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Preface

The theory of electronic states in crystals is the very basis of modern solid
state physics. In traditional solid state physics – based on the Bloch theorem
– the theory of electronic states in crystals is essentially a theory of electronic
states in crystals of infinite size. However, that any real crystal always has
a finite size is a physical reality one has to face. The difference between the
electronic structure of a real crystal of finite size and the electronic structure
obtained based on the Bloch theorem becomes more significant as the crystal
size decreases. A clear understanding of the properties of electronic states
in real crystals of finite size has both theoretical and practical significance.
Many years ago when the author was a student learning solid state physics
at Peking University, he was bothered by a feeling that the general use of
the periodic boundary conditions seemed unconvincing. At least the effects
of such a significant simplification should be clearly understood. Afterward,
he learned that many of his school mates had the same feeling. Among many
solid state physics books, the author found that only in the classic book
Dynamic Theory of Crystal Lattices by Born and Huang was there a more
detailed discussion on the effects of such a simplification in an Appendix.

In the present book, a theory of electronic states in ideal crystals of finite
size is developed by trying to understand the quantum confinement effects
of Bloch waves. The lack of translational invariance had been a major ob-
stacle in developing a general theory on the electronic states in crystals of
finite size. In this book, it was found that on the basis of relevant theorems
in the theory of second-order differential equations with periodic coefficients,
this major obstacle or difficulty, actually, could be circumvented: Exact and
general understanding on the electronic states in some simple and interest-
ing ideal low-dimensional systems and finite crystals could be analytically
obtained. Some of the results obtained in the book are quite different from
what is traditionally believed in the solid state physics community.

This book consists of five parts. The first part gives a brief introduction
to why a theory of electronic states in crystals of finite size is needed. The
second part treats one-dimensional semi-infinite crystals and finite crystals;
most results in this part can be rigorously proven. The third part treats
low-dimensional systems or finite crystals in three-dimensional crystals. The
basis is rigorous according to the author’s understanding; however, much of



VIII Preface

the reasoning in this part had to be based on physical intuition due to the lack
of enough available mathematical understanding. The fourth part is devoted
to concluding remarks. In the fifth part are two appendices. The contents of
each chapter in Parts II and III are rather closely related; therefore, readers
are expected to read these chapters in the given order. Without appropriate
preparation from earlier chapters, readers may find the later chapters difficult
to understand. Although the purpose of this book is to present a theory of
electronic states in crystals of finite size, it is the clear understanding of the
electronic states in crystals with translational invariance – as obtained in
traditional solid state physics – that provided a basis for such a new theory.

One of the feelings the author had frequently while working on the prob-
lems in this book is that the mathematicians and the solid state physicists are
rather unfamiliar with each other’s problems and their respective results. The
major mathematical basis of the work presented in this book, Eastham’s The
Spectral Theory of Periodic Differential Equations, was published more than
30 years ago; however, it seems that many of the important results obtained
in his book are not yet well known in the solid state physics community. Al-
though the Bloch function is the most fundamental function in the theory of
electronic states in modern solid state physics, little is widely known in the
community on the general properties of the function except that it can be
expressed as the product of a plane wave function and a periodic function.
For quite a long time, the author also knew only this about the Bloch func-
tion and had many hard working days on some problems without making
substantial progress. By mere chance, he saw Eastham’s book. He was dis-
couraged by the seemingly difficult mathematics at the beginning but made
an effort to understand the book and to apply the new mathematical results
learned to relevant physics problems. The book presented here is essentially
the result of such effort.

In addition to Eastham’s book, the author has also greatly benefited from
two classic books: Courant and Hilbert’s Methods of Mathematical Physics
and Titchmarsh’s Eigenfunction Expansions Associated with Second-Order
Differential Equations. The theorems presented in these two books are so
powerful that some misconceptions on the electronic states in low-dimensional
systems actually could have been clarified much earlier if some theorems in
those books published many years ago were clearly and widely understood in
the solid state physics community. Unfortunately, these excellent books are
out of print now. The wide use of more and more powerful computer-based
approaches has unquestionably made great contributions to our understand-
ing of the low-dimensional systems. Nevertheless, the author hopes that the
publishing of this book could stimulate more general interest in the use of
analytical approaches in understanding these very interesting and challeng-
ing systems, which, at least, could be a substantial complement. After all, a
really comprehensive and in-depth understanding of a physical problem can
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usually be obtained from an analytical theory based on a simplified model
correctly containing the most essential physics.

It is a pleasure of the author to take this opportunity to thank Professor
Kun Huang for his many years of guidance, help, and discussions. It was
he who led the author into the field of solid state physics. The author is
very grateful to Ms. Avril Rhys (i.e., Mrs. Huang); her concern and help
is one of the most appreciated experiences the author had in the process
of writing the book. He also wishes to thank Professor Huan-Wu Peng for
sharing his experience in the early stage of the solid state physics in the
mid-1940s and many interesting discussions. The author was fortunate to
have had opportunities to listen to Professor Huang’ and Professor Peng’s
experiences when they worked with Max Born.

The author is grateful to Professors John D. Dow, Hanying Guo, Rushan
Han, Walter A. Harrison, Zhongqi Ma, Shangfen Ren, Zhengxing Wang,
Sicheng Wu, Shousheng Yan, Lo Yang, Shuxiang Yu, Jinyan Zeng, Ping
Zhang, and Pingwen Zhang for their comments and/or discussions. He wishes
to thank Miss Yulin Xuan and Miss Zhiling Ruan for much valuable help. He
also wishes to thank Dr. Wei Cheng for his help in many computer-related
problems.

Last but not least, the author is indebted to his family members, in par-
ticular his wife Weimin, his daughters Yujian and Yuhui, his sons-in-law Wei-
dong and Jian, and his grandchildren Nana, Yangyang, and Weiwei. Their
love and support not only gave him so much happiness in enjoying family
life, but also brought him the strength and courage to fight the sufferings
sometimes one had to experience, leading to the birth of this book.

Shang Yuan Ren
ZhongGuanYuan, Peking University, Beijing
March 2005



Contents

Part I Why a Theory of Electronic States in Crystals of Finite
Size is Needed

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Electronic States Based on Translational Invariance . . . . . . . . . 4
1.2 Energy Band Structure of Several Typical Crystals . . . . . . . . . 6
1.3 Fundamental Difficulties of the Theory of the Electronic

States in Traditional Solid State Physics . . . . . . . . . . . . . . . . . . . 8
1.4 The Effective Mass Approximation . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Some Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Subject of the Book and Main Findings . . . . . . . . . . . . . . . . . . . 14
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Part II One-Dimensional Semi-infinite Crystals and Finite
Crystals

2 Mathematical Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Elementary Theory and Two Basic Theorems . . . . . . . . . . . . . . 24
2.2 Floquet Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Discriminant and Linearly Independent Solutions . . . . . . . . . . . 30
2.4 Basic Theory of the Schrödinger Equation in One-

Dimensional Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1 Two Different Eigenvalue Problems . . . . . . . . . . . . . . . . . 34
2.4.2 The Function D(λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Energy Band Structure of One-Dimensional Crystals . . . . . . . . 39
2.6 Zeros of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Surface States in One-Dimensional Semi-infinite Crystals . 49
3.1 Basic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Two Relevant Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Surface States in Ideal Semi-infinite Crystals . . . . . . . . . . . . . . . 54
3.4 Cases Where Vout Is Finite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Comparisons with Previous Work and Discussions . . . . . . . . . . 61



XII Contents

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Electronic States in Ideal One-Dimensional Crystals of
Finite Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1 Basic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Two Types of Electronic States . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 τ -Dependent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Electronic States in One-Dimensional Finite Symmetric

Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 Comments on the Effective Mass Approximation . . . . . . . . . . . 78
4.6 Comments on the Surface States . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7 Two Other Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7.1 A Comment on the Formation of the Energy Bands . . . 83
4.7.2 A Comment on the Boundary Locations . . . . . . . . . . . . . 84

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Part III Low-Dimensional Systems and Finite Crystals

5 Electronic States in Ideal Quantum Films . . . . . . . . . . . . . . . . . 89
5.1 A Basic Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Consequences of the Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Basic Considerations on the Electronic States in an Ideal

Quantum Film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4 Stationary Bloch States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.1 The Simplest Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4.2 More General Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 τ3-Dependent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6 Several Practically More Interesting Films . . . . . . . . . . . . . . . . . 102

5.6.1 (001) Films with a fcc Bravais Lattice . . . . . . . . . . . . . . . 102
5.6.2 (110) Films with a fcc Bravais Lattice . . . . . . . . . . . . . . 103
5.6.3 (001) Films with a bcc Bravais Lattice . . . . . . . . . . . . . 105
5.6.4 (110) Films with a bcc Bravais Lattice . . . . . . . . . . . . . 105

5.7 Comparisons with Previous Numerical Results . . . . . . . . . . . . . 106
5.7.1 Si (001) Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.7.2 Si (110) Films and GaAs (110) Films . . . . . . . . . . . . . . . 108

5.8 Further Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Electronic States in Ideal Quantum Wires . . . . . . . . . . . . . . . . 117
6.1 Basic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Further Quantum Confinement of ψ̂n(k̂, x; τ3) . . . . . . . . . . . . . 119
6.3 Further Quantum Confinement of ψ̂n,j3(k̂, x; τ3) . . . . . . . . . . . 123



Contents XIII

6.4 Quantum Wires of Crystals with a sc, tetr, or ortho Bravais
Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.5 fcc Quantum Wires with (110) and (001) Surfaces . . . . . . . . . . 129
6.5.1 fcc Quantum Wires Obtained from (001) Films

Further Confined by Two (110) Surfaces . . . . . . . . . . . . . 130
6.5.2 fcc Quantum Wires Obtained from (110) Films

Further Confined by Two (001) Surfaces . . . . . . . . . . . . . 132
6.5.3 Results Obtained by Combining Sections 6.5.1 and 6.5.2134

6.6 fcc Quantum Wires with (110) and (11̄0) Surfaces . . . . . . . . . . 137
6.7 bcc Quantum Wires with (001) and (010) Surfaces . . . . . . . . . . 138
6.8 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7 Electronic States in Ideal Finite Crystals or Quantum Dots143
7.1 Basic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.2 Further Quantum Confinement of ψ̄n(k̄, x; τ2, τ3) . . . . . . . . . . . 144
7.3 Further Quantum Confinement of ψ̄n,j3(k̄, x; τ2, τ3) . . . . . . . . . 148
7.4 Further Quantum Confinement of ψ̄n,j2(k̄, x; τ2, τ3) . . . . . . . . 151
7.5 Further Quantum Confinement of ψ̄n,j2,j3(k̄, x; τ2, τ3) . . . . . . . 154
7.6 Finite Crystals or Quantum Dots with a sc, tetr, or ortho

Bravais Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.7 fcc Finite Crystals with (001), (110), and (11̄0) Surfaces . . . . . 160
7.8 bcc Finite Crystals with (100), (010), and (001) Surfaces . . . . 163
7.9 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Part IV Epilogue

8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.1 Summary and Brief Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.2 Some Relevant Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.2.1 Electronic States in Ideal Cavity Structures . . . . . . . . . . 178
8.2.2 Other Finite Periodic Systems, such as Finite

Photonic Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
8.3 Could a More General Theory Be Possible? . . . . . . . . . . . . . . . . 181
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Part V Appendices

A Electronic States in One-Dimensional Symmetric Finite
Crystals with a Finite Vout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190



XIV Contents

B Electronic States in Ideal Cavity Structures . . . . . . . . . . . . . . 191
B.1 Electronic States in Ideal Cavity Structures of

One-Dimensional Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
B.2 Electronic States in Ideal Two-Dimensional Cavity

Structures of Three-Dimensional Crystals . . . . . . . . . . . . . . . . . . 192
B.3 Electronic States in Ideal One-Dimensional Cavity

Structures of Three-Dimensional Crystals . . . . . . . . . . . . . . . . . . 194
B.3.1 Wire Cavities in Crystals with a sc, tetr, or ortho

Bravais Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
B.3.2 Wire Cavities with (001) and (110) Surfaces in fcc

Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
B.3.3 Wire Cavities with (110) and (11̄0) Surfaces in fcc

Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
B.3.4 Wire Cavities with (010) and (001) Surfaces in bcc

Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
B.4 Electronic States in Ideal Zero-Dimensional Cavity

Structures of Three-Dimensional Crystals . . . . . . . . . . . . . . . . . . 198
B.4.1 Dot Cavities in Crystals with a sc, tetr, or ortho

Bravais Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
B.4.2 Dot Cavities with (11̄0), (110), and (001) Surfaces in

fcc Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
B.4.3 Dot Cavities with (100), (010), and (001) Surfaces in

bcc Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203



1 Introduction

Solid state physics is a field in modern physics in which one is mainly con-
cerned with the physical properties of and physical processes in various solids.
Besides its fundamental significance, a clear understanding of different physi-
cal properties of and physical processes in solids and their origin may provide
insight for possible practical applications of relevant properties and physical
processes. Since the middle of the twentieth century, many achievements in
the field have made great contributions to modern science and technology,
even resulting in revolutionary developments. We can expect that further
achievements in this field will continually bring tremendous benefits to hu-
man beings and society.

A clear understanding of the electronic structure of a solid is always the
basis for understanding the physical properties of the solid and the physical
processes in the solid. In traditional solid state physics, the basic theory of
electronic states in crystals has been established for more than 70 years.
Most further theoretical developments afterward are mainly applications of
the basic theory of electronic states to different physical problems and to
calculations of detailed electronic structures of various solids. However, this
traditional theory also has some fundamental difficulties. Those fundamental
difficulties become more significant today, when one has to deal with crystals
of much smaller size than before.

This chapter is organized as follows: In Sections 1.1–1.2, we briefly review
some of the most basic understandings of the electronic structure of crystals
in traditional solid state physics and how the theory of electronic states in
crystals is the very basis for determining the physical properties of and the
physical processes in the crystals, by using simple examples. In Section 1.3,
we point out some fundamental difficulties of the theory of electronic states
in traditional solid state physics. As consequences of these fundamental diffi-
culties, the theory of electronic states in traditional solid state physics cannot
treat the boundary effects and the size effects of crystals, which have substan-
tial significance today when one has to deal with crystals in the submicron
and nanometer size range – the low-dimensional systems. In Sections 1.4–1.5,
we briefly review one of the most widely used approaches in theoretically in-
vestigating electronic states in low-dimensional systems – the effective mass
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approximation approach – and some numerical results. In Section 1.6 is a
brief introduction on the subject and the main findings of this book.

1.1 Electronic States Based on Translational Invariance

The very basis of the theory of electronic states in modern solid state physics
– energy band theory – is the Bloch theorem [1]. It is based on the assumption
that atoms in a crystal are periodically located – the potential in the crystal
has a translational invariance [2–6].

The single-electron Schrödinger differential equation with a periodic po-
tential can be written as

− h̄2

2m
∇2y(x) + [V (x) − E]y(x) = 0, (1.1)

where V (x) is the periodic potential:

V (x + a1) = V (x + a2) = V (x + a3) = V (x). (1.2)

Here, a1, a2, and a3 are three primitive lattice vectors of the crystal.
Based on this assumption, the Bloch theorem states that the electronic

states in the crystal have the property that

φ(k, x + ai) = eik·aiφ(k, x), i = 1, 2, 3; (1.3)

this can also be expressed as

φ(k, x) = eik·xu(k, x), (1.4)

where k is a real wave vector in k space and u(k, x) is a function with the
same period as the potential:

u(k, x + a1) = u(k, x + a2) = u(k, x + a3) = u(k, x). (1.5)

The function φ(k, x) in (1.3) and (1.4) is called the Bloch function or Bloch
wave. This is the most fundamental function in modern solid state physics.

The range of the wave vector k in (1.3) or (1.4) can be limited to a
specific region in the k space called the Brillouin zone [7], determined by
three primitive vectors of the reciprocal lattice in k space b1, b2, and b3:

b1 =
a2 × a3

a1 · a2 × a3
, b2 =

a3 × a1

a1 · a2 × a3
, b3 =

a1 × a2

a1 · a2 × a3
(1.6)

and thus
ai · bj = δi,j ; (1.7)

here, δi,j is the Kronecker symbol.
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As the wave vector k varies in the Brillouin zone, the permitted energy of
each Bloch function φ(k, x) – the eigenvalue E in (1.1) – also changes. These
permitted energy ranges are called energy bands and can be written as En(k);
here, n is an energy band index. They can be ordered with increasing energy:

E0(k) ≤ E1(k) ≤ E2(k) ≤ E3(k) ≤ E4(k) ≤ · · · .
The corresponding eigenfunctions are denoted by φn(k, x) and they can be
written as

φn(k, x) = eik·xun(k, x), (1.8)

where n is the energy band index, k is the wave vector, and un(k, x) is a
function with the same period as the potential:

un(k, x + a1) = un(k, x + a2) = un(k, x + a3) = un(k, x).

The energy band structure formed by the valence electrons of a crystal
plays a major role in determining the physical properties of the crystal and
which physical processes may happen in the crystal. For example, if a crystal
has a forbidden band gap between the highest occupied energy band(s) and
the lowest unoccupied energy band(s), the crystal can have only very few
conducting electrons at low temperature and the crystal is either a semicon-
ductor or an insulator, depending on the details of the band structure, such
as the size of the band gap. If a crystal does not have a forbidden band gap
between the highest occupied energy band(s) and the lowest energy band(s)
with unoccupied states, the crystal usually has net conducting electrons at
low temperature and the crystal is a metal.

Any real crystal always has a finite size and does not have the hypotheti-
cal infinite size on which the translational invariance is based. To circumvent
this difficulty, in traditional solid state physics for crystals of finite size the
periodic boundary conditions are usually assumed: Suppose a crystal of par-
allelogram shape has three sides N1a1, N2a2, and N3a3 meeting at a corner;
the periodic boundary conditions require that the wave functions of the elec-
tronic states φn(k, x) in the finite crystal have to satisfy [2–6]

φn(k, x + N1a1) = φn(k, x + N2a2) = φn(k, x + N3a3) = φn(k, x). (1.9)

The effect of (1.9) is to make the wave vector k assume discrete values:

k = k1b1 + k2b2 + k3b3, (1.10)

where
ki =

ji

Ni
2π, ji = 0, 1, 2, ..., Ni − 1, i = 1, 2, 3. (1.11)

Thus, in each energy band n, there are, in all,

N = N1N2N3 (1.12)

Bloch states φn(k, x) for such a finite crystal.
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1.2 Energy Band Structure of Several Typical Crystals

The energy band structure of any specific solid is usually described by its
energy–wave vector dispersion relation En(k). It was first clearly understood
by Kramers [8] that the energy band structure of one-dimensional crystals
generally has some especially simple characteristics (see Chapter 2). The
energy band structure in three-dimensional crystals is usually more compli-
cated [9].

Many different physical properties of a solid can be understood from
its specific band structure. For semiconductors (and insulators), the energy
bands occupied by valence electrons are called the valence bands and there is
a band gap between the highest occupied valence bands and the lowest un-
occupied energy bands called the conduction bands. For crystals with trans-
lational invariance, only the energies in permitted energy bands are allowed.
No electronic state can have its energy in the band gap.

The most important physics processes in a semiconductor always happen
near the band gap. Therefore, the details of the band structure near the band
gap, such as the size of the energy band gap, the locations of the conduction
band extreme(s) and the valence band extreme(s), the band structure behav-
iors near those extremes, and so forth, are almost always technically the most
important and theoretically the most interesting features. It is these details
that determine the physical properties of a semiconductor and its possible
applications.

In the following are shown the band structure figures of the two most im-
portant cubic semiconductors: Si and GaAs. Si is the most important semi-
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Fig. 1.1. Band structure of Si calculated by using the empirical pseudopotential
method [10].
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conductor material today due to the maturity of the processing technology
for making devices with it and the abundant source of raw material. The
band structure of Si is shown in Fig. 1.1. It has a band gap of about 1.2 eV
and a valence band maximum (VBM) at the center of the Brillouin zone,
with six conduction band minima located on the six equivalent [100] axes in
the k space, near the boundary of the Brillouin zone. Despite its position
as the number one semiconductor material in the electronic industry today,
a significant shortcoming of Si is that it is an indirect semiconductor – the
VBM and the conduction band minima are in different locations in the Bril-
louin zone, so that a direct optical transition between the VBM and any
conduction band minimum is forbidden; thus, it is not easy to make optical
devices with Si and to integrate optical processing devices with ordinary Si
electronic integrated circuits.

After Si, GaAs is one of the most important semiconductor materials. The
band structure of GaAs is shown in Fig. 1.2. It has a band gap of about 1.5 eV
and both its VBM and its conduction band minimum are located at the center
of the Brillouin zone. Therefore, GaAs is a direct-gap semiconductor – a direct
optical transition between the VBM and the conduction band minimum is
permitted and this makes GaAs one of the best semiconductor materials for
making optical devices and optoelectronic integrated circuits.
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Fig. 1.2. Band structure of GaAs calculated by using the empirical pseudopotential
method [10].

For metals, the most important physical processes happen near the Fermi
surface; thus, the details of the band structure En(k) near the Fermi surface
are often of the greatest interest.



8 1 Introduction

Modern solid state physics is essentially established on the basis of the
theory of electronic states in crystals. Many theoretical methods have been de-
veloped to study various physical properties in different solids, most of them
are based on general understandings such as the following: (i) The electronic
states in crystals are Bloch waves and (ii) the physical properties of a specific
solid are determined by its specific band structure. It has had great success –
many of the electronic, electric, optical, magnetic, thermal, and mechanical
properties of various solids of macroscopic size are well understood on the
basis of this theory. Based on these understandings, many new electronic de-
vices have been invented and developed; some of them – such as transistors
and semiconductor integrated circuits – have brought revolutionary changes
to modern science and technology.

1.3 Fundamental Difficulties of the Theory of the
Electronic States in Traditional Solid State Physics

The theory of electronic states based on the translational invariance of the
potential has been the basis of our current understanding of the electronic
states in solids for more than 70 years and has achieved great success. Nev-
ertheless, this traditional theory also has some fundamental difficulties. This
is because the translational invariance of the potential can only exist in crys-
tals of infinite size; thus, that the electronic states in crystals can be well
described by Bloch waves (1.4) or (1.8) is correct only for crystals of infi-
nite size. According to the Bloch theorem, Bloch waves (1.8) are progressive
waves. In general, the flux density of Bloch waves is nonzero,

φ∗
n(k, x)∇φn(k, x) − φn(k, x)∇φ∗

n(k, x) �= 0.

These progressive waves travel in all directions; only in the case of a crystal
of infinite size will they always remain inside the crystal. Any real crystal
has a finite size with a boundary. If the electronic states in a crystal of finite
size are Bloch waves, these progressive waves can move beyond the boundary
and the electrons in the crystal will flow away from the crystal, so that the
crystal will continuously lose electrons. Consequently, the electronic states in
a crystal of finite size cannot be progressive Bloch waves. To overcome this
difficulty, the assumption of the periodic boundary conditions (1.9) actually
implies that if an electron goes out from one boundary face of a crystal, it
simultaneously comes back in from the opposite boundary face; obviously
this is not true and not physically possible.

Any real crystal has a boundary. The existence of a boundary – the termi-
nation of the periodic potential – may introduce the existence of new types
of electronic states. In 1932, Tamm [11] showed that in a one-dimensional
Kronig–Penney [12] crystal, a termination of the periodic potential – a po-
tential barrier outside the boundary of a semi-infinite crystal – can introduce
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an additional type of electronic states existing in each band gap of the Bloch
wave below the potential barrier. Electronic states of this new type – with
energy inside the band gaps – are not permitted in crystals of infinite size
or with periodic boundary conditions. They are called surface states because
they are located near the surface of crystals. Since then, investigations on
the surface states and relevant problems have become a rapidly developing
and very productive field in solid state physics and chemistry [13,14]. It is
now well understood that the existence and properties of the surface states
can play a very significant role in affecting the physical properties of solids
and physical processes in solids. The assumption of periodic boundary con-
ditions (1.9) is a simplification that removes any possible boundary effects of
the crystal; it does not correspond to the physical reality of any real crys-
tal. For a finite crystal, it gives N1N2N3 Bloch states for each energy band.
Consequently, the traditional theory of electronic states in solids – based on
translational invariance of the potential – cannot account for the existence of
surface states. The very existence of the non-Bloch states has to be based on a
separate and different theoretical consideration. This is another fundamental
difficulty of the traditional theory of the electronic states in solids.

Since the theory on the electronic states in crystals in traditional solid
state physics is essentially a theory of electronic states in crystals of infinite
size, even some simple but also obviously fundamental problems, such as how
many different types of electronic states there are in a simple finite crystal of
orthorhombic shape such as shown in Fig. 1.3 and how these electronic states
are different from each other, have not been well understood.

L1

L2

L3

Fig. 1.3. An orthorhombic crystal with sides of length L1, L2, and L3.

In traditional solid state physics, all electronic states are considered as
Bloch waves. In the early days, when people mainly dealt with solids of macro-
scopic size in which the bulk properties of the solid were the main interest,
this was acceptable because in crystals of macroscopic size, the number of
bulk-like states is much larger than the number of surface-like states, side-like
states, corner-like state, and so forth.
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The difference between the electronic structure of a real crystal of finite
size and the electronic structure obtained based on the translational invari-
ance becomes more significant as the crystal size decreases. A clear under-
standing of the properties of electronic states in real crystals of finite size has
both theoretical and practical significance. Since the early 1970s, investiga-
tions on the properties of low-dimensional systems such as quantum wells,
wires, and dots in the submicron and nanometer size range has proceeded
rapidly. It was found that in these low-dimensional systems, the properties
of a semiconductor crystal change dramatically as the system size decreases:
The measured optical bandgap increases as the system size decreases; some
indirect semiconductors such as Si may become luminescent [e.g.,15], and di-
rect semiconductors such as GaAs may develop into an indirect one [e.g.,16].
These very interesting size-dependent properties of semiconductors provide
both a great potential for possible practical applications and a great theoret-
ical challenge for a clear understanding of the fundamental physics, since the
previous theory of electronic states in solids based on translational invariance
can by no means account for these size-dependent effects.

Therefore, a clear understanding of the electronic states in low-dimensional
systems and finite crystals can be both very interesting theoretically and very
important practically. However, to develop a general analytical theory of the
electronic states for low-dimensional systems or finite crystals with a bound-
ary has been considered as a rather difficult problem: The lack of translational
invariance in low-dimensional systems or finite crystals is a major obstacle.
It is the use of the translational invariance – the Bloch theorem – that pro-
vides both a theoretical frame and a great mathematical simplification in
solving the Schrödinger equation with a periodic potential. Without such a
theoretical frame based on the Bloch theorem and the mathematical simpli-
fication, the corresponding problem for finite crystals with boundary seems
to become rather difficult. Thus, most previous theoretical investigations on
the electronic states in low-dimensional systems were based on approximate
and/or numerical approaches and were usually on a specific material and/or
on a specific model [e.g.,17–24]. One of the most widely used approximate
methods or approaches is the effective mass approximation.

1.4 The Effective Mass Approximation

The effective mass approximation (EMA) is a widely used approximation in
semiconductor physics. It has many different forms; nevertheless, basically
the electrons in a semiconductor are treated as electrons with an “effective
mass” instead of the free-electron mass. This is a very successful approach in
investigating the behavior of electrons in a semiconductor under a weak and
slowly varying external field – such as an applied electric and/or magnetic
field or the field introduced by a shallow impurity [25].
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The theory of electronic states in low-dimensional systems and finite crys-
tals can also be considered as a theory on the quantum confinement of Bloch
waves. The quantum confinement of plane waves – the simplest case is the
well-known square potential problem – is a subject treated in almost all
standard quantum mechanics textbooks and is well understood [26]. In the
simplest case, when an electron in one dimension is completely confined in
a square potential well of width L, the energy of the electron may only take
discrete values:

Ej =
j2h̄2

2mL2 , j = 1, 2, 3, .... (1.13)

Here, m is the electron mass.1 Therefore, the lowest possible energy h̄2/2mL2

of the electron in the well increases as the well width L decreases. Equation
(1.13) can be easily extended to the case where the confinement is in two
or three directions. If the barrier heights outside the well are finite rather
than infinite, the confinement will not be complete and, consequently, the
energy levels inside the well will be somewhat lower. Therefore, the quantum
confinement always raises the lowest possible energy level inside the well: The
smaller the well width L and/or the higher the barrier outside the well, the
higher the lowest possible energy level inside the well.

A well-known experimental fact is that the measured optical energy gap
in a semiconductor low-dimensional system increases as the system size de-
creases. The well-understood concept of the quantum confinement effect of
plane waves such as indicated in (1.13) was naturally borrowed to explain
this notable fact [e.g.,28]. According to EMA, the “effective mass” of Bloch
electrons should be used instead of the free-electron mass m in (1.13) or re-
lated formulas. In a semiconductor crystal, the Bloch electrons have a positive
effective mass near the conduction band minimum and a negative effective
mass near the VBM. Therefore, as the system size decreases, the consequence
of EMA is that the lowest possible energy level in the conduction bands of
a semiconductor crystal will go up and the highest possible energy level in
the valence bands will go down, as shown in Fig. 1.4 – a consequence of the
quantum confinement effect of plane waves.

Various forms of EMA have been very widely used in investigating the
quantum confinement of Bloch electrons [e.g.,17–20,29]. It turns out that in
comparison with the experimental results, the theoretical predictions from
the various forms of EMA generally overestimate the gap increase as the
system size decreases. These general overestimations were usually explained
by some factors not included in the EMA, such as the nonparabolicity of
the energy band structure and so forth. It is widely believed in the solid

1By including the relativistic effect, (1.13) can be further extended to

E2
j = m2c4 + j2h̄2c2

(
π

L

)2
,

where c is the speed of light [27].
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Fig. 1.4. According to EMA, the energy of the lowest unoccupied state will go
up and the energy of the highest occupied state will go down as the size of the
semiconductor crystal decreases.

state physics community that for quantum confinement of Bloch waves in
semiconductor low-dimensional systems, a physics picture such as shown in
Fig. 1.4 is conceptually and qualitatively correct although the EMA might
not be able to give quantitatively accurate numerical results.

A natural comment on the use of various forms of EMA in investigat-
ing the quantum confinement of Bloch waves is that, originally, EMA was
developed for treating the electronic states near band edges in the presence
of a slowly varying and weak external perturbation, whereas in a quantum
confinement problem, the perturbation is neither weak nor slowly varying at
the confinement boundary, thus the conditions for justifying the use of EMA
are completely violated. Much work has been done on this interesting puzzle,
mainly using the envelope function approach [30].

1.5 Some Numerical Results

A very interesting work by Zhang and Zunger [31] on the energy spectrum of
confined electrons in Si quantum films obtained results qualitatively differ-
ent from what one would expect from EMA. In contrast to the prediction of
the EMA, in their numerical investigation on Si (001) quantum films Zhang
and Zunger [31] observed a band edge state whose energy was approximately
equal to the energy of the VBM and hardly changes as the film thickness
changes, as shown in Fig. 1.5. Such states have also been observed in numer-
ical investigations on (110) free-standing Si and GaAs quantum film [31–33].
They were called “zero-confinement states.” The very existence of such states
is directly contradictory to the consequence of the EMA. The obvious failure
of EMA for understanding the quantum confinement effect of these band edge
states clearly indicates that the quantum confinement of Bloch waves might
be fundamentally different from what one might expect from the well-known
quantum confinement of plane waves. Without a clear understanding of the
physical origin behind the existence of such states, the essential physics on the
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Fig. 1.5. Size dependence of the energy of the “zero-confinement” band edge state
in Si (001) films. Reprinted with permission from S. B. Zhang and A. Zunger: Appl.
Phys. Lett. 63, 1399 (1993). Copyright by the American Institute of Physics.

quantum confinement of Bloch waves is not well understood. One may also
naturally doubt whether EMA is suitable for describing the quantum confine-
ment of Bloch waves even conceptually and one has to be careful when using
EMA or EMA-derived ideas or approaches for treating the quantum confine-
ment of Bloch waves, otherwise some important physics might be missed.

The “central observation” of the investigation of Zhang and Zunger in [31]
is that the energy spectrum of confined electrons in Si (001) quantum films
maps the energy band structure of Si approximately, as shown in Fig. 1.6.

Fig. 1.6. A comparison between the energy bands En(k) (lines) and the directly
calculated eigenvalues in Si (001) film of 12 monolayers. Reprinted with permission
from S. B. Zhang and A. Zunger: Appl. Phys. Lett. 63, 1399 (1993). Copyright by
the American Institute of Physics.
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Similar maps of the energy spectra of confined electron states were observed
in Si (110) and GaAs (110) quantum films [32]. Much previous work also indi-
cates that the eigenvalues of confined Bloch states map closely the dispersion
relations of the unconfined Bloch waves [e.g.,34].

All of these are observations obtained by numerical calculations. On the
other hand, an analytical result by Pedersen and Hemmer [35] found that the
energy spectrum of the majority of the confined electronic states in a finite
one-dimensional Kronig–Penney crystal maps the energy bands exactly and
does not depend on the boundary location. However, they were unable to
treat either the quantum confinement of the bandedge states or the lowest
energy band in their model.

A correct theory on the electronic states in low-dimensional systems and
finite crystals should give clear explanations of the numerical results such
as those shown in Figs. 1.5 and 1.6. It should give clear predictions on the
properties of electronic states in low-dimensional systems, including giving an
answer to the simple but fundamental problem on how many different types
of electronic states there are in a simple finite crystal with an orthorhom-
bic shape and how those electronic states are different from each other, as
asked in Section 1.3. It should also clearly indicate the similarities and differ-
ences between the quantum confinement of Bloch waves and the well-known
quantum confinement of plane waves.

1.6 Subject of the Book and Main Findings

In this book, we try to present a simple theory to obtain some of the most
fundamental understandings of the electronic states in low-dimensional sys-
tems and finite crystals. We use the Born–Oppenheimer approximation; thus,
we can consider the electronic states in a fixed atomic background. Further,
we consider only a single-electron and nonspin theory.

Ideal low-dimensional systems and finite crystals are the simplest low-
dimensional systems and finite crystals. By “ideal”, it is assumed that (i) the
potential v(x) inside the low-dimensional system or finite crystal is the same
as in a crystal with translational invariance and (ii) the electronic states are
completely confined in the limited size of the low-dimensional system or finite
crystal. These two simplifying assumptions facilitate the development of an
analytical theory of the electronic states in ideal low-dimensional systems
and finite crystals and allow us to try to explore and understand some of the
most general physics related to the quantum confinement of Bloch waves and
the electronic states in crystals of finite size.

Basically, we proceed by trying to understand two issues: (i) We try to
understand the similarities and differences between the complete quantum
confinement of plane waves and the complete quantum confinement of Bloch
waves in one-dimensional space. It is now found that this problem can be
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understood and it provides new and fundamental understanding on rele-
vant physics problems. (ii) We try to understand the similarities and dif-
ferences between the complete quantum confinement of Bloch waves in one-
dimensional space and the complete quantum confinement of Bloch waves in
three-dimensional space. This problem is more difficult and now we can only
understand some simple cases.

An ideal low-dimensional system or finite crystal is a simplified model of
a real low-dimensional system or finite crystal. A clear understanding of the
electronic states in ideal low-dimensional systems and finite crystals is a first
step and the basis for understanding electronic states – and relevant physical
properties – of any real low-dimensional system or finite crystal. As Anderson
pointed out in his Nobel Prize Lecture [36],

Very often such a simplified model throws more light on the real
workings of nature than any number of ab initio calculations of in-
dividual situations, which even where correct often contain so much
details as to conceal rather than reveal reality. It can be a disadvan-
tage rather than an advantage to be able to compute or to measure
too accurately, since often what one measures or computes is irrele-
vant in terms of mechanism. After all, the perfect computation simply
reproduces Nature, it does not explain her.

Real low-dimensional systems and finite crystals are more complicated than
the ideal low-dimensional systems and finite crystals treated in this book.
However, in comparison to crystals of infinite size, ideal low-dimensional sys-
tems and finite crystals are much closer to the physical reality of the real
low-dimensional systems and finite crystals. We hope we have reason to ex-
pect that the understanding obtained for the ideal low-dimensional systems
and finite crystals will be a significant step toward a clearer understanding of
the electronic states in the real low-dimensional systems and finite crystals.

The book is organized as follows. In Part II, we treat one-dimensional
semi-infinite crystals and finite crystals. These are the simplest systems that
can manifest the effects of the existence of boundary and, in most cases, the
relevant conclusions can be rigorously proven. We prepare some necessary
mathematical basis on the theory of relevant ordinary differential equations
in Chapter 2. In Chapter 3, we present a general analysis on the existence
and properties of surface states in one-dimensional semi-finite crystals. It is
found that, in general, the existence of a boundary does not always introduce
a surface state in a specific band gap; only when the boundary of a semi-
infinite crystal is located in some specific separated subintervals can a surface
state exist in that specific band gap.

In Chapter 4, we present an analytical general theory of the electronic
states in one-dimensional crystals of finite length. It is proven that in a one-
dimensional finite crystal bounded at τ and τ + L, where L = Na, a is the
potential period, and N is a positive integer, there are two different types
of electronic states: Corresponding to each energy band of the Bloch wave,
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there are N −1 stationary Bloch states in the finite crystal whose energies are
dependent on the crystal length L but not on the crystal boundary location
τ and they map the energy band exactly. Corresponding to each band gap
of the Bloch wave, there is always one and only one electronic state in the
finite crystal whose energy is dependent on the boundary location τ but
not on the crystal length L; this state can be either a surface state in the
band gap or a band edge state. It is well known that if one-dimensional
plane waves are completely confined, all of the permitted states are stationary
waves. Therefore, the very existence of the boundary-dependent states is a
fundamental distinction of the quantum confinement of Bloch waves.

A clear understanding of electronic states in one-dimensional crystals of
finite length establishes a good basis and starting point for the further un-
derstanding of the electronic states in low-dimensional systems and three-
dimensional crystals of finite size. Part III consists of three chapters devoted
to these subjects.

There are similarities and differences between the quantum confinement of
three-dimensional Bloch waves and one-dimensional Bloch waves. The prob-
lem on the electronic states in a free-standing quantum film can be consid-
ered as three-dimensional Bloch waves confined in one specific direction and
is treated in Chapter 5. It is found in some simple and interesting cases where
the electronic states in an ideal quantum film are bounded at x3 = τ3

2 and
x3 = (τ3 + N3) – here τ3 defines the bottom boundary of the film and N3 is
a positive integer indicating the thickness in layers of the film – that there
are two different types of electronic states: For each bulk energy band n and
each wave vector k̂ in the film plane, there are N3 − 1 stationary Bloch elec-
tronic states in the film whose energies are dependent on the film thickness
N3 but not on the film boundary τ3 and one electronic state whose energy
is dependent on τ3 but not on N3. The energies of these stationary Bloch
electronic states map the energy band of the bulk exactly, whereas the en-
ergy of the τ3-dependent state is usually above or occasionally equal to the
highest energy in that energy band with that k̂. This τ3-dependent state is
usually a surface state, and, occasionally, it can be a single Bloch state. A
significant difference of the quantum confinement of the three-dimensional
Bloch waves is that, unlike the one-dimensional case discussed in Chapter 4,
a surface state in such a film does not have to be in a band gap.

The electronic states in some simple quantum wires can be considered as
merely two-dimensional Bloch waves in the quantum films further confined
in one more direction. The electronic states in some simple finite crystals
or quantum dots can be considered as one-dimensional Bloch waves in the
quantum wires further confined in the third direction. By investigating the
effects of the quantum confinement of the Bloch waves step by step, we can

2In this book, a position vector is usually written as x = x1a1 + x2a2 + x3a3.
For quantum films, it is usually assumed that a3 is the only primitive lattice vector
out of the film plane.
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obtain a general understanding of the electronic states in some simple ideal
low-dimensional systems and finite crystals.

The electronic states in a simple rectangular quantum wire having a thick-
ness of N3 layers and a boundary given by τ3 in the a3 direction, and a width
of N2 layers and a boundary given by τ2 in the a2 direction can be considered
as having two-dimensional Bloch waves in the quantum film further confined
in the a2 direction. This is the subject treated in Chapter 6. It is found in
some simple and interesting cases that the electronic states in such an ideal
rectangular quantum wire can be generally and exactly obtained. For such
a quantum wire of crystals with a simple cubic, tetragonal, or orthorhombic
Bravais lattice, for each bulk energy band n and each wave vector k̄ in the
wire direction a1, there are (N2 − 1)(N3 − 1) one-dimensional Bloch waves
whose energies map the bulk energy band exactly and depend on N2 and N3
but not on τ2 and τ3, (N2 −1)+(N3 −1) one-dimensional Bloch waves whose
energies depend either on N2 and τ3 but not on τ2 and N3, or on N3 and τ2
but not on τ3 and N2, and one one-dimensional Bloch wave whose energy de-
pends on τ2 and τ3 but not on N2 and N3. Correspondingly, those electronic
states can be considered as bulk-like states, surface-like states, and side-like
states in the quantum wire. For a rectangular quantum wire of crystals with
a face-centered-cubic or body-centered-cubic Bravais lattice, the numbers of
each type of electronic states are somewhat different. For the electronic states
with the same bulk energy band index n and the same k̄, the following general
relations exist:

The energy of the side-like state
> The energy of every surface-like state

> The energy of every relevant bulk-like state.
The electronic states in a simple orthorhombic finite crystal or quantum

dot having a thickness of N3 layers and a boundary given by τ3 in the a3
direction, a width of N2 layers and a boundary given by τ2 in the a2 direction,
and a length of N1 layers and a boundary given by τ1 in a1 direction can be
considered as one-dimensional Bloch waves in a rectangular quantum wire
further confined in the a1 direction. This is the subject treated in Chapter
7. It is found in some simple and interesting cases that the electronic states
in such an ideal finite crystal or quantum dot can be generally and exactly
obtained. For such a finite crystal or quantum dot of crystals with a simple
cubic, tetragonal, or orthorhombic Bravais lattice, for each bulk energy band
there are (N1 − 1)(N2 − 1)(N3 − 1) bulk-like states, (N1 − 1)(N2 − 1)+ (N2 −
1)(N3−1)+(N3−1)(N1−1) surface-like states, (N1−1)+(N2−1)+(N3−1)
side-like states, and one corner-like state. For an orthorhombic finite crystal
or quantum dot of crystals with a face-centered-cubic or body-centered-cubic
Bravais lattice, the numbers of each type of electronic states are somewhat
different. For electronic states with the same bulk energy band index n, the
following general relations exist:

The energy of the corner-like state
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> The energy of every side-like state
> The energy of every relevant surface-like state

> The energy of every relevant bulk-like state.
Due to the existence of the boundary-dependent electronic states, the

properties of electronic states in the low-dimensional systems and finite crys-
tals may actually be substantially different from the properties of electronic
states in crystals with translational invariance as understood in traditional
solid state physics, they may also be substantially different from what is
widely believed on the electronic states in low-dimensional systems in the
solid state physics community, such as those originating from the EMA-
derived ideas. For example, it is found that the real band gap in an ideal
low-dimensional system of a cubic semiconductor is actually smaller than the
band gap of the bulk semiconductor with translational invariance. It may
even be possible that a low-dimensional system of a cubic semiconductor
crystal could have the electrical conductivity of a metal.

Chapter 8 in Part IV is devoted to the concluding remarks. The under-
standings we have had actually are only the very beginning: For the little we
have just understood, there is so much more we do not understand. In par-
ticular, a natural question is: Are those interesting results merely particular
behaviors of this specific problem on the electronic states in low-dimensional
systems or finite crystals, or might they actually be one of consequences of
a whole class of more general relevant problems concerning the truncated
translational invariance?
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2 Mathematical Basis

One-dimensional crystals are the simplest crystals. Historically, much of our
current fundamental understanding of the electronic structures of crystals
were obtained through the analysis of one-dimensional crystals [1–3]. Among
the most well-known examples are the Kronig–Penney model [4], Kramers’
general analysis of the band structure of one-dimensional infinite crystals [5],
Tamm’s surface states [6], and so forth. In order to have a clear understand-
ing of the electronic states in low-dimensional systems and finite crystals,
the first step is to have a clear understanding of the electronic states in one-
dimensional finite crystals. To prepare for this purpose, in this chapter we
begin with a more general study on the properties of the solutions of the rel-
evant differential equations – the second-order linear homogeneous ordinary
differential equations with periodic coefficients. In the theory of boundary
value problems for ordinary differential equations, the existence and locations
of the zeros of the solutions of such equations are often of central importance.
After reviewing some elementary knowledge on the theory of second-order lin-
ear ordinary differential equations, we introduce two basic theorems on the
zeros of solutions of second-order linear homogeneous ordinary differential
equations. In the major part of this chapter, we will learn some more ad-
vanced theory on the second-order linear homogeneous differential equations
with periodic coefficients and the zeros of their solutions. Based on the math-
ematical theory and theorems learned in this chapter, the general results on
the electronic states in ideal one-dimensional finite crystals can be rigorously
proven. The majority of this part is essentially from Eastham’s book [7].
However, the mathematicians usually are more interested in the generality
and completeness of the theory for more general equations, whereas what we
need as a mathematical basis in this book is the conclusions of the usually
simpler and more specific equations we need to solve. Eastham’s book [7]
contains contents that are not really relevant to our purpose and might be
more difficult to read for many nonmathematicians; therefore, the author
has reorganized and rewritten much of the relevant materials to make them
simpler, but still sufficient for our purpose. The author wishes that readers
with some elementary background in the theory of differential equations can
read this part without major difficulties. Readers who are interested in a
more complete and general mathematical theory are recommended to read
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Eastham’s original book [7]. Readers who are not interested in the proofs of
relevant theorems may skip those parts of this chapter.

2.1 Elementary Theory and Two Basic Theorems

We are interested in a class of very simple second-order linear ordinary dif-
ferential equations1:

y′′ + q(x)y = 0, − ∞ < x < +∞. (2.1)

Here, q(x) is a piecewise continuous real function.
There are some very general results on the solutions of (2.1):
1. Two linearly independent solutions. Any nontrivial solution y of (2.1)

can be written as a linear combination of two linearly independent solutions
y1(x) and y2(x) of (2.1):

y = c1y1(x) + c2y2(x).

2. The Wronskian. The Wronskian of two functions y1 and y2 can be
defined as

W (y1, y2) = y1y
′
2 − y′

1y2. (2.2)

If y1 and y2 are two linearly independent solutions of (2.1), the Wronskian
W (y1, y2) of y1 and y2 is nonzero. It is also easy to prove that d

dxW (y1, y2) =
0, thus W (y1, y2) does not depend on x.

3. The variation of parameters formula. Let y1(x) and y2(x) be two linearly
independent solutions of (2.1). The nonhomogeneous equation

z′′ + q(x)z = F (x)

can be solved as

z = −
∫ x F (t)y2(t)

W [y1(t), y2(t)]
dt y1(x) +

∫ x F (t)y1(t)
W [y1(t), y2(t)]

dt y2(x). (2.3)

These well-known results on the theory of second-order linear ordinary
differential equations can be found in introductory textbooks on the theory
of linear ordinary differential equations [e.g.,8-10].

Further, we need two very basic theorems on the zeros of solutions in the
theory of second-order linear ordinary differential equations [e.g.,11,12] for
our future work.

1In this book, a prime on a function denotes differentiation with respect to the
variable of the function. If the function has two or more variables, a prime on the
function denotes differentiation with respect to the variable x of the function.
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Theorem 2.1 (Sturm Separation Theorem).
Let y1 and y2 be two linearly independent solutions of (2.1); then the zeros

of y1 are always separated from the zeros of y2.

Proof. Suppose α and β are two consecutive zeros of y1,

y1(α) = y1(β) = 0; (2.4)

then it can be proven that there is at least one zero of y2 in (α, β).
We assume that this is not true — that there is no zero of y2 in (α, β).

Then we can write
d
dx

y1

y2
= −W (y1, y2)

y2
2

(2.5)

in (α, β). Integrating (2.5) from α to β, we obtain that

[
y1

y2

]β

α

= −
∫ β

α

W (y1, y2)
y2
2

dx. (2.6)

The left side of (2.6) is zero due to (2.4); the right side of (2.6) is not zero
since W (y1, y2) is a nonzero constant if y1 and y2 are two linearly independent
solutions of (2.1). The assumption leads to a self-contradictory result; hence,
there is at least one zero of y2 in (α, β).

However, if there are more than one zero of y2 in (α, β), then according
to what we have just proven, there is at least one extra zero of y1 between
two zeros of y2 in (α, β); this is contradictory to the supposition that α and
β are two consecutive zeros of y1. Therefore, there is always one and only one
zero of y2 between two consecutive zeros of y1. Similarly, there is always one
and only one zero of y1 between two consecutive zeros of y2. The zeros of two
linearly independent solutions y1 and y2 of (2.1) are distributed alternatively
and thus are separated from each other. ��
Theorem 2.2 (Sturm Comparison Theorem).

Suppose in two equations

y′′ + q1(x)y = 0, z′′ + q2(x)z = 0, (2.7)

that
q2(x) ≥ q1(x) (2.8)

is true; then there is at least one zero of any solution z of the second equation
between two zeros (α, β) of any solution y of the first equation.

Proof. Suppose that this is not true — that z is not zero anywhere in (α, β).
Without loss of generality we may assume that α and β are two consecutive
zeros of y:

y(α) = y(β) = 0, (2.9)

y > 0 and z > 0 in (α, β). Then we have y′(α) > 0 and y′(β) < 0.
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From (2.7) we obtain that
∫ β

α

[zy′′ − yz′′] dx =
∫ β

α

[q2(x) − q1(x)]yz dx. (2.10)

However, the left side of (2.10) is
∫ β

α

[zy′′ − yz′′] dx =
∫ β

α

[zy′ − yz′]′ dx = [zy′ − yz′]βα = [zy′]βα < 0.

However, the right side of (2.10) is
∫ β

α

[q2(x) − q1(x)]yz dx ≥ 0

due to the condition (2.8). Actually, this term is always larger than zero
except that q2(x) = q1(x) everywhere in (α, β). The supposition leads to two
results contradictory to each other. Thus, the theorem is proven. ��

These two theorems are very fundamental theorems in the theory of gen-
eral second-order linear ordinary differential equations. In the following, we
will meet some theorems on the theory of differential equations with periodic
coefficients. In proving several theorems on the zeros of solutions of these
equations, we will need to use the Sturm comparison theorem frequently.
Both the Sturm separation theorem and the Sturm comparison theorem will
be used in the later chapters.

2.2 Floquet Theory

Now, we consider a special case of (2.1) in which q(x) is a periodic equation:

y′′ + q(x)y = 0; q(x + a) = q(x). (2.11)

Here, a is a nonzero constant. Equation (2.11) is a simple form of the more
general second-order linear ordinary differential equations with periodic co-
efficients – Hill’s equation [13]:

[P (x)y′(x)]′ + Q(x)y(x) = 0, (2.12)

investigated by Hill in 1877. Here, P (x) and Q(x) are real functions2 with
period a. Hill’s equation is a simple form of the more general second-order
linear ordinary differential equations with periodic complex coefficients

a0(x)y′′(x) + a1(x)y′(x) + a2(x)y(x) = 0, (2.13)
2It is assumed that P (x) is continuous and nowhere zero and that P ′(x) and

Q(x) are piecewise continuous.
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investigated by Floquet in 1883. In the following, we will introduce several
theorems on (2.11), which are the simplified forms of theorems on (2.13)
presented in [7]. Since (2.11) is simpler than (2.13), the proofs of the corre-
sponding theorems are also somewhat simpler.

Theorem 2.3 (Theorem 1.1.1 in [7]).
There exist at least one nonzero constant ρ and one nontrivial solution

y(x) of (2.11) such that
y(x + a) = ρ y(x). (2.14)

Proof. We can choose two linearly independent solutions η1(x) and η2(x) of
(2.11) according to

η1(0) = 1, η′
1(0) = 0; η2(0) = 0, η′

2(0) = 1. (2.15)

These solutions are usually called normalized solutions of (2.11) [13].
Since the corresponding η1(x + a) and η2(x + a) are also two linearly

independent nontrivial solutions of (2.11), we can write η1(x+a) and η2(x+a)
as linearly combinations of η1(x) and η2(x):

η1(x + a) = A11η1(x) + A12η2(x),
η2(x + a) = A21η1(x) + A22η2(x), (2.16)

where Aij (1 ≤ i, j ≤ 2) are four constants. From (2.15) and (2.16), we obtain
that

A11 = η1(a), A21 = η2(a), A12 = η′
1(a), A22 = η′

2(a).

Any nontrivial solution y(x) of (2.11) can be written as

y(x) = c1η1(x) + c2η2(x),

where ci are constants. If there is a nonzero ρ that makes

(A11 − ρ)c1 + A21c2 = 0,
A12c1 + (A22 − ρ)c2 = 0 (2.17)

true, then (2.11) has a nontrivial solution of the form (2.14). The requirement
that ci in (2.17) are not both zero leads to the condition

ρ2 − [η1(a) + η′
2(a)]ρ + 1 = 0. (2.18)

Here, η1(a)η′
2(a) − η′

1(a)η2(a) = η1(0)η′
2(0) − η′

1(0)η2(0) = 1 has been used.
The quadratic equation (2.18) is called the characteristic equation associate
with (2.11) [13]. Equation (2.18) for ρ has at least one nonzero root since it
has a nonzero constant term. ��

We have proven that (2.11) has at least one nontrivial solution of the form
(2.14). Actually, (2.11) may have two linearly independent nontrivial solu-
tions of the form (2.14). Whether (2.11) can have two linearly independent
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nontrivial solutions of the form (2.14) or only one such solution is determined
by whether the matrix A = (Aij) has two linearly independent eigenvectors
or only one such eigenvector. If the characteristic equation (2.18) has two
distinct roots ρ1 and ρ2, then the matrix A = (Aij) always has two linearly
independent eigenvectors and, thus, (2.11) has two linearly independent non-
trivial solutions of the form (2.14). If the characteristic equation (2.18) has
a repeated root, then the matrix A = (Aij) may have either two linearly
independent eigenvectors or only one independent eigenvector (see pp. 28-
33). Correspondingly, (2.11) may have two linearly independent nontrivial
solutions of the form (2.14) or only one such solution.

Theorem 2.4 (Theorem 1.1.2 in [7]).
There exist linearly independent solutions y1(x) and y2(x) of (2.11) such

that either
(i) y1(x) = eh1xp1(x), y2(x) = eh2xp2(x),

where h1 and h2 are constants, not necessarily distinct, and p1(x) and p2(x)
are periodic with period a, or

(ii) y1(x) = ehxp1(x), y2(x) = ehx[x p1(x) + p2(x)],

where h is a constant and p1(x) and p2(x) are periodic with period a.

Proof. The characteristic equation (2.18) may have either two distinct roots
or a repeated root.

1. If the characteristic equation (2.18) has two distinct roots ρ1 and ρ2, then
there are two linearly independent nontrivial solutions of y1(x) and y2(x)
of (2.11) such that

yi(x + a) = ρiyi(x), i = 1, 2.

We can define h1 and h2 so that

eahi = ρi (2.19)

and then two functions pi(x) by

pi(x) = e−hixyi(x).

It is easy to see that p1(x) and p2(x) are periodic functions with period
a:

pi(x + a) = e−hi(x+a)ρiyi(x) = pi(x).

Thus, (2.11) has two linearly independent non-trivial solutions:

y1(x) = eh1xp1(x); y2(x) = eh2xp2(x). (2.20)
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2. Now, we consider the case that the characteristic equation (2.18) has a
repeated root ρ. Define h by

eah = ρ. (2.21)

According to Theorem 2.3, (2.11) has a nontrivial solution of the form
(2.14):

y1(x + a) = ρy1(x).

Suppose Y2(x) is any solution of (2.11) that is linearly independent of
y1(x). Since Y2(x + a) is also a nontrivial solution of (2.11), we can write

Y2(x + a) = c1y1(x) + c2Y2(x) (2.22)

and, here, c1 and c2 are constants. Since

W (y1, Y2)|x+a = ρc2W (y1, Y2)|x
and W (y1, Y2)|x does not depend on x, therefore,

ρc2 = 1 = ρ2,

the second equality is due to that the constant term in (2.18) is equal to
1. Thus,

c2 = ρ.

Equation (2.22) can be written as

Y2(x + a) = c1y1(x) + ρY2(x). (2.23)

There could be two different cases:
2.1. c1 = 0.

Equation (2.23) becomes

Y2(x + a) = ρY2(x).

We can choose y2(x) = Y2(x). Thus, (2.11) has two linearly indepen-
dent solutions y1(x) and y2(x) and

y1(x + a) = eahy1(x), y2(x + a) = eahy2(x).

The first part of the theorem is proven. This case corresponds to the
case that the matrix A = (Aij) has one repeated eigenvalue ρ but two
linearly independent eigenvectors. Consequently, (2.11) may have two
linearly independent nontrivial solutions of the form (2.14).
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2.2. c1 �= 0.
Define

p1(x) = e−hxy1(x), p2(x) = (aρ/c1) e−hxY2(x) − x p1(x);

then we have

p1(x + a) = e−h(x+a)y1(x + a) = p1(x)

and

p2(x + a) = (aρ/c1) e−h(x+a)Y2(x + a) − (x + a)p1(x + a)
= (aρ/c1) e−h(x+a)[c1y1(x) + ρY2(x)] − ap1(x) − x p1(x)
= (aρ/c1) e−hxY2(x) − x p1(x) = p2(x).

Thus, p1(x) and p2(x) are periodic functions. Since

y1(x) = ehxp1(x), Y2(x) = (c1/aρ) ehx[x p1(x) + p2(x)],

we may choose
y2(x) = (aρ/c1) Y2(x).

Thus,
y2(x) = ehx[x p1(x) + p2(x)]

and part (ii) of the theorem is proven. This case corresponds to the
cases in which the matrix A = (Aij) has only one independent eigen-
vector. Correspondingly, (2.11) has only one independent nontrivial
solution of the form (2.14).

��
Therefore, when (2.11) has two linearly independent nontrivial solutions

of the form (2.14), part (i) of the theorem is true; when (2.11) has only one
nontrivial solution of the form (2.14), part (ii) of the theorem is true. Whether
(2.11) has two linearly independent nontrivial solutions of the form (2.14) or
only one non-trivial solution of the form (2.14) is determined by whether the
matrix A = (Aij) has two linearly independent eigenvectors or only one such
eigenvector.

2.3 Discriminant and Linearly Independent Solutions

From the last section, we see that the linearly independent solutions of (2.11)
are determined by the roots ρ of the characteristic equation (2.18), which are
determined by a real number:

D = η1(a) + η′
2(a). (2.24)
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Thus, the real number D in (2.24) determines the linearly independent solu-
tions of (2.11) in Theorem 2.4. This real number is called the discriminant of
(2.11).

There can be five different cases.

A. −2 < D < 2.
The two roots ρ1 and ρ2 of the characteristic equation (2.18) are two
distinct nonreal numbers. They are complex conjugates to each other
and have moduli equal to unity. hi in (2.19) can be chosen as imaginary
numbers ±ik, where 0 < k < π/a. Thus, there is a real number k for
which 0 < ak < π, giving

eiak = ρ1; e−iak = ρ2. (2.25)

Correspondingly, (2.11) has two linearly independent solutions,

y1(x) = eikxp1(x); y2(x) = e−ikxp2(x) (2.26)

by (2.20). Here, p1(x) and p2(x) are periodic functions with period a.
B. D = 2.

The characteristic equation (2.18) has a repeated root ρ = 1. From (2.21),
we obtain h = 0. There are two possible subcases:
B.1. η2(a) and η′

1(a) are not both zero.
Now, not all elements in the matrix (A − Iρ) are zero. The matrix
A = (Aij) has only one independent eigenvector.3 Equation (2.11)
can have only one solution of the form (2.14). Thus, part (ii) of The-
orem 2.4 applies. Equation (2.11) can have two linearly independent
nontrivial solutions as

y1(x) = p1(x); y2(x) = x p1(x) + p2(x). (2.27)

B.2. η2(a) = η′
1(a) = 0.

Since W = η1(a)η′
2(a) − η′

1(a)η2(a) = 1, we have

η1(a)η′
2(a) = 1.

However,
η1(a) + η′

2(a) = 2;

thus,

3Note that although (2.11) always has two linearly independent solutions, it does
not mean that (2.17) can always have two independent solutions. Only when both
of the two linearly independent solutions of (2.11) have the form (2.14) can (2.17)
have two independent solutions and A = (Aij) has two independent eigenvectors. If
(2.17) has only one independent solution, then A = (Aij) has only one independent
eigenvector and only one solution of (2.11) has the form (2.14); the other linearly
independent solution is given by y2(x) in part (ii) of Theorem 2.4.
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η1(a) = η′
2(a) = 1.

Now, in the matrix (A−Iρ), all elements are zero and the matrix A =
(Aij) has two linearly independent eigenvectors. Equations (2.17) can
have two independent solutions. Thus, (2.11) can have two linearly
independent nontrivial solutions of the form (2.14) and part (i) of
Theorem 2.4 applies:

y1(x) = p1(x); y2(x) = p2(x). (2.28)

C. D > 2.
The roots ρ1 and ρ2 of the characteristic equation (2.18) are two distinct
positive real numbers that are not equal to unity. hi in (2.19) can be
chosen as real numbers ±β. There is a real number β > 0 to make

eaβ = ρ1; e−aβ = ρ2. (2.29)

Correspondingly, (2.11) has two linearly independent solutions as

y1(x) = eβxp1(x); y2(x) = e−βxp2(x) (2.30)

by (2.20).
D. D = −2.

In this case, the characteristic equation (2.18) has repeated roots ρ1 =
ρ2 = −1. h in (2.21) can be chosen as iπ/a. There are two possible
subcases:
D.1. η2(a) and η′

1(a) are not both zero.
Now, not all elements in the matrix (A−Iρ) are zero. The matrix A =
(Aij) has only one independent eigenvector. Equation (2.11) can have
only one solution of the form (2.14). Thus, part (ii) of Theorem 2.4
applies. Equation (2.11) can have two linearly independent nontrivial
solutions as

y1(x) = s1(x); y2(x) = x s1(x) + s2(x). (2.31)

Here, si(x) = ei π
a xpi(x) and, thus, si(x + a) = −s(x) are semi-

periodic functions.
D.2. η2(a) = η′

1(a) = 0.
Since W = η1(a)η′

2(a) − η′
1(a)η2(a) = 1, we have

η1(a)η′
2(a) = 1.

However,
η1(a) + η′

2(a) = −2;

thus,
η1(a) = η′

2(a) = −1.
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Now, in the matrix (A − Iρ), all elements are zero and the ma-
trix A = (Aij) has two linearly independent eigenvectors. Equations
(2.17) can have two independent solutions. Thus, (2.11) can have two
linearly independent nontrivial solutions of the form (2.14) and part
(i) of Theorem 2.4 applies. The two linearly independent nontrivial
solutions of (2.11) can be chosen as

y1(x) = s1(x); y2(x) = s2(x). (2.32)

Here, si(x) are semi-periodic functions si(x + a) = −si(x).
E. D < −2.

The roots ρ1 and ρ2 of the characteristic equation (2.18) are two distinct
negative real numbers and are not equal to −1. hi in (2.19) can be chosen
as complex numbers ±(β + iπ/a). Thus, there is a real number β > 0 to
give

ea(β+i π
a ) = ρ1; e−a(β+i π

a ) = ρ2. (2.33)

Correspondingly, (2.11) can have two linearly independent solutions as

y1(x) = eβxs1(x); y2(x) = e−βxs2(x). (2.34)

Here, si(x + a) = −s(x) are semi-periodic functions.

2.4 Basic Theory of the Schrödinger Equation in
One-Dimensional Crystals

By introducing

v(x) =
2m

h̄2 V (x), λ =
2m

h̄2 E, (2.35)

the Schrödinger equation in a one-dimensional crystal can be written as

−y′′ + [v(x) − λ]y = 0; (2.36)

here, v(x+a) = v(x) is the reduced periodic potential. Hereafter, for brevity,
we will call v(x) the potential in the crystal and λ the energy. Equation
(2.36) is a special form of (2.11). It is also a special form of the more general
second-order linear ordinary differential equations with periodic coefficients,

[p(x)y′(x)]′ + [λs(x) − q(x)]y(x) = 0, (2.37)

investigated by Eastham [7].4 The normalized solutions of (2.36) are now
defined as

4It is assumed that p(x) is real-valued and continuous and nowhere zero and
p′(x) is piecewise continuous. q(x) and s(x) are real-valued and piecewise continu-
ous. There is a constant s > 0 such that s(x) ≥ s.
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η1(0, λ) = 1, η′
1(0, λ) = 0; η2(0, λ) = 0, η′

2(0, λ) = 1 (2.38)

and the discriminant of (2.36) is now a function of λ:

D(λ) = η1(a, λ) + η′
2(a, λ). (2.39)

From what we learned in Section 2.3, we know that the two linearly indepen-
dent solutions of the Schrödinger equation in a one-dimensional crystal (2.36)
are determined by D(λ) in (2.39). In order to understand the properties of
solutions of (2.36), we need to know how D(λ) changes as λ changes. For this
purpose, we first give two definitions.

2.4.1 Two Different Eigenvalue Problems

We consider the solutions of (2.36) under the conditions

y(a) = y(0); y′(a) = y′(0). (2.40)

The corresponding eigenvalues are denoted by λn and can be ordered accord-
ing to

λ0 ≤ λ1 ≤ λ2 ≤ · · ·
and the eigenfunctions can be chosen as to be real-valued and denoted as
ζn(x). ζn(x) can be further required to form an orthonormal set over [0, a]:∫ a

0
ζm(x)ζn(x) dx = δm,n.

ζn(x) can be extended by (2.40) to the whole of (−∞,+∞) as continuously
differentiable functions with period a. Therefore, λn are the values of λ for
which (2.36) has a nontrivial solution with period a.

Similarly, we can also consider the solutions of (2.36) under the conditions

y(a) = −y(0); y′(a) = −y′(0). (2.41)

The corresponding eigenvalues are denoted by µn and can be ordered accord-
ing to

µ0 ≤ µ1 ≤ µ2 ≤ · · · .
The corresponding eigenfunctions can be chosen to be real-valued and de-
noted as ξn(x). ξn(x) can be further required to form an orthonormal set
over [0, a]: ∫ a

0
ξm(x)ξn(x) dx = δm,n.

ξn(x) can be extended by (2.41) to the whole of (−∞,+∞) as continuously
differentiable functions with semi-period a. Therefore, µn are the values of λ
for which (2.36) has a nontrivial solution with semi-period a.
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2.4.2 The Function D(λ)

Regarding the eigenvalues λn and µn defined by the two eigenvalue problems
in Section 2.4.1 and how D(λ) changes as λ changes, there is the following
theorem:

Theorem 2.5 (Theorem 2.3.1 in [7]).

(i) The numbers λn and µn occur in the order

λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < λ3 ≤ λ4 < · · · . (2.42)

As λ increases from −∞ to +∞, D(λ) changes as given in the following,
where m = 0, 1, 2, ...:

(ii) In the interval (−∞, λ0), D(λ) > 2.
(iii) In the intervals [λ2m, µ2m], D(λ) decreases from +2 to −2.
(iv) In the intervals (µ2m, µ2m+1), D(λ) < −2.
(v) In the intervals [µ2m+1, λ2m+1], D(λ) increases from −2 to +2.
(vi) In the intervals (λ2m+1, λ2m+2), D(λ) > 2.

Proof. This theorem can be proven in several steps [5,7,14].

(1) There exists a Λ such that for all λ < Λ, D(λ) > 2. We can choose a Λ
so that for all x in (−∞,+∞),

v(x) − Λ > 0

is true.
Suppose y(x) is any nontrivial solution of (2.36) for which y(0) ≥ 0

and y′(0) ≥ 0. Then there is always an interval (0, ∆) in which y(x) > 0.
For all λ ≤ Λ, in any interval (0, X) for which y(x) > 0 we have

y′′(x) = [v(x) − λ]y(x) > 0;

thus, in the interval (0, X), we have y′(x) > 0 and y(x) is increasing in
(0, X). Therefore, y(x) has no zero x = X in (0,+∞) and both y(x) and
y′(x) are increasing in (0, +∞).

Since both η1(x, λ) and η2(x, λ) defined in (2.38) satisfy

η1(0, λ) ≥ 0, η′
1(0, λ) ≥ 0; η2(0, λ) ≥ 0, η′

2(0, λ) ≥ 0,

both η1(x, λ) and η2(x, λ) and their derivatives are increasing in (0, +∞)
for all λ ≤ Λ. In particular, we have

η1(a, λ) > η1(0, λ) = 1; η′
2(a, λ) > η′

2(0, λ) = 1.

Thus, for all λ ≤ Λ, we have D(λ) > 2.
However, as λ increases, y′′(x)/y = v(x) − λ will become negative and,

consequently, D(λ) will decrease as λ increases.
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(2) For any λ such that |D(λ)| < 2, D′(λ) is not zero. Differentiating (2.36)
with respect to λ with y(x) = η1(x, λ), we obtain

− d2

dx2

[
∂η1(x, λ)

∂λ

]
+ [v(x) − λ]

∂η1(x, λ)
∂λ

= η1(x, λ). (2.43)

From the initial condition of η1(x, λ) in (2.38), we have

∂η1(0, λ)
∂λ

=
d
dx

[
∂η1(0, λ)

∂λ

]
= 0. (2.44)

By using the variation of parameters formula (2.3), we solve ∂η1(x, λ)/∂λ
from (2.43) with the conditions (2.44) and obtain that

∂η1(x, λ)
∂λ

=
∫ x

0
[η1(x, λ)η2(t, λ) − η2(x, λ)η1(t, λ)]η1(t, λ) dt (2.45)

by noting that W [η1(t, λ), η2(t, λ)] = 1. Similarly,

∂η2(x, λ)
∂λ

=
∫ x

0
[η1(x, λ)η2(t, λ) − η2(x, λ)η1(t, λ)]η2(t, λ) dt. (2.46)

Differentiating (2.46) with respect to x, we obtain that

∂η′
2(x, λ)
∂λ

=
∫ x

0
[η′

1(x, λ)η2(t, λ) − η′
2(x, λ)η1(t, λ)]η2(t, λ) dt.

Combining this equation and (2.45) and then putting x = a, we have
that

D′(λ) =
∫ a

0
[η′

1η
2
2(t, λ) + (η1 − η′

2)η1(t, λ)η2(t, λ) − η2η
2
1(t, λ)] dt, (2.47)

where we have written ηi = ηi(a, λ) and η′
i = η′

i(a, λ) for brevity. Since

η1η
′
2 − η′

1η2 = 1,

we have
D2(λ) = 4 + (η1 − η′

2)
2 + 4η′

1η2.

Thus, (2.47) can be written as5

4η2D
′(λ) = −

∫ a

0
[2η2η1(t, λ) − (η1 − η′

2)η2(t, λ)]2 dt

− [4 − D2(λ)]
∫ a

0
η2
2(t, λ) dt. (2.48)

If |D(λ)| < 2, then from (2.48), we have η2D
′(λ) < 0; thus, D′(λ) �= 0.

Therefore, only in the regions of λ in which |D(λ)| ≥ 2 can D′(λ) = 0 be
true.

5In the corresponding formula (2.3.9) on p. 28 in [7], the sign in front of (φ1−φ′
2)

(corresponding to our (η1 − η′
2)) is positive. That is an error. In the corresponding

formula (21.4.6) on p. 294 in [14], the corresponding sign is negative.
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(3) At a zero λn of D(λ) − 2 = 0, if and only if

η2(a, λn) = η′
1(a, λn) = 0, (2.49)

D′(λn) = 0 is true. Further, if D′(λn) = 0, then D′′(λn) < 0.
(3a) If (2.49) is true, η2(a, λn) = η′

1(a, λn) = 0, as in B.2 in Section 2.3,
then

η1(a, λn) = η′
2(a, λn) = 1 (2.50)

must be true. Equation (2.47) gives that D′(λn) = 0. According to
B.2 in Section 2.3, this corresponds to the case that D(λ) − 2 has a
double zero at λ = λn.

(3b) On the other hand, if D′(λn) = 0, then the first integrand on the
right of (2.48) must be identically zero since D(λn) = 2. Since η1(t, λ)
and η2(t, λ) are linearly independent, η2(a, λn) = 0 and η1(a, λn) =
η′
2(a, λn) must be true. From (2.47), we can obtain that η′

1(a, λn) = 0.
(3c) To further prove D′′(λn) < 0 when D′(λn) = 0, we differentiate

(2.43) with respect to λ and obtain

− d2

dx2

[
∂2η1(x, λ)

∂λ2

]
+ [v(x) − λ]

∂2η1(x, λ)
∂λ2 = 2

∂

∂λ
η1(x, λ). (2.51)

From (2.38), we obtain that

∂2η1(0, λ)
∂λ2 =

d
dx

[
∂2η1(0, λ)

∂λ2

]
= 0. (2.52)

Applying the variation of parameters formula (2.3) again to solve
∂2η1(x, λ)/∂λ2 from (2.51) and using the conditions (2.52), we obtain

∂2η1(x, λ)
∂λ2 = 2

∫ x

0
[η1(x, λ)η2(t, λ) − η2(x, λ)η1(t, λ)]

∂

∂λ
η1(t, λ) dt

(2.53)
by noting that W [η1(t, λ), η2(t, λ)] = 1.

Similarly,

∂2η2(x, λ)
∂λ2 = 2

∫ x

0
[η1(x, λ)η2(t, λ) − η2(x, λ)η1(t, λ)]

∂

∂λ
η2(t, λ) dt

and, thus,

∂2η′
2(x, λ)
∂λ2 = 2

∫ x

0
[η′

1(x, λ)η2(t, λ) − η′
2(x, λ)η1(t, λ)]

∂

∂λ
η2(t, λ) dt.

(2.54)
Therefore, from (2.53) and (2.54) and noting that when D′(λn) = 0,
(2.49) and (2.50) are true, we obtain that
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D′′(λn) = 2
∫ a

0

[
η2(t, λn)

∂η1(t, λn)
∂λ

− η1(t, λn)
∂η2(t, λn)

∂λ

]
dt

= −2
∫ a

0
dt

∫ t

0
[η1(t, λn)η2(τ, λn) − η2(t, λn)η1(τ, λn)]2 dτ.

(2.55)

Equations (2.45) and (2.46) were used in obtaining the second equal-
ity. The right side of (2.55) is less than zero since the integrand in
the double integral is positive.

(4) It can be similarly proven that there is a corresponding result to (3) for
the zeros µn of D(λ) + 2: If and only if

η2(a, µn) = η′
1(a, µn) = 0, (2.56)

D′(µn) = 0 is true. Further, D′′(µn) > 0 when D′(µn) = 0. This corre-
sponds to that D(λ) + 2 has a double zero at λ = µn.

(5) Therefore, except cases in (3) or (4), only in the regions of λ in which
D(λ) < −2 or D(λ) > 2 can D′(λ) = 0 be true. The D(λ)–λ curve can
change direction only in such regions.

(6) From the results of (1)–(5), we can discuss when λ increases from −∞
to +∞ the behavior of D(λ). When λ is a large negative real number,
D(λ) > 2 by (1). As λ increases from −∞, we have D(λ) > 2 until λ
reaches the first zero λ0 of D(λ)−2. Since λ0 is not a maximum of D(λ),
D′′(λ0) �< 0; thus, D′(λ0) �= 0 by (3). The D(λ)–λ curve intersects the line
D = 2 at λ = λ0; thus, to the immediate right of λ0, we have D(λ) < 2.
Then by (2), as λ increases from λ0, D(λ) decreases until λ reaches the
first zero µ0 of D(λ) + 2. Thus, in the interval (−∞, λ0), D(λ) > 2, and
in the interval [λ0, µ0], D(λ) decreases from +2 to −2.

In general, µ0 will be a simple zero of D(λ) + 2, so the D(λ)–λ curve
intersects the line D = −2 at λ = µ0, and to the immediate right of µ0
D(λ) < −2. As λ increase, D(λ) < −2 will remain true until λ reaches the
second zero µ1 of D(λ) + 2, since, by (5), the D(λ)–λ curve can change
direction in a region where D(λ) < −2. Since µ1 is not a minimum
of D(λ), µ1 is a simple zero of D(λ) + 2 and, thus, the D(λ)–λ curve
intersects the line D = −2 again at λ = µ1, and to the immediate right
of µ1, we have D(λ) > −2; then according to (2), as λ increases from µ1,
D(λ) increases until λ reaches the next zero λ1 of D(λ) − 2. Thus, in the
interval (µ0, µ1), D(λ) < −2, and in the interval [µ1, λ1], D(λ) increases
from −2 to +2.

In general, λ1 will be a simple zero of D(λ) − 2, so the D(λ)–λ curve
intersects the line D = 2 at λ = λ1, and to the immediate right of λ1,
we have D(λ) > 2. As λ increase, D(λ) > 2 will remain to be true until
λ reaches the third zero λ2 of D(λ) − 2, since, by (5), the D(λ)–λ curve
can change direction in a region where D(λ) > 2. The argument we used
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starting from λ = λ0 can be repeated starting from λ = λ2 and can be
repeated again and again as λ increases to +∞.

Now all parts of the theorem have been proven except when D(λ) ± 2
has double zeros. If, for example, D(λ) − 2 has a double zero at a specific
λ = λ2m+1 (i.e., λ2m+2 = λ2m+1). From B.2 in Section 2.3, this can happen
only when η2(a, λ2m+1) = η′

1(a, λ2m+1) = 0; therefore, D′(λ2m+1) = 0 and
D′′(λ2m+1) < 0 is true by (3). Consequently, to the immediate right of λ =
λ2m+1 = λ2m+2 we have D(λ) < 2. In such a case, the D(λ)–λ curve merely
touches the line D = 2 at λ = λ2m+1 = λ2m+2 rather than intersects the line
D = 2 twice at λ = λ2m+1 and at λ = λ2m+2. The previous analysis of D(λ)
can repeatedly continue again. The cases where D(λ) + 2 has double zeros
can be similarly analyzed by using (4). ��

Therefore, in general, as λ changes, D(λ) changes, as shown typically in
Fig. 2.1 [1,5,15].

λ0
µ0 µ1 λ1 λ2

µ2 µ3

λ

-2

2

D

Fig. 2.1. A typical D(λ)–λ curve. The permitted energy bands in a one-dimensional
crystal with translational invariance are in the ranges of λ for which −2 ≤ D(λ) ≤ 2
(solid lines). No electronic state exists in such a crystal in the ranges of λ for which
D(λ) > 2 or D(λ) < −2 (dashed lines).

2.5 Energy Band Structure of One-Dimensional Crystals

As solutions of the one-dimensional Schrödinger differential equation with
a periodic potential (2.36), the energy band structure of one-dimensional
crystals with translational invariance has some especially simple and general
properties [1,2,5]. This was first understood by Kramers [5].

We first point out that no electronic state exists in the range (−∞, λ0).
This is due to the fact that for any λ in (−∞, λ0), D(λ) > 2, and according
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to (2.30), the two linearly independent solutions of (2.36) are divergent in
an infinite crystal. Therefore, only for λ in the range [λ0, +∞) can electronic
states exist in a crystal with translational invariance. There are five different
cases:

A. λ in an interval (λ2m, µ2m) or (µ2m+1, λ2m+1), −2 < D(λ) < 2.
According to (2.26), two linearly independent solutions of (2.36) can be
chosen as

y1(x, λ) = eik(λ)xp1(x, λ), y2(x, λ) = e−ik(λ)xp2(x, λ), (2.57)

where 0 < k(λ) < π/a and pi(x, λ) are periodic functions depending on
λ. They are the two well-known one-dimensional Bloch states φn(k, x)
and φn(−k, x) with wave vector k or −k. Their corresponding energies
can be written as εn(k) and εn(−k), with εn(−k) = εn(k). Therefore,
the intervals (λ2m, µ2m) and (µ2m+1, λ2m+1) correspond to the inside of
permitted energy bands.

It has been shown that εn(k) is always a monotonic function of k
inside each permitted energy band [2]. Here we give another simple proof.
Suppose this is not true, that there is an energy band in which εn(k) is
not a monotonic function of k. Then there must be at least one λ inside
the energy band for which there are at least two distinct k1 and k2 in
(0, π

a ) for which εn(k1) = εn(k2) = λ. That means (2.36) has at least four
linearly independent solutions for such a λ: two with k = k1 and two with
k = k2 in (2.57). This is contradictory to the fact that a second-order
linear homogeneous ordinary differential equation (2.36) can only have
two linearly independent solutions.

B. At λ = λn, D(λ) = 2.
B.1. In most cases λn is a simple zero of D(λ) − 2. According to (2.27),

(2.36) has two linearly independent solutions with forms as

y1(x, λ) = p1(x, λn), y2(x, λ) = x p1(x, λn) + p2(x, λn). (2.58)

In crystals with translational invariance, only the periodic function
solution y1 is permitted. The permitted solution y1(x, λ) actually
corresponds to a Bloch function φn(k, x) with a wave vector k = 0.
It is the periodic function ζn(x) defined in Section 2.4.1 extended to
(−∞,+∞). λn corresponding to a band edge energy at k = 0, εn(0).
For n > 0, Case B.1 corresponds to the cases where λ2m+1 < λ2m+2;
that is, ε2m+1(0) < ε2m+2(0). There is a nonzero band gap between
ε2m+1(0) and ε2m+2(0).

B.2. In some special cases, λn (n > 0) is a double zero of D(λ) − 2:
λ2m+1 = λ2m+2. According to (2.28), (2.36) has two linearly inde-
pendent solutions with forms as

y1(x, λ) = p1(x, λ2m+1), y2(x, λ) = p2(x, λ2m+1). (2.59)



2.5 Energy Band Structure of One-Dimensional Crystals 41

Equation (2.59) gives two independent Bloch functions φ2m+1(0, x)
and φ2m+2(0, x); their corresponding energies are ε2m+1(0) = λ2m+1
and ε2m+2(0) = λ2m+2. They both are periodic functions ζn(x) de-
fined in Section 2.4.1 extended to (−∞,+∞). Case B.2 can be con-
sidered as having a zero band gap between ε2m+1(0) and ε2m+2(0).

C. λ in an interval (λ2m+1, λ2m+2), D(λ) > 2.
When λ2m+1 �= λ2m+2, (λ2m+1, λ2m+2) [i.e., (ε2m+1(0), ε2m+2(0))] cor-
responds to a nonzero band gap at k = 0. In the band gap, D(λ) > 2.
According to (2.30), the two linearly independent solutions of (2.36) can
be written as

y1(x, λ) = eβ(λ)xp1(x, λ), y2(x, λ) = e−β(λ)xp2(x, λ). (2.60)

Here, β(λ) > 0 and pi(x, λ) are periodic functions. These solutions are
not permitted in crystals with translational invariance. However, we will
see that solutions such as those in (2.60) can play a significant role in
electronic states in one-dimensional crystals of finite length.

D. At λ = µn, D(λ) = −2.
D.1. In most cases, µn is a simple zero of D(λ)+2. According to (2.31),

(2.36) has two linearly independent solutions with forms as

y1(x, λ) = s1(x, µn), y2(x, λ) = x s1(x, µn) + s2(x, µn). (2.61)

In crystals of infinite size, only the semi-periodic function solution
y1 is permitted. The permitted solution y1(x, λ) actually corresponds
to a Bloch function φn(k, x) with a wave vector k = π

a ; it is the
semi-periodic function ξn(x) defined in Section 2.4.1 extended to
(−∞,+∞). µn corresponds to a band edge energy at k = π

a , εn(π
a ).

Case D.1 corresponds to the cases where µ2m < µ2m+1, that is,
ε2m(π

a ) < ε2m+1(π
a ). There is a nonzero band gap between ε2m(π

a )
and ε2m+1(π

a ).
D.2. In some special cases where µn is a double zero of D(λ) + 2:

µ2m = µ2m+1. According to (2.32), (2.36) has two linearly indepen-
dent solutions with forms as

y1(x, λ) = s1(x, µ2m), y2(x, λ) = s2(x, µ2m). (2.62)

Equation (2.62) gives two independent Bloch functions φ2m(π
a , x) and

φ2m+1(π
a , x); their corresponding energies are ε2m(π

a ) = µ2m and
ε2m+1(π

a ) = µ2m+1. They both are semi-periodic functions ξn(x) de-
fined by (2.41) extended to (−∞,+∞). Case D.2 can be considered
as having a zero band gap between ε2m(π

a ) and ε2m+1(π
a ).

E. λ in an interval (µ2m, µ2m+1), D(λ) < −2.
When µ2m �= µ2m+1, (µ2m, µ2m+1) [i.e., (ε2m(π

a ), ε2m+1(π
a ))] corresponds

to a nonzero band gap at k = π
a . In the band gap, D(λ) < −2. According
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to (2.34), the two linearly independent solutions of (2.36) can be written
as

y1(x, λ) = eβ(λ)xs1(x, λ), y2(x, λ) = e−β(λ)xs2(x, λ). (2.63)

Here, β(λ) > 0 and si(x, λ) are semi-periodic functions. These solutions
are not permitted in crystals with translational invariance. However, we
will see that solutions such as those in (2.63) can play a significant role
in the electronic states in one-dimensional finite crystals.

Therefore, in cases A, B, and D, the permitted electronic state solutions
can exist as solutions of the one-dimensional Schrödinger differential equation
with a periodic potential (2.36). By combining our discussions in those three
cases, we see that the wave vector k in εn(k) and φn(k, x) is limited in the
Brillouin zone,

−π

a
< k ≤ π

a
,

and that λn, µn and ζ(x), ξ(x) defined in Section 2.4.1 are actually the
bandedge energies and wave functions

λn = εn(0), ζn(x) = φn(0, x) (2.64)

and
µn = εn

(π

a

)
, ξn(x) = φn

(π

a
, x

)
. (2.65)

Therefore, (2.42) can be rewritten as

ε0(0) < ε0

(π

a

)
≤ ε1

(π

a

)
< ε1(0) ≤ ε2(0)

< ε2

(π

a

)
≤ ε3

(π

a

)
< ε3(0) ≤ ε4(0) < · · · . (2.66)

We also understand that the energy band structure of one-dimensional
crystals has some very simple and general properties:

1. Each energy band and each band gap occurs alternatively.
2. There is no energy band crossing or energy band overlap.
3. In each energy band, εn(−k) = εn(k) and εn(k) (k > 0) is a monotonic

function of k.
4. The minimum and the maximum of each energy band are always located

either at k = 0 or at k = π
a .

5. The band gaps are between ε2m(π
a ) and ε2m+1(π

a ) or between ε2m+1(0)
and ε2m+2(0).

A typical energy band structure of one-dimensional crystals is shown in
Fig. 2.2.

The theory of second-order linear homogeneous ordinary differential equa-
tion with periodic coefficients discussed so far has provided a general under-
standing of the band structure of one-dimensional crystals with translational
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Fig. 2.2. A typical energy band structure of one-dimensional crystals.

invariance. In the next two chapters, we will develop a theory on the elec-
tronic states in ideal one-dimensional semi-infinite crystals and finite crystals,
in which the translational invariance no longer exists. The following several
theorems on the zeros of solutions of (2.36) play a significant role in helping
us to understand the electronic states in those systems.

2.6 Zeros of Solutions

Now, we consider the solutions of (2.36) under the condition

y(a) = y(0) = 0. (2.67)

The eigenvalues are denoted by Λn and the corresponding eigenfunctions are
denoted by Ψn(x).

Theorem 2.6 (Theorem 3.1.1 in [7]).
For m = 0, 1, 2, ..., we have

ε2m

(π

a

)
≤ Λ2m ≤ ε2m+1

(π

a

)
; ε2m+1(0) ≤ Λ2m+1 ≤ ε2m+2(0). (2.68)

Proof. Since Ψn(x) is the eigenfunction corresponding to the n-th eigenvalue
under the condition (2.67), it has exactly n zeros in (0, a). According to
(2.38), η2(0, λ) = 0; thus, each Λn is the solution of the equation

η2(a, Λn) = 0 (2.69)

and the corresponding eigenfunction
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Ψn(x) = η2(x, Λn).

Therefore, η2(x, Λn) has exactly n zeros in the interval (0, a). According to
(2.38), η′

2(0, Λn) > 0; thus,

η′
2(a, Λn) < 0 (n = even); η′

2(a, Λn) > 0 (n = odd). (2.70)

Since
η1(a, Λn)η′

2(a, Λn) − η′
1(a, Λn)η2(a, Λn) = 1,

we have
η1(a, Λn)η′

2(a, Λn) = 1,

by (2.69). Therefore,

D(Λn) = η1(a, Λn) + η′
2(a, Λn) = [η′

2(a, Λn)]−1 + η′
2(a, Λn).

If n = even, from (2.70), we have

−D(Λn) = [|η′
2(a, Λn)|−1/2 − |η′

2(a, Λn)|1/2]2 + 2 ≥ 2;

that is,

D(Λn=even) ≤ −2.

Similarly, we have

D(Λn=odd) ≥ 2.

Therefore, Λn and Λn+1 are always in different band gaps, if we consider the
special cases in which ε2m(π

a ) = ε2m+1(π
a ) or ε2m+1(0) = ε2m+2(0) as a band

gap with the gap size being zero.
Now, we consider two consecutive zeros ε2m+1(0) and ε2m+2(0) of D(λ)−

2, with either D(λ) > 2 between them, or D′(λ) = 0 thus D(λ) − 2 has a
double zero at λ = ε2m+1(0) = ε2m+2(0) (see Fig. 2.1).

In the special cases where D′(ε2m+1(0)) = 0, D(λ) − 2 has repeated solu-
tions ε2m+1(0) = ε2m+2(0); then by (2.49) we always have η2(a, ε2m+1(0)) =
0 and thus (2.69) has one solution Λn = ε2m+1(0).

In most cases, D(λ) > 2 in (ε2m+1(0), ε2m+2(0)). According to (2.48), we
have η2(a, λ)D′(λ) ≤ 0 at both ε2m+1(0) and ε2m+2(0). Since D′(ε2m+1(0)) >
0 and D′(ε2m+2(0)) < 0, we have η2(a, ε2m+1(0)) ≤ 0 and η2(a, ε2m+2(0)) ≥
0. Thus, η2(a, λ) has at least one zero in [ε2m+1(0), ε2m+2(0)]. Since Λn

and Λn+1 must be in different band gaps, there is no more than one Λn in
[ε2m+1(0), ε2m+2(0)]. Thus, there is one Λn (n = odd) in [ε2m+1(0), ε2m+2(0)].

The cases of two consecutive zeros ε2m(π
a ) and ε2m+1(π

a ) of D(λ) + 2 can
be similarly considered; we will obtain the conclusion that there is one and
only one Λn (n = even) in [ε2m(π

a ), ε2m+1(π
a )].

Therefore, Λn starts occurring in [ε0(π
a ), ε1(π

a )] and always occurs alter-
natively between [ε2m(π

a ), ε2m+1(π
a )] or [ε2m+1(0), ε2m+2(0)]. ��
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Theorem 2.7 (Theorem 3.1.2 in [7]).
(i) φ0(0, x) has no zero in [0, a].
(ii) φ2m+1(0, x) and φ2m+2(0, x) have exactly 2m + 2 zeros in [0, a).
(iii) φ2m(π

a , x) and φ2m+1(π
a , x) have exactly 2m + 1 zeros in [0, a).

Proof. Since Ψ0(x) (i.e., η2(x, Λ0)) has no zero in (0, a) and ε0(0) < ε0(π
a ) ≤

Λ0, from Theorem 2.2, φ0(0, x) has at most one zero in [0, a]. Since it is a
periodic function, φ0(0, x) can only have an even numbers of zeros in [0, a);
thus, φ0(0, x) has no zero in [0, a) and no zero in [0, a]. Thus, part (i) of the
theorem is proven.

Now, we consider φ2m+1(0, x). As a periodic function, it can only have
an even number of zeros in [0, a). Since Λ2m < ε2m+1(0) ≤ Λ2m+1 and in
(0, a) Ψ2m(x) has 2m zeros and Ψ2m+1(x) has 2m+1 zeros respectively, from
Theorem 2.2 we obtain that φ2m+1(0, x) has at least 2m + 1 but no more
than 2m + 2 zeros in (0, a); thus, φ2m+1(0, x) has exactly 2m + 2 zeros in
[0, a). By using Λ2m+1 ≤ ε2m+2(0) < Λ2m+2, it can be similarly proven that
φ2m+2(0, x) has exactly 2m + 2 zeros in [0, a). Thus, part (ii) of the theorem
is proven.

As semi-periodic functions, both φ2m(π
a , x) and φ2m+1(π

a , x) can only have
an odd number of zeros in [0, a). By using Λ2m−1 < ε2m(π

a ) ≤ Λ2m (when m
= 0, the left inequality should be removed) and Λ2m ≤ ε2m+1(π

a ) < Λ2m+1,
part (iii) of the theorem can be similarly proven. ��

Now, we consider an eigenvalue problem of (2.36) in [τ, τ + a] for a real
number τ under the boundary condition

y(τ) = y(τ + a) = 0. (2.71)

The corresponding eigenvalues can be written as Λτ,n.

Theorem 2.8 (Theorem 3.1.3 in [7]).
As functions of τ , the ranges of Λτ,2m are [ε2m(π

a ), ε2m+1(π
a )] and the

ranges of Λτ,2m+1 are [ε2m+1(0), ε2m+2(0)].

Proof. Since εn(0) are the values of λ for which the corresponding solutions
φn(0, x) of (2.36) are periodic and εn(π

a ) are the values of λ for which the
corresponding solutions φn(π

a , x) of (2.36) are semi-periodic, εn(0) and εn(π
a )

will remain unchanged if the basic interval in (2.40) and (2.41) is changed
from [0, a] to [τ, τ + a]. Consequently, the conclusions of Theorem 2.6 will
remain unchanged if the basic interval is changed from [0, a] to [τ, τ + a].
Therefore, from Theorem 2.6, we have

ε2m

(π

a

)
≤ Λτ,2m ≤ ε2m+1

(π

a

)
, ε2m+1(0) ≤ Λτ,2m+1 ≤ ε2m+2(0). (2.72)

From part (iii) of Theorem 2.7, both φ2m(π
a , x) and φ2m+1(π

a , x) have
exactly 2m + 1 zeros in [0, a). Then according to Theorem 2.2, the zeros
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of φ2m(π
a , x) and φ2m+1(π

a , x) must be distributed alternatively: There is
always one and only one zero of φ2m+1(π

a , x) between two consecutive zeros
of φ2m(π

a , x), and there is always one and only one zero of φ2m(π
a , x) between

two consecutive zeros of φ2m+1(π
a , x).

Suppose x0 is any zero of φ2m(π
a , x). Let τ = x0; then φ2m(π

a , x) satisfies
(2.71):

φ2m

(π

a
, τ

)
= φ2m

(π

a
, τ + a

)
= 0.

Again, from part (iii) of Theorem 2.7, φ2m(π
a , x) has 2m zeros in the open

interval (x0, x0 + a); thus, φ2m(π
a , x) is an eigenfunction of (2.36) under the

boundary condition (2.71) corresponding to the eigenvalue Λx0,2m: Λx0,2m =
ε2m(π

a ). Similarly if x1 is any zero of φ2m+1(π
a , x), then φ2m+1(π

a , x) is an
eigenfunction of (2.36) under the boundary condition (2.71) corresponding to
the eigenvalue Λx1,2m: Λx1,2m = ε2m+1(π

a ). Hence, as τ as a variable changes
from τ = x0 to τ = x1, a zero of φ2m+1(π

a , x) next to x0, as a function of τ ,
Λτ,2m correspondingly and continuously changes from ε2m(π

a ) to ε2m+1(π
a ).

Similarly, as τ as a variable changes from τ = x1 to τ = x2, the other
zero of φ2m(π

a , x) next to x1, as a function of τ , Λτ,2m correspondingly and
continuously changes back from ε2m+1(π

a ) to ε2m(π
a ). Therefore, as functions

of τ , the ranges of Λτ,2m are [ε2m(π
a ), ε2m+1(π

a )].
Similarly, we can obtain that as functions of τ , the ranges of Λτ,2m+1 are

[ε2m+1(0), ε2m+2(0)]. The theorem is proven. ��
This theorem indicates that: There is one and only one eigenvalue Λτ,n of

(2.36) under the boundary condition (2.71) in each gap [ε2m(π
a ), ε2m+1(π

a )]
or [ε2m+1(0), ε2m+2(0)] if ε2m(π

a ) < ε2m+1(π
a ) and ε2m+1(0) < ε2m+2(0). In

some special cases when ε2m(π
a ) = ε2m+1(π

a ) or ε2m+1(0) = ε2m+2(0), then
we have Λτ,2m = ε2m(π

a ) or Λτ,2m+1 = ε2m+1(0).

A direct consequence of Theorem 2.8 is that in general a one-dimensional
Bloch function φn(k, x) does not have a zero except k = 0 or k = π

a .
Since if φn(k, x) has a zero at x = x0, φn(k, x0) = 0, then we must have
φn(k, x0 + a) = 0. According to Theorem 2.8, the corresponding eigen-
value Λτ,n must be in either [ε2m(π

a ), ε2m+1(π
a )] or [ε2m+1(0), ε2m+2(0)]. Since

(ε2m(π
a ), ε2m+1(π

a )) and (ε2m+1(0), ε2m+2(0)) are band gaps, only the Bloch
functions at a bandedge φn�=0(0, x) or φn(π

a , x) may have a zero. This is prob-
ably quite different from what some people have thought to be the case [16].

Theorem 2.9 (Theorem 3.2.2 in [7]).
Any nontrivial solution of (2.36) with λ ≤ ε0(0) has at most one zero in

−∞ ≤ x ≤ +∞.

Proof. : This theorem can be proven in two steps.
(1) From part (i) of Theorem 2.7, we know that φ0(0, x), which is a

nontrivial solution of (2.36) with λ = ε0(0), has no zero in [0, a] and thus
has no zero in (−∞,+∞).
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(2) If any nontrivial solution y(x, λ) of (2.36) with λ ≤ ε0(0) has more
than one zero in (−∞,+∞), then from Theorem 2.2, φ0(0, x) would have at
least one zero between the two zeros x1 and x2 of y(x, λ). This is directly
contradictory to (1). ��

Theorems 2.7–2.9, especially Theorem 2.8, play a fundamental role in the
theory of electronic states in ideal one-dimensional crystals of finite length.
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3 Surface States in One-Dimensional
Semi-infinite Crystals

A one-dimensional semi-infinite crystal is the simplest periodic system with a
boundary. Based on a Kronig–Penney model, Tamm was the first to find that
the termination of the periodic potential due to the existence of a barrier at
the boundary in a one-dimensional semi-infinite crystal can cause localized
surface states to exist in band gaps below the barrier height [1]. Now after
more than 70 years, the investigations of the properties of surface states and
relevant physical and chemical processes have become an important field in
solid state physics and chemistry [2–6]. Among the many surface states of
different origins, the surface states caused purely by the termination of the
crystal periodic potential are not only the simplest but also the most fun-
damental surface states. In this chapter, we present a general single-electron
analysis on the existence and properties of surface states caused purely by the
termination of the crystal periodic potential in one-dimensional semi-infinite
crystals.

Basically, there are two different approaches for theoretical investiga-
tions of surface states: the potential approach and the atomic orbital or
tight-binding approach [2,7]. The potential approach is mainly developed
by physicists. The crystal potential models treated in the investigations of
surface states in one-dimensional semi-infinite crystals include the Kronig–
Penney model [1], the nearly-free electron model [8–10], the square potential
model [10], the sinusoidal potential model [2,7,10,11], and so forth, and much
significant progress has been made. In particular, by using a sinusoidal crys-
tal potential model, Levine [11] systematically investigated the surface states
caused by a step barrier of variable barrier height at a variable location and
obtained many significant interesting results. In this chapter, we investigate
the properties of surface states in general one-dimensional semi-infinite crys-
tals without using a specific crystal potential model and try to obtain a more
general understanding of the problem. This chapter is organized as follows:
In Section 3.1, we present the problem in a general way. In Section 3.2, two
general theorems on the properties of surface states in one-dimensional semi-
infinite crystals are presented. In Section 3.3, we consider the simplest cases
where the barrier height outside the crystal is infinite. In Section 3.4 we
consider cases where the barrier height is finite. Section 3.5 is devoted to
comparisons with previous work and includes discussions.
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3.1 Basic Considerations

For a one-dimensional infinite crystal, the Schrödinger differential equation
can be written as

−y′′(x) + [v(x) − λ]y(x) = 0, − ∞ < x < +∞, (3.1)

where
v(x + a) = v(x)

is the periodic crystal potential. We assume (3.1) is solved and all solutions
are known. The eigenvalues are energy bands εn(k) and the corresponding
eigenfunctions are Bloch functions φn(k, x), where n = 0, 1, 2, .... and
−π

a < k ≤ π
a . We are mainly interested in cases where there is always a

band gap between two consecutive energy bands. The band gaps of (3.1) are
always located either at the center of the Brillouin zone k = 0 or at the
boundary of the Brillouin zone k = π

a and can be ordered: The band gap
n = 0 is the lowest band gap at k = π

a , the band gap n = 1 is the lowest
band gap at k = 0, and so on.

Up to now, most theoretical investigations of the basic physics of surface
states were based on a semi-infinite crystal approach. It is usually assumed
that the potential inside the crystal is the same as that in an infinite crystal.
Based on this assumption, in general, a termination of the crystal periodic
potential at the boundary of a semi-infinite one-dimensional crystal has two
variables: the position of the termination τ and the potential outside the
crystal Vout(x).

For a one-dimensional semi-infinite crystal with a left boundary at τ , the
potential can be written as

v(x, τ) = Vout(x) if x ≤ τ

= v(x) if x > τ. (3.2)

We are only interested in cases where outside the semi-infinite crystal there is
a barrier; that is, Vout(x) is always above v(x) and the energy of the surface
state Λ. We call a semi-infinite crystal given by (3.2) a right semi-infinite
crystal, whereas a left semi-infinite crystal is defined by a periodic potential in
(−∞, τ). The eigenvalues Λ and eigenfunctions ψ(x) for a right semi-infinite
crystal with a certain boundary condition at the boundary τ , determined by
Vout(x), can be obtained as solutions of the Schrödinger differential equation

−ψ′′(x) + [v(x) − Λ]ψ(x) = 0, τ < x < +∞. (3.3)

A finite Vout(x) will allow a small part of the electronic state to spill out of the
semi-infinite crystal and thus make the boundary condition to become [12]

(ψ′/ψ)x=τ = σ, (3.4)
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where σ is a positive number depending on Vout(x) for a right semi-infinite
one-dimensional crystal given by (3.2). σ will decrease monotonically as
Vout(x) decreases. Although Vout(x) may have different forms, the effect of
different Vout(x) on the problem treated here can be simplified to be given
by the effect of σ.

In general, there may be two different types of solutions for (3.3) and
(3.4).

For any τ and Vout, inside each energy band of the infinite crystal, that
is, for any specific Λ in (ε2m(0), ε2m(π

a )) or (ε2m+1(π
a ), ε2m+1(0)) where m =

0, 1, 2, ..., there is always a solution of (3.3) and (3.4) inside the semi-infinite
crystal that is

ψn,k(x) = c1φn(k, x) + c2φn(−k, x), (3.5)

where 0 < k < π
a can be uniquely determined by εn(k) = Λ. This is because

both φn(k, x) and φn(−k, x) are two linearly independent nondivergent solu-
tions of (3.3) and, thus, one of their linear combinations can always satisfy
the boundary condition (3.4). In this chapter, we are not interested in those
states.

However, for a specific Λ in an energy band gap of the infinite crystal
[ε2m(π

a ), ε2m+1(π
a )] or [ε2m+1(0), ε2m+2(0)], there is only one nondivergent

solution of (3.3) and this solution usually cannot also satisfy the boundary
condition (3.4). Only when a nondivergent solution also satisfies (3.4) can we
have a solution of both (3.3) and (3.4). If it exists, the energy Λ of such a
solution is dependent on τ and Vout. The existence and properties of such a
state are the main interest of this chapter.

In general, a solution of (3.3) and (3.4) with an energy Λ inside a band
gap or at a band edge is different from (3.5) if it exists. Its wave function
inside a right semi-infinite one-dimensional crystal always has the form1

ψ(x, Λ) = e−β(Λ)xf(x, Λ), (3.6)

1Any solution y(x) of (3.3) can always be expressed as a linear combination of
two linearly independent solutions of (3.1):

y(x, Λ) = c1y1(x, Λ) + c2y2(x, Λ).

If Λ is inside a band gap at k = 0, the two linearly independent solutions y1 and y2

can be chosen as y1(x, Λ) = eβ(Λ)xp1(x, Λ) and y2(x, Λ) = e−β(Λ)xp2(x, Λ), where
pi(x, Λ) are periodic functions and β(Λ) is a positive number, all depending on Λ.
For a nondivergent solution in right semi-infinite crystals, c1 = 0 has to be chosen.

If Λ is at a band edge at k = 0, the two linearly independent solutions y1 and
y2 can be chosen as y1(x, Λ) = p1(x, Λ) and y2(x, Λ) = x p1(x, Λ) + p2(x, Λ), where
pi(x, Λ) are periodic functions depending on Λ. For a nondivergent solution in semi-
infinite crystals, we have to choose c2 = 0.

The combination of the two requirements leads to (3.6) for a band gap at k = 0.
Similar arguments can be applied for a band gap at k = π

a
as well.
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where f(x, Λ) is a periodic function f(x + a, Λ) = f(x, Λ) if the band gap
is at the center of the Brillouin zone k = 0, or a semi-periodic function
f(x + a, Λ) = −f(x, Λ) if the band gap is at the boundary of the Brillouin
zone k = π

a . β(Λ) is a non-negative real number depending on Λ. A surface
state located near the boundary has β(Λ) > 0. However, a state with β(Λ) = 0
can also be a solution of (3.3) and (3.4) for some specific τ and Vout, thus,
should also be considered. It is easy to see that ψ(x, Λ) in (3.6) can always
be chosen as a real function.2

Correspondingly, inside a left semi-infinite one-dimensional crystal, such
a state always has the form

ψ(x, Λ) = eβ(Λ)xf(x, Λ). (3.6a)

3.2 Two Relevant Theorems

If a specific boundary τ and a specific Vout(x) cause a localized surface state
to exist in a specific band gap in a right semi-infinite crystal, the following two
relevant theorems concerning how the energy of the surface state depends on τ
and Vout can be proven with the help of the Hellmann–Feynman theorem [13]:

Theorem 3.1.
For the energy Λn of a surface state in a specific n-th band gap,

∂

∂σ
Λn > 0. (3.7)

Proof. The theorem can be proven in two steps.
(1) In the simple cases where Vout(x) = Vout is a step barrier. Define a

new potential

Ṽ (x, η) = (1 − η)v0(x, τ) + η v1(x, τ),

where

vi(x, τ) = Vi if x ≤ τ

= v(x) if x > τ ;

V1 = V0 + δV and δV is an infinitesimal positive number. According to
the Hellmann–Feynman theorem [13], for an eigenvalue Λ̃n(η) of a localized
surface state | 〉n of the Hamiltonian H̃ = T + Ṽ (x, η), where T is the kinetic
energy operator, we have

∂Λ̃n(η)
∂η

=

〈
∂H̃(η)

∂η

〉
n

=

〈
∂Ṽ (η)

∂η

〉
n

= 〈v1(x, τ) − v0(x, τ)〉n > 0.

2Since ψ∗(x, Λ) must also be a solution of (3.3) and (3.4).
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since V1 > V0. Thus, Λ̃n(η) is a monotonic increasing function of η. How-
ever, Ṽ (x, 0) = v0(x, τ); thus, Λ̃n(0) = Λn(τ, Vout = V0), whereas Ṽ (x, 1) =
v1(x, τ) and thus Λ̃n(1) = Λn(τ, Vout = V1). Therefore, Λn(τ, Vout = V1) >
Λn(τ, Vout = V0); that is,

∂Λn

∂Vout
> 0.

Obviously ∂Vout/∂σ > 0 for a right semi-infinite crystal; consequently,

∂Λn

∂σ
=

∂Λn

∂Vout

∂Vout

∂σ
> 0

for those simple cases where Vout(x) is a step barrier. This is a special case
of (3.7).

(2) Since for a specific v(x), Λn is a function of only τ and σ, (3.7) should
also be true for more Vout(x) in general. ��

A similar discussion for a left semi-infinite crystal can lead to the state-
ment that if a surface state solution of energy Λn exists in the same band
gap in a left semi-infinite crystal with periodic potential in (−∞, τ), then

∂Λn/∂σ < 0 (3.7a)

is true, just the opposite of (3.7). This is due to the fact that for a left
semi-infinite crystal, σ is a negative number depending on Vout and thus
∂Vout/∂σ < 0.

Theorem 3.2.
The energy Λn of a surface state in a right semi-infinite crystal increases

as τ increases, or
∂

∂τ
Λn > 0. (3.8)

Proof. Suppose a surface state with an energy Λn(τ0, Vout) exists in the n-th
band gap for a specific τ = τ0 and Vout. Now, consider that τ1 = τ0 + δτ ,
where δτ is an infinitesimal positive number. We can define a new potential

Ṽ (x, η) = (1 − η)v(x, τ0) + η v(x, τ1),

where

v(x, τ) = Vout if x ≤ τ

= v(x) if x > τ,

and a new Hamiltonian H̃(η) = T +Ṽ (x, η), where T is the kinetic energy op-
erator. According to the Hellmann–Feynman theorem [13], for an eigenvalue
Λ̃n(η) of a localized surface state | 〉n of H̃(η), we have
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∂Λ̃(η)
∂η

=

〈
∂H̃(η)

∂η

〉
n

=

〈
∂Ṽ (η)

∂η

〉
n

= 〈v(x, τ1) − v(x, τ0)〉n > 0

since Vout > v(x), thus v(x, τ1) − v(x, τ0) > 0. Hence, Λ̃n(η) is a mono-
tonic increasing function of η. However, Ṽ (x, 0) = v(x, τ0), thus, Λ̃n(0) =
Λn(τ0, Vout), whereas Ṽ (x, 1) = v(x, τ1), thus, Λ̃n(1) = Λn(τ1, Vout). There-
fore, Λn(τ1, Vout) > Λn(τ0, Vout); that is ∂Λn/∂τ > 0. ��

A similar discussion for a left semi-infinite crystal can lead to the inter-
esting point that if a surface state solution of energy Λn exists in the same
band gap in a left semi-infinite crystal with periodic potential in (−∞, τ),
then ∂Λn/∂(−τ) > 0 is true. In other words,

∂

∂τ
Λn < 0, (3.8a)

just the opposite of (3.8).
These two theorems on the properties of the surface states in one-

dimensional semi-infinite crystal should be true in general for any crystal
potential v(x), with the crystal boundary τ and the barrier potential outside
the crystal Vout(x).

3.3 Surface States in Ideal Semi-infinite Crystals

The significance of Theorem 3.2 and its consequence can be more clearly seen
if we consider the ideal semi-infinite crystals where the potential outside the
crystal is Vout(x) = +∞ and thus (3.4) becomes

ψ(x, Λ)|x=τ = 0. (3.9)

The solutions of (3.3) and (3.9) can be investigated with the help of the
theorems in Chapter 2 regarding the zeros of solutions of one-dimensional
Schrödinger differential equations with a periodic potential.

First, as a direct consequence of (3.9) and Theorem 2.8, there is at most
one solution3 of (3.3) and (3.9) in each band gap of (3.1).

Now, we consider a specific n-th band gap at k = kg, where either kg = 0
for n = 1, 3, 5, ... or kg = π

a for n = 0, 2, 4, .... According to Theorem 2.7, the
two band edge wave functions φn(kg, x) and φn+1(kg, x) have exactly n + 1
zeros for x in a potential period a. The locations of these zeros are determined

3A function (3.6) satisfying (3.9) must satisfy ψ(τ +a, Λ) = 0 as well. According
to Theorem 2.8, for any real τ there is always one and only one solution of (3.1) in
each gap for which y(τ, λ) = y(τ + a, λ) = 0. However, such a solution may or may
not have the form of (3.6): It may have the form of y(x, λ) = e−β(λ)xf(x, λ). Only
when such a solution has the form of (3.6) is it a solution of (3.3) and (3.9).
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by the crystal potential v(x). According to Theorem 2.2, the zeros of φn(kg, x)
and φn+1(kg, x) must be distributed alternatively: There is always one and
only one zero of φn+1(kg, x) between two consecutive zeros of φn(kg, x), and
there is always one and only one zero of φn(kg, x) between two consecutive
zeros of φn+1(kg, x).

If τ is at any one of these zeros, then a solution of (3.3) and (3.9) is
simple: The corresponding bandedge wave function φn(kg, x) or φn+1(kg, x)
satisfies both (3.3) and (3.9) and thus is a solution ψ(x, Λ) of (3.3) and (3.9)
in that band gap, with the eigenvalue Λn(τ) equal to the corresponding band
edge energy εn(kg) or εn+1(kg). The semi-infinite semiconductor has a band
edge state solution for this specific band gap n. We can use a label M(n) to
express the set of all zeros of φn(kg, x) and φn+1(kg, x). In the interval [0, a)
– where 0 can be chosen to be any specific zero of φn(kg, x) – the set M(n)
contains n + 1 zeros of φn(kg, x) and n + 1 zeros of φn+1(kg, x).

If τ is not a zero of either φn(kg, x) or φn+1(kg, x), it must be between
a zero of φn(kg, x) and a zero of φn+1(kg, x): Suppose xl,n and xr,n are two
consecutive zeros of φn(kg, x), on the left and the right of τ respectively, and
suppose xm,n+1 is the zero of φn+1(kg, x) in the interval (xl,n, xr,n). Then τ
must be either in the interval (xl,n, xm,n+1) or in the interval (xm,n+1, xr,n).

Because Λn(xl,n) = Λn(xr,n) = εn(kg) and Λn(xm,n+1) = εn+1(kg), when
τ increases from xl,n to xm,n+1, Λn(τ) as a continuous function of τ goes up
from εn(kg) to εn+1(kg). Therefore, when τ is in the interval (xl,n, xm,n+1),
(3.8) is true and a surface state solution of (3.3) and (3.9) may exist in the
right semi-infinite crystal. We can use a label L(n) to express the set of
all such points. In the interval [0, a), the set L(n) contains n + 1 sub-open-
intervals, since from each of the n + 1 zeros of φn(kg, x) in the interval [0, a)
one can obtain such an open interval in which (3.8) is true. As an example, in
Fig. 3.1 is shown Λ1(τ) (the energy of the surface state in the lowest band gap
at k = 0) as a function of τ in an interval of length a for a right semi-infinite
crystal.

We can also use a label R(n) to express the set of all points in the interval
(xm,n+1, xr,n). In the interval [0, a), the set R(n) also contains n+1 sub-open-
intervals. It is easy to see that when τ is in any such interval (xm,n+1, xr,n),
there is no solution for (3.3) and (3.9): If there were a solution, then Λn(τ) as a
continuous function of τ would go down from εn+1(kg) to εn(kg) when τ goes
from xm,n+1 to xr,n and that means Λn(τ) would decrease as τ increases and
this is contradictory to (3.8). However, when τ is in the interval (xm,n+1, xr,n),
a surface state solution can exist in the left semi-infinite crystal (−∞, τ) since
then (3.8a) is true.4 Figure 3.2 shows Λ1(τ) as a function of τ in the interval
[0, a) for a left semi-infinite crystal. Note in both Fig. 3.1 and Fig. 3.2, there
are regions in which there is no Λ1 for a τ , indicating that no surface state
solution exists in the right semi-infinite crystal or in the left semi-infinite

4Therefore, ∂Λn/∂τ > 0 when τ is in L(n), ∂Λn/∂τ < 0 when τ is in R(n), and
∂Λn/∂τ = 0 when τ is in M(n).
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 τ
ε1(0)

ε2(0)

Λ
1(τ

)

Fig. 3.1. Λ1(τ) as a function of τ in the interval [0, a] for a right semi-infinite crystal
with periodic potential in (τ, +∞). Zeros of φ1(0, x) are shown as solid circles and
zeros of φ2(0, x) are shown as open circles. The dotted lines indicate that a surface
state exists in the semi-infinite crystal if τ is in the corresponding regions.

crystal for that τ . Obviously, any τ in the interval [0, a) must belong to one
set of either L(n), M(n), or R(n) for any specific band gap n. Therefore, for
Vout = +∞, it is not that a termination of the periodic potential at any τ
in a potential period interval [0, a) may cause a surface state existing in a
specific band gap in the right semi-infinite one-dimensional crystal or in the
left semi-infinite one-dimensional crystal.

Therefore, we have seen that there are two seemingly different types of
solutions for (3.3) and (3.9) in a band gap: a band edge state or a surface
state.5 Essentially they are not very different: A band edge state can also be
considered merely as a special surface-like state with its energy equal to a
band edge energy and thus its decay factor in (3.6) is β(Λ) = 0.

5An interesting point is that due to (3.6), if τ is in either L(n) or M(n), a
solution of (3.3) and (3.9) always has

ψ(x, Λ)|x=τ+Na = 0

if N is a positive integer; that is, a solution of the right semi-infinite crystal is
also a solution of a finite crystal of length Na. Note that this equation is true
for any integer N ; therefore, the energy Λ of a such state is independent of the
crystal length. Similarly, if τ is in R(n) or M(n), such a solution of the left semi-
infinite crystal is also a solution for a finite crystal of length Na and its energy Λ
is independent of the crystal length.
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 τ
ε1(0)

ε2(0)

Λ
1(τ

)

Fig. 3.2. Λ1(τ) as a function of τ in the interval [0, a] for a left semi-infinite crystal
with periodic potential in (−∞, τ). Zeros of φ1(0, x) are shown as solid circles and
zeros of φ2(0, x) are shown as open circles. The dashed lines indicate that a surface
state exists in the semi-infinite crystal if τ is in the corresponding regions.

3.4 Cases Where Vout Is Finite

Now, we consider cases where Vout is finite. For a finite Vout, the boundary
condition (3.4) rather than (3.9) should be used for right semi-infinite one-
dimensional crystals. Equation (3.9) corresponds to σ = +∞ and σ will
decrease monotonically as Vout decreases.

Since (3.6) is a general form of a solution of (3.3) and (3.4) in a band gap,
from (3.4) and (3.6) we have

f ′(x, Λ)
f(x, Λ)

∣∣∣∣
x=τ

− β(Λ) = σ. (3.10)

Unlike the simplest cases discussed in Section 3.3, now the intervals in
which a termination boundary τ can cause a surface state in a band gap will
depend on Vout(x) and, consequently, the corresponding Λn(τ) − τ curve in
a right semi-infinite crystal such as shown in Fig. 3.1 will move to the right.

We still consider the lowest band gap at k = 0 as an example. For a
solution of (3.3) and (3.4) with the energy at the lower band edge ε1(0),
(3.10) becomes

φ′
1(0, x)

φ1(0, x)

∣∣∣∣
x=τ

= σε1(0) (3.11)

by noting that β(Λ) = 0 in (3.6) for a state with an energy of a band edge
and that σ depends on the energy of the state for a specific Vout.

φ′
1(0,x)

φ1(0,x)
is determined by the periodic potential v(x). In Fig. 3.3 is shown a typical
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φ′
1(0,x)

φ1(0,x) as a function of x. Given a specific finite Vout and thus a specific
positive σε1(0), on the right of a (any) zero xa,1 (solid circle) of the lower
band edge wave function φ1(0, x), there is always a specific point xa,1 + δa,1
where δa,1 > 0, which makes

φ′
1(0, xa,1 + δa,1)

φ1(0, xa,1 + δa,1)
= σε1(0)

true, as is shown by the short-dashed lines in Fig. 3.3. The smaller Vout is,
the smaller σε1(0) is and the larger δa,1 is, as can be clearly seen in Fig. 3.3.

φ
′ 1
/φ

1

x

Fig. 3.3. φ′
1(0,x)

φ1(0,x) as function of x in the same interval [0, a]. Zeros of φ1(0, x) are

shown as solid circles. The two short lines indicate the two τ for which φ′
1(0,τ)

φ1(0,τ) = σ
is satisfied. Note they are on the right of the zeros for a positive finite σ.

Depending on the crystal potential v(x), the details of Fig. 3.3 might be
more or less different, such as the shapes of φ′

1(0,x)
φ1(0,x) and the locations of the

zeros of it. However, there is always at least one zero of φ′
1(0, x) and thus

one zero of φ′
1(0,x)

φ1(0,x) between two consecutive zeros of φ1(0, x); therefore, the
analysis given here is generally valid for any v(x): For a finite Vout and thus a
finite σε1(0), there is always a x = xa,1 + δa,1 for which δa,1 > 0, which makes
(3.11) true. Thus, a right semi-infinite crystal with a boundary τ = xa,1+δa,1
and a potential barrier Vout will have a solution of (3.3) and (3.4) with energy
Λ1 = ε1(0); inside the semi-infinite crystal, the corresponding wave function
obeys ψ(x, Λ1) = φ1(0, x).

A similar analysis can be applied to the corresponding upper band edge as
well: When Vout decreases from +∞ to a specific finite value, the boundary τ
for a solution of (3.3) and (3.4) with Λ1 = ε2(0) (the upper band edge energy
of the lowest band gap at k = 0) will move to the right, from τ = xa,2 to a
specific τ = xa,2 +δa,2, in which δa,2 > 0. Similar analysis can also be applied
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to each surface state in that band gap; thus, instead of the Λ1(τ) − τ curves
in Fig. 3.1, we have Λ1(τ) − τ curves for a finite Vout, as shown in Fig. 3.4:
The Λ1(τ) − τ curves in Fig. 3.4 are on the right of the Λ1(τ) − τ curves in

 τ
ε1(0)

ε2(0)

Λ
1(τ

)

Fig. 3.4. Λ1(τ) as a function of τ in the same interval [0, a] for a finite Vout(x)
for a right semi-infinite crystal with periodic potential in (τ, +∞). Zeros of φ1(0, x)
are shown as solid circles and zeros of φ2(0, x) are shown as open circles. The
dotted lines indicate that a surface state exists in the semi-infinite crystal if τ is in
the corresponding regions. Note that no surface state exists when τ is in the near
neighborhood of a solid circle.

Fig. 3.1; how far away it is depends on the barrier potential Vout (and the
crystal potential v(x)).

Corresponding to Fig. 3.2, in Fig. 3.5 are shown the Λ1(τ)− τ curves in a
left semi-infinite crystal with periodic potential in (−∞, τ) for a finite Vout,
for which ψ′

ψ = σ < 0 is the boundary condition. Thus, the curves in Fig. 3.5
are always on the left of the corresponding curves in Fig. 3.2.

Therefore, the effect of a finite Vout is to change the positions (and prob-
ably, the shapes) of the Λ1(τ)− τ curves. This can also be understood on the
basis of the theorems in Section 3.2: Because for a surface state in the n-th
gap, ∂

∂σ Λn > 0 and ∂
∂τ Λn > 0 for a right semi-infinite crystal ( ∂

∂σ Λn < 0 and
∂
∂τ Λn < 0 for a left semi-infinite crystal), a τ increase in a right semi-infinite
crystal (a τ decrease in a left semi-infinite crystal) is needed to compensate
for the possible effect of a Vout decrease in order to keep a fixed Λ1.

Again, in both Fig. 3.4 and Fig. 3.5, there are regions in which there is
no Λ1 for a τ , indicating that no surface state solution exists in a right semi-
infinite crystal or in a left semi-infinite crystal for that τ . Therefore, for a
specific finite Vout, again it is not that a termination of the periodic potential
at any τ in a potential period interval [0, a) may cause a surface state existing
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 τ
ε1(0)

ε2(0)

Λ
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)

Fig. 3.5. Λ1(τ) as a function of τ in the same interval [0, a] for a finite Vout(x)
for a left semi-infinite crystal with periodic potential in (−∞, τ). Zeros of φ1(0, x)
are shown as solid circles and zeros of φ2(0, x) are shown as open circles. The
dashed lines indicate that a surface state exists in the semi-infinite crystal if τ is in
the corresponding regions. Note that no surface state exists when τ is in the near
neighborhood of a solid circle.

in this band gap in the right semi-infinite one-dimensional crystal or in the
left semi-infinite one-dimensional crystal. A consequence of the moving of
Λ1(τ) − τ curves due to a finite Vout is that there is no longer a surface state
or a band edge state possible for a τ in the near neighborhood of a zero of
the lower band edge wave function, as can be clearly seen in Fig. 3.4 and
Fig. 3.5.

The analysis presented here for the lowest band gap at k = 0 is valid for
a general crystal potential v(x) and outside potential Vout. A similar analysis
can also be applied to other band gaps and results corresponding to Figs.
3.1–3.5 can be obtained.

The left side of (3.10) is determined by v(x) and τ and the right side is
determined by Vout. After v(x) and Vout are given, Λn(τ) as a function of
τ , such as shown in Fig. 3.4 and Fig. 3.5, is uniquely determined. Therefore,
there is at most one state of type (3.6) or (3.6a) in each band gap in a semi-
infinite one-dimensional crystal; that is, generally there is at most one surface
state (β > 0) or band edge state (β = 0) in each band gap in a semi-infinite
one-dimensional crystal under the assumption that the potential inside the
crystal is the same as in an infinite crystal without a boundary.
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3.5 Comparisons with Previous Work and Discussions

In this chapter, we have presented a general analysis of the surface states
due to the termination of the crystal periodic potential in one-dimensional
semi-infinite crystals. Although to the author’s knowledge the two theorems
in Section 3.2 and the general analysis given in this chapter have not been
explicitly published before, many results presented here have been more or
less given in previous theoretical investigations based on different specific
potential models.

Many previous investigations of the conditions for the existence of surface
states in one-dimensional semi-infinite crystals were based on a nearly free
electron model and for the lowest band gap at k = π

a [2]. By using a nearly
free electron model, many authors [8–10] found that the termination of the
periodic potential at a periodic potential minimum rather than at a poten-
tial maximum can cause a surface state in the lowest band gap at k = π

a ;
that is, only a “Tamm” type of surface state rather than a “Shockley” type
of surface state could exist in that band gap. More generally, Goodwin [9]
found that in a nearly free electron model, a surface state could appear in
a specific band gap when the termination is at a minimum rather than at a
maximum of the corresponding Fourier component of the crystal potential.
All of these are consistent with our general result obtained in Section 3.4 that
a surface state is not possible in a band gap for a τ equal to a zero of the
lower band edge wave function: In a nearly free electron model, the zeros of
the lower band edge wave function of a band gap are always at the maxima
of the corresponding Fourier component of the crystal potential and the zeros
of the upper band edge wave function are always at the minima of the cor-
responding component of the crystal potential. Our general results (Figs. 3.4
and 3.5) indicate that a surface state could not exist when τ is in the near
neighborhood of the zeros of the lower band edge wave function. For the
lowest band gap at k = π

a , this means that when τ is in the neighborhood of
a maximum of the crystal potential, a surface state cannot exist. Therefore,
only a “Tamm” type rather than a “Shockley” type of surface state can exist.

A particularly interesting work is a systematic investigation by Levine [11]
on the existence of surface states in different band gaps in a sinusoidal crystal
potential (Mathieu problem) for different boundary positions. By using some
further approximations, Levine found that for the n-th band gap, a potential
period [0, a) can be separated into 2(n + 1) intervals, and only when the
boundary is in one of the n + 1 specific intervals can there be a surface
state in the band gap in the semi-infinite one-dimensional crystal. These
n+1 surface-state-allowed intervals are separated by the n+1 surface-state-
unallowed intervals. In each of the surface-state-allowed intervals, the energy
of the surface state increases as the boundary goes inside the semi-infinite
crystal. The results obtained in Section 3.4 are more general yet consistent
with Levine’s results. Since for a sinusoidal crystal potential the properties
of two band edge wave functions φn(kg, x) and φn+1(kg, x) of a specific band
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gap, including their zeros, φ′
n(kg,x)

φn(kg,x) ,
φ′

n+1(kg,x)
φn+1(kg,x) , and so forth, can be precisely

known [e.g.,14], many results in [11] may be directly obtained from the general
analysis in Sections 3.2–3.4 without the use of those further approximations.

Many people believed that a termination of the periodic potential in a
one-dimensional semi-infinite crystal always causes a surface state to exist
in each band gap below the potential barrier. From the analysis presented
here, we have seen that this is in fact a misconception: The termination of
the periodic potential v(x) at the boundary of a semi-infinite one-dimensional
crystal may or may not cause a state in a specific band gap. If it does cause
a state for that specific band gap, this state may be either a surface state
located near the boundary of the semi-infinite crystal or a band edge state
with a decay factor β = 0; thus, it does not decay in the semi-infinite crystal
at all.

It does not seem very easy to experimentally verify the behaviors of the
electronic surface states as indicated by the two theorems given here. Never-
theless, although more work is needed to extend these theorems to describe
the behavior of surface modes in photonic crystals, it is interesting to see
that the behavior of the surface states has been observed experimentally or
obtained in the numerical calculations of the surface modes in photonic crys-
tals. For example, Robertson et al. [15] observed experimentally that the
existence of surface modes in two-dimensional photonic crystals depends on
the location of termination of the photonic crystal; Meade et al. [16] found
that a “higher termination value” (corresponding to a “thicker” semi-infinite
crystal) yields a lower value of the surface band frequency in their three-
dimensional photonic crystal calculations; Ramos-Mendieta and Halevi [17]
found in their calculation on two-dimensional semi-infinite photonic crystals
that when the termination boundary goes inside, the frequency of the surface
modes rises and the existence of the surface modes depends on the location of
the termination of the photonic crystal. Yang et al. [18] in their investigations
on the surface modes in two-dimensional photonic crystals obtained very sim-
ilar results by calculations theoretically and observed them experimentally.
Investigations by Vlasov et al. [19] also observed that the existence and the
locations of surface modes in two-dimensional photonic crystals depends on
the location of termination of the photonic crystal. All of these observations
are consistent with the analysis on the electronic surface states made here.
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4 Electronic States in Ideal One-Dimensional
Crystals of Finite Length

In this chapter, we present a general investigation on the electronic states
in ideal one-dimensional crystals of finite length L = Na, where a is the
potential period and N is a positive integer.1 On the basis of the theory of
differential equations in Chapter 2, exact and general results on the electronic
states in such an ideal finite crystal can be analytically obtained. We will see
that in obtaining the results in this chapter, it is the understanding of the
zeros of the solutions of a one-dimensional Schrödinger differential equation
with a periodic potential that plays a fundamental role.

This chapter is organized as follows. After giving a basic consideration of
the problem in Section 4.1, in Section 4.2 we prove the major results of this
chapter: In contrast with the conception that all electronic states are Bloch
waves in a one-dimensional infinite crystal, there are two different types of
electronic states in an ideal one-dimensional finite crystal. In Section 4.3, we
give more discussions on the boundary-dependent states, which are a basic
distinction of the quantum confinement of Bloch waves. In Section 4.4, we
treat one-dimensional symmetric finite crystals in which the energies of all
electronic states can be obtained from the bulk energy band structure. In
Sections 4.5–4.7 are comments on several relevant problems. In Section 4.8 is
a simple summary.

4.1 Basic Considerations

We again write the Schrödinger differential equation (2.36) in a one-dimen-
sional crystal with a periodic potential:

−y′′ + [v(x) − λ]y = 0, − ∞ < x < +∞, (4.1)

where v(x + a) = v(x) is the periodic crystal potential.
We assume that (4.1) is solved. The eigenvalues of (4.1) are energy bands

εn(k) and the corresponding eigenfunctions are Bloch functions φn(k, x),
where n = 0, 1, 2, ... and −π

a < k ≤ π
a . We are mainly interested in the cases

where there is always a band gap between two consecutive energy bands of
(4.1). For these cases, the band edges εn(0) and εn(π

a ) occur in the order

1Part of the results in this chapter was published in [1, 2].
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ε0(0) < ε0

(π

a

)
< ε1

(π

a

)
< ε1(0) < ε2(0)

< ε2

(π

a

)
< ε3

(π

a

)
< ε3(0) < ε4(0) < · · · . (4.2)

The band gaps are between ε2m(π
a ) and ε2m+1(π

a ) or between ε2m+1(0) and
ε2m+2(0).

For an ideal one-dimensional crystal of finite length L = Na, we assume
that the potential inside the crystal is still v(x), as in (4.1). The two ends of
the crystal are denoted as τ and τ + L, where τ is a real number.

The eigenvalues Λ and eigenfunctions ψ(x, Λ) of the electronic states in
the finite crystal are solutions of the Schrödinger differential equation

−ψ′′(x) + [v(x) − Λ]ψ(x) = 0, τ < x < τ + L, (4.3)

inside the crystal with certain boundary conditions at the two boundaries τ
and τ + L. For an ideal finite crystal, we have the boundary conditions

ψ(x) = 0, x ≤ τ or x ≥ τ + L. (4.4)

Our purpose is to find solutions of (4.3) under the boundary conditions (4.4).
Suppose y1(x, λ) and y2(x, λ) are two linearly independent solutions of

(4.1). In general, a nontrivial solution of (4.3) and (4.4), if it exists, can be
expressed as

ψ(x, Λ) = y(x, Λ) if τ < x < τ + L

= 0 if x ≤ τ or x ≥ τ + L.

Here,
y(x, λ) = c1y1(x, λ) + c2y2(x, λ) (4.5)

– in which c1 and c2 are not both zero – is a nontrivial solution of (4.1) and
satisfies

y(τ, Λ) = y(τ + L, Λ) = 0. (4.6)

The nontrivial solutions of (4.3) and (4.4) can be found through (4.5) and
(4.6) based on the general properties of linearly independent solutions of (4.1)
in different energy intervals, as discussed in Section 2.5.

4.2 Two Types of Electronic States

We have understood in Chapter 2 that the forms of linearly independent
solutions y1(x, λ) and y2(x, λ) in (4.5) can be determined by the discriminant
D(λ) of (4.1). The existence and the properties of nontrivial solutions Λ and
y(x, Λ) in (4.6) can be straightforwardly obtained on this basis.

For a finite crystal, both the permitted and the forbidden energy ranges
of the infinite crystal should be considered. In principle, we need to consider
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solutions of (4.6) for λ in (−∞,+∞). However, according to Theorem 2.9,
any nontrivial solution of (4.1) with λ ≤ ε0(0) can have only at most one zero
for x in (−∞,+∞); thus, it cannot satisfy (4.6). Consequently, there is not
a nontrivial solution of (4.6) for λ in (−∞, ε0(0)]; we need only to consider
λ in (ε0(0),+∞). Similar to our discussions in Section 2.5, depending on λ,
there are five different cases:

A. |D(λ)| < 2.
In this case, λ is inside an energy band of (4.1). According to (2.57), two

linearly independent solutions of (4.1) can be chosen:

y1(x, λ) = eik(λ)xp1(x, λ), y2(x, λ) = e−ik(λ)xp2(x, λ),

where k(λ) is a real number depending on λ and

0 < k(λ)a < π

and p1(x, λ) and p2(x, λ) have period a: pi(x + a, λ) = pi(x, λ). All k(λ) and
pi(x, λ) are functions of λ. Simple mathematics leads to that the existence of
nontrivial solutions of (4.5) and (4.6) requires 2

eik(Λ)L − e−ik(Λ)L = 0. (A.1)

Note (A.1) does not contain τ . The nontrivial solutions can be obtained
if

k(Λ)L = jπ, j = 1, 2, ..., N − 1.

Thus in each energy band εn(k), there are N − 1 values of Λj , where j =
1, 2, ..., N − 1, for which

k(Λj) = j π/L.

Correspondingly, for each energy band, there are N−1 electronic states whose
energies are given by

Λn,j = εn

(
jπ

L

)
, j = 1, 2, ..., N − 1. (4.7)

Each energy for this case is a function of L, the crystal length. However,
all do not depend on the location of the crystal boundary τ or τ + L.
Correspondingly, there are N − 1 eigenfunctions y(x, Λj). These states are
stationary Bloch states consisting of two Bloch waves with wave vectors k =
j π/L and −k = −j π/L in the finite crystal, formed due to the multiple

2Otherwise
c1p1(τ, Λ) = 0, and c2p2(τ, Λ) = 0. (A.2)

It was pointed out on p. 46 that in general a one-dimensional Bloch function φn(k, x)
does not have a zero except k = 0 or k = π

a
. Thus, neither p1(τ, Λ) nor p2(τ, Λ) in

(A.2) can be zero. Therefore, (A.2) leads to c1 = c2 = 0 and no nontrivial solution
of (A.2) exists.
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reflection of Bloch waves at the two ends τ and τ + L of the finite crystal.
For simplicity, we call these states L-dependent states; although only the
eigenvalue of such a state is dependent only on L, the wave function of such
a state is dependent on both τ and L.

The energies Λn,j in (4.7) map the energy band structure εn(k) of the
infinite crystal exactly. By using a Kronig–Penney potential, Pedersen and
Hemmer found that the energy spectrum of the confined Bloch waves maps
the energy bands exactly [3]. The fact that the energy spectra of confined
electrons in Si (001), (110) quantum films and in GaAs (110) quantum films
approximately map the energy band structure of the bulk were observed in
numerical calculations by Zhang and Zunger [4] and Zhang et al. [5]. Much
previous work also finds that the eigenvalues of confined Bloch states map
closely the dispersion relations of the unconfined Bloch waves [e.g.,6]. From
(4.7), we see that this is in fact an exact correspondence for the electronic
states in ideal one-dimensional crystals of finite length. Furthermore, this ex-
act correspondence does not depend on τ , the location of the crystal bound-
ary. These electronic states can be considered as bulk-like electronic states in
a one-dimensional crystal of finite length.

B. D(λ) = 2.
In this case, λ is at a band edge at k = 0: λ = ε2m+1(0) or λ = ε2m+2(0).
According to (2.58), two linearly independent solutions of (4.1) for this

case can be expressed as

y1(x, λ) = p1(x, λ), y2(x, λ) = x p1(x, λ) + p2(x, λ),

where p1(x, λ) and p2(x, λ) are periodic functions with period a.
Due to Theorem 2.1, the zeros of p1(x, λ) are separated from the zeros of

p2(x, λ). From (4.5) and (4.6), simple mathematics shows that, in this case,
the existence of a nontrivial solution (4.6) requires

p1(τ, Λ) = 0 and c2 = 0. (B.1)

(B.1) indicates that if a solution of (4.3) and (4.4) exists at a band edge
at k = 0, the corresponding wave function y(x, Λ) of the confined electronic
state must be a periodic function, with a zero at the crystal boundary τ (and
also τ + L).

C. D(λ) > 2.
In this case, λ is inside a band gap at k = 0: ε2m+1(0) < λ < ε2m+2(0).

According to (2.60), two linearly independent solutions of (4.1) can be ex-
pressed as

y1(x, λ) = eβ(λ)xp1(x, λ), y2(x, λ) = e−β(λ)xp2(x, λ),

where β(λ) is a positive real number depending on λ and p1(x, λ) and p2(x, λ)
are periodic functions with a period a.
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Again due to Theorem 2.1, the zeros of p1(x, λ) are separated from the
zeros of p2(x, λ). If there is a nontrivial solution y(x, Λ) in this case, simple
mathematics from (4.5) and (4.6) gives that we must have either

p1(τ, Λ) = 0 and c2 = 0 (C.1)

or
p2(τ, Λ) = 0 and c1 = 0. (C.2)

(C.1) and (C.2) indicate that if a solution of (4.3) and (4.4) exists inside a
band gap at k = 0, the corresponding wave function y(x, Λ) of the confined
electronic state must be a product of an exponential function and a periodic
function, with a zero at the crystal boundary τ (and also τ + L). Note that
(C.1) and (C.2) cannot be true simultaneously.

From the discussions on Case B and Case C, we can see that the existence
of a nontrivial solution of (4.6) in a band gap [ε2m+1(0), ε2m+2(0)] at k =
0 requires that either one of (B.1), (C.1), or (C.2) must be true. Since all
functions pi(x, λ) in (B.1), (C.1), and (C.2) are periodic functions, we always
have y(τ + a, Λ) = 0 if we have y(τ, Λ) = 0. Therefore, the following equation
is a necessary condition for having a solution Λ in (4.6) for a band gap at
k = 0:

y(τ + a, Λ) = y(τ, Λ) = 0. (4.8)

It is easy to see that (4.8) is also a sufficient condition for having a solution
(4.6): From (4.8), one can obtain y(τ + �a, Λ) = 0, where � = 0, 1, 2, ..., N .

D. D(λ) = −2.
In this case, λ is at a band edge at k = π

a : λ = ε2m(π
a ) or λ = ε2m+1(π

a ).
According to (2.61), two linearly independent solutions of (4.1) can be

expressed as

y1(x, λ) = s1(x, λ), y2(x, λ) = x s1(x, λ) + s2(x, λ),

where s1(x, λ) and s2(x, λ) are semi-periodic functions with semi-period a.
Due to Theorem 2.1, the zeros of s1(x, λ) are separated from the zeros of

s2(x, λ). From (4.5) and (4.6), simple mathematics indicates that the exis-
tence of a nontrivial solution (4.6) in this case requires

s1(τ, Λ) = 0 and c2 = 0. (D.1)

(D.1) indicates that if a solution of (4.3) and (4.4) exists at a band edge at
k = π

a , the corresponding wave function y(x, Λ) of the confined electronic
state must be a semi-periodic function with semi-period a, with a zero at the
crystal boundary τ (and also τ + L).

E. D(λ) < −2.
In this case, λ is inside a band gap at k = π

a : ε2m(π
a ) < λ < ε2m+1(π

a ).
According to (2.63), two linearly independent solutions of (4.1) can be ex-
pressed as
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y1(x, λ) = eβ(λ)xs1(x, λ), y2(x, λ) = e−β(λ)xs2(x, λ),

where β(λ) is a positive real number depending on λ and s1(x, λ) and s2(x, λ)
are semi-periodic functions with semi-period a.

Again, due to Theorem 2.1, the zeros of s1(x, λ) are separated from the
zeros of s2(x, λ). If there is a nontrivial solution y(x, Λ) in this case, simple
mathematics from (4.5) and (4.6) gives that we must have either

s1(τ, Λ) = 0 and c2 = 0 (E.1)

or
s2(τ, Λ) = 0 and c1 = 0. (E.2)

(E.1) and (E.2) indicate that if a solution of (4.3) and (4.4) exists inside a
band gap at k = π

a , the corresponding wave function y(x, Λ) of the confined
electronic state must be a product of an exponential function and a semi-
periodic function, with a zero at the crystal boundary τ (and also τ + L).
Note that (E.1) and (E.2) cannot be true simultaneously.

From the discussions of Case D and Case E, we can see that the existence
of a nontrivial solution of (4.6) for a band gap [ε2m(π

a ), ε2m+1(π
a )] at k = π

a
requires that either one of (D.1), (E.1), or (E.2) must be true. Since all
functions si(x, λ) in (D.1), (E.1), and (E.2) are semi-periodic functions with
a semi-period a, we always have y(τ + a, Λ) = 0 if we have y(τ, Λ) = 0. We
are led to the same equation (4.8) as a necessary and sufficient condition for
having a solution (4.6) for a band gap at k = π

a . Therefore, (4.8) is a necessary
and sufficient condition for having a solution of (4.6) corresponding to a band
gap.

As pointed on p. 46, Theorem 2.8 indicates that for an arbitrary real
number τ , there is always one and only one Λ for which (4.8) is true for each
band gap [ε2m(π

a ), ε2m+1(π
a )] or [ε2m+1(0), ε2m+2(0)]. Since no two linearly

independent solutions of (4.1) with one Λ may have the same zeros (Theorem
2.1), such a Λ may only correspond to one y(x, Λ); that is, there is one and
only one solution ψ(x, Λ) of (4.3) and (4.4) in each gap.

Equation (4.8) does not contain the crystal length L; thus, an eigenvalue
Λ of (4.3) and (4.4) in a band gap is only dependent on τ , but not on L.

Therefore, for any real number τ , there is always one and only one Λ and
ψ(x, Λ) as a solution of (4.3) and (4.4) in each band gap [ε2m(π

a ), ε2m+1(π
a )]

or [ε2m+1(0), ε2m+2(0)]. Such a Λ is dependent on τ but not on L. For simplic-
ity, we call these solutions τ -dependent states; although only the eigenvalue
Λ of such a state is dependent on only τ , the wave function ψ(x, Λ) of such
a state is dependent on both τ and L.

The Λ’s of these τ -dependent states are exactly the Λτ,2m or Λτ,2m+1
defined by (2.71). According to Theorem 2.8, Λτ,2m is in [ε2m(π

a ), ε2m+1(π
a )]

and Λτ,2m+1 is in [ε2m+1(0), ε2m+2(0)].
As an example, in Fig. 4.1 is shown a comparison between the energy

bands of (4.1) and the energies of the electronic states in a one-dimensional
crystal (solutions of (4.3) and (4.4)) for a crystal length L = 8a.
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Fig. 4.1. A comparison between the energy bands εn(k) of (4.1) (solid lines) and
the energies Λ of the electronic states in a crystal of length L = 8a (solid circles,
L-dependent; open circles, τ -dependent). Note that the L-dependent energies map
the energy bands exactly and satisfy (4.7); The τ -dependent energies satisfying
(4.8) are in a band gap or at a band edge of (4.1). Reprinted with permission from
S. Y. Ren: Ann. Phys.(NY) 301, 22 (2002). Copyright by Elsevier.

The major results obtained in this section can be summarized as the
following theorem:

Theorem 4.1. There are two types of solutions of (4.3) and (4.4) if (4.2) is
true. Corresponding to each energy band of (4.1), there are N − 1 stationary
Bloch state solutions of (4.3) and (4.4) whose energies are given by (4.7)
thus are dependent on the crystal length L but not on the crystal boundary τ
and map the energy band exactly. There is always one and only one solution
of (4.3) and (4.4) corresponding to each band gap of (4.1), whose energy is
dependent on the crystal boundary τ but not on the crystal length L.

There could also exist the cases of zero band gap in which ε2m(π
a ) =

ε2m+1(π
a ) or ε2m+1(0) = ε2m+2(0), where (4.2) is not generally true. Suppose

in a specific case that ε2m(π
a ) = ε2m+1(π

a ); then two linearly independent
solutions of (4.1) can be chosen according to (2.62) as

y1

[
x, ε2m

(π

a

)]
= s1

[
x, ε2m

(π

a

)]
, y2

[
x, ε2m

(π

a

)]
= s2

[
x, ε2m

(π

a

)]
,

and s1[x, ε2m(π
a )] and s2[x, ε2m(π

a )] are semi-periodic functions with semi-
period a. It is easy to see that the function

y
[
x, ε2m

(π

a

)]
= s2

[
τ, ε2m

(π

a

)]
s1

[
x, ε2m

(π

a

)]
− s1

[
τ, ε2m

(π

a

)]
s2

[
x, ε2m

(π

a

)]
(4.9)
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is a solution of (4.6). Since s1[τ, ε2m(π
a )] and s2[τ, ε2m(π

a )] are not both zero
by Theorem 2.1, the function defined in (4.9) is a nontrivial solution of (4.3)
and (4.4) and is a semi-periodic function whose energy Λ = ε2m(π

a ) does
not depend on either L or τ . The cases where ε2m+1(0) = ε2m+2(0) can be
similarly discussed.

Therefore, in these cases, there is always a solution Λ of (4.3) and (4.4)
that is dependent on neither L nor τ : Λ = ε2m(π

a ) or Λ = ε2m+1(0). y(x, Λ)
will be either a semi-periodic function (when ε2m(π

a ) = ε2m+1(π
a )) or a peri-

odic function (when ε2m+1(0) = ε2m+2(0)).
A periodic potential v(x + a) = v(x) obviously has the property that

v(x+2a) = v(x). If � = 2a is chosen as the “new” potential period, the “new”
Brillouin zone with boundaries at ±π/� is a half of the original Brillouin zone
with boundaries at ±π

a and each energy band in the original Brillouin zone
becomes two “new” energy bands in the “new” Brillouin zone (band-folding).
Now, we consider a finite crystal of length L = M�, where M is a positive
integer. According to the “new” description, it seems that there should be
(M −1) L-dependent states and one τ -dependent state for each “new” energy
band and thus 2(M − 1) L-dependent states and two τ -dependent states for
each original energy band. From the original description, there are 2M − 1
L-dependent states and one τ -dependent state for each original energy band.
This difference (one extra τ -dependent state and one less L-dependent state
for each original energy band in the “new” description) comes from the fact
that the “new” description (� = 2a is the potential period) is not based
on the whole symmetry of the system. Actually, in the “new” description,
we always have ε2m(π/�) = ε2m+1(π/�); that is, at the boundary π/� of the
“new” Brillouin zone, every band gap is a zero band gap. Therefore, in a finite
crystal of length L = M�, there is always a state whose energy Λ = ε2m(π/�)
depends neither on τ nor on L. Thus, the “extra” τ -dependent state in the
“new” description actually is a L-dependent state with j = M in the finite
crystal of length L = 2Ma in the original description. Its energy does not
depend on τ since it is a L-dependent state. Its energy does not depend on L
either, since for each band, the state j = M always exists in a finite crystal of
length 2Ma. We mention this here since we will meet some relevant situations
in Part III.

4.3 τ -Dependent States

It is well known that when one-dimensional plane waves are completely con-
fined, all permitted states are stationary wave states. Thus, the very existence
of the τ -dependent states in ideal one-dimensional finite crystals is a fun-
damental distinction of the quantum confinement of one-dimensional Bloch
waves. In a one-dimensional finite crystal, such a τ -dependent state may have
three different forms: a surface state localized near the left end τ of the crys-
tal, a surface state localized near the right end τ +L of the crystal, or a band
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edge state periodically distributed in the finite crystal – depending on the
location of boundary τ .

We again take a band gap [ε2m+1(0), ε2m+2(0)] at k = 0 as an example.
In Section 2.6, we have seen how the τ -dependent eigenvalues Λτ,n change as
τ changes. As τ goes to the right continuously from a (any) zero x1,2m+1 of
φ2m+1(0, x) to x1,2m+2, the zero of φ2m+2(0, x) next to x1,2m+1 and then to
x2,2m+1, the next zero of φ2m+1(0, x),3 the corresponding Λτ,2m+1 will also
go continuously from ε2m+1(0) up to ε2m+2(0) and then back to ε2m+1(0).
We can consider such an up and down of Λτ,2m+1 as a basic undulation. Cor-
responding to a basic undulation, in [x1,2m+1, x2,2m+1) the function y(x, Λ)
has different forms. Since for any solution of (4.3) and (4.4) in the band gap
[ε2m+1(0), ε2m+2(0)], one of (B.1), (C.1), or (C.2) in Sect. 4.2 must be true,
we have three different cases:

1. When τ = x1,2m+1, (B.1) is true and Λτ,2m+1 = ε2m+1(0), the corre-
sponding solution y(x, Λ) in (4.8) has the form

y[x, ε2m+1(0)] = φ2m+1(0, x)

and is a lower bandedge wave function of the band gap. Similarly, when
τ = x1,2m+2, (B.1) is true and Λτ,2m+1 = ε2m+2(0), the corresponding
solution y(x, Λ) in (4.8) has the form

y[x, ε2m+2(0)] = φ2m+2(0, x)

and is an upper bandedge wave function of the band gap. Either one of
these two subcases corresponds to the fact that there is an electronic state
in the finite crystal whose energy is the corresponding bandedge energy
and does not depend on the crystal length L and whose wave function
inside the crystal is the bandedge wave function: The τ -dependent state
is a confined band edge state in the finite crystal.

2. In the section (x1,2m+1, x1,2m+2), ∂
∂τ Λτ,2m+1 > 0; thus, according to our

discussion in Chapter 3, a surface state can exist in a right semi-infinite
crystal with a left boundary at τ ; correspondingly, y(x, Λτ,2m+1) has the
form c2e−β(Λτ,2m+1)x p2(x, Λτ,2m+1) with p2(τ, Λτ,2m+1) = 0 (C.2 is true).
A function with the form of c2e−β(Λτ,2m+1)x p2(x, Λτ,2m+1), in which
β(Λτ,2m+1) > 0 is mainly distributed near the left end τ of the finite
crystal, due to the exponential factor. Thus, the τ -dependent state in
this case is a surface state in the finite crystal introduced by the termi-
nation of the periodic potential.

3. In the other section (x1,2m+2, x2,2m+1), ∂
∂τ Λτ,2m+1 < 0; thus, according

to our discussion in Chapter 3, a surface state can exist in a left semi-
infinite crystal with a right boundary at τ ; correspondingly, y(x, Λτ,2m+1)
has the form c1eβ(Λτ,2m+1)x p1(x, Λτ,2m+1) with p1(τ, Λτ,2m+1) = 0 (C.1

3Remember that the zeros of φ2m+1(0, x) and φ2m+2(0, x) are distributed alter-
natively.
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is true). A function with the form of c1eβ(Λτ,2m+1)x p1(x, Λτ,2m+1), in
which β(Λτ,2m+1) > 0, is mainly distributed near the right end τ + L of
the finite crystal, due to the exponential factor. Thus, the τ -dependent
state in this case is also a surface state in the finite crystal introduced by
the termination of the periodic potential.

Therefore, these three cases correspond to a wave function inside the
crystal with a form eβxp(x, Λ), in which β = 0, β < 0 or β > 0. The latter
two correspond to a surface state located near to either the left or the right
end of the finite crystal. Such a surface state is introduced into the band gap
when the boundary τ is not a zero of either band edge wave function of the
Bloch waves. As an example, in Fig. 4.2 is shown Λτ,1 as a function of τ in
the interval [x1,1, x1,1 +a], where x1,1 is a (any) zero of φ1(0, x). In the figure,
the two sections of a basic undulation are shown as a dotted line (C.2 is true)
or a dashed line (C.1 is true), indicating two different locations of the surface
state.

 τ
ε1(0)

ε2(0)

Λ
τ,

1

Fig. 4.2. Λτ,1 as a function of τ in the interval [x1,1, x1,1 +a]. The zeros of φ1(0, x)
are shown as solid circles and the zeros of φ2(0, x) are shown as open circles. Note
that Λτ,1 completes two basic undulations in [x1,1, x1,1 + a). The dotted lines and
dashed lines indicate that a surface state is located near either the left or the right
end of the finite crystal.

Since according to Theorem 2.7, in the interval [0, a), both φ2m+1(0, x)
and φ2m+2(0, x) have exactly 2m + 2 zeros, then, in general, Λτ,2m+1 as a
function of τ always complete 2m + 2 basic undulations in an interval of
length a.

Of course, for the band gaps at k = π
a (ε2m(π

a ) < Λτ,2m < ε2m+1(π
a )), a

surface state has the form of either c1eβ(Λτ,2m)x s1(x, Λτ,2m) or c2e−β(Λτ,2m)x
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s2(x, Λτ,2m) inside the crystal, where s1(x, Λτ,2m) and s2(x, Λτ,2m) are semi-
periodic functions. Λτ,2m as a function of τ will always complete 2m+1 basic
undulations in an interval of length a.

These discussions are closely related to the discussions we had in Section
3.3. The three possibilities of a τ -dependent state – a surface state located
near the left end τ of the finite crystal, a surface state located near the right
end τ + L of the finite crystal, or a confined band edge state – are actually
determined by in which one of the three sets L(n), R(n), or M(n), τ is.
Naturally, a band edge state can also be considered as a special surface state
with its energy equal to a band edge energy and its decay factor β = 0.

Many years ago, Tamm [7] showed that the termination of the periodic
potential at the surface of a semi-infinite Kronig–Penney crystal can cause a
surface state to exist in each band gap below the barrier height outside the
crystal. More than 60 years later, Zhang and Zunger [4], Zhang et al. [5], and
Franceschetti and Zunger [8] observed the existence of a “zero confinement
state” in their numerical calculations. Now, we understand that in the one-
dimensional case, a “zero confinement state” – a confined band edge state
whose energy does not change as the crystal size changes – is simply a surface-
like state with a decay factor β = 0. A surface state in the gap or a confined
band edge state are different results of the termination of the periodic poten-
tial at the crystal boundary, depending on whether the boundary τ is a zero
of a band edge wave function.

A slight change of the boundary location τ can change the properties of
a τ -dependent state dramatically: It can change the τ -dependent state from
a surface state located near one end of the crystal to a confined band edge
state or to a surface state located near the other end. It can also change the
energy of the surface state. This can be clearly seen in Fig. 4.2: If τ is in
the region corresponding to a dotted line, the τ -dependent state is a surface
state near the left end of the crystal. If τ is in the region corresponding to a
dashed line, it is a surface state near the right end of the crystal. However, if
τ is a zero of a band edge wave function (either a solid circle or an open circle
in the figure), then τ + L is also a zero of the same band edge wave function
and, consequently, the τ -dependent state is a confined band edge state. We
can call these τ -dependent states surface-like states, in differentiation with
the bulk-like states - the stationary Bloch states. The concept of surface-like
states is an extended concept of the well-known surface states.

4.4 Electronic States in One-Dimensional Finite
Symmetric Crystals

When a one-dimensional finite crystal is symmetric, the τ -dependent state
for each gap is always a band edge state and the energies of all electronic
states in the crystal can be obtained from the bulk band structure εn(k).
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A symmetric one-dimensional finite crystal means that (1) the crystal po-
tential v(x) has an inversion symmetry center and thus has an infinite number
of inversion centers;4 (2) the two ends of the crystal are also symmetric to
one of these inversion centers and this inversion center can be chosen to be
the origin: v(−x) = v(x). Now, the two ends of the crystal are equivalent:
one end τ = −L/2 and the other end τ + L = L/2. If this is the case, the
energies of confined electronic states have an especially simple form.

Because v(−x) = v(x), a noteworthy point is that x = a/2 is also an inver-
sion center of the crystal potential v(x) because v(−x − a/2) = v(x + a/2)
= v(x − a/2). Since the crystal length L = Na and N is a positive integer,
the two ends of the finite crystal x = τ = −L/2 and x = τ + L = L/2 must
also be an inversion center of v(x). Correspondingly, a band edge wave func-
tion will have a specific parity for an inversion relative to x = L/2 (and to
x = −L/2), either an even parity or an odd parity. Furthermore, according to
Theorem 2.7, the two band edge wave functions corresponding to a specific
band gap have exactly the same number of zeros in [0, a) and thus must have
two different parities: One is even and the other is odd. The band edge wave
function that has an odd parity for an inversion relative to x = L/2 (and to
x = −L/2) will have a zero at the two ends of the finite crystal x = L/2 and
x = −L/2; therefore, τ = −L/2 is a zero of such a bandedge wave function.
This corresponds to the case in Section 4.2 in which (B.1) or (D.1) is true.
The band edge wave function satisfies both (4.3) and (4.6). Correspondingly,
the energy of this band edge state will not change as the finite crystal length
L changes. For a specific band gap, whether this is the upper band edge or
the lower band edge depends on the crystal potential v(x). For each band
gap, there is always one band edge state whose energy does not change as
the crystal length L changes. In Fig. 4.3 and Fig. 4.4 are shown the ener-
gies of two confined states near the two lowest band gap [ε0(π

a ), ε1(π
a )] and

[ε1(0), ε2(0)] as functions of the crystal length L separately, obtained in [2].
Therefore, we can see that the existence of band edge states whose energies

do not change as the crystal length changes and were observed in numerical
calculations in [4,5,8] actually can quite often occur in one-dimensional finite
symmetric crystals. Although such a state was called as “zero-confinement
state” in [4,5,8], these states are really confined states. Nevertheless, the
energy of these states does not change as L changes. We prefer to call these
states confined band edge states. The fundamental reason for the existence of
these confined band edge states in one-dimensional symmetric finite crystals
is that due to the symmetry of the periodic potential, for each band gap there
is always a band edge state that naturally has a zero at both ends of the finite
crystal. Whether this is the upper band edge state or the lower band edge
state depends on the specific form of v(x) and the location of the band gap.

4Any point �a away from an inversion symmetry center of a periodic potential –
here � is an integer – is also an inversion symmetry center of the periodic potential.
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Fig. 4.3. The energies of two confined states near the lowest band gap as functions
of the confinement length L. Note that the energy of the lower confined state is
the band edge energy and is constant; only the energy of the higher confined state
changes as L changes.
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Fig. 4.4. The energies of two confined states near the second lowest band gap as
functions of the crystal length L. Note that the energy of the higher confined state
is the band edge energy and is constant; only the energy of the lower confined state
changes as L changes.
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Since the energy of each τ -dependent state in a one-dimensional symmet-
ric finite crystal is always a band edge energy, the energies of all electronic
states in such a finite crystal can be obtained from the band structure εn(k)
of the corresponding infinite crystal. Figure 4.5 shows a comparison between
the energy bands εn(k) as the solutions of (4.1) and the energy spectrum of
Λn,j and Λτ,n as solutions of (4.3) and (4.4) for a symmetric crystal of length
L = 8a, obtained in [2].

0.0 0.2 0.4 0.6 0.8 1.0
k(π/a)

0

2

4

6

ε n(k
)

Fig. 4.5. A comparison between the energy spectrum of Λn,j (solid circles) and
Λτ,n (open circles) in a finite symmetric crystal of length L = 8a and the energy
bands εn(k) (solid lines) for the lowest four bands. Note that (1) Λn,j maps the
energy bands exactly and (2) the existence of a confined band edge state in each
band gap.

4.5 Comments on the Effective Mass Approximation

As we mentioned in Chapter 1, the effective mass approximation (EMA)
has been widely used in investigating the quantum confinement of Bloch
electrons. On the basis of a clearer understanding of the quantum confinement
of one-dimensional Bloch waves, we can now make some comments on the
use of EMA in the one-dimensional case.

(1) We have understood that the complete quantum confinement of one-
dimensional Bloch waves produces two different types of electronic states.
The very existence of the τ -dependent states is a fundamental distinction of
the quantum confinement of Bloch waves. EMA completely misses the very
existence of the τ -dependent states and thus misses a fundamental distinction
of the quantum confinement of Bloch waves.
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(2) EMA can be a good approximation for the L-dependent states.
From (4.7), we know that the energies of L-dependent electronic states

can be written as

Λn,j = εn

(
jπ

L

)
, j = 1, 2, ..., N − 1.

Near a band edge, εn(k) can be approximated. For example, near a band
edge at k = 0, we may approximate εn(k) as

εn(k) ≈ εn(0) +
1
2

d2εn(k)
dk2

∣∣∣∣
k=0

k2. (4.10)

Thus, for the L-dependent states near the band edge, we have

Λn,j ≈ εn(0) +
1
2

d2εn(k)
dk2

∣∣∣∣
k=0

j2π2

L2 . (4.11)

This is the EMA result for the complete quantum confinement of one-
dimensional Bloch waves. Thus, for L-dependent states near a band edge
at k = 0, as long as (4.10) is a good approximation, our exact results (4.7)
approximately gives the results (4.11), the same as EMA. A corresponding
expression of EMA can be easily obtained for the confined electronic states
near a band gap at k = π

a .
Originally, the EMA was developed for treating the electronic states near

band edges in the presence of slowly varying and weak perturbations, such
as an external electric and/or magnetic field as well as the potential of shal-
low impurities [9]. Nevertheless, we have seen here that in treating the L-
dependent states in one-dimensional finite crystals, the only requirement for
the EMA to be used is that the energy band εn(k) near the band edge can be
approximated by a parabolic energy band such as in (4.10); even though in
quantum confinement problems, the perturbation is neither weak nor slowly
varying at the confinement boundaries, the original conditions for justifying
the use of EMA are thus completely violated.5 In Fig. 4.6 are shown the
energies of three electronic states in crystals of different length near or in
the lowest band gap of the Bloch waves as functions of the crystal length L,
obtained in [1]. The two points we commented on here can be clearly seen.

4.6 Comments on the Surface States

The surface states in one-dimensional crystals are the simplest surface states.
Some properties of surface states in one-dimensional crystals are usually easy

5This is true only for the cases where the interested band edge is located either
at the center or at the boundary of the Brillouin zone. It may not be true in the
low-dimensional systems or finite crystals investigated in Part III.
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Fig. 4.6. The energies of three confined electronic states near or in the lowest band
gap of (4.1) as functions of the crystal length L while τ is fixed. Note that the energy
of the τ -dependent electronic state (open circles) in the gap is independent on L
and the energies of the two L-dependent electronic states (solid circles) change as L
changes. EMA completely neglects the existence of the τ -dependent state; however,
it may give a good description for the behaviors of the two L-dependent states
(see the text). Reprinted with permission from S. Y. Ren: Ann. Phys.(NY) 301, 22
(2002). Copyright by Elsevier.

to analyze. On the basis of a clearer understanding of the electronic states
in one-dimensional finite crystals, we can also make comments on several
interesting problems on the surface states in one-dimensional crystals.

Although investigations of the surface states have made very significant
progresses since Tamm’s classical work [7] many years ago, it seems that
some quite fundamental problems on surface states have not yet been very
well understood. One of such problems is how many surface states are there in
a simplest one-dimensional finite crystal with two ends. Fowler was the first to
think [10] there are two surface states in each band gap in a one-dimensional
finite crystal due to its two ends. Although he did not give a rigorous argu-
ment to prove his point, this idea seemed natural and was soon accepted [11].
A long-standing belief of many people in the solid state physics community
is that there are two surface states in each gap of a one-dimensional finite
crystal because it has two ends [12].

To the contrary, the general results on the electronic states in ideal one-
dimensional finite crystals obtained here indicate that for each band gap there
is always one and only one electronic state whose energy is dependent on the
crystal boundary but not dependent on the crystal length. A surface state is
one of the two possibilities of such a boundary-dependent state. Therefore,
there is at most one surface state in each band gap in an ideal one-dimensional
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finite crystal. This result is obviously different from that long-standing belief.
The analytical results published in [1] were confirmed by recent numerical
calculations [13,14].

Why can a finite one-dimensional crystal of two ends only have at most
one surface state in each gap? This is due to the fact that (1) the two ends
of a finite one-dimensional crystal in general are not equivalent and (2) as we
analyzed in Chapter 3, a termination of the periodic potential v(x) may or
may not cause a state in a specific band gap.

Only in a symmetric one-dimensional finite crystal such as treated in
Section 4.4 are the two ends of the crystal equivalent. We have understood
that then there is always a confined band edge state rather than a surface
state in each gap.

In most cases, the two ends of a finite one-dimensional crystal are generally
not equivalent. The properties of the τ -dependent state for each gap will
depend on the relation between the crystal boundary τ and the zeros of the
two corresponding band edge wave functions. For a specific band gap, if τ
is next to a zero of the upper band edge wave function in the finite crystal,
then τ + L will be next to a zero of the lower band edge wave function
in the finite crystal, and vice versa. Thus, the two ends of the finite crystals
are not equivalent; it is possible that a surface state exists near only one of
the two ends. From what we analyzed in Chapter 3, we can see that it is
the end next to a zero of the upper band edge wave function φ2m+1(π

a , x) or
φ2m+2(0, x) in the finite crystal that may have a surface state localized near
it.

Figure 4.2 can also be considered as obtained by combining Fig. 3.1 with
Fig. 3.2: If τ is in a dotted region of the Λ1–τ curve (τ is next to an open
circle in the finite crystal), there is a surface state located near the left end
τ of the finite crystal; if τ is in a dashed region of the Λ1–τ curve (τ + L
will be next to an open circle in the finite crystal), there is a surface state
located near the right end τ + L of the finite crystal; if τ is located at one
of the circles, then there is a confined band edge state. Therefore, an ideal
one-dimensional finite crystal bounded at τ and τ + L can have at most one
surface state in each bandgap, even though it always has two ends.

More mathematically, this is due to the fact that for a finite one-
dimensional crystal bounded at τ and τ + Na, both the left end τ and the
right end τ + Na actually always belong to the same one of the three sets
L(n), M(n), and R(n) in Section 3.3 and thus, correspondingly, only one
of the three possibilities is possible: a surface state on the left of the finite
crystal, a band edge state, or a surface state on the right of the finite crystal.

Having clearly understood the analysis presented here, we can see that
the belief that a finite one-dimensional crystal always has two surface states
in each gap is actually a misconception.6

6All of these discussions here are for ideal one-dimensional finite crys-
tals defined by (4.3) and (4.4). An investigation on the electronic states in
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In a tight-binding formalism, the number of permitted energy bands is
determined by the number of states per unit cell. By using a nearest-neighbor
tight-binding formalism, Hatsugai [15] proved that in a linear finite chain with
q states per unit cell, there are a total of q − 1 edge states, one in each of the
q − 1 gaps. The properties of those edge states in [15] are somewhat similar
to the τ -dependent states in this chapter – they can either be located near
either end of the chain or be a band edge state. It is well known that [e.g.,16]
in a tight-binding formalism with a single state per unit cell, a linear finite
chain does not have a surface state. The reason is quite simple – there is no
band gap (q = 1) in the band structure in that formalism.

A surface electronic state is usually understood as a electronic state that
is mainly distributed near a specific surface of the crystal. Now, we have a
more extended concept of the surface-like states: The electronic states whose
properties and energies are determined by the surface location, that is the
τ -dependent states discussed in this chapter. A confined band edge state is
merely a special case of a surface-like state with its decay factor β being
zero – in ideal one-dimensional finite crystals, it happens when the surface
location is a zero of a band edge wave function.

The spatial extension of a surface state is determined by its decay factor
β(Λ). β(λ) as function of λ can be obtained from the discriminant D(λ) of
(4.1). In particular, for a surface state in a band gap at k = 0,7

β(λ)a = ln

[
D(λ) +

√
D2(λ) − 4
2

]
. (4.12)

Therefore, the surface state with an energy Λ at which D(λ) takes a maximum
has the largest decay factor and thus the smallest spatial extension in such
a band gap.

Similarly, for a surface states in a band gap at k = π
a , we have

β(λ)a = ln

[
−D(λ) +

√
D2(λ) − 4

2

]
. (4.12a)

one-dimensional symmetric finite crystals with relaxed boundary conditions
(ψ′/ψ)x=τ = −(ψ′/ψ)x=L+τ = σ for finite σ can be found in Appendix A.

7Equation (4.12) can be obtained from (2.18), (2.24), and (2.29). Equation
(4.12a) can be obtained from (2.18), (2.24), and (2.33). Similarly, one can also
obtain that

eik(λ)a =
D(λ) ±

√
D2(λ) − 4
2

for Bloch states in each energy band from (2.18), (2.24), and (2.25). Therefore, the
complex energy band structure of any one-dimensional crystals can be completely
and analytically obtained from the discriminant D(λ) of its Schrödinger differential
equation (4.1).
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Thus, the surface state with an energy Λ at which D(λ) takes a minimum
has the largest decay factor and thus the smallest spatial extension in such
a band gap.

From Fig. 2.1, we can see that roughly a surface state with its energy near
the mid-gap has a larger decay factor β and thus a smaller spatial extension
and a surface state with its energy near a band edge has a smaller decay
factor β and thus a larger spatial extension. By considering the energy of a
surface state as a function of the surface position τ such as shown in Fig. 4.2,
we can obtain the following qualitative understandings: A surface position
near a zero of the lower band edge wave function φ2m+1(0, x) corresponds
to a surface state with an energy near the lower band edge ε2m+1(0) and a
smaller decay factor β and a larger spatial extension; a surface position near
a zero of the upper band edge wave function φ2m+2(0, x) corresponds to a
surface state with an energy near the upper band edge ε2m+2(0) and also a
smaller decay factor β and a larger spatial extension; a surface position near
a mid-point between two consecutive zeros of two band edge wave functions
corresponds to a surface state with an energy near the mid-gap and a larger
decay factor β and a smaller spatial extension. A surface state in a band gap
at k = π

a can be similarly analyzed.
The value of the decay factor β of a surface state is determined by the

corresponding D(λ), according to (4.12) or (4.12a). Therefore, by a consid-
eration either from a limit of wide energy bands and narrow band gap or
from a limit of the contrary and by referring to Fig. 2.1, we can obtain such
qualitative conclusions: For a specific band gap, the smaller the two relevant
permitted band widths are and/or the larger the band gap is, the larger the
largest decay factor βmax in the band gap can be.8

However, some conclusions obtained for surface states in one-dimensional
crystals may not be true for surface states in three-dimensional crystals.

4.7 Two Other Comments

4.7.1 A Comment on the Formation of the Energy Bands

The electron states in an infinite crystal with translational invariance have an
energy band structure; in each permitted energy band, the energy spectrum
is a continuum. On the other hand, the electron states in a finite system
always have a discrete energy spectrum. One interesting question is, How
are those energy bands formed as the number of atoms increases gradually?
From (4.7), we can see that, for the one-dimensional case, the mapping of

8A near-zero band gap makes the largest possible numerator in (4.12) or (4.12a)
small; therefore, the largest decay factor βmax a surface state in the band gap may
have is also small. On the contrary, a narrow permitted band width makes |D′(λ)|
at its band edge large and thus makes the largest possible numerator in (4.12) or
(4.12a) large for the band gap, which leads to a large βmax in the band gap.
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the energy bands by electronic states in finite crystals begins at N = 2 and
linearly increases as N increases: A finite crystal of length L = Na always
has N − 1 stationary Bloch states in each energy band whose energies map
the energy band exactly.

4.7.2 A Comment on the Boundary Locations

A consequence of the results obtained in this chapter is that the real bound-
ary locations τ and τ + L of an ideal one-dimensional finite crystal discussed
in this chapter are determined only by the τ -dependent electronic states. In
our simplifying assumptions, the many body effects between the electrons
are neglected; the total energy of the system is simply the summation of the
energies of all occupied single-electronic states, including the L-dependent
states and τ -dependent states. Therefore, the real boundary locations τ and
τ + L of a finite crystal with a fixed length L in our simplified model are de-
termined by the condition that the summation of the energies of all occupied
τ -dependent states takes the minimum.

4.8 Summary

In summary, based on the mathematical results of the theory of ordinary dif-
ferential equations with periodic coefficients – in particular, several theorems
on the zeros of solutions of (4.1) – we have obtained exact and general results
on the properties of all electronic states in the simplest finite crystals – the
ideal one-dimensional crystals of finite length. For a one-dimensional crystal
bounded at τ and τ + L where L = Na, there are two different types of
electronic states: There are N − 1 Bloch stationary states corresponding to
each energy band of (4.1). Their energies Λ are given by (4.7) and thus are
dependent on the crystal length L but not on the crystal boundary location
τ and map the energy band exactly. These stationary Bloch states can be
considered as bulk-like states in the one-dimensional finite crystal. There is
always one and only one electronic state corresponding to each band gap of
(4.1); its eigenvalue Λ is dependent on the boundary location τ but not on
the crystal length L. Such a τ -dependent state can be either a surface state
in the band gap (if τ is not a zero of either band edge wave function of (4.1))
or a confined band edge state (if τ is a zero of a band edge wave function of
(4.1)). A slight change of the crystal boundary location τ could change the
properties and the energy of this τ -dependent state dramatically. These τ -
dependent states can be considered as surface-like states in the finite crystal.
A confined band edge state is a surface-like state with its decay factor β = 0.

The very existence of these τ -dependent surface-like states is a fundamen-
tal distinction of the quantum confinement of Bloch waves.
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The exact and general results obtained indicate that the major difficulty
or obstacle due to the lack of translational invariance in one-dimensional
finite crystals in fact could be circumvented.

The general understandings obtained here provide a basis for further un-
derstanding of the quantum confinement of three-dimensional Bloch waves
and the electronic states in low-dimensional systems and finite crystals in
three-dimensional cases.
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5 Electronic States in Ideal Quantum Films

Starting from this chapter, we extend our investigations in Part II to three-
dimensional crystals. The major difference between the problems treated in
this part and in Part II is that the corresponding Schrödinger equation for
the electronic states in a three-dimensional crystal is a partial differential
equation; therefore, now the problem is a more difficult one. This is due to
the fact that relative to the solutions of ordinary differential equations, the
properties of solutions of partial differential equations are much less under-
stood mathematically [e.g.,1], not to mention solutions of partial differential
equations with periodic coefficients [2]. The variety and complexity of the
three-dimensional crystal structures and of the shapes of three-dimensional
finite crystals further make the cases more variational and more complicated.
Nevertheless, based on the results of extensions of a mathematical theorem
in [3], we show that in many simple but interesting cases, the properties of
electronic states in ideal low-dimensional systems and finite crystals can be
understood, how the energies of these electronic states depend on the size
and/or the shape of the system can be predicted, and the energies of many
electronic states can be directly obtained from the energy band structure of
the bulk. Again, the major obstacle due to the lack of translational invariance
can be circumvented.1

The electronic states in a quantum film can be considered as the quan-
tum confinement of three-dimensional Bloch waves in one specific direction.
This is the simplest case of the quantum confinement of three-dimensional
Bloch waves. Our purpose in this chapter is to try to understand the simi-
larities and the differences between the effects of the quantum confinement
of three-dimensional Bloch waves in one specific direction and the quantum
confinement of one-dimensional Bloch waves treated in Chapter 4.

This chapter is organized as follows: In Section 5.1, we present a basic
theorem that corresponds to Theorem 2.8 in the one-dimensional case and is
the basis of the theory in this chapter. In Section 5.2, we briefly discuss some
consequences of the theorem. In Sections 5.3–5.6, we obtain the electronic
states in several ideal quantum films of different Bravais lattices based on
this theorem, by considering the quantum confinement of three-dimensional
Bloch waves in one direction. In Section 5.7, we compare our theory to pre-

1Part of the results in this chapter was published in [4].
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viously published numerical results. In Section 5.8, we present some further
discussions.

5.1 A Basic Theorem

The single-electron Schrödinger equation for a three-dimensional crystal can
be written as

−∇2y(x) + [v(x) − λ]y(x) = 0, (5.1)

where v(x) is a periodic potential:

v(x + a1) = v(x + a2) = v(x + a3) = v(x).

a1, a2, and a3 are three primitive lattice vectors of the crystal. The corre-
sponding primitive lattice vectors in k space are denoted as b1, b2, and b3 and
ai ·bj = δi,j ; here, δi,j is the Kronecker symbol. The position vector x can be
written as x = x1a1+x2a2+x3a3 and the k vector as k = k1b1+k2b2+k3b3.

The eigenfunctions of (5.1) satisfying the condition

φ(k, x + ai) = eikiφ(k, x), − π < ki ≤ π, i = 1, 2, 3, (5.2)

are three-dimensional Bloch functions. As solutions of (5.1), the three-
dimensional Bloch functions and the energy bands in this book are denoted as
φn(k, x) and εn(k): ε0(k) ≤ ε1(k) ≤ ε2(k) ≤ · · · . The energy band structure
in the Cartesian system is denoted as εn(kx, ky, kz).

For the quantum films investigated in this chapter, we choose the primitive
vectors a1 and a2 in the film plane and use k̂ to express a wave vector in the
film plane: k̂ = k1b̂1 + k2b̂2. b̂1 and b̂2 are in the film plane and ai · b̂j = δi,j

for i, j = 1, 2.
The major mathematical basis for understanding the electronic states in

one-dimensional finite crystals is Theorem 2.8. Correspondingly, the math-
ematical basis for understanding the quantum confinement of three-dimen-
sional Bloch waves in a specific direction a3 is the following eigenvalue prob-
lem (5.3) – which corresponds to the problem defined by (2.71) in the one-
dimensional case – and a relevant theorem.

Suppose A is a parallelogram that has ai forming the sides that meet
at a corner and has the bottom face defined by x3 = τ3 and thus the top
face defined by x3 = (τ3 + 1) (See Fig. 5.1.).2 The function set φ̂(k̂, x; τ3) is
defined by the condition

2For a free-standing film with a boundary at x3 = τ3, in general we have neither
a reason to require that τ3 to be a constant nor a reasonable way to assign τ3(x1, x2)
beforehand. However, since what we are interested in is mainly the quantum con-
finement effects, in this book it is assumed that the existence of the boundary τ3

does not change the two-dimensional space group symmetry of the system, includ-
ing but not limited to that τ3 = τ3(x1, x2) must be a periodic function of x1 and
x2: τ3 = τ3(x1, x2) = τ3(x1 + 1, x2) = τ3(x1, x2 + 1).
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Fig. 5.1. The parallelogram A for the eigenvalue problem of (5.1) under the bound-
ary condition (5.3). The two shadowed faces of ∂A3 are defined by x3 = τ3 and
x3 = (τ3 + 1) and are the two faces on which the function φ̂(k̂, x; τ3) is zero.

φ̂(k̂, x + ai; τ3) = eiki φ̂(k̂, x; τ3), − π < ki ≤ π, i = 1, 2,

φ̂(k̂, x; τ3) = 0, if x ∈ ∂A3,
(5.3)

where ∂Ai means two opposite faces of the boundary ∂A of A determined by
the beginning and the end of ai. The eigenvalues and eigenfunctions of (5.1)
under the boundary condition (5.3) are denoted by λ̂n(k̂; τ3) and φ̂n(k̂, x; τ3)
respectively, where k̂ is a wave vector in the film plane and n = 0, 1, 2.....

For the eigenvalues of (5.1) in two different eigenvalue problems defined
by (5.2) or (5.3), the following theorem exists:

Theorem 5.1.

λ̂n(k̂; τ3) ≥ εn(k) for (k − k̂) · ai = 0, i = 1, 2. (5.4)

In (5.3) and (5.4), k is a three-dimensional wave vector defined in the whole
Brillouin zone and k̂ is in the film plane. In (5.4), k and k̂ have the same
components in the film plane.

Theorem 5.1 can be considered as an extension of Theorem 6.3.1 in [3]
and the proof is similar, with some differences.

Proof. We choose φn(k, x) to be normalized over A:∫
A

φn(k; x)φ∗
n(k; x) dx = 1.

We denote F as the set of all complex-valued functions f(x) that are
continuous in A and have piecewise continuous first-order partial derivatives
in A. The Dirichlet integral J(f, g) in three dimensions is defined by

J(f, g) =
∫

A

{∇f(x) · ∇g∗(x) + v(x)f(x)g∗(x)} dx (5.5)

for f(x) and g(x) in F . If in (5.5) g(x) also has piecewise continuous second-
order partial derivatives in A, from the Green’s theorem we have
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J(f, g) =
∫

A

f(x){−∇2g∗(x) + v(x)g∗(x)} dx +
∫

∂A

f
∂g∗

∂n
dS, (5.6)

where ∂A denotes the boundary of A, ∂/∂n denotes derivative along the
outward normal to ∂A, and dS denotes an element of surface area of ∂A.

If f(x) and g(x) satisfy the conditions (5.2), the integral over ∂A in
(5.6) is zero because the integrals over opposite faces of ∂A cancel out. In
particular, when g(x) = φn(k, x), (5.6) gives

J(f, g) = εn(k)
∫

A

f(x)φ∗
n(k, x) dx.

Thus, J [φm(k, x), φn(k, x)] = εn(k) if m = n, and J [φm(k, x), φn(k, x)] = 0
if m �= n.

Now, we consider the function set φ̂(k̂, x; τ3), which satisfy the boundary
conditions (5.3). We also choose φ̂(k̂, x; τ3) to be normalized over A:∫

A
φ̂(k̂, x; τ3)φ̂∗(k̂, x; τ3) dx = 1.

Note that if f(x) = φ̂(k̂, x; τ3) and g(x) = φn(k, x), the integral over ∂A
in (5.6) is also zero because the integral over two opposite faces of ∂A1 and
∂A2 cancel out since (k − k̂) · ai = 0 for i = 1, 2 and the integral over each
face of ∂A3 is zero since f(x) = 0 when x ∈ ∂A3.

Thus,
J [φ̂(k̂, x; τ3), φn(k, x)] = εn(k)fn(k),

where
fn(k) =

∫
A

φ̂(k̂, x; τ3)φ∗
n(k, x) dx,

and ∞∑
n=0

|fn(k)|2 = 1

by the Parseval formula [3,5]. An important property of the function φ̂(k̂, x; τ3)
defined by (5.3) is

J [φ̂(k̂, x; τ3), φ̂(k̂, x; τ3)] ≥
∞∑

n=0

εn(k)|fn(k)|2. (5.7)

To prove (5.7), we assume v(x) ≥ 0 first. Then J(f, f) ≥ 0 from (5.5) for any
f in F . Thus, for any positive integer N , we have

J [φ̂(k̂, x; τ3) −
N∑

n=0

fn(k)φn(k, x), φ̂(k̂, x; τ3) −
N∑

n=0

fn(k)φn(k, x)] ≥ 0;

that is,

J [φ̂(k̂, x; τ3), φ̂(k̂, x; τ3)] ≥
N∑

n=0

εn(k)|fn(k)|2.
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N can be as large as needed, therefore,

J [φ̂(k̂, x; τ3), φ̂(k̂, x; τ3)] ≥
∞∑

n=0

εn(k)|fn(k)|2 if v(x) ≥ 0. (5.8)

To prove (5.7) without the assumption that v(x) ≥ 0, let v0 be a constant
that is sufficiently large to make v(x) + v0 ≥ 0 in A. Then (5.1) can be
rewritten as

−∇2y(x) + [V (x) − Λ]y(x) = 0, (5.9)

where V (x) = v(x) + v0 and Λ = λ + v0. Since in (5.9), V (x) ≥ 0 in A, due
to (5.8) we have∫

A

{∇φ̂(k̂, x; τ3) · ∇φ̂∗(k̂, x; τ3) + [v(x) + v0]φ̂(k̂, x; τ3)φ̂∗(k̂, x; τ3)} dx

≥
∞∑

n=0

[εn(k) + v0]|fn(k)|2;

that is,∫
A

[∇φ̂(k̂, x; τ3) · ∇φ̂∗(k̂, x; τ3) + v(x)φ̂(k̂, x; τ3)φ̂∗(k̂, x; τ3)] dx

≥
∞∑

n=0

εn(k)|fn(k)|2.

This is (5.7). On the basis of (5.7) we can prove (5.4).
We consider

φ̂(k̂, x; τ3) = c0φ̂0(k̂, x; τ3) + c1φ̂1(k̂, x; τ3) + · · · + cnφ̂n(k̂, x; τ3)

and choose n + 1 constants ci to make
n∑

i=0

|ci|2 = 1

and

fi(k) =
∫

A

φ̂(k̂, x; τ3)φ∗
i (k, x) dx = 0, i = 0, 1, ..., n − 1. (5.10)

Equation (5.10) corresponds to n homogeneous algebraic equations for n + 1
constants c0, c1, ..., cn. A choice of such ci’s is always possible. Therefore,

λ̂n(k̂; τ3) ≥
n∑

i=0

|ci|2λ̂i(k̂; τ3) = J [φ̂(k̂, x; τ3), φ̂(k̂, x; τ3)]

≥
∞∑

i=0

|fi(k)|2εi(k) =
∞∑

i=n

|fi(k)|2εi(k) ≥ εn(k)
∞∑

i=n

|fi(k)|2 = εn(k).

This is (5.4). ��
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5.2 Consequences of the Theorem

Theorem 5.1 indicates that for each bulk energy band n and each k̂, for any
specific τ3 there is always one and only one λ̂n(k̂; τ3) and thus one φ̂n(k̂, x; τ3).

Theorem 5.1 gives a relationship between two sets of eigenvalues εn(k) and
λ̂n(k̂; τ3). Actually, many consequences concerning the relationship between
two sets of eigenfunctions φn(k, x) and φ̂n(k̂, x; τ3) can be obtained from this
theorem.

Theorem 5.1 gives a lower limit of λ̂n(k̂; τ3). As a direct consequence of
this, only the single Bloch function φn(k, x) that corresponds to the energy
maximum of εn(k) for that k̂ may have the possibility of being φ̂n(k̂, x; τ3) to
make the equality in (5.4) to be true. If the equality in (5.4) is true, such a
Bloch function φn(k, x) has a nodal surface (the surface on which the Bloch
function is zero) at x3 = τ3.

Theorem 5.1 does not give an upper limit of λ̂n(k̂; τ3); the possibility
that a Bloch function φn′(k, x) has a nodal surface at x3 = τ3 and thus be
a φ̂n(k̂, x; τ3) (in which n < n′) cannot be excluded; even εn′(k) is not the
energy maximum for that k̂.

In this chapter, we are mainly interested in the quantum films of crystals
with a band structure εn(k̂+k3b3) = εn(k̂−k3b3). In a case where φ̂n(k̂, x; τ3)
is a Bloch function φn′(k, x) in which n ≤ n′, the corresponding wave vector
k must be either k = k̂ or k = k̂ + πb3.3 Therefore, only a Bloch function
φn′(k, x) with such a wave vector k might have a nodal surface at x3 = τ3.4

In particular, in the cases where k̂ = 0, only a Bloch function φn′(k = 0, x)
or φn′(k = πb3, x) might have a nodal surface at x3 = τ3.

These points can find similarities in the one-dimensional case.
However, even for a wave vector k = k̂ or k = k̂ + πb3 and the corre-

sponding εn(k) is the energy maximum for that k̂; the corresponding Bloch
function φn(k, x) might or might not have a nodal surface,5 not to mention a
specific nodal surface at x3 = τ3. Only when the specific εn(k) is the energy
maximum for that k̂ and the corresponding Bloch function φn(k, x) does
have a nodal surface at x3 = τ3, can the equality in Theorem 5.1 be true and
the Bloch function φn(k, x) be φ̂n(k̂, x; τ3) for that specific τ3.

Theorem 5.1 is not as strong as Theorem 2.8: No upper limit of λ̂n(k̂; τ3) is
given except λ̂n(k̂; τ3) ≤ λ̂n+1(k̂; τ3). It is this point that leads to a significant

3In such a case, λ̂n(k̂; τ3) = εn′(k̂ + k3b3) = εn′(k̂ − k3b3) is true. Only when
either k3 = 0 or k3 = π is φn′(k̂ ± k3b3, x) one single function and εn′(k̂ ± k3b3)
one single eigenvalue.

4Note that we commented on the zeros of one-dimensional Bloch function
φn(k, x) on p. 46, as a consequence of Theorem 2.8.

5In the one-dimensional case, it is Theorem 2.7 that warrants that a band-edge
Bloch function at k = 0 or k = π

a
always has zeros.
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difference between the surface-like states in one-dimensional finite crystals
and in ideal quantum films.6

More on these points and on the consequences of Theorem 5.1 will be
seen later in this chapter. Essentially, it is the consequences of Theorem 5.1
that leads to the similarities and differences of the quantum confinement of
three-dimensional Bloch waves in one specific direction in comparison with
the results obtained in Chapter 4.

Since v(x + a3) = v(x), the function φ̂n(k̂, x; τ3) has the form

φ̂n(k̂, x + a3; τ3) = eik3 φ̂n(k̂, x; τ3). (5.11)

Depending on n, k̂, and τ3, k3 in (5.11) can be complex or real. If in (5.11)
k3 is real, then φ̂n(k̂, x; τ3) is a Bloch function. There exist such cases, but
probably in more cases, φ̂n(k̂, x; τ3) is not a Bloch function: Even though
a specific Bloch function φn′(k, x) could have a nodal surface at a specific
x3 = τ3 and thus is a φ̂n(k̂, x; τ3), it seems unlikely that other Bloch functions
with a different n′ and/or k̂ will have a same nodal surface (see later in this
chapter). Especially in our theory, τ3 is treated as a general variable and
k3 in (5.11) can be real only in such special cases where φ̂n(k̂, x; τ3) is a
Bloch function for a specific τ3; in most cases, k3 is complex with a nonzero
imaginary part.

Depending on n, k̂, and τ3, the imaginary part of k3 in (5.11) can be either
positive or negative, corresponding to whether φ̂n(k̂, x; τ3) decays in either
the positive or the negative direction of a3. Such states φ̂n(k̂, x; τ3) with
a nonzero imaginary part of k3 cannot exist in a bulk crystal with three-
dimensional translational invariance since they are divergent in either the
negative or the positive direction of a3. However, they can play a significant
role in a quantum film of finite thickness.

5.3 Basic Considerations on the Electronic States in an
Ideal Quantum Film

For the electronic states in an ideal low-dimensional system such as in an ideal
quantum film, wire, dot, or finite crystal treated in this part, we assume that
(i) the potential v(x) inside the low-dimensional system is the same as in
(5.1) and (ii) the electronic states are completely confined in the system.

The electronic states ψ̂(k̂, x) in an ideal quantum film with N3 layers in
the a3 direction are solutions of the following two equations:

6Mathematically, it is the upper and lower limits in Theorem 2.8 that limits the
energy range of any surface-like state in a one-dimensional finite crystal always in
a band gap. This is further related to the fact that in a one-dimensional crystal,
each permitted energy band and each band gap always exist alternatively as the
energy increases.
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−∇2ψ̂(k̂, x) + [v(x) − Λ̂]ψ̂(k̂, x) = 0 if τ3 < x3 < τ3 + N3 (5.12)

and
ψ̂(k̂, x) = 0 if x3 ≤ τ3 or x3 ≥ τ3 + N3, (5.13)

where x3 = τ3 defines the bottom of the film and N3 is a positive integer indi-
cating the film thickness.7 These electronic states ψ̂(k̂, x) are two-dimensional
Bloch waves in the film plane, with additional index(es) indicating the con-
finement in the a3 direction.

In the following, we try to find solutions of (5.12) and (5.13) in some
simple cases. The main purpose is to understand the basic physics of the
electronic states in low-dimensional systems in simple examples, rather than
to explore more possibly treatable quantum films.

5.4 Stationary Bloch States

We can expect that one type of solutions of (5.12) and (5.13) should be
linear combinations of three-dimensional Bloch functions: In the film, they
are stationary Bloch states, formed due to multiple reflections of the Bloch
waves φn(k, x) at the two boundary surfaces of the film, whereas they are
two-dimensional Bloch waves in the film plane.

5.4.1 The Simplest Cases

The simplest cases are films of the crystals with a band structure having the
following symmetry:

εn(k1b1 + k2b2 + k3b3) = εn(k1b1 + k2b2 − k3b3). (5.14)

If (5.14) is true, we can expect that the stationary Bloch states in such a
quantum film can be obtained from the linear combinations of φn(k1b1 +
k2b2 + k3b3, x) and φn(k1b1 + k2b2 − k3b3, x), since, in general,

fn,k1,k2,k3(x) = c+φn(k1b1 + k2b2 + k3b3, x)
+ c−φn(k1b1 + k2b2 − k3b3, x), 0 < k3 < π

– where c± are nonzero constant coefficients – is a nontrivial solution of
(5.1) due to (5.14). To be a solution of (5.12) and (5.13), the function
fn,k1,k2,k3(x; τ3) is required to be zero at the bottom of the film x3 = τ3
and at the top of the film x3 = τ3 + N3. By writing x = x̂ + x3a3, where
x̂ = x1a1 + x2a2, we should have

7In this book, such a film is usually called a film with N3 layers in the a3

direction, despite the fact that the film may actually have more atomic layers.
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c+φn(k1b1 + k2b2 + k3b3, x̂ + τ3a3)
+ c−φn(k1b1 + k2b2 − k3b3, x̂ + τ3a3) = 0,

c+φn[k1b1 + k2b2 + k3b3, x̂ + (τ3 + N3)a3]
+ c−φn[k1b1 + k2b2 − k3b3, x̂ + (τ3 + N3)a3] = 0.

(5.15)

However, we have

φn[k1b1 + k2b2 + k3b3, x̂ + (τ3 + N3)a3]
= eik3N3φn(k1b1 + k2b2 + k3b3, x̂ + τ3a3)

and

φn[k1b1 + k2b2 − k3b3, x̂ + (τ3 + N3)a3]
= e−ik3N3φn(k1b1 + k2b2 − k3b3, x̂ + τ3a3).

Therefore, for c± in (5.15) not both zero, eik3N3 − e−ik3N3 = 0 has to be true
for these stationary Bloch states, independent of τ3.

Each stationary Bloch state solution of (5.12) and (5.13) has the form

ψ̂n,j3(k̂, x; τ3) = fn,k1,k2,κ3(x; τ3) if τ3 < x3 < τ3 + N3
= 0 if x3 ≤ τ3 or x3 ≥ τ3 + N3,

(5.16)

where

fn,k1,k2,k3(x; τ3) = cn,k1,k2,k3;τ3φn(k1b1 + k2b2 + k3b3, x)
+ cn,k1,k2,−k3;τ3φn(k1b1 + k2b2 − k3b3, x), (5.17)

cn,k1,k2,±k3;τ3 depend on τ3, k̂ = k1b̂1 + k2b̂2, and

κ3 = j3π/N3, j3 = 1, 2, ..., N3 − 1, (5.18)

independent of τ3. Here, j3 is a subband index. It is easy to see that
fn,k1,k2,k3(x; τ3) defined in (5.17) is a two-dimensional Bloch wave with a
wave vector k̂ = k1b̂1 + k2b̂2 in the film plane:

fn,k1,k2,k3(x + ai; τ3) = eikifn,k1,k2,k3(x; τ3), − π < ki ≤ π, i = 1, 2. (5.19)

The stationary Bloch state ψ̂n,j3(k̂, x; τ3) has the energy

Λ̂n,j3(k̂) = εn(k1b1 + k2b2 + κ3b3). (5.20)

Each energy Λ̂n,j3(k̂) is a function of N3, the film thickness.
The (001) quantum films of crystals with a simple cubic (sc), a tetragonal

(tetr), or an orthorhombic (ortho) Bravais lattice have b̂1 = b1 and b̂2 = b2.
Such quantum films with a bulk band structure having the symmetry (5.14)
are the simplest cases to which the theory in this section can be applied.
There are N3 − 1 stationary Bloch state solutions ψ̂n,j3(k̂, x; τ3) for each n

and each k̂ in such a film of N3 layers. They are two-dimensional Bloch waves
with a wave vector k̂ in the film plane. Their energies Λ̂n,j3(k̂) depend on the
film thickness N3 but not on the film boundary τ3 and map the bulk energy
band structure εn(k) exactly. These states can be considered as bulk-like
states in the quantum film.
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5.4.2 More General Cases

For many crystals, in general (5.14) is not true; the arguments in 5.4.1 are
not valid for general films. Nevertheless, it can be shown that if the band
structure of a bulk crystal has the symmetry

εn(k1b̂1 + k2b̂2 + k3b3) = εn(k1b̂1 + k2b̂2 − k3b3) (5.21)

in a film of N3 layers, there are N3 −1 stationary Bloch states for each n and
each k̂ = k1b̂1 + k2b̂2, similar to the cases in Section 5.4.1. The energies of
these stationary Bloch states can be similarly obtained.

We can write that b̂i = bi + αib3 (i = 1, 2); thus,

k1b̂1 + k2b̂2 + k3b3 = k1b1 + k2b2 + (α1k1 + α2k2 + k3)b3.

Actually, there are many different ways to choose the primitive lattice vectors.
For example, we can choose a new primitive lattice vector system as a′

1 = a1,
a′

2 = a2, and a′
3 = m1a1 + m2a2 + a3, where m1 and m2 are two integers.

The new primitive lattice vectors in k space are b′
1 = b1 − m1b3, b′

2 = b2 −
m2b3, and b′

3 = b3. In describing a quantum film, the primitive lattice vector
systems given by ai and a′

i are essentially equivalent. A position vector x can
be expressed as either x = x1a1+x2a2+x3a3 or x = x′

1a
′
1+x′

2a
′
2+x′

3a
′
3, and

x1 = x′
1+m1x

′
3, x2 = x′

2+m2x
′
3, and x3 = x′

3. Correspondingly, a wave vector
k can be expressed as either k = k1b1+k2b2+k3b3 or k = k′

1b
′
1+k′

2b
′
2+k′

3b
′
3,

and k1 = k′
1, k2 = k′

2, and k3 = −m1k
′
1 − m2k

′
2 + k′

3. Thus,

k1b̂1 + k2b̂2 + k3b3 = k1b
′
1 + k2b

′
2

+[(m1k1 + α1k1 + m2k2 + α2k2) + k3]b′
3.

If for a pair k1, k2, we can find two integers m1 and m2 to make

(m1 + α1)k1 + (m2 + α2)k2 = 0; (5.22)

then for such a pair k1, k2, in the primitive lattice vector system specified by
a′

3 = m1a1 + m2a2 + a3, (5.21) and (5.22) lead to

εn(k1b
′
1 + k2b

′
2 + k3b

′
3) = εn(k1b

′
1 + k2b

′
2 − k3b

′
3).

By comparison with (5.14), we can see that in the primitive lattice vector
system specifyied by a′

i, the theory in Section 5.4.1 can be applied for such
a pair k1, k2:

fn,k1,k2,k3(x) = c+ φn(k1b
′
1 + k2b

′
2 + k3b

′
3, x)

+ c− φn(k1b
′
1 + k2b

′
2 − k3b

′
3, x), 0 < k3 < π, (5.23)

can be used to construct stationary Bloch states between the x′
3 = τ3 surface

and the x′
3 = τ3 + N3 surface, that is, between the x3 = τ3 surface and the

x3 = τ3 + N3 surface, since x3 = x′
3.
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It is easy to see that fn,k1,k2,k3(x) defined in (5.23) is a two-dimensional
Bloch wave with a wave vector k̂ = k1b̂1 + k2b̂2 in the film plane:

fn,k1,k2,k3(x + ai) = fn,k1,k2,k3(x + a′
i)

= eikifn,k1,k2,k3(x), − π < ki ≤ π, i = 1, 2.

Since

φn(k1b
′
1 + k2b

′
2 + k3b

′
3, x + a′

3) = eik3φn(k1b
′
1 + k2b

′
2 + k3b

′
3, x)

and

φn(k1b
′
1 + k2b

′
2 − k3b

′
3, x + a′

3) = e−ik3φn(k1b
′
1 + k2b

′
2 − k3b

′
3, x),

the stationary Bloch states ψ̂n,j3(k̂, x; τ3) should have the form

ψ̂n,j3(k̂, x; τ3) = fn,k1,k2,κ3(x; τ3) if τ3 < x′
3 < τ3 + N3

= 0 if x′
3 ≤ τ3 or x′

3 ≥ τ3 + N3,
(5.24)

where

fn,k1,k2,k3(x; τ3) = cn,k1,k2,k3;τ3φn(k1b
′
1 + k2b

′
2 + k3b

′
3, x)

+ cn,k1,k2,−k3;τ3φn(k1b
′
1 + k2b

′
2 − k3b

′
3, x), (5.25)

cn,k1,k2,±k3;τ3 depend on τ3, and

κ3 = j3π/N3, j3 = 1, 2, ..., N3 − 1,

as in (5.18). This is the results of Section 5.4.1 applied to such a pair k1, k2.
The expressions (5.24) and (5.25) of the stationary Bloch states are based on
the specific primitive lattice vectors system a′

i. However, we have

φn(k1b
′
1 + k2b

′
2 + k3b

′
3, x) = φn[k1(b1 − m1b3) + k2(b2 − m2b3) + k3b3, x]

= φn{k1[b̂1 − (α1 + m1)b3]

+ k2[b̂2 − (α2 + m2)b3] + k3b3, x}
= φn(k1b̂1 + k2b̂2 + k3b3, x) (5.26)

due to (5.22), and, similarly,

φn(k1b
′
1 + k2b

′
2 − k3b

′
3, x) = φn(k1b̂1 + k2b̂2 − k3b3, x). (5.27)

By using (5.26) and (5.27), (5.24) and (5.25) can be rewritten as

ψ̂n,j3(k̂, x; τ3) = fn,k1,k2,κ3(x; τ3) if τ3 < x3 < τ3 + N3
= 0 if x3 ≤ τ3 or x3 ≥ τ3 + N3,

(5.28)

where
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fn,k1,k2,k3(x; τ3) = cn,k1,k2,k3;τ3φn(k1b̂1 + k2b̂2 + k3b3, x)

+ cn,k1,k2,−k3;τ3φn(k1b̂1 + k2b̂2 − k3b3, x), (5.29)

cn,k1,k2,±k3;τ3 depend on τ3, and

κ3 = j3π/N3, j3 = 1, 2, ..., N3 − 1, (5.30)

as in (5.18). Equations (5.28)–(5.30) do not depend on m1 or m2 thus are
not based on the specific a′

i any more: the states in the film are made of
φn(k̂ ± κ3b3).

Therefore, for a quantum film for which (5.21) is true, for any pair of
k1, k2 for which two integers m1 and m2 can be found to make (5.22) true,
there are N3 − 1 solutions of (5.12) and (5.13) in a film of N3 layers for
each bulk energy band n. Each solution ψ̂n,j3(k̂, x; τ3) in (5.28)–(5.30) is a
stationary Bloch state in the normal direction b3 of the film, whereas it is a
two-dimensional Bloch wave with a wave vector k̂ = k1b̂1 + k2b̂2 in the film
plane:

ψ̂n,j3(k̂, x + ai; τ3) = eiki ψ̂n,j3(k̂, x; τ3), − π < ki ≤ π, i = 1, 2 (5.31)

due to (5.29). The corresponding energy for each such state is

Λ̂n,j3(k̂) = εn(k̂ + κ3b3). (5.32)

There are many pairs (k1, k2) for which the condition (5.22) cannot be
true. Nevertheless, in a small circle centered in any specific pair (k1, k2) in
the k1, k2 plane, there are always an infinite number of pairs (k1,c, k2,c),
which can be as close to (k1, k2) as needed: For each pair (k1,c, k2,c), two
integers m1 and m2 can be found to make (m1 +α1)k1,c +(m2 +α2)k2,c = 0.
Thus, (5.28)–(5.32) will be true for each such pair (k1,c, k2,c). Since both
ψ̂n,j3(k̂, x; τ3) and φn(k1b̂1 +k2b̂2 ±κ3b3, x) (both Λ̂n,j3(k̂) and εn(k̂+κ3b3)
too) are continuous functions of k1 and k2, (5.28)–(5.32) must be true for any
k1 and k2.

For example, for a pair (k1, k2) = (π/
√

2, 0), (5.22) could not be true. If
α1 = α2 = 1/2, for a pair (k1,c, k2,c) = (2.221, 0.001) close to (k1, k2), one
can find m1 = −1 and m2 = 1110 to make (m1 +α1)k1,c +(m2 +α2)k2,c = 0.
For a pair (k1,c, k2,c) = (2.221441, 0.000001) closer to (k1, k2), one can find
m1 = −1 and m2 = 1110720 to make (m1 + α1)k1,c + (m2 + α2)k2,c = 0.

For another pair (k1, k2) = (π/3,−√
7), (5.22) could not be true either. If

α1 = α2 = 1/2, for a pair (k1,c, k2,c) = (1.047,−2.645) close to (k1, k2), one
can find m1 = 1322 and m2 = 523 to make (m1 +α1)k1,c +(m2 +α2)k2,c = 0.
For a pair (k1,c, k2,c) = (1.047197,−2.645751) closer to (k1, k2), one can find
m1 = 1322875 and m2 = 523598 to make (m1 + α1)k1,c + (m2 + α2)k2,c = 0.

A (001) quantum film of a crystal with a sc, tetr, or ortho Bravais lattice
and with a bulk band structure (5.14) can also be considered as a special
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simple case of the more general cases discussed in this subsection. For such
a film α1 = α2 = 0 and m1 = m2 = 0 for any k1 and k2.

Equation (5.28)–(5.32) are similar to that there are N −1 bulk-like states
in each band in a one-dimensional finite crystal of length L = Na, as indicated
by (4.7). The electronic states ψ̂n,j3(k̂, x; τ3) in (5.28)–(5.30) can be consid-
ered as bulk-like electronic states in the quantum film and each Λ̂n,j3(k̂) can
be considered as a bulk-like subband: Λ̂n,j3(k̂) maps the bulk energy band
εn(k) exactly by (5.32) and depends on the film thickness N3, but not on the
film boundary τ3.

5.5 τ3-Dependent States

It is expected that for each n and each k̂, there are N3 electronic states for
an ideal quantum film of N3 layers. For films in which (5.21) is true, N3 − 1
states were obtained in (5.28)–(5.30); the other type of nontrivial solutions
of (5.12) and (5.13) can be obtained from (5.11) by assigning

ψ̂n(k̂, x; τ3) = cN3 φ̂n(k̂, x; τ3) if τ3 < x3 < τ3 + N3
= 0 if x3 ≤ τ3 or x3 ≥ τ3 + N3,

(5.33)

where cN3 is a normalization constant. Correspondingly, the energy of such
a state is given by

Λ̂n(k̂; τ3) = λ̂n(k̂; τ3). (5.34)

There is one solution (5.33) of (5.12) and (5.13) for each energy band n and
each k̂. Each ψ̂n(k̂, x; τ3) defined in (5.33) is an electronic state in the film
whose energy Λ̂n(k̂; τ3) (5.34) depends on the film boundary τ3 but not on the
film thickness N3. By Theorem 5.1, Λ̂n(k̂; τ3) is either above or, occasionally,
at the energy maximum of εn(k) with that n and that k̂.

In the special cases where φ̂n(k̂, x; τ3) in (5.33) is a Bloch function,

φ̂n(k̂, x; τ3) = φn′(k, x), n ≤ n′, (5.35)

the corresponding Bloch function φn′(k, x) has a nodal surface at x3 = τ3 and
thus has nodal surfaces at x3 = τ3 + �, where � = 1, 2, ..., N3. As we pointed
out in Section 5.2, the wave vector has to be either k = k̂ or k = k̂ + πb3. If
n = n′, εn(k) has to be the energy maximum for that n and that k̂.

In most cases, φ̂n(k̂, x; τ3) in (5.33) is not a Bloch function. Consequently,
in these cases there is a nonzero imaginary part of k3 in (5.11), indicating
that ψ̂n(k̂, x; τ3) now is a surface state located near either the top or the
bottom of the film. Correspondingly, the energy of such a state

Λ̂n(k̂; τ3) > εn(k) for (k − k̂) · ai = 0, i = 1, 2, (5.36)
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is true by Theorem 5.1. However, there is no reason to expect that Λ̂n(k̂; τ3)
has to be in a band gap, as Theorem 2.8 requires of Λτ,n in the one-
dimensional case.

Each ψ̂n(k̂, x; τ3) can be considered as a surface-like state in the film, in
differentiation with the bulk-like states ψ̂n,j3(k̂, x; τ3). Therefore, for an ideal
quantum film bounded at x3 = τ3 and x3 = (τ3 +N3) in which (5.21) is true,
for each bulk energy band n there are N3 − 1 bulk-like subbands Λ̂n,j3(k̂) in
(5.32) and one surface-like subband Λ̂n(k̂; τ3) in (5.34) in the quantum film.

Because of (5.4), (5.32), and (5.34), in the ideal quantum film discussed
here, for each bulk energy band n the corresponding surface-like subband
Λ̂n(k̂; τ3) is always above the bulk-like subbands Λ̂n,j3(k̂):8

Λ̂n(k̂; τ3) > Λ̂n,j3(k̂). (5.37)

The electronic states in each subband are two-dimensional Bloch waves in
the film plane.

These results should be correct for (001) films of crystals with a sc, a tetr,
or an ortho Bravais lattice for which (5.14) is true. More generally, they should
also be correct for films of crystals for which (5.21) is true. In particular, they
should be correct for ideal (001) or (110) quantum films of crystals with a
face-centered-cubic (fcc) or a body-centered-cubic (bcc) Bravais lattice for
which (5.21) is true.

5.6 Several Practically More Interesting Films

All cubic semiconductors and many metals have a fcc Bravais lattice. All
alkali metals (Li, Na, K, Rb, Cs, Fr) and many other metals have a bcc
Bravais lattice. Therefore, the quantum films of crystals with a fcc Bravais
lattice or a bcc Bravais lattice often are practically more interesting.

5.6.1 (001) Films with a fcc Bravais Lattice

For the fcc (001) films, the primitive lattice vectors can be chosen as

a1 = a/2(1,−1, 0), a2 = a/2(1, 1, 0), a3 = a/2(1, 0, 1); (5.38)

thus, b1 = 1/a(1,−1,−1), b2 = 1/a(1, 1,−1), and b3 = 1/a(0, 0, 2). Corre-
spondingly, b̂1 = 1/a(1,−1, 0) and b̂2 = 1/a(1, 1, 0). Here, a is the lattice
constant. This corresponds to α1 = α2 = 1/2 in Section 5.4.2.

In general, the band structure of a cubic semiconductor or a fcc metal has
the symmetry

8Λ̂n,j3(k̂) can never be equal to Λ̂n(k̂; τ3): k̂ + κ3b3 is neither k̂ nor k̂ + πb3.
The equality in (5.4) can be excluded in (5.37).
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εn(kx, ky, kz) = εn(kx, ky,−kz);

thus, for such a (001) film, (5.21) is true. Therefore, the results in Sections
5.4.2 and 5.5 can be applied to these films: For a film of N3 layers, there are
N3 − 1 bulk-like subbands and one surface-like subband in the film for each
bulk energy band. Equation (5.32) for (001) films can be written as

Λ̂n,j3(k̂) = εn

[
k1b̂1 + k2b̂2 +

j3π

N3a
(0, 0, 2)

]
(5.39)

for any k̂ = k1b̂1 + k2b̂2, where j3 = 1, 2, ..., N3 − 1, given by (5.30).
Now, τ3 can be written as τ001. By (5.37), each surface-like subband

Λ̂n(k̂; τ001) is always above each relevant bulk-like subband Λ̂n,j3(k̂). If a
ψ̂n(k̂ = 0, x; τ001) inside the film is a Bloch function φn(k, x), either k = 0
or k = 2π

a (0, 0, 1) must be true and the corresponding energy is the energy
maximum of εn(0, 0, 2k3

a ). It is assumed that the existence of boundary faces
of the film does not change the two-dimensional space group symmetry of the
system (Footnote 2 on page 90). For each surface-like subband Λ̂n(k̂; τ001),
it is expected that Λ̂n(k1b̂1 + k2b̂2; τ001) = Λ̂n(k1b̂1 − k2b̂2; τ001) is true.

A “new” way of choosing the primitive lattice vectors is

a1 = a/2(1,−1, 0), a2 = a/2(1, 1, 0), a3 = a(0, 0, 1), (5.38a)

and thus b1 = b̂1 = 1/a(1,−1, 0), b2 = b̂2 = 1/a(1, 1, 0), and b3 =
1/a(0, 0, 1).

In this “new” way of choosing the primitive lattice vectors, the “new”
Brillouin zone with two boundaries at (0, 0,±1)π

a is half of the original Bril-
louin zone with two boundaries at (0, 0,±2)π

a and each original bulk energy
band now becomes two “new” energy bands in the “new” Brillouin zone
(band-folding). For a (001) film of thickness N001a, where N001 is a positive
integer, according to the “new” description it seems that there should be
(N001 − 1) bulk-like subbands and one surface-like subband for each “new”
energy band and thus 2(N001 − 1) bulk-like subbands and two surface-like
subbands for each original energy band. From the original description, since
N3 = 2N001, there are 2N001 − 1 bulk-like subbands and one surface-like
subband for each original energy band. This difference (one extra surface-like
subband and one less bulk-like subband for each original bulk energy band
in the “new” description) comes from the fact that the “new” description
(5.38a) is only based on half of the whole symmetry of the film in the [001]
direction. Thus, the “extra” surface-like subband in the “new” description
actually is a bulk-like subband in the original primitive lattice vector system
(5.38) where the full symmetry of the film in the [001] direction is used. We
mention this point here since we will meet some relevant situations later.

5.6.2 (110) Films with a fcc Bravais Lattice

For the fcc (110) films, the primitive lattice vectors can be chosen as
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a1 = a/2(1,−1, 0), a2 = a(0, 0,−1), a3 = a/2(0, 1, 1); (5.40)

thus, b1 = 1/a(2, 0, 0), b2 = 1/a(1, 1,−1), and b3 = 1/a(2, 2, 0). Corre-
spondingly, b̂1 = 1/a(1,−1, 0) and b̂2 = 1/a(0, 0,−1). This corresponds to
α1 = α2 = −1/2 in Section 5.4.2.

In general, the band structure of a cubic semiconductor or a fcc metals
has the symmetry

εn(kx, ky, kz) = εn(ky, kx, kz);

thus, for such a (110) film, (5.21) is true. Therefore, the results in Sections
5.4.2 and 5.5 can be applied to these films: For a film of N3 layers, there are
N3 − 1 bulk-like subbands and one surface-like subband in the film for each
bulk energy band. Equation (5.32) can also be written as

Λ̂n,j3(k̂) = εn

[
k1b̂1 + k2b̂2 +

j3π

N3a
(2, 2, 0)

]
(5.41)

for any k̂ = k1b̂1 + k2b̂2, where j3 = 1, 2, ..., N3 − 1, given by (5.30).
Now, τ3 can be written as τ110. Because of (5.37), each surface-like sub-

band Λ̂n(k̂; τ110) is always above each relevant bulk-like subband Λ̂n,j3(k̂). If
a ψ̂n(k̂ = 0, x; τ110) inside the film is a Bloch function φn(k, x), either k = 0
or k = π

a (2, 2, 0) must be true and the corresponding energy is the energy
maximum of εn[k3

a (2, 2, 0)]. It is assumed that the existence of boundary faces
of the film does not change the two-dimensional space group symmetry of the
system (Footnote 2 on page 90). For each surface-like subband Λ̂n(k̂; τ110),
it is expected that Λ̂n(k1b̂1 + k2b̂2; τ110) = Λ̂n(k1b̂1 − k2b̂2; τ110) is true.

Similar to Section 5.6.1, there is a “new” way of choosing the primitive
lattice vectors as

a1 = a/2(1,−1, 0), a2 = a(0, 0,−1), a3 = a/2(1, 1, 0) (5.40a)

and, thus, b1 = b̂1 = 1/a(1,−1, 0), b2 = b̂2 = 1/a(0, 0,−1), and b3 =
1/a (1, 1, 0).

In this “new” way of choosing the primitive lattice vectors, the “new”
Brillouin zone with two boundaries at ±(1, 1, 0)π

a is half of the original Bril-
louin zone with two boundaries at ±(2, 2, 0)π

a and each orginal energy band
now becomes two “new” energy bands in the “new” Brillouin zone (band-
folding). For a (110) film of thickness N110

√
2a/2, where N110 is a positive

integer, according to the “new” description, it seems that there should be
(N110 − 1) bulk-like subbands and one surface-like subband for each “new”
energy band and thus 2(N110 − 1) bulk-like subbands and two surface-like
subbands for each original bulk energy band. From the original description
since N3 = 2N110 there are 2N110 − 1 bulk-like subbands and one surface-
like subband for each original bulk energy band. This difference (one extra
surface-like subband and one less bulk-like subband for each original bulk
energy band in the “new” description) comes from the fact that the “new”
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description (5.40a) is only based on half of the whole symmetry of the film
in the [110] direction. Thus, the “extra” surface-like subband in the “new”
description actually is a bulk-like subband in the original primitive lattice
vector system (5.40), where the full symmetry of the film in the [110] direc-
tion is used. We mention this point here since we will meet some relevant
situations later.

5.6.3 (001) Films with a bcc Bravais Lattice

For the bcc (001) films, the primitive lattice vectors can be chosen as a1 =
a(1, 0, 0), a2 = a(0, 1, 0), and a3 = a/2(1, 1, 1); thus, b1 = 1/a(1, 0,−1),
b2 = 1/a(0, 1,−1), and b3 = 1/a(0, 0, 2). Correspondingly, b̂1 = 1/a(1, 0, 0),
b̂2 = 1/a(0, 1, 0). This corresponds to α1 = α2 = 1/2 in Section 5.4.2. In
general, the band structure of a bcc metal has the symmetry εn(kx, ky, kz)
= εn(kx, ky,−kz); thus, for such (001) films, (5.21) is true. Therefore, the
results in Sections 5.4.2 and 5.5 can be applied to these films: For a film of
N3 layers, there are N3 − 1 bulk-like subbands and one surface-like subband
in the film for each bulk energy band. In the Cartesian system, (5.32) for bcc
(001) films can be written as

Λ̂n,j3(kx, ky) = εn(kx, ky, 2κ3/a) (5.42)

for any kx and ky, where κ3 is given by (5.30).
Because of (5.37), each surface-like subband Λ̂n(k̂; τ3) is always above

each relevant bulk-like subband Λ̂n,j3(k̂).

5.6.4 (110) Films with a bcc Bravais Lattice

For the bcc (110) films, the primitive lattice vectors can be chosen as
a1 = a/2(1,−1, 1), a2 = a/2(1,−1,−1), and a3 = a/2(1, 1, 1); thus
b1 = 1/a(0,−1, 1), b2 = 1/a(1, 0,−1), and b3 = 1/a(1, 1, 0). Correspond-
ingly, b̂1 = 1/a(1/2,−1/2, 1) and b̂2 = 1/a(1/2,−1/2,−1). This corresponds
to α1 = −α2 = 1/2 in Section 5.4.2. In general, the band structure of a bcc
metal has the symmetry εn(kx, ky, kz) = εn(ky, kx, kz); thus, for such (110)
films, (5.21) is true. Therefore, the results in Sections 5.4.2 and 5.5 can be
applied to these films: For a film of N3 layers, there are N3 − 1 bulk-like
subbands and one surface-like subband in the film for each bulk energy band.
Equation (5.32) can also be written as

Λ̂n,j3(k1b̂1+k2b̂2) = εn[(κ3+k1/2+k2/2)/a, (κ3−k1/2−k2/2)/a, (k1−k2)/a]
(5.43)

for any k1 and k2, where κ3 is given by (5.30).
Because of (5.37), each surface-like subband Λ̂n(k̂; τ3) is always above

each relevant bulk-like subband Λ̂n,j3(k̂).
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5.7 Comparisons with Previous Numerical Results

There are some previously published numerical results [6–9] to which our
results obtained in this chapter can be compared.

5.7.1 Si (001) Films

Equations (5.32) and (5.39) can be used for Si (001) films. Zhang and Zunger
[6] and Zhang et al. [7] calculated the electronic structure of thin Si (001)
films using a pseudopotential method. Their results for even numbers Nf of
monolayers can be directly compared with (5.39): The N3 in (5.39) is equal to
their Nf/2. Their “central observation” in [6] is that the energy spectrum of
electronic states in a Si (001) quantum film (Nf = 12) maps the energy band
structure of Si approximately, as shown in Fig. 1.6 and Fig. 5.2. Equation
(9) in [6], which Zhang and Zunger obtained from their numerical results, is
a special case of (5.39) with k1 = k2 = 0. Therefore, (5.39) is a more general
prediction.

Fig. 5.2. Mapping of the directly calculated film energy levels in Si (001) film of 12
monolayers at the center of the two-dimensional Brillouin zone by Zhang et al. (solid
dots) onto the energy bands of the bulk Si. A solid (dashed) open circle indicates
that one (two) state(s) does not exist in the film. Reprinted with permission from
S. B. Zhang, C-Y Yeh, and A. Zunger: Phys. Rev. B48, 11204 (1993). Copyright
by the American Physical Society.

One of the triply-degenerated VBM states and one of the doubly-degen-
erated X1v states in the valence bands may have a (001) nodal surface; thus,
for these Bloch states, (5.35) can be true. This can be observed in the results
in [6,7] for Si (001) films such as in Fig. 1.5, Fig. 1.6, and Fig. 5.2. Note that
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these Bloch states (X1v or VBM) have the highest energy for that energy
band (n = 0 or n = 1) and that k̂ = 0, corresponding to that, (5.35) is true
for these two cases: n = n′ = 0 for one of doubly-degenerated states X1v, and
n = n′ = 1 for one of triply-degenerated states VBM.

Although the VBM in Si (Γ ′
25) is triply-degenerated, only one of the triply-

degenerated VBM states may have a nodal surface in (001) plane to make
(5.35) true; thus, there is only one VBM band edge state in (001) films whose
energy does not depend on the film thickness, as observed in [6,7] and shown
in those figures.

Each one of the other two VBM states has the highest energy for that
energy band (n = 2 or n = 3) and that k̂ = 0 and each has a nodal surface, but
not in the (001) plane. Consequently, Λ̂n=2,3(k̂ = 0; τ3) > εn(k3b3) ((5.36)
for k̂ = 0) is true for any k3; thus, there must be two occupied surface-like
states in the (001) films whose energies Λ̂n=2,3(k̂ = 0; τ3) are above the VBM
and do not depend on the film thickness. This is the reason that two occupied
surface bands were observed in a Si quantum (001) film, such as a Si (001)
film of 12 monolayers (corresponding N3 = 6 in our notations) investigated
in [6,7].9 Therefore, the VBM state shown in Fig. 1.5, Fig. 1.6, or Fig. 5.2 is
an occupied VBM state but actually is not the highest occupied state in the
quantum films.

Although our theory is a theory for ideal quantum films and the numerical
calculations in [6,7] used a more realistic potential outside the film, those
rather good agreements indicate that the simplified model we used may have
given correctly the most essential physics of the electronic states in quantum
films.

An interesting tight-binding calculation on Si (001) films by Gavrilenko
and Koch [8] found that there are three different groups of electronic states
in the films: (i) bulk-related states whose energies depend strongly on the
thickness of the film; (ii) surface-like states whose energies do not strongly
depend on the film thickness; (iii) electronic states whose energies do not
strongly depend on the film thickness and whose wave functions are not
localized near the boundary faces of the film. This is also consistent with
the results obtained in this chapter: The energies Λ̂n,j3(k̂) of bulk-like states
depend on the film thickness N3, whereas the energies Λ̂n(k̂; τ3) of surface-
like states do not depend on the film thickness N3. The corresponding wave
functions ψ̂n(k̂, x; τ3) of the surface-like states may be either localized near
one boundary surface of the film (the imaginary part of k3 in (5.11) is not
zero) or delocalized (the imaginary part of k3 in (5.11) is zero).

9Therefore, the existence of two occupied surface bands above the VBM are due
to the fact that (5.36) is true for two valence bands, rather than due to the fact
that the film has two surfaces.
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5.7.2 Si (110) Films and GaAs (110) Films

In cases where k1 = k2 = 0, (5.41) gives

Λ̂n,j3(0) = εn

(
2j3π

N3a
,
2j3π

N3a
, 0

)
.

This is what was observed in the numerical calculations on a Si (110) film
in [6] and on a six-layer Si (110) film and a six-layer GaAs (110) film in [7],
as shown in Fig. 5.3. Again, (5.41) is a more general prediction for fcc (110)
films.

Fig. 5.3. Mapping of the directly calculated film energy levels in [7] (solid dots)
at the center of the two-dimensional Brillouin zone on to the energy bands of the
bulk for (a) six-layer Si (110) film and (b) a six-layer GaAs film. The legends are
the same as in Fig. 5.2. Reprinted with permission from S. B. Zhang, C-Y Yeh, and
A. Zunger: Phys. Rev. B48, 11204 (1993). Copyright by the American Physical
Society.

One of the triply-degenerated VBM states (Γ ′
25 or Γ15) in Si or GaAs may

have a nodal surface in the (110) plane; therefore, there may be one VBM
state in free-standing Si (110) or GaAs (110) films whose energy does not
depend on the film thickness, as observed in [7] and [9].

Each one of the other two VBM states does have a nodal surface, but not
in the (110) plane. Correspondingly, Λ̂n=2,3(k̂ = 0; τ3) > εn(k3b3) ((5.36) for
k̂ = 0 ) is true for any k3; thus, there are also two occupied surface-like states
in the (110) films whose energies Λ̂n(k̂ = 0; τ3) are above the VBM and do
not depend on the film thickness. Therefore, the VBM states shown in Fig.
5.3 (and also in Fig. 5.4) are actually not the highest occupied state in these
quantum films either.



5.7 Comparisons with Previous Numerical Results 109

Fig. 5.4. Bandedge energies of AlAs-embeded (solid lines) and free-standing
(dashed lines) GaAs films (a), wires (b), and dots (c) from numerical calculations
in [9]. The shaded areas denote the GaAs bulk band gap. The arrows indicate
the critical size for the direct/indirect transition in free-standing quantum films
and wires. Reprinted with permission from A. Franceschetti and A. Zunger: Appl.
Phys. Lett. 68, 3455 (1996). Copyright by American Institute of Physics.
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Franceschetti and Zunger [9] investigated the bandedge energies in free-
standing and AlAs-embedded GaAs films, quantum wires, and quantum dots,
as shown in Fig. 5.4.

Note that in the numerical results on the electronic states in free-standing
GaAs (110) films and AlAs-embedded GaAs (110) films shown in Fig. 5.4(a),
the bandedge energy of free-standing GaAs (110) films stays almost un-
changed, but the bandedge energy of AlAs-embedded GaAs (110) films is
always below the bandedge energy of free-standing GaAs (110) films of the
same thickness as the film thickness decreases. If one thinks in an EMA way,
the figure shows a stronger quantum confinement effect in AlAs-embedded
GaAs (110) films than in free-standing GaAs (110) films since the effective
mass at the VBM is negative. However, the free-standing GaAs (110) films
have a much stronger confinement potential. This leads to a real puzzle for
EMA: A weaker confinement potential leads to a stronger quantum confine-
ment effect. This is another example indicating that EMA might be quali-
tatively incorrect in some cases. However, this is a natural consequence in
our theory: Higher confinement potential in free-standing GaAs (110) films
makes the corresponding energy in these films higher.

5.8 Further Discussions

We have seen that in ideal (001) or (110) quantum films of cubic semicon-
ductors, the existence of a VBM state whose energy does not change as the
film thickness changes, as shown in Figs. 1.5, 1.6, 5.2, 5.3, and 5.4, is sim-
ply due to the fact that there is always one VBM state that may have a
nodal surface in the (001) plane or in the (110) plane. However, for the quan-
tum confinement of the three-dimensional Bloch waves in quantum films, an
even more interesting point is the existence of the other two higher occupied
surface-like bands – simply due to the fact that the other two states of the
triply-degenerated VBM may not have the same nodal surface in the (001)
or in the (110) plane. In contrast with an EMA picture such as shown in Fig.
1.4, the highest occupied electronic states in ideal (001) and (110) quantum
films of cubic semiconductors – the maximum of the surface-like subbands
Λ̂n(k̂; τ3) for n = 2, 3 – actually are above the VBM, the highest occupied
states in the bulk without quantum confinement.

It is the energies of the highest occupied bulk-like states that are always
below the VBM and decrease as the film thickness decreases. The well-known
fact that the band gap increases as the film thickness decreases actually is
true only for the bulk-like electronic states in semiconductor quantum films. If
the surface-like occupied subbands Λ̂n(k̂; τ3) for n = 2, 3 are also considered,
the real band gap in a semiconductor quantum film may actually be smaller
than the band gap of the bulk. It may even be possible that for some k̂,

Λ̂n=2,3(k̂; τ3) > Λ̂4,j3(k̂) (5.44)
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is true; that is, for some k̂ the two surface-like subbands originating from
two valence bands (n = 2, 3) may be higher than the bulk-like subbands
originating from the lowest conduction band (n = 4). If this happens, a film
of a semiconductor crystal may actually become a film with the electrical
conductivity of a metal: The equivalence of the Fermi level in the film will
force electrons to move from the surface-like subbands Λ̂n=2,3(k̂; τ3) into the
bulk-like subbands Λ̂4,j3(k̂), possibly to make the film an electrical conductor.
These predictions are based on Theorem 5.1 and the properties of the VBM
of cubic semiconductors. The thinner the film is, the more significant are the
contributions from those surface-like states to the physical properties of the
film. In the numerical calculations on a Si (001) quantum film in [7], the
surface-like states were found at 1.2–1.6 eV above the VBM, indicating that
the condition (5.44) is realistic.

Carefully designed experimental investigations to explore these possible
physics phenomena will be very interesting.

Although our predictions for ideal (001) and (110) films with a fcc Bra-
vais lattice are more general, many of them are consistent with numerical
calculations for Si (001) films, Si (110) films, and GaAs (110) films in [6,7,9],
there are also some differences.

Since the VBM of a cubic semiconductor are triply-degenerated and there
is only one band (the lowest valence band n = 0 in our notation) below the
three upper valence bands, as a consequence of Theorem 5.1, we have

Λ̂1(k̂ = 0; τ3) ≥ VBM

in these films; that is, only one Λ̂n=0(k̂ = 0; τ3) can exist below the VBM.
In particular for the cases investigated in [6, 7], there could be only one
Λ̂n=0(k̂ = 0; τ3) with an energy below the VBM at the boundary of the
Brillouin zone in those films. This is what was observed in the numerical
results on Si (001) films in [6, 7]: Only one of the doubly-degenerated X1v

states exists in Si (001) films, as shown in Figs. 1.6 and 5.2. However, in the
numerical results on a six-layer Si(110) film and a six-layer GaAs (110) film
in [7], two such states were presented in both films: X1v and X4v in the Si
(110) film and X1v and X5v in the GaAs (110) film, as shown in Figs. 5.3(a)
and 5.3(b). In the ideal films treated by our theory, the very existence of two
such states is contradictory to Theorem 5.1.10

Another difference is that, according to our theory, in an ideal quantum
film of N3 layers for each energy band n and each k̂, there are N3 − 1 bulk-
like stationary Bloch states ψ̂n,j3(k̂, x; τ3) where j3 = 1, 2, ..., N3 − 1. In the

10Neither any one of the doubly-degenerated X1v states in Si nor the X1v state
in GaAs could have a nodal (110) plane and, thus, the X1v state in an ideal Si (110)
film and the X1v state in an ideal GaAs (110) film cannot exist. Therefore, we can
only have Λ̂0(k̂ = 0; τ3) = X4v for an ideal Si (110) film and Λ̂0(k̂ = 0; τ3) = X5v

for an ideal GaAs (110) film. These are two examples of the special cases mentioned
on p. 94 and on p. 101 in which n = 0 while n′ = 2.
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numerical calculations in [6, 7], the results are somewhat different: The n =
5, j = 5 (corresponding to our n = 4, j3 = 5) state in Fig. 1.6 and Fig. 5.2
and the n = 3, j = 4 (corresponding to our n = 2, j3 = 4)11 state in Figs.
5.3(a) and 5.3(b) are missing.

A clear understanding of the origin of these differences will be interesting.
Although, in an ideal quantum film, each surface state with a specific n

and a specific k̂ is located near either the top or the bottom of the film,
since there is not a clear understanding of the properties of solutions of the
second-order partial differential equations with periodic coefficients, there is
no reason to expect that all surface states in one surface-like subband have to
be located near the same surface of the film. Depending on τ3 and k̂, some of
them may be located near the top surface of the film and the others may be
located near the bottom surface of the film, even though they all belong to
the same surface-like subband in the film. This is significantly different from
the surface-like states in one-dimensional finite crystals, where a surface state
in a specific band gap can only be located near one end of the finite crystal.

As mentioned in Sections 5.2 and 5.5, another significant difference from
one-dimensional cases is that a surface-like state in a quantum film does
not have to be in a band gap. Essentially, the fundamental reason is that
Theorem 5.1 does not give an upper limit for λ̂n(k̂; τ3), unlike Theorem 2.8
in the one-dimensional case. Therefore, a surface-like state in a film may
have an energy in the range of permitted energy bands of the bulk and it still
can decay in either the positive or the negative direction of a3: Only in the
one-dimensional case must such a decaying state be in a band gap.12

Since in the ideal quantum films discussed here, for each bulk energy
band εn(k) there are one surface-like subband Λ̂n(k̂; τ3) and N3 −1 bulk-like
subbands Λ̂n,j3(k̂) in a film of N3 layers, the physical origin of a surface-
like subband is essentially related to a bulk energy band rather than to a
bulk band gap. Such an understanding is not easy to obtain either in a one-
dimensional analysis or in an ordinary semi-infinite crystal analysis: Many
previous theoretical investigations on surface electronic states, including an
investigation by the author [10], consider that the surface-like states are re-
lated to the band gap(s).

In particular, the tight-binding approach mentioned in Section 4.6 has
such a problem; it leads to the result that in a tight-binding formalism a
linear finite chain with a single state per unit cell does not have a surface
state. According to the understanding we have obtained here, any ideal finite
one-dimensional crystal always has a surface-like state for each bulk energy

11Note that in our notations the lowest energy band index n = 0.
12Mathematically, this is due to the fact that only for ordinary differential equa-

tions with periodic coefficients can it be proven that a solution with a factor eβx or
e−βx in which β is a nonzero real number can only exist in a band gap. A surface
state with an energy in the range of permitted energy bands is usually called a
surface resonance state.
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band. Furthermore, it is in the one-dimensional case that such a surface-
like state must be in a band gap. It is a consequence of the tight-binding
approximation that a crystal with a single state per unit cell has no band
gap and, thus, such a linear finite chain has no surface state.

The general relationship between the surface-like subband Λ̂n(k̂; τ3) and
the bulk-like subbands Λ̂n,j3(k̂) in a quantum film (5.37) will lead to some
other interesting consequences.

Since, as a consequence of Theorem 5.1, there is one surface subband
Λ̂n(k̂; τ3) for each bulk energy band εn(k), an ideal (001) or (110) film of a
cubic compound semiconductor can have at most one surface-like subband
Λ̂0(k̂; τ3) in the minor band gap between the lowest valence band n = 0 and
the upper valence bands, even though a film always has two surfaces.

Since the surface-like subbands Λ̂n(k̂; τ3) near the bulk band gap for an
ideal semiconductor quantum film originate from the valence bands, in an
everywhere neutral semiconductor film these surface-like subbands should be
occupied. Unoccupied states in these surface-like subbands cause the surfaces
to be positively charged.

A similar effect probably might be more notable in (001) and (110) films
of alkali metals since the conduction band is not fully occupied; the Fermi
surface of an alkali metal is usually inside the conduction band. All alkali
metals (Li, Na, K, Rb, Cs, Fr) have a bcc Bravais lattice. Corresponding to
the conduction band in which the conducting electrons are occupied, there
is a surface-like subband in a (001) or (110) quantum film. This surface-like
subband in the film is, by (5.37), generally higher in energy than the corre-
sponding bulk-like subbands. In an everywhere neutral alkali metal film, the
surface-like subband should be equally occupied by electrons as the corre-
sponding bulk-like subbands. However, the equivalence of the Fermi energy
in the film must force some electrons to flow from the surface-like subband
into the bulk-like subbands inside the film and, thus, the surfaces of the film
should be positively charged.

This prediction seems to be supported by the positive surface-atom core-
level shift in alkali metal (110) films, as reported by Riffe et al.(RWBC),
[e.g.,11]. Although the surface-atom core-level shifts in most other metals
(transition metals and noble metals) were explained by a small charge flow
between the surface and the inside of the metal [12], no reason for such a
charge flow between the surface and the inside of alkali metals was known
previously. The authors in [11] used the spill-out of the conducting electrons
to explain the fact that the surfaces of these alkali metals are positively
charged. However, the theory in this chapter provided a clear reason for why
the electrons in alkali (110) films could flow from the surfaces into the film and
thus make the surfaces of the film positive charged, thus giving an alternative
possible explanation for the positive surface-atom core-level shift observed in
alkali metal (110) films. If this explanation is correct, then the surface-atom
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core-level shift in metals can be understood on the same basis, as a charge
flow between the surface and the inside of the metal.

In the RWBC model, the conducting electrons spill outside into the vac-
uum, whereas in the theory of this chapter, conducting electrons mainly flow
inside. Therefore, the surface-atom top layer relaxation [13, 14] in an alkali
metal is more likely to be an expansion if the RWBC model dominates. On
the other hand, if conducting electrons flowing inside dominates, the surface-
atom top layer relaxation in an alkali metal is more likely to be a contraction.
Experimental investigations to explore this will be interesting.

There are also surface-like subbands corresponding to the bulk conduc-
tion bands in semiconductor films. Those surface-like subbands will be even
higher in energy than the bulk conduction bands and, thus, will usually not
be occupied. It seems unlikely that those surface-like subbands will have a
significant effect on the properties of a semiconductor quantum film.

Similar to being stated in the comments in Section 4.5, the very existence
of the boundary-dependent states in quantum films is neglected in the EMA.
Furthermore, if the concerned energy extreme is not located at the center
of the Brillouin zone or at the boundary of the Brillouin zone, such as the
conduction band minima in Si or Ge, the use of EMA is not justified, even
for the bulk-like electronic states in ideal quantum films.

In summary, by considering the effects of quantum confinement of three-
dimensional Bloch waves in a specific direction, exact and general results on
the properties of the electronic states in interesting quantum films – such as in
ideal (001) films of crystals with a sc, tetr, or ortho Bravais lattice for which
(5.14) is true or in ideal (001) or (110) films of crystals with a fcc Bravais
lattice or a bcc Bravais lattice for which (5.21) is true – can be predicted:
For a film bounded at x3 = τ3 and x3 = (τ3 + N3), for each bulk energy
band and each wave vector k̂ in the film plane, there are N3 − 1 bulk-like
electronic states ψ̂n,j3(k̂, x; τ3) by (5.28), whose energies Λ̂n,j3(k̂) by (5.32)
are dependent on the film thickness N3 but not on the film boundary τ3,
and there is one surface-like electronic state ψ̂n(k̂, x; τ3) by (5.33) in the film
whose energy Λ̂n(k̂; τ3) by (5.34) is dependent on the film boundary τ3 but
not on the film thickness N3 and is always above bulk-like subbands Λ̂n,j3(k̂),
by (5.37). The energies Λ̂n,j3(k̂) of bulk-like states map the bulk energy band
εn(k) exactly. These are similar to the properties of the electronic states
in a one-dimensional finite crystal. However, the surface-like states in an
ideal quantum film may have some different interesting properties due to the
differences between Theorem 5.1 and Theorem 2.8. The differences between
Theorem 5.1 and Theorem 2.8 are actually further related to the fact that
the solutions of the second-order partial differential equation with periodic
coefficients (5.1) do not have the simple and general properties of the solutions
of the second-order ordinary differential equation with periodic coefficients
(2.36) described in Chapter 2.
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Therefore, in the ideal quantum films considered in this chapter, the effect
of the lack of translational invariance in one specific direction is that there is
always one and only one boundary-dependent surface-like subband Λ̂n(k̂; τ3)
for each bulk energy band εn(k); the energies of all other bulk-like subbands
Λ̂n,j3(k̂) can be directly obtained from the energy band structure εn(k) of
the corresponding bulk crystal, by (5.32).

The approach used in this chapter can be naturally extended to investi-
gate the effects of the further confinement of two-dimensional Bloch waves
ψ̂n,j3(k̂, x; τ3) and ψ̂n(k̂, x; τ3) in an ideal quantum wire.
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6 Electronic States in Ideal Quantum Wires

In this chapter, we investigate the electronic states in ideal quantum wires. We
are interested in the electronic states in rectangular quantum wires, which can
be considered as the electronic states in a quantum film discussed in Chapter
5 further confined in one more direction. In particular, we are interested in
those simple cases where the two primitive lattice vectors a1 and a2 in the film
plane are perpendicular to each other. By using an approach similar to that
used in Chapter 5, we try to understand the further quantum confinement
effects in a quantum wire of two-dimensional Bloch waves ψ̂n,j3(k̂, x; τ3) in
(5.28) and ψ̂n(k̂, x; τ3) in (5.33) in a quantum film that were obtained in
Chapter 5. It is found that each type of two-dimensional Bloch waves will
produce two different types of one-dimensional Bloch waves in the quantum
wire.

A rectangular quantum wire always has four boundary faces: two faces in
the (h2k2l2) plane and two faces in the (h3k3l3) plane. The electronic states
in such a quantum wire can be considered either as the electronic states
in a quantum film with two boundary faces in the (h3k3l3) plane further
confined by two boundary faces in the (h2k2l2) plane, or, equivalently, as the
electronic states in a quantum film with two boundary faces in the (h2k2l2)
plane further confined by two boundary faces in the (h3k3l3) plane. The
results obtained in these two different confinement orders are equally valid
and are complementary to each other. By combining the results obtained from
the two different confinement orders, we can obtain a more comprehensive
understanding of the electronic states in the quantum wire.

The simplest cases are the electronic states in an ideal rectangular quan-
tum wire of crystals with a sc, tetr, or an ortho Bravais lattice. In these
crystals, the three primitive lattice vectors a1, a2, and a3 are perpendicular
to each other and are equivalent. Exact and general results on the electronic
states in such a quantum wire in the direction of one specific primitive lat-
tice vector a1 and with four faces in the (010) or in the (001) plane can
be obtained by considering the electronic states in a quantum film with two
boundary faces in the (001) plane further confined by the two boundary faces
in the (010) plane, or, equivalently, as the electronic states in a quantum film
with two boundary faces in (010) plane further confined by the two boundary
faces in the (001) plane.
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Based on the understanding of the further quantum confinement of two-
dimensional Bloch waves ψ̂n,j3(k̂, x; τ3) and ψ̂n(k̂, x; τ3) and by considering
two different confinement orders, we can also obtain predictions on the elec-
tronic states in some practically more interesting ideal rectangular quantum
wires of crystals with a fcc or a bcc Bravais lattice. Electronic states in such
a quantum wire can be considered as the two-dimensional Bloch waves in a
quantum film discussed in Section 5.6 further confined in one more direction.

This chapter is organized as follows. After giving basic considerations of
the problem in Section 6.1, in Sections 6.2 to 6.3 we investigate the effects
produced when the two types of two-dimensional Bloch waves obtained in
Chapter 5 are further confined in one more specific direction. In Sections
6.4 to 6.7, we obtain predictions on the electronic states in ideal quantum
wires of crystals with several different Bravais lattices by applying the results
obtained in Sections 6.1 to 6.3 and by considering two different confinement
orders. In Section 6.8 are a summary and some discussions on the results
obtained.

6.1 Basic Considerations

In an ideal quantum film discussed in Chapter 5, there are two different
types of electronic states: surface-like states ψ̂n(k̂, x; τ3) in (5.33) and bulk-
like states ψ̂n,j3(k̂, x; τ3) in (5.28). Both are two-dimensional Bloch waves in
the film plane. Similar to the problem we treated in Chapter 5, in a quantum
wire, each type of these two-dimensional Bloch waves will be further confined
in one more direction.

We choose the primitive vector a1 in the wire direction. Such a rectangular
quantum wire can be defined by a bottom face x3 = τ3, a top face x3 =
τ3 + N3, a front face perpendicularly intersecting the a2 axis at τ2a2, and a
rear face perpendicularly intersecting the a2 axis at (τ2 + N2)a2, where τ2
and τ3 define the boundary face locations of the wire and N2 and N3 are two
positive integers indicating the wire size and shape. We use k̄ to express a
wave vector in the wire direction: k̄ = k1b̄1, a1 · b̄1 = 1. Since in this chapter
we are only interested in the cases where a1 · a2 = 0, we have b̄1 = b̂1.

For the further confinement of two-dimensional Bloch waves ψ̂n(k̂, x; τ3)
and ψ̂n,j3(k̂, x; τ3), we look for the eigenvalues Λ̄ and eigenfunctions ψ̄(k̄, x)
of the following two equations:

−∇2ψ̄(k̄, x) + [v(x) − Λ̄]ψ̄(k̄, x) = 0 if x ∈ the wire (6.1)

and

ψ̄(k̄, x) = 0 if x /∈ the wire. (6.2)

The solutions ψ̄(k̄, x) of (6.1) and (6.2) are one-dimensional Bloch waves with
a wave vector k̄ in the wire direction a1.
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The further quantum confinement of each type of two-dimensional Bloch
waves ψ̂n(k̂, x; τ3) or ψ̂n,j3(k̂, x; τ3) will have a new eigenvalue problem and
a corresponding theorem and will give two different types of electronic states
in the quantum wire. Correspondingly, we will obtain four different sets of
one-dimensional Bloch waves in the quantum wire.

6.2 Further Quantum Confinement of ψ̂n(k̂, x; τ3)

For the quantum confinement of two-dimensional Bloch waves ψ̂n(k̂, x; τ3),
we consider an orthorhombic parallelogram B as shown in Fig. 6.1 with sur-
faces oriented in the a1, a2, or the film surface direction1 and having a
rectangular bottom face at x3 = τ3, a rectangular top face at x3 = τ3 + 1, a
front face intersecting the a2 axis at τ2a2

2 and a rear face intersecting it at
(τ2 + 1)a2, and a left face and a right face separated by a1 and perpendicu-
lar to the a1 axis. Since each ψ̂n(k̂, x; τ3) is zero on the film bottom surface

a

a

x =τ +1

x =τ3

3 3 

3

O 1

2

Fig. 6.1. The orthorhombic parallelogram B for the eigenvalue problem of (5.1)
under the boundary condition (6.3). The two shadowed faces of ∂B3 are the two
faces on which each ψ̂n(k̂, x; τ3) is zero (thus the specific direction of a3 no longer
matters). The two thick-lined faces of ∂B2 are the two faces on which each function
φ̄(k̄, x; τ2, τ3) is further required to be zero.

x3 = τ3 and on the surface x3 = τ3 + 1 and is a two-dimensional Bloch wave
in the film plane, the function set φ̄(k̄, x; τ2, τ3) is defined by the condition

φ̄(k̄, x + a1; τ2, τ3) = eik1 φ̄(k̄, x; τ2, τ3) − π < k1 ≤ π
φ̄(k̄, x; τ2, τ3) = 0 if x ∈ ∂B2 or x ∈ ∂B3,

(6.3)

1That is, in the b̂1, b̂2, or b3 direction.
2For the further quantum confinement of these two-dimensional Bloch waves,

it is assumed that in Sections 6.2 and 6.3, the existence of boundary τ2 does not
change the one-dimensional translational symmetry in the a1 direction.
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where ∂B3 means two opposite faces of the boundary ∂B of B determined by
x3 = τ3 and x3 = τ3 + 1 and ∂B2 means two opposite faces of the boundary
∂B of B in the a2 direction. The eigenvalues and eigenfunctions of (5.1)
under the condition (6.3) are denoted by λ̄n(k̄; τ2, τ3) and φ̄n(k̄, x; τ2, τ3),
where n = 0, 1, 2, ....

For each eigenvalue λ̄n(k̄; τ2, τ3) defined by (5.1) and the boundary con-
dition (6.3), we have the following theorem connecting λ̄n(k̄; τ2, τ3) with the
eigenvalues Λ̂n(k̂; τ3) of ψ̂n(k̂, x; τ3) given in (5.34).

Theorem 6.1.

λ̄n(k̄; τ2, τ3) ≥ Λ̂n(k̂; τ3) for (k̄ − k̂) · a1 = 0. (6.4)

Note that in (6.3) and (6.4), k̄ is a wave vector in the wire direction and k̂

is a wave vector in the film plane. In (6.4), k̄ and k̂ have the same component
in the wire direction a1.

Since the two-dimensional Bloch wave ψ̂n(k̂, x; τ3) satisfies

ψ̂(k̂, x + ai; τ3) = eiki ψ̂(k̂, x; τ3) − π < ki ≤ π, i = 1, 2
ψ̂(k̂, x; τ3) = 0 if x ∈ ∂B3,

(6.5)

Theorem 6.1 can be proved similar to Theorem 5.1 of Chapter 5. The major
difference is in the Dirichlet integral

J(f, g) =
∫

B

{∇f(x) · ∇g∗(x) + v(x)f(x)g∗(x)} dx

=
∫

B

f(x){−∇2g∗(x) + v(x)g∗(x)} dx +
∫

∂B

f
∂g∗

∂n
dS; (6.6)

if both f(x) and g(x) satisfy the conditions (6.5), the integral over ∂B in (6.6)
is zero due to the fact that the integrals over two opposite faces of ∂B1 and
∂B2 cancel out and ψ̂(k̂, x; τ3) = 0 when x ∈ ∂B3. If f(x) = φ̄(k̄, x; τ2, τ3)
and g(x) = ψ̂(k̂, x; τ3), the integral over ∂B in (6.6) is also zero because the
integrals over two opposite faces of ∂B1 cancel out since (k̄ − k̂) · a1 = 0
and the integral over each face of ∂B2 and ∂B3 is zero since f(x) = 0 when
x ∈ ∂B2 or x ∈ ∂B3.

Theorem 6.1 is similar to Theorem 5.1; the consequences of the quantum
confinement of three-dimensional Bloch waves φn(k, x) in the a3 direction
due to Theorem 5.1 can be similarly applied to the quantum confinement of
two-dimensional Bloch waves ψ̂n(k̂, x; τ3) in the a2 direction.

For each bulk energy band n and each k̄, there is one φ̄n(k̄, x; τ2, τ3).
Because v(x + a2) = v(x), the function φ̄n(k̄, x; τ2, τ3) has the form

φ̄n(k̄, x + a2; τ2, τ3) = eik2 φ̄n(k̄, x; τ2, τ3) (6.7)

and, here, k2 can be complex. If in (6.7) k2 is real, then φ̄n(k̄, x; τ2, τ3)
is a ψ̂n′(k̂, x; τ3). According to Theorem 6.1, a ψ̂n′(k̂, x; τ3) cannot be a
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φ̄n(k̄, x; τ2, τ3) except in some special cases when ψ̂n′(k̂, x; τ3) has a nodal
surface perpendicularly intersecting the a2 axis at τ2a2. Therefore, k2 in (6.7)
can be real only in such special cases; in most cases, k2 in (6.7) is complex
with a nonzero imaginary part.

Depending on τ2 (and also τ3), n, and k̄, the imaginary part of k2 in (6.7)
can be either positive or negative, corresponding to whether φ̄n(k̄, x; τ2, τ3)
decays in either the positive or the negative direction of a2. Such states
φ̄n(k̄, x; τ2, τ3) with a nonzero imaginary part of k2 in (6.7) cannot exist in a
film with two-dimensional translational invariance because they are divergent
in either the negative or the positive direction of a2. However, they can play
a significant role in a quantum wire with a finite size in the a2 direction.

The further quantum confinement of the two-dimensional Bloch waves
ψ̂n(k̂, x; τ3) in the a2 direction will produce two different types of electronic
states in the quantum wire.

One type of nontrivial solutions of (6.1) and (6.2) from the quantum
confinement of ψ̂n(k̂, x; τ3) can be obtained from (6.7) by assigning

ψ̄n(k̄, x; τ2, τ3) = cN2,N3 φ̄n(k̄, x; τ2, τ3), if x ∈ the wire
= 0 if x /∈ the wire, (6.8)

where cN2,N3 is a normalization constant. The corresponding eigenvalue

Λ̄n(k̄; τ2, τ3) = λ̄n(k̄; τ2, τ3) (6.9)

is dependent on τ2 and τ3 but not on N2 and N3.
Therefore, for each bulk energy band n and each wave vector k̄, there is

one electronic state ψ̄n(k̄, x; τ2, τ3) that is φ̄n(k̄, x; τ2, τ3) inside the wire but
is zero otherwise, whose energy Λ̄n(k̄; τ2, τ3) depends on τ2 and τ3 but not on
N2 and N3. This is a side-like state because φ̄n(k̄, x; τ2, τ3) decays in either
the positive or the negative direction of a2 and a3 in most cases.

Now, we try to find other solutions of (6.1) and (6.2) from the quantum
confinement of ψ̂n(k̂, x; τ3). We can expect that there are stationary Bloch
states in the a2 direction, formed due to the multiple reflections of ψ̂n(k̂, x; τ3)
between two confinement boundary surfaces that perpendicularly intersect
the a2 axis at τ2 and (τ2 + N2).

Since it is assumed that the existence of the boundary τ3 does not change
the two-dimensional space group symmetry of the system, in many quantum
films discussed in Chapter 5

Λ̂n(k1b̄1 + k2b̂2; τ3) = Λ̂n(k1b̄1 − k2b̂2; τ3) (6.10)

in (5.34) is true; thus, in general,

fn,k1,k2(x; τ3) = c+ψ̂n(k1b̄1 + k2b̂2, x; τ3)

+ c−ψ̂n(k1b̄1 − k2b̂2, x; τ3), 0 < k2 < π,
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where c± are not zero, is a nontrivial solution of (6.1) due to (6.10). It is easy
to see that fn,k1,k2(x; τ3) is a one-dimensional Bloch wave with a wave vector
k̄ = k1b̄1 in the wire direction:

fn,k1,k2(x + a1; τ3) = eik1fn,k1,k2(x; τ3), − π < k1 ≤ π,

due to (6.5). To be a solution of (6.1) and (6.2), the function fn,k1,k2(x; τ3) is
required to be zero at the front face and the rear face of the wire. By writing
the front face equation of the wire as x2 = x2,f (x1, x3) and the rear face
equation of the wire as x2 = x2,r(x1, x3), we should have

c+ψ̂n[k1b̄1 + k2b̂2, x ∈ x2,f (x1, x3); τ3]
+ c−ψ̂n[k1b̄1 − k2b̂2, x ∈ x2,f (x1, x3); τ3] = 0,

c+ψ̂n[k1b̂1 + k2b̂2, x ∈ x2,r(x1, x3); τ3]
+ c−ψ̂n[k1b̄1 − k2b̂2, x ∈ x2,r(x1, x3); τ3] = 0.

(6.11)

Since x2,r(x1, x3) = x2,f (x1, x3) + N2, we have

ψ̂n[k1b̄1 + k2b̂2, x ∈ x2,r(x1, x3); τ3]

= eik2N2 ψ̂n[k1b̄1 + k2b̂2, x ∈ x2,f (x1, x3); τ3]

and

ψ̂n[k1b̄1 − k2b̂2, x ∈ x2,r(x1, x3); τ3]

= e−ik2N2 ψ̂n[k1b̄1 − k2b̂2, x ∈ x2,f (x1, x3); τ3]

due to (6.5). Therefore, for c± in (6.11) are not both zero, eik2N2 −e−ik2N2 = 0
has to be true for these stationary Bloch states, independent of τ2.

The stationary Bloch state solutions of (6.1) and (6.2) obtained from the
further quantum confinement of ψ̂n(k̂, x; τ3) should have the form

ψ̄n,j2(k̄, x; τ2, τ3) = fn,k1,κ2(x; τ2, τ3) if x ∈ the wire
= 0 if x /∈ the wire, (6.12)

where k̄ = k1b̄1 and

fn,k1,k2(x; τ2, τ3) = cn,k1,k2;τ2 ψ̂n(k1b̄1 + k2b̂2, x; τ3)

+ cn,k1,−k2;τ2 ψ̂n(k1b̄1 − k2b̂2, x; τ3),

cn,k1,±k2;τ2 are dependent on τ2, and

κ2 = j2 π/N2, j2 = 1, 2, ..., N2 − 1; (6.13)

here, j2 is a subband index. The energies Λ̄ of these stationary Bloch states
are given by

Λ̄n,j2(k̄; τ3) = Λ̂n(k̄ + κ2b̂2; τ3). (6.14)
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Each eigenvalue Λ̄n,j2(k̄; τ3) is dependent on N2 and τ3 but not on τ2 and N3.
These states are surface-like states since ψ̂n(k̂, x; τ3) are surface-like states
in the quantum film.

Similar to (5.37), due to (6.4), (6.9), and (6.14) in general in an ideal
quantum wire, the energy of a side-like state is above the energy of a relevant
surface-like state:

Λ̄n(k̄; τ2, τ3) > Λ̄n,j2(k̄; τ3). (6.15)

6.3 Further Quantum Confinement of ψ̂n,j3(k̂, x; τ3)

The further confinement of two-dimensional Bloch waves ψ̂n,j3(k̂, x; τ3) in
the a2 direction can be similarly discussed. Each one of ψ̂n,j3(k̂, x; τ3) with
different j3 will be confined in the a2 direction independently.

Suppose B′ is an orthorhombic parallelogram with surfaces oriented in the
a1, a2, or the film surface direction3 and having a rectangular bottom face at
x3 = τ3, a rectangular top face at x3 = τ3 + N3, a front face perpendicularly
intersecting the a2 axis at τ2a2 and a rear face perpendicularly intersecting
it at (τ2 + 1)a2, and a left face and a right face separated by a1 and perpen-
dicular to the a1 axis, as shown in Fig. 6.2. The function set φ̄j3(k̄, x; τ2, τ3)
is defined by the condition that each function is zero at the bottom face and
top face of B′ and behaves as a Bloch stationary state with a wave number
j3/N3 π|b3| in the b3 direction as ψ̂j3(k̂, x; τ3),4 is zero at the front face and
the rear face of B′, and φ̄j3(k̄, x + a1; τ2, τ3) = eik1 φ̄j3(k̄, x; τ2, τ3), where
−π < k1 ≤ π. The eigenvalues and eigenfunctions of (5.1) under this condi-
tion are denoted by λ̄n,j3(k̄; τ2) and φ̄n,j3(k̄, x; τ2, τ3), where n = 0, 1, 2....

For each eigenvalue λ̄n,j3(k̄; τ2) defined by (5.1) and this condition, similar
to Theorem 6.1 we have the following theorem connecting λ̄n,j3(k̄; τ2) with
the eigenvalues Λ̂n,j3(k̂) in (5.32) of ψ̂n,j3(k̂, x; τ3).

Theorem 6.2.

λ̄n,j3(k̄; τ2) ≥ Λ̂n,j3(k̂) for (k̄ − k̂) · a1 = 0. (6.16)

As in (6.4), in (6.16) k̄ is a wave vector in the wire direction and k̂ is a
wave vector in the film plane. In (6.16), k̄ and k̂ have the same component
in the wire direction a1. Theorem 6.2 can be proved very similar to Theorem
6.1, since ψ̂n,j3(k̂, x; τ3) with different j3 are orthogonal to each other, thus
each one of ψ̂n,j3(k̂, x; τ3) will be confined in the a2 direction independently.

Theorem 6.2 is similar to Theorem 6.1; the consequences of the quantum
confinement of two-dimensional Bloch waves ψ̂n(k̂, x; τ3) in the a2 direction

3That is, in the b̂1, b̂2, or b3 direction.
4ψ̂j3(k̂, x; τ3) generally can be a (any) linear combination of ψ̂n,j3(k̂, x; τ3) of

different n.
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Fig. 6.2. The parallelogram B′ for the quantum confinement of ψ̂n,j3(k̂, x; τ3).
The two shadowed faces of ∂B′

3 determined by x3 = τ3 and x3 = (τ3 + N3) (in the
figure is shown the case N3 = 2) are the two faces on which each ψ̂n,j3(k̂, x; τ3) is
zero (thus, the specific direction of a3 no longer matters). The two thick-lined faces
of ∂B′

2 perpendicularly intersecting the a2 axis at τ2a2 and (τ2 + 1)a2 are the two
faces on which each function φ̄j3(k̄, x; τ2, τ3) is further required to be zero.

due to Theorem 6.1 can be similarly applied to the quantum confinement of
two-dimensional Bloch waves ψ̂n,j3(k̂, x; τ3) in the a2 direction.

Because v(x + a2) = v(x), the function φ̄n,j3(k̄, x; τ2, τ3) has the form

φ̄n,j3(k̄, x + a2; τ2, τ3) = eik2 φ̄n,j3(k̄, x; τ2, τ3) (6.17)

and k2 is either complex with a nonzero imaginary part or a real number.
If k2 is real in (6.17), φ̄n,j3(k̄, x; τ2, τ3) is a ψ̂n′,j3(k̂, x; τ3). According to

Theorem 6.2, a ψ̂n′,j3(k̂, x; τ3) cannot be a φ̄n,j3(k̄, x; τ2, τ3) except in some
special cases when ψ̂n′,j3(k̂, x; τ3) has a nodal surface intersecting the a2 axis
at τ2a2. Therefore, k2 in (6.17) can be real only in such special cases; in most
cases, k2 in (6.17) is complex with a nonzero imaginary part.

The imaginary part of k2 in (6.17) can be either positive or negative; this
corresponds to that φ̄n,j3(k̄, x; τ2, τ3) decays in either the positive or the neg-
ative direction of a2. Such states φ̄n,j3(k̄, x; τ2, τ3) with a nonzero imaginary
part of k2 cannot exist in a film with two-dimensional translational invariance
since they are divergent in either the negative or the positive direction of a2.
However, they can play a significant role in a quantum wire with a finite size
in the a2 direction.

The quantum confinement of two-dimensional Bloch waves ψ̂n,j3(k̂, x; τ3)
in the a2 direction will produce two different types of solutions of (6.1) and
(6.2) in the quantum wire.
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One type of nontrivial solutions can be obtained from (6.17) by assigning

ψ̄n,j3(k̄, x; τ2, τ3) = cN2,N3 φ̄n,j3(k̄, x; τ2, τ3) if x ∈ the wire
= 0 if x /∈ the wire, (6.18)

where cN2,N3 is a normalization constant. The corresponding eigenvalue

Λ̄n,j3(k̄; τ2) = λ̄n,j3(k̄; τ2) (6.19)

is dependent on τ2 and N3 but not on N2 and τ3. A consequence of Theorem
6.2 is that for each bulk energy band n, each j3, and each wave vector k̄,
there is one such solution (6.18) of (6.1) and (6.2). This is a surface-like state
since φ̄n,j3(k̄, x; τ2, τ3) decays in either the positive or negative direction of
a2 in most cases.

Now, we try to find other solutions of (6.1) and (6.2) from the further
quantum confinement of ψ̂n,j3(k̂, x; τ3). We can expect that there are station-
ary Bloch states in the a2 direction, formed due to the multiple reflections
of ψ̂n,j3(k̂, x; τ3) between two boundary surfaces of the wire perpendicular to
the a2 axis.

In the many quantum films we discussed in Chapter 5 in (5.32)

Λ̂n,j3(k1b̄1 + k2b̂2) = Λ̂n,j3(k1b̄1 − k2b̂2) (6.20)

is true; thus, in general,

fn,k1,k2,j3(x; τ3) = c+ψ̂n,j3(k1b̄1 + k2b̂2, x; τ3)

+ c−ψ̂n,j3(k1b̄1 − k2b̂2, x; τ3), 0 < k2 < π,

where the c± are not zero, is a non-trivial solution of (6.1) due to (6.20). It
is easy to see that fn,k1,k2,j3(x; τ3) is a one-dimensional Bloch wave with a
wave vector k̄ = k1b̄1 in the wire direction:

fn,k1,k2,j3(x + a1; τ3) = eik1fn,k1,k2,j3(x; τ3), − π < k1 ≤ π,

due to (5.31). To be a solution of (6.1) and (6.2), the function fn,k1,k2,j3(x; τ3)
is required to be zero at the front face and the rear face of the wire. By
writing the front face equation of the wire as x2 = x2,f (x1, x3) and the rear
face equation of the wire as x2 = x2,r(x1, x3), we should have

c+ψ̂n,j3 [k1b̄1 + k2b̂2, x ∈ x2,f (x1, x3); τ3]

+ c−ψ̂n,j3 [k1b̄1 − k2b̂2, x ∈ x2,f (x1, x3); τ3] = 0,

c+ψ̂n,j3 [k1b̄1 + k2b̂2, x ∈ x2,r(x1, x3); τ3]

+ c−ψ̂n,j3 [k1b̄1 − k2b̂2, x ∈ x2,r(x1, x3); τ3] = 0.

Since x2,r(x1, x3) = x2,f (x1, x3) + N2, we have
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ψ̂n,j3 [k1b̄1 + k2b̂2, x ∈ x2,r(x1, x3); τ3]

= eik2N2 ψ̂n,j3 [k1b̄1 + k2b̂2, x ∈ x2,f (x1, x3); τ3]

and

ψ̂n,j3 [k1b̄1 − k2b̂2, x ∈ x2,r(x1, x3); τ3]

= e−ik2N2 ψ̂n,j3 [k1b̄1 − k2b̂2, x ∈ x2,f (x1, x3); τ3]

due to (5.31). Therefore, for c± not both zero, eik2N2 − e−ik2N2 = 0 has to be
true for these stationary Bloch states, independent of τ2.

Therefore, the stationary Bloch state solutions of (6.1) and (6.2) from the
quantum confinement of ψ̂n,j3(k̂, x; τ3) should have the form

ψ̄n,j2,j3(k̄, x; τ2, τ3) = fn,k1,κ2,j3(x; τ2, τ3) if x ∈ the wire
= 0 if x /∈ the wire, (6.21)

where

fn,k1,k2,j3(x; τ2, τ3) = cn,k1,k2,j3;τ2 ψ̂n,j3(k1b̄1 + k2b̂2, x; τ3)

+ cn,k1,−k2,j3;τ2 ψ̂n,j3(k1b̄1 − k2b̂2, x; τ3),

cn,k1,±k2,j3;τ2 are dependent on τ2, and

κ2 = j2 π/N2, j2 = 1, 2, ..., N2 − 1;

here, j2 is a subband index, as in (6.13). The stationary Bloch states
ψ̄n,j2,j3(k̄, x; τ2, τ3) satisfying (6.1) and (6.2) have the energies

Λ̄n,j2,j3(k̄) = Λ̂n,j3(k̄ + κ2b̂2). (6.22)

Each energy Λ̄n,j2,j3(k̄) for this case is dependent on N2 and N3, the wire size,
but independent of the wire boundaries τ2 and τ3. There are (N2 −1)(N3 −1)
such stationary Bloch states for each n and k̄ in the quantum wire. Their
energies map the Λ̂n,j3(k̂) exactly and thus also map the corresponding bulk
energy band εn(k) exactly by (5.32): Λ̄n,j2,j3(k̄) = Λ̂n,j3(k̄ + κ2b̂2) = εn(k̄ +
κ2b̂2 + κ3b3). Therefore, ψ̄n,j2,j3(k̄, x; τ2, τ3) can be considered as bulk-like
states in the quantum wire.

Similar to (6.15), due to (6.16), (6.19), and (6.22) in general in an ideal
quantum wire,

Λ̄n,j3(k̄; τ2) > Λ̄n,j2,j3(k̄) (6.23)

is true between the energies of a surface-like state and a relevant bulk-like
state obtained from the quantum confinement of ψ̂n,j3(k̂, x; τ3).

We have seen that for the further quantum confinement of two-dimensional
Bloch waves ψ̂n(k̂, x; τ3) or ψ̂n,j3(k̂, x; τ3), each one will produce two differ-
ent types of one-dimensional Bloch waves in an ideal quantum wire. For an
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ideal rectangular quantum wire obtained from a quantum film of N3 layers
in the a3 direction and with the bottom face defined by τ3a3 being further
confined by two boundary faces in the a2 direction defined by τ2 and N2a2
apart from each other, there are four sets of electronic states in the quantum
wire:

The energy Λ̄n,j2,j3(k̄) [(6.22)] of each electronic state ψ̄n,j2,j3(k̄, x; τ2, τ3)
in (6.21) depends on N2 and N3 but not on τ2 and τ3. The energies of these
states map the energy band of the bulk εn(k) exactly. These states are bulk-
like states and there are (N2 − 1)(N3 − 1) such states in the quantum wire
for each bulk energy band n and each k̄.

The energy Λ̄n,j2(k̄; τ3) [(6.14)] of each electronic state ψ̄n,j2(k̄, x; τ2, τ3)
in (6.12) depends on N2 and τ3 but not on τ2 and N3. The energies of these
states map the surface-like energy subband Λ̂n(k̂; τ3) in the film exactly.
These states are surface-like states and there are (N2 − 1) such states in the
quantum wire for each bulk energy band n and each k̄.

The energy Λ̄n,j3(k̄; τ2) [(6.19)] of each state ψ̄n,j3(k̄, x; τ2, τ3) in (6.18)
depends on N3 and τ2 but not on τ3 and N2. These are also surface-like states
and there are (N3 − 1) such states in the quantum wire for each bulk energy
band n and each k̄.

The energy Λ̄n(k̄; τ2, τ3) [(6.9)] of each electronic state ψ̄n(k̄, x; τ2, τ3) in
(6.8) depends on τ2 and τ3 but not on N2 and N3. These are side-like states.
Although a rectangular quantum wire always has four sides, there is only
one such side-like state for each bulk energy band n and each k̄.

We have seen again that the effect of the quantum confinement in one more
direction actually is to always have one and only one boundary-dependent
sub-subband for each subband of the electronic states in the film obtained in
Chapter 5; the energies of all other states can be directly obtained either from
the Λ̂n,j3(k̂) (which originally is determined by the energy band structure
εn(k) of the bulk crystal by (5.32)) by (6.22) or from the surface-like band
structure, such as Λ̂n(k̂; τ3) by (6.14). In general, a boundary-dependent state
always has a higher energy than the relevant size-dependent states.

The results in Sections 6.2 and 6.3 were obtained by a specific quantum
confinement order. In order to obtain a more comprehensive understanding
on the electronic states in an ideal quantum wire, we need to consider the
results obtained in two different confinement orders.

6.4 Quantum Wires of Crystals with a sc, tetr, or ortho
Bravais Lattice

We expect that the simplest cases where the theory in this chapter is appli-
cable are the rectangular quantum wires of crystals with a sc, tetr, or ortho
Bravais lattice in which (5.14), (6.10), and (6.20) are true. In these crystals,
the three primitive lattice vectors a1, a2, and a3 are perpendicular to each
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other and equivalent; consequently, the three primitive lattice vectors in k
space, b1, b2, and b3 are also perpendicular to each other and equivalent.
Such a quantum wire in the direction of a1 can be considered as a film with
the film plane defined by a1 and a2 being further confined in the a2 direction
as we have done so far. Equivalently, it can also be considered as a film with
the film plane defined by a1 and a3 being further confined in the a3 direction.
If we consider the electronic states in the quantum wire in the latter way, we
will obtain that

ψ̄n,j3(k̄, x; τ2, τ3) = fn,k1,κ3(x; τ2, τ3) if x ∈ the wire
= 0 if x /∈ the wire (6.24)

instead of (6.18), where k̄ = k1b̄1 and

fn,k1,k3(x; τ2, τ3) = cn,k1,k3;τ3 ψ̂n(k1b̄1 + k3b3, x; τ2)

+ cn,k1,−k3;τ3 ψ̂n(k1b̄1 − k3b3, x; τ2),

cn,k1,±k3;τ3 are dependent on τ3 and κ3 and j3 are given by (5.30). Equa-
tion (6.24) gives a more specific relationship between the surface-like states
ψ̄n,j3(k̄, x; τ2, τ3) in the quantum wire and the surface-like states ψ̂n(k̂, x; τ2)
in the quantum film with a film plane defined by a1 and a3. Correspondingly,

Λ̄n,j3(k̄; τ2) = Λ̂n(k̄ + κ3b3; τ2) (6.25)

can be obtained instead of (6.19). Equation (6.25) gives a more specific rela-
tionship between the surface-like subbands Λ̄n,j3(k̄; τ2) in the quantum wire
and the surface-like subband Λ̂n(k̂; τ2) in the quantum film with a film plane
defined by a1 and a3.

Similar to (6.15) and (6.23), we can obtain that

Λ̄n(k̄; τ2, τ3) > Λ̄n,j3(k̄; τ2) (6.26)

and
Λ̄n,j2(k̄; τ3) > Λ̄n,j2,j3(k̄). (6.27)

Therefore, for an ideal rectangular quantum wire of crystals with a sc, tetr, or
ortho Bravais lattice, if its two boundary faces in the a2 direction are defined
by τ2 and are N2a2 apart from each other, the two other boundary faces in
the a3 direction are defined by τ3 and are N3a3 apart from each other, for
each bulk energy band n, there are the following:
(N2 − 1)(N3 − 1) bulk-like subbands with energies

Λ̄n,j2,j3(k̄) = εn

(
k̄ +

j2π

N2
b2 +

j3π

N3
b3

)
(6.28)

from (6.22) and (5.32);
(N3 − 1) surface-like subbands with energies
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Λ̄n,j3(k̄; τ2) = Λ̂n

(
k̄ +

j3π

N3
b3; τ2

)
(6.29)

from (6.25) and (5.30);
(N2 − 1) surface-like subbands with energies

Λ̄n,j2(k̄; τ3) = Λ̂n

(
k̄ +

j2π

N2
b2; τ3

)
(6.30)

from (6.14) and (6.13);
one side-like subband with energy

Λ̄n(k̄; τ2, τ3) = λ̄n(k̄; τ2, τ3) (6.31)

from (6.9). Here, j2 = 1, 2, ..., N2 − 1 and j3 = 1, 2, ..., N3 − 1. k̄ is a wave
vector in the wire direction and Λ̂n(k̂; τ3) is the surface-like band structure of
a quantum film with the film plane oriented in the a3 direction with a wave
vector k̂ in the film plane. Λ̂n(k̂; τ2) is the surface-like band structure of a
quantum film with the film plane oriented in the a2 direction with a wave
vector k̂ in the film plane.

Between energies of the electronic states with the same bulk energy band
index n and with the same wave vector k̄ in the quantum wire, the following
general relations exist:

Λ̄n(k̄; τ2, τ3) > Λ̄n,j2(k̄; τ3),
Λ̄n(k̄; τ2, τ3) > Λ̄n,j3(k̄; τ2),
Λ̄n,j3(k̄; τ2) > Λ̄n,j2,j3(k̄),
Λ̄n,j2(k̄; τ3) > Λ̄n,j2,j3(k̄),

from (6.15), (6.26), (6.23), and (6.27) respectively.
However, probably the practically more interesting cases are quantum

wires of crystals with a fcc or bcc Bravais lattice in which (5.21), (6.10), and
(6.20) are true. For these crystals, the choice of primitive lattice vectors for
films depends on the film direction, as we have seen in Section 5.6. In the
following, we try to obtain predictions on the electronic states in several such
quantum wires, based on the results obtained in Sections 6.1 to 6.3.

6.5 fcc Quantum Wires with (110) and (001) Surfaces

We consider a fcc [11̄0] quantum wire with (110) and (001) surfaces and
having a rectangular cross section N110a/

√
2 × N001a, where N110 and N001

are two positive integers. The electronic states in such a quantum wire can
be considered as the electronic states in a (001) fcc quantum film of thickness
N001a discussed in Section 5.6.1 further confined by two (110) boundary
surfaces. They can also equivalently be considered as the electronic states in
a (110) fcc quantum film of thickness N110a/

√
2, discussed in Section 5.6.2,

further confined by two (001) boundary surfaces.
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6.5.1 fcc Quantum Wires Obtained from (001) Films Further
Confined by Two (110) Surfaces

For a fcc quantum wire obtained from a (001) film further confined by
two (110) surfaces, we begin with a fcc (001) film of thickness N001a and
choose the primitive lattice vectors as in (5.38): a1 = a/2(1,−1, 0) and
a2 = a/2(1, 1, 0), a3 = a/2(1, 0, 1) and thus b1 = 1/a(1,−1,−1), b2 =
1/a(1, 1,−1), and b3 = 1/a(0, 0, 2). Correspondingly, b̂1 = 1/a(1,−1, 0) and
b̂2 = 1/a(1, 1, 0). Here, a is the lattice constant.

Now, we have a (001) film with N3 = 2N001. From the results obtained
in Section 5.6.1, in such a film for each bulk energy band there are 2N001 − 1
bulk-like subbands with energies

Λ̂n,j3(k1b̂1 + k2b̂2) = εn

[
k1b̂1 + k2b̂2 +

j3π

N001a
(0, 0, 1)

]

by (5.39), where
j3 = 1, 2, ..., 2N001 − 1,

and one surface-like subband whose energy

Λ̂n(k1b̂1 + k2b̂2; τ001) = λ̂n(k1b̂1 + k2b̂2; τ001)

by (5.34) since now τ3 = τ001. k̂ = k1b̂1 + k2b̂2 is a wave vector in the (001)
plane.

Then we consider the (001) fcc quantum film further confined by two (110)
boundary surfaces which are N110a/

√
2 apart. The energies Λ̂n,j3(k̂) of bulk-

like states ψ̂n,j3(k̂, x; τ3) in the (001) quantum film satisfy (6.20): Λ̂n,j3(k1b̄1+
k2b̂2) = Λ̂n,j3(k1b̄1 − k2b̂2). We also expect that the energies Λ̂n(k̂; τ001) of
surface-like states ψ̂n(k̂, x; τ001) in the fcc (001) film satisfy (6.10): Λ̂n(k1b̄1+
k2b̂2; τ001) = Λ̂n(k1b̄1 − k2b̂2; τ001) (see Section 5.6.1). Therefore, the results
obtained in Sections 6.2 and 6.3 can be applied. We now have N2 = N110
and τ2 = τ110; thus, for each bulk energy band, there are four different sets
of one-dimensional Bloch waves in the quantum wire.

From (6.22), there are (N110 − 1)(2N001 − 1) bulk-like subbands for each
bulk energy band n in the quantum wire; each subband has the energy

Λ̄n,j110,j3(k̄) = εn

[
k̄ +

j110π

N110a
(1, 1, 0) +

j3π

N001a
(0, 0, 1)

]
, (6.32)

where k̄ is a wave vector in the wire direction a1,

j3 = 1, 2, ..., 2N001 − 1

and
j110 = 1, 2, ..., N110 − 1. (6.33)
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By defining

j001 = j3 if j3 < N001
= 2N001 − j3 if j3 > N001,

(6.34)

where
j001 = 1, 2, ..., N001 − 1; (6.35)

those (N110 −1)(2N001 −1) bulk-like subbands in (6.32) in the quantum wire
can be separated to three subsets according to (6.34). They are as follows:
(N110 − 1)(N001 − 1) bulk-like subbands in the quantum wire with energies

Λ̄bk,a
n,j110,j001

(k̄) = εn

[
k̄ +

j110π

N110a
(1, 1, 0) +

j001π

N001a
(0, 0, 1)

]
, (6.32a)

(N110 − 1) bulk-like subbands in the quantum wire with energies

Λ̄bk,b
n,j110

(k̄) = εn

[
k̄ +

j110π

N110a
(1, 1, 0) +

π

a
(0, 0, 1)

]
, (6.32b)

(N110 − 1)(N001 − 1) bulk-like subbands in the quantum wire with energies5

Λ̄bk,c
n,j110,j001

(k̄) = εn

[
k̄ +

j110π

N110a
(1, 1, 0) − j001π

N001a
(0, 0, 1) +

2π

a
(0, 0, 1)

]

= εn

[
k̄ +

j110π

N110a
(1, 1, 0) +

j001π

N001a
(0, 0, 1) +

2π

a
(0, 0, 1)

]
.

(6.32c)

From (6.19), for each bulk energy band n, there are 2N001 − 1 surface-
like subbands in the quantum wire due to the existence of (110) boundary
surfaces with the energies

Λ̄n,j3(k̄; τ110) = λ̄n,j3(k̄; τ110). (6.36)

By (6.34), these 2N001 − 1 surface-like bands in (6.36) can be separated in to
three subsets. They are as follows:
N001 − 1 surface-like subbands in the quantum wire with energies

Λ̄sf,1
n,j001

(k̄; τ110) = λ̄n,j001(k̄; τ110), (6.36a)

one surface-like subband in the quantum wire with energy

Λ̄sf,2
n,N001

(k̄; τ110) = λ̄n,N001(k̄; τ110), (6.36b)

5Since for cubic semiconductors and fcc metals, in general, εn(kx, ky, kz) =
εn(kx, ky, −kz) and 1/a(0, 0, 2) is a reciprocal lattice vector for crystals with a fcc
Bravais lattice.
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N001 − 1 surface-like subbands in the quantum wire with energies

Λ̄sf,3
n,j001

(k̄; τ110) = λ̄n,2N001−j001(k̄; τ110). (6.36c)

From (6.14), due to the existence of (001) boundary surfaces for each bulk
energy band n, there are N110 − 1 surface-like subbands in the quantum wire
with energies

Λ̄sf,a
n,j110

(k̄; τ001) = Λ̂n

[
k̄ +

j110π

N110a
(1, 1, 0); τ001

]
. (6.37)

From (6.9), for each bulk energy band n, there is one side-like subband
in the quantum wire with energy

Λ̄sd
n (k̄; τ110, τ001) = λ̄n(k̄; τ110, τ001). (6.38)

6.5.2 fcc Quantum Wires Obtained from (110) Films Further
Confined by Two (001) Surfaces

For a fcc quantum wire obtained from a (110) film further confined by
two (001) surfaces, we begin with a (110) film and the primitive lattice
vectors can be chosen as in (5.40): a1 = a/2(1,−1, 0), a2 = a(0, 0,−1),
and a3 = a/2(0, 1, 1) and, thus, b1 = 1/a(2, 0, 0), b2 = 1/a(1, 1,−1), and
b3 = 1/a(2, 2, 0). Correspondingly, b̂1 = 1/a(1,−1, 0) and b̂2 = 1/a(0, 0,−1).

For a fcc quantum wire with a rectangular cross section N110a/
√

2×N001a,
we now have N3 = 2N110, τ3 = τ110, and N2 = N001, τ2 = τ001. The energies
Λ̂n,j3(k̂) of bulk-like states ψ̂n,j3(k̂, x; τ110) in the (110) quantum film satisfy
(6.20): Λ̂n,j3(k1b̄1 + k2b̂2) = Λ̂n,j3(k1b̄1 − k2b̂2). We also expect that the
energies Λ̂n(k̂; τ110) of surface-like states ψ̂n(k̂, x; τ110) in the fcc (110) film
satisfy (6.10): Λ̂n(k1b̄1+k2b̂2; τ110) = Λ̂n(k1b̄1−k2b̂2; τ110) (see Section 5.6.2).
Therefore, the results obtained in Sections 6.2 and 6.3 can be applied. Similar
to the results obtained in Section 6.5.1, for each bulk energy band n we have
four different sets of one-dimensional Bloch waves in the quantum wire.

From (6.22), for each bulk energy band n there are (N001 − 1)(2N110 − 1)
bulk-like subbands in the quantum wire; each subband has the energy

Λ̄n,j001,j3(k̄) = εn

[
k̄ +

j001π

N001a
(0, 0, 1) +

j3π

N110a
(1, 1, 0)

]
, (6.39)

where k̄ is a wave vector in the wire direction a1,

j001 = 1, 2, ..., N001 − 1, (6.40)

and

j3 = 1, 2, ..., 2N110 − 1.
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By defining

j110 = j3 if j3 < N110
= 2N110 − j3 if j3 > N110,

(6.41)

where
j110 = 1, 2, ..., N110 − 1; (6.42)

those (N001 −1)(2N110 −1) bulk-like subbands in (6.39) in the quantum wire
can be separated into three subsets according to (6.41) and (6.42). They are
as follows:
(N001 − 1)(N110 − 1) bulk-like subbands in the quantum wire with energies

Λ̄bk,a
n,j001,j110

(k̄) = εn

[
k̄ +

j001π

N001a
(0, 0, 1) +

j110π

N110a
(1, 1, 0)

]
, (6.39a)

(N001 − 1) bulk-like subbands in the quantum wire with energies

Λ̄bk,b
n,j001

(k̄) = εn

[
k̄ +

j001π

N001a
(0, 0, 1) +

π

a
(1, 1, 0)

]
, (6.39b)

(N001 − 1)(N110 − 1) bulk-like subbands in the quantum wire with energies6

Λ̄bk,c
n,j001,j110

(k̄) = εn

[
k̄ +

j001π

N001a
(0, 0, 1) − j110π

N110a
(1, 1, 0) +

2π

a
(1, 1, 0)

]

= εn

[
k̄ +

j001π

N001a
(0, 0, 1) +

j110π

N110a
(1, 1, 0) +

2π

a
(1, 1, 0)

]
.

(6.39c)

From (6.19), for each bulk energy band n there are 2N110 − 1 surface-like
subbands in the quantum wire due to the existence of two boundary surfaces
in the (001) plane with energies

Λ̄n,j3(k̄; τ001) = λ̄n,j3(k̄; τ001). (6.43)

By (6.41), these 2N110 − 1 subbands in (6.43) can be separated into three
subsets. They are as follows:
N110 − 1 surface-like subbands in the quantum wire with energies

Λ̄sf,1
n,j110

(k̄; τ001) = λ̄n,j110(k̄; τ001). (6.43a)

one surface-like subband in the quantum wire with energy

Λ̄sf,2
n (k̄; τ001) = λ̄n,N110(k̄; τ001), (6.43b)

6Since for cubic semiconductors and fcc metals, in general, εn(kx, ky, kz) =
εn(ky, kx, kz) and 1/a(2, 2, 0) is a reciprocal lattice vector for crystals with a fcc
Bravais lattice.
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N110 − 1 surface-like subbands in the quantum wire with energies

Λ̄sf,3
n,j110

(k̄; τ001) = λ̄n,2N110−j110(k̄; τ001). (6.43c)

From (6.14), due to the existence of (110) boundary surfaces, for each
bulk energy band n there are N001 − 1 surface-like subbands in the quantum
wire with energies

Λ̄sf,a
n,j001

(k̄; τ110) = Λ̂n

[
k̄ +

j001π

N001a
(0, 0, 1); τ110

]
. (6.44)

From (6.9), for each bulk energy band n there is one side-like subband in
the quantum wire with energy

Λ̄sd
n (k̄; τ001, τ110) = λ̄n(k̄; τ001, τ110). (6.45)

6.5.3 Results Obtained by Combining Sections 6.5.1 and 6.5.2

For a fcc quantum wire with (001) surfaces and (110) surfaces and with a
rectangular cross section N110a/

√
2 × N001a, the electronic states are one-

dimensional Bloch waves with a wave vector k̄ in the [11̄0] direction. We can
consider it either from the method in Section 6.5.1 or from that in Section
6.5.2. However, in each method the whole symmetry of the system has not
been considered, since each specific way of choosing the primary lattice vec-
tors does not contain the full symmetry of the system: In Section 6.5.1, the
symmetry of the system in the (110) direction is not fully used; there is a
band-folding at π

a (1, 1, 0). In Section 6.5.2, the symmetry of the system in the
(001) direction is not fully used; there is a band-folding at π

a (0, 0,−1). Nev-
ertheless, by combining the results obtained in those two different methods,
a more complete and comprehensive understanding on the electronic states
in the quantum wire can be obtained.

We can easily see that some equations for the energies of the electronic
states in the wire in Sections 6.5.1 or 6.5.2 are the same, such as (6.32a) and
(6.39a). Some are actually the same, such as (6.32c) and (6.39c).7 Some of
them seem not the same: In Section 6.5.1, there are 2N001 subbands whose
energies depend on τ110 (2N001 − 1 subbands in (6.36) and one subband in
(6.38)) whereas in Section 6.5.2, there are N001 subbands whose energies
depend on τ110 (N001 − 1 subbands in (6.44) and one subband in (6.45)).
From the discussions in Section 5.6.2, we see that this is due to the fact that
in Section 6.5.1, the symmetry of the system in the (110) direction is not fully
used; there is a band-folding at π

a (1, 1, 0); In Section 6.5.2, there are 2N110
subbands whose energies depend on τ001 (2N110 − 1 subbands in (6.43) and
one subband in (6.45)), whereas in Section 6.5.1, there are N110 subbands

7Since 1/a(1, 1, −1) is a reciprocal lattice vector for crystals with a fcc Bravais
lattice.
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whose energies depend on τ001 (N110 −1 subbands in (6.37) and one subband
in (6.38)). From the discussions in Section 5.6.1, we see that this is due to the
fact that in Section 6.5.2, the symmetry of the system in the (001) direction
is not fully used; there is a band-folding at π

a (0, 0,−1).
By considering these points, we can predict that the electronic states in

such an ideal quantum wire should be as follows:
For each bulk energy band n there are 2(N001 − 1)(N110 − 1) + (N001 −

1) + (N110 − 1) +1 bulk-like subbands. They include the following:
(N001 − 1)(N110 − 1) subbands with energies

Λ̄bk,a
n,j001,j110

(k̄) = εn

[
k̄ +

j001π

N001a
(0, 0, 1) +

j110π

N110a
(1, 1, 0)

]
(6.46)

from either (6.32a) or (6.39a),
(N001 − 1)(N110 − 1) subbands with energies

Λ̄bk,c
n,j001,j110

(k̄) = εn

[
k̄ +

j001π

N001a
(0, 0, 1) +

j110π

N110a
(1, 1, 0) +

2π

a
(1, 1, 0)

]
(6.47)

from either (6.32c) or (6.39c),
(N001 − 1) subbands with energies

Λ̄bk,b1
n,j001

(k̄) = εn

[
k̄ +

j001π

N001a
(0, 0, 1) +

π

a
(1, 1, 0)

]
(6.48)

from (6.39b),
(N110 − 1) subbands with energies

Λ̄bk,b2
n,j110

(k̄) = εn

[
k̄ +

j110π

N110a
(1, 1, 0) +

π

a
(0, 0, 1)

]
(6.49)

from (6.32b).
Here the range of j001 or j110 is given by (6.35) or (6.33).

In addition to those bulk-like subbands, for each bulk energy band n there
is one bulk-like subband in the wire with energy given by

Λ̄bk,d
n (k̄) = εn

[
k̄ +

π

a
(0, 0, 1) +

π

a
(1, 1, 0)

]
. (6.50)

This is obtained from (6.36b) and (6.43b): By (6.36b), each state in this
subband is a stationary Bloch state with a κ001 = π/2 in [001] direction; thus,
its energy does not depend on τ001; By (6.43b), each state in this subband is
a stationary Bloch state with a κ110 = π/2 in [110] direction; thus, its energy
does not depend on τ110.

For each bulk energy band n, there are (N001 −1)+(N110 −1) surface-like
subbands. They are (N001 − 1) subbands with energies

Λ̄sf,a1
n,j001

(k̄; τ110) = Λ̂n

[
k̄ +

j001π

N001a
(0, 0, 1); τ110

]
(6.51)
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from (6.44) and (N110 − 1) subbands with energies

Λ̄sf,a2
n,j110

(k̄; τ001) = Λ̂n

[
k̄ +

j110π

N110a
(1, 1, 0); τ001

]
(6.52)

from (6.37).
For each bulk energy band n, there is one side band in the wire with

energy given by (6.38) (i.e., (6.45)).
Therefore, among 2N001 − 1 subbands Λ̄n,j3(k̄; τ110) in (6.36) in Section

6.5.1, actually there are N001 − 1 bulk-like subbands Λ̄bk,b1
n,j001

(k̄) in (6.48),
one bulk-like subband Λ̄bk,d

n (k̄) in (6.50), and N001 − 1 surface-like subbands
Λ̄sf,a1

n,j001
(k̄; τ110) in (6.51). Thus, there are a total of N001 subbands in the

quantum wire whose energies are dependent on τ110: N001−1 surface-like sub-
bands Λ̄sf,a1

n,j001
(k̄; τ110) in (6.51) plus one side-like subband Λ̄sd

n (k̄; τ110, τ001)
in (6.38). We should also have

Λ̄sf,a1
n,j001

(k̄; τ110) > Λ̄bk,b1
n,j001

(k̄) (6.53)

and

Λ̄sd
n (k̄; τ110, τ001) > Λ̄bk,d

n (k̄), (6.54)

since in our discussions on the two different ways of choosing the primitive
lattice vectors in Section 5.6.2, the true surface-like subband has a higher
energy by (5.37).

Similarly, among 2N110 − 1 subbands Λ̄n,j3(k̄; τ001) in (6.43) in Section
6.5.2, actually there are N110 − 1 bulk-like subbands Λ̄bk,b2

n,j110
(k̄) in (6.49),

one bulk-like subband Λ̄bk,d
n (k̄) in (6.50), and N110 − 1 surface-like subbands

Λ̄sf,a2
n,j110

(k̄; τ001) in (6.52). There are a total of N110 subbands in the quantum
wire whose energies are dependent on τ001: N110 − 1 surface-like subbands
Λ̄sf,a2

n,j110
(k̄; τ001) in (6.52) plus one side-like subband Λ̄sd

n (k̄; τ110, τ001) in (6.45).
We should also have

Λ̄sf,a2
n,j110

(k̄; τ001) > Λ̄bk,b2
n,j110

(k̄) (6.55)

and Λ̄sd
n (k̄; τ110, τ001) > Λ̄bk,d

n (k̄) as in (6.54).
Since one of the triply-degenerated VBM states in a cubic semiconductor

can have one nodal surface either in (001) plane or in (110) plane, there can
be one such state in Si (001) films and (110) films and in GaAs (110) films
whose energy is the energy of the VBM and does not change as the film
thickness changes, as observed in [1–3]. However, one VBM state in either
Si or GaAs cannot have two nodal surfaces in both (001) plane and (110)
plane simultaneously; therefore, there is not an electronic state in an ideal
rectangular quantum wire of a cubic semiconductor discussed here whose
energy is the energy of the VBM and does not change as the wire size changes.
Consequently, it is predicted that there must be at least three side-like states
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in such a quantum wire with surfaces oriented in the (110) or the (001)
direction whose energies Λ̄sd

n (k̄ = 0; τ001, τ110) for n = 1, 2, 3 are above the
VBM and do not depend on the wire size and/or shape.

6.6 fcc Quantum Wires with (110) and (11̄0) Surfaces

The electronic states in an ideal quantum wire of fcc crystals with (110)
and (11̄0) surfaces are one-dimensional Bloch waves with a wave vector k̄
in the [001] direction. Such a quantum wire has a rectangular cross section
N110a/

√
2 × N11̄0a/

√
2, where N110 and N11̄0 are positive integers. By using

an approach similar to that used in Section 6.5, the properties of electronic
states in such a quantum wire can be predicted.

For each bulk energy band n, there are 2(N11̄0 − 1)(N110 − 1) + (N11̄0 −
1) + (N110 − 1) + 1 bulk-like subbands in the quantum wire. They include
(N11̄0 − 1)(N110 − 1) subbands with energies

Λ̄bk,a
n,j11̄0,j110

(k̄) = εn

[
k̄ +

j11̄0π

N11̄0a
(1,−1, 0) +

j110π

N110a
(1, 1, 0)

]
, (6.56)

(N11̄0 − 1)(N110 − 1) subbands with energies

Λ̄bk,c
n,j11̄0,j110

(k̄) = εn

[
k̄ +

j11̄0π

N11̄0a
(1,−1, 0) +

j110π

N110a
(1, 1, 0)

+
2π

a
(1, 1, 0) ] , (6.57)

(N11̄0 − 1) subbands with energies

Λ̄bk,b1
n,j11̄0

(k̄) = εn

[
k̄ +

j11̄0π

N11̄0a
(1,−1, 0) +

π

a
(1, 1, 0)

]
, (6.58)

and (N110 − 1) subbands with energies

Λ̄bk,b2
n,j110

(k̄) = εn

[
k̄ +

j110π

N110a
(1, 1, 0) +

π

a
(1,−1, 0)

]
. (6.59)

Here, j11̄0 = 1, 2, ..., N11̄0 − 1 and j110 = 1, 2, ..., N110 − 1.
For each bulk energy band n, there is one bulk-like subband in the wire

with energy

Λ̄bk,d
n (k̄) = εn

[
k̄ +

π

a
(1, 1, 0) +

π

a
(1,−1, 0)

]
. (6.60)

For each bulk energy band n, there are (N11̄0 −1)+(N110 −1) surface-like
subbands in the quantum wire. They are (N11̄0 − 1) subbands with energies

Λ̄sf,a1
n,j11̄0

(k̄; τ110) = Λ̂n

[
k̄ +

j11̄0π

N11̄0a
(1,−1, 0); τ110

]
(6.61)
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and (N110 − 1) subbands with energies

Λ̄sf,a2
n,j110

(k̄; τ11̄0) = Λ̂n

[
k̄ +

j110π

N110a
(1, 1, 0); τ11̄0

]
. (6.62)

Here, τ110 and τ11̄0 define the boundary faces of the quantum wire in the
[110] and [11̄0] directions.

For each bulk energy band n, there is one side-like subband in the quantum
wire with energy

Λ̄sd
n (k̄; τ110, τ11̄0) = λ̄n(k̄; τ110, τ11̄0). (6.63)

Since none of the triply-degenerated VBM states in a cubic semiconduc-
tor can have two nodal surfaces in both (110) plane and (11̄0) plane simul-
taneously, there is not an electronic state in an ideal quantum wire of a
cubic semiconductor with surfaces oriented in the (110) or the (11̄0) direc-
tion whose energy is the energy of the VBM and does not change as the wire
size and/or shape changes. This is a fact observed in the numerical calcula-
tions of Franceschetti and Zunger [3] on GaAs free-standing quantum wires,
as shown in Fig. 5.4(b). Consequently, it is also predicted that there must be
at least three side states in such a rectangular quantum wire whose energies
Λ̄sd

n (k̄ = 0; τ110, τ11̄0) for n = 1, 2, 3 are above the VBM and do not depend
on the wire size and/or shape.

6.7 bcc Quantum Wires with (001) and (010) Surfaces

For a bcc quantum wire with (010) and (001) surfaces and having a rectan-
gular cross section N010a×N001a, where N010 and N001 are positive integers,
the electronic states are one-dimensional Bloch waves with a wave vector k̄
in the [100] direction. They can be similarly obtained as in Section 6.5.

For each bulk energy band n, there are 2(N010 − 1)(N001 − 1) + (N010 −
1) + (N001 − 1) + 1 bulk-like subbands in the quantum wire. They include
(N010 − 1)(N001 − 1) subbands with energies

Λ̄bk,a
n,j010,j001

(k̄) = εn

[
k̄ +

j010π

N010a
(0, 1, 0) +

j001π

N001a
(0, 0, 1)

]
, (6.64)

(N001 − 1)(N010 − 1) subbands with energies

Λ̄bk,c
n,j010,j001

(k̄) = εn

[
k̄ +

j010π

N010a
(0, 1, 0) +

j001π

N001a
(0, 0, 1) +

2π

a
(0, 1, 0)

]
, (6.65)

(N001 − 1) subbands with energies

Λ̄bk,b1
n,j001

(k̄) = εn

[
k̄ +

j001π

N001a
(0, 0, 1) +

π

a
(0, 1, 0)

]
, (6.66)



6.8 Summary and Discussions 139

and (N010 − 1) subbands with energies

Λ̄bk,b2
n,j010

(k̄) = εn

[
k̄ +

j010π

N010a
(0, 1, 0) +

π

a
(0, 0, 1)

]
. (6.67)

Here j001 = 1, 2, ..., N001 − 1 and j010 = 1, 2, ..., N010 − 1.
For each bulk energy band n, there is one bulk-like subband with energy

Λ̄bk,d
n (k̄) = εn

[
k̄ +

π

a
(0, 1, 0) +

π

a
(0, 0, 1)

]
. (6.68)

For each bulk energy band n, there are (N001 −1)+(N010 −1) surface-like
subbands in the quantum wire. They are (N001 − 1) subbands with energies

Λ̄sf,a1
n,j001

(k̄; τ010) = Λ̂n

[
k̄ +

j001π

N001a
(0, 0, 1); τ010

]
(6.69)

and (N010 − 1) subbands with energies

Λ̄sf,a2
n,j010

(k̄; τ001) = Λ̂n

[
k̄ +

j010π

N010a
(0, 1, 0); τ001

]
. (6.70)

Here, τ010 and τ001 define the boundary faces of the quantum wire in the
[010] and [001] directions.

For each bulk energy band n, there is one side-like subband in the quantum
wire with energy

Λ̄sd
n (k̄; τ001, τ010) = λ̄n(k̄; τ001, τ010). (6.71)

6.8 Summary and Discussions

Therefore, from the understanding of the further quantum confinement of
two-dimensional Bloch waves ψ̂n(k̂, x; τ3) and ψ̂n,j3(k̂, x; τ3) in one more di-
rection obtained in Sections 6.1–6.3 and by considering two different con-
finement orders, the properties of electronic states in ideal quantum wires
discussed in Sections 6.4–6.7 can be generally and analytically understood.
There are three different types of electronic states in an ideal quantum wire:
bulk-like states, surface-like states, and side-like states.

Similar to a surface-like subband, the physics origin of a side-like subband
is also related to a bulk energy band. Just as a surface-like electronic state
is better understood as an electronic state whose properties and energy are
determined by the surface location, a side-like electronic state in a quantum
wire is better understood as an electronic state whose properties and energy
are determined by the side location, rather than that the state is located near
a specific side. Only when a Bloch function has two different nodal surfaces
which are the surfaces of the quantum wire, might the side state be a Bloch
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state. It seems that such cases rarely happen in most quantum wires of cubic
semiconductors of general interest.

Because of the crystal structure difference of fcc crystals or bcc crystals,
the numbers of each type of electronic states in the quantum wires discussed
in Sections 6.5–6.7 are somewhat different from the numbers of each type of
electronic states in the quantum wires of crystals with a sc, tetr, or ortho
Bravais lattice discussed in Section 6.4.

However, since the results in Sections 6.5–6.7 were also obtained from an
understanding of the further quantum confinement effects of ψ̂n(k̂, x; τ3) and
ψ̂n,j3(k̂, x; τ3) investigated in Sections 6.1–6.3, there are similar relationships
between the three different types of electronic states. For example, for an
ideal fcc quantum wire with (110) and (001) surfaces, we should have

Λ̄sd
n (k̄; τ001, τ110) > Λ̄sf,a1

n,j001
(k̄; τ110) (6.72)

and
Λ̄sd

n (k̄; τ001, τ110) > Λ̄sf,a2
n,j110

(k̄; τ001) (6.73)

between the energy of a side-like state in (6.38) or (6.45) and the energies of
relevant surface-like states in (6.51) and in (6.52). These two equations are
obtained from the relationship (6.15) between (6.38) and (6.37) (i.e., (6.52))
or from the relationship (6.15) between (6.45) and (6.44) (i.e., (6.51)). We
also have

Λ̄sd
n (k̄; τ001, τ110) > Λ̄bk,d

n (k̄) (6.74)

between the energy of a side-like state in (6.38) or (6.45) and the energy of a
relevant bulk-like state in (6.50). This is from the relationship (6.54) between
(6.38) and (6.50).

We have
Λ̄sf,a1

n,j001
(k̄; τ110) > Λ̄bk,b1

n,j001
(k̄), (6.75)

Λ̄sf,a1
n,j001

(k̄; τ110) > Λ̄bk,a
n,j001,j110

(k̄), (6.76)

and
Λ̄sf,a1

n,j001
(k̄; τ110) > Λ̄bk,c

n,j001,j110
(k̄) (6.77)

between the energy of a surface-like state in (6.51) and the energies of relevant
bulk-like states in (6.48), in (6.46), and in (6.47). These three equations are
obtained from the relationship (6.23) between (6.36) and (6.32) and/or from
(6.53). Similarly, we have

Λ̄sf,a2
n,j110

(k̄; τ001) > Λ̄bk,b2
n,j110

(k̄), (6.78)

Λ̄sf,a2
n,j110

(k̄; τ001) > Λ̄bk,a
n,j001,j110

(k̄), (6.79)

and
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Λ̄sf,a2
n,j110

(k̄; τ001) > Λ̄bk,c
n,j001,j110

(k̄) (6.80)

between the energy of a surface-like state in (6.52) and the energies of relevant
bulk-like states in (6.49), in (6.46), and in (6.47). These three equations are
obtained from the relationship (6.23) between (6.43) and (6.39) and/or from
(6.55).

Corresponding relationships for the electronic states in an ideal fcc quan-
tum wire with (110) and (11̄0) surfaces or in an ideal bcc quantum wire with
(001) and (010) surfaces can be similarly obtained.

Therefore, in an ideal quantum wire discussed in Sections 6.5 to 6.7, by
(6.72)–(6.80) or similar equations, we can understand that for the electronic
states with the same bulk energy band index n and with the same wave vector
k̄ in the quantum wire, the following general relations exist:

The energy of the side-like state
> The energy of every surface-like state

> The energy of every relevant bulk-like state.
In an everywhere neutral semiconductor quantum wire, the side-like sub-

bands should be as equally occupied as the bulk-like subbands. The side-like
subbands are usually even higher in energy than the relevant surface-like
subbands. Thus, in a quantum wire of a cubic semiconductor the side-like
subbands originating from the valence bands might even be partly higher in
energy than some bulk-like subbands originating from a conduction band. If
such a case happens, the equivalence of the Fermi energy in the quantum
wire must force some electrons to flow from those side-like subbands origi-
nating from the valence bands into the bulk-like subbands originating from
that conduction band, to make the quantum wire of a semiconductor crystal
have the electrical conductivity of a metal.

Based on similar reasoning, the sides of an alkali metal quantum wire
could be even more positively charged than the surfaces.

There are also side-like subbands originating from bulk conduction bands
in a semiconductor quantum wire. These side-like subbands will be even
higher in energy than the surface-like subbands originating from the bulk
conduction bands and, thus, will usually not be occupied. It seems unlikely
that these side-like subbands will have a significant effect on the properties
of a semiconductor quantum wire.

Although in a quantum wire there is only one side-like subband for each
bulk energy band, it does not mean that all electronic states in that side-
like subband have to be located on the same side of the wire. A clearer
understanding of the properties of the electronic states in a side-like subband
in a quantum wire requires a clearer understanding of the properties of the
solutions of the partial differential equation (5.1), including the solutions in
the band gap(s) and the non-Bloch state solutions in the ranges of permitted
energy bands.

Although the electronic states in an ideal quantum wire discussed here
are all one-dimensional Bloch waves in the a1 direction, they are solutions
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of a partial differential equation (5.1) under the boundary conditions (6.2)
and are fundamentally different from the case treated in Chapter 4, where all
electronic states are solutions of an ordinary differential equation (4.1) under
the boundary condition (4.4). Therefore, for the further quantum confinement
of those one-dimensional Bloch waves in an ideal finite crystal or quantum
dot, we should use the approach used in Chapter 5 and in this chapter rather
than the results obtained in Chapter 4.
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7 Electronic States in Ideal Finite Crystals or
Quantum Dots

The electronic states in an ideal finite crystal or quantum dot can be consid-
ered as the electronic states in an ideal quantum wire further confined in one
more direction. In this chapter, we are interested in the electronic states in an
orthorhombic finite crystal or quantum dot that can be considered as the one-
dimensional Bloch waves in a rectangular quantum wire discussed in Chapter
6 further confined by two boundary surfaces perpendicularly intersecting the
a1 axis at τ1a1 and (τ1 + N1)a1; here, N1 is a positive integer. By using an
approach similar to that used in the last two chapters, we can understand
that the further quantum confinement of each set of one-dimensional Bloch
waves in an ideal quantum wire will produce two different types of electronic
states in the ideal finite crystal or quantum dot.

An orthorhombic finite crystal or quantum dot always has six boundary
faces: two faces in the (h1k1l1) plane, two faces in the (h2k2l2) plane, and
two faces in the (h3k3l3) plane. The electronic states in such a finite crystal
or quantum dot can be considered as the electronic states in a quantum
film with two faces in the (h3k3l3) plane further confined by two faces in the
(h2k2l2) plane and, finally, further confined by two faces in the (h1k1l1) plane.
They can also be considered as three-dimensional Bloch waves φn(k, x) to
be confined in the three directions in other confinement orders. There are
all together six different orders. The results obtained in these six different
confinement orders are equally valid and can be complementary to each other.
By combining the results obtained from the six different confinement orders,
we can obtain a more comprehensive understanding of the electronic states
in the finite crystal or quantum dot.

The simplest cases where the results obtained in this chapter are appli-
cable are the electronic states in an orthorhombic finite crystal or quantum
dot with a sc, tetr, or ortho Bravais lattice in which (5.14), (6.10), and (6.20)
are true. In those crystals, the three primitive lattice vectors a1, a2, and a3
are perpendicular to each other and are essentially equivalent. Properties of
the electronic states in such an ideal finite crystal or quantum dot can be
generally and analytically predicted.

Since many cubic semiconductors and metals have a fcc or bcc Bravais
lattice, the electronic states in finite crystals or quantum dots with a fcc
or bcc Bravais lattice often are practically more interesting. Based on the
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general theory developed in this chapter, we can also give predictions on the
electronic states in some ideal orthorhombic finite crystals or quantum dots
of crystals with a fcc or a bcc Bravais lattice.

This chapter is organized as follows: In Sections 7.1–7.5, we investigate
the consequences when the four sets of one-dimensional waves in an ideal
quantum wire obtained in Sections 6.1–6.3 are further confined in one more
direction, that is, the consequences of three-dimensional Bloch waves being
confined in three directions in a specific confinement order. In Sections 7.6–
7.8, we obtain predictions on the electronic states in several finite crystals or
quantum dots from the understanding obtained in Sections 7.1–7.5 and by
considering different quantum confinement orders. Section 7.9 is devoted to
a summary and discussions.

7.1 Basic Considerations

In this chapter, we consider the further confinement of the one-dimensional
Bloch waves ψ̄(k̄, x) obtained in Chapter 6 in the a1 direction. Such an
orthorhombic finite crystal or quantum dot can be defined by a bottom face
x3 = τ3, a top face x3 = τ3 +N3, a front face perpendicularly intersecting the
a2 axis at τ2a2 and a rear face perpendicularly intersecting it at (τ2 +N2)a2,
and a left face perpendicularly intersecting the a1 axis at τ1a1 and a right
face perpendicularly intersecting it at (τ1 + N1)a1; here, τ1, τ2, and τ3 define
the boundary face locations of the crystal or quantum dot and N1, N2, and
N3 are three positive integers indicating the size and/or shape of the crystal
or quantum dot. We look for the eigenvalues Λ and eigenfunctions ψ(x) of
the following two equations:

−∇2ψ(x) + [v(x) − Λ]ψ(x) = 0 if x ∈ the crystal (7.1)

and

ψ(x) = 0 if x /∈ the crystal. (7.2)

Corresponding to the further quantum confinement of each set of one-dimen-
sional Bloch waves in the quantum wire, ψ̄n(k̄, x; τ2, τ3), ψ̄n,j3(k̄, x; τ2, τ3),
ψ̄n,j2(k̄, x; τ2, τ3), and ψ̄n,j2,j3(k̄, x; τ2, τ3), we will have a new eigenvalue
problem and a new theorem similar to Theorem 6.1 or 6.2 for the electronic
states in a quantum wire; each one will produce two types of confined elec-
tronic states in the finite crystal or quantum dot.

7.2 Further Quantum Confinement of ψ̄n(k̄, x; τ2, τ3)

For the quantum confinement of the side-like states ψ̄n(k̄, x; τ2, τ3), we con-
sider an orthorhombic parallelogram C as shown in Fig. 7.1 with a bottom
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face x3 = τ3, a top face x3 = τ3 + 1, a front face perpendicularly intersect-
ing the a2 axis at τ2a2 and a rear face perpendicularly intersecting it at
(τ2 + 1)a2, a left face perpendicularly intersecting the a1 axis at τ1a1 and
a right face perpendicularly intersecting it at (τ1 + 1)a1. The function set

a

a

x =τ +1

x =τ
O

2

1

3

3 3 

3

Fig. 7.1. The orthorhombic parallelogram C for the eigenvalue problem of (5.1)
under the boundary condition (7.3). The two shadowed faces of ∂C3 and the two
thick-lined faces of ∂C2 are the four faces on which each ψ̄n(k̄, x; τ2, τ3) is zero. The
left face and the right face are the two faces on which each function φ(x; τ1, τ2, τ3)
is further required to be zero.

φ(x; τ1, τ2, τ3) is defined by (5.1) and the boundary condition

φ(x; τ1, τ2, τ3) = 0 if x ∈ ∂C. (7.3)

Here, ∂C is the boundary of C. The eigenvalues and eigenfunctions of (5.1)
under the condition (7.3) are denoted by λn(τ1, τ2, τ3) and φn(x; τ1, τ2, τ3),
respectively.

For each eigenvalue of the problem defined by (5.1) and (7.3) we have
the following theorem between it and the eigenvalues Λ̄n(k̄; τ2, τ3) in (6.9) of
ψ̄n(k̄, x; τ2, τ3).

Theorem 7.1.
λn(τ1, τ2, τ3) ≥ Λ̄n(k̄; τ2, τ3). (7.4)

Since each ψ̄n(k̄, x; τ2, τ3) satisfies

ψ̄(k̄, x + a1; τ2, τ3) = eik1 ψ̄(k̄, x; τ2, τ3), − π < k1 ≤ π,
ψ̄(k̄, x; τ2, τ3) = 0 if x ∈ ∂C2 or x ∈ ∂C3.

(7.5)

Theorem 7.1 can be proven similar to Theorem 5.1 given in Chapter 5. The
major difference is in the Dirichlet integral

J(f, g) =
∫

C

{∇f(x) · ∇g∗(x) + v(x)f(x)g∗(x)} dx

=
∫

C

f(x){−∇2g∗(x) + v(x)g∗(x)} dx +
∫

∂C

f
∂g∗

∂n
dS; (7.6)
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if both f(x) and g(x) satisfy the conditions (7.5), the integral over ∂C in (7.6)
is zero since the integrals over the two opposite faces of ∂C1 are cancelled
out, f(x) = 0 when x ∈ ∂C2 or x ∈ ∂C3. If f(x) = φn(x; τ1, τ2, τ3) and
g(x) = ψ̄(k̄, x; τ2, τ3), the integral over ∂C in (7.6) is also zero since f(x) = 0
when x ∈ ∂C.

Theorem 7.1 is similar to Theorem 6.1 and the consequences of the quan-
tum confinement of two-dimensional Bloch waves ψ̂n(k̂, x; τ3) in the a2 direc-
tion due to Theorem 6.1 can be similarly applied to the quantum confinement
of ψ̄n(k̄, x; τ2, τ3) in the a1 direction.

For each bulk energy band n, there is one φn(x; τ1, τ2, τ3).
Because v(x + a1) = v(x), the function φn(x; τ1, τ2, τ3) has the form

φn(x + a1; τ1, τ2, τ3) = eik1φn(x; τ1, τ2, τ3) (7.7)

and, here, k1 can be complex with a non-zero imaginary part or a real number.
If k1 is real in (7.7), then φn(x; τ1, τ2, τ3) is a ψ̄n′(k̄, x; τ2, τ3). According

to Theorem 7.1, a ψ̄n′(k̄, x; τ2, τ3) cannot be a φn(x; τ1, τ2, τ3) except in some
special cases when ψ̄n′(k̄, x; τ2, τ3) has a nodal surface intersecting the a1 axis
at τ1a1. Thus, k1 in (7.7) can be real only in such special cases; in most cases,
k1 in (7.7) is complex with a nonzero imaginary part.

The imaginary part of k1 in (7.7) can be either positive or negative, cor-
responding to that φn(x; τ1, τ2, τ3) decays in the either positive or negative
direction of a1. Such states φn(x; τ1, τ2, τ3) with a nonzero imaginary part of
k1 in (7.7) cannot exist in a quantum wire with translational invariance in the
a1 direction since they are divergent in either the negative or the positive
direction of a1. However, they can play a significant role in the electronic
states in a finite crystal or quantum dot without translational invariance.

The further quantum confinement of the one-dimensional Bloch waves
ψ̄n(k̄, x; τ2, τ3) in the a1 direction will produce two different types of elec-
tronic states in the finite crystal or quantum dot.

One type of nontrivial solutions of (7.1) and (7.2) can be obtained from
(7.7) by assigning

ψn(x; τ1, τ2, τ3) = cN1,N2,N3φn(x; τ1, τ2, τ3) if x ∈ the crystal
= 0 if x /∈ the crystal, (7.8)

where cN1,N2,N3 is a normalization constant. The corresponding eigenvalue

Λn(τ1, τ2, τ3) = λn(τ1, τ2, τ3) (7.9)

is dependent on τ1, τ2, and τ3 but not on N1, N2, and N3. A consequence
of Theorem 7.1 is that for each energy band index n, there is only one such
solution (7.8) of (7.1) and (7.2). This is a corner-like state in the finite crystal
or the quantum dot since, in most cases, φn(x; τ1, τ2, τ3) decays in either the
positive or the negative direction of a1, a2, and a3.
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Now, we try to find other solutions of (7.1) and (7.2) from the further
quantum confinement of ψ̄n(k̄, x; τ2, τ3). We can expect that there are sta-
tionary Bloch states in the a1 direction, formed due to multiple reflections
of ψ̄n(k̄, x; τ2, τ3) between the two boundary surfaces intersecting the a1 axis
at τ1a1 and (τ1 + N1)a1.

Since1

Λ̄n(k̄; τ2, τ3) = Λ̄n(−k̄; τ2, τ3),

in general

fn,k1(x; τ2, τ3) = c+ψ̄n(k1b̄1, x; τ2, τ3)+ c−ψ̄n(−k1b̄1, x; τ2, τ3), 0 < k1 < π,

where c± are not zero, is a nontrivial solution of (7.1).
In order to be a solution of (7.1) and (7.2), the function fn,k1(x; τ2, τ3) is

further required to be zero at the left and the right faces of the finite crystal
or quantum dot. By writing the left face equation of the finite crystal as
x1 = x1,l(x2, x3) and the right face equation of the finite crystal as x1 =
x1,r(x2, x3), we have

c+ψ̄n[k1b̄1, x ∈ x1,l(x2, x3); τ2, τ3]
+ c−ψ̄n[−k1b̄1, x ∈ x1,l(x2, x3); τ2, τ3] = 0,

c+ψ̄n[k1b̄1, x ∈ x1,r(x2, x3); τ2, τ3]
+ c−ψ̄n[−k1b̄1, x ∈ x1,r(x2, x3); τ2, τ3] = 0.

(7.10)

Since x1,r(x2, x3) = x1,l(x2, x3) + N1, we have

ψ̄n[k1b̄1, x ∈ x1,r(x2, x3); τ2, τ3] = eik1N1 ψ̄n[k1b̄1, x ∈ x1,l(x2, x3); τ2, τ3]

and

ψ̂n[−k1b̄1, x ∈ x1,r(x2, x3); τ2, τ3] = e−ik1N1 ψ̂n[−k1b̄1, x ∈ x1,l(x2, x3); τ2, τ3]

due to (7.5). Therefore, if c± in (7.10) are not both zero, eik1N1 −e−ik1N1 = 0
has to be true for these stationary Bloch states, independent of τ1.

Stationary Bloch state solutions of (7.1) and (7.2) from the further con-
finement of ψ̄n(k̄, x; τ2, τ3) should have the form

ψn,j1(x; τ1, τ2, τ3) = fn,κ1(x; τ1, τ2, τ3) if x ∈ the crystal
= 0 if x /∈ the crystal, (7.11)

where

fn,k1(x; τ1, τ2, τ3) = cn,k1;τ1 ψ̄n(k1b̄1, x; τ2, τ3) + cn,−k1;τ1 ψ̄n(−k1b̄1, x; τ2, τ3);

here, cn,±k1;τ1 are dependent on τ1 and

1As solutions of (6.1) and (6.2), ψ̄(k̄, x) and ψ̄∗(k̄, x) have the same energy Λ̄.
ψ̄∗

n(k̄, x; τ2, τ3) = ψ̄n(−k̄, x; τ2, τ3) leads to Λ̄n(−k̄; τ2, τ3) = Λ̄n(k̄; τ2, τ3).
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κ1 = j1 π/N1, j1 = 1, 2, ..., N1 − 1, (7.12)

where j1 is a stationary Bloch state index. These solutions ψn,j1(x; τ1, τ2, τ3)
satisfying (7.1) and (7.2) have energies Λ given by

Λn,j1(τ2, τ3) = Λ̄n(κ1b̄1; τ2, τ3). (7.13)

Each energy given in (7.13) is dependent on N1 and τ2, τ3 but not on τ1 and
N2, N3. For each bulk energy band n, there are N1 − 1 such states. They are
side-like states in the finite crystal or quantum dot since ψ̄n(k̄, x; τ2, τ3) are
side-like states in the quantum wire.

Because of (7.4), (7.9), and (7.13), for the further quantum confinement
of one-dimensional Bloch wave ψ̄n(k̄, x; τ2, τ3), in general the energy of the
corner-like state is always above the energy of every relevant side-like state:

Λn(τ1, τ2, τ3) > Λn,j1(τ2, τ3). (7.14)

7.3 Further Quantum Confinement of ψ̄n,j3(k̄, x; τ2, τ3)

For the quantum confinement of surface-like states ψ̄n,j3(k̄, x; τ2, τ3), we con-
sider an orthorhombic parallelogram C ′ having a rectangular bottom face
x3 = τ3, a rectangular top face x3 = τ3 + N3, a front face perpendicularly
intersecting the a2 axis at τ2a2 and a rear face perpendicularly intersecting
it at (τ2 + 1)a2, and a left face perpendicularly intersecting the a1 axis at
τ1a1 and a right face perpendicularly intersecting it at (τ1 + 1)a1, as shown
in Fig. 7.2. We define a function set φj3(x; τ1, τ2, τ3) by the condition that
each function is zero at the bottom and top faces of C ′ and behaves as a
Bloch stationary state ψ̄j3(k̄, x; τ2, τ3) 2 with a wave number j3/N3 π|b3| in
the b3 direction and is zero at the other four faces of C ′. The eigenvalues and
eigenfunctions of (5.1) with this condition are denoted by λn,j3(τ1, τ2) and
φn,j3(x; τ1, τ2, τ3), where n = 0, 1, 2, .... For each eigenvalue λn,j3(τ1, τ2) of
the problem defined by (5.1) and this condition, we have the following theo-
rem between it and the eigenvalues Λ̄n,j3(k̄; τ2) in (6.19) of ψ̄n,j3(k̄, x; τ2, τ3).

Theorem 7.2.
λn,j3(τ1, τ2) ≥ Λ̄n,j3(k̄; τ2). (7.15)

Theorem 7.2 can be proven similar to Theorem 7.1; we only need to note
that ψ̄n,j3(k̄, x; τ2, τ3) with different j3 are orthogonal to each other; thus,
each one of ψ̄n,j3(k̄, x; τ2, τ3) with a different j3 will be confined in the a1
direction independently.

2ψ̄j3(k̄, x; τ2, τ3) generally can be a (any) linear combination of ψ̄n,j3(k̄, x; τ2, τ3)
with different n.
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Fig. 7.2. The orthorhombic parallelogram C′ for the further quantum confinement
of ψ̄n,j3(k̄, x; τ2, τ3). The two shadowed faces of ∂C′

3 determined by x3 = τ3 and
x3 = τ3 + N3 (in the figure is shown the case N3 = 2) and the two thick-lined faces
of ∂C′

2 are the four faces on which each function ψ̄n,j3(k̄, x; τ2, τ3) is zero. The left
face and the right face are the two faces on which each function φj3(x; τ1, τ2, τ3) is
further required to be zero.

Theorem 7.2 is similar to Theorem 7.1; the consequences of the quantum
confinement of one-dimensional Bloch waves ψ̄n(k̄, x; τ2, τ3) in the a1 direc-
tion due to Theorem 7.1 can be similarly applied to the quantum confinement
of one-dimensional Bloch waves ψ̄n,j3(k̄, x; τ2, τ3) in the a1 direction.

Because v(x + a1) = v(x), the function φn,j3(x; τ1, τ2, τ3) has the form

φn,j3(x + a1; τ1, τ2, τ3) = eik1φn,j3(x; τ1, τ2, τ3). (7.16)

k1 in (7.16) can be complex with a nonzero imaginary part or a real number.
If k1 is real in (7.16), then φn,j3(x; τ1, τ2, τ3) is a ψ̄n′,j3(k̄, x; τ2, τ3). According
to Theorem 7.2, a ψ̄n′,j3(k̄, x; τ2, τ3) cannot be a φn,j3(x; τ1, τ2, τ3) except in
some special cases when ψ̄n′,j3(k̄, x; τ2, τ3) has a nodal surface intersecting
the a1 axis at τ1a1. Therefore, k1 in (7.16) can be real only in such special
cases; in most cases, k1 in (7.16) is complex with a nonzero imaginary part.

The imaginary part of k1 in (7.16) can be either positive or negative,
corresponding to that φn,j3(x; τ1, τ2, τ3) decays in either the positive or the
negative direction of a1. Such states φn,j3(x; τ1, τ2, τ3) with a nonzero imag-
inary part of k1 in (7.16) cannot exist in a quantum wire with translational
invariance in the a1 direction since they are divergent in either the negative
or the positive direction of a1. However, they can play a significant role in
the electronic states in a finite crystal or quantum dot without translational
invariance.
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The further quantum confinement in the a1 direction of one-dimensional
Bloch waves ψ̄n,j3(k̄, x; τ2, τ3) will produce two different types of electronic
states in the finite crystal or quantum dot.

One type of nontrivial solutions of (7.1) and (7.2) can be obtained from
(7.16) by assigning

ψn,j3(x; τ1, τ2, τ3) = cN1,N2,N3φn,j3(x; τ1, τ2, τ3) if x ∈ the crystal
= 0 if x /∈ the crystal, (7.17)

where cN1,N2,N3 is a normalization constant. The corresponding eigenvalue

Λn,j3(τ1, τ2) = λn,j3(τ1, τ2) (7.18)

is dependent on N3, τ1, and τ2 but not on N1, N2 and τ3. A consequence of
Theorem 7.2 is that for each bulk energy band n and each j3, there is only
one such solution (7.17) of (7.1) and (7.2). For each bulk energy band, there
are N3 −1 such states in the finite crystal or quantum dot. They are side-like
states in the finite crystal or quantum dot since ψn,j3(x; τ1, τ2, τ3) decays in
either the positive or the negative direction of a1 and a2 in most cases.

Now, we try to find other solutions of (7.1) and (7.2) from the further
quantum confinement of ψ̄n,j3(k̄, x; τ2, τ3). We can expect that there are sta-
tionary Bloch states in the a1 direction, formed due to the multiple reflections
of the one-dimensional Bloch waves ψ̄n,j3(k̄, x; τ2, τ3) between two boundary
surfaces intersecting the a1 axis at τ1a1 and (τ1 + N1)a1.

Since the energies (6.19) of ψ̄n,j3(k̄, x; τ2, τ3) satisfy3

Λ̄n,j3(k̄; τ2) = Λ̄n,j3(−k̄; τ2), (7.19)

in general

fn,k1,j3(x; τ2, τ3) = c+ψ̄n,j3(k1b̄1, x; τ2, τ3)
+ c−ψ̄n,j3(−k1b̄1, x; τ2, τ3), 0 < k1 < π,

where c± are not zero, is a nontrivial solution of (7.1) because of (7.19).
Very similarly to what we did in Section 7.2, we can obtain that the station-
ary Bloch state solutions of (7.1) and (7.2) from the further confinement of
ψ̄n,j3(k̄, x; τ2, τ3) should have the form

ψn,j1,j3(x; τ1, τ2, τ3) = fn,κ1,j3(x; τ1, τ2, τ3) if x ∈ the crystal
= 0 if x /∈ the crystal, (7.20)

where

fn,k1,j3(x; τ1, τ2, τ3) = cn,k1,j3;τ1 ψ̄n,j3(k1b̄1, x; τ2, τ3)
+ cn,−k1,j3;τ1 ψ̄n,j3(−k1b̄1, x; τ2, τ3);

3ψ̄∗
n,j3(k̄, x; τ2, τ3) = ψ̄n,j3(−k̄, x; τ2, τ3) leads to (7.19).
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cn,±k1,j3;τ1 are dependent on τ1, κ1 = j1 π/N1, and j1 = 1, 2, ..., N1 − 1 as in
(7.12). Stationary Bloch state solutions ψn,j1,j3(x; τ1, τ2, τ3) satisfying (7.1)
and (7.2) have energies Λ given by

Λn,j1,j3(τ2) = Λ̄n,j3(κ1b̄1; τ2). (7.21)

Each energy in (7.21) for this case is dependent on N1, N3, and τ2, but inde-
pendent of τ1, τ3, and N2. Those are surface-like states in the finite crystal or
quantum dot because ψ̄n,j3(k̄, x; τ2, τ3) are surface-like states in the quantum
wire. For each bulk energy band n, there are (N1 − 1)(N3 − 1) such states in
the finite crystal or quantum dot.

Similar to (7.14), because of (7.15), (7.18), and (7.21), for the further
quantum confinement of ψ̄n,j3(k̄, x; τ2, τ3), in general, the energy of a side-
like state is above the energy of a relevant surface-like state:

Λn,j3(τ1, τ2) > Λn,j1,j3(τ2). (7.22)

7.4 Further Quantum Confinement of ψ̄n,j2(k̄, x; τ2, τ3)

The further quantum confinement of the surface-like states ψ̄n,j2(k̄, x; τ2, τ3)
in the quantum wire a1 direction can be similarly discussed and for each
energy band n it will give N2 − 1 side-like states and (N1 − 1)(N2 − 1)
surface-like states in the finite crystal or quantum dot.

For the quantum confinement of ψ̄n,j2(k̄, x; τ2, τ3), we consider an or-
thorhombic parallelogram C ′′ having a rectangular bottom face x3 = τ3, a
rectangular top face x3 = τ3 +1, a front face perpendicularly intersecting the
a2 axis at τ2a2 and a rear face perpendicularly intersecting it at (τ2 +N2)a2,
and a left face perpendicularly intersecting the a1 axis at τ1a1 and a right
face perpendicularly intersecting it at (τ1 + 1)a1, as shown in Fig. 7.3. We
define a function set φj2(x; τ1, τ2, τ3) by the condition that each function is
zero at the bottom and top faces of C ′′, is zero at the front face and the rear
face of C ′′ and behaves as a Bloch stationary state ψ̄j2(k̄, x; τ2, τ3) 4 with a
wave number j2/N2 π|b̂2| in the b̂2 direction, and is zero at the two faces
∂C ′′

1 of C ′′. The eigenvalues and eigenfunctions of (5.1) with this condition
are denoted by λn,j2(τ1, τ3) and φn,j2(x; τ1, τ2, τ3), where n = 0, 1, 2, .... For
each eigenvalue λn,j2(τ1, τ3) of the problem defined by (5.1) and this bound-
ary condition, we have the following theorem between it and the eigenvalues
Λ̄n,j2(k̄; τ3) in (6.14) of ψ̄n,j2(k̄, x; τ2, τ3).

Theorem 7.3.
λn,j2(τ1, τ3) ≥ Λ̄n,j2(k̄; τ3). (7.23)

4ψ̄j2(k̄, x; τ2, τ3) generally can be a (any) linear combination of ψ̄n,j2(k̄, x; τ2, τ3)
of different n.
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Fig. 7.3. The parallelogram C′′ for the quantum confinement of ψ̄n,j2(k̄, x; τ2, τ3).
The two shadowed faces of ∂C′′

3 determined by x3 = τ3 and x3 = τ3 + 1 and the
two thick-lined faces of ∂C′′

2 determined by τ2a2 and (τ2 + N2)a2 (in the figure is
shown the case N2 = 2) are the four faces on which each function ψ̄n,j2(k̄, x; τ2, τ3)
is zero. The left face and the right face of ∂C′′

1 are the two faces on which each
function φj2(x; τ1, τ2, τ3) is further required to be zero.

Theorem 7.3 can be proven similar to Theorem 7.1; we only need to note
that ψ̄n,j2(k̄, x; τ2, τ3) with different j2 are orthogonal to each other, thus,
each one of them will be confined in the a1 direction independently.

Theorem 7.3 is similar to Theorem 7.1; the consequences of the quantum
confinement of one-dimensional Bloch waves ψ̄n(k̄, x; τ2, τ3) in the a1 direc-
tion due to Theorem 7.1 can be similarly applied to the quantum confinement
of one-dimensional Bloch waves ψ̄n,j2(k̄, x; τ2, τ3) in the a1 direction.

Because v(x + a1) = v(x), the function φn,j2(x; τ1, τ2, τ3) has the form

φn,j2(x + a1; τ1, τ2, τ3) = eik1φn,j2(x; τ1, τ2, τ3). (7.24)

k1 in (7.24) can be complex with a nonzero imaginary part or a real number.
If k1 is real in (7.24), then φn,j2(x; τ1, τ2, τ3) is a ψ̄n′,j2(k̄, x; τ2, τ3). According
to Theorem 7.3, a ψ̄n′,j2(k̄, x; τ2, τ3) cannot be a φn,j2(x; τ1, τ2, τ3) except in
some special cases when ψ̄n′,j2(k̄, x; τ2, τ3) has a nodal surface intersecting
the a1 axis at τ1a1. Therefore, k1 in (7.24) can be real only in such special
cases; in most cases, k1 in (7.24) is complex with a nonzero imaginary part.

The imaginary part of k1 in (7.24) can be either positive or negative;
this corresponds to that φn,j2(x; τ1, τ2, τ3) decays in either the positive or
the negative direction of a1. Such states φn,j2(x; τ1, τ2, τ3) with a nonzero
imaginary part of k1 in (7.24) cannot exist in a quantum wire with trans-
lational invariance in the a1 direction because they are divergent in either
the negative or the positive direction of a1. However, these states can play
a significant role in the electronic states in a finite crystal or quantum dot
without translational invariance.
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The further quantum confinement in the a1 direction of one-dimensional
Bloch waves ψ̄n,j2(k̄, x; τ2, τ3) will produce two different types of electronic
states in the finite crystal or quantum dot.

One type of nontrivial solutions of (7.1) and (7.2) can be obtained from
(7.24) by assigning

ψn,j2(x; τ1, τ2, τ3) = cN1,N2,N3φn,j2(x; τ1, τ2, τ3) if x ∈ the crystal
= 0 if x /∈ the crystal, (7.25)

where cN1,N2,N3 is a normalization constant. The corresponding eigenvalue is

Λn,j2(τ1, τ3) = λn,j2(τ1, τ3). (7.26)

For each band n and each j2, there is one electronic state ψn,j2(x; τ1, τ2, τ3)
which is φn,j2(x; τ1, τ2, τ3) inside the crystal or dot but zero otherwise, whose
energy Λn,j2(τ1, τ3) depends on τ1, τ3, and N2 but not on N1, N3, and τ2. For
each bulk energy band n, there are N2 − 1 such states in the finite crystal or
quantum dot. They are side-like states in the finite crystal or quantum dot
since φn,j2(x; τ1, τ2, τ3) decays in either the positive or the negative direction
of a1 and a3 in most cases.

Now, we try to find other solutions of (7.1) and (7.2) from the quantum
confinement of ψ̄n,j2(k̄, x; τ2, τ3). We can expect that there are stationary
Bloch states in the a1 direction, formed due to the multiple reflections of
ψ̄n,j2(k̄, x; τ2, τ3) between two boundary surfaces perpendicularly intersecting
the a1 axis at τ1a1 and (τ1 + N1)a1.

Since for the energies of the electronic states ψ̄n,j2(k̄, x; τ2, τ3) in the quan-
tum wire we have5

Λ̄n,j2(k̄; τ3) = Λ̄n,j2(−k̄; τ3), (7.27)

in general

fn,k1,j2(x; τ2, τ3) = c+ψ̄n,j2(k1b̄1, x; τ2, τ3)
+ c−ψ̄n,j2(−k1b̄1, x; τ2, τ3), 0 < k1 < π,

where c± are not zero, is a nontrivial solution of (7.1) due to (7.27). Similar
to the cases in Sections 7.2 and 7.3, we can obtain that the stationary Bloch
state solutions of (7.1) and (7.2) originating from the quantum confinement
of ψ̄n,j2(k̄, x; τ2, τ3) should have the form

ψn,j1,j2(x; τ1, τ2, τ3) = fn,κ1,j2(x; τ1, τ2, τ3) if x ∈ the crystal
= 0 if x /∈ the crystal, (7.28)

where

fn,k1,j2(x; τ1, τ2, τ3) = cn,k1,j2;τ1 ψ̄n,j2(k1b̄1, x; τ2, τ3)
+ cn,−k1,j2;τ1 ψ̄n,j2(−k1b̄1, x; τ2, τ3),

5ψ̄∗
n,j2(k̄, x; τ2, τ3) = ψ̄n,j2(−k̄, x; τ2, τ3) leads to (7.27).
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cn,±k1,j2;τ1 are dependent on τ1, κ1 = j1π/N1, and j1 = 1, 2, ..., N1 − 1 as in
(7.12). Stationary Bloch state solutions ψn,j1,j2(x; τ1, τ2, τ3) satisfying (7.1)
and (7.2) have energies Λ given by

Λn,j1,j2(τ3) = Λ̄n,j2(κ1b̄1; τ3). (7.29)

Each energy Λn,j1,j2(τ3) for this case is dependent on N1, N2, and τ3, but
independent of τ1, τ2, and N3. These are surface-like states in the finite crystal
or quantum dot since ψ̄n,j2(k̄, x; τ2, τ3) are surface-like states in the quantum
wire. For each bulk energy band n, there are (N1 − 1)(N2 − 1) such states in
the finite crystal or quantum dot.

Similar to (7.22), because of (7.23), (7.26), and (7.29), for the further
quantum confinement of ψ̄n,j2(k̄, x; τ2, τ3) in general the energy of a side-like
state is above the energy of a relevant surface-like state:

Λn,j2(τ1, τ3) > Λn,j1,j2(τ3). (7.30)

7.5 Further Quantum Confinement of ψ̄n,j2,j3(k̄, x; τ2, τ3)

For the quantum confinement of bulk-like states ψ̄n,j2,j3(k̄, x; τ2, τ3), we con-
sider an orthorhombic parallelogram C ′′′ having a rectangular bottom face at
x3 = τ3, a rectangular top face at x3 = τ3 + N3, a front face perpendicularly
intersecting the a2 axis at τ2a2 and a rear face perpendicularly intersecting it
at (τ2+N2)a2, and a left face perpendicularly intersecting the a1 axis at τ1a1
and a right face perpendicularly intersecting it at (τ1 +1)a1, as shown in Fig.
7.4. We define a function set φj2,j3(x; τ1, τ2, τ3) by the condition that each
function is zero at the two faces of ∂C ′′′

2 and behaves as a Bloch stationary
state with a wave number j2/N2 π|b̂2| in the b̂2 direction, is zero at the two
faces of ∂C ′′′

3 and behaves as a Bloch stationary state with a wave number
j3/N3 π|b3| in the b3 direction as ψ̄j2,j3(k̄, x; τ2, τ3), 6 and is zero at the two
faces ∂C ′′′

1 . The eigenvalues and eigenfunctions of (5.1) under this condition
are denoted by λn,j2,j3(τ1) and φn,j2,j3(x; τ1, τ2, τ3), where n = 0, 1, 2, .... For
each eigenvalue λn,j2,j3(τ1) of the problem defined by (5.1) and this condition,
we have the following theorem between it and the eigenvalues Λ̄n,j2,j3(k̄) in
(6.22) of ψ̄n,j2,j3(k̄, x; τ2, τ3).

Theorem 7.4.
λn,j2,j3(τ1) ≥ Λ̄n,j2,j3(k̄). (7.31)

Theorem 7.4 can be proven similar to Theorems 7.1 to 7.3; we only need
to note that ψ̄n,j2,j3(k̄, x; τ2, τ3) with different j2 or j3 are orthogonal to each
other, thus, each one of ψ̄n,j2,j3(k̄, x; τ2, τ3) with a different j2 or j3 will be
confined in the a1 direction independently.

6ψ̄j2,j3(k̄, x; τ2, τ3) can in general be a (any) linear combination of
ψ̄n,j2,j3(k̄, x; τ2, τ3) with different n.



7.5 Further Quantum Confinement of ψ̄n,j2,j3(k̄, x; τ2, τ3) 155

x =τ +2

x =τ

a

a1

2

3 3 

3 3 

O

Fig. 7.4. The parallelogram C′′′ for the quantum confinement of
ψ̄n,j2,j3(k̄, x; τ2, τ3). The two shadowed faces of ∂C′′′

3 determined by x3 = τ3

and x3 = (τ3 +N3) (in the figure is shown the case N3 = 2) and the two thick-lined
faces of ∂C′′′

2 determined by τ2a2 and (τ2 + N2)a2 (in the figure is shown the
case N2 = 2) are the four faces on which each function ψ̄n,j2,j3(k̄, x; τ2, τ3) is zero.
The left face and the right face of ∂C′′′

1 are the two faces on which each function
φj2,j3(x; τ1, τ2, τ3) is further required to be zero.

Theorem 7.4 is similar to Theorem 7.1; the consequences of the quantum
confinement of one-dimensional Bloch waves ψ̄n(k̄, x; τ2, τ3) in the a1 direc-
tion due to Theorem 7.1 can be similarly applied to the quantum confinement
of one-dimensional Bloch waves ψ̄n,j2,j3(k̄, x; τ2, τ3) in the a1 direction.

Because v(x + a1) = v(x), the function φn,j2,j3(x; τ1, τ2, τ3) has the form

φn,j2,j3(x + a1; τ1, τ2, τ3) = eik1φn,j2,j3(x; τ1, τ2, τ3). (7.32)

k1 in (7.32) can be complex with a nonzero imaginary part or a real num-
ber. If k1 is real in (7.32), then φn,j2,j3(x; τ1, τ2, τ3) is a ψ̄n′,j2,j3(k̄, x; τ2, τ3).
According to Theorem 7.4, only in special cases when a ψ̄n′,j2,j3(k̄, x; τ2, τ3)
has a nodal surface intersecting the a1 axis at τ1a1, the ψ̄n′,j2,j3(k̄, x; τ2, τ3)
can be a φn,j2,j3(x; τ1, τ2, τ3). Therefore, k1 in (7.32) can be real only in such
special cases; in most cases, it is complex with a non-zero imaginary part.

The imaginary part of k1 in (7.32) can be either positive or negative,
corresponding to that φn,j2,j3(x; τ1, τ2, τ3) decays in either the positive or
the negative direction of a1. Such states φn,j2,j3(x; τ1, τ2, τ3) with a nonzero
imaginary part of k1 in (7.32) cannot exist in a quantum wire with trans-
lational invariance in the a1 direction because they are divergent in either
the negative or the positive direction of a1. However, they can play a signif-
icant role in the electronic states in a finite crystal or quantum dot without
translational invariance.
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The further quantum confinement in the a1 direction of one-dimensional
Bloch waves ψ̄n,j2,j3(k̄, x; τ2, τ3) will produce two different types of electronic
states in the finite crystal or quantum dot.

One type of nontrivial solutions of (7.1) and (7.2) can be obtained from
(7.32) by assigning

ψn,j2,j3(x; τ1, τ2, τ3) = cN1,N2,N3φn,j2,j3(x; τ1, τ2, τ3) if x ∈ the crystal
= 0 if x /∈ the crystal,

(7.33)

where cN1,N2,N3 is a normalization constant. The corresponding eigenvalue is

Λn,j2,j3(τ1) = λn,j2,j3(τ1). (7.34)

For each energy band and each j2, j3, there is one state ψn,j2,j3(x; τ1, τ2, τ3)
which is φn,j2,j3(x; τ1, τ2, τ3) inside the finite crystal or quantum dot but zero
otherwise, whose energy Λn,j2,j3(τ1) depends on τ1, N2, and N3 but not on
N1, τ2, and τ3. For each bulk energy band n there are (N2 − 1)(N3 − 1) such
states in the finite crystal or quantum dot. They are surface-like states in the
finite crystal or quantum dot since φn,j2,j3(x; τ1, τ2, τ3) decays in either the
positive or the negative direction of a1 in most cases.

Now, we try to find out other solutions of (7.1) and (7.2) from the quan-
tum confinement of ψ̄n,j2,j3(k̄, x; τ2, τ3). We can expect that there are sta-
tionary Bloch states in the a1 direction, formed due to multiple reflections
of ψ̄n,j2,j3(k̄, x; τ2, τ3) between two boundary surfaces perpendicularly inter-
secting the a1 axis at τ1a1 and (τ1 + N1)a1.

Since we have7

Λ̄n,j2,j3(k̄) = Λ̄n,j2,j3(−k̄), (7.35)

in general

fn,k1,j2,j3(x; τ2, τ3) = c+ψ̄n,j2,j3(k1b̄1, x; τ2, τ3)
+ c−ψ̄n,j2,j3(−k1b̄1, x; τ2, τ3), 0 < k1 < π,

where c± are not zero, is a nontrivial solution of (7.1) due to (7.35). Similar to
what was done in Sections 7.2–7.4, we can see that the stationary Bloch state
solutions of (7.1) and (7.2) originating from the further quantum confinement
of ψ̄n,j2,j3(k̄, x; τ2, τ3) should have the form

ψn,j1,j2,j3(x; τ1, τ2, τ3) = fn,κ1,j2,j3(x; τ1, τ2, τ3) if x ∈ the crystal
= 0 if x /∈ the crystal, (7.36)

where

fn,k1,j2,j3(x; τ1, τ2, τ3) = cn,k1,j2,j3;τ1 ψ̄n,j2,j3(k1b̄1, x; τ2, τ3)
+ cn,−k1,j2,j3;τ1 ψ̄n,j2,j3(−k1b̄1, x; τ2, τ3),

7ψ̄∗
n,j2,j3(k̄, x; τ2, τ3) = ψ̄n,j2,j3(−k̄, x; τ2, τ3) leads to (7.35).
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cn,±k1,j2,j3;τ1 are dependent on τ1, κ1 = j1π/N1, and j1 = 1, 2, ..., N1 − 1,
as in (7.12). These stationary Bloch state solutions ψn,j1,j2,j3(x; τ1, τ2, τ3)
satisfying (7.1) and (7.2) have energies Λ given by

Λn,j1,j2,j3 = Λ̄n,j2,j3(κ1b̄1). (7.37)

Each energy Λn,j1,j2,j3 in (7.37) for this case is dependent on N1, N2, and
N3 but not on τ1, τ2, and τ3. The energies Λn,j1,j2,j3 map the bulk en-
ergy band εn(k) exactly: From (7.37), (6.22), and (5.32), one obtains that
Λn,j1,j2,j3 = Λ̄n,j2,j3(κ1b̄1) = Λ̂n,j3(κ1b̄1 + κ2b̂2) = εn(κ1b̄1 + κ2b̂2 + κ3b3).
These stationary states can be considered as bulk-like states in the finite crys-
tal or quantum dot. For each band index n, there are (N1−1)(N2−1)(N3−1)
such bulk-like states in the finite crystal or quantum dot.

Because of (7.31), (7.34), and (7.37), for the further quantum confinement
of one-dimensional Bloch waves ψ̄n,j2,j3(k̄, x; τ2, τ3) in general the energy of a
surface-like state is always above the energy of every relevant bulk-like state:

Λn,j2,j3(τ1) > Λn,j1,j2,j3 . (7.38)

We have seen that the effects of the further quantum confinement of one-
dimensional Bloch waves ψ̄n(k̄, x; τ2, τ3), ψ̄n,j3(k̄, x; τ2, τ3), ψ̄n,j2(k̄, x; τ2, τ3),
and ψ̄n,j2,j3(k̄, x; τ2, τ3) are similar to what we have seen in Chapters 5 and
6: Each set will produce two different types of electronic states in an ideal
finite crystal or quantum dot. They can be grouped into eight sets and have
different behaviors. For each bulk energy band n, there are the following:
(N1 − 1)(N2 − 1)(N3 − 1) bulk-like states ψn,j1,j2,j3(x; τ1, τ2, τ3) in (7.36);

the energy Λn,j1,j2,j3 in (7.37) of each state depends on N1, N2, and N3 but
not on τ1, τ2, and τ3;
(N1 −1)(N2 −1) surface-like states ψn,j1,j2(x; τ1, τ2, τ3) in (7.28); the energy
Λn,j1,j2(τ3) in (7.29) of each state depends on N1, N2, and τ3 but not on
τ1, τ2, and N3;
(N2 − 1)(N3 − 1) surface-like states ψn,j2,j3(x; τ1, τ2, τ3) in (7.33); the energy
Λn,j2,j3(τ1) in (7.34) of each state depends on N2, N3, and τ1 but not on
τ2, τ3, and N1;
(N1 − 1)(N3 − 1) surface-like states ψn,j1,j3(x; τ1, τ2, τ3) in (7.20); the energy
Λn,j1,j3(τ2) in (7.21) of each state depends on N1, N3, and τ2 but not on
τ1, τ3, and N2;
(N1 − 1) side-like states ψn,j1(x; τ1, τ2, τ3) in (7.11); the energy Λn,j1(τ2, τ3)
in (7.13) of each state depends on N1, τ2, and τ3 but not on τ1, N2, and N3;
(N2 − 1) side-like states ψn,j2(x; τ1, τ2, τ3) in (7.25); the energy Λn,j2(τ1, τ3)
in (7.26) of each state depends on N2, τ1, and τ3 but not on τ2, N1, and N3;
(N3 − 1) side-like states ψn,j3(x; τ1, τ2, τ3) in (7.17); the energy Λn,j3(τ1, τ2)
in (7.18) of each state depends on N3, τ1, and τ2 but not on τ3, N1, and N2;
one corner-like state ψn(x; τ1, τ2, τ3) in (7.8); the energy Λn(τ1, τ2, τ3) in (7.9)
depends on τ1, τ2, and τ3 but not on N1, N2, and N3.
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We have seen again that the effect of the quantum confinement in one more
direction actually is to always have one and only one boundary-dependent
state for each subband of the electronic states in the quantum wire inves-
tigated in Chapter 6. The other states are size-dependent states and their
energies can be directly obtained from either the side-like subband struc-
ture Λ̄n(k̄; τ2, τ3) by (7.13), the surface-like subband structure Λ̄n,j3(k̄; τ2)
by (7.21), the surface-like subband structure Λ̄n,j2(k̄; τ3) by (7.29), or the
bulk-like subband structure Λ̄n,j2,j3(k̄) by (7.37) in the quantum wire. In
general, the energy of the boundary-dependent state is always above the en-
ergy of every size-dependent state if they are obtained from the quantum
confinement of the same subband of one-dimensional Bloch waves.

The electronic states in a finite crystal or quantum dot can be considered
as the electronic states in a film defined by a1 and a2, then further confined
in the a2 direction, and, finally, confined in the a1 direction, as we did in
Sections 5.3–5.5, 6.1–6.3, and 7.1–7.5. This is a specific quantum confinement
order. Equivalently, they can also be considered as the three-dimensional
Bloch waves are confined in three directions in other different confinement
orders. By considering the results obtained from all six different quantum
confinement orders, we could obtain a more comprehensive understanding
on the electronic states in an ideal finite crystal or quantum dot and a more
specific expression for each set of electronic states and energies, such as (6.24)
and (6.25) are more specific than (6.18) and (6.19).

7.6 Finite Crystals or Quantum Dots with a sc, tetr, or
ortho Bravais Lattice

We expect that the simplest cases where the theory in this chapter can be
applied are the orthorhombic finite crystals or quantum dots of crystals with
a sc, tetr, or ortho Bravais lattice in which (5.14), (6.10), and (6.20) are
true. In such a crystal, the three primitive lattice vectors a1, a2, and a3 are
perpendicular to each other and equivalent; consequently, the three primitive
lattice vectors in k space, b1, b2, and b3, are also perpendicular to each
other and equivalent. By considering the quantum confinement in six different
orders, similarly to what we did in Section 6.4, we can obtain that for such a
finite crystal or quantum dot with a size N1a1 in the a1 direction, a size N2a2
in the a2 direction, and a size N3a3 in the a3 direction; for each bulk energy
band, there are (N1 −1)(N2 −1)(N3 −1) bulk-like states, (N1 −1)(N2 −1)+
(N2 − 1)(N3 − 1)+ (N3 − 1)(N1 − 1) surface-like states, (N1 − 1)+ (N2 − 1)+
(N3 − 1) side-like states, and one corner-like state. They are as follows:
(N001 − 1)(N11̄0 − 1)(N110 − 1) bulk-like states with energies

Λn,j1,j2,j3 = εn

[
j1π

N1
b1 +

j2π

N2
b2 +

j3π

N3
b3

]
(7.39)
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from (7.37), (6.22), and (5.32);
(N1 − 1)(N2 − 1) surface-like states with energies

Λn,j1,j2(τ3) = Λ̂n

[
j1π

N1
b1 +

j2π

N2
b2; τ3

]
(7.40)

from (7.29) and (6.14);
(N2 − 1)(N3 − 1) surface-like states with energies

Λn,j2,j3(τ1) = Λ̂n

[
j2π

N2
b2 +

j3π

N3
b3; τ1

]
(7.41)

from equations similar to (7.29) or (6.14) obtained by considering different
confinement orders;
(N3 − 1)(N1 − 1) surface-like states with energies

Λn,j3,j1(τ2) = Λ̂n

[
j3π

N3
b3 +

j1π

N1
b1; τ2

]
(7.42)

from (7.21) and (6.25);
(N1 − 1) side-like states with energies

Λn,j1(τ2, τ3) = Λ̄n

[
j1π

N1
b1; τ2, τ3

]
(7.43)

from (7.13);
(N2 − 1) side-like states with energies

Λn,j2(τ3, τ1) = Λ̄n

[
j2π

N2
b2; τ3, τ1

]
(7.44)

(N3 − 1) side-states with energies

Λn,j3(τ1, τ2) = Λ̄n

[
j3π

N3
b3; τ1, τ2

]
(7.45)

from equations similar to (7.13) obtained by considering different confinement
orders;
one corner state with energy

Λn(τ1, τ2, τ3) = λn(τ1, τ2, τ3) (7.46)

from (7.9).
Here, j1 = 1, 2, ..., N1 − 1, j2 = 1, 2, ..., N2 − 1, and j3 = 1, 2, ..., N3 − 1.
τ1, τ2, and τ3 define the boundary surface locations of the finite crystal or
quantum dot in the a1, a2, and a3 directions. Λ̂n[k̂; τl] is the surface-like
band structure of a quantum film with film plane oriented in the al direction
with a wave vector k̂ in the film plane. Λ̄n[k̄; τl, τm] is the side-like band
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structure of a rectangular quantum wire with the wire faces oriented in the
al or the am direction with a wave vector k̄ in the wire direction.

Furthermore, from (7.14), (7.22), (7.30), (7.38), and similar equations
obtained from other confinement orders, we can obtain that in general

Λn(τ1, τ2, τ3) > Λn,jl
(τm, τn) > Λn,jl,jm(τn) > Λn,jl,jm,jn ; (7.47)

here, each one of l, m, and n can be any one of 1, 2, and 3, but no two of l, m,
and n are equal (l, m, and n are combinations of 1, 2, and 3). Relation (7.47)
indicates that in such an ideal finite crystal or quantum dot for the electronic
states with the same bulk energy band index n, the corner-like state has the
highest energy, above the energy of every side-like state. A side-like state has
an energy above the energy of every relevant surface-like state. A surface-like
state has an energy above the energy of every relevant bulk-like state.

Probably the practically more interesting cases are finite crystals or quan-
tum dots of crystals with a fcc or bcc Bravais lattice in which (5.21), (6.10),
and (6.20) are true. The choosing of the primitive lattice vectors in those
crystals depends on the film direction. Based on the results obtained in Sec-
tions 5.1–5.5, 6.1–6.3, and 7.1–7.5, we can understand the consequences of
the three-dimensional Bloch waves of such crystals being confined in such a
finite crystal or quantum dot in a specific order. Similar to what was done
in Chapter 6, by combining the results obtained from different confinement
orders, a more comprehensive understanding on the electronic states in some
finite crystals and quantum dots can be obtained.

7.7 fcc Finite Crystals with (001), (110), and (11̄0)
Surfaces

For a fcc finite crystal with (001), (110), and (11̄0) surfaces and having an
orthorhombic size N001a×N110a/

√
2×N11̄0a/

√
2, for each bulk energy band

n, there are 2N001N110N11̄0 electronic states. They can be obtained by com-
bining the results of the further quantum confinement in the [11̄0] direction
of the one-dimensional Bloch waves obtained in Section 6.5, the results of the
further quantum confinement in the [001] direction of the one-dimensional
Bloch waves obtained in Section 6.6, and the similar results of the further
quantum confinement of the one-dimensional Bloch waves in a quantum wire
in the [110] direction with faces oriented in the (11̄0) plane or in the (001)
plane. Note the results obtained in either Section 6.5 or 6.6 are actually
the results of two different confinement orders. Similar to the way that we
obtained results in Section 6.5, we can obtain that the properties of the elec-
tronic states in such a finite crystal or quantum dot are as follows.

For each bulk energy band n, there are 2(N001 − 1)(N11̄0 − 1)(N110 − 1)+
(N001 − 1)(N11̄0 − 1)+ (N110 − 1)(N001 − 1)+ (N11̄0 − 1)(N110 − 1)+ (N11̄0 −
1)+(N110−1)+(N001−1)+1 bulk-like states in the finite crystal or quantum
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dot. They are as follows:
(N001 − 1)(N11̄0 − 1)(N110 − 1) states with energies

Λbk,a
n,j001,j11̄0,j110

= εn

[
j001π

N001a
(0, 0, 1) +

j11̄0π

N11̄0a
(1,−1, 0) +

j110π

N110a
(1, 1, 0)

]
;

(7.48)

(N001 − 1)(N11̄0 − 1)(N110 − 1) states with energies

Λbk,c
n,j001,j11̄0,j110

= εn

[
j001π

N001a
(0, 0, 1) +

j11̄0π

N11̄0a
(1,−1, 0)

+
j110π

N110a
(1, 1, 0) +

2π

a
(1, 1, 0)

]
; (7.49)

(N001 − 1)(N11̄0 − 1) states with energies

Λbk,b1
n,j001,j11̄0

= εn

[
j001π

N001a
(0, 0, 1) +

j11̄0π

N11̄0a
(1,−1, 0) +

π

a
(1, 1, 0)

]
; (7.50)

(N110 − 1)(N001 − 1) states with energies

Λbk,b2
n,j110,j001

= εn

[
j110π

N110a
(1, 1, 0) +

j001π

N001a
(0, 0, 1) +

π

a
(1,−1, 0)

]
; (7.51)

(N11̄0 − 1)(N110 − 1) states with energies

Λbk,b3
n,j11̄0,j110

= εn

[
j11̄0π

N11̄0a
(1,−1, 0) +

j110π

N110a
(1, 1, 0) +

π

a
(0, 0, 1)

]
; (7.52)

(N001 − 1) states with energies

Λbk,d1
n,j001

= εn

[
j001π

N001a
(0, 0, 1) +

π

a
(1,−1, 0) +

π

a
(1, 1, 0)

]
; (7.53)

(N110 − 1) states with energies

Λbk,d2
n,j110

= εn

[
j110π

N110a
(1, 1, 0) +

π

a
(0, 0, 1) +

π

a
(1,−1, 0)

]
; (7.54)

(N11̄0 − 1) states with energies

Λbk,d3
n,j11̄0

= εn

[
j11̄0π

N11̄0a
(1,−1, 0) +

π

a
(1, 1, 0) +

π

a
(0, 0, 1)

]
; (7.55)

one state with energy

Λbk,d4
n = εn

[π

a
(1,−1, 0) +

π

a
(1, 1, 0) +

π

a
(0, 0, 1)

]
. (7.56)
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Here, j001 = 1, 2, ..., N001 −1, j11̄0 = 1, 2, ..., N11̄0 −1, j110 = 1, 2, ..., N110 −1,
and ε(kx, ky, kz) is the bulk energy band structure in the Cartesian system.
Equation (7.48) comes from the size-dependent states of the further quantum
confinement of the bulk-like subbands (6.46), (6.56), or a similar equation
for a quantum wire in the [110] direction. Equation (7.49) comes from the
size-dependent states of the further quantum confinement of the bulk-like
subbands (6.47), (6.57), or a similar equation for a quantum wire in the [110]
direction. Equations (7.50)–(7.52) come from the size-dependent states of fur-
ther quantum confinement of the bulk-like subbands (6.48) and (6.49), and/or
(6.58) and (6.59) or two similar equations for a quantum wire in the [110]
direction. Equations (7.53)–(7.55) come from the size-dependent states of the
further quantum confinement of the bulk-like subbands (6.50) and (6.60), and
a similar equation for a quantum wire in the [110] direction. Equation (7.56)
comes from the boundary-dependent state of the further quantum confine-
ment of the bulk-like subbands (6.50), (6.60), and/or a similar equation for a
quantum wire in the [110] direction. Similarly, as it was found that Λ̄bk,d

n (k̄)
in (6.50) (and in (6.60) and in a similar equation for a quantum wire in the
[110] direction) actually is a bulk-like subband in a quantum wire, such a
state is in fact a bulk-like state in the finite crystal or quantum dot.

The energies of all these bulk-like states can be directly obtained from
the energy band structure εn(k) of the corresponding bulk crystal.

For each bulk energy band n, there are (N001 − 1)(N11̄0 − 1) + (N110 −
1)(N001 − 1) + (N11̄0 − 1)(N110 − 1) surface-like states in the crystal. They
are as follows:
(N001 − 1)(N11̄0 − 1) states with energies

Λsf,a1
n,j001,j11̄0

(τ110) = Λ̂n

[
j001π

N001a
(0, 0, 1) +

j11̄0π

N11̄0a
(1,−1, 0); τ110

]
; (7.57)

(N110 − 1)(N001 − 1) states with energies

Λsf,a2
n,j110,j001

(τ11̄0) = Λ̂n

[
j110π

N110a
(1, 1, 0) +

j001π

N001a
(0, 0, 1); τ11̄0

]
; (7.58)

(N11̄0 − 1)(N110 − 1) states with energies

Λsf,a3
n,j11̄0,j110

(τ001) = Λ̂n

[
j11̄0π

N11̄0a
(1,−1, 0) +

j110π

N110a
(1, 1, 0); τ001

]
. (7.59)

Here, τ110, τ11̄0, or τ001 define the boundary surface locations of the finite
crystal or quantum dot in the [110], [11̄0], or [001] direction, Λ̂n[k̂; τl] is the
surface-like band structure of a quantum film with the film plane oriented in
the [l] direction with a wave vector k̂ in the film plane. l can be either one of
001, 110, or 11̄0. Equations (7.57)–(7.59) come from the size-dependent states
of the further quantum confinement of the surface-like subbands (6.51) and
(6.52), or (6.61) and (6.62), and/or two similar equations for a quantum wire
in the [110] direction.
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For each bulk energy band n, there are (N001−1)+(N110−1)+(N11̄0−1)
side-like states in the crystal. They are as follows:
(N001 − 1) states with energies

Λsd,a1
n,j001

(τ11̄0, τ110) = Λ̄n

[
j001π

N001a
(0, 0, 1); τ11̄0, τ110

]
; (7.60)

(N110 − 1) states with energies

Λsd,a2
n,j110

(τ11̄0, τ001) = Λ̄n

[
j110π

N110a
(1, 1, 0); τ11̄0, τ001

]
; (7.61)

(N11̄0 − 1) states with energies

Λsd,a3
n,j11̄0

(τ001, τ110) = Λ̄n

[
j11̄0π

N11̄0a
(1,−1, 0); τ001, τ110

]
. (7.62)

Here, Λ̄n[k̄; τl, τm] is the side-like band structure of a rectangular quantum
wire with the wire faces oriented in the [l] or the [m] direction with a wave
vector k̄ in the wire direction. l and m can be two of 001, 110, and 11̄0.

For each bulk energy band n, there is one corner state in the finite crystal
with energy

Λcr
n (τ001, τ11̄0, τ110) = λn(τ001, τ11̄0, τ110). (7.63)

Equations (7.60)–(7.62) come from the size-dependent states of the further
quantum confinement of the side-like subband (6.38) or (6.45), (6.63), and a
similar equation for a quantum wire in the [110] direction. Equation (7.63)
comes from the boundary-dependent state of the further quantum confine-
ment of the side-like subband (6.38) or (6.45), or (6.63), or a similar equation
for a quantum wire in the [110] direction.

Since one VBM state in a cubic semiconductor can never have three
nodal surfaces in the three planes, (001), (110), and (11̄0), simultaneously,
consequently, there is not an electronic state in such a quantum dot whose
energy is the energy of the VBM and does not change as the dot size changes.
This is a fact observed in the numerical calculations of Franceschetti and
Zunger [1] on free-standing GaAs quantum dots, as shown in Fig. 5.4(c).

7.8 bcc Finite Crystals with (100), (010), and (001)
Surfaces

For a bcc finite crystal or quantum dot with (100), (010), and (001) surfaces
and having an orthorhombic size N100a×N010a×N001a, for each bulk energy
band n, there are 2N100N010N001 electronic states. They can be obtained
by combining the results of the further quantum confinement in the [100]
direction of the one-dimensional Bloch waves in the quantum wire with the
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(001) and (010) surfaces discussed in Section 6.7, the results of the further
quantum confinement of the electronic states in a quantum wire with the
(100) and (010) surfaces, and the results of the further quantum confinement
of the electronic states in a quantum wire with the (100) and (001) surfaces.

For each bulk energy band n, there are 2(N100 − 1)(N010 − 1)(N001 − 1)+
(N001 − 1)(N010 − 1)+ (N100 − 1)(N001 − 1)+ (N010 − 1)(N100 − 1)+ (N100 −
1)+(N010−1)+(N001−1)+1 bulk-like states in the finite crystal or quantum
dot. They are as follows:
(N100 − 1)(N010 − 1)(N001 − 1) states with energies

Λbk,a
n,j100,j010,j001

= εn

[
j100π

N100a
(1, 0, 0) +

j010π

N010a
(0, 1, 0) +

j001π

N001a
(0, 0, 1)

]
; (7.64)

(N100 − 1)(N010 − 1)(N001 − 1) states with energies

Λbk,c
n,j100,j010,j001

= εn [
j100π

N100a
(1, 0, 0) +

j010π

N010a
(0, 1, 0)

+
j001π

N001a
(0, 0, 1) +

2π

a
(1, 0, 0) ] ; (7.65)

(N010 − 1)(N001 − 1) states with energies

Λbk,b1
n,j010,j001

= εn

[
j010π

N010a
(0, 1, 0) +

j001π

N001a
(0, 0, 1) +

π

a
(1, 0, 0)

]
; (7.66)

(N001 − 1)(N100 − 1) states with energies

Λbk,b2
n,j001,j100

= εn

[
j001π

N001a
(0, 0, 1) +

j100π

N100a
(1, 0, 0) +

π

a
(0, 1, 0)

]
; (7.67)

(N100 − 1)(N010 − 1) states with energies

Λbk,b3
n,j100,j010

= εn

[
j100π

N100a
(1, 0, 0) +

j010π

N010a
(0, 1, 0) +

π

a
(0, 0, 1)

]
; (7.68)

(N100 − 1) states with energies

Λbk,d1
n,j100

= εn

[
j100π

N100a
(1, 0, 0) +

π

a
(0, 1, 0) +

π

a
(0, 0, 1)

]
; (7.69)

(N010 − 1) states with energies

Λbk,d2
n,j010

= εn

[
j010π

N010a
(0, 1, 0) +

π

a
(0, 0, 1) +

π

a
(1, 0, 0)

]
; (7.70)

(N001 − 1) states with energies

Λbk,d3
n,j001

= εn

[
j001π

N001a
(0, 0, 1) +

π

a
(1, 0, 0) +

π

a
(0, 1, 0)

]
; (7.71)
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one state with energy

Λbk,d4
n = εn

[π

a
(1, 0, 0) +

π

a
(0, 1, 0) +

π

a
(0, 0, 1)

]
. (7.72)

Here, j100 = 1, 2, ..., N100 −1, j010 = 1, 2, ..., N010 −1, j001 = 1, 2, ..., N001 −1,
and ε(kx, ky, kz) is the bulk energy band structure in the Cartesian system.
Equation (7.64) comes from the size-dependent states of the further quantum
confinement of the bulk-like subbands (6.64) or two similar equations for
quantum wires in the [010] or [001] directions. Equation (7.65) comes from
the size-dependent states of the further quantum confinement of the bulk-
like subbands (6.65) or two similar equations for quantum wires in the [010]
or [001] directions. Equations (7.66)–(7.68) come from the size-dependent
states of the further quantum confinement of the bulk-like subbands (6.66),
(6.67), and/or four similar equations for quantum wires in the [010] or [001]
directions. Equations (7.69)–(7.71) come from the size-dependent states of the
further quantum confinement of the bulk-like subband (6.68) and two similar
equations for quantum wires in the [010] or [001] directions. Equation (7.72)
come from the boundary-dependent state of the further quantum confinement
of the bulk-like subband (6.68) and two similar equations for quantum wires
in the [010] or the [001] directions. Similar to the bulk-like state Λbk,d4

n in
(7.56), Λbk,d4

n in (7.72) is also a bulk-like state. The energies of all these bulk-
like states can be directly obtained from the energy band structure εn(k) of
the corresponding bulk crystal.

For each bulk energy band n, there are (N010 − 1)(N001 − 1) + (N001 −
1)(N100 − 1) + (N100 − 1)(N010 − 1) surface-like states in the finite crystal or
quantum dot. They are as follows:
(N010 − 1)(N001 − 1) states with energies

Λsf,a1
n,j010,j001

(τ100) = Λ̂n

[
j010π

N010a
(0, 1, 0) +

j001π

N001a
(0, 0, 1); τ100

]
; (7.73)

(N001 − 1)(N100 − 1) states with energies

Λsf,a2
n,j001,j100

(τ010) = Λ̂n

[
j001π

N001a
(0, 0, 1) +

j100π

N100a
(1, 0, 0); τ010

]
; (7.74)

(N100 − 1)(N010 − 1) states with energies

Λsf,a3
n,j100,j010

(τ001) = Λ̂n

[
j100π

N100a
(1, 0, 0) +

j010π

N010a
(0, 1, 0); τ001

]
. (7.75)

Here, τ100, τ010, or τ001 defines the boundary surface locations of the finite
crystal or quantum dot in the [100], [010], or [001] direction, respectively;
Λ̂n[k̂; τl] is the surface-like band structure of a quantum film with the film
plane oriented in the [l] direction with a wave vector k̂ in the film plane. l
can be either one of 100, 010, or 001. Equations (7.73)–(7.75) come from the
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size-dependent states of the further quantum confinement of the surface-like
subbands (6.69), (6.70), and/or four similar equations for the quantum wires
in the [010] or the [001] direction.

For each bulk energy band n, there are (N100−1)+(N010−1)+(N001−1)
side-like states in the finite crystal or quantum dot. They are as follows:
(N100 − 1) side-like states with energies

Λsd,a1
n,j100

(τ010, τ001) = Λ̄n

[
j100π

N100a
(1, 0, 0); τ010, τ001

]
; (7.76)

(N010 − 1) side-like states with energies

Λsd,a2
n,j010

(τ001, τ100) = Λ̄n

[
j010π

N010a
(0, 1, 0); τ001, τ100

]
; (7.77)

(N001 − 1) side-like states with energies

Λsd,a3
n,j001

(τ100, τ010) = Λ̄n

[
j001π

N001a
(0, 0, 1); τ100, τ010

]
. (7.78)

Here, Λ̄n[k̄; τl, τm] is the side-like band structure of a rectangular quantum
wire with the wire faces oriented in the [l] or the [m] direction with a wave
vector k̄ in the wire direction. l and m can be two of 100, 010, and 001.

For each bulk energy band n, there is one corner state in the finite crystal
or quantum dot with energy

Λcr
n (τ100, τ010, τ001) = λn(τ100, τ010, τ001). (7.79)

Equations (7.76)–(7.78) come from the size-dependent states of the further
quantum confinement of the side-like subband (6.71) and two similar equa-
tions for the quantum wires in the [001] or the [010] direction. Equation (7.79)
comes from the boundary-dependent state of the further quantum confine-
ment of the side-like subband (6.71) or two similar equations for the quantum
wires in the [010] or the [001] direction.

7.9 Summary and Discussions

We have seen that in an ideal rectangular finite crystal or quantum dot dis-
cussed in Sections 7.6–7.8, there are four different types of electronic states:
bulk-like states, surface-like states, side-like states, and corner-like states. The
crystal structure has an effect on how the numbers of each type of electronic
states in a finite crystal or quantum dot depend on the sizes in the three
dimensions: The simplest cases discussed in Section 7.6 are somewhat differ-
ent from the cases of crystals with a fcc or a bcc Bravais lattice discussed in
Sections 7.7 and 7.8.
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However, since the results in Sections 7.7 and 7.8 were also essentially
obtained from an understanding of the further quantum confinement of one-
dimensional Bloch waves discussed in Sections 7.1 to 7.5, there are similar
relationships among the four different types of electronic states. For example,
for an ideal fcc finite crystal or quantum dot with (11̄0), (110), and (001)
surfaces, we should have

Λcr
n (τ11̄0, τ110, τ001) > Λsd,a1

n,j001
(τ11̄0, τ110), (7.80)

Λcr
n (τ11̄0, τ110, τ001) > Λsd,a2

n,j110
(τ11̄0, τ001), (7.81)

and
Λcr

n (τ11̄0, τ110, τ001) > Λsd,a3
n,j11̄0

(τ110, τ001) (7.82)

between the energy of a corner-like state in (7.63) and the energies of side-like
states in (7.60), (7.61), and (7.62), and

Λcr
n (τ11̄0, τ110, τ001) > Λbk,d4

n (7.83)

between the energy of a corner-like state in (7.63) and the energies of a bulk-
like state in (7.56).

We have
Λsd,a1

n,j001
(τ11̄0, τ110) > Λsf,a1

n,j001,j11̄0
(τ110) (7.84)

and
Λsd,a1

n,j001
(τ11̄0, τ110) > Λsf,a2

n,j110,j001
(τ11̄0) (7.85)

between the energy of a side-like state in (7.60) and the energies of relevant
surface-like states in (7.57) and (7.58), and

Λsd,a1
n,j001

(τ11̄0, τ110) > Λbk,d1
n,j001

(7.86)

between the energy of a side-like state in (7.60) and the energy of a relevant
bulk-like state in (7.53).

We have
Λsd,a2

n,j110
(τ11̄0, τ001) > Λsf,a2

n,j110,j001
(τ11̄0) (7.87)

and
Λsd,a2

n,j110
(τ11̄0, τ001) > Λsf,a3

n,j11̄0,j110
(τ001) (7.88)

between the energy of a side-like state in (7.61) and the energies of relevant
surface-like states in (7.58) and (7.59), and

Λsd,a2
n,j110

(τ11̄0, τ001) > Λbk,d2
n,j110

(7.89)

between the energy of a side-like state in (7.61) and the energy of relevant
bulk-like state in (7.54).

We have
Λsd,a3

n,j11̄0
(τ001, τ110) > Λsf,a1

n,j001,j11̄0
(τ110) (7.90)
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and
Λsd,a3

n,j11̄0
(τ001, τ110) > Λsf,a3

n,j11̄0,j110
(τ001) (7.91)

between the energy of a side-like state in (7.62) and the energies of relevant
surface-like states in (7.57) and (7.59), and

Λsd,a3
n,j11̄0

(τ001, τ110) > Λbk,d3
n,j11̄0

(7.92)

between the energy of a side-like state in (7.62) and the energy of a relevant
bulk-like state in (7.55).

We have
Λsf,a1

n,j001,j11̄0
(τ110) > Λbk,a

n,j001,j11̄0,j110
(7.93)

and
Λsf,a1

n,j001,j11̄0
(τ110) > Λbk,c

n,j001,j11̄0,j110
(7.94)

between the energy of a surface-like state in (7.57) and the energies of relevant
bulk-like states in (7.48) and in (7.49), and

Λsf,a1
n,j001,j11̄0

(τ110) > Λbk,b1
n,j001,j11̄0

(7.95)

between the energy of a surface-like state in (7.57) and the energy of a relevant
bulk-like state in (7.50).

We have
Λsf,a2

n,j110,j001
(τ11̄0) > Λbk,a

n,j001,j11̄0,j110
(7.96)

and
Λsf,a2

n,j110,j001
(τ11̄0) > Λbk,c

n,j001,j11̄0,j110
(7.97)

between the energy of a surface-like state in (7.58) and the energies of relevant
bulk-like states in (7.48) and in (7.49), and

Λsf,a2
n,j110,j001

(τ11̄0) > Λbk,b2
n,j110,j001

(7.98)

between the energy of a surface-like state in (7.58) and the energy of a relevant
bulk-like state in (7.51).

We have
Λsf,a3

n,j11̄0,j110
(τ001) > Λbk,a

n,j001,j11̄0,j110
(7.99)

and
Λsf,a3

n,j11̄0,j110
(τ001) > Λbk,c

n,j001,j11̄0,j110
(7.100)

between the energy of a surface-like state in (7.59) and the energies of relevant
bulk-like states in (7.48) and in (7.49), and

Λsf,a3
n,j11̄0,j110

(τ001) > Λbk,b3
n,j11̄0,j110

(7.101)

between the energy of a surface-like state in (7.59) and the energy of a rel-
evant bulk-like state in (7.52). These relationships can be obtained just as
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the relationships in Section 6.8 were obtained, using reasoning based on the
relationships (7.14), (7.22), (7.30), or (7.38) obtained in Sections 7.2 to 7.5.

Corresponding relationships for the four different types of electronic states
in an ideal bcc finite crystal or quantum dot with (100), (010), and (001)
surfaces can be similarly obtained.

As a surface-like electronic state is better understood as an electronic
state whose properties and energy are determined by the surface location
and a side-like electronic state is better understood as an electronic state
whose properties and energy are determined by the side location, a corner-like
electronic state is better understood as an electronic state whose properties
and energy are determined by the corner location, rather than a state located
near a specific corner. To better understand the properties of corner states, it
is necessary to have a better understanding of the properties of the solutions
of (5.1), including the solutions in the band gap(s) and the non-Bloch state
solutions in the permitted energy ranges.

Similar to surface-like states and side-like states, the physics origin of a
corner state is also related to a bulk energy band. The energy of a corner state
is above the energies of relevant side-like states and surface-like states; thus,
the corners of an ideal orthorhombic alkali metal finite crystal or quantum
dot could be even more positively charged than the sides and the surfaces.

Only when a Bloch function has three different nodal surfaces that are the
surfaces of the quantum dot might the corner state be a Bloch state. It seems
that this kind of cases rarely happens in most finite crystals or quantum dots
of general interest.

For the electronic states in an ideal orthorhombic finite crystal or quantum
dot with the same bulk energy band index n, summarizing (7.47), (7.80)–
(7.101), and similar equations for a bcc finite crystal or quantum dot discussed
in Section 7.8, the following general relations exist:

The energy of the corner-like state
> The energy of every side-like state

> The energy of every relevant surface-like state
> The energy of every relevant bulk-like state.

Therefore, we have seen that in many simple and interesting cases, the
properties of electronic states in an ideal orthorhombic finite crystal or quan-
tum dot such as shown in Fig. 1.3 can be understood, how the energies of
those electronic states depend on the size and/or shape can be analytically
predicted, and the energies of many electronic states can be obtained from
the energy band structures of the bulk crystal. Again, the major obstacle due
to the lack of translational invariance actually can be circumvented.

The results obtained here provided a more concrete and comprehensive
understanding of the boundary effects than the discussions in [2].
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8 Concluding Remarks

We have presented a single-electron nonspin analytical theory on the elec-
tronic states in some simple ideal low-dimensional systems and finite crys-
tals, based on a theory of differential equations approach. By ideal, it is
assumed that (i) the potential v(x) inside the low-dimensional system or the
finite crystal is the same as in a crystal with translational invariance and
(ii) the electronic states are completely confined in the limited size of the
low-dimensional system or the finite crystal.

8.1 Summary and Brief Discussions

The most essential results obtained in this book can be summarized as follows:

1. In a unified theoretical frame, we have understood that in some simple low-
dimensional systems and finite crystals, due to the existence of boundaries
and a finite size in one, two, or three directions, the electronic states
in low-dimensional systems or finite crystals are not progressive Bloch
waves as required by the Bloch theorem in traditional solid state physics.
Instead, they are either (i) stationary Bloch states in the one, two, or
three directions due to the finite size or (ii) other type(s) of electronic
states closely related to the very existence of the boundary. Therefore,
the two fundamental difficulties mentioned in Section 1.3 are overcome in
a unified theoretical frame for those simple ideal low-dimensional systems
and finite crystals.

2. It is found that due to the very existence of the boundary-dependent elec-
tronic states, the properties of electronic states in simple low-dimensional
systems and finite crystals may be substantially different from the prop-
erties of electronic states in crystals with translational invariance as un-
derstood in traditional solid state physics; they may also be substan-
tially different from what is traditionally believed in the solid state
physics community regarding the properties of the electronic states in
low-dimensional systems and finite crystals.

These results were obtained by trying to understand the quantum confine-
ment effects of Bloch waves.
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We have seen that there are similarities and differences between the quan-
tum confinement of Bloch waves and the well-known quantum confinement
of plane waves: The most significant feature in the quantum confinement of
Bloch waves is the existence of boundary(τ in this book)-dependent states.
We have also seen that there are similarities and differences between the
quantum confinement effects of Bloch waves in one-dimensional space and
the quantum confinement effects of Bloch waves in three-dimensional space:
The most distinct feature in the quantum confinement of Bloch waves in one-
dimensional space is that each of the boundary-dependent states is always in
a band gap or at a band edge.

In the well-known quantum confinement of plane waves, all permitted
states are stationary waves. This is closely related to the fact that in the
cases of the quantum confinement of plane waves, the unconfined potential is
everywhere equal – the potential has a continuous translational invariance;
there is not a minimum translation unit of the potential. On the other hand,
in the cases of the quantum confinement of Bloch waves, the unconfined po-
tential is not everywhere equal – the potential has a discrete translational
invariance; there is a nonzero minimum translation unit of the potential.
Consequently, the confinement effects of the plane waves and the confine-
ment effects of Bloch waves will have some differences: The former will not
depend on the boundary locations since everywhere the potential is equal
and the latter will depend on the boundary locations since the potential is
not everywhere equal.

Therefore, naturally, in general the quantum confinement effects of the
Bloch waves should depend on the boundary locations. Suppose that a specific
branch of Bloch waves is completely confined in a specific direction and in
a specific length Na – where a is the minimum translational unit in that
direction and N is a positive integer, then if for this branch of Bloch waves a
specific condition such as (5.21), (6.10), or (6.20) is satisfied, N −1 stationary
Bloch states could be formed.1 Each stationary Bloch state consists of two
Bloch waves from this branch with wave vector components k and −k in the
specific direction, as a result of the multiple reflections of the Bloch waves
at the two boundary locations. Independent of the boundary location, each
stationary Bloch state can only have an integer number of half-wave lengths
of the Bloch wave in the confined region. Under such a requirement, the
wave vectors and the energies of these N − 1 stationary Bloch states will be
determined by the confinement length, but will not depend on the boundary
locations. We can expect that there are a total of N confined electronic states
from the quantum confinement of this specific branch of Bloch waves. Hence,

1This is closely related to the fact that for such a specific branch of Bloch waves,
the Bloch wave with a wave vector at the Brillouin zone boundary is different from
most other Bloch waves with a wave vector inside the Brillouin zone: Only one
Bloch wave with a wave vector at the Brillouin zone boundary exists for this specific
branch; thus, it cannot form a stationary Bloch state.
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the energy of the one remaining [N − (N − 1)] confined state should be
dependent on the confinement boundary locations.

We have also seen that the surface states originating from the termination
of the periodic potential are merely special cases of the boundary-dependent
confined electronic states in low-dimensional systems or finite crystals.

Theoretically, the results obtained can be an interesting and substantial
supplement to the well-known quantum confinement of plane waves and thus
could improve our understanding on the fundamental quantum confinement
effects. Practically, the results may also find valuable applications in relevant
problems in modern solid state physics and related fields. If the well-known
quantum confinement of plane waves has provided many interesting and valu-
able insights on the physics in low-dimensional systems and finite crystals, we
have reason to expect that a clearer understanding of the quantum confine-
ment of Bloch waves could be a substantial step toward a more comprehensive
and in-depth understanding of the physics in low-dimensional systems and
finite crystals.

The Schrödinger differential equation in a one-dimensional crystal is an
ordinary differential equation. The properties of solutions of the relevant or-
dinary differential equations – including the solutions of ordinary differential
equations with periodic coefficients – have been well understood mathemati-
cally. It is on the basis of those mathematical understandings – in particular
those obtained in Eastham’s book [1] – as summarized in Chapter 2 that the
results presented in Chapter 4 can be rigorously proven.

However, the properties of solutions of the Schrödinger differential equa-
tion in a three-dimensional crystal – the second-order elliptic partial differen-
tial equation, especially the elliptic partial differential equation with periodic
coefficients – are mathematically much less understood.2 Although the basis
of the treatment in Part III is rigorous according to the author’s understand-
ing – such as Theorem 5.1 and other relevant theorems are rigorous – much
of the reasoning used in obtaining results on the electronic states in ideal
quantum films, wires, dots, and finite crystals had to be based, to a large ex-
tent, on physical intuition rather than on rigorous mathematical arguments.
Consequently, many results for low-dimensional systems and finite crystals
presented in Part III were not as rigorously proven as in the one-dimensional
cases in Part II. A mathematically more rigorous treatment and comprehen-
sive understanding on the problems treated in Chapters 5–7 will probably
have to wait for further progress in the relevant mathematical fields.

We have seen that the analytical theory in Chapter 5 is consistent with
many previously published numerical results and, therefore, it might pro-
vide a more in-depth understanding of those numerical results. However, the

2It may be noticed that no general theory on the properties of the energy band
structure of three-dimensional crystals – a theory corresponding to the Kramers’s
theory on the energy band structure of one-dimensional crystals [2] – was published,
even for a simplest crystal structure.
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author has not found numerical results that can be directly compared with
the general predictions in Chapters. 6 and 7. We have also seen that there
are cases where there are differences between the general theory in Chapter 5
and published numerical results in [3,4]. The author hopes that the analytical
theory presented in this book will stimulate further numerical calculations to
check the general analytical predictions obtained here. Either those analytical
general predictions obtained by reasoning based on the relevant mathematical
theorems plus physical intuition will be confirmed or be negated somewhere,
it could significantly improve our current understandings on this very inter-
esting and fundamental problem on the electronic states in low-dimensional
systems and finite crystals and the quantum confinement of Bloch waves,
including the clarification of those previously mentioned differences. If the
general predictions presented are incorrect in places, the defects in the rea-
soning in this book should be relatively easily and straightforwardly traced
and hopefully a corrected theory can be established.

Our analytical and general predictions on the electronic states in low-
dimensional systems and finite crystals were obtained based on a very simple
model; real crystals are certainly more complicated. Nevertheless, by using
such a simple model, we have clearly understood some of the most fundamen-
tal differences between the electronic states in low-dimensional systems and
finite crystals and the electronic states in crystals with translational invari-
ance. The effects of those differences on the properties of a low-dimensional
system become more significant as the size of the system decreases. We have
also seen that the properties of electronic states in low-dimensional systems
and finite crystals may also be substantially different from what is tradition-
ally believed in the solid state physics community, such as the ideas derived
from the well-known effective mass approximation.

Probably some of the practically most interesting and straightforward
predications in this book are as follows:

1. Ideal low-dimensional systems of a cubic semiconductor actually may have
a band gap smaller than the band gap of the bulk semiconductor. This is a
consequence of relevant theorems such as Theorem 5.1 and the properties
of the valence band maximum (VBM) of cubic semiconductors.3 Because
in a semiconductor the most important physical processes always happen
near the band gap, an improved understanding of the band gap in low-
dimensional semiconductors may have some effect on the physics of low-
dimensional semiconductors and possible applications.

2. Ideal low-dimensional systems of a cubic semiconductor actually may even
have the electrical conductivity of a metal, since the boundary-dependent
states originating from the bulk valence bands may even become energet-

3Even in cases of one-dimensional crystals, (2.72) and the analysis in Section
4.3 actually indicate the same consequence: A finite crystal of a one-dimensional
semiconductor has a band gap smaller than the band gap of the corresponding
infinite crystal, if the boundary τ is not a zero of the VBM wave function.
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ically above the size-dependent states originating from a bulk conduction
band. It is well known that one of the greatest successes of the theory
of electronic states in traditional solid state physics is that it clearly ex-
plains the basic difference between the electrical conductivities of metals
and semiconductors (and insulators) of macroscopic size. This new pre-
diction indicates that such a basic difference of macroscopic solids may
become obscure when the size of the solid becomes much smaller and,
thus, the effects of the existence of the boundary of the low-dimensional
system or the finite crystal has to be considered.4

We may also look at these results from an even more general point of
view. If different matters are arranged according to the number of atoms in
each matter, the two ends of each spectrum of matters are usually understood
much better than the wide range of matters in between: At one end is the
matter consisting of a few atoms and at the other end is the crystal of infinite
size, both of which are easier to understand: A problem of a few atoms can be
relatively easily treated in quantum mechanics and a problem on a crystal of
infinite size – with translational invariance – can be essentially reduced to a
problem of a few atoms in a unit cell and can also be relatively easily treated.
However, the wide range of matters in between is usually more difficult to
understand due to the mathematical difficulties in treating large systems of
many atoms. In this book, it was demonstrated that in some simple cases, the
electronic structure of ideal truncated periodic systems of various size – which
were difficult to understand earlier due to the large number of atoms and the
lack of translational invariance – can be better understood now. Therefore,
in some sense, a route for understanding is opened, from one end with matter
of a few atoms to the other end with crystal of infinite size and in between
containing a whole range of ideal truncated periodic systems of various size.

Despite of all these new understandings, however, what we have under-
stood is really only the very beginning. The model used in this book is the
simplest model. The low-dimensional systems and finite crystals treated in
this book are also some of the simplest cases. For the little we have just
understood, there is so much more we do not understand.

For example, we even have not understood the properties of electronic
states in a (111) ideal quantum film of crystals with a simple cubic Bravais
lattice in our simplest model yet, not to mention many others. There are
many ways to improve the model or to investigate different cases. Each new

4A very recent work by Rurali and Lorenti [5] seems to support such a predic-
tion. They studied nano Si quantum wires in the < 100 > direction with density-
functional calculations and found that such Si nano wires may become strong
metallic. Our treatment is more general, but for ideal low-dimensional systems.
For quantum wires, we treated only those with rectangular cross sections. Their
results might be an indication that the nonrectangular cross section of the wire and
the surface reconstructions do not eliminate the metallic conductivity of Si < 100 >
nanowires.
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progress obtained from an improved model or from more investigations on
different cases could improve our understanding of the electronic states, the
physical properties, and the physical processes in low-dimensional systems
and finite crystals.

In this book is presented only an investigation on the electronic states
in low-dimensional systems and finite crystals. Although it is found that
the existence of the boundary-dependent electronic states in low-dimensional
systems or finite crystals is a fundamental distinction of the quantum con-
finement of Bloch waves, in order to have a better understanding of the
physical properties of the low-dimensional systems or finite crystals, there is
much more we need to learn. Even if we keep working only with the sim-
plified model of ideal low-dimensional systems or finite crystals, we need
to understand issues such as how are the specific boundary surface loca-
tions determined for a low-dimensional system or finite crystal? What are
the specific forms of those boundary-dependent electronic states in the low-
dimensional system or finite crystal with such boundary surface locations?
Does the existence of and the properties of boundary-dependent electronic
states in ideal quantum films have any thing to do with surface reconstruc-
tions in semiconductors? If the answer is yes, then how? Further, how does the
existence of boundary-dependent electronic states affect physical processes in
low-dimensional systems or finite crystals, such as optical transitions, scat-
tering, transport processes, and many others? We may have reason to expect
that the physical processes between the stationary Bloch states can be under-
stood – to a large extent – on the basis of the physical processes between the
progressive Bloch states, as treated in traditional solid state physics; however,
for physical processes in which the boundary-dependent states are involved,
we understand very little or basically nothing. If we go beyond the simplified
model, there is even much more we do not understand. There is still a long
long way to go before we have a more comprehensive understanding on the
physical properties of and the physical processes in low-dimensional systems
or finite crystals.

8.2 Some Relevant Systems

The results obtained for the electronic states in ideal low-dimensional systems
or finite crystals naturally may also provide inspiration on some relevant
problems.

8.2.1 Electronic States in Ideal Cavity Structures

A cavity structure is a structure formed when a low-dimensional system is
removed from an infinite crystal. The electronic states in such a cavity struc-
ture usually were not easy to investigate theoretically: The structure does
not have a translational invariance and the theoretical approaches previously
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used in the investigations of electronic states in low-dimensional systems –
such as the effective-mass-approximation-based approaches or numerical cal-
culations – are not easily and/or effectively used here to obtain a meaningful
understanding. However, the approach we used to understand the electronic
states in ideal low-dimensional systems of some simple crystals in the main
parts of this book can be used to obtain understanding of the electronic
states in ideal cavity structures of simple crystals. Such a theory is presented
in Appendix B.

8.2.2 Other Finite Periodic Systems, such as Finite Photonic
Crystals

Naturally, an interesting question is, do the eigenmodes in other truncated
periodic systems have similar interesting properties, similar to the electronic
states in low-dimensional systems or finite crystals?

An interesting problem is the properties of classical waves in periodic me-
dia, such as elastic waves in periodic structures of alternative elastic mediums,
electromagnetic waves in photonic crystals and so forth. In such systems, the
periodic structure can be flexibly designed and shaped to a large extent,
including that the surface plane may be located anywhere in the unit cell.
Therefore, the parameter τ in this book can be a really controllable quantity.
The boundary-dependent states might thus be tailored by suitable choice of
the surface location.

In particular, an area of much current interest is the properties of electro-
magnetic waves in photonic crystals. It will be interesting to see whether the
results obtained in the major part of this book can be extended to photonic
crystals.

However, such an extension, at least, will not be straightforward. To show
this point, we consider the simplest photonic crystals. We assume that the
magnetic permeability of the photonic crystal is equal to that in free space
µ0 and that the dielectric constant ε(x) is isotropic, real, and periodic with
x, and does not depend on frequency. The Maxwell equations for the propa-
gation of light in such a photonic crystal composed of a mixed homogeneous
dielectric medium with no free charges or currents lead to four equations
[6,7]:

1
ε(x)∇ × ∇ × E(x, t) = − 1

c2
∂2

∂t2 E(x, t),

∇ ×
[

1
ε(x)∇ × H(x, t)

]
= − 1

c2
∂2

∂t2 H(x, t),
∇ · ε(x)E(x, t) = 0,

∇ · H(x, t) = 0.

(8.1)

Here, E(x, t) and H(x, t) are the electric field and the magnetic field, respec-
tively, c is the speed of light in free space, and ε(x) is the relative dielectric
constant of the photonic crystal.
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We are interested in the solutions of (8.1) with the form

E(x, t) = E(x)e−iωt,

H(x, t) = H(x)e−iωt,

where ω is the eigen-angular frequency and E(x) and H(x) are the eigen-
functions of the equations:

1
ε(x)

∇ × ∇ × E(x) − (
ω

c
)2E(x) = 0 (8.2)

and

∇ ×
[

1
ε(x)

∇ × H(x)
]

− (
ω

c
)2H(x) = 0. (8.3)

Since Ξ in

Ξ E(x) ≡ 1
ε(x)

∇ × ∇ × E(x)

is not a Hermitian operator and Θ in

Θ H(x) ≡ ∇ ×
[

1
ε(x)

∇ × H(x)
]

is a Hermitian operator [6], the electromagnetic wave modes in a photonic
crystal are usually solved by using (8.3) and

∇ · H(x) = 0.

E(x) can be obtained from H(x) using

∇ × H(x) − iω
c

ε(x)E(x) = 0.

In the simple cases where ε(x) is a function of x only and is a periodic function
of x : ε(x + a) = ε(x) and the light propagates in the x direction, the master
equation (8.3) can be rewritten as

d

dx

[
1

ε(x)
d

dx
H(x)

]
+ (

ω

c
)2H(x) = 0. (8.4)

In the simplest model, ε(x) is a piecewise continuous step function rather
than a continuous function; thus, (8.4) is not a Hill’s equation as in (2.12)
or in (2.37) in a rigorous sense: [ 1

ε(x) ] is not a continuous function and [ 1
ε(x) ]

′

is not piecewise continuous. The theory on the Hill’s equation in Chapter 2
cannot be straightforwardly applied.

Furthermore, even for an ideally regular finite photonic crystal, the
electric-magnetic waves cannot be completely confined in the finite photonic
crystal with vacuum outside it.

Therefore, a corresponding theory on finite photonic crystals might not
be a simple extension of the major parts of this book.
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8.3 Could a More General Theory Be Possible?

In many cases, it is the general symmetry of a system rather than the de-
tails of the specific dynamic equation of a physical problem that determines
the general properties of the solutions. For systems with translational in-
variance, even though the relevant dynamic equations can be quite different,
such as the Schrödinger differential equation with a periodic potential for
the electronic states, the atomic vibrational equation for phonons in crystals,
Maxwell’s equations for photonic crystals, and so forth are all different, it is
the symmetry of the systems – the translational invariance – that determines
the general properties of the solutions. The states or modes have the common
property

ψ(x + ai) = eik·aiψ(x), (8.5)

where ai are the minimum translational units and the wave vector k can
be limited in a Brillouin zone, determined by the system’s symmetry. The
eigenvalues of the problem are the functions of wave vector k:

λ = λn(k). (8.6)

Although (8.5) and (8.6) can be obtained from investigations on the solutions
of each individual dynamic equation, it is now understood that (8.5) and (8.6)
are consequences of the symmetry of the concerned system – the translational
invariance (and other relevant symmetries) of the system – independent of
the specific dynamic equation(s) involved. The group theory is a powerful
mathematical theory that can be used to investigate the general properties
of symmetrical systems. It is application of the group theory in different
physical problems that leads to such general consequences.

Now the question is, do those similarities found in different systems exist
in their truncated structures as well? That is, in systems which have trans-
lational invariance in common but their specific dynamic equations might be
quite different, are there general similar correspondences between the eigen-
modes of a truncated finite structure and a nontruncated infinite structure?
This question seems interesting.

The author was quite surprised when he first obtained the result that
the size effect and the boundary effect on the energies of electronic states in
simple low-dimensional systems and finite crystals can be separated. He does
not know of any other problem that also has such an interesting behavior:
Usually when one solves an eigenvalue boundary problem of a differential
equation, both the region and the boundary have an effect on all eigenvalues
of the problem. He has also talked to mathematicians and has not met anyone
who knew of a similar behavior in other problems.

Is this a particular behavior of the specific Schrödinger differential equa-
tions on the electronic states in low-dimensional systems and finite crystals,
or might it be one of the consequences of a whole class of more general rel-
evant problems? The results presented in this book were obtained by using
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a theory of differential equations approach; however, are they really mere
properties of the particular differential equations or might they actually be
consequences of a more general class of problems concerning the truncated
translational invariance?

If the existence of two different types of states or modes (boundary-
dependent or size-dependent) is a general behavior of ideal truncated peri-
odic systems – despite of the fact that the corresponding dynamic equations
might be quite different – then it must be the common symmetric proper-
ties of truncated periodic structures in different systems with translational
invariance (such as electronic crystals, lattice vibrations, photonic crystals,
etc.) that determine the very existence of such general correspondences. The
most significant common feature of the truncated periodic structures is that
the translational symmetry of the periodic structure is broken, in a specific
way. Can such a general correspondence be a consequence of a more general
theory of the translational symmetry breaking – without the explicit forms of
the specific dynamic equations involved?

To further explore such a prospect should be very interesting.
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A Electronic States in One-Dimensional
Symmetric Finite Crystals with a Finite Vout

The Schrödinger differential equation for a one-dimensional crystal can be
written as

−y′′(x) + [v(x) − λ]y(x) = 0. (A.1)

Here, v(x) = v(x + a) is the periodic potential of the crystal.
For a one-dimensional crystal of finite length L = Na, the eigenvalues Λ

and eigenfunctions ψ(x) are solutions of the equation

−ψ′′(x) + [v(x) − Λ]ψ(x) = 0, τ < x < τ + L, (A.2)

inside the crystal with certain boundary conditions at the two boundaries
τ and τ + L. If the potential outside the crystal Vout = +∞, we have the
boundary conditions

ψ(x) = 0 x = τ or x = τ + L. (A.3)

This is the case treated in Chapter 4. It is found that for each band gap,
there is always one and only one state whose energy is boundary dependent
but independent on the crystal length. A surface state is one of the two
possibilities of such a boundary-dependent state. Therefore, there is at most
one surface state in each band gap in an ideal one-dimensional finite crystal.

Many years ago, Shockley published a classic paper [1] indicating that
in a one-dimensional symmetric finite crystal when the potential period a
is so small that the boundary curves for allowed energy bands have crossed
and the number of atoms N in the crystal is very large, the surface states
appear in pairs in band gap. To clearly understand the relationship between
the results of [1] and Chapter 4, in this Appendix we investigate the cases
where the electrons are not completely confined in the crystal as in [1] and
the crystal length may not be very long.

Now, we need to consider the cases where Vout is finite. Qualitatively, the
effect of a finite Vout can be directly obtained from a theorem in [2]: A finite
Vout moves all energy levels lower. Quantitatively, a finite Vout will allow a
small part of the electronic state spills out of the finite crystal and thus make
the boundary conditions be

(ψ′/ψ)x=τ = σ1,
(ψ′/ψ)x=τ+L = −σ2

(A.4)
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instead of (A.3). Here, σ1 and σ2 are positive numbers depending on Vout.
Note that (A.3) corresponds to σ1 = σ2 = +∞, and σ1 and σ2 will decrease
monotonically as Vout decreases. Although Vout may have different forms, the
effect of different Vout to the problem treated here can be simplified to be
the effect of σ1 and σ2. Shockley treated one-dimensional symmetric finite
crystals with finite Vout, where σ1 = σ2 = σ. His treatment provided a way
to investigate how much the results obtained in Chapter 4 are dependent
on Vout for symmetric one-dimensional finite crystals. For the convenience of
comparison with the results in his original paper, we use his approach and
assume that inside the crystal, the cell potential is symmetric and use same
notations as in [1], except the energy is λ rather than E and the number of
atoms in the crystal is N . As in Shockley’s paper, we also consider the two
lowest band gaps: one at k = π/a and one at k = 0.

Assuming g(x) and u(x) are two independent solutions of the Schrödinger
differential equation (A.1) in an unit cell, symmetric or antisymmetric
to the cell center x = 0, Shockley obtained g(a/2)u′(a/2)(1 − e−ika) =
g′(a/2)u(a/2)(1+eika) and further obtained that σ = µ tan(ka/2) tan(Nka/2)
and σ = −µ tan(ka/2) cot(Nka/2) (Eqs. (11) and (12) in [1]) give the en-
ergies of electronic states in the one-dimensional finite crystal; here, µ =
u′(a/2)/u(a/2). Therefore, the effect of finite Vout can be found from the σ
dependence of energy levels. In Fig. A.1 is shown a numerical calculation for
the electronic states near the upper bandedge ε2(0) of the band gap at k = 0
in crystals of two different lengths, N = 14 and N = 15, with a model cell
potential

v(x) = −30 if |x| ≤ 0.38
= 0 if 0.38 < |x| ≤ 0.5

and a = 1. It can be seen that lowering Vout (thus lowering σ) moves all
energy levels downward. However, the energy of the state in the bandgap
depends on the crystal length much less than the states in the energy band:
The major difference between the state corresponding to a band gap and the
states corresponding to an energy band obtained in Section 4.2 remains.

For many physical situations, σ can be considered as sufficiently large [3].
It can be shown that for those states in Fig. A.1, in the limit of large σ (i.e.,
large Vout), the energies of the states in the energy band can approximately
be given by

Λ2,j = ε2(kj)

and

kj =
jπ

Na
− 2

Na

µ

σ
tan

(
jπ

2N

)
, j = 1, 2, ..., N − 1, (A.5)

where µ > 0. On the other hand, the energy of the state in the gap is given
approximately by (ε′′

2(0) > 0)

Λ1,gap = ε2(0) − ε′′
2(0)

6(c − 1)
(cN2 − 1)a2 ;
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Fig. A.1. σ = µ tan(ka/2) tan(Nka/2) and σ = −µ tan(ka/2) cot(Nka/2) calcu-
lated for N = 14 (solid lines) and N = 15 (long dashed lines) near the upper band
edge ε2(0) of the band gap at k = 0. The short-dashed vertical line is the band
edge ε2(0). Note the energy of the state in the band gap almost does not depend
on the crystal length, even for a finite σ.

here, c = −σN/µ > 1, µ < 0, and c → 1 when σ → +∞. Again, it can be
clearly seen that lowering σ (lowering Vout) moves all energy levels downward
and the energy of the state in the bandgap depends on the crystal length much
less than the energies of the states in the energy band.

Shockley found that when (i) the potential period a is so small that the
boundary curves for allowed energy bands have crossed and (ii) the number
of atoms in the crystal N is very large, the surface states appear in pairs in
the bandgap. Now, we try to give this problem a more careful investigation
and try to understand whether and how “two surface states” in a bandgap
could happen in a one-dimensional symmetric finite crystal. We also consider
the cases of N is even, as in [1].

In general, inside a bandgap, an electronic state as a nontrivial solution
of (A.1) always has the form

y(x) = Aeβxf1(x) + Be−βxf2(x) (A.6)

from (2.60) or (2.63); here, A and B are not both zero, β > 0, and fi(x) is
either a periodic function (fi(x + a) = fi(x)) if the band gap is at k = 0 or
a semi-periodic function (fi(x + a) = −fi(x)) if the band gap is at k = π/a.
Equation (A.6) is more general than the simple surface states in which either
A or B is zero and, thus, the state is localized near one end of the crystal.
Actually, such a state (A.6) in a symmetric one-dimensional finite crystal
must be either symmetric (A = B) or antisymmetric (A = −B) and, thus, is
equally localized near the both ends of the finite crystal and can be considered
as a generalized surface state. We are trying to investigate how many states
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of type (A.6), as solutions of (A.2) with the boundary conditions (A.4), are
in a specific band gap.

For the gap at k = π/a, two bandedge states are given by either g(a/2) = 0
or u′(a/2) = 0, as in [1]. Both bandedge wavefunctions have one node in an
unit cell [−a/2, a/2) (Theorem 2.7). One (given by g(a/2) = 0) is symmetric
to the cell center and has its most electron density at the cell center and
zero density at the cell boundaries; the other one (given by u′(a/2) = 0) is
antisymmetric to the cell center and has its most electronic density at the
cell boundaries x = ±a/2 and zero density at the cell center.

No matter how small a is, if the cell potential at the cell boundaries
is higher than the potential at the cell center as shown in Fig. 1(a) in [1]
and the form of the cell potential is reasonable and not very irregular, we
expect that g(a/2) = 0 gives the lower bandedge state and u′(a/2) = 0
gives the higher bandedge state: A state with most of its electronic density
in the potential valley should have lower energy than a state with most of its
electronic density around the potential peak. In fact, Levine [3] did not observe
a band-crossing either. Shockley has shown that the two surface states in the
gap can happen only when g(a/2) = 0 gives the higher bandedge state. Thus,
the existence of two surface states in the lowest gap at k = π/a, as shown in
Fig. 2 in [1], seems unlikely for a reasonably regular one-dimensional finite
crystal. Consistent with the analysis here, many other authors did not obtain
a “Shockley” surface state in the lowest gap at k = π/a either [3,4].

Then we consider the next band gap at k=0. The two bandedge states
are given by either g′(a/2) = 0 or u(a/2) = 0; which one is higher depends
on the form of the cell potential. If Vout = +∞, equations (11) and (12)
in [1] for σ = +∞ give N − 1 states (kj = jπ/Na, j = 1, 2, ..., N − 1)
for each energy band and one confined band-edge state for each bandgap.
The confined bandedge state for this bandgap is the bandedge state given by
u(a/2) = 0 since its wavefunction is zero at the crystal boundaries. This is
the same as obtained in Section 4.4.

If the confined bandedge state is at the lower bandedge ε1(0) when Vout =
+∞, a (any) finite Vout will move it downward into the energy band ε1(k)
below and, thus, will not make a surface state. Only if the confined bandedge
state is at the upper bandedge ε2(0) when Vout = +∞, a (any) finite Vout

will move it downward into the bandgap and thus make a surface state. That
corresponds to the case that u(a/2) = 0 gives the higher bandedge state.

In Fig. A.2 is shown a numerical calculation of such a case, using the
same model cell potential as in Fig. A.1, in comparison with Fig. 4 in [1].
When Vout = +∞(σ = +∞), u(a/2) = 0 gives an antisymmetric confined
bandedge state at the upper bandedge ε2(0). Any finite σ due to a finite
Vout can move this state (long-dashed line) into the bandgap and thus make
one antisymmetric gap state. However, moving a symmetric state (solid line)
crossing the higher bandedge ε2(0) into the bandgap and making another
surface state requires
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Fig. A.2. γ × 100 (dotted line), µ (chained line), µ tan(ka/2) tan(Nka/2) (solid
line) and −µ tan(ka/2) cot(Nka/2) (long-dashed line) for N = 14 near the band
gap at k = 0 where the surface state(s) may exist. The left short-dashed vertical
line corresponds to the lower band edge ε1(0) and the right short-dashed vertical
line corresponds to the upper band edge ε2(0).

σ < −Nγu; (A.7)

here, γu is γ (= g′(a/2)/g(a/2)) at the upper band-edge, a negative number.
Therefore, in principle, if there are two surface states (one antisymmetric and
one symmetric) in the gap, σ (or Vout) needs to be small and N needs to be
large. However, a too small σ (or Vout) may even move the antisymmetric
surface state crossing the lower band edge ε1(0) out of the bandgap and into
the lower energy band ε1(k). This happens when σ < −µl/N ; here, µl is µ
at the lower bandedge ε1(0), also a negative number. Note that µl and γu

are determined by the cell potential and σ is dependent on Vout. Figure A.2
shows the case for N = 14: When a small enough σ ( or Vout) moves the
symmetric state (solid line) from the upper band ε2(k) into the bandgap,
the antisymmetric surface state (long-dashed line) almost enters the lower
band ε1(k). In fact, σ usually is quite large [3].1 Depending on σ or Vout,
usually a much larger N is needed to satisfy σ < −Nγu. An even larger N is
needed if the two surface states are almost degenerate. Two degenerate gap
states of (A.6) type - one symmetric and one antisymmetric in a symmetric
one-dimensional finite crystal - can be linearly combined and transformed to
two surface states, one at each end.

The calculations here, as in Shockley’s paper [1], are for symmetric one-
dimensional finite crystals. Nevertheless, we can also obtain some understand-
ing of the surface states in general one-dimensional finite crystals: Since there

1In almost all previously published numerical calcuations, the deviations from
kj = jπ/(Na) is small; for example, see [5,6]. Thus, from (A.5), one can obtain
that usually (2µ/σ) tan(jπ/2N) << 1.
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is only one state corresponding to each gap for general one-dimensional finite
crystals when Vout = +∞ and a finite Vout always moves all energy levels
downward, in any case if there are two states in a band gap, one of them
must come from the energy band above that bandgap and it must have the
energy ε2m+2(π/Na) (for the gaps at k = 0) or ε2m+1[(N − 1)π/Na] (for the
gaps at k = π/a) when Vout = +∞ (independent of whether the crystal is
symmetric or not) and only a small enough Vout (depending on N) can move
it crossing the bandedge into the bandgap. The smaller N is, the further
the state is to the upper bandedge ε2m+2(0) or ε2m+1(π/a) and the more
difficult is the state to be moved into the band gap by a finite Vout. There-
fore, we can expect that a not very long one-dimensional finite crystal has
at most one gap state in each bandgap. However, the localization of this gap
state might be somewhat different for a nonsymmetric finite crystal: Because
when Vout = +∞, a gap state in a nonsymmetric finite crystal may have
either A = 0 or B = 0 in (A.6) (i.e., the state could be localized near one end
of the crystal), as Vout decreases there seems no understandable reason for
that the localization behavior of the gap state will have a dramatic change.
Thus, we can expect that a such gap state might be mainly localized near
one end of the nonsymmetric finite crystal.
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B Electronic States in Ideal Cavity Structures

In this appendix, we investigate the electronic states in cavity structures
where a low-dimensional system such as investigated in Chapters 4–7 is re-
moved from an infinite crystal.

For the electronic states in ideal cavity structures treated in this appendix,
we assume that (i) the potential v(x) or v(x) outside the cavity is the same as
in (4.1) or (5.1) and (ii) the electronic states are completely confined outside
the cavity.

B.1 Electronic States in Ideal Cavity Structures of
One-Dimensional Crystals

An ideal cavity structure of a one-dimensional crystal is a structure formed
when a one-dimensional finite crystal bounded at τ and τ +L is removed from
an infinite one-dimensional crystal with a potential period a. Here, L = Na
and N is a positive integer.

The eigenvalues Λ and eigenfunctions ψ(x) of the electronic states in such
an ideal cavity structure are solutions of the Schrödinger differential equation

−ψ′′(x) + [v(x) − Λ]ψ(x) = 0, x ≤ τ or x ≥ τ + L, (B.1)

inside the crystal with the condition

ψ(x) = 0, τ < x < τ + L. (B.2)

Actually, (B.1) and (B.2) can be considered as the equations of electronic
states in two ideal semi-infinite one-dimensional crystals: one left semi-infinite
crystal in the range of (−∞, τ) and one right semi-infinite crystal in the range
of (τ + L,+∞). The two ideal semi-infinite crystals are not independent of
each other, since L = Na and N is a positive integer. For those two semi-
infinity crystals, as in Section 3.1 we are interested only in the electronic states
whose energies are dependent on the boundary τ or τ +L. The properties and
energies of those boundary-dependent electronic states in the cavity structure
can be easily obtained as long as the τ -dependent electronic states in the ideal
finite crystal are obtained.
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We have presented an analysis on the τ -dependent states in ideal one-
dimensional finite crystals in Section 4.3. Actually, the boundary-dependent
electronic states in an ideal cavity structure of a one-dimensional crystal can
be easily obtained from that analysis.

We also take a band gap at k = 0 as an example. For a specific band gap
index n, the boundary τ could be in one of three cases.

1. If τ is in the set L(n), in the finite crystal bounded at τ and τ + L, a
surface state with a form of e−βxp(x, Λ) in which β > 0 exists in the
band gap, indicating a surface state with an energy Λ located near the
left boundary τ of the finite crystal. Correspondingly, τ +L is also in the
set L(n); therefore, a surface state with the same form of e−βxp(x, Λ) and
the same energy Λ exists near the left boundary τ + L of the right semi-
finite crystal, whereas no τ -dependent state exists in the left semi-finite
crystal.

2. If τ is in the set R(n), in the finite crystal bounded at τ and τ + L, a
surface state with a form of eβxp(x, Λ) in which β > 0 exists in the band
gap, indicating a surface state with an energy Λ located near the right
boundary τ +L of the finite crystal. Correspondingly, a surface state with
the same form of eβxp(x, Λ) and the same energy Λ exists near the right
boundary τ of the left semi-finite crystal, whereas no τ -dependent state
exists in the right semi-finite crystal.

3. If τ is in the set M(n), a band edge state with a form of p(x, Λ) and
the band edge energy exists in the finite crystal bounded at τ and τ + L,
indicating a confined band edge state periodically distributed in the finite
crystal. Correspondingly, a band edge state with the same form of p(x, Λ)
and the same energy Λ exists in both the right semi-infinite crystal (τ +
L,+∞) and the left semi-finite crystal (−∞, τ).

Band gaps at k = π/a can be similarly analyzed; only the semi-periodic
functions s(x, Λ) should be used instead of periodic functions p(x, Λ).

Therefore, the τ -dependent states in such a cavity structure can be ob-
tained similar to the τ -dependent states in the finite crystal removed. The
major difference is that in case 1 and case 2; the corresponding surface state
wave function in the cavity structure should be normalized in the semi-infinite
crystal rather than in the finite crystal; In case 3, the corresponding band
edge state wave functions should be normalized as in an infinite crystal.

B.2 Electronic States in Ideal Two-Dimensional Cavity
Structures of Three-Dimensional Crystals

A two-dimensional cavity structure in a three-dimensional infinite crystal is a
structure formed when a film of a specific orientation and a specific thickness
is removed from an infinite crystal. In this section, we are only interested
in such cavity structures where an ideal quantum film as investigated in
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Chapter 5 is removed from an infinite crystal. As in Chapter 5, we assume
that the film plane is defined by two primitive lattice vectors a1 and a2,
x3 = τ3 defines the bottom of the removed film, and N3 is a positive integer
indicating the thickness of the removed film. Such a cavity structure has two
separated parts: an upper semi-infinite crystal part and a lower semi-infinite
crystal part.

The electronic states ψ̂(k̂, x) in a two-dimensional cavity are solutions of
the following two equations:

−∇2ψ̂(k̂, x) + [v(x) − Λ̂]ψ̂(k̂, x) = 0 if x3 ≤ τ3 or x3 ≥ τ3 + N3 (B.3)

and
ψ̂(k̂, x) = 0 if τ3 < x3 < τ3 + N3. (B.4)

The electronic states ψ̂(k̂, x) in such a cavity structure are two-dimensional
Bloch waves with a wave vector k̂ in the film plane.

As in Section B.1, we are only interested in the boundary-dependent elec-
tronic states in such a cavity structure. Very similar to what we have seen
in Section B.1, the boundary-dependent states in such a cavity structure can
be similarly obtained as the boundary-dependent states in the removed film
treated in Chapter 5: For each bulk energy band n and each wave vector k̂
in the film plane, there is one such electronic state in the cavity structure,
which can be obtained from (5.11) by assigning a nondivergent φ̂n(k̂, x; τ3)
in the cavity structure:

ψ̂n(k̂, x; τ3) = c φ̂n(k̂, x; τ3) if x3 ≤ τ3 or x3 ≥ τ3 + N3
= 0 if τ3 < x3 < τ3 + N3,

(B.5)

where c is a normalization constant. Unlike in (5.33), c in (B.5) does not
depend on the thickness N3 of the removed film. The divergent part of
φ̂n(k̂, x; τ3) in (B.5) should be abandoned. Correspondingly, the energy of
such a state is given by

Λ̂n(k̂; τ3) = λ̂n(k̂; τ3), (B.6)

as in (5.34). There is one solution (B.5) of (B.3) and (B.4) for each energy
band n and each k̂. Each ψ̂n(k̂, x; τ3) defined in (B.5) is an electronic state
in the cavity structure whose energy Λ̂n(k̂; τ3) in (B.6) depends on the cavity
boundary τ3 but not on the cavity thickness N3. By Theorem 5.1, Λ̂n(k̂; τ3)
is either above or at the energy maximum of εn(k) with that n and that k̂.

In the special cases where φ̂n(k̂, x; τ3) in (B.5) is a Bloch function,

φ̂n(k̂, x; τ3) = φn′(k, x), n ≤ n′, (B.7)

the corresponding Bloch function φn′(k, x) has a nodal surface at x3 = τ3
and thus has nodal surfaces at x3 = τ3 + �, where � = 1, 2, ..., N3. The wave
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function φ̂n(k̂, x; τ3) in (B.5) exists in both the upper semi-infinite crystal
part and the lower semi-infinite crystal part of the cavity structure.

In most cases, φ̂n(k̂, x; τ3) in (B.5) is not a Bloch function. Consequently,
in such a case, there is a nonzero imaginary part of k3 in (5.11), indicating
that ψ̂n(k̂, x; τ3) in (B.5) is a surface state located near either the top surface
of the lower semi-infinite crystal part (if the imaginary part of k3 in (5.11)
is negative) or the bottom surface of the upper semi-infinite crystal part
(if the imaginary part of k3 in (5.11) is positive) of the cavity structure: It
exists in one of the two semi-infinite crystal parts of the cavity structure.
Correspondingly, the energy of such a state

Λ̂n(k̂; τ3) > εn(k) for (k − k̂) · ai = 0, i = 1, 2, (B.8)

is true by Theorem 5.1. However, there is no reason to expect that Λ̂n(k̂; τ3)
has to be in a band gap.

Therefore, for each bulk energy band n, there is one surface-like subband
Λ̂n(k̂; τ3) in (B.6) in such an ideal cavity structure.

Those results should be correct for cavity structures of crystals with a sc,
tetr, or an ortho Bravais lattice for which an ideal (001) film is removed. More
generally, they should also be correct for ideal cavity structures of crystals
with a fcc or a bcc Bravais lattice for which an ideal (001) or (110) film is
removed.

We have seen in Sections B.1–B.2 that the boundary-dependent electronic
states in a cavity structure actually can be obtained similar to the boundary-
dependent electronic states in the removed low-dimensional systems. This
is due to the simple fact that the ideal cavity structure and the ideal low-
dimensional system removed have the same boundary. The same idea can
be applied to obtain the boundary-dependent electronic states in ideal one-
dimensional or zero-dimensional cavity structures in three-dimensional crys-
tals.

B.3 Electronic States in Ideal One-Dimensional Cavity
Structures of Three-Dimensional Crystals

A one-dimensional cavity structure in a three-dimensional infinite crystal is
a structure formed when a quantum wire is removed from the infinite crystal.
In this section, we are only interested in such cavity structures where an ideal
rectangular quantum wire as investigated in Chapter 6 is removed from an
infinite crystal.

As in Chapter 6, we choose the primitive vector a1 in the wire cavity
direction. Such a rectangular wire cavity can be defined by a bottom face
x3 = τ3, a top face x3 = τ3 +N3, a front face perpendicularly intersecting the
a2 axis at τ2a2, and a rear face perpendicularly intersecting it at (τ2+N2)a2;
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here, τ2 and τ3 define the boundary faces of the wire cavity and N2 and N3
are two positive integers indicating the size and/or shape of the wire cavity.

For the electronic states in such an ideal cavity structure, we look for the
eigenvalues Λ̄ and eigenfunctions ψ̄(k̄, x) of the following two equations:

−∇2ψ̄(k̄, x) + [v(x) − Λ̄]ψ̄(k̄, x) = 0 if x /∈ the cavity (B.9)

and

ψ̄(k̄, x) = 0 if x ∈ the cavity. (B.10)

The solutions ψ̄(k̄, x) of (B.9) and (B.10) are one-dimensional Bloch waves
with a wave vector k̄ in the wire direction a1.

There are different types of electronic state solutions of these two equa-
tions. As in Sections B.1 and B.2, in this section we are only interested in
the solutions of (B.9) and (B.10) whose energies are dependent on the cavity
boundary locations τ2 and/or τ3. Based on similar arguments to that we had
in Chapters 5–6 and in Sections B.1 and B.2, we can easily understand that
the electronic states whose energies are dependent on the cavity boundary
location τ2 or τ3 are surface-like states in the cavity structure; they are lo-
cated near the opposite surface of the cavity structure in comparison with
the corresponding surface-like states in the removed quantum wire: If there
is a surface-like state located near the top surface of the removed quantum
wire, then there is a corresponding surface-like state located near the bottom
surface of the cavity and vice versa. If there is a surface-like state located
near the front surface of the removed quantum wire, then there is a corre-
sponding surface-like state located near the rear surface of the cavity and
vice versa. Similarly, the electronic states whose energies are dependent on
the cavity boundary locations τ2 and τ3 are side-like states in the cavity
structure; they are located near the opposite side of the cavity in comparison
with the corresponding side-like states in the removed quantum wire.

B.3.1 Wire Cavities in Crystals with a sc, tetr, or ortho Bravais
Lattice

For an ideal one-dimensional cavity structure of crystals with a sc, tetr, or
ortho Bravais lattice, if the rectangular quantum wire removed has its two
boundary faces in the a2 direction which are defined by τ2 and are N2a2 apart
from each other and has the two other boundary faces in the a3 direction
which are defined by τ3 and are N3a3 apart from each other, for each bulk
energy band n in the cavity structure there are the following:
(N3 − 1) surface-like subbands with energies

Λ̄n,j3(k̄; τ2) = Λ̂n

(
k̄ +

j3π

N3
b3; τ2

)
; (B.11)
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(N2 − 1) surface-like subbands with energies

Λ̄n,j2(k̄; τ3) = Λ̂n

(
k̄ +

j2π

N2
b2; τ3

)
; (B.12)

one side-like subbands with energy Λ̄n(k̄; τ2, τ3) depending on both τ2 and
τ3, similar to (6.29), (6.30), and (6.31) in Section 6.4.
Here, j2 = 1, 2, ..., N2 − 1 and j3 = 1, 2, ..., N3 − 1. Λ̂n(k̂; τ3) is the surface-
like band structure in a quantum film with the film plane oriented in the a3
direction. Λ̂n(k̂; τ2) is the surface-like band structure in a quantum film with
the film plane oriented in the a2 direction.

However, probably the practically more interesting cases are cavity struc-
tures of crystals with a fcc or bcc Bravais lattice. In the following, we give
predictions on the electronic states in several such one-dimensional cavity
structures.

B.3.2 Wire Cavities with (001) and (110) Surfaces in fcc Crystals

A cavity structure with (001) and (110) surfaces in fcc crystals is a structure
formed when a [11̄0] quantum wire is removed from an infinite crystal with a
fcc Bravais lattice. The removed quantum wire has (001) and (110) surfaces
and has a rectangular cross section N110a/

√
2×N001a, where N110 and N001

are two positive integers.
For each bulk energy band n, there are (N001 − 1) + (N110 − 1) surface-

like subbands in such a cavity structure. They are (N001 − 1) subbands with
energies

Λ̄sf,a1
n,j001

(k̄; τ110) = Λ̂n

[
k̄ +

j001π

N001a
(0, 0, 1); τ110

]
(B.13)

and (N110 − 1) subbands with energies

Λ̄sf,a2
n,j110

(k̄; τ001) = Λ̂n

[
k̄ +

j110π

N110a
(1, 1, 0); τ001

]
, (B.14)

similar to (6.51) and (6.52). Here, τ001 or τ110 define the boundary faces
of the cavity in the [001] or [110] direction, j001 = 1, 2, ..., N001 − 1, and
j110 = 1, 2, ..., N110 − 1. Λ̂n(k̂; τ001) is the surface-like band structure in a
quantum film with the film plane oriented in the [001] direction. Λ̂n(k̂; τ110) is
the surface-like band structure in a quantum film with the film plane oriented
in the [110] direction.

For each bulk energy band n, there is one side-like subband in the cav-
ity structure with energy Λ̄sd

n (k̄; τ001, τ110) depending on both τ001 and τ110,
similar to (6.38) or (6.45).



B.3 Electronic States in One-Dimensional Cavity Structures 197

B.3.3 Wire Cavities with (110) and (11̄0) Surfaces in fcc Crystals

A cavity structure with (110) and (11̄0) surfaces in fcc crystals is a structure
formed when a [001] quantum wire is removed from an infinite crystal with a
fcc Bravais lattice. The removed quantum wire has (110) and (11̄0) surfaces
and has a rectangular cross section N110a/

√
2 × N11̄0a/

√
2, where N110 and

N11̄0 are two positive integers.
For each bulk energy band n, there are (N11̄0 −1)+(N110 −1) surface-like

subbands in the cavity structure. They are (N11̄0 −1) subbands with energies

Λ̄sf,a1
n,j11̄0

(k̄; τ110) = Λ̂n

[
k̄ +

j11̄0π

N11̄0a
(1,−1, 0); τ110

]
(B.15)

and (N110 − 1) subbands with energies

Λ̄sf,a2
n,j110

(k̄; τ11̄0) = Λ̂n

[
k̄ +

j110π

N110a
(1, 1, 0); τ11̄0

]
, (B.16)

similar to (6.61) and (6.62). Here, τ110 or τ11̄0 define the boundary faces
of the cavity in the [110] or [11̄0] direction, j110 = 1, 2, ..., N110 − 1, and
j11̄0 = 1, 2, ..., N11̄0 − 1. Λ̂n(k̂; τ110) is the surface-like band structure in a
quantum film with the film plane oriented in the [110] direction. Λ̂n(k̂; τ11̄0) is
the surface-like band structure in a quantum film with the film plane oriented
in the [11̄0] direction.

For each bulk energy band n, there is one side-like subband in the cav-
ity structure with energy Λ̄sd

n (k̄; τ110, τ11̄0) depending on both τ110 and τ11̄0,
similar to (6.63).

B.3.4 Wire Cavities with (010) and (001) Surfaces in bcc Crystals

A cavity structure with (010) and (001) surfaces in bcc crystals is a structure
formed when a [100] quantum wire is removed from an infinite crystal with a
bcc Bravais lattice. The removed quantum wire has (010) and (001) surfaces
and has a rectangular cross section N010a × N001a, where N010 and N001 are
two positive integers.

For each bulk energy band n, there are (N001 −1)+(N010 −1) surface-like
subbands in the cavity structure. They are (N001 −1) subbands with energies

Λ̄sf,a1
n,j001

(k̄; τ010) = Λ̂n

[
k̄ +

j001π

N001a
(0, 0, 1); τ010

]
(B.17)

and (N010 − 1) subbands with energies

Λ̄sf,a2
n,j010

(k̄; τ001) = Λ̂n

[
k̄ +

j010π

N010a
(0, 1, 0); τ001

]
, (B.18)
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similar to (6.69) and (6.70). Here, τ010 or τ001 define the boundary faces
of the cavity in the [010] or [001] direction, j001 = 1, 2, ..., N001 − 1, and
j010 = 1, 2, ..., N010 − 1. Λ̂n(k̂; τ001) is the surface-like band structure in a
quantum film with the film plane oriented in the [001] direction. Λ̂n(k̂; τ010) is
the surface-like band structure in a quantum film with the film plane oriented
in the [010] direction.

For each bulk energy band n, there is one side-like subband in the cav-
ity structure with energy Λ̄sd

n (k̄; τ001, τ010) depending on both τ001 and τ010,
similar to (6.71).

B.4 Electronic States in Ideal Zero-Dimensional Cavity
Structures of Three-Dimensional Crystals

A zero-dimensional cavity structure in a three-dimensional infinite crystal is
a structure formed when a quantum dot is removed from the infinite crystal.
In this section, we are only interested in ideal cavity structures where an
orthorhombic quantum dot investigated in Chapter 7 is removed from an
infinite crystal.

Such an orthorhombic cavity can be defined by a bottom face x3 = τ3, a
top face x3 = τ3 + N3, a front face perpendicularly intersecting the a2 axis
at τ2a2 and a rear face perpendicularly intersecting it at (τ2 + N2)a2, and
a left face perpendicularly intersecting the a1 axis at τ1a1 and a right face
perpendicularly intersecting it at (τ1 + N1)a1; here, τ1, τ2, and τ3 define the
boundary faces of the cavity and N1, N2, and N3 are three positive integers
indicating the cavity size and/or shape. We look for the eigenvalues Λ and
eigenfunctions ψ(x) of the following two equations:

−∇2ψ(x) + [v(x) − Λ]ψ(x) = 0 if x /∈ the cavity (B.19)

and

ψ(x) = 0 if x ∈ the cavity. (B.20)

There are different types of electronic state solutions of (B.19) and (B.20).
As in Sections B.1–B.3, in this section we are only interested in the solutions
of (B.19) and (B.20) whose energies are dependent on the cavity boundary
τ1, τ2, and/or τ3. Based on similar arguments we had in Chapters 5–7 and in
Sections B.1–B.3, we can easily understand that the electronic states whose
energies are dependent on one of the cavity boundary locations τ1, τ2, or
τ3 are surface-like states in the cavity structure; they are located near the
opposite surface of the cavity structure in comparison with the corresponding
surface-like states in the removed quantum dot: If there is a surface-like state
located near one specific surface in the removed quantum dot, then there
is a corresponding surface-like state located near the opposite surface of the
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cavity. The electronic states whose energies are dependent on two of the cavity
boundary locations τ1, τ2, or τ3 are side-like states in the cavity structure;
they are located near the opposite side of the cavity in comparison with the
corresponding side-like states in the removed quantum dot. The electronic
states whose energies are dependent on all three cavity boundary locations
τ1, τ2, and τ3 are corner-like states in the cavity structure; they are located
near the opposite corner of the cavity in comparison with the corresponding
corner-like states in the removed quantum dot.

B.4.1 Dot Cavities in Crystals with a sc, tetr, or ortho Bravais
Lattice

For such a cavity structure with a size N1a1 in the a1 direction, a size N2a2
in the a2 direction, and a size N3a3 in the a3 direction in a crystal with a
sc, tetr, or ortho Bravais lattice, for each bulk energy band there are (N1 −
1)(N2 − 1) + (N2 − 1)(N3 − 1) + (N3 − 1)(N1 − 1) surface-like states, (N1 −
1)+(N2 −1)+(N3 −1) side-like states, and one corner-like state in the cavity
structure. They are as follows:
(N1 − 1)(N2 − 1) surface-like states with energies

Λn,j1,j2(τ3) = Λ̂n

[
j1π

N1
b1 +

j2π

N2
b2; τ3

]
; (B.21)

(N2 − 1)(N3 − 1) surface-like states with energies

Λn,j2,j3(τ1) = Λ̂n

[
j2π

N2
b2 +

j3π

N3
b3; τ1

]
; (B.22)

(N3 − 1)(N1 − 1) surface-like states with energies

Λn,j3,j1(τ2) = Λ̂n

[
j3π

N3
b3 +

j1π

N1
b1; τ2

]
; (B.23)

(N1 − 1) side-like states with energies

Λn,j1(τ2, τ3) = Λ̄n

[
j1π

N1
b1; τ2, τ3

]
; (B.24)

(N2 − 1) side-like states with energies

Λn,j2(τ3, τ1) = Λ̄n

[
j2π

N2
b2; τ3, τ1

]
; (B.25)

(N3 − 1) side-states with energies

Λn,j3(τ1, τ2) = Λ̄n

[
j3π

N3
b3; τ1, τ2

]
; (B.26)
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one corner state with energy Λn(τ1, τ2, τ3) depending all three τ1, τ2, and τ3,
similar to (7.40)–(7.46).
Here j1 = 1, 2, ..., N1 − 1, j2 = 1, 2, ..., N2 − 1, and j3 = 1, 2, ..., N3 − 1. τ1,
τ2, and τ3 define the boundary faces of the cavity in the a1, a2, and a3
directions. Λ̂n[k̂; τl] is the surface-like band structure of a quantum film with
the film plane oriented in the al direction. Λ̄n[k̄; τl, τm] is the side-like band
structure of a rectangular quantum wire with the wire faces oriented in the
al or the am direction.

Probably the practically more interesting cases are the cavity structures in
crystals with a fcc or bcc Bravais lattice. Similar to what was done in Sections
B.1–B.3, electronic states in those cavity structures can be obtained.

B.4.2 Dot Cavities with (11̄0), (110), and (001) Surfaces in fcc
Crystals

For a cavity structure in crystals with a fcc Bravais lattice, if the cavity
has (001), (110), and (11̄0) surfaces and has an orthorhombic size N001a ×
N110a/

√
2 × N11̄0a/

√
2, the boundary-dependent electronic states in such a

cavity structure can be obtained similar to the boundary-dependent electronic
states in an ideal quantum dot obtained in Section 7.7.

For each bulk energy band n, there are (N001 − 1)(N11̄0 − 1) + (N110 −
1)(N001 −1)+(N11̄0 −1)(N110 −1) surface-like states in the cavity structure.
They are as follows:
(N001 − 1)(N11̄0 − 1) states with energies

Λsf,a1
n,j001,j11̄0

(τ110) = Λ̂n

[
j001π

N001a
(0, 0, 1) +

j11̄0π

N11̄0a
(1,−1, 0); τ110

]
; (B.27)

(N110 − 1)(N001 − 1) states with energies

Λsf,a2
n,j110,j001

(τ11̄0) = Λ̂n

[
j110π

N110a
(1, 1, 0) +

j001π

N001a
(0, 0, 1); τ11̄0

]
; (B.28)

(N11̄0 − 1)(N110 − 1) states with energies

Λsf,a3
n,j11̄0,j110

(τ001) = Λ̂n

[
j11̄0π

N11̄0a
(1,−1, 0) +

j110π

N110a
(1, 1, 0); τ001

]
, (B.29)

similar to (7.57)–(7.59).
Here, j001 = 1, 2, ..., N001−1, j11̄0 = 1, 2, ..., N11̄0−1, and j110 = 1, 2, ..., N110−
1. τ110, τ11̄0, or τ001 define the boundary faces of the cavity in the [110], [11̄0],
or [001] direction, Λ̂n[k̂; τl] is the surface-like band structure of a quantum
film with the film plane oriented in the [l] direction. l can be either one of
110, 11̄0, or 001, .

For each energy band n, there are (N001 − 1) + (N110 − 1) + (N11̄0 − 1)
side-like states in the cavity structure. They are as follows:
(N001 − 1) states with energies
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Λsd,a1
n,j001

(τ11̄0, τ110) = Λ̄n

[
j001π

N001a
(0, 0, 1); τ11̄0, τ110

]
; (B.30)

(N110 − 1) states with energies

Λsd,a2
n,j110

(τ11̄0, τ001) = Λ̄n

[
j110π

N110a
(1, 1, 0); τ11̄0, τ001

]
; (B.31)

(N11̄0 − 1) states with energies

Λsd,a3
n,j11̄0

(τ001, τ110) = Λ̄n

[
j11̄0π

N11̄0a
(1,−1, 0); τ001, τ110

]
, (B.32)

similar to (7.60)–(7.62).
Here, Λ̄n[k̄; τl, τm] is the side-like band structure of a rectangular quantum
wire with the wire faces oriented in the [l] or the [m] direction. l and m can
be two of 001, 110, and 11̄0.

For each bulk energy band n, there is one corner state in the cavity struc-
ture with energy Λcr

n (τ001, τ11̄0, τ110) depending all three τ001, τ11̄0, and τ110,
similar to (7.63).

B.4.3 Dot Cavities with (100), (010), and (001) Surfaces in bcc
Crystals

For a cavity structure in crystals with a bcc Bravais lattice, if the cavity has
(100), (010), and (001) surfaces and has an orthorhombic size N100a×N010a×
N001a, the boundary-dependent electronic states in the cavity structure can
be obtained similar to the boundary-dependent electronic states in an ideal
quantum dot obtained in Section 7.8.

For each bulk energy band n, there are (N100 − 1)(N010 − 1) + (N010 −
1)(N001 −1)+(N001 −1)(N100 −1) surface-like states in the cavity structure.
They are as follows:
(N010 − 1)(N001 − 1) states with energies

Λsf,a1
n,j010,j001

(τ100) = Λ̂n

[
j010π

N010a
(0, 1, 0) +

j001π

N001a
(0, 0, 1); τ100

]
; (B.33)

(N001 − 1)(N100 − 1) states with energies

Λsf,a2
n,j001,j100

(τ010) = Λ̂n

[
j001π

N001a
(0, 0, 1) +

j100π

N100a
(1, 0, 0); τ010

]
; (B.34)

(N100 − 1)(N010 − 1) states with energies

Λsf,a3
n,j100,j010

(τ001) = Λ̂n

[
j100π

N100a
(1, 0, 0) +

j010π

N010a
(0, 1, 0); τ001

]
, (B.35)
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similar to (7.73)–(7.75).
Here, j100 = 1, 2, ..., N100−1, j010 = 1, 2, ..., N010−1, and j001 = 1, 2, ..., N001−
1. τ100, τ010, or τ001 define the boundary faces of the cavity in the [100], [010],
or [001] direction, Λ̂n[k̂; τl] is the surface-like band structure of a quantum
film with the film plane oriented in the [l] direction. l can be either one of
100, 010, or 001.

For each bulk energy band n, there are (N100−1)+(N010−1)+(N001−1)
side-like states in the cavity structure. They are as follows:
(N100 − 1) side-like states with energies

Λsd,a1
n,j100

(τ010, τ001) = Λ̄n

[
j100π

N100a
(1, 0, 0); τ010, τ001

]
; (B.36)

(N010 − 1) side-like states with energies

Λsd,a2
n,j010

(τ001, τ100) = Λ̄n

[
j010π

N010a
(0, 1, 0); τ001, τ100

]
; (B.37)

(N001 − 1) side-like states with energies

Λsd,a3
n,j001

(τ100, τ010) = Λ̄n

[
j001π

N001a
(0, 0, 1); τ100, τ010

]
, (B.38)

similar to (7.76)–(7.78).
Here, Λ̄n[k̄; τl, τm] is the side-like band structure of a rectangular quantum
wire with the wire faces oriented in the [l] or the [m] direction. l and m can
be two of 100, 010, and 001.

For each bulk energy band n, there is one corner state in the cavity struc-
ture with energy Λcr

n (τ100, τ010, τ001) depending all three τ100, τ010, and τ001,
similar to (7.79).
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