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Abstract:
The relations between various treatments of the classical linearly damped harmonic oscitlator and its quantization are investigated. In the course

of a historical survey typical features of the problem arc discussed on the basis of Havas' classical Hamultonian and the quantum mechanical
Sissmann-Hasse-Albrecht models as coined by the Minchen/Garching nuclear physics group. It is then shown how by imposing a restriction on the
classical trajectories in order to connect the Hamiltonian with the energy. the time-independent Bateman-Morse-Feshbach-Bopp Hamiltonian leads
to the time-dependent Caldirola~Kanai Hamiltonian. Canonical quantization of either formulation entails a violation of Heisenberg's principle. By
means of a unified treatment of both the clectrical and mechanical semi-infinite transmission line. this defect is related to the disregard of additional
quantum fluctuations that are intrinsically connected with the dissipation. The difficulties of these models are discussed. Then it is proved that the
Bateman dual Hamiltonian is connected to a recently developed complex symplectic formulation by a simple canonical transformation. The
fundamental commutator is still in error. Therefore it is demonstrated how. either separating the dual oscillators according to a modified version of
Bopp's original treatment or reducing classical complex phase space by an integration over the mirror image subspace. a quantum continuity
equation is obtained that leads to Dekker’s master equation following the usual operator algebra. The dissipation induces additional fluctuations.
The same density operator equation is shown to arise in quantum optics in the weak coupling limit. Next, for weak friction, Hassc's pure state
condition is used to derive an equivalent nonfincar but normconserving frictional Schrodinger equation. It involves a particular non-Hermitian
Hamiltonian which, if rewritten in terms of Dekker's complex variables. reveals an elegant extension of the classical Hamilton-Jacobi theory.
Finally, this formalism is used to make contact with Kostin's fluid dynamical Schrodinger-Langevin equation.

1. Introduction

The obviously irreversible, dissipative behaviour of the vast majority of physical phenomena in the
every-day world, in particular when contrasted with the reversible nature of our basic models, has
saddled science with an intriguing and apparently enduring problem. In fact, it was not until the times of
Newton before it was clearly formulated that the fundamental laws of mechanics indeed were of the
reversible type. Dissipation then arises in principle from interactions between the actually observed
system and another one (or more) into which energy flows in an irreversible manner, As it usually turns
out, the details of the structure of the other system (often called the reservoir or bath) are quite
immaterial especially in the weak damping limit. However, the calculations from first principles are
cumbersome and little transparent as a rule, and the ultimate transition from reversibility to irrever-
sibility remains a diflicult problem the solutions of which can often barcly stand a serious critical
examination.

Luckily, it is not so difficult to account for dissipative forces in classical mechanics in a
phenomenological manner, at least not in the Newtonian formulation {1, 2]. Noteworthy examples are
Stokes™ linear frictional force proportional to the velocity », Coulomb’s friction ~uofv [3]. Dirac's
radiation damping ~ & [4], and the viscous force ~V v [5, 6]. The phenomenological approach applicd
to the quantum domain will be the main topic of this article.

Unfortunately, as opposed to the Newtonian (vector) formulation, the situation is much less
comfortable within the framework of the Hamiltonian (scalar) formalism by which theoretical physics
has advanced so much. The deeper reason for this difference can be found in the derivation of the
Lagrange-Hamilton variational formulations from D'Alembert’s principle [1, 2. 7). Apart from the fact
that this derivation can be carried through fruitfully only for systems with holonomic constraints, the
latter principle (which in fact is the dynamical generalization of the static principle of virtual work) is au
fond equivalent to Newtonian mechanics only if the virtual work of the forces of constraint is zero. And
this is clearly not true for friction forces.

The troubles are immediately manifest for one dimensional systems with Hamiltonians that do not
explicitly depend on time, at least if these Hamiltonians are required to represent the physical energy of
the system [8-10]. However. the time-independence of the forces and the auxillary conditions is not
required for the Hamiltonian theory to be valid. Evidently then, one could have resort to in principle
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three alternatives. First, one could proceed to multi-dimensional systems (see e.g. [11. 12]). Second. the
Hamiltonian could be allowed to have an explicit time-dependence (e.g. {13. 14]). Third. one could
attempt Hamiltonians that have no relation to the energy [8. 15]. so-called mathematical Hamiltonians
or merely generators of the motion. Usually, these possibilities (all of which have indeed been discussed
in the literature) are intertwined. In the present text several examples will be encountered in the course
of an attempt to elucidate the relations between quite different historical approaches to the problem of
the classical damped oscillator.

The difficulties with the Hamiltonian description of frictional phenomena become the more prom-
inent at the microscopic quantum level as quantum mechanics is an essentially Hamiltonian theory. Of
course, and with an even deeper physical significance than in classical mechanics, the fundamental
quantum dynamical laws are of the reversible type. A closed system. say the universe. is supposedly
described by a Schrodinger equation. The system’s dynamics is governed by the Hamiltonian that
represents its total energy. and which is a constant of the motion. Principally. as in classical mechanics,
dissipation is merely observed for open systems, being only a part of the universe. The dissipation arises
from the subsystem’s interactions with the rest of the universe, again often referred to as the reservoir
or bath, whether it be thermal or not. Confining oneselves to the subsystem of interest. the explicit
microscopic reservoir variables are eliminated from the description by means of projection operator
techniques or tracing procedures (sce e.g. [16-25]). Usually this extracts from the Liouville-von
Neumann equation a (generalized, or Nakajima-Zwanzig) master equation for the reduced density
operator. That is, in effect one reduces the considered phase space by means of an appropriate
integration procedure over the irrelevant actual dynamical variables of the reservoir. As a result the
reservoir can only be recognized in the description through a few paramecters, such as the friction
constant. These features are familiar, for example, from the theory of Nyquist’s formulae for the
thermal noise in an clectric resistor [6, 26-30]. Once more. the essential point is the observation that the
detailed microscopic structure of the bath is mostly irrelevant (see also ¢.g. [31-33]).

The latter recognition has given impetus to the search for a so-called mesoscopic description of
reduced systems [34]. One might approach this idca either philosophically or technically from two
points of view. First, physics has often advanced by looking for the simplest possible description that
can be considered as comprehensible from an intelligent anthropomorphic position, and that conforms
to observation. Why should one carry along part of the way a tremendous amount of information that in
fact will be eliminated in due course? Actually, what is the physical significance of such effectively
hidden information? Of course, the prime significance could very well be the intellectually satisfving
achicvement of unification, but otherwise the answers to these questions are definitely nontrivial (see
also [35-37]). Second, the ab-initio calculations are not only cumbersome and the approximations
involved at the various stages often hard to control, but they are also afflicted with particular problems
that have not yet been resolved entirely satisfactory. As a typical example serve the divergencices
occurring in certain correlation functions (e.g. {38, 39] and section 5 of the present text), which may
have either physical or mathematical origins (e.g. {40—42}). In any case, these deficiencies seem to be
intimately connected with the infinite number of degrees of freedom which the reservoir must possess in
order for the dissipated encrgy never to return to the considered subsystem.

The existence of a regime where the concept of phenomenological friction applies is casily conceived
in the realm of classical physics where the particle under investigation is much more massive than the
constituents of the reservoir (see also [43]). Also in Brownian motion the concept is certainly legitimate,
albeit that in general there exist at this scale in between macroscopic and purely microscopic
phenomena so-called fluctuation—dissipation relations (or gencralized Einstein relations: see e.g.
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[6.21, 24, 28, 30, 34-38. 44-64]). The earlier mentioned Nyquist relation is a typical example. In classical
thermal systems these relations are of the general type

2/\kBT=Sf(O). (1.1)

where S¢(0) is the dc spectral density of the fluctuations and where A is the relaxation constant. By way
of simple illustration. consider the Langevin equations for a particle of unit mass [21. 34, 37, 38. 56
60, 65-67]:

i=p. (1.2)
)= —Ap + £(1). (1.3)

The noise term, which here is a real physical fluctuating Newtonian force, is assumed to represent
Gaussian white noise, with

EEN=0:  (EE+7)E(EN=2D5(7). (1.4)

This generates a time-homogeneous Wiener process [29, 48, 56, 62, 68-76]; D is the diffusion coeflicient.
The spectral density of the fluctuations in this case reads

Se(w)=2 f (E(r) EO) cos wr dr = 2D | (1.5)

so that S¢(0) = 2D. Further, the formal solution for the velocity is

:

p)=e™pO)+ [ () dr (16

[1]

Rather than treating the adiabatic limit A - % (so that p(t) = £(¢)/A. and where the problem is readily
reduced to one of position only, leading to the common diffusion equation [37, 44, 68, 77-84]), we
calculate the velocity autocorrelation function directly from (1.6). By means of (1.4) one obtains in the
long time limit ¢ - x,

p(t+7)p(t)y=(D/A)e™ . (L7)
Thus one finds for the mean Kinetic energy

E=3p"y=DJ2A. (1.8)
On the other hand, we know from different reasoning (e.g. [28,30]) that in thermal equilibrium the

equipartition law yields E = ikgT per particle per degree of freedom. Combining these results, one
indeed arrives at the relation (1.1).
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In the classical regime, where kg T > fiw. kg T is the average energy per unit bandwidth. According to
quantum theory (see e.g. (38, 41, 50, 57. 85-94]). when kgT = hw. this quantity should be replaced by
Planck’s function,

P(w)= (N, + Dhw, (1.9)

N, = (exp(hwikgT)~1)"", (1.10)
which can also be cast in the form

P(w) = hw cothGhw/keT). (1.11)

These formulae present the energy available from the reservoir per unit bandwidth. In connection with
the Brownian motion, (1.2) and (1.3), the precise significance of the frequencies w is not so obvious as
there is no resonance phenomenon involved here at some characteristic frequency, in contrast with the
harmonic oscillator case. These questions will be further touched upon in the sequel of this paper. For
the moment being,. it is important to observe that in the pure quantum regime, where kyT <€ hw, the
so-called vacuum or zero-point fluctuations will become the prominent source of noise. In that limit the
fluctuation-dissipation relation (1.1) should be changed into

Mw = S,(0). (1.12)

Recently, van der Ziel and coworkers [94] have seriously considered the possibility of an explicit
experimental test of the “thermal™ zero-point energy at easily achievable temperatures (7 = 100 K) and
frequencies (w/2m = 100 GHz). Evidently, the general expectation is that a connection must exist
between dissipation and quantal vacuum fluctuations. As, according to the general theory of the
hicrarchical elimination of dynamical variables (e.g. [19, 21, 23, 35-37, 57, 58)). an increased reduction of
phase space usually introduces additional fluctuations in the remaining variables, one should not be
surprised if the damped subsystem will be endowed with zero-point noise of greater intensity than that
of the free universe (per unit bandwidth).

Aside from some of the historic examples mentioned in the beginning of this section (among which
Dirac’s is a most interesting one; see also [95-98]), the relevance of frictional forces in the microscopic
domain has become especially apparent in the fields of nuclear fission (the fluid dynamical liquid drop
model; see e.g. [99, 100]), giant resonances (e.g. [101]), and heavy-ion collisions (e.g. [102-107]). For an
extensive review, in particular of the latter subject, see e.g. [108, 109]. Further, one obviously expects
the quantum fluctuations to dominate over the in essence classical thermal fluctuations in particular at
very low temperatures. Therefore, in crynogenic investigations (say below 1 mK) using NMR-techniques
(at e.g. w/27 =20 MHz) and doing, for instance, ultrasound attenuation measurements (say between 10
and 100 MHz), the primary noise sources become quantum mechanical, provided of course that the
electronics of the measuring device is sensitive enough and has sufficiently low noise levels. For
example, squid circuits have been proposed to test theoretical predictions for damped quantum systems
[110] (see also {111, 112]).

Of course, questions can be raised concerning the very existence of a microscopic regime where the
mass of the particle under investigation is of the same order as that of the constituents of the interacting
reservoir and where the notion of classical friction has any meaning. Nonetheless, in view of the above
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given considerations and examples, such a regime will be tacitly presumed in the sequel. Thus, in close
analogy with Brownian motion, we shall consider dissipative systems where the damping itself is
described macroscopically from the outset by a phenomenological friction parameter. but where the
associated microscopic quantum fluctuations can not be ignored. It is precisely for such an approach
that the term mesoscopic has been coined within the framework of classical stochastic processes [34]. In
view of the actual (and. perhaps, unexpected) complexity of the problem we shall confine ourselves to
the simple linearly damped harmonic oscillator in one dimension, and often only at zero temperature.

2. Historical survey

One of the earliest investigations to date has been presented by Bateman in 1931 within a purely
classical context [10, 11]. Bateman discussed two different Hamiltonians (or, to be historically correct, at
least the associated Lagrangians). One Hamiltonian was time-independent and describes the damped
oscillator by virtue of the addition of the so-called mirror image system (also typified sometimes as the
dual, adjoint or complementary system). The energy dissipated by the actual oscillator of interest is
absorbed at the same pace by this artificial device that takes the place here of the unknown physical
reservoir. Therefore the energy of the total system is a constant of the motion, as of course is the
Hamiltonian. However, the Hamiltonian represents the energy only for a restricted set of dynamical
solutions, a feature that is relevant to quantum mechanics as will be seen furtheron. The Bateman dual
Hamiltonian has been rediscovered subsequently by Morse and Feshbach [113], and Bopp [114]. The
former treated the model only classically, while the latter also considered its quantization. Apparently
independent of Bopp, a rather detailed alternative quantum mechanical treatment has been given by
Feshbach and Tikochinsky at the occasion of Rabi's birthday in 1977 {115, 116].

The other Bateman Hamiltonian was time-dependent, although it turns out to be a constant of the
secular motion (i.e. averaged over an oscillator period). Therefore, it can in effect not be considered as
the energy representative of a dissipating system. This peculiarity was most clearly noted by Ray [10]. If
viewed as a classical mechanical Hamiltonian, it rather describes a system with time-dependent mass.
An initially microscopic mass then grows exponentially to macroscopic figures, which explains the
ultimate killing of vacuum fluctuations (i.e. of Heisenberg's uncertainty principle) in the usual quantum
theory of this model. This time-dependent Hamiltonian has been, so to speak, reinvented by several
authors, and is commonly known under the name of Caldirola and Kanai [13, 14]. Its quantum
mechanics has been explored for instance in [12, 96, 116-138]. Related work may be found in [139-155],
while for other surveys reference is made to Hasse [108, 109] and Messer [156].

Of particular interest, both historically and in relation to the present text, is the work of Stevens
{120, 121]. In his 1958-report Stevens in fact reinvents and considers the quantization of the Bateman-
Caldirola-Kanai Hamiltonian. Physically, he approaches the problem from the point of view of tuned
electric circuits. In the paper cowritten with Josephson [121], the coupling of spin systems to dissipative
cavity modes has been studied. Considerable misgivings about the validity of the usual quantization of
the Bateman-Caldirola-Kanai Hamiltonian, expressed by M.H.L. Pryce in private conversations,
prompted Stevens to investigate the behaviour of a resonant circuit (as the subsystem) coupled to a
semi-infinite electric transmission line (as the reservoir) in more detail [157, 158]. In this manner he
succeeded in making contact between the conservative Hamiltonian dynamics of the entire system and
the time-dependent Hamiltonian description of the effectively damped oscillator (the subsystem) on its
own. In brief, the conclusion was that the latter description is valid quantum mechanically only for the
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oscillator variables including the noise from the transmission line. The more profound reason is, of
course (one can easily say a posteriori), that quantum mechanically absorption and emission processes
(of the oscillators in the bath) can not be really separated [159-167]. It should be remarked that Stevens’
model is quite akin to works of Ford. Kac and Mazur [38]. Ullersma [53] and others (e.g. [16-23, 41, 42,
63. 168-179]). A seemingly different, though au fond closely related treatment of a mechanical model
(the semi-infinite string) can be found in [39]. In the present paper it will be attempted to outline these
models in as unified a manner as possible. At this moment it is further worth to note that the actual
noise from the (thermal) quantum mechanical bath is by no means white. Therefore, subsequent
attempts to remedy the Caldirola-Kanai model in its violation of quantum principles (in particular the
earlier mentioned decay of the ground state, i.e. the violation of the fundamental commutator) by
means of the ad-hoc introduction of a simple delta-correlated c-number Langevin noise source like (1.4)
seems to be lacking a microscopic fundament [180, 181] (see also [59. 156, 182-188]). On the other hand,
as noted earlier, the above reservoir models suffer from certain defects (the infinities) that give them in
some sense the characteristics of quicksand, which is worth remembering.

In 1957 Havas [8] considered the range of application of the classical Langrange formalism in
considerable detail, presenting a further investigation of Helmholtz's condition [189]. By means of
integrating factors new formal mathematical Lagrangians and Hamiltonians may be obtained without
introducing additional dynamical variables (see also [15, 190]). The typical example for the damped
harmonic oscillator, as given by Havas, reads

H = In x - In cos(wxp,) — Axp, . .1

where p, is the canonical momentum (and which here is quite different from the mechanical momentum
p = x). Havas’ Hamiltonian (2.1) generates the equations of motion

x=H, =lwtglwxp)-Alx, (2.2)

Pe=-H,=~-[wtglwp)-Alp, - l/x. (2.3)
Combining these equations in order to eliminate the tangent readily gives

xp,=-t+c, (2.4)
¢ being an integration constant. Then (2.2) is casily integrated:

x()=ae ™ cos(wt +b), (2.5)
with b = —wc, and where a is a second constant of integration. Indeed. (2.5) preciscly represents the
motion of the damped harmonic oscillator. However, as is obviously the case with (2.1), not any of these
formally equivalent Hamiltonians allows for its interpretation as the system's energy, usually not even in
the limit of vanishing friction A = (. Thus, the choice of coordinates in quantizable systems appears to
be a nontrivial matter (see also {119,120, 184, 191]). This rather crucial point has been observed by
Havas, was noted in passing by Stevens [120, 157] and is given further attention in recent explorations

by Cawley [192-194]. The present author has developed a formalism, using complex dynamical variables
instead of the real ones, wherein this aspect was accounted for, at least in the limit of zero damping [24,
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59, 182-184, 190, 195. 196]. and that will be further reviewed in the course of the present article. At this
place is suffices to mention its connection with a complex symplectic formulation that has been
proposed recently [197].

In 1972 Kostin proposed a nonlinear Schrodinger equation to describe one dimensional dissipative
systems [198, 199]. The nonlinearity spoils. of course, the superposition principle. On the other hand. the
effective Hamiltonian in this approach does represent the actual energy of the system. The Kostin-
Schrodinger equation. originally derived from a Heisenberg-Langevin noise-operator equation (see also
e.g. [21. 24, 57-59, 92, 134, 184, 200]). has been revisited from the closely interrelated points of view of
the fluid dynamical interpretation of wave mechanics [201-204], stochastic quantization [205-213] (see
also, in a broader context, [214-222]). and Hamiltonian-Jacobi-Schrodinger theory [1. 2. 9, 43, 190,
223-227] (of related interest may also be e.g. [228-231]; ref. [229] also contains a reprint of [89]).
Information theoretical aspects have been touched upon in {207] (in addition. see for instance {5, 31. 37,
52, 232-246]). The usually presented wave packet solutions for this dissipating oscillator turn out to
have time-independent widths [129, 136, 156, 207, 203, 247} (related papers are [248-250]). A slightly
more general, dynamical solution has been considered in [136]. In any case. all solutions exhibit an
approach to the undamped oscillator eigenstates. Nevertheless, the persisting existence of these states,
against friction, need not be a very serious objection against the model as in these cases the expectation
value of the momentum is zero and, hence, there is no effective frictional force [180. 109]. At the roots
of this feature onc finds the (fluid dynamical) quantum-classical correspondence used in the Kostin
theory. In that respect, isolated quantum mechanical stationary states differ a good deal from wave
packet solutions that implicitly involve Ehrenfest's theorem [251]. Further, as alrcady mentioned by
Kostin in his original derivation, the possible presence of Langevin noise sources leads to a stochastic
potential in the Schrodinger equation and will destroy the steady states.

In general, noise sources in the Heisenberg representation are operators in a space different from
the Hilbert space of the genuine oscillator {19, 21, 23, 37, 57, 91, 200] (actually, a corresponding remark
applics to the classical case, see e.g. {67,252]). In Kostin's mesoscopic approach to quantum friction,
however, the noise sources are assumed to be c-number functions of time only. Actually, the noisy
potential in the Schridinger-Langevin equation is usually taken to be identically zero. Even in that case
the damped oscillator does not decay below its free ground state, in contrast with the Caldirola-Kanai
model. Thercfore, Heisenberg's uncertainty relation is preserved for the Kostin oscillator. Finally, let us
note Messer's paper [156] wherein he did carry along the classical noisy Kostin potential, assuming
delta-correlated forces. For one particular initial condition (the free oscillator ground state), and with a
thermally excited oscillator at ¢ = <, his result (a Gaussian distribution) is identical to that of Svin'in's
[180] upshot for the Caldirola-Kanai Hamiltonian. Of course, this technique applied to Kostin's model
could also be added the earlicr made remarks concerning the correlations of quantal noise sources (sce
also [24]).

Heuristic arguments led Sissmann in 1973 to the formulation of another nonlinear frictional
Schrddinger equation {253]. In this case, the nonlincarity is apparent through the explicit occurrence of
expectation values in the effective Hamiltonian. Soon after its discovery, the model was extended by
Hasse [129] and further generalized by Albrecht [254]. The Hamiltonian is closely related to the energy.
Its general form may be given as

H= I-{"+AW, (2'7)

where H, represents the free oscillator Hamiltonian,



10 H. Dekker. Classical and quantum mechanics of the damped harmonuc oscillator

H,=ip*+i0°x", (2.8)
and where W may be interpreted as a frictional potential:

W =2(p)x - )+ clx=(x).p-(p).. (2.9)

A is again the friction constant, ¢ is a real parameter and [.]. denotes anticommutation. In fact,
Siissmann discovered the case ¢ = 1. Hasse originally discussed ¢ = =}, while Albrecht considered
general ¢ with emphasis on ¢ =0. Wave packet solutions of the Schrddinger equation with the
Hamiltonian (2.7)-(2.9) were studied in considerable detail by Hasse [129]. See also [107-109, 136, 254~
257]. Only certain cases of the general version (2.9) turn out to be physically relevant. In brief, the
analysis leads to the following conclusions. All potentials (2.9) allow for undamped, stationary solutions
of the Schrodinger equation

iy, = (Ho+ AW)Y (2.10)
of the type
U = N expl=i(n + Dot = (w, + 2Ac)e* 2k Ho(xVw lh) . .11

where .V, = (w/mh)* (2" ) Y2 with n =0, 1, ..., and where
w. = [F-3cA7)'". (2.12)

In order for (2.11) to belong to Hilbert space, these functions should be square integrable. Hence, one is
led to require in general that |¢| < £2/2A. Confining ourselves to the underdamped case {2 > A, we have
|c| = 3, which still includes the Hasse (c = 1) and the Albrecht (¢ = 0) Hamiltonians.”

The expectation values of the position and momentum operators may be obtained directly from the
Schridinger equation (2.10). They obey the correct Newtonian equations following Ehrenfest’s
theorem:

' ={p. (2.13)
(p) = =2A{p) - 2°(x). 2.14)

Their general solution is given by (2.5), with w = (2 - A%)"*. However, the Hamiltonian (2.7) equals the
energy of the oscillator only if (W) =0. For nonzero A, this is the case only if either o, =
;(px+xp)—(p)(x)=() or if ¢ =0, which seems to be an argument in favour of Albrecht's case.””
Defining further o, = (x*) - (x)* and a,, = (p”) - (p)". one may obtain from (2.10) the equations of
motion for the second moments:

“ Compare this with our recent work [258], where the cases [e] >} (or at least their close counterparts) are intrinsically suppressed. Further, note
that throughout the present text £2 represents the free oscillator frequency. while we use @ = wyz = (12° = 4%)' * for the classicat reduced damped
oscillator frequency. This convention is also followed e.g. in [136], but it is the reverse of Hasse's [0S, 109, 129]

“#1f one considers foree free motion for the gencral Sussmann-{{asse-Albrecht madel (i.e. 2 = 0), the range ¢ < is immediately ruled out
physically as it leads to an exponential increase of the kinetic encrgy. This is casily seen in (2.16),
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Opx = Opp— 0. . (2.15)
O = =IOy, — 2P0, . (2.16)
Oux = 20, + 4ACOs . (2.17

Considering Gaussian wave packets. the standard treatment of Heisenberg's uncertainty relation
provides us with the additional relation {136, 164]

Opp Tux = sh* + a0 (2.18)

which allows the construction of a second order equation for o, separately. Introducing the width w, of
the Gaussian wave packet by means of

o] = [mw3i] " exp[— (x — (x))’/w?]. (2.19)
one obtains (sec also [136})
Wt wiw, = hiwe, (2.20)

which immediately reveals the existence of a stationary solution a,, = wi/2 = h/2w,.. In view of (2.15)
the associated uncertainty product reads

TotFee = WP 0l =07 2.21)

As it should, regarding (2.18), the quantum mechanical fluctuations are not only preserved but even
enlarged by the dissipation, in line with carlier made more general remarks (see e.g. the Introduction,
below (1.2)). Unfortunately, the above stationary solutions for the Hasse—Albrecht model are not
(asymptotically) stable [34, 37, 136, 238, 259-269]. For that reason we have purposely refrained from
adding them the argument ¢ = 2, It is easy to see from (2.20), that this damped quantum oscillator will
exhibit persistent, undamped oscillations in its width if the system is initially not exactly in the above
found steady state. This feature is not observed in any of the other known models, and it is quite
unlikely to be physically realistic [136]. In closing the story on the Miinchen-model, it may be noted that
it was recently indicated by Stocker and Albrecht [43] how these nonlinear frictional potentials can be
generated formally within the framework of the fluid dynamical interpretation of the classical real space
Hamilton-Jacobi theory and Schrodinger’s wave mechanics.

Each of the above mentioned theories is essentially concerned with a Schrodinger equation
representation of the dissipative system and the associated effective Hamiltonian. However, in view of
the experience with fully quantum mechanical treatments of open systems (see e.g. [16-23. 50, 55-58,
61, 87-89, 200, 270-275]), actually mainly concerned with oscillators and their interactions with
oscillator-reservoirs, it seems more natural to seek a proper description in terms of mixed states rather
than pure states. Anyway, a quantum mechanical phase space description by means of a density
operator is fundamentally more general than by means of a Schrodinger state vector. In the case of a
closed system (the universe) it can always be cast into a pure state representation, but not so vice versa
(see in this context also for instance [270,276-287]). For that reason, already in 1975 [59] we have
introduced in fact the density operator from the very beginning in our mesoscopic approach to quantum
friction. The theory was further developed successively in [184, 24, 195, 196, 288, 258]. Trains of thought
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along similar lines were revealed independently by Burzlaff [289]. Huguenin [290] and Balazs [291}. In
his mesoscopic approach, the present author has always emphasized the relation between Heisenberg-
Langevin quantal noise sources (operators. not classical functions) and additional diffusive-like con-
tributions in the master equation for the density operator.” This notion gives rise to typical quantum-
mechanical fluctuation-dissipation relations. For the linearly damped harmonic oscillator the charac-
teristic example is (see (7.36) and [24]):

D.,-D, =ihA. .22)

where the D's are diffusion coefficients. Dekker's theory employs complex dynamical variables that are
directly connected with the usual quantum mechanical commutator algebra (see also [57.58, 160-
164, 293-303], and more specifically: [114, 115, 137, 181, 197. 289, 290, 304-309}). It ensures that in the
limit of vanishing friction the known undamped oscillator results emerge, and it also preserves the
uncertainty principle for nonzero dissipation.

At the end of this historical survey it is interesting to note that Hasse in 1979 [107,310, 311]
succeeded in making contact between the master equation and nonlinear Schridinger equations in the
limit of weak damping (radiation damping limit). As it turns out, this relation implies a constraint on the
possible diffusion coeflicients. As expected. and as will be shown in the sequel, this condition guarantees
the survival of the uncertainty principle and the vacuum fluctuations for the oscillator under the action
of dissipating forces. In agreement again with the carlicr expressed general ideas about dissipation and
fluctuations, the quantal vacuum fluctuations appear to be increased by the damping®” (see also (2.21)).
Hasse's nonlinear frictional Hamiltonian looks somewhat similar to the heuristic Siissmann-Hasse-
Albrecht species (2.9), but is definitely different. For example, Hasse's model does not show the
peculiarity of the undamped, persistent oscillations in the width of the wavepacket. It is further
interesting to observe that Dekker's theory of the lincarly damped harmonic oscillator leads to a class of
specific diffusion cocflicients all satisfying Hasse's pure state Schrodinger representation condition if
considered in the weak damping and long time limit, which seems to add to the credibility of that phase
space approach [288).

As the outline of the present paper should be clear from the table of contents and from the abstract,
we now start our comparison of the various approaches to the damped oscillator problem in more detail
by considering the time-independent Bateman-Morse-Feshbach-Bopp Hamiltonian.

3. Bateman’s dual Hamiltonian
3.1. Classical mechanics

The classical deterministic equation of motion for the simple one-dimensional damped oscillator with
unit mass in Newtonian mechanics reads

“The significance of the noisc operators in the original paper [59] (sce also in particular [24}) has not always been properly recognized [190, 290].
But sec for the contrary eg. {292].

** To be precisc. the increasc is measured with respect 1o the “absolute vacuum™, i.e. the isolated undamped oscillator casc (which is physically
unrealistic). The increase of the zero-point Aluctuations shows that the oscillator is not placed in the “absolute vacuum™, but interacts with a reservoir
{c.g. the clectromagnetic or gravitational fields) which may be in its own ground state. Semantically. the lerm ground state is perhaps more
appropriate than vacuum state.
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F+2A0+0°x=0. 3.1

Its general solution has already been given in fact in (2.5). The equation (3.1) can be obtained as the
Euler-Lagrange equation

(Li) —Lz= (3.2)
from the Lagrangian

L = %% = °x% + A(xk — %%). (3.3)
that is by a variation of the auxillary variable % [1, 2. 11, 113-116]. On the other hand. varying x leads to

E-20%+02°=0, (34)

which clearly represents the time reversed process of (3.1). The system (3.4) is called the mirror-image
oscillator of (3.1). The canonical momenta for the above dual system of oscillators become

p=L;=%-A%, p=L,y=x+Ax. (3.5)

Obviously, these differ essentially from the oscillator's mechanical momenta. However, this is in no
sense an obstruction to the classical theory and the Hamiltonian is easily found to be

H = pp= A(xp- £p)+ 'k, (3.6)

with @ = (£2° = A%)"? representing the reduced actual frequency. If not indicated otherwise, this reduced

frequency will be assumed to be real throughout the present text. That is, we shall mostly be concerned

with the underdamped case although occasionally results can be taken over to the overdamped case.
Hamilton's equations,

x=H,  p=-H,,

. . (3.7

x=H,;. f'=_HJ’
of course lead back to (3.1) and (3.4). Almost trivially, the Hamiltonian (3.6) is a constant of the motion:
the energy dissipated by the original oscillator is completely absorbed at the same pace by the
mirror-image system. Nevertheless, in general this H is not equal to the energy of the total closed
system, not even in the limit of vanishing friction A | 0. This presents a first hindrance to the canonical
quantization of the physical system, as noted before. It can be remedied, however, by restricting the
solutions to the Hamiltonian equations to those for which both oscillators start off from the same initial
state. Yet there exists another difficulty. Namely, the only nonzero Poisson brackets of the above
classical theory would lead in quantum mechanics to the commutators®

“ For typographical reasons, and if there can be no misunderstanding, we denote commutators by [ | | rather than { . .. Anticommutators will always
be written as { . |..
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[x./]=ik, [fa]=ih. (3.8)

Evidently, in view of (3.5) this does never imply a nonzero commutator between for instance the
position x and the mechanical momentum p = X, not even in the limit A | 0 where we know it should
exist. Thus, unless bold measures are taken, the quantum theory based on the Hamiltonian (3.6) can be
expected to be endowed with difficulties.

Nonetheless, it is rather interesting to survey the attempts at a quantum theory based on the
Bateman dual Hamiltonian. To the author’s knowledge, there are only two papers to date on the
subject. Bopp's treatment [114] (see also [108]) is closely related to a symplectic formulation [197] that
will be discussed furtheron; his presentation is somewhat loose and confusing.” The canonical
quantization procedure devised by Feshbach and Tikochinsky [115] is of a higher subtlety. It is this
more sophisticated approach that will be sketched here.

3.2. Quantum mechanical spectrum

As usual, the dynamical variables x, 4 and . Z are considered as operators in a linear space. They
obey the commutation relations (3.8); all other commutators are zero. The basic Hamiltonian is the
apparently Hermitian form (3.6). Then introduce the following annihilation and creation operators:

1 . - I - . .
0 = —— - X), = —— — ,
V2ho (p=iwx) V2he (n-iwi)

, 1 —

. 1 .
=\/m(w+lwx).. “-—\/m(ﬁﬂm)» (3.9)

where «' is the customary Hermitian conjugate of @. Note that the bar can be considered as a formal
operation that will be called mirror conjugation.”™ For the sake of completeness, we also list the inverse
transformations:

xX=i \/é%(a—u'). p= \/,i?‘.‘—,((L-HL’)'
I A ST T e (3.10)
The only nonzero commutators, after the above canonical transformation, are

[e,a')=[2.a"] = 1. )

It turns out to be useful to define
A= +a) =1 (e-2) (3.12)
V2 ' 2 '

“ For example, his a and a' are not the usual Hermitian adjoints, See section 6.2,
**To be explicit: in view of the equations of motion (3.1) and (3.4). mirror conjugation is dcfined as A -Aix. pa % p).
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and their conjugates. so that in effect

d=2\/IE[(/x+/7)-iw(x+f)]. (3.13)
N S PP S ST
5‘?—2\/7';[0' p-iw(x-x). (3.14)

These new operators obey the same algebra as in (3.11), that is
(o ') =[B.B"]=1, (3.15)

all other commutators being zero. The transformed Hamiltonian (3.6) reads

H=H,+H,. (3.16)
Ho=ho(y'dd - B'R), @17
H =i hA(o'B' - A4B). (3.18)

The cigenvalues of &'/ and B'# are the common na, ng =0, 1,2,. .., so that the eigenvalues of H,
arc hw(na = ny) with eigenstates |na, ng), belonging to Hilbert space. Notice that H, represents the
difference rather than the sum of two frec oscillator Hamiltonians (see also [116]). In the limit A | 0,
the known harmonic oscillator results emerge infact only if the B-oscillator is kept in its ground state,
for which B|na,0)=0.

In order to investigate the eigenspectrum of the full Hamiltonian (3.16), it is of advantage to define

¢u = é(‘df&q - % ’%) , (3. 19)

and to introduce

¢ = (AR + ARB), (3.20)
&, = iR - AB), (3.21)
¢ =HA'A+ BR. (3.22)

Notice that
H, = 2hwo, , H, = 2hA¢, . (3.23)

The eigenvalues of ¢, are 3(na+ns+1), the eigenstates being the same as those of the free
Hamiltonian H,, i.e. of ¢,. Indeed, ¢, commutes with ¢,, as well as with ¢, and ¢,. The algebra of
these spin-like operators is given by

(¢« &) =i¢:, (3.24)
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[6-. ] =i . (3.25)

[¢.b:]=i9,. (3.26)

Be aware of the difference in sign in (3.25) and (3.26) with respect to the usual spin algebra (see e.g.
(164, 300. 312-314]). One easily computes now that

bI-(di+ b)) =i 1. (3.27)

Of course, ¢ commutes with ¢,. ¢, and ¢.. It is the only Casimir operator for the present algebra (as
the rank is unity; see e.g. [163. 300, 315-318}). Further, let us conventionally introduce

j=ina-ne). m = Yna+na), (3.28)
and label the cigenstates of Hu. ¢ and . as |jm) rather than |na. ng).

To relate the eigenproperties of ¢, (in which we are interested in view of (3.23)) to those of ¢.
(which are known), the Baker-Hausdorff relation {57, 301, 319-323] for the present algebra.

exp(ud )@, exp(—ud )= ¢, cosp +ig. sinu, (3.29)
is particularly uscful (sce also [164] p. 167). Namely, with u = 7/2 one obtains
o, = Xiexp{F(n/2)d.} . exp{x(7/2)d.}. (3.30)

Therefore, the eigenvalue equation may be written as

oW = xi(m + YW, (3.3H
where
W = exp{F (/2. |jm) (3.32)

The cigenfunctions ¥, do not belong to ordinary Hilbert space because they can not be normalized in
the usual manner. In fact, their conventional norm can be calculated, similar to the Wigner D-functions,
by means of Racah’s methods (related to the better known Clebsch-Gordan coetlicients; see e.g. [163,
164, 300, 303, 317, 318, 324-331}). The result is [115]:

(mt| expRue.)|jm) = (_g__r_t,u): ,’_" ,:: > (m;j)(Zm h I) (cotg u)*, (3.33)

m+j

where the sum runs over all integers /. Evidently, the norm (3.33) becomes infinite if u = +7/2. This
may be remedied, however, by redefining the length of a vector as the inner product

(V. ¥)=S. ¥, V,. (3.34)

where ¥7 represents the time reverse of ¥, and where S indicates summation or integration (with the
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appropriate measure) over vector components. In the same way matnx elements, and in particular
expectation values. can be defined as

(V. F¥)=S ¥ \F¥,,. (3.35)

F being an arbitrary operator working to the right. The absence of a finite norm in the usual Hermitian
sense invalidates the standard proof that eigenvalues of self-adjoint operators are real. Therefore, the
eigenvalue equation (3.31) can be accepted as a proper result.

Since ¢, and ¢, commute, they may have simultancous eigenstates. Indeed. the eigenstates ¥’ are
also eigenstates of ¢, as ¢, commutes with ¢, too. So. the complete eigenspectrum of H will be known
if we determine the allowed values of m for given J. Defining

b.=d + .. (3.36)
one easily derives from the commutation relations (3.24)-(3.26) that

(b.0.]=*ig.. (3.37)
so that ¢, resp. @ arc the raising resp. lowering operators for the eigenstates of ¢,. In view of (3.31).
m can be taken to be nonncgative without loss of generality. Let my, be the smallest value of m.
Then

¢ Vi =0, (3.38)
where the vector is nonzero. Multiplication of (3.38) from the left with ¢. and using (3.36) leads to

(@ t(dud:l-8D)¥=0. (3.39)

Invoking the commutator (3.26), the eigenvalue equation (3.31), the Casimir relation (3.27) and the

known eigenvalues of ¢, one gets ma=j7, so that m =|j|,|j|+ 2 ]jl+ L.|j|+3.... In summary, the
eigenstates of the Bateman-Feshbach-Tikochinsky Hamiltonian are

) =exp{-2i wjt £AQ2m + )t F (7/2)d Yjm), (3.40)
the corresponding eigenvalues being

H =2hoj i hAQm +1);  m=|j|[jl+5n.... (3.41)

If, in view of the earlier noted limit A | 0, we keep the % -oscillator in its ground state with ny =0, so
that 2j = 2m = n, = n, the eigenvalues become

H®=nhoxi(n+Dhr:  n=01.2 ... (3.42)
This is almost identical to the spectrum found by Bopp [114]. In fact, Bopp's procedure is somewhat

ambiguous in the separation of the dual oscillators. As will be seen more precisely furtheron, (3.42) is,
however, one of the possibilities allowed for by Bopp's theory.
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3.3. Ware packets

The result (3.42) for the eigenvalues indicates that the dissipation also afflicts the lowest state n = 0,
as the imaginary part of the eigenvalues remains nonzero.” In this respect, it should be recalled that the
Feshbach-Tikochinsky quantum mechanics is based on the Bateman Hamiltonian for the dual x, %-
system, but that the mirror image oscillator in fact is nothing but a mathematical device invented in
order to remain within the framework of conservative Hamiltonian classical mechanics. It should be
emphasized that the only physically observable system is the damped x-oscillator for which, however,
the correct commutator [x,p]=i# is absent from the theory (see (3.5) and (3.8)). Therefore, it is
particularly relevant to investigate in more detail the behaviour of the damped oscillator on its own. In
principle the eigenfunctions can be used to calculate the propagator (see e.g. [72]) and more general
wavepackets. But since the relation of the above obtained eigensolutions with the expectation values of
the original dynamical variables for the physical oscillator is not that straightforward (note for instance
that the #/-oscillator in fact contains a mixture of both the damped and the adjoint oscillator; and e.g.
¢. and x do not commute), it makes sense to turn to the time-dependent Schrodinger equation itself.
The solutions for the mean values and higher moments can be calculated directly from it, without
knowing the wave function explicitly, becausc of the linearity of the present system (see also e.g.
{34,332, 333)).

The Schrodinger equation may be written as

VAW, = [pa- A(xp - £4) + 02XV . (343)
I'he time reverse reads™”
iAW = [ppt A(xp— Tp)+ wPcE| T (3.44)

The equation of motion of the mean value (3.35) is easily obtained as
<F>.=_%(FH_(HT)1:F>' (3.45)

where the superscript a indicates the real adjoint operator (e.g. [334]). It is not difficult to see that for
the Bateman Hamiltonian (H™)" = H, so that (3.45) reduces to its usual commutator form

(F) ==(@/hX[F H). (3.46)
By means of the commutation relations (3.8) one now easily computes the mean value equations

()" =(p-Ax), (3.47)

# = =Ap) - w¥(x), (3.48)
which, in line with Ehrenfest’s theorem, agree with the classical results and lead back to

“ It is precisely this feature that was eliminated in [114] in a rather ad-hoc manner.
“*To be clear, time reversal is eflectuated by means of T={f—= =1, x = x, p—~=p £~ £, p——~p}.
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(x)" +2A(x) " + 2 (x)=0, (3.49)

the quantal version of (3.1). The mirror image oscillator is obtained from (3.47) and (3.48) by
interchanging x, 5 and &, s and letting A - —A. For the second moments one finds

(ax)" = =2 {ax) + (3D - w¥(x?), (3.50)
() = =20 - 2w¥(px) 3.51)
(%) = =2A(x?) + 2(ax) . (3.52)

which form a closed set of equations pertaining in effect precisely to the physical damped oscillator.
Note that, in view of the algebra of this model, (ax) = (x). Introducing the mechanical momentum
p=%=p-Ax and the variances (see also the discussion of the Siissmann-Hasse-Albrecht theory, in
the Introduction)

Ope = Kpx + xp) = (p) (x) (3.53)
o = (P7Y - (), (3.54)
Tu = (D) = (x), (3.55)

one obtains

Ope = =240, + 0y = V0, (3.56)
G = —4Aa,, - 20P0,,, (3.57)
Oux = 200 - (3.58)

Note that presently (px) = (xp). Contrary to the Siissmann-Hasse-Albrecht model (2.15)-(2.17), the
present Bateman model apparently allows only for the steady state o, = 05, = 0, = 0. Actually, the
time-dependent solution for o, with . (0)= /202 and ¢..(0) =0 (see also [136, 156, 180]) is easily
found to be

(l)=—h—e'2“[l+-/-\-sin2 r 422 sin? z] 3.59)
O 30 p” ) e LN B 3.
The associated momentum spread is

he

2
aplt)= B e [1 -2 sin 2w+ 225 5in? wt] : (3.60)

Clearly, in the end the uncertainty product



20 H. Dekker, Classical and quantum mechanics of the damped harmon oscillator

GopTan = (g) e [1 +4 (%)2 ({f—)z sin® wt] (3.61)

inevitably tends to zero, violating Heisenberg's principle. Notice that this violation occurs with certainty
once A# 0, no matter how small the friction coefficient may be. If A =0, the model (3.56)-(3.58) does
seem to reproduce the free oscillator equations, and allows for a steady state o,, =0, g, = 2°0,,.
However, as in the dual model p and x commute, even if A = 0, the relation (2.18) reduces in this case
t0 0,0 = e = 0, which is manifestly at variance with well-established quantum physics.”

3.4 Summary

Although Bateman's time-independent dual Hamiltonian is correct classically. it has its problems in
quantum mechanics. It can not readily be associated with the system’s energy and it does not lead to the
correct fundamental commutator. Therefore, it violates Heisenberg's uncertainty principle for the

physical oscillator, even in the limit of vanishing friction A | 0. This feature cannot be swept under the
carpet by a sophisticated treatment of eigensolutions.

4. Kanai’s time-dependent Hamiitonian
4.1. Classical mechanics

The explicit solutions to the classical Hamiltonian equations (3.7) for the Bateman Hamiltonian (3.6)
are

x(t) = ¢ M[x, cos wt + (1/w)po sin f] (4.1

A1) = e*[ po cOs wt = wXy sin wi] 4.2)

and similar results for £(t) and 4(¢). Let us first transform the irreversible part of the motion away by
means of the canonical generator®”

F=xPer+ihe™, 4.3)
which contains both the old coordinates and the new canonical momenta @, 2. One finds

p=F =Pe", X=F ,=xe",

p=F,=Pec™, X=Fjp=ie™. (4.4)
The new Hamiltonian H'= H + F, becomes

H =22+ o°XX, (4.5)

# Note that (2.18) can be derived within the framework of the Feshbach-Tikochinsky theory if A = 0 following the conventional reasoning as in that
case time reversal is identical to complex conjugation in the quantum theory.
“* This generator F(x, .2 £..8) is the F; of Goldstein [1].
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which describes undamped oscillations at the reduced frequency w, as expected from comparing (4.1).
(4.2) and (4.4). Note that the new dynamical variables fulfil the same commutation relations (3.8) as the
old ones. Of course, H' is a constant of the motion, equal to its initial value H'(0) = ;%o + w?XoXo.
For this to coalesce with the energy (at least in the weak damping limit) is suffices to consider #, = %,
and X, = X,. Because of the time-reversible nature of the new solutions, this entails #(f)= 2(f) and
X(@)=X(1).

It is now convenient to extend the real coordinates and momenta into the complex plane, and to
introduce a canonical transformation from X, ?, X, # to Q. P, Q, P by means of

X=40+Q)+(2w)P-P), X=40+0Q)-(il20)P-P).

P=xP+P)+({(w2)(Q-0Q), P=xP+P)-(w2)(Q-0). (4.6)
where the new variables can be taken to be real. In the end one only considers those solutions for which
Qo = Q, and P, = P, which confines the original variables again to real phase space. Note once more
that the bar can be formally considered as a mirror conjugation. The inverse transformations may be
written as

P=}@+P)-iw(X-X)|. Q=-(20)(?-P)+iw(X+X), .7
the other two following by mirror conjugation. Note the differences with the Feshbach-Tikochinsky
transformations (3.13) and (3.14). The only nonzero commutators (Poisson brackets) for the new
variables, of course, are

(Q.P)=ih, [0 P]=ih. - (4.8)
Inserting (4.6) into (4.5) yields

H'= P+ w’Q%)+ (P’ + 0’Q?%). 4.9)

This Hamiltonian evidently represents the energy of two independent identical oscillators. For that
reason we shall focus our attention on one oscillator only, say the Q, P-system. The canonical generator

F=1Q+\\Q* (4.10)
then transforms Q, P into Y, Il as (see also [119])

P=Fo=11+A0, Y=F;,=0. “.11)
Hence, the pertinent oscillator from (4.9) is described by (see also [119, 120, 137, 181])

H =P+ AIlY + .07y, 4.12)
One further transformation (from Y, II to y, 7), generated by

FenYen, @13
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so that
[I=Fy=me™, y=F,=Ye™, .14

while H" = H' + F ., finally leads to

H"=je Mmi+1e™ 0%y, (4.15)
This is the well-known Caldirola-Kanai Hamiltonian [13.14]. As noted before, historically, the
corresponding Lagrangian was already presented in Bateman's original paper [11}. See further e.g. [10,
12. 96, 116-156, 180, 181. 275, 335]. In view of (4.14). (4.11), (4.6) with the constraint Q = Q and P = P,
and (4.4). one readily infers that x= X e™ =Qe™ = Y e ™ =y. In the remainder of this section we
replace therefore y again by x.

4.2, Quantum mechanics

The Hamiltonian (4.15) has in fact been constructed purposely so as to represent the energy of the
system, at least in the weak friction limit. As noted earlicr, this scems to be one of the prerequisites for
the construction of a quantum theory. However, from the equation of motion for x, that is (3.1), it is
known that the irreversible part of x(f) behaves like e ™, and so does x(¢). Further, according to the
Hamilton equation

"

x=H ,=c¢ M7, (4.16)

the canonical momentum behaves like ¢*. But then (4.15) would imply that there is no secular change in
the energy of the oscillator and, hence, there is no genuine dissipation at all {10, 275]. To be explicit, if
one considers the solution for x(f) from (4.1) with p,=0 for convenience, makes use of (4.16),
substitutes into (4.15) and time-averages the Hamiltonian over any of its oscillation periods #/w, one
obtains the time-independent result Hy, = 32°x. This feature is most easily clarified by looking at the
Lagrangian belonging to (4.15). It may be written as (see Bateman [11] and e.g. [10, 128, 136])

L"=m(1) (3 - 02°x%), .17

with mass m(t) = m,exp(At), our choice being m,=1. This Lagrangian immediately allows for an
interpretation in terms of kinetic and potential energies. Physically, the situation described by (4.17)
might be realized for example by a frictionless pendulum consisting of a pail collecting rain [10]. Sce fig.
4.1.

Notwithstanding these considerations, the Caldirola-Kanai Hamiltonian (4.15) has been used to
study dissipation in quantum mechanics (e.g. [12-14, 96, 116-138]). Turning the only nonzero classical
Poisson bracket into a commutator gives

[x.7]=ih. (4.18)

Using again the Hamilton equation (4.16). this implies in terms of the damped oscillator’s mechanical
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- ——
-« - e — = — — -

m=m,e pail

Fig. 4.1. Model for a simple harmonic oscillator with a time dependent mass (afier [10]).

momentum p = x, that
[x.p]=ihe . 4.19)

Hence, as is indeed found in known explicit quantum mechanical solutions, Heisenberg’s uncertainty
principle will be violated in the course of time.” This forbidding feature was already noticed by Kanai
[14], and most clearly formulated by Brittin [12]. It should be clear, however, from the preceding
discussion, that this can be considered as an inappropriate physical interpretation. If one agrees to really
equate the model’s Hamiltonian to the mechanical energy, the solution of the problem becomes simple
indeed: the quantal features of the system become increasingly irrelevant in the course of time as the
growing mass takes the particle from the initial microscopic domain to the ultimate macroscopic,
classical regime.

Thus, as far as the damped oscillator is concerned, it does not secem that we have much gained
beyond the time-independent Bateman-model (3.6). Nevertheless, before taking another view of the
matter, let us briefly survey the results from the quantum theory based on the time-dependent
Bateman-Caldirola-Kanai Hamiltonian (4.15). The Schrdodinger equation in the coordinate represen-
tation reads

ihy,=—h7e My, +3e 0%y, (4.20)
Although the Hamiltonian is nonstationary, probability is conserved as the continuity equation
Patjs=0 @.21)

* A recenl claim that this can be remedied by simply considering the quantization in phase space as donc in [137] is untenable. Sce also
furtheron.
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holds with the probability and current densities respectively given by
p=yry.  jEe MR WL - YY), (4.22)

It is easily verified that (4.20) allows for the following set of so-called pseudo-stationary states (see e.g.
[96. 119, 129, 133]).*

G = N, exp[i(n + Dot + A1 = (@ + i A) e %20 H,(e*'xV wih), (4.23)

where ¥, = (w/mh)"*(2"n!)""*, with n=0,1,.... For curiosity, compare this with (2.11) for the
Siissmann-Hasse-Albrecht model. And for the sake of completeness it could be mentioned that
Dodonov and Man'ko (e.g. [133]. see also [10]) denote (4.23) as loss-energy-states.™™

4.3. Quantum fluctuations

Since (4.20) is a linear partial differential equation, the pseudo-eigenstates (4.23) can be used to
construct more general solutions by superposition, for example Gaussian wavepackets (see e.g. [116,
128, 129, 131, 135, 136, 180]). Sce also (2.19). The mean values, of course, follow the classical path
obtained from (2.13) and (2.14); the widths of the packets require further investigation. From the
Schrodinger equation one obtains the usual equation of motion (sce e.g. (3.46)) for the expectation
value of an arbitrary function of the canonical operators x and 7. For the second moments one readily
finds

(wx)-=c—2u(”:)_02u!)2(x2)’ (424)
(7% = =™ (mx + xm), (4.25)
(¥¥) = e *(mx + xm). (4.26)

It may be noted en passant that the Gaussian Heisenberg relation (2.18) presently holds not for p and x,
but in terms of 7 and x; that is

OmnOex = SN2+ 02, (4.27)

where the variances are defined by (3.53)-(3.55) with p replaced by m. Rewriting (4.24)-(4.26) in terms
of the variances for the mechanical variables p = ¥ and x, by means of (4.16). leads to

Gpx = =20, + 0, — 0, (4.28)
Gpp = —dAa,, — 2000, , 4.29)
O =20, (4.30)

* Be aware of some ditferences in notation. For instance, in [133] £2 and w are precisely interchanged.

**1n [133] the authors consider (in analogy with real time periodic Hamilonians) the periodicity of the Caldirola-Kanai Hamiltonian over
displacements #/A along the imaginary time axis, i.e. H"(¢ +in/A)= H"(1). These considerations direcily fead 10 a pscudo-cigenspecirum with
complex eigenvalues Hi = A(w +iA)}n + 1). The significance of this specirum, however. remains in vain.
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which are readily observed to be identical to the corresponding equations (3.56)-(3.58) for the
Bateman-Feshbach—Tikochinsky model. The only improvement that has been obtained is the recover-
ing of the correct quantum mechanics if A = 0. The solutions to (4.28)-(4.30) with o, (0)= #/22 and
0(0) =0 have already been explicited in (3.59)-(3.60). while the consequences for the uncertainty
principle are shown in (3.61). Of course, other initial conditions are possible too. As an example, one
might investigate the behaviour of the first and second moments for the pseudo-stationary states (4.23).
Note that the pseudo-groundstate ¢, is Gaussian. It is not difficult to see that (x) is strictly zero for any
n. Hence {(x) =0, so that {(m)=0 and (p)=0. Further, using the standard properties of Hermite
polynomials, one finds

(x)= e"“-:';(n +3). (4.31)

Substituting this into (4.26) learns that (mx + x7) is time-independent for all states ¢,. Therefore the
L.h.s. of (4.24) is zero, which leads to

-

(= e M4y, (432)

Hence, the product

22

Tonlee = 3= (n + i) 4.33)

is conserved in the course of time. This formula is the generalization of a result from {137} to arbitrary
n. However, it must be emphasized that (4.33) applies to the canonical momentum in stead of the
proper mechanical momentum.” In terms of the latter one finds

Tpp0ix =€~ ﬁ;'(y)—- (n+2), 4.39)

which, like (3.61), inevitably tends to zero even for the lowest state n = 0, thus violating the uncertainty
principle whenever A >0.

4.4. Summary

In the course of improving the energy representation, the time-independent Bateman Hamiltonian
has been related to the time-dependent Caldirola-Kanai Hamiltonian by a succession of canonical
transformations. However, if this Hamiltonian is indeed taken to be equal to the mechanical energy,
there can be no energy dissipation and the described system rather is a mass-accreting pendulum. The
alternative consideration of the Hamiltonian as a mere generator of the motion, leads to a violation of
the fundamental quantum mechanical commutator in the course of time. In fact, the uncertainty

“ I should also be noted. therefore, that (4.33) - especially with a = 0 for the pscudo-groundsiate - essentially differs from Dekker's resuli [195). See
also further on in the present article e.g. eq. (7.51).
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product is identical to the exponentially decaying form (3.61) connected with Bateman's dual Hamil-
tonian.

5. The semi-infinite transmission line
5.1. Preliminaries

In this section we will attempt to shed further light on the deficiencies of the above discussed
theories, in particular that of the time-dependent Hamiltonian, by considering an explicit physical
model. In fact we shall treat a mechanical model and an electrical mode! in a unified manner. The
essence of these models is the coupling of a privileged, tagged oscillator to a reservoir consisting of an
infinity of tiny other oscillators, and to let the latter system tend to have infinite size. In that case,
simply classically speaking. signals emitted by the tagged oscillator, which is the one under actual
investigation i.e. the subsystem of interest, can never (that means, within any finite time interval) return
to it by being reflected from the boundaries of the reservoir.

The electrical network model that will be discussed in the sequel is an adapted version of that of
Stevens, who's explorations were originally based on a suggestion by M.H.L. Pryce [157]. The
mechanical analogue of the electrical semi-infinite transmission line is a semi-infinite string. The present
formulation is akin to recent work of B, Yurke and O. Yurke {39]. Within the model's framework the
results are exact. More or less similar approaches have been presented for instance by Senitzky [50] and
by Ford, Kac and Mazur [38]. More general reference can be made e.g. to [16-23, 41, 42, 53-58, 63, 92,
93, 168-179, 200, 275, 336-338]. Further, it is interesting to note that historically the infinite harmonic
chain was already discussed in the early days by Hamilton [223] and in the beginning of this century for
example by Schrodinger [339].

Let us first consider the mechanical model, depicted in fig. 5.1. A finite mass m, has been attached to
a chain of identical masses m, =m (k = 1,2,...), located at positions z, and bound to each other by
harmonic forces. The mass m, is further attached to a special harmonic spring with Hooke constant b,
while it is constrained by a frictionless guide to move up and down the x-axis. Clearly, if the tagged
mass m, were uncoupled from the harmonic chain, it would itself just be a simple undamped harmonic
oscillator with eigenfrequency £2 = (bo/m,)"*. But if connected to the chain, it will excite the transverse
modes of this reservoir. In that way the oscillator may dissipate some of its energy into the chain, at
least for some time.

mO

T m m L.omo mo,,.,, m
C HANDD —=~ 000Y) —~ (0408 —o— 13)00 —@~ 03000 —@>
b | b | b b i b |
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Fig. 5.1. Mode! for a mechanical 1ransmission line.
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The latter proviso takes care of the following. If there were only a small number of elements in the
chain, the signal travelling away from the tagged oscillator would return to it almost immediately. If the
number of elements would tend to infinity while keeping the physical length A of the system finite, the
chain becomes an elastic string as depicted in fig. 5.2. But even in that case, by reflection from the far
end of the string, emitted signals return to the actual oscillator after a time period of the order of 2./c,
c being the average propagation velocity. The details of the dynamics would. of course. involve the
particular nature of the boundary condition at the far end. Clearly, only if A becomes arbitrarily large
there will be the possibility of dissipation for the tagged oscillator over an arbitrarily long time interval.
The infinite length is most easily incorporated by using periodic boundary conditions. which are
analogous to tying the transmission line to a characteristic impedance in order to prevent reflections.
The characteristic impedance, attached to the finite line at z = A, is simply equivalent to “‘an infinity of
more line™ [72].

I

0 - — z2:=A

Fig. 5.2. The mechanical transmission line of fig. 5.1 in the limit ¢/~ 0, but m/¢£ and the lengih A kept finite. J is the tension of the string (after {3]).

It can hardly be overemphasized that there are thus two essential steps in reaching irreversible
behaviour if starting from reversible mechanics. First, the reservoir must have an infinite number of
degrees of freedom over which the energy drained from the low dimensional subsystem of interest can
be distributed. This is cffcctuated by taking the continuum or field limit. In terms of the normal
(Fourier) modes of the reservoir, however, this still means a discrete spectrum entailing a finite
recursion time. That is, the system will exhibit periodicity, which is a typically reversible phenomenon.
Therefore, second, the system must have infinite size. This is sometimes called the thermodynamic limit
(see e.g. [28, 34, 37, 52, 238, 332, 340, 342]). In terms of the normal modes this means a continuous
spectrum. It implies an infinite recursion time. As will become evident, both steps must be taken for the
following program to be carried through.

35.2. The mechanical model

The classical mechanical Lagrangian for the harmonic system shown in fig. 5.1 reads

(% = xi)?, (5.1)

Al

N N
1 . 1 2 1 . 1
L=1myij—tboxi+ > imii— >3
k=1 k=1

where I = b(d-4,) is the bias force applied to the little springs, which posses a rest length «, and
Hooke constant b, = b. The quantity J is usually called the tension of the string (e.g. [343}]). The index



R H. Dekker. Classical and quantum mechanics of the damped harmonic oscillator

k €[0. N] measures the distance along the z-axis, which is along the chain, according to z, = k< The
tagged oscillator is at = = 0. The canonical momenta following from (5.1) are

Px = L =m. (5.2)

so that the Hamiltonian becomes

S (Xk - Xk‘l)z . (53)

k=1

H=-L =+1box2+Li 217
2moPo 200X o 2mk=lpk iy

The first Hamilton equation. as usual, reproduces (5.2). The second equation leads to

pk=—H_n=(.“7/(/)(x“1—2xk +.n_.); k= 1,2‘..... (54)
pu =-H,= ~boxy+ (f'/./({)(fl - xu) . (5.5)

so that the (Newton-Lagrange) equations of motion become

"l,fk =(‘7/(/)(.tk.|‘2xk +xk_|): I\ = ].2 ..... (56)

MoXo+ box, = (57/(/) (.\’1 - Xu). (57)
Letting now the number N of chain oscillators tend to infinity, keeping the length of the string fixed at
A = Nd, so that </} 0, and confining oneselves to differentiable physical solutions x(z, r). the above set
of coupled differential-difference equations leads to the following two coupled partial differential
equations:

Xu(z,)=x (2 0); 20, (5.8)

x 00, )+ 2°x(0. 1) = kx . (0,, 1) (5.9
Equation (5.8) is just the usual wave equation (e.g. [83, 113}) for the transverse vibrations of the string.
The speed of propagation is given by ¢ = (9/p)"", with p being the mass density p = m/<, kept finite

while 0. Further £ = (b,/im,)"?, while k = J/m, can be considered as the coupling constant of
oscillator and reservoir. In terms of the fields, the Hamiltonian may be written as

H =:[p, OF + 2027 0. ) + f Llp(z OF + 2% [x (2 0} dz, (5.10)

where the canonical momentum density is conveniently defined as p(z.) = p/ if k 2 1, while p(0) = p,,
and where we have chosen p = m, = 1, so that

pz.)=x.(z.1) (5.11)
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for all z. With these choices™ the only nonzero Poisson brackets lead to the commutators
[x(z. o pz.))=1hd(z-2"); zv 2 #0, (5.12)
(X0, 0. p(0, )] =ih. (5.13)
5.3. The electrical model

The electrical analogue of the above mechanical model has been sketched in fig. 5.3. The tagged
resonant circuit, with selfinductance /, and capacity ¢,. is coupled to a chain of identical tuned circuits
with selfinductance I, =/ and capacity ¢, = ¢(k =1.2,...). As indicated in the figure. all transverse
currents are taken positive into the positive x-direction, all longitudinal currents are similarly defined
along the positive z-axis. Going around any circuit, Kirchhoff's voltage law (usually called his second
law; see e.g. [37, 344, 345]) yields

qk/Ck+Ikik-qk~|/Ckul=0\ (5.14)
where g, represents the charge at the kth condensor, and where [, is the longitudinal current through
the kth circuit located at z,. Differentiating (5.14) with respect to time and using the relation
G« +1= a1 for the transverse currents, one obtains

Liooualex + Lo =Tl exn =0, (5.15)

with the understanding that [ -, = . The other Kirchhoff law, expressing current conservation at the
vertices, relates the transverse curreats to the longitudinal currents as

Legni=1lean - (5.16)
e
— 1, —l, =, —, —>I, —I
mooan-JoooonToooo‘O\TM’ob:\T‘ooooou—
¢ 2 t ] ?
K £ ) £ £ «

lTu

0 z 2, zZ, 2, —> 2

| | : !
1 ( !
| | | 1
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Fig. 5.3. Model! for an clecincal 1ransmission linc (afier [157]).

“ An aliernative, used in | 39). is 10 introduce a spatially dependent mass density p(2) = p + 2maS(2). In that case, (5.12) and (5.13) can be presented in
a single formula, in fact (5.12).
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Inserting this into (5.15) one finds
o= (Ue Yl =20+ 1) k=1.2..... (5.17)
lolo+ (Veo)lo = (e XI,- Io) (5.18)

which are immediately seen to be completely identical to their mechanical counterparts (5.6) and (5.7).
In the limit of an infinite number of circuits in the chain, keeping the length of the transmission line
fixed again at .1= N/, one obtains the partial differential equations (5.8) and (5.9) with the appropriate
definitions: the propagation velocity becomes ¢ = (1/l'c*)', where I' = I/ and ¢’ = ¢ |« are the specific
selfinductance and capacity respectively; the characteristic frequency of the tagged circuit becomes
0 = (1/lyeo)'?, while the coupling constant is k = 1/loc’. The model, be it mechanical or electrical, will
now be further explored on the basis of (5.8) and (5.9).

5.4. The classical damped oscillator

Following d'Alembert the general solution of the wave equation (5.8) may be written as (see e.g.

(83])
x(z. )= xalt—z/c)+ xu(t + 2/c). (5.19)

The xa. respectively x, represent waves travelling to the right (outgoing, so to speak, from the point of
view of the tagged oscillator) respectively to the left (incoming from the bath). Using (5.19) once readily
verifies the identity

x:(2,0)==(l/c)xlz, 1)+ Qle)xnlz. 1), (5.20)
so that (5.8) can be recast into the form
0, )+ 2420, 1)+ 027 x(0, 1) = 4A x40, 1), (5.21)

where A = «x/2¢. It should be noted that d’Alembert’s solution typically applies to the wave equation.
That is, the exact and complete separation (5.19) into left- and right travelling waves would in principle
not have been feasible if we had not already taken the limit to continuous ficlds (i.e. the first step
mentioned earlier: N - %,/ | 0, A = N/ finite). Hence, the equation of motion for the tagged oscillator
could not have been given the appearance of (5.21) (compare especially with [157]).

Now in prequantal classical theory one may conceive of the situation that there are no incoming
waves at all present in the transmission line at the initial time, say ¢ = 0. Exciting at that instant the
tagged system at z = 0 will, of course, produce waves travelling to the right. But, as noted earlier, if the
transmission line were semi-infinite, these outgoing waves would never be reflected back, i.e. they
would never be transformed into incoming waves. In other words, if xa(z,0)=0forallzZ0and A = =,
one has classically that xu(z, ) =0. Hence in that case (5.21) reduces to

¥0,0+2A 20,0+ 2°x(0.1)=0, (5.22)
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which is exactly identical to the classical equation of motion (3.1) for the linearly damped harmonic
oscillator. See also fig. 5.4.

However, in general the very special initial condition of no incoming wave excitations being present
in the reservoir field will not be encountered in real physical systems. Normally there are at least
thermal excitations, and these do not discriminate between left- and right travelling waves. And in
quantum mechanics. even at zero temperature there would still exist the zero-point excitations of the
oscillators in the transmission line. The basic reason for this. of course. is that if the line is capable of
transmitting signals. its microscopic elements must be emitters as well as absorbers. Hence, in quantum
theory the inevitable excitation/de-excitation processes in the reservoir can not be circumvented. For
that reason, in constructing the model's quantum mechanics we must carry along the incoming waves.

Mo
g === A
%Do

Fig. 5.4. The mechanical damped oscillator.

5.5, Normal mode expansion

The total ficld in the transmission line can be written in terms of its normal modes as

x(z,0)=2 \/T:—x [Ax exp{=iw (1= 2/c)} + Bi exp{—i w(t + 2/c)} +conj.], (5.23)
k -l

.

where “conj.”" means complex (Hermitian) conjugation in classical (quantal) theory. However, for a
finite transmission line the left- and right travelling modes are not independent of each other as a
consequence of the boundary conditions. The most general boundary conditions pertaining to the wave
equation are of the so-called mixed type (see e.g. [83, 113, 346, 347]), but it suflices to illustrate the point
by considering for convenience the Dirichlet condition x(A, t) = (. This leads to

A, exp(i wxA/c)+ B, exp(-iwiA/c) =0,

A exp(-iwAlc)+ By expiwAlc)=0, (5.24)
so that
AlA, =B!B,. (5.25)

Hence, we infer the relation

A = B, exp(—2 i ‘Pk) , (526)
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¢« as yet being an arbitrary scalar. The boundary condition at the near end z = () of the transmission
line is simply given by the equation of motion (5.9) for the tagged oscillator. It gives in principle two
constraints involving the A,, B, and their conjugates. Inserting the relation (5.26). these constraints are
found to be identical and one is left with

tg ¢ = (127 - wi)2Awx, (5.27)

where we have used the relation x/c = 2A. Finally, inserting (5.26) into (5.24), the eigenvalues follow
from

ka/C"(pk =(k—%)77, k = 1,2,.... (528)

In fact, the above procedure is precisely the one used by Yurke and Yurke [39].” Since their ultimate
results are identical to those obtained presently,”” we here face an explicit confirmation of the general
expectation that the precise form of the boundary conditions at the far ends of a system should
somehow become irrelevant in the thermodynamic limit of infinite system size A —»x (see also
[348-350]). Therefore, it is a useful common practice to introduce the most appropriate, though
physically somewhat artificial, boundary conditions for large systems, namely periodic boundary
conditions, from the outset. So we return to the normal mode decomposition (5.23) and require x(z, f)
to be periodic over A. This leads to the two conditions

A = B, = A expli axA/c) = By exp(=iwA/c), (5.29)

and their conjugates. Either adding or subtracting the two equations contained in (5.29) yiclds in stead
of (5.28)

wAlc =2km; k=12,..., (5.30)
which fixes the eigenvalues without requiring any relation between the mode amplitudes.
5.6. The quantal damped oscillator

The normal mode amplitudes are now determined by the initial conditions as

A
Ax = Qhad) f dz exp(=i @ z/c) [ x(2 0) +i p(z, 0], (5.31)
0

A
B, = (2hwA) f dz expli wez/c) [we x(z,0) +i p(z, 0)], (5.32)
(4]

plus their conjugates. In these formulae we have used the canonical relation (5.11). By means of these

?Let k- n and ¢4 = w2 - 8, for complete equivalence.
** However. there is a subtle problem involved as their eigenfunctions are not stricily orthogonal. This facet requires further study. as it may be
refated to problems of divergencies. See e.g. eq. (5.80).
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transformations one easily verifies that the only nonzero commutator for the reservoir field variables,
that is (5.12). leads to

[Akv A,'] = [Bk. Bx'] = bus, (5.33)

any other conceivable commutator being zero. Evidently, the A,. B, and Ai. B are the annihilation
respectively creation operators for the normal mode excitations. We have now prepared the system
adequately for the limit A - < (i.e. for the second step to be taken). essentially implying the (linear)
independence of the incoming and outgoing waves.

Now substitute the pertinent part from the normal mode expansion (5.23) for the incoming driving
field on the r.h.s. of the equation of motion (5.21) for the actual oscillator. Then define

y(0)=x(0.0)-7(1). (5.34)

()= g M (1), (5.35)
such that 5, (t) must be solved from

e +2A0 + 7 = 1A \/8,:?(8{ exp(i wx!) = By exp(—i wit)) . (5.36)
with the initial conditions 7, ((}) = 7, (0) = 0. As a result one obtains

V+2Ay + 2y =0, (5.37)

with y(0) = x(0.0) = p(0,0) and y(0) = x(0,0). The required solution from (3.36) is casily found by
means of elementary analysis [351, 352] to be

m(=iA /2% (3, 4, )~ coni.]. (5:38)
= 1 R K Y ~Af il _ - —ALFiwt -

¢k(’)"wi -!)2+2i/\wk [(' Y € (l yk)e ] . (3'3())

Y = {l + ofw) + i M, (5.40)

where @ = (£2° = A7) is the reduced classical frequency as before. What has been achieved is in fact
quitc intcresting. The result (5.37) shows that y(r) represents the position of a classical damped
oscillator, even in the case that there do exist incoming signals from the semi-infinite transmission linc.
In other words, the dynamics of a classical damped oscillator can be obtained in an exact manner if onc
subtracts the incoming reservoir signals (thermal noise, for instance) from the actual oscillator variables.
This represents a well-defined example of so-called smoothing (see e.g. [29, 66.353]) by noisc-
subtraction [157]. The explicit solution for the smoothed variable y(¢). satisfying (5.37) and the required
initial conditions, rcads

y(1) = e *{x(0.0) cos wt + (Hw)[p(0,0) + Ax (). 0)] sin wi} . .41
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5.7. Connection with Caldirola-Kanai model

Following Stevens, we now conjecture that a time-dependent canonical transformation exists from
x(0, 1), p(0, 1) to y(1), w(r) with y(f) given by (5.34) and the new, noise-subtracted momentum defined as

m(1)= e {p(0. 1) - 9 (1)} 642
In view of the initial conditions on 7(r). one immediately concludes from (5.13) that
[y©). 7(O)]=i#h, (5.43)

while any other commutator at ¢ = () will be zero. This gives reason to calculate the time derivative”

0. wo] = 2im e {1- 5 V2 (0.0 BL e - B, e}, (5:4)

where we have used (5.11), (5.21) and (5.36). According to (5.32), the normal mode amplitudes are
expressible in terms of the initial values x(z.0) and p(z.0). For the further evaluation of the
commutators on the r.h.s. of (5.44), it is therefore useful to observe that (5.41) expresses the smoothed
position y(r) for all times entirely in terms of the initial values x(0,0) and p(0.0) at = =0, As these
commute with any of the ficld variables on** z € (0, A), it can be concluded that y(¢) = x(0, 1) - 5(1)
commutes with the driving force of the bath at any time. Therefore, (5.44) is equal to

[y(l),w(:)]'=2m,\c“'{ 2\/"“’*[7,(:)8 ¢’ - B, -'-']}. (5.45)

Since n(r) has been expressed in terms of the Bi, B, by means of (5.35) and (5.38)-(5.40). the
commutator can now be calculated cxplicitly. Using the algebra (5.33), one easily obtains

, A VA l(’A- (Ui } -
[(r). ()] = 2i hid ¢ { D ey yed € (5.46)

We now take the actual infinite system size limit 4 — =, so that in view of (5.30)
Qi) S - (1/e) f do’, (5.47)
k

which yields

. . . 4A ‘ ? dw’ -
[y(). m(n)] =2ihrc? {1_;‘[@_‘:_32):_‘:4/\20)/2}- (5.43)

? One may of course compute the commutator itself, but the present method turns out 1o be much simpler.
“® Nate. for the sake of detail, that = = 1 is contained in (5.31) and (5.32) only with measure zero, while the nonzero commutator (S.13)at & =0
is nonsingular,
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where we have further used the relation 2A/c = «/c* = kp/T = p/my =1 (see (5.8)-(5.11)).” The integral
can be evaluated analytically as

ﬂ _ _1_J‘ w;: dw' _ L J wr! da)'
a0t - Y+ e 2r ) (0 74 200") (0 + 027 - 2we')
0 -2

x x

=87Irw J [(w’—a:)2+AE_(w'+al)=+,\2]“"d“"=4L,, X:T :=ﬁ- (5.49)
Hence,
[y(@). ()] =0, (5.50)
so that, in view of its initial value (5.43),
[y(). 7] =ik (5.51)

at any time ¢ 2 0. Other commutators can be handled similarly to show that y(¢) and #(¢) arc indeed
proper canonical variables. Note that in proving (5.51) we have used the nature of the solution for y(f)
in going from (5.44) to (5.45). In fact, the precise explicit form (5.41) of that solution, together with the
corresponding expression for (f), was used by Stevens [157] to arrive at the same conclusions. Thus, to
be clear, whereas Stevens' proof involves the explicit formulae for the smooth (noise-subtracted)
oscillator variables, the present treatment rather makes use of the explicit expressions for the noise n(t).
The results are the same. Further note that the transformation replaces x(0, 1) and p(0.¢) by y(¢) and
w(r), but that it does not affect the normal mode amplitudes of the reservoir = € (0, x).**

From (5.34), (5.11), (5.42) and (5.37) it is clear that the canonical equations for the noise-subtracted
tagged oscillator variables are

y=H,=e*m, (5.52)
7=-H' =-eDy. (5.53)

Evidently, the total Hamiltonian H' will therefore consist of two commuting parts H” and H'y, where H”
generates the dynamics of the smoothed oscillator and where Hy merely pertains to the reservoir.

That is,
H'= H"+ HW(Ai AL Bi Bis 1), (5.59)
Hu = ; e-—:uﬂ,:'. + ; c:untyz . (555)

The latter effective Hamiltonian for the smoothed oscillator is an exact isomorph of the original

“ For the clectrical model the choice p = my = | translates into I = &y = 1, so that again 2A/¢ = x/c® = I/l = | (see below (5.18)).
“*Recall that y(r). and similarly m(t). commutes with the By (scc (5.44)-(5.45)). The same argument of course applies to the A,.
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Bateman-Caldirola~-Kanai Hamiltonian (4.15). However, the different physical significance of the
canonical variables in (5.55) and (4.15) must not be forgotten. The present model does not violate the
fundamental commutator [x.p] =i in the course of time. in contrast with the standard Caldirola-
Kanai theory. As we have seen, the single reason for this is the absence of noise (i.e. the usually
thermal, incoming signals for the same subsystem. the reservoir. that accounts for the dissipation) in the
latter phenomenological classical approach.

These findings. originally most clearly formulated within the present context by Stevens in 1961 [157].
were in fact corroborated at about the same time by Senitzky [50.354]. However, the latter did not
discuss the connection between the harmonic oscillation-reservoir model and the Bateman-Caldirola-
Kanai model. His treatment is limited to the weak damping approximation (first order in A). whereas
the present formulae are still exact within the model’s framework. Actually. it is somewhat hard to see
good reasons for restricting the treatment to the weak damping limit. It is very well conceivable that the
single privileged oscillator, which is under investigation. is strongly damped while the vast majority of
the oscillators in the essentially infinite reservoir still is in the same equilibrium state as in the weak
damping case. The amount of energy dissipated by the tagged oscillator will always be negligible
comparced to the total energy content of the reservoir. Sce further section 8.

3.8, Svin'in’s treatment
Consider the classical Hamiltonian (5.55). The canonical generator
F=amy+mn)-yc™ (1) (5.56)
transforms y, 7 into x, 7, as follows:
m=F,=m —e™q(t), x=F_,=y+n(). (5.57)
Compare these formulae with (5.34) and (5.42). The new Hamiltonian H” = H"+ F, becomes
H"=e Mpl+e™ 0" -e™B()x, (5.58)

where an irrelevant term independent of 7., x has been disregarded, and where we have used (5.35) and
(5.36), so that

8,;{"" (B1 exp(i wit) - B exp(—i wit)). (5.59)

B(t)=i/\2\/

The Hamiltonian (5.58) has precisely the form of the Hamiltonian introduced by Svin'in in 1976 [180)].
It was recently also used by Brinati and Mizrahi [181], investigating its quantum mechanics in complex
phase space (sce also [156, 195]). Svin'in treated B(r) as a classical, Gaussian delta-correlated thermal
Langevin noisc source in order to remedie the observed violation of Heisenberg's principle in the
original Caldirola-Kanai quantum theory (see refs. quoted below (4.15)). That is, Svin'in’s Ansatz is
quite akin to the Langevin—Wiener assumptions (1.4) for the process €(f) as discussed in the Intro-
duction.

Let us presently calculate the correlation function of B(r), as given in (5.59). explicitly. Considering
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the noise in principle to be of a quantum mechanical origin. we determine the symmetrized Weyl-
Wigner [276. 277] correlation function in order to obtain a real outcome. Then. using the properties of a
thermal bath (see e.g. [19. 23, 50, 57, 164]).

(BiB))= (exp(han/ksT) - 1)_‘51(1 . (5.60)

one easily obtains in the infinite system limit:

KB+ 7). BOLY =2 [ 2w)cosw'r do. (5.61)

0

where 2 represents the modified Planck function (1.11). Evidently, the noise from the transmission line
is quite different from being delta-correlated. Actually, although the thermal part converges. the
integral in (5.61) does not even exist because of the diverging zero-point contribution. Only in the
extreme classical limit kg T — =, (5.61) can be reduced to

(B(r+7) B(t)) = (€(t + 7) £(1)) = Ak T (7). (5.62)

From comparison with its definition (1.4), we sce that this would imply a diffusion cocfficicnt
D =2AkaT.” Of course, the integral in (5.61) does converge if we drop the zero-point fluctuations, but
that would spoil the cure of the deficiencics of the damped oscillator as observed in the Caldirola-Kanai
theory. On the other hand, treating the bath (semi-) classically and ascribing the vacuum fluctuations in
fact merely to the tagged oscillator must be considered rather unsatisfactory, to say the least.

Notwithstanding that the correlation function (5.61) can not be calculated in general, the spectral
density defined by (1.5) does exist. If w >0, onc obtains

Su(w) = d4A P(w), (5.63)

while S;;(-w) = S(w). Defining a frequency dependent diffusion coefficient by means of Sy(w) = 2D(w),
one has D(w) = 2AP(w). Svin'in's Ansatz amounts to the assumption that only the actual value of the
spectral density at the free oscillator frequency w = {2 will be relevant to dynamical quantities of the
damped oscillator. Intuitively, this will at least require weak damping. But, as should be understood
from the preceding, this is by no means sufficient.

For complete equivalence with Svin'in's treatment [180] we can simply replace in the Hamiltonian
(5.58) B(t) by £(t) with the properties (1.4) and the diffusion coefficient given by D = 2A2(2). Hence.””

EN=0;  E+1)E()=2Ds(7),

D = Ak coth(ChQ/kuT). (5.64)

“ This is (wice as large as the diffusion cocfficient in the Introduction. See especially (1.1), (1.5) and (1.8). Both here and there 24 has been
chosen as the relaxation constant of the energy. However, presently not only the momentum but also the position carries energy. Therefore, in
thermal equilibrium now E = kg T instead of }kaT (see below (1.8)), which explains the factor two in the diffusion coefficient.

*? Note that Svin'in’s @ = 2A, while his w is the present £2 and the present w is his wo.
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As usual. one may compute the equations of motion for expectation values from (3.46) with H - H", or
equivalently directly from the Schrodinger equation

1hy, = H"(m, x, £(1). )¢ . (5.65)

Note that the averaging procedure will consist in fact of two parts: first, the common quantal averaging
with ¢. and second, the thermal averaging of £(¢). In terms of the mechanical variables the result for the
variances reads

dpx = —2/\pr + Opp — nzgxx + «X) f(’)) ’ (566)
Opp = — A0y, = 2-02‘7;" +2({p) £(1)) (5.67)
O = 200, - (5.68)

The quantities ({p)¢) and ((t){) are easily calculated following the lines of standard Markov-Langevin
theory (sce e.g. [19, 21, 23, 24, 37, 57-59, 65, 66. 92] and the Introduction). That is, formally integrating
the equation of motion of the as yet merely quantum mechanically averaged momentum,

(P = =2A(p) - () + £(r)., (5.69)

and using (5.64) and ((x(¢')) £(1)) = 0 if ¢’ <1, one finds ((p)€) = D. Similarly, by means of (x) = (p), onc
obtains ({(x)¢) = 0. Hence,

Op = =200, + 0, - o, (5.70)
‘}pp = ~4Aa,, — 2.():(11,‘ +2D, (5.71)
dl! = 2(r[ll . (572)

D given in (5.64). The only, but essential difference between (5.70)-(5.72) and the original Caldirola-
Kanai model (4.28)-(4.30) is the present additional time-independent term in the equation for o,
which is duc to the noisc. It is a matter of straightforward calculation to obtain the solution with
g« (0) =0 and o,.(0) = #7202 1t reads

_ "N\ |k ) ) AR
ool) = .,nc oth (,k T)+2!) [I coth (,I\HT)][I+wsm.v.wl+..wz.sln wl], (5.73)

the associated result for the momentum spread being

ow(0)= M2 coth <°Zﬂr) PLLIREN [ coth (,ffT)] [l —-%sin dot +2 ;‘—)— sin’ wl] L6

The ultimate value of the uncertainty product becomes

k hQ \_ 4
(=) () =  coth® (7 )= (5.75)
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so that the uncertainty principle is preserved. albeit—as discussed —somewhat artificially. As they
should. (5.73) and (5.74) reduce to (3.59) and (3.60) in absence of the noise.” Finally. it is worth
mentioning that the above formulae can also be obtained entirely classically from the Fokker-Planck
equation (see e.g. [21, 32, 34-37, &4—-47. 51, 56-58. 62, 66, 73. 76. 90. 92, 231, 242, 332, 333)) for the
probability density®* W(p, x. t) associated with the Langevin equation (5.69),

W,=—pW,_ +Q°xW_ +2A(pW),+DW . (5.76)
This connection will be made more precise in the sequel. See section 7.

5.9. Transmission line fluctuations

Returning now to the genuine transmission line model, it should be noted that in principle it can be
solved exactly, without enforcing the Markov hypothesis. Namely, the dynamics of the well-defined
noise-subtracted variables is governed by the simple linearly damped harmonic oscillator equation
(5.37). that can be solved easily. In fact, the evolution of the position is given explicitly by (5.41). Let us
just consider the final state in some more detail. Clearly y(*) =0, so that the actual oscillator position
acquires the noisy value x(0, *)= n(x). Hence, dcnoting x(0, t) by x(¢) for convenience. (x(*)) = (0.
More generally y*(x)=0 with n=1,2,.... For the second moment onc thus gets, using the above
result for the first moment, (x*(%))=(n*(*)). lnvoking (5.35) and (5.38) for n(s). and using the
propertics (5.60) of the thermal bath, one finds***

»

4z [ do’
= - Y ! 3 53 5.
a5 =7 f‘P(“’)(w*—!2=)-+4/\-w'-‘ ©.77)

qa
Confining oursclves to the zero temperature case T = (), where the modified Planck distribution (1.11)
reduces to P(w')— thew', the integral in (5.77) is most easily evaluated setting w” = (@’ — A%) + 2Awx,
with ' dw’ = Aw dx and @ = (2° - A%)'”. The upshot is

wz-—/\z)

e (5.78)

— ,l : e
o (®)= :)—;‘; arccotg | —

This result agrees with Yurke and Yurke's [39] and is also consistent with the formula of Ford, Kac and
Mazur [38].”*** In the weak friction limit (5.78) can be expanded in a Taylor serics as

a.,(w)=%[l-%"ﬁ+ o(%i)] (5.79)

L

where, for future comparison, one should note the occurrence of a term lincar in A.

# Recall that (4.28)-(4.30) for the Caldirola-Kanai model are ideaticil to (3.56)-(3.58) for the dual Bateman-model.

#? Since in (5.660)-(5.68) 7, is the Weyl-Wigner symmietrized expression. the diffusive master equation (5.76) is in fact satisficd by Wigner's
distribution function [277]. Sce abso. especially in view of (5.76) at T = 0, [24, 256].

“2 Recall the relation 2A/c = 1. Sce (5.46)-(5.48).

22 n (W], y = 24 and Q = (424 In [ 3], replace the Planck function £ by the madified 2, set T = Dand calculate their (82), with £ = 24 and e = {2,

o7 See (1.51),
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Finally it is not difficult to see that the formula pertinent to o,,(*) will be (p*(%)) = (°(x)). At T=0
one obtains

le dw'

2hA
UPP(w) = _ﬂ’— J‘ (wrz _ nZ)Z+ A Zwrf .
0

(5.80)

As it stands,” this expression cannot be evaluated as the integral diverges logarithmically. Hence.
the semi-infinite transmission line model does not allow the evaluation of the uncertainty relation,
unless we would disregard the vacuum fluctuations from the oscillators in the reservoir. That, however.
would imply the violation of the uncertainty principle for the tagged oscillator at low enough
temperatures.

5.10. Summary

The semi-infinite transmission line model shows that two steps must be taken in order to arrive at
irreversible behaviour of a subsystem (the tagged oscillator at the near end of the line) if starting from
reversible dynamics for the system as a whole. First, for finite system size, the number of degrees of
freedom must become infinite (spatial continuum or field limit). Second, the size of the system must
become infinite (spectral continuum or thermodynamic limit). Then left and right travelling waves in the
line can be completely separated. In quantum mechanics there will always be fluctuations present in the
incoming waves at thc subsystem. This noise source remedies the violation of the fundamental
commutator for the tagged oscillator. The noise is non-white, and unfortunately the uncertainty product
for the damped oscillator cannot be evaluated as it becomes infinite, save for the limit of vanishing
friction A } 0.

6. The dual Hamiltonian and complex calculus
6.1. Complex symplectic model

6.1.1. Classical mechanics

Recently a complex symplectic formulation for the damped harmonic oscillator has been proposed by
Dedene [197], touching the problem from the point of view of geometric quantization (see e.g.
[355-369]). Apparently, Dedene was stimulated in his investigations by earlier attempts of the present
author to describe the damped oscillator in terms of complex dynamical variables [59, 24, 195, 258]. The
relation between these complex variables theories will be studied in some more detail furtheron.
Currently we will show that Dedene's Hamiltonian is connected with the time-independent dual
Bateman Hamiltonian (3.6) by a simple complex canonical transformation. In fact, it is preciscly the
transformation used previously by the present author [59).

?We do nat consider a frequeney cut-off 138}, nor any nonlinear or refativistic moditication of the model. Nor do we consider the extreme
timit A | 0 separately. in that case (3.80) can be eviluated as usual introducing Dirac’s delta-distribution. Using (5.49) one then obtiins gy, (=) = Y2,
the standard result for the undumped harmonic oscitlator groundstate. The extension of distribution theory beyond the extreme limit A [0 s
currently under investigation. The basic ideas are closely related to the “purti¢ finie” of Hadamard [518] and the modern theory of generatized
functions developed by Schwarts [S19}], Temple {520} and Lighthill [S21]. Sce also [41. 491, 522, 523]. The results will he published elsewhere. See also the
footnote below (5.28).
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In the canonical transformations

z=ﬁ(ﬁ—iwx), z'=\—/12—_a—,(¢x+iwf),

e__1 ~ . se_ 1 o
z \/.zz(ﬁﬂwx), z \/-2;({1 iwk), 6.1)

the dynamical variables z and i 7 = =, (as well as their complex (or Hermitian) conjugates) play the role
of a canonically paired coordinate and momentum. The wiggle on z indicates a formal complex
(Hermitian) mirror conjugation. That is, one must both interchange the real system variables by means
of the earlier defined mirror conjugation (A -A;x, peo %, p}, see (3.9)-(3.10), and take complex
(Hermitian) conjugates. Hence, Z = * (or 3'). The inverse formulae of (6.1) are easily found to be

x=;2_(z-z‘), ﬁ=\/%(z'+z'*)

(0]
f=—\71—§i-a-,(i—f‘), Z=\/§(z+z‘). (6.2)

One should very clearly realize the difference between (6.1) respectively (6.2) and (3.9) respectively
(3.10) (aside, of course, from the factor V'h). The complex variables introduced in the Feshbach-
Tikochinsky theory each involve a mixture of both the original and the artificial mirror image oscillator in
terms of their mechanical variables, whereas the above definitions instead involve mixtures in terms of the
canonical variables. In fact, writing (6.1) in terms of the mechanical variables one obtains (consult (3.5))

z=\/—.12;[p+(A—iw)x], z'=—12_[p A —iw)x],

z‘=\—/12—_a—,[p+(k+iw)x], e +iw)], 6.3)

1
V2w
while (6.2) leads to

e go T e
—(z-2%), X \/i-a-,(z %),

Ve
p= \/._[(w-l)t)z+(w+1k)z‘] p= \/Zw [(w-iA)Z+(@+ir)z"]. (6.49)

The formulae in the first column of (6.3) and (6.4) are exactly identical® to those discussed earlier by
the author in connection with the real physical damped oscillator [59,24, 195]. The fundamental
commutators of the Bateman-Feshbach—-Bopp-Tikochinsky theory, (3.8), are transformed into

# Set for instance in [195], formulae (3.9) and (3.10), ¢ = 2(2)'? and 7 =i z°(2)"'~.
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(z.£]=h, [.z27=h. (6.5)

As the transformation does not involve time explicitly, straightforward substitution of (6.2) into the dual
Hamiltonian (3.6) leads to

H=¥%+%"*, (6.6)
where
H=(w—-iA)zf. (6.7)

This is precisely Dedene’s Hamiltonian,” which proves our assertion. Recalling that * = . the canonical
equations are conveniently written as™*

Z‘=H,"‘=?(_",y T.rzz—HJ:—%Jw
Z‘=Hﬂ|=‘%.*ﬂ;9 T.r."__—H.!:—%.*!' (6'8)

For instance, with 7, =i 7 (i.e. i Z*) and thc algebra (6.5) one readily gets
=¥ is=-iwz-Az, (6.9)
P=i¥.,=iwi+As. (6.10)
These equations must be supplemented with their complex conjugates, which stem from the other part

of H, i.e. *. Clearly, (6.9) describes the damped oscillator, while (6.10) pertains to the mirror image
system. Using the transformations (6.4) one obtains [59, 195]

i=p, (6.11)

p=-2Ap-{x, (6.12)
and

i=p, | 6.13)

p=2p- 0%, (6.14)

which are equivalent to (3.1) and (3.4) respectively, i.e. describe the damped oscillator and its mirror
image, as it should.

° There is a minor difference in sign, notin A (as it might scem at first glance) but in w. See for instance Dedene’s equation of motion for 2. Note
further, that in [197] the bar denotes complex conjugation instead of real mirror conjugation,

“ In the symplectic formulation [197] the equations of motion arise from the Hamiltonian string given by the vector field £x = -i{w - i A)(2d, = £;),
operating on a function F = z, resp. £, as F = ¢x(F) = £x2 dF: and similarly for X°.
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6.1.2. Quantum mechanical spectrum

Let us briefly consider the quantum mechanics based on the Hamiltonian (6.6)—(6.7) with the algebra
(6.5). Obviously, (6.5) is very similar (apart from a trivial scale factor V /) to the commutation relations
for the usual oscillator creation and annihilation operators. However, it should be observed that Z is not
the usual Hermitian conjugate of z, but requires an additional (real) mirror conjugation. Following
Dedene [197]. we shall here call this formal conjugation generalized Hermitian, for short G-Hermitian.”
If we now define a G-Hilbert space with the G-inner product (compare e.g. with (3.34))

(‘ﬁldl’) = Svd;(v)(ll('v) = Svd;(‘v)dl;v) ] (6.15)
the norm conventionally chosen as (¢|¢) = 1, then the evaluation of the eigenvalues of the operators
N_=zz/h and N. = z"#"/h can be carried through in the standard manner (see e.g. [57, 160-164, 300,
313, 314)). In brief, using (6.5) for instance for z and Z, one readily shows that these operators indeed
are the annihilation respectively creation operator on the elements of the G-set {{n_)}, for which

N_n)y=n_|n.). (6.16)
That is, one finds

2

V%In_)=c,,,|n--— 1y, \/%|n-)=c:, In.+ 1), (6.17)

where ¢ and ¢’ are c-numbers depending on the value of n_ only. Then

z ~oz >
n_-=(n.|N_|n. =(——__ n_) —=In)=|c, |’=0, 6.18
(nIN-Jn )= (F=1n))” Sl = e 6.18)
where we have used the normalization of the eigenvectors and ¢,.- = é». = c_ because . = n_. Hence,
the lowest eigenvalue of N_ must be zero, and the spectrum is given by n_=0, 1,2, .... Further, as
usual ¢, = n'% In the same way one finds c,. = (n-+1)"%. A similar analysis for the G-set {|n.)}
with N.|n.) = n.|n.) shows that n, = 0, 1, 2, ... . It should be noted that these sets of eigensolutions of H

are completely independent of each other. Clearly, the Hamiltonians % and ¥", defined in (6.6), are defined
on separate G-Hilbert spaces, say G.. Notice, however, that it is not the physical oscillator and its mirror
image that have been separated.

The separation of H into ¥ and ¥ deserves a more careful consideration. Let us first allow for the usual
Weyl symmetrization (see also [370]) for both the N_ and the N, oscillator. Hence,

H=w(z+2'"+he)-iA(Zz - 2'2"), (6.19)

where € =1 for Weyl ordering, and € =0 for so-called normal ordering [57, 299].*” Evidently, the
ordering (if identical for both subsystems) does not show up in the damping part of the Hamiltonian.

“Note ¢.g. the p is not G-Hermitian. but that as usual p’ @ (a)" = . as is casily verified by explicit evaluation,
“* Any conccivable ordering is possible in principle. See esp. [57, 37t].
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This latter part, on the other hand, obviously allows for a nonzero separation constant, say 8, as follows:

H=%_+%., (6.20)
X_ = w(3z +3he)— i A(Zz +1hS), (6.21)
H.=w(z 5 +ihe)+iA(Z"E +3h8). (6.22)

The eigenspectra may be given conveniently in a single formula, setting n. = n_ = n, as
xsf) =(n+ %5)'](,) *i(n+ %S)hA ; n=0,12,.... (623)

Leaving aside here the precise observable physical significance of these spectra, it may be noted that the
choice € =0, § = 2, makes (6.23) an isomorphism of the Feshbach-Tikochinsky formula (3.42). On the
other hand, with the choice ¢ = § = 0 one obtains the Bohr spectrum as discussed by Dedene [197].
Further, the choice € = § = | reproduces the so-called Bohr-Sommerfeld—Maslow spectrum (see also
[360), another possibility discussed in [197]. Finally (but see furtheron), the choice € = 1, § = 0 leads to
Bopp's spectrum [114].

6.1.3. Quantum fluctuations
The dynamics of the total system is described by the Schrodinger equation, that we presently write
formally as

ih| ) =H|). (6.24)

[f the two subsystems, the dynamics of which is generated by ¥., are independent (i.e. uncorrelated) at
the initial time, they remain uncorrelated for ever in this complex-calculus-Bateman model. This is
readily shown by setting | ) = [+)|-) at any time, leading to

i) =--), Al = 4. (6.25)
To be explicit, the G-Hermitian adjoint equations read

—iA(=| = (-|%_, A+ =(+|%,. (6.26)
From (6.21) and (6.22) it is readily verified that the ¥. are G-self adjoint, i.e. #. = ¥-.. Let us consider
now the equation of motion for an arbitrary function F. = F_(z, ). Since usually F_|-) is again a vector
in G_-space, using the G-inner product definition (6.15) together with (6.25) and (6.26) one obtains the

equation of motion in the conventional commutator form. As the analogous conclusion, of course,
applies to an F, = F,(z", "), we have

(F) ==+ (F.. 2. (6.27)

More general functions F(z, Z. z", ") can almost always be written as sums of factorizing terms F.F._.
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As an immediate application of (6.27) one obtains the correct equations
(2) ==-1w(2)-A(2), (2) =1w(I)+A(3), (6.28)

on G_, and their complex conjugates independently on G.. As to be expected in view of (6.27), notice
that the equations of motion are entirely independent of a particular choice of € and §. Considering the
model’s quantum mechanical fluctuations for the physical oscillator, however, the consequences of the
above performed separation of the total system H into two noninteracting subsystems . are more or
less fatal. Namely, since F =z'z factorizes as F = F.F_, one obtains (z'z)=(zz")=(z"Xz) at any
time. or o.'; = o..* =0 (which implicitly defines the variances in the usual manner). By means of the
transformation formulae (6.3) one easily infers the consequences for the variances in terms of the
proper mechanical variables of the real physical damped oscillator. One finds:

Oop(t) + 240, (1) + 220, (1) = 0. (6.29)

Evidently, we are in fact not even able to let the system start off at ¢ = 0 from the free oscillator ground
state for which g, = 0 and 0, = £2%0,, = #£)/2. Of course, the fundamental reason for the failure of the
formalism is the fact that neither of the separated Hilbert spaces G. contains the physical oscillator as
an entity. And the separation became feasible in view of the fact that both z and 7 commute with both
z"and 3, as the only nonzero commutators are given in (6.5). Since this algebra is connected with the
basic Bateman-Feshbach-Tikochinsky commutators (3.8) only by means of the simple complex
canonical transformation (6.1), we are back again at the origin of the problems that have alrcady been
discussed in section 3. Presently it is even more clear that the dual Hamiltonian on its own can never
describe the correct oscillator quantum mechanics, as it can not even do so if A = 0.

A possible obvious improvement of the situation could be obtained assuming that, before turning on
the dissipation at t=0, the system has been endowed on r<0 with the appropriate quantum
correlations by some other means (most likely the correct free oscillator Hamiltonian). In that case the
factorization | ) = |+)|-) is not valid at ¢ = 0, and, switching on the dual Hamiltonian at that time, the
subsystems |+) remain correlated as they were, since from then on they are noninteracting again. With
these initial assumptions the separation of the dynamics with %_ and &, is in fact not allowed and one
should consider the dynamics of the system as a whole, generated according to (6.24). Actually, this
must be the situation that has been considered intuitively in the discussion of the Feshbach-Tikochinsky
model in section 3. From (6.24), implying in fact (3.46), one again obtains (6.28) for the first moments,
while the equations of motion for the variances now become”

g0 =2iwo. = 200, (6.30)

0. = -2iwo, —2\0,,, (6.31)

.= =2, (6.32)
so that

* 1t should be recalled that in the present formalism .0, = gy, 1,
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o) = o o(0)ed T (6.33)
0 ()= 0, (0) e 722 (6.34)
o) =0 (0)e™™. (6.35)

Using the transformation formulae (6.4) one readily obtains for the position and momentum spread of
the damped oscillator the expressions

0 = —(1Rw)o..— 2.+ 0.0 (6.36)
O = (120)(@ —1AY'0., + 2P0 .t (w+iAY o o] (6.37)
Letting the system start at ¢ = 0 from the proper free oscillator ground state, where 0,,(0) = 2°0,.(0) =

02 and o, =0. amounts to o..(0)=hA(A —iw) 2w . (0)=hA(A+i1w) 2] and o (0)=
h02/2w. Inserting (6.33)-(6.35) with these initial values into (6.36) and (6.37) finally yields

au(r)=:2%c‘“' [H—%sin 2wt+2§sin2wt], (6.38)
2
om(t) = 22 e [1-2sin20r+ 225507t (6.39)

which are easily seen to be identical to (3.59) and (3.60). Hence, the thus obtained solutions from the
complex calculus for the dual Bateman model are the same as those from the real calculus of section 3.
Clearly, a prerequisite to obtain (3.59)-(3.60) or (6.38)—(6.39) is the preparation of the actual oscillator,
by an expedicnt other than the dual Hamiltonian, initially in a proper quantum state: the Bateman
Hamiltonian does not in any way have the power to do so. Therefore, we again face the troubles of the
killing of the vacuum fluctuations.

6.2. Modified Bopp-theory

6.2.1. Separation of the dual oscillators

The above analysis has oncemore shown that the roots of the troubles are at the incorrect
fundamental commutator (3.8). That is, the physical oscillator and its artificial, purely mathematical
mirror adjoint do not commute, whereas the dynamical variables of the physical oscillator on its own do
all commute with each other, even in the limit of vanishing friction. No doubt, rather radical measures
must be taken in order to improve the case. An interesting hint in the proper direction may be found in
Bopp's largely overlooked 1973-paper [114]. In the sequel we shall present a modified version of Bopp's

treatment.
Bopp’s Hamiltonian, closely related indeed to Bateman's dual model,” is quite akin to the complex

1t is curious to note that Bopp [114] apparently was unaware of the work of Bateman (11} and Morsc and Feshbach [113] in this matter.
Incidentally, probably due to the limited accessibility of [114]. Feshbach and Tikochinsky [115, 116] in their turn were unaware of Bopp's paper. The
present author's attention was drawn to [114] and [115] during a visit to Garching/Miinchen in 1979 [372]. Sec also (108, 109, 289].
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symplectic form (6.6)-(6.7). or alternatively (6.20)-(6.22)." As shown above. however. a separation of
the total Hamiltonian into two commuting parts one of which solely pertains to the physical damped
oscillator will be a highly nontrivial matter. Now, note that in the complex formulation, as in the real
case in fact, the equations of motion for the damped oscillator and the mirror adjoint system are
actually fully separated. See for instance (6.28). In the complex calculus the dynamics of the physical
system on it own may be profitably written as

=i, =ikl (6.40)

for which the term improper (incomplete™™) Hamilton pair has been coined previously [196]. The only
remnants of the artificial mirror adjoint system in these expressions are Z and its complex (Hermitian)
conjugate, although they do not appear in the resulting equations. The essential notion oncemore is that
the physical oscillator and its mirror image are fundamentally independent in Newtonian mechanics.
Evidently, the physical content of (6.40) remains unaltered if one simply disregards the bars. Ad-
mittedly, this may be considered as a bold leap.””” Indeed. its substantiation must arisc from the
resulting physics, in particular the ensuing quantum mechanics. to be discussed hereafter.
The fundamental commutator (6.5) from the complex dual calculus now leads to

la.a’]=1, (6.41)

where for convenience we have introduced the conventional variables a = :/\/ﬂ and @' = :'/\/E. The
pertinent transformations back to the real coordinate and momentum for the damped oscillator are
immediately obtained from the first columns of (6.3) and (6.4) as [59, 24, 195}

|
V2ho

P+(A-iwk], a'=\/i’-[p+(k+iw)x]. (6.42)

a=

and

x=i\/2%(a—a'), p=\/£[(w—ik)a+(w+i)«)a']. (6.43)

L

By means of these formulae it is readily verified that (6.41) transforms into

[x,p)=ih. (6.44)

* Complete formal equivalence may be obtained by replacing 2/VA, FVE respectively 'V, 2'/VE by Bopp's operators, @, @' respectively
b, b'. Note, however, that these operators are not intrinsically guaranteed to behave as ordinary Hermitian conjugates. This facet is only vaguely
touched upon in [114]. See furtheron in the present text. Parenthetically, Bopp uses Weyl-ordering i.e. € = 1, but as it can be easily verified that the
parameter ¢ will never appear in observable dynamics (because the pertinent part of the Hamiltonian will always only occur in commutator
expressions), this possibility can be disregarded from the outset for convenicnce. The insignificance of the separation constant § (see (6.21)-(6.22)) is
less obvious, but will be pointed out in due course. See the footnote following (6.67).

““’The pair of equations (6.40) may he considered incomplete in the sense that. although merely describing the dynamics of the damped
oscillator variables & and =*, as it stands (6.40) still makes reference to the mirror image system through the occurrence of 7 and 2°.

“#% 1t was precisely this bold leap that was not clearly uncovered as such in ref. [t14].

“27% Incidentally, (6.42)-(6.43) arc in fact only special numbers of a much broader group of transformations connecting (6.41) and (6.44). Sce
csp. [258).
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Within the present context, this is an important upshot. Namely, it means that henceforth it must be
possible to construct a formulation for the damped oscillator which intrinsically includes the usual
quantum mechanics in the limit of vanishing friction. The price that has to be paid for the correct
operator algebra is the Hermiticity of the Hamiltonian, together with a somewhat unusual form of the
equations of motion. From (6.40) it is seen at once that the latter become [59}

a=—-({/h)Ka. a*=@Wh)¥%, (6.45)
with the generator for the damped oscillator now obviously given by
X =h(w-iA)a*a. (6.46)

Clearly, ¥* # #. The complex (non-Hermitian) generator (6.46) is in fact precisely Bopp’s Hamiltonian
H' (apart from the unobservable Weyl ordering constant). For more on non-Hermitian Hamiltonians,
often in connection with the so-called optical model potential, one should consult e.g. [10, 24, 59, 102,
164, 218, 300, 303, 373-386). It should be noticed that (6.46) indeed reduces to the well-known harmonic
oscillator Hamiltonian if A | 0 [160-164, 300, 303} (see also [190, 192-194]). Finally, for the sake of
completeness, let us explicitly state that for the mirror image oscillator one now separately has

d=-(/M)H s, d*=@{h¥X%, (6.47)
H=h(w+ir)a‘a, (6.48)

which indced can be considered as the formal (real) mirror conjugates of (6.45)—(6.46). Note that in
effect we have really scparated now the physical system from its artificial adjoint.

6.2.2. Quantization

In order to investigate the quantum mechanics of the Bopp model for the damped oscillator, one
constructs an ordinary Hilbert space (in lieu of a G-space), wherein the quantum dynamics is given by
the Schrodinger equation

ih| Y =h(w-iA)a'al ), (6.49)
its usual Hermitian adjoint given by

—-ih{|'=(|h(w+iA)a'a. (6.50)
Evidently, the eigenvalues of the Hamiltonian become

X.=nh(w—-iA); n=012,.... (6.51)
Compare this with (6.23). Note, however, the differing physical meanings here and there,
connected with the differing Hilbert spaces. A first thing to observe from (6.49)-(6.50) is that, in

consequence of the non-Hermiticity of the Hamiltonian, the initial norm of the quantum states will not
be conserved in the course of time. Hence, in order to remain within the framework of the conventional
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probabilistic interpretation. expectation values will be defined in the general sense

(Fy=(|F | ). (6.52)

F being an arbitrary operator. Let us now introduce the pseudo-density operator w as the projection
operator w = | )( |. the state vectors obeying (6.49)-(6.50). The equation of motion for w becomes (see
esp. [270})

ihw = Hw — wH' (6.53)

It is interesting, not in the least for comparison with Bopp's original treatment [114], to write (6.53) in
the number of representation™ where (see e.g. [57, 58, 270, 298, 299, 302, 387))

w= D |n) Wam (m|, (6.54)

Wam = (n|w|m). (6.55)
One easily obtains
Wam = 1R = M)W —A(1 + M)W, . (6.56)

Notice that, as expected, the trace of the pscudo-density matrix {w,.} decays and, secondly, that
diagonal and off-diagonal elements do not mix as time proceeds. Even stronger, in their evolution the
elements w,., do not interact at all. For the latter reason, (6.56) is almost trivially solved by

Wom (£) = P (0) ¢ @07 7mH -2 Emd (6.57)

where we have choosen to set w,,(0) = p,.(0), which for the moment being just defines p..(0). At
arbitrary times ¢ = 0, the appropriate density matrix {p,..} is defined as

Pum (1) = Wom ()/trace w(t), (6.58)
so that trace p(¢) = 1, while

(F)y=trace pF = > pumFoun , (6.59)

nm

as usual. Note, however, that the present theory provides us with w rather than p. In order to obtain
p(t) one must specify particular intial conditions, i.. pam(0) = Wam(0). Therefore, in principle, no
equation of motion for the proper density operator of the damped oscillator exists within the present
context that does not involve the system's initial state.””

* Be aware of the difference between the present and the usual (free oscillator) number states. In principle, the latter are a linear combination of
the former, and vice versa.

*? A possibly more precise relation between this facet and the observed non-Markovian behaviour of the quantum mechanical transmission line
(section §) remains as yet unexplored.
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It is illustrative (and rather unexpected) that the above description allows for the paradoxical
stationary states, quite similar to those observed in the Sissmann-Hasse-Albrecht model
[129, 253, 254] (see (2.7)-(2.12)) and in Kostin's theory [198, 199] (see section 11).” Namely, if one sets
Wam (0) = Pam (0) = 8,.mn.n, ONE Obtains by (6.57) trace w(t) = exp(—2Anyt), so that (6.58) leads to

Prm () = 8n.m8 n.no - (6.60)

Evidently, p..(¢) = 0 represents an equation of motion that essentially involves the special pure state
initial condition. Moreover, as such it is not unambiguous as, for instance, the equation i#hp,,, =
(n — m)pnm. with completely arbitrary time scale, would do as well.

6.2.3. The density operator

Having started in fact from a classically damped oscillator (see e.g. (6.11)-(6.12) and (2.13)-(2.14))
one should, in view of Ehrenfest's theorem, pay special attention to classical initial conditions.
Stationary quantum states as such do not behave very classical. For instance. (p) = 0 for any n since
(nla|n) = (nla'|n) = 0. The latter formulac immediately indicate the way out. In order to obtain states
for which (p) # 0, which in regard of (2.13)-(2.14) is a prerequisite for observing classical dissipation
[108, 109]. one should consider the most classical states of quantum theory [184, 302], namely the
coherent™” states |a). By definition, the states |a) have the eigenproperty

ala) = ala), 6.61)

a being a complex continuous valued number. These eigenstates of the annihilation operator have been
extensively studied (see esp. [57, 298, 299, 301, 302, 371]). notably in rclation to coherent optical
phenomena in laser theory (see e.g. [20-22, 35-37, 58, 92, 184, 388]). They form a (over-)complete set
of not strictly orthogonal states, properties expressed by

(1/m) j la) (a| d?a = 1, (6.62)

KalB)| = exp(-2le - BF). (6.63)

where d’a = d Re o d Im e, and where the integration covers the entire complex a-plane. In analogy with
(6.54), the density operator p can be expressed in the coherent state representation, for example, as®*”

p= f P(a)|a)(a| &, (6.64)

where the diagonal, P- or Glauber distribution P(a) is a so-called quasi-probability density.”**” The

“ 1t should be noted that au fond the semi-infinite transmission line (section S)shows a similar featurc, as one might in principle prepare the reservair's
incoming modes system in an arbitrary pure number state so that (BiB)=m (sec eg. (5.60)). Of course, the notion of a temperature
becomes moot in that case.

“* Thesc minimum uncertainty states [293, 296] are also frequently denoted as Glauber states (sec ¢.g. [302]).

““% Ihe funcuon Pa) is the antinormally ordered associted density p™' of Lodisell {37], who also discusses extensively ditfereni orderings (see also
[1371]). As such, P(a) is one-to-one related to normally ordered averages,

“°7% The reader should not get confused with the notions “psestdo-density™ (used in connection with w, see (033 and “quasi-density ™ (used for P).

‘The latter is meant to say that I may take on negative values, in comrast with a proper classical density.
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coherent states are a specific linear combination of the number states, namely

la) = exp(—3laf?) exp(aa ")|0) = exp(-3|a[’) E __|n) (6.65)

n= ()
Let us now assume that the damped oscillator is at ¢ = 0 prepared in a pure coherent state, say |ao).
Hence, corresponding to P(a) = &(a — ao) 8(a* — as) in (6.64), one has p(0) = |ao) (aql. so that using
(6.65)
p%(0) = exp(-|ao®) aad™/V n'm! . (6.66)

Substituting this expression for p,m(0) = w..(0) into (6.57). one easily computes the sum of diagonal
elements of {w,.(¢)}. with the result

trace w(f) = exp[~|ao(1 - e™)]. (6.67)

Inserting (6.67) into (6.58) one obtains®

p(F) = :’/"m expl-laofe > —iw(n—m)t—A(n+m)]. (6.68)

It should, however, be pointed out that (6.68) as it stands is not the most useful density matrix onc
might wish, Namely, by means of the transformations (6.43) it is not difficult to verify that a purce
damped oscillator coherent state implies o, = #/2w and o,, = £02*/2w. Since both of these variances are
greater than their free oscillator ground state values, we face the difficulty (which is quite akin to one
earlier noted in the symplectic treatment along with (6.29): but be aware of the differences) that the
system can not even start off with the usual minimum uncertainty.

6.2.4. The master equation

Of course, more general initial conditions than the damped pure coherent state are possible, but they
would spoil the derivation of (6.68). Even worse, they would spoil Ehrenfest’s quantum-classical
correspondence theorem. For instance, it is a matter of somewhat detailed but in principle straightfor-
ward calculations to show that with initial Gaussian conditions, the distribution P(a,t) remains a
Gaussian (see also [62]), but leads to mean values, e.g. for (x(¢)), that deviate from the correct classical
ones by contributions that do in general not vanish in the limit £ | 0. To be more explicit,”” the analysis
leads to the conclusion that these unwanted terms are zero only in three cases. First, if A =0 (for
arbitrary initial conditions). Second, if x(0) = p(0) = 0 (for any A and arbitrary initial variances). Third, if
the system is initially in a pure damped oscillator coherent state (for all A and arbitrary p(0) and x(0)).
Hence, on the one hand we see that more general initial states than the coherent ones, if incorporated
in Bopp's model from the outset, generally violate Ehrenfest’s principle and prohibit the derivation of

“This scems the appropriate place {(see also the footnote preceding (6.40)) (o point out that the ultimate results for Pam (). Le. (0.09), is
independent of any additional “separation” constant (8) in the anti-Hermitian part of the Hamiltonian (6.46). It would merely multiply both the
numerator and the denominator in (6.58) with the same extra real exponentially decaying (or growing, if one wishes) factor, which thus drops out.

“% Generally speaking the additional terms are proportional to Are Y- {e@h: p@)} - {3, (OFA) where e, = g —alh pov = x.p: ol
represents the damped oscillior coherent state value. Further, also the relation (o3 = (p) is altered by terms of a similar ilrucluu
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(6.68). On the other hand, considering more general conditions by averaging in (6.68) over ay, preserves
the required quantum-classical correspondence, but in effect questions the validity of (6.49) as a proper
Schrdodinger equation for the damped oscillator. The latter point of view will be given more emphasis
further on (section 7).

Let us then introduce the rather general density matrix

Prm = j P(ao) piom d*axo (6.69)

p®. given by (6.68). which is easily shown to satisfy the master equation [16-24, 34-37, 55-58, 62, 82,
114, 195, 196, 200, 270, 271, 274, 289, 332, 333, 340, 389-393]

Pam = =1 @1 = M)pm = A1+ M )P + 2AV (0 + 1) + D s e (6.70)

Remarkably, the result (6.70) does not explicitly depend on the initial conditions. Nevertheless, it does
involve the particular initial states used in its derivation in an implicit way. For instance, this facet is
rather well illustrated noticing that (6.70) does not allow for the pure number steady states (6.60),
contrary to (6.50) on which it is based.” The ground state n =0 (which is a so-called random phase
coherent state [57]) is a noteworthy exception. It is also worth noting that Bopp [114]. in fact. gave a
somewhat heuristic derivation of the diagonal part of (6.70).””

Pan = =2ARPpn + 2A(n+ Dprinais 6.71)

and solved it subject to the initial condition p,.(0)=8,.. Notice that, as in (6.56), diagonal and
off-diagonal elements do not mix in (6.70) and (6.71). Further, (6.71) is the well-known classical master
equation for radioactive nuclear decay (see e.g. [34] p. 272).

6.2.5. Quantum fluctuations
From (6.69) it is easy to obtain explicit formulac for the moments. The first moments immediately
lead to the correct classical expectation values (x(¢)) and {(p(¢)). For the variances one finds (use (6.59))

Caa(t)= oug 0y (6.72)
0ua(f) = 0uu(0) e 72172 (6.73)
Taar() = 0o Oye M+ (1=, (6.74)
Ouaa(t) = aara(0)e ™™, (6.75)

where for instance o.,,(0) = {(ad) - {(a,)?, etc. Using (6.43) one obtains the relations

Oux = = (h20)[0wa = (Tt Tua) + 0] (6.76)

“This is in line with the known nonexistence (within the trace cliass) of the P-distribution for pure number states [211, 212, .
“* Bopp's wa has the same significance as the present p,,.
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O = (120)[(@ =1 AV 0ua + D (0ru'u+ Tua) + (@ +i1 AV 000 ] (6.77)
Opx = ("/20))[(A + l w)o'aa - A(0’«1'«1 + 0"“') + (A - l 0))0",’.,'] . (678)

where o, is again the Weyl form (see (3.53)). Notice the essential difference between (6.76)-(6.77) and
(6.36)-(6.37). which principally stems from the fact that presently @’ and a do not commute. By means
of (6.42) it is further observed that the usual free oscillator ground state initial uncertainty presently
amounts t0 0. (0) = A(A =i ) 2w, .’ (0)= AA +i ) 2w, 0.,u(0) = (220) - L 0., (0)= (22w)+ 1.
Inserting (6.72)-(6.75) with these initial values into (6.76)-(6.78) finally yields®

o oL A A? . h —aae
au(t)=me ke [l+;)-sm2wl+2;)-35|n2wt]+§—a;(l—e e, (6.79)
A o, A A? . h? 2
0‘,,,,(()=Te ke [l—;stwt+2;)-5sm2wt]+—2—a—)-(l—e u)‘ (6.80)
RAD o . hA -2
0’,,,(()=——w1—e = szw‘—ia-)(l—e ., (6.81)

Comparison of these results, in particular of (6.79)-(6.80), with (6.38)~(6.39) for the (complex) dual
model, shows the important upshot that has been achieved by imposing the correct quantum mechanical
algebra (6.41)~(6.44): the quantal vacuum obviously has not been turned off by the frictional forces [24],
i.e. Heisenberg's principle is not violated here.

6.3. Summary

The time-independent Bateman Hamiltonian has been related to the symplectic damped oscillator
Hamiltonian by means of a complex canonical transformation. The symplectic Hamiltonian can be
separated, but the two uncorrelated parts are mixtures of the physical oscillator and its mirror image.
Heisenberg’s principle is obviously violated. Then, following Bopp, the separation of the physical
system and its artificial adjoint has been enforced. The resulting quantum mechanics has the correct
algebra. Unfortunately, the derivation of the density matrix equation (6.70) from the postulated
Schrodinger equation (6.49) involves somewhat unsatisfactory subtleties. As it stands, (6.70) guarantees
the validity of both Ehrenfest's and Heisenberg's principle.

7. Complex phase space quantization
7.1. Preliminaries
As noted already in the Historical survey (section 2), each of the theories discussed so far intrinsically

involves the postulate of the existence of a Schridinger equation for the dissipative system. In essence,
four types of dissipative Schrddinger equations have been encountered. First, a nonlinear Schrédinger

“ Note that presently g, (0) # 0. See e.g. (3.59) and [136. 156, 180].
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equation (of the Siissmann-Hasse-Albrecht type:” see section 2). Second, a multidimensional equation
(two dimensional for the Bateman-Feshbach-Tikochinsky dual model. as well as for Dedene’s complex
symplectic formulation: see sections 3 resp. 6; infinite dimensional for the Stevens—Yurke semi-infinite
transmission line model: see section 5). Third, an explicitly time-dependent Hamiltonian model (namely
that of Bateman, Caldirola and Kanai*": see section 4). And fourth, a Schrodinger equation with a
noteworthy non-Hermitian Hamiltonian (a modified presentation of Bopp's model: see section 6).
However, it is in fact well-known that the general state of an interacting subsystem will not be a pure
quantum state,**” but rather a statistical mixture to be described by a density operator [16-25, 50,
55-38. 61, 87-89, 200, 270-287, 298-303, 310-314, 375, 387-393]. For that reason, the significance of
the assumed dissipative Schrodinger equations has been questioned. in particular by Burzlaff**** [289]
and the author [184, 24, 195].

In the preceding section it has been shown that Bopp's Schrédinger equation (6.49) has certain
undesirable implications (notably the possible violation of the correspondence principle), whereas the
density matrix equation (6.70) as such is much more satisfying. Of course, in questioning (6.49) one
should not overlook the evident importance of the correct fundamental commutator in Bopp's
(modified) theory. As should be clear, the latter (i.e. (6.44)) is intimately connected with the separation
of the damped oscillator and its mirror image, which are (quantum mechanically uncomfortably)
intertwined in the complex (symplectic) dual model. On the other hand, the symplectic formulation is
intentionally on good terms with the notions of classical and quantal phase spaces (symplectic manifolds
and Hilbert spaces), employing the methods of geometrical quantization [197, 355-369]. Let us therefore
return to Dedene’s complex symplectic calculus for the damped oscillator and introduce the phase space
description from the very beginning (i.e. already in the classical formulation) in an explicit manner.
Then, imposing the correct algebra (as in Bopp's theory) and eliminating the mirror image system from
the description, yields a continuity (or: master) equation in the reduced phase space of the physical
oscillator. Only after these (classical) preparations, the system will be quantized. That is, rather than
seeking a pure state Schrodinger representation (which need not necessarily exist), one allows from the
outset for arbitrary mixed states represented by a density operator. Of course, the latter representation
contains the former in special cases (e.g. if A = 0).

7.2. Reduction of the dual phase space

Consider the Liouville equation for the closed complex dual system of oscillator and mirror image, in
the phase space spanned by z, z, w, =iZ* and 7, =i z"*. It may be written as (c.g. [1])**"""

R,=-i[H R], (7.1)

where R is the total phase space density, the Hamiltonian H = # + #* is given in (6.6)-(6.7) and where
—i[, ] can be identified as classical Poisson brackets.””*”** More explicitly, (7.1), reads in view of (6.5):

“Two other types of nonlinear Schrodinger equations will be discussed further on; Hasse's non-Hermitian model (section 9) and Kostin's
Schrédinger-Langevin or fluid dynamical equation (section 11).

#* One could also catalogue here the Stevens transmission line model after the time-dependent canonical transformation.

“*¢ Within the present context we shall define a pure quantum state as a state obeying any sort of Schriddinger equation.

“2%¢ It is amusing to note that Bopp promoted Burzlaff's thesis [289).

#22%¢ [n another notation [197, 385-369] it reads R, = =& (R), with &y = £x + £x+: €x is the vector ficld specified in the footnote at (6.8).

#ree22 Recall that H with the aigebra (6.5) is quantum mechanically wrong. not classically. Therefore, one should notice that the preliminary
manipulations here are in classical phase space.
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R,=iH;-R,-iR-H,+conj.. (7.2)

where “conj.” denotes complex conjugation. Note that H* = H. As it stands, (7.2) is not convenient for
the intended reduction of phase space. Therefore, we rather cast it into the form of a continuity
equation. Eq. (7.2) is evidently equivalent to”

R.=i(H ;-R).-i(RH ) ;- + conj.. (7.3)

Recalling e.g. (6.8). noticing that for the classical Dedene Hamiltonian #* = #. and trivially inter-
changing the second term on the r.h.s. of (7.3) with its complex conjugate, one readily casts (7.3) into
the form

R,=i(¥ :-R).+i(¥ .-R): +conj.. (7.4)

which clearly has the structure R, = (R‘’+ mirror conj.)+ complex conj. = (R’ + complex conj.)+
mirror conj. Recalling (6.40), one again notes that the first term (plus its complex conj.) on the r.h.s. of
(7.4) completely describes the phase space flow for the damped oscillator on its own, whereas the
remaining terms just pertain to the mirror image. Therefore, the elimination of the artificial mirror
system from (7.4) is most easily accomplished by an integration with respect to Z and z*, with the
appropriate measure. The latter need not be specified (but see [195]) as it suffices to indicate this
operation by a classical projector §;, so that

R=S8,R+(1-S,)R, (7.5)
SgR =p, (7.6)
where p represents the reduced phase space density, also called the relevant part of R (sec e.g. [16-25)).
However, since the integration is in fact not over a genuine canonical pair, one must redefine the
remaining subspace algebra. As in Bopp's theory (section 6), one naturally imposes the conventional
algebra on the physical oscillator’s subspace. That is, en passant rescaling the dynamical variables again

as z/Vh = a and z*/Vh = a*, one is concerned henceforth with the fundamental commutator (6.41), or
(6.44), and the transformation formulae (6.42)~(6.43). Eq. (7.4) becomes

b= 5 Hapla =3 OX2) e, (.7
with

X =h(w—-iA)a‘a, (7.8)

the latter in fact given earlier in (6.46). It should be noted that as yet (7.7) still is a classical, c-number
equation so that the ordering of quantities is actually immaterial. However, it will turn out that
considering the quantal analoguc of (7.7), onc should specify the ordering of ¥, p and ¥' cven for

“ Previous footnote,
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linear systems if %"= ¥. As is well known. in principle such ambiguities cannot be circumvented in
quantizing classical systems (i.e. in adding quantum fluctuations™). although in many cases the ap-
propriate choice can be inferred from intuitive arguments or imposing additional constraints (such as
general covariance; see e.g. [228, 231, 394, 395]). In [195] we have given a somewhat intuitive reasoning
concerning the detailed structure of the quantal version of (7.7). Presently, we shall rather leave the
ordering undecided until we have extracted some more definite consequences from the theory.** The
final conclusion will be the same as in [195].

The so-called complex Hamiltonian ¥ featuring in (7.7) generates the classical, deterministic
dynamics according to the equations of motion (6.45), which are obviously akin to the usual canonical
equations. But it should be noted that, as a consequence of (6.45), this complex variable theory differs in
a number of respects essentially from the usual canonical theory, although it naturally reduces to the
latter if #* = ¥ (i.e. for the damped oscillator if A | 0). For instance, although ¥ does not explicitly
depend on time it need not be a constant of the motion. It also need not represent the proper
mechanical energy of the system. Further, ¥ is in general not invariant under a complex canonical
transformation.” ™ Therefore, the theory should rather be called quasi-Hamiltonian. Nevertheless, ¥
does play the role of a kind of complex potential determining the trajectories in complex phase space.
Moreover, it should be noted that the continuity equation in phase space is always more general than
the standard density equation for the incompressible phase space fluid, which expresses Liouvilles
theorem (compare e.g. (7.3) and (7.2)). The latter is contained in the former in the case of closed,
nondissipative Hamiltonian systems only (scc esp. [28,37]). Hence, if one is not starting from a
complete, fundamentally reversible Hamiltonian description of, so to speak, the entire universe (and
one is even almost never interested in anything of that sort {35-37, 402]), then the Liouville-continuity
equation®™™ is a sound starting point. In particular this scems relevant if one is aiming at a pro-
babilistic description of the system. And, to be clear, we shall here entirely conform to the conventional,
essentially probatilistic interpretation of quantum mechanics. Incidentally, other approaches to the
(quantum) dynamics of open (non-Hamiltonian) systems which are closely related to the above basic
idcas, may be found for instance in [61, 271, 289-291, 403-416]. In many cases a (Markovian)
semi-group property (i.e. in fact a master equation; see also e.g. [73,417)) is introduced as the
fundamental dynamical postulate (see esp. [271], and references contained therein).

“This is quite analogous to adding Langevin noise sources to deterministic equations in the classical theory of stochastic processes (e.g. [21, 34,
37, 56, 59, 396}): the observable results depend for instance on the choice of coordinates. See esp. [34], and also [62, 397}, In gencral, the ambiguities
can be cleared up if one has a well-defined microscopic physical model for the process.

“7 At the risk of overburdening, et us note that from (7.7) it shoold be clear that acither un ordering constant (e) nor a sepitrition constant (8
see, for both € and 8, (6.23) and the footnote preceding (6 6X)) will nfluence the results arising from the present formulation.

77 Such a tramformation is conventionally defined as preserving the basic form of the equations of motion (0.43). See also ¢ g {1]. In the one
dimensional complex case this is almost trivial, and those transformations that leave the Poisson brackets (6.41) invariant rather form a subgroup (in
the standard real variable theory this invariance is deductive). Note that (h.43) in fuct is not a proper complex canonical transformation in the
classical theory (but sce [24, 190, 398]). The complex character of ¥ generally breaks the invariance of the classical Poisson brackets under the
particular time-dependeant (canonical) transformation that solves the dynamical problem. Of course, there is no fundamental need to formulate
classical mechanics in terms of brackets rather than in differential notation, not even in order to quantize the system (see e.g. {163], esp. p. 355; of
course, the importance of the bracket representation in the historical development of (conservittive) quantum mechanics should not be depreciated
[160, 399—401)). For some more details on the above aspects of the classical complex variable theory, see the section on the Hamilton-Jacobi
formalism.

“77% The nomenclature in the hiterature is not unigue. Although somewhat soppy. if there can be no misunderstanding. the continuity equation
will sometimes alsa be called conventionally Liouville equation, pamely of the dyvaamies s intrinacally deterministic {see e.g {333]). The master
cdquation will alwass be of the more general continuity type In quantune nrechanies 1t s now and then denoted i 1 iousille-von Neuntam equation,

or more appropriately for open svstems (with mnved states) as Nahapma-Zwanag equation (¢ g, [lo- 19, 23])
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7.3. Quartization

Let us then consider the quantization of the Liouville-continuity equation (7.7), as it stands.” To this
end we let the classical dynamical variables become operators in a conventional Hilbert space. The only
nonzero fundamental commutator is given in (6.41). i.e. [a.a'] = 1. which fixes the algebra (see for a
particularly clear treatment Louisell's book [57]). Since the ordering of ¥. p and ¥ is not irrelevant in
quantum mechanics, we introduce a real continuous ordering parameter 0=c =1 and write the
quantum version of (7.7) as

p.= hl{(l )X up+ p¥ uhu — hl {Hlup+(1-c)p¥ ) (7.9)

By means of the general operator relations (e.g. [57])
la. Fl=F,, |[a".F]=-F,. (7.10)

F being an arbitrary well-behaved operator function, one readily casts (7.9) into commutator form. with
the result™

p= —;7[(1'. (1-c)[a. ¥lp + cp[a, ¥]] + conj. . (7.11)

First of all, notice that by using the fundamental commutator (6.41) in going from (7.9) to (7.11) one
simply endows the mechanics with the usual algebra. This is a conditio sine qua non for obtaining the
well-known nondissipative results. Further, note that (7.11) by construction guarantees the conservation
of probability, i.e. (trace p) = 0. In [59] it has been proved that the classical ¥ can always be taken real
whenever there is no dissipation, that is if the process is time-reversible (see also {300, 331, 418]).
Consider then (7.11) with Hermitian %, i.e. ¥'= ¥ = H. It is not difficult to show that for Hamilton-
ians of the form (sce e.g. [57, 164, 195, 302])

H=hwo{)a'a+a s(t)+as*(t), (7.12)
w(t) and s(¢) being arbitrary scalar functions of time, (7.11) reduces to the usual commutator equation

p =—(/M)[H,p], (7.13)

independent of a specific choice for the ordering parameter c. The Hamiltonian (7.12) generates the
most general dynamics of a driven linear oscillator. For more general Hamiltonians the above reduction

“ Requiring the usual oscillator quantum mechanics in the limit A = 0, the continuity equation in terms of x and p leads to a violation of the
uncertainty principle whenever A # 0. Moreover, in terms of the real variables the ordering arguments of [195] cannot be used as there is no
Hamiltonian whatsoever.

“*We have chosen 10 write p rather p, in expressions where the explicit differential representation of the operators is not shown. See also
section 6,
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usually depends on ¢ or ceases to be valid (in principle for nonlinear systems).” It is quite interesting,
however, to observe that for the rather basic Hamiltonian

H=hw,()a'a+hw,(t)b'b+g(tya'b+g*(t)ab". (7.14)

which describes two interacting oscillators, the reduction to (7.13) is still valid. even if one generalizes
(7.14) straightforwardly to an arbitrary number of oscillators. See also the section on the quantum optics
model.

Let us now return to (7.11) with the Hamiltonian (7.8). The Hermitian part of this Hamiltonian
clearly falls into the class (7.12)~(7.14). Inserting (7.8) into (7.11) one obtains

p=-iw[a'a.p]-A(l-c)[a'. ap|+[pa’.a])+ Ac(lpa.a’] + [a. a’p)). (7.15)

Although, of course, any averaged quantity can be calculated directly from (7.15). it is convenient and
instructive to represent it in terms of a quasi-probability density. This can be done in different ways (see
e.g. [20-22, 57, 182-184, 298-302]). Here we choose the diagonal P-distribution, defined earlier in
(6.64). which implies c-number averaging of normally ordered products (a')*a’. Following Louisell [57].
one then assumes p to be in antinormally ordered form and by means of (7.10) arranges all terms on the
r.h.s. of (7.15) into that order, whereupon one may simply replace the operators by their coherent state
eigenvalues (see e.g. (6.61)). This leads to

P.l = (A +i (J))(GP)_,. + (A -1 (J))(O"P)_,,o - ZACP.«NP , (7]6)

which is a Fokker—-Planck equation with a nonpositive diffusion coeflicient. The mean values (a(¢)) and
(a*(r)) immediately lead back to the correct results in terms of the real dynamical variables x and p,
satisfying Ehrenfest’s theorem. The equations of motion for the second moments are easily found from
(7.16) to be

(@®) ==-2(A +iw)a?), (7.17)
(@*®) = =-2(A -iw)a*?), (7.18)
(a*a) =-2A{a*a)-2Ac. (7.19)

Hence, in the long time limit (a®)— 0, (a**)> 0, while (a*a)- —c. Since further (a)—0 and (a*)-0,
one obtains for the variances (compare with (6.72)-(6.75)):

Oa'u'(%) = 0, (x) =0, (7.20)
oglX)=—c, gw®)=1-c. (7.21)

“ Quite generally, Hamiltonians with more complicated contributions in terms of the creation and annihilation operators can be considered as
effective Hamiltonians, which are actually inferred from perturbational considerations based on a more fundamental, elementary interaction. For
basons, the latter has the basic structure b'a and a'h. Sce for instance the quintum optics model {19-23, 35-37, 31, S0, §3-88, 87-93_ 200, 275, 297,
340, 354, 388-392] and, mutatis mutandis (clectrons are fermions), the theory of superconductivity (387, 419-421]. See also [195]. the present section
on the quantum optics model and eq. (7.14).
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By means of (6.76)-(6.77) the variances in terms of the real space variables are then easily calculated,
with the result

Opp(®) = 00, (®) = (1 - 20)i* 2w . (7.22

Evidently, in order for these results to make sense at least ¢ <!, that is 0 = ¢ = 3. Moreover. forming the
uncertainty product one obtains

Opp(®) 0 (®) = (1 = 2c)°R70%/4” . (7.23)

If A | 0, this uncertainty product approaches the value (1 - 2c)*%%/4 = h*/4. The latter inequality only
holds if c = 1 or ¢ =0. Hence, in order to fulfil the well-established principles of conservative quantum
mechanics in the limit of vanishing friction, one must conclude that ¢ = 0.

With this value for c, the basic master equation (7.11) reads

p= —% [a'.[a. ¥]p] +;—’[p[7(", a'l.al. (7.29)

which precisely is the master equation invented previously in [195]. In that paper, in fact with an eye at
the pseudo-density operator equation (6.53), it was argued that structurally one expects & respectively
¥ to stand on the left respectively right hand side of the density operator. This argument immediately
leads to (7.24). Sec also the footnote preceding (7.9).

7.4. The master equation
Setting ¢ = 0 in (7.15) gives
p=-iwla'a p]-A(a', ap]+[pa’, a]). (7.25)

This upshot is in fact well-known, notably in quantum optics (the laser well below threshold; see esp.
[19-22, 57, 92]). It is further in line with Lindblad's general form for the generator of the quantum
dynamical semi-group in the Markovian approximation® [271]. And it also agrees with the results of
Burzlaff [289] and of Huguenin [290].7*

Consulting (6.54)-(6.55), with w replaced by the proper density operator p, one readily writes (7.25)
in the number representation. It yields

Pam = =i @ (N = M)Ppm = A1+ M)Pum + 2AV(n+ D)(m + 1)pstmer. (7.26)

Comparison with (6.70) immediately shows that (7.26) is identical to the result from the modified
Bopp-theory (see also {290]). Hence, the formulae (6.72)-(6.81) for the dynamical variances can be
carried over without any modification.

“ Notice that presently we have not separately postulated this approximation. Compare e.g. also with [19, 24]. Remember that there is evidence
that the Markov approximation is not valid in the quantum domain (i.c. if kaT € Aw). Sce section 5. Sce also ¢.g. [38, 274, 281).

*“ In the transformation to real coordinates, note that their p = £ + Ax differs somewhat from our mechanical p = . Further, it is worth abserving that
Burzlaft explicitly invokes Lindblad's theorem.
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Let us now transform back from the complex variables to the physical real ones. Inserting the
transformation (6.42) for a and a' into (7.25) one obtains

5=~k (Hop) = i (2. 01~ 1. ox1) 5= 1. [p. 1) - S . 1] = s (. [p. o1} + . [, 1D
(7.27)

where (see also [24, 190, 195, 398])
H=1p>+3A[p. x]. + 12%x%. (7.28)

The master equation (7.27) is comfortably cast into the more general form [196]

p ==t {Ho.p] =i [x.[p. p1.1 +73 (Dpe + D)o, [x. 1] = 32 Duclp. [ p1) ~ 32 Donlx. [, 11,

(7.29)
where
H,= %Pz +3:00°x? (7.30)
represents the free oscillator Hamiltonian, and where the diffusion coefficients
hA hALY hA?
Du=3~, Dw=7_~. Du+Dyp=-""- (7.31)

can be defined by means of the so-called generalized Einstein relations (sce e.g. [57, 58, 184]). If we
define as usual the drift operators according to

(x) =(Dy), (p) =(Dp), (7.32)
we infer from (7.29) that
D.,=p, D,=-2Ap-0x, (7.33)

which once more confirms the validity of Ehrenfest’'s theorem. The generalized Einstein relation
defining for instance D,, can now be explicited as [57, 58, 184]

2D, = =(Dpx) = (pD,) + (px) ", (7.34)
which using (7.29) and (7.33) yields

Dye = YDype + D) - i A, (7.35)
while D,, = D,,. Hence,

D, - D, =ihA. (7.36)
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This formula, already mentioned in the Historical survey as (2.22). was reported originally in [24], where
it played a crucial role in the derivation of the master equation. It represents a typical example of a
quantum mechanical fluctuation—dissipation relation (see e.g. {21, 24, 57-59. 92] and the Introduction).
connecting the (operator) noise (expressed in the diffusion constants) with both the fundamental
commutator (expressed in Planck’s constant) and the damping (expressed in the friction constant).”

The density operator equation (7.29) will considerably gain in clarity if it is represented in terms of
the Wigner-distribution function {24, 57, 195, 277, 278, 299]. In the coordinate representation this
quasi-probability density may be given as

1 .
W x) =5 f ™™ (x = bylplx + by dy. (7.37)

In two previous papers {24, 195] we have transformed (7.29) into its Weyl-ordered c-number equivalent
directly by means of (7.37), invoking the fundamental eigenvalue relations in the coordinate represen-
tation. Let us presently rather do the calculations in the coherent state representation. Actually, we can
then start from (7.16), with ¢ = 0, for the P-distribution. In this representation. the latter is related to the
Weyl-Wigner function by the Gaussian convolution (see e.g. [21, 56, 57, 92, 182-184, 298, 299, 371])

Wia)=2 [ exp(-2la - 1) P(B) &B. (7.38)

From this integral relation one easily deduces the transformation
P,= 2(d/da,a)P » W, = D(3/da, a + 33/0a*)W, (7.39)

where 2 represents an arbitrary well-behaved differential operator function. By means of (7.39) onc
transforms (7.16) into

W,=(Atio}aW),+t (A ~te)la*W),-+ AW .. (7.40)
Reintroducing now the mechanical variables according to (6.42)-(6.43) by means of

1 ) |
\/z_h.‘;[p+()(—lw)x], a T

[P+ +iw)], (7.41)

a=

it is an elementary exercise to show that (7.40) becomes [195]

kA 1% hAD?

W,=-pW,+ ‘szw.p + ZA(pW).p + '2"; W — 'a—,' Wo. + —2 Wop. (7.42)

This is a linear Fokker-Planck equation with diffusion coefficients precisely given by (7.31), while the

“If, following for instance the Introduction, we relate the diffusion coefficients to Gaussian white noise operalors, (7.36) leads to ([£.(r+
) &(0) = 21 AL 5(7). In fact, in such a form the Auctuation-dissipation relation was mentioned earlier in the present contexl in [59]. while it is
well-known in quanium oplics in the theory of quantum mechanical Langevin equations (c.g. [21, 50, 54, 57, S8, 87, 88, 92, 200, 388, 422, 423]).
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drift functions correspond with (7.33). It is interesting to compare this equation with (5.76). that has
been associated heuristically with Svin'in’s theory, and where D = AAf at zero temperature. See also
[24. 258, 288]. The result (7.42) was first obtained in 1977 [424] and published later in [195].

7.5. Quantum fluctuations

From (7.42) one easily computes the equations of motion for the variances (3.53)~(3.55). They are

Opx = —2A0p + 0pp — %0, + Dy + D, (7.43)
Gpp = —4Aapy — 20703 + 2D, (7.49)
Ox = 205, + 2D, , (7.45)

the diffusion coefficients being given by (7.31). It is worthwhile to briefly compare (7.43)-(7.45) with the
corresponding formulae of the other theories treated so far in the present article. First, (2.15)-(2.17) of
the Siissmann-Hasse-Albrecht nonlinear frictional potential models can not be cast -into the form
(7.43)(7.45) whatsoever. This fact is closely related to the observed absence of asymptotic stability
about the steady state (section 2). Next, (3.56)-(3.58) of the Bateman—Feshbach-Tikochinsky time-
independent dual Hamiltonian model correspond to the general form of (7.43)~(7.45) with all diffusion
coefficients identically zero.” This fact is intimately connected with the recognized violation of
Heisenberg's uncertainty relation (section 3). Exactly the same comments serve (4.28)-(4.30) of the
Batcman-Kanai-Caldirola time dependent Hamiltonian model® (section 4). Further, in the Stevens-
Yurke semi-infinite transmission line model a,,, could not be evaluated explicitly. so that the comparison
becomes moot in that case (scction 5). As alrcady noted above, Svin'in's modified noise-added Kanai
model, i.e. (5.70)-(5.72), corresponds to zero diffusion coefficients save D,, = hAf2, which has been seen
to suffice in order to remedy the violation of the uncertainty principle (section 5). Dedene’s complex
symplectic formulation is basically equivalent to the Bateman-Feshbach-Tikochinsky theory and,
hence, can be given a like commentary (section 6). Finally, coming to the modified version of Bopp's
complex Hamiltonian theory (section 6), which has been purposely endowed with the proper com-
mutator, it is easily verified that the explicit solutions (6.79)~(6.81) exactly satisfy (7.43)-(7.45) with
Dekker's diffusion coeflicients (7.31).%%*
The steady state solutions of (7.43)(7.45) read

0 (®) = [Dpp + (122 + 4A?)D,, + 2A(D,, + D,,))2A02% (7.46)
O'PP(x) = (DFP + !zszx)/zA 1) (7.47)
Opx(®) = — Dy, (7.48)

which on substituting the specific values (7.31) result in

* This model in facl also implies D,, - D,, = 0, which evidenily violates the fundamenial-fluctuation dissipation relation (7.36).
** Here one will find D, = D,y =iha e ™, See e.g. (4.19). Compare with the previous footnote.
“%% Actually. this is 1o be expected in consequence of the identity of (7.26) - and. hence. of (7.42) - and (6.70).
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h K hA
Oxx (w) = .2; ’ a'pp(w) = _2-(;- 9 Opx (w) = —'Z'Z . (749)

These expressions are, of course, in line with (6.79)-(6.81). The mechanical energy in the steady state
becomes

2
AY Ly, (7.50)

E)=3,-=}

Note the equipartition over the two degrees of freedom in real phase space. The equilibrium
uncertainty product takes the value”

2 2
G,y (0) 70s (%) = %’yz e (7.51)

and the Gaussian uncertainty relation (2.18) is easily verified. Manifestly. the present theory ensures the
survival of the uncertainty principle under the action of dissipative forces. The results (7.49)}-(7.51)
confirm the earlier expressed general insight (see e.g. the Introduction) that dissipation goes hand in
hand with additional fluctuations.

Expanding o, () from (7.49) for small A in a Taylor serics, one finds

_h A? A?
(@) = 50 [l topEt 0(?21)] . (7.52)

1t is interesting to compare this with the semi-infinite transmission line result (5.79), from which it differs
essentially in the abscnce of a term linear in A [110]. Leaving the small friction regime, the above
formulae (7.49}(7.51) show a catastrophe if the system approaches critical damping A = £2. It should,
therefore, be expected that the present model is invalidated for strongly damped oscillators. See,” {258]
and section 8. In the end, let us note that the present approach seems easily extensible to more general
systems than the simple linear oscillator.

7.6. Summary

The complex symplectic Hamiltonian has been used to construct the classical Liouville-continuity
equation in the complex dual phase space. The separation of the physical system and its artificial adjoint
has been accomplished by an integration over the classical phase space of the latter. The quantization of
the reduced continuity equation results in a quantum mechanical master equation with the correct

“ Using the explicit dynamical solutions (6.79)6.80) il is straightforward 10 show thal ap(f) o (f) 2 Y42 for any r 2 0. If A # 0, the equality sign
applies only at ¢ = 0, due to the chosen initial condition.

“* Actually. it may well be that in the strong damping limit the lincanty of the macroscopic oscitlator model cannot in fict be substantiated by
microscopic ab initio calculations and a simple application of Ehrenfest’s theorem. Note, for instance. that in the mechanical transmission line mode!
(section §) the friction constant A is proportional to the square root of the tension J of the string. An increasing bias force generally implies
increasing nonlincaritics. On the other hand, it is known {24, 258] thal quantizing the damped oscillator by means of other complex variables than
the ones used here, leads 10 a vaniety of diffusion coefficients, among which nonsingular ones. Incidentally, a similar ambiguity is also observed in ab
initio calculations depending on the nature of certain approximations (in quanium oplics, for example. the rolaling wave approximation), of on the
basic model. See esp. |55] and also the next section.
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algebra. In the specific case of the linearly damped harmonic oscillator this master equation turns out to
be identical to the one obtained from Bopp’s modified theory. The intimate relation between the
dissipation, quantal fluctuations and diffusion coefficients in the Wigner equation has been emphasized.
The diffusion coefficients guarantee the validity of Heisenberg’s uncertainty relation.

8. The quantum optics oscillator
8.1. Introductory remarks

This section will be devoted to the discussion of an explicit physical model in order to shed some
further light on the results of the complex phase space quantization. To this end we will start ab initio
with the description of a closed system, consisting of a tagged, perfect oscillator as the open system of
interest and a (thermal) reservoir. It is essential to note that either subsystem is considered quantum
mechanically from the outset.

Aside from a general reference to the theory of open systems (e.g. [16-25. 35-37, 92, 93]), it is
worthwhile to mention the following literature in particular. The earlier investigations of linear damping
phenomena (e.g. [425]) followed the lines set out by Pauli {426] with emphasis on the assumption of
repeatedly random phases [18, 19] (see also [427—429] and {524-529]). The damped harmonic oscillator
has been treated in this spirit for instance in {430], although later work (e.g. [427-429]) has shown that
the random phase assumption and Pauli’s treatment of the master equation can be replaced by the more
general Nakajima-Zwanzig projection operator techniques [16-19]. For a rather clear outline of this
mcthod the reader is referred to e.g. [19] (esp. section 3b), from which it can be concluded that we
should anticipate at lcast threc essential approximations. First, the large reservoir limit. Second, a
Markovian approximation. And third, a weak coupling limit. Apart from using the density operator
approach in the Schrodinger picture one can of course also perform the calculations on the dynamical
variables themselves in the basically equivalent Heisenberg picture (see e.g. {24, 200]). Eliminating the
observables of the reservoir from the Heisenberg equations of motion, quantum mechanical Langevin
equations for the observables of the considered open subsystem are obtained (see esp. [24, 38, 50, 57,
87, 88, 92, 200, 297, 354, 431]). Presently, however, we will rather use a somewhat different technique, in
essence following the theory of laser operation as given by Scully and Lamb, decaling with the density
operator in the interaction picture [389-392].

The system we wish to investigate is an adapted version of the laser model depicted in fig. 8.1. See
also [20, 22]. The radiation oscillator (the system of interest) consists of an electromagnetic field in an
optical resonator (see e.g. [57, 58, 375, 432-439]), which on its own is perfectly lossless (in engineering
terms, it has an infinite quality factor). Cavity losses are introduced by the inescapable coupling of the

B, -reservoir

\ radiation ||
atomic systems ostitlator
tem

B,-reservorr I / 5Ys ]

Fig. 8.1. Modcl for the quantum optics oscillator, The radiation system is coupled 1o the thermal atomic bath, containing both upper (B,) and lower (B:)
state atoms (after [20]).
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radiation mode to the material constituents of the resonator. Since there will be a variety of atoms
present in the walls, the mirrors and the medium inside the cavity, the losses are broadband in the
frequency domain. In the present treatment we disregard a possible continuous, nonthermal pumping of
a subset of the atoms within the cavity into particular excited states, which might result in actual laser
operation of the device. The atomic system will be considered to be a thermal bath. To be precise, the
atomic reservoir will be assumed to be in thermal equilibrium on its own, at temperature T, before the
interaction with the tagged radiation oscillator is switched on. Of course, the nonthermally excited
electromagnetic mode will in principle disturb the thermal equilibrium of the bath. Nevertheless, we will
assume the atomic system to remain stationary in its equilibrium. This assumption requires, qualita-
tively: (i) the tagged oscillator’s initial exitation to be not too high above thermal, (ii) the interactions to
be weak, (iii) the atomic system’s relaxation to equilibrium to be fairly rapid and (iv) the number of
available atoms to be very large. Since quantum mechanical atoms, unlike the classical point-‘‘atoms’ in
the mechanical string of section 5, basically have a finite size, an infinite number of atoms necessarily
implies an infinite size of the system. In order to place the present model in proper perspective with the
classical semi-infinite transmission line, notice that the field limit is presently implied by starting with
quantal atoms, i.e. wave functions, from the outset.”

8.2. The model Hamiltonian
Consider the total Hamiltonian
H=H,+ Hg+ H,, 8.1

where r = radiation, R = atomic reservoirs, I = interaction, and [22, 300]

H, =&, f &’r [E* + (cVx A)], (8.2)
o f 1

Hk=fdn// (-z—l-;p’+ V)./;, (8.3)

H = —(e/m)fd'n//'A py. (8.4)

This Hamiltonian can be derived from a slightly more general one [22, 300] in the Coulomb gauge

V- A =0, neglecting the interelectronic Coulomb energy (certainly allowed in a one-electron atom) and

disregarding a term quadratic in the vector potential® (sec for discussions on that point e.g. [440-459]).
Inserting the usual expansion for the vector potential operator”™””

*To be very clear, one quanium mechanical bound siate (an atom) implics a field, the wave function, that can be expanded in lerms of a
discrete, infinite sel of eigenfunctions. This can be compared with the normal mode expansion (5.23) for the continuous, finile length transmission
line. Next, a dense speclrum can be oblained by considering an infinitc ensemble of atoms with continuously varying cigenspecira. This is equivalent
10 1aking the infinite length limit for the transmission line.

7 Since, essentially due to the weik coupling assumption, in the end only those atoms contribute that are at resonance with the radiation field.
the inicraction Hamiltonian (8.4) is presenily equivalent 10 ~eE 'r, even withoul making the dipole approximation.

%% In {22] we have used {1 for volume. However, throughout the present text, £2 represents the free oscillator frequency. Recalling that 4
denotes the length of the transmission line in section 5, A* is 1aken as the volume.
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h ik-r -ik-r
A=;\/mek[ake' +are ], (8.5)

where A = volume and €, represents the polarization vector, together with the corresponding formula
for the electric field operator (see e.g. [300]) into (3.2), one finds the well-known expression for the
energy of the free radiation system in terms of the photon creation and annihilation operators. Since by
assumption the free radiation system can oscillate only at its resonant frequency, say w, = 2, the general
expression reduces to”

Hr = fhfla an R (8.6)
while the interesting fundamental commutator reads
[a0,ad)=1. (8.7)

Now the atomic system must be considered. The field operator ¢ will be assumed to be the sum of
field operators ¢,, which refer to a single nucleus. In line with the omission of the interelectronic
Coulomb encrgy from the Hamiltonian, each separatc atom is assumed to contain only one single
active electron. The one-electron one-atom field operators ¢, are further expanded in terms of the
eigenstates u,,;. That is,

W(r) = 2 cout(r). (8.8)
wuf

The electronic annihilation and creation operators c,,; and ¢, obey the usual anticommutator fermion
algebra (see e.g. [92, 160-166, 300, 303, 313, 421, 463]):

[Cy.io C:/] v = 8‘.4!5!‘[ ' (89)

all other anticommutators being zero. Inserting (8.8) into (8.3) leads to
HR = 2 Z“,C:/C“/ , (810)
I

where &, is the jth energy eigenvalue of the unperturbed Hamiltonian H, = p*/2m + V for the uth
atom.

The model is considerably simplified by confining oursclves to two-level atoms.”” The levels are
labelled by j = 1,2 for the upper respectively lower level (see also fig. 8.1), and it is convenient to
introduce the operators

b“=C:zC“|, br.:C;lC“z. (811)

* A minute's thought will show that this assumption is in fact highly nontrivial. It will be taken here for granted. as usual. See for further reading
¢.g. [22. 55,92, 460-462].

“* This assumption does not seem to be very dramatic regarding the ultimate results, especially not since the dense spectrum in the relevant
frequency domain can still be constructed for the essentially infinite atomic ensemble.
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The raising operator b, lifts the electron of the uth atom from the lower to the upper level, the
lowering operator b, does the reverse. In the one electron subspace one has

CurCurt ClaCu2=1, 8.12)

and one easily infers that the newly defined raising and lowering operators again behave as simple
fermion operators. That is. the only nonzero anticommutator reads

[blh b:]* = 8uv . (813)
One further computes the commutator
(b 6] = CzCuz = CliCuur. (8.14)

Using (8.11)-(8.14) and setting w,, = (€1 — €.2)/h into (8.10). one finds the free reservoir Hamiltonian
Hp = haw,bLb, . (8.15)

Now inserting the electromagnetic field representation (8.5), again with only @, = @, = w. = 2, and
the matter ficld expansion (8.8) into the interaction Hamiltonian (8.4), one obtains

Hl = 2 (b; + bu )(gu“a‘f’ + g:na()) ’ (81())

where we have further assumed that the wave functions of separate atoms do not have spatial overlap
and use has been made of the well-known commutation relation i(h/m)p = [r, H]. In the dipole
approximation the coupling factors in (8.16) can be written as

gul)zi !!7_,"_ lQ W, Cxp(—ikmr“)@“, (8.17)

wherein

P, = fd’r u € er)u,, (8.18)

represents the dipole matrix element. Finally, making the usual quantum optical rotating wave
approximation (i.e. neglecting processes like bla) and b.a,; see e.g. [55,58,92]) the interaction
Hamiltonian (8.16) becomes

Hi= 3 (8.0aib, +guoaohl) . (8.19)

The rotating wave approximation typically disregards nonresonant processes. Therefore, in general it
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does not significantly influence the balance between the resonant emission and absorption processes,
that is the energy dissipation. However, as most clearly shown for instance by Agarwal [55, 464],
omitting the antiresonant interactions entails a neglect of the proper classical frequency shift from £ to
w = (122- A%)"2” This defect is most easily remedied by expressing the Hamiltonian from the outset in
terms of the damped oscillator creation and annihilation operators a'. a rather than the free a3, a, and
making in fact the rotating wave approximation in terms of the reduced frequency w rather than 2. This
procedure has the additional advantage that we can readily compare the outcome with the previous
section. Moreover, it clearly explains why the results will fail on approaching critical damping A = £: in
that case the rotating wave approximation in terms of w( | 0) becomes moot. From (6.42) one finds the
relations™”

szn[(w+ﬂ—l)()a+(w N+iA)a’].

(8.20)
ay= _[(w+{l+lA)a +(w=-02-iA)a].

2Vl

Inserting (8.20) into (8.16) and (8.6), again making the rotating wave approximation (i.e. neglecting
processes like by a', b.a, @' and a°). and finally adding (8.15). one obtains the total model-
Hamiltonian™*”

H=howa'a+ Y hobub, + 3 (gua'b, +giabl). 8.21)

Notice that this Hamiltonian is of the form (7.14). The coupling factors in (8.21) are casily expressed in
terms of the g,q and its conjugate:

i h w ,.A LA
=5 \ N - 2
8 =3\ 3p T [(|+n+.n)exp( ko 1), +(1 2 )exp(lk(, r)P: ] (8.22)

L L]

Since we shall be confined to second order perturbation theory, only |g.|* will occur in the resulting
formulac. Summing over the atoms implics an integration over space.”**”” As the atoms will be
considered to be spatially homogencously distributed throughout the volume of the radiation system,

“ Notice, however, that if the spatial exponential in g0, (5.17). cannot be disregarded, the contributions from the nonresonant interactions will
vinish in second order perturbation theory after summing over all (presumably spatially homogencously distributed) atoms, because these
contributions are proportional 1o ganinstead of (g, Indeed, Agarwal’s model concerns i smeared out effective interaction for all processes. Since
we do make the rotating wave approximation in the present trealment, we will not dwell upon this problem any further.

**The aq. af are simply oblained selting A =0,

*7 Of course. the Hamiltoniim (8.21) contains the as yet unknown lincar damping constant A, Therefore, in the inal formubie (8 58)-(S61), A i
not expressed explicitly as usual, but it can readily be determined sclfconsistently.

#¢7? Higher orders necessarily introduce nonlinear terms and, hence, should not be relevant to the linearly damped oscillutor. See further on,
especially below (R.34).

772 The sum over gin effect is threefold. Fiest, it implics a summing of the subensembles By and B (see also fig. 8.1), containing those atons
in a spatial cell Ar,, that are initially in their upper respectively lower state, with a certain w,. Second, it amounts to summing over the frequencics w,.
per cell Ar,. It should be noted that the present model does not basically specify the distribution over the frequencics. Third, one must sum over all
spatial cells. See e.g. [22] for some more details. In the perfect spatial homogencous case this latter summation commutes with the other two. In
thermal equilibrium, at a finite temperature above zero, the first and second summation can not be interchanged since the relative weights of B; and
B: depend on Aw, through the Boltzmann factor.
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the rapidly oscillating exponential terms in |g, [* vanish and one easily determines the effective coupling
factor in (8.21) to be

g“=i3[——1—2" s 0P 8.23)

The important alteration with respect to (8.17) is the replacement of the free oscillator frequency {2 by
the classical reduced frequency w.

8.3. Reduction of the Hilbert space

Equation (8.21) represents the most frequently used model Hamiltonian in quantum optics (see e.g.
[19-22, 41, 42, 50, 57, 58, 92, 200, 302, 389-391, 465-468)). Since, as already noted, it is of the form
(7.14), it is consistent with the master equation (7.24) to start directly from the conservative Liouville-
von Neumann equation. We then transform from the Schrodinger picture to the interaction picture in
the usual manner by means of the unitary operator

U = exp[-(i/h)(H.+ HR)] (8.24)

H = hwa'a, Hux=D, hwb.b,, (8.25)
so that

R =-(i/h)[H}. R], (8.26)
with

Hi= ; g.a'b, expli(w - w, )1} + conj., 8.27)

R being the total density operator for the combined radiation-reservoir system. The reduced density
operator p for the radiation oscillator alone, is obtained by tracing over the reservoir variables:

p=tx R. (8.28)

It will suit our purpose, in view of the Markovian approximation that will be made, to calculate a
so-called secular or coarse-grained equation of motion for p, in close analogy with the outlines of
Langevin reservoir theory.” That means, employing in fact the basic idcas of the theory of Brownian
motion, we presume the existence of a tiny time lapse A, which is intermediate in length between the
characteristic (dephasing) time rr of the reservoir and the relaxation time 7, = 1/A of the radiation
oscillator.”” That is, T <Af <7,. In other words, if we define the effective bandwidth of the atomic

“ One should notice some subtle differences with our earlier treatments [20, 22]. as well as with thal given e.g. by Scully and Whitney [200]. For a
detailed account of the Langevin theory sec e.g. {57, 58]. Sce also [24).
** For a criticism of the Markovian assumption, especially in the extreme quantal regime T | 0, see section 5.
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system as Awr = 1/7r, then Awg At > 1, while on the other hand A Ar < 1. The assumption is meant to
imply that, in the interaction picture, p varies only slowly over At. Furthermore. the rapid relaxation of
its variables and its additionally assumed infinite size, are taken to imply that the reservoir, described by
Pr, preserves its statistical properties in the course of time. Indeed. the reservoir will be considered
throughout to be in its own thermal equilibrium state at temperature T.

The coarse-grained time rate of change for p(t) reads

. t+Af) - t
p=tl’RR( Al R( . (829)

The general solution for AR(f) = R(t + At)— R(t) from the Liouville-von Neumann equation (8.26)
may be written iteratively as (e.g. [20, 22, 24])

1+At n

Re+3)=R0+ T (-3) [ an[du- [ dulHi). 1. (Hi). RO .

n=1
t

Having worked one's way back in time from ¢+ At to £, with At > 1r. one sets R = ppr on the right
hand side of (8.30), with

pe=I1pu. (8.31)

Pu = 2 )P wiruail (8.32)
i

/)M/ = Zu‘ C\p(—'{"m/kll’r) . (833)

where j = | or 2 for the two level atom, and where Z, is the canonical partition function for the species
p. From (8.30) one has through second order:

r+at

R(t+At)=R(t)—h-l-2 I dtyfg.a’b, e =" + conj., p(t)pg]

1+ A 11
- Elf I f dt f disgua’h, e ="+ conj. [g.a’b, € " + conj.. p(t)pul].
! ! (8.34)

Terms in (8.30) with n 2 3 necessarily introduce nonlinear terms into the equations of motion and,
hence, should not be relevant to the lincarly damped oscillator. Actually, the higher order. nonlinear
terms are difficult to estimate but finally (i.c. after tracing over the reservoir etc.) turn out to be roughly
of relative order A At{a'a). Since in the Markovian approximation A At < |, the mean number of photons
should not be too high. i.c. (@'a) ~ (1).” Inserting now (8.31)-(8.33) for px into (8.34). and performing in

“In the purely classical regime the perfect Markovian limit is possible in principle (see section §), so that Are(h%) } 0. See c.g. (5.61). Exen
though (a’a¥e(1/R) in that case, the linear approximation can be made exact then. See also [3R, 43]. Further, anticipating the final formulae of this
section. 4 will be proportional to [g(w ). i.c. to [2F, and to N,/ 17, In summary, the nonlinear terms can be distegarded provided (1) the Markoy
assumption holds good. (2) the excitation of the tagged oscillator is not too high, (3) the interaction matrix element per relevant atom is small. and
(4) the atomic density is only moderate.
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view of (8.29) the trace over the reservoir. the first order term on the r.h.s. vanishes because it contains
only single fermion operators. The second order term yields

s+at "
p(t+A0)= p(0)- 33 S f dt, f dt:treQu (1, 13) (835)
m
with
Qu(t.)=(U,+V, )Igu lz expli(w — wu )t — i(w - w, )12} + conj., (8.36)
Ui = [(I,b“. (Ib;ppR] . (8.37)
V. = [PPR“b;» (Ifb“] , (838)

and where we have already used the standard properties of thermal fermion systems, namely that
tra(prb.b,) is always zero, while tre(prb,. b, ) is nonzero only if u = ». Let us perform the trace of one
term in (8.35) in some detail. For instance,

tre U, = (a'ap - apa’) tre(peb,bl) . (8.39)

By means of (8.31)-(8.33) onc easily evaluates the trace:

trr(prbuby) = tr(pububl) [ trp, = 3 (uiluf) poyujlbubilui)
if

veu

= pui{flbub sy = puza= Z2" exp(=&,:/kuT). (8.40)
]

so that, evidently, only those atoms that are initially in their lower state contribute to this interaction
term. Similarly one obtains

tre V., = (paa’ - a'pa)Z." exp(— & /kuT) . 8.41)

Having thus in effect calculated trg Q,, we next concentrate on the time integrals occurring in (8.35). It
will be useful to define the spectral function

1+ A n

J(w-w)= Z\l': f dty expli( - w, )11} f dt; exp{ - i(w - w, )12}, (8.42)

which is easily seen to be independent of the global time ¢. Interchanging the orders of integration one
is left with

Mo - w,)= 55 f dn, (At - 1,) expli(w - w, )11} . (8.43)
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8.4. The master equation

With the simple, provisional result (8.43) at hand the reduced secular master equation (8.29) is
written as

p=«ia'.pal-«:[a’, ap]+ conj., (8.44)

where «; = k;j(w). with j = 1,2 and
1 -
k(@) =732 Z. exp(=8,lkaT)|gul® s (w - w,) . (8.45)
»

The atomic filter function s (w ~ w,) clearly picks out the relevant portion of the total reservoir
spectrum (see also {299, 338,469)). If in that relevant range the reservoir spectrum is densely dis-
tributed, which requires the number of atoms to be very large, the sum over u in (8.45) can be replaced
by an integral over w,,, such that (compare with (5.47) of the transmission line model)

- [ aN@)= [ @Nido) do = N [ pla)dor, (8.46)

which defines p(w’) and where N represents the total number of atoms in the system's volume A* which
interact with the radiation oscillator. The coefficients «;, (8.45), can now be written as

(@) = f (@ - 0 o) [1 + exp(ho ks T)] ™ do’ | 8.47)

]

where the plus and minus signs belong to j =1 and j = 2 respectively, where we have invoked the
explicit result for the partition function
2
Z, = exp(-&,/ksT), (8.48)

=1

with Aw’ = &, ~ &, >0, and where we have further introduced the function”
o(@)= Ng(@Vh|’ p(o"). (8.49)
Notice, in view of (8.23) for g(w') = g., that o(w’) will be independent of Planck’s constant and that it is
proportional to the spatial density N/A> of the atoms (see also the footnote below (8.34)).
The atomic filter function (8.43) has both a real and an imaginary part, which can be easily calculated
exactly. Defining
Jw-w)=V(w-w)+is"(w-’) (8.50)

? Effectively, combining (8.46) and (8.49), onc has £, |g,/A - [ dw’ a{w").
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one obtains

J(w-w)= Z;#—[l cos(w — w)At] 8.51)

- w)= —w—u?(w el (852)

Here we come across well-known subtleties. Although At is quite short compared to the characteristic
time constant 7, = 1/A of the tagged oscillator, it must be considered as quite long compared to the
decorrelation time of the reservoir in order for the Markov assumption to make any sense. That is, as
noted before, 1/At € Awg, Awg being the effective bandwidth of the bath as now expressed in terms of
o(w’) in (8.49). See fig. 8.2. Evidently, J'(w’— ') picks out only a small portion of the broadband
reservoir spectrum, namely near the actual oscillator frequency w. Indeed, if we formally let At tend to
infinity, (8.51) is recognized as one of the standard representations of the Dirac delta function (see e.g.
[163]). Analogously, in that limit (8.52) leads to Cauchy’s principal value of the pertinent integrals over
w'. Hence, in the Markovian limit one has”

J(w-o)=T8w-w)+ R (w_' ) . (8.53)

w

Also separating the «;, (8.47), into their real and imaginary parts according to «;(w) = «;(w)+ix;(w),
one now obtains

k(@)= mo(w) [l + exp(zhw/ks T)) ™", (8.54)
2l
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Fig. 8.2. Real (a) and imaginary (b) part of the reservoir spectrum filier funclion 4 (w), according 1o (8.50)~(8.52). dwr is the reservoir bandwidth.

* This upshot is consistent with introducing a complex frequency w +i € and leiting Az in (8.43), and in the end considering € | 0. Scc eg.
(72,163, 164).
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" K (w) , , 5
ki(@)=R/m) | L do". (8.55)
o—w-
0

The result (8.55) is a clear-cut example of a Kramers—Kronig dispersion relation (see e.g.
[166, 303, 314, 465, 470-480] and also [113] p. 371 and [481] chapter 5).

In the extreme classical regime Aw << kgT, (8.54) yields «; = 3mo(w). On the other hand. in the pure
quantal regime hw > kgT, one sees that x{=0 while k3= mo(w). Recalling that to a very good
approximation the broad reservoir spectrum o(w) can be assumed to be constant over the entire
relevant frequency range, (8.55) is usually taken to show that the frequency shifts «; are effectively
nullified in both limits. Only in the transition regime 4w = kgT some subtle dispersive phenomena are
expected. Anticipating our particular interest in the case T = 0, we indeed take «, real. i.e. k7= 0 in the
sequel.”

As in section 7, it will be useful to represent the master equation (8.44) in terms of coherent states.
Following the procedure outlined below (7.15), one arrives at the Fokker—Planck equation

P.l = (A +i w) (CI'P)_,, + (A -i w) (C!‘P).,,- + ZANwP.an' (856)

for Glauber's P-function.” In going from (8.44) to (8.56) the opportunity has been taken to transform
back from the interaction picture to the Schrodinger picture. Furthermore, we have identified

A=xh=«kl, 8.57)
N, =«i/A. (8.58)

By mcans of (8.54) for «; and comparison with (1.10), it is readily verified that
N, = (exp(haw/kyT)=1)"" (8.59)

does represent the standard thermal Planck function. Evidently, at T = 0 (8.56) is identical to (7.16) with
¢ = 0. Indeed, in the Schrodinger picture the presently derived Markovian master equation (8.44) for
the reduced density operator reduces at T =0 to

p=—-iwla'a, p]-A(a". ap]+[pa’. al), (8.60)

with A = 7o (@), which is exactly identical to the basic result (7.25) of the mesoscopic complex phase
space quantization.***

*The sloppiness of these considerations is acknowledged.. However, since they depend on the details of the actually unknown reservoir
spectrum o{w), they are difficult to improve and, as usual, will be 1aken for granted.

*“1n order to update and more or less complete the list of references: see also [482-486].

##* Hence, the present upshot also agrees with the result (6.70) from the modified Bopp-thcory. See also a recent preprint by Dedene [487].
which however only contains the diagonal dynamics (as in Bopp's original paper [114]); see further the remarks in section 6. Finally, it should be
noticed that in both sections 7 and 8 the calculations have been performed using the frictional creation and annihilation operators rather than the
frce ones. In fact, it is not so casy to compare the complex phase space quantization using the free operators in the effective complex Hamiltonian
(sce e.g. [258, 288}) with ab-inilio model calculations. Namely, in that case, according to Agarwal [5S, 464}, the antiresonant interactions in the
Hamiltonian (8.16) must be carried along in order for the classical reduced frequency w to be reproduced in the results. However, as noted in section 7, for
the full Hamiltonian (8.16) the master equation (7.24) does not exactly reduce to the standard Schrédinger-Liouville equation, so that the comparison is
not internally consistent. Rather, one should also do the model calculations from (7.24).
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8.5. Summary

Starting from the well-known microscopic Hamiltonian for an atomic reservoir interacting with a
single quantized radiation oscillator, the reduced master equation for the latter subsystem has been
derived. It describes linear damping if the usual sequence of rather subtle steps is taken. The rotating
wave approximation is made and the Hamiltonian is written in terms of the creation and annihilation
operators of section 7 in order to guarantee the radiation field to oscillate at the proper classical
frequency w. For the model Hamiltonian (8.21) the master equation (7.24) is equivalent to the
conventional Schrodinger-Liouville-von Neumann equation, from which the further calculations are
made along standard lines. The interaction between atoms and radiation is assumed to be weak, and
neither the density of atoms nor the initial excitation of the oscillator should be too high, otherwise the
effective equations of motion would become nonlinear. A Markovian assumption is needed for the
thermal reservoir, that is taken to possess a dense and broadly distributed frequency spectrum, which
implies an infinite number of atoms and, hence, an infinite size of the system. The resulting coarse-
grained master equation reduces in the zero temperature limit precisely to the essential upshot (7.25) of
the mesoscopic complex phase space quantization of the previous section.

9. Hasse’s pure state representation
9.1. The Schridinger equation

Let us return to the complex phase space quantization of section 7. The basic outcome (7.25) of that
procedure has been represented in terms of the original Hermitian coordinate and momentum in (7.27).
For convenience, we repeat it here in the somewhat more general form (7.29). That is,

p= =5 Hop] =i [x(p. o). 1432 Dpe + D) [px. 1l = 32 Dulpp o1l - 32 Dl o, 9.1)

where H, is the free oscillator Hamiltonian, and where the diffusion coefficients have been specified in
(7.31). The master equation (9.1) cannot be written in pure commutator form. In other words, there is
no ordinary Schrédinger wave equation corresponding to it, save for the case A =0 (i.e. also all D’s
equal to zero). Nevertheless, it turns out to be possible to find a special, stochastically equivalent
Schrodinger equation in the limit of weak damping A | 0. However, as will be shown in the sequel,
this is possible only if the diffusion coefficients in (9.1) obey Hasse's pure state representation condition.
See [107,310, 311] for Hasse's original derivation, and {196] for a slightly generalized formulation.”
One may trivially write the density operator p in (9.1) as

p() = pu(t) + pi(t), 9.2)
where p((?) is of the order A and represents a small correction to py(f). As p,(?) is taken to describe a
nondissipative system that can be represented by a pure Schrodinger state vector, say | ), one has at any

time

* Sce also [292] for related considerations.
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palt)=po(t)=1 (. (9.3)

An arbitrary density operator possesses the property tr p>(f) < 1. In order that it represents a pure state,
it is both necessary and sufficient (see e.g. {163] p. 336) that

trp(t)=1. (9.4)
If the system starts off from an initial pure state, then tr p(0) = tr p(0) = 1, and (9.4) is guaranteed if the
time derivative of its L.h.s. is identically zero. Therefore, since (p) = pp + pp, we multiply (9.1)
respectively from the left and from the right with p, and add up the resulting expressions. In a first order

(Born [55, 163, 164, 303, 314, 464, 488-490]) approximation one then replaces p(f), in terms that are
already of order A, by py(). This leads to

ne_ A . LA A
(%) = - flT[H"' pll-iy [:px + xp). pi] — i3 [x, poppo] +i 3 [p. poxpo] + 2403
l 2
+ Y (Dyx + Dip Xpolpx + xp)po + [3(px + xp). pil . =[x, poppo]. = [p. puxpal .}

] > 2 1 2 2
= 72 Ded2pup’pu = 2[p. poppal - + [P pil} =33 Doof2p0x°pu = 2[x. poxpol. + [x%, pil.}
(9.5)

Notice the anticommutators in the dissipative terms. Now using the idempotency property pj = p, from
(9.3) and noticing that for an arbitrary operator function F

poFPu = (F)pu , (9-6)

one easily evaluates (9.5) further as:

() =- hl [Hy, pY]-i 2— (W, po] + 2Ap, + ;lz (Dpx + Dip)xpx + xp) + 2(px + xp) = (p)x — (x)p, po].

- ;li D..[(p> - 2p)p + p*. pul+ — ‘,,15 Dy, [(x?) = 2(x)x + x2, po]+ , 9.7
where
W = 3(px + xp) - x(px + xp) + (p)x = (x)p. (9.8)

Note that the convenient choice (W)= () only involves a nonobservable time dependent change in the
phase of the wave function. As discussed below (9.4), the propagation of a pure state is guaranteed if
the trace of (9.7) is equal to zero. This requirement immediately leads to Hasse’s condition” [196, 258]

D .0pp + Dppoex = (D, + va)apl = ;" A, .9

* In Hasse’s original notation [311]: A =%y, D,, =0, D,, =+ D. and Dy + Dyp = -d.
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where the usual definitions (3.53)-(3.55) for the variances have been used. Since under the condition
(9.9) for all times p*(t) = p(t), and since within the Born-approximation we may again replace py(¢) by
p(t) in (9.7), the latter formula can be written as (see also e.g. [59])

p =—(/h)[Ho+ AW, p] + (1/A)[D, p]. , (9.10)
where we have introduced the operator [196]

D = hk + (1/h)(Dpx + Dyp) {x(px + xp) + 3px + xp) = (p)x = (x)p}
~(UR)D{(p*) = Ap)p + p*} = (1/H)Dyp{(x?) = 2x)x + x7}. (9.11)

Now defining the nonlinear, non-Hermitian Hamiltonian

O=H,+AW+iD, 9.12)
the result (9.10) can also be presented as (compare with (6.53))

p=—(ilh)Dp - pH"). (9.13)
which manifestly shows that the wave function obeys the Schrodinger equation

ihy, =Dy (9.14)
It is amusing to compare (9.14), with the Hamiltonian (9.12), with the Sissmann-Hasse-Albrecht
Schridinger equation (2.10). The presently derived frictional potential (9.8) appears to be identical® to

the heuristically proposed W in (2.9) with ¢ =}, being one of Hasse's choices [129]. However, the
present model has quite different features in view of the additional operator .

9.2. Wave packet solutions

The equations of motion for the moments are easily calculated from the Schrodinger equation (9.14),
or alternatively from the equivalent density operator equations (9.10) or (9.13). For the zeroth moment,
the norm, one has

(I = (@h)XD)=0 9.15)

by virtue of (9.11) and the pure state condition (9.9). In fact, (9.15) just re-expresses the latter. For the
first moment {x) one finds

(x)" = =(i/A)[x, Ho+ AWD + (1/8X[x, D). (.16)
The contribution from the potential W vanishes and one obtains

* Apart from an unimportant phase factor.
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(x)" = (D) + 2A{x) + (2/h2)(D,, + Dy, X{xpx) = (x*) (p}}
Q3D Apxp) — (px + xp) {p) + (x) (P} = /AZ)D,, {{x>) - (x) (x3)}. 9.17)

Defining the third deviation-moments (i.e. from the mean)

Tume = {1 =) (v = (V) (x = ()}, (9.18)
where u, v and « each stand for x or p, (9.17) is rewritten as

(¥)" = (P)+ QIH*N(Dpe + Dep)0upx ~ DsGpep = Dippaac} + IR Yx) (D). ©.19)
Since (D)= 0 in view of (9.15), one is left with”

(x) = {py+ 2/h*H(Dpx + Dsp)0spx = DscOprp = Do} . (9.20)
which reduces to the correct result (x) = (p) as obtained from the original master equation (9.1) for
wave packets with zero skewness. As in view of the linearity of the oscillator problem the propagator of

(9.14) will be a Gaussian, zero skewness is guaranteed if the system is initially in a Gaussian state. This
is, indeed, the usual assumption. Under the same conditions

() = =2A(p)— DHx) + (UW)(Dye + Dip)pup = DscOprp = Dpprape} (9.:21)

also reduces to the correct equation for (p). Confining ourselves henceforth to Gaussian wave packets, it
is a matter of straightforward application of the Gaussian theorem to obtain for the second moments,
for instance,

Oux = 20,0 + 2D5c + (4/h)x%) (D) = /A )XY (D) + (4 h*) Des(0pp0x = 07~ 0) - (9.22)

Once more, () =0 in view of (9.15). Further, the expression between brackets is exactly zero on
account of the uncertainty relation (2.18) for Gaussian wave packets. Similarly calculating the equations
for the other variances, one obtains altogether

Gpx = =20, + 0y — Vo + D, + D,y 9.23)
Opp = —~4Aa,, — 200%0,, + 2D, , 9.29)
Ou = 20, + 2D, . (9.25)

Comparison with (7.43)-(7.45) readily proves that, albeit only for Gaussian wave functions, the
frictional Schrodinger equation (9.14) indeed represents the same dynamical state as the original master
equation (9.1).

The essential proviso on the above results is that the pure state condition (9.9) must be satisfied. In

“ Notice a difference in sign with respect to [311].
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general, this will not be the case in the dynamical state. But, even in the final steady state, if it exists,
the fulfilment of Hasse's condition is nontrivial. Nevertheless, at least we can show that the above
theory is selfconsistent in the long time limit. Namely, since the stationary solution of the Schrodinger
equation (9.14) with the Hamiltonian (9.12) will be a Gaussian, the special form (2.18) of the uncertainty
relation holds in that case. It then remains to show that the steady state solutions of (9.23)-(9.25) do
imply (D) =0. The pertinent steady state fluctuations have already been given in (7.46)-(7.48), from
which we first of all learn that (2.18) can be specialized to

Tpp (%) O () = i#t* = Dy (%), 9.26)
Inserting (7.47) for o,,(*), one has

D20, (%) + 24 0,2 (%)) + Dy 0. () = 3°A. (9.27)
Most easily using (7.43), with g, = 0, for the quantity within the square brackets in (9.27), one finds

D 0pp(®) + Dy 0 (®) + (D + Dip)Dys = 3H°A . 9.28)

Finally, once more using D,, = —a,.(®) in the last term on the Lhs. of the equality (9.28), it is
immediately seen to represent the steady state version of the pure state condition (9.9), which is what
we set out to prove. Vice versa, if the steady state fluctuations follow from (9.23)-(9.25). and
moreover,” if (and only if) they satisfy Hasse's condition (9.9), then the Gaussian wave packet
uncertainty relation (2.18) holds. It is quite interesting to see, as is most easily verified by mere
inspection of (7.31), (7.49) and (9.9), that the specific fluctuations emerging from the complex phase
space quantization of section 7 precisely fall into this category (this was originally noted in [196]). In
other words, the dissipative ground state of the damped oscillator of section 7 has the special property
that it fulfils Hasse's pure state condition and that, hence, it can be described in terms of a Gaussian
Schridinger wave function.”

9.3. Summary

It has been discussed how the quantum mechanical master equation for the linearly damped
oscillator can be approximated by a nonlinear frictional Schrédinger wave equation with an essentially
non-Hermitian Hamiltonian. Two requirements must be met: first, only Gaussian wave packets should
be considered, and second, Hasse’s pure state representation condition must be fulfilled. Unfortunately,
the latter is generally violated. It has been shown, however, that the specific steady state fluctuations
predicted by the complex phase space quantization of section 7 do satisfy Hasse's condition, such that
the dissipative ground state can indeed be described exactly by means of a Gaussian wave function.

* This really is a nontrivial additional condition. Counter examples are casily constructed.

** Three remarks seem in place. First, the wave packet in question, of course. is not a common. free oscillator minimum uncertainty packet.
Second, in transient phenomena the pure state condition will not be met in general, and, hence, the spread of Hasse's Gaussian wave packet in the
dynamical state will definitely be different from that calculated by means of the original master equation. And thirdly, the connection between
Hasse's and the author's theory is even more remarkable as we have recently shown. One can casily construct a whole group of diffusion coeficients,
parametrized by a real scalar degree of freedom, that fulfil Hasse's condition exactly in the long time limit. See [258] for dctails.
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10. Elements of complex Hamilton-Jacobi theory
10.1. Hasse's classical dynamics

10.1.1. Complex calculus

As noted in the previous section, below the Schrodinger equation (9.14). there is a close similarity
between Hasse's potential (9.8) and the Siissmann-Hasse-Albrecht-potential (2.9) with ¢ = 1, although
the additionally occurring non-Hermiticity of Hasse's Hamiltonian (9.12) should not be forgotten. In a
recent paper [43] Stocker and Albrecht indicated how the nonlinear frictional potentials (2.9) of
Stissmann, Hasse and Albrecht might be considered as formally generated within the framework of
classical real space Hamilton-Jacobi theory (see e.g. [1. 2. 7.9, 223, 224]) and the closely related fluid
dynamical interpretation of Schrodinger's wave mechanics (see e.g. [190, 201-204, 216, 225]). Let us
therefore consider the classical Hamiltonian analogue of Hasse's theory.

In the classical formalism it is convenient to set (F(x, p)) = F(x(¢t). p(t)). where F(x, p) is an arbitrary
function of the intrinsically prescribed functions of time x(¢) and p(t). The latter are the solutions of the
dynamical problem. The complex Hamiltonian (9.12), where H, is the free oscillator Hamiltonian (7.30),
W is given in (9.8) and D follows from (9.11), is now comfortably written as”

D= Ho+ A(p + p(0) (x = £()) + 5 (Dyu + Dop)p = p(0) (x - x(0)
- 3 De(p = PO = § Dol = x(0)Y (1o.1)

Evidently, by choice in fact, along the classical trajectories $(1) = H,(1), i.c. the classical mechanical
energy.”” 1t is particularly interesting to investigate the usual Hamiltonian equations of motion with
(10.1). One obtains

X=0,=p+A(x = x(1))+ ({/h)(Dyx + Dyp)(x = x()) = 2(i/h)D..(p — p(1)) (10.2)
p==9x==x=A(p+p)) = (/h)XDpx + Dyp)(p = p(1)) + 2(i/h)Dpp(x = x(1)) . (10.3)

Since by definition we are looking for the solutions x = x(¢) and p = p(t), these equations reduce to
(6.11)-(6.12),

x=p;, p=-2p-Qx, (10.4)

which correctly describe the classical linearly damped harmonic oscillator. Notice that this result is
obtained independent of a particular value of the diffusion coefficients. Of course, quite generally it
would be rather problematic for imaginary terms to enter the classical real variables equations of
motion,

Although as noted, the classical dynamical theory obviously holds for arbitrary diffusion coefficients,

*Note that the diffusion cocfficicnts (7.31) are of the order &, so that the cocfficients in (10.1) do have proper classical limits.
“# Remember that in the quantum theory we have {(0) = (Ho).
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we will confine ourselves in the sequel to the specific case (7.31),

hA hAn? hA?

Da=3y+ Dw=T3, DutDy=-"0, 103)

which is quantum mechanically closely related to the canonical transformation (6.42)-(6.43), or
equivalently to the first columns of (6.3) and (6.4). In the classical formalism it is preferred to eliminate
Planck’s constant and, hence, to use the complex variables z, z* rather than a = z/Vk, a* = z*/Vh.
Inserting

x=—i2_:(z—z*), p=\/—’2_:[(w—n)z+(w+n)z*1 (10.6)

and the diffusion coefficients (10.5) into (10.1), one obtains

OD=(w-iN)z*z+2Az* )z + (1), (10.7)
where ¢(f) is an in principle dynamically arbitrary function of time that can be used, for instance, to
make $(¢) real (and even represent the true mechanical energy) along the classical trajectory. It is
well-known that the Hamiltonian (10.7) can be obtained from the Lagrangian (see e.g. [24, 182, 195,
300, 331, 418)])

L=iz*2-0(z%21), (10.8)
so that the momentum conjugate to the (chosen) coordinate z reads o, =i z*, which is line with the
modified Bopp-theory (section 6) and the complex phase space quantization of section 7. The canonical
equations of motion become

F==i),-=—lwz-Az, (10.9)

2*=iQ,=iwz* = AzY+20(z% - 2%(1)), ' (10.10)

which along the proper trajectories z = z(f) indeed reduce to the correct results. Compare e.g. with
(6.9); see further [24, 182, 195, 196, 258, 288] and [197]. Notice for example, following Bopp [114], that

FHRU:+ P z=5+20i-(A-iw)i=(G+Az+iwz) =0. (10.11)

In the preceding we have used the time independent canonical transformation (10.6) which preserves
the basic Poisson-brackets of coordinate and conjugate momentum. That is*

{x,p}={z, 7.} = I. (10.12)

* Although the quantum mechanical literature (c.g. {163, 164, 300]) is rcasonably consistent in denoting commutator brackets by [, ] and Poisson
brackets by {.]. in the realm of classical mechanics various notations for the latter are floating around (sec e.g. [1, 2. 7. 9]). For definiteness, (10.12)
gencralized to higher dimensional systems amounts 1o {f, ghp = Zi (f18n — £/ ). FOr convenicnce, we further set e.g. {x. pr ke = (i i ).
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Of particular interest, however, are time dependent transformations. Of course, especially that
transformation is of value that solves the dynamics or, within the present context. at least removes the
irreversible part. It must then immediately be pointed out, that such transformations need not be
canonical in the usual sense as contained in (10.12). Consider in view of the linearly damped oscillator
problem, for example, the dynamical transformation from z to z’ according to

z=2'e™, mo=m.eM, (10.13)

Remember that 7, =iz*, so that 7, =i z'*. Substitution of (10.13) into (10.12) yields
{2/, mo)ep = €2, (10.14)

so that (10.13) is certainly not canonical in the sense of leaving the fundamental bracket invariant.
However, on the other hand, it is obvious that the remaining reversible dynamics can be obtained from
the Hamiltonian

O =wz*z, (10.15)
with
{z',m}=1 (10.16)

in licu of (10.14). The other way around, if we had started from the well-known conservative dynamics
(10.15)(10.16), the transformation (10.13) would lead to an exponentially decaying bracket in (10.12),
i.e. for instance,

{x, p}z‘,ﬂ,'= e-u" (10.17)

which is reminescent of the unwanted feature encountered earlier in (4.9) within the Caldirola-Kanai
theory, and which has been seen to be closely related to the violation of Heisenberg's principle in
quantum mechanics. Of course, in classical theory (10.17) has no basic physical, but only mathematical
implications.

It is instructive to briefly investigate the time dependent transformation (10.13) in slightly more
detail. Introducing, for convenience, the notation z' = §(z, ), one determines the equation of motion

2= -i(F.F - FrE )0+ B (10.18)
making use of the general form of the original Hamiltonian equations (10.9)-(10.10). The expression in
brackets on the r.h.s. of (10.18) is easily identified with the Poisson bracket (10.14). Noticing further that
& does not depend on w,-=i2z'*, one obtains the transformed Hamiltonian

O =e*O+mF.+ 2 x(l), (10.19)

where «(t) is an as yet arbitrary function of time. The latter is fixed by the “‘complex dynamical
consistency requirement”’, demanding that
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=i, =i 0 . (10.20)

In words, (10.20) requires the operations of complex conjugation and time differentiation to commute
with each other, at least along the true classical trajectory. This condition is both necessary and
sufficient in order for the complex dynamical formalism to be selfconsistent. In the present case, using
(10.19) and recalling that 7§(z, t) = z’. (10.20) readily leads to

k()= =185~ 7Bl rmr=-20A2%(). (10.21)

Inserting this result for «(f) into (10.19) finally shows that the original Hamiltonian (10.7) indeed
transforms into (10.15).”

Transformations like (10.19) are not obtained within the standard treatment of the theory of
canonical transformations™ (see e.g. [1. 2. 7. 9]). At least. this is consistent with our earlier observations
concerning the conservation of Poisson brackets under canonical transformations. Indeed. their in-
variance can be derived once the usual form of the canonical generators is given (see especially
Goldstein's [1] treatment, proceeding via the Poincaré integral invariants and the Lagrange brackets).
However, the basic definition of a canonical transformation is that it preserves the form of the canonical
equations of motion. This definition, almost trivially, implies that the most interesting time dependent
transformation, namely the one that solves the dynamics, is always canonical. No doubt, transforming
to the initial state, the new variables are time independent by choice and, hence, can always be derived
from the zero Hamiltonian.”* In other words, the dynamical Hamilton-Jacobi transformation is
canonical per se, whether it preserves Poisson brackets or not.

10.1.2. The Hamilton-Jacobi equation

Let us now recall the complex canonical momentum relation o, =i z* and extend for a while the
formulation to an N-dimensional problem.”*** Suppose then that we were given a function Z(z, 1), with
the property

iz8=S.: k=12...N (10.22)

Note that z={z,}={z\. 2 ..., zv}, and that the rh.s. of (10.22) solely depends on z, not on z*.
Separating (10.22) into real and imaginary parts, one obtains 2N relations connecting 2N unknowns.
Clearly, (10.22) suftices in principle to find a function z(r), and. of course, also = *(£).7"** 1t will be our task

* The Hamiltonian §’ as given in (10115) is nol unique. For instance, if in (10.18) one slarls with the equation of motion for 2 rather than 2°,
and imposes the complex dynamical constraint (10.20) then on 27 instead of 2°°, one oblains ' = w22’ - HA(2°° = 2 *())(2’ - 2'(1)). which is
obviously dynamically equivalent to (10.15). The latter is just the simplest member of a group of dynamically industinguishable generators, This
ambiguity is intimately connected with the arbitrariness of the diffusion coctficients in the original real variable Hamiltonian (10.1) with respect 10
the classical dynamics (11.2)(10.4).

“7 A way oulin certdin cases may be toadd the tinte £ tothe miechamcalvariables (s conjugate varable will be mmnus the §hmiltontan) and transform
il simultancously, considermg the problem in the so-called “estended phase space”™. See especially Lianesos' treatise [7).

7 Of course, it ntay alo be a constant, e, independent of the new “dynamical”™ sariables.

7% T be clear. N is arbitrary and the phase space will hine 2N dimensions,

2722 Notice here a difference with the usaal theory of canonical transfornvations in terms of seal space mechanieal vasiables. The standand analogue
of (10.22)is p = § owhich yields i relation between povand £ Obvioush this is not sudlicient to obtiain the solution of the dy namical problens o integrated
form. For that purpose one needs the second half of the transforniation formula, for example 17 = 8, where the primed variables are the new ones, sav
the imtnl values. In the comples variable theory the second set s, in fact, supplicd by the operation of complex conjugation itself.
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to determine that particular generator Z(z, t) that makes this function z(¢) identical to the solution of
the dynamical problem.

To achieve this, consider the total differential of z;. On one hand, by (10.22). it can be considered as
a function of z and ¢, so that

dzi=2 zi, dz+ 25, dr. (10.23)

.3
i

Using the general form of the canonical equation (10.9) for z; in the sum, and (10.22) for z§ in the last
term on the r.h.s. of (10.23). one obtains

dzf=-i 3 28,9 dr-i(S,). dr. (10.24)
{

On the other hand, from the second canonical equation (10.10) one has

dzi=i9,, dr. (10.25)

-{’.n + z Z:“,,.\.)“.; + (3.1).:. =0, (1026)
t

Now notice that Z is a function only of z and ¢, but that in (10.26) the Hamiltonian $ still depends on both z
and z* (and possibly on ¢, of course). Substituting (10.22) for z* into 9, we define” H(z*(z. 1), 2. 1) = 9'(2, 1),
and consider

]

Da=Pat 202l . (10.27)
{

Substituting (10.27) for £ ., into (10.26), the result may be written as

O©+C)a=2 (8, — 25,9, (10.28)
t

In view of (10.22), the r.h.s. of (10.28) vanishes termwise identically. Hence, $'(z. 1)+ S.(2,t) is a

function of time only. The latter dependence reflects the well-known possibility to choose a different

zero reference point for the Hamiltonian at each instant ¢, without affecting the classical dynamics. This

has been expressed earlier, for example, in (10.7) by the arbitrary function ¢(¢) in the Hamiltonian £. In

conclusion, we may wet

H'(.n+C.(z.0)=0, (10.29)

* One should, of course, not confuse this £°(z) with the £'(z°. 2) in (10.15)-(10.20).
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or, in extenso, in an obvious notation:
Y(-i8.z,0)+2,=0. (10.30)

This is the complex Hamilton-Jacobi equation relevant to Hasse’s classical dynamics. As usual, it has
the structure of a first-order partial differential equation in N +1 variables and, consequently, a
complete solution must involve N + 1 independent constants of integration.

In the particular case of the damped oscillator Hamiltonian (10.7), the Hamilton-Jacobi equation
(10.30) specializes to™

NG () - (A +iw)zS,+S,=0. (10.31)

Although (10.31) can, of course, be solved by general techniques (e.g. the method of characteristics [78,
83, 113, 346, 491, 492]), mere inspection of this special case immediately reveals that it is satisfied by

iz =aze'"" M+a,, (10.32)

which does contain two constants of integration a, a;. As usual, the additive constant a; arises because
(10.31) does not involve the generator & itself, but only its partial derivatives with respect to z or . But,
by the same argument, the additive constant is irrelevant for the solution of the dynamical problem as
contained in the transformation formula (10.22). Applying the latter to (10.32), one readily concludes
that a, =iz*(). It is finally easily verified that the currently obtained solutions for z(r) and z*(¢)
indeed satisfy the original canonical equations (10.9)-(10.10). That is, in view of the time independent
complex canonical transformation (10.6), they properly represent the classical linearly damped harmonic
oscillator, (3.1) or (6.11)-(6.12), in real space.

10.2. Complex phase space dynamics

10.2.1. The Hamilton-Jacobi equation

So far certain elements have been given of the complex Hamilton-Jacobi formalism associated with
Hasse’s classical dynamics. Let us now recall that Hasse’s Hamiltonian, (10.7), (10.1) or (9.12), has been
derived in section 9 in the weak friction limit from the complex phase space quantum mechanical master
equation (9.1), or (7.29). It will be interesting to investigate the underlying classical mechanics of the
latter in a little more detail. Thereto we return to the beginning of section 7, or to Bopp's modified
theory in the second part of section 6. From either (7.7)-(7.8) or (6.45)-(6.46) we infer the so-called
improper or quasi-Hamilton equations [59, 195, 196, 258, 288], which are repeated here in terms of the
rescaled classical variable z = aVh:

F=-i¥,., =ikl (10.33)

X=(w-iA)z*z. (10.34)

As before, 7, =1 2z* can formally be considered as a conjugate momentum. Of particular importance,
y jug p p

? Note the difference between S, = S(2.¢), and 3, (1) = © ,(z(r). ¢). although it turns out to be of no importance in the present case,
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once again. will be to find the generator of the canonical transformation that is equivalent to solving
(10.33). Suppose therefore, as in (10.22). that we are given a function Z(z. t). with the property”

iz*=9,. (10.35)
According to this relation one then has available a complex function =* = z*(z. t). which in principle
suffices to obtain functions z(¢t) and z*(t). The total differential of z*. considered first as a function of z
and ¢ and using the first equation from (10.33) and also (10.35), leads to

dz*=—iz5¥.-dt—i(¥.). dr. (10.36)

This is the immediate analogue of (10.24). However, unlike (10.25) one presently has, on the other
hand. from the second equation of (10.33). that

dz*=i¥5dt. (10.37)
Equating (10.36) and (10.37), and defining [24, 59, 195]

X=H+il, (10.38)
H and I being real, one obtains

H.+25H -+ (L) =21, (10.39)
in licu of (10.26). Introducing the function ¥'(z, t) = ¥(z*(z). z. t). the equation (10.39) reduces to

X +F).=21,. (10.40)
One must be aware of the fact, that on the Lh.s. of (10.40) the partial derivative with respect to z
concerns a function of ¢ and z only, but that on the r.h.s. it applies to a function of (possibly) 1, and both
z and z*. Keeping this in mind, (10.40) leads to the quasi-Hamilton-Jacobi equation

X'z )+ Lz, )=5(2 1), (1041

where the dissipative “inhomogeneity™ $ reads™

$=2[r(s.0)dl. (10.42)

¢ We confine ourselves for the moment being to a one-dimensional complex valued process. The generalization of the present Hamilton-facobi
formalism to higher dimensional systems is nontrivial. both classically and within a quantum mechanical context. as will be further clarified by the
ullimate results and in section I1.

“? Clearly. this integralion procedure may get in diflicully in higher dimensional systems. See also section 1, concerning Kostin's nonlinear
frictional Schridinger equation {129, 136, 198, 199, 203, 207, 254}.
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Since in the absence of damping ¥* = ¥ = H is real [39]. so that I'=0. the “inhomogeneity” #
vanishes identically in that case and (10.41) takes on its common structure.

10.2.2. The effective Hamiltonian

In the special case of the linearly damped oscillator, comparison of (10.34) and (10.38) shows that
I'=-Az*z. Hence. I', = —Az* and by (10.35) the integrand in (10.42) becomes iA¥,. Therefore.
$ = =2A%(z. t). apart from an irrelevant arbitrary function of time. and the quasi-Hamilton-Jacobi
equation (10.41) yields:

NF-(A+iw):zP, +F.=0. (10.43)

It is interesting to compare this upshot with (10.31). According to the theory of characteristics (sce e.g.
{78. 83, 113, 346, 491, 492]). the general solution of (10.43) is given by

F=eMF(®y). (10.44)

where F(y)is an arbitrary function of y = = exp(i wt + At). Applying the transformation relation (10.35) to
(10.44) at the initial time ¢ = 0 gives #, =i 2*(0). so that #(y) =i yz*(0).” Hence,

Pz )=iz*(0)e' ™™, (10.45)
which is identical to the generator &(z. 1) found in (10.32) for Hasse's model.

Finally, it is quite interesting to note that (10.43) suggests the possibility of defining a proper,
effective Hamiltonian, say ¥, looking at it as if it were a genuine, “common’™ Hamilton-Jacobi
equation, Then

H=(w-iA)z*z+2A7(z. 1), (10.46)
which generates the following proper canonical equations:

Z=—i¥,-=-twz-Az, (10.47)

*=iX,miwz*+ A+ 22AS,. (10.48)
Since, by (10.35), &, =iz*(t) along the true trajectory, (10.48) is in fact identical to (10.10). So,
(10.47)~(10.48) do correctly describe the damped oscillator and ¥ can indeed be considered as a genuine
classical Hamiltonian. It will be further exploited in the next section.

10.3. Summary

In the first part of this section the classical analogue of Hasse's pure state Hamiltonian dynamics
(section 9) has been investigated. The classical dynamics is independent of the diffusion coefhicients.

“? The integration constant can be set equal to zero for it does not affect the transformation, as encountered carlicr. For the same reason an
additive constant does not appear in (10.44). Remember that (10.43) is unique, save for an arbitrary additive function of time.
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Hasse's Hamiltonian has been rewritten in terms of Dekker’s complex canonical variables. The
generator of that particular time-dependent canonical transformation that solves the dynamics (and
which need not leave the Poisson brackets invariant), has then been shown to obey a complex
Hamilton-Jacobi equation. In the second part of this section similar techniques have been applied to
the classical dynamics underlying both Bopp’s modified theory (section 6) and the complex phase space
quantization of section 7. A complex quasi-Hamilton-Jacobi equation has been derived. from which a
new proper Hamiltonian could be identified. This Hamiltonian will be discussed further in section 11.

11. Kostin’s nonlinear Schrodinger equation

11.1. Classical mechanics

In the previous section the ideas of a complex Hamilton-Jacobi formalism have been applied to both
the Hasse and the modified-Bopp-Dekker dynamics for the damped oscillator. From the latter a novel
proper classical Hamiltonian ¥ of a peculiar nature emerged. In principle, the availability of a true
Hamiltonian offers new vista’s on the application of conventional quantization procedures. In view of
the unconventional nature® of ¥, however, it seems wise to at least transform back to the real classical
coordinate and momentum, x and p. Consult (10.6), (6.42)-(6.43), or the first columns of (6.3)-(6.4).
Inserting

1 . l

z=%_a=,[p+(,\—iw)x]. z =\/——:[p+(,\+iw)x] (1L

into (10.46), readily yields
¥ =31-iMw)p?+2Apx + D)+ 20 P(2(p. x). 1). (11.2)

Anticipating the real space Hamilton-Jacobi theory, a function S(x, t) can be introduced, with the usual
property

p=S., (11.3)

which is the real mechanical analogue of (10.22) or (10.35). Using (11.3) we define the function &'(x, 1)
according to

L) )= LS.+ A-iw)x )= P(x, 1), (11.4)

and consider ¥, = ¥,z. =iz2%z,. In the latter we have invoked (10.35). With the aid of (11.1) and
(11.3) one then calculates

.?f,=[S—épx+i—;(p’+2)«px+ﬂzx2)] (11.5)

X

“ For instance. it is by no means clear what the quantum analogue of the complex generator ¥ itself should be.
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Hence,
i 9
F(z(p, x), t) = S(x. t)—§px+1—‘;(p2+ 2Apx + 2°x%), (11.6)

plus an arbitrary function of time that may be set equal to zero by the same token as usual, i.e.
dynamical invariance. Inserting (11.6) into (11.2), one obtains the upshot

¥ =1p*+i0°x7+2AS. (17

If, considering again p and x as independent conjugate variables, this result is used as the Hamiltonian
in the canonical equations of motion, it leads to

x=X,=p. (11.8)
p=-%.,=-0%-2AS,. (11.9)

Because, in view of (11.3), S, = p(¢) along the true trajectory, (11.8)-(11.9) are identical to (10.4), and,
hence, indeed properly represent the original Newtonian damped oscillator (3.1).
The real classical Hamilton-Jacobi equation

H(x.§5.)+85,=0, (11.10)
assoctated with (11.7), becomes
A8 + 3 x*+ XS+ S, =0. (11.11)

In this explicit form, (11.11) has been proposed earlier by Razavy [190, 226]. It is also mentioned in [43]
within the framework of extended fluid dynamics.

11.2. Quantum mechanics

11.2.1. The variational principle

The Hamilton-Jacobi equation (11.11) appears to be amenable to quantization following a method
originally due to Schrodinger [225]. In fact, the method is still usually cited in the textbooks on quantum
mechanics as giving the exact solution to the (Rayleigh-Ritz [493-495]) variational problem (sec e.g.
[162-164, 300, 303, 314, 331, 496]). Its application to dissipative quantum physics stems from Razavy's
work [190, 226]. The method, however, is not free of subtleties.” Although we have not much to say
concerning improvements at present, at least an attempt will be made at a viable formulation. In the

‘1t is amusing to note Schridinger's footnote {225]: “Es entgeht mir nicht daB diese Formulierung nicht gan2 eindeutig ist™. Notice further,
comparing {225] and {190, 226], that Schridinger introduces a real valued wave function @ (which certainly is allowed in the stationary states he
considers), according to S = A In ¢. However, in this way, the wave function is connected with the classical principal function § in a rather unusual
way (consult e.g. [72. 113, 160, 163, 164, 201-231, 300, 303, 313, 314, 417, 497-501}). On the other hand, Razavy follows the common technique of
introducing a complex valued wave function ¢ (which certainly is required in the dynamical case). according to S = (A/i)Ind. S=(iA)In¢° or
S = (A/2i) In(d/¥°). The ambiguity is that cach of these expressions must be introduced at its “appropriate™ place in the classical formulac. In fact.
the two different connections of the wave function with the classical principal function hardly seem compatible. Finally. note that these problems are
basically related to the undamped system, rather than to the dissipation. See further the present text.
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first place it will be shown that the dynamical variational principle basically is a Lagrangian recipe. It
reduces to the usual variation of the Hamiltonian (the Rayleigh-Ritz method for obtaining the
eigenvalues and eigenfunctions) only at stationary states. Secondly. it is noted that in the classical theory
there exists apparently only one real field S(x, t). The subsequent introduction of a complex field (x. t).
leading to a two dimensional variational problem (i.e. with 8¢ and 84* as independent alterations). will
be given a little more attention than usual (see e.g. [190, 226]). Actually starting with the latter aspect.
let us return to the Hamiltonian X(x, S, ) that can be read from (11.10) and (11.11). It is

X =S+ M +2AS + (1) (11.12)

where we have once more explicitly accounted for the invariance of the classical dynamics under the
addition of an arbitrary time dependent function ¢(¢) to the Hamiltonian.” Compare e.g. with (10.7).
Next, a complex function is introduced according to

o(x thxo) = A(F) exp[% S(x. t|x0)] . (11.13)

where both § and the amplitude A are taken to be real. In the definition (11.13) it has been carefully
explicited that the classical principal function, besides depending on x and ¢, also contains an integration
constant. For convenience, this parameter has been identified with the initial value x(0)= x,. For a
classical, deterministic process the actual value of x, is a sure quantity, i.e. it is specified with probability
one. However, in view of the probabilistic nature of quantum mechanics, it will be important to
recognize x, in the wave function (11.13) as a basically free parameter. Actually, ¢(x, t|x,) is not yet a
true wave function. For instance, it does not conserve total probability in the usual sense. Rather, it
represents a quantum mechanical propagator (Green's function, or transition amplitude).”” See ¢.g. {70, 72,
116,228, 231, 387, 417, 500, 501, 505]. In the form (11.13) it is known to be exact for the undamped (possibly
driven) harmonic oscillator*** [72}. From (11.13) one has

S = (h/2i) In(Wly™) . (11.18)

Schrddinger’s quantum mechanical postulate now amounts to defining the expectation value of the
Hamiltonian as the functional

K=I¢‘7(«/;dx, (11.15)

so that [y|* attaches the meaning of a (relative [72]) probability density, and considering K(¢*, ¢, t) as the

“ This notion takes the place here of the additionally imposed normalization condition in [190. 226]. Actually. that subsidiary condilion would
lead to nonsensical results in the case of the semi-classical wave function (£1.13), which, on the other hand, must be introduced in order to obtain a
selfconsistent variational procedure leading to the standard linear Schrédinger equation if A = 0. Sce also [502-504] and the previous footnote.

** For the nondissipative lincar (in ¢) Schrodinger equation the important superposition principle holds, so that a general wave function can be
obtained as a lincar weighted combination of propagators with different xp, i.c. ¥(x. 1) = [ ¥(x, I'x0) #(xo) dxo. Unfortunately, the superposition
principle is invalidated for the nonlinear frictional Schridinger equations, including Kostin's. See further on.

“*%The expression (11.13) is also the first step in the standard WKB-analysis. Recall that the WKB-cigenvalues are exact (in the first order
analysis) for the harmonic oscillator. See e.g. {162-164, 230, 300, 303, 313, 314, 481, 496, 498, 499, 506-516]. Further, (11.13) is also exact within the
Caldirola-Kanai modet of the damped oscillator (section 4).



H. Dekker. Classical and quantum mechanics of the damped harmonic oscillator 9]

canonical generator of quantum dynamics. Notice, that (11.15) involves both S and A. Because there are
no additional constraints in the present formulation, these functions can indeed be altered in-
dependently. Hence, alternatively. we may consider 8¢ and ¢a/* as independent variations in the
following. Inserting (11.12) with (11.14) into (11.15) straightforwardly leads to

K=-h’ I (W 1) (W) = 2050 + W) (W3] dx + 200 I x ¢t dx

—ihA J'¢*¢|n(¢/¢')d.r+¢(:)J'.p'.pdx. (11.16)

The combination of the first and last term within the square (kinetic) brackets is easily further evaluated
using the identity”

@I+ W)L = -2¢ 5+ (07 9)L[In(e*¥))... (11.17)

Evidently, in view of (11.13). the second term on the r.h.s. of (11.17) is definitely zero. Therefore,
(11.16) reduces to

K= [ [0 200 + 0 00 - A a9y ") + )] dx. (11.18)

With A =0 this Hamiltonian is well-known in the standard theory of “second quantization™ (sce c.g.
[22. 300, 331]). By means of onec partial integration in the kinetic term, and putting A = ¢ =0 for
convenience, (11.18) can be written as

K, = [ o (p*+ V) dx, (11.19)

with p=~ikd, and V=102 The Hamiltonian K, is immediately recognized as the harmonic
potential c-number analogue of the atomic reservoir Hamiltonian (8.3), that has been employed in the
quantum optics model of section 8. Following the usual procedure, the Hamiltonian (11.18) can be
obtained from the Lagrangian

L=ih J'.pn/,,, dx - K", ¢ 1). (11.20)

It is instructive to compare the functional (11.20) with the function (10.8). Presently, the canonical
momentum r(x, t) conjugate to the field ¢(x,¢) is m =ih¢*. The Lagrange variational principle
8 [ L dt =0, taken over from classical mechanics, now becomes

5 J' j [ g™ g, - 2050, ~ 0 G0 = hA In(wlg™) + @) dx dr =0, (11.21)

which yields the Euler-Lagrange equation (see e.g. [1, 113, 300, 331])

* This procedure is not unique. f1 aims, however, a1 a nondissipative Schrodinger equation linear in and containing only .
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P, = =30 + 30 - LAY I ) + AN + @) (11.22

in consequence of a variation §¢* #0, and the complex conjugate equation by the independent
variation 8¢ # 0.

11.2.2. The Schrodinger equation

Clearly, in absence of dissipation (11.22) reduces to the usual Schrodinger equation, which is linear in
¢. Hence. in that case more general solutions than (11.13), which forms an essential element in the
derivation of (11.22). can be readily constructed by superposition of propagators with different initial
states. See also again the footnote following (11.13). Unfortunately, as will be obvious from (11.22), the
superposition principle ceases to be valid as soon as A # ). The bold leap of the present theory is the
postulate that, nevertheless, (11.22) does have physical significance for solutions other than (11.13). even
if A# 0.7 Of course, of particular interest are those solutions that can be normalized in the conventional
way, thus providing a proper probability density p(x. ) = [¢[*. From (11.22) and its complex conjugate
one finds

potje=2(A +;ll-lm(p)p, (11.23)

where j(x, r) represents the usual current density

J= 2 . - d). (11.24)

Compare this e.g. with (4.21)-(4.22). Clearly, total probability will be conserved in the course of time if
Im¢ = -hA. The real part of (¢) produces an irrelevant scalar phase shift in the wavefunction, as
usual, and can be set equal to zero. The Schrodinger equation (11.22) can now finally be written as

thy, = (Hy+ AWy, (11.25)
H, again representing the free oscillator (2.8), and where
W ==ih[In(@/y*) - (n(@/y*)] . (11.26)

As before (see e.g. (2.9) for the Siissmann-Hasse~Albrecht models, and (9.8) for Hasse's pure state
model), we have added in (11.26) a non-observable time dependent function in order to let (Wx) = 0.
The result (11.25)-(11.26) represents Kostin's Schrodinger—-Langevin®” equation [198,199]. It has
subsequently been discussed within the frameworks of the fluid dynamical interpretation of the

¢ Intuitively, this may restrict 1he validity of (11.22) to the weak friction limit.

**In fact, (11.25)-(11.26) represent the 7 =0 case. At elevated 1emperatures one could add a random stochastic potential Vg = x€(t), which is
due 10 a classical thermal reservoir. Although this procedure is quite close to the Svin'in-Langevin treatment ([180, 181}, and section §) of the
Caldirola-Kanai mode! (section 4), the present version is more satisfying. Namely, the pure classical Kostin-Langevin noise source £(r) need not
generate the zeropoint Auctuaiions of the tagged quantum mechanical oscillator. That is, here (£(1 + T)(1)) = 2Dy 8(r) with D = 2ANgASD, in lieu of
D = 2 (Np + YA0. Sce e.g. (1.9)~(1.11) and (5.64). Kostin's original papers did include Vg, It’s implications have been further discussed by Messer

{156},
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Schrodinger equation [201-204], stochastic quantization [205-213] and Hamilton-Jacobi theory
[43, 190, 226]. See further [129, 136, 156, 247-250] and the Historical survey.

The Kostin mode! (11.25)-(11.26) has the remarkable property that every stationary solution of the
free oscillator also solves the damped problem.” In general there is a regression towards these stationary
states [203, 207, 517]. according to™*

b= a9 exp [ 020+ )] (1127

where y = x — x(#), and where x(r) represents the classical trajectory of the damped oscillator, i.e. (2.5)
or (5.41).”*" Further, the ¢, represent the undamped stationary state eigenfunctions:

Bnly) = N expl—iln + D0 — Qy*20) H(yVR), (11.28)

with &, = (/mh)"*(2"n")"". Finally, So = So(x(¢). t|x,) in (11.27) stands for the free oscillator action
calculated along the dissipative trajectory, i.e.

So= f Lo(x(e), £(1)) dr', (11.29)
0
Lo = 25%(1) - :02°6°(r). (11.30)

11.2.3. Wave packet solutions
At the ground state n =10, the wave function (11.27) is a Gaussian. Compare with section 2,
especially (2.11) and (2.19). In that case one obtains, with (x) = x(¢):

lof* = lzmul'”’cxp[—(—fz:—(’-‘—)-)- ; (11.31)

which compares with the wave packet (2.19) of the Siissmann—Hasse—-Albrecht models at the stationary
width 2a,, = w2 = #/2, i.e. for ¢ = 0 (Albrecht’s choice; see (2.12)). However, as has been shown by
Remaud and Hernandez [136]. the stability properties of the Kostin fluctuations are essentially different
from the Miinchen-models. Computing the first moments directly from the nonlincar Schrédinger
equation (11.25)-(11.26), one finds (x)" = (p) and, using p = ~i k4, :

(p) = =) +i AN/ *)).0) = —03(x) - 2A4p), (11.32)

invoking the usual definition of expectation values, as contained for example in (11.15). Similarly
calculating the equations of motion for the variances, the results for o,. and o.. emerge quite

“ This property is destroyed if the random potential Vi is present f.e. at nonzero iemperature (see previous footnote). Consult section 2 and [ 108, 109)
for further comments,

“* The solwtion (11.27) differs somewhat from than given in [156, 207}, but agrees (a1 least at 7 = Oywith that presented in [129, 1360]. The differenceis
in the phase factor only.

2% Letin (5.41) y(1) be x(1).
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straightforwardly and appear to be identical to (3.56) and (3.58) of the Bateman-Feshbach~Tikochinsky
theory, (4.28) and (4.30) of the Caldirola-Kanai model. (5.70) and (5.72) of the Kanai-Svin'in
treatment; and to (7.43) and (7.45), or to (9.23) and (9.25). if in the latter two cases one sets the diffusion

coefficients D,, + D,, = D, = 0. The equation for g, is more involved and. as will be shown, leads to
a somewhat unusual result. Obviously,

P = -0%px + xp)— A{[p?, In(W¢*))) . (11.33)
Writing the dissipative term on the r.h.s. explicitly in the coordinate representation. one obtains
<P2>. = _n2<px +xp)+ Ah? J’ W' ‘l’:xd/) dx - 2Ak° j d’zd/x dx
+AR? [ (@ 1) + @YW dx. (1134)

By partial integration the first dissipative integral in (11.34) is noted to vanish, while the second leads to
-2A{p*). Moreover, applying (11.17) to the last integral on the r.h.s. of (11.34) leads to

(p?)" = ~0%px + xp) - 4A(p?) + AR? J' (OP) (210" + g0 dx. (11.35)

Substituting now the gencral form (11.31) for the density |¢° of a Gaussian wave packet into the
integral in (11.35), gives

(P?) = ~D¥px + xp) - 4A(p*) ~ (A0, ) f (x = (0N )0 dx. (11.36)

Either performing a partial integration, or once more using (11.31) and the very dcfinition of o,, yiclds
the final result. In conclusion, the Gaussian variances for the Kostin model obey the following set of
equations:

Opx = =200 + 0pp — 0, (11.37)
Opp = —4Aa,, - 20%0,, + A 0,, , (11.38)
Oex = 20 . (11.39)

This result agrees with [136]. The stationary solution, contained in fact in the state ¢ = ¢, of (11.27), is
easily found: 0, (®) =0, 0pp(®) = 220w (®) and o,,(®) 0, (*) = h?/4. That is, there is minimum un-
certainty with o, (*) = #/202 and o,,(*) = #f/2, representing indeed the free oscillator ground state.
Notice that, due to (11.38), the dynamics of the quantum mechanical fluctuations for the Gaussian
Kostin-oscillator can not be brought into the form of any of the other models treated in the previous
sections. Actually, the general dynamical solution of (11.37)-(11.39) is not known in closed form [136].
However, if o > #°A the Kostin equations (11.37)-(11.39) reduce to (3.56)-(3.58), so that for large
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coordinate spread the solutions are given by functions of the type (3.59) and (3.60).” What will happen if
the variances come close to the oscillator ground state values, is clarified by means of a linear stability
analysis of (11.37)-(11.39). Setting 0. (f) = o (®)[1 + €(1)]. (11.38) can be linearized to

Opp = ~8Aapp ~ 2000, — A0 + 4HAQD. (11.40)

Note in passing. that (11.40) cannot be obtained from a diffusion equation with constant (i.e.
x-independent) diffusion coefficient D,,. The eigenvalues of (11.37). (11.39) and (11.40) are —4A and
~-A £2i(22- A/4)'”. Hence, the Kostin-oscillator widths (i.e. for instance, the energy) are asymptotic-
ally stable about the ground state. Compare this with the remarks below (2.21). concerning the
Miinchen-models.

Let us finally note, more or less for the sake of completeness, that because (i) the Kostin-oscillator is
described by means of a Schrodinger wave function, because (ii) the canonical momentum p = —i hd, is
identical to the mechanical momentum, and because (iii) a Gaussian wave packet solution exists, one
may conclude that the “normal’’ uncertainty relation (2.18) can be applied to (11.37)-(11.39). Hence. as
for the Siissmann—Hasse-Albrecht oscillators, one can find a second order equation for o, separately™™
Introducing once more the width w, according to wi = 20.,. one obtains

Wy + 24w, + Q%w, = hw} . (11.41)

Compare this with (2.20), and notice the presently occurring damping term on the Lh.s. of (11.41), which
explains the gross differences between the Kostin and the original Minchen-models. Analysis of (11.41)
completely confirms the earlier conclusions concerning the stability of the Kostin-width about its ground
state value w, () = (/£2)"2, as it should [136].

11.3. Summary

The classical Hamiltonian, obtained in section 10 on the basis of the complex quasi-Hamilton-Jacobi
formalism associated with the modified Bopp-~Dekker dynamics (sections 6 and 7), has been written in
terms of the real space canonical variables. It has subscquently been quantized using an adapted dynamical
version of the original Schrédinger~Razavy theory. The result is Kostin's nonlinear frictional Schrodinger
equation. It violates the superposition principle and is difficult to generalize to higher dimensional systems.
Its onc-dimensional stationary state and Gaussian wave packet solutions have been discussed in some
detail. The latter always decays into the free oscillator ground state. The Kostin damped oscillator respects
Heisenberg's uncertainty principle.

12. Summary and final remarks

Dissipation in classical and quantum mechanics has been discussed from diffcrent point of views,
both microscopically and phenomenologically. In fig. 12.1 the general interrelations between the various

“ The cigenvalues of (3.56)-(3.58) are =24 and -2(A =jw).

** This is most easily done 1aking the derivative @4, = 2, from (11.39), and using (11.37) in order to express ., in terms of ape, app and oy,
Muliplying the resulting equation on buth sides with ,,, then invoking (2.18) to eliminate the product oppry,. and finally re-expressing oy, in term:
of ¢, by means of (11.39), lcads to the required equation of motion, Notice that (11.38) has not been used.
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Fig. 12.1. Tnerrelations between various levels of deseription of physical systems.

descriptions are depicted. The present article has been written with the intention to clarify the more
precise connections between several specific, seemingly disjunct models for the simplest conceivable
nontrivial system: the linearly damped harmonic oscillator. In that sense, the text aims at a unified
treatment. On the other hand, it attempts to reveal the differences between the various approaches as well
as their intrinsic difficulties, in particular in the quantum domain. The treatment is a physicist's and has not
becn aimed at mathematical rigor.

As usual, the logical context overrules the historical developments. After the general introduction in
section 1 on reversible and irreversible phenomena, and on the relation between dissipation and
fluctuations, a historical survey has been given in section 2. With reference to that survey for more
information, fig. 12.2 shows a rough sketch of the historical advent of the theories discussed in the
subsequent sections, as well as their position within fig. 12.1.

Aside from some remarks concerning Havas' example of a typically unphysical Hamiltonian [8], section
2 also contains a brief discussion of the mesoscopic Siissman—-Hasse~Albrecht or Miinchen-models for
the damped quantum oscillator {129]. Since the canonical momentum and the mechanical momentum
are equal, while the system is described by means of a Schrddinger wave function, these models respect
Heisenberg's uncertainty principle. On the other hand, however, they lead to the unexpected feature of
non(asymptotically) stable fluctuations.

In section 3 Bateman'’s classical dual Hamiltonian model, comprising the damped oscillator plus
mirror image, and its quantization following Feshbach and Tikochinsky is considered [11, 115]. The
basic commutator is incorrect and, hence, Heisenberg’s principle is violated.
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Section 4 has been devoted to Bateman’s time-dependent Hamiltonian model. It is related to the
dual model by extending the dynamical variables into the complex plane and performing a canonical
transformation. The quantum mechanics of this model (related to a mass-accreting oscillator rather than
an energy dissipating one) following Caldirola and Kanai [13, 14], involves an exponentially decaying
fundamental commutator and thus kills the quantum fluctuations in the course of time.

The classical semi-infinite transmission line models of Stevens [157] and Yurke-Yurke [39] (which
are closely related to the Ford~Kac-Mazur model [38]) are investigated in section 5. It is shown that the
Caldirola-Kanai theory applies to the smoothed (or: noise-subtracted) dynamical variables rather than
the actual ones. Unfortunately, the required infinite number of degrees of freedom in the model
prohibits the calculation of all observable quantities. This can, in a sense, be remedied by Svin'in’s
mesoscopic quantum mechanical treatment of the Caldirola—Kanai model [180], as is also outlined in
section 5.

In section 6 Dekker's complex dynamical variables are introduced into Bateman's dual Hamiltonian
by means of a canonical transformation and Dedene's complex symplectic formulation of the damped
oscillator is examined [197]. Its quantum mechanics violates the uncertainty principle for the same reasons
as with the original Bateman model. The second part of section 6 is concerned with a modified version of
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Bopp's theory [114]. In terms of the complex variables the correct quantum mechanical commutator is
imposed on the physical system, which is separated from its artificial mirror image. The resulting density
operator (or: quantum mechanical master) equation describes mixed rather than pure states. The
uncertainty principle is respected. The dissipation increases the uncertainty product over its vacuum value.

Section 7 presents a discussion of Dekker’s complex phase space quantization [195], starting from
Dedene’s symplectic formulation. It leads to the same quantal master equation as the modified
Bopp-theory, and, hence, also defers to Heisenberg’s principle.

Section 8 describes the quantum optics oscillator [22, 55]. The quantum mechanical model-Hamil-
tonian yields the modified Bopp—Dekker master equation for the reduced density operator in a weak
damping limit.

In that limit, and in a Gaussian approximation, this density operator equation can be replaced by a
nonlinear frictional Schrédinger equation with a non-Hermitian but normconserving Hamiltonian.
according to a theory due to Hasse [311]. It is studied in section 9.

In section 10 a (quasi-) Hamilton-Jacobi formalism has been outlined for the classical complex
variables dynamics associated with Hasse's and the modified Bopp-Dekker model. In the case of the
latter a new dissipative Hamiltonian emerged.

This novel Hamiltonian has been quantized in section 11 using a modified dynamical version of the
Schrodinger—Razavy variational procedure [190]. It leads to Kostin's nonlincar Schridinger equation,
which guarantees the validity of Heisenberg's principle [198].

The essentials of the relations between the models discussed in this article can be seen from the
diagram in fig. 12.3.

Although completeness is certainly not claimed, it is felt that the present text covers a substantial
portion of the relevant work done during the last half century. All models agree on the classical

complex complex canomical Bateman’s | compie« extention, can time
symplectic f< - - e - >{ dependent
model frantformation | al mode| | st & separation modet
& \} it N roIne
Stevens’ canomicsl Caldirola
N transmissionf—- - - - - > Kanai
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!
mc;:hfned Dekker's | complex Koshin's i
opp " ‘
theory theory Hi.tneory— theory i
while nrose
7 !
‘. 3 ‘
N quantum *hermal
optics wute [
notse ©
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Y v ¥
Hasse's Munchen Messer’s Svin'in's
theory models . treatment treatment

Fig. 12.3. Block diagram showing specific relations between various theories of the damped harmonic oscillator.
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dynamics. From the quantal point of view this is to say that they all satisfy Ehrenfest's principle.
However, the actual quantum mechanics of the various models reveals a considerable variety in
fluctuation behaviour.

Closer inspection of the models further shows that none of them. neither the microscopic nor the
mesoscopic ones, are completely satisfactory in all respects. For instance, the Bateman-Feshbach-
Tikochinsky theory is at variance with the uncertainty principle. even in the limit of vanishing
dissipation: the transmission line model involves infinities; Svin'in’s classical reservoir requires quantum
mechanical properties: Bopp's modelling is, in fact. in line with Ehrenfest’s principle only for certain
special. nearly classical initial conditions: for arbitrary nondissipative Hamiltonians, Dekker’s theory is
not always exactly equivalent to the usual Schrddinger description: the evaluation of the quantum optics
oscillator involves quite a number of delicate steps; Hasse's pure state representation condition is
usually not satisfied in the dynamical state; and Kostin's Schrodinger equation can hardly be generalized
to more than one single oscillator. This list should suffice here. For further comments the reader is
referred to the pertinent sections.

Let us in the end again remember that dissipation basically arises from microscopic time-reversible
interactions, and that it is observed essentially looking at a subsystem of the universe. Such problems
are intrinsically difficult, although the observed subsystem dynamics is often relatively simple. In
conclusion, there can be no doubt that dissipative phenomena - being in their modelling often at the
borderline between microscopy and macroscopy — will continue to be a challenging subject
[431. 530-563]."
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