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  ...إلى قارئ ھذا الكتاب ، تحية طيبة وبعد 

حقيقياً في عالم يعج بالأبحاث والكتب والمعلومات، وأصبح العلم معياراً نعيش لقد أصبحنا 
حلاً شبه  بدورهوقد أمسى لتفاضل الأمم والدول والمؤسسات والأشخاص على حدٍّ سواء، 

، فالبيئة تبحث عن حلول، وصحة الإنسان تبحث عن دة وخطورةاكل العالم حوحيدٍ لأكثر مش
الطاقة والغذاء حلول، والموارد التي تشكل حاجة أساسية للإنسان تبحث عن حلول كذلك، و

فأين نحن من . ويحاول أن يجد الحلول لھاالآن والماء جميعھا تحديات يقف العلم في وجھھا 
   ھذا العلم ؟ وأين ھو منا؟

ن نوفر بين أيدي كل من حمل لأ www.4electron.comسعى في موقع عالم الإلكترون ن
من أدوات تساعده في ھذا الدرب، من  ما نستطيعالتحديات لى عاتقه مسيرة درب تملؤه ع

ء والأفكار العلمية مواضيع علمية، ومراجع أجنبية بأحدث إصداراتھا، وساحات لتبادل الآرا
والمرتبطة بحياتنا الھندسية، وشروحٍ لأھم برمجيات الحاسب التي تتداخل مع تطبيقات الحياة 
الأكاديمية والعملية، ولكننا نتوقع في نفس الوقت أن نجد بين الطلاب والمھندسين والباحثين 

مجتمعٍ يساھم  من يسعى مثلنا لتحقيق النفع والفائدة للجميع، ويحلم أن يكون عضواً في
   بتحقيق بيئة خصبة للمواھب والإبداعات والتألق، فھل تحلم بذلك ؟

رأيتھا في إحدى المواضيع حاول أن تساھم بفكرة، بومضة من خواطر تفكيرك العلمي، بفائدة 
تأكد بأنك ستلتمس الفائدة في كل . جانب مضيء لمحته خلف ثنايا مفھوم ھندسي ماالعلمية، ب

  ...رى غيرك يخطوھا معك خطوة تخطوھا، وت

، أخي القارئ، نرجو أن يكون ھذا الكتاب مقدمة لمشاركتك في عالمنا العلمي التعاوني
بكل الإمكانيات المتوفرة لديه جاھزاً  ww.4electron.com سيكون موقعكم عالم الإلكترونو

، أو طالب في علوم الھندسة قع الذي يبحث عنه كل باحثالبيئة والوا على الدوام لأن يحقق
  . ويسعى فيه للإفادة كل ساعٍ ، فأھلاً وسھلاً بكم 

  مع تحيات إدارة الموقع وفريق عمله
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1. INTRODUCTION 
Field Programmable Gate Arrays (FPGAs) are becoming a critical part of 

every system design. Many vendors offer many different architectures and 
processes. Which one is right for your design? How do you design one of these 
so that it works correctly and functions as you expect in your entire system? 
These are the questions that this paper sets out to answer. 

 
The first sections of this paper deals with the internal architecture and 

characteristics of these devices. Programmable logic devices are described in 
an overview, leading up to a detailed description of the Field Programmable 
Gate Array. The various architectures of these devices are examined in detail 
along with their tradeoffs, which allow you to decide which particular device 
is right for your design. 

 
The next sections of this paper is about the design flow for an FPGA-

based project. This section describes the phases of the design that need to be 
planned. This allows a designer or project manager to allocate resources and 
create a schedule. 

 
The final sections of this paper discuss in detail, the design, simulation, 

and testing issues that arise when designing an FPGA. Understanding these issues 
will allow you to design a chip that functions correctly in your system and will 
be reliable throughout the lifetime of your product. 

2. THE MASKED GATE ARRAY ASIC 
An Application Specific Integrated Circuit, or ASIC, is a chip that can be 

designed by an engineer with no particular knowledge of semiconductor physics 
or semiconductor processes. The ASIC vendor has created a library of cells and 
functions that the designer can use without needing to know precisely how 
these functions are implemented in silicon. The ASIC vendor also typically 
supports software tools that automate such processes as synthesis and circuit 
layout. The ASIC vendor may even supply application engineers to assist the 
ASIC design engineer with the task. The vendor then lays out the chip, creates 
the masks, and manufactures the ASICs. 

 
The gate array is an ASIC with a particular architecture that consists of 
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rows and columns of regular transistor structures. Each basic cell, or gate, 
consists of the same small number of transistors which are not connected. In 
fact, none of the transistors on the gate array are initially connected at all. The 
reason for this is that the connection is determined completely by the design 
that you implement. Once you have your design, the layout software figures out 
which transistors to connect. First, your low level functions are connected 
together. For example, six transistors could be connected to create a D flip-
flop. These six transistors would be located physically very close to each other.  
After your low level functions have been routed, these would in turn be 
connected together. The software would continue this process until the entire 
design is complete. This row and column structure is illustrated in Figure 1. 

 
The ASIC vendor manufactures many unrouted die which contain the 

arrays of gates and which it can use for any gate array customer. An integrated 
circuit consists of many layers of materials including semiconductor material 
(e.g., silicon), insulators (e.g., oxides), and conductors (e.g., metal). An 
unrouted die is processed with all of the layers except for the final metal layers 
that connects the gates together. Once your design is complete, the vendor 
simply needs to add the last metal layers to the die to create your chip, using 
photomasks for each metal layer. For this reason, it is sometimes referred to as 
a Masked Gate Array to differentiate it from a Field Programmable Gate Array. 

 

 
Figure 1 Masked Gate Array Architecture 

3. THE EVOLUTION OF PROGRAMMABLE DEVICES 
Programmable devices have gone through a long evolution to reach the 

complexity that they have today. The following sections give an approximately 
chronological discussion of these devices from least complex to most complex. 
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3.1 Programmable Read Only Memories (PROMs) 

Programmable Read Only Memories, or PROMs, are simply memories that 
can be inexpensively programmed by the user to contain a specific pattern. 
This pattern can be used to represent a microprocessor program, a simple 
algorithm, or a state machine. Some PROMs can be programmed once only. 
Other PROMs, such as EPROMs or EEPROMs can be erased and programmed 
multiple times. 

 
PROMs are excellent for implementing any kind of combinatorial logic 

with a limited number of inputs and outputs. For sequential logic, external 
clocked devices such as flip-flops or microprocessors must be added. Also, 
PROMs tend to be extremely slow, so they are not useful for applications where 
speed is an issue. 

3.2 Programmable Logic Arrays (PLAs) 

Programmable Logic Arrays (PLAs) were a solution to the speed and input 
limitations of PROMs. PLAs consist of a large number of inputs connected to an 
AND plane, where different combinations of signals can be logically ANDed 
together according to how the part is programmed. The outputs of the AND 
plane go into an OR plane, where the terms are ORed together in different 
combinations and finally outputs are produced. At the inputs and outputs there 
are typically inverters so that logical NOTs can be obtained. These devices can 
implement a large number of combinatorial functions, though not all possible 
combinations like a PROM can. However, they generally have many more inputs 
and are much faster. 

 
  

AND 
plane 

 

OR 
plane 

Inputs

Outputs 
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Figure 2 PLA Architecture 

3.3 Programmable Array Logic (PALs) 

The Programmable Array Logic (PAL) is a variation of the PLA. Like the 
PLA, it has a wide, programmable AND plane for ANDing inputs together. 
However, the OR plane is fixed, limiting the number of terms that can be ORed 
together. Other basic logic devices, such as multiplexers, exclusive ORs, and 
latches are added to the inputs and outputs. Most importantly, clocked 
elements, typically flip-flops, are included. These devices are now able to 
implement a large number of logic functions including clocked sequential logic 
need for state machines. This was an important development that allowed PALs 
to replace much of the standard logic in many designs. PALs are also extremely 
fast. 

 
Figure 3 PAL Architecture 

3.4 CPLDs and FPGAs 

Ideally,  though, the hardware designer wanted something that gave him 
or her the flexibility and complexity of an ASIC but with the shorter turn-around 
time of a programmable device. The solution came in the form of two new 
devices - the Complex Programmable Logic Device (CPLD) and the Field 
Programmable Gate Array. As can be seen in Figure 4, CPLDs and FPGAs bridge 
the gap between PALs and Gate Arrays. CPLDs are as fast as PALs but more 
complex. FPGAs approach the complexity of Gate Arrays but are still 

www.4electron.com



  Introduction to FPGA Design 

 5

programmable. 

 
Figure 4 Comparison of CPLDs and FPGAs 

3.5 Complex Programmable Logic Devices (CPLDs) 

Complex Programmable Logic Devices (CPLDs) are exactly what they 
claim to be. Essentially they are designed to appear just like a large number of 
PALs in a single chip, connected to each other through a crosspoint switch They 
use the same development tools and programmers, and are based on the same 
technologies, but they can handle much more complex logic and more of it. 

3.5.1 CPLD Architectures 

The diagram in Figure 5 shows the internal architecture of a typical 
CPLD. While each manufacturer has a different variation, in general they are all 
similar in that they consist of function blocks, input/output block, and an 
interconnect matrix. The devices are programmed using programmable 
elements that, depending on the technology of the manufacturer, can be 
EPROM cells, EEPROM cells, or Flash EPROM cells. 
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Figure 5 CPLD Architecture 

3.5.1.1 Function Blocks 
A typical function block is shown in Figure 6.  The AND plane still exists as 

shown by the crossing wires. The AND plane can accept inputs from the I/O 
blocks, other function blocks, or feedback from the same function block. The 
terms and then ORed together using a fixed number of OR gates, and terms are 
selected via a large multiplexer. The outputs of the mux can then be sent 
straight out of the block, or through a clocked flip-flop. This particular block 
includes additional logic such as a selectable exclusive OR and a master reset 
signal, in addition to being able to program the polarity at different stages. 

Usually, the function blocks are designed to be similar to existing PAL 
architectures, such as the 22V10, so that the designer can use familiar tools or 
even older designs without changing them.  
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Figure 6 CPLD Function Block 

3.5.1.2 I/O Blocks 
Figure 7 shows a typical I/O block of a CPLD. The I/O block is used to 

drive signals to the pins of the CPLD device at the appropriate voltage levels 
with the appropriate current. Usually, a flip-flop is included, as shown in the 
figure. This is done on outputs so that clocked signals can be output directly to 
the pins without encountering significant delay. It is done for inputs so that 
there is not much delay on a signal before reaching a flip-flop which would 
increase the device hold time requirement. Also, some small amount of logic is 
included in the I/O block simply to add some more resources to the device. 

 
Figure 7 CPLD Input/Output Block 
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3.5.1.3 Interconnect 
The CPLD interconnect is a very large programmable switch matrix that 

allows signals from all parts of the device go to all other parts of the device. 
While no switch can connect all internal function blocks to all other function 
blocks, there is enough flexibility to allow many combinations of connections. 

3.5.1.4 Programmable Elements 
Different manufacturers use different technologies to implement the 

programmable elements of a CPLD. The common technologies are Electrically 
Programmable Read Only Memory (EPROM), Electrically Erasable PROM 
(EEPROM) and Flash EPROM. These technologies are similar to, or next 
generation versions of, the technologies that were used for the simplest 
programmable devices, PROMs. 

3.5.2 CPLD Architecture Issues 

When considering a CPLD for use in a design, the following issues should 
be taken into account: 

1. The programming technology 
• EPROM, EEPROM, or Flash EPROM? This will determine the 

equipment needed to program the devices and whether they 
came be programmed only once or many times. 

2. The function block capability 
• How many function blocks are there in the device? 
• How many product and sum terms can be used? 
• What are the minimum and maximum delays through the logic? 
• What additional logic resources are there such as XNORs, ALUs, 

etc.? 
• What kind of register controls are available (e.g., clock 

enable, reset,  preset, polarity control)? How many are local 
inputs to the function block and how many are global, chip-
wide inputs? 

• What kind of clock drivers are in the device and what is the 
worst case skew of the clock signal on the chip. This will help 
determine the maximum frequency at which the device can 
run. 

3. The I/O capability 
• How many I/O are independent, used for any function, and 
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how many are dedicated for clock input, master reset, etc.? 
• What is the output drive capability in terms of voltage levels 

and current? 
• What kind of logic is included in an I/O block that can be used 

to increase the functionality of the design? 

3.5.3 Example CPLD Families 

Some CPLD families from different vendors are listed below: 
• Altera MAX 7000 and MAX 9000 families 
• Atmel ATF and ATV families 
• Lattice ispLSI family 
• Lattice (Vantis) MACH family 
• Xilinx XC9500 family 

3.6 Field Programmable Gate Arrays (FPGAs) 

Field Programmable Gate Arrays are called this because rather than 
having a structure similar to a PAL or other programmable device, they are 
structured very much like a gate array ASIC. This makes FPGAs very nice for use 
in prototyping ASICs, or in places where and ASIC will eventually be used. For 
example, an FPGA maybe used in a design that need to get to market quickly 
regardless of cost. Later an ASIC can be used in place of the FPGA when the 
production volume increases, in order to reduce cost. 

3.6.1 FPGA Architectures 
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Figure 8 FPGA Architecture 

Each FPGA vendor has its own FPGA architecture, but in general terms 
they are all a variation of that shown in Figure 8. The architecture consists of 
configurable logic blocks, configurable I/O blocks, and programmable 
interconnect. Also, there will be clock circuitry for driving the clock signals to 
each logic block, and additional logic resources such as ALUs, memory, and 
decoders may be available. The two basic types of programmable elements for 
an FPGA are Static RAM and anti-fuses. 

3.6.1.1 Configurable Logic Blocks 
Configurable Logic Blocks contain the logic for the FPGA. In a large grain 

architecture, these CLBs will contain enough logic to create a small state 
machine. In a fine grain architecture, more like a true gate array ASIC, the CLB 
will contain only very basic logic. The diagram in Figure 9 would be considered 
a large grain block. It contains RAM for creating arbitrary combinatorial logic 
functions. It also contains flip-flops for clocked storage elements, and 
multiplexers in order to route the logic within the block and to and from 
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external resources. The muxes also allow polarity selection and reset and clear 
input selection. 

 
Figure 9 FPGA Configurable Logic Block 

3.6.1.2 Configurable I/O Blocks 
A Configurable I/O Block, shown in Figure 10, is used to bring signals onto 

the chip and send them back off again. It consists of an input buffer and an 
output buffer with three state and open collector output controls. Typically 
there are pull up resistors on the outputs and sometimes pull down resistors. 
The polarity of the output can usually be programmed for active high or active 
low output and often the slew rate of the output can be programmed for fast or 
slow rise and fall times. In addition, there is often a flip-flop on outputs so that 
clocked signals can be output directly to the pins without encountering 
significant delay. It is done for inputs so that there is not much delay on a signal 
before reaching a flip-flop which would increase the device hold time 
requirement. 
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Figure 10 FPGA Configurable I/O Block 

3.6.1.3 Programmable Interconnect 
The interconnect of an FPGA is very different than that of a CPLD, but is 

rather similar to that of a gate array ASIC. In Figure 11, a hierarchy of 
interconnect resources can be seen. There are long lines which can be used to 
connect critical CLBs that are physically far from each other on the chip 
without inducing much delay. They can also be used as buses within the chip. 
There are also short lines which are used to connect individual CLBs which are 
located physically close to each other. There is often one or several switch 
matrices, like that in a CPLD, to connect these long and short lines together in 
specific ways. Programmable switches inside the chip allow the connection of 
CLBs to interconnect lines and interconnect lines to each other and to the 
switch matrix. Three-state buffers are used to connect many CLBs to a long 
line, creating a bus. Special long lines, called global clock lines, are specially 
designed for low impedance and thus fast propagation times. These are 
connected to the clock buffers and to each clocked element in each CLB. This 
is how the clocks are distributed throughout the FPGA. 
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Figure 11 FPGA Programmable Interconnect 

3.6.1.4 Clock Circuitry 
Special I/O blocks with special high drive clock buffers, known as clock 

drivers, are distributed around the chip. These buffers are connect to clock 
input pads and drive the clock signals onto the global clock lines described 
above. These clock lines are designed for low skew times and fast propagation 
times. As we will discuss later, synchronous design is a must with FPGAs, since 
absolute skew and delay cannot be guaranteed. Only when using clock signals 
from clock buffers can the relative delays and skew times be guaranteed. 

3.6.2 Small vs. Large Granularity 

Small grain FPGAs resemble ASIC gate arrays in that the CLBs contain only 
small, very basic elements such as NAND gates, NOR gates, etc. The philosophy 
is that small elements can be connected to make larger functions without 
wasting too much logic. In a large grain FPGA, where the CLB can contain two 
or more flip-flops, a design which does not need many flip-flops will leave 
many of them unused. Unfortunately, small grain architectures require much 
more routing resources, which take up space and insert a large amount of delay 
which can more than compensate for the better utilization.  
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Small Granularity Large Granularity 
better utilization fewer levels of logic 
direct conversion to ASIC less interconnect delay 

Table 1 Small vs. Large Grain FPGAs 

A comparison of advantages of each type of architecture is shown in 
Table 1 above. The choice of which architecture to use is dependent on your 
specific application. 

3.6.3 SRAM vs. Anti-fuse Programming 

There are two competing methods of programming FPGAs. The first, 
SRAM programming, involves small Static RAM bits for each programming 
element. Writing the bit with a zero turns off a switch, while writing with a 
one turns on a switch. The other method involves anti-fuses which consist of 
microscopic structures which, unlike a regular fuse, normally makes no 
connection. A certain amount of current during programming of the device 
causes the two sides of the anti-fuse to connect. 

 
The advantages of SRAM based FPGAs is that they use a standard 

fabrication process that chip fabrication plants are familiar with and are always 
optimizing for better performance. Since the SRAMs are reprogrammable, the 
FPGAs can be reprogrammed any number of times, even while they are in the 
system, just like writing to a normal SRAM. The disadvantages are that they are 
volatile, which means a power glitch could potentially change it. Also, SRAM-
based devices have large routing delays. 

 
The advantages of Anti-fuse based FPGAs are that they are non-volatile 

and the delays due to routing are very small, so they tend to be faster. The 
disadvantages are that they require a complex fabrication process, they require 
an external programmer to program them, and once they are programmed, they 
cannot be changed. 

3.6.4 Example FPGA Families 

Examples of SRAM based FPGA families include the following: 
• Altera FLEX family 
• Atmel AT6000 and AT40K families 
• Lucent Technologies ORCA family 
• Xilinx XC4000 and Virtex families 
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Examples of Anti-fuse based FPGA families include the following: 
• Actel SX and MX families 
• Quicklogic pASIC family 

3.7 Choosing Between CPLDs and FPGAs 

Choosing between a CPLD and an FPGA will depend on the 
characteristics and requirements of your project. A summary of the 
characteristics of each is show in Figure 12 below. 

 
 CPLD FPGA 
Architecture PAL-like Gate Array-like 
Density Low to medium 

12 22V10s or more 
Medium to high 

up to 1 million gates 
Speed Fast, predictable Application dependent 
Interconnect Crossbar Routing 
Power Consumption High Medium 

Figure 12 CPLDs vs. FPGAs 

4. THE DESIGN FLOW 
This section examines the design flow for any device, whether it is an 

ASIC, an FPGA, or a CPLD. This is the entire process for designing a device that 
guarantees that you will not overlook any steps and that you will have the best 
chance of getting back a working prototype that functions correctly in your 
system. The design flow consists of the steps in Figure 13. 
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Write a Specification

Design

Synthesize

Simulate

Resimulate

Place and Route

Chip Test

System Integration and Test

Specification Review

Design Review

Final Review

Ship product!  
Figure 13 Design Flow 

4.1 Writing a Specification 

The importance of a specification cannot be overstated. This is an 
absolute must, especially as a guide for choosing the right technology and for 
making your needs known to the vendor. As specification allows each engineer 
to understand the entire design and his or her piece of it. It allows the engineer 
to design the correct interface to the rest of the pieces of the chip. It also 
saves time and misunderstanding. There is no excuse for not having a 
specification. 

 
A specification should include the following information: 
• An external block diagram showing how the chip fits into the system. 
• An internal block diagram showing each major functional section. 
• A description of the I/O pins including 

⇒ output drive capability 
⇒ input threshold level 

• Timing estimates including 
⇒ setup and hold times for input pins 
⇒ propagation times for output pins 
⇒ clock cycle time 
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• Estimated gate count 
• Package type 
• Target power consumption 
• Target price 
• Test procedures 
 
It is also very important to understand that this is a living document. 

Many sections will have best guesses in them, but these will change as the chip 
is being designed. 

4.1.1 Choosing a Technology 

Once a specification has been written, it can be used to find the best 
vendor with a technology and price structure that best meets your 
requirements. 

4.1.2 Choosing a Design Entry Method 

You must decide at this point which design entry method you prefer. For 
smaller chips, schematic entry is often the method of choice, especially if the 
design engineer is already familiar with the tools. For larger designs, however, 
a hardware description language (HDL) such as Verilog or VHDL is used because 
of its portability, flexibility, and readability. When using a high level language, 
synthesis software will be required to “synthesize” the design. This means that 
the software creates low level gates from the high level description.  

4.1.3 Choosing a Synthesis Tool 

You must decide at this point which synthesis software you will be using 
if you plan to design the FPGA with an HDL. This is important since each 
synthesis tool has recommended or mandatory methods of designing hardware 
so that it can correctly perform synthesis. It will be necessary to know these 
methods up front so that sections of the chip will not need to be redesigned 
later on.  

 
At the end of this phase it is very important to have a design review. All 

appropriate personnel should review the decisions to be certain that the 
specification is correct, and that the correct technology and design entry 
method have been chosen. 

4.2 Designing the chip 
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It is very important to follow good design practices. This means taking 
into account the following design issues that we discuss in detail later in this 
paper. 

• Top-down design 
• Use logic that fits well with the architecture of the device you have 

chosen 
• Macros 
• Synchronous design 
• Protect against metastability 
• Avoid floating nodes 
• Avoid bus contention 

4.3 Simulating - design review 

Simulation is an ongoing process while the design is being done. Small 
sections of the design should be simulated separately before hooking them up 
to larger sections. There will be many iterations of design and simulation in 
order to get the correct functionality. 

 
Once design and simulation are finished, another design review must 

take place so that the design can be checked. It is important to get others to 
look over the simulations and make sure that nothing was missed and that no 
improper assumption was made. This is one of the most important reviews 
because it is only with correct and complete simulation that you will know that 
your chip will work correctly in your system. 

4.4 Synthesis 

If the design was entered using an HDL, the next step is to synthesize the 
chip.  This involves using synthesis software to optimally translate your register 
transfer level (RTL) design into a gate level design that can be mapped to logic 
blocks in the FPGA. This may involve specifying switches and optimization 
criteria in the HDL code, or playing with parameters of the synthesis software 
in order to insure good timing and utilization. 

4.5 Place and Route 

The next step is to lay out the chip, resulting in a real physical design for 
a real chip.  This involves using the vendor’s software tools to optimize the 
programming of the chip to implement the design. Then the design is 
programmed into the chip. 
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4.6 Resimulating - final review 

After layout, the chip must be resimulated with the new timing numbers 
produced by the actual layout. If everything has gone well up to this point, the 
new simulation results will agree with the predicted results. Otherwise, there 
are three possible paths to go in the design flow. If the problems encountered 
here are significant, sections of the FPGA may need to be redesigned. If there 
are simply some marginal timing paths or the design is slightly larger than the 
FPGA, it may be necessary to perform another synthesis with better constraints 
or simply another place and route with better constraints. At this point, a final 
review is necessary to confirm that nothing has been overlooked. 

4.7 Testing 

For a programmable device, you simply program the device and 
immediately have your prototypes. You then have the responsibility to place 
these prototypes in your system and determine that the entire system actually 
works correctly. If you have followed the procedure up to this point, chances 
are very good that your system will perform correctly with only minor 
problems. These problems can often be worked around by modifying the system 
or changing the system software. These problems need to be tested and 
documented so that they can be fixed on the next revision of the chip. System 
integration and system testing is necessary at this point to insure that all parts 
of the system work correctly together. 

 
When the chips are put into production, it is necessary to have some sort 

of burn-in test of your system that continually tests your system over some long 
amount of time. If a chip has been designed correctly, it will only fail because 
of electrical or mechanical problems that will usually show up with this kind of 
stress testing. 

5. DESIGN ISSUES 
In the next sections of this paper, we will discuss those areas that are 

unique to FPGA design or that are particularly critical to these devices. 

5.1 Top-Down Design 

Top-down design is the design method whereby high level functions are 
defined first, and the lower level implementation details are filled in later. A 
schematic can be viewed as a hierarchical tree as shown in Figure 14. The top 
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level block represents the entire chip. Each lower level block represents major 
functions of the chip. Intermediate level blocks may contain smaller 
functionality blocks combined with gate-level logic.  The bottom level contains 
only gates and macrofunctions which are vendor-supplied high level functions. 
Fortunately, schematic capture software and hardware description languages 
used for chip design easily allows use of the top-down design methodology. 

 

 
Figure 14 Top-Down Design 

Top-down design is the preferred methodology for chip design for 
several reasons. First, chips often incorporate a large number of gates and a 
very high level of functionality. This methodology simplifies the design task and 
allows more than one engineer, when necessary, to design the chip. Second, it 
allows flexibility in the design. Sections can be removed and replaced with a 
higher-performance or optimized designs without affecting other sections of 
the chip. 

 
Also important is the fact that simulation is much simplified using this 

design methodology. Simulation is an extremely important consideration in chip 
design since a chip cannot be blue-wired after production. For this reason, 
simulation must be done extensively before the chip is sent for fabrication. A 
top-down design approach allows each module to be simulated independently 
from the rest of the design. This is important for complex designs where an 
entire design can take weeks to simulate and days to debug. Simulation is 
discussed in more detail later in this paper. 

5.2 Keep the Architecture in Mind 
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Look at the particular architecture to determine which logic devices fit 
best into it. The vendor may be able to offer advice about this. Many synthesis 
packages can target their results to a specific FPGA or CPLD family from a 
specific vendor, taking advantage of the architecture to provide you with 
faster, more optimal designs. 

5.3 Synchronous Design 

One of the most important concepts in chip design, and one of the 
hardest to enforce on novice chip designers, is that of synchronous design. 
Once an chip designer uncovers a problem due to asynchronous design and 
attempts to fix it, he or she usually becomes an evangelical convert to 
synchronous design. This is because asynchronous design problems are due to 
marginal timing problems that may appear intermittently, or may appear only 
when the vendor changes its semiconductor process. Asynchronous designs that 
work for years in one process may suddenly fail when the chip is manufactured 
using a newer process. 

 
Synchronous design simply means that all data is passed through 

combinatorial logic and flip-flops that are synchronized to a single clock. Delay 
is always controlled by flip-flops, not combinatorial logic. No signal that is 
generated by combinatorial logic can be fed back to the same group of 
combinatorial logic without first going through a synchronizing flip-flop. Clocks 
cannot be gated - in other words, clocks must go directly to the clock inputs of 
the flip-flops without going through any combinatorial logic. 

 
The following sections cover common asynchronous design problems and 

how to fix them using synchronous logic. 

5.3.1 Race conditions 

Figure 15 shows an asynchronous race condition where a clock signal is 
used to reset a flip-flop. When SIG2 is low, the flip-flop is reset to a low state. 
On the rising edge of SIG2, the designer wants the output to change to the high 
state of SIG1. Unfortunately, since we don’t know the exact internal timing of 
the flip-flop or the routing delay of the signal to the clock versus the reset 
input, we cannot know which signal will arrive first - the clock or the reset. 
This is a race condition. If the clock rising edge appears first, the output will 
remain low. If the reset signal appears first, the output will go high. A slight 
change in temperature, voltage, or process may cause a chip that works 
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correctly to suddenly work incorrectly. A more reliable synchronous solution is 
shown in Figure 16. Here a faster clock is used, and the flip-flop is reset on the 
rising edge of the clock. This circuit performs the same function, but as long as 
SIG1 and SIG2 are produced synchronously - they change only after the rising 
edge of CLK - there is no race condition. 
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Figure 15 Asynchronous: Race Condition 
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Figure 16 Synchronous: No Race Condition 

5.3.2 Delay dependent logic 

Figure 17 shows logic used to create a pulse. The pulse width depends 
very explicitly on the delay of the individual logic gates. If the process should 
change, making the delay shorter, the pulse width will shorten also, to the 
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point where the logic that it feeds may not recognize it at all. A synchronous 
pulse generator is shown in Figure 18. This pulse depends only on the clock 
period. Changes to the process will not cause any significant change in the pulse 
width. 
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Figure 17 Asynchronous: Delay Dependent Logic 
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Figure 18 Synchronous: Delay Independent Logic 

5.3.3 Hold time violations 

Figure 19 shows an asynchronous circuit with a hold time violation. Hold 
time violations occur when data changes around the same time as the clock 
edge. It is uncertain which value will be registered by the clock. The circuit in 
Figure 20 fixes this problem by putting both flip-flops on the same clock and 
using a flip-flop with an enable input. A pulse generator creates a pulse that 
enables the flip-flop. 
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Figure 19 Asynchronous: Hold Time Violation 
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Figure 20 Synchronous: No Hold Time Violation 

5.3.4 Glitches 

A glitch can occur due to small delays in a circuit such as that shown in 
Figure 21. An inverting multiplexer contains a glitch when switching between 
two signals, both of which are high. Yet due to the delay in the inverter, the 
output goes high for a very short time. Synchronizing this output by sending it 
through a flip-flop as shown in Figure 22, ensures that this glitch will not appear 

www.4electron.com



  Introduction to FPGA Design 

 25

on the output and will not affect logic further downstream. 
D0

D1

SEL SEL

D0

SEL

D1

SEL

Z

Z

glitch
 

Figure 21 Asynchronous: Glitch 
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Figure 22 Synchronous: No Glitch 

5.3.5 Bad clocking 

Figure 23 shows an example of asynchronous clocking. This kind of 
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clocking will produce problems of the type discussed previously. The correct 
way to enable and disable outputs is not by putting logic on the clock input, but 
by putting logic on the data input as shown in Figure 24. 
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Figure 23 Asynchronous: Bad Clocking 
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Figure 24 Synchronous: Good Clocking 

5.3.6 Metastability 
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Figure 25 Metastability - The Problem 

One of the great buzzwords, and often misunderstood concepts, of 
synchronous design is metastability. Metastability refers to a condition which 
arises when an asynchronous signal is clocked into a synchronous flip-flop. While 
chip designers would prefer a completely synchronous world, the unfortunate 
fact is that signals coming into a chip will depend on a user pushing a button or 
an interrupt from a processor, or will be generated by a clock which is 
different from the one used by the chip. In these cases, the asynchronous signal 
must be synchronized to the chip clock so that it can be used by the internal 
circuitry. The designer must be careful how to do this in order to avoid 
metastability problems as shown in Figure 25. If the ASYNC_IN signal goes high 
around the same time as the clock, we have an unavoidable race condition. 
The output of the flip-flop can actually go to an undefined voltage level that is 
somewhere between a logic 0 and logic 1. This is because an internal transistor 
did not have enough time to fully charge to the correct level. This metalevel 
may remain until the transistor voltage leaks off or “decays”, or until the next 
clock cycle. During the clock cycle, the gates that are connected to the output 
of the flip-flop may interpret this level differently. In the figure, the upper 
gate sees the level as a logic 1 whereas the lower gate sees it as a logic 0. In 
normal operation, OUT1 and OUT2 should always be the same value. In this 
case, they are not and this could send the logic into an unexpected state from 
which it may never return. This metastability can permanently lock up your 
chip. 
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Figure 26 Metastability - The "Solution" 

The “solution” to this metastability problem is shown in Figure 26. By 
placing a synchronizer flip-flop in front of the logic, the synchronized input will 
be sampled by only one device, the second flip-flop, and be interpreted only as 
a logic 0 or 1. The upper and lower gates will both sample the same logic level, 
and the metastability problem is avoided. Or is it? The word solution is in 
quotation marks for a very good reason. There is a very small but non-zero 
probability that the output of the synchronizer flip-flop will not decay to a 
valid logic level within one clock period. In this case, the next flip-flop will 
sample an indeterminate value, and there is again a possibility that the output 
of that flip-flop will be indeterminate. At higher frequencies, this possibility is 
greater. Unfortunately, there is no certain solution to this problem. Some 
vendors provide special synchronizer flip-flops whose output transistors decay 
very quickly. Also, inserting more synchronizer flip-flops reduces the probability 
of metastability but it will never reduce it to zero. The correct action involves 
discussing metastability problems with the vendor, and including enough 
synchronizing flip-flops to reduce the probability so that it is unlikely to occur 
within the lifetime of the product. 
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Notice that each synchronizer flip-flop may delay the logic level change 
on the input by one clock cycle before it is recognized by the internal circuitry 
of the chip. Given that the external signal is asynchronous, by definition this is 
not a problem since the exact time that it is asserted will not be deterministic. 
If this delay is a problem, then most likely the entire system will need to be 
synchronized to a single clock. 

5.3.7 Allowable uses of asynchronous logic 

Now that I’ve gone through a long argument against asynchronous design, 
I will tell you the few exceptions that I have found to this rule. These 
exceptions, however, must be designed with extreme caution and only as a last 
resort when a synchronous solution cannot be found. 

5.3.7.1 Asynchronous reset 
There are times when an asynchronous reset is acceptable, or even 

preferred. If the vendor’s library includes asynchronously resettable flip-flops, 
the reset input can be tied to a master reset in order to reduce the routing 
congestion and to reduce the logic required for a synchronous reset. FPGAs and 
CPLDs will typically have master reset signals built into the architecture. Using 
these signals to reset state machines frees up interconnect for other uses. 

 
Asynchronous reset should be used only for resetting the entire chip and 

should not occur during normal functioning of the chip. After reset, you must 
ensure that the chip is in a stable state such that no flip-flops will change until 
an input changes. You must also ensure that the inputs to the chip are stable and 
will not change for at least one clock cycle after the reset is removed. 

5.3.7.2 Asynchronous latches on inputs 
Some buses, such as the VME bus, are designed to be asynchronous. In 

order to interface with these buses, it is necessary to use asynchronous latches 
to capture addresses or data. Once the data is captured, it must be 
synchronized to the internal clock. However, it is usually much more efficient 
to use asynchronous latches to capture the data initially. Unless your chip uses a 
clock which has a frequency much higher than that of the bus, attempting to 
synchronously latch these signals will cause a large amount of overhead and may 
actually produce timing problems rather than reduce them. 

5.4 Floating Nodes 
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Figure 27 Floating Nodes - The Problem 

Floating nodes, or internal nodes of a circuit which are not continually 
driven, should be avoided. An example of a potential floating node is shown in 
Figure 27. If signals SEL_A and SEL_B are both not asserted, signal OUT will float 
to an unknown level. Downstream logic may interpret OUT as a logic 1, a logic 
0, or it may produce a metastable state. In addition, any CMOS circuitry that 
has OUT as an input will use up power since CMOS uses power when the input is 
in the threshold region. 

 
Two solutions to the floating node problem are shown in Figure 28. At 

the top, signal OUT is pulled up using an internal pull-up resistor. This ensures 
that when both select signals are not asserted, OUT will be pulled to a good 
logic level. The other solution, shown at the bottom of the figure, is to make 
sure that something is driving the output at all times. A third select is generated 
which drives the output to a good level when neither of the select signals are 
asserted. 

 
Figure 28 Floating Nodes - Solutions 

www.4electron.com



  Introduction to FPGA Design 

 31

5.5 Bus Contention 

 
Figure 29 Bus Contention - The Problem 

 
Figure 30 Bus Contention - The Solution 

Bus contention occurs when two outputs drive the same signal at the 
same time as shown in Figure 29. For obvious reasons, this is bad and reduces 
the reliability of the chip. If bus contention occurs even for short times during a 
clock cycle, after many clock cycles the possibility of damage to one of the 
drivers increases. The solution is to ensure that both drivers cannot be asserted 
simultaneously. This can be accomplished by inserting additional logic as shown 
in Figure 30. The ideal solution is to avoid tri-state drivers altogether, and use 
muxes whenever possible. 

5.6 One-Hot State Encoding 

For large grain FPGAs, which are the majority of architectures available, 
the normal method of designing state machines is not optimal. This is because 
the each CLB in an FPGA has one or more flip-flops, making for an abundance of 
flip-flops. For large combinatorial logic terms, however, many CLBs are often 
involved which means connecting these CLBs through slow interconnect. A 
typical state machine design, like the one shown in Figure 31, uses few flip-
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flops and much combinatorial logic. This is good for ASICs, bad for FPGAs. 

 
Figure 31 State Machine: Usual Method 

The better method of designing state machines for FPGAs is known as 
one-hot encoding, seen in Figure 32. Using this method, each state is 
represented by a single flip-flop, rather than encoded from several flip-flop 
outputs. This greatly reduces the combinatorial logic, since only one bit needs 
to be checked to see if the state machine is in a particular state. It is important 
to note that each state bit flip-flop needs to be reset when initialized, except 
for the IDLE state flip-flop which needs to be set so that the state machine 
begins in the IDLE state. 
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Figure 32 State Machine: One-Hot Encoding 

6. DESIGN FOR TEST (DFT) 
“Design for test” is a concept which means your chip is designed in such 

a way that testing it is easy. Test logic plays two roles. First, it helps debug a 
chip which has design flaws. Second, it can catch manufacturing problems. Both 
are particularly important for ASIC design because of the black box nature of 
ASICs where internal nodes are simply not accessible to you when there is a 
problem. These techniques are also applicable to CPLDs and FPGAs, many of 
which already have built-in test features. The following DFT techniques allow 
for better testing of a chip. While not all of these techniques need to be 
included in your design, those that are needed should be included at design 
time. DFT techniques should be taken into account during the design process 
rather than afterwards. Otherwise, circuits can be designed that are later found 
to be difficult, if not impossible, to test. 

 
One important consideration that can be overlooked, is that test logic is 

intended to increase the testability and reliability of your chip. If test logic 
becomes too large, it can actually decrease reliability because the test logic can 
itself have problems which cause the chip to malfunction. A rule of thumb is 
that test circuitry should not make up more than 10% of the logic of the entire 
chip. Similarly, if you spend more than 10% of your time designing and 
simulating your test logic independently of the functionality of the chip, then 
you have more test circuitry than you need. 
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6.1 Testing Redundant Logic 

The top of Figure 33 shows a circuit which has duplicated logic in order 
to increase the reliability of the design. However, since the circuit is not 
testable, the effect is not as useful as it could be. The circuit on the bottom 
shows how test lines can be added to allow the entire circuit to be tested. 

 
Figure 33 Testing Redundant Logic 

6.2 Initializing State Machines 

It is important that all state machines, and in fact all registers in your 
design be able to be initialized. This ensures that if a problem arises, the chip 
can be put into a known state from which to begin debugging. Also, for 
simulation purposes, simulation software needs to start out from a known state 
before useful results can be obtained. 

6.3 Observable Nodes 

As many nodes as possible in your chip design should be observable. In 
other words, it should be possible to determine the values of these nodes using 
the I/O pins of the chip. On the left side of Figure 34, an unobservable state 
machine is shown. On the right side, the state machine has been made 
observable by taking each state machine through a mux to an external pin. Test 
signals can be used to select which output is being observed. If no pins are 
available, the state bits can be muxed onto an existing pin which, during 
testing, is used to observe the state machine. This allows for much easier 
debugging of internal state machines. 
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Figure 34 Observable Nodes 

6.4 Scan Techniques 

Scan techniques, shown in Figure 35, allow the nodes of the chip to be 
scanned out so that they can be observed externally. There are two main scan 
techniques - full scan and boundary scan. Full scan is extremely flexible, 
especially since it can also allow values to be scanned into the chip so that you 
can start it from a known state. This is particularly useful if a problem occurs 
only after the chip has been operating for a long time. A state can be quickly 
scanned into the chip which corresponds to the state which would normally be 
reached after a long time in operation. The drawback of scan techniques are 
that they require a lot of software development to support. Also, if states are 
scanned into the chip, you must be careful not to scan in illegal states. It is 
possible to turn on multiple drivers to a single net internally which would 
normally not happen, but which would burn out the chip. Similarly, outputs 
must be disabled while the chip is being scanned since dangerous combinations 
of outputs may be asserted that can harm your system. There are other 
considerations, also, such as what to do with the clock and what to do with the 
rest of the system while the chip is being scanned. 
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Figure 35 Scan Methodology 

Boundary scan is somewhat easier to implement and does not add as 
much logic to the entire chip design. Boundary scan only scans nodes around the 
boundary of the chip, but not internal nodes. In this way, internal contention 
problems are avoided, although contention problems with the rest of the 
system still need to be considered. Boundary scan is also useful for testing the 
rest of your system, since the outputs can be toggled and the effect on the rest 
of the system observed. 

6.5 Built-In Self Test 

 
Figure 36 Built-In Self Test 

Another method of testing your chip is to put all of the test circuitry on 
the chip in such a way that the chip tests itself. This is called built-in self test 
or BIST. In this case, some circuitry inside the chip can be activated by 
asserting a special input or combination of inputs. This circuitry then runs a 
series of test on the chip. If the result of the tests does not match the 
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expected result, the chip signals that there is a problem. The details of what 
type of tests to run and how to signal a good or bad chip is left up to the 
designer. 

6.6 Signature Analysis 

Signature analysis involves putting a pseudo-random sequence of ones and 
zeroes into the chip and noting the ones and zeroes that come out. This output 
sequence is referred to as the chip’s signature. This type of testing can be 
accomplished with the chip in a normal mode of operation, but is usually 
performed in scan mode as described above. By repeating the same pseudo-
random series of bits, the resulting signature should be the same for each chip. 
Any chip that produces an incorrect signature is a bad chip. This type of testing 
is probabilistic and assumes that a pseudo-random sequence of events has a 
good chance of catching errors, which may not be true. However, it requires 
very little hardware to implement and can be used as a simple form of BIST. 

7. SIMULATION ISSUES 
Perhaps the most important phase of chip design, and the most often 

overlooked phase, is that of simulation. Simulation can save many frustrating 
hours debugging a chip in your system. Doing a good job at simulation uncovers 
errors before they are set in silicon, and can help determine that your chip will 
function correctly in your system. 

 
There are two main aspects of your design for which simulation is used 

to determine correctness - functionality and timing. Functionality refers to how 
the chip functions as a whole, and how it functions in your system. A chip 
which is designed to function as an Ethernet controller may function correctly 
on its own. In a system that requires an ATM controller, for example, it will not 
work at all. It is important to look not only at the functionality of the chip as an 
independent design, but also to test its functionality within the system in which 
it will be incorporated. 

 
The second aspect of your design which simulation examines is timing. 

Will your chip meet all of its timing requirements under all possible conditions? 
Are there any race conditions? Are the setup and hold time requirements met 
for each flip-flop? Do the I/O signals of the chip meet the timing requirements 
of the system? The following sections discuss ways of using timing to determine 
both correct functionality and correct timing. 
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7.1.1 Functional Simulation 

Functional simulation involves simulating the functionality of a device 
without taking the timing of the device into account. This type of simulation is 
important initially in order to get as many bugs out of the device as possible 
and to determine that the chip will work correctly in your system. During the 
first phases of simulation, you shouldn’t be very concerned about timing 
because it will change as the design changes. In fact, the final timing will not 
be known precisely until the layout is complete. Of course you need to know 
initially that, in general, the timing of the chip process can support the speed 
and the I/O requirements of your design. 

 
When performing functional simulation, a rough estimate of the amount 

of simulation to perform is called toggle coverage, which measures the 
percentage of flip-flops in the chip that change state during simulation. Many 
simulation packages will give you a number for the toggle coverage, and you 
should have 100 percent coverage before feeling good about the amount of 
simulation. This coverage can still leave many potential faults uncovered, but it 
signifies that each state machine has been simulated and no part of the circuit 
has gone unexamined. 

7.1.2 Static Timing Analysis 

Static timing analysis is a process that looks at a synchronous design and 
determines the highest operating frequency of the design which does not 
violate any setup and hold times. You can also use the static timing analysis 
software to specify a specific frequency, and the tool will list all paths that 
violate the timing requirements. These paths can then be adjusted to meet 
your requirements. Any asynchronous parts of your design (they should be few, 
if any) must be examined by hand. 

 
Static timing analysis, or some sort of timing analysis must be performed 

immediately before layout of your chip. At this point, the timing numbers will 
be estimates that take expected trace lengths into account. After layout, timing 
analysis must be performed again to determine that the real chip, with real 
trace lengths and delays, still meets you timing requirements. 

7.1.3 Timing Simulation 

This method of timing analysis is growing less and less popular. It involves 
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including timing information in a functional simulation so that the real behavior 
of the chip is simulated. The advantage of this kind of simulation, is that timing 
and functional problems can be examined and corrected. Also, asynchronous 
designs must use this type of analysis because static timing analysis only works 
for synchronous designs. This is another reason for designing synchronous chips 
only. 

 
As chips become larger, though, this type of compute intensive 

simulation takes longer and longer to run. Also, simulations can miss particular 
transitions that result in worst case results. This means that certain long delay 
paths never get evaluated and a chip with timing problems can pass timing 
simulation. If you do need to perform timing simulation, it is important to do 
both worst case simulation and best case simulation. The term “best case” can 
be misleading. It refers to a chip that, due to voltage, temperature, and 
process variations, is operating faster than the typical chip. However, hold 
time problems become apparent only during the best case conditions. 

8. CONCLUSION 
This paper has intended to present an overview of CPLD and FPGA 

technologies, and give guidelines for developing a chip based on my experience 
designing for a large number of companies and a large number of applications. If 
all of these guidelines are followed, the chances of creating a working chip in a 
short time at minimum expense is excellent. 
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