bookboon.com

Budgeting and Decision Making Exercises II

Larry M. Walther; Christopher J. Skousen

Download free books at bookboon.com

Larry M. Walther \& Christopher J. Skousen

Budgeting and Decision Making Exercises II

Budgeting and Decision Making Exercises II © 2011 Larry M. Walther, Christopher J. Skousen \& Ventus Publishing ApS. All material in this publication is copyrighted, and the exclusive property of Larry M. Walther or his licensors (all rights reserved).
ISBN 978-87-7681-881-4

Contents

Problem 1 6
Worksheet 1 6
Solution 1 7
Problem 2 8
Worksheet 2 8
Solution 2 9
Problem 3 10
Worksheet 3 10
Solution 3 11
Problem 4 12
Worksheet 4 12
Solution 4 13
Problem 5 14
Worksheet 5 15
Solution 5 16

Fascinating lighting offers an infinite spectrum of possibilities: Innovative technologies and new markets provide both opportunities and challenges. An environment in which your expertise is in high demand. Enjoy the supportive working atmosphere within our global group and benefit from international career paths. Implement sustainable ideas in close cooperation with other specialists and contribute to influencing our future. Come and join us in reinventing light every day.

Light is OSRAM

OSRAM SYLVANIA

Problem 6 17
Worksheet 6 18
Solution 6 19
Problem 7 20
Worksheet 7 21
Solution 7 22

EADS unites a leading aircraft manufacturer, the world's largest helicopter supplier, a global leader in space programmes and a worldwide leader in global security solutions and systems to form Europe's largest defence and aerospace group. More than 140,000 people work at Airbus, Astrium, Cassidian and Eurocopter, in 90 locations globally, to deliver some of the industry's most exciting projects.

An EADS internship offers the chance to use your theoretical knowledge and apply it first-hand to real situations and assignments during your studies. Given a high level of responsibility, plenty of
learning and development opportunities, and all the support you need, you will tackle interesting challenges on state-of-the-art products.

We welcome more than 5,000 interns every year across disciplines ranging from engineering, IT, procurement and finance, to strategy, customer support, marketing and sales. Positions are available in France, Germany, Spain and the UK.

To find out more and apply, visit www.jobs.eads.com. You can also find out more on our EADS Careers Facebook page.

Problem 1

Bryan Singler is evaluating results for three separate business segments under his control. Selected financial information for each segment follows:

Segment A
Segment B
Segment C

	Sales	Operating Income		Average Assets	
\$	3,600,000	\$	250,000	\$	3,750,000
	6,300,000		1,125,000		10,800,000
	2,880,000		400,000		7,980,000

Rank order the three segments based on "margin," "turnover," and "return on investment." How is it possible that the rankings differ based on which evaluative model is used?

Worksheet 1

	Sales	Operating Income	Average Assets
Segment A	\$ 3,600,000	\$ 250,000	\$ 3,750,000
Segment B	6,300,000	1,125,000	10,800,000
Segment C	2,880,000	400,000	7,980,000
Margin (operating income \div sales)			
	Segment A	Segment B	Segment C

Turnover (sales \div average assets)

> Segment A Segment B Segment C

ROI (operating income \div average assets)
$\underline{\text { Segment } \mathrm{A}} \xrightarrow{\text { Segment } \mathrm{B}}$ Segment C

Solution 1

	Sales	Operating Income	Average Assets
Segment A	\$ 3,600,000	\$ 250,000	\$ 3,750,000
Segment B	6,300,000	1,125,000	10,800,000
Segment C	2,880,000	400,000	7,980,000
Margin (operating income \div sales)			
	Segment A	Segment B	Segment C
	0.0694	0.1786	0.1389
	3rd	1st	2nd
Turnover (sales \div average assets)			
	Segment A	Segment B	Segment C
	0.9600	0.5833	0.3609
	1st	2nd	3rd
ROI (operating income \div average assets)			
	Segment A	Segment B	Segment C
	0.0667	0.1042	0.0501
	2nd	1st	3rd

This problem illustrates the importance of comprehensive analysis. For example, the company with the best turnover also has the worst margin and second best ROI. Depending on the variable of focus, the manager could achieve different rankings of the various segments.

Problem 2

University Inn's most recent monthly expense analysis report revealed significant cost overruns. The manager was asked to explain the deviations. Below is the "budget v . actual" expense report for the month in question.

University Inn Budget v. Actual Expense Report For the Month Ending October 31, 20X8						
	Actual		Budget		Variance	
Utilities	\$	81,800	\$	72,000	\$	$(9,800)$
Laundry		32,890		28,800		$(4,090)$
Food service		63,000		56,000		$(7,000)$
Rent/taxes		100,800		100,800		
Staff wages		88,700		85,000		$(3,700)$
Management salaries		70,000		72,000		2,000
Water		24,024		16,000		$(8,024)$
Maintenance		28,090		24,000		$(4,090)$
	\$	489,304	\$	454,600	\$	$(34,704)$

The Inn has observed that utilities, water, food service, staff wages, and laundry costs all vary with activity. The other costs are fixed. The budget reflected above was based upon an assumed 80% occupancy rate. The university's football team was on a winning streak and numerous alumni were returning to campus in October, resulting in a 92% occupancy rate during the month.

Prepare a ""flexible budget"" based upon a 92% occupancy rate, and identify whether the Inn is being efficienctly or inefficiently run. Comment on specific costs, and note why a flexible budget can improve performance evaluations.

Worksheet 2

University Inn Budget v. Actual Expense Report For the Month Ending October 31, 20X8						
	Actual		Budget		Variance	
Utilities	\$	81,800	\$	-	\$	-
Laundry		32,890		-		-
Food service		63,000		-		-
Rent/taxes		100,800		-		-
Staff wages		88,700		-		-
Management salaries		70,000		-		-
Water		24,024		-		-
Maintenance		28,090		-		-
	\$	489,304	\$	-	\$	

Solution 2

University Inn Budget v. Actual Expense Report For the Month Ending October 31, 20X8						
Utilities	Actual		Budget		Variance	
	\$	81,800	\$	82,800	\$	1,000
Laundry		32,890		33,120		230
Food service		63,000		64,400		1,400
Rent/taxes		100,800		100,800		
Staff wages		88,700		97,750		9,050
Management salaries		70,000		72,000		2,000
Water		24,024		18,400		$(5,624)$
Maintenance		28,090		24,000		$(4,090)$
	\$	489,304	\$	493,270	\$	3,966

* These variable costs are $115 \%(92 / 80)$ of the amounts included in the static budget.

With the exception of water usage and maintenance costs, each category reflects better-than-budgeted financial performance. The flexible budget reveals that most of the "cost overruns" are attributable to increases in costs due to increases in volume. The manager should probably be congratulated for cost control rather than criticized for cost overruns.

Download free eBooks at bookboon.com

Problem 3

Head Stone produces granite grave stones. These monuments are etched with the name of the deceased and other information. Each monument typically requires 300 pounds of granite. The standard cost for granite is estimated at $\$ 150$ per ton (2,000 pounds). During a recent month, 200 monuments were constructed. The company purchased and used 25 tons of material at a cost of $\$ 175$ per ton.

Compute the total variance for materials, and determine how much is related to price and how much is related to quantity.

Worksheet 3

Materials variances:		
Actual quantity (tons)		
Actual price	\$	-
Actual cost of direct materials	\$	-
Output - number of monuments		-
Standard quantity of input per monument (15\% of a ton)		-
Standard quantity of input to achieve output (tons)		-
Standard price per unit of input	\$	-
Standard cost of direct materials	\$	-
Total materials variance (standard cost v. actual cost)	\$	-
Materials price variance:		
Standard price	\$	-
Actual price		-
	\$	-
Actual quantity		-
Unfavorable materials price variance	\$	-
Materials quantity variance:		
Standard quantity		-
Actual quantity		-
		-
Standard price	\$	-
Favorable materials quantity variance	\$	-

Solution 3

Materials variances:		
Actual quantity (tons)		25
Actual price	X	\$175
Actual cost of direct materials	\$	4,375
Output - number of monuments		200
Standard quantity of input per monument (15% of a ton)	x	. 15
Standard quantity of input to achieve output (tons)		30
Standard price per unit of input	X	\$150
Standard cost of direct materials	\$	4,500
Total materials variance (standard cost v. actual cost)	\$	125
Materials price variance:		
Standard price	\$	150
Actual price	\$	(175)
	\$	(25)
Actual quantity	X	25
Unfavorable materials price variance	\$	(625)
Materials quantity variance:		
Standard quantity		30
Actual quantity		(25)
		5
Standard price	X	\$150
Favorable materials quantity variance	\$	750

Problem 4

Parent Golf produces handmade golf clubs. The process is labor intensive. The speed at which a club can be built depends on the skill level of the individual worker. Management has established a standard of 4 labor hours per club. The standard wage rate is $\$ 11$ per hour. During a recent month, 1,500 custom clubs were produced. Management was pleased that only 5,100 labor hours were worked, however total wages amounted to $\$ 81,600$.

Compute the total variance for labor, and determine how much is related to rate and efficiency components.

Worksheet 4

Labor variances:
Actual hours of labor
Actual rate
Actual cost of direct labor

Output - number of clubs		-
Standard hours per club	$\$$	-
Standard hours to achieve output		-
Standard rate per hour	$\$$	-
Standard cost of direct labor	\$	
Total labor variance (standard cost v. actual cost)	$\$$	

Solution 4

Labor variances:		
Actual hours of labor		5,100
Actual rate	X	\$16
Actual cost of direct labor	\$	81,600
Output - number of clubs		1,500
Standard hours per club	X	4
Standard hours to achieve output		6,000
Standard rate per hour	X	\$11
Standard cost of direct labor	\$	66,000
Total labor variance (standard cost v. actual cost)	\$	$(15,600)$
Labor rate variance:		
Standard rate	\$	11
Actual rate		(16)
	\$	(5)
Actual hours	X	5,100
Unfavorable labor rate variance	\$	$(25,500)$
Labor efficiency variance:		
Standard hours		6,000
Actual hours		$(5,100)$
		900
Standard rate	X	\$11
Favorable labor efficiency variance	\$	9,900

Problem 5

At the beginning of the year, Fort Worth Manufacturing estimated that its annual variable factory overhead would be $\$ 923,400$, and its fixed factory overhead would be $\$ 1,798,200$. The company's payroll consisted of 27 direct labor employees, and each was expected to work 1,800 direct labor hours. Fort Worth applies overhead to products based on direct labor hours. Each finished unit produced by the company is anticipated to require four direct labor hours.

Actual production and cost information for the year is as follows:

Total units produced		12,000
Actual variable overhead	$\$$	910,000
Actual fixed overhead	$\$ 1,750,000$	
Actual labor hours		45,500

a) Compute the variable overhead variances.
b) Compute the fixed overhead variances.

Download free eBooks at bookboon.com

Worksheet 5

(a) Variable overhead variances

Actual cost of variable overhead	S	-
Standard hours		-
Standard rate per hour	\$	-
Standard cost of variable overhead	\$	-
Actual use at standard cost	\$	-
Total favorable variable overhead variance	S	-
Variable overhead spending variance	\$	-
Variable overhead efficiency variance	\$	-
(b) Fixed overhead variances		
Actual cost of fixed overhead	\$	-
Standard hours		-
Standard rate per hour	\$	-
Standard cost of variable overhead	\$	-
Budgeted fixed overhead	\$	-
Total unfavorable fixed overhead variance	\$	-
Fixed overhead spending variance	\$	-
Fixed overhead volume variance	\$	-

Solution 5

(a) Variable overhead variances

Actual cost of variable overhead	\$	910,000
Standard hours (12,000 units X 4 hours)		48,000
Standard rate per hour ((\$923,400/(27 X 1,800 hours))	X	\$19
Standard cost of variable overhead	\$	912,000
Actual use at standard cost (45,500 X \$19)	\$	864,500
Total favorable variable overhead variance (\$912,000-\$910,000)	\$	2,000
Variable overhead spending variance (\$864,500-\$910,000)	\$	45,500
Variable overhead efficiency variance (\$912,000-\$864,500)	\$	43,500
(b) Fixed overhead variances		
Actual cost of fixed overhead	\$	1,750,000
Standard hours (12,000 units X 4 hours)		48,000
Standard rate per hour ((\$1,798,200/(15 X 1,800 hours))	X	\$37
Standard cost of variable overhead	\$	1,776,000
Budgeted fixed overhead	\$	1,798,200
Total unfavorable fixed overhead variance (\$1,776,000-\$1,750,000)	\$	26,000
Fixed overhead spending variance (\$1,798,200-\$1,750,000)	\$	48,200
Fixed overhead volume variance (\$1,776,000-\$1,798,200)	\$	$(22,200)$

Problem 6

Freddie Ishola Incorporated uses a standard cost system, and calculates and records variances related to direct materials and direct labor. The following information was available for March:

| Purchases of raw materials - actual cost | 273,100 |
| :--- | :--- | :--- |
| Purchases of raw materials - standard cost | 286,755 |

All of the purchased raw material was transferred to work in process, and the materials quantity variance was unfavorable by $\$ 25,000$.

$$
\begin{array}{lr}
\text { Direct labor - actual cost } & \$ 267,300 \\
\text { Direct labor - standard cost for output } & 262,350
\end{array}
$$

The labor efficiency variance was favorable by $\$ 14,000$.
a) Prepare the journal entry that is needed to record the purchase of raw materials at standard price, and the related variance.
b) Prepare the journal entry that is needed to record the transfer of raw materials to production at standard usage rates, and the related unfavorable quantity variance.
c) Prepare the journal entry that is needed to record the increase in work in process for the standard direct labor costs, and record the related rate and efficiency variances.

Worksheet 6

GENERAL JOURNAL	Accounts	Debit	Credit
Date			
	31-Mar		

Download free eBooks at bookboon.com

Solution 6

GENERAL JOURNAL

Date	Accounts	Debit	Credit
31-Mar	Raw Materials Inventory	286,755	
	Materials Price Variance		13,655
	Accounts Payable		273,100
	$\begin{array}{l}\text { To record purchase of raw materials at } \\ \text { standard price and related favorable } \\ \text { variance }\end{array}$		
			261,755

Problem 7

Exercise House manufactures and sells a home exercise kit. The kit is sold via 30-minute televised commercials that run on periodic Saturdays. Below are typical results for a Saturday campaign, assuming 3,750 units were actually sold. However, volume has been known to fluctuate from 3,000 to 4,500 units. Prepare a flexible budget scenario, assuming volumes of $3,000,3,500,4,000$ and 4,500 units. If Exercise House wants to at least cover costs at volumes of 3,500 units and above, what is the minimum selling price per kit?

Exercise House
 Expense Report

For a Typical Campaign Selling 3,750 Units
Variable expenses:

Home exercise kit	$\$$	138,750
Shipping and handling		20,625
Toll-free phone		7,500
Credit card fees	15,000	
Miscellaneous items	28,125	
Total variable expenses	$\$$	210,000
Fixed expenses		
TV commercial	$\$$	112,500
Actors and models		11,250
Studio rental	$\mathbf{3 7 , 5 0 0}$	
Total fixed expenses		161,250

Total expenses
\$ 371,250

Worksheet 7

Exercise House
Flexible Expense Budget/Alternative Scenarios
For a Typical Campaign

Home exercise kit
\$
\$
\$
\$
Shipping and handling
Toll-free phone
Credit card fees
Miscellaneous items
Total variable expenses
Fixed expenses
TV commercial
Actors and models
Studio rental
Total fixed expenses

Total expenses

\qquad - \qquad - \qquad - \qquad

"I studied English for 16 years but... ...I finally learned to speak it in just six lessons" Jane, Chinese architect

ENGLISH OUT THERE

Click to hear me talking before and after my unique course download

Solution 7

Exercise House
Flexible Expense Budget/Alternative Scenarios
For a Typical Campaign

3,000 units		3,500 units		4,000 units		4,500 units	
\$	111,000	\$	129,500	\$	148,000	\$	166,500
	16,500		19,250		22,000		24,750
	6,000		7,000		8,000		9,000
	12,000		14,000		16,000		18,000
	22,500		26,250		30,000		33,750
\$	168,000	\$	196,000	\$	224,000	\$	252,000

ixed expenses
TV commercial
Actors and models
Studio rental
Total fixed expenses

Total expenses

\$	112,500	\$	112,500	\$	112,500	\$	112,500
	11,250		11,250		11,250		11,250
	37,500		37,500		37,500		37,500
\$	161,250	\$	161,250	\$	161,250	\$	161,250
\$	329,250	\$	357,250	\$	385,250	\$	413,250

The variable expenses per unit are determined by dividing the given total variable costs by 3,750 units (e.g., \$138,750/3,750 $=\$ 37$ per unit for the kit, etc.) The per unit values are multiplied times the various outcomes (e.g., \$37 per kit X 3,000 kits $=\$ 111,000$, etc.).

The unit selling price would need to be at least $\$ 102.07$ to breakeven at 3,500 units ($\$ 357,250 / 3,500$ units).

