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1

Introduction

1.1 Background

The basis for the material in this book centers around research done in an
ongoing long-term project which focuses on the development of highly au-
tonomous unmanned aerial vehicle systems.! The actual platform which serves
as a case study for the research in this book will be described in detail later
in this chapter. Before doing that, a brief background of the motivations be-
hind this research will be provided. One of the main research topics in the
project is knowledge representation and reasoning and its use in UAv plat-
forms. A very strong constraint has been placed on the nature of research
done in the project where theoretical results, to the greatest extent possible,
should serve as a basis for tractable reasoning mechanisms for use in a fully
deployed autonomous UAV operating under soft real-time constraints associ-
ated with the types of mission scenarios envisioned. Considering that much of
the work with knowledge representation in this context focuses on application
domains where one can only hope for an incomplete characterization of such
domains, this methodological constraint has proven to be quite challenging
since, in essence, the focus is on tractable approximate and nonmonotonic
reasoning systems. As is well known, until recently, nonmonotonic formalisms
have had a notorious reputation for lack of tractable and scalable reasoning
systems. At an early stage, a decision was made to investigate a number of
standard nonmonotonic reasoning approaches and their combination with ap-
proximate reasoning techniques based on the use of rough set theory, or at the
very least, guided by intuitions from rough set theory. In addition, a decision
was also made to deal seriously with the sense/reasoning gap associated with
most state-of-the-art robotic systems where it is often the case that high-level
reasoning systems are not strongly grounded in the sensory data continually
generated by sensor platforms. Pragmatically, an effort has been made to

! Uav is an acronym for Unmanned Aerial Vehicles.
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4 1 Introduction

instantiate any new results in the context of traditional relational database
or deductive database technology, with the intention of integrating such sys-
tems on our experimental UAvV platforms as stand-alone services which can
be used by other autonomous functionality integrated in the UAv platforms.
An attempt has also been made to show how one could ground such reasoning
mechanisms in such systems through the use of machine learning techniques
for generating rough relations or classifiers which can then be embedded as
part of the knowledge representations stored in extended database format.

This book contains a cohesive, self-contained collection of many of the theo-
retical and applied research results that have been achieved so far, and which
for the most part pertain to nonmonotonic and approximate reasoning sys-
tems developed for the experimental UAv platforms. The work is far from
complete and the longer term goals have not yet been reached. That being
said, this book provides a foundation for continuing research along the lines
sketched above. Throughout the book, it is more or less assumed that the
background paradigm or framework in which approximate and nonmonotonic
reasoning systems can be embedded is that of an agent or multi-agent frame-
work. Although agent architectures are not developed in detail, it is assumed
that each agent will have one or more knowledge bases containing both sta-
tic and dynamic information about itself and its surrounding environment.
From this perspective, an agent can be either a software agent (or softbot),
or an actual physical artifact. In both cases, one would have to deal with
the sense/reasoning gap in order for knowledge representation and inference
mechanisms to be of practical use in such systems. In the following sections,
intelligent artifacts and the sense/reasoning gap are discussed in further detail
and an actual physical artifact used in our experimentation is described.

1.2 Intelligent Artifacts and Agents

The use of intelligent artifacts, both at the workplace and in the home, is
becoming increasingly more pervasive due to a number of factors which in-
clude the accessibility of the Internet/World-Wide-Web to the broad masses,
the drop in price and increase in capacity of computer processors and mem-
ory, and the integration of computer technology with telecommunications.
Intelligent artifacts are man-made physical systems containing computational
equipment and software that provide them with capabilities for receiving and
comprehending sensory data, for reasoning, and for performing rational action
in their environment. The spectrum of capabilities and the sophistication of
an artifact’s ability to interface to its environment and reason about it varies
with the type of artifact, its intended tasks, the complexity of the environment
in which it is embedded, and its ability to adapt its models of the environ-
ment at different levels of knowledge abstraction. Representative examples of
intelligent artifacts ranging from less to more complex would be mobile tele-
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phones, personal digital assistants (PDAs), softbots on the World-Wide-Web,
collections of distributed communicating artifacts which serve as components
of smart homes, mobile robots, unmanned aerial vehicles, and many more.

One unifying conceptual framework that can be used to view these increas-
ingly more complex integrated computer systems is as societies of agents (vir-
tually and/or physically embedded in their respective environments) with the
capacity to acquire information about their environments, structure the in-
formation and interpret it as knowledge, and use this knowledge in a rational
manner to enhance goal-directed behavior which is used to achieve tasks and
to function robustly in their dynamic and complex environments.

1.3 Knowledge Representation

An essential component in agent architectures is the agent’s knowledge rep-
resentation component which includes a variety of knowledge and data repos-
itories with associated inference mechanisms. The knowledge representation
component is used by the agent to provide it with models of its embedding
environment and of its own and other agent capabilities, in addition, to rea-
soning efficiently about them. It is becoming increasingly important to move
away from the notion of a single knowledge representation mechanism with
one knowledge source and inference method to multiple forms of knowledge
representation with several inference methods. This viewpoint introduces an
interesting set of complex issues related to the merging of knowledge from
disparate sources and the use of adjudication or conflict resolution policies to
provide coherence of knowledge sources (see also Chapter 9).

Due to the embedded nature of these agent societies in complex dynamic envi-
ronments, it is also becoming increasingly important to take seriously the gap
between access to low-level sensory data and its fusion and integration with
more qualitative knowledge structures. These signal-to-symbol transforma-
tions should be viewed as an on-going process with a great deal of feedback
between the levels of processing. In addition, because the embedding envi-
ronments are often as complex and dynamic as those faced by humans, the
knowledge representations which are used as models of the environment must
necessarily be partial, elaboration tolerant and approximate in nature.

Figure 1.1 provides a schematic of the sense/reasoning gap. In any robotic
system or complex agent system, there is a continual flow of data throw the
system and much processing along the way. As sensor data is input into an
agent system, more traditional sensor fusion techniques are used to construct
quantitative models used for navigation or to control manipulators. For so-
phisticated autonomous behavior, these models are not adequate due to the
limited temporal horizons assumed and the limited predictive or anticipa-
tory capability which can be derived from such models. Intelligent behavior
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Fig. 1.1. Sense/reasoning gap.

requires more complex qualitative models which are constructed from prop-
erties of entities and relations between entities. Such entities can be physical
or epistemic. Generally, neither complete information about entities, nor suf-
ficient and necessary conditions for relations are present in the models that
can be constructed from noisy and incomplete sensor data. So there is a flow
of data from and into quantitative to combined quantitative/qualitative to
qualitative structures which is a necessary part of any robotic architecture.

Research in this book is structured along the lines depicted in the figure, one
part which takes us from sensor data to relations of a quantitative/qualitative
nature and another part which takes us from these relations to more com-
plex qualitative knowledge representations useful for robotic agents. In re-
lated work, more pragmatic issues which deal with the practical distributed
data flow management through complex robotic architectures has been inves-
tigated, but will not be covered in this book.

Concept Acquisition and Fluid Knowledge Structures

Just as an agent’s surrounding environment is in flux, so are many of its
knowledge structures. For example approximate relations may initially be de-
fined with very weak sufficient and/or necessary conditions, but as the agent
learns more about its environment these conditions may be tightened and even
sometimes loosened. The grounding of approximate concepts and relations is
contextual and based on the quality and quantity of sensory data at hand.
Part of the approach pursued in this book, is to develop a framework for the
specification, implementation and management of fluid knowledge structures
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containing both quantitative and qualitative components, where the knowl-
edge structures are grounded in the embedding environments in which they are
used. We assume a fine granularity as a basis for concept acquisition, ground-
ing and knowledge structure design which is the result of using intuitions from
rough set theory.

Approximate reasoning can be made (self-)adaptive by applying machine
learning techniques and tuning various parameters with the goal to minimize
the sizes of boundary regions of relations. To do this, assume that certain
concepts which we call primitive concepts have been acquired through a ma-
chine learning process where learning samples are provided from sensor data
and approximations of concepts are induced from the data. One particularly
interesting approach to this is the use of rough set based supervised machine
learning techniques. It is important to emphasize that the induced concepts
are approximate in nature and fluid in the sense that additional machine
learning may modify the concept. In other words, concepts are inherently con-
textual and subject to elaboration and change in a number of ways. Primitive
concepts may change as new sensor data is acquired and fused with existing
data through diverse processes associated with particular sensory platforms.
At some point, constraints associated with other more abstract concepts hav-
ing dependencies with primitive concepts may influence the definition of the
primitive concept.

As an example of these ideas, take a situation involving an UAv operating
over a road and traffic environment. In this case, the meaning of concepts
such as fast or slow, small or large vehicle, near, far, or between, will have
a meaning different from that in another application with other temporal
and spatial constraints. Assuming these primitive concepts as given and that
they are continually re-grounded in changes in the operational environment
via additional machine learning or sensor fusion, we would then like to use
these primitive concepts as the ur-elements in our knowledge representation
structures. Since these ur-elements are inherently approximate, contextual
and elaboration tolerant in nature, any knowledge structure containing these
concepts should also inherit or be influenced by these characteristics. In fact,
there are even more primitive ur-elements in the system we envision which
can be used to define the primitive concepts themselves if a specific concept
learning policy based on rough sets is used. These are the elementary sets
used in rough set theory to define contextual approximations to sets. This
book investigates a number of techniques for grounding concepts and relations
through the use of machine learning techniques and using primitive concepts
and relations to construct more abstract approximate knowledge structures.

In the following sections, we will describe an experimental UAv platform in
detail which has been used in our experimentation and which has been the
driving force in developing the techniques in this book.
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1.4 The WITAS UAV Experimental Platform

One of the long-term goals for the use of the research results described in
this book is to use them as a basis for specifying, constructing and managing
a particular class of approximate knowledge structures in intelligent artifacts.
In our current research, the particular artifact we use as an experimental
platform is an unmanned aerial vehicle flying over operational environments
populated by traffic. In such scenarios, knowledge about both the environment
below and the unmanned aerial vehicle agent’s own epistemic state must be
acquired in a timely manner in order for the knowledge to be of use to the
agent while achieving its goals. Consequently, the results must provide for an
efficient implementation of both the knowledge structures themselves and the
inference mechanisms used to query these structures for information.

WiTas (pronounced vee-tas) is an acronym for the Wallenberg Information
Technology and Autonomous Systems Laboratory at Linkdping University,
Sweden. The WiTAs UAV Project was a long term project (1997-2005) with
the goal of designing, specifying and implementing the IT subsystem for an
intelligent autonomous aircraft and embedding it in an actual platform. Al-
though the W1TAS UAV project is finished, related work in the area will con-
tinue to be pursued. We have been using a Yamaha RMAX VTOL (vertical
take-off and landing system) developed by Yamaha Motor Company Ltd., as
a platform of choice.

An important part of the project involved identifying core functionalities re-
quired for the successful development of such systems and doing basic and
applied research in the areas identified. The topics associated with this book
fall under the umbrella of one such core functionality: approximate knowledge
structures and their associated inference mechanisms.

The project encompassed the design of a command and control system for a
Uav and its integration in a suitable deliberative/reactive architecture; the
design of high-level cognitive tasks, intermediate reactive behaviors, low-level
control-based behaviors and their integration with each other; the integration
of sensory capabilities with the command and control architecture, in par-
ticular the use of an active vision system; the development of hybrid, mode-
based low-level control systems to supervise and schedule control behaviors;
the signal-to-symbol conversions from sensory data to qualitative structures
used in mediating choice of actions and synthesizing plans to attain opera-
tional mission goals; and the development of the systems architecture for the
physical Uav platform.

In addition the project also encompassed the design and development of the
necessary tools and research infrastructure required to achieve the goals of the
project. This included the development of model-based distributed simulation
tools and languages used in the concurrent engineering required to move in-
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crementally from software emulation and simulation to the actual hardware
components used in the final product.

The operational environment used is over widely varying geographical terrain
with traffic networks and vehicle interaction of varying degrees of density.
Possible applications are emergency services assistance, monitoring and sur-
veillance, use of a UAV as a mobile sensory platform in an integrated real-time
traffic control system and photogrammetry applications. Figure 1.2 shows
a bird’s eye view of one of the operational environments and test flight areas
used in the project.

Fig. 1.2. Revinge Emergency Services Training Area in southern Sweden.

Much effort has gone into the development of useful ground control station
interfaces which encourage the idea of push-button missions, letting the sys-
tem itself plan and execute complex missions with as little effort as possible
required from the ground operator other than stating mission goals at a high-
level of abstraction and monitoring the execution of the ensuing mission.

An example of such a push-button mission that has been used as an appli-
cation scenario in our research is a combined monitoring/surveillance and
photogrammetry mission out in the field in an urban area with the goal of in-
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vestigating facades of building structures and gathering both video sequences
and photographs of building facades. For this experiment, we have used the
Yamaha RMAX helicopter system as a platform. Let’s assume the operational
environment is in an urban area with a complex configuration of building and
road structures. A number of these physical structures are of interest since
one has previously observed suspicious behavior and suspects the possibility
of terrorist activity. The goal of the mission is to investigate a number of these
buildings and acquire video and photos from each of the building’s facades. It
is assumed the UAv has a 3D model of the area and a GIS with building and
road structure information on-line.

The ground operator would simply mark building structures of interest on
a map display and press a button to generate a complete multi-segment mis-
sion that flies to each building, moves to waypoints to view each facade, posi-
tions the camera accordingly and begins to relay video and/or photographs.
The motion plans generated are also guaranteed to be collision-free from sta-
tic obstacles. If the ground operator is satisfied with the generated mission,
he or she simply clicks a confirm button and the mission begins. During the
mission, the ground operator has the possibility of suspending the mission to
take a closer look at interesting facades of buildings, perhaps taking a closer
look into windows or openings and then continuing the mission. This mis-
sion has been successfully executed robustly and repeatedly from take-off to
landing using the RMAX.

The UAv experimental platform offers an ideal environment for experimen-
tation with the knowledge representation framework we propose, because the
system architecture is rich with different types of knowledge representation
structures, the operational environment is quite complex and dynamic, and
signal-to-symbol transformations of data are an integral part of the archi-
tecture. In addition, much of the knowledge acquired by the Uav will be
necessarily approximate in nature. In several parts of the book, we will use
examples from this application domain to describe and motivate some of our
techniques. In the following sections, we provide a more detailed description
of the hardware and software components which make up the Uav platform
and which make such complex missions possible to execute autonomously.

1.4.1 The Hardware Platform

The WiTas Uav platform [48] is a slightly modified Yamaha RMAX helicopter
(Figure 1.3). It has a total length of 3.6 m (including main rotor) and is pow-
ered by a 21 hp two-stroke engine with a maximum takeoff weight of 95 kg.
The helicopter has a built-in attitude sensor (YAs) and an attitude control
system (YAcs). The hardware platform developed during the WiTas Uav
project is integrated with the Yamaha platform as shown in Figure 1.4. It
contains three PC104 embedded computers. The primary flight control (Prc)
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Fig. 1.3. The WiTAs RMAX helicopter in an urban environment.

system runs on a PIII (700Mhz), and includes a wireless Ethernet bridge,
a GPS receiver, and several additional sensors including a barometric altitude
sensor. The PFC is connected to the YAS and YACS, an image processing com-
puter and a computer for deliberative capabilities. The image processing (IPC)
system runs on the second PC104 embedded computer (PIII 700MHz), and
includes a color CcD camera mounted on a pan/tilt unit, a video transmitter
and a recorder (miniDV). The deliberative/reactive (DRC) system runs on the
third PC104 embedded computer (Pentium-M 1.4GHz) and executes all high-
end autonomous functionality. Network communication between computers is
physically realized with serial line RS232C and Ethernet. Ethernet is mainly
used for CORBA applications (see below), remote login and file transfer, while
serial lines are used for hard real-time networking.

1.4.2 The Software Architecture

A hybrid deliberative/reactive software architecture has been developed for
the Uav . Conceptually, it is a layered, hierarchical system with deliberative,
reactive and control components, although the system can easily support both
vertical and horizontal data and control flow. Figure 1.5 presents the func-
tional layer structure of the architecture and emphasizes its reactive-concentric
nature. Reactive task procedures (TPs) can call both deliberative and flight
control services concurrently.
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Fig. 1.4. On-board hardware schematic.

The software implementation is based on CORBA (Common Object Request
Broker Architecture), which is often used as middleware for object-based dis-
tributed systems. It enables different objects or components to communicate
with each other regardless of the programming languages in which they are
written, their location on different processors or the operating systems they
running on. A component can act as a client, a server or as both.

The functional interfaces to components are specified via the use of IDL (In-
terface Definition Language). The majority of the functionalities which are
part of the architecture can be viewed as CORBA objects or collections of
objects, where the communication infrastructure is provided by CORBA facil-
ities and other services such as real-time and standard event channels. This
architectural choice provides us with an ideal development environment and
versatile run-time system with built-in scalability, modularity, software relo-
catability on various hardware configurations, performance (real-time event
channels and schedulers), and support for plug-and-play software modules.

With respect to timing characteristics, the architecture can be divided into
two layers:
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Functional Layers:

_ - Control
_ Reactive

, Deliberative

TP — Task Procedure
DS — Deliberative Service

Fig. 1.5. Functional structure of the architecture.

1. the hard real-time part, which mostly deals with hardware and control
laws (also referred to as the Control Kernel)

2. the non real-time part, which includes deliberative services of the system
(also referred to as the High-level system) 2.

All three computers in our UAV platform (i.e., PFc, Ipc and DRC) have both
hard and soft real-time components but the processor time is assigned to them
in different proportions.

On one extreme, the PFC runs mostly hard real-time tasks with only min-
imum user space applications (e.g., SSH daemon for remote login). On the
other extreme, the DRC uses the real-time part only for device drivers and
real-time communication. The majority of processor time is spent on run-
ning the deliberative services. The deliberative services include, among oth-
ers, a Path Planner, a Task Procedure Execution Module, a Helicopter Server
which encapsulates the Control Kernel (CK) of the UAv system, a Task Plan-
ner, a Chronicle Recognition System, DyKnow (a data stream manager), A
Geographic Information System (GIS), and an Approximate Deductive Data-
base System. The latter is presented in this book.

The CK is a distributed real-time runtime environment and is used for access-
ing the hardware, implementing continuous control laws, and control mode
switching. Moreover, the CK coordinates the real-time communication be-
tween all three on-board computers as well as between CKs of other robotic

2 Note that distinction between the Control Kernel and the High-level system is
done based mainly on the timing characteristics and it does not exclude, for ex-
ample, placing some deliberative services (e.g., prediction) in the Control Kernel.
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systems. In our case, we perform multi-platform missions with two identical
RMAX helicopter platforms developed in the Wi1TAS UAv project. The CK is
implemented using C code. This part of the system uses the Real-Time Ap-
plication Interface (RTAI) which provides industrial-grade real time operating
system functionality. RTAI is a hard real-time extension to a standard Linux
kernel (Debian in our case) and has been developed at the Department of the
Aerospace Engineering of Politecnico di Milano (DIAPM).

The high-level part of the system has reduced timing requirements and is
responsible for coordinating the execution of reactive Task Procedures (TPs).
This part of the system uses CORBA as its distribution backbone. A TP is
a high-level procedural execution component which provides a computational
mechanism for achieving different robotic behaviors by using both deliberative
and control components in a highly distributed and concurrent manner.

The control and sensing components of the system are accessible for TPs
through the Helicopter Server which in turn uses an interface provided by
the Control Kernel. A TP can initiate one of the autonomous control flight
modes available in the Uav (i.e., take off, vision-based landing, hovering,
dynamic path following or reactive flight modes for interception and tracking).
The high-level deliberative services are accessible to TPs in a client-server
relationship, where the deliberative services such as the approximate database
service are wrapped as CORBA servers and have specific IDL interfaces for
access and use. Additionally, TPs can control the payload of the UAv platform
which currently consists of the video camera mounted on a pan-tilt unit. TPs
receive data delivered by the PrC and IPC computers, i.e., helicopter state
and camera system state (including image processing results), respectively.
The Helicopter Server on one side uses CORBA to be accessible by TPs or
other components of the system, on the other side it communicates through
shared memory with the HCSM based interface running in the real-time part
of the DRC software.

One of the challenges when working with such complex artifacts is to take
seriously all the hard and soft realtime constraints present in such systems in
addition to the noisy and incomplete sensor data which has to be integrated
with other qualitative data present in the system. Integrating knowledge rep-
resentation and reasoning components with such systems is a real challenge
and often influences the way one thinks of such functionalities from the theory
stage to application. The results in this book have been very much influenced
by this perspective.
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1.5 Book Structure

The book consists of three parts.

Part I (Chapters 2-5) collects background material needed in the rest of the
book. In Chapter 2 the reader will find a summary of set-theoretic notions,
a presentation of classical (propositional, first- and second-order) logic, to-
gether with fixpoint calculus and three-valued propositional logic, and a brief
exposition of basic notions of computational complexity. Chapter 3 provides
a short introduction to rough sets theory. This theory can be viewed as a foun-
dation of many solutions developed in this book. Chapter 4 is devoted to rela-
tional and deductive databases. In particular, we discuss here various queries
languages, including Datalog and Datalog with negation. Finally, Chapter 5
is a brief presentation of non-monotonic reasoning, with emphasis put on two
of the most prominent non-monotonic formalisms, namely default logic and
circumscription.

Part II (Chapters 6-11) provides a number of techniques that can be used to
represent knowledge on the basis of incomplete, imprecise and (sometimes) in-
correct information. It is assumed that this information is given in the form of
particular relations, extracted from sensor observations and various high-level
rules provided by an expert or by machine learning methods. In Chapter 6,
we study rough knowledge databases. These can be regarded as generaliza-
tions of classical databases, where classical relations have been replaced by
the rough ones. In Chapter 7, we show how crisp and rough knowledge can
be combined. We introduce here a notion of approrimation transducer which
provides a means of generating an approximate relation (the output) in terms
of other approximate relations (the input) using a logical theory specifying
relationships between the input and the output. In Chapter 8, we discuss
important logical concepts of weakest sufficient and strongest necessary con-
ditions. These notions can be used in many practical applications including
building communication interfaces between agents using different languages,
information hiding, knowledge compilation and abduction. Chapter 9 presents
the CAKE methodology which provides a means for constructing and visual-
izing complex inference patterns associated with rough relations and default
reasoning.®. In Chapter 10, we illustrate how CAKE can be used to formalize
a subset of default logic. Finally, in Chapter 11, we provide a small case study,
based on the WiTAs UAv application domain, to illustrate various knowledge
representation and reasoning techniques presented in the earlier chapters of
Part II.

Part IIT of the book (Chapters 12-15) is concerned with low-level knowledge
representation techniques and concepts, i.e., techniques and concepts which
are useful while extracting relations from sensor data. Chapter 12 introduces
the idea of an information granule. This concept forms a basis for granular

3 CAKE is an acronym for Computer Aided Knowledge Engineering.
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computing which, in turn, provides a bridge between data analysis tools and
logic-based approaches to knowledge representation. In Chapter 13, we dis-
cuss tolerance spaces which allow us to transform quantitative representations
of concepts based on a notion of similarity into quantitative representations
of concepts. Chapter 14 reviews a rough set approach to machine learning.
Finally, Chapter 15 is devoted to a case study showing a UAV learning process.

1.6 Related Work

Information about the WiTAS UAV project and its continuation can be found
at the following websites [216, 215]. [45] provides an overview on the project
as pertains to knowledge representation and UAvs and [47] provides an earlier
general overview of the project. [48, 122] describe the software architecture
used on the RMAX and [39, 123] describe the path following and vision-based
landing modes used by the RMAX, respectively. [156, 155, 235] describe work
with sample-based motion planning for Uavs.
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2

Basic Notions

2.1 BNF Notation

We define the syntax of various logical languages using BNF notation with
some commonly used additions. Elements (words) of the defined language
are called terminal symbols. Syntactic categories, i.e., sets of well-formed ex-
pressions are represented by non-terminal symbols and denoted by (Name),
where Name is the name of a category. Syntactic categories are defined over
non-terminal and terminal symbols using rules of the form:

(S) =By || Bz || ... || Ex

meaning that (S) is to be the least set of words containing only terminal sym-
bols and formed according to the expression Fy or Es or ... or Ey. Notation
{E7} is used to indicate that expression E can be repeated 0 or more times
and [E] denotes that expression E is optional, i.e., might or might not occur.

Note also that we use notation (X), where X is a set of elements, to denote
the syntactic category consisting of all elements of X.

Ezample 2.1.1. Assume we want to define arithmetic expressions containing
the variable z, the addition symbol 4+ and parentheses “(” and “).” Ter-
minal symbols are then z,+, (,). We use one non-terminal symbol, (Expr),
representing well-formed expressions. The following rule defines the syntactic
category (Expr), i.e., the set of all well-formed expressions:

(Bapr) == || (Expr) + (Expr){+(Expr)} || (Expr)).

Now, for instance, (z +z + ) + = is a well-formed expression, but x + (Expr)
is not, since (Expr) is not a terminal symbol. o

P. Doherty et al.: Knowledge Representation Techniques, Studfuzz 202, 17-38 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006
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2.2 Sets, Relations, Functions

We assume that the reader is familiar with the algebra of sets. As usual, we
write:

e () to denote the empty set
e w to denote the set of natural numbers
e R to denote the set of real numbers

e ¢ € A to mean that an individual e belongs to (or is a member, or is an
element of) the set A

e A C B to mean that A is a subset of B (A is included in B).

The set of all subsets of a set A is called the powerset of A and is denoted
by Pow(A). By DoM we denote a given universe. The cardinality of a set A
is denoted by |A|.> Sequences (tuples) of elements ay,...,a; are denoted by

<a13 .. '7ak>'

We also use the standard notation:

o —AY {a:a ¢ A} to denote the complement of A

e« A-BY {a:a € A and a ¢ B} to denote the difference of A and B,

. AUBdéf{a:aerraeB} to denote the union of A and B,

e ANBY {a:a € A and a € B} to denote the intersection of A and B,

o A; x...x A def {{a1,...,ar) : a1 € Ay,...,ax € Ag} to denote the
Cartesian product of sets Ay, ..., Ay, where k is a natural number. By A*
we denote the Cartesian product A x ... x A.
—_—

k times

By a multiset we understand a set that can contain many copies of the same
elements.

By a covering of a set A we understand a family { 4; };c; of non-empty subsets
of A, such that A = U A;. A covering {A;}ier is called a partition of the set

iel
A if and only if for all 4,5 € I, if i # j then A; N A; = 0.
For any natural number k, a k-argument relation over the sets Aq,..., Ay is

any subset of the Cartesian product A; X ... x Ag. A total relation over the
sets Ay, ..., Ay is the whole Cartesian product Ay x ... x Ag. By a k-argument
function f from Ay X ...x Ay to aset A, denoted by f: A1 X ... x Ay — A,

! Through this book we mainly deal with finite sets, where cardinality of a set is
simply the number of elements of the set.
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we mean a relation over Ay X ... X Ap x A such that for any (aq,...,a;) €
Aj X ... x A there is exactly one a € A such that (ay,...,ax,a) € f. We call
such an a a value of f and denote it by f(a1,...,ax).

By a composition of binary relations R; and Ry we mean the relation

Ri; Ry et {{a,b) | there is ¢ such that {a,c) € R; and {c,b) € Ro}.

Many relations, defined on a set, say A, may satisfy some important properties.
Among those properties, perhaps the most frequently occurring are specified
below, where the symbol < stands for the considered relation,

o reflexivity: forallz € A, z <=z

o symmetry: for all x,y € A, if z <y theny <z

o anti-symmetry: for all x,y € A, if z <y and y < x then z =y
o transitivity: for all z,y,z € A, if r <y and y < z then z < z
o linearity: for all z,y € A, x <y ory < x.

By an equivalence relation on a set A we understand any binary relation R
which is reflexive, symmetric and transitive. Equivalence relations provide us
with a partition of a given set into subsets, called equivalence classes in such
a way that each equivalence class contains elements equivalent w.r.t. a given
relation. Let 2 be an equivalence relation on A. Then for a € A, by [a]~
we denote the equivalence class of all elements equivalent to a, i.e., the set

{e € A: e ™ a}. By A/ = we denote the set of all equivalence classes of

elements of A, ie., A/ def {la]l~ | a € A}.

Ezxample 2.2.1. The most common equivalence relation is the equality rela-
tion =. Its equivalence classes contain singletons.

Equivalence relations are often used in order to abstract from irrelevant fea-
tures of objects. For instance, in order to classify persons by age, one can define
the following equivalence relation ~ on the set Per of persons (assuming that
a function age : Per — w is given), where p,p’ € Per:

p ~ p’ if and only if age(p) = age(p’).

Equivalence classes of relation ~ consist of persons of the same age, belonging
to Per. O

Among relations, orderings play an important role. By a partial order on a set
A we shall understand any binary relation < which is reflexive, anti-symmetric
and transitive. By a < b we shall mean that a < b and a # b. The order <
is often referred to as strict partial order. If a partial order is linear, then we
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say that it is a linear order on A. A strict partial order satisfying the linearity
condition is called a strict linear order.

We often use the notion of the transitive closure of a binary relation R, denoted
by Tc(R), and defined as the least transitive relation containing R, i.e., the
least relation containing R and closed under the following condition:

Te(R)(x,y)
and imply Tc(R)(z, z).
Tc(R)(y, 2)

It is easily observed that the transitive closure over finite domains can al-
ternatively be defined by means of compositions of relation R with itself as
follows:

Te(R) = |J Ri...:R.

k>1 k times

The following example illustrates notions of orderings and transitive closure.

Ezample 2.2.2.

1. The inclusion relation C is a partial order on sets.
2. The standard relation < defined on real numbers is a linear order.

3. Consider a set Per containing persons. One can define a binary relation
Parent on Per, such that Parent(z,y) means that z is a parent of y. The
transitive closure, TC (Parent) defines the ancestor relation on set Per. o

By the reflexive closure of a binary relation R we understand relation
RU{(z,z) | z € Dom},
and by the symmetric closure of R, the relation

RU{(y, ) | (z,y) € R}.

2.3 Metric Spaces

One important concept used in this book is that of a distance. The concept
of distance is formally introduced by means of metric spaces.

A metric space is a pair (A, d), where A is a set and 0 is a function

0:AxA—TR
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which, for all z,y, z € A, satisfies:

0
=0 if and only if z = y (reflexivity)
6(y, =) (symmetry)

)

Any function § satisfying the above properties is called a metric for A and
d(xz,y) is called the distance between x and y.

If § is not required to satisfy the triangle law and satisfies the first three laws,
then (A, 0) is called a semi-metric space. In this case 0 is called a semi-metric
for A and 6(x,y) is called the semi-distance between x and y.

Ezxample 2.3.1.

1. An example of a metric space is (R, ), where R is the set of reals, and

o(z,y) & |z — y|, where |u| stands for the absolute value of w.

2. Another example is (R x R, dg), where

def
Sp((z,y), (@) = V(e — 22+ (y —y)>
The metric dg is called the Fuclidean metric.
3. Consider M = ({red, green, blue}, §), where ¢ is given by
0.0 forx =y
) def } 1.0 for x,y € {blue,green} and = # y

2.0 for z,y € {red,blue} and = # y
4.0 for z,y € {red, green} and x # y.

o(z,y

Then M is a semi-metric space and is not a metric space, since in this
case d(red, blue) +d(blue, green) # d(red, green), which violates the triangle
law. O

2.4 Computational Complexity

We consider time complexity and space complexity with the intuition that the
time complexity refers to the time spent during the computing process and
space complexity refers to the amount of memory used during the computing
process. We assume the sequential machine model.?

2 Observe that all reasonable models considered in the literature have the same
computational power with regards to the complexity classes we are interested in.
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In order to measure complexity, we need a parameter describing the input
size. We shall always assume that the input size is a natural number. Let
n € w be an input size and let f: w — w be a function. We shall deal with
the following complexity classes:

e DTME(f(n)), NTIME(f(n)) - problems solvable by deterministic (respec-
tively nondeterministic) algorithms in time < f(n)

e DSPACE(f(n)), NSPACE(f(n)) - problems solvable by deterministic (re-
spectively nondeterministic) algorithms in space < f(n).

The most important complexity classes considered in this book are:

PTive & U DTME(n*)
kew

NPTmve & U NTimE(nk)

kew

PSpace & |J DSpace(n*)

kew
LocSpace & DSpacki(log(n))

NLoGSpacE &' NSpace(log(n)).
Observe that
LoGSPACE C NLoGgSpACE C PTIME C NPTIME C PSPACE.

It is, however, unknown whether the inclusions are proper. Classes containing
complements of the problems of a given class are denoted using the prefix
CO- preceding the class name. For example, CO-NPTIME denotes the class of
complements of problems from NPTIME.

Classes PTIME and LOGSPACE are considered tractable. However, the classes
NPTIME and PSPACE are hypothesized to be intractable since no determin-
istic polynomial time algorithms for the latter classes are known.

By an oracle for a problem P we mean a querying mechanism giving answers to
instances of P. Each call to the oracle is regarded as a single step. If C, C" are
complexity classes, then by C[C’] we shall denote the class of problems with
complexity in class C, provided that an oracle for C’ is given. The complexity
classes forming the polynomial hierarchy, AL, P ITF | for k € w, are defined
as follows:

AP = xP — 1P ¥ prye

AP PTiME[ S]]

def

2l = NPTME[X]]
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p  def P
Iy = CO-2jyy.

It can be proved that, for all k£ € w, E,f, H,f, AkP C PSPACE. It is also known
that NPTIME, cO-NPTiME C X¥ N I1F.

We say that a problem @Q is polynomially reducible to a problem P if and only if
there is a deterministic polynomial time algorithm, Alg, which translates data
d for @ into data Alg(d) for P in such a way that d satisfies problem @
if and only if Alg(d) satisfies problem P. Given a complexity class C' we say
that a problem P is C-hard if all other problems in C are polynomially re-
ducible to P. P is called C-complete if it is C-hard and P € C.

The complexity classes considered so far are examples of classes of so-called
computable problems. Namely, we define computable problems as problems
for which algorithms exist that compute answers to the problems and always
terminate. However, in many areas of knowledge representation one deals with
even more complex problems. A particularly important class is that of partially
computable problems, i.e., problems for which there are algorithms answering
TRUE if the given data satisfy the problem and, in the opposite case providing
the answer FALSE or no answer at all (e.g., looping forever).> We further say
that a problem is uncomputable if it is not computable.*

In this book we shall always provide tractable machinery for solving the con-
sidered knowledge engineering problems. In fact, one of our primary goals is
to keep the complexity as low as possible, but still provide an expressive and
powerful formalism for knowledge representation and applications.

2.5 Propositional Calculus

2.5.1 Introduction and Definitions

Let V; be a set of propositional variables (or Boolean variables), i.e., variables
representing truth values TRUE, FALSE, standing for true and false, respec-
tively. The set {TRUE, FALSE} is denoted by BooL. We further assume that
truth values are ordered, FALSE < TRUE, and use min(...) and max(...) to
denote the minimum and maximum of a given set of truth values.

We build propositional formulas (sentences) from truth values and proposi-
tional variables by applying propositional connectives =, A, V, —, =, standing
for negation, conjunction, disjunction, implication and equivalence, respec-
tively. The set of propositional formulas is denoted by Fy. More formally, the
syntax of propositional formulas is defined by the following rules:

3 Of course, any computable problem is also partially computable.
4 In particular, partially computable problems might be uncomputable.
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(Fo) := (Boor) || (Vo) || =(Fo) || (Fo) A (Fo) || {(Fo) V (Fo) ||
(Fo) — (Fo) || {Fo) = (Fo) || ({Fo))

To make formulas easier to comprehend, the brackets () will be sometimes
replaced by [ ] or { }.

The semantics of propositional formulas is given by assigning truth values to
propositional variables and then calculating values of formulas. Let

v: Vo — BooL

be such an assignment (called a valuation of propositional variables). Then v
is extended to define the truth value of propositional formulas as follows:

o(-A TRUE if v(A) = FALSE
FALSE otherwise

) =

v(AA B) = min(v(A),v(B))
v(AV B) = max(v(A),v(B))
v(A — B) TRUE if and only if v(A) < v(B)
v(A = B) = TRUE if and only if v(A) = v(B).

A propositional formula A is satisfiable if there is a valuation v such that
v(A) = TRUE. It is a tautology if for all valuations v we have v(A) = TRUE.

By a propositional literal, we understand either a propositional variable, or
its negation, or a truth value from {TRUE, FALSE}. A literal is positive if it is
TRUE or a variable, and is negative if it is FALSE or the negation of a variable.
A propositional term is a conjunction of literals in which no propositional
variable appears more than once. A propositional clause is any disjunction of
propositional literals. A propositional Horn clause is a clause with at most one
positive literal. We say that a formula is in conjunctive normal form, CNF,
if it is a conjunction of clauses. It is in disjunctive normal form, DNF, if it
is a disjunction of terms.® a formula is in negation normal form, NNF, if any
negation occurs only in literals.

Any formula can be equivalently transformed into CNF, DNF and NNF. The
transformation, into CNF or DNF may exponentially increase the size of the
formula, while the transformation into NNF may increase or decrease the size
of the formula by a constant factor.

5 Note that we can always restrict ourselves to terms in which no variable appears
more than once: each repeated occurrence of a variable p can be removed from
a term, whereas any term including p and —p can be replaced by FALSE.
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2.5.2 Complexity of Reasoning

Theorem 2.5.1. The problem of checking satisfiability of propositional for-
mulas is NPTIME-complete. Checking whether a formula is a propositional
tautology is a CO-NPTIME-complete problem. m

Theorem 2.5.2. The problem of checking satisfiability of propositional Horn
clauses is in PTIME. 0

2.5.3 Prime Implicants

In this section, we introduce the idea of a prime implicant which plays a crucial
role in Chapter 14.

Definition 2.5.3. Let t be a term different from FALSE and suppose that A
is a formula. We say that t is an implicant of A if and only if the formula
t — A is a tautology. An implicant t of A is said to be prime if and only if no
proper subterm of t is an implicant of A. m

To provide a method of computing prime implicants, we need some terminol-
ogy. We say that a term t; absorbs a term t5 if and only if either ¢; is TRUE,
or ty is FALSE, or t; is a subterm of ¢5. For instance, the term a absorbs the
term a A l.

Let A be a formula in DNF. We write ABS(A) to denote the formula obtained
from A by deleting all absorbed terms. A and ABS(A) are equivalent.

Two terms are said to have an opposition if and only if one of them contains
a literal p and the other the literal —p. For instance, the terms —p A ¢ and
p A r have a single opposition, in the variable p.

Suppose that two terms, t; and t,, have exactly one opposition. Then the
consensus of t; and to, written cons(t1,t2), is the term obtained from the
conjunction t1 Ats by deleting the opposed variables, as well as any repeated
variables. For example, cons(—p A q,p A1) is gAr.

Let A be a formula. The Blake canonical form of A, written BCF(A), is the
formula obtained from A by the following construction:

1. replace A by its disjunctive normal form; denote the resulting formula
by B
2. repeat as long as possible:

if B contains a pair t; and ty of terms whose consensus exists and
no term of B is a subformula of cons(ty,t3), then
B := BV cons(t1, t2)
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3. take ABS(B). This is BCF(A).

Proposition 2.5.4.

1. Formulas A and BCF(A) are equivalent.

2. BCcr(A) is the disjunction of all prime implicants of A. o

The problem of transforming a formula into BCF is, in general, of a high com-
plexity. In particular, the problem of finding a prime implicant is NPTIME-
hard. Moreover, there can be exponentially many prime implicants for a given
formula.

Ezample 2.5.5. Let A be

[(=pV =gV r)A(=pVrVs)] = (mpAs).

The DNF form of A, denoted by B, is

(pAgA—T)V (pA—-rA-s)V (—pAs).

After performing Step (2) from the above construction, we get
(FpAS)V(pAgA-T)V(PA-TrA=8)V (gAsA—T). (2.1)

Since ABs(2.1) = (2.1), the formula (2.1) is the Blake canonical form of A.
Accordingly, prime implicants for formula A are:

pANS, pAgN—-r, pATr ADS, gN\NSN T

2.6 Predicate Calculus

2.6.1 Introduction and Definitions

Let V| be a set of individual variables representing values of some domain. In
order to define the language and semantics of predicate calculus (or, in other
words, first-order logic) we assume that we are given a set of function symbols
FuN = {f; : ¢ € I} and a set of relation symbols REL = {R; : j € J}, where
1,J are some finite sets. Functions and relations may have arguments. The
number of arguments is called the arity of the function or relation, respectively.
Functions and relations of arity 0 are called individual constants (or constants)
and Boolean constants, respectively. The set of individual constants is denoted
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by CONST. Symbols of arity 1 are usually called unary and of arity 2 are called
binary.5 The set of function symbols and relation symbols together with their
arities is called the signature or vocabulary.

Functional expressions in predicate calculus are represented by terms. We
define the set of terms, denoted by TERMS, by the following rule:

(TERMS) ::= (CONST) || (V) || (FuN)([{TERMS){, (TERMS)}])

where the number of terms which are arguments of the function symbol (FUN)
above is equal to the arity of the function symbol.

Terms without variables are called ground terms.

Atomic formulas are defined by means of the the following syntax rule:
(ATomic FORMULA) ::= (REL)([{(TERMS){, (TERMS) }])

where the number of terms which are arguments of the relation symbol of
(REL) above is equal to the arity of the relation symbol.

Atomic formulas without variables are called ground formulas.

Formulas of predicate calculus, denoted by Fj, are now defined by means of

the following rule:

(F) == (Boovr) || (ATromic FORMULA) ||
=B [ (E) A (B TCR) V(R [ (R — (B (] (F) = (F) ]
vVi).(F) 11 3)-(R) ] ((F))

The semantics of first-order formulas is given by a valuation of individual
variables together with an interpretation of function symbols and relation
symbols as functions and relations, respectively. The interpretation of function
symbols and relation symbols is defined by relational structures of the form

(Dom, {fP i € I}, {RP™ - j € J}),
where:

e DoM is a non-empty set, called the domain or universe of the relational
structure

e fPOM denotes a function corresponding to the function symbol f;, for i € T

. R?OM denotes a relation corresponding to the relation symbol R;, for j € J.

5 Observe that in the case of binary relations or functions we often use traditional
infix notation. For instance we write z < y rather than < (z,y).
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For the sake of simplicity, in the rest of the book we often abbreviate fPOM
and R})OM by f; and R;, respectively.

For a given signature Sig, by STRUC[Sig] we denote the class of all relational
structures built over the signature Sig.

Let v : Vj — DoOM be a valuation of individual variables. By v} we denote
the valuation obtained from v by assigning value a to variable x and leaving
all other values of variables unchanged, i.e.,

(2) a ifz=x
2= v(z) otherwise

The valuation v is extended to provide values of terms as follows:

o(f(te, ... te)) = fPMw(ty),. .., v(tr)),

where f € FUN is a k-argument function symbol and ti,...,t; € TERMS.
Then v is extended to define the truth value of first-order formulas as follows:
v(R(t1,...,tg)) = RDOM( (t1),...,v(tg))

v(=A) = TRUE if v(A) = FALSE
FALSE otherwise

v(AA B) = min(v(A),v(B))

v(AV B) = max(v(A4),v(B))

v(A — B) = TRUE if and only if v(A4) < v(B)

v(A = B) = TRUE if and only if v(A4) = v(B)
v(Ve. A(z)) = ({U (A(z)) : a € Dom})
0(3r.A(x)) = max({e(A(z)) : a € Dom}),

where R € REL is a k-argument relation and A, B are formulas.

A first-order formula A is satisfiable if there is a relational structure
M = (Dom, {fPM :i € I}, {RY™ : j € J})

and a valuation v : Vj — DoOM such that its extension to F satisfies v(A4) =
TRUE. Formula A is walid in a relational structure M if for all valuations
v:V; — DoM, v(A) = TRUE. In such a case we also say that M is a model
for A. Formula A is a tautology if for all relational structures of suitable
signature and all valuations v we have v(A) = TRUE. For a set of formulas
F C F and a formula A € F, by entailment (or a semantic consequence
relation),” denoted by F' = A, we mean that A is satisfied in any relational

" We also use the term “entailment” in more general context, but always assume
that G |= B means that formula B is true in all models of the set of formulas G,
where formulas, validity and the notion of models depend on a given logic.
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structure which is a model of all formulas of F. By Cn(F) we mean the set
of all semantic consequences of F', i.e.,

Cn(F)={A€F:F kA

A first-order formula is called open if it does not contain quantifiers. A variable
occurrence is free in a formula if it is not bound by a quantifier, otherwise it is
called bound. A formula is called closed (or a sentence) if it does not contain
free occurrences of variables. Any set of sentences is called a first-order theory,
or theory, for short.

In knowledge engineering applications it is usually assumed that the consid-
ered sets of sentences are finite. A finite theory is identified with the conjunc-
tion of its sentences.

A formula is in the prenex mormal form, PNF, if all its quantifiers are in its
prefix, i.e., if it is of the form Qi z1....Qkxk.A, where Q1,...,Qr € {V,3}
and A is an open formula. Any formula can be equivalently transformed into
PNF. The transformation into PNF may increase or decrease the size of the
formula by a constant factor.

By a universal formula we mean a formula in the prenex normal form, without
existential quantifiers. A set of universal formulas is called a universal theory.
By a first-order literal (or literal, for short) we understand an atomic formula
or its negation. A ground literal is a literal without variables. A first-order
clause is any, possibly empty, disjunction of first-order literals, preceded by
a possibly empty prefix of universal quantifiers. A literal is positive if it is an
atomic formula and is negative if it is the negation of an atomic formula. A
relation symbol R occurs positively (respectively negatively) in a formula A if
it appears under an even (respectively odd) number of negations.® A formula
A is positive w.r.t. relation symbol R iff all occurrences of R in A are positive.
A formula A is negative w.r.t. relation symbol R iff all occurrences of R in A
are negative.

A relation symbol R is similar to a formula A if and only if the arity of R is
equal to the number of free variables of A.

A first-order Horn clause, or Horn clause, for short, is a clause with at most
one positive literal.

Semi-Horn formulas are defined by the following syntax rule:

(SEMI-HORN FORMULA) ::= (ATOMIC FORMULA) — (F}) || (2.2)
(F) — (ATomic FORMULA)

8 Tt is assumed here that all implications of the form p — ¢ are substituted by —=pVgq
and all equivalences of the form p = ¢ are substituted by (—=pV q) A (=g V p).
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where the formula (F}) is an arbitrary classical first-order formula positive
w.r.t. relation symbol represented by {ATOMIC FORMULA), and the only terms
allowed in the atomic formula are variables. The atomic formula is called the
head of the formula and the first-order formula is called the body of the formula.
Semi-Horn formulas are assumed to be implicitly universally quantified, i.e.,
any free variable is bounded by an implicit universal quantifier. Semi-Horn
rules (or rules, for short), are semi-Horn formulas in which the only terms are
constant and variable symbols.

If the head of a rule contains a relation symbol R, we call the rule semi-Horn
w.r.t. R. If the body of a rule does not contain the relation symbol appearing
in its head, the rule is called nonrecursive. A conjunction of (nonrecursive)
rules w.r.t. a relation symbol R is called a (nonrecursive) semi-Horn theory
w.r.t. R.

We often consider slight variations of the syntax of semi-Horn formulas and
rules. Namely, we also allow formulas of the form:

(AToMmic FormuLA){, -(ATOMIC FORMULA)} — (F}) (2.4)
(Fy — (AToMIC FORMULA){, 7(ATOMIC FORMULA)} (2.5)

where the comma on the lefthand side of the formula (2.4) denotes the con-
junction A and on the righthand side of the formula (2.5) denotes the dis-
junction V. This convention comes from sequent notation. Formulas of the
forms (2.4) and (2.5) can equivalently be presented in the form of semi-Horn
formulas respectively as follows:

(AToMmic ForMmuLA) — (F){V(ATOMIC FORMULA)}
(FY{A(ATOMIC FORMULA)} — (ATOMIC FORMULA).

2.6.2 Complexity of Reasoning

Using predicate calculus as a practical reasoning tool is somewhat question-
able, because of the complexity of the logic. Existing first-order theorem
provers solve the reasoning problem partially and exploit the fact that check-
ing whether a first-order formula is a tautology is only partially computable.

The following theorem quotes the most important facts on the complexity of
general first-order reasoning.
Theorem 2.6.1.
1. The problem of checking whether a given first-order formula is a tautology
is uncomputable but is partially computable.

2. The problem of checking whether a given first-order formula is satisfiable,
is mot partially computable. O
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Fortunately, when fixing a finite domain relational structure, one ends up in
a tractable situation, as stated in the following theorem.

Theorem 2.6.2. Assume we are given any fixed first-order formula. Then
checking whether it is valid in a given finite domain relational structure is in
PTIME and LOGSPACE w.r.t. the size of the domain. m

If one would like to investigate properties of first-order formulas valid in all
finite domain structures, one would end up in quite a complex situation, as
we have the following theorem.

Theorem 2.6.3.

1. The problem of checking whether a first-order formula is valid in all finite
domain structures is not partially computable.

2. The problem of checking whether there is a finite domain structure satis-
fying a given first-order formula is partially computable but is not com-
putable. m

2.7 Second-order Logic

2.7.1 Introduction and Definitions

In knowledge representation it is often necessary to formulate properties us-
ing phrases of the form “there is a relation,” “for any relation,” i.e., to use
quantifiers over relations. Such quantifiers are called second-order quantifiers
and are allowed in second-order logic.

Second-order logic is an extension of the predicate calculus obtained by ad-
mitting second-order quantifiers. In order to define this logic we have to add

variables representing relations. The set of relational variables is denoted by
Vir.?

Formulas of second-order logic, denoted by Fj;, are defined by means of the
following rules.

(Fu) = (Boow) | (Vi || (Fy) [| =(Fu) || (Fuw) A (Fi) || (Fu) V (Fqy) ||
Fu) — (Fu) [| (Fa) = (Fa) || V(V)-(Fn) | 3OV -(F) |
YV (Fu) [ 3(Vi)-(Fa) I (CFin))
% Relational variables are sometimes called second-order variables. In second-order
logic one can also consider function variables, but we shall not use this possibility
here.

o~ o~



32 2 Basic Notions

By an existential fragment of second-order logic we shall mean the set of
second-order formulas, whose second-order quantifiers can only be existential
and appear in front of the formula.

The semantics of second-order logic is an extension of the semantics of the
predicate calculus. We then only have to provide the semantics for relational
variables and second-order quantifiers.

Let R € REL be a k-argument relation symbol. Assume we are given a re-
lational structure M = (Dowm, {fP° : i € I}, {R?OM : j € J}),. Denote by
REL(M) the set of all relations over DOM. Let v’ : ¥j — DoOM be a valua-
tion of individual variables and v : Vjj — REL(M) be a valuation assigning
relations to relational variables. Valuations v/, v” can be extended to the val-
uation assigning truth values to second-order formulas, v : F;; — BOOL, as
follows, assuming that first-order connectives and quantifiers are defined as in
Section 2.6:

v(VX.A(X)) = min({vx (A(X))) : § € Dom*})
v(3X.A(X)) = max({vd (A(X)) : § € Dom*}),

where X is a k-argument relational variable and by vg( we denote the valuation
obtained from v by assigning value S to variable X and leaving all other values
of variables unchanged.

2.7.2 Complexity of Reasoning

Theorem 2.7.1. Both checking whether a second-order formula is satisfiable

or whether it is a tautology are not partially computable problems.'® O

Theorem 2.7.2. Given a second-order formula, checking its satisfiability and
validity over a given finite domain relational structure is PSPACE-complete.
If the formula belongs to the existential fragment of second-order logic, then
checking its satisfiability over a given finite domain relational structure is
NPTIME-complete. m

2.8 Fixpoint Calculus

2.8.1 Introduction and Definitions
In many contexts, in particular in the theory of relational and deductive
databases and knowledge representation, fixpoint calculus is considered to

10 Tn fact, the problem is even much more complex than partially computable prob-
lems or their complements.
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be one of the most important tools which maintain a good balance between
expressiveness and complexity. Fixpoint formulas allow one to define many
notions reflecting computer science phenomena in a concise way.

Formulas of the fixpoint calculus, denoted by Fx, are defined by means of the
following rules.

(Fx) == () ||
Lrp (ViD[((VI){, (V) })]-(Fx) where (Fx) is positive w.r.t. (Vi) ||
GrP (VIN[((MM, (Vi) D)].{(Fx) where (Fx) is positive w.r.t. (V}}) ||
~(Fx) || (Fx) AFR) || (Fx) VA(Fx) || (Fx) — (Fx) ||
(Fx) = (Fx) || Y(V))-(Fx) || 3(Vi)-(Fx) (| ((Fx))

For the sake of simplicity we often write LFp R. (GFP R.), where R is a rela-
tion symbol rather than a second-order relational variable.

Let T(X) be a fixpoint formula with second-order variable X . The semantics
of LFp X (z).T(X) and GFP X (Z).T(X) is the least and the greatest fixpoint
of T(X), i.e., the least and the greatest relation X (z) such that X (z) = T'(X).
Since T is assumed positive w.r.t. X (&), such fixpoints exist. More precisely,
given a relational structure

(Dom, {fPM :i e I} {RYM : j € J}),

any valuation v : Vj — DOM can be extended to a valuation

v’ Fx — Pow(DowMm)

as follows, assuming that the cases of first-order connectives and quantifiers
are defined as in Section 2.6:

v (LFP X (Z).A(X)) = the least (w.r.t. C)) relation S such that
S(z) = v§ (A(X))

v'(GFP X (Z).A(X)) = the greatest (w.r.t. C)) relation S such that
S(z) = vg (A(X)).

Example 2.8.1. The transitive closure of a binary relation R can be defined
by the following fixpoint formula:

Tc(R)(z,y) = Lrp X (z,y).[R(z,y) V Iz.(R(z, z) A X (2,9))]-

Consider now the following example, where we are given a unary relation Wise
and a binary relation Colleague defined on a set Per of persons and suppose
we want to calculate the relation Wisest as the greatest relation satisfying
the following constraint, meaning that Wisest are those who are wise and
have only wisest colleagues:
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V. [Wisest(x) — (Wise(x) A Vy.(Colleague(z,y) — Wisest(y)))].
The Wisest relation is defined by the following fixpoint formula:

GFP X (z).[Wise(z) A Vy.(Colleague(x,y) — X (y))].

It is sometimes convenient to define more than one relation by means of fix-
point equations. This gives rise to simultaneous fixpoints defined by allowing
many relations as arguments of fixpoint operators. The syntax is then modi-
fied by assuming new syntax rules for fixpoint operators and leaving the other
rules unchanged. The new rules for fixpoints are the following:

Lep (Vi [((V{, (VD DI (Vin [V, (VO DI (Fx) ]
Grp (Vin[((V 4, (VDI (Vi [V (VO DT (Fx)

where (Fx) is positive w.r.t. all relational variables in (Vii){, (Vi) }.

Let T(X1,...,Xn) : Fx X ...Fx — Fx x ... Fx. Given a relational structure

n times n times
(Dom, {fP°M : i € I}, {RP*" : j € J}), any valuation v : Vi — DoM can be
extended as follows:

U(LFPXl(.’f1>7 . ,Xn<i‘n)T(X1, - 7Xn)> = <Sh ey Sn>
where Si,...,S, are the least (w.r.t. C)) relations such that
(S1(2), ..., Sn(@) = vF1 e (T(Xa, .., X))

'U(GFPXl(i'l)7 . ,Xn(i'n)T(Xl, ey Xn)) = <Sl, ey Sn>
where Si,...,5, are the greatest (w.r.t. C)) relations such that
(S1(2), ... Sn(@) = vE1 e (T( Xy, .., X)),

where vﬁ{ﬁ:;ﬁi" (T(X1,...,X,)) denotes the tuple of values v(T (X1, ..., Xn)),
in which, for 1 <i <n, X; is interpreted as S;.

Since T is assumed positive w.r.t. Xy,...,X,,, such fixpoints exist.

2.8.2 Complexity of Reasoning

Theorem 2.8.2. Both checking whether a fixrpoint formula is satisfiable or

whether it is a tautology are not partially computable problems.'! O

Theorem 2.8.3. Given a fizpoint formula without function symbols, checking
its satisfiability or validity over a given finite domain relational structure is
in PTIME. m

11 Tn fact, as in the case of the second-order logic, the problem is much more complex
than partially computable problems or their complements.
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2.9 Second-Order Quantifier Elimination

Theorem 2.9.2, formulated below, allows us to eliminate second-order quan-
tifiers from formulas which are in the form appearing on the left-hand side
of the equivalences (2.6), (2.7). Observe, that in the context of databases one
remains in a tractable framework, since fixpoint formulas over finite domains
are computable in polynomial time (and space).

Let B(X) be a second-order formula, where X is a k-argument relational vari-
able and let C(Z) be a first-order formula with free variables & = (x1, ..., z).
Then by B[X(f) := C(Z)] we mean the formula obtained from B(X) by sub-
stituting each occurrence of X of the form X (¢) in B(X) by C(f), renaming
the bound variables in C'(Z) with fresh variables.

Ezample 2.9.1. Let B(X) = Vz.[X(y,2) V X(f(y),g(z, 2))], where X is a re-
lational variable and let C(z,y) = EIz.R(x,y, z). Then

B[X(t1,t2) :== C(x,y)]
is defined by

Vz.[ 32 Ry, z,2") V3. R(f(y),9(z,2),2") ],
C'(y,2) C'(f(y).g(x,2))

where C'(z,y) is obtained from C(z,y) by renaming the bound variable z
with 2/ o

Let A(fc) be a formula with free variables Z and ¢ be a tuple of terms. Then
by A(Z)[t] we mean the application of A(Z) to terms ¢.

Theorem 2.9.2. Assume that formula A is a first-order formula positive
w.r.t. X.

e if B is a first-order formula negative w.r.t. X then

AXVEIACY) — X(@) A [BX)] = BIX(® = Lie X@AX)E]  (26)

e if B is a first-order formula positive w.r.t. X then

AXVY[X(y) = AX)IA[BX)] = BX(t) := GFp X(9). AX)[]]. (2.7
a]

Observe that, whenever formula A in Theorem 2.9.2 does not contain X, the
resulting formula is easily reducible to a first-order formula, as in this case
both LFP X (7).A and GFp X(7).A are equivalent to A.
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Ezxample 2.9.3. Consider the following second-order formula:
AX Ve Vy.[(S(z,y) VX (y,z)) — X (x,y)] A [~ X (a,b)VVz.(-X(a, 2))] (2.8)
According to Theorem 2.9.2, equivalence (2.6), formula (2.8) is equivalent to:

-LFP X (z,9).(S(z,y) V X(y, z))[a, bV
Vz.(-LFP X (z,9).(S(z,y) V X (y, x))[a, 2]). (2.9)

Observe that the definition of the least fixpoint appearing in (2.9) is obtained
on the basis of the first conjunct of (2.8). The successive lines of (2.9) represent
substitutions of =X (a, b) and Vz.(—X (a, 2)) of (2.8) by the obtained definition
of the fixpoint. O

2.10 Three-Valued Logic

In this book we often deal with unknown values due to the incompleteness
and uncertainty of information. Thus, in many contexts we allow the use of
three truth values TRUE, FALSE and UNKNOWN. The set of the three values
is denoted by 3-BooL. We assume that the values are ordered by the truth
ordering FALSE < UNKNOWN < TRUE.!2.

The syntax of 3-valued formulas is similar to that of the propositional and
predicate calculus. The only exception is that the syntactic category (BOOL)
is now to be replaced by (3-BooL).

The semantics of three-valued propositional formulas is given by assigning
truth values to propositional variables and then calculating values of formulas.
Let V3 denote the set of three-valued propositional variables and let

v: V3 — 3-BooL

be such an assignment of three-valued truth values to variables. Then v is
extended to define the truth value of 3-valued propositional formulas as fol-

lows: 13

12 In many contexts the so-called information ordering is more suitable. In this
ordering UNKNOWN < FALSE, UNKNOWN < TRUE and FALSE and TRUE are not
comparable.

There are many known three-valued logics, where the definitions of truth values
of propositional connectives are different (for references see Section 2.11). Here
we present a well-known version of the three-valued logic, based on Kleene logic,
which is used in the book.

13



2.11 Bibliographic Notes 37

TRUE if v(A) = FALSE
v(=A) = ¢ UNKNOWN if v(A) = UNKNOWN (2.10)
FALSE if v(A) = TRUE

v(A A B) = min(v(A4),v(B))

v(AV B) = max(v(A4),v(B))
v(A — B) = TRUE if and only if v(A) < v(B)
v(A = B) = TRUE if and only if v(A) = v(B),

where min, max are defined according to the truth ordering.

The syntax of three-valued predicate calculus is that of two-valued predicate
calculus.

Let us now define the semantics of the three-valued predicate calculus. By
a three-valued interpretation we shall understand a three-valued relational
structure (DoM, { fPM - i € I}, {RY°" : j € J}), where:

e DOM is a non-empty set, called the domain or universe of the relational
structure

o forie I, fP°M denotes a function corresponding to the function symbol f;

e for j e J, R?OM denotes a three-valued relation corresponding to the re-
lation symbol R;, where by a k-argument three-valued relation we mean
a function from Dom* — 3-BooL.

The semantics can now be defined as in the case of predicate calculus, where
min and max are understood w.r.t. to the extended truth ordering.

The complexity of reasoning in three-valued logic is the same as the reasoning
in the corresponding two-valued logics.

2.11 Bibliographic Notes

In this chapter basic concepts and results that are used throughout the book
are presented. For a more comprehensive discussion of the topics concerning
logics the reader is referred, e.g., to [68, 69]. A good exposition of Boolean
reasoning can be found in [30].

Computational complexity is covered in many books, including, e.g., [78, 89,
92, 147].

We present the syntax of various logical languages in the widely accepted
Backus-Naur BNF form. For details see, e.g., [117].

Theorem 2.5.1 on NPTIME-completeness of satisfiability of propositional for-
mulas is due to Cook. The complexity of tractable fragments of propositional
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calculus is studied, e.g., in [32]. A linear time algorithm for checking satisfia-
bility of propositional Horn clauses is given in [66].

Uncomputability of the predicate calculus (see Theorem 2.6.1) is due to
Church and partial computability is due to Gédel. Theorem 2.6.3 was proved
by Trakhtenbrot (see, e.g., [69]). LOGSPACE and thus PTIME complexity of
predicate calculus over finite domains was shown in [228]. The results on
complexity of fixpoint logic over finite domains (Theorem 2.8.3) were proved
in [35]. It was also considered, e.g., in [91, 228].

The high complexity of second-order logic is well-known. The so-called arith-
metical and analytical hierarchies showing high complexity of the second-order
logic were introduced and studied independently by Kleene and Mostowski.
The theorem of NPTIME-completeness of the existential fragment of second-
order logic over finite structures (see a part of Theorem 2.7.2) is due to Fagin.
In order to deal with the high complexity of second-order reasoning, one can
apply second-order quantifier elimination techniques which appear quite pow-
erful. The second-order quantifier elimination techniques have a long history
(see, e.g., [2, 53, 75, 103, 141, 142, 180, 211, 212]). The fixpoint theorem 2.9.2,
generalizing the Ackermann lemma of [2], is due to [142]. Two quantifier elim-
ination algorithms based on these principles, extending the algorithm given
in [211], are known as the DLS and the DLS* algorithms (see, e.g., [53, 54]).

Many-valued logics are studied in many sources. For a comprehensive treat-
ment of the subject see, e.g., [22, 178, 224]. In this book we use the Kleene
three-valued logic, which is also used as a semantics for SQL tables with un-
known values.
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Rough Sets

3.1 Introduction

The methodology we propose and develop in this book is founded on the
concept of rough sets. In many Al applications one faces the problem of rep-
resenting and processing incomplete, imprecise, and approximate data. Many
of these applications require the use of approximate reasoning techniques. Be-
fore we introduce rough sets formally, let us begin with an intuitive example
where representation of approximate data and reasoning with it is an essential
component in the modeling process.

Ezample 3.1.1. Consider a UAV equipped with a sensor platform which in-
cludes a digital camera. Suppose that the Uav task is to recognize various
situations on roads. It is assumed that the camera has a particular resolution.
It follows that the precise shape of the road cannot be recognized if essential
features of the road shape require a higher resolution then that provided by the
camera. Figure 3.1 depicts a view from the UAV’s camera, where a fragment
of a road is shown together with three cars c1, c2, and c3.

Observe that due to the camera resolution there are collections of points that
should be interpreted as being indiscernible with each other. The collections of
indiscernible points are called elementary sets, using rough set terminology. In
Figure 3.1, elementary sets are illustrated by dashed squares and correspond
to pixels. Any point in a pixel is not discernible from any other point in
the pixel from the perspective of the UAv. Elementary sets are then used to
approximate objects that cannot be precisely represented by means of (unions
of) elementary sets. For instance, in Figure 3.1, it can be observed that for
some elementary sets one part falls within and the other outside the actual
road boundaries (represented by curved lines).

Instead of a precise characterization of the road and cars, using rough set
techniques, one can obtain approximate characterizations as depicted in Fig-
ure 3.2. Observe that the road sequence is characterized only in terms of

P. Doherty et al.: Knowledge Representation Techniques, Studfuzz 202, 39-56 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006
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Lower approximation Boundary region Upper approximation
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Fig. 3.1. Sensing a road considered in Example 3.1.1.

a lower and upper approximation of the actual road. A boundary region, con-
taining points that are unknown to be inside or outside of the road’s bound-
aries, is characterized by a collection of elementary sets marked with dots
inside. Cars cl and c3 are represented precisely, while car c2 is represented
by its lower approximation (the thick box denoted by ¢2) and by its upper
approximation (the lower approximation together with the region containing
elementary sets marked by hollow dots inside). The region of elementary sets
marked by hollow dots inside represents the boundary region of the car.

The approximations of the concepts are based on available information about
points expressed by means of pixels to which the points belong. The lower
approximation of a concept represents points that are known to be part of the
concept, the boundary region represents points that might or might not be
part of the concept, and the complement of the upper approximation repre-
sents points that are known not to be part of the concept. Consequently, car
cl is characterized as being completely on the road (inside the roads bound-
aries); it is unknown whether car c2 is completely on the road and car c3 is
known to be outside, or off the road. O

As illustrated in Example 3.1.1, the rough set philosophy is founded on the
assumption that we associate some information (data, knowledge) with every
object of the universe of discourse. This information is often formulated in
terms of attributes about objects. Objects characterized by the same infor-



3.1 Introduction 41
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Fig. 3.2. The approximate view of the road considered in Example 3.1.1.

mation are interpreted as indiscernible (similar) in view of the available in-
formation about them. An indiscernibility relation, generated in this manner
from the attribute/value pairs associated with objects, provides the mathe-
matical basis of rough set theory.

Any set of all indiscernible (similar) objects is called an elementary set, and
forms a basic granule (atom) of knowledge about the universe. Any union of
some elementary sets in a universe is referred to as a crisp set; otherwise the
set is referred to as being a rough set. In the latter case, two separate unions
of elementary sets can be used to approximate the imprecise set, as we have
seen in the example above. Since a relation is a set of tuples, a rough relation
is defined to be a rough set of tuples.

Consequently, each rough set has what are called boundary-line cases, i.e.,
objects which cannot with certainty be classified either as members of the
set or of its complement. This means that boundary-line cases cannot be
properly classified by employing only the available information about objects.
Obviously, crisp sets have no boundary-line elements at all.

The assumption that objects can be observed only through the information
available about them leads to the view that knowledge about objects has
a granular structure. Due to this granularity, some objects of interest cannot
always be discerned given the information available, therefore the objects ap-
pear as the same (or similar). As a consequence, vague or imprecise concepts,
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in contrast to precise concepts, cannot be characterized solely in terms of in-
formation about their elements since elements are not always discernible from
each other.

In the proposed approach, we assume that any vague or imprecise concept is
replaced by a pair of precise concepts called the lower and the upper approx-
imation of the vague or imprecise concept. The lower approximation consists
of all objects which with certainty belong to the concept and the upper ap-
proximation consists of all objects which have a possibility of belonging to the
concept.

The difference between the upper and the lower approximation constitutes
the boundary region of a vague or imprecise concept. Additional information
about attribute values of objects classified as being in the boundary region
of a concept may result in such objects being re-classified as members of the
lower approximation or as not being included in the concept. Upper and lower
approximations are basic concepts in rough set theory.

3.2 Approximations

3.2.1 The Basic Concepts

We now introduce the concept of approximations more formally.

Let U be a set of objects. Any partition &€ = {E; C U : i € I} of U can be
considered as a family of elementary sets. Of course, the choice of the family
depends on a particular application.

Definition 3.2.1. Let U be a set of objects, E ={E; CU :i € I} be a family
of elementary sets and let X C U. The lower approximation and upper ap-
proximation of X w.r.t. £, denoted by Xe+ and Xgao respectively, are defined

by Xer = | J Ei and Xeo = | ] Ei. o
E,CX E;NX#D

Ezxample 3.2.2. Let U be the set of non-negative reals. Elementary sets can
be defined as intervals: € = {[i,i + 1) : i € w}. Let X = [2.4, 7.2]. Then
Xe+ =[3.0, 7.0) and Xgo = [2.0, 8.0). 0

3.2.2 Representing Approximations in Logic

Approximations of sets and relations can be expressed in logic.

In order to construct a language for dealing with rough concepts, we introduce
the following relation symbols for any rough relation R (see Figure 3.3):
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R® Precise (crisp) set R

Fig. 3.3. Representation of a rough set in logic.

R* - represents the positive facts known about the relation. R corre-
sponds to the lower approximation of R. RV is called the positive region
(part) of R.

R~ — represents the negative facts known about the relation. R~ corre-
sponds to the complement of the upper approximation of R. R~ is called
the negative region (part) of R.

R* — represents the unknown facts about the relation. R* corresponds to
the set difference between the upper and lower approximations of R. R*
is called the boundary region (part) of R.

R® — represents the positive facts known about the relation together with
the unknown facts. R® corresponds to the upper approximation to R. R®
is called the positive-boundary region (part) of R.

R® — represents the negative facts known about the relation together with
the unknown facts. R® corresponds to the upper approximation of the
complement of R. R® is called the negative-boundary region (part) of R.

From the logical point of view, elementary sets can be represented by means of
logical formulas or primitive relations, assuming their extensions form a parti-
tion of the universe.! Assume we are given elementary sets defined by formulas

{a1(Z),...,a,(Z)}. Any relation can now be approximated as follows:

! In practice it is sufficient to require that the extensions form a covering of the
universe - see Chapter 13.9.
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R Y \/ (i : V2. [0y (7) — R(7)]}
Ro(z) ¥ \/ {ay : 32 R(@) A ay(@).

3.3 Information Systems and Indiscernibility

One of the basic fundaments of rough set theory is the indiscernibility rela-
tion which is generated using information about particular objects of interest.
Information about objects is represented in the form of a set of attributes
and their associated values for each object. The indiscernibility relation is
intended to express the fact that, due to lack of knowledge, we are unable
to discern some objects from others simply by employing the available infor-
mation about those objects. In general, this means that instead of dealing
with each individual object we often have to consider clusters of indiscernible
objects as fundamental concepts of our theories.

Let us now present this intuitive picture about rough set theory more formally.

Definition 3.3.1. An information system is any pair A = (U, A), where U is
a non-empty finite set of objects, called the universe, and A is a non-empty
finite set of functions, called attributes, such that a : U — V, for everya € A.
The set V,, is called the value set of a. By the information signature of x € U
w.r.t. B, where B C A, we understand {{a,a(z)) : a € B}. o

Information systems are often represented in a form of tables with the first
column containing objects and the remaining columns, separated by vertical
double lines, containing values of attributes. Such tables are called information
tables.

Table 3.1. Information table considered in Example 3.3.2.
l Object “ Size[ Colorl

carl large red
car2 large blue
car3 small red

Ezample 3.3.2. Consider an information system 4 = (U, A), where

o U ={carl,car2,car3}

o A = {Size,Color}; Size(carl) = Size(car2) = large, Size(car3) = small;
Color(carl) = Color(car3) = red, Color(car2) = blue.
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The information table corresponding to A is represented in Table 3.1. O

Note that in this definition, attributes are treated as functions on objects,
where a(z) denotes the value the object x has for the attribute a.

Any subset B of A determines a binary relation IND 4(B) C U x U, called an

indiscernibility relation, defined as follows.

Definition 3.3.3. Let A = (U, A) be an information system and let B C A.
By the indiscernibility relation determined by B, denoted by IND4(B), we
understand the equivalence relation

INDA(B) = {{z,2') €e U x U : Va € B.la(x) = a(z')]}.

If (x,y) € IND4(B) we say that x and y are B-indiscernible.

Equivalence classes of the relation IND 4(B), denoted by [x]g, are referred to
as B-elementary sets. The unions of B-elementary sets are called B-definable
sets. -

Fig. 3.4. A partition IND 4(B).

Of course, IND4(B) is an equivalence relation. By U/B we denote the set
of equivalence classes of relation IND 4(B). For example, in Figure 3.4, the
partition of U defined by an indiscernibility relation IND 4(B) contains four
equivalence classes, [z1]p, [z2] B, [r3] 5 and [z4] 5. An example of a B-definable
set would be [x1]p U [z4] 5, where [21]p and [24]p are B-elementary sets.

In Example 3.1.1 the indiscernibility relation is defined by a partition corre-
sponding to pixels represented in Figures 3.1 and 3.2 by squares with dashed
borders. Each square represents an elementary set. In the rough set approach
the elementary sets are the basic building blocks (concepts) of our knowledge
about reality.
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The ability to discern between perceived objects is also important for con-
structing many entities like reducts, decision rules, or decision algorithms
which are considered in later chapters (see Chapters 13 and 14).

The simplest discernibility relation, DIS4(B), is defined as follows.

Definition 3.3.4. Let A = (U, A) be an information system and B C A. The
discernibility relation, Dis4(B) C U x U, is defined by (x,y) € Disq(B)
if and only if (x,y) € IND 4(B). D

We now consider how to define sets of objects using formulas constructed from
attribute/value pairs.

Definition 3.3.5. An elementary descriptor (descriptor, for short) is any ex-
pression of the form (a = v), where a € A and v € V,. A generalized descrip-
tor is any formula of the form \/!_,(a = v;), where a € A and each v; € V,.
A Boolean descriptor is any Boolean combination of elementary descriptors.
A template is a conjunction of elementary descriptors. 0

Strictly speaking, a descriptor (¢ = v) should be written as a relational ex-
pression of the form Az.a(z) = v, but we shall stick to the simplified form as
in the above definition.

Let ¢ be a Boolean descriptor. The meaning of ¢ in A, i.e., the set of all
objects satisfying ¢ in A, denoted ||¢||.4, is defined inductively as follows:

1. if ¢ is of the form (a = v) then |pl|4a ={z € U : a(z) = v}

2. lleA @iHA = llellan ||90:||A
loVella=llelaulle]la
—olla =T —[l¢].a-

Definition 3.3.6. We say that a set of objects X C U is definable in A by
some formula ¢ if and only if X = |¢|| 4.

Any X C U definable in A is referred to as a crisp (precise, exact) set;
otherwise the set is referred to as a rough (vague, imprecise, inexact) set
(relatively to A). o

3.4 Approximations in Information Systems

Let us now define approximations of sets in the context of information systems.

Definition 3.4.1. Let A = (U, A) be an information system, B C A and X C
U. The B-lower approximation and B-upper approximation of X, denoted
by Xp+ and Xpe respectively, are defined by X+ = {x : [x]p C X} and
Xpe ={x:[z]pNX #0}. 0
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Definition 3.4.2. The set consisting of objects in the B-lower approximation
Xp+ is also called the B-positive region of X. The set Xg- = U — Xpeo is
called the B-negative region of X. The set Xp+ = Xpo — Xp+ is called the
B-boundary region of X. O

Observe that the positive region of X consists of objects that can be classified
with certainty as belonging to X using attributes from B. The negative region
of X consists of those objects which can be classified with certainty as not
belonging to X using attributes from B. The B-boundary region of X consists
of those objects that cannot be classified either as belonging to X or as not
belonging to X, using attributes from B.

[z1]B

[x3]B

Fig. 3.5. A partition IND4(B) and an imprecise set X.

For example, in Figure 3.5, The B-lower approximation of the set X (marked
with dots), is Xp+ = [z2]p U [z4] 5. The B-upper approximation, is Xpe =
[z1]pU[z2]pU[z4] B = [21]3U X g+. The B-boundary region, is Xp+ = [z1]5.
The B-negative region of X, is Xp- = [z3]p =U — Xpe.

The size of the boundary region of a set can be used as a measure of the
quality of that set’s approximation. One such measure is defined as follows.

Definition 3.4.3. The accuracy of approximation of a finite nonempty set X
1s defined in terms of the following coefficient:

def | Xp+|
| Xpel’

aB(X)

where | X| denotes the cardinality of X . o
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It is clear that 0 < ap(X) < 1. If ap(X) =1 then X is crisp with respect to
B (X is precise with respect to B); otherwise, if ap(X) < 1 then X is rough
with respect to B (X is vague or imprecise with respect to B).

3.5 Rough Sets and Membership Functions

In the context of rough set theory rough membership functions play an im-
portant role.

Definition 3.5.1. Given a set of attributes B and a set X, a rough member-
ship function u% is defined as

def | X N [2]]

B
:U’X(x) Hx]B| . :

It is clear that 0 < p%(z) < 1. The number p% (x) provides a ratio between
how much of [z]p is in X and the cardinality of [z]p. This is depicted in
Figure 3.6.

[z]5

[z]5 N X X

Fig. 3.6. Rough membership function.

The membership function px(x) is similar to a conditional probability and
its value can be interpreted as the degree of certainty to which x belongs to
X. In other words, given X, the membership function indicates the degree of
certainty to which x belongs to X.

Over finite domains, the rough membership function can be used to define
approximations and the boundary region of a set as shown below:
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Xpr ={zcU:pf(x)=1
Xpo ={zcU:pf(x)>0
Xp: ={xecU:0<puf(z) <1}

In essence, classical rough sets are the weakest form of the quantitative idea
above which abstracts away from the “degree to which” and simply uses “pos-
sibly in,” instead.

3.6 Decision Systems and Decision Rules

Rough set techniques are often used as a basis for supervised machine learning
using tables of data (see Chapter 14). In many cases the target of a classifica-
tion task is represented by an additional attribute called a decision attribute.
Information systems of this kind are called decision systems.

Definition 3.6.1. Let (U, A) be an information system. A decision system is
any system of the form A = (U, A,d), where d & A is the decision attribute
and A is a set of conditional attributes, or simply conditions. O

Let A = (U, A, d) be given and let Vg = {v1,...,v,(q)}. Decision d determines
a partition {X1,..., X, (g} of the universe U, where X = {x € U : d(z) =
vg} for 1 < k < r(d). The set X; is called the i-th decision class of A. By
Xa(u) we denote the decision class {x € U : d(x) = d(u)}, for any u € U.

Any object # € U belongs to a decision class Xg(,) of A. All decision classes
of A create a partition of the universe U.

One can generalize the above definition to the case of decision systems of the
form A = (U, A, D) where the set D = {dy, ...d} of decision attributes and A
are assumed to be disjoint. Formally this system can be treated as the decision
system A = (U, C,dp) where dp(x) = (di(x), ...,dg(z)) for z € U.

Similarly as in the case of information systems, decision systems can be nat-
urally represented as decision tables. The first column of a decision table
contains objects from U, the next columns contain values of conditional at-
tributes and the remaining columns contain decision attributes. In order to
separate conditional and decision attributes we use a double vertical line.

Ezxample 3.6.2. Consider the situation described in Example 3.1.1. A similar
representation of the road could be obtained using a more accurate camera by
collecting data from the camera and creating an approximate description of
the concept of road. In this example, a similar granularity of approximation
dependent on the camera’s resolution is assumed. Consider Table 3.2. The
decision table on the lefthand side of the figure contains some sample data,
where
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e objects in the first column are points
e there are two attribute columns, Pizel and Inside.

—  Pizel refers to a pixel which is defined as an elementary set containing
coordinates. For example, pixel (i,j) contains points {(z,y) : i — 1 <
x<iand j—1<y<j}

— Inside represents information about whether a point is inside the
boundaries of a road object.

The additional column “Approximation of Inside,” provides us with the ap-
proximation obtained from the available data, where:

e “+” means that a given point is inside the road boundaries because it is
contained in a pixel which is totally included in the road;

e “+” means that it is unknown whether the point is inside the road bound-
aries, because it is contained in a pixel, part of which is inside and part of
which is outside of the road;

“ ”

e “—” means that the point is outside the road boundaries because it is
contained in a pixel which is totally outside of the road. m

Table 3.2. Decision table for determining Inside of Example 3.6.2

Point Pizel || Inside Approzimation
of Inside
(4.60,5.50) || (5,6) || TRUE +
(4.50,4.70) || (5,5) || TruEe +
(4.90,4.01) || (5,5) || FaLse +
(4.50,3.50) || (5,4) || FALSE +
(4.01,3.99) || (5,4) TRUE +
(5.50,5.50) || (6,6) || TruE +
(5.50,4.50) || (6,5) || TRUE +
(5.50,4.10) || (6,5) | FaLse +
(5.50,3.40) || (6,4) || FALSE —
(6.40,5.40) || (7,6) || TrUE +
(6.50,4.80) || (7,5) || TruEe +
(6.50,4.20) || (7,5) || FALSE +
(6.30,3.40) || (7,4) || FALSE -

Let A be a decision system. A condition template of A is any conjunction
of elementary (or generalized) descriptors only. A decision rule for A is any
expression of the form ¢ = 1, where ¢ is a condition template and v is
a descriptor containing a decision attribute. Formulas ¢ and v are referred to
as the predecessor and the successor of the decision rule. Decision rules are
often called if-then rules.
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A decision rule ¢ = 1 is TRUE in A iff ||¢||l4 C ||#||.4. Otherwise, one can
measure its truth degree by introducing some inclusion measure of |||l in
||| 4. For example, one such measure which is widely used, is called a confi-
dence coefficient and is defined as,

A

lig & elal for a1 2 0
[l 4l

1 otherwise.

Another measure of non-classical inclusion, called support of the rule, is de-
fined as

[llp A blLal
U]

An interesting class of decision rules consists of minimal decision rules in
a given decision system 4, i.e., rules which are true in A but become not true
after removing any conditional descriptor from them.

Each object x in a decision table determines a decision rule,

N (a = a(@)) = (d = d(2)),

acC

where C'is the set of conditional attributes and d is the decision attribute. De-
cision rules corresponding to some objects can have the same condition parts
but different decision parts. Such rules are called inconsistent (nondetermin-
istic, conflicting); otherwise the rules are referred to as consistent (certain,
deterministic, nonconflicting) rules. Decision tables containing inconsistent
decision rules are called inconsistent (nondeterministic, conflicting); otherwise
the table is consistent (deterministic, nonconflicting).

Numerous methods based on the rough set approach combined with Boolean
reasoning techniques have been developed for decision rule generation. When
a set of rules have been induced from a decision table containing a set of
training examples, they can be inspected to determine if they reveal any novel
relationships between attributes that are worth pursuing further. In addition,
the rules can be applied to a set of unseen cases in order to estimate their
classification power.

For a systematic overview of rule generation and application methods the
reader is referred to Chapter 14 in this book which covers the topic of machine
learning and knowledge discovery.
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3.7 Inducing Consistent Concept Descriptions

Up to now, we considered the approximations of raw data represented as
decision tables. It is often the case that, for a particular application domain,
additional qualitative knowledge about dependencies between concepts are
often available in the form of expert knowledge. In this section, we consider
methods for inducing concept approximations constrained by this additional
knowledge.

Consider the traffic scenario domain used in previous examples. Given a set
of facts represented by decision tables, an example of a dependency between
concept approximations could be the rule,

if a road is slippery and the speed of a car is high, then there is a high
chance that an accident involving the car will occur.

An interesting issue arises as to how concept approximations can be induced
using both the raw data in decision tables and qualitative knowledge associ-
ated with it. There are a number of approaches which immediately come to
mind. For example,

e one can develop strategies for directly generating decision rules which pre-
serve the qualitative dependencies between approximated concepts;

e one can tune decision rules generated from raw data relative to the quali-
tative dependencies.

Yet another approach, and one we will pursue in this book, involves using
some ideas from the area of nonmonotonic reasoning together with the second
approach above. For example, consider a case where our decision tables contain
the conditional attributes cq,co and the decision attribute d. The following
dependency might be provided by a domain expert:

if ¢; = high is known and co = medium is consistent with the available
information by default? then d = dangerous

Given a decision table containing these attributes, we would first generate
the minimal decision rules representing the data.> We would then view the
dependencies as representing constraints between the lower and upper approx-
imations of the various decision classes. This can be done by interpreting the
phrase “is known” as a lower approximation of its respective argument and
the phrase “is consistent with the available information” as the upper approx-

2 1e., (c2 # medium) cannot be proved using the available information.
3 For a technique of generating minimal rules see Chapter 14.
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imation of its respective argument.* The minimal decision rules could then be
tuned using the constraints between the lower and upper approximations of
the decision classes in the qualitative dependency rules.

In the following, we provide an example of the main idea. The methodology
illustrated in this example is fully elaborated in the second and third part of
this book.

Ezxample 3.7.1. Consider again the situation described in Example 3.1.1. Sup-
pose now that one wants to determine whether a given car is completely within
the boundaries of a road. The suitable information can be obtained on the
basis of the pixels available at a particular level of resolution. Car cl is com-
pletely within the road’s boundaries, since all pixels covering cl are completely
within the road’s boundaries; car c3 is outside of the road’s boundaries, since
all pixels covering c3 are outside of the road’s boundaries; and it is unknown
whether car c2 is completely within or outside of the road’s boundaries, since
some of the pixels covering c2 are in the boundary region of the road.

However, in certain cases, when additional knowledge is provided, one can
classify c2 as being inside the road’s boundaries. Namely, consider the follow-
ing rule expressing knowledge about the road domain:

if it is consistent with the available information that a car is completely
within the boundaries of a road and its speed is known to be high then
assume by default that the car is within the boundaries of the road.

The rule can be translated into the terminology of rough sets as follows:

if a car is in the boundary region of a road and its speed is classified
as high then assume that the car is completely within the boundaries
of the road.

In the presence of additional information that car c2 is moving with high
speed, one can conclude that it is completely within the boundaries of the
road. m

3.8 Dependency of Attributes

An important issue in data analysis is to discover dependencies between at-
tributes. Intuitively, a set of attributes D depends totally on a set of attributes
C' if the values of attributes from C uniquely determine the values of attributes

4 Observe that rules of the form considered in the example are easily expressible
in nonmonotonic formalisms, like default reasoning or circumscription (for more
details see, e.g., Chapters 5 and 10).
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from D. In other words, D depends totally on C, if there exists a functional
dependency between values of C' and D.

Formally, a dependency between attributes can be defined as follows.

Definition 3.8.1. Let A = (U, A) be an information system, and let D and
C be subsets of A. By a positive region of a partition U/D with respect to C,
denoted by Posc (D), we mean the set:

POSC(D) = U Xo+.
XeU/D

The degree of the dependency C' +— D, v4(C, D), is defined by

of |POSc(D
u(c ) IE08C(D)

We say that D depends on C to degree k, denoted by C w—y D, if k =
’Y.A(C7 D)

If k = 1 we say that D depends totally on C, and if k < 1, we say that D
depends partially (to degree k) on C. a]

Observe that, for any C, D C A, 0 <~v4(C,D) < 1.

If D depends totally on C then IND4(C) C IND4(D). This means that the
partition generated by C' is finer than the partition generated by D. Notice,
that the concept of dependency discussed above corresponds to that consid-
ered in relational databases.

A geometrical interpretation of the positive region Posqc (D), is shown in
Figure 3.7, where:
e dashed boxes represent a partition created by C'

e the set of equivalence classes of IND 4(D), U/D = {X1, X, X3}, where the
three partitions are separated by the thick black line

e the union of the double-lined areas represents Posc(D)

e the dotted boxes represent the boundary region between classes.

In this example, it is clear that there is only a degree of dependency between
C and D because some partitions in C' do not uniquely map to a partition in

U/D. For instance, if © € [z]c, we are unable to uniquely determine whether
xz € X; or € X3. On the other hand, if = € [2;]¢ then z € X].

In summary, D is totally (partially) dependent on C, if all (some) elements
of the universe U can be uniquely classified to blocks of the partition U/D,
employing C.

® Recall that U/D denotes the set of equivalence classes of relation IND 4 (D).
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[i]e

[zk]c

Fig. 3.7. Geometrical interpretation of positive region Posc (D).

3.9 Bibliographic Notes

In this chapter, we considered the basic concepts of rough set theory. The
theory itself was originally proposed by Pawlak [148, 150].

Several generalizations of the classical rough set approach have been reported
in the literature (for references see the papers and bibliography in [109, 146,
157, 158, 162, 163, 191, 203, 206, 204]). The quoted works also describe many
case studies on rough set methods, as well as relationships among rough sets
and other approaches to approximate reasoning.

A discussion of partial containment of sets and mereology has originated in
[112, 113]. This approach has been generalized to the rough mereological ap-
proach, (see, e.g., [160, 164, 165, 189]).

Recently, it has been shown that the rough set approach can be used for
synthesis of concept approximations in distributed environment of intelligent
agents. The reader interested in intelligent agents and multiagent systems
is referred, e.g., to [90, 67, 111]. In particular, the rough set methods are
used for construction of interfaces between agents equipped with different
sets of concepts [60, 61, 62, 145, 201] and for ontology approximation (see,
e.g., [46, 138, 140, 185, 194]).
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Readers interested in the above issues are also advised to consult the enclosed
references (e.g., [145, 146, 158, 162, 163, 164, 201]).

Many important issues, such as various logics related to rough sets and many
advanced algebraic properties of rough sets can be found in [143, 146, 162,
163, 164]. Reasoning under uncertainty is discussed in depth in [85].
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Relational and Deductive Databases

4.1 Introduction

Relational and deductive databases provide basic tools for storing, querying
and manipulating data. From the point of view of knowledge engineering,
databases provide a fundamental layer on which other representation may be
built. The choice of the underlying tools is then extremely important and
seriously influences further use of the knowledge engineering techniques. In
this chapter we sketch some possible choices concerning deductive database
solutions. Let us start by introducing some basic definitions.

Definition 4.1.1. A relational database, say B, is a relational structure
B = (DoM,r{*, ... "),
where

e DOM is a finite non-empty set,

o forl<i<k, riis an a;-argument relation, ri* C DomM™.

By a signature or vocabulary of a database B, denoted by SIG, we mean
a signature containing relation symbols R, ..., Ry* and constant symbols
Cq,...,C; representing all elements of the domain DOM, together with equality
=. If the signature contains a binary relation which is a linear order on DOM,
then we say that the database is (linearly) ordered. By the size of the database

B, denoted by S1zE(B), we understand the number of elements in DOM. o

According to the notational convention introduced in Section 2.6, we shall
often use symbols RY, ..., R;* to denote both relations and the corresponding
relation symbols.

P. Doherty et al.: Knowledge Representation Techniques, Studfuzz 202, 57-76 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006
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In the field of relational databases the following conditions are usually assumed
more or less explicitly:

S1zE(B)
e domain closure aziom (DCA): Vz. \/ (m = C’i), which states that all
i=1
objects of the domain are named by constants

o unique name assumption (UNA): /\ (C’i # C’j>7 which states
1<i<j<S1zZE(B)
that each object of the domain has a unique name

e closed world assumption (CWA): whenever a ground atom p(f) is not en-
tailed by the database, then assume that —p(f) holds.!

In some applications it is necessary to drop the Cwa assumption. An alterna-
tive to CWA is the open world assumption (OWA), where positive and negative
facts are represented in the database and all facts not explicitly listed in the
database are assumed to be unknown. The CwA and the OWA represent two
ontological extremes. In Chapter 6 we discuss situations which permit the
application of the CWA locally in a particular context.

A deductive database consists of two parts: an extensional and intensional
part. The extensional database is usually equivalent to a traditional relational
database and the intensional database contains a set of definitions of relations
that are not explicitly stored in the database. Intuitively, intensional relations
correspond to views known from relational databases, however the deductive
approach offers a much more expressive formalism for defining the contents
of views. Accordingly, we have the following definition.

Definition 4.1.2. By a deductive database we understand a relational data-
base augmented with an additional set of formulas (sometimes called rules)
defining fresh relations in terms of a chosen logic. The relational database is
called an extensional database (EDB), and the set of formulas is called an
intensional database (IDB). We say that a relation (relation symbol) is inten-
sional in a database if it appears in the intensional database only, otherwise
it is called extensional. O

Accordingly, we divide the set of relation symbols REL into two parts: EXTREL
and INTREL, of extensional and intensional relation symbols, respectively.

Definition 4.1.3. A database query is any polynomially bounded mapping

! Observe that whenever the Cwa is in force, there is no need to represent all
relevant information. Only positive information, i.e., facts stating what is true,
should be kept in the data base. The negative facts, specifying what is false, are
inferred implicitly. Since generally negative facts vastly outnumber positive facts,
using the CWA greatly simplifies the resulting representation.
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Q : STRUC[SIG] — STRUC|[SIG']

from finite relational structures of vocabulary S1G to structures of vocabulary
Sic’. That is, there is a polynomial p such that for any B € STRUC[SIG], the
size of Q(B), S1ZE(Q(B)), is not greater than p(S1ZE(B)). o

Observe that we require queries to be deterministic, i.e., returning a unique
answer for each input database. The requirement as to the polynomial bound
reflects the tractability demand.

It is also worth noting here that the concept of queries is independent of any
particular query language. In order to make the connection between queries
and expressions of query languages, we accept the following definition.

Definition 4.1.4. We say that an expression E of a query language defines
a database query @ (or that Q is expressed by E) if, for any database B, the
value of E in B is defined and is equal to the output of query Q evaluated on
database B. m

In what follows, when a query language is fixed, we often do not distinguish
queries from expressions defining the queries.

Using a standard relational database with SQL as its querying mechanism is
inadequate from the knowledge representation perspective. The SQL designers
tried to keep a good balance between the expressiveness of the language and
the computational complexity of the underlying querying machinery. Unfor-
tunately, there are even simple, but still efficiently computable queries that
are not expressible in pure SQL. For instance, given a genealogy parent-child
relation, one cannot express a query that computes all antecedents of a given
family member.? On the other hand, many such queries are still efficiently
computable. In order to compute them using SQL, one has to use a host pro-
gramming language, such as, e.g., C, C++ or JAVA, and encode the queries.
Such a hard-coding of queries is far from the declarative style one would
like to maintain for knowledge representation. Another approach to querying
databases incorporates various logical formalisms to represent queries. This is
much more natural from the point of view of knowledge engineering. Logical
queries can then be asked to deductive databases directly or, what is a more
common in practice, to use existing relational database management systems
(RDBMS) as “low level” tools and extend them with a deductive front-end
mechanism. The architecture of such databases is shown in Figure 4.1.

When one analyzes various querying mechanisms, complexity issues are of
great importance. Complexity is basically measured w.r.t. the size of the data-
base domain (data complexity) and w.r.t. the size of the query (expression

2 In fact, new versions of SQL allow use of a restricted form of recursion, but this
does not solve the expressiveness problems in their full generality.
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Deductive
query language

Relations
(facts)

Fig. 4.1. Deductive front-end to a relational database systems.

complezity). In this book we accept the common assumption that queries are
considered to be fixed, i.e., to have a constant length and thus we concentrate
primarily on the data complexity. We also assume that space data complexity
refers to the auxiliary memory needed to calculate a relation. In general, we
shall deal with the following database querying problem (for details see also
Sections 4.2 — 4.6).

Problem 4.1.5 (Database Querying Problem). Let @ be a fixed query
expressed in a given query language. The database querying problem is defined
by its input-output relation:

INPUT: database instance B

OUTPUT: the least relation defined by @ and entailed by B provided
that such a relation exists or information that the relation does
not exist relative to B. o

4.2 Predicate Calculus as a Query Language

One of the possible approaches for representing intensional databases is to use
predicate calculus as the language for representing rules and queries.

Let B = (DoMm, Ry, ..., Rg), where Ry,..., R, € EXTREL are extensional
relation symbols. Consider formula A(zy,...,z,) over the signature of B,
where x1,...,z, are all free variables of A. Such a formula, called a first-
order query, defines the following relation, say R:

3 Having defined such relations, we can use them in further definitions.
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R(aq,...,ay,) holds provided that (4.1)
ai,...,an € DoM and A(aq,...,a,) is valid in B.

In particular, first-order formulas without free variables return TRUE or FALSE
as value and thus correspond to “yes-or-no” queries.

Let us emphasize that no form of recursion is allowed, i.e., no intensional
relation is allowed to refer to itself directly or indirectly.

Ezample 4.2.1. Given a unary relation Person(x), denoting that x is a person,
and a binary relation Child(z,y) denoting that z is a child of y, the following
first-order query defines the unary relation Parent(x):

Parent(x) = [Person(x) A Jy.Child(y, x)]
denoting that person z is a parent. O

Such a query language is quite efficient due to the following theorem.

Theorem 4.2.2. The problem of computing first-order queries is in PTIME
and in LOGSPACE. a)

Assume that extensional relations are implemented. The following algorithm
checks whether a given tuple belongs to the output relation for a given first-
order query () in the prenex normal form, with free variables x1,...,xx, and
provides us with a proof of Theorem 4.2.2.

Algorithm 4.2.3.

INPUT: database instance B and tuple a = (ai,...,ax)
QUTPUT: TRUE if a is in the relation defined by Q, entailed by B,
FALSE in the opposite case.

1. The case when Q has no quantifiers: one has to determine the truth value
of each atomic formula occurring in Q for the given input tuple a. This
is done by checking whether a relevant portion of a appears in the re-
lation corresponding to the atom. When the truth values of atoms are
established, one evaluates the resulting Boolean formula and returns the
obtained value.

2. The case when @ is of the form Jx.A: all possible values of x are tried.
If some value satisfying A is found, the answer is TRUE, otherwise it is
FALSE.

3. The case when @ is of the form Vx.A: all possible values of x are tried.
If some value falsifying A is found, the answer is FALSE, otherwise it is
TRUE. O
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Time and space data complexity of Algorithm 4.2.3 can easily be evaluated
by first observing that the input query @ is fixed. Thus its length is treated
as a constant, so the depth of the recursion is constant, too, as the recur-
sive calls are invoked for each quantifier appearing in (). Next assume there
are n elements in the database domain. When applying a binary encoding,
log(n) space is required to encode each element. Traversing the database and
checking truth values of atoms requires a constant space. Each level of re-
cursion, corresponding to the evaluation of a quantifier, requires storing the
current value assigned to the quantified variable, i.e., requires a space of the
size log(n). Consequently, the algorithm works in logarithmic space, and so
also in polynomial time.

In order to see that Theorem 4.2.2 holds, we have to compute the answer to
a first-order query using at most logarithmic auxiliary space. In order to do
this, it is sufficient to generate all possible tuples in some order and use, for
each tuple, Algorithm 4.2.3 to accept the tuple as one belonging to the output
relation or not. Logarithmic space is then sufficient.

Note that standard SQL has essentially the same querying power as the pred-
icate calculus.

4.3 Fixpoint Calculus as a Query Language

Similarly to the predicate calculus, the fixpoint calculus can be used as a query
language. By a fizpoint query we thus understand any query expressed by
means of a formula of the fixpoint calculus. The whole idea is very similar to
that presented in Section 4.2, except that now one deals with a much more
expressive formalism. In fact, the following theorem applies.

Theorem 4.3.1. Computing fizpoint queries is in PTIME and PSPACE. More-
over, all queries computable in polynomial time are expressible in the fixpoint
calculus, provided that the database is linearly ordered. O

Thus fixpoint calculus can be considered as the most powerful tractable query-
ing mechanism, as it expresses all tractable queries. On the other hand, fix-
point formulas are not as straightforward to use for expressing queries. We
therefore tend to treat the calculus as a low level language and lean towards
the Semi-Horn Query Language (SHQL), which is fully declarative and more
amenable to knowledge engineering purposes (see Section 4.6).

Fixpoint formulas have a very nice computational characterization. Namely,
given an extensional database B, we have the following definitions of the least
fixpoint and the greatest fixpoint.

Lrp R(z).A(R) = | J A*(R := FaLsE) (4.2)
k>1
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GrP R(z).A(R) = ] A¥(R := TRUE) (4.3)
k>1
where A¥(R := FALSE) is an abbreviation for A(...(A(R := FALSE))...).
————’
k—times
Both the least and the greatest fixpoint can now be computed using variations
of the following algorithm.

Algorithm 4.3.2 (Naive algorithm for computing fixpoint relations).

INPUT: formula of the form LFp P.A(P) or GFP P.A(P)
QUTPUT: relation Result defined by the input formula

Result:= Init;
while Result changes do Result:= A(Result)

where

Init — FALSE when input is defined by L¥p P.A(P)
" | TRUE when input is defined by GFP P.A(P).

It is easily observed that the naive algorithm operates in time and space
polynomial in the size of the database. However, one can save a considerable
amount of computation by applying better algorithms and known optimiza-
tion techniques.*

Algorithm 4.3.2 can easily be generalized to deal with simultaneous fixpoints
by assuming that Result and Init are tuples of relations rather than a single
relation.

4.4 Datalog

DATALOG is a simple deductive database language based on the logic pro-
gramming paradigm. However, unlike logic programming, DATALOG does not
allow the use of complex terms and works on finite domains only.

DATALOG is based on the language of the predicate calculus. The DATALOG
syntax is defined by the following rule:

(DATALOG RULE) ::=
(AToMIC FORMULA) « [(ATOMIC FORMULA)
{, (ATomIC FORMULA)}].

4 See Section 4.7 for pointers to the relevant literature.
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The atomic formula to the left is called the head of the rule and the list of
atomic formulas to the right is called the body of the rule. It is usually assumed
that any variable occurring in the rule’s head also occurs in the rule’s body
(such rules are called safe).

Remark 4.4.1. In the book we will not require a variable occurring in the rule’s
head to occur also in the rule’s body. In cases violating the safety condition,
we assume that the total relation referring to variables that are in the rule’s
head and not in its body are added to the rule’s body. More precisely, consider
the rule

R(Z) «— Ri(%1), ..., Ri(T). (4.4)

Let z % 7 — (#1U...UZ) be nonempty.® Let T'(Z) be a new relation symbol,
representing the total relation, i.e., for all z, T'(Z) holds. Rule

R(Z) « Ri(Z1), ..., Re(Zy), T(2),
equivalent to (4.4), is safe. Note that T'(Z) is finite, since the database domain
is finite.

The semantics of unsafe rules, as accepted in this book, is given by assuming
that the total relation binding the “unsafe” variables is implicitly added to
each unsafe rule. 0

A rule with the empty body is called a fact.5
Any finite set of DATALOG rules is called a DATALOG program.

Observe that recursion is allowed in DATALOG. However, no explicit existential
quantifiers are allowed and negation appears neither in the head nor in the
body of DATALOG rules. In Sections 4.5, 4.6 and further parts of the book,
we shall discuss some languages extending DATALOG in various ways, relaxing
the restrictions as to the use of quantifiers and negation.

The meaning of a rule is that the conjunction of atoms of the body implies
the head of the body, assuming that all variables are universally quantified.
More precisely, if ¢,%1,...,%; are tuples of terms then a rule of the form:

R(E) — R1(t_1), ey Rk(t_k)
represents the following first-order formula:

VZ.[(Ri(f1) A ... A Re(fy)) — R(D)],

® By U we shall mean all variables that are in Z or 7 (after removing duplicates),
and by ¥ — y we shall always mean all variables that are in z and not in g.
5 The empty body is considered to be TRUE.
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where T are all the variables appearing in the rule. Observe that the above
formula is equivalent to:

Vg.[3z.(R1(t1) A ... A Ri(tx)) — R(1)],

where g are all variables appearing in the rule’s head and z =z — y.

Assume that a DATALOG program consists of a number of rules of the following
form:

R(z) « Ai(1)
» (4.5)
R(i') — An(gn)

The set of rules (4.5) can be represented equivalently as the following formula:
[3z1.41(5h) V... V 32, . A,.(Fn)] — R(T), (4.6)

where, for k=1,....,n, Zx = g, — .

There may be many relations R satisfying formula (4.6). The semantics at-
tached to DATALOG states that the least such relation is the desired result.
The explicit definition of R is expressed by using the fixpoint calculus as
follows:

R(z) = LFP R(Z).[3z1. A1(71) V ... V 32,. A, (Tn)]- (4.7)

In the case where a DATALOG program defines many relations, the definition
of the underlying semantics is provided by the least simultaneous fixpoint over
all relations occurring in the program.

Ezxample 4.4.2. Consider a domain consisting of regions and locations, where
each location is directly included in exactly one region.

Assume that the inclusion of a location in region is defined by an extensional
relation DirectRegion(x,y), denoting that location z is directly included in
region y. Assume further that regions form a hierarchy w.r.t. inclusion and
that we are given an extensional relation Includes(zx,y), meaning that region
z includes region y. Consider the following DATALOG rules:

InRegion(z,y) «— DirectRegion(z,y)

InRegion(z,y) — Includes(y, z), InRegion(x, z).

The rules define relation InRegion(x,y) denoting that location x is directly
or indirectly included in region y.

The semantics of the above program is given by the following simultaneous
fixpoint:
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LFp DirectRegion(x,y), Includes(y, z), InRegion(zx,y).
[EDB(DirectRegion),
EpB(Includes),
DirectRegion(z,y) V 3z.(Includes(y, z) A InRegion(z, z))],

where EDB(R) abbreviates the conjunction of facts about relation R included
in the extensional database. u)

4.5 Datalog™

DATALOG™ extends DATALOG by allowing negation in the body of rules. Such
an extension raises many problems concerning the semantics and complexity
of the resulting language. In fact, there are many extensions of DATALOG
that allow one to use negation in rules, but most of them either lose the
intuitive semantics based on predicate calculus or lose their tractability. In
this section we discuss two of the most widely accepted variants of DATALOG™,
the stratified and well-founded DATALOG™.

The DATALOG™ syntax is defined by the following rule:

(DATALOG™ RULE) ::=
(AToMmic FORMULA) « [ [-](ATOMIC FORMULA)
{, [7]{ATOMIC FORMULA)}].

As usual, any finite set of DATALOG™ rules is called a DATALOG™ program.

4.5.1 Stratified Programs

One of the most interesting classes of DATALOG™ programs, appearing in prac-
tical implementations, consists of stratified programs. Intuitively, a program
is stratified if it consists of layers (called strata) such that each relation is
fully defined in a single strata and each negative literal occurring in a rule
of a given layer refers to a relation defined in one of the previous layers. The
formal definition of stratification follows.

Definition 4.5.1. By a stratification of a DATALOG™ program P we mean
a sequence of DATALOG™ programs P',..., P", with P! possibly empty, such
that:

e PlU..UP"=Pandforall<i#j<n, PNPI=

e for any relation R of P and 1 < i < n:
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— if R occurs in P’ then all the rules with R in their heads are in
PlU...UP

— 4if R occurs in P* under negation then all the rules with R in their heads
are in P*U...U P,

Given a stratification P',...,P™ of P, each P is called a stratum of the
stratification. A program is called stratified if it has a stratification. O

Example 4.5.2. The following DATALOG™ program:

R(z) < S(z,y), R(y) (4.8)
R(z) — ~S(z,y), R(x) (4.9)
S(z,y) < Sy, x) (4.10)

is stratified and has a stratification {(4.10)}, {(4.8), (4.9)}.

Program:

T(x) «— Ulx)
U(z) « —T(x)

cannot be stratified. 0

There is a simple and efficient test allowing one to check whether a given
DATALOG™ program is stratified. Let P be a DATALOG™ program. By the de-
pendency graph P we shall mean a graph with vertices labelled by intensional
relations of P and containing two types of edges:

e there is a positive edge (Q, R) in the graph if and only if there is a rule in
P in which @ appears positively in the rule’s body and R appears in the
rule’s head

e there is a negative edge (@, R) in the graph if and only if there is a rule in
P in which @ appears negatively in the rule’s body and R appears in the
rule’s head.

The program P is stratified if no cycle in its dependency graph contains
a negative edge.

Ezxample 4.5.3. Consider the dependency graphs corresponding to programs
of Example 4.5.2 illustrated in Figure 4.2.

The first graph contains no cycle with a negative edge and consequently, the
first program is stratified. The second graph contains a cycle with a negative
edge, thus the second program is indeed not stratified. m
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OO0
+ +

Fig. 4.2. Dependency graphs corresponding to programs of Example 4.5.2.

A program may have various different stratifications, but its semantics is inde-
pendent of any particular stratification. Given a program P and its stratifica-
tion { P!, ..., P"}, we attach a semantics to P by applying, in order, programs
P, ..., P" and accepting the closed world assumption. Let R; be the set of all
intensional relations of P?. Then one first computes LFP R;.P!, then having
computed R; one computes LFP Ry.P? and so on until all strata are applied.

4.5.2 Well-founded Semantics

Although stratified semantics provides a simple and natural approach to
DATALOG™ programs, it has one major limitation. Namely, it cannot be ap-
plied to all DATALOG™ programs.

We now present another semantics for DATALOG™ programs which is called
well-founded. The new semantics can be applied to all DATALOG™ programs.
Moreover, well-founded semantics can be viewed as a natural extension of
stratified semantics because both agree on stratified programs.

The main conceptual distinction between stratified and well-founded seman-
tics lies in different assumptions concerning the answer to a DATALOG™ query.
The former assumes that each fact is either true or false. The latter admits
that the truth value of a fact may be unknown.

We start with some preliminary notions.

Definition 4.5.4. Let P be a DATALOG™ program over a signature with the
set of constants C. A ground instance of a rule r € P is any rule obtainable
from r by uniformly substituting all free variables occurring in r by constant
symbols from C. A set of all ground instances of all rules from P is called the
ground instance of a program P. The set of all ground atoms occurring in the
ground instance of a DATALOG™ program P is denoted by ATM(P). m

Definition 4.5.5. A three-valued interpretation of a DATALOG™ program P
is a mapping from ATM(P) into the set {TRUE, FALSE, UNKNOWN}. o

Let I be a three-valued interpretation of a DATALOG™ program P. We denote
by I° (respectively I') the set of all atoms from ATM(P) whose truth value
w.r.t. I is FALSE (respectively TRUE).
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It is often convenient to represent a three-valued interpretation of
a DATALOG™ program by listing the positive and negative facts and omitting
the unknown ones. For instance, the interpretation I, where I(R(a)) = TRUE,
I(R(b)) = UNKNOWN, I(Q(b)) = UNKNOWN and I(Q(a)) = FALSE can be
represented as I = {R(a), ~Q(a)}.

Let < be the truth ordering, as defined in Section 2.10. The least (w.r.t. <)
interpretation, denoted by I, , is an interpretation where all atoms are FALSE.

Given a three-valued interpretation I, we can extend it in a standard way to
Boolean combinations of atoms, as done in Section 2.10 (see formula (2.10)).

Definition 4.5.6. Given a DATALOG™ program P and an interpretation I of
P, the positivized version of P w.r.t. I is the program obtained from the ground
instance of P by replacing each negative literal ~A by I(—A) (i.e., by FALSE,
TRUE or UNKNOWN ). Such programs are called 3-DATALOG™ programs.” 0

Example 4.5.7. Consider a DATALOG™ program P given by

and the interpretation I, = {-W(a),-R(a),-Q(a),S(a),T(a),-U(a)}.
The positivized version of P w.r.t. I, Py, is given by

Definition 4.5.8. Given a 3-DATALOG™ program P, the three-valued imme-

diate consequence operator, Tp, on an interpretation I of P, is a mapping
defined as follows, where A € ATM(P):

7 Note that 3-DATALOG™ programs do not contain negation symbols.
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TRUE if A is a fact or there is a rule of the form
A<— Rq,..., Ry such that
I(Ry A...NRy) = TRUE

Tp(A) = { FALSE if there is no rule with A in its head or,
for each rule of the form A «— Ry,..., Ry,
I(Ry A ...A\Ry) = FALSE

UNKNOWN otherwise.

The immediate consequence operator Tp has the following property.

Theorem 4.5.9. Let P be a 3-DATALOG™ program. Then the sequence
{ThH(11)}is0 s non-decreasing w.r.t. the truth ordering and converges to the
least fizpoint of Tp. O

Let P be a DATALOG™ program and let I be a three-valued interpretation
of P. We write Cp(I) to denote the least fixpoint of Tp, , where P, is the

positivized version of the program P w.r.t. I.

Ezample 4.5.10 (Example 4.5.7 continued). We compute Cp(I,):

(Tp,) (1) = {W(a),~R(a),~Q(a), S(a), 7T (a),~U(a)}

(Tp,)*(I1) = {W(a),~R(a),Q(a), S(a), ~T(a),U(a)}

(Tp,)*(11) = {W(a),~R(a),Q(a), S(a),T(a),U(a)}

(TP+)4(IJ-) = (TP+)3(IJ-)

Hence, Cp(I1) = {W(a),~R(a), Q(a), S(a), T(a), U(a)}. g

Definition 4.5.11. Let P be a DATALOG™ program. A three-valued interpre-
tation I of ATM(P) is called a stable model of P iff Cp(I) =1. o

Definition 4.5.12. Let P be a DATALOG™ program. The well-founded seman-
tics assigns to P the three-valued interpretation of ATM(P) consisting of all
positive and negative facts belonging to all stable models of P. We call this
interpretation the well-founded model of P. O

The above definition does not provide an efficient method for computing well-
founded models of DATALOG™ programs. Below we present a tractable method
to compute well-founded models.

Let P be a DATALOG™ program. We start by defining the following sequence
of interpretations:
L1,

ef
i1 € Op(I).
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It can be shown that, for all ¢ > 0,
In<I...<I}i<Ipyp<...< Ipjp < Iy < ... < I

Thus, the even subsequence is non-decreasing and the odd one is non-
increasing. Since there are finitely many three-valued interpretations for
a given program, each of those subsequences becomes constant at some point.
Let I, denote the limit of the subsequence {I2;};>0 and let I* denote the limit
of the subsequence {I2;11};>0. We define a three-valued interpretation of P,
denoted by I}, by

TRUE if I.(A) = I*(A) = TRUE
I7(A) = ¢ FALSE if I.(A) = I*(A) = FALSE
UNKNOWN otherwise.

The following result holds.

Theorem 4.5.13. Let P be a DATALOG™ program and let I} be as specified
above. Then I7 is the well-founded model of P. O

Example 4.5.14 (Example 4.5.10 continued). We now compute the well-foun-
ded model of program P. We start with Iy = I, . Applying the Cp operator
we get the following sequence of three-valued interpretations of P:

L = {W(a)7 Q(a)7 ﬁR(a)ﬂ S(a)7 T(a), U(a)}
I, = {W(a), Q(a)v _‘R(a)v - (a’)a _'T(a)’ _'U(a)}

Is=1
Iy = Is.
Therefore,

L. = {W(a),Q(a), ~R(a),~5(a), =T (a), ~U(a)}
I" ={W(a),Q(a), ~R(a),S(a),T(a), U(a)}.

In consequence, IF = {W(a),Q(a),~R(a)}. o

4.6 Semi-Horn Query Language (SHQL)

The semi-Horn Query Language, SHQL, is a purely declarative query language.
Use of negation in a query is interpreted as classical negation, a class of
mixed quantifiers is allowed in queries, and both intentional and extensional
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predicates may occur anywhere in the query. In SHQL a query is expressed as
a theory consisting of semi-Horn formulas.®

SHQL is used as follows. Given the task of computing a definition of an inten-
sional predicate @ (or asking whether a tuple is an instance of Q) relative to
a relational database B consisting of the relations Ry, ..., R, we first provide
an implicit definition of @ in terms of a semi-Horn theory, Th(Q). The theory
Th(Q) is only constrained by the fact that it must be semi-Horn. All quanti-
fiers and logical connectives are interpreted classically. The explicit definition
of @ is computed in time and space polynomial in the size of the database,
where by explicit definition we mean a formula which is equivalent to @) but
does not refer to Q.

The computation process can be described in two stages.

In the first stage, we provide a PTIME compilation process which returns
an explicit definition characterizing the intensional predicate. If the query is
defined by means of nonrecursive semi-Horn rules, then the output is a first-
order formula expressing an explicit definition of ). The output relation is
then computed in PTIME. If the query is recursive, than the output is a log-
ically equivalent fixpoint formula expressing an explicit definition of @. In
this case, the output relation is also computed in PTIME. This is done using
quantifier elimination techniques.”

In the second stage, we use the explicit definition of ) computed in the first
stage to compute a suitable relation in the relational database that satisfies
Q. After computing the output relation, we check whether such a relation
is cousistent (or, in other words, coherent), with the database contents, i.e.,
BUTh(Q) = FALSE. Assuming that this is the case, we know that the output
relation exists and can now accept the answer computed previously. Both
checking that the query is coherent and computing the output relation can be
done efficiently because calculating fixpoint queries and fixpoint satisfiability
checking over finite domains are both in PTiME.!°

Given a query Th(Q), the combined problem of checking that the query is co-
herent, finding an explicit definition of @) and explicitly computing the answer
is in general NPTIME-complete. However, the syntactic restriction to semi-
Horn theories makes the problem solvable in polynomial time. Most impor-
tantly, SHQL is a highly expressive language which covers all PTIME queries
and is at the same time purely declarative. Querying with SHQL is as nat-
ural as querying with classical logic and the compilation step is completely

8 In fact, here we consider a subset of the original SHQL, sufficient for our purposes
and still retaining both the ability of expressing all PTIME queries and tractability.

9 Note that this technique can be used for theories outside the semi-Horn class,
also applying techniques of second-order quantifier elimination, but neither the
complexity results nor a successful reduction are guaranteed.

10 Recall that in the case of first-order queries it is even in LOGSPACE.
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transparent to the user. The following example illustrates how SHQL may be
applied.

Ezxample 4.6.1. This example demonstrates how intensional and extensional
predicates may be used anywhere in the SHQL query. In particular, in com-
parison with rule-based queries such as logic programming or DATALOG, both
intensional and extensional predicates may occur in both the head and body
of any implication.

Assume we have a database B, containing information about whether per-
sons are “rich”, “smart” or “experienced”, denoted by the unary extensional
predicates, Rich, Smart, and Experienced, respectively. Suppose we are inter-
ested in selecting all rich persons and perhaps some others and we only want
to consider those who are smart and experienced. Let ) denote the unary
intensional predicate that describes the required relation. The first condition
is then expressed by the formula

Va.[Rich(x) — Q(z)],
while the second condition is expressed by the formula
Va.[Q(xz) — (Smart(z) A Experienced(z))].

The implicit query is then defined as the conjunction of the above formulas
and we are interested in obtaining both the least and the greatest relation @@
satisfying the above conditions. Since the above formulas are semi-Horn, part
of SHQL, explicit definitions of those relations can be computed automatically.
The least relation is defined by the formula

Va.[Q(z) = Rich(z))
and the greatest relation is defined by the formula
V. [Q(x) = (Smart(z) A Experienced(x))).

Observe that our query has a side-effect due to the transitivity of implication.
Namely the following coherence condition should also hold:*!

Va.[Rich(x) — (Smart(x) A Experienced(x))].

Thus, for instance, if a database contains an element e such that Rich(e) and
—Smart(e), then the query is inconsistent with the database. O

11 Such conditions are computed automatically. In fact, when applying the SHQL
methodology one automatically generates a condition which is both sufficient
and necessary for assuring that the query is consistent with the database.
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The SHQL methodology is founded on second-order quantifier elimination
techniques and basically uses variants of the following theorem, where the
notation is explained in Section 2.9.!2

Theorem 4.6.2. Let A(Z,z,Q) and C(Q) be arbitrary first-order formulas
positive w.r.t. Q and let B(Q) be an arbitrary first-order formula negative
w.r.t. Q. Then:
o for any formula T(Q) of the form Vz.[A(Z, Z,Q) — Q(Z)] A B(Q) we have:
— the explicit definition of the least Q satisfying T(Q)
Q(z) = LrrQ(2).A(z,7,Q)
— the coherence condition for T(Q) is defined by the following formula:
B(Q(t) :== LrrQ(z).A(z, 2, Q)[t]).
o for any formula S(Q) of the form VZ.[Q(Z) — A(Z, Z,Q))]ANC(Q) we have:
— the explicit definition of the greatest Q satisfying S(Q) is given by
Q(z) = GrrQ(2).A(2,7,Q)
— the coherence condition for S(Q) is defined by the following formula:

C(Q(t) := GFPQ(2).A(z, 2, Q)[t]).

s given by

Observe that in the case where formula A in Theorem 4.6.2 is not recur-
sive, i.e., does not contain @, the resulting definition for ), as well as the
suitable coherence condition, can easily be formulated in terms of first-order
logic. This follows from the fact that in such a case both LFP Q(Z).A(Z,%;)
and GFP Q(Z).A(Z,z;) are equivalent to A(Z,z;). We also have the following
theorem.

Theorem 4.6.3. Let B be a relational database.

o Any implicit query A(Q) to B, where A(Q) is a semi Horn formula w.r.t.
Q, is computable in polynomial time in the size of the database. If A(Q)
s a nonrecursive formula, then @Q is computable in logarithmic space.

e Any PTIME query can be expressed by means of semi-Horn formulas pro-
vided that B is linearly ordered. m

12 We do not discuss the whole underlying methodology here, since we provide nec-
essary theorems in further parts of the book, adopting them to simpler situations.
The interested reader will find pointers to SHQL in Section 4.7.
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sive presentation of the subject and the relevant bibliography the reader is
referred, e.g., to [1, 220, 222, 223].

The relational model of database systems is defined in [37]. A survey of re-
lational databases is given, e.g., in [40] and of the relational database theory
n [96]. Applications of logics in databases are outlined in [126]. Practical
query languages, including SQL, are discussed, e.g., in [41, 220, 222]. An intro-
ductory textbook on deductive databases is [38]. Further readings on deduc-
tive databases can be found in [125, 173]. Many useful mathematical results
applicable to deductive databases are also presented in [68]. For pointers to
first-order logic as a query language, in particular concerning the complexity
results, see also Chapter 2.

The notion of closed world databases has been introduced by Reiter in [175].
One of the problems with Reiter’s original Cwa logic is that it does not deal
properly with disjunctive data bases. Accordingly, several other approaches
to the CwaA have been proposed. Most of them are discussed in detail in [116].

DATALOG is a query language based on the logic programming paradigm.
Many results concerning the semantics of DATALOG are then obtained by
adapting the corresponding logic programming results. Particularly impor-
tant are results on fixpoint semantics, worked out in the context of logic
programming in [225].

Fixpoint logic as a database language has been considered by many authors.
Monotone fixpoint queries were originally defined in [35]. Other fixpoint lan-
guages, including among others inflationary queries, were studied in [83, 84].
The characterization of fixpoints given by (4.2) and (4.3) is based on the
Knaster and Tarski fixpoint theorem for monotone functionals defined over
partial orders (see [213]). Theorem 4.3.1 has been independently proved in [91]
and [228]. A comprehensive presentation of complexity related issues is given
in [92].

Methods for evaluating recursive and fixpoint queries, together with query
optimization techniques, are discussed, e.g., in [1, 7, 80, 223]. In the book we
concentrated on the bottom-up approach. There are many papers on top-down
approaches, originating from logic programming. One of the most general
approaches to top-down evaluation, studied in [221], uses techniques similar
to those developed for logic programs - see, e.g., [101]. For a comprehensive
discussion of related topics see also [76].

A great deal of attention has been devoted to the use of negation in DATALOG-
like languages. Stratified DATALOG™ has been independently proposed by
many authors [4, 36, 105, 226]. Well-founded and three-valued semantics have
been studied in [18, 73, 170, 227]. The fact that the stratified semantics
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agrees with well-founded semantics on stratified programs has been proved
in [227]. For a comprehensive presentation of the subject see [1]. A survey of
approaches, in the context of logic programming, is also given in [5].

The SHQL language together with its underlying methodology is introduced
in [55], where, among others, Theorems 4.6.2 and 4.6.3 were provided. The
methodology is based on the second-order quantifier elimination technique
introduced in [142] and the DLs algorithm for second-order quantifier elimi-
nation given in [53]. For some further results concerning the methodology see
also [49]. Another application of the DLs related techniques in the context of
databases is presented in [93].



5

Non-Monotonic Reasoning

5.1 Introduction

Traditional logics are monotonic, i.e., adding new premises (axioms) will never
invalidate previously inferred conclusions (theorems), or, equivalently, the set
of conclusions non-decreases monotonically with the set of premises. Formally,
a logic is monotonic if and only if it satisfies the condition that for any sets
of premises S and S’,

S C S implies Cn(S) C Cn(9"),

where C'n denotes the semantic consequence operator of a given logic, i.e., the
operator which to each set of formulas S assigns the set Cn(S) of all formulas
entailed from S in the logic.

In the last two decades, there has been a great deal of interest in logical
systems that relax the property of monotonicity. These have been studied pri-
marily in the context of commonsense reasoning. What typifies this kind of
inference is its ability to deal with incomplete information. In everyday life
we are constantly faced with situations in which relevant facts used to rea-
son about various aspects of the world are not known to hold with complete
certainty. Yet, in order to act, we must be able to draw conclusions based on
such facts even if available evidence is insufficient to assure their correctness.
Clearly, such conclusions are risky and may be invalidated when new infor-
mation becomes available. The basic understanding is that such conclusions
more often than not do actually hold and it is an exception when this is not
the case, thus the risk in jumping to such conclusions is minimal. A classical
example of such a situation is the following.

Assume that I am planning to make a trip by car. To begin with,
I must decide where my car actually is. Given no evidence to the

P. Doherty et al.: Knowledge Representation Techniques, Studfuzz 202, 77-99 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006
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contrary, it is reasonable to conclude that my car is located where 1
last parked it.

Of course, the above conclusion may turn out to be incorrect. The car may
have been towed away or stolen, but such instances would be uncommon. In
order to plan and act, it is essential that such weak conclusions can be drawn.

There are a number of points of view as to how nonmonotonic formalisms
should be classified according to type. One viewpoint advocated in the liter-
ature is that there are two basic types of non-monotonic reasoning: default
reasoning and autoepistemic reasomning.

By the former we mean the drawing of a rational conclusion, from less than
conclusive information, in the absence of evidence leading to the contrary.
What typifies default reasoning is its defeasibility: any conclusion derived by
default can be invalidated by providing new information. A classical example
of default reasoning is the rule stating: “In the absence of evidence to the
contrary, assume that a bird flies.”

By autoepistemic reasoning, we understand reaching a conclusion, from an in-
complete representation of complete information, under the assumption that if
the conclusion were false, its negation would be explicitly represented. A typ-
ical example of autoepistemic reasoning is the rule stating: “If your name is
not on a list of winners, assume that you are a loser.” The motivation for
using this rule stems from the observation that the number of losers is usually
much greater than the number of winners, so explicitly keeping all the losers
would be impractical. It should be observed that autoepistemic reasoning is
not defeasible: its conclusions cannot be invalidated by providing new evi-
dence, since we assume complete information about the considered aspect of
the world. However, this type of reasoning is non-monotonic because conclu-
sions derivable by employing autoepistemic rules change non-monotonically
with respect to the particular context in which the rules are embedded.?

A number of non-monotonic formalisms have been studied in the literature.
In this chapter we provide a brief introduction to the most prominent of
them, namely, default logic and circumscription. Both of these formalisms can
be used to model default and autoepistemic reasoning. Another reason for
making this choice is that both default logic and circumscription will be used
throughout the book.

L If the list of winners consists of John and Mary, our rule allows us to infer that
Bill is a loser. However, if the list of winners consists of John, Mary and Bill, this
conclusion will no longer be derivable.
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5.2 Default Logic

5.2.1 Foundations

As its name suggests, default logic provides a formal framework for default
reasoning.

The basic construct used in default logic is that of a default rule. This is an
expression of the form

A(z) : B(x
(@): B@) o)
C(z)
where A(Z), B(Z) and C(Z) are first-order formulas whose free variables are
among those of Z = (x1,...,x,). A(Z) is called the prerequisite, B(Z) the
justification, and C(Z) the consequent of the default.?
The default (5.1) has the following interpretation: For all individuals repre-
sented by T = (x1,...,xz,), if A(Z) is believed and B(Z) is consistent with
what is believed, then C(Z) is to be believed.?
As an example, consider a prototypical fact that birds usually fly. This can be
represented as a rule stating that: “In the absence of evidence to the contrary,

assume about any particular bird that it flies.” In default logic this can be
represented by the default rule

Bird(x): Flies(z)
Flies(z)

In default logic, the primary objects of interest are default theories.

Definition 5.2.1. A default theory is a pair T = (W, D), where W is a set
of first-order sentences, axioms of T, and D is a set of defaults. O

Intuitively, a default theory is viewed as a representation of one or more
aspects of the world under consideration. The axioms in a theory are intended
to contain all information known to be true. The default rules extend this
information by supporting plausible conclusions. A set of beliefs about the
world represented by a theory T is called an extension of T. To define this
notion, we need some preliminary terminology.

A default A(Z): B(z)/C(z) is called open if and only if at least one of A(Z),
B(z), C(z) contains a free variable; otherwise, it is called closed. A default

2 In plain text, the default (5.1) is often written in the form A(Z) : B(z)/C(Z).
If A(Z) = TRUE, the default is called prerequisite-free and it is written as
:B(z)/C(Z).

3 In the Al literature, theorems derivable using non-monotonic formalisms are usu-
ally referred to as beliefs.
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theory is said to be open if and only if it contains at least one open default;
otherwise, it is said to be closed.

It is important to note that free variables in a default rule are viewed as
implicitly universally quantified and with a scope covering the whole default
rule. Consequently, an open default represents a general schema that can be
applied to various tuples of individuals.

An instance of an open default is the result of uniformly replacing all free
occurrences of variables by ground terms. More specifically, an instance of
an open default A(z) : B(z)/C(z), where Tz = (x1,...,x,), is any closed
default of the form A(f) : B(t)/C(¢), where t = (t1,...,t,) is an n-tuple
of ground terms uniformly replacing all free occurrences of variables z. For
example, the closed defaults Bird(Tweety): Flies(Tweety)/Flies(Tweety) and
Bird(Joe): Flies(Joe)/Flies(Joe) are both instances of open default Bird(z):
Flies(z)/Flies(x).

Since open defaults represent general inference schemata which can be applied
to various tuples of individuals, it is natural to identify such a default with the
set of all its instances. Adopting this solution, we shall be able to eliminate
open defaults and, in consequence, to limit our attention to closed default
theories only.

To formalize this idea, we define a mapping which to every default theory T
assigns a closed theory CLOSED(T), obtainable from T by replacing all T’s
open defaults by sets of their instances. To make the specification of the above
transformation as simple as possible, we put two restrictions on the theories
under consideration. Firstly, we assume that both the axioms of a theory and
consequents of its defaults are universal formulas. Secondly, we limit ourselves
to languages without function symbols.*

Definition 5.2.2. Let T = (W, D) be a default theory over a language L.
a closure of T, written CLOSED(T'), is a closed default theory obtained from T
by replacing all open defaults from D by sets of their instances constructible
using individual constants of L. m

The notion of an extension of a default theory is explicitly defined for closed
theories only. If T" is an open theory, its extensions are identified with those
of CLOSED(T).

The definition of an extension of a closed default theory uses a fixpoint con-
struction.

Definition 5.2.3. Let T' = (W, D) be a closed default theory. For any set of
sentences S, let I'(S) be the smallest set of sentences satisfying the following
properties:

4 Although the default theories we consider are quite restrictive, they are sufficient
for many practical applications.
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1. I(S) = Cn(I'(S))
2. W C I'(S)

3HAéBED“4€H$amﬁBgSJMnCGFw)

A set of sentences E is an extension of T if and only if E = ['(E), i.e.,
if and only if E is a fized point of I. O

Ezample 5.2.4. Let T = (W, D), where

. |} Bird(x) : Flies(x)
W = {Bird(Tweety)}, D= { Flics(x) } .

Bird(Tweety) : Flies(Tweety)
T) = D’ here D' = .
CLOSED(T') = (W, D), where { Flics(Tweety)

CLOSED(T'), and hence T, has one extension given by

E = Cn({Bird(Tweety), Flies(Tweety)}).

O
Ezample 5.2.5. Let T = (W, D), where
W = {Republican(Nixon) A Quaker(Nixon)}
D Republican(z):—~Pacifist(xz) Quaker(x):Pacifist(x)
B —Pacifist(x) ’ Pacifist(x)

CLOSED(T') = (W, D), where
D Republican(Nixon) : = Paci fist(Nixon)

—Pacifist(Nixon) ’

Quaker(Nixon) : Paci fist(Nixon)

Pacifist(Nixon) '
CLOSED(T), and hence T, has two extensions:
Ey = Cn({Republican(Nixon) A Quaker(Nixon), ~Paci fist(Nixon)})
E5 = Cn({Republican(Nixon) A Quaker(Nixon), Paci fist(Nixon)}). 5

If a default theory has more than one extension, each of them is considered
as an alternative set of beliefs about the world represented by the theory.
Observe that there are theories that lack any extensions, as shown in the
example below.
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Ezample 5.2.6. Let T = (W, D), where W = () and D = {‘;;((23} This

theory lacks an extension. This is because the consequence of the default
denies its justification. If the default is not applied, then there is no way to
derive —P(a), so that we are forced to apply it. However, if we do this, ~P(a)
will obtain the status of a belief and the default will become inapplicable.

To show formally that T" lacks an extension, observe that the only candidates
are £y = Cn({—P(a)}) and Ey = Cn(0). Since I'(E;) = Cn(0) # E; and
I'(E3) = Cn({—P(a)}) # Es, neither F; nor E, are extensions of T O

5.2.2 Basic Properties of Default Theories

The notion of an extension can be given the following pseudo-iterative speci-
fication.?

Theorem 5.2.7. If T = (W, D) is a closed default theory, then a set E of
sentences is an extension of T if and only if E = U E;, where Ey =W and,

i=0
fori >0, By = C??,(El) U {O | (AB/C) €D, AeE;, -B ¢ E} O
Theorem 5.2.7 gives rise to a number of corollaries.

Corollary 5.2.8. A closed default theory T = (W, D) has an inconsistent
extension if and only if W is inconsistent. O

Corollary 5.2.9. If a closed default theory has an inconsistent extension,
then this is its only extension. m

Corollary 5.2.10. If E and F are extensions of a closed default theory and
ECF, then E=F. O

Definition 5.2.11. Let T = (W, D) be a closed default theory and suppose
that E is an extension of T. The set of generating defaults for F w.r.t. T,
written GD(E,T), is defined by

GD(E,T) = {(A:B/C) e D| A€ E and B ¢ E}.

Let D be any set of closed defaults. By CoNs(D) we denote the set of conse-
quents of the defaults from D.

The following result holds.

5 Note that the specification below is not strictly iterative since the definition of
E; (i > 1) refers to E.
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Theorem 5.2.12. If E is an extension of a closed default theory T = (W, D),
then E = Cn(W U CoNns(GD(E,T))). o

5.2.3 Normal Default Theories

As has been observed, there are default theories which lack extensions. It is
then reasonable to investigate whether there are restricted classes of theories
for which extensions are guaranteed to exist.

Definition 5.2.13. Any default of the form %QEB)(@ s said to be nor-
mal. A theory (W, D) is said to be normal if and only if every default in D is
normal. O

Normal default theories are sufficient for modeling many practically occurring
situations. An important property associated with normal default theories is
the existence of extensions.

Theorem 5.2.14. Every closed (and hence also open) normal default theory
has an extension. O

Another important property of normal default theories is that they are
monotonic with respect to the addition of new defaults.

Theorem 5.2.15. Let Dy and D5 be sets of closed normal defaults such that
Dy C Dy. Let Ey be an extension of Ty = (W, D) and let Ty = (W, Ds). Then
T5 has an extension Es such that E; C Es. o

It should be emphasized that Theorem 5.2.15 need not hold for non-normal
default theories. Consider, for instance, the theory T' = (W, D), where W = ()

and D = {:&(5) } T has only one extension, namely, F = Cn({Q(a)}).
Augmenting T by a new default, : ﬁlf((aa)) , we obtain a new theory with one

extension given by F' = Cn({-P(a)}). Clearly, E € F.

The next theorem shows that combining beliefs from distinct extensions can
lead to inconsistency.

Theorem 5.2.16. If a closed normal default theory has distinct extensions E
and F', then E U F is inconsistent. O

It is worth observing that Theorem 5.2.16 may fail for non-normal default the-
ories. Nevertheless, even in such a case, beliefs from distinct extensions should
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not be kept together. To illustrate this, consider the theory T' = (W, D), where
: P(a) :Q(a) } .

W =0and D = { , . T has two extensions E = Cn({—-Q(a
s (@)

and F = Cn({—P(a)}). Clearly, E U F is consistent. However, since =Q(a) is

justified by the consistency of P(a) and —P(a) is justified by the consistency

of Q(a), ~Q(a) and —P(a) can not be regarded as coexisting beliefs.

5.2.4 Semi-Normal Default Theories

In many naturally occurring situations, the most common non-monotonic
rules are those of the form: “If A, believe B unless you believe otherwise.”
Since any such rule translates into the normal default A: B/B, it is not sur-
prising that normal defaults are extremely common in practice. This raises
the question as to whether non-normal defaults are required in modeling. Un-
fortunately, the answer is positive. The problem is that many non-monotonic
rules, which in isolation are naturally represented by normal defaults, must be
re-represented when considered in a wider context. The following is a classical
example.

Ezxample 5.2.17. Suppose we are given the following:

Bill is a high school dropout
Typically, high school dropouts are adults
Typically, adults are employed.

These commonsense facts are naturally represented by the following normal
default theory T

W = {Dropout(Bill)}
D— Dropout(x): Adult(z) Adult(z) : Employed(x)
B Adult(x) ' Employed(z)

Although intuition dictates that one should remain agnostic about the employ-
ment status of Bill, T" forces us to believe that he is employed. The problem
arises because dropouts are atypical adults as regards the state of employ-
ment, so that the transitivity from “dropout” via “adult” to “employed” is
intuitively unjustified. In order to block this transitivity, the second default
can be replaced by the non-normal default,

Adult(x): Employed(x) A ~Dropout(z)
Employed(z)

)

which is inapplicable to known dropouts. O
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This example describes the following situation which occurs quite often in
the modeling process. A non-monotonic rule is provided which, in isolation, is
naturally represented by a normal default A(z): B(z)/B(z). However, when
the rule is embedded in a context, some exceptional circumstances occur, say
E(Z), in which the application of the rule is unacceptable. To avoid counter-
intuitive inferences, the rule has to be modified to rule out such exceptions.
The most natural solution is to replace the existing rule by a new rule,

A(7): B(z) A ~E(7)
B(z) ’

which is inapplicable for tuples of objects that are known to satisfy F.

A(z):B(z) A C(Z)
B(z)
semi-normal. a default theory is said to be semi-normal if and only if all of its
defaults are semi-normal.’ m

Definition 5.2.18. Any default of the form is said to be

Although semi-normal default theories are very convenient from a practical
point of view, their behavior is not as regular as that of normal default theo-
ries. In particular, they lack (in general) two important properties of normal
default theories: the existence of extensions and semi-monotonicity. This is
illustrated by the following examples.

Ezxample 5.2.19. Consider the theory T' consisting of the empty set of axioms
and the following three semi-normal default rules:

: P(a) A —Q(a) - Q@) A —R(a)
—Q(a) —R(a)

This theory has no extension. The reason is that applying any one default
forces the application of one of the other two, but applying the latter contra-
dicts the justification of the rule previously applied. If one begins by applying
d1, one is then forced to apply ds3, but the application of d3 denies the justifica-
tion of d;. If one begins with ds, one is forced to apply dy, but the application
of dy contradicts the justification of dy. Finally, beginning with d3 leaves ds
applicable, but applying ds denies the justification of ds. O

s R(a) A —|P(a)'

" ~PG)

d2: d3:

Ezxample 5.2.20. Let T = <(Z), {:P(a)/\Q(a) } > T has one extension, namely,

Q(a)
E = Cn({Q(a)}). Adding the default : =P(a)/—P(a), a new theory is obtained
whose single extension is F' = Cn({-P(a)}). Clearly E Z F. o

6 Note that any normal default A: B/B may be identified with the semi-normal
default A: BATRUE/B. It follows, therefore, that the class of semi-normal defaults
includes normal defaults.
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5.2.5 Complexity Results for Default Logic

In this section, a number of complexity results for default logic are provided.
Attention is limited to propositional theories.”

Theorem 5.2.21. The problem of deciding whether a finite default theory has
an extension is L -complete. The problem remains X¥ -complete even when
restricted to semi-normal default theories. O

Theorem 5.2.22.

1. The problem of determining whether a formula A is a member of some
extension of a finite default theory T is X1 -complete. The problem remains
XP_complete even if T is a normal default theory.

2. The problem of determining whether a formula A is a member of all ex-
tensions of a finite default theory T is I1L -complete. The problem remains
IIY -complete even if T is a normal default theory. m

The above results are not very encouraging. They can be slightly improved
if we restrict ourselves to restricted classes of default theories. However, even
for very simple classes, the above problems are generally NP TIME-complete
or CO-NPTIME-complete (see Section 5.4 for references).

5.2.6 Prioritized Default Logic

Prioriterizing the set of default rules in a default theory is a useful technique.
Consider the following example.

Ezxample 5.2.23. Suppose we are given the following:

John is an adult full-time student.
Typically, full-time students are not employed.
Typically, adults are employed.

This is naturally represented by

W = {Adult(John) A FullTimeStudent(John)}
D— {FullTimeStudent(ac) = Employed(x) Adult(x): Employed(x) }

)

-~ Employed(x) Employed(z)
7 A default theory is said to be propositional if both its axioms and the prerequi-
sites, the justifications and the consequents of its defaults are formulas of propo-
sitional logic.
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This theory has two extensions which differ in the employment status of John.
One of them, namely that containing Employed(John), is intuitively unac-
ceptable. Given that John is an adult full-time student, we clearly prefer to
conclude that he is not employed. Stated another way, we would like to give
the first default priority over the second one.

One alternative which can be used to express priorities between defaults is to
use semi-normal default rules. In the example above, it is sufficient to replace
the second default by

Adult(x): Employed(x) A ~FullTimeStudent(z)
Employed(x) '

One obvious drawback to introducing semi-normal defaults is that they lack
the nice properties of normal defaults. Another alternative then is to use
normal default rules and specify priorities between defaults explicitly. We call
this a prioritized default logic.

Definition 5.2.24. A prioritized default theory is a triple (D, W, <), where
(D, W) is an ordinary default theory and < is a strict partial order on D.
Intuitively, di < da means that dy has higher priority than d. O

Let D be a set of closed defaults and suppose that Dy C D and Dy C D.
Assume further that < is a strict partial order on D. We say that D; is
preferred to Do w.r.t <, written Dy < Dy, if and only if

e For each d,d’ € D such that d < d, (d,d') & [D1 — D2] x [Da — D].
o There exist d,d’ € D such that d < d’ and (d’,d) € [D1 — D3] x [Da — D1].

Intuitively, the first item states that if d is a member of D¢, but not a member
of Dy, and d’ is a member of Dy, but not a member of D1, then it must not be
the case that d’ is preferred to d. Similarly, the second item states that there
is at least one d which is in D1, but not in D», and at least one d’ which is in
D5, but not in D1, such that d’ is preferred to d.

Ea:ample 5.2.25. Let D1 = {dl,dg,d4}, D2 = {dg,dg,d5}. D1 is preferred to
Dy w.r.t. < given that d3 < dy. On the other hand, neither D, is preferred to
Dy nor Ds is preferred to D if < is given by d3 < d; and d4 < ds. O

Let D be a set of closed defaults and suppose that D = {D;, ..., D,}, where
each D; C D. Let < be a strict partial order on D, interpreted as usual. We
say that D; is <-maximal in the class D if and only if there is no D; € D such
that D; is preferred to D;.
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Definition 5.2.26. Let (W, D, <) be a closed prioritized default theory and
suppose that Ey, ..., E, (n > 0) are all extensions of T = (W, D). E; is said
to be an extension of (W, D, <) if and only if GD(E;,T) is <-maximal in the
class {GD(Ey1,T),...,GD(E,,T)}.2 o

Let us reconsider Example 5.2.23. Normal default rules can be used to rep-
resent the facts provided that the first default, dy, is given higher priority
than the second one, ds. In other words, the relation < is specified such that
ds < di. The original theory, T', has two extensions:

E, = Cn({Adult(John) A FullTimeStudent(John), =~ Employed(John)}
E; = Cn({Adult(John) A FullTimeStudent(John), Employed(John)}.

Obviously, GD(E1,T), but not GD(F3,T), is <-maximal in the class
{GD(E1,T),GD(E>,T)}.

5.3 Circumscription

5.3.1 Introduction

Circumscription is a powerful non-monotonic formalism centered around the
following idea:

the objects (tuples of objects) that can be shown to satisfy a certain
relation or property are conjectured to be all the objects (tuples of
objects) satisfying that relation or property.

For instance, to circumscribe the relation of “being red” is to assume that
any object that cannot be proved to be red is not red. Another way to view
circumscription is as an expressive generalization of the closed-world assump-
tion.

Unlike default logic, where non-monotonicity is modelled by the means of spe-
cial expressions, namely default rules, circumscription operates completely in
the framework of classical logic. For example, to express a non-monotonic rule,
one usually introduces a special relation constant, Ab, standing for “abnor-
mal,” with the intention that abnormal objects are those violating the rule.
Given this intuition, the rule characterizing the conjecture that birds normally
fly can be represented by the sentence

Va.[(Bird(x) A —Ab(x)) — Flies(x)]. (5.2)

8 Recall that GD(E, T) is the set of generating defaults for E w.r.t. T (see Defini-
tion 5.2.11).
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It should be emphasized that applying the standard inference mechanism as-
sociated with classical logic to the theory consisting of the sentence (5.2) and
an additional axiom Bird(Tweety) is inadequate for inferring that Tweety
flies. The reason is that classical logic offers no way to conclude that the bird
Tweety is normal, i.e., 7 Ab(Tweety) (in the absence of information about Ab).
Circumscription supplies the additional inferential power. This is done by cir-
cumscribing the relation of being abnormal. By circumscribing this property,
one can infer that any bird that cannot be proved abnormal is normal and,
consequently, that it flies. Circumscribing relations is achieved by adding an
additional second-order axiom to the original theory.

Circumscription can be viewed as a form of minimization — to circumscribe
a relation is to minimize its extension.® Observe also that circumscription can
be used for maximizing relations, since maximizing a relation corresponds to
minimizing its negation.

Circumscription has the following specific features:

1. it is always the task of the user to specify the relations whose extensions
are to be minimized. The user can also specify relations whose extensions
may vary during the minimization process. This is important for gener-
ating positive facts. Circumscription provides a general mechanism which
can be applied to arbitrarily chosen minimized and varied relations in
a specific theory

2. unlike the case for default logic, all individuals in the domain, not only
those denoted by individual constants, are influenced by the process of
minimization

3. circumscription is based on syntactic manipulations. Given a theory T,
alist Py, ..., P, of relation symbols to be minimized and a list Q1, ..., Qm
of relation symbols that are allowed to vary, the circumscription of
Py, ..., P, in T with variable Q1, ..., Q,, amounts to implicitly adding to
T a special second-order sentence, called a circumscription axiom, which
captures the desired minimization.

5.3.2 Definition of Circumscription

Let £ be a fixed first-order language with equality. The objects under con-
sideration, referred to as circumscriptive theories are finite sets of sentences
stated in L. Since each such set is equivalent to the conjunction of its mem-
bers, a circumscriptive theory may always be viewed as a single sentence. In

9 An extension of a relation P is the set of objects (tuples of objects) satisfying P.
Note that the term “extension” is used here in a quite different sense than in the
section devoted to default logic.
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the sequel, we will not distinguish between a theory 7" and the sentence denot-
ing the conjunction of all members of T. We write T'(Py, ..., P,) to indicate
that some (but not necessarily all) of the relation symbols occurring in T are
among Py,..., P,.

An n-ary relation expression is an expression of the form
Axy ...z Az, .. 2,) (R 2>0)

where z1,...,x, are individual variables and A(x1,...,x,) is any formula
of first- or second-order logic. We identify an n-ary relation symbol P with
the relation expression Azj ...xz,. P(z1,...,2,). Similarly, an n-ary relation
variable X is identified with the relation expression Azy ..., 2. X (21,...,2y,).

The following are relation expressions (below X is a relation variable):
Az. P(x);  Azy. (X(z)V P(y));  Az. FALSE.

An n-ary relation expression U is intended to represent an m-ary relation
which is usually referred to as the extension of U.

In the sequel, an n-ary relation expression A\xj ..., z,. A(z1, ..., 2,) will often
be written as AZ. A(Z), where & stands for a tuple (x1,...,z,).
Let U be a relation expression of the form Az. A(Z), where T = (z1,...,x,),

and suppose that ¢ = (t1,...,t,) is an n-tuple of terms. The application of
U to t, written U(?), is the formula A(f). For instance, the application of
Azy. (P(z) — Q(y)) to t = {(a, 2) is the formula P(a) — Q(2).

If U and V' are relation expressions of the same arity, then U <V stands for
vz. (U(z) — V(z)).1° Similarly, if U = (Us,...,U,) and V = (V1,...,V,,) are

similar tuples of relation expressions, i.e., for 1 < i < n, U; and V; are of the
n

same arity, then U < V is an abbreviation for /\[UZ < Vi]. We write U =V
i=1
for (U< VIA(VL<U),and U <V for (U< V)A=(V <U).

Definition 5.3.1. Let P = (P; ..., P,) be a tuple of distinct relation symbols,
S = (S1,...,Sm) be a tuple of distinct relation symbols disjoint with P, and
let T(P,S) be a theory. The circumscription of P in T(P,S) with varied S,
written CIRC(T; P 5’), is the sentence

T(P,5) A\VXVY. <[T(X,V) A X < P (5.3)

where X = (X1 ..., X,) and Y = (Y1,...,Y,,) are tuples of relation variables

similar to P and S, respectively.'! O

10 Note that U < V means that the extension of U is a subset of the extension of V.

Y 7(X,Y) is the sentence obtained from T(P,S) by replacing all occurrences
of Pi...,P, by X1...,X,, respectively, and all occurrences of Si...,Sm, by
Yi..., Y, respectively.
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Observe that (5.3) can be rewritten as
T(P,S) A\VXVY {[T(X,Y)AN[X < P]] — [P < X}
which, in turn, is an abbreviation for
T(P,S)A

n

T(X,Y) A )\ Va.(Xi(z)— Pi(z)) | — /\vz.(Pi(z)_)Xi(z))}.

i=1 i=1

vxw.{

Definition 5.3.2. A formula A is said to be a consequence of the circum-
scription of P in T(P,S) with variable S if and only if CIRc(T; P; S) = A.12

O

Example 5.3.3. Let T consist of the following formulas:

Bird(Tweety)
Va.[(Bird(z) A —Ab(x)) — Flies(x)].

Let P = (Ab) and S = (Flies).

Cire(T; P;S) = T(P,S) A
VXVY.{ [Bird(Tweety) A Vz.[(Bird(xz) A =X (z)) — Y (2)]A
Ve[ X(x) — Ab(z)]] — Va.[Ab(x) — X (z)] }.

In its basic form, the idea is to find relational expressions for X and Y that
when substituted into the theory T', will result in strengthening the theory so
additional inferences can be made. For example, substituting Ax.FALSE for X
and Az.Bird(z) for Y, one can conclude that

Cre(T; P;S) =T AA (5.4)
where A is

{Va.[(Bird(z) A =FALSE) — Bird(z)] AVz.[FALSE — Ab(z)]} —
Va.[Ab(z) — FALSE].

Since A can be simplified to the logically equivalent sentence
Va.[Ab(z) — FALSE],
which in turn is equivalent to Vz.—Ab(x), one can infer by (5.4) that

CIrc(T; P; S) = Flies(Tweety).

2 Here |= denotes the entailment relation of the second-order logic.



92 5 Non-Monotonic Reasoning

5.3.3 Semantics of Circumscription

Given a relational structure M = (Dom, {fP i € I}, {RYV : j € J}), we
write DOM(M) to denote the domain of M. If R; is a relation symbol, then
M (R;) stands for RP™. The class of all models of a theory T" will be denoted
by Mobp(T).

The semantics of circumscription is based on the concept of sub-models.

Definition 5.3.4. Let P, S and T(P,S) be as in Definition 5.3.1. Let M
and N be models of T. We say that M is a (P,S)-submodel of N, written
M <5 N if and only if

1. DoM(M) = DoM(N)

2. M(R) = N(R), for any relation symbol R not in P U S

3. M(R) C N(R), for any relation symbol R in P. o
We write M <®5) N if and only if M <(P5) N, but not N <P5 .

A model M of T is (P, S)-minimal if and only if T has no model N such that
N <P5) M.

We write Mop!

vl

) (T') to denote the class of all (P, S)- minimal models of T,
Theorem 5.3.5. For any T, P and S,

Mob(CIRC(T; P; §)) = MopP5)(T).

Ezxample 5.5.6. Let us reconsider the theory T' from Example 5.3.3:

Bird(Tweety)
Ve.[(Bird(z) A ~Ab(z)) — Flies(z)].

It should be emphasized that the sentence Flies(Tweety) is not derivable using
circumscription if the relation symbol Flies is not varied. That is

CIRC(T'; Ab; () £ Flies(Tweety).

To understand the reason why, consider a relational structure M such that
DoM(M) = {Tweety}, M (Bird) = M(Ab) = {Tweety} and M (Flies) = 0.
It is clear that M is a model of T. However, M is also an (Ab, ())-minimal
model of T' (we cannot make M (Ab) smaller while preserving the truth of T'
and M (Flies)). Thus, since Flies(Tweety) is false in M, this formula cannot
be derived by circumscribing Ab in T without varying relations (in view of
Theorem 5.3.5). o
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Example 5.3.7. Let T consist of the following:

R(Nixon) A Q(Nixon)
Va.[(R(z) A —Aby(x)) — —P(x)]
V. [(Q(z) A —Aby(z)) — P(x)].

This is the standard “Nixon diamond” theory (see Example 5.2.5) with R, P,
Q standing for Republican, Pacifist and Quaker, respectively.'® Let M and
N be models of T such that

DoMm(M) = DoMm(N) = {Nixon},
M(R) = N(R) = {Nixon}, M(Q)= N(Q) = {Nixon}

and

M(P) = {Nixon} N(P)=0
M(Abl) = {Nixon} N(Abl) =
M(Aby) =0 N(Aby) =

It is easily observed that for any S, both M and N are (Ab,S)-minimal
models of T, where Ab = (Aby, Abs). Furthermore, M |= P(Nixon) and N =
—=P(Nixon). It follows, therefore, that when Ab is circumscribed in T', it can not
be inferred whether Nixon is a pacifist or not. The best that can be obtained
is the disjunction —Ab;(Nixon) V —Aby(Nixon), stating that Nixon is either
normal as a republican or as a quaker. O

5.3.4 Properties of Circumscription

It is reasonable to ask whether circumscription preserves satisfiability if the
original first-order theory which we circumscribe over is satisfiable. As the
following example shows, this is not always the case.

Example 5.3.8. Let T consist of the following:

Jz.P(z) A [Vy.Ply) — x = s(y)]
Va.P(x) — P(s(x))
VaVy.s(z) = s(y) — z = y.

Recall that w denotes the set of natural numbers. Consider the relational
structure M, where DOM(M) = w, M (P) = w and s is the successor function.

13 Observe that we use two abnormality relations here, namely Ab; and Abs. This is
because being abnormal with respect to pacifism as a quaker is a different notion
than being abnormal with respect to pacifism as a republican.
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It is easily observed that M is a model of T, so that T is satisfiable. On the
other hand, CIRC(T; P;()) is unsatisfiable. We leave it to the reader to show
that there are no (P, ())-minimal models of T'. o

In view of Example 5.3.8, it is natural to seek classes of theories for which
circumscription preserves satisfiability.

Definition 5.3.9. A theory T is well-founded w.r.t. (P, S) if and only if , for
every M e Mon(T), there is an N € Mop™*)(T) such that N <5 M. o

Theorem 5.3.10. If T' is satisfiable and well-founded w.r.t. (P, S), then also
Circ(T; P; S) is satisfiable. o

An important class of well-founded theories are the universal theories.

Theorem 5.3.11. For any disjoint tuples 1_5 and S of relation symbols, every
universal theory is well-founded w.r.t. (P, S). o

Corollary 5.3.12. For any disjoint tuples ]? and S of relation symbols and
any satisfiable universal theory T, CIRC(T; P; S) is satisfiable. 0

We now consider the expressive power of circumscription with respect to well-
founded theories.

Since circumscription minimizes circumscribed relations, one may expect that
it never yields new positive instances of such a relation. For well-founded
theories this is indeed the case.

Theorem 5.3.13. If T is well-founded w.r.t. (P,S), P € P is an n-ary rela-
tion symbol and t is an n-tuple of ground terms, then

Cire(T; P; S) = P(t) if and only if T |= P(%).

Theorem 5.3.14. If T' is well-founded w.r.t. (P,S), R is an n-ary relation
symbol not in P, S and t is an n-tuple of ground terms, then

1. Cre(T; P; S) |= R(%) if and only if T |= R(t)
2. CIRC(T; P; S) |= —R(%) if and only if T = —R(t). o

Theorems 5.3.13 and 5.3.14 state that the only new ground literals that one
may hope to obtain from well-founded theories by circumscription are negative
instances of circumscribed relations, and both positive and negative instances
of variable relations.
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5.3.5 Prioritized Circumscription

It is often useful to prioritize the minimization of relations in circumscriptive
theories. This section describes an extension to circumscription for doing this.
Let us start with the following example.

Example 5.3.15. Suppose we are given a theory T consisting of the following:'4

Adult(John) A FullTimeStudent(John)
Va.[(Adult(x) A —Ab1(z)) — Employed(z)]
V. ([FullTimeStudent(x) A = Aby(z)) — ~Employed(z)].

Given these axioms, John may be considered a normal full-time student
(—Abz(John)) or a normal adult (—Ab; (John)), but not both. This is because
there are two conflicting minimizations of (Aby, Aby) with Employed varied,
leading to = Ab; (John)AEmployed(John) and —Abs(John)A—Employed(John),
respectively. Consequently, all that can be inferred is the disjunction

—Aby (John) vV = Aby(John). (5.5)

Clearly, the inference (5.5) is too weak to capture our intuitions concerning
this example. As has already been noted, given that John is a full-time student,
it is not reasonable to remain agnostic about his employment status. Rather,
one is prepared to assume that he is unemployed.

One means of avoiding unintuitive minimizations is to add a new piece of
information. In our example, it is sufficient to supply the theory T with

V. FullTimeStudent(z) — Aby(z).

The obvious drawback to the solution outlined in Example 5.3.15 is that in
practical applications there may be a great number of unwanted minimiza-
tions, so that their elimination will require many additional axioms.

There is another way to avoid undesirable minimizations. The circumscriptive
technique can be generalized by introducing a priority ordering on relations to
be minimized. The idea is that any conflict arising from the minimization of
two relations is resolved in favor of the relation with the higher priority. This
generalization of circumscription is referred to as prioritized circumscription.

Suppose one wants to minimize the extensions of a pair of relation symbols, say
P, and Ps, in a theory T. Assume for simplicity that no additional relations

14 This is a circumscriptive version of the default theory considered in Example
5.2.23.
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can be varied during the minimization. In standard circumscription this is
expressed by the sentence

T(P1, Po) ANVX1 Xo. {[T(X1,X2) A({ X1, Xs) < (P, Py))] —
[(P1, P2) < (X1, Xo)]}

where, for arbitrary pairs of similar relation expressions, (Uy, Us) and (V7, Va),
(Ur,Us) < (V1,V3) is defined by (U; < Vi) A (U < V). Assume now that
one wants to minimize P; and P; in T, the former at higher priority than the
latter. To express this, one may retain the original circumscription definition
with one exception: instead of minimizing (P, P») with respect to <, one

employs the relation < specified by
<U1,U2> j <V1,V2> if and only if (Ul §V1) (Ul V1 —>U2 < ‘/2)

Notice that (Uy,Us) = (V1,Va) does not imply Uy < Vo, If Uy < Vi, then
(Uy,Uz) = (W1, Va), for any Us, V5.

The relation < can be naturally extended into similar tuples of relation ex-
pressions:

def
(Ul,...,Un>j<V1,...,Vn> =
n i—1
h<Vian NI|AU=V| -U<V;
i=2 j=1

_ _ — def
<U17 aUn> = <‘/17 ’ n> =
n i—1
U <Vain N\ U=V;| =U: <V,
i=2 | \j=1
(Uy,...,Up,) < (Vi,...,V,) is written as an abbreviation for

(U1,...,0.) <2 (Vi VI A=[(Vay o Vi) <Oy, Ul

Given these preliminaries, a formal definition of prioritized circumscription
can now be provided. To minimize a tuple p of relatlon symbols, one starts
by partitioning P into disjoint sublists P?,. . The intention is that the
elements of P! are minimized at the highest prlomty7 those of P2 at the next
highest priority, etc. This is expressed by writing P1 > --- > Pn,

Definition 5.3.16. Let P, S and_T(P S) be as in Definition 5.3.1. The prior-
itized circumscription of P in T (P, S) with variable S with respect to priorities
Pl > ... > Pn written
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Cire(T; PL > --- > P, S),

1s the sentence

T(P,S) AVXVY. ~[T(X,Y)ANX < P. (5.6)

Here X < P is (F,...,Xi’i< (PL,..., P, where each X' is a tuple of
relation variables similar to Pt. o

Notice that (5.6) may be equivalently written as
T(P,S) A\VXVY.[T(X,Y)A[X 2 P] = [P = X]].

As usual, the set of consequences of prioritized circumscription is identified
with the set of all formulas entailed by Circ(T; P! > --- > P"; S).

Example 5.3.17. Consider the theory of Example 5.3.15, with A, F'T'S, F and
j standing for Adult, FullTimeStudent, Employed and John, respectively. We
circumscribe Aby, Aby in T with variable E. Since the minimization of Aby is
to be preferred over that of Aby, Abs is given a higher priority than Ab;.
CIRC(T; Aby > Aby; E) = TA
VX1, X, Y. { [A(j) AFTS(j) AVz.[(A(z) A ~X1(z)) — Y (2)]A
Va.[(FTS(x) A =Xa(z)) — 2Y(2)]A
V. [Xo(x) — Aba(z)]A
Vo [(Xa(2) = Aba(2))) — Va.(X(2) — Aby(@))]] -

[vx.[AbQ(m) — Xo(2)]A
Vi [(Abs(z) = Xa(z)) — Va.(Aby (z) — X, (x))]} } .

Substituting Az. FT.S(x) for X3, Az. FALSE for Xo, Az. A(z) A —~FTS(z) for
Y, and doing the appropriate calculations, one obtains

CirC(T; Abgy > Aby; E) = A1 A Ag A As,
where

Ay = V. Aby(x)

Ay =Vx. Aby(z) = D(x)

Az = =E(j).



98 5 Non-Monotonic Reasoning

5.4 Bibliographic Notes

The version of default logic presented in this chapter is in large part due to
Reiter, who introduced this formalism in [176]. Semi-normal default theories
and their importance from the standpoint of practical applications were first
discussed in [177].

Reiter’s presentation of default logic is purely syntactical. The first attempt
at developing semantic foundations for this formalism is presented in [115]
where a semantic characterization for normal default theories is provided.
The general idea is to consider each default as a mapping from classes of
models into classes of models such that the range of the mapping restricts its
input class into those models in which the consequent of the default is true.
This semantics has been generalized into arbitrary default theories in [70].
In [20] another semantics for default logic has been presented. It is based on
Kripke structures.

The general complexity results for default logic presented here are provided in
[79]. The reader interested in complexity results for various restricted classes
of propositional default theories should consult [98, 208].

Prioritized default logic, for normal default theories, was introduced in [6,
28]. The formulation here is slightly different, but the resulting formalism is
equivalent, for normal theories, to one of formalisms presented in [28].

Reiter [176] provides a proof theory for normal default theories.

There have been several other formulations for default logic. In contrast to
Reiter’s original approach, all of them enjoy the property of existence of ex-
tensions. In particular, three of them, justified default logic [115], cumulative
default logic [26] and constrained default logic [43] are worth noting in partic-
ular.

There are several books covering the subject of default logic. The most detailed
exposition of Reiter’s approach, restricted to the propositional case, can be
found in [118]. The books [19, 27, 116] go well beyond classical default logic.
The first two provide, in addition, a detailed presentation of justified default
logic, whereas the third contains a brief introduction to cumulative default
logic. The reader interested in computational aspects of default logic should
consult [179].

Circumscription was introduced by McCarthy. In [119, 120] he proposed two
circumscriptive logics, known in the Al literature as predicate circumscription
and formula circumscription, respectively. The second of these formalisms
has been slightly extended and reformulated in [103]. It is this version of
circumscription, usually referred to as second-order circumscription, that has
been presented here. All the results stated in Section 5.3 are due to Lifschitz
[103, 104]. A good survey of second-order circumscription is given in [107].
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Circumscription has one major advantage and one major weakness when
compared with other non-monotonic formalisms. On the positive side, cir-
cumscription is embedded in a standard logical framework. Once a circum-
scription axiom is constructed, all deductions proceed in classical monotonic
logic. Unfortunately, the circumscription axiom is expressed in second-order
logic which makes the technique problematic to use from a computational
point of view. To alleviate this problem, several researchers have studied the
possibility of reducing certain classes of circumscriptive theories into first-
order logic. The first attempt in this direction was made in [103], where
various classes of circumscriptive theories are isolated where they can be re-
duced to first-order equivalents. In [75] and [53] two general algorithms re-
ducing second-order quantifiers have been presented. The former, called the
SCAN algorithm is based on second-order resolution, whereas the latter, the
DLs algorithm, uses a lemma, originally provided in 1935 by Ackermann [2].
Both of these algorithms can be used to reduce a reasonably wide class of
circumscriptive theories. Their implementations can be found on the Inter-
net (see http://www.mpi-sb.mpg.de/units/ag2/projects/scan/scan for
ScaN, and http://www.ida.liu.se/labs/kplab/projects/dls, for DLS).

A number of other circumscriptive logics have been proposed in the Al liter-
ature. Of these, the most interesting is pointwise circumscription [106]. This
formalism is very powerful and can be used to model various complex inference
patterns which are difficult to express in the framework of other circumscrip-
tive logics. The book [116] provides a detailed survey of various circumscriptive
formalisms.

Two other non-monotonic formalisms have been studied extensively. These
are autoepistemic logic and a family of logics modelling the closed world as-
sumption (CwA-logics).

Autoepistemic logic was introduced by Moore [129, 130] to model autoepis-
temic reasoning. The books [116, 118] provide a detailed exposition of au-
toepistemic logic.

The closed world assumption is one of the earliest contributions to non-
monotonic reasoning. It was proposed by Reiter in [175] in the context of
deductive databases.'® Limitations of Reiter’s original formulation led sev-
eral researchers to formalize more sophisticated logics dealing with the closed
world assumption. Some of them are discussed in [116].

15 See also Chapter 4.
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Rough Knowledge Databases

6.1 Introduction

Consider an autonomous system such as a ground robot or an unmanned
aerial vehicle operating in a highly complex and dynamic environment. For
systems of this sort to function in an intelligent and robust manner, it is useful
to have both deliberative and reactive capabilities. Such systems combine the
use of reactive and deliberative capabilities in achieving task goals. Reactive
capabilities are necessary so the system can react to contingencies which arise
unexpectedly and demand immediate response with little room for deliber-
ation as to what the best response should be. Deliberative capabilities are
useful in the sense that internal representations of aspects of the system’s op-
erational environment can be used to predict the course of events in the near
or intermediate future. These predictions can then be used to determine more
selective actions or better responses in the present which potentially save the
system time, effort and resources in the course of achieving task goals.

Due to the complexity of the operational environments in which robotics sys-
tems such as these generally operate and the inaccuracy of sensor data about
the environment acquired through different combinations of sensors, these
systems can not assume to have complete information or models about their
surrounding environment, or the effects of their actions on these environments.
On the other hand, the deliberative component is dependent on the synthesis,
management, update and use of incomplete qualitative models of the opera-
tional environment represented internally in the system architecture. These
internal models are used for reasoning about the system’s environment and
the effects of its actions on the environment while attempting to achieve task
goals. In spite of the lack of complete information, such systems quite of-
ten have or can acquire additional information which can be used in certain
contexts to assume additional knowledge about the incomplete parts of the
specification. This information may be of a normative or default nature, may

P. Doherty et al.: Knowledge Representation Techniques, Studfuzz 202, 103-127 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006
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include rules-of-thumb particular to the operational domain in question, or
may include knowledge implicit in the result of executing a sensing action.

One potentially useful approach that can be pursued in the development of on-
line reasoning capabilities and representation of qualitative models of aspects
of an autonomous system’s operational environment is the use of traditional
database technology combined with techniques originating from artificial in-
telligence research with knowledge-based systems. There are a number of dif-
ferent compositions of technologies that may be pursued ranging from more
homogeneous logic programming based deductive database systems to het-
erogeneous systems which combine the use of traditional relational database
technology with specialized front-end reasoning engines.

The latter approach is pursued in this chapter, but with a number of modi-
fications to the standard deductive database framework. These modifications
are made necessary by the requirement of representing and reasoning about
incomplete qualitative models of the operational environments in which au-
tonomous systems are embedded. A number of fundamental generalizations
of standard semantic concepts used in the traditional deductive database ap-
proach are advocated:

e the extensional database (EDB) which represents and stores base relations
and properties (facts) about the external environment, or the system’s
internal environment, is given a formal semantics based on the use of rough
sets. The extension of a database relation or property contains explicit
positive and negative information in addition to implicitly represented
boundary information which is defined as the difference between upper
and lower approximations of the individual relations and properties

e the intensional database (IDB) contains two rule sets generating implicit
positive and negative information, respectively, via application of the rule
sets in the context of the facts in the EDB. The closed-world assumption
is not applied to the resulting information generated from the EpB/IDB
pair

e the open-world assumption is to be applied to the extensional and inten-
sional database pair which can be locally closed in a dynamic manner via
the use of conteztually closed queries (Ccqs). A CcQ consists of the query
itself, a context represented as a set of integrity constraints and a local clo-
sure policy specified in terms of the minimization /maximization of selected
relations. The contextually closed query layer (CcQ layer) represents the
closure mechanism and is used to answer individual CcQs.

In effect, the CcQ layer permits the representation of additional normative,
default or closure information associated with the operational environment
at hand and the particular view of the environment currently used by the
querying agent. Together with the rough set semantics for relations, a rough
set knowledge database in this context represents an incompletely specified
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world model with dynamic policies which permit the local closure of parts of
the world model when querying it for information.

The combination of the EDB, IDB, and CcQ layer is called a rough knowledge
database (RKDB). The computational basis for the inference engine used to
query the RKDB is based on the use of circumscription, quantifier elimination,
and the ability to automatically generate syntactic characterizations of the
upper and lower bounds of rough relations in the RKDB.

6.1.1 Open- and Closed-World Reasoning

What is meant intuitively by open- and closed-world reasoning? In traditional
databases, reasoning is often based on the assumption that information stored
in a specific database contains a complete specification of the application
environment at hand. If a tuple is not in a base relational table, it is assumed
not to have that specific property. In the case of deductive databases, if the
tuple is not in a base relational table or any intensional relational tables
generated implicitly by the application of intensional rules, it is again assumed
not to have these properties. Under this assumption, an efficient means of
representing negative information about the world depends on applying the
closed-world assumption (Cwa). Recall that in this case, atomic information
about the world, absent in a world model (represented as a database), is
assumed to be false.

On the other hand, for many applications such as the autonomous systems
applications already mentioned, the assumption of complete information is
not feasible nor realistic and the CWA can not be used. In such cases an
Open-World Assumption (OWA), where information not known by an agent is
assumed to be unknown, is often accepted, but this complicates both the rep-
resentational and implementational aspects associated with inference mecha-
nisms and the use of negative information. The CwA and the OWA represent
two ontological extremes. Quite often, a reasoning agent does have or acquires
additional information which permits the application of the CwA locally in
a particular context. In addition, if it does have knowledge of what it does not
know, this information is valuable because it can be used in plan generation
to acquire additional information through use of sensors.

In such a context various forms of Local Closed World (LCw) assumptions
have been found to be useful. Such assumptions provide a compromise be-
tween CwA and OwA, allowing one to close the world locally. In the current
chapter we provide a semantics and a methodology for LCW reasoning which
provides an intuitive and general framework for integrating LCW reasoning in
knowledge databases used by intelligent agents.

The approach exhibits the following features:

e it is applicable to deductive databases
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e integrity constraints take on an important role in characterizing Lcw as-
sumptions in a principled manner. In most knowledge databases the rela-
tionships between pieces of information are expressed by means of integrity
constraints (e.g., defined by means of classical first-order formulas). In the
case of applying Lcw policies locally to particular relations, one minimizes
those relations. However, in such cases the integrity constraints have to be
preserved. This can result in implicit changes to some additional relations.
However, the integrity constraints are still preserved thus the knowledge
structure represented continues to satisfy the desired properties

e the use of integrity constraints and local closure policies are decoupled from
the knowledge database itself and associated dynamically with individual
agent queries. The agent’s themselves possess local views and preferences
about the world model that may or may not be shared by other agents or
even the same agent using a different query or context

e the approach permits selected fixing, varying and minimizing of specific
relations in integrity constraints. This provides the user with a flexibility
in defining LCW constraints and brings the approach close to the method-
ology used in circumscription-based knowledge representation. It should
be emphasized that the implementation is not always dependent on the
use of circumscription

e at the semantic level we use rough sets to represent database information.
Namely, rough sets contain information about tuples known to be in a re-
lation (the lower approximation of the relation), tuples that are or might
be in the relation (the upper approximation of the relation), tuples known
not to be in the relation (the complement of the upper approximation of
the relation) and tuples for which it is unknown whether they belong to
the relation (the difference between the upper and lower approximation of
the relation).

6.1.2 The Architecture of RKDBs

Let us now discuss the architecture of RKDBs as understood in the book. Such
databases constitute a kernel in the architecture of knowledge-based systems.
The architecture of a RKDB is illustrated in Figure 6.1.

The most fundamental layer of the database is the extensional database. We
assume that the extensional database contains positive and negative facts. The
facts that are not explicitly listed in the extensional database are assumed to
be unknown in this layer of the database. Thus in the extensional database
layer we apply the open-world assumption. The intensional database layer
provides rules that define some new relations, but also rules allowing one
to extend the positive and negative parts of the extensional relations. The
outermost, most advanced layer, which we call the contextual closure query
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Fig. 6.1. The Architecture of Knowledge Databases.

layer (CcQq layer), consists of the Ccq inference mechanism which includes the
query/answer mechanism used by individual CcQs applied to the two lower
layers of the RKDB.

The extensional database consists of rough relations. According to the metho-
dology we apply, the rules of the intensional database function as rough set
transducers,’ transforming combinations of rough extensional and intensional
relations into new relations which satisfy the constraints of the intensional
rules. As in the extensional database, in the intensional layer the open-world
assumption is applied. Local closure context policies (LCC policies) allow us
to minimize chosen relations (or their complements), while at the same time
preserving the imposed integrity constraints. Queries are asked via the outer-
most layer, but in some applications it might be useful to submit queries to
the intensional or even extensional layer.

6.2 The Languages of RKDBs

6.2.1 The Language of EDBs

The extensional database consists of sets of positive and negative facts. We
thus assume that the language of the extensional database is a set of literals,
i.e., formulas of the form R(¢) or =R(¢), where R is a relation symbol and ¢
is a tuple of constant symbols. It is assumed that the extensional database is
consistent, i.e., it does not contain both R(¢) and —R(¢), for some relation R
and tuple c.

Observe that an extensional database can be a standard relational database
or its extension by some algorithms or agents providing additional data. For

! Rough set transducers are explained in Chapter 7.
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example, in practice one often deals with classifiers supplying databases with
interpretations of lower level data, e.g., inducing from sensor signals higher
level concepts represented or viewed as database relations.

6.2.2 The Language of IDBs

The intensional database is intended to infer new facts, both positive and
negative via application of intensional rules to the EDB. The rules are of the
form

:I:P(j) — :Epl(fl), ...t Pk-(jfk)

where = is either the empty string or the negation symbol —.2

The rules can be divided into two layers, the first for inferring positive and the
second for inferring negative facts. The first layer of rules (called the positive
IDB rule layer), used for inferring positive facts, is of the form

P(z) — £P\(z1),... + Py(zx) (6.1)

while the second layer of rules (called the negative IDB rule layer), used for
inferring negative facts, is of the following form

~P(%) — £P,(31),. .. £ Pu(T). (6.2)

Observe that intensional rules can be provided by an expert or even be induced
from data using machine learning techniques (see Chapter 14).

6.2.3 The Language of Integrity Constraints and LCC Policies

Integrity constraints are expressed as formulas of classical first-order logic. In-
tuitively, they can be considered as implicit definitions of intentional relations,
which are minimized or maximized by the Lcc (Local Contextual Closure)
assumptions in a specific LcC policy. In the following sections, in order to
obtain tractable instances of the general algorithm, we will impose some syn-
tactic restrictions on the syntactic form of integrity constraints, together with
the Lce assumptions in a specific LeC policy (see Section 6.5).

Lcce policies are expressions of the form
Lce[Ly, ..., Ly K, ..., K] 1, (6.3)

2 We do not require the safety condition for rules which is assumed in DATALOG.
We deal with unsafe rules as discussed in Remark 4.4.1.
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where Lq,...,L, are (positive or negative) literals, Kq,..., K, are relation
symbols not appearing in L;’s and I is a set of integrity constraints. Literals
Li,..., L, are minimized assuming relations K7, ..., K, can vary.? By an Lcc

assumption we mean a minimization or maximization of a single literal from
Lq,...,L,in (6.3).

We sometimes omit the part “:I” of (6.3) if the corresponding integrity con-
straints are known from the context.

6.3 The Semantics of RKDB’s

6.3.1 Notational Conventions

Let us denote the facts in the extensional database by EDB and the facts in
the intensional database by IDB. Let Ry, ..., R, be all relations in the RKDB.
For a specific relation R in the RKDB, we denote the positive ground literals
of R in the EpB by EpB'(R) and the negative ground literals of R in the
EDB by EDB™ (R). We shall use the following notation:

n
e EDBT, to denote the positive part of the EDB which is U Epst(R))
i=1

e EDB™, to denote the negative part of the EDB which is U EDB™ (R;).

i=1

The EDB is then equivalent to EDBT UEDB ™, EDB = EpBT UEDB ™.

For a specific relation R in the RKDB, we denote the positive literals of R in
the IDB generated by the positive intensional rules of form (6.1) by IpBT (R)
and the negative literals of R in the IDB generated by the negative intensional
rules of form (6.2) by IDB™ (R). Assume also that:

n

e by IDBT, we denote the positive part of the IDB which is U Ipst(R))
=1

e by IDB™, we denote the negative part of the IDB which is U IpB™ (R)).

=1

The IDB is then equivalent to IpB* UIpB~ UEDBT UEDB™,

3 Thus Lcc corresponds to circumscription of JUEDBUIDB with relations Ly, . .., L,
minimized (positive literals) or maximized (negative literals) and Ki,..., K, al-
lowed to vary.
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Ips = Ipst UIDB™ UEDBT UEDB™.

Let DoM be a finite set (a domain of the database). The semantics of constant
symbols and variables is given by a valuation:

v: CoNsSTU V] — DoM.

The valuation v is then extended to the case of vectors of constants and
variables in the usual way. We also assume that the unique names assumption
(UNA) holds.

In the semantics defined in the following sections, all relations are interpreted
as rough sets of tuples.

The symbol IIF denotes the RKDB entailment relation and the symbol =
denotes the classical two-valued entailment relation.

By indexing relations with EDB, IDB and Lcc we indicate that they are con-
sidered in the particular context as relations of the extensional, intensional
and Ccq layer of the RKDB, respectively.

6.3.2 The Semantics of EDBs

The semantics of the extensional database is given by rough sets of tuples.
Let R be a relational symbol appearing in the extensional database. Then R
is interpreted as the rough set whose positive part contains all tuples v(¢) for
which the literal R(¢) is in the database and the negative part contains all
tuples v(¢) for which the literal ~R(¢) is in the database. All other tuples are
in the boundary region of R.

EpBlIF R(e) if and only if R(¢) € EDBT(R)
EpBllF—=R(¢) if and only if R(¢) € EDB™ (R),

where R is a relation of the EDB and ¢ is a tuple of constants.

Rough relations for the EDB are then defined as follows:
Rt . = {v(©) : EpBlI- R(¢)}
Rg,, = {v(©) : EDBIF—-R(€)}

RE . = {v(¢) : EDBIFR(¢) and EDB - —=R(¢)}.

6.3.3 The Semantics of IDBs

The semantics of the intensional database is given by rough sets of tuples after
application of the intensional rules to the extensional database.
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In order to provide the semantics of IDB, we require use of the definition of the
Feferman-Gilmore translation, used in translating three-valued logic formulas
into the classical two-valued logic.

Definition 6.3.1. By a Feferman-Gilmore translation of formula «, denoted
by Fa(«), we shall mean the formula obtained from a by replacing all negative
literals of the form —R(y) by R~ (y) and all positive literals of the form R(y)
by RT (7). o

Let S = (S1,...,S5p) contain all relation symbols of the form RT and R~,
where R is a relation symbol occurring in an IDB rule. For any relation S,
all rules with Sj (respectively S; ) in their heads should be gathered into
a single formula of the form

V§i~[S¢i(Z7i) — (7)),
where

o a;(7) = \/ 3z;.8:5 (i, Z5)
j

o cach of 3;;(7;, ;) denotes the body of the appropriate rule
e Z; are variables appearing in the rule’s body and not in the rule’s head

e =+ stands for 4+ or —, respectively.

Define
Sios < Lrp S.[Fc(aq),...,Fa(ap)]. (6.4)

In some cases the IDB may be inconsistent. This happens when there is a re-
lation R such that RT™ N R~ # (. In what follows we require that the IDB is
consistent, i.e., for all IDB relations R we have, RT N R~ = (). This consistency
criterion can be verified in time polynomial in the size of the database.

The semantics of IDB rules are then defined as follows:

IpBIIF R(¢) if and only if R(¢) € EpB™(R) U IDBT (R),

IpBlIF—R(¢) if and only if R(¢) € EpB™ (R) UIDB™ (R),

where R is a relation in the EDB or in the head of an intensional rule, ¢

is a tuple of constants, and IDBJZ(R) and IDB™ (R) are computed from the
simultaneous fixpoint definition, Sipg, defined by formula (6.4).

Rough relations for the IDB are then defined as follows:
R = {v(¢) : IpBIIF R(¢)}

Ry, = {v(¢) : IpBlIF=R(c)}

RE = {v(¢) : IDBIFR(E) and IDBIF—R(E)}.
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Observe that,

EpBl- R(¢) implies IDBIIF R(c)
EpBIF—=R(¢) implies IDBIIF—R(¢).

Remark 6.3.2. In the case that one wants to distinguish between facts entailed
solely by application of intensional rules, this can be done in a straightforward
manner, but as a rule, one is interested in querying both EDB and IDB to-
gether, thus the choice of RKDB entailment from the IDB. m

6.3.4 The Semantics of the CCQ Layer and LCC Policies

The inference mechanism associated with the CcQ layer is intended to provide
a form of contextual closure relative to part of the EDB and IDB when querying
the RKDB. A contextually closed query consists of

e the query itself, which can be any fixpoint or first-order query
e the context represented as a set of one or more integrity constraints

e a [ocal closure policy representing the closure context and consisting of
a minimization policy representing the local closure.

Any Lcc policy consists of a context and a local closure policy. Lce policies
may also be viewed as approximations with rough relations in the EDB and
IDB as input, a transducer consisting of one or more integrity constraints and
a minimization policy, and modified rough relations in the RKDB as output.

Let the EDB and IDB be defined as before, I denote a finite set of integrity
constraints, and let RKDB:LcC[L; K]:I denote querying the three layers of the
RkDB with a specific Lce policy Loc[L; K]:I. Then,

RkDB: Loc [L; K):I'IF R(é) if and only if

Circ(I UIDBU EDB; L; K) |= R(¢),
RKkDB: Lcc[L; K:1 - =R(e) if and only if

Circ(I UIDBU EDB; L; K) | —R(e),

where the notation is as in Section 6.3.1, under the assumption that the cir-
cumscriptive theory is consistent.

Thus the CcqQ layer results in dynamically redefining some relations in EDB
and IDB in order to satisfy integrity constraints in a particular query. Of
course, the EDB and IDB are not permanently modified, they are simply tem-
porarily modified relative to the contextual query in question.

A relation R which is minimized, maximized or allowed to vary is defined as
the following rough relation:
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Rfcc = {v(¢) : RkpB: Loc [L; K- I- R(e)}

Ri.. = {v(€) : RkpB: Lcc[L; K|: I II- = R(€)}

R, = {v(e) : RkpB: Loc[L; K]:T ) R() and
RkDB: Lee [L; KT F-R(2)}.

)
)

Intuitively, this means that the positive part of R contains tuples present in
all extensions of R satisfying the integrity constraints I, the boundary part
contains tuples present in some extensions of R satisfying I, but not in all of
them, and the negative part of R contains tuples not present in any extension
of R satisfying I.

The relations that are not minimized, maximized or allowed to vary are not
changed, thus their semantics is that given by the EDB and IDB layers of the
RKDB.

6.4 The Computation Method

6.4.1 The Pragmatics of Computing Contextual Queries

A contextual query in its simplest form involves the (implicit) generation of
the extension of a relation R in the context of a set of integrity constraints
and a minimization policy, and asking whether one or more tuples is a mem-
ber of that relation relative to a background RKDB consisting of EDB U IDB.
Essentially, we are required to implicitly compute Ry, R, and Ri, and
determine whether the tuple or tuples are in any of the resulting rough set
partitions of R. Based on this specification, one can show that in some cases,
where the Lcc policy and integrity constraints associated with the query is
restricted appropriately, querying the relation R can be done very efficiently.
One of the more important results of the considered technique is that one can
automatically generate syntactic characterizations of each of the partitions of
a rough set relation without actually generating their explicit extensions. The
syntactic characterizations can then be used to efficiently query the RKDB
consisting of the EDB/IDB pair.

Since integrity constraints are not associated with the EDB/IDB pair, but
with an agent asking a query, the integrity constraints associated with an
agent are not necessarily satisfied together with the EDB/IDB. Checking sat-
isfiability is tractable in this context due to the first-order or fixpoint nature of
the integrity constraints and the finiteness of the database. Under additional
syntactic restrictions, the satisfiability of the circumscriptive theory can also
be guaranteed. In the case of inconsistency, this would imply the need for the
specification and computation of specific update policies.
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6.4.2 The Algorithm

The algorithm presented below applies to the general case, i.e., to the problem
which is cO-NPTIME complete. However, in Section 6.5 we show specializa-
tions of the algorithm to some cases, where PTIME complexity is guaranteed.
The inputs to the algorithm are:

e an extensional database EDB

e an intensional database IDB

e a set of integrity constraints I

e an Lcc policy Lec[L; K:T

e a relation symbol R.4

As output, the algorithm returns the definition of the relation R obtained by
applying the Lcc policy and preserving integrity constrains in I, according
to the semantics defined in section 6.3. Recall that CIRC(T'; L; K) used below

stands for the circumscription of theory 7" with L minimized and K allowed
to vary (see Definition 5.3.1).

1. Construct the formula C' = CIrc(I UIDB U EDB; L; K) representing the
given Lcc policy applied to the IDB and EDB

2. eliminate second-order quantifiers from the formula obtained in step 1. In
general, the elimination may fail and the result is the initial second-order
formula C. However, if certain restrictions concerning the form of I are
assumed, the elimination of second-order quantifiers is guaranteed (see
Section 6.5)

3. calculate the intersection of all extensions of R satisfying formula C. If
there is not any relation R satisfying C, terminate and return the answer
“unsatisfiable,” meaning that either the EDB and IDB pair is inconsistent,
or the integrity constraints can not be satisfied

4. calculate the union of all extensions of R satisfying formula C

5. for any tuple ¢:
e if v(¢) is in the intersection calculated in step 3, add v(¢) to R™
e if v(€) is not in the union calculated in step 4, add v(¢) to R~
e if none of the above two cases applies, then v(¢) is in R*.

In practice, one uses particular second-order quantifier elimination algorithms,
which may fail. Since second-order formulas are useless as results, it is reason-

4 The relation symbol R can be viewed as part of the query which consists of
a number of relations that are required to compute the full query.
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able to return the answer “unknown” when the elimination algorithm used in
Step 2 fails.?

Observe also, that in practice it is often better to calculate syntactic definitions
of new relations rather than calculating their extensions as is done in the above
inefficient algorithm.

6.4.3 Expressiveness of the Approach

An interesting question arises as to whether the current approach allows one
to express all tractable Lcc policies, where by a tractable LCC policy we mean
any Lcc policy such that all minimized, maximized and varied relations are
PTiME-computable w.r.t. the size of the underlying databases.

The following characterization shows that the method presented is strong
enough to express all tractable LcC policies. In other words, any tractable
Lce policy can always be reformulated in the form used in Lemma 6.4.1
below. In Section 6.5, we provide additional syntactic characterizations of
Lcc policies which guarantee tractability.

Lemma 6.4.1. Assume that the database is linearly ordered. Then all tract-
able Lcc policies can be expressed as policies of the form

Lec[L: K] {B;(z) — Li(7) : L € L},
where each 3;(Z) is a first-order formula positive w.r.t. L;. o

Lemma 6.4.1 follows from the observation that any relation computable in
PTIME can be expressed by means of the least fixpoint of a formula of the form
B:(Z) such that Vz.0;(Z) — L;(Z) holds, provided that the database domain is
ordered (for references see Section 6.7). Since all minimized, maximized and
varied relations are assumed to be tractable, they can be expressed by the
least fixpoints of formulas of the form L¥p L;(Z).5;(Z), thus also by the policy

6.5 The Case of Universal LCC Policies

In general, the problem of querying the database in the presence of unre-
stricted integrity constraints is CO-NPTIME complete. On the other hand,

5 In this case the algorithm is only sound, but not complete relative to the semantics
provided in Section 6.3.4.
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some classes of LcC policies for which the computation mechanism is in
PTIME can be isolated. In this section, we consider a restriction on integrity
constraints which allows us to compute explicit definitions of the new rela-
tions as first-order and fixpoint formulas. In such cases computing contextually
closed queries is in PTIME.

Assume that the integrity constraints have the following form:
vz.[a(z) — B(7)], (6.5)

where o and 3 are arbitrary first-order formulas.

Observe that, in general, some LcC policies might contain conflicting require-
ments that the same relation is to be minimized and maximized at the same
time. In order to exclude such situations, we introduce a notion of marking
defined below. Intuitively, we mark relations with symbol ‘min’ to indicate
that a given relation is to be minimized, and with symbol ‘max’ to indicate
that the relation is to be maximized.

Definition 6.5.1. By a marking of relation symbols for policy Loc [L; K:I we
understand a mapping assigning to any relation symbol, both in the local clo-
sure policy Lcc[L; K] and [ in the Lcc policy, the least subset of {min, max}
that is closed under the following rules:

1. for any relation symbol S appearing in L positively, ‘min’ is in the set of
marks of S

2. for any relation symbol S appearing in L negatively, ‘max’ is in the set of
marks of S

3.if a(R) — B(S)isin I, R,S € LUK and S occurs in (3 positively and
is marked by ‘min’, or S occurs in § negatively and is marked by ‘max’
then:

e if R occurs positively in «, then ‘min’ is in the set of marks of R
e if R occurs negatively in «, then ‘max’ is in the set of marks of R

4.if a(R) — B(S)isin I, R, S € LUK and « contains a positive occurrence
of R and R is marked by ‘max’, or o contains a negative occurrence of R
and R is marked by ‘min’ then:

e if S occurs positively in G, then ‘max’ is in the set of marks of §

e if S occurs negatively in 3, then ‘min’ is in the set of marks of S.

An Lec|[L; K):I policy is called uniform if no relation symbol is marked by
both ‘max’ and ‘min’. O

Ezxample 6.5.2. Let us consider the following integrity constraint:
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[Car(z) A Red(z)] — RedCar(z). (6.6)
The marking for the policy
Lec[{RedCar(x), Car(x)}; {Red(x)}] : (6.6)

assigns the mark ‘min’ to all the relation symbols. Thus the policy is uniform.
On the other hand, the marking for the policy

Lee[{RedCar(x), ~Car(x)}; {Red(x)}] : (6.6)

assigns the mark ‘min’ to Red and the marks {‘min’,‘max’} to Car and
RedCar. Thus the later policy is not uniform. O

Let us now introduce the notion of universal Lcc policies useful in many
applications.

Definition 6.5.3. By a universal Lcc policy we understand any uniform pol-
icy Lee[L; K:1 in which I is a set of constraints of the form

Vg [(£P1(Z1) A ... AN £Pp(Zg)) — £P(T)] (6.7)
where + stands for — or the empty symbol, P, ..., Pg, P are relation symbols
and 7 is a vector of all variables occurring in 1, ..., T, Z. O

In the case of universal LcC policies we have a computation method much
more efficient than that described in Section 6.4.2. In the rest of this section
we will consider only universal Lcc policies Loc[L; KJ:1, for given tuples of
literals L,K and a set I of integrity constraints.

In the computation method for universal policies, we first construct minimal
rough relations satisfying the EDB, IDB and the integrity constraints, where
minimality is defined w.r.t. the information ordering defined below.

Definition 6.5.4. Let R and S be rough relations. We define the information
ordering on rough relations, denoted by R C S, as follows:

[N
e

€

RCS = RYCStand R~ C S

In order to find minimal w.r.t. C rough relations satisfying I, EDB and IDB
we will use the following tautologies of first-order logic:

) = (B(R) v M())] = Va.[(a(R) A =M (y)) — B(R)] (6.8)
VZ.[(a(R) A M()) — B(R)] = Vz.[a(R) — (B(R) V =M (3))],

~—
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where it is assumed that all double negations —— are removed.

Next we define the notion of expansion. The intuition behind this notion is
that any implication (A1 A ... A Ag) — B is logically equivalent to

(_\B/\Al/\.../\Ai_l/\AH_l/\.../\Ak)—>_\Ai.

Thus, viewed as a rule, it contributes to the generation not only facts about
B, but also facts about all —A4;, for 1 <i < k.

Definition 6.5.5. Let I be an integrity constraint of the form:
VZ.[(£R1 (1) A ... A£Rm(Fm)) — £5(2)], (6.9)

Let P = Lec[L; K):I be an Lec policy. By the expansion of I w.r.t. P, denoted
by Exp® (I), we understand the least set of constraints of the form,

va.[(\ Li(zx)) — £L(zs)),
k

obtained from (6.9) by applying the tautologies (6.8), such that any instance
of a (Qossibly negated) literal of (6.9) containing a relation symbol occurring
in L; K, is a consequent of exactly one constraint. i

Example 6.5.6. Consider the integrity constraint

I'E Va,y[(—P(x) A S(x,y)) — P(y)]

and the policy P = Lcc[P; S]:1.

All instances of literals in I are {=P(z),S(x,y), P(y)}. The expansion of I
w.r.t. P is then defined as the following set of constraints:

Exp” (1) = { Va,y.[(=P(z) A S(z,y)) — P(y)],
Va,y.[(=P(y) A S(z,y)) — P(x)],
Vz,y.[(~P(x) A ~P(y)) — -S(z,y)] }.
In the case of policy P’ =Lcc[S; 0]:1, the expansion of I is defined as

Bap® (I) = {Va,y.[(=P(z) A =P(y)) — =S(z,y)]}.

Let S = (S1,...,5p) be all relations in the IDB and let us fix an Lcc policy
P =Lcc[L; K]:1. In order to compute the definition of minimal w.r.t. C rough
relations, satisfying the constraints I, EDB and IDB we consider the following
cases, where 1 < i < p:



6.5 The Case of Universal LCC Policies 119

if S; ¢ L UK, then the positive part of the resulting relation, Sj , con-
tains exactly the tuples present in EDB™(S;) UIDB™(S;), and the negative
part of the resulting relation, S;, contains exactly the tuples present in
EDB™(S;) UIDB™ (S;)

if S; € L U K, then we consider the set of integrity constraints
{Fe(a): ac ExpP(A), AcT (6.10)
and S; occurs in the consequent of « },

where FG is the Feferman-Gilmore translation specified in Definition 6.3.1.

We assume that the following integrity constraints, reflecting the contents
of EDB and IDB, are implicitly given:

. V y=c| =S
¢:S;(¢)€EDpBT (S;)UIDBT (S;) (6 11)
. V g=c| =S (@)

¢:S;(¢)eEDB™ (S;)UIDB™ (S;)

where the empty disjunction is, as usual, interpreted as FALSE.

Now we gather all the constraints in (6.10) and (6.11) with S as the
consequent into the following single formula:

V. \V  Fzidi(Be) | — S (@) (6.12)
1<k<k;

and all the integrity constraints with S;  as the consequent into the fol-
lowing single formula:

1<5<Ji

The following definitions of the positive and the negative part of the re-
quired minimal rough relations w.r.t. policy P, indicated by the index P,
can now be derived:

S5(y) = Lrp 5(y). \/ 211k (Ri), \/ Iznk-Onk(Ri) (6.14)

1<k<k; 1<k<k,

Sp@) =LrpS@).| \/ z0y(Ry), -\ Tz mi(Ry)|  (6.15)

| 1<i<i 1<j<jm
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Observe that the syntactic restrictions placed on the integrity constraints
guarantee that the formulas under the fixpoint operators are positive, thus
monotone w.r.t. S and, consequently, the fixpoints exist. Observe also, that
in the case of non-recursive universal LCC policies the fixpoint operators
can be removed and the definitions obtained are classical first-order for-
mulas.b

Having computed the suitable parts of the relations in all integrity constraints,
one can easily perform a consistency check, indicating whether the integrity
constraints can be satisfied by the current contents of the EDBUIDB. Namely,
for each relation R one needs to assure that R* N R~ = (.

The following definition introduces the notion of rough negation used to define
the semantics of minimized/maximized and varied relations.

Definition 6.5.7. Let P =Lcc[L; K|:I be an Lcc policy. The rough negation
for the policy P, denoted by ~p, is defined as follows:

e ~p satisfies the usual DeMorgan laws for quantifiers, conjunction and
disjunction, and:

~p LFP R.a(R) © GFPR. ~p a(R)

~p GFP R.a(R) CLEp R. ~p a(R)

def _ def
~Pp ﬁSJ'_ = S+, ~Pp -5 =9

o ifSc LUK, then

def _ —_
~Pp S+ = ‘|S+’ ~p S = ﬁS

o ifS¢ZLUK, then

def _ def
NPS+ES, NPS ES+.

Lemma 6.5.8. If the integrity constraints I are consistent with EDB U IDB
then the definitions of minimal and mazimal rough relations satisfying con-
straints in I and reflecting the semantics introduced in Section 6.3.4 can be
calculated as follows:”

5 In both cases, however, computing the defined parts of relations can be done in
time polynomial in the size of EDB U IDB.

" Observe that the Loc policies provide us with direct information about which
relations are to be maximized, which are to be minimized and which remain
unchanged.
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Sphin(¥) = 5% (6.16)
Spin() = ~p S (§) =~p Sp (6.17)
Sz (@) = Sp (6.18)
Smaz(¥) = ~P 8100 (§) =~P Sraa(D), (6.19)

where S} and Sp are defined by formulas (6.14) and (6.15), respectively. o

In the case of non-recursive universal policies, the fixpoint operators® can be
removed, as before.

Observe that definitions of varied predicates can now be computed by notic-
ing that these are the minimal w.r.t. C rough relations satisfying the integrity
constraints in the new context of minimized and maximized relations. It then
suffices to apply definitions (6.14), (6.15) with minimized and maximized re-
lations replaced by their definitions obtained as (6.16), (6.17), (6.18), and
(6.19), as appropriate.

Ezxample 6.5.9. Consider the problem of determining whether a given car on
a road is seen from a UAv. We assume that usually large cars are seen. Our
database contains relations:

e (Car containing cars
e Large containing large objects
e See containing visible objects

e Ab standing for abnormal objects, i.e., large but invisible objects.
Define the following integrity constraint I:
Va.[(Car(z) A Large(xz) A =See(x)) — Ab(z)].

We want to minimize abnormality, i.e., to minimize relation Ab, while keeping
the relations Clar and Large unchanged and See varied. The local closure
policy is then

L = Lcc[Ab; See].
The suitable expansion is defined by the following set of rules:

Expl(I) = { Va.[(Car(z) A Large(z) A =See(z)) — Ab(x)]
Va.[(Car(z) A Large(xz) A ~Ab(z)) — See(z)] }.

Now one has to add the rules reflecting the contents of EDB and consider the
Feferman-Gilmore translation. This results in the following set of formulas:

® Appearing in definitions of S}, and Sj.
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{Vx.[(EDBT (Ab(x)) V (Car™ (z) A Large™*(x) A See™ (x))) — Ab* ()],
Va.[(EpBT (See(x)) V (Car™ (z) A Large™ (x) A Ab™(2))) — Seet(x)] }.

According to Lemma 6.5.8 and the discussion following the lemma, we obtain
the following characterizations of Ab and See:

= EpBt(Ab(z)) V [Car™ (x) A Large™ (z) A See™ (z)]

\%
Ab, . (z) = =EDBT (Ab(z)) A [Car™ (x) V Large™ (z) V ~See™ ()]
See},.(v) = EDBY (See(x)) V [Car™ (z) A Large™t (z) A Ab . ()]
See,..(r) = EDB™ (See(x)).

Note that computing the minimized and varied relations is done by querying
the original database in the standard manner. m

Ezample 6.5.10 (A Surveillance Mission Case Study). Consider a scenario in-
volving a UAV that makes use of contextually closed queries during a surveil-
lance mission. A black car has been reported stolen and the task of the UAv
is to locate the car by investigating areas in which the car is suspected to be
located. To represent this scenario we make use of the relations:

o [In(z,y) (car z is in region y)

e (Color(x,z) (the color of car x is z)

o SuspectIn(y) (the stolen car is suspected to be in region y)

e Tnvestigate(x,y) (the UAv should search for car x in region y).

Using these relations we construct a crisp logical theory (6.20) expressing the
behavior we wish the UAV to exhibit. All black cars that are in a suspect
region should be investigated. If a car is known to have some color other than
black it is not necessary to look for it in any region. Finally, when we know

that the searched car is not in a region, there is no point going there looking
for it.

Vi, y. [(In(x, y) A\ SuspectIn(y) A Color(z, black))
— Investigate(x, y)} A
(6.20)
Va,y, z. [(Color(m, z) A z # black) — —Investigate(, y)} A
v, y. [—Jn(x, y) — —~Investigate(z, y)] .
Additionally an intensional rule (6.21) is added to the IDB expressing the fact

that if we know the region a car is in, it can not simultaneously be in some
other region.

Vo, y1, y2.[In(x, y1) A yr # yo] — —In(z, yo). (6.21)
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Continuing the example, we construct a specific scenario by adding facts to the
approximate knowledge base. Given three cars, cl, c2 and c3, three regions,
rl, r2 and r3, and two colors, black and red, we add the facts expressed in
(6.22). A black car cl is known to be in region rl, the car c2 is red but we do
not know in which region it is, and nothing is known about the third car c3.
Furthermore, the stolen car is believed to be located somewhere in region rl
or r2.

Int(cl, r1)A
Color™(cl,black) A Color™(c2, red)A (6.22)
SuspectInt(rl) A SuspectIn™ (r2).

The current knowledge base does not contain any information about which
cars and what regions are interesting for the UAv, but this is information that
would be invaluable when determining appropriate strategies to search regions
for target vehicles. To acquire such information, a contextually closed query
can be formulated which takes account of current context. In this case, new
information specific to regions of interest can be generated nonmonotonically.

To do this, the closure policy associated with the contextually closed query will
minimize the number of suspected regions in order to avoid searching regions
that we have no specific reason to believe the stolen car to be in, while varying
what cars and regions the UAv should investigate to obtain information about
possible actions to take. Consequently we construct the policy of minimizing
SuspectIn while varying Investigate and fixing the remaining relations In
and Color.

In order to ask contextually closed queries we first compute the expansion of
(6.20), where the only formula containing an occurrence of a minimized or
varied relation that is not already in the consequent is the first one. Thus, in
this case, the expansion of (6.20) is obtained by replacing the first conjunct
by

Vo, y.[In(x,y) A SuspectIn(y) A Color(x,black)

— Investigate(x,y)]
Ve, y.[In(x,y) A ~Investigate(z,y) A Color(z, black)

— —SuspectIn(y)]

(6.23)

We now obtain syntactic definitions for SuspectIn and Investigate according
Lemma 6.5.8 and obtain the results shown in (6.24). The positive part of
the minimized SwuspectIn relation is simply those tuples explicitly stored as
positive in the extensional database, while the negative part contains the rest
of the tuples, while the definition of the varied relation Investigate is a bit
more complex.
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SuspectIn . (z) = EDBT (SuspectIn(z))
SuspectIn, . (x) = EDB™ (Suspectin(z))
Investigate;, (r,y) = EDBT (Investigate(x, y))V
[Int(z,y) A SuspectIn™ (y)A (6.24)
Color™ (z, black)]
Investigate,,.(x,y) = EDB™ (Investigate(x,y))V
[In=(z,y) V 3z.[Color™(x,z) A z # black].

To evaluate a query containing the minimized or varied relations it suffices
to replace those occurrences with their syntactic definitions given in (6.24)
and pass the modified query to the intensional database layer. Evaluating the
definitions in our examples produces the tuples in (6.25), including new tuples
produced by the IDB rule (6.21).

In*(z,y) : {(c1,r)}
In~(z,y) : {(c1,r2), (c1,r3)}
SuspectIn™ (y) : {r1,r2}
SuspectIn=(y) : {r3} (6.25)
Investigate™ (z,y) : {({cl,rl)}
Investigate™ (z,y) : {(c1,r2),{cl,r3),(c2,rl),

(c2,r2),(c2,r3)}.

Although the IDB rule excluded the possibility of c1 being anywhere else than
in rl, it remains unknown which regions the other cars are in. Minimizing
SuspectIn removes r3 from the set of suspected regions since there is no
reason to believe otherwise, while varying Investigate prompts the UAV to
search for cl in region rl since we know it is a black car located in a region
which we suspect the stolen car to be in. In addition, the UAV concludes that
it is not necessary to look for cl anywhere else, using the IDB rule and the
part of the theory stating that it should not investigate a region, looking for
a car it knows is not there. Car c2 can be in any of the regions but there is
no point looking for it as it has the color red, different from black. Finally, it
remains unknown, even after applying the closure policy, if searching for the
car c3 in any of the regions is necessary.

Now, assume the UAv takes action, flying over region rl looking for cl, and
that it finds the car but it is not the stolen car we are looking for. It up-
dates the knowledge base by removing rl from the list of suspected regions
(from SwuspectIn) and adding the fact that it did not find c3, expressed by
In=(c3,rl). Using the same syntactic definitions of relations, we reevaluate
the queries in light of these new facts.
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InT(z,y) : {{cl,rl)}
In=(z,y) : {(c1,r2),{cl,r3),(c3,r1)}
SuspectIn™(y) : {r2}
SuspectIn=(y) : {rl,r3} (6.26)
Investigate™t (z,y) : 0
Investigate™ (z,y) : {{c1,r2), (c1,r3), (c2,rl),
(€2,r2),(c2,r3),(c3,r1)}.

Y
Y

The In tuples in (6.26) has changed to incorporate the fact that c3 has not
yet been found, and the rl tuple in the SuspectIn relation has moved to
reflect the fact that no stolen car was found there, but the varied Investigate
relation has changed too. The UAv has already searched region rl for cl, and
it concludes that it is no longer necessary to investigate whether ¢3 is in rl,
but it is still unknown if the UAv should look for ¢3 in one of the other regions.

Notice that without changing the definitions, the query results have changed
to reflect the new knowledge situation. This will stay true until we modify the
closure policy or the logical theory describing the mission, in which case the
definitions must be recalculated. As long as the policy and theory stay the
same, we can cache the calculated definitions, improving efficiency.

In its current state of uncertainty, the UAV might either explain the two re-
maining possibilities to a mission operator, asking for new information or
advice on which action to take, or continue on itself, e.g. by systematically
searching for 3, first in region r2 and then in r3. Assuming the latter alterna-
tive, and that the stolen car is in fact located in one of the regions, the UAv
will find it and successfully complete the mission. O

6.6 Complexity Issues

6.6.1 Reducing the Database Size

The database size can be reduced by removing particular columns or rows
from the database tables. Let us first briefly discuss the problem of removing
columns.

Rough set methodology offers a means to create reducts (see, e.g., Section
14.2), where reducts are obtained by removing certain columns from the orig-
inal tables.

From the logical point of view one has to project the whole language into its
subset and then to approximate the original theory. The logical tools for such
an approach are provided in Chapter 8, in particular in Section 8.5.2.

Another important methodology of reducing the database size is to apply non-
monotonic techniques. For instance one can represent typical cases as a default
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and keep in the database only the information about exceptions. A tractable
approach to default reasoning is developed in Chapter 10. Another method
could depend on providing theories describing abnormal behavior of objects
and then to minimize the abnormality due to circumscriptive policies, as de-
fined in Section 5.3. Observe though that minimization policies are expressible
in our approach by using the contextually closed queries, as defined in this
chapter.

6.6.2 Reducing the Complexity of Fixpoint Queries

Observe that we often present rough relations by providing their positive and
negative parts. There are at least the following two immediate, yet important
applications of this representation:

e reducing complexity of calculating rough relations, thus also the complex-
ity of the querying mechanism

e supporting anytime methods by providing always meaningful answers
within the assumed time frame, which is important, e.g., in the case of
some critical real-time applications.

Upper approximation

Total relation

Lower approximation
| |
i .

0 1 k Iterations

Fig. 6.2. Computing approximations of least and greatest fixpoints.

The main idea that can be applied here is to compute both the positive
part, R, of a relation R together with its negative part R~. Both processes
are monotone in the sense that the calculated sets Rt and R~ can only
grow in each computation step. Thus the computed boundary region can only
become smaller. The process can be stopped when the assumed approximation
measure is reached or (in the case of anytime methods) the time limit is
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reached. One can thus save a considerable amount of computations as, for
instance, one often does not have to go through the whole database computing
first-order queries.

Observe that the complexity of the approach can also be reduced in appli-
cations where a given approximation measure is sufficient and relations are
defined by means of fixpoints. Namely, one can perform iterations necessary
to compute least and greatest fixpoints until the size of the boundary region
becomes acceptable or a time limit is exceeded. This follows from the fact that
the least fixpoint, corresponding to the lower approximation of a relation, can
be computed starting from the empty relation (and then it can only get fixed
or increase). On the other hand, the greatest fixpoint, corresponding to the
upper approximation of the relation, can be computed starting from the total
relation (and then it can only get fixed or decrease) - see Figure 6.2. Obvi-
ously, everything in the lower approximation of a relation is in its positive
part and everything which is not in its upper approximation is in its negative
part. In many cases a considerable amount of iterations can then be saved.

6.7 Bibliographic Notes

The methodology of contextually closed queries is relatively new. It has been
developed in [50], as an alternative approach to dealing with the open world
assumption. In particular Sections 6.1-6.5 are heavily based on [50]. Some
other important classes of LCC policies, including so-called semi-Horn policies
are provided there, too. Example 6.5.10 is from [63].

Other approaches to closing the world locally were considered, e.g., in [57, 71].
It should be noted that the approach we consider here subsumes that of [57,
71].

The syntax of the language of intensional databases is similar to the approach
using DATALOG ™™ (see, e.g., [1]). However, in order to provide the semantics
for intensional rules we use the Feferman-Gilmore translation (see, e.g., [31]).

The notion of information ordering was considered by Fitting and van Ben-
them (see, e.g., [31]) in the context of three-valued logics.

The fact that any relation computable in PTIME can be expressed by means
of the least fixpoint of a formula of the form required in Lemma 6.4.1 provided
that the database domain is ordered, can be found, e.g., in [68].

An alternative, logic programming-based approach to rough knowledge data-
bases has been developed by Vitéria, Damésio and Matuszyriski (see, e.g., [229,
230, 231]).
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Combining Rough and Crisp Knowledge

7.1 Introduction

This chapter presents a framework for specifying, constructing, and managing
a particular class of approximate knowledge structures for use with intelligent
artifacts, ranging from simpler devices such as personal digital assistants to
more complex ones such as unmanned aerial vehicles. The basic structure for
the concepts presented is that of an approximation transducer which takes
approximate relations as input, and generates a (possibly more abstract) ap-
proximate relation as output. This is done by combining the approximate
input relations with a crisp local logical theory representing dependencies be-
tween the input and output relations.

Approximation transducers can be combined to produce approximation trees
which allow for representation of complex approximate knowledge structures
characterized by the properties of elaboration tolerance, groundedness in
the application domain, modularity, and context dependency. Approximation
trees can be grounded through the use of primitive concepts which can be gen-
erated with supervised machine learning techniques. Changes in definitions of
primitive concepts or in the local logical theories used by transducers result
in changes in the knowledge stored in approximation trees by increasing or
decreasing precision in the knowledge in a qualitative manner.

The inference mechanism associated with the use of approximation trees is
based on rough knowledge databases, as presented in Chapter 6. By placing
certain syntactic restrictions on the local theories used in transducers, the
computational processes used in the query/answering and generation mecha-
nism for approximation trees remain in PTIME.

In the philosophical literature, Quine has used the phrase web of belief to
capture the intricate and complex dependencies and structures which make
up human beliefs. In this chapter, we lay the ground work for what might
properly be called webs of approximate knowledge. One way to view this idea

P. Doherty et al.: Knowledge Representation Techniques, Studfuzz 202, 129-142 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006
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is as starting with webs of imprecise knowledge and gradually incrementing
these initial webs with additional approximate and sometimes crisp facts and
knowledge. Through this process, a number of concepts, relations and de-
pendencies between them become less imprecise, approximating their crisp
counterparts. This is a continual process where the precision in meaning of
concepts is continually modified in a change-tolerant manner. Approximate
definitions of concepts are the rule rather than the exception even though
crisp definitions of concepts are a special case included in the framework.

Specifically, webs of approximate knowledge are constructed from primitive
concepts together with approximation transducers in a recursive manner. An
approximation transducer provides an approximate definition of one or more
output concepts in terms of a set of input concepts and consists of three
components:

1. an input consisting of one or more approximate concepts, some of which
might be primitive

2. an output consisting of one or more new and possibly more abstract con-
cepts defined partly in terms of the input concepts

3. a local logical theory specifying constraints or dependencies between the
input concepts and the output concepts. The theory may also refer to
other concepts not expressed in the input.

The local logical theory specifies dependencies or constraints an expert of the
application domain would be able to specify. Generally the form of the con-
straints would be in terms of some necessary and some sufficient conditions
for the output concept. The local theory is viewed as a set of crisp logical con-
straints specified in the language of first-order logic. The local theory serves as
a logical template. During the generation of the approximate concept which
is output by the transducer, the crisp relations mentioned in the local theory
are substituted with the actual approximate definitions of the input. Either
lower or upper approximations of the input concepts may be used in the sub-
stitution. The resulting output specifies the output concept in terms of newly
generated lower and upper approximations. The resulting output relation may
then be used as input to other transducers creating approximation trees. The
resulting tree represents a web of approximate knowledge capturing intricate
and complex dependencies among an agent’s conceptual vocabulary.

As an example of a transducer that might be used in the unmanned aerial
vehicle domain, we can imagine defining a transducer for the approximate
concept of two vehicles being connected in terms of wvisible connection, small
distance, and equal speed. The latter three input concepts could be generated
from supervised machine learning techniques where the data is acquired from
a library of videos previously collected by the UAv on earlier traffic monitoring
missions. As part of the local logical theory, an example of a constraint might
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state that “if two vehicles are visibly connected, are at a small distance from
each other and have equal speed then they are connected”.

Approximation trees are fluid knowledge structures. Changes in the definition
of primitive concepts will trickle through the trees via the dependencies and
connections, modifying some of the other concept definitions. Changes to the
local theories anywhere in the tree will modify those parts of the tree related
to the respective output concepts for the local theories. This is a form of
elaboration tolerance. These structures are approximate in three respects:

1. the primitive concepts are approximate. They usually consist of upper and
lower approximations induced from the sample data

2. the output concepts inherit or are influenced by the approximate aspects
of the concepts input to their respective transducers

3. the output concepts also inherit the incompletely specified sufficient and
necessary conditions in the local logical theory specified in part with the
input concepts.

It is important to point out that the transducers represent a technique for
combining both approximate and crisp knowledge. The flow of knowledge
through a transducer generally increases the precision of the output concept.
The definition can continually be elaborated upon both directly, by modifying
the local theory, and indirectly via the modification of concept definitions
on which it is recursively dependent or through retraining of the primitive
concepts through various machine learning techniques.

7.2 An Introductory Example

In this section, we provide an example for a single approximation transducer
describing some simple relationships between objects on a road. Assume we
are provided with the following rough relations:

e V(x,y) — there is a visible connection between objects x and y

e S(z,y) — the distance between objects z and y is small

e FE(x,y) — objects z and y have equal speed.

We can assume that these relations were acquired using a supervised machine
learning technique where sample data was generated from video logs provided
by an UAv when flying over a particular road system populated with traffic,

or that the relations were defined as part of an approximation tree using other
approximation transducers.

Suppose we would like to define a new relation C' denoting that its arguments,
two objects on the road, are connected. It is assumed that we, as knowledge
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engineers or domain experts, have some knowledge of this concept. Consider,
for example, the following local theory T'(C;V, S, E) approximating C:!

vz, y.[V(z,y) — C(z,y)] (7.1)
Va,y.[Clz,y) — (S(z,y) A E(z,y))]- (7.2)

The former provides a sufficient condition for C' and the latter a necessary
condition. Imprecision in the definition is caused by the following facts:

e the input relations V.S and E are imprecise (rough)

e the theory T'(C;V, S, E) does not describe relation C' precisely, as there
are many possible models for C.

We then accept the least model for C' w.r.t. the theory T(C;VT,8T ET) as
the lower approximation of C' and the greatest model for C w.r.t. the theory
T(C;V® 8% E®) as the upper approximation of C.

It can now easily be observed (and, in fact, be computed efficiently), that one
can generate the following definitions of the lower and upper approximations
of C:

Va,y.[CF (,y) = VT (2,y)] (7.3)
vz, y.[C%(z,y) = (S¥(z,y) A E®(z,y))]- (7.4)

Relation C' can then be used, e.g., while querying the rough knowledge data-
base containing this approximation tree or for defining new approximate con-
cepts, provided that it is coherent with the database contents. In this case,
the coherence conditions, which guarantee the consistency of the generated
relation with the rest of the database (approximation tree), are expressed by
the following formulas:

Va, y. [V (z,y) — (ST (2,y9) A EY (2,))]
Va,y. [VO(x,y) — (59 (z,y) A E®(x,y))].

The coherence conditions can also be generated automatically in an efficient
manner provided certain syntactic constraints are applied to the local theories
in an approximation transducer.

! Note that semicolon in T(C;V, S, E) is used to separate target relations from
input relations used for approximation.
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7.3 Approximation Transducers

As stated in the introduction, an approximation transducer provides a means
of generating or defining an approximate relation (the output) in terms of
other approximate relations (the input) using various dependencies between
the input and the output.? The set of dependencies is in fact a logical theory
where each dependency is represented as a logical formula in a first-order
logical language. Syntactic restrictions can be placed on the logical theory to
insure efficient generation of output.

Since we are dealing with approximate relations, both the input and output
are defined in terms of upper and lower approximations. It is not necessary
to restrict the logical theory to just the relations specified in the input and
output for a particular transducer. Other relations may be used since they are
assumed to be defined or definitions can be generated simultaneously with the
generation of the particular output in question. In other words, it is possible to
define an approximation network rather than a tree, but for this presentation,
we will stick to the tree-based approach. The network approach is particularly
interesting because it allows for limited forms of feedback across abstraction
levels in the network.

The main idea is depicted in Figure 7.1. Suppose one would like to define
an approximation of a relation R in terms of a number of other approximate
relations Ry,..., Rg. It is assumed that Ry,..., Ry consist of either primi-
tive relations acquired via a machine learning phase or approximate relations
that have been generated recursively via other transducers or combinations
of transducers.

The local theory T(R; Ry, ..., Ry) is assumed to contain logical formulas re-
lating the input to the output and can be acquired through a knowledge
acquisition process with domain experts or even through the use of inductive
logic programming techniques. Generally the formulas in the logical theory
are provided in the form of rules representing some sufficient and necessary
conditions for the output relation in addition to possibly other conditions. The
local theory should be viewed as a logical template describing a dependency
structure between relations.

The actual transduction process which generates the approximate definition
of relation R uses the logical template and contextualizes it with the actual
approximate relations provided as input. The transduction process results in
a definition of both the upper and lower approximation of R as follows,

e The lower approximation is defined as the least model for R w.r.t. the
theory TT(R; Ry, ..., Rg)

2 The technique also works for one or more approximate relations being generated
as output, but for clarity of presentation, we describe the techniques using a single
output relation.
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Fig. 7.1. Transformation of rough relations by first-order theories.

e and the upper approximation is defined as the greatest model for R w.r.t.
the theory T®(R; Ry, ..., Ri),

where TV (R; Ry,...,Ry;) and T®(R; Ry,...,Ry) denote theories obtained
from T by replacing crisp relations by their corresponding approximations. As
a result one obtains an approximation of R defined as a rough relation. Note
that appropriate syntactic restrictions are placed on the theory so coherence
conditions can be generated which guarantee the existence of the least and
the greatest model of the theory and its consistency with the approximation
tree in which its transducer is embedded. For details, see Section 7.4.

Implicit in the approach is a notion of abstraction hierarchies where one can
recursively define more abstract approximate relations in terms of less ab-
stract approximations by combining different transducers. The result is one
or more approximation trees. This intuition has some similarity with the idea
of layered machine learning. The technique also provides a great deal of lo-
cality and modularity in representation although it does not force this on the
user since networks violating locality can be constructed. One can also view an
approximation transducer or sub-tree of approximation transducers as simple
or complex agents responsible for the management of particular relations and
their dependencies. This idea is covered in Chapter 9.

The ability to continually apply machine learning techniques to the prim-
itive relations in the network and to continually modify the logical theories
which are constituent parts of transducers provides a great deal of elaboration
tolerance and elasticity in the knowledge representation structures.
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7.4 Approximation Transducer Semantics and
Computation Mechanism

Our specific target is to define a new relation, say R, in terms of some addi-
tional relations Ry, ..., R, and a local logical theory T(R; Ry, ..., R;,) repre-
senting knowledge about R and its relation to Ry, ..., R,. The output of the
transduction process results in a definition of RT, the lower approximation of
R, as the least model of T*(R; Ry, ..., R,) and R®, the upper approximation
of R, as the greatest model of T®(R; Ry,...,R,). The following problems
must be addressed:

e isT(R;Ry,...,R,) consistent with the database?

e does the least and greatest relation Rt and R® exist, satisfying
TT(R;Ry,...R,) and T®(R; Ry, ... R,),

respectively?

e is the complexity of the mechanisms used to answer the above questions
and to calculate suitable approximations RT and R® reasonable from
a pragmatic perspective?

In general, consistency is not guaranteed. Moreover, the above problems are
generally NPTIME-complete (over finite models). However, a rich class of
formulas can be isolated for which the consistency problem and the other
problems can be resolved in PTIME. In what follows, we show that a subset
of semi-Horn formulas guarantees the following:

e the coherence conditions for T(R;Ri,...,R,) can be computed and
checked in polynomial time

e the least and the greatest relations R*T and R®, satisfying
TH(R;Ry,...,Ry) and T®(R; Ry, ..., R,), respectively, always exist pro-
vided that the coherence conditions are satisfied

e the time and space complexity of calculating suitable approximations R™
and R® is polynomial w.r.t. the size of the database and that of calcu-
lating their symbolic definitions is polynomial in the size of the theory
T(R;R1,...,Ry).

In view of these positive results, we will restrict the set of formulas used
in local theories in transducers to (finite) conjunctions of semi-Horn rules
as defined in Section 2.6. All theories considered in the rest of the chapter
are then assumed to consist of semi-Horn rules. We also accept the following
notational convention.
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Convention 7.4.1. For the sake of simplicity we assume from now on that
a theory defines only one intensional rough relation. We shall use notation
T(R;Ry,...,R,) to indicate that R is approximated by T (i.e., we assume
in such a case that Rq,..., R, are extensional or intensional and R is inten-
sional).

We also write TT(R; Ry, ..., R,) (or T", in short) to denote theory T with all
symbols R; occurring positively substituted by R;™ and occurring negatively,
by R; . Similarly we write T%(R; Ry,...,R,) (or T®, in short) to denote
theory T with all symbols R;, 1 < i < n, occurring positively substituted by
R;® and occurring negatively by R;.

We often write rules without initial universal quantifiers (Vz of (2.2) or (2.3)),
understanding that the rules are always universally quantified. m

The following lemmas (Lemma 7.4.2 and 7.4.3) provide us with a formal jus-
tification of Definition 7.4.4 which follows. Let us first deal with non-recursive
rules.3

Lemma 7.4.2. Assume that T'(R; Ry, ..., Ry) consists of rules of the follow-
ing forms:

Vz.[R(Z) — P;(R1,...,Ry)] (7.5)
VZ.[¥;(Ry,...,R,) — R(Z)] (7.6)

for i € I, j € J, where I,J are finite, nonempty sets and for all ¢ € I and
j € J, formulas @; and ¥; do not contain occurrences of R. Then there exist
the least and the greatest R satisfying (7.5) and (7.6). The least such R is
defined by the formula:

R(z)= \/ ¥(Ry,..., Ry) (7.7)
jeJ

and the greatest such R is defined by the formula

R(@) = \ ®i(Ry,..., Ry) (7.8)
el

provided that the following coherence condition? is satisfied in the database:

3 In fact, Lemma 7.4.2 follows easily from Lemma 7.4.3 by observing that fixpoint
formulas (7.12), (7.13) and (7.14) reduce in this case to first-order formulas (7.7),
(7.8) and (7.9), respectively. However, reductions to classical first-order formulas
are worth a separate treatment as these are less complex and easier to deal with.

4 The coherence conditions reflects the intuition that a lower approximation of
a concept is a subset of its upper approximation.
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vi. | \/ (Ri,....Ry) = \ ®i(Ra,....Rn)| . (7.9)
jeJ iel :

Then in the case of recursive theories we can prove the following lemma.

Lemma 7.4.3. Assume that T(R; Ry, ..., R,) consists of the following rules:
vz.[R(Z) — ®;(R, R1,...,Ry)] (7.10)
VZ.[¥;(R, R1,...,R,) — R(Z)] (7.11)

for i € I, j € J, where I, J are finite, nonempty sets. Then there exist the
least and the greatest R satisfying formulas (7.10) and (7.11). The least such
R is defined by the formula:

R(z) = Lrp R(z).[\/ % (R, Ry, ..., Ry)] (7.12)

JjeJ
and the greatest such R is defined by the formula:

R(z) = GFp R(z).[\ ®i(R, R1,..., Ry)] (7.13)

el

provided that the following coherence condition holds:

vz.|Lrp R(z).[\/ (R, R1,..., Ry)] — (7.14)
jeJ

GrP R(Z).[\ ®i(R, Ry, ..., Ry)]
el

The following definition provides us with a semantics of semi-Horn rules used
as local theories in approximation transducers.

Definition 7.4.4. Let B be a rough relational database, R, ..., R, be rela-
tion symbols, R be an intensional relation symbol, and let T(R; Ry,..., R,)
be a first-order theory expressed by rules of the form (7.10) and/or (7.11)
(respectively (7.5) and/or (7.6)).

By an approximation transducer with input Ri,...,R,, output R and the
local transducer theory T' we understand a mapping providing lower and upper
approzimations of R on the basis of input relations and T as follows:
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e the lower approximation of R is defined as the least relation R satisfying
T(R;Ry,..., Ry,), i.e., the relation defined by formula (7.7)T or (7.12)T,
respectively, with Ry, ..., R, substituted as described in Convention 7.4.1

e the upper approzimation of R is defined as the greatest relation R satisfying
T(R;Ry,...,Ry,), i.e., the relation defined by formula (7.8)% or (7.13)®
with Ry,..., R, substituted as described in Convention 7.4.1,

provided that the respective coherence conditions (7.9)" or (7.14)%, for the
lower approzimation, and (7.9)® or (7.14)®, for the upper approximation, are
satisfied in database B.

By an approximation tree we mean a tree built using approximation transdu-
cers. o

Observe that we place a number of restrictions on this definition that can
be relaxed, such as restricting the use of relation symbols in the local theory
of the transducer to be crisp. This excludes use of references to constituent
components of other rough relations. In addition, since the output relation
of a transducer can be represented explicitly in the rough relational data-
base, approximation trees consisting of combinations of transducers are well-
defined.

7.5 The Complexity of the Approach

This framework is presented in the context of relational databases with finite
domains with some principled generalizations. In addition, both explicit defi-
nitions of approximations to relations and associated coherence conditions are
expressed in terms of classical first-order or fixpoint formulas. Consequently,
computing the approximations and checking coherence conditions can be done
in time polynomial in the size of the database.

In addition, the size of explicit definitions of approximations and coherence
conditions is linear in the size of the local theories defining the approximations.
Consequently, the proposed framework is acceptable from the point of view
of a formal complexity analysis. This serves as a useful starting point for effi-
cient implementation of the techniques. It is clear though, that for very large
databases of this type, additional optimization methods would be desirable.

7.6 A Congestion Example

In this section, we provide an example from the UAv—traffic domain which
defines the concept of traffic congestion using the proposed framework. We
shall use the following relations and constants:
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e In(z,l) — denotes whether a vehicle x is in a road segment [

e Speed(x,z) — denotes the approximate speed of x, where
z € {low, medium, high, unknown}

e Distance(x,y,z) — denotes the approximate distance between vehicles
and y, where z € {small, medium, large, unknown}

e DBetween(z,x,y) — denotes whether vehicle z is between vehicles = and y

e Number(xz,y,z) — denotes the approximate number of vehicles
between vehicles z and y occurring in the region of interest, where
z € {small, medium, large, unknown}

e TrafficCong(l) — denotes whether there is traffic congestion in the observed
road segment [.

We define traffic congestion by the following formula:

TrafficCong(l) =
Jz,y.[In(z, 1) A In(y,l) A Number(z,y, large) A (7.15)
Vz.(Between(z, x,y) — Speed(z,low))A
Vz.(Between(z, x,y) — t.(Distance(z,t,small)))].

Observe that formula (7.15) contains concepts that are not defined precisely
(Speed, Distance, Number). However, we assume that the underlying data-
base contains approximations of these concepts. We can then use the approx-
imated concepts and replace formula (7.15) with the following two formulas
representing the lower and upper approximation of the target concept:®

TrafficCong™ (1) = (7.16)
3z, y.[Int (z,1) A Int(y,1) A Number™ (z,y, large)A
Vz.(Between® (z,x,y) — Speed™ (z,low))A
Vz.(Between® (2, x,y) — 3t.Distance™ (z,t,small))]

TrafficCong® (1) = (7.17)
3z, y.[In®(z,1) A In®(y,1) A Number® (z,y, large) A
Vz.(Between™ (z,2,y) — Speed®(z,low))A
Vz.(Between™ (2, z,y) — 3t.Distance®(z,t,small))].

These formulas can be automatically generated using the techniques described
previously.

It can now be observed that formula (7.15) defines a cluster of situations that
can be considered as traffic congestions. Namely, small deviations of data do
not have a substantial impact on the target concept. This is a consequence

® Observe that (p — ¢)T = (® — ¢*) and (p — ¢)® = (p* — ¢®).
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of the fact that (7.15) refers to values that are also approximated such as
low, small and large. Thus small deviations of vehicle speed or distance between
vehicles usually do not change the qualitative classification of these notions.

Let us denote deviations of data by dev with suitable indices. Now, assuming
that the deviations satisfy the following properties:

(2,1} € devin(x,1) = [InT (z,1) — InT(2,1")] (7.18)
7' € devgpeed(r) = [Speed™ (z,low) — Speed™ (2, low)]
(2, y') € devnumper (z,y) =

[Number™ (z, y, large) — Number™ (z', 1/, large)]

<xlv yl> € devDistance (ZL’, y) =

[Distance™ (x,y,small) — Distance™ (2, y’, small)]

<Z/7 J}/, ?/) € de'UBetween(za z, y) =
[Between™ (2, ,y) — Between™ (', 2',1/)],

one can conclude that:
[TrafficCong™ (1) A" € devvagiiccong(l)] — TrafficCong™ (1'),

where dev pragiccong(l) denotes the set of all situations obtained by deviations
of [ satisfying conditions expressed by (7.18).

The above reasoning schema is then robust w.r.t. small deviations of input
concepts. In fact, any approximation transducer defined using purely logical
means enjoys this property since small deviations of data, by not changing
basic properties, do not change the target concept.

Note that relation dev in the above formulas should also be generated on the
basis of particular data.

7.7 On the Approximation Quality
of First-Order Theories

So far, we have focused on the generation of approximations to relations using
local logical theories in approximation transducers and then building approx-
imation trees from these basic building blocks. This immediately raises the
interesting issue of viewing the approximate global theory itself as a concep-
tual unit. We can then ask what the approximation quality of a theory is
and whether we can define qualitative or quantitative measures of the the-
ory’s approximation quality. If this is possible, then individual theories can
be compared and assessed for their value under different reasoning contexts.
One application of such an assessment tool would be to choose approximate
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theories for an application domain at the proper level of abstraction or detail,
moving across the different levels of abstraction relative to the needs of the
application. In this section, we provide a tentative proposal to compare the
approximation quality of first-order theories.

7.7.1 Comparing Approximation Power of Semi-Horn Theories

Definition 7.7.1. We say that a theory T5(R) better approximates relation
R than a theory T} (R) relative to a database B and denote this by T1(R) <p
Ty (R) provided that, in database B, we have R C RY and RS C R, where
fori = 1,2, R?‘ and Rl@ denote the lower and upper approzimation of R
defined by theory T;. O

Observe that the notion of a better approximation has a correspondence to
information ordering. From the rough set perspective, a theory which better
approximates a relation over another theory has the result of decreasing the
boundary region,

Ezample 7.7.2. Let CL(x,y) denote that objects x,y are close to each other,
SL(x,y) denote that x,y are on the same lane, CH(x,y) denote that objects
x,y can hit each other, and let HR(z,y) denote that the relative speed of
z and y is high. We assume that the lower and upper approximations of
these relations can be extracted from data or are already defined in a rough
database, B. Consider the following two theories approximating the concept
D(z,y) which denotes a dangerous situation caused by objects x and y:

e Ty(D;CL,SL,CH) has two rules:

Va,y.[(CL(x,y) A SL(x,y)) — D(z,y)]
Vz,y.[D(z,y) — CH(z,y)] (7.19)

e Ty(D;CL,SL, HR) has two rules:
Va,y.[CL(z,y) — D(z,y)]
Va,y.[D(x,y) — (HR(z,y) A SL(x,y))]. (7.20)

Using Lemma 7.4.2, we can compute the following definitions of approxima-
tions of D:

e relative to theory T1(D;CL,SL,CH):

Va,y.[DO (2,y) = (CL* (z,y) A SL* (2,y))]
Va,y. [DO (z,y) = CH®(z,y)] (7.21)
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e relative to theory To(D;CL,SL, HR):

Vm,y.[D(2)+(m,y) =CL"(z,y)]
Va,y[DPY = (HR®(z,y) A SL® (2, y))]. (7.22)

Obviously D(l)+ - D(2)+. If we additionally assume that in our domain of
discourse (and consequently, in database B) HRNSL C CH applies, we can
also obtain the additional relation that D C DO Thus T, <p T, which
means that an agent possessing the knowledge implicit in 75 is better equipped
to approximate concept D than an agent possessing knowledge implicit in 7.

0

7.8 Bibliographic Notes

This chapter is mainly based on [52].

There has been very little work in traditional knowledge representation with
the dynamics and management of knowledge structures. Some related work
would include the development of belief revision and truth maintenance sys-
tems in addition to the notion of elaboration tolerant knowledge representation
and the use of contexts as first-class objects introduced by McCarthy [121].
In these cases, the view pertaining to properties and relations is still quite
traditional with little emphasis on the approximate and contextual character
of knowledge. The assumed granularity of the primitive components of these
knowledge structures, in which these theories and techniques are grounded, is
still that of classical properties and relations in a formal logical context.

The concept of web of belief was introduced by Quine in [171].
The idea of layered machine learning is described, e.g., in [209].

It is sometimes convenient to use definitions of upper approximations for
computing negative knowledge instead of positive knowledge. Such an ap-
proach has proven to be profitable in various applications, as reported, e.g.,
in [143, 218]

The methodology, where agents synthesizing more complex notions on a higher
level, using data preprocessed by agents of lower layers, is strongly advocated
in [127].

Proof of Lemma 7.4.2 follows easily, e.g., from Theorem 5.3 of [55] and proof
of Lemma 7.4.3, e.g., from Theorem 5.2 of [55].
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Weakest Sufficient and
Strongest Necessary Conditions

8.1 Introduction

In the case of large data sets and knowledge databases one of the major
concerns is the ability to react to events or queries in a reasonable and ac-
ceptable time. In particular, any real-time reasoning process has to be highly
efficient. On the other hand, there is a trade-off between the accuracy of
data/knowledge representation and effectiveness of querying knowledge data-
bases and reasoning. In consequence, there is also a trade-off between the accu-
racy of data/knowledge representation and the response time of autonomous
agents reacting on occurring events.

When applying the rough sets or other machine learning or data mining and
knowledge discovery techniques one can substantially reduce the amount of
data (see, e.g., Section 6.6 and Chapter 14 for some examples of possible
approaches). In the current chapter we discuss the problem of approximating
knowledge expressed by logical formulas and provide tools that allow one to
understand what the approximations of data mean from the point of view of
logic. The tools we apply are based on the notions of sufficient and necessary
conditions that serve us as the required approximations.

Consider a formula A expressed in some logical language. Assume that one
is interested in approximating A in a less expressive language, say L, which
allows for more efficient reasoning. A sufficient condition of A, expressed in L,
provides a lower approximation of A and a necessary condition of A, expressed
in L, provides an upper approximation of A. Thus the weakest sufficient con-
dition provides “the best” lower approximation and the strongest necessary
condition provides “the best” upper approximation of A, expressed in the less
expressive language.

Let us emphasize that sufficient and necessary conditions are vital for provid-
ing solutions to important problems appearing, e.g., in the areas of applica-
tions outlined below.

P. Doherty et al.: Knowledge Representation Techniques, Studfuzz 202, 143-158 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006
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Building Communication Interfaces between Agents

In the case of distributed architectures it is often necessary to exchange in-
formation between agents. In large-scale applications it is unavoidable that
different agents use different vocabularies or even different ontologies. For ex-
ample, an agent specialized to supply information about weather usually, for
the purpose of internal reasoning, uses some notions that are not known to
other agents, e.g., to agents specialized in reasoning about geographical in-
formation. Similarly, many concepts known by the geographical information
agents are not known by the weather agent. However, in order to communi-
cate, the agents should have an interface built over a common language. We
shall call such an interface a communication interface between agents.

Assume thus that agent M knows concepts (relations) R, S and agent N knows
concepts (relations) S, T, i.e., the common vocabulary of M and N consists
of relations in S. Suppose N asks query A(S,T) to agent M, where S € S
and T € T. Of course, agent M does not know the concept 7', but still has to
provide a meaningful answer. One can consider at least the following policies

for building the communication interface between M and N:

e M might approximate query A(S,T) by “projecting out” the concept T'
it does not know and answer the query. In this case the resulting answer
approximates the query in the sense that due to a more expressive language
A(S,T) can be more specific than A’(S) which is obtained by removing T

e M might ask N to approximate the query A(S,T) by requiring that N
“projects out” T and supplies the approximated query fully understood
by M

e M might ask N to approximate concept T" and provide the approximation
of T (which is a form of explanation provided by N). Based on the ap-
proximations of all concepts not understood by M and explained by N,
M answers the query.

Of course, the dialog might be much more advanced here. It is worth observing,
however, that due to different knowledge possessed by both agents, in each
case the answer might be more or less accurate.

Note also that building interfaces between agents using different languages is
of a great concern in the area of granular computing as will be discussed in
Chapter 12.

Modularization and Information Hiding

In the process of designing software systems or components, modularization
and information hiding are vital tools. Information should often be encap-
sulated and parts of it should remain hidden due to reasons of security or
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effectiveness of representing and manipulating knowledge whose contents and
even structure dynamically changes in time.

In the case of deliberative components the information hiding is not only a
matter of using a stronger or weaker vocabulary. When highly secure soft-
ware systems interact with less secure systems it is important to detect what
information is revealed to the less secure systems. In such a case all approxi-
mations occurring in reasoning done with a use of the interface should already
be deducible by means of less secure systems. This suggests that at least more
secure agents should not approximate the received queries by themselves, but
rather demand that less secure agents provide the necessary approximations.

Knowledge Compilation and Theory Approximation

In many practical applications one would like to specify knowledge using
highly expressive languages without bothering about the complexity of the
formalism and of the reasoning it involves, and on the other hand, to have
tools to efficiently manipulate the knowledge and keep the reasoning timely
and effortless. For instance, circumscription discussed in Section 5.3, provides
one with a highly expressive and natural formalism to represent knowledge. At
the same time, reasoning with unrestricted circumscription is intractable. In
pragmatic knowledge representation systems one either restricts the expres-
siveness of the representation language or uses incomplete or approximate
reasoning machinery, or accepts nonstandard semantics for standard logical
connectives like negation.

The term knowledge compilation refers then to the process of approximating
more expressive and complex knowledge representation mechanisms by less
expressive, but simpler and more efficient mechanisms. From the logical point
of view, such a knowledge compilation can be approached in many ways. For
instance, one can design specialized algorithms translating the higher level
notions into lower level ones. Such algorithms are usually incomplete in the
sense that they are not always successful in providing a translation even if
a particular higher level concept can be actually represented by means of the
lower level concepts. Another approach is to approximate theories and deal
with approximated concepts rather than with precise theories and notions. In
this chapter we follow the latter approach. One can, however, observe that
in other parts of this book some second-order knowledge representation for-
malisms are reduced to substantially less complex predicate or fixpoint cal-
culus by applying (in general incomplete) second-order quantifier elimination
methods, thus the former approach is also used. Also note that weakest suffi-
cient and strongest necessary conditions which are the basis of the solutions
presented here, are always expressible in second-order logic, and not always
in first-order or fixpoint calculus. We provide complete methods for classes of
theories of a restricted syntax, but one can also use second-order quantifier
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elimination techniques to obtain results for more general cases, but without
any guarantee to obtain the required results.

Abduction

Abduction is a form of reasoning “inverting” the more usual deductive reason-
ing. In deduction one is interested in obtaining facts that logically follow from
a given background knowledge. Suppose now that a given conclusion does not
follow from given knowledge (theory). One can then ask what are the weak-
est assumptions that, together with the existing knowledge, would make the
conclusion true. Abduction is just the process of finding such assumptions.

Why is abduction vital in many pragmatic Al systems? Consider, for exam-
ple, an autonomous agent that classifies objects, say vehicles, on the basis of
camera images gathered in real time. Suppose the agent is not able to classify
a given object. It is then reasonable for the agent to hypothesize that the
object is, say, a small car, and ask what information is to be gathered in order
to be convinced that the object is indeed a small car. On the basis of abduc-
tive reasoning the agent might find out, for example, that the camera image
needs to be more accurate and then might generate and execute a plan to ac-
tually get more accurate images. Also generating a plan can be supported by
asking questions pertaining to what immediate step would make the desired
goal true, then what would make the step true and so on. Similar ideas can be
applied in generating successor state axioms in robot domains, i.e., generating
conditions on the initial state that make fulfilling the final goal feasible.

Another application of abduction depends on finding explanations for phe-
nomena that occur in the observed reality. Suppose an agent observes a fact
that does not follow from the current knowledge. It might then ask for ex-
planations, i.e., diagnosis justifying the observed fact. Such a diagnosis can
substantially contribute to the available knowledge and allow the agent to act

properly.

Reasoning with Reduced Data Sets

One of the most important techniques developed in the context of approxi-
mating information systems by rough relations depends on generating reducts.
This technique is heavily used in such topics, as machine learning, classifier
construction, data mining and knowledge discovery (see Part III of this book).
Reducts allow one to approximate large data sets defined with the use of many
attributes, by using a relatively small number of the most relevant attributes.
This, however, has a substantial impact on the knowledge representation layer,
where one deals with theories expressed using those original attributes that are
no longer present in the row data. In order to make the reasoning efficient and
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meaningful, one thus has to project out from the knowledge representation
layer all the attributes that do not occur in the obtained reducts. In conse-
quence, one needs to approximate theories serving knowledge representation
purposes, too. Again, strongest necessary and weakest sufficient conditions
are a powerful tool that can be used to achieve this important goal, as they
correspond to lower and upper approximations considered in rough sets.

8.2 Weakest Sufficient and
Strongest Necessary Conditions

In the following, we will be dealing with the predicate calculus with equality.
Recall that we limit ourselves to finite theories. Since each such theory is logi-
cally equivalent to the conjunction of its axioms, in the sequel, we shall never
distinguish between a theory T" and the sentence which is the conjunction of
all axioms of T'.

The following are definitions for necessary and sufficient conditions of a for-
mula A relativized to a subset P of relation symbols under a theory T

Definition 8.2.1. By a necessary condition of a formula A on the set of rela-
tion symbols P under theory T we shall understand any formula B containing
only symbols in P such that T = A — B. It is the strongest necessary condi-
tion, denoted by SNC(A; T; P) if, additionally, for any necessary condition C
of A on P under T, we have T = B — C. a]

Definition 8.2.2. By a sufficient condition of a formula A on the set of rela-
tion symbols P under theory T we shall understand any formula B containing
only symbols in P such that T = B — A. It is the weakest sufficient condition,
denoted by Wsc(A; T; P) if, additionally, for any sufficient condition C' of A
on P under T, we have T |= C — B. o

The set P in Definitions 8.2.1 and 8.2.2 is referred to as the target language.
If P'is a set of relation symbols then SNC(A;T; —P') and Wsc(4; T; —P')
indicate that the target language P consists of all relation symbols of the
considered language, except for those in P’.

Figure 8.1 shows the relationships between necessary conditions and sufficient
conditions. One can easily observe that:

o Wsc(A;T; P) is the lower approximation of concept A expressed in terms
of a language containing symbols P; other sufficient conditions expressed
in this language are included in Wsc(A; T; P)

e SNC(A;T; P) is the upper approximation of concept A expressed in terms
of a language containing symbols P; other necessary conditions expressed
in this language include SNC(A; T} P).
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A expressed in the full language of T

SNC(A;T; P)
Nc(A; T; P

Nc(A;T; P)”

Sc(4;T; P)’

Sc(A; T; P

Wsc(A;T; P)

Fig. 8.1. The relationships between necessary and sufficient conditions. NC(A;T;P)
and Sc(A;T;P) stand for necessary and sufficient conditions, respectively.

To provide some additional intuition as to how these definitions can be used,
consider the theory

T = {Vz.[HasWheels(xz) — CanMove(z)],
Va.[Car(x) — HasW heels(z)]},

and the formula A = Vz.CanMove(x). Clearly T £~ A. Quite often, it is use-
ful to hypothesize a preferred explanation B for A under a theory T where
T A B |E A and B is minimal in the sense of not being overly specific, where
the explanation is constrained to a particular subset P of symbols in the vo-
cabulary. Clearly, the weakest sufficient condition B for the formula A on P
under T provides the basis for a minimal preferred explanation of A where
T | B — A. In the case of P = {HasW heels}, the weakest sufficient con-
dition is B = Vx.HasW heels(x), as is the case for P = {HasW heels, Car}.
Generating abductive hypotheses is just one application of weakest sufficient
conditions. As discussed in Section 8.1, there are many other applications
which require the generation of weakest sufficient or strongest necessary con-
ditions, several of which are described in Section 8.5.

8.3 The Propositional Case

In this section, we define strongest necessary and weakest sufficient condi-
tions for propositional formulas under propositional theories as formulas with
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quantification over propositional variables, show how the quantifier elimina-
tion techniques of Section 2.9 can be applied and provide complexity results
for the technique.

We use the notation dp.A and Vp.A, where p is a propositional variable and
A is a formula, with the following meaning;:

o
@
-

dp.A
Vp.A

Alp := TRUE|] V A[p := FALSE] (8.1)
Alp := TRUE] A Alp := FALSE].

o
o]
h

We start with the following lemma.

Lemma 8.3.1. For any formula A, any set of propositions P and theory T,

1. SNC(A; T; P) is defined by 34.[T A A]
2. WSC(A; T; P) is defined by Vq.[T — A,

where § consists of all propositions appearing in T or A, but not in P. m

The quantifiers over propositions can be automatically eliminated using the
Drs algorithm (for references, see Section 2.11). For instance, all eliminations
in Example 8.3.4 can be made using this algorithm.

Theorem 2.9.2 reduces in the propositional case to Proposition 8.3.2. It is
worth emphasizing here that propositional fixpoint formulas are equivalent to
propositional formulas.!

Proposition 8.3.2. Assume that the propositional formula A is positive
w.r.t. proposition p.

e if propositional formula B is negative w.r.t. p then
Ip. [A(p) — pI N [B(p)] = Blp:=Lrpp.A(p)] (8.2)
e if B is positive w.r.t. p then

Ip.[p — A(p)] A [B(p)] = Blp:= Grpp.A(p)]. (8.3)

o

! In the first iteration towards the fixpoint, one replaces p in A with false. In the

next disjunct, p in A is replaced by this result. The fixpoint, a propositional

formula, is always reached in a few iterations. Of course, the same result can

be obtained by applying equivalence (8.1), but in general equivalences (8.2) and
(8.3) provide us with a more efficient method.
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Observe that in the case when an input formula is a conjunction of proposi-
tional semi-Horn formulas of the form in the lefthand side of (8.2) or a con-
junction of formulas of the form in the lefthand side of (8.3), the length of the
resulting formula is, in the worst case, O(n?), where n is the size of the input
formula. Otherwise the result might be of exponential length.

Given these results, if T A A or T — A in Lemma 8.3.1 can be transformed
into an equivalent conjunction of semi-Horn formulas then the propositional
equivalent of the SNC(A; T; P) and Wsc(A; T; P) can be generated efficiently.
If not, the propositional equivalent can still be generated but not necessarily
in a tractable manner.

Remark 8.3.3. Weakest sufficient and strongest necessary conditions for propo-
sitional formulas are related to prime implicants and implicates, respectively.
Generating prime implicants and implicates for propositional formulas is in-
tractable and, in the general case, the same applies for weakest sufficient and
strongest necessary conditions. O

Ezxample 8.3.4. Consider the following examples.

1.7y = {q — (p1 A p2)}. According to Lemma 8.3.1,

o SNC(q;Ty;{p1,p2}) is defined by the formula
3q.[(¢ — (p1 Ap2)) Al
which, according to Proposition 8.3.2, is logically equivalent to
GFPq.(p1 A p2),
ie., to (p1 A p2),

e condition SNC(q; T1;{p1}) is defined by the formula
J¢.3p2.[(¢ — (p1 Ap2)) Nl

which, according to Proposition 8.3.2, is logically equivalent to p; (ob-
serve that ps is equivalent to the semi-Horn formula TRUE — ps).

2. Ty = {q — (p1 V p2)}. We have that

o SNC(q;T2;{p1,p2}) is defined by the formula 3¢.[(¢ — (p1 V p2)) A 4],
which, according to Proposition 8.3.2, is logically equivalent to (p; V

P2).
e SNC(q;T2;{p1}) is defined by the formula
Jq.3p2-[(q — (p1 Vp2)) N dl,
which is logically equivalent to TRUE.
3. T5 = {(p A q) — s}. The formula SNC(p A q; T5; {s}) is equivalent to
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Ip3q¢[((pAq) — s) A (pAdg)l,
which, according to Proposition 8.3.2; is logically equivalent to s. m

In summary, propositional equivalents of strongest necessary or weakest suffi-
cient conditions can be generated for any propositional formula and theory. In
the case that the conjunction of both is in semi-Horn form, the computation
is guaranteed to be tractable.

8.4 The First-Order Case

In this section, we generalize the results in section 8.3 to the first-order case
using primarily the same techniques, but with quantification over relational
symbols.

Lemma 8.4.1. For any formula A, any set of relation symbols P and a closed
theory T':2

1. SNC(A; T; P) is defined by 3X.[T A A]
2. WSC(A; T; P) is defined by VX.[T — A],

where X consists of all relation symbols appearing in T or A, but not in P. o

Observe that a second-order quantifier over the relational variables X can be
eliminated from any semi-Horn formula w.r.t. X (as shown in Section 4.6).
In such cases the resulting formula is a fixpoint formula. If the formula is
non-recursive, then the resulting formula is a first-order formula. The input
formula can also be a conjunction of semi-Horn formulas of the form (2.6) or
a conjunction of semi-Horn formulas of the form (2.7). On the other hand, one
should be aware that in other cases the reduction is not guaranteed. Thus the
elimination of second-order quantifiers is guaranteed for any formula of the
form 3X.[T A A], where T'A A is a conjunction of semi-Horn formulas w.r.t. all
relational variables in X.? Observe also, that in the case when an input formula
is a conjunction of semi-Horn formulas of the form (2.6) or a conjunction of
formulas of the form (2.7), the length of the resulting formula is, in the worst
case, O(n?), where n is the size of the input formula.

Ezxample 8.4.2. Consider the following examples

2 In fact, it suffices to assume that the set of free variables of T is disjoint with the
set of free variables of A.

3 For universal quantification, VX.A, one simply negates the formula (3X.-A4),
and assuming —A can be put into semi-Horn form, one eliminates the existential
quantifiers and negates the result.
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1. Ty = {Va.[Ab(x) — (Bird(x) N ~Flies(x))]}.

Consider SNC(Ab(z); Ty;{Bird, Flies}). According to Lemma 8.4.1, it is
equivalent to

JAb.[Vx.(Ab(x) — (Bird(x) A —Flies(x))) A Ab(z)]. (8.4)

By Lemma 2.9.2, formula (8.4) is equivalent to (Bird(z) A ~Flies(z)).
2. Ts = {Vz.[Parent(z) — Jz.(Father(z,z) V Mother(x, z))|}.

Consider SNC(Parent(y); Ts; { Mother}). According to Lemma 8.4.1, it is
equivalent to

JParent.3Father.[Vx.(Parent(x) —
Jz.(Father(z,z) V Mother(x, z)) A Parent(y)]. (8.5)

Formula (8.5) is not in the form required in Lemma 2.9.2, but the DLS
algorithm eliminates the second-order quantifiers and results in the equiv-
alent formula TRUE, which is the required strongest necessary condition.
Consider now SNC(Parent(y) A Vu,v.(=mFather(u,v)); Ts; {Mother}). Tt
is equivalent to

JParent.3Father.[Vx.(Parent(x) —
3z.(Father(z,z) V Mother(z,z))A
Parent(y) AVu,v.(~Father(u,v))], (8.6)

i.e., after eliminating second-order quantifiers, to 3z.Mother(y, z). a)

In summary, for the non-recursive semi-Horn fragment of first-order logic,
the strongest necessary or weakest sufficient condition for a formula A and
theory T are guaranteed to be reducible to compact first-order formulas. For
the recursive case, the strongest necessary and weakest sufficient conditions
are guaranteed to be reducible to fixpoint formulas. When one might want
to use strongest necessary or weakest sufficient conditions to query a knowl-
edge database, this case is still tractable. The techniques may still be used
for the full first-order case, but neither reduction nor complexity results are
guaranteed, although the algorithm will always terminate.

8.5 Applications

In this section, we demonstrate the use of the techniques by applying them
to a number of potentially useful application areas.
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8.5.1 Communicating Agents

Agents communicating, e.g., via the Internet have to use the same language
to understand each other or use mediators to translate between languages of
different expressive power.

Assume an agent A wants to ask a query @ to agent B. Suppose the query
can be asked using terms R, S such that the terms from S are not in agent B’s
vocabulary. Let T'(R, S) be a theory describing some relationships between R
and S. It is then natural for agent A to first compute the approximations given
by the weakest sufficient condition Wsc(Q; T(R, S); R) and the strongest nec-
essary condition SNC(Q; T(R, S); R) with the target language restricted to R
and then to replace the original query with the computed approximations.
The new queries might not be as precise as the previous one, but they are the
best that can be asked under the given assumptions. The following example
illustrates this idea.

Example 8.5.1. Assume an agent Ag wants to select from a database all per-
sons z such that High(x)V Silny(x) holds. Assume further, that both agents
know the terms High and Sound. Suppose that the database agent does not
know the term Silny.* Suppose, further that Ag lives in a world in which the
condition Vy.[Silny(y) — Sound(y)] holds. It is then natural for Ag to use

Wsc(High(z) Vv Silny(z); Vy.[Silny(y) — Sound(y)]; { High, Sound})
SNC(High(x) V Silny(x); Vy.[Silny(y) — Sound(y)]; { High, Sound})

as an approximation to the original query, one that will be understood by the
database agent that will process the query. According to Lemma 8.4.1 these
conditions are equivalent to

VSilny. {Vy.[Silny(y) — Sound(y)] — (High(z) V Silny(x))} (8.7)
ASilny. {Vy.[Silny(y) — Sound(y)] A (High(x) V Silny(x))}. (8.8)

By applications of Theorem 2.9.2, formula (8.7) is equivalent to High(z), and
(8.8) is equivalent to High(x)V Sound(x). Thus, in the given target language
and background theory, the set of tuples surely satisfying the original query
are those satisfying High(z) and those that might satisfy the original query
are those satisfying High(z) vV Sound(x). o

8.5.2 Theory Approximation
The concept of approximating more complex theories by simpler theories has
been studied mainly in the context of approximating arbitrary propositional

4 In Polish “Silny” means “Strong,” but it is assumed that the database agent does
not know the Polish language.
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theories by propositional Horn clauses. Note that strongest necessary and
weakest sufficient conditions relativized to a subset of relation symbols pro-
vide us with approximations of theories expressed in a richer language by
theories expressed in a less expressive language. This leads to a generalization
of existing results which allows us to approximate any finite propositional
or first-order theory which is semi-Horn w.r.t. the eliminated propositions or
relational symbols.

Ezxample 8.5.2. Consider the following well-known theory, denoted by T

(CompSci A Phil A Psych) — CogSci (8.9)
ReadsMcCarthy — (CompSci vV CogSci) (8.10)
ReadsDennett — (Phil V CogSci) (8.11)
ReadsKosslyn — (Psych V CogSci). (8.12)

Reasoning with this theory was shown to be quite complicated due to the
large number of cases. On the other hand, one would like to check, for in-
stance, whether a computer scientist who reads Dennett and Kosslyn is also
a cognitive scientist. Reasoning by cases shows that this is true. One can,
however, substantially reduce the theory and make the reasoning more effi-
cient. In the first step one notices that Phil and Psych are not used in the
query, thus they might appear redundant in the reasoning process. On the
other hand, these notions appear in disjunctions in clauses (8.11) and (8.12).
In this context we might consider

SNc(CompSciA ReadsDennett A ReadsK osslyn; T; —{ Phil, Psych}) (8.13)

where, as usual, —{Phil, Psych} denotes all symbols in the language, other
than Phil and Psych. Performing simple calculations one obtains the follow-
ing formula equivalent to (8.13):

(8.10) A [CompSci A ReadsDennett A ReadsK osslyn]
A [(CompSci A (ReadsDennett A =CogSci)
A (ReadsKosslyn A ~CogSci)) — CogScil (8.14)

which easily reduces to

(8.10) A CompSci A ReadsDennettA
ReadsKosslyn A (—CogSci — CogSci). (8.15)

Thus the strongest necessary condition for the original formula is

CompSci A ReadsDennett A ReadsK osslyn
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which implies CogSci and, consequently, the formula also implies CogSci.

Assume that one wants to compute the weakest sufficient condition of being
a computer scientist in terms of

{ReadsDennett, ReadsK osslyn, ReadsMcCarthy, CogSci}.

We then consider

Wsc(CompSci; T; —{ Phil, Psych, CompSci}). (8.16)
After eliminating quantifiers over Phil, Psych,CompSci from the second-
order formulation of the weakest sufficient condition, one obtains the following
formula equivalent to (8.16):

ReadsMcCarthy A —CogSci.

Thus the weakest condition that, together with theory T, guarantees that

a person is a computer scientist is that the person reads McCarthy and is not
a cognitive scientist. O

8.5.3 Abduction
The weakest sufficient condition corresponds to the weakest abduction.

Example 8.5.3. Consider the theory

T = {Va.[HasWheels(xz) — CanMove(zx)],
Vz.[Car(x) — HasWheels(x)]}.

Assume one wants to check whether an object can move. There are three
interesting cases:

1. the target language is { HasW heels}; and we consider
Wsc(CanMove(zx); Ty { HasW heels}),

which is equivalent to V CanMove, Car.[T — CanMove(x)]

2. the target language is {Car} and we consider
Wsc(CanMove(zx); T;{Car}),

which is equivalent to V HasWheels, Car.[T — CanMove(z))
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3. the target language is { HasWheels, Car} and we consider
Wsc(CanMove(z); T; { HasW heels, Car}),
which is equivalent to ¥V CanMove.[T — CanMove(z)].
After eliminating second-order quantifiers we obtain the following results:

1. Wsc(CanMove(x); T; { HasW heels}) = HasW heels(x)
2. Wsc(CanMove(z); T;{Car}) = Car(x)
3. Wsc(CanMove(x); T; { HasW heels, Car}) =
Vz.[Car(z) — HasWheels(z)] — HasW heels(x).

The first two conditions are rather obvious. The third one might seem a bit
strange, but observe that Vz.[Car(z) — HasW heels(x)] is an axiom of theory
T. Thus, in the third case, after simplification we have

Wsc(CanMove(z); T; { HasW heels, Car}) = HasW heels(x).

8.5.4 Generating Successor State Axioms

Successor state axioms are of great importance when using the situation cal-
culus to reason about action and change in robotics domains. Automatic gen-
eration of successor state axioms is a useful technique and can be done using
the weakest sufficient conditions.

Ezxample 8.5.4. Consider the problem of generating successor state axioms in
a robot domain. Observe that a first-order formulation of the problem is nat-
ural and compact. We thus apply first-order logic rather than the propositional
calculus. We introduce the following relations:

e move(o,i,j) - the robot is performing the action of moving the object o
from location ¢ to location j

e at(o,14) - initially, the object o is in the location i

e atl(o,j) - after the action move(o, 1, j), the object is in location j

e atR(7) - initially, the robot is at location i

e atRI1(j) - after the action move(o,1,j), the robot is at location j

e h(0) - initially, the robot is holding the object o

e hl(o) - after the action, the robot is holding the object o.
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Assume that the background theory contains the following axioms, abbrevi-
ated by T

Yo.(at(o0,1)) AVo.(—at(o,2))
Yo.[h(0) = hl(0)]
Yo,1,j.[(atR(i) A at(o,i) A h(0) A move(o,i,j)) — (atR1(j) A atl(o, j))].

The goal is to find the weakest sufficient condition on the initial situation
ensuring that the formula atl(package,2) holds. Thus we consider

Wsc(atl(package, 2); T; {h, at, at R, move}). (8.17)
The approach we propose is based on the observation that

Wsc(atl(package,2); T;{h,at,atR}) =
Vh1VatlVatR1.(T — atl(package,2)).

After some simple calculations which can be performed automatically using
the DLs algorithm we thus obtain that (8.17) is equivalent to

[Vo.at(o,1) A Vo.mat(o,2)] — [h(package)A
Ji.(atR (i) A at(package, i) A move(package, i,2))]

which, in the presence of axioms of theory T, reduces to
[h(package) A Ti.(atR(i) A at(package, i) A move(package, i, 2))] (8.18)

and, since at(package, i) holds in the theory T only for ¢ equal to 1, formula
(8.18) reduces to

h(package) A atR(1) A move(package, 1,2).

Thus, the weakest condition on the initial state, making sure that after the
execution of an action the package is in location 2, expresses the requirement
that the robot is in location 1, holds the package and that it executes the
action of moving the package from location 1 to location 2. O

8.6 Bibliographic Notes

This chapter is mainly based on [56].

In [108], Lin proposed the notion of weakest sufficient and strongest necessary
conditions for propositional theories. It has been extended for first-order logic
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in [56]. Strongest necessary and weakest sufficient conditions have many po-
tential uses and applications ranging from generation of abductive hypotheses
to approximation of theories. In fact, special cases of strongest necessary and
weakest sufficient conditions, namely strongest postconditions and weakest
preconditions, have had widespread usage as a basis for programming lan-
guage semantics [44].

The concept of approximating more complex theories by simpler theories has
been studied in [32, 97], mainly in the context of approximating arbitrary
propositional theories by propositional Horn clauses. The concept of approx-
imate theories is also discussed in [121].

Section 8.5.1 is based on [56]. Further development of the method is provided
in [62]. Examples given in 8.3.4 and 8.5.4 were considered in [108] and, in the
presented form, in [56]. Example 8.5.2 was originally considered in [97].

Abduction has gained a great deal of interest in many fields of philosophy
(see [86]) and Al (see [74, 94, 95]).

Observe that the techniques for computing strongest necessary and weakest
sufficient conditions can be applied in computing interpolants thus also to
solve a variety of important pragmatic problems, discussed in [21].
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CAKE: Computer Aided Knowledge
Engineering

9.1 Introduction

Knowledge engineering often involves the development of modeling tools and
inference mechanisms (both standard and non-standard) which are targeted
for use in practical applications, where expressiveness in representation must
be traded off for efficiency in use. Some representative examples of such appli-
cations would be the structuring and querying of knowledge on the semantic
web, or the representation and querying of epistemic states used with softbots,
robots or smart devices. In these application areas, declarative representations
of knowledge enhance the functionality of such systems and also provide a ba-
sis for insuring the pragmatic properties of modularity and incremental com-
position. On the other hand, the mechanisms developed should be tractable,
but at the same time, expressive enough to represent such aspects as default
reasoning, or approximate or incomplete representations of the environments
in which the entities in question are embedded or used, be they virtual or
actual.

Equally important are the tools used to do the modeling. Although difficult to
evaluate formally, such modeling tools should provide straightforward meth-
ods which ensure the modularity and incremental composition of the knowl-
edge structures being designed in addition to guaranteeing formal semantics
and transparency of usage.

In many applications one requires an efficient representation and query mech-
anism for the knowledge structures and epistemic states used by robots or
softbots, in particular for applications where planning in the context of in-
complete states and approximate knowledge is a necessity. We have focused on
a generalization of deductive databases and query languages where the gener-
alization involves the use of rough knowledge databases and where queries can
be non-monotonically contextualized to locally close only parts of the data-
base since a closed-world assumption is not feasible. This approach provides

P. Doherty et al.: Knowledge Representation Techniques, Studfuzz 202, 159-179 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006
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us with a reasonably efficient query mechanism and a reasonably expressive
query language for querying approximate knowledge structures. These tech-
niques have been discussed in Chapters 6 and 7. In such knowledge structures,
both positive and negative knowledge must be stored explicitly to ensure the
open-world assumption.

In the approach we pursue here, we view a (generalized) database as a loosely
coupled confederation of granules, where each granule is responsible for man-
aging all or part of a relation or property. In fact, several granules may con-
tribute locally to the definition of a relation. In addition, each relation is
viewed as a partial or approximate object represented in terms of positive
and negative information. Granules may be composed and abstractions of
these compositions (called knowledge modules) can be constructed where the
module is viewed externally as the manager of a specific relation, hiding the
complexity of generating its extension. Knowledge modules may be defined re-
cursively in terms of other modules or as combinations of modules and explicit
types of granules.

Querying such confederations of dynamic knowledge structures can be done in
a number of ways using a number of querying techniques. For instance, certain
granules may manage and compute default rules, while others may adjudicate
between several default granules when there is a conflict. Other granules may
manage a local context which locally closes or minimizes, maximizes or fixes
several different relations.

These mechanisms are intended to be used in environments where knowledge
or information is distributed, often times locally inconsistent, and where gran-
ules can compose and decompose dynamically in order to represent knowledge
structures and query them in a flexible and tractable manner. In order to con-
struct such knowledge structures and granule confederations in a principled
and straightforward manner, we propose a diagrammatic technique for build-
ing representations and doing inference which insures formal correctness. The
diagrammatic technique and its semantics will be the focus of this chapter.

We call the method CAKE, an acronym which stands for Computer Aided
Knowledge Engineering. CAKE provides us with a means for constructing and
visualizing the complex dependencies between granules. It can be naturally
viewed as an extension of well-known entity-relationship diagrams designed
for representing relations in relational databases. It also provides tools to rep-
resent a complex querying mechanism for generalized deductive databases,
which is expressive enough to model numerous knowledge representation par-
adigms, including defaults and many circumscription policies (see Chapter
10).

CAKE enjoys two important properties. Firstly, it has a simple well-defined
semantics. Secondly, it is tractable: any reasoning process that can be repre-
sented using CAKE is computable in polynomial time. This makes our formal-
ism attractive from the standpoint of practical applications.
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CAKE allows one to:

e visualize the dependencies between granules
e group granules into knowledge modules
e represent voting mechanisms

e automatically generate queries to underlying databases.

The central concept of the CAKE method is that of a knowledge diagram (or
diagram, for short). Knowledge diagrams correspond to granules and knowl-
edge modules. In the CAKE method we deal with CAKE granules and voting
granules grouped in knowledge modules. A CAKE granule stores information
about a relation. Each granule is responsible for delivering a single relation,
though a relation may be distributed among many CAKE granules. A CAKE
granule can store its own facts as well as rules defining the relation or imposing
some constraints. A granule which only stores data is called a database gran-
ule. The rules define a computation mechanism which allow one to compute
the relation. Such a mechanism is called a granule’s method. A knowledge
module gathers some CAKE granules and possibly other modules. Observe
that various CAKE granules might deliver contradictory information concern-
ing a given relation. Such a conflict should somehow be resolved. One could
accept a voting mechanism based on a principle, according to which whenever
a fact is claimed to hold and, at the same time, not to hold within a CAKE
granule (knowledge module), then the fact is assumed unknown by the gran-
ule (knowledge module, respectively). However, in such a case one tends not
to distinguish between unknown and contradictory information. We thus do
not remove inconsistencies, but rather develop mechanisms that allow one
for dealing with inconsistencies. One of the basic tools here depends on the
following simple encoding of possible situations:

R(a) is TRUE if and only if only RT(a) holds

R(a) is FALSE if and only if only R™(a) holds

R(@) is UNKNOWN if and only if neither R* (@) nor R~ (@) holds
R(a) is INCONSISTENT if and only if both R* (@) and R~ (a) hold.

The underlying querying mechanism we consider allows us to compute all the
above facts in time polynomial in the size of the database (see Chapter 6).

There are many reasonable solutions to deal with inconsistencies. For instance
one might find a source of information more reliable then the other sources and
give it some priority. In order to represent such solutions voting granules are
introduced. Voting granules provide user-defined methods for solving conflicts.
The following example illustrates these ideas.

Ezample 9.1.1. Consider a database containing a relation C(z,y) denoting
that a place z on a map is connected via a sequence of roads with a place
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y, directly or indirectly. Suppose, however, that our database does not have
complete information about all indirect connections. One can provide a CAKE
granule responsible for delivering information concerning the indirect connec-
tions, using the following rule:

[32.C(z,2) ANC(z,y)] — C(z,y). (9.1)

The situation becomes more complicated for cases where the database is dis-
tributed and refers to many, not necessarily disjoint maps, some of them, for
example, older than the others. One could then define CAKE granules respon-
sible for delivering information from distributed sources. Assume there are
two databases and two CAKE granules A; and As responsible for delivering
the relation C' from the respective data sources (see Figure 9.5, page 166). It
might now happen that one database, served by A1, contains the fact C'(J, M)
and the other, served by As, contains C(M, K). Observe that the informa-
tion about the indirect connection between J and K has to be computed. It
could then be useful to define a new CAKE granule, say AG, accessing in-
formation form distributed sources and using the rule (9.1) to combine the
obtained information. However the combined information might appear in-
consistent. For instance, suppose that CAKE granule A, has the information
—C(J, K). On the other hand, AG computes that C(J, K) holds. Thus AG,
when asked whether C(J, K), answers TRUE and the same happens when it
is asked whether —=C'(J, K) since this an answer provided by As.

In order to allow one to deal with such contradictions, we introduce adjudicat-
ing granules. In general, adjudicating granules serve to combine information
from various sources, in particular to adjudicate contradictions and to priori-
tize the information sources. O

9.2 The Language

9.2.1 Syntax Rules

We extend the usual first-order vocabulary by introducing the following two
sets of names:

e AGNAME - a finite set of CAKE granule names,

e KNNAME - a finite set of knowledge module names

e LCCNAME - a finite set of local closure policy names.

CAKE granules and knowledge modules are also called components. Any com-

ponent can be responsible for delivering some relations. In order to avoid
ambiguity, we assume that a relation R delivered by a component named
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C is denoted by C.R. Thus we shall deal with the language extending the
classical first-order language defined in Section 2.6, by assuming that the
syntactic category (ATOMIC FORMULA) is replaced by the syntactic category
(CAKE AToMIC FORMULA), representing CAKE atomic formulas and defined
by means of the following rule:

(CAKE ATOMIC FORMULA) ::=
YT ([(TERMS)]{, (TERMS
Y& ({TERMS)]{, (TERMS
REL) ™ ([{TERMS)|{, (TERMS
i«

(REL

(REL

(

(REL)® ([(TERMS)]{, (TERMS
(

[

[

= = =

REL)E ([(TERMS)]{, (TERMS)}) ||
(KNNAME).]{(CAKE ATOMIC FORMULA) ||
(AGNAME).|(CAKE ATOMIC FORMULA)

where (TERMS) is restricted to constants and variables only. Recall that R
and R® denote lower and upper approximations of positive facts, i.e., facts of
the form R(a). Similarly, R~ and R® denote lower and upper approximations
of negative facts, i.e., facts of the form —R(a), and R* denotes unknown facts
about R.

First-order formulas built in this manner are used to define rules in CAKE
diagrams.

Any expression of the form N.R is called a reference to R while N is called
the prefix of the reference.

We also introduce CAKE labels defined by syntactic category (CAKE LABEL)
according to the following rule:

(CAKE LABEL) ::=

(AaName) : (ReL) ([(VOI{, (V) D{ (REL) (KVOI{, (V) )} ]
(KNNamE) : (REL) ([(VOI{, M) D{, (REL) (WO, (V) 1)}

CAKE labels are used to declare names of components and relations the com-
ponents are responsible for.

Let L € (LccNAME). Given a universal Lcc policy L (see Definition 6.5.3
in Section 6.5) we allow formulas of the form L{A}, where A is an arbitrary
formula. We treat the LcC policies as macro definitions. This is possible, since
in the case of universal LcC policies one can compute the definitions of the
relations changed by the Lcc policy. The macro application L{A} replaces
respective relation symbols in A by the corresponding definitions.

In order to simplify the notation, whenever it does not lead to ambiguities,
we allow granule references without prefixes. Then one refers directly to the
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relation delivered by the granule without using the dotted notation. This
happens, e.g., when in a given context there is only one granule responsible
for delivering a relation. We also sometimes omit variables of relations in
CAKE diagrams, when these are known from the context.

9.2.2 Context Conditions

We assume the following context conditions:

e references of the form M.R are allowed if R is a relation appearing within
the component M

o for M € AcNAME U KNNAME, if M.R is a valid expression then M refer-
ences a unique component in a given component.

9.3 Diagrams

The diagram in Figure 9.1 represents a diagram of a CAKE granule responsible
for delivering the rough relation R(Z), where N is the granule’s name. The
part of the diagram below the dashed line is called the positive part of the
diagram, the part between the dashed line and the solid line is called the
negative part of the diagram and the part above the solid line is called the
context of the diagram. The part containing the component’s name and the
relation’s name is called the label of the diagram. Observe that the boundary
part of the diagram is given implicitly and contains all facts that are neither
in the positive part of the diagram nor in the negative part of the diagram.

For clarity, we mark the positive and negative part of a diagram using + and
— which is placed on the lefthand side of the diagram.

Let D be a diagram labelled by N : R(Z). The role of the diagram’s parts is
the following;:

e the label introduces the granule’s name N and declares the relation, R,
which the granule delivers together with the names of its arguments &

e the context defines the granule’s Lcc policies Lccy,. .. Lcc, together
with their names I1,...,l, € (LCCNAME)

e the positive part of the diagram represents facts that are assumed to be
TRUE

e the negative part of the diagram represents facts that are assumed to be
FALSE.
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N : R(Z)
li:Lccq, ... lm: Lecy, Context
— bi,..., b } Negative knowledge
| a 71,7 7 7,6:1,1@ 777777 } Positive knowledge

Fig. 9.1. Diagram representing a CAKE granule.

Consider a diagram labelled by N : R(Z). We assume the notational conven-
tion according to which the conjunction of formulas of respective parts of the
diagram are denoted by N®(R(Z)) or N®(R) if the arguments Z of R are
known from the context, or N® if the relation R is also known, where the
superscript © indicates the part of the diagram as follows

in the case of the positive part of the diagram

in the case of the (implicit) boundary part of the diagram
in the case of the positive-boundary part of the diagram
in the case of the negative-boundary part of the diagram
— in the case of the negative part of the diagram.

O & H+

The elements aq,...,a; are in the positive part of the diagram and the ele-
ments by, ..., b in the negative part of the diagram. This describes that the
following conjunction holds:

Rt@)A...AR @) AR (b)) A... AR (by).

Any object in the underlying universe that is outside of the positive and
negative parts of a diagram is assumed to be in the boundary part of the
diagram.

The relation R can also be defined by means of any first-order formulas rep-

resenting R, R~ rather than by explicitly writing tuples a;, l_)j.

As in the case of first-order queries (see Chapter 4, Section 4.2), a first-order
formula A defines a respective part of the diagram representing R in the
database B to be the least set of tuples of the form (aq,...,a,), where

ai,...,a, € DoM and B | A((x1,...,%n) := (a1, .., an)).

The granules’ rules are given by providing the body part of each rule without
the head. The heads of such rules are known from the context. Consider the
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N : R(z)

lllIJCCh...,lmILCCm

Fig. 9.2. Diagram representing granule’s rules.

CAKE granule diagram shown in Figure 9.2. The following rules are defined
by the diagram:

[3u.(N.A1(21) V...V N.Ap(%))] — N.RT () (9.2)

where a=[(Z1U...UZ) —Z]and 5 = [({h U... Ug) — T].

The formulas N. A4 (1), ..., N.Ag(zk), N.B1(41), - - ., N.B,(g;) are called meth-
ods of N.!

In cases where a granule requires some input relations in order to compute the
relation it is responsible for, we require that the connections between inputs
and the diagram representing the relation are defined by arrows, as shown in
Figure 9.3.

An arrow from a component N to a component M is called an input arrow of
component M and an output arrow of component N.

It is assumed that no arrow can cross a component’s border, i.e., all input
arrows lead to the whole component and all output arrows come from the
whole component, not from its subcomponents.

Ezxample 9.5.1. Consider a CAKE granule A responsible for delivering relation
R(Z). Then the CAKE granule B shown in Figure 9.4 simulates the closed
world assumption applied to A.R(Z). This follows from the fact, that granule
B classifies any object which is in the negative or boundary part of granule
A as negative information about R. Thus any information about relation R
unknown by A becomes false from the point of view of B. O

! Recall that these formulas can be arbitrary first-order formulas built over the
syntactic category (CAKE ATOMIC FORMULA).
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Fig. 9.3. Diagram representing input relations for a CAKE granule.

A: R(z) B: R(z)

Fig. 9.4. Diagram representing the closed world assumption of Example 9.3.1.

Ezample 9.3.2 (Example 9.1.1 continued). Consider the case discussed in Ex-
ample 9.1.1. We now have three CAKE granules (see Figure 9.5). Granules A4;
and As deliver information to granule AG, which is indicated by arrows and
rules in the diagram of AG.

Observe that the following rule is attached to AG (this rule is obtained in the
same manner as formulas listed in (9.2); see also Figure 9.2):

[A1.CT(2,y) V As.C T (z,y) V 32.(AG.CT (z,2) N AG.CF (2,y))] —
AG.CT(x,y).

Granule AG computes positive knowledge about the direct and indirect con-
nections between places. O

Knowledge modules are collections of CAKE granules and other knowledge
modules. Knowledge module diagrams are represented by dashed boxes as
shown in Figure 9.6. Each knowledge module has a name (Name) followed by
the list of relations the module is responsible for. Knowledge modules can be
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AG : C(z,y)
fffffff ACH(@y)
+ As.Ct(z,y)
32.[CT (z,2) ACT(2,9)]

A1:C(z,y) Ag:C(z,y)
- - (J,K)
Hooum | k) |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 9.6. Diagram representing a knowledge module.

nested. If a knowledge module contains components responsible for different
relations it is treated simply as a collection of those components. Components
directly included in a component C are called subcomponents of C.

As in the case of CAKE granules, inputs to knowledge modules are indicated
by arrows.

We define the positive part, the boundary part and the negative part of a knowl-
edge module to consist of positive facts, unknown facts and negative facts of
relations delivered by the knowledge module. If M is a knowledge module
and R is a relation delivered by M, then M.RT M.R* and M.R~ denote
the respective parts of R. If a module delivers a single relation, terms for the
positive, boundary and negative parts of the knowledge module are also used
to indicate the suitable parts of the relation.
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Observe that in a module there may be many CAKE granules, which used
together deliver inconsistent information. A mechanism is required, which we
call a voting mechanism for computing the final answer for any relation in
a module. Voting is represented by a special, distinguished CAKE granule
called the adjudicating granule. In each knowledge module there may be at
most one such granule for any relation served by the module. Adjudicating
granule diagrams are represented as in Figure 9.7. The answer determined by
the granule is the answer that the module returns.

In the absence of an adjudicating granule for a relation served by a module,
the module is assumed to act according to the following principle.

Name : R

Fig. 9.7. Diagram representing an adjudicating granule.

Definition 9.3.3. Assume that a module is asked a query about relation R.
In the absence of an adjudicating granule for R, the following standard voting
mechanism s assumed:

o if at least one granule or knowledge module for R contained in the mod-
ule answers TRUE to the query and none of the granules and knowledge
modules for R answers FALSE, the final answer to the query is TRUE

o if at least one granule or knowledge module for R contained in the mod-
ule answers FALSE to the query and none of the granules and knowledge
modules for R answers TRUE, the final answer to the query is FALSE

e otherwise, the answer to the query is UNKNOWN. m

Ezample 9.3.4 (Example 9.1.1 continued). Consider the diagram, shown in
Figure 9.8, corresponding to the situation described in Examples 9.1.1 and
9.3.2.

Observe that granules A; and As are now grouped into a knowledge module
N. Collecting granules A; and A5 in one knowledge module resolves the po-
tential for contradictory information possessed by the granules, as in this case
the default voting mechanism of N would assure that the granule AG receives
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M :C(z,y)
Fmmm e L e e,
AG : C(z,y)
- N.C®(z,y)
+ NCT(z,y) |
32.[CF (2, 2)ANCT (2,9)]

- [ACEy) A Cy)|
- I
R Y

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 9.8. Diagram corresponding to Example 9.3.4.

consistent information. On the other hand, the information computed by AG
may be inconsistent. This, in fact happens, as the tuple (J, K) is both in the
positive and negative part of the diagram of AG. Thus the granule returns
inconsistent information. However, in the module M there is no explicit ad-
judicating granule. Thus the standard voting mechanism is accepted and all
the inconsistent tuples are in the boundary part of M.

The case in which the database granules have a priority over the granule AG
is illustrated in Figure 9.9, where an adjudicating granule AV is introduced.
In this case (J, K) is in the positive part of AG and in the negative part of
N. The adjudicating granule AV will answer that C(J, K) is FALSE, due to
the rule in the negative part of AV and the fact that none of the rules in the
positive part of AV can be applied. m

9.4 Visibility and Binding Rules

The following definition distinguishes between declarations of variables and
relations and references to variables and relations.
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L M:C(x,y)
AG : C(z,y) AV C(z,y)
_ - NC (zy) |
. NCT(xy) N.C®(z,y)NAG.CH (z,
+ 3z [C’+(m,z)AC (z,9)] * () (9)

. N : C(x,yj

i Ay: C(z,y) Az: C(z,y) i
I 1owum |
4+ (M) H (M, K)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 9.9. Diagram illustrating the prioritized voting process of Example 9.3.4.

Definition 9.4.1. An occurrence of a relation (individual variable) is called
a declaration of the relation (variable) if it appears in a label of a diagram,
otherwise it is called a reference to the relation (variable). 0

The following visibility rules are assumed:

e a relation R (Lcc policy L) is wisible in a component C' if one of the
following conditions holds:
— R (respectively L) is declared in C

— C contains a component D and relation R is declared (respectively L
appears in the context part) in D

— there is an arrow from a component D to C and the relation R is
declared (respectively L appears in the context part) in D.

In the two latter cases the relation R (Lcc policy L) can be accessed from
D via the remote access, denoted by D.R (respectively by D.L)

e a variable x is wvisible in a component C if x is declared in C' or in any
component that includes C
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e a component name is visible only outside of the component.
We also assume the following binding rules:

e if a relation name R declared in a component C' occurs in any part of
a component C, then the name refers to the relation C.R

e 1o diagram leading to ambiguities in binding or with undefined references
is considered valid.

9.5 The Semantics and Computation Method for CAKE

9.5.1 Introduction

The semantics of CAKE diagrams is given by means of an inductive definition.
The respective parts of the definition are grouped according to the diagram
type. We assume that diagrams represent approximation transducers and that
the semantics of rules is as defined in Sections 6.3 and 7.4. Formally, the
semantics of diagrams, denoted by || D||, is defined as a mapping from rough
structures of a given vocabulary SIG into rough structures of possibly another
vocabulary Sic’:

| - |l : STRUC[SIG] — STRUC[SIG].

In the sequel we show how to compute first-order or fixpoint definitions of
all the regions in relations. This supplies us with a formal semantics of the
diagrams.

9.5.2 The Semantics of LCC Policies

Consider the following universal Lcc policy:
L:Loc[Ly,..., Ly Ky, ..., K, IC.

In Section 6.5 direct definitions of minimal (respectively maximal) and varied
relations are provided. The meaning of formula L{A} is then the following:

o for each relation of Lq,..., L, occurring in formula A create a CAKE gran-
ule and place in its positive and negative parts righthand sides of defini-
tions given in Lemma 6.5.8, respectively

e for each relation of Kj,..., K, occurring in formula A create a CAKE
granule and place in its positive and negative parts righthand sides of
rules given by definitions (6.14), (6.15) with minimized and maximized
relations replaced by their definitions, as appropriate
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e add all necessary arrows between granules (indicating the input relations
to the new granules)

e replace any occurrence of a relation symbol of Lq,..., L, in formula A by
a reference to a suitable CAKE granule defined in items above.

9.5.3 Attaching Rules to Diagrams

Through this section we always assume that the rules attached to the diagrams
are universally quantified over free variables.

Interpretation of Occurrences of Relation Names in Diagrams

Assume we have a formula in negation normal form.2. Then any positive
occurrence of any relation symbol, say R, refers to RT and any negative
occurrence —R of R refers to R~. We also accept the convention according
to which all references to boundary regions of relations are eliminated from
formulas. Table 9.1 describes the convention.

Table 9.1. Rules for eliminating references to boundary regions.

Occurrence in a diagram | Actual Meaning
R® -R-
-R® R™
RP -R*
-R® R*
R* ~R" A-R™
~R* R VR~

Attaching Rules to CAKE Granules and Adjudicating Granules

Assume we are given a granule or an adjudicating granule diagram labelled
by N : R(Z) and containing parts as in Figure 9.2. Then we attach to the
diagram rules (9.2), modified by Lcc’s, as discussed in Section 9.2.1.

Now the definition of the boundary region of the relation defined by N is the
following

N.R*(z) = (-N.R*(zZ) A -N.R™(%)).

2 Recall from Chapter 2 that any formula is easily transformed to this form.
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Attaching Rules to Knowledge Modules

Assume we are given a knowledge module diagram labelled by
M - R1<.’fl)7 ... ,Rk(i‘k).

Let, for 1 < i < k, M; be the set of all subcomponents of M responsible
for delivering the relation R; and assume M; does not contain an adjucating
granule for R;. Then we attach to the diagram the following set of rules, for
any 1 <i<k:

[\/ N.R ™ (z) A= \/ N.Rﬁ(xi)] — M.R;™ (%) (9.3)

NeM; NeM;

l\/ N.RF(z) A= \/ N.RZ-(@)] — M.R;" ().

NeM; NeM,;

In the case where M contains an adjudicating granule A responsible for de-
livering the relation R;, then we attach to the diagram the following rules:

A.Rf(%;) — M.R] (%) (9.4)
AR (z;) — M.R; (z;).

The definition of the boundary region of the relation defined by M is obtained
as in the case of CAKE granule diagrams, i.e., it is given by the following
equivalence:

M.R*(z) = (-M.R"(Z) A=M.R™(%)).

9.5.4 Obtaining the Explicit Definitions of Relations

We now provide a tractable fixpoint semantics for CAKE. All knowledge dia-
grams in this section are assumed to be stratified according to the following
definition.

Definition 9.5.1. A knowledge diagram is stratified if the set of rules at-
tached to the diagram (see Section 9.5.3) is stratified. o

The case of non-stratified diagrams is to be dealt with by applying the well-
founded semantics (see Section 9.5.5). As indicated in Section 4.5.2, strati-
fied semantics and well-founded semantics agree on stratified DATALOG™ pro-
grams. However, we deal with stratified diagrams separately since they enjoy
nicer computational properties and can be directly implemented using ver-
sions of PROLOG that allow for stratified negation.
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The Case of a Single Stratum

Consider first the simplest case when a set of rules consists of a single stra-
tum. Let S,...,T be all relations appearing in the heads of rules attached
to CAKE granules, adjucating granules and knowledge modules, and let B be
the conjunction of the bodies of the rules.? Then the following simultaneous
fixpoint formula defines relations S, ..., T":

LrpS,...,T. B. (9.5)

The boundary regions of the relations are then obtained using the suitable
definitions.

Observe that the formula (9.5) represents a vector of relations. We refer to
the particular relations S, ..., T as the S-coordinate,. . ., T-coordinate of (9.5).

The General Case

Let the set of rules consist of strata P, ..., P,. Consider a stratum P?, where
1 < i< n. Let S%...,T" be all relations appearing in the heads of rules
attached to CAKE granules, adjucating granules and knowledge modules, and
let B* be the conjunction of the bodies of the rules appearing in stratum 4. In
such a case one applies a method given in Section 4.5 on stratified DATALOG™.
The corresponding definitions of relations are then computed inductively in
order given by strata, according to rules (9.6) and (9.7) provided below.

e First one computes relations S',...,T! as the simultaneous fixpoint
LrpS',..., T .B. (9.6)
e Having computed deﬁnipions of all relations S*, ..., TF for 1 <k <i<mn,
one computes S*,...,T" as
Lrp St ..., T".B, (9.7)

where it is assumed that names of relations appearing in B? and computed
in strata 1,...,7 — 1 are replaced by the obtained fixpoint definitions of
the relations.

Remark 9.5.2. Let R be a stratified set of rules, B be the conjunction of bodies
of rules, and assume that S,..., T are all relations appearing in the heads of
the rules. Given a particular stratification, the explicit definitions of these
relations, obtainable by the above computations, will be denoted by

3 Observe that in this case stratification ensures that bodies of rules attached to
all diagrams are positive w.r.t. all relations appearing in the heads of the rules.
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LFPS,...,T.B. (9.8)
In the sequel, an expression of the form (9.8) will be referred to as a si-
multaneous fixpoint expression and particular relations S,...,T as the S-
coordinate,. . ., T-coordinate of (9.8). o

9.5.5 Computing the Relations

Observe that the definitions of relations obtained in Section 9.5.4 are expressed
by means of fixpoint formulas. Using Theorem 4.3.1 one can now provide
a tractable method for computing the relations. Moreover, if the database
is linearly ordered, then any PTIME query can be modelled by knowledge
diagrams, since recursion within the diagrams is allowed.

It should be emphasized, however, that in practice one should use known opti-
mization techniques developed for DATALOG, DATALOG™ and fixpoint queries.

In the case of non-stratified CAKE diagrams we do not obtain explicit defini-
tions of relations. In order to compute the relations, we apply the well-founded
semantics (see Section 4.5.2).# In such a case, CAKE rules are to be expressed
by means of DATALOG™ rules, which, in the presence of ordering on the do-
main, can easily be done, since first-order quantifiers can be expressed as
DATALOG™ rules, as shown below.

Assume an ordering on a database domain DOM is given by its least element,
denoted by 0, together with a successor relation S(z,y), meaning that y is an
immediate successor of x. Assume a given formula is in the PNF form, i.e., all
quantifiers appear in its prefix and is closed, i.e, contains no free variables.®

In order to remove quantifiers we proceed from the innermost to outermost
quantifiers:

1. consider a subformula of the form Jz.A(x, %), where § are all free vari-
ables of A. We introduce a fresh relation symbol, say Ra(z,¥), with the
intuitive meaning that A(z,y) holds for domain element z accessible from
2 through zero or more applications of the immediate successor relation
S. We introduce the following rules:

RA(‘rvg) — A(x,ﬂ)
RA(x’y) — S(SC,Z),RA(Z,’LJ),

where z is a fresh variable symbol. Now [3z.A(z,7)] = Ra(0, 7).

4 Observe that subsequences {I2i}:>0 and {I2i+1}i>0, defined in Section 4.5.2, cor-
respond respectively to lower approximations of positive and negative parts of
the computed relations.

5 CAKE rules are implicitly universally quantified over all free variables, thus each
CAKE rule is, in fact, a closed formula.
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2. consider a subformula Vz.A(x, ), where § are all free variables of A. If Vx
appears in the quantifier prefix of the whole formula, and is preceded by
universal quantifiers only, then we remove the quantifier together with all
preceding quantifiers.

In the opposite case, due to the equivalence Va.A(z,§) = —3Jz.(-A(z, 7)),
it is now sufficient to introduce rules for 3z.(—A(x, 7)), defining say R- 4,
and refer to "R 4(0,7) instead of Vz.A(x, 7).

When all quantifiers are removed, we apply the usual propositional reasoning
to obtain DATALOG™ rules.

Observe that the rules obtained in the above procedure can be unsafe. How-
ever, we accept unsafe rules, as discussed in Remark 4.4.1.

The following example illustrates this procedure.

Ezxample 9.5.3. Consider the formula

Vo 3y.[(R(z,y) vV =Q(y,x)) AT (x,y)]. (9.9)

The innermost occurrence of a quantifier is Jy. We introduce a fresh relation
symbol, say V (y, z), and the following rules:

V(:U?x) — [(R(x,y) \ ﬁC)(Qﬂx)) A T(xvy)] (910)
V(y,z) — S(y,2), V(z,2). (9.11

By propositional reasoning one can verify that rule (9.10) is equivalent to the
following two DATALOG™ rules:

V(y,z) — R(x,y), T(z,y) (9.12)
V(va) — —Q(y,ac),T(m,y). (913)

Formula (9.9) reduces now to Vz.V(0,z). The quantifier Vz is now replaced
by introducing a fresh relation symbol, say W (z), and the following rules:

W(zx) « =V (0,7) (9.14)
W(z) «— S(x,z), W(2). (9.15)

Formula (9.9) is equivalent to =W (0) and, in order to compute it, we need
DATALOG™ rules (9.11), (9.12), (9.13), (9.14), (9.15). o

9.5.6 Remarks on Approximation Forests

One of the cases where a more efficient treatment of fixpoints is possible is
that of the approximation forests defined below.
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Definition 9.5.4. By an approximation tree we mean any diagram forming
a tree. By an approximation forest we mean any diagram consisting of a set
of approximation trees. i

In such a case there are no cycles between the components and one can con-
sider each component separately, when defining the appropriate rules. The
computation process can in this case be handled starting from the leaves of
the trees until reaching their roots. Such a solution leads to more compact
“local” definitions of the relations and “local” computations that can easily
be parallelized.

Of course, there is a close relationship between approximation forests and
approximation transducers and trees introduced in Chapter 7, as shown in
the following example.

T : TrafficCong(l) ‘

Iiin(z,l)| F----- O17-019)______| S': Speed(x, z)

+ + +

Fig. 9.10. Diagram representing a knowledge structure considered in the congestion
example.

Example 9.5.5. In Section 7.6 we considered a congestion example, and ob-
tained, among others, the characterization of TrafficCong™ (1) by formula
(7.16), and the characterization of TrafficCong®(l) by formula (7.17). CAKE
diagrams consist of positive and negative parts and the boundary part is rep-
resented implicitly. However, using the equivalence R~ = —=R®, one can easily
obtain the characterization on the negative part of a relation on the basis of
its boundary positive part.

Accordingly, on the basis of formula (7.17), we obtain

TrafficCong™ (1) = (9.16)
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=3z, y.[In®(z,1) A In®(y,1) A Number® (z,y, large) A (9.17)
*(z,2,y) — Speed®(z,low))A (9.18)
Vz.(Between™ (z,2,y) — 3t.Distance®(z,t,small))]. (9.19)

Vz.(Between

Consequently, one can obtain a CAKE diagram for the congestion example, as
presented in Figure 9.10. a]

9.6 Bibliographic Notes

There is a long line of research concerning the use of various diagrams in
the process of software design and development. Such tools, known under
a common name CASE,® range from relational database design tools with
various forms of entity-relationship diagrams among them (see, e.g., [174,
214]), through structural design (see, e.g., [42]) to object-oriented modelling
and design (see, e.g., UMLT [24, 23]).

The standard voting principle reflects solutions known from the field of para-
consistent logics, i.e., logics that allow handling of contradictory facts without
inferring the contradiction. Many voting mechanisms can be developed using
solutions proposed by the paraconsistent logics community. For literature on
paracounsistent logics see, e.g., [8, 25, 33, 169]. Also Belnap’s approach [17] can
be modelled in CAKE. Voting has also been studied in the context of building
classifiers (see, e.g., [87, 128]).

6 Computer Aided Software Engineering.
7 Unified Modelling Language.
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Formalization of Default Logic Using CAKE

10.1 Introduction

In this chapter, we formalize a subset of default logic using the CAKE method.!
The goal of this chapter is to do a case study showing how the CAKE method
can be used to model a particular type of reasoning commonly used in knowl-
edge representation and important in many applications. This will be done by
representing two basic versions of default logic: rough default logic and rough
default logic with strong prerequisites. The main difference between the two
versions that will be modeled lies in different treatment of the prerequisite of
a default while determining the default’s applicability. In the former, a de-
fault can be applied if its prerequisite is believed (not contradicting known
information). In the latter, we may require that the prerequisite of a default
(or a part of it) has to be known, rather than believed, to make the default
applicable. The possibility of using both versions substantially increases the
expressive power of the resulting logic. We also show that both rough de-
fault logic and rough default logic with strong prerequisites can be naturally
extended to their prioritized versions by slightly changing the voting policy
mechanism used.

It is important to note that the underlying semantics for the considered ver-
sions of default logic differ from traditional approaches such as Reiter’s default
logic.

The following assumes familiarity with the material contained in Chapters 5
and 9.

A default is said to be disjunction-free if its prerequisite and justification are
conjunctions of literals and its consequent is a single literal. A default theory
is said to be disjunction-free if all its defaults are disjunction-free and all its
axioms are ground literals.

! Recall that default logic has been presented in Section 5.2, Chapter 5.

P. Doherty et al.: Knowledge Representation Techniques, Studfuzz 202, 181-212 (2006)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2006
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In the sequel, we restrict ourselves to finite disjunction-free default theories
with consistent sets of axioms.? We assume that the axioms of a theory are
ground literals extracted from an underlying extensional database(s).?

We will start by modeling and discussing a number of standard default theories
found in the literature and provide a means of comparing our underlying
semantics with the more traditional approaches found in the literature. We
will then provide the technical framework and formal semantics based on the
use of CAKE.

Fig. 10.1. Diagram corresponding to the theory of Example 10.1.1.

Ezample 10.1.1. Consider the theory T' = ({B(t)}, {B(z) : F(x)/F(z)}). This
is the standard “Bird” theory with B, F', t denoting Bird, Flies and Tweety,
respectively. Figure 10.1 shows a CAKE diagram corresponding to the theory
T4

The bottom granules, A; and As, are CAKE granules representing data from
an assumed extensional database. These granules are responsible for the rela-
tions B and F, respectively. Note that t is in the positive part of the diagram

2 Note that the task of determining whether a set of axioms of a given disjunction-
free default theory is consistent is trivial.

3 That is, ground literals of the form R(a@) (respectively =R(@)), where @ is in the
positive (respectively negative) part of the diagram of the extensional database
granule responsible for the relation R.

4 Recall that for the sake of simplicity we often omit variables of relations in CAKE
diagrams, when these are known from the context.
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of A; and in the boundary region of the diagram of As. The granule As repre-
sents the default rule of the theory. It is responsible for the relation F' which
occurs in the default consequent. There are three methods associated with
this granule. The first two, namely As.F'~ and Ay.F', allows the granule As
to use knowledge of the granule As while computing the relation F'. Using
these methods the CAKE granule Az can infer that, for any object =, x lies in
the negative (respectively positive) part of his diagram, provided that x lies
in the negative (respectively positive) part of the diagram of As. The third
method, i.e., A;.BT A Ay.F'P, represents the default of the theory. Note that
the method is placed in the positive part of the diagram. It is to be viewed as
the following rule:

“For any object x, if x is in the positive part of the diagram of A; and
x is in the positive/boundary part of the diagram of As, infer that x
is in the positive part of the diagram of Ag.”

The following set of rules is associated with the above diagram:®

AQ.F_(.’K) — AgF_((E)

{A2F+(l’) \Y [AlBJr(I’) AN A2F®(I)]} — A3F+(£ZJ)

A1.BT(t).

Eliminating the reference to the boundary region in As.F'®(z), i.e., replacing

Ay F®(z) by =Ay.F~ () (see Chapter 9, Section 9.4), results in the following
modified rule set:

Ay F~(x) — A3.F~ () (10.1)
{AQ.F+ (:17) V [Al.B+ (1‘) A\ _‘AQF_(‘T)]} — A3F+(£U) (102)
A.BT(t). (10.3)

Clearly, the partition {(10.3)},{(10.1),(10.2)} provides a stratification of the
above set of rules.

The relations As.F~, A3.F™ and A;.B" occurring in the heads of the rules
are specified by a simultaneous fixpoint expression of the form

LFP A3.F~, A;.F*, A,.B* B, (10.4)

where B is the conjunction of the rules’ bodies.%

Below, we compute the relations characterized by (10.4), using a generalization
of Algorithm 4.3.2 suggested in the end of Section 4.3. The successive lines
consist of sets of literals obtained after performing all successive iterations.

® Recall that all free variables occurring in the rules are implicitly universally quan-
tified.
6 See Chapter 9, Section 9.5.4.
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{
{A1.B* (1)}
{A1.BT(t),A3.FT(t)}.

Suppose the query we are interested in is F'(t). It is immediately seen that
t satisfies the Az.Ft-coordinate of (10.4). Consequently, the answer to the

query is TRUE. 0

O M:P(x) |

b e e e e e
| |
| |
! Ay P(x) As : P(x) !
| |
| |
| — |
‘ _ As.P _ _ ‘

As.P

: AQ.R+ A Ag}.l—:)9 ,,,,, ] :
I - OO+ s P! |
| As.P Al.Q+ /\Ag..P€B |
| |
| |

Fig. 10.2. Diagram corresponding to the theory of Example 10.1.2.

Ezxample 10.1.2. Consider the theory

R e !

This is the standard “Nixon” diamond theory with R, P, @, n standing for
Republican, Pacifist, Quaker and Nixon, respectively (see Example 5.2.5).
Figure 10.2 shows a CAKE diagram corresponding to the theory T

The granules A;, Ay and Az represent data from an assumed extensional
database, whereas A, and As represent the defaults of the theory.” Since

7 Observe that the method As.RT A A3.P® used by the granule A4 is placed in
the negative part of its diagram. Accordingly, it has the following reading: “for



10.1 Introduction 185

both A4 and As make inferences concerning the relation P, they have been
grouped into a single default module.® It is the module, not an individual
granule, that is responsible for default inferences about P.

The following set of rules is associated with the above diagram:®

Al.Q+(n)

AQ.R+(n)

{A5.P7(z) V [A2.R" () A =A3.PF ()]} — Ay.P™ (2)

A3.P+(£E> — A4P+(I)

A3.P_ — A5P_(.’E)

{A3P+(l‘) \% [AlQJr(I) A\ _‘Ag.P7 (I)]} — A5P+(I)

[A4. P () V A5.P~ (2)] A =[A4.PT (2) V A5.PT(2)] — M.P™(z)
[A4.PH(2) V A5. P (2)] A =[A4.P™ (2) V A5.P~ (z)] — M.P*(x).

~

The last two rules represent the standard voting mechanism used by the mod-
ule M.

The above set of rules is clearly stratified by the partition Py, P5, Ps, where
P; consists of the first two rules, Ps consists of the last two rules and P
contains the remaining rules. The relations A;.Q", As.R*, Ay.P~, Ay.PT,
As. P, As.PT, M.P~ and M.P*, occurring in the heads of the above rules,
are defined by the fixpoint expression given by

LFP A,.Q%, Ay.RY, Ay.P~, Ay.PT, A5.P~, As.P*, M.P~, M.P*.B (10.5)

where B denotes the conjunction of the rules’ bodies.

Below, we compute the relations characterized by the expression (10.5).

{
{41.Q7(n), Ay.RT (n)}
{Al.Q+(n), AQ.R+(n), A4.P_(n), A5.P+(n)}.

Suppose the query of interest is P(n). It is immediately seen that the granule
A, answers FALSE and the granule As answers TRUE to the query. How-
ever, since it is the default module that is responsible for default inferences

any object x, if x is in the positive part of the diagram of Ay and x is in the
negative/boundary part of the diagram of As, infer that « is in the negative part
of the diagram of A4.”

8 In Chapter 4, a collection of CAKE granules was referred to as a knowledge module.
Here we use the term “a default module,” since all granules included in such
a module represent defaults.

% The relations As.P° and As.P®, occurring in the diagram, have been replaced
by ~A3.Pt and —A3.P~, respectively.
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about P, and since n satisfies neither the M.P¥-coordinate of (10.5) nor the
M .P~-coordinate of (10.5), we conclude that the answer to the query P(n) is
UNKNOWN. o

The examples considered so far are typified by the fact that the CAKE granules
that represent default rules obtain all relevant input data from an assumed
extensional database. The next example shows that the situation can be more
complex.

A3 W
AgFT AN Az WO

Fig. 10.3. Diagram corresponding to the theory of Example 10.1.3.

Example 10.1.3. Consider the theory T given by

7 - <{B<t>}, {B“}(f; ), e 7 }> ,

where B, F'; W and t denote Bird, Flies, HasWings and Tweety, respectively.

The corresponding CAKE diagram for T is provided in Figure 10.3.

Note that there is an arrow between A4 and As. This is because Ay is respon-
sible for the relation F' that is used by As while computing the relation W.
In this case, not all the base data input to the default granules comes from
an extensional database as in the previous examples.

The following set of rules are associated with the diagram.
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A;.BT(t)

AQ.F_ (.’L‘) — A4F_($)

{AQ.F+ (SL’) \Y [A1B+(£E) A _‘AQF_((,U)]} — A4F+(.’£)

As W™ (x) — As. W™ ()

{A3W+($) vV [A4F+(.TJ) AN ﬁAgW_(aj‘)]} — A5W+(Z‘)

The partition Py, P>, where P; consists of the first rule and P, contains the
remaining rules, provides a stratification of the above set.

The relations Ay.Bt, Ay.F~, Ay F+, As. W~ and A5.WT, occurring in the
heads of the rules, are defined by the fixpoint expression given by

LFPA|.BT Ay F Ay Ft As. W~ As. W .B (10.6)

where B denotes the conjunction of the rules’ bodies.

The computation of the relations characterized by (10.6) is given below.

{}

{A1.BT(t)}

{A1.BT(t), Ay FT(t)}

{A1.BT(t), A FH(t), As. W (1)}

Suppose the query we are interested in is W (t). Since t satisfies the A5.W -
coordinate of fixpoint (10.6), we conclude that the answer to the query W (t)
is TRUE. m

The next example shows that this version of default logic does not admit
ungrounded conclusions.

Ezxample 10.1.4. Consider the theory

where B and F stand for Bird and Flies, respectively. A CAKE diagram for
the theory T is provided in Figure 10.4.

The following set of rules is associated with the diagram:

Ay F~(x) — A3.F~ ()
{A3.FT(2) V [A4.BT (2) A —A2.F~ (2)]} — A3.F* ()
A1.B™(x) —» Ay.B™ (x)
{A1.B*(z) v [A3.F " (z) A=A1.B™ (2)]} — Ay.BT ().
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Az : F(x) Ay : B(z)

A

Fig. 10.4. Diagram corresponding to the theory of Example 10.1.4.

The set of rules shown above is stratified using a single partition P;, where
Py consists of all the rules.

The relations occurring in the heads of the rules are specified by the fixpoint
expression of the form

LFP A5.F~, A3F*, Ay.B~, Ay.B* B, (10.7)

where B denotes the conjunction of the rules’ bodies.

Suppose that the query we are interested in is B(t). It is immediately seen
that all the relations characterized by the expression (10.7) have empty ex-
tensions.'? Accordingly, the answer to the query is UNKNOWN. m

Example 10.1.5. Consider the theory

T- <{L(j, o)}, {L(x’j’}(;jf W }> ,

where L, H, j and b denote Likes, Happy, John and Bill, respectively. The
CAKE diagram corresponding to the theory T is shown in Figure 10.5.

The rules associated with the diagram are the following.

10 Recall that the extension of an n-ary relation is the set of all n-tuples satisfying
this relation.
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Fig. 10.5. Diagram corresponding to the theory of Example 10.1.5.

A1~L+ (J7 b)

AQ.H_((E) — AgH_(.’E)

E'y. {A2H+(IL') \Y [Al.L+(IE, y) A _|A2.H7 (IE)]} — 143.I‘I+ (l’)

The partition Py, P>, where P; consists of the first rule and P, contains the
remaining rules provides a stratification of the above set.

The relations occurring in the heads of the rules are defined by the fixpoint
expression given by

LFP A,.L", As.H™, As.H .13, (10.8)

where, as usual, B is the conjunction of all the rules’ bodies.

The computation for the relations mentioned in formula (10.8) are provided
below.

{}
{A1~L+(j? b)}
{A1~L+(j7 b)> A3H+(b)}

Suppose that the query under consideration is H(b). Since b satisfies the
Asz.H*-coordinate of (10.8), the answer to the query H(b) is TRUE. o
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10.2 Computing Normal Default Theories

We refer to the version of default logic exemplified in the previous section as
rough default logic. In this section, we begin the presentation of the technical
details by first considering normal default theories.!!

We begin with some terminology. Two defaults are said to be similar if
their consequents contain the same relation symbol. The following rather de-
tailed definition describes the construction of CAKE diagrams for arbitrary
disjunction-free normal default theories.

Definition 10.2.1. Let T = (W, D) be a normal default theory over a lan-
guage L. A normal default CAKE diagram corresponding to a normal default
theory T is constructed as follows.

1. For each relation symbol R occurring in L, we construct a CAKE granule,
called a database granule, representing R. If R(t) (respectively —R(%)) is
in W, the tuple t occurs in the positive (respectively negative) part of the
diagram of the granule. All other tuples of constants are assumed to be in
the boundary region of the diagram.'? Each database granule is labeled by
name: R(—), where name is a unique name of the granule and R is the
relation symbol it is responsible for.

2. For each default d from D, we construct a CAKE granule, called a default
granule, representing d. The granule is labeled by name: R, where name
is a unique name of the granule and R is the relation symbol occurring
in the consequent of d. Methods used by default granules will be specified
later.

8. All default granules, say Aq,..., A, where k > 1, representing similar
defaults are grouped into a single knowledge module, referred to as a de-
fault module. The module is labeled by name: R, where name is a unique
name of the module and R is the relation symbol the granules Ay, ..., Ay
are responsible for. In what follows, any default granule which is not em-
bedded in a default module will be referred to as an independent default
granule. Otherwise, the granule will be referred to as a dependent default
granule.

4. Let A be an independent default granule representing a default d and sup-
pose that the consequent of d contains a relation symbol R. Assume further
that Ry,..., Ry are all the relation symbols occurring in the prerequisite
of d. For each 1 < i < k, we create an arrow from a database granule
representing R; to A and an arrow from a module (or independent de-

11 Recall that all the theories considered in this chapter are disjunction-free default
theories with consistent sets of axioms.
12 Recall that the boundary part of a diagram is not explicitly drawn.
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fault granule if it exists) representing R;. We also create an arrow from
a database granule representing R to A.

5. Let M be a module representing a relation R. Let Ay, ..., A, be default
granules of M and suppose that A; corresponds to a default d;. Assume
further that Ry,..., Ry are all the relation symbols occurring in the pre-
requisites of dy,...,d,. For each 1 < i < k, we create an arrow from
a database granule representing R; to M and, an arrow from a module
(or independent default granule if it exists) representing R;. We also cre-
ate an arrow from a database granule representing R to M.

6. For each default granule (dependent or not) we now assign the methods
it will employ. Assume that the granule represents a default of the form
Iy Ao Ay, 2 L)1, where n > 0, and suppose that Ry,...,R,, R are the re-
lation symbols occurring inly, ..., Iy, 1, respectively. First of all, there are
two methods, namely Ap.RT and A,.R™, where Ay, is the database gran-
ule responsible for the relation R. These methods, which will be referred to
as database methods, are placed in the positive and negative parts of the
diagram, respectively. In addition, there is one method corresponding to
the default represented by the granule. This method, referred to as a de-
fault method, is placed in the positive part of the granule’s diagram if I is
a positive literal and in the negative part, otherwise. The default method
is constructed as follows.

a) Suppose first that none of Ry, ..., Ry is represented either by a default
module or by an independent default granule. Then the default method

s given by
AL Xa N ONAL X NAKX, (10.9)
where Ai,...,An, A are database granules responsible for Ri,...,

R,., R, respectively, each X; is R;* (if I; is positive) or Ry~ (if 1;
is negative) and X is R® (if I is positive) or R® (if 1 is negative).

b) Suppose now that at least one of Ry,..., R, is represented by a de-
fault module or by an independent default granule. Let R;,...R; be
all relations from Ry, ..., R, that are represented by default modules
(or independent default granules) and suppose that M;, ..., M; are
the corresponding modules (or independent default granules). Then
the default method is (10.9) with A;, ..., A; replaced by M;, ..., M;,
respectively. O

The set of rules corresponding to a diagram of a default theory is specified
using CAKE’s standard methodology see Chapter 9, Section 9.5.3). We also
use the standard voting policy to resolve conflicts, i.e., adjudicating granules
are not included in default modules.

The following example shows that the rules attached to diagrams of normal
default theories are not always stratified.
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Fig. 10.6. Diagram corresponding to the theory of Example 10.2.2.

Ezample 10.2.2. Consider the theory T = (W, D), where W = (j and

b {Q(m)zP(m) R(x) : ~P(z) P(z):Q(x) S<w>:ﬁc2<x>}.

Pz) ' =P ' Q) = -Q)

The diagram of this theory is shown in Figure 10.6. The set of rules attached

to the diagram is:

A3.Q%(n)

[A2.P™(z) V (A;.RT(2) A =A9.PT(2))] — A5.P ()
Ay . Pt (z) — A5.PT ()

Ag. P~ (z) — Ae.P (x)
[A9.PT(2) V (N.Q1(z) A —=A9.P™ (7))] — Ag.PT ()
A3.Q" (z) — A7.Q™ (2)

[A3.Q7 () V (M.PT(2) A =A3.Q (2))] — A7.Q7 (2)
A3.Q7 () — As.Q™ (2)

T

[A43.Q7 () V (A48 () A =43.Q7 (2))] — As.QT (x)

[A5.P(z) V Ag.P~ (x)] A =[A5.PT (2) V Ag.PT(z)] — M.P~(x)
[A5.PT(x) V Ag. Pt (2)] A =[A5.P™ (z) V Ag.P™ (2)] — M.PT (1)
[A7.Q7 () V A5.Q ()] A =[A7.QT (2) V A3.Q ™ (2)] — N.Q™ (2)
[47.QF (z) V A3.QT (2)] A =[A7.Q7 (2) V A3.Q ™ (7)] — N.QT ().
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It can easily be observed that the above rules are not stratified. O

In what follows, we mainly deal with stratified default theories as defined
below. However, non-stratified default theories will be briefly discussed in
Section 10.6.

Definition 10.2.3. By a stratified default theory (normal or not) we under-
stand a theory whose CAKE diagram leads to a stratified set of rules. O

The following definition of provability will be used shortly.

Definition 10.2.4. Let T be a stratified normal default theory and suppose
that R is the set of rules corresponding to the diagram of T. Let B be the
conjunction of the rules’ bodies from R and assume that Rq,..., Ry are all
relation symbols occurring in the heads of the rules. Consider the fixpoint
expression given by

LFPR,,...,R..B. (10.23)

A ground literal of the form P(¢) (respectively ~P(¢)) is said to be provable
in T if and only if T satisfies the R;-coordinate of (10.23), R; is of the form
A.PT (respectively A.P~ ) and A is the name associated with a database gran-
ule, an independent default granule or a default module. O

The central concept of default logic is that of an extension of a default theory.
In rough default logic this notion can be defined as follows.

Definition 10.2.5. Let T' be a stratified normal default theory. An extension
of T is the set of all ground literals which are provable in T . m

In view of earlier examples, one may suspect that a ground literal [(¢) belongs
to an extension of a stratified normal default theory T if and only if (%) is
a member of every extension of T" in Reiter’s default logic. However, as the
next example shows, this is not always the case.

Ezample 10.2.6. Consider the theory T' = (W, D), where

W ={Q(n), R(n)}

D {Q(x) : P(x) R(z):-P(x) P(z):V(z) —-Px): V(:c)}
P(x) ' P T V(@) V() '

This is an extended version of the standard “Nixon” diamond theory where R,
P, Q, V, n denote Republican, Pacifist, Quaker, Voter and Nixon, respec-
tively. The CAKE diagram corresponding to the theory T is shown in Figure
10.7.
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Fig. 10.7. Diagram corresponding to the theory of Example 10.2.6.

In Reiter’s default logic T has two extensions, E; and Fs, given by

Ey = Cn({Q(n), R(n), V(n), P(n)})
Ey = Cn({Q(n), R(n), V(n), =P(n)}).

Note that the literal V(n) is a member of both F; and Es>. However, in rough
default logic the literal V(n) does not belong to the extension. To see this,
consider the set of rules associated with the diagram of the theory T

A1.Q1(n)

As.RT(n)

{A3.P~ () V [A2.R" (2) A =A3.PT (2)]} — As5.P ()
A3.Pt(z) — A5.PT ()

As.P™(x) — Ag.P™ ()

{A45.PT(2) V[A1.QT (z) A =A3.P~ (2)]} — Ag.PT(2)

Ay V7 (x) = A7V (2)

{A4 V(@) VIM.P™(2) A=AV (3)]} — A7V (2)

Ay V= (x) = Ag. V™ (2)

{A,.VH(z) vV [M.PY(z) A=AV (2)]} — As. VT (2)

[A5.P () V Ag.P~ (x)] A =[A5.PT (z) V Ag.PT(2)] — M. P~ ()
[A5.P1(x) V Ag.PT (2)] A =[A5.P~ (z) V Ag.P~ ()] — M. P"(z)
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[A7.V 7 (z) V Ag.V ™ (2)] A =[A7.V T (z) V Ag. VT (z)] — NV~ (z)
[A7.VT(z) vV Ag. V()] A =[A7.V " (z) V Ag.V ™ (z)] — NV T ().

The last four rules represent the standard voting mechanism used by the
modules M and N.

The above set of rules is clearly stratified.

The relations occurring in the heads of the above rules are defined by the
following fixpoint expression:

LFP X B, (10.24)

where X is the tuple 141.62—"_,142f{—"_,145.P_,1‘15.P—"_7146.1:)_,1416.f)—"_,147.‘/7_7
A7 VT Ay V= Ay VT M.P~,M.PT,N.V~,N.V* and B is the conjunction
of all the rules’ bodies.

The computation of the relations defined by the formula (10.24) is given below.

{J
{A41.Q7(n), A2.R"(n)}
{Al.Q+(n), AQ.R+(I’I), A5.P7(n), A6.P+(n)}.

Now, it is immediately seen that n does not satisfy the N.V*-coordinate of
(10.24). Accordingly, V'(n) is not provable in the theory T and hence V' (n) does
not belong to the extension of T'. This result might seem a bit counterintuitive
in the framework of classical two-valued logic (no matter whether P(z) or
—P(z) holds, V(z) should be concluded). However, here we deal with three-
valued logic and P(x) might additionally be UNKNOWN. In this context the
result makes perfect sense. O

The above examples should provide some intuitions as to how one models and
uses normal default theories in CAKE. The crucial observation is that defaults
whose consequents refer to the same relation symbol are grouped in a module.
In contrast to Reiter’s logic, where these defaults can interact individually, in
this formalism the interaction is achieved via modules.

The next two results follow straightforwardly.

Theorem 10.2.7. In rough default logic every stratified normal default theory
has one extension. O

Theorem 10.2.8. In rough default logic every stratified normal default theory
with a consistent set of axioms has a consistent extension. O

Observe that the property of semi-monotonicity generally does not hold in
rough default logic. To see this, consider the normal theory
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T <{@<n>,R<n>},{W}>.

The extension of this theory is E = {Q(n), R(n), P(n)}.

R(z) : =P(x)

, the extension of the expanded
P(x)

Now, if we add a new default

theory is E' = {Q(n), R(n)}.

10.3 Default Logic with Strong Prerequisites

Both standard default logic and the approach introduced in section 10.2 lack
tools to distinguish between facts known to be true, i.e., derivable from ax-
ioms, and those believed to be true, i.e., derivable by applying defaults. In
consequence, both these formalisms are unable to properly deal with many
practically occurring settings. The next example will help to illustrate this.

Ay H(x) As : M(z)

B Ay H™ As. M~

+ Ao HT + As. M™
Al.PJr/\AQ.fIEB A4.I‘IJr /\143.]\46B

Fig. 10.8. Diagram corresponding to the theory of Example 10.3.1.

Ezxample 10.3.1. Suppose we are given the following facts:

John is a person.
Normally, a person is honest.
Normally, a person known to be honest can be safely lent money.
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Given these facts, we are prepared to believe that John is honest, but we do
not want to infer that he can be safely lent money. The reason, of course, is
that John’s honesty is a default conclusion rather, than an iron-clad fact.

This commonsense theory cannot be properly formalized according to the
intuitions stated above in the framework of default logic introduced in sec-
tion 10.2. One can use the following default theory T given by

W= {P()} D{P(x):H(m) H(x)M(x)}’

H(z) = M)

where P, H and M and j stand for “Person,” “Honest,” “Can be safely lent
money” and “John,” respectively. In Reiter’s default logic M(j) is, in fact,
provable. No distinction is made between H(j) as a fact and H(j) inferred by
default.

The CAKE diagram for theory 7T is provided in Figure 10.8.

It is easily checked that, contrary to our intuition, the literal M (j) is a member
of the extension of T'.

Fortunately, the CAKE method provides us with a simple way to block the
unwanted conclusion which also makes intuitive sense. All that has to be done
is to remove the arrow from A4 to As, create an additional arrow from Ao to As
and replace the method A4. HT A A3.M®, assigned to As, by Ag. HT AN A3.M®
(see Figure 10.9).

In this representation, the second default is inapplicable for John because his
honesty cannot be inferred directly from the database. m

We now formalize the above idea in a systematic manner by introducing a new
variant of rough default logic. This variant, called rough default logic with
strong prerequisites (SP rough default logic, for short), explicitly distinguishes
between facts known to be true and those believed to be true. Facts known
to be true are simply those atomic facts that are represented explicitly in an
assumed extensional database.

We extend the language of rough default logic by adding a new operator K
which can be applied to literals. A formula of the form KI is to be read as “I
is known to be true.”!3

As stated previously, we limit ourselves to disjunction-free default theories.
However, in SP rough default logic any conjunct occurring in the prerequisite
of a default can be preceded by the operator K. More specifically, we consider
defaults of the form

BiA---ABy, :1
)

13 Tt should be emphasized that the K operator we use here has the flavor of syntactic
sugar rather than of knowledge operators commonly employed in modal logics.
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As: H(z) As : M(x)

h As.H™ A3 M~

+ 142.}[+ + A3.M+
Al.P+ /\AQ.H® A2.H+ /\A3,]\4€B

Fig. 10.9. Modified diagram corresponding to the theory of Example 10.3.1.

where each B; is either a literal or a literal preceded by the operator K and [
is a literal.

The formal difference between rough and Sp rough default logic lies in the
definition of a diagram. In the latter, any conjunct of the form Kl occurring
in the prerequisite of a default must be supported by the axioms of the theory
under consideration, rather than by the consequent of an applied default.

Definition 10.3.2. Let T be a disjunction-free normal default theory of S
rough default logic. A diagram corresponding to T is constructed as before (see
Definition 10.2.1) with points 4, 5 and 6 replaced by:

4. Let A be an independent default granule representing a default d and sup-
pose that the consequent of d contains a relation symbol R. Assume further
that Ry,..., R are all the relation symbols occurring in the prerequisite
of d and let R},... R} be those elements from Ri,..., Ry that are not
preceded by the operator K. For each 1 < i < k, we place an arrow from
a database granule representing R; to A and, for each 1 < i < I, we
place an arrow from a module (or independent default granule if it exists),
representing R; to A. We also place an arrow from a database granule
representing R to A.

5. Let