to the surface can be neglected in (3.2), and

this three-dimensional equation can be reduced to the one-dimensional equation in z:

d2Ψ

dz2
=

q

ǫsi

(np − pp + Nb). (3.3)

For an N-channel transistor, the quasi-Fermi potential of holes can be assumed to be constant

for Ψ ≥ 0 [1, 66, 67]. The hole concentration can therefore be expressed as

pp = ni exp
ΦF − Ψ

UT

, (3.4)

where ni is the intrinsic carrier concentration and ΦF is the Fermi potential of the silicon

substrate. At T = 300 K, ni = 1.45 × 1010 cm−3.

Application of a source voltage VS and/or a drain voltage VD brings the electrons in the

channel out of equilibrium, which is characterized by a quasi-Fermi potential ΦFn different

from ΦF. As explained in the introduction, this difference is called channel voltage V, and

ΦFn = ΦF + V . The concentration of electrons can thus be expressed as

np = ni exp
Ψ − ΦFn

UT

= ni exp
Ψ − ΦF − V

UT

. (3.5)

The doping concentration Nb is assumed to be constant in the channel region. Far from the

surface, the effect of VS, VD, and Eox vanishes; thus V = Ψ = 0, and the silicon is neutral

with ρ = 0. Combining equations (3.1), (3.4), and (3.5) then yields

Nb = ni

(

exp
ΦF

UT

− exp
−ΦF

UT

)

∼= ni exp
ΦF

UT

(3.6)

since ΦF ≫ UT, resulting in

ni = Nb exp
−ΦF

UT

. (3.7)
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The expression relating the Fermi potential ΦF to the doping concentration Nb is then given

by

ΦF = UT ln
Nb

ni

. (3.8)

Introducing (3.4), (3.5), and (3.7) in (3.3) yields

d2Ψ

dz2
=

q Nb

ǫsi

⎛

⎜
⎜
⎝

exp
Ψ − 2ΦF − V

UT
︸ ︷︷ ︸

electrons

− exp
−Ψ

UT
︸ ︷︷ ︸

holes

+1
︸︷︷︸

fixed charge

⎞

⎟
⎟
⎠

�
q Nb

ǫsi

G(Ψ, 2ΦF + V ). (3.9)

The first term in the parentheses is the contribution of electrons, the second that of holes, and

the third that of the fixed depletion charge.

Now, the vertical field is given by

Ez = −
dΨ

dz
; (3.10)

hence,

d2Ψ

dz2
= −

dEz

dz
= −

dEz

dΨ

dΨ

dz
= Ez

dEz

dΨ
(3.11)

and Poisson’s equation (3.9) becomes

Ez dEz =
q Nb

ǫsi

G(Ψ, 2ΦF + V ) dΨ. (3.12)

Both sides of this equation can now be integrated from far below the surface, where Ez = 0

and Ψ = 0, to closer to the surface where they become nonzero:

∫ Ez

0

Ez dEz =
E2

z

2
=

q Nb

ǫsi

∫ Ψ

0

G(Ψ, 2ΦF + V ) dΨ. (3.13)

This finally yields the vertical field Ez as a function of Ψ and V :

Ez = sgn(Ψ )
UT

LD

F(Ψ, 2ΦF + V ), (3.14)

where LD is a combination of constants called the extrinsic Debye length

LD �

√

ǫsiUT

2q Nb

(3.15)
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and

F(Ψ, 2ΦF + V ) �
√
√
√
√
√

(

exp
Ψ

UT

− 1

)

exp
−(2ΦF + V )

UT
︸ ︷︷ ︸

contribution of electrons

+
(

exp
−Ψ

UT

− 1

)

︸ ︷︷ ︸

of holes

+
Ψ

UT
︸ ︷︷ ︸

of fixed charge

. (3.16)

This function is represented in Figure 3.1 for ΦF = 14UT, which, according to (3.8), corre-

sponds at ambient temperature to a doping concentration Nb of 1.7 × 1016 cm−3. At the surface

of silicon, the potential Ψ takes the value Ψs, and the vertical field has the value Ezs given

by F(Ψs, 2ΦF + V ). Knowing the surface field, the local silicon charge density Qsi can be

obtained by applying Gauss’ law to a short section of channel, as explained by Figure 3.2.

A parallelepiped volume of channel starts at the surface of silicon where Ez = Ezs and

ends deep in the substrate where Ez = 0; according to the gradual channel approximation, the

variation of horizontal field along a short section of channel is negligible; thus, Ex+Δx = Ex .

Finally, the lateral field Ey = 0 so that the only side contributing to the electrical flux leaving

the volume is the surface. According to Gauss’ law, this flux is equal to the net charge inside

–Ezs

∆x << L

Unit area of channel

Ex+∆x = Ex

Ey = 0
Ez = 0

Qsi

Ex

Figure 3.2 Application of Gauss’ law to calculate Qsi from the surface field Ezs
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the volume, which is equal to Qsi for a unit area of channel. Thus, for Ψs > 0,

Qsi = −ǫsi Ezs = −
ǫsiUT

LD

F(Ψs, 2ΦF + V ). (3.17)

For a given value of 2ΦF + V, the function F plotted in Figure 3.1 thus represents Ez(Ψ ),

Ezs(Ψs), and Qsi(Ψs). It results from the contribution of the three types of charge, which can

still be identified inside the square root of (3.16): the first term is the contribution of electrons,

the second that of holes (which become negligible for Ψ ≫ UT), and the third term that of the

fixed depletion charge.

For negative values of Ψs, the second term dominates and holes accumulate exponentially. If

Ψs = 0 then F = 0; the silicon is neutral up to the surface. This is called the flat-band situation.

For 0 < Ψs ≪ 2ΦF + V, the last term due to the fixed depletion charge dominates. The

small quantity of electrons corresponding to the second term is negligible in the calculation of

field and total charge, but will be the only charge available to transport current. This situation

is called weak inversion.

When Ψs exceeds 2ΦF + V, the first term becomes nonnegligible and would keep its expo-

nential growth if Ψs could be increased much above. This situation is called strong inversion.

It must be pointed out that F is a nonlinear function of the three kinds of charge, and so

neither Qi nor Qb can be identified separately in this function, except if one of them strongly

dominates. This is the case in weak inversion where, from (3.17) and (3.16),

Qsi
∼= Qb = −

ǫsiUT

LD

√

Ψs

UT

(weak inversion). (3.18)

3.2 SURFACE POTENTIAL AS A FUNCTION
OF GATE VOLTAGE

The surface potential Ψs increases with the gate voltage VG. This dependency can be obtained

by again applying Gauss’ law as illustrated in Figure 3.2, but with the upper part of the volume

ending inside the oxide layer, and thus including the fixed charge density Qfc. The electric

field at the upper face is the oxide field Eox given by (2.3), and thus

Qsi + Qfc = −ǫox Eox = −Cox(VG − Φms − Ψs), (3.19)

where

Cox = ǫox/tox (3.20)

is the gate oxide capacitance per unit area. Introducing expression (3.17) of Qsi and solving

for VG yields

VG − VFB

UT

=
Ψs

UT

+
ǫsi

CoxLD

F(Ψs, 2ΦF + V ), (3.21)
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where VFB is the flat-band voltage given by

VFB � Φms +
−Qfc

Cox

. (3.22)

It is the value of the gate voltage VG needed to obtain the flat-band situation, for which Ψs = 0

and Qsi = 0.

Relation (3.21) is represented in Figure 3.3 for realistic particular values of ΦF and

ǫsi/(CoxLD).

As long as Ψs ≪ 2ΦF + V (corresponding to weak inversion), Qsi = Qb increases only

with the square root of Ψs. Thus Ψs increases with VG. But as soon as Ψs reaches 2ΦF + V, Qsi

starts increasing much more rapidly with Ψs due to the important contribution of mobile charge.

This is not compatible with the limited field, and thus the surface potential only increases very

slowly to become almost constant in strong inversion.

3.3 GATE CAPACITANCE

Since the function F represents the variation of the charge in silicon Qsi with surface potential

Ψs, its derivative gives the corresponding silicon capacitance Csi:

Csi �
d(−Qsi)

dΨs

=
ǫsiUT

LD

dF

dΨs

=
ǫsi

2LD

exp Ψs−2ΦF−V
UT

− exp −Ψs

UT
+ 1

F(Ψs, 2ΦF + V )
. (3.23)

This equation and equation (3.21) of VG(Ψs) can be used as parametric equations of Csi(VG),

with Ψs as parameter. The local gate capacitance per unit area Cg is then obtained by the series

connection of Csi and Cox:

Cg

Cox

=
Csi

Csi + Cox

. (3.24)

The resulting Cg(VG) curve is plotted in Figure 3.4.
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For negative gate voltages, holes are attracted to the surface. Csi becomes much larger than

Cox and thus Cg tends to Cox. The same is true for large positive gate voltages that attract a

large number of electrons corresponding to channel inversion.

In between, holes are repelled from the surface, leaving the depletion charge Qb, while the

electron charge remains negligible. The silicon capacitance is thus reduced to the depletion

capacitance Cd given by

Csi = Cd =
ǫsi

2LD

√
Ψs/UT

=

√

ǫsiq Nb

2Ψs

. (3.25)

It corresponds to a thickness td of the dielectric depletion layer given by

td = 2LD

√

Ψs

UT

=

√

2Ψsǫsi

q Nb

(3.26)

that increases with the square root of the surface potential. Hence the gate capacitance Cg slowly

decreases, until electrons are no longer negligible and rapidly dominate in strong inversion,

causing an abrupt increase of Cg. If the channel voltage V is increased, it increases the value of

Ψs required for strong inversion (see Figure 3.3), letting the gate capacitance keep descending

further.

It must be remembered that Cg is the local gate capacitance per unit area. Thus, since there

is only a single gate electrode, the curve of Figure 3.4 can only be measured when the whole

channel is at the same voltage V = VS = VD. Indeed, if VD �= VS, then V changes along the

channel, and the total gate capacitance is a combination of different local values.

These very nonlinear characteristics of gate capacitance must be taken into consideration

when a MOS transistor is used to implement a capacitor. To obtain a value as constant as

possible, the device must be biased in accumulation or in strong inversion. A voltage-dependent

capacitor (varicap) is obtained by exploiting the slow decay of CG in weak inversion, or its

rapid increase at the verge of strong inversion [69].
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3.4 CHARGE SHEET APPROXIMATION

The mobile inversion charge Qi defined in Section 2.2 is obtained by integrating the electron

concentration np below the surface of silicon:

Qi = −q

∫ ∞

0

np dz = −q

∫ Ψs

0

np

Ez

dΨ. (3.27)

The integrand np/Ez can be expressed from (3.5), (3.7), and (3.14) [70]:

np

Ez

=
NbLD

UT

exp Ψ −2ΦF−V
UT

F(Ψs, 2ΦF + V )
. (3.28)

This expression, represented in the semilog plot of Figure 3.5 for several values of 2ΦF + V,

unfortunately cannot be integrated explicitly. As can be seen, it is essentially an exponential

function exp[Ψ/(mUT)], with a slope factor m changing from 1 in weak inversion to 2 in strong

inversion. Thus, as illustrated by the linear plot on Figure 3.6, 95% of charge Qi is at a potential

within 3UT to 6UT below Ψs.

On this basis, the charge sheet approximation [71] illustrated in the same figure will be

used in the rest of the book. It assumes that the whole charge Qi is at the surface potential

–3

95%

0–1–2–4 mUT

exp

5%

Y – Ys

Y – Ys

mUT Charge sheet Q i at ys

DS

Qd(ys)

Figure 3.6 Charge sheet approximation
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Ψs. Thus, since there is no voltage drop across this thin charge sheet, the depletion charge Qb

is controlled by Ψs. Hence, it can be approximated by expression (3.18) for weak inversion

(where Qi is really negligible):

−Qb =
ǫsiUT

LD

√

Ψs

UT

= ΓbCox

√

Ψs, (3.29)

where Γb is the substrate modulation factor, given by

Γb �
ǫsi

LDCox

√

UT =
√

2q Nbǫsi

Cox

. (3.30)

3.5 DENSITY OF MOBILE INVERTED CHARGE

3.5.1 Mobile Charge as a Function of Gate Voltage
and Surface Potential

The total charge density Qsi can be calculated from the field in the oxide by using relations

(3.19) and (3.22),

Qsi = −Cox(VG − VFB − Ψs), (3.31)

and, with the charge sheet approximation, the depletion charge Qb is given by (3.29). Although

the inversion charge Qi cannot be explicitly obtained directly from (3.27), it can be expressed

as their difference

Qi = Qsi − Qb = −Cox(VG − VFB − Ψs − Γb

√

Ψs) = −Cox(VG − VTB), (3.32)

where

VTB � VFB + Ψs + Γb

√

Ψs (3.33)

is the threshold function. This function of Ψs that depends on the process through parameters

VFB and Γb is represented in Figure 3.7 for two extreme values of Γb.

This function is nonlinear due to the contribution of Qb and its slope n > 1 is obtained by

differentiation of (3.33):

n �
dVTB

dΨs

= 1 +
Γb

2
√

Ψs

. (3.34)

It is represented in Figure 3.8.

As can be seen, n is a very slow function of Ψs, especially since in normal situations, Ψs is

not lower than about 20UT. Its maximum value thus ranges between 1.2 and 1.7, and it tends

to 1 for very large values of Ψs.
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Now according to (3.32), the density of inverted charge Qi is proportional to the difference

between the gate voltage and the threshold function, as illustrated in Figure 3.7. Hence, for VG

constant,

dQi/Cox

dΨs

= n. (3.35)

For a given value of the gate voltage, the inverted charge becomes zero for a particular value

ΨP of the surface potential called pinch-off (surface) potential. It is directly related to the gate
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Figure 3.8 Slope n of VTB(Ψs)
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voltage, as can be obtained by (3.32) for Qi = 0:

VG = VFB + ΨP + Γb

√

ΨP. (3.36)

This function VG(ΨP) is identical to VTB(Ψs) given by (3.33), as can be confirmed by inspection

of Figure 3.7.

Solving (3.36) for ΨP yields

ΨP � Ψs(Qi = 0) = VG − VFB − Γ 2
b

(√

VG − VFB

Γ 2
b

+
1

4
−

1

2

)

. (3.37)

3.5.2 Mobile Charge as a Function of Channel Voltage
and Surface Potential

The total charge in silicon, Qsi, can also be expressed by (3.17), in which LD can be eliminated

using (3.30). Furthermore, the function F(Ψ, 2ΦF + V ) given by (3.16) can be simplified if the

channel potential is sufficiently positive (Ψs ≫ UT), the contribution of holes being negligible.

With the charge sheet approximation, the depletion charge Qb is again given by (3.29). The

inverted charge can then be expressed as

Qi = Qsi − Qb = −ΓbCox

√

UT

(√

Ψs

UT

+ exp
Ψs − 2ΦF − V

UT

−

√

Ψs

UT

)

. (3.38)

3.6 CHARGE-POTENTIAL LINEARIZATION

3.6.1 Linearization of Qi(Ψs)

Since n is only slightly dependent on Ψs, it will be considered constant, which amounts to a

linearization of the mobile inverted charge Qi in function of the surface potential Ψs [27].

Thus, although it is a (slow) function of Ψs, n will become a fixed device parameter called

the slope factor. It should be evaluated for the best coverage of the device operation range, as

will be discussed in Section 3.6.4.

The inverted charge Qi cannot be calculated from expression (3.32) or (3.38), since the

surface potential Ψs cannot be expressed analytically as a function of the gate voltage VG.

Indeed, Figure 3.3 was obtained from equation (3.21) which cannot be inverted. However, the

linearization of Qi(Ψs) by means of the constant slope factor n can be exploited to obtain an

explicit solution, as will be explained below.

This linearization is illustrated in Figure 3.9, which is just a qualitative replication of

Figure 3.7. With the slope factor n constant, the surface potential is related to its pinch-off

value ΨP by

Qi = nCox(Ψs − Ψp) or Ψs = ΨP +
Qi

nCox

. (3.39)



24 THE BASIC CHARGE MODEL

–Q
i

C
ox

V
G

V
TB

y
s

V
FB

0
y

P

Slope n

Figure 3.9 Linearization of mobile inverted charge Qi with surface potential Ψs

This expression can be introduced in (3.38) to eliminate Ψs [41]. Arranging the result to extract

ΨP − 2ΦF − V yields

ΨP − 2ΦF − V

UT

=
−Qi

nCoxUT

+ ln

[

−Qi

ΓbCox

√
UT

(

−Qi

ΓbCox

√
UT

+ 2

√

Qi

nCoxUT

+
ΨP

UT

)]

.

(3.40)

This equation expresses a general relation between the density of inversion charge Qi and

voltages V and VG (since ΨP is a direct function of VG given by (3.37)).

The inversion charge can be normalized by introducing a specific charge Qspec

qi = Qi/Qspec (3.41)

with

Qspec � −2nUTCox. (3.42)

The negative sign in Qspec takes care of the negative charge of electrons, whereas reasons for

introducing the factor 2 will be explained later. Furthermore, voltages normalized to UT will

be represented by lowercase letters:

V

v
=

Ψ

ψ
=

Φ

φ
=

(
Γb

γb

)2

= UT. (3.43)

Equation (3.40) then becomes

2qi + ln qi + ln

[
2n

γb

(

qi

2n

γb

+ 2
√

ψp − 2qi

)]

︸ ︷︷ ︸

vsh

= ψp − 2φf − v. (3.44)

Due to the simplifications of the function F(Ψ, 2ΦF + V ) in (3.38), this expression is valid

only for ψp ≫ 2qi (ψp = 2qi corresponds to ψs = 0). Figure 3.10 shows the variation with qi
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of the term labeled vsh (voltage shift) in (3.44) for various values of ψp and γb, and with the

slope factor n defined by (3.34) evaluated at Ψs = Ψp.

As can be seen, even for extreme values of ψp and γb the variation of vsh with qi never

exceeds unity. The terms in qi can therefore be neglected, and (3.44) simplifies to

2qi + ln qi + ln

(
4n

γb

√

ψp

)

︸ ︷︷ ︸

vsh

= ψp − 2φf − v. (3.45)

The remaining dependency of vsh on ψp is very weak; hence, vsh can be considered constant

(evaluated for example at ψp = 2φf).

Equation (3.45) constitutes a general normalized relation between the pinch-off potential

ΨP, the local channel voltage V , and the resulting local inversion charge density Qi. Since

ΨP is a direct function of the gate voltage VG given by (3.37), Qi(VG, V ) can be obtained by

numerical computation.

But ΨP is a particular value of the surface potential that does not appear explicitly in the

measurable characteristics of the transistor. It is therefore very useful for circuit applications

to relate the inversion charge (and later the drain current) to a particular value of the channel

voltage V called pinch-off voltage VP [72] and defined by

vp �
VP

UT

� v(2qi + ln qi = 0) = v(qi = 0.4263) (3.46)

or, by using (3.44),

vp = ψp − (2φf + vsh). (3.47)

Introducing this definition in (3.44) results in

2qi + ln qi = vp − v. (3.48)

This expression provides v(qi), but it cannot be inverted analytically to provide a general

expression of qi(v). However, the two axes can be exchanged to represent qi(v), as shown in

Figure 3.11.
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In weak inversion, qi ≪ 1; thus the linear term becomes negligible. The mobile inverted

charge can be approximated by

qi = exp (vp − v) (weak inversion). (3.49)

In strong inversion, qi ≫ 1; thus the logarithmic term becomes negligible. The mobile inverted

charge can be approximated by

qi =
vp − v

2
(strong inversion). (3.50)

This approximation will be further discussed in Section 3.6.3.

In moderate inversion, both terms contribute to the variation of mobile charge and neither

approximation is valid.

As expressed by (3.47) and shown by Figure 3.10, ΨP − VP is almost exactly constant.

Hence by inspection of Figure 3.7,

dVG

dVP

=
dVG

dΨP

= n. (3.51)

3.6.2 Linearized Bulk Depletion Charge Qb

Differentiating (3.29) and introducing (3.34) give

dQb/Cox

dΨs

= 1 − n (3.52)
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as can be confirmed by inspection of Figure 3.7. Furthermore, its value QbP at Ψs = ΨP obtained

from (3.29) is

QbP = −ΓbCox

√

ΨP. (3.53)

Using the charge-potential linearization introduced in Section 3.6.1,

Qb = QbP + (1 − n)(Ψs − ΨP)Cox = −ΓbCox

√

ΨP + (1 − n)(Ψs − ΨP)Cox (3.54)

where the linearized expression (3.39) of Qi can be introduced to obtain in normalized values

qb �
Qb

Qspec

=
γb

√
ψp

2n
−

n − 1

n
qi. (3.55)

3.6.3 Strong Inversion Approximation

As was pointed out at the end of Section 3.2, in strong inversion the surface potential Ψs

increases very slowly with the gate voltage VG, due to the very rapid increase of the total

charge in silicon Qsi. Thus, Ψs can be assumed to be independent of VG, and approximated, in

view of Figure 3.3, by

Ψs = Ψ0 + V, (3.56)

where Ψ0 is a constant slightly larger than 2ΦF.

Expression (3.32) of the inverted charge can then be rewritten as

Qi = −Cox[VG − (VFB + Ψ0 + V + Γb

√

Ψ0 + V )
︸ ︷︷ ︸

VTB

]. (3.57)

The threshold function VTB(V ) is identical to VTB(Ψs) of Figure 3.7, but shifted by −Ψ0, as

shown in Figure 3.12(a).
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Figure 3.12 Strong inversion approximation of inverted charge
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For V = 0, VTB has the particular value VT0 called equilibrium threshold voltage, or in short

threshold voltage:

VT0 � VTB(V = 0) = VFB + Ψ0 + Γb

√

Ψ0. (3.58)

This bias-independent device parameter corresponds to the threshold voltage VT for VS = 0

used in other models. Its precise value depends on the value chosen for Ψ0.

Introducing (3.58) in (3.57) yields

VTB = VT0 + V + Γb

(√

Ψ0 + V −
√

Ψ0

)

. (3.59)

According to its strong inversion approximation (3.50) derived from the general expression

(3.48), the inverted charge would be zero when the channel voltage V reaches its pinch-off

value VP defined by (3.46). Hence, VP can be obtained as the value of V corresponding to

VTB = VG, as illustrated in Figure 3.12(a). Indeed, inspection of this figure shows that VG

depends on VP exactly as VTB depends on V . Thus according to (3.59),

VG = VT0 + VP + Γb

(√

Ψ0 + VP −
√

Ψ0

)

, (3.60)

which can be inverted to provide

VP = VG − VT0 − Γb

⎡

⎣

√

VG − VT0 +
(

Γb

2
+

√

Ψ0

)2

−
(

Γb

2
+

√

Ψ0

)
⎤

⎦. (3.61)

The slope of VG(VP) is still n defined by (3.34) since

n =
dVTB

dΨs

=
dVTB

dV
=

dVG

dVP

= 1 +
Γb

2
√

Ψ0 + V
. (3.62)

It should be evaluated at a value of V that best covers the range of operation.

Since n is almost constant with V , inspection of Figure 3.12(a) shows that instead of using

equation (3.61) the pinch-off voltage can be approximated by

VP
∼=

VG − VT0

n
. (3.63)

It also shows that, instead of using (3.57), the inverted charge can be approximated by

−Qi

Cox

= n(VP − V ), (3.64)

which corresponds to approximation (3.50).

For a given value of the gate voltage VG, the inverted charge can be plotted directly by

first moving the V -axis to this value in the plot of Figure 3.12(a), and then vertically flipping

around this axis to produce Figure 3.12(b). Changing VG shifts the curve vertically, resulting

in a change of VP.
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By introducing expression (3.58) of VT0 into (3.61) and comparing the result with expression

(3.37) of ΨP, we obtain

VP = ΨP − Ψ0. (3.65)

Hence, according to (3.47)

ψ0 = ψp − vp = 2φf + vsh or Ψ0 = Ψp − Vp = 2ΦF + Vsh. (3.66)

Inspection of Figure 3.10 shows that vsh is almost constant, whereas Figure 3.3 shows that

the surface potential keeps increasing slowly in strong inversion. This difference is due to the

logarithmic term in (3.48), which has been neglected in approximation (3.50). It results in a dif-

ference Δqi of the inverted charge qi that is represented in relative values in Figure 3.13. As can

be seen, the excess of charge obtained in the strong inversion approximation never exceeds 18%.

Notice that although the threshold voltage VT0 was introduced in the framework of this

strong inversion approximation, it can always be used to relate VP to VG by equation (3.61) or

by its approximation (3.63).

3.6.4 Evaluation of the Slope Factor

As already stated in Section 3.6.1, the slope factor n defined by (3.34) should be evaluated to

best fit the range of operation of the transistor.

Inspection of Figure 3.9 shows that n would be best evaluated as the slope of the secant of

the threshold function VTB between a particular value of surface potential Ψs and its pinch-off

value ΨP. Indeed, the calculation of Qi by the linear relation (3.39) is then exact for the selected

value of Ψs. This slope can be obtained from expression (3.33) of VTB:

n = nopt =
VTB(ΨP) − VTB(Ψs)

ΨP − Ψs

= 1 +
Γb√

ΨP +
√

Ψs

. (3.67)

In weak inversion, Qi is very small; therefore, Ψs
∼= ΨP, as can be seen in Figure 3.7. The

secant merges with the tangent and slope n is obtained by introducing Ψs = ΨP = Ψ0 + VP in

(3.34)

n = nw = 1 +
Γb

2
√

ΨP

= 1 +
Γb

2
√

Ψ0 + VP

. (3.68)
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Hence, the slope factor in weak inversion depends only on the gate voltage through VP. More-

over, it has a particular physical meaning. Indeed, since the inverted charge Qi is negligible

with respect to the depletion charge Qb, inspection of Figure 3.7 shows that the slope factor

can be expressed as

n =
dVG

dΨs

(weak inversion only). (3.69)

The surface potential follows almost linearly the gate voltage variations, but with an at-

tenuation by factor n. This attenuation is produced by a capacitive divider made of the oxide

capacitance Cox and the surface depletion capacitance Cd = −dQb/dΨs. Hence,

n = nw =
Cox + Cd

Cox

(weak inversion only). (3.70)

This series connection of Cox and Cd reduces the gate capacitance to

Cg

Cox

=
Cd

Cox + Cd

= 1 −
1

nw

. (3.71)

Hence, 1/nw can be identified on Figure 3.4 as the depth of the dip of the Cg(VG) curve, as

shown in Figure 3.14.

If the whole channel is in weak inversion (see Section 4.4.5), then the surface potential

Ψs is constant along the channel, since it depends only on VG, as shown by Figure 3.3. It is

smaller than the lowest value of 2ΦF + V , which is normally 2ΦF + VS. Thus the minimum

value of the slope factor (max of 1/n), which occurs at the minimum of the Cg(VG) curve, can

be expressed as

n = nw min
∼= 1 +

Γb

2
√

2ΦF + VS

. (3.72)

The surface potential cannot be much lower than this upper limit, since the inversion charge de-

creases exponentially and would rapidly become so small that the transistor would be blocked.

Hence, nw is usually not much larger than its minimum value nw min given above.
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Figure 3.14 Value of the slope factor n in weak inversion
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In strong inversion, evaluating the slope at pinch-off (n = nw) results in a too small value,

as illustrated in Figure 3.15, where the nonlinearity has been strongly exaggerated.

Another possibility is to evaluate it at V = 0 (Ψs = Ψ0), resulting in [17]

n = n0 = 1 +
Γb

2
√

Ψ0

. (3.73)

This evaluation is independent of any bias voltage and can thus be used as a first approximation,

but it is overestimated as shown in Figure 3.15.

The same figure shows that a better solution would be to use the slope of the secant from

V = 0 to V = VP, obtained by introducing ΨP = Ψ0 + VP and Ψs = Ψ0 in (3.67),

n = nsec = 1 +
Γb√

Ψ0 + VP +
√

Ψ0

, (3.74)

or to evaluate the slope (3.34) at Ψs = Ψ0 + VP/2,

n = ns = 1 +
Γb√

Ψ0 + VP/2
, (3.75)

which gives a slightly lower value.

According to (3.66), the value of Ψ0 − 2ΦF is just a few UT. Hence, Ψ0 can be replaced by

2ΦF in the above evaluations of n, without much affecting the result.

It must be pointed out again that the dependency of n on bias voltages is very weak, the main

dependency being on VG. Thus the error produced by a nonoptimum evaluation is probably

within the spreading range of the various process parameters.

However, this slight difference might be a cause of mismatch between devices at different

bias conditions, especially at different values of the gate voltage.
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3.6.5 Compact Model Parameters

Equation (3.48) describes the general charge–voltage relationship for a long-channel transistor.

This equation is dimensionless and uses normalized variables. Only three model parameters

and one physical parameter are needed to obtain from it the relation between applied voltages

VG and V , and the resulting inverted charge density Qi.

The physical parameter, used to normalize all voltages in the dimensionless equation is UT.

The following are the three device parameters:

1. The slope factor n defined in Figure 3.7 and by equation (3.34). This parameter was further

discussed in Section 3.6.4.

2. The threshold voltage VT0 defined in Figure 3.12 and by equations (3.58) and (3.66). It is

very slightly dependent on VG through Ψp (see Figure 3.10), but can be considered bias

independent in practice.

These first two parameters relate the gate voltage VG to the pinch-off voltage VP according

to (3.63).

3. The oxide capacitance per unit area Cox. It is combined with n and UT to obtain the specific

charge Qspec defined by (3.42) and is used to normalize the charge density.

Introducing these parameters in (3.48) provides the nonnormalized general charge–voltage

relation:

−Qi

Cox

+ nUT ln
−Qi

2nCoxUT

= VG − VT0 − nV . (3.76)

We can see that UT plays an important role in weak inversion where the logarithmic term

dominates. This role disappears in strong inversion when the logarithmic term becomes neg-

ligible.



4 Static Drain Current

In this chapter, the model of the static current–voltage characteristics of the transistor is derived.

In Section 4.1, the drain current ID is shown to be directly related to the charge–voltage relation

established in the previous chapter. Section 4.2 introduces the important concept of forward

and reverse components of ID, and Section 4.3 defines the various modes of operation of the

transistor. Section 4.4 details the derivation of the drain current for all current levels from the

linearized charge model, with its approximations in strong and weak inversion. Section 4.5 is

dedicated to a fundamental property of the transistor that facilitates its modeling and opens

interesting circuit approaches through the concept of pseudo-resistor. Finally, Section 4.6

introduces a first approximation of the channel length modulation phenomenon, which limits

the output resistance in saturation.

4.1 DRAIN CURRENT EXPRESSION

When the source and drain voltages are different, electrons of density np forming the mobile

inverted charge Qi move by a combination of drift and diffusion, resulting in a drain current

ID defined in Figure 2.1. For the long channel considered here, all elementary flows of current

are along the x-axis with a local current density in this direction given by [67]

Jn = μq

⎛

⎜
⎜
⎝

−np

dΨ

dx
︸ ︷︷ ︸

drift

+ UT

dnp

dx
︸ ︷︷ ︸

diffusion

⎞

⎟
⎟
⎠

, (4.1)

where µ is the equivalent mobility of electrons in the channel. The first term is the drift

component of the current, proportional to the longitudinal electric field −dΨ/dx . The second

term is the diffusion component, proportional to the gradient of charge concentration dnp/dx .

With the charge sheet approximation, integration in the vertical direction (z-axis) is obtained

by replacing qnp by −Qi. Moreover, if the channel is sufficiently wide, integration along the

Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design C. Enz and E. Vittoz
C© 2006 John Wiley & Sons, Ltd.
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y-axis is simply a multiplication by width W . Thus [1],

ID = μW

⎛

⎜
⎜
⎝

−Qi

dΨs

dx
︸ ︷︷ ︸

drift

+ UT

dQi

dx
︸ ︷︷ ︸

diffusion

⎞

⎟
⎟
⎠

, (4.2)

Since the whole charge Qi of electrons is assumed to be concentrated at the surface, the

concentration of electrons (3.5) can be replaced by

Qi ∝ exp
Ψs − ΦF − V

UT

. (4.3)

Therefore

dQi

dx
=

Qi

UT

(
dΨs

dx
−

dV

dx

)

, (4.4)

which when introduced in (4.2) yields

ID = μW (−Qi)
dV

dx
. (4.5)

This expression includes the drift and the diffusion components and shows that the overall

current is proportional to the gradient of channel voltage V (which is a quasi-Fermi potential,

as discussed in Section 2.1). Now, since the current is constant along the channel, (4.5) can be

integrated from source to drain:

ID

∫ L

0

dx =
∫ VD

VS

μW (−Qi)dV . (4.6)

In this basic model, mobility μ and channel width W are assumed to be constant. The depen-

dency of μ on the vertical field Ezs and the horizontal field Ex will be introduced in Part II.

The effect of a possible variable channel width will be discussed in Section 4.5.2. Since only

Qi changes along the channel, equation (4.6) becomes

ID = β

∫ VD

VS

−Qi

Cox

dV, (4.7)

where

β � μCox

W

L
(4.8)

is the transfer parameter of the transistor depending on the width over length ratio of the

channel.

Equation (4.7) is a very interesting result, since it shows that the drain current can be

obtained directly from the Qi(V ) as is illustrated in Figure 4.1. This result is independent of
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Figure 4.1 Drain current according to (4.7)

the shape of Qi(V ). It is valid for all values of the source and drain voltages, including those

larger than the pinch-off voltage VP, for which the inverted charge is very small.

As established in Chapter 3, a variation of the gate voltage VG shifts vertically the whole

strong inversion part of the curve by the same amount, whereas the weak inversion part is

shifted horizontally to follow the variation of VP.

4.2 FORWARD AND REVERSE CURRENT COMPONENTS

Since the mobile charge Qi tends to zero for V tending to infinity, the integral (4.7) can be

rewritten as

ID = β

∫ ∞

VS

−Qi

Cox

dV

︸ ︷︷ ︸

forward current IF

− β

∫ ∞

VD

−Qi

Cox

dV

︸ ︷︷ ︸

reverse current IR

= IF − IR. (4.9)

The drain current can thus be expressed as the difference between a forward current IF and a

reverse current IR, as illustrated in Figure 4.2. IF depends on VG and VS, but not on VD, whereas

IR depends on VG and VD, but not on VS. Furthermore, according to (4.9), IF(VS) ≡ IR(VD):

IF and IR are indeed two values of the same function of V.

Thus, the drain current is the superposition of independent and symmetrical effects of the

source and drain voltages. This is a property of MOS transistors that is independent of the

shape of Qi(V ) [73]. Its limits of validity will be discussed in Section 4.5.
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Figure 4.2 Decomposition of the drain current into forward and reverse components
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4.3 MODES OF OPERATION

With the bias situation illustrated in Figure 4.1, both VS and VD are in the section of the Qi(V )

characteristics corresponding to strong inversion. The channel is strongly inverted from source

to drain and the transistor is said to be in linear mode. This terminology refers to the fact

that the drain current is a linear function of the gate voltage, as will be shown in Section

4.4.4. Alternative appellations are nonsaturation mode [1] (meaning that the drain current

keeps increasing with the drain voltage) and triode mode (referring to the nonsaturating output

characteristics of the old triode vacuum tube). In French, this mode is called conduction [17],

and this terminology has been previously used in some of the authors’ publications.

If the drain voltage VD is increased above the pinch-off voltage VP, then the current does

not increase significantly anymore: the transistor is still in strong inversion, but in forward

saturation. Forward saturation can be characterized by the fact that the reverse current becomes

negligible compared to the forward current:

in (forward) saturation : IR ≪ IF thus ID = IF. (4.10)

It can be noticed that the negligible reverse component is in fact in weak inversion, as is the

drain end of the channel.

Now, if both VD and VS are larger than VP, then the whole channel is weakly inverted, and

the transistor is said to be in weak inversion mode.

These various modes of operation are summarized in Figure 4.3 that represents the VS, VD

plane for a given positive value of VP (thus for a given value of VG > VT0).

The part of the plane above the VD = VS line corresponds to the forward modes described

above, for which ID > 0. The other half of the plane corresponds to the reverse modes, with

VS > VD; therefore, ID < 0. It includes reverse saturation with

in reverse saturation : IF ≪ IR thus ID = −IR. (4.11)

In forward strong inversion, the transistor enters saturation for VD > VP; thus, the source

to drain voltage necessary for saturation is

VDSsat = VP − VS (in strong inversion). (4.12)
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Figure 4.3 Modes of operation of a MOS transistor
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This saturation voltage is also represented in the figure. It decreases when VS approaches VP.

However, it never reaches zero since (4.12) is no longer valid close to or in weak inversion.

In weak inversion, the mobile charge, and thus the two components of current, decrease

exponentially with VS/UT and VD/UT. This mode can be obtained even for zero value of source

voltage if the pinch-off voltage VP is made negative. According to (3.63), this is obtained when

VG < VT0, hence the alternative appellation of subthreshold mode of operation.

When the larger of IF or IR becomes sufficiently small, the transistor is considered to be

blocked.

It must be reminded that, although VP is used as the limit between strong and weak inversion

in Figure 4.3, the transition is progressive through a range of moderate inversion, where all

terms of relation (3.48) are significant.

According to the definitions of positive voltages in Figure 2.1, the source and drain junctions

are reverse biased in the first quadrant represented in Figure 4.3. Both VS and VD can be slightly

negative without qualitatively changing the modes of operation described above. However, if

these negative values exceed a few hundreds of millivolts, the forward-biased junctions inject

minority carriers (electrons for the N-channel transistor) in the local substrate. A parasitic

bipolar transistor is superimposed on the MOS transistor. This bipolar mode of operation can

be usefully exploited if MOS operation is blocked by applying a negative gate voltage [68,74].

4.4 MODEL OF DRAIN CURRENT BASED ON
CHARGE LINEARIZATION

4.4.1 Expression Valid for All Levels of Inversion

By normalizing the charge and voltages according to (3.41) and (3.43), the general drain current

(4.7) expression becomes

ID = Ispec

∫ vd

vs

qi dv, (4.13)

where Ispec is the specific current of the transistor defined by

Ispec
△= μUT

W

L
(−Qspec) = 2nμCox

W

L
U 2

T = 2nβU 2
T. (4.14)

All currents can be normalized to this specific current according to

ID

id

=
IF

if

=
IR

ir

= Ispec. (4.15)

The normalized values of drain current ID, forward current IF, and reverse current IR defined

by (4.9) can then be expressed as

id =
∫ vd

vs

qi dv, if =
∫ ∞

vs

qi dv, and ir =
∫ ∞

vd

qi dv. (4.16)
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An analytic expression relating the channel voltage and the inverted charge was derived in

Chapter 3 (equation (3.48); Figure 3.11) based on the linearization of Qi(Ψs) by means of the

slope factor n. It is represented again in Figure 4.4 with the drain current shown according to

(4.16). The particular values of the source and drain voltages correspond to the linear mode.

From (3.48), the element of channel voltage dv can be expressed as

dv = −(2 + 1/qi) dqi, (4.17)

which when introduced in (4.16) yields

if,r =
∫ qs,d

0

(2qi + 1) dqi = q2
s,d + qs,d (4.18)

where qs,d is the value of normalized charge density qi at the source or at the drain end of the

channel.

The normalized forward or reverse component of drain current is thus given by

if,r = q2
s,d + qs,d. (4.19)

It should be reminded that this result was obtained by integrating the Qi(V ) function for

its particular expression obtained by linearizing Qi(Ψs) according to (3.35). It is a very simple

expression, thanks to the factor 2 included in the definitions of Qspec (3.42) and Ispec (4.14).

An alternative approach is possible by introducing the same linearization to eliminate the

surface potential Ψs from the original drain current expression (4.2), resulting in

ID = µW

(
−Qi

nCox

+ UT

)
dQi

dx
, (4.20)

or, by normalizing the charge and the current according to (3.41) and (4.15), and the position

x along the channel by ξ = x/L ,

id = −(2qi + 1)
dqi

dξ
. (4.21)

Integration along the channel (ξ = 0 to 1) then yields

id =
∫ qd

qs

−(2qi + 1) dqi = (q2
s + qs) − (q2

d + qd) = if − ir. (4.22)

where if and ir are given by (4.19).
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(4.39) between weak and strong inversion approximations

Now, equation (4.19) can be associated with (3.48) applied at the source or at the drain end

of the channel

vp − vs,d = 2qs,d + ln qs,d (4.23)

to obtain the relation between drain current components if,r and bias voltages vp − vs,d in a

parametric form. The parameter (qs,d) can be expressed by inverting (4.19):

qs,d =
√

1 + 4if,r − 1

2
. (4.24)

It can then be inserted in (4.23), which yields

vp − vs,d =
√

1 + 4if,r + ln (
√

1 + 4if,r − 1) − (1 + ln 2). (4.25)

This general expression cannot be inverted to provide if,r as a function of vs,d, but it can be

plotted as shown in Figure 4.5 (curve a).

4.4.2 Compact Model Parameters

Equation (4.25) describes the general current–voltage relationship for a long-channel transistor.

It is continuously valid from weak to strong inversion.

Only three model parameters and one physical parameter are needed to obtain from this

dimensionless equation the relation between bias voltages VG and VS,D, and the resulting

current component IF,R.

The physical parameter is UT. It is used to normalize all voltages in the dimensionless

equation.
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The three device parameters are:

1. The slope factor n defined in Figure 3.7 and by equation (3.34). This parameter was further

discussed in Section 3.6.4.

2. The threshold voltage VT0 defined in Fig (3.12) and by equations (3.58) and (3.66). It is

very slightly dependent on VG through ψp (see Figure 3.10), but can be considered bias

independent in practice.

These first two parameters relate the gate voltage VG to the pinch-off voltage VP accord-

ing to (3.63). They were already introduced to obtain the charge–voltage relationship in

Chapter 3.

3. The transfer parameter β. It is combined with n and UT to obtain the specific current Ispec

defined by equation (4.14) and is used to normalize components IF and IR of the drain

current.

The drain current in all the modes of operation of the transistor identified in Figure 4.3

can be obtained by subtracting IR(VD, VG) from IF(VS, VG) according to (4.9). However, these

two components of the drain current cannot be obtained analytically from (4.25) since this

expression cannot be inverted. This is the reason for the approximative curve d of Figure 4.5,

which will be introduced in Section 4.4.6.

4.4.3 Inversion Coefficient

In equation (4.25), the first term that corresponds to strong inversion dominates for if,r ≫ 1,

whereas the second term corresponding to weak inversion dominates for if,r ≪ 1. Thus, the

specific current Ispec can be used to characterize the current level at which IF or IR changes

from weak to strong inversion. The level of inversion of the whole transistor can then be

characterized by an inversion coefficient I C defined by

I C = max (if = IF/Ispec, ir = IR/Ispec), (4.26)

and the diagram of Figure 4.3 can be replaced by that of Figure 4.6.

Linear

Forward
saturation

Reverse
saturation

Blocked

IF
Ispec

IR
Ispec

1
1

IC
 <1

IC >1

IC >1

IC >1

Strong inversionW
eak

inversion

Figure 4.6 Modes of operation characterized by current levels
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Again, although I C = 1 is used in this diagram as the limit between weak and strong inver-

sion, the transition is progressive through a zone of moderate inversion. Hence the transistor

operates in

– weak inversion for I C ≪ 1;

– strong inversion for I C ≫ 1; and

– moderate inversion for I C ∼= 1. The width of this zone is not precisely defined.

It must be extended until the weak or strong inversion approximation is sufficient to reach

the expected accuracy (see Figures 4.7 and 4.10).

The notion of inversion coefficient is qualitatively equivalent to that of gate voltage overhead

VG − VT0 − nVS = VGS − (VT0 + (n − 1)VS) = n(VP − VS) (4.27)

to characterize the level of inversion. However the latter is not very convenient in moderate

or weak inversion where a small variation of voltage produces a large variation of current.

Moreover, the gate voltage overhead becomes negative in weak inversion.

4.4.4 Approximation of the Drain Current in Strong Inversion

As established in Section 3.6.3, the inverted charge in strong inversion can be approximated

by the linear function of VP − V described by equation (3.64). The corresponding forward and

reverse components of the drain current are obtained by introducing this expression in integral

(4.9) as illustrated in Figure 4.7(a), which yields

IF,R =
βn

2
(VP − VS,D)2 for VP − VS,D ≫ UT (4.28)

or, with normalized voltages and currents

if,r =
(

vp − vs,d

2

)2

or vp − vs,d = 2
√

if,r. (4.29)
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Figure 4.7 Strong inversion approximation: (a) calculation of current; (b) relative error
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Figure 4.8 Characteristics in strong inversion: (a) gate-to-drain transfer characteristics; (b) output

characteristics

It can be verified that, for if,r ≫ 1, the general expression (4.25) of vp − vs,d tends toward

(4.29). However, since approximation (3.50) of the mobile charge was resulting in an excess

of charge, (4.28) and (4.29) result in an excess of current that is hardly visible in Figure 4.5.

This error is explicitly represented in Figure 4.7(b), which shows that the excess of current in

strong inversion never exceeds 14%.

The current in linear mode can be expressed by introducing the approximation (3.63) of

VP(VG) in (4.28) and by subtracting IR from IF:

ID =
β

2n
[(VG − VT0 − nVS)2

︸ ︷︷ ︸

forward

− (VG − VT0 − nVD)2

︸ ︷︷ ︸

reverse

]

= β(VD − VS)[VG − VT0 −
n

2
(VD + VS)]. (4.30)

The drain current is indeed a linear function of the gate voltage (with an offset VT0 + n(VD +
VS)/2), because it is the difference of two identical square laws shifted by n(VD − VS), as

illustrated in Figure 4.8(a).

If the gate voltage is reduced below VT0 + nVD (corresponding to VD > VP), then the reverse

current becomes negligible and the transistor is in forward saturation with ID = IF given by

ID =
βn

2
(VP − VS)2 =

βn

2
V 2

DSsat =
β

2n
(VG − VT0 − nVS)2. (4.31)

The drain current is a square law function of the gate voltage and is, as expected, independent

of the drain voltage.

Combining the second expression of this saturation current with definitions (4.26) and

(4.14) provides the relation between saturation voltage and inversion coefficient I C in strong

inversion:

I C =
(

VP − VS

2UT

)2

=
(

VDSsat

2UT

)2

(strong inversion only). (4.32)

If the gate voltage is further reduced below VT0 + nVS (corresponding to VS > VP), then

the forward mode becomes zero and the transistor is blocked in this approximation.
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4.4.5 Approximation of the Drain Current in Weak Inversion

As established in Section 3.5, the inverted charge in weak inversion can be approximated by

the exponential function of VP − V described by equation (3.49). The corresponding forward

and reverse components of drain current are obtained by introducing this expression in integral

(4.16) which yields

if,r = exp (vp − vs,d) or vp − vs,d = ln if,r. (4.33)

It can be verified that the second form of (4.33) is the asymptotic value of vp − vs,d given by

the general current expression (4.25) for if,r ≪ 1.

For nonnormalized variables, (4.33) becomes

IF,R = Ispec exp
VP − VS,D

UT

. (4.34)

It should be pointed out that (unlike what is suggested by Figure 4.1) weak inversion is

usually obtained by applying a value of gate voltage VG smaller than the threshold VT 0, hence

the alternative appellation of “subthreshold” for this mode of operation. The pinch-off voltage

VP then becomes negative, as illustrated in Figure 4.9, and weak inversion is already reached

for VS = 0.

The same figure shows that the approximation is valid only for V − VP ≫ UT, and hence

for IF,R ≪ Ispec. It yields an excess of current, which can be calculated by comparing (4.33)

with (4.25). This error represented in Figure 4.10 is already about 10% for IF,R/Ispec = 0.1.

The drain current equation is obtained by introducing approximation (3.63) of VP(VG) in

(4.34) and by subtracting IR from IF:

ID = Ispec exp
VG − VT0

nUT

(

exp
−VS

UT

− exp
−VD

UT

)

for I C ≪ 1, (4.35)

where the first and the second term in the parentheses are the distinctive parts of IF and IR,

respectively. This equation is valid as long as the inversion coefficient I C defined by (4.26) is

sufficiently smaller than unity.

This expression can also be obtained from expression (4.19) of the components of the drain

current, where the square term becomes negligible for qs,d ≪ 1. Returning to denormalized

Vp

VG –VT0

0

S
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Figure 4.9 Weak inversion approximation
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charge QiS and QiD at the source and drain ends of the channel defined by (3.41) results in

ID = IF − IR =
Ispec

Qspec

(QiS − QiD) = μWUT

QiD − QiS

L
︸ ︷︷ ︸

dQi/dx

. (4.36)

in which expression (3.49) of the mobile charge can be used to replace QiS and QiD, and ends

up with (4.35).

The comparison of equation (4.36) with (4.2) shows that it is a current carried only by

diffusion. Indeed, according to Figure 3.3, the surface potential in weak inversion depends

only on the gate voltage and is therefore constant along the channel. Thus, the current in

weak inversion can only be carried by diffusion. The current carriers (in this case electrons)

are locally majority carriers, since the holes have been repelled away from the surface. The

channel length can thus be much longer than the diffusion length of minority carriers deep in

the substrate.

As discussed in Section 3.6.4, in weak inversion the slope factor n represents the attenuation

of the capacitive divider formed by Cox and the surface depletion capacitor Cd. Its value can

be evaluated as nw min given by (3.72).

The dependency of the drain current on the three control voltages expressed by equation

(4.35) is illustrated in Figure 4.11.

The drain current saturates to its forward value IF as soon as the drain voltage exceeds the

source voltage by 3UT to 5UT, as illustrated by the output characteristics. The output saturation

voltage VDS sat, which is given by equation (4.12) in strong inversion, is progressively reduced

as the inversion coefficient is decreased by reducing VP − VS, but it is limited to the minimum
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Figure 4.11 Characteristics in weak inversion: (a) output characteristics; (b) transfer from gate; (c)

transfer from source
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obtained in weak inversion:

VDS sat = VDS sat min = 3UT to 5UT (weak inversion). (4.37)

If VG = VS = 0, the saturation current (IF in forward mode) is reduced to

ID0 � Ispec exp
−VT0

nUT

. (4.38)

In digital CMOS circuits, this is the residual channel current of “off” transistors, which is

responsible for their DC current consumption.

According to equation (4.35), the transfer characteristics from the gate are exponential,

corresponding to straight lines with slope 1/n in the normalized values used in the semilog

plot of Figure 4.11(b). In saturation, if VS is increased by some amount ΔVS, VG must be

increased by nΔVS to recover the same drain current, corresponding to a right shift of the

characteristics. Furthermore, since according to (3.72) n decreases slightly for VS increasing,

the shifted line is slightly steeper.

The transfer characteristics from the source are also exponential in saturation, but without

slope factor n. Thus, they correspond to straight lines of slope 1 in the normalized semilog

plot of Figure 4.11(c). This exponential behavior is very similar to that of a bipolar transistor

in active mode, the base–emitter voltage VBE being replaced by −VS. Indeed, according to

equation (3.49), the mobile charge QiS at the source end of the channel depends exponentially

on the source voltage −VS, and the saturation current IF is a linear function of this charge.

Similarly, in a bipolar transistor, the density of minority carriers at the emitter side of the base

depends exponentially on VBE, and the collector current is a linear function of this density.

But contrary to the bipolar, the junction is normally reverse biased. Hence, there is no carrier

injection into the local substrate.

4.4.6 Alternative Continuous Models

As already pointed out, the general expression (4.25) relating the control voltages (vp, vs, and

vd) and the two components of the drain current (if and ir) cannot be analytically inverted to

calculate currents from voltages. It is therefore useful to introduce an approximative expression

that continuously interpolates the current behavior between weak and strong inversion. One

possibility is the simple following expression [19]:

if,r = ln2

[

1 + exp
vp − vs,d

2

]

or vp − vs,d = 2 ln
(

e
√

if,r − 1
)

. (4.39)

This expression is plotted in Figure 4.5 (curve d) for comparison with the exact expression

(4.25).

It can be verified that this continuous approximation tends asymptotically to the strong

inversion approximation (4.29) for vp − vs,d ≫ 1, and to the weak inversion approximation

(4.33) for vp − vs,d ≪ 1.

It coincides with the exact model (4.25) at if,r = 6.48, giving a value of currents slightly

higher above and slightly lower below this limit.
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4.5 FUNDAMENTAL PROPERTY: VALIDITY
AND APPLICATION

4.5.1 Generalization of Drain Current Expression

The fundamental property of long-channel MOS transistor obtained in Section 4.2 can be

generalized [73] if equation (4.5) of the drain current can be written in the form

ID =
FV(V, VG)

Fx(x, VG)

dV

dx
(4.40)

where FV(V, VG) is a function of V and VG but not of x , and Fx(x, VG) is a function of x and

VG but not of V ; ID is then a separable function of position x and voltage V in the channel. As

long as the channel length L is independent of VD and VS, Fx(x, VG) and FV(V, VG) can then

be integrated separately:

ID

∫ L

0

Fx(x, VG) dx =
∫ VD

VS

FV(V, VG) dV . (4.41)

Now, since FV(V, VG) tends to zero for large V , this expression can be written as

ID =
1

∫ L

0
Fx(x, VG) dx

[∫ ∞

VS

FV(V, VG) dV −
∫ ∞

VD

FV(V, VG) dV

]

(4.42)

or

ID = I (VS, VG) − I (VD, VG) = IF − IR, (4.43)

where

I (V, VG) =
∫ ∞

V
FV(V, VG) dV

∫ L

0
Fx(x, VG) dx

. (4.44)

This result is a generalization of (4.9), expressing the fact that the drain current is the

superposition of independent and symmetrical (same function I ) effects of source and drain

voltages.

It is interesting to point out that this property is similar to that of bipolar transistors as

expressed by the Ebers–Moll model [18].

4.5.2 Domain of Validity

Let us examine the necessary and sufficient conditions for which equation (4.5) has the required

form (4.40).

The channel width W does not depend on V. It may thus depend on position x along the

channel, and therefore can be included in Fx(x, VG). For example, in a concentric circular
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transistor,

W (x) = 2π (RS + x) =
1

Fx(x, VG),
(4.45)

where RS is the radius of the source. Thus

∫ L

0

Fx(x, VG) dx =
1

2π
ln

(

1 +
L

Rs

)

, (4.46)

which replaces L/W in equation (4.8) of β.

In a more general case, the device can be split into several (or an infinity of ) transistors

of different lengths and variable widths, all connected in parallel. As long as each transistor i

fulfills equation (4.40) with

IDi = Ii(VS, VG) − Ii(VD, VG), (4.47)

the sum of IDi fulfills it as well.

Equation (3.32) of the mobile inverted charge per unit area Qi can be rewritten by introducing

expression (3.30) of Γb:

−Qi = Cox(VG − VFB − Ψs) −
√

2q NbǫsiΨs, (4.48)

which is a function of Ψs. Now, Figure 3.3 shows that Ψs is possibly a function of V , but not

of x . Hence if (and only if ) VG − VFB, Nb and Cox are all independent of x (homogeneous

channel), then Qi is a function of V only. It can then be included in FV(V, VG) and the property

is not affected.

The property is conserved if any other term in expression (4.48) of Qi also depends on V (or

on Ψs, but not on x). This includes the effect of gate polysilicon depletion, which is equivalent

to a value of Cox function of Ψs.

If the doping concentration Nb is a function Nb(z) of the depth z in the substrate, then the

last term of (4.48) that represents the depletion charge density Qb becomes a different function

Ψs, as will be discussed in Section 8.3. However, the property is not affected as long as this

function remains independent of x (homogeneous channel).

If the channel is nonhomogeneous along its lateral dimension (y-axis), the device may

again be split into several transistors i connected in parallel, each of them fulfilling (4.47).

This includes the possible difference of side structures of a narrow channel transistor, for which

the fundamental property is therefore not affected.

As will be discussed in Section 8.2, the value of mobility μ depends on the local vertical

surface field Ezs. Now, combining (3.17), (3.19), and (3.22) yields

Ezs =
Cox

ǫsi

(VG − VFB − Ψs), (4.49)

which depends only on Ψs (thus possibly on V ) for a homogeneous channel. The variation of

mobility with the vertical field can therefore be included in FV(V, VG) and does not affect the

property.
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But the mobility should be independent of the drain current ID. Indeed, such a dependency

could be included neither in FV(V, VG) nor in Fx(x, VG), hence, the property would not be

conserved.

As another necessary condition, the effective value of the channel length L along which

Fx(x, VG) is integrated in (4.41) should be constant. It should not depend on the drain current

ID, or on the drain or source voltage VD or VS.

In summary, the fundamental property of MOS transistors expressed by equation (4.40) is

valid if (and only if ) the channel is homogeneous along its source–drain dimension (x-axis)

with a fixed effective length, and if (and only if) the mobility is independent of the drain current.

The property depends neither on the shape and width of the channel nor on the doping profile

of the substrate. It remains valid for large gate voltages, in spite of the mobility reduction due

to the vertical field.

4.5.3 Causes of Degradation

4.5.3.1 Finite length of channel

When the channel is not very long, several independent mechanisms degrade the fundamental

property. This is the most important reason why this property is never perfectly valid in practice.

Channel length modulation. As will be discussed in Section 4.6, when the drain (or source)

voltage is increased, the effective channel length is slightly reduced by the extension of the

depleted region surrounding the drain (or the source). As expressed by (4.59) or (4.61), the

forward current IF (or reverse current IR) is therefore slightly dependent on the drain voltage

VD (or the source voltage VS), which is not compatible with (4.43). Since this effect is inversely

proportional to L , the property is progressively degraded when the channel is shortened.

Short-channel effects. If the channel length is reduced more than proportionally to the gate

and drain voltages, the longitudinal field in the channel is increased. Hence, the velocity of

mobile carriers is increased, resulting in an increase of drain current. However, at high values,

this velocity starts increasing less than proportionally to the field, to finally reach a saturation

limit. Thus, mobility μ becomes a function of the field (or of the current), as will be discussed

in Section 9.1.

This variation cannot be included in Fx(x, VG) or FV(V, VG) as required by (4.40), and the

property is degraded.

For very short channel, additional effects such as drain-induced barrier lowering discussed

in Section 9.3 and other two-dimensional effects further degrade and possibly destroy the

property.

4.5.3.2 Nonhomogeneous channel

Referring to equation (4.48), if any term of its right-hand side depends on position x along

the channel, it makes Qi a (nonseparable) function of both x and Ψs (hence of V ); relation

(4.40) is then no longer valid, and the property is lost. This is true even if the nonhomogeneous

channel remains symmetrical with respect to source and drain: indeed, the effects of source
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and drain voltages on ID remain symmetrical, but they are neither independent nor linearly

superimposed.

Since ǫsi and VG are normally constant along the channel, three terms remain to be examined

in (4.48), namely Nb, VFB, and Cox.

Variations of substrate doping Nb can be due to some intentional channel engineering such

as lightly doped drain (LDD) and “halo” implants, or to some artifact of the process like

the piling-up of impurities at both ends of the channel. Whatever the process, variations of

Nb always occur at the very ends of the channel, due to the presence of the source and drain

diffusions. This is yet another reason why the fundamental property is lost in very short channel

devices.

Since the flat-band voltage VFB depends on the Fermi-level of silicon in the channel, it

is variable as long as the doping concentration is itself variable. Further variations of VFB

could be due to variations of the fixed interface charge, as a consequence of non source–drain

symmetrical channel engineering.

There is no reason to intentionally change the value of the oxide capacitance Cox along the

channel. However, local variations at both ends of the channel are unavoidable, which further

contributes to the degradation of the property for short-channel devices.

Weak inversion represents a special case. It is characterized by the fact that, all along the

channel, the mobile charge Qi is negligible with respect to the depletion charge Qb. As a conse-

quence, the function F defined by equation (3.16), which relates the vertical surface field to the

surface potential, becomes independent of the channel voltage V, as illustrated in Figure 3.1.

Using equations (3.27) and (3.28), the mobile charge density can thus be expressed as

Qi = Fq exp
−V

UT

(4.50)

where function Fq is independent of V . It can therefore depend on x and be included in Fx of

(4.40), whereas FV reduces to

FV = exp
−V

UT

(weak inversion only). (4.51)

Since Fq contains all other parameters on which Qi depends, namely VG − VFB, Cox, and

Nb, these parameters may change along the channel without affecting the property.

In weak inversion, the fundamental property expressed by (4.43) is thus valid even for a

nonhomogeneous channel. This is true also for bipolar transistors operated in moderate injec-

tion, and can be traced back to the fact that the current is a linear function of the mobile charge

density. This linearity exists as long as the charge carriers do not affect the electrostatic poten-

tial: indeed, they are dominated respectively by the depletion charge Qb for MOS transistor in

weak inversion, and by majority carriers for the bipolar transistor in moderate injection.

4.5.4 Concept of Pseudo-Resistor

By defining [75, 76] a pseudo-voltage V ∗ given by

V ∗ = −K0

∫ ∞

V

FV(V, VG) dV (4.52)
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and a pseudo-resistance R∗ given by

R∗ = K0

∫ L

0

Fx(x, VG) dx, (4.53)

equation (4.43) of the drain current can be written in the form of a pseudo-Ohm’s law

ID = (V ∗
D − V ∗

S )/R∗. (4.54)

Hence, by similarity with a network of linear resistors, any network obtained by interconnecting

the transistors characterized by the same function FV(V, VG) (same process) biased (in the

general case) at the same gate voltage VG is linear with respect to currents. In other words, at

each node of such a network, currents split linearly in the various branches [77].

Thus, any prototype network made of real linear resistors may be converted to a pseudo-

resistor network made of transistors only, provided only currents are considered. A ground

in the resistor prototype (V = 0) corresponds to a pseudo-ground in the transistor network

(V ∗ = 0) obtained by choosing V large enough to make integral (4.52) negligible. This means

that the corresponding side of the transistor is saturated.

The constant K0 introduced in (4.52) and (4.53) is always positive. Hence, pseudo-voltages

for N-channel transistors are always negative. This means that real voltages in the corresponding

prototype made of resistors must also be negative (with respect to the ground).

It must be noticed that for P-channel transistors, the “minus” sign in (4.52) must be replaced

by a “plus” sign (with the sign conventions defined in Section 2.2). Hence, pseudo-voltages

for P-channel transistors are always positive.

The numerical value of K0 is irrelevant, since it disappears in (4.54), but its dimension can

be chosen so as to obtain the dimension of V ∗ in volts, and that of R∗ in ohms.

It should be pointed out that, although a narrow channel does not affect the fundamental

property of a transistor, it has an effect on function FV(V ,VG). This function may differ from

that of a wider channel, thereby degrading the linearity of current splitting.

For the special case of weak inversion, (4.51) shows that FV and hence V ∗ are independent

of VG. The linear pseudo-Ohm’s law is thus valid even for transistors having different gate

voltages. Now since Fq in (4.50) depends on VG and is included in Fx, the value of pseudo-

resistor R∗ given by (4.53) can be controlled separately for each transistor by its gate voltage.

Furthermore, linear current splitting is maintained even with narrow channel transistors.

4.6 CHANNEL LENGTH MODULATION

4.6.1 Effective Channel Length

All previous calculations of the drain current [in particular by (4.7) or by the more general

expression (4.42)] used the effective value L of the channel length. But this effective length is

shorter than the distance LSD separating the source and drain metallurgic junctions.

Let us first consider the flat-band situation, obtained by applying a gate voltage VG = VFB,

with flat-band voltage VFB defined by (3.22). In this situation, the electrostatic potential Ψ

in the channel remains constant. Indeed, Ψ = 0 from deep in the substrate to the surface.
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Figure 4.12 Potential along the channel: (a) flat-band; (b) weak inversion

However, at both ends of the channel, a potential barrier is produced by the source and drain

junctions. As shown by Figure 4.12(a), this creates space charge regions of length ΔLS,D that

depend on the barrier height ΦB + VS,D, with the barrier at equilibrium ΦB given by

ΦB = UT ln
Ndiff Nb

n2
i

, (4.55)

where Ndiff is the doping concentration of the source and drain diffusions. Since Nb ≪ Ndiff,

the source and drain space charge regions extend mainly in the P-type channel region. Their

lengths can be calculated by double integration of Poisson equation (3.2) along the x-axis with

ρ = −q Nb. Identification of the result with the barrier height ΦB + VS,D then yields

ΔLS,D =

√

2ǫsi(ΦB + VS,D)

q Nb

. (4.56)

To obtain the effective channel length L , the lengths of the space charge regions must be

subtracted from distance LSD; hence,

L = LSD − ΔLS − ΔLD = LSD −

√

2ǫsi

q Nb

(√

ΦB + VS +
√

ΦB + VD

)

. (4.57)

The effective length is slightly dependent on the value of the source and drain voltages.

Differentiation of (4.57) provides

dL

dVS,D

= −
√

ǫsi

2q Nb(ΦB + VS,D)
. (4.58)
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4.6.2 Weak Inversion

If the gate voltage is increased above the flat-band voltage VFB, the surface potentialΨs increases

as shown by Figure 3.3. As long as the device remains in weak inversion (Ψs < 2ΦF + VS), the

surface potential is constant along the channel and independent of VS and VD, as illustrated in

Figure 4.12(b). At both ends of the channel the barrier height is reduced, but the field pattern

becomes two-dimensional, since Ψ becomes a function of x and z. Equation (4.57) for the

one-dimensional case is no longer exact, but the effective channel length is still modulated by

VD and VS, resulting in a slight variation of the specific current Ispec, and proportional variations

of IF and IR.

Now, IF already strongly depends on VS as expressed by (4.34), so this small additional

variation can be neglected. But IF would be independent of VD without channel length mod-

ulation, so this small variation cannot be neglected. The symmetrical situation exists for the

dependency of IR on VD and VS. Hence by (4.58),

dIF,R

dVD,S

= −κ
dIF,R

dL

√
ǫsi

2q Nb(ΦB + VD,S)
(4.59)

where κ is a correction factor for two-dimensional effects.

4.6.3 Strong Inversion

The variation of surface potential Ψs along the channel in strong inversion is depicted in

Figure 4.13. It can be assumed to be independent of the gate voltage and to follow the channel

voltage according to ΨS = V + Ψ0 (see Section 3.6.3). Hence, at equilibrium (V = VS = VD =
0), Ψs = Ψ0 all along the channel. The potential barrier at both ends of the channel is reduced

SB junction BD junction

x

Ys

0

FB FB

VS

∆LS ∆LD
L

LSD

F0

V

VD < VP

VP

VD >VP

Equilibrium (VD =VS= 0)

Linear mode
Saturation

VD – VP

Figure 4.13 Potential along the channel in strong inversion
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to ΦB − Ψ0. Since Ψ0
∼= 2ΦF, combining (3.8) and (4.55) gives

ΦB − Ψ0
∼= UT ln

Ndiff

Nb

. (4.60)

For VS and VD > 0, this barrier remains constant as long as the transistor is in linear mode

(VD < VP). Hence, effective channel length L remains constant. If the transistor is saturated

with VD − VP > 0, the drain barrier is increased by the same amount; the forward current

becomes slightly dependent on the drain voltage. A symmetrical situations exists in reverse

saturation. Thus, similar to (4.59) with a different barrier height

dIF,R

dVD,S

= −κ
dIF,R

dL

√
ǫsi

2q Nb(ΦB − Ψ0 + VD,S − VP)
. (4.61)

Experiments show that factor κ correcting for two-dimensional effects tends to decrease when

the inversion coefficient I C is increased.

4.6.4 Geometrical Effects

For the usual case of constant width W, Ispec given by (4.14) is inversely proportional to L .

Hence

−
dIF,R

dL
=

IF,R

L
, (4.62)

and the effect of channel length modulation is identical in forward and reverse saturation.

We have seen in Section 4.5 that the fundamental property of the transistor, which includes

symmetrical source–drain characteristics, is independent of the channel geometry. But channel

length modulation degrades this property and is itself sensitive to device geometry.

As an example, consider again a concentric circular transistor with a radius RS of the source

and an inner radius RD = RS + L of the drain. According to equations (4.43) and (4.46),

IF ∝
1

ln (1 + L/RS)
; (4.63)

hence,

−
dIF

dL
=

IF

RD ln RD/RS

=
IF

L

1 − RS/RD

ln (RD/RS)
, (4.64)

which is smaller than result (4.62) for a rectangular channel.

Now if the transistor is in the reverse mode, its saturation current is −IR and channel length

modulation occurs at the source end of the channel. Thus, (4.63) can be rewritten as

IR ∝
1

ln RD

RD−L

, (4.65)
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Figure 4.14 Effect of channel length modulation in a circular concentric transistor

giving

−
dIR

dL
=

IR

L

RD/RS − 1

ln (RD/RS)
, (4.66)

which is larger than result (4.62). Results (4.64) and (4.66) are plotted in Figure 4.14.

It must be pointed out that in a concentric transistor structure, the inner diffusion is usually

the drain, in order to minimize the associated junction capacitance. Forward and reverse modes

are then exchanged with respect to Figure 4.14 and the effect of channel length modulation

on the forward saturation current is increased. This result can be qualitatively extended to

any nonrectangular channel: for a given channel length L , the variation of forward saturation

current due to channel length modulation is increased if the source is wider than the drain; it

is reduced if the drain is wider than the source.



5 The Small-Signal Model

This Chapter describes the small-signal model of the MOS transistor obtained from the large-

signal model after a proper linearization of the large-signal equations at a defined operating

point. It starts looking at the dc small-signal model, introducing the source, drain and gate

transconductances and higlighting the fundamental relations between them. The transconduc-

tances are then expressed in terms of bias covering all modes of inversion. The fundamental

transconductance to drain current ratio is then introduced and its use for circuit sizing is

illustrated. The small-signal dynamic behavior is introduced directly by first deriving a com-

plete non-quasi-static (NQS) model, introducing the source, drain and gate transadmittances

together with the five other admittances and the fundamental relations between them. Their

bias dependence over all regions of inversion is presented. The NQS model serves as the basis

for deriving the quasi-static (QS) model. The concept of transcapacitances is introduced as a

result of a first-order approximation of the transadmittances. In the QS model, the admittances

of the NQS model then reduce to the five intrinsic capacitances. The domain of validity of the

three different small-signal models is then defined and the use of a NQS model for transient

operation is also discussed.

5.1 THE STATIC SMALL-SIGNAL MODEL

5.1.1 Transconductances

5.1.1.1 General expressions

The most important small-signal parameters are without doubt the transconductances. The

transconductances together with the capacitances determine the transit frequency ft or the

speed of the device, the thermal noise, and indirectly the current consumption. Since the MOS

transistor is a four-terminal device, it is controlled by three independent voltages, namely

VG, VS, and VD. A transconductance value can therefore be defined for each of these control

Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design C. Enz and E. Vittoz
C© 2006 John Wiley & Sons, Ltd.
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voltages. The total increment of the drain current ∆ID is given by

∆ID =
∂ID

∂VS

∣
∣
∣
∣
op

∆VS +
∂ID

∂VD

∣
∣
∣
∣
op

∆VD +
∂ID

∂VG

∣
∣
∣
∣
op

∆VG

= −Gms ∆VS + Gmd ∆VD + Gm ∆VG (5.1)

where Gms, Gmd, and Gm are the source, drain and gate transconductances respectively, defined

as

Gms � −
∂ ID

∂VS

∣
∣
∣
∣
op

, (5.2a)

Gmd �
∂ ID

∂VD

∣
∣
∣
∣
op

. (5.2b)

Gm �
∂ ID

∂VG

∣
∣
∣
∣
op

, (5.2c)

where notation op stands for the operating point at which the linearization occurs. It can

be characterized by the set of the three dc voltages VG, VS, VD. Note that all the small-

signal transconductances defined in (5.2) are positive. Now, since according to (4.43) ID =
IF(VG, VS) − IR(VG, VD), (5.1) can be rewritten as

∆ID =
∂ IF

∂VS
︸︷︷︸

=−Gms

∆VS +
−∂IR

∂VD
︸ ︷︷ ︸

=Gmd

∆VD +
(

∂ IF

∂VP

−
∂ IR

∂VP

)
∂VP

∂VG
︸ ︷︷ ︸

=Gm

∆VG. (5.3)

Transconductance Gms depends only on the forward current IF and is therefore independent

of the drain voltage VD, whereas Gmd depends only on the reverse current IR and is therefore

independent of the source voltage VS. These tranconductances can be identified on the Qi

versus V plot as illustrated in Figure 5.1.

As can be seen by inspection of this figure, the quantity by which a small variation of

source voltage VS must be multiplied to obtain the corresponding variation of area ID/β is the

ID
b

V
VP

–Q i
Cox

VS VD
0

Strong inversion

Weak inversion

VG constant
Gms
b

iS
Cox

= Gmd
b

–Q
–Q

iD
Cox

=

Figure 5.1 Relation of source and drain transconductances with the mobile inverted charge
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particular value −QiS/Cox of −Qi/Cox taken at the source end of the channel. Hence,

Gms =
β

Cox

(−QiS) = μ
W

L
(−QiS) = Gspec qs (5.4)

and, symmetrically,

Gmd =
β

Cox

(−QiD) = μ
W

L
(−QiD) = Gspec qd, (5.5)

where

Gspec � Ispec/UT = 2nβUT, (5.6)

and qs and qd are the normalized charges at both ends of the channel defined by

qs �
−QiS

Qspec

, (5.7a)

qd �
−QiD

Qspec

. (5.7b)

Note that the two expressions (5.4) and (5.5) are very general, and do not depend on the

precise shape of −Qi(V ).

As shown by (4.25), IF and IR depend on the differences VP − VS and VP − VD respectively.

A variation of VS or VD has the same effect on IF and IR as an equal variation of VP of opposite

sign. Therefore we have

∂ IF

∂VP

= Gms and
∂ IR

∂VP

= Gmd. (5.8)

Furthermore, according to (3.51), dVP/dVG = 1/n. Hence the expression of Gm in (5.3) be-

comes

Gm =
Gms − Gmd

n
. (5.9)

Note that this dependency of the gate transconductance on the source and drain transcon-

ductances Gms and Gmd is independent of the inversion coefficient of the transistor.

When the transistor is saturated, IR ≪ IF and Gmd ≪ Gms and hence

Gm =
Gms

n
(saturation). (5.10)

Using the normalized charges qs and qd given in (4.24), expressions (5.4) and (5.5) become

gms,d �
Gms,d

Gspec

= qs,d =

√
4if,r + 1 − 1

2
=

2if,r
√

4if,r + 1 + 1
, (5.11)
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or, by using denormalized variables,

Gms,d = nβUT

(√

4IF,R/Ispec + 1 − 1
)

. (5.12)

The gate transconductance can be obtained by introducing this expression in (5.9), giving

Gm = βUT

(√

4IF/Ispec + 1 −
√

4IR/Ispec + 1
)

. (5.13)

However, this result is useful only if the forward and reverse currents are known separately

(and not only their difference ID = IF − IR).

Since relation (3.48) between voltages and charge cannot be inverted, the transconductances

cannot be expressed as functions of voltages in the general case.

5.1.1.2 Approximation in strong inversion

With the strong inversion approximation of the charge discussed in Section 3.6.3, the various

transconductances can be found directly on the VTB(V ) plot of Figure 3.12(a), as shown in

Figure 5.2(a).

This diagram, which also shows the current in function of the bias voltages, will be called

the Jespers–Memelink diagram [15,77]. It can be used to analyze and synthesize circuits using

transistors in strong inversion. Expression (5.9) of the gate transconductance can be verified

by simple inspection of this diagram.

The expressions of the source and drain transconductances can be obtained by differentiating

the current given by (4.28) or simply by inspection of Figure 5.2.

If β, VS,D, and VP (or VG) are known, this figure shows that

Gms,d = nβ(VP − VS,D) = β(VG − VT0 − nVS,D). (5.14)

S
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 n
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V
VP

VT0

0
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Gmd
bID
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lope – n
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–Q i
Cox
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0

VG const.

(b)

0
VS VD

Gms
b Gmd

bGm
b

(a)

Figure 5.2 Drain current and transconductances in strong inversion: (a) Jespers–Memelink diagram;

(b) corresponding Qi (V ) plot
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If only currents and voltages are known, but not β (the transistor is not yet sized), then

remembering that the total area of the triangle is IF,R/β (see Figure 4.7), the transconductances

can be obtained from

Gms,d =
2IF,R

VP − VS,D

=
2nIF,R

VG − VT0 − nVS,D

. (5.15)

If the known parameters areβ and IF,R, then the transconductances are obtained by extracting

(VP − VS,D) from the current equation (4.28) and introducing it in (5.14) or in (5.15)

Gms,d =
√

2nβ IF,R, (5.16)

which is the expression used most usually, showing that the transconductance of a transistor in

strong inversion is proportional to the square root of the current. It corresponds to the general

expression (5.12) for IF,R ≫ Ispec = 2nβU 2
T .

Introducing expression (5.14) of the source and drain transconductances in (5.9) gives the

simple expression of the gate transconductance in linear mode:

Gm = β(VD − VS) (5.17)

that can also be obtained directly by inspection of Figure 5.2.

In forward saturation, ID = IF, Gm = Gms/n, (VP − VS) = VDSsat according to (4.12), and

the inversion coefficient I C is defined by (4.26). The gate transconductance is thus given by

one of the following expressions:

Gm = β(VP − VS) = βVDSsat =
β

n
(VG − VT0 − nVS)

=
2ID

n(VP − VS)
=

2ID

nVDSsat

=
2ID

VG − VT0 − nVS

(5.18)

=

√

2β ID

n
= 2βUT

√
I C =

Gspec

n

√
I C .

The first line of this equation shows that for a given value of β, VDSsat must be increased to

augment the transconductance Gm (with the result of an increase of current). But if the current

is given, the second line shows that VDSsat must be decreased to increase Gm (which requires

an increase of β).

5.1.1.3 Approximation in weak inversion

The transconductance in weak inversion can be obtained by differentiating approximation

(4.34) of the current:

Gms,d = −
∂IF,R

∂VS,D

=
IF,R

UT

. (5.19)

It corresponds to the general expression (5.12) for IF,R ≪ Ispec = 2nβU 2
T .
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According to (5.9), the gate transconductance is then given by

Gm =
Gms − Gmd

n
=

IF − IR

nUT

=
ID

nUT

. (5.20)

It is proportional to the total drain current.

5.1.2 Residual Output Conductance in Saturation

According to the fundamental property discussed in Section 4.5, the forward component of the

drain current (IF) does not depend on the drain voltage VD. As a consequence, the overall drain

current in forward saturation (where ID = IF) should remain constant. However, as analyzed

in Section 4.6, the slight variation of channel length caused by drain voltage variations renders

IF slightly dependent on VD. This corresponds to a parasitic drain transconductance ∂IF/∂VD

expressed by (4.59) or (4.61). In forward mode, this transconductance is normally much smaller

than the source transconductance Gms. Hence, it can be neglected in linear mode, where it is

also smaller than the main drain transconductance Gmd. This is no longer possible in forward

saturation where Gmd itself becomes negligible.

The symmetrical situation exists in reverse saturation where the parasitic source transcon-

ductance dIR/dVS can no longer be neglected with respect to the very small main source

transconductance Gms.

A convenient way to include these parasitic transconductances due to channel shortening

is to replace them by a single drain-to-source conductance Gds. Indeed, the total variation of

the drain current given by (5.3) then becomes

∆ID = Gm ∆VG − Gms ∆VS + Gmd ∆VD + Gds (∆VD − ∆VS)

= Gm ∆VG − (Gms + Gds) ∆VS + (Gmd + Gds) ∆VD.
(5.21)

According to this equation, Gds has to be accounted for only when Gmd is very small (forward

saturation) or when Gms is very small (reverse saturation).

Since Gds is due to the variation of channel length, its value is proportional to IF (or IR in

the reverse mode). It can thus be expressed by

Gds = IF,R/VM, (5.22)

where VM is the channel length modulation voltage given by

VM = IF,R

dVD,S

dIF,R

= L

(

−
dVD,S

dL

)(

−
IF,R

L

dL

dIF,R

)

. (5.23)

This fictitious voltage is thus proportional to the channel length L . The first term in parentheses

can be obtained from (4.59) or (4.61) and is proportional to the square root of the channel doping

concentration Nb.

The second term in parentheses is equal to 1 for constant channel width W (see (4.62)).

If W is not constant and increases from source to drain, then this second term is increased in

forward mode and decreased in reverse mode, as illustrated in Figure 4.14 for a concentric
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0

VG1

VG2

–VM
VD

IF2

IF1
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Slope Gds

Figure 5.3 Convergence of saturation characteristics toward −VM

circular transistor. The value of VM is thus increased (hence Gds decreased) if the saturated

side of the transistor is wider and decreased (hence Gds increased) in the opposite case.

Assuming VM ≫ VD,S (long channel) and constant, it corresponds to the convergence point

of saturation currents for various gate voltages, as illustrated in Figure 5.3. In reality, due to

two-dimensional effects, VM tends to increase slowly when the inversion coefficient I C is

increased.

5.1.3 Equivalent Circuit

The small-signal equivalent circuit of the transistor, which corresponds to equation (5.21), is

shown in Figure 5.4.

The three transconductances discussed in Section 5.1.1 are represented by voltage-

controlled current sources (VCCS) of adequate sign connected between the source and drain

nodes. The residual conductance in saturation Gds, introduced in Section 5.1.2, is connected

in parallel. Note that the small-signal schematic of Figure 5.4 includes only the intrinsic com-

ponents of the transistor.

The expressions of the intrinsic parameters, derived previously as function of bias voltages

and/or currents, are summarized in Table 5.1 for weak and strong inversion.

A new parameter Av max defined by

Av max �
Gms

Gds

(5.24)

is introduced at the last row of this table. It is the maximum voltage gain available from the

transistor in common gate configuration (driven from the source with ∆VG = 0). Indeed, if

Gm ∆VG

Gms ∆VS

Gmd ∆VD

Gds

B

S
∆ID

D

B

∆VS ∆VD

∆VG

G

Figure 5.4 Small-signal dc equivalent circuit
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Table 5.1 Summary of small-signal parameters

Small-signal parameter Weak inversion Strong inversion

Gms,d
IF,R

UT
nβ(VP − VS,D) = 2IF,R

VP − VS,D
=

√
2nβ IF,R

Gm
ID

nUT
Linear: β(VD − VS)

Saturation: βVDSsat = 2ID

nVDSsat
= ID

nUT

√
I C

=
√

2β ID
n

Gds
IF,R

VM

IF,R

VM

Av max
VM

UT

2VM

VDSsat
= VM

UT

√
I C

the device is forward saturated (hence Gmd = 0), then the whole current variation Gms ∆VS

flows through Gds, and the drain voltage variation is

∆VD =
(

1 +
Gms

Gds

)

∆VS = (1 + Av max) ∆VS, (5.25)

where the term “1” can be neglected. In common source configuration (driven from the gate

with ∆VS = 0), Gms is replaced by Gm and the maximum (negative) voltage gain is Av max/n.

5.1.4 The Normalized Transconductance
to Drain Current Ratio

The source and drain transconductances can be written as a function of the forward and reverse

current respectively by using (5.11), resulting in

Gms = Gspec qs = Gspec

2if√
4if + 1 + 1

=
Gspec

2

(√

4if + 1 − 1
)

, (5.26a)

Gmd = Gspec qd = Gspec

2ir√
4ir + 1 + 1

=
Gspec

2

(√

4ir + 1 − 1
)

. (5.26b)

The above equation (5.26a) can be used to derive the important transconductance to current

ratio

Gms UT

IF

=
Gms

Gspec if

=
qs

q2
s + qs

=
1

qs + 1
, (5.27)

which can also be written in terms of the forward normalized current

Gms UT

IF

=
2

√
4if + 1 + 1

=

{
1 for if ≪ 1

1/
√

if for if ≫ 1.
(5.28)
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Figure 5.5 Gms UT/IF versus forward normalized current: (a) comparison between the asymptotes,

a numerical calculation and the analytical expression; (b) comparison between analytical expression

and results measured on several long-channel devices in saturation from different technologies

In forward saturation, ID = IF and Gms = n Gm, and hence

Gms UT

ID

=
Gm n UT

ID

=
2

√
4if + 1 + 1

. (5.29)

Equation (5.29) is plotted versus the normalized forward current in Figure (5.5a) together

with the unity asymptote valid in weak inversion and the 1/
√

if asymptote valid in strong

inversion. It perfectly matches the symbols obtained from a numerical simulation with Γb =
0.7

√
V . Figure (5.5b) shows the same transconductance to drain current ratio characteristic

compared to results measured on several technology generations. It is interesting to note that

the transconductance to drain current ratio characteristic given by (5.29) is independent of any

process parameters (except of course those used for normalizing the forward current).
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Figure 5.6 Variation of transconductance-to-current ratio and maximum voltage gain with inversion

coefficient: (a) from charge model (5.29); (b) from approximation (5.30)

Equation (5.29) is also plotted as curve a in Figure 5.6. It shows that in weak inversion, the

transconductance is within 1% of its asymptotic unity value given by (5.20) for I C ≪ 0.01,

and 10% below it at I C = 0.12. In strong inversion, the transconductance is 10% below its

asymptotic value (5.18) at I C = 23, and within 1% of it only for I C > 2500. For I C = 1, the

transconductance is only 62% of the value obtained from either asymptotes. Hence the range

of moderate inversion where the full continuous equation (5.29) must be used depends on the

required precision.

Curve b in Figure 5.6 is the variation of transconductance obtained from differentiation of

the mathematical interpolation of the current (4.39) from weak to strong inversion:

Gms

UT

IF

= Gm

nUT

ID
︸ ︷︷ ︸

in saturation

=
1 − exp (−

√
I C)

√
I C

. (5.30)

By introducing expression (5.22) of the residual output conductance in saturation, the

maximum voltage gain defined by (5.24) becomes

Av max =
Gms VM

IF

= Gms

UT

IF

VM

UT

. (5.31)

Figure 5.6 therefore also represents the variation of Av max normalized to its maximum value

VM/UT obtained in weak inversion. This degradation of Av max with the increase of inversion

coefficient I C is only slightly attenuated by the slow increase of VM mentioned at the end of

Section 5.1.2.

The transconductance-to-drain current ratio is very useful in analog circuit design. It actually

shows how much transconductance you get for a given current and can therefore be used as

a figure of merit for evaluating the current efficiency of any device including circuits such as

operational transconductance amplifiers (OTA). From Figures 5.5 and 5.6, we clearly see that

weak inversion offers the highest current efficiency, whereas in strong inversion it decreases

as 1/
√

if. It is important to note that the transconductance-to-drain current characteristic is a

ratio; i.e., the transconductance of a given device can always be made larger in strong inversion

than in weak inversion by increasing the bias current, but obviously this comes at the price of

a lower current efficiency.
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Figure 5.7 The transconductance on drain current ratio characteristic used for sizing a device

As explained by Figure 5.7, the transconductance-to-drain current ratio can be used to size

a particular device. Assume you have a certain bias current available and you want to bias a de-

vice in saturation in the middle of the moderate inversion with I C = if = 1. Knowing the bias

current and the inversion factor, you can deduce the specific current Ispec = ID/I C and then the

W/L ratio from Ispec. You still need another criterion to select independently the W and the L (it

could be noise, gain, etc.). You can then calculate the normalized transconductance to be about

0.62 and the actual transconductance to be Gm = 0.62 ID/(n UT). Less trivial, if you want a cer-

tain transconductance for a given bias current, you can compute the transconductance-to-drain

current ratio, say 0.8 in this case and deduce the inversion factor to be about 0.3. Knowing the

bias current you can extract the specific current Ispec and then the W/L ratio as explained above.

5.2 A GENERAL NQS SMALL-SIGNAL MODEL

The small-signal equivalent circuit described in Section 5.1 is valid only at low frequency

(actually at dc to be correct) and hence does not account for the small-signal dynamic behavior.

Now each time a terminal voltage is changed, the current changes by a certain amount. In order

for this current to change, the inversion charge density within the channel has to change. This

means that some incremental charges are either brought to or taken away from the static

inversion charge density. This gives rise to transient charge flows (or ac currents) that are

obviously not accounted for in the static small-signal model described in Section 5.1. They can

be modeled by several capacitors which would result in the QS small-signal model described

in Section 5.3. But since the latter is only a first-order approximation of a more general NQS

model, we prefer to first derive the general NQS small-signal model and then its first-order QS

approximation. In many textbooks, the QS small-signal model is derived first and then extended

to the NQS model. But this requires some tedious calculations and difficult explanations that are

completely avoided when starting from the general, but more complex, NQS model. Therefore

we will start with a description of a very general NQS small-signal model.

The QS and NQS operations are delimited by the QS frequency ωqs corresponding to

the intrinsic channel time constant τqs � 1/ωqs. The normalized QS frequency1 �qs is bias

1 Here the actual frequency is denoted by a small cap, whereas its normalized value is denoted with an upper cap. This

is an exception to the rule used throughout the book, namely that normalized variables use small caps.
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dependent according to [44]:

�qs �
ωqs

ωspec

�
τspec

τqs

= 30
(qs + qd + 1)3

4q2
s + 4q2

d + 12qsqd + 10qs + 10qd + 5
, (5.32)

where

ωspec =
1

τspec

�
µ UT

L2
. (5.33)

The QS channel cutoff frequency ωqs can be used as a figure of merit since it represents the

ultimate frequency that the intrinsic part of the MOS transistor can reach without accounting

for the extrinsic components such as the overlap capacitors that further decrease this frequency

and are accounted for in the transit frequency ft discussed in Section 11.3.1. Notice that ωspec

scales like 1/L2, therefore increasing quadratically when reducing the transistor length. This

feature is one of the driving force for CMOS downscaling to achieve faster circuits and also

use CMOS for RF circuits.

In saturation (qs ≫ qd), (5.32) reduces to

�qs
∼= 30

(qs + 1)3

4q2
s + 10qs + 5

=

⎧

⎨

⎩

6 (weak inv.)

15
2

qs = 15
2

√
if = 15

4
VP−VS

UT
(strong inv.).

(5.34)

From (5.34), we see that in weak inversion ωqs = 6ωspec = 6μ UT/L2, which is constant

and determined only by the mobility and the transistor length. Note that in weak inversion,

τqs = 1/ωqs corresponds to the transit time of the carriers diffusing from source to drain.

In strong inversion, �qs is proportional to qs or to
√

if or to the saturation voltage VD Ssat =
VP − VS.

For VD = VS (or equivalently qs = qd), (5.32) reduces to

�qs
∼= 6 (2qs + 1). (5.35)

The normalized QS frequency �qs is plotted versus the inversion factor if in Figure 5.8(a)

which clearly shows the weak and strong inversion asymptotes. Notice that in strong inversion

and for VD = VS, �qs is 1.6 times larger than in saturation for the same inversion factor. �qs is

also plotted versus the normalized pinch-off voltage vp in Figure 5.8(b) for different values of

the normalized drain voltage ranging from vd = 0 to vd = 100, corresponding to saturation.

Also shown is the strong inversion asymptote 15/4 vp.

The NQS analysis will not be detailed here, since it is rather lengthy. It can be found in

[38,44,78]. The most important result of the latter analysis is that the NQS small-signal behavior

can be represented by the equivalent small-signal circuit presented in Figure 5.9. This circuit is

made of five admittances, three connected to the gate (YGSi, YGDi, and YGBi) and two connected

to the bulk (YBSi, YBDi) not accounting for YGBi and three transadmittances Ym, Yms, and Ymd
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Figure 5.9 The complete intrinsic NQS small-signal equivalent circuit
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connected between drain and source and controlled by the gate, source, and drain voltages

respectively. These three transadmittances are modeled by three VCCS defined by [44, 78]

Im � Ym ∆VG, (5.36a)

Ims � Yms ∆VS, (5.36b)

Imd � Ymd ∆VD. (5.36c)

Note that these admittances and transadmittances have real and imaginary parts.

In the same way there exists a relation between Gm, Gms, and Gmd (see equation (5.9)), it

can be shown that the same relation also holds for the transadmittances, namely [44, 78]

Ym =
Yms − Ymd

n
, (5.37)

which reduces to (5.9) for ω ≪ ωqs.

Note that we need to know only one transadmittance to deduce the other two. Indeed,

assuming we know Yms, we can deduce Ymd by using the symmetry property of the device; i.e,

Ymd can be calculated using the same equation used to calculate Yms but after permuting VS

and VD (or if and ir or qs and qd). Knowing both Yms and Ymd, we can compute Ym using (5.37).

The gate-to-bulk admittance is related to the gate-to-source and gate-to-drain admittances

by the following fundamental relation [38, 44, 78]:

YGBi =
n − 1

n
( j ωCOX − YGSi − YGDi) , (5.38)

where COX � W L Cox. In addition, the bulk-to-source and bulk-to-drain admittances are

related to the gate-to-source and gate-to-drain admittances by [38, 44, 78]

YBSi = (n − 1) YGSi, (5.39a)

YBDi = (n − 1) YGDi. (5.39b)

As for the transadmittances, knowing only one admittance is enough to calculate the four

other ones. For example, if we know YGSi, we can calculate YGDi by symmetry, YBSi and YBDi

using (5.39) and finally YGBi by using (5.38).

The NQS intrinsic small-signal model shown in Figure 5.9 is therefore fully characterized

for a given operating point when one transadmittance and one admittance are known. All the

other components are deduced either from symmetry or by using (5.37), (5.38), and (5.39). In

addition, it can be shown that the transadmittances can always be written as the product of the

dc transconductance, which accounts for the bias dependence, times a common normalized

function ξm[θ (qs, qd)], which accounts for the frequency dependence [44, 78]

Yms = Gms ξm[θ (qs, qd)], (5.40a)

Ymd = Gmd ξm[θ (qd, qs)], (5.40b)

where θ = ω/ωqs = ωτqs. Notice the symmetry property illustrated by the swapping of the

position of the qs and qd variables as arguments of θ in (5.40).
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The exact derivation of the normalized function ξm is a bit tedious and will not be de-

scribed here. The detailed calculation can be found in [38, 44, 78]. Nevertheless, a very good

approximation of ξm valid in any mode of inversion is given by [44]

ξm =
λ

sinh(λ)
, (5.41)

with λ � (1 + j)
√

3θ . Note that for θ ≪ 1, (5.41) can be approximated by a first-order func-

tion [44]

ξm
∼=

1

1 + j ωτqs

for ωτqs ≪ 1. (5.42)

The magnitude and phase of function ξm are plotted versus the normalized frequency in

Figure 5.10(a) (plain line) and compared to the first-order approximation (5.42) (dashed line)

and also the second-order approximation (dashed-dotted line). Figure 5.10(a) shows that the

first-order model can be used up to about θ ∼= 1 for both magnitude and phase. For θ > 1,

the second-order model can be used up to about θ ∼= 3 and the full function has to be used

above. The dash-double-dot curve corresponds to the QS model and will be discussed later in

Section 5.3.

The ξm function has been checked against measurements made on several devices and at

different biases [44]. An example of such measurements made on a long-channel (L = 10 μm)

N-type device in saturation is shown in Figure 5.10(b) for different gate bias ranging from
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Figure 5.10 Normalized transdmittance function ξm versus normalized frequency. (a) Evaluated

from (5.41). The line corresponds to the approximations given by (5.41), the dashed line corresponds

to the first-order approximation given by (5.42), and the dashed-dotted line corresponds to the second-

order approximation. (b) Comparison with measurements made on an N-channel device measured at

different biases and properly normalized



70 THE SMALL-SIGNAL MODEL

VG = 0.5 to 1.5 V . This plot clearly shows that after proper frequency and bias normalization,

all the curves corresponding to the different bias conditions fall on the same normalized ξm

curve. It also demonstrates that the NQS transadmittances are fully characterized by the single

normalized function ξm.

Similarly, the YGSi and YGDi admittances can be written as a product of a bias-dependent

capacitance (representing the QS approximation) times a common normalized function

ξc[�(qs, qd)]

YGSi = j ωCGSi(qs, qd) ξc[θ (qs, qd)] = j ωCOX cc(qs, qd) ξc[θ (qs, qd)], (5.43a)

YGDi = j ωCGSi(qd, qs) ξc[θ (qd, qs)] = j ωCOX cc(qd, qs) ξc[θ (qd, qs)], (5.43b)

where cc(qs, qd) is the normalized gate-to-source intrinsic capacitance

cc(qs, qd) �
CGSi

COX

=
qs

3

2qs + 4qd + 3

(qs + qd + 1)2
=

{
2/3 in strong inv. and sat.

qs in weak inv. and sat.
(5.44)

A good approximation for the normalized function ξc used for the admittances is given

by [44]

ξc =
ξ̃c(θ )

3
√

̺ + (1 − ̺) ξ̃c(θ/2)
, (5.45)

with

ξ̃c � 2
cosh(λ) − 1

λ sinh(λ)
(5.46)

and

̺ �

[
10r (r + 2)2

9(r + 1) (r2 + 3r + 1)

]3/2

, (5.47)

where r is defined as

r �
qs + 1/2

qd + 1/2
=

√

if + 1/4

ir + 1/4
. (5.48)

Note that r is much smaller than 1 for qs ≪ 1 ≪ qd, corresponding to strong inversion and

reverse saturation, it is equal to unity when qs = qd or when both qs ≪ 1 and qd ≪ 1 (corre-

sponding to weak inversion), and finally r is much larger than 1 for qd ≪ 1 ≪ qs, corresponding

to strong inversion and forward saturation. Function ξc is plotted in Figure 5.11(a) versus the

normalized frequency θ � ω τqs for different values of r . For θ ≪ 1, ξc
∼= 1 and therefore the

admittances increase proportionally to θ . For θ ≫ 1, ξc ∝ 1/
√

θ meaning that the admittances

then only increase proportionally to
√

θ . The proportionality factor depends on the parameter

r . As shown in Figure 5.11(a), there is a small difference between the forward mode and

the reverse mode, particularly on the phase, but in forward mode, there is very little differ-

ence between weak (r = 1) and strong inversion (r ≫ 1) since ρ only varies from 1 to 1.17.
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Figure 5.11 Normalized admittance function ξc versus normalized frequency. (a) Evaluated using

(5.45) to (5.48) for different values of r with r = 0 and 0.1 corresponding to strong inversion and

reverse saturation (qs ≪ 1 ≪ qd), r = 1 corresponding to weak inversion and r = +∞ corresponding

to strong inversion and forward saturation (qd ≪ 1 ≪ qs). (b) Different approximations of ξc (for

r = 1). The line corresponds to the first-order approximation given by (5.49) and (5.45) and the dashed-

dotted line corresponds to the second-order approximation. (c) Comparions with measurements made

on a P-channel device measured at different biases and properly normalized
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Therefore, in forward mode, ξc can be approximated by ξ̃c given by (5.46), which can be further

approximated by the following first-order function:

ξc
∼= ξ̃c

∼=
1

1 + j ωτqs/2
for ωτqs ≪ 1. (5.49)

The latter approximation is similar to the transadmittance approximation (5.42) except that

the pole is a factor 2 higher than ωqs. Function ξ̃c is plotted versus the normalized frequency

in Figure 5.11(b) together with the first-order approximation (5.49) (dashed line) and also the

second-order approximation (dashed-dotted line). As for the transadmittance approximation,

the first-order admittance approximation can be used up to about θ ∼= 1 and the second-order

approximation up to about θ ∼= 3.

As shown in Figure 5.11(c), the normalized admittance function ξc has been validated

against measurements made on a 300 μm × 300 μm P-channel MOS transistor integrated in a

0.35μm CMOS process and biased at different overdrive voltages. The fact that all the measured

points fall onto the same curve illustrates the strength of the bias and frequency normalization

processes.

A simpler approximation of both the transadmittances and the admittances will be given in

the next section and will lead to the QS model.

5.3 THE QS DYNAMIC SMALL-SIGNAL MODEL

5.3.1 Intrinsic Capacitances

As mentioned in the previous section, for θ = ω τqs ≪ 1, the NQS function for the admit-

tances ξc is about equal to unity and the admittances reduce to the intrinsic capacitances. The

normalized gate-to-source and gate-to-drain intrinsic capacitances are derived from (5.43) and

(5.44) with ξc = 1

cGSi �
CGSi

COX

= cc(qs, qd) =
qs

3

2qs + 4qd + 3

(qs + qd + 1)2
, (5.50a)

cGDi �
CGDi

COX

= cc(qd, qs) =
qd

3

2qd + 4qs + 3

(qs + qd + 1)2
, (5.50b)

whereas the gate-to-bulk, source-to-bulk, and drain-to-bulk intrinsic capacitances are derived

from (5.38) and (5.39) respectively

cGBi �
CGBi

COX

=
n − 1

n
(1 − cGSi − cGDi), (5.51a)

cBSi �
CBSi

COX

= (n − 1) cGSi, (5.51b)

cBDi �
CBDi

COX

= (n − 1) cGDi. (5.51c)
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Figure 5.12 Normalized intrinsic capacitances versus the pinch-off voltage (a) and versus the drain

voltage (b)

They are plotted in Figure 5.12 for Γb = 4
√

UT and Ψ0 = 30 UT, together with the total gate

capacitance

cGi � cGSi + cGDi + cGBi =
1

n
(n − 1 + cGSi + cGDi), (5.52)

where (5.51a) has been used.

Figure 5.12 also shows the approximate values of the intrinsic normalized capacitances in

strong inversion and saturation

cGSi
∼=

2

3
, (5.53a)

cGDi
∼= 0, (5.53b)
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cGBi
∼=

n − 1

3n
, (5.53c)

cBSi
∼= (n − 1)

2

3
, (5.53d)

cBDi
∼= 0. (5.53e)

Figure 5.12(b) also shows that for vd = vs, cGSi = cGDi and cBSi = cBDi. It might be surpris-

ing that cGSi and cGDi are not exactly equal to 1/2 for vd = vs = 0 in Figure 5.12(b), but cGSi

and cGDi are actually only equal to 1/2 asymptotically in very strong inversion and a little below

1/2 in strong inversion.

In weak inversion, the normalized intrinsic capacitances are given by

cGSi
∼= qs, (5.54a)

cGDi
∼= qd, (5.54b)

cGBi
∼=

n − 1

n
, (5.54c)

cBSi
∼= (n − 1) qs, (5.54d)

cBDi
∼= (n − 1) qd. (5.54e)

Since in weak inversion qs ≪ 1 and qd ≪ 1, the intrinsic capacitances are dominated by cGBi.

5.3.2 Transcapacitances

In the QS regime, θ = ω τqs ≪ 1 and the first-order transadmittance function (5.42) can be

further approximated as

ξm =
Yms

Gms

=
Ymd

Gmd

∼= 1 − j ωτqs for ωτqs ≪ 1. (5.55)

The source transadmittance can then be written as

Yms
∼= Gms (1 − j ωτqs) = Gms − j ω Gms τqs = Gms − j ω Cms, (5.56)

where Cms � Gms τqs is defined as the source transcapacitance. A transcapacitance is similar

to a transconductance except that the output current is proportional to the derivative of the

control voltage instead of the control voltage itself. Similarly, the drain transadmittance can

be written as

Ymd
∼= Gmd (1 − j ωτqs) = Gmd − j ω Cmd, (5.57)

with Cmd � Gmd τqs being the drain transcapacitance. Using (5.37), the gate transadmittance

is then given by

Ym
∼= Gm (1 − j ωτqs) = Gm − j ω Cm, (5.58)
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with Cm � Gm τqs being the gate transcapacitance which is related to the source and drain

transcapacitances by

Cm =
Cms − Cmd

n
. (5.59)

The QS approximation of ξm given by (5.55) is also plotted versus θ in Figure 5.10. The

phase is identical to the first-order approximation (5.42), but as shown in Figure 5.10, the

magnitude increases proportionally to θ instead of decreasing. This is a clear limitation of

the QS approximation. It is important to note that any charge-based model implemented in

a circuit simulator such as Spice without specific NQS model will show this behavior. It is

therefore important to remember that the QS model is valid only to about a fraction of the QS

frequency ωqs (typically ωqs/3).

By definition, the QS time constant is related to the transconductances and transcapacitances

by

τqs =
Cms

Gms

=
Cmd

Gmd

=
Cm

Gm

. (5.60)

From (5.32) and (5.4), we can derive the expression for the source and drain transcapacitances

cms �
Cms

COX

= n
qs

15

4q2
s + 4q2

d + 12qsqd + 10qs + 10qd + 5

(qs + qd + 1)3
, (5.61a)

cmd �
Cmd

COX

= n
qd

15

4q2
s + 4q2

d + 12qsqd + 10qs + 10qd + 5

(qs + qd + 1)3
, (5.61b)

cm �
Cm

COX

=
qs − qd

15

4q2
s + 4q2

d + 12qsqd + 10qs + 10qd + 5

(qs + qd + 1)3
. (5.61c)

They are plotted versus vp and vd in Figure 5.13 for Γb = 4
√

UT and Ψ0 = 30 UT. As shown

in Figure 5.13, the approximate values in strong inversion and saturation are given by

cms
∼= n

4

15
, (5.62a)

cmd
∼= 0, (5.62b)

cm
∼=

4

15
. (5.62c)

It is important to note that these transcapacitances are of the same order of magnitude than

the intrinsic capacitances and therefore cannot be neglected. We will see in Section 12.2 that

neglecting, for example, Cm can lead to a large phase error on Ym at RF (see Figure 12.3).

5.3.3 Complete QS Circuit

The complete QS intrinsic small-signal schematic is shown in Figure 5.14, where the transad-

mitances are modeled by three VCCS defined by (5.36) with Ym, Yms, and Ymd given by (5.58),

(5.56), and (5.57) respectively.
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5.3.4 Domains of Validity of the Different Models

It is important to clearly understand the domains of validity of the three small-signal models

shown in Figures 5.4, 5.9, and 5.14. The dc small-signal model of Figure 5.4 is strictly valid

only at ω = 0. Now it can be used for many low-frequency circuit analyses to evaluate for

example the dc gain. It can also be used when extrinsic capacitors, including interconnects,

dominate, as is often the case.

It is important to notice that very often the frequency limitation is not given by the intrinsic

QS frequency but by the parasitic extrinsic elements or by some other component such as a load

capacitor. Actually it is mainly when working at RF that the intrinsic frequency limitations

become important and should be accounted for. But even at RF, the NQS regime should

be avoided and therefore the NQS small-signal model of Figure 5.9 is seldom used. There

are nevertheless some cases where the device might operate in NQS mode. For example, in

some circuits like Gm-C filters where nonminimum length P-channel transistors are used in

the current mirror of the transconductor, the combination of nonminimum length and lower

mobility of P-channel device might drive the device close to the NQS regime. The additional

phase shift introduced by the NQS effect in the current mirror might then change the frequency

behavior of the filter. It is therefore important to check whether any device operates close to

the NQS regime. Also, increasing the QS frequency can simply be done by increasing the

bias current at the cost of a higher power dissipation and a possible increase in the minimum

required supply voltage in order to adapt for the increase of VDSsat. It is then useful to evaluate

the QS frequency and set it at a frequency just high enough for avoiding any NQS effects but

without increasing the bias current prohibitively in order to maintain the power consumption

as low as possible.

Another situation where NQS effects might appear is when very fast clock signals are used

with very steep slopes. At the start of the step signal, the transistor might momentarily be

driven into NQS regime. Although this is usually a large-signal transient problem, it might be

useful to discuss it here.

Although it is possible to derive an exact small-signal solution, it is much more difficult

(maybe even impossible) to derive an analytical large-signal NQS model. Only first- or second-

order approximations have been derived up to now [79]. On the other hand, large-signal

transient simulations can be done quite easily by simply cutting the transistor channel into

several slices [80]. This can easily be done by replacing in a circuit simulator a single transistor

by a cascade of N fictitious transistors in series each having a length L/N , where L is the

length of the original transistor [80]. This is illustrated in Figure 5.15(a), where 10 transistors

connected in series have been used. Of course, the middle transistors should model only the

intrinsic part of the device and hence all the extrinsic components such as the overlap capacitors

and the access resistors have to be sized accordingly. In the following example, we simulated

only the intrinsic behavior and therefore all the transistors include only the intrinsic part. The

transistor is biased in strong inversion with a 1-V gate and drain voltage, corresponding to VG −
VT0

∼= 0.4 V or I C ∼= 28. The source voltage is biased at 0 V. To illustrate the NQS behavior,

a negative step voltage of −100 mV is applied at the source as illustrated in Figure 5.16.

Figure 5.15(b) shows how this step voltage propagates along the channel from the source

to the drain. It clearly shows that the effect on the channel voltage close to the drain is not

instantaneous and it takes some time for the step to reach the drain. The source and drain currents

IS and ID are plotted versus time in Figure 5.15(c). It shows that the source and drain currents
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Figure 5.16 NQS transient simulations and drain and source currents showing the charge deficit at
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are not equal and that the drain current lags the source current. This situation is reproduced

in a slightly larger scale in Figure 5.16. Note that the area between the source current (top

curve) and the drain current (lower curve) represents charges that actually never reach the drain

and therefore constitutes a charge deficit at the drain.

The result obtained from the QS model of a single transistor with the same total length

and bias is also plotted in Figure 5.15(c). As expected from the expression of the source

transadmittance (5.56), the response to this step voltage is a large negative peak (actually a

Dirac impulse) corresponding to the derivative of the input voltage due to the transcapacitance

part of the source transadmittance, followed by an instantaneous change of the drain current

due to the transconductance part of the source transadmittance. Since the QS model ensures

charge conservation, the negative spike represents the charge deficit at the drain observed in the

NQS simulations but these charges are actually taken away from the drain current immediately

instead of not reaching the drain as is the case in the NQS simulation. This is illustrated in

Figure 5.15(d), where the QS drain current ID(QS) shown in Figure 5.15(c) has been zoomed

out to show the negative impulse. Notice the large value of the negative impulse amplitude

which in some cases may give rise to simulation (convergence) problems.

Also plotted in Figure 5.15(c) is the result obtained from the time domain equivalent of the

first-order NQS approximation given by (5.42). As expected it differs from the NQS simulation

at small time values but then follows quite nicely the NQS simulation after about 150 ns. The

major difference with the QS simulation is that the spike has now disappeared, avoiding any

simulation problems. Note that the second-order NQS approximation would of course give an

even better result.





6 The Noise Model

This chapter is dedicated to the modeling of the noise in the MOS transistor focusing mainly on

the intrinsic part and assuming that the device has a long channel and hence does not account

for short-channel effects which are described in Section 9.4. There are mainly two kinds of

noises coming from the channel region, namely the thermal noise and the flicker or 1/ f noise.

Both can be described by a local noise source which depends on the position along the channel.

Section 6.1 shortly presents the different methods to calculate the power spectral density (PSD)

of the drain current fluctuations, by integration of the local noise source along the channel. The

method will then be applied for both the thermal noise and the flicker noise. The low-frequency

thermal noise is then derived in Section 6.2. The thermal noise parameter is defined as the ratio

of the drain thermal noise conductance to the output conductance at VD = VS (or equivalently

the source transconductance), and the thermal excess noise factor is the ratio of the drain

thermal noise conductance and the gate transconductance. The use of these two parameters is

illustrated by several circuit examples. Section 6.3 is devoted to flicker noise, which arises from

several sources: the fluctuation of the number of mobile carriers in the channel, discussed in

Section 6.3.1, the fluctuation of the mobility, presented in Section 6.3.2, and finally the flicker

noise coming from the access resistances, described in Section 6.3.3. The bias dependence of

all the three noise sources is particularly emphasized. All three contributions are compared

in Section 6.3.4 using measured data from the literature. Finally, the scaling properties of the

flicker noise are discussed in Section 6.3.5.

6.1 NOISE CALCULATION METHODS

6.1.1 General Expression

The origin of noise is related to local random fluctuations of the carrier velocity or the carrier

density. These local fluctuations can be modeled by adding a random current to the local dc

current as shown in Figure 6.1(a). They then propagate to the terminals resulting in fluctuations

of the voltages or currents around the dc operating point. There are clearly two different parts in

the noise analysis: the microscopic part which consists in deriving the statistics of the stochastic

Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design C. Enz and E. Vittoz
C© 2006 John Wiley & Sons, Ltd.
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Figure 6.1 Equivalent circuits of the MOS transistor noisy channel illustrating different noise analysis

approaches. (a) The Langevin method used by Klassen and Prins [81], where a distributed noise

source is added to the differential equation giving the drain current. (b) Circuit obtained from (a) after

linearization of the differential equation and keeping only the first-order terms. (c) Equivalent small-

signal circuit approach: since the circuit of (b) is linear, the effect of each local noise source on the

drain current fluctuation can be calculated separately and summed at the drain. (d) The impedance field

method, where the current response δID at the drain due to a current δIx injected at position x along

channel and the corresponding current Ai(x) � δID/δIx are calculated. The noise is then evaluated

from the derivative of Ai(x) with respect to x
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process such as the velocity fluctuation and translating it into a variation of the local current,

and the macroscopic part which consists in calculating the response of the terminal currents

(or voltages) to these fluctuations or in other words how these local fluctuations propagate

to the terminals and produce variations of the terminal voltages or currents. In this part we

will mainly focus on the macroscopic part, namely finding a common expression for the PSD

of the drain current fluctuations due to all the microscopic local noise sources located in the

channel. At this stage, it is important to point out that these local fluctuations are always small

and consequently, the analysis of the propagation of the noise sources to the terminal voltages

or currents reduces to a linear analysis. Hence, the principle of superposition can be applied

for adding the effects of all the noise sources along the channel. In principle, since these noise

sources are random process, they might be spatially correlated, which should be accounted for

when summing their effects. However, in all of the cases discussed below, it will be assumed

that the local sources are spatially uncorrelated and therefore their PSD can be summed.

Several methods have been used for the calculation of noise in the MOS transistor. A de-

tailed description of all these different methods goes beyond the objective of this book, but they

will be briefly illustrated below. The first approach is based on the Langevin method and was

used by Klaassen and Prins [81] initially for deriving the thermal noise and was then extended

by Klaassen to also account for the flicker noise [82] and by Langevelde to include also the

induced gate noise [83]. It starts with the differential equation giving the drain current (4.5), to

which a Langevin noise source δIn(x, t) is added as shown in Figure 6.1(a). This distributed

noise source depends on the position along the channel and induce channel voltage fluctuations

δVn(x, t) that should normally be accounted for if the δIn(x, t) would be large-signal fluctu-

ations. Since these voltage fluctuations are much smaller than the thermodynamic voltage, the

current differential equation can be linearized, resulting in the equivalent small-signal circuit

shown in Figure 6.1(b). Since this equivalent circuit is now linear, the superposition principle

can be used. The problem can then be reduced to isolating a single noise source in the

channel and calculate its effect δInD on the drain terminal current as shown in Figure 6.1(c).

The total effect is then obtained by summing the contributions of all the noise sources along

the channel assuming they are spatially uncorrelated. This latter approach will be called the

equivalent small-signal circuit approach.1 Note that a similar transmission line approach has

also been used [84]. A third approach is the impedance field method (IFM) initially introduced

by Shockley [85] and modified afterward by van Vliet [86,87]. As illustrated in Figure 6.1(d),

the channel is excited by a current δIx at position x along the channel, and the current response

δID at the drain terminal and the corresponding current gain Ai(x)∆δID/δIx are calculated. The

noise due to the local noise source at position x is then evaluated from the so-called impedance

field2 corresponding to the derivative of the current gain with respect to x at each position.

Taking the derivative with respect to position corresponds actually to taking the difference

between the current gain at positions x + ∆x and x , which is illustrated in Figure 6.1(e). If δIx

is set equal to the local noise source δIn(x), then the equivalent circuit of Figure 6.1(e) reduces

to the circuit of Figure 6.1(c). The IFM is therefore equivalent to the small-signal circuit

approach. A more rigorous demonstration shows that actually the three approaches mentioned

above are equivalent [156].

1 It is sometimes also called the two-transistor approach.
2 The name impedance field comes from the fact that the terminal voltage fluctuations were initially evaluated resulting

in a gain between the excitation current and the voltage fluctuation that has the dimension of an impedance (it is actually

a transimpedance).
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Figure 6.2 MOS transistor cross-section with an infinitesimal noisy piece of channel between points

x and x + ∆x and split into two noiseless transistors M1 and M2

In the following, we will derive a general analysis based on the more intuitive equivalent

small-signal circuit approach, offering a common framework for the treatment of both thermal

and flicker noise.

To start, let us assume that the channel is noiseless except for a slice of the channel comprised

between positions x and x + ∆x which is noisy and has a resistance ∆R as shown in Figure 6.2.

The microscopic noise due to the channel slice is modeled by a current source δIn having a

PSD SδI 2
n

and connected between x and x + ∆x in parallel with the resistance ∆R of the slice.

Note that a current source (Norton source) is used because the physical origin of noise is a

random fluctuation of the carrier velocity and/or charge density, resulting in fluctuations of

the local current which is then represented by a noise current source added to the dc current.

The transistor can then be split into two noiseless transistors on each side of the noise current

source, namely transistor M1 of length x on the source side of point x and transistor M2 of

length L − x on the drain side. As mentioned above, it can be assumed that the noise voltage

δVn across resistance ∆R is much smaller than UT and therefore a small-signal approach can

be used. Both transistors M1 and M2 can then be replaced by their low-frequency small-signal

equivalent circuits. For frequencies much below the channel cutoff frequency ωqs (see equation

(5.32) for definition), the capacitive coupling can be neglected. As illustrated in Figure 6.3,

the equivalent circuits of transistors M1 and M2 reduce to two simple conductances, of values

Gs � Gmd1 on the source side and Gd � Gms2 on the drain side. Since ∆R can obviously be

neglected compared to the series connection of Gs and Gd, the drain current fluctuation δInD

is then given by

δInD = Gch∆RδIn, (6.1)

where conductance Gch corresponds simply to the series connection of Gs and Gd

1

Gch(x)
�

1

Gs(x)
+

1

Gd(x)
. (6.2)
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Figure 6.3 Two-transistor equivalent circuit used for low-frequency noise calculation

Note that both Gs and Gd and hence also Gch depend on the position x of the local noise

source. The noise source δIn also depends on the position x along the channel and might also

depend on frequency ω (for example when considering 1/ f noise).

The PSD of the drain current fluctuations due to noise current source δIn is then given by

SδI 2
nD

(ω, x) = G2
ch(x)∆R2(x)SδI 2

n
(ω, x). (6.3)

The PSD of the total noise current fluctuation at the drain S∆I 2
nD

due to all the different sections

along the channel is obtained by summing their elementary contributions SδI 2
nD

assuming that

the contribution of each slice at different positions along the channel remain uncorrelated. This

translates into integrating the elementary contributions over the channel from source to drain,

resulting in3

S∆I 2
nD

(ω) =
∫ L

0

G2
ch(x)∆R2(x)

SδI 2
n
(ω, x)

∆x
dx . (6.4)

Note that SδI 2
n

has to be divided by ∆x in (6.4) to represent the contribution of the noise current

source by unit length.

As explained above, we have chosen to represent the noise source by a current source

(Norton source) in parallel with the elementary section because it is closer to the physical

origin of noise. As shown in Figure 6.4, we could of course also use an equivalent noise

voltage source (Thévenin equivalent) defined by

δVn = ∆RδIn, (6.5)

or in terms of PSD,

SδV 2
n
(ω, x) = ∆R2SδI 2

n
(ω, x). (6.6)

3 Note that the contribution of one elementary slice to the drain current is written as S
δI 2

nD
, whereas the total contribution

of all the sections is written as S∆I 2
nD

.
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Figure 6.4 Two-transistor equivalent circuits: (a) using the original noise current source of Figure 6.3;

(b) circuit with an equivalent noise voltage source

The drain current fluctuation due to δVn is then given as

SδI 2
nD

(ω, x) = G2
ch(x)SδV 2

n
(ω, x). (6.7)

If the noise current sources δIn are spatially uncorrelated, so are the noise voltage sources

δVn and (6.4) becomes

S∆I 2
nD

(ω) =
∫ L

0

G2
ch(x)

SδV 2
n
(ω, x)

∆x
dx . (6.8)

Equation (6.4) or (6.8) will be used below to derive the low-frequency thermal noise and

flicker noise PSD in Sections 6.2 and 6.3 respectively.

6.1.2 Long-Channel Simplification

Conductance Gch is actually nothing else than the channel conductance Gch at point x . If the

mobility is assumed to be constant, it is then given by

Gch =
dID

dV
= µ(−Qi )

W

L
= Gspec qi, (6.9)

where Gspec � Ispec/UT = 2nβUT. The resistance ∆R of a section, again assuming a constant

mobility, is given by

∆R =
∆V

ID

=
∆x

Wµ(−Qi)
. (6.10)

Note that the derivation in the case velocity saturation and mobility reduction due to the vertical

field have to be accounted for is much more tedious and is presented in Section 9.4.

Combining (6.9) and (6.10) into (6.3) results in

SδI 2
nD

(ω, x) =
(

∆x

L

)2

SδI 2
n
(ω, x). (6.11)

The PSD of the total drain current fluctuation is then given by

S∆I 2
nD

(ω) =
∫ L

0

(
∆x

L

)2 SδI 2
n
(ω, x)

∆x
dx =

1

L2

∫ L

0

∆x SδI 2
n
(ω, x) dx . (6.12)
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A more formal derivation of (6.12) is given in Appendix A2 at the end of this chapter,

following the approach of Klaassen and Prins [81]. Note that the above model ignored the

capacitive coupling of the noise generated in the channel to the gate. The latter will be analyzed

in the high-frequency noise model described in Chapter 13.

6.2 LOW-FREQUENCY CHANNEL THERMAL NOISE

6.2.1 Drain Current Thermal Noise PSD

The PSD of the drain current fluctuations due to thermal noise in the channel can be evaluated

using (6.4) or (6.8). The PSD of the noise current source of one section is then simply given

from (6.10):

SδI 2
n

=
4kT

∆R
= 4kT

Wµ(−Qi)

∆x
, (6.13)

where k is the Boltzmann constant and T is the absolute temperature.

The PSD of the total drain current fluctuation S∆I 2
nD

is obtained from (6.12) as

S∆I 2
nD

� 4kT · GnD = 4kT
1

L2

∫ L

0

Wµ[−Qi(x)] dx

= 4kT µ
W

L2

∫ L

0

[−Qi(x)] dx,

(6.14)

where it has been assumed that the mobility µ is constant. The thermal noise conductance at

the drain GnD is then defined as

GnD � µ
W

L2

∫ L

0

[−Qi(x)] dx =
µ

L2
|QI|, (6.15)

where QI is the total inversion charge in the channel given by

QI � W

∫ L

0

Qi(x) dx . (6.16)

Hence, for a mobility that is independent of the electric field, the noise conductance is propor-

tional to the total inversion charge “stored” in the channel. Equation (6.15) can be written in

normalized form as

gnD �
GnD

Gspec

=
∫ 1

0

qi(ξ ) · dξ = qI �
QI

Qspec

. (6.17)
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The total normalized inversion charge qI can be evaluated using the drain current expression

(4.21), repeated here for convenience

id = −(2qi + 1)
dqi

dξ
,

and making a change of variable by expressing dξ as

dξ = −
2qi + 1

id

dqi. (6.18)

Replacing dξ in (6.17) by (6.18) results in

gnD = qI =
∫ 1

0

qi(ξ ) dξ = −
1

id

∫ qd

qs

qi(2qi + 1) dqi =

=
1

6

4q2
s + 3qs + 4qsqd + 3qd + 4q2

d

qs + qd + 1
,

(6.19)

where the expression of the normalized drain current (4.22)

id = (q2
s + qs) − (q2

d + qd)

has been used.

For VD = VS (or qs = qd) and in saturation (i.e., for qs ≫ qd), (6.19) can be simplified as

gnD = qI =

⎧
⎨
⎩

qs for VD = VS(qs = qd)

qs

2
3

qs+ 1
2

qs+1
in saturation (qs ≫ qd).

(6.20)

In SI and saturation, qs ≫ 1 and (6.20) reduces to

gnD = qI =
2

3
qs, (6.21)

In WI, qs ≪ 1 and qd ≪ 1, and (6.19) becomes

gnD = qI =
1

2
(qs + qd) =

1

2
(if + ir). (6.22)

The thermal noise conductance is then obtained as

GnD = Gspec gnD =
Ispec

UT

if + ir

2
=

IF + IR

2UT

. (6.23)

The PSD is then given by

S∆I 2
nD

= 4kT GnD = 4kT
IF + IR

2UT

= 2q (IF + IR), (6.24)
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Figure 6.5 Thermal noise equivalent circuit with noiseless transistor

which corresponds to full shot noise of both the forward and the reverse components of the drain

current [88]. This result might be surprising since the above derivation used the expression of

the local thermal noise and integrated its effect on the drain current over the channel. In weak

inversion the current is dominated by diffusion and, similar to a bipolar transistor, the noise

can be interpreted as shot noise related to the potential barriers at the source and the drain.

Nevertheless, it can be shown that expression (6.15) (or its normalized form (6.17)), which

was derived with the assumptions of thermal noise due to the channel conductance, is valid in

all regions of inversion [89, 90].

Assuming that the channel thermal noise is the only source of noise within the transistor,

for frequencies much below the channel cutoff frequency ωqs, the noisy transistor can then

be modeled as a noiseless device to which a noisy current source ∆InD is connected between

drain and source as shown in Figure 6.5. This noisy current source has a PSD given by (6.14),

where the noise conductance GnD is given by

GnD = Gspec qI, (6.25)

where qI is given by (6.19).

6.2.2 Thermal Noise Excess Factor Definitions

Several thermal noise excess factors can be defined according to the definitions introduced

initially by van der Ziel [91]. The thermal noise parameter related to the drain terminal δnD is

defined as4

δnD �
GnD

Gds0

, (6.26)

where Gds0 is the drain-to-source conductance at VDS = 0,

Gds0 = Gms = Gspec qs. (6.27)

4 Van der Ziel initially used γ for the thermal noise parameter defined by (6.26) and α for the noise excess factor

defined by (6.30). The most important noise excess factor from a circuit design point of view is the one given by

(6.30), which has been called γ in many papers instead of α as it was defined initially by Van der Ziel [91]. We will

keep the circuit design definition of γ and rename the Van der Ziel’s γ as δ.
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The δnD parameter shows how much the thermal noise of the active device deviates from

the value it takes when it operates as a passive resistor of conductance Gds0. Since for VDS = 0

the noise conductance GnD is equal to the channel conductance Gds0, the noise parameter δnD

is then equal to unity.

Assuming constant mobility, (6.25) can be used together with (6.27) in (6.26), allowing δnD

to be written in terms of the normalized charges as

δnD =
qI

qs

. (6.28)

In saturation, from (6.20), δnD is equal to

δnD =
2

3

qs + 3/4

qs + 1
=

{
1/2 WI and saturation (qs ≪ 1)

2/3 SI and saturation (qs ≫ 1).
(6.29)

Note that the δnD thermal noise parameter compares the thermal noise conductance evaluated

at a given operating point that is not necessarily the same as the one used to define the output

conductance Gds0 (i.e., VDS = 0). It is therefore not very useful for circuit design and is used

more for modeling purposes.

For circuit design, it is more useful to define another figure of merit, γnD, named the thermal

noise excess factor related to the drain and defined as

γnD �
GnD

Gm

=
gnD

gm

=
nqI

qs − qd

. (6.30)

γnD represents how much noise is generated at the drain of a transistor for a given gate transcon-

ductance. Contrary to the δnD thermal noise parameter, the noise conductance and the gate

transconductance used in the definition (6.30) are evaluated at the same operating point. γnD

has a direct impact on the noise performance of circuits.

The smaller γnD, the better the noise performance of the device. Note that γnD can become

quite large in the linear region when VD tends to VS. Indeed, in this region, the gate transconduc-

tance gets smaller as the drain-to-source voltage decreases, but the thermal noise conductance

does not decrease, resulting in a degradation of the γnD noise excess factor. At the limit when

VD becomes equal to VS, the gate transconductance becomes zero and γnD tends to infinity.

Note that γnD is also a figure of merit that can be used for any transconductor (even for circuit

transconductors) to evaluate how much thermal noise is generated for a given transconductance.

The smaller γnD, the better the transconductor.

The δnD thermal noise parameter and the γnD noise excess factor are related by

γnD =
GnD

Gds0

Gds0

Gm

= δnD

Gds0

Gm

= δnD n
Gds0

Gms − Gmd

= δnD n
qs

qs − qd

. (6.31)

In saturation, Gmd = 0 and qd = 0, resulting in

γnD = δnD n
Gds0

Gms

= δnD n =

{ n
2

WI and saturation

n 2
3

SI and saturation,
(6.32)
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Figure 6.6 Thermal noise parameter δnD: (a) versus the inversion factor for a given ir/ if ratio; (b)

versus vds for a given if

since Gds0 = Gms. For n = 1.5, the thermal noise factor in SI and in saturation is approximately

equal to unity.

The thermal noise parameter δnD is plotted versus the inversion factor for different values

of the ir/ if ratios in Figure 6.6(a) and versus the normalized vds � VDS/UT voltage for a given

inversion factor in Figure 6.6(b).

It is important to notice that the above results have been obtained with the assumption of

constant mobility along the channel. The latter assumption is valid for long-channel devices,

where the lateral electric field Ex remains much smaller than some critical field Ec defined in

Section 9.1. As soon as Ex approaches Ec, the carrier velocity starts to saturate and the mobility

can no longer be considered as constant along the channel. Also, the carrier temperature starts

to rise, increasing the thermal noise. These effects affect the thermal noise excess factor, which

can become larger than its long-channel value. These effects will be discussed in detail in

Section 9.4.

6.2.3 Circuit Examples

The effect of thermal noise and more particularly the use of the noise parameters and noise ex-

cess factor are illustrated with three examples. The first is shown in Figure 6.7 and corresponds
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C RonVin Vout

VG

C Vn

In

(a) (b)

Figure 6.7 Elementary sample-and-hold circuit used to illustrate the use of the thermal noise param-

eter to evaluate the rms noise voltage on capacitor C

to a simple sample-and-hold function implemented with a MOS transistor operating as a switch

and a hold capacitor on which the input voltage is sampled and held. To close the switch, the

gate voltage is set to a sufficiently high value such that the on resistance Ron and the corre-

sponding Ron C time constant are low enough to allow the voltage on the capacitor to settle at

a value equal to the input voltage. After the output voltage has settled, the switch is opened

and the voltage is sampled on capacitor C . Due to the thermal noise of the switch, in addition

to the input voltage, there is also a noise voltage that is sampled. To evaluate the rms value

of this noise voltage, the PSD of the noise voltage on capacitor C has to be evaluated first.

As shown in Figure 6.7(b), this is done by setting the input voltage to zero and replacing the

transistor by its equivalent small-signal circuit including the noise current between source and

drain accounting for the thermal noise voltage of the channel. The equivalent circuit simplifies

to a simple parallel RC network as shown in Figure 6.7(b). The output noise voltage is then

simply equal to the low-pass filtered current noise according to

Vn =
−Ron

1 + j ω/ωc

In, (6.33)

where ωc � 1/(RonC) is the cutoff frequency. The PSD of the output noise voltage is then

given by

SV 2
n

=
∣∣∣∣

Ron

1 + j ω/ωc

∣∣∣∣
2

SI 2
n

=
R2

on

1 + (ω/ωc)2
SI 2

n
, (6.34)

with SI 2
n

given by

SI 2
n

= 4kT GnD. (6.35)

In this particular example, after the voltage has settled, the VDS voltage is equal to zero and

therefore it is better to use the definition of the noise parameter for GnD

GnD = δnD Gms = Gms = Gspec qs, (6.36)

since for VD = VS, δnD = 1. Note that Ron = 1/Gms. Even though the transistor is usually an

active device, in this particular case it operates as a simple (nonlinear) resistor and the variance

of the output voltage can be found directly by applying the Bode theorem (see Appendix 6.4),
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Figure 6.8 Linearized MOS transconductor using transistor M1 biased in the linear region, illustrating

the use of the thermal noise excess factor

resulting in

V 2
n =

kT

C
. (6.37)

Another example with a MOS transistor biased in the linear region is the linearized transcon-

ductor shown in Figure 6.8. It is similar to a cascode stage except that in this case the driver

transistor M1 is biased in the linear region instead of saturation to take advantage of the linear

transconductance. Indeed, in the linear region, the gate transconductance is given by

Gm = βVDS (6.38)

and is therefore set by the drain-to-source voltage, which has to be chosen smaller than the

pinch-off voltage in order to bias the transistor in the linear region. The overall transconduc-

tance Gm is obtained from the analysis of the small-signal equivalent circuit of Figure 6.8(b),

resulting in

Gm eq �
−Iout

∆Vin

=
Gm1

1 + Gmd1/Gms2

∼= Gm1 for Gms2 ≫ Gmd1. (6.39)

This means that for Gms2 ≫ Gmd1, the overall transconductance Gm eq is equal to the

transconductance Gm1 of M1. The latter condition suggests to bias M2 in weak inversion in

order to get the largest source transconductance for the imposed bias current.

A first-order noise analysis can be carried out by setting the ∆Vin to zero and assuming that

the cascode transistor M2 and the bias current source can be made noiseless, the only noise

contributor being transistor M1. With the help of the small-signal circuit shown in Figure 6.8(c),

the output noise current is given by

In out = −
In1

1 + Gmd1/Gms2

∼= In1 for Gms2 ≫ Gmd1, (6.40)

which means that all the current noise generated by transistor M1 is conveyed to the output.

The output noise current PSD is then equal to the PSD of transistor M1:

SI 2
n out

� 4kT Gn out
∼= SI 2

n1
= 4kT GnD1. (6.41)
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As mentioned above, this linearized transconductor can be evaluated in terms of noise perfor-

mance by evaluating its noise excess factor

γn eq �
Gn out

Gm eq

∼=
GnD1

Gm1

= γnD1, (6.42)

which is simply equal to the thermal noise excess factor γnD1 of transistor M1. Since M1 is

biased in strong inversion and in the linear region, (6.30) simplifies to

qI1
∼=

2

3

q2
s1 + qs1qd1 + q2

d1

qs1 + qd1

, (6.43)

and the thermal noise excess factor becomes

γnD1 =
n1qI1

qs1 − qd1

= n1

2

3

q2
s1 + qs1qd1 + q2

d1

q2
s1 − q2

d1

= n1

2

3

1 + α + α2

1 − α2
, (6.44)

where

α �
qd1

qs1

, (6.45)

which in strong inversion is equal to

α =
vp1 − vd1

vp1

= 1 − ε, (6.46)

with ε � vd1/vp1. Since the drain voltage of M1 has to be much smaller than its pinch-off

voltage ε ≪ 1 and hence (6.44) can be approximated by

γnD1
∼=

n1

ε
= n1

vp1

vd1

∼=
VG1 − VT0n

VDS

. (6.47)

For biasing M1 in the linear region, the overdrive voltage is necessarily larger than the VDS

voltage, resulting in a thermal noise excess factor larger than the value obtained in saturation

(about equal to n 2/3 ∼= 1).

The last example is shown in Figure 6.9 and corresponds to a diode-connected MOS tran-

sistor. The noise PSD of the voltage fluctuation across capacitor C can be evaluated from

the small-signal circuit given in Figure 6.9(b), where the conductance Gm corresponds to the

small-signal conductance of the diode-connected transistor M and the noise current source to

its thermal noise. The noise voltage fluctuation Vn is then given by

Vn = −
1

Gm

1

1 + j ω/ωc

In, (6.48)
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Figure 6.9 Diode-connected MOS transistor used to illustrate the use of the thermal noise excess

factor in circuits

where ωc � Gm/C is the cutoff frequency of the low-pass filtered white noise. The corre-

sponding PSD is then given by

SV 2
n

=
1

G2
m

1

1 + (ω/ωc)2
SI 2

n
, (6.49)

with SI 2
n

given by (6.35) with GnD equal to

GnD = γnD Gm. (6.50)

Rewriting SV 2
n

= 4kT Rn(ω), where Rn(ω) corresponds to the gate input-referred equivalent

noise resistance given by

Rn(ω) =
γnD

Gm

1

1 + (ω/ωc)2
. (6.51)

Note that Rn(ω) is frequency dependent. The noise voltage variance is then obtained by inte-

grating the PSD over the frequency from 0 to +∞. Since the cutoff frequency and the noise

resistance are respectively proportional and inversely proportional to Gm, the integral does not

depend on Gm. This is similar to the simple RC network discussed in Appendix 6.4 except for

the additional γnD parameter. The variance is therefore given by

V 2
n = γnD

kT

C
. (6.52)

The thermal noise voltage variance is therefore γnD times that of a passive RC circuit. Since

for long-channel devices, γnD can be smaller than 1 (but is always larger than 1/2), the noise

generated on capacitor C by an active transistor connected like a diode can be smaller than

that obtained from a passive RC circuit. For a long-channel device, in strong inversion and

saturation, γnD
∼= 1 and there is almost no difference. As will be shown in Section 9.4, for

short-channel devices (actually at high lateral electric field), the noise excess factor γnD can

become significantly larger than 1, degrading the performance of analog circuits.
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6.3 FLICKER NOISE

In addition to the thermal noise of the channel described above, the MOS transistor also

exhibits flicker or 1/ f noise. As its name suggests, flicker noise is characterized by a PSD that

is inversely proportional to frequency. It therefore mainly dominates at low frequency, below

the so-called corner frequency fk defined as the frequency at which 1/ f noise contributes

equally than the channel thermal noise to the total noise PSD (referred indifferently at the

drain or at the gate). Because the 1/ f noise scales inversely proportional to the gate area, it

is becoming a major issue for analog I C design in deep and ultradeep submicron devices.

Corner frequencies of several tens of megahertz are now typical, and hence low-frequency

analog circuits are usually totally dominated by 1/ f noise. Techniques exist to reduce or even

eliminate this low-frequency noise. The most obvious one is to size the gate area in order to

bring down the corner frequency to an acceptable value. This is done at the expense of higher

capacitances, which require higher transconductance and hence higher current for the same

characteristic frequency. Other circuit techniques such as chopper stabilization and correlated

double sampling can be used to eliminate the 1/ f noise [92, 93].

There are basically two main causes to this 1/ f noise. The first results from carrier fluctua-

tions of the inversion charge due to trapping in traps located in the oxide close to the Si–SiO2

interface, whereas the second originates from fluctuations of the carrier mobility. Each of these

causes will be presented below.

6.3.1 Carrier Number Fluctuations (Mc Worther Model)

The flicker noise due to carrier fluctuations originates from the fluctuations of the inversion

charge close to the Si–SiO2 interface due to variations of the interfacial oxide charge resulting

from dynamic trapping/detrapping of mobile carriers from the channel into slow border traps

[91, 94–96].

Consider again a section of the channel comprised between x and x + ∆x . The current at

position x is obtained from (4.5)

ID = Wq N (x)µ
dV

dx
,

where N (x) = −Qi(x)/q is the number of carriers per unit area. If a number of carriers get

trapped at a position x , the relative current fluctuation is then given by

δID(x)

ID

=
δN

N
+

δµ

µ
, (6.53)

where the mobility fluctuation term is induced by the influence of the trapping on the scattering

mechanism. The mobility being affected by the trapping mechanism hence depends on the

number of trapped charges per unit area Nt according to [97, 98]

1

µ
=

1

µ0

+ α̃c Nt =
1

µ0

+ αc|Qt|, (6.54)
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where Qt � −q Nt is the trapped charge density and αc � α̃c/q is the Coulomb scattering

coefficient which is about 104 Vs/C for electrons and 105 Vs/C for holes in silicon [95, 97, 98].

Accordingly, α̃c is about 1.6 × 10−15 Vs for electrons and 1.6 × 10−14 Vs for holes in silicon.

Accounting for this scattering mechanism, (6.53) can be rewritten as

δID(x)

ID

=
(

1

N

dN

dNt

+
1

µ

dµ

dNt

)
δNt =

(
1

N

dN

dNt

− α̃c µ

)
δNt. (6.55)

We can relate δN and δNt considering that the fluctuation δQt of the trapped charge density

causes a variation δΨs of the surface potential which produces a change of all the charges that

depend directly on Ψs, namely the inversion charge, the depletion charge, and the gate charge.

These other charges vary according to the charge conservation principle, resulting in [99]

δQg + δQb + δQi = −δQt, (6.56)

where δQg, δQb and δQi are the induced fluctuations of the gate, depletion, and inversion

charge densities respectively.5 They can be related to the fluctuation of the surface potential

δΨs according to [99]

δQg = −Cox δΨs, (6.57a)

δQb = −Cb δΨs, (6.57b)

δQi = −Ci δΨs. (6.57c)

It follows that [99]

R �
δN

δNt

=
∣∣∣∣
δQi

δQt

∣∣∣∣ =
Ci

Ci + Cox + Cd

. (6.58)

It can be shown from (4.3) and assuming V = const., that Ci
∼= −Qi/UT and therefore [98]

R ∼=
Qi

Qi + Q∗ =
N

N + N ∗ , (6.59)

where Qi = −q N and

Q∗ = −q N ∗ = −UT Cox

(
1 +

Cd

Cox

)
. (6.60)

From the definition (3.70), the term 1 + Cd/Cox in (6.60) is actually the slope factor in weak

inversion nw which is approximately equal to the slope factor n. Equation (6.60) then reduces

5 Note that the additional variation of the interface traps δQit, originally included in the analysis presented in [98,99],

has been neglected considering that they are much smaller than the variations of the other charges.



98 THE NOISE MODEL

to

Q∗ ∼= −nUTCox =
Qspec

2
, (6.61)

with Qspec given by (3.42). Equation (6.59) then becomes

R =
δN

δNt

∼=
Qi

Qi + Qspec/2
=

qi

qi + 1/2
. (6.62)

Using (6.62), the relative local current fluctuation (6.55) can be written as

δID(x)

ID

=
(

1

qi + 1/2
+ αµ

)
δNt

Nspec

, (6.63)

where Nspec � −Qspec/q = 2kT nCox/q2 and α � αc(−Qspec) = α̃c · Nspec is a coefficient re-

lated to the Coulomb scattering coefficient.

The corresponding PSD of the local noise current source δIn normalized to the square of

the dc current is then given by

SδI 2
n

I 2
D

∣∣∣∣
∆N

=
(

1

qi + 1/2
+ αµ

)2 SδN 2
t

N 2
spec

. (6.64)

The PSD of the trap charge density fluctuation SδN 2
t

depends essentially on the trapping

mechanisms into the oxide. For tunneling process, the trapping probability decreases exponen-

tially with the distance from the Si–SiO2 interface into the oxide. The trapping charge density

fluctuation PSD is then defined by [91, 94–96]

SδN 2
t

=
kT λNT

W∆x f
, (6.65)

where f is the frequency, λ is the tunneling attenuation distance (≈ 0.1 nm) [95], and NT

the oxide volumetric trap density per unit energy in eV−1 · m−3 evaluated close to the Fermi

energy level. Note that NT is obtained from measurements and typically ranges from 10−17 to

10−16 eV−1 · cm−3.

The fluctuation of the drain current due to an elementary section is then given by (6.3)

SδI 2
nD

I 2
D

∣∣∣∣
∆N

= G2
ch ∆R2

SδI 2
n

I 2
D

∣∣∣∣
∆N

=
(

∆x

L

)2 SδI 2
n

I 2
D

∣∣∣∣
∆N

(6.66)

=
(

∆x

L

)2 (
1

qi + 1/2
+ α µ

)2 SδN 2
t

N 2
spec

,

where a constant mobility is assumed.6 Finally, the relative PSD of the total fluctuation of the

6 This is in contradiction with the scattering mechanism described above which would imply that the mobility is

dependent on the inversion charge and hence on bias. Nevertheless, this approximation allows to derive a simple

first-order approximation of the bias dependence of the flicker noise.
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drain current is obtained by integration according to (6.12)

S∆I 2
nD

I 2
D

∣∣∣∣
∆N

=
1

L2

∫ L

0

∆x
SδI 2

n

I 2
D

∣∣∣∣
∆N

dx = SD|∆N KD(qs, qd)|∆N , (6.67)

with

SD|∆N �
q4 λ NT

kT W L n2 C2
ox f

. (6.68)

If we assume that SD|∆N is only weakly bias dependent, most of the bias dependence is

accounted for by the unitless factor KD(qs, qd)|∆N defined by

KD(qs, qd)|∆N �
1

4

∫ 1

0

(
1

qi + 1/2
+ αµ

)2

dξ

=
1

4id

∫ qs

qd

(
1

qi + 1/2
+ αµ

)2

(2qi + 1) dqi (6.69)

=
1

2id

ln

(
1 + 2qs

1 + 2qd

)
+

αµ

1 + qs + qd

+
(αµ

2

)2

,

with ξ � x/L and id = q2
s − q2

d + qs − qd = (qs − qd) (1 + qs + qd).

The bias-dependent factor KD(qs, qd)|∆N is plotted versus the inversion factor in saturation

in Figure 6.10(a) for two values of the αµ product. The value αµ = 0.4 used in Figure 6.10

has been taken from Table 6.1 [100].

In very strong inversion KD(qs, qd)|∆N tends to

KD(qs, qd)|∆N
∼=

(αµ

2

)2

for qs, qd ≫ 1, (6.70)

whereas in weak inversion KD(qs, qd)|∆N reduces to

KD(qs, qd)|∆N
∼=

(
1 +

αµ

2

)2

for qs, qd ≪ 1, (6.71)
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Figure 6.10 Bias-dependent factors KD(qs, qd)|∆N and KG(qs, qd)|∆N versus the inversion factor

if in saturation and for η = 1/2
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which is equal to unity when the mobility fluctuations induced by the carrier trapping mecha-

nism can be ignored (i.e., for α = 0).

As shown in Figure 6.10(a), the behavior of KD(qs, qd)|∆N very much depends on the value

of the αµ product. For values of αµ that get close to unity, KD(qs, qd)|∆N starts to saturate

to (αµ/2)2 in very strong inversion. On the other hand, for small values of αµ, Figure 6.10(a)

shows that KD(qs, qd)|∆N is very close to the square of normalized Gm/ID curve.

For circuit design, it is more useful to refer the flicker noise PSD at the gate by dividing

S∆I 2
nD

∣∣∣
∆N

by G2
m, resulting in

S∆V 2
G

∣∣∣
∆N

�

S∆I 2
nD

∣∣∣
∆N

G2
m

= SD|∆N KD(qs, qd)|∆N

(
ID

Gm

)2

(6.72)

= SG|∆N KG(qs, qd)|∆N ,

where

SG|∆N �
q2 kT λ NT

W L C2
ox f

. (6.73)

Assuming again that SG|∆N is only weakly bias dependent, most of the bias dependence is

captured by the factor KG(qs, qd)|∆N defined by

KG(qs, qd)|∆N � (1 + qs + qd)2 KD(qs, qd)|∆N . (6.74)

The bias-dependent term KG(qs, qd)|∆N is plotted versus the inversion factor in saturation

in Figure 6.10(b) for the same values of αµ used in Figure 6.10(a). As explained above,

when the correlation term αµ is much smaller than 1, KD(qs, qd)|∆N is approximately equal

to (GmnUT/ID)2 in saturation and hence KG(qs, qd)|∆N is only weakly bias dependent. As

shown in Figure 6.10(b), for α = 0, it approximately changes only by a factor 2 over 6 decades

of current. This is no more the case when αµ gets closer to 1. In this case the gate-referred

flicker noise starts to increase significantly in strong inversion. Figure 6.10(b) also indicates

that the flicker noise referred to the gate in saturation and due to number fluctuation is minimum

in weak inversion.

The source of flicker noise coming from the fluctuation of the mobility will be discussed in

the next section.

6.3.2 Mobility Fluctuations (Hooge Model)

In the Hooge model [101], the drain current noise results from the fluctuations of the carrier

mobility. The PSD of the local noise current source of an elementary section is given by [91]

SδI 2
n

I 2
D

∣∣∣∣
∆µ

=
αH q

W ∆x (−Qi) f
, (6.75)

where αH is the Hooge parameter which is unitless and ranges from about 10−4 to 10−6.

Assuming a constant average mobility, the fluctuation of the drain current due to an elementary
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channel section is then given by (6.11)

SδI 2
nD

I 2
D

∣∣∣∣
∆µ

=
(

∆x

L

)2 SδI 2
n

I 2
D

∣∣∣∣
∆µ

=
∆x αH q

W L2 (−Qi) f
. (6.76)

The PSD of the total fluctuation of the drain current is then given by

S∆I 2
nD

I 2
D

∣∣∣∣
∆µ

= SD|∆µ KD(qs, qd)|∆µ , (6.77)

with

SD|∆µ �
αH q2

kT W L nCox f
, (6.78)

and where KD(qs, qd)|∆µ accounts for the bias dependence and is defined by

KD(qs, qd)|∆µ �

∫ 1

0

dξ

2qi(ξ )
=

1

id

∫ qs

qd

(
1 +

1

2qi

)
dqi =

=
1

id

[
qs − qd +

1

2
ln

(
qs

qd

)]
(6.79)

=
1

1 + qs + qd

[
1 +

ln (qs/qd)

2(qs − qd)

]
.

The bias-dependent factor KD(qs, qd)|∆µ is plotted versus the inversion factor in satu-

ration (i.e., assuming a constant ratio qs/qd = 100) in Figure 6.11(a). In weak inversion,

KD(qs, qd)|∆µ is approximately given by

KD(qs, qd)|∆µ
∼=

ln (qs/qd)

2(qs − qd)
=

ln (if/ ir)

2id

=
VDS/UT

2id

, (6.80)
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Figure 6.11 Bias-dependent factors KD(qs, qd)|∆µ and KG(qs, qd)|∆µ versus the inversion factor if

in saturation (i.e., for qs/qd = 100)
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whereas in strong inversion, it is given by

KD(qs, qd)|∆µ
∼=

1

qs + qd

=
1

√
if +

√
ir

. (6.81)

The gate-referred noise PSD of the drain current fluctuations PSD is given by

S∆V 2
G

∣∣∣
∆µ

�

S∆I 2
nD

∣∣∣
∆µ

G2
m

= SD|∆µ KD(qs, qd)|∆µ

(
ID

Gm

)2

(6.82)

= SG|∆µ KG(qs, qd)|∆µ,

where

SG|∆µ �
kT n αH

W L Cox f
, (6.83)

and

KG(qs, qd)|∆µ � (1 + qs + qd)2 KD(qs, qd)|∆µ

= (1 + qs + qd)

[
1 +

ln (qs/qd)

2(qs − qd)

]
. (6.84)

Bias-dependent factor KG(qs, qd)|∆µ is plotted versus the inversion factor if in saturation

in Figure 6.11(b). It shows that for a given qs/qd ratio (or equivalently a given VDS voltage),

KG(qs, qd)|∆µ is decreasing like 1/ id in weak inversion

KG(qs, qd)|∆µ
∼=

ln (qs/qd)

2(qs − qd)
=

ln (if/ ir)

2id

=
VDS/UT

2id

. (6.85)

In strong inversion, KG(qs, qd)|∆µ is approximately given by

KG(qs, qd)|∆µ
∼= qs + qd =

√
if +

√
ir, (6.86)

and hence increases like
√

if in very strong inversion and in saturation.

Unlike S∆V 2
G

∣∣∣
∆N

, which is minimum in weak inversion, Figure 6.11(b) shows that S∆V 2
G

∣∣∣
∆µ

is minimum in moderate inversion (in saturation as well as in the linear region).

6.3.3 Additional Contributions Due to the Source and Drain
Access Resistances

An additional contribution arises from the 1/ f noise generated in the source and drain access

resistances [102, 103]. The latter is modeled by two voltage sources in series with the source

and drain resistances RS and RD respectively. Assuming that RS = RD = Ra/2, the PSD of
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the resulting drain current fluctuations is given by

S∆I 2
nD

∣∣∣
∆R

=
G2

ms + G2
md

[1 + (Gms + Gmd) Ra/2]2
S∆V 2

R
, (6.87)

where S∆V 2
R

is the PSD of the 1/f noise voltage sources in series with the access resistances.

Assuming that (Gms + Gmd) Ra/2 ≪ 1, the PSD normalized to the square of the drain current

is then given by

S∆I 2
nD

I 2
D

∣∣∣∣
∆R

∼= (G2
ms + G2

md)
S∆V 2

R

I 2
D

. (6.88)

Now, the PSD of the voltage source S∆V 2
R

is related to the PSD of the resistance fluctuation

S∆R2 by

S∆V 2
R

= I 2
D S∆R2 . (6.89)

Equation (6.88) then reduces to

S∆I 2
nD

I 2
D

∣∣∣∣
∆R

= (G2
ms + G2

md) S∆R2 = (q2
s + q2

d ) G2
spec S∆R2 . (6.90)

In strong inversion and in saturation, (6.90) becomes

S∆I 2
nD

I 2
D

∣∣∣∣
∆R

= G2
ms S∆R2 = q2

s G2
spec S∆R2 = 2nβ ID S∆R2 . (6.91)

Assuming that S∆R2 is only weakly bias dependent, (6.91) shows that the contribution of the

access resistances to the flicker noise at the drain in strong inversion sharply increases with

the drain current (actually proportionally to I 3
D). Hence the access resistances will mostly

contribute at high current level and should be negligible in moderate and weak inversion.

6.3.4 Total 1/f Noise at the Drain

The total 1/ f noise at the drain is given by the sum of the different contributions described

above [95, 100]

S∆I 2
nD

I 2
D

=
S∆I 2

nD

I 2
D

∣∣∣∣
∆N

+
S∆I 2

nD

I 2
D

∣∣∣∣
∆µ

+
S∆I 2

nD

I 2
D

∣∣∣∣
∆R

. (6.92)

S∆I 2
nD

/I 2
D and the different contributions have been computed using the parameters given in

Table 6.1 which have been taken from reference [100]. The results obtained for VDS = 50 mV7

are plotted versus the inversion factor in Figure 6.12. It can be seen that the contribution coming

7 The VDS = 50 mV bias voltage is not very representative for analog circuit design since most of the time the

transistors are biased in saturation, except for switches which have a zero VDS. It has been chosen mainly to be able

to compare the results to the experimental measurements presented in [100], which are the only recent measurements

found where the PSD is plotted versus the current over a wide bias range.
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Figure 6.12 Total 1/ f noise PSD at the drain in the linear region normalized to the square of the

drain current and comparison of the different contributions versus the inversion factor. The parameters

used for the calculation are given in Table 6.1 and are taken from [100]

from the number fluctuation dominates over a wide bias range (i.e., for 10−2 < if < 102),

whereas S∆I 2
nD

/I 2
D is dominated by the mobility fluctuation at very weak inversion (i.e., for

if < 10−2) and by the contribution coming from the access resistances in very strong inversion

(i.e., for if > 102). Note that the case with αµ = 0 looks similar to the result obtained in [100],

where the term due to the mobility correlation is used as a fitting parameter and was found to

be negligible (corresponding to the curve with αµ = 0 in Figure 6.12).

From a circuit design point of view, it is more interesting to look at the total flicker noise

referred at the gate. The latter is plotted in Figure 6.13 versus the inversion factor using the

same parameters than in Figure 6.12. As mentioned above, the number fluctuation contribution

is dominating S∆V 2
G

for if ranging from 10−2 to a bit less than 102. In this range and for αµ = 0,

S∆V 2
G

stays almost constant. It starts to increase drastically in very strong inversion and tends

to increase also in very weak inversion.

The data plotted in Figures 6.12 and 6.13 correspond to a transistor biased in the linear region.

It can be shown that the curves do not change drastically when moving into saturation, as long as

the drain-to-source voltage is not kept constant and made too large in order to ensure saturation

also in very strong inversion when sweeping the inversion factor from weak to strong inversion

Table 6.1 Typical values of parameters taken from [100] and used in Figures 6.12 and 6.13

for the evaluation of (6.92)

T W L tox µ n Ispec

[K] [μm] [μm] [nm]

[
cm2

V·s

]
– [μA]

300 10 0.18 3.5 560 1.4 57.5

VDS λ NT αc f αH S∆R2

[mV] [nm]
[

1

eV·cm3

] [
V·s
C

]
[Hz] –

[
Ω2

Hz

]

50 0.1 7.7 × 1017 104 10 10−6 10−6
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Figure 6.13 Total 1/ f noise PSD referred at the gate in the linear region and comparison of the

different contributions versus the inversion factor. The parameters used for the calculation are given

in Table 6.1 and are taken from [100]

(remember that the required drain-to-source voltage for biasing the transistor in saturation in

weak inversion is only a few UT, which might not be enough for ensuring saturation in very

strong inversion). If a constant drain-to-source voltage large enough for biasing the transistor

in saturation also in the very strong inversion region is maintained, the gate-referred noise

increases in weak inversion due to the increase of the mobility fluctuation term. This can be

understood from (6.85) which indicates that SG|∆µ is actually proportional to VDS.

Of course, the results shown in Figures 6.12 and 6.13 have to be taken with some precaution

since they strongly depend on process parameters which can change significantly from one

technology to another. Also, the model presented above as well as the computation assumed a

constant average mobility and ignored all the short-channel effects. Nevertheless, this gives a

first idea of the bias dependence of the flicker noise and allows to state that the flicker noise

should be minimum in the moderate inversion region.

6.3.5 Scaling Properties

An important property of the 1/ f noise is that it scales inversely proportional to the gate area.

The product of the 1/ f noise PSD referred at the gate times the gate area can be defined as a

figure of merit for the 1/ f noise. This figure of merit is strongly related to the oxide thickness

and decreases when reducing the oxide thickness. Indeed, from the number fluctuation PSD

referred to the gate (6.72), it can be seen that the figure of merit W L S∆V 2
G

∣∣∣
∆N

is proportional

to the product NT t2
ox. In case the oxide trap density remains about constant when scaling down

the oxide, the noise should diminish significantly with scaled technologies.

The PSD referred to the gate using the mobility fluctuation model as given by (6.83) is

proportional to the product αH tox. If the Hooge parameter αH is assumed to be constant,

the figure of merit for mobility fluctuation therefore decreases also when scaling the oxide

thickness.

Therefore, at constant gate area, the 1/ f noise improves with scaled technologies, at a rate

proportional to tn
ox where n is comprised between 1 and 2 depending on the bias region. But,
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when one really wants to take advantage of the scaling, then the ratio tn
ox/(W L) should be

considered. If all the scaled dimensions are proportional to the scaling factor κ < 1, then the

1/ f noise increases like 1/κ in the worst case (when 1/ f noise is dominated by mobility

fluctuations) or in the best case remains constant (when the 1/ f noise is dominated by the

number fluctuations).

Further discussion of the impact of downscaling technology on 1/ f noise is presented

in [96], including the 1/ f noise also present in the gate leakage current and its correlation to

the channel flicker noise.

6.4 APPENDICES

Appendix A1: The Nyquist and Bode Theorems

It is probably useful to recall here some fundamental properties of thermal noise in passive

RLC networks such as the one shown in Figure A.1. The first is called the Nyquist theorem and

states that the PSD of the voltage fluctuation between two terminals of a passive RLC network

is simply given by the real part of the impedance Z obtained when looking into the port

SV 2
n
( f ) = 4kT ℜ {Z ( j2π f )} . (A.1)

The variance of the voltage Vn is then given by

V 2
n =

∫ +∞

0

SV 2
n
( f ) · d f = 4kT ·

∫ +∞

0

ℜ {Z ( j2π f )} · d f. (A.2)

Instead of calculating the integral given by (A.2), a more powerful mean to evaluate V 2
n is to

use the Bode theorem (Figure A.2), which states that

V 2
n = kT

(
1

C∞
−

1

C0

)
, (A.3)

where C∞ is defined by

1

C∞
� lim

s→+∞
s Z (s), (A.4)

Noisy

passive
twork

(R,L,C)

Vn

Z( jw) Z( jw)

Noiseless
non-

dissipative
network

(L,C)

Vn

R1

RN

at n

1

N

nne

Figure A.1 The Nyquist theorem for thermal noise in passive RLC circuits
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∞→∞
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(L,C)

)(lim
1

sZs
C s

=
0→0

C0

Figure A.2 The Bode theorem for thermal noise in passive RLC circuits

which corresponds to the capacitance obtained when looking into the port after having removed

all resistances from the circuit (or set them to infinity) as shown in Figure A.2.

C0 is defined as

1

C0

� lim
s→0

s Z (s), (A.5)

which corresponds to the capacitance obtained when looking into the port after having replaced

every resistance by a short circuit (or set them to zero) as shown in Figure A.2.

Usually, C∞ and C0 can be obtained by inspection of the corresponding circuit by applying

simple circuit transformation rules.

Both theorems can be illustrated on the simple first-order RC circuit shown in Figure A.3.

The impedance Z ( j ω) of the RC circuit of Figure A.3 is given by

Z ( j ω) =
R

1 + j ωRC
=

R

1 + (ωRC)2
− j

ωR2C

1 + (ωRC)2
. (A.6)

The PSD of the thermal voltage fluctuations is then obtained from the Nyquist theorem as

SV 2
n
( f ) = 4kT · ℜ {Z ( j2π f )} =

4kT · R

1 + (ωRC)2
. (A.7)

The variance can then be calculated by evaluating the integral

V 2
n = 4kT R

∫ +∞

0

d f

1 + (2π f RC)2
=

kT

C
. (A.8)

The later result is obtained directly without computing any integral by using the Bode theorem

R

Z( jw)

C vn

Figure A.3 Applying the Nyquist and Bode theorems to a first-order RC circuit
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C∞ = C

C

C0 = +∞

C

Figure A.4 Applying the Nyquist and Bode theorems to a first-order RC circuit

as illustrated in Figure A.4. C∞ is obtained directly from circuit inspection as C∞ = C , whereas

1

C0

= lim
s→0

s R

1 + s RC
= 0. (A.9)

The noise variance is then obtained from (A.3) as

V 2
n =

kT

C
. (A.10)

Appendix A2: General Noise Expression

The following derivation is taken from [81]. The expression of the drain current valid in all

regions of inversion is given by (4.5), which is repeated here for convenience

ID = µW (−Qi)
dV

dx
.

The drain current is decomposed into a dc value ID0 and a fluctuation δInD(x, t) resulting from

the local current fluctuation δIn(x, t) at point x along the channel

ID0 + δInD(x, t) = µW (−Qi)
dV

dx
+ δIn(x, t), (A.11)

where V = V0 + δV (x, t) with δV (x, t) being the fluctuation of the channel voltage at point

x . Expanding the current in a series and neglecting the second-order terms lead to

δInD(x, t) =
d

dx
[µW (−Qi0) δV (x, t)] + δIn(x, t), (A.12)

where Qi0 � Qi(V0).

Integrating from x = 0 to x = L ,

∆InD(x, t) L =
∫ L

0

d

dx
[µW (−Qi0) δV (x, t)] dx +

∫ L

0

δIn(x, t)dx (A.13)

=
∫ L

0

δIn(x, t) dx,
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since in short-circuit condition, δV = 0 at x = 0 and x = L . The autocorrelation function of

∆InD is then given by

R∆I 2
nD

(τ ) = δInD(t) δInD(t + τ ) (A.14)

=
1

L2

∫ L

0

∫ L

0

δIn(x, t) δIn(x ′, t + τ ) dx dx ′.

The PSD of ∆InD is then given by

S∆I 2
nD

(ω) =
1

L2

∫ L

0

∫ L

0

SδInδI ′
n
(x, x ′, ω) dx dx ′, (A.15)

where SδInδI ′
n
(x, x ′, ω) is the cross-power spectral density (CPSD) between noise at points x

and x ′. If there is no spatial correlation, then SδInδI ′
n
(x, x ′, ω) is a Dirac impulse located at

point x ′ − x

SδInδI ′
n
(x, x ′, ω) = F(x, ω) δ(x ′ − x). (A.16)

Equation (A.15) then reduces to

S∆I 2
nD

(ω) =
1

L2

∫ L

0

F(x, ω) dx . (A.17)

Applying (A.17) to only one noisy section between x and x + ∆x leads to

SδI 2
nD

(ω) =
F(x, ω)

∆x
, (A.18)

which relates F(x, ω) to the PSD of the noise of a single section SδI 2
n
(x, ω)

F(x, ω) = ∆x SδI 2
n
(x, ω). (A.19)

Finally, (A.17) can be written as

S∆I 2
nD

(ω) =
1

L2

∫ L

0

∆x SδI 2
n
(x, ω) dx . (A.20)





7 Temperature Effects
and Matching

This chapter models variations of the transistor characteristics, which are very important issues

in circuit design. Section 7.2 considers variations with the temperature, which constitute the

main external perturbation on transistor characteristics. Section 7.3 is dedicated to the problem

of mismatch between the characteristics of supposedly identical transistors, which is a very

important limitation to the performance of most analog circuits. These two kinds of variations

will be characterized as variations of the basic model parameters established so far, and will

be traced back to variations of physical parameters.

7.1 INTRODUCTION

The purpose of a transistor model is to describe its electrical characteristics. These are essen-

tially the static and dynamic relationships between the voltages applied at its various terminals

and the currents flowing through them.

The model introduced so far describes how these electrical characteristics depend on phys-

ical parameters. These physical parameters have been lumped into a reduced set of model

parameters. As long as the physical parameters remain constant, the characteristics and the

model parameters remain constant. However, some physical parameters may change, thereby

modifying the transistor characteristics.

Aging is the consequence of parameters changing with time. It will not be considered here.

Many parameters are changing with the temperature, which can be considered the main

external perturbation on the transistor.

The characteristics of two or more transistors designed to be identical do not match perfectly.

This mismatch is the consequence of parameters changing in space.

A list of all basic parameters that influence the characteristics of the transistor is given in

Table 7.1. It indicates which of them depend on the temperature and which of them may change

spatially, resulting in mismatch.

Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design C. Enz and E. Vittoz
C© 2006 John Wiley & Sons, Ltd.
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Table 7.1 Basic physical parameters: dependence on temperature and effect on mismatch

UT ni Nb ǫox, ǫsi Qfc Φms tox L,W μ

Temperature Y Y N Ne N Y N N Y

Mismatch N N Y N Y Y Y Y Y

Y = yes, N = no, Ne = negligible

Table 7.2 Intermediate parameters and model parameters: dependence on temperature and effect on

mismatch

ΦF Cox VFB Γb Ψ0 n|V VT0 β Qspec Ispec

Defin. 3.8 3.20 3.22 3.30 3.66 3.34 3.58 4.8 3.42 4.14

Temp. Y Ne Y Ne Y Y Y Y Y Y

Match Y Y Y Y Y Y Y Y Y Y

Y = yes, N = no, Ne = negligible

The temperature is assumed here to be constant in space. As can be seen, most of the physical

parameters are independent of either space or temperature. The temperature coefficient of

dielectric constants ǫox and ǫsi is small enough to be neglected.

Table 7.2 is a list of most of the additional parameters that have been derived so far by

combining some of the basic parameters, including the most important device parameters n,

VT0, and β. Most of them depend on temperature and all of them are subject to mismatch.

7.2 TEMPERATURE EFFECTS

7.2.1 Variation of Basic Physical Parameters

As indicated in Table 7.1, only four of the basic physical parameters that control the transistor

characteristics have a nonnegligible dependence on temperature T.

The dependence of UT = kT/q is obvious. This fundamental specific voltage, which has

been used to normalize other voltages, is proportional to the absolute temperature. Its temper-

ature coefficient is k/q = 86μV/ ◦K.

The intrinsic carrier concentration of silicon has the value ni = 1.45 × 1010cm−3 at 300 ◦K,

but it is strongly dependent on T since [67]

ni ∝ T 3/2 exp
−VGap

2UT

, (7.1)

where VGap is the voltage corresponding to the energy band gap of silicon. This band gap

voltage itself depends slightly on the temperature, as shown by Figure 7.1. For the usual range

of ambient temperature, this variation can be linearized as shown in the same figure. Then

ni ∝ T 3/2 exp
−(VG0 − aT )

2UT

∝ T 3/2 exp
−VG0

2UT

, (7.2)
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Figure 7.1 Temperature dependence of the silicon band gap [67]

where VG0
∼= 1.20 V is called the extrapolated band gap voltage. This result is plotted in

Figure 7.2. Most of the temperature variation is due to the exponential term; therefore, (7.2)

can be approximated by keeping the term T 3/2 constant at a value T
3/2

0 :

ni = ni∞ exp
−VG0

2UT

, (7.3)

where ni∞ = 1.73 × 1020 cm−3 for VG0 = 1.20 V and T0 = 300 ◦K. This approximation is

also plotted in Figure 7.2. It departs from (7.2) by about 40% at the limits of the displayed

temperature range. If more precision is needed, the difference may be reduced to less than

5% (within the line thickness in the figure) by artificially increasing the value of VG0 to

1.28 V (and adapting the value of ni∞ to 8.11 × 1020 cm−3 so as to maintain ni = 1.45 ×
1010cm−3 at 300 ◦K).

The Fermi potential ΦF given by (3.8) depends on the temperature through UT and ni. By

using approximation (7.3) of ni, it can be expressed as

ΦF =
VG0

2
− UT ln

ni∞

Nb

. (7.4)
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Figure 7.2 Temperature variation of intrinsic concentration ni. (a) given by (7.2); (b) approximation

given by (7.3)
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This variation with temperature is plotted in Figure 7.3 for several values of doping concen-

tration Nb. The value of VG0 has been increased by 6.6% to partially compensate for the T 3/2

term in ni, as mentioned above.

The temperature coefficient of ΦF is obtained by differentiation of (7.4) or more simply by

inspection of Figure 7.3:

dΦF

dT
= −

k

q
ln

ni∞

Nb

= −
1

T

(
VG0

2
− ΦF

)

. (7.5)

It is independent of temperature and its absolute values decreases when Nb is increased. This

value ranges between −1.1 and −1.6 mV/ ◦K.

Voltage Φms, the difference between the extraction potentials, depends on the gate and

substate materials. If both are silicon as in most standard technologies, then Φms depends on

their isolated Fermi potentials. By applying (7.4) to express the gate Fermi potential ΦFG, with

Nb replaced by the gate doping concentration Ng, we obtain for a P-doped gate (same type as

that of the local substrate):

Φms = ΦFG − ΦF = UT ln
Ng

Nb

> 0. (7.6)

For an N-doped gate (same type as that of source and drain, opposite to that of the local

substrate), the sign of ΦFG is changed, giving

Φms = −ΦFG − ΦF = −VG0 + UT ln
n2

i∞
Ng Nb

< 0. (7.7)

It is worth noticing that changing the gate doping from P-type to N-type changes Φms by

Φms(N-gate) − Φms(P-gate) = −
(

VG0 − 2UT ln
ni∞

Ng

)

. (7.8)

Indeed, if the gate is highly doped (Ng approaches ni∞), the Fermi level moves from being

close to the valence band to being close to the conduction band, thereby crossing the entire

band gap. Since Φms is part of the flat-band voltage VFB according to (3.22), the threshold

voltage is then reduced by the same amount.
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From (7.6), the temperature coefficient of Φms for an P-doped gate is

dΦms

dT
=

k

q
ln

Ng

Nb

=
Φms

T
> 0. (7.9)

From (7.7), the temperature coefficient of Φms for an N-doped gate is

dΦms

dT
=

k

q
ln

n2
i∞

Ng Nb

=
1

T
(VG0 + Φms) > 0. (7.10)

The temperature coefficient is positive in both cases, since Ng > Nb.

If the gate is very strongly doped, then Ng
∼= ni∞ and the temperature coefficient for both

types of gate doping becomes

dΦms

dT
∼=

k

q
ln

ni∞

Nb

= −
dΦF

dT
> 0. (7.11)

Indeed, for a very high doping, Figure 7.3 shows that the temperature coefficient of ΦFG tends

to zero and

Φms
∼= constant − ΦF. (7.12)

This relation is exact for a metal gate, since its extraction potential is independent of temper-

ature.

The last basic parameter of Table 7.1 to be considered is mobility μ. The mobility of

electrons and holes in silicon is affected by several scattering mechanisms [67]. Scattering

due to acoustic phonons increases with temperature, thereby reducing the mobility. Scattering

due to ionized impurities has an opposite effect, since it increases at low temperatures; it also

increases with impurity concentration Nb. Within the range of ambient temperatures, their

combined effect can be approximated by

μ ∝ T −α. (7.13)

In nondoped silicon, α is approximately 2.5 for electrons and 2.7 for holes. It decreases to

about 1 for Nb = 1018 cm−3 [67].

From 7.13, the relative temperature coefficient of the mobility can be expressed as

dμ/μ

dT
= −

α

T
(7.14)

corresponding to a range of −0.3 to −1% per degree at ambient temperatures.

All possible effects of the temperature on the behavior of the transistor as described by the

model derived in Chapters 3 and 4 will be accounted for by simply including the variation with

temperature of the basic physical parameters discussed so far.

However, for a better understanding of the temperature behavior of circuits, it is useful to

express more explicitly the effect of temperature variations on the model.
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7.2.2 Variation of the Voltage–Charge Characteristics

Since neither Qfc nor Cox depends significantly on temperature, the dependence of the flat-

band voltage VFB is that of Φms given by (7.9) or (7.10). If the gate is strongly doped, it can be

reasonably approximated by (7.11):

dVFB

dT
=

dΦms

dT
∼= −

dΦF

dT
, (7.15)

with dΦF/dT given by (7.5).

Since the substrate modulation factor Γb given by (3.30) does not depend on temperature, the

variation with ΔT of the threshold function VTB (3.33) is only ΔVFB, as illustrated in Figure 7.4.

The slope n(Ψs) remains unchanged and Δ(−Qi/Cox) in strong inversion at constant surface

potential would be −ΔVFB.

However, what is imposed is not the surface potential, but the value of channel voltage

V = Ψs − Ψ0 at the source and at the drain, and Ψ0 depends on temperature according to

(3.66) repeated here for convenience:

Ψ0 = 2ΦF + vshUT.

The normalized voltage shift vsh is approximately independent of temperature and smaller

than 4 according to Figure 3.10. The temperature coefficient of Ψ0 is thus close to the double

of that of ΦF given by (7.5):

dΨ0

dT
= 2

dΦF

dT
+

Vsh

T
= −

VG0 − 2ΦF − Vsh

T
= −

VG0 − Ψ0

T
. (7.16)

As represented in Figure 7.4, the variation of threshold voltage, ΔVT0, is the combined

effect of ΔVFB and ΔΨ0:

ΔVT0 = ΔVFB + nΔΨ0, (7.17)

Y0

∆Y0
Ys

VT0

∆VT0

∆VFB

S
lo

pe
 n

VG

VTB

V
V

–∆Qi
Cox

–Q i
Cox

Figure 7.4 Effect of an increase of temperature on voltages and charge
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where slope n should be evaluated at V = 0: n = n0 given by (3.73). Hence

dVT0

dT
=

dVFB

dT
+ n0

dΨ0

dT
(7.18)

as can be obtained directly by differentiation of expression (3.58) of the threshold VT0.

Now, for a highly doped gate, introducing approximation (7.15) with (7.16) and (7.5) yields

an explicit expression for the temperature coefficient of VT0:

dVT0

dT
= (2n0 − 1)

dΦF

dT
+ n0

Vsh

T
=

(n0 − 1/2)(2ΦF − VG0) + n0Vsh

T
, (7.19)

which is always negative. Using the first expression of dΦF/dT in (7.5), this temperature

coefficient can also be written as

dVT0

dT
=

k

q

[

(1 − 2n0) ln
ni∞

Nb

+ n0vsh

]

, (7.20)

showing that, except for the slight variation of n0 to be discussed further, the temperature

coefficient of VT0 is independent of the temperature. Practical values are ranging from −2.5

to −1 mV/ ◦K.

Although the slope factor n at constant Ψs is independent of temperature, at constant V =
Ψs − Ψ0 it varies through the variation of Ψ0. By using (3.34), and (7.16),

dn

dT
=

d

dΨ0

(

1 +
Γb

2
√

Ψ0 + V

)
dΨ0

dT
=

n − 1

2T

VG0 − Ψ0

V + Ψ0

, (7.21)

which is always positive. Practical values are never larger than 0.1%/ ◦K; therefore, this vari-

ation can be neglected in most situations.

Neglecting the variation of n, the specific charge density Qspec defined by (3.42) and used

to normalize the density of inverted charge is simply proportional to UT; hence,

dQspec/Qspec

dT
=

1

T
. (7.22)

Since n can be considered constant, the variation of the pinch-off voltage at constant gate

voltage obtained from expression (3.63) becomes

dVP

dT
= −

1

n

dVT0

dT
. (7.23)

The temperature coefficient of −Qi for fixed voltages depends on the mode of operation.

For strong inversion, differentiating approximation (3.64) and introducing (7.23) yield

d(−Qi/Cox)

dT
= −

dVT0

dT
. (7.24)

This relation is also illustrated in Figure 7.4.
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The behavior is more complicated in weak inversion. Approximation (3.49) can be rewritten:

−Qi = 2nCoxUT exp
VP − V

UT

, (7.25)

where UT and VP depend on temperature. Differentiation gives

dQi/Qi

dT
=

V + UT − VP

T UT

−
1

nUT

dVT 0

dT
. (7.26)

Since in weak inversion V − VP is usually much smaller than VG0 − 2ΦF, an inspection of

expression (7.19) shows that the last term dominates. As for strong inversion above, the charge

increases with temperature. But the relative increase is maximum in weak inversion.

In summary, among the three device parameters controlling the charge–voltage character-

istics of the transistor, only VT0 is significantly dependent on the temperature. The variation of

Cox is negligible and that of n can usually be neglected.

7.2.3 Variation of the Voltage–Current Characteristics

The only additional parameter needed to obtain the current from the mobile charge density is

the transfer parameter β defined by (4.8). It is proportional to the mobility; hence, from (7.14),

dβ/β

dT
= −

α

T
. (7.27)

As seen previously, β can be replaced as the third parameter controlling the current by the

specific current Ispec that is used to normalize all currents. Differentiation of its expression

(4.14) gives

dIspec/Ispec

dT
=

2 − α

T
. (7.28)

We have seen that α > 2 for nondoped or lightly doped silicon, resulting in a negative tem-

perature coefficient of Ispec. For a doping concentration Nb = 1016 cm−3, α ∼= 2, the variation

of U 2
T compensates that of β, and Ispec is approximately independent of the temperature. This

compensation disappears and the coefficient becomes positive when α is decreased below 2

by further increasing Nb.

The variation of current with temperature for constant bias voltages depends on the mode

of operation.

For strong inversion, the differentiation of approximation (4.28) gives

dIF,R/IF,R

dT
=

dβ/β

dT
−

2

n(VP − VS,D)

dVT0

dT
. (7.29)

Since the temperature coefficients of VT0 and β are both negative, compensation occurs for a

particular value of n(VP − VS,D) = VG − VT0 − nVS,D. This value is ranging between 300 and

600 mV. Above this limit value, the variation of mobility dominates and the current decreases
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with increasing temperature. Below this limit, the variation of threshold dominates and the

current increases with the temperature.

For weak inversion, the differentiation of approximation (4.34) gives, after introduction of

(7.28)

dIF,R/IF,R

dT
=

VS,D − VP + (2 − α)UT

T UT

−
1

nUT

VT0

dT
, (7.30)

which is very close to expression (7.26) for the charge. Here again the last term due to the

variation of threshold dominates. The current for constant bias voltages increases with tem-

perature.

This dependence is very large, typically 5% per degree, due to the strong effect of threshold

variations on the drain current (large transconductance to current ratio). For this reason, a

transistor in weak inversion should always be biased at constant current, and never at constant

gate and source voltages.

The specific conductance used to normalize transconductances is given by (5.6). Neglecting

again the variation of n, we obtain by differentiation

dGspec/Gspec

dT
=

1 − α

T
< 0. (7.31)

Since α > 1, this coefficient is always negative.

The transconductance for a given value of β may be imposed by the voltages or by the

current.

For strong inversion and constant voltages, the differentiation of (5.14) yields

dGms,d/Gms,d

dT
=

dβ/β

dT
−

1

n(VP − VS,D)

dVT0

dT
. (7.32)

By comparing with (7.29), we can see that the sensitivity to threshold variations is half of that

for the current. The compensation of the variation of β therefore occurs for half the value of

n(VP − VS,D), in the range 150–300 mV.

For strong inversion and constant current, the differentiation of (5.16) yields

dGms,d/Gms,d

dT
=

1

2

dβ/β

dT
= −

α

2T
. (7.33)

The relative temperature coefficient of the transconductance is always negative and independent

of the current.

As mentioned above, a transistor in weak inversion should always be biased at constant

current, the differentiation of (5.19) yields

dGms,d/Gms,d

dT
= −

1

T
. (7.34)

Results (7.33) and (7.34) are comparable. The temperature coefficient of the transconduc-

tance at constant current is always negative. It is about −0.3%/ ◦K at ambient temperature.
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7.2.4 Variation of the Current–Charge Characteristics

Relationship (4.19) between the normalized current and charge can be rewritten with nonnor-

malized variables:

β

2n

(
−QiS,D

Cox

)2

+ βUT

−QiS,D

Cox

= IF,R, (7.35)

where the first term may be neglected in weak inversion and the second term may be neglected

in strong inversion. Differentiating separately these two components of the inverted charge

gives for strong inversion

dQiS,D/QiS,D

dT
= −

1

2

dβ/β

dT
=

α

2T
. (7.36)

and for weak inversion

dQiS,D/QiS,D

dT
= −

dβ/β

dT
−

1

T
=

α − 1

T
. (7.37)

These results are comparable. The temperature coefficient of the charge at constant current is

always positive. It is about +0.3%/◦K at ambient temperature.

7.3 MATCHING

7.3.1 Introduction

Matching of the characteristics of two or several transistors is a very important consideration

for analog circuits. Even if transistors are exactly identical in their structure and layout, their

electrical behaviors are not exactly identical. This is due to spacial fluctuations of the physical

parameters that control these behaviors, as listed in Table 7.1.

As summarized in Section 4.4.2, the static voltage–current characteristics of long-channel

transistors require only three device parameters, namely VT0, β, and n. Hence, the mismatch

of their characteristics is completely characterized by the mismatch of these three parameters.

The sensitivity of these parameters to temperature has been discussed in Section 7.2. If

there is any difference in the temperature of two or several transistors, due to a gradient of

temperature on the chip, it produces a proportional difference in the parameters. This gradient

may be stationary (due to a source of heat on the chip), or it can be transient in time (due to a

change of ambient temperature that is too fast with respect to the chip thermal time constant).

Now, even if the temperature does not vary throughout the chip, some variations of the three

device parameters remain, which can be traced back to those of the physical parameters, as

illustrated in Figure 7.5.
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Figure 7.5 Dependence of VT0, n0 = n(V = 0), and β on basic physical parameters

7.3.2 Deterministic Mismatch

Let us assume that the average value of each physical parameter is slightly different between

devices. This might be due to a spatial gradient, or to some local difference due to differ-

ent environments. The resulting small differences of device parameters can be calculated by

differentiation of the various equations summarized in Figure 7.5.

We obtain for the difference ΔVT0 of threshold voltages,

ΔVT0 = [(2n0 − 1)UT + (n0 − 1)Ψ0]
ΔNb

Nb

+
(

Qfc

Cox

− 2(n0 − 1)Ψ0

)
ΔCox

Cox

−
Qfc

Cox

ΔQfc

Qfc

,

(7.38)

for the difference Δn of slope factors (evaluated at n = n0 where it is the most sensitive to

variations of Nb):

Δn

n
=

n0 − 1

n0

[(
1

2
−

UT

Ψ0

)
ΔNb

Nb

−
ΔCox

Cox

]

, (7.39)

and for the difference Δβ of transfer parameters,

Δβ

β
=

Δμ

μ
+

ΔCox

Cox

+
ΔW

W
−

ΔL

L
. (7.40)

To illustrate the importance of each term, let us take a realistic example with Ψ0 = 0.8 V,

n = 1.4, and Qfc/Cox = −200 mV. The effects of a 1% variation of each physical parameters

are summarized in Table 7.3.

Table 7.3 Effect of 1% variation of the physical parameters on the three device parameters: for

example Ψ0 = 0.8 V , n = 1.4 and Qfc/Cox = −200 mV

Qfc Nb Cox μ W L

(7.38) ΔVT0 (mV) 2.00 3.67 −8.40 0 0 0

(7.39) Δn/n (%) 0 0.13 −0.29 0 0 0

(7.40) Δβ/β(%) 0 0 1.00 1.00 1.00 −1.00
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As can be seen, n is the less sensitive parameter. Its sensitivity to Cox is only (n0 − 1)/n0

times that of β, and that to Nb about half of this. Hence, the contribution of Δn can often be

neglected in a first approximation.

Some correlation exists between the variations of the three parameters, since they all depend

on Cox. They would be fully correlated if the only varying parameter was Cox.

Moreover, variations of VT0 and n are further correlated by their common dependence on

Nb. They would be fully correlated if the only varying parameter was Nb.

To evaluate the importance of these possible correlations, let us calculate the sensitivity of

the saturated drain current (forward current IF) to variations of the three device parameters.

As obtained in Chapter 4, this current is a function of VP − VS according to

IF = Ispec F I(vp − vs) = 2nβU 2
T FI

(
VG − VT0

nUT

−
VS

UT

)

, (7.41)

where FI may be the inverse of the function defined by (4.25). Hence, by differentiation with

constant VS,

ΔIF =
(

Δβ

β
+

Δn

n

)

IF +
Ispec

n

dFI

dVP
︸ ︷︷ ︸

Gm

[

ΔVG − ΔVT0 − (VG − VT0)
Δn

n

]

. (7.42)

The gate transconductance Gm can be identified as the factor of ΔVG (independently of the

exact form of FI). We obtain finally

ΔIF

IF

=
Δβ

β
+

Δn

n
+

Gm

IF

[

ΔVG − ΔVT0 − (VG − VT0)
Δn

n

]

. (7.43)

For ΔVG = 0, this equation gives the mismatch of saturation currents for transistors having

the same gate and source voltages:

ΔIF

IF

=
Δβ

β
−

Gm

IF

ΔVT0 +
[

1 −
Gm

IF

(VG − VT0)

]
Δn

n
. (7.44)

In this situation (for example in a current mirror), Δβ/β contributes directly to ΔIF/IF, whereas

ΔVT0 is weighted by Gm/IF, the transconductance to current ratio that is only a function of

the inversion coefficient I C , as shown by Figure 5.6. When I C is increased, Gm/IF decreases,

thereby reducing the effect of ΔVT0.

Expressing ΔVG for ΔIF = 0 in (7.43) gives the mismatch of gate voltages for transistors

having the same saturation current and the same source voltage:

ΔVG = ΔVT0 −
IF

Gm

Δβ

β
+

[

(VG − VT0) −
IF

Gm

]
Δn

n
. (7.45)

In this situation (for example a differential pair), ΔVT0 contributes directly to ΔVG, whereas

Δβ/β is weighted by IF/Gm. When I C is increased, IF/Gm increases, thereby increasing the

effect of Δβ/β.
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Figure 7.6 Contributions to current mismatch with Ψ0 = 0.8 V and n = 1.4: (a) for ΔCox/Cox =
+1% alone; (b) for Δβ/β = −1% alone

In both cases, the factor weighting Δn/n is a function of the inversion coefficient, since

VG − VT0 can be expressed from (4.25) as

VG − VT0 = nUT

[√
1 + 4I C + ln (

√
1 + 4I C − 1) − (1 + ln 2)

]

+ nVS, (7.46)

whereas from (5.29),

Gm

IF

=
2

nUT

(√
1 + 4I C + 1

) . (7.47)

The mismatch of currents calculated by introducing (7.46) and (7.47) into (7.44) separately

for differences in Cox and Nb of 1% is plotted in Figure 7.6, using values given in Table 7.3.

As can be seen, the effect of ΔVT0 increases drastically in weak inversion (I C < 1), whereas

that of Δβ dominates in strong inversion (I C ≫ 1) for variations of Cox. Their (additive) corre-

lation is therefore relevant only in moderate inversion, when both contributions are comparable.

For VS = 0, Δn causes a slight reduction of mismatch in very weak inversion, which can

again be neglected.

For VS > 0, the current mismatch is increased by the contribution of Δn, especially in weak

inversion. This can be explained by the fact that the effective gate voltage threshold VT0 + nVS

becomes dependent on n.

In strong inversion, some terms are negligible in (7.46) and (7.47), hence (7.44) is reduced

to

ΔIF

IF

=
Δβ

β
−

Gm

IF

ΔVT0 −
(

1 +
Gm

IF

nVS

)
Δn

n
, (7.48)

whereas in weak inversion it becomes

ΔIF

IF

=
Δβ

β
−

ΔVT0

nUT

+
(

1 − ln I C −
VS

UT

)
Δn

n
. (7.49)
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Figure 7.7 Separate contributions to gate voltage offset with Ψ0 = 0.8 V and n = 1.4: (a) for

ΔCox/Cox = −1% alone; (b) for ΔNb/Nb = +1% alone

The mismatch of gate voltages (gate voltage offset) calculated by introducing (7.46) and

(7.47) into (7.45) separately for differences in Cox and Nb of 1% is plotted in Figure 7.7, using

values given in Table 7.3.

As can be seen, the contributions of Δβ and Δn increase in strong inversion (I C ≫ 1),

whereas that of ΔVT0 dominates in weak inversion for VS = 0. Correlations through ΔCox

and ΔNb are additive, but relevant only in moderate inversion, when the contributions are

comparable.

For VS = 0, Δn causes a slight reduction of offset in very weak inversion, which can be

neglected.

For VS > 0, the offset is increased by an amount equal to VSΔn, which can again be

explained by the fact that the effective threshold becomes dependent on n.

In strong inversion, (7.45) can be approximated by

ΔVG = ΔVT0 −
IF

Gm

Δβ

β
+

(
IF

Gm

+ nVS

)
Δn

n
. (7.50)

This expression shows that the correlations through ΔCox and ΔNb are indeed additive, since

the signs of ΔVT0, Δn, and −Δβ are the same, as we can see in Table 7.3.

In weak inversion, (7.45) can be reduced to

ΔVG = ΔVT0 − nUT

Δβ

β
+ [(ln I C − 1)UT + VS] Δn, (7.51)

showing that the correlated Δn slightly reduces the offset for VS/UT < 1 − ln I C , but aug-

ments it above this limit.

Appropriate layout techniques can be used to virtually eliminate the systematic mismatch

discussed in this section [104].

Transistors to be matched should be implemented as close as possible, in order to minimize

the effect of gradient and/or other variations of low spacial frequency.

Their environments should be fully identical, in order to avoid local variations of critical

physical parameters.

In order to eliminate the effect of a constant gradient, each device can be split into two

half-width devices located each side of an axis of symmetry and connected in parallel. Best is
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the implementation of pairs in quad configurations, since it also ensures the same environment

for the two transistors.

We have considered differences between the average values of parameters across the devices.

However, except for VDS = 0, Qi is not constant along the channel. It is larger close to the

source (in forward mode) and therefore the current is more affected by a difference of physical

parameters close to the source. Hence, transistors to be matched should have the same source–

drain orientation to avoid an additional effect of gradients.

The mismatch that remains after elimination of these systematic variations is due to statistical

fluctuations of the physical parameters across the area of the transistor channel.

7.3.3 Random Mismatch

Let us assume that the random fluctuations of a parameter P are not spatially correlated. It can

be shown [105, 106] that the standard deviation of the difference ΔP of average values of P

across two separate regions of area W L is given by

σ (ΔP) =
AP√
W L

, (7.52)

where AP is the area proportionality constant for parameter P.

This relation can be understood by considering the particular example of Cox illustrated in

Figure 7.8.

If for an element of surface of unit area,

σu(ΔCox)

Cox

= ACox
, (7.53)

then for the total area, the standard deviation of the difference of total capacitances is increased

by the square root of the area (the variance increases linearly with the area), whereas the

capacitance increases with the area. Hence,

σ (ΔCox)

Cox

=
ACox

√
W L

W L
=

ACox√
W L

. (7.54)
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Figure 7.8 Dependence of σ (ΔCox/Cox) on channel area W L
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The same averaging across area takes place for the fluctuations of parameters Qfc, Nb,

and μ.

The situation is somewhat different for the fluctuations of W and L . First, they are best

characterized as absolute values and not as a percentages. Furthermore, they are not averaged

across an area, but along a distance. Indeed, as illustrated by Figure 7.9, noncorrelated fluc-

tuations of width are averaged along the length, and noncorrelated fluctuations of length are

averaged along the width. If for an element of surface of unit length,

σu(ΔW ) = AW, (7.55)

then for the total length L , it becomes

σ (ΔW ) =
AW

√
L

L
=

AW√
L

, (7.56)

and symmetrically,

σ (ΔL) =
AL

√
W

W
=

AL√
W

. (7.57)

Proportionality constants AW and AL could be different if the etching process defining the

gate is anisotropic. We will assume that they are identical, of value AW,L = AW = AL.

Now, the device parameter affected by variations of W and L is β ∝ W/L . If it is small,

the relative difference of aspect ratios can be expressed as

Δ(W/L)

W/L
=

ΔW

W
−

ΔL

L
, (7.58)

the variance of which is

σ 2

(
Δ(W/L)

W/L

)

= σ 2

(
ΔW

W

)

+ σ 2

(
ΔL

L

)

. (7.59)
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Introducing (7.56) and (7.57) with AW = AL = AW,L yields

σ 2

(
Δ(W/L)

W/L

)

=
A2

W,L

W L

(
1

L
+

1

W

)

=
A2

W,L

(W L)3/2

(√

W

L
+

√

L

W

)

. (7.60)

The mismatch of W/L decreases faster than that of other relevant parameters when the

channel area is increased while keeping W/L constant. Its contribution to the mismatch of β

can therefore be made negligible by increasing W L . Moreover, its variance is minimum for a

square channel and increases with approximately the square root of the aspect ratio.

It should be emphasized that the proportionality constant AP was defined by comparing the

mismatch of two identical transistors (same nominal values of W and L). If one transistor is

infinitely large, then the mismatch is reduced by
√

2. Hence, for two transistors of different

W L , it becomes

σ (ΔP) =
AP√

2

√

1

W1L1

+
1

W2L2

. (7.61)

Now, except for very large dimensions, the mismatch of two transistors of different sizes

is increased by side effects. Hence, a ratio M/N of β ∝ W/L is best obtained by a series

and/or parallel combination of M and N identical elementary transistors of same W and L .

The resulting mismatch is then given by

σ (ΔP) =
AP√
2W L

√

1

M
+

1

N
. (7.62)

Using the variances defined above for the (uncorrelated) mismatches of the basic parameters,

the variances of the three device parameters are obtained directly from (7.38), (7.39), and (7.40):

σ 2(ΔVT0) = [(2n0 − 1)UT + (n0 − 1)Ψ0]2 σ 2

(
ΔNb

Nb

)

+
[

Qfc

Cox

− 2(n0 − 1)Ψ0

]2

σ 2

(
ΔCox

Cox

)

+
(

Qfc

Cox

)2

σ 2

(
ΔQfc

Qfc

)

, (7.63)

σ 2(Δn) = (n0 − 1)2

[(
1

2
−

UT

Ψ0

)2

σ 2

(
ΔNb

Nb

)

+ σ 2

(
ΔCox

Cox

)]

(7.64)

σ 2

(
Δβ

β

)

= σ 2

(
Δμ

μ

)

+ σ 2

(
ΔCox

Cox

)

+ σ 2

[
Δ(W L)

W/L

]

. (7.65)

According to (7.52), the same equations are applicable if each σ (P) is replaced by the

corresponding area proportionality constant AP.

Now, the mismatch of these three parameters is possibly correlated through ΔCox and ΔNb.

In order to evaluate the practical importance of this correlation, an example is illustrated in

Figure 7.10. The mismatch of drain currents and gate voltages is calculated for three cases,

with the same realistic values of σ (ΔVT0) and σ (Δβ

β
).
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Figure 7.10 Mismatch of (a) drain currents and (b) gate voltages of saturated transistors. Case 1:

uncorrelated ΔVT0, Δβ, and Δn (hence Δn = 0). Case 2: Fully correlated ΔVT0, Δβ, and Δn, with

σn = 0.2% and VS = 0. Case 3: same as case 2, but with VS =1V

In the first case, we assume no correlation between the three device parameters, which is

possible only if ΔCox and ΔNb are negligible. Then Δn is also negligible and VS has no effect

on matching. We obtain from (7.44) and (7.45) [104]

σ

(
ΔIF

IF

)

=

√

σ 2

(
Δβ

β

)

+
(

Gm

IF

)2

σ 2(ΔVT0), (7.66)

σ (ΔVG) =

√

σ 2(ΔVT0) +
(

IF

Gm

)2

σ 2

(
Δβ

β

)

. (7.67)

In the second case, we assume perfect correlation between the three parameters, and VS = 0.

This is possible only if the sole source of mismatch is ΔCox. Then, according to Table 7.3, the

sign of Δβ is opposite to that of Δn and ΔVT0. Mismatch is then calculated by replacing each

variation by its variance in equations (7.44) and (7.45), taking into account this sign difference.

The third case is the same, but with VS =1 V.

Cases 1 and 2 are the two extreme cases for VS = 0. Real cases will be in between, with only

partial correlation between device parameters. As can be seen, the maximum ratio between

these two extremes is about
√

2 when the effects of ΔVT0 and Δβ are equal in moderate

inversion. So the correlation can be compensated for by doubling the value of W L . The

mismatch of slopes, Δn, has a negligible effect.

As already pointed out, for VS > 0, the effective threshold VT0 + nVS becomes dependent

on n, and the mismatch in weak inversion is increased by Δn, as illustrated in Case 3. If ΔVT0

and Δn are dominated by ΔCox, then σ (ΔVT0) is simply increased by σ (Δn)VS.

If ΔNb dominates, which is usually the case in deep submicron processes, then ΔVT0 and

Δn are fully correlated, with no correlation with Δβ.

The random variation of ΔNb is essentially due to the limited total number Ntot of ionized

impurities in the depletion layer. Assuming a Poisson distribution, then

σ 2

(
ΔNb

Nb

)

=
2

Ntot

=
2

W L td Nb

, (7.68)
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where the factor 2 comes from the fact that we compare two transistors. The thickness td of

the depletion layer given by 3.26 can be evaluated at Ψs = Ψ0:

td =

√

2Ψ0ǫsi

q Nb

, (7.69)

resulting in

σ

(
ΔNb

Nb

)

=
1

√
W L

· 4

√

2q

Ψ0ǫsi Nb

. (7.70)

Now, if ΔNb dominates and if Ψ0 ≫ UT, then 7.63 can be approximated by

σ (ΔVT0) = (n0 − 1)Ψ0σ

(
ΔNb

Nb

)

=
Γb

2

√

Ψ0 · σ

(
ΔNb

Nb

)

(7.71)

where n0 has been replaced by its expression (3.73). By introducing σ (ΔNb

Nb
) given by (7.70)

and Γb given by (3.30), we obtain the area proportionality constant for threshold mismatch

AVT0
△=

√
W Lσ (ΔVT0) =

1

Cox

4

√

q3ǫsi NbΨ0

2
. (7.72)

Now, the comparison of (7.64) with (7.63) for Ψ0 ≫ UT shows that if mismatch is dominated

by ΔNb, then

An
△=

√
W L σ (Δn) =

AVT0

2Ψ0

=
1

2Cox

4

√

q3ǫsi Nb

2Ψ 3
0

. (7.73)

It should be pointed out that (7.72) and (7.73) are slightly pessimistic, since td in (7.69)

is evaluated at Ψs = Ψ0, which is its minimum value. For VS > 0, Ψs ≥ Ψ0 + VS and td is

increased, thereby decreasing ΔNb/Nb according to (7.68) [107]. However, this small effect

can be neglected as compared to the global effect of increasing VS. Indeed, since ΔVT0 and

Δn are fully correlated by their common origin ΔNb, the mismatch of effective gate threshold

voltages VT0 + nVS is

σ (VT0 + nVS) = σ (VT0)

(

1 +
VS

2Ψ0

)

, (7.74)

This expression describes explicitly, for the particular case of ΔVT0 dominated by ΔNb, the

effect of VS illustrated by curve 3 in Figure 7.10. An important consequence of this increase of

mismatch due to VS > 0 appears in a differential pair: its input offset voltage is increased by

the nonzero source voltage if the two paired transistors are not put in a separate well connected

to their sources.





Part II

The Extended Charge-Based
Model

This second part models several nonideal effects that should be added to the core model

developed in Part I, in order to best describe modern MOS transistors, in particular those

realized in deep submicron processes. Chapter 8 focuses on effects that already affect long-

channel devices, whereas Chapter 9 specifically adresses the short-channel effects. Finally,

the passive devices that must be added to account for the extrinsic part of the transistor are

modeled in Chapter 10.

Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design C. Enz and E. Vittoz
C© 2006 John Wiley & Sons, Ltd.





8 Nonideal Effects Related
to the Vertical Dimension

All the nonideal effects discussed in this chapter remain compatible with expression (4.40) of

the drain current. Hence, they do not affect the fundamental property of symmetry discussed

in Section (4.5). Section 8.2 shows the impact of the mobility reduction resulting from a large

gate voltage. Current and tranconductances are reduced, but their ratio is not much affected.

Section 8.3 investigates the case of nonuniform vertical doping, with a detailed analysis of

two particular profiles. The following sections examine the consequences of the very high

substrate doping and very thin gate oxide introduced in aggressively scaled-down processes.

Polysilicon gate depletion discussed in Section 8.4 can be accounted for by a reduction of

specific charge and current, by an increase of the slope factor for voltages, and by an increased

threshold voltage. Band gap widening due to quantum effects is examined in Section 8.5. It

has the same qualitative effect on charge, current, and threshold voltage as polydepletion, with

which it is usually combined. Gate leakage current due to tunneling through a very thin oxide

is analyzed in Section 8.6. Negligible if the oxide is thicker than 3 nm, this current increases

by more than a factor 10 for each 0.2 nm of thickness reduction.

8.1 INTRODUCTION

In this chapter we still consider a long and wide channel that is homogeneous in the x direction

(along the channel). As demonstrated in Section 4.5, the fundamental property of symmetry is

not affected; hence, the drain current can still be decomposed in a forward component IF and a

reverse component IR. We will separately discuss the main nonideal effects that are related to

the vertical dimension, and show how they can be accounted for by modifying the basic model

presented in Part I.

8.2 MOBILITY REDUCTION DUE TO THE VERTICAL FIELD

In a MOS transistor, the current flows very close to the silicon surface. As a consequence, the

mobility of current carriers is lower than deep inside the substrate (typically two to three times

Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design C. Enz and E. Vittoz
C© 2006 John Wiley & Sons, Ltd.
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lower), due to various scattering mechanisms [67]. This mobility is further reduced if the

vertical field Ez becomes too large. This field dependent mobility can be approximated by [1]

µz =
µ0

1 + Eeff/E0

, (8.1)

where µ0 is the low-field surface mobility, E0
∼= 4 × 107 V/m the electric field at which

the mobility starts to decrease significantly, and Eeff the average field in the inversion layer,

approximated by

Eeff =
1

2
[Ezs + Ezb] , (8.2)

where Ezs and Ezb are the values of the vertical electric field at the surface and just below the

inversion layer respectively.

According to the Gauss law illustrated by Figure 3.2,

Ezs = −(Qi + Qb)/ǫsi and Ezb = −Qb/ǫsi. (8.3)

Hence

Eeff = −
1

ǫsi

(

Qb +
Qi

2

)

. (8.4)

Introducing (8.4) in expression (8.1) of the field-dependent mobility yields

μz =
μ0

1 − Qb+Qi/2

ǫsi E0

=
μ0

1 + θ (qb + qi/2)
. (8.5)

In the second form, the charge is normalized to Qspec defined by (3.42) and θ depends on

E0 according to

θ =
Qspec

ǫsi E0

=
2nCoxUT

ǫsi E0

. (8.6)

The mobility reduction is a function of the inverted charge density Qi and of the bulk

depletion charge density Qb. The latter is given by (3.55) as a linearized function of Qi, where

the slope factor n can be replaced by its value nw given by (3.68) resulting in

qb =
ψp − qi

1 + 2
γb

√
ψp

. (8.7)

Introducing this result in (8.5) provides the variation of mobility with mobile charge qi:

μz

μ0

=
1

k1qi + k2

, (8.8)

where

k1 = θ

(

1

2
−

1

1 + 2
γb

√
ψp

)

and k2 = 1 +
θψp

1 + 2
γb

√
ψp

. (8.9)
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Figure 8.1 Effect of mobility reduction due to the vertical electric field

Alternatively, ψp may be replaced by the pinch-off voltage vp by means of their relationship

(3.47), their difference being very close to ψ0, according to (3.66).

The correction for mobility reduction can be introduced by multiplying the qi(v) charac-

teristics of Figure 3.11 by μz/μ0. Using qi as a parameter, qi
μz

μ0
can be calculated by (8.8),

whereas the channel voltage v is obtained from (3.48). Results for several realistic values of

parameter θ are plotted in Figure 8.1.

For θ = 0, there is no mobility reduction and the function is identical to that of Figure 3.11.

For θ > 0, the function is reduced. As can be seen from (8.5), this reduction is more important

in strong inversion where qi ≫ 1. However, due to the effect of depletion charge qb given by

(8.7), it is also present in weak inversion, especially if ψp is large, corresponding to a large

value of VG.

If the transfer parameter β (4.8) is calculated for μ = μ0, then the forward and reverse

components of the drain current are obtained after replacing qi by μzqi/μ0 in (4.16). Hence

(4.18) becomes

if,r =
∫ qs,d

0

2qi + 1

k1qi + k2

dqi =
1

k1

[

2qs,d +
(

1 − 2
k2

k1

)

ln

(

1 +
k1

k2

qs,d

)]

. (8.10)

Using qs,d as a parameter and equation (3.48) to obtain vs,d, this result is plotted as curve

a in Figure 8.2 for a large value of θ . If θ tends to zero, the coefficient k1 also tends to zero
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Figure 8.2 Effect of mobility reduction on current: (a) exact result (8.10); (b) third-order series

expansion (8.11); (c) second-order series expansion (8.12)
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and expression (8.10) diverges numerically. It can be approximated by its third-order series

expansion in which the term 2qs,d is canceled:

if,r =
1

k2

[

qs,d +
(

1 −
k1

2k2

)

q2
s,d −

2k1

3k2

q3
s,d

]

, (8.11)

which is represented as curve b in Figure 8.2.

Further simplification is possible by limiting the expansion to the second-order term and

neglecting k1

2k2
≪ 1:

if,r =
1

k2

(qs,d + q2
s,d). (8.12)

Hence, in this approximation, the current is simply reduced by the factor k2. As shown by

curve c in the same figure this is an acceptable approximation if vp − vs,d is not too large. The

transfer characteristics in strong inversion remain close to a square law for a constant gate

voltage vg corresponding to a constant value of k2. The gate-driven transfer characteristics

depart more significantly from a square law since vp and ψp increase linearly with vg, thus

modulating the value of k1 and k2 according to (8.9). This can be observed in the
√

if(vp) plot

illustrated in Figure 8.3.

The source and drain transconductances at fixed voltages (depicted in Figure 5.1) are reduced

proportionally to μz/μ0. Hence from (8.8),

gms,d =
μz

μ0

qs,d =
1

k1 + k2/qs,d

. (8.13)

Their dependency on the forward and reverse currents can be obtained by first expressing

qs,d(if,r). Since expression (8.10) cannot be inverted, this can be done by inverting its second-

order approximation (8.12). This yields

qs,d =
√

1 + 4k2if,r − 1

2
, (8.14)
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which is identical to (4.24) for θ = 0 (k1 = 0 and k2 = 1). Introducing (8.14) in (8.13) results

in

gms,d =
1

k1 + 2k2√
1+4k2if,r−1

, (8.15)

which is identical to (5.11) for θ = 0. Using this result, the variation of gms,d/ if,r with if,r is

plotted as curve a in Figure 8.4 for a large value of θ . It departs only very slighly from the

“exact” solution (curve b), obtained by using qs,d as a parameter in equation (8.13) of gms and

in the full equation (8.10) of if,r. The gate transconductance gm is still related to gms and gmd by

(5.9) since this relationship was derived independent of the mobility. Therefore, all expressions

of gm are affected by mobility reduction.

It is worth noticing that the simple expression (5.17) of gm in linear mode is no longer valid.

The reason for it can be understood by examining Figure 8.5 that shows μzqi/μ0(v) for various

values of vp, calculated from (8.8) and (3.48) (using qi as a parameter). Indeed, changing vp

(or vg) not only moves the curve vertically [as it did to qi(v) in Figure 5.2] but also modifies

its slope. The figure also shows gms, gmd, and id for vp = 80 and given values of vs and vd.
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8.3 NONUNIFORM VERTICAL DOPING

8.3.1 Introduction and General Case

In Part I, the doping concentration Nb of the local substrate (or bulk) was assumed to be uniform.

As a consequence, the depletion charge Qb, which is produced by repelling the holes before

electrons can be attracted in the channel, was proportional to the square-root function (3.29)

of the surface potential Ψs. The threshold function defined by (3.33) was therefore nonlinear,

since it can be expressed as

VTB = VFB + Ψs +
−Qb(Ψs)

Cox

, (8.16)

The slope n of this function was slightly decreasing with increasing Ψs, as shown by (3.34)

and by Figure 3.7.

If the doping concentration is a function of depth z into the substrate, Qb(Ψs) is modified,

and so are VTB(Ψs) and n(Ψs). Let us consider the general case with the arbitrary profile Nb(z)

illustrated in Figure 8.6.

According to the classical depletion zone approximation, the density of holes is assumed to

drop to a negligible value at depletion depth zd, leaving a space charge −q Nb per unit volume

for z < zd. Hence the total depletion charge density is given by

Qb = −ǫsi Ez(z = 0) = −q

∫ zd

0

Nb dz, (8.17)

which is a function of depletion depth zd. Notice that the origin of the z-axis (z = 0) is

positioned here just underneath the infinitely thin inverted charge sheet (see Section 3.4), so

that Ez is not affected by Qi.

The vertical field is zero for z ≥ zd. According to Poisson’s equation, this field increases

with the integral of the depleted charge for z < zd:

Ez =
q

ǫsi

∫ zd

z

Nb dz. (8.18)
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Figure 8.6 Calculation of Qb(Ψs) for an arbitrary doping profile Nb(z)
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The surface potential is obtained by integrating the field (8.18) across the depletion region;

hence,

Ψs =
q

ǫsi

∫ zd

0

(∫ zd

z

Nb dz

)

dz, (8.19)

which is also a function of zd.

Using zd as the parameter, Qb(Ψs) can be calculated by means of parametric equations

(8.17) and (8.19). Knowing Qb(Ψs), VTB(Ψs) and its derivative n(Ψs) can then be obtained

from (8.16).

This calculation will be carried out in the following subsections for two particular analytical

profiles Nb(z) that can be used as approximations of real profiles.

8.3.2 Constant Gradient Doping Profile

Consider the doping profile described by

Nb = Nb0

(

1 + S
z

zc

)

(8.20)

and illustrated in Figure 8.7. For S = 1, the doping concentration increases linearly from its

surface value Nb0 and is doubled at characteristic depth zc. For S = −1, it decreases to reach

zero at zc; the model is then valid only for a depletion depth zd < zc.

Introducing this profile into (8.17) and (8.19) yields the parametric equations of Ψs(Qb):

Qb = −q Nb0

(

zd + S
z2

d

2zc

)

, (8.21)

Ψs =
q Nb0

ǫsi

(
z2

d

2
+ S

z3
d

3zc

)

, (8.22)

These equations can be simplified by introducing a parameter

P
△=

zd

zc

, (8.23)

and by defining a normalized characteristic depth

ζc
△=

zc

tox

ǫox

ǫsi

=
zcCox

ǫsi

, (8.24)
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Figure 8.7 Constant gradient doping profile Nb(z)
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and the substrate modulation factor at the surface

Γb0
△=

√
2q Nb0ǫsi

Cox

. (8.25)

They become

−
Qb

Cox

=
Γ 2

b0ζc

2

(

P + S
P2

2

)

, (8.26)

Ψs =
Γ 2

b0ζ
2
c

2

(
P2

2
+ S

P3

3

)

. (8.27)

These two results can then be introduced in (8.16), giving

VTB − VFB =
Γ 2

b0ζc

2

(

P +
ζc + S

2
P2 + Sζc

P3

3

)

. (8.28)

Now, (8.28) and (8.27) can be used as parametric equations of VTB(Ψs), with P as the

independent parameter. This threshold function is plotted in Figure 8.8(a) for Γ 2
bo = 40UT and

for several values of the normalized characteristic depth ζc. Uniform doping corresponds to

ζc = ∞.
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The slope factor can also be expressed as a function of parameter P by differentiating (8.28)

and (8.27)

n =
dVTB

dΨs

=
dVTB

dP
/

dΨs

dP
=

1 + P(ζc + S) + ζcSP2

ζc P(1 + SP)
. (8.29)

This equation can be associated with (8.27) to obtain n(Ψs). This slope factor is plotted in

Figure 8.8(b) with the same values of Γb0 and ζc.

As could be expected, the slope factor for a given value of surface doping Nb0 is increased for

an increasing doping profile. However, this effect is significant only for ζc < 5, corresponding

to zc < 15tox.

8.3.3 Step Profile

The step profile illustrated in Figure 8.9 is another approximation of real profiles that is tractable

analytically. Introducing this profile into (8.17) and (8.19) yields, for zd ≥ zc

Qb = −q [Nb0zc + Nbc(zd − zc)] (8.30)

and

Ψs =
q

ǫsi

[

Nbc

(zd − zc)2

2
+ Nbczc(zd − zc) + Nb0

z2
c

2

]

. (8.31)

These equations can be simplified by introducing the parameter P defined by (8.23) and

variables ζc and Γb0 defined (8.24) and (8.25), and by defining the doping ratio

ν
△=

Nbc

Nb0

, (8.32)
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resulting in

−Qb

Cox

=
ζcΓ

2
b0

2
[1 + ν(P − 1)] (8.33)

and

Ψs =
ζ 2

c Γ 2
b0

2

[
ν

2
(P − 1)2 + ν(P − 1) +

1

2

]

. (8.34)

These equations could be used as parametric equations of Ψs(Qb). Instead, parameter P can

be calculated from its second-order equation (8.34):

P =

√

1 −
1

ν
+

4Ψs

νζ 2
c Γ 2

b0

, (8.35)

and introduced in equation (8.33) of Qb. According to (8.16), the threshold function then

becomes

VTB − VFB = Ψs +
ζcΓ

2
b0

2

[

1 − ν +

√

ν

(

ν − 1 +
4Ψs

ζ 2
c Γ 2

bo

)]

. (8.36)

This expression is plotted in Figure 8.10 for various values of normalized step depth ζc. Part

(a) of the figure is for a 1 to 10 step up of doping concentration. The threshold is strongly

increased if the step is shallow, since most of the depletion region extends within the region of

higher doping concentration Nbc. This increase is attenuated when the step depth is increased.
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Expression (8.36) is valid only when the depletion depth extends beyond the step, corresponding

to P ≥ 1, and hence from (8.35) for

Ψs ≥
(

ζcΓb0

2

)2

=
q Nb0z2

c

2ǫsi

. (8.37)

For smaller values of surface potential, the situation is reduced to that of uniform doping Nb0

(corresponding to ζc = ∞).

Figure 8.10(b) shows the case of a 10 to 1 step down of doping concentration for the same

values of Γb0 and ζc. The threshold function is reduced if the step is shallow, since the depletion

region extends mostly in the region of lower doping.

Figure 8.11 is another plot of expression (8.36) of the threshold function, for a fixed value

of step depth (ζc = 2) and various values of the doping ratio ν. Below the limit given by (8.37),

the depletion region does not reach the step depth zc. The doping is therefore uniform with

substrate modulation factor Γb0. Beyond this limit, the depletion region enters the region of

different doping and the threshold function depends on the doping ratio ν.

When the gate voltage VG starts exceeding the threshold function VTB at some position along

the channel, some inversion charge Qi starts appearing. According to (3.5), the concentration

of this inversion charge will dominate at the depth for which Ψ − ΦF is maximum. If the

doping concentration is uniform, then Fermi potential ΦF is constant and the inversion charge

appears at the surface (z = 0), since Ψ is always maximum at the surface. This is also true if

the concentration increases with depth z, corresponding to an increase of ΦF given by (3.8).

But if, on the contrary, the concentration decreases steeply with depth, the corresponding

decrease of ΦF can possibly overcome the decrease of Ψ . The inversion layer is then created

below the surface, resulting in what is called a buried channel.
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For the step profile discussed here, the channel will be buried as long as the difference of

Fermi potentials for the two doping concentrations exceeds the drop of potential across depth zc:

ΦF0 − ΦFc > Ψs − Ψc, (8.38)

or by introducing expression (3.8) of ΦF

Ψs − Ψc < UT ln (1/ν), (8.39)

where Ψc = Ψ (z = zc).

The effect of this buried inverted charge Qib on the electric field is illustrated in Figure 8.12.

The total charge Qt underneath the surface can be split into three parts:

Qt
△= Qb + Qib = Qb0 + Qbc + Qib. (8.40)

The buried inverted charge (supposed to be a very thin layer according to the charge sheet

model) produces a step of field. The total voltage drop across zc is easily obtained by inspection:

Ψs − Ψc = −
zc

ǫsi

(

Qib + Qbc +
Qb0

2

)

. (8.41)

Introducing (8.40) and the variables defined by (8.24) and (8.25) yields

−Qt

Cox

=
ζcΓ

2
b0

4
+

Ψs − Ψc

ζc

. (8.42)

This charge increases with the surface field. When the limit condition (8.39) for surface inver-

sion is reached, it has a maximum value given by

−Qt max

Cox

=
ζcΓ

2
b0

4
+

UT

ζc

ln (1/ν) (8.43)

that is independent of Ψs.



NONUNIFORM VERTICAL DOPING 145

20

40

60

80

100

0.31 0.13
z   Gb0

UT

22

=
c

10

Ysmax
UT

0.01 0.1

Doping ratio n = Nbc /Nbo

1

Figure 8.13 Maximum surface potential for which the channel remains buried

According to (8.16), the threshold for surface inversion can therefore be expressed as

VTBs − VFB = Ψs −
Qt max

Cox

= Ψs +
ζcΓ

2
b0

4
+

UT

ζc

ln (1/ν). (8.44)

This limit is plotted in dotted line in Figure 8.10(b) for ζc = 0.15. Since the buried charge

cannot be positive, this threshold is valid only when it is larger than the inversion threshold

VTB. This would not be the case for the deeper steps (larger ζc) shown in the same figure (except

for very low values of Ψs).

To obtain a buried channel for a deeper step, the lower doping concentration should be

further reduced, in order to increase the difference of Fermi potentials.

The maximum value of surface potential for which the channel remains buried can be

obtained by introducing the value of Ψs − Ψc into condition (8.39). It can easily be verified

that this value is given by the last two terms in (8.34), since the first term correponds to Ψc.

Hence, for this maximum value,

ζ 2
c Γ 2

b0

2

[

ν(P − 1) +
1

2

]

= UT ln (1/ζc). (8.45)

Introducing expression (8.35) of parameter P and solving for Ψs yield

Ψs max =
ζ 2

c Γ 2
b0

4

[

1

ν

(

ν −
1

2
−

2

ζ 2
c Γ 2

b0

ln ν

)2

+ 1 − ν

]

. (8.46)

This limit is plotted in Figure 8.13 as a function of the doping ratio ν. It can be seen that, for a

given value of parameter ζ 2
c Γ 2

b0 [that is proportional to Nb0z2
c according to (8.37)], the channel

may remain buried up to large values of the surface potential if ν = Nbc/Nb0 is sufficiently

small. Such a situation is shown in Figure 8.14, with ζ 2
c Γ 2

b0/UT = 0.2 and ν = 0.1. As can

be seen, VTBs > VTB in the whole range represented in the diagram. If the surface potential

is close to its pinch-off value ΨP, then all the inverted charge is buried. This will be true all

along the channel if the transistor is in weak inversion (Qi negligible). If the surface potential

is lower than the value ΨPs defined in the figure (surface pinch-off potential), then only a part

Qib of the total inverted charge Qi buried.
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The slope factor is easily calculated from (8.36) as

n =
dVTB

dΨs

= 1 +
√

ν

ζ 2
c (ν − 1) + 4Ψs/Γ

2
b0

. (8.47)

It is plotted in Figure 8.15 for various values of normalized step depth ζc, with the same

parameters as in Figure 8.10.

Figure 8.15(a) shows the case of a 1 to 10 step up in doping concentration. Compared to

uniform doping (ζc = ∞), the slope is strongly increased if the step is very shallow, as can be

expected from the fact that the depletion occurs mainly in the highly doped region. It remains

higher when the depth is increased, but is more constant with the variation of the surface poten-

tial. Indeed, if the doping ratio ν tends to infinity, (8.47) shows that the slope factor n remains

constant at the value 1 + 1/ζc as soon as the surface potential exceeds the limit given by (8.37) to

have the depletion region reaching the step. For the example of the figure with ζc = 2, this limit

is reached for Ψs = 40UT. Below this value, the slope factor is that of uniform doping (ζc = ∞).
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Figure 8.15(b) shows the case of a 10 to 1 step down of doping concentration. The slope

factor is lowered by a shallow step (most of the depletion occurring in the lightly doped region).

However, it increases very steeply when the surface potential is reduced and approaches the

limit given by (8.37).

In Figure 8.16, the slope factor is plotted for ζc = 2 and various values of the doping ratio. It

shows again that when the depletion region reaches the step, the way n varies with the surface

potential strongly depends on the doping ratio.

8.3.4 Effect on the Basic Model

The nonuniformity of vertical doping affects only the shape of the threshold function, and

hence the slope factor and the threshold voltage. Therefore, the whole model derived in Part

I is still applicable with new values of these parameters. The threshold voltage at equilibrium

VT0 was defined by (3.58) as the value of the threshold function VTB for V = 0 (channel at

equilibrium). Hence, from (3.56),

VT0 = VTB(Ψs = Ψ0), (8.48)

where Ψ0 is given by (3.66) with ΦF calculated from (3.8) with Nb = Nb0.

The effect of the constant gradient profile as illustrated in Figure 8.8 can be approximated

by fitting the substrate modulation factor Γb of a uniform profile. Both the threshold voltage

and the slope factor are increased (decreased) if the doping is increasing (decreasing) with

depth.

For the step profile approximation, the threshold voltage can be expressed explicitly from

(8.36):

VT0 = VFB + Ψ0 +
ζcΓ

2
b0

2

[

1 − ν +

√

ν

(

ν − 1 +
4Ψ0

ζ 2
c Γ 2

b0

)]

. (8.49)

The pinch-off potential ΨP was defined in Section 3.5 as the value of surface potential for

which the inverted charge is zero; that is,

ΨP = Ψs(VG = VTB), (8.50)
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and is related to the pinch-off voltage by VP = ΨP − Ψ0 according to (3.66). But no simple

relation exists here to replace expression (3.37) of ΨP. Instead, VP can be approximated by

(3.63).

For a given value of surface doping (and hence of Γb0), the effect of a step profile depends on

the step depth zc and the step doping ratio ν = Nbc/Nb0. A step up (ν > 1) can only increase VT0

and n, but it improves the linearity of threshold function VTB and hence reduces the variation

of n with the surface potential, as shown by Figure 8.11 and Figure 8.16.

A step down (ν < 1) can only reduce VT0 and n, but it may result in an abrupt change of

slope at the limit given by (8.37), as illustrated in Figure 8.16. Therefore, a dual slope threshold

model might be needed as illustrated by the example of Figure 8.17.

Threshold VT01 and slope n1 correspond to the region of uniform doping. They are thus

given by (3.58) and (3.34) with Γb = Γb0 [or by (8.49) and (8.47) with ν = 1]. According

to Figure 8.16, the evaluation of n2 should be made by (8.47) with a value of Ψs sufficiently

larger than ζcΓ
2

b0/2. Inspection of Figure 8.17 shows that the second threshold voltage can be

calculated by

VT02 = VT01 + (n1 − n2)
[
(ζcΓb0/2)2 − Ψ0

]
. (8.51)

8.4 POLYSILICON DEPLETION

8.4.1 Definition of the Effect

In the basic model discussed in Part I, we have assumed a constant potential VG throughout the

thickness of the gate electrode, which would always be true if the gate material was a metal.

It is still true for a (poly)silicon gate, as long as the thickness of the layer of positive charge

QG (that is concentrated at the lower face of the gate electrode) is so small that the voltage

ΔΨg across it is negligible. If the gate is N-type, we can assume that a positive gate charge QG

is entirely produced by the depletion layer created at the lower face of the gate. If the gate is

P-type, this depletion layer can possibly create a negative gate charge QG.
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To calculate ΔΨg, we can further assume that the model of equations (3.29) and (3.30)

giving

Ψs =
(

Qb

ΓbCox

)2

with Γb =
√

2q Nbǫsi

Cox

(8.52)

for the monocrystalline bulk with doping concentration Nb remains valid for the polysilicon

gate with concentration Ng. Then by analogy [45]

ΔΨg = ±
(

Qg

ΓgCox

)2

for ± Qg > 0, (8.53)

where

Γg =
√

2q Ngǫsi

Cox

(8.54)

is the gate modulation factor. The positive sign in (8.53) corresponds to the positive voltage

drop created through the depletion layer of an N-type gate (for Qg > 0), whereas the negative

sign corresponds to the negative voltage drop that might eventually be created in the depletion

layer of a P-type gate (for Qg < 0).

Comparing (8.52) with (8.53) and (8.54) shows that ΔΨg remains negligible as long as

Ng/Nb ≫ (Qg/Qb)2.

Now, while scaling-down process dimensions, Nb must be increased whereas Ng cannot

be increased proportionally. Hence ΔΨg may become nonnegligible, especially if Qg is made

much larger than −Qb by a large value of inverted charge −Qi (very strong inversion).

Although the original definition of the fixed interface charge Qfc in Section 2.2 included

the equivalent effect of the charge distributed throughout the oxide thickness, let us assume

here that all this charge is physically located at the silicon-oxide interface. Hence, because of

the overall charge neutrality

Qg = −(Qb + Qi + Qfc). (8.55)

The depletion voltage at the gate then becomes

ΔΨg = ±
(

Qb + Qi + Qfc

ΓgCox

)2

. (8.56)

8.4.2 Effect on the Mobile Inverted Charge

This voltage drop ΔΨg given by (8.56) must be subtracted from VG in the voltage to charge

relation (3.19). This yields

±
1

Γ 2
g

(
Qi + Qb + Qfc

Cox

)2

−
Qi + Qb + Qfc

Cox

− (VG − Φms − Ψs) = 0. (8.57)

The mobile charge density Qi is then obtained by first solving this second-order equation
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in (Qi + Qb + Qfc)/Cox, giving

Qi + Qb + Qfc = Cox

[

±
Γ 2

g

2

(

1 −
√

1 ±
4

Γ 2
g

(VG − Ψs − Φms)

)]

. (8.58)

Then, by introducing expression (3.29) of Qb,

Qi = Cox

[

Γb

√

Ψs ±
Γ 2

g

2

(

1 −
√

1 ±
4

Γ 2
g

(VG − Ψs − Φms)

)]

− Qfc. (8.59)

8.4.3 Slope Factors and Pinch-Off Surface Potential

We can now compare (8.59) with (3.32), to which it reduces for Γg very large. As a first remark,

Φms and Qfc cannot be lumped anymore into a flat-band voltage VFB. But most important is

the fact that Qi is no longer proportional to the difference between the gate voltage VG and a

threshold function VTB(Ψs). The diagram of Figure 3.7 is therefore no longer applicable. As

a consequence, the slope of Qi

Cox
(Ψs) is no longer identical to that of VG(ΨP). Therefore, the

single slope factor n introduced in Part I must be replaced by two distinct slope factors:

nv =
dVG

dΨP

=
dVG

dVP

and nq =
dQi/Cox

dΨs

. (8.60)

In order to obtain an expression for nv, we have to first calculate VG(ΨP) that replaces (3.33)

plotted in Figure 3.7. Introducing Qi = 0 and Ψs = ΨP in (8.59) results in

VG = Φms −
Qfc

Cox

+ ΨP + Γb

√

ΨP ±
1

Γ 2
g

(
Qfc

Cox

− Γb

√

ΨP

)2

, (8.61)

which reduces to expression (3.33) of VTB(Ψs) for Γg very large.

It must be reminded that, according to (3.66), ΨP is related to the pinch-off voltage VP by

ΨP = VP + Ψ0 = VP + 2ΦF + Vsh. (8.62)

Equation (8.61) is plotted in Figure 8.18 for particular values of γb = Γb/UT and γg =
Γg/UT, and for five different values of fixed charge Qfc/Cox ranging from −40 to 40.

Now, polydepletion is possible only if the charge QG on the gate is positive for an N-type

gate or negative for a P-type gate. At pinch-off Qi = 0, hence from (8.55) polydepletion at

pinch-off occurs only for

±(Qb + Qfc) < 0. (8.63)

By introducing expression (3.29) of Qb with Ψs = ΨP, this condition becomes

±
(

Γb

√
Ψ P −

Qfc

Cox

)

> 0. (8.64)
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Introduced in (8.61), condition (8.64) becomes

±(VG − Φms − ΨP) > 0. (8.65)

This limit is also represented in Figure 8.18. No polydepletion occurs at pinch-off if condition

(8.65) is not fulfilled; the VG(ΨP) function is then that for γg very large. The valid curve for a

given value of Qfc is shown in thick line. Its slope nv is always increased by polydepletion.

Notice that polydepletion can occur below the limit given by (8.65) if Ψs < ΨP (Qi no longer

negligible in (8.63)).

We see that, for the N-channel transistor considered here, a large positive value of fixed

charge Qfc may prevent polydepletion for an N-type gate, and make it possible for an P-type

gate.

The flat-band voltage VFB was defined as the value of gate voltage VG for which Ψs = 0;

hence, Qsi = Qb + Qi = 0. Using (8.57), we obtain

VFB = Φms −
Qfc

Cox

±
(

Qfc

ΓgCox

)2

for ± Qg = ∓Qfc > 0. (8.66)

The flat-band voltage is increased by polydepletion in an N-type gate for a positive fixed

charge; it is decreased by a negative fixed charge for a P-type gate. However, we have seen

before in (8.59) that the fixed charge does not simply contribute to a shift VFB of gate voltage,

as is the case without polydepletion.

The pinch-off surface potential can be calculated from the gate voltage by inverting (8.61),

with the result of a very complicated expression for the general case. This expression is

simplified if Qfc = 0 hence VFB = Φms. As can be seen in Figure 8.18, there is then no
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polydepletion for a P-type gate; ΨP(VG) is therefore given by (3.37). For a N-type gate, inverting

(8.61) yields

ΨP =

{

Γg

2(Γ 2
b + Γ 2

g )

[√

4(Γ 2
b + Γ 2

g )(VG − VFB) + Γ 2
b Γ 2

g − ΓbΓg

]
}2

(for Qfc = 0),

(8.67)

which also provides VP(VG) by introducing (8.62). It can be verified that this expression is also

reduced to (3.37) for Γg ≫ Γb.

8.4.4 Voltage Slope Factor nv

According to definition (8.60), nv is the slope of VG(ΨP) plotted in Figure 8.18. Differentiation

of (8.61) gives

nv =
dVG

dΨP

= 1 +
Γb

2
√

ΨP

±
(

Γb

Γg

)2(

1 −
Qfc/Cox

Γb

√
ΨP

)

, (8.68)

which reduces to n given by (3.68) for Γb ≪ Γg. This slope factor is plotted in Figure 8.19 for

numerical values identical to those of Figure 8.18.

Condition (8.64) is used to identify the valid part of the curve (shown in thick line) for

each value of Qfc. Notice that nv cannot be lower than its value for very large γg/γb, that is

independent of Qfc as shown by (8.68). This confirms that the voltage slope factor nv is always

increased by polydepletion.
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8.4.5 Charge Slope Factor nq

Slope factor nq is obtained by differentiation of (8.59):

nq =
dQi/Cox

dΨs

=
Γb

2
√

Ψs

+
1

√

1 ± 4
Γ 2

g
(VG − Ψs − Φms)

. (8.69)

Unlike n (to which it reduces for Γg very large) this slope is not only dependent on surface

potential Ψs but also dependent on gate voltage VG. This dependency on VG may be replaced

by that on ΨP by introducing (8.61), giving

nq =
Γb

2
√

Ψs

+
1

√
[

1 ± 2
Γ 2

g
(Γb

√
ΨP − Qfc

Cox
)
]2

± 4
Γ 2

g
(ΨP − Ψs)

. (8.70)

Here again, ΨP may be replaced by Ψ0 + VP.

As done without polydepletion, this slope factor may be evaluated at the value of surface

potential Ψs that is best adapted to the mode of operation.

In weak inversion, or close to it, it may be evaluated at Ψs = ΨP; (8.70) then becomes

nq = nqw =
Γb

2
√

ΨP

+
1

1 ± 2
Γ 2

g

(
Γb

√
ΨP − QfcCox

) . (8.71)

This variation of nqw with ΨP is plotted in Figure 8.20 with the same numerical values as those

of Figures 8.18 and 8.19.

Condition (8.64) is used to identify the valid part of the curve (shown in thick line) for

each value of Qfc. Notice that nq cannot be higher than its value for very large γg/γb, that is

independent of Qfc as shown by (8.70). This shows that the charge slope factor nq is always

decreased by polydepletion.
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For strong inversion, a better evaluation of nq given by (8.70) may be at Ψs = Ψ0 + VP/2,

resulting in

nq = nqs =
Γb

2
√

Ψ0 + VP/2
+

1
√
[

1 ± 2
Γ 2

g
(Γb

√
Ψ0 + VP − Qfc

Cox
)
]2

± 2
Γ 2

g
VP

. (8.72)

8.4.6 Effect on Qi(V), Currents, and Transconductances

The continuous expression of V (Qi) (3.48) and its approximations (3.49) and (3.50) in weak

and strong inversion remain valid if n is replaced by nq given by (8.70) in the normaliza-

tion of Qi. Hence the specific charge (3.42) used for this normalization must be replaced

by

Qspec = −2nqUTCox, (8.73)

The same remark applies to the normalized drain current and its forward and reverse com-

ponents derived in Sections 4.4.1 and 4.4.6 provided that the specific current is redefined

as

Ispec = 2nqβU 2
T. (8.74)

In particular, results (4.25) and (4.39) and the corresponding characteristics in Figure 4.5

remain unchanged.

As explained in Chapter 5, the source transconductance Gms is proportional to the density

QiS of mobile charge at the source (in normalized form, gms = qs). Symmetrically, the drain

transconductance Gmd is proportional to the density QiD of mobile charge at the drain (in nor-

malized form, gmd = qd). Therefore, all expressions of Gms,d as functions of IF,R or VP − VS,D

remain valid, provided n is replaced by nq. The specific conductance used for normalization

becomes

Gspec = 2nqβUT. (8.75)

Now, since by definition (8.60) the slope of VG(VP) is nv, the gate transconductance is given

by

Gm =
Gms − Gmd

nv

, (8.76)

instead of (5.9).

It can be pointed out that, since polydepletion reduces nq, it reduces Gms,d (except in

weak inversion at a fixed current). Since it increases nv, Gm is further reduced proportio-

nally.

The effect of polydepletion can be combined with that of mobility reduction by simply

applying relations (8.73) to (8.76) in the analysis of Section 8.2.
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8.4.7 Strong Inversion Approximation

According to (3.50) and (8.73), the mobile charge in strong inversion can be approximated by

−
Qi

Cox

= nq(VP − V ). (8.77)

This approximation is illustrated in Figure 8.21. Assuming constant mobility (no mobility re-

duction), the forward and reverse components of drain current as well as the various transcon-

ductances are also shown on the curve.

As discussed in Section 3.6.3, the surface potential can be assumed to be independent of the

gate voltage and equal to Ψ0 + V. The (equilibrium) threshold voltage VT0 was defined as the

value of the gate voltage for which the mobile charge density is zero at equilibrium (V = 0).

Hence, according to (8.77),

VT0 = VG(VP = V = 0). (8.78)

Now, since VP = ΨP − Ψ0 (3.66), then

VT0 = VG(ΨP = Ψ0) (8.79)

or, from (8.61),

VT0 = Φms −
Qfc

Cox

+ Ψ0 + Γb

√

Ψ0 ±
1

Γ 2
g

(
Qfc

Cox

− Γb

√

Ψ0

)2

, (8.80)

with the condition that the term in parentheses must be positive for an N-type gate and negative

for a P-type gate. Otherwise no polydepletion occurs, corresponding to an infinite value of Γg.

The threshold VT0 can also be found in Figure 8.18 as the value of VG for ΨP = Ψ0. As we

can see, VT0 is always increased by polydepletion in an N-type gate. For a P-type gate, it might

be decreased, but only with very large positive values of fixed charge Qfc.
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Figure 8.21 Effect of polydepletion on strong inversion approximation
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According to (8.60), nv is the slope of VG(VP). Furthermore, VT0 = VG(VP = 0) as expressed

by (8.78). Therefore, the pinch-off voltage can be approximated by

VP =
VG − VT0

nv

. (8.81)

This approximation can be used to obtain VP = ΨP − Ψ0, instead of (8.67), which was anyhow

valid only for Qfc = 0.

Introducing (8.81) into (8.77) provides a simple expression of Qi(VG, V ):

−
Qi

Cox

= nq

(
VG − VT0

nv

− V

)

. (8.82)

Hence, a variation ΔVG of gate voltage results in a vertical shift
nq

nv
ΔVG < ΔVG of Qi/Cox(V )

as depicted in Figure 8.21. This explains the value of gate transconductance in linear mode

Gm =
nq

nv

β(VD − VS). (8.83)

8.5 BAND GAP WIDENING

8.5.1 Introduction

In modern deep submicron processes, the oxide thickness is reduced to very small values,

whereas the gate voltage is not reduced proportionally. The electric field at the silicon surface

is therefore increased, and confined states originating from a quantum treatment can no longer

be ignored. As a consequence, the highest allowed energy level for holes is slightly below the

top of the valence band by an amount qΔΨv, and the lowest allowed energy level for electrons

is slightly above the bottom of the conduction band by an amount qΔΨc. With this band gap

widening effect, expression (3.5) of the concentration of electrons must be modified to [47,108]

np = ni exp
Ψ − ΦF − V − ΔΨc

UT

. (8.84)

In inversion, it can be assumed that ΔΨc is primarily a function of the effective vertical field

at the silicon-oxide interface. Since this field is proportional to the charge in the silicon, ΔΨc

can be expressed as [47]

ΔΨc = Aqm(−Qb − ηQi)
2/3. (8.85)

The physical constant Aqm is given by

Aqm =
(

1

2m∗q

)1/3(
9

16

h

ǫsi

)2/3

= 3.53
Vm4/3

A2/3s2/3
, (8.86)

where h is the Planck’s constant and m∗ is the effective mass of the electron (equal to 98% of

its free mass for <100> substrate orientation).
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The constant η accounts for the effective value of the surface field. Its value is typically 3/4,

but it can be used as a fitting parameter.

For a uniformly doped substrate, the depletion charge linearized around its value at Ψs = ΨP

is given by (3.54) and is not affected by possible polydepletion. It can further be related to the

inverted charge by means of (3.39) (with n = nq to account for polydepletion), resulting in

Qb = −ΓbCox

√

ΨP −
n − 1

nq

Qi, (8.87)

where n is given by (3.34) and nq is given by (8.70). Introducing this expression of Qb(Qi)

into (8.85) gives

ΔΨc = Aqm

[

ΓbCox

√

ΨP +
(

1 − n

nq

+ η

)

(−Qi)

]2/3

, (8.88)

or, with the normalized variables defined by (3.41), (3.43), and (8.73),

δψc =
AqmC2/3

ox

U
1/3
T

[

γb

√

ψp + (1 − n + ηnq)2qi

]2/3

, (8.89)

which is plotted in Figure 8.22 for several values of the pinch-off potential, η = 3/4, and

nq = n = nw given by (3.68).

As given by (8.88), ΔΨc is a nonlinear function of both ΨP and Qi. It can be linearized with

respect to Qi around Qi = 0, giving

ΔΨc = Aqm

(

ΓbCox

√

ΨP

)2/3

︸ ︷︷ ︸

ΔΨcP

+
2

3
AqmCox(ηnq + 1 − n)

(

ΓbCox

√

ΨP

)−1/3

︸ ︷︷ ︸

δqm

−Qi

nqCox

, (8.90)
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or simply

ΔΨc = ΔΨcP + δqm

−Qi

nqCox

. (8.91)

The comparison with (8.89) in Figure 8.22 shows that this linearization is an acceptable

approximation.

8.5.2 Extension of the General Charge–Voltage Expression

According to (8.84), the effect of band gap widening on the electron concentration is corrected

for by adding δΨc to the channel voltage V. With the charge sheet approximation, the same

correction can be introduced in expression (3.38) of Qi(Ψs), where the contribution of holes is

neglected, and in equation (3.40) resulting from the linearization around Ψs = ΨP. Replacing

n by nq to also account for polydepletion, the latter can hence be rewritten as

ΨP − 2ΦF − V

UT

= 2
−Qi(1 + δqm)

2nqUTCox

+ ln
−Qi(1 + δqm)

2nqUTCox

+
ΔΨcP

UT

+ ln

[

2nq

√
UT

Γb(1 + δqm)

(

−Qi

CoxΓb

√
UT

+ 2

√

ΨP

UT

+
Qi

nqCoxUT

)]

.

(8.92)

To obtain this form, (1 + δqm) has been introduced in the numerator of the first logarithmic

term and in the denominator of the second logarithmic term for compensation.

The normalized charge qi defined by (3.41) can then be introduced, with an extended

definition of the specific charge

Qspec = −2nqUTCox/(1 + δqm), (8.93)

which reduces to (8.73) if band gap widening is negligible [and to (3.42) if polydepletion is

also negligible].

Equation (8.92) then becomes

ψp − 2φf − v = 2qi + ln qi + ln

[
2nq

γb(1 + δqm)

(
2nqqi

γb(1 + δqm)

+2

√

ψp −
2qi

(1 + δqm)

)]

+ δψcp. (8.94)

It has been shown in Figure 3.10 that the second logarithmic term is practically independent

of qi. The terms in qi can therefore be neglected, providing the simplified result

2qi + ln qi + ln

(
4nq

γb

√

ψp

)

+ δψcp − ln (1 + δqm)

︸ ︷︷ ︸

vsh

= ψp − 2φf − v, (8.95)
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which is identical to (3.45) with an expression of voltage shift vsh extended to include the effect

of band gap broadening.

The general charge–voltage expression (3.48) does therefore include quantum effects, pro-

vided specific charge Qspec (that is used to normalize mobile inverted charge Qi) is extended to

(8.93), and vsh [that relates pinch-off voltage vp to pinch-off potential ψp according to (3.47)]

is extended to

vsh = ln

(
4nq

γb

√

ψp

)

+ δψcp − ln (1 + δqm). (8.96)

The correction term δqm is given by (8.90), and can be expressed by introducing definition

(3.30) of the substrate modulation factor Γb:

δqm =
2

3
AqmCox(ηnq + 1 − n)(2qǫsi NbΨP)−1/6. (8.97)

For a fixed doping concentration Nb, δqm is approximately proportional to Cox. Even though

Nb is also increased while scaling-down the process features, the dependency on Cox dom-

inates. Expression (8.97) is plotted in Figure 8.23 as a function of ΨP for nq = n = nw (no

polydepletion, evaluation of n at pinch-off) and for several combinations of values of Nb and

Cox.

As can be seen, δqm is a very weak function of ψp. It can therefore be considered constant and

evaluated at a particular value of ΨP; for example, ΨP = 2ΦF. It is also a very weak function

of Nb. Indeed, for the whole set of values considered in Figure 8.23 and for ΨP > 0.7 V,

δqm

Cox

= 10 to 20 m2/F = 10−2 to 2 × 10−2 µm2/fF. (8.98)

For a given value of VP − V, the inverted charge Qi is reduced since Qspec is reduced

according to (8.93).

Even for a very large value of Cox, δqm remains smaller than unity and can therefore be

neglected in (8.96). Hence, the increase ΔVsh of Vsh due to band gap widening is reduced to

Nb    Cox     Gb

(cm–3) (fF/µm2) (V1/2)

3.1017     30       0.106

1.1017     10       0.183

3.1016       3       0.334

1.1016       1       0.578
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Figure 8.23 Correction term δqm according to (8.97)
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ΔΨcP defined in (8.90). Introducing definition (3.30) of Γb, it can be expressed as

ΔVsh
∼= ΔΨcP = Aqm (2qǫsi NbΨP)1/3, (8.99)

which is independent of Cox and depends only on the doping concentration Nb and the pinch-off

potential ΨP. It is represented in Figure 8.24 for various values of Nb. It can be noticed that it

still has a nonnegligible value even for the very low doping concentration Nb = 1015 cm−3.

Using nonnormalized variables, (8.96) then becomes

Vsh = UT ln

(
4nq

Γb

√

ΨP

)

+ ΔVsh. (8.100)

Although this increase of Vsh is proportional to (ΨP)1/3, it may again be considered as a

constant evaluated at some value of ΨP, for example 2ΦF.

The effect of band gap widening is to increase the voltage shift Vsh, thereby increasing

ΨP − VP and Ψ0 according to (3.66). Hence the threshold VT0 defined by (3.58) is increased,

and the pinch-off voltage VP is decreased at constant ΨP (or constant VG).

8.5.3 Extension of the General Current–Voltage Expression

Due to quantum effects, the electric field experienced by the mobile carriers in the channel is

no longer −dΨs/dx but

Ex = −
d(Ψs − ΔΨc)

dx
. (8.101)

Expression (4.2) of the drain current must therefore be modified to

ID = μW

⎛

⎜
⎜
⎝

−Qi

d(Ψs − ΔΨc)

dx
︸ ︷︷ ︸

drift

+ UT

dQi

dx
︸ ︷︷ ︸

diffusion

⎞

⎟
⎟
⎠

. (8.102)

However, according to (8.84), the same correction must be included in the density of inverted
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charge, so that (4.4) becomes

dQi

dx
=

Qi

UT

(
d(Ψs − ΔΨc)

dx
−

dV

dx

)

, (8.103)

which when introduced in (8.102) gives exactly (4.5).

Hence, all the results derived in Chapter 4 remain valid, provided the value of Vsh used in

expression (3.66) of Ψ0 is increased by ΔVsh given by (8.99) [increasing thereby the value

of VT0 according to (3.58)], and the expression of the specific current defined by (4.14) is

extended with that of the specific charge (8.93), giving

Ispec = μUT

W

L
(−Qspec) =

2nqμCox

1 + δqm

W

L
U 2

T, (8.104)

which reduces to (8.74) if band gap widening is negligible [and to (4.14) if polydepletion is

also negligible].

The same is true for all other results derived so far.

8.6 GATE LEAKAGE CURRENT

Silicon dioxide used to isolate the gate electrode from the channel is an excellent dielectric

material. Due to its large band gap, its intrinsic leakage current is negligible as long as its

thickness tox is larger than 3 nm and the voltage Vox across it does not exceed a few volts.

Increasing Vox may result in field-induced (Fowler–Nordheim) tunneling of carriers [109],

even with larger values of tox. This “high-voltage” leakage current is exploited to charge or

discharge an isolated gate in EPROM [110] and E2PROM [111] nonvolatile memories.

Now, when tox is reduced below 3 nm in aggressively scaled-down processes, a gate leakage

current starts to appear even at low Vox, as the result of direct tunneling of carriers through the

oxide.

For an N-channel transistor operated in inversion (Ψs > 0), this intrinsic gate current consists

of electrons tunneling from the inversion layer to the gate (holes for a P-channel transistor).

The resulting current density can be expressed as [112, 113]

JG =
KG

ǫox

Vox

tox

(−Qi)Ptun. (8.105)

Practical values for constant KG are [113] 3 × 10−5A/V2 for electrons and 4 × 10−5 A/V2 for

holes, and Ptun is the tunneling probability.

A suitable formulation of this probability, which covers both direct and Fowler–Nordheim

tunneling, is given by [113]

Ptun =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

exp

(

−
EBtox

Vox

[

1 −
(

1 −
Vox

XB

)3/2
])

for Vox ≤ XB (direct)

exp

(

−
EBtox

Vox

)

for Vox ≥ XB (Fowler–Nordheim).

(8.106)
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Figure 8.25 Tunneling probability for tox = 2 nm

where XB is the oxide-channel voltage barrier and EB is a characteristic electric field. Their

values for electrons and holes are given in Figure 8.25, which shows the corresponding plots of

(8.106) for tox = 2 nm. As can be seen, the probability of direct tunneling is a strong function

of Vox. Its dependency on tox is even stronger, as illustrated in Figure 8.26 for two values of

Vox. Indeed, for small values of Vox, Ptun increases by about 12 orders of magnitude when tox

is reduced from 3 nm to 1 nm.

Using normalized variables qi = Qi/Qspec, vox = Vox/UT, and ξ = x/L , the gate current

is obtained by integrating (8.105) along the channel:

IG = IG0

∫ 1

0

qivox Ptun(vox) dξ, (8.107)

with

IG0 =
2nq KGU 2

T W L

t2
ox

. (8.108)

Since the very thin oxide is always associated with large substrate concentration, polysilicon

depletion must be taken into account and nq is the charge slope factor given by (8.69) or (8.70).

The voltage across the oxide can be obtained directly from (3.19) with Qsi = Qb + Qi:

Vox = Eoxtox = −
Qb + Qi + Qfc

Cox

. (8.109)
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Figure 8.26 Probability of direct tunneling as a function of tox
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After normalization of Qi and Qfc to Qspec given by (8.73) and introduction of expression

(3.29) of Qb, we obtain

vox = 2nq(qi + qfc) + γb

√

ψs, (8.110)

where voltages are normalized according to (3.43).

Now, with the charge–potential linearization introduced in Section 3.6, and using (3.66)

and (3.48),

ψs = ψp − 2qi = ψ0 + vp − 2qi = ψ0 + v + ln qi, (8.111)

which when introduced in (8.110) finally yields

vox = 2nq(qi + qfc) + γb

√

ψ0 + v + ln qi. (8.112)

The argument of integral (8.107) is a complicated function of qi, which is itself a function

of ξ in the general case, and no analytic solution can be found. For the particular case of

v = vs = vd (equipotential channel), the situation is much simpler since all three terms inside

the integral are constant and the integral is just their product:

IG

IG0

= qivox Ptun(vox) (for equipotential channel). (8.113)

We shall assume that the gate current remains sufficiently small to have no effect on the

potential.

Using qi as a parameter, this product can be calculated to obtain IG(qi), whereas (vp − v)(qi)

is given by (3.48). An example of the resulting plot of IG(vp − v) is represented in Figure 8.27
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variation of forward current IF is also shown for comparison
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for two values of (equipotential) channel voltage v. As can be seen, IG(vp − v) is slightly

dependent of the value of v, due to the presence of v in (8.112).

For comparison, the forward current, IF(vp − v), has been calculated from parameter qi,

using (4.19) and (8.74). It is also represented in Figure 8.27 after division by 107 to fit in

the same scale. As can be seen, the gate current is approximately proportional to IF in weak

inversion, but it increases faster in strong inversion.

Due to the very steep function Ptun(tox), IG/IF is very strongly dependent on tox. In Fig-

ure 8.28 the variation of this ratio is represented for IF = Ispec (inversion coefficient I C = 1),

for which qi = (
√

5 − 1)/2 according to (4.24). The ratio IG/IF for a given value of inversion

coefficient does not depend on the channel width, but it increases with the square of the channel

length (since IG ∝ L and IF ∝ 1/L).

In weak inversion, qi ≪ 1 and ψs = ψp = ψ0 + vp. Equation (8.110) then becomes

vox = 2nqqfc + γb

√

ψ0 + vp. (8.114)

Hence vox and Ptun are constant along the channel even if v is not constant (vd �= vs). In this case,

the gate current is obtained by replacing qi in (8.113) by its average value qi. Since in weak inver-

sion id = −dqi/dξ according to (4.21), qi changes with a constant slope between its values qs at

the source and qd at the drain (as long as the gate current remains a small perturbation, IG ≪ IF),

as illustrated in Figure 8.29. Thus, using (3.49), the average charge density can be expressed as

qi =
evp

2
(e−vs + e−vd ). (8.115)

0 1
x
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qs(1 – x) + qd x µ JG(x)

(1 – x) JG(x)dx x JG(x)dx

Position along channel

Figure 8.29 Weak inversion: profile of mobile charge and source–drain repartition of local gate

current
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The gate current in weak inversion is obtained by introducing (8.114), (8.115), and (8.106)

into (8.113). The result for vd = vs = v is also plotted in Figure 8.27. In saturation (vd ≫ vs),

the gate current would be divided by 2.

Since in weak inversion Vox is constant, the local density of gate current JG(ξ ) injected in

the channel is simply proportional to qi. Now, the two parts of the channel may be considered as

separate transistors with normalized channel lengths ξ and 1 − ξ . According to the concept of

pseudo-resistor introduced in Section 4.5.4, the elementary local contribution JG(ξ ) dξ of gate

current splits proportionally to the inverse of the channel lengths (assuming constant width),

as indicated in Figure 8.29. Hence the fraction of gate current flowing to the source is given by

IGS

IG

=
∫ 1

0
[qs(1 − ξ ) + qdξ ](1 − ξ ) dξ

(qs + qd)/2
=

2qs + qd

3(qs + qd)
, (8.116)

or, by introducing (3.49) to express the charge densities from the corresponding voltages:

IGS

IG

= 1 −
IGD

IG

=
1 + 2 exp (vd − vs)

3[1 + exp (vd − vs)]
. (8.117)

This result is plotted in Figure 8.30. The gate current splits evenly to source and drain for

vd = vs to reach ratios 2/3 and 1/3 in saturation.

As was pointed out before, the calculation of the gate current in moderate and strong

inversion is much more complicated for vd �= vs because vox and Ptun are then variable along

the channel. No exact analytical solution can be found, but approximations show that the overall

gate current IG does not change much with vd [113]. Its source–drain repartition saturates for

vd > vp to a value of IGS/IG that increases with vp.

Since the gate current depends on the pinch-off voltage, it creates a dc gate conductance

Gg =
1

nv

dIG

dVP

, (8.118)

which is split into a gate-to-source conductance Ggs and a gate-to-drain conductance Ggd

proportionally to the splitting of current. We have seen that, in weak inversion, the gate current

is approximately proportional to the drain current; hence, Gg
∼= IG/(nUT). In strong inversion

Gg/IG decreases, but not as fast as the gate transconductance.
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The gate current also exhibits shot noise of spectral density 2q IG [114]. Its contribution

may dominate at low frequencies, when the gate noise induced from the channel becomes

negligible.

In addition to the gate to channel current discussed above, tunneling also produces a current

in the small areas where the gate overlaps the source and drain diffusions. This component of

gate leakage may dominate for short channel lengths or for large drain voltages [112, 113].



9 Short-Channel Effects

In the previous chapters, the channel was assumed to be long, allowing for a one-dimensional

analysis using the gradual channel approximation. This chapter is devoted to the effects appear-

ing when reducing the length of the transistor to dimensions that get close to the depletion width.

In such a situation, the one-dimensional approach is no longer valid and a two-dimensional

analysis is required. Furthermore, since the terminal voltages are not scaled-down proportion-

ally to the device length reduction, the longitudinal electric field increases beyond a certain

critical field above which the carrier velocity starts to saturate. This velocity saturation (VS)

effect is presented in Section 9.1 using different velocity-field relations. Another short-channel

effect that strongly limits the performance (particularly the voltage gain) of analog circuits is

the channel length modulation (CLM) described in Section 9.2. When the device length gets

small the surface potential in the channel region is no longer defined uniquely by the vertical

field, but becomes influenced by the drain (or source) voltage. This effect is called the drain-

induced barrier lowering (DIBL) and is presented in Section 9.3. A pseudo two-dimensional

analysis is used for CLM and DIBL to derive analytical expressions for the channel length

reduction and the surface potential. Short-channel effects such as VS and CLM not only impact

the current, but also impact the thermal noise. A short-channel thermal noise model including

the effects of VS, CLM, but also carrier heating and mobility reduction due to the vertical field

is presented in Section 9.4.

9.1 VELOCITY SATURATION

An important effect that appears when the longitudinal electric field Ex within the device starts

to become large is the saturation of the drift velocity. The drift velocity vdrift of electrons and

holes in bulk silicon is plotted versus Ex in Figure 9.1. At low longitudinal electric field, the

velocity is proportional to the electric field with a proportionality factor equal to the mobility

µz at low longitudinal field. When Ex approaches the critical field Ec, the velocity starts to

saturate towards a maximum value vsat. The shape of the velocity-field relation in silicon is

slightly different for electrons and holes. Typical values for Ec and vsat at room temperature

for electrons and holes are given in Table 9.1. The critical field Ec is related to the saturated

Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design C. Enz and E. Vittoz
C© 2006 John Wiley & Sons, Ltd.
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Figure 9.1 Drift velocity in silicon for electrons and holes versus electric field

drift velocity and the mobility at low longitudinal field by

Ec �
vsat

µz

. (9.1)

As shown in Figure 9.2(a) and discussed in Section 8.2, the mobility at low longitudinal field

µz actually depends on the vertical field Ez . The larger the vertical field, the smaller µz and

the larger the critical field, since vsat is constant for a given type of silicon. More generally, any

factor reducing the low longitudinal field mobility µz, pushes the limit of velocity saturation

to higher values of the longitudinal field.

Two other mobilities can be defined as illustrated in Figure 9.2(b). The effective mobility

µeff combining the effects of reduction due to the vertical field and VS and defined as

µeff �
vdrift

|Ex |
. (9.2)

µeff is also called the cord mobility, since it actually corresponds to the secant between the

origin and the operating point v(Ex ), as shown in Figure 9.2(b). Another mobility that will be

used in Section 9.4 is the differential mobility defined as

µdiff �
dvdrift

dEx

. (9.3)

Different velocity-field models will be considered below in order to analyze the effect of

velocity saturation on the drain current and on the transconductances.

Table 9.1 Typical values of the saturated drift velocity and

the critical field for bulk silicon at room temperature [67]

vsat Ec

Electrons 105 m/s 1 V/μm

Holes 8 × 104 m/s 3 V/μm
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Figure 9.2 (a) Dependence of the mobility µz at low longitudinal field with the vertical field Ez . (b)

Illustration of the different mobilities

9.1.1 Velocity-Field Models

9.1.1.1 Model 1

The simplest model to describe the velocity-field dependence is to consider the velocity pro-

portional to the longitudinal field with a constant slope up to the critical field, above which it

stays constant and equal to the saturated velocity. This model is described by the piecewise

linear model defined by

vdrift(Ex ) =

{

µz|Ex | for |Ex | < Ec

vsat for |Ex | ≥ Ec,
(9.4)

which can be normalized to the saturation value vsat according to

ν(e) �
vdrift

vsat

=

{

e for e < 1

1 for e ≥ 1,
(9.5)

where e is the longitudinal electric field Ex normalized to the critical field Ec:

e �
|Ex |
Ec

. (9.6)

The corresponding effective mobility μeff is then simply given by

μeff(Ex ) �
vdrift

|Ex |
=

{

μz for Ex < Ec

vsat/|Ex | for Ex ≥ Ec,
(9.7)

or in a normalized form

u(e) �
μeff

μz

=

{

1 for e < 1

1/e for e ≥ 1.
(9.8)
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The main advantage of this model is obviously its simplicity, allowing to get a first under-

standing of the physical phenomenon. But on the other hand, it has discontinuous derivatives

at e = 1 that may induce a bad behavior of the model.

9.1.1.2 Model 2

A continuous model also accounting for the difference between the velocity-field characteristics

of electrons and holes as illustrated in Figure 9.1 is defined by

vdrift(Ex ) = vsat

|Ex |/Ec

[

1 +
(

|Ex |
Ec

)α]
1
α

= μz

|Ex |
[

1 +
(

|Ex |
Ec

)α]
1
α

, (9.9)

where α = 2 for electrons and α = 1 for holes. Equation (9.9) can be written in a normalized

form as

ν(e) �
vdrift

vsat

=
e

(1 + eα)
1
α

. (9.10)

Note that this continuous model has been used in many compact models with the approximation

that α is equal to unity for both holes and electrons. For the sake of simplicity, we will also

make the same assumption in the following development.

The effective mobility is then given by

μeff(Ex ) �
vdrift

|Ex |
=

μz

1 + |Ex |/Ec

, (9.11)

which can also be written in normalized form as

u(e) �
μeff

μz

=
1

1 + e
. (9.12)

9.1.1.3 Model 3

Although the continuous velocity-field model given by (9.9) and (9.10) insures the continuity

of the current and the output conductance versus the drain voltage, it requires the electric field

to become infinity at the drain for the velocity and hence the current to saturate, which is not

physical. Another velocity-field model that will also be used subsequently in Section 9.2 for

the derivation of the CLM model is given by

vdrift(Ex ) =

⎧

⎨

⎩

vsat
|Ex |/Ec

1 + |Ex |/(2Ec)
for |Ex | < 2Ec

vsat for |Ex | ≥ 2Ec,

(9.13)

or in normalized form

ν(e) �
vdrift

vsat

=

{ e
1 + e/2

for e < 2

1 for e ≥ 2.
(9.14)
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Figure 9.3 The different velocity-field models

The corresponding effective mobility-field model is then given by

µeff(Ex ) �
vdrift

|Ex |
=

⎧

⎪

⎨

⎪

⎩

µz

1 + |Ex |/(2Ec)
for |Ex | < 2Ec

vsat

|Ex |
for |Ex | ≥ 2Ec,

(9.15)

or in normalized form

u(e) �
µeff

µz

=

⎧

⎪

⎨

⎪

⎩

1
1 + e/2

for e < 2

1

e
for e ≥ 2.

(9.16)

This last model does not require the field to become infinity for the velocity to saturate.

Actually, the velocity saturates at Esat � 2Ec. This allows to define a point in the channel where

the field becomes equal to twice the critical field Ec and where the carrier velocity saturates.

The channel can then be split into a nonvelocity saturation region on the direction from that

point toward the source and a VS region on the direction from that point toward the drain where

the velocity is equal to vsat. The length of this VS region will then be used in the CLM model.

The three velocity-field models presented above are plotted in Figure 9.3. Note that the

approximation defined in (9.13) (corresponding to Model 3) is closer to the velocity-field

model of electrons given by (9.9) with α = 2. Also note that the shape of the velocity-field

curve will strongly affect the current and output conductance versus drain voltage. All three

velocity-field models will be used hereafter to evaluate the effect of velocity saturation on the

profile of the inversion charge, the drain current, and the transconductances.

9.1.2 Effect of VS on the Drain Current

In weak inversion the current is carried by diffusion only and the surface potential gradient

along the channel is zero and therefore the longitudinal electric field is null. Velocity saturation
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Table 9.2 Typical values of the VS parameter λc

L 1 μm 0.5 μm 0.17 μm 0.1 μm

λc 0.05 0.1 0.3 0.5

can therefore be neglected in weak inversion. Although a complete model including both the

diffusion component and drift component including the effect of velocity saturation can be

derived, in the following derivation, the diffusion current is neglected for the sake of simplicity.

Note that this does not introduce a significant error in strong inversion.

The drift component of the drain current is proportional to the velocity and can be written

as

ID = W (−Qi)vdrift = W (−Qi)μeff|Ex | = W (−Qi)μeff

dΨs

dx
, (9.17)

or using the normalized variables defined above

id = 2qi

ν

λc

= 2qi

ue

λc

= uqi

dψs

dξ
, (9.18)

where the normalized variables id, qi, ψs, and ξ have their usual meaning. The parameter λc

accounts for the VS effect and depends on the transistor length L according to

λc �
2μz UT

vsatL
=

2UT

EcL
. (9.19)

Note that λc tends to zero for very long-channel devices. Setting it to zero corresponds to ignore

the effect of VS. Typical values of λc for different channel lengths are given in Table 9.2.

As discussed in Section 3.6.1 and according to (3.39), the inversion charge can be linearized

with respect to Ψs giving a relation between the surface potential gradient and the inversion

charge gradient

dΨs

dx
=

1

nCox

dQi

dx
, (9.20)

or in normalized form

dψs

dξ
= −2

dqi

dξ
. (9.21)

Replacing (9.21) into (9.18) results in

id = −2uqi

dqi

dξ
. (9.22)

The main difference between (9.22) and the long-channel model (4.21) (in strong inversion)

discussed in Section 4.4.1 is the field-dependent mobility term u which depends on the chosen

velocity-field model.
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The inversion charge density at the drain −QiD (or its normalized form qd) plays a particular

role in the presence of VS. When the drift velocity saturates right at the drain, ν = 1 at ξ = 1.

The drain current cannot increase anymore and is then limited to the saturation value id sat given

by (9.18) evaluated at ξ = 1 with ν = 1 and qi = qd sat:

id sat �
2

λc

qd sat, (9.23)

where qd sat is the value of the inversion charge density at the drain which is required to sustain

the drain current when carrier velocity is saturated at the drain. The main difference compared

to the long-channel situation is that the charge density at the drain does not vanish to zero as

it does at the onset of saturation for long-channel devices when vd = vp, but it has to be finite

in order for the current to flow despite the saturated velocity. To account for this saturation

of the drain charge, the normalized drain charge in strong inversion given by (3.50) has to be

modified according to

qd =

⎧

⎨

⎩

vp − vd

2
for vd < vd sat

qd sat for vd ≥ vd sat,

(9.24)

where the drain saturation voltage vd sat is the value of the drain voltage at which the current

and the drain charge saturate. It is obtained by replacing qd and vd in qd = (vp − vd)/2 by qd sat

and vd sat respectively, resulting in

vd sat = vp − 2qd sat. (9.25)

Note that, due to VS, vd sat is always smaller than the pinch-off voltage vp corresponding to

the saturation voltage when velocity saturation is not present.

9.1.2.1 Model 1

In a first step, the simple piecewise linear velocity-field model given by (9.5) will be used to

derive the current. The latter is obtained by integrating (9.18) or (9.22) from source to drain,

assuming that the drain voltage is sufficiently low for the longitudinal electric field to remain

smaller than the critical field at any point along the channel. The carrier velocity is then not

saturated along the channel and hence ν = e and u = 1, resulting in

id = q2
s − q2

d , (9.26)

where qs is the inversion charge density taken at the source, which in strong inversion and

assuming there is no velocity saturation at the source is related to the source voltage according

to

qs � qi(ξ = 0) =
vp − vs

2
, (9.27)

and qd is the inversion charge density taken at the drain and given by (9.24).
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To ensure current continuity, from (9.26), the drain current in saturation can also be written

as

id sat = q2
s − q2

d sat. (9.28)

If there was no VS, like in the long-channel case, the drain current would saturate as soon

as qd = 0 which occurs when vd = vp. When VS is present, the drain current saturates as soon

as qd reaches qd sat, which occurs when vd becomes equal to vd sat.

The saturation current id sat, saturation drain charge density qd sat, and saturation voltage

vd sat are depending on the source charge density qs. They can be expressed in terms of qs by

solving equations (9.23), (9.28), and (9.25) for qd sat, id sat, and vd sat, resulting in

qd sat =
1

λc

[

√

1 + (λcqs)2 − 1
]

, (9.29a)

id sat =
2

λc

qd sat =
2

λ2
c

[

√

1 + (λcqs)2 − 1
]

, (9.29b)

vd sat = vp − 2qd sat = vp −
2

λc

[

√

1 + (λcqs)2 − 1
]

. (9.29c)

The drain saturation voltage is plotted versus the pinch-off voltage in Figure 9.4(a), which

shows that vd sat can be substantially smaller than vp.

The drain current including VS is plotted versus vd in Figure 9.4(b) together with the

current which does not include the effect of VS. For vd < vd sat, the drain current follows the

current that does not include VS up to vd sat, above which it saturates to the value id sat given

by (9.29b). The output conductance obtained with this model is clearly discontinuous due to

the discontinuity of the derivative of the velocity-field relation given by (9.5). A continuous

model will be derived below (Model 2).

The profile of the inversion charge density can be obtained by integrating (9.18) or (9.22)

with u = 1 from the source to a point x along the channel. This leads to

idξ = q2
s − q 2

i , (9.30)
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Figure 9.4 (a) Drain saturation voltage versus pinch-off voltage for Model 1 with λc = 0, 0.01, 0.1.

(b) Drain current versus drain voltage for Model 1 with λc = 0.05
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which can be solved for qi, resulting in

qi(ξ ) =
√

q2
s − idξ, (9.31)

where id accounts for VS with qd given by (9.24).

As Figure 9.5 shows, the profile of the inversion charge along the channel is affected by the

VS occurring right at the drain. Indeed, the inversion charge at the drain cannot decrease down

to zero, but remains clamped at qd sat when vd gets larger than vd sat. The higher the product λcqs,

the stronger the effect. Figure 9.5(a) shows the inversion charge profile for different values of

vp − vd and for λc = 0.01. When vp − vd = vp − vs = 200 (or vd = vs), the lateral field is zero

and the profile is not affected by VS and hence remains uniform from source to drain. When

vd increases but remains smaller than vd sat (for example, the curve labeled vp − vd = 160

in Figure 9.5(a)), the profile decreases at the drain like in the long-channel case. As soon

as vd becomes larger then vd sat, the charge at the drain cannot decrease anymore and remains

clamped to qd sat. In saturation, i.e., for vd > vd sat the actual charge at the drain is no longer set by

vp − vd, but by the current id sat which has to flow even though the carrier velocity is saturated

close to the drain. Figure 9.5(b) shows the inversion charge profile in saturation (obtained by

setting vd = vp > vd sat) for different values of λc and for a constant value of qs. Increasing

λc increases qd sat which tends to qs making the profile become almost uniform from source

to drain, even though the transistor is in saturation. This situation is somehow similar to what

happens when vd
∼= vs, but with the difference that the current is equal to the saturation current

id sat, which depends only on qs as stated by (9.29b).

Knowing the inversion charge profile allows to also get the longitudinal electric field. Indeed,

setting u = 1 in (9.18) and solving for e, we get

e(ξ ) =
λcid

2qi

=
λcid

2
√

q2
s − idξ

. (9.32)

In strong VS condition, i.e., for λcqs ≫ 1, the saturation current given by (9.29b)
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reduces to

id sat
∼=

2qs

λc

∼=
vp − vs

λc

, (9.33)

which after denormalization simplifies to

ID sat
∼= Wvsat(−QiS) ∼= nWCoxvsat(VP − VS)

∼= WCoxvsat(VG − VT0 − nVS).
(9.34)

Equation (9.34) shows that when the channel is under strong VS conditions, the drain current

in saturation does not depend on the channel length anymore and varies linearly instead of

quadratically with respect to the overdrive voltage. This can be explained by the fact that in

such condition on one hand the inversion charge becomes almost uniform along the channel

from source to drain and equal to the value taken at the source and on the other hand that

the carriers are moving at their maximum velocity which is constant along the channel. The

charge moving from source to drain per unit time corresponding to the drain current is therefore

constant and independent of the channel length L for a given W and VP − VS.

9.1.2.2 Model 2

The discontinuity problem inherent to the simple piecewise linear velocity-field model of (9.4)

or (9.5) can be avoided by using the continuous velocity-field model given by (9.9) or (9.10)

with α = 1. The longitudinal field Ex can be expressed in terms of the inversion charge density

gradient by using (9.20)

|Ex | =
dΨs

dx
=

1

nCox

dQi

dx
, (9.35)

or in a normalized form

e �
|Ex |
Ec

=
UT

EcL

dψs

dξ
= −

2UT

EcL

dqi

dξ
= −λc

dqi

dξ
. (9.36)

The normalized velocity and mobility can then be written as

ν �
vdrift

vsat

=
−λc

dqi

dξ

1 − λc
dqi

dξ

, (9.37a)

u �
μeff

μz

=
1

1 − λc
dqi

dξ

. (9.37b)

Replacing ν in (9.18) by (9.37a) or equivalently u in (9.22) by (9.37b) results in

id =
−2qi

1 − λc
dqi

dξ

dqi

dξ
. (9.38)
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Rearranging (9.38) leads to

id = − (2qi − λcid)
dqi

dξ
. (9.39)

Integrating (9.39) from source (where ξ = 0 and qi = qs) to drain (where ξ = 1 and qi = qd)

leads to

id = −
∫ qd

qs

(2qi − λcid) dqi

=
∫ qs

qd

2qidqi − λcid

∫ qs

qd

dqi (9.40)

= q2
s − q2

d − λcid(qs − qd).

Solving (9.40) for id results in the current expression accounting for VS using the continuous

velocity-field model (Model 2):

id =
q2

s − q2
d

1 + λc(qs − qd)
. (9.41)

The drain current given by (9.41) is plotted in Figure 9.6(b) and compared to the current with-

out any VS effect. Note that the drain charge density qd in (9.41) should be taken equal to (9.24)

to account for the saturation of qd to qd sat when vd ≥ vd sat. If qd is taken equal to (vp − vd)/2

instead (without accounting for the saturation), the current reaches a maximum at vd = vd sat

and then decreases as shown by the dashed line in Figure 9.6(b). Now, the current cannot actu-

ally decrease, but must saturate to id sat for vd ≥ vd sat. The charge at the drain must also saturate

to qd = qd sat for vd ≥ vd sat. Also note that at the onset of saturation, the electric field right at

the drain has to tend to infinity in order for the velocity to tend to the saturation velocity vsat.

The saturation current is obtained by replacing id and qd in (9.41) by id sat and qd sat, respec-

tively, resulting in

id sat =
q2

s − q2
d sat

1 + λc(qs − qd sat)
. (9.42)
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Figure 9.6 (a) Drain saturation voltage versus pinch-off voltage for Model 2 with λc = 0, 0.01, 0.1.

(b) Drain current versus drain voltage for Model 2 with λc = 0.05
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Equations (9.23), (9.42), and (9.25) can then be solved for qd sat, id sat, and vd sat, resulting in

qd sat =
1

λc

(

1 + λcqs −
√

1 + 2λcqs

)

, (9.43a)

id sat =
2

λc

qd sat =
2

λ2
c

(

1 + λcqs −
√

1 + 2λcqs

)

, (9.43b)

vd sat = vp − 2qd sat = vp −
2

λc

(

1 + λcqs −
√

1 + 2λcqs

)

. (9.43c)

The drain saturation voltage given by (9.43c) is plotted versus the pinch-off voltage in

Figure 9.6(a) for two different values of λc. It clearly shows the reduction of the saturation

voltage with respect to the pinch-off voltage, due to VS.

The profile of the inversion charge along the channel is obtained by integrating (9.39) from

the source, where qi = qs, to a point in the channel, resulting in

idξ =
q2

s − q2
i

1 + λc(qs − qi)
. (9.44)

Solving (9.44) for qi results in

qi(ξ ) =
λc

2
ξ id +

√

(

qs −
λc

2
ξ id

)2

− ξ id, (9.45)

where the current id is given by (9.41). Equation (9.45) is plotted in Figure 9.7(a) for different

values of vp − vd and in saturation (i.e., for vd > vd sat) for different values of λc in Figure 9.7(b).

The longitudinal electrical field is obtained by solving (9.18) and (9.12), resulting in

e(ξ ) =
λcid

2qi(ξ ) − λcid

. (9.46)
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9.1.2.3 Model 3

Finally, the effect on the drain current can also be evaluated for the velocity-field model given

by (9.13) or its normalized form (9.14). The drain current can be derived in a similar way than

for the Model 2 described above, resulting in

id =
q2

s − q2
d

1 + λc

2
(qs − qd)

, (9.47)

for vd < vd sat, whereas

id = id sat =
q2

s − q2
d sat

1 + λc

2
(qs − qd sat)

, (9.48)

for vd ≥ vd sat.

Equations (9.23), (9.48), and (9.25) can then be solved for qd sat, id sat and vd sat, resulting in

qd sat =
λc

2
q2

s

1 + λc

2
qs

, (9.49a)

id sat =
2

λc

qd sat =
q2

s

1 + λc

2
qs

, (9.49b)

vd sat = vp − 2qd sat = vp −
λcq

2
s

1 + λc

2
qs

. (9.49c)

The drain saturation voltage vd sat for Model 3 given by (9.49c) and the drain saturation

current for Model 3 given by (9.49b) are plotted in Figures 9.8(a) and 9.8(b), respectively.

The profile of the inversion charge for Model 3 is obtained in a similar way than for Model

2, resulting in

qi(ξ ) =
λc

4
ξ id +

√

(

qs −
λc

4
ξ id

)2

− ξ id, (9.50)
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Figure 9.8 (a) Drain saturation voltage versus pinch-off voltage for Model 3 with λc = 0, 0.01, 0.1.

(b) Drain current versus drain voltage for Model 3 with λc = 0.05
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where id is given by (9.47). The inversion charge profile for Model 3 given by (9.50) is plotted

in Figure 9.9.

The longitudinal electrical field is obtained by solving (9.18) and (9.16), resulting in

e(ξ ) =
2λcid

4qi(ξ ) − λcid

. (9.51)

9.1.2.4 Model comparison

The drain saturation voltages for the three different velocity-field models are plotted versus

the pinch-off voltage in Figure 9.10(a). The piecewise linear model (Model 1) predicts the

smallest saturation voltage, the continuous model (Model 2) the highest, and the third model

is in between.

The drain currents using the three different velocity-field models are plotted in Fig-

ure 9.10(b). The piecewise linear model (Model 1) gives the highest saturation current, the

continuous model (Model 2) gives the smallest, whereas the third model again lies in between.

Again note that the CLM effect has not been accounted for and hence the currents remain

constant in saturation. The CLM effect will be analyzed in Section 9.2.

The inversion charge profiles in saturation for the three different models are plotted in

Figure 9.11(a). The three models look very similar, starting at qs = 100 on the source and

decreasing to the value of qd sat at the drain.

Finally, the longitudinal normalized electric field profiles in saturation are plotted for the

three velocity-field models in Figure 9.11(b). For Model 1, the field reaches the critical field

right at the drain. For Model 2, the field becomes infinity at the drain in order for the velocity

to saturate. Finally, for Model 3, the field reaches twice the critical field at the drain, which for

this model is the value at which the velocity saturates.
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Figure 9.10 Comparison of the drain saturation voltages and of the drain saturation currents for the

three velocity-field models for λc = 0.05
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Figure 9.11 Comparison of the inversion charge and longitudinal field profile in saturation for the

three velocity-field models

9.1.3 Effect of VS on the Transconductances

The transconductances are defined by (5.2). The normalized transconductances can be written

as

gms �
Gms

Gspec

= −
∂id

∂vs

= −
∂id

∂qs

∂qs

∂vs

, (9.52a)

gmd �
Gmd

Gspec

=
∂id

∂vd

= −
∂id

∂qd

∂qd

∂vd

, (9.52b)

gm �
Gm

Gspec

=
∂id

∂vg

=
∂id

∂vp

∂vp

∂vg

=
1

n

∂id

∂vp

=
1

n

(

∂id

∂qs

∂qs

∂vp

+
∂id

∂qd

∂qd

∂vp

)

, (9.52c)
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where Gspec is defined as

Gspec �
Ispec

UT

. (9.53)

From (9.27) and (9.24), below saturation the partial derivatives of qs and qd with respect to

vs and vd respectively are given by

∂qs

∂vs

= −
1

2
, (9.54a)

∂qd

∂vd

= −
1

2
, (9.54b)

and therefore the normalized transconductances in strong inversion are simply given by

gms =
1

2

∂id

∂qs

, (9.55a)

gmd = −
1

2

∂id

∂qd

. (9.55b)

Note that the general relation (5.9) between Gm, Gms, and Gmd still holds, even though due

to VS. the drain current cannot be split into a forward and reverse component that depend only

on vp − vs and vp − vd, respectively. But as long as the source and drain charges qs and qd

depend only on the differences vp − vs and vp − vd respectively, the derivatives of the charges

with respect to the pinch-off voltage are then given by

∂qs

∂vp

= −
∂qs

∂vs

=
1

2
(9.56a)

∂qd

∂vp

= −
∂qd

∂vd

=
1

2
, (9.56b)

where (9.54) has been used. It can then be shown from (9.52c), (9.55), and (9.56) that the gate

transconductance is given by

gm =
gms − gmd

n
, (9.57)

even when VS occurs. In saturation, gmd = 0 and hence (9.57) reduces to

gm sat =
gms sat

n
. (9.58)

9.1.3.1 Model 1

With the piecewise linear velocity-field model, (9.55a) and (9.55b), for vd < vd sat, are then

simply given by the long-channel values

gms = qs, (9.59a)

gmd = qd. (9.59b)
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In saturation, i.e., for vd ≥ vd sat, neglecting the effect of CLM, the drain current is clamped

and held constant with respect to vd to the value id sat. The drain transconductance Gmd is

therefore zero in saturation. The normalized source transconductance in saturation gms sat is

obtained by differentiation of (9.29b), resulting in

gms sat �
∂id sat

∂vs

=
1

2

∂id sat

∂qs

=
qs

√

1 + (λcqs)2
. (9.60)

Due to VS, the simple piecewise model shows that the source transconductance is lowered

by
√

1 + (λcqs)2 compared to the value without VS. As mentioned above in the case of strong

VS conditions, the saturation drain current becomes linear with qs and VP − VS, resulting in a

constant value of the saturation transconductance gms sat inversely proportional to λc

gms sat
∼=

1

λc

=
vsatL

2μzUT

for λcqs ≫ 1, (9.61)

or in denormalized form

Gms sat = Gspec · gms sat
∼=

Gspec

λc

= n · Cox · W · vsat. (9.62)

The transconductance-to-current ratio in saturation can be derived from (9.60) and (9.29b)

as

gms sat

id sat

=
λ2

cqs

2
[

1 + (λcqs)2 −
√

1 + (λcqs)2

] , (9.63)

For λcqs ≫ 1, (9.63) reduces to

gms sat

id sat

∼=
1

2qs

=
1

λcid sat

, (9.64)

which decreases inversely proportional to id sat instead of
√

id sat as it would when VS is not

present.

9.1.3.2 Model 2

The normalized source, drain, and gate transconductances for vd < vd sat in the case of the

continuous velocity-field model (9.9) or (9.10) are given by

gms =
qs + λc

2
(qs − qd)2

[1 + λc(qs − qd)]2
=

vp−vs

2
+ λc

8
(vd − vs)

2

[

1 + λc

2
(vd − vs)

]2
, (9.65a)

gmd =
qd − λc

2
(qs − qd)2

[1 + λc(qs − qd)]2
=

vp−vd

2
− λc

8
(vd − vs)

2

[

1 + λc

2
(vd − vs)

]2
, (9.65b)

gm =
qs − qd

n

1

1 + λc(qs − qd)
=

vd − vs

2n

1

1 + λc

2
(vd − vs)

. (9.65c)
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Similar to Model 1, in saturation, the drain current id sat is clamped to a constant value with

respect to vd corresponding to its maximum value taken at vd = vd sat and remains constant

for vd ≥ vd sat. The drain transconductance Gmd is therefore zero and the normalized source

transconductance in saturation gms sat becomes

gms sat �
∂id sat

∂vs

=
1

2

∂id sat

∂qs

=
1

λc

[

1 −
1

√
1 + 2λcqs

]

=
2qs

1 + 2λcqs +
√

1 + 2λcqs

∼=
1

λc

for qs ≫ 1,

(9.66)

which can be approximated by

gms sat
∼=

qs

1 + 3
2
λcqs

. (9.67)

As mentioned above for λcqs ≫ 1, gms sat saturates to a constant value 1/λc. The normalized

gate transconductance is then simply given by (9.58).

The transconductance-over-current ratio in saturation is then given from (9.43b) and (9.66)

as

gms sat

id sat

=
λc

1 + 2λcqs −
√

1 + 2λcqs

∼=
1

2qs

=
1

λcid sat

for qs ≫ 1, (9.68)

which has the same asymptote than for Model 1.

9.1.3.3 Model 3

The normalized source and drain transconductances for the third velocity-field model (9.13)

or (9.14) and for vd < vd sat are given by

gms =
qs + λc

4
(qs − qd)2

[

1 + λc

2
(qs − qd)

]2
=

vp−vs

2
+ λc

16
(vd − vs)

2

[

1 + λc

4
(vd − vs)

]2
, (9.69a)

gmd =
qd − λc

4
(qs − qd)2

[

1 + λc

2
(qs − qd)

]2
=

vp−vd

2
− λc

16
(vd − vs)

2

[

1 + λc

4
(vd − vs)

]2
, (9.69b)

gm =
qs − qd

n

1

1 + λc

2
(qs − qd)

=
vd − vs

2n

1

1 + λc

4
(vd − vs)

. (9.69c)

As for Models 1 and 2, in saturation, the drain current is constant with respect to vd and

hence the drain transconductance is zero. The source transconductance is then obtained by

differentiating (9.49b), resulting in

gms sat �
∂id sat

∂vs

=
1

2

∂id sat

∂qs

=
qs

(

1 + λc

4
qs

)

(

1 + λc

2
qs

)2
∼=

1

λc

for qs ≫ 1. (9.70)
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The transconductance-over-current ratio in saturation is then given from (9.49b) and (9.70)

as

gms sat

id sat

=
1 + λc

4
qs

qs

(
1 + λc

2
qs

) ∼=
1

2qs

=
1

λcid sat

for qs ≫ 1. (9.71)

9.1.3.4 Model comparison

The normalized source transconductances in saturation for the three models are plotted versus

the normalized pinch-off voltage in Figure 9.12(a) for λc = 0.1. As mentioned at the end of

Section 9.1.2.1, the drain current in saturation becomes linear instead of quadratic with respect

to the overdrive voltage VP − VS (c.f. equation (9.34) and hence the source transconductance

in saturation saturates to a constant value equal to 1/λc as soon as velocity saturates.

The degradation of the source transconductance due to VS can be evaluated by defining the

ratio of the source transconductance in saturation to the source transconductance in saturation

without the effect of VS (which actually is simply equal to qs)

χms sat �
gms sat

gms sat|λc=0

=
gms sat

qs

. (9.72)

For the first piecewise linear model (Model 1), the degradation is given by

χms sat =
1

√

1 + (λcqs)2
, (9.73)

whereas for the continuous model (Model 2), it is given by

χms sat =
2

1 + 2λcqs +
√

1 + 2λcqs

∼=
1

1 + 3
2
λcqs

∼=
1

1 + 3
4
λc(vp − vs)

.

(9.74)
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Figure 9.12 (a) Source transconductance and (b) source transconductance degradation versus the

pinch-off voltage for the three velocity-field models
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The transconductance degradation function for the third velocity-field model is given by

χms sat =
1 + λc

4
qs

(
1 + λc

2
qs

)2
. (9.75)

Figure 9.12(b) illustrates the degradation of the source transconductance in saturation due to

VS with respect to the pinch-off voltage for the three velocity-field models. They all show quite

a dramatic impact of VS on the transconductance. As an example, for a channel length L =
0.1 μm, corresponding to λc

∼= 0.5, the reduction can be larger than a factor 10 for a pinch-off

voltage of about 1 V (corresponding to vp
∼= 40 and qs

∼= 20). This obviously has a significant

impact on power consumption for a given cutoff frequency. As explained in Section 9.4, it also

has an important impact on the thermal noise.

9.2 CHANNEL LENGTH MODULATION

The CLM effect was already introduced in Section 4.6 using a very simple model that ignored

the effect of VS. But obviously CLM is tightly linked to the effect of VS since carriers enter

into velocity in the high longitudinal field region close to the drain. As shown in Figure 9.13(a),

this effect can be explained simply by splitting the source to drain region into a nonsaturated

region (the channel region) and a velocity saturation region (VSR) close to the drain [115].

The length of the saturation region ΔL where the carrier travels at saturated velocity depends

on the longitudinal field and hence on the drain and gate bias voltages. The effective length

where the carrier velocity is not saturated is therefore smaller than the length L between the

source and drain junctions.

The first-order model introduced in Section 4.6 ignored VS and estimated the channel length

reduction based on the length of the abrupt depletion regions on the source and drain sides of

the channel. In this section we will derive a more accurate model that also accounts for the VS

effect described in the previous section. To do this, we will use the third velocity-field model

since the continuous model requires the field to become infinity for the carrier velocity to reach

saturation, whereas the piecewise linear model is not accurate enough.

A schematic diagram of the VS region is shown in Figure 9.13(b). The VS region length

can be derived by applying the Gauss’ law to the ABCD box. Following the derivation made

L
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Ex = Esat

v = vsat

xj
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B C

D

VSR

∆L

tox

xj

Figure 9.13 (a) VS region and channel region definition. (b) Schematic diagram of the VS region

[115]
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in [115], we will assume that (a) the carriers in the VS region are traveling with a saturated

velocity; (b) the junction on the drain extension region is abrupt and the drain extension is

heavily doped and hence is perfectly conducting; and (c) the current flows no deeper than

the junction depth and is confined in the box. To simplify the derivation, we also change the

coordinate system as indicated in Figure 9.13(b). To apply Gauss’ law, we will further assume

that the field is independent of y and that the field lines crossing the BC boundary contribute

very little. This results in

−ǫsixjW Esat + ǫsixjW Ex(x ′) + ǫoxW

∫ x ′

0

Eox(x ′) dx ′ = QboxW x ′, (9.76)

where Eox(x ′) is simply given by

Eox(x ′) =
VG − VFB − Ψ0 − V (x ′)

tox

, (9.77)

and Qbox � qnpxj + q Nbxj corresponds to the charge per unit area in the VSR with np being

the electron concentration and Nb the fixed charge concentration.

Since the current and velocity are constant in the VSR, np is also constant in the VSR and

hence differentiating (9.76) with respect to x ′ results in

ǫsixj

dEx (x ′)

dx ′
+ ǫox Eox(x ′) = Qbox. (9.78)

Replacing Eox in (9.78) by (9.77) results in

ǫsixj

dEx (x ′)

dx ′
+ Cox[VG − VFB − Ψ0 − V (x ′)] = Qbox. (9.79)

On the left side of the VS region, the gradual channel approximation applies and the gradient

of the longitudinal field can be ignored compared to the gradient of the vertical field. That is, in

this region, all the silicon charges are controlled by the vertical field only. This approximation

also applies to the boundary at x ′ = 0, where the channel voltage V (x ′ = 0) is equal to the

saturation voltage VD sat. The gradient of the longitudinal field dEx (x ′)/dx ′ in (9.79) can hence

be neglected and (9.79) then simplifies to

ǫox Eox(x ′ = 0) = Cox (VG − VFB − Ψ0 − VD sat) = Qbox. (9.80)

The saturation voltage VD sat normalized to UT is given by (9.49c). Replacing Qbox in (9.79)

by (9.80) results in

dEx (x ′)

dx ′
=

V (x ′) − VD sat

ℓ2
, (9.81)

where

ℓ �

√

ǫsi

ǫox

toxxj =

√

ǫsixj

Cox

. (9.82)
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Differential equation (9.81) can be solved by applying the boundary conditions E(x ′ = 0) =

Esat = 2Ec and V (x ′ = 0) = VD sat, resulting in

Ex (x ′) = Esat cosh

(

x ′

ℓ

)

(9.83)

and

V (x ′) = VD sat + ℓEsat sinh

(

x ′

ℓ

)

. (9.84)

Equation (9.83) indicates that the field increases almost exponentially close to the drain

where it becomes maximum at the end of the VS region and is given by

Ex (x ′ = ΔL) = Emax = Esat cosh

(

ΔL

ℓ

)

, (9.85)

whereas

V (x ′ = ΔL) = VD = VD sat + ℓEsat sinh

(

ΔL

ℓ

)

. (9.86)

Equations (9.85) and (9.86) can then be solved for ΔL and Emax

ΔL = ℓ asinh(u) = ℓ ln
(

u +
√

u2 + 1
)

, (9.87a)

Emax = Esat

√

u2 + 1, (9.87b)

where

u �
VD − VD sat

ℓEsat

. (9.88)

The channel length reduction normalized to ℓ is plotted versus u in Figure 9.14.
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Figure 9.14 Channel length reduction ΔL/ℓ versus u � (VD − VD sat)/(ℓEsat)
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Figure 9.15 Application of Gauss’ law to calculate Qsi

9.3 DRAIN INDUCED BARRIER LOWERING

9.3.1 Introduction

With the gradual channel approximation used to develop the long-channel model in Part I, the

second derivative of the channel potential (first derivative of the electric field) was assumed to

be negligible along the channel. As a consequence, the charge density in silicon Qsi depended

only on the vertical surface field as illustrated in Figure 3.2. This approximation is no longer

acceptable for short-channel transistors, and the variation of the horizontal field Ex must

be included in the calculation of Qsi, as illustrated in Figure 9.15. This figure depicts an

elementary volume of unit width and of length dx . Its depth is td, the depletion depth (or

depletion thickness), beyond which the potential is assumed to be constant (Ψ = 0).

The negative elementary charge Qsi dx enclosed in this volume is increased in absolute value

by the difference dEx <0 of the horizontal field created by the drain voltage. Alternately, the

value of Eox needed to obtain a given charge density is reduced, corresponding to an increase of

surface potential. Hence the name drain induced barrier lowering (DIBL) given to this effect.

9.3.2 Evaluation of the Surface Potential

Following the analysis carried out in [116], the application of Gauss’ law to the elementary

volume depicted in Figure 9.15 results in

(Qsi + Qfc) dx = −ǫox Eox dx + ǫsitd dEx , (9.89)

where dEx is assumed to be constant across the depletion depth td, with

dEx

dx
= −

d2Ψs

dx2
< 0. (9.90)

By introducing expression (2.3) of Eox and definition (3.22) of VFB, we obtain a second-order

differential equation of Ψs:

−L2
c

d2Ψs

dx2
+ Ψs = VG − VFB +

Qsi

Cox

, (9.91)



190 SHORT-CHANNEL EFFECTS

where Lc is a characteristic length defined by

Lc �

√
ǫsitd

Cox

. (9.92)

Now, td is itself slightly dependent on the surface potential Ψs; hence, equation (9.91) is

nonlinear. This dependency is weak; therefore, we shall assume Lc constant in order to integrate

the equation.

When the surface potential is constant along the channel, this equation has the particular

solution,

Ψs = Ψsl � VG − VFB +
Qsi(Ψsl)

Cox

, (9.93)

which is also the solution for a long channel corresponding to (3.19). Constant Ψs is possible

only in weak inversion, or in strong inversion with VD = VS.

The general solution of (9.91) is then

Ψs(x) = Ψsl + [Ψs(0) − Ψsl]
sinh L−x

Lc

sinh L
Lc

+ [Ψs(L) − Ψsl]
sinh x

Lc

sinh L
Lc

, (9.94)

where Ψs(0) and Ψs(L) are the source and drain potentials. According to Figures 4.12 and 4.13,

these can be expressed as

Ψs(0) = ΦB + VS, Ψs(L) = ΦB + VD, (9.95)

where ΦB is the junction potential barrier given by (4.55).

By introducing the normalized variables

ξ = x/L and λ = L/Lc, (9.96)

equation (9.94) becomes

Ψs(ξ ) = Ψsl + (ΦB + VS − Ψsl)
sinh [λ(1 − ξ )]

sinh λ
+ (ΦB + VD − Ψsl)

sinh (λξ )

sinh λ
. (9.97)

It can be pointed out that the particular solution (9.93) used to integrate (9.91) corresponds

to an equipotential channel (VS = VD = V ) with Ψs = Ψsl = ΦB + V .

Now, for λ larger than a few units, this result can be approximated by

Ψs(ξ ) ∼= Ψsl + (ΦB + VS − Ψsl)e
−λξ + (ΦB + VD − Ψsl)e

−λ(1−ξ )

︸ ︷︷ ︸

�ΔΨs(ξ )

, (9.98)

where ΔΨs(ξ ) is the increase of surface potential with respect to the long-channel approxima-

tion.

Although Lc given by (9.92) has been assumed to be constant while integrating (9.91), it is

slightly dependent on Ψs through td. By introducing (9.92) in (9.96) with td given by (3.26),
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we obtain

λ =
L

Lc

= L 4

√

q NbC2
ox

2Ψsǫ
3
si

, (9.99)

showing that λ is only a weak function of Ψs.

At the onset of inversion for VS = VD = 0, Ψs = ΨP = Ψ0, which corresponds to a particular

value of λ:

λ0 �
L

Lc0

= L 4

√

q NbC2
ox

2Ψ0ǫ
3
si

= L

√

q Nb

ǫsiΓb

Ψ
−1/4
0 . (9.100)

For the general case, we shall assume that the depletion depth is essentially controlled by

Ψs = ΨP and use the following approximation:

λ =
L

Lc

∼= λ0

(

Ψ0

ΨP

)1/4

. (9.101)

In reality, even in weak inversion, the surface potential with DIBL is not constant all along

the channel. This could be accounted for by a fitting parameter in (9.101) [116] which we shall

not introduce here.

In weak inversion, the surface potential for a long channel is constant: Ψsl = ΨP. The

variation of surface potential due to DIBL given by (9.97) is plotted in Figure 9.16 for two

values of pinch-off voltage and two values of drain voltage.

At both ends of the channel, the surface potential drops from ΦB + VS,D to ΨP = Ψ0 + VP

within a distance characterized by λ. For a long channel (L ≫ Lc), this distance is negligible,

and the surface potential is equal to ΨP over most of the channel length. On the contrary, for

a short channel, the surface potential never reaches ΨP; the barrier for the current carriers is

lowered and the current is increased. Furthermore, the amount of lowering depends on the drain

voltage, as we can see in the figure. Therefore, even if the device is saturated (as is the case

in the figure since VD − VS ≫ UT), the drain current keeps increasing with the drain voltage.

It should be noticed that, for the values of Nb and Cox used in the example of Figure 9.16, a

channel length L = 0.5 μm is already too short to avoid DIBL.
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The increase of surface potential, ΔΨs, has a minimum at a position ξ0 that can be calculated

by differentiating (9.98). Neglecting again the variation of λ, we obtain

ξ0 =
1

2

(

1 −
1

λ
ln

ΦB + VD − Ψsl

ΦB + VS − Ψsl

)

, (9.102)

which introduced in (9.98) gives

ΔΨs min = 2e−λ/2
√

(ΦB + VS − Ψsl)(ΦB + VD − Ψsl) . (9.103)

In a long-channel transistor, when the pinch-off voltage VP = ΨP − Ψ0 is increased and

approaches VS, the inverted charge at the source end of the channel is no longer negligible

and the device enters moderate inversion. The local surface potential stops the following ΨP

to finally saturate at Ψ0 + VS. As VP keeps increasing, this saturation (to the local value of

channel voltage V ) extends progressively to the whole channel. Hence, an increasing part of the

channel has a variable surface potential (except for VD = VS), and the validity of the previous

analysis is progressively lost.

Since (9.93) remains a solution of (9.91) as long as its second derivative is negligible, we

shall extend (9.103) to moderate inversion by limiting Ψsl to its value at the source

Ψsl = ΨP +
QiS

nCox

, (9.104)

or, with normalized variables

ψsl = ψp − 2qs, (9.105)

according to (3.39). The dependency of qs on vs is given by (3.48), the general relation between

voltages and charge. Unfortunately, this relation cannot be inverted to provide the charge from

the voltages, but we can use the following approximation:

qi
∼= ln

(

1 + exp
vp − v − 1

2

)

, (9.106)

which is good in strong and moderate inversion, when the charge cannot be neglected, as shown

in Figure 9.17.
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Introducing this approximation in (9.105) with ψp = ψ0 + vp gives

ψsl = ψ0 + vp − 2 ln

(

1 + exp
vp − vs − 1

2

)

. (9.107)

As required, this expression tends to ψp in weak inversion, and to ψ0 + vs in strong in-

version.

The increase of surface potential Δψs can now be calculated by introducing (9.107) in

the normalized form of (9.98). It is plotted in Figure 9.18(a) with the same parameters as in

Figure 9.16, and for a fixed value of vd and several values of vp ranging from weak inversion

to moderate inversion.

In Figure 9.18(b), vp is fixed in weak inversion and Δψs is plotted for various values

of vd.

The increase of surface potential goes through a minimum given by (9.103). This minimum

is plotted in Figure 9.19 for the same numerical values. As can be expected, this minimum

increases with the drain voltage. As the pinch-off voltage increases from very negative values

(corresponding to very small currents), ΔΨs min first increases until it reaches a maximum. It

then decreases as moderate inversion is approached.
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9.3.3 Effect on the Drain Current

In weak inversion, the surface potential for a long channel is constant and equal to ΨP. Before

diffusing to the drain, the current carriers must pass a potential barrier of height ΦB + VS − ΨP.

As shown in Figure 9.16, when the channel is shortened and L approaches the characteristic

length Lc0 defined by (9.100), the surface potential cannot reach ΨP and its minimum is ΔΨs min

higher. This corresponds to a lowering of the barrier by ΔΨs min, which (in weak inversion)

has an exponential effect on Qi, the density of mobile charge. The position of the barrier also

moves away from the source, thereby reducing the effective channel length, but this linear

effect can be neglected in a first approximation.

Hence, the effect of DIBL on weak inversion current can be accounted for by adding ΔΨs min

given by (9.103) to ΨP or VP in the equation of the current for a long channel.

In strong inversion, the surface field increases with the inversion coefficient; hence, the

relative importance of the lateral electric flux in Figure 9.15 is progressively reduced. Hence,

although the previous analysis loses its validity, we shall also apply it to strong inversion for

the calculation of current, as a very first approximation. The general current–voltages rela-

tion (4.25) and the alternative continuous voltages–current approximation (4.39) then become

respectively:

vp − vs,d + Δψs min =
√

1 + 4if,r + ln (
√

1 + 4if,r − 1) − (1 + ln 2), (9.108)

if,r = ln2

(

1 + exp
vp − vs,d + Δψs min

2

)

. (9.109)

Using this last equation, the gate-to-drain characteristics in saturation (id = if since vp <

vd) are plotted in Figure 9.20(a) for several values of λ0. The relative increase of current

is plotted in Figure 9.20(b). It is large in weak inversion and decreases at the approach of

moderate inversion. As mentioned before, the results lose their validity for VP > 0, although

the qualitative tendency is certainly correct. Furthermore, other short-channel effects (for

example, VS) are then combined with DIBL.
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As can be seen, the current increases very abruptly with the reduction of length: 1 to 1000

for λ0 reduced from 8 to 4. It would be almost negligible (less than 10%) for λ0 > 12.

It must be pointed out that, since ΔΨs min is a function of all the bias voltages (VS, VD, and

VG), IF becomes dependent on VD, and IR becomes dependent on VS. As predicted in Section

4.5.3, the fundamental property is degraded. As a result, the output conductance in saturation

is drastically increased, as we can see in the output characteristics plotted in Figures 9.21(a)

and 9.21(b) for two different values of vp. Again, this increase is maximum in weak inversion.

As a matter of fact, since Δψs min increases approximately linearly with the drain voltage (see

Figure 9.19(b)), the drain current in weak inversion increases exponentially with the drain

voltage, as was already pointed out in 1973 [10].

The characteristics of Figure 9.21 have been obtained by id = if − ir, although the super-

position property is no longer valid here. However, it affects only the low-voltage part of the

characteristics (vd − vs < 5) for which ir is not negligible.

Figure 9.22 shows the source-to-drain transfer characteristics also plotted from (9.109)

(the curves correspond to saturation: id = if except for vs > vd − 5). As for the gate-to-drain
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characteristics of Figure 9.20, the current is significantly increased in weak inversion for

λ0 < 8.

9.3.4 Effect on Small-Signal Parameters in Weak Inversion

As already pointed out, the previous analysis of DIBL is valid only in weak inversion, where

its effect is maximum. Therefore, the discussion of the related small-signal parameters will

be limited to weak inversion. In addition, we shall consider only the saturated transistor with

id = if. This forward component of current given by (9.109) can be approximated by

if = exp (vp − vs + Δψs min), (9.110)

where Δψs min is given by (9.103) with ψsl = ψp = ψ0 + vp.

The differentiation of (9.110) with respect to vs provides the source transconductance in

weak inversion (normalized to Gspec given by (5.6)):

gms = if

(

1 −
dΔψs min

dvs

)

= if

(

1 − e−λ/2

√

φb − ψ0 − vp + vd

φb − ψ0 − vp + vs

)

. (9.111)

Due to DIBL, IF also depends on the drain voltage. The drain current therefore keeps

increasing in saturation, as shown in Figure 9.21. The corresponding output conductance

(which is actually a component of the drain transconductance that is proportional to IF) is

obtained by differentiating (9.110) with respect to vd:

gmd sat = if

dΔψs min

dvd

= if e−λ/2

√

φb − ψ0 − vp + vs

φb − ψ0 − vp + vd

. (9.112)

Finally, the gate transconductance in weak inversion is obtained by differentiating (9.110)

with respect to vp. Knowing that dvp/dvg = n and that λ also depends on vp according to

(9.101), we obtain

ngm = if

(

1 +
dΔψs min

dvp

)

if

[

1 + e−λ/2

(

λR(vp, vs, vd)

4(ψ0 + vp)
−

2(φb − ψ0 − vp) + vs + vd

R(vp, vs, vd)

)]

, (9.113)

where

R(vp, vs, vd) =
√

(φb − ψ0 − vp + vs)(φb − ψ0 − vp + vd). (9.114)

The three transconductance to current ratios given by (9.111), (9.112), and (9.113) are

plotted in Figure 9.23 as functions of the drain voltage for two values of λ0. Their variation

with the source voltage (at constant vp − vs) is shown in Figure 9.24.
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Figure 9.25 Effect of DIBL on maximum voltage gain

Although DIBL may increase the current in weak inversion by several orders of magnitude,

gm/ if and gms/ if are reduced only by less than 40%, even with λ0 as low as 4. The reduction

is negligible for λ0 > 8. Hence, if the device is biased at a constant current (as should always

be the case in weak inversion), the effect of DIBL on source and gate transconductance is not

very significant.

As could be expected from the output characteristics of Figure 9.21, the main problem lies

in gmd sat, the residual conductance in saturation. For a long channel, the conductance gds due
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to CLM is much smaller than gms; therefore, the small-signal voltage gain given by (5.24) can

be very large. With the DIBL occurring in a short channel, the voltage gain is limited to

Av max =
Gms

Gmd sat

=
gms

gmd sat

. (9.115)

As shown by Figure 9.25, this maximum gain becomes very small for λ0 = 4. It increases

rapidly for larger values of λ0 to be limited by CLM for λ0 larger than 10–12.

9.4 SHORT-CHANNEL THERMAL NOISE MODEL

The long-channel thermal noise model derived in Section 6.2 assumed that the mobility was

constant along the channel and that the channel length was sufficiently long so that VS and

CLM could be neglected. These assumptions are obviously not valid anymore for short-channel

devices where VS and CLM effects have to be accounted for. Mobility reduction due to the

vertical field also greatly influences the thermal noise and has also to be included. This will be

done in the next sections.

9.4.1 Thermal Noise Drain Conductance

In order to account for the CLM, the region between the source and the drain is split into the

channel region of length Leff on the source side, where the carrier velocity is not saturated, and

the VS region on the drain side, where the carrier velocity saturates to vsat (Figure 9.26). Since

in the VS region the carrier travel at their maximum saturated velocity, they will not respond

to the local change of the electric field caused by the noise voltage fluctuations. Therefore,

the noise fluctuations generated in the VS region do not propagate to the drain since the

conductance on the drain side is zero [117]. Therefore, the dominant contribution to the drain

noise mainly comes from the channel region between x = 0 and x = Leff.

Since the effects of VS, mobility reduction due to the vertical field, and CLM are pre-

dominant in strong inversion, we will derive the PSD (power spectral density) of the drain

L

Leff

Gs Gd

x

x

Leff  – x

Figure 9.26 Cross section of the MOS channel with a thermal noise source at position x and with

the VS region to account for the effect of CLM
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current fluctuations assuming that the transistor is biased in strong inversion. The model can

be extended to cover all regions of operation as described in [55].

We will reuse the general approach presented in Section 6.1. The PSD of the drain current

fluctuations due to the single elementary noise source δ In is given by (6.3), which is repeated

here for convenience:

Sδ I 2
D

= G2
chΔR2SδI 2

n
,

where ΔR is the resistance across the channel slice and Gch is the channel conductance at

point x along the channel and given by (6.2)

1

Gch

�
1

Gs

+
1

Gd

. (9.116)

Conductances Gs and Gd are the channel conductances seen by the local thermal noise current

source δ In on the source and drain sides respectively. They can be derived by splitting the total

transistor into transistor M1 and M2 on the source and drain side, respectively, as shown in

Figures 6.2 and 6.3. Conductance Gs actually corresponds to the drain transconductance of

transistor M1 after having isolated it from transistor M2:

Gs = Gmd1 �
dID

dV
, (9.117)

where current ID is redefined as the current entering the drain of transistor M1:

ID =
W

x

∫ V

VS

(−Qi)μeff dV ′. (9.118)

Notice that for clarity, V ′ is used as dummy variable for integration in (9.118) to distinguish

it from variable V. In order to differentiate (9.118) for calculating conductance Gs, we must

remember that μeff is a function of the electric field Ex which depends on the position x along

the channel or equivalently on the channel voltage V at that position. In the most general case,

we do not know μeff as a function of the channel voltage. Even though we would know it, it is

not sure we could integrate (9.118). A work around is to notice that the current ID given by

ID = −W [−Qi(V )]μeff(Ex )Ex (9.119)

is constant along the channel and (9.119) can be solved for Ex , which now becomes a function

of V and ID. Replacing Ex = Ex (V, ID) in the expression of μeff makes μeff become a function

of V and ID and (9.119) becomes

ID = −W [−Qi(V )]μeff(V, ID)Ex

= W [−Qi(V )]μeff(V, ID)
dV

dx
.

(9.120)

The current ID is then given by a function F(V, ID) of variables V and ID defined by

ID = F(V, ID) �
W

x

∫ V

VS

[−Qi(V
′)]μeff(V

′, ID) dV ′. (9.121)
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The total differential of current ID is then given by

dID = dF =
∂F

∂V
dV +

∂F

∂ID

dID, (9.122)

and the total derivative corresponding to Gs writes

Gs =
dID

dV
=

∂F

∂V
+

∂F

∂ID

dID

dV
, (9.123)

which can be solved for Gs = dID/dV as

Gs =
dID

dV
=

∂F
∂V

1 − ∂F
∂ID

. (9.124)

The partial derivatives of F can be evaluated from (9.121) as

∂F

∂V
=

W

x
(−Qi)µeff, (9.125a)

∂F

∂ID

=
W

x

∫ V

VS

(−Qi)
∂µeff

∂ID

dV ′. (9.125b)

Replacing (9.125a) and (9.125b) in (9.124) results in [54]

Gs =
W (−Qi)µeff

x − W
∫ V

VS
(−Qi)

∂µeff

∂ID
dV ′

. (9.126)

In order to evaluate ∂µeff/∂ ID, we notice that

∂µeff

∂ID

=
∂µeff

∂Ex

∂Ex

∂ID

= µ′
eff

∂Ex

∂ID

, (9.127)

where

µ′
eff �

∂µeff

∂ Ex

. (9.128)

From (9.120), we have

∂ID

∂Ex

= −W (−Qi)
(

µeff + µ′
eff Ex

)

= −W (−Qi)µdiff, (9.129)

where µdiff is the differential mobility defined by (9.3) and which can be written as

µdiff =
dvdrift

dEx

=
d(µeff Ex )

dEx

= µeff + µ′
eff Ex . (9.130)
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Hence

∂µeff

∂ID

=
µ′

eff

−W (−Qi)µdiff

. (9.131)

Replacing (9.131) in (9.126) finally results in [54]

Gs =
W (−Qi)µeff

x +
∫ V

VS

µ′
eff

µdiff
dV ′

. (9.132)

Conductance Gd corresponds to the source transconductance of transistor M2 and is defined

as

Gd = Gms2 � −
dID

dV
. (9.133)

with the current ID defined as

ID =
W

Leff − x

∫ VDeff

V

(−Qi)µeff dV ′, (9.134)

where saturation at the drain and CLM were accounted for by defining Leff and VDeff as

Leff =

{

L for VD < VD sat

L − ΔL for VD ≥ VD sat,
(9.135)

where ΔL is the channel reduction due CLM, and

VDeff =

{

VD for VD < VD sat

VD sat for VD ≥ VD sat.
(9.136)

Conductance Gd is then obtained in a similar way than Gs leading to

Gd =
W (−Qi)μeff

(Leff − x) +
∫ VDeff

V

μ′
eff

μdiff
dV ′

. (9.137)

The channel conductance Gch at a position x is then easily obtained from (9.116), (9.132),

and (9.137) as [54]

Gch =
W (−Qi)μeff

Leff +
∫ VDeff

VS

μ′
eff

μdiff
dV ′

. (9.138)

The channel slice resistance ΔR can be calculated in a similar way than Gd, but integrating

from x to x + Δx instead of L (or Leff in saturation). After noticing that the voltage drop
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between x and x + Δx is simply equal to ΔV = −ExΔx , we get [54]

1

ΔR
= ΔG =

W (−Qi)μeff

Δx − μ′
eff

μdiff
ExΔx

=
W (−Qi)μdiff

Δx
. (9.139)

Here, we would like to point out that in case of a long-channel MOS transistor, μeff is

independent of the electric field Ex and hence μ′
eff = 0. Conductance Gch and resistance ΔR

then reduce to

Gch = μeff(−Qi)
W

Leff

=
W (−Qi)μeff

Leff

, (9.140a)

ΔR =
Δx

Wμeff(−Qi)
, (9.140b)

which correspond to the expressions (6.9) and (6.10), respectively, which were derived in

Section 6.1 for the thermal noise of a long-channel device.

Calculation of the current noise source between x and x + Δx is a difficult task. This

is because, in presence of an electric field, the segment is no longer in equilibrium and in

nonequilibrium, the Einstein relation is no longer valid. The method to model device noise in

nonequilibrium is to assume that even in nonequilibrium an Einstein-like relation holds between

the mobility and the diffusivity Dn (of electrons). One needs to be careful with definitions

when making this transition because it often acts as a source of error. The procedure is to

define [118–121]

Dn =
kTnμdiff

q
, (9.141)

where Tn is defined as the noise temperature. Since Dn is unknown in nonequilibrium, this

relationship in general provides nothing new but a definition of Tn. Note that in most of the

cases the noise temperature Tn is different from the carrier temperature TC [118].

It is shown in [118] that Tn becomes equal to TC when the velocity distribution is heated

Maxwellian. It is to be noted that we are considering the inversion layer of the MOS transistor

where the carrier density is in the order of 1018 cm−3 and that kind of carrier concentration

thermalize the distribution function and enforces it to be heated Maxwellian (we are assuming

the channel to be nondegenerate) [122–124]. This observation provides a great simplification

by expressing diffusivity Dn in terms of known quantities. It allows to write the expression of

SδI 2
n

as [54, 119]

SδI 2
n

= 4qW (−Qi)
Dn

Δx
= 4kTC

W (−Qi)μdiff

Δx
= 4kTCΔG, (9.142)

where the expression of ΔG given by (9.139) has been used.

It is important to point out that many publications about numerical noise simulation [125–

127] as well as [128] use the cord mobility μeff instead of the differential mobility μdiff when

replacing the diffusivity. Ref. [128] has also made an additional assumption that the decrease in

cord mobility is exactly balanced by the increase in temperature leaving the diffusivity about

constant. Device simulations made for a typical 0.18 μm N-channel MOS transistor show

that the product of the cord mobility times the carrier temperature is actually not constant



SHORT-CHANNEL THERMAL NOISE MODEL 203

but increases monotonically from source to drain [54]. This indicates that the increase in

temperature is not fully compensated by the decrease in cord mobility.

In order to define a noise conductance, (9.142) can be written as

SδI 2
n

= 4kTL

TC

TL

ΔG, (9.143)

where TL is the lattice temperature. The PSD of the drain current fluctuations due to δ In is then

given by

SδI 2
D

= 4kTL

TC

TL

G2
chΔR. (9.144)

Replacing Gch by (9.138) and ΔR by the inverse of (9.139) results in [54]

SδI 2
D

= 4kTL M
W

L2
eff

TC

TL

μ2
eff

μdiff

(−Qi)Δx, (9.145)

where [54]

M �
1

(

1 + 1
Leff

∫ VDeff

Vs

μ′
eff

μdiff
dV

)2
. (9.146)

The PSD of the total noise current fluctuation at the drain SΔI 2
D

can be derived by integrating

the PSD due to an elementary contribution SδI 2
D

at position x over the channel assuming that

the contribution of each slice at different positions along the channel remains uncorrelated.

This leads to [54]

SΔI 2
D

= 4kTL M
W

L2
eff

∫ Leff

0

TC

TL

μ2
eff

μdiff

(−Qi) dx, (9.147)

which can be written as

SΔI 2
D

� 4kTLGnD, (9.148)

and where GnD is the thermal noise conductance at the drain given by

GnD = M
W

L2
eff

∫ Leff

0

TC

TL

μ2
eff

μdiff

(−Qi) dx . (9.149)

Equation (9.149) is very general and does not depend on a particular velocity-field (or

mobility-field) model. Nevertheless, the relation between the carrier temperature TC and the

lattice temperature TL has to be consistent with the field-dependent mobility model. It can be

shown that the third velocity-field model (Model 3), which is also used for deriving the channel

length reduction ΔL in Section 9.2, actually arises as an approximation of [122, 123, 129]

μeff = μz

√

TL

TC

, (9.150)



204 SHORT-CHANNEL EFFECTS

which gives the relation between carrier temperature and mobility as

TC

TL

=
(

µz

µeff

)2

=

⎧

⎪

⎨

⎪

⎩

(

1 + |Ex |
2Ec

)2

for |Ex | < 2Ec

( |Ex |
Ec

)2

for |Ex | ≥ 2Ec.

(9.151)

Using that same mobility-field relation (9.15), we can deduce the following relations:

µ′
eff

µdiff

=
µ′

eff

µeff + µ′
eff Ex

= −
1

2Ec

(9.152)

and

µ2
eff

µdiff

=
µ2

eff

µeff + µ′
eff Ex

= µz . (9.153)

Note that relations (9.152) and (9.153) are valid only for |Ex | < 2Ec and can be applied only

in the nonsaturation region comprised between x and Leff where |Ex | reaches 2Ec and vdrift

becomes equal to vsat. Anyway, as was pointed out earlier, the contribution of the VS region

to the total drain noise is null since in the third velocity-field model, the differential mobility

is null and therefore, according to (9.139), no noise is produced.

Introducing (9.152) into (9.146), the M factor then simply reduces to

M =
1

(

1 − VDeff−VS

2Leff·Ec

)2
, (9.154)

whereas using (9.153) in (9.149), GnD becomes

GnD = M
W

L2
eff

∫ Leff

0

µz

TC

TL

(−Qi(x))dx (9.155)

again valid for |Ex | < 2Ec, i.e. in the non-saturation region. The effect of mobility reduction

due to the vertical field has been discussed in Section 8.2 and is modelled by (8.5). Although

the mobility given by (8.5) is a local mobility and includes qi which depends on the position

x along the channel, an effective mobility can be approximated by replacing qi in (8.5) by an

average charge (qs + qd)/2. The mobility µz can then be taken out of the integral in (9.155),

leading to

GnD = Mµz

W

L2
eff

∫ Leff

0

TC

TL

(−Qi(x))dx

= Mµz

W

L2
eff

∫ Leff

0

(

µz

µeff

)2

(−Qi(x))dx

= Mµz

W

L2
eff

∫ Leff

0

(

1 +
|Ex |

2Ec

)2

(−Qi(x))dx,

(9.156)

where (9.151) has been used.
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Notice that for a long-channel MOS transistor, µeff is independent of the electric field Ex and

equal to the mobility at low longitudinal field µeff = µz and hence µ′
eff = 0 and the differential

mobility is equal to the cord mobility µdiff = µeff = µz . The carrier temperature TC is then

equal to the lattice temperature TL and the effective length Leff is approximately equal to the

source-to-drain length L . Factor M is then simply equal to unity and (9.149) and (9.155) then

simplify to

GnD = µz

W

L2

∫ L

0

[−Qi(x)] dx, (9.157)

which corresponds to the long-channel expression (6.15) obtained earlier in Section 6.2.

As shown in (9.150), the effect of VS cannot be considered without the effect of carrier

heating. On the other hand, the effect of mobility reduction due to the vertical field and CLM

can be considered separately. This will be done in the next sections.

9.4.2 Effect of VS and Carrier Heating on Thermal Noise

In this section we will assume that the effects of mobility reduction due to the vertical field

and CLM can be neglected and we will concentrate on the combined effect of VS and carrier

heating. This means that µz = µ0 and Leff = L . To this purpose we will again use the third

velocity-field model (Model 3) defined in (9.15) or its normalized form (9.16).

The drain thermal noise conductance accounting for VS and carrier heating only is given

by (9.155) with Leff = L and µz = µ0
1

GnD(VS+CH) = Mµ0

W

L2

∫ L

0

(

1 +
|Ex |

2Ec

)2

[−Qi(x)] dx, (9.158)

or in normalized form

gnD(VS+CH) �
GnD(VS+CH)

Gspec

= M

∫ 1

0

[

1 +
e(ξ )

2

]2

qi(ξ ) dξ, (9.159)

where e is the normalized longitudinal field defined by (9.6) and

M =
1

(

1 − VDeff−VS

2L Ec

)2
. (9.160)

gnD(VS+CH) can be split into two components gnD(VS) and gnD(CH):

gnD(VS+CH) = gnD(VS) + gnD(CH), (9.161)

where gnD(VS) accounts for the effects of VS only and is given by

gnD(VS) = M

∫ 1

0

qidξ = MqI, (9.162)

1 The fact that only the VS and carrier heating effects are accounted for is indicated by the sign (VS + CH) at the end

of the subscript.
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whereas gnD(CH) accounts for the additional effect of carrier heating and is given by

gnD(CH) = M

∫ 1

0

[

e(ξ ) +
(

e(ξ )

2

)2
]

qi(ξ ) dξ, (9.163)

Note that even though the integral in (9.162) is the same expression as obtained for the

long-channel case, the inversion charge distribution along the channel when VS occurs can

be quite different from that without VS as in the long-channel case. Therefore gnD(VS) is not

simply equal to M times the long-channel value of gnD as (9.161) might wrongly suggest.

For vd ≤ vd sat, the normalized noise conductances gnD(VS) and gnD(CH) can be found by

operating a change of variable from ξ to qi using (9.22) and (9.36) with the definitions of the

normalized velocity ν and mobility u given by (9.14) and (9.16) respectively. This results in

expressions for dqi/dξ and e given by

dqi

dξ
=

−id

2qi − λc

2
id

, (9.164a)

e =
λcid

2qi − λc

2
id

, (9.164b)

where id is given by (9.47). gnD(VS) then becomes

gnD(VS) =
M

id

∫ qs

qd

qi

(

2qi +
λc

2
id

)

dqi

=
M

id

[

2

3

(

q3
s − q3

d

)

−
λcid

4

(

q2
s − q2

d

)

]

. (9.165)

Similarly, gnD(CH) is obtained by replacing in (9.163) e by (9.164b) and dξ by dqi given by

(9.164a), resulting in

gnD(CH) = M
λc

2

[

q2
s − q2

d +
λcid

4
(qs − qd)

+

(

λcid

4

)2

ln

(

qs − λc/4id

qd − λc/4id

)

]

. (9.166)

For vd ≥ vd sat, gnD(VS) = gnD sat(VS), and gnD(CH) = gnD sat(CH) which can be obtained by

replacing id and qd in (9.165) and (9.166) by (9.49b) and (9.49a) respectively.

The corresponding thermal noise parameter can also be split into two components according

to

δnD(VS+CH) = δnD(VS) + δnD(CH), (9.167)

where δnD(VS) � gnD(VS)/qs and δnD(CH) � gnD(CH)/qs.
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Similarly, the thermal noise excess factor including both VS and carrier heating in saturation

is given by

γnD sat(VS+CH) = γnD sat(VS) + γnD sat(CH), (9.168)

where γnD sat(VS) � gnD sat(VS)/gmsat and γnD sat(CH) � gnD sat(CH)/gm sat with gm sat given by

(9.70).

The thermal noise parameter δnD(VS) is plotted versus the normalized drain voltage

vd � VD/UT and for vs = 0 in Figure 9.27(a). It clearly shows that for λc > 0, the thermal

noise conductance and therefore the thermal noise parameter is lower than the long-channel
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Figure 9.27 (a) Thermal noise parameter δnD(VS) accounting for VS only versus normalized drain

voltage vd. (b) Thermal noise parameter δnD sat(VS) and noise excess factor γnD sat(VS) in saturation versus

normalized pinch-off voltage vp and accounting for VS only
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value. At first glance, this might be surprising, since there are more inversion charges in the

channel due to VS at the drain. It can be explained by the fact that the noise at the drain is

transferred from the local noise sources in the channel to the drain through the square of the

magnitude of the (trans)conductance, which is proportional to the mobility. Therefore even

though there are more charges in the channel, they produce less noise at the drain compared

to the situation where the transistor is biased at VDS = 0, which is taken as the reference for

the definition of the thermal noise parameter δnD.

Because the transconductance degrades faster than the noise conductance, the situation is

different for the noise excess factor accounting for VS γnD sat(VS). As opposed to δnD sat(VS),

γnD sat(VS) deteriorates as the product λcqs increases when VS is present. This is illustrated

in Figure 9.27(b), where δnD sat(VS) and γnD sat(VS) are plotted versus vp for vs = 0 and for

different λc. For vp = 20 (VG − VT0
∼= 400 mV) and λc = 0.50 (L ∼= 0.1 μm), γnD sat(VS)

reaches about 4.

δnD sat(VS) and δnD sat(CH) are plotted in Figure 9.28(a) versus vp and for vs = 0. As already

mentioned above, the δnD sat(VS) noise parameter in saturation is smaller than the long-channel

value 2/3 obtained when VS is not present. On the other hand, the term due to carrier heating

δnD sat(CH) is increasing from zero, compensating the reduction of δnD sat(VS) so that the sum

δnD sat(VS+CH) finally remains slightly above the long-channel value 2/3.

γnD sat(VS), γnD sat(CH), and γnD sat(VS+CH) are plotted versus vp and for vs = 0 in Figure 9.28(b).

On the contrary to δnD sat(VS+CH), the effect of carrier heating does not compensate the effect

of VS, but it deteriorates γnD sat(VS) even further by increasing it significantly from the value

without carrier heating.

9.4.3 Effects of Vertical Field Mobility Reduction and
Channel Length Modulation

In addition to VS and carrier heating, the reduction of mobility due to the vertical field and the

effect of CLM have also to be accounted for. Mobility reduction due to the vertical field will

affect both γnD and δnD only through parameter λc because they are expressed as the ratio of

conductances.

The CLM effect is discussed in Section 9.2. The effective channel length used in (9.149)

can be approximated by

Leff = L − ΔL , (9.169)

where ΔL is given by (9.87a). CLM will affect γnD and δnD in different ways. It will affect

γnD only through parameter λc, but for δnD, in addition to effecting through λc, it will increase

it by a factor of 1
1−ΔL/L

.

Some results from the above model are presented in Figures 9.29 and 9.30 for a typical

0.18 μm MOSFET (with Ec = 2 V/μm, θ = 0.3, and ℓ = 30 nm) with different levels of

approximation. The noise parameter δnD is plotted versus vd in Figure 9.29(a). When CLM is

absent, δnD gets saturated for vd ≥ vd sat. CLM causes the noise conductance to increase with

respect to the drain voltage because the channel length decreases with the drain voltage. Since

Gds0 is defined at VDS = 0, it is not affected by CLM. As a result δnD increases with the drain

voltage. Note that this increase is much less when the effect of mobility reduction due to the
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Figure 9.28 (a) Thermal noise excess factors in saturation versus normalized pinch-off voltage vp.

δnD(VS) accounts for VS only, δnD(CH) accounts for carrier heating only, and δnD(VS+CH) accounts for both

VS and carrier heating. (b) Thermal noise excess factors in saturation versus normalized pinch-off

voltage vp. γnD sat(VS) accounts for VS only, γnD sat(CH) accounts for carrier heating only, and γnD sat(VS+CH)

accounts for both VS and carrier heating

vertical field is also considered. Mobility reduction due to vertical field results in a higher value

of Ec, hence a smaller value of u in (9.87a) which considerably attenuates the effect of CLM.

δnD sat is plotted versus vp in Figure 9.29(b) with the same levels of approximation than

those used in Figure 9.29(a). When both CLM and mobility reduction due to the vertical field

are absent, δnD sat slightly increases with vp as already shown in Figure 9.27(b). Even when

CLM or mobility reduction due to the vertical field is taken into account separately, δnD sat still

increases with vp. It is the combination of both effects which causes δnD sat to decrease with

vp. This behavior and the values obtained in Figure 9.27(b) are in agreement with the earlier
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Figure 9.29 (a) Thermal noise parameter δnD versus normalized drain voltage vd. (b) Thermal noise

parameter δnD sat in saturation versus normalized pinch-off voltage vp. The square and circle symbols

represent measurements taken from [130] and [117] respectively. Curve labeled no VMR, no CLM
accounts for VS and carrier heating only. Curve labeled with VMR, no CLM accounts for VS, carrier

heating, and mobility reduction due to the vertical field. Curve labeled no VMR, with CLM accounts

for VS, carrier heating, and CLM. Curve labeled with VMR, with CLM accounts for all four effects,

namely VS, carrier heating, mobility reduction due to the vertical field, and CLM

results obtained by Scholten [130] and Chen [117] which are represented by the symbols in

Figure 9.27(b).

Finally, γnD sat is plotted versus vp in Figure 9.30 again with the same approximations as

above. The plots indicate that the effect of vertical field greatly modifies γnD sat. From the high

values obtained earlier when including VS and carrier heating, the effect of mobility reduction

due to the vertical field brings γnD sat back to values close to 2. This can be explained by
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Figure 9.30 Thermal noise excess factor γnD sat in saturation versus normalized pinch-off voltage

vp. Curve labeled no VMR, no CLM accounts for VS and carrier heating only. Curve labeled with
VMR, no CLM accounts for VS, carrier heating, and mobility reduction due to the vertical field.

Curve labeled no VMR, with CLM accounts for VS, carrier heating, and CLM. Curve labeled with
VMR, with CLM accounts for all four effects, namely VS, carrier heating, mobility reduction due to

the vertical field, and CLM

considering that γnD sat decreases as the product λcqs decreases and vertical mobility reduction

directly reduces λc. CLM only slightly increases γnD sat to a value of about 2.5.

9.4.4 Summary

If only the VS effect is considered, then the noise conductance GnD becomes smaller compared

to the long-channel value. The reason is that the higher noise due to the increase of the inversion

charge in the channel required to sustain the drain current with a reduced or even limited velocity

is strongly attenuated by the reduction of the transfer function from the local noise source in

the channel to the drain terminal caused by the mobility degradation due to VS. Since Gds0 is

not affected by this mobility reduction, the noise parameter δnD also gets reduced. However,

the gate transconductance is strongly affected by VS and hence the resulting γnD sat increases

above unity.

VS cannot be considered without carrier heating. The latter has an opposite effect than VS

on both δnD and γnD, overcompensating the reduction observed in δnD sat and further increasing

γnD sat. For channel length of the order of 0.1 μm, δnD sat approximately goes back to values

slightly larger than the long-channel value 2/3, whereas γnD sat can become larger than 1,

typically equal to about 8–10 for an overdrive voltage VG − VT0 of about 0.5 V.

Mobility degradation due to the vertical field causes both GnD and δnD to decrease slightly

because it affects them only through the λc parameter. But it affects γnD sat very strongly because

of the increase in λcqs, bringing it back to values close to 2. CLM tends to increase all the noise

parameters, especially at higher drain (or lower gate) voltages. In summary, the effect of VS

and carrier heating try to partly balance each other and also the effect of mobility degradation

due to the vertical field and CLM show opposite trends.
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We can conclude from the above discussion that because of the presence of counteracting

effects, it was possible in the past to present compact thermal noise models without accounting

for all the effects simultaneously and accurately. As the above factors affect γnD and δnD

differently, it is therefore very important to distinguish between the thermal noise parameter

δnD and the thermal noise excess factor γnD. This careful definition of δnD and γnD might

eventually explain the discrepancies observed between values measured by Scholten [130] and

Abidi [131].



10 The Extrinsic Model

The previous chapters were exclusively devoted to the analysis of the intrinsic part of the

transistor, defined as the region comprised between the oxide and substrate on top and bottom,

and the source and drain junctions on each side. Although the fundamental behavior is indeed

dictated by the intrinsic part, the extrinsic part also plays an increasingly important role when

either reducing the dimensions and/or increasing the operating frequency. This chapter looks at

the different components that constitute this extrinsic part. It starts with the access resistances,

which include the source and drain resistances as well as the gate and bulk resistances. They

are all presented in Section 10.2. The regions beyond each end of the intrinsic channel include

the important overlap capacitances and part of the source and drain access resistances. They

are discussed in Section 10.3 with a particular emphasis on their bias dependence. The source

and drain junctions are presented in Section 10.4. Finally, Section 10.5 presents the additional

noise due to the extrinsic components.

10.1 EXTRINSIC PART OF THE DEVICE

Most of the previous chapters were focused on the so-called intrinsic part of the MOS transistor.

It is defined by the inside part of the dashed rectangle shown in Figure 10.1 delimited by the

source and drain junctions on each side, by the gate oxide and gate electrode on the top

and by the substrate on the bottom. This is obviously the most important part of the MOS

transistor, since it represents the active part of the device offering the transconductance and

enabling amplification. To access the source and drain intrinsic terminals (nodes si and di in

Figure 10.1(a)) requires the source and drain extensions (SDE), as well as the source and drain

diffusions which are covered with a silicide and contacted by a via. All these parts add some

parasitic access resistances which are modeled by the source and drain resistances RS and RD.

The latter are made of several parts that will be further discussed in Section 10.2.1. The gate is

made of polysilicon which is usually covered by silicide in order to lower the gate resistance.

Although this resistance is small (in the order of a few �/�), it might be important to account

for it particularly for RF I C design, where even small series resistances can count. The access

to the gate can also be modeled by a simple gate resistance RG. The modeling of the substrate

Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design C. Enz and E. Vittoz
C© 2006 John Wiley & Sons, Ltd.
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Figure 10.1 (a) Definition of the extrinsic part of the MOS transistor and the extrinsic components

including the series access resistances, the overlap parasitic capacitances, and the junction parasitic

capacitances. (b) Simple equivalent circuit of the extrinsic part corresponding to (a)

access is a bit more difficult since it strongly depends on the device layout. Modeling it by a

simple substrate series resistance RB is usually sufficient in most cases. More accurate models

used for RF I C design will be discussed in more details in Section 11.4.2.

In addition to the four series access resistances RS, RD, RG, and RB, there are also additional

parasitic capacitances. The overlap capacitances between gate and source CGSo and between

gate and drain CGDo are due to the overlap of the gate and gate oxide over the SDE. These

overlap arise after forming the SDE, by lateral diffusion of the SDE dopants under the gate.

These overlap capacitances are made of several parts some of which are bias dependent and

will be discussed further in Section 10.3.1. There is also a gate-to-bulk overlap capacitance

CGBo which is due to the extension of the gate electrode above the field oxide and on top of

the substrate.

In addition, the source and drain junctions and their extensions are modeled by the diodes

DS between the bulk and the source and DD between the bulk and the drain. As explained in

Section 10.4, in dynamic operation they are modeled by two junction capacitances CBSj and

CBDj. The latter are obviously bias dependent and are also made of several parts.

Although it is always possible to model the device in great detail taking into account every

little series resistances and capacitances, this results in an accurate but usually very complex

equivalent circuit. Furthermore, all the components of this equivalent circuit can most of the

time not be extracted from experiments in an accurate way, or some not at all. It is therefore

important to find the right trade-off between the accuracy required by the circuit designers,

which always depends on the circuit application, and the complexity of the equivalent circuit

used for the design and the simulations. Also note that most of the parasitic components are

distributed resistances and capacitances, which are then modeled by lumped elements. The

equivalent circuit shown in Figure 10.1(b) modeling the extrinsic part of the MOS transistor

is usually accurate enough for most of the circuit design applications. One exception might be

RF circuits, where an even more elaborate equivalent circuit might be required, particularly

for the substrate network. This will be discussed further in Chapter 11.

The next sections will discuss each extrinsic component in more detail, particularly its

scaling and eventual bias dependence.
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Figure 10.2 (a) Components of the source and drain access resistances (on the right) and approxima-

tive current flow (on the left). (b) Contact resistance per unit width versus the diffusion width showing

that above a certain value Hdif, the resistance does not scale as 1/Lsal because most of the current

flows within the salicide instead of going from the bottom of the salicide to the diffusion

10.2 ACCESS RESISTANCES

10.2.1 Source and Drain Resistances

As shown in Figure 10.2(a), the source and drain access resistances are made of several parts

including the resistance due to the via Rvia, the resistance of the salicide Rsal, the contact resis-

tance between the salicide and the junction diffusion Rcon, and the resistance of the SDE Rsde.

The source (drain) resistance is then given by the series connection of all these components:

RS(D) = Rsde + Rcon + Rsal + Rvia
∼= Rsde + Rcon. (10.1)

The SDE and salicide resistances are scaling as

Rsde =
Ldif

W
Rsde�, (10.2a)

Rsal =
Lsal

W
Rsal�, (10.2b)

where Ldif is the length of the SDE and Lsal is the half width of the salicide region as shown

in Figure 10.2(a). Rsde� and Rsal� are the sheet resistances of the SDE and the salicide,

respectively, which have typical values in the k� range for Rsde� and in the � range for Rsal�.

The total via resistance Rvia depends on the number of via per source or drain diffusion with

a typical resistance of a few � per via. As can be seen from the above numbers, the total

resistance is usually dominated by the contact and the SDE resistances.

Note that the contact resistance Rcon per unit of finger width does not scale with the salicide

length Lsal above a certain minimum value defined as Hdif as shown in Figure 10.2(b). This is

due to the fact that most of the current flows within the salicide instead of going to the diffusion

because of the latter higher resistivity as illustrated in Figure 10.2(a). Therefore, increasing

the salicide length above Hdif does not reduce the contact resistance even though the bottom

contact area between salicide and silicon is increased.

As shown in Figure 10.3, the SDE resistance Rsde is made of two parts: Rsde-ov, which is in

the overlap region below the gate and Rsde-sp which is outside the gate overlap region below
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Figure 10.3 SDE resistance splits into the bias-independent part Rsde-sp situated below the spacer

and the bias-dependent part Rsde-ov(VG, VS(D)) located in the overlap region

the spacer:

Rsde = Rsde-sp + Rsde-ov(VG, VS(D)). (10.3)

As Figure 10.3 illustrates, the resistance Rsde-ov depends on the inversion state of this gate

overlap region and hence depends on VG − VS on the source side and on VG − VD on the

drain side. On the other hand, resistance Rsde-sp can be considered as bias independent. Since

the gate-to-bulk and drain-to-bulk voltages are usually positive and the source-to-bulk is zero

or positive, the overlap regions on the source and drain sides are most of the time biased

in accumulation. Increasing the gate-to-bulk voltage will attract even more electrons on the

surface and hence reduce the overlap resistances. Note that it is important to account for this

bias dependence in order to accurately predict the harmonic distortion [132].

Since the SDE region length Ldif is almost constant, the total source and drain resistances

RS and RD scale only with the finger width and the number of fingers according to

RS(D)
∼= Rcon + Rsde(VG, VS(D)) ∼=

0.5Rdsw(VG, VS(D))

W
, (10.4)

where Rdsw is the total source and drain resistance per unit width. Rdsw is typically in the

k� μm range.

The bias dependence of the source and drain access resistances is illustrated in Figure 10.4,

where the total source and drain access resistance is plotted versus the gate-to-source voltage

for two different oxide thicknesses [133].

Because of the voltage drop across the source and drain series resistances, the voltages at the

intrinsic nodes are smaller than the applied external voltages. Since the current is determined

by the intrinsic voltages, the transconductances from the external terminals are smaller than

the intrinsic transconductances. This can be easily verified using the small-signal equivalent

circuit shown in Figure 10.5. The effective transconductances are given by

Gmeff �
∂ ID

∂VG

∣
∣
∣
∣

VS,VD

=
Gm

D
(10.5a)

Gmseff � −
∂ ID

∂VS

∣
∣
∣
∣

VG,VD

=
Gms + Gds

D
(10.5b)

Gmdeff �
∂ ID

∂VD

∣
∣
∣
∣

VG,VS

=
Gmd + Gds

D
, (10.5c)
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Figure 10.5 Small-signal schematic for calculating the degradation of transconductance due to the

source and drain resistances

where

D � 1 + (Gms + Gds)RS + (Gmd + Gds)RD (10.6)

∼= 1 + Gms RS (in saturation).

As indicated by (10.5), the intrinsic transconductances are reduced by this factor D which is

approximately equal to 1 + Gms RS in saturation.

Similar considerations can be drawn for the drain current which is lowered by the presence

of the source and drain series resistances.

10.2.2 The Gate Resistance

The gate resistance starts to play a role typically when it gets equal or larger than the inverse of

the gate transconductance. It will not only affect the transistor operation at high frequency, but

can also have an effect at low frequency. Indeed, RG becoming larger than 1/Gm will contribute

to noise at both low and high frequency, and will also change the frequency behavior at high

frequency. It is therefore important to account for it when designing very low-noise circuits
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operating at low frequency, for example sensors front-ends, and at high frequency when

designing for example low-noise amplifiers. The transistors used in such circuits are usually

made very large and are laid out as multifinger devices as shown in Figure 10.6 for a number of

fingers Nf = 4. The gate resistance is made of several parts: the resistance RGtop corresponding

to the part that is on top of the channel (in darker gray in Figure 10.6), resistance RGext corre-

sponding to the part that is outside the channel region (in lighter gray in Figure 10.6), resistance

RGvia corresponding to the vias between metal 1 and the silicided polysilicon and resistance

RGcon corresponding to the contact resistance between the silicide and the polysilicon [134]:

RG = RGtop + RGext + RGvia + RGcon. (10.7)

The part of the gate resistance that is on top and across of the channel RGtop is modeled by

RGtop =
1

3

Wf

Nf L f

RG�, (10.8)

where RG� is the gate silicide sheet resistance, Wf is the finger length (corresponding

to the channel width of a single finger) and L f is the finger width corresponding to the

drawn gate length. The factor 1/3 appearing in (10.8) accounts for the distributed nature

of RGtop as illustrated in Figure 10.7 in order to correctly predict the maximum oscillation

frequency [135]. Note that the distributed gate resistance along the channel can be neglected

since the finger is usually much longer than wide (Wf ≫ L f).

G

S

D

D

Figure 10.7 Distributed gate and channel resistances
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The resistance of the part outside the channel region RGext depends very much on the geom-

etry and where the gate contacts are placed. In case the gate is contacted along the vertical metal

line as shown in Figure 10.6, RGext is simply given by

RGext =
Wext

Nf L f

RG�. (10.9)

The via resistance RGvia depends on the number of via Nvia according to

RGvia =
Rvia

Nvia

, (10.10)

where Rvia is the resistance of a single via.

The silicide-to-polysilicon contact resistance is defined by

RGcon =
ρcon

Nf Wf L f

, (10.11)

where 1/ρcon is the silicide-to-polysilicon specific conductance (in A/V m2).

Note that the total gate resistance given by (10.7) can be significantly decreased by connect-

ing the gate on both sides. As shown in Figure 10.8, if the gate resistance is contacted only on

G
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Figure 10.8 (a) Different parts of the gate resistance; (b) contacting the gate at both ends decreases

the gate resistance by approximately a factor 4
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one side, the total gate resistance is given by (10.7). On the other hand, if the gate is contacted

on both sides and the metal is assumed to have a negligible resistance compared to the other

components, we have

RG
∼=

RGtop

4
+

RGext

2
+

RGvia

2
+ RGcon, (10.12)

which is about four times smaller than the one side contact case corresponding to (10.7). If the

layout constraints allow, it is therefore recommended to contact the gate on both sides in order

to minimize the gate resistance for the given geometry.

In technologies typically older than 0.18 μm, the gate current could be completely neglected.

Hence, the dc voltage drop across the gate resistance could also be neglected and therefore

the gate resistance had no effect on the dc transistor operation. This is no longer the case for

ultradeep submicron technologies, where the gate oxide is so thin that a dc tunneling current

starts to flow through this oxide. In this case, there is also a small voltage drop across the gate

resistance that can also affect the dc operation of the transistor.

10.3 OVERLAP REGIONS

10.3.1 Overlap Capacitances

The different capacitances forming the extrinsic gate-to-source and gate-to-drain parasitic

capacitances are shown in Figure 10.9. They are made mainly of three capacitances: the overlap

capacitance Cov, the inner fringing-field capacitance Cif, and the outer fringing-field capaci-

tance Cof

CGS(D)o = Cov(VG, VS,(D)) + Cif(VG, VS,(D)) + Cof. (10.13)

Note that Cov(VG, VS,(D)) and Cif(VG, VS,(D)) are strongly bias dependent, whereas Cof can

be considered as bias independent.

A simple way to model the bias-dependent overlap capacitance Cov is to define an effective

overlap length Lov-eff corresponding to the part of the total overlap length Lov that is constituting

Cov Cof

Cif

Cfr

Salicide

Polysilicon

Spacer

Oxide

Figure 10.9 Different parts of the total overlap capacitances: the inner fringing-field capacitance

Cif, the overlap capacitance Cov, and the outer fringing-field capacitance Cof. Note that there is also a

fringing-field capacitance Cfr between the gate electrode and the via
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Figure 10.10 Bias dependence of Cif and Cov when the SDE is (a) in inversion, (b) in depletion, and

(c) in accumulation

the bottom plate of Cov as shown in Figure 10.10 [56]:

Cov(VG) � W Lov-eff(VG)Cox. (10.14)

Depending on the gate voltage, the overlap region can be either in accumulation when the

gate voltage is larger than the flat-band voltage of the SDE region VFB(SDE) (which is close

to zero volt [56]) (Figure. 10.10(c)), or in depletion when VG<VFB(SDE) (Figure. 10.10(b)), or

even in inversion when VG ≪ VFB(SDE) (Figure. 10.10(a)).

As shown in Figure 10.10(c)), the overlap capacitance is maximum in accumulation (VG >

VFB(SDE)) for which the effective overlap length Lov-eff is about equal to the total overlap length

Lov:

Cov(VG > VFB(SDE)) ∼= Cov-max � W Lov Cox. (10.15)

For VG < VFB(SDE), the overlap capacitance is smaller than Cov-max and can be modeled

empirically by

Cov =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Cov-max for VG ≥ VFB(SDE)

Cov-max

1 +
|VG |

VGov

for VG < VFB(SDE),
(10.16)

where Cov-max is given by (10.15) and VGov is a fitting parameter that can be extracted from

measurement as explained in [56].

The inner fringing-field capacitance is also bias dependent. When the gate voltage is lower

than the channel flat-band voltage, the device is in accumulation and the layer of free holes in
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the channel region is electrically disconnected from the n+ SDE regions and shields the fringing

capacitances reducing them to zero. When VG increases, the device enters the depletion regime

where Cif reaches its maximum. As VG increases further, the device enters in strong inversion

and an inversion layer is formed. The inner fringing-field capacitance is again shielded by the

inversion layer and decreases down to zero. This behavior is modeled by [56]

Cif = Cif-max exp

[

−
(

VG − VFB − ΦF/2

3ΦF/2

)2
]

, (10.17)

where Cif-max is given by

Cif-max � W
ǫsi

3π
ln

[

1 +
x j

tox

sin

(

π

2

ǫox

ǫsi

)]

, (10.18)

where x j is the depth of the SDE (not the junction).

Finally, the outer fringing-field capacitance can be considered as bias independent and is

approximated by [56]

Cof = W
2ǫox

π
ln

(

1 +
tpoly

tox

)

. (10.19)

The above model for CGS(D)o is plotted in Figure 10.11(a) versus VG for VD = VS = 0 and

for two different values of the SDE region doping Nsde. It shows that the overlap capacitance

Cov dominates the extrinsic capacitance CGS(D)o. Also note the effect of the inner fringing-field

component which introduces a little bump in the characteristic. Figure 10.11(b) shows the total

gate-to-source (gate-to-drain) capacitance including both the intrinsic and extrinsic parts. It

shows that the extrinsic component dominates in the weak and depletion regions, whereas the

intrinsic dominates in the moderate and strong inversion regions.
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Figure 10.11 (a) Effect of the inner fringing-field capacitance given by (10.17) on the total overlap

capacitance gate voltage bias dependence. (b) Bias dependence of the total gate-to-source (gate-to-

drain) capacitance for different channel lengths (Reproduced by permission of Elsevier Ltd. from [56])
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There is also an overlap capacitance CGBo between the gate and the substrate. It is due to

the gate extending outside the channel, Since it is along the channel, it is proportional to the

gate length

CGBo = CG BO LG, (10.20)

where CG BO is a capacitance per unit length and LG is the gate drawn length.

10.3.2 Overlap Gate Leakage Current

In addition to the gate leakage current between the gate and the channel region as discussed

in Section 8.6, the source and drain overlap regions also contribute to the gate leakage current

and may dominate in some bias conditions [112].

10.4 SOURCE AND DRAIN JUNCTIONS

10.4.1 Source and Drain Diodes Large-Signal Model

As shown in Figure 10.1, the source and drain junctions are simply modeled by two diodes

DS and DD connected between bulk and source and bulk and drain, respectively. They are

characterized by the classical current–voltage relation

Ij = −Is

(

exp
−VR

ηUT

− 1

)

, (10.21)

where VR is the reverse voltage applied across the junction, i.e., VR = VSB on the source side

and VR = VDB on the drain side and Is is given by

Is = q ADn2
i

(

Dp

Lp Ndiff

+
Dn

Ln Nb

)

, (10.22)

where Dn, Dp and Ln, Lp are the diffusion coefficients and diffusion length of electrons and

holes, respectively. Nb and Ndiff are the doping concentrations in the P-type substrate and

in the N-type source and drain junctions, respectively. The ideality factor η is ideally equal

to unity when the current is dominated by the diffusion current and gets larger than 1 when

accounting for recombination and high injection. In reverse mode, equation (10.21) indicates

that the current saturates to Is as soon as VR > 5ηUT. But this is without accounting for the

generation current due to generation of electron–hole pairs in the depletion region. Actually,

in reverse bias, the current is dominated by this generation current which is given by

Igen =
q ADnid

τg

, (10.23)

where AD is the diode cross-sectional diode area, τg is the generation time constant of the

carrier in the depletion region, and d is the depletion width which depends on the reverse
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voltage VR according to

d =

√

2ǫsi

q

Nb + Ndiff

Nb Ndiff

√

VR + ΦB, (10.24)

where ΦB is the built-in potential

ΦB = UT ln
Nb Ndiff

n2
i

. (10.25)

In most cases the junctions are N+-P type with Ndiff ≫ Nb and (10.24) simplifies to

d ∼=

√

2ǫsi

q Nb

√

VR + ΦB. (10.26)

The current flowing in the reverse-biased source (drain) junction is then given by

IS(D)B
∼= Is + Igen (10.27)

and depends on the bias voltages mainly through the generation current Igen.

If the reverse bias voltage is increased further, so does the electric field in the depletion

region until it reaches a critical value Ejc corresponding to the avalanche breakdown voltage

Vbr

Vbr =
ǫsi E

2
jc

2q

(

1

Nb

+
1

Ndiff.

)

. (10.28)

Equation (10.28) shows that the breakdown voltage decreases when increasing the doping on

either side of the junction. As shown in Figure 10.12(a), as soon as VR gets slightly larger than

Vbr, the reverse current starts to increase sharply.

The small-signal equivalent circuit of the diodes is shown in Figure 10.12(c), where the

junction capacitances are described in Section 10.4.2 and the differential conductances in

Section 10.4.3.

10.4.2 Source and Drain Junction Capacitances

The source and drain junction capacitances CBSj and CBDj of Figure 10.12(c) model the vari-

ations of the depletion charge due to a change of the depletion width. A junction capacitance

can be simply modeled as a parallel plate capacitor with silicon as dielectric and separated by

a distance d

Cj =
ǫsi

d
, (10.29)
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Figure 10.12 Modeling of the source and drain junctions: (a) current–voltage characteristic; (b)

large-signal model; (c) small-signal equivalent circuit

where Cj is actually a capacitance per unit area. Note that even though (10.29) is usually derived

assuming an abrupt junction (or step profile), it is actually valid for any doping profile. On the

other hand, the voltage dependence given in (10.24) assumes abrupt junctions. The junction

capacitance can be rewritten as

Cj =
Cj0

√

1 + VR

ΦB

, (10.30)

where Cj0 is the value of the capacitance (per unit area) at equilibrium (i.e., for VR = 0)

Cj0 �

√

ǫsiq

2ΦB

Nb Ndiff

Nb + Ndiff

∼=

√

ǫsi q Nb

2ΦB

. (10.31)

Note that the above equation holds only for VR > −ΦB, which is usually the case since

the junction have to be reverse biased in order to maintain the diode leakage current small

compared to the drain current.

In real diodes, the doping profile is not abrupt as assumed in the derivation of (10.30).

For practical diodes the one-half exponent in (10.30) is replaced by the grading coefficient m,

resulting in the following expression for Cj

Cj =
Cj0

(

1 + VR

ΦB

)m , (10.32)

where m typically ranges between 0.2 and 0.5.

Since the doping levels are very different on top and on bottom of the junctions and in the

SDE regions, the junction capacitances have to be split into several parts:

CBS(D)j = AS(D) Cjbw + (PS(D) − Weff) Cjsw + W Cjswg, (10.33)
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where Cjbw refers to the bottom-wall capacitance per unit area, Cjsw to the side-wall capacitance

per unit length of the perimeter that is on the isolated sides, and Cjswg to the side-wall capacitance

per unit length of the part of the perimeter that is along the gate and the SDE region. AS (AD)

is the total source (drain) diffusion area, PS (PD) is the total source (drain) diffusion perimeter,

and W is the total transistor width.

Note that for devices that are inside a well, an additional junction capacitance CBB′j between

the well and the substrate has to be considered. The latter is decomposed into

CBB′j = AW Cjbww + PW Cjsww, (10.34)

where Cjbww refers to the bottom-wall capacitance per unit area and Cjsww to the side-wall

capacitance per unit length of the well. AW corresponds to the total well area, whereas PW is

the total well perimeter.

10.4.3 Source and Drain Junction Conductances

The source and drain junctions small-signal schematic should be completed with two differen-

tial conductances GBSj and GBDj that are connected in parallel with the junction capacitances

as shown in Figure 10.12(c). The conductances are obtained by differentiating the expression

of the leakage current (10.27) resulting in

GBS(D)j =
ADni

τg

Nb + Ndiff

Nb Ndiff

Cj
∼=

ADni

τg Nb

Cj. (10.35)

These conductances can often be neglected since they are usually much smaller than the

intrinsic (trans)conductances and output conductance Gds. However, they may become non-

negligible at very low channel current, for which the intrinsic (trans)conductances become

very small, or if the effect of Gds has been canceled as is the case in a cascode configuration.

10.5 EXTRINSIC NOISE SOURCES

The different noise sources appearing at low frequency in a MOS transistor are represented

in the small-signal schematic of Figure 10.13.1 The overall noise is usually dominated by the

intrinsic part of the device representing the active part and corresponding in Figure 10.13 to the

noise source InD [114,134]. It comprises both the flicker and thermal noise due to the channel,

which were already presented in Sections 6.2 and 6.3. In addition, all the access resistances,

namely the source and drain resistances RS and RD but also the gate and the substrate resistances

RG and RB are also noisy and contribute to the thermal and to some extend also to the flicker

noise (see Section 6.3.3). They are represented in Figure 10.13 by the noise current sources

InRS, InRD, InRG, and InRB respectively. If their contributions to the flicker noise is neglected,

1 This small-signal equivalent circuit does not include the noise appearing at high frequency. The latter are discussed

in Chapter 13.
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Figure 10.13 Low-frequency small-signal equivalent circuit with the main noise sources, including

the sources coming from the extrinsic part of the transistor

they show only thermal noise and have power spectral densities (PSD) given by

SI 2
nRS

=
4kT

RS

, (10.36a)

SI 2
nRD

=
4kT

RD

, (10.36b)

SI 2
nRG

=
4kT

RG

, (10.36c)

SI 2
nRB

=
4kT

RB

. (10.36d)

The leakage currents ISB and IDB of the source-to-bulk and drain-to-bulk junctions also con-

tribute as shot noise. They are represented in Figure 10.13 by the noise current sources InBS

and InBD which have PSD given by

SI 2
nBS

= 2q ISB, (10.37a)

SI 2
nBD

= 2q IDB, (10.37b)

where q is the elementary charge.

As discussed in Section 8.6, in deep submicron technologies the gate oxide is so thin that a

tunneling current is flowing in the gate. This current is split between the source and the drain,

giving rise to a current IGS flowing from the intrinsic gate (gi) to the intrinsic source (si) and
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another current IGD flowing from the intrinsic gate (gi) to the intrinsic drain (di). Both of these

currents show shot noise. They are represented in Figure 10.13 by the noise current sources

InGS and InGD having PSD

SI 2
nGS

= 2q IGS, (10.38a)

SI 2
nG D

= 2q IGD. (10.38b)

The conductances GGS and GGD in Figure 10.13 represent the small-signal differential con-

ductances corresponding to these leakage currents.



Part III

The High-Frequency Model

The aggressive scaling of CMOS technologies which is going on since more than 25 years has

allowed to increase the number of transistors per chips and hence extend the functionality and

in the same time dramatically push the speed performance. Although these tremendous speed

improvements have been mainly driven by the requirements of VLSI digital chips, they can

also be exploited for analog RF circuits. Today, ultradeep submicron (UDSM) technologies

have catched-up or even surpassed the transit frequencies achieved by bipolar transistors. This

clearly opens the door to full CMOS highly integrated solutions for wireless applications.

After several years of intensive research that has demonstrated the feasibility of using CMOS

technologies for RF applications, real products using CMOS also for the RF portion of a chip

are now emerging. Several examples of single-chip systems, including the radio transceiver

together with the baseband digital processor and fully integrated in CMOS, are on the market

today. Nevertheless, the design of RF I Cs for real products remains a challenge due to the strong

constraints on power consumption and noise that leave little margins for the RF I C designer. It is

therefore crucial to be able to accurately predict the performance of CMOS RF circuits in order

to improve design efficiency and reduce time-to-market. This requires MOS transistor models

that are accurate over a wide range of bias, from dc to RF and for a large set of geometries.

Part III presents an overview of the high-frequency aspects of MOS transistor modeling for

RF I C design. Chapter 11 presents the equivalent circuit at RF, whereas Chapter 12 focuses

on the small-signal circuit. RF thermal noise is finally presented in Chapter 13.

Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design C. Enz and E. Vittoz
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11 Equivalent Circuit at RF

This chapter first presents the structure and layout of a typical RF MOS transistor. It then

briefly looks at what is really changing when moving to higher frequency. Several figures

of merit widely used to evaluate and compare different devices and technologies are defined

in Section 11.3. They include the transit frequency, the maximum frequency of oscillation,

and the minimum noise figure. Section 11.3.4 points out that the moderate inversion offers a

good trade-off between the power consumption, the low-voltage operation, the noise, and the

linearity, all being of major importance for designing RF circuits. Section 11.4 then presents

the equivalent large-signal circuit valid at RF. It highlights the importance of a correct modeling

of the substrate.

11.1 RF MOS TRANSISTOR STRUCTURE AND LAYOUT

RF MOS transistors are usually designed as large devices in order to achieve the desired

transconductance required to meet the RF requirements. As shown in Figure 11.1, they are

usually laid out as multifinger devices, because in deep submicron CMOS processes, the

maximum finger length (corresponding to the unit transistor width Wf) is limited. This is

due to the so-called “narrow-line effect” increasing the silicided polysilicon sheet resistance

as the finger width (corresponding to the transistor gate length L f) decreases due to grain

boundary problems [136]. Typical devices have up to 10 or more fingers. The total transistor

effective width is then simply W = NfWf.

11.2 WHAT CHANGES AT RF?

When increasing the operating frequency for a given transistor, the characteristics such as the

gain or the transconductance (or more precisely the transadmittance) start to degrade. The

sources of this degradation must be distinguished between those coming from the intrinsic part

of the device (the channel region) and those related to the extrinsic part of the transistor (i.e.,

all the parasitic components discussed in Chapter 10). The frequency limit of the intrinsic part

Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design C. Enz and E. Vittoz
C© 2006 John Wiley & Sons, Ltd.
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Figure 11.1 Layout of a typical RF MOS transistor

is set by the frequency ωqs delimiting QS and NQS operation given by (5.32) which is repeated

here for convenience

ωqs = ωspec Ωqs(qs, qd), (11.1)

where ωspec is defined in (5.33) as ωspec � µUT/L2
f and Ωqs(qs, qd) is the normalized QS

frequency, which is bias dependent according to (5.32). In strong inversion and saturation,

(5.32) reduces to (5.34) which is repeated below

Ωqs
∼=

15

2
qs =

15

2

√

if =
15

4

VP − VS

UT

. (11.2)

In order not to have any degradations due to NQS operation, the QS frequency ωqs has to

be higher than the operating frequency (typically by a factor 5–7). This condition is achieved

by increasing Ωqs either by choosing a sufficiently high bias for a given channel length or by

increasing ωspec by reducing the channel length at a given bias or both. Note that, as stated by

(5.33), the QS frequency at a given operating point is inversely proportional to the square of

the channel length, as long as there is no velocity saturation.

The limitations due to the extrinsic part are strongly related to the layout, but in general

the frequency limitations are mainly due to the extrinsic capacitances and particularly the

capacitance at the drain, namely the drain-to-bulk junction capacitance CBDj and the gate-to-

drain overlap capacitance CGDo. The latter also affects the signal coupling between the gate

and the drain.

Some of the limitations described above are characterized by several figures of merit which

evaluate the ability of a device to operate at RF. They are discussed in Section 11.3.

11.3 TRANSISTOR FIGURES OF MERIT

11.3.1 Transit Frequency

A very common way to characterize the high-frequency performance of an active device

is to look at the frequency at which the extrapolated current gain h21 of a small-signal
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Figure 11.2 Small-signal common-source amplifier as a two-port network

common-source amplifier stage falls to unity. The current gain h21 of such a two-port shown

in Figure 11.2 is given by

h21 �
I2

I1

∣∣∣∣
V2=0

=
Y21

Y11

=
Gm − j ω(Cm + CGD)

j ωCG

∼=
Gm

j ωCG

=
ωt

j ω
, (11.3)

where I1 corresponds to the small-signal current entering the gate terminal (Port 1) and I2

corresponding to the small-signal current entering the drain terminal (Port 2).

Frequency ωt is the unity gain transit frequency given by

ωt =
Gm

CG

=
Gm

CGi + CGo

= ωspec

gm

cGi + cGo

, (11.4)

where CGi is the total intrinsic capacitance at the gate defined by

CGi � COX cGi = CGSi + CGDi + CGBi, (11.5)

where COX � W L fCox. According to (5.51a) and (5.52), the total gate capacitance CGi sim-

plifies to

CGi =
COX

n
(n − 1 + cGSi + cGDi), (11.6)

where cGSi and cGDi are the normalized intrinsic gate-to-source and gate-to-drain capacitances

given by (5.50). In strong inversion and saturation, according to (5.53) cGSi
∼= 2/3 and cGDi

∼= 0,

resulting in

CGi
∼= COX

(
1 −

1

3n

)
. (11.7)

CGo is the total overlap capacitance at the gate (see Figure 10.1):

CGo � COX cGo = CGSo + CGDo + CGBo. (11.8)

Neglecting the fringing-field components of the gate-to-source and gate-to-drain overlap

capacitances, they can be approximated by

CGSo = CGDo
∼= W LovCox. (11.9)
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Usually CGBo < CGSo + CGDo and CGo can be roughly approximated by

CGo
∼= 2W LovCox. (11.10)

The transit frequency in strong inversion and saturation is then approximately

ωt
∼=

ωspec

1 − 1
3n

+ 2Lov

L f

n(VP − VS)

UT

. (11.11)

Equation (11.11) shows that ωt is actually a fraction of the QS frequency ωqs given by

ωt

ωqs

∼=
4

15

n

1 − 1
3n

+ 2Lov

L f

. (11.12)

For a minimum length device, the overlap length can be a significant fraction of the gate length.

Assuming for example that Lov/L f = 0.2, n = 1.2, ωt is about 3.5 times smaller than ωqs.

This transit frequency can be fairly high (typically above 100 GHz) and sometimes cannot

be measured directly. It can nevertheless be extracted from a lower frequency measurement of

h21 according to

ωt = ℑ{h21}ωspot, (11.13)

where ωspot is a sufficiently low frequency (typically 1 GHz) at which the current gain h21 shows

a −20 dB/dec slope. An example of measured current gain h21 calculated from the de-embedded

Y-parameters of an RF N-channel MOS transistor is plotted in Figure 11.3(a) for a specific

bias. The curve labeled “analytic (full)” corresponds to the gain h21 calculated from (11.3)

directly with the Y-parameters, whereas curve labeled “analytic (simple)” is obtained from the

approximation given in (11.3). It shows that the analytic expressions and the simulations are

very close to the measured results.

Since Gm and CG are both bias dependent, ft is also. This is illustrated in Figure 11.4 which

plots the transit frequency versus the inversion factor for two devices in saturation having

two different channel lengths and for three different drain bias voltages. Figure 11.4(a) has a

lin–log scale and clearly indicates that ft reaches a maximum called the peak ft ft-peak. This

maximum corresponds to the situation where the gate voltage starts to become large enough for

the transistor to leave saturation and enter in the linear region. When entering the linear region,

the drain transconductance Gmd starts to increase and hence the gate transconductance Gm =
(Gms − Gmd)/n starts to decrease since the source transconductance Gms remains constant.

Also, the intrinsic gate-to-drain capacitance starts to increase from nearly zero to a value

close to that of the gate-to-source capacitance. The combined effect of Gm decrease and CGDi

increase results in a sharp ft drop. Note that it is very important to correctly model the bias

dependence also of the overlap capacitances and particularly CGDo to accurately model ft in

this region.

Figure 11.5 shows how the peak ft scales with the transistor length. From (11.4), ωt is

proportional to ωspec which is inversely proportional to L2
f . ωt should therefore scale as 1/L2

f

which is about the case in the regions above 0.25 μm. Below that, ft-peak tends to increase slower

than at the 1/L2
f rate. This is due to the effect of velocity saturation. Indeed, at high bias and
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Figure 11.3 Measured, simulated, and analytic results for the current gain h21: (a) for the extraction

of the transit frequency ft and the unilateral power gain U ; (b) for the extraction of the maximum

frequency of oscillation

for short-channel devices, the carriers enter velocity saturation. As explained in Section 9.1.3,

when the carrier velocity is saturated, the transconductance in saturation does not depend on

the channel length anymore as stated by (9.62). The gate transconductance is then given by

Gm sat
∼= WCoxvsat, (11.14)

resulting in a transit frequency given by

ωt
∼=

vsat

L f(1 − 1
3n

+ 2Lov

L f
)
, (11.15)

which scales only as 1/L f. This explains the −1 slope followed by the points that are below

0.25 μm in Figure 11.5.
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Figure 11.4 Transit frequency versus inversion factor for two channel lengths and three drain bias

voltages: (a) lin–log scale [49]; (b) log–log scale [52] (Reproduced by permission of IEEE from [49]

and [52])

Figure 11.5 also shows that sub 0.1 μm devices can reach transit frequencies higher than

100 GHz.

11.3.2 Maximum Frequency of Oscillation fmax

The transit frequency is only a very simple and partial way to characterize the ability of a

device to operate at RF. Another figure of merit that also accounts for the gate resistance

RG and the drain-to-bulk capacitance CGD can be defined from the unilateral power gain U

corresponding to the maximum available gain of a two-port (corresponding to the transducer
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Figure 11.5 Peak transit frequency versus gate length (Reproduced by permission of IEEE from

[137])

gain with matched source and load impedances, i.e., YG = Y ∗
11 and YL = Y ∗

22) with its feedback

transadmittance neutralized (i.e., Y12 = 0) [138]. The advantage of using the unilateral power

gain is that it can be defined even if the two-port is unstable in matched condition. The unilateral

power gain can be expressed from the Y-parameters as [138]

U =
|Y21|2

4(G11G22 − G12G21)
, (11.16)

where Gkl � ℜ{Ykl} with k, l ∈ {1, 2}. Deriving the Y-parameters from the simple QS small-

signal model presented in Figure 5.14 leads to

U ∼=
G2

m

4RGCG(GDSCG + GmCGD)ω2
∼=

Gm

4RGCGCGDω2
=

(ωmax

ω

)2

, (11.17)

where ωmax is the frequency at which the extrapolated unilateral gain reaches unity. It is given

by

ωmax
∼=

Gm

2
√

RGCG(GDSCG + GmCGD)
∼=

1

2

√
Gm

RGCGCGD

∼=
1

2

√
ωt

RGCGD

. (11.18)

Equation (11.18) shows that the smaller the RGCGD product the higher ωmax. Therefore, the

RGCGD product is sometimes also used as a figure of merit.

The unilateral power gain is plotted in Figure 11.3(b) versus frequency for the same device

and bias point used for calculating the current gain and the transit frequency. Unlike the current

gain, the unilateral power gain shows some resonance after which it decreases faster than

−20 dB/dec. This higher slope region is not shown in Figure 11.3(b) because the measurements

were performed only up to 10 GHz. The value of ωmax extrapolated from the −20 dB/dec slope
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can therefore be significantly higher than the actual value of ω at which U becomes unity. It

is therefore important to specify how fmax has been obtained from the measured data, either

by the point at which U is equal to unity if the measurements go at sufficiently high frequency

or by extrapolation with a −20 dB/dec slope in case fmax cannot be measured directly. Note

that the latter method is more advantageous and usually preferred since it gives higher (but

erroneous!) values of fmax.

11.3.3 Minimum Noise Figure

Having a sufficiently high ft and fmax and hence a high gain is not the only requirement for

RF active devices. They should also have as little noise as possible. This feature is measured

by the noise factor F or noise figure NF � 10 log F . The noise factor is defined as the ratio

of the total noise power measured at some point along the amplification chain (usually at the

output) to the noise produced by the input generator only and measured at that same point. We

will come back to these definitions in more details in Section 13.1. The noise factor depends

on the generator admittance and becomes minimum for a particular value of this generator

admittance. This situation corresponds to noise matching. The minimum value of the noise

factor Fmin (or minimum noise figure NFmin) represents what the device can ultimately achieve

in terms of minimum thermal noise contribution and is therefore often used as a figure of merit.

It is not that easy to find a simple analytical expression for the minimum noise factor of an RF

MOS transistor that is accurate. Nevertheless, some approximations discussed in more details

in Section 13.3.2 lead to the following very simple expression

Fmin
∼= 1 +

ω

ωt

, (11.19)

which accounts for all the dominant noise contributions. Equation (11.19) shows that the noise

factor is a function of frequency and is directly linked to the transit frequency. It actually starts

to degrade proportionally to frequency when the operating frequency gets higher than the

transit frequency. This is illustrated in Figure 11.6(a) which plots the available power gain and
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Figure 11.6 (a) Minimum noise figure N Fmin and available power gain Ga versus frequency at a

given operating point; (b) minimum noise figure N Fmin versus drain bias current density for three

different operating frequencies (Reproduced by permission of IEEE from [137])
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the minimum noise figure verus frequency for a given operating point. This plot also illustrates

the fact that the minimum noise figure is obviously minimum when the gain is maximum.

Since the minimum noise figure depends on the transit frequency, it also depends on the

bias. Figure 11.6(b) shows the minimum noise figure versus the drain bias current density

(current per transistor width) for three different operating frequencies. It clearly shows that

there is an optimum bias point where NFmin is minimum. Note that this optimum bias occurs

about at the same current density for the three different frequencies.

11.3.4 Moderate and Weak Inversion for RF Circuits

The high transit frequency of ultradeep submicron (UDSM) CMOS processes can be traded

with power consumption to implement RF circuits operating in the gigahertz frequency range.

This can be done by moving the operating point from strong inversion to moderate or even

weak inversion, in order to spend just the required power to achieve the desired performance.

There are several advantages to bias the transistor in moderate or weak inversion. The first

advantage is the increase of the current efficiency (measured by the Gm/ID ratio) which results

in a further reduction of the power consumption. Secondly, the decrease of the bias voltages

results in lower electrical fields within the device. This avoids velocity saturation and hot

electron effects. Having no velocity saturation results in ft scaling as 1/L2
f compared to only

1/L f when velocity saturation is present. This means that scaling is more effective for devices

biased in the weak and moderate inversion region than in strong inversion. Thirdly, having no

hot electron effects avoids the increase of the noise excess factor.

Finally, the reduction of the bias voltages better accommodates the use of low supply

voltages that are imposed by the scaling of UDSM technologies.

On the other hand, moving toward weak inversion changes the ID − VG characteristic from

a quasi-quadratic to an exponential function, which clearly degrades the device linearity. Mod-

erate inversion therefore represents a good trade-off between power consumption, noise, and

linearity.

Part of the power is just used to fight against the extrinsic components such as the overlap

and junction capacitances. There might be a concern that the time constants in moderate and

weak inversion might be completely dominated by these extrinsic components and therefore

counterbalance the advantage of the current efficiency increase. A way to investigate this issue

is by looking at the total transit time τt defined as τt � 1/(2π ft), which can be decomposed

into τt � τi + τe, where τi = CGi/Gm corresponds to the transit time of the intrinsic part with

CGi being the total gate intrinsic capacitance CGi = CGSi + CGDi + CGBi. The time constant

τi ultimately represents the lowest time constant the device can achieve for a given operating

point. The time constant τe corresponds to the additional delay introduced by the extrinsic part

of the device due to the overlap capacitances and the series resistances:

τe =
CGo

Gm

+ RD CGD + n RS

(
CGB + CGD +

n − 1

n
CGS

)
, (11.20)

where CGo = CGSo + CGDo + CGBo is the total gate overlap capacitance. Usually the con-

tributions of the source and drain series resistances can be neglected and hence τe
∼= CGo/

Gm.
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Figure 11.7 Transit frequency versus inversion factor in saturation for two channel lengths and three

drain bias voltages (Reproduced by permission of Springer from [48])

The transit times τi, τe, and τt are plotted together with the transit frequency ft in Fig-

ure 11.7(a) versus the inversion factor. The ratio between the extrinsic and the intrinsic transit

times is plotted in Figure 11.7(b), which shows that extrinsic parasitics account for about 40%

of the total transit time in strong inversion and about 50% in moderate inversion. This means

that the ratio of parasitic to intrinsic time constants does not degrade dramatically when mov-

ing the operating point from strong to moderate inversion. This is another good reason for

moderate inversion to be considered for RF operation with deep submicron devices in order to

meet the low-voltage and low-power requirements.

11.4 EQUIVALENT CIRCUIT AT RF

11.4.1 Equivalent Circuit at RF

A cross section of a single-finger MOS transistor is presented in Figure 11.8(a). Although it is

always possible to have a detailed equivalent circuit that accounts for all the physical elements
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Figure 11.8 (a) Single finger RF MOS transistor cross section with box representing the substrate

network connecting the intrinsic bulk node bi and nodes sb and db to the actual bulk terminal B. (b)

Equivalent RF circuit with substrate network box

that are part of the RF MOS transistor, it is often too complex to be implemented as a compact

model or a subcircuit for circuit simulation purpose. Moreover, many of the component values

would be difficult or even impossible to extract and the subcircuit would contain too many

internal nodes which would significantly reduce the simulation efficiency. Like it is often

the case in modeling, a trade-off has to be found between accuracy and efficiency. A good

compromise is obtained when simplifying the complete detailed equivalent circuit to the one

presented in Figure 11.8(b). This equivalent circuit is made of the intrinsic part of the MOS

transistor, corresponding to the active part of the device and represented in Figure 11.8(b) by the

MOS transistor symbol. All the other elements are only parasitic components corresponding to

the extrinsic part of the device. They are made essentially of capacitances and resistances that

play an increasingly important role as the operating frequency rises. Both the intrinsic model

and the extrinsic components have already been described in details in previous chapters. The

substrate network box represents the part of the substrate that connects the intrinsic substrate
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terminal bi , the bottom terminals of the DBS and DBD diodes as well as the bottom terminal

of the gate-to-bulk overlap capacitance CGBo to the actual substrate terminal B. The latter will

be discussed in more details in the next section.

Note that the equivalent circuit of Figure 11.8(b) does not include the parasitic components

related to the test structure, such as the pad capacitances, the lead series resistances, and

inductances. The latter will have to be carefully de-embedded from the measurements to bring

the reference planes close to the useful device. For example, all the measurements presented

afterward have been cautiously de-embedded using a two-step procedure [139, 140].

11.4.2 Intradevice Substrate Coupling and Substrate
Resistive Networks

At high frequency, the impedances of the junction capacitances become small enough for the

RF signal at the drains to couple to the nearby source diffusions and to the bulk contact through

the junction capacitances and the substrate as illustrated in Figure 11.9(a). The doping levels of

UDSM CMOS processes are sufficiently high so that the substrate can be considered as purely
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Figure 11.9 (a) Intradevice substrate coupling and equivalent substrate network. (b) Equivalent

circuit with resistive substrate network [136,141]. (c) Equivalent circuit with simplified Π equivalent

resistive substrate network [48, 49, 52]
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resistive and hence this coupling can be modeled by a simple resistive network. Depending on

the technology and on the frequency range to be covered, this network can reduce to a simple

resistance or may need to be more complex. Many different substrate resistive networks have

been proposed in the literature. A good compromise is to use the Π resistive circuit made of

resistances RSDB, RDSB, RBS, and RBD as shown in Figure 11.9(b) [141]. Resistances RSDB

and RDSB represent all the coupling occurring from drains to sources, whereas RBS and RBD

correspond to the coupling from source and drain to bulk. The partitioning of the total resistance

RSDB + RDSB between RSDB and RDSB by choosing the location of the intrinsic substrate node

bi is not straightforward. On the other hand, the total resistance RSDB + RDSB is usually small

compared to RBS and RBD and simulations have shown that connecting the intrinsic node bi

either to the left or to the right of these resistances has very little influence on the Y-parameters.

Therefore, the intrinsic substrate node bi can be connected to the source side, and series

resistances RSDB and RDSB can be replaced by a single resistance [48, 49, 52]. This is done in

Figure 11.9(c) where only resistance RDSB has been kept while RSDB has been set to zero. This

is advantageous for circuit simulation since it simplifies the circuit by saving one component

and one node, but it makes the circuit slightly unsymmetrical. It is however a good trade-off

which from experience has shown to be sufficient for most RF circuit simulations [48,49,52].

Figure 11.10 shows the cross sections of multifinger RF MOS transistors where only the

most important substrate resistances have been drawn. In order to match the equivalent circuit

shown in Figure 11.9(c), the equivalent capacitances and resistances have to be calculated from

the individual capacitances and resistances shown in Figure11.10. Since all the source (drain)

diffusions are connected together via metal layers (assumed to have negligible resistances

compared to the substrate resistances), the junction capacitances CBSj and CBDj can reason-

ably be approximated as the parallel connection of all individual source and drain junction

capacitances:

CBSj =
Ns∑

k=1

CBSjk, (11.21a)

CBDj =
Nd∑

k=1

CBDjk, (11.21b)

where Ns and Nd are the number of source and drain diffusions, respectively and Nf = Ns + Nd

is the total number of fingers. The same applies for the substrate drain-to-source, source-to-

bulk, and respectively drain-to-bulk resistances:

1

RDSB

=
Nf∑

k=1

1

RDSBk

, (11.22a)

1

RBS

=
Ns∑

k=1

1

RBSk

, (11.22b)

1

RBD

=
Nd∑

k=1

1

RBDk

. (11.22c)

By symmetry, all the individual source (drain) junction capacitances are equal to the one

of a single source (drain) diffusion CBSjk
∼= CBSjf (CBDjk

∼= CBDjf). The same is valid for the
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Figure 11.10 Substrate resistances for (a) even and (b) odd number of fingers

individual drain-to-source substrate resistances, leading to

CBSj
∼= Ns CBSjf, (11.23a)

CBDj
∼= Nd CBDjf, (11.23b)

RDSB
∼=

L f

Nf Wf

RDSB-sh, (11.23c)

where CBSjf and CBDjf are the junction capacitances of a single source and drain diffusion and

RDSB-sh is the drain-to-source substrate sheet resistance.
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The calculation of the source-to-bulk and drain-to-bulk substrate resistances needs to dis-

tinguish between even and odd number of fingers as shown in Figure 11.10. For the even

number of fingers transistor (c.f. Figure 11.10(a)), RBS1 ≪ RBS2 and RBS4 ≪ RBS3 since the

outer source diffusions are closer to the bulk contact than the inner source diffusions and by

symmetry RBS1
∼= RBS4 and RBD1

∼= RBD2, resulting in

1

RBS

∼=
1

RBS1

+
1

RBS4

∼=
2

RBS1

, (11.24a)

1

RBD

∼=
1

RBD1

+
1

RBD2

∼=
2

RBD1

, (11.24b)

for Nf even.

For an odd number of fingers (c.f. Figure 11.10(b)), RBS1 ≪ RBS2, RBD1 ≪ RBD2 and

RBS1
∼= RBD1, which results in

RBS
∼= RBD

∼= RBS1. (11.25)

From (11.24) and (11.25), resistances RBS and RBD are basically dominated by the source

(drain) diffusions which are the closest to the substrate contact. Their scaling strongly depends

on the geometry of the bulk contact. For example, if there are only bulk contacts at each end

of the device as shown in Figure 11.11(a), RBS and RBD are determined mainly by the source

and drain diffusions that are the closest to the substrate contact, resulting in a scaling with the

finger width

1

RBS

∼=
2Wf

rBS-end

, (11.26a)

1

RBD

∼=
2Wf

rBD-end

, (11.26b)

RBD ~
1
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RBS ~
1
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1
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RBD ~
1
Nd
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1
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RBD ~
1
Wf

(a) (b)

Figure 11.11 (a) Intradevice substrate coupling and equivalent substrate network; (b) equivalent

circuit with resistive substrate network
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for Nf even and

1

RBS

∼=
Wf

rBS-end

, (11.27a)

1

RBD

∼=
1

RBS

, (11.27b)

for Nf odd, where rBS-end and rBD-end are the source-to-bulk and drain-to-bulk substrate resis-

tances for a unit width.

The scaling law becomes much more complex in the more realistic case where the substrate

contact partly surrounds the diffusions (“horseshoe” substrate contact of Figure 11.11(b)). In

this case, part scales with the finger width and part depends on the length of the lateral substrate

contact which is proportional to the number of fingers

1

RBS

∼=
2Wf

rBS-end

+
Ns

rlat

, (11.28a)

1

RBD

∼=
2Wf

rBD-end

+
Nd

rlat

, (11.28b)

for Nf even and

1

RBS

∼=
Wf

rBS-end

+
(Nf + 1)/2

rlat

, (11.29a)

1

RBD

∼=
1

RBS

, (11.29b)

for Nf odd. rlat is the lateral source-to-bulk and drain-to-bulk substrate resistances per source

and drain diffusion.

The substrate resistances RBS, RBD, and RDSB are in principle also bias dependent due to

changes of the depletion width around the diffusions which affect the length of the resistive

path. As stated by (11.23c), for a large number of fingers, RDSB becomes much smaller than

RBS and RBD so that it can be ignored. Resistances RBS and RBD can then be considered as

being connected in parallel and can be replaced by a single substrate resistance RB as shown

in Figure 11.12(d). This substrate resistance shows only a weak bias dependence [142].

Other substrate networks have been published in the literature [143,144]. Some of them are

reproduced in Figure 11.12. Those presented in Figures 11.12(a) and 11.12(b) have already

been discussed above. The one presented in Figure 11.12(c) [143] was derived for an epitaxial

process. The two top horizontal resistances model the coupling within the epitaxial layer,

whereas the three vertical ones model the coupling to the substrate. The last one presented

in Figure 11.12(d) [144] is valid for RF transistors having many fingers. Indeed, since RDSB

scales as 1/Nf, for a large number of fingers RDSB becomes much smaller than RBS and RBD

and can therefore be neglected. The Π network reduces to a simple resistance corresponding

to parallel connection of RBS and RBD.
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(d) from [144]

11.4.3 Practical Implementation Issues

The MOS compact models available in circuit simulators such as Spice have four terminals

but usually do not include the gate resistance and the substrate network. In order to have

access to the internal nodes of the RF MOS transistor and implement the equivalent circuit of

Figure 11.9(c) in a Spice simulator, most of the time a subcircuit approach is used. Note that

not all the extrinsic components that are already available in the compact model (i.e., source

and drain resistances, overlap capacitances, and junction diodes) can be used. For example, the

source and drain series resistors in most compact models are only “soft” resistances embedded

in the expression used to calculate the drain current. They account for the dc voltage drop

across the source and drain resistances and its effect on the static drain current, but they do

not add any poles. They have therefore to be added outside of the compact model as “real”

resistors. Also, the source-to-bulk and drain-to-bulk diodes of the compact model have their

anodes connected to the same node. Depending on the substrate network, their anodes have to

be connected to two separate nodes (as shown in Figure 11.9(c)). In this case, the diodes internal

to the compact model have to be turned off (by setting some appropriate values of the diode

parameters) and two external diodes DBS and DBD have to be added in the subcircuit as shown

in Figure 11.9(c). The overlap capacitances CGSo, CGDo, and CGBo are usually also part of most

compact models, but not all provide good bias-dependent models. This bias-dependence has

imperatively to be accounted for in order to obtain a RF MOST model that is valid over a large

bias range. Note that before even looking at the RF operation it is important to have a good dc

model, since all the small-signal parameters are derived from it.





12 The Small-Signal
Model at RF

After deriving the large-signal equivalent circuit in the previous chapter, this chapter focuses on

the small-signal equivalent circuit at RF. The Y-parameters are derived in Section 12.2 directly

from the quasi-static (QS) RF small-signal circuit. They are then compared with measurements

highlighting the effect of the substrate network on the output admittance Y22. The extension

of the quasi-static model to include non-quasi-static (NQS) effects is also presented. Finally,

the large-signal operation is briefly discussed and it is concluded that distortion mainly arises

from the static I − V characteristic, the contributions coming from the nonlinearity of the

bias-dependent capacitances, and access resistances being negligible.

12.1 THE EQUIVALENT SMALL-SIGNAL CIRCUIT AT RF

The QS small-signal equivalent circuit including the substrate network corresponding to

Figure 11.9(c) is shown in Figure 12.1(a) for operation in the linear region and in Fig-

ure 12.1(b) for saturation. Note that the capacitances include both the intrinsic and extrinsic

capacitances:

CGS = CGSi + CGSo, (12.1a)

CGD = CGDi + CGDo, (12.1b)

CGB = CGBi + CGBo, (12.1c)

CBS = CBSi + CBSj, (12.1d)

CBD = CBDi + CBDj, (12.1e)

where the intrinsic capacitances are given by (5.50a) and (5.51a), the overlap capacitances by

(10.13), and (10.20), and the junction capacitances by (10.33).

Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design C. Enz and E. Vittoz
C© 2006 John Wiley & Sons, Ltd.
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Figure 12.1 Equivalent RF small-signal circuit: (a) in the linear region; (b) in saturation

The voltage-controlled current sources (VCCS) are defined by

Im � Ym [V (gi) − V (bi)], (12.2a)

Ims � Yms [V (si) − V (bi)], (12.2b)

Imd � Ymd [V (di) − V (bi)], (12.2c)

where V (k) with k ∈ {gi, si, di, bi} stands for the potential at node k. The transadmittances Ym,

Yms and Ymd are given by (5.58), (5.56), and (5.57), which are repeated here for convenience:

Ym = Gm (1 − j ωτqs) = Gm − j ω Cm, (12.3a)

Yms = Gms (1 − j ωτqs) = Gms − j ω Cms, (12.3b)

Ymd = Gmd (1 − j ωτqs) = Gmd − j ω Cmd. (12.3c)

Remember that the gate transadmittance, transconductance, and transcapacitance are related

to the source and drain transadmittances, transconductances, and transcapacitances according

to (5.37), (5.9), and (5.59):

Ym =
Yms − Ymd

n
, (12.4a)

Gm =
Gms − Gmd

n
, (12.4b)

Cm =
Cms − Cmd

n
. (12.4c)
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12.2 Y-PARAMETERS ANALYSIS

The small-signal behavior of RF MOS transistors at high frequency is validated by measuring

the S-parameters versus frequency at several operating points of a single transistor connected

in common source as shown in Figure 12.1 by the dashed line. The S-parameters are usually

measured directly on wafer using probes connecting the pads. Most often the input and output

ports are connected by ground-signal-ground or GSG probes. The measured S-parameters

therefore also include the effect of the RF pads used to connect the device. The effects of

the pads have then to be de-embedded from the measured S-parameters using either a one-,

two- or even a three-step procedure [139, 140] in order to move the reference planes from the

end of the tips to the gate and drain nodes. The measurements shown below used a two-step

de-embedding procedure which is usually sufficient for measurements up to 10 GHz. The two-

step de-embedding procedure requires the measurement of the open and short structures. The

open structure is simply the same as the RF MOS transistor except that the RF MOS transistor

is taken out leaving the gate and drain open. The short structure is the same but now the RF

MOS transistor is replaced by a short circuit between the gate and the drain.

For convenience, the de-embedded S-parameters can then be transformed into Y-parameters

which are often easier to analyze [138, 145, 146]. The measured Y-parameters can then be

compared either to the analytical or eventually the simulated Y-parameters corresponding to

the equivalent circuit shown in Figure 11.9(c).

The equivalent small-signal circuit in saturation of Figure 12.1(b) will be validated by first

deriving the corresponding analytical Y-parameters and comparing them to the de-embedded

measurements. Since the capacitances are all approximately proportional to the total gate width

W = Nf Wf and since the source and drain terminal resistances are inversely proportional to W

(see (10.4)), the time constants due to the terminal resistances depend only on the gate length

L f, the overlap length Lov, or the diffusion width Hdif. The latter dimensions are usually taken

as minimum to achieve the highest cutoff frequency. Therefore the poles due to the terminal

resistances are at a much higher frequency than typically the transit frequency, so that they can

be basically neglected when calculating the Y-parameters and the related quantities. Neglecting

the substrate resistances also in the small-signal circuit of Figure 12.1(b) (i.e., assuming that

they are zero) allows to derive the following analytical expressions for the Y-parameters in

saturation:

Y11
∼=

j ωCG

1 + j ωRGCG

, (12.5a)

Y12
∼=

−j ωCGD

1 + j ωRGCG

, (12.5b)

Y21
∼=

Gm − j ω(CGD + Cm)

1 + j ωRGCG

, (12.5c)

Y22
∼=

Gds + ω2 RGCGDCm + j ω(CGD + CBD)

1 + j ωRGCG

, (12.5d)

where it has been assumed that Gm RG ≪ 1 and Gds ≪ Gm. Capacitance CG is the total ca-

pacitance at the gate

CG � CGS + CGD + CGB, (12.6)
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which includes both the intrinsic and extrinsic capacitances. Equation (12.5) can be further

simplified assuming that ωRGCG ≪ 1:

Y11
∼= ω2 RGC2

G + j ωCG, (12.7a)

Y12
∼= −ω2 RGCGDCG − j ωCGD, (12.7b)

Y21
∼= Gm − ω2 RGCG(CGD + Cm) − j ω(CGD + Cm), (12.7c)

Y22
∼= Gds + ω2 RG(CGCBD + CGCGD + CGDCm) (12.7d)

+ j ω(CBD + CGD).

One of the advantage of having the simple analytical expressions for the Y-parameters

given by (12.7) is that they can be used for a direct extraction of the RF model parameters

from measurements as presented in [147,148]. For example, CG can be extracted as ℑ{Y11}/ω

and CGD as |ℑ{Y12}|/ω. CGS can then be extracted as

CGS = CG − CGD − CGB
∼= CG − CGD, (12.8)

since in strong inversion and in saturation, CGB is usually much smaller than CGS. The gate

resistance can be extracted from (12.7) as

RG =
ℜ{Y11}

ℑ{Y11}
2
. (12.9)

The extraction of the capacitances in saturation and of the gate resistance in the linear region

are illustrated in Figures 12.2(a) and 12.2(b) respectively. The fact that the extracted values

of the components are constant over frequency indicates that the equivalent circuit and the

simplified analytical expressions are correct in the frequency range considered.

The Y-parameters given by (12.7) are plotted in Figure 12.3 (dashed line) and compared

to the measured values (symbols) obtained from a two-step de-embedding process. As can be

seen from Figure 12.3, the analytical expressions match the measurements very well even up to

10 GHz except for Y22. This discrepancy is due to the substrate coupling effect which has been
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Figure 12.2 Direct extraction of some of the components of the small-signal circuit of Figure 12.1(b):

(a) gate capacitances CG, CGD, and CGB + CGS; (b) gate resistance RG (Reproduced by permission of

IEEE from [147])
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Figure 12.3 Comparison between the measured, simulated, and analytical Y-parameters versus fre-

quency [48,49,52]. The simulated results are obtained from an ac simulation corresponding to the QS

small-signal circuit presented in Figure 12.1(b), whereas the analytical results are obtained directly

from (12.7) (Reproduced by permission of IEEE and Springer)

ignored in the derivation of (12.7). Including the substrate network leads to very complex ex-

pressions of the Y-parameters that are not easy to use. The substrate network has been included

in the model used for simulation as described by the complete QS circuit of Figure 11.9(c)

using the EKV v2.6 compact model for the intrinsic part. Most parameters specific to the RF

part have been extracted using the methodology presented in [147,148]. The simulations with

the complete QS model of Figure 12.1(b) are also presented in Figure 12.3 (straight lines).

They show a very good match with measurements including the output admittance Y22. Note

that the discrepancies in ℜ{Y12} are not critical since Y12 is dominated by its imaginary part

corresponding approximately to ωCGD which is about 10 times larger than ℜ{Y12}. Similar

results have been obtained for other operating points and other device geometries using the

same scalable model [48, 49, 52].

Figure 12.3 also shows that there may be a big discrepancy in ℑ{Y21} if the transcapacitance

Cm is neglected in the expression of Y21 given by (12.7).

Note that the results of ℜ{Y11} are particularly sensitive to the de-embedding procedure. Also

note that accurately modeling the bias dependence of CGDo is crucial to fit ℑ{Y12} at high bias.

The extraction of the substrate resistances requires a more complicated procedure. After

having extracted RG and RD, they are de-embedded from the Y-parameters, resulting in the

prime Y-parameters corresponding to the circuit of Figure 12.4(a). The Y ′
22 parameter of Fig-

ure 12.4(a) is obtained by grounding the intrinsic gate node gi . The resulting circuit can be

further simplified by assuming that ωRSCGS ≪ 1 (i.e., replacing resistance RS by a short cir-

cuit) resulting in the circuit of Figure 12.4(b). The Y ′
22 parameter of the circuit of Figure 12.4(b)
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Figure 12.4 Π substrate network extraction [147, 148]. (a) Small-signal circuit obtained after de-

embedding of access resistances RG and RD. (b) Y22 parameter of the circuit shown in (a) after

simplification assuming ωRSCGS ≪ 1 (i.e., replacing resistance RS by a short circuit). (c) Substrate

admittance Ysub obtained after de-embedding of CGD and Gds (Reproduced by permission of IEEE

from [147])
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is then given by

Y ′
22 = Ysub + Gds + j ωCGD, (12.10)

where Ysub corresponds to the admittance of the circuit shown in Figure 12.4(c) which includes

the substrate network. It can be obtained from the Y ′
22 parameter as

Ysub = Y ′
22 − Gds − j ωCGD, (12.11)

where Gds is extracted from Y ′
22 as

Rds �
1

Gds

=
1

ℜ{Y ′
22}

∣
∣
∣
∣
ω=0

−RS, (12.12)

since Ysub = 0 at ω = 0. An example of an extraction of Ysub from measured Y-parameters is

shown in Figure 12.4(d). Resistances RDSB, RBS, and RBD can unfortunately not be extracted

directly but require some optimization on the circuit shown in Figure 12.4(c). The result of this

fitting is shown in Figure 12.4(d) with the values of the components of the Ysub circuit where

it has been assumed that RBS = RBD.

When nonminimum channel length devices are used (particularly P-channel transistors

since their mobility is much lower than that of N-channel devices), they might operate in NQS

regime. This is illustrated by Figure 12.5, showing the measured de-embedded Y-parameters
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P-channel device with the results obtained from the simple QS static model (dashed lines) of Fig-

ure 12.1(b) and from the first-order NQS model (Reproduced by permission of IEEE from [49])
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of a P-channel RF MOS transistor having a length of 0.75 μm. The Y-parameters of the QS

model are plotted in Figure 12.5 as dashed lines. A large discrepancy can be observed, par-

ticularly in the Y11 and Y21 parameters since the device is biased in saturation. As shown

in Figure 12.5, the fit can already be significantly improved by using a first-order NQS

model. The latter uses the circuit of Figure 12.7, where the intrinsic transadmittances and

admittances are replaced by their first-order approximation expressions (5.42) and (5.49),

respectively.

A good fit of the Y-parameters over frequency at a particular operating point is not that

difficult to obtain. On the other hand, having the simulated Y-parameters fit the measurements

over a wide range of bias at a given frequency is much more difficult to achieve. It not

only requires an accurate intrinsic compact model but also requires accurate bias-dependent

models for the extrinsic components. The bias dependence of the equivalent circuit shown in

Figure 11.9(c) has been checked at a frequency of 1 GHz over a wide bias range by sweeping

the gate voltage. The measured and simulated Y-parameters are plotted versus the inversion

factor if in Figure 12.6 for the same device used in Figure 12.3. An excellent fit is obtained over
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performed for each bias point and corresponding to the QS small-signal circuit presented in Fig-

ure 12.1(b) (Reproduced by permission of IEEE from [52])
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more than three decades of currents, which also validates the bias dependence of the intrinsic

and extrinsic parts.

The full NQS effects can be included by replacing the intrinsic part by the NQS model

discussed in Section 5.2 resulting in the circuit shown in Figure 12.7 for operation in satura-

tion. The admittances YGB, YGS, YGD, YBS; and YBD of Figure 12.7 include the intrinsic NQS

admittances plus the extrinsic components:

YGB � YGBi + CGBo, (12.13a)

YGS � YGSi + CGSo, (12.13b)

YGD � YGDi + CGDo, (12.13c)

YBS � YBSi + CBSj, (12.13d)

YBD � YBDi + CBDj. (12.13e)

The small-signal circuit of Figure 12.1(a) should be completed with the different noise

sources. This will be done in Chapter 13. The next section will look at the large-signal model

at RF.

12.3 THE LARGE-SIGNAL MODEL AT RF

The small-signal circuit discussed above is useful for the design and simulation of RF blocks

that operate in small-signal such as low-noise amplifiers (LNA). On the other hand, many other

RF circuits such as mixers or voltage-controlled oscillators (VCO) often operate in large signal.

The device nonlinearities are generating harmonic frequency components and intermodulation

products that have to be accurately predicted. To this purpose, it is important to identify all the

possible sources of nonlinearity in the device. Looking to the large-signal equivalent circuit of

Figure 11.9, the intrinsic part is obviously nonlinear, but as discussed in Chapter 10, actually

all the extrinsic components are nonlinear as well, since they are bias dependent.



258 THE SMALL-SIGNAL MODEL AT RF

Fundamental (measured)
2nd harmonic (measured)
3rd harmonic (measured)
Simulations

Pin (dBm)

–40 –35 –30 –25 –20 –15 –10 –5 0
–80

–70

–60

–50

–40

–30

–20

–10

0

P
o

u
t1

, 
P

o
u

t2
, 
P

o
u

t3
 (

d
B

m
)

Nf = 10,Wf = 12 µm,Lf = 0.36 µm, VGS = 0.52 V,VDS = 0.5 V, f = 900 MHz

–40 –35 –30 –25 –20 –15 –10 –5 0
–80

–70

–60

–50

–40

–30

–20

–10

0
Fundamental (measured)
2nd harmonic (measured)
3rd harmonic (measured)
Simulations

Pin (dBm)

P
o

u
t1

, 
P

o
u

t2
, 
P

o
u

t3
 (

d
B

m
)

Nf = 10,Wf = 12 µm,Lf = 0.36 µm, VGS = 0.7 V,VDS = 1 V, f = 900 MHz

(a) (b)

Figure 12.8 Comparison between the measured and simulated output power of the fundamental,

second and third harmonics of a common-source RF amplifier at 900 MHz versus the power of the

input signal at the gate, for a low-bias condition (a) and medium bias condition (b)

The low-frequency large-signal behavior is mainly captured by the static nonlinear I − V

characteristics, whereas at RF, the nonlinearities of the capacitances may also contribute.

The large-signal equivalent circuit given in Figure 11.9 has been evaluated and compared to

measurements performed at 900 MHz. The simulation have been performed with a harmonic

balanced simulator on a common-source device. Note that the subcircuit parameters have

been extracted from dc and Y-parameter measurements and no additional fitting was required.

Figure 12.8 shows the fundamental, second, and third harmonics versus the input power for

two different bias points. The match between simulations and measurement is very good for

both the low and medium bias condition. The main contributor to the nonlinearities remains

the intrinsic nonlinear I − V characteristic. Indeed keeping all the capacitances (extrinsic and
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Figure 12.9 Comparison between the measured and simulated output power of the fundamental,

second and third harmonics of a common-source RF amplifier at 900 MHz versus the bias current for

two different input signal power and bias conditions (Reproduced by permission of IEEE from [52])
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intrinsic) and the access resistances constant does not significantly change the results presented

in Figure 12.8.

Figure 12.9 presents the fundamental, second and third harmonics as a function of the bias

drain current for a given input power and frequency. The match between measurement and

simulation is again very good. The model even captures the different nulls appearing in the

second and third harmonics of Figure 12.9. Again, the main nonlinear contribution comes from

the I − V characteristic, the capacitances and access resistances playing only a secondary role.

The above measurements evaluated only the equivalent circuit looking at the power spectrum

without consideration for the phase. More advanced RF nonlinear measurement techniques

including both amplitude and phase can be performed [149].





13 The Noise Model at RF

The chapter starts with the theory of noisy two-port networks where it is shown that two noise

sources (for example, a series voltage source and a shunt current source at the input) as well as

their correlation admittance are required to fully characterize the noisy two-port. The important

definition of noise figure is introduced and it is shown that this noise figure can be minimized

by setting the source admittance to an appropriate value. It is shown that the noisy two-port

can be characterized by a total of four noise parameters, including the minimum noise figure,

the input-referred noise resistance, and the real and imaginary parts of the optimum source

admittance that minimize the noise figure. The noise model discussed in the previous chapters

was exclusively looking at the noise produced at the drain. At high frequency, the capacitive

coupling between the channel and the gate on one hand and between the channel and bulk on

the other hand induce noise currents to flow in the gate and bulk terminals in addition to the

noise produced at the source and drain. A complete non-quasi-static thermal noise model is

then presented in Section 13.2, where the induced gate and substrate noise and their correlation

to the drain noise are derived. The chapter ends with the noise analysis of a common-source

amplifier, deriving the four noise parameters with different levels of approximation.

13.1 THE HF NOISE PARAMETERS

13.1.1 The Noisy Two-Port

The noise at the output of an amplifier arises from the noise generated within the amplifier

plus the noise already present at the input and amplified by the amplifier. Such a small-signal

noisy amplifier can be represented by the noisy two-port network shown in Figure 13.1(a). The

output noise current Inout includes both the noise coming from the amplifier and the amplified

input noise. Note that we look at the short-circuited output noise current because we will

characterize the two-port using the Y-parameters which are defined in short-circuit conditions.

The noisy two-port of Figure 13.1(a) can be represented by a noiseless two-port to which two

noise sources have to be added (actually one noise source per port) [145, 146]. Figure 13.1(b)

shows one possible representation where two current noise sources have been added to the

Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design C. Enz and E. Vittoz
C© 2006 John Wiley & Sons, Ltd.
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Figure 13.1 Different equivalent representations of a linear noisy two-port [145, 146]. (a) Noisy

two-port network. (b) Admittance representation of the noisy two-port network with noiseless two-port

in the middle. (c) Chain matrix representation of the noisy two-port network with noiseless two-port

in the middle

noiseless two-port, one at the input port (In1) and one at the output port (In2). The two-port

equations are then modified according to

I1 = Y11 V1 + Y12 V2 + In1
(13.1)

I2 = Y21 V1 + Y22 V2 + In2,

where the complex currents and voltages are phasors defined by I � Î e j ωt and V � V̂ e j ωt

with Î and V̂ being the current and voltage amplitudes. The current noise sources In1 and In2

can be evaluated from the noisy two-port internal noise sources by short-circuiting the input

and output ports:

In1 = I1|V1=V2=0, (13.2a)

In2 = I2|V1=V2=0. (13.2b)

This representation is useful for example for including the induced gate noise and the drain

noise. Noise current source In1 then represents the induced gate noise, whereas In2 represents

the drain noise.

For the calculation of the noise figure, it is more convenient to refer both noise sources

directly at the input of the two-port, as shown in Figure 13.1(c), and use the ABCD matrix

representation:

V1 = A V2 − B I2 + Vn
(13.3)

I1 = C V2 − D I2 + In,

where Vn is a noise voltage source that represents all the noise of the device referred to the

input when the source impedance is zero (input short-circuited) and In is a noise current source

that represents all the noise of the device referred to the input when the source admittance is
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zero (input open circuited):

Vn = B I2|V1=V2=0 = −
1

Y21

I2|V1=V2=0, (13.4a)

In = D I2|I1=V2=0 = −
Y11

Y21

I2|I1=V2=0. (13.4b)

Vn is calculated using (13.4a) by first evaluating the Y-parameters, calculating the output

current I2 with the input and output in short circuit, and dividing this value by −Y21. Similarly,

In is calculated by first evaluating the output current I2 with the input open and the output in

short circuit and multiplying this value by −Y11/Y21. Examples of Vn and In noise sources are

presented in Section 13.3.

The two noise sources Vn and In of Figure 13.1(c) are related to the noise sources In1 and

In2 of Figure 13.1(b) by

Vn = −
In2

Y21

, (13.5a)

In = In1 −
Y11

Y21

In2. (13.5b)

13.1.2 The Correlation Admittance

Since both of the noise sources Vn and In (or equivalently In1 and In2) are due to the same

physical noise sources within the two-port, they are usually correlated. To account for the

correlation existing between sources In and Vn, noise source In can be written as

In = Inu + Inc = Inu + Yc Vn, (13.6)

where Inu stands for the uncorrelated part of In, and Inc represents the part of In that is fully

correlated to Vn. The definition of the correlation admittance Yc is obtained by multiplying

(13.6) by V ∗
n and averaging. This results in

InV ∗
n = InuV ∗

n
︸ ︷︷ ︸

=0

+Yc |Vn|2 = Yc |Vn|2, (13.7)

where the first term of the right-hand side of (13.7) is zero since by definition Inu is not

correlated to Vn. Yc is then given by

Yc =
In V ∗

n

|Vn|2
. (13.8)

The mean-square value of source In is given by

|In|2 = |Inu|2 + |Yc|2 |Vn|2 + Y ∗
c Inu V ∗

n
︸ ︷︷ ︸

=0

+ Yc Vn I ∗
nu

︸ ︷︷ ︸

=0 (13.9)
= |Inu|2 + |Yc|2 |Vn|2

︸ ︷︷ ︸

�|Inc|2

.
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The correlated and uncorrelated parts of In can also be written in terms of the correlation

factor c

|Inu|2 = |In|2 − |Yc|2 |Vn|2 = (1 − |c|2) |In|2, (13.10a)

|Inc|2 = |Yc|2 |Vn|2 = |c|2 |In|2, (13.10b)

with

c =
In V ∗

n
√

|In|2 |Vn|2
= Yc

√

|Vn|2

|In|2
. (13.11)

The same relations apply for the power spectral densities (PSD) Sv and Si of noise sources

Vn and In respectively

Siu = Si − |Yc|2 Sv = (1 − |c|2) Si, (13.12a)

Sic = |Yc|2 Sv = |c|2 Si, (13.12b)

Si = Siu + Sic, (13.12c)

where Siu and Sic are the parts of PSD Si that are respectively uncorrelated and fully correlated

to source Vn. It is convenient to treat the noise sources Vn and In as if they were thermal noise

sources defined by

Sv � 4kT Rv, (13.13a)

Si � 4kT G i, (13.13b)

Siu � 4kT G iu, (13.13c)

Sic � 4kT G ic. (13.13d)

The above defined resistance Rv and conductances G i, G iu, and G ic are then related according

to (13.12)

G iu = G i − |Yc|2 Rv = (1 − |c|2) G i, (13.14a)

G ic = |Yc|2 Rv = |c|2 G i, (13.14b)

G i = G iu + G ic, (13.14c)

where the correlation factor c is given by

c = Yc

√

Rv

G i

, (13.15)

or its square magnitude

|c|2 = (G2
c + B2

c )
Rv

G i

, (13.16)

with Yc = Gc + j Bc.
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Note that in general Rv, G i, G iu, and G ic are frequency dependent since they depend on the

real physical noise sources within the two-port through the Y-parameters.

To be fully characterized, the noise of a two-port requires four noise parameters, for example,

Rv, G iu, Gc, and Bc. As will be shown in the next section, all these noise parameters are required

to evaluate the noise factor.

13.1.3 The Noise Factor

The noise factor is defined as the ratio of the total output noise to the output noise due only to

the noise already present at the two-port input:

F �
total output noise

output noise due to input source
= 1 +

Na

Ns

, (13.17)

where Na is the noise power added by the two-port and Ns is the noise power coming from the

source. To calculate the noise factor of a two-port in terms of the equivalent noise sources Vn

and In and their correlation admittance, we first have to evaluate the total noise at the two-port

output. Since the current noise contribution coming from the source Inrs and that coming from

Vn and In are amplified the same way, we can just calculate the total noise current In tot in

short-circuit condition at the input of the two-port. With the help of Figure 13.2, the current

source In tot is given by

In tot = Inrs + In + Ys Vn, (13.18)

and the mean-square value is

|In tot|2 = |Inrs + In + Ys Vn|2 = |Inrs|2 + |In + Ys Vn|2, (13.19)

which can be rewritten in terms of correlated and uncorrelated noise as

|In tot|2 = |Inrs|2 + |Inu + Inc + Ys Vn|2

= |Inrs|2 + |Inu + (Yc + Ys) Vn|2 (13.20)

= |Inrs|2 + |Inu|2 + |Yc + Ys|2 |Vn|2.

The noise factor is then simply given by

F �
|In tot|2

|Inrs|2
= 1 +

|Inu|2 + |Yc + Ys|2 |Vn|2

|Inrs|2
. (13.21)

YS

In

Vn

Inrs

Intot

YS

Intot

Intot

Figure 13.2 Total equivalent noise at the input of a noisy two-port
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The above definition of the noise factor uses power or mean square values and is therefore

independent of frequency. Another definition uses the above defined PSD instead of the mean-

square values:

F = 1 +
Siu + |Yc + Ys|2 Sv

4kT Gs

= 1 +
G iu + |Yc + Ys|2 Rv

Gs (13.22)

= 1 +
G iu

Gs

+
Rv

Gs

[

(Gs + Gc)2 + (Bs + Bc)2
]

,

where Gs and Bs are defined by Ys � Gs + j Bs.

Note that the noise factor defined by (13.22) is in general frequency dependent, since Rv,

G iu, Yc, and Ys can all depend on frequency. For this reason, it is sometimes also called the

spot noise factor. The two definitions of the noise factor given by (13.21) and (13.22) are about

equivalent for narrow band systems since

|Vn|2 ∼= Sv B = 4kT Rv B, (13.23a)

|In|2 ∼= Si B = 4kT G i B, (13.23b)

|Inu|2 ∼= Siu B = 4kT G iu B, (13.23c)

|Inc|2 ∼= Sic B = 4kT G ic B, (13.23d)

where B is the system noise bandwidth.

13.1.4 Minimum Noise Factor

Once the two-port is characterized by its four noise parameters Rv, G iu, Gc, and Bc, the

noise factor given by (13.22) reaches a minimum value called Fmin (or NFmin � 10 log Fmin)

for a particular value of the source admittance Yopt � Gopt + j Bopt. The optimum source

conductance Gopt and susceptance Bopt are obtained from the differentiation of (13.22) and

can be expressed in terms of the four noise parameters according to

Gopt =

√

G iu

Rv

+ G2
c =

√

G i

Rv

− B2
c (13.24a)

Bopt = −Bc. (13.24b)

The minimum noise factor Fmin can then be written as

Fmin = 1 + 2Rv(Gopt + Gc) = 1 + 2Rv

(

√

G iu

Rv

+ G2
c + Gc

)

. (13.25)

The actual noise factor can be written in terms of Fmin, Rv, Gopt, Bopt and the source

conductance Gs and susceptance Bs as

F = Fmin +
Rv

Gs

[

(Gs − Gopt)
2 + (Bs − Bopt)

2
]

. (13.26)
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Equation (13.26) clearly indicates that for the noise factor to reach its minimum value, Fmin,

requires both conditions Gs = Gopt and Bs = Bopt. This situation is called noise matching.

In the same way the noise factor can be minimized, the power gain can also be maximized

by setting the source admittance to some appropriate value. The latter situation is called gain

matching. Unfortunately, most of the time noise matching does not coincide with gain matching.

Usually the parameters that are available from measurements are the four de-embedded

noise parameters Fmin, Rv, Gopt, and Bopt.
1 The latter allow to calculate the noise factor for

any source impedance according to (13.26).

The four measured noise parameters Fmin, Rv, Gopt, and Bopt can also be used to evalu-

ate the four parameters characterizing the noise sources Vn and In of the noisy two-port of

Figure 13.1(c) from (13.24a), (13.25), and (13.24b) respectively:

G i = |Yopt|2 Rv = (G2
opt + B2

opt) Rv, (13.27a)

Gc =
Fmin − 2RvGopt − 1

2Rv

, (13.27b)

Bc = −Bopt. (13.27c)

Note that Rv is identical in both sets of parameters. Equations (13.27) allow to go from the

measured noise parameter to the equivalent noisy two-port representation.

The correlated and uncorrelated parts of G i can then be calculated as

G ic = |c|2 G i, (13.28a)

G iu = (1 − |c|2) G i, (13.28b)

where the correlation coefficient is given by

c = Yc

Rv

G i

=
Gc + j Bc

√

G2
opt + B2

opt

(13.29)

or

|c|2 =
G2

c + B2
c

G2
opt + B2

opt

. (13.30)

13.2 THE HIGH-FREQUENCY THERMAL NOISE MODEL

At RF, the flicker noise is not present and the total noise is dominated by the thermal noise com-

ponent which then sets the fundamental limit to signal resolution. As presented in Section 6.2,

this channel noise is commonly modeled as a shunt current source between drain and source

as shown in Figure 6.5. This simple model is not sufficient to predict the noise behavior at

frequencies that get close or even beyond the channel cutoff frequency. At high frequency, the

1 Actually most of the time noise measurement systems give the optimum reflection coefficient Γopt from which the

optimum admittance can be calculated using the definition Γopt = (Y0 − Yopt)/(Y0 + Yopt), where 1/Y0 = 50 Ω is the

characteristic impedance.
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capacitive coupling existing between the noisy channel and the gate and bulk terminals induce

additional noise currents to flow through those terminals in addition to the drain-to-source noise

current [91,150,151]. Also, at higher frequency the channel can be looked at as a nonuniform

RC transmission line introducing some phase shift to the signals traveling along the channel.

All this results into a drain noise current that is no longer equal to the source noise current

as it was assumed at lower frequency in Section 6.2. Since the physical source of thermal

noise is still due to the channel resistance, the terminal noise currents are obviously corre-

lated [91,150,151]. These additional noise currents and their correlation coefficients strongly

affect all the four noise parameters [151], namely the input referred noise resistance Rv, the

optimum source conductance Gopt, the optimum source susceptance Bopt, but particularly the

minimum noise figure N Fmin. It is therefore crucial to correctly model all these additional

noise currents as well as their related correlation coefficients.

The downscaling of CMOS technology has resulted in a significant increase of the maximum

transit frequency ft, reaching or even exceeding 100 GHz for sub 0.1 μm technologies [152].

For RF applications operating in the gigahertz frequency range, the ratio between the transit

frequency (or the channel cutoff frequency) and the operating frequency can then be increased

in order to avoid any non-quasi-static effects. This is usually done at the expense of power

consumption which has become a very important specification, particularly for portable and

battery-operated devices. To save power, it is therefore important not to waste any bandwidth

and therefore to operate with the lowest possible cutoff frequency. Also, the downscaling of

CMOS technology is combined with a reduction of the supply voltage which results in a

decrease of the overdrive voltage. For these two reasons, the operating points are therefore

pushed away from the traditional strong inversion region toward moderate and even weak

inversion [49, 50, 52]. For RF I C design in deep submicron CMOS processes, it therefore

becomes more and more important to be able to correctly predict the terminal noise currents

and their correlation coefficients in moderate and weak inversion regimes.

13.2.1 Generalized High-Frequency Noise Model

The thermal noise model presented in Section 6.2 is valid only at low frequency, i.e., for fre-

quencies much lower than the channel cutoff frequency. At higher frequency the capacitive

coupling between the channel and the gate and bulk terminals has to be accounted for. From

multiport noise theory, it is known that each port requires its own noise source which can be

either a voltage or current source. The MOS transistor is a four-terminal device and there-

fore requires four noise sources as indicated in Figure 13.3. Current noise sources have been

chosen since all the following derivations are carried out using Y-parameters. As shown in

Figure 13.3(b), the noisy MOS transistor of Figure 13.3(a) can then be replaced by a noise-

less transistor and four additional noise current sources ∆InD, ∆InS, ∆InG, and ∆InB having

PSD S∆I 2
nD

, S∆I 2
nS

, S∆I 2
nG

, and S∆I 2
nB

, respectively. Since the noise appearing at each terminal

is generated from the same physical thermal noise source in the channel, the noise current

sources ∆InD, ∆InS, ∆InG, and ∆InB are correlated. This correlation is accounted for by the

cross-power spectral densities (CPSD) S∆Ink ∆I ∗
nl

with k �= l ∈ {D, S, G, B}.
The signs of the terminal currents and the related noise current sources are defined as

indicated in Figure 13.3. Note that, although one can choose any definition for the signs of

these currents, it is important to be consistent in order to account for the correct correlations

existing between them.
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Figure 13.3 (a) HF noisy MOS transistor with terminal currents including noise fluctuations.

(b) Equivalent HF noise circuit with noiseless MOS transistor

The PSD and CPSD are derived in Section 13.2.3 using the approach already described in

Section 6.1 and applied to the high frequency case in the next section.

13.2.2 The Two-Transistor Approach at High Frequency

The procedure to derive the PSD and CPSD is similar to the two-transistor approach used

in Sections 6.1 and 6.2 to derive the PSD of the thermal noise at the drain at low frequency,

except that the equivalent small-signal circuit of Figure 6.3(b) has now to be replaced by the

general non-quasi-static circuit as shown in Figure 13.4.2 For long channel, we have shown

in Section 6.2 that the PSD of the thermal noise voltage source coming from the infinitesimal

portion of the channel resistance comprised between x and x + ∆x is simply proportional to

the corresponding infinitesimal resistance ∆R and is given by

SδV 2
n

= ∆R2SδI 2
n

= 4kT ∆R = 4kT
∆x

Wµ0(−Qi)
. (13.31)

To simplify the further notation it is convenient to normalize the noise voltage and current

source PSDs to SV 2
spec

� 4kT/Gspec and SI 2
spec

� 4kT Gspec respectively. The normalized noise

voltage PSD due to the infinitesimal piece of channel ∆R is then given by

sδv2
n
(ξ ) �

SδV 2
n
(x)

SV 2
spec

= Gspec ∆R =
∆ξ

qi(ξ )
, (13.32)

with ∆ξ � ∆x/L .

The effect of noise source δVn on the different terminal currents is obtained from an anal-

ysis of the non-quasi-static small-signal equivalent circuit of Figure 13.4(b) observing that

admittances YGBi1 and YGBi2 have no influence since they are both short-circuited. The transfer

functions from the local noise source δVn in the channel to the terminal currents δInD, δInS,

2 Note that here we will be using the Thévenin equivalent noise voltage source instead of the Norton noise current

source to make the derivation. As explained in Section 6.1 the two approaches are equivalent.
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Figure 13.4 (a) Single transistor split into two separate transistors to evaluate the noise transadmit-

tances between channel noise source δVn and the terminal noise currents. (b) Corresponding non-

quasi-static small-signal circuit

δInG, and δInB are then given by

YnD(ω, x) �
δInD

δVn

= −
Yms2(Ymd1 + YGDi1 + YBDi1)

Ymd1 + Yms2 + YGDi1 + YBDi1 + YGSi2 + YBSi2

, (13.33a)

YnS(ω, x) �
δInS

δVn

= −
Ymd1(Yms2 + YGSi2 + YBSi2)

Ymd1 + Yms2 + YGDi1 + YBDi1 + YGSi2 + YBSi2

, (13.33b)

YnG(ω, x) �
δInG

δVn

=
Yms2YGDi1 − Ymd1YGSi2 + YGDi1YBSi2 − YGSi2YBDi1

Ymd1 + Yms2 + YGDi1 + YBDi1 + YGSi2 + YBSi2

, (13.33c)

YnB(ω, x) �
δInB

δVn

=
Yms2YBDi1 − Ymd1YBSi2 + YBDi1YGSi2 − YBSi2YGDi1

Ymd1 + Yms2 + YGDi1 + YBDi1 + YGSi2 + YBSi2

. (13.33d)

Equations (13.33) can be further simplified remembering the basic relations between the

bulk-to-drain and gate-to-drain admittances, and the bulk-to-source and gate-to-source admit-

tances as stated in Section 5.2 by (5.39) which is repeated here for convenience:

YBDi1 = (n − 1)YGDi1,

YBSi2 = (n − 1)YGSi2.

This leads to

YnD(ω, x) = −
Yms2(Ymd1 + nYGDi1)

Ymd1 + Yms2 + n(YGDi1 + YGSi2)
, (13.34a)

YnS(ω, x) = −
Ymd1(Yms2 + nYGSi2)

Ymd1 + Yms2 + n(YGDi1 + YGSi2)
, (13.34b)

YnG(ω, x) =
Yms2YGDi1 − Ymd1YGSi2

Ymd1 + Yms2 + n(YGDi1 + YGSi2)
, (13.34c)

YnB(ω, x) = (n − 1)YnG(ω, x). (13.34d)

From (13.34d) it can be seen that the transadmittance from the noise source δVn to the bulk

noise current δInB is n − 1 times that to the gate noise current δInG. This results in a PSD of
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the induced bulk noise current δInB that is (n − 1)2 that of the induced gate noise current δInG:

SδI 2
nB

= (n − 1)2 SδI 2
nG

. (13.35)

Assuming a constant slope factor n, (13.35) is also valid for the total induced gate and bulk

currents ∆InG and ∆InB:

S∆I 2
nB

= (n − 1)2 S∆I 2
nG

. (13.36)

The noise transadmittances in (13.34) can be normalized by introducing the normalization

conductances of each half transistors M1 and M2 defined by [78, 153]

Gspec1 � 2nµ0

W

x
CoxUT =

Gspec

ξ
, (13.37a)

Gspec2 � 2nµ0

W

L − x
CoxUT =

Gspec

1 − ξ
, (13.37b)

and the frequency can be normalized using the specific frequency of each half transistors M1

and M2 defined as [78, 153]

ωspec1 �
µ0UT

x2
=

ωspec

ξ 2
, (13.38a)

ωspec2 �
µ0UT

(L − x)2
=

ωspec

(1 − ξ )2
, (13.38b)

with

ωspec �
µ0UT

L2
(13.39)

being the specific frequency of the full-length transistor. Introducing the above normalizations

in (13.34) results in [78, 153]

ynD(Ω, ξ ) �
YnD

Gspec

(13.40a)

= −
yms2(Ω(1 − ξ )2)[ymd1(Ωξ 2) + nyGDi1(Ωξ 2)]

(1 − ξ )ymd1(Ωξ 2) + ξ yms2(Ω(1 − ξ )2) + n[(1 − ξ )yGDi1(Ωξ 2) + ξ yGSi2(Ω(1 − ξ )2)]
,

ynS(Ω, ξ ) �
YnS

Gspec

(13.40b)

= −
ymd1(Ωξ 2)[yms2(Ω(1 − ξ )2) + nyGSi2(Ω(1 − ξ )2)]

(1 − ξ )ymd1(Ωξ 2) + ξ yms2(Ω(1 − ξ )2) + n[(1 − ξ )yGDi1(Ωξ 2) + ξ yGSi2(Ω(1 − ξ )2)]
,

ynG(Ω, ξ ) �
YnG

Gspec

(13.40c)

=
yms2(Ω(1 − ξ )2)yGDi1(Ωξ 2) − ymd1(Ωξ 2)yGSi2(Ω(1 − ξ )2)

(1 − ξ )ymd1(Ωξ 2) + ξ yms2(Ω(1 − ξ )2) + n[(1 − ξ )yGDi1(Ωξ 2) + ξ yGSi2(Ω(1 − ξ )2)]
,

ynB(Ω, ξ ) �
YnB

Gspec

= (n − 1)ynG(Ω, ξ ). (13.40d)
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where Ω � ω/ωspec is the normalized frequency. The above noise transadmittances are then

used in the next section to derive the terminal noise current PSD and CPSD.

13.2.3 Generic PSDs Derivation

The PSD and CPSD of each noisy terminal currents due to the channel thermal noise voltage

source δVn are given by

SδI 2
nk

(ω, x) = |Ynk(ω, x)|2 SδV 2
n
(x), (13.41a)

SδInkδI ∗
nl

(ω, x) = Ynk(ω, x)Y ∗
nl(ω, x) SδV 2

n
(x), (13.41b)

with k �= l ∈ {D, S, G, B}.
Integrating these relations from source to drain and assuming that all noise sources in the

channel are uncorrelated, the following normalized relation can be derived [78, 153]:

s∆I 2
nk

(Ω) �
S∆I 2

nk
(ω)

SI 2
spec

=
∫ 1

0

|ynk(Ω, ξ )|2
dξ

qi(ξ )
, (13.42a)

s∆Ink∆I ∗
nl

(Ω) �
S∆Ink∆I ∗

nl
(ω)

SI 2
spec

=
∫ 1

0

ynk(Ω, ξ )y∗
nl(Ω, ξ )

dξ

qi(ξ )
. (13.42b)

At this point it is useful to introduce the following additional variables [78, 153]

χ (ξ ) � qi(ξ ) +
1

2
, χs � qs +

1

2
, χd � qd +

1

2
, (13.43)

which greatly simplify the evaluation of the integrals in (13.42). Using these intermediate

variables, integrating the same current in the complete transistor and in transistors M1 and M2

leads to

id = χ2
s − χ2

d , idξ = χ2
s − χ2, id(1 − ξ ) = χ2 − χ2

d . (13.44)

Finally, the different normalized PSD and CPSD of (13.42) become [78, 153]

s∆I 2
nk

(Ω) =
1

id

∫ χs

χd

|ynk(Ω, χ )|2
4χ

2χ − 1
dχ, (13.45a)

s∆Ink∆I ∗
nl

(Ω) =
1

id

∫ χs

χd

ynk(Ω, χ )y∗
nl(Ω, χ )

4χ

2χ − 1
dχ, (13.45b)

where variable ξ used in the expressions of the normalized transadmittances given by (13.40)

must also be expressed as a function of χ using the following relation:

ξ =
χ2

s − χ2

id

. (13.46)
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Figure 13.5 (a) Single transistor split into two separate transistors to evaluate the noise transadmit-

tances between channel noise source δVn and the terminal noise currents. (b) Corresponding quasi-

static small-signal circuit

It is unfortunately not possible to get closed-form algebraic expressions for the integrals

(13.45a) and (13.45b). However, a simple first-order approximation will be derived in the next

section.

13.2.4 First-Order Approximation

A first-order approximation can be obtained by replacing each transistor M1 and M2 by their

quasi-static small-signal model as shown in Figure 13.5(b), which clearly illustrates the ca-

pacitive coupling existing between the channel and the gate and bulk terminals inducing noise

currents to flow. The small-signal Y-parameters used in (13.34) then reduce to Ymd1 = Gmd1,

Yms2 = Gms2, YGDi1 = j ω CGDi1, and YGSi2 = j ω CGSi2.

Within the limits of this crude approximation, the PSD of the drain noise current ∆InD can

then be calculated using (13.45a) as [78, 153]

s∆i2
nD

∼= s∆i2
nS

∼=
4χ2

s − 3χs + 4χsχd − 3χd + 4χ2
d

6(χs + χd)
. (13.47)

Note first that in this first-order approximation, the PSD of the drain noise current is equal

to the PSD of the source noise current. Therefore, it can be represented by a single current

noise source connected between the drain and the source of the noiseless transistor as in the

low-frequency case shown in Figure 6.5(b). In addition, after replacing χs and χd with their def-

initions (13.43), it appears that the first-order non-quasi-static drain current noise PSD (13.47)

is identical to the low-frequency expression given in (6.19) [49, 52]. For the drain and

source noise currents, this first-order model hence reduces to the simple low-frequency case.

The PSD of the induced gate noise current ∆InG can be evaluated from (13.45a) as [78,153]

s∆i2
nG

=
s∆i2

nB

(n − 1)2

∼= Ω2 16χ4
s + 16χ4

d + 80χ3
s χd + 80χsχ

3
d + 168χ2

s χ2
d − 15χ3

s − 15χ3
d − 75χ2

s χd − 75χsχ
2
d

540n2(χs + χd)5
,

(13.48)
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Figure 13.6 Admittance seen at the gate of the intrinsic transistor

which is proportional to the square of the frequency. This is simply due to the capacitive

coupling existing between the channel and the gate. The bias dependence is a little bit more

complex than the PSD of the drain current noise. As mentioned above, the PSD of the in-

duced bulk noise current is simply (n − 1)2 that of the induced gate noise current given

by (13.48).

For VD = VS, the transistor is basically a passive resistor3 capacitively coupled to the gate

and the bulk. Hence, the Nyquist theorem applies and the induced gate noise for VD = VS

should therefore be equal to the noise of the conductance GGi � ℜ{YGi} seen at the gate. This

is no longer strictly true for VD �= VS, but a thermal noise parameter at the gate δnG can be

defined as

δnG �
GnG

GGi

=
s∆i2

nG

gGi

, (13.49)

where GnG is the thermal noise conductance at the gate defined by

S∆I 2
nG

� 4kT GnG(ω) ∝ ω2. (13.50)

Similar to the definition of the thermal noise parameter at the drain, δnG measures the

deviation of the actual PSD of the induced gate noise current with respect to that of the

conductance GGi. With the quasi-static model, YGi is simply given by

YGi = j ω CGi = j ω (CGSi + CGDi + CGBi), (13.51)

which has no real component. Therefore a non-quasi-static approach is needed to evaluate the

real part of YGi. As shown in Figure 13.6, the gate sees the oxide capacitance in series with

part of the channel, which is responsible for the real part of YGi. The YGi admittance is simply

equal to the parallel connection of the intrinsic gate-to-source, gate-to-drain, and gate-to-bulk

admittances:

YGi = YGSi + YGDi + YGBi. (13.52)

3 Actually a resistor is always passive, but in this case, the term passive is used to emphasise the fact that for VD = VS

the transistor can be looked at as a passive RC network and the Nyquist and Bode theorems apply.
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From the first-order non-quasi-static model described in Section 5.2, assuming ω τqs ≪ 1,

the latter are given by

YGSi
∼=

j ω CGSi

1 + j ω τqs/2
∼= j ω CGSi (1 − j ω

τqs

2
), (13.53a)

YGDi
∼=

j ω CGDi

1 + j ω τqs/2
∼= j ω CGDi (1 − j ω

τqs

2
), (13.53b)

YGBi =
n − 1

n
( j ω COX − YGSi − YGDi), (13.53c)

where τqs is the channel time constant which is related to the quasi-static frequency ωqs defined

by (5.32) according to

τqs

τspec

=
ωspec

ωqs

=
1

Ωqs

=
1

30

4q2
s + 4q2

d + 12qsqd + 10qs + 10qd + 5

(qs + qd + 1)3
. (13.54)

Notice that τqs/τspec does not depend on the transistor geometry, but is bias dependent according

to (13.54). Ωqs corresponds to the limit between the quasi-static and non-quasi-static model.

This means that for normalized frequencies close or even larger than Ωqs, non-quasi-static

effects have to be accounted for.

Introducing (13.53) into (13.52) results in

YGi
∼= ω2 τqs(CGSi + CGDi)

2n
+ j ω

(n − 1)COX + CGSi + CGDi

n (13.55)

= ω2 τqsCOX(cGSi + cGDi)

2n
+ j ω COX

n − 1 + cGSi + cGDi

n
,

where COX � W L f Cox = Nf Wf L f Cox and cGSi and cGDi are the normalized gate-to-source

and gate-to-drain intrinsic capacitances, which depend on the normalized source and drain

charge densities according to (5.50):

cGSi �
CGSi

COX

=
2

3
qs

qs + 2qd + 3/2

(qs + qd + 1)2
, (13.56a)

cGDi �
CGDi

COX

=
2

3
qd

qd + 2qs + 3/2

(qs + qd + 1)2
. (13.56b)

The expression of the gate noise parameter δnG will not be detailed here, but it can be

evaluated from (13.49), (13.48), and (13.55). It is plotted in Figure 13.7(a) versus the inversion

factor for different values of the ir/ if ratio. As illustrated in Figure 13.7(a), δnG remains close

to unity in all bias conditions since it is kept between 1 in weak inversion and 4/3 in strong

inversion and saturation:

δnG =

{

1 in weak inversion

4/3 in strong inversion and saturation.
(13.57)
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Figure 13.7 (a) Noise factor δnG and (b) magnitude of the drain-gate correlation coefficient ρGD

versus the inversion factor if for different ir/ if ratios (from ir = if to saturation where ir = 0)

In strong inversion and saturation, cGDi
∼= 0 and τqs is given by

τqs =
Cm

Gm

∼=
4

15

COX

Gm

=
2

5

CGSi

Gm

. (13.58)

The real part of the input admittance is then given by

GGi
∼=

(ωCGSi)
2

5nGm

=
(ωCGSi)

2

5Gms

=
5

4

Gm

n
(ωτqs)

2, (13.59)

The gate noise conductance in strong inversion and saturation then simplifies to

GnG(ω) ∼= δnG

(ωCGSi)
2

5Gms

= δnG

5

4

Gm

n
(ωτqs)

2 =
5

3

Gm

n
(ωτqs)

2, (13.60)

since in strong inversion and saturation the gate thermal noise parameter δnG
∼= 4/3.

Equation (13.60) is in accordance with earlier results for strong inversion and saturation

found for example in [151]. It can be further simplified by replacing Gms by Gspecqs with

Gspec = Ispec/UT = 2nµ0 CoxW/LUT, resulting in

GnG
∼=

8

135

W L3ω2

nqs

Cox

µ0UT

=
16

135

W L3ω2Cox

µ0(VG − VT0 − nVS)
. (13.61)

According to (13.61), the induced gate noise in strong inversion and saturation is propor-

tional to the cube of the gate length and inversely proportional to the overdrive voltage. For

a given transistor width and for a given overdrive voltage, the induced gate noise quickly

decreases when reducing the gate length.

It should be noted here that induced gate noise is actually always present for ω > 0. Its

effect should be compared to the effect of the other noise sources and particularly to the effect
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Figure 13.8 Two-transistor model for VD = VS used for evaluation of the correlation between the

induced gate noise current and the drain current noise

of the dominant drain noise. This comparison can be done only after having accounted for the

correlation existing between the induced gate noise and the drain noise, which is evaluated

below.

The CPSD between the gate and the drain noise currents is obtained from (13.45b) [78,153]:

s∆inG ∆i∗
nD

∼= s∆inG ∆i∗
nS

∼=
jΩ

18n

(χs − χd)(χ2
s + 4χsχd + χ2

d )

(χs + χd)3
. (13.62)

As expected s∆inG ∆i∗
nD

is not null, meaning that the gate noise is partly correlated with the drain

noise. At frequency low enough for this first-order approximation to be valid, the correlation

factor ρGD, as defined by equation (13.71) below, is independent of the frequency Ω . As

illustrated in Figure 13.7(b), it is always null for VD = VS. This can be explained with the help

of Figure 13.8. The gate current can be expressed in terms of the channel thermal noise voltage

source as

δInG = YnG δVn, (13.63)

where the transadmittance YnG is given by

YnG =
Gmd1Gms2

Gmd1 + Gms2

j ω

(

CGDi1

Gmd1
− CGSi2

Gms2

)

1 + j ω CGDi1+CGSi2

Gmd1+Gms2

. (13.64)
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Notice the minus sign in the numerator of (13.64). For VD = VS, the channel is uniform from

source to drain and hence

Gmd1 =
Gms

ξ
, (13.65a)

Gms2 =
Gms

1 − ξ
, (13.65b)

CGDi1 = ξCGDSi, (13.65c)

CGSi2 = (1 − ξ )CGDSi, (13.65d)

with Gms = Gmd1 + Gms2 and CGDSi = CGDi1 + CGSi2. Replacing (13.65) into (13.64) results

in

YnG =
− j ωCGDSi(1 − 2ξ )

1 + j ω CGDSi

Gms
(1 − ξ )ξ

. (13.66)

From (13.66), it is interesting to note that YnG(0.5) = 0 and YnG(1 − ξ ) = −YnG(ξ ), so

that the sum YnG(ξ ) + YnG(1 − ξ ) is zero. This is simply the result of the source and drain

full symmetry occurring when the transistor is biased with VD = VS. When summing all the

contributions along the channel to obtain the total induced gate noise current, the contribution

at ξ is fully correlated with the one at 1 − ξ and since the one at the middle of the channel

is zero, the part of the total induced current that could be correlated with the drain current is

canceled out, leaving only the noncorrelated part. This explains why the correlation coefficient

ρGD is zero for VD = VS.

Since Ω , χs, χd, and n in (13.62) are all real, the first-order approximation of the CPSD

s∆inG ∆i∗
nD

and the correlation coefficient ρGD is purely imaginary, which is simply due to the

capacitive coupling. It is plotted versus the inversion factor in Figure 13.7(b). In saturation

ρGD is given by4

ρGD =
+ j

√
5(2q2

s + 6qs + 3)
√

(4qs + 3)(32q3
s + 114q2

s + 132qs + 45)
(saturation), (13.67)

which has the following asymptotes:

ρGD =

{

+ j/
√

3 ≈ + j 0.6 in weak inversion and saturation

+ j
√

5/32 ≈ + j 0.4 in strong inversion and saturation.
(13.68)

Note that (13.68) is in agreement with the early result found for strong inversion by Van der

Ziel [91] and the more recent result in weak inversion presented in [153].

4 Note that with the sign definition of the noise current source ∆InG given in Figure 13.3(b) (i.e., current flowing from

gate to ground), the imaginary part of the correlation coefficient ρGD is positive. In reference [151], the current is

taken positive flowing from source to gate, leading to a negative value of the imaginary part of ρGD.
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Finally, since the PSD of the drain and source noise currents are identical, the CPSD between

the drain and the source noise currents is equal to the PSD of the drain noise current [78,153]:

s∆inD ∆i∗
nS

∼= s∆i2
nD

∼=
4χ2

s − 3χs + 4χsχd − 3χd + 4χ2
d

6(χs + χd)
. (13.69)

Although this first-order model is usually sufficient for most circuit design purposes, it is

interesting to investigate the full non-quasi-static model. This is done in the next section.

13.2.5 Higher Order Effects

The behavior at frequencies higher than Ωqs has been explored by numerically integrating

equations (13.45a) and (13.45b) and using the complete non-quasi-static expressions of the

transadmittances.

To get readable results, only the deviation from the first-order behavior described above is

plotted. A new set of parameters are therefore defined by [78, 153]

κk � s∆i2
nk

/

{

s∆i2
nk

}

(first order)
(13.70)

with κB = κG. The three independent coefficients κD, κS, and κG are plotted in Figure 13.9(a)

versus the normalized frequency Θ � Ω/Ωqs, in the linear region and saturation, at different

levels of inversion. The magnitude and phase of the correlation coefficients defined by

ρkl �
s∆ink ∆i∗

nl
√

s∆i2
nk

s∆i2
nl

(13.71)

are plotted versus Θ � Ω/Ωqs in Figures 13.9(b) and 13.9(c) respectively. The lines represent

the results obtained from the numerical integration of (13.45a) and (13.45b), whereas the

symbols correspond to the results obtained from a 16-segment simulation using the approach

described in [114, 134]. Each segment has been simulated using the intrinsic part of the EKV

compact model instead of the MOS Model 11 used in [114, 134].

It can be seen from the bottom part of Figure 13.9(a) that at high frequency, the induced gate

noise s∆I 2
nG

becomes smaller than expected from the first-order approximation. It still increases,

but only proportionally to
√

Ω instead of Ω2 (since κG ∝ Ω−3/2). Note that the actual curves

do not vary with the inversion factor and that even the linear region and saturation behaviors

are very close to each other.

The top part of Figure 13.9(a) shows that the drain and source noise PSDs tend to slowly

increase with frequency, about at a
√

Ω rate. Note that although this frequency behavior might

seem surprising at a first glance, a similar behavior has already been observed by L.-J. Pu and

Y. Tsividis in [154]. In the linear region, the curve is again independent of the state of inversion.

In saturation mode, the behavior is more complex. In the strong inversion region (I C ≫ 1),

both κD and κS tend toward the linear region curve, whereas in weak inversion (I C ≪ 1), the

drain noise is kept almost constant while the source noise still increases in a similar fashion as

the linear region curve.
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Figure 13.9 High-frequency effects on the noise PSDs and correlation coefficients referred to the first-order model [153]. The lines correspond to the

result of the numerical integration of (13.45a) and (13.45b). The symbols correspond to the results obtained from a 16-segment simulation using the

approach described in [114, 134] (Reproduced by permission of IEE from [153])
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The magnitude of ρGD and ρGS are plotted on the top part of Figure 13.9(b). They follow

a complex pattern that is hardly predictable in saturation, even qualitatively. In the linear

regime, both correlation coefficients ρGD and ρGS are null at low frequency, since as explained

above, the two identical channel portions placed symmetrically relatively to the center point

contribute to the gate noise with the same magnitude but with an opposite correlation sign.

At higher frequency, though, the drain and source currents are no longer forced equal. In the

linear region, both correlation coefficients ρGD and ρGS remain equal but increase towards

an asymptotic value of about 0.71. At the same time, the total correlation between the drain

and source current, plotted in the bottom part of Figure 13.9(b), vanishes to zero since each

elementary channel section can only contribute to the noise current of the nearby terminal and

is completely damped before reaching the remote one.

The phase of the correlation coefficients is plotted in Figure 13.9(c), which shows that the

low-frequency capacitive correlation of the induced gate noise (i.e., ρGD) tends toward a purely

real value at higher frequency. This phenomenon is related to the additional transconductance

phase shifts of the non-quasi-static regime, but is rather hard to explain directly. The source–

drain correlation phase increases quickly when the distributed effects become significant.

Note that the calculation obtained from (13.45a) and (13.45b) match very well to the results

obtained from the simulation.

Finally, Figure 13.10 shows that the mobility reduction due to the vertical field and velocity

saturation have only a small effect on the HF noise, even in strong inversion (I C = 100).
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Figure 13.10 Effects induced by the mobility reduction due to the vertical field and velocity saturation

in strong inversion (I C = 100) on κD, κG, and ρGD using the EKV2.6 model parameters THETA and

UCRIT. The parameter set (THETA = 0 V−1, UCRIT = 1 GV/m), (THETA = 1 V−1, UCRIT =
1 GV/m), (THETA = 0 V−1, UCRIT = 5 MV/m) correspond respectively to: no mobility reduction

and no velocity saturation, mobility reduction without velocity saturation and velocity saturation

without mobility reduction (Reproduced by permission of IEE from [153])
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13.3 HF NOISE PARAMETERS OF A COMMON-SOURCE
AMPLIFIER

13.3.1 Simple Equivalent Circuit Including Induced Gate
Noise and Drain Noise

Figure 13.11 shows a common-source amplifier and its simplified equivalent small-signal

circuit, where capacitance CGS includes both the intrinsic and extrinsic parts (mainly the

overlap in this case). The latter circuit is made extremely simple in order to allow for hand

calculation. It is assumed that the transistor is biased in strong inversion and saturation. The

equivalent circuit of Figure 13.11 includes the drain current noise source ∆InD and the induced

gate noise current source ∆InG having PSDs

S∆I 2
nD

= 4kT GnD, (13.72a)

S∆I 2
nG

= 4kT GnG(ω), (13.72b)

respectively, with

GnD = γnDGm, (13.73a)

GnG(ω) = δnG

(ωCGS)2

5nGm

= βnG

(ωCGS)2

Gm

, (13.73b)

with

βnG =
δnG

5n
=

4

15n
, (13.74)

since according to (13.57), δnG = 4/3 in strong inversion and saturation.

We will now calculate the noise parameters Rv, G i, Yc of the equivalent noisy two-port

network of Figure 13.11. Remember that the two noise sources ∆InD and ∆InG are correlated

with a correlation coefficient ρGD given by (13.68), which is purely imaginary

ρGD = + j cg, (13.75)

with cg =
√

5/32 ∼= 0.4 in strong inversion and saturation. This makes the analysis a bit more

complicated than if both sources were uncorrelated.
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Figure 13.11 (a) Common source amplifier, (b) simple HF equivalent circuit including the induced

gate noise, and (c) equivalent two-port representation
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We first have to calculate the noise sources Vn and In from their definitions given in (13.4)

which require the Y-parameters Y11 and Y21, which are easily calculated as

Y11 = j ω CGS, (13.76a)

Y21 = Gm. (13.76b)

The output current I2 when the input and output are short-circuited is given by

I2|V1=V2=0 = ∆InD, (13.77)

from which we obtain Vn as

Vn = −
1

Y21

I2

∣

∣

V1=V2=0
= −

∆InD

Gm

. (13.78)

The output current I2 when the input is open and the output is short-circuited is

I2

∣

∣

I1=V2=0
= ∆InD −

Gm

j ω CGS

∆InG, (13.79)

from which we get In as

In = −
Y11

Y21

I2

∣

∣

I1=V2=0
= ∆InG −

j ω CGS

Gm

∆InD. (13.80)

The mean-square value of Vn is then given by

|Vn|2 =
|∆InD|2

G2
m

, (13.81)

whereas the mean-square value of In is given by

|In|2 = |∆InG|2 +
(ω CGS

Gm

)2

|∆InD|2 +
j ω CGS

Gm

(∆InG∆I ∗
nD − ∆I ∗

nG∆InD). (13.82)

The mean-square values |∆InD|2 and |∆InG|2 can be expressed in terms of the PSDs S∆I 2
nD

and S∆I 2
nG

as

|∆InD|2 = S∆I 2
nD

B = 4kT BGnD, (13.83a)

|∆InG|2 = S∆I 2
nG

B = 4kT BGnG(ω), (13.83b)

where (13.72) have been used.
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For narrow-band systems, the definition of the correlation coefficient given by (13.71) can

be extended to the mean-square values as

ρkl �
s∆ink∆i∗

nl
√

s∆i2
nk

s∆i2
nl

=
∆Ink∆I ∗

nl
√

|∆Ink |2|∆Inl |2
. (13.84)

The mean-square values ∆InG∆I ∗
nD and ∆I ∗

nG∆InD can then be expressed in terms of mean-

square values |∆InD|2 and |∆InG|2 and the correlation coefficient ρGD according to (13.84):

∆InG∆I ∗
nD = ρGD

√

|∆InG|2|∆InD|2 = + jcg4kT B
√

GnGGnD, (13.85a)

∆I ∗
nG∆InD = ρ∗

GD

√

|∆InG|2|∆InD|2 = − jcg4kT B
√

GnGGnD. (13.85b)

The noise parameters Rv and G i are then given by

Rv =
|Vn|2

4kT B
=

GnD

G2
m

, (13.86a)

G i =
|In|2

4kT B
= GnG +

(ω CGS

Gm

)2

GnD −
2cgω CGS

Gm

√

GnGGnD. (13.86b)

According to (13.8), for calculating Yc, we need InV ∗
n which is given by

InV ∗
n =

1

Gm

( j ω CGS

Gm

|∆InD|2 − ∆InG∆I ∗
nD

)

(13.87)

=
4kT B

Gm

( j ω CGS

Gm

GnD − jcg

√

GnGGnD

)

,

from which we get

Yc =
InV ∗

n

|Vn|2
= j

(

ω CGS − cgGm

√

GnG

GnD

)

. (13.88)

From (13.88), we see that Gc = 0 and Yc = j Bc.

Introducing the expressions of GnD and GnG given by (13.73) finally results in

Rv =
γnD

Gm

, (13.89a)

G i = (ω CGS)2 γnD

Gm

(

1 +
βnG

γnD

− 2cg

√

βnG

γnD

)

, (13.89b)

Gc = 0, (13.89c)

Bc = ω CGS

(

1 − cg

√

βnG

γnD

)

. (13.89d)
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The uncorrelated and correlated parts of G i are then obtained using (13.14):

G iu = (ω CGS)2 βnG

Gm

(1 − c2
g), (13.90a)

G ic = (ω CGS)2 γnD

Gm

(

1 + c2
g

βnG

γnD

− 2cg

√

βnG

γnD

)

. (13.90b)

From the Rv, G i, Yc parameters, we can derive the four noise parameters Rv, Gopt, Bopt, and

Fmin as a function of the circuit parameters using (13.24) and (13.25), resulting in

Gopt = ω CGS

√

βnG

γnD

(

1 − c2
g

)

, (13.91a)

Bopt = −ω CGS

(

1 − cg

√

βnG

γnD

)

, (13.91b)

Fmin = 1 + 2ω CGS

γnD

Gm

√

βnG

γnD

(

1 − c2
g

)

∼= 1 + 2γnD

ω

ωt

√

βnG

γnD

(

1 − c2
g

)

, (13.91c)

where the Gm/CGS ratio has been approximated by the transit frequency ωt
∼= Gm/CGS. Equa-

tions (13.91) reveal that, due to the induced gate noise, the noise matching condition is slightly

different than the gain matching condition which would require Bs = −ω CGS. Also, the min-

imum noise factor is strongly depending on the induced gate noise through parameters βnG

and cg. If induced gate noise was ignored (by setting βnG = 0), the minimum noise factor

would be equal to unity. This surprising result can be explained as follows: if the induced

gate noise is ignored, there is only the drain noise left and the optimum source conductance

is null whereas the optimum source susceptance is −ω CGS. This noise matching situation

corresponds to having an inductor with a susceptance value being −ω CGS and no internal

conductance. The input circuit is then an inductance in series with the transistor gate-to-source

capacitance. This source inductance will then resonate with the input transistor capacitance

at the operating frequency providing an infinite voltage gain at the input. The input referred

noise is then nulled, resulting in a unity noise factor.

Equation (13.91c) indicates that the minimum noise factor increases with frequency for a

given bias. For a given operating frequency, it can be decreased by increasing the transistor

transit frequency. This can be achieved by increasing the transistor bias or by reducing the

transistor length (or both). Technology scaling therefore leads to an improved noise factor at

a given frequency and bias.

It is also interesting to note that the correlation between the drain noise and the induced gate

noise reduces the noise factor compared to the situation where they would be fully uncorrelated.

Note that the above derivation has used the HF noise model which did not include short-

channel effects. As shown in Section 9.4, the noise parameter γnD is affected by effects such as

velocity saturation, carrier heating, mobility degradation due to the vertical field, and channel

length modulation. The HF noise model developed in Section 13.2 did not include these
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effects, particularly for the induced gate noise. Now, since the physical noise source for the

drain and gate noise is the channel, both parameters γnD and βnG (or δnG) should be affected

by these effects in a similar way. Hence, their ratio appearing in (13.91) should not be affected

in first-order. On the other hand, the γnD term appearing in the minimum noise factor of

(13.91c) should be replaced by the one derived in Section 9.4 to include the short-channel

effects.

The noise parameters (13.91) can be further simplified by replacing γnD and βnG by their

expression valid in strong inversion and saturation leading to

Gopt
∼= 0.45 ω CGS, (13.92a)

Bopt
∼= −0.8 ω CGS, (13.92b)

Fmin
∼= 1 + 0.77

ω

ωt

, (13.92c)

where n = 1.3 has been used. Equations (13.92) give a first-order relation for the noise pa-

rameters of a common-source amplifier.

We have seen above that the induced gate noise plays a fundamental role in the noise

parameters of a common-source amplifier. We have also seen that due to the induced gate

noise, the minimum noise factor becomes frequency dependent. The noise parameters and

in particular the minimum noise factor are obtained only in the special condition of noise

matching, which are not always possible to satisfy due to additional design constraints. The

effective noise factor is then higher than the minimum noise factor and can be expressed in

terms of the noise parameters and the actual source conductance and susceptance by (13.26).

For a given operating frequency, it is interesting to know above which value of the source

impedance the contribution of the induced gate noise to the effective noise factor starts to

dominate over the contribution of the drain noise. To derive this condition, we will assume that

the noise matching condition is only fulfilled for the imaginary part of the source admittance

Bs. In this situation, the actual noise factor is obtained by setting Bs = Bopt in (13.26) resulting

in

F = Fmin +
Rv

Gs

(Gs − Gopt)
2. (13.93)

In this calculation, we are actually more interested in the ratio of the noise added by the

amplifier to the noise coming from the source Na/Ns which is simply given by F − 1. Using

the noise parameters given in (13.91) results in

F − 1 = γnD

Gs

Gm

+ βnG(1 − c2
g)

( ω

ωt

)2 Gm

Gs

, (13.94)

where the first term is due to the drain noise, whereas the second originates from the induced

gate noise. Equation (13.94) is plotted versus Gm/Gs in Figure 13.12 for an operating fre-

quency ω/ωt = 0.224 (leading to Gm/Gopt
∼= 10). We can clearly identify the contribution

of the drain noise which decreases with respect to Gm/Gs and that of the induced gate noise

which increases with respect to Gm/Gs. Both contributions are equal for Gs = Gopt for which
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Figure 13.12 Noise added by the common-source amplifier normalized to the source noise versus

the source resistance normalized to the transistor transconductance for an operating frequency ω/ωt =
0.224

F = Fmin. The drain noise dominates over the induced gate noise for Gm/Gs ≪ Gm/Gopt,

whereas the induced gate noise dominates over the drain noise for Gm/Gs ≫ Gm/Gopt. For

Gs = 1/50 Ω−1 and ω/ωt = 0.224, the transconductance needs to be larger than 200 mA/V

for the induced gate noise to dominate. This is a rather large transconductance and hence in

most practical cases, the Gm/Gs ratio is smaller than Gm/Gopt and therefore it is usually the

drain noise that actually dominates.

We can also find the frequency ωign at which the induced gate noise is equal to the drain

noise for a given source conductance Gs, by simply equating the first and the second term of

(13.94) and solving for ω. This results in

ωign

ωt

=
√

γnD

βnG(1 − c2
g)

Gs

Gm

∼=
4

3

√

5

3
n

Gs

Gm

∼= 2.24
Gs

Gm

, (13.95)

where n = 1.3 has been used. We see from (13.95) that the frequency ωign at which the induced

gate noise contributes as much as the drain noise is a fraction of the transit frequency ωt which

is inversely proportional to the Gm/Gs ratio.

The above discussion somehow mitigates the importance of the induced gate noise in the

case of practical designs such as LNAs because the noise matching conditions are seldom

achieved due to other design constraints. Nevertheless, it remains an important contributor to

the minimum noise figure, which represents the ultimate noise figure that can be achieved by

a given device at a given frequency and for a given bias.

The previous analysis was based on a very simple small-signal equivalent circuit of a

common-source amplifier that considered only the drain noise and the induced gate noise.

Additional noise sources will be considered in the next section.
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13.3.2 Equivalent Circuit Including Induced Gate Noise, Drain
Noise, Gate and Substrate Resistances Noise

The above analysis was based on a very simple equivalent circuit that ignored the noise coming

from the gate and the substrate resistances. The equivalent circuit accounting for these two

additional noise sources is shown in Figure 13.13. Note that, in order to keep the analysis

simple, the output conductance, the gate-to-bulk and bulk-to-source capacitances as well as

the source and drain access resistances have been ignored. Also, even though the intrinsic gate-

to-drain and bulk-to-drain capacitances are zero in strong inversion and saturation, the overlap

and junction capacitances would remain. They will also be ignored for the sake of simplicity.

Since the circuit is a common-source amplifier, it has its source tied to the ground. On the other

hand, because of the substrate resistance, the intrinsic bulk is not at the ground. In this situation,

it is better to use the combination of gate and bulk transconductances driven by the small-signal

voltages ∆VGS and ∆VBS respectively instead of gate and source transconductances driven by

voltages ∆VGB and ∆VSB. The two circuits are equivalent since the small-signal drain current

(ignoring the drain noise current) can be written as

∆ID = Gm∆VGB − Gms∆VSB = Gm∆VGS + Gmb∆VBS, (13.96)

where Gmb = Gms − Gm = (n − 1)Gm is the bulk transconductance. The noise of the substrate

resistance RB is modeled by a current noise source generating a VBS voltage across RB which

is transmitted to the drain by the bulk transconductance Gmb.

We will not detail the calculation of the noise parameters Rv, G i, Gc, and Bc of the equivalent

noisy two-port network of Figure 13.13. They can be obtained following the same procedure

used in Section 13.3.1, which leads to

Rv =
γnD

Gm

Dn, (13.97a)

G i =
γnD

Gm

(ω CGS)2 An = γnDGm

( ω

ωt

)2

An, (13.97b)

Gc = RG(ω CGS)2 An

Dn

, (13.97c)

Bc = ω CGS

Bn

Dn

, (13.97d)

VGS

∆InG

I1

V1

Gm VGS

VBS

∆InD

I2

V2CGS

RG

∆Vnrg

RB

∆Inrb
Gmb VBS

Figure 13.13 More accurate equivalent circuit of the common-source amplifier of Figure 13.11(a)

with the gate and substrate resistances in addition
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where

Dn � 1 + αB + αG + (RGω CGS)2 An

= 1 + αB + αG + (γnD αG)2
( ω

ωt

)2

An, (13.98a)

An � 1 + αB +
βnG

γnD

− 2cg

√

βnG

γnD

, (13.98b)

Bn � 1 + αB − cg

√

βnG

γnD

. (13.98c)

αG and αB are the thermal noise contributions of the gate and substrate resistances respectively,

normalized to the thermal noise of the drain:

αG �
Gm RG

γnD

, (13.99a)

αB �
G2

mb RB

γnDGm

=
(n − 1)2

γnD

Gm RB. (13.99b)

The noise parameters Gopt, Bopt, and Fmin can then be calculated from Rv, G i, Gc, and Bc,

resulting in

Gopt = ω CGS

√

An Dn − B2
n

Dn

, (13.100a)

Bopt = −ω CGS

Bn

Dn

, (13.100b)

Fmin = 1 + 2γnD

ω

ωt

√

An Dn − B2
n + 2γ 2

nD αG

(

ω

ωt

)2

An

∼= 1 + 2γnD

ω

ωt

√

An Dn − B2
n . (13.100c)

In a typical situation, the relative contributions of the gate and substrate resistances are

αG ≈5% and αB ≈ 20% [48,49,52]. Using values of parameters γnD, βnG, and cg given above

for strong inversion with n = 1.3 leads to An ≈ 1.1 and Bn ≈ 1. Assuming further that ω/ωt =
0.1 allows to neglect the frequency-dependent part of Dn:

Dn
∼= 1 + αB + αG

∼= 1.25. (13.101)

The four noise parameters can then be approximated by

Rv
∼= 1.25

γnD

Gm

, (13.102a)

Gopt
∼= 0.5 ω CGS, (13.102b)

Bopt
∼= −0.8 ω CGS, (13.102c)

Fmin
∼= 1 +

ω

ωt

. (13.102d)
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Figure 13.14 Comparison between the measured, simulated, and the analytical results for the four

noise parameters

The noise parameters derived above are compared to those measured on an N-channel device

with Nf = 10, Wf = 12 μm, and L f = 0.36 μm biased in strong inversion and saturation. The

noise parameters have been carefully de-embedded using the methodology presented in [155].

They are plotted in Figure 13.14 and compared to the results obtained from simulation using the

complete subcircuit of Figure 11.9(c) with the additional induced gate noise source added to

the subcircuit (but not accounting for the correlation between induced gate noise and drain

thermal noise). Also, plotted in dashed lines in Figure 13.14 are the results obtained from

(13.102). The dashed-dotted line corresponds to (13.102) without accounting for the gate-to-

drain correlation ρGD by setting cg to zero. The discrepancies between the analytical and the

measured results mainly come from a wrong frequency behavior due to the extremely simple

equivalent circuit used for the analytical derivation. Nevertheless, the simple approximation

given by (13.102) already gives a reasonable estimation of the minimum noise figure and of

the other noise parameters.
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29. B. Iñiguez and E. G. Moreno, “A Physically Based C∞-Continuous Model for Small-Geometry

MOSFET’s,” IEEE Trans. Electron. Devices, vol. 42, no. 2, pp. 283–287, Feb. 1995.
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Admittance
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gate-to-source, 68, 270, 274

gate-to-drain, 68, 270, 274

bulk-to-drain, 68, 270

bulk-to-source, 68, 270

substrate, 255

correlation, 263, 261, 265

Band gap, 112

extrapolated, 113

widening, 156, 133, 157, 158, 160, 161

Bode theorem, 106–107, 92, 274n

Boltzmann constant, 10, 87

Capacitance

gate oxide, 17, 214

silicon, 18, 19, 224

gate, 13, 18, 19, 30, 73, 233

depletion, 19, 30

intrinsic, 70, 72, 73, 75, 233

overlap, 214, 220, 221, 222, 223, 232, 233

junction, 54, 214, 224–226, 232, 244, 249, 288

fringing-field, 220, 221, 222, 233,

bottom-wall, 220, 226

side-wall, 226

Capacitor

overlap, 10, 66, 77

Carrier

fluctuations, 96, 100

heating, 167, 205–209, 211, 285

Cascode configuration, 226

Channel

buried, 143, 144, 145

homogeneous, 47–49

length, 46, 53, 54, 60, 164–167, 176, 186–188,

198, 208, 232, 285

length modulation, 33, 48, 50, 52–54, 167,

186–188, 208

narrow, 50

residual current, 45

voltage, 34, 38, 43, 49, 52, 78, 83, 116

width, 34, 46, 60, 164, 218

gradual, 13, 14, 16, 167, 187, 189
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Channel length modulation, 48, 50, 52–54, 167,
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fixed, 10, 11, 15–17, 150, 151, 155, 187
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concentration, 13, 14, 33, 187
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specific, 13, 24, 32, 117, 133, 154, 161
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Charge sheet approximation, 13, 20, 21, 23, 33,

158

Charge-potential linearization, 23–32

Common-source amplifier, 233, 261, 282,

286–288

Concentration

hole, 14

intrinsic carrier, 14, 112, 113

electron, 14, 20, 158, 187

doping, 14, 47, 51, 60, 114, 138, 142, 147, 149,

159, 160, 223

Concentric transistor, 54

Conductance

drain-to-source, 60, 89

specific, 57, 119, 154, 219

Critical field, 91, 167–169, 171, 180

Current

drain, 10, 33, 168, 171–174, 179, 182, 184,

191, 194, 203, 217, 225, 274, 282

forward, 35, 48, 56, 63, 133, 163, 164

gate leakage, 106, 133, 161–166, 223

reverse, 35, 37, 39, 42, 56, 58, 62, 133,

135–137, 224

specific, 37, 40, 52, 65, 118, 154, 161

drift, 10, 33, 34

diffusion, 10, 33, 34, 49, 54, 89, 166, 171, 172,

213, 215, 223, 246

tunneling, 220, 227

generation, 223, 224

gain, 83, 232, 233, 234, 237

Debye length, 15

Depletion

thickness, 19, 189

capacitance, 17, 19, 30

Dielectric constant of silicon, 14

Differential pair, 122, 129

Diffusivity, 202

Doping

concentration, 7, 9, 13, 14, 16, 47, 51, 60, 114,

118, 138, 142–147, 159, 223

ratio, 141, 143, 145–148

Drain, 3, 4, 7, 9, 10

induced barrier lowering (DIBL), 167,

189–197

voltage, 3, 7, 10, 207, 208, 210

Drain current, 10, 11, 25, 33, 40–46, 55, 60,

65, 83, 85, 88, 100–104, 127, 133, 154,

171

alternative models of, 36, 43, 45, 194

general expression, 37, 42, 46, 55, 59

in strong inversion, 13, 18, 19, 31, 41, 52, 58,

63, 75, 95, 102

in weak inversion, 17, 26, 36, 43, 52, 64, 74,

89, 105, 118

Ebers-Moll model, 3, 46

Einstein relation, 202

Electric field

longitudinal, 33, 205

effective, 134, 156, 171, 186

vertical, 15, 134, 135

Energy band gap of silicon, 112

Equilibirum, 10

Extrinsic

part, 9, 131, 213, 222, 231, 257

noise sources, 227, 228

Fast surface state, 11

Figure of merit, 64, 90, 105, 232, 236–238

Flat-band condition, 17, 114, 150, 221

Flicker noise, 81, 86, 96–106, 226, 227

corner frequency, 96

Fluctuations

mobility, 96, 101, 104–106

carrier, 96

resistance, 103

of width, 126

of length, 126

Gate

capacitance, 13, 18–20

doping, 114, 115

leakage current, 133, 161, 163, 223

modulation factor, 149

oxide capacitance, 17

overhead voltage, 41

Gate-drain noise correlation factor, 278

Gauss’ law, 16, 17, 134, 186, 189

Geometrical effects, 53, 54

Grading coefficient, 225

Gradual channel approximation, 14, 16, 17, 167,

187, 189

Harmonic distortion, 216

High injection, 223

Hooge

model, 101, 102

parameter, 101, 105

Impedance field method, 83

Induced gate noise, 83, 262, 273, 281, 282
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Induced substrate noise, 271

Intrinsic

part, 9, 10, 66, 77, 81, 213

capacitances, 73–74, 249, 275

channel time constant, 65, 275

nodes, 216

Inversion charge density

in weak inversion, 26

in strong inversion, 26

at the drain, 38, 78

at the source, 38

Inversion coefficient (or factor), 40–44, 53

Langevin, 83

method, 82, 83

noise source, 83

Lateral bipolar transistor, 12

Linear mode, 36, 40, 42, 52, 59

Low-noise amplifiers, 218, 257

Matching, 120–129

Maximum available gain, 236

Maximum frequency of oscillation, 236

Microscopic noise source, 84

Minimum noise figure, 231, 238, 239, 261, 266,

287

Mismatch, 111, 120, 122, 123, 129

of drain current, 122, 127

of gate voltage, 122, 124

systematic, 124

random, 125–128

Mobility, 33

effective, 168–171

fluctuations, 101, 106

nonuniform, 138

reduction due to the vertical field, 133, 205, 209

temperature variation, 113–115

low field, 133

field dependent, 133, 172, 203

differential, 168, 200, 202

cord, 168, 203–206

Mode of operation

linear, 36, 42

triode, 36

nonsaturation, 36

weak inversion, 36

strong inversion, 36

subthreshold, 37, 43

blocked, 37

bipolar, 37

Moderate inversion, 37, 41, 64, 102, 105

Noise

factor, 238, 265

figure, 238

matching, 238, 267, 285

parameters, 91, 261, 285, 286, 290

Nonquasi-static

small-signal circuit, 67, 82, 93, 94, 229, 249

operation, 65, 249, 257

large-signal operation, 77–79, 249

Normalization

frequency, 68, 70, 72

bias, 70, 72

Normalized

drain current, 37, 88, 154, 194

inversion charge density, 24, 38, 65

inversion charge density at the drain, 38, 57,

173

inversion charge density at the source, 38, 57,

173

voltages, 24, 41

pinch-off voltage, 24, 43, 67, 73, 135, 156

forward current, 37, 63

reverse current, 37, 135–137

intrinsic capacitances, 73, 74

transconductances, 57, 181, 182

transcapacitances, 75, 76

Nyquist theorem, 106–107, 274

Operating point, 56, 68, 81, 90, 168

Optimum source admittance, 261, 267

Overlap region, 216, 221, 223

Oxide

charge in, 11

field, 11

thickness, 9, 10

gate, 9

Physical parameters, 111, 112, 115, 120

spatial fluctuations of, 120

statistical fluctuations, 125

Pinch-off

potential, 22, 25, 145, 147, 159

voltage, 25, 209–211

Poisson

distribution, 128

equation, 14, 51

Potential

barrier, 51, 89, 190, 194

electrostatic, 11, 49, 50

surface, 11, 14, 17, 52, 97

extraction, 11, 114, 115
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Potential (Cont.)

Fermi, 14, 34, 113, 114

pinch-off, 22, 25, 145, 147, 159

Power spectral density (PSD), 81

of drain current, 87

Pseudo-resistor, 33, 49, 165

Quad configuations, 125

Quasi-Fermi potential, 10, 14, 34

Quasi-static

frequency, 65, 66, 275

time constant, 65, 75, 92, 275

small-signal circuit, 76, 92, 249

Random fluctuations

of carrier velocity, 81, 83

of carrier density, 81

Resistance

access, 213, 215, 216–219, 247

gate, 14, 213, 217, 247, 252

source, 213, 215, 287

drain, 102, 213, 215, 217, 226

substrate, 214, 226, 243–246

salicide, 215

via, 215, 218

contact, 215

Sample-and-hold, 92

Saturation

forward, 36, 40, 42, 54, 60, 70

reverse, 36, 53, 60, 70, 71

Saturation mode, 36, 40

forward, 36, 40, 42, 54, 60, 70

reverse, 36, 53, 60, 70, 71

Saturation voltage, 36, 42, 66, 173

Scattering

mechanisms, 96, 115, 134

due to acoustic phonon, 115

due to ionized impurities, 115

Short-channel effects, 48, 131, 167–212

Silicon dioxide, 9, 161

Slope factor, 21, 23, 25, 162

charge, 153, 162

evaluation of, 29–31

voltage, 152

Source-drain extension, 215

Space charge regions, 51

Spacer, 216, 220

Spatial correlation, 109, 125

Specific conductance, 57, 119, 154, 219

Step profile, 141–144, 148, 225

Strong inversion, 17, 232–234, 239, 252

charge approximation, 20, 21, 27, 155

current approximation, 41, 194

Substrate modulation factor, 21, 116, 140, 159

Substrate network, 214, 242–247, 249

Subthreshold mode, 37

Surface

electric field, 11, 47, 49, 144

potential, 11, 17, 21, 23, 38, 52, 189

Symmetry, 46, 68

source and drain, 9, 56

Temperature

absolute, 10, 87, 112

effects on transistor, 111–120

noise, 202

carrier, 202

lattice, 203, 205

Temperature coefficient of

Fermi voltage, 114

extraction voltage, 115

threshold voltage, 117

inversion charge, 117, 120

specific current, 118

transconductances, 119

Thermal noise

conductance at the drain, 87, 203

excess factor, 89, 90–91, 93–95, 206–212

parameter, 81, 89, 90–92, 206–212

voltage variance, 95

short-channel, 197–212

Threshold

function, 13, 21, 22, 27, 29, 116, 138, 140, 142,

150

voltage (at equilibrium), 28

Threshold function, 21

Transadmittance

drain, 66–68

source, 66–68

gate, 66–68

Transcapacitances

gate, 75

drain, 74

source, 74

Transconductance

bulk, 288

drain, 56–60, 62, 136, 154

gate, 56, 197, 234, 288

source, 56, 60, 154, 183, 201, 234

effective, 216

intrinsic, 216
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Transconductance-to-current ratio, 62, 183

Transducer gain, 237

Transfer parameter, 34, 40, 118, 121

Transistor

bipolar, 12, 37, 45, 229

extrinsic part, 9, 131, 213, 214, 227, 231

intrinsic part, 9, 61, 66, 213, 214

schematic cross section, 10

symbols, 12

Transit frequency, 55, 66, 232, 233, 234, 235,

239, 268, 287

peak, 234

Transit time, 239, 240

total, 239

of intrinsic part, 239

of extrinsic part, 239

Trapping, 96, 98, 100

Tunneling, 98

Unilateral power gain, 236, 237

Unity gain transit frequency, 233

Velocity

Saturation, 86, 167, 168, 171, 177, 232, 235

saturation region, 186, 187

drift, 167, 168, 173

Velocity-field models, 169–171

Voltage

channel length modulation, 60

drain, 10, 33, 35, 36, 38, 42, 56, 60, 170, 171

gain, 61, 64, 167, 197, 198

gate, 10, 17, 18, 23, 25, 27, 32, 35, 40, 50, 143,

150, 153

pinch-off, 3, 25, 32, 35, 36, 43, 135, 180, 211

intrinsic, 216

saturation, 37, 44

source, 10

thermodynamic, 10, 83

channel, 9, 14, 19, 23, 25, 26, 77, 83, 116

flat-band, 17, 49, 50, 52, 114, 221

band gap, 112

extrapolated band gap, 113

avalanche breakdown, 224

Weak inversion, 17, 18, 20, 26, 30, 36, 39

current approximation, 43–45

Well

perimeter, 226

area, 226

Y-parameters, 234, 237, 243, 249, 251, 252, 253,

255, 261, 263, 265, 273


